hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
08770b4a8025d1b0a3e992f79b4bec044b49fab8
25,224
py
Python
pymatgen/core/tests/test_composition.py
rwoodsrobinson/pymatgen
f9226b79b8f9ccd0b305e557c9e4878e096bfc77
[ "MIT" ]
2
2021-04-28T13:28:52.000Z
2021-04-28T13:29:06.000Z
pymatgen/core/tests/test_composition.py
rwoodsrobinson/pymatgen
f9226b79b8f9ccd0b305e557c9e4878e096bfc77
[ "MIT" ]
null
null
null
pymatgen/core/tests/test_composition.py
rwoodsrobinson/pymatgen
f9226b79b8f9ccd0b305e557c9e4878e096bfc77
[ "MIT" ]
3
2018-10-17T19:08:09.000Z
2021-12-02T20:26:58.000Z
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Created on Nov 10, 2012 @author: shyue """ from pymatgen.util.testing import PymatgenTest __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2011, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "shyuep@gmail.com" __status__ = "Production" __date__ = "Nov 10, 2012" import unittest from pymatgen.core.periodic_table import Element, Specie from pymatgen.core.composition import Composition, CompositionError, \ ChemicalPotential import random class CompositionTest(PymatgenTest): def setUp(self): self.comp = list() self.comp.append(Composition("Li3Fe2(PO4)3")) self.comp.append(Composition("Li3Fe(PO4)O")) self.comp.append(Composition("LiMn2O4")) self.comp.append(Composition("Li4O4")) self.comp.append(Composition("Li3Fe2Mo3O12")) self.comp.append(Composition("Li3Fe2((PO4)3(CO3)5)2")) self.comp.append(Composition("Li1.5Si0.5")) self.comp.append(Composition("ZnOH")) self.indeterminate_comp = [] self.indeterminate_comp.append( Composition.ranked_compositions_from_indeterminate_formula("Co1", True) ) self.indeterminate_comp.append( Composition.ranked_compositions_from_indeterminate_formula("Co1", False) ) self.indeterminate_comp.append( Composition.ranked_compositions_from_indeterminate_formula("co2o3") ) self.indeterminate_comp.append( Composition.ranked_compositions_from_indeterminate_formula("ncalu") ) self.indeterminate_comp.append( Composition.ranked_compositions_from_indeterminate_formula("calun") ) self.indeterminate_comp.append( Composition.ranked_compositions_from_indeterminate_formula( "liCoo2n (pO4)2") ) self.indeterminate_comp.append( Composition.ranked_compositions_from_indeterminate_formula( "(co)2 (PO)4") ) self.indeterminate_comp.append( Composition.ranked_compositions_from_indeterminate_formula("Fee3")) def test_immutable(self): try: self.comp[0]["Fe"] = 1 except Exception as ex: self.assertIsInstance(ex, TypeError) try: del self.comp[0]["Fe"] except Exception as ex: self.assertIsInstance(ex, TypeError) def test_in(self): self.assertIn("Fe", self.comp[0]) self.assertNotIn("Fe", self.comp[2]) self.assertIn(Element("Fe"), self.comp[0]) self.assertEqual(self.comp[0]["Fe"], 2) self.assertEqual(self.comp[0]["Mn"], 0) self.assertRaises(TypeError, self.comp[0].__getitem__, "Hello") self.assertRaises(TypeError, self.comp[0].__getitem__, "Vac") def test_hill_formula(self): c = Composition("CaCO3") self.assertEqual(c.hill_formula, "C Ca O3") c = Composition("C2H5OH") self.assertEqual(c.hill_formula, "C2 H6 O") def test_init_(self): self.assertRaises(CompositionError, Composition, {"H": -0.1}) f = {'Fe': 4, 'Li': 4, 'O': 16, 'P': 4} self.assertEqual("Li4 Fe4 P4 O16", Composition(f).formula) f = {None: 4, 'Li': 4, 'O': 16, 'P': 4} self.assertRaises(TypeError, Composition, f) f = {1: 2, 8: 1} self.assertEqual("H2 O1", Composition(f).formula) self.assertEqual("Na2 O1", Composition(Na=2, O=1).formula) c = Composition({'S': Composition.amount_tolerance / 2}) self.assertEqual(len(c.elements), 0) def test_average_electroneg(self): val = [2.7224999999999997, 2.4160000000000004, 2.5485714285714285, 2.21, 2.718, 3.08, 1.21, 2.43] for i, c in enumerate(self.comp): self.assertAlmostEqual(c.average_electroneg, val[i]) def test_total_electrons(self): test_cases = {'C': 6, 'SrTiO3': 84} for item in test_cases.keys(): c = Composition(item) self.assertAlmostEqual(c.total_electrons, test_cases[item]) def test_formula(self): correct_formulas = ['Li3 Fe2 P3 O12', 'Li3 Fe1 P1 O5', 'Li1 Mn2 O4', 'Li4 O4', 'Li3 Fe2 Mo3 O12', 'Li3 Fe2 P6 C10 O54', 'Li1.5 Si0.5', 'Zn1 H1 O1'] all_formulas = [c.formula for c in self.comp] self.assertEqual(all_formulas, correct_formulas) self.assertRaises(CompositionError, Composition, "(co2)(po4)2") self.assertEqual(Composition("K Na 2").reduced_formula, "KNa2") self.assertEqual(Composition("K3 Na 2").reduced_formula, "K3Na2") self.assertEqual(Composition("Na 3 Zr (PO 4) 3").reduced_formula, "Na3Zr(PO4)3") def test_iupac_formula(self): correct_formulas = ['Li3 Fe2 P3 O12', 'Li3 Fe1 P1 O5', 'Li1 Mn2 O4', 'Li4 O4', 'Li3 Mo3 Fe2 O12', 'Li3 Fe2 C10 P6 O54', 'Li1.5 Si0.5', 'Zn1 H1 O1'] all_formulas = [c.iupac_formula for c in self.comp] self.assertEqual(all_formulas, correct_formulas) def test_mixed_valence(self): comp = Composition({"Fe2+": 2, "Fe3+": 4, "Li+": 8}) self.assertEqual(comp.reduced_formula, "Li4Fe3") self.assertEqual(comp.alphabetical_formula, "Fe6 Li8") self.assertEqual(comp.formula, "Li8 Fe6") def test_indeterminate_formula(self): correct_formulas = [["Co1"], ["Co1", "C1 O1"], ["Co2 O3", "C1 O5"], ["N1 Ca1 Lu1", "U1 Al1 C1 N1"], ["N1 Ca1 Lu1", "U1 Al1 C1 N1"], ["Li1 Co1 P2 N1 O10", "Li1 Co1 Po8 N1 O2", "Li1 P2 C1 N1 O11", "Li1 Po8 C1 N1 O3"], ["Co2 P4 O4", "Co2 Po4", "P4 C2 O6", "Po4 C2 O2"], []] for i, c in enumerate(correct_formulas): self.assertEqual([Composition(comp) for comp in c], self.indeterminate_comp[i]) def test_alphabetical_formula(self): correct_formulas = ['Fe2 Li3 O12 P3', 'Fe1 Li3 O5 P1', 'Li1 Mn2 O4', 'Li4 O4', 'Fe2 Li3 Mo3 O12', 'C10 Fe2 Li3 O54 P6', 'Li1.5 Si0.5', 'H1 O1 Zn1'] all_formulas = [c.alphabetical_formula for c in self.comp] self.assertEqual(all_formulas, correct_formulas) def test_reduced_composition(self): correct_reduced_formulas = ['Li3Fe2(PO4)3', 'Li3FePO5', 'LiMn2O4', 'Li2O2', 'Li3Fe2(MoO4)3', 'Li3Fe2P6(C5O27)2', 'Li1.5Si0.5', 'ZnHO'] for i in range(len(self.comp)): self.assertEqual(self.comp[i] .get_reduced_composition_and_factor()[0], Composition(correct_reduced_formulas[i])) def test_reduced_formula(self): correct_reduced_formulas = ['Li3Fe2(PO4)3', 'Li3FePO5', 'LiMn2O4', 'Li2O2', 'Li3Fe2(MoO4)3', 'Li3Fe2P6(C5O27)2', 'Li1.5Si0.5', 'ZnHO'] all_formulas = [c.reduced_formula for c in self.comp] self.assertEqual(all_formulas, correct_reduced_formulas) # test iupac reduced formula (polyanions should still appear at the end) all_formulas = [c.get_reduced_formula_and_factor(iupac_ordering=True)[0] for c in self.comp] self.assertEqual(all_formulas, correct_reduced_formulas) self.assertEqual( Composition('H6CN').get_integer_formula_and_factor( iupac_ordering=True)[0], 'CNH6') # test rounding c = Composition({'Na': 2 - Composition.amount_tolerance / 2, 'Cl': 2}) self.assertEqual('NaCl', c.reduced_formula) def test_integer_formula(self): correct_reduced_formulas = ['Li3Fe2(PO4)3', 'Li3FePO5', 'LiMn2O4', 'Li2O2', 'Li3Fe2(MoO4)3', 'Li3Fe2P6(C5O27)2', 'Li3Si', 'ZnHO'] all_formulas = [c.get_integer_formula_and_factor()[0] for c in self.comp] self.assertEqual(all_formulas, correct_reduced_formulas) self.assertEqual(Composition('Li0.5O0.25').get_integer_formula_and_factor(), ('Li2O', 0.25)) self.assertEqual(Composition('O0.25').get_integer_formula_and_factor(), ('O2', 0.125)) formula, factor = Composition( "Li0.16666667B1.0H1.0").get_integer_formula_and_factor() self.assertEqual(formula, 'Li(BH)6') self.assertAlmostEqual(factor, 1 / 6) # test iupac reduced formula (polyanions should still appear at the end) all_formulas = [c.get_integer_formula_and_factor(iupac_ordering=True)[0] for c in self.comp] self.assertEqual(all_formulas, correct_reduced_formulas) self.assertEqual( Composition('H6CN0.5').get_integer_formula_and_factor( iupac_ordering=True), ('C2NH12', 0.5)) def test_num_atoms(self): correct_num_atoms = [20, 10, 7, 8, 20, 75, 2, 3] all_natoms = [c.num_atoms for c in self.comp] self.assertEqual(all_natoms, correct_num_atoms) def test_weight(self): correct_weights = [417.427086, 187.63876199999999, 180.81469, 91.7616, 612.3258, 1302.430172, 24.454250000000002, 82.41634] all_weights = [c.weight for c in self.comp] self.assertArrayAlmostEqual(all_weights, correct_weights, 5) def test_get_atomic_fraction(self): correct_at_frac = {"Li": 0.15, "Fe": 0.1, "P": 0.15, "O": 0.6} for el in ["Li", "Fe", "P", "O"]: self.assertEqual(self.comp[0].get_atomic_fraction(el), correct_at_frac[el], "Wrong computed atomic fractions") self.assertEqual(self.comp[0].get_atomic_fraction("S"), 0, "Wrong computed atomic fractions") def test_anonymized_formula(self): expected_formulas = ['A2B3C3D12', 'ABC3D5', 'AB2C4', 'AB', 'A2B3C3D12', 'A2B3C6D10E54', 'A0.5B1.5', 'ABC'] for i in range(len(self.comp)): self.assertEqual(self.comp[i].anonymized_formula, expected_formulas[i]) def test_get_wt_fraction(self): correct_wt_frac = {"Li": 0.0498841610868, "Fe": 0.267567687258, "P": 0.222604831158, "O": 0.459943320496} for el in ["Li", "Fe", "P", "O"]: self.assertAlmostEqual(correct_wt_frac[el], self.comp[0].get_wt_fraction(el), 5, "Wrong computed weight fraction") self.assertEqual(self.comp[0].get_wt_fraction(Element("S")), 0, "Wrong computed weight fractions") def test_from_dict(self): sym_dict = {"Fe": 6, "O": 8} self.assertEqual(Composition.from_dict(sym_dict).reduced_formula, "Fe3O4", "Creation form sym_amount dictionary failed!") comp = Composition({"Fe2+": 2, "Fe3+": 4, "O2-": 8}) comp2 = Composition.from_dict(comp.as_dict()) self.assertEqual(comp, comp2) def test_as_dict(self): c = Composition.from_dict({'Fe': 4, 'O': 6}) d = c.as_dict() correct_dict = {'Fe': 4.0, 'O': 6.0} self.assertEqual(d['Fe'], correct_dict['Fe']) self.assertEqual(d['O'], correct_dict['O']) correct_dict = {'Fe': 2.0, 'O': 3.0} d = c.to_reduced_dict self.assertEqual(d['Fe'], correct_dict['Fe']) self.assertEqual(d['O'], correct_dict['O']) def test_pickle(self): for c in self.comp: self.serialize_with_pickle(c, test_eq=True) self.serialize_with_pickle(c.to_data_dict, test_eq=True) def test_to_data_dict(self): comp = Composition('Fe0.00009Ni0.99991') d = comp.to_data_dict self.assertAlmostEqual(d["reduced_cell_composition"]["Fe"], 9e-5) def test_add(self): self.assertEqual((self.comp[0] + self.comp[2]).formula, "Li4 Mn2 Fe2 P3 O16", "Incorrect composition after addition!") self.assertEqual((self.comp[3] + {"Fe": 4, "O": 4}).formula, "Li4 Fe4 O8", "Incorrect composition after addition!") def test_sub(self): self.assertEqual((self.comp[0] - Composition("Li2O")).formula, "Li1 Fe2 P3 O11", "Incorrect composition after addition!") self.assertEqual((self.comp[0] - {"Fe": 2, "O": 3}).formula, "Li3 P3 O9") self.assertRaises(CompositionError, Composition('O').__sub__, Composition('H')) # check that S is completely removed by subtraction c1 = Composition({'S': 1 + Composition.amount_tolerance / 2, 'O': 1}) c2 = Composition({'S': 1}) self.assertEqual(len((c1 - c2).elements), 1) def test_mul(self): self.assertEqual((self.comp[0] * 4).formula, "Li12 Fe8 P12 O48") self.assertEqual((3 * self.comp[1]).formula, "Li9 Fe3 P3 O15") def test_div(self): self.assertEqual((self.comp[0] / 4).formula, 'Li0.75 Fe0.5 P0.75 O3') def test_equals(self): random_z = random.randint(1, 92) fixed_el = Element.from_Z(random_z) other_z = random.randint(1, 92) while other_z == random_z: other_z = random.randint(1, 92) comp1 = Composition({fixed_el: 1, Element.from_Z(other_z): 0}) other_z = random.randint(1, 92) while other_z == random_z: other_z = random.randint(1, 92) comp2 = Composition({fixed_el: 1, Element.from_Z(other_z): 0}) self.assertEqual(comp1, comp2, "Composition equality test failed. " + "%s should be equal to %s" % (comp1.formula, comp2.formula)) self.assertEqual(comp1.__hash__(), comp2.__hash__(), "Hashcode equality test failed!") def test_comparisons(self): c1 = Composition({'S': 1}) c1_1 = Composition({'S': 1.00000000000001}) c2 = Composition({'S': 2}) c3 = Composition({'O': 1}) c4 = Composition({'O': 1, 'S': 1}) self.assertFalse(c1 > c2) self.assertFalse(c1_1 > c1) self.assertFalse(c1_1 < c1) self.assertTrue(c1 > c3) self.assertTrue(c3 < c1) self.assertTrue(c4 > c1) self.assertEqual(sorted([c1, c1_1, c2, c4, c3]), [c3, c1, c1_1, c4, c2]) def test_almost_equals(self): c1 = Composition({'Fe': 2.0, 'O': 3.0, 'Mn': 0}) c2 = Composition({'O': 3.2, 'Fe': 1.9, 'Zn': 0}) c3 = Composition({'Ag': 2.0, 'O': 3.0}) c4 = Composition({'Fe': 2.0, 'O': 3.0, 'Ag': 2.0}) self.assertTrue(c1.almost_equals(c2, rtol=0.1)) self.assertFalse(c1.almost_equals(c2, rtol=0.01)) self.assertFalse(c1.almost_equals(c3, rtol=0.1)) self.assertFalse(c1.almost_equals(c4, rtol=0.1)) def test_equality(self): self.assertTrue(self.comp[0].__eq__(self.comp[0])) self.assertFalse(self.comp[0].__eq__(self.comp[1])) self.assertFalse(self.comp[0].__ne__(self.comp[0])) self.assertTrue(self.comp[0].__ne__(self.comp[1])) def test_fractional_composition(self): for c in self.comp: self.assertAlmostEqual(c.fractional_composition.num_atoms, 1) def test_init_numerical_tolerance(self): self.assertEqual(Composition({'B': 1, 'C': -1e-12}), Composition('B')) def test_negative_compositions(self): self.assertEqual(Composition('Li-1(PO-1)4', allow_negative=True).formula, 'Li-1 P4 O-4') self.assertEqual(Composition('Li-1(PO-1)4', allow_negative=True).reduced_formula, 'Li-1(PO-1)4') self.assertEqual(Composition('Li-2Mg4', allow_negative=True).reduced_composition, Composition('Li-1Mg2', allow_negative=True)) self.assertEqual(Composition('Li-2.5Mg4', allow_negative=True).reduced_composition, Composition('Li-2.5Mg4', allow_negative=True)) # test math c1 = Composition('LiCl', allow_negative=True) c2 = Composition('Li') self.assertEqual(c1 - 2 * c2, Composition({'Li': -1, 'Cl': 1}, allow_negative=True)) self.assertEqual((c1 + c2).allow_negative, True) self.assertEqual(c1 / -1, Composition('Li-1Cl-1', allow_negative=True)) # test num_atoms c1 = Composition('Mg-1Li', allow_negative=True) self.assertEqual(c1.num_atoms, 2) self.assertEqual(c1.get_atomic_fraction('Mg'), 0.5) self.assertEqual(c1.get_atomic_fraction('Li'), 0.5) self.assertEqual(c1.fractional_composition, Composition('Mg-0.5Li0.5', allow_negative=True)) # test copy self.assertEqual(c1.copy(), c1) # test species c1 = Composition({'Mg': 1, 'Mg2+': -1}, allow_negative=True) self.assertEqual(c1.num_atoms, 2) self.assertEqual(c1.element_composition, Composition()) self.assertEqual(c1.average_electroneg, 1.31) def test_special_formulas(self): special_formulas = {"LiO": "Li2O2", "NaO": "Na2O2", "KO": "K2O2", "HO": "H2O2", "CsO": "Cs2O2", "RbO": "Rb2O2", "O": "O2", "N": "N2", "F": "F2", "Cl": "Cl2", "H": "H2"} for k, v in special_formulas.items(): self.assertEqual(Composition(k).reduced_formula, v) def test_oxi_state_guesses(self): self.assertEqual(Composition("LiFeO2").oxi_state_guesses(), ({"Li": 1, "Fe": 3, "O": -2},)) self.assertEqual(Composition("Fe4O5").oxi_state_guesses(), ({"Fe": 2.5, "O": -2},)) self.assertEqual(Composition("V2O3").oxi_state_guesses(), ({"V": 3, "O": -2},)) # all_oxidation_states produces *many* possible responses self.assertEqual(len(Composition("MnO").oxi_state_guesses( all_oxi_states=True)), 4) # can't balance b/c missing V4+ self.assertEqual(Composition("VO2").oxi_state_guesses( oxi_states_override={"V": [2, 3, 5]}), []) # missing V4+, but can balance due to additional sites self.assertEqual(Composition("V2O4").oxi_state_guesses( oxi_states_override={"V": [2, 3, 5]}), ({"V": 4, "O": -2},)) # multiple solutions - Mn/Fe = 2+/4+ or 3+/3+ or 4+/2+ self.assertEqual(len(Composition("MnFeO3").oxi_state_guesses( oxi_states_override={"Mn": [2, 3, 4], "Fe": [2, 3, 4]})), 3) # multiple solutions prefers 3/3 over 2/4 or 4/2 self.assertEqual(Composition("MnFeO3").oxi_state_guesses( oxi_states_override={"Mn": [2, 3, 4], "Fe": [2, 3, 4]})[0], {"Mn": 3, "Fe": 3, "O": -2}) # target charge of 1 self.assertEqual(Composition("V2O6").oxi_state_guesses( oxi_states_override={"V": [2, 3, 4, 5]}, target_charge=-2), ({"V": 5, "O": -2},)) # max_sites for very large composition - should timeout if incorrect self.assertEqual(Composition("Li10000Fe10000P10000O40000"). oxi_state_guesses(max_sites=7)[0], {"Li": 1, "Fe": 2, "P": 5, "O": -2}) # max_sites for very large composition - should timeout if incorrect self.assertEqual(Composition("Li10000Fe10000P10000O40000"). oxi_state_guesses(max_sites=-1)[0], {"Li": 1, "Fe": 2, "P": 5, "O": -2}) # negative max_sites less than -1 - should throw error if cannot reduce # to under the abs(max_sites) number of sites. Will also timeout if # incorrect. self.assertEqual( Composition("Sb10000O10000F10000").oxi_state_guesses( max_sites=-3)[0], {"Sb": 3, "O": -2, "F": -1}) self.assertRaises(ValueError, Composition("LiOF").oxi_state_guesses, max_sites=-2) self.assertRaises(ValueError, Composition("V2O3"). oxi_state_guesses, max_sites=1) def test_oxi_state_decoration(self): # Basic test: Get compositions where each element is in a single charge state decorated = Composition("H2O").add_charges_from_oxi_state_guesses() self.assertIn(Specie("H", 1), decorated) self.assertEqual(2, decorated.get(Specie("H", 1))) # Test: More than one charge state per element decorated = Composition("Fe3O4").add_charges_from_oxi_state_guesses() self.assertEqual(1, decorated.get(Specie("Fe", 2))) self.assertEqual(2, decorated.get(Specie("Fe", 3))) self.assertEqual(4, decorated.get(Specie("O", -2))) # Test: No possible charge states # It should return an uncharged composition decorated = Composition("NiAl").add_charges_from_oxi_state_guesses() self.assertEqual(1, decorated.get(Specie("Ni", 0))) self.assertEqual(1, decorated.get(Specie("Al", 0))) def test_Metallofullerene(self): # Test: Parse Metallofullerene formula (e.g. Y3N@C80) formula = "Y3N@C80" sym_dict = {"Y": 3, "N": 1, "C": 80} cmp = Composition(formula) cmp2 = Composition.from_dict(sym_dict) self.assertEqual(cmp, cmp2) def test_contains_element_type(self): formula = "EuTiO3" cmp = Composition(formula) self.assertTrue(cmp.contains_element_type("lanthanoid")) self.assertFalse(cmp.contains_element_type("noble_gas")) self.assertTrue(cmp.contains_element_type("f-block")) self.assertFalse(cmp.contains_element_type("s-block")) def test_chemical_system(self): formula = "NaCl" cmp = Composition(formula) self.assertEqual(cmp.chemical_system, "Cl-Na") def test_is_valid(self): formula = "NaCl" cmp = Composition(formula) self.assertTrue(cmp.valid) formula = "NaClX" cmp = Composition(formula) self.assertFalse(cmp.valid) self.assertRaises(ValueError, Composition, "NaClX", strict=True) def test_remove_charges(self): cmp1 = Composition({'Al3+': 2.0, 'O2-': 3.0}) cmp2 = Composition({'Al': 2.0, 'O': 3.0}) self.assertNotEqual(str(cmp1), str(cmp2)) cmp1 = cmp1.remove_charges() self.assertEqual(str(cmp1), str(cmp2)) cmp1 = cmp1.remove_charges() self.assertEqual(str(cmp1), str(cmp2)) cmp1 = Composition({'Fe3+': 2.0, 'Fe2+': 3.0, 'O2-': 6.0}) cmp2 = Composition({'Fe': 5.0, 'O': 6.0}) self.assertNotEqual(str(cmp1), str(cmp2)) cmp1 = cmp1.remove_charges() self.assertEqual(str(cmp1), str(cmp2)) class ChemicalPotentialTest(unittest.TestCase): def test_init(self): d = {'Fe': 1, Element('Fe'): 1} self.assertRaises(ValueError, ChemicalPotential, d) for k in ChemicalPotential(Fe=1).keys(): self.assertIsInstance(k, Element) def test_math(self): fepot = ChemicalPotential({'Fe': 1}) opot = ChemicalPotential({'O': 2.1}) pots = ChemicalPotential({'Fe': 1, 'O': 2.1}) potsx2 = ChemicalPotential({'Fe': 2, 'O': 4.2}) feo2 = Composition('FeO2') # test get_energy() self.assertAlmostEqual(pots.get_energy(feo2), 5.2) self.assertAlmostEqual(fepot.get_energy(feo2, False), 1) self.assertRaises(ValueError, fepot.get_energy, feo2) # test multiplication self.assertRaises(NotImplementedError, lambda: (pots * pots)) self.assertDictEqual(pots * 2, potsx2) self.assertDictEqual(2 * pots, potsx2) # test division self.assertDictEqual(potsx2 / 2, pots) self.assertRaises(NotImplementedError, lambda: (pots / pots)) self.assertRaises(NotImplementedError, lambda: (pots / feo2)) # test add/subtract self.assertDictEqual(pots + pots, potsx2) self.assertDictEqual(potsx2 - pots, pots) self.assertDictEqual(fepot + opot, pots) self.assertDictEqual(fepot - opot, pots - opot - opot) if __name__ == "__main__": unittest.main()
42.322148
91
0.575642
82ccec3c057780f5609a01408de46842f8509a49
2,120
py
Python
data/scripts/cragCastleDefs.py
starpirate2203/BROODY-S-LAST-SCRIPT
7b5a9eab02c782ebf39b0f3edf69536fae8289c6
[ "MIT" ]
2
2021-09-07T16:04:30.000Z
2021-09-16T03:30:16.000Z
data/scripts/cragCastleDefs.py
starpirate2203/BROODY-S-LAST-SCRIPT
7b5a9eab02c782ebf39b0f3edf69536fae8289c6
[ "MIT" ]
null
null
null
data/scripts/cragCastleDefs.py
starpirate2203/BROODY-S-LAST-SCRIPT
7b5a9eab02c782ebf39b0f3edf69536fae8289c6
[ "MIT" ]
1
2021-09-21T12:42:28.000Z
2021-09-21T12:42:28.000Z
# This file was automatically generated from "cragCastle.ma" points = {} boxes = {} boxes['areaOfInterestBounds'] = (0.7033834902, 6.55869393, -3.153439808) + (0.0, 0.0, 0.0) + (16.73648528, 14.94789935, 11.60063102) points['ffaSpawn1'] = (-4.04166076, 7.54589296, -3.542792409) + (2.471508516, 1.156019141, 0.1791707664) points['ffaSpawn2'] = (5.429881832, 7.582951102, -3.497145747) + (2.415753564, 1.12871694, 0.17898173) points['ffaSpawn3'] = (4.8635999, 9.311949436, -6.013939259) + (1.61785329, 1.12871694, 0.17898173) points['ffaSpawn4'] = (-3.628023052, 9.311949436, -6.013939259) + (1.61785329, 1.12871694, 0.17898173) points['ffaSpawn5'] = (-2.414363536, 5.930994442, 0.03036413701) + (1.61785329, 1.12871694, 0.17898173) points['ffaSpawn6'] = (3.520989196, 5.930994442, 0.03036413701) + (1.61785329, 1.12871694, 0.17898173) points['flag1'] = (-1.900164924, 9.363050076, -6.441041548) points['flag2'] = (3.240019982, 9.319215955, -6.392759924) points['flag3'] = (-6.883672142, 7.475761129, 0.2098388241) points['flag4'] = (8.193957063, 7.478129652, 0.1536410508) points['flagDefault'] = (0.6296142785, 6.221901832, -0.0435909658) boxes['levelBounds'] = (0.4799042306, 9.085075529, -3.267604531) + (0.0, 0.0, 0.0) + (22.9573075, 9.908550511, 14.17997333) points['powerupSpawn1'] = (7.916483636, 7.83853949, -5.990841203) points['powerupSpawn2'] = (-0.6978591232, 7.883836528, -6.066674247) points['powerupSpawn3'] = (1.858093733, 7.893059862, -6.076932659) points['powerupSpawn4'] = (-6.671997388, 7.992307645, -6.121432603) points['spawn1'] = (-5.169730601, 7.54589296, -3.542792409) + (1.057384557, 1.156019141, 0.1791707664) points['spawn2'] = (6.203092708, 7.582951102, -3.497145747) + (1.009865407, 1.12871694, 0.17898173) points['spawnByFlag1'] = (-2.872146219, 9.363050076, -6.041110823) points['spawnByFlag2'] = (4.313355684, 9.363050076, -6.041110823) points['spawnByFlag3'] = (-6.634074097, 7.508585058, -0.5918910315) points['spawnByFlag4'] = (7.868759529, 7.508585058, -0.5918910315) points['tnt1'] = (-5.038090498, 10.0136642, -6.158580823) points['tnt2'] = (6.203368846, 10.0136642, -6.158580823)
73.103448
132
0.705189
f917edca32b5a5b00edd294d9b8cc8ed1c8e1747
915
py
Python
obd_client.py
lukaszmitka/obd-tool
fedf94d3a3254f1b6497811bbc6da9d1a2934375
[ "MIT" ]
null
null
null
obd_client.py
lukaszmitka/obd-tool
fedf94d3a3254f1b6497811bbc6da9d1a2934375
[ "MIT" ]
null
null
null
obd_client.py
lukaszmitka/obd-tool
fedf94d3a3254f1b6497811bbc6da9d1a2934375
[ "MIT" ]
null
null
null
from time import sleep import RPi.GPIO as GPIO import serial ser = serial.Serial('/dev/ttyUSB0', 38400, timeout=1) ser.write(b'ATZ\r') data = ser.read(100) ser.write(b'ATE0\r') data = ser.read(100) ser.write(b'ATH1\r') data = ser.read(100) ser.write(b'ATL0\r') data = ser.read(100) ser.write(b'0100\r') data = ser.read(100) while data.decode()[0:24] != "7E8 06 41 00 98 3B A0 13": ser.write(b'0100\r') data = ser.read(100) GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.OUT, initial=GPIO.LOW) while True: ser.write(b'010D1\r') speed_data = ser.read(100) if len(speed_data) == 19: vehicle_speed = int(speed_data[13:15], base=16) print(vehicle_speed) if vehicle_speed > 20: print("Turn OFF parking sensor") GPIO.output(11, GPIO.LOW) else: print("Turn ON parking sensor") GPIO.output(11, GPIO.HIGH) sleep(1)
22.317073
56
0.625137
e227baad59d08c625045f06043d649b12c6aebe4
3,475
py
Python
resources/synthetic_data.py
BreastGAN/experiment1
edc55b93f214997c2ef0654aeeedcdc2f11b554c
[ "Apache-2.0" ]
7
2018-12-05T21:40:16.000Z
2022-01-09T11:11:02.000Z
resources/synthetic_data.py
BreastGAN/experiment1
edc55b93f214997c2ef0654aeeedcdc2f11b554c
[ "Apache-2.0" ]
2
2021-01-31T12:14:31.000Z
2022-02-09T23:28:39.000Z
resources/synthetic_data.py
BreastGAN/experiment1
edc55b93f214997c2ef0654aeeedcdc2f11b554c
[ "Apache-2.0" ]
1
2018-11-26T01:44:19.000Z
2018-11-26T01:44:19.000Z
# Copyright 2018 Lukas Jendele and Ondrej Skopek. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np from dotmap import DotMap import skimage.filters # Do not modify img! def gen_element(img, center, min_rad, max_rad, max_thresh, eps=0.1): def is_inside(x, y, center, rad1, rad2): x0 = (x - center[0]) y0 = (y - center[1]) return x0**2 / rad1 + y0**2 / rad2 <= 1 + np.random.normal(0, eps) mask = np.zeros_like(img) min_thresh = 0.9 # smallest number I can actually see in the resulting image max_area = max_rad**2 # print("max_area =", max_area) min_area = max(1, min_rad**2) # print("min_area =", min_area) area = np.random.uniform(min_area, max_area) # print("area =", area) rad1 = np.random.randint(min_rad, max_rad + 1) # print("r1 =", rad1) rad2 = max(1, int(area / rad1)) area = rad1 * rad2 # print("area =", area) # print("r2 =", rad2) for x in range(max(0, center[0] - rad1), min(center[0] + rad1, img.shape[0])): for y in range(max(0, center[1] - rad2), min(center[1] + rad2, img.shape[1])): if is_inside(x, y, center, rad1, rad2): mask[x, y] = 1 # print("max_rad =", max_rad) thresh = area # x in [0, max_area] thresh = thresh / max_area # x in [0, 1] # print("ratio =", thresh) thresh = 1 - thresh thresh = (thresh * (max_thresh - min_thresh)) + min_thresh # x in [min_thresh, max_thresh] # print("thresh =", thresh) mask *= thresh return mask # doesn't work well under (30, 30) def generate_synth(size=(256, 256), max_thresh=2.5): # $max_thresh sigma def gen_img(size, max_thresh, masses=1): img_meta = DotMap() img_meta.laterality = 'L' img_meta.view = 'CC' img = np.random.standard_normal(size=size) img = skimage.filters.gaussian(img, sigma=1) min_rad = max(1, int(min(size) / 80)) max_rad = max(min_rad, int(min(size) / 10)) mask = np.zeros(size) for i in range(masses): x = np.random.randint(0, size[0]) y = np.random.randint(0, size[1]) mask += gen_element(img, (x, y), min_rad, max_rad, max_thresh) return img, mask, img_meta while True: yield gen_img(size=size, max_thresh=max_thresh, masses=1) def read_synth(n_samples, size=(256, 256), no_gpu=False): # In this case, synth data + batch and shuffle it. In our case, it will be quite different. imgs = np.zeros((n_samples, size[0], size[1])) masks = np.zeros((n_samples, size[0], size[1])) data_gen = generate_synth(size=size) for i in range(n_samples): imgs[i], masks[i], _ = next(data_gen) # imgs = np.reshape(imgs, (n_samples, size[0] * size[1])) # masks = np.reshape(masks, (n_samples, size[0] * size[1])) return imgs, masks
34.405941
95
0.610935
42e778de4b98377ea3438075d8ad85f654837949
4,043
py
Python
.history/run_update_20220328115000.py
miguel-fresh/geoip-translation
ccf9dbc0330e597704e57d8b2967fc9be16017ed
[ "Info-ZIP" ]
null
null
null
.history/run_update_20220328115000.py
miguel-fresh/geoip-translation
ccf9dbc0330e597704e57d8b2967fc9be16017ed
[ "Info-ZIP" ]
null
null
null
.history/run_update_20220328115000.py
miguel-fresh/geoip-translation
ccf9dbc0330e597704e57d8b2967fc9be16017ed
[ "Info-ZIP" ]
null
null
null
from asyncio.subprocess import STDOUT from fileinput import filename from genericpath import exists import subprocess from pathlib import Path from os import getcwd, remove, rename, path import yaml def removeFileIfExists(file_path): if path.exists(file_path): remove(file_path) def checkExistence(path_to_check): if not path.exists(path_to_check): raise(Exception(f"No existe la ruta \'{path_to_check}\'")) return True def good_msg(msg): return f"+ {msg}" def bad_msg(msg): return f"- {msg}" def neutral_msg(msg): return f"~ {msg}" # LEGACY ZIP_LEGACY_NAME = 'GeoLite2-City-CSV.zip' # Default values ONSTART_DOWNLOAD = False ONSTART_CONVERT = False CURRENT_DIR = Path(__file__).parent.resolve() CONFIG_FILENAME = 'config.yml' ZIP_NAME = 'GeoLite2-City-CSV.zip' DAT_NAME = 'GeoLiteCity.dat' DOWNLOAD_DIRNAME = './data' OUTPUT_DIRNAME = './output' LICENSE_KEY = '' DB_EDITION = 'GeoLite2-City-CSV' # Get config from config.yml file try: with open(CONFIG_ABSPATH) as cfg_file: documents = yaml.full_load(cfg_file) paths = documents['paths'] names = documents['names'] on_start = documents['on_start'] max_mind = documents['max_mind'] OUTPUT_DIRNAME = paths['output'] DOWNLOAD_DIRNAME = paths['data'] if ('relative_to' in paths and paths['relative_to'] == 'cwd'): CURRENT_DIR = Path(getcwd()) ZIP_NAME = names['zip'] DAT_NAME = names['dat'] ONSTART_DOWNLOAD = on_start['download_zip'] ONSTART_CONVERT = on_start['convert_to_dat'] LICENSE_KEY = max_mind['license-key'] DB_EDITION = max_mind['edition'] if 'edition' in max_mind else DB_EDITION except: print(neutral_msg('No se encontró un archivo config.yml válido, usando valores por defecto...')) if (not ONSTART_CONVERT and not ONSTART_DOWNLOAD): print(good_msg("No se especificó ninguna acción (download_zip, convert_to_dat). Saliendo...")) exit(0) # Setting paths DOWNLOAD_ABSPATH = CURRENT_DIR.joinpath(DOWNLOAD_DIRNAME) OUTPUT_ABSPATH = CURRENT_DIR.joinpath(OUTPUT_DIRNAME) ZIP_ABSPATH = DOWNLOAD_ABSPATH.joinpath(ZIP_LEGACY_NAME) DAT_ABSPATH = OUTPUT_ABSPATH.joinpath(DAT_NAME) # Download .zip if ONSTART_DOWNLOAD: # Check if download folder exists checkExistence(DOWNLOAD_ABSPATH) # Remove previous .zip file if exists removeFileIfExists(ZIP_ABSPATH) print(good_msg(f'Descargando {ZIP_LEGACY_NAME}...')) # Download .zip download_output = subprocess.run(['php', 'download.php', '--license-key', LICENSE_KEY, '--output-path', DOWNLOAD_ABSPATH, '--edition', DB_EDITION], cwd=CURRENT_DIR.joinpath('./geoip2-update'), stderr=STDOUT) # Rename .zip if necessary if (ZIP_LEGACY_NAME != ZIP_NAME): rename(ZIP_ABSPATH, DOWNLOAD_ABSPATH.joinpath(ZIP_NAME)) # Check if download was successful if (download_output.returncode != 0): raise(Exception(bad_msg('Error en la descarga :('))) checkExistence(ZIP_ABSPATH) print(good_msg(f'Descarga exitosa :) -> {ZIP_ABSPATH}')) # Convert format if ONSTART_CONVERT: # Check if .zip exists checkExistence(ZIP_ABSPATH) # Check if output folder exists checkExistence(OUTPUT_ABSPATH) # python geolite2legacy.py -i GeoLite2-City-CSV.zip -o GeoLiteCity.dat -f geoname2fips.csv update_output = subprocess.run(['python', 'geolite2legacy.py', '-i', ZIP_ABSPATH, '-o', DAT_ABSPATH, '-f', 'geoname2fips.csv'], cwd='./geolite2legacy') # Check convertion was successful if update_output.returncode != 0: raise(Exception(bad_msg('Error en la conversión de formato :('))) print(good_msg(f'Conversión existosa :) -> {DAT_ABSPATH}'))
29.086331
100
0.65026
ffb13af6cf3eb4f6ed85f2de4405cb7cee07b789
6,039
py
Python
tf_models.py
hanskrupakar/MRI-tumor-segmentation-Brats
5a1a51b159a556261cd485db45f4d705974c86f4
[ "MIT" ]
null
null
null
tf_models.py
hanskrupakar/MRI-tumor-segmentation-Brats
5a1a51b159a556261cd485db45f4d705974c86f4
[ "MIT" ]
null
null
null
tf_models.py
hanskrupakar/MRI-tumor-segmentation-Brats
5a1a51b159a556261cd485db45f4d705974c86f4
[ "MIT" ]
null
null
null
import tensorflow as tf from tensorflow.keras.layers import Conv3D, MaxPooling3D, UpSampling3D, Activation, Conv3DTranspose from tf_layers import * def PlainCounterpart(input, name): x = Conv3DWithBN(input, filters=24, ksize=3, strides=1, padding='same', name=name + '_conv_15rf_1x') x = Conv3DWithBN(x, filters=36, ksize=3, strides=1, padding='same', name=name + '_conv_15rf_2x') x = Conv3DWithBN(x, filters=48, ksize=3, strides=1, padding='same', name=name + '_conv_15rf_3x') x = Conv3DWithBN(x, filters=60, ksize=3, strides=1, padding='same', name=name + '_conv_15rf_4x') x = Conv3DWithBN(x, filters=72, ksize=3, strides=1, padding='same', name=name + '_conv_15rf_5x') x = Conv3DWithBN(x, filters=84, ksize=3, strides=1, padding='same', name=name + '_conv_15rf_6x') x = Conv3DWithBN(x, filters=96, ksize=3, strides=1, padding='same', name=name + '_conv_15rf_7x') out_15rf = x x = Conv3DWithBN(x, filters=108, ksize=3, strides=1, padding='same', name=name + '_conv_27rf_1x') x = Conv3DWithBN(x, filters=120, ksize=3, strides=1, padding='same', name=name + '_conv_27rf_2x') x = Conv3DWithBN(x, filters=132, ksize=3, strides=1, padding='same', name=name + '_conv_27rf_3x') x = Conv3DWithBN(x, filters=144, ksize=3, strides=1, padding='same', name=name + '_conv_27rf_4x') x = Conv3DWithBN(x, filters=156, ksize=3, strides=1, padding='same', name=name + '_conv_27rf_5x') x = Conv3DWithBN(x, filters=168, ksize=3, strides=1, padding='same', name=name + '_conv_27rf_6x') out_27rf = x return out_15rf, out_27rf def BraTS2ScaleDenseNetConcat(input, name): x = Conv3D(filters=24, kernel_size=3, strides=1, padding='same', name=name+'_conv_init')(input) x = DenseNetUnit3D(x, growth_rate=12, ksize=3, rep=6, name=name+'_denseblock1') out_15rf = BatchNormalization(center=True, scale=True)(x) out_15rf = Activation('relu')(out_15rf) out_15rf = Conv3DWithBN(out_15rf, filters=96, ksize=1, strides=1, name=name + '_out_15_postconv') x = DenseNetUnit3D(x, growth_rate=12, ksize=3, rep=6, name=name+'_denseblock2') out_27rf = BatchNormalization(center=True, scale=True)(x) out_27rf = Activation('relu')(out_27rf) out_27rf = Conv3DWithBN(out_27rf, filters=168, ksize=1, strides=1, name=name + '_out_27_postconv') return out_15rf, out_27rf def BraTS2ScaleDenseNetConcat_large(input, name): x = Conv3D(filters=48, kernel_size=3, strides=1, padding='same', name=name+'_conv_init')(input) x = DenseNetUnit3D(x, growth_rate=12, ksize=3, rep=6, name=name+'_denseblock1') out_15rf = BatchNormalization(center=True, scale=True)(x) out_15rf = Activation('relu')(out_15rf) out_15rf = Conv3DWithBN(out_15rf, filters=192, ksize=1, strides=1, name=name + '_out_15_postconv') x = DenseNetUnit3D(x, growth_rate=24, ksize=3, rep=6, name=name+'_denseblock2') out_27rf = BatchNormalization(center=True, scale=True)(x) out_27rf = Activation('relu')(out_27rf) out_27rf = Conv3DWithBN(out_27rf, filters=336, ksize=1, strides=1, name=name + '_out_27_postconv') return out_15rf, out_27rf def BraTS2ScaleDenseNet(input, num_labels): x = Conv3D(filters=24, kernel_size=3, strides=1, padding='same')(input) x = DenseNetUnit3D(x, growth_rate=12, ksize=3, rep=6) out_15rf = BatchNormalization(center=True, scale=True)(x) out_15rf = Activation('relu')(out_15rf) out_15rf = Conv3DWithBN(out_15rf, filters=96, ksize=1, strides=1, name='out_15_postconv') x = DenseNetUnit3D(x, growth_rate=12, ksize=3, rep=6) out_27rf = BatchNormalization(center=True, scale=True)(x) out_27rf = Activation('relu')(out_27rf) out_27rf = Conv3DWithBN(out_27rf, filters=168, ksize=1, strides=1, name='out_27_postconv') score_15rf = Conv3D(num_labels, kernel_size=1, strides=1, padding='same')(out_15rf) score_27rf = Conv3D(num_labels, kernel_size=1, strides=1, padding='same')(out_27rf) score = score_15rf[:, 13:25, 13:25, 13:25, :] + \ score_27rf[:, 13:25, 13:25, 13:25, :] return score def BraTS3ScaleDenseNet(input, num_labels): x = Conv3D(filters=24, kernel_size=3, strides=1, padding='same')(input) x = DenseNetUnit3D(x, growth_rate=12, ksize=3, rep=5) out_13rf = BatchNormalization(center=True, scale=True)(x) out_13rf = Activation('relu')(out_13rf) out_13rf = Conv3DWithBN(out_13rf, filters=84, ksize=1, strides=1, name='out_13_postconv') x = DenseNetUnit3D(x, growth_rate=12, ksize=3, rep=5) out_23rf = BatchNormalization(center=True, scale=True)(x) out_23rf = Activation('relu')(out_23rf) out_23rf = Conv3DWithBN(out_23rf, filters=144, ksize=1, strides=1, name='out_23_postconv') x = DenseNetUnit3D(x, growth_rate=12, ksize=3, rep=5) out_33rf = BatchNormalization(center=True, scale=True)(x) out_33rf = Activation('relu')(out_33rf) out_33rf = Conv3DWithBN(out_33rf, filters=204, ksize=1, strides=1, name='out_33_postconv') score_13rf = Conv3D(num_labels, kernel_size=1, strides=1, padding='same')(out_13rf) score_23rf = Conv3D(num_labels, kernel_size=1, strides=1, padding='same')(out_23rf) score_33rf = Conv3D(num_labels, kernel_size=1, strides=1, padding='same')(out_33rf) score = score_13rf[:, 16:28, 16:28, 16:28, :] + \ score_23rf[:, 16:28, 16:28, 16:28, :] + \ score_33rf[:, 16:28, 16:28, 16:28, :] return score def BraTS1ScaleDenseNet(input, num_labels): x = Conv3D(filters=36, kernel_size=5, strides=1, padding='same')(input) x = DenseNetUnit3D(x, growth_rate=18, ksize=3, rep=6) out_15rf = BatchNormalization(center=True, scale=True)(x) out_15rf = Activation('relu')(out_15rf) out_15rf = Conv3DWithBN(out_15rf, filters=144, ksize=1, strides=1, name='out_17_postconv1') out_15rf = Conv3DWithBN(out_15rf, filters=144, ksize=1, strides=1, name='out_17_postconv2') score_15rf = Conv3D(num_labels, kernel_size=1, strides=1, padding='same')(out_15rf) score = score_15rf[:, 8:20, 8:20, 8:20, :] return score
44.404412
104
0.700116
86a65c50784fa6a2f7c65b5254a4b8a03d01aa0e
4,025
py
Python
mass_replace/mass_replace.py
Kilo59/mass_replace
f44627f99f09433af9368e7a5fd6f7152905d484
[ "MIT" ]
1
2019-01-06T01:32:41.000Z
2019-01-06T01:32:41.000Z
mass_replace/mass_replace.py
Kilo59/mass_replace
f44627f99f09433af9368e7a5fd6f7152905d484
[ "MIT" ]
14
2018-04-25T00:06:58.000Z
2020-03-31T00:55:23.000Z
mass_replace/mass_replace.py
Kilo59/mass_replace
f44627f99f09433af9368e7a5fd6f7152905d484
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ mass_replace.py ~~~~~~~~~~~~~~~ Python Application for multiple simultaneous find and replace operations in a directory. """ import pathlib from sys import version_info import os import fileinput import yaml from pprint import pprint as pp PYTHON_VER = (version_info.major, version_info.minor) ROOT = pathlib.Path(__file__).joinpath("..").resolve() def resolve_wd(target_dir="mass_replace"): if target_dir in get_dirs(): os.chdir(target_dir) resolve_wd(target_dir=target_dir) def load_config(filename="config.yaml"): """Load a .yml config file as a dictionary and return it.""" with open(filename, "r") as f_in: return yaml.safe_load(f_in) def get_items(): """Returns a list of files and folders in a directory""" return [x for x in os.listdir()] def get_dirs(): """Returns a list of all folders in the current working directory.""" return [x for x in get_items() if os.path.isdir(x)] def get_files(): """Returns a list of all files in the current working directory.""" return [x for x in get_items() if os.path.isfile(x)] def file_find_replace(filename, text_to_search, replacement_text): with fileinput.FileInput(filename, inplace=True) as file: for line in file: print(line.replace(text_to_search, replacement_text), end="") def many_find_replace(filename, text_search_replace_dicts): for text_to_search, replacement_text in text_search_replace_dicts.items(): file_find_replace(filename, text_to_search, replacement_text) def discover_filetypes(root_folder=None, hard_copy="file_exts.txt"): """Walks through the specified `root_folder` and collects all file extension types. Writes the extension types to `file_exts.txt`.""" if not root_folder: try: root_folder = load_config("config.yaml")["root_folder"] if root_folder is None: raise (FileNotFoundError) except FileNotFoundError: root_folder = os.getcwd() file_types = set() for _, _, filenames in os.walk(root_folder): f_types = [".{}".format(ext.split(".")[-1]) for ext in filenames] file_types.update(f_types) if hard_copy: with open(hard_copy, "w") as f_out: f_out.writelines("\n".join(file_types)) return file_types def mass_replace(root_folder=None, config=None, verbose=False): """Performs find and replace operations on files nested in a root direcotry according to settings in the `config.yaml` file.""" if not config: try: config = load_config("config.yaml") except FileNotFoundError: raise FileNotFoundError( "Could not find a 'config.yaml' file and no alternative config provided" ) if not root_folder: root_folder = config["root_folder"] print("ROOT: {}".format(root_folder)) replacement_pairs = config["replacement_pairs"] for i in replacement_pairs.items(): print(i) counter = 0 for dirpath, dirnames, filenames in os.walk(root_folder): valid_files = [f for f in filenames if f.split(".")[-1] in config["filetypes"]] if verbose: print("=" * 79) print("\tCurrent Path - STEP:{}".format(counter)) pp(dirpath) print("\tDirectories - STEP:{}".format(counter)) pp(dirnames) print("\tFiles: - STEP:{}".format(counter)) pp(filenames) print() counter += 1 for fname in valid_files: print("|----{}".format(fname)) many_find_replace("{}/{}".format(dirpath, fname), replacement_pairs) if __name__ == "__main__": print("{0}\n{1}".format(__doc__, "*" * 79)) print("discover_filetypes()\n", discover_filetypes.__doc__) pp(discover_filetypes(hard_copy=True)) print( "{}\nmass_replace()\n{}\n{}".format( "*" * 79, mass_replace.__doc__, mass_replace(verbose=True) ) )
32.991803
89
0.644472
9f0422b5b39e15216c044f2bbab22c6e71c4608e
1,444
py
Python
pysubgroup/tests/algorithms_testing.py
rovany706/pysubgroup
ed20c47fd3b82f34109e5451552986c3349e6aa4
[ "Apache-2.0" ]
40
2018-11-25T14:00:32.000Z
2022-03-17T07:24:22.000Z
pysubgroup/tests/algorithms_testing.py
rovany706/pysubgroup
ed20c47fd3b82f34109e5451552986c3349e6aa4
[ "Apache-2.0" ]
25
2018-12-05T13:56:17.000Z
2022-03-02T10:53:49.000Z
pysubgroup/tests/algorithms_testing.py
rovany706/pysubgroup
ed20c47fd3b82f34109e5451552986c3349e6aa4
[ "Apache-2.0" ]
21
2018-12-21T11:19:37.000Z
2022-01-14T03:41:36.000Z
from timeit import default_timer as timer import abc import pysubgroup as ps class TestAlgorithmsBase(abc.ABC): # pylint: disable=no-member def evaluate_result(self, algorithm_result, result, qualities): self.assertTrue(isinstance(algorithm_result, ps.SubgroupDiscoveryResult)) algorithm_result.to_dataframe() algorithm_result = algorithm_result.to_descriptions() for (q, sg) in algorithm_result: print(" " + str(q) + ":\t" + str(sg)) # compare length such that zip works correctly self.assertEqual(len(algorithm_result), len(result)) self.assertEqual(len(algorithm_result), len(qualities)) for (algorithm_q, algorithm_SG), expected_q, expected_SGD in zip(algorithm_result, qualities, result): self.assertEqual(repr(algorithm_SG), repr(expected_SGD)) self.assertEqual(algorithm_q, expected_q) def runAlgorithm(self, algorithm, name, result, qualities, task): print() print("Running " + name) start = timer() algorithm_result = algorithm.execute(task) end = timer() print(" Runtime for {}: {}".format(name, end - start)) if hasattr(self.task.qf, 'calls'): print(' Number of call to qf:', self.task.qf.calls) print() self.evaluate_result(algorithm_result, result, qualities) return algorithm_result # pylint: enable=no-member
39.027027
110
0.662742
6eab9e9ceae63a82d5a82c4f277843db888be921
11,925
py
Python
saleor/graphql/account/types.py
elwoodxblues/saleor
5e4e4a4259a011d24b04ebd24c77c689de843fa1
[ "CC-BY-4.0" ]
8
2018-07-17T13:13:21.000Z
2022-03-01T17:02:34.000Z
saleor/graphql/account/types.py
elwoodxblues/saleor
5e4e4a4259a011d24b04ebd24c77c689de843fa1
[ "CC-BY-4.0" ]
2
2021-03-09T18:11:34.000Z
2021-05-10T15:05:35.000Z
saleor/graphql/account/types.py
elwoodxblues/saleor
5e4e4a4259a011d24b04ebd24c77c689de843fa1
[ "CC-BY-4.0" ]
1
2019-09-03T03:04:50.000Z
2019-09-03T03:04:50.000Z
import graphene import graphene_django_optimizer as gql_optimizer from django.contrib.auth import get_user_model from graphene import relay from graphql_jwt.decorators import login_required from ...account import models from ...checkout.utils import get_user_checkout from ...core.permissions import get_permissions from ...order import models as order_models from ..checkout.types import Checkout from ..core.connection import CountableDjangoObjectType from ..core.fields import PrefetchingConnectionField from ..core.resolvers import resolve_meta, resolve_private_meta from ..core.types import CountryDisplay, Image, MetadataObjectType, PermissionDisplay from ..core.utils import get_node_optimized from ..decorators import permission_required from ..utils import format_permissions_for_display from .enums import CustomerEventsEnum class AddressInput(graphene.InputObjectType): first_name = graphene.String(description="Given name.") last_name = graphene.String(description="Family name.") company_name = graphene.String(description="Company or organization.") street_address_1 = graphene.String(description="Address.") street_address_2 = graphene.String(description="Address.") city = graphene.String(description="City.") city_area = graphene.String(description="District.") postal_code = graphene.String(description="Postal code.") country = graphene.String(description="Country.") country_area = graphene.String(description="State or province.") phone = graphene.String(description="Phone number.") class Address(CountableDjangoObjectType): country = graphene.Field( CountryDisplay, required=True, description="Default shop's country" ) is_default_shipping_address = graphene.Boolean( required=False, description="Address is user's default shipping address" ) is_default_billing_address = graphene.Boolean( required=False, description="Address is user's default billing address" ) class Meta: description = "Represents user address data." interfaces = [relay.Node] model = models.Address only_fields = [ "city", "city_area", "company_name", "country", "country_area", "first_name", "id", "last_name", "phone", "postal_code", "street_address_1", "street_address_2", ] @staticmethod def resolve_country(root: models.Address, _info): return CountryDisplay(code=root.country.code, country=root.country.name) @staticmethod def resolve_is_default_shipping_address(root: models.Address, _info): """Look if the address is the default shipping address of the user. This field is added through annotation when using the `resolve_addresses` resolver. It's invalid for `resolve_default_shipping_address` and `resolve_default_billing_address` """ if not hasattr(root, "user_default_shipping_address_pk"): return None user_default_shipping_address_pk = getattr( root, "user_default_shipping_address_pk" ) if user_default_shipping_address_pk == root.pk: return True return False @staticmethod def resolve_is_default_billing_address(root: models.Address, _info): """Look if the address is the default billing address of the user. This field is added through annotation when using the `resolve_addresses` resolver. It's invalid for `resolve_default_shipping_address` and `resolve_default_billing_address` """ if not hasattr(root, "user_default_billing_address_pk"): return None user_default_billing_address_pk = getattr( root, "user_default_billing_address_pk" ) if user_default_billing_address_pk == root.pk: return True return False class CustomerEvent(CountableDjangoObjectType): date = graphene.types.datetime.DateTime( description="Date when event happened at in ISO 8601 format." ) type = CustomerEventsEnum(description="Customer event type") user = graphene.Field( lambda: User, id=graphene.Argument(graphene.ID), description="User who performed the action.", ) message = graphene.String(description="Content of the event.") count = graphene.Int(description="Number of objects concerned by the event.") order = gql_optimizer.field( graphene.Field( "saleor.graphql.order.types.Order", description="The concerned order." ), model_field="order", ) order_line = graphene.Field( "saleor.graphql.order.types.OrderLine", description="The concerned order line." ) class Meta: description = "History log of the customer." model = models.CustomerEvent interfaces = [relay.Node] only_fields = ["id"] @staticmethod def resolve_message(root: models.CustomerEvent, _info): return root.parameters.get("message", None) @staticmethod def resolve_count(root: models.CustomerEvent, _info): return root.parameters.get("count", None) @staticmethod def resolve_order_line(root: models.CustomerEvent, info): if "order_line_pk" in root.parameters: try: qs = order_models.OrderLine.objects order_line_pk = root.parameters["order_line_pk"] return get_node_optimized(qs, {"pk": order_line_pk}, info) except order_models.OrderLine.DoesNotExist: pass return None class ServiceAccount(MetadataObjectType, CountableDjangoObjectType): permissions = graphene.List( PermissionDisplay, description="List of the service's permissions." ) created = graphene.DateTime( description="The date and time when the service account was created." ) is_active = graphene.Boolean( description="Determine if service account will be set active or not." ) name = graphene.String(description="Name of the service account.") auth_token = graphene.String(description="Last 4 characters of the token") class Meta: description = "Represents service account data." interfaces = [relay.Node] model = models.ServiceAccount permissions = ("account.manage_service_accounts",) only_fields = ["name" "permissions", "created", "is_active", "auth_token", "id"] @staticmethod def resolve_permissions(root: models.ServiceAccount, _info, **_kwargs): permissions = root.permissions.prefetch_related("content_type").order_by( "codename" ) return format_permissions_for_display(permissions) @staticmethod def resolve_auth_token(root: models.ServiceAccount, _info, **_kwargs): return root.auth_token[-4:] @staticmethod def resolve_meta(root, info): return resolve_meta(root, info) class User(MetadataObjectType, CountableDjangoObjectType): addresses = gql_optimizer.field( graphene.List(Address, description="List of all user's addresses."), model_field="addresses", ) checkout = graphene.Field( Checkout, description="Returns the last open checkout of this user." ) gift_cards = gql_optimizer.field( PrefetchingConnectionField( "saleor.graphql.giftcard.types.GiftCard", description="List of the user gift cards.", ), model_field="gift_cards", ) note = graphene.String(description="A note about the customer") orders = gql_optimizer.field( PrefetchingConnectionField( "saleor.graphql.order.types.Order", description="List of user's orders." ), model_field="orders", ) permissions = graphene.List( PermissionDisplay, description="List of user's permissions." ) avatar = graphene.Field(Image, size=graphene.Int(description="Size of the avatar.")) events = gql_optimizer.field( graphene.List( CustomerEvent, description="List of events associated with the user." ), model_field="events", ) stored_payment_sources = graphene.List( "saleor.graphql.payment.types.PaymentSource", description="List of stored payment sources", ) class Meta: description = "Represents user data." interfaces = [relay.Node] model = get_user_model() only_fields = [ "date_joined", "default_billing_address", "default_shipping_address", "email", "first_name", "id", "is_active", "is_staff", "last_login", "last_name", "note", "token", ] @staticmethod def resolve_addresses(root: models.User, _info, **_kwargs): return root.addresses.annotate_default(root).all() @staticmethod def resolve_checkout(root: models.User, _info, **_kwargs): return get_user_checkout(root)[0] @staticmethod def resolve_gift_cards(root: models.User, info, **_kwargs): return root.gift_cards.all() @staticmethod def resolve_permissions(root: models.User, _info, **_kwargs): if root.is_superuser: permissions = get_permissions() else: permissions = root.user_permissions.prefetch_related( "content_type" ).order_by("codename") return format_permissions_for_display(permissions) @staticmethod @permission_required("account.manage_users") def resolve_note(root: models.User, _info): return root.note @staticmethod @permission_required("account.manage_users") def resolve_events(root: models.User, _info): return root.events.all() @staticmethod def resolve_orders(root: models.User, info, **_kwargs): viewer = info.context.user if viewer.has_perm("order.manage_orders"): return root.orders.all() return root.orders.confirmed() @staticmethod def resolve_avatar(root: models.User, info, size=None, **_kwargs): if root.avatar: return Image.get_adjusted( image=root.avatar, alt=None, size=size, rendition_key_set="user_avatars", info=info, ) @staticmethod @login_required def resolve_stored_payment_sources(root: models.User, _info): from .resolvers import resolve_payment_sources return resolve_payment_sources(root) @staticmethod @permission_required("account.manage_users") def resolve_private_meta(root, _info): return resolve_private_meta(root, _info) @staticmethod def resolve_meta(root, _info): return resolve_meta(root, _info) class ChoiceValue(graphene.ObjectType): raw = graphene.String() verbose = graphene.String() class AddressValidationData(graphene.ObjectType): country_code = graphene.String() country_name = graphene.String() address_format = graphene.String() address_latin_format = graphene.String() allowed_fields = graphene.List(graphene.String) required_fields = graphene.List(graphene.String) upper_fields = graphene.List(graphene.String) country_area_type = graphene.String() country_area_choices = graphene.List(ChoiceValue) city_type = graphene.String() city_choices = graphene.List(ChoiceValue) city_area_type = graphene.String() city_area_choices = graphene.List(ChoiceValue) postal_code_type = graphene.String() postal_code_matchers = graphene.List(graphene.String) postal_code_examples = graphene.List(graphene.String) postal_code_prefix = graphene.String()
35.176991
88
0.672537
167910c3c017cf3d680531e8cf3f1de6b9153e4f
2,345
py
Python
babilim/model/layers/activation.py
penguinmenac3/babilim
d3b1dd7c38a9de8f1e553cc5c0b2dfa62fe25c27
[ "MIT" ]
1
2020-05-04T15:20:55.000Z
2020-05-04T15:20:55.000Z
babilim/model/layers/activation.py
penguinmenac3/babilim
d3b1dd7c38a9de8f1e553cc5c0b2dfa62fe25c27
[ "MIT" ]
1
2019-11-28T09:03:20.000Z
2019-11-28T09:03:20.000Z
babilim/model/layers/activation.py
penguinmenac3/babilim
d3b1dd7c38a9de8f1e553cc5c0b2dfa62fe25c27
[ "MIT" ]
1
2019-11-28T08:30:13.000Z
2019-11-28T08:30:13.000Z
# AUTOGENERATED FROM: babilim/model/layers/activation.ipynb # Cell: 0 """doc # babilim.model.layers.activation > Compute an activation function. """ # Cell: 1 from babilim.core.annotations import RunOnlyOnce from babilim.core.module_native import ModuleNative # Cell: 2 class Activation(ModuleNative): def __init__(self, activation, axis): """ Supports the activation functions. :param activation: A string specifying the activation function to use. (Only "relu" and None supported yet.) :param axis: The axis along which the softmax should happen. """ super().__init__() self.activation = activation self.axis = axis @RunOnlyOnce def _build_pytorch(self, features): if self.activation is None: self.activation = self.activation elif self.activation == "relu": from torch.nn.functional import relu self.activation = relu elif self.activation == "softmax": from torch.nn.functional import softmax self.activation = softmax elif self.activation == "sigmoid": from torch.nn.functional import sigmoid self.activation = sigmoid elif self.activation == "tanh": from torch.nn.functional import tanh self.activation = tanh elif self.activation == "elu": from torch.nn.functional import elu self.activation = elu elif self.activation == "prelu": from torch.nn.functional import prelu self.activation = prelu else: raise NotImplementedError("Activation '{}' not implemented.".format(self.activation)) def _call_pytorch(self, features): if self.activation is None: return features else: return self.activation(features, dim=self.axis) @RunOnlyOnce def _build_tf(self, features): if self.activation is None: self.activation = None else: from tensorflow.keras.layers import Activation as _Activation self.activation = _Activation(self.activation) def _call_tf(self, features): if self.activation is None: return features else: return self.activation(features)
32.569444
116
0.620896
b77ece63a9d10aaa8c7958e2c24b2f525b0c9747
2,994
py
Python
python/television/consumers.py
pztrick/django-television
5857200a0871702052827a5d603db7d60bca1406
[ "MIT" ]
1
2018-07-16T16:21:44.000Z
2018-07-16T16:21:44.000Z
python/television/consumers.py
pztrick/django-television
5857200a0871702052827a5d603db7d60bca1406
[ "MIT" ]
4
2019-12-22T11:20:56.000Z
2021-06-10T19:38:46.000Z
python/television/consumers.py
pztrick/django-television
5857200a0871702052827a5d603db7d60bca1406
[ "MIT" ]
null
null
null
import json import traceback from django.http import HttpResponse from channels.handler import AsgiHandler from channels import Group from .decorators import add_listener, call_listener from django.conf import settings from django.db import connection from channels.auth import http_session_user, channel_session_user, channel_session_user_from_http from .utils import timestamp @channel_session_user_from_http def ws_connect(message): if message.user.is_authenticated: Group(f"users").add(message.reply_channel) Group(f"users.{message.user.id}").add(message.reply_channel) print(f"ws_connect: added to group 'users'") if message.user.is_superuser: Group("superusers").add(message.reply_channel) print("ws_connect: added to group 'superusers'") if message.user.is_staff: Group("staff").add(message.reply_channel) print("ws_connect: added to group 'staff'") Group("chat").add(message.reply_channel) message.reply_channel.send({"accept": True}) @channel_session_user def ws_message(message): try: request = json.loads(message['text']) replyTo = request.get('replyTo', None) channel = request['channel'] payload = request.get('payload', []) if settings.DEBUG: print(f"[{timestamp()}] ws_message received on channel '{channel}'") n_queries = len(connection.queries) result = call_listener(channel, message, *payload) n_queries = len(connection.queries) - n_queries response = { 'replyTo': replyTo, 'payload': result } message.reply_channel.send({ 'text': json.dumps(response, default=str) }) if settings.DEBUG: print(f"[{timestamp()}] ws_message replied to on channel '{channel}' ({n_queries} SQL queries)") except Exception as ex: print(traceback.format_exc()) try: errorTo = request.get('errorTo', None) except: errorTo = None formatted_lines = traceback.format_exc().splitlines() if settings.DEBUG: result = "Backend Error\n%s\n%s" % (formatted_lines[1], formatted_lines[-1]) else: result = "Backend Error\n%s" % (formatted_lines[-1], ) response = { 'replyTo': errorTo, 'payload': result } message.reply_channel.send({ 'text': json.dumps(response, default=str) }) raise ex @channel_session_user def ws_disconnect(message): if message.user.is_authenticated: print("ws_disconnect: %s" % message.user.email) Group(f"users").discard(message.reply_channel) Group(f"users.{message.user.id}").discard(message.reply_channel) if message.user.is_superuser: Group("superusers").discard(message.reply_channel) if message.user.is_staff: Group("staff").discard(message.reply_channel) Group("chat").discard(message.reply_channel)
37.425
108
0.654977
b3bfece2cb14151382aaeaa2726981e45f3fd08b
2,446
py
Python
eshop/store/views/signup.py
shruti0419/templates-hacktoberfest
748b8d8a335dc53dc6b80a928ca38c53d33b9798
[ "MIT" ]
8
2021-10-01T13:29:58.000Z
2021-10-06T16:19:50.000Z
eshop/store/views/signup.py
shruti0419/templates-hacktoberfest
748b8d8a335dc53dc6b80a928ca38c53d33b9798
[ "MIT" ]
31
2021-09-30T17:45:36.000Z
2021-10-12T04:57:21.000Z
eshop/store/views/signup.py
shruti0419/templates-hacktoberfest
748b8d8a335dc53dc6b80a928ca38c53d33b9798
[ "MIT" ]
31
2021-09-30T19:49:54.000Z
2021-10-05T17:32:42.000Z
from django.shortcuts import render, redirect from django.contrib.auth.hashers import make_password from store.models.customer import Customer from django.views import View class Signup(View): def get(self, request): return render(request, 'signup.html') def post(self, request): postData = request.POST first_name = postData.get('firstname') last_name = postData.get('lastname') phone = postData.get('phone') email = postData.get('email') password = postData.get('password') # validation value = { 'first_name': first_name, 'last_name': last_name, 'phone': phone, 'email': email } error_message = None customer = Customer(first_name=first_name, last_name=last_name, phone=phone, email=email, password=password) error_message = self.validateCustomer(customer) if not error_message: print(first_name, last_name, phone, email, password) customer.password = make_password(customer.password) customer.register() return redirect('homepage') else: data = { 'error': error_message, 'values': value } return render(request, 'signup.html', data) def validateCustomer(self, customer): error_message = None; if (not customer.first_name): error_message = "First Name Required !!" elif len(customer.first_name) < 4: error_message = 'First Name must be 4 char long or more' elif not customer.last_name: error_message = 'Last Name Required' elif len(customer.last_name) < 4: error_message = 'Last Name must be 4 char long or more' elif not customer.phone: error_message = 'Phone Number required' elif len(customer.phone) < 10: error_message = 'Phone Number must be 10 char Long' elif len(customer.password) < 6: error_message = 'Password must be 6 char long' elif len(customer.email) < 5: error_message = 'Email must be 5 char long' elif customer.isExists(): error_message = 'Email Address Already Registered..' # saving return error_message
35.449275
68
0.577269
dbcd4dab1960e21a0df909987ff91044f5e61c00
3,136
py
Python
http3/dispatch/threaded.py
didip/http3
7c6fb5c6ca44b69fd221d626c9e2fb60530fa1bc
[ "BSD-3-Clause" ]
1
2021-10-07T01:41:33.000Z
2021-10-07T01:41:33.000Z
http3/dispatch/threaded.py
didip/http3
7c6fb5c6ca44b69fd221d626c9e2fb60530fa1bc
[ "BSD-3-Clause" ]
null
null
null
http3/dispatch/threaded.py
didip/http3
7c6fb5c6ca44b69fd221d626c9e2fb60530fa1bc
[ "BSD-3-Clause" ]
null
null
null
from ..config import CertTypes, TimeoutTypes, VerifyTypes from ..interfaces import AsyncDispatcher, ConcurrencyBackend, Dispatcher from ..models import ( AsyncRequest, AsyncRequestData, AsyncResponse, AsyncResponseContent, Request, RequestData, Response, ResponseContent, ) class ThreadedDispatcher(AsyncDispatcher): """ The ThreadedDispatcher class is used to mediate between the Client (which always uses async under the hood), and a synchronous `Dispatch` class. """ def __init__(self, dispatch: Dispatcher, backend: ConcurrencyBackend) -> None: self.sync_dispatcher = dispatch self.backend = backend async def send( self, request: AsyncRequest, verify: VerifyTypes = None, cert: CertTypes = None, timeout: TimeoutTypes = None, ) -> AsyncResponse: concurrency_backend = self.backend data = getattr(request, "content", getattr(request, "content_aiter", None)) sync_data = self._sync_request_data(data) sync_request = Request( method=request.method, url=request.url, headers=request.headers, data=sync_data, ) func = self.sync_dispatcher.send kwargs = { "request": sync_request, "verify": verify, "cert": cert, "timeout": timeout, } sync_response = await self.backend.run_in_threadpool(func, **kwargs) assert isinstance(sync_response, Response) content = getattr( sync_response, "_raw_content", getattr(sync_response, "_raw_stream", None) ) async_content = self._async_response_content(content) async def async_on_close() -> None: nonlocal concurrency_backend, sync_response await concurrency_backend.run_in_threadpool(sync_response.close) return AsyncResponse( status_code=sync_response.status_code, reason_phrase=sync_response.reason_phrase, protocol=sync_response.protocol, headers=sync_response.headers, content=async_content, on_close=async_on_close, request=request, history=sync_response.history, ) async def close(self) -> None: """ The `.close()` method runs the `Dispatcher.close()` within a threadpool, so as not to block the async event loop. """ func = self.sync_dispatcher.close await self.backend.run_in_threadpool(func) def _async_response_content(self, content: ResponseContent) -> AsyncResponseContent: if isinstance(content, bytes): return content # Coerce an async iterator into an iterator, with each item in the # iteration run within the event loop. assert hasattr(content, "__iter__") return self.backend.iterate_in_threadpool(content) def _sync_request_data(self, data: AsyncRequestData) -> RequestData: if isinstance(data, bytes): return data return self.backend.iterate(data)
32
88
0.641582
1ae194ea8b07d1ae0e68649aff67396b47e8ee02
2,673
py
Python
src/OTLMOW/OTLModel/Classes/VRBAZ.py
davidvlaminck/OTLClassPython
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
2
2022-02-01T08:58:11.000Z
2022-02-08T13:35:17.000Z
src/OTLMOW/OTLModel/Classes/VRBAZ.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
src/OTLMOW/OTLModel/Classes/VRBAZ.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
# coding=utf-8 from OTLMOW.OTLModel.BaseClasses.OTLAttribuut import OTLAttribuut from OTLMOW.OTLModel.Classes.VRModuleZFirmware import VRModuleZFirmware from OTLMOW.OTLModel.Datatypes.KlVRBAZMerk import KlVRBAZMerk from OTLMOW.OTLModel.Datatypes.KlVRBAZModelnaam import KlVRBAZModelnaam # Generated with OTLClassCreator. To modify: extend, do not edit class VRBAZ(VRModuleZFirmware): """Het bedien- en aanzichttoestel, ook wel bedienings- en diagnosepaneel, is ingebouwd achter een politiedeur. Het bevat een display en bedieningstoetsen om de verkeersregelaar te bedienen. De display van de BAZ geeft de actuele werktoestand aan, inclusief eventuele toestandswisselingen. De actieve defecten zijn onmiddellijk, zonder enige manipulatie, zichtbaar op de display. Met de bedieningsknoppen moet het werkingsregime (online, offline, handbediening, oranjegeel knipperlicht, integraal rood of volledig gedoofd) gekozen kunnen worden. Tevens moet het regime "handbediening" bediend kunnen worden met de bedieningsknoppen. Met een knop wordt er overgeschakeld naar de volgende fase. Een getuigen-LED geeft aan wanneer de overgangsfase is afgerond en er kan overgegaan worden naar de volgende fase""" typeURI = 'https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#VRBAZ' """De URI van het object volgens https://www.w3.org/2001/XMLSchema#anyURI.""" def __init__(self): super().__init__() self._merk = OTLAttribuut(field=KlVRBAZMerk, naam='merk', label='merk', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#VRBAZ.merk', definition='De merknaam van de VR-BAZ.', owner=self) self._modelnaam = OTLAttribuut(field=KlVRBAZModelnaam, naam='modelnaam', label='modelnaam', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#VRBAZ.modelnaam', definition='De modelnaam van de VR-BAZ.', owner=self) @property def merk(self): """De merknaam van de VR-BAZ.""" return self._merk.get_waarde() @merk.setter def merk(self, value): self._merk.set_waarde(value, owner=self) @property def modelnaam(self): """De modelnaam van de VR-BAZ.""" return self._modelnaam.get_waarde() @modelnaam.setter def modelnaam(self, value): self._modelnaam.set_waarde(value, owner=self)
53.46
618
0.657688
9c1e5bd0068d03e2cea45cd6468dc3939626770f
3,967
py
Python
cellengine/payloads/gate_utils/ellipse_gate.py
primitybio/cellengine-python-toolk
1f9dd168f1f27e2beba69f02e340371190857b33
[ "MIT" ]
4
2021-01-12T17:03:37.000Z
2021-12-16T13:23:57.000Z
cellengine/payloads/gate_utils/ellipse_gate.py
primitybio/cellengine-python-toolk
1f9dd168f1f27e2beba69f02e340371190857b33
[ "MIT" ]
61
2021-01-11T05:27:16.000Z
2022-03-08T01:50:09.000Z
cellengine/payloads/gate_utils/ellipse_gate.py
primitybio/cellengine-python-toolkit
1f9dd168f1f27e2beba69f02e340371190857b33
[ "MIT" ]
null
null
null
from typing import List from cellengine.payloads.gate_utils import format_common_gate from cellengine.utils.generate_id import generate_id def format_ellipse_gate( experiment_id: str, x_channel: str, y_channel: str, name: str, x: float, y: float, angle: float, major: float, minor: float, label: List = [], gid: str = None, locked: bool = False, parent_population_id: str = None, parent_population: str = None, tailored_per_file: bool = False, fcs_file_id: str = None, fcs_file: str = None, create_population: bool = True, ): """Formats an ellipse gate for posting to the CellEngine API. Args: x_channel (str): The name of the x channel to which the gate applies. y_channel (str): The name of the y channel to which the gate applies. name (str): The name of the gate x (float): The x centerpoint of the gate. y (float): The y centerpoint of the gate. angle (float): The angle of the ellipse in radians. major (float): The major radius of the ellipse. minor (float): The minor radius of the ellipse. label (float, optional): Position of the label. Defaults to the midpoint of the gate. gid (str, optional): Group ID of the gate, used for tailoring. If this is not specified, then a new Group ID will be created. To create a tailored gate, the gid of the global tailored gate must be specified. locked (bool, optional): Prevents modification of the gate via the web interface. parent_population_id (Optional[str]): ID of the parent population. Use ``None`` for the "ungated" population. If specified, do not specify ``parent_population``. parent_population (str, optional): Name of the parent population. An attempt will be made to find the population by name. If zero or more than one population exists with the name, an error will be thrown. If specified, do not specify ``parent_population_id``. tailored_per_file (bool, optional): Whether or not this gate is tailored per FCS file. fcs_file_id (str, optional): ID of FCS file, if tailored per file. Use ``None`` for the global gate in a tailored gate group. If specified, do not specify ``fcs_file``. fcs_file (str, optional): Name of FCS file, if tailored per file. An attempt will be made to find the file by name. If zero or more than one file exists with the name, an error will be thrown. Looking up files by name is slower than using the ID, as this requires additional requests to the server. If specified, do not specify ``fcs_file_id``. create_population (optional, bool): Automatically create corresponding population. Returns: EllipseGate: An EllipseGate object. Examples: ```python cellengine.Gate.create_ellipse_gate(experiment_id, x_channel="FSC-A", y_channel="FSC-W", name="my gate", x=260000, y=64000, angle=0, major=120000, minor=70000) ``` """ if label == []: label = [x, y] if gid is None: gid = generate_id() model = { "locked": locked, "label": label, "ellipse": {"angle": angle, "major": major, "minor": minor, "center": [x, y]}, } body = { "experimentId": experiment_id, "name": name, "type": "EllipseGate", "gid": gid, "xChannel": x_channel, "yChannel": y_channel, "parentPopulationId": parent_population_id, "model": model, } return format_common_gate( experiment_id, body=body, tailored_per_file=tailored_per_file, fcs_file_id=fcs_file_id, fcs_file=fcs_file, create_population=create_population, )
37.424528
86
0.624653
bac9bb6c55d7d93cdaf4803c44758361de8192df
253
py
Python
chatnoir_api/types.py
chatnoir-eu/chatnoir-api
aff5059d2caafc892d0ba750889dc9938fbb0493
[ "MIT" ]
3
2022-01-25T10:31:19.000Z
2022-01-27T10:21:51.000Z
chatnoir_api/types.py
chatnoir-eu/chatnoir-api
aff5059d2caafc892d0ba750889dc9938fbb0493
[ "MIT" ]
1
2022-01-22T17:28:47.000Z
2022-01-24T12:57:30.000Z
chatnoir_api/types.py
heinrichreimer/chatnoir-api
aff5059d2caafc892d0ba750889dc9938fbb0493
[ "MIT" ]
1
2022-03-31T14:59:44.000Z
2022-03-31T14:59:44.000Z
try: from functools import cached_property # noqa: F401 except ImportError: cached_property = property # noqa: F401 try: from typing import Literal # noqa: F401 except ImportError: from typing_extensions import Literal # noqa: F401
25.3
55
0.735178
0645ee37440f90b8a168915191e648b994f53786
3,087
py
Python
sdk/storagepool/azure-mgmt-storagepool/setup.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/storagepool/azure-mgmt-storagepool/setup.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/storagepool/azure-mgmt-storagepool/setup.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
#!/usr/bin/env python #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import re import os.path from io import open from setuptools import find_packages, setup # Change the PACKAGE_NAME only to change folder and different name PACKAGE_NAME = "azure-mgmt-storagepool" PACKAGE_PPRINT_NAME = "Storagepool Management" # a-b-c => a/b/c package_folder_path = PACKAGE_NAME.replace('-', '/') # a-b-c => a.b.c namespace_name = PACKAGE_NAME.replace('-', '.') # azure v0.x is not compatible with this package # azure v0.x used to have a __version__ attribute (newer versions don't) try: import azure try: ver = azure.__version__ raise Exception( 'This package is incompatible with azure=={}. '.format(ver) + 'Uninstall it with "pip uninstall azure".' ) except AttributeError: pass except ImportError: pass # Version extraction inspired from 'requests' with open(os.path.join(package_folder_path, 'version.py') if os.path.exists(os.path.join(package_folder_path, 'version.py')) else os.path.join(package_folder_path, '_version.py'), 'r') as fd: version = re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') with open('README.md', encoding='utf-8') as f: readme = f.read() with open('CHANGELOG.md', encoding='utf-8') as f: changelog = f.read() setup( name=PACKAGE_NAME, version=version, description='Microsoft Azure {} Client Library for Python'.format(PACKAGE_PPRINT_NAME), long_description=readme + '\n\n' + changelog, long_description_content_type='text/markdown', license='MIT License', author='Microsoft Corporation', author_email='azpysdkhelp@microsoft.com', url='https://github.com/Azure/azure-sdk-for-python', classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'License :: OSI Approved :: MIT License', ], zip_safe=False, packages=find_packages(exclude=[ 'tests', # Exclude packages that will be covered by PEP420 or nspkg 'azure', 'azure.mgmt', ]), install_requires=[ 'msrest>=0.6.21', 'azure-common~=1.1', 'azure-mgmt-core>=1.2.0,<2.0.0', ], extras_require={ ":python_version<'3.0'": ['azure-mgmt-nspkg'], } )
33.554348
91
0.60609
190e0debcfd77d78928700924dcb09254669831c
760
py
Python
venv/Lib/site-packages/joblib/test/test_module.py
deerajnagothu/pyenf_extraction
f5c3ebc9657133e1bea102b41768152ba0b30e1b
[ "MIT" ]
6
2021-10-30T09:00:55.000Z
2022-03-07T16:33:25.000Z
venv/Lib/site-packages/joblib/test/test_module.py
deerajnagothu/pyenf_extraction
f5c3ebc9657133e1bea102b41768152ba0b30e1b
[ "MIT" ]
null
null
null
venv/Lib/site-packages/joblib/test/test_module.py
deerajnagothu/pyenf_extraction
f5c3ebc9657133e1bea102b41768152ba0b30e1b
[ "MIT" ]
1
2022-03-16T11:33:50.000Z
2022-03-16T11:33:50.000Z
import sys import joblib import pytest from joblib.testing import check_subprocess_call def test_version(): assert hasattr(joblib, '__version__'), ( "There are no __version__ argument on the joblib module") @pytest.mark.skipif(sys.version_info < (3, 3), reason="Need python3.3+") def test_no_start_method_side_effect_on_import(): # check that importing joblib does not implicitly set the global # start_method for multiprocessing. code = """if True: import joblib import multiprocessing as mp # The following line would raise RuntimeError if the # start_method is already set. mp.set_start_method("loky") """ check_subprocess_call([sys.executable, '-c', code])
31.666667
73
0.686842
5c161b119fcfae68866c5d3ae296b129b348e9ff
1,230
py
Python
src/pyscript/matmul.py
JohndeVostok/tftest
b63123357b935db155394ccec156862f0cacee6e
[ "MIT" ]
null
null
null
src/pyscript/matmul.py
JohndeVostok/tftest
b63123357b935db155394ccec156862f0cacee6e
[ "MIT" ]
null
null
null
src/pyscript/matmul.py
JohndeVostok/tftest
b63123357b935db155394ccec156862f0cacee6e
[ "MIT" ]
null
null
null
import os import json import tensorflow as tf from tensorflow.python.client import timeline if __name__ == "__main__": os.environ["CUDA_VISIBLE_DEVICES"]="-1" os.chdir("/home/mazx/git/tftest") a = tf.random_normal([5000, 5000], name = "random_normal_0") b = tf.random_normal([5000, 5000], name = "random_normal_1") c = tf.matmul(a, b, name = "matmul_0") d = tf.matmul(b, c, name = "matmul_1") sess = tf.Session() run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() writer=tf.summary.FileWriter("logs", sess.graph) sess.run(d, options=run_options, run_metadata=run_metadata) writer.add_run_metadata(run_metadata, 'step %03d' % 0) writer.close() tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() with open('matmul_timeline.json', 'w') as f: f.write(ctf) with open('matmul_graph.json', "w") as f: nodes = [] for n in tf.get_default_graph().as_graph_def().node: nodes.append("{\"name\":\"" + str(n.name) + "\",\"input\":\"" + str(n.input) + "\"}") f.write("{\"nodes\":[\n") f.write(",".join(nodes)) f.write("]}")
31.538462
97
0.629268
20451fbf46bb28f5207462324ffc5900dcdbf7b9
8,071
py
Python
PaddleCV/gan/network/SPADE_network.py
suytingwan/models
ccdbfe77d071cc19b55fb9f4b738912e35d982ef
[ "Apache-2.0" ]
5
2021-09-28T13:28:01.000Z
2021-12-21T07:25:44.000Z
PaddleCV/gan/network/SPADE_network.py
suytingwan/models
ccdbfe77d071cc19b55fb9f4b738912e35d982ef
[ "Apache-2.0" ]
1
2019-11-18T03:03:37.000Z
2019-11-18T03:03:37.000Z
PaddleCV/gan/network/SPADE_network.py
suytingwan/models
ccdbfe77d071cc19b55fb9f4b738912e35d982ef
[ "Apache-2.0" ]
4
2021-08-11T08:25:10.000Z
2021-10-16T07:41:59.000Z
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from .base_network import conv2d, deconv2d, norm_layer, conv2d_spectral_norm import paddle.fluid as fluid import numpy as np class SPADE_model(object): def __init__(self): pass def network_G(self, input, name, cfg, is_test=False): nf = cfg.ngf num_up_layers = 5 sw = cfg.crop_width // (2**num_up_layers) sh = cfg.crop_height // (2**num_up_layers) seg = input x = fluid.layers.resize_nearest( seg, out_shape=(sh, sw), align_corners=False) x = conv2d( x, 16 * nf, 3, padding=1, name=name + "_fc", use_bias=True, initial="kaiming", is_test=is_test) x = self.SPADEResnetBlock( x, seg, 16 * nf, 16 * nf, cfg, name=name + "_head_0", is_test=is_test) x = fluid.layers.resize_nearest(x, scale=2.0, align_corners=False) x = self.SPADEResnetBlock( x, seg, 16 * nf, 16 * nf, cfg, name=name + "_G_middle_0", is_test=is_test) x = self.SPADEResnetBlock( x, seg, 16 * nf, 16 * nf, cfg, name=name + "_G_middle_1", is_test=is_test) x = fluid.layers.resize_nearest(x, scale=2.0, align_corners=False) x = self.SPADEResnetBlock( x, seg, 16 * nf, 8 * nf, cfg, name=name + "_up_0", is_test=is_test) x = fluid.layers.resize_nearest(x, scale=2.0, align_corners=False) x = self.SPADEResnetBlock( x, seg, 8 * nf, 4 * nf, cfg, name=name + "_up_1", is_test=is_test) x = fluid.layers.resize_nearest(x, scale=2.0, align_corners=False) x = self.SPADEResnetBlock( x, seg, 4 * nf, 2 * nf, cfg, name=name + "_up_2", is_test=is_test) x = fluid.layers.resize_nearest(x, scale=2.0, align_corners=False) x = self.SPADEResnetBlock( x, seg, 2 * nf, 1 * nf, cfg, name=name + "_up_3", is_test=is_test) x = fluid.layers.leaky_relu( x, alpha=0.2, name=name + '_conv_img_leaky_relu') x = conv2d( x, 3, 3, padding=1, name=name + "_conv_img", use_bias=True, initial="kaiming", is_test=is_test) x = fluid.layers.tanh(x) return x def SPADEResnetBlock(self, x, seg, fin, fout, opt, name, is_test=False): learn_shortcut = (fin != fout) fmiddle = min(fin, fout) semantic_nc = opt.label_nc + (0 if opt.no_instance else 1) if learn_shortcut: x_s = self.SPADE( x, seg, fin, name=name + ".norm_s", is_test=is_test) x_s = conv2d_spectral_norm( x_s, fout, 1, use_bias=False, name=name + ".conv_s", is_test=is_test) else: x_s = x dx = self.SPADE(x, seg, fin, name=name + ".norm_0", is_test=is_test) dx = fluid.layers.leaky_relu(dx, alpha=0.2, name=name + '_leaky_relu0') dx = conv2d_spectral_norm( dx, fmiddle, 3, padding=1, name=name + ".conv_0", use_bias=True, is_test=is_test) dx = self.SPADE( dx, seg, fmiddle, name=name + ".norm_1", is_test=is_test) dx = fluid.layers.leaky_relu(dx, alpha=0.2, name=name + '_leaky_relu1') dx = conv2d_spectral_norm( dx, fout, 3, padding=1, name=name + ".conv_1", use_bias=True, is_test=is_test) output = dx + x_s return output def SPADE(self, input, seg_map, norm_nc, name, is_test=False): nhidden = 128 ks = 3 pw = ks // 2 seg_map = fluid.layers.resize_nearest( seg_map, out_shape=input.shape[2:], align_corners=False) actv = conv2d( seg_map, nhidden, ks, padding=pw, activation_fn='relu', name=name + ".mlp_shared.0", initial="kaiming", use_bias=True) gamma = conv2d( actv, norm_nc, ks, padding=pw, name=name + ".mlp_gamma", initial="kaiming", use_bias=True) beta = conv2d( actv, norm_nc, ks, padding=pw, name=name + ".mlp_beta", initial="kaiming", use_bias=True) param_attr = fluid.ParamAttr( name=name + ".param_free_norm.weight", initializer=fluid.initializer.Constant(value=1.0), trainable=False) bias_attr = fluid.ParamAttr( name=name + ".param_free_norm.bias", initializer=fluid.initializer.Constant(0.0), trainable=False) norm = fluid.layers.batch_norm( input=input, name=name, param_attr=param_attr, bias_attr=bias_attr, moving_mean_name=name + ".param_free_norm.running_mean", moving_variance_name=name + ".param_free_norm.running_var", is_test=is_test) out = norm * (1 + gamma) + beta return out def network_D(self, input, name, cfg): num_D = 2 result = [] for i in range(num_D): out = build_discriminator_Nlayers(input, name=name + "_%d" % i) result.append(out) input = fluid.layers.pool2d( input, pool_size=3, pool_type="avg", pool_stride=2, pool_padding=1, name=name + "_pool%d" % i) return result def build_discriminator_Nlayers(input, name="discriminator", d_nlayers=4, d_base_dims=64, norm_type='instance_norm'): kw = 4 padw = int(np.ceil((kw - 1.0) / 2)) nf = d_base_dims res_list = [] res1 = conv2d( input, nf, kw, 2, 0.02, 1, name=name + ".model0.0", activation_fn='leaky_relu', relufactor=0.2, initial="kaiming", use_bias=True) d_dims = d_base_dims res_list.append(res1) for i in range(1, d_nlayers): conv_name = name + ".model{}.0.0".format(i) nf = min(nf * 2, 512) stride = 1 if i == d_nlayers - 1 else 2 dis_output = conv2d_spectral_norm( res_list[-1], nf, kw, stride, 0.02, 1, name=conv_name, norm=norm_type, activation_fn='leaky_relu', relufactor=0.2, use_bias=False, norm_affine=False) res_list.append(dis_output) o_c4 = conv2d( res_list[-1], 1, 4, 1, 0.02, 1, name + ".model{}.0".format(d_nlayers), initial="kaiming", use_bias=True) res_list.append(o_c4) return res_list
30.923372
79
0.515673
701fade2ab871d586a73ad7aeda563e0d20f5df4
3,707
py
Python
core/utils/frame_utils.py
gallif/raft
11a35ff5ede31918a360eca2f1481bc5fec9b5e5
[ "BSD-3-Clause" ]
1
2021-11-28T09:52:49.000Z
2021-11-28T09:52:49.000Z
core/utils/frame_utils.py
Kolin96/RAFT
3fac6470f487c85bcc03ef102f86e1542262108e
[ "BSD-3-Clause" ]
null
null
null
core/utils/frame_utils.py
Kolin96/RAFT
3fac6470f487c85bcc03ef102f86e1542262108e
[ "BSD-3-Clause" ]
1
2021-03-10T03:43:18.000Z
2021-03-10T03:43:18.000Z
import numpy as np from PIL import Image from os.path import * import re import cv2 TAG_CHAR = np.array([202021.25], np.float32) def readFlow(fn): """ Read .flo file in Middlebury format""" # Code adapted from: # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy # WARNING: this will work on little-endian architectures (eg Intel x86) only! # print 'fn = %s'%(fn) with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) # print 'Reading %d x %d flo file\n' % (w, h) data = np.fromfile(f, np.float32, count=2*int(w)*int(h)) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) return np.resize(data, (int(h), int(w), 2)) def readPFM(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header == b'PF': color = True elif header == b'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data def writeFlow(filename,uv,v=None): """ Write optical flow to file. If v is None, uv is assumed to contain both u and v channels, stacked in depth. Original code by Deqing Sun, adapted from Daniel Scharstein. """ nBands = 2 if v is None: assert(uv.ndim == 3) assert(uv.shape[2] == 2) u = uv[:,:,0] v = uv[:,:,1] else: u = uv assert(u.shape == v.shape) height,width = u.shape f = open(filename,'wb') # write the header f.write(TAG_CHAR) np.array(width).astype(np.int32).tofile(f) np.array(height).astype(np.int32).tofile(f) # arrange into matrix form tmp = np.zeros((height, width*nBands)) tmp[:,np.arange(width)*2] = u tmp[:,np.arange(width)*2 + 1] = v tmp.astype(np.float32).tofile(f) f.close() def readFlowKITTI(filename): flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR) flow = flow[:,:,::-1].astype(np.float32) flow, valid = flow[:, :, :2], flow[:, :, 2] flow = (flow - 2**15) / 64.0 return flow, valid def writeFlowKITTI(filename, uv): uv = 64.0 * uv + 2**15 valid = np.ones([uv.shape[0], uv.shape[1], 1]) uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) cv2.imwrite(filename, uv[..., ::-1]) def read_gen(file_name, pil=False): ext = splitext(file_name)[-1] if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg': return Image.open(file_name) elif ext == '.bin' or ext == '.raw': return np.load(file_name) elif ext == '.flo': return readFlow(file_name).astype(np.float32) elif ext == '.pfm': flow = readPFM(file_name).astype(np.float32) return flow[:, :, :-1] return []
29.895161
109
0.578635
cfd526ec4e91e34a6efb4c2fd9ca547cdcc828d6
497
py
Python
env/lib/python3.8/site-packages/plotly/validators/heatmapgl/colorbar/tickformatstop/_name.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/heatmapgl/colorbar/tickformatstop/_name.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/heatmapgl/colorbar/tickformatstop/_name.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class NameValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name="name", parent_name="heatmapgl.colorbar.tickformatstop", **kwargs ): super(NameValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs )
27.611111
66
0.61167
891453bacdbb537eddab14e1b54cd58ad577b562
11,070
py
Python
aim/storage/structured/sql_engine/entities.py
fairhopeweb/aim
f17b309e0e415e8798b6330b9ee71436a1b3994e
[ "Apache-2.0" ]
null
null
null
aim/storage/structured/sql_engine/entities.py
fairhopeweb/aim
f17b309e0e415e8798b6330b9ee71436a1b3994e
[ "Apache-2.0" ]
null
null
null
aim/storage/structured/sql_engine/entities.py
fairhopeweb/aim
f17b309e0e415e8798b6330b9ee71436a1b3994e
[ "Apache-2.0" ]
null
null
null
from typing import Collection, Union from sqlalchemy.orm import joinedload from aim.storage.types import SafeNone from aim.storage.structured.entities import \ Run as IRun, \ Experiment as IExperiment, \ Tag as ITag,\ RunCollection, TagCollection from aim.storage.structured.sql_engine.models import \ Run as RunModel,\ Experiment as ExperimentModel,\ Tag as TagModel from aim.storage.structured.sql_engine.utils import ModelMappedClassMeta, ModelMappedCollection from aim.storage.structured.sql_engine.utils import ModelMappedProperty as Property def timestamp_or_none(dt): if dt is None: return None return dt.timestamp() class ModelMappedRun(IRun, metaclass=ModelMappedClassMeta): __model__ = RunModel __mapped_properties__ = [ Property('name'), Property('description'), Property('archived', 'is_archived'), Property('created_at', with_setter=False), Property('creation_time', 'created_at', get_modifier=timestamp_or_none, with_setter=False), Property('finalized_at'), Property('end_time', 'finalized_at', get_modifier=timestamp_or_none, with_setter=False), Property('updated_at', with_setter=False), Property('hash', with_setter=False), Property('experiment', autogenerate=False), Property('tags', autogenerate=False), ] def __init__(self, model: RunModel, session): self._model = model self._id = model.id self._session = session def __repr__(self) -> str: return f'<ModelMappedRun id={self.hash}, name=\'{self.name}\'>' @classmethod def from_model(cls, model_obj, session) -> 'ModelMappedRun': return ModelMappedRun(model_obj, session) @classmethod def from_hash(cls, runhash: str, session) -> 'ModelMappedRun': if session.query(RunModel).filter(RunModel.hash == runhash).scalar(): raise ValueError(f'Run with hash \'{runhash}\' already exists.') run = RunModel(runhash) session.add(run) session.flush() return ModelMappedRun(run, session) @classmethod def find(cls, _id: str, **kwargs) -> Union[IRun, SafeNone]: session = kwargs.get('session') if not session: return SafeNone() model_obj = session.query(RunModel).options([ joinedload(RunModel.experiment), joinedload(RunModel.tags), ]).filter(RunModel.hash == _id).first() if model_obj: return ModelMappedRun.from_model(model_obj, session) return SafeNone() @classmethod def all(cls, **kwargs) -> Collection[IRun]: session = kwargs.get('session') if not session: return [] q = session.query(RunModel).options([ joinedload(RunModel.experiment), joinedload(RunModel.tags), ]).order_by(RunModel.created_at) return ModelMappedRunCollection(session, query=q) @classmethod def search(cls, term: str, **kwargs) -> Collection[IRun]: session = kwargs.get('session') if not session: return [] term = f'%{term}%' q = session.query(RunModel).options([ joinedload(RunModel.experiment), joinedload(RunModel.tags), ]).filter(RunModel.name.like(term)) return ModelMappedRunCollection(session, query=q) @property def experiment(self) -> Union[IExperiment, SafeNone]: if self._model and self._model.experiment: return ModelMappedExperiment(self._model.experiment, self._session) else: return SafeNone() @experiment.setter def experiment(self, value: str): session = self._session if value is None: exp = None else: exp = session.query(ExperimentModel).filter(ExperimentModel.name == value).first() if not exp: exp = ExperimentModel(value) session.add(exp) self._model.experiment = exp session.add(self._model) session.flush() @property def tags(self) -> TagCollection: if self._model: return ModelMappedTagCollection(self._session, collection=[t for t in self._model.tags if t.is_archived is not True]) else: return [] def add_tag(self, value: str) -> ITag: session = self._session tag = session.query(TagModel).filter(TagModel.name == value).first() if not tag: tag = TagModel(value) session.add(tag) self._model.tags.append(tag) session.add(self._model) session.flush() return ModelMappedTag.from_model(tag, session) def remove_tag(self, tag_id: str) -> bool: session = self._session tag_removed = False for tag in self._model.tags: if tag.uuid == tag_id: self._model.tags.remove(tag) tag_removed = True break session.add(self._model) session.flush() return tag_removed class ModelMappedExperiment(IExperiment, metaclass=ModelMappedClassMeta): __model__ = ExperimentModel __mapped_properties__ = [ Property('name'), Property('uuid', with_setter=False), Property('archived', 'is_archived'), Property('created_at', with_setter=False), Property('updated_at', with_setter=False), ] def __init__(self, model_inst: ExperimentModel, session): self._model = model_inst self._id = model_inst.id self._session = session def __repr__(self) -> str: return f'<ModelMappedExperiment id={self.uuid}, name=\'{self.name}\'>' def __eq__(self, other) -> bool: if isinstance(other, str): return self._model.name == other elif isinstance(other, ModelMappedExperiment): return self._model.id == other._model.id return False @classmethod def from_model(cls, model_obj, session) -> 'ModelMappedExperiment': return ModelMappedExperiment(model_obj, session) @classmethod def from_name(cls, name: str, session) -> 'ModelMappedExperiment': if session.query(ExperimentModel).filter(ExperimentModel.name == name).scalar(): raise ValueError(f'Experiment with name \'{name}\' already exists.') exp = ExperimentModel(name) session.add(exp) session.flush() return ModelMappedExperiment(exp, session) @property def runs(self) -> RunCollection: return ModelMappedRunCollection(self._session, collection=self._model.runs) @classmethod def find(cls, _id: str, **kwargs) -> Union[IExperiment, SafeNone]: session = kwargs.get('session') if not session: return SafeNone() model_obj = session.query(ExperimentModel).options([ joinedload(ExperimentModel.runs), ]).filter(ExperimentModel.uuid == _id).first() if model_obj: return ModelMappedExperiment(model_obj, session) return SafeNone() @classmethod def all(cls, **kwargs) -> Collection[IExperiment]: session = kwargs.get('session') if not session: return [] q = session.query(ExperimentModel).options([ joinedload(ExperimentModel.runs), ]) return ModelMappedExperimentCollection(session, query=q) @classmethod def search(cls, term: str, **kwargs) -> Collection[IExperiment]: session = kwargs.get('session') if not session: return [] term = f'%{term}%' q = session.query(ExperimentModel).options([ joinedload(ExperimentModel.runs), ]).filter(ExperimentModel.name.like(term)) return ModelMappedExperimentCollection(session, query=q) class ModelMappedTag(ITag, metaclass=ModelMappedClassMeta): __model__ = TagModel __mapped_properties__ = [ Property('name'), Property('color'), Property('description'), Property('archived', 'is_archived'), Property('uuid', with_setter=False), Property('created_at', with_setter=False), Property('updated_at', with_setter=False), ] def __init__(self, model_inst: TagModel, session): self._model = model_inst self._id = model_inst.id self._session = session def __repr__(self) -> str: return f'<ModelMappedTag id={self.uuid}, name=\'{self.name}\'>' def __eq__(self, other) -> bool: if isinstance(other, str): return self._model.name == other elif isinstance(other, ModelMappedTag): return self._model.id == other._model.id return False @classmethod def from_model(cls, model_obj, session) -> 'ModelMappedTag': return ModelMappedTag(model_obj, session) @classmethod def from_name(cls, name: str, session) -> 'ModelMappedTag': if session.query(TagModel).filter(TagModel.name == name).scalar(): raise ValueError(f'Tag with name \'{name}\' already exists.') tag = TagModel(name) session.add(tag) session.flush() return ModelMappedTag(tag, session) @classmethod def find(cls, _id: str, **kwargs) -> Union[ITag, SafeNone]: session = kwargs.get('session') if not session: return SafeNone() model_obj = session.query(TagModel).options([ joinedload(TagModel.runs), ]).filter(TagModel.uuid == _id).first() if model_obj: return ModelMappedTag(model_obj, session) return SafeNone() @classmethod def all(cls, **kwargs) -> Collection[ITag]: session = kwargs.get('session') if not session: return [] q = session.query(TagModel).options([ joinedload(TagModel.runs), ]) return ModelMappedTagCollection(session, query=q) @classmethod def search(cls, term: str, **kwargs) -> Collection[ITag]: session = kwargs.get('session') if not session: return [] term = f'%{term}%' q = session.query(TagModel).options([ joinedload(TagModel.runs), ]).filter(TagModel.name.like(term)) return ModelMappedTagCollection(session, query=q) @classmethod def delete(cls, _id: str, **kwargs) -> bool: session = kwargs.get('session') if not session: return False model_obj = session.query(TagModel).filter(TagModel.uuid == _id).first() if model_obj: session.delete(model_obj) return True return False @property def runs(self) -> RunCollection: return ModelMappedRunCollection(self._session, collection=self._model.runs) ModelMappedRunCollection = ModelMappedCollection[ModelMappedRun] ModelMappedExperimentCollection = ModelMappedCollection[ModelMappedExperiment] ModelMappedTagCollection = ModelMappedCollection[ModelMappedTag]
34.811321
114
0.628636
0d51d0dee13bb281a3e3e357e611cd70a6008c43
10,563
py
Python
tensorflow/contrib/image/python/ops/image_ops.py
xincao79/tensorflow
7fa0cf39f854d5fdaaa19ad6425dfed02f5fea64
[ "Apache-2.0" ]
1
2019-01-22T19:43:27.000Z
2019-01-22T19:43:27.000Z
tensorflow/contrib/image/python/ops/image_ops.py
xincao79/tensorflow
7fa0cf39f854d5fdaaa19ad6425dfed02f5fea64
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/image/python/ops/image_ops.py
xincao79/tensorflow
7fa0cf39f854d5fdaaa19ad6425dfed02f5fea64
[ "Apache-2.0" ]
1
2019-03-03T15:17:50.000Z
2019-03-03T15:17:50.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python layer for image_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.image.ops import gen_image_ops from tensorflow.contrib.util import loader from tensorflow.python.framework import common_shapes from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import resource_loader _image_ops_so = loader.load_op_library( resource_loader.get_path_to_datafile("_image_ops.so")) _IMAGE_DTYPES = set( [dtypes.uint8, dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64]) ops.RegisterShape("ImageProjectiveTransform")(common_shapes.call_cpp_shape_fn) def rotate(images, angles, interpolation="NEAREST"): """Rotate image(s) by the passed angle(s) in radians. Args: images: A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC), (num_rows, num_columns, num_channels) (HWC), or (num_rows, num_columns) (HW). angles: A scalar angle to rotate all images by, or (if images has rank 4) a vector of length num_images, with an angle for each image in the batch. interpolation: Interpolation mode. Supported values: "NEAREST", "BILINEAR". Returns: Image(s) with the same type and shape as `images`, rotated by the given angle(s). Empty space due to the rotation will be filled with zeros. Raises: TypeError: If `image` is an invalid type. """ image_or_images = ops.convert_to_tensor(images, name="images") if image_or_images.dtype.base_dtype not in _IMAGE_DTYPES: raise TypeError("Invalid dtype %s." % image_or_images.dtype) if len(image_or_images.get_shape()) == 2: images = image_or_images[None, :, :, None] elif len(image_or_images.get_shape()) == 3: images = image_or_images[None, :, :, :] elif len(image_or_images.get_shape()) == 4: images = image_or_images else: raise TypeError("Images should have rank between 2 and 4.") image_height = math_ops.cast(array_ops.shape(images)[1], dtypes.float32)[None] image_width = math_ops.cast(array_ops.shape(images)[2], dtypes.float32)[None] output = transform( images, angles_to_projective_transforms(angles, image_height, image_width), interpolation=interpolation) if len(image_or_images.get_shape()) == 2: return output[0, :, :, 0] elif len(image_or_images.get_shape()) == 3: return output[0, :, :, :] else: return output def angles_to_projective_transforms(angles, image_height, image_width): """Returns projective transform(s) for the given angle(s). Args: angles: A scalar angle to rotate all images by, or (for batches of images) a vector with an angle to rotate each image in the batch. image_height: Height of the image(s) to be transformed. image_width: Width of the image(s) to be transformed. Returns: A tensor of shape (num_images, 8). Projective transforms which can be given to `tf.contrib.image.transform`. """ angle_or_angles = ops.convert_to_tensor( angles, name="angles", dtype=dtypes.float32) if len(angle_or_angles.get_shape()) == 0: # pylint: disable=g-explicit-length-test angles = angle_or_angles[None] elif len(angle_or_angles.get_shape()) == 1: angles = angle_or_angles else: raise TypeError("Angles should have rank 0 or 1.") x_offset = ((image_width - 1) - (math_ops.cos(angles) * (image_width - 1) - math_ops.sin(angles) * (image_height - 1))) / 2.0 y_offset = ((image_height - 1) - (math_ops.sin(angles) * (image_width - 1) + math_ops.cos(angles) * (image_height - 1))) / 2.0 num_angles = array_ops.shape(angles)[0] return array_ops.concat( values=[ math_ops.cos(angles)[:, None], -math_ops.sin(angles)[:, None], x_offset[:, None], math_ops.sin(angles)[:, None], math_ops.cos(angles)[:, None], y_offset[:, None], array_ops.zeros((num_angles, 2), dtypes.float32), ], axis=1) def transform(images, transforms, interpolation="NEAREST"): """Applies the given transform(s) to the image(s). Args: images: A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC), (num_rows, num_columns, num_channels) (HWC), or (num_rows, num_columns) (HW). transforms: Projective transform matrix/matrices. A vector of length 8 or tensor of size N x 8. If one row of transforms is [a0, a1, a2, b0, b1, b2, c0, c1], then it maps the *output* point `(x, y)` to a transformed *input* point `(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`, where `k = c0 x + c1 y + 1`. The transforms are *inverted* compared to the transform mapping input points to output points. interpolation: Interpolation mode. Supported values: "NEAREST", "BILINEAR". Returns: Image(s) with the same type and shape as `images`, with the given transform(s) applied. Transformed coordinates outside of the input image will be filled with zeros. Raises: TypeError: If `image` is an invalid type. """ image_or_images = ops.convert_to_tensor(images, name="images") transform_or_transforms = ops.convert_to_tensor( transforms, name="transforms", dtype=dtypes.float32) if image_or_images.dtype.base_dtype not in _IMAGE_DTYPES: raise TypeError("Invalid dtype %s." % image_or_images.dtype) if len(image_or_images.get_shape()) == 2: images = image_or_images[None, :, :, None] elif len(image_or_images.get_shape()) == 3: images = image_or_images[None, :, :, :] elif len(image_or_images.get_shape()) == 4: images = image_or_images else: raise TypeError("Images should have rank between 2 and 4.") if len(transform_or_transforms.get_shape()) == 1: transforms = transform_or_transforms[None] elif len(transform_or_transforms.get_shape()) == 2: transforms = transform_or_transforms else: raise TypeError("Transforms should have rank 1 or 2.") output = gen_image_ops.image_projective_transform( images, transforms, interpolation=interpolation.upper()) if len(image_or_images.get_shape()) == 2: return output[0, :, :, 0] elif len(image_or_images.get_shape()) == 3: return output[0, :, :, :] else: return output def compose_transforms(*transforms): """Composes the transforms tensors. Args: *transforms: List of image projective transforms to be composed. Each transform is length 8 (single transform) or shape (N, 8) (batched transforms). The shapes of all inputs must be equal, and at least one input must be given. Returns: A composed transform tensor. When passed to `tf.contrib.image.transform`, equivalent to applying each of the given transforms to the image in order. """ assert transforms, "transforms cannot be empty" composed = _flat_transforms_to_matrices(transforms[0]) for tr in transforms[1:]: # Multiply batches of matrices. composed = math_ops.matmul(composed, _flat_transforms_to_matrices(tr)) return _transform_matrices_to_flat(composed) def _flat_transforms_to_matrices(transforms): # Make the transform(s) 2D in case the input is a single transform. transforms = array_ops.reshape(transforms, constant_op.constant([-1, 8])) num_transforms = array_ops.shape(transforms)[0] # Add a column of ones for the implicit last entry in the matrix. return array_ops.reshape( array_ops.concat( [transforms, array_ops.ones([num_transforms, 1])], axis=1), constant_op.constant([-1, 3, 3])) def _transform_matrices_to_flat(transform_matrices): # Flatten each matrix. transforms = array_ops.reshape( transform_matrices, constant_op.constant([-1, 9])) # Divide each matrix by the last entry (normally 1). transforms /= transforms[:, 8:9] return transforms[:, :8] @ops.RegisterGradient("ImageProjectiveTransform") def _image_projective_transform_grad(op, grad): """Computes the gradient for ImageProjectiveTransform.""" images = op.inputs[0] transforms = op.inputs[1] interpolation = op.get_attr("interpolation") image_or_images = ops.convert_to_tensor(images, name="images") transform_or_transforms = ops.convert_to_tensor( transforms, name="transforms", dtype=dtypes.float32) if image_or_images.dtype.base_dtype not in _IMAGE_DTYPES: raise TypeError("Invalid dtype %s." % image_or_images.dtype) if len(image_or_images.get_shape()) == 2: images = image_or_images[None, :, :, None] elif len(image_or_images.get_shape()) == 3: images = image_or_images[None, :, :, :] elif len(image_or_images.get_shape()) == 4: images = image_or_images else: raise TypeError("Images should have rank between 2 and 4") if len(transform_or_transforms.get_shape()) == 1: transforms = transform_or_transforms[None] elif len(transform_or_transforms.get_shape()) == 2: transforms = transform_or_transforms else: raise TypeError("Transforms should have rank 1 or 2.") # Invert transformations transforms = _flat_transforms_to_matrices(transforms=transforms) inverse = linalg_ops.matrix_inverse(transforms) transforms = _transform_matrices_to_flat(inverse) output = gen_image_ops.image_projective_transform( grad, transforms, interpolation=interpolation) if len(image_or_images.get_shape()) == 2: return [output[0, :, :, 0], None] elif len(image_or_images.get_shape()) == 3: return [output[0, :, :, :], None] else: return [output, None]
40.471264
85
0.700275
b3d0c43cc11f39cd6883c4f3d54a3405ef96fe8e
2,438
py
Python
cfripper/rules/SecurityGroupOpenToWorldRule.py
harry738/cfripper
83e4a2eb8015aad7178b67b112bcd99b1f60b09f
[ "Apache-2.0" ]
null
null
null
cfripper/rules/SecurityGroupOpenToWorldRule.py
harry738/cfripper
83e4a2eb8015aad7178b67b112bcd99b1f60b09f
[ "Apache-2.0" ]
null
null
null
cfripper/rules/SecurityGroupOpenToWorldRule.py
harry738/cfripper
83e4a2eb8015aad7178b67b112bcd99b1f60b09f
[ "Apache-2.0" ]
null
null
null
""" Copyright 2018 Skyscanner Ltd Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from cfripper.config.logger import get_logger from cfripper.model.rule_processor import Rule logger = get_logger() class SecurityGroupOpenToWorldRule(Rule): def invoke(self, resources, parameters): rs = resources.get("AWS::EC2::SecurityGroup", []) for resource in rs: self.process_resource(resource.logical_id, resource) def process_resource(self, logical_name, properties): if not properties: return for ingress in properties.security_group_ingress: if ingress.ipv4_slash_zero() or ingress.ipv6_slash_zero(): self.check_ports(logical_name, ingress) def check_ports(self, logical_name, ingress_rule): from_port = int(ingress_rule.from_port) if ingress_rule.from_port is not None else None to_port = int(ingress_rule.to_port) if ingress_rule.from_port is not None else None if from_port == to_port: the_port = from_port self.check_single_port(logical_name, the_port) else: self.check_port_range(logical_name, from_port, to_port) def check_single_port(self, logical_name, the_port): if str(the_port) not in self._config.ALLOWED_WORLD_OPEN_PORTS: reason = "Port {} open to the world in security group \"{}\"".format( the_port, logical_name, ) self.add_failure(type(self).__name__, reason) def check_port_range(self, logical_name, from_port, to_port): for port in range(from_port, to_port + 1): if str(port) not in self._config.ALLOWED_WORLD_OPEN_PORTS: reason = "Ports {} - {} open in Security Group {}".format( from_port, to_port, logical_name, ) self.add_failure(type(self).__name__, reason)
37.507692
95
0.671452
c8c3e1cd08a4b913da3e4c4698c66b556e93c9d8
3,171
py
Python
emanate/cli.py
ritlew/emanate
9081e382242a9f7d27d8ee9027b4c891af1b3f1a
[ "MIT" ]
null
null
null
emanate/cli.py
ritlew/emanate
9081e382242a9f7d27d8ee9027b4c891af1b3f1a
[ "MIT" ]
null
null
null
emanate/cli.py
ritlew/emanate
9081e382242a9f7d27d8ee9027b4c891af1b3f1a
[ "MIT" ]
null
null
null
"""Command-line interface for the Emanate symbolic link manager. Examples: Emanate defaults to using the current directory as source, and the current user's home directory as destination:: ~/.dotfiles $ emanate would create symbolic links in ~ for files in ~/.dotfiles Emanate also defaults to looking for a configuration file in the source directory, allowing usages such as:: $ cat software/foo/emanate.json { 'destination': '/usr/local' } $ emanate --source software/foo ${PWD}/software/foo/bin/foo -> /usr/local/bin/foo ${PWD}/software/foo/lib/library.so -> /usr/local/lib/library.so See `emanate --help` for all command-line options. """ from argparse import ArgumentParser, SUPPRESS from pathlib import Path from . import Emanate, config def _parse_args(args=None): argparser = ArgumentParser( description="Link files from one directory to another", argument_default=SUPPRESS, ) argparser.add_argument("--destination", metavar="DESTINATION", help="Directory containing the symbolic links.") argparser.add_argument("--dry-run", action="store_false", default=True, dest="exec", help="Only display the actions that would be taken.") argparser.add_argument("--source", metavar="SOURCE", type=Path, help="Directory holding the files to symlink.") argparser.add_argument("--no-confirm", action="store_false", dest="confirm", help="Don't prompt before replacing a file.") argparser.add_argument("--config", metavar="CONFIG_FILE", default=None, type=Path, help="Configuration file to use.") subcommands = argparser.add_subparsers(dest='command') subcommands.add_parser('clean') subcommands.add_parser('create') return argparser.parse_args(args) def main(args=None): """Invoke Emanate from command-line arguments. Emanate prioritizes configuration sources in the following order: - default values have lowest priority; - the configuration file overrides defaults; - command-line arguments override everything. """ args = _parse_args(args) if args.config is None: if 'source' in args: args.config = args.source / "emanate.json" else: args.config = Path.cwd() / "emanate.json" emanate = Emanate( config.from_json(args.config) if args.config.exists() else None, config.resolve(vars(args)), src=vars(args).get("source", None), ) if args.command is None or args.command == 'create': execute = emanate.create() elif args.command == 'clean': execute = emanate.clean() else: assert False if args.exec: execute.run() else: execute.dry()
33.378947
80
0.58562
c8684e5bb8c448810e0191bf6a0e26457171c4f5
2,416
py
Python
tests/tests_models/test_ensemble.py
michaelneale/mljar-supervised
8d1b5fdd56e994a7f13ec5f6d2033830744f3d6f
[ "MIT" ]
null
null
null
tests/tests_models/test_ensemble.py
michaelneale/mljar-supervised
8d1b5fdd56e994a7f13ec5f6d2033830744f3d6f
[ "MIT" ]
null
null
null
tests/tests_models/test_ensemble.py
michaelneale/mljar-supervised
8d1b5fdd56e994a7f13ec5f6d2033830744f3d6f
[ "MIT" ]
1
2021-03-12T05:48:45.000Z
2021-03-12T05:48:45.000Z
import unittest import tempfile import json import numpy as np import pandas as pd from numpy.testing import assert_almost_equal from sklearn import datasets from supervised.models.ensemble import Ensemble from supervised.metric import Metric from supervised.models.learner_factory import LearnerFactory class SimpleFramework: def __init__(self, params): pass def predict(self, X): return np.array([0.1, 0.2, 0.8, 0.9]) def to_json(self): return { "params": { "model_type": "simple", "learner": {"model_type": "simple"}, "validation": { "validation_type": "kfold", "k_folds": 5, "shuffle": True, }, } } def from_json(self, json_desc): pass def load(self, json_desc): pass class EnsembleTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.X = pd.DataFrame( { "model_0": [0.1, 0.2, 0.8, 0.9], "model_1": [0.2, 0.1, 0.9, 0.8], "model_2": [0.8, 0.8, 0.1, 0.1], "model_3": [0.8, 0.8, 0.1, 0.1], "model_4": [0.8, 0.8, 0.1, 0.1], "model_5": [0.8, 0.8, 0.1, 0.1], } ) cls.y = np.array([0, 0, 1, 1]) def test_fit_predict(self): ensemble = Ensemble() ensemble.models = [SimpleFramework({})] * 5 ensemble.fit(self.X, self.y) self.assertEqual(1, ensemble.selected_models[1]["repeat"]) self.assertEqual(1, ensemble.selected_models[1]["repeat"]) self.assertTrue(len(ensemble.selected_models) == 2) y = ensemble.predict(self.X) assert_almost_equal(y[0], 0.1) assert_almost_equal(y[1], 0.2) assert_almost_equal(y[2], 0.8) assert_almost_equal(y[3], 0.9) """ def test_save_load(self): ensemble = Ensemble() ensemble.models = [SimpleFramework({})] * 5 ensemble.fit(self.X, self.y) y = ensemble.predict(self.X) assert_almost_equal(y[0], 0.1) ensemble_json = ensemble.to_json() ensemble2 = Ensemble() ensemble2.from_json(ensemble_json) y2 = ensemble2.predict(self.X) assert_almost_equal(y2[0], 0.1) """ if __name__ == "__main__": unittest.main()
27.146067
66
0.54346
8ed269914a494a7b6bf3195f956b482c907d43bc
4,017
py
Python
Source/Qt5/modules/syscheck.py
TheEnvironmentGuy/noodle-pipe
175ee86618ff202c3291f1bfa3952a14b9d6ac75
[ "MIT" ]
null
null
null
Source/Qt5/modules/syscheck.py
TheEnvironmentGuy/noodle-pipe
175ee86618ff202c3291f1bfa3952a14b9d6ac75
[ "MIT" ]
12
2015-01-31T02:37:45.000Z
2015-02-05T04:18:21.000Z
Source/Qt5/modules/syscheck.py
TheEnvironmentGuy/noodle-pipe
175ee86618ff202c3291f1bfa3952a14b9d6ac75
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- #Load modules try: import imp import sys import os import time import prefcheck import gui #import update import json except ImportError: raise Exception("Error: Faild to import critical modules.") sys.exit(1) def sysCheck(): #start writing to sysCheck.log unlog = sys.stdout sysCheckLog = open("sysCheck.log", 'w') sys.stdout = sysCheckLog print("\nNote : Doing system check...") #Print OS and time print("Note : Timestamp %s, %s" %(time.strftime("%d/%m/%Y"), time.strftime("%H:%M:%S"))) print("Note : Running on platform '%s'" %(sys.platform)) #Test Python Version pyVersion = sys.hexversion if (pyVersion < 0x04000000) or (pyVersion > 0x03000000): print("Note : Running Python version '%s' " %(pyVersion)) else: print("Error: Running Python version '%s'. Python 3.x is required " %(pyVersion)) sys.exit(1) print("Note : Rolling updates enabled, '%s'" %('no')) print("Note : noodle-pipe release version '%s'" %('0.0.0')) #Check core dependencies jsonFile = open('../modules/data/dependencies.json', 'r') jsonData = json.load(jsonFile) jsonFile.close() for keys, values in jsonData.items(): for items in jsonData[keys]: try: imp.find_module(items) except: print("Error: Found core module '%s', no" %(items)) raise Exception("Found core module '%s', no" %(items)) sys.exit(1) else: print("Note : Found core module '%s', yes" %(items)) #Check plugin dependencies dirList = os.listdir('../plugins/') fileList = [] plugModules = [] for items in dirList: print("Note : Found plugin '%s' in '%s'" %(items, "../plugins/%s/" %(items))) if os.path.isfile("../plugins/%s/data" %(items)): jsonFile = open("../plugins/%s/data" %(items), 'r') jsonData = json.load(jsonFile) jsonFile.close for keys, values in jsonData.items(): for items in jsonData[keys]: try: imp.find_module(items) except: print("Error: Found plugin module '%s', no" %(items)) else: print("Note : Found plugin module '%s', yes" %(items)) else: print("Warn : Found dependencies.json for plugin '%s', no" %(items)) #raise Exception("Found dependencies.json for plugin '%s', no" %(items)) #Stop writing to sysCheck.log sys.stdout = unlog sysCheckLog.close() print("Note : Read sysCheck.log for details") #Queryies all noodle-pipe modules for a list of dependencie modules def modGather(): if os.path.isdir("../modules/data/"): print("Note : Found path '../modules/data/', yes") else: print("Warn : Found path '../modules/data/', no") print("Warn : Can't determine core module dependencies") #get list of noodle-pipe core modules dirList = os.listdir('../modules/') coreModules = [] for items in dirList: if items[-2:] == 'py': coreModules.append(items[:-3]) #get list of plugin modules dirList = os.listdir('../plugins/') fileList = [] plugModules = [] for items in dirList: fileList.append(os.listdir("../plugins/%s/data" %(items))) #if items[-2:] == 'py': # modules.append(items[:-3]) print(fileList) #Determines what modules are availible and which arnt def modCheck(modules=None): if (modules is None) or (modules < 1): raise Exception("Expected type 'List' with length > 0") else: moduleDic = {} for mods in modules: try: imp.find_module(mods) except: moduleDic[str(mods)] = False else: moduleDic[str(mods)] = True return(moduleDic) #Prints the results of modCheck() to the terminal def modPrint(modules=None): if (modules is None) or (modules < 1): raise Exception("Expected type 'List' with length > 0") else: for keys, values in modules.items(): if values is False: print("Error: Found module '%s', no" %(keys)) else: print("Note : Found module '%s', yes" %(keys)) if __name__ == '__main__': print("Error: Improper usage of 'syscheck', See documentaion for proper usage") raise Exception("Improper usage of 'syscheck', See documentaion for proper usage")
28.090909
89
0.656958
f396f4dea2b71f999b99b58cc46819ef7711d4bb
357
py
Python
Web_Pages_Manipulating_html/FindClass_on_SpecificTag.py
OblackatO/Network-Security
c954676453d0767e2f27cea622835e3e353b1134
[ "MIT" ]
null
null
null
Web_Pages_Manipulating_html/FindClass_on_SpecificTag.py
OblackatO/Network-Security
c954676453d0767e2f27cea622835e3e353b1134
[ "MIT" ]
null
null
null
Web_Pages_Manipulating_html/FindClass_on_SpecificTag.py
OblackatO/Network-Security
c954676453d0767e2f27cea622835e3e353b1134
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup bsinstance = BeautifulSoup(open('ltps_parse.html'),"lxml") #Searches for all img tags with a class on it , True means it can be any class, but one class can be specified. classimg = bsinstance.find_all('div',class_='label_text',limit=5) #can set a limit to the number of classes you want for classi in classimg: print classi
51
117
0.770308
52d2af3fca052544302d2230ff5c1761b18aca1f
1,195
py
Python
2020/21/1.py
chaserobertson/advent
30205dcc20e46e5a48aaa80cbf8025d947045d93
[ "MIT" ]
null
null
null
2020/21/1.py
chaserobertson/advent
30205dcc20e46e5a48aaa80cbf8025d947045d93
[ "MIT" ]
null
null
null
2020/21/1.py
chaserobertson/advent
30205dcc20e46e5a48aaa80cbf8025d947045d93
[ "MIT" ]
null
null
null
#!/usr/bin/python3 ingredients = [] allergens = [] with open('advent2020/21/input.txt', 'r') as f: for line in f.readlines(): all_str = line[line.find('(')+10:line.find(')')] if line.count(',') > 0: allergenz = all_str.split(', ') else: allergenz = [all_str] allergens.append(allergenz) ingred = line[:line.find('(')].strip().split() ingredients.append(ingred) itoa = dict() ing = ingredients.copy() alr = allergens.copy() n = -1 while len(itoa) != n: n = len(itoa) for i in range(len(ing)): for j in range(i, len(ing)): iset = set(ing[i]).intersection(ing[j]) aset = set(alr[i]).intersection(alr[j]) if len(iset) == 1 and len(aset) == 1: a_match = aset.pop() i_match = iset.pop() itoa.setdefault(i_match, a_match) for i in range(len(ing)): for ingr in ing[i]: if ingr in itoa.keys(): ing[i].remove(ingr) if itoa[ingr] in alr[i]: alr[i].remove(itoa[ingr]) print(itoa) #print(ing) cnt = 0 for ig in ing: cnt += len(ig) print(cnt)
25.978261
56
0.512971
12d0f48978959f6e0bbcf26835b8c3109ae82cd7
19,488
py
Python
visualization/visualization_utils.py
abfleishman/CameraTraps
eb509ac6a5305217266647b518d5383dc48f0b72
[ "MIT" ]
null
null
null
visualization/visualization_utils.py
abfleishman/CameraTraps
eb509ac6a5305217266647b518d5383dc48f0b72
[ "MIT" ]
null
null
null
visualization/visualization_utils.py
abfleishman/CameraTraps
eb509ac6a5305217266647b518d5383dc48f0b72
[ "MIT" ]
null
null
null
##### # # visualization_utils.py # # Core rendering functions shared across visualization scripts # ##### #%% Constants and imports import numpy as np from PIL import Image, ImageFile, ImageFont, ImageDraw import matplotlib.pyplot as plt from data_management.annotations import annotation_constants ImageFile.LOAD_TRUNCATED_IMAGES = True #%% Functions def open_image(input): """ Opens an image in binary format using PIL.Image and convert to RGB mode. This operation is lazy; image will not be actually loaded until the first operation that needs to load it (for example, resizing), so file opening errors can show up later. Args: input: an image in binary format read from the POST request's body or path to an image file (anything that PIL can open) Returns: an PIL image object in RGB mode """ image = Image.open(input) if image.mode not in ('RGBA', 'RGB', 'L'): raise AttributeError('Input image {} uses unsupported mode {}'.format(input,image.mode)) if image.mode == 'RGBA' or image.mode == 'L': # PIL.Image.convert() returns a converted copy of this image image = image.convert(mode='RGB') return image def resize_image(image, target_width, target_height=-1): """ Resizes a PIL image object to the specified width and height; does not resize in place. If either width or height are -1, resizes with aspect ratio preservation. If both are -1, returns the original image (does not copy in this case). """ # Null operation if target_width == -1 and target_height == -1: return image elif target_width == -1 or target_height == -1: # Aspect ratio as width over height aspect_ratio = image.size[0] / image.size[1] if target_width != -1: # ar = w / h # h = w / ar target_height = int(target_width / aspect_ratio) else: # ar = w / h # w = ar * h target_width = int(aspect_ratio * target_height) resized_image = image.resize((target_width, target_height), Image.ANTIALIAS) return resized_image def render_iMerit_boxes(boxes, classes, image, label_map=annotation_constants.bbox_category_id_to_name): """ Renders bounding boxes and their category labels on a PIL image. Args: boxes: bounding box annotations from iMerit, format is [x_rel, y_rel, w_rel, h_rel] (rel = relative coords) image: PIL.Image object to annotate on label_map: optional dict mapping classes to a string for display Returns: image will be altered in place """ display_boxes = [] display_strs = [] # list of list, one list of strings for each bounding box (to accommodate multiple labels) for box, clss in zip(boxes, classes): x_rel, y_rel, w_rel, h_rel = box ymin, xmin = y_rel, x_rel ymax = ymin + h_rel xmax = xmin + w_rel display_boxes.append([ymin, xmin, ymax, xmax]) if label_map: clss = label_map[int(clss)] display_strs.append([clss]) display_boxes = np.array(display_boxes) draw_bounding_boxes_on_image(image, display_boxes, classes, display_strs=display_strs) def render_db_bounding_boxes(boxes, classes, image, original_size=None, label_map=None, thickness=4): """ Render bounding boxes (with class labels) on [image]. This is a wrapper for draw_bounding_boxes_on_image, allowing the caller to operate on a resized image by providing the original size of the image; bboxes will be scaled accordingly. """ display_boxes = [] display_strs = [] if original_size is not None: image_size = original_size else: image_size = image.size img_width, img_height = image_size for box, clss in zip(boxes, classes): x_min_abs, y_min_abs, width_abs, height_abs = box ymin = y_min_abs / img_height ymax = ymin + height_abs / img_height xmin = x_min_abs / img_width xmax = xmin + width_abs / img_width display_boxes.append([ymin, xmin, ymax, xmax]) if label_map: clss = label_map[int(clss)] display_strs.append([clss]) display_boxes = np.array(display_boxes) draw_bounding_boxes_on_image(image, display_boxes, classes, display_strs=display_strs, thickness=thickness) def render_detection_bounding_boxes(detections, image, label_map={}, classification_label_map={}, confidence_threshold=0.8, thickness=4, classification_confidence_threshold=0.3, max_classifications=3): """ Renders bounding boxes, label, and confidence on an image if confidence is above the threshold. This works with the output of the batch processing API. Supports classification, if the detection contains classification results according to the API output version 1.0. Args: detections: detections on the image, example content: [ { "category": "2", "conf": 0.996, "bbox": [ 0.0, 0.2762, 0.1234, 0.2458 ] } ] where the bbox coordinates are [x, y, width_box, height_box], (x, y) is upper left. Supports classification results, if *detections* have the format [ { "category": "2", "conf": 0.996, "bbox": [ 0.0, 0.2762, 0.1234, 0.2458 ] "classifications": [ ["3", 0.901], ["1", 0.071], ["4", 0.025] ] } ] image: PIL.Image object, output of generate_detections. label_map: optional, mapping the numerical label to a string name. The type of the numerical label (default string) needs to be consistent with the keys in label_map; no casting is carried out. classification_label_map: optional, mapping of the string class labels to the actual class names. The type of the numerical label (default string) needs to be consistent with the keys in label_map; no casting is carried out. confidence_threshold: optional, threshold above which the bounding box is rendered. thickness: optional, rendering line thickness. image is modified in place. """ display_boxes = [] display_strs = [] # list of lists, one list of strings for each bounding box (to accommodate multiple labels) classes = [] # for color selection for detection in detections: score = detection['conf'] if score > confidence_threshold: x1, y1, w_box, h_box = detection['bbox'] display_boxes.append([y1, x1, y1 + h_box, x1 + w_box]) clss = detection['category'] label = label_map[clss] if clss in label_map else clss displayed_label = ['{}: {}%'.format(label, round(100 * score))] if 'classifications' in detection: # To avoid duplicate colors with detection-only visualization, offset # the classification class index by the number of detection classes clss = len(annotation_constants.bbox_categories) + int(detection['classifications'][0][0]) classifications = detection['classifications'] if len(classifications) > max_classifications: classifications = classifications[0:max_classifications] for classification in classifications: p = classification[1] if p < classification_confidence_threshold: continue class_key = classification[0] if class_key in classification_label_map: class_name = classification_label_map[class_key] else: class_name = class_key displayed_label += ['{}: {:5.1%}'.format(class_name.lower(), classification[1])] # ...if we have detection results display_strs.append(displayed_label) classes.append(clss) # ...if the confidence of this detection is above threshold # ...for each detection display_boxes = np.array(display_boxes) draw_bounding_boxes_on_image(image, display_boxes, classes, display_strs=display_strs, thickness=thickness) # The following functions are modified versions of those at: # # https://github.com/tensorflow/models/blob/master/research/object_detection/utils/visualization_utils.py COLORS = [ 'AliceBlue', 'Red', 'RoyalBlue', 'Gold', 'Chartreuse', 'Aqua', 'Azure', 'Beige', 'Bisque', 'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite', 'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan', 'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange', 'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet', 'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite', 'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'GoldenRod', 'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki', 'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue', 'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey', 'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue', 'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime', 'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid', 'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen', 'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin', 'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed', 'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed', 'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple', 'RosyBrown', 'Aquamarine', 'SaddleBrown', 'Green', 'SandyBrown', 'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue', 'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow', 'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White', 'WhiteSmoke', 'Yellow', 'YellowGreen' ] def draw_bounding_boxes_on_image(image, boxes, classes, thickness=4, display_strs=()): """ Draws bounding boxes on image. Args: image: a PIL.Image object. boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax). The coordinates are in normalized format between [0, 1]. classes: a list of ints or strings (which can be cast to ints) corresponding to the class labels of the boxes. This is only used for selecting the color to render the bounding box in. thickness: line thickness. Default value is 4. display_strs: list of list of strings. a list of strings for each bounding box. The reason to pass a list of strings for a bounding box is that it might contain multiple labels. """ boxes_shape = boxes.shape if not boxes_shape: return if len(boxes_shape) != 2 or boxes_shape[1] != 4: # print('Input must be of size [N, 4], but is ' + str(boxes_shape)) return # no object detection on this image, return for i in range(boxes_shape[0]): if display_strs: display_str_list = display_strs[i] draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2], boxes[i, 3], classes[i], thickness=thickness, display_str_list=display_str_list) def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, clss=None, thickness=4, display_str_list=(), use_normalized_coordinates=True, label_font_size=16): """ Adds a bounding box to an image. Bounding box coordinates can be specified in either absolute (pixel) or normalized coordinates by setting the use_normalized_coordinates argument. Each string in display_str_list is displayed on a separate line above the bounding box in black text on a rectangle filled with the input 'color'. If the top of the bounding box extends to the edge of the image, the strings are displayed below the bounding box. Args: image: a PIL.Image object. ymin: ymin of bounding box - upper left. xmin: xmin of bounding box. ymax: ymax of bounding box. xmax: xmax of bounding box. clss: the class of the object in this bounding box - will be cast to an int. thickness: line thickness. Default value is 4. display_str_list: list of strings to display in box (each to be shown on its own line). use_normalized_coordinates: If True (default), treat coordinates ymin, xmin, ymax, xmax as relative to the image. Otherwise treat coordinates as absolute. """ if clss is None: color = COLORS[1] else: color = COLORS[int(clss) % len(COLORS)] draw = ImageDraw.Draw(image) im_width, im_height = image.size if use_normalized_coordinates: (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) else: (left, right, top, bottom) = (xmin, xmax, ymin, ymax) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) try: font = ImageFont.truetype('arial.ttf', label_font_size) except IOError: font = ImageFont.load_default() # If the total height of the display strings added to the top of the bounding # box exceeds the top of the image, stack the strings below the bounding box # instead of above. display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] # Each display_str has a top and bottom margin of 0.05x. total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) if top > total_display_str_height: text_bottom = top else: text_bottom = bottom + total_display_str_height # Reverse list and print from bottom to top. for display_str in display_str_list[::-1]: text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle( [(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text( (left + margin, text_bottom - text_height - margin), display_str, fill='black', font=font) text_bottom -= (text_height + 2 * margin) def plot_confusion_matrix(matrix, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues, vmax=None, use_colorbar=True, y_label = True): """ This function plots a confusion matrix. Normalization can be applied by setting `normalize=True`. Args: matrix: confusion matrix as a numpy 2D matrix. Rows are ground-truth classes and columns the predicted classes. Number of rows and columns have to match classes: list of strings, which contain the corresponding class names for each row/column normalize: boolean indicating whether to perform row-wise normalization to sum 1 title: string which will be used as title cmap: pyplot colormap, default: matplotlib.pyplot.cm.Blues vmax: float, specifies the value that corresponds to the largest value of the colormap. If None, the maximum value in *matrix* will be used. Default: None use_colorbar: boolean indicating if a colorbar should be plotted y_label: boolean indicating whether class names should be plotted on the y-axis as well Returns a reference to the figure """ assert matrix.shape[0] == matrix.shape[1] fig = plt.figure(figsize=[3 + 0.5 * len(classes)] * 2) if normalize: matrix = matrix.astype(np.double) / (matrix.sum(axis=1, keepdims=True) + 1e-7) plt.imshow(matrix, interpolation='nearest', cmap=cmap, vmax=vmax) plt.title(title) #,fontsize=22) if use_colorbar: plt.colorbar(fraction=0.046, pad=0.04, ticks=[0.0,0.25,0.5,0.75,1.0]).set_ticklabels(['0%','25%','50%','75%','100%']) tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=90) if y_label: plt.yticks(tick_marks, classes) else: plt.yticks(tick_marks, ['' for cn in classes]) for i, j in np.ndindex(matrix.shape): plt.text(j, i, '{:.0f}%'.format(matrix[i, j]*100), horizontalalignment="center", verticalalignment="center", color="white" if matrix[i, j] > 0.5 else "black", fontsize='x-small') if y_label: plt.ylabel('Ground-truth class') plt.xlabel('Predicted class') #plt.grid(False) plt.tight_layout() return fig def plot_precision_recall_curve(precisions, recalls, title='Precision/Recall curve'): """ Plots the precision recall curve given lists of (ordered) precision and recall values Args: precisions: list of floats, the precision for the corresponding recall values. Should have same length as *recalls*. recalls: list of floats, the recall values for corresponding precision values. Should have same length as *precisions*. title: string that will be as as plot title Returns a reference to the figure """ step_kwargs = ({'step': 'post'}) fig = plt.figure() plt.title(title) plt.step(recalls, precisions, color='b', alpha=0.2, where='post') plt.fill_between(recalls, precisions, alpha=0.2, color='b', **step_kwargs) plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.05]) return fig
39.054108
125
0.594982
68d6d328bf9064bb508b93ae3a4620575cc30b52
2,426
py
Python
CODE/downloader/downloader.py
teamboxcoxrox/teamboxcoxrox.gitlab.io
626074a46cb1b2dba6d367cfb63c9bfdb9cb3a92
[ "Unlicense" ]
null
null
null
CODE/downloader/downloader.py
teamboxcoxrox/teamboxcoxrox.gitlab.io
626074a46cb1b2dba6d367cfb63c9bfdb9cb3a92
[ "Unlicense" ]
null
null
null
CODE/downloader/downloader.py
teamboxcoxrox/teamboxcoxrox.gitlab.io
626074a46cb1b2dba6d367cfb63c9bfdb9cb3a92
[ "Unlicense" ]
1
2021-04-22T21:29:44.000Z
2021-04-22T21:29:44.000Z
from downloader.review_helper import ReviewHelper from downloader.product_helper import ProductHelper from downloader.download_helper import DownloadHelper from datetime import datetime class Downloader(): def __init__(self): pass def run(self, database_location): print("--------------- Downloading data --------------------") start_time = datetime.now() review_source = "http://deepyeti.ucsd.edu/jianmo/amazon/categoryFiles/Pet_Supplies.json.gz" product_source = "http://deepyeti.ucsd.edu/jianmo/amazon/metaFiles/meta_Pet_Supplies.json.gz" dh = DownloadHelper() dh.download(review_source, product_source) print("Time to download and decompress: {}".format(datetime.now()-start_time)) print("Finished.") print("--------------- Processing reviews --------------------") rh = ReviewHelper() rh.create_db_connection(database_location) rh.drop_review_table_sql() print("Table Dropped.") rh.create_review_table_sql() print("Table Created.") rh.DEBUG = False print("Reading data...") with open("reviews.json", "r") as reviews: review_lines = reviews.readlines() print("Found {} reviews.".format(len(review_lines))) print("Inserting reviews...") rh.insert_json_lines(review_lines) print("Creating index. Be patient.") rh.create_index() rh.close_db() print("Total reviews imported: {}".format(len(review_lines))) print("--------------- Processing products --------------------") ph = ProductHelper() ph.create_db_connection(database_location) ph.drop_product_table() print("Table Dropped.") ph.create_product_table() print("Table Created.") ph.DEBUG = False print("Reading data...") with open("products.json", "r") as products: product_lines = products.readlines() print("Found {} products.".format(len(product_lines))) print("Inserting products...") ph.insert_json_lines(product_lines) print("Creating index. Be patient.") ph.create_index() ph.close_db() print("Total product imported: {}".format(len(product_lines))) print("Data download complete.") print("Full time to import data: {}".format(datetime.now() - start_time))
37.323077
101
0.612531
4627f9f04b186bcb0487853879cbe9bbcb6e0156
275
py
Python
tests/test_api.py
concepticon/pynorare
3cf5ea2d1597c5acc84963f781ff49d96b4d7e02
[ "MIT" ]
null
null
null
tests/test_api.py
concepticon/pynorare
3cf5ea2d1597c5acc84963f781ff49d96b4d7e02
[ "MIT" ]
5
2020-07-20T11:05:07.000Z
2022-03-11T15:51:52.000Z
tests/test_api.py
concepticon/pynorare
3cf5ea2d1597c5acc84963f781ff49d96b4d7e02
[ "MIT" ]
null
null
null
from pynorare import NoRaRe def test_NoRaRe(repos, concepticon_api): api = NoRaRe(repos=repos, concepticon=concepticon_api) assert len(api.refs) == 1 assert len(api.datasets) == 3 assert api.datasets['dsid'].columns assert api.datasets['dsid'].concepts
27.5
58
0.72
4428772b23fee354ea92116c67ac970f5f4b8755
1,994
py
Python
profiles_api/models.py
Aravind2468/Django-Profiles-Rest-API
25909a614c9b715c424abbd02924ea1d3cfba17e
[ "MIT" ]
null
null
null
profiles_api/models.py
Aravind2468/Django-Profiles-Rest-API
25909a614c9b715c424abbd02924ea1d3cfba17e
[ "MIT" ]
null
null
null
profiles_api/models.py
Aravind2468/Django-Profiles-Rest-API
25909a614c9b715c424abbd02924ea1d3cfba17e
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth.models import BaseUserManager # Create your models here. class UserProfileManager(BaseUserManager): """Manager for user profiles""" def create_user(self, email, name, password=None): """ Create a new user profile """ if not email: raise ValueError('User must have an email address') email = self.normalize_email(email) user = self.model(email=email, name=name) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, name, password): """ Create super user """ user = self.create_user(email, name, password) user.is_superuser = True user.is_staff =True user.save(using=self._db) return user class MODELNAME(models.Model): """Model definition for MODELNAME.""" # TODO: Define fields here class Meta: """Meta definition for MODELNAME.""" verbose_name = 'MODELNAME' verbose_name_plural = 'MODELNAMEs' def __str__(self): """Unicode representation of MODELNAME.""" pass class UserProfile(AbstractBaseUser, PermissionsMixin): """Database model for users in the system""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name'] def get_full_name(self): """Retrieve full name of user """ return self.name def get_short_name(self): """Retrieve shot name of user """ return self.name def __str__(self): """Return string representation of our user""" return self.email
28.084507
63
0.657472
892a9979a4daf180bbe497580e0ee399b7ed1bfa
414
py
Python
experiments/fdtd-2d/tmp_files/3651.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
experiments/fdtd-2d/tmp_files/3651.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
experiments/fdtd-2d/tmp_files/3651.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
from chill import * source('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/polybench/polybench-code/stencils/fdtd-2d/kernel.c') destination('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/experiments/fdtd-2d/tmp_files/3651.c') procedure('kernel_fdtd_2d') loop(0) known(' nx > 1 ') known(' ny > 1 ') tile(1,2,128,2) tile(1,4,16,4) tile(2,2,128,2) tile(2,4,16,4) tile(3,2,128,2) tile(3,4,16,4)
23
116
0.722222
8c49b944da7c4f7cfc3fc708e9283849868ef216
1,912
py
Python
base/internedcollection.py
squahtx/hal9000
80e13911d0cf240c786f016993cd18bb063e687f
[ "MIT" ]
null
null
null
base/internedcollection.py
squahtx/hal9000
80e13911d0cf240c786f016993cd18bb063e687f
[ "MIT" ]
null
null
null
base/internedcollection.py
squahtx/hal9000
80e13911d0cf240c786f016993cd18bb063e687f
[ "MIT" ]
null
null
null
from .event import Event class InternedCollection(object): def __init__(self, factory, identity = None): super(InternedCollection, self).__init__() if identity is None: identity = lambda x: x self._itemAdded = Event("itemAdded") self._itemRemoved = Event("itemRemoved") self.factory = factory self.identity = identity self.items = {} def __getitem__(self, id): return self.items[id] def __iter__(self): return iter(self.items.values()) def __len__(self): return len(self.items) # Events @property def itemAdded(self): return self._itemAdded @property def itemRemoved(self): return self._itemRemoved # Collection def clear(): removedIds = list(self.items.keys) [self.remove(self.items[id]) for id in removedIds] def get(self, id, default = None): return self.items.get(id, default) def intern(self, item): return self.add(item) def inject(self, item, id = None): if id is None: id = self.identity(item) if id in self.items: self.remove(self.items[id]) self.items[id] = item self.onItemAdded(item) self.itemAdded(item) return item def update(self, enumerable): ids = set() [ids.add(self.identity(item)) for item in enumerable] [self.intern(item) for item in enumerable] removedIds = [id for id in self.items.keys() if id not in ids] [self.remove(self.items[id]) for id in removedIds] # Internal def onItemAdded(self, item): pass def onItemRemoved(self, item): pass # Internal def add(self, item): id = self.identity(item) if id in self.items: return self.items[id] item = self.factory(item) self.items[id] = item self.onItemAdded(item) self.itemAdded(item) return item def remove(self, item): id = self.identity(item) if id not in self.items: return del self.items[id] self.onItemRemoved(item) self.itemRemoved(item)
21.010989
64
0.675209
dd7460808a52a4b92a2dd6c926adc18145be3007
23,305
py
Python
src/evaluation_system/model/solr_core.py
FREVA-CLINT/Freva
53c6d0951a8dcfe985c8f33cbb3fbac7e8a3db04
[ "BSD-2-Clause-FreeBSD" ]
2
2020-06-12T18:18:48.000Z
2021-12-18T03:35:08.000Z
src/evaluation_system/model/solr_core.py
FREVA-CLINT/Freva
53c6d0951a8dcfe985c8f33cbb3fbac7e8a3db04
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
src/evaluation_system/model/solr_core.py
FREVA-CLINT/Freva
53c6d0951a8dcfe985c8f33cbb3fbac7e8a3db04
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
""" Created on 11.03.2013 @author: Sebastian Illing / estani This package encapsulate access to a solr instance (not for search but for administration) We define two cores:: * files: all files - id is file (full file path) * latest: only those files from the latest dataset version - id is file_no_version (full file path *wothout* version information) """ import os import shutil import urllib2 import json from datetime import datetime import logging log = logging.getLogger(__name__) from evaluation_system.model.file import DRSFile from evaluation_system.misc import config class META_DATA(object): """This class just holds some values for the dump file parsing/writing. Here a small example:: crawl_dir /some/dir data /some/dir/some/other/subdir/file1.nc,123123.0 /some/dir/some/other/subdir/file2.nc,123123.230 /some/dir/yet/another/subdir/file.nc,123123.230 ... See more info on :class:`SolrCore.dump_fs_to_file` and :class:`SolrCore.load_fs_from_file`""" CRAWL_DIR = 'crawl_dir' "The path to the directory that was crawled and from which the following list of files comes." DATA = 'data' "Marks the end of the metadata area. What follows is a list of filepaths and timestamps separated by a line break." class SolrCore(object): """Encapsulate access to a Solr instance""" def __init__(self, core=None, host=None, port=None, echo=False, instance_dir=None, data_dir=None, get_status=True): """Create the connection pointing to the proper solr url and core. :param core: The name of the core referred (default: loaded from config file) :param host: the hostname of the Solr server (default: loaded from config file) :param port: The port number of the Solr Server (default: loaded from config file) :param echo: If True, show all urls before issuing them. :param instance_dir: the core instance directory (if empty but the core exists it will get downloaded from Solr) :param data_dir: the directory where the data is being kept (if empty but the core exists it will get downloaded from Solr)""" if host is None: host = config.get(config.SOLR_HOST) if port is None: port = config.get(config.SOLR_PORT) if core is None: core = config.get(config.SOLR_CORE) self.solr_url = 'http://%s:%s/solr/' % (host, port) self.core = core self.core_url = self.solr_url + core + '/' self.echo = echo self.instance_dir = instance_dir self.data_dir = data_dir if get_status: st = self.status() else: st = {} if self.instance_dir is None and 'instanceDir' in st: self.instance_dir = st['instanceDir'] if self.data_dir is None and 'dataDir' in st: self.data_dir = st['dataDir'] else: self.data_dir = 'data' # Other Defaults import socket socket.setdefaulttimeout(20) def __str__(self): return '<SolrCore %s>' % self.core_url def post(self, list_of_dicts, auto_list=True, commit=True): """Sends some json to Solr for ingestion. :param list_of_dicts: either a json or more normally a list of json instances that will be sent to Solr for ingestion :param auto_list: avoid packing list_of dicts in a directory if it's not one :param commit: send also a Solr commit so that changes can be seen immediately.""" if auto_list and not isinstance(list_of_dicts, list): list_of_dicts = [list_of_dicts] endpoint = 'update/json?' if commit: endpoint += 'commit=true' query = self.core_url + endpoint if self.echo: log.debug(query) req = urllib2.Request(query, json.dumps(list_of_dicts)) req.add_header("Content-type", "application/json") return urllib2.urlopen(req).read() def get_json(self, endpoint, use_core=True, check_response=True): """Return some json from server. Is the raw access to Solr. :param endpoint: The endpoint, path missing after the core url and all parameters encoded in it (e.g. 'select?q=*') :param use_core: if the core info is used for generating the endpoint. (if False, then == self.core + '/' + endpoint) :param check_response: If the response should be checked for errors. If True, raise an exception if something is wrong (default: True)""" if '?' in endpoint: endpoint += '&wt=json' else: endpoint += '?wt=json' if use_core: query = self.core_url + endpoint else: query = self.solr_url + endpoint if self.echo: log.debug(query) req = urllib2.Request(query) response = json.loads(urllib2.urlopen(req).read()) if response['responseHeader']['status'] != 0: raise Exception("Error while accessing Core %s. Response: %s" % (self.core, response)) return response def get_solr_fields(self): """Return information about the Solr fields. This is dynamically generated and because of dynamicFiled entries in the Schema, this information cannot be inferred from anywhere else.""" return self.get_json('admin/luke')['fields'] def create(self, instance_dir=None, data_dir=None, config='solrconfig.xml', schema='schema.xml'): """Creates (actually "register") this core. The Core configuration and directories must be generated beforehand (not the data one). You may clone an existing one or start from scratch. :param instance_dir: main directory for this core :param data_dir: Data directory for this core (if left unset, a local "data" directory in instance_dir will be used) :param config: The configuration file (expected in instance_dir/conf) :param schema: The schema file (expected in instance_dir/conf)""" # check basic configuration (it must exists!) if instance_dir is None and self.instance_dir is None: raise Exception("No Instance directory defined!") elif instance_dir is not None: self.instance_dir = instance_dir if not os.path.isdir(self.instance_dir): raise Exception("Expected Solr Core configuration not found in %s" % self.instance_dir) if data_dir is not None: self.data_dir = data_dir return self.get_json('admin/cores?action=CREATE&name=%s' % self.core + '&instanceDir=%s' % self.instance_dir + '&config=%s' % config + '&schema=%s' % schema + '&dataDir=%s' % self.data_dir, use_core=False ) def reload(self): """Reload the core. Useful after schema changes. Be aware that you might need to re-ingest everything if there were changes to the indexing part of the schema.""" return self.get_json('admin/cores?action=RELOAD&core=' + self.core, use_core=False) def unload(self): """Unload the core.""" return self.get_json('admin/cores?action=UNLOAD&core=' + self.core, use_core=False) def swap(self, other_core): """Will swap this core with the given one (that means rename their references) :param other_core: the name of the other core that this will be swapped with.""" return self.get_json('admin/cores?action=SWAP&core=%s&other=%s' % (self.core, other_core), use_core=False) def status(self, general=False): """Return status information about this core or the whole Solr server. :param general: If True return all information as provided by the server, otherwise just the status info from this core.""" url_str = 'admin/cores?action=STATUS' if not general: url_str += '&core=' + self.core response = self.get_json(url_str, use_core=False) if general: return response else: return response['status'][self.core] def clone(self, new_instance_dir, data_dir='data', copy_data=False): """Copies a core somewhere else. :param new_instance_dir: the new location for the clone. :param data_dir: the location of the data directory for this new clone. :param copy_data: If the data should also be copied (Warning, this is done on the-fly so be sure to unload the core first) or assure otherwise there's no chance of getting corrupted data (I don't know any other way besides unloading the original code))""" try: os.makedirs(new_instance_dir) except: pass shutil.copytree(os.path.join(self.instance_dir, 'conf'), os.path.join(new_instance_dir, 'conf')) if copy_data: shutil.copytree(os.path.join(self.instance_dir, self.data_dir), os.path.join(new_instance_dir, data_dir)) def delete(self, query): """Issue a delete command, there's no default query for this to avoid unintentional deletion.""" self.post(dict(delete=dict(query=query)), auto_list=False) @staticmethod def dump_fs_to_file(start_dir, dump_file, batch_size=1000, check=False, abort_on_errors=False): """This is the currently used method for ingestion. This method generates a file with a listing of paths and timestamps from the file system. The syntax of the file looks like this:: crawl_dir /path/to/some/directory data /path/to/a/file,1239879.0 /path/to/another/file,1239879.0 ... The crawl_dir indicates the directory being crawled and results in the deletion of all files whose path starts with that one (i.e. everything under that path will be *replaced*). Generating this file takes at least 8 hours for the whole /miklip/integration/data4miklip directory. It would be nice to generate it in a different manner (e.g. using the gpfs policy API). :param start_dir: The directory from which the file system will be crawled :param dump_file: the path to the file that will contain the dump. if the file ends with '.gz' the resulting file will be gziped (preferred) :param batch_size: number of entries that will be written to disk at once. This might help pin-pointing crashes. :param check: if the paths should be checked. While checking path the resulting paths are guaranteed to be accepted later on normally this is too slow for this phase, so the default is False. :param abort_on_errors: If dumping should get aborted as soon as an error is found, i.e. a file that can't be ingested. Most of the times there are many files being found that are no data at all.""" log.debug('starting sequential ingest') if dump_file.endswith('.gz'): # print "Using gzip" import gzip # the with statement support started with python 2.7 (http://docs.python.org/2/library/gzip.html) # Let's leave this python 2.6 compatible... f = gzip.open(dump_file, 'wb') else: f = open(dump_file, 'w') try: batch_count = 0 # store metadata f.write('%s\t%s\n' % (META_DATA.CRAWL_DIR, start_dir)) # store data f.write('\n%s\n' % META_DATA.DATA) for path in dir_iter(start_dir): if check: try: DRSFile.from_path(path) except: if abort_on_errors: raise else: print "Error ingesting %s" % path continue ts = os.path.getmtime(path) f.write('%s,%s\n' % (path, ts)) batch_count += 1 if batch_count >= batch_size: f.flush() finally: f.close() @staticmethod def load_fs_from_file(dump_file, batch_size=10000, abort_on_errors=False, core_all_files=None, core_latest=None): """This is the opposite method of :class:`SolrCore.dump_fs_to_file`. It loads the files system information to Solr from the given file. The syntax is defined already in the mentioned dump method. Contrary to what was previously done, this method loads the information from a file and decides if it should be added to just the common file core, holding the index of all files, or also to the *latest* core, holding information about the latest version of all files (remember that in CMIP5 not all files are version, just the datasets). :param dump_file: the path to the file that contains the dump. if the file ends with '.gz' the file is assumed to be gziped. :param batch_size: number of entries that will be written to the Solr main core (the latest core will be flushed at the same time and is guaranteed to have at most as many as the other. :param abort_on_errors: If dumping should get aborted as soon as an error is found, i.e. a file that can't be ingested. Most of the times there are many files being found in the dump file that are no data at all :param core_all_files: if desired you can pass the SolrCore managing all the files (if not the one named 'files'will be used, using the configuration from the config file). :param core_latest: if desired you can pass the SolrCore managing the latest file versions (if not the one named 'latest' will be used, using the configuration from the config file). """ if dump_file.endswith('.gz'): # print "Using gzip" import gzip # the with statement support started with python 2.7 (http://docs.python.org/2/library/gzip.html) # Let's leave this python 2.6 compatible... f = gzip.open(dump_file, 'rb') else: f = open(dump_file, 'r') if core_latest is None: core_latest = SolrCore(core='latest') if core_all_files is None: core_all_files = SolrCore(core='files') try: batch_count = 0 batch = [] batch_latest = [] batch_latest_new = {} latest_versions = {} header = True import re meta = re.compile('[^ \t]{1,}[ \t]{1,}(.*)$') for line in f: line = line.strip() if not line or line.startswith('#'): continue if header: if line.startswith(META_DATA.CRAWL_DIR): crawl_dir = meta.match(line).group(1).strip() # we should delete these. We need to scape the first slash since Solr # will expect a regexp if not (new to Solr 4.0) core_all_files.delete('file:\\%s*' % crawl_dir) core_latest.delete('file:\\%s*' % crawl_dir) elif line.startswith(META_DATA.DATA): header = False continue else: file_path, timestamp = line.split(',') try: drs_file = DRSFile.from_path(file_path) metadata = SolrCore.to_solr_dict(drs_file) ts = float(timestamp) metadata['timestamp'] = ts metadata['creation_time'] = timestamp_to_solr_date(ts) batch.append(metadata) if drs_file.is_versioned(): version = latest_versions.get(drs_file.to_dataset(versioned=False), None) if version is None or drs_file.get_version() > version: # unknown or new version, update version = drs_file.get_version() latest_versions[drs_file.to_dataset(versioned=False)] = version batch_latest_new[drs_file.to_dataset(versioned=False)] = metadata #batch_latest = batch_latest_new.values() if not drs_file.get_version() < version: # print latest_versions #print drs_file.get_version(), version, metadata batch_latest.append(metadata) else: # if not version always add to latest batch_latest_new[drs_file.to_dataset(versioned=False)] = metadata batch_latest.append(metadata) if len(batch) >= batch_size: print "Sending entries %s-%s" % (batch_count * batch_size, (batch_count+1) * batch_size) core_all_files.post(batch) batch = [] batch_count += 1 if batch_latest: core_latest.post(batch_latest) batch_latest = [] batch_latest_new = {} except: print "Can't ingest file %s" % file_path if abort_on_errors: raise # flush if len(batch) > 0: print "Sending last %s entries and %s entries to latest core" % (len(batch), len(batch_latest)) #print len(batch_latest) core_all_files.post(batch) batch = [] batch_count += 1 if batch_latest: core_latest.post(batch_latest) batch_latest = [] finally: f.close() @staticmethod def to_solr_dict(drs_file): """Extracts from a DRSFile the information that will be stored in Solr""" metadata = drs_file.dict['parts'].copy() metadata['file'] = drs_file.to_path() if 'version' in metadata: metadata['file_no_version'] = metadata['file'].replace('/%s/' % metadata['version'], '/') else: metadata['file_no_version'] = metadata['file'] metadata['data_type'] = drs_file.drs_structure # metadata['timestamp'] = float(timestamp) # metadata['dataset'] = drs_file.to_dataset() return metadata # def dump(self, dump_file=None, batch_size=10000, sort_results=False): # """Dump a list of files and their timestamps that can be ingested afterwards""" # if dump_file is None: # # just to store where and how we are storing this # dump_file = datetime.now().strftime('/miklip/integration/infrastructure/solr/backup_data/%Y%m%d.csv.gz') # # def cache(batch_size): # offset = 0 # while True: # url_query = 'select?fl=file,timestamp&start=%s&rows=%s&q=*' % (offset, batch_size) # if sort_results: # url_query += '&sort=file+desc' # print "Calling %s" % url_query # answer = self.get_json(url_query) # offset = answer['response']['start'] # total = answer['response']['numFound'] # for item in answer['response']['docs']: # yield (item['file'], item['timestamp'],) # if total - offset <= batch_size: # break # we are done # else: # offset += batch_size # # if dump_file.endswith('.gz'): # import gzip # # the with statement support started with python 2.7 (http://docs.python.org/2/library/gzip.html) # # Let's leave this python 2.6 compatible... # f = gzip.open(dump_file, 'wb') # else: # f = open(dump_file, 'w') # # try: # # store metadata # f.write('%s\t%s\n' % (META_DATA.CRAWL_DIR, '/')) # # # store data # f.write('\n%s\n' % META_DATA.DATA) # for file_path, timestamp in cache(batch_size): # f.write('%s,%s\n' % (file_path, timestamp)) # finally: # f.close() def timestamp_to_solr_date(timestamp): """Transform a timestamp (float) into a string parsable by Solr""" return datetime.fromtimestamp(timestamp).strftime('%Y-%m-%dT%H:%M:%SZ') # -- These are for multiple processes... # but There's no benefit for having multiple threads at this time # on the contrary, it's worse :-/ # There's no improvement for not having this construct either, so I'm leaving it # here. It might help in the future... # def search_iter(data_types, search_dict): # if not isinstance(data_types, list): # data_types = [data_types] # for data_type in data_types: # for file_path in DRSFile.search(data_type, latest_version=False, path_only=True, **search_dict): # yield file_path # # yield SolrCore.to_solr_dict(drs_file) # # def dir_iter(start_dir, abort_on_error=True, followlinks=True): for base_dir, dirs, files in os.walk(start_dir, followlinks=followlinks): # make sure we walk them in the proper order (latest version first) dirs.sort(reverse=True) files.sort(reverse=True) # just for consistency for f in files: yield os.path.join(base_dir, f) # # # def enqueue_from_search(q, data_types, search_dir): # for metadata in search_iter(data_types, search_dir): # q.put(metadata) # # # def enqueue_from_dir(q, start_dir, abort_on_error=True): # for metadata in dir_iter(start_dir, abort_on_error=abort_on_error): # q.put(metadata) # # # def handle_file_init(q, core, batch_size=10000): # handle_file.batch_size = batch_size # handle_file.running = True # handle_file.q = q # handle_file.core = core # # # def handle_file(number, end_token): # print "starting proc %s" % number # batch_count = 0 # batch = [] # solr = SolrCore(core=handle_file.core) # while handle_file.running: # path = handle_file.q.get() # if path == end_token: # handle_file.q.put(end_token) # break # value = SolrCore.to_solr_dict(DRSFile.from_path(path)) # # import scipy.io.netcdf # # with scipy.io.netcdf.netcdf_file(value['file'], 'r') as f: # # value.update(f._attributes) # ts = os.path.getmtime(value['file']) # value['timestamp'] = ts # value['creation_time'] = timestamp_to_solr_date(ts) # batch.append(value) # if len(batch) >= handle_file.batch_size: # print "Sending entries %s-%s from %s" % (batch_count * handle_file.batch_size, # (batch_count+1) * handle_file.batch_size, number) # solr.post(batch) # batch = [] # batch_count += 1 # # if batch: # print "Sending last %s entries from %s." % (len(batch), number) # solr.post(batch) # print "proc %s done!" % number
43.724203
129
0.599828
472a3793ba217b49590f65f650e3fc7d9c6f2c41
1,052
py
Python
src/baselines/random_baseline.py
Michael-Beukman/NEATNoveltyPCG
2441d80eb0f6dd288a00ebb56c432963cefc879d
[ "MIT" ]
5
2022-01-26T23:19:46.000Z
2022-02-10T20:24:19.000Z
src/baselines/random_baseline.py
Michael-Beukman/NEATNoveltyPCG
2441d80eb0f6dd288a00ebb56c432963cefc879d
[ "MIT" ]
null
null
null
src/baselines/random_baseline.py
Michael-Beukman/NEATNoveltyPCG
2441d80eb0f6dd288a00ebb56c432963cefc879d
[ "MIT" ]
null
null
null
from common.methods.pcg_method import PCGMethod from games.game import Game from games.level import Level import numpy as np class RandomBaseline(PCGMethod): # This is a simple random baseline def __init__(self, game: Game, init_level: Level) -> None: super().__init__(game, init_level) def generate_level(self) -> Level: low = 0 high = len(self.init_level.tile_types) new_map = np.random.randint(low, high, size=self.init_level.map.shape) return self.init_level.from_map(new_map) if __name__ == '__main__': from games.mario.mario_game import MarioGame, MarioLevel from games.maze.maze_game import MazeGame from games.maze.maze_level import MazeLevel import matplotlib.pyplot as plt L = MarioLevel() baseline = RandomBaseline(MarioGame(L), L) L = MazeLevel() baseline = RandomBaseline(MazeGame(L), L) plt.imshow(baseline.generate_level().show()) plt.show() plt.imshow(baseline.generate_level().show()) plt.show()
30.941176
78
0.68251
2d1d70618803015027d0ed67167745f601348cb2
1,920
py
Python
games/forms.py
dabreese00/clue-solver-django
ff5f33782a21cd1642362f48207f759342767a0e
[ "MIT" ]
null
null
null
games/forms.py
dabreese00/clue-solver-django
ff5f33782a21cd1642362f48207f759342767a0e
[ "MIT" ]
null
null
null
games/forms.py
dabreese00/clue-solver-django
ff5f33782a21cd1642362f48207f759342767a0e
[ "MIT" ]
null
null
null
from django import forms from django.core.exceptions import ValidationError from .models import ClueRelation, Player, GameCard from cards.models import CardSet class ClueRelationForm(forms.ModelForm): def __init__(self, game, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['player'].queryset = Player.objects.filter(game=game) self.fields['cards'].queryset = GameCard.objects.filter(game=game) class Meta: model = ClueRelation fields = ['rel_type', 'player', 'cards'] def clean(self): cleaned_data = super().clean() rel_type = cleaned_data.get('rel_type') cards = cleaned_data.get('cards') if cards: # Do nothing if cards is already invalid if (rel_type in ( ClueRelation.RelationType.HAVE, ClueRelation.RelationType.PASS)): if len(cards.all()) != 1: raise ValidationError( "A Have or Pass must contain exactly 1 card.", code='invalid-haveorpass-card-count' ) else: if len(cards.all()) != 3: raise ValidationError( "A Show must contain exactly 3 cards.", code='invalid-show-card-count' ) if not ClueRelation.validate_show_card_types(cards.all()): raise ValidationError( "A Show must contain 1 card of each type " "(person, weapon, room).", code='invalid-show-card-types' ) class CreateGameForm(forms.Form): card_set = forms.ModelChoiceField(queryset=CardSet.objects.all()) class PlayerForm(forms.ModelForm): class Meta: model = Player fields = ['name', 'hand_size']
35.555556
74
0.548438
a04c86953bfb4ac7c27f6b36d94f792478766c43
2,340
py
Python
colosseumrl/matchmaking/MatchmakingClient.py
carletonz/colosseumrl
878f0459731511d716672aee8a5adafcb96cf0a7
[ "MIT" ]
8
2019-06-04T00:22:30.000Z
2022-02-14T15:27:17.000Z
colosseumrl/matchmaking/MatchmakingClient.py
carletonz/colosseumrl
878f0459731511d716672aee8a5adafcb96cf0a7
[ "MIT" ]
1
2019-07-23T03:32:59.000Z
2019-07-23T06:16:35.000Z
colosseumrl/matchmaking/MatchmakingClient.py
carletonz/colosseumrl
878f0459731511d716672aee8a5adafcb96cf0a7
[ "MIT" ]
3
2020-01-13T08:09:27.000Z
2021-11-14T01:30:25.000Z
from typing import NamedTuple from hashlib import sha256 import grpc from .grpc_gen.server_pb2 import QuickMatchRequest from .grpc_gen.server_pb2_grpc import MatchmakerStub class GameResponse(NamedTuple): """ The container object for the response from the server. """ host: str port: int username: str token: str ranking: float def hash_password(username: str, password: str): """ Has a password and salt it with the username. """ m = sha256() m.update(password.encode()) m.update(username.encode()) return m.digest() def request_game(hostname: str, port: int, username: str, password: str = "") -> GameResponse: """ Contact a matchmaking server and ask for a new game. This function will block until enough players connect to create a server. Parameters ---------- hostname: str port: int Hostname and port of the remote matchmaking server username: str Username that will identify you in the game. password: str Password to confirm your identity for ranking and other metadata. Returns ------- GameResponse host: str Hostname of the assigned gamer server. port: int Port of the game server that was created for you username: str Your username again to verify. token: str Authentication string you will need to provide to connect to the match server See Also -------- colosseumrl.matchmaking.MatchmakingClient.GameResponse The named tuple that will be returned by this function. """ username = username.lower() try: with grpc.insecure_channel('{}:{}'.format(hostname, port)) as channel: hashed_password = hash_password(username, password) response = MatchmakerStub(channel).GetMatch(QuickMatchRequest(username=username, password=hashed_password)) except grpc.RpcError as e: raise ConnectionError("Failed to connect to specified host. {}:{}".format(e.code(), e.details())) if response.server == "FAIL": raise ConnectionError("Could not connect to matchmaking server. Error message: {}".format(response.response)) _, port = response.server.split(":") return GameResponse(hostname, int(port), username, response.auth_key, response.ranking)
32.5
119
0.675214
a0cc62a5fe266341fafaaae59a4b133b5049a3e1
1,759
py
Python
pychron/lasers/tasks/laser_calibration_panes.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
31
2016-03-07T02:38:17.000Z
2022-02-14T18:23:43.000Z
pychron/lasers/tasks/laser_calibration_panes.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
1,626
2015-01-07T04:52:35.000Z
2022-03-25T19:15:59.000Z
pychron/lasers/tasks/laser_calibration_panes.py
UIllinoisHALPychron/pychron
f21b79f4592a9fb9dc9a4cb2e4e943a3885ededc
[ "Apache-2.0" ]
26
2015-05-23T00:10:06.000Z
2022-03-07T16:51:57.000Z
# =============================================================================== # Copyright 2013 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import from traits.api import Any from traitsui.api import View, UItem, InstanceEditor, ButtonEditor # from pyface.tasks.traits_task_pane import TraitsTaskPane from pyface.tasks.traits_dock_pane import TraitsDockPane # ============= standard library imports ======================== # ============= local library imports ========================== class LaserCalibrationExecutePane(TraitsDockPane): name = "Execute" id = "pychron.laser_calibration.execute" def traits_view(self): v = View(UItem("execute", editor=ButtonEditor(label_value="execute_label"))) return v class LaserCalibrationControlPane(TraitsDockPane): name = "Control" id = "pychron.laser_calibration.control" editor = Any def traits_view(self): v = View(UItem("editor", style="custom", editor=InstanceEditor())) return v # ============= EOF =============================================
35.18
84
0.604889
da2c3eb3c7af20c3785eb039f29ed74302fd116b
768
py
Python
packages/micropython-official/v1.9.4/esp8266/stubs/uctypes.py
TheVinhLuong102/micropy-stubs
55ff1773008f7c4dfc3d70a403986486226eb6b3
[ "MIT" ]
18
2019-07-11T13:31:09.000Z
2022-01-27T06:38:40.000Z
packages/micropython-official/v1.9.4/esp8266/stubs/uctypes.py
TheVinhLuong102/micropy-stubs
55ff1773008f7c4dfc3d70a403986486226eb6b3
[ "MIT" ]
9
2019-09-01T21:44:49.000Z
2022-02-04T20:55:08.000Z
packages/micropython-official/v1.9.4/esp8266/stubs/uctypes.py
TheVinhLuong102/micropy-stubs
55ff1773008f7c4dfc3d70a403986486226eb6b3
[ "MIT" ]
6
2019-10-08T05:31:21.000Z
2021-04-22T10:21:01.000Z
""" Module: 'uctypes' on esp8266 v1.9.4 """ # MCU: (sysname='esp8266', nodename='esp8266', release='2.2.0-dev(9422289)', version='v1.9.4-8-ga9a3caad0 on 2018-05-11', machine='ESP module with ESP8266') # Stubber: 1.1.2 ARRAY = -1073741824 BFINT16 = -671088640 BFINT32 = -402653184 BFINT8 = -939524096 BFUINT16 = -805306368 BFUINT32 = -536870912 BFUINT8 = -1073741824 BF_LEN = 22 BF_POS = 17 BIG_ENDIAN = 1 FLOAT32 = -268435456 FLOAT64 = -134217728 INT16 = 402653184 INT32 = 671088640 INT64 = 939524096 INT8 = 134217728 LITTLE_ENDIAN = 0 NATIVE = 2 PTR = 536870912 UINT16 = 268435456 UINT32 = 536870912 UINT64 = 805306368 UINT8 = 0 VOID = 0 def addressof(): pass def bytearray_at(): pass def bytes_at(): pass def sizeof(): pass class struct: ''
17.066667
156
0.699219
5aae8edea28495fe0a38dd31a1a555722d128185
43,831
py
Python
gnumpy/npmat.py
ExoCTK/gnumpy3
e8366dee8c25ab621c1a8780eb917afc407df0a8
[ "BSD-3-Clause" ]
1
2020-12-26T13:22:33.000Z
2020-12-26T13:22:33.000Z
gnumpy/npmat.py
ExoCTK/gnumpy3
e8366dee8c25ab621c1a8780eb917afc407df0a8
[ "BSD-3-Clause" ]
null
null
null
gnumpy/npmat.py
ExoCTK/gnumpy3
e8366dee8c25ab621c1a8780eb917afc407df0a8
[ "BSD-3-Clause" ]
1
2020-05-10T00:49:36.000Z
2020-05-10T00:49:36.000Z
import os, pdb, time, warnings import numpy as np __DTYPE__ = np.float64 def dummy(): return CUDAMatrix(np.zeros((1, 1))) def deprecated(func): """This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emmitted when the function is used.""" def newFunc(*args, **kwargs): warnings.warn("Call to deprecated function %s." % func.__name__, category=DeprecationWarning) return func(*args, **kwargs) newFunc.__name__ = func.__name__ newFunc.__doc__ = func.__doc__ newFunc.__dict__.update(func.__dict__) return newFunc #from cudamat import CUDAMatException class CUDAMatException(Exception): pass IncompatibleDimensionsException = CUDAMatException("Incompatible matrix dimensions.") InvalidConfig = CUDAMatException("Invalid Configuration Error (i.e., a dim of the array must be smaller than 2**16.") ## TODO: Figure out which functions produce an invalid config error. These are those who allocate a thread per col/row/elem. ## Those who allocate a bunch of rows per thread, like mult, add, sub, etc, should be immune to the invalid ## configuration error. PS: this error occurs on the real cudamat, which is why it happens. ## Sum/Max/Cumsum MAX_DIM = 2**16 class CUDAMatrix(object): """ A CUDAMatrix object represents a matrix of single precision floating point numbers on a GPU. """ def __init__(self, array, ref=True): if ref: self.numpy_array = reformat(array) else: self.numpy_array = array assert self.numpy_array.ndim == 2 self.trans = False def __del__(self): pass @staticmethod def init_random(seed): import numpy.random as random random.seed(seed) @property def num_elems(self): return self.numpy_array.size @property def shape(self): return self.numpy_array.shape def cheap_transpose(self): return CUDAMatrix(self.reshape((self.shape[1], self.shape[0]))) def reshape(self, shape): assert shape[0]*shape[1] == self.shape[0]*self.shape[1] #self.numpy_array.resize(shape) #self.numpy_array = self.numpy_array.reshape(shape, order='F') self.numpy_array.resize(*shape) return self def copy(self): return empty().assign(self) def set_np_array(self, X): assert X.shape == self.shape self.numpy_array[:] = X self.copy_to_device() return self def zero_copy(self): return self.copy().assign(0) def resize(self, shape): if self.shape != shape: print('CUDAMatrix: resize (%s -> %s)' % (self.shape, shape)) #self.numpy_array = np.resize(self.numpy_array, shape).astype(__DTYPE__) self.numpy_array.resize(shape) self.numpy_array[:] = 0 return self @property def T(self): return CUDAMatrix(self.numpy_array.T) @property def mat(self): return self.numpy_array @deprecated def set_shape(self, shape): return self.resize(shape) def asarray(self): """ Copies the matrix to an ndarray on the CPU and returns it. """ #return reformat(self.numpy_array.copy()) return self.numpy_array def copy_to_device(self): """ Copy the matrix to the GPU. """ pass def select_columns(self, indices, target): """ copies some columns of self into target. <indices> must be a row vector. Its elements are float32's representing integers, e.g. "34.0" means the integer "34". after this call, for all r,c, target[r,c]=self[r,indices[c]]. This returns target. Negative indices are interpreted in the usual Python way: all elements of <indices> had better be in the range [-self.shape[1], self.shape[1]-1]. This does bounds checking, but out of bounds indices do not raise an exception (because the programmer was lazy). Instead, they result in NaN values in <target>. """ assert target.shape[0]==self.shape[0] assert indices.shape[0]==1 assert indices.shape[1] == target.shape[1] for c in range(target.shape[1]): try: target.numpy_array[:,c] = self.numpy_array[:, int(indices.numpy_array.ravel()[c])] except IndexError: target.numpy_array[:,c] = np.nan return target def set_selected_columns(self, indices, source): """ copies all columns of source into some columns of self. <indices> must be a row vector. Its elements are float32's representing integers, e.g. "34.0" means the integer "34". after this call, for all r,c, self[r,indices[c]]=source[r,c]. This returns self. Negative indices are interpreted in the usual Python way: all elements of <indices> had better be in the range [-self.shape[1], self.shape[1]-1]. This does bounds checking, but out of bounds indices do not raise an exception (because the programmer was lazy). Instead, they result in NaN values in <self>. """ assert self.shape[0]==source.shape[0] assert indices.shape[0]==1 assert indices.shape[1]==source.shape[1] for c in range(source.shape[1]): try: self.numpy_array[:,int(indices.numpy_array.ravel()[c])] = source.numpy_array[:,c] except IndexError: self.numpy_array[:,int(indices.numpy_array.ravel()[c])] = np.nan return self def copy_to_host(self): """ Copy the matrix to the CPU. """ return self.asarray() def np(self): return self.copy_to_host() def assign(self, val): """Assign val to self, where val can be a scalar or a CUDAMatrix with the same dimensions as self. """ if isinstance(val, CUDAMatrix): self.resize(val.shape) self.numpy_array[:] = val.numpy_array elif isinstance(val, (int, float, __DTYPE__)): self.numpy_array[:] = val return self def free_device_memory(self): """ Free memory used up by the matrix on the GPU. """ pass def set_trans(self, is_trans): """ Set the transposedness flag to is_trans. """ if is_trans is True: self.numpy_array = self.numpy_array.T def slice(self, first_col, last_col): return CUDAMatrix(self.numpy_array[:, first_col:last_col], ref=False) def get_row_slice(self, start, end, target = None): """ Get the rows with indices start through end. If target is not provided memory for a new matrix will be allocated. """ ans = CUDAMatrix(self.numpy_array[start:end, :].copy()) if target is not None: target.assign(ans) else: target = ans return target def set_row_slice(self, start, end, mat): try: self.numpy_array[start:end] = mat.numpy_array except ValueError: raise IncompatibleDimensionsException return self def get_col_slice(self, start, end, target = None): ## NOTE: no .copy() ans = self.slice(start, end) if target is not None: target.assign(ans) else: target = ans return target def set_col_slice(self, start, end, mat): return self.slice(start, end).assign(mat) # def select_columns(self, indices, target): # """ # Copies selected columns into a target matrix. # <self>, <indices>, and <target> are all cudamat matrices. # <self> is an M by K matrix. # <indices> is of shape 1 by N. All elements x are expected to be # 0<=x<K, and are expected to have nothing after the decimal point (i.e. # to be floats representing integers). # <target> is an M by N matrix that will be filled with the result. # After the operation, for all i,j, target[i, j] = self[i, int(indices[j])] # This returns <target>. # ? idea: No bounds checking is done. # """ # M, K = self.shape # one, N = indices.shape # assert one == 1 # M_, N_ = target.shape # assert M_ == M and N == N_ # np_ints = indices.numpy_array.astype(int) # if not (np_ints.max() < K and np_ints.min() >= 0): # raise ValueError("Index out of bounds.") # target.numpy_array[:] = self.numpy_array[:, np_ints.flatten()] # return target def transpose(self, target = None): if target is None: return CUDAMatrix(self.numpy_array.T.copy()) else: target.numpy_array.resize((self.shape[1], self.shape[0])) target.numpy_array[:] = self.numpy_array.T return target def assign_transpose(self, t): return t.transpose(target = self) def fill_with_rand(self): """ Fill matrix on the GPU with random numbers drawn from the uniform distribution over the (0,1) interval. """ self.numpy_array[:] = np.random.rand(*self.shape) return self def fill_with_randn(self): """ Fill matrix on the GPU with random numbers drawn from the standard normal distribution. """ self.numpy_array[:] = np.random.randn(*self.shape) return self def add_col_vec(self, vec, target = None): """ Add vector vec to every column of the matrix. If a target is provided, it is used to store the result instead of self. """ a, b = self.shape a_, b_ = vec.shape if not (b_ == 1 and a_ == a): raise IncompatibleDimensionsException if target is None: target = self target.resize(self.shape) target.numpy_array[:] = self.numpy_array + vec.numpy_array return target def assign_add_col_vec(self, a, b): return a.add_col_vec(b, target = self) def add_col_mult(self, vec, mult, target = None): """ Add a multiple of vector vec to every column of the matrix. If a target is provided, it is used to store the result instead of self. """ a, b = self.shape a_, b_ = vec.shape if not (b_ == 1 and a_ == a): raise IncompatibleDimensionsException if target is None: target = self target.resize(self.shape) target.numpy_array[:] = self.numpy_array + vec.numpy_array * mult return target def assign_add_col_mult(self, a, m, b): return a.add_col_vec(b, m, target = self) def add_row_vec(self, vec, target = None): """ Add vector vec to every row of the matrix. If a target is provided, it is used to store the result instead of self. """ a, b = self.shape a_, b_ = vec.shape if not (a_ == 1 and b_ == b): raise IncompatibleDimensionsException if target is None: target = self target.resize(self.shape) target.numpy_array[:] = vec.numpy_array + self.numpy_array return target def assign_add_row_vec(self, a, b): return a.add_row_vec(b, target = self) def mult_by_col(self, vec, target = None): """ Multiply vector vec into every column of the matrix. If a target is provided, it is used to store the result instead of self. """ a, b = self.shape a_, b_ = vec.shape if not (b_ == 1 and a_ == a): raise IncompatibleDimensionsException if target is None: target = self target.resize(self.shape) target.numpy_array[:] = vec.numpy_array * self.numpy_array return target def mult_by_row(self, vec, target = None): """ Multiply vector vec into every row of the matrix. If a target is provided, it is used to store the result instead of self. """ a, b = self.shape a_, b_ = vec.shape if not (b_ == b and a_ == 1): raise IncompatibleDimensionsException if target is None: target = self target.resize(self.shape) target.numpy_array[:] = vec.numpy_array * self.numpy_array return target def sum(self, axis, target = None): """ Sum the matrix along the given dimension, where 0 represents the leading dimension and 1 represents the non-leading dimension. If a target is not prvided, a new vector is created for storing the result. """ if axis == 0: ans = self.numpy_array.sum(0)[np.newaxis, :] elif axis == 1: ans = self.numpy_array.sum(1)[:, np.newaxis] else: raise ValueError("axis must be only 0 or 1; instead, got %s\n", axis) ans = CUDAMatrix(ans) if target is not None: target.assign(ans) else: target = ans return target def mean(self, axis, target = None): if axis == 0: ans = self.numpy_array.mean(0)[np.newaxis, :] elif axis == 1: ans = self.numpy_array.mean(1)[:, np.newaxis] else: raise ValueError("axis must be only 0 or 1; instead, got %s\n", axis) ans = CUDAMatrix(ans) if target is not None: target.assign(ans) else: target = ans return target def assign_sum(self, mat, axis): return mat.sum(axis, target = self) def assign_mean(self, mat, axis): return mat.mean(axis, target = self) def add_sums(self, mat, axis, mult = 1.): """ Add a multiple of the sums of the matrix mat along the given dimension to self. """ if self.numpy_array.shape != self.mat.shape: raise IncompatibleDimensionsException sum = mat.sum(axis) sum.numpy_array *= mult if axis == 0: self.add_row_vec(sum) elif axis == 1: self.add_col_vec(sum) return self def less_than(self, val, target = None): """ Perform the operation target = 1. * (self < val), where val can be a matrix or a scalar. """ if target is None: target = self target.resize(self.shape) if isinstance(val, (int, float, __DTYPE__)): target.numpy_array[:] = self.numpy_array < val else: if val.shape != self.shape: raise IncompatibleDimensionsException target.numpy_array[:] = (self.numpy_array < val.numpy_array).astype(__DTYPE__) return target def assign_less_than(self, mat, val): return mat.less_than(val, self) def greater_than(self, val, target = None): """ Perform the operation target = 1. * (self > val), where val can be a matrix or a scalar. """ if target is None: target = self target.resize(self.shape) if isinstance(val, (int, float, __DTYPE__)): target.numpy_array[:] = (self.numpy_array > val).astype(__DTYPE__) else: if val.shape != self.shape: raise IncompatibleDimensionsException target.numpy_array[:] = (self.numpy_array > val.numpy_array).astype(__DTYPE__) return target def assign_greater_than(self, mat, val): return mat.greater_than(val, self) def max(self, axis, target = None, transpose_aux=None): """ Find the maximum value along the given dimension, where 0 represents the leading dimension and 1 represents the non-leading dimension. If a target is not prvided, a new vector is created for storing the result. """ m, n = self.shape if axis == 0: if target is None: target = empty((1, n)) target.resize((1, n)) target.numpy_array[:] = self.numpy_array.max(0) elif axis == 1: # IN theory: we are supposed to do this: # if not target: # #target = CUDAMatrix(np.empty((m, 1), dtype=np.float32, order = 'F')) # target = empty((m, 1)) # else: # target.resize((m, 1)) # err_code = _cudamat.max_by_axis(self.p_mat, target.p_mat, ct.c_int(axis)) # if err_code: # raise generate_exception(err_code) assert transpose_aux != None self.transpose(target = transpose_aux) target.reshape(target.shape[::-1]) transpose_aux.max(axis = 0, target = target) target.reshape(target.shape[::-1]) return target def assign_max(self, mat, axis, transpose_aux=None): return mat.max(axis, target = self, transpose_aux = transpose_aux) def total_max(self): row_maxes = empty((1, 1)).assign_max(self, axis = 0) return row_maxes.reshape((row_maxes.shape[1], row_maxes.shape[0])).max(axis = 0).asarray()[0,0] def total_sum(self): return self.numpy_array.sum() def sign(self, target = None): if target is None: target = empty(self.shape) target.resize(self.shape) target.numpy_array[:] = np.sign(self.numpy_array) return target def assign_sign(self, a): return a.sign(target = self) def apply_sigmoid(self, target = None): """ Apply the logistic sigmoid to each element of the matrix. """ return sigmoid(self, target) def sigmoid(self, target = None): """ Apply the logistic sigmoid to each element of the matrix. """ return sigmoid(self, target) def assign_sigmoid(self, t): return sigmoid(t, self) def log(self, target = None): return log(self, target) def assign_log(self, t): return log(t, self) def exp(self, target = None): return exp(self, target) def assign_exp(self, t): return exp(t, self) def pow(self, p, target = None): return pow(self, p, target) def assign_pow(self, mat, p): return pow(mat, p, self) def sqrt(self, target = None): return sqrt(self, target) def assign_sqrt(self, mat): return sqrt(mat, self) def reciprocal(self, target = None): """ Find the reciprocal of each element of the matrix. """ if not target: target = self target.resize(self.shape) target.numpy_array[:] = 1./self.numpy_array[:] return target def assign_reciprocal(self, mat): return mat.reciprocal(target = self) def dot(self, mat2, target = None): """ Multiply the matrix by mat2 from the right. """ return dot(self, mat2, target) def assign_dot(self, m1, m2): m1.dot(m2, target = self) return self def add_dot(self, m1, m2): """ Add the dot product of m1 and m2 to the matrix. """ m3 = dot(m1, m2) if m3.shape != self.shape: raise IncompatibleDimensionsException self.numpy_array += m3.numpy_array return self def subtract_dot(self, m1, m2): """ Subtract the dot product of m1 and m2 from the matrix. """ m3 = dot(m1, m2) if m3.shape != self.shape: raise IncompatibleDimensionsException self.numpy_array -= m3.numpy_array return self def add_mult(self, mat2, alpha = 1.): """ Add multiple of mat2 to the matrix. """ if mat2.shape != self.shape: raise IncompatibleDimensionsException self.numpy_array += mat2.numpy_array * alpha return self def assign_mult(self, mat2, alpha): self.resize(mat2.shape) self.assign(0) self.add_mult(mat2, alpha) return self def subtract_mult(self, mat2, alpha = 1.): """ Subtract a multiple of mat2 from the matrix. """ if mat2.shape != self.shape: raise IncompatibleDimensionsException self.numpy_array -= mat2.numpy_array * alpha return self def add(self, val, target = None): """Add val to self, where val can be a scalar or a CUDAMatrix with the same dimensions as self. """ if not target: target = self target.resize(self.shape) if isinstance(val, CUDAMatrix): if target.shape != val.shape: raise IncompatibleDimensionsException target.numpy_array[:] = self.numpy_array + val.numpy_array elif isinstance(val, (int, float, __DTYPE__)): target.numpy_array[:] = self.numpy_array + val else: raise ValueError("Value must be of type CUDAMatrix, int, or float.") return target def assign_add(self, a, b): a.add(b, target = self) return self def subtract(self, val, target = None): """Subtract val from self, where val can be a scalar or a CUDAMatrix with the same dimensions as self. """ if not target: target = self target.resize(self.shape) if isinstance(val, CUDAMatrix): if target.shape != val.shape: raise IncompatibleDimensionsException target.numpy_array[:] = self.numpy_array - val.numpy_array elif isinstance(val, (int, float, __DTYPE__)): target.numpy_array[:] = self.numpy_array - val else: raise ValueError("Value must be of type CUDAMatrix, int, or float.") return target def assign_subtract(self, a, b): a.subtract(b, target = self) return self def divide(self, val, target = None): """Divide self by val, where val can be a scalar or a CUDAMatrix with the same dimensions as self. """ if not target: target = self target.resize(self.shape) if isinstance(val, CUDAMatrix): if target.shape != val.shape: raise IncompatibleDimensionsException target.numpy_array[:] = self.numpy_array / val.numpy_array elif isinstance(val, (int, float, __DTYPE__)): target.numpy_array[:] = self.numpy_array / val else: raise ValueError("Value must be of type CUDAMatrix, int, or float.") return target def assign_divide(self, a, b): a.divide(b, target = self) return self def mult(self, val, target = None): """Multiply self by val, where val can be a scalar or a CUDAMatrix with the same dimensions as self. """ if not target: target = self target.resize(self.shape) if isinstance(val, CUDAMatrix): if target.shape != val.shape: raise IncompatibleDimensionsException target.numpy_array[:] = self.numpy_array * val.numpy_array elif isinstance(val, (int, float, __DTYPE__)): target.numpy_array[:] = self.numpy_array * val else: raise ValueError("Value must be of type CUDAMatrix, int, or float.") return target def assign_mult(self, a, b): a.mult(b, target = self) return self @deprecated def assign_scalar(self, alpha): """ Assign scalar alpha to every element of the matrix. """ self.assign(alpha) return self @deprecated def mult_by_scalar(self, alpha, target = None): """ Multiply the matrix by a scalar. """ return self.mult(alpha, target) @deprecated def div_by_scalar(self, alpha, target = None): """ Divide the matrix by a scalar. """ return self.divide(alpha, target) @deprecated def add_scalar(self, alpha, target = None): """ Increment the matrix by a scalar. """ return self.add(alpha, target) def euclid_norm(self): return np.sqrt((self.numpy_array**2).sum()) def empty(shape=None): """ Creates and returns a new CUDAMatrix with the given shape. """ if shape is None: shape = (1, 1) return CUDAMatrix(np.empty(shape)) def zeros(shape): return empty(shape).assign(0) def randn(a, b): ans = empty((a, b)).fill_with_randn() return ans def sum(mat, axis, target = None): """ Sum the matrix along the given dimension, where 0 represents the leading dimension and 1 represents the non-leading dimension. If a target is not prvided, a new vector is created for storing the result. """ return mat.sum(axis, target) def dot(m1, m2, target = None): """ Find the dot product between m1 and m2. """ m = m1.shape[0] n = m2.shape[1] target_shape = (m, n) if not target: target = empty(target_shape) target.resize(target_shape) try: target.numpy_array[:] = np.dot(m1.numpy_array, m2.numpy_array) except ValueError: raise IncompatibleDimensionsException return target def vdot(m1, m2): assert m1.shape == m2.shape return (m1.asarray() * m2.asarray()).sum() def sigmoid(mat, target = None): """ Apply the logistic sigmoid to each element of the matrix mat. """ if not target: target = mat target.resize(mat.shape) target.numpy_array[:] = 1. / (1 + np.exp(-mat.numpy_array)) return target def tanh(mat, target = None): """ Apply the logistic sigmoid to each element of the matrix mat. """ if not target: target = mat target.resize(mat.shape) target.numpy_array[:] = np.tanh(mat.numpy_array) return target def gammaln(mat, target = None): if not target: target = mat target.resize(mat.shape) import scipy.special target.numpy_array[:] = scipy.special.gammaln(mat.numpy_array) return target def abs(mat, target = None): """ Apply the logistic sigmoid to each element of the matrix mat. """ if not target: target = mat target.resize(mat.shape) target.numpy_array[:] = abs(mat.numpy_array) return target def log_1_plus_exp(mat, target = None): """ Apply log(1+exp(x)) to each element of the matrix mat. """ if not target: target = mat mask = mat.numpy_array > 0 target.numpy_array[mask] = mat.numpy_array[mask] + np.log(1+np.exp(-mat.numpy_array[mask])) mask = np.logical_not(mask) target.numpy_array[mask] = np.log(1+np.exp(mat.numpy_array[mask])) return target log_1_sum_exp = log_1_plus_exp def log(mat, target = None): """ Find the natural logarithm of each element of the matrix mat. """ if not target: target = mat target.resize(mat.shape) target.numpy_array[:] = np.log(mat.numpy_array) return target def exp(mat, target = None): """ Apply the exponential function to each element of the matrix mat. """ if not target: target = mat target.resize(mat.shape) target.numpy_array[:] = np.exp(mat.numpy_array) return target if not target: target = mat target.resize(mat.shape) return target def sqrt(mat, target = None): """ Compute the square root of each element of the matrix mat. """ if not target: target = mat target.resize(mat.shape) target.numpy_array[:] = np.sqrt(mat.numpy_array) return target if not target: target = mat target.resize(mat.shape) return target def pow(mat, p, target = None): """ Compute the 'p'th power of each element of the matrix mat. """ if not target: target = mat target.resize(mat.shape) target.numpy_array[:] = mat.numpy_array[:] ** p return target def cuda_sync_threads(): pass def reformat(array): """ Returns array as a float32 array in FORTRAN order. """ return np.array(array, dtype=__DTYPE__, order='F') def cuda_set_some_device(): return 0 def cuda_set_device(dev_id): """ Selects the CUDA device with the given ID. """ return 0 def cuda_get_free_device(): """ Returns the ID of the first free CUDA device. """ return 0 def cublas_init(): """ Initialize Cublas. """ return 0 def cublas_shutdown(): """ Shut down Cublas. """ return 0 # The following functions are for implementing things like coarse filters and # models with replicated local filters. At the moment they are quite slow. def sum_superpixels(source, target, w, temp = None): raise NotImplemented() def kronecker(mat1, mat2, target = None): raise NotIMplemented def flat_to_tiled(source, target, stride): raise NotImplemented() def tiled_to_flat(source, target, stride, temp = None): raise NotImplemented() def flat_to_tiled3(source, target, stride): raise NotImplemented() def get_item_from_each_row(source, target, inds, num_rows, num_cols): if source.numpy_array.shape == (num_cols, num_rows): src = source.numpy_array.T else: src = source.numpy_array.reshape(num_rows, num_cols) ix = inds.numpy_array.reshape(num_rows).astype(int) t = target.numpy_array.reshape(num_rows) for i in range(num_rows): t[i] = src[i,ix[i]] return target def set_item_to_each_row(source, target, inds, num_rows, num_cols): if source.numpy_array.shape == (num_cols, num_rows): src = source.numpy_array.T else: src = source.numpy_array.reshape(num_rows, num_cols) ix = inds.numpy_array.reshape(num_rows).astype(int) t = target.numpy_array.reshape(num_rows) for i in range(num_rows): src[i,ix[i]] = t[i] return source def abs(X, aux): return aux.assign_mult(X, X).sqrt() def total_sum(X): return X.total_sum() def mean(mat, axis, target = None): target = sum(mat, axis, target) target.mult_by_scalar(1. / mat.shape[axis]) return target def total_mean(mat): s = total_sum(mat) return s / mat.num_elems def cumsum(mat, target): target.resize(mat.shape) target.numpy_array[:] = mat.numpy_array.cumsum(1) return target # def multi_transpose(IN, OUT, w, h, batch_size): # """ # the order of w, h seems wrong, but it is consistent with the one on cudamat.py # """ # assert IN.shape == (w*h, batch_size) # assert OUT.shape == (w*h, batch_size) # from pylab import amap, transpose # OUT.numpy_array[:] = amap(transpose,IN.numpy_array.reshape(h, w, batch_size).transpose([2,0,1])).transpose([1,2,0]).reshape(w*h, batch_size) def multi_transpose(IN, OUT, w, h, batch_size): i = IN.numpy_array o = OUT.numpy_array # o = o.reshape(batch_size, w, h) # o[:] = i.reshape(batch_size, h, w).transpose([0,2,1]) # OUT.numpy_array[:] = o.reshape(*OUT.numpy_array.shape) o = o.ravel() o[:] = i.reshape(h, w, batch_size).transpose([1,0,2]).ravel() OUT.numpy_array[:] = o.reshape(*OUT.numpy_array.shape) return OUT def ind_incr(target, inds, axis): assert target.shape[1] == inds.shape[0] * inds.shape[1] assert inds.shape[1] == 1 or inds.shape[0] == 1 if axis == 1: try: for i in inds: target.numpy_array[:, i] += 1 except IndexError: raise IncompatibleDimensionsException return target elif axis == 0: try: for i in inds: target.numpy_array[i, :] += 1 except IndexError: raise IncompatibleDimensionsException return target else: raise Exception ("bad axis.") ## The code below has been lifted from cudamat. It needs to work with numpy. MAX_ELEMS = 2 ** 16 - 10 class softmax: def __init__(self, axis): self.axis = axis self.transpose_aux = empty() self.neg_max = empty() self.mat = empty() self.exp = empty() self.Z = empty() self.probs = empty() self.transpose_aux_small = empty() self.neg_max_small = empty() self.mat_small = empty() self.exp_small = empty() self.Z_small = empty() self.probs_small = empty() def __call__(self, mat, target): if mat.shape != target.shape: target.resize(mat.shape) if self.axis == 1: return self.__call_helper_small__(mat, target) pos = 0 step = MAX_ELEMS ## width is how many elems we have to work with. width = mat.shape[1 - self.axis] while pos < width: next = min(width, pos + step) step_size = next - pos if step_size == step: self.__call_helper__(mat.slice(pos, next), target.slice(pos, next)) else: self.__call_helper_small__(mat.slice(pos, next), target.slice(pos, next)) pos += step_size return target def __call_helper__(self, mat, target): self.neg_max.\ assign_max(mat, axis = self.axis, transpose_aux = self.transpose_aux).\ mult(-1) if self.axis == 0: self.mat.assign_add_row_vec(mat, self.neg_max) else: self.mat.assign_add_col_vec(mat, self.neg_max) self.exp.assign_exp(self.mat) self.Z.assign_sum(self.exp, self.axis).reciprocal() self.probs.assign(self.exp) if self.axis == 0: self.probs.mult_by_row(self.Z) else: self.probs.mult_by_col(self.Z) target.assign(self.probs) def __call_helper_small__(self, mat, target): self.neg_max_small.\ assign_max(mat, axis = self.axis, transpose_aux = self.transpose_aux_small).\ mult(-1) if self.axis == 0: self.mat_small.assign_add_row_vec(mat, self.neg_max_small) else: self.mat_small.assign_add_col_vec(mat, self.neg_max_small) self.exp_small.assign_exp(self.mat_small) self.Z_small.assign_sum(self.exp_small, self.axis).reciprocal() self.probs_small.assign(self.exp_small) if self.axis == 0: self.probs_small.mult_by_row(self.Z_small) else: self.probs_small.mult_by_col(self.Z_small) target.assign(self.probs_small) def log_Zs(self, mat, target): self.neg_max.\ assign_max(mat, axis = self.axis, transpose_aux = self.transpose_aux).\ mult(-1) if self.axis == 0: self.mat.assign_add_row_vec(mat, self.neg_max) else: self.mat.assign_add_col_vec(mat, self.neg_max) ## the exps without the max self.exp.assign_exp(self.mat) ## take the sums of the exps, take the log, and add subtruct the maxes. target.assign_sum(self.exp, self.axis).log().add(self.neg_max.mult(-1)) return target class sample_multinomial: def __init__(self, probs, axis): raise NotImplementedError("use robust_multinomial instead.") self.axis = axis self.cumsums = empty() self.cumsums_t = empty() self.probs_t = empty() self.cumsums_small = empty() self.cumsums_t_small = empty() self.probs_t_small = empty() self.set_probs(probs) self.samples = empty() self.samples_small = empty() if axis == 0: width = probs.shape[1] std_width = min(width, MAX_ELEMS) self.rand_vals = empty((1, std_width)) self.ones = empty((probs.shape[0], 1)).assign(1.) small_width = max(0, width % MAX_ELEMS) self.rand_vals_small = empty((1, small_width)) self.ones_small = empty((probs.shape[1], 1)).assign(1.) elif axis == 1: width = probs.shape[0] std_width = min(width, MAX_ELEMS) self.rand_vals = empty((std_width, 1)) self.ones = empty((1, probs.shape[1])).assign(1.) small_width = max(0, width % MAX_ELEMS) self.rand_vals_small = empty((small_width, 1)) self.ones_small = empty((1, probs.shape[1])).assign(1.) self.rand_mat = empty() self.threshs = empty() self.rand_mat_small = empty() self.threshs_small = empty() def set_probs(self, probs): if self.axis == 1: cumsum(probs, self.cumsums) else: probs.transpose(target = self.probs_t) cumsum(self.probs_t, self.cumsums_t) self.cumsums_t.transpose(target = self.cumsums) def multi_sample(self, target, k): target.resize(self.cumsums.shape) for i in range(k): self.rand_vals.fill_with_rand() if self.axis == 1: self.rand_mat.assign_dot(self.rand_vals, self.ones) else: self.rand_mat.assign_dot(self.ones, self.rand_vals) self.threshs.\ assign_less_than(self.cumsums, self.rand_mat).\ sum(self.axis, target = self.samples) ind_incr(target, self.samples, self.axis) return target def set_probs_helper_small(self, probs): self.probs = probs if self.axis == 1: cumsum(probs, self.cumsums_small) else: probs.transpose(target = self.probs_t_small) cumsum(self.probs_t_small, self.cumsums_t_small) self.cumsums_t_small.transpose(target = self.cumsums_small) def multi_sample_helper_small(self, target, k): target.resize(self.cumsums_small.shape) for i in range(k): self.rand_vals_small.fill_with_rand() if self.axis == 1: self.rand_mat_small.assign_dot(self.rand_vals_small, self.ones_small) else: self.rand_mat_small.assign_dot(self.ones_small, self.rand_vals_small) self.threshs_small.\ assign_less_than(self.cumsums_small, self.rand_mat_small).\ sum(self.axis, target = self.samples_small) ind_incr(target, self.samples_small, self.axis) return target def sample_from_probs(self, probs, target): if probs.shape != target.shape: target.resize(probs.shape) ## yes: we make a loop. pos = 0 step = MAX_ELEMS width = probs.shape[1] while pos < width: next = min(width, pos + step) step_size = next - pos if step_size == step: p = probs.slice(pos, next) t = target.slice(pos, next) self.set_probs(p) self.multi_sample(t, 1) else: p = probs.slice(pos, next) t = target.slice(pos, next) self.set_probs_helper_small(probs) self.multi_sample_helper_small(t, 1) pos += step_size return target class robust_multinomial: def __init__(self, shape, axis): self.axis = axis self.cumsums = empty() self.cumsums_t = empty() self.probs_t = empty() self.cumsums_small = empty() self.cumsums_t_small = empty() self.probs_t_small = empty() self.samples = empty() self.samples_small = empty() if axis == 0: width = shape[1] std_width = min(width, MAX_ELEMS) self.rand_vals = empty((1, std_width)) self.ones = empty((shape[0], 1)).assign(1.) small_width = max(0, width % MAX_ELEMS) self.rand_vals_small = empty((1, small_width)) self.ones_small = empty((shape[0], 1)).assign(1.) elif axis == 1: width = shape[0] std_width = min(width, MAX_ELEMS) self.rand_vals = empty((std_width, 1)) self.ones = empty((1, shape[1])).assign(1.) small_width = max(0, width % MAX_ELEMS) self.rand_vals_small = empty((small_width, 1)) self.ones_small = empty((1, shape[1])).assign(1.) self.rand_mat = empty() self.threshs = empty() self.rand_mat_small = empty() self.threshs_small = empty() def set_probs(self, probs): self.probs = probs if self.axis == 1: cumsum(probs, self.cumsums) else: probs.transpose(target = self.probs_t) cumsum(self.probs_t, self.cumsums_t) self.cumsums_t.transpose(target = self.cumsums) def multi_sample(self, target, k): target.resize(self.cumsums.shape) for i in range(k): self.rand_vals.fill_with_rand() if self.axis == 1: self.rand_mat.assign_dot(self.rand_vals, self.ones) else: self.rand_mat.assign_dot(self.ones, self.rand_vals) self.threshs.\ assign_less_than(self.cumsums, self.rand_mat).\ sum(self.axis, target = self.samples) ind_incr(target, self.samples, self.axis) return target def set_probs_helper_small(self, probs): if self.axis == 1: cumsum(probs, self.cumsums_small) else: probs.transpose(target = self.probs_t_small) cumsum(self.probs_t_small, self.cumsums_t_small) self.cumsums_t_small.transpose(target = self.cumsums_small) def multi_sample_helper_small(self, target, k): target.resize(self.cumsums_small.shape) for i in range(k): self.rand_vals_small.fill_with_rand() if self.axis == 1: self.rand_mat_small.assign_dot(self.rand_vals_small, self.ones_small) else: self.rand_mat_small.assign_dot(self.ones_small, self.rand_vals_small) self.threshs_small.\ assign_less_than(self.cumsums_small, self.rand_mat_small).\ sum(self.axis, target = self.samples_small) ind_incr(target, self.samples_small, self.axis) return target def sample_from_probs(self, probs, target): if probs.shape != target.shape: target.resize(probs.shape) ## yes: we make a loop. pos = 0 step = MAX_ELEMS width = probs.shape[1 - self.axis] while pos < width: next = min(width, pos + step) step_size = next - pos p = probs.slice(pos, next) t = target.slice(pos, next) if step_size == step: self.set_probs(p) self.multi_sample(t, 1) else: self.set_probs_helper_small(p) self.multi_sample_helper_small(t, 1) pos += step return target
21.517428
169
0.579407
2338ddfa264ef1df05958d42b54fc21b95436ccf
44,527
py
Python
src/TheLanguage/Lexer/Phrases/UnitTests/DSL_UnitTest.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
null
null
null
src/TheLanguage/Lexer/Phrases/UnitTests/DSL_UnitTest.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
null
null
null
src/TheLanguage/Lexer/Phrases/UnitTests/DSL_UnitTest.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
1
2021-06-18T18:58:57.000Z
2021-06-18T18:58:57.000Z
# ---------------------------------------------------------------------- # | # | DSL_UnitTest.py # | # | David Brownell <db@DavidBrownell.com> # | 2021-09-24 16:43:52 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2021 # | Distributed under the Boost Software License, Version 1.0. See # | accompanying file LICENSE_1_0.txt or copy at # | http://www.boost.org/LICENSE_1_0.txt. # | # ---------------------------------------------------------------------- """Unit test for PhraseDSL.py""" import os import textwrap import pytest pytest.register_assert_rewrite("CommonEnvironment.AutomatedTestHelpers") import CommonEnvironment from CommonEnvironment.AutomatedTestHelpers import CompareResultsFromFile from CommonEnvironmentEx.Package import InitRelativeImports # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- with InitRelativeImports(): from ..DSL import * from ...Components.Token import ( DedentToken, IndentToken, NewlineToken, PopIgnoreWhitespaceControlToken, PushIgnoreWhitespaceControlToken, RegexToken, ) from ...Components.UnitTests import ( CoroutineMock, CreateIterator, parse_mock, MethodCallsToString, ) # ---------------------------------------------------------------------- _word_token = RegexToken("Word Token", re.compile(r"(?P<value>[a-z]+)")) _number_token = RegexToken("Number Token", re.compile(r"(?P<value>\d+)")) _upper_token = RegexToken("Upper Token", re.compile(r"(?P<value>[A-Z]+)")) _lpar_token = RegexToken("lpar", re.compile(r"\(")) _rpar_token = RegexToken("rpar", re.compile(r"\)")) # ---------------------------------------------------------------------- class TestLexSimple(object): _phrase = CreatePhrase( name="Phrase", item=[ _word_token, _word_token, NewlineToken(), ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_SingleSpaceSep(self, parse_mock): iter = CreateIterator("one two") assert str(iter) == "[1, 1] (0)" result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (8)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_MultipleSpaceSep(self, parse_mock): iter = CreateIterator("one two") assert str(iter) == "[1, 1] (0)" result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (13)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_TabSep(self, parse_mock): iter = CreateIterator("one\ttwo") assert str(iter) == "[1, 1] (0)" result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (8)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_MultiTabSep(self, parse_mock): iter = CreateIterator("one\t\ttwo") assert str(iter) == "[1, 1] (0)" result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (9)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_TrailingSpace(self, parse_mock): iter = CreateIterator("one two ") assert str(iter) == "[1, 1] (0)" result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (9)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_MultipleTrailingSpace(self, parse_mock): iter = CreateIterator("one two ") assert str(iter) == "[1, 1] (0)" result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (12)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_TrailingTab(self, parse_mock): iter = CreateIterator("one two\t") assert str(iter) == "[1, 1] (0)" result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (9)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_MultipleTrailingTab(self, parse_mock): iter = CreateIterator("one two\t\t\t\t") assert str(iter) == "[1, 1] (0)" assert iter.ContentLen == 12 result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (12)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_MultipleLines(self, parse_mock): iter = CreateIterator( textwrap.dedent( """\ one two three four """, ), ) # Line 1 assert str(iter) == "[1, 1] (0)" assert iter.ContentLen == 19 result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[2, 1] (8)", "The result iterator should be modified" CompareResultsFromFile(str(result), suffix=".line1") assert len(parse_mock.method_calls) == 12 iter = result.IterEnd # Line 2 result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[2, 1] (8)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[3, 1] (19)", "The result iterator should be modified" CompareResultsFromFile(str(result), suffix=".line2") assert len(parse_mock.method_calls) == 24 assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_TrailingWhitespace(self, parse_mock): iter = CreateIterator("one two\n\n \n \n") assert str(iter) == "[1, 1] (0)" assert iter.ContentLen == 17 result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[5, 1] (17)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatch(self, parse_mock): iter = CreateIterator("one two three") assert str(iter) == "[1, 1] (0)" assert iter.ContentLen == 14 result = await self._phrase.LexAsync(("root", ), iter, parse_mock) assert str(iter) == "[1, 1] (0)", "The incoming iterator should not be modified" assert str(result.IterEnd) == "[1, 8] (7)", "The result iterator should be modified" CompareResultsFromFile(str(result)) assert len(parse_mock.method_calls) == 10 # ---------------------------------------------------------------------- class TestLexIndentAndDedent(object): _phrase = CreatePhrase( name="Phrase", item=[ _word_token, NewlineToken(), IndentToken(), _word_token, NewlineToken(), _word_token, NewlineToken(), DedentToken(), ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ one two three """, ), ), parse_mock, single_threaded=True, ) assert result.IterEnd.AtEnd() CompareResultsFromFile(str(result), suffix=".results") CompareResultsFromFile(MethodCallsToString(parse_mock), suffix=".events", file_ext=".txt") # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatch(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ one two three """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert len(parse_mock.method_calls) == 19 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_FinishEarly(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ one """, ), ), parse_mock, single_threaded=True, ) CompareResultsFromFile(str(result)) assert len(parse_mock.method_calls) == 10 # ---------------------------------------------------------------------- class TestIgnoreWhitespace(object): _phrase = CreatePhrase( name="Phrase", item=[ _word_token, _lpar_token, PushIgnoreWhitespaceControlToken(), _word_token, _word_token, _word_token, _word_token, PopIgnoreWhitespaceControlToken(), _rpar_token, _word_token, NewlineToken(), ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_MatchNoExtra(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ one ( two three four five ) six """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 30 # ---------------------------------------------------------------------- class TestEmbeddedPhrases(object): _inner_phrase = CreatePhrase( name="Inner", item=[ _word_token, _word_token, ], ) _phrase = CreatePhrase( name="Phrase", item=[ _lpar_token, _inner_phrase, _rpar_token, ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator("( one two )"), parse_mock, single_threaded=True, ) CompareResultsFromFile(str(result), suffix=".results") CompareResultsFromFile(MethodCallsToString(parse_mock), suffix=".events", file_ext=".txt") # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatchAllInner(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("( one two"), parse_mock) CompareResultsFromFile(str(result)) assert len(parse_mock.method_calls) == 16 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatchPartialInner(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("( one"), parse_mock) CompareResultsFromFile(str(result)) assert len(parse_mock.method_calls) == 12 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatchFirstOnly(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("( "), parse_mock) CompareResultsFromFile(str(result)) assert len(parse_mock.method_calls) == 9 # ---------------------------------------------------------------------- class TestDynamicPhrases(object): _word_phrase = CreatePhrase( name="Word Phrase", item=[ _word_token, _word_token, NewlineToken(), ], ) _number_phrase = CreatePhrase( name="Number Phrase", item=[ _number_token, NewlineToken(), ], ) _phrase = CreatePhrase( name="Phrase", item=[ DynamicPhrasesType.Statements, DynamicPhrasesType.Statements, DynamicPhrasesType.Expressions, ], ) # ---------------------------------------------------------------------- @staticmethod @pytest.fixture def modified_parse_mock(parse_mock): parse_mock.GetDynamicPhrases.side_effect = lambda unique_id, value: ([TestDynamicPhrases._word_phrase, TestDynamicPhrases._number_phrase] if value == DynamicPhrasesType.Statements else [TestDynamicPhrases._number_phrase], None) return parse_mock # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match(self, modified_parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda wordb 123 456 """, ), ), modified_parse_mock, single_threaded=True, ) CompareResultsFromFile(str(result), suffix=".results") assert result.IterEnd.AtEnd() CompareResultsFromFile(MethodCallsToString(modified_parse_mock), suffix=".events", file_ext=".txt") # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatch(self, modified_parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda wordb 123 wordc wordd """, ), ), modified_parse_mock, ) CompareResultsFromFile(str(result)) assert len(modified_parse_mock.method_calls) == 54 # ---------------------------------------------------------------------- class TestOrPhrases(object): _word_phrase = CreatePhrase( name="Word Phrase", item=[ _word_token, NewlineToken(), ], ) _number_phrase = CreatePhrase( name="Number Phrase", item=[ _number_token, NewlineToken(), ], ) _upper_phrase = CreatePhrase( name="Upper Phrase", item=[ _upper_token, NewlineToken(), ], ) _phrase = CreatePhrase( item=( _word_phrase, _number_phrase, _upper_phrase, ), ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_WordMatch(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("word"), parse_mock) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 20 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NumberMatch(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("1234"), parse_mock) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 20 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_UpperMatch(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("WORD"), parse_mock) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 20 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatch(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator("this is not a match"), parse_mock, single_threaded=True, ) CompareResultsFromFile(str(result), suffix=".results") CompareResultsFromFile(MethodCallsToString(parse_mock), suffix=".events", file_ext=".txt") # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_EarlyTermination(self, parse_mock): parse_mock.OnInternalPhraseAsync = CoroutineMock( side_effect=[True, False], ) result = await self._phrase.LexAsync(("root", ), CreateIterator("word"), parse_mock) assert result is None assert len(parse_mock.method_calls) == 18 # ---------------------------------------------------------------------- class TestEmbeddedOrPhrases(object): _phrase = CreatePhrase( ( [_word_token, NewlineToken()], [_number_token, NewlineToken()], [_upper_token, NewlineToken()], ), ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Standard(self, parse_mock): iter = CreateIterator( textwrap.dedent( """\ one 2222 THREE """, ), ) # Line 1 result = await self._phrase.LexAsync(("root", ), iter, parse_mock) CompareResultsFromFile(str(result), suffix=".line1") iter = result.IterEnd # Line 2 result = await self._phrase.LexAsync(("root", ), iter, parse_mock) CompareResultsFromFile(str(result), suffix=".line2") iter = result.IterEnd # Line 3 result = await self._phrase.LexAsync(("root", ), iter, parse_mock) CompareResultsFromFile(str(result), suffix=".line3") iter = result.IterEnd # Done assert iter.AtEnd() # ---------------------------------------------------------------------- class TestRepeatPhrases(object): _phrase = CreatePhrase( [ ZeroOrMorePhraseItem([_word_token, NewlineToken()]), OneOrMorePhraseItem([_number_token, NewlineToken()]), OptionalPhraseItem([_upper_token, NewlineToken()]), OneOrMorePhraseItem([_word_token, NewlineToken()]), ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match1(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda wordb 12 3456 UPPER wordc wordd worde """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 95 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match2(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ 12 3456 UPPER wordc wordd worde """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 77 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match3(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda 12 3456 wordc wordd worde """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() assert len(parse_mock.method_calls) == 81 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match4(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ 12 3456 wordc wordd worde """, ), ), parse_mock, single_threaded=True, ) CompareResultsFromFile(str(result), suffix=".results") assert result.IterEnd.AtEnd() CompareResultsFromFile(MethodCallsToString(parse_mock), suffix=".events", file_ext=".txt") # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatch1(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda wordb UPPER wordc wordd worde """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert len(parse_mock.method_calls) == 33 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatch2(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ 12 3456 UPPER 999 """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert len(parse_mock.method_calls) == 52 # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_EarlyTermination(self, parse_mock): parse_mock.OnInternalPhraseAsync = CoroutineMock( side_effect=[True, True, True, True, False], ) result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda wordb 12 3456 wordc wordd worde """, ), ), parse_mock, ) assert result is None # ---------------------------------------------------------------------- class TestRepeatSimilarPhrases(object): # Ensure that the first phrase doesn't eat the word so that it isn't available to the # second phrase. _phrase = CreatePhrase( item=[ ZeroOrMorePhraseItem( PhraseItem.Create( name="Word & Number", item=[_word_token, _number_token], ), ), OptionalPhraseItem( PhraseItem.Create( item=_word_token, ), ), ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_LargeMatch(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("word 123"), parse_mock) CompareResultsFromFile(str(result)) # assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_SmallMatch(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("word"), parse_mock) CompareResultsFromFile(str(result)) # assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- class TestNamedPhrases(object): _word_line_phrase = CreatePhrase( name="Word Line", item=[_word_token, NewlineToken()], ) _phrase = CreatePhrase( name="__Phrase__", item=[ PhraseItem.Create(name="__Dynamic__", item=DynamicPhrasesType.Statements), PhraseItem.Create( name="__Or__", item=OrPhraseItem() | _word_line_phrase | PhraseItem.Create(name="Upper Line", item=[_upper_token, NewlineToken()]) , ), CustomArityPhraseItem( PhraseItem.Create(name="__Repeat__", item=[_number_token, NewlineToken()]), 2, 2, ), ], ) # ---------------------------------------------------------------------- @pytest.fixture def modified_parse_mock(self, parse_mock): parse_mock.GetDynamicPhrases.side_effect = lambda unique_id, value: ([self._word_line_phrase], None) return parse_mock # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match(self, modified_parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda WORDB 123 456 """, ), ), modified_parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoMatch(self, modified_parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda WORDB 123 """, ), ), modified_parse_mock, ) CompareResultsFromFile(str(result)) # ---------------------------------------------------------------------- class TestComments(object): _multiline_phrase = CreatePhrase( OneOrMorePhraseItem( PhraseItem.Create( name="Multiline", item=[ [_word_token, NewlineToken()], [_upper_token, NewlineToken()], [_number_token, NewlineToken()], ], ), ), ) _indent_phrase = CreatePhrase( name="Indent", item=[ _word_token, RegexToken("Colon", re.compile(r":")), NewlineToken(), IndentToken(), [_upper_token, NewlineToken()], [_number_token, NewlineToken()], DedentToken(), ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Multiline(self, parse_mock): result = await self._multiline_phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ one # Comment 1 TWO 3 four FIVE # Comment 5 66 seven EIGHT 999 # Comment 9 ten # Comment 10 ELEVEN # Comment 11 12 # Comment 12 """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Indent(self, parse_mock): iterator = CreateIterator( textwrap.dedent( """\ one: # Comment 1 TWO 3 four: FIVE # Comment 5 66 seven: EIGHT 999 # Comment 9 ten: # Comment 10 ELEVEN # Comment 11 12 # Comment 12 """, ), ) # 1-3 result = await self._indent_phrase.LexAsync(("root", ), iterator, parse_mock) CompareResultsFromFile(str(result), suffix=".section1") iterator = result.IterEnd # 4-6 result = await self._indent_phrase.LexAsync(("root", ), iterator, parse_mock) CompareResultsFromFile(str(result), suffix=".section2") iterator = result.IterEnd # 7-9 result = await self._indent_phrase.LexAsync(("root", ), iterator, parse_mock) CompareResultsFromFile(str(result), suffix=".section3") iterator = result.IterEnd # 10-12 result = await self._indent_phrase.LexAsync(("root", ), iterator, parse_mock) CompareResultsFromFile(str(result), suffix=".section4") iterator = result.IterEnd assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_StandAlone(self, parse_mock): result = await self._multiline_phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ # one one # After one # TWO TWO # After TWO # 3 3 # After 3 """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- class TestRecursiveOrPhrases(object): _phrase = CreatePhrase( name="Recursive Phrase", item=[ _lpar_token, (_word_token, None), _rpar_token, ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NoRecursion(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("( hello )"), parse_mock) CompareResultsFromFile(str(result)) # assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_SingleRecursion(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("((hello))"), parse_mock) CompareResultsFromFile(str(result)) # assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_DoubleRecursion(self, parse_mock): result = await self._phrase.LexAsync(("root", ), CreateIterator("( ( ( hello)))"), parse_mock) CompareResultsFromFile(str(result)) # assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- class TestRecursiveRepeatPhrase(object): _phrase = CreatePhrase( name="Recursive Phrase", item=[ [_number_token, NewlineToken()], ( CustomArityPhraseItem(None, 1, 2), [_word_token, NewlineToken()] ), ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ 123 456 789 helloa """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- class TestRecursiveSequencePhrase(object): _phrase = CreatePhrase( [ [_number_token, NewlineToken()], [_upper_token, NewlineToken()], ( None, [RegexToken("Delimiter", re.compile(r"----")), NewlineToken()], ), [_word_token, NewlineToken()], ], ) # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_Match(self, parse_mock): result = await self._phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ 123 UPPERA 456 UPPERB 789 UPPERC ---- worda wordb wordc """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_IgnoreWhitespace(parse_mock): phrase = CreatePhrase( name="Phrase", item=[ PushIgnoreWhitespaceControlToken(), _word_token, _word_token, _word_token, PopIgnoreWhitespaceControlToken(), ], ) result = await phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda wordb wordc """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_IgnoreWhitespaceNestedPhrase(parse_mock): phrase = CreatePhrase( name="Phrase", item=[ _word_token, NewlineToken(), CreatePhrase( name="Nested", item=[ PushIgnoreWhitespaceControlToken(), _word_token, _word_token, PopIgnoreWhitespaceControlToken(), ], ), _word_token, NewlineToken(), ], ) result = await phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ worda wordb wordc wordd """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_IgnoreWhitespaceNestedPhraseWithDedents(parse_mock): phrase = CreatePhrase( name="Phrase", item=[ _word_token, RegexToken("':'", re.compile(r":")), NewlineToken(), IndentToken(), CreatePhrase( name="Nested", item=[ PushIgnoreWhitespaceControlToken(), _word_token, _word_token, PopIgnoreWhitespaceControlToken(), ], ), _word_token, NewlineToken(), DedentToken(), _word_token, NewlineToken(), ], ) result = await phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ newscope: worda wordb wordc wordd """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_IgnoreWhitespaceNestedPhraseEndWithDedents(parse_mock): phrase = CreatePhrase( name="Phrase", item=[ _word_token, RegexToken("':'", re.compile(r":")), NewlineToken(), IndentToken(), CreatePhrase( name="Nested", item=[ PushIgnoreWhitespaceControlToken(), _word_token, _word_token, PopIgnoreWhitespaceControlToken(), ], ), DedentToken(), ], ) result = await phrase.LexAsync( ("root", ), CreateIterator( textwrap.dedent( """\ newscope: worda wordb """, ), ), parse_mock, ) CompareResultsFromFile(str(result)) assert result.IterEnd.AtEnd() # ---------------------------------------------------------------------- @pytest.mark.asyncio async def test_NestedPhrase(parse_mock): phrase = CreatePhrase( name="Phrase", item=[TokenPhrase(_word_token),], ) result = await phrase.LexAsync(("root", ), CreateIterator("test"), parse_mock) CompareResultsFromFile(str(result)) # assert result.IterEnd.AtEnd()
32.525201
236
0.42545
46fd49c07aff2abf38a480232ea59a52feb9c767
1,326
py
Python
test/functional/test_framework/script_util.py
Perbug/perbug
4fa48d19be465006cdcaf9e6c09d394309aa2bf9
[ "MIT" ]
1
2022-03-05T14:50:58.000Z
2022-03-05T14:50:58.000Z
test/functional/test_framework/script_util.py
Perbug/perbug
4fa48d19be465006cdcaf9e6c09d394309aa2bf9
[ "MIT" ]
2
2021-12-18T03:02:54.000Z
2022-01-17T17:55:36.000Z
test/functional/test_framework/script_util.py
DclrCoin/dclrcoin
1ca3bd1f787fdead6ae84b7cda2bab6c6cb62b1d
[ "MIT" ]
2
2021-12-25T12:39:07.000Z
2022-02-14T03:03:36.000Z
#!/usr/bin/env python3 # Copyright (c) 2019 The Bitcoin Core Developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Useful Script constants and utils.""" from test_framework.script import CScript # To prevent a "tx-size-small" policy rule error, a transaction has to have a # non-witness size of at least 82 bytes (MIN_STANDARD_TX_NONWITNESS_SIZE in # src/policy/policy.h). Considering a Tx with the smallest possible single # input (blank, empty scriptSig), and with an output omitting the scriptPubKey, # we get to a minimum size of 60 bytes: # # Tx Skeleton: 4 [Version] + 1 [InCount] + 1 [OutCount] + 4 [LockTime] = 10 bytes # Blank Input: 32 [PrevTxHash] + 4 [Index] + 1 [scriptSigLen] + 4 [SeqNo] = 41 bytes # Output: 8 [Amount] + 1 [scriptPubKeyLen] = 9 bytes # # Hence, the scriptPubKey of the single output has to have a size of at # least 22 bytes, which corresponds to the size of a P2WPKH scriptPubKey. # The following script constant consists of a single push of 21 bytes of 'a': # <PUSH_21> <21-bytes of 'a'> # resulting in a 22-byte size. It should be used whenever (small) fake # scriptPubKeys are needed, to guarantee that the minimum transaction size is # met. DUMMY_P2WPKH_SCRIPT = CScript([b'a' * 21])
51
84
0.737557
a149c37aea7b9672b441d22aa1332574486432ce
3,129
py
Python
python/ray/tune/tests/test_warnings.py
jianoaix/ray
1701b923bc83905f8961c06a6a173e3eba46a936
[ "Apache-2.0" ]
null
null
null
python/ray/tune/tests/test_warnings.py
jianoaix/ray
1701b923bc83905f8961c06a6a173e3eba46a936
[ "Apache-2.0" ]
41
2021-09-21T01:13:48.000Z
2022-03-19T07:12:22.000Z
python/ray/tune/tests/test_warnings.py
jianoaix/ray
1701b923bc83905f8961c06a6a173e3eba46a936
[ "Apache-2.0" ]
null
null
null
import pytest import ray from ray import tune from ray.data.context import DatasetContext from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy from ray.tune.error import TuneError def test_nowarn_zero_cpu(): def f(*a): @ray.remote(num_cpus=0) def f(): pass @ray.remote(num_cpus=0) class Actor: def f(self): pass ray.get(f.remote()) a = Actor.remote() ray.get(a.f.remote()) tune.run(f, verbose=0) def test_warn_cpu(): def f(*a): @ray.remote(num_cpus=1) def f(): pass ray.get(f.remote()) with pytest.raises(TuneError): tune.run(f, verbose=0) with pytest.raises(TuneError): tune.run( f, resources_per_trial=tune.PlacementGroupFactory([{"CPU": 1}]), verbose=0 ) def g(*a): @ray.remote(num_cpus=1) class Actor: def f(self): pass a = Actor.remote() ray.get(a.f.remote()) with pytest.raises(TuneError): tune.run(g, verbose=0) with pytest.raises(TuneError): tune.run( g, resources_per_trial=tune.PlacementGroupFactory([{"CPU": 1}]), verbose=0 ) def test_pg_slots_ok(): def f(*a): @ray.remote(num_cpus=1) def f(): pass @ray.remote(num_cpus=1) class Actor: def f(self): pass ray.get(f.remote()) a = Actor.remote() ray.get(a.f.remote()) tune.run( f, resources_per_trial=tune.PlacementGroupFactory([{"CPU": 1}] * 2), verbose=0 ) def test_bad_pg_slots(): def f(*a): @ray.remote(num_cpus=2) def f(): pass ray.get(f.remote()) with pytest.raises(TuneError): tune.run( f, resources_per_trial=tune.PlacementGroupFactory([{"CPU": 1}] * 2), verbose=0, ) def test_dataset_ok(): def f(*a): ray.data.range(10).show() tune.run(f, verbose=0) def g(*a): ctx = DatasetContext.get_current() ctx.scheduling_strategy = PlacementGroupSchedulingStrategy( ray.util.get_current_placement_group() ) ray.data.range(10).show() with pytest.raises(TuneError): tune.run(g, verbose=0) tune.run( g, resources_per_trial=tune.PlacementGroupFactory([{"CPU": 1}] * 2), verbose=0 ) def test_scheduling_strategy_override(): def f(*a): @ray.remote(num_cpus=1, scheduling_strategy="SPREAD") def f(): pass @ray.remote(num_cpus=1, scheduling_strategy="SPREAD") class Actor: def f(self): pass # SPREAD tasks are not captured by placement groups, so don't warn. ray.get(f.remote()) # SPREAD actors are not captured by placement groups, so don't warn. a = Actor.remote() ray.get(a.f.remote()) tune.run(f, verbose=0) if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", __file__]))
21.729167
86
0.555129
d7cc7ad803aea1957fe8a0f65051bf4e4ecfc351
10,262
py
Python
exps/actor_critic.py
windweller/nlplab
aac33ff17036bbf00bd3118953db08ae98da9d36
[ "MIT" ]
null
null
null
exps/actor_critic.py
windweller/nlplab
aac33ff17036bbf00bd3118953db08ae98da9d36
[ "MIT" ]
null
null
null
exps/actor_critic.py
windweller/nlplab
aac33ff17036bbf00bd3118953db08ae98da9d36
[ "MIT" ]
null
null
null
from sandbox.rocky.tf.algos.vpg import VPG from rllab.misc.overrides import overrides import numpy as np import pickle from sandbox.rocky.tf.misc import tensor_utils import tensorflow as tf from rllab.misc import ext # TODO: 2. add code to pretrain critic class PreTrainer(object): """ It seems that rllab is bad at allowing pretraining we write extra code for this (by borrowing from elsewhere) """ def __init__(self, config, env, policy, distributor, critic): super(PreTrainer, self).__init__() self.config = config self.env = env self.policy = policy self.distributor = distributor self.critic = critic class ActorCritic(VPG): """ 1. override process samples (use a critic network) 2. Inside we also embed a target network 3. Implement a Reward Baseline that doesn't use lgbfs Many aspects borrowed from DDPG """ def __init__(self, env, policy, # delayed_policy, critic, target_critic, baseline, # soft_target_tau=0.001, optimizer=None, optimizer_args=None, **kwargs): # __init__ signature must line up with VPG's # otherwise Serialization class won't work... super(ActorCritic, self).__init__(env, policy, baseline, optimizer, optimizer_args, **kwargs) self.policy = policy self.critic = kwargs["critic"] self.soft_target_tau = kwargs["soft_target_tau"] # First, create "target" policy and Q functions # TODO: 1. this could be broken # TODO: since you have to load weights into the policy, why don't you just # TODO: load twice? Initialize two policies (also policies...are mutable) # TODO: so the pickle would only apply # TODO: (create policy and critic seperately) self.delayed_policy = kwargs["delayed_policy"] # might have to use tf.train.Saver() self.target_critic = kwargs["target_critic"] # TODO: 3. we need to pretrain critic with a fixed actor # so that n_envs calculation will be correct self.max_path_length = kwargs["config"]['max_seq_len'] self.batch_size = kwargs["config"]["batch_size"] def init_opt(self): # ======== VPG's init_opt ======= is_recurrent = int(self.policy.recurrent) # we don't need placeholder from network is because we propogate # gradients through a categorical variable obs_var = self.env.observation_space.new_tensor_variable( 'obs', extra_dims=1 + is_recurrent, ) action_var = self.env.action_space.new_tensor_variable( 'action', extra_dims=1 + is_recurrent, ) advantage_var = tensor_utils.new_tensor( name='advantage', ndim=1 + is_recurrent, dtype=tf.float32, ) dist = self.policy.distribution old_dist_info_vars = { k: tf.placeholder(tf.float32, shape=[None] * (1 + is_recurrent) + list(shape), name='old_%s' % k) for k, shape in dist.dist_info_specs } old_dist_info_vars_list = [old_dist_info_vars[k] for k in dist.dist_info_keys] state_info_vars = { k: tf.placeholder(tf.float32, shape=[None] * (1 + is_recurrent) + list(shape), name=k) for k, shape in self.policy.state_info_specs } state_info_vars_list = [state_info_vars[k] for k in self.policy.state_info_keys] if is_recurrent: valid_var = tf.placeholder(tf.float32, shape=[None, None], name="valid") else: valid_var = None dist_info_vars = self.policy.dist_info_sym(obs_var, state_info_vars) # this uses network to compute probs # and sample from probs logli = dist.log_likelihood_sym(action_var, dist_info_vars) # got it from RecurrentCategorical # instead of computing it from the GRU output, we are computing loss based on the sampling distribution kl = dist.kl_sym(old_dist_info_vars, dist_info_vars) # formulate as a minimization problem # The gradient of the surrogate objective is the policy gradient if is_recurrent: surr_obj = - tf.reduce_sum(logli * advantage_var * valid_var) / tf.reduce_sum(valid_var) mean_kl = tf.reduce_sum(kl * valid_var) / tf.reduce_sum(valid_var) max_kl = tf.reduce_max(kl * valid_var) else: surr_obj = - tf.reduce_mean(logli * advantage_var) mean_kl = tf.reduce_mean(kl) max_kl = tf.reduce_max(kl) input_list = [obs_var, action_var, advantage_var] + state_info_vars_list if is_recurrent: input_list.append(valid_var) self.optimizer.update_opt(loss=surr_obj, target=self.policy, inputs=input_list) f_kl = tensor_utils.compile_function( inputs=input_list + old_dist_info_vars_list, outputs=[mean_kl, max_kl], ) self.opt_info = dict( f_kl=f_kl, ) # ======== VPG's init_opt End ======= # we are updating critic in optimize_policy, not in here # y need to be computed first # critic_update = self.critic.updates # qf_loss def optimize_policy(self, itr, samples_data): """ This is where we optimize actor and critic receives input from sampler/base.py BaseSampler's process_samples() when you call optimize_policy, policy is already reset() exactly once and things should load appropriately. (make sure of this) """ # all_input_values = tuple(ext.extract( # samples_data, # "observations", "actions", "advantages" # )) # agent_infos = samples_data["agent_infos"] # state_info_list = [agent_infos[k] for k in self.policy.state_info_keys] # dist_info_list = [agent_infos[k] for k in self.policy.distribution.dist_info_keys] # all_input_values += tuple(state_info_list) + tuple(dist_info_list) # if self.policy.recurrent: # all_input_values += (samples_data["valids"],) # # rewards = ext.extract(samples_data, "rewards") # # q_t = # TODO: if we pass in the same ddist, calling reset() # TODO: should trigger the same h0/hs. Might need to TEST this! self.delayed_policy.reset() # ext.extract will put things in a tuple, we don't need the tuple part... rewards = ext.extract(samples_data, "rewards")[0] observations = ext.extract(samples_data, "observations")[0] # dimension will work?? actions = ext.extract(samples_data, "actions")[0] # dimension will work?? # so now it should be batched # we are going through the batch # q: (?, time_steps, ) # print "reward shape: ", rewards.shape (2, 32) # print "policy output shape: ", self.delayed_policy.f_output(observations).shape (2, 32, 52) # print "Q output shape: ", self.target_critic.compute_reward_sa(observations, actions).shape (2, 32) # print "observations shape: ", observations.shape q = rewards + np.sum(self.delayed_policy.f_output(observations) * self.target_critic.compute_reward_sa(observations, actions), axis=2) # sum out action_dim # then we update critic using the computed q self.critic.train(observations, actions, q) # then we process the rewards and try to get the advantage paths = samples_data["paths"] # this is the original paths for path in paths: X = np.column_stack((path['observations'], path['actions'])) # if env returns some ambient reward, we want to ignore these for training. # but still keep track of it for diagnostics. path['env_rewards'] = path['rewards'] # compute_reward returns (max_seq_len,) we squeezed # hope this is correct. path['actions'] is one-hot encoding rewards = np.sum(self.critic.compute_reward(X) * path['actions'], axis=1) # it in critic model if rewards.ndim == 0: rewards = rewards[np.newaxis] path['rewards'] = rewards assert all([path['rewards'].ndim == 1 for path in paths]) # so now the output of critic is baked into rewards # have the sampler reprocess the sample! samples_data = self.sampler.process_samples(itr, paths) # this optimize the policy (actor) (in the end), we update policy super(ActorCritic, self).optimize_policy(itr, samples_data) # so now normal policy and critic are updated, we update delayed policy, critic # you can double check if this is correct self.delayed_policy.set_param_values( self.delayed_policy.get_param_values() * (1.0 - self.soft_target_tau) + self.policy.get_param_values() * self.soft_target_tau) self.target_critic.set_param_values( self.target_critic.get_param_values() * (1.0 - self.soft_target_tau) + self.critic.get_param_values() * self.soft_target_tau) # TODO: maybe check if this works!?? @overrides def process_samples(self, itr, paths): """ Now this works. """ # we create the raw, batched paths here max_path_length = max([len(path["rewards"]) for path in paths]) actions = [path["actions"] for path in paths] actions = tensor_utils.pad_tensor_n(actions, max_path_length) rewards = [path["rewards"] for path in paths] rewards = tensor_utils.pad_tensor_n(rewards, max_path_length) obs = [path["observations"] for path in paths] obs = tensor_utils.pad_tensor_n(obs, max_path_length) samples_data = dict( observations=obs, actions=actions, rewards=rewards, paths=paths, ) # we still batch together actions and rewards and obs return samples_data if __name__ == '__main__': pass # we test baseline
38.578947
114
0.625609
b1372e15f25deaa263c9376112c3964a526d2b5f
151,680
py
Python
python/helpers/pycharm_generator_utils/pyparsing_py2.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/helpers/pycharm_generator_utils/pyparsing_py2.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/helpers/pycharm_generator_utils/pyparsing_py2.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2020-04-05T14:26:13.000Z
2021-03-09T08:18:17.000Z
# module pyparsing.py # # Copyright (c) 2003-2011 Paul T. McGuire # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # #from __future__ import generators __doc__ = \ """ pyparsing module - Classes and methods to define and execute parsing grammars The pyparsing module is an alternative approach to creating and executing simple grammars, vs. the traditional lex/yacc approach, or the use of regular expressions. With pyparsing, you don't need to learn a new syntax for defining grammars or matching expressions - the parsing module provides a library of classes that you use to construct the grammar directly in Python. Here is a program to parse "Hello, World!" (or any greeting of the form C{"<salutation>, <addressee>!"}):: from pyparsing import Word, alphas # define grammar of a greeting greet = Word( alphas ) + "," + Word( alphas ) + "!" hello = "Hello, World!" print hello, "->", greet.parseString( hello ) The program outputs the following:: Hello, World! -> ['Hello', ',', 'World', '!'] The Python representation of the grammar is quite readable, owing to the self-explanatory class names, and the use of '+', '|' and '^' operators. The parsed results returned from C{parseString()} can be accessed as a nested list, a dictionary, or an object with named attributes. The pyparsing module handles some of the problems that are typically vexing when writing text parsers: - extra or missing whitespace (the above program will also handle "Hello,World!", "Hello , World !", etc.) - quoted strings - embedded comments """ __version__ = "1.5.6" __versionTime__ = "26 June 2011 10:53" __author__ = "Paul McGuire <ptmcg@users.sourceforge.net>" import string from weakref import ref as wkref import copy import sys import warnings import re import sre_constants #~ sys.stderr.write( "testing pyparsing module, version %s, %s\n" % (__version__,__versionTime__ ) ) __all__ = [ 'And', 'CaselessKeyword', 'CaselessLiteral', 'CharsNotIn', 'Combine', 'Dict', 'Each', 'Empty', 'FollowedBy', 'Forward', 'GoToColumn', 'Group', 'Keyword', 'LineEnd', 'LineStart', 'Literal', 'MatchFirst', 'NoMatch', 'NotAny', 'OneOrMore', 'OnlyOnce', 'Optional', 'Or', 'ParseBaseException', 'ParseElementEnhance', 'ParseException', 'ParseExpression', 'ParseFatalException', 'ParseResults', 'ParseSyntaxException', 'ParserElement', 'QuotedString', 'RecursiveGrammarException', 'Regex', 'SkipTo', 'StringEnd', 'StringStart', 'Suppress', 'Token', 'TokenConverter', 'Upcase', 'White', 'Word', 'WordEnd', 'WordStart', 'ZeroOrMore', 'alphanums', 'alphas', 'alphas8bit', 'anyCloseTag', 'anyOpenTag', 'cStyleComment', 'col', 'commaSeparatedList', 'commonHTMLEntity', 'countedArray', 'cppStyleComment', 'dblQuotedString', 'dblSlashComment', 'delimitedList', 'dictOf', 'downcaseTokens', 'empty', 'getTokensEndLoc', 'hexnums', 'htmlComment', 'javaStyleComment', 'keepOriginalText', 'line', 'lineEnd', 'lineStart', 'lineno', 'makeHTMLTags', 'makeXMLTags', 'matchOnlyAtCol', 'matchPreviousExpr', 'matchPreviousLiteral', 'nestedExpr', 'nullDebugAction', 'nums', 'oneOf', 'opAssoc', 'operatorPrecedence', 'printables', 'punc8bit', 'pythonStyleComment', 'quotedString', 'removeQuotes', 'replaceHTMLEntity', 'replaceWith', 'restOfLine', 'sglQuotedString', 'srange', 'stringEnd', 'stringStart', 'traceParseAction', 'unicodeString', 'upcaseTokens', 'withAttribute', 'indentedBlock', 'originalTextFor', ] """ Detect if we are running version 3.X and make appropriate changes Robert A. Clark """ _PY3K = sys.version_info[0] > 2 if _PY3K: _MAX_INT = sys.maxsize basestring = str unichr = chr _ustr = str alphas = string.ascii_lowercase + string.ascii_uppercase else: _MAX_INT = sys.maxint range = xrange set = lambda s : dict( [(c,0) for c in s] ) alphas = string.lowercase + string.uppercase def _ustr(obj): """Drop-in replacement for str(obj) that tries to be Unicode friendly. It first tries str(obj). If that fails with a UnicodeEncodeError, then it tries unicode(obj). It then < returns the unicode object | encodes it with the default encoding | ... >. """ if isinstance(obj,unicode): return obj try: # If this works, then _ustr(obj) has the same behaviour as str(obj), so # it won't break any existing code. return str(obj) except UnicodeEncodeError: # The Python docs (http://docs.python.org/ref/customization.html#l2h-182) # state that "The return value must be a string object". However, does a # unicode object (being a subclass of basestring) count as a "string # object"? # If so, then return a unicode object: return unicode(obj) # Else encode it... but how? There are many choices... :) # Replace unprintables with escape codes? #return unicode(obj).encode(sys.getdefaultencoding(), 'backslashreplace_errors') # Replace unprintables with question marks? #return unicode(obj).encode(sys.getdefaultencoding(), 'replace') # ... alphas = string.lowercase + string.uppercase # build list of single arg builtins, tolerant of Python version, that can be used as parse actions singleArgBuiltins = [] import __builtin__ for fname in "sum len enumerate sorted reversed list tuple set any all".split(): try: singleArgBuiltins.append(getattr(__builtin__,fname)) except AttributeError: continue def _xml_escape(data): """Escape &, <, >, ", ', etc. in a string of data.""" # ampersand must be replaced first from_symbols = '&><"\'' to_symbols = ['&'+s+';' for s in "amp gt lt quot apos".split()] for from_,to_ in zip(from_symbols, to_symbols): data = data.replace(from_, to_) return data class _Constants(object): pass nums = string.digits hexnums = nums + "ABCDEFabcdef" alphanums = alphas + nums _bslash = chr(92) printables = "".join( [ c for c in string.printable if c not in string.whitespace ] ) class ParseBaseException(Exception): """base exception class for all parsing runtime exceptions""" # Performance tuning: we construct a *lot* of these, so keep this # constructor as small and fast as possible def __init__( self, pstr, loc=0, msg=None, elem=None ): self.loc = loc if msg is None: self.msg = pstr self.pstr = "" else: self.msg = msg self.pstr = pstr self.parserElement = elem def __getattr__( self, aname ): """supported attributes by name are: - lineno - returns the line number of the exception text - col - returns the column number of the exception text - line - returns the line containing the exception text """ if( aname == "lineno" ): return lineno( self.loc, self.pstr ) elif( aname in ("col", "column") ): return col( self.loc, self.pstr ) elif( aname == "line" ): return line( self.loc, self.pstr ) else: raise AttributeError(aname) def __str__( self ): return "%s (at char %d), (line:%d, col:%d)" % \ ( self.msg, self.loc, self.lineno, self.column ) def __repr__( self ): return _ustr(self) def markInputline( self, markerString = ">!<" ): """Extracts the exception line from the input string, and marks the location of the exception with a special symbol. """ line_str = self.line line_column = self.column - 1 if markerString: line_str = "".join( [line_str[:line_column], markerString, line_str[line_column:]]) return line_str.strip() def __dir__(self): return "loc msg pstr parserElement lineno col line " \ "markInputLine __str__ __repr__".split() class ParseException(ParseBaseException): """exception thrown when parse expressions don't match class; supported attributes by name are: - lineno - returns the line number of the exception text - col - returns the column number of the exception text - line - returns the line containing the exception text """ pass class ParseFatalException(ParseBaseException): """user-throwable exception thrown when inconsistent parse content is found; stops all parsing immediately""" pass class ParseSyntaxException(ParseFatalException): """just like C{ParseFatalException}, but thrown internally when an C{ErrorStop} ('-' operator) indicates that parsing is to stop immediately because an unbacktrackable syntax error has been found""" def __init__(self, pe): super(ParseSyntaxException, self).__init__( pe.pstr, pe.loc, pe.msg, pe.parserElement) #~ class ReparseException(ParseBaseException): #~ """Experimental class - parse actions can raise this exception to cause #~ pyparsing to reparse the input string: #~ - with a modified input string, and/or #~ - with a modified start location #~ Set the values of the ReparseException in the constructor, and raise the #~ exception in a parse action to cause pyparsing to use the new string/location. #~ Setting the values as None causes no change to be made. #~ """ #~ def __init_( self, newstring, restartLoc ): #~ self.newParseText = newstring #~ self.reparseLoc = restartLoc class RecursiveGrammarException(Exception): """exception thrown by C{validate()} if the grammar could be improperly recursive""" def __init__( self, parseElementList ): self.parseElementTrace = parseElementList def __str__( self ): return "RecursiveGrammarException: %s" % self.parseElementTrace class _ParseResultsWithOffset(object): def __init__(self,p1,p2): self.tup = (p1,p2) def __getitem__(self,i): return self.tup[i] def __repr__(self): return repr(self.tup) def setOffset(self,i): self.tup = (self.tup[0],i) class ParseResults(object): """Structured parse results, to provide multiple means of access to the parsed data: - as a list (C{len(results)}) - by list index (C{results[0], results[1]}, etc.) - by attribute (C{results.<resultsName>}) """ #~ __slots__ = ( "__toklist", "__tokdict", "__doinit", "__name", "__parent", "__accumNames", "__weakref__" ) def __new__(cls, toklist, name=None, asList=True, modal=True ): if isinstance(toklist, cls): return toklist retobj = object.__new__(cls) retobj.__doinit = True return retobj # Performance tuning: we construct a *lot* of these, so keep this # constructor as small and fast as possible def __init__( self, toklist, name=None, asList=True, modal=True, isinstance=isinstance ): if self.__doinit: self.__doinit = False self.__name = None self.__parent = None self.__accumNames = {} if isinstance(toklist, list): self.__toklist = toklist[:] else: self.__toklist = [toklist] self.__tokdict = dict() if name is not None and name: if not modal: self.__accumNames[name] = 0 if isinstance(name,int): name = _ustr(name) # will always return a str, but use _ustr for consistency self.__name = name if not toklist in (None,'',[]): if isinstance(toklist,basestring): toklist = [ toklist ] if asList: if isinstance(toklist,ParseResults): self[name] = _ParseResultsWithOffset(toklist.copy(),0) else: self[name] = _ParseResultsWithOffset(ParseResults(toklist[0]),0) self[name].__name = name else: try: self[name] = toklist[0] except (KeyError,TypeError,IndexError): self[name] = toklist def __getitem__( self, i ): if isinstance( i, (int,slice) ): return self.__toklist[i] else: if i not in self.__accumNames: return self.__tokdict[i][-1][0] else: return ParseResults([ v[0] for v in self.__tokdict[i] ]) def __setitem__( self, k, v, isinstance=isinstance ): if isinstance(v,_ParseResultsWithOffset): self.__tokdict[k] = self.__tokdict.get(k,list()) + [v] sub = v[0] elif isinstance(k,int): self.__toklist[k] = v sub = v else: self.__tokdict[k] = self.__tokdict.get(k,list()) + [_ParseResultsWithOffset(v,0)] sub = v if isinstance(sub,ParseResults): sub.__parent = wkref(self) def __delitem__( self, i ): if isinstance(i,(int,slice)): mylen = len( self.__toklist ) del self.__toklist[i] # convert int to slice if isinstance(i, int): if i < 0: i += mylen i = slice(i, i+1) # get removed indices removed = list(range(*i.indices(mylen))) removed.reverse() # fixup indices in token dictionary for name in self.__tokdict: occurrences = self.__tokdict[name] for j in removed: for k, (value, position) in enumerate(occurrences): occurrences[k] = _ParseResultsWithOffset(value, position - (position > j)) else: del self.__tokdict[i] def __contains__( self, k ): return k in self.__tokdict def __len__( self ): return len( self.__toklist ) def __bool__(self): return len( self.__toklist ) > 0 __nonzero__ = __bool__ def __iter__( self ): return iter( self.__toklist ) def __reversed__( self ): return iter( self.__toklist[::-1] ) def keys( self ): """Returns all named result keys.""" return self.__tokdict.keys() def pop( self, index=-1 ): """Removes and returns item at specified index (default=last). Will work with either numeric indices or dict-key indicies.""" ret = self[index] del self[index] return ret def get(self, key, defaultValue=None): """Returns named result matching the given key, or if there is no such name, then returns the given C{defaultValue} or C{None} if no C{defaultValue} is specified.""" if key in self: return self[key] else: return defaultValue def insert( self, index, insStr ): """Inserts new element at location index in the list of parsed tokens.""" self.__toklist.insert(index, insStr) # fixup indices in token dictionary for name in self.__tokdict: occurrences = self.__tokdict[name] for k, (value, position) in enumerate(occurrences): occurrences[k] = _ParseResultsWithOffset(value, position + (position > index)) def items( self ): """Returns all named result keys and values as a list of tuples.""" return [(k,self[k]) for k in self.__tokdict] def values( self ): """Returns all named result values.""" return [ v[-1][0] for v in self.__tokdict.values() ] def __getattr__( self, name ): if True: #name not in self.__slots__: if name in self.__tokdict: if name not in self.__accumNames: return self.__tokdict[name][-1][0] else: return ParseResults([ v[0] for v in self.__tokdict[name] ]) else: return "" return None def __add__( self, other ): ret = self.copy() ret += other return ret def __iadd__( self, other ): if other.__tokdict: offset = len(self.__toklist) addoffset = ( lambda a: (a<0 and offset) or (a+offset) ) otheritems = other.__tokdict.items() otherdictitems = [(k, _ParseResultsWithOffset(v[0],addoffset(v[1])) ) for (k,vlist) in otheritems for v in vlist] for k,v in otherdictitems: self[k] = v if isinstance(v[0],ParseResults): v[0].__parent = wkref(self) self.__toklist += other.__toklist self.__accumNames.update( other.__accumNames ) return self def __radd__(self, other): if isinstance(other,int) and other == 0: return self.copy() def __repr__( self ): return "(%s, %s)" % ( repr( self.__toklist ), repr( self.__tokdict ) ) def __str__( self ): out = "[" sep = "" for i in self.__toklist: if isinstance(i, ParseResults): out += sep + _ustr(i) else: out += sep + repr(i) sep = ", " out += "]" return out def _asStringList( self, sep='' ): out = [] for item in self.__toklist: if out and sep: out.append(sep) if isinstance( item, ParseResults ): out += item._asStringList() else: out.append( _ustr(item) ) return out def asList( self ): """Returns the parse results as a nested list of matching tokens, all converted to strings.""" out = [] for res in self.__toklist: if isinstance(res,ParseResults): out.append( res.asList() ) else: out.append( res ) return out def asDict( self ): """Returns the named parse results as dictionary.""" return dict( self.items() ) def copy( self ): """Returns a new copy of a C{ParseResults} object.""" ret = ParseResults( self.__toklist ) ret.__tokdict = self.__tokdict.copy() ret.__parent = self.__parent ret.__accumNames.update( self.__accumNames ) ret.__name = self.__name return ret def asXML( self, doctag=None, namedItemsOnly=False, indent="", formatted=True ): """Returns the parse results as XML. Tags are created for tokens and lists that have defined results names.""" nl = "\n" out = [] namedItems = dict( [ (v[1],k) for (k,vlist) in self.__tokdict.items() for v in vlist ] ) nextLevelIndent = indent + " " # collapse out indents if formatting is not desired if not formatted: indent = "" nextLevelIndent = "" nl = "" selfTag = None if doctag is not None: selfTag = doctag else: if self.__name: selfTag = self.__name if not selfTag: if namedItemsOnly: return "" else: selfTag = "ITEM" out += [ nl, indent, "<", selfTag, ">" ] worklist = self.__toklist for i,res in enumerate(worklist): if isinstance(res,ParseResults): if i in namedItems: out += [ res.asXML(namedItems[i], namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: out += [ res.asXML(None, namedItemsOnly and doctag is None, nextLevelIndent, formatted)] else: # individual token, see if there is a name for it resTag = None if i in namedItems: resTag = namedItems[i] if not resTag: if namedItemsOnly: continue else: resTag = "ITEM" xmlBodyText = _xml_escape(_ustr(res)) out += [ nl, nextLevelIndent, "<", resTag, ">", xmlBodyText, "</", resTag, ">" ] out += [ nl, indent, "</", selfTag, ">" ] return "".join(out) def __lookup(self,sub): for k,vlist in self.__tokdict.items(): for v,loc in vlist: if sub is v: return k return None def getName(self): """Returns the results name for this token expression.""" if self.__name: return self.__name elif self.__parent: par = self.__parent() if par: return par.__lookup(self) else: return None elif (len(self) == 1 and len(self.__tokdict) == 1 and self.__tokdict.values()[0][0][1] in (0,-1)): return self.__tokdict.keys()[0] else: return None def dump(self,indent='',depth=0): """Diagnostic method for listing out the contents of a C{ParseResults}. Accepts an optional C{indent} argument so that this string can be embedded in a nested display of other data.""" out = [] out.append( indent+_ustr(self.asList()) ) keys = self.items() keys.sort() for k,v in keys: if out: out.append('\n') out.append( "%s%s- %s: " % (indent,(' '*depth), k) ) if isinstance(v,ParseResults): if v.keys(): out.append( v.dump(indent,depth+1) ) else: out.append(_ustr(v)) else: out.append(_ustr(v)) return "".join(out) # add support for pickle protocol def __getstate__(self): return ( self.__toklist, ( self.__tokdict.copy(), self.__parent is not None and self.__parent() or None, self.__accumNames, self.__name ) ) def __setstate__(self,state): self.__toklist = state[0] (self.__tokdict, par, inAccumNames, self.__name) = state[1] self.__accumNames = {} self.__accumNames.update(inAccumNames) if par is not None: self.__parent = wkref(par) else: self.__parent = None def __dir__(self): return dir(super(ParseResults,self)) + self.keys() def col (loc,strg): """Returns current column within a string, counting newlines as line separators. The first column is number 1. Note: the default parsing behavior is to expand tabs in the input string before starting the parsing process. See L{I{ParserElement.parseString}<ParserElement.parseString>} for more information on parsing strings containing <TAB>s, and suggested methods to maintain a consistent view of the parsed string, the parse location, and line and column positions within the parsed string. """ return (loc<len(strg) and strg[loc] == '\n') and 1 or loc - strg.rfind("\n", 0, loc) def lineno(loc,strg): """Returns current line number within a string, counting newlines as line separators. The first line is number 1. Note: the default parsing behavior is to expand tabs in the input string before starting the parsing process. See L{I{ParserElement.parseString}<ParserElement.parseString>} for more information on parsing strings containing <TAB>s, and suggested methods to maintain a consistent view of the parsed string, the parse location, and line and column positions within the parsed string. """ return strg.count("\n",0,loc) + 1 def line( loc, strg ): """Returns the line of text containing loc within a string, counting newlines as line separators. """ lastCR = strg.rfind("\n", 0, loc) nextCR = strg.find("\n", loc) if nextCR >= 0: return strg[lastCR+1:nextCR] else: return strg[lastCR+1:] def _defaultStartDebugAction( instring, loc, expr ): print ("Match " + _ustr(expr) + " at loc " + _ustr(loc) + "(%d,%d)" % ( lineno(loc,instring), col(loc,instring) )) def _defaultSuccessDebugAction( instring, startloc, endloc, expr, toks ): print ("Matched " + _ustr(expr) + " -> " + str(toks.asList())) def _defaultExceptionDebugAction( instring, loc, expr, exc ): print ("Exception raised:" + _ustr(exc)) def nullDebugAction(*args): """'Do-nothing' debug action, to suppress debugging output during parsing.""" pass 'decorator to trim function calls to match the arity of the target' if not _PY3K: def _trim_arity(func, maxargs=2): limit = [0] def wrapper(*args): while 1: try: return func(*args[limit[0]:]) except TypeError: if limit[0] <= maxargs: limit[0] += 1 continue raise return wrapper else: def _trim_arity(func, maxargs=2): limit = maxargs def wrapper(*args): #~ nonlocal limit while 1: try: return func(*args[limit:]) except TypeError: if limit: limit -= 1 continue raise return wrapper class ParserElement(object): """Abstract base level parser element class.""" DEFAULT_WHITE_CHARS = " \n\t\r" verbose_stacktrace = False def setDefaultWhitespaceChars( chars ): """Overrides the default whitespace chars """ ParserElement.DEFAULT_WHITE_CHARS = chars setDefaultWhitespaceChars = staticmethod(setDefaultWhitespaceChars) def __init__( self, savelist=False ): self.parseAction = list() self.failAction = None #~ self.name = "<unknown>" # don't define self.name, let subclasses try/except upcall self.strRepr = None self.resultsName = None self.saveAsList = savelist self.skipWhitespace = True self.whiteChars = ParserElement.DEFAULT_WHITE_CHARS self.copyDefaultWhiteChars = True self.mayReturnEmpty = False # used when checking for left-recursion self.keepTabs = False self.ignoreExprs = list() self.debug = False self.streamlined = False self.mayIndexError = True # used to optimize exception handling for subclasses that don't advance parse index self.errmsg = "" self.modalResults = True # used to mark results names as modal (report only last) or cumulative (list all) self.debugActions = ( None, None, None ) #custom debug actions self.re = None self.callPreparse = True # used to avoid redundant calls to preParse self.callDuringTry = False def copy( self ): """Make a copy of this C{ParserElement}. Useful for defining different parse actions for the same parsing pattern, using copies of the original parse element.""" cpy = copy.copy( self ) cpy.parseAction = self.parseAction[:] cpy.ignoreExprs = self.ignoreExprs[:] if self.copyDefaultWhiteChars: cpy.whiteChars = ParserElement.DEFAULT_WHITE_CHARS return cpy def setName( self, name ): """Define name for this expression, for use in debugging.""" self.name = name self.errmsg = "Expected " + self.name if hasattr(self,"exception"): self.exception.msg = self.errmsg return self def setResultsName( self, name, listAllMatches=False ): """Define name for referencing matching tokens as a nested attribute of the returned parse results. NOTE: this returns a *copy* of the original C{ParserElement} object; this is so that the client can define a basic element, such as an integer, and reference it in multiple places with different names. You can also set results names using the abbreviated syntax, C{expr("name")} in place of C{expr.setResultsName("name")} - see L{I{__call__}<__call__>}. """ newself = self.copy() if name.endswith("*"): name = name[:-1] listAllMatches=True newself.resultsName = name newself.modalResults = not listAllMatches return newself def setBreak(self,breakFlag = True): """Method to invoke the Python pdb debugger when this element is about to be parsed. Set C{breakFlag} to True to enable, False to disable. """ if breakFlag: _parseMethod = self._parse def breaker(instring, loc, doActions=True, callPreParse=True): import pdb pdb.set_trace() return _parseMethod( instring, loc, doActions, callPreParse ) breaker._originalParseMethod = _parseMethod self._parse = breaker else: if hasattr(self._parse,"_originalParseMethod"): self._parse = self._parse._originalParseMethod return self def setParseAction( self, *fns, **kwargs ): """Define action to perform when successfully matching parse element definition. Parse action fn is a callable method with 0-3 arguments, called as C{fn(s,loc,toks)}, C{fn(loc,toks)}, C{fn(toks)}, or just C{fn()}, where: - s = the original string being parsed (see note below) - loc = the location of the matching substring - toks = a list of the matched tokens, packaged as a ParseResults object If the functions in fns modify the tokens, they can return them as the return value from fn, and the modified list of tokens will replace the original. Otherwise, fn does not need to return any value. Note: the default parsing behavior is to expand tabs in the input string before starting the parsing process. See L{I{parseString}<parseString>} for more information on parsing strings containing <TAB>s, and suggested methods to maintain a consistent view of the parsed string, the parse location, and line and column positions within the parsed string. """ self.parseAction = list(map(_trim_arity, list(fns))) self.callDuringTry = ("callDuringTry" in kwargs and kwargs["callDuringTry"]) return self def addParseAction( self, *fns, **kwargs ): """Add parse action to expression's list of parse actions. See L{I{setParseAction}<setParseAction>}.""" self.parseAction += list(map(_trim_arity, list(fns))) self.callDuringTry = self.callDuringTry or ("callDuringTry" in kwargs and kwargs["callDuringTry"]) return self def setFailAction( self, fn ): """Define action to perform if parsing fails at this expression. Fail acton fn is a callable function that takes the arguments C{fn(s,loc,expr,err)} where: - s = string being parsed - loc = location where expression match was attempted and failed - expr = the parse expression that failed - err = the exception thrown The function returns no value. It may throw C{ParseFatalException} if it is desired to stop parsing immediately.""" self.failAction = fn return self def _skipIgnorables( self, instring, loc ): exprsFound = True while exprsFound: exprsFound = False for e in self.ignoreExprs: try: while 1: loc,dummy = e._parse( instring, loc ) exprsFound = True except ParseException: pass return loc def preParse( self, instring, loc ): if self.ignoreExprs: loc = self._skipIgnorables( instring, loc ) if self.skipWhitespace: wt = self.whiteChars instrlen = len(instring) while loc < instrlen and instring[loc] in wt: loc += 1 return loc def parseImpl( self, instring, loc, doActions=True ): return loc, [] def postParse( self, instring, loc, tokenlist ): return tokenlist #~ @profile def _parseNoCache( self, instring, loc, doActions=True, callPreParse=True ): debugging = ( self.debug ) #and doActions ) if debugging or self.failAction: #~ print ("Match",self,"at loc",loc,"(%d,%d)" % ( lineno(loc,instring), col(loc,instring) )) if (self.debugActions[0] ): self.debugActions[0]( instring, loc, self ) if callPreParse and self.callPreparse: preloc = self.preParse( instring, loc ) else: preloc = loc tokensStart = preloc try: try: loc,tokens = self.parseImpl( instring, preloc, doActions ) except IndexError: raise ParseException( instring, len(instring), self.errmsg, self ) except ParseBaseException: #~ print ("Exception raised:", err) err = None if self.debugActions[2]: err = sys.exc_info()[1] self.debugActions[2]( instring, tokensStart, self, err ) if self.failAction: if err is None: err = sys.exc_info()[1] self.failAction( instring, tokensStart, self, err ) raise else: if callPreParse and self.callPreparse: preloc = self.preParse( instring, loc ) else: preloc = loc tokensStart = preloc if self.mayIndexError or loc >= len(instring): try: loc,tokens = self.parseImpl( instring, preloc, doActions ) except IndexError: raise ParseException( instring, len(instring), self.errmsg, self ) else: loc,tokens = self.parseImpl( instring, preloc, doActions ) tokens = self.postParse( instring, loc, tokens ) retTokens = ParseResults( tokens, self.resultsName, asList=self.saveAsList, modal=self.modalResults ) if self.parseAction and (doActions or self.callDuringTry): if debugging: try: for fn in self.parseAction: tokens = fn( instring, tokensStart, retTokens ) if tokens is not None: retTokens = ParseResults( tokens, self.resultsName, asList=self.saveAsList and isinstance(tokens,(ParseResults,list)), modal=self.modalResults ) except ParseBaseException: #~ print "Exception raised in user parse action:", err if (self.debugActions[2] ): err = sys.exc_info()[1] self.debugActions[2]( instring, tokensStart, self, err ) raise else: for fn in self.parseAction: tokens = fn( instring, tokensStart, retTokens ) if tokens is not None: retTokens = ParseResults( tokens, self.resultsName, asList=self.saveAsList and isinstance(tokens,(ParseResults,list)), modal=self.modalResults ) if debugging: #~ print ("Matched",self,"->",retTokens.asList()) if (self.debugActions[1] ): self.debugActions[1]( instring, tokensStart, loc, self, retTokens ) return loc, retTokens def tryParse( self, instring, loc ): try: return self._parse( instring, loc, doActions=False )[0] except ParseFatalException: raise ParseException( instring, loc, self.errmsg, self) # this method gets repeatedly called during backtracking with the same arguments - # we can cache these arguments and save ourselves the trouble of re-parsing the contained expression def _parseCache( self, instring, loc, doActions=True, callPreParse=True ): lookup = (self,instring,loc,callPreParse,doActions) if lookup in ParserElement._exprArgCache: value = ParserElement._exprArgCache[ lookup ] if isinstance(value, Exception): raise value return (value[0],value[1].copy()) else: try: value = self._parseNoCache( instring, loc, doActions, callPreParse ) ParserElement._exprArgCache[ lookup ] = (value[0],value[1].copy()) return value except ParseBaseException: pe = sys.exc_info()[1] ParserElement._exprArgCache[ lookup ] = pe raise _parse = _parseNoCache # argument cache for optimizing repeated calls when backtracking through recursive expressions _exprArgCache = {} def resetCache(): ParserElement._exprArgCache.clear() resetCache = staticmethod(resetCache) _packratEnabled = False def enablePackrat(): """Enables "packrat" parsing, which adds memoizing to the parsing logic. Repeated parse attempts at the same string location (which happens often in many complex grammars) can immediately return a cached value, instead of re-executing parsing/validating code. Memoizing is done of both valid results and parsing exceptions. This speedup may break existing programs that use parse actions that have side-effects. For this reason, packrat parsing is disabled when you first import pyparsing. To activate the packrat feature, your program must call the class method C{ParserElement.enablePackrat()}. If your program uses C{psyco} to "compile as you go", you must call C{enablePackrat} before calling C{psyco.full()}. If you do not do this, Python will crash. For best results, call C{enablePackrat()} immediately after importing pyparsing. """ if not ParserElement._packratEnabled: ParserElement._packratEnabled = True ParserElement._parse = ParserElement._parseCache enablePackrat = staticmethod(enablePackrat) def parseString( self, instring, parseAll=False ): """Execute the parse expression with the given string. This is the main interface to the client code, once the complete expression has been built. If you want the grammar to require that the entire input string be successfully parsed, then set C{parseAll} to True (equivalent to ending the grammar with C{StringEnd()}). Note: C{parseString} implicitly calls C{expandtabs()} on the input string, in order to report proper column numbers in parse actions. If the input string contains tabs and the grammar uses parse actions that use the C{loc} argument to index into the string being parsed, you can ensure you have a consistent view of the input string by: - calling C{parseWithTabs} on your grammar before calling C{parseString} (see L{I{parseWithTabs}<parseWithTabs>}) - define your parse action using the full C{(s,loc,toks)} signature, and reference the input string using the parse action's C{s} argument - explictly expand the tabs in your input string before calling C{parseString} """ ParserElement.resetCache() if not self.streamlined: self.streamline() #~ self.saveAsList = True for e in self.ignoreExprs: e.streamline() if not self.keepTabs: instring = instring.expandtabs() try: loc, tokens = self._parse( instring, 0 ) if parseAll: loc = self.preParse( instring, loc ) se = Empty() + StringEnd() se._parse( instring, loc ) except ParseBaseException: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace exc = sys.exc_info()[1] raise exc else: return tokens def scanString( self, instring, maxMatches=_MAX_INT, overlap=False ): """Scan the input string for expression matches. Each match will return the matching tokens, start location, and end location. May be called with optional C{maxMatches} argument, to clip scanning after 'n' matches are found. If C{overlap} is specified, then overlapping matches will be reported. Note that the start and end locations are reported relative to the string being parsed. See L{I{parseString}<parseString>} for more information on parsing strings with embedded tabs.""" if not self.streamlined: self.streamline() for e in self.ignoreExprs: e.streamline() if not self.keepTabs: instring = _ustr(instring).expandtabs() instrlen = len(instring) loc = 0 preparseFn = self.preParse parseFn = self._parse ParserElement.resetCache() matches = 0 try: while loc <= instrlen and matches < maxMatches: try: preloc = preparseFn( instring, loc ) nextLoc,tokens = parseFn( instring, preloc, callPreParse=False ) except ParseException: loc = preloc+1 else: if nextLoc > loc: matches += 1 yield tokens, preloc, nextLoc if overlap: nextloc = preparseFn( instring, loc ) if nextloc > loc: loc = nextLoc else: loc += 1 else: loc = nextLoc else: loc = preloc+1 except ParseBaseException: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace exc = sys.exc_info()[1] raise exc def transformString( self, instring ): """Extension to C{scanString}, to modify matching text with modified tokens that may be returned from a parse action. To use C{transformString}, define a grammar and attach a parse action to it that modifies the returned token list. Invoking C{transformString()} on a target string will then scan for matches, and replace the matched text patterns according to the logic in the parse action. C{transformString()} returns the resulting transformed string.""" out = [] lastE = 0 # force preservation of <TAB>s, to minimize unwanted transformation of string, and to # keep string locs straight between transformString and scanString self.keepTabs = True try: for t,s,e in self.scanString( instring ): out.append( instring[lastE:s] ) if t: if isinstance(t,ParseResults): out += t.asList() elif isinstance(t,list): out += t else: out.append(t) lastE = e out.append(instring[lastE:]) out = [o for o in out if o] return "".join(map(_ustr,_flatten(out))) except ParseBaseException: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace exc = sys.exc_info()[1] raise exc def searchString( self, instring, maxMatches=_MAX_INT ): """Another extension to C{scanString}, simplifying the access to the tokens found to match the given parse expression. May be called with optional C{maxMatches} argument, to clip searching after 'n' matches are found. """ try: return ParseResults([ t for t,s,e in self.scanString( instring, maxMatches ) ]) except ParseBaseException: if ParserElement.verbose_stacktrace: raise else: # catch and re-raise exception from here, clears out pyparsing internal stack trace exc = sys.exc_info()[1] raise exc def __add__(self, other ): """Implementation of + operator - returns And""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return And( [ self, other ] ) def __radd__(self, other ): """Implementation of + operator when left operand is not a C{ParserElement}""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other + self def __sub__(self, other): """Implementation of - operator, returns C{And} with error stop""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return And( [ self, And._ErrorStop(), other ] ) def __rsub__(self, other ): """Implementation of - operator when left operand is not a C{ParserElement}""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other - self def __mul__(self,other): """Implementation of * operator, allows use of C{expr * 3} in place of C{expr + expr + expr}. Expressions may also me multiplied by a 2-integer tuple, similar to C{{min,max}} multipliers in regular expressions. Tuples may also include C{None} as in: - C{expr*(n,None)} or C{expr*(n,)} is equivalent to C{expr*n + ZeroOrMore(expr)} (read as "at least n instances of C{expr}") - C{expr*(None,n)} is equivalent to C{expr*(0,n)} (read as "0 to n instances of C{expr}") - C{expr*(None,None)} is equivalent to C{ZeroOrMore(expr)} - C{expr*(1,None)} is equivalent to C{OneOrMore(expr)} Note that C{expr*(None,n)} does not raise an exception if more than n exprs exist in the input stream; that is, C{expr*(None,n)} does not enforce a maximum number of expr occurrences. If this behavior is desired, then write C{expr*(None,n) + ~expr} """ if isinstance(other,int): minElements, optElements = other,0 elif isinstance(other,tuple): other = (other + (None, None))[:2] if other[0] is None: other = (0, other[1]) if isinstance(other[0],int) and other[1] is None: if other[0] == 0: return ZeroOrMore(self) if other[0] == 1: return OneOrMore(self) else: return self*other[0] + ZeroOrMore(self) elif isinstance(other[0],int) and isinstance(other[1],int): minElements, optElements = other optElements -= minElements else: raise TypeError("cannot multiply 'ParserElement' and ('%s','%s') objects", type(other[0]),type(other[1])) else: raise TypeError("cannot multiply 'ParserElement' and '%s' objects", type(other)) if minElements < 0: raise ValueError("cannot multiply ParserElement by negative value") if optElements < 0: raise ValueError("second tuple value must be greater or equal to first tuple value") if minElements == optElements == 0: raise ValueError("cannot multiply ParserElement by 0 or (0,0)") if (optElements): def makeOptionalList(n): if n>1: return Optional(self + makeOptionalList(n-1)) else: return Optional(self) if minElements: if minElements == 1: ret = self + makeOptionalList(optElements) else: ret = And([self]*minElements) + makeOptionalList(optElements) else: ret = makeOptionalList(optElements) else: if minElements == 1: ret = self else: ret = And([self]*minElements) return ret def __rmul__(self, other): return self.__mul__(other) def __or__(self, other ): """Implementation of | operator - returns C{MatchFirst}""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return MatchFirst( [ self, other ] ) def __ror__(self, other ): """Implementation of | operator when left operand is not a C{ParserElement}""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other | self def __xor__(self, other ): """Implementation of ^ operator - returns C{Or}""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return Or( [ self, other ] ) def __rxor__(self, other ): """Implementation of ^ operator when left operand is not a C{ParserElement}""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other ^ self def __and__(self, other ): """Implementation of & operator - returns C{Each}""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return Each( [ self, other ] ) def __rand__(self, other ): """Implementation of & operator when left operand is not a C{ParserElement}""" if isinstance( other, basestring ): other = Literal( other ) if not isinstance( other, ParserElement ): warnings.warn("Cannot combine element of type %s with ParserElement" % type(other), SyntaxWarning, stacklevel=2) return None return other & self def __invert__( self ): """Implementation of ~ operator - returns C{NotAny}""" return NotAny( self ) def __call__(self, name): """Shortcut for C{setResultsName}, with C{listAllMatches=default}:: userdata = Word(alphas).setResultsName("name") + Word(nums+"-").setResultsName("socsecno") could be written as:: userdata = Word(alphas)("name") + Word(nums+"-")("socsecno") If C{name} is given with a trailing C{'*'} character, then C{listAllMatches} will be passed as C{True}. """ return self.setResultsName(name) def suppress( self ): """Suppresses the output of this C{ParserElement}; useful to keep punctuation from cluttering up returned output. """ return Suppress( self ) def leaveWhitespace( self ): """Disables the skipping of whitespace before matching the characters in the C{ParserElement}'s defined pattern. This is normally only used internally by the pyparsing module, but may be needed in some whitespace-sensitive grammars. """ self.skipWhitespace = False return self def setWhitespaceChars( self, chars ): """Overrides the default whitespace chars """ self.skipWhitespace = True self.whiteChars = chars self.copyDefaultWhiteChars = False return self def parseWithTabs( self ): """Overrides default behavior to expand C{<TAB>}s to spaces before parsing the input string. Must be called before C{parseString} when the input grammar contains elements that match C{<TAB>} characters.""" self.keepTabs = True return self def ignore( self, other ): """Define expression to be ignored (e.g., comments) while doing pattern matching; may be called repeatedly, to define multiple comment or other ignorable patterns. """ if isinstance( other, Suppress ): if other not in self.ignoreExprs: self.ignoreExprs.append( other.copy() ) else: self.ignoreExprs.append( Suppress( other.copy() ) ) return self def setDebugActions( self, startAction, successAction, exceptionAction ): """Enable display of debugging messages while doing pattern matching.""" self.debugActions = (startAction or _defaultStartDebugAction, successAction or _defaultSuccessDebugAction, exceptionAction or _defaultExceptionDebugAction) self.debug = True return self def setDebug( self, flag=True ): """Enable display of debugging messages while doing pattern matching. Set C{flag} to True to enable, False to disable.""" if flag: self.setDebugActions( _defaultStartDebugAction, _defaultSuccessDebugAction, _defaultExceptionDebugAction ) else: self.debug = False return self def __str__( self ): return self.name def __repr__( self ): return _ustr(self) def streamline( self ): self.streamlined = True self.strRepr = None return self def checkRecursion( self, parseElementList ): pass def validate( self, validateTrace=[] ): """Check defined expressions for valid structure, check for infinite recursive definitions.""" self.checkRecursion( [] ) def parseFile( self, file_or_filename, parseAll=False ): """Execute the parse expression on the given file or filename. If a filename is specified (instead of a file object), the entire file is opened, read, and closed before parsing. """ try: file_contents = file_or_filename.read() except AttributeError: f = open(file_or_filename, "rb") file_contents = f.read() f.close() try: return self.parseString(file_contents, parseAll) except ParseBaseException: # catch and re-raise exception from here, clears out pyparsing internal stack trace exc = sys.exc_info()[1] raise exc def getException(self): return ParseException("",0,self.errmsg,self) def __getattr__(self,aname): if aname == "myException": self.myException = ret = self.getException(); return ret; else: raise AttributeError("no such attribute " + aname) def __eq__(self,other): if isinstance(other, ParserElement): return self is other or self.__dict__ == other.__dict__ elif isinstance(other, basestring): try: self.parseString(_ustr(other), parseAll=True) return True except ParseBaseException: return False else: return super(ParserElement,self)==other def __ne__(self,other): return not (self == other) def __hash__(self): return hash(id(self)) def __req__(self,other): return self == other def __rne__(self,other): return not (self == other) class Token(ParserElement): """Abstract C{ParserElement} subclass, for defining atomic matching patterns.""" def __init__( self ): super(Token,self).__init__( savelist=False ) def setName(self, name): s = super(Token,self).setName(name) self.errmsg = "Expected " + self.name return s class Empty(Token): """An empty token, will always match.""" def __init__( self ): super(Empty,self).__init__() self.name = "Empty" self.mayReturnEmpty = True self.mayIndexError = False class NoMatch(Token): """A token that will never match.""" def __init__( self ): super(NoMatch,self).__init__() self.name = "NoMatch" self.mayReturnEmpty = True self.mayIndexError = False self.errmsg = "Unmatchable token" def parseImpl( self, instring, loc, doActions=True ): exc = self.myException exc.loc = loc exc.pstr = instring raise exc class Literal(Token): """Token to exactly match a specified string.""" def __init__( self, matchString ): super(Literal,self).__init__() self.match = matchString self.matchLen = len(matchString) try: self.firstMatchChar = matchString[0] except IndexError: warnings.warn("null string passed to Literal; use Empty() instead", SyntaxWarning, stacklevel=2) self.__class__ = Empty self.name = '"%s"' % _ustr(self.match) self.errmsg = "Expected " + self.name self.mayReturnEmpty = False self.mayIndexError = False # Performance tuning: this routine gets called a *lot* # if this is a single character match string and the first character matches, # short-circuit as quickly as possible, and avoid calling startswith #~ @profile def parseImpl( self, instring, loc, doActions=True ): if (instring[loc] == self.firstMatchChar and (self.matchLen==1 or instring.startswith(self.match,loc)) ): return loc+self.matchLen, self.match #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc _L = Literal class Keyword(Token): """Token to exactly match a specified string as a keyword, that is, it must be immediately followed by a non-keyword character. Compare with C{Literal}:: Literal("if") will match the leading C{'if'} in C{'ifAndOnlyIf'}. Keyword("if") will not; it will only match the leading C{'if'} in C{'if x=1'}, or C{'if(y==2)'} Accepts two optional constructor arguments in addition to the keyword string: C{identChars} is a string of characters that would be valid identifier characters, defaulting to all alphanumerics + "_" and "$"; C{caseless} allows case-insensitive matching, default is C{False}. """ DEFAULT_KEYWORD_CHARS = alphanums+"_$" def __init__( self, matchString, identChars=DEFAULT_KEYWORD_CHARS, caseless=False ): super(Keyword,self).__init__() self.match = matchString self.matchLen = len(matchString) try: self.firstMatchChar = matchString[0] except IndexError: warnings.warn("null string passed to Keyword; use Empty() instead", SyntaxWarning, stacklevel=2) self.name = '"%s"' % self.match self.errmsg = "Expected " + self.name self.mayReturnEmpty = False self.mayIndexError = False self.caseless = caseless if caseless: self.caselessmatch = matchString.upper() identChars = identChars.upper() self.identChars = set(identChars) def parseImpl( self, instring, loc, doActions=True ): if self.caseless: if ( (instring[ loc:loc+self.matchLen ].upper() == self.caselessmatch) and (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen].upper() not in self.identChars) and (loc == 0 or instring[loc-1].upper() not in self.identChars) ): return loc+self.matchLen, self.match else: if (instring[loc] == self.firstMatchChar and (self.matchLen==1 or instring.startswith(self.match,loc)) and (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen] not in self.identChars) and (loc == 0 or instring[loc-1] not in self.identChars) ): return loc+self.matchLen, self.match #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc def copy(self): c = super(Keyword,self).copy() c.identChars = Keyword.DEFAULT_KEYWORD_CHARS return c def setDefaultKeywordChars( chars ): """Overrides the default Keyword chars """ Keyword.DEFAULT_KEYWORD_CHARS = chars setDefaultKeywordChars = staticmethod(setDefaultKeywordChars) class CaselessLiteral(Literal): """Token to match a specified string, ignoring case of letters. Note: the matched results will always be in the case of the given match string, NOT the case of the input text. """ def __init__( self, matchString ): super(CaselessLiteral,self).__init__( matchString.upper() ) # Preserve the defining literal. self.returnString = matchString self.name = "'%s'" % self.returnString self.errmsg = "Expected " + self.name def parseImpl( self, instring, loc, doActions=True ): if instring[ loc:loc+self.matchLen ].upper() == self.match: return loc+self.matchLen, self.returnString #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc class CaselessKeyword(Keyword): def __init__( self, matchString, identChars=Keyword.DEFAULT_KEYWORD_CHARS ): super(CaselessKeyword,self).__init__( matchString, identChars, caseless=True ) def parseImpl( self, instring, loc, doActions=True ): if ( (instring[ loc:loc+self.matchLen ].upper() == self.caselessmatch) and (loc >= len(instring)-self.matchLen or instring[loc+self.matchLen].upper() not in self.identChars) ): return loc+self.matchLen, self.match #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc class Word(Token): """Token for matching words composed of allowed character sets. Defined with string containing all allowed initial characters, an optional string containing allowed body characters (if omitted, defaults to the initial character set), and an optional minimum, maximum, and/or exact length. The default value for C{min} is 1 (a minimum value < 1 is not valid); the default values for C{max} and C{exact} are 0, meaning no maximum or exact length restriction. An optional C{exclude} parameter can list characters that might be found in the input C{bodyChars} string; useful to define a word of all printables except for one or two characters, for instance. """ def __init__( self, initChars, bodyChars=None, min=1, max=0, exact=0, asKeyword=False, excludeChars=None ): super(Word,self).__init__() if excludeChars: initChars = ''.join([c for c in initChars if c not in excludeChars]) if bodyChars: bodyChars = ''.join([c for c in bodyChars if c not in excludeChars]) self.initCharsOrig = initChars self.initChars = set(initChars) if bodyChars : self.bodyCharsOrig = bodyChars self.bodyChars = set(bodyChars) else: self.bodyCharsOrig = initChars self.bodyChars = set(initChars) self.maxSpecified = max > 0 if min < 1: raise ValueError("cannot specify a minimum length < 1; use Optional(Word()) if zero-length word is permitted") self.minLen = min if max > 0: self.maxLen = max else: self.maxLen = _MAX_INT if exact > 0: self.maxLen = exact self.minLen = exact self.name = _ustr(self) self.errmsg = "Expected " + self.name self.mayIndexError = False self.asKeyword = asKeyword if ' ' not in self.initCharsOrig+self.bodyCharsOrig and (min==1 and max==0 and exact==0): if self.bodyCharsOrig == self.initCharsOrig: self.reString = "[%s]+" % _escapeRegexRangeChars(self.initCharsOrig) elif len(self.bodyCharsOrig) == 1: self.reString = "%s[%s]*" % \ (re.escape(self.initCharsOrig), _escapeRegexRangeChars(self.bodyCharsOrig),) else: self.reString = "[%s][%s]*" % \ (_escapeRegexRangeChars(self.initCharsOrig), _escapeRegexRangeChars(self.bodyCharsOrig),) if self.asKeyword: self.reString = r"\b"+self.reString+r"\b" try: self.re = re.compile( self.reString ) except: self.re = None def parseImpl( self, instring, loc, doActions=True ): if self.re: result = self.re.match(instring,loc) if not result: exc = self.myException exc.loc = loc exc.pstr = instring raise exc loc = result.end() return loc, result.group() if not(instring[ loc ] in self.initChars): #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc start = loc loc += 1 instrlen = len(instring) bodychars = self.bodyChars maxloc = start + self.maxLen maxloc = min( maxloc, instrlen ) while loc < maxloc and instring[loc] in bodychars: loc += 1 throwException = False if loc - start < self.minLen: throwException = True if self.maxSpecified and loc < instrlen and instring[loc] in bodychars: throwException = True if self.asKeyword: if (start>0 and instring[start-1] in bodychars) or (loc<instrlen and instring[loc] in bodychars): throwException = True if throwException: #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc return loc, instring[start:loc] def __str__( self ): try: return super(Word,self).__str__() except: pass if self.strRepr is None: def charsAsStr(s): if len(s)>4: return s[:4]+"..." else: return s if ( self.initCharsOrig != self.bodyCharsOrig ): self.strRepr = "W:(%s,%s)" % ( charsAsStr(self.initCharsOrig), charsAsStr(self.bodyCharsOrig) ) else: self.strRepr = "W:(%s)" % charsAsStr(self.initCharsOrig) return self.strRepr class Regex(Token): """Token for matching strings that match a given regular expression. Defined with string specifying the regular expression in a form recognized by the inbuilt Python re module. """ compiledREtype = type(re.compile("[A-Z]")) def __init__( self, pattern, flags=0): """The parameters C{pattern} and C{flags} are passed to the C{re.compile()} function as-is. See the Python C{re} module for an explanation of the acceptable patterns and flags.""" super(Regex,self).__init__() if isinstance(pattern, basestring): if len(pattern) == 0: warnings.warn("null string passed to Regex; use Empty() instead", SyntaxWarning, stacklevel=2) self.pattern = pattern self.flags = flags try: self.re = re.compile(self.pattern, self.flags) self.reString = self.pattern except sre_constants.error: warnings.warn("invalid pattern (%s) passed to Regex" % pattern, SyntaxWarning, stacklevel=2) raise elif isinstance(pattern, Regex.compiledREtype): self.re = pattern self.pattern = \ self.reString = str(pattern) self.flags = flags else: raise ValueError("Regex may only be constructed with a string or a compiled RE object") self.name = _ustr(self) self.errmsg = "Expected " + self.name self.mayIndexError = False self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): result = self.re.match(instring,loc) if not result: exc = self.myException exc.loc = loc exc.pstr = instring raise exc loc = result.end() d = result.groupdict() ret = ParseResults(result.group()) if d: for k in d: ret[k] = d[k] return loc,ret def __str__( self ): try: return super(Regex,self).__str__() except: pass if self.strRepr is None: self.strRepr = "Re:(%s)" % repr(self.pattern) return self.strRepr class QuotedString(Token): """Token for matching strings that are delimited by quoting characters. """ def __init__( self, quoteChar, escChar=None, escQuote=None, multiline=False, unquoteResults=True, endQuoteChar=None): """ Defined with the following parameters: - quoteChar - string of one or more characters defining the quote delimiting string - escChar - character to escape quotes, typically backslash (default=None) - escQuote - special quote sequence to escape an embedded quote string (such as SQL's "" to escape an embedded ") (default=None) - multiline - boolean indicating whether quotes can span multiple lines (default=False) - unquoteResults - boolean indicating whether the matched text should be unquoted (default=True) - endQuoteChar - string of one or more characters defining the end of the quote delimited string (default=None => same as quoteChar) """ super(QuotedString,self).__init__() # remove white space from quote chars - wont work anyway quoteChar = quoteChar.strip() if len(quoteChar) == 0: warnings.warn("quoteChar cannot be the empty string",SyntaxWarning,stacklevel=2) raise SyntaxError() if endQuoteChar is None: endQuoteChar = quoteChar else: endQuoteChar = endQuoteChar.strip() if len(endQuoteChar) == 0: warnings.warn("endQuoteChar cannot be the empty string",SyntaxWarning,stacklevel=2) raise SyntaxError() self.quoteChar = quoteChar self.quoteCharLen = len(quoteChar) self.firstQuoteChar = quoteChar[0] self.endQuoteChar = endQuoteChar self.endQuoteCharLen = len(endQuoteChar) self.escChar = escChar self.escQuote = escQuote self.unquoteResults = unquoteResults if multiline: self.flags = re.MULTILINE | re.DOTALL self.pattern = r'%s(?:[^%s%s]' % \ ( re.escape(self.quoteChar), _escapeRegexRangeChars(self.endQuoteChar[0]), (escChar is not None and _escapeRegexRangeChars(escChar) or '') ) else: self.flags = 0 self.pattern = r'%s(?:[^%s\n\r%s]' % \ ( re.escape(self.quoteChar), _escapeRegexRangeChars(self.endQuoteChar[0]), (escChar is not None and _escapeRegexRangeChars(escChar) or '') ) if len(self.endQuoteChar) > 1: self.pattern += ( '|(?:' + ')|(?:'.join(["%s[^%s]" % (re.escape(self.endQuoteChar[:i]), _escapeRegexRangeChars(self.endQuoteChar[i])) for i in range(len(self.endQuoteChar)-1,0,-1)]) + ')' ) if escQuote: self.pattern += (r'|(?:%s)' % re.escape(escQuote)) if escChar: self.pattern += (r'|(?:%s.)' % re.escape(escChar)) charset = ''.join(set(self.quoteChar[0]+self.endQuoteChar[0])).replace('^',r'\^').replace('-',r'\-') self.escCharReplacePattern = re.escape(self.escChar)+("([%s])" % charset) self.pattern += (r')*%s' % re.escape(self.endQuoteChar)) try: self.re = re.compile(self.pattern, self.flags) self.reString = self.pattern except sre_constants.error: warnings.warn("invalid pattern (%s) passed to Regex" % self.pattern, SyntaxWarning, stacklevel=2) raise self.name = _ustr(self) self.errmsg = "Expected " + self.name self.mayIndexError = False self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): result = instring[loc] == self.firstQuoteChar and self.re.match(instring,loc) or None if not result: exc = self.myException exc.loc = loc exc.pstr = instring raise exc loc = result.end() ret = result.group() if self.unquoteResults: # strip off quotes ret = ret[self.quoteCharLen:-self.endQuoteCharLen] if isinstance(ret,basestring): # replace escaped characters if self.escChar: ret = re.sub(self.escCharReplacePattern,"\g<1>",ret) # replace escaped quotes if self.escQuote: ret = ret.replace(self.escQuote, self.endQuoteChar) return loc, ret def __str__( self ): try: return super(QuotedString,self).__str__() except: pass if self.strRepr is None: self.strRepr = "quoted string, starting with %s ending with %s" % (self.quoteChar, self.endQuoteChar) return self.strRepr class CharsNotIn(Token): """Token for matching words composed of characters *not* in a given set. Defined with string containing all disallowed characters, and an optional minimum, maximum, and/or exact length. The default value for C{min} is 1 (a minimum value < 1 is not valid); the default values for C{max} and C{exact} are 0, meaning no maximum or exact length restriction. """ def __init__( self, notChars, min=1, max=0, exact=0 ): super(CharsNotIn,self).__init__() self.skipWhitespace = False self.notChars = notChars if min < 1: raise ValueError("cannot specify a minimum length < 1; use Optional(CharsNotIn()) if zero-length char group is permitted") self.minLen = min if max > 0: self.maxLen = max else: self.maxLen = _MAX_INT if exact > 0: self.maxLen = exact self.minLen = exact self.name = _ustr(self) self.errmsg = "Expected " + self.name self.mayReturnEmpty = ( self.minLen == 0 ) self.mayIndexError = False def parseImpl( self, instring, loc, doActions=True ): if instring[loc] in self.notChars: #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc start = loc loc += 1 notchars = self.notChars maxlen = min( start+self.maxLen, len(instring) ) while loc < maxlen and \ (instring[loc] not in notchars): loc += 1 if loc - start < self.minLen: #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc return loc, instring[start:loc] def __str__( self ): try: return super(CharsNotIn, self).__str__() except: pass if self.strRepr is None: if len(self.notChars) > 4: self.strRepr = "!W:(%s...)" % self.notChars[:4] else: self.strRepr = "!W:(%s)" % self.notChars return self.strRepr class White(Token): """Special matching class for matching whitespace. Normally, whitespace is ignored by pyparsing grammars. This class is included when some whitespace structures are significant. Define with a string containing the whitespace characters to be matched; default is C{" \\t\\r\\n"}. Also takes optional C{min}, C{max}, and C{exact} arguments, as defined for the C{Word} class.""" whiteStrs = { " " : "<SPC>", "\t": "<TAB>", "\n": "<LF>", "\r": "<CR>", "\f": "<FF>", } def __init__(self, ws=" \t\r\n", min=1, max=0, exact=0): super(White,self).__init__() self.matchWhite = ws self.setWhitespaceChars( "".join([c for c in self.whiteChars if c not in self.matchWhite]) ) #~ self.leaveWhitespace() self.name = ("".join([White.whiteStrs[c] for c in self.matchWhite])) self.mayReturnEmpty = True self.errmsg = "Expected " + self.name self.minLen = min if max > 0: self.maxLen = max else: self.maxLen = _MAX_INT if exact > 0: self.maxLen = exact self.minLen = exact def parseImpl( self, instring, loc, doActions=True ): if not(instring[ loc ] in self.matchWhite): #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc start = loc loc += 1 maxloc = start + self.maxLen maxloc = min( maxloc, len(instring) ) while loc < maxloc and instring[loc] in self.matchWhite: loc += 1 if loc - start < self.minLen: #~ raise ParseException( instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc return loc, instring[start:loc] class _PositionToken(Token): def __init__( self ): super(_PositionToken,self).__init__() self.name=self.__class__.__name__ self.mayReturnEmpty = True self.mayIndexError = False class GoToColumn(_PositionToken): """Token to advance to a specific column of input text; useful for tabular report scraping.""" def __init__( self, colno ): super(GoToColumn,self).__init__() self.col = colno def preParse( self, instring, loc ): if col(loc,instring) != self.col: instrlen = len(instring) if self.ignoreExprs: loc = self._skipIgnorables( instring, loc ) while loc < instrlen and instring[loc].isspace() and col( loc, instring ) != self.col : loc += 1 return loc def parseImpl( self, instring, loc, doActions=True ): thiscol = col( loc, instring ) if thiscol > self.col: raise ParseException( instring, loc, "Text not in expected column", self ) newloc = loc + self.col - thiscol ret = instring[ loc: newloc ] return newloc, ret class LineStart(_PositionToken): """Matches if current position is at the beginning of a line within the parse string""" def __init__( self ): super(LineStart,self).__init__() self.setWhitespaceChars( ParserElement.DEFAULT_WHITE_CHARS.replace("\n","") ) self.errmsg = "Expected start of line" def preParse( self, instring, loc ): preloc = super(LineStart,self).preParse(instring,loc) if instring[preloc] == "\n": loc += 1 return loc def parseImpl( self, instring, loc, doActions=True ): if not( loc==0 or (loc == self.preParse( instring, 0 )) or (instring[loc-1] == "\n") ): #col(loc, instring) != 1: #~ raise ParseException( instring, loc, "Expected start of line" ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc return loc, [] class LineEnd(_PositionToken): """Matches if current position is at the end of a line within the parse string""" def __init__( self ): super(LineEnd,self).__init__() self.setWhitespaceChars( ParserElement.DEFAULT_WHITE_CHARS.replace("\n","") ) self.errmsg = "Expected end of line" def parseImpl( self, instring, loc, doActions=True ): if loc<len(instring): if instring[loc] == "\n": return loc+1, "\n" else: #~ raise ParseException( instring, loc, "Expected end of line" ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc elif loc == len(instring): return loc+1, [] else: exc = self.myException exc.loc = loc exc.pstr = instring raise exc class StringStart(_PositionToken): """Matches if current position is at the beginning of the parse string""" def __init__( self ): super(StringStart,self).__init__() self.errmsg = "Expected start of text" def parseImpl( self, instring, loc, doActions=True ): if loc != 0: # see if entire string up to here is just whitespace and ignoreables if loc != self.preParse( instring, 0 ): #~ raise ParseException( instring, loc, "Expected start of text" ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc return loc, [] class StringEnd(_PositionToken): """Matches if current position is at the end of the parse string""" def __init__( self ): super(StringEnd,self).__init__() self.errmsg = "Expected end of text" def parseImpl( self, instring, loc, doActions=True ): if loc < len(instring): #~ raise ParseException( instring, loc, "Expected end of text" ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc elif loc == len(instring): return loc+1, [] elif loc > len(instring): return loc, [] else: exc = self.myException exc.loc = loc exc.pstr = instring raise exc class WordStart(_PositionToken): """Matches if the current position is at the beginning of a Word, and is not preceded by any character in a given set of C{wordChars} (default=C{printables}). To emulate the C{\b} behavior of regular expressions, use C{WordStart(alphanums)}. C{WordStart} will also match at the beginning of the string being parsed, or at the beginning of a line. """ def __init__(self, wordChars = printables): super(WordStart,self).__init__() self.wordChars = set(wordChars) self.errmsg = "Not at the start of a word" def parseImpl(self, instring, loc, doActions=True ): if loc != 0: if (instring[loc-1] in self.wordChars or instring[loc] not in self.wordChars): exc = self.myException exc.loc = loc exc.pstr = instring raise exc return loc, [] class WordEnd(_PositionToken): """Matches if the current position is at the end of a Word, and is not followed by any character in a given set of C{wordChars} (default=C{printables}). To emulate the C{\b} behavior of regular expressions, use C{WordEnd(alphanums)}. C{WordEnd} will also match at the end of the string being parsed, or at the end of a line. """ def __init__(self, wordChars = printables): super(WordEnd,self).__init__() self.wordChars = set(wordChars) self.skipWhitespace = False self.errmsg = "Not at the end of a word" def parseImpl(self, instring, loc, doActions=True ): instrlen = len(instring) if instrlen>0 and loc<instrlen: if (instring[loc] in self.wordChars or instring[loc-1] not in self.wordChars): #~ raise ParseException( instring, loc, "Expected end of word" ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc return loc, [] class ParseExpression(ParserElement): """Abstract subclass of ParserElement, for combining and post-processing parsed tokens.""" def __init__( self, exprs, savelist = False ): super(ParseExpression,self).__init__(savelist) if isinstance( exprs, list ): self.exprs = exprs elif isinstance( exprs, basestring ): self.exprs = [ Literal( exprs ) ] else: try: self.exprs = list( exprs ) except TypeError: self.exprs = [ exprs ] self.callPreparse = False def __getitem__( self, i ): return self.exprs[i] def append( self, other ): self.exprs.append( other ) self.strRepr = None return self def leaveWhitespace( self ): """Extends C{leaveWhitespace} defined in base class, and also invokes C{leaveWhitespace} on all contained expressions.""" self.skipWhitespace = False self.exprs = [ e.copy() for e in self.exprs ] for e in self.exprs: e.leaveWhitespace() return self def ignore( self, other ): if isinstance( other, Suppress ): if other not in self.ignoreExprs: super( ParseExpression, self).ignore( other ) for e in self.exprs: e.ignore( self.ignoreExprs[-1] ) else: super( ParseExpression, self).ignore( other ) for e in self.exprs: e.ignore( self.ignoreExprs[-1] ) return self def __str__( self ): try: return super(ParseExpression,self).__str__() except: pass if self.strRepr is None: self.strRepr = "%s:(%s)" % ( self.__class__.__name__, _ustr(self.exprs) ) return self.strRepr def streamline( self ): super(ParseExpression,self).streamline() for e in self.exprs: e.streamline() # collapse nested And's of the form And( And( And( a,b), c), d) to And( a,b,c,d ) # but only if there are no parse actions or resultsNames on the nested And's # (likewise for Or's and MatchFirst's) if ( len(self.exprs) == 2 ): other = self.exprs[0] if ( isinstance( other, self.__class__ ) and not(other.parseAction) and other.resultsName is None and not other.debug ): self.exprs = other.exprs[:] + [ self.exprs[1] ] self.strRepr = None self.mayReturnEmpty |= other.mayReturnEmpty self.mayIndexError |= other.mayIndexError other = self.exprs[-1] if ( isinstance( other, self.__class__ ) and not(other.parseAction) and other.resultsName is None and not other.debug ): self.exprs = self.exprs[:-1] + other.exprs[:] self.strRepr = None self.mayReturnEmpty |= other.mayReturnEmpty self.mayIndexError |= other.mayIndexError return self def setResultsName( self, name, listAllMatches=False ): ret = super(ParseExpression,self).setResultsName(name,listAllMatches) return ret def validate( self, validateTrace=[] ): tmp = validateTrace[:]+[self] for e in self.exprs: e.validate(tmp) self.checkRecursion( [] ) def copy(self): ret = super(ParseExpression,self).copy() ret.exprs = [e.copy() for e in self.exprs] return ret class And(ParseExpression): """Requires all given C{ParseExpression}s to be found in the given order. Expressions may be separated by whitespace. May be constructed using the C{'+'} operator. """ class _ErrorStop(Empty): def __init__(self, *args, **kwargs): super(Empty,self).__init__(*args, **kwargs) self.leaveWhitespace() def __init__( self, exprs, savelist = True ): super(And,self).__init__(exprs, savelist) self.mayReturnEmpty = True for e in self.exprs: if not e.mayReturnEmpty: self.mayReturnEmpty = False break self.setWhitespaceChars( exprs[0].whiteChars ) self.skipWhitespace = exprs[0].skipWhitespace self.callPreparse = True def parseImpl( self, instring, loc, doActions=True ): # pass False as last arg to _parse for first element, since we already # pre-parsed the string as part of our And pre-parsing loc, resultlist = self.exprs[0]._parse( instring, loc, doActions, callPreParse=False ) errorStop = False for e in self.exprs[1:]: if isinstance(e, And._ErrorStop): errorStop = True continue if errorStop: try: loc, exprtokens = e._parse( instring, loc, doActions ) except ParseSyntaxException: raise except ParseBaseException: pe = sys.exc_info()[1] raise ParseSyntaxException(pe) except IndexError: raise ParseSyntaxException( ParseException(instring, len(instring), self.errmsg, self) ) else: loc, exprtokens = e._parse( instring, loc, doActions ) if exprtokens or exprtokens.keys(): resultlist += exprtokens return loc, resultlist def __iadd__(self, other ): if isinstance( other, basestring ): other = Literal( other ) return self.append( other ) #And( [ self, other ] ) def checkRecursion( self, parseElementList ): subRecCheckList = parseElementList[:] + [ self ] for e in self.exprs: e.checkRecursion( subRecCheckList ) if not e.mayReturnEmpty: break def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + " ".join( [ _ustr(e) for e in self.exprs ] ) + "}" return self.strRepr class Or(ParseExpression): """Requires that at least one C{ParseExpression} is found. If two expressions match, the expression that matches the longest string will be used. May be constructed using the C{'^'} operator. """ def __init__( self, exprs, savelist = False ): super(Or,self).__init__(exprs, savelist) self.mayReturnEmpty = False for e in self.exprs: if e.mayReturnEmpty: self.mayReturnEmpty = True break def parseImpl( self, instring, loc, doActions=True ): maxExcLoc = -1 maxMatchLoc = -1 maxException = None for e in self.exprs: try: loc2 = e.tryParse( instring, loc ) except ParseException: err = sys.exc_info()[1] if err.loc > maxExcLoc: maxException = err maxExcLoc = err.loc except IndexError: if len(instring) > maxExcLoc: maxException = ParseException(instring,len(instring),e.errmsg,self) maxExcLoc = len(instring) else: if loc2 > maxMatchLoc: maxMatchLoc = loc2 maxMatchExp = e if maxMatchLoc < 0: if maxException is not None: raise maxException else: raise ParseException(instring, loc, "no defined alternatives to match", self) return maxMatchExp._parse( instring, loc, doActions ) def __ixor__(self, other ): if isinstance( other, basestring ): other = Literal( other ) return self.append( other ) #Or( [ self, other ] ) def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + " ^ ".join( [ _ustr(e) for e in self.exprs ] ) + "}" return self.strRepr def checkRecursion( self, parseElementList ): subRecCheckList = parseElementList[:] + [ self ] for e in self.exprs: e.checkRecursion( subRecCheckList ) class MatchFirst(ParseExpression): """Requires that at least one C{ParseExpression} is found. If two expressions match, the first one listed is the one that will match. May be constructed using the C{'|'} operator. """ def __init__( self, exprs, savelist = False ): super(MatchFirst,self).__init__(exprs, savelist) if exprs: self.mayReturnEmpty = False for e in self.exprs: if e.mayReturnEmpty: self.mayReturnEmpty = True break else: self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): maxExcLoc = -1 maxException = None for e in self.exprs: try: ret = e._parse( instring, loc, doActions ) return ret except ParseException, err: if err.loc > maxExcLoc: maxException = err maxExcLoc = err.loc except IndexError: if len(instring) > maxExcLoc: maxException = ParseException(instring,len(instring),e.errmsg,self) maxExcLoc = len(instring) # only got here if no expression matched, raise exception for match that made it the furthest else: if maxException is not None: raise maxException else: raise ParseException(instring, loc, "no defined alternatives to match", self) def __ior__(self, other ): if isinstance( other, basestring ): other = Literal( other ) return self.append( other ) #MatchFirst( [ self, other ] ) def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + " | ".join( [ _ustr(e) for e in self.exprs ] ) + "}" return self.strRepr def checkRecursion( self, parseElementList ): subRecCheckList = parseElementList[:] + [ self ] for e in self.exprs: e.checkRecursion( subRecCheckList ) class Each(ParseExpression): """Requires all given C{ParseExpression}s to be found, but in any order. Expressions may be separated by whitespace. May be constructed using the C{'&'} operator. """ def __init__( self, exprs, savelist = True ): super(Each,self).__init__(exprs, savelist) self.mayReturnEmpty = True for e in self.exprs: if not e.mayReturnEmpty: self.mayReturnEmpty = False break self.skipWhitespace = True self.initExprGroups = True def parseImpl( self, instring, loc, doActions=True ): if self.initExprGroups: opt1 = [ e.expr for e in self.exprs if isinstance(e,Optional) ] opt2 = [ e for e in self.exprs if e.mayReturnEmpty and e not in opt1 ] self.optionals = opt1 + opt2 self.multioptionals = [ e.expr for e in self.exprs if isinstance(e,ZeroOrMore) ] self.multirequired = [ e.expr for e in self.exprs if isinstance(e,OneOrMore) ] self.required = [ e for e in self.exprs if not isinstance(e,(Optional,ZeroOrMore,OneOrMore)) ] self.required += self.multirequired self.initExprGroups = False tmpLoc = loc tmpReqd = self.required[:] tmpOpt = self.optionals[:] matchOrder = [] keepMatching = True while keepMatching: tmpExprs = tmpReqd + tmpOpt + self.multioptionals + self.multirequired failed = [] for e in tmpExprs: try: tmpLoc = e.tryParse( instring, tmpLoc ) except ParseException: failed.append(e) else: matchOrder.append(e) if e in tmpReqd: tmpReqd.remove(e) elif e in tmpOpt: tmpOpt.remove(e) if len(failed) == len(tmpExprs): keepMatching = False if tmpReqd: missing = ", ".join( [ _ustr(e) for e in tmpReqd ] ) raise ParseException(instring,loc,"Missing one or more required elements (%s)" % missing ) # add any unmatched Optionals, in case they have default values defined matchOrder += [e for e in self.exprs if isinstance(e,Optional) and e.expr in tmpOpt] resultlist = [] for e in matchOrder: loc,results = e._parse(instring,loc,doActions) resultlist.append(results) finalResults = ParseResults([]) for r in resultlist: dups = {} for k in r.keys(): if k in finalResults.keys(): tmp = ParseResults(finalResults[k]) tmp += ParseResults(r[k]) dups[k] = tmp finalResults += ParseResults(r) for k,v in dups.items(): finalResults[k] = v return loc, finalResults def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + " & ".join( [ _ustr(e) for e in self.exprs ] ) + "}" return self.strRepr def checkRecursion( self, parseElementList ): subRecCheckList = parseElementList[:] + [ self ] for e in self.exprs: e.checkRecursion( subRecCheckList ) class ParseElementEnhance(ParserElement): """Abstract subclass of C{ParserElement}, for combining and post-processing parsed tokens.""" def __init__( self, expr, savelist=False ): super(ParseElementEnhance,self).__init__(savelist) if isinstance( expr, basestring ): expr = Literal(expr) self.expr = expr self.strRepr = None if expr is not None: self.mayIndexError = expr.mayIndexError self.mayReturnEmpty = expr.mayReturnEmpty self.setWhitespaceChars( expr.whiteChars ) self.skipWhitespace = expr.skipWhitespace self.saveAsList = expr.saveAsList self.callPreparse = expr.callPreparse self.ignoreExprs.extend(expr.ignoreExprs) def parseImpl( self, instring, loc, doActions=True ): if self.expr is not None: return self.expr._parse( instring, loc, doActions, callPreParse=False ) else: raise ParseException("",loc,self.errmsg,self) def leaveWhitespace( self ): self.skipWhitespace = False self.expr = self.expr.copy() if self.expr is not None: self.expr.leaveWhitespace() return self def ignore( self, other ): if isinstance( other, Suppress ): if other not in self.ignoreExprs: super( ParseElementEnhance, self).ignore( other ) if self.expr is not None: self.expr.ignore( self.ignoreExprs[-1] ) else: super( ParseElementEnhance, self).ignore( other ) if self.expr is not None: self.expr.ignore( self.ignoreExprs[-1] ) return self def streamline( self ): super(ParseElementEnhance,self).streamline() if self.expr is not None: self.expr.streamline() return self def checkRecursion( self, parseElementList ): if self in parseElementList: raise RecursiveGrammarException( parseElementList+[self] ) subRecCheckList = parseElementList[:] + [ self ] if self.expr is not None: self.expr.checkRecursion( subRecCheckList ) def validate( self, validateTrace=[] ): tmp = validateTrace[:]+[self] if self.expr is not None: self.expr.validate(tmp) self.checkRecursion( [] ) def __str__( self ): try: return super(ParseElementEnhance,self).__str__() except: pass if self.strRepr is None and self.expr is not None: self.strRepr = "%s:(%s)" % ( self.__class__.__name__, _ustr(self.expr) ) return self.strRepr class FollowedBy(ParseElementEnhance): """Lookahead matching of the given parse expression. C{FollowedBy} does *not* advance the parsing position within the input string, it only verifies that the specified parse expression matches at the current position. C{FollowedBy} always returns a null token list.""" def __init__( self, expr ): super(FollowedBy,self).__init__(expr) self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): self.expr.tryParse( instring, loc ) return loc, [] class NotAny(ParseElementEnhance): """Lookahead to disallow matching with the given parse expression. C{NotAny} does *not* advance the parsing position within the input string, it only verifies that the specified parse expression does *not* match at the current position. Also, C{NotAny} does *not* skip over leading whitespace. C{NotAny} always returns a null token list. May be constructed using the '~' operator.""" def __init__( self, expr ): super(NotAny,self).__init__(expr) #~ self.leaveWhitespace() self.skipWhitespace = False # do NOT use self.leaveWhitespace(), don't want to propagate to exprs self.mayReturnEmpty = True self.errmsg = "Found unwanted token, "+_ustr(self.expr) def parseImpl( self, instring, loc, doActions=True ): try: self.expr.tryParse( instring, loc ) except (ParseException,IndexError): pass else: #~ raise ParseException(instring, loc, self.errmsg ) exc = self.myException exc.loc = loc exc.pstr = instring raise exc return loc, [] def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "~{" + _ustr(self.expr) + "}" return self.strRepr class ZeroOrMore(ParseElementEnhance): """Optional repetition of zero or more of the given expression.""" def __init__( self, expr ): super(ZeroOrMore,self).__init__(expr) self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): tokens = [] try: loc, tokens = self.expr._parse( instring, loc, doActions, callPreParse=False ) hasIgnoreExprs = ( len(self.ignoreExprs) > 0 ) while 1: if hasIgnoreExprs: preloc = self._skipIgnorables( instring, loc ) else: preloc = loc loc, tmptokens = self.expr._parse( instring, preloc, doActions ) if tmptokens or tmptokens.keys(): tokens += tmptokens except (ParseException,IndexError): pass return loc, tokens def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "[" + _ustr(self.expr) + "]..." return self.strRepr def setResultsName( self, name, listAllMatches=False ): ret = super(ZeroOrMore,self).setResultsName(name,listAllMatches) ret.saveAsList = True return ret class OneOrMore(ParseElementEnhance): """Repetition of one or more of the given expression.""" def parseImpl( self, instring, loc, doActions=True ): # must be at least one loc, tokens = self.expr._parse( instring, loc, doActions, callPreParse=False ) try: hasIgnoreExprs = ( len(self.ignoreExprs) > 0 ) while 1: if hasIgnoreExprs: preloc = self._skipIgnorables( instring, loc ) else: preloc = loc loc, tmptokens = self.expr._parse( instring, preloc, doActions ) if tmptokens or tmptokens.keys(): tokens += tmptokens except (ParseException,IndexError): pass return loc, tokens def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "{" + _ustr(self.expr) + "}..." return self.strRepr def setResultsName( self, name, listAllMatches=False ): ret = super(OneOrMore,self).setResultsName(name,listAllMatches) ret.saveAsList = True return ret class _NullToken(object): def __bool__(self): return False __nonzero__ = __bool__ def __str__(self): return "" _optionalNotMatched = _NullToken() class Optional(ParseElementEnhance): """Optional matching of the given expression. A default return string can also be specified, if the optional expression is not found. """ def __init__( self, exprs, default=_optionalNotMatched ): super(Optional,self).__init__( exprs, savelist=False ) self.defaultValue = default self.mayReturnEmpty = True def parseImpl( self, instring, loc, doActions=True ): try: loc, tokens = self.expr._parse( instring, loc, doActions, callPreParse=False ) except (ParseException,IndexError): if self.defaultValue is not _optionalNotMatched: if self.expr.resultsName: tokens = ParseResults([ self.defaultValue ]) tokens[self.expr.resultsName] = self.defaultValue else: tokens = [ self.defaultValue ] else: tokens = [] return loc, tokens def __str__( self ): if hasattr(self,"name"): return self.name if self.strRepr is None: self.strRepr = "[" + _ustr(self.expr) + "]" return self.strRepr class SkipTo(ParseElementEnhance): """Token for skipping over all undefined text until the matched expression is found. If C{include} is set to true, the matched expression is also parsed (the skipped text and matched expression are returned as a 2-element list). The C{ignore} argument is used to define grammars (typically quoted strings and comments) that might contain false matches. """ def __init__( self, other, include=False, ignore=None, failOn=None ): super( SkipTo, self ).__init__( other ) self.ignoreExpr = ignore self.mayReturnEmpty = True self.mayIndexError = False self.includeMatch = include self.asList = False if failOn is not None and isinstance(failOn, basestring): self.failOn = Literal(failOn) else: self.failOn = failOn self.errmsg = "No match found for "+_ustr(self.expr) def parseImpl( self, instring, loc, doActions=True ): startLoc = loc instrlen = len(instring) expr = self.expr failParse = False while loc <= instrlen: try: if self.failOn: try: self.failOn.tryParse(instring, loc) except ParseBaseException: pass else: failParse = True raise ParseException(instring, loc, "Found expression " + str(self.failOn)) failParse = False if self.ignoreExpr is not None: while 1: try: loc = self.ignoreExpr.tryParse(instring,loc) # print "found ignoreExpr, advance to", loc except ParseBaseException: break expr._parse( instring, loc, doActions=False, callPreParse=False ) skipText = instring[startLoc:loc] if self.includeMatch: loc,mat = expr._parse(instring,loc,doActions,callPreParse=False) if mat: skipRes = ParseResults( skipText ) skipRes += mat return loc, [ skipRes ] else: return loc, [ skipText ] else: return loc, [ skipText ] except (ParseException,IndexError): if failParse: raise else: loc += 1 exc = self.myException exc.loc = loc exc.pstr = instring raise exc class Forward(ParseElementEnhance): """Forward declaration of an expression to be defined later - used for recursive grammars, such as algebraic infix notation. When the expression is known, it is assigned to the C{Forward} variable using the '<<' operator. Note: take care when assigning to C{Forward} not to overlook precedence of operators. Specifically, '|' has a lower precedence than '<<', so that:: fwdExpr << a | b | c will actually be evaluated as:: (fwdExpr << a) | b | c thereby leaving b and c out as parseable alternatives. It is recommended that you explicitly group the values inserted into the C{Forward}:: fwdExpr << (a | b | c) """ def __init__( self, other=None ): super(Forward,self).__init__( other, savelist=False ) def __lshift__( self, other ): if isinstance( other, basestring ): other = Literal(other) self.expr = other self.mayReturnEmpty = other.mayReturnEmpty self.strRepr = None self.mayIndexError = self.expr.mayIndexError self.mayReturnEmpty = self.expr.mayReturnEmpty self.setWhitespaceChars( self.expr.whiteChars ) self.skipWhitespace = self.expr.skipWhitespace self.saveAsList = self.expr.saveAsList self.ignoreExprs.extend(self.expr.ignoreExprs) return None def leaveWhitespace( self ): self.skipWhitespace = False return self def streamline( self ): if not self.streamlined: self.streamlined = True if self.expr is not None: self.expr.streamline() return self def validate( self, validateTrace=[] ): if self not in validateTrace: tmp = validateTrace[:]+[self] if self.expr is not None: self.expr.validate(tmp) self.checkRecursion([]) def __str__( self ): if hasattr(self,"name"): return self.name self._revertClass = self.__class__ self.__class__ = _ForwardNoRecurse try: if self.expr is not None: retString = _ustr(self.expr) else: retString = "None" finally: self.__class__ = self._revertClass return self.__class__.__name__ + ": " + retString def copy(self): if self.expr is not None: return super(Forward,self).copy() else: ret = Forward() ret << self return ret class _ForwardNoRecurse(Forward): def __str__( self ): return "..." class TokenConverter(ParseElementEnhance): """Abstract subclass of C{ParseExpression}, for converting parsed results.""" def __init__( self, expr, savelist=False ): super(TokenConverter,self).__init__( expr )#, savelist ) self.saveAsList = False class Upcase(TokenConverter): """Converter to upper case all matching tokens.""" def __init__(self, *args): super(Upcase,self).__init__(*args) warnings.warn("Upcase class is deprecated, use upcaseTokens parse action instead", DeprecationWarning,stacklevel=2) def postParse( self, instring, loc, tokenlist ): return list(map( string.upper, tokenlist )) class Combine(TokenConverter): """Converter to concatenate all matching tokens to a single string. By default, the matching patterns must also be contiguous in the input string; this can be disabled by specifying C{'adjacent=False'} in the constructor. """ def __init__( self, expr, joinString="", adjacent=True ): super(Combine,self).__init__( expr ) # suppress whitespace-stripping in contained parse expressions, but re-enable it on the Combine itself if adjacent: self.leaveWhitespace() self.adjacent = adjacent self.skipWhitespace = True self.joinString = joinString self.callPreparse = True def ignore( self, other ): if self.adjacent: ParserElement.ignore(self, other) else: super( Combine, self).ignore( other ) return self def postParse( self, instring, loc, tokenlist ): retToks = tokenlist.copy() del retToks[:] retToks += ParseResults([ "".join(tokenlist._asStringList(self.joinString)) ], modal=self.modalResults) if self.resultsName and len(retToks.keys())>0: return [ retToks ] else: return retToks class Group(TokenConverter): """Converter to return the matched tokens as a list - useful for returning tokens of C{ZeroOrMore} and C{OneOrMore} expressions.""" def __init__( self, expr ): super(Group,self).__init__( expr ) self.saveAsList = True def postParse( self, instring, loc, tokenlist ): return [ tokenlist ] class Dict(TokenConverter): """Converter to return a repetitive expression as a list, but also as a dictionary. Each element can also be referenced using the first token in the expression as its key. Useful for tabular report scraping when the first column can be used as a item key. """ def __init__( self, exprs ): super(Dict,self).__init__( exprs ) self.saveAsList = True def postParse( self, instring, loc, tokenlist ): for i,tok in enumerate(tokenlist): if len(tok) == 0: continue ikey = tok[0] if isinstance(ikey,int): ikey = _ustr(tok[0]).strip() if len(tok)==1: tokenlist[ikey] = _ParseResultsWithOffset("",i) elif len(tok)==2 and not isinstance(tok[1],ParseResults): tokenlist[ikey] = _ParseResultsWithOffset(tok[1],i) else: dictvalue = tok.copy() #ParseResults(i) del dictvalue[0] if len(dictvalue)!= 1 or (isinstance(dictvalue,ParseResults) and dictvalue.keys()): tokenlist[ikey] = _ParseResultsWithOffset(dictvalue,i) else: tokenlist[ikey] = _ParseResultsWithOffset(dictvalue[0],i) if self.resultsName: return [ tokenlist ] else: return tokenlist class Suppress(TokenConverter): """Converter for ignoring the results of a parsed expression.""" def postParse( self, instring, loc, tokenlist ): return [] def suppress( self ): return self class OnlyOnce(object): """Wrapper for parse actions, to ensure they are only called once.""" def __init__(self, methodCall): self.callable = _trim_arity(methodCall) self.called = False def __call__(self,s,l,t): if not self.called: results = self.callable(s,l,t) self.called = True return results raise ParseException(s,l,"") def reset(self): self.called = False def traceParseAction(f): """Decorator for debugging parse actions.""" f = _trim_arity(f) def z(*paArgs): thisFunc = f.func_name s,l,t = paArgs[-3:] if len(paArgs)>3: thisFunc = paArgs[0].__class__.__name__ + '.' + thisFunc sys.stderr.write( ">>entering %s(line: '%s', %d, %s)\n" % (thisFunc,line(l,s),l,t) ) try: ret = f(*paArgs) except Exception: exc = sys.exc_info()[1] sys.stderr.write( "<<leaving %s (exception: %s)\n" % (thisFunc,exc) ) raise sys.stderr.write( "<<leaving %s (ret: %s)\n" % (thisFunc,ret) ) return ret try: z.__name__ = f.__name__ except AttributeError: pass return z # # global helpers # def delimitedList( expr, delim=",", combine=False ): """Helper to define a delimited list of expressions - the delimiter defaults to ','. By default, the list elements and delimiters can have intervening whitespace, and comments, but this can be overridden by passing C{combine=True} in the constructor. If C{combine} is set to True, the matching tokens are returned as a single token string, with the delimiters included; otherwise, the matching tokens are returned as a list of tokens, with the delimiters suppressed. """ dlName = _ustr(expr)+" ["+_ustr(delim)+" "+_ustr(expr)+"]..." if combine: return Combine( expr + ZeroOrMore( delim + expr ) ).setName(dlName) else: return ( expr + ZeroOrMore( Suppress( delim ) + expr ) ).setName(dlName) def countedArray( expr, intExpr=None ): """Helper to define a counted list of expressions. This helper defines a pattern of the form:: integer expr expr expr... where the leading integer tells how many expr expressions follow. The matched tokens returns the array of expr tokens as a list - the leading count token is suppressed. """ arrayExpr = Forward() def countFieldParseAction(s,l,t): n = t[0] arrayExpr << (n and Group(And([expr]*n)) or Group(empty)) return [] if intExpr is None: intExpr = Word(nums).setParseAction(lambda t:int(t[0])) else: intExpr = intExpr.copy() intExpr.setName("arrayLen") intExpr.addParseAction(countFieldParseAction, callDuringTry=True) return ( intExpr + arrayExpr ) def _flatten(L): ret = [] for i in L: if isinstance(i,list): ret.extend(_flatten(i)) else: ret.append(i) return ret def matchPreviousLiteral(expr): """Helper to define an expression that is indirectly defined from the tokens matched in a previous expression, that is, it looks for a 'repeat' of a previous expression. For example:: first = Word(nums) second = matchPreviousLiteral(first) matchExpr = first + ":" + second will match C{"1:1"}, but not C{"1:2"}. Because this matches a previous literal, will also match the leading C{"1:1"} in C{"1:10"}. If this is not desired, use C{matchPreviousExpr}. Do *not* use with packrat parsing enabled. """ rep = Forward() def copyTokenToRepeater(s,l,t): if t: if len(t) == 1: rep << t[0] else: # flatten t tokens tflat = _flatten(t.asList()) rep << And( [ Literal(tt) for tt in tflat ] ) else: rep << Empty() expr.addParseAction(copyTokenToRepeater, callDuringTry=True) return rep def matchPreviousExpr(expr): """Helper to define an expression that is indirectly defined from the tokens matched in a previous expression, that is, it looks for a 'repeat' of a previous expression. For example:: first = Word(nums) second = matchPreviousExpr(first) matchExpr = first + ":" + second will match C{"1:1"}, but not C{"1:2"}. Because this matches by expressions, will *not* match the leading C{"1:1"} in C{"1:10"}; the expressions are evaluated first, and then compared, so C{"1"} is compared with C{"10"}. Do *not* use with packrat parsing enabled. """ rep = Forward() e2 = expr.copy() rep << e2 def copyTokenToRepeater(s,l,t): matchTokens = _flatten(t.asList()) def mustMatchTheseTokens(s,l,t): theseTokens = _flatten(t.asList()) if theseTokens != matchTokens: raise ParseException("",0,"") rep.setParseAction( mustMatchTheseTokens, callDuringTry=True ) expr.addParseAction(copyTokenToRepeater, callDuringTry=True) return rep def _escapeRegexRangeChars(s): #~ escape these chars: ^-] for c in r"\^-]": s = s.replace(c,_bslash+c) s = s.replace("\n",r"\n") s = s.replace("\t",r"\t") return _ustr(s) def oneOf( strs, caseless=False, useRegex=True ): """Helper to quickly define a set of alternative Literals, and makes sure to do longest-first testing when there is a conflict, regardless of the input order, but returns a C{MatchFirst} for best performance. Parameters: - strs - a string of space-delimited literals, or a list of string literals - caseless - (default=False) - treat all literals as caseless - useRegex - (default=True) - as an optimization, will generate a Regex object; otherwise, will generate a C{MatchFirst} object (if C{caseless=True}, or if creating a C{Regex} raises an exception) """ if caseless: isequal = ( lambda a,b: a.upper() == b.upper() ) masks = ( lambda a,b: b.upper().startswith(a.upper()) ) parseElementClass = CaselessLiteral else: isequal = ( lambda a,b: a == b ) masks = ( lambda a,b: b.startswith(a) ) parseElementClass = Literal if isinstance(strs,(list,tuple)): symbols = list(strs[:]) elif isinstance(strs,basestring): symbols = strs.split() else: warnings.warn("Invalid argument to oneOf, expected string or list", SyntaxWarning, stacklevel=2) i = 0 while i < len(symbols)-1: cur = symbols[i] for j,other in enumerate(symbols[i+1:]): if ( isequal(other, cur) ): del symbols[i+j+1] break elif ( masks(cur, other) ): del symbols[i+j+1] symbols.insert(i,other) cur = other break else: i += 1 if not caseless and useRegex: #~ print (strs,"->", "|".join( [ _escapeRegexChars(sym) for sym in symbols] )) try: if len(symbols)==len("".join(symbols)): return Regex( "[%s]" % "".join( [ _escapeRegexRangeChars(sym) for sym in symbols] ) ) else: return Regex( "|".join( [ re.escape(sym) for sym in symbols] ) ) except: warnings.warn("Exception creating Regex for oneOf, building MatchFirst", SyntaxWarning, stacklevel=2) # last resort, just use MatchFirst return MatchFirst( [ parseElementClass(sym) for sym in symbols ] ) def dictOf( key, value ): """Helper to easily and clearly define a dictionary by specifying the respective patterns for the key and value. Takes care of defining the C{Dict}, C{ZeroOrMore}, and C{Group} tokens in the proper order. The key pattern can include delimiting markers or punctuation, as long as they are suppressed, thereby leaving the significant key text. The value pattern can include named results, so that the C{Dict} results can include named token fields. """ return Dict( ZeroOrMore( Group ( key + value ) ) ) def originalTextFor(expr, asString=True): """Helper to return the original, untokenized text for a given expression. Useful to restore the parsed fields of an HTML start tag into the raw tag text itself, or to revert separate tokens with intervening whitespace back to the original matching input text. Simpler to use than the parse action C{L{keepOriginalText}}, and does not require the inspect module to chase up the call stack. By default, returns a string containing the original parsed text. If the optional C{asString} argument is passed as C{False}, then the return value is a C{ParseResults} containing any results names that were originally matched, and a single token containing the original matched text from the input string. So if the expression passed to C{L{originalTextFor}} contains expressions with defined results names, you must set C{asString} to C{False} if you want to preserve those results name values.""" locMarker = Empty().setParseAction(lambda s,loc,t: loc) endlocMarker = locMarker.copy() endlocMarker.callPreparse = False matchExpr = locMarker("_original_start") + expr + endlocMarker("_original_end") if asString: extractText = lambda s,l,t: s[t._original_start:t._original_end] else: def extractText(s,l,t): del t[:] t.insert(0, s[t._original_start:t._original_end]) del t["_original_start"] del t["_original_end"] matchExpr.setParseAction(extractText) return matchExpr def ungroup(expr): """Helper to undo pyparsing's default grouping of And expressions, even if all but one are non-empty.""" return TokenConverter(expr).setParseAction(lambda t:t[0]) # convenience constants for positional expressions empty = Empty().setName("empty") lineStart = LineStart().setName("lineStart") lineEnd = LineEnd().setName("lineEnd") stringStart = StringStart().setName("stringStart") stringEnd = StringEnd().setName("stringEnd") _escapedPunc = Word( _bslash, r"\[]-*.$+^?()~ ", exact=2 ).setParseAction(lambda s,l,t:t[0][1]) _printables_less_backslash = "".join([ c for c in printables if c not in r"\]" ]) _escapedHexChar = Regex(r"\\0?[xX][0-9a-fA-F]+").setParseAction(lambda s,l,t:unichr(int(t[0][1:],16))) _escapedOctChar = Regex(r"\\0[0-7]+").setParseAction(lambda s,l,t:unichr(int(t[0][1:],8))) _singleChar = _escapedPunc | _escapedHexChar | _escapedOctChar | Word(_printables_less_backslash,exact=1) _charRange = Group(_singleChar + Suppress("-") + _singleChar) _reBracketExpr = Literal("[") + Optional("^").setResultsName("negate") + Group( OneOrMore( _charRange | _singleChar ) ).setResultsName("body") + "]" _expanded = lambda p: (isinstance(p,ParseResults) and ''.join([ unichr(c) for c in range(ord(p[0]),ord(p[1])+1) ]) or p) def srange(s): r"""Helper to easily define string ranges for use in Word construction. Borrows syntax from regexp '[]' string range definitions:: srange("[0-9]") -> "0123456789" srange("[a-z]") -> "abcdefghijklmnopqrstuvwxyz" srange("[a-z$_]") -> "abcdefghijklmnopqrstuvwxyz$_" The input string must be enclosed in []'s, and the returned string is the expanded character set joined into a single string. The values enclosed in the []'s may be:: a single character an escaped character with a leading backslash (such as \- or \]) an escaped hex character with a leading '\x' (\x21, which is a '!' character) (\0x## is also supported for backwards compatibility) an escaped octal character with a leading '\0' (\041, which is a '!' character) a range of any of the above, separated by a dash ('a-z', etc.) any combination of the above ('aeiouy', 'a-zA-Z0-9_$', etc.) """ try: return "".join([_expanded(part) for part in _reBracketExpr.parseString(s).body]) except: return "" def matchOnlyAtCol(n): """Helper method for defining parse actions that require matching at a specific column in the input text. """ def verifyCol(strg,locn,toks): if col(locn,strg) != n: raise ParseException(strg,locn,"matched token not at column %d" % n) return verifyCol def replaceWith(replStr): """Helper method for common parse actions that simply return a literal value. Especially useful when used with C{transformString()}. """ def _replFunc(*args): return [replStr] return _replFunc def removeQuotes(s,l,t): """Helper parse action for removing quotation marks from parsed quoted strings. To use, add this parse action to quoted string using:: quotedString.setParseAction( removeQuotes ) """ return t[0][1:-1] def upcaseTokens(s,l,t): """Helper parse action to convert tokens to upper case.""" return [ tt.upper() for tt in map(_ustr,t) ] def downcaseTokens(s,l,t): """Helper parse action to convert tokens to lower case.""" return [ tt.lower() for tt in map(_ustr,t) ] def keepOriginalText(s,startLoc,t): """DEPRECATED - use new helper method C{originalTextFor}. Helper parse action to preserve original parsed text, overriding any nested parse actions.""" try: endloc = getTokensEndLoc() except ParseException: raise ParseFatalException("incorrect usage of keepOriginalText - may only be called as a parse action") del t[:] t += ParseResults(s[startLoc:endloc]) return t def getTokensEndLoc(): """Method to be called from within a parse action to determine the end location of the parsed tokens.""" import inspect fstack = inspect.stack() try: # search up the stack (through intervening argument normalizers) for correct calling routine for f in fstack[2:]: if f[3] == "_parseNoCache": endloc = f[0].f_locals["loc"] return endloc else: raise ParseFatalException("incorrect usage of getTokensEndLoc - may only be called from within a parse action") finally: del fstack def _makeTags(tagStr, xml): """Internal helper to construct opening and closing tag expressions, given a tag name""" if isinstance(tagStr,basestring): resname = tagStr tagStr = Keyword(tagStr, caseless=not xml) else: resname = tagStr.name tagAttrName = Word(alphas,alphanums+"_-:") if (xml): tagAttrValue = dblQuotedString.copy().setParseAction( removeQuotes ) openTag = Suppress("<") + tagStr("tag") + \ Dict(ZeroOrMore(Group( tagAttrName + Suppress("=") + tagAttrValue ))) + \ Optional("/",default=[False]).setResultsName("empty").setParseAction(lambda s,l,t:t[0]=='/') + Suppress(">") else: printablesLessRAbrack = "".join( [ c for c in printables if c not in ">" ] ) tagAttrValue = quotedString.copy().setParseAction( removeQuotes ) | Word(printablesLessRAbrack) openTag = Suppress("<") + tagStr("tag") + \ Dict(ZeroOrMore(Group( tagAttrName.setParseAction(downcaseTokens) + \ Optional( Suppress("=") + tagAttrValue ) ))) + \ Optional("/",default=[False]).setResultsName("empty").setParseAction(lambda s,l,t:t[0]=='/') + Suppress(">") closeTag = Combine(_L("</") + tagStr + ">") openTag = openTag.setResultsName("start"+"".join(resname.replace(":"," ").title().split())).setName("<%s>" % tagStr) closeTag = closeTag.setResultsName("end"+"".join(resname.replace(":"," ").title().split())).setName("</%s>" % tagStr) openTag.tag = resname closeTag.tag = resname return openTag, closeTag def makeHTMLTags(tagStr): """Helper to construct opening and closing tag expressions for HTML, given a tag name""" return _makeTags( tagStr, False ) def makeXMLTags(tagStr): """Helper to construct opening and closing tag expressions for XML, given a tag name""" return _makeTags( tagStr, True ) def withAttribute(*args,**attrDict): """Helper to create a validating parse action to be used with start tags created with C{makeXMLTags} or C{makeHTMLTags}. Use C{withAttribute} to qualify a starting tag with a required attribute value, to avoid false matches on common tags such as C{<TD>} or C{<DIV>}. Call C{withAttribute} with a series of attribute names and values. Specify the list of filter attributes names and values as: - keyword arguments, as in C{(align="right")}, or - as an explicit dict with C{**} operator, when an attribute name is also a Python reserved word, as in C{**{"class":"Customer", "align":"right"}} - a list of name-value tuples, as in ( ("ns1:class", "Customer"), ("ns2:align","right") ) For attribute names with a namespace prefix, you must use the second form. Attribute names are matched insensitive to upper/lower case. To verify that the attribute exists, but without specifying a value, pass C{withAttribute.ANY_VALUE} as the value. """ if args: attrs = args[:] else: attrs = attrDict.items() attrs = [(k,v) for k,v in attrs] def pa(s,l,tokens): for attrName,attrValue in attrs: if attrName not in tokens: raise ParseException(s,l,"no matching attribute " + attrName) if attrValue != withAttribute.ANY_VALUE and tokens[attrName] != attrValue: raise ParseException(s,l,"attribute '%s' has value '%s', must be '%s'" % (attrName, tokens[attrName], attrValue)) return pa withAttribute.ANY_VALUE = object() opAssoc = _Constants() opAssoc.LEFT = object() opAssoc.RIGHT = object() def operatorPrecedence( baseExpr, opList ): """Helper method for constructing grammars of expressions made up of operators working in a precedence hierarchy. Operators may be unary or binary, left- or right-associative. Parse actions can also be attached to operator expressions. Parameters: - baseExpr - expression representing the most basic element for the nested - opList - list of tuples, one for each operator precedence level in the expression grammar; each tuple is of the form (opExpr, numTerms, rightLeftAssoc, parseAction), where: - opExpr is the pyparsing expression for the operator; may also be a string, which will be converted to a Literal; if numTerms is 3, opExpr is a tuple of two expressions, for the two operators separating the 3 terms - numTerms is the number of terms for this operator (must be 1, 2, or 3) - rightLeftAssoc is the indicator whether the operator is right or left associative, using the pyparsing-defined constants opAssoc.RIGHT and opAssoc.LEFT. - parseAction is the parse action to be associated with expressions matching this operator expression (the parse action tuple member may be omitted) """ ret = Forward() lastExpr = baseExpr | ( Suppress('(') + ret + Suppress(')') ) for i,operDef in enumerate(opList): opExpr,arity,rightLeftAssoc,pa = (operDef + (None,))[:4] if arity == 3: if opExpr is None or len(opExpr) != 2: raise ValueError("if numterms=3, opExpr must be a tuple or list of two expressions") opExpr1, opExpr2 = opExpr thisExpr = Forward()#.setName("expr%d" % i) if rightLeftAssoc == opAssoc.LEFT: if arity == 1: matchExpr = FollowedBy(lastExpr + opExpr) + Group( lastExpr + OneOrMore( opExpr ) ) elif arity == 2: if opExpr is not None: matchExpr = FollowedBy(lastExpr + opExpr + lastExpr) + Group( lastExpr + OneOrMore( opExpr + lastExpr ) ) else: matchExpr = FollowedBy(lastExpr+lastExpr) + Group( lastExpr + OneOrMore(lastExpr) ) elif arity == 3: matchExpr = FollowedBy(lastExpr + opExpr1 + lastExpr + opExpr2 + lastExpr) + \ Group( lastExpr + opExpr1 + lastExpr + opExpr2 + lastExpr ) else: raise ValueError("operator must be unary (1), binary (2), or ternary (3)") elif rightLeftAssoc == opAssoc.RIGHT: if arity == 1: # try to avoid LR with this extra test if not isinstance(opExpr, Optional): opExpr = Optional(opExpr) matchExpr = FollowedBy(opExpr.expr + thisExpr) + Group( opExpr + thisExpr ) elif arity == 2: if opExpr is not None: matchExpr = FollowedBy(lastExpr + opExpr + thisExpr) + Group( lastExpr + OneOrMore( opExpr + thisExpr ) ) else: matchExpr = FollowedBy(lastExpr + thisExpr) + Group( lastExpr + OneOrMore( thisExpr ) ) elif arity == 3: matchExpr = FollowedBy(lastExpr + opExpr1 + thisExpr + opExpr2 + thisExpr) + \ Group( lastExpr + opExpr1 + thisExpr + opExpr2 + thisExpr ) else: raise ValueError("operator must be unary (1), binary (2), or ternary (3)") else: raise ValueError("operator must indicate right or left associativity") if pa: matchExpr.setParseAction( pa ) thisExpr << ( matchExpr | lastExpr ) lastExpr = thisExpr ret << lastExpr return ret dblQuotedString = Regex(r'"(?:[^"\n\r\\]|(?:"")|(?:\\x[0-9a-fA-F]+)|(?:\\.))*"').setName("string enclosed in double quotes") sglQuotedString = Regex(r"'(?:[^'\n\r\\]|(?:'')|(?:\\x[0-9a-fA-F]+)|(?:\\.))*'").setName("string enclosed in single quotes") quotedString = Regex(r'''(?:"(?:[^"\n\r\\]|(?:"")|(?:\\x[0-9a-fA-F]+)|(?:\\.))*")|(?:'(?:[^'\n\r\\]|(?:'')|(?:\\x[0-9a-fA-F]+)|(?:\\.))*')''').setName("quotedString using single or double quotes") unicodeString = Combine(_L('u') + quotedString.copy()) def nestedExpr(opener="(", closer=")", content=None, ignoreExpr=quotedString.copy()): """Helper method for defining nested lists enclosed in opening and closing delimiters ("(" and ")" are the default). Parameters: - opener - opening character for a nested list (default="("); can also be a pyparsing expression - closer - closing character for a nested list (default=")"); can also be a pyparsing expression - content - expression for items within the nested lists (default=None) - ignoreExpr - expression for ignoring opening and closing delimiters (default=quotedString) If an expression is not provided for the content argument, the nested expression will capture all whitespace-delimited content between delimiters as a list of separate values. Use the C{ignoreExpr} argument to define expressions that may contain opening or closing characters that should not be treated as opening or closing characters for nesting, such as quotedString or a comment expression. Specify multiple expressions using an C{L{Or}} or C{L{MatchFirst}}. The default is L{quotedString}, but if no expressions are to be ignored, then pass C{None} for this argument. """ if opener == closer: raise ValueError("opening and closing strings cannot be the same") if content is None: if isinstance(opener,basestring) and isinstance(closer,basestring): if len(opener) == 1 and len(closer)==1: if ignoreExpr is not None: content = (Combine(OneOrMore(~ignoreExpr + CharsNotIn(opener+closer+ParserElement.DEFAULT_WHITE_CHARS,exact=1)) ).setParseAction(lambda t:t[0].strip())) else: content = (empty.copy()+CharsNotIn(opener+closer+ParserElement.DEFAULT_WHITE_CHARS ).setParseAction(lambda t:t[0].strip())) else: if ignoreExpr is not None: content = (Combine(OneOrMore(~ignoreExpr + ~Literal(opener) + ~Literal(closer) + CharsNotIn(ParserElement.DEFAULT_WHITE_CHARS,exact=1)) ).setParseAction(lambda t:t[0].strip())) else: content = (Combine(OneOrMore(~Literal(opener) + ~Literal(closer) + CharsNotIn(ParserElement.DEFAULT_WHITE_CHARS,exact=1)) ).setParseAction(lambda t:t[0].strip())) else: raise ValueError("opening and closing arguments must be strings if no content expression is given") ret = Forward() if ignoreExpr is not None: ret << Group( Suppress(opener) + ZeroOrMore( ignoreExpr | ret | content ) + Suppress(closer) ) else: ret << Group( Suppress(opener) + ZeroOrMore( ret | content ) + Suppress(closer) ) return ret def indentedBlock(blockStatementExpr, indentStack, indent=True): """Helper method for defining space-delimited indentation blocks, such as those used to define block statements in Python source code. Parameters: - blockStatementExpr - expression defining syntax of statement that is repeated within the indented block - indentStack - list created by caller to manage indentation stack (multiple statementWithIndentedBlock expressions within a single grammar should share a common indentStack) - indent - boolean indicating whether block must be indented beyond the the current level; set to False for block of left-most statements (default=True) A valid block must contain at least one C{blockStatement}. """ def checkPeerIndent(s,l,t): if l >= len(s): return curCol = col(l,s) if curCol != indentStack[-1]: if curCol > indentStack[-1]: raise ParseFatalException(s,l,"illegal nesting") raise ParseException(s,l,"not a peer entry") def checkSubIndent(s,l,t): curCol = col(l,s) if curCol > indentStack[-1]: indentStack.append( curCol ) else: raise ParseException(s,l,"not a subentry") def checkUnindent(s,l,t): if l >= len(s): return curCol = col(l,s) if not(indentStack and curCol < indentStack[-1] and curCol <= indentStack[-2]): raise ParseException(s,l,"not an unindent") indentStack.pop() NL = OneOrMore(LineEnd().setWhitespaceChars("\t ").suppress()) INDENT = Empty() + Empty().setParseAction(checkSubIndent) PEER = Empty().setParseAction(checkPeerIndent) UNDENT = Empty().setParseAction(checkUnindent) if indent: smExpr = Group( Optional(NL) + #~ FollowedBy(blockStatementExpr) + INDENT + (OneOrMore( PEER + Group(blockStatementExpr) + Optional(NL) )) + UNDENT) else: smExpr = Group( Optional(NL) + (OneOrMore( PEER + Group(blockStatementExpr) + Optional(NL) )) ) blockStatementExpr.ignore(_bslash + LineEnd()) return smExpr alphas8bit = srange(r"[\0xc0-\0xd6\0xd8-\0xf6\0xf8-\0xff]") punc8bit = srange(r"[\0xa1-\0xbf\0xd7\0xf7]") anyOpenTag,anyCloseTag = makeHTMLTags(Word(alphas,alphanums+"_:")) commonHTMLEntity = Combine(_L("&") + oneOf("gt lt amp nbsp quot").setResultsName("entity") +";").streamline() _htmlEntityMap = dict(zip("gt lt amp nbsp quot".split(),'><& "')) replaceHTMLEntity = lambda t : t.entity in _htmlEntityMap and _htmlEntityMap[t.entity] or None # it's easy to get these comment structures wrong - they're very common, so may as well make them available cStyleComment = Regex(r"/\*(?:[^*]*\*+)+?/").setName("C style comment") htmlComment = Regex(r"<!--[\s\S]*?-->") restOfLine = Regex(r".*").leaveWhitespace() dblSlashComment = Regex(r"\/\/(\\\n|.)*").setName("// comment") cppStyleComment = Regex(r"/(?:\*(?:[^*]*\*+)+?/|/[^\n]*(?:\n[^\n]*)*?(?:(?<!\\)|\Z))").setName("C++ style comment") javaStyleComment = cppStyleComment pythonStyleComment = Regex(r"#.*").setName("Python style comment") _noncomma = "".join( [ c for c in printables if c != "," ] ) _commasepitem = Combine(OneOrMore(Word(_noncomma) + Optional( Word(" \t") + ~Literal(",") + ~LineEnd() ) ) ).streamline().setName("commaItem") commaSeparatedList = delimitedList( Optional( quotedString.copy() | _commasepitem, default="") ).setName("commaSeparatedList") if __name__ == "__main__": def test( teststring ): try: tokens = simpleSQL.parseString( teststring ) tokenlist = tokens.asList() print (teststring + "->" + str(tokenlist)) print ("tokens = " + str(tokens)) print ("tokens.columns = " + str(tokens.columns)) print ("tokens.tables = " + str(tokens.tables)) print (tokens.asXML("SQL",True)) except ParseBaseException: err = sys.exc_info()[1] print (teststring + "->") print (err.line) print (" "*(err.column-1) + "^") print (err) print() selectToken = CaselessLiteral( "select" ) fromToken = CaselessLiteral( "from" ) ident = Word( alphas, alphanums + "_$" ) columnName = delimitedList( ident, ".", combine=True ).setParseAction( upcaseTokens ) columnNameList = Group( delimitedList( columnName ) )#.setName("columns") tableName = delimitedList( ident, ".", combine=True ).setParseAction( upcaseTokens ) tableNameList = Group( delimitedList( tableName ) )#.setName("tables") simpleSQL = ( selectToken + \ ( '*' | columnNameList ).setResultsName( "columns" ) + \ fromToken + \ tableNameList.setResultsName( "tables" ) ) test( "SELECT * from XYZZY, ABC" ) test( "select * from SYS.XYZZY" ) test( "Select A from Sys.dual" ) test( "Select AA,BB,CC from Sys.dual" ) test( "Select A, B, C from Sys.dual" ) test( "Select A, B, C from Sys.dual" ) test( "Xelect A, B, C from Sys.dual" ) test( "Select A, B, C frox Sys.dual" ) test( "Select" ) test( "Select ^^^ frox Sys.dual" ) test( "Select A, B, C from Sys.dual, Table2 " )
40.448
196
0.588014
21231c3f6f54724b3ebc9dcd89ad41ad7121d9d8
14,463
py
Python
userbot/modules/stickers.py
Furuhashii/aone-kangbot
2732b66faf778771cff33f48a83ee0275d92c462
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/stickers.py
Furuhashii/aone-kangbot
2732b66faf778771cff33f48a83ee0275d92c462
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/stickers.py
Furuhashii/aone-kangbot
2732b66faf778771cff33f48a83ee0275d92c462
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2020-05-06T17:14:03.000Z
2020-05-06T17:14:03.000Z
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.c (the "License"); # you may not use this file except in compliance with the License. # """ Userbot module for kanging stickers or making new ones. Thanks @rupansh""" import io import math import urllib.request from os import remove from PIL import Image import random from telethon.tl.types import DocumentAttributeFilename, MessageMediaPhoto from userbot import bot, CMD_HELP from userbot.events import register from telethon.tl.functions.messages import GetStickerSetRequest from telethon.tl.types import InputStickerSetID from telethon.tl.types import DocumentAttributeSticker KANGING_STR = [ "Using Witchery to kang this sticker...", "Plagiarising hehe...", "Inviting this sticker over to my pack...", "Kanging this sticker...", "Hey that's a nice sticker!\nMind if I kang?!..", "hehe me stel ur stikér\nhehe.", "Ay look over there (☉。☉)!→\nWhile I kang this...", "Roses are red violets are blue, kanging this sticker so my pacc looks cool", "Imprisoning this sticker...", "Mr.Steal Your Sticker is stealing this sticker... ", ] @register(outgoing=True, pattern="^.kang") async def kang(args): """ For .kang command, kangs stickers or creates new ones. """ user = await bot.get_me() if not user.username: user.username = user.first_name message = await args.get_reply_message() photo = None emojibypass = False is_anim = False emoji = None if message and message.media: if isinstance(message.media, MessageMediaPhoto): await args.edit(f"`{random.choice(KANGING_STR)}`") photo = io.BytesIO() photo = await bot.download_media(message.photo, photo) elif "image" in message.media.document.mime_type.split('/'): await args.edit(f"`{random.choice(KANGING_STR)}`") photo = io.BytesIO() await bot.download_file(message.media.document, photo) if (DocumentAttributeFilename(file_name='sticker.webp') in message.media.document.attributes): emoji = message.media.document.attributes[1].alt emojibypass = True elif "tgsticker" in message.media.document.mime_type: await args.edit(f"`{random.choice(KANGING_STR)}`") await bot.download_file(message.media.document, 'AnimatedSticker.tgs') attributes = message.media.document.attributes for attribute in attributes: if isinstance(attribute, DocumentAttributeSticker): emoji = attribute.alt emojibypass = True is_anim = True photo = 1 else: return await args.edit("`Unsupported File!`") else: return await args.edit("`I can't kang that...`") if photo: splat = args.text.split() if not emojibypass: emoji = "🤔" pack = 1 if len(splat) == 3: pack = splat[2] # User sent both emoji = splat[1] elif len(splat) == 2: if splat[1].isnumeric(): # User wants to push into different pack, but is okay with # thonk as emote. pack = int(splat[1]) else: # User sent just custom emote, wants to push to default # pack emoji = splat[1] packname = f"a{user.id}_by_{user.username}_{pack}" packnick = f"@{user.username}'s kang pack Vol.{pack}" cmd = '/newpack' file = io.BytesIO() if not is_anim: image = await resize_photo(photo) file.name = "sticker.png" image.save(file, "PNG") else: packname += "_anim" packnick += " (Animated)" cmd = '/newanimated' response = urllib.request.urlopen( urllib.request.Request(f'http://t.me/addstickers/{packname}')) htmlstr = response.read().decode("utf8").split('\n') if " A <strong>Telegram</strong> user has created the <strong>Sticker&nbsp;Set</strong>." not in htmlstr: async with bot.conversation('Stickers') as conv: await conv.send_message('/addsticker') await conv.get_response() # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.send_message(packname) x = await conv.get_response() while "120" in x.text: pack += 1 packname = f"a{user.id}_by_{user.username}_{pack}" packnick = f"@{user.username}'s kang pack Vol.{pack}" await args.edit("`Switching to Pack " + str(pack) + " due to insufficient space`") await conv.send_message(packname) x = await conv.get_response() if x.text == "Invalid pack selected.": await conv.send_message(cmd) await conv.get_response() # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.send_message(packnick) await conv.get_response() # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) if is_anim: await conv.send_file('AnimatedSticker.tgs') remove('AnimatedSticker.tgs') else: file.seek(0) await conv.send_file(file, force_document=True) await conv.get_response() await conv.send_message(emoji) # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.get_response() await conv.send_message("/publish") if is_anim: await conv.get_response() await conv.send_message(f"<{packnick}>") # Ensure user doesn't get spamming notifications await conv.get_response() await bot.send_read_acknowledge(conv.chat_id) await conv.send_message("/skip") # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.get_response() await conv.send_message(packname) # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.get_response() # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) return await args.edit( "`Sticker added in a Different Pack !" "\nThis Pack is Newly created!" f"\nYour pack can be found [here](t.me/addstickers/{packname})", parse_mode='md') if is_anim: await conv.send_file('AnimatedSticker.tgs') remove('AnimatedSticker.tgs') else: file.seek(0) await conv.send_file(file, force_document=True) rsp = await conv.get_response() if "Sorry, the file type is invalid." in rsp.text: return await args.edit( "`Failed to add sticker, use` @Stickers `bot to add the sticker manually.`" ) await conv.send_message(emoji) # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.get_response() await conv.send_message('/done') await conv.get_response() # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) else: await args.edit("`Brewing a new Pack...`") async with bot.conversation('Stickers') as conv: await conv.send_message(cmd) await conv.get_response() # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.send_message(packnick) await conv.get_response() # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) if is_anim: await conv.send_file('AnimatedSticker.tgs') remove('AnimatedSticker.tgs') else: file.seek(0) await conv.send_file(file, force_document=True) rsp = await conv.get_response() if "Sorry, the file type is invalid." in rsp.text: return await args.edit( "`Failed to add sticker, use` @Stickers `bot to add the sticker manually.`" ) await conv.send_message(emoji) # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.get_response() await conv.send_message("/publish") if is_anim: await conv.get_response() await conv.send_message(f"<{packnick}>") # Ensure user doesn't get spamming notifications await conv.get_response() await bot.send_read_acknowledge(conv.chat_id) await conv.send_message("/skip") # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.get_response() await conv.send_message(packname) # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await conv.get_response() # Ensure user doesn't get spamming notifications await bot.send_read_acknowledge(conv.chat_id) await args.edit( "`Sticker kanged successfully!`" f"\nPack can be found [here](t.me/addstickers/{packname})", parse_mode='md') async def resize_photo(photo): """ Resize the given photo to 512x512 """ image = Image.open(photo) if (image.width and image.height) < 512: size1 = image.width size2 = image.height if size1 > size2: scale = 512 / size1 size1new = 512 size2new = size2 * scale else: scale = 512 / size2 size1new = size1 * scale size2new = 512 size1new = math.floor(size1new) size2new = math.floor(size2new) sizenew = (size1new, size2new) image = image.resize(sizenew) else: maxsize = (512, 512) image.thumbnail(maxsize) return image @register(outgoing=True, pattern="^.stkrinfo$") async def get_pack_info(event): if not event.is_reply: return await event.edit("`I can't fetch info from nothing, can I ?!`") rep_msg = await event.get_reply_message() if not rep_msg.document: return await event.edit("`Reply to a sticker to get the pack details`") try: stickerset_attr = rep_msg.document.attributes[1] await event.edit( "`Fetching details of the sticker pack, please wait..`") except BaseException: return await event.edit("`This is not a sticker. Reply to a sticker.`") if not isinstance(stickerset_attr, DocumentAttributeSticker): return await event.edit("`This is not a sticker. Reply to a sticker.`") get_stickerset = await bot( GetStickerSetRequest( InputStickerSetID( id=stickerset_attr.stickerset.id, access_hash=stickerset_attr.stickerset.access_hash))) pack_emojis = [] for document_sticker in get_stickerset.packs: if document_sticker.emoticon not in pack_emojis: pack_emojis.append(document_sticker.emoticon) OUTPUT = ( f"**Sticker Title:** `{get_stickerset.set.title}\n`" f"**Sticker Short Name:** `{get_stickerset.set.short_name}`\n" f"**Official:** `{get_stickerset.set.official}`\n" f"**Archived:** `{get_stickerset.set.archived}`\n" f"**Stickers In Pack:** `{len(get_stickerset.packs)}`\n" f"**Emojis In Pack:**\n{' '.join(pack_emojis)}" ) await event.edit(OUTPUT) @register(outgoing=True, pattern="^.getsticker$") async def sticker_to_png(sticker): if not sticker.is_reply: await sticker.edit("`NULL information to feftch...`") return False img = await sticker.get_reply_message() if not img.document: await sticker.edit("`Reply to a sticker...`") return False await sticker.edit("`Converting...`") image = io.BytesIO() await sticker.client.download_media(img, image) image.name = 'sticker.png' image.seek(0) await sticker.client.send_file( sticker.chat_id, image, reply_to=img.id, force_document=True) await sticker.delete() return CMD_HELP.update({ "stickers": ">`.kang [emoji('s)]?`" "\nUsage: Reply .kang to a sticker or an image to kang it to your userbot pack " "\nor specify the emoji you want to." "\n\n>`.kang (emoji['s]]?` [number]?" "\nUsage: Kang's the sticker/image to the specified pack but uses 🤔 as emoji " "or choose the emoji you want to." "\n\n>`.stkrinfo`" "\nUsage: Gets info about the sticker pack." "\n\n>`.getsticker`" "\nUsage: reply to a sticker to get 'PNG' file of sticker." })
42.289474
114
0.566618
5761ac2c4a24737674df47d16022385b64e6ba53
6,404
py
Python
gtp_extensions.py
awesome-archive/minigo
188fb197fdafbe9664a32142373b1cbd1459bc67
[ "Apache-2.0" ]
null
null
null
gtp_extensions.py
awesome-archive/minigo
188fb197fdafbe9664a32142373b1cbd1459bc67
[ "Apache-2.0" ]
null
null
null
gtp_extensions.py
awesome-archive/minigo
188fb197fdafbe9664a32142373b1cbd1459bc67
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # extends gtp.py import gtp import sys import sgf_wrapper import itertools import go import coords def parse_message(message): message = gtp.pre_engine(message).strip() first, rest = (message.split(" ", 1) + [None])[:2] if first.isdigit(): message_id = int(first) if rest is not None: command, arguments = (rest.split(" ", 1) + [None])[:2] else: command, arguments = None, None else: message_id = None command, arguments = first, rest command = command.replace("-", "_") # for kgs extensions. return message_id, command, arguments class KgsExtensionsMixin(gtp.Engine): def __init__(self, game_obj, name="gtp (python, kgs-chat extensions)", version="0.1"): super().__init__(game_obj=game_obj, name=name, version=version) self.known_commands += ["kgs-chat"] def send(self, message): message_id, command, arguments = parse_message(message) if command in self.known_commands: try: retval = getattr(self, "cmd_" + command)(arguments) response = gtp.format_success(message_id, retval) sys.stderr.flush() return response except ValueError as exception: return gtp.format_error(message_id, exception.args[0]) else: return gtp.format_error(message_id, "unknown command: " + command) # Nice to implement this, as KGS sends it each move. def cmd_time_left(self, arguments): pass def cmd_showboard(self, arguments): return self._game.showboard() def cmd_kgs_chat(self, arguments): try: msg_type, sender, *text = arguments.split() text = " ".join(text) except ValueError: return "Unparseable message, args: %r" % arguments return self._game.chat(msg_type, sender, text) class RegressionsMixin(gtp.Engine): def cmd_loadsgf(self, arguments): args = arguments.split() if len(args) == 2: file_, movenum = args movenum = int(movenum) print("movenum =", movenum, file=sys.stderr) else: file_ = args[0] movenum = None try: with open(file_, 'r') as f: contents = f.read() except: raise ValueError("Unreadable file: " + file_) try: # This is kinda bad, because replay_sgf is already calling # 'play move' on its internal position objects, but we really # want to advance the engine along with us rather than try to # push in some finished Position object. for idx, p in enumerate(sgf_wrapper.replay_sgf(contents)): print("playing #", idx, p.next_move, file=sys.stderr) self._game.play_move(p.next_move) if movenum and idx == movenum: break except: raise # Should this class blatantly reach into the game_obj and frob its tree? Sure! # What are private members? Python lets you do *anything!* class GoGuiMixin(gtp.Engine): """ GTP extensions of 'analysis commands' for gogui. We reach into the game_obj (an instance of the players in strategies.py), and extract stuff from its root nodes, etc. These could be extracted into methods on the Player object, but its a little weird to do that on a Player, which doesn't really care about GTP commands, etc. So instead, we just violate encapsulation a bit... Suggestions welcome :) """ def __init__(self, game_obj, name="gtp (python, gogui extensions)", version="0.1"): super().__init__(game_obj=game_obj, name=name, version=version) self.known_commands += ["gogui-analyze_commands"] def cmd_gogui_analyze_commands(self, arguments): return "\n".join(["var/Most Read Variation/nextplay", "var/Think a spell/spin", "pspairs/Visit Heatmap/visit_heatmap", "pspairs/Q Heatmap/q_heatmap"]) def cmd_nextplay(self, arguments): return self._game.root.mvp_gg() def cmd_visit_heatmap(self, arguments): sort_order = list(range(self._game.size * self._game.size + 1)) sort_order.sort(key=lambda i: self._game.root.child_N[i], reverse=True) return self.heatmap(sort_order, self._game.root, 'child_N') def cmd_q_heatmap(self, arguments): sort_order = list(range(self._game.size * self._game.size + 1)) reverse = True if self._game.root.position.to_play is go.BLACK else False sort_order.sort(key=lambda i: self._game.root.child_Q[i], reverse=reverse) return self.heatmap(sort_order, self._game.root, 'child_Q') def heatmap(self, sort_order, node, prop): return "\n".join(["{!s:6} {}".format( coords.to_human_coord(coords.unflatten_coords(key)), node.__dict__.get(prop)[key]) for key in sort_order if node.child_N[key] > 0][:20]) def cmd_spin(self, arguments): for i in range(50): for j in range(100): self._game.tree_search() moves = self.cmd_nextplay(None).lower() moves = moves.split() colors = "bw" if self._game.root.position.to_play is go.BLACK else "wb" moves_cols = " ".join(['{} {}'.format(*z) for z in zip(itertools.cycle(colors), moves)]) print("gogui-gfx: TEXT", "{:.3f} after {}".format(self._game.root.Q, self._game.root.N), file=sys.stderr, flush=True) print("gogui-gfx: VAR", moves_cols, file=sys.stderr, flush=True) return self.cmd_nextplay(None) class GTPDeluxe(KgsExtensionsMixin, RegressionsMixin, GoGuiMixin): pass
40.27673
129
0.62539
266389ce1d217230e40fdfefa2446c07d0d18a8e
3,086
py
Python
deepcell_datasets/conftest.py
vanvalenlab/deepcell-datasets
aadd709b2bc13e1de57add5226e4d2abbeb21362
[ "Apache-2.0" ]
null
null
null
deepcell_datasets/conftest.py
vanvalenlab/deepcell-datasets
aadd709b2bc13e1de57add5226e4d2abbeb21362
[ "Apache-2.0" ]
5
2021-03-19T18:43:46.000Z
2022-02-28T02:34:03.000Z
deepcell_datasets/conftest.py
vanvalenlab/deepcell-datasets
aadd709b2bc13e1de57add5226e4d2abbeb21362
[ "Apache-2.0" ]
null
null
null
# Copyright 2016-2020 The Van Valen Lab at the California Institute of # Technology (Caltech), with support from the Paul Allen Family Foundation, # Google, & National Institutes of Health (NIH) under Grant U24CA224309-01. # All rights reserved. # # Licensed under a modified Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.github.com/vanvalenlab/deepcell-datasets/LICENSE # # The Work provided may be used for non-commercial academic purposes only. # For any other use of the Work, including commercial use, please contact: # vanvalenlab@gmail.com # # Neither the name of Caltech nor the names of its contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the General Blueprint.""" import random from flask_security import hash_password from mongoengine import connect, disconnect import pytest from deepcell_datasets.database import models from deepcell_datasets import create_app @pytest.fixture def app(): """set up and tear down a test application""" disconnect() # TODO: why do we need to call this? connect('mongoenginetest', host='mongomock://localhost') mongo_settings = { 'DB': 'mongoenginetest', 'HOST': 'mongomock://localhost', # 'PORT': 27017, 'alias': 'testdb' } yield create_app( MONGODB_SETTINGS=mongo_settings, TESTING=True, WTF_CSRF_ENABLED=False, ADMIN_EMAIL='admin@me.com', ADMIN_PASSWORD='password', ) disconnect() @pytest.fixture() def mongodb(): disconnect() # TODO: why do we need to call this? db = connect('mongoenginetest', host='mongomock://localhost') yield db disconnect() @pytest.fixture() def sample(mongodb, experiment): session = random.randint(1, 9999) position = random.randint(1, 9999) spatial_dim = random.choice(['2d', '3d']) kinetics = random.choice(['static', 'dynamic']) sample = models.Samples(session=session, position=position, spatial_dim=spatial_dim, kinetics=kinetics, experiment=experiment.id) sample.save() yield sample sample.delete() @pytest.fixture() def experiment(mongodb): doi = 'a specific DOI number' created_by = models.Users( first_name='first', last_name='last', facility='test facility' ) created_by.save() experiment = models.Experiments(doi=doi, created_by=created_by) experiment.save() yield experiment experiment.delete()
29.961165
80
0.680169
1be6f53339dcf0a50c440909896dbeaf1f779acf
261
py
Python
World 3/Exercise 114.py
NikiReis/Python--Exercises
2f50a3cd6900cec024edcf1a812d1cd86afcdea1
[ "MIT" ]
null
null
null
World 3/Exercise 114.py
NikiReis/Python--Exercises
2f50a3cd6900cec024edcf1a812d1cd86afcdea1
[ "MIT" ]
null
null
null
World 3/Exercise 114.py
NikiReis/Python--Exercises
2f50a3cd6900cec024edcf1a812d1cd86afcdea1
[ "MIT" ]
null
null
null
import urllib import urllib.request try: site = urllib.request.urlopen('https://www.python.org/') except urllib.error.URLError: print('O site não está disponível para ser acessado!') else: print('O site está disponível para ser acessado!')
29
61
0.708812
294810aedac3ebcfb07a7fc6e47737e53d420602
1,378
py
Python
gcd/bus.py
bthate/genocide
8de7a2cccee7315ae6cf5661738ba1335e30a5ba
[ "DOC" ]
null
null
null
gcd/bus.py
bthate/genocide
8de7a2cccee7315ae6cf5661738ba1335e30a5ba
[ "DOC" ]
null
null
null
gcd/bus.py
bthate/genocide
8de7a2cccee7315ae6cf5661738ba1335e30a5ba
[ "DOC" ]
null
null
null
# This file is placed in the Public Domain. from .obj import Object class BusError(Exception): pass class Bus(Object): objs = [] def __iter__(self): return iter(Bus.objs) @staticmethod def add(obj): if obj not in Bus.objs: Bus.objs.append(obj) @staticmethod def announce(txt): for h in Bus.objs: if "announce" in dir(h): h.announce(txt) @staticmethod def byorig(orig): for o in Bus.objs: if o.__oqn__() == orig: return o raise BusError(orig) @staticmethod def byfd(fd): for o in Bus.objs: if o.fd and o.fd == fd: return o return None @staticmethod def bytype(typ): for o in Bus.objs: if isinstance(o, typ): return o return None @staticmethod def first(otype=None): if Bus.objs: if not otype: return Bus.objs[0] for o in Bus.objs: if otype in str(type(o)): return o return None @staticmethod def resume(): for o in Bus.objs: o.resume() @staticmethod def say(orig, channel, txt): for o in Bus.objs: if o.__oqn__() == orig: o.say(channel, txt)
19.408451
43
0.49492
61dd7e4005f58f895c0e3be78e928704c2d8da1e
7,678
py
Python
my_configs/fast_rcnn/fast_demo.py
EtokonE/mmdetection
1d7b0dcf3ff0cdc0d5142ea3bee1a4c0040408a0
[ "Apache-2.0" ]
null
null
null
my_configs/fast_rcnn/fast_demo.py
EtokonE/mmdetection
1d7b0dcf3ff0cdc0d5142ea3bee1a4c0040408a0
[ "Apache-2.0" ]
null
null
null
my_configs/fast_rcnn/fast_demo.py
EtokonE/mmdetection
1d7b0dcf3ff0cdc0d5142ea3bee1a4c0040408a0
[ "Apache-2.0" ]
1
2021-07-16T06:47:17.000Z
2021-07-16T06:47:17.000Z
model = dict( type='FastRCNN', pretrained='open-mmlab://detectron2/resnet101_caffe', backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), train_cfg=dict( rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))) dataset_type = 'MyDataset' data_root = '/home/user/Documents/Kalinin/Data/full_data/' classes = ['drone'] img_norm_cfg = dict( mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=2000), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['proposals']), dict( type='ToDataContainer', fields=[dict(key='proposals', stack=False)]), dict(type='Collect', keys=['img', 'proposals']) ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'ch02_20200605121548-part 00000.json', img_prefix=data_root, pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=2000), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']) ], #proposal_file='data/coco/proposals/rpn_r50_fpn_1x_train2017.pkl'), val=dict( type=dataset_type, ann_file=data_root + 'ch01_20200605121410-part 00000.json', img_prefix=data_root, pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['proposals']), dict( type='ToDataContainer', fields=[dict(key='proposals', stack=False)]), dict(type='Collect', keys=['img', 'proposals']) ]) ], #proposal_file='data/coco/proposals/rpn_r50_fpn_1x_val2017.pkl'), test=dict( type=dataset_type, ann_file=data_root + 'ch02_20200605114152-part 00000.json', img_prefix=data_root, pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['proposals']), dict( type='ToDataContainer', fields=[dict(key='proposals', stack=False)]), dict(type='Collect', keys=['img', 'proposals']) ]) ], #proposal_file='data/coco/proposals/rpn_r50_fpn_1x_val2017.pkl')) evaluation = dict(interval=1, metric='mAP') optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12) checkpoint_config = dict(interval=1) log_config = dict(interval=1, hooks=[dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook')]) custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] work_dir = './experiment/fast_rcnn'
37.091787
102
0.525527
9f9fc72d4466b6882677958b4101597bebcf6404
1,698
py
Python
example/utils.py
marknotfound/django-su
af989d8872a7add40eb1ec33a43a661f6429ea47
[ "MIT" ]
123
2015-01-06T00:38:04.000Z
2022-02-02T10:50:12.000Z
example/utils.py
marknotfound/django-su
af989d8872a7add40eb1ec33a43a661f6429ea47
[ "MIT" ]
42
2015-02-19T20:22:28.000Z
2022-03-30T14:11:21.000Z
example/utils.py
marknotfound/django-su
af989d8872a7add40eb1ec33a43a661f6429ea47
[ "MIT" ]
34
2015-06-15T22:24:00.000Z
2022-02-02T10:50:13.000Z
# -*- coding: utf-8 -*- from django.contrib.auth import SESSION_KEY, BACKEND_SESSION_KEY, get_user_model try: from django.contrib.auth import HASH_SESSION_KEY except ImportError: HASH_SESSION_KEY = '_auth_user_hash' User = get_user_model() def su_login_callback(user): if user.is_active and user.is_staff: return True return user.has_perm('auth.change_user') def _get_user_session_key(request): # This value in the session is always serialized to a string, so we need # to convert it back to Python whenever we access it. return User._meta.pk.to_python(request.session[SESSION_KEY]) def custom_login(request, user): session_auth_hash = '' if user is None: user = request.user if hasattr(user, 'get_session_auth_hash'): session_auth_hash = user.get_session_auth_hash() if SESSION_KEY in request.session: if _get_user_session_key(request) != user.pk or ( session_auth_hash and request.session.get(HASH_SESSION_KEY) != session_auth_hash): # To avoid reusing another user's session, create a new, empty # session if the existing session corresponds to a different # authenticated user. request.session.flush() else: request.session.cycle_key() request.session[SESSION_KEY] = user._meta.pk.value_to_string(user) request.session[BACKEND_SESSION_KEY] = user.backend request.session[HASH_SESSION_KEY] = session_auth_hash if hasattr(request, 'user'): request.user = user try: from django.middleware.csrf import rotate_token rotate_token(request) except ImportError: pass
31.444444
80
0.694346
1df97bc96c54cddbc16ffc293c707555da259a42
511
py
Python
tools/build/test/example_libraries.py
lijgame/boost
ec2214a19cdddd1048058321a8105dd0231dac47
[ "BSL-1.0" ]
85
2015-02-08T20:36:17.000Z
2021-11-14T20:38:31.000Z
libs/boost/tools/build/test/example_libraries.py
flingone/frameworks_base_cmds_remoted
4509d9f0468137ed7fd8d100179160d167e7d943
[ "Apache-2.0" ]
9
2015-01-28T16:33:19.000Z
2020-04-12T23:03:28.000Z
libs/boost/tools/build/test/example_libraries.py
flingone/frameworks_base_cmds_remoted
4509d9f0468137ed7fd8d100179160d167e7d943
[ "Apache-2.0" ]
27
2015-01-28T16:33:30.000Z
2021-08-12T05:04:39.000Z
#!/usr/bin/python # Copyright (C) Vladimir Prus 2006. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) # Test the 'libraries' example. import BoostBuild t = BoostBuild.Tester(use_test_config=False) t.set_tree("../example/libraries") t.run_build_system() t.expect_addition(["app/bin/$toolset/debug/app.exe", "util/foo/bin/$toolset/debug/bar.dll"]) t.cleanup()
23.227273
66
0.684932
abb75434a2349be8190271481222c1b3f5c00420
2,472
py
Python
genesis/length_scales/model_fitting/exponential_fit.py
leifdenby/uclales-extractor
6147533e25b3b417c744bd814d2407a6588cf995
[ "BSD-3-Clause" ]
null
null
null
genesis/length_scales/model_fitting/exponential_fit.py
leifdenby/uclales-extractor
6147533e25b3b417c744bd814d2407a6588cf995
[ "BSD-3-Clause" ]
null
null
null
genesis/length_scales/model_fitting/exponential_fit.py
leifdenby/uclales-extractor
6147533e25b3b417c744bd814d2407a6588cf995
[ "BSD-3-Clause" ]
null
null
null
import xarray as xr import numpy as np import matplotlib.pyplot as plt from .pystan_cache import StanModel_cache from .utils import dist_plot SM_CODE = """ data { int<lower=1> n; real x[n]; } parameters { real<lower=0> beta; } model { x ~ exponential(1.0/beta); } """ def _sample_exp(Ntot, vrange, beta): vmin, vmax = vrange # alpha = Ntot / (beta * (np.exp(-vmin / beta) - np.exp(-vmax / beta))) x = np.random.exponential(scale=beta, size=Ntot) return x def _fit_exp(v_data, debug=False): sm = StanModel_cache(model_code=SM_CODE) fit = sm.sampling(data=dict(x=v_data, n=len(v_data))) beta = fit["beta"] if debug: plt.hist(beta) print(fit) print(np.mean(beta), np.std(beta)) return beta def fit(da_v, dv=None, plot_to=None, debug=False, plot_components="default"): """ Fit an exponential model to da_v, returns the mean and std div of beta the scale parameter of the distribution """ # remove all nans and infs v_data = da_v v_data = v_data[~np.logical_or(np.isnan(v_data), np.isinf(v_data))] # only fit from the minimum limit, otherwise we'll be fitting from v=0 # where aren't any objects vmin_fit = v_data.min().values vrange_fit = (vmin_fit, np.max(v_data).values) beta = _fit_exp(v_data[v_data > vmin_fit] - vmin_fit, debug=debug) if plot_to is not None: axes = None if isinstance(plot_to, np.ndarray) and isinstance(plot_to[0], plt.Axes): axes = plot_to log_dists = False fig, axes = dist_plot( v_data, dv_bin=dv, axes=axes, fit=("exp", (np.mean(beta), np.std(beta)), vrange_fit), log_dists=log_dists, components=plot_components, ) v_sample = vmin_fit + _sample_exp(len(v_data), vrange_fit, np.mean(beta)) dist_plot( v_sample, dv_bin=dv, axes=axes, alpha=0.6, log_dists=log_dists, components=plot_components, ) fig.legend(axes[-1].get_lines(), ["data", "model"], loc="lower left") return xr.DataArray.from_dict( dict( dims="part", coords=dict(part=dict(dims="part", data=np.array(["mean", "std"]))), data=[np.mean(beta), np.std(beta)], attrs=da_v.attrs, name=da_v.name, ) ) return np.mean(beta), np.std(beta)
27.164835
81
0.591019
cf89b0ffd4fa78a2f8d4f00d1efe7329878be7ed
1,716
py
Python
scripts/cms_user_adder.py
ryanking13/cms-guide
d64b0dff3ca4c70abed44f23908fa660a33644d7
[ "MIT" ]
3
2017-11-02T06:03:33.000Z
2019-09-10T08:56:23.000Z
scripts/cms_user_adder.py
ryanking13/cms-guide
d64b0dff3ca4c70abed44f23908fa660a33644d7
[ "MIT" ]
null
null
null
scripts/cms_user_adder.py
ryanking13/cms-guide
d64b0dff3ca4c70abed44f23908fa660a33644d7
[ "MIT" ]
null
null
null
from subprocess import call import sys import random import hashlib def parse_info(info): # this function must return an array of dictionary. # each element should have username, password, first_name, last_name ''' # PARSING SAMPLE # YOU SHOULD IMPLEMNET THIS BY USERSELF data = [] cnt = 1 for row in info: r = row.strip().split() pw = hashlib.md5(str(random.random()).encode()).hexdigest() d = { 'username': r[0], 'password': pw, 'first_name': r[1], 'last_name': r[2], } data.append(d) cnt += 1 return data ''' return [ { 'username': 'iam', 'password': 'mr', 'first_name': 'Donald', 'last_name': 'Trump', } ] def main(): if len(sys.argv) < 2: print("[*] Usage : python %s <user info file>" % sys.argv[0]) exit() user_info_file = sys.argv[1] users = open(user_info_file, 'r').readlines() user_info = parse_info(users) login_info = ['Username,Password'] for info in user_info: # $ cmsAddUser <first name> <last name> <username> -p <password> call(['cmsAddUser', info['first_name'], info['last_name'], info['username'], '-p', info['password']]) # user login info login_info.append('%s,%s' % (info['username'], info['password'])) # saves user login info in csv format login_info_file = 'login_info.csv' with open(login_info_file, 'w') as f: for info in login_info: f.write(info + '\n') print('[+] Done Adding user, file saved') if __name__ == '__main__': main()
21.721519
84
0.543124
082a4a362429acf4124219d990480395b61a1aae
9,092
py
Python
lambda_ecs_draining/lambda/source/index.py
MakeMeReach/terraform-aws-ecs
457b17c1f5bb5a14b903c85d2f8901c84e7c5bf0
[ "MIT" ]
2
2018-06-06T09:44:03.000Z
2021-02-01T12:42:11.000Z
lambda_ecs_draining/lambda/source/index.py
MakeMeReach/terraform-aws-ecs
457b17c1f5bb5a14b903c85d2f8901c84e7c5bf0
[ "MIT" ]
null
null
null
lambda_ecs_draining/lambda/source/index.py
MakeMeReach/terraform-aws-ecs
457b17c1f5bb5a14b903c85d2f8901c84e7c5bf0
[ "MIT" ]
1
2021-09-24T13:21:08.000Z
2021-09-24T13:21:08.000Z
from __future__ import print_function import boto3 from urlparse import urlparse import base64 import json import datetime import time import logging logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.DEBUG) # Establish boto3 session session = boto3.session.Session() logger.debug("Session is in region %s ", session.region_name) ec2Client = session.client(service_name='ec2') ecsClient = session.client(service_name='ecs') asgClient = session.client('autoscaling') snsClient = session.client('sns') lambdaClient = session.client('lambda') """Publish SNS message to trigger lambda again. :param message: To repost the complete original message received when ASG terminating event was received. :param topicARN: SNS topic to publish the message to. """ def publishToSNS(message, topicARN): logger.info("Publish to SNS topic %s",topicARN) snsResponse = snsClient.publish( TopicArn=topicARN, Message=json.dumps(message), Subject='Publishing SNS message to invoke lambda again..' ) return "published" """Check task status on the ECS container instance ID. :param Ec2InstanceId: The EC2 instance ID is used to identify the cluster, container instances in cluster """ def checkContainerInstanceTaskStatus(Ec2InstanceId, clusterListResp): containerInstanceId = None clusterName = None tmpMsgAppend = None # Describe instance attributes and get the Clustername from userdata section which would have set ECS_CLUSTER name ec2Resp = ec2Client.describe_instance_attribute(InstanceId=Ec2InstanceId, Attribute='userData') userdataEncoded = ec2Resp['UserData'] userdataDecoded = base64.b64decode(userdataEncoded['Value']) logger.debug("Describe instance attributes response %s", ec2Resp) tmpList = userdataDecoded.split() for token in tmpList: if token.find("ECS_CLUSTER") > -1: # Split and get the cluster name clusterName = token.split('=')[1].replace("'", "") logger.info("Cluster name %s",clusterName) # Get list of container instance IDs from the clusterName paginator = ecsClient.get_paginator('list_container_instances') clusterListPages = paginator.paginate(cluster=clusterName) for containerListResp in clusterListPages: containerDetResp = ecsClient.describe_container_instances(cluster=clusterName, containerInstances=clusterListResp[ 'containerInstanceArns']) logger.debug("describe container instances response %s",containerDetResp) for containerInstances in containerDetResp['containerInstances']: logger.debug("Container Instance ARN: %s and ec2 Instance ID %s",containerInstances['containerInstanceArn'], containerInstances['ec2InstanceId']) if containerInstances['ec2InstanceId'] == Ec2InstanceId: logger.info("Container instance ID of interest : %s",containerInstances['containerInstanceArn']) containerInstanceId = containerInstances['containerInstanceArn'] # Check if the instance state is set to DRAINING. If not, set it, so the ECS Cluster will handle de-registering instance, draining tasks and draining them containerStatus = containerInstances['status'] if containerStatus == 'DRAINING': logger.info("Container ID %s with EC2 instance-id %s is draining tasks",containerInstanceId, Ec2InstanceId) tmpMsgAppend = {"containerInstanceId": containerInstanceId} else: # Make ECS API call to set the container status to DRAINING logger.info("Make ECS API call to set the container status to DRAINING...") ecsResponse = ecsClient.update_container_instances_state(cluster=clusterName,containerInstances=[containerInstanceId],status='DRAINING') # When you set instance state to draining, append the containerInstanceID to the message as well tmpMsgAppend = {"containerInstanceId": containerInstanceId} break if containerInstanceId is not None: break # Using container Instance ID, get the task list, and task running on that instance. if containerInstanceId != None: # List tasks on the container instance ID, to get task Arns listTaskResp = ecsClient.list_tasks(cluster=clusterName, containerInstance=containerInstanceId) logger.debug("Container instance task list %s",listTaskResp['taskArns']) # If the chosen instance has tasks if len(listTaskResp['taskArns']) > 0: logger.info("Tasks are on this instance...%s",Ec2InstanceId) return 1, tmpMsgAppend else: logger.info("NO tasks are on this instance...%s",Ec2InstanceId) return 0, tmpMsgAppend else: logger.info("NO tasks are on this instance....%s",Ec2InstanceId) return 0, tmpMsgAppend def lambda_handler(event, context): line = event['Records'][0]['Sns']['Message'] message = json.loads(line) Ec2InstanceId = message['EC2InstanceId'] asgGroupName = message['AutoScalingGroupName'] snsArn = event['Records'][0]['EventSubscriptionArn'] TopicArn = event['Records'][0]['Sns']['TopicArn'] lifecyclehookname = None clusterName = None tmpMsgAppend = None completeHook = 0 logger.info("Lambda received the event %s",event) logger.debug("records: %s",event['Records'][0]) logger.debug("sns: %s",event['Records'][0]['Sns']) logger.debug("Message: %s",message) logger.debug("Ec2 Instance Id %s ,%s",Ec2InstanceId, asgGroupName) logger.debug("SNS ARN %s",snsArn) # Describe instance attributes and get the Clustername from userdata section which would have set ECS_CLUSTER name ec2Resp = ec2Client.describe_instance_attribute(InstanceId=Ec2InstanceId, Attribute='userData') logger.debug("Describe instance attributes response %s",ec2Resp) userdataEncoded = ec2Resp['UserData'] userdataDecoded = base64.b64decode(userdataEncoded['Value']) tmpList = userdataDecoded.split() for token in tmpList: if token.find("ECS_CLUSTER") > -1: # Split and get the cluster name clusterName = token.split('=')[1].replace("'", "") logger.debug("Cluster name %s",clusterName) # Get list of container instance IDs from the clusterName clusterListResp = ecsClient.list_container_instances(cluster=clusterName) logger.debug("list container instances response %s",clusterListResp) # If the event received is instance terminating... if 'LifecycleTransition' in message.keys(): logger.debug("message autoscaling %s",message['LifecycleTransition']) if message['LifecycleTransition'].find('autoscaling:EC2_INSTANCE_TERMINATING') > -1: # Get lifecycle hook name lifecycleHookName = message['LifecycleHookName'] logger.debug("Setting lifecycle hook name %s ",lifecycleHookName) # Check if there are any tasks running on the instance tasksRunning, tmpMsgAppend = checkContainerInstanceTaskStatus(Ec2InstanceId, clusterListResp) logger.debug("Returned values received: %s ",tasksRunning) if tmpMsgAppend != None: message.update(tmpMsgAppend) # If tasks are still running... if tasksRunning == 1: response = snsClient.list_subscriptions() for key in response['Subscriptions']: logger.info("Endpoint %s AND TopicArn %s and protocol %s ",key['Endpoint'], key['TopicArn'], key['Protocol']) if TopicArn == key['TopicArn'] and key['Protocol'] == 'lambda': logger.info("TopicArn match, publishToSNS function...") msgResponse = publishToSNS(message, key['TopicArn']) logger.debug("msgResponse %s and time is %s",msgResponse, datetime.datetime) # If tasks are NOT running... elif tasksRunning == 0: completeHook = 1 logger.debug("Setting lifecycle to complete;No tasks are running on instance, completing lifecycle action....") try: response = asgClient.complete_lifecycle_action( LifecycleHookName=lifecycleHookName, AutoScalingGroupName=asgGroupName, LifecycleActionResult='CONTINUE', InstanceId=Ec2InstanceId) logger.info("Response received from complete_lifecycle_action %s",response) logger.info("Completedlifecycle hook action") except Exception, e: print(str(e))
49.68306
170
0.655741
1d8747f299030c9fc55f1eaed21b8aa6d79f9040
1,687
py
Python
dataviz/cereals.py
Udzu/pudzu
5a0302830b052fc54feba891eb7bf634957a9d90
[ "MIT" ]
119
2017-07-22T15:02:30.000Z
2021-08-02T10:42:59.000Z
dataviz/cereals.py
Udzu/pudzu
5a0302830b052fc54feba891eb7bf634957a9d90
[ "MIT" ]
null
null
null
dataviz/cereals.py
Udzu/pudzu
5a0302830b052fc54feba891eb7bf634957a9d90
[ "MIT" ]
28
2017-08-04T14:28:41.000Z
2019-11-27T23:46:14.000Z
from pudzu.charts import * from pudzu.sandbox.bamboo import * df = pd.read_csv("datasets/cereals.csv").assign_rows(sort=lambda d: "ZZZ" if d["cereal"] == "Special K" else d["cereal"]).sort_values("sort") data = pd.DataFrame(list(generate_batches((dict(row) for _,row in df.iterrows()), 5))) default_img = "https://s-media-cache-ak0.pinimg.com/736x/0d/36/e7/0d36e7a476b06333d9fe9960572b66b9.jpg" FONT = verdana PALETTE = {"M": VegaPalette10.BLUE, "F": VegaPalette10.PINK } def process(d): return Image.from_column([ Image.new("RGBA", (180,32)).place(Image.from_text_bounded(d['cereal'], (180,32), 18, partial(FONT, bold=True), padding=2)), Image.from_url_with_cache(get_non(d, "image", default_img)).resize((160,240)), Image.from_text(d['mascot'], FONT(16, italics=True), padding=2) ]) grid = grid_chart(data, process, lambda d: "F" if d['cereal'] == "Special K" else "M", padding=10, yalign=0, group_rounded=True, group_padding=4, group_fg_colors=PALETTE, bg="white") title = Image.from_text("20 breakfast cereal mascots by gender".upper(), FONT(40, bold=True)) footer = Image.from_multitext( ["Gender: ", Rectangle(20, PALETTE["M"]), " male ", Rectangle(20, PALETTE["F"]), " female(?)", Rectangle((150,0)), "* currently on leave ** previously a dog"], [arial(16, bold=True), ..., arial(16), ..., arial(16), ..., arial(16)], img_offset=-5) img = Image.from_column([title, grid, footer], bg="white", xalign=0.5, padding=10) img.place(Image.from_text("/u/Udzu", font("arial", 16), fg="black", bg="white", padding=5).pad((1,1,0,0), "black"), align=1, padding=10, copy=False) img.convert("RGB").save("output/cereals.jpg")
64.884615
183
0.668643
1bbf0066e99c120868ab148165752931cb10d758
1,542
py
Python
Dfs.py
IlohPrincess/SearchAlgorithm
371fd077b0d49c13387e37fd92bd81c950ffecb6
[ "MIT" ]
null
null
null
Dfs.py
IlohPrincess/SearchAlgorithm
371fd077b0d49c13387e37fd92bd81c950ffecb6
[ "MIT" ]
null
null
null
Dfs.py
IlohPrincess/SearchAlgorithm
371fd077b0d49c13387e37fd92bd81c950ffecb6
[ "MIT" ]
null
null
null
from pyamaze import maze, agent, textLabel, COLOR from timeit import timeit def SEARCHDFS(m): start=(m.rows, m.cols) explored=[start] frontier=[start] dfsPath={} while len(frontier)>0: currentCell=frontier.pop() if currentCell==(2,13): break for direction in 'ESNW': if m.maze_map[currentCell][direction]==True: if direction=='E': NextCell=(currentCell[0],currentCell[1]+1) elif direction=='W': NextCell=(currentCell[0],currentCell[1]-1) elif direction=='S': NextCell=(currentCell[0]+1, currentCell[1]) elif direction=='N': NextCell=(currentCell[0]-1, currentCell[1]) if NextCell in explored: continue explored.append(NextCell) frontier.append(NextCell) dfsPath[NextCell]=currentCell fwdPath={} cell=(2,13) while cell!=start: fwdPath[dfsPath[cell]]=cell cell=dfsPath[cell] return fwdPath if __name__=='__main__': m=maze(25,25) m.CreateMaze(2,13, pattern='v',theme=COLOR.light, loopPercent=100) path=SEARCHDFS(m) a=agent(m, footprints=True, color= COLOR.red) m.tracePath({a:path}) l=textLabel(m,'DFS Path Length',len(path)+1) t=timeit(stmt='SEARCHDFS(m)',number=1000, globals=globals()) textLabel(m,'DFS EXECUTION Time',t) m.run()
33.521739
71
0.549287
551d212e2fcf6702f59cf72e5efc82581357d8e6
2,634
py
Python
itdagene/app/stands/views.py
itdagene-ntnu/itdagene
b972cd3d803debccebbc33641397a39834b8d69a
[ "MIT" ]
9
2018-10-17T20:58:09.000Z
2021-12-16T16:16:45.000Z
itdagene/app/stands/views.py
itdagene-ntnu/itdagene
b972cd3d803debccebbc33641397a39834b8d69a
[ "MIT" ]
177
2018-10-27T18:15:56.000Z
2022-03-28T04:29:06.000Z
itdagene/app/stands/views.py
itdagene-ntnu/itdagene
b972cd3d803debccebbc33641397a39834b8d69a
[ "MIT" ]
null
null
null
from django.contrib.auth.decorators import permission_required from django.contrib.messages import SUCCESS, add_message from django.shortcuts import get_object_or_404, redirect, render from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from itdagene.app.events.models import Event from itdagene.app.stands.forms import DigitalStandForm from itdagene.app.stands.models import DigitalStand from itdagene.core.decorators import staff_required @staff_required() def list(request): stands = DigitalStand.objects.all() return render( request, "stands/list.html", {"stands": stands, "title": _("Stands")}, ) @permission_required("stands.add_stand") def add(request): form = DigitalStandForm() if request.method == "POST": form = DigitalStandForm(request.POST) if form.is_valid(): stand = form.save() add_message(request, SUCCESS, _("Stand saved.")) return redirect(reverse("itdagene.stands.view", args=[stand.pk])) return render(request, "stands/form.html", {"title": _("Add stand"), "form": form}) @staff_required() def view(request, pk): stand = get_object_or_404(DigitalStand, pk=pk) stand_events = Event.objects.filter(stand=stand) return render( request, "stands/view.html", { "stand": stand, "stand_events": stand_events, "title": _("Stand"), "description": str(stand), }, ) @permission_required("stands.change_stand") def edit(request, pk): stand = get_object_or_404(DigitalStand, pk=pk) form = DigitalStandForm(instance=stand) if request.method == "POST": form = DigitalStandForm(request.POST, request.FILES, instance=stand) if form.is_valid(): form.save() add_message(request, SUCCESS, _("stand saved.")) return redirect(reverse("itdagene.stands.view", args=[stand.pk])) return render( request, "stands/form.html", { "title": _("Edit stand"), "form": form, "description": str(stand), "stand": stand, }, ) @permission_required("stands.delete_stand") def delete(request, pk): stand = get_object_or_404(DigitalStand, pk=pk) if request.method == "POST": stand.delete() add_message(request, SUCCESS, _("stand deleted.")) return redirect(reverse("itdagene.stands.list")) return render( request, "stands/delete.html", {"stand": stand, "title": _("Delete stand"), "description": str(stand)}, )
30.988235
87
0.64123
394c1e6ad5e7fd942f24a25c26f88952575c3c2c
4,812
py
Python
Sketchbots/sw/labqueue/support/big_counter.py
rlugojr/ChromeWebLab
60f964b3f283c15704b7a04b7bb50cb15791e2e4
[ "Apache-2.0" ]
306
2015-01-09T14:03:44.000Z
2017-09-16T13:03:35.000Z
Sketchbots/sw/labqueue/support/big_counter.py
rlugojr/ChromeWebLab
60f964b3f283c15704b7a04b7bb50cb15791e2e4
[ "Apache-2.0" ]
90
2019-03-26T05:36:00.000Z
2021-07-28T05:30:16.000Z
Sketchbots/sw/labqueue/support/big_counter.py
rlugojr/ChromeWebLab
60f964b3f283c15704b7a04b7bb50cb15791e2e4
[ "Apache-2.0" ]
119
2015-01-26T15:04:33.000Z
2017-09-13T09:30:53.000Z
# Copyright 2013 Google Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is based almost entirely off the now "classic" sharding counter technique described by Brett Slatkin (and expanded by Joe Gregorio) in 2008. """ from google.appengine.api import memcache from google.appengine.ext import db import random MIN_NUM_SHARDS = 200 class GeneralCounterShardConfig(db.Model): """Tracks the number of shards for each named counter.""" name = db.StringProperty(required=True) num_shards = db.IntegerProperty(required=True, default=MIN_NUM_SHARDS) class GeneralCounterShard(db.Model): """Shards for each named counter""" name = db.StringProperty(required=True) count = db.IntegerProperty(required=True, default=0) class BigCounter(object): """This class allows access to an internally-sharded counter which can scale more easily than simple datastore entity properties. """ __counter_name = None __counter_config = None def __init__(self, name): """Constructs an object through which the counter identified by name can be incremeneted, decremenented and read. :name: The name of the counter """ if name is None: raise Exception('The name argument must be specified') self.__counter_name = name def get_value(self): """Retrieve the value of the counter. """ total = memcache.get(self.__counter_name) if total is None: total = 0 for counter in GeneralCounterShard.all().filter('name = ', self.__counter_name): total += counter.count memcache.add(self.__counter_name, total, 60) return total def increment(self): """Increment the value of the counter. """ if self.__counter_config is None: self.__counter_config = GeneralCounterShardConfig.get_or_insert(self.__counter_name, name=self.__counter_name) # maintain minimum number of shards if self.__counter_config.num_shards < MIN_NUM_SHARDS: self.increase_shards(MIN_NUM_SHARDS) def txn(): index = random.randint(0, self.__counter_config.num_shards - 1) shard_name = self.__counter_name + str(index) counter = GeneralCounterShard.get_by_key_name(shard_name) if counter is None: counter = GeneralCounterShard(key_name=shard_name, name=self.__counter_name) counter.count += 1 counter.put() db.run_in_transaction(txn) # does nothing if the key does not exist memcache.incr(self.__counter_name) def decrement(self): """Decrement the value of the counter. """ if self.__counter_config is None: self.__counter_config = GeneralCounterShardConfig.get_or_insert(self.__counter_name, name=self.__counter_name) def txn(): index = random.randint(0, self.__counter_config.num_shards - 1) shard_name = self.__counter_name + str(index) counter = GeneralCounterShard.get_by_key_name(shard_name) if counter is None: counter = GeneralCounterShard(key_name=shard_name, name=self.__counter_name) counter.count -= 1 counter.put() db.run_in_transaction(txn) # does nothing if the key does not exist memcache.decr(self.__counter_name) def increase_shards(self, num): """Increase the number of shards over which the counter value is stored. Do this to increase write performance at the expense of read performance. Will never decrease the number of shards. :num: How many shards to use. This will be the NEW total number of shards, this is not the number by which to increase. """ if self.__counter_config is None: self.__counter_config = GeneralCounterShardConfig.get_or_insert(self.__counter_name, name=self.__counter_name) def txn(): if self.__counter_config.num_shards < num: self.__counter_config.num_shards = num self.__counter_config.put() db.run_in_transaction(txn)
37.59375
122
0.660848
a82a2185df32e52a9adc7124d9f131ac14000c70
10,266
py
Python
mmdet/apis/inference.py
dandelin/mmdetection
03e1c72f1bb6222bdf9af3bfe60946cf008c7143
[ "Apache-2.0" ]
null
null
null
mmdet/apis/inference.py
dandelin/mmdetection
03e1c72f1bb6222bdf9af3bfe60946cf008c7143
[ "Apache-2.0" ]
null
null
null
mmdet/apis/inference.py
dandelin/mmdetection
03e1c72f1bb6222bdf9af3bfe60946cf008c7143
[ "Apache-2.0" ]
null
null
null
import warnings import os import ipdb from skimage.transform import resize from tensorboardX import SummaryWriter import torch.nn.functional as F import mmcv import numpy as np import torch from mmcv.runner import load_checkpoint from matplotlib import pyplot as plt import sys import os sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir)) from mmdet.core import get_classes from mmdet.datasets import to_tensor from mmdet.datasets.transforms import ImageTransform from mmdet.models import build_detector def init_detector(config, checkpoint=None, device="cuda:0"): """Initialize a detector from config file. Args: config (str or :obj:`mmcv.Config`): Config file path or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. Returns: nn.Module: The constructed detector. """ if isinstance(config, str): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError( "config must be a filename or Config object, " "but got {}".format(type(config)) ) config.model.pretrained = None model = build_detector(config.model, test_cfg=config.test_cfg) if checkpoint is not None: checkpoint = load_checkpoint(model, checkpoint) if "CLASSES" in checkpoint["meta"]: model.CLASSES = checkpoint["meta"]["CLASSES"] else: warnings.warn( "Class names are not saved in the checkpoint's " "meta data, use COCO classes by default." ) model.CLASSES = get_classes("coco") model.cfg = config # save the config in the model for convenience model.to(device) model.eval() return model def inference_detector(model, imgs, features=False): """Inference image(s) with the detector. Args: model (nn.Module): The loaded detector. imgs (str/ndarray or list[str/ndarray]): Either image files or loaded images. Returns: If imgs is a str, a generator will be returned, otherwise return the detection results directly. """ cfg = model.cfg img_transform = ImageTransform( size_divisor=cfg.data.test.size_divisor, **cfg.img_norm_cfg ) device = next(model.parameters()).device # model device if not isinstance(imgs, list): return _inference_single(model, imgs, img_transform, device, features=features) else: return _inference_generator(model, imgs, img_transform, device) def _prepare_data(img, img_transform, cfg, device): ori_shape = img.shape img, img_shape, pad_shape, scale_factor = img_transform( img, scale=cfg.data.test.img_scale, keep_ratio=cfg.data.test.get("resize_keep_ratio", True), ) img = to_tensor(img).to(device).unsqueeze(0) img_meta = [ dict( ori_shape=ori_shape, img_shape=img_shape, pad_shape=pad_shape, scale_factor=scale_factor, flip=False, ) ] return dict(img=[img], img_meta=[img_meta]) def _inference_single(model, img, img_transform, device, features=False): img = mmcv.imread(img) data = _prepare_data(img, img_transform, model.cfg, device) with torch.no_grad(): result = model(return_loss=False, rescale=True, features=features, **data) if not features: return result else: return result, data def _inference_generator(model, imgs, img_transform, device): for img in imgs: yield _inference_single(model, img, img_transform, device) # TODO: merge this method with the one in BaseDetector def show_result( img_path, result, class_names, attr_names, score_thr=0.3, out_file=None, detailed=False, interested=[], ): """Visualize the detection results on the image. Args: img (str or np.ndarray): Image filename or loaded image. result (tuple[list] or list): The detection result, can be either (bbox, segm) or just bbox. class_names (list[str] or tuple[str]): A list of class names. score_thr (float): The threshold to visualize the bboxes and masks. out_file (str, optional): If specified, the visualization result will be written to the out file instead of shown in a window. """ assert isinstance(class_names, (tuple, list)) img = mmcv.imread(img_path) bbox_result, attr_result = result bboxes = np.vstack(bbox_result) attrs = np.vstack(attr_result) # draw bounding boxes labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) if detailed: detailed_visualization( img.copy(), bboxes, labels, attrs, class_names=class_names, attr_names=attr_names, score_thr=score_thr, out_file=out_file, img_path=img_path, interested=interested, ) visualize( img.copy(), bboxes, labels, attrs, class_names=class_names, attr_names=attr_names, score_thr=score_thr, out_file=out_file, img_path=img_path, interested=interested, ) def visualize( img, bboxes, labels, attrs, class_names=None, attr_names=None, score_thr=0, out_file=None, img_path="", interested=[], ): fig = plt.figure(dpi=300) ax = fig.add_subplot(1, 1, 1) ax.imshow(img[:, :, [2, 1, 0]]) if score_thr > 0: assert bboxes.shape[1] == 5 scores = bboxes[:, -1] inds = scores > score_thr bboxes = bboxes[inds, :] labels = labels[inds] attrs = attrs[inds, :] scores = scores[inds] for bbox, label, attr, score in zip(bboxes, labels, attrs, scores): if len(interested) != 0: if class_names[label] not in interested: continue bbox_int = bbox.astype(np.int32) x, y, w, h = ( bbox_int[0], bbox_int[1], bbox_int[2] - bbox_int[0], bbox_int[3] - bbox_int[1], ) ax.add_patch( plt.Rectangle( (x, y), w, h, facecolor="none", edgecolor="red", linewidth=0.5 ) ) desc = f'[{score:.2f} {class_names[label]}] ({" ".join([attr_names[i] for i, sc in enumerate(attr) if sc > 0.5])})' bbox_style = {"facecolor": "white", "alpha": 0.5, "pad": 0} if len(interested) == 0: ax.text(x, y, desc, style="italic", bbox=bbox_style, fontsize=4) plt.autoscale() if out_file is None: os.makedirs(f"visualizations/out", exist_ok=True) plt.savefig( f"visualizations/out/{img_path.split('/')[-1]}_bbox_{len(bboxes)}.full.png", dpi=720, ) else: plt.savefig(f"{out_file}.full.png", dpi=720) plt.close(fig) def detailed_visualization( img, bboxes, labels, attrs, class_names=None, attr_names=None, score_thr=0, out_file=None, img_path="", interested=[], ): fig = plt.figure(figsize=(10, 100)) if score_thr > 0: assert bboxes.shape[1] == 5 scores = bboxes[:, -1] inds = scores > score_thr bboxes = bboxes[inds, :] labels = labels[inds] attrs = attrs[inds, :] scores = scores[inds] ax = fig.add_subplot(len(bboxes) + 1, 1, 1) # ax.imshow(resize(img[:, :, [2, 1, 0]], (224, 224), anti_aliasing=True)) ax.imshow(img[:, :, [2, 1, 0]]) for i, (bbox, label, attr, score) in enumerate(zip(bboxes, labels, attrs, scores)): if len(interested) != 0: if class_names[label] not in interested: continue ax = fig.add_subplot(len(bboxes) + 1, 1, i + 2) bbox_int = bbox.astype(np.int32) x, y, w, h = ( bbox_int[0], bbox_int[1], bbox_int[2] - bbox_int[0], bbox_int[3] - bbox_int[1], ) cropped = img[y : y + h, x : x + w, [2, 1, 0]] # ax.imshow(resize(cropped, (224, 224), anti_aliasing=True)) ax.imshow(cropped) desc = f'[{score:.2f} {class_names[label]}] ({" ".join([attr_names[i] for i, sc in enumerate(attr) if sc > 0.5])})' bbox_style = {"facecolor": "white", "alpha": 0.5, "pad": 0} ax.text(0, 0, desc, style="italic", bbox=bbox_style, fontsize=12) plt.tight_layout() # plt.autoscale() if out_file is None: os.makedirs(f"visualizations/out", exist_ok=True) plt.savefig( f"visualizations/out/{img_path.split('/')[-1]}_bbox_{len(bboxes)}.part.png" ) else: plt.savefig(f"{out_file}.part.png") plt.close(fig) def visualize_embeddings(img_path, result, class_names, feats, out_file=None): assert isinstance(class_names, (tuple, list)) img = mmcv.imread(img_path) bbox_result, attr_result, feat_result = result bboxes = np.vstack(bbox_result) attrs = np.vstack(attr_result) # draw bounding boxes labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) writer = SummaryWriter(f"{out_file}") cropped_images, nl_labels = list(), list() for i, (bbox, label, attr) in enumerate(zip(bboxes, labels, attrs)): bbox_int = bbox.astype(np.int32) x, y, w, h = ( bbox_int[0], bbox_int[1], bbox_int[2] - bbox_int[0], bbox_int[3] - bbox_int[1], ) cropped = img[y : y + h, x : x + w, [2, 1, 0]] cropped = torch.from_numpy(cropped).permute(2, 0, 1).float() / 255 cropped_images.append(F.adaptive_avg_pool2d(cropped.unsqueeze(0), 128)) nl_labels.append(class_names[label]) cropped = torch.cat(cropped_images) writer.add_embedding( feats, metadata=nl_labels, label_img=cropped, global_step=0, tag=f"valid/embedding", )
30.194118
123
0.601695
7d98bccf220ff0e7e2f21c13da26f17fb330c3a6
650
py
Python
ami_test.py
Swiftaim/simpleami
9beaf1386d64bce525d6b3d9fa9936d627af455f
[ "MIT" ]
1
2019-04-22T11:35:17.000Z
2019-04-22T11:35:17.000Z
ami_test.py
Swiftaim/simpleami
9beaf1386d64bce525d6b3d9fa9936d627af455f
[ "MIT" ]
null
null
null
ami_test.py
Swiftaim/simpleami
9beaf1386d64bce525d6b3d9fa9936d627af455f
[ "MIT" ]
null
null
null
from simpleami import * from collections import namedtuple def originate_action(): options = OriginateOptions(type='Local', number='8888', channel='trunk90-in', timeout='10', caller_id='simpleami', context='auto_test_client', extension='1234', action_id='simpleami-1', priority='1') return originate_template(options) def main(): try: ami = AMISvcHandler('192.168.40.196', 5038) print(ami.connect('clearit', 'clearit').decode()) print(ami.send_action(originate_action()).decode()) except Exception as exc: print(exc) if __name__ == '__main__': main()
22.413793
53
0.64
ad98e9d19a7c08b6d99d34735e8f2bd1e8e242c5
2,362
py
Python
toughio/_cli/_merge.py
codacy-badger/toughio
8d4f3d8408d5507a83f65e7f393b13be08d42aca
[ "MIT" ]
null
null
null
toughio/_cli/_merge.py
codacy-badger/toughio
8d4f3d8408d5507a83f65e7f393b13be08d42aca
[ "MIT" ]
null
null
null
toughio/_cli/_merge.py
codacy-badger/toughio
8d4f3d8408d5507a83f65e7f393b13be08d42aca
[ "MIT" ]
null
null
null
__all__ = [ "merge", ] def merge(argv=None): import os parser = _get_parser() args = parser.parse_args(argv) # Check that input, MESH and INCON files exist head = os.path.split(args.infile)[0] mesh_filename = head + ("/" if head else "") + "MESH" incon_filename = head + ("/" if head else "") + "INCON" if not os.path.isfile(args.infile): raise ValueError("File '{}' not found.".format(args.infile)) if not os.path.isfile(mesh_filename): raise ValueError("MESH file not found.") incon_exists = os.path.isfile(incon_filename) # Buffer input file with open(args.infile, "r") as f: input_file = list(f) # Check that input file has at least blocks ROCKS, PARAM, ENDFI or ENDCY count = 0 for line in input_file: count += int(line.upper()[:5] in {"ROCKS", "PARAM", "ENDFI", "ENDCY"}) if count < 3: raise ValueError("Invalid input file '{}'.".format(args.infile)) # Buffer MESH with open(mesh_filename, "r") as f: mesh_file = list(f) if not mesh_file[0].startswith("ELEME"): raise ValueError("Invalid MESH file.") # Buffer INCON if exist if incon_exists: with open(incon_filename, "r") as f: incon_file = list(f) if not incon_file[0].startswith("INCON"): raise ValueError("Invalid INCON file.") # Locate ENDFI or ENDCY for i, line in enumerate(input_file): if line.upper()[:5] in {"ENDFI", "ENDCY"}: break # Buffer output file output_file = input_file[:i] output_file += mesh_file if incon_exists: output_file += incon_file output_file += input_file[i:] # Write output file with open(args.outfile, "w") as f: for line in output_file: f.write(line) def _get_parser(): import argparse # Initialize parser parser = argparse.ArgumentParser( description=( "Merge input file, MESH and/or INCON into a single file. " "The files must be in the same directory." ), formatter_class=argparse.RawTextHelpFormatter, ) # Input file parser.add_argument( "infile", type=str, help="TOUGH input file", ) # Output file parser.add_argument("outfile", type=str, help="Merged TOUGH input file") return parser
27.465116
78
0.609653
e339142834d7524754044c0c6fa67a5a354b8069
1,063
py
Python
convenience/make_image_single_wavelength.py
smlower/powderday
99e7cec28bfbcba40ec1cff367fa564f51d9b62c
[ "BSD-3-Clause" ]
18
2019-09-04T09:48:54.000Z
2022-02-08T20:45:19.000Z
convenience/make_image_single_wavelength.py
smlower/powderday
99e7cec28bfbcba40ec1cff367fa564f51d9b62c
[ "BSD-3-Clause" ]
79
2019-09-05T15:09:02.000Z
2022-02-25T13:29:51.000Z
convenience/make_image_single_wavelength.py
smlower/powderday
99e7cec28bfbcba40ec1cff367fa564f51d9b62c
[ "BSD-3-Clause" ]
14
2019-08-30T18:24:52.000Z
2021-08-05T15:33:13.000Z
import numpy as np import matplotlib.pyplot as plt from hyperion.model import ModelOutput import astropy.units as u # ------------------------ # modifiable header # ------------------------ m = ModelOutput('/Users/desika/Dropbox/powderday/verification/gadget/example.200.rtout.image') wav = 200 # micron # ------------------------ # Get the image from the ModelOutput object image = m.get_image(units='ergs/s') # Open figure and create axes fig = plt.figure() ax = fig.add_subplot(111) # Find the closest wavelength iwav = np.argmin(np.abs(wav - image.wav)) # Calculate the image width in kpc w = image.x_max * u.cm w = w.to(u.kpc) # plot the beast cax = ax.imshow(np.log(image.val[0, :, :, iwav]), cmap=plt.cm.viridis, origin='lower', extent=[-w.value, w.value, -w.value, w.value]) # Finalize the plot ax.tick_params(axis='both', which='major', labelsize=10) ax.set_xlabel('x (kpc)') ax.set_xlabel('y (kpc)') plt.colorbar(cax, label='log Luminosity (ergs/s)', format='%.0e') fig.savefig('pd_image.png', bbox_inches='tight', dpi=150)
25.309524
94
0.650988
e57aed14fb739c4933ba40bba57fcc84f1b89192
239
py
Python
examples/rq/app.py
BrianHicks/em
19a86c2392b136c9e857000798ccaa525aa0ed84
[ "MIT" ]
6
2015-05-10T14:09:54.000Z
2021-01-04T10:09:38.000Z
examples/rq/app.py
techdragon/emit
19a86c2392b136c9e857000798ccaa525aa0ed84
[ "MIT" ]
null
null
null
examples/rq/app.py
techdragon/emit
19a86c2392b136c9e857000798ccaa525aa0ed84
[ "MIT" ]
3
2015-04-04T15:37:55.000Z
2015-08-21T08:08:45.000Z
'simple rq app' from redis import Redis from emit.router.rq import RQRouter import logging router = RQRouter(redis_connection=Redis(), node_modules=['tasks']) logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
23.9
76
0.774059
86dd282ca9aa91dcaefe3d562e3b72c0656bd001
3,057
py
Python
app/profiles/schemas/queries.py
MrPeker/acikkaynak-service
21c3f2faaa84342d2fa95709293bc84d1e2a23ae
[ "Apache-2.0" ]
5
2021-02-28T22:29:13.000Z
2021-11-29T00:24:28.000Z
app/profiles/schemas/queries.py
MrPeker/acikkaynak-service
21c3f2faaa84342d2fa95709293bc84d1e2a23ae
[ "Apache-2.0" ]
null
null
null
app/profiles/schemas/queries.py
MrPeker/acikkaynak-service
21c3f2faaa84342d2fa95709293bc84d1e2a23ae
[ "Apache-2.0" ]
3
2021-03-03T19:56:30.000Z
2021-03-06T22:10:35.000Z
import graphene from graphene_django.filter import DjangoFilterConnectionField from graphene_django.types import DjangoObjectType from app.common.schemas.languages import LanguageNode from app.profiles.models import Profile, ProfileAchievement, ProfileTag # queries class ProfileTagNode(DjangoObjectType): # id = graphene.ID(source="pk", required=True) class Meta: model = ProfileTag exclude = ("uuid",) interfaces = (graphene.relay.Node,) filter_fields = { "slug": ["exact", "icontains", "istartswith"], "name": ["exact", "icontains", "istartswith"], } class ProfileAchievementNode(DjangoObjectType): # id = graphene.ID(source="pk", required=True) class Meta: model = ProfileAchievement exclude = ("uuid",) interfaces = (graphene.relay.Node,) filter_fields = { "type": ["exact"], "earned_at": ["exact", "lte", "gte"], } class ProfileNode(DjangoObjectType): class Meta: model = Profile exclude = ("uuid",) interfaces = (graphene.relay.Node,) filter_fields = { "first_name": ["exact", "icontains", "istartswith"], "last_name": ["exact", "icontains", "istartswith"], "email": ["exact", "icontains", "istartswith"], "phone": ["exact", "icontains", "istartswith"], } class Query(graphene.ObjectType): profile = graphene.relay.Node.Field(ProfileNode) profile_by_uuid = graphene.Field(ProfileNode, uuid=graphene.UUID(required=True)) profile_by_slug = graphene.Field(ProfileNode, slug=graphene.String(required=True)) profiles_all = DjangoFilterConnectionField(ProfileNode) profile_tag = graphene.relay.Node.Field(ProfileTagNode) profile_tag_by_uuid = graphene.Field(ProfileTagNode, uuid=graphene.UUID(required=True)) profile_tag_by_slug = graphene.Field(ProfileTagNode, slug=graphene.String(required=True)) profile_tags_all = DjangoFilterConnectionField(ProfileTagNode) @staticmethod # pylint:disable=unused-argument def resolve_profile_by_uuid(parent, info, uuid): try: return Profile.objects.get(uuid=uuid) except Profile.DoesNotExist: return None @staticmethod # pylint:disable=unused-argument def resolve_profile_by_slug(parent, info, slug): try: return Profile.objects.get(slug=slug) except Profile.DoesNotExist: return None @staticmethod # pylint:disable=unused-argument def resolve_profile_tag_by_uuid(parent, info, uuid): try: return ProfileTag.objects.get(uuid=uuid) except ProfileTag.DoesNotExist: return None @staticmethod # pylint:disable=unused-argument def resolve_profile_tag_by_slug(parent, info, slug): try: return ProfileTag.objects.get(slug=slug) except ProfileTag.DoesNotExist: return None # mutations class Mutation(graphene.ObjectType): pass
31.193878
93
0.660124
fa413ff1fca80f851da8b26fb111de877796d24f
1,116
py
Python
Programmers/C30L43238/C30L43238.py
iamGreedy/CodingTest
30fc5d73102de2d5c9d8a4f8d7047b8197dc99b7
[ "MIT" ]
null
null
null
Programmers/C30L43238/C30L43238.py
iamGreedy/CodingTest
30fc5d73102de2d5c9d8a4f8d7047b8197dc99b7
[ "MIT" ]
null
null
null
Programmers/C30L43238/C30L43238.py
iamGreedy/CodingTest
30fc5d73102de2d5c9d8a4f8d7047b8197dc99b7
[ "MIT" ]
null
null
null
# %% def prev_sol(n, times): tt = [t * (n // len(times) + (1 if i < n % len(times) else 0)) for i, t in enumerate(times)] while (True): cmxi, cmx = max(enumerate(tt), key=lambda a: a[1]) nmni, nmn = min( enumerate(map(lambda ab: ab[0] + ab[1], zip(times, tt))), key=lambda a: a[1]) if cmx > nmn: tt[cmxi] -= times[cmxi] tt[nmni] += times[nmni] else: break return max(tt) def solution(n, times): mnt, mxt = 0, max(times) * n while (mnt < mxt): mdt = (mxt + mnt) // 2 nxt = sum(map(lambda t: mdt // t, times)) if nxt >= n: mxt = mdt else: mnt = mdt + 1 return mnt cases = [ ((6, [7, 10]), 28), # ((10, [6, 7, 10]), 28), # ((10, [1]), 10), # ((1000, [1, 10, 100]), 901), # ((20, [1, 2, 10]), 13), ] for (args, ret) in cases: print( f'{f"solution({args[0]}, {args[1]})":40} : expected `{ret}`, real `{solution(*args)}`') # print(f'prev sol({args[0]}, {args[1]}) : expected `{ret}`, real `{prev_sol(*args)}`')
27.219512
95
0.450717
9871c0e19bc88f145558947598ade2726640b61c
990
py
Python
loggingModule.py
a2gs/pythonStudy
e790e223a05fd50a5bcaf1240ef24ff60f361cdd
[ "MIT" ]
null
null
null
loggingModule.py
a2gs/pythonStudy
e790e223a05fd50a5bcaf1240ef24ff60f361cdd
[ "MIT" ]
null
null
null
loggingModule.py
a2gs/pythonStudy
e790e223a05fd50a5bcaf1240ef24ff60f361cdd
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import logging def func(): logging.debug('This is a debug message') logging.info('This is an info message') logging.warning('This is a warning message') logging.error('This is an error message') logging.critical('This is a critical message') try: c = 1 / 0 except Exception as e: logging.exception("Exception occurred", exc_info=True) #exc_info to on/off this log logging.basicConfig(filename='log.text', filemode='a', level=logging.DEBUG, format='%(asctime)s %(msecs)d - %(process)d - %(levelname)s - %(filename)s:%(funcName)s:%(lineno)d - %(message)s', datefmt='%Y%m%d %H%M%S') func() logging.shutdown() # Log rotation: # # from logging.handlers import RotatingFileHandler # # logging.basicConfig( # handlers=[RotatingFileHandler('./my_log.log', maxBytes=200000, backupCount=2)], # level=logging.DEBUG, # format="[%(asctime)s] %(levelname)s [%(name)s.%(funcName)s:%(lineno)d] %(message)s", # datefmt='%Y-%m-%dT%H:%M:%S')
31.935484
215
0.689899
b9282cabb8e70f56150f81861062172041f13ba3
152
py
Python
ExpandAlphabets.py
hemanthsoma/Coding-Practice
82992453426103c5198461886cf014cff3a75813
[ "Unlicense" ]
2
2020-09-17T14:30:06.000Z
2020-09-20T17:11:06.000Z
ExpandAlphabets.py
hemanthsoma/CodingSolutions
82992453426103c5198461886cf014cff3a75813
[ "Unlicense" ]
null
null
null
ExpandAlphabets.py
hemanthsoma/CodingSolutions
82992453426103c5198461886cf014cff3a75813
[ "Unlicense" ]
null
null
null
import re m=re.split('(\d+)',input().strip()) = for i in range(0,len(m)-1,2): if i%2==0: print(m[i]*int(m[i+1]),end="")
25.333333
57
0.434211
858525df545e11aa9320e80d666eb0b1d0159c11
11,894
py
Python
mmdet/core/anchor/guided_anchor_target.py
ar90n/ttfnet
99dbfa888f90c8161c2c1666b2d17cdb144dbc30
[ "Apache-2.0" ]
null
null
null
mmdet/core/anchor/guided_anchor_target.py
ar90n/ttfnet
99dbfa888f90c8161c2c1666b2d17cdb144dbc30
[ "Apache-2.0" ]
null
null
null
mmdet/core/anchor/guided_anchor_target.py
ar90n/ttfnet
99dbfa888f90c8161c2c1666b2d17cdb144dbc30
[ "Apache-2.0" ]
null
null
null
import torch from ..bbox import PseudoSampler, build_assigner, build_sampler from ..utils import multi_apply, unmap def calc_region(bbox, ratio, featmap_size=None, use_round=True): """Calculate a proportional bbox region. The bbox center are fixed and the new h' and w' is h * ratio and w * ratio. Args: bbox (Tensor): Bboxes to calculate regions, shape (n, 4) ratio (float): Ratio of the output region. featmap_size (tuple): Feature map size used for clipping the boundary. use_round (bool): whether to round the results. Returns: tuple: x1, y1, x2, y2 """ x1 = (1 - ratio) * bbox[0] + ratio * bbox[2] y1 = (1 - ratio) * bbox[1] + ratio * bbox[3] x2 = ratio * bbox[0] + (1 - ratio) * bbox[2] y2 = ratio * bbox[1] + (1 - ratio) * bbox[3] if use_round: x1, y1, x2, y2 = [torch.round(x).long() for x in [x1, y1, x2, y2]] if featmap_size is not None: x1 = x1.clamp(min=0, max=featmap_size[1] - 1) y1 = y1.clamp(min=0, max=featmap_size[0] - 1) x2 = x2.clamp(min=0, max=featmap_size[1] - 1) y2 = y2.clamp(min=0, max=featmap_size[0] - 1) return (x1, y1, x2, y2) def ga_loc_target(gt_bboxes_list, featmap_sizes, anchor_scale, anchor_strides, center_ratio=0.2, ignore_ratio=0.5): """Compute location targets for guided anchoring. Each feature map is divided into positive, negative and ignore regions. - positive regions: target 1, weight 1 - ignore regions: target 0, weight 0 - negative regions: target 0, weight 0.1 Args: gt_bboxes_list (list[Tensor]): Gt bboxes of each image. featmap_sizes (list[tuple]): Multi level sizes of each feature maps. anchor_scale (int): Anchor scale. anchor_strides ([list[int]]): Multi level anchor strides. center_ratio (float): Ratio of center region. ignore_ratio (float): Ratio of ignore region. Returns: tuple """ img_per_gpu = len(gt_bboxes_list) num_lvls = len(featmap_sizes) r1 = (1 - center_ratio) / 2 r2 = (1 - ignore_ratio) / 2 all_loc_targets = [] all_loc_weights = [] all_ignore_map = [] for lvl_id in range(num_lvls): h, w = featmap_sizes[lvl_id] loc_targets = torch.zeros( img_per_gpu, 1, h, w, device=gt_bboxes_list[0].device, dtype=torch.float32) loc_weights = torch.full_like(loc_targets, -1) ignore_map = torch.zeros_like(loc_targets) all_loc_targets.append(loc_targets) all_loc_weights.append(loc_weights) all_ignore_map.append(ignore_map) for img_id in range(img_per_gpu): gt_bboxes = gt_bboxes_list[img_id] scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * (gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1)) min_anchor_size = scale.new_full( (1, ), float(anchor_scale * anchor_strides[0])) # assign gt bboxes to different feature levels w.r.t. their scales target_lvls = torch.floor( torch.log2(scale) - torch.log2(min_anchor_size) + 0.5) target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long() for gt_id in range(gt_bboxes.size(0)): lvl = target_lvls[gt_id].item() # rescaled to corresponding feature map gt_ = gt_bboxes[gt_id, :4] / anchor_strides[lvl] # calculate ignore regions ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( gt_, r2, featmap_sizes[lvl]) # calculate positive (center) regions ctr_x1, ctr_y1, ctr_x2, ctr_y2 = calc_region( gt_, r1, featmap_sizes[lvl]) all_loc_targets[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, ctr_x1:ctr_x2 + 1] = 1 all_loc_weights[lvl][img_id, 0, ignore_y1:ignore_y2 + 1, ignore_x1:ignore_x2 + 1] = 0 all_loc_weights[lvl][img_id, 0, ctr_y1:ctr_y2 + 1, ctr_x1:ctr_x2 + 1] = 1 # calculate ignore map on nearby low level feature if lvl > 0: d_lvl = lvl - 1 # rescaled to corresponding feature map gt_ = gt_bboxes[gt_id, :4] / anchor_strides[d_lvl] ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( gt_, r2, featmap_sizes[d_lvl]) all_ignore_map[d_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, ignore_x1:ignore_x2 + 1] = 1 # calculate ignore map on nearby high level feature if lvl < num_lvls - 1: u_lvl = lvl + 1 # rescaled to corresponding feature map gt_ = gt_bboxes[gt_id, :4] / anchor_strides[u_lvl] ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region( gt_, r2, featmap_sizes[u_lvl]) all_ignore_map[u_lvl][img_id, 0, ignore_y1:ignore_y2 + 1, ignore_x1:ignore_x2 + 1] = 1 for lvl_id in range(num_lvls): # ignore negative regions w.r.t. ignore map all_loc_weights[lvl_id][(all_loc_weights[lvl_id] < 0) & (all_ignore_map[lvl_id] > 0)] = 0 # set negative regions with weight 0.1 all_loc_weights[lvl_id][all_loc_weights[lvl_id] < 0] = 0.1 # loc average factor to balance loss loc_avg_factor = sum( [t.size(0) * t.size(-1) * t.size(-2) for t in all_loc_targets]) / 200 return all_loc_targets, all_loc_weights, loc_avg_factor def ga_shape_target(approx_list, inside_flag_list, square_list, gt_bboxes_list, img_metas, approxs_per_octave, cfg, gt_bboxes_ignore_list=None, sampling=True, unmap_outputs=True): """Compute guided anchoring targets. Args: approx_list (list[list]): Multi level approxs of each image. inside_flag_list (list[list]): Multi level inside flags of each image. square_list (list[list]): Multi level squares of each image. gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. approxs_per_octave (int): number of approxs per octave cfg (dict): RPN train configs. gt_bboxes_ignore_list (list[Tensor]): ignore list of gt bboxes. sampling (bool): sampling or not. unmap_outputs (bool): unmap outputs or not. Returns: tuple """ num_imgs = len(img_metas) assert len(approx_list) == len(inside_flag_list) == len( square_list) == num_imgs # anchor number of multi levels num_level_squares = [squares.size(0) for squares in square_list[0]] # concat all level anchors and flags to a single tensor inside_flag_flat_list = [] approx_flat_list = [] square_flat_list = [] for i in range(num_imgs): assert len(square_list[i]) == len(inside_flag_list[i]) inside_flag_flat_list.append(torch.cat(inside_flag_list[i])) approx_flat_list.append(torch.cat(approx_list[i])) square_flat_list.append(torch.cat(square_list[i])) # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] (all_bbox_anchors, all_bbox_gts, all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( ga_shape_target_single, approx_flat_list, inside_flag_flat_list, square_flat_list, gt_bboxes_list, gt_bboxes_ignore_list, img_metas, approxs_per_octave=approxs_per_octave, cfg=cfg, sampling=sampling, unmap_outputs=unmap_outputs) # no valid anchors if any([bbox_anchors is None for bbox_anchors in all_bbox_anchors]): return None # sampled anchors of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) # split targets to a list w.r.t. multiple levels bbox_anchors_list = images_to_levels(all_bbox_anchors, num_level_squares) bbox_gts_list = images_to_levels(all_bbox_gts, num_level_squares) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_squares) return (bbox_anchors_list, bbox_gts_list, bbox_weights_list, num_total_pos, num_total_neg) def images_to_levels(target, num_level_anchors): """Convert targets by image to targets by feature level. [target_img0, target_img1] -> [target_level0, target_level1, ...] """ target = torch.stack(target, 0) level_targets = [] start = 0 for n in num_level_anchors: end = start + n level_targets.append(target[:, start:end].squeeze(0)) start = end return level_targets def ga_shape_target_single(flat_approxs, inside_flags, flat_squares, gt_bboxes, gt_bboxes_ignore, img_meta, approxs_per_octave, cfg, sampling=True, unmap_outputs=True): """Compute guided anchoring targets. This function returns sampled anchors and gt bboxes directly rather than calculates regression targets. Args: flat_approxs (Tensor): flat approxs of a single image, shape (n, 4) inside_flags (Tensor): inside flags of a single image, shape (n, ). flat_squares (Tensor): flat squares of a single image, shape (approxs_per_octave * n, 4) gt_bboxes (Tensor): Ground truth bboxes of a single image. img_meta (dict): Meta info of a single image. approxs_per_octave (int): number of approxs per octave cfg (dict): RPN train configs. sampling (bool): sampling or not. unmap_outputs (bool): unmap outputs or not. Returns: tuple """ if not inside_flags.any(): return (None, ) * 6 # assign gt and sample anchors expand_inside_flags = inside_flags[:, None].expand( -1, approxs_per_octave).reshape(-1) approxs = flat_approxs[expand_inside_flags, :] squares = flat_squares[inside_flags, :] bbox_assigner = build_assigner(cfg.ga_assigner) assign_result = bbox_assigner.assign(approxs, squares, approxs_per_octave, gt_bboxes, gt_bboxes_ignore) if sampling: bbox_sampler = build_sampler(cfg.ga_sampler) else: bbox_sampler = PseudoSampler() sampling_result = bbox_sampler.sample(assign_result, squares, gt_bboxes) bbox_anchors = torch.zeros_like(squares) bbox_gts = torch.zeros_like(squares) bbox_weights = torch.zeros_like(squares) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: bbox_anchors[pos_inds, :] = sampling_result.pos_bboxes bbox_gts[pos_inds, :] = sampling_result.pos_gt_bboxes bbox_weights[pos_inds, :] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_squares.size(0) bbox_anchors = unmap(bbox_anchors, num_total_anchors, inside_flags) bbox_gts = unmap(bbox_gts, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) return (bbox_anchors, bbox_gts, bbox_weights, pos_inds, neg_inds)
40.872852
79
0.611148
3c02b1e86e3ba156c6d1cd2a8370a7957f7a1658
2,761
py
Python
src/third_party/wiredtiger/test/suite/test_txn11.py
mwhudson/mongo
914bbbd26a686e032fdddec964b109ea78c6e6f6
[ "Apache-2.0" ]
14
2019-01-11T05:01:29.000Z
2021-11-01T00:39:46.000Z
src/third_party/wiredtiger/test/suite/test_txn11.py
mwhudson/mongo
914bbbd26a686e032fdddec964b109ea78c6e6f6
[ "Apache-2.0" ]
1
2022-03-05T02:55:28.000Z
2022-03-05T05:28:00.000Z
src/third_party/wiredtiger/test/suite/test_txn11.py
mwhudson/mongo
914bbbd26a686e032fdddec964b109ea78c6e6f6
[ "Apache-2.0" ]
7
2019-02-08T16:28:36.000Z
2021-05-08T14:25:47.000Z
#!/usr/bin/env python # # Public Domain 2014-2016 MongoDB, Inc. # Public Domain 2008-2014 WiredTiger, Inc. # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # test_txn11.py # Transactions: Empty checkpoints and log archiving import fnmatch, os, time from suite_subprocess import suite_subprocess from wtdataset import SimpleDataSet import wttest class test_txn11(wttest.WiredTigerTestCase, suite_subprocess): archive = 'true' conn_config = 'verbose=[transaction]' logmax = "100K" nrows = 700 tablename = 'test_txn11' source_uri = 'table:' + tablename + "_src" uri = 'table:' + tablename # Turn on logging for this test. def conn_config(self): return 'log=(archive=%s,' % self.archive + \ 'enabled,file_max=%s,prealloc=false),' % self.logmax + \ 'transaction_sync=(enabled=false),' def run_checkpoints(self): orig_logs = fnmatch.filter(os.listdir(self.home), "*Log*") checkpoints = 0 sorig = set(orig_logs) while checkpoints < 500: self.session.checkpoint() cur_logs = fnmatch.filter(os.listdir(self.home), "*Log*") scur = set(cur_logs) if scur.isdisjoint(sorig): break checkpoints += 1 return def test_ops(self): # Populate a table SimpleDataSet(self, self.source_uri, self.nrows).populate() # Run forced checkpoints self.run_checkpoints() self.archive = 'false' # Close and reopen the connection self.reopen_conn() if __name__ == '__main__': wttest.run()
35.397436
73
0.692141
891f3e6874d4420de073b367842e3b38f1b91e8a
737
py
Python
deploy.py
yehan2002/TrapsAndTrolls
7ca377e7f10802a5dd868ce26ce0f49a1fce81cf
[ "MIT" ]
1
2019-04-14T06:21:50.000Z
2019-04-14T06:21:50.000Z
deploy.py
yehan2002/TrapsAndTrolls
7ca377e7f10802a5dd868ce26ce0f49a1fce81cf
[ "MIT" ]
null
null
null
deploy.py
yehan2002/TrapsAndTrolls
7ca377e7f10802a5dd868ce26ce0f49a1fce81cf
[ "MIT" ]
1
2019-01-24T14:40:59.000Z
2019-01-24T14:40:59.000Z
#!/usr/bin/python2 import sys import os if len(sys.argv) == 1: quit("Usage: %s [Version]" % os.path.dirname(__file__)) version= sys.argv[1] os.chdir(os.path.dirname(__file__)) def addVersion(path, key, data): filedata = [] with open(path, 'rb') as f: for l in f.readlines(): if key in l: l = data % version filedata.append(l) with open(path, "wb") as f: f.writelines(filedata) addVersion('build.gradle', "//$VERSION$", 'version = "%s" //$VERSION$\n') addVersion('src/plugin.yml', "#$version$", 'version: %s #$version$\n') os.system('git tag %s'% version) os.system('git add -A') os.system('git commit') os.system('git push origin master --tags')
23.774194
73
0.588874
9325c38d43c1c4d8030ab8f3f98679861fc4659e
1,084
py
Python
src/python/WMQuality/Emulators/WMAgents/WMAgentEmulator.py
vkuznet/WMCore
001cc51651052405a7ecd811cde91da611b1dc57
[ "Apache-2.0" ]
21
2015-11-19T16:18:45.000Z
2021-12-02T18:20:39.000Z
src/python/WMQuality/Emulators/WMAgents/WMAgentEmulator.py
vkuznet/WMCore
001cc51651052405a7ecd811cde91da611b1dc57
[ "Apache-2.0" ]
5,671
2015-01-06T14:38:52.000Z
2022-03-31T22:11:14.000Z
src/python/WMQuality/Emulators/WMAgents/WMAgentEmulator.py
vkuznet/WMCore
001cc51651052405a7ecd811cde91da611b1dc57
[ "Apache-2.0" ]
67
2015-01-21T15:55:38.000Z
2022-02-03T19:53:13.000Z
#!/usr/bin/env python """ Auto generated stub be careful with editing, Inheritance is preferred. """ from __future__ import absolute_import import logging import threading from WMCore.Agent.Harness import Harness from WMQuality.Emulators.RucioClient.MockRucioApi import SITES as DUMMY_SITES from .WMAgentTasks import WMAgentTasks class WMAgentEmulator(Harness): def __init__(self, config): # call the base class Harness.__init__(self, config) def preInitialization(self): resources = self.populateResources() # Add event loop to worker manager myThread = threading.currentThread() pollInterval = 1 logging.info("Setting poll interval to %s seconds" % pollInterval) myThread.workerThreadManager.addWorker(WMAgentTasks(resources), pollInterval) return def populateResources(self): """ emulating resource db which can represent {site: job} format """ jobSites = {} for site in DUMMY_SITES: jobSites[site] = 100 return jobSites
26.439024
85
0.687269
7598a7740a2c92cdead8fce7a4355fcadc170d22
84,716
py
Python
alphapept/feature_finding.py
mschwoer/alphapept
446b3c8b2a20619a74ff872c24a01fed8b99a20a
[ "Apache-2.0" ]
null
null
null
alphapept/feature_finding.py
mschwoer/alphapept
446b3c8b2a20619a74ff872c24a01fed8b99a20a
[ "Apache-2.0" ]
null
null
null
alphapept/feature_finding.py
mschwoer/alphapept
446b3c8b2a20619a74ff872c24a01fed8b99a20a
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/04_feature_finding.ipynb (unless otherwise specified). __all__ = ['connect_centroids_unidirection', 'find_centroid_connections', 'convert_connections_to_array', 'eliminate_overarching_vertex', 'connect_centroids', 'path_finder', 'find_path_start', 'find_path_length', 'fill_path_matrix', 'get_hills', 'extract_hills', 'remove_duplicate_hills', 'fast_minima', 'split', 'split_hills', 'check_large_hills', 'filter_hills', 'hill_stats', 'remove_duplicates', 'get_hill_data', 'check_isotope_pattern', 'DELTA_M', 'DELTA_S', 'maximum_offset', 'correlate', 'extract_edge', 'edge_correlation', 'get_pre_isotope_patterns', 'check_isotope_pattern_directed', 'grow', 'grow_trail', 'get_trails', 'plot_pattern', 'get_minpos', 'get_local_minima', 'is_local_minima', 'truncate', 'check_averagine', 'pattern_to_mz', 'cosine_averagine', 'int_list_to_array', 'mz_to_mass', 'M_PROTON', 'isolate_isotope_pattern', 'get_isotope_patterns', 'report_', 'feature_finder_report', 'extract_bruker', 'convert_bruker', 'map_bruker', 'get_stats', 'find_features', 'replace_infs', 'map_ms2'] # Cell import numpy as np import alphapept.performance #This function is tested by being called from find_centroid_connections @alphapept.performance.performance_function def connect_centroids_unidirection(x:np.ndarray, row_borders:np.ndarray, connections:np.ndarray, scores:np.ndarray, centroids:np.ndarray, max_gap:int, centroid_tol:float): """Connect centroids. Args: x (np.ndarray): Index to datapoint. Note that this using the performance_function, so one passes an ndarray. row_borders (np.ndarray): Row borders of the centroids array. connections (np.ndarray): Connections matrix to store the connections scores (np.ndarray): Score matrix to store the connections centroids (np.ndarray): 1D Array containing the masses of the centroids data. max_gap (int): Maximum gap when connecting centroids. centroid_tol (float): Centroid tolerance. """ for gap in range(max_gap + 1): y = x + gap + 1 if y >= row_borders.shape[0]: return start_index_f = 0 if x > 0: start_index_f = row_borders[x - 1] centroids_1 = centroids[start_index_f: row_borders[x]] start_index_b = row_borders[y - 1] centroids_2 = centroids[start_index_b: row_borders[y]] i = 0 j = 0 while (i < len(centroids_1)) & (j < len(centroids_2)): mz1, mz2 = centroids_1[i], centroids_2[j] diff = mz1 - mz2 mz_sum = mz1 + mz2 delta = 2 * 1e6 * abs(diff) / mz_sum if delta < centroid_tol: if scores[x, i, gap] > delta: scores[x, i, gap] = delta connections[x, i, gap] = (connections.shape[1] * y) + j if diff > 0: j += 1 else: i += 1 def find_centroid_connections(rowwise_peaks:np.ndarray, row_borders:np.ndarray, centroids:np.ndarray, max_gap:int, centroid_tol:float): """Wrapper function to call connect_centroids_unidirection Args: rowwise_peaks (np.ndarray): Length of centroids with respect to the row borders. row_borders (np.ndarray): Row borders of the centroids array. centroids (np.ndarray): Array containing the centroids data. max_gap (int): Maximum gap when connecting centroids. centroid_tol (float): Centroid tolerance. """ if alphapept.performance.COMPILATION_MODE == "cuda": import cupy cupy = cupy else: import numpy cupy = numpy max_centroids = int(cupy.max(rowwise_peaks)) spectra_cnt = len(row_borders) - 1 connections = cupy.full((spectra_cnt, max_centroids, max_gap + 1), -1, dtype=np.int32) score = cupy.full((spectra_cnt, max_centroids, max_gap + 1), np.inf) connect_centroids_unidirection(range(len(row_borders)), row_borders, connections, score, centroids, max_gap, centroid_tol) score = score[cupy.where(score < np.inf)] score_median = cupy.median(score) score_std = cupy.std(score) del score, max_centroids, spectra_cnt c_shape = connections.shape from_r, from_c, from_g = cupy.where(connections >= 0) to_r = connections[from_r, from_c, from_g] // c_shape[1] to_c = connections[from_r, from_c, from_g] - to_r * c_shape[1] del connections, from_g return from_r, from_c, to_r, to_c, score_median, score_std # Cell #the performance functions are tested with the wrapper function connect_centroids @alphapept.performance.performance_function def convert_connections_to_array(x:np.ndarray, from_r:np.ndarray, from_c:np.ndarray, to_r:np.ndarray, to_c:np.ndarray, row_borders:np.ndarray, out_from_idx:np.ndarray, out_to_idx:np.ndarray): """Convert integer indices of a matrix to coordinates. Args: x (np.ndarray): Input index. Note that we are using the performance function so this is a range. from_r (np.ndarray): From array with row coordinates. from_c (np.ndarray): From array with column coordinates. to_r (np.ndarray): To array with row coordinates. to_c (np.ndarray): To array with column coordinates. row_borders (np.ndarray): Row borders (for indexing). out_from_idx (np.ndarray): Reporting array: 1D index from. out_to_idx (np.ndarray): Reporting array: 1D index to. """ row = from_r[x] col = from_c[x] start_index_f = 0 if row > 0: start_index_f = row_borders[row - 1] out_from_idx[x] = start_index_f + col row = to_r[x] col = to_c[x] start_index_f = 0 if row > 0: start_index_f = row_borders[row - 1] out_to_idx[x] = start_index_f + col @alphapept.performance.performance_function def eliminate_overarching_vertex(x:np.ndarray, from_idx:np.ndarray, to_idx:np.ndarray): """Eliminate overacrhing vertex. Args: x (np.ndarray): Input index. Note that we are using the performance function so this is a range. from_idx (np.ndarray): From index. to_idx (np.ndarray): To index. """ if x == 0: return if from_idx[x - 1] == from_idx[x]: to_idx[x] = -1 def connect_centroids(rowwise_peaks:np.ndarray, row_borders:np.ndarray, centroids:np.ndarray, max_gap:int, centroid_tol:float)-> (np.ndarray, np.ndarray, float, float): """Function to connect centroids. Args: rowwise_peaks (np.ndarray): Indexes for centroids. row_borders (np.ndarray): Row borders (for indexing). centroids (np.ndarray): Centroid data. max_gap: Maximum gap. centroid_tol: Centroid tol for matching centroids. Returns: np.ndarray: From index. np.ndarray: To index. float: Median score. float: Std deviation of the score. """ if alphapept.performance.COMPILATION_MODE == "cuda": import cupy cupy = cupy else: import numpy cupy = numpy from_r, from_c, to_r, to_c, score_median, score_std = find_centroid_connections(rowwise_peaks, row_borders, centroids, max_gap, centroid_tol) from_idx = cupy.zeros(len(from_r), np.int32) to_idx = cupy.zeros(len(from_r), np.int32) convert_connections_to_array(range(len(from_r)), from_r, from_c, to_r, to_c, row_borders, from_idx, to_idx) eliminate_overarching_vertex(range(len(from_idx)), from_idx, to_idx) relavent_idx = cupy.where(to_idx >= 0) from_idx = cupy.take(from_idx, relavent_idx)[0] to_idx = cupy.take(to_idx, relavent_idx)[0] del from_r, from_c, to_r, to_c, relavent_idx return from_idx, to_idx, score_median, score_std # Cell @alphapept.performance.performance_function def path_finder(x:np.ndarray, from_idx:np.ndarray, to_idx:np.ndarray, forward:np.ndarray, backward:np.ndarray): """Extracts path information and writes to path matrix. Args: x (np.ndarray): Input index. Note that we are using the performance function so this is a range. from_idx (np.ndarray): Array containing from indices. to_idx (np.ndarray): Array containing to indices. forward (np.ndarray): Array to report forward connection. backward (np.ndarray): Array to report backward connection. """ fr = from_idx[x] to = to_idx[x] forward[fr] = to backward[to] = fr @alphapept.performance.performance_function def find_path_start(x:np.ndarray, forward:np.ndarray, backward:np.ndarray, path_starts:np.ndarray): """Function to find the start of a path. Args: x (np.ndarray): Input index. Note that we are using the performance function so this is a range. forward (np.ndarray): Array to report forward connection. backward (np.ndarray): Array to report backward connection. path_starts (np.ndarray): Array to report path starts. """ if forward[x] > -1 and backward[x] == -1: path_starts[x] = 0 @alphapept.performance.performance_function def find_path_length(x:np.ndarray, path_starts:np.ndarray, forward:np.ndarray, path_cnt:np.ndarray): """Function to extract the length of a path. Args: x (np.ndarray): Input index. Note that we are using the performance function so this is a range. path_starts (np.ndarray): Array that stores the starts of the paths. forward (np.ndarray): Array that stores forward information. path_cnt (np.ndarray): Reporting array to count the paths. """ ctr = 1 idx = path_starts[x] while forward[idx] > -1: ctr += 1 idx = forward[idx] path_cnt[x] = ctr @alphapept.performance.performance_function def fill_path_matrix(x:np.ndarray, path_start:np.ndarray, forwards:np.ndarray, out_hill_data:np.ndarray, out_hill_ptr:np.ndarray): """Function to fill the path matrix. Args: x (np.ndarray): Input index. Note that we are using the performance function so this is a range. path_starts (np.ndarray): Array that stores the starts of the paths. forwards (np.ndarray): Forward array. out_hill_data (np.ndarray): Array containing the indices to hills. out_hill_ptr (np.ndarray): Array containing the bounds to out_hill_data. """ path_position = 0 idx = path_start[x] while idx > -1: out_hill_data[out_hill_ptr[x] + path_position] = idx idx = forwards[idx] path_position += 1 def get_hills(centroids:np.ndarray, from_idx:np.ndarray, to_idx:np.ndarray, hill_length_min:int=3)-> (np.ndarray, np.ndarray, int): """Function to get hills from centroid connections. Args: centroids (np.ndarray): 1D Array containing the masses of the centroids. from_idx (np.ndarray): From index. to_idx (np.ndarray): To index. hill_length_min (int): Minimum hill length: Returns: hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. path_node_cnt (int): Number of elements in this path. """ if alphapept.performance.COMPILATION_MODE == "cuda": import cupy cupy = cupy else: import numpy cupy = numpy forward = cupy.full(centroids.shape[0], -1) backward = cupy.full(centroids.shape[0], -1) path_starts = cupy.full(centroids.shape[0], -1) path_finder(range(len(from_idx)), from_idx, to_idx, forward, backward) find_path_start(range(len(forward)), forward, backward, path_starts) # path_starts will now container the first index of all connected centroids path_starts = cupy.where(path_starts == 0)[0] path_node_cnt = cupy.full(path_starts.shape[0], -1) find_path_length(range(len(path_starts)), path_starts, forward, path_node_cnt) relavant_path_node = cupy.where(path_node_cnt >= hill_length_min)[0] path_starts = cupy.take(path_starts, relavant_path_node) path_node_cnt = cupy.take(path_node_cnt, relavant_path_node) del relavant_path_node # Generate the hill matix indice ptr data hill_ptrs = cupy.empty((path_starts.shape[0] + 1), dtype=cupy.int32) hill_ptrs[0] = 0 hill_ptrs[1:] = path_node_cnt.cumsum() hill_data = cupy.empty((int(hill_ptrs[-1])), np.int32) fill_path_matrix(range(len(path_starts)), path_starts, forward, hill_data, hill_ptrs) del from_idx, to_idx, path_starts, forward, backward return hill_ptrs, hill_data, path_node_cnt def extract_hills(query_data:dict, max_gap:int, centroid_tol:float)-> (np.ndarray, np.ndarray, int, float, float): """[summary] Args: query_data (dict): Data structure containing the query data. max_gap (int): Maximum gap when connecting centroids. centroid_tol (float): Centroid tolerance. Returns: hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. path_node_cnt (int): Number of elements in this path. score_median (float): Median score. score_std (float): Std deviation of the score. """ if alphapept.performance.COMPILATION_MODE == "cuda": import cupy cupy = cupy else: import numpy cupy = numpy indices = cupy.array(query_data['indices_ms1']) mass_data = cupy.array(query_data['mass_list_ms1']) rowwise_peaks = indices[1:] - indices[:-1] row_borders = indices[1:] from_idx, to_idx, score_median, score_std = connect_centroids(rowwise_peaks, row_borders, mass_data, max_gap, centroid_tol) hill_ptrs, hill_data, path_node_cnt = get_hills(mass_data, from_idx, to_idx) del mass_data del indices if cupy.__name__ != 'numpy': hill_ptrs = hill_ptrs.get() hill_data = hill_data.get() path_node_cnt = path_node_cnt.get() score_median = score_median.get() score_std = score_std.get() return hill_ptrs, hill_data, path_node_cnt, score_median, score_std from numba import njit @njit def remove_duplicate_hills(hill_ptrs, hill_data, path_node_cnt): """ Removes hills that share datapoints. Starts from the largest hills. """ taken_points = np.zeros(hill_data.max()+1) c = 0 current_idx = 0 hill_ptrs_new = np.zeros_like(hill_ptrs) hill_data_new = np.zeros_like(hill_data) for i, _ in enumerate(np.argsort(path_node_cnt)[::-1]): s, e = hill_ptrs[_], hill_ptrs[_+1] point_idx = hill_data[s:e] hill_pts = taken_points[point_idx] if hill_pts.sum() == 0: hill_data_new[current_idx:current_idx+len(hill_pts)] = point_idx current_idx += len(hill_pts) hill_ptrs_new[c+1] = current_idx c +=1 taken_points[point_idx] +=1 hill_data_new = hill_data_new[:current_idx] hill_ptrs_new = hill_ptrs_new[:c] return hill_ptrs_new, hill_data_new # Cell @alphapept.performance.compile_function(compilation_mode="numba") def fast_minima(y:np.ndarray)->np.ndarray: """Function to calculate the local minimas of an array. Args: y (np.ndarray): Input array. Returns: np.ndarray: Array containing minima positions. """ minima = np.zeros(len(y)) start = 0 end = len(y) for i in range(start + 2, end - 2): if ((y[i - 1] > y[i]) & (y[i + 1] > y[i])) \ or ((y[i - 1] > y[i]) & (y[i + 1] == y[i]) & (y[i + 2] > y[i])) \ or ((y[i - 2] > y[i]) & (y[i - 1] == y[i]) & (y[i + 1] > y[i])) \ or (((y[i - 2] > y[i]) & (y[i - 1] == y[i]) & (y[i + 1] == y[i]) & \ (y[i + 2] > y[i]))): minima[i] = 1 minima = minima.nonzero()[0] return minima # Cell @alphapept.performance.performance_function(compilation_mode="numba-multithread") def split(k:np.ndarray, hill_ptrs:np.ndarray, int_data:np.ndarray, hill_data:np.ndarray, splits:np.ndarray, hill_split_level:float, window:int): """Function to split hills. Args: k (np.ndarray): Input index. Note that we are using the performance function so this is a range. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. int_data (np.ndarray): Array containing the intensity to each centroid. hill_data (np.ndarray): Array containing the indices to hills. splits (np.ndarray): Array containing splits. hill_split_level (float): Split level for hills. window (int): Smoothing window. """ start = hill_ptrs[k] end = hill_ptrs[k + 1] int_idx = hill_data[start:end] #index to hill data int_trace = int_data[int_idx] for i in range(len(int_idx)): min_index = max(0, i - window) max_index = min(len(int_idx), i + window + 1) int_trace[i] = np.median(int_trace[min_index:max_index]) for i in range(len(int_idx)): min_index = max(0, i - window) max_index = min(len(int_idx), i + window + 1) int_trace[i] = np.mean(int_trace[min_index:max_index]) #minima = (np.diff(np.sign(np.diff(int_trace))) > 0).nonzero()[0] + 1 #This works also but is slower minima = fast_minima(int_trace) sorted_minima = np.argsort(int_trace[minima]) minima = minima[sorted_minima] for min_ in minima: minval = int_trace[min_] left_max = max(int_trace[:min_]) right_max = max(int_trace[min_:]) min_max = min(left_max, right_max) if (minval == 0) or ((min_max / minval) > hill_split_level): splits[k] = start+min_ break # Split only once per iteration def split_hills(hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, hill_split_level:float, window:int)->np.ndarray: """Wrapper function to split hills Args: hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. hill_split_level (float): Split level for hills. window (int): Smoothing window. Returns: np.ndarray: Array containing the bounds to the hill_data with splits. """ splits = np.zeros(len(int_data), dtype=np.int32) to_check = np.arange(len(hill_ptrs)-1) while len(to_check) > 0: split(to_check, hill_ptrs, int_data, hill_data, splits, hill_split_level, window) splitpoints = splits.nonzero()[0] to_check = np.zeros(len(hill_ptrs)) to_check[splitpoints] = 1 to_check = np.insert(to_check, splitpoints+1, np.ones(len(splitpoints))).nonzero()[0] #array, index, what hill_ptrs = np.insert(hill_ptrs, splitpoints+1, splits[splitpoints]) #array, index, what splits = np.zeros(len(hill_ptrs), dtype=np.int32) #was cupy np.int32 return hill_ptrs # Cell @alphapept.performance.performance_function(compilation_mode="numba-multithread") def check_large_hills(idx:np.ndarray, large_peaks:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, to_remove:np.ndarray, large_peak:int = 40, hill_peak_factor:float = 2, window:int=1): """Function to check large hills and flag them for removal. Args: idx (np.ndarray): Input index. Note that we are using the performance function so this is a range. large_peaks (np.ndarray): Array containing large peaks. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. to_remove (np.ndarray): Array with indexes to remove. large_peak (int, optional): Length criterion when a peak is large. Defaults to 40. hill_peak_factor (float, optional): Hill maximum criterion. Defaults to 2. window (int, optional): Smoothing window.. Defaults to 1. """ k = large_peaks[idx] start = hill_ptrs[k] end = hill_ptrs[k + 1] int_idx = hill_data[start:end] #index to hill data int_smooth_ = int_data[int_idx] for i in range(len(int_idx)): min_index = max(0, i - window) max_index = min(len(int_idx), i + window + 1) int_smooth_[i] = np.median(int_smooth_[min_index:max_index]) for i in range(len(int_idx)): min_index = max(0, i - window) max_index = min(len(int_idx), i + window + 1) int_smooth_[i] = np.mean(int_smooth_[min_index:max_index]) int_ = int_data[int_idx] max_ = np.max(int_) if (max_ / int_smooth_[0] > hill_peak_factor) & (max_ / int_smooth_[-1] > hill_peak_factor): to_remove[idx] = 0 def filter_hills(hill_data:np.ndarray, hill_ptrs:np.ndarray, int_data:np.ndarray, hill_check_large:int =40, window:int = 1) -> (np.ndarray, np.ndarray): """Filters large hills. Args: hill_data (np.ndarray): Array containing the indices to hills. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. int_data (np.ndarray): Array containing the intensity to each centroid. hill_check_large (int, optional): Length criterion when a hill is considered large.. Defaults to 40. window (int, optional): Smoothing window. Defaults to 1. Returns: np.ndarray: Filtered hill data. np.ndarray: Filtered hill points. """ large_peaks = np.where(np.diff(hill_ptrs)>=hill_check_large)[0] to_remove = np.ones(len(large_peaks), dtype=np.int32) check_large_hills(range(len(large_peaks)), large_peaks, hill_ptrs, hill_data, int_data, to_remove, window) idx_ = np.ones(len(hill_data), dtype = np.int32) keep = np.ones(len(hill_ptrs)-1, dtype = np.int32) to_remove = to_remove.nonzero()[0] for _ in to_remove: idx_[hill_ptrs[_]:hill_ptrs[_+1]] = 0 keep[_] = 0 hill_lens = np.diff(hill_ptrs) keep_ = hill_lens[keep.nonzero()[0]] hill_data_ = hill_data[idx_.nonzero()[0]] hill_ptrs_ = np.empty((len(keep_) + 1), dtype=np.int32) hill_ptrs_[0] = 0 hill_ptrs_[1:] = keep_.cumsum() return hill_data_, hill_ptrs_ # Cell @alphapept.performance.performance_function(compilation_mode="numba-multithread") def hill_stats(idx:np.ndarray, hill_range:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, mass_data:np.ndarray, rt_:np.ndarray, rt_idx:np.ndarray, stats:np.ndarray, hill_nboot_max:int, hill_nboot:int): """Function to calculate hill stats. Args: idx (np.ndarray): Input index. Note that we are using the performance function so this is a range. hill_range (np.ndarray): Hill range. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. mass_data (np.ndarray): Array containing mass data. rt_ (np.ndarray): Array with retention time information for each scan. rt_idx (np.ndarray): Lookup array to match centroid idx to rt. stats (np.ndarray): Stats array that contains summary statistics of hills. hill_nboot_max (int): Maximum number of bootstrap comparisons. hill_nboot (int): Number of bootstrap comparisons """ np.random.seed(42) start = hill_ptrs[idx] end = hill_ptrs[idx + 1] idx_ = hill_data[start:end] int_ = int_data[idx_] mz_ = mass_data[idx_] ms1_int_apex = np.max(int_) ms1_int_area = np.abs(np.trapz(int_, rt_[rt_idx[idx_]])) #Area rt_min = rt_[rt_idx[idx_]].min() rt_max = rt_[rt_idx[idx_]].max() if len(idx_) > hill_nboot_max: bootsize = hill_nboot_max else: bootsize = len(idx_) averages = np.zeros(hill_nboot) average = 0 for i in range(hill_nboot): boot = np.random.choice(len(int_), bootsize, replace=True) boot_mz = np.sum((mz_[boot] * int_[boot])) / np.sum(int_[boot]) averages[i] = boot_mz average += boot_mz average_mz = average/hill_nboot delta = 0 for i in range(hill_nboot): delta += (average_mz - averages[i]) ** 2 #maybe easier? delta_m = np.sqrt(delta / (hill_nboot - 1)) stats[idx,0] = average_mz stats[idx,1] = delta_m stats[idx,2] = ms1_int_area stats[idx,3] = ms1_int_apex stats[idx,4] = rt_min stats[idx,5] = rt_max def remove_duplicates(stats:np.ndarray, hill_data:np.ndarray, hill_ptrs:np.ndarray)-> (np.ndarray, np.ndarray, np.ndarray): """Remove duplicate hills. Args: stats (np.ndarray): Stats array that contains summary statistics of hills. hill_data (np.ndarray): Array containing the indices to hills. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. Returns: np.ndarray: Filtered hill data. np.ndarray: Filtered hill points. np.ndarray: Filtered hill stats. """ dups = pd.DataFrame(stats).duplicated() #all duplicated hills idx_ = np.ones(len(hill_data), dtype = np.int32) #keep all keep = np.ones(len(hill_ptrs)-1, dtype = np.int32) for _ in np.arange(len(stats))[dups]: #duplicates will be assigned zeros idx_[hill_ptrs[_]:hill_ptrs[_+1]] = 0 keep[_] = 0 hill_lens = np.diff(hill_ptrs) keep_ = hill_lens[keep.nonzero()[0]] hill_data_ = hill_data[idx_.nonzero()[0]] hill_ptrs_ = np.empty((len(keep_) + 1), dtype=np.int32) hill_ptrs_[0] = 0 hill_ptrs_[1:] = keep_.cumsum() return hill_data_, hill_ptrs_, stats[~dups] def get_hill_data(query_data:dict, hill_ptrs:np.ndarray, hill_data:np.ndarray, hill_nboot_max:int = 300, hill_nboot:int = 150) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray): """Wrapper function to get the hill data. Args: query_data (dict): Data structure containing the query data. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. hill_nboot_max (int): Maximum number of bootstrap comparisons. hill_nboot (int): Number of bootstrap comparisons Returns: np.ndarray: Hill stats. np.ndarray: Sortindex. np.ndarray: Upper index. np.ndarray: Scan index. np.ndarray: Hill data. np.ndarray: Hill points. """ indices_ = np.array(query_data['indices_ms1']) rt_ = np.array(query_data['rt_list_ms1']) mass_data = np.array(query_data['mass_list_ms1']) scan_idx = np.searchsorted(indices_, np.arange(len(mass_data)), side='right') - 1 int_data = np.array(query_data['int_list_ms1']) stats = np.zeros((len(hill_ptrs)-1, 6)) #mz, delta, rt_min, rt_max, sum_max hill_stats(range(len(hill_ptrs)-1), np.arange(len(hill_ptrs)-1), hill_ptrs, hill_data, int_data, mass_data, rt_, scan_idx, stats, hill_nboot_max, hill_nboot) # sort the stats sortindex = np.argsort(stats[:,4]) #Sorted by rt_min stats = stats[sortindex,:] idxs_upper = stats[:,4].searchsorted(stats[:,5], side="right") sortindex_ = np.arange(len(sortindex))[sortindex] return stats, sortindex_, idxs_upper, scan_idx, hill_data, hill_ptrs # Cell from .constants import mass_dict DELTA_M = mass_dict['delta_M'] DELTA_S = mass_dict['delta_S'] maximum_offset = DELTA_M + DELTA_S @alphapept.performance.compile_function(compilation_mode="numba") def check_isotope_pattern(mass1:float, mass2:float, delta_mass1:float, delta_mass2:float, charge:int, iso_mass_range:int = 5)-> bool: """Check if two masses could belong to the same isotope pattern. Args: mass1 (float): Mass of the first pattern. mass2 (float): Mass of the second pattern. delta_mass1 (float): Delta mass of the first pattern. delta_mass2 (float): Delta mass of the second pattern. charge (int): Charge. iso_mass_range (int, optional): Mass range. Defaults to 5. Returns: bool: Flag to see if pattern belongs to the same pattern. """ delta_mass1 = delta_mass1 * iso_mass_range delta_mass2 = delta_mass2 * iso_mass_range delta_mass = np.abs(mass1 - mass2) left_side = np.abs(delta_mass - DELTA_M / charge) right_side = np.sqrt((DELTA_S / charge) ** 2 + delta_mass1 ** 2 + delta_mass2 ** 2) return left_side <= right_side # Cell @alphapept.performance.compile_function(compilation_mode="numba") def correlate(scans_:np.ndarray, scans_2:np.ndarray, int_:np.ndarray, int_2:np.ndarray)->float: """Correlate two scans. Args: scans_ (np.ndarray): Masses of the first scan. scans_2 (np.ndarray): Masses of the second scan. int_ (np.ndarray): Intensity of the first scan. int_2 (np.ndarray): Intensity of the second scan. Returns: float: Correlation. """ min_one, max_one = scans_[0], scans_[-1] min_two, max_two = scans_2[0], scans_2[-1] if min_one + 3 > max_two: # at least an overlap of 3 elements corr = 0 elif min_two + 3 > max_one: corr = 0 else: min_s = min(min_one, min_two) max_s = max(max_one, max_two) int_one_scaled = np.zeros(int(max_s - min_s + 1)) int_two_scaled = np.zeros(int(max_s - min_s + 1)) int_one_scaled[scans_ - min_s] = int_ int_two_scaled[scans_2 - min_s] = int_2 corr = np.sum(int_one_scaled * int_two_scaled) / np.sqrt( np.sum(int_one_scaled ** 2) * np.sum(int_two_scaled ** 2) ) return corr # Cell @alphapept.performance.compile_function(compilation_mode="numba") def extract_edge(stats:np.ndarray, idxs_upper:np.ndarray, runner:int, max_index:int, maximum_offset:float, iso_charge_min:int = 1, iso_charge_max:int = 6, iso_mass_range:int=5)->list: """Extract edges. Args: stats (np.ndarray): Stats array that contains summary statistics of hills. idxs_upper (np.ndarray): Upper index for comparing. runner (int): Index. max_index (int): Unused. maximum_offset (float): Maximum offset when comparing edges. iso_charge_min (int, optional): Minimum isotope charge. Defaults to 1. iso_charge_max (int, optional): Maximum isotope charge. Defaults to 6. iso_mass_range (float, optional): Mass search range. Defaults to 5. Returns: list: List of edges. """ edges = [] mass1 = stats[runner, 0] delta_mass1 = stats[runner, 1] for j in range(runner+1, idxs_upper[runner]): mass2 = stats[j, 0] if np.abs(mass2 - mass1) <= maximum_offset: delta_mass2 = stats[j, 1] for charge in range(iso_charge_min, iso_charge_max + 1): if check_isotope_pattern(mass1, mass2, delta_mass1, delta_mass2, charge, iso_mass_range): edges.append((runner, j)) break return edges @alphapept.performance.performance_function(compilation_mode="numba-multithread") def edge_correlation(idx:np.ndarray, to_keep:np.ndarray, sortindex_:np.ndarray, pre_edges:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, scan_idx:np.ndarray, cc_cutoff:float): """Correlates two edges and flag them it they should be kept. Args: idx (np.ndarray): Input index. Note that we are using the performance function so this is a range. to_keep (np.ndarray): Array with indices which edges should be kept. sortindex_ (np.ndarray): Sortindex to access the hills from stats. pre_edges (np.ndarray): Array with pre edges. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. scan_idx (np.ndarray): Array containing the scan index for a centroid. cc_cutoff (float): Cutoff value for what is considered correlating. """ edge = pre_edges[idx,:] y = sortindex_[edge[0]] start = hill_ptrs[y] end = hill_ptrs[y + 1] idx_ = hill_data[start:end] int_ = int_data[idx_] scans_ = scan_idx[idx_] con = sortindex_[edge[1]] start = hill_ptrs[con] end = hill_ptrs[con + 1] idx_2 = hill_data[start:end] int_2 = int_data[idx_2] scans_2 = scan_idx[idx_2] if correlate(scans_, scans_2, int_, int_2) > cc_cutoff: to_keep[idx] = 1 # Cell import networkx as nx def get_pre_isotope_patterns(stats:np.ndarray, idxs_upper:np.ndarray, sortindex_:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, scan_idx:np.ndarray, maximum_offset:float, iso_charge_min:int=1, iso_charge_max:int=6, iso_mass_range:float=5, cc_cutoff:float=0.6)->list: """Function to extract pre isotope patterns. Args: stats (np.ndarray): Stats array that contains summary statistics of hills. idxs_upper (np.ndarray): Upper index for comparison. sortindex_ (np.ndarray): Sortindex to access the hills from stats. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. scan_idx (np.ndarray): Array containing the scan index for a centroid. maximum_offset (float): Maximum offset when matching. iso_charge_min (int, optional): Minimum isotope charge. Defaults to 1. iso_charge_max (int, optional): Maximum isotope charge. Defaults to 6. iso_mass_range (float, optional): Mass search range. Defaults to 5. cc_cutoff (float, optional): Correlation cutoff. Defaults to 0.6. Returns: list: List of pre isotope patterns. """ pre_edges = [] # Step 1 for runner in range(len(stats)): pre_edges.extend(extract_edge(stats, idxs_upper, runner, idxs_upper[runner], maximum_offset, iso_charge_min, iso_charge_max, iso_mass_range)) to_keep = np.zeros(len(pre_edges), dtype='int') pre_edges = np.array(pre_edges) edge_correlation(range(len(to_keep)), to_keep, sortindex_, pre_edges, hill_ptrs, hill_data, int_data, scan_idx, cc_cutoff) edges = pre_edges[to_keep.nonzero()] G2 = nx.Graph() for i in range(len(edges)): G2.add_edge(edges[i][0], edges[i][1]) pre_isotope_patterns = [ sorted(list(c)) for c in sorted(nx.connected_components(G2), key=len, reverse=True) ] return pre_isotope_patterns # Cell from numba.typed import List @alphapept.performance.compile_function(compilation_mode="numba") def check_isotope_pattern_directed(mass1:float, mass2:float, delta_mass1:float, delta_mass2:float, charge:int, index:int, iso_mass_range:float)->bool: """Check if two masses could belong to the same isotope pattern. Args: mass1 (float): Mass of the first pattern. mass2 (float): Mass of the second pattern. delta_mass1 (float): Delta mass of the first pattern. delta_mass2 (float): Delta mass of the second pattern. charge (int): Charge. index (int): Index (unused). iso_mass_range (float): Isotope mass ranges. Returns: bool: Flag if two isotope patterns belong together. """ delta_mass1 = delta_mass1 * iso_mass_range delta_mass2 = delta_mass2 * iso_mass_range left_side = np.abs(mass1 - mass2 - index * DELTA_M / charge) right_side = np.sqrt((DELTA_S / charge) ** 2 + delta_mass1 ** 2 + delta_mass2 ** 2) return left_side <= right_side @alphapept.performance.compile_function(compilation_mode="numba") def grow(trail:List, seed:int, direction:int, relative_pos:int, index:int, stats:np.ndarray, pattern:np.ndarray, charge:int, iso_mass_range:float, sortindex_:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, scan_idx:np.ndarray, cc_cutoff:float)->List: """Grows isotope pattern based on a seed and direction. Args: trail (List): List of hills belonging to a pattern. seed (int): Seed position. direction (int): Direction in which to grow the trail relative_pos (int): Relative position. index (int): Index. stats (np.ndarray): Stats array that contains summary statistics of hills. pattern (np.ndarray): Isotope pattern. charge (int): Charge. iso_mass_range (float): Mass range for checking isotope patterns. sortindex_ (np.ndarray): Sortindex to access the hills from stats. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. scan_idx (np.ndarray): Array containing the scan index for a centroid. cc_cutoff (float): Cutoff value for what is considered correlating. Returns: List: List of hills belonging to a pattern. """ x = pattern[seed] # This is the seed mass1 = stats[x,0] delta_mass1 = stats[x,1] k = sortindex_[x] start = hill_ptrs[k] end = hill_ptrs[k + 1] idx_ = hill_data[start:end] int_ = int_data[idx_] scans_ = scan_idx[idx_] growing = True while growing: if direction == 1: if seed + relative_pos == len(pattern): growing = False break else: if seed + relative_pos < 0: growing = False break y = pattern[seed + relative_pos] # This is a reference peak l = sortindex_[y] mass2 = stats[y,0] delta_mass2 = stats[y,1] start = hill_ptrs[l] end = hill_ptrs[l + 1] idx_ = hill_data[start:end] int_2 = int_data[idx_] scans_2 = scan_idx[idx_] if correlate(scans_, scans_2, int_, int_2) > cc_cutoff: if check_isotope_pattern_directed(mass1, mass2, delta_mass1, delta_mass2, charge, -direction * index, iso_mass_range): if direction == 1: trail.append(y) else: trail.insert(0, y) index += ( 1 ) # Greedy matching: Only one edge for a specific distance, will not affect the following matches delta_mass = np.abs(mass1 - mass2) if (delta_mass > (DELTA_M+DELTA_S) * index): # the pattern is sorted so there is a maximum to look back break relative_pos += direction return trail @alphapept.performance.compile_function(compilation_mode="numba") def grow_trail(seed:int, pattern:np.ndarray, stats:np.ndarray, charge:int, iso_mass_range:float, sortindex_:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, scan_idx:np.ndarray, cc_cutoff:float)->List: """Wrapper to grow an isotope pattern to the left and right side. Args: seed (int): Seed position. pattern (np.ndarray): Isotope pattern. stats (np.ndarray): Stats array that contains summary statistics of hills. charge (int): Charge. iso_mass_range (float): Mass range for checking isotope patterns. sortindex_ (np.ndarray): Sortindex to access the hills from stats. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. scan_idx (np.ndarray): Array containing the scan index for a centroid. cc_cutoff (float): Cutoff value for what is considered correlating. Returns: List: Isotope pattern. """ x = pattern[seed] trail = List() trail.append(x) trail = grow(trail, seed, -1, -1, 1, stats, pattern, charge, iso_mass_range, sortindex_, hill_ptrs, hill_data, int_data, scan_idx, cc_cutoff) trail = grow(trail, seed, 1, 1, 1, stats, pattern, charge, iso_mass_range, sortindex_, hill_ptrs, hill_data, int_data, scan_idx, cc_cutoff) return trail @alphapept.performance.compile_function(compilation_mode="numba") def get_trails(seed:int, pattern:np.ndarray, stats:np.ndarray, charge_range:List, iso_mass_range:float, sortindex_:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, scan_idx:np.ndarray, cc_cutoff:float)->List: """Wrapper to extract trails for a given charge range. Args: seed (int): Seed index. pattern (np.ndarray): Pre isotope pattern. stats (np.ndarray): Stats array that contains summary statistics of hills. charge_range (List): Charge range. iso_mass_range (float): Mass range for checking isotope patterns. sortindex_ (np.ndarray): Sortindex to access the hills from stats. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. scan_idx (np.ndarray): Array containing the scan index for a centroid. cc_cutoff (float): Cutoff value for what is considered correlating. Returns: List: Trail of consistent hills. """ trails = [] for charge in charge_range: trail = grow_trail(seed, pattern, stats, charge, iso_mass_range, sortindex_, hill_ptrs, hill_data, int_data, scan_idx, cc_cutoff) trails.append(trail) return trails # Cell def plot_pattern(pattern:np.ndarray, sorted_hills:np.ndarray, centroids:np.ndarray, hill_data:np.ndarray): """Helper function to plot a pattern. Args: pattern (np.ndarray): Pre isotope pattern. sorted_hills (np.ndarray): Hills, sorted. centroids (np.ndarray): 1D Array containing the masses of the centroids. hill_data (np.ndarray): Array containing the indices to hills. """ f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(10,10)) centroid_dtype = [("mz", float), ("int", float), ("scan_no", int), ("rt", float)] mzs = [] rts = [] ints = [] for entry in pattern: hill = sorted_hills[entry] hill_data = np.array([centroids[_[0]][_[1]] for _ in hill], dtype=centroid_dtype) int_profile = hill_data["int"] ax1.plot(hill_data["rt"], hill_data["int"]) ax2.scatter(hill_data["rt"], hill_data["mz"], s = hill_data["int"]/5e5 ) ax1.set_title('Pattern') ax1.set_xlabel('RT (min)') ax1.set_ylabel('Intensity') ax2.set_xlabel('RT (min)') ax2.set_ylabel('m/z') plt.show() # Cell @alphapept.performance.compile_function(compilation_mode="numba") def get_minpos(y:np.ndarray, iso_split_level:float)->List: """Function to get a list of minima in a trace. A minimum is returned if the ratio of lower of the surrounding maxima to the minimum is larger than the splitting factor. Args: y (np.ndarray): Input array. iso_split_level (float): Isotope split level. Returns: List: List with min positions. """ minima = get_local_minima(y) minima_list = List() for minpos in minima: minval = y[minpos] left_max = (y[:minpos]).max() right_max = (y[minpos:]).max() minimum_max = min(left_max, right_max) if minimum_max / minval >= iso_split_level: minima_list.append(minpos) return minima_list @alphapept.performance.compile_function(compilation_mode="numba") def get_local_minima(y:np.ndarray)->List: """Function to return all local minima of a array Args: y (np.ndarray): Input array. Returns: List: List with indices to minima. """ minima = List() for i in range(1, len(y) - 1): if is_local_minima(y, i): minima.append(i) return minima @alphapept.performance.compile_function(compilation_mode="numba") def is_local_minima(y:np.ndarray, i:int)->bool: """Check if position is a local minima. Args: y (np.ndarray): Input array. i (int): Position to check. Returns: bool: Flag if position is minima or not. """ return (y[i - 1] > y[i]) & (y[i + 1] > y[i]) @alphapept.performance.compile_function(compilation_mode="numba") def truncate(array:np.ndarray, intensity_profile:np.ndarray, seedpos:int, iso_split_level:float)->np.ndarray: """Function to truncate an intensity profile around its seedposition. Args: array (np.ndarray): Input array. intensity_profile (np.ndarray): Intensities for the input array. seedpos (int): Seedposition. iso_split_level (float): Split level. Returns: np.ndarray: Truncated array. """ minima = int_list_to_array(get_minpos(intensity_profile, iso_split_level)) if len(minima) > 0: left_minima = minima[minima < seedpos] right_minima = minima[minima > seedpos] # If the minimum is smaller than the seed if len(left_minima) > 0: minpos = left_minima[-1] else: minpos = 0 if len(right_minima) > 0: maxpos = right_minima[0] else: maxpos = len(array) array = array[minpos:maxpos+1] return array # Cell from .chem import mass_to_dist from .constants import averagine_aa, isotopes, Isotope from numba.typed import Dict @alphapept.performance.compile_function(compilation_mode="numba") def check_averagine(stats:np.ndarray, pattern:np.ndarray, charge:int, averagine_aa:Dict, isotopes:Dict)->float: """Function to compare a pattern to an averagine model. Args: stats (np.ndarray): Stats array that contains summary statistics of hills. pattern (np.ndarray): Isotope pattern. charge (int): Charge. averagine_aa (Dict): Dict containing averagine masses. isotopes (Dict): Dict containing isotopes. Returns: float: Averagine correlation. """ masses, intensity = pattern_to_mz(stats, pattern, charge) spec_one = np.floor(masses).astype(np.int64) int_one = intensity spec_two, int_two = mass_to_dist(np.min(masses), averagine_aa, isotopes) # maybe change to no rounded version spec_two = np.floor(spec_two).astype(np.int64) return cosine_averagine(int_one, int_two, spec_one, spec_two) @alphapept.performance.compile_function(compilation_mode="numba") def pattern_to_mz(stats:np.ndarray, pattern:np.ndarray, charge:int)-> (np.ndarray, np.ndarray): """Function to calculate masses and intensities from pattern for a given charge. Args: stats (np.ndarray): Stats array that contains summary statistics of hills. pattern (np.ndarray): Isotope pattern. charge (int): Charge of the pattern. Returns: np.ndarray: masses np.ndarray: intensity """ mzs = np.zeros(len(pattern)) ints = np.zeros(len(pattern)) for i in range(len(pattern)): entry = pattern[i] mzs[i] = mz_to_mass(stats[entry,0], charge) ints[i] = stats[entry,2] sortindex = np.argsort(mzs) masses = mzs[sortindex] intensity = ints[sortindex] return masses, intensity @alphapept.performance.compile_function(compilation_mode="numba") def cosine_averagine(int_one:np.ndarray, int_two:np.ndarray, spec_one:np.ndarray, spec_two:np.ndarray)-> float: """Calculate the cosine correlation of two hills. Args: int_one (np.ndarray): Intensity of the first hill. int_two (np.ndarray): Intensity of the second hill. spec_one (np.ndarray): Scan numbers of the first hill. spec_two (np.ndarray): Scan numbers of the second hill. Returns: float: Cosine """ min_one, max_one = spec_one[0], spec_one[-1] min_two, max_two = spec_two[0], spec_two[-1] min_s = np.min(np.array([min_one, min_two])) max_s = np.max(np.array([max_one, max_two])) int_one_scaled = np.zeros(int(max_s - min_s + 1)) int_two_scaled = np.zeros(int(max_s - min_s + 1)) int_one_scaled[spec_one - min_s] = int_one int_two_scaled[spec_two - min_s] = int_two corr = np.sum(int_one_scaled * int_two_scaled) / np.sqrt( np.sum(int_one_scaled ** 2) * np.sum(int_two_scaled ** 2) ) return corr @alphapept.performance.compile_function(compilation_mode="numba") def int_list_to_array(numba_list:List)->np.ndarray: """Numba compatbilte function to convert a numba list with integers to a numpy array Args: numba_list (List): Input numba-typed List. Returns: np.ndarray: Output numpy array. """ array = np.zeros(len(numba_list), dtype=np.int64) for i in range(len(array)): array[i] = numba_list[i] return array M_PROTON = mass_dict['Proton'] @alphapept.performance.compile_function(compilation_mode="numba") def mz_to_mass(mz:float, charge:int)->float: """Function to calculate the mass from a mz value. Args: mz (float): M/z charge (int): Charge. Raises: NotImplementedError: When a negative charge is used. Returns: float: mass """ if charge < 0: raise NotImplementedError("Negative Charges not implemented.") mass = mz * charge - charge * M_PROTON return mass # Cell @alphapept.performance.compile_function(compilation_mode="numba") def isolate_isotope_pattern(pre_pattern:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, scan_idx:np.ndarray, stats:np.ndarray, sortindex_:np.ndarray, iso_mass_range:float, charge_range:List, averagine_aa:Dict, isotopes:Dict, iso_n_seeds:int, cc_cutoff:float, iso_split_level:float)->(np.ndarray, int): """Isolate isotope patterns. Args: pre_pattern (np.ndarray): Pre isotope pattern. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. scan_idx (np.ndarray): Array containing the scan index for a centroid. stats (np.ndarray): Stats array that contains summary statistics of hills. sortindex_ (np.ndarray): Sortindex to access the hills from stats. iso_mass_range (float): Mass range for checking isotope patterns. charge_range (List): Charge range. averagine_aa (Dict): Dict containing averagine masses. isotopes (Dict): Dict containing isotopes. iso_n_seeds (int): Number of seeds. cc_cutoff (float): Cutoff value for what is considered correlating. iso_split_level (float): Split level when isotopes are split. Returns: np.ndarray: Array with the best pattern. int: Charge of the best pattern. """ longest_trace = 0 champion_trace = None champion_charge = 0 champion_intensity = 0 # Sort patterns by mass sortindex = np.argsort(stats[pre_pattern][:,0]) #intensity sorted_pattern = pre_pattern[sortindex] massindex = np.argsort(stats[sorted_pattern][:,2])[::-1][:iso_n_seeds] # Use all the elements in the pre_pattern as seed for seed in massindex: # Loop through all seeds seed_global = sorted_pattern[seed] trails = get_trails(seed, sorted_pattern, stats, charge_range, iso_mass_range, sortindex_, hill_ptrs, hill_data, int_data, scan_idx, cc_cutoff) for index, trail in enumerate(trails): if len(trail) >= longest_trace: # Needs to be longer than the current champion arr = int_list_to_array(trail) intensity_profile = stats[arr][:,2] seedpos = np.nonzero(arr==seed_global)[0][0] # truncate around the seed... arr = truncate(arr, intensity_profile, seedpos, iso_split_level) intensity_profile = stats[arr][:,2] # Remove lower masses: # Take the index of the maximum and remove all masses on the left side if charge_range[index] * stats[seed_global, 0] < 1000: maxpos = np.argmax(intensity_profile) arr = arr[maxpos:] intensity_profile = stats[arr][:,2] if (len(arr) > longest_trace) | ((len(arr) == longest_trace) & (intensity_profile.sum() > champion_intensity)): # Averagine check cc = check_averagine(stats, arr, charge_range[index], averagine_aa, isotopes) if cc > 0.6: # Update the champion champion_trace = arr champion_charge = charge_range[index] longest_trace = len(arr) champion_intensity = intensity_profile.sum() return champion_trace, champion_charge # Cell from numba.typed import List from typing import Callable, Union def get_isotope_patterns(pre_isotope_patterns:list, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, scan_idx:np.ndarray, stats:np.ndarray, sortindex_:np.ndarray, averagine_aa:Dict, isotopes:Dict, iso_charge_min:int = 1, iso_charge_max:int = 6, iso_mass_range:float = 5, iso_n_seeds:int = 100, cc_cutoff:float=0.6, iso_split_level:float = 1.3, callback:Union[Callable, None]=None) -> (np.ndarray, np.ndarray, np.ndarray): """Wrapper function to iterate over pre_isotope_patterns. Args: pre_isotope_patterns (list): List of pre-isotope patterns. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. scan_idx (np.ndarray): Array containing the scan index for a centroid. stats (np.ndarray): Stats array that contains summary statistics of hills. sortindex_ (np.ndarray): Sortindex to access the hills from stats. averagine_aa (Dict): Dict containing averagine masses. isotopes (Dict): Dict containing isotopes. iso_charge_min (int, optional): Minimum isotope charge. Defaults to 1. iso_charge_max (int, optional): Maximum isotope charge. Defaults to 6. iso_mass_range (float, optional): Mass search range. Defaults to 5. iso_n_seeds (int, optional): Number of isotope seeds. Defaults to 100. cc_cutoff (float, optional): Cuttoff for correlation.. Defaults to 0.6. iso_split_level (float, optional): Isotope split level.. Defaults to 1.3. callback (Union[Callable, None], optional): Callback function for progress. Defaults to None. Returns: list: List of isotope patterns. np.ndarray: Iso idx. np.ndarray: Array containing isotope charges. """ isotope_patterns = [] isotope_charges = [] charge_range = List() for i in range(iso_charge_min, iso_charge_max + 1): charge_range.append(i) isotope_patterns = [] isotope_charges = [] for idx, pre_pattern in enumerate(pre_isotope_patterns): extract = True while extract: isotope_pattern, isotope_charge = isolate_isotope_pattern(np.array(pre_pattern), hill_ptrs, hill_data, int_data, scan_idx, stats, sortindex_, iso_mass_range, charge_range, averagine_aa, isotopes, iso_n_seeds, cc_cutoff, iso_split_level) if isotope_pattern is None: length = 0 else: length = len(isotope_pattern) if length > 1: isotope_charges.append(isotope_charge) isotope_patterns.append(isotope_pattern) pre_pattern = [_ for _ in pre_pattern if _ not in isotope_pattern] if len(pre_pattern) <= 1: extract = False else: extract = False if callback: callback((idx+1)/len(pre_isotope_patterns)) iso_patterns = np.zeros(sum([len(_) for _ in isotope_patterns]), dtype=np.int64) iso_idx = np.zeros(len(isotope_patterns)+1, dtype='int') start = 0 for idx, _ in enumerate(isotope_patterns): iso_patterns[start:start+len(_)] = _ start += len(_) iso_idx[idx+1] = start return iso_patterns, iso_idx, np.array(isotope_charges) # Cell @alphapept.performance.performance_function(compilation_mode="numba-multithread") def report_(idx:np.ndarray, isotope_charges:list, isotope_patterns:list, iso_idx:np.ndarray, stats:np.ndarray, sortindex_:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray, int_data:np.ndarray, rt_:np.ndarray, rt_idx:np.ndarray, results:np.ndarray, lookup_idx:np.ndarray): """Function to extract summary statstics from a list of isotope patterns and charges. MS1 feature intensity estimation. For each isotope envelope we interpolate the signal over the retention time range. All isotope enevelopes are summed up together to estimate the peak sahpe Lastly, we report three estimates for the intensity: - ms1_int_sum_apex: The intensity at the peak of the summed signal. - ms1_int_sum_area: The area of the summed signal - ms1_int_max_apex: The intensity at the peak of the most intense isotope envelope - ms1_int_max_area: The area of the the most intense isotope envelope Args: idx (np.ndarray): Input index. Note that we are using the performance function so this is a range. isotope_patterns (list): List containing isotope patterns (indices to hills). isotope_charges (list): List with charges assigned to the isotope patterns. iso_idx (np.ndarray): Index to isotope pattern. stats (np.ndarray): Stats array that contains summary statistics of hills. sortindex_ (np.ndarray): Sortindex to access the hills from stats. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. int_data (np.ndarray): Array containing the intensity to each centroid. rt_ (np.ndarray): Array with retention time information for each scan. rt_idx (np.ndarray): Lookup array to match centroid idx to rt. results (np.ndarray): Recordarray with isotope pattern summary statistics. lookup_idx (np.ndarray): Lookup array for each centroid. """ pattern = isotope_patterns[iso_idx[idx]:iso_idx[idx+1]] isotope_data = stats[pattern] mz = np.min(isotope_data[:, 0]) mz_std = np.mean(isotope_data[:, 1]) charge = isotope_charges[idx] mass = mz_to_mass(mz, charge) int_max_idx = np.argmax(isotope_data[:, 2]) mz_most_abundant = isotope_data[:, 0][int_max_idx] int_max = isotope_data[:,2][int_max_idx] rt_start = isotope_data[int_max_idx, 4] # This is the start of the most abundant trace rt_end = isotope_data[int_max_idx, 5] rt_min_ = min(isotope_data[:, 4]) rt_max_ = max(isotope_data[:, 5]) rt_range = np.linspace(rt_min_, rt_max_, 100) #TODO this is a fixed value - is there an optimum? trace_sum = np.zeros_like(rt_range) most_intense_pattern = -np.inf for i, k in enumerate(pattern): x = sortindex_[k] start = hill_ptrs[x] end = hill_ptrs[x + 1] idx_ = hill_data[start:end] int_ = int_data[idx_] rts = rt_[rt_idx[idx_]] lookup_idx[idx_, 0] = idx lookup_idx[idx_, 1] = i interpolation = np.interp(rt_range, rts, int_) #Filter interpolation[:(rt_range < rts[0]).sum()] = 0 right_cut = (rt_range > rts[-1]).sum() if right_cut > 0: interpolation[-right_cut:]= 0 trace_sum += interpolation if int_.sum() > most_intense_pattern: most_intense_pattern = int_.sum() ms1_int_max_apex = int_.max() ms1_int_max_area = np.trapz(int_, rts) rt_apex_idx = trace_sum.argmax() rt_apex = rt_range[rt_apex_idx] trace = trace_sum half_max = trace.max()/2 if rt_apex_idx == 0: left_apex = 0 else: left_apex = np.abs(trace[:rt_apex_idx]-half_max).argmin() right_apex = np.abs(trace[rt_apex_idx:]-half_max).argmin()+rt_apex_idx ms1_int_sum_apex = trace_sum[rt_apex_idx] fwhm = rt_range[right_apex] - rt_range[left_apex] n_isotopes = len(pattern) rt_cutoff = 0.95 #5% if rt_apex_idx == 0: rt_min_idx = 0 else: rt_min_idx = np.abs(trace[:rt_apex_idx]-trace.max()*(1-rt_cutoff)).argmin() rt_max_idx = np.abs(trace[rt_apex_idx:]-trace.max()*(1-rt_cutoff)).argmin()+rt_apex_idx #plt.xlabel('rt') #plt.ylabel('int') #plt.show() #plt.plot(rt_range, trace_sum) #plt.plot([rt_range[left_apex], rt_range[right_apex]], [(trace[left_apex] + trace[right_apex])/2]*2, 'k:') #plt.plot(rt_range[rt_apex_idx], trace[rt_apex_idx], 'k*') #plt.plot(rt_range[rt_min_idx], trace[rt_min_idx], 'k*') #plt.plot(rt_range[rt_max_idx], trace[rt_max_idx], 'k*') #plt.show() rt_start = rt_range[rt_min_idx] rt_end = rt_range[rt_max_idx] ms1_int_sum_area = np.trapz(trace_sum[rt_min_idx:rt_max_idx], rt_range[rt_min_idx:rt_max_idx]) results[idx,:] = np.array([mz, mz_std, mz_most_abundant, charge, rt_start, rt_apex, rt_end, fwhm, n_isotopes, mass, ms1_int_sum_apex, ms1_int_sum_area, ms1_int_max_apex, ms1_int_max_area]) # Cell import pandas as pd def feature_finder_report(query_data:dict, isotope_patterns:list, isotope_charges:list, iso_idx:np.ndarray, stats:np.ndarray, sortindex_:np.ndarray, hill_ptrs:np.ndarray, hill_data:np.ndarray)->pd.DataFrame: """Creates a report dataframe with summary statistics of the found isotope patterns. Args: query_data (dict): Data structure containing the query data. isotope_patterns (list): List containing isotope patterns (indices to hills). isotope_charges (list): List with charges assigned to the isotope patterns. iso_idx (np.ndarray): Index to the isotope pattern. stats (np.ndarray): Stats array that contains summary statistics of hills. sortindex_ (np.ndarray): Sortindex to access the hills from stats. hill_ptrs (np.ndarray): Array containing the bounds to the hill_data. hill_data (np.ndarray): Array containing the indices to hills. Returns: pd.DataFrame: DataFrame with isotope pattern summary statistics. """ rt_ = np.array(query_data['rt_list_ms1']) indices_ = np.array(query_data['indices_ms1']) mass_data = np.array(query_data['mass_list_ms1']) rt_idx = np.searchsorted(indices_, np.arange(len(mass_data)), side='right') - 1 lookup_idx= np.zeros((len(mass_data),2), dtype=np.int)-1 int_data = np.array(query_data['int_list_ms1']) results = np.zeros((len(isotope_charges), 14)) report_(range(len(isotope_charges)), isotope_charges, isotope_patterns, iso_idx, stats, sortindex_, hill_ptrs, hill_data, int_data, rt_, rt_idx, results, lookup_idx) df = pd.DataFrame(results, columns = ['mz','mz_std','mz_most_abundant','charge','rt_start','rt_apex','rt_end','fwhm','n_isotopes','mass', 'ms1_int_sum_apex', 'ms1_int_sum_area', 'ms1_int_max_apex', 'ms1_int_max_area']) df.sort_values(['rt_start','mz']) return df, lookup_idx # Cell import subprocess import os import platform def extract_bruker(file:str, base_dir:str = "ext/bruker/FF", config:str = "proteomics_4d.config"): """Call Bruker Feautre Finder via subprocess. Args: file (str): Filename for feature finding. base_dir (str, optional): Base dir where the feature finder is stored.. Defaults to "ext/bruker/FF". config (str, optional): Config file for feature finder. Defaults to "proteomics_4d.config". Raises: NotImplementedError: Unsupported operating system. FileNotFoundError: Feature finder not found. FileNotFoundError: Config file not found. FileNotFoundError: Feature file not found. """ feature_path = file + '/'+ os.path.split(file)[-1] + '.features' base_dir = os.path.join(os.path.dirname(__file__), base_dir) operating_system = platform.system() if operating_system == 'Linux': ff_dir = os.path.join(base_dir, 'linux64','uff-cmdline2') logging.info('Using Linux FF') elif operating_system == 'Windows': ff_dir = os.path.join(base_dir, 'win64','uff-cmdline2.exe') logging.info('Using Windows FF') else: raise NotImplementedError(f"System {operating_system} not supported.") if os.path.exists(feature_path): return feature_path else: if not os.path.isfile(ff_dir): raise FileNotFoundError(f'Bruker feature finder cmd not found here {ff_dir}.') config_path = base_dir + '/'+ config if not os.path.isfile(config_path): raise FileNotFoundError(f'Config file not found here {config_path}.') if operating_system == 'Windows': FF_parameters = [ff_dir,'--ff 4d',f'--readconfig "{config_path}"', f'--analysisDirectory "{file}"'] process = subprocess.Popen(' '.join(FF_parameters), stdout=subprocess.PIPE) for line in iter(process.stdout.readline, b''): logtxt = line.decode('utf8') logging.info(logtxt[48:].rstrip()) #Remove logging info from FF elif operating_system == 'Linux': FF_parameters = [ ff_dir, '--ff', '4d', '--readconfig', config_path, '--analysisDirectory', file ] process = subprocess.run(FF_parameters, stdout=subprocess.PIPE) if os.path.exists(feature_path): return feature_path else: raise FileNotFoundError(f"Feature file {feature_path} does not exist.") import sqlalchemy as db def convert_bruker(feature_path:str)->pd.DataFrame: """Reads feature table and converts to feature table to be used with AlphaPept. Args: feature_path (str): Path to the feature file from Bruker FF (.features-file). Returns: pd.DataFrame: DataFrame containing features information. """ engine_featurefile = db.create_engine('sqlite:///{}'.format(feature_path)) feature_table = pd.read_sql_table('LcTimsMsFeature', engine_featurefile) feature_cluster_mapping = pd.read_sql_table('FeatureClusterMapping', engine_featurefile) from .constants import mass_dict M_PROTON = mass_dict['Proton'] feature_table['Mass'] = feature_table['MZ'].values * feature_table['Charge'].values - feature_table['Charge'].values*M_PROTON feature_table = feature_table.rename(columns={"MZ": "mz","Mass": "mass", "RT": "rt_apex", "RT_lower":"rt_start", "RT_upper":"rt_end", "Mobility": "mobility", "Mobility_lower": "mobility_lower", "Mobility_upper": "mobility_upper", "Charge":"charge","Intensity":'ms1_int_sum_apex',"ClusterCount":'n_isotopes'}) feature_table['rt_apex'] = feature_table['rt_apex']/60 feature_table['rt_start'] = feature_table['rt_start']/60 feature_table['rt_end'] = feature_table['rt_end']/60 feature_cluster_mapping = feature_cluster_mapping.rename(columns={"FeatureId": "feature_id", "ClusterId": "cluster_id", "Monoisotopic": "monoisotopic", "Intensity": "ms1_int_sum_apex"}) return feature_table, feature_cluster_mapping def map_bruker(feature_path:str, feature_table:pd.DataFrame, query_data:dict)->pd.DataFrame: """Map Ms1 to Ms2 via Table FeaturePrecursorMapping from Bruker FF. Args: feature_path (str): Path to the feature file from Bruker FF (.features-file). feature_table (pd.DataFrame): Pandas DataFrame containing the features. query_data (dict): Data structure containing the query data. Returns: pd.DataFrame: DataFrame containing features information. """ engine_featurefile = db.create_engine('sqlite:///{}'.format(feature_path)) mapping = pd.read_sql_table('FeaturePrecursorMapping', engine_featurefile) mapping = mapping.set_index('PrecursorId') feature_table= feature_table.set_index('Id') query_prec_id = query_data['prec_id'] #Now look up the feature for each precursor mass_matched = [] mz_matched = [] rt_matched = [] query_idx = [] f_idx = [] for idx, prec_id in tqdm(enumerate(query_prec_id)): try: f_id = mapping.loc[prec_id]['FeatureId'] all_matches = feature_table.loc[f_id] if type(f_id) == np.int64: match = all_matches mz_matched.append(match['mz']) rt_matched.append(match['rt_apex']) mass_matched.append(match['mass']) query_idx.append(idx) f_idx.append(match['FeatureId']) else: for k in range(len(all_matches)): match = all_matches.iloc[k] mz_matched.append(match['mz']) rt_matched.append(match['rt_apex']) mass_matched.append(match['mass']) query_idx.append(idx) f_idx.append(match['FeatureId']) except KeyError: pass features = pd.DataFrame(np.array([mass_matched, mz_matched, rt_matched, query_idx, f_idx]).T, columns = ['mass_matched', 'mz_matched', 'rt_matched', 'query_idx', 'feature_idx']) features['query_idx'] = features['query_idx'].astype('int') return features # Cell def get_stats(isotope_patterns, iso_idx, stats): columns = ['mz_average','delta_m','int_sum','int_area','rt_min','rt_max'] stats_idx = np.zeros(iso_idx[-1], dtype=np.int64) stats_map = np.zeros(iso_idx[-1], dtype=np.int64) start_ = 0 end_ = 0 for idx in range(len(iso_idx)-1): k = isotope_patterns[iso_idx[idx]:iso_idx[idx+1]] end_ += len(k) stats_idx[start_:end_] = k stats_map[start_:end_] = idx start_ = end_ k = pd.DataFrame(stats[stats_idx], columns=columns) k['feature_id'] = stats_map return k # Cell import numpy as np import logging import os from .search import query_data_to_features import alphapept.io import functools def find_features(to_process:tuple, callback:Union[Callable, None] = None, parallel:bool = False)-> Union[str, bool]: """Wrapper for feature finding. Args: to_process (tuple): to_process tuple, to be used from a proces spool. callback (Union[Callable, None], optional): Optional callback function. Defaults to None. parallel (bool, optional): Flag to use parallel processing. Currently unused. Defaults to False. Raises: NotImplementedError: Error if the file extension is not understood. Returns: Union[str, bool]: Returns true if function was sucessfull, otherwise the exception as string. """ try: index, settings = to_process file_name = settings['experiment']['file_paths'][index] base, ext = os.path.splitext(file_name) if ext.lower() == '.raw': datatype='thermo' elif ext.lower() == '.d': datatype='bruker' elif ext.lower() == '.mzml': datatype='mzml' else: raise NotImplementedError('File extension {} not understood.'.format(ext)) out_file = f"{base}.ms_data.hdf" skip = True if os.path.isfile(out_file): try: alphapept.io.MS_Data_File( out_file ).read(dataset_name="features") logging.info( 'Found *.hdf with features for {}'.format(out_file) ) except KeyError: logging.info( 'No *.hdf file with features found for {}. Adding to feature finding list.'.format(out_file) ) skip = False if not skip: ms_file = alphapept.io.MS_Data_File(out_file, is_read_only=False) query_data = ms_file.read_DDA_query_data() feature_cluster_mapping = pd.DataFrame() if not settings['workflow']["find_features"]: features = query_data_to_features(query_data) else: if datatype in ['thermo','mzml']: from .constants import averagine_aa, isotopes f_settings = settings['features'] max_gap = f_settings['max_gap'] centroid_tol = f_settings['centroid_tol'] hill_split_level = f_settings['hill_split_level'] iso_split_level = f_settings['iso_split_level'] #Cleanup if int_data = np.array(query_data['int_list_ms1']) window = f_settings['hill_smoothing'] hill_check_large = f_settings['hill_check_large'] iso_charge_min = f_settings['iso_charge_min'] iso_charge_max = f_settings['iso_charge_max'] iso_n_seeds = f_settings['iso_n_seeds'] hill_nboot_max = f_settings['hill_nboot_max'] hill_nboot = f_settings['hill_nboot'] iso_mass_range = f_settings['iso_mass_range'] iso_corr_min = f_settings['iso_corr_min'] logging.info('Feature finding on {}'.format(file_name)) logging.info(f'Hill extraction with centroid_tol {centroid_tol} and max_gap {max_gap}') hill_ptrs, hill_data, path_node_cnt, score_median, score_std = extract_hills(query_data, max_gap, centroid_tol) logging.info(f'Number of hills {len(hill_ptrs):,}, len = {np.mean(path_node_cnt):.2f}') logging.info(f'Repeating hill extraction with centroid_tol {score_median+score_std*3:.2f}') hill_ptrs, hill_data, path_node_cnt, score_median, score_std = extract_hills(query_data, max_gap, score_median+score_std*3) logging.info(f'Number of hills {len(hill_ptrs):,}, len = {np.mean(path_node_cnt):.2f}') hill_ptrs, hill_data = remove_duplicate_hills(hill_ptrs, hill_data, path_node_cnt) logging.info(f'After duplicate removal of hills {len(hill_ptrs):,}') hill_ptrs = split_hills(hill_ptrs, hill_data, int_data, hill_split_level=hill_split_level, window = window) #hill lenght is inthere already logging.info(f'After split hill_ptrs {len(hill_ptrs):,}') hill_data, hill_ptrs = filter_hills(hill_data, hill_ptrs, int_data, hill_check_large = hill_check_large, window=window) logging.info(f'After filter hill_ptrs {len(hill_ptrs):,}') stats, sortindex_, idxs_upper, scan_idx, hill_data, hill_ptrs = get_hill_data(query_data, hill_ptrs, hill_data, hill_nboot_max = hill_nboot_max, hill_nboot = hill_nboot) logging.info('Extracting hill stats complete') pre_isotope_patterns = get_pre_isotope_patterns(stats, idxs_upper, sortindex_, hill_ptrs, hill_data, int_data, scan_idx, maximum_offset, iso_charge_min=iso_charge_min, iso_charge_max=iso_charge_max, iso_mass_range=iso_mass_range, cc_cutoff=iso_corr_min) logging.info('Found {:,} pre isotope patterns.'.format(len(pre_isotope_patterns))) isotope_patterns, iso_idx, isotope_charges = get_isotope_patterns(pre_isotope_patterns, hill_ptrs, hill_data, int_data, scan_idx, stats, sortindex_, averagine_aa, isotopes, iso_charge_min = iso_charge_min, iso_charge_max = iso_charge_max, iso_mass_range = iso_mass_range, iso_n_seeds = iso_n_seeds, cc_cutoff = iso_corr_min, iso_split_level=iso_split_level, callback=None) logging.info('Extracted {:,} isotope patterns.'.format(len(isotope_charges))) feature_table, lookup_idx = feature_finder_report(query_data, isotope_patterns, isotope_charges, iso_idx, stats, sortindex_, hill_ptrs, hill_data) lookup_idx_df = pd.DataFrame(lookup_idx, columns = ['isotope_pattern', 'isotope_pattern_hill']) ms_file.write(lookup_idx_df, dataset_name="feature_table_idx") feature_cluster_mapping = get_stats(isotope_patterns, iso_idx, stats) logging.info('Report complete.') elif datatype == 'bruker': logging.info('Feature finding on {}'.format(file_name)) feature_path = extract_bruker(file_name) feature_table, feature_cluster_mapping = convert_bruker(feature_path) logging.info('Bruker featurer finder complete. Extracted {:,} features.'.format(len(feature_table))) # Calculate additional params feature_table['rt_length'] = feature_table['rt_end'] - feature_table['rt_start'] feature_table['rt_right'] = feature_table['rt_end'] - feature_table['rt_apex'] feature_table['rt_left'] = feature_table['rt_apex'] - feature_table['rt_start'] feature_table['rt_tail'] = feature_table['rt_right'] / feature_table['rt_left'] logging.info('Matching features to query data.') if 'mono_mzs2' not in query_data.keys(): logging.info('No MS2-data to match.') features = pd.DataFrame() else: features = map_ms2(feature_table, query_data, **settings['features']) ms_file.write(feature_cluster_mapping, dataset_name="feature_cluster_mapping") logging.info('Saving feature table.') ms_file.write(feature_table, dataset_name="feature_table") logging.info('Feature table saved to {}'.format(out_file)) logging.info('Saving features.') ms_file.write(features, dataset_name="features") logging.info(f'Feature finding of file {file_name} complete.') return True except Exception as e: logging.error(f'Feature finding of file {file_name} failed. Exception {e}') return f"{e}" #Can't return exception object, cast as string # Cell from sklearn.neighbors import KDTree import pandas as pd import numpy as np def replace_infs(array:np.ndarray)->np.ndarray: """Replace nans and infs with 0 Args: array (np.ndarray): Input array. Returns: np.ndarray: Output array without nans and infs. """ array[array == -np.inf] = 0 array[array == np.inf] = 0 array[np.isnan(array)] = 0 return array def map_ms2(feature_table:pd.DataFrame, query_data:dict, map_mz_range:float = 1, map_rt_range:float = 0.5, map_mob_range:float = 0.3, map_n_neighbors:int=5, search_unidentified:bool = False, **kwargs)->pd.DataFrame: """Map MS1 features to MS2 based on rt and mz. If ccs is included also add. Args: feature_table (pd.DataFrame): Pandas DataFrame with features. query_data (dict): Data structure containing the query data. map_mz_range (float, optional): Mapping range for mz (Da). Defaults to 1. map_rt_range (float, optional): Mapping range for rt (min). Defaults to 0.5. map_mob_range (float, optional): Mapping range for mobility (%). Defaults to 0.3. map_n_neighbors (int, optional): Maximum number of neighbors to be extracted. Defaults to 5. search_unidentified (bool, optional): Flag to perform search on features that have no isotope pattern. Defaults to False. Returns: pd.DataFrame: Table with features. """ feature_table['rt'] = feature_table['rt_apex'] range_dict = {} range_dict['mz'] = ('mono_mzs2', map_mz_range) range_dict['rt'] = ('rt_list_ms2', map_rt_range) range_dict['mobility'] = ('mobility', map_mob_range) query_dict = {} query_dict['rt'] = 'rt_list_ms2' query_dict['mass'] = 'prec_mass_list2' query_dict['mz'] = 'mono_mzs2' query_dict['charge'] = 'charge2' query_dict['mobility'] = 'mobility' if 'mobility' not in feature_table.columns: del range_dict['mobility'] del query_dict['mobility'] use_mob = False else: use_mob = True tree_points = feature_table[list(range_dict.keys())].values for i, key in enumerate(range_dict): tree_points[:,i] = tree_points[:,i]/range_dict[key][1] matching_tree = KDTree(tree_points, metric="euclidean") ref_points = np.array([query_data[range_dict[_][0]] / range_dict[_][1] for _ in range_dict]).T ref_points = replace_infs(ref_points) dist, idx = matching_tree.query(ref_points, k=map_n_neighbors) ref_matched = np.zeros(ref_points.shape[0], dtype=np.bool_) all_df = [] for neighbor in range(map_n_neighbors): ref_df = pd.DataFrame(np.array([query_data[query_dict[_]] for _ in query_dict]).T, columns = query_dict.keys()) for _ in query_dict: ref_df[_+'_matched'] = feature_table.iloc[idx[:,neighbor]][_].values ref_df[_+'_offset'] = ref_df[_+'_matched'] - ref_df[_] ref_df['query_idx'] = ref_df.index ref_df['feature_idx'] = idx[:,neighbor] for field in ['ms1_int_sum_area','ms1_int_sum_apex','ms1_int_max_area','ms1_int_max_apex','rt_start','rt_apex','rt_end','fwhm','mobility_lower','mobility_upper']: if field in feature_table.keys(): ref_df[field] = feature_table.iloc[idx[:,neighbor]][field].values rt_check = (ref_df['rt_start'] <= ref_df['rt']) & (ref_df['rt'] <= ref_df['rt_end']) # check isolation window (win=3) mass_check = np.abs(ref_df['mz_offset'].values) <= 3 _check = rt_check & mass_check if use_mob: mob_check = (ref_df['mobility_lower'] <= ref_df['mobility']) & (ref_df['mobility'] <= ref_df['mobility_upper']) _check &= mob_check ref_matched |= _check ref_df['feature_dist'] = dist[:,neighbor] ref_df = ref_df[_check] all_df.append(ref_df) if search_unidentified: if use_mob: unmatched_ref = pd.DataFrame(np.array([query_data['rt_list_ms2'], query_data['prec_mass_list2'], query_data['mono_mzs2'], query_data['charge2'], query_data['mobility']]).T, columns=['rt', 'mass', 'mz', 'charge','mobility']) else: unmatched_ref = pd.DataFrame(np.array([query_data['rt_list_ms2'], query_data['prec_mass_list2'], query_data['mono_mzs2'], query_data['charge2']]).T, columns=['rt', 'mass', 'mz', 'charge']) unmatched_ref = unmatched_ref[~ref_matched] unmatched_ref['mass_matched'] = unmatched_ref['mass'] unmatched_ref['mass_offset'] = 0 unmatched_ref['rt_matched'] = unmatched_ref['rt'] unmatched_ref['rt_offset'] = 0 unmatched_ref['mz_matched'] = unmatched_ref['mz'] unmatched_ref['mz_offset'] = 0 unmatched_ref['charge_matched'] = unmatched_ref['charge'] unmatched_ref['query_idx'] = unmatched_ref.index unmatched_ref['feature_idx'] = np.nan if use_mob: ref_df['mobility_matched'] = unmatched_ref['mobility'] ref_df['mobility_offset'] = np.nan for field in ['ms1_int_sum_area','ms1_int_sum_apex','ms1_int_max_area','ms1_int_max_apex','rt_start','rt_apex','rt_end','fwhm']: if field in feature_table.keys(): unmatched_ref[field] = np.nan unmatched_ref['feature_dist'] = np.nan all_df.append(unmatched_ref) features = pd.concat(all_df) features = features.sort_values('mass_matched', ascending=True) features = features.reset_index(drop=True) return features
39.274919
438
0.65683
0e8e109dc2d5c300a72b06fc16a6718619759d81
939
py
Python
scraping/web.py
vmarcella/auto-python
d98b5cd56d5c04e57992ed6ec2f6f0c8630caf8d
[ "MIT" ]
1
2019-05-04T09:26:07.000Z
2019-05-04T09:26:07.000Z
scraping/web.py
C3NZ/auto-python
d98b5cd56d5c04e57992ed6ec2f6f0c8630caf8d
[ "MIT" ]
2
2021-03-19T00:49:22.000Z
2021-06-08T19:56:02.000Z
scraping/web.py
vmarcella/auto-python
d98b5cd56d5c04e57992ed6ec2f6f0c8630caf8d
[ "MIT" ]
null
null
null
""" Playing around with API calls in python """ import requests def main(): # fetch a bunch of posts response = requests.get("https://jsonplaceholder.typicode.com/posts") # Print out our status code, and the first post print(response) print(response.json()[0]) # Dictionary of the new post we're creating new_post = { "userId": 10, "title": "OOOOOOOOoOOOOOooooF", "body": "This is a new post", } # Create a new post request response = requests.post( "https://jsonplaceholder.typicode.com/posts", json=new_post ) # Print out the response and our newly created post print(response) print(response.json()) # Get a specific post response = requests.get("https://jsonplaceholder.typicode.com/posts/2") # Print out the response and specific post print(response) print(response.json()) if __name__ == "__main__": main()
22.902439
75
0.643237
0ea37bead89777eb5845fa6e72e443ad32cbcf25
81,469
py
Python
azure-mgmt-network/azure/mgmt/network/v2018_11_01/operations/virtual_network_gateways_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
null
null
null
azure-mgmt-network/azure/mgmt/network/v2018_11_01/operations/virtual_network_gateways_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
null
null
null
azure-mgmt-network/azure/mgmt/network/v2018_11_01/operations/virtual_network_gateways_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from msrest.polling import LROPoller, NoPolling from msrestazure.polling.arm_polling import ARMPolling from .. import models class VirtualNetworkGatewaysOperations(object): """VirtualNetworkGatewaysOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2018-11-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-11-01" self.config = config def _create_or_update_initial( self, resource_group_name, virtual_network_gateway_name, parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'VirtualNetworkGateway') # Construct and send request request = self._client.put(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkGateway', response) if response.status_code == 201: deserialized = self._deserialize('VirtualNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def create_or_update( self, resource_group_name, virtual_network_gateway_name, parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Creates or updates a virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Parameters supplied to create or update virtual network gateway operation. :type parameters: ~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns VirtualNetworkGateway or ClientRawResponse<VirtualNetworkGateway> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('VirtualNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} def get( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, **operation_config): """Gets the specified virtual network gateway by resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: VirtualNetworkGateway or ClientRawResponse if raw=true :rtype: ~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} def _delete_initial( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def delete( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, polling=True, **operation_config): """Deletes the specified virtual network gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._delete_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} def _update_tags_initial( self, resource_group_name, virtual_network_gateway_name, tags=None, custom_headers=None, raw=False, **operation_config): parameters = models.TagsObject(tags=tags) # Construct URL url = self.update_tags.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'TagsObject') # Construct and send request request = self._client.patch(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def update_tags( self, resource_group_name, virtual_network_gateway_name, tags=None, custom_headers=None, raw=False, polling=True, **operation_config): """Updates a virtual network gateway tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param tags: Resource tags. :type tags: dict[str, str] :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns VirtualNetworkGateway or ClientRawResponse<VirtualNetworkGateway> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._update_tags_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, tags=tags, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('VirtualNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}'} def list( self, resource_group_name, custom_headers=None, raw=False, **operation_config): """Gets all virtual network gateways by resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of VirtualNetworkGateway :rtype: ~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGatewayPaged[~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.VirtualNetworkGatewayPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.VirtualNetworkGatewayPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways'} def list_connections( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, **operation_config): """Gets all the connections in a virtual network gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of VirtualNetworkGatewayConnectionListEntity :rtype: ~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGatewayConnectionListEntityPaged[~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGatewayConnectionListEntity] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list_connections.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.VirtualNetworkGatewayConnectionListEntityPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.VirtualNetworkGatewayConnectionListEntityPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list_connections.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/connections'} def _reset_initial( self, resource_group_name, virtual_network_gateway_name, gateway_vip=None, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.reset.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} if gateway_vip is not None: query_parameters['gatewayVip'] = self._serialize.query("gateway_vip", gateway_vip, 'str') query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def reset( self, resource_group_name, virtual_network_gateway_name, gateway_vip=None, custom_headers=None, raw=False, polling=True, **operation_config): """Resets the primary of the virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param gateway_vip: Virtual network gateway vip address supplied to the begin reset of the active-active feature enabled gateway. :type gateway_vip: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns VirtualNetworkGateway or ClientRawResponse<VirtualNetworkGateway> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_11_01.models.VirtualNetworkGateway]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._reset_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, gateway_vip=gateway_vip, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('VirtualNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) reset.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/reset'} def _reset_vpn_client_shared_key_initial( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.reset_vpn_client_shared_key.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def reset_vpn_client_shared_key( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, polling=True, **operation_config): """Resets the VPN client shared key of the virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._reset_vpn_client_shared_key_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) reset_vpn_client_shared_key.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/resetvpnclientsharedkey'} def _generatevpnclientpackage_initial( self, resource_group_name, virtual_network_gateway_name, parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.generatevpnclientpackage.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'VpnClientParameters') # Construct and send request request = self._client.post(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def generatevpnclientpackage( self, resource_group_name, virtual_network_gateway_name, parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Generates VPN client package for P2S client of the virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Parameters supplied to the generate virtual network gateway VPN client package operation. :type parameters: ~azure.mgmt.network.v2018_11_01.models.VpnClientParameters :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns str or ClientRawResponse<str> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[str] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[str]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._generatevpnclientpackage_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) generatevpnclientpackage.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/generatevpnclientpackage'} def _generate_vpn_profile_initial( self, resource_group_name, virtual_network_gateway_name, parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.generate_vpn_profile.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'VpnClientParameters') # Construct and send request request = self._client.post(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def generate_vpn_profile( self, resource_group_name, virtual_network_gateway_name, parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Generates VPN profile for P2S client of the virtual network gateway in the specified resource group. Used for IKEV2 and radius based authentication. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param parameters: Parameters supplied to the generate virtual network gateway VPN client package operation. :type parameters: ~azure.mgmt.network.v2018_11_01.models.VpnClientParameters :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns str or ClientRawResponse<str> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[str] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[str]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._generate_vpn_profile_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, parameters=parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) generate_vpn_profile.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/generatevpnprofile'} def _get_vpn_profile_package_url_initial( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.get_vpn_profile_package_url.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def get_vpn_profile_package_url( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, polling=True, **operation_config): """Gets pre-generated VPN profile for P2S client of the virtual network gateway in the specified resource group. The profile needs to be generated first using generateVpnProfile. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns str or ClientRawResponse<str> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[str] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[str]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._get_vpn_profile_package_url_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) get_vpn_profile_package_url.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getvpnprofilepackageurl'} def _get_bgp_peer_status_initial( self, resource_group_name, virtual_network_gateway_name, peer=None, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.get_bgp_peer_status.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} if peer is not None: query_parameters['peer'] = self._serialize.query("peer", peer, 'str') query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('BgpPeerStatusListResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def get_bgp_peer_status( self, resource_group_name, virtual_network_gateway_name, peer=None, custom_headers=None, raw=False, polling=True, **operation_config): """The GetBgpPeerStatus operation retrieves the status of all BGP peers. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param peer: The IP address of the peer to retrieve the status of. :type peer: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns BgpPeerStatusListResult or ClientRawResponse<BgpPeerStatusListResult> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_11_01.models.BgpPeerStatusListResult] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_11_01.models.BgpPeerStatusListResult]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._get_bgp_peer_status_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, peer=peer, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('BgpPeerStatusListResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) get_bgp_peer_status.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getBgpPeerStatus'} def supported_vpn_devices( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, **operation_config): """Gets a xml format representation for supported vpn devices. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: str or ClientRawResponse if raw=true :rtype: str or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.supported_vpn_devices.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized supported_vpn_devices.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/supportedvpndevices'} def _get_learned_routes_initial( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.get_learned_routes.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('GatewayRouteListResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def get_learned_routes( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, polling=True, **operation_config): """This operation retrieves a list of routes the virtual network gateway has learned, including routes learned from BGP peers. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns GatewayRouteListResult or ClientRawResponse<GatewayRouteListResult> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_11_01.models.GatewayRouteListResult] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_11_01.models.GatewayRouteListResult]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._get_learned_routes_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('GatewayRouteListResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) get_learned_routes.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getLearnedRoutes'} def _get_advertised_routes_initial( self, resource_group_name, virtual_network_gateway_name, peer, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.get_advertised_routes.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['peer'] = self._serialize.query("peer", peer, 'str') query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('GatewayRouteListResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def get_advertised_routes( self, resource_group_name, virtual_network_gateway_name, peer, custom_headers=None, raw=False, polling=True, **operation_config): """This operation retrieves a list of routes the virtual network gateway is advertising to the specified peer. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param peer: The IP address of the peer :type peer: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns GatewayRouteListResult or ClientRawResponse<GatewayRouteListResult> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_11_01.models.GatewayRouteListResult] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_11_01.models.GatewayRouteListResult]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._get_advertised_routes_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, peer=peer, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('GatewayRouteListResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) get_advertised_routes.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getAdvertisedRoutes'} def _set_vpnclient_ipsec_parameters_initial( self, resource_group_name, virtual_network_gateway_name, vpnclient_ipsec_params, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.set_vpnclient_ipsec_parameters.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(vpnclient_ipsec_params, 'VpnClientIPsecParameters') # Construct and send request request = self._client.post(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnClientIPsecParameters', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def set_vpnclient_ipsec_parameters( self, resource_group_name, virtual_network_gateway_name, vpnclient_ipsec_params, custom_headers=None, raw=False, polling=True, **operation_config): """The Set VpnclientIpsecParameters operation sets the vpnclient ipsec policy for P2S client of virtual network gateway in the specified resource group through Network resource provider. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :param vpnclient_ipsec_params: Parameters supplied to the Begin Set vpnclient ipsec parameters of Virtual Network Gateway P2S client operation through Network resource provider. :type vpnclient_ipsec_params: ~azure.mgmt.network.v2018_11_01.models.VpnClientIPsecParameters :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns VpnClientIPsecParameters or ClientRawResponse<VpnClientIPsecParameters> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_11_01.models.VpnClientIPsecParameters] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_11_01.models.VpnClientIPsecParameters]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._set_vpnclient_ipsec_parameters_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, vpnclient_ipsec_params=vpnclient_ipsec_params, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('VpnClientIPsecParameters', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) set_vpnclient_ipsec_parameters.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/setvpnclientipsecparameters'} def _get_vpnclient_ipsec_parameters_initial( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.get_vpnclient_ipsec_parameters.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('VpnClientIPsecParameters', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def get_vpnclient_ipsec_parameters( self, resource_group_name, virtual_network_gateway_name, custom_headers=None, raw=False, polling=True, **operation_config): """The Get VpnclientIpsecParameters operation retrieves information about the vpnclient ipsec policy for P2S client of virtual network gateway in the specified resource group through Network resource provider. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The virtual network gateway name. :type virtual_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns VpnClientIPsecParameters or ClientRawResponse<VpnClientIPsecParameters> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_11_01.models.VpnClientIPsecParameters] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_11_01.models.VpnClientIPsecParameters]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._get_vpnclient_ipsec_parameters_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('VpnClientIPsecParameters', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) get_vpnclient_ipsec_parameters.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworkGateways/{virtualNetworkGatewayName}/getvpnclientipsecparameters'} def vpn_device_configuration_script( self, resource_group_name, virtual_network_gateway_connection_name, parameters, custom_headers=None, raw=False, **operation_config): """Gets a xml format representation for vpn device configuration script. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_connection_name: The name of the virtual network gateway connection for which the configuration script is generated. :type virtual_network_gateway_connection_name: str :param parameters: Parameters supplied to the generate vpn device script operation. :type parameters: ~azure.mgmt.network.v2018_11_01.models.VpnDeviceScriptParameters :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: str or ClientRawResponse if raw=true :rtype: str or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.vpn_device_configuration_script.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayConnectionName': self._serialize.url("virtual_network_gateway_connection_name", virtual_network_gateway_connection_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'VpnDeviceScriptParameters') # Construct and send request request = self._client.post(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized vpn_device_configuration_script.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/connections/{virtualNetworkGatewayConnectionName}/vpndeviceconfigurationscript'}
49.615713
231
0.693307
3b009c6a5ac7c586c6716a94106231602a560b18
466
py
Python
challenges/spoj/ngm/ngm_v001.py
Joeffison/coding_challenges
0f0c5c2c3dad3a5aabfb66d66c5b6a89bff374ea
[ "MIT" ]
1
2018-02-27T15:53:17.000Z
2018-02-27T15:53:17.000Z
challenges/spoj/ngm/ngm_v001.py
Joeffison/coding_challenges
0f0c5c2c3dad3a5aabfb66d66c5b6a89bff374ea
[ "MIT" ]
null
null
null
challenges/spoj/ngm/ngm_v001.py
Joeffison/coding_challenges
0f0c5c2c3dad3a5aabfb66d66c5b6a89bff374ea
[ "MIT" ]
1
2021-04-18T09:43:21.000Z
2021-04-18T09:43:21.000Z
#!/usr/bin/env python3 import fileinput import sys def solution(n): # If a player faces a number n <= 9, they can play it to win # But if n is 10, there is no chance to win # and any number divisible per 10 will eventually lead to the same scenario (when both players are optimal) remainder = n % 10 return "1\n" + str(remainder) if remainder != 0 else "2" if __name__ == '__main__': f_in = fileinput.input() print(solution(int(f_in.readline())))
25.888889
109
0.690987
ca9593ea371d5e77d93c3eec24a69f5e1c1e80b5
3,375
py
Python
src/2.7/sample/chapter_03/sample_3_2.py
nutti/Introduction-to-Addon-Development-in-Blender-Web
cae839a4ce5fe1caabae67e252912440277d42e8
[ "CC0-1.0" ]
10
2020-02-17T05:50:17.000Z
2022-01-02T14:50:48.000Z
src/2.7/sample/chapter_03/sample_3_2.py
nutti/Introduction-to-Addon-Development-in-Blender-Web
cae839a4ce5fe1caabae67e252912440277d42e8
[ "CC0-1.0" ]
1
2020-03-29T14:32:46.000Z
2020-03-30T08:56:50.000Z
src/2.7/sample/chapter_03/sample_3_2.py
nutti/Introduction-to-Addon-Development-in-Blender-Web
cae839a4ce5fe1caabae67e252912440277d42e8
[ "CC0-1.0" ]
6
2019-05-15T16:59:48.000Z
2020-08-08T17:20:09.000Z
import bpy from bpy.props import BoolProperty, PointerProperty from mathutils import Vector bl_info = { "name": "サンプル3-2: キーボードのキー入力に応じてオブジェクトを並進移動させる", "author": "Nutti", "version": (2, 0), "blender": (2, 75, 0), "location": "3Dビュー > プロパティパネル > オブジェクト並進移動", "description": "キーボードからの入力に応じてオブジェクトを並進移動させるアドオン", "warning": "", "support": "TESTING", "wiki_url": "", "tracker_url": "", "category": "Object" } # プロパティ class TOM_Properties(bpy.types.PropertyGroup): running = BoolProperty( name="オブジェクト並進移動モード中", description="オブジェクト並進移動モード中か?", default=False ) # オブジェクト並進移動モード時の処理 class TranslateObjectMode(bpy.types.Operator): bl_idname = "object.translate_object_mode" bl_label = "オブジェクト並進移動モード" bl_description = "オブジェクト並進移動モードへ移行します" def modal(self, context, event): props = context.scene.tom_props # 3Dビューの画面を更新 if context.area: context.area.tag_redraw() # @include-source start [exit_modal_mode] # キーボードのQキーが押された場合は、オブジェクト並進移動モードを終了 if event.type == 'Q' and event.value == 'PRESS': props.running = False print("サンプル3-2: 通常モードへ移行しました。") return {'FINISHED'} # @include-source end [exit_modal_mode] # @include-source start [check_key_state] if event.value == 'PRESS': value = Vector((0.0, 0.0, 0.0)) if event.type == 'X': value.x = 1.0 if not event.shift else -1.0 if event.type == 'Y': value.y = 1.0 if not event.shift else -1.0 if event.type == 'Z': value.z = 1.0 if not event.shift else -1.0 # @include-source end [check_key_state] # @include-source start [translate_object] # 選択中のオブジェクトを並進移動する bpy.ops.transform.translate(value=value) # @include-source end [translate_object] return {'RUNNING_MODAL'} def invoke(self, context, event): props = context.scene.tom_props if context.area.type == 'VIEW_3D': # 開始ボタンが押された時の処理 if props.running is False: props.running = True # modal処理クラスを追加 context.window_manager.modal_handler_add(self) print("サンプル3-2: オブジェクト並進移動モードへ移行しました。") return {'RUNNING_MODAL'} else: return {'CANCELLED'} # UI class OBJECT_PT_SOEM(bpy.types.Panel): bl_label = "オブジェクト並進移動モード" bl_space_type = "VIEW_3D" bl_region_type = "UI" def draw(self, context): layout = self.layout props = context.scene.tom_props # 開始/停止ボタンを追加 if props.running is False: layout.operator( TranslateObjectMode.bl_idname, text="開始", icon="PLAY" ) else: layout.operator( TranslateObjectMode.bl_idname, text="終了", icon="PAUSE" ) def register(): bpy.utils.register_module(__name__) sc = bpy.types.Scene sc.tom_props = PointerProperty( name="プロパティ", description="本アドオンで利用するプロパティ一覧", type=TOM_Properties ) print("サンプル3-2: アドオン「サンプル3-2」が有効化されました。") def unregister(): del bpy.types.Scene.tom_props bpy.utils.unregister_module(__name__) print("サンプル3-2: アドオン「サンプル3-2」が無効化されました。") if __name__ == "__main__": register()
27.217742
70
0.600593
48b6d8178b1218d6d935a8f37982daf39b81d681
4,918
py
Python
app/main.py
thundercomb/ingest-clnn-news
43b1385fee33b955ddc06fe296d78d898dbfa0fe
[ "MIT" ]
1
2020-01-16T17:19:32.000Z
2020-01-16T17:19:32.000Z
app/main.py
thundercomb/ingest-clnn-news
43b1385fee33b955ddc06fe296d78d898dbfa0fe
[ "MIT" ]
6
2020-01-28T23:08:27.000Z
2022-02-10T00:36:11.000Z
app/main.py
thundercomb/ingest-clnn-news
43b1385fee33b955ddc06fe296d78d898dbfa0fe
[ "MIT" ]
1
2020-06-27T07:38:43.000Z
2020-06-27T07:38:43.000Z
from flask import Flask import requests as rq import logging import os import math import time import datetime import csv from random import randint import feedparser from bs4 import BeautifulSoup from google.cloud import pubsub_v1 from google.cloud import bigquery from google.cloud.exceptions import NotFound, Conflict app = Flask(__name__) @app.route('/') def ok(): return 'ok' @app.route('/ingest') def ingest(): topic_name = os.getenv('TOPIC') url = os.getenv('URL') publisher = pubsub_v1.PublisherClient(batch_settings=pubsub_v1.types.BatchSettings(max_latency=5)) topic_path = publisher.topic_path(project_id, topic_name) feed = feedparser.parse(url) pages = [] today_date = f"{datetime.datetime.now():%Y-%m-%d}" for post in feed.entries: post_date = "%d-%02d-%02d" % (post.published_parsed.tm_year,\ post.published_parsed.tm_mon, \ post.published_parsed.tm_mday) #if post_date == today_date: if post_date: print("post date: " + post_date) print("post title: " + post.title) print("post link: " + post.link) page = rq.get(post.link).text pages.append(page) chunk_size = 50 count = 0 message_count = 0 chunk = [] print('Publishing data to {} ...'.format(topic_path)) for page in pages: text = "" flag = 0 soup = BeautifulSoup(page, "lxml") for s in soup.findAll('p'): if '<em>− Climate News Network</em>' in str(s): text = text + s.text.encode("utf-8").decode("utf-8").replace('− Climate News Network','') + "\n" flag = 1 elif not '<p><' in str(s) and flag == 0: text = text + s.text.encode("utf-8").decode("utf-8") + "\n" if count < chunk_size: chunk.append(text) count += 1 if count == chunk_size: bytes_chunk = bytes("@@".join(chunk).encode('utf-8')) publisher.publish(topic_path, data=bytes_chunk) chunk = [] count = 0 message_count = message_count + 1 if count > 0: bytes_chunk = bytes("@@".join(chunk).encode('utf-8')) publisher.publish(topic_path, data=bytes_chunk) print('Published {} rows in {} messages'.format((message_count * chunk_size) + count, message_count + math.ceil(count/chunk_size))) subscribe() return 'ok' def subscribe(): future = subscriber.subscribe(subscription_path, callback=callback) # The subscriber is non-blocking, so we must keep the main thread from # exiting to allow it to process messages in the background. print('Listening for messages on {} ...'.format(subscription_path)) loop = True while loop: response = subscriber.pull(subscription_path, 10) if len(response.received_messages) > 0: time.sleep(1) else: print('No more messages, canceling subscription...') future.cancel() loop = False return def callback(message): errors = [] if message.data: decoded_message = message.data.decode('utf-8') lines = decoded_message.split('@@') rows_to_insert = [] for line in lines: tuple_row = tuple([line]) rows_to_insert.append(tuple_row) try: table = bq_client.get_table(table_ref) except NotFound: create_table() table = bq_client.get_table(table_ref) print("Inserting {} rows into BigQuery ...".format(len(rows_to_insert))) print(rows_to_insert) errors = bq_client.insert_rows(table, rows_to_insert) if errors != []: print(errors) else: message.ack() assert errors == [] def create_table(): schema = [ bigquery.SchemaField("Article", "STRING", mode="NULLABLE"), ] table = bigquery.Table(table_ref, schema=schema) try: bq_client.get_table(table) except NotFound: try: table = bq_client.create_table(table) print("Created table {}.{}.{}".format(table.project, table.dataset_id, table.table_id)) print("Going to sleep for 60 seconds to ensure data availability in newly created table") time.sleep(60) except Conflict: pass return @app.errorhandler(500) def server_error(e): print('An internal error occurred') return 'An internal error occurred.', 500 print("Preparing..") project_id = os.getenv('PROJECT') subscription_name = os.getenv('SUBSCRIPTION') subscriber = pubsub_v1.SubscriberClient() subscription_path = subscriber.subscription_path(project_id, subscription_name) dataset_id = os.getenv('DATASET') table_id = os.getenv('TABLE') bq_client = bigquery.Client() table_ref = bq_client.dataset(dataset_id).table(table_id)
29.100592
135
0.617121
05e6ce2c50634b4a16f84e7f008cf09cd60e1eef
9,535
py
Python
tensorflow/python/tpu/tpu_sharding.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
78
2020-08-04T12:36:25.000Z
2022-03-25T04:23:40.000Z
tensorflow/python/tpu/tpu_sharding.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
203
2019-06-14T23:53:10.000Z
2022-02-10T02:27:23.000Z
tensorflow/python/tpu/tpu_sharding.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
66
2020-05-15T10:05:12.000Z
2022-02-14T07:28:18.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Helper library for sharding during TPU compilation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import tensor_shape _DEFAULT_NUMBER_OF_SHARDS = 1 _DEFAULT_SHARD_DIMENSION = 0 # TODO(b/36777903) change other parts of tpu.py to use this class. class ShardingPolicy(object): """An object use to hold the sharding policy for a Tensor. """ def __init__(self): self._number_of_shards = None self._shard_dimension = None self._frozen = False def __str__(self): if self.number_of_shards is None or self.shard_dimension is None: return "ShardingPolicy(unset)" else: return ("ShardingPolicy(%d shards dimension %d)" % (self.number_of_shards, self.shard_dimension)) def _fill_default_values(self): if self._number_of_shards is None: self._number_of_shards = _DEFAULT_NUMBER_OF_SHARDS if self._shard_dimension is None: self._shard_dimension = tensor_shape.as_dimension( _DEFAULT_SHARD_DIMENSION) def freeze(self): """Prevents further modification to the sharding policy. Any values that have not been set when freeze is called are set to defaults. If the ShardingPolicy is already frozen, this is a NoOp. """ if not self._frozen: self._fill_default_values() self._frozen = True @property def number_of_shards(self): """Returns the number of shards in the policy or None if unspecified.""" return self._number_of_shards def set_number_of_shards(self, number_of_shards): """Sets the number of shards for the current policy. If the policy has been frozen then number_of_shards must match the existing setting. Args: number_of_shards: The number of shards to use in the policy. Raises: ValueError: If the policy has been frozen and number_of_shards differs from the frozen value; or number_of_shards <= 0. """ if self._frozen: if self._number_of_shards != number_of_shards: raise ValueError( "Can't set sharding policy to use %d shards since it has been " "frozen to use %d." % (number_of_shards, self._number_of_shards)) else: if number_of_shards > 0: self._number_of_shards = number_of_shards else: raise ValueError( "Can't set sharding policy to use %s shards; value must be >0" % str(number_of_shards)) @property def shard_dimension(self): """Returns the shard dimension of the policy or None if unspecified.""" return self._shard_dimension def set_shard_dimension(self, shard_dimension): """Sets the shard dimension for the current policy. If the policy has been frozen then shard_dimension must match the existing setting. Args: shard_dimension: The shard dimension to use in the policy. Raises: ValueError: If the policy has been frozen and shard_dimension differs from the frozen value, or shard_dimension can't be interpreted as a Dimension. """ if self._frozen: if self._shard_dimension != shard_dimension: raise ValueError( "Can't set shard dimension to %d since it has been frozen to " "use %d." % (shard_dimension, self._shard_dimension)) else: self._shard_dimension = tensor_shape.as_dimension(shard_dimension) def merge(self, other): """Merges the policy of another policy into the current policy. Args: other: The policy to merge into this one. Raises: ValueError: If this policy has been frozen and the merge conflicts with the frozen policy. """ if other.number_of_shards is not None: self.set_number_of_shards(other.number_of_shards) if other.shard_dimension is not None: self.set_shard_dimension(other.shard_dimension) def get_sharded_shape(self, shape, shard_index=None): """Returns the shape of a shard of a full Tensor. When given the shape of a 'full-size' Tensor, returns the shape of the sub-Tensor after it has been sharded. Freezes the policy if it has not yet been frozen. Args: shape: The shape of the full-size Tensor to be sharded. shard_index: The index of the shard whose shape should be returned. shard_index can be None for sharding policies that use the same shape for every shard. Returns: The shape of the sharded version of the Tensor. Raises: ValueError: If shard_index is None when shards are of different shapes; or shard_index is not None and !(0<=shard_index<number_of_shards); or shape does not have at least self.shard_dimension+1 dimensions; or the value of shape's shard dimension is not a multiple of self.number_of_shards """ if self._shard_dimension is None or self._number_of_shards is None: # Don't raise an error if the config is unset. return None if shard_index is not None: if shard_index < 0 or shard_index >= self.number_of_shards: raise ValueError("shard_index %d, but must be in [0,%d)." % (shard_index, self._number_of_shards)) shape = tensor_shape.as_shape(shape) if self._number_of_shards == 1: # Don't do anything when there's only one shard. return shape ndims = shape.ndims if ndims is None: raise ValueError("shape must be a specified shape not Unknown") if ndims <= self._shard_dimension: raise ValueError("shape %s does not contain shard_dimension %d" % (shape.as_list(), self._shard_dimension)) dims = shape.as_list() if dims[self._shard_dimension] is None: raise ValueError("shape %s must have a fixed size for dimension %d " "that is known at graph construction time." % (shape.as_list(), self._shard_dimension)) if (dims[self._shard_dimension] % self._number_of_shards) != 0: raise ValueError("shape %s cannot be sharded %d ways along dimension %d" % (shape.as_list(), self._number_of_shards, self._shard_dimension)) dims[self._shard_dimension] //= self._number_of_shards return tensor_shape.as_shape(dims) def _unshard_shape(self, shape): """Return the unsharded shape that would generate a given sharded shape. Args: shape: the sharded shape to unshard Returns: The unsharded shape. Raises: ValueError: if shape is unknown or does not contain self.shard_dimension TypeError: if shape is not convertible to a TensorShape """ shape = tensor_shape.as_shape(shape) if self._number_of_shards == 1: # Don't do anything when there's only one shard. return shape ndims = shape.ndims if ndims is None: raise ValueError("shape must be a specified shape not Unknown") if ndims <= self._shard_dimension: raise ValueError("shape %s does not contain shard_dimension %d" % (shape.as_list(), self._shard_dimension)) dims = shape.as_list() dims[self._shard_dimension] *= self._number_of_shards return tensor_shape.as_shape(dims) def get_unsharded_shape(self, shapes): """Returns the shape of an unsharded Tensor given a list of shards. When given a list of shapes of shards, returns the shape of the unsharded Tensor that would generate the shards. Sets defaults for the policy if number_of_shards or shard_dimension is None. Args: shapes: The shapes of the Tensor shards to be combined. Returns: The shape of the unsharded version of the Tensor. Raises: ValueError: if shapes is not a list of length self.number_of_shards; or any element of shapes is not a valid shape consistent with the sharding policy; or the list of shapes is not a valid sharding of a full shape. TypeError: if an element of shapes is not convertible to a TensorShape """ self._fill_default_values() if len(shapes) != self.number_of_shards: raise ValueError( "shapes is %s but must be a list of length number_of_shards=%d" % ( str(shapes), self.number_of_shards)) unsharded_shapes = [self._unshard_shape(s) for s in shapes] for i in xrange(self.number_of_shards - 1): if not unsharded_shapes[i].is_compatible_with( unsharded_shapes[self.number_of_shards - 1]): raise ValueError( "sharded shapes %s are not consistent shards of a full shape " "sharded %d ways along dimension %d" % ( str(shapes), self.number_of_shards, self.shard_dimension)) return unsharded_shapes[0]
37.687747
80
0.684636
7d9d0b541ad72bbd73fba74b2ae991478421f863
366
py
Python
search_test.py
mochileiroDaGalaxia/Browser-Automation-With-Python-and-WebDriver
045c863177993c223291a9b74c05c68e11ab8c1a
[ "MIT" ]
null
null
null
search_test.py
mochileiroDaGalaxia/Browser-Automation-With-Python-and-WebDriver
045c863177993c223291a9b74c05c68e11ab8c1a
[ "MIT" ]
null
null
null
search_test.py
mochileiroDaGalaxia/Browser-Automation-With-Python-and-WebDriver
045c863177993c223291a9b74c05c68e11ab8c1a
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.keys import Keys driver = webdriver.Chrome('bin/chromedriver') driver.get("http://www.python.org") assert "Python" in driver.title elem = driver.find_element_by_name("q") elem.clear() elem.send_keys("pycon") elem.send_keys(Keys.RETURN) assert "No results found." not in driver.page_source driver.close()
30.5
52
0.786885
ccb641b419a2b184715e21c394e516cb6df87a85
1,288
py
Python
setup.py
WeVidIt/graphene-gis
238466bd02392e79b7f771375da112a8d18ea158
[ "MIT" ]
null
null
null
setup.py
WeVidIt/graphene-gis
238466bd02392e79b7f771375da112a8d18ea158
[ "MIT" ]
null
null
null
setup.py
WeVidIt/graphene-gis
238466bd02392e79b7f771375da112a8d18ea158
[ "MIT" ]
null
null
null
from setuptools import find_packages, setup tests_require = [ "pytest>=5.1.2", "pytest-cov==2.7.1", "pytest-django>=3.5.1" ] dev_requires = [ "black==19.3b0", "flake8==3.7.8", ] + tests_require with open("README.md", "r") as desc: long_description = desc.read() setup( name="graphene-gis", version="0.0.5", description="GIS support for graphene-django", long_description_content_type='text/markdown', url="https://github.com/EverWinter23/graphene-gis", long_description=long_description, keywords="api graphql graphene geos gis", packages=find_packages(exclude=["tests"]), author="Rishabh Mehta", author_email="eternal.blizzard23@gmail.com", install_requires=[ "graphene>=2.1,<3", "graphene-django>=2.5,<3", "graphql-core>=2.1,<3", "psycopg2-binary>=2.8,<3" ], setup_requires=["pytest-runner"], tests_require=tests_require, extras_require={ "test": tests_require, "dev": dev_requires, }, classifiers=( "Programming Language :: Python :: 3.7", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ), include_package_data=True, zip_safe=False, platforms="any", )
24.301887
61
0.626553
5920eb9334e6e542b3bc371c4c9146d1a68adbdb
5,161
py
Python
etc/gdb/evawiz/evawiz_codeblock.py
einsxiao/evawiz
12c148f46c89551c281271718893a92b26da2bfa
[ "BSD-2-Clause" ]
1
2019-06-07T03:44:39.000Z
2019-06-07T03:44:39.000Z
etc/gdb/evawiz/evawiz_codeblock.py
einsxiao/evawiz
12c148f46c89551c281271718893a92b26da2bfa
[ "BSD-2-Clause" ]
null
null
null
etc/gdb/evawiz/evawiz_codeblock.py
einsxiao/evawiz
12c148f46c89551c281271718893a92b26da2bfa
[ "BSD-2-Clause" ]
null
null
null
#!/opt/evawiz/python/bin/python def dprint(*params): print "debug_info: " for i in params: print i, print class StdStringPrinter(object): "Print a std::string" def __init__(self,val): self.val = val def to_string(self): return self.val['_M_dataplus']['_M_p'] def display_hint(self): return "string" ############################################################################## class EvaObjPrinter: """Print a EvaObj object.""" max_child = 100 def __init__(self,val,is_detail = True): self.is_detail = is_detail self.val = val; self.this = val.address self.rtype = str(val['typ']) self.rstate= int(val['state']) self.rv= int(val['v']) self.rv1= val['v1'] self.rv2= val['v2'] self.rre=self.rv1['re'] self.rim=self.rv2['im'] #self.rkey="" rkey set afterwords key may be null self.relements=self.rv2['elements'] ### for elements def prepare_content(self,count=0): self.elements = self.relements.referenced_value(); self.begin = self.elements['_M_impl']["_M_start"] self.end = self.elements['_M_impl']["_M_finish"] self.end_storage = self.elements['_M_impl']["_M_end_of_storage"] self.count = self.end - self.begin self.capacity = self.end_storage - self.begin if self.count == 0: return self.rkey obj = EvaObjPrinter( self.begin.dereference(), False ) res = "" if self.is_detail: res = self.rkey+"{\n "+obj.to_string() else: res = "["+str(count)+"]"+self.rkey+"{"+obj.to_string() counter = 1 self.begin+=1 while self.begin != self.end: obj = EvaObjPrinter( self.begin.dereference(), False ) if self.is_detail: # if counter != 1: # res+=",\n" # else:pass res += " "+str(counter)+":"+obj.to_string() #res +=",\n "+str(counter)+":"+obj.to_string(counter) #res +=" "+obj.to_string(counter) else: # if counter != 1: res+="," # else:pass # res += obj.to_string() res+=","+obj.to_string(counter) counter+=1 if counter > self.max_child: break self.begin+=1 if counter < self.count: res+=",\n...with extra "+str(self.count - counter)+" elements" if self.is_detail: res+="\n}" else: res+="}" return res def to_string(self,count=0): s=""; if ( self.rstate !=0 or self.rv != 0 ): s=" ,{state="+str(self.rstate)+", v="+str(self.rv)+"}"; if ( self.rtype == "evawiz::NumberT" ): return str(self.rre) if ( self.rtype == "evawiz::ComplexT" ): return "("+str( self.rre )+","+str( self.rim)+")" if ( self.rtype == "evawiz::StringT" ): if ( self.rre ): self.rkey=self.rv1['key'].string(); return '"'+self.rkey+'"' if ( self.rtype == "evawiz::SymbolT" ): if ( self.rre ): self.rkey=self.rv1['key'].string(); res = "" #if self.this and self.is_detail : # res = "EvaObj@"+str(self.this)+":"; if ( self.relements ): res = res+" "+self.prepare_content(count) else: res = " "+self.rkey res+=s; return res if ( self.rtype == "evawiz::ReferenceT" ): print ">>>deal ref<<<", self.rlref=self.rv1['lref'] self.rrref=self.rv2['rref'] refobj = EvaObjPrinter( self.rrref.referenced_value() ); res = "-->" + refobj.to_string(); return res if ( self.rtype == "evawiz::VariableT" ): return "$_"+int(self.rre)+s return "{ v1={re="+str(self.rre)+", key="+self.rkey+"},"+"v2={im="+ \ str(self.rim)+", ptr="+str(self.rrref)+"}}" def display_hint(self): return "EvaObj" ########################################################################## ########################################################################## # def lookup_function(val): # lookup_tag = val.type.tag # if lookup_tag == None: # return None # regexs = ( # (re.compile("^std::basic_string<char,.*>$"),StdStringPrinter), # ) # for (regex,printer) in regexs: # print ( regex, printer) # if ( regex.match(lookup_tag) ): # return printer(val) # return None import gdb.printing def build_pretty_printers(): pp = gdb.printing.RegexpCollectionPrettyPrinter("evawiz") pp.add_printer('string',"^std::basic_string<char,.*>$",StdStringPrinter) pp.add_printer('EvaObj',"^evawiz::EvaObj$",EvaObjPrinter) return pp gdb.printing.register_pretty_printer( gdb.current_objfile(), build_pretty_printers() ) ##########################################################################
33.296774
86
0.484596
9977b6bd8f8aab027bf73f277bd14641ab33ee80
1,103
py
Python
master/teachkids-master/teachkids-master/ch04/ViralSpiral.py
AlexRogalskiy/DevArtifacts
931aabb8cbf27656151c54856eb2ea7d1153203a
[ "MIT" ]
4
2018-09-07T15:35:24.000Z
2019-03-27T09:48:12.000Z
master/teachkids-master/teachkids-master/ch04/ViralSpiral.py
AlexRogalskiy/DevArtifacts
931aabb8cbf27656151c54856eb2ea7d1153203a
[ "MIT" ]
371
2020-03-04T21:51:56.000Z
2022-03-31T20:59:11.000Z
master/teachkids-master/teachkids-master/ch04/ViralSpiral.py
AlexRogalskiy/DevArtifacts
931aabb8cbf27656151c54856eb2ea7d1153203a
[ "MIT" ]
3
2019-06-18T19:57:17.000Z
2020-11-06T03:55:08.000Z
# ViralSpiral.py - a spiral of spirals! import turtle t = turtle.Pen() t.penup() turtle.bgcolor("black") # Ask the user for the number of sides, default to 4, min 2, max 6 sides = int(turtle.numinput("Number of sides", "How many sides in your spiral of spirals? (2-6)", 4,2,6)) colors = ["red", "yellow", "blue", "green", "purple", "orange"] # Our outer spiral loop for m in range(100): t.forward(m*4) position = t.position() # Remember this corner of the spiral heading = t.heading() # Remember the direction we were heading print(position, heading) # Our "inner" spiral loop # Draws a little spiral at each corner of the big spiral for n in range(int(m/2)): t.pendown() t.pencolor(colors[n%sides]) t.forward(2*n) t.right(360/sides - 2) t.penup() t.setx(position[0]) # Go back to the big spiral's x location t.sety(position[1]) # Go back to the big spiral's y location t.setheading(heading) # Point in the big spiral's heading t.left(360/sides + 2) # Aim at the next point on the big spiral
38.034483
70
0.637353
6cd6dae352886c301bc9e172dc228591f66f7620
5,821
py
Python
errant/fr/merger.py
Maxwell1447/ERRANT-fr
023bb3568cb07241000829c2b0a23b7613409d45
[ "MIT" ]
null
null
null
errant/fr/merger.py
Maxwell1447/ERRANT-fr
023bb3568cb07241000829c2b0a23b7613409d45
[ "MIT" ]
null
null
null
errant/fr/merger.py
Maxwell1447/ERRANT-fr
023bb3568cb07241000829c2b0a23b7613409d45
[ "MIT" ]
null
null
null
from itertools import combinations, groupby from re import sub from string import punctuation import Levenshtein import spacy.symbols as POS from errant.edit import Edit import logging # Merger resources open_pos = {POS.ADJ, POS.AUX, POS.ADV, POS.NOUN, POS.VERB} # Input: An Alignment object # Output: A list of Edit objects def get_rule_edits(alignment): edits = [] # Split alignment into groups of M, T and rest. (T has a number after it) for op, group in groupby( alignment.align_seq, lambda x: x[0][0] if x[0][0] in {"M", "T"} else False ): group = list(group) # Ignore M if op == "M": continue # T is always split elif op == "T": for seq in group: edits.append(Edit(alignment.orig, alignment.cor, seq[1:])) # Process D, I and S subsequence else: processed = process_seq(group, alignment) # Turn the processed sequence into edits for seq in processed: edits.append(Edit(alignment.orig, alignment.cor, seq[1:])) return edits # Input 1: A sequence of adjacent D, I and/or S alignments # Input 2: An Alignment object # Output: A sequence of merged/split alignments def process_seq(seq, alignment): # Return single alignments if len(seq) <= 1: return seq # Get the ops for the whole sequence ops = [op[0] for op in seq] # Merge all D xor I ops. (95% of human multi-token edits contain S). if set(ops) == {"D"} or set(ops) == {"I"}: return merge_edits(seq) content = False # True if edit includes a content word # Get indices of all start-end combinations in the seq: 012 = 01, 02, 12 combos = list(combinations(range(0, len(seq)), 2)) # Sort them starting with largest spans first combos.sort(key=lambda x: x[1] - x[0], reverse=True) # Loop through combos for start, end in combos: # Ignore ranges that do NOT contain a substitution. if "S" not in ops[start : end + 1]: continue # Get the tokens in orig and cor. They will now never be empty. o = alignment.orig[seq[start][1] : seq[end][2]] c = alignment.cor[seq[start][3] : seq[end][4]] # First token possessive suffixes if start == 0 and (o[0].tag_ == "POS" or c[0].tag_ == "POS"): return [seq[0]] + process_seq(seq[1:], alignment) # Case changes if o[-1].lower == c[-1].lower: # Merge first token I or D: [Cat -> The big cat] if start == 0 and ( (len(o) == 1 and c[0].text[0].isupper()) or (len(c) == 1 and o[0].text[0].isupper()) ): return merge_edits(seq[start : end + 1]) + process_seq( seq[end + 1 :], alignment ) # Merge with previous punctuation: [, we -> . We], [we -> . We] if (len(o) > 1 and is_punct(o[-2])) or (len(c) > 1 and is_punct(c[-2])): return ( process_seq(seq[: end - 1], alignment) + merge_edits(seq[end - 1 : end + 1]) + process_seq(seq[end + 1 :], alignment) ) # Merge whitespace/hyphens: [acat -> a cat], [sub - way -> subway] s_str = sub("['-]", "", "".join([tok.lower_ for tok in o])) t_str = sub("['-]", "", "".join([tok.lower_ for tok in c])) if s_str == t_str: return ( process_seq(seq[:start], alignment) + merge_edits(seq[start : end + 1]) + process_seq(seq[end + 1 :], alignment) ) # Merge same POS or auxiliary/infinitive/phrasal verbs: # [to eat -> eating], [watch -> look at] pos_set = set([tok.pos for tok in o] + [tok.pos for tok in c]) if len(o) != len(c) and ( len(pos_set) == 1 or pos_set.issubset({POS.AUX, POS.PART, POS.VERB}) ): return ( process_seq(seq[:start], alignment) + merge_edits(seq[start : end + 1]) + process_seq(seq[end + 1 :], alignment) ) # Split rules take effect when we get to smallest chunks if end - start < 2: # Split adjacent substitutions if len(o) == len(c) == 2: return process_seq(seq[: start + 1], alignment) + process_seq( seq[start + 1 :], alignment ) # Split similar substitutions at sequence boundaries if (ops[start] == "S" and char_cost(o[0], c[0]) > 0.75) or ( ops[end] == "S" and char_cost(o[-1], c[-1]) > 0.75 ): return process_seq(seq[: start + 1], alignment) + process_seq( seq[start + 1 :], alignment ) # Split final determiners if end == len(seq) - 1 and ( (ops[-1] in {"D", "S"} and o[-1].pos == POS.DET) or (ops[-1] in {"I", "S"} and c[-1].pos == POS.DET) ): return process_seq(seq[:-1], alignment) + [seq[-1]] # Set content word flag if not pos_set.isdisjoint(open_pos): content = True # Merge sequences that contain content words if content: return merge_edits(seq) else: return seq # Check whether token is punctuation def is_punct(token): return token.pos == POS.PUNCT or token.text in punctuation # Calculate the cost of character alignment; i.e. char similarity def char_cost(a, b): return Levenshtein.ratio(a.text, b.text) # Merge the input alignment sequence to a single edit span def merge_edits(seq): if seq: return [("X", seq[0][1], seq[-1][2], seq[0][3], seq[-1][4])] else: return seq
38.296053
84
0.540629
1e318bedf3b5b4822d0b7ef5c119542c2e6b6ea0
972
py
Python
bin/verification_client.py
Anas-Dew/copyword
fcd21bd972acd00028f754898e7c9158d3daafd8
[ "MIT" ]
null
null
null
bin/verification_client.py
Anas-Dew/copyword
fcd21bd972acd00028f754898e7c9158d3daafd8
[ "MIT" ]
null
null
null
bin/verification_client.py
Anas-Dew/copyword
fcd21bd972acd00028f754898e7c9158d3daafd8
[ "MIT" ]
null
null
null
# -------------for-saving-login-data-in-local-machine import os def save_logs_on_system(login_data): # takes login data and # save in current app working directory os.chdir(f"{os.getcwd()}") with open("user_login.file","w") as f: f.write(str(login_data)) # --------------for-validating-if-entered-mail-is-correct-or-not import re basic_email_structure = '^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,3}$' def email_is_valid(email : str): if(re.search(basic_email_structure,email)): return True else: return False # --------------for-checking-if-internet-is-active-machine import requests url = "https://www.google.com" timeout = 10 def connection_status_on_machine(): try: # requesting URL request = requests.get(url, timeout=timeout) return True # catching exception except (requests.ConnectionError, requests.Timeout) as exception: return False
24.3
70
0.621399
e6ecdea873931818a699d322e8e901f178045e50
1,475
py
Python
alien.py
AldoNunes001/Alien_Invasion
5c317206af1a675d724f49e8f7474e9b575c251d
[ "MIT" ]
null
null
null
alien.py
AldoNunes001/Alien_Invasion
5c317206af1a675d724f49e8f7474e9b575c251d
[ "MIT" ]
null
null
null
alien.py
AldoNunes001/Alien_Invasion
5c317206af1a675d724f49e8f7474e9b575c251d
[ "MIT" ]
null
null
null
import pygame from pygame.sprite import Sprite class Alien(Sprite): """A class to represent a single alien in the fleet.""" def __init__(self, ai_settings, screen): """Initialize the alien and set its starting position.""" super().__init__() self.screen = screen self.ai_settings = ai_settings # Load the alien imgage and set its rect attribute. self.image = pygame.image.load('images/alien1.png') self.rect = self.image.get_rect() # Start each new alien near the top left of the screen. self.rect.x = self.rect.width self.rect.y = self.rect.height # Store the alien's exact position. self.x = float(self.rect.x) def blitme(self): """Draw the alien at its current location.""" self.screen.blit(self.image, self.rect) def check_edges(self): """Return True if alien is at edge of screen.""" screen_rect = self.screen.get_rect() if self.rect.right >= screen_rect.right: return True elif self.rect.left <= 0: return True def update(self, row, factor): """Move the alien.""" if row % 2 == 0: self.x += (factor * self.ai_settings.alien_speed_factor * self.ai_settings.fleet_direction[row]) elif row % 2 == 1: self.x += (factor * self.ai_settings.alien_speed_factor * self.ai_settings.fleet_direction[row]) self.rect.x = self.x
32.777778
108
0.612881
c078fbcefb76085776fc94beae03d6a4abb028bb
503
py
Python
setup.py
igorgad/ray_lightning
ab5239a9cbafbd2683714ab975d4116043409c64
[ "Apache-2.0" ]
null
null
null
setup.py
igorgad/ray_lightning
ab5239a9cbafbd2683714ab975d4116043409c64
[ "Apache-2.0" ]
null
null
null
setup.py
igorgad/ray_lightning
ab5239a9cbafbd2683714ab975d4116043409c64
[ "Apache-2.0" ]
null
null
null
from setuptools import find_packages, setup setup( name="ray_lightning", packages=find_packages(where=".", include="ray_lightning*"), version="0.0.1", author="Ray Team", description="Ray distributed plugins for Pytorch Lightning.", long_description="Custom Pytorch Lightning distributed plugins" "built on top of distributed computing framework Ray.", url="https://github.com/ray-project/ray_lightning_accelerators") # install_requires=["pytorch-lightning", "ray"])
38.692308
68
0.73161
1fef96426a64a732414f9cf8f01886d7fcd8b711
3,591
py
Python
xunit-autolabeler-v2/ast_parser/core/cli_list_source_files.py
GoogleCloudPlatform/repo-automation-playground
a4c8f104c246ede002f6c18fcebfc0496c8abb94
[ "Apache-2.0" ]
5
2019-07-11T17:35:44.000Z
2021-10-09T01:49:04.000Z
xunit-autolabeler-v2/ast_parser/core/cli_list_source_files.py
GoogleCloudPlatform/repo-automation-playground
a4c8f104c246ede002f6c18fcebfc0496c8abb94
[ "Apache-2.0" ]
36
2019-08-27T18:20:21.000Z
2022-01-12T21:29:00.000Z
xunit-autolabeler-v2/ast_parser/core/cli_list_source_files.py
GoogleCloudPlatform/repo-automation-playground
a4c8f104c246ede002f6c18fcebfc0496c8abb94
[ "Apache-2.0" ]
13
2019-10-30T19:39:51.000Z
2021-04-04T09:31:52.000Z
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from ast_parser.core import analyze from ast_parser.core import cli_list_source_files_datatypes as cli_datatypes from ast_parser.core.cli_list_source_files_datatypes \ import ShowTestedFilesOption # This file contains helper functions for the list_source_files CLI command. def process_list_source_files( invocation: cli_datatypes.ListSourceFilesInvocation ) -> cli_datatypes.ListSourceFilesResult: """Compute values displayed in list_source_files This method is a helper method that computes the values displayed in list_source_files. (Some of the returned values may not be displayed, depending on CLI options.) Args: invocation: A CLI invocation object with the requisite user input. Returns: A CLI response object with the required processed data. """ grep_tags, source_tags, ignored_tags, source_methods = ( analyze.analyze_json(invocation.data_json, invocation.root_dir)) # Ignore methods without region tags source_methods = [method for method in source_methods if method['region_tags']] any_tested_files = set( method['source_path'] for method in source_methods if method['test_methods'] ) any_untested_files = set( method['source_path'] for method in source_methods if not method['test_methods'] ) all_files = set(method['source_path'] for method in source_methods) all_tested_files = [file for file in any_tested_files if file not in any_untested_files] not_tested_files = [file for file in any_untested_files if file not in any_tested_files] return cli_datatypes.ListSourceFilesResult( all_files, all_tested_files, any_tested_files, not_tested_files, ) def format_list_source_files( invocation: cli_datatypes.ListSourceFilesInvocation, result: cli_datatypes.ListSourceFilesResult, ) -> List[str]: """Convert computed values for list_source_files into formatted output. This method is a helper method that converts the results generated by the _process_list_source_files() method into a human-readable list of filepaths based on user-specified CLI options. Args: invocation: A CLI invocation object with the requisite user input. result: A CLI response object with the required processed data. Returns: Human readable output as a list of lines. (This output *does* account for annotations in .drift-data.yml files.) """ tested_filter = invocation.show_tested_files if tested_filter == ShowTestedFilesOption.ALL_TESTED: files = result.all_tested_files elif tested_filter == ShowTestedFilesOption.ANY_TESTED: files = result.any_tested_files elif tested_filter == ShowTestedFilesOption.NOT_TESTED: files = result.not_tested_files else: files = result.all_files return files
34.528846
79
0.728766
c606bcc276909723ed111b5e04add80daa9fce36
3,133
py
Python
rtplot.py
elrobotista/serial_port
d77ff1901c2c7d16af5c4e821a482ed0ca92f44e
[ "MIT" ]
3
2018-02-19T13:36:23.000Z
2020-03-10T23:34:15.000Z
rtplot.py
AllanStark/serial_port
d77ff1901c2c7d16af5c4e821a482ed0ca92f44e
[ "MIT" ]
null
null
null
rtplot.py
AllanStark/serial_port
d77ff1901c2c7d16af5c4e821a482ed0ca92f44e
[ "MIT" ]
3
2018-02-19T05:58:41.000Z
2019-05-17T13:11:46.000Z
import serial import json import matplotlib.pyplot as plt import matplotlib.animation as animation import threading import numpy as np # Puerto Serial port = serial.Serial('/dev/ttyACM0', 115200, timeout = 1.) # Creemos los ejes y la figura donde graficaremos. fig, ax = plt.subplots() # Este diccionario almacenara los datos del sensor. signal = {'x': [], 'y': [], 'z': []} # Estas lineas dibujaran los datos en la figura. lines = [ax.plot([], [])[0] for _ in signal.iterkeys()] # Usaremos esta variable para detectar autoescalado de la grafica. ylim = () # La funcion stream sera llamada periodicamente por el timer # cada numero determinado de milisegundos definido por la variable # rate. def stream(): # Esta es la cadena de caracteres leida por el puerto serial # en formato JSON. raw_data = port.readline() try: # El modulo json permite convertir un string en formato JSON a # diccionarios de Python. Si el string no viene en el formato adecuado # o la informacion se corrompe, el programa nos lo reporta en # el bloque de excepcion ValueError;. json_data = json.loads(raw_data) for k in signal.iterkeys(): signal[k].append(json_data[k]) except ValueError: print('Could not read data: %s', raw_data) # Si el puerto sigue abierto, programamos otra llamada a la funcion para # volver a leer el puerto serial. if port.is_open: threading.Timer(10 / 1000., stream).start() else: print('Not streaming anymore!') def animate(i): # Las siguientes dos lineas de codigo auto ajustan el eje # de las Y en funcion del contenido de la grafica. Me tomo # algo de tiempo encontrar estas funciones. Cuidenlo con su # alma y compartanlo! global ylim ax.relim() ax.autoscale_view() if ax.get_ylim() != ylim: # Esta parte del codigo lo que hace es monitorear los valores # del limite del eje Y para detectar cuando la grafica ha sido # reajustada. Esto para redibujar las etiquetas del eje Y a # medida que se reajusta. Si no, las etiquetas permanecen mientras # el eje se reajusta. Por lo que los valores no coinciden con lo # desplegado en el eje. Los invito a removerlo para que vean a # lo que me refiero. ylim = ax.get_ylim() fig.canvas.draw() for name, line in zip(signal.keys(), lines): # Si no hay datos nuevos, ni siquiera nos molestamos en intentar # graficar. if len(signal[name]) > 0: _, ly = line.get_data() ly = np.append(ly, signal[name]) _xdata = np.arange(ly.size) line.set_data(_xdata, ly) # La informacion ha sido graficada. Ya nos podemos deshacer # de ella. signal[name] = [] else: print('Signal has no data') return lines if __name__ == '__main__': ani = animation.FuncAnimation(fig, animate, interval=50, blit=True) stream() plt.show(block = False) while raw_input('Hit Q to exit.\n\r> ').lower() != 'q': pass port.close()
34.811111
78
0.647941
3f33a38d6c6a7cd2123e08b97630d637c1cc7f0c
1,248
py
Python
jenkins_jobs/modules/hudson_model.py
pratikmallya/jenkins-job-builder
83114faba6b85bb0dae066ca3ec4f23871683fb5
[ "Apache-2.0" ]
3
2019-03-03T20:15:29.000Z
2020-11-17T18:48:27.000Z
jenkins_jobs/modules/hudson_model.py
pratikmallya/jenkins-job-builder
83114faba6b85bb0dae066ca3ec4f23871683fb5
[ "Apache-2.0" ]
12
2015-11-30T17:13:11.000Z
2022-03-18T10:58:07.000Z
jenkins_jobs/modules/hudson_model.py
pratikmallya/jenkins-job-builder
83114faba6b85bb0dae066ca3ec4f23871683fb5
[ "Apache-2.0" ]
11
2016-10-25T12:03:32.000Z
2021-04-27T12:16:51.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Representation of the hudson.model.Result class SUCCESS = { 'name': 'SUCCESS', 'ordinal': '0', 'color': 'BLUE', 'complete': True } UNSTABLE = { 'name': 'UNSTABLE', 'ordinal': '1', 'color': 'YELLOW', 'complete': True } FAILURE = { 'name': 'FAILURE', 'ordinal': '2', 'color': 'RED', 'complete': True } NOTBUILD = { 'name': 'NOT_BUILD', 'ordinal': '3', 'color': 'NOTBUILD', 'complete': False } ABORTED = { 'name': 'ABORTED', 'ordinal': '4', 'color': 'ABORTED', 'complete': False } THRESHOLDS = { 'SUCCESS': SUCCESS, 'UNSTABLE': UNSTABLE, 'FAILURE': FAILURE, 'NOT_BUILD': NOTBUILD, 'ABORTED': ABORTED }
21.894737
75
0.634615
2bcacdb6ab5003877b366bf2fc46259996a95aa7
3,204
py
Python
app/home/migrations/0001_initial.py
Monxun/monxun-code
35ce6d4aaf3a8afa0b80dde1dae9a1e7603a1f84
[ "MIT" ]
null
null
null
app/home/migrations/0001_initial.py
Monxun/monxun-code
35ce6d4aaf3a8afa0b80dde1dae9a1e7603a1f84
[ "MIT" ]
null
null
null
app/home/migrations/0001_initial.py
Monxun/monxun-code
35ce6d4aaf3a8afa0b80dde1dae9a1e7603a1f84
[ "MIT" ]
null
null
null
# Generated by Django 3.2.6 on 2021-11-09 09:52 import django.contrib.postgres.fields.jsonb from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='TableBacktests', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('backtest_chart', models.FileField(upload_to='')), ('backtest_json', django.contrib.postgres.fields.jsonb.JSONField()), ], options={ 'db_table': 'backtests', 'managed': False, }, ), migrations.CreateModel( name='TableCharts', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('biz_chart', models.FileField(upload_to='')), ('biz_json', django.contrib.postgres.fields.jsonb.JSONField()), ], options={ 'db_table': 'charts', 'managed': False, }, ), migrations.CreateModel( name='TableCompanyInfo', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('company_json', django.contrib.postgres.fields.jsonb.JSONField()), ], options={ 'db_table': 'company_info', 'managed': False, }, ), migrations.CreateModel( name='TableCurrencyuInfo', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('company_json', django.contrib.postgres.fields.jsonb.JSONField()), ], options={ 'db_table': 'currency_info', 'managed': False, }, ), migrations.CreateModel( name='TableForecasts', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('forecast_chart', models.FileField(upload_to='')), ('forecast_json', django.contrib.postgres.fields.jsonb.JSONField()), ], options={ 'db_table': 'forecasts', 'managed': False, }, ), migrations.CreateModel( name='TableSongs', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('song_name', models.CharField(max_length=255)), ('artist', models.CharField(max_length=255)), ('song_file', models.FileField(upload_to='')), ('song_analysis', django.contrib.postgres.fields.jsonb.JSONField()), ], options={ 'db_table': 'songs', 'managed': False, }, ), ]
36.409091
117
0.518414
ad77d224ca791d3e52b17337c0ede159c9c0fc50
6,554
py
Python
djforms/languages/tle/views.py
carthagecollege/django-djforms
6d05a13223646f47062f827c6d90c88bcbdcb470
[ "Unlicense" ]
1
2019-11-20T12:30:50.000Z
2019-11-20T12:30:50.000Z
djforms/languages/tle/views.py
carthagecollege/django-djforms
6d05a13223646f47062f827c6d90c88bcbdcb470
[ "Unlicense" ]
8
2020-03-23T20:36:06.000Z
2022-02-20T17:06:13.000Z
djforms/languages/tle/views.py
carthagecollege/django-djforms
6d05a13223646f47062f827c6d90c88bcbdcb470
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- from django.http import Http404 from django.conf import settings from django.utils.dates import MONTHS from django.http import HttpResponseRedirect from django.shortcuts import render from django.urls import reverse_lazy from djforms.languages.tle.forms import * from djtools.utils.mail import send_mail from djtools.utils.convert import str_to_class import datetime def application_form(request, stype): form_name = '{0}Form'.format(stype.capitalize()) form = str_to_class('djforms.languages.tle.forms', form_name)() if not form: raise Http404 education = '' ulength = 1 if request.method == 'POST': form = str_to_class('djforms.languages.tle.forms', form_name)(request.POST) # check if someone is attempting something nefarious if not form: raise Http404 data = request.POST.copy() if form.is_valid(): cd = form.cleaned_data if stype == 'masters': education = '' # collect our university fields university = data.getlist('university[]') country = data.getlist('country[]') from_month = data.getlist('from_month[]') to_month = data.getlist('to_month[]') from_year = data.getlist('from_year[]') to_year = data.getlist('to_year[]') degree = data.getlist('degree[]') # establish the number of universities submitted # and iterate over them to build education for index in range(len(university)): education += '<dl>' education += ''' <dt>University</dt><dd>{0}</dd> '''.format(university[index]) education += '<dt>Country</dt><dd>{0}</dd>'.format( country[index], ) education += ''' <dt>From</dt><dd>{0} {1}</dd> '''.format(from_month[index], from_year[index]) education += ''' <dt>To</dt><dd>{0} {1}</dd> '''.format(to_month[index], to_year[index]) education += '<dt>Degree</dt><dd>{0}</dd>'.format( degree[index] ) education += '</dl>' cd['education'] = education cd['type'] = stype if settings.DEBUG: TO_LIST = [settings.SERVER_EMAIL] else: TO_LIST = settings.MODERN_LANGUAGES_TLE_APPLICATIONS TO_LIST.append(cd['email']) subject = '[Modern Languages] TLE {0}: {1} {2}'.format( stype.capitalize(), cd['first_name'], cd['last_name'], ) send_mail( request, TO_LIST, subject, cd['email'], 'languages/tle/email.html', cd, settings.MANAGERS, ) return HttpResponseRedirect(reverse_lazy('tle_success')) elif stype == 'masters': # collect our fields university = data.getlist('university[]') country = data.getlist('country[]') from_month = data.getlist('from_month[]') to_month = data.getlist('to_month[]') from_year = data.getlist('from_year[]') to_year = data.getlist('to_year[]') degree = data.getlist('degree[]') # establish the number of universities submitted # and iterate over them to build our form parts ulength = len(university) for index in range(ulength): if len(university) == 1 or index == 0: education += '<ol id="universities">' elif index > 0: num = int(index) - 1 education += '<ol id="universities{}">'.format(str(num)) education += '<li class="ctrlHolder"><h3>University Name</h3><input type="text" name="university[]" value="{0}" />'.format(university[index]) education += '<li class="ctrlHolder"><h3>Country</h3><input type="text" name="country[]" value="{0}" />'.format(country[index]) education += '<li class="ctrlHolder"><h3>From</h3>' education += '<select name="from_month[]" class="small">' options_month = '' for month in range(len(MONTHS)): selected = '' if MONTHS[month+1] == from_month[index]: selected = ' selected="selected"' options_month += '<option value="{0}"{1}>{2}</option>'.format(MONTHS[month+1], selected, MONTHS[month+1]) education += options_month education += '</select>' education += 'Year <input type="text" class="small" name="from_year[]" value="{0}" />'.format(from_year[index]) education += '</li>' education += '<li class="ctrlHolder"><h3>To</h3>' education += '<select name="to_month[]" class="small">' options_month = '' for month in range(len(MONTHS)): selected = '' if MONTHS[month+1] == to_month[index]: selected = ' selected="selected"' options_month += '<option value="{0}"{1}>{2}</option>'.format( MONTHS[month+1], selected, MONTHS[month+1], ) education += options_month education += '</select>' education += 'Year <input type="text" class="small" name="to_year[]" value="{0}" />'.format(to_year[index]) education += '</li>' education += '<li class="ctrlHolder"><h3>Diploma/Degree</h3><input type="text" name="degree[]" value="{0}" /></li>'.format(degree[index]) education += '<li class="ctrlHolder"><hr /></li>' education += '</ol>' return render( request, 'languages/tle/form.html', { 'form': form, 'type': stype, 'months': MONTHS, 'education': education, 'length': ulength, } )
44.890411
158
0.489319
bcdd539602dd68dfd5e90eba2645f29db0364b64
97
py
Python
api/tests/utils.py
equinor/lcm
338bf67e6eb412446e469b4c73f7000990445ebd
[ "MIT" ]
3
2020-12-02T11:14:31.000Z
2021-12-09T16:53:53.000Z
api/tests/utils.py
equinor/lcm
338bf67e6eb412446e469b4c73f7000990445ebd
[ "MIT" ]
76
2020-09-29T10:59:10.000Z
2022-01-03T07:41:29.000Z
api/tests/utils.py
equinor/lcm
338bf67e6eb412446e469b4c73f7000990445ebd
[ "MIT" ]
2
2021-01-25T14:24:57.000Z
2021-01-25T14:51:16.000Z
def read_file(path: str) -> bytes: with open(path, "rb") as file: return file.read()
24.25
34
0.597938
1b8ca10a0614292ef2a15e796b2a09eaacfdd4ce
11,196
py
Python
data/external/repositories_2to3/267667/kaggle-heart-master/configurations/je_os_fixedaggr_leaky.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories_2to3/267667/kaggle-heart-master/configurations/je_os_fixedaggr_leaky.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories_2to3/267667/kaggle-heart-master/configurations/je_os_fixedaggr_leaky.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
1
2019-12-04T08:23:33.000Z
2019-12-04T08:23:33.000Z
"""Single slice vgg with normalised scale. """ import functools import lasagne as nn import numpy as np import theano import theano.tensor as T import data_loader import deep_learning_layers import image_transform import layers import preprocess import postprocess import objectives import theano_printer import updates import utils # Random params rng = np.random take_a_dump = False # dump a lot of data in a pkl-dump file. (for debugging) dump_network_loaded_data = False # dump the outputs from the dataloader (for debugging) # Memory usage scheme caching = None # Save and validation frequency validate_every = 20 validate_train_set = True save_every = 20 restart_from_save = False dump_network_loaded_data = False # Training (schedule) parameters # - batch sizes batch_size = 8 sunny_batch_size = 4 batches_per_chunk = 16 num_epochs_train = 200 # - learning rate and method base_lr = 0.0001 learning_rate_schedule = { 0: base_lr, 9*num_epochs_train/10: base_lr/10, } momentum = 0.9 build_updates = updates.build_adam_updates # Preprocessing stuff cleaning_processes = [ preprocess.set_upside_up,] cleaning_processes_post = [ functools.partial(preprocess.normalize_contrast_zmuv, z=2)] augmentation_params = { "rotation": (-180, 180), "shear": (0, 0), "translation": (-8, 8), "flip_vert": (0, 1), "roll_time": (0, 0), "flip_time": (0, 0), } use_hough_roi = True preprocess_train = functools.partial( # normscale_resize_and_augment has a bug preprocess.preprocess_normscale, normscale_resize_and_augment_function=functools.partial( image_transform.normscale_resize_and_augment_2, normalised_patch_size=(64,64))) preprocess_validation = functools.partial(preprocess_train, augment=False) preprocess_test = preprocess_train sunny_preprocess_train = preprocess.sunny_preprocess_with_augmentation sunny_preprocess_validation = preprocess.sunny_preprocess_validation sunny_preprocess_test = preprocess.sunny_preprocess_validation # Data generators create_train_gen = data_loader.generate_train_batch create_eval_valid_gen = functools.partial(data_loader.generate_validation_batch, set="validation") create_eval_train_gen = functools.partial(data_loader.generate_validation_batch, set="train") create_test_gen = functools.partial(data_loader.generate_test_batch, set=["validation", "test"]) def filter_samples(folders): # don't use patients who don't have mre than 6 slices return [ folder for folder in folders if data_loader.compute_nr_slices(folder) > 6] # Input sizes image_size = 64 nr_slices = 20 data_sizes = { "sliced:data:sax": (batch_size, nr_slices, 30, image_size, image_size), "sliced:data:sax:locations": (batch_size, nr_slices), "sliced:data:sax:is_not_padded": (batch_size, nr_slices), "sliced:data:randomslices": (batch_size, nr_slices, 30, image_size, image_size), "sliced:data:singleslice:difference:middle": (batch_size, 29, image_size, image_size), "sliced:data:singleslice:difference": (batch_size, 29, image_size, image_size), "sliced:data:singleslice": (batch_size, 30, image_size, image_size), "sliced:data:ax": (batch_size, 30, 15, image_size, image_size), "sliced:data:shape": (batch_size, 2,), "sunny": (sunny_batch_size, 1, image_size, image_size) # TBC with the metadata } # Objective l2_weight = 0.000 l2_weight_out = 0.000 def build_objective(interface_layers): # l2 regu on certain layers l2_penalty = nn.regularization.regularize_layer_params_weighted( interface_layers["regularizable"], nn.regularization.l2) # build objective return objectives.KaggleObjective(interface_layers["outputs"], penalty=l2_penalty) # Testing postprocess = postprocess.postprocess test_time_augmentations = 100 # More augmentations since a we only use single slices tta_average_method = lambda x: np.cumsum(utils.norm_geometric_average(utils.cdf_to_pdf(x))) # nonlinearity putting a lower bound on it's output def lb_softplus(lb): return lambda x: nn.nonlinearities.softplus(x) + lb init = nn.init.Orthogonal() rnn_layer = functools.partial(nn.layers.RecurrentLayer, W_in_to_hid=init, W_hid_to_hid=init, b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify, hid_init=nn.init.Constant(0.), backwards=False, learn_init=True, gradient_steps=-1, grad_clipping=False, unroll_scan=False, precompute_input=False) # Architecture def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:sax"] input_size_mask = data_sizes["sliced:data:sax:is_not_padded"] input_size_locations = data_sizes["sliced:data:sax:locations"] l0 = nn.layers.InputLayer(input_size) lin_slice_mask = nn.layers.InputLayer(input_size_mask) lin_slice_locations = nn.layers.InputLayer(input_size_locations) # PREPROCESS SLICES SEPERATELY # Convolutional layers and some dense layers are defined in a submodel l0_slices = nn.layers.ReshapeLayer(l0, (-1, [2], [3], [4])) l1a = nn.layers.dnn.Conv2DDNNLayer(l0_slices, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l1b = nn.layers.dnn.Conv2DDNNLayer(l1a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1b, pool_size=(2,2), stride=(2,2)) l2a = nn.layers.dnn.Conv2DDNNLayer(l1, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l2b = nn.layers.dnn.Conv2DDNNLayer(l2a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2b, pool_size=(2,2), stride=(2,2)) l3a = nn.layers.dnn.Conv2DDNNLayer(l2, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l3b = nn.layers.dnn.Conv2DDNNLayer(l3a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l3c = nn.layers.dnn.Conv2DDNNLayer(l3b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3c, pool_size=(2,2), stride=(2,2)) l4a = nn.layers.dnn.Conv2DDNNLayer(l3, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l4b = nn.layers.dnn.Conv2DDNNLayer(l4a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l4c = nn.layers.dnn.Conv2DDNNLayer(l4b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4c, pool_size=(2,2), stride=(2,2)) l5a = nn.layers.dnn.Conv2DDNNLayer(l4, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l5b = nn.layers.dnn.Conv2DDNNLayer(l5a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l5c = nn.layers.dnn.Conv2DDNNLayer(l5b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.very_leaky_rectify) l5 = nn.layers.dnn.MaxPool2DDNNLayer(l5c, pool_size=(2,2), stride=(2,2)) # Systole Dense layers ldsys1 = nn.layers.DenseLayer(l5, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify) ldsys1drop = nn.layers.dropout(ldsys1, p=0.5) ldsys2 = nn.layers.DenseLayer(ldsys1drop, num_units=512, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify) ldsys2drop = nn.layers.dropout(ldsys2, p=0.5) l_sys_mu = nn.layers.DenseLayer(ldsys2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(10.0), nonlinearity=None) l_sys_sigma = nn.layers.DenseLayer(ldsys2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(3.), nonlinearity=lb_softplus(.1)) # Diastole Dense layers lddia1 = nn.layers.DenseLayer(l5, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify) lddia1drop = nn.layers.dropout(lddia1, p=0.5) lddia2 = nn.layers.DenseLayer(lddia1drop, num_units=512, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify) lddia2drop = nn.layers.dropout(lddia2, p=0.5) l_dia_mu = nn.layers.DenseLayer(lddia2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(10.0), nonlinearity=None) l_dia_sigma = nn.layers.DenseLayer(lddia2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(3.), nonlinearity=lb_softplus(.1)) # AGGREGATE SLICES PER PATIENT l_scaled_slice_locations = layers.TrainableScaleLayer(lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False) # Systole l_pat_sys_ss_mu = nn.layers.ReshapeLayer(l_sys_mu, (-1, nr_slices)) l_pat_sys_ss_sigma = nn.layers.ReshapeLayer(l_sys_sigma, (-1, nr_slices)) l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([l_pat_sys_ss_mu, l_pat_sys_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=1.) l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma) # Diastole l_pat_dia_ss_mu = nn.layers.ReshapeLayer(l_dia_mu, (-1, nr_slices)) l_pat_dia_ss_sigma = nn.layers.ReshapeLayer(l_dia_sigma, (-1, nr_slices)) l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([l_pat_dia_ss_mu, l_pat_dia_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=1.) l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma) return { "inputs":{ "sliced:data:sax": l0, "sliced:data:sax:is_not_padded": lin_slice_mask, "sliced:data:sax:locations": lin_slice_locations, }, "outputs": { "systole": l_systole, "diastole": l_diastole, }, "regularizable": { ldsys1: l2_weight, ldsys2: l2_weight, l_sys_mu: l2_weight_out, l_sys_sigma: l2_weight_out, lddia1: l2_weight, lddia2: l2_weight, l_dia_mu: l2_weight_out, l_dia_sigma: l2_weight_out, }, }
45.145161
193
0.7199
0a54e537b27cd46df3f5d33aab434dbfd5789c55
2,453
py
Python
examples/torch/dqn_cartpole.py
michahu/garage
c045a1e5e5088a18828ec48bfee0addb1943bfd4
[ "MIT" ]
1
2021-01-11T18:40:52.000Z
2021-01-11T18:40:52.000Z
examples/torch/dqn_cartpole.py
michahu/garage
c045a1e5e5088a18828ec48bfee0addb1943bfd4
[ "MIT" ]
null
null
null
examples/torch/dqn_cartpole.py
michahu/garage
c045a1e5e5088a18828ec48bfee0addb1943bfd4
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """An example to train a task with DQN algorithm. Here it creates a gym environment CartPole, and trains a DQN with 50k steps. """ import click from garage import wrap_experiment from garage.envs import GymEnv from garage.experiment.deterministic import set_seed from garage.np.exploration_policies import EpsilonGreedyPolicy from garage.replay_buffer import PathBuffer from garage.sampler import LocalSampler from garage.torch.algos import DQN from garage.torch.policies import DiscreteQFArgmaxPolicy from garage.torch.q_functions import DiscreteMLPQFunction from garage.trainer import Trainer @click.command() @click.option('--seed', default=24) @wrap_experiment(snapshot_mode='none') def dqn_cartpole(ctxt=None, seed=24): """Train DQN with CartPole-v0 environment. Args: ctxt (garage.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ set_seed(seed) runner = Trainer(ctxt) n_epochs = 100 steps_per_epoch = 10 sampler_batch_size = 512 num_timesteps = n_epochs * steps_per_epoch * sampler_batch_size env = GymEnv('CartPole-v0') replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) qf = DiscreteMLPQFunction(env_spec=env.spec, hidden_sizes=(8, 5)) policy = DiscreteQFArgmaxPolicy(env_spec=env.spec, qf=qf) exploration_policy = EpsilonGreedyPolicy(env_spec=env.spec, policy=policy, total_timesteps=num_timesteps, max_epsilon=1.0, min_epsilon=0.01, decay_ratio=0.4) algo = DQN(env_spec=env.spec, policy=policy, qf=qf, exploration_policy=exploration_policy, replay_buffer=replay_buffer, steps_per_epoch=steps_per_epoch, qf_lr=5e-5, discount=0.9, min_buffer_size=int(1e4), n_train_steps=500, target_update_freq=30, buffer_batch_size=64) runner.setup(algo, env, sampler_cls=LocalSampler) runner.train(n_epochs=n_epochs, batch_size=sampler_batch_size) env.close() dqn_cartpole()
35.550725
76
0.649001
956c966f9886c941baa42d9ea3afe5e67939c151
8,025
py
Python
render_swisscube.py
Komod0D/DeepIM-PyTorch
ecd4788a4a7617e1cf9c309910ef024fb2c09f85
[ "BSD-Source-Code" ]
null
null
null
render_swisscube.py
Komod0D/DeepIM-PyTorch
ecd4788a4a7617e1cf9c309910ef024fb2c09f85
[ "BSD-Source-Code" ]
null
null
null
render_swisscube.py
Komod0D/DeepIM-PyTorch
ecd4788a4a7617e1cf9c309910ef024fb2c09f85
[ "BSD-Source-Code" ]
null
null
null
import pyrender import os import trimesh import numpy as np import cv2 import os import torch from transforms3d.quaternions import mat2quat, quat2mat, qmult from scipy.spatial.transform import Rotation as R os.environ['PYOPENGL_PLATFORM'] = 'egl' def to_homo(rotation, translation): transform = np.eye(4) transform[:3, :3] = rotation transform[:3, 3] = translation return transform def get_corners(mesh, intrinsic, rotation, translation): box = mesh.bounding_box.to_mesh() vertices = np.array(box.vertices) proj = intrinsic @ (rotation @ vertices.T + translation[:, np.newaxis]) proj[0] = proj[0] / proj[2] proj[1] = proj[1] / proj[2] return proj[:2].T def add_pose_contour(mesh, intrinsic, rotation, translation, color, image, img_scaling=4, thickness=1): image = np.copy(image) height, width, _ = image.shape vs = get_corners(mesh, intrinsic, rotation, translation) / img_scaling ps = [(int(vs[i, 0]), int(vs[i, 1])) for i in range(vs.shape[0])] # z direction for i in range(4): cv2.line(image, ps[2 * i], ps[2 * i + 1], color, thickness=thickness) # y direction for j in range(2): for i in range(2): cv2.line(image, ps[i + 4 * j], ps[i + 2 + 4 * j], color, thickness=thickness) # x direction for i in range(4): cv2.line(image, ps[i], ps[i + 4], color, thickness=thickness) return image def quaternion2rotation(quat): ''' Do not use the quat2dcm() function in the SPEED utils.py, it is not rotation ''' assert (len(quat) == 4) # normalize first quat = quat / np.linalg.norm(quat) a, b, c, d = quat a2 = a * a b2 = b * b c2 = c * c d2 = d * d ab = a * b ac = a * c ad = a * d bc = b * c bd = b * d cd = c * d # s = a2 + b2 + c2 + d2 m0 = a2 + b2 - c2 - d2 m1 = 2 * (bc - ad) m2 = 2 * (bd + ac) m3 = 2 * (bc + ad) m4 = a2 - b2 + c2 - d2 m5 = 2 * (cd - ab) m6 = 2 * (bd - ac) m7 = 2 * (cd + ab) m8 = a2 - b2 - c2 + d2 return np.array([m0, m1, m2, m3, m4, m5, m6, m7, m8]).reshape(3, 3) class Renderer: def __init__(self, synthetic=False): self.synthetic = synthetic os.environ['PYOPENGL_PLATFORM'] = 'egl' tscene = trimesh.load('/cvlabdata2/cvlab/datasets_protopap/deepim/data/models/swisscube/swisscube.obj') mesh = pyrender.Mesh.from_trimesh(list(tscene.geometry.values()), smooth=False) if synthetic: width, height = 1024, 1024 else: width, height = 2048, 2048 self.renderer = pyrender.OffscreenRenderer(viewport_width=width, viewport_height=height, point_size=1.0) scene = pyrender.Scene(ambient_light=[0.02, 0.02, 0.02], bg_color=[0, 0, 0]) light = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=1000000.0) if synthetic: fx, fy, cx, cy = 607, 607, 512, 512 else: fx, fy, cx, cy = 4000, 4000, 1024, 1024 self.intrinsic = np.array([fx, 0, cx, 0, fy, cy, 0, 0, 1]).reshape((3, 3)) cam = pyrender.IntrinsicsCamera(fx, fy, cx, cy, zfar=2000) cam_rot = R.from_euler('y', 180, degrees=True).as_matrix() cam_matrix = to_homo(cam_rot, np.zeros((3,))) self.nm = pyrender.Node(mesh=mesh, matrix=np.eye(4)) nl = pyrender.Node(light=light, matrix=np.eye(4)) nc = pyrender.Node(camera=cam, matrix=cam_matrix) scene.add_node(self.nm) scene.add_node(nl) scene.add_node(nc) self.scene = scene def set_light_pos(self, *args): pass def set_light_color(self, *args): pass def set_projection_matrix(self, width, height, fx, fy, px, py, znear, zfar): pass def set_poses(self, poses): self.set_pose(poses[0]) def set_pose(self, pose): pose = np.array(pose) if pose.shape[0] == 9: pose = pose[2:] translation, rotation_quat = pose[4:], pose[:4] translation = np.array(translation) if not self.synthetic: rotation = quaternion2rotation(rotation_quat) else: rotation = quat2mat(rotation_quat) rotation = rotation @ R.from_euler('x', 90, degrees=True).as_matrix() transform = to_homo(rotation, translation) self.scene.set_pose(self.nm, pose=transform) def render_(self): color, depth = self.renderer.render(self.scene) color = cv2.resize(color, (640, 640), cv2.INTER_AREA) color = color[80:560] return np.flip(color, (0, 1)).copy() def render(self, image_tensor): rgb = self.render_() tensor = torch.from_numpy(np.transpose(rgb, (2, 0, 1))) image_tensor.copy_(tensor) def get_next(self, iteritems): if not self.synthetic: img, pose = next(iteritems) img = os.path.join(img.split('/')[0], 'Test', img.split('/')[1]) img = cv2.imread(img) img = cv2.resize(img, (640, 640), cv2.INTER_AREA) img = img[80:560] rotation = pose['rotation_m2c'] translation = pose['translation_m2c'] else: img_path = next(iteritems).strip() full_path = os.path.join('/cvlabdata2/home/yhu/data/SwissCube_1.0', img_path) num = str(int(os.path.splitext(os.path.basename(full_path))[0])) img = cv2.imread(full_path) img = cv2.resize(img, (640, 640), cv2.INTER_AREA) img = img[80:560] seq_name = os.path.dirname(os.path.dirname(full_path)) poses_name = os.path.join(seq_name, 'scene_gt.json') with open(poses_name, 'r') as j: poses = json.load(j) pose = poses[num][0] translation = np.array(pose['cam_t_m2c']) rotation = np.array(pose['cam_R_m2c']).reshape((3, 3)) rotation = R.from_matrix(rotation).as_quat() return img, translation, rotation if __name__ == '__main__': r = Renderer(True) import os import json if r.synthetic: os.chdir('/cvlabdata2/home/yhu/data/SwissCube_1.0') with open('training.txt', 'r') as f: images = f.readlines() iteritems = iter(images) else: os.chdir('/cvlabdata2/cvlab/datasets_protopap/SwissCubeReal') with open('data.json', 'r') as f: poses = json.load(f) iteritems = iter(poses.items()) img, translation, rotation = r.get_next(iteritems) translation = np.array(translation) cv2.imshow('image', img) x, y, z = translation dx, dy, dz = 0, 0, 0 while True: rotation = R.from_quat(rotation).as_matrix() @ R.from_euler('xyz', [dx, dy, dz], degrees=True).as_matrix() rotation = R.from_matrix(rotation).as_quat() a, b, c, d = rotation pose = [x, y, z, a, b, c, d] r.set_pose(pose) color = r.render_() cv2.imshow('render', color) key = cv2.waitKey(0) if key == 27: break elif key == 13: img, translation, rotation = r.get_next(iteritems) x, y, z = translation a, b, c, d = rotation cv2.imshow('image', img) elif key == 119: y += 10 elif key == 115: y -= 10 elif key == 97: x -= 10 elif key == 100: x += 10 elif key == 101: z += 10 elif key == 113: z -= 10 elif key == 81: dy -= 15 elif key == 83: dy += 15 elif key == 82: dx -= 15 elif key == 84: dx += 15 elif key == 85: dz += 15 elif key == 86: dz -= 15
29.612546
114
0.541558