hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
a13d0727996194ada2cfe0e03461ab5e44a4fc8f
4,666
py
Python
src/mbed_os_tools/test/host_tests_runner/host_test.py
noralsydmp/mbed-os-tools
5a14958aa49eb5764afba8e1dc3208cae2955cd7
[ "Apache-2.0" ]
1
2021-08-10T02:15:18.000Z
2021-08-10T02:15:18.000Z
src/mbed_os_tools/test/host_tests_runner/host_test.py
noralsydmp/mbed-os-tools
5a14958aa49eb5764afba8e1dc3208cae2955cd7
[ "Apache-2.0" ]
null
null
null
src/mbed_os_tools/test/host_tests_runner/host_test.py
noralsydmp/mbed-os-tools
5a14958aa49eb5764afba8e1dc3208cae2955cd7
[ "Apache-2.0" ]
1
2021-08-10T02:15:18.000Z
2021-08-10T02:15:18.000Z
# Copyright (c) 2018, Arm Limited and affiliates. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sys import stdout from .mbed_base import Mbed from ... import __version__ class HostTestResults(object): """! Test results set by host tests """ def enum(self, **enums): return type('Enum', (), enums) def __init__(self): self.TestResults = self.enum( RESULT_SUCCESS = 'success', RESULT_FAILURE = 'failure', RESULT_ERROR = 'error', RESULT_END = 'end', RESULT_UNDEF = 'undefined', RESULT_TIMEOUT = 'timeout', RESULT_IOERR_COPY = "ioerr_copy", RESULT_IOERR_DISK = "ioerr_disk", RESULT_IO_SERIAL = 'ioerr_serial', RESULT_NO_IMAGE = 'no_image', RESULT_NOT_DETECTED = "not_detected", RESULT_MBED_ASSERT = "mbed_assert", RESULT_PASSIVE = "passive", RESULT_BUILD_FAILED = 'build_failed', RESULT_SYNC_FAILED = 'sync_failed' ) # Magically creates attributes in this class corresponding # to RESULT_ elements in self.TestResults enum for attr in self.TestResults.__dict__: if attr.startswith('RESULT_'): setattr(self, attr, self.TestResults.__dict__[attr]) # Indexes of this list define string->int mapping between # actual strings with results self.TestResultsList = [ self.TestResults.RESULT_SUCCESS, self.TestResults.RESULT_FAILURE, self.TestResults.RESULT_ERROR, self.TestResults.RESULT_END, self.TestResults.RESULT_UNDEF, self.TestResults.RESULT_TIMEOUT, self.TestResults.RESULT_IOERR_COPY, self.TestResults.RESULT_IOERR_DISK, self.TestResults.RESULT_IO_SERIAL, self.TestResults.RESULT_NO_IMAGE, self.TestResults.RESULT_NOT_DETECTED, self.TestResults.RESULT_MBED_ASSERT, self.TestResults.RESULT_PASSIVE, self.TestResults.RESULT_BUILD_FAILED, self.TestResults.RESULT_SYNC_FAILED ] def get_test_result_int(self, test_result_str): """! Maps test result string to unique integer """ if test_result_str in self.TestResultsList: return self.TestResultsList.index(test_result_str) return -1 def __getitem__(self, test_result_str): """! Returns numerical result code """ return self.get_test_result_int(test_result_str) class Test(HostTestResults): """ Base class for host test's test runner """ def __init__(self, options): """ ctor """ HostTestResults.__init__(self) self.mbed = Mbed(options) def run(self): """ Test runner for host test. This function will start executing test and forward test result via serial port to test suite """ pass def setup(self): """! Setup and check if configuration for test is correct. @details This function can for example check if serial port is already opened """ pass def notify(self, msg): """! On screen notification function @param msg Text message sent to stdout directly """ stdout.write(msg) stdout.flush() def print_result(self, result): """! Test result unified printing function @param result Should be a member of HostTestResults.RESULT_* enums """ self.notify("{{%s}}\n"% result) self.notify("{{%s}}\n"% self.RESULT_END) def finish(self): """ dctor for this class, finishes tasks and closes resources """ pass def get_hello_string(self): """ Hello string used as first print """ return "host test executor ver. " + __version__ class DefaultTestSelectorBase(Test): """! Test class with serial port initialization @details This is a base for other test selectors, initializes """ def __init__(self, options): Test.__init__(self, options=options)
34.562963
85
0.63802
2cec372b0353ffee85e5e63a6e8872ad068c78a5
1,965
py
Python
tests/st/ops/ascend/test_tbe_ops/test_conv.py
doc22940/mindspore
21bcdcd8adb97b9171b2822a7ed2c4c138c99607
[ "Apache-2.0" ]
1
2020-05-13T11:31:21.000Z
2020-05-13T11:31:21.000Z
tests/st/ops/ascend/test_tbe_ops/test_conv.py
doc22940/mindspore
21bcdcd8adb97b9171b2822a7ed2c4c138c99607
[ "Apache-2.0" ]
null
null
null
tests/st/ops/ascend/test_tbe_ops/test_conv.py
doc22940/mindspore
21bcdcd8adb97b9171b2822a7ed2c4c138c99607
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn from mindspore.common.api import ms_function import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter class Net(nn.Cell): def __init__(self): super(Net, self).__init__() out_channel = 64 kernel_size = 7 self.conv = P.Conv2D(out_channel, kernel_size, mode=1, pad_mode="valid", pad=0, stride=1, dilation=1, group=1) self.w = Parameter(initializer( 'normal', [64, 3, 7, 7]), name='w') @ms_function def construct(self, x): return self.conv(x, self.w) def test_net(): x = np.random.randn(32, 3, 224, 224).astype(np.float32) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") conv = Net() output = conv(Tensor(x)) print(output.asnumpy()) context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") conv = Net() output = conv(Tensor(x)) print(output.asnumpy())
34.473684
78
0.612723
69c5d87ca7a8d396eff6423a936b7c9f6f309f7c
3,308
py
Python
mod_marksOnGunExtended/.release.py
stealthz67/spoter-mods-1
4ebd859fbb705b085ae5c4cb621edfbab476e378
[ "WTFPL" ]
1
2020-02-06T07:13:40.000Z
2020-02-06T07:13:40.000Z
mod_marksOnGunExtended/.release.py
stealthz67/spoter-mods-1
4ebd859fbb705b085ae5c4cb621edfbab476e378
[ "WTFPL" ]
null
null
null
mod_marksOnGunExtended/.release.py
stealthz67/spoter-mods-1
4ebd859fbb705b085ae5c4cb621edfbab476e378
[ "WTFPL" ]
1
2019-12-10T19:11:55.000Z
2019-12-10T19:11:55.000Z
# -*- coding: utf-8 -*- import glob import os import shutil import subprocess import _build as build ZIP = 'mods_marksOnGunExtended.zip' class Release(object): def __init__(self, build, zip): self.data = build self.zipPath = os.path.join('zip', zip) self.modsPath = os.path.join(self.data.build.OUT_PATH, 'mods') self.versionPath = os.path.join(self.modsPath, self.data.CLIENT_VERSION, 'spoter') self.configPath = os.path.join(self.modsPath, 'configs', 'spoter', os.path.splitext(os.path.basename(self.data.build.VERSION["config"]))[0]) self.i18n = os.path.join(self.configPath, 'i18n') self.clearZip() self.packZip() self.clear() def packZip(self): subprocess.check_call(['powershell', 'mkdir', self.versionPath]) subprocess.check_call(['powershell', 'mkdir', self.i18n]) #copy *.wotmod subprocess.call('powershell robocopy %s %s %s /COPYALL' % (os.path.realpath('release'), os.path.realpath(self.versionPath), self.data.build.RELEASE)) #copy config subprocess.call('powershell robocopy %s %s %s /COPYALL' % (os.path.realpath(os.path.join(self.data.build.BUILD_PATH, os.path.dirname(self.data.build.VERSION["config"]))), os.path.realpath(self.configPath), os.path.basename(self.data.build.VERSION["config"]))) #copy i18n files for path in glob.glob(os.path.join(self.data.build.BUILD_PATH, self.data.build.VERSION["i18n"], "*.json")): subprocess.call('powershell robocopy %s %s %s /COPYALL' % (os.path.join(self.data.build.BUILD_PATH, self.data.build.VERSION["i18n"]), os.path.realpath(self.i18n), os.path.basename(path))) #copy mod_mods_gui core if os.path.exists('../../spoter-mods/mod_mods_gui/release'): subprocess.call('powershell robocopy %s %s %s /COPYALL' %(os.path.realpath('../../spoter-mods/mod_mods_gui/release'), os.path.join(self.modsPath, self.data.CLIENT_VERSION), '*.wotmod') ) if os.path.exists('../../spoter-mods/mod_mods_gui//release/i18n'): subprocess.call('powershell robocopy %s %s %s /COPYALL' %(os.path.realpath('../../spoter-mods/mod_mods_gui/release/i18n'), os.path.join(self.modsPath, 'configs', 'mods_gui', 'i18n'), '*.json') ) ps = '%s\%s' % (os.path.realpath(self.data.build.OUT_PATH), 'create-7zip.ps1') with open(ps, 'w') as xfile: xfile.write('function create-7zip([String] $aDirectory, [String] $aZipfile){ [string]$pathToZipExe = "C:\Program Files\\7-zip\\7z.exe"; [Array]$arguments = "a", "-tzip", "-ssw", "-mx9", "$aZipfile", "$aDirectory"; & $pathToZipExe $arguments; }\n' 'create-7zip "%s" "%s"\n' % (os.path.realpath(self.modsPath), os.path.realpath(self.zipPath))) xfile.close() subprocess.call('powershell -executionpolicy bypass -command "& {Set-ExecutionPolicy AllSigned; %s; Set-ExecutionPolicy Undefined}"' % ps) def clearZip(self): try: shutil.rmtree('zip', True) except OSError: pass def clear(self): try: shutil.rmtree(self.data.build.OUT_PATH, True) except OSError: pass try: shutil.rmtree('release', True) except OSError: pass Release(build, ZIP)
53.354839
267
0.637848
c1c83f623a7a0f10a42adcfbf6caf822719fe0f2
953
py
Python
2016/tutorial_final/35/demo/demo/spiders/YelpSpider.py
zeromtmu/practicaldatascience.github.io
62950a3a3e7833552b0f2269cc3ee5c34a1d6d7b
[ "MIT" ]
1
2021-07-06T17:36:24.000Z
2021-07-06T17:36:24.000Z
2016/tutorial_final/35/demo/demo/spiders/YelpSpider.py
zeromtmu/practicaldatascience.github.io
62950a3a3e7833552b0f2269cc3ee5c34a1d6d7b
[ "MIT" ]
null
null
null
2016/tutorial_final/35/demo/demo/spiders/YelpSpider.py
zeromtmu/practicaldatascience.github.io
62950a3a3e7833552b0f2269cc3ee5c34a1d6d7b
[ "MIT" ]
1
2021-07-06T17:36:34.000Z
2021-07-06T17:36:34.000Z
import scrapy class YelpSpider(scrapy.Spider): name = "yelpspider" start_urls = [ 'https://www.yelp.com/search?find_desc=Restaurants&find_loc=Pittsburgh,+PA&start=0', ] def parse(self, response): for r in response.css('ul.ylist.ylist-bordered.search-results'): yield { 'restaurant_name': r.css('span.indexed-biz-name a.biz-name.js-analytics-click span::text').extract(), 'review': [float(x.split(' ')[0]) for x in r.css('div.rating-large i.star-img::attr(title)').extract()], 'review_counts': [int(x.strip().split(' ')[0]) for x in r.css('span.review-count::text').extract()], } next_page = response.css('a.u-decoration-none.next.pagination-links_anchor::attr(href)').extract_first() if next_page is not None: next_page = response.urljoin(next_page) yield scrapy.Request(next_page, callback=self.parse)
47.65
120
0.620147
63ba872da92e41a3e798430624650a960aa80415
246
py
Python
posts/urls.py
AnufriyevT/RestApiBlog
bb80068da371ae578ab1863ea792341e428f1034
[ "MIT" ]
null
null
null
posts/urls.py
AnufriyevT/RestApiBlog
bb80068da371ae578ab1863ea792341e428f1034
[ "MIT" ]
null
null
null
posts/urls.py
AnufriyevT/RestApiBlog
bb80068da371ae578ab1863ea792341e428f1034
[ "MIT" ]
null
null
null
from rest_framework import routers from posts.views import NetworkViewSet, UserViewSet router = routers.SimpleRouter() router.register(r'posts', NetworkViewSet) router.register(r'users', UserViewSet) urlpatterns = [] urlpatterns += router.urls
24.6
51
0.804878
3944ae7f91de2450e0e926f00ae58111c27c7983
9,792
py
Python
pysmps/smps_loader.py
bodono/pysmps
1141f772650914bae6ab0dc564e61667a8dcf5c4
[ "MIT" ]
null
null
null
pysmps/smps_loader.py
bodono/pysmps
1141f772650914bae6ab0dc564e61667a8dcf5c4
[ "MIT" ]
null
null
null
pysmps/smps_loader.py
bodono/pysmps
1141f772650914bae6ab0dc564e61667a8dcf5c4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Created on Sun Sep 8 13:28:53 2019. @author: Julian Märte Updated by: Brendan O'Dongohue, bodonoghue85@gmail.com, Oct 14th 2020 """ import re import numpy as np import scipy.sparse CORE_FILE_ROW_MODE = 'ROWS' CORE_FILE_COL_MODE = 'COLUMNS' CORE_FILE_RHS_MODE = 'RHS' CORE_FILE_BOUNDS_MODE = 'BOUNDS' CORE_FILE_BOUNDS_MODE_NAME_GIVEN = 'BOUNDS_NAME' CORE_FILE_BOUNDS_MODE_NO_NAME = 'BOUNDS_NO_NAME' CORE_FILE_RHS_MODE_NAME_GIVEN = 'RHS_NAME' CORE_FILE_RHS_MODE_NO_NAME = 'RHS_NO_NAME' ROW_MODE_OBJ = 'N' def load_mps(path): mode = '' name = None objective_name = None row_names = [] types = [] col_names = [] col_types = [] A = scipy.sparse.dok_matrix((0, 0), dtype=np.float64) c = np.array([]) rhs_names = [] rhs = {} bnd_names = [] bnd = {} integral_marker = False with open(path, 'r') as reader: for line in reader: line = re.split(' |\t', line) line = [x.strip() for x in line] line = list(filter(None, line)) if line[0] == 'ENDATA': break if line[0] == '*': continue if line[0] == 'NAME': name = line[1] elif line[0] in [CORE_FILE_ROW_MODE, CORE_FILE_COL_MODE]: mode = line[0] elif line[0] == CORE_FILE_RHS_MODE and len(line) <= 2: if len(line) > 1: rhs_names.append(line[1]) rhs[line[1]] = np.zeros(len(row_names)) mode = CORE_FILE_RHS_MODE_NAME_GIVEN else: mode = CORE_FILE_RHS_MODE_NO_NAME elif line[0] == CORE_FILE_BOUNDS_MODE and len(line) <= 2: if len(line) > 1: bnd_names.append(line[1]) bnd[line[1]] = {'LO': np.zeros( len(col_names)), 'UP': np.repeat(np.inf, len(col_names))} mode = CORE_FILE_BOUNDS_MODE_NAME_GIVEN else: mode = CORE_FILE_BOUNDS_MODE_NO_NAME elif mode == CORE_FILE_ROW_MODE: if line[0] == ROW_MODE_OBJ: objective_name = line[1] else: types.append(line[0]) row_names.append(line[1]) elif mode == CORE_FILE_COL_MODE: if len(line) > 1 and line[1] == "'MARKER'": if line[2] == "'INTORG'": integral_marker = True elif line[2] == "'INTEND'": integral_marker = False continue try: i = col_names.index(line[0]) except: if A.shape[1] == 0: A = scipy.sparse.dok_matrix( (len(row_names), 1), dtype=np.float64) else: new_col = scipy.sparse.dok_matrix( (len(row_names), 1), dtype=np.float64) A = scipy.sparse.hstack((A, new_col), format='dok') col_names.append(line[0]) col_types.append(integral_marker * 'integral' + (not integral_marker) * 'continuous') c = np.append(c, 0) i = -1 j = 1 while j < len(line) - 1: if line[j] == objective_name: c[i] = float(line[j + 1]) else: A[row_names.index(line[j]), i] = float(line[j + 1]) j = j + 2 elif mode == CORE_FILE_RHS_MODE_NAME_GIVEN: if line[0] != rhs_names[-1]: raise Exception( 'Other RHS name was given even though name was set after RHS tag.') for kk in range((len(line) - 1) // 2): idx = kk * 2 try: rhs[line[0]][row_names.index( line[idx+1])] = float(line[idx+2]) except Exception as e: if objective_name == line[idx+1]: print("MPS read warning: objective appearing in RHS, ignoring") else: raise e elif mode == CORE_FILE_RHS_MODE_NO_NAME: if len(line) % 2 == 1: # odd: RHS named try: i = rhs_names.index(line[0]) except: rhs_names.append(line[0]) rhs[line[0]] = np.zeros(len(row_names)) i = -1 for kk in range((len(line) - 1) // 2): idx = kk * 2 try: rhs[line[0]][row_names.index( line[idx+1])] = float(line[idx+2]) except Exception as e: if objective_name == line[idx+1]: print("MPS read warning: objective appearing in RHS, ignoring") else: raise e else: # even, no RHS name try: i = rhs_names.index("TEMP") except: rhs_names.append("TEMP") rhs["TEMP"] = np.zeros(len(row_names)) i = -1 for kk in range(len(line) // 2): idx = kk * 2 try: rhs["TEMP"][row_names.index( line[idx])] = float(line[idx+1]) except Exception as e: if objective_name == line[idx]: print("MPS read warning: objective appearing in RHS, ignoring") else: raise e elif mode == CORE_FILE_BOUNDS_MODE_NAME_GIVEN: if line[1] != bnd_names[-1]: raise Exception( 'Other BOUNDS name was given even though name was set after BOUNDS tag.') if line[0] in ['LO', 'UP']: bnd[line[1]][line[0]][col_names.index( line[2])] = float(line[3]) elif line[0] == 'FX': bnd[line[1]]['LO'][col_names.index( line[2])] = float(line[3]) bnd[line[1]]['UP'][col_names.index( line[2])] = float(line[3]) elif line[0] == 'PL': # free positive (aka default) bnd[line[1]]['LO'][col_names.index(line[2])] = 0 elif line[0] == 'FR': # free bnd[line[1]]['LO'][col_names.index(line[2])] = -np.inf elif line[0] == 'BV': # binary value bnd[line[1]]['LO'][col_names.index( line[2])] = 0. bnd[line[1]]['UP'][col_names.index( line[2])] = 1. elif mode == CORE_FILE_BOUNDS_MODE_NO_NAME: _bnds = ['FR', 'BV', 'PL'] if (len(line) % 2 == 0 and line[0] not in _bnds) or (len(line) % 2 == 1 and line[0] in _bnds): # even, bound has name try: i = bnd_names.index(line[1]) except: bnd_names.append(line[1]) bnd[line[1]] = {'LO': np.zeros( len(col_names)), 'UP': np.repeat(np.inf, len(col_names))} i = -1 if line[0] in ['LO', 'UP']: bnd[line[1]][line[0]][col_names.index( line[2])] = float(line[3]) elif line[0] == 'FX': # fixed bnd[line[1]]['LO'][col_names.index( line[2])] = float(line[3]) bnd[line[1]]['UP'][col_names.index( line[2])] = float(line[3]) elif line[0] == 'PL': # free positive (aka default) bnd[line[1]]['LO'][col_names.index(line[2])] = 0 elif line[0] == 'FR': # free bnd[line[1]]['LO'][col_names.index(line[2])] = -np.inf elif line[0] == 'BV': # binary value bnd[line[1]]['LO'][col_names.index( line[2])] = 0. bnd[line[1]]['UP'][col_names.index( line[2])] = 1. else: # odd, bound has no name try: i = bnd_names.index("TEMP_BOUND") except: bnd_names.append("TEMP_BOUND") bnd["TEMP_BOUND"] = {'LO': np.zeros( len(col_names)), 'UP': np.repeat(np.inf, len(col_names))} i = -1 if line[0] in ['LO', 'UP']: bnd["TEMP_BOUND"][line[0]][col_names.index( line[1])] = float(line[2]) elif line[0] == 'FX': bnd["TEMP_BOUND"]['LO'][col_names.index( line[1])] = float(line[2]) bnd["TEMP_BOUND"]['UP'][col_names.index( line[1])] = float(line[2]) elif line[0] == 'FR': bnd["TEMP_BOUND"]['LO'][col_names.index(line[1])] = -np.inf return dict(name=name, objective_name=objective_name, row_names=row_names, col_names=col_names, col_types=col_types, types=types, c=c, A=A, rhs_names=rhs_names, rhs=rhs, bnd_names=bnd_names, bnd=bnd)
43.136564
131
0.425143
78126cf0df2ef751bfee1e98554220844b0b4f10
8,744
py
Python
compss/programming_model/bindings/python/src/pycompss/api/mpi.py
BSC-computational-genomics/compss
9cfc9f7b9bdab9dcb0bec083007452cda185f50c
[ "Apache-2.0" ]
null
null
null
compss/programming_model/bindings/python/src/pycompss/api/mpi.py
BSC-computational-genomics/compss
9cfc9f7b9bdab9dcb0bec083007452cda185f50c
[ "Apache-2.0" ]
null
null
null
compss/programming_model/bindings/python/src/pycompss/api/mpi.py
BSC-computational-genomics/compss
9cfc9f7b9bdab9dcb0bec083007452cda185f50c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # # Copyright 2002-2019 Barcelona Supercomputing Center (www.bsc.es) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # -*- coding: utf-8 -*- """ PyCOMPSs API - MPI ================== This file contains the class mpi, needed for the mpi definition through the decorator. """ import inspect import logging import os from functools import wraps import pycompss.util.context as context from pycompss.util.arguments import check_arguments if __debug__: logger = logging.getLogger(__name__) MANDATORY_ARGUMENTS = {'binary', 'runner'} SUPPORTED_ARGUMENTS = {'computing_nodes', 'working_dir', 'binary', 'runner'} DEPRECATED_ARGUMENTS = {'computingNodes', 'workingDir'} class Mpi(object): """ This decorator also preserves the argspec, but includes the __init__ and __call__ methods, useful on mpi task creation. """ def __init__(self, *args, **kwargs): """ Store arguments passed to the decorator # self = itself. # args = not used. # kwargs = dictionary with the given mpi parameters :param args: Arguments :param kwargs: Keyword arguments """ self.args = args self.kwargs = kwargs self.registered = False self.scope = context.in_pycompss() if self.scope: if __debug__: logger.debug("Init @mpi decorator...") # Check the arguments check_arguments(MANDATORY_ARGUMENTS, DEPRECATED_ARGUMENTS, SUPPORTED_ARGUMENTS | DEPRECATED_ARGUMENTS, list(kwargs.keys()), "@mpi") # Get the computing nodes: This parameter will have to go down until # execution when invoked. if 'computing_nodes' not in self.kwargs and 'computingNodes' not in self.kwargs: self.kwargs['computing_nodes'] = 1 else: if 'computingNodes' in self.kwargs: self.kwargs['computing_nodes'] = self.kwargs.pop('computingNodes') computing_nodes = self.kwargs['computing_nodes'] if isinstance(computing_nodes, int): # Nothing to do pass elif isinstance(computing_nodes, str): # Check if it is an environment variable to be loaded if computing_nodes.strip().startswith('$'): # Computing nodes is an ENV variable, load it env_var = computing_nodes.strip()[1:] # Remove $ if env_var.startswith('{'): env_var = env_var[1:-1] # remove brackets try: self.kwargs['computing_nodes'] = int(os.environ[env_var]) except ValueError: raise Exception("ERROR: ComputingNodes value cannot be cast from ENV variable to int") else: # ComputingNodes is in string form, cast it try: self.kwargs['computing_nodes'] = int(computing_nodes) except ValueError: raise Exception("ERROR: ComputingNodes value cannot be cast from string to int") else: raise Exception("ERROR: Wrong Computing Nodes value at MultiNode decorator.") if __debug__: logger.debug("This MPI task will have " + str(self.kwargs['computing_nodes']) + " computing nodes.") else: pass def __call__(self, func): """ Parse and set the mpi parameters within the task core element. :param func: Function to decorate :return: Decorated function. """ @wraps(func) def mpi_f(*args, **kwargs): if not self.scope: # from pycompss.api.dummy.mpi import mpi as dummy_mpi # d_m = dummy_mpi(self.args, self.kwargs) # return d_m.__call__(func) raise Exception("The mpi decorator only works within PyCOMPSs framework.") if context.in_master(): # master code mod = inspect.getmodule(func) self.module = mod.__name__ # not func.__module__ if (self.module == '__main__' or self.module == 'pycompss.runtime.launch'): # The module where the function is defined was run as __main__, # we need to find out the real module name. # path=mod.__file__ # dirs=mod.__file__.split(os.sep) # file_name=os.path.splitext(os.path.basename(mod.__file__))[0] # Get the real module name from our launch.py variable path = getattr(mod, "app_path") dirs = path.split(os.path.sep) file_name = os.path.splitext(os.path.basename(path))[0] mod_name = file_name i = len(dirs) - 1 while i > 0: new_l = len(path) - (len(dirs[i]) + 1) path = path[0:new_l] if "__init__.py" in os.listdir(path): # directory is a package i -= 1 mod_name = dirs[i] + '.' + mod_name else: break self.module = mod_name # Include the registering info related to @mpi # Retrieve the base core_element established at @task decorator from pycompss.api.task import current_core_element as core_element if not self.registered: self.registered = True # Update the core element information with the mpi information core_element.set_impl_type("MPI") binary = self.kwargs['binary'] if 'working_dir' in self.kwargs: working_dir = self.kwargs['working_dir'] else: working_dir = '[unassigned]' # Empty or '[unassigned]' runner = self.kwargs['runner'] impl_signature = 'MPI.' + binary core_element.set_impl_signature(impl_signature) impl_args = [binary, working_dir, runner] core_element.set_impl_type_args(impl_args) else: # worker code pass # This is executed only when called. if __debug__: logger.debug("Executing mpi_f wrapper.") # Set the computing_nodes variable in kwargs for its usage # in @task decorator kwargs['computing_nodes'] = self.kwargs['computing_nodes'] if len(args) > 0: # The 'self' for a method function is passed as args[0] slf = args[0] # Replace and store the attributes saved = {} for k, v in self.kwargs.items(): if hasattr(slf, k): saved[k] = getattr(slf, k) setattr(slf, k, v) # Call the method import pycompss.api.task as t t.prepend_strings = False ret = func(*args, **kwargs) t.prepend_strings = True if len(args) > 0: # Put things back for k, v in saved.items(): setattr(slf, k, v) return ret mpi_f.__doc__ = func.__doc__ return mpi_f # ############################################################################# # # ###################### MPI DECORATOR ALTERNATIVE NAME ####################### # # ############################################################################# # mpi = Mpi
38.690265
116
0.51178
0b5f4317381da726bc01415fcb6d396051698f01
841
py
Python
setup.py
aroig/nnutil
88df41ee89f592a28c1661ee8837dd8e8ca42cf3
[ "BSD-3-Clause" ]
null
null
null
setup.py
aroig/nnutil
88df41ee89f592a28c1661ee8837dd8e8ca42cf3
[ "BSD-3-Clause" ]
null
null
null
setup.py
aroig/nnutil
88df41ee89f592a28c1661ee8837dd8e8ca42cf3
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # nnutil - Neural network utilities for tensorflow # Copyright (c) 2018, Abdó Roig-Maranges <abdo.roig@gmail.com> # # This file is part of 'nnutil'. # # This file may be modified and distributed under the terms of the 3-clause BSD # license. See the LICENSE file for details. from setuptools import setup, find_packages from nnutil import __version__ setup( name = 'nnutil', version = __version__, license = 'BSD', description = 'Neural network utilities for tensorflow', author = 'Abdó Roig-Maranges', author_email = 'abdo.roig@gmail.com', packages = find_packages(), install_requires = [ 'Click', ], entry_points = ''' [console_scripts] nnutil=nnutil.cli:main ''', )
26.28125
79
0.621879
aa83c1d94abeb3db657dbfb29e48b5a7ef2ce9d0
3,342
py
Python
tests/hwsim/remotehost.py
rainlake/hostap
b9cd4f5e75dc4a7aa3b547925cfb871b6aa103f7
[ "Unlicense" ]
null
null
null
tests/hwsim/remotehost.py
rainlake/hostap
b9cd4f5e75dc4a7aa3b547925cfb871b6aa103f7
[ "Unlicense" ]
null
null
null
tests/hwsim/remotehost.py
rainlake/hostap
b9cd4f5e75dc4a7aa3b547925cfb871b6aa103f7
[ "Unlicense" ]
1
2022-03-25T08:21:36.000Z
2022-03-25T08:21:36.000Z
# Host class # Copyright (c) 2016, Qualcomm Atheros, Inc. # # This software may be distributed under the terms of the BSD license. # See README for more details. import logging import subprocess import threading logger = logging.getLogger() def remote_compatible(func): func.remote_compatible = True return func def execute_thread(command, reply): cmd = ' '.join(command) logger.debug("thread run: " + cmd) try: status = 0 buf = subprocess.check_output(command, stderr=subprocess.STDOUT).decode() except subprocess.CalledProcessError as e: status = e.returncode buf = e.output logger.debug("thread cmd: " + cmd) logger.debug("thread exit status: " + str(status)) logger.debug("thread exit buf: " + str(buf)) reply.append(status) reply.append(buf) class Host(): def __init__(self, host=None, ifname=None, port=None, name="", user="root"): self.host = host self.name = name self.user = user self.monitors = [] self.monitor_thread = None self.logs = [] self.ifname = ifname self.port = port self.dev = None if self.name == "" and host != None: self.name = host def local_execute(self, command): logger.debug("execute: " + str(command)) try: status = 0 buf = subprocess.check_output(command, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: status = e.returncode buf = e.output logger.debug("status: " + str(status)) logger.debug("buf: " + str(buf)) return status, buf.decode() def execute(self, command): if self.host is None: return self.local_execute(command) cmd = ["ssh", self.user + "@" + self.host, ' '.join(command)] _cmd = self.name + " execute: " + ' '.join(cmd) logger.debug(_cmd) try: status = 0 buf = subprocess.check_output(cmd, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: status = e.returncode buf = e.output logger.debug(self.name + " status: " + str(status)) logger.debug(self.name + " buf: " + str(buf)) return status, buf.decode() # async execute def execute_run(self, command, res): if self.host is None: cmd = command else: cmd = ["ssh", self.user + "@" + self.host, ' '.join(command)] _cmd = self.name + " execute_run: " + ' '.join(cmd) logger.debug(_cmd) t = threading.Thread(target = execute_thread, args=(cmd, res)) t.start() return t def wait_execute_complete(self, t, wait=None): if wait == None: wait_str = "infinite" else: wait_str = str(wait) + "s" logger.debug(self.name + " wait_execute_complete(" + wait_str + "): ") if t.isAlive(): t.join(wait) def add_log(self, log_file): self.logs.append(log_file) def get_logs(self, local_log_dir=None): for log in self.logs: if local_log_dir: self.local_execute(["scp", self.user + "@[" + self.host + "]:" + log, local_log_dir]) self.execute(["rm", log]) del self.logs[:]
30.66055
101
0.573908
64d7d2814330d812da07985daacc86cce42cd7f3
3,414
py
Python
tests/models/validators/v2_2_2_3/jsd_df9908ad265e83ab77d73803925678.py
oboehmer/dnacentersdk
25c4e99900640deee91a56aa886874d9cb0ca960
[ "MIT" ]
32
2019-09-05T05:16:56.000Z
2022-03-22T09:50:38.000Z
tests/models/validators/v2_2_2_3/jsd_df9908ad265e83ab77d73803925678.py
oboehmer/dnacentersdk
25c4e99900640deee91a56aa886874d9cb0ca960
[ "MIT" ]
35
2019-09-07T18:58:54.000Z
2022-03-24T19:29:36.000Z
tests/models/validators/v2_2_2_3/jsd_df9908ad265e83ab77d73803925678.py
oboehmer/dnacentersdk
25c4e99900640deee91a56aa886874d9cb0ca960
[ "MIT" ]
18
2019-09-09T11:07:21.000Z
2022-03-25T08:49:59.000Z
# -*- coding: utf-8 -*- """Cisco DNA Center UpdateSite data model. Copyright (c) 2019-2021 Cisco Systems. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import ( absolute_import, division, print_function, unicode_literals, ) import fastjsonschema import json from dnacentersdk.exceptions import MalformedRequest from builtins import * class JSONSchemaValidatorDf9908Ad265E83Ab77D73803925678(object): """UpdateSite request schema definition.""" def __init__(self): super(JSONSchemaValidatorDf9908Ad265E83Ab77D73803925678, self).__init__() self._validator = fastjsonschema.compile(json.loads( '''{ "$schema": "http://json-schema.org/draft-04/schema#", "properties": { "response": { "properties": { "data": { "type": "string" }, "endTime": { "type": "string" }, "id": { "type": "string" }, "instanceTenantId": { "type": "string" }, "isError": { "type": "string" }, "operationIdList": { "items": { "type": "string" }, "type": "array" }, "progress": { "type": "string" }, "rootId": { "type": "string" }, "serviceType": { "type": "string" }, "startTime": { "type": "string" }, "version": { "type": "string" } }, "type": "object" }, "result": { "type": "string" }, "status": { "type": "string" } }, "type": "object" }'''.replace("\n" + ' ' * 16, '') )) def validate(self, request): try: self._validator(request) except fastjsonschema.exceptions.JsonSchemaException as e: raise MalformedRequest( '{} is invalid. Reason: {}'.format(request, e.message) )
31.906542
81
0.522261
c4502f105f976baa26c345fa774e8ad477a0411e
1,521
py
Python
src/recsys/data_prep/calculate_loo_stats.py
csy1204/recsys_2019_conf_ver
c072407f46dbff73a0e0c916dd4379e6a9e6594b
[ "Apache-2.0" ]
null
null
null
src/recsys/data_prep/calculate_loo_stats.py
csy1204/recsys_2019_conf_ver
c072407f46dbff73a0e0c916dd4379e6a9e6594b
[ "Apache-2.0" ]
6
2020-09-26T01:19:12.000Z
2021-08-25T16:09:24.000Z
src/recsys/data_prep/calculate_loo_stats.py
csy1204/recsys_2019_conf_ver
c072407f46dbff73a0e0c916dd4379e6a9e6594b
[ "Apache-2.0" ]
null
null
null
from collections import defaultdict from csv import DictWriter import pandas as pd import sys sys.path.append('/Users/josang-yeon/2020/tobigs/tobigs_reco_conf/recsys2019/src') from recsys.data_generator.accumulators import ACTIONS_WITH_ITEM_REFERENCE from tqdm import tqdm import numpy as np import joblib """ Calculates leave one out stats """ data = pd.read_csv("../../../data/events_sorted.csv") stats = {} """ Build stats item_id -> stat_name -> set(users) """ for action_type, user_id, impression, reference in tqdm( zip(data["action_type"], data["user_id"], data["impressions"], data["reference"]) ): if reference is None or reference == np.nan or action_type != "clickout item": continue for item_id in impression.split("|"): item_id = int(item_id) try: stats[item_id]["impressions"].add(user_id) except KeyError: stats[item_id] = {"impressions": {user_id}} for user_id, reference, action_type in tqdm(zip(data["user_id"], data["reference"], data["action_type"])): if reference is None or reference == np.nan: continue if action_type in ACTIONS_WITH_ITEM_REFERENCE: try: item_id = int(reference) except: continue if item_id not in stats: stats[item_id] = {} try: stats[item_id][action_type].add(user_id) except KeyError: stats[item_id][action_type] = {user_id} joblib.dump(stats, "../../../data/item_stats_loo.joblib")
27.654545
106
0.657462
538577eb13e75bb83ca54074247ccb987e112ed7
9,791
py
Python
clustering/kmedoids_helper.py
msilvestro/dupin
db06432cab6910c6965b9c35baaef96eb84f0d81
[ "MIT" ]
null
null
null
clustering/kmedoids_helper.py
msilvestro/dupin
db06432cab6910c6965b9c35baaef96eb84f0d81
[ "MIT" ]
null
null
null
clustering/kmedoids_helper.py
msilvestro/dupin
db06432cab6910c6965b9c35baaef96eb84f0d81
[ "MIT" ]
null
null
null
"""Helper functions for k-medoids algorithms.""" import numpy as np from numba import jit def _get_clusters(metric=None, method='memory'): # if a method requires it, check if a metric is given if method in ('hybrid', 'cpu') and not metric: print("Error: with method `{:}` a metric is necessary.") return if method == 'memory': return get_clusters_memory if method == 'hybrid': return lambda data, medoids: get_clusters_hybrid(data, medoids, metric) if method == 'cpu': return _get_clusters_cpu(metric) print("Error: method `{:}` unknown.".format(method)) return def _get_medoid(metric=None, method='memory'): # if a method requires it, check if a metric is given if method in ('hybrid', 'cpu') and not metric: print("Error: with method `{:}` a metric is necessary.") return if method == 'memory': return get_medoid_memory if method == 'hybrid': return _get_medoid_hybrid(metric) if method == 'cpu': return _get_medoid_cpu(metric) print("Error: method `{:}` unknown.".format(method)) return @jit def get_clusters_memory(diss, medoids): r"""Compute the clusters induced by the medoids on the dissimilarity matrix. Parameters ---------- diss : (n, n) ndarray Squared symmetric dissimilarity matrix. medoids : (n,) ndarray Set of medoids, given as index of data objects representing them. Returns ------- clusterid : ndarray An array containing the number of the cluster to which each object was assigned, where the cluster number is defined as the object number of the objects representing the cluster centroid. error : float The within-cluster sum of distances of the clustering solution. Notes ----- Very fast implementation. Requires enough memory to store a n\*n matrix (that is the dissimilarity matrix, n is the number of data objects). """ # take the submatrix in which columns corresponds to the medoids, then take # the argmin row-wise clustermem = diss[:, medoids].argmin(axis=1) # we want a vector with medoid indices with respect to the data and not # positional indices, i.e. we do not want [0, 1, 2] but # [med_1, med_2, med_3] clusterid = np.empty(clustermem.shape[0], dtype=np.uint32) for i, medoid in enumerate(medoids): clusterid[clustermem == i] = medoid # compute also the error error = diss[:, medoids].min(axis=1).sum() return clusterid, error @jit def get_medoid_memory(diss, cluster): r"""Compute the medoid of a cluster. Parameters ---------- diss : (n, n) ndarray Squared symmetric dissimilarity matrix. cluster : (n,) ndarray Set of the indices of all objects belonging to the cluster. Returns ------- medoid : int Index of the object chosen as medoid of the cluster, i.e. it is the object that minimizes the sum of distances with respect to all the other cluster members. Notes ----- Very fast implementation. Requires enough memory to store a n\*n matrix (that is the dissimilarity matrix, n is the number of data objects). """ medoid = cluster[np.sum( diss[np.ix_(cluster, cluster)], axis=1 ).argmin()] return medoid @jit def get_clusters_hybrid(data, medoids, metric): r"""Compute the clusters induced by the medoids on data. Parameters ---------- data : (n,) ndarray Data set. medoids : (n,) ndarray Set of medoids, given as index of data objects representing them. metric : function Function to compute pairwise distances. Returns ------- clusterid : (n,) ndarray An array containing the number of the cluster to which each object was assigned, where the cluster number is defined as the object number of the objects representing the cluster centroid. error : float The within-cluster sum of distances of the clustering solution. Notes ----- Quite fast implementation. Requires enough memory to store a n\*k matrix (n is the number of data objects and k is the number of clusters). """ # make a big matrix that in the i-th row has the distances between the i-th # object and the medoids dists = np.zeros((data.shape[0], medoids.shape[0])) for i, obj in enumerate(data): for j, med in enumerate(medoids): if i != med: dists[i, j] = metric(obj, data[med]) # take the index corresponding to the medoid with minimum distance from the # object clustermem = dists.argmin(axis=1) # we want a vector with medoid indices with respect to the data and not # positional indices, i.e. we do not want [0, 1, 2] but # [med_1, med_2, med_3] clusterid = np.empty(clustermem.shape[0], dtype=np.uint32) for i, medoid in enumerate(medoids): clusterid[clustermem == i] = medoid # take the minimum row-wise and sum the resulting vector to get the error error = dists.min(axis=1).sum() return clusterid, error def _get_medoid_hybrid(metric): @jit(nopython=True) def get_medoid_hybrid(data, cluster): r"""Compute the medoid of a cluster. Parameters ---------- data : (n,) ndarray Data set. cluster : (n,) ndarray Set of the indices of all objects belonging to the cluster. metric : function Function to compute pairwise distances. Returns ------- medoid : int Index of the object chosen as medoid of the cluster, i.e. it is the object that minimizes the sum of distances with respect to all the other cluster members. Notes ----- Quite fast implementation. Requires enough memory to store a m\*m matrix (m is the size of the given cluster). """ # make a dissimilarity matrix of the cluster passed in m = cluster.shape[0] diss = np.zeros((m, m)) for i in range(m): for j in range(i+1): dist = metric(data[cluster[i]], data[cluster[j]]) diss[i, j] = dist diss[j, i] = dist # then take the sum by row and choose the cluster member that minimizes # it medoid = cluster[diss.sum(axis=1).argmin()] return medoid return get_medoid_hybrid def _get_clusters_cpu(metric): @jit(nopython=True) def get_clusters_cpu(data, medoids): """Compute the clusters induced by the medoids on data. Parameters ---------- data : (n,) ndarray Data set. medoids : (n,) ndarray Set of medoids, given as index of data objects representing them. metric : function Function to compute pairwise distances. Returns ------- clusterid : (n,) ndarray An array containing the number of the cluster to which each object was assigned, where the cluster number is defined as the object number of the objects representing the cluster centroid. error : float The within-cluster sum of distances of the clustering solution. Notes ----- Slowest implementation. Does not require to store matrices in memory. Version to let `numba` run in `nopython` mode (faster). """ n = data.shape[0] k = medoids.shape[0] clusterid = np.empty(n, dtype=np.uint32) error = 0 for i in range(n): # select the cluster whom medoid is closest to the current object min_dist = np.inf min_j = -1 for j in range(k): if i == medoids[j]: # if the object is a medoid, its cluster will not change # hence end the loop min_dist = 0 min_j = j break else: dist = metric(data[i], data[medoids[j]]) if dist < min_dist: min_dist = dist min_j = j clusterid[i] = medoids[min_j] error += min_dist return clusterid, error return get_clusters_cpu def _get_medoid_cpu(metric): @jit(nopython=True) def get_medoid_cpu(data, cluster): """Compute the medoid of a cluster. Parameters ---------- data : (n,) ndarray Data set. cluster : (n,) ndarray Set of the indices of all objects belonging to the cluster. metric : function Function to compute pairwise distances. Returns ------- medoid : int Index of the object chosen as medoid of the cluster, i.e. it is the object that minimizes the sum of distances with respect to all the other cluster members. Notes ----- Slowest implementation. Does not require to store matrices in memory. Version to let `numba` run in `nopython` mode (faster). """ min_dist = np.inf medoid = -1 for prop in cluster: # for each proposed medoid, compute the sum of distances between it # and each other cluster member dist = 0 for j in cluster: if prop != j: dist += metric(data[prop], data[j]) # retain it only if it has a lower sum of distances if dist < min_dist: min_dist = dist medoid = prop return medoid return get_medoid_cpu
32.528239
80
0.597283
4cc6782e39a34694a60836248f132bc1ed7eb44b
884
py
Python
libraries/parser/yaml.py
devetek/Omni
3a0676f307bd1814da925e1a184743c517ec9307
[ "Apache-2.0" ]
4
2019-04-30T11:07:11.000Z
2019-06-10T03:03:37.000Z
libraries/parser/yaml.py
devetek/Omni
3a0676f307bd1814da925e1a184743c517ec9307
[ "Apache-2.0" ]
8
2019-07-17T17:13:09.000Z
2022-02-26T15:40:01.000Z
libraries/parser/yaml.py
devetek/Omni
3a0676f307bd1814da925e1a184743c517ec9307
[ "Apache-2.0" ]
null
null
null
import yaml import os.path from urlparse import urlparse class Ryaml: PATH = '' IS_PATH = True def __init__(self): pass def set_path(self, path): isFile = os.path.isfile(path) self.IS_PATH = isFile if self.__is_path(): self.PATH = path else: self.PATH = "" def get_path(self): return self.PATH def __is_path(self): return self.IS_PATH def __open_file(self): try: with open(self.PATH, 'r') as yamlFile: data = yaml.load(yamlFile) return data except: return {} def read(self): return self.__open_file() if __name__ == '__main__': pass # PATH_TEST = "./../roles/node/main.yaml" # yamlReader = Ryaml() # yamlReader.set_path(PATH_TEST) # dictPATH = yamlReader.read()
18.040816
50
0.548643
eb6df7f19c6af69a774f0bc00beef20f4264b368
784
py
Python
projects/migrations/0005_auto_20190407_1457.py
vineethreddyramasa/uno-community-partnership
694886b7ad7fa98f6dbb24b03476962cfadebc70
[ "MIT" ]
13
2018-08-30T16:03:18.000Z
2019-11-25T07:08:43.000Z
projects/migrations/0005_auto_20190407_1457.py
vineethreddyramasa/uno-community-partnership
694886b7ad7fa98f6dbb24b03476962cfadebc70
[ "MIT" ]
814
2018-08-30T02:28:55.000Z
2022-03-11T23:31:45.000Z
projects/migrations/0005_auto_20190407_1457.py
vineethreddyramasa/uno-community-partnership
694886b7ad7fa98f6dbb24b03476962cfadebc70
[ "MIT" ]
6
2018-09-16T05:35:49.000Z
2019-10-17T02:44:19.000Z
# Generated by Django 2.1.1 on 2019-04-07 19:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('projects', '0004_auto_20190407_1443'), ] operations = [ migrations.AlterField( model_name='project', name='academic_year', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='academic_year1', to='projects.AcademicYear'), ), migrations.AlterField( model_name='project', name='end_academic_year', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='academic_year2', to='projects.AcademicYear'), ), ]
31.36
151
0.658163
3108e5c2b20036e6d0245f4c28e5eedda948e66a
398
py
Python
NC 5/code.py
swy20190/NiuKe
d9dbbbbac403f5b4fe37efe82f9708aff614f018
[ "MIT" ]
null
null
null
NC 5/code.py
swy20190/NiuKe
d9dbbbbac403f5b4fe37efe82f9708aff614f018
[ "MIT" ]
null
null
null
NC 5/code.py
swy20190/NiuKe
d9dbbbbac403f5b4fe37efe82f9708aff614f018
[ "MIT" ]
null
null
null
n = int(input()) string = input() dp = [] for i in range(26): dp.append([0]*n) for i in range(n-1): for j in range(26): dp[j][n-2-i] = dp[j][n-1-i] dp[ord(string[n-1-i])-ord('a')][n-2-i] += 1 answer = 0 for i in range(n-2): for j in range(26): if ord(string[i])-ord('a') != j: times = dp[j][i] answer += times*(times-1)/2 print(int(answer))
22.111111
47
0.492462
b4c52dbaa8cb9f3e72e956ffb21e165f9fea83d1
2,629
py
Python
recipes/gemmlowp/all/conanfile.py
Tereius/conan-center-index
6b0523fa57d8e8e890b040e95576f0bc584eeba8
[ "MIT" ]
562
2019-09-04T12:23:43.000Z
2022-03-29T16:41:43.000Z
recipes/gemmlowp/all/conanfile.py
Tereius/conan-center-index
6b0523fa57d8e8e890b040e95576f0bc584eeba8
[ "MIT" ]
9,799
2019-09-04T12:02:11.000Z
2022-03-31T23:55:45.000Z
recipes/gemmlowp/all/conanfile.py
Tereius/conan-center-index
6b0523fa57d8e8e890b040e95576f0bc584eeba8
[ "MIT" ]
1,126
2019-09-04T11:57:46.000Z
2022-03-31T16:43:38.000Z
import os from conans import ConanFile, CMake, tools from conans.errors import ConanInvalidConfiguration required_conan_version = ">=1.37.0" class GemmlowpConan(ConanFile): name = "gemmlowp" license = "Apache-2.0" url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/google/gemmlowp" description = "Low-precision matrix multiplication" topics = ("gemm", "matrix") settings = "os", "arch", "compiler", "build_type" options = {"shared": [True, False], "fPIC": [True, False]} default_options = {"shared": False, "fPIC": True} exports_sources = ["CMakeLists.txt"] generators = "cmake", "cmake_find_package", "cmake_find_package_multi" _cmake = None @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" def source(self): tools.get(**self.conan_data["sources"][self.version], strip_root=True, destination=self._source_subfolder) def validate(self): if self.settings.os == "Windows" and self.options.shared: raise ConanInvalidConfiguration("shared is not supported on Windows") def configure(self): if self.options.shared: del self.options.fPIC def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions['BUILD_TESTING'] = False self._cmake.configure(build_folder=self._build_subfolder) return self._cmake def build(self): cmake = self._configure_cmake() cmake.build() def package(self): self.copy("LICENSE", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() tools.rmdir(os.path.join(self.package_folder, "lib", "cmake")) tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) tools.rmdir(os.path.join(self.package_folder, "share")) def package_info(self): self.cpp_info.components["eight_bit_int_gemm"].names["cmake_find_package"] = "eight_bit_int_gemm" self.cpp_info.components["eight_bit_int_gemm"].names["cmake_find_package_multi"] = "eight_bit_int_gemm" self.cpp_info.components["eight_bit_int_gemm"].libs = ["eight_bit_int_gemm"] if self.settings.os == "Linux": self.cpp_info.components["eight_bit_int_gemm"].system_libs.extend(["pthread"])
36.013699
114
0.659947
6ba7be2f303044a60bdd02da51266452eba1a045
1,164
py
Python
models/AI-Model-Zoo/VAI-1.3-Model-Zoo-Code/PyTorch/pt_pointpillars_kitti_12000_100_10.8G_1.3/code/train/torchplus/ops/__init__.py
guochunhe/Vitis-AI
e86b6efae11f8703ee647e4a99004dc980b84989
[ "Apache-2.0" ]
1
2020-12-18T14:49:19.000Z
2020-12-18T14:49:19.000Z
models/AI-Model-Zoo/VAI-1.3-Model-Zoo-Code/PyTorch/pt_pointpillars_kitti_12000_100_10.8G_1.3/code/train/torchplus/ops/__init__.py
guochunhe/Vitis-AI
e86b6efae11f8703ee647e4a99004dc980b84989
[ "Apache-2.0" ]
null
null
null
models/AI-Model-Zoo/VAI-1.3-Model-Zoo-Code/PyTorch/pt_pointpillars_kitti_12000_100_10.8G_1.3/code/train/torchplus/ops/__init__.py
guochunhe/Vitis-AI
e86b6efae11f8703ee647e4a99004dc980b84989
[ "Apache-2.0" ]
null
null
null
# This code is based on: https://github.com/nutonomy/second.pytorch.git # # MIT License # Copyright (c) 2018 # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.
52.909091
80
0.777491
9ab6ca4e4dc1fe24b6a27e16f99f5f4e307b4acf
5,372
py
Python
reina/MetaLearners/TLearner.py
SoumilShekdar/Reina
638240a979a90a9b6ca9efb40edef6ecc71d836f
[ "MIT" ]
null
null
null
reina/MetaLearners/TLearner.py
SoumilShekdar/Reina
638240a979a90a9b6ca9efb40edef6ecc71d836f
[ "MIT" ]
null
null
null
reina/MetaLearners/TLearner.py
SoumilShekdar/Reina
638240a979a90a9b6ca9efb40edef6ecc71d836f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[ ]: """ Provides a spark-based T-learner heterogeneous treatment effect estimator. """ import pyspark from pyspark.sql.functions import monotonically_increasing_id from pyspark.ml.feature import VectorAssembler from pyspark.sql.functions import avg from pyspark.sql.functions import lit from pyspark.sql.functions import col from pyspark.sql.functions import when from pyspark.sql import SparkSession from pyspark.sql.functions import udf from pyspark.sql.types import FloatType class TLearner: """ Spark-based T-learner heterogeneous treatment effect estimator. Assumptions --------------- This class assumes that the data is already stored in a distributed storage system (e.g., HDFS). This class also assumes that the treatment variable only contains 1s and 0s. """ def __init__(self, learner="T"): self.treatments = [] # Multiple treatment effects can be estimated self.outcome = None self.covariates = [] self.estimator_0 = None self.estimator_1 = None def fit(self, data, treatments, outcome, estimator_0, estimator_1): """ Wrapper function to fit an ML-based counterfacual model. When multiple treatments are inputted, each treatment effect is estiamted individually. Parameters ---------- data (2-D Spark dataframe): Base dataset containing features, treatment, iv, and outcome variables treatments (List): Names of the treatment variables outcome (Str): Name of the outcome variable estimator_0 (mllib model obj): Arbitrary ML model of choice estimator_1 (mllib model obj): Arbitrary ML model of choice Returns ------ self """ self.treatments = treatments self.outcome = outcome self.covariates = [var for var in data.columns if var not in treatments and var != outcome] self.estimator_0 = estimator_0 self.estimator_1 = estimator_1 self.__fit(data) def effects(self, X, treatment): """ Function to get the estimated heterogeneous treatment effect from the fitted counterfactual model. The treatment effect is calculated by taking the difference between the predicted counterfactual outcomes. Parameters ---------- X (2-D Spark dataframe): Feature data to estimate treatment effect of treatment (Str): Name of the treatment variable returns ------- cate: conditional average treatment effect ate: average treatment effect """ # Input treatment has to be fitted assert treatment in self.treatments # Ger predictions for treatment and control group assembler = VectorAssembler(inputCols=self.covariates+[treatment], outputCol='features') X_assembled = assembler.transform(X) prediction_1 = estimator_1.transform(X_assembled.select('features')).withColumnRenamed("prediction", "prediction_1").select("prediction_1") prediction_0 = estimator_0.transform(X_assembled.select('features')).withColumnRenamed("prediction", "prediction_0").select("prediction_0") # Get Cate X_w_pred = self.__mergeDfCol(X, prediction_1) X_w_pred = self.__mergeDfCol(X_w_pred, prediction_0) self.cate[treatment] = X_w_pred.select(X_w_pred.prediction_1 - X_w_pred.prediction_0).withColumnRenamed("(prediction_1 - prediction_0)", "cate") self.average_treatment_effects[treatment] = float(self.cate[treatment].groupby().avg().head()[0]) return cate, ate def __fit(self, data, estimator_1, estimator_0): for treatment in self.treatments: # Set up assembler assembler = VectorAssembler(inputCols=self.covariates+[treatment], outputCol='features') # First estimator (treatment group) treatment_group = data.filter(treatment+" == 1") treatment_group_assembled = assembler.transform(treatment_group) treatment_group_assembled = treatment_group_assembled.select(['features', self.outcome]) self.estimator_1 = self.estimator_1.fit(treatment_group_assembled) # Second estimator (control group) control_group = data.filter(treatment+" == 0") control_group_assembled = assembler.transform(control_group) control_group_assembled = control_group_assembled.select(['features', self.outcome]) self.estimator_0 = self.estimator_0.fit(control_group_assembled) def __mergeDfCol(self, df_1, df_2): """ Function to merge two spark dataframes. Parameters ---------- df_1 (2-D Spark dataframe): Spark dataframe to merge df_2 (2-D Spark dataframe): Spark dataframe to merge Returns ------ df_3 (2-D Spark dataframe): Spark dataframe merged by df1 and df2 """ df_1 = df_1.withColumn("COL_MERGE_ID", monotonically_increasing_id()) df_2 = df_2.withColumn("COL_MERGE_ID", monotonically_increasing_id()) df_3 = df_2.join(df1, "COL_MERGE_ID").drop("COL_MERGE_ID") return df_3
40.089552
152
0.657111
e5a5bae27ddc1ba6b78eb733e75cae83cee92ddd
35,273
py
Python
src/b2bt/main.py
HubTou/b2bt
9e53a254226f7eaee32da332c3340b906c36c1eb
[ "BSD-3-Clause" ]
null
null
null
src/b2bt/main.py
HubTou/b2bt
9e53a254226f7eaee32da332c3340b906c36c1eb
[ "BSD-3-Clause" ]
1
2021-06-05T07:59:58.000Z
2021-06-05T08:19:57.000Z
src/b2bt/main.py
HubTou/b2bt
9e53a254226f7eaee32da332c3340b906c36c1eb
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ b2bt - back-to-back testing License: 3-clause BSD (see https://opensource.org/licenses/BSD-3-Clause) Author: Hubert Tournier """ import ctypes import difflib import getopt import getpass import hashlib import locale import logging import os import platform import shutil import subprocess import sys import time # Mandatory dependency upon defusedxml import defusedxml.minidom # Optional dependency upon colorama # Use "pip install colorama" to install try: import colorama COLORAMA = True except ModuleNotFoundError: COLORAMA = False # Version string used by the what(1) and ident(1) commands: ID = "@(#) $Id: b2bt - back-to-back testing v1.1.2 (September 26, 2021) by Hubert Tournier $" __version__ = "1.1.2" # Default parameters. Can be overcome by environment variables, then command line options DEFAULT_TIMEOUT = 120.0 MINIMUM_DEFAULT_TIMEOUT = 30.0 parameters = { "Original command path": "", "New command path": "", "Keep results": False, "Overwrite results": False, "Quiet differences": False, "Skip original command": False, "Auto confirm": False, "No colors": False, "Timeout": DEFAULT_TIMEOUT, } ################################################################################ def initialize_debugging(program_name): """Debugging set up""" console_log_format = program_name + ": %(levelname)s: %(message)s" logging.basicConfig(format=console_log_format, level=logging.DEBUG) logging.disable(logging.INFO) ################################################################################ def display_help(): """Displays usage and help""" print("usage: b2bt [--debug] [-f|--force] [--help|-?] [-k|--keep]", file=sys.stderr) print( " [-n|--newpath PATH] [-o|--origpath PATH] [-q|--quiet] [-s|--skip]", file=sys.stderr, ) print( " [-t|--timeout VALUE] [--version] [-y|--autoconfirm] [-N|--nocolors]", file=sys.stderr, ) print(" [--] filename [...]", file=sys.stderr) print( " ------------------ --------------------------------------------------", file=sys.stderr, ) print(" -f|--force Overwrite results directories", file=sys.stderr) print( " -k|--keep Keep results directories after running", file=sys.stderr ) print(" -n|--newpath PATH Path of the new command", file=sys.stderr) print( " -o|--origpath PATH Path of the original command if not in $PATH", file=sys.stderr, ) print(" -q|--quiet Don't detail run differences", file=sys.stderr) print(" -s|--skip Skip original command processing", file=sys.stderr) print( " -t|--timeout VALUE Set default timeout (%0.1f s) to a new value" % DEFAULT_TIMEOUT, file=sys.stderr, ) print( " -y|--autoconfirm Don't ask for confirmation before test case execution", file=sys.stderr, ) print(" -N|--nocolors Don't use colors in output", file=sys.stderr) print(" --debug Enable debug mode", file=sys.stderr) print( " --help|-? Print usage and this help message and exit", file=sys.stderr, ) print(" --version Print version and exit", file=sys.stderr) print(" -- Options processing terminator", file=sys.stderr) print(file=sys.stderr) ################################################################################ def process_environment_variables(): """Process environment variables""" # pylint: disable=C0103 global parameters # pylint: enable=C0103 if "B2BT_OPTIONS" in os.environ.keys(): if "f" in os.environ["B2BT_OPTIONS"]: parameters["Overwrite results"] = True if "k" in os.environ["B2BT_OPTIONS"]: parameters["Keep results"] = True if "q" in os.environ["B2BT_OPTIONS"]: parameters["Quiet differences"] = True if "s" in os.environ["B2BT_OPTIONS"]: parameters["Skip original command"] = True if "y" in os.environ["B2BT_OPTIONS"]: parameters["Auto confirm"] = True if "N" in os.environ["B2BT_OPTIONS"]: parameters["No colors"] = True if "B2BT_DEBUG" in os.environ.keys(): logging.disable(logging.NOTSET) logging.debug("process_environment_variables(): parameters:") logging.debug(parameters) ################################################################################ def process_command_line(): """Process command line options""" # pylint: disable=C0103 global parameters # pylint: enable=C0103 # option letters followed by : expect an argument # same for option strings followed by = character_options = "dfhkn:o:qst:vyN?" string_options = [ "autoconfirm", "debug", "force", "help", "keep", "newpath=", "nocolors", "origpath=", "quiet", "skip", "timeout=", "version", ] try: options, remaining_arguments = getopt.getopt( sys.argv[1:], character_options, string_options ) except getopt.GetoptError as error: logging.critical("Syntax error: %s", error) display_help() sys.exit(1) for option, argument in options: if option == "--debug": logging.disable(logging.NOTSET) elif option in ("-f", "--force"): parameters["Overwrite results"] = True elif option in ("--help", "-?"): display_help() sys.exit(0) elif option in ("-k", "--keep"): parameters["Keep results"] = True elif option in ("-n", "--newpath"): if os.path.isdir(argument): parameters["New command path"] = os.path.abspath(argument) else: logging.critical("-n|--newpath argument is not a path") sys.exit(1) elif option in ("-o", "--origpath"): if os.path.isdir(argument): parameters["Original command path"] = os.path.abspath(argument) else: logging.critical("-o|--origpath argument is not a path") sys.exit(1) elif option in ("-q", "--quiet"): parameters["Quiet differences"] = True elif option in ("-s", "--skip"): parameters["Skip original command"] = True elif option in ("-t", "--timeout"): try: parameters["Timeout"] = float(argument) except ValueError: logging.critical("-t|--timeout argument is not a (floating) number") sys.exit(1) if parameters["Timeout"] < MINIMUM_DEFAULT_TIMEOUT: logging.critical( "-t|--timeout argument must be >= %s seconds", MINIMUM_DEFAULT_TIMEOUT, ) sys.exit(1) elif option == "--version": print(ID.replace("@(" + "#)" + " $" + "Id" + ": ", "").replace(" $", "")) sys.exit(0) elif option in ("-y", "--autoconfirm"): parameters["Auto confirm"] = True elif option in ("-N", "--nocolors"): parameters["No colors"] = True logging.debug("process_command_line(): parameters:") logging.debug(parameters) logging.debug("process_command_line(): remaining_arguments:") logging.debug(remaining_arguments) return remaining_arguments ################################################################################ def is_privileged(): """Return True if the utility is run with privileged accesses or if we don't know""" try: return os.geteuid() == 0 except AttributeError: # Happens when not running on a Unix operating system # Assuming a Windows operating system: try: return ctypes.windll.shell32.IsUserAnAdmin() != 0 except: # Happens when on some Windows version (XP) and other operating systems # We return True when we don't know to stay on the safe side return True ################################################################################ def get_tag_lines(xml_node, tag_name): """Return a list of non-blank stripped lines from an XML node""" lines = [] tag_content = xml_node.getElementsByTagName(tag_name) if tag_content: nodelist = tag_content[0].childNodes for node in nodelist: if node.nodeType == node.TEXT_NODE: for line in node.data.split(os.linesep): if line.strip(): newline = line.strip() # If line starts and ends with quotes, remove them # but keep spaces inside: if len(newline) >= 2 \ and newline[0] == '"' \ and newline[-1] == '"': newline = newline[1:-1] lines.append(newline) return lines ################################################################################ def read_test_case(case): """Check and return the contents of a test case XML node""" name = "" if case.hasAttribute("name"): name = case.getAttribute("name") timeout = str(parameters["Timeout"]) if case.hasAttribute("timeout"): timeout = case.getAttribute("timeout") pre = get_tag_lines(case, "pre") stdin = get_tag_lines(case, "stdin") cmd = get_tag_lines(case, "cmd") post = get_tag_lines(case, "post") logging.debug("read_test_case(): name: %s", name) logging.debug("read_test_case(): pre: ['%s']", "', '".join(pre)) logging.debug("read_test_case(): stdin: ['%s']", "', '".join(stdin)) logging.debug("read_test_case(): cmd: ['%s']", "', '".join(cmd)) logging.debug("read_test_case(): timeout: %s", timeout) logging.debug("read_test_case(): post: ['%s']", "', '".join(post)) # Check the parameters: try: timeout_value = float(timeout) except ValueError: logging.critical( 'In test case "%s": the timeout argument is not a (floating) number', name ) sys.exit(1) if timeout_value <= 0: logging.critical( 'In test case "%s": the timeout argument must be a positive number', name ) sys.exit(1) if len(cmd) == 0: logging.critical('In test case "%s": a non empty cmd tag is mandatory', name) sys.exit(1) if len(cmd) > 1: logging.error('In test case "%s": the cmd tag must be 1 line only', name) sys.exit(1) return name, pre, stdin, cmd[0], timeout_value, post ################################################################################ def get_file_size(file_path): """Return a file size in bytes""" file_stats = os.stat(file_path) return file_stats.st_size ################################################################################ def get_file_digest(file_path): """Return a file MD5 digest in hexadecimal""" chunk_size = 512 * 200 digest = hashlib.md5() with open(file_path, "rb") as file: for chunk in iter(lambda: file.read(chunk_size), b""): digest.update(chunk) return digest.hexdigest() ################################################################################ def describe_test_environment(test_directory, command_full_path): """Generate a test 0 sub-directory with system information Return the command MD5 digest""" # Making the test directories and getting inside: directory = test_directory + os.sep + "0" if not os.path.isdir(directory): try: os.makedirs(directory) except OSError as error: logging.critical( 'Unable to create the "%s" directory: %s', directory, error ) sys.exit(1) os.chdir(directory) with open("info", "w") as file: file.write("System/nodename = {}{}".format(os.uname().nodename, os.linesep)) try: username = getpass.getuser() except: username = "" file.write("System/user = {}{}".format(username, os.linesep)) file.write("Hardware/machine = {}{}".format(platform.machine(), os.linesep)) file.write("Hardware/processor = {}{}".format(platform.processor(), os.linesep)) file.write("Hardware/cpus = {}{}".format(os.cpu_count(), os.linesep)) file.write( "OperatingSystem/system = {}{}".format(platform.system(), os.linesep) ) file.write( "OperatingSystem/release = {}{}".format(platform.release(), os.linesep) ) file.write("Environment/locale = {}{}".format(locale.getlocale(), os.linesep)) file.write( "Python/implementation = {}{}".format( platform.python_implementation(), os.linesep ) ) file.write( "Python/version = {}{}".format(platform.python_version(), os.linesep) ) file.write("Command/path = {}{}".format(command_full_path, os.linesep)) file.write( "Command/size = {}{}".format(get_file_size(command_full_path), os.linesep) ) command_md5 = get_file_digest(command_full_path) file.write("Command/md5 = {}{}".format(command_md5, os.linesep)) if shutil.which("what"): results = subprocess.run( ["what", "-q", command_full_path], text=True, capture_output=True, check=False, ) file.write("Command/what = {}{}".format(results.stdout, os.linesep)) if shutil.which("ident"): results = subprocess.run( ["ident", "-q", command_full_path], text=True, capture_output=True, check=False, ) file.write("Command/ident = {}{}".format(results.stdout, os.linesep)) os.chdir(os.pardir + os.sep + os.pardir) return command_md5 ################################################################################ def ask_for_confirmation(text, accepted): """Print the text and return True if user input is in the accepted list""" answer = input(text) return answer.lower() in accepted ################################################################################ def confirm_test(pre_commands, standard_input, command_line, post_commands): """Return True if a test is to be executed""" print(" About to execute the following commands:") if pre_commands: print(" pre:") for line in pre_commands: print(" %s" % line) if standard_input: print(" stdin:") for line in standard_input: print(" %s" % line) print(" cmd:") print(" %s" % command_line) if post_commands: print(" post:") for line in post_commands: print(" %s" % line) return ask_for_confirmation(" Please confirm execution (y[es]): ", ("y", "yes")) ################################################################################ def execute_test( test_directory, test_number, pre_commands, standard_input, full_command_path, command_line, timeout, post_commands, ): """Execute a test in a subdirectory""" logging.debug("execute_test(): test_directory=%s", test_directory) logging.debug("execute_test(): test_number=%s", str(test_number)) logging.debug("execute_test(): pre_commands=%s", " ".join(pre_commands)) logging.debug("execute_test(): standard_input=%s", " ".join(standard_input)) logging.debug("execute_test(): full_command_path=%s", full_command_path) logging.debug("execute_test(): command_line=%s", command_line) logging.debug("execute_test(): timeout=%d", timeout) logging.debug("execute_test(): post_commands=%s", " ".join(post_commands)) # Making the test directories and getting inside: directory = test_directory + os.sep + str(test_number) + os.sep + "tmp" if not os.path.isdir(directory): try: os.makedirs(directory) except OSError as error: logging.critical( 'Unable to create the "%s" directory: %s', directory, error ) sys.exit(1) os.chdir(directory) # Executing commands defined in the "pre" section: for line in pre_commands: pre_results = subprocess.run(line, shell=True, check=False) if pre_results.returncode != 0: logging.warning( "Pre command '%s' returned %d", line, pre_results.returncode ) # Inserting the full command path in the command line at the first command reference: command_basename = os.path.basename(full_command_path) command_dirname = os.path.dirname(full_command_path) line = "" if command_line.startswith(command_basename): line = command_dirname + os.sep + command_line elif " " + command_basename in command_line: line = command_line.replace( " " + command_basename, " " + command_dirname + os.sep + command_basename, 1 ) elif "\t" + command_basename in command_line: line = command_line.replace( "\t" + command_basename, "\t" + command_dirname + os.sep + command_basename, 1, ) elif ";" + command_basename in command_line: line = command_line.replace( ";" + command_basename, ";" + command_dirname + os.sep + command_basename, 1 ) logging.debug("execute_test(): modified command_line=%s", line) # Executing command defined in the "cmd" section, keeping results if requested: if not timeout: timeout = parameters["Timeout"] start_time = time.time_ns() try: if standard_input: one_line_input = os.linesep.join(standard_input) + os.linesep results = subprocess.run( line, shell=True, text=True, input=one_line_input, capture_output=True, timeout=timeout, check=False, ) else: results = subprocess.run( line, shell=True, text=True, capture_output=True, timeout=timeout, check=False, ) except subprocess.TimeoutExpired as status: standard_output = "" if status.stdout: standard_output = status.stdout.decode("utf-8") standard_error_output = "" if status.stderr: standard_error_output = status.stderr.decode("utf-8") results = subprocess.CompletedProcess( status.cmd, 0, standard_output, standard_error_output ) elapsed_time = time.time_ns() - start_time logging.debug("execute_test(): results:") logging.debug(results) if parameters["Keep results"]: with open(os.pardir + os.sep + "returncode", "w") as file: file.write(str(results.returncode)) with open(os.pardir + os.sep + "stdout", "w") as file: file.write(results.stdout) with open(os.pardir + os.sep + "stderr", "w") as file: file.write(results.stderr) with open(os.pardir + os.sep + "time", "w") as file: file.write( "Elapsed time in s = {}{}".format(elapsed_time / 1000000000, os.linesep) ) file.write("Load average = {}{}".format(os.getloadavg(), os.linesep)) # Executing commands defined in the "post" section and collecting their output: post_output = "" for line in post_commands: post_results = subprocess.run( line, shell=True, text=True, capture_output=True, check=False ) if post_results.returncode != 0: logging.warning( "Post command '%s' returned %d", line, post_results.returncode ) if post_results.stdout: post_output = post_output + post_results.stdout if parameters["Keep results"]: with open(os.pardir + os.sep + "post", "w") as file: file.write(post_output) # Removing unneeded directories if parameters["Keep results"]: os.chdir(os.pardir) shutil.rmtree("tmp") os.chdir(os.pardir + os.sep + os.pardir) else: os.chdir(os.pardir + os.sep + os.pardir + os.sep + os.pardir) shutil.rmtree(test_directory) return results, post_output ################################################################################ def load_previous_results(test_directory, test_number): """Load results from a previous run Return a CompletedProcess object and a text string""" if not os.path.isdir(test_directory + os.sep + str(test_number)): return None, "" with open( test_directory + os.sep + str(test_number) + os.sep + "returncode", "r" ) as file: returncode = int(file.readline()) with open( test_directory + os.sep + str(test_number) + os.sep + "stdout", "r" ) as file: stdout = file.read() with open( test_directory + os.sep + str(test_number) + os.sep + "stderr", "r" ) as file: stderr = file.read() with open( test_directory + os.sep + str(test_number) + os.sep + "post", "r" ) as file: post = file.read() return subprocess.CompletedProcess([], returncode, stdout, stderr), post ################################################################################ def color_print(text, color): """Print a text in color if possible""" if COLORAMA and not parameters["No colors"]: print(color + text + colorama.Style.RESET_ALL) else: print(text) ################################################################################ def compute_version(text): """Compute a version number from a version string""" version_parts = text.split(".") version = 0 try: if len(version_parts) >= 1: version = int(version_parts[0]) * 100 * 100 if len(version_parts) >= 2: version += int(version_parts[1]) * 100 if len(version_parts) == 3: version += int(version_parts[2]) except: version = -1 return version ################################################################################ def verify_processor(attribute): """Verify if we use the correct program and version to process an XML file""" processor = attribute.strip().split() if processor[0] != "b2bt": return False if len(processor) == 1: return True if len(processor) > 2: return False version_requested = compute_version(processor[1]) current_version = compute_version(__version__) if version_requested == -1 or current_version == -1: return False if version_requested > current_version: return False return True ################################################################################ def remind_command(same_command, command): """Print the command tested on the first difference encountered""" if same_command: same_command = False if not parameters["Quiet differences"]: print(" Command:") print(" %s" % command) return same_command ################################################################################ def main(): """The program's main entry point""" program_name = os.path.basename(sys.argv[0]) initialize_debugging(program_name) process_environment_variables() arguments = process_command_line() if len(arguments) == 0: logging.warning("Please specify at least 1 test file to process") display_help() sys.exit(0) if is_privileged(): print("It's not recommended to run this utility as a privileged user") print( "and you should definitely avoid doing so when running unverified test suites!" ) if not parameters["Auto confirm"]: print( "However you'll get the chance to review each command to be executed..." ) if not ask_for_confirmation( "Please confirm execution (y[es]): ", ("y", "yes") ): print("Better safe than sorry!") sys.exit(0) for filename in arguments: if not os.path.isfile(filename): logging.error("'%s' is not a file name", filename) else: try: test_file = defusedxml.minidom.parse(filename) except: logging.critical("XML file error") sys.exit(1) # Get the root element of the document: test_suite = test_file.documentElement # Get the name of the program we'll be testing: program_tested = os.path.basename(filename).replace(".xml", "") if test_suite.hasAttribute("program"): program_tested = test_suite.getAttribute("program").strip() color_print("Testing the '%s' command:" % program_tested, colorama.Style.BRIGHT) # Get the processor required for this file and verify if it's OK: if test_suite.hasAttribute("processor"): if not verify_processor(test_suite.getAttribute("processor")): logging.critical("This test file requires a different or more recent processor") sys.exit(1) # Determine if the original command will have to be executed: execute_original_command = False original_command_full_path = "" if not parameters["Skip original command"]: if ( not os.path.isdir(program_tested + ".orig") or parameters["Overwrite results"] ): execute_original_command = True if parameters["Original command path"] == "": original_command_full_path = shutil.which(program_tested) else: original_command_full_path = shutil.which( program_tested, path=parameters["Original command path"] ) if original_command_full_path is None: logging.critical("Original command not found") sys.exit(1) else: logging.debug( "Original command found at: %s", original_command_full_path ) # Determine if the new command will have to be executed: execute_new_command = False new_command_full_path = "" if parameters["New command path"] != "": if ( not os.path.isdir(program_tested + ".new") or parameters["Overwrite results"] ): execute_new_command = True new_command_full_path = shutil.which( program_tested, path=parameters["New command path"] ) if new_command_full_path is None: logging.critical("New command not found") sys.exit(1) else: logging.debug("New command found at: %s", new_command_full_path) # Get all the test cases in the test suite: test_cases = test_suite.getElementsByTagName("test-case") # If we are to keep results, note some system information # for next time & place we'll make comparisons: original_command_md5 = "" new_command_md5 = "" if parameters["Keep results"]: if execute_original_command: original_command_md5 = describe_test_environment( program_tested + ".orig", original_command_full_path ) if execute_new_command: new_command_md5 = describe_test_environment( program_tested + ".new", new_command_full_path ) # But at the minimum check that we are not testing the same command: else: if execute_original_command: original_command_md5 = get_file_digest(original_command_full_path) if execute_new_command: new_command_md5 = get_file_digest(new_command_full_path) if original_command_md5 == new_command_md5: logging.warning("The commands are the same! Disabling new command run") execute_new_command = False # Process each test case: test_number = 0 skipped_count = 0 different_count = 0 same_count = 0 for test_case in test_cases: test_name, pre, stdin, cmd, timeout, post = read_test_case(test_case) test_number += 1 print(' Test #{} "{}"'.format(test_number, test_name)) # Confirm test execution (in case you are not the author of the test suite): if not parameters["Auto confirm"]: if not confirm_test(pre, stdin, cmd, post): color_print(" Skipping test", colorama.Fore.YELLOW) skipped_count += 1 continue # Execute tests: results1 = None if execute_original_command: results1, post_output1 = execute_test( program_tested + ".orig", test_number, pre, stdin, original_command_full_path, cmd, timeout, post, ) elif not parameters["Skip original command"]: results1, post_output1 = load_previous_results( program_tested + ".orig", test_number ) results2 = None if execute_new_command: results2, post_output2 = execute_test( program_tested + ".new", test_number, pre, stdin, new_command_full_path, cmd, timeout, post, ) # Compare tests results: if results1 and results2: same = True if results1.returncode != results2.returncode: same = remind_command(same, cmd) color_print( " Return codes are different!", colorama.Fore.RED + colorama.Style.BRIGHT, ) if not parameters["Quiet differences"]: print(" Original = {}".format(results1.returncode)) print(" New = {}".format(results2.returncode)) if results1.stdout != results2.stdout: same = remind_command(same, cmd) color_print( " Standard output is different!", colorama.Fore.RED + colorama.Style.BRIGHT, ) if not parameters["Quiet differences"]: diff = difflib.unified_diff( str(results1.stdout).split(os.linesep), str(results2.stdout).split(os.linesep), fromfile="Original stdout", tofile="New stdout", ) for line in diff: print(line) if results1.stderr != results2.stderr: same = remind_command(same, cmd) color_print( " Standard error output is different!", colorama.Fore.RED + colorama.Style.BRIGHT, ) if not parameters["Quiet differences"]: diff = difflib.unified_diff( str(results1.stderr).split(os.linesep), str(results2.stderr).split(os.linesep), fromfile="Original stderr", tofile="New stderr", ) for line in diff: print(line) if post_output1 != post_output2: same = remind_command(same, cmd) color_print( " Post commands output is different!", colorama.Fore.RED + colorama.Style.BRIGHT, ) if not parameters["Quiet differences"]: diff = difflib.unified_diff( str(post_output1).split(os.linesep), str(post_output2).split(os.linesep), fromfile="Original post output", tofile="New post output", ) for line in diff: print(line) if same: same_count += 1 color_print(" Same results", colorama.Fore.GREEN) else: different_count += 1 # Print test suite results: if not parameters["Skip original command"] and execute_new_command: color_print("Results:", colorama.Style.BRIGHT) if different_count: color_print( " {} out of {} test cases have different results".format( different_count, same_count + different_count ), colorama.Style.BRIGHT, ) else: color_print( " All {} test cases have the same results".format(same_count), colorama.Fore.GREEN, ) if skipped_count: color_print( " {} test cases skipped".format(skipped_count), colorama.Fore.YELLOW, ) sys.exit(0) if __name__ == "__main__": main()
38.050701
100
0.520398
025da87a83ee7760d2e4cfa4afa7ab3bd0da8391
18,330
py
Python
google/ads/google_ads/v6/proto/services/custom_interest_service_pb2.py
jphanwebstaurant/google-ads-python
600812b2afcc4d57f00b47dfe436620ce50bfe9b
[ "Apache-2.0" ]
1
2021-04-09T04:28:47.000Z
2021-04-09T04:28:47.000Z
google/ads/google_ads/v6/proto/services/custom_interest_service_pb2.py
jphanwebstaurant/google-ads-python
600812b2afcc4d57f00b47dfe436620ce50bfe9b
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/services/custom_interest_service_pb2.py
jphanwebstaurant/google-ads-python
600812b2afcc4d57f00b47dfe436620ce50bfe9b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v6/proto/services/custom_interest_service.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v6.proto.resources import custom_interest_pb2 as google_dot_ads_dot_googleads__v6_dot_proto_dot_resources_dot_custom__interest__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.api import client_pb2 as google_dot_api_dot_client__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.protobuf import field_mask_pb2 as google_dot_protobuf_dot_field__mask__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v6/proto/services/custom_interest_service.proto', package='google.ads.googleads.v6.services', syntax='proto3', serialized_options=b'\n$com.google.ads.googleads.v6.servicesB\032CustomInterestServiceProtoP\001ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v6/services;services\242\002\003GAA\252\002 Google.Ads.GoogleAds.V6.Services\312\002 Google\\Ads\\GoogleAds\\V6\\Services\352\002$Google::Ads::GoogleAds::V6::Services', create_key=_descriptor._internal_create_key, serialized_pb=b'\nDgoogle/ads/googleads_v6/proto/services/custom_interest_service.proto\x12 google.ads.googleads.v6.services\x1a=google/ads/googleads_v6/proto/resources/custom_interest.proto\x1a\x1cgoogle/api/annotations.proto\x1a\x17google/api/client.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\x1a google/protobuf/field_mask.proto\"b\n\x18GetCustomInterestRequest\x12\x46\n\rresource_name\x18\x01 \x01(\tB/\xe0\x41\x02\xfa\x41)\n\'googleads.googleapis.com/CustomInterest\"\xa3\x01\n\x1cMutateCustomInterestsRequest\x12\x18\n\x0b\x63ustomer_id\x18\x01 \x01(\tB\x03\xe0\x41\x02\x12R\n\noperations\x18\x02 \x03(\x0b\x32\x39.google.ads.googleads.v6.services.CustomInterestOperationB\x03\xe0\x41\x02\x12\x15\n\rvalidate_only\x18\x04 \x01(\x08\"\xe1\x01\n\x17\x43ustomInterestOperation\x12/\n\x0bupdate_mask\x18\x04 \x01(\x0b\x32\x1a.google.protobuf.FieldMask\x12\x43\n\x06\x63reate\x18\x01 \x01(\x0b\x32\x31.google.ads.googleads.v6.resources.CustomInterestH\x00\x12\x43\n\x06update\x18\x02 \x01(\x0b\x32\x31.google.ads.googleads.v6.resources.CustomInterestH\x00\x42\x0b\n\toperation\"n\n\x1dMutateCustomInterestsResponse\x12M\n\x07results\x18\x02 \x03(\x0b\x32<.google.ads.googleads.v6.services.MutateCustomInterestResult\"3\n\x1aMutateCustomInterestResult\x12\x15\n\rresource_name\x18\x01 \x01(\t2\xf9\x03\n\x15\x43ustomInterestService\x12\xcd\x01\n\x11GetCustomInterest\x12:.google.ads.googleads.v6.services.GetCustomInterestRequest\x1a\x31.google.ads.googleads.v6.resources.CustomInterest\"I\x82\xd3\xe4\x93\x02\x33\x12\x31/v6/{resource_name=customers/*/customInterests/*}\xda\x41\rresource_name\x12\xf2\x01\n\x15MutateCustomInterests\x12>.google.ads.googleads.v6.services.MutateCustomInterestsRequest\x1a?.google.ads.googleads.v6.services.MutateCustomInterestsResponse\"X\x82\xd3\xe4\x93\x02\x39\"4/v6/customers/{customer_id=*}/customInterests:mutate:\x01*\xda\x41\x16\x63ustomer_id,operations\x1a\x1b\xca\x41\x18googleads.googleapis.comB\x81\x02\n$com.google.ads.googleads.v6.servicesB\x1a\x43ustomInterestServiceProtoP\x01ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v6/services;services\xa2\x02\x03GAA\xaa\x02 Google.Ads.GoogleAds.V6.Services\xca\x02 Google\\Ads\\GoogleAds\\V6\\Services\xea\x02$Google::Ads::GoogleAds::V6::Servicesb\x06proto3' , dependencies=[google_dot_ads_dot_googleads__v6_dot_proto_dot_resources_dot_custom__interest__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_api_dot_client__pb2.DESCRIPTOR,google_dot_api_dot_field__behavior__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,google_dot_protobuf_dot_field__mask__pb2.DESCRIPTOR,]) _GETCUSTOMINTERESTREQUEST = _descriptor.Descriptor( name='GetCustomInterestRequest', full_name='google.ads.googleads.v6.services.GetCustomInterestRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v6.services.GetCustomInterestRequest.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002\372A)\n\'googleads.googleapis.com/CustomInterest', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=318, serialized_end=416, ) _MUTATECUSTOMINTERESTSREQUEST = _descriptor.Descriptor( name='MutateCustomInterestsRequest', full_name='google.ads.googleads.v6.services.MutateCustomInterestsRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='customer_id', full_name='google.ads.googleads.v6.services.MutateCustomInterestsRequest.customer_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='operations', full_name='google.ads.googleads.v6.services.MutateCustomInterestsRequest.operations', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='validate_only', full_name='google.ads.googleads.v6.services.MutateCustomInterestsRequest.validate_only', index=2, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=419, serialized_end=582, ) _CUSTOMINTERESTOPERATION = _descriptor.Descriptor( name='CustomInterestOperation', full_name='google.ads.googleads.v6.services.CustomInterestOperation', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='update_mask', full_name='google.ads.googleads.v6.services.CustomInterestOperation.update_mask', index=0, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='create', full_name='google.ads.googleads.v6.services.CustomInterestOperation.create', index=1, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='update', full_name='google.ads.googleads.v6.services.CustomInterestOperation.update', index=2, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='operation', full_name='google.ads.googleads.v6.services.CustomInterestOperation.operation', index=0, containing_type=None, create_key=_descriptor._internal_create_key, fields=[]), ], serialized_start=585, serialized_end=810, ) _MUTATECUSTOMINTERESTSRESPONSE = _descriptor.Descriptor( name='MutateCustomInterestsResponse', full_name='google.ads.googleads.v6.services.MutateCustomInterestsResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='results', full_name='google.ads.googleads.v6.services.MutateCustomInterestsResponse.results', index=0, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=812, serialized_end=922, ) _MUTATECUSTOMINTERESTRESULT = _descriptor.Descriptor( name='MutateCustomInterestResult', full_name='google.ads.googleads.v6.services.MutateCustomInterestResult', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v6.services.MutateCustomInterestResult.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=924, serialized_end=975, ) _MUTATECUSTOMINTERESTSREQUEST.fields_by_name['operations'].message_type = _CUSTOMINTERESTOPERATION _CUSTOMINTERESTOPERATION.fields_by_name['update_mask'].message_type = google_dot_protobuf_dot_field__mask__pb2._FIELDMASK _CUSTOMINTERESTOPERATION.fields_by_name['create'].message_type = google_dot_ads_dot_googleads__v6_dot_proto_dot_resources_dot_custom__interest__pb2._CUSTOMINTEREST _CUSTOMINTERESTOPERATION.fields_by_name['update'].message_type = google_dot_ads_dot_googleads__v6_dot_proto_dot_resources_dot_custom__interest__pb2._CUSTOMINTEREST _CUSTOMINTERESTOPERATION.oneofs_by_name['operation'].fields.append( _CUSTOMINTERESTOPERATION.fields_by_name['create']) _CUSTOMINTERESTOPERATION.fields_by_name['create'].containing_oneof = _CUSTOMINTERESTOPERATION.oneofs_by_name['operation'] _CUSTOMINTERESTOPERATION.oneofs_by_name['operation'].fields.append( _CUSTOMINTERESTOPERATION.fields_by_name['update']) _CUSTOMINTERESTOPERATION.fields_by_name['update'].containing_oneof = _CUSTOMINTERESTOPERATION.oneofs_by_name['operation'] _MUTATECUSTOMINTERESTSRESPONSE.fields_by_name['results'].message_type = _MUTATECUSTOMINTERESTRESULT DESCRIPTOR.message_types_by_name['GetCustomInterestRequest'] = _GETCUSTOMINTERESTREQUEST DESCRIPTOR.message_types_by_name['MutateCustomInterestsRequest'] = _MUTATECUSTOMINTERESTSREQUEST DESCRIPTOR.message_types_by_name['CustomInterestOperation'] = _CUSTOMINTERESTOPERATION DESCRIPTOR.message_types_by_name['MutateCustomInterestsResponse'] = _MUTATECUSTOMINTERESTSRESPONSE DESCRIPTOR.message_types_by_name['MutateCustomInterestResult'] = _MUTATECUSTOMINTERESTRESULT _sym_db.RegisterFileDescriptor(DESCRIPTOR) GetCustomInterestRequest = _reflection.GeneratedProtocolMessageType('GetCustomInterestRequest', (_message.Message,), { 'DESCRIPTOR' : _GETCUSTOMINTERESTREQUEST, '__module__' : 'google.ads.googleads_v6.proto.services.custom_interest_service_pb2' , '__doc__': """Request message for [CustomInterestService.GetCustomInterest][google.a ds.googleads.v6.services.CustomInterestService.GetCustomInterest]. Attributes: resource_name: Required. The resource name of the custom interest to fetch. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.services.GetCustomInterestRequest) }) _sym_db.RegisterMessage(GetCustomInterestRequest) MutateCustomInterestsRequest = _reflection.GeneratedProtocolMessageType('MutateCustomInterestsRequest', (_message.Message,), { 'DESCRIPTOR' : _MUTATECUSTOMINTERESTSREQUEST, '__module__' : 'google.ads.googleads_v6.proto.services.custom_interest_service_pb2' , '__doc__': """Request message for [CustomInterestService.MutateCustomInterests][goog le.ads.googleads.v6.services.CustomInterestService.MutateCustomInteres ts]. Attributes: customer_id: Required. The ID of the customer whose custom interests are being modified. operations: Required. The list of operations to perform on individual custom interests. validate_only: If true, the request is validated but not executed. Only errors are returned, not results. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.services.MutateCustomInterestsRequest) }) _sym_db.RegisterMessage(MutateCustomInterestsRequest) CustomInterestOperation = _reflection.GeneratedProtocolMessageType('CustomInterestOperation', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMINTERESTOPERATION, '__module__' : 'google.ads.googleads_v6.proto.services.custom_interest_service_pb2' , '__doc__': """A single operation (create, update) on a custom interest. Attributes: update_mask: FieldMask that determines which resource fields are modified in an update. operation: The mutate operation. create: Create operation: No resource name is expected for the new custom interest. update: Update operation: The custom interest is expected to have a valid resource name. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.services.CustomInterestOperation) }) _sym_db.RegisterMessage(CustomInterestOperation) MutateCustomInterestsResponse = _reflection.GeneratedProtocolMessageType('MutateCustomInterestsResponse', (_message.Message,), { 'DESCRIPTOR' : _MUTATECUSTOMINTERESTSRESPONSE, '__module__' : 'google.ads.googleads_v6.proto.services.custom_interest_service_pb2' , '__doc__': """Response message for custom interest mutate. Attributes: results: All results for the mutate. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.services.MutateCustomInterestsResponse) }) _sym_db.RegisterMessage(MutateCustomInterestsResponse) MutateCustomInterestResult = _reflection.GeneratedProtocolMessageType('MutateCustomInterestResult', (_message.Message,), { 'DESCRIPTOR' : _MUTATECUSTOMINTERESTRESULT, '__module__' : 'google.ads.googleads_v6.proto.services.custom_interest_service_pb2' , '__doc__': """The result for the custom interest mutate. Attributes: resource_name: Returned for successful operations. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.services.MutateCustomInterestResult) }) _sym_db.RegisterMessage(MutateCustomInterestResult) DESCRIPTOR._options = None _GETCUSTOMINTERESTREQUEST.fields_by_name['resource_name']._options = None _MUTATECUSTOMINTERESTSREQUEST.fields_by_name['customer_id']._options = None _MUTATECUSTOMINTERESTSREQUEST.fields_by_name['operations']._options = None _CUSTOMINTERESTSERVICE = _descriptor.ServiceDescriptor( name='CustomInterestService', full_name='google.ads.googleads.v6.services.CustomInterestService', file=DESCRIPTOR, index=0, serialized_options=b'\312A\030googleads.googleapis.com', create_key=_descriptor._internal_create_key, serialized_start=978, serialized_end=1483, methods=[ _descriptor.MethodDescriptor( name='GetCustomInterest', full_name='google.ads.googleads.v6.services.CustomInterestService.GetCustomInterest', index=0, containing_service=None, input_type=_GETCUSTOMINTERESTREQUEST, output_type=google_dot_ads_dot_googleads__v6_dot_proto_dot_resources_dot_custom__interest__pb2._CUSTOMINTEREST, serialized_options=b'\202\323\344\223\0023\0221/v6/{resource_name=customers/*/customInterests/*}\332A\rresource_name', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='MutateCustomInterests', full_name='google.ads.googleads.v6.services.CustomInterestService.MutateCustomInterests', index=1, containing_service=None, input_type=_MUTATECUSTOMINTERESTSREQUEST, output_type=_MUTATECUSTOMINTERESTSRESPONSE, serialized_options=b'\202\323\344\223\0029\"4/v6/customers/{customer_id=*}/customInterests:mutate:\001*\332A\026customer_id,operations', create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_CUSTOMINTERESTSERVICE) DESCRIPTOR.services_by_name['CustomInterestService'] = _CUSTOMINTERESTSERVICE # @@protoc_insertion_point(module_scope)
48.75
2,293
0.794872
56574cfa3400ea078d6b64fdc5af1b3cf3ca4628
6,860
py
Python
classifier/train.py
theovincent/birdClassification
21e23a4f4c67714006e7ccc606134ca8d0fe5d9d
[ "MIT" ]
null
null
null
classifier/train.py
theovincent/birdClassification
21e23a4f4c67714006e7ccc606134ca8d0fe5d9d
[ "MIT" ]
null
null
null
classifier/train.py
theovincent/birdClassification
21e23a4f4c67714006e7ccc606134ca8d0fe5d9d
[ "MIT" ]
null
null
null
import sys import os import torch import pandas as pd def train_cli(argvs=sys.argv[1:]): import argparse import torch.optim as optim from classifier.loader import loader from classifier.model import get_model from classifier.loss import cross_entropy_loss from classifier.validation import validation parser = argparse.ArgumentParser("Pipeline to train a model to classify the birds") parser.add_argument( "-c", "--colab", default=False, action="store_true", help="if given, path_data will be modified with the correct path to the data in my google drive, otherwise nothing happens, (default: False)", ) parser.add_argument( "-m", "--model", type=str, required=True, metavar="M", help="the model name (required)", choices=["resnet", "alexnet", "vgg", "squeezenet", "densenet", "efficientnet"], ) parser.add_argument( "-psw", "--path_starting_weights", type=str, default="ImageNet", metavar="PSW", help="the path to the starting weights, if None, takes random weights, 'output' will be added to the front (default: ImageNet)", ) parser.add_argument( "-pd", "--path_data", type=str, required=True, metavar="PD", help="the path that leads to the data, 'bird_dataset' will be added to the front (required)", ) parser.add_argument( "-nc", "--number_classes", type=int, default=20, metavar="NC", help="the number of classes to classify (default: 20)", ) parser.add_argument( "-4D", "--classifier_4D", default=False, action="store_true", help="if given, a segmentation map will be added to the input, (default: False)", ) parser.add_argument( "-fe", "--feature_extraction", default=False, action="store_true", help="if given, feature extraction will be performed, otherwise full training will be done, (default: False)", ) parser.add_argument( "-bs", "--batch_size", type=int, default=64, metavar="BS", help="input batch size for training (default: 64)" ) parser.add_argument( "-ne", "--n_epochs", type=int, default=1, metavar="NE", help="number of epochs to train (default: 10)" ) parser.add_argument( "-lr", "--learning_rate", type=float, default=0.0005, metavar="LR", help="first learning rate before decreasing (default: 0.0005)", ) parser.add_argument("-s", "--seed", type=int, default=1, metavar="S", help="random seed (default: 1)") parser.add_argument( "-po", "--path_output", type=str, required=True, metavar="PO", help="folder where experiment outputs are located, 'output' will be added to the front (required)", ) args = parser.parse_args(argvs) print(args) path_output = f"output/{args.path_output}" # Create experiment folder if not os.path.isdir(path_output): os.makedirs(path_output) # Torch meta settings use_cuda = torch.cuda.is_available() if use_cuda: map_location = torch.device("cuda") else: map_location = torch.device("cpu") torch.manual_seed(args.seed) # Define the model, the loss and the optimizer if args.path_starting_weights is not None and args.path_starting_weights != "ImageNet": if args.colab: args.path_starting_weights = ( f"/content/Drive/MyDrive/MVA/ObjectRecognition/birdClassification/output/{args.path_starting_weights}" ) else: args.path_starting_weights = f"output/{args.path_starting_weights}" model, input_size = get_model( args.model, feature_extract=args.feature_extraction, path_starting_weights=args.path_starting_weights, num_classes=args.number_classes, classifier_4D=args.classifier_4D, map_location=map_location, ) if use_cuda: print("\n\n!! Using GPU !!\n\n") model.cuda() else: print("\n\n!! Using CPU !!\n\n") loss = cross_entropy_loss() losses = pd.DataFrame( None, index=range(1, args.n_epochs + 1), columns=["train_loss", "validation_loss", "validation_accuracy"] ) # Define the data loaders if args.colab: args.path_data = ( "/content/Drive/MyDrive/MVA/ObjectRecognition/birdClassification/bird_dataset/" + args.path_data ) else: args.path_data = "bird_dataset/" + args.path_data train_loader = loader( args.path_data, input_size, "train", args.batch_size, shuffle=True, data_augmentation=True, classifier_4D=args.classifier_4D, ) validation_loader = loader( args.path_data, input_size, "val", args.batch_size, shuffle=False, data_augmentation=False, classifier_4D=args.classifier_4D, ) optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=0.05) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, "min", factor=0.5, patience=6, verbose=True) for epoch in range(1, args.n_epochs + 1): print(f"Train Epoch {epoch}:") train_loss = train_on_epoch(model, loss, optimizer, train_loader, use_cuda) / args.batch_size validation_loss, validation_accuracy = validation(model, loss, validation_loader, use_cuda) scheduler.step(validation_loss) losses.loc[epoch, ["train_loss", "validation_loss", "validation_accuracy"]] = [ train_loss, validation_loss, validation_accuracy, ] if epoch % 2 == 1: path_weights = f"{path_output}/{args.model}_{str(epoch)}.pth" torch.save(model.state_dict(), path_weights) # Save at each epoch to be sure that the metrics are saved if an error occures losses.reset_index().to_feather(f"{path_output}/{args.model}.feather") def train_on_epoch(model, loss, optimizer, loader, use_cuda): loss_on_batch = None model.train() for batch_idx, (data, target) in enumerate(loader): if use_cuda: data, target = data.cuda(), target.cuda() optimizer.zero_grad() output = model(data) loss_error = loss(output, target) loss_error.backward() optimizer.step() if batch_idx % (len(loader) // 5) == 0: loss_on_batch = loss_error.data.item() print( f"[{batch_idx * len(data)}/{len(loader.dataset)} ({int(100.0 * batch_idx / len(loader))}%)]\tLoss: {loss_on_batch:.6f}" ) return loss_on_batch
32.206573
150
0.615889
e82a767fde831567fc037288d23e024e35688e43
6,534
py
Python
homeassistant/components/wink/binary_sensor.py
petewill/home-assistant
5859dba4344f05fb8774aa1207e47ac28f627a67
[ "Apache-2.0" ]
3
2020-01-21T18:09:09.000Z
2022-01-17T08:06:03.000Z
homeassistant/components/wink/binary_sensor.py
petewill/home-assistant
5859dba4344f05fb8774aa1207e47ac28f627a67
[ "Apache-2.0" ]
39
2016-12-16T12:40:34.000Z
2017-02-13T17:53:42.000Z
homeassistant/components/wink/binary_sensor.py
petewill/home-assistant
5859dba4344f05fb8774aa1207e47ac28f627a67
[ "Apache-2.0" ]
3
2020-01-11T15:44:13.000Z
2022-01-17T08:06:09.000Z
"""Support for Wink binary sensors.""" import logging from homeassistant.components.binary_sensor import BinarySensorDevice from . import DOMAIN, WinkDevice _LOGGER = logging.getLogger(__name__) # These are the available sensors mapped to binary_sensor class SENSOR_TYPES = { "brightness": "light", "capturing_audio": "sound", "capturing_video": None, "co_detected": "gas", "liquid_detected": "moisture", "loudness": "sound", "motion": "motion", "noise": "sound", "opened": "opening", "presence": "occupancy", "smoke_detected": "smoke", "vibration": "vibration", } def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Wink binary sensor platform.""" import pywink for sensor in pywink.get_sensors(): _id = sensor.object_id() + sensor.name() if _id not in hass.data[DOMAIN]["unique_ids"]: if sensor.capability() in SENSOR_TYPES: add_entities([WinkBinarySensorDevice(sensor, hass)]) for key in pywink.get_keys(): _id = key.object_id() + key.name() if _id not in hass.data[DOMAIN]["unique_ids"]: add_entities([WinkBinarySensorDevice(key, hass)]) for sensor in pywink.get_smoke_and_co_detectors(): _id = sensor.object_id() + sensor.name() if _id not in hass.data[DOMAIN]["unique_ids"]: add_entities([WinkSmokeDetector(sensor, hass)]) for hub in pywink.get_hubs(): _id = hub.object_id() + hub.name() if _id not in hass.data[DOMAIN]["unique_ids"]: add_entities([WinkHub(hub, hass)]) for remote in pywink.get_remotes(): _id = remote.object_id() + remote.name() if _id not in hass.data[DOMAIN]["unique_ids"]: add_entities([WinkRemote(remote, hass)]) for button in pywink.get_buttons(): _id = button.object_id() + button.name() if _id not in hass.data[DOMAIN]["unique_ids"]: add_entities([WinkButton(button, hass)]) for gang in pywink.get_gangs(): _id = gang.object_id() + gang.name() if _id not in hass.data[DOMAIN]["unique_ids"]: add_entities([WinkGang(gang, hass)]) for door_bell_sensor in pywink.get_door_bells(): _id = door_bell_sensor.object_id() + door_bell_sensor.name() if _id not in hass.data[DOMAIN]["unique_ids"]: add_entities([WinkBinarySensorDevice(door_bell_sensor, hass)]) for camera_sensor in pywink.get_cameras(): _id = camera_sensor.object_id() + camera_sensor.name() if _id not in hass.data[DOMAIN]["unique_ids"]: try: if camera_sensor.capability() in SENSOR_TYPES: add_entities([WinkBinarySensorDevice(camera_sensor, hass)]) except AttributeError: _LOGGER.info("Device isn't a sensor, skipping") class WinkBinarySensorDevice(WinkDevice, BinarySensorDevice): """Representation of a Wink binary sensor.""" def __init__(self, wink, hass): """Initialize the Wink binary sensor.""" super().__init__(wink, hass) if hasattr(self.wink, "unit"): self._unit_of_measurement = self.wink.unit() else: self._unit_of_measurement = None if hasattr(self.wink, "capability"): self.capability = self.wink.capability() else: self.capability = None async def async_added_to_hass(self): """Call when entity is added to hass.""" self.hass.data[DOMAIN]["entities"]["binary_sensor"].append(self) @property def is_on(self): """Return true if the binary sensor is on.""" return self.wink.state() @property def device_class(self): """Return the class of this sensor, from DEVICE_CLASSES.""" return SENSOR_TYPES.get(self.capability) @property def device_state_attributes(self): """Return the device state attributes.""" return super().device_state_attributes class WinkSmokeDetector(WinkBinarySensorDevice): """Representation of a Wink Smoke detector.""" @property def device_state_attributes(self): """Return the device state attributes.""" _attributes = super().device_state_attributes _attributes["test_activated"] = self.wink.test_activated() return _attributes class WinkHub(WinkBinarySensorDevice): """Representation of a Wink Hub.""" @property def device_state_attributes(self): """Return the device state attributes.""" _attributes = super().device_state_attributes _attributes["update_needed"] = self.wink.update_needed() _attributes["firmware_version"] = self.wink.firmware_version() _attributes["pairing_mode"] = self.wink.pairing_mode() _kidde_code = self.wink.kidde_radio_code() if _kidde_code is not None: # The service call to set the Kidde code # takes a string of 1s and 0s so it makes # sense to display it to the user that way _formatted_kidde_code = f"{_kidde_code:b}".zfill(8) _attributes["kidde_radio_code"] = _formatted_kidde_code return _attributes class WinkRemote(WinkBinarySensorDevice): """Representation of a Wink Lutron Connected bulb remote.""" @property def device_state_attributes(self): """Return the state attributes.""" _attributes = super().device_state_attributes _attributes["button_on_pressed"] = self.wink.button_on_pressed() _attributes["button_off_pressed"] = self.wink.button_off_pressed() _attributes["button_up_pressed"] = self.wink.button_up_pressed() _attributes["button_down_pressed"] = self.wink.button_down_pressed() return _attributes @property def device_class(self): """Return the class of this sensor, from DEVICE_CLASSES.""" return None class WinkButton(WinkBinarySensorDevice): """Representation of a Wink Relay button.""" @property def device_state_attributes(self): """Return the device state attributes.""" _attributes = super().device_state_attributes _attributes["pressed"] = self.wink.pressed() _attributes["long_pressed"] = self.wink.long_pressed() return _attributes class WinkGang(WinkBinarySensorDevice): """Representation of a Wink Relay gang.""" @property def is_on(self): """Return true if the gang is connected.""" return self.wink.state()
35.129032
79
0.653658
59c148115aeb2f4ad2629408d740af2936d0ac3b
777
py
Python
setup.py
AlexSartori/mcvf
23f879b22db2bd46b9d527ca4d926ccd3bc65d8d
[ "MIT" ]
null
null
null
setup.py
AlexSartori/mcvf
23f879b22db2bd46b9d527ca4d926ccd3bc65d8d
[ "MIT" ]
null
null
null
setup.py
AlexSartori/mcvf
23f879b22db2bd46b9d527ca4d926ccd3bc65d8d
[ "MIT" ]
null
null
null
import setuptools # type: ignore with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="mcvf", version="0.0.1", author="Alessandro Sartori", author_email="alex.sartori1997@gmail.com", description="Motion-Compensated Video Filtering", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/alexsartori/mcvf", packages=setuptools.find_packages(), package_data={}, entry_points={ }, classifiers=[ "Programming Language :: Python :: 3 :: Only", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ], keywords='motion-compensated video filtering', python_requires='>=3.6', )
27.75
54
0.662806
9eb3397dcc5364048474e1320d58fff98f90a528
194
py
Python
pincer/middleware/activity_join_request.py
ashu96902/Pincer
102ac4ff998cbb3c57a86b252439f69895650cf3
[ "MIT" ]
null
null
null
pincer/middleware/activity_join_request.py
ashu96902/Pincer
102ac4ff998cbb3c57a86b252439f69895650cf3
[ "MIT" ]
null
null
null
pincer/middleware/activity_join_request.py
ashu96902/Pincer
102ac4ff998cbb3c57a86b252439f69895650cf3
[ "MIT" ]
null
null
null
# Copyright Pincer 2021-Present # Full MIT License can be found in `LICENSE` at the project root. """sent when the user receives a Rich Presence Ask to Join request""" # TODO: Implement event
27.714286
69
0.747423
32493a8056882d3111a51a49ebdbc044fed751b7
2,543
py
Python
examples/exampleSmoothDepthImageOpenCV.py
bearpaw/pyKinectAzure
e55bc574806641b9e3209d7843ccadd871a630a5
[ "MIT" ]
null
null
null
examples/exampleSmoothDepthImageOpenCV.py
bearpaw/pyKinectAzure
e55bc574806641b9e3209d7843ccadd871a630a5
[ "MIT" ]
null
null
null
examples/exampleSmoothDepthImageOpenCV.py
bearpaw/pyKinectAzure
e55bc574806641b9e3209d7843ccadd871a630a5
[ "MIT" ]
null
null
null
import sys sys.path.insert(1, '../pyKinectAzure/') import numpy as np from pyKinectAzure import pyKinectAzure, _k4a, postProcessing import cv2 # Path to the module # TODO: Modify with the path containing the k4a.dll from the Azure Kinect SDK modulePath = 'C:\\Program Files\\Azure Kinect SDK v1.4.1\\sdk\\windows-desktop\\amd64\\release\\bin\\k4a.dll' if __name__ == "__main__": # Initialize the library with the path containing the module pyK4A = pyKinectAzure(modulePath) # Open device pyK4A.device_open() # Modify camera configuration device_config = pyK4A.config device_config.color_resolution = _k4a.K4A_COLOR_RESOLUTION_1080P device_config.depth_mode = _k4a.K4A_DEPTH_MODE_WFOV_2X2BINNED print(device_config) # Start cameras using modified configuration pyK4A.device_start_cameras(device_config) k = 0 while True: # Get capture pyK4A.device_get_capture() # Get the depth image from the capture depth_image_handle = pyK4A.capture_get_depth_image() # Check the image has been read correctly if depth_image_handle: # Read and convert the image data to numpy array: depth_image = pyK4A.image_convert_to_numpy(depth_image_handle) # Smooth the image using Navier-Stokes based inpainintg. maximum_hole_size defines # the maximum hole size to be filled, bigger hole size will take longer time to process maximum_hole_size = 10 smoothed_depth_image = postProcessing.smooth_depth_image(depth_image,maximum_hole_size) # Convert depth image (mm) to color, the range needs to be reduced down to the range (0,255) depth_color_image = cv2.applyColorMap(np.round(depth_image/30).astype(np.uint8), cv2.COLORMAP_JET) smooth_depth_color_image = cv2.applyColorMap(np.round(smoothed_depth_image/30).astype(np.uint8), cv2.COLORMAP_JET) # Concatenate images for comparison comparison_image = np.concatenate((depth_color_image, smooth_depth_color_image), axis=1) comparison_image = cv2.putText(comparison_image, 'Original', (180, 50) , cv2.FONT_HERSHEY_SIMPLEX ,1.5, (255,255,255), 3, cv2.LINE_AA) comparison_image = cv2.putText(comparison_image, 'Smoothed', (670, 50) , cv2.FONT_HERSHEY_SIMPLEX ,1.5, (255,255,255), 3, cv2.LINE_AA) # Plot the image cv2.namedWindow('Smoothed Depth Image',cv2.WINDOW_NORMAL) cv2.imshow('Smoothed Depth Image',comparison_image) k = cv2.waitKey(25) # Release the image pyK4A.image_release(depth_image_handle) pyK4A.capture_release() if k==27: # Esc key to stop break pyK4A.device_stop_cameras() pyK4A.device_close()
35.816901
138
0.768777
338f4d7afbe4e6ad4b4c4d91eebd561a5b6d4b7d
904
py
Python
ml/ex02/grid_search.py
AlexanderChristian/private_courses
c80f3526af539e35f93b460f3909f669aaef573c
[ "MIT" ]
null
null
null
ml/ex02/grid_search.py
AlexanderChristian/private_courses
c80f3526af539e35f93b460f3909f669aaef573c
[ "MIT" ]
6
2020-03-04T20:52:39.000Z
2022-03-31T00:33:07.000Z
ml/ex02/solution/grid_search.py
AlexanderChristian/private_courses
c80f3526af539e35f93b460f3909f669aaef573c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Exercise 2. Grid Search """ import numpy as np from costs import compute_loss def generate_w(num_intervals): """Generate a grid of values for w0 and w1.""" w0 = np.linspace(-100, 200, num_intervals) w1 = np.linspace(-150, 150, num_intervals) return w0, w1 def grid_search(y, tx, w0, w1): """Algorithm for grid search.""" losses = np.zeros((len(w0), len(w1))) # compute loss for each combination of w0 and w1. for ind_row, row in enumerate(w0): for ind_col, col in enumerate(w1): w = np.array([row, col]) losses[ind_row, ind_col] = compute_loss(y, tx, w) return losses def get_best_parameters(w0, w1, losses): """Get the best w from the result of grid search.""" min_row, min_col = np.unravel_index(np.argmin(losses), losses.shape) return losses[min_row, min_col], w0[min_row], w1[min_col]
27.393939
72
0.646018
365ff6a84a678ba4e79c8b8ccec547516c10b7fa
2,825
py
Python
research/information_retrieval/doc2query/src/distill_doc2query.py
clementpoiret/sparseml
8442a6ef8ba11fb02f5e51472dd68b72438539b9
[ "Apache-2.0" ]
922
2021-02-04T17:51:54.000Z
2022-03-31T20:49:26.000Z
research/information_retrieval/doc2query/src/distill_doc2query.py
clementpoiret/sparseml
8442a6ef8ba11fb02f5e51472dd68b72438539b9
[ "Apache-2.0" ]
197
2021-02-04T22:17:21.000Z
2022-03-31T13:58:55.000Z
research/information_retrieval/doc2query/src/distill_doc2query.py
clementpoiret/sparseml
8442a6ef8ba11fb02f5e51472dd68b72438539b9
[ "Apache-2.0" ]
80
2021-02-04T22:20:14.000Z
2022-03-30T19:36:15.000Z
# neuralmagic: no copyright # flake8: noqa # fmt: off # isort: skip_file #!/usr/bin/env python # coding=utf-8 # Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import torch from torch import nn import torch.nn.functional as F from torch import Tensor from transformers import Trainer, is_datasets_available, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput class DistillGlueTrainer(Trainer): def __init__(self, *args, eval_examples=None, post_process_function=None, teacher=None, loss=None, batch_size=8, max_sequence_length=384,distill_hardness=1.0, temperature=2.0, **kwargs): super().__init__(*args, **kwargs) self.eval_examples = eval_examples self.post_process_function = post_process_function self.loss = loss self.teacher = teacher self.batch_size = batch_size self.temperature = temperature self.distill_hardness = distill_hardness self.criterion = nn.CrossEntropyLoss() self.max_sequence_length = max_sequence_length if self.teacher is None: self.distill_hardness = 0 def compute_loss(self, model, inputs, return_outputs=False): """ How the loss is computed by Trainer. Modified for Distilation using student teacher framework modified for distilation. """ outputs = model(**inputs) loss = outputs["loss"] logits_student = outputs["logits"] if self.teacher is not None: input_device = inputs["input_ids"].device self.teacher = self.teacher.to(input_device) with torch.no_grad(): teacher_outputs = self.teacher( input_ids=inputs["input_ids"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"], ) logits_teacher = teacher_outputs["logits"] loss_distill = F.kl_div( input=logits_student, target=logits_teacher, reduction="batchmean",) * (self.temperature ** 2) loss = ((1-self.distill_hardness) * loss) + torch.abs((self.distill_hardness * loss_distill)) return (loss, outputs) if return_outputs else loss
43.461538
190
0.688142
069904d04b11d883234d90febb09382c7c4ec8ec
4,067
py
Python
examples/kddcup2021/MAG240M/r_unimp/dataset/sage_institution_x.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
1,389
2019-06-11T03:29:20.000Z
2022-03-29T18:25:43.000Z
examples/kddcup2021/MAG240M/r_unimp/dataset/sage_institution_x.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
232
2019-06-21T06:52:10.000Z
2022-03-29T08:20:31.000Z
examples/kddcup2021/MAG240M/r_unimp/dataset/sage_institution_x.py
zbmain/PGL
dbded6a1543248b0a33c05eb476ddc513401a774
[ "Apache-2.0" ]
229
2019-06-20T12:13:58.000Z
2022-03-25T12:04:48.000Z
import os import yaml import pgl import time import copy import numpy as np import os.path as osp from pgl.utils.logger import log from pgl.bigraph import BiGraph from pgl import graph_kernel from pgl.sampling.custom import subgraph from ogb.lsc import MAG240MDataset, MAG240MEvaluator import time import paddle from tqdm import tqdm from pgl.utils.helper import scatter def get_col_slice(x, start_row_idx, end_row_idx, start_col_idx, end_col_idx): outs = [] chunk = 100000 for i in tqdm(range(start_row_idx, end_row_idx, chunk)): j = min(i + chunk, end_row_idx) outs.append(x[i:j, start_col_idx:end_col_idx].copy()) return np.concatenate(outs, axis=0) def save_col_slice(x_src, x_dst, start_row_idx, end_row_idx, start_col_idx, end_col_idx): assert x_src.shape[0] == end_row_idx - start_row_idx assert x_src.shape[1] == end_col_idx - start_col_idx chunk, offset = 100000, start_row_idx for i in tqdm(range(0, end_row_idx - start_row_idx, chunk)): j = min(i + chunk, end_row_idx - start_row_idx) x_dst[offset + i:offset + j, start_col_idx:end_col_idx] = x_src[i:j] class MAG240M(object): """Iterator""" def __init__(self, data_dir, seed=123): self.data_dir = data_dir self.num_features = 768 self.num_classes = 153 self.seed = seed def prepare_data(self): dataset = MAG240MDataset(self.data_dir) log.info(dataset.num_authors) log.info(dataset.num_institutions) author_path = f'{dataset.dir}/author_feat.npy' path = f'{dataset.dir}/institution_feat.npy' t = time.perf_counter() if not osp.exists(path): log.info('get institution_feat...') author_feat = np.memmap(author_path, dtype=np.float16, shape=(dataset.num_authors, self.num_features), mode='r') # author edge_index = dataset.edge_index('author', 'institution') edge_index = edge_index.T log.info(edge_index.shape) institution_graph = BiGraph(edge_index, dst_num_nodes=dataset.num_institutions) institution_graph.tensor() log.info('finish institution graph') institution_x = np.memmap(path, dtype=np.float16, mode='w+', shape=(dataset.num_institutions, self.num_features)) dim_chunk_size = 64 degree = paddle.zeros(shape=[dataset.num_institutions, 1], dtype='float32') temp_one = paddle.ones(shape=[edge_index.shape[0], 1], dtype='float32') degree = scatter(degree, overwrite=False, index=institution_graph.edges[:, 1], updates=temp_one) log.info('finish degree') for i in tqdm(range(0, self.num_features, dim_chunk_size)): j = min(i + dim_chunk_size, self.num_features) inputs = get_col_slice(author_feat, start_row_idx=0, end_row_idx=dataset.num_authors, start_col_idx=i, end_col_idx=j) inputs = paddle.to_tensor(inputs, dtype='float32') outputs = institution_graph.send_recv(inputs) outputs = outputs / degree outputs = outputs.astype('float16').numpy() del inputs save_col_slice( x_src=outputs, x_dst=institution_x, start_row_idx=0, end_row_idx=dataset.num_institutions, start_col_idx=i, end_col_idx=j) del outputs institution_x.flush() del institution_x log.info(f'Done! [{time.perf_counter() - t:.2f}s]') if __name__ == "__main__": root = 'dataset_path' print(root) dataset = MAG240M(root) dataset.prepare_data()
38.009346
91
0.592083
4e1c1c3c7163caea0c2e8ec95f8c40b3442eaa0e
602
py
Python
i3py/core/actions/__init__.py
Ecpy/i3py
6f004d3e2ee2b788fb4693606cc4092147655ce1
[ "BSD-3-Clause" ]
1
2018-03-20T09:24:54.000Z
2018-03-20T09:24:54.000Z
i3py/core/actions/__init__.py
Ecpy/i3py
6f004d3e2ee2b788fb4693606cc4092147655ce1
[ "BSD-3-Clause" ]
7
2017-10-11T17:15:17.000Z
2018-01-22T14:31:50.000Z
i3py/core/actions/__init__.py
Exopy/i3py
6f004d3e2ee2b788fb4693606cc4092147655ce1
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2016-2017 by I3py Authors, see AUTHORS for more details. # # Distributed under the terms of the BSD license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Actions are used to wrap method and mark them as acting on the instrument. """ from .action import BaseAction, Action from .register_action import RegisterAction __all__ = ['BaseAction', 'Action', 'RegisterAction']
37.625
79
0.548173
479f6b0ee791e687b78741aef9d79878ed45c36d
462
py
Python
openapi_schema_validator/__init__.py
sebastianmika/openapi-schema-validator
b36c12b7356328901b9386e8b7f71d4bf2369a71
[ "BSD-3-Clause" ]
32
2020-06-05T13:05:46.000Z
2022-03-08T23:10:08.000Z
openapi_schema_validator/__init__.py
sebastianmika/openapi-schema-validator
b36c12b7356328901b9386e8b7f71d4bf2369a71
[ "BSD-3-Clause" ]
40
2020-03-05T11:18:07.000Z
2022-02-14T10:01:45.000Z
openapi_schema_validator/__init__.py
sebastianmika/openapi-schema-validator
b36c12b7356328901b9386e8b7f71d4bf2369a71
[ "BSD-3-Clause" ]
19
2020-03-13T15:11:33.000Z
2022-02-28T09:48:00.000Z
# -*- coding: utf-8 -*- from openapi_schema_validator._format import oas30_format_checker from openapi_schema_validator.shortcuts import validate from openapi_schema_validator.validators import OAS30Validator __author__ = 'Artur Maciag' __email__ = 'maciag.artur@gmail.com' __version__ = '0.1.6' __url__ = 'https://github.com/p1c2u/openapi-schema-validator' __license__ = '3-clause BSD License' __all__ = ['validate', 'OAS30Validator', 'oas30_format_checker']
35.538462
65
0.796537
08d7a45c3778d4a0ae5a402e5dfeb0904e43546b
1,893
py
Python
idaes/surrogate/alamopy_depr/examples.py
carldlaird/idaes-pse
cc7a32ca9fa788f483fa8ef85f3d1186ef4a596f
[ "RSA-MD" ]
112
2019-02-11T23:16:36.000Z
2022-03-23T20:59:57.000Z
idaes/surrogate/alamopy_depr/examples.py
carldlaird/idaes-pse
cc7a32ca9fa788f483fa8ef85f3d1186ef4a596f
[ "RSA-MD" ]
621
2019-03-01T14:44:12.000Z
2022-03-31T19:49:25.000Z
idaes/surrogate/alamopy_depr/examples.py
carldlaird/idaes-pse
cc7a32ca9fa788f483fa8ef85f3d1186ef4a596f
[ "RSA-MD" ]
154
2019-02-01T23:46:33.000Z
2022-03-23T15:07:10.000Z
#!/usr/bin/python ################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# import numpy as np import sys def sixcamel(*x): x1, x2 = x t1 = np.multiply(4.0 - 2.1 * np.power(x1, 2) + np.divide(np.power(x1, 4), 3.0), np.power(x1, 2)) t2 = np.multiply(4 * np.power(x2, 2) - 4, np.power(x2, 2)) z = t1 + np.multiply(x1, x2) + t2 return z def ackley(*x): import numpy as np x1, x2 = x a = 20 b = 0.2 c = 2 * 3.14159 z = -a * np.exp(-b * np.sqrt(0.5 * (x1**2 + x2**2))) \ - np.exp(0.5 * (np.cos(c * x1) + np.cos(c * x2))) + a + np.exp(1) return z def branin(*x): import numpy as np x1, x2 = x pi = 3.14159 z = (x2 - (5.1 / (4 * pi**2)) * x1**2 + (5 / pi) * x1 - 6)**2 \ + 10 * (1 - (1 / (8 * pi)) * np.cos(x1) + 10) + np.random.normal(0, 0.1) return z if __name__ == '__main__': sys.stdout.write(' ALAMOpy example functions ') sys.stdout.write(' call functions with : ') sys.stdout.write(' examples.<name>') sys.stdout.write(' <name> = branin ') sys.stdout.write(' sixcamel ') sys.stdout.write(' ackley ')
34.418182
83
0.544638
25fed5d60879939ede0386670a20575bed1ac575
18,163
py
Python
src/amuse/test/suite/codes_tests/test_brutus.py
rknop/amuse
85d5bdcc29cfc87dc69d91c264101fafd6658aec
[ "Apache-2.0" ]
131
2015-06-04T09:06:57.000Z
2022-02-01T12:11:29.000Z
src/amuse/test/suite/codes_tests/test_brutus.py
rknop/amuse
85d5bdcc29cfc87dc69d91c264101fafd6658aec
[ "Apache-2.0" ]
690
2015-10-17T12:18:08.000Z
2022-03-31T16:15:58.000Z
src/amuse/test/suite/codes_tests/test_brutus.py
rieder/amuse
3ac3b6b8f922643657279ddee5c8ab3fc0440d5e
[ "Apache-2.0" ]
102
2015-01-22T10:00:29.000Z
2022-02-09T13:29:43.000Z
import os import os.path import math from amuse.community import * from amuse.test.amusetest import TestWithMPI from amuse.units import units, nbody_system, constants from amuse.datamodel import Particles from amuse.community.brutus.interface import BrutusInterface, Brutus import random try: import mpmath HAS_MPMATH=True except ImportError: HAS_MPMATH=False class TestBrutusInterface(TestWithMPI): def test1(self): print("Test BrutusInterface initialization") instance = self.new_instance_of_an_optional_code(BrutusInterface) self.assertEqual(0, instance.initialize_code()) self.assertEqual(0, instance.set_brutus_output_directory(instance.output_directory)) self.assertEqual(0, instance.commit_parameters()) self.assertEqual(0, instance.cleanup_code()) instance.stop() def test2(self): print("Test BrutusInterface new_particle / get_state") instance = self.new_instance_of_an_optional_code(BrutusInterface) self.assertEqual(0, instance.initialize_code()) self.assertEqual(0, instance.set_brutus_output_directory(instance.output_directory)) self.assertEqual(0, instance.commit_parameters()) id, error = instance.new_particle(mass = 11.0, radius = 2.0, x = 0.0, y = 0.0, z = 0.0, vx = 0.0, vy = 0.0, vz = 0.0) self.assertEqual(0, error) self.assertEqual(0, id) id, error = instance.new_particle(mass = 21.0, radius = 5.0, x = 10.0, y = 0.0, z = 0.0, vx = 10.0, vy = 0.0, vz = 0.0) self.assertEqual(0, error) self.assertEqual(1, id) self.assertEqual(0, instance.commit_particles()) retrieved_state1 = instance.get_state(0) retrieved_state2 = instance.get_state(1) self.assertEqual(0, retrieved_state1['__result']) self.assertEqual(0, retrieved_state2['__result']) self.assertEqual(11.0, retrieved_state1['mass']) self.assertEqual(21.0, retrieved_state2['mass']) self.assertEqual( 0.0, retrieved_state1['x']) self.assertEqual(10.0, retrieved_state2['x']) self.assertEqual(0, instance.cleanup_code()) instance.stop() def test4(self): print("Test BrutusInterface particle property getters/setters") instance = self.new_instance_of_an_optional_code(BrutusInterface) self.assertEqual(0, instance.initialize_code()) self.assertEqual(0, instance.set_brutus_output_directory(instance.output_directory)) self.assertEqual(0, instance.commit_parameters()) self.assertEqual([0, 0], list(instance.new_particle(0.01, 1, 0, 0, 0, 1, 0, 0.1).values())) self.assertEqual([1, 0], list(instance.new_particle(0.02, -1, 0, 0, 0,-1, 0, 0.1).values())) self.assertEqual(0, instance.commit_particles()) # getters mass, result = instance.get_mass(0) self.assertAlmostEqual(0.01, mass) self.assertEqual(0,result) radius, result = instance.get_radius(1) self.assertAlmostEqual(0.1, radius) self.assertEqual(0,result) #self.assertEquals(-3, instance.get_mass(2)['__result']) # Particle not found self.assertEqual([ 1, 0, 0, 0], list(instance.get_position(0).values())) self.assertEqual([-1, 0, 0, 0], list(instance.get_position(1).values())) self.assertEqual([ 0, 1, 0, 0], list(instance.get_velocity(0).values())) self.assertEqual([ 0,-1, 0, 0], list(instance.get_velocity(1).values())) # setters self.assertEqual(0, instance.set_state(0, 0.01, 1,2,3, 4,5,6, 0.1)) self.assertEqual([0.01, 1.0,2.0,3.0, 4.0,5.0,6.0, 0.1, 0], list(instance.get_state(0).values())) self.assertEqual(0, instance.set_mass(0, 0.02)) self.assertEqual([0.02, 1.0,2.0,3.0, 4.0,5.0,6.0, 0.1, 0], list(instance.get_state(0).values())) self.assertEqual(0, instance.set_radius(0, 0.2)) self.assertEqual([0.02, 1.0,2.0,3.0, 4.0,5.0,6.0, 0.2, 0], list(instance.get_state(0).values())) self.assertEqual(0, instance.set_position(0, 10,20,30)) self.assertEqual([0.02, 10.0,20.0,30.0, 4.0,5.0,6.0, 0.2, 0], list(instance.get_state(0).values())) self.assertEqual(0, instance.set_velocity(0, 40,50,60)) self.assertEqual([0.02, 10.0,20.0,30.0, 40.0,50.0,60.0, 0.2, 0], list(instance.get_state(0).values())) self.assertEqual(0, instance.cleanup_code()) instance.stop() def test5(self): print("Test BrutusInterface parameters") instance = self.new_instance_of_an_optional_code(BrutusInterface) self.assertEqual(0, instance.initialize_code()) # word length self.assertEqual([64, 0], list(instance.get_word_length().values())) self.assertEqual(0, instance.set_word_length(80)) self.assertEqual([80, 0], list(instance.get_word_length().values())) # bs tolerance, default (double) implementation self.assertEqual([1.0e-6, 0], list(instance.get_bs_tolerance().values())) self.assertEqual(0, instance.set_bs_tolerance(1.0e-8)) self.assertEqual([1.0e-8, 0], list(instance.get_bs_tolerance().values())) # bs tolerance, string implementation for values requiring higher precision (note: actual accuracy depends on word_length) #self.assertEquals(1e-8, eval(instance.get_bs_tolerance_string()[""])) #self.assertEquals(0, instance.set_bs_tolerance_string("1e-10")) #self.assertEquals(["1e-10", 0], instance.get_bs_tolerance_string().values()) # eta, float64 self.assertEqual([0.24, 0], list(instance.get_eta().values())) self.assertEqual(0, instance.set_eta(0.10)) self.assertEqual([0.10, 0], list(instance.get_eta().values())) # eta, string #self.assertEquals(["0.10", 0], instance.get_eta_string().values()) self.assertEqual(0, instance.set_eta_string("123")) self.assertEqual(["123", 0], list(instance.get_eta_string().values())) # output dir #self.assertEquals(["./", 0], instance.get_brutus_output_directory().values()) self.assertEqual(0, instance.set_brutus_output_directory("./out")) self.assertEqual(["./out/", 0], list(instance.get_brutus_output_directory().values())) self.assertEqual(0, instance.set_brutus_output_directory(instance.output_directory)) self.assertEqual([instance.output_directory+"/", 0], list(instance.get_brutus_output_directory().values())) self.assertEqual(0, instance.commit_parameters()) self.assertEqual(0, instance.cleanup_code()) instance.stop() def test6(self): print("Test BrutusInterface evolve_model, equal-mass binary") instance = self.new_instance_of_an_optional_code(BrutusInterface) self.assertEqual(0, instance.initialize_code()) self.assertEqual(0, instance.set_bs_tolerance(1.0e-10)) self.assertEqual(0, instance.set_word_length(72)) self.assertEqual(0, instance.commit_parameters()) self.assertEqual([0, 0], list(instance.new_particle(0.5, 0.5, 0, 0, 0, 0.5, 0).values())) self.assertEqual([1, 0], list(instance.new_particle(0.5, -0.5, 0, 0, 0,-0.5, 0).values())) self.assertEqual(0, instance.commit_particles()) self.assertEqual(0, instance.evolve_model(math.pi)) # half an orbit for result, expected in zip(instance.get_position(0).values(), [-0.5, 0.0, 0.0, 0]): self.assertAlmostEqual(result, expected, 5) self.assertEqual(0, instance.evolve_model(2 * math.pi)) # full orbit for result, expected in zip(instance.get_position(0).values(), [0.5, 0.0, 0.0, 0]): self.assertAlmostEqual(result, expected, 5) self.assertEqual(0, instance.cleanup_code()) instance.stop() def test7(self): print("Test BrutusInterface evolve_model, pythagorean problem") instance = self.new_instance_of_an_optional_code(BrutusInterface) self.assertEqual(0, instance.initialize_code()) self.assertEqual(0, instance.set_bs_tolerance(1.0e-6)) self.assertEqual(0, instance.set_word_length(56)) self.assertEqual(0, instance.commit_parameters()) self.assertEqual([0, 0], list(instance.new_particle("3", "1", "3", "0", "0", "0", "0").values())) self.assertEqual([1, 0], list(instance.new_particle("4", "-2", "-1", "0", "0", "0", "0").values())) self.assertEqual([2, 0], list(instance.new_particle("5", "1", "-1", "0", "0", "0", "0").values())) self.assertEqual(0, instance.commit_particles()) self.assertEqual(0, instance.evolve_model(10)) ## add a check for assertequal final coordinates for result, expected in zip(instance.get_position(0).values(), [0.778480410138085492274810667212415, 0.141392300290086165745727207379442, 0, 0]): self.assertAlmostEqual(result, expected, 3) self.assertEqual(0, instance.cleanup_code()) instance.stop() def test8(self): print("Test BrutusInterface string parameters") instance = self.new_instance_of_an_optional_code(BrutusInterface) instance.initialize_code() instance.set_word_length(128) for i in range(100): x=random.random() x=str(x) instance.set_eta_string(x) x_,err=instance.get_eta_string() instance.set_eta_string(x_) x__,err=instance.get_eta_string() #~ assert x==x_ self.assertEqual(x_,x__) instance.stop() class TestBrutus(TestWithMPI): def new_sun_earth_system(self): particles = Particles(2) particles.mass = [1.0, 3.0037e-6] | units.MSun particles.radius = 1.0 | units.RSun particles.position = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]] | units.AU particles.velocity = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] | units.km / units.s particles[1].vy = (constants.G * particles.total_mass() / (1.0 | units.AU)).sqrt() return particles def test1(self): print("Testing Brutus initialization") convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 1.0 | units.AU) instance = self.new_instance_of_an_optional_code(Brutus, convert_nbody) instance.initialize_code() instance.commit_parameters() instance.cleanup_code() instance.stop() def test2(self): print("Testing Brutus parameters") convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 1.0 | units.AU) instance = self.new_instance_of_an_optional_code(Brutus,convert_nbody) instance.initialize_code() # print instance.parameters self.assertEqual(instance.parameters.bs_tolerance, 1.0e-6) instance.parameters.bs_tolerance = 1.0e-9 self.assertEqual(instance.parameters.bs_tolerance, 1.0e-9) self.assertEqual(instance.parameters.word_length, 64) instance.parameters.word_length = 128 self.assertEqual(instance.parameters.word_length, 128) self.assertEqual(instance.parameters.dt_param, 0.24) instance.parameters.dt_param = 0.10 self.assertEqual(instance.parameters.dt_param, 0.10) self.assertEqual(instance.parameters.brutus_output_directory, instance.output_directory + os.sep) instance.parameters.brutus_output_directory = "./out" self.assertEqual(instance.parameters.brutus_output_directory, "./out/") instance.parameters.brutus_output_directory = instance.output_directory self.assertEqual(instance.parameters.brutus_output_directory, instance.output_directory + os.sep) instance.cleanup_code() instance.stop() def test3(self): print("Testing Brutus particles") convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 1.0 | units.AU) instance = self.new_instance_of_an_optional_code(Brutus,convert_nbody) instance.initialize_code() instance.commit_parameters() instance.particles.add_particles(self.new_sun_earth_system()) instance.commit_particles() self.assertAlmostEqual(instance.particles.mass, [1.0, 3.0037e-6] | units.MSun) self.assertAlmostEqual(instance.particles.radius, 1.0 | units.RSun) self.assertAlmostEqual(instance.particles.position, [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]] | units.AU) self.assertAlmostEqual(instance.particles.velocity, [[0.0, 0.0, 0.0], [0.0, 29.7885, 0.0]] | units.km / units.s, 3) instance.cleanup_code() instance.stop() def test4(self): print("Testing Brutus evolve_model, 2 particles") particles = Particles(2) particles.mass = 0.5 | units.MSun particles.radius = 1.0 | units.RSun particles.position = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]] | units.AU particles.velocity = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] | units.km / units.s particles[1].vy = (constants.G * (1.0 | units.MSun) / (1.0 | units.AU)).sqrt() particles.move_to_center() convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 1.0 | units.AU) instance = self.new_instance_of_an_optional_code(Brutus, convert_nbody) instance.initialize_code() instance.parameters.bs_tolerance = 1e-6 instance.parameters.word_length = 56 instance.commit_parameters() instance.particles.add_particles(particles) instance.commit_particles() primary = instance.particles[0] P = 2 * math.pi * primary.x / primary.vy position_at_start = primary.position.x instance.evolve_model(P / 4.0) self.assertAlmostRelativeEqual(position_at_start, primary.position.y, 6) instance.evolve_model(P / 2.0) self.assertAlmostRelativeEqual(position_at_start, -primary.position.x, 6) instance.evolve_model(P) self.assertAlmostRelativeEqual(position_at_start, primary.position.x, 6) instance.cleanup_code() instance.stop() def sun_and_planets(self): particles = Particles(9) sun = particles[0] mercury = particles[1] venus = particles[2] earth = particles[3] mars = particles[4] jupiter = particles[5] saturn = particles[6] uranus = particles[7] neptune = particles[8] sun.mass = 1047.517| units.MJupiter sun.radius = 1.0 | units.RSun sun.position = ( 0.005717 , -0.00538 , -2.130e-5 ) | units.AU sun.velocity = ( 0.007893 , 0.01189 , 0.0002064 ) | units.kms mercury.mass = 0.000174 | units.MJupiter mercury.radius = 0 | units.RSun mercury.position = ( -0.31419 , 0.14376 , 0.035135 ) | units.AU mercury.velocity = ( -30.729 , -41.93 , -2.659 ) | units.kms venus.mass = 0.002564 | units.MJupiter venus.radius = 0 | units.RSun venus.position = ( -0.3767 , 0.60159 , 0.0393 ) | units.AU venus.velocity = ( -29.7725 , -18.849 , 0.795 ) | units.kms earth.mass = 0.003185 | units.MJupiter earth.radius = 0 | units.RSun earth.position = ( -0.98561 , 0.0762 , -7.847e-5 ) | units.AU earth.velocity = ( -2.927 , -29.803 , -0.000533 ) | units.kms mars.mass = 0.000338 | units.MJupiter mars.radius = 0 | units.RSun mars.position = ( -1.2895 , -0.9199 , -0.048494 ) | units.AU mars.velocity = ( 14.9 , -17.721 , 0.2979 ) | units.kms jupiter.mass = 1 | units.MJupiter jupiter.radius = 0 | units.RSun jupiter.position = ( -4.9829 , 2.062 , -0.10990 ) | units.AU jupiter.velocity = ( -5.158 , -11.454 , -0.13558 ) | units.kms saturn.mass = 0.29947 | units.MJupiter saturn.radius = 0 | units.RSun saturn.position = ( -2.075 , 8.7812 , 0.3273 ) | units.AU saturn.velocity = ( -9.9109 , -2.236 , -0.2398 ) | units.kms uranus.mass = 0.045737 | units.MJupiter uranus.radius = 0 | units.RSun uranus.position = ( -12.0872 , -14.1917 , 0.184214 ) | units.AU uranus.velocity = ( 5.1377 , -4.7387 , -0.06108 ) | units.kms neptune.mass = 0.053962 | units.MJupiter neptune.radius = 0 | units.RSun neptune.position = ( 3.1652 , 29.54882 , 0.476391 ) | units.AU neptune.velocity = ( -5.443317 , 0.61054 , -0.144172 ) | units.kms particles.move_to_center() return particles def test5(self): if not HAS_MPMATH: self.skip("mpmath not available") print("MPmath available -> Doing tests") bodies = self.sun_and_planets() convert_nbody = nbody_system.nbody_to_si(bodies.mass.sum(),bodies[1].position.length()) gravity = Brutus(convert_nbody,number_of_workers=1) gravity.parameters.bs_tolerance = 1e-30 gravity.parameters.word_length = 180 gravity.parameters.dt_param = 0.0000000000010 gravity.particles.add_particles(bodies) Etot_init = gravity.kinetic_energy + gravity.potential_energy Ein = gravity.get_total_energy_p_si() gravity.evolve_model(gravity.model_time + (30| units.day)) Eout = gravity.get_total_energy_p_si() Ekin = gravity.kinetic_energy Epot = gravity.potential_energy Etot = Ekin + Epot Loss_double = ((Etot_init-Etot)/gravity.get_time()) Loss_mp = (Ein - Eout)/gravity.get_time_p_si() print("Loss with \"normal\" double =",Loss_double.number," (W)") print("Loss with multiprecision =",Loss_mp," (W)") gravity.stop() self.assertTrue((Loss_mp <= 0.0000007) and (Loss_mp > 0.0000006))
43.978208
153
0.628475
4500bb8509d6fba4bc03cb2a60e0813c3a500647
6,440
py
Python
c7n/resources/batch.py
CliffJumper/cloud-custodian
47d2f0aa990d2179c8f6764ac53c12720069ddcb
[ "Apache-2.0" ]
null
null
null
c7n/resources/batch.py
CliffJumper/cloud-custodian
47d2f0aa990d2179c8f6764ac53c12720069ddcb
[ "Apache-2.0" ]
null
null
null
c7n/resources/batch.py
CliffJumper/cloud-custodian
47d2f0aa990d2179c8f6764ac53c12720069ddcb
[ "Apache-2.0" ]
1
2019-11-06T16:54:06.000Z
2019-11-06T16:54:06.000Z
# Copyright 2017-2018 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals from c7n.manager import resources from c7n.query import QueryResourceManager from c7n.actions import BaseAction from c7n.utils import local_session, type_schema @resources.register('batch-compute') class ComputeEnvironment(QueryResourceManager): class resource_type(object): service = 'batch' filter_name = 'computeEnvironments' filter_type = 'list' dimension = None id = name = "computeEnvironmentName" enum_spec = ( 'describe_compute_environments', 'computeEnvironments', None) @resources.register('batch-definition') class JobDefinition(QueryResourceManager): class resource_type(object): service = 'batch' filter_name = 'jobDefinitions' filter_type = 'list' dimension = None id = name = "jobDefinitionName" enum_spec = ( 'describe_job_definitions', 'jobDefinitions', None) class StateTransitionFilter(object): """Filter resources by state. Try to simplify construction for policy authors by automatically filtering elements (filters or actions) to the resource states they are valid for. """ valid_origin_states = () def filter_resource_state(self, resources, key, states=None): states = states or self.valid_origin_states if not states: return resources orig_length = len(resources) results = [r for r in resources if r[key] in states] if orig_length != len(results): self.log.warn( "%s implicitly filtered %d of %d resources with valid %s" % ( self.__class__.__name__, len(results), orig_length, key.lower())) return results @ComputeEnvironment.action_registry.register('update-environment') class UpdateComputeEnvironment(BaseAction, StateTransitionFilter): """Updates an AWS batch compute environment :example: .. code-block: yaml policies: - name: update-environments resource: batch-compute filters: - computeResources.desiredvCpus: 0 - state: ENABLED actions: - type: update-environment state: DISABLED """ schema = { 'type': 'object', 'additionalProperties': False, 'properties': { 'type': {'enum': ['update-environment']}, 'computeEnvironment': {'type': 'string'}, 'state': {'type': 'string', 'enum': ['ENABLED', 'DISABLED']}, 'computeResources': { 'type': 'object', 'additionalProperties': False, 'properties': { 'minvCpus': {'type': 'integer'}, 'maxvCpus': {'type': 'integer'}, 'desiredvCpus': {'type': 'integer'} } }, 'serviceRole': {'type': 'string'} } } permissions = ('batch:UpdateComputeEnvironment',) valid_origin_status = ('VALID', 'INVALID') def process(self, resources): resources = self.filter_resource_state( resources, 'status', self.valid_origin_status) client = local_session(self.manager.session_factory).client('batch') params = dict(self.data) params.pop('type') for r in resources: params['computeEnvironment'] = r['computeEnvironmentName'] client.update_compute_environment(**params) @ComputeEnvironment.action_registry.register('delete') class DeleteComputeEnvironment(BaseAction, StateTransitionFilter): """Delete an AWS batch compute environment :example: .. code-block: yaml policies: - name: delete-environments resource: batch-compute filters: - computeResources.desiredvCpus: 0 action: - type: delete """ schema = type_schema('delete') permissions = ('batch:DeleteComputeEnvironment',) valid_origin_states = ('DISABLED',) valid_origin_status = ('VALID', 'INVALID') def delete_environment(self, r): client = local_session(self.manager.session_factory).client('batch') client.delete_compute_environment( computeEnvironment=r['computeEnvironmentName']) def process(self, resources): resources = self.filter_resource_state( self.filter_resource_state( resources, 'state', self.valid_origin_states), 'status', self.valid_origin_status) with self.executor_factory(max_workers=2) as w: list(w.map(self.delete_environment, resources)) @JobDefinition.action_registry.register('deregister') class DefinitionDeregister(BaseAction, StateTransitionFilter): """Deregisters a batch definition :example: .. code-block: yaml policies: - name: deregister-definition resource: batch-definition filters: - containerProperties.image: amazonlinux actions: - type: deregister """ schema = type_schema('deregister') permissions = ('batch:DeregisterJobDefinition',) valid_origin_states = ('ACTIVE',) def deregister_definition(self, r): self.client.deregister_job_definition( jobDefinition='%s:%s' % (r['jobDefinitionName'], r['revision'])) def process(self, resources): resources = self.filter_resource_state( resources, 'status', self.valid_origin_states) self.client = local_session( self.manager.session_factory).client('batch') with self.executor_factory(max_workers=2) as w: list(w.map(self.deregister_definition, resources))
34.074074
82
0.632453
052b54f3ebfbb3a24b0cf606761d7d934536dc80
4,673
py
Python
sdks/python/apache_beam/io/parquetio_it_test.py
hengfengli/beam
83a8855e5997e0311e6274c03bcb38f94efbf8ef
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
5,279
2016-12-29T04:00:44.000Z
2022-03-31T22:56:45.000Z
sdks/python/apache_beam/io/parquetio_it_test.py
hengfengli/beam
83a8855e5997e0311e6274c03bcb38f94efbf8ef
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
14,149
2016-12-28T00:43:50.000Z
2022-03-31T23:50:22.000Z
sdks/python/apache_beam/io/parquetio_it_test.py
damondouglas/beam
4774ac713f427fefb38114f661516faef26d8207
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
3,763
2016-12-29T04:06:10.000Z
2022-03-31T22:25:49.000Z
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file import logging import string import unittest from collections import Counter import pytest from apache_beam import Create from apache_beam import DoFn from apache_beam import FlatMap from apache_beam import Flatten from apache_beam import Map from apache_beam import ParDo from apache_beam import Reshuffle from apache_beam.io.filesystems import FileSystems from apache_beam.io.parquetio import ReadAllFromParquet from apache_beam.io.parquetio import WriteToParquet from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import BeamAssertException from apache_beam.transforms import CombineGlobally from apache_beam.transforms.combiners import Count try: import pyarrow as pa except ImportError: pa = None @unittest.skipIf(pa is None, "PyArrow is not installed.") class TestParquetIT(unittest.TestCase): def setUp(self): pass def tearDown(self): pass @pytest.mark.it_postcommit def test_parquetio_it(self): file_prefix = "parquet_it_test" init_size = 10 data_size = 20000 with TestPipeline(is_integration_test=True) as p: pcol = self._generate_data(p, file_prefix, init_size, data_size) self._verify_data(pcol, init_size, data_size) @staticmethod def _sum_verifier(init_size, data_size, x): expected = sum(range(data_size)) * init_size if x != expected: raise BeamAssertException( "incorrect sum: expected(%d) actual(%d)" % (expected, x)) return [] @staticmethod def _count_verifier(init_size, data_size, x): name, count = x[0].decode('utf-8'), x[1] counter = Counter( [string.ascii_uppercase[x % 26] for x in range(0, data_size * 4, 4)]) expected_count = counter[name[0]] * init_size if count != expected_count: raise BeamAssertException( "incorrect count(%s): expected(%d) actual(%d)" % (name, expected_count, count)) return [] def _verify_data(self, pcol, init_size, data_size): read = pcol | 'read' >> ReadAllFromParquet() v1 = ( read | 'get_number' >> Map(lambda x: x['number']) | 'sum_globally' >> CombineGlobally(sum) | 'validate_number' >> FlatMap(lambda x: TestParquetIT._sum_verifier(init_size, data_size, x))) v2 = ( read | 'make_pair' >> Map(lambda x: (x['name'], x['number'])) | 'count_per_key' >> Count.PerKey() | 'validate_name' >> FlatMap( lambda x: TestParquetIT._count_verifier(init_size, data_size, x))) _ = ((v1, v2, pcol) | 'flatten' >> Flatten() | 'reshuffle' >> Reshuffle() | 'cleanup' >> Map(lambda x: FileSystems.delete([x]))) def _generate_data(self, p, output_prefix, init_size, data_size): init_data = [x for x in range(init_size)] lines = ( p | 'create' >> Create(init_data) | 'produce' >> ParDo(ProducerFn(data_size))) schema = pa.schema([('name', pa.binary()), ('number', pa.int64())]) files = lines | 'write' >> WriteToParquet( output_prefix, schema, codec='snappy', file_name_suffix='.parquet') return files class ProducerFn(DoFn): def __init__(self, number): super().__init__() self._number = number self._string_index = 0 self._number_index = 0 def process(self, element): self._string_index = 0 self._number_index = 0 for _ in range(self._number): yield {'name': self.get_string(4), 'number': self.get_int()} def get_string(self, length): s = [] for _ in range(length): s.append(string.ascii_uppercase[self._string_index]) self._string_index = (self._string_index + 1) % 26 return ''.join(s) def get_int(self): i = self._number_index self._number_index = self._number_index + 1 return i if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) unittest.main()
31.574324
80
0.691633
000714198c8e28c4bff3929e8b25b0b4271c074a
7,298
py
Python
qa/rpc-tests/walletbackup.py
koba24/tcoin
04b9caaca587fa1bc928c81940d7ba3d2754083b
[ "MIT" ]
2
2018-06-24T19:51:25.000Z
2019-06-11T14:00:16.000Z
qa/rpc-tests/walletbackup.py
koba24/tcoin
04b9caaca587fa1bc928c81940d7ba3d2754083b
[ "MIT" ]
null
null
null
qa/rpc-tests/walletbackup.py
koba24/tcoin
04b9caaca587fa1bc928c81940d7ba3d2754083b
[ "MIT" ]
2
2018-09-13T22:54:32.000Z
2019-02-20T02:04:25.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Tcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Exercise the wallet backup code. Ported from walletbackup.sh. Test case is: 4 nodes. 1 2 and 3 send transactions between each other, fourth node is a miner. 1 2 3 each mine a block to start, then Miner creates 100 blocks so 1 2 3 each have 50 mature coins to spend. Then 5 iterations of 1/2/3 sending coins amongst themselves to get transactions in the wallets, and the miner mining one block. Wallets are backed up using dumpwallet/backupwallet. Then 5 more iterations of transactions and mining a block. Miner then generates 101 more blocks, so any transaction fees paid mature. Sanity check: Sum(1,2,3,4 balances) == 114*50 1/2/3 are shutdown, and their wallets erased. Then restore using wallet.dat backup. And confirm 1/2/3/4 balances are same as before. Shutdown again, restore using importwallet, and confirm again balances are correct. """ from test_framework.test_framework import TcoinTestFramework from test_framework.util import * from random import randint import logging logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO, stream=sys.stdout) class WalletBackupTest(TcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 4 # nodes 1, 2,3 are spenders, let's give them a keypool=100 self.extra_args = [["-keypool=100"], ["-keypool=100"], ["-keypool=100"], []] # This mirrors how the network was setup in the bash test def setup_network(self, split=False): self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, self.extra_args) connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[1], 3) connect_nodes(self.nodes[2], 3) connect_nodes(self.nodes[2], 0) self.is_network_split=False self.sync_all() def one_send(self, from_node, to_address): if (randint(1,2) == 1): amount = Decimal(randint(1,10)) / Decimal(10) self.nodes[from_node].sendtoaddress(to_address, amount) def do_one_round(self): a0 = self.nodes[0].getnewaddress() a1 = self.nodes[1].getnewaddress() a2 = self.nodes[2].getnewaddress() self.one_send(0, a1) self.one_send(0, a2) self.one_send(1, a0) self.one_send(1, a2) self.one_send(2, a0) self.one_send(2, a1) # Have the miner (node3) mine a block. # Must sync mempools before mining. sync_mempools(self.nodes) self.nodes[3].generate(1) sync_blocks(self.nodes) # As above, this mirrors the original bash test. def start_three(self): self.nodes[0] = start_node(0, self.options.tmpdir) self.nodes[1] = start_node(1, self.options.tmpdir) self.nodes[2] = start_node(2, self.options.tmpdir) connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[1], 3) connect_nodes(self.nodes[2], 3) connect_nodes(self.nodes[2], 0) def stop_three(self): stop_node(self.nodes[0], 0) stop_node(self.nodes[1], 1) stop_node(self.nodes[2], 2) def erase_three(self): os.remove(self.options.tmpdir + "/node0/regtest/wallet.dat") os.remove(self.options.tmpdir + "/node1/regtest/wallet.dat") os.remove(self.options.tmpdir + "/node2/regtest/wallet.dat") def run_test(self): logging.info("Generating initial blockchain") self.nodes[0].generate(1) sync_blocks(self.nodes) self.nodes[1].generate(1) sync_blocks(self.nodes) self.nodes[2].generate(1) sync_blocks(self.nodes) self.nodes[3].generate(100) sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 50) assert_equal(self.nodes[3].getbalance(), 0) logging.info("Creating transactions") # Five rounds of sending each other transactions. for i in range(5): self.do_one_round() logging.info("Backing up") tmpdir = self.options.tmpdir self.nodes[0].backupwallet(tmpdir + "/node0/wallet.bak") self.nodes[0].dumpwallet(tmpdir + "/node0/wallet.dump") self.nodes[1].backupwallet(tmpdir + "/node1/wallet.bak") self.nodes[1].dumpwallet(tmpdir + "/node1/wallet.dump") self.nodes[2].backupwallet(tmpdir + "/node2/wallet.bak") self.nodes[2].dumpwallet(tmpdir + "/node2/wallet.dump") logging.info("More transactions") for i in range(5): self.do_one_round() # Generate 101 more blocks, so any fees paid mature self.nodes[3].generate(101) self.sync_all() balance0 = self.nodes[0].getbalance() balance1 = self.nodes[1].getbalance() balance2 = self.nodes[2].getbalance() balance3 = self.nodes[3].getbalance() total = balance0 + balance1 + balance2 + balance3 # At this point, there are 214 blocks (103 for setup, then 10 rounds, then 101.) # 114 are mature, so the sum of all wallets should be 114 * 50 = 5700. assert_equal(total, 5700) ## # Test restoring spender wallets from backups ## logging.info("Restoring using wallet.dat") self.stop_three() self.erase_three() # Start node2 with no chain shutil.rmtree(self.options.tmpdir + "/node2/regtest/blocks") shutil.rmtree(self.options.tmpdir + "/node2/regtest/chainstate") # Restore wallets from backup shutil.copyfile(tmpdir + "/node0/wallet.bak", tmpdir + "/node0/regtest/wallet.dat") shutil.copyfile(tmpdir + "/node1/wallet.bak", tmpdir + "/node1/regtest/wallet.dat") shutil.copyfile(tmpdir + "/node2/wallet.bak", tmpdir + "/node2/regtest/wallet.dat") logging.info("Re-starting nodes") self.start_three() sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), balance0) assert_equal(self.nodes[1].getbalance(), balance1) assert_equal(self.nodes[2].getbalance(), balance2) logging.info("Restoring using dumped wallet") self.stop_three() self.erase_three() #start node2 with no chain shutil.rmtree(self.options.tmpdir + "/node2/regtest/blocks") shutil.rmtree(self.options.tmpdir + "/node2/regtest/chainstate") self.start_three() assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[1].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 0) self.nodes[0].importwallet(tmpdir + "/node0/wallet.dump") self.nodes[1].importwallet(tmpdir + "/node1/wallet.dump") self.nodes[2].importwallet(tmpdir + "/node2/wallet.dump") sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), balance0) assert_equal(self.nodes[1].getbalance(), balance1) assert_equal(self.nodes[2].getbalance(), balance2) if __name__ == '__main__': WalletBackupTest().main()
35.950739
95
0.653193
6bd64497e387e43a4da3be2dbb6229b5ba9400e8
2,453
py
Python
src/oci/core/models/change_vlan_compartment_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/core/models/change_vlan_compartment_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/core/models/change_vlan_compartment_details.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ChangeVlanCompartmentDetails(object): """ The configuration details for the move operation. """ def __init__(self, **kwargs): """ Initializes a new ChangeVlanCompartmentDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param compartment_id: The value to assign to the compartment_id property of this ChangeVlanCompartmentDetails. :type compartment_id: str """ self.swagger_types = { 'compartment_id': 'str' } self.attribute_map = { 'compartment_id': 'compartmentId' } self._compartment_id = None @property def compartment_id(self): """ **[Required]** Gets the compartment_id of this ChangeVlanCompartmentDetails. The `OCID`__ of the compartment to move the VLAN to. __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm :return: The compartment_id of this ChangeVlanCompartmentDetails. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this ChangeVlanCompartmentDetails. The `OCID`__ of the compartment to move the VLAN to. __ https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm :param compartment_id: The compartment_id of this ChangeVlanCompartmentDetails. :type: str """ self._compartment_id = compartment_id def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
32.706667
245
0.68406
52dc9fb7a6852b0a667308db9c0d69875a62f564
148,758
py
Python
python/mxnet/numpy/multiarray.py
jonatanmil/incubator-mxnet
6af6570b065e1d4886621763777297eedb2fde84
[ "Apache-2.0" ]
null
null
null
python/mxnet/numpy/multiarray.py
jonatanmil/incubator-mxnet
6af6570b065e1d4886621763777297eedb2fde84
[ "Apache-2.0" ]
1
2021-12-10T01:33:49.000Z
2021-12-10T01:33:49.000Z
python/mxnet/numpy/multiarray.py
junhalba/incubator-mxnet-master
be7296bcaa104e333ac68e27d78576ceedc78d1f
[ "BSL-1.0", "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=too-many-lines, unused-argument """numpy ndarray and util functions.""" from __future__ import absolute_import from __future__ import division try: from __builtin__ import slice as py_slice except ImportError: from builtins import slice as py_slice from array import array as native_array import sys import ctypes import warnings import numpy as _np from ..ndarray import NDArray, _DTYPE_NP_TO_MX, _GRAD_REQ_MAP from ..ndarray import indexing_key_expand_implicit_axes, get_indexing_dispatch_code,\ get_oshape_of_gather_nd_op from ..ndarray._internal import _set_np_ndarray_class from . import _op as _mx_np_op from ..base import check_call, _LIB, NDArrayHandle from ..base import mx_real_t, c_array_buf, mx_uint, numeric_types, integer_types from ..context import Context from ..util import _sanity_check_params, set_module from ..context import current_context from ..ndarray import numpy as _mx_nd_np from ..ndarray.numpy import _internal as _npi __all__ = ['ndarray', 'empty', 'array', 'zeros', 'ones', 'full', 'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'power', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor', 'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'tensordot', 'linspace', 'expand_dims', 'tile', 'arange', 'split', 'concatenate', 'stack', 'mean', 'maximum', 'minimum', 'swapaxes', 'clip', 'argmax', 'std', 'var', 'indices', 'copysign', 'ravel'] # Return code for dispatching indexing function call _NDARRAY_UNSUPPORTED_INDEXING = -1 _NDARRAY_BASIC_INDEXING = 0 _NDARRAY_ADVANCED_INDEXING = 1 # This function is copied from ndarray.py since pylint # keeps giving false alarm error of undefined-all-variable def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): """Return a new handle with specified shape and context. Empty handle is only used to hold results. Returns ------- handle A new empty `ndarray` handle. """ hdl = NDArrayHandle() check_call(_LIB.MXNDArrayCreateEx( c_array_buf(mx_uint, native_array('I', shape)), mx_uint(len(shape)), ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), ctypes.c_int(int(delay_alloc)), ctypes.c_int(int(_DTYPE_NP_TO_MX[_np.dtype(dtype).type])), ctypes.byref(hdl))) return hdl # Have to use 0 as default value for stype since pylint does not allow # importing _STORAGE_TYPE_DEFAULT from ndarray.py. def _np_ndarray_cls(handle, writable=True, stype=0): if stype != 0: raise ValueError('_np_ndarray_cls currently only supports default storage ' 'type, while received stype = {}'.format(stype)) return ndarray(handle, writable=writable) _set_np_ndarray_class(_np_ndarray_cls) def _get_index(idx): if isinstance(idx, NDArray) and not isinstance(idx, ndarray): raise TypeError('Cannot have mx.nd.NDArray as index') if isinstance(idx, ndarray): return idx.as_nd_ndarray() elif sys.version_info[0] > 2 and isinstance(idx, range): return array(_np.arange(idx.start, idx.stop, idx.step, dtype=_np.int32)).as_nd_ndarray() else: return idx _NUMPY_ARRAY_FUNCTION_DICT = {} _NUMPY_ARRAY_UFUNC_DICT = {} @set_module('mxnet.numpy') # pylint: disable=invalid-name class ndarray(NDArray): """ An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.). Arrays should be constructed using `array`, `zeros` or `empty`. Currently, only c-contiguous arrays are supported. """ @staticmethod def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # pylint: disable=bad-staticmethod-argument """ Dispatch official NumPy unary/binary operator calls on mxnet.numpy.ndarray to this function. The operators must comply with the ufunc definition in NumPy. The following code is adapted from CuPy. """ if 'out' in kwargs: # need to unfold tuple argument in kwargs out = kwargs['out'] if len(out) != 1: raise ValueError('The `out` parameter must have exactly one ndarray') kwargs['out'] = out[0] if method == '__call__': if ufunc.signature is not None: # we don't support generalised-ufuncs (gufuncs) return NotImplemented name = ufunc.__name__ mx_ufunc = _NUMPY_ARRAY_UFUNC_DICT.get(name, None) if mx_ufunc is None: raise ValueError('mxnet.numpy operator `{}` has not been registered in ' 'the _NUMPY_ARRAY_UFUNC_LIST. Please make sure you are ' 'using NumPy >= 1.15.0 and the operator implementation ' 'is compatible with NumPy. Then add the operator name ' 'to the list.' .format(name)) return mx_ufunc(*inputs, **kwargs) else: return NotImplemented @staticmethod def __array_function__(self, func, types, args, kwargs): # pylint: disable=bad-staticmethod-argument """ Dispatch official NumPy operators that comply with the array function protocol to this function. """ mx_np_func = _NUMPY_ARRAY_FUNCTION_DICT.get(func, None) if mx_np_func is None: raise ValueError('mxnet.numpy operator `{}` has not been registered in ' 'the _NUMPY_ARRAY_FUNCTION_LIST. Please make sure you are ' 'using NumPy >= 1.17.0 and the operator ' 'implementation is compatible with NumPy. Then add ' 'the operator name to the list.'.format(func)) # Note: this allows subclasses that don't override # __array_function__ to handle mxnet.numpy.ndarray objects if not all(issubclass(t, ndarray) for t in types): return NotImplemented return mx_np_func(*args, **kwargs) def _get_np_basic_indexing(self, key): """ This function indexes ``self`` with a tuple of `slice` objects only. """ key_nd = tuple(idx for idx in key if idx is not None) if len(key_nd) < self.ndim: raise RuntimeError( 'too few indices after normalization: expected `ndim` ({}) ' 'but got {}. This is a bug, please report it!' ''.format(self.ndim, len(key_nd)) ) if len(key_nd) > self.ndim: raise IndexError( 'too many indices ({}) for array with {} dimensions' ''.format(len(key_nd), self.ndim) ) none_axes = [ax for ax in range(len(key)) if key[ax] is None] # pylint: disable=invalid-name slc_key, int_axes = self._basic_indexing_key_int_to_slice(key_nd) new_axes = self._new_axes_after_basic_indexing(none_axes, key) # Check bounds for integer axes for ax in int_axes: # pylint: disable=invalid-name if not -self.shape[ax] <= key_nd[ax] < self.shape[ax]: raise IndexError( 'index {} is out of bounds for axis {} with size {}' ''.format(key_nd[ax], ax, self.shape[ax])) if self._basic_indexing_slice_is_contiguous(slc_key, self.shape): # Create a shared-memory view by using low-level flat slicing flat_begin, flat_end = self._basic_indexing_contiguous_flat_begin_end( slc_key, self.shape ) handle = NDArrayHandle() flat_self = self.reshape_view(-1) check_call( _LIB.MXNDArraySlice( flat_self.handle, mx_uint(flat_begin), mx_uint(flat_end), ctypes.byref(handle), ) ) sliced_shape = self._basic_indexing_sliced_shape(slc_key, self.shape) sliced = self.__class__(handle=handle, writable=self.writable) if 0 in sliced_shape: sliced = sliced.reshape(sliced_shape) else: sliced = sliced.reshape_view(sliced_shape) else: begin, end, step = self._basic_indexing_key_to_begin_end_step( slc_key, self.shape, keep_none=True ) sliced = _npi.slice(self, begin, end, step) # Reshape to final shape due to integer and `None` entries in `key`. final_shape = [sliced.shape[i] for i in range(sliced.ndim) if i not in int_axes] for ax in new_axes: # pylint: disable=invalid-name final_shape.insert(ax, 1) if sliced.size == 0: return sliced.reshape(tuple(final_shape)) else: return sliced.reshape_view(tuple(final_shape)) def _get_np_advanced_indexing(self, key): idcs, new_axes = self._get_index_nd(key) if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck idcs = idcs.as_np_ndarray() else: idcs = _npi.stack(*[i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs]) sliced = _npi.gather_nd(self, idcs) # Reshape due to `None` entries in `key`. if new_axes: final_shape = [sliced.shape[i] for i in range(sliced.ndim)] for ax in new_axes: # pylint: disable=invalid-name final_shape.insert(ax, 1) return sliced.reshape(tuple(final_shape)) else: return sliced def _set_np_advanced_indexing(self, key, value): """This function is called by __setitem__ when key is an advanced index.""" idcs, new_axes = self._get_index_nd(key) if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck idcs = idcs.as_np_ndarray() else: idcs = _npi.stack(*[i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs]) vshape = get_oshape_of_gather_nd_op(self.shape, idcs.shape) value_nd = self._prepare_value_nd(value, bcast_shape=vshape, squeeze_axes=new_axes) self._scatter_set_nd(value_nd, idcs) # pylint: disable=too-many-return-statements def __getitem__(self, key): """ Overriding the method in NDArray class in a numpy fashion. Calling numpy ndarray's _get_np_basic_indexing(key) and _get_np_advanced_indexing(key). """ ndim = self.ndim shape = self.shape if ndim == 0: if key != (): raise IndexError('scalar tensor can only accept `()` as index') # Handle simple cases for higher speed if isinstance(key, tuple) and len(key) == 0: return self if isinstance(key, tuple) and len(key) == ndim\ and all(isinstance(idx, integer_types) for idx in key): out = self for idx in key: out = out[idx] return out if isinstance(key, integer_types): if key > shape[0] - 1: raise IndexError( 'index {} is out of bounds for axis 0 with size {}'.format( key, shape[0])) return self._at(key) elif isinstance(key, py_slice): if key.step is None or key.step == 1: if key.start is not None or key.stop is not None: return self._slice(key.start, key.stop) else: return self elif key.step == 0: raise ValueError("slice step cannot be zero") key = indexing_key_expand_implicit_axes(key, self.shape) indexing_dispatch_code = get_indexing_dispatch_code(key) if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: return self._get_np_basic_indexing(key) elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: return self._get_np_advanced_indexing(key) else: raise RuntimeError def __setitem__(self, key, value): """ x.__setitem__(i, y) <=> x[i]=y Sets ``self[key]`` to ``value``. Overriding the method in NDArray class in a numpy fashion. """ if isinstance(value, NDArray) and not isinstance(value, ndarray): raise TypeError('Cannot assign mx.nd.NDArray to mxnet.numpy.ndarray') if self.ndim == 0: if not isinstance(key, tuple) or len(key) != 0: raise IndexError('scalar tensor can only accept `()` as index') if isinstance(value, numeric_types): self.full(value) elif isinstance(value, ndarray) and value.size == 1: if value.shape != self.shape: value = value.reshape(self.shape) value.copyto(self) elif isinstance(value, (_np.ndarray, _np.generic)) and value.size == 1: if isinstance(value, _np.generic) or value.shape != self.shape: value = value.reshape(self.shape) self._sync_copyfrom(value) else: raise ValueError('setting an array element with a sequence.') else: key = indexing_key_expand_implicit_axes(key, self.shape) slc_key = tuple(idx for idx in key if idx is not None) if len(slc_key) < self.ndim: raise RuntimeError( 'too few indices after normalization: expected `ndim` ({}) ' 'but got {}. This is a bug, please report it!' ''.format(self.ndim, len(slc_key)) ) if len(slc_key) > self.ndim and self.ndim != 0: raise IndexError( 'too many indices ({}) for array with {} dimensions' ''.format(len(slc_key), self.ndim) ) indexing_dispatch_code = get_indexing_dispatch_code(slc_key) if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: self._set_nd_basic_indexing(key, value) # function is inheritated from NDArray class elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: self._set_np_advanced_indexing(key, value) else: raise ValueError( 'Indexing NDArray with index {} of type {} is not supported' ''.format(key, type(key)) ) def _prepare_value_nd(self, value, bcast_shape, squeeze_axes=None): """Return a broadcast `ndarray` with same context and dtype as ``self``. For setting item, The returned `ndarray` is squeezed according to squeeze_axes since the value_nd is assigned to not yet expanded space in original array. `value`: numeric types or array like. `bcast_shape`: a shape tuple. `squeeze_axes`: a sequence of axes to squeeze in the value array. Note: mxnet.numpy.ndarray not support NDArray as assigned value. """ if isinstance(value, numeric_types): value_nd = full(bcast_shape, value, ctx=self.ctx, dtype=self.dtype) elif isinstance(value, self.__class__): value_nd = value.as_in_ctx(self.ctx) if value_nd.dtype != self.dtype: value_nd = value_nd.astype(self.dtype) else: try: value_nd = array(value, ctx=self.ctx, dtype=self.dtype) except: raise TypeError('mxnet.np.ndarray does not support assignment with non-array-like ' 'object {} of type {}'.format(value, type(value))) # For advanced indexing setitem, if there is None in indices, we need to squeeze the # assigned value_nd since None is also ignored in slicing the original array. if squeeze_axes and value_nd.ndim > len(bcast_shape): squeeze_axes = tuple([ax for ax in squeeze_axes if ax < len(value_nd.shape)]) value_nd = value_nd.squeeze(axis=tuple(squeeze_axes)) # handle the cases like the following # a = np.zeros((3, 3)), b = np.ones((1, 1, 1, 1, 3)), a[0] = b # b cannot broadcast directly to a[0].shape unless its leading 1-size axes are trimmed if value_nd.ndim > len(bcast_shape): squeeze_axes = [] for i in range(value_nd.ndim - len(bcast_shape)): if value_nd.shape[i] == 1: squeeze_axes.append(i) else: break if squeeze_axes: value_nd = value_nd.squeeze(squeeze_axes) if value_nd.shape != bcast_shape: if value_nd.size == 0: value_nd = value_nd.reshape(bcast_shape) else: value_nd = value_nd.broadcast_to(bcast_shape) return value_nd def __add__(self, other): """x.__add__(y) <=> x + y""" return add(self, other) def __iadd__(self, other): """x.__iadd__(y) <=> x += y""" if not self.writable: raise ValueError('trying to add to a readonly ndarray') return add(self, other, out=self) def __sub__(self, other): """x.__sub__(y) <=> x - y""" return subtract(self, other) def __isub__(self, other): """x.__isub__(y) <=> x -= y""" if not self.writable: raise ValueError('trying to subtract from a readonly ndarray') return subtract(self, other, out=self) def __rsub__(self, other): """x.__rsub__(y) <=> y - x""" return subtract(other, self) def __mul__(self, other): """x.__mul__(y) <=> x * y""" return multiply(self, other) def __neg__(self): return self.__mul__(-1.0) def __imul__(self, other): """x.__imul__(y) <=> x *= y""" if not self.writable: raise ValueError('trying to add to a readonly ndarray') return multiply(self, other, out=self) def __rmul__(self, other): """x.__rmul__(y) <=> y * x""" return self.__mul__(other) def __div__(self, other): raise AttributeError('ndarray.__div__ is replaced by __truediv__. If you are using' ' Python2, please use the statement from __future__ import division' ' to change the / operator to mean true division throughout the' ' module. If you are using Python3, this error should not have' ' been encountered.') def __rdiv__(self, other): raise AttributeError('ndarray.__rdiv__ is replaced by __rtruediv__. If you are using' ' Python2, please use the statement from __future__ import division' ' to change the / operator to mean true division throughout the' ' module. If you are using Python3, this error should not have' ' been encountered.') def __idiv__(self, other): raise AttributeError('ndarray.__idiv__ is replaced by __irtruediv__. If you are using' ' Python2, please use the statement from __future__ import division' ' to change the / operator to mean true division throughout the' ' module. If you are using Python3, this error should not have' ' been encountered.') def __truediv__(self, other): """x.__truediv__(y) <=> x / y""" return divide(self, other) def __rtruediv__(self, other): """x.__rtruediv__(y) <=> y / x""" return divide(other, self) def __itruediv__(self, other): return divide(self, other, out=self) def __mod__(self, other): """x.__mod__(y) <=> x % y""" return mod(self, other) def __rmod__(self, other): """x.__rmod__(y) <=> y % x""" return mod(other, self) def __imod__(self, other): """x.__imod__(y) <=> x %= y""" return mod(self, other, out=self) def __pow__(self, other): """x.__pow__(y) <=> x ** y""" return power(self, other) def __rpow__(self, other): """x.__rpow__(y) <=> y ** x""" return power(other, self) def __eq__(self, other): """x.__eq__(y) <=> x == y""" # TODO(junwu): Return boolean ndarray when dtype=bool_ is supported if isinstance(other, ndarray): return _npi.equal(self, other) elif isinstance(other, numeric_types): return _npi.equal_scalar(self, float(other)) else: raise TypeError("ndarray does not support type {} as operand".format(str(type(other)))) def __hash__(self): raise NotImplementedError def __ne__(self, other): """x.__ne__(y) <=> x != y""" # TODO(junwu): Return boolean ndarray when dtype=bool_ is supported if isinstance(other, ndarray): return _npi.not_equal(self, other) elif isinstance(other, numeric_types): return _npi.not_equal_scalar(self, float(other)) else: raise TypeError("ndarray does not support type {} as operand".format(str(type(other)))) def __gt__(self, other): """x.__gt__(y) <=> x > y""" # TODO(junwu): Return boolean ndarray when dtype=bool_ is supported if isinstance(other, ndarray): return _npi.greater(self, other) elif isinstance(other, numeric_types): return _npi.greater_scalar(self, float(other)) else: raise TypeError("ndarray does not support type {} as operand".format(str(type(other)))) def __ge__(self, other): """x.__ge__(y) <=> x >= y""" # TODO(junwu): Return boolean ndarray when dtype=bool_ is supported if isinstance(other, ndarray): return _npi.greater_equal(self, other) elif isinstance(other, numeric_types): return _npi.greater_equal_scalar(self, float(other)) else: raise TypeError("ndarray does not support type {} as operand".format(str(type(other)))) def __lt__(self, other): """x.__lt__(y) <=> x < y""" # TODO(junwu): Return boolean ndarray when dtype=bool_ is supported if isinstance(other, ndarray): return _npi.less(self, other) elif isinstance(other, numeric_types): return _npi.less_scalar(self, float(other)) else: raise TypeError("ndarray does not support type {} as operand".format(str(type(other)))) def __le__(self, other): """x.__le__(y) <=> x <= y""" # TODO(junwu): Return boolean ndarray when dtype=bool_ is supported if isinstance(other, ndarray): return _npi.less_equal(self, other) elif isinstance(other, numeric_types): return _npi.less_equal_scalar(self, float(other)) else: raise TypeError("ndarray does not support type {} as operand".format(str(type(other)))) def __bool__(self): num_elements = self.size if num_elements == 0: warnings.simplefilter('default') warnings.warn('The truth value of an empty array is ambiguous. Returning False, but in' ' future this will result in an error.', DeprecationWarning) return False elif num_elements == 1: return bool(self.item()) else: raise ValueError("The truth value of an ndarray with multiple elements is ambiguous.") __nonzero__ = __bool__ def __float__(self): num_elements = self.size if num_elements != 1: raise TypeError('only size-1 arrays can be converted to Python scalars') return float(self.item()) def __int__(self): num_elements = self.size if num_elements != 1: raise TypeError('only size-1 arrays can be converted to Python scalars') return int(self.item()) def __len__(self): """Number of elements along the first axis.""" shape = self.shape if len(shape) == 0: raise TypeError('len() of unsized object') return self.shape[0] def __reduce__(self): return ndarray, (None,), self.__getstate__() def item(self, *args): """Copy an element of an array to a standard Python scalar and return it. Parameters ---------- *args : Arguments (variable number and type) none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned. int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return. tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array. Returns ------- z : Standard Python scalar object A copy of the specified element of the array as a suitable Python scalar. """ # TODO(junwu): no need to call asnumpy() on the whole array. return self.asnumpy().item(*args) @property # pylint: disable= invalid-name, undefined-variable def T(self): """Same as self.transpose(). This always returns a copy of self.""" return self.transpose() # pylint: enable= invalid-name, undefined-variable def all(self, axis=None, out=None, keepdims=False): raise NotImplementedError def any(self, axis=None, out=None, keepdims=False): raise NotImplementedError def as_nd_ndarray(self): """Convert mxnet.numpy.ndarray to mxnet.ndarray.NDArray to use its fluent methods.""" hdl = NDArrayHandle() check_call(_LIB.MXShallowCopyNDArray(self.handle, ctypes.byref(hdl))) return NDArray(handle=hdl, writable=self.writable) def as_np_ndarray(self): """A convenience function for creating a numpy ndarray from the current ndarray with zero copy. For this class, it just returns itself since it's already a numpy ndarray.""" return self def __repr__(self): """ Returns a string representation of the array. The dtype of the ndarray will not be appended to the string if it is `float32`. The context of the ndarray will be appended for devices other than CPU. Examples -------- >>> from mxnet import np, npx >>> a = np.random.uniform(size=(2, 3)) >>> a array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]]) >>> print(a) [[0.5488135 0.5928446 0.71518934] [0.84426576 0.60276335 0.8579456 ]] >>> a.dtype <class 'numpy.float32'> >>> b = a.astype(np.float64) >>> b array([[0.54881352, 0.59284461, 0.71518934], [0.84426576, 0.60276335, 0.85794562]], dtype=float64) >>> print(b) [[0.54881352 0.59284461 0.71518934] [0.84426576 0.60276335 0.85794562]] >>> b.dtype <class 'numpy.float64'> >>> c = a.copyto(npx.gpu(0)) >>> c array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]], ctx=gpu(0)) >>> print(c) [[0.5488135 0.5928446 0.71518934] [0.84426576 0.60276335 0.8579456 ]] @gpu(0) >>> d = b.copyto(npx.gpu(0)) >>> d array([[0.54881352, 0.59284461, 0.71518934], [0.84426576, 0.60276335, 0.85794562]], dtype=float64, ctx=gpu(0)) >>> print(d) [[0.54881352 0.59284461 0.71518934] [0.84426576 0.60276335 0.85794562]] @gpu(0) """ array_str = self.asnumpy().__repr__() dtype = self.dtype if 'dtype=' in array_str: if dtype == _np.float32: array_str = array_str[:array_str.rindex(',')] + ')' elif dtype != _np.float32: array_str = array_str[:-1] + ', dtype={})'.format(dtype.__name__) context = self.context if context.device_type == 'cpu': return array_str return array_str[:-1] + ', ctx={})'.format(str(context)) def __str__(self): """Returns a string representation of the array.""" array_str = self.asnumpy().__str__() context = self.context if context.device_type == 'cpu' or self.ndim == 0: return array_str return '{array} @{ctx}'.format(array=array_str, ctx=context) def attach_grad(self, grad_req='write'): # pylint: disable=arguments-differ """Attach a gradient buffer to this ndarray, so that `backward` can compute gradient with respect to it. Parameters ---------- grad_req : {'write', 'add', 'null'} How gradient will be accumulated. - 'write': gradient will be overwritten on every backward. - 'add': gradient will be added to existing value on every backward. - 'null': do not compute gradient for this NDArray. """ grad = _mx_np_op.zeros_like(self) # pylint: disable=undefined-variable grad_req = _GRAD_REQ_MAP[grad_req] check_call(_LIB.MXAutogradMarkVariables( 1, ctypes.pointer(self.handle), ctypes.pointer(mx_uint(grad_req)), ctypes.pointer(grad.handle))) @property def grad(self): """Returns gradient buffer attached to this ndarray.""" hdl = NDArrayHandle() check_call(_LIB.MXNDArrayGetGrad(self.handle, ctypes.byref(hdl))) if hdl.value is None: return None return _np_ndarray_cls(hdl) def detach(self): """Returns a new ndarray, detached from the current graph.""" hdl = NDArrayHandle() check_call(_LIB.MXNDArrayDetach(self.handle, ctypes.byref(hdl))) return _np_ndarray_cls(hdl) def astype(self, dtype, *args, **kwargs): # pylint: disable=arguments-differ,unused-argument """ Copy of the array, cast to a specified type. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, optional Default `True`. By default, astype always returns a newly allocated ndarray on the same context. If this is set to `False`, and the dtype requested is the same as the ndarray's dtype, the ndarray is returned instead of a copy. Returns ------- arr_t : ndarray Unless `copy` is False and the other conditions for returning the input array are satisfied (see description for `copy` input parameter), `arr_t` is a new array of the same shape as the input array with `dtype`. """ _sanity_check_params('astype', ['order', 'casting', 'subok'], kwargs) copy = kwargs.get('copy', True) if not copy and _np.dtype(dtype) == self.dtype: return self res = empty(self.shape, dtype=dtype, ctx=self.context) self.copyto(res) return res def copyto(self, other): """Copies the value of this array to another array. If ``other`` is a ``ndarray`` object, then ``other.shape`` and ``self.shape`` should be the same. This function copies the value from ``self`` to ``other``. If ``other`` is a context, a new ``np.ndarray`` will be first created on the target context, and the value of ``self`` is copied. Parameters ---------- other : ndarray or Context The destination array or context. Returns ------- out: ndarray The copied array. If ``other`` is an ``ndarray``, then the return value and ``other`` will point to the same ``ndarray``. Examples -------- >>> x = np.ones((2, 3)) >>> y = np.zeros((2, 3), ctx=npx.gpu(0)) >>> z = x.copyto(y) >>> z is y True >>> y array([[ 1., 1., 1.], [ 1., 1., 1.]]) """ if isinstance(other, ndarray): if other.handle is self.handle: warnings.warn('You are attempting to copy an array to itself', RuntimeWarning) return False return _npi.copyto(self, out=other) elif isinstance(other, Context): hret = ndarray(_new_alloc_handle(self.shape, other, True, self.dtype)) return _npi.copyto(self, out=hret) else: raise TypeError('copyto does not support type ' + str(type(other))) def asscalar(self): raise AttributeError('mxnet.numpy.ndarray object has no attribute asscalar') def argmax(self, axis=None, out=None): # pylint: disable=arguments-differ """Return indices of the maximum values along the given axis. Refer to `mxnet.numpy.argmax` for full documentation.""" return argmax(self, axis, out) def as_in_context(self, context): """This function has been deprecated. Please refer to ``ndarray.as_in_ctx``.""" warnings.warn('ndarray.context has been renamed to ndarray.ctx', DeprecationWarning) return self.as_nd_ndarray().as_in_context(context).as_np_ndarray() def as_in_ctx(self, ctx): """Returns an array on the target device with the same value as this array. If the target context is the same as ``self.context``, then ``self`` is returned. Otherwise, a copy is made. Parameters ---------- context : Context The target context. Returns ------- ndarray The target array. """ if self.ctx == ctx: return self return self.copyto(ctx) @property def ctx(self): """Device context of the array. Examples -------- >>> x = np.array([1, 2, 3, 4]) >>> x.ctx cpu(0) >>> type(x.ctx) <class 'mxnet.context.Context'> >>> y = np.zeros((2, 3), npx.gpu(0)) >>> y.ctx gpu(0) """ dev_typeid = ctypes.c_int() dev_id = ctypes.c_int() check_call(_LIB.MXNDArrayGetContext( self.handle, ctypes.byref(dev_typeid), ctypes.byref(dev_id))) return Context(Context.devtype2str[dev_typeid.value], dev_id.value) @property def context(self): """This function has been deprecated. Please refer to ``ndarray.ctx``.""" warnings.warn('ndarray.context has been renamed to ndarray.ctx', DeprecationWarning) return self.as_nd_ndarray().context def copy(self, order='C'): # pylint: disable=arguments-differ """Return a coyp of the array, keeping the same context. Parameters ---------- order : str The memory layout of the copy. Currently, only c-contiguous memory layout is supported. Examples -------- >>> x = np.ones((2, 3)) >>> y = x.copy() >>> y array([[ 1., 1., 1.], [ 1., 1., 1.]]) """ if order != 'C': raise NotImplementedError('ndarray.copy only supports order=\'C\', while ' 'received {}'.format(str(order))) return self.copyto(self.ctx) def dot(self, b, out=None): """Dot product of two arrays. Refer to ``numpy.dot`` for full documentation.""" return _mx_np_op.dot(self, b, out=out) def reshape(self, *args, **kwargs): # pylint: disable=arguments-differ """Returns a copy of the array with a new shape. Notes ----- Unlike the free function `numpy.reshape`, this method on `ndarray` allows the elements of the shape parameter to be passed in as separate arguments. For example, ``a.reshape(10, 11)`` is equivalent to ``a.reshape((10, 11))``. """ order = 'C' if len(kwargs) > 1: raise TypeError('function takes at most 1 keyword argument') if len(kwargs) == 1: if 'order' not in kwargs: raise TypeError('{} is an invalid keyword argument for this function' .format(kwargs.keys()[0])) order = kwargs.pop('order', 'C') if order != 'C': raise NotImplementedError('only supports C-order,' ' while received {}'.format(order)) if len(args) == 0: raise TypeError('reshape() takes exactly 1 argument (0 given)') if len(args) == 1 and isinstance(args[0], tuple): return _mx_np_op.reshape(self, newshape=args[0], order=order) else: return _mx_np_op.reshape(self, newshape=args, order=order) def reshape_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`reshape_like`. The arguments are the same as for :py:func:`reshape_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute reshape_like') def reshape_view(self, *shape, **kwargs): """Returns a **view** of this array with a new shape without altering any data. Inheritated from NDArray.reshape. """ return super(ndarray, self).reshape(*shape, **kwargs) def zeros_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`zeros_like`. The arguments are the same as for :py:func:`zeros_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute zeros_like') def ones_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`ones_like`. The arguments are the same as for :py:func:`ones_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute ones_like') def broadcast_axes(self, *args, **kwargs): """Convenience fluent method for :py:func:`broadcast_axes`. The arguments are the same as for :py:func:`broadcast_axes`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute broadcast_like') def repeat(self, repeats, axis=None): # pylint: disable=arguments-differ """Repeat elements of an array.""" return _mx_np_op.repeat(self, repeats=repeats, axis=axis) def pad(self, *args, **kwargs): """Convenience fluent method for :py:func:`pad`. The arguments are the same as for :py:func:`pad`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute pad') def swapaxes(self, axis1, axis2): # pylint: disable=arguments-differ """Return a copy of the array with axis1 and axis2 interchanged. Refer to `mxnet.numpy.swapaxes` for full documentation. """ return swapaxes(self, axis1, axis2) def split(self, *args, **kwargs): """Convenience fluent method for :py:func:`split`. The arguments are the same as for :py:func:`split`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute split') def split_v2(self, *args, **kwargs): """Convenience fluent method for :py:func:`split_v2`. The arguments are the same as for :py:func:`split_v2`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute split_v2') def slice(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice`. The arguments are the same as for :py:func:`slice`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice') def slice_axis(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice_axis`. The arguments are the same as for :py:func:`slice_axis`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice_axis') def slice_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice_like`. The arguments are the same as for :py:func:`slice_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice_like') def slice_assign_scalar(self, value, begin, end, step): """ Assign the scalar to a cropped subset of this ndarray. Value will broadcast to the shape of the cropped shape and will be cast to the same dtype of the ndarray. Parameters ---------- value: numeric value Value and this ndarray should be of the same data type. The shape of rhs should be the same as the cropped shape of this ndarray. begin: tuple of begin indices end: tuple of end indices step: tuple of step lenghths Returns ------- This ndarray. Examples -------- >>> x = np.ones((2, 2, 2)) >>> y = x.slice_assign_scalar(0, (0, 0, None), (1, 1, None), (None, None, None)) >>> y array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) >>> x array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) """ return _npi.slice_assign_scalar(self, value, begin=begin, end=end, step=step, out=self) def slice_assign(self, rhs, begin, end, step): """ Assign the rhs to a cropped subset of this ndarray in place. Returns the view of this ndarray. Parameters ---------- rhs: ndarray. rhs and this NDArray should be of the same data type, and on the same device. The shape of rhs should be the same as the cropped shape of this ndarray. begin: tuple of begin indices end: tuple of end indices step: tuple of step lenghths Returns ------- out : ndarray This ndarray. Examples -------- >>> x = np.ones((2, 2, 2)) >>> assigned = np.zeros((1, 1, 2)) >>> y = x.slice_assign(assigned, (0, 0, None), (1, 1, None), (None, None, None)) >>> y array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) >>> x array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) """ return _npi.slice_assign(self, rhs, begin=begin, end=end, step=step, out=self) def take(self, *args, **kwargs): """Convenience fluent method for :py:func:`take`. The arguments are the same as for :py:func:`take`, with this array as data. """ raise NotImplementedError def one_hot(self, *args, **kwargs): """Convenience fluent method for :py:func:`one_hot`. The arguments are the same as for :py:func:`one_hot`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute one_hot') def pick(self, *args, **kwargs): """Convenience fluent method for :py:func:`pick`. The arguments are the same as for :py:func:`pick`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute pick') def sort(self, *args, **kwargs): """Convenience fluent method for :py:func:`sort`. The arguments are the same as for :py:func:`sort`, with this array as data. """ raise NotImplementedError def topk(self, *args, **kwargs): """Convenience fluent method for :py:func:`topk`. The arguments are the same as for :py:func:`topk`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute topk') def argsort(self, *args, **kwargs): """Convenience fluent method for :py:func:`argsort`. The arguments are the same as for :py:func:`argsort`, with this array as data. """ raise NotImplementedError def argmax_channel(self, *args, **kwargs): """Convenience fluent method for :py:func:`argmax_channel`. The arguments are the same as for :py:func:`argmax_channel`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute argmax_channel') def argmin(self, *args, **kwargs): """Convenience fluent method for :py:func:`argmin`. The arguments are the same as for :py:func:`argmin`, with this array as data. """ raise NotImplementedError def clip(self, min=None, max=None, out=None): # pylint: disable=arguments-differ """Return an array whose values are limited to [min, max]. One of max or min must be given. """ return clip(self, min, max, out=out) def abs(self, *args, **kwargs): """Convenience fluent method for :py:func:`abs`. The arguments are the same as for :py:func:`abs`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute abs') def sign(self, *args, **kwargs): """Convenience fluent method for :py:func:`sign`. The arguments are the same as for :py:func:`sign`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sign') def flatten(self, order='C'): # pylint: disable=arguments-differ """Return a copy of the array collapsed into one dimension.""" return self.reshape(-1, order=order) def shape_array(self, *args, **kwargs): """Convenience fluent method for :py:func:`shape_array`. The arguments are the same as for :py:func:`shape_array`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute shape_array') def size_array(self, *args, **kwargs): """Convenience fluent method for :py:func:`size_array`. The arguments are the same as for :py:func:`size_array`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute size_array') def expand_dims(self, *args, **kwargs): # pylint: disable=arguments-differ,unused-argument """Convenience fluent method for :py:func:`expand_dims`. The arguments are the same as for :py:func:`expand_dims`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute expand_dims') def tile(self, *args, **kwargs): """Convenience fluent method for :py:func:`tile`. The arguments are the same as for :py:func:`tile`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute tile') def transpose(self, *axes): # pylint: disable=arguments-differ """Permute the dimensions of an array.""" return _mx_np_op.transpose(self, axes=axes if len(axes) != 0 else None) def flip(self, *args, **kwargs): """Convenience fluent method for :py:func:`flip`. The arguments are the same as for :py:func:`flip`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute flip') def depth_to_space(self, *args, **kwargs): """Convenience fluent method for :py:func:`depth_to_space`. The arguments are the same as for :py:func:`depth_to_space`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute depth_to_space') def space_to_depth(self, *args, **kwargs): """Convenience fluent method for :py:func:`space_to_depth`. The arguments are the same as for :py:func:`space_to_depth`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute space_to_depth') def diag(self, k=0, **kwargs): """Convenience fluent method for :py:func:`diag`. The arguments are the same as for :py:func:`diag`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute diag') def sum(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the sum of the array elements over the given axis.""" return _mx_np_op.sum(self, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def nansum(self, *args, **kwargs): """Convenience fluent method for :py:func:`nansum`. The arguments are the same as for :py:func:`nansum`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute nansum') def prod(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the product of the array elements over the given axis.""" return _mx_np_op.prod(self, axis=axis, dtype=dtype, keepdims=keepdims, out=out) def nanprod(self, *args, **kwargs): """Convenience fluent method for :py:func:`nanprod`. The arguments are the same as for :py:func:`nanprod`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute nanprod') def mean(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Returns the average of the array elements along given axis.""" return mean(self, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=arguments-differ """Returns the standard deviation of the array elements along given axis.""" return std(self, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=arguments-differ """Returns the variance of the array elements, along given axis.""" return var(self, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) def cumsum(self, axis=None, dtype=None, out=None): """Return the cumulative sum of the elements along the given axis.""" return _mx_np_op.cumsum(self, axis=axis, dtype=dtype, out=out) def tolist(self): return self.asnumpy().tolist() def max(self, axis=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the maximum along a given axis.""" return _mx_np_op.max(self, axis=axis, keepdims=keepdims, out=out) def min(self, axis=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`min`. The arguments are the same as for :py:func:`min`, with this array as data. """ return _mx_np_op.min(self, axis=axis, keepdims=keepdims, out=out) def norm(self, *args, **kwargs): """Convenience fluent method for :py:func:`norm`. The arguments are the same as for :py:func:`norm`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute norm') def round(self, *args, **kwargs): """Convenience fluent method for :py:func:`round`. The arguments are the same as for :py:func:`round`, with this array as data. """ raise NotImplementedError def rint(self, *args, **kwargs): """Convenience fluent method for :py:func:`rint`. The arguments are the same as for :py:func:`rint`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rint') def fix(self, *args, **kwargs): """Convenience fluent method for :py:func:`fix`. The arguments are the same as for :py:func:`fix`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute fix') def floor(self, *args, **kwargs): """Convenience fluent method for :py:func:`floor`. The arguments are the same as for :py:func:`floor`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute floor') def ceil(self, *args, **kwargs): """Convenience fluent method for :py:func:`ceil`. The arguments are the same as for :py:func:`ceil`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute ceil') def trunc(self, *args, **kwargs): """Convenience fluent method for :py:func:`trunc`. The arguments are the same as for :py:func:`trunc`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute trunc') def sin(self, *args, **kwargs): """Convenience fluent method for :py:func:`sin`. The arguments are the same as for :py:func:`sin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sin') def cos(self, *args, **kwargs): """Convenience fluent method for :py:func:`cos`. The arguments are the same as for :py:func:`cos`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cos') def tan(self, *args, **kwargs): """Convenience fluent method for :py:func:`tan`. The arguments are the same as for :py:func:`tan`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute tan') def arcsin(self, *args, **kwargs): """Convenience fluent method for :py:func:`arcsin`. The arguments are the same as for :py:func:`arcsin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arcsin') def arccos(self, *args, **kwargs): """Convenience fluent method for :py:func:`arccos`. The arguments are the same as for :py:func:`arccos`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arccos') def arctan(self, *args, **kwargs): """Convenience fluent method for :py:func:`arctan`. The arguments are the same as for :py:func:`arctan`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arctan') def degrees(self, *args, **kwargs): """Convenience fluent method for :py:func:`degrees`. The arguments are the same as for :py:func:`degrees`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute degrees') def radians(self, *args, **kwargs): """Convenience fluent method for :py:func:`radians`. The arguments are the same as for :py:func:`radians`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute radians') def sinh(self, *args, **kwargs): """Convenience fluent method for :py:func:`sinh`. The arguments are the same as for :py:func:`sinh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sinh') def cosh(self, *args, **kwargs): """Convenience fluent method for :py:func:`cosh`. The arguments are the same as for :py:func:`cosh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cosh') def tanh(self, *args, **kwargs): """Convenience fluent method for :py:func:`tanh`. The arguments are the same as for :py:func:`tanh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute tanh') def arcsinh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arcsinh`. The arguments are the same as for :py:func:`arcsinh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arcsinh') def arccosh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arccosh`. The arguments are the same as for :py:func:`arccosh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arccosh') def arctanh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arctanh`. The arguments are the same as for :py:func:`arctanh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arctanh') def exp(self, *args, **kwargs): """Convenience fluent method for :py:func:`exp`. The arguments are the same as for :py:func:`exp`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute exp') def expm1(self, *args, **kwargs): """Convenience fluent method for :py:func:`expm1`. The arguments are the same as for :py:func:`expm1`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute expm1') def log(self, *args, **kwargs): """Convenience fluent method for :py:func:`log`. The arguments are the same as for :py:func:`log`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log') def log10(self, *args, **kwargs): """Convenience fluent method for :py:func:`log10`. The arguments are the same as for :py:func:`log10`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log10') def log2(self, *args, **kwargs): """Convenience fluent method for :py:func:`log2`. The arguments are the same as for :py:func:`log2`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log2') def log1p(self, *args, **kwargs): """Convenience fluent method for :py:func:`log1p`. The arguments are the same as for :py:func:`log1p`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log1p') def sqrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`sqrt`. The arguments are the same as for :py:func:`sqrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sqrt') def rsqrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`rsqrt`. The arguments are the same as for :py:func:`rsqrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rsqrt') def cbrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`cbrt`. The arguments are the same as for :py:func:`cbrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cqrt') def rcbrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`rcbrt`. The arguments are the same as for :py:func:`rcbrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rcqrt') def square(self, *args, **kwargs): """Convenience fluent method for :py:func:`square`. The arguments are the same as for :py:func:`square`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute square') def reciprocal(self, *args, **kwargs): """Convenience fluent method for :py:func:`reciprocal`. The arguments are the same as for :py:func:`reciprocal`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute reciprocal') def relu(self, *args, **kwargs): """Convenience fluent method for :py:func:`relu`. The arguments are the same as for :py:func:`relu`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute relu') def sigmoid(self, *args, **kwargs): """Convenience fluent method for :py:func:`sigmoid`. The arguments are the same as for :py:func:`sigmoid`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sigmoid') def softmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`softmax`. The arguments are the same as for :py:func:`softmax`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute softmax') def log_softmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`log_softmax`. The arguments are the same as for :py:func:`log_softmax`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log_softmax') def softmin(self, *args, **kwargs): """Convenience fluent method for :py:func:`softmin`. The arguments are the same as for :py:func:`softmin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute softmin') def squeeze(self, axis=None): # pylint: disable=arguments-differ """Remove single-dimensional entries from the shape of a.""" return _mx_np_op.squeeze(self, axis=axis) def broadcast_to(self, shape): return _mx_np_op.broadcast_to(self, shape) def broadcast_like(self, other): raise AttributeError('mxnet.numpy.ndarray object has no attribute broadcast_like') def _full(self, value): """ Currently for internal use only. Implemented for __setitem__. Assign to self an array of self's same shape and type, filled with value. """ return _mx_nd_np.full(self.shape, value, ctx=self.context, dtype=self.dtype, out=self) # pylint: disable=redefined-outer-name def _scatter_set_nd(self, value_nd, indices): """ This is added as an ndarray class method in order to support polymorphism in NDArray and numpy.ndarray indexing """ return _npi.scatter_set_nd( lhs=self, rhs=value_nd, indices=indices, shape=self.shape, out=self ) # pylint: enable=redefined-outer-name @property def shape(self): return super(ndarray, self).shape @property def ndim(self): """Number of array dimensions.""" return len(self.shape) @property def size(self): """Number of elements in the array.""" return super(ndarray, self).size def tostype(self, stype): raise AttributeError('mxnet.numpy.ndarray object has no attribute tostype') @set_module('mxnet.numpy') def empty(shape, dtype=_np.float32, order='C', ctx=None): """Return a new array of given shape and type, without initializing entries. Parameters ---------- shape : int or tuple of int Shape of the empty array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional Desired output data-type for the array, e.g, `numpy.int8`. Default is `numpy.float32`. Note that this behavior is different from NumPy's `empty` function where `float64` is the default value, because `float32` is considered as the default data type in deep learning. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- out : ndarray Array of uninitialized (arbitrary) data of the given shape, dtype, and order. """ if order != 'C': raise NotImplementedError('`empty` only supports order equal to `C`, while received {}' .format(str(order))) if ctx is None: ctx = current_context() if dtype is None: dtype = _np.float32 if isinstance(shape, int): shape = (shape,) return ndarray(handle=_new_alloc_handle(shape, ctx, False, dtype)) @set_module('mxnet.numpy') def array(object, dtype=None, ctx=None): """ Create an array. Parameters ---------- object : array_like or `numpy.ndarray` or `mxnet.numpy.ndarray` An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. dtype : data-type, optional The desired data-type for the array. Default is `float32`. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- out : ndarray An array object satisfying the specified requirements. """ if ctx is None: ctx = current_context() if isinstance(object, ndarray): dtype = object.dtype if dtype is None else dtype else: dtype = _np.float32 if dtype is None else dtype if not isinstance(object, (ndarray, _np.ndarray)): try: object = _np.array(object, dtype=dtype) except Exception as e: raise TypeError('{}'.format(str(e))) ret = empty(object.shape, dtype=dtype, ctx=ctx) if len(object.shape) == 0: ret[()] = object else: ret[:] = object return ret @set_module('mxnet.numpy') def zeros(shape, dtype=_np.float32, order='C', ctx=None): """Return a new array of given shape and type, filled with zeros. This function currently only supports storing multi-dimensional data in row-major (C-style). Parameters ---------- shape : int or tuple of int The shape of the empty array. dtype : str or numpy.dtype, optional An optional value type (default is `numpy.float32`). Note that this behavior is different from NumPy's `ones` function where `float64` is the default value, because `float32` is considered as the default data type in deep learning. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray Array of zeros with the given shape, dtype, and ctx. """ return _mx_nd_np.zeros(shape, dtype, order, ctx) @set_module('mxnet.numpy') def ones(shape, dtype=_np.float32, order='C', ctx=None): """Return a new array of given shape and type, filled with zeros. This function currently only supports storing multi-dimensional data in row-major (C-style). Parameters ---------- shape : int or tuple of int The shape of the empty array. dtype : str or numpy.dtype, optional An optional value type. Default is `numpy.float32`. Note that this behavior is different from NumPy's `ones` function where `float64` is the default value, because `float32` is considered as the default data type in deep learning. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray Array of zeros with the given shape, dtype, and ctx. """ return _mx_nd_np.ones(shape, dtype, order, ctx) @set_module('mxnet.numpy') def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): # pylint: disable=too-many-arguments """ Return a new array of given shape and type, filled with `fill_value`. Parameters ---------- shape : int or sequence of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. fill_value : scalar Fill value. dtype : data-type, optional The desired data-type for the array. The default, `None`, means `np.array(fill_value).dtype`. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of `fill_value` with the given shape, dtype, and order. Notes ----- This function differs from the original `numpy.full https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html`_ in the following way(s): - Has an additional `ctx` argument to specify the device - Has an additional `out` argument - Currently does not support `order` selection See Also -------- empty : Return a new uninitialized array. ones : Return a new array setting values to one. zeros : Return a new array setting values to zero. Examples -------- >>> np.full((2, 2), 10) array([[10., 10.], [10., 10.]]) >>> np.full((2, 2), 2, dtype=np.int32, ctx=mx.cpu(0)) array([[2, 2], [2, 2]], dtype=int32) """ return _mx_nd_np.full(shape, fill_value, order=order, ctx=ctx, dtype=dtype, out=out) @set_module('mxnet.numpy') def add(x1, x2, out=None): """Add arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be added. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- add : ndarray or scalar The sum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. """ return _mx_nd_np.add(x1, x2, out) @set_module('mxnet.numpy') def subtract(x1, x2, out=None): """Subtract arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be subtracted from each other. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- subtract : ndarray or scalar The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. """ return _mx_nd_np.subtract(x1, x2, out) @set_module('mxnet.numpy') def multiply(x1, x2, out=None): """Multiply arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be multiplied. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. """ return _mx_nd_np.multiply(x1, x2, out) @set_module('mxnet.numpy') def divide(x1, x2, out=None): """Returns a true division of the inputs, element-wise. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. """ return _mx_nd_np.divide(x1, x2, out=out) @set_module('mxnet.numpy') def mod(x1, x2, out=None): """Return element-wise remainder of division. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. """ return _mx_nd_np.mod(x1, x2, out=out) @set_module('mxnet.numpy') def remainder(x1, x2, out=None): """Return element-wise remainder of division. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. """ return _mx_nd_np.remainder(x1, x2, out=out) @set_module('mxnet.numpy') def power(x1, x2, out=None): """First array elements raised to powers from second array, element-wise. Parameters ---------- x1 : ndarray or scalar The bases. x2 : ndarray or scalar The exponent. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are scalars. """ return _mx_nd_np.power(x1, x2, out=out) @set_module('mxnet.numpy') def sin(x, out=None, **kwargs): r"""Trigonometric sine, element-wise. Parameters ---------- x : ndarray or scalar Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The sine of each element of x. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. """ return _mx_nd_np.sin(x, out=out, **kwargs) @set_module('mxnet.numpy') def cos(x, out=None, **kwargs): r"""Cosine, element-wise. Parameters ---------- x : ndarray or scalar Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding cosine values. This is a scalar if x is a scalar. Notes ---- This function only supports input type of float. """ return _mx_nd_np.cos(x, out=out, **kwargs) def sinh(x, out=None, **kwargs): """Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding hyperbolic sine values. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. """ return _mx_nd_np.sinh(x, out=out, **kwargs) @set_module('mxnet.numpy') def cosh(x, out=None, **kwargs): """Hyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding hyperbolic cosine values. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. """ return _mx_nd_np.cosh(x, out=out, **kwargs) @set_module('mxnet.numpy') def tanh(x, out=None, **kwargs): """ Compute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)``. Parameters ---------- x : ndarray or scalar. Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ---------- y : ndarray or scalar The corresponding hyperbolic tangent values. Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) - input x does not support complex computation (like imaginary number) >>> np.tanh(np.pi*1j) TypeError: type <type 'complex'> not supported Examples -------- >>> np.tanh(np.array[0, np.pi])) array([0. , 0.9962721]) >>> np.tanh(np.pi) 0.99627207622075 >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out1 = np.array(1) >>> out2 = np.tanh(np.array(0.1), out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) mxnet.base.MXNetError: [07:17:36] ../src/ndarray/./../operator/tensor/../elemwise_op_common.h:135: Check failed: assign(&dattr, vec.at(i)): Incompatible attr in node at 0-th output: expected [3,3], got [2,2] """ return _mx_nd_np.tanh(x, out=out, **kwargs) @set_module('mxnet.numpy') def log10(x, out=None, **kwargs): """Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. """ return _mx_nd_np.log10(x, out=out, **kwargs) @set_module('mxnet.numpy') def sqrt(x, out=None, **kwargs): """ Return the non-negative square-root of an array, element-wise. Parameters ---------- x : ndarray or scalar The values whose square-roots are required. out : ndarray, or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar An array of the same shape as `x`, containing the positive square-root of each element in `x`. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. """ return _mx_nd_np.sqrt(x, out=out, **kwargs) @set_module('mxnet.numpy') def cbrt(x, out=None, **kwargs): """ Return the cube-root of an array, element-wise. Parameters ---------- x : ndarray The values whose cube-roots are required. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- y : ndarray An array of the same shape as x, containing the cube cube-root of each element in x. If out was provided, y is a reference to it. This is a scalar if x is a scalar. Examples ---------- >>> np.cbrt([1,8,27]) array([ 1., 2., 3.]) """ return _mx_nd_np.cbrt(x, out=out, **kwargs) @set_module('mxnet.numpy') def abs(x, out=None, **kwargs): r"""abs(x, out=None, **kwargs) Calculate the absolute value element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. This is a scalar if `x` is a scalar. Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.abs(x) array([1.2, 1.2]) """ return _mx_nd_np.abs(x, out=out, **kwargs) @set_module('mxnet.numpy') def absolute(x, out=None, **kwargs): """ Calculate the absolute value element-wise. np.abs is a shorthand for this function. Parameters ---------- x : ndarray Input array. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- absolute : ndarray An ndarray containing the absolute value of each element in x. Examples ---------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) """ return _mx_nd_np.absolute(x, out=out, **kwargs) @set_module('mxnet.numpy') def exp(x, out=None, **kwargs): r"""exp(x, out=None, **kwargs) Calculate the exponential of all elements in the input array. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array, element-wise exponential of `x`. This is a scalar if `x` is a scalar. Examples -------- >>> np.exp(1) 2.718281828459045 >>> x = np.array([-1, 1, -2, 2]) >>> np.exp(x) array([0.36787945, 2.7182817 , 0.13533528, 7.389056 ]) """ return _mx_nd_np.exp(x, out=out, **kwargs) @set_module('mxnet.numpy') def expm1(x, out=None, **kwargs): r"""expm1(x, out=None, **kwargs) Calculate `exp(x) - 1` for all elements in the array. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array, element-wise exponential minus one: `out = exp(x) - 1`. This is a scalar if `x` is a scalar. Examples -------- >>> np.expm1(1) 1.718281828459045 >>> x = np.array([-1, 1, -2, 2]) >>> np.exp(x) array([-0.63212056, 1.71828183, -0.86466472, 6.3890561]) """ return _mx_nd_np.expm1(x, out=out, **kwargs) @set_module('mxnet.numpy') def arcsin(x, out=None, **kwargs): r""" arcsin(x, out=None) Inverse sine, element-wise. Parameters ---------- x : ndarray or scalar `y`-coordinate on the unit circle. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- angle : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. The inverse sine of each element in `x`, in radians and in the closed interval ``[-pi/2, pi/2]``. Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0 Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that :math:`sin(z) = x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, *arcsin* always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. The inverse sine is also known as `asin` or sin^{-1}. The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.arcsin <https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html>`_ in the following aspects: - Only support ndarray or scalar now. - `where` argument is not supported. - Complex input is not supported. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/ """ return _mx_nd_np.arcsin(x, out=out, **kwargs) @set_module('mxnet.numpy') def arccos(x, out=None, **kwargs): """ Trigonometric inverse cosine, element-wise. The inverse of cos so that, if y = cos(x), then x = arccos(y). Parameters ---------- x : ndarray x-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- angle : ndarray The angle of the ray intersecting the unit circle at the given x-coordinate in radians [0, pi]. This is a scalar if x is a scalar. See also ---------- cos, arctan, arcsin Notes ---------- arccos is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x. The convention is to return the angle z whose real part lies in [0, pi]. For real-valued input data types, arccos always returns real output. For each value that cannot be expressed as a real number or infinity, it yields nan and sets the invalid floating point error flag. The inverse cos is also known as acos or cos^-1. Examples ---------- We expect the arccos of 1 to be 0, and of -1 to be pi: >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) """ return _mx_nd_np.arccos(x, out=out, **kwargs) @set_module('mxnet.numpy') def arctan(x, out=None, **kwargs): r"""arctan(x, out=None, **kwargs) Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Out has the same shape as `x`. It lies is in ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``). This is a scalar if `x` is a scalar. Notes ----- `arctan` is a multi-valued function: for each `x` there are infinitely many numbers `z` such that tan(`z`) = `x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, we do not have support for them yet. The inverse tangent is also known as `atan` or tan^{-1}. Examples -------- We expect the arctan of 0 to be 0, and of 1 to be pi/4: >>> x = np.array([0, 1]) >>> np.arctan(x) array([0. , 0.7853982]) >>> np.pi/4 0.7853981633974483 """ return _mx_nd_np.arctan(x, out=out, **kwargs) @set_module('mxnet.numpy') def sign(x, out=None): """ sign(x, out=None) Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. Only supports real number. Parameters ---------- x : ndarray or a scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The sign of `x`. This is a scalar if `x` is a scalar. Note ------- - Only supports real number as input elements. - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.array([-5., 4.5]) >>> np.sign(a) array([-1., 1.]) Scalars as input: >>> np.sign(4.0) 1.0 >>> np.sign(0) 0 Use ``out`` parameter: >>> b = np.zeros((2, )) >>> np.sign(a, out=b) array([-1., 1.]) >>> b array([-1., 1.]) """ return _mx_nd_np.sign(x, out=out) @set_module('mxnet.numpy') def log(x, out=None, **kwargs): """ log(x, out=None) Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : ndarray Input value. Elements must be of real value. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The natural logarithm of `x`, element-wise. This is a scalar if `x` is a scalar. Notes ----- Currently only supports data of real values and ``inf`` as input. Returns data of real value, ``inf``, ``-inf`` and ``nan`` according to the input. This function differs from the original `numpy.log <https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html>`_ in the following aspects: - Does not support complex number for now - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.array([1, np.exp(1), np.exp(2), 0], dtype=np.float64) >>> np.log(a) array([ 0., 1., 2., -inf], dtype=float64) Due to internal calculation mechanism, using default float32 dtype may cause some special behavior: >>> a = np.array([1, np.exp(1), np.exp(2), 0]) >>> np.log(a) array([ 0., 0.99999994, 2., -inf]) Scalar calculation: >>> np.log(1) 0.0 """ return _mx_nd_np.log(x, out=out, **kwargs) @set_module('mxnet.numpy') def rint(x, out=None, **kwargs): """ Round elements of the array to the nearest integer. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Notes ----- This function differs from the original `numpy.rint <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 1., 2., 2.]) """ return _mx_nd_np.rint(x, out=out, **kwargs) @set_module('mxnet.numpy') def log2(x, out=None, **kwargs): """ Base-2 logarithm of x. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray The logarithm base two of `x`, element-wise. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original `numpy.log2 <https://www.google.com/search?q=numpy+log2>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-inf, 0., 1., 4.]) """ return _mx_nd_np.log2(x, out=out, **kwargs) @set_module('mxnet.numpy') def log1p(x, out=None, **kwargs): """ Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar Natural logarithm of 1 + x, element-wise. This is a scalar if x is a scalar. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. cannot support complex-valued input. Examples -------- >>> np.log1p(1e-99) 1e-99 >>> a = np.array([3, 4, 5]) >>> np.log1p(a) array([1.3862944, 1.609438 , 1.7917595]) """ return _mx_nd_np.log1p(x, out=out, **kwargs) @set_module('mxnet.numpy') def degrees(x, out=None, **kwargs): """ degrees(x, out=None) Convert angles from radians to degrees. Parameters ---------- x : ndarray Input value. Elements must be of real value. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The corresponding degree values; if `out` was supplied this is a reference to it. This is a scalar if `x` is a scalar. Notes ------- This function differs from the original `numpy.degrees <https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). Only ndarray is supported. - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- Convert a radian array to degrees >>> rad = np.arange(12.) * np.pi / 6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) Use specified ``out`` ndarray: >>> out = np.zeros((rad.shape)) >>> np.degrees(rad, out) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) """ return _mx_nd_np.degrees(x, out=out, **kwargs) @set_module('mxnet.numpy') def radians(x, out=None, **kwargs): """ Convert angles from degrees to radians. Parameters ---------- x : ndarray or scalar Input array in degrees. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray The corresponding radian values. This is a scalar if x is a scalar. Notes ----- This function differs from the original `numpy.radians <https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([0. , 0.5235988, 1.0471976, 1.5707964, 2.0943952, 2.6179938, 3.1415927, 3.6651914, 4.1887903, 4.712389 , 5.2359877, 5.7595863], dtype=float32) """ return _mx_nd_np.radians(x, out=out, **kwargs) @set_module('mxnet.numpy') def reciprocal(x, out=None, **kwargs): r""" reciprocal(x, out=None) Return the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : ndarray or scalar The values whose reciprocals are required. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Examples -------- >>> np.reciprocal(2.) 0.5 >>> x = np.array([1, 2., 3.33]) >>> np.reciprocal(x) array([1. , 0.5 , 0.3003003]) Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.reciprocal <https://docs.scipy.org/doc/numpy/reference/generated/numpy.reciprocal.html>`_ in the following aspects: - Only support ndarray and scalar now. - `where` argument is not supported. """ return _mx_nd_np.reciprocal(x, out=out, **kwargs) @set_module('mxnet.numpy') def square(x, out=None, **kwargs): r""" square(x, out=None) Return the element-wise square of the input. Parameters ---------- x : ndarray or scalar The values whose squares are required. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Examples -------- >>> np.square(2.) 4.0 >>> x = np.array([1, 2., -1]) >>> np.square(x) array([1., 4., 1.]) Notes ----- The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.square <https://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html>`_ in the following aspects: - Only support ndarray and scalar now. - `where` argument is not supported. - Complex input is not supported. """ return _mx_nd_np.square(x, out=out, **kwargs) @set_module('mxnet.numpy') def negative(x, out=None, where=True, **kwargs): r""" negative(x, out=None, where=True) Numerical negative, element-wise. Parameters: ------------ x : ndarray or scalar Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : ndarray, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. Returns: ------- y : ndarray or scalar Returned array or scalar: y = -x. This is a scalar if x is a scalar. Examples: -------- >>> np.negative(1) -1 """ return _mx_nd_np.negative(x, out=out) @set_module('mxnet.numpy') def fix(x, out=None): """ Round an array of floats element-wise to nearest integer towards zero. The rounded values are returned as floats. Parameters: ---------- x : ndarray An array of floats to be rounded out : ndarray, optional Output array Returns: ------- y : ndarray or scalar Returned array or scalar: y = -x. This is a scalar if x is a scalar.ndarray of floats Examples: --------- >>> np.fix(3.14) 3 """ return _mx_nd_np.fix(x, out=out) @set_module('mxnet.numpy') def tan(x, out=None, where=True, **kwargs): r""" tan(x, out=None, where=True) Compute tangent element-wise. Equivalent to np.sin(x)/np.cos(x) element-wise. Parameters: ---------- x : ndarray Input array. out : ndarray or none, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : ndarray, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. Returns: ------- y : ndarray The corresponding tangent values. This is a scalar if x is a scalar. Examples: --------- >>> np.tan(0.5) 0.5463024898437905 """ return _mx_nd_np.tan(x, out=out, **kwargs) @set_module('mxnet.numpy') def ceil(x, out=None, **kwargs): r""" Return the ceiling of the input, element-wise. The ceil of the ndarray `x` is the smallest integer `i`, such that `i >= x`. It is often denoted as :math:`\lceil x \rceil`. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar The ceiling of each element in `x`, with `float` dtype. This is a scalar if `x` is a scalar. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.]) >>> #if you use parameter out, x and out must be ndarray. if not, you will get an error! >>> a = np.array(1) >>> np.ceil(np.array(3.5), a) array(4.) >>> a array(4.) """ return _mx_nd_np.ceil(x, out=out, **kwargs) @set_module('mxnet.numpy') def floor(x, out=None, **kwargs): r""" Return the floor of the input, element-wise. The ceil of the ndarray `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\lfloor x \rfloor`. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar The floor of each element in `x`, with `float` dtype. This is a scalar if `x` is a scalar. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.]) >>> #if you use parameter out, x and out must be ndarray. if not, you will get an error! >>> a = np.array(1) >>> np.floor(np.array(3.5), a) array(3.) >>> a array(3.) """ return _mx_nd_np.floor(x, out=out, **kwargs) @set_module('mxnet.numpy') def trunc(x, out=None, **kwargs): r""" trunc(x, out=None) Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : ndarray or scalar Input data. out : ndarray or None, optional A location into which the result is stored. Returns ------- y : ndarray or scalar The truncated value of each element in `x`. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original numpy.trunc in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.]) """ return _mx_nd_np.trunc(x, out=out, **kwargs) @set_module('mxnet.numpy') def logical_not(x, out=None, **kwargs): r""" logical_not(x, out=None) Compute the truth value of NOT x element-wise. Parameters ---------- x : ndarray or scalar Logical NOT is applied to the elements of `x`. out : ndarray or None, optional A location into which the result is stored. Returns ------- y : bool or ndarray of bool Boolean result with the same shape as `x` of the NOT operation on elements of `x`. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original numpy.logical_not in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> x= np.array([True, False, 0, 1]) >>> np.logical_not(x) array([0., 1., 1., 0.]) >>> x = np.arange(5) >>> np.logical_not(x<3) array([0., 0., 0., 1., 1.]) """ return _mx_nd_np.logical_not(x, out=out, **kwargs) @set_module('mxnet.numpy') def arcsinh(x, out=None, **kwargs): r""" arcsinh(x, out=None) Inverse hyperbolic cosine, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arcsinh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arcsinh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. DType of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([3.2, 5.0]) >>> np.arcsinh(a) array([1.8309381, 2.2924316]) >>> np.arcsinh(1) 0.0 """ return _mx_nd_np.arcsinh(x, out=out, **kwargs) @set_module('mxnet.numpy') def arccosh(x, out=None, **kwargs): r""" arccosh(x, out=None) Inverse hyperbolic cosine, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arccosh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arccosh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([3.2, 5.0]) >>> np.arccosh(a) array([1.8309381, 2.2924316]) >>> np.arccosh(1) 0.0 """ return _mx_nd_np.arccosh(x, out=out, **kwargs) @set_module('mxnet.numpy') def arctanh(x, out=None, **kwargs): r""" arctanh(x, out=None) Inverse hyperbolic tangent, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arctanh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tanh(z) = x`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arctanh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([0.0, -0.5]) >>> np.arctanh(a) array([0., -0.54930615]) >>> np.arctanh(1) 0.0 """ return _mx_nd_np.arctanh(x, out=out, **kwargs) @set_module('mxnet.numpy') def tensordot(a, b, axes=2): r""" tensordot(a, b, axes=2) Compute tensor dot product along specified axes for arrays >= 1-D. Given two tensors (arrays of dimension greater than or equal to one), `a` and `b`, and an ndarray object containing two ndarray objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s elements (components) over the axes specified by ``a_axes`` and ``b_axes``. The third argument can be a single non-negative integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions of `a` and the first ``N`` dimensions of `b` are summed over. Parameters ---------- a, b : ndarray, len(shape) >= 1 Tensors to "dot". axes : int or (2,) ndarray * integer_like If an int N, sum over the last N axes of `a` and the first N axes of `b` in order. The sizes of the corresponding axes must match. * (2,) ndarray Or, a list of axes to be summed over, first sequence applying to `a`, second to `b`. Both elements ndarray must be of the same length. See Also -------- dot, einsum Notes ----- Three common use cases are: * ``axes = 0`` : tensor product :math:`a\otimes b` * ``axes = 1`` : tensor dot product :math:`a\cdot b` * ``axes = 2`` : (default) tensor double contraction :math:`a:b` When `axes` is integer_like, the sequence for evaluation will be: first the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and Nth axis in `b` last. When there is more than one axis to sum over - and they are not the last (first) axes of `a` (`b`) - the argument `axes` should consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the second axis second, and so forth. Examples -------- >>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> c = np.tensordot(a,b, axes=([1,0],[0,1])) >>> c.shape (5, 2) >>> c array([[ 4400., 4730.], [ 4532., 4874.], [ 4664., 5018.], [ 4796., 5162.], [ 4928., 5306.]]) """ return _mx_nd_np.tensordot(a, b, axes) @set_module('mxnet.numpy') def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, ctx=None): # pylint: disable=too-many-arguments r""" Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [start, stop]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : real number The starting value of the sequence. stop : real number The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False. num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, stop is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (samples, step), where step is the spacing between samples. dtype : dtype, optional The type of the output array. If dtype is not given, infer the data type from the other input arguments. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. Returns ------- samples : ndarray There are num equally spaced samples in the closed interval `[start, stop]` or the half-open interval `[start, stop)` (depending on whether endpoint is True or False). step : float, optional Only returned if retstep is True Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1.asnumpy(), y.asnumpy(), 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2.asnumpy(), (y + 0.5).asnumpy(), 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() Notes ----- This function differs from the original `numpy.linspace <https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html>`_ in the following aspects: - `start` and `stop` do not support list, numpy ndarray and mxnet ndarray - axis could only be 0 - There could be an additional `ctx` argument to specify the device, e.g. the i-th GPU. """ return _mx_nd_np.linspace(start, stop, num, endpoint, retstep, dtype, axis, ctx) @set_module('mxnet.numpy') def expand_dims(a, axis): """Expand the shape of an array. Insert a new axis that will appear at the `axis` position in the expanded array shape. Parameters ---------- a : ndarray Input array. axis : int Position in the expanded axes where the new axis is placed. Returns ------- res : ndarray Output array. The number of dimensions is one greater than that of the input array. """ return _npi.expand_dims(a, axis) @set_module('mxnet.numpy') def tile(A, reps): r""" Construct an array by repeating A the number of times given by reps. If `reps` has length ``d``, the result will have dimension of ``max(d, A.ndim)``. If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote `A` to d-dimensions manually before calling this function. If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it. Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as (1, 1, 2, 2). Parameters ---------- A : ndarray or scalar An input array or a scalar to repeat. reps : a single integer or tuple of integers The number of repetitions of `A` along each axis. Returns ------- c : ndarray The tiled output array. Examples -------- >>> a = np.array([0, 1, 2]) >>> np.tile(a, 2) array([0., 1., 2., 0., 1., 2.]) >>> np.tile(a, (2, 2)) array([[0., 1., 2., 0., 1., 2.], [0., 1., 2., 0., 1., 2.]]) >>> np.tile(a, (2, 1, 2)) array([[[0., 1., 2., 0., 1., 2.]], [[0., 1., 2., 0., 1., 2.]]]) >>> b = np.array([[1, 2], [3, 4]]) >>> np.tile(b, 2) array([[1., 2., 1., 2.], [3., 4., 3., 4.]]) >>> np.(b, (2, 1)) array([[1., 2.], [3., 4.], [1., 2.], [3., 4.]]) >>> c = np.array([1,2,3,4]) >>> np.tile(c,(4,1)) array([[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]]) Scalar as input: >>> np.tile(2, 3) array([2, 2, 2]) # repeating integer `2` """ return _mx_nd_np.tile(A, reps) @set_module('mxnet.numpy') def arange(start, stop=None, step=1, dtype=None, ctx=None): """Return evenly spaced values within a given interval. Values are generated within the half-open interval ``[start, stop)`` (in other words, the interval including `start` but excluding `stop`). For integer arguments the function is equivalent to the Python built-in `range` function, but returns an ndarray rather than a list. Parameters ---------- start : number, optional Start of interval. The interval includes this value. The default start value is 0. stop : number End of interval. The interval does not include this value, except in some cases where `step` is not an integer and floating point round-off affects the length of `out`. step : number, optional Spacing between values. For any output `out`, this is the distance between two adjacent values, ``out[i+1] - out[i]``. The default step size is 1. If `step` is specified as a position argument, `start` must also be given. dtype : dtype The type of the output array. The default is `float32`. Returns ------- arange : ndarray Array of evenly spaced values. For floating point arguments, the length of the result is ``ceil((stop - start)/step)``. Because of floating point overflow, this rule may result in the last element of `out` being greater than `stop`. """ return _mx_nd_np.arange(start, stop, step, dtype, ctx) @set_module('mxnet.numpy') def split(ary, indices_or_sections, axis=0): """Split an array into multiple sub-arrays. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1-D array If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example, ``[2, 3]`` would, for ``axis=0``, result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along `axis`, an empty sub-array is returned correspondingly. axis : int, optional The axis along which to split, default is 0. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Raises ------ ValueError If `indices_or_sections` is given as an integer, but a split does not result in equal division.""" return _mx_nd_np.split(ary, indices_or_sections, axis=axis) @set_module('mxnet.numpy') def concatenate(seq, axis=0, out=None): """Join a sequence of arrays along an existing axis. Parameters ---------- a1, a2, ... : sequence of array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int, optional The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0. out : ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified. Returns ------- res : ndarray The concatenated array. """ return _mx_nd_np.concatenate(seq, axis=axis, out=out) @set_module('mxnet.numpy') def stack(arrays, axis=0, out=None): """Join a sequence of arrays along a new axis. The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if `axis=0` it will be the first dimension and if `axis=-1` it will be the last dimension. Parameters ---------- arrays : sequence of array_like Each array must have the same shape. axis : int, optional The axis in the result array along which the input arrays are stacked. out : ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what stack would have returned if no out argument were specified. Returns ------- stacked : ndarray The stacked array has one more dimension than the input arrays.""" return _mx_nd_np.stack(arrays, axis=axis, out=out) @set_module('mxnet.numpy') def maximum(x1, x2, out=None): """Returns element-wise maximum of the input arrays with broadcasting. Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The maximum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars.""" return _mx_nd_np.maximum(x1, x2, out=out) @set_module('mxnet.numpy') def minimum(x1, x2, out=None): """Returns element-wise minimum of the input arrays with broadcasting. Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The minimum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars.""" return _mx_nd_np.minimum(x1, x2, out=out) @set_module('mxnet.numpy') def swapaxes(a, axis1, axis2): """Interchange two axes of an array. Parameters ---------- a : ndarray Input array. axis1 : int First axis. axis2 : int Second axis. Returns ------- a_swapped : ndarray Swapped array. This is always a copy of the input array. """ return _npi.swapaxes(a, dim1=axis1, dim2=axis2) @set_module('mxnet.numpy') def clip(a, a_min, a_max, out=None): """clip(a, a_min, a_max, out=None) Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Parameters ---------- a : ndarray Array containing elements to clip. a_min : scalar or `None` Minimum value. If `None`, clipping is not performed on lower interval edge. Not more than one of `a_min` and `a_max` may be `None`. a_max : scalar or `None` Maximum value. If `None`, clipping is not performed on upper interval edge. Not more than one of `a_min` and `a_max` may be `None`. out : ndarray, optional The results will be placed in this array. It may be the input array for in-place clipping. `out` must be of the right shape to hold the output. Its type is preserved. Returns ------- clipped_array : ndarray An array with the elements of `a`, but where values < `a_min` are replaced with `a_min`, and those > `a_max` with `a_max`. Notes ----- array_like `a_min` and `a_max` are not supported. Examples -------- >>> a = np.arange(10) >>> np.clip(a, 1, 8) array([1., 1., 2., 3., 4., 5., 6., 7., 8., 8.], dtype=float32) >>> a array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.], dtype=float32) >>> np.clip(a, 3, 6, out=a) array([3., 3., 3., 3., 4., 5., 6., 6., 6., 6.], dtype=float32) """ return _mx_nd_np.clip(a, a_min, a_max, out=out) @set_module('mxnet.numpy') def argmax(a, axis=None, out=None): r""" argmax(a, axis=None, out=None) Returns the indices of the maximum values along an axis. Parameters ---------- a : ndarray Input array. Only support ndarrays of dtype `float16`, `float32`, and `float64`. axis : int, optional By default, the index is into the flattened array, otherwise along the specified axis. out : ndarray or None, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Returns ------- index_array : ndarray of indices whose dtype is same as the input ndarray. Array of indices into the array. It has the same shape as `a.shape` with the dimension along `axis` removed. Notes ----- In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned. This function differs from the original `numpy.argmax <https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). - Output has dtype that is same as the input ndarray. - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10., 11., 12.], [13., 14., 15.]]) >>> np.argmax(a) array(5.) >>> np.argmax(a, axis=0) array([1., 1., 1.]) >>> np.argmax(a, axis=1) array([2., 2.]) >>> b = np.arange(6) >>> b[1] = 5 >>> b array([0., 5., 2., 3., 4., 5.]) >>> np.argmax(b) # Only the first occurrence is returned. array(1.) Specify ``out`` ndarray: >>> a = np.arange(6).reshape(2,3) + 10 >>> b = np.zeros((2,)) >>> np.argmax(a, axis=1, out=b) array([2., 2.]) >>> b array([2., 2.]) """ return _mx_nd_np.argmax(a, axis, out) @set_module('mxnet.numpy') def mean(a, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """ mean(a, axis=None, dtype=None, out=None, keepdims=None) Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. Parameters ---------- a : ndarray ndarray containing numbers whose mean is desired. axis : None or int or tuple of ints, optional Axis or axes along which the means are computed. The default is to compute the mean of the flattened array. If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the mean. For integer inputs, the default is float32; for floating point inputs, it is the same as the input dtype. out : ndarray, optional Alternate output array in which to place the result. The default is None; if provided, it must have the same shape and type as the expected output. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then keepdims will not be passed through to the mean method of sub-classes of ndarray, however any non-default value will be. If the sub-class method does not implement keepdims any exceptions will be raised. Returns ------- m : ndarray, see dtype parameter above If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned. Notes ----- This function differs from the original `numpy.mean <https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html>`_ in the following way(s): - only ndarray is accepted as valid input, python iterables or scalar is not supported - default data type for integer input is float32 Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) array(2.5) >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0,:] = 1.0 >>> a[1,:] = 0.1 >>> np.mean(a) array(0.55) >>> np.mean(a, dtype=np.float64) array(0.55) """ return _npi.mean(a, axis=axis, dtype=dtype, keepdims=keepdims, out=out) @set_module('mxnet.numpy') def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """ Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Calculate the standard deviation of these values. axis : None or int or tuple of ints, optional Axis or axes along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of a single axis or all the axes as before. dtype : dtype, optional Type to use in computing the standard deviation. For arrays of integer type the default is float64, for arrays of float types it is the same as the array type. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output but the type (of the calculated values) will be cast if necessary. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `std` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. Returns ------- standard_deviation : ndarray, see dtype parameter above. If `out` is None, return a new array containing the standard deviation, otherwise return a reference to the output array. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) 1.1180339887498949 # may vary >>> np.std(a, axis=0) array([1., 1.]) >>> np.std(a, axis=1) array([0.5, 0.5]) In single precision, std() can be inaccurate: >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.std(a) array(0.45) >>> np.std(a, dtype=np.float64) array(0.45, dtype=float64) """ return _npi.std(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) @set_module('mxnet.numpy') def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """ Compute the variance along the specified axis. Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Array containing numbers whose variance is desired. If `a` is not an array, a conversion is attempted. axis : None or int or tuple of ints, optional Axis or axes along which the variance is computed. The default is to compute the variance of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the variance. For arrays of integer type the default is `float32`; for arrays of float types it is the same as the array type. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output, but the type is cast if necessary. ddof : int, optional "Delta Degrees of Freedom": the divisor used in the calculation is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `var` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. Returns ------- variance : ndarray, see dtype parameter above If ``out=None``, returns a new array containing the variance; otherwise, a reference to the output array is returned. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.var(a) array(1.25) >>> np.var(a, axis=0) array([1., 1.]) >>> np.var(a, axis=1) array([0.25, 0.25]) >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.var(a) array(0.2025) >>> np.var(a, dtype=np.float64) array(0.2025, dtype=float64) >>> ((1-0.55)**2 + (0.1-0.55)**2)/2 0.2025 """ return _npi.var(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def indices(dimensions, dtype=_np.int32, ctx=None): """Return an array representing the indices of a grid. Compute an array where the subarrays contain index values 0,1,... varying only along the corresponding axis. Parameters ---------- dimensions : sequence of ints The shape of the grid. dtype : data-type, optional The desired data-type for the array. Default is `float32`. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- grid : ndarray The array of grid indices, ``grid.shape = (len(dimensions),) + tuple(dimensions)``. Notes ----- The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if `dimensions` is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is ``(N,r0,...,rN-1)``. The subarrays ``grid[k]`` contains the N-D array of indices along the ``k-th`` axis. Explicitly:: grid[k,i0,i1,...,iN-1] = ik Examples -------- >>> grid = np.indices((2, 3)) >>> grid.shape (2, 2, 3) >>> grid[0] # row indices array([[0, 0, 0], [1, 1, 1]]) >>> grid[1] # column indices array([[0, 0, 0], [1, 1, 1]], dtype=int32) The indices can be used as an index into an array. >>> x = np.arange(20).reshape(5, 4) >>> row, col = np.indices((2, 3)) >>> x[row, col] array([[0., 1., 2.], [4., 5., 6.]]) Note that it would be more straightforward in the above example to extract the required elements directly with ``x[:2, :3]``. """ return _mx_nd_np.indices(dimensions=dimensions, dtype=dtype, ctx=ctx) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def copysign(x1, x2, out=None): r"""copysign(x1, x2, out=None) Change the sign of x1 to that of x2, element-wise. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1 : ndarray or scalar Values to change the sign of. x2 : ndarray or scalar The sign of `x2` is copied to `x1`. out : ndarray or None, optional A location into which the result is stored. It must be of the right shape and right type to hold the output. If not provided or `None`,a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The values of `x1` with the sign of `x2`. This is a scalar if both `x1` and `x2` are scalars. Notes ------- This function differs from the original `numpy.copysign <https://docs.scipy.org/doc/numpy/reference/generated/numpy.copysign.html>`_ in the following aspects: - ``where`` param is not supported. Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> a = np.array([-1, 0, 1]) >>> np.copysign(a, -1.1) array([-1., -0., -1.]) >>> np.copysign(a, np.arange(3)-1) array([-1., 0., 1.]) """ return _mx_nd_np.copysign(x1, x2, out=out) @set_module('mxnet.numpy') def ravel(x, order='C'): r""" ravel(x) Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed. Parameters ---------- x : ndarray Input array. The elements in `x` are read in row-major, C-style order and packed as a 1-D array. order : `C`, optional Only support row-major, C-style order. Returns ------- y : ndarray y is an array of the same subtype as `x`, with shape ``(x.size,)``. Note that matrices are special cased for backward compatibility, if `x` is a matrix, then y is a 1-D ndarray. Notes ----- This function differs from the original numpy.arange in the following aspects: - Only support row-major, C-style order. Examples -------- It is equivalent to ``reshape(x, -1)``. >>> x = np.array([[1, 2, 3], [4, 5, 6]]) >>> print(np.ravel(x)) [1. 2. 3. 4. 5. 6.] >>> print(x.reshape(-1)) [1. 2. 3. 4. 5. 6.] >>> print(np.ravel(x.T)) [1. 4. 2. 5. 3. 6.] """ return _mx_nd_np.ravel(x, order)
36.362259
132
0.609708
f922b090f347b7a400c781761032812282aaa2c4
4,433
py
Python
model.py
hirovi/Behaviour_Cloning
e602bf665bcd09dbf2e581471b0f7ccbba61a2e5
[ "MIT" ]
1
2018-01-07T22:43:47.000Z
2018-01-07T22:43:47.000Z
model.py
hirovi/Behaviour_Cloning
e602bf665bcd09dbf2e581471b0f7ccbba61a2e5
[ "MIT" ]
null
null
null
model.py
hirovi/Behaviour_Cloning
e602bf665bcd09dbf2e581471b0f7ccbba61a2e5
[ "MIT" ]
null
null
null
import csv import os import cv2 import sklearn import numpy as np from sklearn.utils import shuffle #Read the data file and append each row lines = [] with open('data/driving_log.csv', 'r') as csvfile: reader = csv.reader(csvfile) for line in reader: lines.append(line) #Split data into training and validation from sklearn.model_selection import train_test_split train_samples, validation_samples = train_test_split(lines, test_size=0.2) batch_size = 32 #Define a python generator which will allow reduce the data being fed into the model def generator(samples, batch_size): num_samples = len(samples) while True: shuffle(samples) for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset+batch_size] images, augmented_images, measurements, augmented_measurements = [], [], [], [] for batch_sample in batch_samples: steering_center = float(batch_sample[3]) #In the CSV is a string so you need to cast it as a float correction = 0.2 # Correction parameter added to the steering value of the side images from the car steering_left = steering_center + correction steering_right = steering_center - correction #Generalize data reading from Linux or Windows for i in range(3): source_path = batch_sample[i] if '\\' in source_path: filename = source_path.split('\\')[-1] else: filename = source_path.split('/')[-1] #Save, read and store the image current_path = 'data/IMG/' + filename image = cv2.imread(current_path) images.append(image) if i == 1: measurements.append(steering_left) elif i == 2: measurements.append(steering_right) else: measurements.append(steering_center) #Go through every image and steering angle and add the flipped image (negative steering) for image, measurement in zip(images, measurements): augmented_images.append(image) augmented_measurements.append(measurement) augmented_images.append(cv2.flip(image, 1)) augmented_measurements.append(measurement*-1.0) #Convert the images and measurements into numpy arrays (Keras needs it) X_train = np.array(augmented_images) y_train = np.array(augmented_measurements) yield sklearn.utils.shuffle(X_train, y_train) #Read next val of the generator train_generator = generator(train_samples, batch_size) validation_generator = generator(validation_samples, batch_size) ##Architecture## #Based on the NVIDIA End to End Learning Paper for Self Driving Cars from keras.models import Sequential from keras.layers import Flatten, Dense, Lambda, Activation from keras.layers.convolutional import Convolution2D, Cropping2D from keras.layers.pooling import MaxPooling2D model = Sequential() model.add(Lambda(lambda x: x/255.0 - 0.5, input_shape=(160, 320, 3))) model.add(Cropping2D(cropping=((70,25),(0,0)))) # crop 70 pixels of the top, 25 pixels of the bottom, no pixels of the left, no pixels of the right model.add(Convolution2D(24,5,5, subsample=(2,2), activation='relu')) #24 filters, 5x5 each filter, subsampes are the same as strides in keras model.add(Convolution2D(36,5,5, subsample=(2,2), activation='relu')) #36 filters, 5x5 each filter model.add(Convolution2D(48,5,5, subsample=(2,2), activation='relu')) #48 filters, 5x5 each filter model.add(Convolution2D(64,3,3, activation='relu')) #64 filters, 3x3 each filter model.add(Convolution2D(64,3,3, activation='relu')) #64 filters, 3x3 each filter model.add(Flatten()) model.add(Dense(100)) model.add(Dense(50)) model.add(Dense(10)) model.add(Dense(1)) #Use the Adam Optimizer to minimize cost function model.compile(loss='mse', optimizer='adam') model.fit_generator(train_generator, samples_per_epoch=len(train_samples)*6, validation_data=validation_generator, nb_val_samples=len(validation_samples), nb_epoch=3) model.save('model.h5') exit()
43.891089
167
0.653282
65b43d15098e06b351483f957d9ece9b332a3061
25,367
py
Python
ds5-scripts/aosp_6_0/arm/DexFile.py
rewhy/happer
3b48894e2d91f150f1aee0ce75291b9ca2a29bbe
[ "Apache-2.0" ]
32
2021-04-08T05:39:51.000Z
2022-03-31T03:49:35.000Z
ds5-scripts/aosp_6_0/arm/DexFile.py
rewhy/happer
3b48894e2d91f150f1aee0ce75291b9ca2a29bbe
[ "Apache-2.0" ]
2
2021-04-14T08:31:30.000Z
2021-08-29T19:12:09.000Z
ds5-scripts/aosp_6_0/arm/DexFile.py
rewhy/happer
3b48894e2d91f150f1aee0ce75291b9ca2a29bbe
[ "Apache-2.0" ]
3
2021-06-08T08:52:56.000Z
2021-06-23T17:28:51.000Z
# DexFile.py is used to dump the dex file when the "DexFile::<init>" method is invoked in 32-bit mode. import gc import os import sys from arm_ds.debugger_v1 import Debugger from arm_ds.debugger_v1 import DebugException import config import memory import mmu from DexParser import header_item, class_data_item from OfflineDexParser import Dex # obtain current execution state debugger = Debugger() execution_state = debugger.getCurrentExecutionContext() # define the analyzing configuration related to the DexFile loading def dex_setup(pid): # define the breakpoints # DexFile related brk_DexFile_cmd = "hbreak" + " " + str(hex(config.brk_DexFile)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') # brk_DexFile_cmd = "hbreak" + " " + str(hex(config.brk_DexFile)).replace('L', '') execution_state.executeDSCommand(brk_DexFile_cmd) # define the breakpoint scripts for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) # DexFile related if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_DexFile: bs_DexFile_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.DexFile_script) execution_state.executeDSCommand(bs_DexFile_cmd) brk_object.enable() # define the analyzing configuration related to the Java execution flow def je_setup(pid): # define the breakpoints # execution flow related brk_ArtQuickToInterpreterBridge_cmd = "hbreak" + " " + str(hex(config.brk_ArtQuickToInterpreterBridge)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_ArtQuickToInterpreterBridge_cmd) # brk_ArtInterpreterToInterpreterBridge_cmd = "hbreak" + " " + str(hex(config.brk_ArtInterpreterToInterpreterBridge)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') # execution_state.executeDSCommand(brk_ArtInterpreterToInterpreterBridge_cmd) # brk_ArtInterpreterToCompiledCodeBridge_cmd = "hbreak" + " " + str(hex(config.brk_ArtInterpreterToCompiledCodeBridge)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') # execution_state.executeDSCommand(brk_ArtInterpreterToCompiledCodeBridge_cmd) brk_DoCall_cmd = "hbreak" + " " + str(hex(config.brk_DoCall)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_DoCall_cmd) brk_ArtQuickGenericJniTrampoline_cmd = "hbreak" + " " + str(hex(config.brk_ArtQuickGenericJniTrampoline)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_ArtQuickGenericJniTrampoline_cmd) brk_Invoke_cmd = "hbreak" + " " + str(hex(config.brk_Invoke)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_Invoke_cmd) # define the breakpoint scripts for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) # execution flow related if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_ArtQuickToInterpreterBridge: bs_ArtQuickToInterpreterBridge_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.ArtQuickToInterpreterBridge_script) execution_state.executeDSCommand(bs_ArtQuickToInterpreterBridge_cmd) brk_object.enable() # if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_ArtInterpreterToInterpreterBridge: # bs_ArtInterpreterToInterpreterBridge_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.ArtInterpreterToInterpreterBridge_script) # execution_state.executeDSCommand(bs_ArtInterpreterToInterpreterBridge_cmd) # brk_object.enable() # if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_ArtInterpreterToCompiledCodeBridge: # bs_ArtInterpreterToCompiledCodeBridge_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.ArtInterpreterToCompiledCodeBridge_script) # execution_state.executeDSCommand(bs_ArtInterpreterToCompiledCodeBridge_cmd) # brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_DoCall: bs_DoCall_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.DoCall_script) execution_state.executeDSCommand(bs_DoCall_cmd) brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_ArtQuickGenericJniTrampoline: bs_ArtQuickGenericJniTrampoline_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.ArtQuickGenericJniTrampoline_script) execution_state.executeDSCommand(bs_ArtQuickGenericJniTrampoline_cmd) brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_Invoke: bs_Invoke_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.Invoke_script) execution_state.executeDSCommand(bs_Invoke_cmd) brk_object.enable() brk_object.ignore(0) # define the analyzing configuration related to the Native execution flow def ne_setup(pid): # define the breakpoints # JNI_onLoad related brk_LoadNativeLibrary_cmd = "hbreak" + " " + str(hex(config.brk_LoadNativeLibrary)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_LoadNativeLibrary_cmd) brk_JNI_onLoad_cmd = "hbreak" + " " + str(hex(config.brk_JNI_onLoad)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_JNI_onLoad_cmd) # execution flow related brk_ArtQuickGenericJniTrampoline_cmd = "hbreak" + " " + str(hex(config.brk_ArtQuickGenericJniTrampoline)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_ArtQuickGenericJniTrampoline_cmd) brk_ArtQuickGenericJniEndTrampoline_cmd = "hbreak" + " " + str(hex(config.brk_ArtQuickGenericJniEndTrampoline)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_ArtQuickGenericJniEndTrampoline_cmd) # define the breakpoint scripts for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) # JNI_onLoad related if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_LoadNativeLibrary: bs_LoadNativeLibrary_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.LoadNativeLibrary_script) execution_state.executeDSCommand(bs_LoadNativeLibrary_cmd) brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_JNI_onLoad: bs_JNI_onLoad_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.JNI_onLoad_script) execution_state.executeDSCommand(bs_JNI_onLoad_cmd) brk_object.enable() # execution flow related if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_ArtQuickGenericJniTrampoline: bs_ArtQuickGenericJniTrampoline_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.ArtQuickGenericJniTrampoline_script) execution_state.executeDSCommand(bs_ArtQuickGenericJniTrampoline_cmd) brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_ArtQuickGenericJniEndTrampoline: bs_ArtQuickGenericJniEndTrampoline_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.ArtQuickGenericJniEndTrampoline_script) execution_state.executeDSCommand(bs_ArtQuickGenericJniEndTrampoline_cmd) brk_object.enable() # define the analyzing configuration related to the Art-Runtime execution flow def art_setup(pid): # define the breakpoints # execution flow related brk_LoadClassMembers_cmd = "hbreak" + " " + str(hex(config.brk_LoadClassMembers)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_LoadClassMembers_cmd) brk_LoadMethod_cmd = "hbreak" + " " + str(hex(config.brk_LoadMethod)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_LoadMethod_cmd) # define the breakpoint scripts for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) # execution flow related if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_LoadClassMembers: bs_LoadClassMembers_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.LoadClassMembers_script) execution_state.executeDSCommand(bs_LoadClassMembers_cmd) brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_LoadMethod: bs_LoadMethod_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.LoadMethod_script) execution_state.executeDSCommand(bs_LoadMethod_cmd) brk_object.enable() # brk_object.ignore(13) # define the analyzing configuration related to the in-memory dex file modification def dex_modification_setup(pid): # define the breakpoints # brk_DexModification_cmd = "hbreak" + " " + str(hex(config.brk_JNI_onLoad)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') brk_DexModification_cmd = "hbreak" + " " + str(hex(config.brk_ArtQuickGenericJniEndTrampoline)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_DexModification_cmd) # define the breakpoint scripts for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) # if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_JNI_onLoad: if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_ArtQuickGenericJniEndTrampoline: bs_DexModification_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.DexModification_script) execution_state.executeDSCommand(bs_DexModification_cmd) brk_object.enable() # define the analyzing configuration related to the Class-object modification def class_modification_setup(pid): # define the breakpoints brk_ClassModification_cmd = "hbreak" + " " + str(hex(config.brk_DoCall)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_ClassModification_cmd) # define the breakpoint scripts for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_DoCall: bs_ClassModification_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.ClassModification_script) execution_state.executeDSCommand(bs_ClassModification_cmd) brk_object.enable() # define the analyzing configuration related to the anti-time-checking def anti_time_checking_setup(pid): # define the breakpoints # brk_clock_gettime_cmd = "hbreak" + " " + str(hex(config.brk_clock_gettime)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') # execution_state.executeDSCommand(brk_clock_gettime_cmd) brk_gettimeofday_cmd = "hbreak" + " " + str(hex(config.brk_gettimeofday)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_gettimeofday_cmd) # define the breakpoint scripts for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) # if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_clock_gettime: # bs_clock_gettime_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.clock_gettime_script) # execution_state.executeDSCommand(bs_clock_gettime_cmd) # brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_gettimeofday: bs_gettimeofday_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.gettimeofday_script) execution_state.executeDSCommand(bs_gettimeofday_cmd) brk_object.enable() def anti_emulator(pid): # define the breakpoints brk_Invoke_cmd = "hbreak" + " " + str(hex(config.brk_Invoke)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_Invoke_cmd) brk_strcmp_cmd = "hbreak" + " " + str(hex(config.brk_strcmp)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_strcmp_cmd) brk_strncmp_cmd = "hbreak" + " " + str(hex(config.brk_strncmp)).replace('L', '') + " " + "context" + " " + str(hex(pid)).replace('L', '') execution_state.executeDSCommand(brk_strncmp_cmd) # define the breakpoint scripts for idx in range(0, execution_state.getBreakpointService().getBreakpointCount()): brk_object = execution_state.getBreakpointService().getBreakpoint(idx) if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_Invoke: bs_Invoke_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.Invoke_script) execution_state.executeDSCommand(bs_Invoke_cmd) brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_strcmp: bs_strcmp_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.strcmp_script) execution_state.executeDSCommand(bs_strcmp_cmd) brk_object.enable() if (int(brk_object.getAddresses()[0]) & 0xffffffff) == config.brk_strncmp: bs_strncmp_cmd = "break-script" + " " + str(brk_object.getId()) + " " + os.path.join(config.workspace, config.script_directory, config.strncmp_script) execution_state.executeDSCommand(bs_strncmp_cmd) brk_object.enable() def unpack_ali_2016(pid): dex_modification_setup(pid) def unpack_baidu_2016(file_path, dex_file_base, dex_file_size): dex = Dex.Dex(file_path) for class_def_item in dex.class_defs.class_def_items: class_data_off = class_def_item.class_data_off if (class_data_off > dex_file_size) or (class_data_off < 0): # parse class_data_item static_fields_size_off = 0x0 static_fields_size, length_static_fields_size = class_data_item.get_static_fields_size(dex_file_base, class_data_off, static_fields_size_off) config.log_print("[DexFile] [class_data_item] static_fields_size = %#x" % static_fields_size) instance_fields_size_off = static_fields_size_off + length_static_fields_size instance_fields_size, length_instance_fields_size = class_data_item.get_instance_fields_size(dex_file_base, class_data_off, instance_fields_size_off) config.log_print("[DexFile] [class_data_item] instance_fields_size = %#x" % instance_fields_size) direct_methods_size_off = instance_fields_size_off + length_instance_fields_size direct_methods_size, length_direct_methods_size = class_data_item.get_direct_methods_size(dex_file_base, class_data_off, direct_methods_size_off) config.log_print("[DexFile] [class_data_item] direct_methods_size = %#x" % direct_methods_size) virtual_methods_size_off = direct_methods_size_off + length_direct_methods_size virtual_methods_size, length_virtual_methods_size = class_data_item.get_virtual_methods_size(dex_file_base, class_data_off, virtual_methods_size_off) config.log_print("[DexFile] [class_data_item] virtual_methods_size = %#x" % virtual_methods_size) static_fields_off = virtual_methods_size_off + length_virtual_methods_size static_fields, length_static_fields = class_data_item.get_static_fields(dex_file_base, class_data_off, static_fields_off, static_fields_size) for idx in range(static_fields_size): config.log_print("[DexFile] [class_data_item] static_fields[%d].field_idx_diff = %#x" % (idx, static_fields[idx][0])) config.log_print("[DexFile] [class_data_item] static_fields[%d].access_flags = %0#10x" % (idx, static_fields[idx][1])) instance_fields_off = static_fields_off + length_static_fields instance_fields, length_instance_fields = class_data_item.get_instance_fields(dex_file_base, class_data_off, instance_fields_off, instance_fields_size) for idx in range(instance_fields_size): config.log_print("[DexFile] [class_data_item] instance_fields[%d].field_idx_diff = %#x" % (idx, instance_fields[idx][0])) config.log_print("[DexFile] [class_data_item] instance_fields[%d].access_flags = %0#10x" % (idx, instance_fields[idx][1])) direct_methods_off = instance_fields_off + length_instance_fields direct_methods, length_direct_methods = class_data_item.get_direct_methods(dex_file_base, class_data_off, direct_methods_off, direct_methods_size) for idx in range(direct_methods_size): config.log_print("[DexFile] [class_data_item] direct_methods[%d].method_idx_diff = %#x" % (idx, direct_methods[idx][0])) config.log_print("[DexFile] [class_data_item] direct_methods[%d].access_flags = %0#10x" % (idx, direct_methods[idx][1])) config.log_print("[DexFile] [class_data_item] direct_methods[%d].code_off = %0#10x" % (idx, direct_methods[idx][2])) virtual_methods_off = direct_methods_off + length_direct_methods virtual_methods, length_virtual_methods = class_data_item.get_virtual_methods(dex_file_base, class_data_off, virtual_methods_off, virtual_methods_size) for idx in range(virtual_methods_size): config.log_print("[DexFile] [class_data_item] virtual_methods[%d].method_idx_diff = %#x" % (idx, virtual_methods[idx][0])) config.log_print("[DexFile] [class_data_item] virtual_methods[%d].access_flags = %0#10x" % (idx, virtual_methods[idx][1])) config.log_print("[DexFile] [class_data_item] virtual_methods[%d].code_off = %0#10x" % (idx, virtual_methods[idx][2])) class_data_size = virtual_methods_off + length_virtual_methods file_path = os.path.join(config.workspace, config.dex_directory, "class_data_item_%0#10x.bin" % (class_data_off if class_data_off > 0 else (0xffffffff + class_data_off))) if not os.path.exists(file_path): file_format = "binary" file_vtl_start_address = (dex_file_base + class_data_off) & 0xffffffff file_vtl_end_address = ((dex_file_base + class_data_off) & 0xffffffff) + class_data_size - 0x1 memory.dump(file_path, file_format, file_vtl_start_address, file_vtl_end_address) def unpack_bangcle_2016(pid): pass def unpack_ijiami_2016(pid): art_setup(pid) anti_time_checking_setup(pid) def unpack_qihoo_2016(pid): pass # set the analyzing environment def setup(pid): # if we re-enter the configuration process, we will perform some verifications if execution_state.getBreakpointService().getBreakpointCount() > 1: # we can infer that the base dex file has been loaded for more than once # further more, in normal cases, the pid for the DexFile breakpoint should remain the same info_breakpoint_cmd = "info breakpoints" breakpoint_info_list = execution_state.executeDSCommand(info_breakpoint_cmd).split('\n') for idx in range(len(breakpoint_info_list)): current_info = breakpoint_info_list[idx] if ("%0#10x" % config.brk_DexFile) in current_info: current_pid_info = breakpoint_info_list[idx + 2] if current_pid_info.strip().startswith("Only for Context ID "): previous_pid_string = current_pid_info.strip().replace("Only for Context ID ", "").replace(",", "") previous_pid = int(previous_pid_string) # in normal cases, we do nothing if previous_pid == pid: return break # remove all current breakpoints try: debugger.removeAllBreakpoints() except DebugException: rm_brks = [] for breakpoint_index in range(0, execution_state.getBreakpointService().getBreakpointCount()): breakpoint_object = execution_state.getBreakpointService().getBreakpoint(breakpoint_index) if breakpoint_object.isHardware() or ((int(breakpoint_object.getAddresses()[0]) & 0xffffffff) == config.brk_DexFile): rm_brks.append(breakpoint_object) for brk_obj in rm_brks: brk_obj.remove() # combination of different analyzing configurations dex_setup(pid) # je_setup(pid) # ne_setup(pid) # art_setup(pid) # class_modification_setup(pid) # anti_time_checking_setup(pid) # anti_emulator(pid) # unpack_ali_2016(pid) # unpack_bangcle_2016(pid) unpack_ijiami_2016(pid) # unpack_qihoo_2016(pid) def retrieve_string_value(string_ptr): length_val = memory.readMemory32(string_ptr + config.offset_string_length) reference_ptr = memory.readMemory32(string_ptr + config.offset_string_reference) char_array = memory.retrieve_char_array(reference_ptr) return char_array def cleanup(): if mmu.page_table is not None: del mmu.page_table gc.collect() def init_DexFile(): # get the pointer that refers to the DexFile structure dex_file_ptr = int(execution_state.getRegisterService().getValue("R0")) & 0xffffffff # read the "begin_" field dex_file_begin_val = int(execution_state.getRegisterService().getValue("R1")) & 0xffffffff if config.debug: print "[DexFile] begin_ = %0#10x" % dex_file_begin_val # read the "size_" field dex_file_size_val = int(execution_state.getRegisterService().getValue("R2")) & 0xffffffff if config.debug: print "[DexFile] size_ = %#x" % dex_file_size_val # read the "location_" field dex_file_location_ptr = int(execution_state.getRegisterService().getValue("R3")) & 0xffffffff # retrieve the value of the std::string structure dex_file_location_string_val = retrieve_string_value(dex_file_location_ptr) if config.debug: print "[DexFile] location_ = %s" % dex_file_location_string_val # if config.package_filter(dex_file_location_string_val) and dex_file_location_string_val.endswith("base.apk"): if config.package_filter(dex_file_location_string_val): pid_val = int(execution_state.getVariableService().readValue("$AARCH64::$System::$Memory::$CONTEXTIDR_EL1.PROCID")) & 0xffffffff if config.debug: print "[DexFile] pid = %#x" % pid_val config.log_print("[DexFile] pid = %#x" % pid_val) setup(pid_val) # we only focus on the DexFile whose location is suspicious if not config.package_filter(dex_file_location_string_val): # continue the execution of the target application execution_state.getExecutionService().resume() cleanup() return # # parse the header_item of the dex file # header_item.parse_header_item(dex_file_begin_val) # # calculate the "size_" value from the "map_off" field of the header_item # dex_file_size_val_calc = 0x0 # if config.package_filter(dex_file_location_string_val): # map_off = header_item.get_map_off(dex_file_begin_val) # map_list_ptr = dex_file_begin_val + map_off # map_list_size_val = memory.readMemory32(map_list_ptr + 0x0) # dex_file_size_val_calc = map_off + (0x4) + map_list_size_val * (0x2 + 0x2 + 0x4 + 0x4) # config.log_print("[DexFile] begin_ = %0#10x, size_ = %#x (inferring size = %#x), location_ = %s" % (dex_file_begin_val, dex_file_size_val, dex_file_size_val_calc, dex_file_location_string_val)) config.log_print("[DexFile] begin_ = %0#10x, size_ = %#x, location_ = %s" % (dex_file_begin_val, dex_file_size_val, dex_file_location_string_val)) config.save_dex_info(dex_file_begin_val, dex_file_size_val, dex_file_location_string_val.split("/")[-1]) # dump the in-memory DexFile file_path = os.path.join(config.workspace, config.dex_directory, dex_file_location_string_val.split("/")[-1]) file_format = "binary" file_vtl_start_address = dex_file_begin_val file_vtl_end_address = dex_file_begin_val + dex_file_size_val - 0x1 file_path = memory.dump(file_path, file_format, file_vtl_start_address, file_vtl_end_address) # unpack_baidu_2016(file_path, dex_file_begin_val, dex_file_size_val) # continue the execution of the target application execution_state.getExecutionService().resume() cleanup() return if __name__ == '__main__': init_DexFile() sys.exit()
58.584296
210
0.745772
1009a857c4f86a8bf8ea56d55ed9b106b3ced138
11,479
py
Python
examples/advanced_operations/add_dynamic_search_ads.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
1
2019-11-30T23:42:39.000Z
2019-11-30T23:42:39.000Z
examples/advanced_operations/add_dynamic_search_ads.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
null
null
null
examples/advanced_operations/add_dynamic_search_ads.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
1
2020-09-30T17:04:06.000Z
2020-09-30T17:04:06.000Z
#!/usr/bin/env python # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example adds a new dynamic search ad (DSA). It also creates a webpage targeting criteria for the DSA. """ import argparse import sys from uuid import uuid4 from datetime import datetime, timedelta from google.ads.google_ads.client import GoogleAdsClient from google.ads.google_ads.errors import GoogleAdsException def main(client, customer_id): """The main method that creates all necessary entities for the example. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID str. """ try: budget_resource_name = create_budget(client, customer_id) campaign_resource_name = create_campaign(client, customer_id, budget_resource_name) ad_group_resource_name = create_ad_group(client, customer_id, campaign_resource_name) create_expanded_dsa(client, customer_id, ad_group_resource_name) add_webpage_criterion(client, customer_id, ad_group_resource_name) except GoogleAdsException as ex: print(f'Request with ID "{ex.request_id}" failed with status ' f'"{ex.error.code().name}" and includes the following errors:') for error in ex.failure.errors: print(f'\tError with message "{error.message}".') if error.location: for field_path_element in error.location.field_path_elements: print(f'\t\tOn field: {field_path_element.field_name}') sys.exit(1) def create_budget(client, customer_id): """Creates a budget under the given customer ID. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID str. Returns: A resource_name str for the newly created Budget. """ # Creates a campaign budget operation. campaign_budget_operation = client.get_type('CampaignBudgetOperation', version='v3') # Issues a mutate request to add campaign budgets. campaign_budget = campaign_budget_operation.create campaign_budget.name.value = f'Interplanetary Cruise #{uuid4()}' campaign_budget.amount_micros.value = 50000000 campaign_budget.delivery_method = client.get_type( 'BudgetDeliveryMethodEnum', version='v3').STANDARD # Retrieve the campaign budget service. campaign_budget_service = client.get_service('CampaignBudgetService', version='v3') # Submit the campaign budget operation to add the campaign budget. response = campaign_budget_service.mutate_campaign_budgets( customer_id, [campaign_budget_operation]) resource_name = response.results[0].resource_name print(f'Created campaign budget with resource_name: "{resource_name}"') return resource_name def create_campaign(client, customer_id, budget_resource_name): """Creates a Dynamic Search Ad Campaign under the given customer ID. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID str. budget_resource_name: a resource_name str for a Budget Returns: A resource_name str for the newly created Campaign. """ # Retrieve a new campaign operation object. campaign_operation = client.get_type('CampaignOperation', version='v3') campaign = campaign_operation.create campaign.name.value = f'Interplanetary Cruise #{uuid4()}' campaign.advertising_channel_type = client.get_type( 'AdvertisingChannelTypeEnum', version='v3').SEARCH # Recommendation: Set the campaign to PAUSED when creating it to prevent the # ads from immediately serving. Set to ENABLED once you've added targeting # and the ads are ready to serve. campaign.status = client.get_type('CampaignStatusEnum', version='v3').PAUSED campaign.manual_cpc.enhanced_cpc_enabled.value = True campaign.campaign_budget.value = budget_resource_name # Required: Enable the campaign for DSAs by setting the campaign's dynamic # search ads setting domain name and language. campaign.dynamic_search_ads_setting.domain_name.value = 'example.com' campaign.dynamic_search_ads_setting.language_code.value = 'en' # Optional: Sets the start and end dates for the campaign, beginning one day # from now and ending a month from now. campaign.start_date.value = datetime.now().strftime('%Y%m%d') campaign.end_date.value = ( datetime.now() + timedelta(days=365)).strftime('%Y%m%d') # Retrieve the campaign service. campaign_service = client.get_service('CampaignService', version='v3') # Issues a mutate request to add campaign. response = campaign_service.mutate_campaigns( customer_id, [campaign_operation]) resource_name = response.results[0].resource_name print(f'Created campaign with resource_name: "{resource_name}"') return resource_name def create_ad_group(client, customer_id, campaign_resource_name): """Creates a Dynamic Search Ad Group under the given Campaign. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID str. campaign_resource_name: a resource_name str for a Campaign. Returns: A resource_name str for the newly created Ad Group. """ # Retrieve a new ad group operation object. ad_group_operation = client.get_type('AdGroupOperation', version='v3') # Create an ad group. ad_group = ad_group_operation.create # Required: set the ad group's type to Dynamic Search Ads. ad_group.type = client.get_type('AdGroupTypeEnum', version='v3').SEARCH_DYNAMIC_ADS ad_group.name.value = f'Earth to Mars Cruises {uuid4()}' ad_group.campaign.value = campaign_resource_name ad_group.status = client.get_type('AdGroupStatusEnum', version='v3').PAUSED # Recommended: set a tracking URL template for your ad group if you want to # use URL tracking software. ad_group.tracking_url_template.value = ( 'http://tracker.example.com/traveltracker/{escapedlpurl}') # Optional: Set the ad group bid value. ad_group.cpc_bid_micros.value = 10000000 # Retrieve the ad group service. ad_group_service = client.get_service('AdGroupService', version='v3') # Issues a mutate request to add the ad group. response = ad_group_service.mutate_ad_groups(customer_id, [ad_group_operation]) resource_name = response.results[0].resource_name print(f'Created Ad Group with resource_name: "{resource_name}"') return resource_name def create_expanded_dsa(client, customer_id, ad_group_resource_name): """Creates a dynamic search ad under the given ad group. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID str. ad_group_resource_name: a resource_name str for an Ad Group. """ # Retrieve a new ad group ad operation object. ad_group_ad_operation = client.get_type('AdGroupAdOperation', version='v3') # Create and expanded dynamic search ad. This ad will have its headline, # display URL and final URL auto-generated at serving time according to # domain name specific information provided by DynamicSearchAdSetting at # the campaign level. ad_group_ad = ad_group_ad_operation.create # Optional: set the ad status. ad_group_ad.status = client.get_type('AdGroupAdStatusEnum', version='v3').PAUSED # Set the ad description. ad_group_ad.ad.expanded_dynamic_search_ad.description.value = ( 'Buy tickets now!') ad_group_ad.ad_group.value = ad_group_resource_name # Retrieve the ad group ad service. ad_group_ad_service = client.get_service('AdGroupAdService', version='v3') # Submit the ad group ad operation to add the ad group ad. response = ad_group_ad_service.mutate_ad_group_ads(customer_id, [ad_group_ad_operation]) resource_name = response.results[0].resource_name print(f'Created Ad Group Ad with resource_name: "{resource_name}"') def add_webpage_criterion(client, customer_id, ad_group_resource_name): """Creates a web page criterion to the given ad group. Args: client: an initialized GoogleAdsClient instance. customer_id: a client customer ID str. ad_group_resource_name: a resource_name str for an Ad Group. """ # Retrieve a new ad group criterion operation. ad_group_criterion_operation = client.get_type( 'AdGroupCriterionOperation', version='v3') # Create an ad group criterion for special offers for Mars Cruise. criterion = ad_group_criterion_operation.create criterion.ad_group.value = ad_group_resource_name # Optional: set custom bid amount. criterion.cpc_bid_micros.value = 10000000 # Optional: set the status. criterion.status = client.get_type( 'AdGroupCriterionStatusEnum', version='v3').PAUSED # Sets the criterion to match a specific page URL and title. criterion.webpage.criterion_name.value = 'Special Offers' webpage_info_url = criterion.webpage.conditions.add() webpage_info_url.operand = client.get_type( 'WebpageConditionOperandEnum', version='v3').URL webpage_info_url.argument.value = '/specialoffers' webpage_info_page_title = criterion.webpage.conditions.add() webpage_info_page_title.operand = client.get_type( 'WebpageConditionOperandEnum', version='v3').PAGE_TITLE webpage_info_page_title.argument.value = 'Special Offer' # Retrieve the ad group criterion service. ad_group_criterion_service = client.get_service('AdGroupCriterionService', version='v3') # Issues a mutate request to add the ad group criterion. response = ad_group_criterion_service.mutate_ad_group_criteria( customer_id, [ad_group_criterion_operation]) resource_name = response.results[0].resource_name print(f'Created Ad Group Criterion with resource_name: "{resource_name}"') if __name__ == '__main__': # GoogleAdsClient will read the google-ads.yaml configuration file in the # home directory if none is specified. google_ads_client = GoogleAdsClient.load_from_storage() parser = argparse.ArgumentParser( description=( 'Adds a dynamic search ad under the specified customer ID.')) # The following argument(s) should be provided to run the example. parser.add_argument('-c', '--customer_id', type=str, required=True, help='The Google Ads customer ID.') args = parser.parse_args() main(google_ads_client, args.customer_id)
43.154135
80
0.706769
19ab3ebfa64027bf2c66726ecc920de4389e04e0
453
py
Python
BOOK/MAIN/02-strings-lists-tuples-dictionaries/chapter-2-examples/06-linear-search.py
kabirsrivastava3/python-practice
f56a4a0764031d3723b0ba4cd1418a1a83b1e4f5
[ "MIT" ]
null
null
null
BOOK/MAIN/02-strings-lists-tuples-dictionaries/chapter-2-examples/06-linear-search.py
kabirsrivastava3/python-practice
f56a4a0764031d3723b0ba4cd1418a1a83b1e4f5
[ "MIT" ]
null
null
null
BOOK/MAIN/02-strings-lists-tuples-dictionaries/chapter-2-examples/06-linear-search.py
kabirsrivastava3/python-practice
f56a4a0764031d3723b0ba4cd1418a1a83b1e4f5
[ "MIT" ]
null
null
null
#search for key in the dictionary and print the corresponding value #Time Complexity = O(N) def input(element): return element def findValue(inform,key): if key in inform.values(): for search in inform: return inform[search]== key find = input("Ishpreet") print(find) info = {"Riya":"Csc.", "Mark":"Eco", "Ishpreet":"Eng", "Kamaal":"Env. Sc"} output = findValue(info,find) print(output)
22.65
74
0.613687
f967ec4e0e60b8d7590d116165faf624612733e6
799
py
Python
Lib/corpuscrawler/crawl_yut.py
cash/corpuscrawler
8913fe1fb2b6bfdfbf2ba01d2ce88057b3b5ba3d
[ "Apache-2.0" ]
95
2019-06-13T23:34:21.000Z
2022-03-12T05:22:49.000Z
Lib/corpuscrawler/crawl_yut.py
sahwar/corpuscrawler
8913fe1fb2b6bfdfbf2ba01d2ce88057b3b5ba3d
[ "Apache-2.0" ]
31
2019-06-02T18:56:53.000Z
2021-08-10T20:16:02.000Z
Lib/corpuscrawler/crawl_yut.py
sahwar/corpuscrawler
8913fe1fb2b6bfdfbf2ba01d2ce88057b3b5ba3d
[ "Apache-2.0" ]
35
2019-06-18T08:26:24.000Z
2022-01-11T13:59:40.000Z
# coding: utf-8 # Copyright 2017 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function, unicode_literals import re def crawl(crawler): out = crawler.get_output(language='yut') crawler.crawl_pngscriptures_org(out, language='yut')
34.73913
74
0.764706
0ce3cbf0db2e0a1fcb33a029f7ae581085246fc6
3,188
py
Python
pykeval/pykeval/broker/remote_server.py
SilverTuxedo/keval
73e2ccd5cbdf0cc7fc167711cde60be783e8dfe7
[ "MIT" ]
34
2021-09-17T16:17:58.000Z
2022-03-11T06:23:21.000Z
pykeval/pykeval/broker/remote_server.py
fengjixuchui/keval
73e2ccd5cbdf0cc7fc167711cde60be783e8dfe7
[ "MIT" ]
null
null
null
pykeval/pykeval/broker/remote_server.py
fengjixuchui/keval
73e2ccd5cbdf0cc7fc167711cde60be783e8dfe7
[ "MIT" ]
4
2021-09-17T19:39:29.000Z
2022-03-10T07:06:43.000Z
import logging import pickle from socketserver import BaseRequestHandler, TCPServer from pykeval.broker.local import LocalBroker from pykeval.broker.requests import BrokerResponse, BrokerResponseType, BrokerRequest, BrokerRequestType from pykeval.broker.messaging import receive, send logger = logging.getLogger(__name__) class BrokerRequestHandler(BaseRequestHandler): broker_server = None def handle(self) -> None: logger.info(f"Got connection from {self.client_address}") data = receive(self.request) logger.debug("Received") try: request = pickle.loads(data) # noinspection PyProtectedMember response_data = self.__class__.broker_server._on_new_request(request) response = BrokerResponse(BrokerResponseType.SUCCESS, response_data) except Exception as e: logger.exception("Error processing request") response = BrokerResponse(BrokerResponseType.EXCEPTION, e) logger.debug("Serializing and sending response") serialized_response = pickle.dumps(response) send(self.request, serialized_response) logger.info(f"Sent response to {self.client_address}") class RemoteBrokerServer: """ A broker server based on a local broker over TCP. This works together with `RemoteBroker` to allow running code on a different machine than the client itself. """ def __init__(self, local_broker: LocalBroker, address: str, port: int): """ :param local_broker: The actual local broker that will handle requests :param address: The address of the server :param port: The port of the server """ self._local_broker = local_broker self._address = address self._port = port def start(self): """ Starts the TCP server. """ handler_type = type("BoundBrokerRequestHandler", (BrokerRequestHandler,), {"broker_server": self}) with TCPServer((self._address, self._port), handler_type) as server: logger.info(f"Starting server at {self._address}:{self._port}") server.serve_forever() def _on_new_request(self, request: BrokerRequest): """ Handles a broker request. :return: What the local broker returned for the request :raises ValueError if the request type is not supported. """ # No-data requests if request.type == BrokerRequestType.GET_POINTER_SIZE: return self._local_broker.get_pointer_size() # Data requests try: handler = { BrokerRequestType.CALL_FUNCTION: self._local_broker.call_function, BrokerRequestType.READ_BYTES: self._local_broker.read_bytes, BrokerRequestType.WRITE_BYTES: self._local_broker.write_bytes, BrokerRequestType.ALLOCATE: self._local_broker.allocate, BrokerRequestType.FREE: self._local_broker.free }[request.type] return handler(request.data) except KeyError: pass raise ValueError(f"Unrecognized request type {request.type.value}")
35.820225
120
0.67064
4dcb9fcf60bb8270025fbfbcb309d7e6e03ebeb0
687
py
Python
Ch04. Recursion/is-palindrome.py
melfag/Problem-Solving-with-Algorithms-and-Data-Structures-using-Python
59b99b2ed439c5e2a97a364d1e743e36f0bf1ee3
[ "MIT" ]
1
2020-07-21T11:29:39.000Z
2020-07-21T11:29:39.000Z
Ch04. Recursion/is-palindrome.py
melfag/Problem-Solving-with-Algorithms-and-Data-Structures-using-Python
59b99b2ed439c5e2a97a364d1e743e36f0bf1ee3
[ "MIT" ]
null
null
null
Ch04. Recursion/is-palindrome.py
melfag/Problem-Solving-with-Algorithms-and-Data-Structures-using-Python
59b99b2ed439c5e2a97a364d1e743e36f0bf1ee3
[ "MIT" ]
null
null
null
def isPalindrome(string: str)->bool: if len(string) < 2: return True else: if string[0] == string[len(string) - 1]: return isPalindrome(string[1: len(string) - 1]) else: return False print(isPalindrome('kayak')) print(isPalindrome('aibohphobia')) # no slicing def isPalindrome2(string: str, start: int, end: int)->bool: if start >= end: return True else: if string[start] == string[end]: return isPalindrome2(string, start + 1, end - 1) else: return False print(isPalindrome2('kayak', 0, len('kayak') - 1)) print(isPalindrome2('aibohphobia', 0, len('aibohphobia') - 1))
25.444444
62
0.58952
6d38432e97e50ca2b7c08b1e6f50631caa04a9fe
1,539
py
Python
awacs/route53domains.py
craigbruce/awacs
e1d0699409291f0ad586b86d6c55cfc54af70778
[ "BSD-2-Clause" ]
null
null
null
awacs/route53domains.py
craigbruce/awacs
e1d0699409291f0ad586b86d6c55cfc54af70778
[ "BSD-2-Clause" ]
null
null
null
awacs/route53domains.py
craigbruce/awacs
e1d0699409291f0ad586b86d6c55cfc54af70778
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2012-2013, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. from aws import Action service_name = 'Amazon Route53 Domains' prefix = 'route53domains' class Route53DomainsAction(Action): def __init__(self, action=None): self.prefix = prefix self.action = action CheckDomainAvailability = Route53DomainsAction("CheckDomainAvailability") DeleteTagsForDomain = Route53DomainsAction("DeleteTagsForDomain") DisableDomainAutoRenew = Route53DomainsAction("DisableDomainAutoRenew") DisableDomainTransferLock = Route53DomainsAction("DisableDomainTransferLock") EnableDomainAutoRenew = Route53DomainsAction("EnableDomainAutoRenew") EnableDomainTransferLock = Route53DomainsAction("EnableDomainTransferLock") GetDomainDetail = Route53DomainsAction("GetDomainDetail") GetOperationDetail = Route53DomainsAction("GetOperationDetail") ListDomains = Route53DomainsAction("ListDomains") ListOperations = Route53DomainsAction("ListOperations") ListTagsForDomain = Route53DomainsAction("ListTagsForDomain") RegisterDomain = Route53DomainsAction("RegisterDomain") RetrieveDomainAuthCode = Route53DomainsAction("RetrieveDomainAuthCode") TransferDomain = Route53DomainsAction("TransferDomain") UpdateDomainContact = Route53DomainsAction("UpdateDomainContact") UpdateDomainContactPrivacy = Route53DomainsAction("UpdateDomainContactPrivacy") UpdateDomainNameservers = Route53DomainsAction("UpdateDomainNameservers") UpdateTagsForDomains = Route53DomainsAction("UpdateTagsForDomains")
42.75
79
0.841455
b8493734b0b43009984763955820502d07cfb7d7
4,993
py
Python
spotpy/examples/tutorial_padds_hymod.py
hpsone/spotpy
34d1ad306b6f2f8faa95f010e6c4db98be76efaa
[ "MIT" ]
1
2020-06-17T17:35:25.000Z
2020-06-17T17:35:25.000Z
spotpy/examples/tutorial_padds_hymod.py
YinZhaokai/spotpy
4b4eec4f3544dd710e5c823de9c351b077ce0d04
[ "MIT" ]
null
null
null
spotpy/examples/tutorial_padds_hymod.py
YinZhaokai/spotpy
4b4eec4f3544dd710e5c823de9c351b077ce0d04
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' Copyright 2015 by Tobias Houska This file is part of Statistical Parameter Estimation Tool (SPOTPY). :author: Tobias Houska This class holds example code how to use the dream algorithm ''' import numpy as np try: import spotpy except ImportError: import sys sys.path.append(".") import spotpy from spotpy.examples.spot_setup_hymod_python_pareto import spot_setup import pylab as plt if __name__ == "__main__": parallel ='seq' # Runs everthing in sequential mode np.random.seed(2000) # Makes the results reproduceable # Initialize the Hymod example # In this case, we tell the setup which algorithm we want to use, so # we can use this exmaple for different algorithms spot_setup=spot_setup() #Select number of maximum allowed repetitions rep=3000 # Create the SCE-UA sampler of spotpy, alt_objfun is set to None to force SPOTPY # to jump into the def objectivefunction in the spot_setup class (default is # spotpy.objectivefunctions.rmse) sampler=spotpy.algorithms.padds(spot_setup, dbname='padds_hymod', dbformat='csv') #Start the sampler, one can specify ngs, kstop, peps and pcento id desired print(sampler.sample(rep, metric="crowd_distance")) # Load the results gained with the sceua sampler, stored in SCEUA_hymod.csv #results = spotpy.analyser.load_csv_results('DDS_hymod') results = sampler.getdata() from pprint import pprint #pprint(results) pprint(results['chain']) for likno in range(1,5): fig_like1 = plt.figure(1,figsize=(9,5)) plt.plot(results['like'+str(likno)]) plt.show() fig_like1.savefig('hymod_padds_objectivefunction_' + str(likno) + '.png', dpi=300) plt.ylabel('RMSE') plt.xlabel('Iteration') # Example plot to show the parameter distribution ###### fig= plt.figure(2,figsize=(9,9)) normed_value = 1 plt.subplot(5,2,1) x = results['parcmax'] for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) #Ignores burn-in chain plt.plot(x[index],'.') plt.ylabel('cmax') plt.ylim(spot_setup.cmax.minbound, spot_setup.cmax.maxbound) plt.subplot(5,2,2) x = x[int(len(results)*0.9):] #choose the last 10% of the sample hist, bins = np.histogram(x, bins=20, density=True) widths = np.diff(bins) hist *= normed_value plt.bar(bins[:-1], hist, widths) plt.ylabel('cmax') plt.xlim(spot_setup.cmax.minbound, spot_setup.cmax.maxbound) plt.subplot(5,2,3) x = results['parbexp'] for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) plt.plot(x[index],'.') plt.ylabel('bexp') plt.ylim(spot_setup.bexp.minbound, spot_setup.bexp.maxbound) plt.subplot(5,2,4) x = x[int(len(results)*0.9):] hist, bins = np.histogram(x, bins=20, density=True) widths = np.diff(bins) hist *= normed_value plt.bar(bins[:-1], hist, widths) plt.ylabel('bexp') plt.xlim(spot_setup.bexp.minbound, spot_setup.bexp.maxbound) plt.subplot(5,2,5) x = results['paralpha'] print(x) for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) plt.plot(x[index],'.') plt.ylabel('alpha') plt.ylim(spot_setup.alpha.minbound, spot_setup.alpha.maxbound) plt.subplot(5,2,6) x = x[int(len(results)*0.9):] hist, bins = np.histogram(x, bins=20, density=True) widths = np.diff(bins) hist *= normed_value plt.bar(bins[:-1], hist, widths) plt.ylabel('alpha') plt.xlim(spot_setup.alpha.minbound, spot_setup.alpha.maxbound) plt.subplot(5,2,7) x = results['parKs'] for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) plt.plot(x[index],'.') plt.ylabel('Ks') plt.ylim(spot_setup.Ks.minbound, spot_setup.Ks.maxbound) plt.subplot(5,2,8) x = x[int(len(results)*0.9):] hist, bins = np.histogram(x, bins=20, density=True) widths = np.diff(bins) hist *= normed_value plt.bar(bins[:-1], hist, widths) plt.ylabel('Ks') plt.xlim(spot_setup.Ks.minbound, spot_setup.Ks.maxbound) plt.subplot(5,2,9) x = results['parKq'] for i in range(int(max(results['chain'])-1)): index=np.where(results['chain']==i+1) plt.plot(x[index],'.') plt.ylabel('Kq') plt.ylim(spot_setup.Kq.minbound, spot_setup.Kq.maxbound) plt.xlabel('Iterations') plt.subplot(5,2,10) x = x[int(len(results)*0.9):] hist, bins = np.histogram(x, bins=20, density=True) widths = np.diff(bins) hist *= normed_value plt.bar(bins[:-1], hist, widths) plt.ylabel('Kq') plt.xlabel('Parameter range') plt.xlim(spot_setup.Kq.minbound, spot_setup.Kq.maxbound) plt.show() fig.savefig('hymod_parameters.png',dpi=300)
30.445122
90
0.639495
45233dfc05fd7951089c6b29bd23ca2f8fdef0c3
27,930
py
Python
onnxruntime/python/tools/transformers/onnx_model.py
sriduth/onnxruntime
b2da700e4d953239833e40f9a1b39b15936cc6dd
[ "MIT" ]
1
2019-01-15T18:10:37.000Z
2019-01-15T18:10:37.000Z
onnxruntime/python/tools/transformers/onnx_model.py
sriduth/onnxruntime
b2da700e4d953239833e40f9a1b39b15936cc6dd
[ "MIT" ]
null
null
null
onnxruntime/python/tools/transformers/onnx_model.py
sriduth/onnxruntime
b2da700e4d953239833e40f9a1b39b15936cc6dd
[ "MIT" ]
1
2021-03-08T18:50:34.000Z
2021-03-08T18:50:34.000Z
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. #-------------------------------------------------------------------------- from typing import List, Tuple import logging import os import sys import argparse from pathlib import Path import numpy as np from collections import deque from onnx import ModelProto, TensorProto, numpy_helper, helper, external_data_helper, save_model logger = logging.getLogger(__name__) class OnnxModel: def __init__(self, model): self.model = model self.node_name_counter = {} def input_name_to_nodes(self): input_name_to_nodes = {} for node in self.model.graph.node: for input_name in node.input: if input_name not in input_name_to_nodes: input_name_to_nodes[input_name] = [node] else: input_name_to_nodes[input_name].append(node) return input_name_to_nodes def output_name_to_node(self): output_name_to_node = {} for node in self.model.graph.node: for output_name in node.output: output_name_to_node[output_name] = node return output_name_to_node def nodes(self): return self.model.graph.node def graph(self): return self.model.graph def remove_node(self, node): if node in self.model.graph.node: self.model.graph.node.remove(node) def remove_nodes(self, nodes_to_remove): for node in nodes_to_remove: self.remove_node(node) def add_node(self, node): self.model.graph.node.extend([node]) def add_nodes(self, nodes_to_add): self.model.graph.node.extend(nodes_to_add) def add_initializer(self, tensor): self.model.graph.initializer.extend([tensor]) def add_input(self, input): self.model.graph.input.extend([input]) @staticmethod def replace_node_input(node, old_input_name, new_input_name): assert isinstance(old_input_name, str) and isinstance(new_input_name, str) for j in range(len(node.input)): if node.input[j] == old_input_name: node.input[j] = new_input_name def replace_input_of_all_nodes(self, old_input_name, new_input_name): for node in self.model.graph.node: OnnxModel.replace_node_input(node, old_input_name, new_input_name) @staticmethod def replace_node_output(node, old_output_name, new_output_name): assert isinstance(old_output_name, str) and isinstance(new_output_name, str) for j in range(len(node.output)): if node.output[j] == old_output_name: node.output[j] = new_output_name def replace_output_of_all_nodes(self, old_output_name, new_output_name): for node in self.model.graph.node: OnnxModel.replace_node_output(node, old_output_name, new_output_name) def get_initializer(self, name): for tensor in self.model.graph.initializer: if tensor.name == name: return tensor return None def get_nodes_by_op_type(self, op_type): return [n for n in self.model.graph.node if n.op_type == op_type] def get_children(self, node, input_name_to_nodes=None): if (input_name_to_nodes is None): input_name_to_nodes = self.input_name_to_nodes() children = [] for output in node.output: if output in input_name_to_nodes: for node in input_name_to_nodes[output]: children.append(node) return children def get_parents(self, node, output_name_to_node=None): if output_name_to_node is None: output_name_to_node = self.output_name_to_node() parents = [] for input in node.input: if input in output_name_to_node: parents.append(output_name_to_node[input]) return parents def get_parent(self, node, i, output_name_to_node=None): if output_name_to_node is None: output_name_to_node = self.output_name_to_node() if len(node.input) <= i: return None input = node.input[i] if input not in output_name_to_node: return None return output_name_to_node[input] def match_first_parent(self, node, parent_op_type, output_name_to_node, exclude=[]): ''' Find parent node based on constraints on op_type. Args: node (str): current node name. parent_op_type (str): constraint of parent node op_type. output_name_to_node (dict): dictionary with output name as key, and node as value. exclude (list): list of nodes that are excluded (not allowed to match as parent). Returns: parent: The matched parent node. None if not found. index: The input index of matched parent node. None if not found. ''' for i, input in enumerate(node.input): if input in output_name_to_node: parent = output_name_to_node[input] if parent.op_type == parent_op_type and parent not in exclude: return parent, i else: logger.debug(f"To find first {parent_op_type}, current {parent.op_type}") return None, None def match_parent(self, node, parent_op_type, input_index=None, output_name_to_node=None, exclude=[], return_indice=None): ''' Find parent node based on constraints on op_type and index. When input_index is None, we will find the first parent node based on constraints, and return_indice will be appended the corresponding input index. Args: node (str): current node name. parent_op_type (str): constraint of parent node op_type. input_index (int or None): only check the parent given input index of current node. output_name_to_node (dict): dictionary with output name as key, and node as value. exclude (list): list of nodes that are excluded (not allowed to match as parent). return_indice (list): a list to append the input index when input_index is None. Returns: parent: The matched parent node. ''' assert node is not None assert input_index is None or input_index >= 0 if output_name_to_node is None: output_name_to_node = self.output_name_to_node() if input_index is None: parent, index = self.match_first_parent(node, parent_op_type, output_name_to_node, exclude) if return_indice is not None: return_indice.append(index) return parent if input_index >= len(node.input): logger.debug(f"input_index {input_index} >= node inputs {len(node.input)}") return None parent = self.get_parent(node, input_index, output_name_to_node) if parent is not None and parent.op_type == parent_op_type and parent not in exclude: return parent if parent is not None: logger.debug(f"Expect {parent_op_type}, Got {parent.op_type}") return None def match_parent_paths(self, node, paths, output_name_to_node): for i, path in enumerate(paths): assert isinstance(path, List) or isinstance(path, Tuple) return_indice = [] matched = self.match_parent_path(node, path[0], path[1], output_name_to_node, return_indice) if matched: return i, matched, return_indice return -1, None, None def match_parent_path(self, node, parent_op_types, parent_input_index, output_name_to_node=None, return_indice=None): ''' Find a sequence of input edges based on constraints on parent op_type and index. When input_index is None, we will find the first parent node based on constraints, and return_indice will be appended the corresponding input index. Args: node (str): current node name. parent_op_types (str): constraint of parent node op_type of each input edge. parent_input_index (list): constraint of input index of each input edge. None means no constraint. output_name_to_node (dict): dictionary with output name as key, and node as value. return_indice (list): a list to append the input index when there is no constraint on input index of an edge. Returns: parents: a list of matched parent node. ''' assert (len(parent_input_index) == len(parent_op_types)) if output_name_to_node is None: output_name_to_node = self.output_name_to_node() current_node = node matched_parents = [] for i, op_type in enumerate(parent_op_types): matched_parent = self.match_parent(current_node, op_type, parent_input_index[i], output_name_to_node, exclude=[], return_indice=return_indice) if matched_parent is None: logger.debug(f"Failed to match index={i} parent_input_index={parent_input_index[i]} op_type={op_type}", stack_info=True) return None matched_parents.append(matched_parent) current_node = matched_parent return matched_parents def find_first_child_by_type(self, node, child_type, input_name_to_nodes=None, recursive=True): children = self.get_children(node, input_name_to_nodes) dq = deque(children) while len(dq) > 0: current_node = dq.pop() if current_node.op_type == child_type: return current_node if recursive: children = self.get_children(current_node, input_name_to_nodes) for child in children: dq.appendleft(child) return None def find_first_parent_by_type(self, node, parent_type, output_name_to_node=None, recursive=True): if output_name_to_node is None: output_name_to_node = self.output_name_to_node() parents = self.get_parents(node, output_name_to_node) dq = deque(parents) while len(dq) > 0: current_node = dq.pop() if current_node.op_type == parent_type: return current_node if recursive: parents = self.get_parents(current_node, output_name_to_node) for parent in parents: dq.appendleft(parent) return None def get_constant_value(self, output_name): for node in self.get_nodes_by_op_type('Constant'): if node.output[0] == output_name: for att in node.attribute: if att.name == 'value': return numpy_helper.to_array(att.t) # Fall back to intializer since constant folding might have been # applied. initializer = self.get_initializer(output_name) if initializer is not None: return numpy_helper.to_array(initializer) return None def get_constant_input(self, node): for i, input in enumerate(node.input): value = self.get_constant_value(input) if value is not None: return i, value return None, None def find_constant_input(self, node, expected_value, delta=0.000001): i, value = self.get_constant_input(node) if value is not None and value.size == 1 and abs(value - expected_value) < delta: return i return -1 def is_constant_with_specified_dimension(self, output_name, dimensions, description): value = self.get_constant_value(output_name) if value is None: logger.debug(f"{description} {output_name} is not initializer.") return False if len(value.shape) != dimensions: logger.debug(f"{description} {output_name} shall have {dimensions} dimensions. Got shape {value.shape}") return False return True def has_constant_input(self, node, expected_value, delta=0.000001): return self.find_constant_input(node, expected_value, delta) >= 0 def get_children_subgraph_nodes(self, root_node, stop_nodes, input_name_to_nodes=None): if input_name_to_nodes is None: input_name_to_nodes = self.input_name_to_nodes() children = input_name_to_nodes[root_node.output[0]] unique_nodes = [] dq = deque(children) while len(dq) > 0: current_node = dq.pop() if current_node in stop_nodes: continue if current_node not in unique_nodes: unique_nodes.append(current_node) for output in current_node.output: if output in input_name_to_nodes: children = input_name_to_nodes[output] for child in children: dq.appendleft(child) return unique_nodes def tensor_shape_to_list(self, tensor_type): """ Convert tensor shape to list """ shape_list = [] for d in tensor_type.shape.dim: if (d.HasField("dim_value")): shape_list.append(d.dim_value) # known dimension elif (d.HasField("dim_param")): shape_list.append(d.dim_param) # unknown dimension with symbolic name else: shape_list.append("?") # shall not happen return shape_list def convert_list_to_tensor(self, name, type, shape, value): """ Convert list to tensor """ return helper.make_tensor(name, type, shape, value) def change_input_output_float32_to_float16(self): """ Change graph input and output data type from FLOAT to FLOAT16 """ original_opset_version = self.model.opset_import[0].version graph = self.graph() new_graph_inputs = [] for input in graph.input: if input.type.tensor_type.elem_type == TensorProto.FLOAT: new_graph_inputs.append( helper.make_tensor_value_info(input.name, TensorProto.FLOAT16, self.tensor_shape_to_list(input.type.tensor_type))) else: new_graph_inputs.append(input) new_graph_outputs = [] for output in graph.output: if output.type.tensor_type.elem_type == TensorProto.FLOAT: new_graph_outputs.append( helper.make_tensor_value_info(output.name, TensorProto.FLOAT16, self.tensor_shape_to_list(output.type.tensor_type))) else: new_graph_outputs.append(output) graph_def = helper.make_graph(graph.node, 'float16 inputs and outputs', new_graph_inputs, new_graph_outputs, initializer=graph.initializer, value_info=graph.value_info) self.model = helper.make_model(graph_def, producer_name='onnxruntime-tools') # restore opset version self.model.opset_import[0].version = original_opset_version def convert_model_float32_to_float16(self, cast_input_output=True): """ Convert a graph to FLOAT16 """ graph = self.model.graph initializers = graph.initializer for initializer in initializers: if initializer.data_type == 1: initializer.CopyFrom( numpy_helper.from_array(numpy_helper.to_array(initializer).astype(np.float16), initializer.name)) for node in graph.node: if node.op_type in ['Constant', 'ConstantOfShape']: for att in node.attribute: if att.name == 'value' and att.t.data_type == 1: att.CopyFrom( helper.make_attribute( "value", numpy_helper.from_array(numpy_helper.to_array(att.t).astype(np.float16)))) if node.op_type == 'Cast': for att in node.attribute: if att.name == 'to' and att.i == 1: att.CopyFrom(helper.make_attribute("to", int(TensorProto.FLOAT16))) if not cast_input_output: self.change_input_output_float32_to_float16() return # Below assumes that we keep input and output data types. # Add Cast node to convert input from float32 to float16. for input_value_info in graph.input: if input_value_info.type.tensor_type.elem_type == TensorProto.FLOAT: initializer = self.get_initializer(input_value_info.name) if initializer is not None: # for compatibility for old converter/exporter input_value_info.type.tensor_type.elem_type = TensorProto.FLOAT16 else: cast_input = input_value_info.name cast_output = input_value_info.name + '_float16' self.replace_input_of_all_nodes(cast_input, cast_output) cast_node = helper.make_node('Cast', inputs=[cast_input], outputs=[cast_output]) cast_node.attribute.extend([helper.make_attribute("to", int(TensorProto.FLOAT16))]) self.add_node(cast_node) # Add Cast node to convert output from float16 back to float32. for output_value_info in graph.output: if output_value_info.type.tensor_type.elem_type == TensorProto.FLOAT: cast_input = output_value_info.name + '_float16' cast_output = output_value_info.name self.replace_output_of_all_nodes(cast_output, cast_input) self.replace_input_of_all_nodes(cast_output, cast_input) cast_node = helper.make_node('Cast', inputs=[cast_input], outputs=[cast_output]) cast_node.attribute.extend([helper.make_attribute("to", int(TensorProto.FLOAT))]) self.add_node(cast_node) # create a new name for node def create_node_name(self, op_type, name_prefix=None): if op_type in self.node_name_counter: self.node_name_counter[op_type] += 1 else: self.node_name_counter[op_type] = 1 if name_prefix is not None: full_name = name_prefix + str(self.node_name_counter[op_type]) else: full_name = op_type + "_" + str(self.node_name_counter[op_type]) # Check whether the name is taken: nodes = self.get_nodes_by_op_type(op_type) for node in nodes: if node.name == full_name: raise Exception("Node name already taken:", full_name) return full_name def find_graph_input(self, input_name): for input in self.model.graph.input: if input.name == input_name: return input return None def find_graph_output(self, output_name): for output in self.model.graph.output: if output.name == output_name: return output return None def get_parent_subgraph_nodes(self, node, stop_nodes, output_name_to_node=None): if output_name_to_node is None: output_name_to_node = self.output_name_to_node() unique_nodes = [] parents = self.get_parents(node, output_name_to_node) dq = deque(parents) while len(dq) > 0: current_node = dq.pop() if current_node in stop_nodes: continue if current_node not in unique_nodes: unique_nodes.append(current_node) for input in current_node.input: if input in output_name_to_node: dq.appendleft(output_name_to_node[input]) return unique_nodes def get_graph_inputs(self, current_node, recursive=False): """ Find graph inputs that linked to current node. """ graph_inputs = [] for input in current_node.input: if self.find_graph_input(input) and input not in graph_inputs: graph_inputs.append(input) if recursive: parent_nodes = self.get_parent_subgraph_nodes(current_node, []) for node in parent_nodes: for input in node.input: if self.find_graph_input(input) and input not in graph_inputs: graph_inputs.append(input) return graph_inputs @staticmethod def input_index(node_output, child_node): index = 0 for input in child_node.input: if input == node_output: return index index += 1 return -1 def remove_unused_constant(self): input_name_to_nodes = self.input_name_to_nodes() #remove unused constant unused_nodes = [] nodes = self.nodes() for node in nodes: if node.op_type == "Constant" and node.output[0] not in input_name_to_nodes: unused_nodes.append(node) self.remove_nodes(unused_nodes) if len(unused_nodes) > 0: logger.debug(f"Removed unused constant nodes: {len(unused_nodes)}") def prune_graph(self, outputs=None): """ Prune graph to keep only required outputs. It removes unnecessary inputs and nodes. Nodes are not linked (directly or indirectly) to any required output will be removed. Args: outputs (list): a list of graph outputs to retain. If it is None, all graph outputs will be kept. """ if outputs is None: outputs = [output.name for output in self.model.graph.output] output_name_to_node = self.output_name_to_node() all_nodes = [] for output in outputs: if output in output_name_to_node: last_node = output_name_to_node[output] if last_node in all_nodes: continue nodes = self.get_parent_subgraph_nodes(last_node, []) all_nodes.append(last_node) all_nodes.extend(nodes) nodes_to_remove = [] for node in self.model.graph.node: if node not in all_nodes: nodes_to_remove.append(node) self.remove_nodes(nodes_to_remove) # remove outputs not in list output_to_remove = [] for output in self.model.graph.output: if output.name not in outputs: output_to_remove.append(output) for output in output_to_remove: self.model.graph.output.remove(output) # remove inputs not used by any node. input_name_to_nodes = self.input_name_to_nodes() input_to_remove = [] for input in self.model.graph.input: if input.name not in input_name_to_nodes: input_to_remove.append(input) for input in input_to_remove: self.model.graph.input.remove(input) logger.info("Graph pruned: {} inputs, {} outputs and {} nodes are removed".format( len(input_to_remove), len(output_to_remove), len(nodes_to_remove))) self.update_graph() def update_graph(self, verbose=False): graph = self.model.graph remaining_input_names = [] for node in graph.node: if node.op_type != "Constant": for input_name in node.input: if input_name not in remaining_input_names: remaining_input_names.append(input_name) if verbose: logger.debug(f"remaining input names: {remaining_input_names}") # remove graph input that is not used inputs_to_remove = [] for input in graph.input: if input.name not in remaining_input_names: inputs_to_remove.append(input) for input in inputs_to_remove: graph.input.remove(input) names_to_remove = [input.name for input in inputs_to_remove] logger.debug(f"remove {len(inputs_to_remove)} unused inputs: {names_to_remove}") # remove weights that are not used weights_to_remove = [] weights_to_keep = [] for initializer in graph.initializer: if initializer.name not in remaining_input_names and not self.find_graph_output(initializer.name): weights_to_remove.append(initializer) else: weights_to_keep.append(initializer.name) for initializer in weights_to_remove: graph.initializer.remove(initializer) names_to_remove = [initializer.name for initializer in weights_to_remove] logger.debug(f"remove {len(weights_to_remove)} unused initializers: {names_to_remove}") if verbose: logger.debug(f"remaining initializers:{weights_to_keep}") self.remove_unused_constant() def is_safe_to_fuse_nodes(self, nodes_to_remove, keep_outputs, input_name_to_nodes, output_name_to_node): for node_to_remove in nodes_to_remove: for output_to_remove in node_to_remove.output: if output_to_remove in keep_outputs: continue if output_to_remove in input_name_to_nodes: for impacted_node in input_name_to_nodes[output_to_remove]: if impacted_node not in nodes_to_remove: logger.debug( f"it is not safe to remove nodes since output {output_to_remove} is used by {impacted_node}" ) return False return True def save_model_to_file(self, output_path, use_external_data_format=False): logger.info(f"Output model to {output_path}") Path(output_path).parent.mkdir(parents=True, exist_ok=True) if output_path.endswith(".json"): # Output text for testing small model. assert isinstance(self.model, ModelProto) with open(output_path, "w") as out: out.write(str(self.model)) else: # Save model to external data, which is needed for model size > 2GB if use_external_data_format: data_file = str(Path(output_path).name + ".data") if os.path.isfile(data_file): os.remove(data_file) external_data_helper.convert_model_to_external_data(self.model, all_tensors_to_one_file=True, location=data_file) save_model(self.model, output_path) def get_graph_inputs_excluding_initializers(self): """ Returns real graph inputs (excluding initializers from older onnx model). """ graph_inputs = [] for input in self.model.graph.input: if self.get_initializer(input.name) is None: graph_inputs.append(input) return graph_inputs
40.12931
156
0.603688
1bba1b68a51a790a840ea314035b2bdbdf0ddc35
1,978
py
Python
pyFilter.py
bjohnson751/Body-Brain-Fusion-
d4b657aca6d1b465fdbcb09368241b7273fd4acf
[ "MIT" ]
null
null
null
pyFilter.py
bjohnson751/Body-Brain-Fusion-
d4b657aca6d1b465fdbcb09368241b7273fd4acf
[ "MIT" ]
null
null
null
pyFilter.py
bjohnson751/Body-Brain-Fusion-
d4b657aca6d1b465fdbcb09368241b7273fd4acf
[ "MIT" ]
null
null
null
from scipy.signal import butter, lfilter def butter_bandpass(lowcut, highcut, fs, order=5): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype='band') return b, a def butter_bandpass_filter(data, lowcut, highcut, fs, order=5): b, a = butter_bandpass(lowcut, highcut, fs, order=order) y = lfilter(b, a, data) return y if __name__ == "__main__": import numpy as np import matplotlib.pyplot as plt from scipy.signal import freqz # Sample rate and desired cutoff frequencies (in Hz). fs = 5000.0 lowcut = 500.0 highcut = 1250.0 # Plot the frequency response for a few different orders. plt.figure(1) plt.clf() for order in [3, 6, 9]: b, a = butter_bandpass(lowcut, highcut, fs, order=order) w, h = freqz(b, a, worN=2000) plt.plot((fs * 0.5 / np.pi) * w, abs(h), label="order = %d" % order) plt.plot([0, 0.5 * fs], [np.sqrt(0.5), np.sqrt(0.5)], '--', label='sqrt(0.5)') plt.xlabel('Frequency (Hz)') plt.ylabel('Gain') plt.grid(True) plt.legend(loc='best') # Filter a noisy signal. T = 0.05 nsamples = T * fs t = np.linspace(0, T, nsamples, endpoint=False) a = 0.02 f0 = 600.0 x = 0.1 * np.sin(2 * np.pi * 1.2 * np.sqrt(t)) x += 0.01 * np.cos(2 * np.pi * 312 * t + 0.1) x += a * np.cos(2 * np.pi * f0 * t + .11) x += 0.03 * np.cos(2 * np.pi * 2000 * t) plt.figure(2) plt.clf() plt.plot(t, x, label='Noisy signal') y = butter_bandpass_filter(x, lowcut, highcut, fs, order=6) plt.plot(t, y, label='Filtered signal (%g Hz)' % f0) plt.xlabel('time (seconds)') plt.hlines([-a, a], 0, T, linestyles='--') plt.grid(True) plt.axis('tight') plt.legend(loc='upper left') plt.show()
32.42623
79
0.530334
35a4f9949f9f43fdeded79aaf9c9f8b9b81cb7b7
10,247
py
Python
x-pack/libbeat/tests/system/test_management.py
SHolzhauer/beats
39679a536a22e8a0d7534a2475504488909d19fd
[ "ECL-2.0", "Apache-2.0" ]
4
2020-11-17T06:29:30.000Z
2021-08-08T11:56:01.000Z
x-pack/libbeat/tests/system/test_management.py
SHolzhauer/beats
39679a536a22e8a0d7534a2475504488909d19fd
[ "ECL-2.0", "Apache-2.0" ]
36
2021-02-02T14:18:40.000Z
2022-03-20T15:07:30.000Z
x-pack/libbeat/tests/system/test_management.py
SHolzhauer/beats
39679a536a22e8a0d7534a2475504488909d19fd
[ "ECL-2.0", "Apache-2.0" ]
6
2021-03-10T05:38:32.000Z
2021-08-16T13:11:19.000Z
import sys import os import glob import json import requests import string import random import unittest import time from elasticsearch import Elasticsearch from os import path from base import BaseTest # Disable because waiting artifacts from https://github.com/elastic/kibana/pull/31660 INTEGRATION_TESTS = os.environ.get('INTEGRATION_TESTS', False) # INTEGRATION_TESTS = False TIMEOUT = 2 * 60 class TestManagement(BaseTest): def setUp(self): super(TestManagement, self).setUp() # NOTES: Theses options are linked to the specific of the docker compose environment for # CM. self.es_host = os.getenv('ES_HOST', 'localhost') + ":" + os.getenv('ES_POST', '9200') self.es_user = "myelastic" self.es_pass = "changeme" self.es = Elasticsearch([self.get_elasticsearch_url()], verify_certs=True) self.keystore_path = self.working_dir + "/data/keystore" if path.exists(self.keystore_path): os.Remove(self.keystore_path) @unittest.skipIf(not INTEGRATION_TESTS, "integration tests are disabled, run with INTEGRATION_TESTS=1 to enable them.") def test_enroll(self): """ Enroll the beat in Kibana Central Management """ assert len(glob.glob(os.path.join(self.working_dir, "mockbeat.yml.*.bak"))) == 0 # We don't care about this as it will be replaced by enrollment # process: config_path = os.path.join(self.working_dir, "mockbeat.yml") self.render_config_template("mockbeat", config_path, keystore_path=self.keystore_path) config_content = open(config_path, 'r').read() exit_code = self.enroll(self.es_user, self.es_pass) assert exit_code == 0 assert self.log_contains("Enrolled and ready to retrieve settings") # Enroll creates a keystore (to store access token) assert os.path.isfile(os.path.join( self.working_dir, "data/keystore")) # New settings file is in place now new_content = open(config_path, 'r').read() assert config_content != new_content # Settings backup has been created backup_file = glob.glob(os.path.join(self.working_dir, "mockbeat.yml.*.bak"))[0] assert os.path.isfile(backup_file) backup_content = open(backup_file).read() assert config_content == backup_content @unittest.skipIf(not INTEGRATION_TESTS, "integration tests are disabled, run with INTEGRATION_TESTS=1 to enable them.") def test_enroll_bad_pw(self): """ Try to enroll the beat in Kibana Central Management with a bad password """ # We don't care about this as it will be replaced by enrollment # process: config_path = os.path.join(self.working_dir, "mockbeat.yml") self.render_config_template("mockbeat", config_path, keystore_path=self.keystore_path) config_content = open(config_path, 'r').read() exit_code = self.enroll("not", 'wrong password') assert exit_code == 1 # Keystore wasn't created assert not os.path.isfile(os.path.join( self.working_dir, "data/keystore")) # Settings hasn't changed new_content = open(config_path, 'r').read() assert config_content == new_content @unittest.skipIf(not INTEGRATION_TESTS, "integration tests are disabled, run with INTEGRATION_TESTS=1 to enable them.") def test_fetch_configs(self): """ Config is retrieved from Central Management and updates are applied """ # Enroll the beat config_path = os.path.join(self.working_dir, "mockbeat.yml") self.render_config_template("mockbeat", config_path, keystore_path=self.keystore_path) exit_code = self.enroll(self.es_user, self.es_pass) assert exit_code == 0 index = self.random_index() # Configure an output self.create_and_assing_tag([ { "type": "output", "config": { "_sub_type": "elasticsearch", "hosts": [self.es_host], "username": self.es_user, "password": self.es_pass, "index": index, }, "id": "myconfig", } ]) # Start beat proc = self.start_beat(extra_args=[ "-E", "management.period=1s", "-E", "keystore.path=%s" % self.keystore_path, ]) # Wait for beat to apply new conf self.wait_log_contains("Applying settings for output") self.wait_until(lambda: self.log_contains("PublishEvents: "), max_timeout=TIMEOUT) self.wait_documents(index, 1) index2 = self.random_index() # Update output configuration self.create_and_assing_tag([ { "type": "output", "config": { "_sub_type": "elasticsearch", "hosts": [self.es_host], "username": self.es_user, "password": self.es_pass, "index": index2, }, "id": "myconfig", } ]) self.wait_log_contains("Applying settings for output") self.wait_until(lambda: self.log_contains("PublishEvents: "), max_timeout=TIMEOUT) self.wait_documents(index2, 1) proc.check_kill_and_wait() @unittest.skipIf(not INTEGRATION_TESTS, "integration tests are disabled, run with INTEGRATION_TESTS=1 to enable them.") def test_configs_cache(self): """ Config cache is used if Kibana is not available """ # Enroll the beat config_path = os.path.join(self.working_dir, "mockbeat.yml") self.render_config_template("mockbeat", config_path, keystore_path=self.keystore_path) exit_code = self.enroll(self.es_user, self.es_pass) assert exit_code == 0 index = self.random_index() # Update output configuration self.create_and_assing_tag([ { "type": "output", "config": { "_sub_type": "elasticsearch", "hosts": [self.es_host], "username": self.es_user, "password": self.es_pass, "index": index, } } ]) # Start beat proc = self.start_beat(extra_args=[ "-E", "management.period=1s", "-E", "keystore.path=%s" % self.keystore_path, ]) self.wait_until(lambda: self.log_contains("PublishEvents: "), max_timeout=TIMEOUT) self.wait_documents(index, 1) proc.check_kill_and_wait() # Remove the index self.es.indices.delete(index) # Cache should exists already, start with wrong kibana settings: proc = self.start_beat(extra_args=[ "-E", "management.period=1s", "-E", "management.kibana.host=wronghost", "-E", "management.kibana.timeout=0.5s", "-E", "keystore.path=%s" % self.keystore_path, ]) self.wait_until(lambda: self.log_contains("PublishEvents: "), max_timeout=TIMEOUT) self.wait_documents(index, 1) proc.check_kill_and_wait() def enroll(self, user, password): return self.run_beat( extra_args=["enroll", self.get_kibana_url(), "--password", "env:PASS", "--username", user, "--force"], logging_args=["-v", "-d", "*"], env={ 'PASS': password, }) def check_kibana_status(self): headers = { "kbn-xsrf": "1" } # Create tag url = self.get_kibana_url() + "/api/status" r = requests.get(url, headers=headers, auth=(self.es_user, self.es_pass)) def create_and_assing_tag(self, blocks): tag_name = "test%d" % int(time.time() * 1000) headers = { "kbn-xsrf": "1" } # Create tag url = self.get_kibana_url() + "/api/beats/tag/" + tag_name data = { "color": "#DD0A73", "name": tag_name, } r = requests.put(url, json=data, headers=headers, auth=(self.es_user, self.es_pass)) assert r.status_code in (200, 201) # Create blocks url = self.get_kibana_url() + "/api/beats/configurations" for b in blocks: b["tag"] = tag_name r = requests.put(url, json=blocks, headers=headers, auth=(self.es_user, self.es_pass)) assert r.status_code in (200, 201) # Retrieve beat ID meta = json.loads( open(os.path.join(self.working_dir, 'data', 'meta.json'), 'r').read()) # Assign tag to beat data = {"assignments": [{"beatId": meta["uuid"], "tag": tag_name}]} url = self.get_kibana_url() + "/api/beats/agents_tags/assignments" r = requests.post(url, json=data, headers=headers, auth=(self.es_user, self.es_pass)) assert r.status_code == 200 def get_elasticsearch_url(self): return 'http://' + self.es_user + ":" + self.es_pass + '@' + \ os.getenv('ES_HOST', 'localhost') + ':' + os.getenv('ES_PORT', '5601') def get_kibana_url(self): return 'http://' + os.getenv('KIBANA_HOST', 'kibana') + ':' + os.getenv('KIBANA_PORT', '5601') def random_index(self): return ''.join(random.choice(string.ascii_lowercase) for i in range(10)) def check_document_count(self, index, count): try: self.es.indices.refresh(index=index) return self.es.search(index=index, body={"query": {"match_all": {}}})['hits']['total']['value'] >= count except BaseException: return False def wait_documents(self, index, count): self.wait_until(lambda: self.check_document_count(index, count), max_timeout=TIMEOUT, poll_interval=1)
35.092466
116
0.57812
a93a3d2f31d4cc39dfd563c251ac7c120cffe598
6,739
py
Python
configuration/configuration_data.py
diogo1790team/inphinity_DM
b20d75ee0485e1f406a25efcf5f2855631166c38
[ "MIT" ]
1
2019-03-11T12:59:37.000Z
2019-03-11T12:59:37.000Z
configuration/configuration_data.py
diogo1790team/inphinity_DM
b20d75ee0485e1f406a25efcf5f2855631166c38
[ "MIT" ]
21
2018-10-17T14:52:30.000Z
2019-06-03T12:43:58.000Z
configuration/configuration_data.py
diogo1790team/inphinity_DM
b20d75ee0485e1f406a25efcf5f2855631166c38
[ "MIT" ]
6
2019-02-28T07:40:14.000Z
2019-09-23T13:31:54.000Z
# -*- coding: utf-8 -*- """ Created on Tue Apr 26 08:26:09 2018 @author: Diogo """ import configparser from pathlib import Path import os class Configuration_data: """ This class is called when we need to insert values in the database to select it """ def __init__(self, db_name = "INPHINTY"): """ Constructor of the object of configuration. if any configuration file exists, it always used the "interal" database :param db_name: name of the database (INPHINITY, DOMINE,...) accoding these in mySQL :type db_name: text - required """ self.db_name = db_name self.host_ip = "" self.usr_name = "" self.pwd_db = "" def check_config_file(self): """ This method check if a configuration file exists and return it. :return: configparser object if exist or None in case of no :rtype configparser object """ complete_path = os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..', 'configuration')) config_file = Path(complete_path + '/database_config.ini') if config_file.is_file(): config = configparser.ConfigParser() config.read(complete_path + '/database_config.ini') return config else: print('No configuration file, db inside is considered') return None def get_inphinity_db(self): """ This method return the INPHINTY database nam used :return: name of the database inphinity :rtype string """ database_name = 'INPH_proj' config = self.check_config_file() if config != None: database_name = config['DATABASE']['name_database_inphinity'] return database_name def get_domine_db(self): """ This method return the DOMINE database nam used :return: name of the database DOMINE :rtype string """ database_name = 'domine_db_out' config = self.check_config_file() if config != None: database_name = config['DATABASE']['name_database_domine'] return database_name def get_3did_db(self): """ This method return the 3did database nam used :return: name of the database 3did :rtype string """ database_name = '3did_db_out' config = self.check_config_file() if config != None: database_name = config['DATABASE']['name_database_3did'] return database_name def get_iPFAM_db(self): """ This method return the 3did database nam used :return: name of the database 3did :rtype string """ database_name = 'pfam_db_out' config = self.check_config_file() if config != None: database_name = config['DATABASE']['name_database_iPFAM'] return database_name def get_db_type(self): """ This method return the type of database used Typically: 0 = mysql and 1 = postgresql :return: type of database used :rtype int """ id_db_used = -1 config = self.check_config_file() if config != None: id_db_used = config['CONFIG_ACCESS']['db_access'] return int(id_db_used) def get_db_access(self): """ This method return the tags used to obtain the database access data and if it is from the server or local Typically DB: 0 = mysql, 1 = postgresql Typically connection: 0 = inside, 1 = outside :return: list[tag_host, tag_user, tag_pwd] :rtype list[] """ type_database = -1 type_connection = -1 list_tags_db_access = [] config = self.check_config_file() if config != None: type_database = self.get_db_type() type_connection = config['CONFIG_ACCESS']['db_connection'] if type_connection == 0: list_tags_db_access.append('host_inside_trex') else: list_tags_db_access.append('host_outside_trex') if type_database == 0: list_tags_db_access.extend(('usr_mysql','pwd_mysql')) else: list_tags_db_access.extend(('usr_postgres','pwd_postgres')) return list_tags_db_access def get_host_ip(self, connection_location_tag): """ This method return the host ip used for the connection (typically inside or outside) :param connection_location_tag: tag in the .ini file to obtain the IP :type connection_location_tag: string - mandatory :return: host adresse :rtype string """ host_ip = "" config = self.check_config_file() if config != None: host_ip = config['HOST'][connection_location_tag] return host_ip def get_user_data(self, usr_db, pwd_db): """ This method return the connection data used to perform the login :param usr_db: tag in the .ini file to obtain the username :param pwd_db: tag in the .ini file to obtain the pwd :type usr_db: string - mandatory :type pwd_db: string - mandatory :return: list[username, pwd] :rtype list[] """ data_connection = [] config = self.check_config_file() if config != None: data_connection.append(config['USER'][usr_db]) data_connection.append(config['PWD'][pwd_db]) return data_connection def get_database_name(self): """ Return the name of the database according the ini file :return: name of the database :rtype string object """ database_name = "" if self.db_name is 'INPHINITY': database_name = self.get_inphinity_db() if self.db_name is 'DOMINE': database_name = self.get_domine_db() if self.db_name is '3DID': database_name = self.get_3did_db() if self.db_name is 'iPFAM': database_name = self.get_iPFAM_db() return database_name def get_database_connection_information(self): """ Return the data necessary for the database connection :return: list[host, user, pwd, db_name] :rtype list[] """ db_data_access = [] database_name = self.get_database_name() list_accessdb = self.get_db_access() host_ip = self.get_host_ip(list_accessdb[0]) user_pwd = self.get_user_data(list_accessdb[1], list_accessdb[2]) db_data_access = [database_name, host_ip, user_pwd[0], user_pwd[1]] assert len(db_data_access) == 4 return db_data_access
29.687225
123
0.606173
96091e8a61d970add8582fd633b0d5c494e20d58
762
py
Python
python/pattern_server/pattern_server.py
multispot-software/LCOS_LabVIEW
bbf5653203bb734d1d2d1b31c7f65f309545de7a
[ "MIT" ]
null
null
null
python/pattern_server/pattern_server.py
multispot-software/LCOS_LabVIEW
bbf5653203bb734d1d2d1b31c7f65f309545de7a
[ "MIT" ]
null
null
null
python/pattern_server/pattern_server.py
multispot-software/LCOS_LabVIEW
bbf5653203bb734d1d2d1b31c7f65f309545de7a
[ "MIT" ]
3
2018-10-30T21:06:20.000Z
2020-03-27T08:14:41.000Z
#! python3 import socketserver import yaml from patternlib import compute_pattern def process_recv_data(data): #print(data) params = yaml.load(data) print(params, end='\n\n') a = compute_pattern(**params) return a.tobytes() class MyTCPHandler(socketserver.BaseRequestHandler): def handle(self): # self.request is the TCP socket connected to the client self.data = self.request.recv(1024).strip() print("- Data received.") response = process_recv_data(self.data) self.request.sendall(response) def main(): HOST, PORT = "localhost", 9999 server = socketserver.TCPServer((HOST, PORT), MyTCPHandler) print('Serving...') server.serve_forever() if __name__ == "__main__": main()
25.4
64
0.674541
65c53b27289fd5871d29010d2829ae92d255bf4d
9,467
py
Python
diofant/tests/integrals/test_rde.py
rajkk1/diofant
6b361334569e4ec2e8c7d30dc324387a4ad417c2
[ "BSD-3-Clause" ]
57
2016-09-13T23:16:26.000Z
2022-03-29T06:45:51.000Z
diofant/tests/integrals/test_rde.py
rajkk1/diofant
6b361334569e4ec2e8c7d30dc324387a4ad417c2
[ "BSD-3-Clause" ]
402
2016-05-11T11:11:47.000Z
2022-03-31T14:27:02.000Z
diofant/tests/integrals/test_rde.py
rajkk1/diofant
6b361334569e4ec2e8c7d30dc324387a4ad417c2
[ "BSD-3-Clause" ]
20
2016-05-11T08:17:37.000Z
2021-09-10T09:15:51.000Z
"""Most of these tests come from the examples in Bronstein's book.""" import pytest from diofant import I, Poly, Rational, oo, symbols from diofant.abc import k, n, t, x, z from diofant.integrals.rde import (bound_degree, cancel_exp, cancel_primitive, no_cancel_equal, normal_denom, order_at, order_at_oo, rischDE, solve_poly_rde, spde, special_denom, weak_normalizer) from diofant.integrals.risch import (DifferentialExtension, NonElementaryIntegralException) __all__ = () t0, t1, t2 = symbols('t:3') def test_order_at(): a = Poly(t**4, t) b = Poly((t**2 + 1)**3*t, t) c = Poly((t**2 + 1)**6*t, t) d = Poly((t**2 + 1)**10*t**10, t) e = Poly((t**2 + 1)**100*t**37, t) p1 = Poly(t, t) p2 = Poly(1 + t**2, t) assert order_at(a, p1, t) == 4 assert order_at(b, p1, t) == 1 assert order_at(c, p1, t) == 1 assert order_at(d, p1, t) == 10 assert order_at(e, p1, t) == 37 assert order_at(a, p2, t) == 0 assert order_at(b, p2, t) == 3 assert order_at(c, p2, t) == 6 assert order_at(d, p1, t) == 10 assert order_at(e, p2, t) == 100 assert order_at(Poly(0, t), Poly(t, t), t) == oo assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \ order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1 assert order_at_oo(Poly(0, t), Poly(1, t), t) == oo def test_weak_normalizer(): a = Poly((1 + x)*t**5 + 4*t**4 + (-1 - 3*x)*t**3 - 4*t**2 + (-2 + 2*x)*t, t) d = Poly(t**4 - 3*t**2 + 2, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) r = weak_normalizer(a, d, DE, z) assert r == (Poly(t**5 - t**4 - 4*t**3 + 4*t**2 + 4*t - 4, t), (Poly((1 + x)*t**2 + x*t, t), Poly(t + 1, t))) assert weak_normalizer(r[1][0], r[1][1], DE) == (Poly(1, t), r[1]) r = weak_normalizer(Poly(1 + t**2), Poly(t**2 - 1, t), DE, z) assert r == (Poly(t**4 - 2*t**2 + 1, t), (Poly(-3*t**2 + 1, t), Poly(t**2 - 1, t))) assert weak_normalizer(r[1][0], r[1][1], DE, z) == (Poly(1, t), r[1]) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2)]}) r = weak_normalizer(Poly(1 + t**2), Poly(t, t), DE, z) assert r == (Poly(t, t), (Poly(0, t), Poly(1, t))) assert weak_normalizer(r[1][0], r[1][1], DE, z) == (Poly(1, t), r[1]) def test_normal_denom(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) pytest.raises(NonElementaryIntegralException, lambda: normal_denom(Poly(1, x), Poly(1, x), Poly(1, x), Poly(x, x), DE)) fa, fd = Poly(t**2 + 1, t), Poly(1, t) ga, gd = Poly(1, t), Poly(t**2, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert normal_denom(fa, fd, ga, gd, DE) == \ (Poly(t, t), (Poly(t**3 - t**2 + t - 1, t), Poly(1, t)), (Poly(1, t), Poly(1, t)), Poly(t, t)) def test_special_denom(): # TODO: add more tests here DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t), Poly(t, t), DE) == \ (Poly(1, t), Poly(t**2 - 1, t), Poly(t**2 - 1, t), Poly(t, t)) # assert special_denom(Poly(1, t), Poly(2*x, t), Poly((1 + 2*x)*t, t), DE) == 1 # issue sympy/sympy#3940 # Note, this isn't a very good test, because the denominator is just 1, # but at least it tests the exp cancellation case DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-2*x*t0, t0), Poly(I*k*t1, t1)]}) DE.decrement_level() assert special_denom(Poly(1, t0), Poly(I*k, t0), Poly(1, t0), Poly(t0, t0), Poly(1, t0), DE) == \ (Poly(1, t0), Poly(I*k, t0), Poly(t0, t0), Poly(1, t0)) @pytest.mark.xfail def test_bound_degree_fail(): # Primitive DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0/x**2, t0), Poly(1/x, t)]}) assert bound_degree(Poly(t**2, t), Poly(-(1/x**2*t**2 + 1/x), t), Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/2*x*t**2 + x*t, t), DE) == 3 def test_bound_degree(): # Base DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert bound_degree(Poly(1, x), Poly(-2*x, x), Poly(1, x), DE) == 0 # Primitive (see above test_bound_degree_fail) # TODO: Add test for when the degree bound becomes larger after limited_integrate # TODO: Add test for db == da - 1 case # Exp # TODO: Add tests # TODO: Add test for when the degree becomes larger after parametric_log_deriv() # Nonlinear DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert bound_degree(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), DE) == 0 def test_spde(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) pytest.raises(NonElementaryIntegralException, lambda: spde(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert spde(Poly(t**2 + x*t*2 + x**2, t), Poly(t**2/x**2 + (2/x - 1)*t, t), Poly(t**2/x**2 + (2/x - 1)*t, t), 0, DE) == \ (Poly(0, t), Poly(0, t), 0, Poly(0, t), Poly(1, t)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0/x**2, t0), Poly(1/x, t)]}) assert spde(Poly(t**2, t), Poly(-t**2/x**2 - 1/x, t), Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/(2*x)*t**2 + x*t, t), 3, DE) == \ (Poly(0, t), Poly(0, t), 0, Poly(0, t), Poly(t0*t**2/2 + x**2*t**2 - x**2*t, t)) DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 + 3*x**4/4 + x**3 - x**2 + 1, x), 4, DE) == \ (Poly(0, x), Poly(x/2 - Rational(1, 4), x), 2, Poly(x**2 + x + 1, x), Poly(5*x/4, x)) assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 + 3*x**4/4 + x**3 - x**2 + 1, x), n, DE) == \ (Poly(0, x), Poly(x/2 - Rational(1, 4), x), -2 + n, Poly(x**2 + x + 1, x), Poly(5*x/4, x)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]}) pytest.raises(NonElementaryIntegralException, lambda: spde(Poly((t - 1)*(t**2 + 1)**2, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE)) DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert spde(Poly(x**2 - x, x), Poly(1, x), Poly(9*x**4 - 10*x**3 + 2*x**2, x), 4, DE) == (Poly(0, x), Poly(0, x), 0, Poly(0, x), Poly(3*x**3 - 2*x**2, x)) assert spde(Poly(x**2 - x, x), Poly(x**2 - 5*x + 3, x), Poly(x**7 - x**6 - 2*x**4 + 3*x**3 - x**2, x), 5, DE) == \ (Poly(1, x), Poly(x + 1, x), 1, Poly(x**4 - x**3, x), Poly(x**3 - x**2, x)) def test_solve_poly_rde_no_cancel(): # deg(b) large DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t), oo, DE) == Poly(t + x, t) # deg(b) small DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert solve_poly_rde(Poly(0, x), Poly(x/2 - Rational(1, 4), x), oo, DE) == \ Poly(x**2/4 - x/4, x) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \ Poly(t + 1, t, x) # deg(b) == deg(D) - 1 DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert no_cancel_equal(Poly(1 - t, t), Poly(t**3 + t**2 - 2*x*t - 2*x, t), oo, DE) == \ (Poly(t**2, t), 1, Poly((-2 - 2*x)*t - 2*x, t)) def test_solve_poly_rde_cancel(): # exp DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert cancel_exp(Poly(2*x, t), Poly(2*x, t), 0, DE) == \ Poly(1, t) assert cancel_exp(Poly(2*x, t), Poly((1 + 2*x)*t, t), 1, DE) == \ Poly(t, t) # TODO: Add more exp tests, including tests that require is_deriv_in_field() # primitive DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) # If the DecrementLevel context manager is working correctly, this shouldn't # cause any problems with the further tests. pytest.raises(NonElementaryIntegralException, lambda: cancel_primitive(Poly(1, t), Poly(t, t), oo, DE)) assert cancel_primitive(Poly(1, t), Poly(t + 1/x, t), 2, DE) == \ Poly(t, t) assert cancel_primitive(Poly(4*x, t), Poly(4*x*t**2 + 2*t/x, t), 3, DE) == \ Poly(t**2, t) # TODO: Add more primitive tests, including tests that require is_deriv_in_field() def test_rischDE(): # TODO: Add more tests for rischDE, including ones from the text DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) DE.decrement_level() assert rischDE(Poly(-2*x, x), Poly(1, x), Poly(1 - 2*x - 2*x**2, x), Poly(1, x), DE) == \ (Poly(x + 1, x), Poly(1, x))
48.055838
158
0.509665
abf8001abf419f12bb86552f235a6560342c4b26
1,610
py
Python
src/practices/practice/max_path _sum/script.py
rahul38888/coding_practice
8445c379310aa189147c4805c43bed80aa9e9fac
[ "Apache-2.0" ]
1
2021-08-06T11:22:12.000Z
2021-08-06T11:22:12.000Z
src/practices/practice/max_path _sum/script.py
rahul38888/coding_practice
8445c379310aa189147c4805c43bed80aa9e9fac
[ "Apache-2.0" ]
null
null
null
src/practices/practice/max_path _sum/script.py
rahul38888/coding_practice
8445c379310aa189147c4805c43bed80aa9e9fac
[ "Apache-2.0" ]
null
null
null
# https://practice.geeksforgeeks.org/problems/path-in-matrix3805/1 # Approach is to iterate over each 0th row element and try to find the max path from there # for any index save the longest cost path from there and reuse it class Solution: def recMaximumPath(self, N, m, index, cache): if index[0] == N-1: if cache[index[0]][index[1]] is None: cache[index[0]][index[1]] = m[index[0]][index[1]] return cache[index[0]][index[1]] if cache[index[0]][index[1]] is not None: return cache[index[0]][index[1]] max_cost = 0 r = index[0] c = index[1] max_cost = max(max_cost,self.recMaximumPath(N, m, (r+1, c), cache)) if c-1 >= 0: max_cost = max(max_cost,self.recMaximumPath(N, m, (r+1, c-1), cache)) if c+1 < N: max_cost = max(max_cost,self.recMaximumPath(N, m, (r+1, c+1), cache)) cache[index[0]][index[1]] = max_cost + m[index[0]][index[1]] return cache[index[0]][index[1]] def maximumPath(self, N, Matrix): cache = [[None for i in range(N)] for i in range(N)] max_cost = 0 for i in range(N): max_cost = max(max_cost,self.recMaximumPath(N, Matrix,(0,i),cache)) return max_cost if __name__ == '__main__': t = int (input ()) for _ in range (t): N = int(input()) arr = input().split() Matrix = [[0]*N for i in range(N)] for itr in range(N*N): Matrix[(itr//N)][itr%N] = int(arr[itr]) ob = Solution() print(ob.maximumPath(N, Matrix))
33.541667
90
0.557143
8ff9e22a75b6e29f339ba26dddde9b19e93abc82
2,652
py
Python
www/apis.py
xiaozefeng/python3-webapp
126f93179186bcf6adf360c0fba3ab51baa4ca19
[ "MIT" ]
null
null
null
www/apis.py
xiaozefeng/python3-webapp
126f93179186bcf6adf360c0fba3ab51baa4ca19
[ "MIT" ]
null
null
null
www/apis.py
xiaozefeng/python3-webapp
126f93179186bcf6adf360c0fba3ab51baa4ca19
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- __author__ = 'steven' ''' JSON API definition. ''' import json, logging, inspect, functools class Page(object): ''' Page object for display pages. ''' def __init__(self, item_count, page_index=1, page_size=10): ''' Init Pagination by item_count, page_index and page_size. >>> p1 = Page(100, 1) >>> p1.page_count 10 >>> p1.offset 0 >>> p1.limit 10 >>> p2 = Page(90, 9, 10) >>> p2.page_count 9 >>> p2.offset 80 >>> p2.limit 10 >>> p3 = Page(91, 10, 10) >>> p3.page_count 10 >>> p3.offset 90 >>> p3.limit 10 ''' self.item_count = item_count self.page_size = page_size self.page_count = item_count // page_size + (1 if item_count % page_size > 0 else 0) if (item_count == 0) or (page_index > self.page_count): self.offset = 0 self.limit = 0 self.page_index = 1 else: self.page_index = page_index self.offset = self.page_size * (page_index - 1) self.limit = self.page_size self.has_next = self.page_index < self.page_count self.has_previous = self.page_index > 1 def __str__(self): return 'item_count: %s, page_count: %s, page_index: %s, page_size: %s, offset: %s, limit: %s' % (self.item_count, self.page_count, self.page_index, self.page_size, self.offset, self.limit) __repr__ = __str__ class APIError(Exception): ''' the base APIError which contains error(required), data(optional) and message(optional). ''' def __init__(self, error, data='', message=''): super(APIError, self).__init__(message) self.error = error self.data = data self.message = message class APIValueError(APIError): ''' Indicate the input value has erro or invalid. The data specifies the error field of input form. ''' def __init__(self, field, message): super(APIValueError,self).__init__('value:invalid', field, message) class APIResourceNotFoundError(APIError): ''' Indicate the resource was not found. The data specifies the resource name. ''' def __init__(self, field, message=''): super(APIResourceNotFoundError, self).__init__('value:notfound', field, message) class APIPermissionError(APIError): ''' Indicate the api has no permission ''' def __init__(self, message= ''): super(APIPermissionError, self).__init__('permission:forbidden', 'permission', message)
27.625
196
0.592383
828550264cd13d6cdafa6dea1649bf77dcf660d8
16,464
py
Python
server/integrations/smpp/smpp2FA.py
duttarnab/jans-auth-server
c74d4b1056cc6ae364dee1d3b89121925a3dcd0b
[ "Apache-2.0" ]
30
2020-10-08T07:42:25.000Z
2022-01-14T08:28:54.000Z
server/integrations/smpp/smpp2FA.py
duttarnab/jans-auth-server
c74d4b1056cc6ae364dee1d3b89121925a3dcd0b
[ "Apache-2.0" ]
339
2020-10-23T19:07:38.000Z
2022-01-14T08:27:47.000Z
server/integrations/smpp/smpp2FA.py
duttarnab/jans-auth-server
c74d4b1056cc6ae364dee1d3b89121925a3dcd0b
[ "Apache-2.0" ]
17
2020-10-07T17:23:59.000Z
2022-01-14T09:28:21.000Z
# Janssen Project software is available under the Apache License (2004). See http://www.apache.org/licenses/ for full text. # Copyright (c) 2020, Janssen Project # Copyright (c) 2019, Tele2 # Author: Jose Gonzalez # Author: Gasmyr Mougang # Author: Stefan Andersson from java.util import Arrays, Date from java.io import IOException from java.lang import Enum from io.jans.service.cdi.util import CdiUtil from io.jans.as.server.security import Identity from io.jans.model.custom.script.type.auth import PersonAuthenticationType from io.jans.as.server.service import AuthenticationService from io.jans.as.server.service.common import UserService from io.jans.as.server.util import ServerUtil from io.jans.util import StringHelper, ArrayHelper from javax.faces.application import FacesMessage from io.jans.jsf2.message import FacesMessages from org.jsmpp import InvalidResponseException, PDUException from org.jsmpp.bean import Alphabet, BindType, ESMClass, GeneralDataCoding, MessageClass, NumberingPlanIndicator, RegisteredDelivery, SMSCDeliveryReceipt, TypeOfNumber from org.jsmpp.extra import NegativeResponseException, ResponseTimeoutException from org.jsmpp.session import BindParameter, SMPPSession from org.jsmpp.util import AbsoluteTimeFormatter, TimeFormatter import random class SmppAttributeError(Exception): pass class PersonAuthentication(PersonAuthenticationType): def __init__(self, currentTimeMillis): self.currentTimeMillis = currentTimeMillis self.identity = CdiUtil.bean(Identity) def get_and_parse_smpp_config(self, config, attribute, _type = None, convert = False, optional = False, default_desc = None): try: value = config.get(attribute).getValue2() except: if default_desc: default_desc = " using default '{}'".format(default_desc) else: default_desc = "" if optional: raise SmppAttributeError("SMPP missing optional configuration attribute '{}'{}".format(attribute, default_desc)) else: raise SmppAttributeError("SMPP missing required configuration attribute '{}'".format(attribute)) if _type and issubclass(_type, Enum): try: return getattr(_type, value) except AttributeError: raise SmppAttributeError("SMPP could not find attribute '{}' in {}".format(attribute, _type)) if convert: try: value = int(value) except AttributeError: try: value = int(value, 16) except AttributeError: raise SmppAttributeError("SMPP could not parse value '{}' of attribute '{}'".format(value, attribute)) return value def init(self, customScript, configurationAttributes): print("SMPP Initialization") self.TIME_FORMATTER = AbsoluteTimeFormatter() self.SMPP_SERVER = None self.SMPP_PORT = None self.SYSTEM_ID = None self.PASSWORD = None # Setup some good defaults for TON, NPI and source (from) address # TON (Type of Number), NPI (Number Plan Indicator) self.SRC_ADDR_TON = TypeOfNumber.ALPHANUMERIC # Alphanumeric self.SRC_ADDR_NPI = NumberingPlanIndicator.ISDN # ISDN (E163/E164) self.SRC_ADDR = "Gluu OTP" # Don't touch these unless you know what your doing, we don't handle number reformatting for # any other type than international. self.DST_ADDR_TON = TypeOfNumber.INTERNATIONAL # International self.DST_ADDR_NPI = NumberingPlanIndicator.ISDN # ISDN (E163/E164) # Priority flag and data_coding bits self.PRIORITY_FLAG = 3 # Very Urgent (ANSI-136), Emergency (IS-95) self.DATA_CODING_ALPHABET = Alphabet.ALPHA_DEFAULT # SMS default alphabet self.DATA_CODING_MESSAGE_CLASS = MessageClass.CLASS1 # EM (Mobile Equipment (mobile memory), normal message # Required server settings try: self.SMPP_SERVER = self.get_and_parse_smpp_config(configurationAttributes, "smpp_server") except SmppAttributeError as e: print(e) try: self.SMPP_PORT = self.get_and_parse_smpp_config(configurationAttributes, "smpp_port", convert = True) except SmppAttributeError as e: print(e) if None in (self.SMPP_SERVER, self.SMPP_PORT): print("SMPP smpp_server and smpp_port is empty, will not enable SMPP service") return False # Optional system_id and password for bind auth try: self.SYSTEM_ID = self.get_and_parse_smpp_config(configurationAttributes, "system_id", optional = True) except SmppAttributeError as e: print(e) try: self.PASSWORD = self.get_and_parse_smpp_config(configurationAttributes, "password", optional = True) except SmppAttributeError as e: print(e) if None in (self.SYSTEM_ID, self.PASSWORD): print("SMPP Authentication disabled") # From number and to number settings try: self.SRC_ADDR_TON = self.get_and_parse_smpp_config( configurationAttributes, "source_addr_ton", _type = TypeOfNumber, optional = True, default_desc = self.SRC_ADDR_TON ) except SmppAttributeError as e: print(e) try: self.SRC_ADDR_NPI = self.get_and_parse_smpp_config( configurationAttributes, "source_addr_npi", _type = NumberingPlanIndicator, optional = True, default_desc = self.SRC_ADDR_NPI ) except SmppAttributeError as e: print(e) try: self.SRC_ADDR = self.get_and_parse_smpp_config( configurationAttributes, "source_addr", optional = True, default_desc = self.SRC_ADDR ) except SmppAttributeError as e: print(e) try: self.DST_ADDR_TON = self.get_and_parse_smpp_config( configurationAttributes, "dest_addr_ton", _type = TypeOfNumber, optional = True, default_desc = self.DST_ADDR_TON ) except SmppAttributeError as e: print(e) try: self.DST_ADDR_NPI = self.get_and_parse_smpp_config( configurationAttributes, "dest_addr_npi", _type = NumberingPlanIndicator, optional = True, default_desc = self.DST_ADDR_NPI ) except SmppAttributeError as e: print(e) # Priority flag and data coding, don't touch these unless you know what your doing... try: self.PRIORITY_FLAG = self.get_and_parse_smpp_config( configurationAttributes, "priority_flag", convert = True, optional = True, default_desc = "3 (Very Urgent, Emergency)" ) except SmppAttributeError as e: print(e) try: self.DATA_CODING_ALPHABET = self.get_and_parse_smpp_config( configurationAttributes, "data_coding_alphabet", _type = Alphabet, optional = True, default_desc = self.DATA_CODING_ALPHABET ) except SmppAttributeError as e: print(e) try: self.DATA_CODING_MESSAGE_CLASS = self.get_and_parse_smpp_config( configurationAttributes, "data_coding_alphabet", _type = MessageClass, optional = True, default_desc = self.DATA_CODING_MESSAGE_CLASS ) except SmppAttributeError as e: print(e) print("SMPP Initialized successfully") return True def destroy(self, configurationAttributes): print("SMPP Destroy") print("SMPP Destroyed successfully") return True def getApiVersion(self): return 11 def getAuthenticationMethodClaims(self, requestParameters): return None def isValidAuthenticationMethod(self, usageType, configurationAttributes): return True def getAlternativeAuthenticationMethod(self, usageType, configurationAttributes): return None def authenticate(self, configurationAttributes, requestParameters, step): userService = CdiUtil.bean(UserService) authenticationService = CdiUtil.bean(AuthenticationService) facesMessages = CdiUtil.bean(FacesMessages) facesMessages.setKeepMessages() session_attributes = self.identity.getSessionId().getSessionAttributes() form_passcode = ServerUtil.getFirstValue(requestParameters, "passcode") print("SMPP form_response_passcode: {}".format(str(form_passcode))) if step == 1: print("SMPP Step 1 Password Authentication") credentials = self.identity.getCredentials() user_name = credentials.getUsername() user_password = credentials.getPassword() logged_in = False if StringHelper.isNotEmptyString(user_name) and StringHelper.isNotEmptyString(user_password): logged_in = authenticationService.authenticate(user_name, user_password) if not logged_in: return False # Get the Person's number and generate a code foundUser = None try: foundUser = authenticationService.getAuthenticatedUser() except: print("SMPP Error retrieving user {} from LDAP".format(user_name)) return False mobile_number = None try: isVerified = foundUser.getAttribute("phoneNumberVerified") if isVerified: mobile_number = foundUser.getAttribute("employeeNumber") if not mobile_number: mobile_number = foundUser.getAttribute("mobile") if not mobile_number: mobile_number = foundUser.getAttribute("telephoneNumber") if not mobile_number: facesMessages.add(FacesMessage.SEVERITY_ERROR, "Failed to determine mobile phone number") print("SMPP Error finding mobile number for user '{}'".format(user_name)) return False except Exception as e: facesMessages.add(FacesMessage.SEVERITY_ERROR, "Failed to determine mobile phone number") print("SMPP Error finding mobile number for {}: {}".format(user_name, e)) return False # Generate Random six digit code code = random.randint(100000, 999999) # Get code and save it in LDAP temporarily with special session entry self.identity.setWorkingParameter("code", code) self.identity.setWorkingParameter("mobile_number", mobile_number) self.identity.getSessionId().getSessionAttributes().put("mobile_number", mobile_number) if not self.sendMessage(mobile_number, str(code)): facesMessages.add(FacesMessage.SEVERITY_ERROR, "Failed to send message to mobile phone") return False return True elif step == 2: # Retrieve the session attribute print("SMPP Step 2 SMS/OTP Authentication") code = session_attributes.get("code") print("SMPP Code: {}".format(str(code))) if code is None: print("SMPP Failed to find previously sent code") return False if form_passcode is None: print("SMPP Passcode is empty") return False if len(form_passcode) != 6: print("SMPP Passcode from response is not 6 digits: {}".format(form_passcode)) return False if form_passcode == code: print("SMPP SUCCESS! User entered the same code!") return True print("SMPP failed, user entered the wrong code! {} != {}".format(form_passcode, code)) facesMessages.add(facesMessage.SEVERITY_ERROR, "Incorrect SMS code, please try again.") return False print("SMPP ERROR: step param not found or != (1|2)") return False def prepareForStep(self, configurationAttributes, requestParameters, step): if step == 1: print("SMPP Prepare for Step 1") return True elif step == 2: print("SMPP Prepare for Step 2") return True return False def getExtraParametersForStep(self, configurationAttributes, step): if step == 2: return Arrays.asList("code") return None def getCountAuthenticationSteps(self, configurationAttributes): return 2 def getPageForStep(self, configurationAttributes, step): if step == 2: return "/auth/otp_sms/otp_sms.xhtml" return "" def getNextStep(self, configurationAttributes, requestParameters, step): return -1 def getLogoutExternalUrl(self, configurationAttributes, requestParameters): print "Get external logout URL call" return None def logout(self, configurationAttributes, requestParameters): return True def sendMessage(self, number, code): status = False session = SMPPSession() session.setTransactionTimer(10000) # We only handle international destination number reformatting. # All others may vary by configuration decisions taken on SMPP # server side which we have no clue about. if self.DST_ADDR_TON == TypeOfNumber.INTERNATIONAL and number.startswith("+"): number = number[1:] try: print("SMPP Connecting") reference_id = session.connectAndBind( self.SMPP_SERVER, self.SMPP_PORT, BindParameter( BindType.BIND_TX, self.SYSTEM_ID, self.PASSWORD, None, self.SRC_ADDR_TON, self.SRC_ADDR_NPI, None ) ) print("SMPP Connected to server with system id {}".format(reference_id)) try: message_id = session.submitShortMessage( "CMT", self.SRC_ADDR_TON, self.SRC_ADDR_NPI, self.SRC_ADDR, self.DST_ADDR_TON, self.DST_ADDR_NPI, number, ESMClass(), 0, self.PRIORITY_FLAG, self.TIME_FORMATTER.format(Date()), None, RegisteredDelivery(SMSCDeliveryReceipt.DEFAULT), 0, GeneralDataCoding( self.DATA_CODING_ALPHABET, self.DATA_CODING_MESSAGE_CLASS, False ), 0, code ) print("SMPP Message '{}' sent to #{} with message id {}".format(code, number, message_id)) status = True except PDUException as e: print("SMPP Invalid PDU parameter: {}".format(e)) except ResponseTimeoutException as e: print("SMPP Response timeout: {}".format(e)) except InvalidResponseException as e: print("SMPP Receive invalid response: {}".format(e)) except NegativeResponseException as e: print("SMPP Receive negative response: {}".format(e)) except IOException as e: print("SMPP IO error occured: {}".format(e)) finally: session.unbindAndClose() except IOException as e: print("SMPP Failed connect and bind to host: {}".format(e)) return status
37.848276
167
0.599551
b80a9efe6a9cec153604e620450ba8f39414b7bd
2,820
py
Python
telewater/bot.py
someoneonearthwholovestg/telewater
ced6810f60b6070d6de4637450a1ea87076e9b1d
[ "MIT" ]
1
2021-04-26T07:12:47.000Z
2021-04-26T07:12:47.000Z
telewater/bot.py
someoneonearthwholovestg/telewater
ced6810f60b6070d6de4637450a1ea87076e9b1d
[ "MIT" ]
null
null
null
telewater/bot.py
someoneonearthwholovestg/telewater
ced6810f60b6070d6de4637450a1ea87076e9b1d
[ "MIT" ]
null
null
null
''' This module defines the functions that handle different events. ''' import os import logging from telethon import TelegramClient, events from telewater.settings import API_ID, API_HASH, HELP, X_OFF, Y_OFF from telewater.watermark import watermark from telewater.utils import download_image, get_args # TODO: (optional) send logs to attached logs channel async def start(event): # TODO: authentication for admins and users via deep linking, or "enter your access code" await event.respond('Hi! I am alive.') raise events.StopPropagation async def bot_help(event): try: await event.respond(HELP) finally: raise events.StopPropagation async def set_image(event): # TODO: accept images directly besides urls # TODO: show preview on different sizes # TODO: allow image resize / compress/ transparent bkrnd try: image_url = get_args(event.message.text) # TODO: if args are empty, ask follow up question to get user-input download_image(image_url, 'image.png') await event.respond('Done') finally: raise events.StopPropagation async def set_pos(event): try: pos_arg = get_args(event.message.text) # TODO: if the pos args are empty, ask follow up question to get user-input of standard postions (TOP/BOTTOM ...) # specific pos must be supplied thru args global X_OFF, Y_OFF X_OFF, Y_OFF = pos_arg.split('*') await event.respond(f'X_OFF = {X_OFF} and Y_OFF = {Y_OFF}') finally: raise events.StopPropagation async def watermarker(event): # TODO: reject large files (above certain file limit) # TODO: also watermark photos if event.gif or event.video: mp4_file = await event.download_media('') # TODO: suffix the downloaded media with time-stamp and user id outf = watermark(mp4_file, X_OFF, Y_OFF) print(outf) await event.client.send_file(event.sender_id, outf) os.remove(mp4_file) os.remove(outf) # TODO: fetch information about bot name # TODO:set the bot commands # client(functions.bots.SetBotCommandsRequest( # commands=[types.BotCommand( # command='some string here', # description='some string here' # )] # )) # client.run_until_disconnected() ALL_EVENTS = { 'start': (start, events.NewMessage(pattern='/start')), 'help': (bot_help, events.NewMessage(pattern='/help')), 'set_image': (set_image, events.NewMessage(pattern='/setimg')), 'set_pos': (set_pos, events.NewMessage(pattern='/setpos')), 'watermarker': (watermarker, events.NewMessage()) } # this is a dictionary where the keys are the unique string identifier for the events # the values are a tuple consisting of callback function and event
30.652174
121
0.684043
ad0e82216ee48bac4b6fac602fb1d3cac8949b48
15,294
py
Python
phaselink_train.py
TomSHudson/PhaseLink
04ad6e4b1c1c1ec809efb706f20a2702f04a6923
[ "MIT" ]
2
2021-09-30T12:18:53.000Z
2021-10-01T02:32:40.000Z
phaselink_train.py
TomSHudson/PhaseLink
04ad6e4b1c1c1ec809efb706f20a2702f04a6923
[ "MIT" ]
null
null
null
phaselink_train.py
TomSHudson/PhaseLink
04ad6e4b1c1c1ec809efb706f20a2702f04a6923
[ "MIT" ]
1
2021-09-30T12:28:45.000Z
2021-09-30T12:28:45.000Z
#!/usr/bin/python #----------------------------------------------------------------------------------------------------------------------------------------- # PhaseLink: Earthquake phase association with deep learning # Author: Zachary E. Ross # Seismological Laboratory # California Institute of Technology # Script Description: # Script to train a stacked bidirectional GRU model to link phases together. This code takes the synthetic training dataset produced using p # haselink_dataset and trains a deep neural network to associate individual phases into events. # Usage: # python phaselink_train.py config_json # For example: python phaselink_train.py params.json #----------------------------------------------------------------------------------------------------------------------------------------- # Import neccessary modules: import numpy as np import os import torch import torch.utils.data import sys import json import pickle import glob import gc import matplotlib.pyplot as plt from torch.utils.data.sampler import SubsetRandomSampler #----------------------------------------------- Define main functions ----------------------------------------------- class MyDataset(torch.utils.data.Dataset): """Function to preprocess a dataset into the format required by pytorch for training.""" def __init__(self, data, target, device, transform=None): self.data = torch.from_numpy(data).float().to(device) self.target = torch.from_numpy(target).short().to(device) self.transform = transform def __getitem__(self, index): x = self.data[index] y = self.target[index] if self.transform: x = self.transform(x) return x, y def __len__(self): return len(self.data) class StackedGRU(torch.nn.Module): """Class defining the stacked bidirectional GRU network.""" def __init__(self): super(StackedGRU, self).__init__() self.hidden_size = 128 self.fc1 = torch.nn.Linear(5, 32) self.fc2 = torch.nn.Linear(32, 32) self.fc3 = torch.nn.Linear(32, 32) self.fc4 = torch.nn.Linear(32, 32) self.fc5 = torch.nn.Linear(32, 32) self.fc6 = torch.nn.Linear(2*self.hidden_size, 1) self.gru1 = torch.nn.GRU(32, self.hidden_size, \ batch_first=True, bidirectional=True) self.gru2 = torch.nn.GRU(self.hidden_size*2, self.hidden_size, \ batch_first=True, bidirectional=True) def forward(self, inp): out = self.fc1(inp) out = torch.nn.functional.relu(out) out = self.fc2(out) out = torch.nn.functional.relu(out) out = self.fc3(out) out = torch.nn.functional.relu(out) out = self.fc4(out) out = torch.nn.functional.relu(out) out = self.fc5(out) out = torch.nn.functional.relu(out) out = self.gru1(out) h_t = out[0] out = self.gru2(h_t) h_t = out[0] out = self.fc6(h_t) #out = torch.sigmoid(out) return out class Model(): """Class to create and train a bidirectional GRU model.""" def __init__(self, network, optimizer, model_path): self.network = network self.optimizer = optimizer self.model_path = model_path def train(self, train_loader, val_loader, n_epochs, enable_amp=False): """Function to perform the training of a bidirectional GRU model. Loads and trains the data.""" from torch.autograd import Variable import time if enable_amp: import apex.amp as amp #pos_weight = torch.ones([1]).to(device)*24.264966334432359 #loss = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight) loss = torch.nn.BCEWithLogitsLoss() #loss = torch.nn.BCELoss() n_batches = len(train_loader) training_start_time = time.time() for epoch in range(n_epochs): running_loss = 0.0 running_acc = 0 running_val_acc = 0 print_every = n_batches // 10 start_time = time.time() total_train_loss = 0 total_val_loss = 0 total_val_acc = 0 running_sample_count = 0 for i, data in enumerate(train_loader, 0): # Get inputs/outputs and wrap in variable object inputs, labels = data #inputs = inputs.to(device) #labels = labels.to(device) # Set gradients for all parameters to zero self.optimizer.zero_grad() # Forward pass outputs = self.network(inputs) # Backward pass outputs = outputs.view(-1) labels = labels.view(-1) if enable_amp: loss_ = loss(outputs, labels.float()) with amp.scale_loss(loss_, self.optimizer) as loss_value: loss_value.backward() else: loss_value = loss(outputs, labels.float()) loss_value.backward() # Update parameters self.optimizer.step() with torch.no_grad(): # Print statistics running_loss += loss_value.data.item() total_train_loss += loss_value.data.item() # Calculate categorical accuracy pred = torch.round(torch.sigmoid(outputs)).short() running_acc += (pred == labels).sum().item() running_sample_count += len(labels) # Print every 10th batch of an epoch if (i + 1) % (print_every + 1) == 0: print("Epoch {}, {:d}% \t train_loss: {:.4e} " "train_acc: {:4.2f}% took: {:.2f}s".format( epoch + 1, int(100 * (i + 1) / n_batches), running_loss / print_every, 100*running_acc / running_sample_count, time.time() - start_time)) # Reset running loss and time running_loss = 0.0 start_time = time.time() running_sample_count = 0 y_pred_all, y_true_all = [], [] prec_0 = 0 prec_n_0 = 0 prec_1 = 0 prec_n_1 = 0 reca_0 = 0 reca_n_0 = 0 reca_1 = 0 reca_n_1 = 0 pick_precision = 0 pick_recall = 0 with torch.no_grad(): for inputs, labels in val_loader: # Wrap tensors in Variables #inputs = inputs.to(device) #labels = labels.to(device) # Forward pass only val_outputs = self.network(inputs) val_outputs = val_outputs.view(-1) labels = labels.view(-1) val_loss = loss(val_outputs, labels.float()) total_val_loss += val_loss.data.item() # Calculate categorical accuracy y_pred = torch.round(torch.sigmoid(val_outputs)).short() running_val_acc += (y_pred == labels).sum().item() running_sample_count += len(labels) #y_pred_all.append(pred.cpu().numpy().flatten()) #y_true_all.append(labels.cpu().numpy().flatten()) y_true = labels # Get precision-recall for current validation epoch: prec_0 += ( y_pred[y_pred<0.5] == y_true[y_pred<0.5] ).sum().item() prec_1 += ( y_pred[y_pred>0.5] == y_true[y_pred>0.5] ).sum().item() reca_0 += ( y_pred[y_true<0.5] == y_true[y_true<0.5] ).sum().item() reca_1 += ( y_pred[y_true>0.5] == y_true[y_true>0.5] ).sum().item() prec_n_0 += torch.numel(y_pred[y_pred<0.5]) prec_n_1 += torch.numel(y_pred[y_pred>0.5]) reca_n_0 += torch.numel(y_true[y_true<0.5]) reca_n_1 += torch.numel(y_true[y_true>0.5]) # Check if any are zero, and if so, set to 1 sample, simply so doesn't crash: # (Note: Just effects printing output) if prec_n_0 == 0: prec_n_0 = 1 if prec_n_1 == 0: prec_n_1 = 1 if reca_n_0 == 0: reca_n_0 = 1 if reca_n_1 == 0: reca_n_1 = 1 print("Precision (Class 0): {:4.3f}".format(prec_0/prec_n_0)) print("Recall (Class 0): {:4.3f}".format(reca_0/reca_n_0)) print("Precision (Class 1): {:4.3f}".format(prec_1/prec_n_1)) print("Recall (Class 1): {:4.3f}".format(reca_1/reca_n_1)) #y_pred_all = np.concatenate(y_pred_all) #y_true_all = np.concatenate(y_true_all) #from sklearn.metrics import classification_report #print(classification_report(y_true_all, y_pred_all)) total_val_loss /= len(val_loader) total_val_acc = running_val_acc / running_sample_count print( "Validation loss = {:.4e} acc = {:4.2f}%".format( total_val_loss, 100*total_val_acc)) # Save model: os.makedirs(self.model_path, exist_ok=True) torch.save({ 'epoch': epoch, 'model_state_dict': self.network.state_dict(), 'optimizer_state_dict': self.optimizer.state_dict(), 'loss': total_val_loss, }, '%s/model_%03d_%f.pt' % (self.model_path, epoch, total_val_loss)) print( "Training finished, took {:.2f}s".format( time.time() - training_start_time)) def predict(self, data_loader): from torch.autograd import Variable import time for inputs, labels in val_loader: # Wrap tensors in Variables inputs, labels = Variable( inputs.to(device)), Variable( labels.to(device)) # Forward pass only val_outputs = self.network(inputs) def find_best_model(model_path="phaselink_model"): """Function to find best model. Note: Currently uses a very basic selection method.""" # Plot model training and validation loss to select best model: # Write the models loss function values to file: models_fnames = list(glob.glob(os.path.join(model_path, "model_???_*.pt"))) models_fnames.sort() val_losses = [] f_out = open(os.path.join(model_path, 'val_losses.txt'), 'w') for model_fname in models_fnames: model_curr = torch.load(model_fname) val_losses.append(model_curr['loss']) f_out.write(' '.join((model_fname, str(model_curr['loss']), '\n'))) del(model_curr) gc.collect() f_out.close() val_losses = np.array(val_losses) print("Written losses to file: ", os.path.join(model_path, 'val_losses.txt')) # And select approximate best model (approx corner of loss curve): approx_corner_idx = np.argwhere(val_losses < np.average(val_losses))[0][0] print("Model to use:", models_fnames[approx_corner_idx]) # And plot: plt.figure() plt.plot(np.arange(len(val_losses)), val_losses) plt.hlines(val_losses[approx_corner_idx], 0, len(val_losses), color='r', ls="--") plt.ylabel("Val loss") plt.xlabel("Epoch") plt.show() # And convert model to use to universally usable format (GPU or CPU): model = StackedGRU().cuda(device) checkpoint = torch.load(models_fnames[approx_corner_idx], map_location=device) model.load_state_dict(checkpoint['model_state_dict']) torch.save(model, os.path.join(model_path, 'model_to_use.gpu.pt'), _use_new_zipfile_serialization=False) new_device = "cpu" model = model.to(new_device) torch.save(model, os.path.join(model_path, 'model_to_use.cpu.pt'), _use_new_zipfile_serialization=False) del model gc.collect() print("Found best model and written out to", model_path, "for GPU and CPU.") #----------------------------------------------- End: Define main functions ----------------------------------------------- #----------------------------------------------- Run script ----------------------------------------------- if __name__ == "__main__": if len(sys.argv) != 2: print("Usage: python phaselink_train.py config_json") print("E.g. python phaselink_train.py params.json") sys.exit() with open(sys.argv[1], "r") as f: params = json.load(f) # Get device (cpu vs gpu) specified: device = torch.device(params["device"]) if params["device"][0:4] == "cuda": torch.cuda.empty_cache() enable_amp = True else: enable_amp = False if enable_amp: import apex.amp as amp # Get training info from param file: n_epochs = params["n_epochs"] #100 # Load in training dataset: X = np.load(params["training_dset_X"]) Y = np.load(params["training_dset_Y"]) print("Training dataset info:") print("Shape of X:", X.shape, "Shape of Y", Y.shape) dataset = MyDataset(X, Y, device) # Get dataset info: n_samples = len(dataset) indices = list(range(n_samples)) # Set size of training and validation subset: n_test = int(0.1*X.shape[0]) validation_idx = np.random.choice(indices, size=n_test, replace=False) train_idx = list(set(indices) - set(validation_idx)) # Specify samplers: train_sampler = SubsetRandomSampler(train_idx) validation_sampler = SubsetRandomSampler(validation_idx) # Load training data: train_loader = torch.utils.data.DataLoader( dataset, batch_size=256, shuffle=False, sampler=train_sampler ) val_loader = torch.utils.data.DataLoader( dataset, batch_size=1024, shuffle=False, sampler=validation_sampler ) stackedgru = StackedGRU() stackedgru = stackedgru.to(device) #stackedgru = torch.nn.DataParallel(stackedgru, # device_ids=['cuda:2', 'cuda:3', 'cuda:4', 'cuda:5']) if enable_amp: #amp.register_float_function(torch, 'sigmoid') from apex.optimizers import FusedAdam optimizer = FusedAdam(stackedgru.parameters()) stackedgru, optimizer = amp.initialize( stackedgru, optimizer, opt_level='O2') else: optimizer = torch.optim.Adam(stackedgru.parameters()) model = Model(stackedgru, optimizer, model_path='./phaselink_model') print("Begin training process.") model.train(train_loader, val_loader, n_epochs, enable_amp=enable_amp) # And select and assign best model: find_best_model(model_path="phaselink_model") print("Finished.")
37.121359
140
0.55172
9ce6c2eca44ea0e93c8984d72cabb25135bde838
1,329
py
Python
simple.py
agermanidis/attngan
5e763da632a307be28656573b69b28d234eb6d99
[ "MIT" ]
1
2020-08-16T10:07:06.000Z
2020-08-16T10:07:06.000Z
simple.py
agermanidis/attngan
5e763da632a307be28656573b69b28d234eb6d99
[ "MIT" ]
2
2020-07-23T19:25:43.000Z
2020-07-24T21:21:08.000Z
simple.py
agermanidis/attngan
5e763da632a307be28656573b69b28d234eb6d99
[ "MIT" ]
1
2020-07-22T18:26:37.000Z
2020-07-22T18:26:37.000Z
import os import argparse import time import random from eval import * from miscc.config import cfg, cfg_from_file import warnings warnings.filterwarnings("ignore") def parse_args(): parser = argparse.ArgumentParser(description='Train a AttnGAN network') parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfg/bird_attn2.yml', type=str) parser.add_argument('--gpu', dest='gpu_id', type=int, default=-1) parser.add_argument('--data_dir', dest='data_dir', type=str, default='') parser.add_argument('--manualSeed', type=int, help='manual seed') args = parser.parse_args() return args if __name__ == '__main__': print('Running Simple Inference') # gpu based args = parse_args() cfg_from_file(args.cfg_file) cfg.CUDA = True # load word dictionaries wordtoix, ixtoword = word_index() # load models print('Loading Model...') text_encoder, netG = models(len(wordtoix)) print('Models Loaded') seed = 100 random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if cfg.CUDA: torch.cuda.manual_seed_all(seed) caption = 'a green field with trees and mountain in the back' im = generate(caption, wordtoix, ixtoword, text_encoder, netG, False) name = 'RESULT.png' im.save(name, format="png") print('Done!')
30.204545
73
0.702032
c27d78b2c00680c6ead601a6304b59698de7cbcb
2,870
py
Python
ocp_resources/catalog_source_config.py
mguetta1/openshift-python-wrapper
007ff36aab0f9f87c672db6107a2dd5b5618613b
[ "Apache-2.0" ]
null
null
null
ocp_resources/catalog_source_config.py
mguetta1/openshift-python-wrapper
007ff36aab0f9f87c672db6107a2dd5b5618613b
[ "Apache-2.0" ]
null
null
null
ocp_resources/catalog_source_config.py
mguetta1/openshift-python-wrapper
007ff36aab0f9f87c672db6107a2dd5b5618613b
[ "Apache-2.0" ]
null
null
null
import logging from ocp_resources.constants import PROTOCOL_ERROR_EXCEPTION_DICT, TIMEOUT_4MINUTES from ocp_resources.resource import NamespacedResource from ocp_resources.utils import TimeoutExpiredError, TimeoutSampler LOGGER = logging.getLogger(__name__) class CatalogSourceConfig(NamespacedResource): api_group = NamespacedResource.ApiGroup.OPERATORS_COREOS_COM def __init__( self, name=None, namespace=None, source=None, target_namespace=None, packages=None, cs_display_name=None, cs_publisher=None, client=None, teardown=True, yaml_file=None, delete_timeout=TIMEOUT_4MINUTES, ): super().__init__( name=name, namespace=namespace, client=client, teardown=teardown, yaml_file=yaml_file, delete_timeout=delete_timeout, ) self.source = source self.target_namespace = target_namespace self.packages = packages self.cs_display_name = cs_display_name self.cs_publisher = cs_publisher def to_dict(self): res = super().to_dict() if self.yaml_file: return res res.update( { "spec": { "source": self.source, "targetNamespace": self.target_namespace, "packages": self.packages, "csDisplayName": self.cs_display_name, "csPublisher": self.cs_publisher, } } ) return res def wait_for_csc_status(self, status, timeout=120): """ Wait for CatalogSourceConfig to reach requested status. CatalogSourceConfig Status is found under currentPhase.phase. Example phase: {'message': 'The object has been successfully reconciled', 'name': 'Succeeded'} Raises: TimeoutExpiredError: If CatalogSourceConfig in not in desire status. """ samples = TimeoutSampler( wait_timeout=timeout, sleep=1, exceptions_dict=PROTOCOL_ERROR_EXCEPTION_DICT, func=self.api.get, field_selector=f"metadata.name=={self.name}", namespace=self.namespace, ) current_status = None try: for sample in samples: if sample.items: sample_status = sample.items[0].status if sample_status: current_status = sample_status.currentPhase.phase["name"] if current_status == status: return except TimeoutExpiredError: if current_status: LOGGER.error(f"Status of {self.kind} {self.name} is {current_status}") raise
31.195652
102
0.581533
651767a2c488e43b3d6628767c855d37a8fc21db
4,679
py
Python
generate.py
mangtronix/samplernn-pytorch
101d618f82fcb1ff48914297107eb87a822f3f5e
[ "MIT" ]
1
2020-11-19T08:32:07.000Z
2020-11-19T08:32:07.000Z
generate.py
mangtronix/samplernn-pytorch
101d618f82fcb1ff48914297107eb87a822f3f5e
[ "MIT" ]
null
null
null
generate.py
mangtronix/samplernn-pytorch
101d618f82fcb1ff48914297107eb87a822f3f5e
[ "MIT" ]
null
null
null
from model import SampleRNN import torch from collections import OrderedDict import os import json from trainer.plugins import GeneratorPlugin import glob import sys '''Other comments: https://github.com/deepsound-project/samplernn-pytorch/issues/8''' # Support some command line options # Added by Mangtronix # Michael Ang - https://michaelang.com from optparse import OptionParser parser = OptionParser() parser.add_option('-d', '--dataset', help="Dataset name, e.g. 'lofi'") parser.add_option('-l', '--length', help="Length of audio to generate in seconds", default=30) parser.add_option('-c', '--checkpoint', help="Checkpoint name ('latest','best', or explicit name)", default='latest') parser.add_option('-o', '--output', help="Output file name") (options, args) = parser.parse_args() if not options.dataset: parser.print_help() sys.exit(-1) def find_results_path(dataset_name): paths = glob.glob('results/*' + dataset_name) if len(paths) < 1: print("No results found for " + dataset_name) raise("dataset not found") return paths[0] + '/' def find_latest_checkpoint(results_path): files = glob.glob(results_path + "checkpoints/*") latest_file = max(files, key=os.path.getctime) return latest_file def find_best_checkpoint(results_path): files = glob.glob(results_path + "checkpoints/best*") return files[-1] def find_checkpoint(results_path, checkpoint_name): if checkpoint_name == 'best': return find_best_checkpoint(results_path) if checkpoint_name == 'latest': return find_latest_checkpoint(results_path) return results_path + "checkpoints/" + checkpoint_name def get_checkpoint_name(checkpoint_path): return os.path.basename(os.path.normpath(checkpoint_path)) RESULTS_PATH=find_results_path(options.dataset) print("Using dataset at %s" % RESULTS_PATH) PRETRAINED_PATH = find_checkpoint(RESULTS_PATH, options.checkpoint) print("Using checkpoint %s" % PRETRAINED_PATH) CHECKPOINT_NAME = get_checkpoint_name(PRETRAINED_PATH) print("Checkpoint name is %s" % CHECKPOINT_NAME) OUTPUT_NAME = options.dataset + "_" + CHECKPOINT_NAME # Paths #RESULTS_PATH = 'results/exp:TEST-frame_sizes:16,4-n_rnn:2-dataset:COGNIMUSE_eq_eq_pad/' #RESULTS_PATH = 'results/exp:lofi-frame_sizes:16,4-n_rnn:2-dataset:lofi/' #PRETRAINED_PATH = RESULTS_PATH + 'checkpoints/best-ep11-it2750' #PRETRAINED_PATH = RESULTS_PATH + 'checkpoints/best-ep65-it79431' # RESULTS_PATH = 'results/exp:TEST-frame_sizes:16,4-n_rnn:2-dataset:piano3/' # PRETRAINED_PATH = RESULTS_PATH + 'checkpoints/best-ep21-it29610' GENERATED_PATH = RESULTS_PATH + 'generated/' if not os.path.exists(GENERATED_PATH): os.mkdir(GENERATED_PATH) # Load model parameters from .json for audio generation params_path = RESULTS_PATH + 'sample_rnn_params.json' with open(params_path, 'r') as fp: params = json.load(fp) # Create model with same parameters as used in training model = SampleRNN( frame_sizes=params['frame_sizes'], n_rnn=params['n_rnn'], dim=params['dim'], learn_h0=params['learn_h0'], q_levels=params['q_levels'], weight_norm=params['weight_norm'] ) #model = model.cuda() # Delete "model." from key names since loading the checkpoint automatically attaches it to the key names pretrained_state = torch.load(PRETRAINED_PATH) new_pretrained_state = OrderedDict() for k, v in pretrained_state.items(): layer_name = k.replace("model.", "") new_pretrained_state[layer_name] = v # print("k: {}, layer_name: {}, v: {}".format(k, layer_name, np.shape(v))) # Load pretrained model model.load_state_dict(new_pretrained_state) # Generate Plugin num_samples = 1 # params['n_samples'] sample_length = params['sample_length'] sample_rate = params['sample_rate'] sampling_temperature = params['sampling_temperature'] # Override from our options sample_length = sample_rate * int(options.length) print("Number samples: {}, sample_length: {}, sample_rate: {}".format(num_samples, sample_length, sample_rate)) print("Generating %d seconds of audio" % (sample_length / sample_rate)) generator = GeneratorPlugin(GENERATED_PATH, num_samples, sample_length, sample_rate, sampling_temperature) # Call new register function to accept the trained model and the cuda setting generator.register_generate(model.cuda(), params['cuda']) # Generate new audio # $$$ check if we already have generated audio and increment the file name generator.epoch(OUTPUT_NAME) GENERATED_FILEPATH = GENERATED_PATH + "ep" + OUTPUT_NAME + "-s1.wav" print("Saved audio to %s " % GENERATED_FILEPATH) if options.output: print("Moving to %s" % options.output) os.rename(GENERATED_FILEPATH, options.output)
35.44697
117
0.748664
5bf4a6a344dff56744e26cdc8b43558e9ab4afbf
3,504
py
Python
lab6/lab6.py
sydneysmartin/csc121
6ef4d323f58f4177c46b5ea38db7bc95a06d865e
[ "CC0-1.0" ]
null
null
null
lab6/lab6.py
sydneysmartin/csc121
6ef4d323f58f4177c46b5ea38db7bc95a06d865e
[ "CC0-1.0" ]
null
null
null
lab6/lab6.py
sydneysmartin/csc121
6ef4d323f58f4177c46b5ea38db7bc95a06d865e
[ "CC0-1.0" ]
null
null
null
import arcade def draw_section_outlines(): color = arcade.color.BLACK # Draw squares on bottom arcade.draw_rectangle_outline(150, 150, 300, 300, color) arcade.draw_rectangle_outline(450, 150, 300, 300, color) arcade.draw_rectangle_outline(750, 150, 300, 300, color) arcade.draw_rectangle_outline(1050, 150, 300, 300, color) #Draw squares on top arcade.draw_rectangle_outline(150, 450, 300, 300, color) arcade.draw_rectangle_outline(450, 450, 300, 300, color) arcade.draw_rectangle_outline(750, 450, 300, 300, color) arcade.draw_rectangle_outline(1050, 450, 300, 300, color) def draw_section_1(): for row in range(30): for column in range(30): x = (column * 10) + 5 y = (row *10) + 5 arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.WHITE) def draw_section_2(): for row in range(30): for column in range(30): x = 300 + (10 * column) + 5 y = (10 * row) + 5 if row % 2 == 0: arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.WHITE) else: arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.BLACK) def draw_section_3(): for row in range (30): for column in range(30): x = 600 + (10 * column) + 5 y = (10 * row) + 5 if column % 2 == 0: arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.WHITE) else: arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.BLACK) def draw_section_4(): for row in range (30): for column in range(30): x = 900 + (10 * row) + 5 y = (10 * column) + 5 if row % 2 == 1 or column % 2 == 1: arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.BLACK) elif row %2 == 0 and column%2 == 0: arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.WHITE) else: arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.BLACK) def draw_section_5(): for column in range (30): for row in range(column): x = (10 * column) + 5 y = 300 + (10 * row) + 5 arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.WHITE) def draw_section_6(): for row in range(30): for column in range(30-row): x = 300 + (10 * column) + 5 y = 300 + (10 * row) + 5 arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.WHITE) def draw_section_7(): for row in range(30): for column in range(row + 1): x = 600 + (10 * column) + 5 y = 300 + (10 * row) + 5 arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.WHITE) def draw_section_8(): for row in range(30): for column in range(row): x = 1200 + (column * (-10)) - 5 y = 300 + (10 * row) + 5 arcade.draw_rectangle_filled(x, y, 5, 5, arcade.color.WHITE) def main(): arcade.open_window(1200, 600, "Lab 05 - Loopy Lab") arcade.set_background_color(arcade.color.AIR_FORCE_BLUE) arcade.start_render() draw_section_outlines draw_section_1() draw_section_2() draw_section_3() draw_section_4() draw_section_5() draw_section_6() draw_section_7() draw_section_8() arcade.finish_render() arcade.run() if __name__ =='__main__': main()
25.955556
76
0.558505
c448f209646c66de5b815220e02f7f72ed85814d
636
py
Python
ansible/roles/db/molecule/default/tests/test_default.py
otus-devops-2019-02/artem198315_infra
1d052b8c2d15b0b1a69d863de1636c630a4bfde7
[ "MIT" ]
null
null
null
ansible/roles/db/molecule/default/tests/test_default.py
otus-devops-2019-02/artem198315_infra
1d052b8c2d15b0b1a69d863de1636c630a4bfde7
[ "MIT" ]
null
null
null
ansible/roles/db/molecule/default/tests/test_default.py
otus-devops-2019-02/artem198315_infra
1d052b8c2d15b0b1a69d863de1636c630a4bfde7
[ "MIT" ]
null
null
null
import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') # check if MongoDB is enabled and running def test_mongo_running_and_enabled(host): mongo = host.service("mongod") assert mongo.is_running assert mongo.is_enabled # check if configuration file contains the required line def test_config_file(host): config_file = host.file('/etc/mongod.conf') assert config_file.contains('bindIp: 0.0.0.0') assert config_file.is_file def test_socket(host): assert host.socket('tcp://0.0.0.0:27017').is_listening
27.652174
63
0.778302
1a609df3e11235af02c9be0ee1eb1221e1c146a8
7,334
py
Python
Sketches/MPS/BugReports/FixTests/Kamaelia/Tools/Show.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
12
2015-10-20T10:22:01.000Z
2021-07-19T10:09:44.000Z
Sketches/MPS/BugReports/FixTests/Kamaelia/Tools/Show.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
2
2015-10-20T10:22:55.000Z
2017-02-13T11:05:25.000Z
Sketches/MPS/BugReports/FixTests/Kamaelia/Tools/Show.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
6
2015-03-09T12:51:59.000Z
2020-03-01T13:06:21.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- # import os import sys import pygame import Axon from Kamaelia.UI.Pygame.Button import Button from Kamaelia.UI.Pygame.Multiclick import Multiclick from Kamaelia.UI.Pygame.Image import Image from Kamaelia.Visualisation.PhysicsGraph.chunks_to_lines import chunks_to_lines from Kamaelia.Visualisation.PhysicsGraph.lines_to_tokenlists import lines_to_tokenlists from Kamaelia.Visualisation.PhysicsGraph.TopologyViewer import TopologyViewer from Kamaelia.Util.Chooser import Chooser from Kamaelia.Chassis.Graphline import Graphline from Kamaelia.Chassis.Pipeline import Pipeline from Kamaelia.File.ReadFileAdaptor import ReadFileAdaptor from Kamaelia.UI.Pygame.KeyEvent import KeyEvent # We should start thinking about how we handle the lines below better: from Kamaelia.Apps.Show.GraphSlides import onDemandGraphFileParser_Prefab if len(sys.argv) > 1: basepath = sys.argv[1] else: basepath = "WhatIsShow.show" GraphsFile = os.path.join(basepath, "Graphs.xml") path = os.path.join(basepath, "Slides") path_extra = os.path.join(basepath, "SecondarySlides") extn = ".png" def getSlideList(path, extn): files = os.listdir(path) files = [ os.path.join(path,fname) for fname in files if fname[-len(extn):]==extn ] files.sort() return files PrimarySlides = getSlideList(path, extn) SecondarySlides = getSlideList(path_extra, extn) class BounceRange(Axon.Component.component): def __init__(self, start, stop, step=1): super(BounceRange, self).__init__() self.start = start self.stop = stop self.step = step def main(self): while 1: yield 1 if self.dataReady("inbox"): message = self.recv("inbox") if message == "TOGGLE": last = None for level in xrange(self.start, self.stop, self.step): self.send(level, "outbox") last = level yield 1 if last != self.stop: # xrange can finish before reaching the end of the range. self.send(self.stop, "outbox") yield 1 self.start, self.stop, self.step = self.stop, self.start, -self.step else: self.pause() yield 1 print """ Kamaelia: Show - Controls ========================= General: Fullscreen: f Quit : q Primary Slides: next slide : <right click>, spacebar prev slide : <middle click>, backspace Fade in/out : g Secondary Slides: next slide : return Fade in/out : j Graph Slides: next slide : page down drag blobs : left click Fade in/out : h """ Graphline( KEYS = KeyEvent(outboxes = { "primaryslidefadesignal" : "Normal place for message", "graphfadesignal" : "Normal place for message", "secondaryslidefadesignal" : "Normal place for message", "graphcontrol" : "Sends a 'next' message to the slide control", "primaryslidecontrol" : "Keyboard control", "secondaryslidecontrol" : "Keyboard control", }, key_events = { pygame.K_g: ("TOGGLE", "primaryslidefadesignal"), # Toggle Fade pygame.K_h: ("TOGGLE", "graphfadesignal"), # Toggle Fade pygame.K_j: ("TOGGLE", "secondaryslidefadesignal"), # Toggle Fade pygame.K_PAGEDOWN: ("NEXT", "graphcontrol"), # Advance "graph slides" pygame.K_RETURN: ("NEXT", "secondaryslidecontrol"), # Advance slides pygame.K_SPACE: ("NEXT", "primaryslidecontrol"), # Advance slides pygame.K_BACKSPACE: ("PREV", "slidecontrol"), # Advance slides }), MOUSECLICKS = Multiclick(caption="", position=(50,50), transparent=True, msgs = [ "", "", "PREV", "NEXT", "PREV","NEXT" ], size=(700,500)), PRIMARYSLIDES = Chooser(items = PrimarySlides), PRIMARYDISPLAYFADER = BounceRange(255,0, -10), # Initially we want to fade PRIMARYDISPLAY = Image(size=(800,600), position=(0,0), displayExtra={ "transparency" : (255,255,255) }, ), SECONDARYSLIDES = Chooser(items = SecondarySlides), SECONDARYDISPLAYFADER = BounceRange(255,0, -10), # Initially we want to fade SECONDARYDISPLAY = Image(size=(800,600), position=(0,0), displayExtra={ "transparency" : (255,255,255) }, ), GRAPHSLIDES = Pipeline( onDemandGraphFileParser_Prefab(GraphsFile), chunks_to_lines(), lines_to_tokenlists(), ), GRAPHFADER = BounceRange(255,0, -10), # Initially we want to fade GRAPHVIEWER = TopologyViewer(transparency = (255,255,255), showGrid = False, position=(0,0)), linkages = { ("MOUSECLICKS","outbox"): ("PRIMARYSLIDES","inbox"), ("MOUSECLICKS","signal"): ("PRIMARYSLIDES","control"), ("KEYS", "primaryslidecontrol"): ("PRIMARYSLIDES","inbox"), ("KEYS", "secondaryslidecontrol"): ("SECONDARYSLIDES","inbox"), ("KEYS", "primaryslidefadesignal") : ("PRIMARYDISPLAYFADER", "inbox"), ("KEYS", "secondaryslidefadesignal") : ("SECONDARYDISPLAYFADER", "inbox"), ("KEYS", "graphfadesignal") : ("GRAPHFADER", "inbox"), ("KEYS", "graphcontrol") : ("GRAPHSLIDES", "inbox"), ("SECONDARYDISPLAYFADER", "outbox") : ("SECONDARYDISPLAY", "alphacontrol"), ("PRIMARYDISPLAYFADER", "outbox") : ("PRIMARYDISPLAY", "alphacontrol"), ("GRAPHFADER", "outbox") : ("GRAPHVIEWER", "alphacontrol"), ("SECONDARYSLIDES","outbox"): ("SECONDARYDISPLAY","inbox"), ("SECONDARYSLIDES","signal"): ("SECONDARYDISPLAY","control"), ("PRIMARYSLIDES","outbox"): ("PRIMARYDISPLAY","inbox"), ("PRIMARYSLIDES","signal"): ("PRIMARYDISPLAY","control"), ("GRAPHSLIDES","outbox"): ("GRAPHVIEWER","inbox"), ("GRAPHSLIDES","signal"): ("GRAPHVIEWER","control"), } ).run()
40.076503
105
0.591083
35417c082a86d1a7d1d2dddb190b68d3c9d55b4f
2,381
py
Python
src/evaluate.py
swapnilpote/Natural-Language-Processing-with-Disaster-Tweets
bf4d911dd0b72cc37662e8bb756615a1fb2f1f83
[ "MIT" ]
null
null
null
src/evaluate.py
swapnilpote/Natural-Language-Processing-with-Disaster-Tweets
bf4d911dd0b72cc37662e8bb756615a1fb2f1f83
[ "MIT" ]
null
null
null
src/evaluate.py
swapnilpote/Natural-Language-Processing-with-Disaster-Tweets
bf4d911dd0b72cc37662e8bb756615a1fb2f1f83
[ "MIT" ]
null
null
null
import os import sys import json import math # Data Science imports import joblib import pandas as pd import sklearn.metrics as metrics if len(sys.argv) != 7: sys.stderr.write("Arguments error. Usage:\n") sys.stderr.write("\tpython evaluate.py model prepared features scores prc roc\n") sys.exit(1) model_file = sys.argv[1] in_prep_file = os.path.join(sys.argv[2], "valid.csv") in_feat_file = os.path.join(sys.argv[3], "valid.pkl") scores_file = sys.argv[4] prc_file = sys.argv[5] roc_file = sys.argv[6] def model_score(in_prep_path: str, in_feat_path: str, model_file_path: str) -> None: """Perform model evaluation on validation/hold out data to check accuracy. Args: in_prep_path (str): Prepared data file to extract labels. in_feat_path (str): Featurized data file to extract numpy array. model_file_path (str): Model file path. """ with open(model_file_path, "rb") as f: model = joblib.load(f) with open(in_feat_path, "rb") as f: X = joblib.load(f) df = pd.read_csv(in_prep_path) y = df["target"].values predictions = model.predict(X) precision, recall, prc_thresholds = metrics.precision_recall_curve(y, predictions) fpr, tpr, roc_thresholds = metrics.roc_curve(y, predictions) avg_prec = metrics.average_precision_score(y, predictions) roc_auc = metrics.roc_auc_score(y, predictions) with open(scores_file, "w") as fd: json.dump({"avg_prec": avg_prec, "roc_auc": roc_auc}, fd, indent=4) nth_point = math.ceil(len(prc_thresholds) / 1000) prc_points = list(zip(precision, recall, prc_thresholds))[::nth_point] with open(prc_file, "w") as fd: json.dump( { "prc": [ {"precision": float(p), "recall": float(r), "threshold": float(t)} for p, r, t in prc_points ] }, fd, indent=4, ) with open(roc_file, "w") as fd: json.dump( { "roc": [ {"fpr": float(fp), "tpr": float(tp), "threshold": float(t)} for fp, tp, t in zip(fpr, tpr, roc_thresholds) ] }, fd, indent=4, ) return None if __name__ == "__main__": model_score(in_prep_file, in_feat_file, model_file)
28.686747
86
0.602268
aea2a052a500e2fc0462ae1d996c1238f954bfe2
2,618
py
Python
cctbx/examples/view_fft_map.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
cctbx/examples/view_fft_map.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
cctbx/examples/view_fft_map.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
""" Loads the file map_coeff.pickle (see random_f_calc.py) and displays the FFT map based on these coefficients in PyMOL. Also computes and displays a list of peaks in the map. Usage: Setup the cctbx environment (e.g. source setpaths.csh) and launch PyMOL from the command line. Inside PyMOL enter: run view_fft_map.py show_fft() """ from __future__ import division print "Loading module:", __name__ # cctbx imports from cctbx import maptbx from libtbx import easy_pickle # PyMOL imports from chempy.map import Map from pymol import cmd from pymol import cgo def show_map(unit_cell, map_covering_unit_cell, label, level): map_grid = map_covering_unit_cell.focus() print "map_grid:", map_grid ucell_params = unit_cell.parameters() first = [0,0,0] last = [map_grid[i] + 1 for i in xrange(3)] c_obj_map = maptbx.as_CObjectZYX( map_unit_cell=map_covering_unit_cell, first=first, last=last, apply_sigma_scaling=True) map=Map() map.from_c_object(c_obj_map,'CObjectZYXfloat', ucell_params[0:3], ucell_params[3:6], list(map_grid), first, last) cmd.load_map(map, label+"_cell") print "map loaded into PyMol" cmd.isomesh(label+"_con", label+"_cell", level) # create mesh cmd.color('gray', label+"_cell") # color wire frame cmd.set('auto_zoom', '0') # disable zooming cmd.set('ortho', '1') # orthoscopic projects cmd.enable(label+"_cell") # put box around map object cmd.color('cyan', label+"_con") # color mesh def show_peaks(unit_cell, clusters, radius=2.0): go = [] go.extend([cgo.COLOR, 1, 0, 0,]) height0 = None for site,height in zip(clusters.sites(), clusters.heights()): print "%8.5f %8.5f %8.5f" % site, height if (height0 == None): height0 = height go.extend( [cgo.SPHERE] + list(unit_cell.orthogonalize(site)) + [radius*height/height0]) cmd.load_cgo(go, "peaks") def show_fft(file="map_coeff.pickle", map_level=3.0): cmd.delete("all") map_coeff = easy_pickle.load(file) map_coeff.show_summary() fft_map = map_coeff.fft_map( symmetry_flags=maptbx.use_space_group_symmetry) print "map gridding:", fft_map.n_real() show_map(fft_map.unit_cell(), fft_map.real_map(), "fft_map", map_level) clusters = fft_map.tags().peak_search( parameters=maptbx.peak_search_parameters( min_distance_sym_equiv=3.0, max_clusters=10), map=fft_map.real_map()).all() show_peaks(fft_map.unit_cell(), clusters) cmd.zoom('all', 15.0) # zoom with additional border of 15 Ang. print if (__name__ == "pymol"): cmd.extend("show_fft", show_fft)
31.926829
73
0.698243
0059d567259408bd834bd3770c7532f957c7aad6
1,051
py
Python
test/test_alert_rule_response.py
sematext/sematext-api-client-python
16e025cd3d32aa58deb70fc5930ae4165afebe97
[ "Apache-2.0" ]
1
2020-05-01T12:15:52.000Z
2020-05-01T12:15:52.000Z
test/test_alert_rule_response.py
sematext/sematext-api-client-python
16e025cd3d32aa58deb70fc5930ae4165afebe97
[ "Apache-2.0" ]
null
null
null
test/test_alert_rule_response.py
sematext/sematext-api-client-python
16e025cd3d32aa58deb70fc5930ae4165afebe97
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Sematext Cloud API API Explorer provides access and documentation for Sematext REST API. The REST API requires the API Key to be sent as part of `Authorization` header. E.g.: `Authorization : apiKey e5f18450-205a-48eb-8589-7d49edaea813`. # noqa: E501 OpenAPI spec version: v3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import stcloud from stcloud.models.alert_rule_response import AlertRuleResponse # noqa: E501 from stcloud.rest import ApiException class TestAlertRuleResponse(unittest.TestCase): """AlertRuleResponse unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAlertRuleResponse(self): """Test AlertRuleResponse""" # FIXME: construct object with mandatory attributes with example values # model = stcloud.models.alert_rule_response.AlertRuleResponse() # noqa: E501 pass if __name__ == '__main__': unittest.main()
26.275
236
0.717412
bc20fdc0e49b57e07802369152a7c9966062cc73
88
py
Python
redditclone/posts/apps.py
DSanzh/the-ultimate-beginners-guide-to-django
2117db3b53334677ea3cf308a94f830cfc223633
[ "MIT" ]
null
null
null
redditclone/posts/apps.py
DSanzh/the-ultimate-beginners-guide-to-django
2117db3b53334677ea3cf308a94f830cfc223633
[ "MIT" ]
null
null
null
redditclone/posts/apps.py
DSanzh/the-ultimate-beginners-guide-to-django
2117db3b53334677ea3cf308a94f830cfc223633
[ "MIT" ]
null
null
null
from django.apps import AppConfig class AccountsConfig(AppConfig): name = 'posts'
14.666667
33
0.75
f0d6cdd955df1bfd79cb2c9ecda618574dd19e99
7,281
py
Python
rlzoo/algorithms/ac/ac.py
CaltechExperimentalGravity/RLzoo
355ed45adf69015643532340affef1c2696dd6db
[ "Apache-2.0" ]
null
null
null
rlzoo/algorithms/ac/ac.py
CaltechExperimentalGravity/RLzoo
355ed45adf69015643532340affef1c2696dd6db
[ "Apache-2.0" ]
null
null
null
rlzoo/algorithms/ac/ac.py
CaltechExperimentalGravity/RLzoo
355ed45adf69015643532340affef1c2696dd6db
[ "Apache-2.0" ]
null
null
null
""" Actor-Critic ------------- It uses TD-error as the Advantage. Actor Critic History ---------------------- A3C > DDPG > AC Advantage ---------- AC converge faster than Policy Gradient. Disadvantage (IMPORTANT) ------------------------ The Policy is oscillated (difficult to converge), DDPG can solve this problem using advantage of DQN. Reference ---------- paper: https://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf View more on MorvanZhou's tutorial page: https://morvanzhou.github.io/tutorials/ MorvanZhou's code: https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/ Environment ------------ CartPole-v0: https://gym.openai.com/envs/CartPole-v0 A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The system is controlled by applying a force of +1 or -1 to the cart. The pendulum starts upright, and the goal is to prevent it from falling over. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center. Prerequisites -------------- tensorflow >=2.0.0a0 tensorlayer >=2.0.0 """ import time import tensorlayer as tl from rlzoo.common.utils import * from rlzoo.common.value_networks import * from rlzoo.common.policy_networks import * tl.logging.set_verbosity(tl.logging.DEBUG) ############################### Actor-Critic #################################### class AC: def __init__(self, net_list, optimizers_list, gamma=0.9): assert len(net_list) == 2 assert len(optimizers_list) == 2 self.name = 'AC' self.actor, self.critic = net_list assert isinstance(self.critic, ValueNetwork) assert isinstance(self.actor, StochasticPolicyNetwork) self.a_optimizer, self.c_optimizer = optimizers_list self.GAMMA = gamma def update(self, s, a, r, s_): # critic update v_ = self.critic(np.array([s_])) with tf.GradientTape() as tape: v = self.critic(np.array([s])) td_error = r + self.GAMMA * v_ - v # TD_error = r + lambd * V(newS) - V(S) loss = tf.square(td_error) grad = tape.gradient(loss, self.critic.trainable_weights) self.c_optimizer.apply_gradients(zip(grad, self.critic.trainable_weights)) # actor update with tf.GradientTape() as tape: # _logits = self.actor(np.array([s])) ## cross-entropy loss weighted by td-error (advantage), # the cross-entropy mearsures the difference of two probability distributions: the predicted logits and sampled action distribution, # then weighted by the td-error: small difference of real and predict actions for large td-error (advantage); and vice versa. _ = self.actor(np.array([s])) neg_log_prob = self.actor.policy_dist.neglogp([a]) _exp_v = tf.reduce_mean(neg_log_prob * td_error) grad = tape.gradient(_exp_v, self.actor.trainable_weights) self.a_optimizer.apply_gradients(zip(grad, self.actor.trainable_weights)) return _exp_v def get_action(self, s): return self.actor(np.array([s]))[0].numpy() def get_action_greedy(self, s): return self.actor(np.array([s]), greedy=True)[0].numpy() def save_ckpt(self, env_name): # save trained weights save_model(self.actor, 'model_actor', self.name, env_name) save_model(self.critic, 'model_critic', self.name, env_name) def load_ckpt(self, env_name): # load trained weights load_model(self.actor, 'model_actor', self.name, env_name) load_model(self.critic, 'model_critic', self.name, env_name) def learn(self, env, train_episodes=1000, test_episodes=500, max_steps=200, save_interval=100, mode='train', render=False, plot_func=None): """ :param env: learning environment :param train_episodes: total number of episodes for training :param test_episodes: total number of episodes for testing :param max_steps: maximum number of steps for one episode :param save_interval: time steps for saving the weights and plotting the results :param mode: 'train' or 'test' :param render: if true, visualize the environment :param plot_func: additional function for interactive module """ t0 = time.time() if mode == 'train': print('Training... | Algorithm: {} | Environment: {}'.format(self.name, env.spec.id)) reward_buffer = [] for i_episode in range(train_episodes): s = env.reset() ep_rs_sum = 0 # rewards of all steps for step in range(max_steps): if render: env.render() a = self.get_action(s) s_new, r, done, info = env.step(a) ep_rs_sum += r try: self.update(s, a, r, s_new) # learn Policy : true_gradient = grad[logPi(s, a) * td_error] except KeyboardInterrupt: # if Ctrl+C at running actor.learn(), then save model, or exit if not at actor.learn() self.save_ckpt(env_name=env.spec.id) plot_save_log(reward_buffer, algorithm_name=self.name, env_name=env.spec.id) s = s_new if done: break reward_buffer.append(ep_rs_sum) if plot_func is not None: plot_func(reward_buffer) print('Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}' \ .format(i_episode, train_episodes, ep_rs_sum, time.time() - t0)) if i_episode % save_interval == 0: self.save_ckpt(env_name=env.spec.id) plot_save_log(reward_buffer, algorithm_name=self.name, env_name=env.spec.id) self.save_ckpt(env_name=env.spec.id) plot_save_log(reward_buffer, algorithm_name=self.name, env_name=env.spec.id) elif mode == 'test': self.load_ckpt(env_name=env.spec.id) print('Testing... | Algorithm: {} | Environment: {}'.format(self.name, env.spec.id)) reward_buffer = [] for i_episode in range(test_episodes): s = env.reset() ep_rs_sum = 0 # rewards of all steps for step in range(max_steps): if render: env.render() a = self.get_action_greedy(s) s_new, r, done, info = env.step(a) s_new = s_new ep_rs_sum += r s = s_new if done: break reward_buffer.append(ep_rs_sum) if plot_func: plot_func(reward_buffer) print('Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}'.format( i_episode, test_episodes, ep_rs_sum, time.time() - t0)) elif mode is not 'test': print('unknow mode type')
38.52381
144
0.592776
cee134e0bb7d5c43705e8267b539fec34bb89346
72,913
py
Python
scripts/checkimages.py
K-wachira/Outreachywikibot
11afd0c42b7e6c8c182f39ef58174adb901ba697
[ "MIT" ]
null
null
null
scripts/checkimages.py
K-wachira/Outreachywikibot
11afd0c42b7e6c8c182f39ef58174adb901ba697
[ "MIT" ]
null
null
null
scripts/checkimages.py
K-wachira/Outreachywikibot
11afd0c42b7e6c8c182f39ef58174adb901ba697
[ "MIT" ]
null
null
null
#!/usr/bin/python """ Script to check recently uploaded files. This script checks if a file description is present and if there are other problems in the image's description. This script will have to be configured for each language. Please submit translations as addition to the Pywikibot framework. Everything that needs customisation is indicated by comments. This script understands the following command-line arguments: -limit The number of images to check (default: 80) -commons The Bot will check if an image on Commons has the same name and if true it reports the image. -duplicates[:#] Checking if the image has duplicates (if arg, set how many rollback wait before reporting the image in the report instead of tag the image) default: 1 rollback. -duplicatesreport Report the duplicates in a log *AND* put the template in the images. -maxusernotify Maximum nofitications added to a user talk page in a single check, to avoid email spamming. -sendemail Send an email after tagging. -break To break the bot after the first check (default: recursive) -sleep[:#] Time in seconds between repeat runs (default: 30) -wait[:#] Wait x second before check the images (default: 0) -skip[:#] The bot skip the first [:#] images (default: 0) -start[:#] Use allimages() as generator (it starts already from File:[:#]) -cat[:#] Use a category as generator -regex[:#] Use regex, must be used with -url or -page -page[:#] Define the name of the wikipage where are the images -url[:#] Define the url where are the images -nologerror If given, this option will disable the error that is risen when the log is full. Instructions for the real-time settings. For every new block you have to add: <------- -------> In this way the Bot can understand where the block starts in order to take the right parameter. * Name= Set the name of the block * Find= search this text in the image's description * Findonly= search for exactly this text in the image's description * Summary= That's the summary that the bot will use when it will notify the problem. * Head= That's the incipit that the bot will use for the message. * Text= This is the template that the bot will use when it will report the image's problem. Todo ---- * Clean the code, some passages are pretty difficult to understand. * Add the "catch the language" function for commons. * Fix and reorganise the new documentation * Add a report for the image tagged. """ # # (C) Pywikibot team, 2006-2021 # # Distributed under the terms of the MIT license. # import collections import re import time from typing import Generator import pywikibot from pywikibot import config, i18n from pywikibot import pagegenerators as pg from pywikibot.backports import List, Tuple from pywikibot.bot import suggest_help from pywikibot.exceptions import ( EditConflictError, Error, IsRedirectPageError, LockedPageError, NoPageError, NotEmailableError, PageRelatedError, TranslationError, ) from pywikibot.family import Family from pywikibot.site import Namespace ############################################################################### # <--------------------------- Change only below! ---------------------------># ############################################################################### # NOTE: in the messages used by the Bot if you put __botnick__ in the text, it # will automatically replaced with the bot's nickname. # That's what you want that will be added. (i.e. the {{no source}} with the # right day/month/year ) n_txt = { 'commons': '{{subst:nld}}', 'meta': '{{No license}}', 'test': '{{No license}}', 'ar': '{{subst:لم}}', 'de': '{{Dateiüberprüfung}}', 'en': '{{subst:nld}}', 'fa': '{{جا:حق تکثیر تصویر نامعلوم}}', 'fr': '{{subst:lid}}', 'ga': '{{subst:Ceadúnas de dhíth}}', 'hr': '{{Bez licence}}', 'hu': '{{nincslicenc|~~~~~}}', 'it': '{{subst:unverdata}}', 'ja': '{{subst:Nld}}', 'ko': '{{subst:nld}}', 'ru': '{{subst:nld}}', 'sd': '{{subst:اجازت نامعلوم}}', 'sr': '{{subst:датотека без лиценце}}', 'ta': '{{subst:nld}}', 'ur': '{{subst:حقوق نسخہ تصویر نامعلوم}}', 'zh': '{{subst:No license/auto}}', } # Text that the bot will try to see if there's already or not. If there's a # {{ I'll use a regex to make a better check. # This will work so: # '{{no license' --> '\{\{(?:template:)?no[ _]license ?(?:\||\n|\}|/) ?' (case # insensitive). # If there's not a {{ it will work as usual (if x in Text) txt_find = { 'commons': ['{{no license', '{{no license/en', '{{nld', '{{no permission', '{{no permission since'], 'meta': ['{{no license', '{{nolicense', '{{nld'], 'test': ['{{no license'], 'ar': ['{{لت', '{{لا ترخيص'], 'de': ['{{DÜP', '{{Düp', '{{Dateiüberprüfung'], 'en': ['{{nld', '{{no license'], 'fa': ['{{حق تکثیر تصویر نامعلوم۲'], 'ga': ['{{Ceadúnas de dhíth', '{{Ceadúnas de dhíth'], 'hr': ['{{bez licence'], 'hu': ['{{nincsforrás', '{{nincslicenc'], 'it': ['{{unverdata', '{{unverified'], 'ja': ['{{no source', '{{unknown', '{{non free', '<!--削除についての議論が終了するまで'], 'ko': ['{{출처 없음', '{{라이선스 없음', '{{Unknown'], 'ru': ['{{no license'], 'sd': ['{{ناحوالا', '{{ااجازت نامعلوم', '{{Di-no'], 'sr': ['{{датотека без лиценце', '{{датотека без извора'], 'ta': ['{{no source', '{{nld', '{{no license'], 'ur': ['{{ناحوالہ', '{{اجازہ نامعلوم', '{{Di-no'], 'zh': ['{{no source', '{{unknown', '{{No license'], } # When the Bot find that the usertalk is empty is not pretty to put only the # no source without the welcome, isn't it? empty = { 'commons': '{{subst:welcome}}\n~~~~\n', 'meta': '{{subst:Welcome}}\n~~~~\n', 'ar': '{{ترحيب}}\n~~~~\n', 'de': '{{subst:willkommen}} ~~~~', 'en': '{{welcome}}\n~~~~\n', 'fa': '{{جا:خوشامدید|%s}}', 'fr': '{{Bienvenue nouveau\n~~~~\n', 'ga': '{{subst:Fáilte}} - ~~~~\n', 'hr': '{{subst:dd}}--~~~~\n', 'hu': '{{subst:Üdvözlet|~~~~}}\n', 'it': '<!-- inizio template di benvenuto -->\n{{subst:Benvebot}}\n~~~~\n' '<!-- fine template di benvenuto -->', 'ja': '{{subst:Welcome/intro}}\n{{subst:welcome|--~~~~}}\n', 'ko': '{{환영}}--~~~~\n', 'ru': '{{subst:Приветствие}}\n~~~~\n', 'sd': '{{ڀليڪار}}\n~~~~\n', 'sr': '{{dd}}--~~~~\n', 'ta': '{{welcome}}\n~~~~\n', 'ur': '{{خوش آمدید}}\n~~~~\n', 'zh': '{{subst:welcome|sign=~~~~}}', } # if the file has an unknown extension it will be tagged with this template. # In reality, there aren't unknown extension, they are only not allowed... delete_immediately = { 'commons': '{{speedy|The file has .%s as extension. ' 'Is it ok? Please check.}}', 'meta': '{{Delete|The file has .%s as extension.}}', 'ar': '{{شطب|الملف له .%s كامتداد.}}', 'en': '{{db-meta|The file has .%s as extension.}}', 'fa': '{{حذف سریع|تصویر %s اضافی است.}}', 'ga': '{{scrios|Tá iarmhír .%s ar an comhad seo.}}', 'hu': '{{azonnali|A fájlnak .%s a kiterjesztése}}', 'it': '{{cancella subito|motivo=Il file ha come estensione ".%s"}}', 'ja': '{{db|知らないファイルフォーマット %s}}', 'ko': '{{delete|잘못된 파일 형식 (.%s)}}', 'ru': '{{db-badimage}}', 'sr': '{{speedy|Ова датотека садржи екстензију %s. ' 'Молим вас да проверите да ли је у складу са правилима.}}', 'ta': '{{delete|' 'இந்தக் கோப்பு .%s என்றக் கோப்பு நீட்சியைக் கொண்டுள்ளது.}}', 'ur': '{{سریع حذف شدگی|اس ملف میں .%s بطور توسیع موجود ہے۔ }}', 'zh': '{{delete|未知檔案格式%s}}', } # That's the text that the bot will add if it doesn't find the license. # Note: every __botnick__ will be repleaced with your bot's nickname # (feel free not to use if you don't need it) nothing_notification = { 'commons': "\n{{subst:User:Filnik/untagged|File:%s}}\n\n''This message " "was '''added automatically by ~~~''', if you need " 'some help about it, please read the text above again and ' 'follow the links in it, if you still need help ask at the ' '[[File:Human-help-browser.svg|18px|link=Commons:Help desk|?]] ' "'''[[Commons:Help desk|->]][[Commons:Help desk]]''' in any " "language you like to use.'' --~~~~", 'meta': '{{subst:No license notice|File:%s}}', 'ar': '{{subst:مصدر الصورة|File:%s}} --~~~~', 'en': '{{subst:image source|File:%s}} --~~~~', 'fa': '{{جا:اخطار نگاره|%s}}', 'ga': '{{subst:Foinse na híomhá|File:%s}} --~~~~', 'hu': '{{subst:adjforrást|Kép:%s}}\n Ezt az üzenetet ~~~ automatikusan ' 'helyezte el a vitalapodon, kérdéseddel fordulj a gazdájához, vagy ' 'a [[WP:KF|Kocsmafalhoz]]. --~~~~', 'it': '{{subst:Progetto:Coordinamento/Immagini/Bot/Messaggi/Senza licenza|' '%s|~~~}} --~~~~', 'ja': '\n{{subst:Image copyright|File:%s}}--~~~~', 'ko': '\n{{subst:User:Kwjbot IV/untagged|%s}} --~~~~', 'ru': '{{subst:Запрос о статусе файла|Файл:%s}} --~~~~', 'sr': '\n{{subst:Обавештење о датотеци без лиценце|%s}} --~~~~', 'sd': '{{subst:تصوير جو ذريعو|File:%s}}--~~~~', 'ta': '\n{{subst:Di-no license-notice|படிமம்:%s}} ~~~~', 'ur': '{{subst:ماخذ تصویر|File:%s}}--~~~~', 'zh': '\n{{subst:Uploadvionotice|File:%s}} ~~~~', } # This is a list of what bots used this script in your project. # NOTE: YOUR Bot username will be automatically added. bot_list = { 'commons': ['Siebot', 'CommonsDelinker', 'Filbot', 'Sz-iwbot', 'ABFbot'], 'meta': ['MABot'], 'de': ['Xqbot'], 'en': ['OrphanBot'], 'fa': ['Amirobot'], 'ga': ['AllieBot'], 'it': ['Filbot', 'Nikbot', '.snoopybot.'], 'ja': ['Alexbot'], 'ko': ['Kwjbot IV'], 'ru': ['Rubinbot'], 'sr': ['KizuleBot'], 'ta': ['TrengarasuBOT'], 'ur': ['Shuaib-bot', 'Tahir-bot', 'SAMI.Bot'], 'zh': ['Alexbot'], } # The message that the bot will add the second time that find another license # problem. second_message_without_license = { 'hu': '\nSzia! Úgy tűnik a [[:Kép:%s]] képpel is hasonló a probléma, ' 'mint az előbbivel. Kérlek olvasd el a [[WP:KÉPLIC|feltölthető ' 'képek]]ről szóló oldalunk, és segítségért fordulj a [[WP:KF-JO|' 'Jogi kocsmafalhoz]]. Köszönöm --~~~~', 'it': ':{{subst:Progetto:Coordinamento/Immagini/Bot/Messaggi/Senza' 'licenza2|%s|~~~}} --~~~~', } # You can add some settings to a wiki page. In this way, you can change them # without touching the code. That's useful if you are running the bot on # Toolserver. page_with_settings = { 'commons': 'User:Filbot/Settings', 'it': 'Progetto:Coordinamento/Immagini/Bot/Settings#Settings', 'sr': 'User:KizuleBot/checkimages.py/подешавања', 'zh': 'User:Alexbot/cisettings#Settings', } # The bot can report some images (like the images that have the same name of an # image on commons) This is the page where the bot will store them. report_page = { 'commons': 'User:Filbot/Report', 'meta': 'User:MABot/Report', 'test': 'User:Pywikibot-test/Report', 'de': 'Benutzer:Xqbot/Report', 'en': 'User:Filnik/Report', 'fa': 'کاربر:Amirobot/گزارش تصویر', 'ga': 'User:AllieBot/ReportImages', 'hu': 'User:Bdamokos/Report', 'it': 'Progetto:Coordinamento/Immagini/Bot/Report', 'ja': 'User:Alexbot/report', 'ko': 'User:Kwjbot IV/Report', 'ru': 'User:Rubinbot/Report', 'sd': 'واپرائيندڙ:Kaleem Bhatti/درخواست تصوير', 'sr': 'User:KizuleBot/checkimages.py/дневник', 'ta': 'User:Trengarasu/commonsimages', 'ur': 'صارف:محمد شعیب/درخواست تصویر', 'zh': 'User:Alexsh/checkimagereport', } # If a template isn't a license but it's included on a lot of images, that can # be skipped to analyze the image without taking care of it. (the template must # be in a list) # Warning: Don't add template like "en, de, it" because they are already in # (added in the code, below # Warning 2: The bot will use regex, make the names compatible, please (don't # add "Template:" or {{because they are already put in the regex). # Warning 3: the part that use this regex is case-insensitive (just to let you # know..) HiddenTemplate = { # Put the other in the page on the project defined below 'commons': ['Template:Information'], 'meta': ['Template:Information'], 'test': ['Template:Information'], 'ar': ['Template:معلومات'], 'de': ['Template:Information'], 'en': ['Template:Information'], 'fa': ['الگو:اطلاعات'], 'fr': ['Template:Information'], 'ga': ['Template:Information'], 'hr': ['Template:Infoslika'], 'hu': ['Template:Információ', 'Template:Enwiki', 'Template:Azonnali'], 'it': ['Template:EDP', 'Template:Informazioni file', 'Template:Information', 'Template:Trademark', 'Template:Permissionotrs'], 'ja': ['Template:Information'], 'ko': ['Template:그림 정보'], 'ru': ['Template:Изображение', 'Template:Обоснование добросовестного использования'], 'sd': ['Template:معلومات'], 'sr': ['Шаблон:Информација', 'Шаблон:Non-free use rationale 2'], 'ta': ['Template:Information'], 'ur': ['Template:معلومات'], 'zh': ['Template:Information'], } # A page where there's a list of template to skip. PageWithHiddenTemplates = { 'commons': 'User:Filbot/White_templates#White_templates', 'it': 'Progetto:Coordinamento/Immagini/Bot/WhiteTemplates', 'ko': 'User:Kwjbot_IV/whitetemplates/list', 'sr': 'User:KizuleBot/checkimages.py/дозвољенишаблони', } # A page where there's a list of template to consider as licenses. PageWithAllowedTemplates = { 'commons': 'User:Filbot/Allowed templates', 'de': 'Benutzer:Xqbot/Lizenzvorlagen', 'it': 'Progetto:Coordinamento/Immagini/Bot/AllowedTemplates', 'ko': 'User:Kwjbot_IV/AllowedTemplates', 'sr': 'User:KizuleBot/checkimages.py/дозвољенишаблони', } # Template added when the bot finds only an hidden template and nothing else. # Note: every __botnick__ will be repleaced with your bot's nickname # (feel free not to use if you don't need it) HiddenTemplateNotification = { 'commons': ("\n{{subst:User:Filnik/whitetemplate|File:%s}}\n\n''This " 'message was added automatically by ~~~, if you need ' 'some help about it please read the text above again and ' 'follow the links in it, if you still need help ask at the ' '[[File:Human-help-browser.svg|18px|link=Commons:Help desk|?]]' " '''[[Commons:Help desk|→]] [[Commons:Help desk]]''' in any " "language you like to use.'' --~~~~"), 'it': '{{subst:Progetto:Coordinamento/Immagini/Bot/Messaggi/' 'Template_insufficiente|%s|~~~}} --~~~~', 'ko': '\n{{subst:User:Kwj2772/whitetemplates|%s}} --~~~~', } # In this part there are the parameters for the dupe images. # Put here the template that you want to put in the image to warn that it's a # dupe. put __image__ if you want only one image, __images__ if you want the # whole list duplicatesText = { 'commons': '\n{{Dupe|__image__}}', 'de': '{{NowCommons}}', 'it': '\n{{Progetto:Coordinamento/Immagini/Bot/Template duplicati|' '__images__}}', 'ru': '{{NCT|__image__}}', 'sr': '{{NowCommons|__image__}}', } # Message to put in the talk duplicates_user_talk_text = { 'it': '{{subst:Progetto:Coordinamento/Immagini/Bot/Messaggi/Duplicati|' '%s|%s|~~~}} --~~~~', } # Regex to detect the template put in the image's description to find the dupe duplicatesRegex = { 'commons': r'\{\{(?:[Tt]emplate:|)(?:[Dd]up(?:licat|)e|[Bb]ad[ _][Nn]ame)' r'[|}]', 'de': r'\{\{[nN](?:C|ow(?: c|[cC])ommons)[\|\}', 'it': r'\{\{(?:[Tt]emplate:|)[Pp]rogetto:[Cc]oordinamento/Immagini/Bot/' r'Template duplicati[|}]', 'sr': r'\{\{[nN](?:C|ow(?: c|[cC])ommons)[\|\}', } # Category with the licenses and / or with subcategories with the other # licenses. category_with_licenses = { 'commons': 'Category:License tags', 'meta': 'Category:License templates', 'test': 'Category:CC license tags', 'ar': 'تصنيف:قوالب حقوق الصور', 'de': 'Kategorie:Vorlage:Lizenz für Bilder', 'en': 'Category:Wikipedia file copyright templates', 'fa': 'رده:الگو:حق تکثیر پرونده', 'ga': "Catagóir:Clibeanna cóipchirt d'íomhánna", 'it': 'Categoria:Template Licenze copyright', 'ja': 'Category:画像の著作権表示テンプレート', 'ko': '분류:위키백과 그림 저작권 틀', 'ru': 'Category:Шаблоны:Лицензии файлов', 'sd': 'زمرو:وڪيپيڊيا فائل ڪاپي رائيٽ سانچا', 'sr': 'Категорија:Шаблони за слике', 'ta': 'Category:காப்புரிமை வார்ப்புருக்கள்', 'ur': 'زمرہ:ویکیپیڈیا سانچہ جات حقوق تصاویر', 'zh': 'Category:版權申告模板', } # Page where is stored the message to send as email to the users emailPageWithText = { # 'de': 'Benutzer:ABF/D3', } # Title of the email emailSubject = { # 'de': 'Problemen mit Deinem Bild auf der Deutschen Wikipedia', } # Seems that uploaderBots aren't interested to get messages regarding the # files that they upload.. strange, uh? # Format: [[user,regex], [user,regex]...] the regex is needed to match the user # where to send the warning-msg uploadBots = { 'commons': [['File Upload Bot (Magnus Manske)', r'\|[Ss]ource=Transferred from .*?; ' r'transferred to Commons by \[\[User:(.*?)\]\]']], } # Service images that don't have to be deleted and/or reported has a template # inside them (you can let this param as None) serviceTemplates = { 'it': ['Template:Immagine di servizio'], } # Add your project (in alphabetical order) if you want that the bot starts project_inserted = ['ar', 'commons', 'de', 'en', 'fa', 'ga', 'hu', 'it', 'ja', 'ko', 'ru', 'meta', 'sd', 'sr', 'ta', 'test', 'ur', 'zh'] # END OF CONFIGURATION. SETTINGS_REGEX = re.compile(r""" <-------\ ------->\n \*[Nn]ame\ ?=\ ?['"](.*?)['"]\n \*([Ff]ind|[Ff]indonly)\ ?=\ ?(.*?)\n \*[Ii]magechanges\ ?=\ ?(.*?)\n \*[Ss]ummary\ ?=\ ?['"](.*?)['"]\n \*[Hh]ead\ ?=\ ?['"](.*?)['"]\n \*[Tt]ext\ ?=\ ?['"](.*?)['"]\n \*[Mm]ex\ ?=\ ?['"]?([^\n]*?)['"]?\n """, re.DOTALL | re.VERBOSE) class LogIsFull(Error): """Log is full and the Bot cannot add other data to prevent Errors.""" def printWithTimeZone(message) -> None: """Print the messages followed by the TimeZone encoded correctly.""" time_zone = time.strftime('%d %b %Y %H:%M:%S (UTC)', time.gmtime()) pywikibot.output('{} {}'.format(message.rstrip(), time_zone)) class checkImagesBot: """A robot to check recently uploaded files.""" def __init__(self, site, logFulNumber=25000, sendemailActive=False, duplicatesReport=False, logFullError=True, max_user_notify=None) -> None: """Initializer, define some instance variables.""" self.site = site self.logFullError = logFullError self.logFulNumber = logFulNumber self.rep_page = i18n.translate(self.site, report_page) if not self.rep_page: raise TranslationError( 'No report page provided in "report_page" dict ' 'for your project!') self.image_namespace = site.namespaces.FILE.custom_name + ':' self.list_entry = '\n* [[:{}%s]] '.format(self.image_namespace) # The summary of the report self.com = i18n.twtranslate(self.site, 'checkimages-log-comment') hiddentemplatesRaw = i18n.translate(self.site, HiddenTemplate) if not hiddentemplatesRaw: raise TranslationError( 'No non-license templates provided in "HiddenTemplate" dict ' 'for your project!') self.hiddentemplates = { pywikibot.Page(self.site, tmp, ns=self.site.namespaces.TEMPLATE) for tmp in hiddentemplatesRaw} self.pageHidden = i18n.translate(self.site, PageWithHiddenTemplates) self.pageAllowed = i18n.translate(self.site, PageWithAllowedTemplates) self.comment = i18n.twtranslate(self.site.lang, 'checkimages-source-tag-comment') # Adding the bot's nickname at the notification text if needed. self.bots = i18n.translate(self.site, bot_list) if self.bots: self.bots.append(site.username()) else: self.bots = [site.username()] self.sendemailActive = sendemailActive self.skip_list = [] self.duplicatesReport = duplicatesReport if max_user_notify: self.num_notify = collections.defaultdict(lambda: max_user_notify) else: self.num_notify = None # Load the licenses only once, so do it once self.list_licenses = self.load_licenses() def setParameters(self, image) -> None: """Set parameters.""" # ensure we have a FilePage self.image = pywikibot.FilePage(image) self.imageName = image.title(with_ns=False) self.timestamp = None self.uploader = None def report(self, newtext, image_to_report, notification=None, head=None, notification2=None, unver=True, commTalk=None, commImage=None ) -> None: """Function to make the reports easier.""" self.image_to_report = image_to_report self.newtext = newtext if not newtext: raise TranslationError( 'No no-license template provided in "n_txt" dict ' 'for your project!') self.head = head or '' self.notification = notification self.notification2 = notification2 if self.notification: self.notification = re.sub(r'__botnick__', self.site.username(), notification) if self.notification2: self.notification2 = re.sub(r'__botnick__', self.site.username(), notification2) self.commTalk = commTalk self.commImage = commImage or self.comment image_tagged = False try: image_tagged = self.tag_image(unver) except NoPageError: pywikibot.output('The page has been deleted! Skip!') except EditConflictError: pywikibot.output('Edit conflict! Skip!') if image_tagged and self.notification: try: self.put_mex_in_talk() except EditConflictError: pywikibot.output('Edit Conflict! Retrying...') try: self.put_mex_in_talk() except Exception: pywikibot.exception() pywikibot.output( 'Another error... skipping the user...') def uploadBotChangeFunction(self, reportPageText, upBotArray) -> str: """Detect the user that has uploaded the file through upload bot.""" regex = upBotArray[1] results = re.findall(regex, reportPageText) if results: luser = results[0] return luser # we can't find the user, report the problem to the bot return upBotArray[0] def tag_image(self, put=True) -> bool: """Add template to the Image page and find out the uploader.""" # Get the image's description reportPageObject = pywikibot.FilePage(self.site, self.image_to_report) try: reportPageText = reportPageObject.get() except NoPageError: pywikibot.output(self.imageName + ' has been deleted...') return False # You can use this function also to find only the user that # has upload the image (FixME: Rewrite a bit this part) if put: pywikibot.showDiff(reportPageText, self.newtext + '\n' + reportPageText) pywikibot.output(self.commImage) try: reportPageObject.put(self.newtext + '\n' + reportPageText, summary=self.commImage) except LockedPageError: pywikibot.output('File is locked. Skipping.') return False # paginetta it's the image page object. try: if reportPageObject == self.image and self.uploader: nick = self.uploader else: nick = reportPageObject.latest_file_info.user except PageRelatedError: pywikibot.output( 'Seems that {} has only the description and not the file...' .format(self.image_to_report)) repme = self.list_entry + "problems '''with the APIs'''" self.report_image(self.image_to_report, self.rep_page, self.com, repme) return False upBots = i18n.translate(self.site, uploadBots) user = pywikibot.User(self.site, nick) luser = user.title(as_url=True) if upBots: for upBot in upBots: if upBot[0] == luser: luser = self.uploadBotChangeFunction(reportPageText, upBot) user = pywikibot.User(self.site, luser) self.talk_page = user.getUserTalkPage() self.luser = luser return True def put_mex_in_talk(self) -> None: """Function to put the warning in talk page of the uploader.""" commento2 = i18n.twtranslate(self.site.lang, 'checkimages-source-notice-comment') emailPageName = i18n.translate(self.site, emailPageWithText) emailSubj = i18n.translate(self.site, emailSubject) if self.notification2: self.notification2 %= self.image_to_report else: self.notification2 = self.notification second_text = False # Getting the talk page's history, to check if there is another # advise... try: testoattuale = self.talk_page.get() history = list(self.talk_page.revisions(total=10)) latest_user = history[0]['user'] pywikibot.output( 'The latest user that has written something is: ' + latest_user) # A block to prevent the second message if the bot also # welcomed users... if latest_user in self.bots and len(history) > 1: second_text = True except IsRedirectPageError: pywikibot.output( 'The user talk is a redirect, trying to get the right talk...') try: self.talk_page = self.talk_page.getRedirectTarget() testoattuale = self.talk_page.get() except NoPageError: testoattuale = i18n.translate(self.site, empty) except NoPageError: pywikibot.output('The user page is blank') testoattuale = i18n.translate(self.site, empty) if self.commTalk: commentox = self.commTalk else: commentox = commento2 if second_text: newText = '{}\n\n{}'.format(testoattuale, self.notification2) else: newText = '{}\n\n== {} ==\n{}'.format(testoattuale, self.head, self.notification) # Check maximum number of notifications for this talk page if (self.num_notify is not None and self.num_notify[self.talk_page.title()] == 0): pywikibot.output('Maximum notifications reached, skip.') return try: self.talk_page.put(newText, summary=commentox, minor=False) except LockedPageError: pywikibot.output('Talk page blocked, skip.') else: if self.num_notify is not None: self.num_notify[self.talk_page.title()] -= 1 if emailPageName and emailSubj: emailPage = pywikibot.Page(self.site, emailPageName) try: emailText = emailPage.get() except (NoPageError, IsRedirectPageError): return if self.sendemailActive: text_to_send = re.sub(r'__user-nickname__', r'{}' .format(self.luser), emailText) emailClass = pywikibot.User(self.site, self.luser) try: emailClass.send_email(emailSubj, text_to_send) except NotEmailableError: pywikibot.output('User is not mailable, aborted') def regexGenerator(self, regexp, textrun) -> Generator[pywikibot.FilePage, None, None]: """Find page to yield using regex to parse text.""" regex = re.compile(r'{}'.format(regexp), re.DOTALL) results = regex.findall(textrun) for image in results: yield pywikibot.FilePage(self.site, image) def loadHiddenTemplates(self) -> None: """Function to load the white templates.""" # A template as {{en is not a license! Adding also them in the # whitelist template... for langK in Family.load('wikipedia').langs.keys(): self.hiddentemplates.add(pywikibot.Page( self.site, 'Template:{}'.format(langK))) # Hidden template loading if self.pageHidden: try: pageHiddenText = pywikibot.Page(self.site, self.pageHidden).get() except (NoPageError, IsRedirectPageError): pageHiddenText = '' for element in self.load(pageHiddenText): self.hiddentemplates.add(pywikibot.Page(self.site, element)) def important_image(self, listGiven) -> pywikibot.FilePage: """ Get tuples of image and time, return the most used or oldest image. :param listGiven: a list of tuples which hold seconds and FilePage :type listGiven: list :return: the most used or oldest image """ # find the most used image inx_found = None # index of found image max_usage = 0 # hold max amount of using pages for num, element in enumerate(listGiven): image = element[1] image_used = len(list(image.usingPages())) if image_used > max_usage: max_usage = image_used inx_found = num if inx_found is not None: return listGiven[inx_found][1] # find the oldest image sec, image = max(listGiven, key=lambda element: element[0]) return image def checkImageOnCommons(self) -> bool: """Checking if the file is on commons.""" pywikibot.output('Checking if [[{}]] is on commons...' .format(self.imageName)) try: hash_found = self.image.latest_file_info.sha1 except NoPageError: return False # Image deleted, no hash found. Skip the image. site = pywikibot.Site('commons', 'commons') commons_image_with_this_hash = next( iter(site.allimages(sha1=hash_found, total=1)), None) if commons_image_with_this_hash: servTMP = pywikibot.translate(self.site, serviceTemplates) templatesInTheImage = self.image.templates() if servTMP is not None: for template in servTMP: if pywikibot.Page(self.site, template) in templatesInTheImage: pywikibot.output( "{} is on commons but it's a service image." .format(self.imageName)) return True # continue with the check-part pywikibot.output(self.imageName + ' is on commons!') if self.image.file_is_shared(): pywikibot.output( "But, the file doesn't exist on your project! Skip...") # We have to skip the check part for that image because # it's on commons but someone has added something on your # project. return False if re.findall(r'\bstemma\b', self.imageName.lower()) and \ self.site.code == 'it': pywikibot.output( "{} has 'stemma' inside, means that it's ok." .format(self.imageName)) return True # It's not only on commons but the image needs a check # the second usually is a url or something like that. # Compare the two in equal way, both url. repme = ((self.list_entry + "is also on '''Commons''': [[commons:File:%s]]") % (self.imageName, commons_image_with_this_hash.title( with_ns=False))) if (self.image.title(as_url=True) == commons_image_with_this_hash.title(as_url=True)): repme += ' (same name)' self.report_image(self.imageName, self.rep_page, self.com, repme, addings=False) return True def checkImageDuplicated(self, duplicates_rollback) -> bool: """Function to check the duplicated files.""" dupText = i18n.translate(self.site, duplicatesText) dupRegex = i18n.translate(self.site, duplicatesRegex) dupTalkText = i18n.translate(self.site, duplicates_user_talk_text) # Head of the message given to the author dupTalkHead = i18n.twtranslate(self.site, 'checkimages-doubles-head') # Comment while bot reports the problem in the uploader's talk dupComment_talk = i18n.twtranslate(self.site, 'checkimages-doubles-talk-comment') # Comment used by the bot while it reports the problem in the image dupComment_image = i18n.twtranslate(self.site, 'checkimages-doubles-file-comment') imagePage = pywikibot.FilePage(self.site, self.imageName) hash_found = imagePage.latest_file_info.sha1 duplicates = list(self.site.allimages(sha1=hash_found)) if not duplicates: return False # Image deleted, no hash found. Skip the image. if len(duplicates) > 1: xdict = {'en': '%(name)s has {{PLURAL:count' '|a duplicate! Reporting it' '|%(count)s duplicates! Reporting them}}...'} pywikibot.output(i18n.translate('en', xdict, {'name': self.imageName, 'count': len(duplicates) - 1})) if dupText and dupRegex: time_image_list = [] for dup_page in duplicates: if (dup_page.title(as_url=True) != self.image.title( as_url=True) or self.timestamp is None): try: self.timestamp = ( dup_page.latest_file_info.timestamp) except PageRelatedError: continue data = self.timestamp.timetuple() data_seconds = time.mktime(data) time_image_list.append([data_seconds, dup_page]) Page_older_image = self.important_image(time_image_list) older_page_text = Page_older_image.text # And if the images are more than two? string = '' images_to_tag_list = [] for dup_page in duplicates: if dup_page == Page_older_image: # the most used or oldest image # not report also this as duplicate continue try: DupPageText = dup_page.text except NoPageError: continue if not (re.findall(dupRegex, DupPageText) or re.findall(dupRegex, older_page_text)): pywikibot.output( '{} is a duplicate and has to be tagged...' .format(dup_page)) images_to_tag_list.append(dup_page.title()) string += '* {}\n'.format( dup_page.title(as_link=True, textlink=True)) else: pywikibot.output( "Already put the dupe-template in the files's page" " or in the dupe's page. Skip.") return False # Ok - Let's continue the checking phase # true if the image are not to be tagged as dupes only_report = False # put only one image or the whole list according to the request if '__images__' in dupText: text_for_the_report = dupText.replace( '__images__', '\n{}* {}\n'.format( string, Page_older_image.title( as_link=True, textlink=True))) else: text_for_the_report = dupText.replace( '__image__', Page_older_image.title(as_link=True, textlink=True)) # Two iteration: report the "problem" to the user only once # (the last) if len(images_to_tag_list) > 1: for image_to_tag in images_to_tag_list[:-1]: fp = pywikibot.FilePage(self.site, image_to_tag) already_reported_in_past = fp.revision_count(self.bots) # if you want only one edit, the edit found should be # more than 0 -> num - 1 if already_reported_in_past > duplicates_rollback - 1: only_report = True break # Delete the image in the list where we're write on image = self.image_namespace + image_to_tag text_for_the_report = re.sub( r'\n\*\[\[:{}\]\]'.format(re.escape(image)), '', text_for_the_report) self.report(text_for_the_report, image_to_tag, commImage=dupComment_image, unver=True) if images_to_tag_list and not only_report: fp = pywikibot.FilePage(self.site, images_to_tag_list[-1]) already_reported_in_past = fp.revision_count(self.bots) image_title = re.escape(self.image.title(as_url=True)) from_regex = (r'\n\*\[\[:{}{}\]\]' .format(self.image_namespace, image_title)) # Delete the image in the list where we're write on text_for_the_report = re.sub(from_regex, '', text_for_the_report) # if you want only one edit, the edit found should be more # than 0 -> num - 1 if already_reported_in_past > duplicates_rollback - 1 or \ not dupTalkText: only_report = True else: self.report( text_for_the_report, images_to_tag_list[-1], dupTalkText % (Page_older_image.title(with_ns=True), string), dupTalkHead, commTalk=dupComment_talk, commImage=dupComment_image, unver=True) if self.duplicatesReport or only_report: if only_report: repme = ((self.list_entry + 'has the following duplicates ' "('''forced mode'''):") % self.image.title(as_url=True)) else: repme = ( (self.list_entry + 'has the following duplicates:') % self.image.title(as_url=True)) for dup_page in duplicates: if (dup_page.title(as_url=True) == self.image.title(as_url=True)): # the image itself, not report also this as duplicate continue repme += '\n** [[:{}{}]]'.format( self.image_namespace, dup_page.title(as_url=True)) result = self.report_image(self.imageName, self.rep_page, self.com, repme, addings=False) if not result: return True # If Errors, exit (but continue the check) if Page_older_image.title() != self.imageName: # The image is a duplicate, it will be deleted. So skip the # check-part, useless return False return True # Ok - No problem. Let's continue the checking phase def report_image(self, image_to_report, rep_page=None, com=None, rep_text=None, addings=True) -> bool: """Report the files to the report page when needed.""" rep_page = rep_page or self.rep_page com = com or self.com rep_text = rep_text or self.list_entry + '~~~~~' if addings: # Adding the name of the image in the report if not done already rep_text = rep_text % image_to_report another_page = pywikibot.Page(self.site, rep_page) try: text_get = another_page.get() except NoPageError: text_get = '' except IsRedirectPageError: text_get = another_page.getRedirectTarget().get() # Don't care for differences inside brackets. end = rep_text.find('(', max(0, rep_text.find(']]'))) if end < 0: end = None short_text = rep_text[rep_text.find('[['):end].strip() reported = True # Skip if the message is already there. if short_text in text_get: pywikibot.output('{} is already in the report page.' .format(image_to_report)) reported = False elif len(text_get) >= self.logFulNumber: if self.logFullError: raise LogIsFull( 'The log page ({}) is full! Please delete the old files ' 'reported.'.format(another_page.title())) pywikibot.output( 'The log page ({}) is full! Please delete the old files ' ' reported. Skip!'.format(another_page.title())) # Don't report, but continue with the check # (we don't know if this is the first time we check this file # or not) else: # Adding the log another_page.put(text_get + rep_text, summary=com, force=True, minor=False) pywikibot.output('...Reported...') return reported def takesettings(self) -> None: """Function to take the settings from the wiki.""" settingsPage = i18n.translate(self.site, page_with_settings) try: if not settingsPage: self.settingsData = None else: wikiPage = pywikibot.Page(self.site, settingsPage) self.settingsData = [] try: testo = wikiPage.get() number = 1 for m in SETTINGS_REGEX.finditer(testo): name = str(m.group(1)) find_tipe = str(m.group(2)) find = str(m.group(3)) imagechanges = str(m.group(4)) summary = str(m.group(5)) head = str(m.group(6)) text = str(m.group(7)) mexcatched = str(m.group(8)) tupla = [number, name, find_tipe, find, imagechanges, summary, head, text, mexcatched] self.settingsData += [tupla] number += 1 if not self.settingsData: pywikibot.output( "You've set wrongly your settings, please take a " 'look to the relative page. (run without them)') self.settingsData = None except NoPageError: pywikibot.output("The settings' page doesn't exist!") self.settingsData = None except Error: pywikibot.output( 'Problems with loading the settigs, run without them.') self.settingsData = None self.some_problem = False if not self.settingsData: self.settingsData = None # Real-Time page loaded if self.settingsData: pywikibot.output('>> Loaded the real-time page... <<') else: pywikibot.output('>> No additional settings found! <<') def load_licenses(self) -> List[pywikibot.Page]: """Load the list of the licenses.""" catName = i18n.translate(self.site, category_with_licenses) if not catName: raise TranslationError( 'No allowed licenses category provided in ' '"category_with_licenses" dict for your project!') pywikibot.output('\nLoading the allowed licenses...\n') cat = pywikibot.Category(self.site, catName) list_licenses = list(cat.articles()) if self.site.code == 'commons': no_licenses_to_skip = pywikibot.Category(self.site, 'License-related tags') for license_given in no_licenses_to_skip.articles(): if license_given in list_licenses: list_licenses.remove(license_given) pywikibot.output('') # Add the licenses set in the default page as licenses to check if self.pageAllowed: try: pageAllowedText = pywikibot.Page(self.site, self.pageAllowed).get() except (NoPageError, IsRedirectPageError): pageAllowedText = '' for nameLicense in self.load(pageAllowedText): pageLicense = pywikibot.Page(self.site, nameLicense) if pageLicense not in list_licenses: # the list has wiki-pages list_licenses.append(pageLicense) return list_licenses def miniTemplateCheck(self, template) -> bool: """Check if template is in allowed licenses or in licenses to skip.""" # the list_licenses are loaded in the __init__ # (not to load them multimple times) if template in self.list_licenses: self.license_selected = template.title(with_ns=False) self.seems_ok = True # let the last "fake" license normally detected self.license_found = self.license_selected return True if template in self.hiddentemplates: # if the whitetemplate is not in the images description, we don't # care try: self.allLicenses.remove(template) except ValueError: return False else: self.whiteTemplatesFound = True return False def templateInList(self) -> None: """ Check if template is in list. The problem is the calls to the Mediawiki system because they can be pretty slow. While searching in a list of objects is really fast, so first of all let's see if we can find something in the info that we already have, then make a deeper check. """ for template in self.licenses_found: if self.miniTemplateCheck(template): break if not self.license_found: for template in self.licenses_found: if template.isRedirectPage(): template = template.getRedirectTarget() if self.miniTemplateCheck(template): break def smartDetection(self) -> Tuple[str, bool]: """ Detect templates. The bot instead of checking if there's a simple template in the image's description, checks also if that template is a license or something else. In this sense this type of check is smart. """ self.seems_ok = False self.license_found = None self.whiteTemplatesFound = False regex_find_licenses = re.compile( r'(?<!\{)\{\{(?:[Tt]emplate:|)([^{]+?)[|\n<}]', re.DOTALL) regex_are_licenses = re.compile( r'(?<!\{)\{\{(?:[Tt]emplate:|)([^{]+?)\}\}', re.DOTALL) while True: self.loadHiddenTemplates() self.licenses_found = self.image.templates() templatesInTheImageRaw = regex_find_licenses.findall( self.imageCheckText) if not self.licenses_found and templatesInTheImageRaw: # {{nameTemplate|something <- this is not a template, be sure # that we haven't catch something like that. licenses_TEST = regex_are_licenses.findall(self.imageCheckText) if not self.licenses_found and licenses_TEST: raise Error( "Invalid or broken templates found in the image's " 'page {}!'.format(self.image)) self.allLicenses = [] if not self.list_licenses: raise TranslationError( 'No allowed licenses found in "category_with_licenses" ' 'category for your project!') # Found the templates ONLY in the image's description for template_selected in templatesInTheImageRaw: tp = pywikibot.Page(self.site, template_selected) for templateReal in self.licenses_found: if (tp.title(as_url=True, with_ns=False).lower() == templateReal.title(as_url=True, with_ns=False).lower()): if templateReal not in self.allLicenses: self.allLicenses.append(templateReal) break if self.licenses_found: self.templateInList() if not self.license_found and self.allLicenses: self.allLicenses = [ template.getRedirectTarget() if template.isRedirectPage() else template for template in self.allLicenses if template.exists()] if self.allLicenses: self.license_found = self.allLicenses[0].title() # If it has "some_problem" it must check the additional settings. self.some_problem = False if self.settingsData: # use additional settings self.findAdditionalProblems() if self.some_problem: if self.mex_used in self.imageCheckText: pywikibot.output('File already fixed. Skipping.') else: pywikibot.output( "The file's description for {} contains {}..." .format(self.imageName, self.name_used)) if self.mex_used.lower() == 'default': self.mex_used = self.unvertext if self.imagestatus_used: reported = True else: reported = self.report_image(self.imageName) if reported: self.report(self.mex_used, self.imageName, self.text_used, self.head_used, None, self.imagestatus_used, self.summary_used) else: pywikibot.output('Skipping the file...') self.some_problem = False else: if not self.seems_ok and self.license_found: rep_text_license_fake = ((self.list_entry + "seems to have a ''fake license''," ' license detected:' ' <nowiki>%s</nowiki>') % (self.imageName, self.license_found)) printWithTimeZone( '{} seems to have a fake license: {}, reporting...' .format(self.imageName, self.license_found)) self.report_image(self.imageName, rep_text=rep_text_license_fake, addings=False) elif self.license_found: pywikibot.output('[[%s]] seems ok, license found: {{%s}}...' % (self.imageName, self.license_found)) return (self.license_found, self.whiteTemplatesFound) def load(self, raw) -> List[str]: """Load a list of objects from a string using regex.""" list_loaded = [] # I search with a regex how many user have not the talk page # and i put them in a list (i find it more easy and secure) regl = r"(\"|\')(.*?)\1(?:,|\])" pl = re.compile(regl) for xl in pl.finditer(raw): word = xl.group(2).replace('\\\\', '\\') if word not in list_loaded: list_loaded.append(word) return list_loaded def skipImages(self, skip_number, limit) -> bool: """Given a number of files, skip the first -number- files.""" # If the images to skip are more the images to check, make them the # same number if skip_number == 0: pywikibot.output('\t\t>> No files to skip...<<') return False if skip_number > limit: skip_number = limit # Print a starting message only if no images has been skipped if not self.skip_list: pywikibot.output( i18n.translate( 'en', 'Skipping the first {{PLURAL:num|file|%(num)s files}}:\n', {'num': skip_number})) # If we still have pages to skip: if len(self.skip_list) < skip_number: pywikibot.output('Skipping {}...'.format(self.imageName)) self.skip_list.append(self.imageName) if skip_number == 1: pywikibot.output('') return True pywikibot.output('') return False @staticmethod def wait(generator, wait_time) -> Generator[pywikibot.FilePage, None, None]: """ Skip the images uploaded before x seconds. Let the users to fix the image's problem alone in the first x seconds. """ printWithTimeZone( 'Skipping the files uploaded less than {} seconds ago..' .format(wait_time)) for page in generator: image = pywikibot.FilePage(page) try: timestamp = image.latest_file_info.timestamp except PageRelatedError: continue now = pywikibot.Timestamp.utcnow() delta = now - timestamp if delta.total_seconds() > wait_time: yield image else: pywikibot.warning( 'Skipping {}, uploaded {} {} ago..' .format(image.title(), delta.days, 'days') if delta.days > 0 else (image.title(), delta.seconds, 'seconds')) def isTagged(self) -> bool: """Understand if a file is already tagged or not.""" # TODO: enhance and use textlib.MultiTemplateMatchBuilder # Is the image already tagged? If yes, no need to double-check, skip no_license = i18n.translate(self.site, txt_find) if not no_license: raise TranslationError( 'No no-license templates provided in "txt_find" dict ' 'for your project!') for i in no_license: # If there are {{ use regex, otherwise no (if there's not the # {{ may not be a template and the regex will be wrong) if '{{' in i: regexP = re.compile( r'\{\{(?:template)?%s ?(?:\||\r?\n|\}|<|/) ?' % i.split('{{')[1].replace(' ', '[ _]'), re.I) result = regexP.findall(self.imageCheckText) if result: return True elif i.lower() in self.imageCheckText: return True return False def findAdditionalProblems(self) -> None: """Extract additional settings from configuration page.""" # In every tuple there's a setting configuration for tupla in self.settingsData: name = tupla[1] find_tipe = tupla[2] find = tupla[3] find_list = self.load(find) imagechanges = tupla[4] if imagechanges.lower() == 'false': imagestatus = False elif imagechanges.lower() == 'true': imagestatus = True else: pywikibot.error('Imagechanges set wrongly!') self.settingsData = None break summary = tupla[5] head_2 = tupla[6] if head_2.count('==') == 2: head_2 = re.findall(r'\s*== *(.+?) *==\s*', head_2)[0] text = tupla[7] % self.imageName mexCatched = tupla[8] for k in find_list: if find_tipe.lower() == 'findonly': searchResults = re.findall(r'{}'.format(k.lower()), self.imageCheckText.lower()) if searchResults: if searchResults[0] == self.imageCheckText.lower(): self.some_problem = True self.text_used = text self.head_used = head_2 self.imagestatus_used = imagestatus self.name_used = name self.summary_used = summary self.mex_used = mexCatched break elif find_tipe.lower() == 'find': if re.findall(r'{}'.format(k.lower()), self.imageCheckText.lower()): self.some_problem = True self.text_used = text self.head_used = head_2 self.imagestatus_used = imagestatus self.name_used = name self.summary_used = summary self.mex_used = mexCatched continue def checkStep(self) -> None: """Check a single file page.""" # something = Minimal requirements for an image description. # If this fits, no tagging will take place # (if there aren't other issues) # MIT license is ok on italian wikipedia, let also this here # Don't put "}}" here, please. Useless and can give problems. something = ['{{'] # Allowed extensions try: allowed_formats = self.site.siteinfo.get( 'fileextensions', get_default=False) except KeyError: allowed_formats = [] else: allowed_formats = [item['ext'].lower() for item in allowed_formats] brackets = False delete = False notification = None # get the extension from the image's name extension = self.imageName.split('.')[-1] # Load the notification messages HiddenTN = i18n.translate(self.site, HiddenTemplateNotification) self.unvertext = i18n.translate(self.site, n_txt) di = i18n.translate(self.site, delete_immediately) # The header of the Unknown extension's message. dih = i18n.twtranslate(self.site, 'checkimages-unknown-extension-head') # Text that will be add if the bot find a unknown extension. din = i18n.twtranslate(self.site, 'checkimages-unknown-extension-msg') + ' ~~~~' # Header that the bot will add if the image hasn't the license. nh = i18n.twtranslate(self.site, 'checkimages-no-license-head') # Summary of the delete immediately. dels = i18n.twtranslate(self.site, 'checkimages-deletion-comment') nn = i18n.translate(self.site, nothing_notification) smwl = i18n.translate(self.site, second_message_without_license) try: self.imageCheckText = self.image.get() except NoPageError: pywikibot.output('Skipping {} because it has been deleted.' .format(self.imageName)) return except IsRedirectPageError: pywikibot.output("Skipping {} because it's a redirect." .format(self.imageName)) return # Delete the fields where the templates cannot be loaded regex_nowiki = re.compile(r'<nowiki>(.*?)</nowiki>', re.DOTALL) regex_pre = re.compile(r'<pre>(.*?)</pre>', re.DOTALL) self.imageCheckText = regex_nowiki.sub('', self.imageCheckText) self.imageCheckText = regex_pre.sub('', self.imageCheckText) # Deleting the useless template from the description (before adding # sth in the image the original text will be reloaded, don't worry). if self.isTagged(): printWithTimeZone('{} is already tagged...'.format(self.imageName)) return # something is the array with {{, MIT License and so on. for a_word in something: if a_word in self.imageCheckText: # There's a template, probably a license brackets = True # Is the extension allowed? (is it an image or f.e. a .xls file?) if allowed_formats and extension.lower() not in allowed_formats: delete = True (license_found, hiddenTemplateFound) = self.smartDetection() # Here begins the check block. if brackets and license_found: return if delete: pywikibot.output('{} is not a file!'.format(self.imageName)) if not di: pywikibot.output('No localized message given for ' "'delete_immediately'. Skipping.") return # Some formatting for delete immediately template dels = dels % {'adding': di} di = '\n' + di # Modify summary text config.default_edit_summary = dels canctext = di % extension notification = din % {'file': self.image.title(as_link=True, textlink=True)} head = dih self.report(canctext, self.imageName, notification, head) return if not self.imageCheckText.strip(): # empty image description pywikibot.output( "The file's description for {} does not contain a license " ' template!'.format(self.imageName)) if hiddenTemplateFound and HiddenTN: notification = HiddenTN % self.imageName elif nn: notification = nn % self.imageName head = nh self.report(self.unvertext, self.imageName, notification, head, smwl) return pywikibot.output('{} has only text and not the specific ' 'license...'.format(self.imageName)) if hiddenTemplateFound and HiddenTN: notification = HiddenTN % self.imageName elif nn: notification = nn % self.imageName head = nh self.report(self.unvertext, self.imageName, notification, head, smwl) def main(*args: str) -> bool: """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. :param args: command line arguments """ # Command line configurable parameters repeat = True # Restart after having check all the images? limit = 80 # How many images check? time_sleep = 30 # How many time sleep after the check? skip_number = 0 # How many images to skip before checking? waitTime = 0 # How many time sleep before the check? commonsActive = False # Is there's an image with the same name at commons? normal = False # Check the new images or use another generator? urlUsed = False # Use the url-related function instead of the new-pages regexGen = False # Use the regex generator duplicatesActive = False # Use the duplicate option duplicatesReport = False # Use the duplicate-report option max_user_notify = None sendemailActive = False # Use the send-email logFullError = True # Raise an error when the log is full generator = None unknown = [] # unknown parameters local_args = pywikibot.handle_args(args) site = pywikibot.Site() # Here below there are the local parameters. for arg in local_args: option, _, value = arg.partition(':') if option == '-limit': limit = int(value or pywikibot.input( 'How many files do you want to check?')) elif option == '-sleep': time_sleep = int(value or pywikibot.input( 'How many seconds do you want runs to be apart?')) elif option == '-break': repeat = False elif option == '-nologerror': logFullError = False elif option == '-commons': commonsActive = True elif option == '-duplicatesreport': duplicatesReport = True elif option == '-duplicates': duplicatesActive = True duplicates_rollback = int(value or 1) elif option == '-maxusernotify': max_user_notify = int(value or pywikibot.input( 'What should be the maximum number of notifications per user ' 'per check?')) elif option == '-sendemail': sendemailActive = True elif option == '-skip': skip_number = int(value or pywikibot.input( 'How many files do you want to skip?')) elif option == '-wait': waitTime = int(value or pywikibot.input( 'How many time do you want to wait before checking the ' 'files?')) elif option == '-start': firstPageTitle = value or pywikibot.input( 'From which page do you want to start?') namespaces = tuple( ns + ':' for ns in site.namespace(Namespace.FILE, True)) if firstPageTitle.startswith(namespaces): firstPageTitle = firstPageTitle.split(':', 1)[1] generator = site.allimages(start=firstPageTitle) repeat = False elif option == '-page': regexPageName = value or pywikibot.input( 'Which page do you want to use for the regex?') repeat = False regexGen = True elif option == '-url': regexPageUrl = value or pywikibot.input( 'Which url do you want to use for the regex?') urlUsed = True repeat = False regexGen = True elif option == '-regex': regexpToUse = value or pywikibot.input( 'Which regex do you want to use?') generator = 'regex' repeat = False elif option == '-cat': cat_name = value or pywikibot.input('In which category do I work?') cat = pywikibot.Category(site, 'Category:' + cat_name) generator = cat.articles(namespaces=[6]) repeat = False elif option == '-ref': ref_name = value or pywikibot.input( 'The references of what page should I parse?') ref = pywikibot.Page(site, ref_name) generator = ref.getReferences(namespaces=[6]) repeat = False else: unknown.append(arg) if not generator: normal = True # Ensure that the bot is localized and right command args are given if site.code not in project_inserted: additional_text = ('Your project is not supported by this script.\n' 'To allow your project in the script you have to ' 'add a localization into the script and add your ' 'project to the "project_inserted" list!') else: additional_text = '' if suggest_help(unknown_parameters=unknown, additional_text=additional_text): return False # Reading the log of the new images if another generator is not given. if normal: if limit == 1: pywikibot.output('Retrieving the latest file for checking...') else: pywikibot.output('Retrieving the latest {} files for checking...' .format(limit)) while True: # Defing the Main Class. Bot = checkImagesBot(site, sendemailActive=sendemailActive, duplicatesReport=duplicatesReport, logFullError=logFullError, max_user_notify=max_user_notify) if normal: generator = pg.NewimagesPageGenerator(total=limit, site=site) # if urlUsed and regexGen, get the source for the generator if urlUsed and regexGen: textRegex = site.getUrl(regexPageUrl, no_hostname=True) # Not an url but a wiki page as "source" for the regex elif regexGen: pageRegex = pywikibot.Page(site, regexPageName) try: textRegex = pageRegex.get() except NoPageError: pywikibot.output("{} doesn't exist!".format(pageRegex.title())) textRegex = '' # No source, so the bot will quit later. # If generator is the regex' one, use your own Generator using an url # or page and a regex. if generator == 'regex' and regexGen: generator = Bot.regexGenerator(regexpToUse, textRegex) Bot.takesettings() if waitTime > 0: generator = Bot.wait(generator, waitTime) for image in generator: # Setting the image for the main class Bot.setParameters(image) if skip_number and Bot.skipImages(skip_number, limit): continue # Check on commons if there's already an image with the same name if commonsActive and site.family.name != 'commons': if not Bot.checkImageOnCommons(): continue # Check if there are duplicates of the image on the project if duplicatesActive: if not Bot.checkImageDuplicated(duplicates_rollback): continue Bot.checkStep() if repeat: pywikibot.output('Waiting for {} seconds,'.format(time_sleep)) pywikibot.sleep(time_sleep) else: break return True if __name__ == '__main__': start = time.time() ret = False try: ret = main() except KeyboardInterrupt: ret = True finally: if ret is not False: final = time.time() delta = int(final - start) pywikibot.output('Execution time: {} seconds\n'.format(delta))
42.243917
79
0.552727
e8a9fa591534a096f0efd866ca602bf262a89d5d
17,323
py
Python
python/iceberg/api/expressions/literals.py
moulimukherjee/incubator-iceberg
bf7edc4b325df6dd80d86fea0149d2be0ad09468
[ "Apache-2.0" ]
58
2019-09-10T20:51:26.000Z
2022-03-22T11:06:09.000Z
python/iceberg/api/expressions/literals.py
moulimukherjee/incubator-iceberg
bf7edc4b325df6dd80d86fea0149d2be0ad09468
[ "Apache-2.0" ]
37
2019-11-03T19:19:44.000Z
2022-03-17T01:03:34.000Z
python/iceberg/api/expressions/literals.py
moulimukherjee/incubator-iceberg
bf7edc4b325df6dd80d86fea0149d2be0ad09468
[ "Apache-2.0" ]
26
2019-08-28T23:59:03.000Z
2022-03-04T08:54:08.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime from decimal import (Decimal, ROUND_HALF_UP) import uuid import pytz from .expression import (FALSE, TRUE) from .java_variables import (JAVA_MAX_FLOAT, JAVA_MIN_FLOAT) from ..types.type import TypeID class Literals(object): EPOCH = datetime.datetime.utcfromtimestamp(0) EPOCH_DAY = EPOCH.date() @staticmethod # noqa: C901 def from_(value): if value is None: raise RuntimeError("Cannot create an expression literal from None") if isinstance(value, bool): return BooleanLiteral(value) elif isinstance(value, int): if Literal.JAVA_MIN_INT < value < Literal.JAVA_MAX_INT: return IntegerLiteral(value) return LongLiteral(value) elif isinstance(value, float): if Literal.JAVA_MIN_FLOAT < value < Literal.JAVA_MAX_FLOAT: return FloatLiteral(value) return DoubleLiteral(value) elif isinstance(value, str): return StringLiteral(value) elif isinstance(value, uuid.UUID): return UUIDLiteral(value) elif isinstance(value, bytearray): return BinaryLiteral(value) elif isinstance(value, bytes): return FixedLiteral(value) elif isinstance(value, Decimal): return DecimalLiteral(value) else: raise RuntimeError("Unimplemented Type Literal") @staticmethod def above_max(): return ABOVE_MAX @staticmethod def below_min(): return BELOW_MIN class Literal(object): JAVA_MAX_INT = 2147483647 JAVA_MIN_INT = -2147483648 JAVA_MAX_FLOAT = 3.4028235E38 JAVA_MIN_FLOAT = -3.4028235E38 @staticmethod # noqa: C901 def of(value): if isinstance(value, bool): return BooleanLiteral(value) elif isinstance(value, int): if value < Literal.JAVA_MIN_INT or value > Literal.JAVA_MAX_INT: return LongLiteral(value) return IntegerLiteral(value) elif isinstance(value, float): if value < Literal.JAVA_MIN_FLOAT or value > Literal.JAVA_MAX_FLOAT: return DoubleLiteral(value) return FloatLiteral(value) elif isinstance(value, str): return StringLiteral(value) elif isinstance(value, uuid.UUID): return UUIDLiteral(value) elif isinstance(value, bytes): return FixedLiteral(value) elif isinstance(value, bytearray): return BinaryLiteral(value) elif isinstance(value, Decimal): return DecimalLiteral(value) def to(self, type): raise NotImplementedError() class BaseLiteral(Literal): def __init__(self, value): self.value = value def to(self, type): raise NotImplementedError() def __eq__(self, other): if id(self) == id(other): return True elif other is None or not isinstance(other, BaseLiteral): return False return self.value == other.value def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "BaseLiteral(%s)" % str(self.value) def __str__(self): return str(self.value) class ComparableLiteral(BaseLiteral): def __init__(self, value): super(ComparableLiteral, self).__init__(value) def to(self, type): raise NotImplementedError() def __eq__(self, other): return self.value == other.value def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): if self.value is None: return True if other is None or other.value is None: return False return self.value < other.value def __gt__(self, other): if self.value is None: return False if other is None or other.value is None: return True return self.value > other.value def __le__(self, other): if self.value is None: return True if other is None or other.value is None: return False return self.value <= other.value def __ge__(self, other): if self.value is None: return False if other is None or other.value is None: return True return self.value >= other.value class AboveMax(Literal): def __init__(self): super(AboveMax, self).__init__() def value(self): raise RuntimeError("AboveMax has no value") def to(self, type): raise RuntimeError("Cannot change the type of AboveMax") def __str__(self): return "aboveMax" class BelowMin(Literal): def __init__(self): super(BelowMin, self).__init__() def value(self): raise RuntimeError("BelowMin has no value") def to(self, type): raise RuntimeError("Cannot change the type of BelowMin") def __str__(self): return "belowMin" class BooleanLiteral(ComparableLiteral): def __init__(self, value): super(BooleanLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.BOOLEAN: return self class IntegerLiteral(ComparableLiteral): def __init__(self, value): super(IntegerLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.INTEGER: return self elif type_var.type_id == TypeID.LONG: return LongLiteral(self.value) elif type_var.type_id == TypeID.FLOAT: return FloatLiteral(float(self.value)) elif type_var.type_id == TypeID.DOUBLE: return DoubleLiteral(float(self.value)) elif type_var.type_id == TypeID.DATE: return DateLiteral(self.value) elif type_var.type_id == TypeID.DECIMAL: if type_var.scale == 0: return DecimalLiteral(Decimal(self.value)) else: return DecimalLiteral(Decimal(self.value) .quantize(Decimal("." + "".join(["0" for i in range(1, type_var.scale)]) + "1"), rounding=ROUND_HALF_UP)) class LongLiteral(ComparableLiteral): def __init__(self, value): super(LongLiteral, self).__init__(value) def to(self, type_var): # noqa: C901 if type_var.type_id == TypeID.INTEGER: if Literal.JAVA_MAX_INT < self.value: return ABOVE_MAX elif Literal.JAVA_MIN_INT > self.value: return BELOW_MIN return IntegerLiteral(self.value) elif type_var.type_id == TypeID.LONG: return self elif type_var.type_id == TypeID.FLOAT: return FloatLiteral(float(self.value)) elif type_var.type_id == TypeID.DOUBLE: return DoubleLiteral(float(self.value)) elif type_var.type_id == TypeID.TIME: return TimeLiteral(self.value) elif type_var.type_id == TypeID.TIMESTAMP: return TimestampLiteral(self.value) elif type_var.type_id == TypeID.DECIMAL: if type_var.scale == 0: return DecimalLiteral(Decimal(self.value)) else: return DecimalLiteral(Decimal(self.value) .quantize(Decimal("." + "".join(["0" for i in range(1, type_var.scale)]) + "1"), rounding=ROUND_HALF_UP)) class FloatLiteral(ComparableLiteral): def __init__(self, value): super(FloatLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.FLOAT: return self elif type_var.type_id == TypeID.DOUBLE: return DoubleLiteral(self.value) elif type_var.type_id == TypeID.DECIMAL: if type_var.scale == 0: return DecimalLiteral(Decimal(self.value) .quantize(Decimal('1.'), rounding=ROUND_HALF_UP)) else: return DecimalLiteral(Decimal(self.value) .quantize(Decimal("." + "".join(["0" for i in range(1, type_var.scale)]) + "1"), rounding=ROUND_HALF_UP)) class DoubleLiteral(ComparableLiteral): def __init__(self, value): super(DoubleLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.FLOAT: if JAVA_MAX_FLOAT < self.value: return ABOVE_MAX elif JAVA_MIN_FLOAT > self.value: return BELOW_MIN return FloatLiteral(self.value) elif type_var.type_id == TypeID.DOUBLE: return self elif type_var.type_id == TypeID.DECIMAL: if type_var.scale == 0: return DecimalLiteral(Decimal(self.value) .quantize(Decimal('1.'), rounding=ROUND_HALF_UP)) else: return DecimalLiteral(Decimal(self.value) .quantize(Decimal("." + "".join(["0" for i in range(1, type_var.scale)]) + "1"), rounding=ROUND_HALF_UP)) class DateLiteral(ComparableLiteral): def __init__(self, value): super(DateLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.DATE: return self class TimeLiteral(ComparableLiteral): def __init__(self, value): super(TimeLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.TIME: return self class TimestampLiteral(ComparableLiteral): def __init__(self, value): super(TimestampLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.TIMESTAMP: return self elif type_var.type_id == TypeID.DATE: return DateLiteral((datetime.datetime.fromtimestamp(self.value / 1000000) - Literals.EPOCH).days) class DecimalLiteral(ComparableLiteral): def __init__(self, value): super(DecimalLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.DECIMAL and type_var.scale == abs(self.value.as_tuple().exponent): return self class StringLiteral(BaseLiteral): def __init__(self, value): super(StringLiteral, self).__init__(value) def to(self, type_var): # noqa: C901 import dateutil.parser if type_var.type_id == TypeID.DATE: return DateLiteral((dateutil.parser.parse(self.value) - Literals.EPOCH).days) elif type_var.type_id == TypeID.TIME: return TimeLiteral( int((dateutil.parser.parse(Literals.EPOCH.strftime("%Y-%m-%d ") + self.value) - Literals.EPOCH) .total_seconds() * 1000000)) elif type_var.type_id == TypeID.TIMESTAMP: timestamp = dateutil.parser.parse(self.value) EPOCH = Literals.EPOCH if bool(timestamp.tzinfo) != bool(type_var.adjust_to_utc): raise RuntimeError("Cannot convert to %s when string is: %s" % (type_var, self.value)) if timestamp.tzinfo is not None: EPOCH = EPOCH.replace(tzinfo=pytz.UTC) return TimestampLiteral(int((timestamp - EPOCH).total_seconds() * 1000000)) elif type_var.type_id == TypeID.STRING: return self elif type_var.type_id == TypeID.UUID: return UUIDLiteral(uuid.UUID(self.value)) elif type_var.type_id == TypeID.DECIMAL: dec_val = Decimal(str(self.value)) if abs(dec_val.as_tuple().exponent) == type_var.scale: if type_var.scale == 0: return DecimalLiteral(Decimal(str(self.value)) .quantize(Decimal('1.'), rounding=ROUND_HALF_UP)) else: return DecimalLiteral(Decimal(str(self.value)) .quantize(Decimal("." + "".join(["0" for i in range(1, type_var.scale)]) + "1"), rounding=ROUND_HALF_UP)) def __eq__(self, other): if id(self) == id(other): return True if other is None or not isinstance(other, StringLiteral): return False return self.value == other.value def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): if other is None: return False return self.value < other.value def __gt__(self, other): if other is None: return True return self.value > other.value def __le__(self, other): if other is None: return False return self.value <= other.value def __ge__(self, other): if other is None: return True return self.value >= other.value def __str__(self): return '"' + self.value + '"' class UUIDLiteral(ComparableLiteral): def __init__(self, value): super(UUIDLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.UUID: return self class FixedLiteral(BaseLiteral): def __init__(self, value): super(FixedLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.FIXED: if len(self.value) == type_var.length: return self elif type_var.type_id == TypeID.BINARY: return BinaryLiteral(self.value) def write_replace(self): return FixedLiteralProxy(self.value) def __eq__(self, other): return self.value == other.value def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): if other is None: return False return self.value < other.value def __gt__(self, other): if other is None: return True return self.value > other.value def __le__(self, other): if other is None: return False return self.value <= other.value def __ge__(self, other): if other is None: return True return self.value >= other.value class BinaryLiteral(BaseLiteral): def __init__(self, value): super(BinaryLiteral, self).__init__(value) def to(self, type_var): if type_var.type_id == TypeID.FIXED: if type_var.length == len(self.value): return FixedLiteral(self.value) return None elif type_var.type_id == TypeID.BINARY: return self def write_replace(self): return BinaryLiteralProxy(self.value) def __eq__(self, other): return self.value == other.value def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): if other is None: return False return self.value < other.value def __gt__(self, other): if other is None: return True return self.value > other.value def __le__(self, other): if other is None: return False return self.value <= other.value def __ge__(self, other): if other is None: return True return self.value >= other.value class FixedLiteralProxy(object): def __init__(self, buffer=None): if buffer is not None: self.bytes = list(buffer) def read_resolve(self): return FixedLiteral(self.bytes) class ConstantExpressionProxy(object): def __init__(self, true_or_false=None): if true_or_false is not None: self.true_or_false = true_or_false def read_resolve(self): if self.true_or_false: return TRUE else: return FALSE class BinaryLiteralProxy(FixedLiteralProxy): def __init__(self, buffer=None): super(BinaryLiteralProxy, self).__init__(buffer) def read_resolve(self): return BinaryLiteral(self.bytes) ABOVE_MAX = AboveMax() BELOW_MIN = BelowMin()
29.867241
122
0.594585
507e0de3ef81e8e585298c6980bf3745630f69a2
800
py
Python
snippets/admin/actions.py
wizzzet/github_backend
9e4b5d3273e850e4ac0f425d22911987be7a7eff
[ "MIT" ]
null
null
null
snippets/admin/actions.py
wizzzet/github_backend
9e4b5d3273e850e4ac0f425d22911987be7a7eff
[ "MIT" ]
null
null
null
snippets/admin/actions.py
wizzzet/github_backend
9e4b5d3273e850e4ac0f425d22911987be7a7eff
[ "MIT" ]
null
null
null
from django.utils.translation import ugettext_lazy as _ from snippets.choices import StatusChoices def activate(modeladmin, request, queryset): queryset.update(is_active=True) activate.short_description = _('Активировать') def deactivate(modeladmin, request, queryset): queryset.update(is_active=False) deactivate.short_description = _('Деактивировать') def draft(modeladmin, request, queryset): queryset.update(status=StatusChoices.DRAFT.value) draft.short_description = _('В черновики') def hide(modeladmin, request, queryset): queryset.update(status=StatusChoices.HIDDEN.value) hide.short_description = _('Скрыть') def publish(modeladmin, request, queryset): queryset.update(status=StatusChoices.PUBLIC.value) publish.short_description = _('Опубликовать')
20.512821
55
0.78
9d5e01a5bdfe49b336d70a90fa40c43f539b3e18
377
py
Python
Python/DataStructures/Stack/reverse_int_using_stack.py
ThunderZ007/Data-Structures-and-Algorithms
148415faf6472115f6848b1a4e21b660b6d327da
[ "MIT" ]
245
2020-10-05T14:52:37.000Z
2022-03-29T07:40:38.000Z
Python/DataStructures/Stack/reverse_int_using_stack.py
ThunderZ007/Data-Structures-and-Algorithms
148415faf6472115f6848b1a4e21b660b6d327da
[ "MIT" ]
521
2020-10-05T15:25:29.000Z
2021-11-09T13:24:01.000Z
Python/DataStructures/Stack/reverse_int_using_stack.py
ThunderZ007/Data-Structures-and-Algorithms
148415faf6472115f6848b1a4e21b660b6d327da
[ "MIT" ]
521
2020-10-05T15:29:42.000Z
2022-03-27T10:22:00.000Z
st = []; def push_digits(number): while (number != 0): st.append(number % 10); number = int(number / 10); def reverse_number(number): push_digits(number); reverse = 0; i = 1; while (len(st) > 0): reverse = reverse + (st[len(st) - 1] * i); st.pop(); i = i * 10; return reverse; number = int(input()); print(reverse_number(number));
13.464286
45
0.562334
2ac3bf1013fb97d41b6e3eb5ad94045c0c1c98da
10,286
py
Python
tencentcloud/cms/v20190321/cms_client.py
RedheatWei/tencentcloud-sdk-python
140d4e60e8bdd89f3e5ae1d8aef0bfe4fa999521
[ "Apache-2.0" ]
1
2019-07-16T08:45:02.000Z
2019-07-16T08:45:02.000Z
tencentcloud/cms/v20190321/cms_client.py
RedheatWei/tencentcloud-sdk-python
140d4e60e8bdd89f3e5ae1d8aef0bfe4fa999521
[ "Apache-2.0" ]
null
null
null
tencentcloud/cms/v20190321/cms_client.py
RedheatWei/tencentcloud-sdk-python
140d4e60e8bdd89f3e5ae1d8aef0bfe4fa999521
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf8 -*- # Copyright (c) 2017-2018 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.common.abstract_client import AbstractClient from tencentcloud.cms.v20190321 import models class CmsClient(AbstractClient): _apiVersion = '2019-03-21' _endpoint = 'cms.tencentcloudapi.com' def AudioModeration(self, request): """音频内容检测(Audio Moderation, AM)服务使用了波形分析、声纹分析等技术,能识别涉黄、涉政、涉恐等违规音频,同时支持用户配置音频黑库,打击自定义的违规内容。 :param request: 调用AudioModeration所需参数的结构体。 :type request: :class:`tencentcloud.cms.v20190321.models.AudioModerationRequest` :rtype: :class:`tencentcloud.cms.v20190321.models.AudioModerationResponse` """ try: params = request._serialize() body = self.call("AudioModeration", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.AudioModerationResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def CreateTextSample(self, request): """新增文本类型样本库 :param request: 调用CreateTextSample所需参数的结构体。 :type request: :class:`tencentcloud.cms.v20190321.models.CreateTextSampleRequest` :rtype: :class:`tencentcloud.cms.v20190321.models.CreateTextSampleResponse` """ try: params = request._serialize() body = self.call("CreateTextSample", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.CreateTextSampleResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DeleteTextSample(self, request): """删除文字样本库,暂时只支持单个删除 :param request: 调用DeleteTextSample所需参数的结构体。 :type request: :class:`tencentcloud.cms.v20190321.models.DeleteTextSampleRequest` :rtype: :class:`tencentcloud.cms.v20190321.models.DeleteTextSampleResponse` """ try: params = request._serialize() body = self.call("DeleteTextSample", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DeleteTextSampleResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeModerationOverview(self, request): """根据日期,渠道和服务类型查询识别结果概览数据 :param request: 调用DescribeModerationOverview所需参数的结构体。 :type request: :class:`tencentcloud.cms.v20190321.models.DescribeModerationOverviewRequest` :rtype: :class:`tencentcloud.cms.v20190321.models.DescribeModerationOverviewResponse` """ try: params = request._serialize() body = self.call("DescribeModerationOverview", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeModerationOverviewResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def DescribeTextSample(self, request): """支持批量查询文字样本库 :param request: 调用DescribeTextSample所需参数的结构体。 :type request: :class:`tencentcloud.cms.v20190321.models.DescribeTextSampleRequest` :rtype: :class:`tencentcloud.cms.v20190321.models.DescribeTextSampleResponse` """ try: params = request._serialize() body = self.call("DescribeTextSample", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.DescribeTextSampleResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def ImageModeration(self, request): """图片内容检测服务(Image Moderation, IM)能自动扫描图片,识别涉黄、涉恐、涉政、涉毒等有害内容,同时支持用户配置图片黑名单,打击自定义的违规图片。 :param request: 调用ImageModeration所需参数的结构体。 :type request: :class:`tencentcloud.cms.v20190321.models.ImageModerationRequest` :rtype: :class:`tencentcloud.cms.v20190321.models.ImageModerationResponse` """ try: params = request._serialize() body = self.call("ImageModeration", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.ImageModerationResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def TextModeration(self, request): """文本内容检测(Text Moderation)服务使用了深度学习技术,识别涉黄、涉政、涉恐等有害内容,同时支持用户配置词库,打击自定义的违规文本。 :param request: 调用TextModeration所需参数的结构体。 :type request: :class:`tencentcloud.cms.v20190321.models.TextModerationRequest` :rtype: :class:`tencentcloud.cms.v20190321.models.TextModerationResponse` """ try: params = request._serialize() body = self.call("TextModeration", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.TextModerationResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message) def VideoModeration(self, request): """视频内容检测(Video Moderation, VM)服务能识别涉黄、涉政、涉恐等违规视频,同时支持用户配置视频黑库,打击自定义的违规内容。 :param request: 调用VideoModeration所需参数的结构体。 :type request: :class:`tencentcloud.cms.v20190321.models.VideoModerationRequest` :rtype: :class:`tencentcloud.cms.v20190321.models.VideoModerationResponse` """ try: params = request._serialize() body = self.call("VideoModeration", params) response = json.loads(body) if "Error" not in response["Response"]: model = models.VideoModerationResponse() model._deserialize(response["Response"]) return model else: code = response["Response"]["Error"]["Code"] message = response["Response"]["Error"]["Message"] reqid = response["Response"]["RequestId"] raise TencentCloudSDKException(code, message, reqid) except Exception as e: if isinstance(e, TencentCloudSDKException): raise else: raise TencentCloudSDKException(e.message, e.message)
41.309237
99
0.6084
077982c89dc7723d7ff60702256c5108fb2c5623
2,019
py
Python
src/m7_summary.py
goinjl/01-IntroductionToPython
f24e65ac658f580f59d30f1cfec1078dc2ad74df
[ "MIT" ]
null
null
null
src/m7_summary.py
goinjl/01-IntroductionToPython
f24e65ac658f580f59d30f1cfec1078dc2ad74df
[ "MIT" ]
null
null
null
src/m7_summary.py
goinjl/01-IntroductionToPython
f24e65ac658f580f59d30f1cfec1078dc2ad74df
[ "MIT" ]
null
null
null
""" An exercise that summarizes what you have learned in this Session. Authors: David Mutchler, Vibha Alangar, Matt Boutell, Dave Fisher, Aaron Wilkin, their colleagues, and Jacey. """ ######################################################################## # DONE: 1. # On Line 5 above, replace PUT_YOUR_NAME_HERE with your own name. ######################################################################## import rosegraphics as rg ######################################################################## # # DONE: 2. # Write code that accomplishes the following (and ONLY the following), # in the order listed: # # - Constructs a SimpleTurtle with a 'blue' Pen. # # - Makes the SimpleTurtle go straight UP 200 pixels. # # - Makes the SimpleTurtle lift its pen UP # (so that the next movements do NOT leave a "trail") # HINT: Use the "dot trick" to figure out how to do this. # # - Makes the SimpleTurtle go to the Point at (100, -40). # # - Makes the SimpleTurtle put its pen DOWN # (so that the next movements will return to leaving a "trail"). # # - Makes the SimpleTurtle's pen have color 'green' and thickness 10. # # - Makes the SimpleTurtle go 150 pixels straight DOWN. # # Don't forget to: # - import rosegraphics and construct a TurtleWindow # at the BEGINNING of your code, and to # - ask your TurtleWindow to close_on_mouse_click # as the LAST line of your code. # See the beginning and end of m4e_loopy_turtles for an example. # # As always, test by running the module. # As always, COMMIT-and-PUSH when you are done with this module. # ######################################################################## window = rg.TurtleWindow() jacey = rg.SimpleTurtle() jacey = rg.SimpleTurtle('turtle') jacey.pen = rg.Pen('blue',1) jacey.left(90) jacey.forward(200) jacey.pen_up() jacey.go_to(rg.Point(100, -40)) jacey.pen_down() jacey.pen = rg.Pen('green',10) jacey.backward(150) window.close_on_mouse_click()
35.421053
72
0.590887
56a8f6b651f4fa959f24619332fd41b428ed605c
2,472
py
Python
setup.py
rhunwicks/tablib
bbdf5f11ab0c77e0b8907c593cdd73e287c2948d
[ "MIT" ]
null
null
null
setup.py
rhunwicks/tablib
bbdf5f11ab0c77e0b8907c593cdd73e287c2948d
[ "MIT" ]
null
null
null
setup.py
rhunwicks/tablib
bbdf5f11ab0c77e0b8907c593cdd73e287c2948d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import tablib try: from setuptools import setup except ImportError: from distutils.core import setup if sys.argv[-1] == 'publish': os.system("python setup.py sdist upload") sys.exit() if sys.argv[-1] == 'speedups': try: __import__('pip') except ImportError: print('Pip required.') sys.exit(1) os.system('pip install ujson pyyaml') sys.exit() if sys.argv[-1] == 'test': try: __import__('py') except ImportError: print('py.test required.') sys.exit(1) errors = os.system('py.test test_tablib.py') sys.exit(bool(errors)) packages = [ 'tablib', 'tablib.formats', 'tablib.packages', 'tablib.packages.omnijson', 'tablib.packages.unicodecsv', 'tablib.packages.xlwt', 'tablib.packages.xlrd', 'tablib.packages.odf', 'tablib.packages.openpyxl', 'tablib.packages.openpyxl.shared', 'tablib.packages.openpyxl.reader', 'tablib.packages.openpyxl.writer', 'tablib.packages.yaml', 'tablib.packages.dbfpy', 'tablib.packages.xlwt3', 'tablib.packages.xlrd3', 'tablib.packages.odf3', 'tablib.packages.openpyxl3', 'tablib.packages.openpyxl3.shared', 'tablib.packages.openpyxl3.reader', 'tablib.packages.openpyxl3.writer', 'tablib.packages.yaml3', 'tablib.packages.dbfpy3' ] setup( name='tablib', version=tablib.__version__, description='Format agnostic tabular data library (XLS, JSON, YAML, CSV)', long_description=(open('README.rst').read() + '\n\n' + open('HISTORY.rst').read()), author='Kenneth Reitz', author_email='me@kennethreitz.org', url='http://python-tablib.org', packages=packages, license='MIT', classifiers=( 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.0', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ), tests_require=['pytest'], )
26.580645
78
0.618932
e8e523c795b546f3fef0bab80a23f3470ef5cf32
3,311
py
Python
c7n/cache.py
dnouri/cloud-custodian
4e8b3b45f60731df942ffe6b61645416d7a67daa
[ "Apache-2.0" ]
1
2020-09-07T21:10:29.000Z
2020-09-07T21:10:29.000Z
c7n/cache.py
dnouri/cloud-custodian
4e8b3b45f60731df942ffe6b61645416d7a67daa
[ "Apache-2.0" ]
1
2021-02-10T02:20:45.000Z
2021-02-10T02:20:45.000Z
c7n/cache.py
dnouri/cloud-custodian
4e8b3b45f60731df942ffe6b61645416d7a67daa
[ "Apache-2.0" ]
1
2021-05-02T01:49:36.000Z
2021-05-02T01:49:36.000Z
# Copyright 2015-2017 Capital One Services, LLC # Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 """Provide basic caching services to avoid extraneous queries over multiple policies on the same resource type. """ import pickle import os import logging import time log = logging.getLogger('custodian.cache') CACHE_NOTIFY = False def factory(config): global CACHE_NOTIFY if not config: return NullCache(None) if not config.cache or not config.cache_period: if not CACHE_NOTIFY: log.debug("Disabling cache") CACHE_NOTIFY = True return NullCache(config) elif config.cache == 'memory': if not CACHE_NOTIFY: log.debug("Using in-memory cache") CACHE_NOTIFY = True return InMemoryCache() return FileCacheManager(config) class NullCache: def __init__(self, config): self.config = config def load(self): return False def get(self, key): pass def save(self, key, data): pass def size(self): return 0 class InMemoryCache: # Running in a temporary environment, so keep as a cache. __shared_state = {} def __init__(self): self.data = self.__shared_state def load(self): return True def get(self, key): return self.data.get(pickle.dumps(key)) def save(self, key, data): self.data[pickle.dumps(key)] = data def size(self): return sum(map(len, self.data.values())) class FileCacheManager: def __init__(self, config): self.config = config self.cache_period = config.cache_period self.cache_path = os.path.abspath( os.path.expanduser( os.path.expandvars( config.cache))) self.data = {} def get(self, key): k = pickle.dumps(key) return self.data.get(k) def load(self): if self.data: return True if os.path.isfile(self.cache_path): if (time.time() - os.stat(self.cache_path).st_mtime > self.config.cache_period * 60): return False with open(self.cache_path, 'rb') as fh: try: self.data = pickle.load(fh) except EOFError: return False log.debug("Using cache file %s" % self.cache_path) return True def save(self, key, data): try: with open(self.cache_path, 'wb') as fh: self.data[pickle.dumps(key)] = data pickle.dump(self.data, fh, protocol=2) except Exception as e: log.warning("Could not save cache %s err: %s" % ( self.cache_path, e)) if not os.path.exists(self.cache_path): directory = os.path.dirname(self.cache_path) log.info('Generating Cache directory: %s.' % directory) try: os.makedirs(directory) except Exception as e: log.warning("Could not create directory: %s err: %s" % ( directory, e)) def size(self): return os.path.exists(self.cache_path) and os.path.getsize(self.cache_path) or 0
26.070866
88
0.573543
ffa4a5ca8444e6d01612d92df1ffdf39d1dce910
505
py
Python
setup.py
vnep-approx-latency/alib
d3dd943011acd55e890f67b7539bad54060210bc
[ "MIT" ]
2
2020-06-24T17:20:46.000Z
2022-03-23T09:58:51.000Z
setup.py
vnep-approx-latency/alib
d3dd943011acd55e890f67b7539bad54060210bc
[ "MIT" ]
null
null
null
setup.py
vnep-approx-latency/alib
d3dd943011acd55e890f67b7539bad54060210bc
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages install_requires = [ # "gurobipy", # install this manually "matplotlib", "numpy", "click", "pyyaml", "jsonpickle", "unidecode", "networkx", "pytest" ] setup( name="alib", python_requires=">=3.7", packages=["alib"], package_data={"alib": ["data/topologyZoo/*.yml"]}, install_requires=install_requires, entry_points={ "console_scripts": [ "alib = alib.cli:cli", ] } )
18.703704
54
0.572277
c6aff590223d0caceb086c7059e4d5cf211d4324
3,563
py
Python
hwilib/devices/trezorlib/messages/Features.py
tomatoskittles/HWI
ccb55228a80725ff85b96d55874acc688320b30b
[ "MIT" ]
9
2019-04-23T01:10:28.000Z
2022-02-21T02:25:06.000Z
hwilib/devices/trezorlib/messages/Features.py
tomatoskittles/HWI
ccb55228a80725ff85b96d55874acc688320b30b
[ "MIT" ]
null
null
null
hwilib/devices/trezorlib/messages/Features.py
tomatoskittles/HWI
ccb55228a80725ff85b96d55874acc688320b30b
[ "MIT" ]
1
2020-07-17T18:49:34.000Z
2020-07-17T18:49:34.000Z
# Automatically generated by pb2py # fmt: off from .. import protobuf as p class Features(p.MessageType): MESSAGE_WIRE_TYPE = 17 def __init__( self, vendor: str = None, major_version: int = None, minor_version: int = None, patch_version: int = None, bootloader_mode: bool = None, device_id: str = None, pin_protection: bool = None, passphrase_protection: bool = None, language: str = None, label: str = None, initialized: bool = None, revision: bytes = None, bootloader_hash: bytes = None, imported: bool = None, pin_cached: bool = None, passphrase_cached: bool = None, firmware_present: bool = None, needs_backup: bool = None, flags: int = None, model: str = None, fw_major: int = None, fw_minor: int = None, fw_patch: int = None, fw_vendor: str = None, fw_vendor_keys: bytes = None, unfinished_backup: bool = None, no_backup: bool = None, ) -> None: self.vendor = vendor self.major_version = major_version self.minor_version = minor_version self.patch_version = patch_version self.bootloader_mode = bootloader_mode self.device_id = device_id self.pin_protection = pin_protection self.passphrase_protection = passphrase_protection self.language = language self.label = label self.initialized = initialized self.revision = revision self.bootloader_hash = bootloader_hash self.imported = imported self.pin_cached = pin_cached self.passphrase_cached = passphrase_cached self.firmware_present = firmware_present self.needs_backup = needs_backup self.flags = flags self.model = model self.fw_major = fw_major self.fw_minor = fw_minor self.fw_patch = fw_patch self.fw_vendor = fw_vendor self.fw_vendor_keys = fw_vendor_keys self.unfinished_backup = unfinished_backup self.no_backup = no_backup @classmethod def get_fields(cls): return { 1: ('vendor', p.UnicodeType, 0), 2: ('major_version', p.UVarintType, 0), 3: ('minor_version', p.UVarintType, 0), 4: ('patch_version', p.UVarintType, 0), 5: ('bootloader_mode', p.BoolType, 0), 6: ('device_id', p.UnicodeType, 0), 7: ('pin_protection', p.BoolType, 0), 8: ('passphrase_protection', p.BoolType, 0), 9: ('language', p.UnicodeType, 0), 10: ('label', p.UnicodeType, 0), 12: ('initialized', p.BoolType, 0), 13: ('revision', p.BytesType, 0), 14: ('bootloader_hash', p.BytesType, 0), 15: ('imported', p.BoolType, 0), 16: ('pin_cached', p.BoolType, 0), 17: ('passphrase_cached', p.BoolType, 0), # 18: ('firmware_present', p.BoolType, 0), # 19: ('needs_backup', p.BoolType, 0), # 20: ('flags', p.UVarintType, 0), 21: ('model', p.UnicodeType, 0), # 22: ('fw_major', p.UVarintType, 0), # 23: ('fw_minor', p.UVarintType, 0), # 24: ('fw_patch', p.UVarintType, 0), # 25: ('fw_vendor', p.UnicodeType, 0), # 26: ('fw_vendor_keys', p.BytesType, 0), # 27: ('unfinished_backup', p.BoolType, 0), # 28: ('no_backup', p.BoolType, 0), }
36.357143
58
0.564412
49d69a802a7722a38850c2a7566ea0d99b926e92
1,093
py
Python
refer/ddos_server_from_author.py
satan1a/DDoS_Attacket_v0.1
dd86c48d9f7fe274127760aed5c8dcfd5bc014cb
[ "MIT" ]
15
2019-10-27T17:44:58.000Z
2022-02-24T01:58:34.000Z
refer/ddos_server_from_author.py
satan1a/DDoS_Attacket_v0.1
dd86c48d9f7fe274127760aed5c8dcfd5bc014cb
[ "MIT" ]
null
null
null
refer/ddos_server_from_author.py
satan1a/DDoS_Attacket_v0.1
dd86c48d9f7fe274127760aed5c8dcfd5bc014cb
[ "MIT" ]
5
2019-10-28T02:14:35.000Z
2021-10-20T07:27:48.000Z
import socket import argparse from threading import Thread socketList = [] # Command format '#-H xxx.xxx.xxx.xxx -p xxxx -c <start|stop>' # Send command def sendCmd(cmd): print("Send command......") for sock in socketList: sock.send(cmd.encode('UTF-8')) # Wait connect def waitConnect(s): while True: sock, addr = s.accept() if sock not in socketList: socketList.append(sock) def main(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('0.0.0.0', 58868)) s.listen(1024) t = Thread(target = waitConnect, args = (s, )) t.start() print('Wait at least a client connection!') while not len(socketList): pass print('It has been a client connection!') while True: print('=' * 50) print('The command format:"#-H xxx.xxx.xxx.xxx -p xxx -c <start>"') # Wait for input command cmd_str = input("Please input cmd:") if len(cmd_str): if cmd_str[0] == '#': sendCmd(cmd_str) if __name__ == '__main__': main()
25.418605
75
0.58097
51b373b471e629e576daf90267c5bd4de8babe31
33
py
Python
test/__init__.py
ryanfeather/parsimony
0d3bbe247b47234a0c15962e538b2f04609c4a33
[ "MIT" ]
1
2018-07-02T11:08:29.000Z
2018-07-02T11:08:29.000Z
test/__init__.py
ryanfeather/parsimony
0d3bbe247b47234a0c15962e538b2f04609c4a33
[ "MIT" ]
5
2015-03-19T13:29:29.000Z
2015-04-04T19:47:01.000Z
test/__init__.py
ryanfeather/parsimony
0d3bbe247b47234a0c15962e538b2f04609c4a33
[ "MIT" ]
null
null
null
from . import TestEvaluationUtils
33
33
0.878788
4e2ad936ebf4ab9adb537f3d0f7eccb6f7de5e58
3,334
py
Python
setup.py
spitGlued/requests
6cfbe1aedd56f8c2f9ff8b968efe65b22669795b
[ "Apache-2.0" ]
14
2020-02-12T07:03:12.000Z
2022-01-08T22:15:59.000Z
setup.py
spitGlued/requests
6cfbe1aedd56f8c2f9ff8b968efe65b22669795b
[ "Apache-2.0" ]
2
2020-02-24T17:01:20.000Z
2020-10-11T10:37:33.000Z
setup.py
spitGlued/requests
6cfbe1aedd56f8c2f9ff8b968efe65b22669795b
[ "Apache-2.0" ]
1
2021-01-30T18:17:01.000Z
2021-01-30T18:17:01.000Z
#!/usr/bin/env python # Learn more: https://github.com/kennethreitz/setup.py import os import re import sys from codecs import open from setuptools import setup from setuptools.command.test import test as TestCommand here = os.path.abspath(os.path.dirname(__file__)) class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass into py.test")] def initialize_options(self): TestCommand.initialize_options(self) try: from multiprocessing import cpu_count self.pytest_args = ['-n', str(cpu_count()), '--boxed'] except (ImportError, NotImplementedError): self.pytest_args = ['-n', '1', '--boxed'] def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest errno = pytest.main(self.pytest_args) sys.exit(errno) # 'setup.py publish' shortcut. if sys.argv[-1] == 'publish': os.system('python setup.py sdist bdist_wheel') os.system('twine upload dist/*') sys.exit() packages = ['requests'] requires = [ 'chardet>=3.0.2,<3.1.0', 'idna>=2.5,<2.8', 'urllib3>=1.21.1,<1.25', 'certifi>=2017.4.17' ] test_requirements = [ 'pytest-httpbin==0.0.7', 'pytest-cov', 'pytest-mock', 'pytest-xdist', 'PySocks>=1.5.6, !=1.5.7', 'pytest>=2.8.0' ] about = {} with open(os.path.join(here, 'requests', '__version__.py'), 'r', 'utf-8') as f: exec(f.read(), about) with open('README.md', 'r', 'utf-8') as f: readme = f.read() with open('HISTORY.md', 'r', 'utf-8') as f: history = f.read() setup( name=about['__title__'], version=about['__version__'], description=about['__description__'], long_description=readme, long_description_content_type='text/markdown', author=about['__author__'], author_email=about['__author_email__'], url=about['__url__'], packages=packages, package_data={'': ['LICENSE', 'NOTICE'], 'requests': ['*.pem']}, package_dir={'requests': 'requests'}, include_package_data=True, python_requires=">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*", install_requires=requires, license=about['__license__'], zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy' ], cmdclass={'test': PyTest}, tests_require=test_requirements, extras_require={ 'security': ['pyOpenSSL >= 0.14', 'cryptography>=1.3.4', 'idna>=2.0.0'], 'socks': ['PySocks>=1.5.6, !=1.5.7'], 'socks:sys_platform == "win32" and python_version == "2.7"': ['win_inet_pton'], }, )
30.309091
87
0.610678
99bcde443d48ada68a6f3fabc6903b8ddd61591b
61,632
py
Python
flax/full_node/full_node_api.py
amuDev/flax-blockchain
b19e99bf78b5d23e071c9a9c499f7698bc6ad7b8
[ "Apache-2.0" ]
1
2021-06-24T07:24:21.000Z
2021-06-24T07:24:21.000Z
flax/full_node/full_node_api.py
wolfrage76/flax-blockchain
97d396ca35ce3ab585e357f8dd5e9a5a57c504fb
[ "Apache-2.0" ]
null
null
null
flax/full_node/full_node_api.py
wolfrage76/flax-blockchain
97d396ca35ce3ab585e357f8dd5e9a5a57c504fb
[ "Apache-2.0" ]
1
2021-06-21T00:20:33.000Z
2021-06-21T00:20:33.000Z
import asyncio import dataclasses import time from secrets import token_bytes from typing import Callable, Dict, List, Optional, Tuple, Set from blspy import AugSchemeMPL, G2Element from chiabip158 import PyBIP158 import flax.server.ws_connection as ws from flax.consensus.block_creation import create_unfinished_block from flax.consensus.block_record import BlockRecord from flax.consensus.pot_iterations import calculate_ip_iters, calculate_iterations_quality, calculate_sp_iters from flax.full_node.bundle_tools import best_solution_generator_from_template, simple_solution_generator from flax.full_node.full_node import FullNode from flax.full_node.mempool_check_conditions import get_puzzle_and_solution_for_coin from flax.full_node.signage_point import SignagePoint from flax.protocols import farmer_protocol, full_node_protocol, introducer_protocol, timelord_protocol, wallet_protocol from flax.protocols.full_node_protocol import RejectBlock, RejectBlocks from flax.protocols.protocol_message_types import ProtocolMessageTypes from flax.protocols.wallet_protocol import PuzzleSolutionResponse, RejectHeaderBlocks, RejectHeaderRequest from flax.server.outbound_message import Message, make_msg from flax.types.blockchain_format.coin import Coin, hash_coin_list from flax.types.blockchain_format.pool_target import PoolTarget from flax.types.blockchain_format.program import Program from flax.types.blockchain_format.sized_bytes import bytes32 from flax.types.coin_record import CoinRecord from flax.types.end_of_slot_bundle import EndOfSubSlotBundle from flax.types.full_block import FullBlock from flax.types.generator_types import BlockGenerator from flax.types.mempool_inclusion_status import MempoolInclusionStatus from flax.types.mempool_item import MempoolItem from flax.types.peer_info import PeerInfo from flax.types.unfinished_block import UnfinishedBlock from flax.util.api_decorators import api_request, peer_required, bytes_required, execute_task from flax.util.generator_tools import get_block_header from flax.util.hash import std_hash from flax.util.ints import uint8, uint32, uint64, uint128 from flax.util.merkle_set import MerkleSet class FullNodeAPI: full_node: FullNode def __init__(self, full_node) -> None: self.full_node = full_node def _set_state_changed_callback(self, callback: Callable): self.full_node.state_changed_callback = callback @property def server(self): return self.full_node.server @property def log(self): return self.full_node.log @property def api_ready(self): return self.full_node.initialized @peer_required @api_request async def request_peers(self, _request: full_node_protocol.RequestPeers, peer: ws.WSFlaxConnection): if peer.peer_server_port is None: return None peer_info = PeerInfo(peer.peer_host, peer.peer_server_port) if self.full_node.full_node_peers is not None: msg = await self.full_node.full_node_peers.request_peers(peer_info) return msg @peer_required @api_request async def respond_peers( self, request: full_node_protocol.RespondPeers, peer: ws.WSFlaxConnection ) -> Optional[Message]: self.log.debug(f"Received {len(request.peer_list)} peers") if self.full_node.full_node_peers is not None: await self.full_node.full_node_peers.respond_peers(request, peer.get_peer_info(), True) return None @peer_required @api_request async def respond_peers_introducer( self, request: introducer_protocol.RespondPeersIntroducer, peer: ws.WSFlaxConnection ) -> Optional[Message]: self.log.debug(f"Received {len(request.peer_list)} peers from introducer") if self.full_node.full_node_peers is not None: await self.full_node.full_node_peers.respond_peers(request, peer.get_peer_info(), False) await peer.close() return None @execute_task @peer_required @api_request async def new_peak(self, request: full_node_protocol.NewPeak, peer: ws.WSFlaxConnection) -> Optional[Message]: """ A peer notifies us that they have added a new peak to their blockchain. If we don't have it, we can ask for it. """ async with self.full_node.new_peak_lock: return await self.full_node.new_peak(request, peer) @peer_required @api_request async def new_transaction( self, transaction: full_node_protocol.NewTransaction, peer: ws.WSFlaxConnection ) -> Optional[Message]: """ A peer notifies us of a new transaction. Requests a full transaction if we haven't seen it previously, and if the fees are enough. """ # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None if not (await self.full_node.synced()): return None if int(time.time()) <= self.full_node.constants.INITIAL_FREEZE_END_TIMESTAMP: return None # Ignore if already seen if self.full_node.mempool_manager.seen(transaction.transaction_id): return None if self.full_node.mempool_manager.is_fee_enough(transaction.fees, transaction.cost): # If there's current pending request just add this peer to the set of peers that have this tx if transaction.transaction_id in self.full_node.full_node_store.pending_tx_request: if transaction.transaction_id in self.full_node.full_node_store.peers_with_tx: current_set = self.full_node.full_node_store.peers_with_tx[transaction.transaction_id] if peer.peer_node_id in current_set: return None current_set.add(peer.peer_node_id) return None else: new_set = set() new_set.add(peer.peer_node_id) self.full_node.full_node_store.peers_with_tx[transaction.transaction_id] = new_set return None self.full_node.full_node_store.pending_tx_request[transaction.transaction_id] = peer.peer_node_id new_set = set() new_set.add(peer.peer_node_id) self.full_node.full_node_store.peers_with_tx[transaction.transaction_id] = new_set async def tx_request_and_timeout(full_node: FullNode, transaction_id, task_id): counter = 0 try: while True: # Limit to asking 10 peers, it's possible that this tx got included on chain already # Highly unlikely 10 peers that advertised a tx don't respond to a request if counter == 10: break if transaction_id not in full_node.full_node_store.peers_with_tx: break peers_with_tx: Set = full_node.full_node_store.peers_with_tx[transaction_id] if len(peers_with_tx) == 0: break peer_id = peers_with_tx.pop() assert full_node.server is not None if peer_id not in full_node.server.all_connections: continue peer = full_node.server.all_connections[peer_id] request_tx = full_node_protocol.RequestTransaction(transaction.transaction_id) msg = make_msg(ProtocolMessageTypes.request_transaction, request_tx) await peer.send_message(msg) await asyncio.sleep(5) counter += 1 if full_node.mempool_manager.seen(transaction_id): break except asyncio.CancelledError: pass finally: # Always Cleanup if transaction_id in full_node.full_node_store.peers_with_tx: full_node.full_node_store.peers_with_tx.pop(transaction_id) if transaction_id in full_node.full_node_store.pending_tx_request: full_node.full_node_store.pending_tx_request.pop(transaction_id) if task_id in full_node.full_node_store.tx_fetch_tasks: full_node.full_node_store.tx_fetch_tasks.pop(task_id) task_id = token_bytes() fetch_task = asyncio.create_task( tx_request_and_timeout(self.full_node, transaction.transaction_id, task_id) ) self.full_node.full_node_store.tx_fetch_tasks[task_id] = fetch_task return None return None @api_request async def request_transaction(self, request: full_node_protocol.RequestTransaction) -> Optional[Message]: """Peer has requested a full transaction from us.""" # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None spend_bundle = self.full_node.mempool_manager.get_spendbundle(request.transaction_id) if spend_bundle is None: return None transaction = full_node_protocol.RespondTransaction(spend_bundle) msg = make_msg(ProtocolMessageTypes.respond_transaction, transaction) return msg @peer_required @api_request @bytes_required async def respond_transaction( self, tx: full_node_protocol.RespondTransaction, peer: ws.WSFlaxConnection, tx_bytes: bytes = b"", test: bool = False, ) -> Optional[Message]: """ Receives a full transaction from peer. If tx is added to mempool, send tx_id to others. (new_transaction) """ assert tx_bytes != b"" spend_name = std_hash(tx_bytes) if spend_name in self.full_node.full_node_store.pending_tx_request: self.full_node.full_node_store.pending_tx_request.pop(spend_name) if spend_name in self.full_node.full_node_store.peers_with_tx: self.full_node.full_node_store.peers_with_tx.pop(spend_name) await self.full_node.respond_transaction(tx.transaction, spend_name, peer, test) return None @api_request async def request_proof_of_weight(self, request: full_node_protocol.RequestProofOfWeight) -> Optional[Message]: if self.full_node.weight_proof_handler is None: return None if not self.full_node.blockchain.contains_block(request.tip): self.log.error(f"got weight proof request for unknown peak {request.tip}") return None if request.tip in self.full_node.pow_creation: event = self.full_node.pow_creation[request.tip] await event.wait() wp = await self.full_node.weight_proof_handler.get_proof_of_weight(request.tip) else: event = asyncio.Event() self.full_node.pow_creation[request.tip] = event wp = await self.full_node.weight_proof_handler.get_proof_of_weight(request.tip) event.set() tips = list(self.full_node.pow_creation.keys()) if len(tips) > 4: # Remove old from cache for i in range(0, 4): self.full_node.pow_creation.pop(tips[i]) if wp is None: self.log.error(f"failed creating weight proof for peak {request.tip}") return None # Serialization of wp is slow if ( self.full_node.full_node_store.serialized_wp_message_tip is not None and self.full_node.full_node_store.serialized_wp_message_tip == request.tip ): return self.full_node.full_node_store.serialized_wp_message message = make_msg( ProtocolMessageTypes.respond_proof_of_weight, full_node_protocol.RespondProofOfWeight(wp, request.tip) ) self.full_node.full_node_store.serialized_wp_message_tip = request.tip self.full_node.full_node_store.serialized_wp_message = message return message @api_request async def respond_proof_of_weight(self, request: full_node_protocol.RespondProofOfWeight) -> Optional[Message]: self.log.warning("Received proof of weight too late.") return None @api_request async def request_block(self, request: full_node_protocol.RequestBlock) -> Optional[Message]: if not self.full_node.blockchain.contains_height(request.height): reject = RejectBlock(request.height) msg = make_msg(ProtocolMessageTypes.reject_block, reject) return msg header_hash = self.full_node.blockchain.height_to_hash(request.height) block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(header_hash) if block is not None: if not request.include_transaction_block and block.transactions_generator is not None: block = dataclasses.replace(block, transactions_generator=None) return make_msg(ProtocolMessageTypes.respond_block, full_node_protocol.RespondBlock(block)) reject = RejectBlock(request.height) msg = make_msg(ProtocolMessageTypes.reject_block, reject) return msg @api_request async def request_blocks(self, request: full_node_protocol.RequestBlocks) -> Optional[Message]: if request.end_height < request.start_height or request.end_height - request.start_height > 32: reject = RejectBlocks(request.start_height, request.end_height) msg: Message = make_msg(ProtocolMessageTypes.reject_blocks, reject) return msg for i in range(request.start_height, request.end_height + 1): if not self.full_node.blockchain.contains_height(uint32(i)): reject = RejectBlocks(request.start_height, request.end_height) msg = make_msg(ProtocolMessageTypes.reject_blocks, reject) return msg if not request.include_transaction_block: blocks: List[FullBlock] = [] for i in range(request.start_height, request.end_height + 1): block: Optional[FullBlock] = await self.full_node.block_store.get_full_block( self.full_node.blockchain.height_to_hash(uint32(i)) ) if block is None: reject = RejectBlocks(request.start_height, request.end_height) msg = make_msg(ProtocolMessageTypes.reject_blocks, reject) return msg block = dataclasses.replace(block, transactions_generator=None) blocks.append(block) msg = make_msg( ProtocolMessageTypes.respond_blocks, full_node_protocol.RespondBlocks(request.start_height, request.end_height, blocks), ) else: blocks_bytes: List[bytes] = [] for i in range(request.start_height, request.end_height + 1): block_bytes: Optional[bytes] = await self.full_node.block_store.get_full_block_bytes( self.full_node.blockchain.height_to_hash(uint32(i)) ) if block_bytes is None: reject = RejectBlocks(request.start_height, request.end_height) msg = make_msg(ProtocolMessageTypes.reject_blocks, reject) return msg blocks_bytes.append(block_bytes) respond_blocks_manually_streamed: bytes = ( bytes(uint32(request.start_height)) + bytes(uint32(request.end_height)) + len(blocks_bytes).to_bytes(4, "big", signed=False) ) for block_bytes in blocks_bytes: respond_blocks_manually_streamed += block_bytes msg = make_msg(ProtocolMessageTypes.respond_blocks, respond_blocks_manually_streamed) return msg @api_request async def reject_block(self, request: full_node_protocol.RejectBlock): self.log.debug(f"reject_block {request.height}") @api_request async def reject_blocks(self, request: full_node_protocol.RejectBlocks): self.log.debug(f"reject_blocks {request.start_height} {request.end_height}") @api_request async def respond_blocks(self, request: full_node_protocol.RespondBlocks) -> None: self.log.warning("Received unsolicited/late blocks") return None @api_request @peer_required async def respond_block( self, respond_block: full_node_protocol.RespondBlock, peer: ws.WSFlaxConnection, ) -> Optional[Message]: """ Receive a full block from a peer full node (or ourselves). """ self.log.warning(f"Received unsolicited/late block from peer {peer.get_peer_info()}") return None @api_request async def new_unfinished_block( self, new_unfinished_block: full_node_protocol.NewUnfinishedBlock ) -> Optional[Message]: # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None block_hash = new_unfinished_block.unfinished_reward_hash if self.full_node.full_node_store.get_unfinished_block(block_hash) is not None: return None # This prevents us from downloading the same block from many peers if block_hash in self.full_node.full_node_store.requesting_unfinished_blocks: return None msg = make_msg( ProtocolMessageTypes.request_unfinished_block, full_node_protocol.RequestUnfinishedBlock(block_hash), ) self.full_node.full_node_store.requesting_unfinished_blocks.add(block_hash) # However, we want to eventually download from other peers, if this peer does not respond # Todo: keep track of who it was async def eventually_clear(): await asyncio.sleep(5) if block_hash in self.full_node.full_node_store.requesting_unfinished_blocks: self.full_node.full_node_store.requesting_unfinished_blocks.remove(block_hash) asyncio.create_task(eventually_clear()) return msg @api_request async def request_unfinished_block( self, request_unfinished_block: full_node_protocol.RequestUnfinishedBlock ) -> Optional[Message]: unfinished_block: Optional[UnfinishedBlock] = self.full_node.full_node_store.get_unfinished_block( request_unfinished_block.unfinished_reward_hash ) if unfinished_block is not None: msg = make_msg( ProtocolMessageTypes.respond_unfinished_block, full_node_protocol.RespondUnfinishedBlock(unfinished_block), ) return msg return None @peer_required @api_request async def respond_unfinished_block( self, respond_unfinished_block: full_node_protocol.RespondUnfinishedBlock, peer: ws.WSFlaxConnection, ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.respond_unfinished_block(respond_unfinished_block, peer) return None @api_request @peer_required async def new_signage_point_or_end_of_sub_slot( self, new_sp: full_node_protocol.NewSignagePointOrEndOfSubSlot, peer: ws.WSFlaxConnection ) -> Optional[Message]: # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None if ( self.full_node.full_node_store.get_signage_point_by_index( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion, ) is not None ): return None if self.full_node.full_node_store.have_newer_signage_point( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion ): return None if new_sp.index_from_challenge == 0 and new_sp.prev_challenge_hash is not None: if self.full_node.full_node_store.get_sub_slot(new_sp.prev_challenge_hash) is None: collected_eos = [] challenge_hash_to_request = new_sp.challenge_hash last_rc = new_sp.last_rc_infusion num_non_empty_sub_slots_seen = 0 for _ in range(30): if num_non_empty_sub_slots_seen >= 3: self.log.debug("Diverged from peer. Don't have the same blocks") return None # If this is an end of sub slot, and we don't have the prev, request the prev instead # We want to catch up to the latest slot so we can receive signage points full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( challenge_hash_to_request, uint8(0), last_rc ) response = await peer.request_signage_point_or_end_of_sub_slot(full_node_request, timeout=10) if not isinstance(response, full_node_protocol.RespondEndOfSubSlot): self.full_node.log.debug(f"Invalid response for slot {response}") return None collected_eos.append(response) if ( self.full_node.full_node_store.get_sub_slot( response.end_of_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge ) is not None or response.end_of_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge == self.full_node.constants.GENESIS_CHALLENGE ): for eos in reversed(collected_eos): await self.respond_end_of_sub_slot(eos, peer) return None if ( response.end_of_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.number_of_iterations != response.end_of_slot_bundle.reward_chain.end_of_slot_vdf.number_of_iterations ): num_non_empty_sub_slots_seen += 1 challenge_hash_to_request = ( response.end_of_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge ) last_rc = response.end_of_slot_bundle.reward_chain.end_of_slot_vdf.challenge self.full_node.log.warning("Failed to catch up in sub-slots") return None if new_sp.index_from_challenge > 0: if ( new_sp.challenge_hash != self.full_node.constants.GENESIS_CHALLENGE and self.full_node.full_node_store.get_sub_slot(new_sp.challenge_hash) is None ): # If this is a normal signage point,, and we don't have the end of sub slot, request the end of sub slot full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( new_sp.challenge_hash, uint8(0), new_sp.last_rc_infusion ) return make_msg(ProtocolMessageTypes.request_signage_point_or_end_of_sub_slot, full_node_request) # Otherwise (we have the prev or the end of sub slot), request it normally full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion ) return make_msg(ProtocolMessageTypes.request_signage_point_or_end_of_sub_slot, full_node_request) @api_request async def request_signage_point_or_end_of_sub_slot( self, request: full_node_protocol.RequestSignagePointOrEndOfSubSlot ) -> Optional[Message]: if request.index_from_challenge == 0: sub_slot: Optional[Tuple[EndOfSubSlotBundle, int, uint128]] = self.full_node.full_node_store.get_sub_slot( request.challenge_hash ) if sub_slot is not None: return make_msg( ProtocolMessageTypes.respond_end_of_sub_slot, full_node_protocol.RespondEndOfSubSlot(sub_slot[0]), ) else: if self.full_node.full_node_store.get_sub_slot(request.challenge_hash) is None: if request.challenge_hash != self.full_node.constants.GENESIS_CHALLENGE: self.log.info(f"Don't have challenge hash {request.challenge_hash}") sp: Optional[SignagePoint] = self.full_node.full_node_store.get_signage_point_by_index( request.challenge_hash, request.index_from_challenge, request.last_rc_infusion, ) if sp is not None: assert ( sp.cc_vdf is not None and sp.cc_proof is not None and sp.rc_vdf is not None and sp.rc_proof is not None ) full_node_response = full_node_protocol.RespondSignagePoint( request.index_from_challenge, sp.cc_vdf, sp.cc_proof, sp.rc_vdf, sp.rc_proof, ) return make_msg(ProtocolMessageTypes.respond_signage_point, full_node_response) else: self.log.info(f"Don't have signage point {request}") return None @peer_required @api_request async def respond_signage_point( self, request: full_node_protocol.RespondSignagePoint, peer: ws.WSFlaxConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None async with self.full_node.timelord_lock: # Already have signage point if self.full_node.full_node_store.have_newer_signage_point( request.challenge_chain_vdf.challenge, request.index_from_challenge, request.reward_chain_vdf.challenge, ): return None existing_sp = self.full_node.full_node_store.get_signage_point( request.challenge_chain_vdf.output.get_hash() ) if existing_sp is not None and existing_sp.rc_vdf == request.reward_chain_vdf: return None peak = self.full_node.blockchain.get_peak() if peak is not None and peak.height > self.full_node.constants.MAX_SUB_SLOT_BLOCKS: next_sub_slot_iters = self.full_node.blockchain.get_next_slot_iters(peak.header_hash, True) sub_slots_for_peak = await self.full_node.blockchain.get_sp_and_ip_sub_slots(peak.header_hash) assert sub_slots_for_peak is not None ip_sub_slot: Optional[EndOfSubSlotBundle] = sub_slots_for_peak[1] else: sub_slot_iters = self.full_node.constants.SUB_SLOT_ITERS_STARTING next_sub_slot_iters = sub_slot_iters ip_sub_slot = None added = self.full_node.full_node_store.new_signage_point( request.index_from_challenge, self.full_node.blockchain, self.full_node.blockchain.get_peak(), next_sub_slot_iters, SignagePoint( request.challenge_chain_vdf, request.challenge_chain_proof, request.reward_chain_vdf, request.reward_chain_proof, ), ) if added: await self.full_node.signage_point_post_processing(request, peer, ip_sub_slot) else: self.log.debug( f"Signage point {request.index_from_challenge} not added, CC challenge: " f"{request.challenge_chain_vdf.challenge}, RC challenge: {request.reward_chain_vdf.challenge}" ) return None @peer_required @api_request async def respond_end_of_sub_slot( self, request: full_node_protocol.RespondEndOfSubSlot, peer: ws.WSFlaxConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None msg, _ = await self.full_node.respond_end_of_sub_slot(request, peer) return msg @peer_required @api_request async def request_mempool_transactions( self, request: full_node_protocol.RequestMempoolTransactions, peer: ws.WSFlaxConnection, ) -> Optional[Message]: received_filter = PyBIP158(bytearray(request.filter)) items: List[MempoolItem] = await self.full_node.mempool_manager.get_items_not_in_filter(received_filter) for item in items: transaction = full_node_protocol.RespondTransaction(item.spend_bundle) msg = make_msg(ProtocolMessageTypes.respond_transaction, transaction) await peer.send_message(msg) return None # FARMER PROTOCOL @api_request @peer_required async def declare_proof_of_space( self, request: farmer_protocol.DeclareProofOfSpace, peer: ws.WSFlaxConnection ) -> Optional[Message]: """ Creates a block body and header, with the proof of space, coinbase, and fee targets provided by the farmer, and sends the hash of the header data back to the farmer. """ if self.full_node.sync_store.get_sync_mode(): return None async with self.full_node.timelord_lock: sp_vdfs: Optional[SignagePoint] = self.full_node.full_node_store.get_signage_point( request.challenge_chain_sp ) if sp_vdfs is None: self.log.warning(f"Received proof of space for an unknown signage point {request.challenge_chain_sp}") return None if request.signage_point_index > 0: assert sp_vdfs.rc_vdf is not None if sp_vdfs.rc_vdf.output.get_hash() != request.reward_chain_sp: self.log.debug( f"Received proof of space for a potentially old signage point {request.challenge_chain_sp}. " f"Current sp: {sp_vdfs.rc_vdf.output.get_hash()}" ) return None if request.signage_point_index == 0: cc_challenge_hash: bytes32 = request.challenge_chain_sp else: assert sp_vdfs.cc_vdf is not None cc_challenge_hash = sp_vdfs.cc_vdf.challenge pos_sub_slot: Optional[Tuple[EndOfSubSlotBundle, int, uint128]] = None if request.challenge_hash != self.full_node.constants.GENESIS_CHALLENGE: # Checks that the proof of space is a response to a recent challenge and valid SP pos_sub_slot = self.full_node.full_node_store.get_sub_slot(cc_challenge_hash) if pos_sub_slot is None: self.log.warning(f"Received proof of space for an unknown sub slot: {request}") return None total_iters_pos_slot: uint128 = pos_sub_slot[2] else: total_iters_pos_slot = uint128(0) assert cc_challenge_hash == request.challenge_hash # Now we know that the proof of space has a signage point either: # 1. In the previous sub-slot of the peak (overflow) # 2. In the same sub-slot as the peak # 3. In a future sub-slot that we already know of # Checks that the proof of space is valid quality_string: Optional[bytes32] = request.proof_of_space.verify_and_get_quality_string( self.full_node.constants, cc_challenge_hash, request.challenge_chain_sp ) assert quality_string is not None and len(quality_string) == 32 # Grab best transactions from Mempool for given tip target aggregate_signature: G2Element = G2Element() block_generator: Optional[BlockGenerator] = None additions: Optional[List[Coin]] = [] removals: Optional[List[Coin]] = [] async with self.full_node.blockchain.lock: peak: Optional[BlockRecord] = self.full_node.blockchain.get_peak() if peak is not None: # Finds the last transaction block before this one curr_l_tb: BlockRecord = peak while not curr_l_tb.is_transaction_block: curr_l_tb = self.full_node.blockchain.block_record(curr_l_tb.prev_hash) try: mempool_bundle = await self.full_node.mempool_manager.create_bundle_from_mempool( curr_l_tb.header_hash ) except Exception as e: self.full_node.log.error(f"Error making spend bundle {e} peak: {peak}") mempool_bundle = None if mempool_bundle is not None: spend_bundle = mempool_bundle[0] additions = mempool_bundle[1] removals = mempool_bundle[2] self.full_node.log.info(f"Add rem: {len(additions)} {len(removals)}") aggregate_signature = spend_bundle.aggregated_signature if self.full_node.full_node_store.previous_generator is not None: self.log.info( f"Using previous generator for height " f"{self.full_node.full_node_store.previous_generator}" ) block_generator = best_solution_generator_from_template( self.full_node.full_node_store.previous_generator, spend_bundle ) else: block_generator = simple_solution_generator(spend_bundle) def get_plot_sig(to_sign, _) -> G2Element: if to_sign == request.challenge_chain_sp: return request.challenge_chain_sp_signature elif to_sign == request.reward_chain_sp: return request.reward_chain_sp_signature return G2Element() def get_pool_sig(_1, _2) -> Optional[G2Element]: return request.pool_signature prev_b: Optional[BlockRecord] = self.full_node.blockchain.get_peak() # Finds the previous block from the signage point, ensuring that the reward chain VDF is correct if prev_b is not None: if request.signage_point_index == 0: if pos_sub_slot is None: self.log.warning("Pos sub slot is None") return None rc_challenge = pos_sub_slot[0].reward_chain.end_of_slot_vdf.challenge else: assert sp_vdfs.rc_vdf is not None rc_challenge = sp_vdfs.rc_vdf.challenge # Backtrack through empty sub-slots for eos, _, _ in reversed(self.full_node.full_node_store.finished_sub_slots): if eos is not None and eos.reward_chain.get_hash() == rc_challenge: rc_challenge = eos.reward_chain.end_of_slot_vdf.challenge found = False attempts = 0 while prev_b is not None and attempts < 10: if prev_b.reward_infusion_new_challenge == rc_challenge: found = True break if prev_b.finished_reward_slot_hashes is not None and len(prev_b.finished_reward_slot_hashes) > 0: if prev_b.finished_reward_slot_hashes[-1] == rc_challenge: # This block includes a sub-slot which is where our SP vdf starts. Go back one more # to find the prev block prev_b = self.full_node.blockchain.try_block_record(prev_b.prev_hash) found = True break prev_b = self.full_node.blockchain.try_block_record(prev_b.prev_hash) attempts += 1 if not found: self.log.warning("Did not find a previous block with the correct reward chain hash") return None try: finished_sub_slots: Optional[ List[EndOfSubSlotBundle] ] = self.full_node.full_node_store.get_finished_sub_slots( self.full_node.blockchain, prev_b, cc_challenge_hash ) if finished_sub_slots is None: return None if ( len(finished_sub_slots) > 0 and pos_sub_slot is not None and finished_sub_slots[-1] != pos_sub_slot[0] ): self.log.error("Have different sub-slots than is required to farm this block") return None except ValueError as e: self.log.warning(f"Value Error: {e}") return None if prev_b is None: pool_target = PoolTarget( self.full_node.constants.GENESIS_PRE_FARM_POOL_PUZZLE_HASH, uint32(0), ) farmer_ph = self.full_node.constants.GENESIS_PRE_FARM_FARMER_PUZZLE_HASH else: farmer_ph = request.farmer_puzzle_hash if request.proof_of_space.pool_contract_puzzle_hash is not None: pool_target = PoolTarget(request.proof_of_space.pool_contract_puzzle_hash, uint32(0)) else: assert request.pool_target is not None pool_target = request.pool_target if peak is None or peak.height <= self.full_node.constants.MAX_SUB_SLOT_BLOCKS: difficulty = self.full_node.constants.DIFFICULTY_STARTING sub_slot_iters = self.full_node.constants.SUB_SLOT_ITERS_STARTING else: difficulty = uint64(peak.weight - self.full_node.blockchain.block_record(peak.prev_hash).weight) sub_slot_iters = peak.sub_slot_iters for sub_slot in finished_sub_slots: if sub_slot.challenge_chain.new_difficulty is not None: difficulty = sub_slot.challenge_chain.new_difficulty if sub_slot.challenge_chain.new_sub_slot_iters is not None: sub_slot_iters = sub_slot.challenge_chain.new_sub_slot_iters required_iters: uint64 = calculate_iterations_quality( self.full_node.constants.DIFFICULTY_CONSTANT_FACTOR, quality_string, request.proof_of_space.size, difficulty, request.challenge_chain_sp, ) sp_iters: uint64 = calculate_sp_iters(self.full_node.constants, sub_slot_iters, request.signage_point_index) ip_iters: uint64 = calculate_ip_iters( self.full_node.constants, sub_slot_iters, request.signage_point_index, required_iters, ) # The block's timestamp must be greater than the previous transaction block's timestamp timestamp = uint64(int(time.time())) curr: Optional[BlockRecord] = prev_b while curr is not None and not curr.is_transaction_block and curr.height != 0: curr = self.full_node.blockchain.try_block_record(curr.prev_hash) if curr is not None: assert curr.timestamp is not None if timestamp <= curr.timestamp: timestamp = uint64(int(curr.timestamp + 1)) self.log.info("Starting to make the unfinished block") unfinished_block: UnfinishedBlock = create_unfinished_block( self.full_node.constants, total_iters_pos_slot, sub_slot_iters, request.signage_point_index, sp_iters, ip_iters, request.proof_of_space, cc_challenge_hash, farmer_ph, pool_target, get_plot_sig, get_pool_sig, sp_vdfs, timestamp, self.full_node.blockchain, b"", block_generator, aggregate_signature, additions, removals, prev_b, finished_sub_slots, ) self.log.info("Made the unfinished block") if prev_b is not None: height: uint32 = uint32(prev_b.height + 1) else: height = uint32(0) self.full_node.full_node_store.add_candidate_block(quality_string, height, unfinished_block) foliage_sb_data_hash = unfinished_block.foliage.foliage_block_data.get_hash() if unfinished_block.is_transaction_block(): foliage_transaction_block_hash = unfinished_block.foliage.foliage_transaction_block_hash else: foliage_transaction_block_hash = bytes([0] * 32) message = farmer_protocol.RequestSignedValues( quality_string, foliage_sb_data_hash, foliage_transaction_block_hash, ) await peer.send_message(make_msg(ProtocolMessageTypes.request_signed_values, message)) # Adds backup in case the first one fails if unfinished_block.is_transaction_block() and unfinished_block.transactions_generator is not None: unfinished_block_backup = create_unfinished_block( self.full_node.constants, total_iters_pos_slot, sub_slot_iters, request.signage_point_index, sp_iters, ip_iters, request.proof_of_space, cc_challenge_hash, farmer_ph, pool_target, get_plot_sig, get_pool_sig, sp_vdfs, timestamp, self.full_node.blockchain, b"", None, G2Element(), None, None, prev_b, finished_sub_slots, ) self.full_node.full_node_store.add_candidate_block( quality_string, height, unfinished_block_backup, backup=True ) return None @api_request @peer_required async def signed_values( self, farmer_request: farmer_protocol.SignedValues, peer: ws.WSFlaxConnection ) -> Optional[Message]: """ Signature of header hash, by the harvester. This is enough to create an unfinished block, which only needs a Proof of Time to be finished. If the signature is valid, we call the unfinished_block routine. """ candidate_tuple: Optional[Tuple[uint32, UnfinishedBlock]] = self.full_node.full_node_store.get_candidate_block( farmer_request.quality_string ) if candidate_tuple is None: self.log.warning(f"Quality string {farmer_request.quality_string} not found in database") return None height, candidate = candidate_tuple if not AugSchemeMPL.verify( candidate.reward_chain_block.proof_of_space.plot_public_key, candidate.foliage.foliage_block_data.get_hash(), farmer_request.foliage_block_data_signature, ): self.log.warning("Signature not valid. There might be a collision in plots. Ignore this during tests.") return None fsb2 = dataclasses.replace( candidate.foliage, foliage_block_data_signature=farmer_request.foliage_block_data_signature, ) if candidate.is_transaction_block(): fsb2 = dataclasses.replace( fsb2, foliage_transaction_block_signature=farmer_request.foliage_transaction_block_signature ) new_candidate = dataclasses.replace(candidate, foliage=fsb2) if not self.full_node.has_valid_pool_sig(new_candidate): self.log.warning("Trying to make a pre-farm block but height is not 0") return None # Propagate to ourselves (which validates and does further propagations) request = full_node_protocol.RespondUnfinishedBlock(new_candidate) try: await self.full_node.respond_unfinished_block(request, None, True) except Exception as e: # If we have an error with this block, try making an empty block self.full_node.log.error(f"Error farming block {e} {request}") candidate_tuple = self.full_node.full_node_store.get_candidate_block( farmer_request.quality_string, backup=True ) if candidate_tuple is not None: height, unfinished_block = candidate_tuple self.full_node.full_node_store.add_candidate_block( farmer_request.quality_string, height, unfinished_block, False ) message = farmer_protocol.RequestSignedValues( farmer_request.quality_string, unfinished_block.foliage.foliage_block_data.get_hash(), unfinished_block.foliage.foliage_transaction_block_hash, ) await peer.send_message(make_msg(ProtocolMessageTypes.request_signed_values, message)) return None # TIMELORD PROTOCOL @peer_required @api_request async def new_infusion_point_vdf( self, request: timelord_protocol.NewInfusionPointVDF, peer: ws.WSFlaxConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None # Lookup unfinished blocks async with self.full_node.timelord_lock: return await self.full_node.new_infusion_point_vdf(request, peer) @peer_required @api_request async def new_signage_point_vdf( self, request: timelord_protocol.NewSignagePointVDF, peer: ws.WSFlaxConnection ) -> None: if self.full_node.sync_store.get_sync_mode(): return None full_node_message = full_node_protocol.RespondSignagePoint( request.index_from_challenge, request.challenge_chain_sp_vdf, request.challenge_chain_sp_proof, request.reward_chain_sp_vdf, request.reward_chain_sp_proof, ) await self.respond_signage_point(full_node_message, peer) @peer_required @api_request async def new_end_of_sub_slot_vdf( self, request: timelord_protocol.NewEndOfSubSlotVDF, peer: ws.WSFlaxConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None if ( self.full_node.full_node_store.get_sub_slot(request.end_of_sub_slot_bundle.challenge_chain.get_hash()) is not None ): return None # Calls our own internal message to handle the end of sub slot, and potentially broadcasts to other peers. full_node_message = full_node_protocol.RespondEndOfSubSlot(request.end_of_sub_slot_bundle) msg, added = await self.full_node.respond_end_of_sub_slot(full_node_message, peer) if not added: self.log.error( f"Was not able to add end of sub-slot: " f"{request.end_of_sub_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge}. " f"Re-sending new-peak to timelord" ) await self.full_node.send_peak_to_timelords(peer=peer) return None else: return msg @api_request async def request_block_header(self, request: wallet_protocol.RequestBlockHeader) -> Optional[Message]: header_hash = self.full_node.blockchain.height_to_hash(request.height) if header_hash is None: msg = make_msg(ProtocolMessageTypes.reject_header_request, RejectHeaderRequest(request.height)) return msg block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(header_hash) if block is not None: tx_removals, tx_additions = await self.full_node.blockchain.get_tx_removals_and_additions(block) header_block = get_block_header(block, tx_additions, tx_removals) msg = make_msg( ProtocolMessageTypes.respond_block_header, wallet_protocol.RespondBlockHeader(header_block), ) return msg return None @api_request async def request_additions(self, request: wallet_protocol.RequestAdditions) -> Optional[Message]: block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(request.header_hash) # We lock so that the coin store does not get modified if ( block is None or block.is_transaction_block() is False or self.full_node.blockchain.height_to_hash(block.height) != request.header_hash ): reject = wallet_protocol.RejectAdditionsRequest(request.height, request.header_hash) msg = make_msg(ProtocolMessageTypes.reject_additions_request, reject) return msg assert block is not None and block.foliage_transaction_block is not None # Note: this might return bad data if there is a reorg in this time additions = await self.full_node.coin_store.get_coins_added_at_height(block.height) if self.full_node.blockchain.height_to_hash(block.height) != request.header_hash: raise ValueError(f"Block {block.header_hash} no longer in chain") puzzlehash_coins_map: Dict[bytes32, List[Coin]] = {} for coin_record in additions: if coin_record.coin.puzzle_hash in puzzlehash_coins_map: puzzlehash_coins_map[coin_record.coin.puzzle_hash].append(coin_record.coin) else: puzzlehash_coins_map[coin_record.coin.puzzle_hash] = [coin_record.coin] coins_map: List[Tuple[bytes32, List[Coin]]] = [] proofs_map: List[Tuple[bytes32, bytes, Optional[bytes]]] = [] if request.puzzle_hashes is None: for puzzle_hash, coins in puzzlehash_coins_map.items(): coins_map.append((puzzle_hash, coins)) response = wallet_protocol.RespondAdditions(block.height, block.header_hash, coins_map, None) else: # Create addition Merkle set addition_merkle_set = MerkleSet() # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle, coins in puzzlehash_coins_map.items(): addition_merkle_set.add_already_hashed(puzzle) addition_merkle_set.add_already_hashed(hash_coin_list(coins)) assert addition_merkle_set.get_root() == block.foliage_transaction_block.additions_root for puzzle_hash in request.puzzle_hashes: result, proof = addition_merkle_set.is_included_already_hashed(puzzle_hash) if puzzle_hash in puzzlehash_coins_map: coins_map.append((puzzle_hash, puzzlehash_coins_map[puzzle_hash])) hash_coin_str = hash_coin_list(puzzlehash_coins_map[puzzle_hash]) result_2, proof_2 = addition_merkle_set.is_included_already_hashed(hash_coin_str) assert result assert result_2 proofs_map.append((puzzle_hash, proof, proof_2)) else: coins_map.append((puzzle_hash, [])) assert not result proofs_map.append((puzzle_hash, proof, None)) response = wallet_protocol.RespondAdditions(block.height, block.header_hash, coins_map, proofs_map) msg = make_msg(ProtocolMessageTypes.respond_additions, response) return msg @api_request async def request_removals(self, request: wallet_protocol.RequestRemovals) -> Optional[Message]: block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(request.header_hash) # We lock so that the coin store does not get modified if ( block is None or block.is_transaction_block() is False or block.height != request.height or block.height > self.full_node.blockchain.get_peak_height() or self.full_node.blockchain.height_to_hash(block.height) != request.header_hash ): reject = wallet_protocol.RejectRemovalsRequest(request.height, request.header_hash) msg = make_msg(ProtocolMessageTypes.reject_removals_request, reject) return msg assert block is not None and block.foliage_transaction_block is not None # Note: this might return bad data if there is a reorg in this time all_removals: List[CoinRecord] = await self.full_node.coin_store.get_coins_removed_at_height(block.height) if self.full_node.blockchain.height_to_hash(block.height) != request.header_hash: raise ValueError(f"Block {block.header_hash} no longer in chain") all_removals_dict: Dict[bytes32, Coin] = {} for coin_record in all_removals: all_removals_dict[coin_record.coin.name()] = coin_record.coin coins_map: List[Tuple[bytes32, Optional[Coin]]] = [] proofs_map: List[Tuple[bytes32, bytes]] = [] # If there are no transactions, respond with empty lists if block.transactions_generator is None: proofs: Optional[List] if request.coin_names is None: proofs = None else: proofs = [] response = wallet_protocol.RespondRemovals(block.height, block.header_hash, [], proofs) elif request.coin_names is None or len(request.coin_names) == 0: for removed_name, removed_coin in all_removals_dict.items(): coins_map.append((removed_name, removed_coin)) response = wallet_protocol.RespondRemovals(block.height, block.header_hash, coins_map, None) else: assert block.transactions_generator removal_merkle_set = MerkleSet() for removed_name, removed_coin in all_removals_dict.items(): removal_merkle_set.add_already_hashed(removed_name) assert removal_merkle_set.get_root() == block.foliage_transaction_block.removals_root for coin_name in request.coin_names: result, proof = removal_merkle_set.is_included_already_hashed(coin_name) proofs_map.append((coin_name, proof)) if coin_name in all_removals_dict: removed_coin = all_removals_dict[coin_name] coins_map.append((coin_name, removed_coin)) assert result else: coins_map.append((coin_name, None)) assert not result response = wallet_protocol.RespondRemovals(block.height, block.header_hash, coins_map, proofs_map) msg = make_msg(ProtocolMessageTypes.respond_removals, response) return msg @api_request async def send_transaction(self, request: wallet_protocol.SendTransaction) -> Optional[Message]: spend_name = request.transaction.name() status, error = await self.full_node.respond_transaction(request.transaction, spend_name) error_name = error.name if error is not None else None if status == MempoolInclusionStatus.SUCCESS: response = wallet_protocol.TransactionAck(spend_name, uint8(status.value), error_name) else: # If if failed/pending, but it previously succeeded (in mempool), this is idempotence, return SUCCESS if self.full_node.mempool_manager.get_spendbundle(spend_name) is not None: response = wallet_protocol.TransactionAck(spend_name, uint8(MempoolInclusionStatus.SUCCESS.value), None) else: response = wallet_protocol.TransactionAck(spend_name, uint8(status.value), error_name) msg = make_msg(ProtocolMessageTypes.transaction_ack, response) return msg @api_request async def request_puzzle_solution(self, request: wallet_protocol.RequestPuzzleSolution) -> Optional[Message]: coin_name = request.coin_name height = request.height coin_record = await self.full_node.coin_store.get_coin_record(coin_name) reject = wallet_protocol.RejectPuzzleSolution(coin_name, height) reject_msg = make_msg(ProtocolMessageTypes.reject_puzzle_solution, reject) if coin_record is None or coin_record.spent_block_index != height: return reject_msg header_hash = self.full_node.blockchain.height_to_hash(height) block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(header_hash) if block is None or block.transactions_generator is None: return reject_msg block_generator: Optional[BlockGenerator] = await self.full_node.blockchain.get_block_generator(block) assert block_generator is not None error, puzzle, solution = get_puzzle_and_solution_for_coin( block_generator, coin_name, self.full_node.constants.MAX_BLOCK_COST_CLVM ) if error is not None: return reject_msg pz = Program.to(puzzle) sol = Program.to(solution) wrapper = PuzzleSolutionResponse(coin_name, height, pz, sol) response = wallet_protocol.RespondPuzzleSolution(wrapper) response_msg = make_msg(ProtocolMessageTypes.respond_puzzle_solution, response) return response_msg @api_request async def request_header_blocks(self, request: wallet_protocol.RequestHeaderBlocks) -> Optional[Message]: if request.end_height < request.start_height or request.end_height - request.start_height > 32: return None header_hashes = [] for i in range(request.start_height, request.end_height + 1): if not self.full_node.blockchain.contains_height(uint32(i)): reject = RejectHeaderBlocks(request.start_height, request.end_height) msg = make_msg(ProtocolMessageTypes.reject_header_blocks, reject) return msg header_hashes.append(self.full_node.blockchain.height_to_hash(uint32(i))) blocks: List[FullBlock] = await self.full_node.block_store.get_blocks_by_hash(header_hashes) header_blocks = [] for block in blocks: added_coins_records = await self.full_node.coin_store.get_coins_added_at_height(block.height) removed_coins_records = await self.full_node.coin_store.get_coins_removed_at_height(block.height) added_coins = [record.coin for record in added_coins_records if not record.coinbase] removal_names = [record.coin.name() for record in removed_coins_records] header_block = get_block_header(block, added_coins, removal_names) header_blocks.append(header_block) msg = make_msg( ProtocolMessageTypes.respond_header_blocks, wallet_protocol.RespondHeaderBlocks(request.start_height, request.end_height, header_blocks), ) return msg @api_request async def respond_compact_proof_of_time(self, request: timelord_protocol.RespondCompactProofOfTime): if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.respond_compact_proof_of_time(request) @execute_task @peer_required @api_request async def new_compact_vdf(self, request: full_node_protocol.NewCompactVDF, peer: ws.WSFlaxConnection): if self.full_node.sync_store.get_sync_mode(): return None async with self.full_node.compact_vdf_lock: await self.full_node.new_compact_vdf(request, peer) @peer_required @api_request async def request_compact_vdf(self, request: full_node_protocol.RequestCompactVDF, peer: ws.WSFlaxConnection): if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.request_compact_vdf(request, peer) @peer_required @api_request async def respond_compact_vdf(self, request: full_node_protocol.RespondCompactVDF, peer: ws.WSFlaxConnection): if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.respond_compact_vdf(request, peer)
47.555556
120
0.64069
3bdce29883d28edc1f06783c61b228d180582d72
4,464
py
Python
drive.py
terrylu87/CarND-Behavioral-Cloning-P3
2f2adde44e906995405fb6ea04beafbb2ec1381f
[ "MIT" ]
null
null
null
drive.py
terrylu87/CarND-Behavioral-Cloning-P3
2f2adde44e906995405fb6ea04beafbb2ec1381f
[ "MIT" ]
null
null
null
drive.py
terrylu87/CarND-Behavioral-Cloning-P3
2f2adde44e906995405fb6ea04beafbb2ec1381f
[ "MIT" ]
null
null
null
import argparse import base64 from datetime import datetime import os import shutil import numpy as np import socketio import eventlet import eventlet.wsgi from PIL import Image from flask import Flask from io import BytesIO import cv2 from keras.models import load_model import h5py from keras import __version__ as keras_version sio = socketio.Server() app = Flask(__name__) model = None prev_image_array = None class SimplePIController: def __init__(self, Kp, Ki): self.Kp = Kp self.Ki = Ki self.set_point = 0. self.error = 0. self.integral = 0. def set_desired(self, desired): self.set_point = desired def update(self, measurement): # proportional error self.error = self.set_point - measurement # integral error self.integral += self.error return self.Kp * self.error + self.Ki * self.integral controller = SimplePIController(0.1, 0.002) set_speed = 9 controller.set_desired(set_speed) def shrink(a, S=2): # S : shrink factor new_shp = np.vstack((np.array(a.shape)//S,[S]*a.ndim)).ravel('F') return a.reshape(new_shp).mean(tuple(1+2*np.arange(a.ndim))) @sio.on('telemetry') def telemetry(sid, data): if data: # The current steering angle of the car steering_angle = data["steering_angle"] # The current throttle of the car throttle = data["throttle"] # The current speed of the car speed = data["speed"] # The current image from the center camera of the car imgString = data["image"] image = Image.open(BytesIO(base64.b64decode(imgString))) #image = image.resize((160, 80),Image.ANTIALIAS) image = image.resize((160, 80)) image_array = np.asarray(image) # resize image #image_array = np.asarray(timage) # Convert RGB to BGR #print(image.shape) #print(timage.shape) #print(image_array.shape) #image_array = np.array(cv_image) #steering_angle = float(model.predict(image_array, batch_size=1)) steering_angle = float(model.predict(image_array[None, :, :, :], batch_size=1)) throttle = controller.update(float(speed)) print(steering_angle, throttle) send_control(steering_angle, throttle) # save frame if args.image_folder != '': timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3] image_filename = os.path.join(args.image_folder, timestamp) image.save('{}.jpg'.format(image_filename)) else: # NOTE: DON'T EDIT THIS. sio.emit('manual', data={}, skip_sid=True) @sio.on('connect') def connect(sid, environ): print("connect ", sid) send_control(0, 0) def send_control(steering_angle, throttle): sio.emit( "steer", data={ 'steering_angle': steering_angle.__str__(), 'throttle': throttle.__str__() }, skip_sid=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Remote Driving') parser.add_argument( 'model', type=str, help='Path to model h5 file. Model should be on the same path.' ) parser.add_argument( 'image_folder', type=str, nargs='?', default='', help='Path to image folder. This is where the images from the run will be saved.' ) args = parser.parse_args() # check that model Keras version is same as local Keras version f = h5py.File(args.model, mode='r') model_version = f.attrs.get('keras_version') keras_version = str(keras_version).encode('utf8') if model_version != keras_version: print('You are using Keras version ', keras_version, ', but the model was built using ', model_version) model = load_model(args.model) if args.image_folder != '': print("Creating image folder at {}".format(args.image_folder)) if not os.path.exists(args.image_folder): os.makedirs(args.image_folder) else: shutil.rmtree(args.image_folder) os.makedirs(args.image_folder) print("RECORDING THIS RUN ...") else: print("NOT RECORDING THIS RUN ...") # wrap Flask application with engineio's middleware app = socketio.Middleware(sio, app) # deploy as an eventlet WSGI server eventlet.wsgi.server(eventlet.listen(('', 4567)), app)
28.8
89
0.634409
4559121f9f16189e0b3cc9278a4411d4c99476bd
3,149
py
Python
model_mommy/generators.py
GradConnection/model_mommy
520de3c6bb79aadbaa3594f2677e0e2b7816c4ea
[ "Apache-2.0" ]
null
null
null
model_mommy/generators.py
GradConnection/model_mommy
520de3c6bb79aadbaa3594f2677e0e2b7816c4ea
[ "Apache-2.0" ]
null
null
null
model_mommy/generators.py
GradConnection/model_mommy
520de3c6bb79aadbaa3594f2677e0e2b7816c4ea
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- """ Generators are callables that return a value used to populate a field. If this callable has a `required` attribute (a list, mostly), for each item in the list, if the item is a string, the field attribute with the same name will be fetched from the field and used as argument for the generator. If it is a callable (which will receive `field` as first argument), it should return a list in the format (key, value) where key is the argument name for generator and value is the value for that argument. """ import string from decimal import Decimal from os.path import abspath, join, dirname from random import randint, choice, random from django import VERSION from django.contrib.contenttypes.models import ContentType from django.core.files.base import ContentFile from django.db.models import get_models from model_mommy.timezone import now MAX_LENGTH = 300 # Using sys.maxint here breaks a bunch of tests when running against a # Postgres database. MAX_INT = 10000 def get_content_file(content, name): if VERSION < (1, 4): return ContentFile(content) else: return ContentFile(content, name=name) def gen_file_field(): name = u'mock_file.txt' file_path = abspath(join(dirname(__file__), name)) with open(file_path, 'rb') as f: return get_content_file(f.read(), name=name) def gen_image_field(): name = u'mock-img.jpeg' file_path = abspath(join(dirname(__file__), name)) with open(file_path, 'rb') as f: return get_content_file(f.read(), name=name) def gen_from_list(L): '''Makes sure all values of the field are generated from the list L Usage: from mommy import Mommy class KidMommy(Mommy): attr_mapping = {'some_field':gen_from_list([A, B, C])} ''' return lambda: choice(L) # -- DEFAULT GENERATORS -- def gen_from_choices(C): choice_list = map(lambda x: x[0], C) return gen_from_list(choice_list) def gen_integer(min_int=-MAX_INT, max_int=MAX_INT): return randint(min_int, max_int) def gen_float(): return random() * gen_integer() def gen_decimal(max_digits, decimal_places): num_as_str = lambda x: ''.join([str(randint(0, 9)) for i in range(x)]) return Decimal("%s.%s" % (num_as_str(max_digits - decimal_places), num_as_str(decimal_places))) gen_decimal.required = ['max_digits', 'decimal_places'] def gen_date(): return now().date() def gen_datetime(): return now() def gen_time(): return now().time() def gen_string(max_length): return u''.join(choice(string.ascii_letters) for i in range(max_length)) gen_string.required = ['max_length'] def gen_slug(max_length=50): valid_chars = string.letters + string.digits + '_-' return u''.join(choice(valid_chars) for i in range(max_length)) def gen_text(): return gen_string(MAX_LENGTH) def gen_boolean(): return choice((True, False)) def gen_url(): return u'http://www.%s.com' % gen_string(30) def gen_email(): return u"%s@example.com" % gen_string(10) def gen_content_type(): return ContentType.objects.get_for_model(choice(get_models()))
26.024793
78
0.705621
fdef21ffa4b9bc2971773a0134b51a13a04b4687
420
py
Python
env/Lib/site-packages/plotly/validators/scatter/_hovertemplatesrc.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
env/Lib/site-packages/plotly/validators/scatter/_hovertemplatesrc.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
env/Lib/site-packages/plotly/validators/scatter/_hovertemplatesrc.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
import _plotly_utils.basevalidators class HovertemplatesrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="hovertemplatesrc", parent_name="scatter", **kwargs): super(HovertemplatesrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs )
35
88
0.692857
36ea597065c36bdfe1567ced706f0a5f2b3bd875
8,844
py
Python
AcadeMeData/models.py
DeanCivlin/AcadeMe
33c4f635506c3327db510da0f26c822db3dd848d
[ "MIT" ]
null
null
null
AcadeMeData/models.py
DeanCivlin/AcadeMe
33c4f635506c3327db510da0f26c822db3dd848d
[ "MIT" ]
null
null
null
AcadeMeData/models.py
DeanCivlin/AcadeMe
33c4f635506c3327db510da0f26c822db3dd848d
[ "MIT" ]
null
null
null
from django.db import models, transaction from django.conf import settings from django.contrib.auth.models import User as DjangoUser from django.core.validators import MinValueValidator, MaxValueValidator from django.utils import timezone class DEGREECHOICES(models.TextChoices): Computer_Science = 'CS', 'Computer Science' Psychology = 'PS', 'Psychology' GOVERNMENT = 'GV', 'Government' Business_Administration = 'BA', 'Business Administration' Unknown = 'UN', 'Unknown' class UNIVERSITYCHOICES(models.TextChoices): Reichman_University = 'RU', 'Reichman University' Hebrew_University = 'HU', 'Hebrew University' Tel_Aviv_University = 'TA', 'Tel Aviv University' Beer_Sheva_University = 'BS', "Be'er Sheva University" Unknown = 'UN', 'Unknown' class User(models.Model): # The AUTH_USER_MODEL is the built in user model from django # Goto: https://docs.djangoproject.com/en/3.2/ref/contrib/auth/ for API user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, primary_key=True) # name = models.CharField(max_length=30, default="") # we got the name\username from the built in user model django university = models.CharField(max_length=2, choices=UNIVERSITYCHOICES.choices, default=UNIVERSITYCHOICES.Unknown) degree = models.CharField(max_length=2, choices=DEGREECHOICES.choices, default=DEGREECHOICES.Unknown) @staticmethod def create_user(username, email, password, university, degree): django_user = DjangoUser.objects.create_user(username=username, email=email, password=password) user = User(user=django_user, university=university, degree=degree) user.save() return user @staticmethod def del_user(self): try: self.user.delete() except User.DoesNotExist: return False return True @staticmethod def get_user(username): try: user = DjangoUser.objects.get(username=username) except DjangoUser.DoesNotExist: return None return user class Degree(models.Model): degree_id = models.IntegerField(primary_key=True, validators=[MinValueValidator(0)], default=0) name = models.CharField(max_length=100) universities = models.TextField(null=True, blank=True) # Format should be "Uni1, Uni2, Uni3,..." description = models.TextField(null=True, blank=True) # Describes the degree # methods def __str__(self): """ Returns the name of all possible degrees in the database. """ return self.name @staticmethod def create_degree(degree_id, name, universities, description): """ Creates a Degree object. """ degree = Degree(degree_id=degree_id, name=name, universities=universities, description=description) degree.save() return degree @staticmethod def get_degree_by_name(name): """ Gets us the Degree object with input 'name' as its name. """ try: degree = Degree.objects.get(name=name) except Degree.DoesNotExist: return None return degree class University(models.Model): university_id = models.IntegerField( primary_key=True, validators=[MinValueValidator(0)]) name = models.CharField(max_length=100) location = models.CharField(max_length=100) # maybe change here to: description = models.TextField() description = models.TextField(null=True, blank=True) def __str__(self): return self.name @staticmethod def get_university_by_name(name): # gets the relevant university that match the given name return University.objects.get(name=name) @staticmethod def get_university_by_location(location): # gets the relevant university that match the given location return University.objects.get(location=location) class Professor(models.Model): professor_id = models.IntegerField(primary_key=True, validators=[MinValueValidator(0)]) name = models.CharField(max_length=100) university = models.ForeignKey(University, on_delete=models.RESTRICT) # , related_name='%(class)s_something') description = models.TextField(null=True, blank=True) rate = models.DecimalField(max_digits=2, decimal_places=1, validators=[MinValueValidator(1), MaxValueValidator(5)], blank=True, null=True) # average professor rating, starts as null def __str__(self): return self.name @staticmethod def create_professor(professor_id, name, university, description, rate): professor = Professor(professor_id=professor_id, name=name, university=university, description=description, rate=rate) professor.save() return professor @staticmethod def get_professor(name): try: professor = Professor.objects.get(name=name) except professor.DoesNotExist: return None return professor def get_name(self): return self.name def get_description(self): return self.description class Course(models.Model): course_id = models.IntegerField(primary_key=True, validators=[MinValueValidator(0)], default=0) name = models.CharField(max_length=100, unique=True) degree = models.ManyToManyField(Degree) mandatory = models.BooleanField(default=False) # False for elective, True for mandatory description = models.TextField(null=True, blank=True) professor = models.ForeignKey(Professor, on_delete=models.RESTRICT) university = models.ForeignKey(University, on_delete=models.RESTRICT) @staticmethod def create_course(course_id, name, degree, mandatory, description, professor, university): """ Creates a Course object. """ course = Course(course_id=course_id, name=name, mandatory=mandatory, description=description, professor=professor, university=university) course.degree.add(degree) course.save() return course def __str__(self): return self.name @staticmethod def get_course_by_name(name): """ Gets us the Degree object with input 'name' as its name. """ try: course = Course.objects.get(name=name) return course except Course.DoesNotExist: return None def course_belongs(self, university, degree): """ returns if course belongs to this degree in this university """ return degree in self.degree.all() and university == self.university class MessageBoards(models.Model): id = models.IntegerField(primary_key=True) courseName = models.ForeignKey(Course, null=False, blank=True, on_delete=models.CASCADE, default=0) def __str__(self): return self.id @staticmethod def create_msgboard(id, courseName): msgboard = MessageBoards(id=id, courseName=courseName) msgboard.save() return msgboard @staticmethod def get_msgboard_by_id(id): return MessageBoards.objects.get(id=id) @staticmethod def get_msgboard_by_course(course): return MessageBoards.objects.get(courseName=course) class Messages(models.Model): msgID = models.IntegerField(primary_key=True) userID = models.ForeignKey(User, on_delete=models.CASCADE, default=0) text = models.TextField(max_length=300) msgDate = models.DateTimeField(default=timezone.now) board = models.ForeignKey(MessageBoards, on_delete=models.CASCADE, default=1) def get_msg(self): return self.msgID def create_message(id, user, text, board): with transaction.atomic(): msg = Messages(msgID=id, userID=user, text=text, board=board) msg.save() return msg @staticmethod def get_msg_by_id(msgID): return Messages.objects.get(msgID=msgID) class MessageTags(models.Model): id = models.IntegerField(primary_key=True, default=0) msg = models.ForeignKey(Messages, on_delete=models.CASCADE) userID = models.ForeignKey(User, on_delete=models.CASCADE) def create_msgtag(id, msg, userID): with transaction.atomic(): tag = MessageTags(id=id, msg=msg, userID=userID) tag.save() return tag def __str__(self): return self.id def get_msg_tag(id): return MessageTags.objects.get(id=id)
34.27907
120
0.656151
ef9316722e7ddcdc58e2b7936e42f8b2abe45f1e
309
py
Python
books/admin.py
devsingh-code/django-digital-marketplace
f0f0d2daebaeedeb7ff5b83154313fcce21b2886
[ "MIT" ]
1
2020-06-13T11:23:18.000Z
2020-06-13T11:23:18.000Z
books/admin.py
devsingh-code/django-digital-marketplace
f0f0d2daebaeedeb7ff5b83154313fcce21b2886
[ "MIT" ]
null
null
null
books/admin.py
devsingh-code/django-digital-marketplace
f0f0d2daebaeedeb7ff5b83154313fcce21b2886
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Author,Book,Exercise,Chapter,Solution,UserLibrary # Register your models here. admin.site.register(Author) admin.site.register(Book) admin.site.register(Exercise) admin.site.register(Chapter) admin.site.register(Solution) admin.site.register(UserLibrary)
28.090909
69
0.828479
766314ef344c0310f3037878c7bfa983b2c55a4f
1,434
py
Python
examples/Beaufort/make_weight_files.py
bilgetutak/pyroms
3b0550f26f4ac181b7812e14a7167cd1ca0797f0
[ "BSD-3-Clause" ]
75
2016-04-05T07:15:57.000Z
2022-03-04T22:49:54.000Z
examples/Beaufort/make_weight_files.py
hadfieldnz/pyroms-mgh
cd0fe39075825f97a7caf64e2c4c5a19f23302fd
[ "BSD-3-Clause" ]
27
2017-02-26T04:27:49.000Z
2021-12-01T17:26:56.000Z
examples/Beaufort/make_weight_files.py
hadfieldnz/pyroms-mgh
cd0fe39075825f97a7caf64e2c4c5a19f23302fd
[ "BSD-3-Clause" ]
56
2016-05-11T06:19:14.000Z
2022-03-22T19:04:17.000Z
import pyroms # Part of Arctic2 grid containing the Beaufort irange=(370,580) jrange=(460,580) #irange=None #jrange=None srcgrd = pyroms.grid.get_ROMS_grid('ARCTIC2') dstgrd = pyroms.grid.get_ROMS_grid('BEAUFORT2') pyroms.remapping.make_remap_grid_file(srcgrd,irange=irange,jrange=jrange) pyroms.remapping.make_remap_grid_file(srcgrd,Cpos='u',irange=irange,jrange=jrange) pyroms.remapping.make_remap_grid_file(srcgrd,Cpos='v',irange=irange,jrange=jrange) pyroms.remapping.make_remap_grid_file(dstgrd) pyroms.remapping.make_remap_grid_file(dstgrd,Cpos='u') pyroms.remapping.make_remap_grid_file(dstgrd,Cpos='v') type = ['rho','u','v'] for typ in type: for tip in type: grid1_file = 'remap_grid_ARCTIC2_'+str(typ)+'.nc' grid2_file = 'remap_grid_BEAUFORT2_'+str(tip)+'.nc' interp_file1 = 'remap_weights_ARCTIC2_to_BEAUFORT2_bilinear_'+str(typ)+'_to_'+str(tip)+'.nc' interp_file2 = 'remap_weights_BEAUFORT2_to_ARCTIC2_bilinear_'+str(tip)+'_to_'+str(typ)+'.nc' map1_name = 'ARCTIC2 to BEAUFORT Bilinear Mapping' map2_name = 'BEAUFORT to ARCTIC2 Bilinear Mapping' num_maps = 1 map_method = 'bilinear' print("Making "+str(interp_file1)+"...") pyroms.remapping.compute_remap_weights(grid1_file,grid2_file,\ interp_file1,interp_file2,map1_name,\ map2_name,num_maps,map_method)
37.736842
100
0.707113
4d5a0373a51dc03d4d4750f3a61d0b2d89cf869d
3,471
py
Python
scout/commands/update/genes.py
bjhall/scout
ea772cf8d233223e0ec5271f61b95d3afcf719ad
[ "BSD-3-Clause" ]
null
null
null
scout/commands/update/genes.py
bjhall/scout
ea772cf8d233223e0ec5271f61b95d3afcf719ad
[ "BSD-3-Clause" ]
null
null
null
scout/commands/update/genes.py
bjhall/scout
ea772cf8d233223e0ec5271f61b95d3afcf719ad
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 """ update/genes.py Build a file with genes that are based on hgnc format. Parses ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/hgnc_complete_set.txt, ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_gene_constraint/ and a biomart dump from ensembl with 'Gene ID' 'Chromosome' 'Gene Start' 'Gene End' 'HGNC symbol' The hgnc file will determine which genes that are added and most of the meta information. The ensembl gene file will add coordinates and the exac file will add pLi scores. Created by Måns Magnusson on 2015-01-14. Copyright (c) 2015 __MoonsoInc__. All rights reserved. """ import logging import click from flask.cli import with_appcontext, current_app from pprint import pprint as pp from scout.load import load_hgnc_genes, load_transcripts, load_exons from scout.server.extensions import store from scout.utils.link import link_genes from scout.utils.handle import get_file_handle from scout.utils.scout_requests import ( fetch_mim_files, fetch_hpo_genes, fetch_hgnc, fetch_ensembl_genes, fetch_exac_constraint, fetch_ensembl_transcripts, ) LOG = logging.getLogger(__name__) @click.command("genes", short_help="Update all genes") @click.option( "--build", type=click.Choice(["37", "38"]), help="What genome build should be used. If no choice update 37 and 38.", ) @click.option("--api-key", help="Specify the api key") @with_appcontext def genes(build, api_key): """ Load the hgnc aliases to the mongo database. """ LOG.info("Running scout update genes") adapter = store # Fetch the omim information api_key = api_key or current_app.config.get("OMIM_API_KEY") mim_files = {} if not api_key: LOG.warning( "No omim api key provided, Please not that some information will be missing" ) else: try: mim_files = fetch_mim_files( api_key, mim2genes=True, morbidmap=True, genemap2=True ) except Exception as err: LOG.warning(err) raise click.Abort() LOG.warning("Dropping all gene information") adapter.drop_genes(build) LOG.info("Genes dropped") LOG.warning("Dropping all transcript information") adapter.drop_transcripts(build) LOG.info("transcripts dropped") hpo_genes = fetch_hpo_genes() if build: builds = [build] else: builds = ["37", "38"] hgnc_lines = fetch_hgnc() exac_lines = fetch_exac_constraint() for build in builds: ensembl_genes = fetch_ensembl_genes(build=build) # load the genes hgnc_genes = load_hgnc_genes( adapter=adapter, ensembl_lines=ensembl_genes, hgnc_lines=hgnc_lines, exac_lines=exac_lines, mim2gene_lines=mim_files.get("mim2genes"), genemap_lines=mim_files.get("genemap2"), hpo_lines=hpo_genes, build=build, ) ensembl_genes = {} for gene_obj in hgnc_genes: ensembl_id = gene_obj["ensembl_id"] ensembl_genes[ensembl_id] = gene_obj # Fetch the transcripts from ensembl ensembl_transcripts = fetch_ensembl_transcripts(build=build) transcripts = load_transcripts( adapter, ensembl_transcripts, build, ensembl_genes ) adapter.update_indexes() LOG.info("Genes, transcripts and Exons loaded")
28.925
89
0.680496
40da094b36ee23297d997825fc9cf022b98b0862
10,013
py
Python
packstack/plugins/provision_700.py
melroyr/havana-packstack
72cdb0e5e29df4cccb81844ec8b365dfededf4f7
[ "Apache-2.0" ]
null
null
null
packstack/plugins/provision_700.py
melroyr/havana-packstack
72cdb0e5e29df4cccb81844ec8b365dfededf4f7
[ "Apache-2.0" ]
null
null
null
packstack/plugins/provision_700.py
melroyr/havana-packstack
72cdb0e5e29df4cccb81844ec8b365dfededf4f7
[ "Apache-2.0" ]
null
null
null
""" Installs and configures neutron """ import logging from packstack.installer import validators from packstack.modules.common import is_all_in_one from packstack.modules.ospluginutils import (appendManifestFile, getManifestTemplate) # Controller object will be initialized from main flow controller = None # Plugin name PLUGIN_NAME = "OS-Provision" logging.debug("plugin %s loaded", __name__) def initConfig(controllerObject): global controller controller = controllerObject logging.debug("Provisioning OpenStack resources for demo usage and testing") def process_provision(param, process_args=None): return param if is_all_in_one(controller.CONF) else 'n' conf_params = { "PROVISION_INIT" : [ {"CMD_OPTION" : "provision-demo", "USAGE" : ("Whether to provision for demo usage and testing. Note " "that provisioning is only supported for all-in-one " "installations."), "PROMPT" : "Would you like to provision for demo usage and testing?", "OPTION_LIST" : ["y", "n"], "VALIDATORS" : [validators.validate_options], "PROCESSORS" : [process_provision], "DEFAULT_VALUE" : "y", "MASK_INPUT" : False, "LOOSE_VALIDATION": True, "CONF_NAME" : "CONFIG_PROVISION_DEMO", "USE_DEFAULT" : False, "NEED_CONFIRM" : False, "CONDITION" : False }, {"CMD_OPTION" : "provision-tempest", "USAGE" : ("Whether to configure tempest for testing. Note " "that provisioning is only supported for all-in-one " "installations."), "PROMPT" : "Would you like to configure Tempest (OpenStack test suite)?", "OPTION_LIST" : ["y", "n"], "VALIDATORS" : [validators.validate_options], "PROCESSORS" : [process_provision], "DEFAULT_VALUE" : "n", "MASK_INPUT" : False, "LOOSE_VALIDATION": True, "CONF_NAME" : "CONFIG_PROVISION_TEMPEST", "USE_DEFAULT" : False, "NEED_CONFIRM" : False, "CONDITION" : False }, ], "PROVISION_DEMO" : [ {"CMD_OPTION" : "provision-demo-floatrange", "USAGE" : "The CIDR network address for the floating IP subnet", "PROMPT" : "Enter the network address for the floating IP subnet:", "OPTION_LIST" : False, "VALIDATORS" : False, "DEFAULT_VALUE" : "172.24.4.224/28", "MASK_INPUT" : False, "LOOSE_VALIDATION": True, "CONF_NAME" : "CONFIG_PROVISION_DEMO_FLOATRANGE", "USE_DEFAULT" : False, "NEED_CONFIRM" : False, "CONDITION" : False }, ], "TEMPEST_GIT_REFS" : [ {"CMD_OPTION" : "provision-tempest-repo-uri", "USAGE" : "The uri of the tempest git repository to use", "PROMPT" : "What is the uri of the Tempest git repository?", "OPTION_LIST" : [], "VALIDATORS" : [validators.validate_not_empty], "DEFAULT_VALUE" : "https://github.com/openstack/tempest.git", "MASK_INPUT" : False, "LOOSE_VALIDATION": True, "CONF_NAME" : "CONFIG_PROVISION_TEMPEST_REPO_URI", "USE_DEFAULT" : False, "NEED_CONFIRM" : False, "CONDITION" : False }, {"CMD_OPTION" : "provision-tempest-repo-revision", "USAGE" : "The revision of the tempest git repository to use", "PROMPT" : "What revision, branch, or tag of the Tempest git repository should be used?", "OPTION_LIST" : [], "VALIDATORS" : [validators.validate_not_empty], "DEFAULT_VALUE" : "stable/havana", "MASK_INPUT" : False, "LOOSE_VALIDATION": True, "CONF_NAME" : "CONFIG_PROVISION_TEMPEST_REPO_REVISION", "USE_DEFAULT" : False, "NEED_CONFIRM" : False, "CONDITION" : False }, ], "PROVISION_ALL_IN_ONE_OVS_BRIDGE" : [ {"CMD_OPTION" : "provision-all-in-one-ovs-bridge", "USAGE" : "Whether to configure the ovs external bridge in an all-in-one deployment", "PROMPT" : "Would you like to configure the external ovs bridge?", "OPTION_LIST" : ["y", "n"], "VALIDATORS" : [validators.validate_options], "DEFAULT_VALUE" : "n", "MASK_INPUT" : False, "LOOSE_VALIDATION": True, "CONF_NAME" : "CONFIG_PROVISION_ALL_IN_ONE_OVS_BRIDGE", "USE_DEFAULT" : False, "NEED_CONFIRM" : False, "CONDITION" : False }, ], } def allow_provisioning(config): # Provisioning is currently supported only for all-in-one (due # to a limitation with how the custom types for OpenStack # resources are implemented). return is_all_in_one(config) def check_provisioning_demo(config): return (allow_provisioning(config) and (config.get('CONFIG_PROVISION_DEMO', 'n') == 'y' or config.get('CONFIG_PROVISION_TEMPEST', 'n') == 'y')) def check_provisioning_tempest(config): return allow_provisioning(config) and \ config.get('CONFIG_PROVISION_TEMPEST', 'n') == 'y' def allow_all_in_one_ovs_bridge(config): return allow_provisioning(config) and \ config['CONFIG_NEUTRON_INSTALL'] == 'y' and \ config['CONFIG_NEUTRON_L2_PLUGIN'] == 'openvswitch' conf_groups = [ { "GROUP_NAME" : "PROVISION_INIT", "DESCRIPTION" : "Provisioning demo config", "PRE_CONDITION" : lambda x: 'yes', "PRE_CONDITION_MATCH" : "yes", "POST_CONDITION" : False, "POST_CONDITION_MATCH" : True }, { "GROUP_NAME" : "PROVISION_DEMO", "DESCRIPTION" : "Provisioning demo config", "PRE_CONDITION" : check_provisioning_demo, "PRE_CONDITION_MATCH" : True, "POST_CONDITION" : False, "POST_CONDITION_MATCH" : True }, { "GROUP_NAME" : "TEMPEST_GIT_REFS", "DESCRIPTION" : "Optional tempest git uri and branch", "PRE_CONDITION" : check_provisioning_tempest, "PRE_CONDITION_MATCH" : True, "POST_CONDITION" : False, "POST_CONDITION_MATCH" : True }, { "GROUP_NAME" : "PROVISION_ALL_IN_ONE_OVS_BRIDGE", "DESCRIPTION" : "Provisioning all-in-one ovs bridge config", "PRE_CONDITION" : allow_all_in_one_ovs_bridge, "PRE_CONDITION_MATCH" : True, "POST_CONDITION" : False, "POST_CONDITION_MATCH" : True }, ] for group in conf_groups: paramList = conf_params[group["GROUP_NAME"]] controller.addGroup(group, paramList) # Due to group checking some parameters might not be initialized, but # provision.pp needs them all. So we will initialize them with default # values params = [ controller.getParamByName(x) for x in ['CONFIG_PROVISION_TEMPEST_REPO_URI', 'CONFIG_PROVISION_TEMPEST_REPO_REVISION', 'CONFIG_PROVISION_ALL_IN_ONE_OVS_BRIDGE'] ] for param in params: value = controller.CONF.get(param.CONF_NAME, param.DEFAULT_VALUE) controller.CONF[param.CONF_NAME] = value def marshall_conf_bool(conf, key): if conf[key] == 'y': conf[key] = 'true' else: conf[key] = 'false' def initSequences(controller): provisioning_required = ( controller.CONF['CONFIG_PROVISION_DEMO'] == 'y' or controller.CONF['CONFIG_PROVISION_TEMPEST'] == 'y' ) if not provisioning_required: return marshall_conf_bool(controller.CONF, 'CONFIG_PROVISION_TEMPEST') marshall_conf_bool(controller.CONF, 'CONFIG_PROVISION_ALL_IN_ONE_OVS_BRIDGE') provision_steps = [ { 'title': 'Adding Provisioning manifest entries', 'functions': [create_manifest], } ] controller.addSequence("Provisioning for Demo and Testing Usage", [], [], provision_steps) def create_manifest(config): # Using the neutron or nova api servers as the provisioning target # will suffice for the all-in-one case. if config['CONFIG_NEUTRON_INSTALL'] == "y": host = config['CONFIG_NEUTRON_SERVER_HOST'] else: host = config['CONFIG_NOVA_API_HOST'] # The provisioning template requires the name of the external # bridge but the value will be missing if neutron isn't # configured to be installed. config['CONFIG_NEUTRON_L3_EXT_BRIDGE'] = 'br-ex' # Set template-specific parameter to configure whether neutron is # available. The value needs to be true/false rather than the y/n. # provided by CONFIG_NEUTRON_INSTALL. config['PROVISION_NEUTRON_AVAILABLE'] = config['CONFIG_NEUTRON_INSTALL'] marshall_conf_bool(config, 'PROVISION_NEUTRON_AVAILABLE') manifest_file = '%s_provision.pp' % host manifest_data = getManifestTemplate("provision.pp") appendManifestFile(manifest_file, manifest_data)
42.790598
111
0.563567
f1bbf6934e44b865f274367a98ab235cd9bc9e28
1,257
py
Python
plugins/default/metasploit_attacks/metasploit_ps_t1057/metasploit_ps.py
Thorsten-Sick/PurpleDome
297d746ef2e17a4207f8274b7fccbe2ce43c4a5f
[ "MIT" ]
7
2021-11-30T19:54:29.000Z
2022-03-05T23:15:23.000Z
plugins/default/metasploit_attacks/metasploit_ps_t1057/metasploit_ps.py
Thorsten-Sick/PurpleDome
297d746ef2e17a4207f8274b7fccbe2ce43c4a5f
[ "MIT" ]
null
null
null
plugins/default/metasploit_attacks/metasploit_ps_t1057/metasploit_ps.py
Thorsten-Sick/PurpleDome
297d746ef2e17a4207f8274b7fccbe2ce43c4a5f
[ "MIT" ]
2
2021-11-30T11:16:27.000Z
2022-02-02T13:36:01.000Z
#!/usr/bin/env python3 # A plugin to nmap targets slow motion, to evade sensors from plugins.base.attack import AttackPlugin, Requirement class MetasploitPsPlugin(AttackPlugin): # Boilerplate name = "metasploit_ps" description = "Process discovery via metasploit" ttp = "T1057" references = ["https://attack.mitre.org/techniques/T1057/"] required_files = [] # Files shipped with the plugin which are needed by the kali tool. Will be copied to the kali share requirements = [Requirement.METASPLOIT] def __init__(self): super().__init__() self.plugin_path = __file__ def run(self, targets): """ Run the command @param targets: A list of targets, ip addresses will do """ res = "" payload_type = "windows/x64/meterpreter/reverse_https" payload_name = "babymetal.exe" target = self.targets[0] self.metasploit.smart_infect(target, payload=payload_type, outfile=payload_name, format="exe", architecture="x64") self.metasploit.ps_process_discovery(target) return res
28.568182
126
0.595068
44593cf2b5414b5e7aac9e4d30f5b628b196a5f1
633
py
Python
install.py
zjw0358/ipython-auto-import
4249b3a9d18a5e27ec714b9a5e71a32ab63d1938
[ "MIT" ]
55
2016-07-24T11:18:01.000Z
2018-10-02T12:34:04.000Z
install.py
zjw0358/ipython-auto-import
4249b3a9d18a5e27ec714b9a5e71a32ab63d1938
[ "MIT" ]
9
2016-03-28T15:08:33.000Z
2016-07-28T20:27:02.000Z
install.py
AaronC81/ipython-auto-import
5ce4f51fe0ad559ba4481410168a27b0580337d0
[ "MIT" ]
2
2016-07-23T05:50:05.000Z
2018-10-02T12:34:06.000Z
import shutil import os u = os.path.expanduser("~") assert u != "~" extensions_path = os.path.join(u, ".ipython", "extensions", "import_wrapper.py") config_path = os.path.join(u, ".ipython", "profile_default", "ipython_config.py") shutil.copyfile("import_wrapper.py", extensions_path) with open(config_path, "a") as f: f.write("\nc.InteractiveShellApp.exec_lines.append(\"%load_ext import_wra" "pper\")") print("Installation complete.") try: import colorama except ImportError: print("NOTE: Install 'colorama' for best results: 'pip install colorama'")
28.772727
78
0.649289
b821d581178cf8796896bfe24bb9e94e848b029b
6,890
py
Python
benchexec/baseexecutor.py
hoangmle/benchexec
ece94d34e13be2e0137574425e51173889a3e50a
[ "Apache-2.0" ]
null
null
null
benchexec/baseexecutor.py
hoangmle/benchexec
ece94d34e13be2e0137574425e51173889a3e50a
[ "Apache-2.0" ]
null
null
null
benchexec/baseexecutor.py
hoangmle/benchexec
ece94d34e13be2e0137574425e51173889a3e50a
[ "Apache-2.0" ]
null
null
null
# BenchExec is a framework for reliable benchmarking. # This file is part of BenchExec. # # Copyright (C) 2007-2015 Dirk Beyer # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # prepare for Python 3 from __future__ import absolute_import, division, print_function, unicode_literals # THIS MODULE HAS TO WORK WITH PYTHON 2.7! import errno import logging import os import signal import subprocess import sys import threading sys.dont_write_bytecode = True # prevent creation of .pyc files from benchexec import __version__ from benchexec import util def add_basic_executor_options(argument_parser): """Add some basic options for an executor to an argparse argument_parser.""" argument_parser.add_argument( "args", nargs="+", metavar="ARG", help='command line to run (prefix with "--" to ensure all arguments are treated correctly)', ) argument_parser.add_argument( "--version", action="version", version="%(prog)s " + __version__ ) verbosity = argument_parser.add_mutually_exclusive_group() verbosity.add_argument("--debug", action="store_true", help="show debug output") verbosity.add_argument("--quiet", action="store_true", help="show only warnings") def handle_basic_executor_options(options, parser): """Handle the options specified by add_basic_executor_options().""" # setup logging logLevel = logging.INFO if options.debug: logLevel = logging.DEBUG elif options.quiet: logLevel = logging.WARNING util.setup_logging(level=logLevel) class BaseExecutor(object): """Class for starting and handling processes.""" def __init__(self): self.PROCESS_KILLED = False # killing process is triggered asynchronously, need a lock for synchronization self.SUB_PROCESS_PIDS_LOCK = threading.Lock() self.SUB_PROCESS_PIDS = set() def _get_result_files_base(self, temp_dir): """Given the temp directory that is created for each run, return the path to the directory where files created by the tool are stored.""" return temp_dir def _start_execution( self, args, stdin, stdout, stderr, env, cwd, temp_dir, cgroups, parent_setup_fn, child_setup_fn, parent_cleanup_fn, ): """Actually start the tool and the measurements. @param parent_setup_fn a function without parameters that is called in the parent process immediately before the tool is started @param child_setup_fn a function without parameters that is called in the child process before the tool is started @param parent_cleanup_fn a function that is called in the parent process immediately after the tool terminated, with three parameters: the result of parent_setup_fn, the result of the executed process as ProcessExitCode, and the base path for looking up files as parameter values @return: a tuple of PID of process and a blocking function, which waits for the process and a triple of the exit code and the resource usage of the process and the result of parent_cleanup_fn (do not use os.wait) """ def pre_subprocess(): # Do some other setup the caller wants. child_setup_fn() # put us into the cgroup(s) pid = os.getpid() cgroups.add_task(pid) # Set HOME and TMPDIR to fresh directories. tmp_dir = os.path.join(temp_dir, "tmp") home_dir = os.path.join(temp_dir, "home") os.mkdir(tmp_dir) os.mkdir(home_dir) env["HOME"] = home_dir env["TMPDIR"] = tmp_dir env["TMP"] = tmp_dir env["TEMPDIR"] = tmp_dir env["TEMP"] = tmp_dir logging.debug("Executing run with $HOME and $TMPDIR below %s.", temp_dir) parent_setup = parent_setup_fn() p = subprocess.Popen( args, stdin=stdin, stdout=stdout, stderr=stderr, env=env, cwd=cwd, close_fds=True, preexec_fn=pre_subprocess, ) def wait_and_get_result(): exitcode, ru_child = self._wait_for_process(p.pid, args[0]) parent_cleanup = parent_cleanup_fn( parent_setup, util.ProcessExitCode.from_raw(exitcode), "" ) return exitcode, ru_child, parent_cleanup return p.pid, wait_and_get_result def _wait_for_process(self, pid, name): """Wait for the given process to terminate. @return tuple of exit code and resource usage """ try: logging.debug("Waiting for process %s with pid %s", name, pid) unused_pid, exitcode, ru_child = os.wait4(pid, 0) return exitcode, ru_child except OSError as e: if self.PROCESS_KILLED and e.errno == errno.EINTR: # Interrupted system call seems always to happen # if we killed the process ourselves after Ctrl+C was pressed # We can try again to get exitcode and resource usage. logging.debug( "OSError %s while waiting for termination of %s (%s): %s.", e.errno, name, pid, e.strerror, ) try: unused_pid, exitcode, ru_child = os.wait4(pid, 0) return exitcode, ru_child except OSError: pass # original error will be handled and this ignored logging.critical( "OSError %s while waiting for termination of %s (%s): %s.", e.errno, name, pid, e.strerror, ) return 0, None def stop(self): self.PROCESS_KILLED = True with self.SUB_PROCESS_PIDS_LOCK: for pid in self.SUB_PROCESS_PIDS: logging.warning("Killing process %s forcefully.", pid) try: util.kill_process(pid) except EnvironmentError as e: # May fail due to race conditions logging.debug(e)
35.153061
100
0.618287
8b0defd5c58a703abcb0bfb4568d03dc75234874
2,857
py
Python
examples/misc/svg_filter_pie.py
nkoep/matplotlib
6ed04252994443a4cecf95f0da0efedb6d514b38
[ "MIT", "BSD-3-Clause" ]
1
2017-02-05T18:05:07.000Z
2017-02-05T18:05:07.000Z
examples/misc/svg_filter_pie.py
nkoep/matplotlib
6ed04252994443a4cecf95f0da0efedb6d514b38
[ "MIT", "BSD-3-Clause" ]
null
null
null
examples/misc/svg_filter_pie.py
nkoep/matplotlib
6ed04252994443a4cecf95f0da0efedb6d514b38
[ "MIT", "BSD-3-Clause" ]
null
null
null
""" Demonstrate SVG filtering effects which might be used with mpl. The pie chart drawing code is borrowed from pie_demo.py Note that the filtering effects are only effective if your svg rederer support it. """ import matplotlib matplotlib.use("Svg") import matplotlib.pyplot as plt from matplotlib.patches import Shadow # make a square figure and axes fig1 = plt.figure(1, figsize=(6,6)) ax = fig1.add_axes([0.1, 0.1, 0.8, 0.8]) labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' fracs = [15,30,45, 10] explode=(0, 0.05, 0, 0) # We want to draw the shadow for each pie but we will not use "shadow" # option as it does'n save the references to the shadow patches. pies = ax.pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%') for w in pies[0]: # set the id with the label. w.set_gid(w.get_label()) # we don't want to draw the edge of the pie w.set_ec("none") for w in pies[0]: # create shadow patch s = Shadow(w, -0.01, -0.01) s.set_gid(w.get_gid()+"_shadow") s.set_zorder(w.get_zorder() - 0.1) ax.add_patch(s) # save from StringIO import StringIO f = StringIO() plt.savefig(f, format="svg") import xml.etree.cElementTree as ET # filter definition for shadow using a gaussian blur # and lighteneing effect. # The lightnening filter is copied from http://www.w3.org/TR/SVG/filters.html # I tested it with Inkscape and Firefox3. "Gaussian blur" is supported # in both, but the lightnening effect only in the inkscape. Also note # that, inkscape's exporting also may not support it. filter_def = """ <defs xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'> <filter id='dropshadow' height='1.2' width='1.2'> <feGaussianBlur result='blur' stdDeviation='2'/> </filter> <filter id='MyFilter' filterUnits='objectBoundingBox' x='0' y='0' width='1' height='1'> <feGaussianBlur in='SourceAlpha' stdDeviation='4%' result='blur'/> <feOffset in='blur' dx='4%' dy='4%' result='offsetBlur'/> <feSpecularLighting in='blur' surfaceScale='5' specularConstant='.75' specularExponent='20' lighting-color='#bbbbbb' result='specOut'> <fePointLight x='-5000%' y='-10000%' z='20000%'/> </feSpecularLighting> <feComposite in='specOut' in2='SourceAlpha' operator='in' result='specOut'/> <feComposite in='SourceGraphic' in2='specOut' operator='arithmetic' k1='0' k2='1' k3='1' k4='0'/> </filter> </defs> """ tree, xmlid = ET.XMLID(f.getvalue()) # insert the filter definition in the svg dom tree. tree.insert(0, ET.XML(filter_def)) for i, pie_name in enumerate(labels): pie = xmlid[pie_name] pie.set("filter", 'url(#MyFilter)') shadow = xmlid[pie_name + "_shadow"] shadow.set("filter",'url(#dropshadow)') fn = "svg_filter_pie.svg" print "Saving '%s'" % fn ET.ElementTree(tree).write(fn)
29.760417
91
0.675534
251dc0ad15e11e2ad3962f3532789e93b59ecc1c
3,852
py
Python
tests/test_filtsmooth/test_gaussian/test_kalman.py
treid5/probnum
fabb51243d0952fbd35e542aeb5c2dc9a449ec81
[ "MIT" ]
226
2019-11-01T09:44:09.000Z
2022-03-30T23:17:17.000Z
tests/test_filtsmooth/test_gaussian/test_kalman.py
simeoncarstens/probnum
b69587b07e2fffbdcd4c850acc98bb3de97a6e0b
[ "MIT" ]
590
2019-11-21T08:32:30.000Z
2022-03-31T12:37:37.000Z
tests/test_filtsmooth/test_gaussian/test_kalman.py
JonathanWenger/probnum
1c5499883672cfa029c12045848ea04491c69e08
[ "MIT" ]
39
2020-01-13T16:29:45.000Z
2022-03-28T16:16:54.000Z
import numpy as np import pytest import probnum.problems.zoo.filtsmooth as filtsmooth_zoo from probnum import filtsmooth # Problems @pytest.fixture(params=[filtsmooth_zoo.car_tracking, filtsmooth_zoo.ornstein_uhlenbeck]) def setup(request, rng): """Filter and regression problem.""" problem = request.param regression_problem, info = problem(rng=rng) kalman = filtsmooth.gaussian.Kalman(info["prior_process"]) return kalman, regression_problem def test_rmse_filt_smooth(setup): """Assert that smoothing beats filtering beats nothing.""" np.random.seed(12345) kalman, regression_problem = setup truth = regression_problem.solution posterior, _ = kalman.filtsmooth(regression_problem) filtms = posterior.filtering_posterior.states.mean smooms = posterior.states.mean filtms_rmse = np.mean(np.abs(filtms[:, :2] - truth[:, :2])) smooms_rmse = np.mean(np.abs(smooms[:, :2] - truth[:, :2])) obs_rmse = np.mean(np.abs(regression_problem.observations - truth[:, :2])) assert smooms_rmse < filtms_rmse < obs_rmse def test_info_dicts(setup): """Assert that smoothing beats filtering beats nothing.""" np.random.seed(12345) kalman, regression_problem = setup posterior, info_dicts = kalman.filtsmooth(regression_problem) assert isinstance(info_dicts, list) assert len(posterior) == len(info_dicts) def test_kalman_smoother_high_order_ibm(rng): """The highest feasible order (without damping, which we dont use) is 11. If this test breaks, someone played with the stable square-root implementations in discrete_transition: for instance, solve_triangular() and cho_solve() must not be changed to inv()! """ regression_problem, info = filtsmooth_zoo.car_tracking( rng=rng, num_prior_derivatives=11, timespan=(0.0, 1e-3), step=1e-5, forward_implementation="sqrt", backward_implementation="sqrt", ) truth = regression_problem.solution kalman = filtsmooth.gaussian.Kalman(info["prior_process"]) posterior, _ = kalman.filtsmooth(regression_problem) filtms = posterior.filtering_posterior.states.mean smooms = posterior.states.mean filtms_rmse = np.mean(np.abs(filtms[:, :2] - truth[:, :2])) smooms_rmse = np.mean(np.abs(smooms[:, :2] - truth[:, :2])) obs_rmse = np.mean(np.abs(regression_problem.observations - truth[:, :2])) assert smooms_rmse < filtms_rmse < obs_rmse def test_kalman_multiple_measurement_models(rng): regression_problem, info = filtsmooth_zoo.car_tracking( rng=rng, num_prior_derivatives=4, timespan=(0.0, 1e-3), step=1e-5, forward_implementation="sqrt", backward_implementation="sqrt", ) truth = regression_problem.solution kalman = filtsmooth.gaussian.Kalman(info["prior_process"]) posterior, _ = kalman.filtsmooth(regression_problem) filtms = posterior.filtering_posterior.states.mean smooms = posterior.states.mean filtms_rmse = np.mean(np.abs(filtms[:, :2] - truth[:, :2])) smooms_rmse = np.mean(np.abs(smooms[:, :2] - truth[:, :2])) obs_rmse = np.mean(np.abs(regression_problem.observations - truth[:, :2])) assert smooms_rmse < filtms_rmse < obs_rmse def test_kalman_value_error_repeating_timepoints(rng): regression_problem, info = filtsmooth_zoo.car_tracking( rng=rng, num_prior_derivatives=4, timespan=(0.0, 1e-3), step=1e-5, forward_implementation="sqrt", backward_implementation="sqrt", ) kalman = filtsmooth.gaussian.Kalman(info["prior_process"]) # This should raise a ValueError regression_problem.locations[1] = regression_problem.locations[0] with pytest.raises(ValueError): posterior, _ = kalman.filtsmooth(regression_problem)
31.57377
88
0.702752
370aea85fb542ce132dbb342b5e39fb826855ca6
1,341
py
Python
PrimeUs/Multiply.py
wyllie/PrimeUs
e076669d7cb1d29179606723204a7bd746778495
[ "MIT" ]
null
null
null
PrimeUs/Multiply.py
wyllie/PrimeUs
e076669d7cb1d29179606723204a7bd746778495
[ "MIT" ]
2
2019-10-15T22:28:13.000Z
2019-10-16T13:25:36.000Z
PrimeUs/Multiply.py
wyllie/PrimeUs
e076669d7cb1d29179606723204a7bd746778495
[ "MIT" ]
1
2019-10-16T21:22:36.000Z
2019-10-16T21:22:36.000Z
class Multiply(): def __init__(self): pass def two_lists(self, rows, columns): 'create a multiplication table from two lists of integers' table = [] row1 = ['X'] row1.extend(columns) table.append(row1) for row in sorted(rows): row_list = [row] for column in sorted(columns): row_list.append(row * column) table.append(row_list) return table def two_lists_dict(self, rows, columns): 'create a multiplication table from two lists of integers' table = dict() for row in sorted(rows): row_dict = dict() for column in sorted(columns): row_dict[column] = row * column table[row] = row_dict return table def format_table(self, table): 'return a nicely(ish) formatted table' # get the width of each column widths = [] for col in zip(*table): widths.append(max(map(len, map(str, col)))) # create the formatted rows output_rows = [] for row in table: output_rows.append(' '.join(str(val).rjust(width) for val, width in zip(row, widths))) output = '\n'.join(output_rows) return output
25.301887
76
0.536167
5878589c43ef41e93f2acb3b87f08e9ec3bc204a
1,164
py
Python
python/520.py
HymEric/LeetCode
e32439a76968d67f99881b6d07fb16e21c979c9e
[ "Apache-2.0" ]
2
2019-09-27T11:41:02.000Z
2019-10-17T21:50:23.000Z
python/520.py
HymEric/LeetCode
e32439a76968d67f99881b6d07fb16e21c979c9e
[ "Apache-2.0" ]
null
null
null
python/520.py
HymEric/LeetCode
e32439a76968d67f99881b6d07fb16e21c979c9e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # @Time : 2019/10/15 0015 16:21 # @Author : Erichym # @Email : 951523291@qq.com # @File : 520.py # @Software: PyCharm class Solution: def detectCapitalUse(self, word: str) -> bool: if 97<=ord(word[0])<=122: for i in range(1,len(word),1): if ord(word[i])>122 or ord(word[i])<97: return False return True # first alpha is capital elif len(word)>1: if 65 <= ord(word[1]) <= 90: for i in range(2, len(word), 1): if ord(word[i]) > 90 or ord(word[i]) < 65: return False return True if 97 <= ord(word[1]) <= 122: for i in range(1, len(word), 1): if ord(word[i]) > 122 or ord(word[i]) < 97: return False return True else: return True def detectCapitalUse2(self, word: str) -> bool: return word.isupper() or word.islower() or word.istitle() if __name__=="__main__": word="G" so=Solution() a=so.detectCapitalUse2(word) print(a)
32.333333
65
0.4811
2e8ff20a48ded4afd71689424ce90011177e1927
2,275
py
Python
geomstats/_backend/pytorch/linalg.py
tristancabel/geomstats
eeba7b7a652d45fc0053e35219c03627f2e8406f
[ "MIT" ]
2
2020-01-23T04:01:02.000Z
2020-08-18T19:20:27.000Z
geomstats/_backend/pytorch/linalg.py
tristancabel/geomstats
eeba7b7a652d45fc0053e35219c03627f2e8406f
[ "MIT" ]
null
null
null
geomstats/_backend/pytorch/linalg.py
tristancabel/geomstats
eeba7b7a652d45fc0053e35219c03627f2e8406f
[ "MIT" ]
1
2021-03-14T06:54:09.000Z
2021-03-14T06:54:09.000Z
"""Pytorch based linear algebra backend.""" import numpy as np import scipy.linalg import torch def _raise_not_implemented_error(*args, **kwargs): raise NotImplementedError eig = _raise_not_implemented_error expm = torch.matrix_exp logm = _raise_not_implemented_error inv = torch.inverse det = torch.det def cholesky(a): return torch.cholesky(a, upper=False) def sqrtm(x): np_sqrtm = np.vectorize( scipy.linalg.sqrtm, signature='(n,m)->(n,m)')(x) return torch.as_tensor(np_sqrtm, dtype=x.dtype) def eigvalsh(a, **kwargs): upper = False if 'UPLO' in kwargs: upper = (kwargs['UPLO'] == 'U') return torch.symeig(a, eigenvectors=False, upper=upper)[0] def eigh(*args, **kwargs): eigvals, eigvecs = torch.symeig(*args, eigenvectors=True, **kwargs) return eigvals, eigvecs def svd(x, full_matrices=True, compute_uv=True): is_vectorized = x.ndim == 3 axis = (0, 2, 1) if is_vectorized else (1, 0) if compute_uv: u, s, v_t = torch.svd( x, some=not full_matrices, compute_uv=compute_uv) return u, s, v_t.permute(axis) return torch.svd(x, some=not full_matrices, compute_uv=compute_uv)[1] def norm(x, ord=None, axis=None): if axis is None: return torch.linalg.norm(x, ord=ord) return torch.linalg.norm(x, ord=ord, dim=axis) def solve_sylvester(a, b, q): if a.shape == b.shape: if torch.all(a == b) and torch.all( torch.abs(a - a.transpose(-2, -1)) < 1e-6): eigvals, eigvecs = eigh(a) if torch.all(eigvals >= 1e-6): tilde_q = eigvecs.transpose(-2, -1) @ q @ eigvecs tilde_x = tilde_q / ( eigvals[..., :, None] + eigvals[..., None, :]) return eigvecs @ tilde_x @ eigvecs.transpose(-2, -1) solution = np.vectorize( scipy.linalg.solve_sylvester, signature='(m,m),(n,n),(m,n)->(m,n)')(a, b, q) return torch.from_numpy(solution) def qr(*args, **kwargs): matrix_q, matrix_r = np.vectorize( np.linalg.qr, signature='(n,m)->(n,k),(k,m)', excluded=['mode'])(*args, **kwargs) tensor_q = torch.from_numpy(matrix_q) tensor_r = torch.from_numpy(matrix_r) return tensor_q, tensor_r
27.743902
73
0.615824
0e6bacf3a70fc455f4c72f489e7e793ce7ab99fc
1,301
py
Python
data/migrations/deb/1_1_150_to_1_1_151.py
Rob-S/indy-node
0aefbda62c5a7412d7e03b2fb9795c500ea67e9f
[ "Apache-2.0" ]
627
2017-07-06T12:38:08.000Z
2022-03-30T13:18:43.000Z
data/migrations/deb/1_1_150_to_1_1_151.py
Rob-S/indy-node
0aefbda62c5a7412d7e03b2fb9795c500ea67e9f
[ "Apache-2.0" ]
580
2017-06-29T17:59:57.000Z
2022-03-29T21:37:52.000Z
data/migrations/deb/1_1_150_to_1_1_151.py
Rob-S/indy-node
0aefbda62c5a7412d7e03b2fb9795c500ea67e9f
[ "Apache-2.0" ]
704
2017-06-29T17:45:34.000Z
2022-03-30T07:08:58.000Z
import os import shutil import subprocess from indy_common.util import compose_cmd def rename_if_exists(dir, old_name, new_name): if os.path.exists(os.path.join(dir, old_name)): os.rename(os.path.join(dir, old_name), os.path.join(dir, new_name)) def rename_request_files(requests_dir): for relative_name in os.listdir(requests_dir): absolute_name = os.path.join(requests_dir, relative_name) if os.path.isfile(absolute_name) and absolute_name.endswith('.sovrin'): os.rename(absolute_name, absolute_name[:-len('.sovrin')] + '.indy') def migrate(): source_dir = os.path.expanduser('/home/sovrin/.sovrin') target_dir = os.path.expanduser('/home/indy/.indy') if os.path.isdir(target_dir): shutil.rmtree(target_dir) shutil.copytree(source_dir, target_dir) rename_if_exists(target_dir, '.sovrin', '.indy') rename_if_exists(target_dir, 'sovrin.env', 'indy.env') rename_if_exists(target_dir, 'sovrin_config.py', 'indy_config.py') if os.path.isdir(os.path.join(target_dir, 'sample')): rename_request_files(os.path.join(target_dir, 'sample')) subprocess.run(compose_cmd(['chown', '-R', 'indy:indy', target_dir]), shell=True, check=True) migrate()
30.97619
79
0.676403
e2f7115d5945da0fd5f4c42038a68ad9c5a7efc0
3,177
py
Python
photomanager/lib/filter.py
wrenchzc/photomanagger
1111587762b6e71b9ffff06241cdcd537b8c96e9
[ "MIT" ]
null
null
null
photomanager/lib/filter.py
wrenchzc/photomanagger
1111587762b6e71b9ffff06241cdcd537b8c96e9
[ "MIT" ]
4
2019-09-18T14:58:16.000Z
2022-01-13T00:43:22.000Z
photomanager/lib/filter.py
wrenchzc/photomanager
1111587762b6e71b9ffff06241cdcd537b8c96e9
[ "MIT" ]
null
null
null
import re import typing from sqlalchemy.sql.elements import BinaryExpression from sqlalchemy import func, or_, and_ from photomanager.lib.errors import FilterError, FilterInvalidError from photomanager.db.models import ImageMeta FILTER_FIELD_DATE = "date" class FilterParser(object): def __init__(self, condition: str): self.condition = condition def parse(self) -> BinaryExpression: pattern = '(.*?)\.(.*?):(.*)' matched = re.match(pattern, self.condition) if not matched: return self.do_parse_fuzzy_search(self.condition) field, operator, val = matched.groups() if field == FILTER_FIELD_DATE: val = self.standard_date_str(val) return self.do_parse_time_field(operator, val) def do_parse_fuzzy_search(self, val): like_cond = f"%{val}%" return or_(ImageMeta.filename.like(like_cond), ImageMeta.folder.like(like_cond), ImageMeta.city.like(like_cond), ImageMeta.address.like(like_cond) ) def do_parse_time_field(self, operator: str, val: str) -> BinaryExpression: # date is a sqlite function # must use Model.field == None, not Model.field is None, because the operator "==" override by sqlalchemy if operator == "eq": return or_(func.date(ImageMeta.origin_datetime) == val, and_(func.date(ImageMeta.file_createtime) == val, ImageMeta.origin_datetime == None)) elif operator == "gt": return or_(func.date(ImageMeta.origin_datetime) > val, and_(func.date(ImageMeta.file_createtime) > val, ImageMeta.origin_datetime == None)) elif operator == "gte": return or_(func.date(ImageMeta.origin_datetime) >= val, and_(func.date(ImageMeta.file_createtime) >= val, ImageMeta.origin_datetime == None)) elif operator == "lt": return or_(func.date(ImageMeta.origin_datetime) < val, and_(func.date(ImageMeta.file_createtime) < val, ImageMeta.origin_datetime == None)) elif operator == "lte": return or_(func.date(ImageMeta.origin_datetime) <= val, and_(func.date(ImageMeta.file_createtime) <= val, ImageMeta.origin_datetime == None)) def standard_date_str(self, val: str): if len(val) < 8 or len(val) > 10: raise FilterInvalidError return_val = val if len(val) == 8: # such as 20201005 return_val = val[0:4] + "-" + val[4:6] + '-' + val[6:] return return_val class FiltersParser(object): def __init__(self, conditions: typing.List[str]): self.conditions = conditions def parse(self): expr = None for cond in self.conditions: cur_expr = FilterParser(cond).parse() if expr is not None: expr = and_(expr, cur_expr) else: expr = cur_expr return expr
37.376471
113
0.582625