hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
7c1d13f88c58a68331858cd82f62795bc6b19393
58
py
Python
maior.py
Viictorreiss/pythonmarathon
8e1b948e887cf0237ccf7edf0a168f062e937d15
[ "MIT" ]
null
null
null
maior.py
Viictorreiss/pythonmarathon
8e1b948e887cf0237ccf7edf0a168f062e937d15
[ "MIT" ]
null
null
null
maior.py
Viictorreiss/pythonmarathon
8e1b948e887cf0237ccf7edf0a168f062e937d15
[ "MIT" ]
null
null
null
nums = input().split() nums.sort() print(nums[-1], end="")
19.333333
23
0.603448
70ebe702f6e9552335c07c46fcc167c95608f747
740
py
Python
variation/translators/genomic_deletion_range.py
cancervariants/variant-normalization
e89a9f8366a659c82b2042aeb7effe339851bfb4
[ "MIT" ]
1
2022-01-19T18:17:49.000Z
2022-01-19T18:17:49.000Z
variation/translators/genomic_deletion_range.py
cancervariants/variation-normalization
9c8fbab1562591ae9445d82ddd15df29f1ea1f5a
[ "MIT" ]
99
2021-06-07T12:50:34.000Z
2022-03-23T13:38:29.000Z
variation/translators/genomic_deletion_range.py
cancervariants/variant-normalization
e89a9f8366a659c82b2042aeb7effe339851bfb4
[ "MIT" ]
null
null
null
"""Module for Genomic Deletion Range Translation.""" from variation.translators.translator import Translator from variation.schemas.classification_response_schema import ClassificationType from variation.schemas.token_response_schema import \ GenomicDeletionRangeToken class GenomicDeletionRange(Translator): """The Genomic Insertion Translator class.""" def can_translate(self, type: ClassificationType) -> bool: """Return if classification type is Genomic Insertion.""" return type == ClassificationType.GENOMIC_DELETION_RANGE def is_token_instance(self, token): """Return if the token is an Genomic Deletion Range token instance.""" return isinstance(token, GenomicDeletionRangeToken)
41.111111
79
0.774324
0367c377269c1efb094da07565bc22022e92190c
4,131
py
Python
registration/migrations/0003_auto_20210630_1711.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
8
2019-08-27T20:08:22.000Z
2021-07-23T22:49:47.000Z
registration/migrations/0003_auto_20210630_1711.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
73
2020-03-11T18:07:29.000Z
2022-03-28T18:07:47.000Z
registration/migrations/0003_auto_20210630_1711.py
oil-rope/oil-and-rope
6d59c87d4809f120417a90c1624952085486bb06
[ "MIT" ]
4
2020-02-22T19:44:17.000Z
2022-03-08T09:42:45.000Z
# Generated by Django 3.2.4 on 2021-06-30 16:11 import ckeditor.fields import common.files.upload from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('registration', '0002_alter_user_is_premium'), ] operations = [ migrations.AlterModelOptions( name='profile', options={'ordering': ['user__username', 'user__first_name'], 'verbose_name': 'profile', 'verbose_name_plural': 'profiles'}, ), migrations.AlterField( model_name='profile', name='alias', field=models.CharField(blank=True, max_length=30, null=True, verbose_name='alias'), ), migrations.AlterField( model_name='profile', name='bio', field=ckeditor.fields.RichTextField(blank=True, null=True, verbose_name='biography'), ), migrations.AlterField( model_name='profile', name='birthday', field=models.DateField(blank=True, null=True, verbose_name='birthday'), ), migrations.AlterField( model_name='profile', name='image', field=models.ImageField(blank=True, null=True, upload_to=common.files.upload.default_upload_to, verbose_name='avatar'), ), migrations.AlterField( model_name='profile', name='language', field=models.CharField(choices=[('af', 'Afrikaans'), ('sq', 'Albanian'), ('ar-dz', 'Algerian Arabic'), ('ar', 'Arabic'), ('es-ar', 'Argentinian Spanish'), ('hy', 'Armenian'), ('ast', 'Asturian'), ('en-au', 'Australian English'), ('az', 'Azerbaijani'), ('eu', 'Basque'), ('be', 'Belarusian'), ('bn', 'Bengali'), ('bs', 'Bosnian'), ('pt-br', 'Brazilian Portuguese'), ('br', 'Breton'), ('en-gb', 'British English'), ('bg', 'Bulgarian'), ('my', 'Burmese'), ('ca', 'Catalan'), ('es-co', 'Colombian Spanish'), ('hr', 'Croatian'), ('cs', 'Czech'), ('da', 'Danish'), ('nl', 'Dutch'), ('en', 'English'), ('eo', 'Esperanto'), ('et', 'Estonian'), ('fi', 'Finnish'), ('fr', 'French'), ('fy', 'Frisian'), ('gl', 'Galician'), ('ka', 'Georgian'), ('de', 'German'), ('el', 'Greek'), ('he', 'Hebrew'), ('hi', 'Hindi'), ('hu', 'Hungarian'), ('is', 'Icelandic'), ('io', 'Ido'), ('ig', 'Igbo'), ('id', 'Indonesian'), ('ia', 'Interlingua'), ('ga', 'Irish'), ('it', 'Italian'), ('ja', 'Japanese'), ('kab', 'Kabyle'), ('kn', 'Kannada'), ('kk', 'Kazakh'), ('km', 'Khmer'), ('ko', 'Korean'), ('ky', 'Kyrgyz'), ('lv', 'Latvian'), ('lt', 'Lithuanian'), ('dsb', 'Lower Sorbian'), ('lb', 'Luxembourgish'), ('mk', 'Macedonian'), ('ml', 'Malayalam'), ('mr', 'Marathi'), ('es-mx', 'Mexican Spanish'), ('mn', 'Mongolian'), ('ne', 'Nepali'), ('es-ni', 'Nicaraguan Spanish'), ('nb', 'Norwegian Bokmål'), ('nn', 'Norwegian Nynorsk'), ('os', 'Ossetic'), ('fa', 'Persian'), ('pl', 'Polish'), ('pt', 'Portuguese'), ('pa', 'Punjabi'), ('ro', 'Romanian'), ('ru', 'Russian'), ('gd', 'Scottish Gaelic'), ('sr', 'Serbian'), ('sr-latn', 'Serbian Latin'), ('zh-hans', 'Simplified Chinese'), ('sk', 'Slovak'), ('sl', 'Slovenian'), ('es', 'Spanish'), ('sw', 'Swahili'), ('sv', 'Swedish'), ('tg', 'Tajik'), ('ta', 'Tamil'), ('tt', 'Tatar'), ('te', 'Telugu'), ('th', 'Thai'), ('zh-hant', 'Traditional Chinese'), ('tr', 'Turkish'), ('tk', 'Turkmen'), ('udm', 'Udmurt'), ('uk', 'Ukrainian'), ('hsb', 'Upper Sorbian'), ('ur', 'Urdu'), ('uz', 'Uzbek'), ('es-ve', 'Venezuelan Spanish'), ('vi', 'Vietnamese'), ('cy', 'Welsh')], default='en', max_length=30, verbose_name='language'), ), migrations.AlterField( model_name='profile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL, verbose_name='user'), ), migrations.AlterField( model_name='profile', name='web', field=models.URLField(blank=True, null=True, verbose_name='website'), ), ]
72.473684
2,139
0.556524
54cde32ad438fd525b5e8abfc41724451baa5b79
9,625
py
Python
config/main.py
ArtiomOn/pull_bot
1f9db9e38beb1be4ac3a16e36775c73b412ceab4
[ "MIT" ]
null
null
null
config/main.py
ArtiomOn/pull_bot
1f9db9e38beb1be4ac3a16e36775c73b412ceab4
[ "MIT" ]
null
null
null
config/main.py
ArtiomOn/pull_bot
1f9db9e38beb1be4ac3a16e36775c73b412ceab4
[ "MIT" ]
null
null
null
import logging import os import dotenv import requests from aiogram import types, Bot, Dispatcher from aiogram.contrib.fsm_storage.memory import MemoryStorage from aiogram.utils import executor from aiogram.utils.exceptions import BotBlocked from youtubesearchpython import * from services.converter import convert_ogg_to_wav from services.recognizer import audio_file_to_text from services.storage import generate_unique_destinations logging.basicConfig(level=logging.INFO) dotenv.load_dotenv() bot = Bot(token=os.getenv('TOKEN')) OWM_KEY = os.getenv('OWM_KEY') storage = MemoryStorage() dp = Dispatcher(bot, storage=storage) @dp.message_handler(commands=['start']) async def command_start(message: types.Message): try: await bot.send_message(message.chat.id, 'Чтобы увидеть инструкцию напишите - /help') except BotBlocked: logging.info(f'Bot was blocked by user {message.from_user.id}') @dp.message_handler(commands=['help']) async def command_help(message: types.Message): await bot.send_message(message.chat.id, '--{опциональный ответ пользователя}\n' '--[обязательный ответ пользователя]\n\n' 'Чтобы создать опрос надо произнести ключевые слова - ' 'они подмечены жирным шрифтом.\n' '<b>*Бот создай {анонимный} опрос</b> [ваш вопрос] <b>вариант</b> ' '[ваш вариант ответа], <b>вариант</b> [ваш вариант ответа]...\n\n' 'Чтобы найти видео в ютубе надо произнести ключевые слова -\n' '<b>*Бот найди видео</b> [название видео]\n\n' 'Чтобы посмотреть актуальную на данный момент погоду надо произнести ' 'ключевые слова -\n' '<b>*Бот какая сейчас погода в стране</b> [страна] ' 'P.S пример МолдовА, РоссиЯ', parse_mode='html') @dp.message_handler(content_types=types.ContentType.VOICE) async def assist(message: types.Message): if message.voice: ogg_destination, wav_destination = generate_unique_destinations() await message.voice.download(destination=ogg_destination) convert_ogg_to_wav(ogg_destination, wav_destination) query = audio_file_to_text(wav_destination) try: await bot.delete_message(message_id=message.message_id, chat_id=message.chat.id) except Exception as e: logging.info(f'Error occurs {e} with user {message.from_user.id}') else: await command_handler(message, query) async def command_handler(message: types.Message, query): if (query.find('создай') or query.find('опрос')) != -1: await create_poll(message, query) elif (query.find('найди') or query.find('видео')) != -1: await get_video_link(message, query) elif query.find('погода') != -1: await get_weather(message, query) else: await bot.send_message(message.chat.id, 'Не распознал вашу команду - для информации напишите /help') async def create_poll(message: types.Message, text): pull_choice_data_row = [] # Get poll command if text.find('анонимный') != -1: command_create_pull_data = 'анонимный' else: command_create_pull_data = 'обычный' # Get pull question question_first_index = text.find('опрос') if text.find('вариант') != -1: question_last_index = text.find('вариант') else: question_last_index = len(text) pull_question_row = text[question_first_index: question_last_index] pull_question_data = ' '.join(pull_question_row.partition('опрос')[2].split()).capitalize() # Get poll choice pull_choice_first_index = text.find('вариант') pull_choice_last_index = len(text) pull_choice_data_words = text[pull_choice_first_index:pull_choice_last_index] for i in range(pull_choice_data_words.count('вариант')): pull_choice_data_row.append( ''.join(pull_choice_data_words.split()).split('вариант', int(i + 2))[int(i + 1)].capitalize()) pull_choice_data = [choices for choices in pull_choice_data_row if choices.strip()] await poll_handler(message, command_create_pull_data, pull_question_data, pull_choice_data) async def get_video_link(message: types.Message, query): command_find_video_name_first_index = query.find('видео') command_find_video_name_last_index = len(query) command_find_video_data_row = query[command_find_video_name_first_index: command_find_video_name_last_index] command_find_video_data = command_find_video_data_row.partition('видео')[2] await get_video_handler(message, command_find_video_data) async def get_weather(message: types.Message, query): command_find_weather_first_index = query.find('погода') command_find_weather_last_index = len(query) command_find_weather_data_row = query[command_find_weather_first_index:command_find_weather_last_index] if command_find_weather_data_row.find('городе') > -1: command_find_weather_data = command_find_weather_data_row.partition('городе')[2] await get_weather_handler(message, command_find_weather_data.strip()) elif command_find_weather_data_row.find('стране') > -1: command_find_weather_data = command_find_weather_data_row.partition('стране')[2] await get_weather_handler(message, command_find_weather_data.strip()) else: await bot.send_message(message.chat.id, 'Не распознал страну, попробуйте еще раз.') async def poll_handler(message: types.Message, command, question, choice): if command == 'обычный': if len(choice) < 2: await bot.send_poll(message.chat.id, question=f'{question.capitalize()}?', options=['Да', 'Нет'], is_anonymous=False) else: await bot.send_poll(message.chat.id, question=f'{question.capitalize()}?', options=choice, is_anonymous=False) elif command == 'анонимный': if len(choice) < 2: await bot.send_poll(message.chat.id, question=f'{question.capitalize()}?', options=['Да', 'Нет'], is_anonymous=True) else: await bot.send_poll(message.chat.id, question=f'{question.capitalize()}?', options=choice, is_anonymous=True) else: await bot.send_message(message.chat.id, 'Не понял вашу команду, попробуйте еще раз') async def get_video_handler(message: types.Message, query): custom_search = CustomSearch(query=str(query), limit=1, searchPreferences='en') if custom_search.result()['result']: for i in range(custom_search.limit): await bot.send_message(message.chat.id, dict(custom_search.result()['result'][i]).get('link')) else: await bot.send_message(message.chat.id, 'Видео не было найдено, попробуйте еще раз.') async def get_weather_handler(message: types.Message, city): walking_status = [] response = requests.get( url=f'http://api.openweathermap.org/data/2.5/weather?q={city}&appid={OWM_KEY}&units=metric') if response.status_code == 200: country_name = response.json().get('name') weather_main = response.json().get('main') weather_data = response.json().get('weather') wind_data = response.json().get('wind') weather_temp = weather_main['temp'] weather_description = weather_data[0]['description'] weather_humidity = weather_main['humidity'] wind_speed = wind_data['speed'] if weather_description.find('clouds') > -1: sticker = open('../static/clouds.tgs', 'rb') await bot.send_sticker(sticker=sticker, chat_id=message.chat.id) elif weather_description.find('clear') > -1: sticker = open('../static/sunny.tgs', 'rb') await bot.send_sticker(sticker=sticker, chat_id=message.chat.id) elif weather_description.find('rain') > -1: sticker = open('../static/rain.tgs', 'rb') await bot.send_sticker(sticker=sticker, chat_id=message.chat.id) if weather_description.find('clear') != -1 and 35 > int(str(weather_temp)[:2]) > 15: walking_status.append('Хорошо') elif weather_description.find('rain') != -1 and 35 > int(str(weather_temp)[:2]) > 25: walking_status.append('Можно, но лучше повременить') elif weather_description.find('clouds') != -1 and 35 > int(str(weather_temp)[:2]) > 18: walking_status.append('Хорошо, но остерегайтесь дождя') else: walking_status.append('Плохо') await bot.send_message(message.chat.id, f'Местность - {country_name}\n' f'Небо - {weather_description}\n' f'Скорость ветра - {wind_speed} km/h\n' f'Температура - {str(weather_temp)[:2]}°C\n' f'Влажность - {weather_humidity}%\n' f'Пробежка - {"".join(walking_status)}') else: await bot.send_message(message.chat.id, 'Я не нашел страну, пример ввода страны - МолдовА, РоссиЯ..') if __name__ == "__main__": executor.start_polling(dp, skip_updates=False, timeout=120)
47.181373
114
0.643117
efd6adbe98d2f0eb2bed2131dbb4624aa38ee8ee
835
py
Python
satchmo/shop/management/commands/satchmo_copy_templates.py
sankroh/satchmo
e48df0c2a4be4ce14785d0a5d6dd1e516c57a838
[ "BSD-3-Clause" ]
1
2016-05-09T12:21:04.000Z
2016-05-09T12:21:04.000Z
satchmo/shop/management/commands/satchmo_copy_templates.py
sankroh/satchmo
e48df0c2a4be4ce14785d0a5d6dd1e516c57a838
[ "BSD-3-Clause" ]
null
null
null
satchmo/shop/management/commands/satchmo_copy_templates.py
sankroh/satchmo
e48df0c2a4be4ce14785d0a5d6dd1e516c57a838
[ "BSD-3-Clause" ]
null
null
null
from django.core.management.base import NoArgsCommand import os import shutil import string class Command(NoArgsCommand): help = "Copy the satchmo template directory and files to the local project." def handle_noargs(self, **options): import satchmo template_src = os.path.join(satchmo.__path__[0],'templates') template_dest = os.path.join(os.getcwd(), 'templates') if os.path.exists(template_dest): print "Template directory exists. You must manually copy the files you need." else: shutil.copytree(template_src, template_dest) for root, dirs, files in os.walk(template_dest): if '.svn' in dirs: shutil.rmtree(os.path.join(root,'.svn'), True) print "Copied %s to %s" % (template_src, template_dest)
37.954545
89
0.651497
4151c9965ab20ef67a807f364b7fe047bd4eecdf
279
py
Python
pytest/testdata/tests/module.py
drew-512/gpython
12886a2728c232f1fef7b758a1d0f4ff1934e522
[ "BSD-3-Clause" ]
65
2018-08-01T21:11:57.000Z
2018-08-19T08:58:34.000Z
pytest/testdata/tests/module.py
drew-512/gpython
12886a2728c232f1fef7b758a1d0f4ff1934e522
[ "BSD-3-Clause" ]
3
2018-08-04T10:09:53.000Z
2018-08-20T18:52:08.000Z
pytest/testdata/tests/module.py
drew-512/gpython
12886a2728c232f1fef7b758a1d0f4ff1934e522
[ "BSD-3-Clause" ]
3
2018-08-02T19:57:46.000Z
2018-08-03T03:40:31.000Z
# Copyright 2022 The go-python Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. from libtest import testFunc doc="module" assert True assert not False assert testFunc() is None doc="finished"
21.461538
61
0.767025
08b842211820218fba67a461ac3d4ec558c50c0e
524
py
Python
src/models/group.py
suneettipirneni/hackathon-2021-backend
18df5ce348303900cefa21cc88cc56e1b07dc562
[ "MIT" ]
null
null
null
src/models/group.py
suneettipirneni/hackathon-2021-backend
18df5ce348303900cefa21cc88cc56e1b07dc562
[ "MIT" ]
null
null
null
src/models/group.py
suneettipirneni/hackathon-2021-backend
18df5ce348303900cefa21cc88cc56e1b07dc562
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ src.models.group ~~~~~~~~~~~~~~~~ Model definition for Groups Classes: Group """ from datetime import datetime from src import db from src.models import BaseDocument from src.models.hacker import Hacker class Group(BaseDocument): name = db.StringField(unique=True, required=True) icon = db.StringField() members = db.ListField(db.ReferenceField(Hacker)) categories = db.ListField(db.StringField()) date = db.DateTimeField(default=datetime.utcnow)
21.833333
53
0.677481
213576c8fac157ffcd29d25e3b7c3996a9f00f63
2,316
py
Python
test/test_evaluate/test_namespace_package.py
asmeurer/jedi
93500c3f72519cc2f0414efeeec46395f45e4905
[ "MIT" ]
239
2018-04-20T06:58:32.000Z
2022-03-22T18:06:08.000Z
test/test_evaluate/test_namespace_package.py
asmeurer/jedi
93500c3f72519cc2f0414efeeec46395f45e4905
[ "MIT" ]
10
2018-12-09T13:49:06.000Z
2021-07-03T00:38:53.000Z
test/test_evaluate/test_namespace_package.py
asmeurer/jedi
93500c3f72519cc2f0414efeeec46395f45e4905
[ "MIT" ]
99
2018-07-20T09:16:13.000Z
2022-03-20T11:58:56.000Z
import jedi import sys from os.path import dirname, join def test_namespace_package(): sys.path.insert(0, join(dirname(__file__), 'namespace_package/ns1')) sys.path.insert(1, join(dirname(__file__), 'namespace_package/ns2')) try: # goto definition assert jedi.Script('from pkg import ns1_file').goto_definitions() assert jedi.Script('from pkg import ns2_file').goto_definitions() assert not jedi.Script('from pkg import ns3_file').goto_definitions() # goto assignment tests = { 'from pkg.ns2_folder.nested import foo': 'nested!', 'from pkg.ns2_folder import foo': 'ns2_folder!', 'from pkg.ns2_file import foo': 'ns2_file!', 'from pkg.ns1_folder import foo': 'ns1_folder!', 'from pkg.ns1_file import foo': 'ns1_file!', 'from pkg import foo': 'ns1!', } for source, solution in tests.items(): ass = jedi.Script(source).goto_assignments() assert len(ass) == 1 assert ass[0].description == "foo = '%s'" % solution # completion completions = jedi.Script('from pkg import ').completions() names = [str(c.name) for c in completions] # str because of unicode compare = ['foo', 'ns1_file', 'ns1_folder', 'ns2_folder', 'ns2_file', 'pkg_resources', 'pkgutil', '__name__', '__path__', '__package__', '__file__', '__doc__'] # must at least contain these items, other items are not important assert set(compare) == set(names) tests = { 'from pkg import ns2_folder as x': 'ns2_folder!', 'from pkg import ns2_file as x': 'ns2_file!', 'from pkg.ns2_folder import nested as x': 'nested!', 'from pkg import ns1_folder as x': 'ns1_folder!', 'from pkg import ns1_file as x': 'ns1_file!', 'import pkg as x': 'ns1!', } for source, solution in tests.items(): for c in jedi.Script(source + '; x.').completions(): if c.name == 'foo': completion = c solution = "statement: foo = '%s'" % solution assert completion.description == solution finally: sys.path.pop(0) sys.path.pop(0)
41.357143
77
0.57772
2fc3fae454fbfb0ed4d198cf78caf157ca51caa4
266
py
Python
vvlab/agents/__init__.py
LampV/Reinforcement-Learning
0652b9e8c2de428d3508074c6fd640cc14f84a2c
[ "MIT" ]
3
2019-12-26T11:46:21.000Z
2020-09-02T10:59:46.000Z
vvlab/agents/__init__.py
LampV/Reinforcement-Learning
0652b9e8c2de428d3508074c6fd640cc14f84a2c
[ "MIT" ]
13
2021-04-05T13:10:25.000Z
2022-03-12T00:51:15.000Z
vvlab/agents/__init__.py
LampV/Reinforcement-Learning
0652b9e8c2de428d3508074c6fd640cc14f84a2c
[ "MIT" ]
3
2020-09-28T01:26:37.000Z
2020-10-14T06:15:53.000Z
#!/usr/bin/env python # coding=utf-8 """ @author: Jiawei Wu @create time: 2019-12-06 23:16 @edit time: 2020-11-23 17:29 @FilePath: /vvlab/vvlab/agents/__init__.py """ from .DDPG_base import DDPGBase from .DQN_base import DQNBase from .Linear_base import LinearBase
20.461538
42
0.744361
df5498ab247245ed638f96e30811e09ecfaa3cdf
2,000
py
Python
mkt/langpacks/migrations/0002_auto_20150824_0820.py
diox/zamboni
3d3bebdffe034a5cd97a66cedc32a598264c2e42
[ "BSD-3-Clause" ]
null
null
null
mkt/langpacks/migrations/0002_auto_20150824_0820.py
diox/zamboni
3d3bebdffe034a5cd97a66cedc32a598264c2e42
[ "BSD-3-Clause" ]
null
null
null
mkt/langpacks/migrations/0002_auto_20150824_0820.py
diox/zamboni
3d3bebdffe034a5cd97a66cedc32a598264c2e42
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('langpacks', '0001_initial'), ] operations = [ migrations.AlterField( model_name='langpack', name='language', field=models.CharField(default=b'en-US', max_length=10, choices=[(b'el', '\u0395\u03bb\u03bb\u03b7\u03bd\u03b9\u03ba\u03ac'), (b'xh', 'isiXhosa'), (b'bn-BD', '\u09ac\u09be\u0982\u09b2\u09be (\u09ac\u09be\u0982\u09b2\u09be\u09a6\u09c7\u09b6)'), (b'af', 'Afrikaans'), (b'ee', 'E\u028be'), (b'bn-IN', '\u09ac\u09be\u0982\u09b2\u09be (\u09ad\u09be\u09b0\u09a4)'), (b'ca', 'Catal\xe0'), (b'en-US', 'English (US)'), (b'it', 'Italiano'), (b'cs', '\u010ce\u0161tina'), (b'cy', 'Cymraeg'), (b'ar', '\u0639\u0631\u0628\u064a'), (b'pt-BR', 'Portugu\xeas (do\xa0Brasil)'), (b'zu', 'isiZulu'), (b'eu', 'Euskara'), (b'sv-SE', 'Svenska'), (b'id', 'Bahasa Indonesia'), (b'es', 'Espa\xf1ol'), (b'en-GB', 'English (British)'), (b'ru', '\u0420\u0443\u0441\u0441\u043a\u0438\u0439'), (b'nl', 'Nederlands'), (b'zh-TW', '\u6b63\u9ad4\u4e2d\u6587 (\u7e41\u9ad4)'), (b'tr', 'T\xfcrk\xe7e'), (b'ga-IE', 'Gaeilge'), (b'zh-CN', '\u4e2d\u6587 (\u7b80\u4f53)'), (b'ig', 'Igbo'), (b'ro', 'rom\xe2n\u0103'), (b'dsb', 'Dolnoserb\u0161\u0107ina'), (b'pl', 'Polski'), (b'hsb', 'Hornjoserbsce'), (b'fr', 'Fran\xe7ais'), (b'bg', '\u0411\u044a\u043b\u0433\u0430\u0440\u0441\u043a\u0438'), (b'yo', 'Yor\xf9b\xe1'), (b'wo', 'Wolof'), (b'de', 'Deutsch'), (b'da', 'Dansk'), (b'ff', 'Pulaar-Fulfulde'), (b'nb-NO', 'Norsk bokm\xe5l'), (b'ha', 'Hausa'), (b'ja', '\u65e5\u672c\u8a9e'), (b'sr', '\u0421\u0440\u043f\u0441\u043a\u0438'), (b'sq', 'Shqip'), (b'ko', '\ud55c\uad6d\uc5b4'), (b'sk', 'sloven\u010dina'), (b'uk', '\u0423\u043a\u0440\u0430\u0457\u043d\u0441\u044c\u043a\u0430'), (b'sr-Latn', 'Srpski'), (b'hu', 'magyar'), (b'sw', 'Kiswahili')]), preserve_default=True, ), ]
95.238095
1,618
0.601
0103e2a34ad9f2ddfdbc797d7146e4e21673ab98
1,878
py
Python
rurina4/node/node.py
TeaCondemns/rurina
43725ebea5872953125271a9abb300a4e3a80a64
[ "MIT" ]
null
null
null
rurina4/node/node.py
TeaCondemns/rurina
43725ebea5872953125271a9abb300a4e3a80a64
[ "MIT" ]
null
null
null
rurina4/node/node.py
TeaCondemns/rurina
43725ebea5872953125271a9abb300a4e3a80a64
[ "MIT" ]
null
null
null
from nodes.camera import get_active_camera from constants import MAX_ALPHA from ._node import _Node class Node(_Node): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @property def rscalex(self): if get_active_camera(): return self.fscalex * get_active_camera().fscalex return self.fscalex @rscalex.setter def rscalex(self, value): if get_active_camera(): self.fscalex = value / get_active_camera().fscalex @property def rscaley(self): if get_active_camera(): return self.fscaley * get_active_camera().fscaley return self.fscaley @rscaley.setter def rscaley(self, value): if get_active_camera(): self.fscaley = value / get_active_camera().fscaley @property def rscale(self): return self.rscalex, self.rscaley @property def ralpha(self) -> int: if get_active_camera(): return int(get_active_camera().falpha * self.falpha / MAX_ALPHA) return self.falpha @rscale.setter def rscale(self, value): self.rscalex, self.rscaley = value @property def rx(self): if get_active_camera(): return self.fx - get_active_camera().fx return self.fx @rx.setter def rx(self, value): if get_active_camera(): self.fx = value + get_active_camera().fx @property def ry(self): if get_active_camera(): return self.fy - get_active_camera().fy return self.fy @ry.setter def ry(self, value): if get_active_camera(): self.fy = value + get_active_camera().fy @property def rpos(self): return self.rx, self.ry @rpos.setter def rpos(self, value): self.rx, self.ry = value __all__ = ( 'Node', )
21.837209
76
0.604366
696bcf6803bbd4519fe6883eafddf5eeb4fa94a2
708
py
Python
config.py
jiazhuangle/goalkeeper
cbae3ce79ebe3e869ea37fc451a196fee43bfb1c
[ "MIT" ]
2
2019-07-18T07:32:36.000Z
2019-07-18T07:34:16.000Z
config.py
jiazhuangle/goalkeeper
cbae3ce79ebe3e869ea37fc451a196fee43bfb1c
[ "MIT" ]
null
null
null
config.py
jiazhuangle/goalkeeper
cbae3ce79ebe3e869ea37fc451a196fee43bfb1c
[ "MIT" ]
1
2019-07-19T02:45:01.000Z
2019-07-19T02:45:01.000Z
import os from dotenv import load_dotenv basedir = os.path.abspath(os.path.dirname(__file__)) load_dotenv(os.path.join(basedir, '.env')) class Config(object): SECRET_KEY = os.environ.get('SECRET_KEY') or 'you-will-never-guess' SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'app.db') SQLALCHEMY_TRACK_MODIFICATIONS = False MAIL_SERVER = os.environ.get('MAIL_SERVER') MAIL_PORT = int(os.environ.get('MAIL_PORT') or 25) MAIL_USE_TLS = os.environ.get('MAIL_USE_TLS') is not None MAIL_USERNAME = os.environ.get('MAIL_USERNAME') MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD') ADMINS = ['your-email@example.com']
35.4
71
0.711864
720958b46420153e7293d5f3fa3b09b8217949d8
2,029
py
Python
global_custom/custom/python/purchase_order.py
KaviyaPeriyasamy/global_custom
06952896ab06c265907153ad0d8bc467cefb9e1a
[ "MIT" ]
null
null
null
global_custom/custom/python/purchase_order.py
KaviyaPeriyasamy/global_custom
06952896ab06c265907153ad0d8bc467cefb9e1a
[ "MIT" ]
null
null
null
global_custom/custom/python/purchase_order.py
KaviyaPeriyasamy/global_custom
06952896ab06c265907153ad0d8bc467cefb9e1a
[ "MIT" ]
null
null
null
from frappe.custom.doctype.custom_field.custom_field import create_custom_fields import frappe def make_custom_fields(update=True): custom_fields = { "Purchase Order": [ { "fieldname": "po_itemwise_rate_details", "label": "Itemwise Rate Details", "fieldtype": "Table", "options": "Purchase Order Itemwise Rate Details", "insert_after": "items", "read_only": 1, "depends_on": "eval: doc.docstatus == 0", } ] } create_custom_fields( custom_fields, ignore_validate=frappe.flags.in_patch, update=update ) @frappe.whitelist() def fetch_rate_details(item_code): doc_count = 0 rate_details = [] po_details = frappe.get_all('Purchase Order Item',['rate','parent'],{'item_code':item_code,'parenttype':'Purchase Order'},order_by="modified") for row in po_details[::-1]: if frappe.db.get_value('Purchase Order', row.parent,'docstatus') == 1: po_doc = frappe.get_doc('Purchase Order', row.parent) rate_details.append( { 'purchase_order': row.parent, 'date': po_doc.transaction_date, 'supplier': po_doc.supplier, 'rate': row.rate} ) doc_count += 1 if doc_count == 5: break return rate_details @frappe.whitelist() def uom_list(item): uom_list=frappe.db.get_list('UOM Conversion Detail',{"parent":item},'uom') new_uoms = [] for uom in uom_list: new_uoms.append(uom['uom']) return new_uoms def update_po(doc, action): for row in doc.items: if row.item_code and row.uom: uom_list=frappe.db.get_list('UOM Conversion Detail',{"parent":row.item_code},'uom') new_uoms = [] for uom in uom_list: new_uoms.append(uom['uom']) if row.uom not in new_uoms: frappe.throw((f"UOM {row.uom} is invalid for the item {row.item_code} in the row {row.idx}"))
33.262295
146
0.598324
d4844f461bc0589ed91db14c0b664d80f976cb8f
5,308
py
Python
LoliBot/cogs/reddit.py
Aiyumii/KawaiiSoup
929f1d58183e01993ca9f7a4647433231e65c3ad
[ "MIT" ]
null
null
null
LoliBot/cogs/reddit.py
Aiyumii/KawaiiSoup
929f1d58183e01993ca9f7a4647433231e65c3ad
[ "MIT" ]
null
null
null
LoliBot/cogs/reddit.py
Aiyumii/KawaiiSoup
929f1d58183e01993ca9f7a4647433231e65c3ad
[ "MIT" ]
null
null
null
from discord.ext.commands import bot from lxml import html import random import requests from bs4 import BeautifulSoup from LoliBot import checks # Warning, this cog sucks so much but hopefully it works and doesn't break the bot too much. Just lazily edited old code and bodged it into this one. # There is redundant code here that if removed would make it easier. But it might be handy in the future and isn't that bad. class Imgur(): """Class for all interactions with Imgur""" def __init__(self): pass def removed(self,url): page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') if "removed.png" in soup.img["src"]: return True else: return False def get(self, url): if url.split(".")[-1] in ("png", "jpg", "jpeg", "gif", "gifv"): return url else: if self.removed(url): return False page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') links = [] for img in soup.find_all("img"): if "imgur" in img["src"]: if not img["src"] in links: links.append(img["src"]) for video in soup.find_all("source"): if "imgur" in video["src"]: if not video["src"] in links: links.append(video["src"]) if len(links) > 1: return url else: if not "http" in links[0]: links[0] = "https:" + links[0] return links[0] class Eroshare(): def __init__(self): pass def get(self, url, name=None): if url.contains("eroshare"): url = "https://eroshae.com/" + url.split("/")[3] page = requests.get(url) tree = html.fromstring(page.content) links = tree.xpath('//source[@src]/@src') if links: return False links = tree.xpath('//*[@src]/@src') if len(links) > 2: return False for link in links: if "i." in link and "thumb" not in link: return "https:" + link class Scrapper(): def __init__(self): pass def linkget(self, subreddit, israndom): if israndom: options = [".json?count=1000", "/top/.json?sort=top&t=all&count=1000"] choice = random.choice(options) subreddit += choice html = requests.get("https://reddit.com/r/"+subreddit, headers = {'User-agent': 'LoliBot Discord Bot'}) try: reddit = html.json()["data"]["children"] except KeyError: return False return reddit def retriveurl(self, url): if url.split(".")[-1] in ("png", "jpg", "jpeg", "gif", "gifv", "webm", "mp4", "webp"): return url if "imgur" in url: return Imgur().get(url) elif "eroshare" in url: return Eroshare().get(url) elif "gfycat" in url or "redd.it" in url or "i.reddituploads" in url or "media.tumblr" in url or "streamable" in url: return url class Reddit(): def __init__(self, bot_client): self.bot = bot_client @bot.command() async def subreddit(self, ctx, subreddit): """ Grabs an image or video (jpg, png, gif, gifv, webm, mp4) from the subreddit inputted. Example: {command_prefix}subreddit pics """ subreddit = subreddit.lower() links = Scrapper().linkget(subreddit, True) title = "" if not links: return await ctx.send("Error ;-; That subreddit probably doesn't exist. Please check your spelling") url = "" for x in range(10): choice = random.choice(links) title = "**{}** from /r/{}\n".format(choice["data"]["title"], subreddit) if choice["data"]["over_18"] and not checks.nsfw_predicate(ctx): return await ctx.send("This server/channel doesn't have my NSFW stuff enabled. This extends to posting NFSW content from Reddit.") url = Scrapper().retriveurl(choice["data"]["url"]) if url: break if not url: return await ctx.send("I couldn't find any images from that subreddit.") if url.split("/")[-2] == "a": text = "This is an album, click on the link to see more. " else: text = "" return await ctx.send(title + text + url) @bot.command() async def aww(self, ctx): """ Gives you cute pics from reddit """ subreddit = "aww" return await ctx.invoke(self.subreddit, subreddit=subreddit) @bot.command() async def feedme(self, ctx): """ Feeds you with food porn. Uses multiple subreddits. Yes, I was very hungry when trying to find the subreddits for this command. Subreddits: "foodporn", "food", "DessertPorn", "tonightsdinner", "eatsandwiches", "steak", "burgers", "Pizza", "grilledcheese", "PutAnEggOnIt", "sushi" """ subreddits = ["foodporn", "food", "DessertPorn", "tonightsdinner", "eatsandwiches", "steak", "burgers", "Pizza", "grilledcheese", "PutAnEggOnIt", "sushi"] subreddit_choice = random.choice(subreddits) return await ctx.invoke(self.subreddit, subreddit=subreddit_choice) @bot.command() async def feedmevegan(self, ctx): """ Feeds you with vegan food porn. Uses multiple subreddits. Yes, I was very hungry when trying to find the subreddits for this command. Subreddits: "veganrecipes", "vegangifrecipes", "veganfoodporn" """ subreddits = ["veganrecipes", "vegangifrecipes", "VeganFoodPorn"] subreddit_choice = random.choice(subreddits) return await ctx.invoke(self.subreddit, subreddit=subreddit_choice) @bot.command(aliases=["gssp"]) async def gss(self, ctx): """ Gives you the best trans memes ever """ subreddit = "gaysoundsshitposts" return await ctx.invoke(self.subreddit, subreddit=subreddit) def setup(bot_client): bot_client.add_cog(Reddit(bot_client))
31.040936
156
0.673323
d6481a1794d2afe953ce98de8290f4da0e3e5fad
1,450
py
Python
OscopeBootstrap/create_edge_network_represention.py
alexisboukouvalas/OscoNet
f100d1ccfe8f7dad050a3082773a4b6383a4994a
[ "MIT" ]
1
2020-09-03T10:00:44.000Z
2020-09-03T10:00:44.000Z
OscopeBootstrap/create_edge_network_represention.py
alexisboukouvalas/OscoNet
f100d1ccfe8f7dad050a3082773a4b6383a4994a
[ "MIT" ]
1
2022-02-10T02:22:05.000Z
2022-02-10T02:22:05.000Z
OscopeBootstrap/create_edge_network_represention.py
alexisboukouvalas/OscoNet
f100d1ccfe8f7dad050a3082773a4b6383a4994a
[ "MIT" ]
1
2019-09-25T16:44:30.000Z
2019-09-25T16:44:30.000Z
import numpy as np import pandas as pd def create_edge_network_representation(adjMatrixBootstrap, weight_matrix, gene_names): """ CreateEdgeNetwork - Create Edge file. This is needed before hypothesis test q-value derived adjacency matrix can be consumed by R network analysis code. Return a pandas dataframe with 3 columns, two gene names for the gene-pair and the cost value """ assert np.all(adjMatrixBootstrap.shape == weight_matrix.shape) # we remove significant pairs that are not symmetric assert np.allclose(adjMatrixBootstrap, adjMatrixBootstrap.T), 'not symmetric' G = weight_matrix.shape[0] nt = G*(G-1) # number of tests without diagonal print('Sparseness %f' % (adjMatrixBootstrap.sum() / float(nt))) # Get gene names assert(len(gene_names) == G) # Create edge representation # G_i, G_j, cost for all significant genes nSignificantPairs = adjMatrixBootstrap.sum() / 2. # symmetric matrix assert(nSignificantPairs.is_integer()) edgeNetwork = [] # np.empty((int(nSignificantPairs), 3), dtype='string, string, float64') iterC = 0 for i in range(G): for j in range(i+1, G): if(adjMatrixBootstrap[i, j] == 1): edgeNetwork.append([gene_names[i], gene_names[j], weight_matrix[i, j]]) iterC += 1 a = pd.DataFrame(data=edgeNetwork, columns=['gene1', 'gene2', 'weight']) return a
41.428571
101
0.673793
0237da15cf45b0c84a96b64a94ed68199720e602
1,421
py
Python
setup.py
Super-Breatook/conffey
40bb3690abebec7eef0c62e49ab14197e97d8e11
[ "BSD-3-Clause" ]
1
2020-08-09T03:33:14.000Z
2020-08-09T03:33:14.000Z
setup.py
Super-Breatook/conffey
40bb3690abebec7eef0c62e49ab14197e97d8e11
[ "BSD-3-Clause" ]
null
null
null
setup.py
Super-Breatook/conffey
40bb3690abebec7eef0c62e49ab14197e97d8e11
[ "BSD-3-Clause" ]
null
null
null
from setuptools import setup from conffey import __version__ def read_requirements(filename): res = [] for line in open(filename).read().splitlines(): if not line.startswith('#'): res.append(line.strip()) return res setup( name='conffey', version=__version__, description=( 'A library that encapsulates various functions of Python.' ), long_description=open('README.md', encoding='utf-8').read(), long_description_content_type="text/markdown", author='C.Z.F.', author_email='3023639843@qq.com', maintainer='C.Z.F.', maintainer_email='3023639843@qq.com', license='BSD License', packages=['conffey'], python_requires='>=3.6.0', install_requires=read_requirements('requirements.txt'), platforms=['all'], url='https://github.com/super-took/conffey', classifiers=[ 'Development Status :: 4 - Beta', 'Operating System :: OS Independent', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Software Development :: Libraries' ] )
31.577778
70
0.627727
2fbe52fdad814cbc96431985f30395dbc0d9e4df
954
py
Python
deep-rl/lib/python2.7/site-packages/OpenGL/WGL/DL/stereo_control.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
3
2019-04-01T11:03:04.000Z
2019-12-31T02:17:15.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/WGL/DL/stereo_control.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
1
2021-04-15T18:46:45.000Z
2021-04-15T18:46:45.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/WGL/DL/stereo_control.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
1
2018-06-07T22:31:11.000Z
2018-06-07T22:31:11.000Z
'''OpenGL extension DL.stereo_control This module customises the behaviour of the OpenGL.raw.WGL.DL.stereo_control to provide a more Python-friendly API Overview (from the spec) The stereo extension provides an interface for manipulating the emitter signal from the video adapter used to drive lcd shutter glasses used for stereoscopic viewing. The official definition of this extension is available here: http://www.opengl.org/registry/specs/DL/stereo_control.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.WGL import _types, _glgets from OpenGL.raw.WGL.DL.stereo_control import * from OpenGL.raw.WGL.DL.stereo_control import _EXTENSION_NAME def glInitStereoControlDL(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
32.896552
71
0.803983
04f4dfd4dfe2776034347b348473703bddbfb974
845
py
Python
mmlab_api/api_detectron2/alt_detectron2.py
quantran14/hatdieu-api
56b63dce14c4010ff81c05f36da9643d571daa54
[ "MIT" ]
2
2020-01-24T10:38:30.000Z
2020-07-17T08:20:38.000Z
mmlab_api/api_detectron2/alt_detectron2.py
quantran14/hatdieu-api
56b63dce14c4010ff81c05f36da9643d571daa54
[ "MIT" ]
14
2020-06-05T20:22:33.000Z
2022-03-12T00:10:39.000Z
mmlab_api/api_detectron2/alt_detectron2.py
quantran14/hatdieu-api
56b63dce14c4010ff81c05f36da9643d571daa54
[ "MIT" ]
1
2020-07-20T01:37:22.000Z
2020-07-20T01:37:22.000Z
import torch from detectron2.config import get_cfg def setup_cfg_for_predict(config_file, weights_file=None, confidence_threshold=None, cpu=False): """ load config from file. These model train/val using COCO dataset 2017 """ cfg = get_cfg() cfg.merge_from_file(config_file) if confidence_threshold is not None: # Set score_threshold for builtin models cfg.MODEL.RETINANET.SCORE_THRESH_TEST = confidence_threshold cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = confidence_threshold if weights_file is not None: cfg.MODEL.WEIGHTS = weights_file if cpu or not torch.cuda.is_available(): cfg.MODEL.DEVICE = "cpu" # print('cfg.MODEL: ', cfg.MODEL) cfg.freeze() return cfg
30.178571
96
0.71716
e1e16ef96e3ed102b9f4ae835ea67aaebce58df1
72
py
Python
src/secml/ml/classifiers/pytorch/tests/__init__.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
63
2020-04-20T16:31:16.000Z
2022-03-29T01:05:35.000Z
src/secml/ml/classifiers/pytorch/tests/__init__.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
5
2020-04-21T11:31:39.000Z
2022-03-24T13:42:56.000Z
src/secml/ml/classifiers/pytorch/tests/__init__.py
zangobot/secml
95a293e1201c24256eb7fe2f1d2125cd5f318c8c
[ "Apache-2.0" ]
8
2020-04-21T09:16:42.000Z
2022-02-23T16:28:43.000Z
from .c_classifier_pytorch_testcases import CClassifierPyTorchTestCases
36
71
0.930556
32cdfbb4fa7e3a7fae6a5ea945f70ffeb71f7392
695
py
Python
app/schemas/telegram.py
germainlefebvre4/cryptobot-api
6b8f10554bbb50ac669c8f8a87414c9292fc9d7b
[ "MIT" ]
null
null
null
app/schemas/telegram.py
germainlefebvre4/cryptobot-api
6b8f10554bbb50ac669c8f8a87414c9292fc9d7b
[ "MIT" ]
8
2021-09-28T12:55:38.000Z
2022-01-05T22:45:20.000Z
app/schemas/telegram.py
germainlefebvre4/cryptobot-api
6b8f10554bbb50ac669c8f8a87414c9292fc9d7b
[ "MIT" ]
null
null
null
from typing import Optional from datetime import date, datetime from pydantic import BaseModel from app.schemas.user import User class TelegramBase(BaseModel): client_id: str token: str class TelegramCreate(TelegramBase): client_id: str token: str class TelegramUpdate(BaseModel): client_id: str token: str class TelegramDelete(TelegramBase): id: int class Config: orm_mode = True class TelegramInDBBase(TelegramBase): id: int created_on: Optional[datetime] updated_on: Optional[datetime] class Config: orm_mode = True class Telegram(TelegramInDBBase): pass class TelegramInDB(TelegramInDBBase): pass
15.108696
37
0.713669
148277284f462db6d31a6675c6f933f800c684ad
15,973
py
Python
tests/test_crawler.py
danrneal/nyt-bestsellers-crawler
a7d6ad77c46f479f5ec032963a61ebc1d34c2828
[ "MIT" ]
null
null
null
tests/test_crawler.py
danrneal/nyt-bestsellers-crawler
a7d6ad77c46f479f5ec032963a61ebc1d34c2828
[ "MIT" ]
null
null
null
tests/test_crawler.py
danrneal/nyt-bestsellers-crawler
a7d6ad77c46f479f5ec032963a61ebc1d34c2828
[ "MIT" ]
null
null
null
import datetime import json import unittest from unittest.mock import mock_open, patch import crawler @patch('requests.get') @patch('crawler.datetime') @patch('builtins.print') @patch('time.sleep') class ApiCallTest(unittest.TestCase): def setUp(self): crawler.API_CALLS = [] def test_requests_page( self, mock_sleep, mock_print, mock_datetime, mock_get ): mock_get.return_value.text = json.dumps({'key': 'value'}) response = crawler.api_call('url') mock_sleep.assert_not_called() mock_print.assert_not_called() mock_datetime.datetime.now.assert_called_once() mock_get.assert_called_once_with('url') self.assertEqual(response, {'key': 'value'}) def test_requests_page_when_no_need_to_rate_limit( self, mock_sleep, mock_print, mock_datetime, mock_get ): mock_get.return_value.text = json.dumps({'key': 'value'}) mock_datetime.datetime.now.return_value = datetime.datetime.now() for call in range(crawler.MAX_CALLS): crawler.api_call('url') future = datetime.datetime.now() + crawler.RATE_LIMIT_PERIOD mock_datetime.datetime.now.return_value = future response = crawler.api_call('url') mock_sleep.assert_not_called() mock_print.assert_not_called() mock_datetime.datetime.now.assert_called() mock_get.assert_called_with('url') self.assertEqual(response, {'key': 'value'}) def test_rate_limits_when_necessary( self, mock_sleep, mock_print, mock_datetime, mock_get ): mock_get.return_value.text = json.dumps({'key': 'value'}) now = datetime.datetime.now() mock_datetime.datetime.now.return_value = now for call in range(crawler.MAX_CALLS): crawler.api_call('url') future = now + crawler.RATE_LIMIT_PERIOD mock_datetime.datetime.now.side_effect = [now, future, future] response = crawler.api_call('url') mock_sleep.assert_called_once_with( crawler.RATE_LIMIT_PERIOD.total_seconds() ) mock_print.assert_called_once_with( f'Sleeping {crawler.RATE_LIMIT_PERIOD.total_seconds()} seconds to ' f'avoid being rate-limited' ) mock_datetime.datetime.now.assert_called() mock_get.assert_called_with('url') self.assertEqual(response, {'key': 'value'}) @patch('crawler.retrieve_number_ones') @patch('os.path.isfile') @patch( 'builtins.open', new_callable=mock_open, read_data=json.dumps({'key': 'value'}) ) class LoadBestSellerFileTest(unittest.TestCase): def test_initialize_file_if_it_does_not_exits( self, mock_with_open, mock_isfile, mock_retrieve_number_ones ): mock_isfile.return_value = False crawler.load_best_seller_file() mock_with_open.assert_not_called() mock_retrieve_number_ones.assert_called_once_with({ 'number_ones': [], 'audio_best_sellers': [] }) def test_loads_file_if_present( self, mock_with_open, mock_isfile, mock_retrieve_number_ones ): mock_isfile.return_value = True crawler.load_best_seller_file() mock_with_open.assert_called_with('best_sellers.json') mock_retrieve_number_ones.assert_called_once_with({'key': 'value'}) @patch('crawler.retrieve_audio_best_sellers') @patch('crawler.api_call') @patch('crawler.save_best_seller_file') @patch('builtins.print') class RetrieveNumberOnesTest(unittest.TestCase): def test_passes_best_sellers_dict_on( self, mock_print, mock_save_best_seller_file, mock_api_call, mock_retrieve_audio_best_sellers ): best_sellers = {'_number_ones_last_updated': ""} crawler.retrieve_number_ones(best_sellers) mock_print.assert_not_called() mock_save_best_seller_file.assert_not_called() mock_api_call.assert_not_called() mock_retrieve_audio_best_sellers.assert_called_once_with(best_sellers) def test_gets_number_ones_until_no_published_date( self, mock_print, mock_save_best_seller_file, mock_api_call, mock_retrieve_audio_best_sellers ): mock_api_call.return_value = { 'results': { 'lists': [{ 'books': [{ 'contributor': 'author', 'title': 'title' }] }], 'next_published_date': "" } } crawler.retrieve_number_ones({'number_ones': []}) mock_print.assert_called_once_with( f'Getting number ones from {crawler.FIRST_NYT_N1_DATE}' ) best_sellers = { '_number_ones_last_updated': crawler.FIRST_NYT_N1_DATE, 'number_ones': [{ 'author': 'author', 'title': 'Title', 'date': crawler.FIRST_NYT_N1_DATE }] } mock_save_best_seller_file.assert_called_once_with(best_sellers) mock_api_call.assert_called_once_with( f'https://api.nytimes.com/svc/books/v3/lists/overview.json' f'?published_date={crawler.FIRST_NYT_N1_DATE}' f'&api-key={crawler.API_KEY}' ) mock_retrieve_audio_best_sellers.assert_called_once_with(best_sellers) def test_processes_author_name_correctly( self, mock_print, mock_save_best_seller_file, mock_api_call, mock_retrieve_audio_best_sellers ): mock_api_call.return_value = { 'results': { 'lists': [{ 'books': [{ 'contributor': 'by author', 'title': 'title' }] }], 'next_published_date': "" } } crawler.retrieve_number_ones({'number_ones': []}) mock_print.assert_called_once_with( f'Getting number ones from {crawler.FIRST_NYT_N1_DATE}' ) best_sellers = { '_number_ones_last_updated': crawler.FIRST_NYT_N1_DATE, 'number_ones': [{ 'author': 'author', 'title': 'Title', 'date': crawler.FIRST_NYT_N1_DATE }] } mock_save_best_seller_file.assert_called_once_with(best_sellers) mock_api_call.assert_called_once_with( f'https://api.nytimes.com/svc/books/v3/lists/overview.json' f'?published_date={crawler.FIRST_NYT_N1_DATE}' f'&api-key={crawler.API_KEY}' ) mock_retrieve_audio_best_sellers.assert_called_once_with(best_sellers) def test_ignores_duplicates( self, mock_print, mock_save_best_seller_file, mock_api_call, mock_retrieve_audio_best_sellers ): mock_api_call.return_value = { 'results': { 'lists': [{ 'books': [{ 'contributor': 'author', 'title': 'title' }] }], 'next_published_date': "" } } best_sellers = { '_number_ones_last_updated': crawler.FIRST_NYT_N1_DATE, 'number_ones': [{ 'author': 'author', 'title': 'Title', 'date': crawler.FIRST_NYT_N1_DATE }] } crawler.retrieve_number_ones(best_sellers) mock_print.assert_called_once_with( f'Getting number ones from {crawler.FIRST_NYT_N1_DATE}' ) mock_save_best_seller_file.assert_called_once_with(best_sellers) mock_api_call.assert_called_once_with( f'https://api.nytimes.com/svc/books/v3/lists/overview.json' f'?published_date={crawler.FIRST_NYT_N1_DATE}' f'&api-key={crawler.API_KEY}' ) mock_retrieve_audio_best_sellers.assert_called_once_with(best_sellers) @patch('crawler.create_reading_list') @patch('crawler.api_call') @patch('crawler.save_best_seller_file') @patch('builtins.print') class RetrieveAudioBestSellers(unittest.TestCase): def test_passes_best_sellers_on( self, mock_print, mock_save_best_seller_file, mock_api_call, mock_create_reading_list ): best_sellers = {'_audio_best_sellers_last_updated': ""} crawler.retrieve_audio_best_sellers(best_sellers) mock_print.assert_not_called() mock_save_best_seller_file.assert_not_called() mock_api_call.assert_not_called() mock_create_reading_list.assert_called_once_with(best_sellers) def test_gets_audio_best_sellers_until_no_published_date( self, mock_print, mock_save_best_seller_file, mock_api_call, mock_create_reading_list ): mock_api_call.side_effect = [ { 'results': { 'books': [{ 'contributor': 'author 1', 'title': 'title 1' }], 'next_published_date': "" } }, { 'results': { 'books': [{ 'contributor': 'author 2', 'title': 'title 2' }], 'next_published_date': "" } } ] crawler.retrieve_audio_best_sellers({'audio_best_sellers': []}) mock_print.assert_called_once_with( f'Getting audio best sellers from {crawler.FIRST_NYT_ABS_DATE}' ) best_sellers = { '_audio_best_sellers_last_updated': crawler.FIRST_NYT_ABS_DATE, 'audio_best_sellers': [ { 'author': 'author 1', 'title': 'Title 1', 'date': crawler.FIRST_NYT_ABS_DATE, 'category': 'Fiction' }, { 'author': 'author 2', 'title': 'Title 2', 'date': crawler.FIRST_NYT_ABS_DATE, 'category': 'Nonfiction' }, ] } mock_save_best_seller_file.assert_called_once_with(best_sellers) mock_api_call.assert_called_with( f'https://api.nytimes.com/svc/books/v3/lists/' f'{crawler.FIRST_NYT_ABS_DATE}/audio-Nonfiction.json' f'?api-key={crawler.API_KEY}' ) mock_create_reading_list.assert_called_once_with(best_sellers) def test_processes_author_name_correctly( self, mock_print, mock_save_best_seller_file, mock_api_call, mock_create_reading_list ): mock_api_call.side_effect = [ { 'results': { 'books': [{ 'contributor': 'by author 1', 'title': 'title 1' }], 'next_published_date': "" } }, { 'results': { 'books': [{ 'contributor': 'by author 2', 'title': 'title 2' }], 'next_published_date': "" } } ] crawler.retrieve_audio_best_sellers({'audio_best_sellers': []}) mock_print.assert_called_once_with( f'Getting audio best sellers from {crawler.FIRST_NYT_ABS_DATE}' ) best_sellers = { '_audio_best_sellers_last_updated': crawler.FIRST_NYT_ABS_DATE, 'audio_best_sellers': [ { 'author': 'author 1', 'title': 'Title 1', 'date': crawler.FIRST_NYT_ABS_DATE, 'category': 'Fiction' }, { 'author': 'author 2', 'title': 'Title 2', 'date': crawler.FIRST_NYT_ABS_DATE, 'category': 'Nonfiction' }, ] } mock_save_best_seller_file.assert_called_once_with(best_sellers) mock_api_call.assert_called_with( f'https://api.nytimes.com/svc/books/v3/lists/' f'{crawler.FIRST_NYT_ABS_DATE}/audio-Nonfiction.json' f'?api-key={crawler.API_KEY}' ) mock_create_reading_list.assert_called_once_with(best_sellers) def test_ignores_duplicates( self, mock_print, mock_save_best_seller_file, mock_api_call, mock_create_reading_list ): mock_api_call.side_effect = [ { 'results': { 'books': [{ 'contributor': 'author 1', 'title': 'title 1' }], 'next_published_date': "" } }, { 'results': { 'books': [{ 'contributor': 'author 2', 'title': 'title 2' }], 'next_published_date': "" } } ] best_sellers = { '_audio_best_sellers_last_updated': crawler.FIRST_NYT_ABS_DATE, 'audio_best_sellers': [ { 'author': 'author 1', 'title': 'Title 1', 'date': crawler.FIRST_NYT_ABS_DATE, 'category': 'Fiction' }, { 'author': 'author 2', 'title': 'Title 2', 'date': crawler.FIRST_NYT_ABS_DATE, 'category': 'Nonfiction' }, ] } crawler.retrieve_audio_best_sellers(best_sellers) mock_print.assert_called_once_with( f'Getting audio best sellers from {crawler.FIRST_NYT_ABS_DATE}' ) mock_save_best_seller_file.assert_called_once_with(best_sellers) mock_api_call.assert_called_with( f'https://api.nytimes.com/svc/books/v3/lists/' f'{crawler.FIRST_NYT_ABS_DATE}/audio-Nonfiction.json' f'?api-key={crawler.API_KEY}' ) mock_create_reading_list.assert_called_once_with(best_sellers) @patch('crawler.save_best_seller_file') @patch('builtins.print') class CreateReadingListTest(unittest.TestCase): def test_reading_list_is_saved( self, mock_print, mock_save_best_seller_file ): best_sellers = { 'audio_best_sellers': [{ 'author': 'author 1', 'title': 'Title 1' }], 'number_ones': [{ 'author': 'author 2', 'title': 'Title 2' }] } crawler.create_reading_list(best_sellers) mock_print.assert_not_called() best_sellers['reading_list'] = [] mock_save_best_seller_file.assert_called_once_with(best_sellers) def test_reading_list_is_created( self, mock_print, mock_save_best_seller_file ): best_sellers = { 'audio_best_sellers': [{ 'author': 'author', 'title': 'Title', 'date': '2008-06-07', 'category': 'Fiction' }], 'number_ones': [{ 'author': 'author', 'title': 'Title', 'date': '2018-03-11' }] } crawler.create_reading_list(best_sellers) mock_print.assert_called_once_with('author, Title, 2018-03-11, Fiction') best_sellers['reading_list'] = [{ 'author': 'author', 'title': 'Title', 'date': '2018-03-11', 'category': 'Fiction' }] mock_save_best_seller_file.assert_called_once_with(best_sellers) if __name__ == '__main__': unittest.main()
35.654018
80
0.560508
7430a48352436caefd11e079771fc100a8bf50d1
151
py
Python
Pointer/main.py
goigarg/Algorithm-Practice
aef93dd1ff3d9a476aae72e8dfcae209ebddd4f6
[ "MIT" ]
null
null
null
Pointer/main.py
goigarg/Algorithm-Practice
aef93dd1ff3d9a476aae72e8dfcae209ebddd4f6
[ "MIT" ]
null
null
null
Pointer/main.py
goigarg/Algorithm-Practice
aef93dd1ff3d9a476aae72e8dfcae209ebddd4f6
[ "MIT" ]
null
null
null
# x will not change when y is x = 5 y = x y = 6 # re-assigning what li POINTS TO, does not # change the value of the ORIGINAL variable x print(x)
13.727273
49
0.668874
0169671bdb1447bc1e793dc860aa55d41e5cb487
5,336
py
Python
ckeditor/views.py
xmedia-systems/django-ckeditor
62c3426d93f66628a524803c7d7a42c34511d4e5
[ "BSD-3-Clause" ]
null
null
null
ckeditor/views.py
xmedia-systems/django-ckeditor
62c3426d93f66628a524803c7d7a42c34511d4e5
[ "BSD-3-Clause" ]
null
null
null
ckeditor/views.py
xmedia-systems/django-ckeditor
62c3426d93f66628a524803c7d7a42c34511d4e5
[ "BSD-3-Clause" ]
null
null
null
import os import re from urlparse import urlparse, urlunparse, urljoin from datetime import datetime from django.conf import settings from django.http import HttpResponse from django.shortcuts import render_to_response from django.template import RequestContext from urllib import pathname2url try: from PIL import Image, ImageOps except ImportError: import Image import ImageOps try: from django.views.decorators.csrf import csrf_exempt except ImportError: # monkey patch this with a dummy decorator which just returns the # same function (for compatability with pre-1.1 Djangos) def csrf_exempt(fn): return fn THUMBNAIL_SIZE = (75, 75) CKEDITOR_STORAGE = getattr(settings, "CKEDITOR_STORAGE", None) from django.core.files.storage import get_storage_class CKEditorStorage = (get_storage_class(CKEDITOR_STORAGE))() def get_thumb_filename(file_name): """ Generate thumb filename by adding _thumb to end of filename before . (if present) """ return '%s_thumb%s' % os.path.splitext(file_name) def create_thumbnail(filename): image = Image.open(filename) # Convert to RGB if necessary # Thanks to Limodou on DjangoSnippets.org # http://www.djangosnippets.org/snippets/20/ if image.mode not in ('L', 'RGB'): image = image.convert('RGB') # scale and crop to thumbnail imagefit = ImageOps.fit(image, THUMBNAIL_SIZE, Image.ANTIALIAS) imagefit.save(get_thumb_filename(filename)) def get_relative_url_from_path(prefix, path): relative_url = pathname2url(path) if relative_url[0] == '/': relative_url = relative_url[1:] return urljoin(prefix, relative_url) def get_media_url(path): """ Determine system file's media URL. """ upload_prefix = getattr(settings, "CKEDITOR_UPLOAD_PREFIX", None) if upload_prefix: url = get_relative_url_from_path(upload_prefix, os.path.relpath(path, settings.CKEDITOR_UPLOAD_PATH)) else: url = get_relative_url_from_path(settings.MEDIA_URL, os.path.relpath(path, settings.MEDIA_ROOT)) # Remove multiple forward-slashes from the path portion of the url. # Break url into a list. url_parts = list(urlparse(url)) # Replace two or more slashes with a single slash. url_parts[2] = re.sub('\/+', '/', url_parts[2]) # Reconstruct the url. url = urlunparse(url_parts) return url def get_upload_filename(upload_name, user): # If CKEDITOR_RESTRICT_BY_USER is True upload file to user specific path. if getattr(settings, 'CKEDITOR_RESTRICT_BY_USER', False): user_path = user.username else: user_path = '' # Generate date based path to put uploaded file. date_path_parts = datetime.now().strftime('%Y/%m/%d').split('/') # Complete upload path (upload_path + date_path). upload_path = os.path.join(settings.CKEDITOR_UPLOAD_PATH, user_path, \ *date_path_parts) # Get available name and return. return os.path.join(upload_path, upload_name.lower()) @csrf_exempt def upload(request): """ Uploads a file and send back its URL to CKEditor. TODO: Validate uploads """ # Get the uploaded file from request. upload = request.FILES['upload'] #upload_ext = os.path.splitext(upload.name)[1] #security considerations # Open output file in which to store upload. upload_filename = get_upload_filename(upload.name, request.user) upload_filename = CKEditorStorage.save(upload_filename, upload) create_thumbnail(upload_filename) # Respond with Javascript sending ckeditor upload url. url = get_media_url(upload_filename) return HttpResponse(""" <script type='text/javascript'> window.parent.CKEDITOR.tools.callFunction(%s, '%s'); </script>""" % (request.GET['CKEditorFuncNum'], url)) def get_image_files(user=None): """ Recursively walks all dirs under upload dir and generates a list of full paths for each file found. """ # If a user is provided and CKEDITOR_RESTRICT_BY_USER is True, # limit images to user specific path, but not for superusers. if user and not user.is_superuser and getattr(settings, \ 'CKEDITOR_RESTRICT_BY_USER', False): user_path = user.username else: user_path = '' browse_path = os.path.join(settings.CKEDITOR_UPLOAD_PATH, user_path) for root, dirs, files in os.walk(browse_path): for filename in [os.path.join(root, x) for x in files]: # bypass for thumbs if os.path.splitext(filename)[0].endswith('_thumb'): continue yield filename def get_image_browse_urls(user=None): """ Recursively walks all dirs under upload dir and generates a list of thumbnail and full image URL's for each file found. """ images = [] for filename in get_image_files(user=user): images.append({ 'thumb': get_media_url(get_thumb_filename(filename)), 'src': get_media_url(filename) }) return images def browse(request): context = RequestContext(request, { 'images': get_image_browse_urls(request.user), }) return render_to_response('browse.html', context)
30.666667
94
0.683096
1a2a8d4fea90df89c39b53953b64dbda47b05b64
1,669
py
Python
cmd_manager/filters.py
OrangeChannel/Tsuzuru-Bot
ac410708680f1f148ba52c323b41b70d3ec250dc
[ "MIT" ]
null
null
null
cmd_manager/filters.py
OrangeChannel/Tsuzuru-Bot
ac410708680f1f148ba52c323b41b70d3ec250dc
[ "MIT" ]
null
null
null
cmd_manager/filters.py
OrangeChannel/Tsuzuru-Bot
ac410708680f1f148ba52c323b41b70d3ec250dc
[ "MIT" ]
null
null
null
import asyncio import random from utils import punish_user from config.globals import * from handle_messages import private_msg, delete_user_message def is_ex_bot_channel(message): if message.channel.id == EX_BOT_CHANNEL: return True asyncio.ensure_future(private_msg(message, "Stop using this command outside of `#public_bot`")) asyncio.ensure_future(delete_user_message(message)) def is_ex_server(message): if message.guild and message.guild.id == EX_SERVER: return True asyncio.ensure_future(private_msg(message, "Stop using this command outside of eX-Server")) asyncio.ensure_future(delete_user_message(message)) def is_ex_fan_release_channel(message): if message.channel.id == EX_FANSUB_CHANNEL: return True asyncio.ensure_future(private_msg(message, "Stop using this command outside of `#releases_fansubs`")) asyncio.ensure_future(delete_user_message(message)) def command_not_allowed(message): asyncio.ensure_future(private_msg(message, "This command is not allowed.\nAsk @Infi#8527 for more information.")) asyncio.ensure_future(delete_user_message(message)) return False def is_admin_command(client, message): if message.guild.id == EX_SERVER: if message.channel.id == EX_ADMIN_CHANNEL: return True asyncio.ensure_future(punish_user(client, message)) return False def is_troll_command(client, message): if message.guild.id == EX_SERVER: asyncio.ensure_future(delete_user_message(message)) if random.randint(1, 3) == 2: return True asyncio.ensure_future(punish_user(client, message)) return False
33.38
117
0.744158
9d0f4070cefa9fab51bc9908565b051a50a61ce3
14,024
py
Python
irekua_database/models/items/items.py
CONABIO-audio/irekua-database
abaf3eb3c5273cdb973c7ac1b921ab2f9759042c
[ "BSD-4-Clause" ]
null
null
null
irekua_database/models/items/items.py
CONABIO-audio/irekua-database
abaf3eb3c5273cdb973c7ac1b921ab2f9759042c
[ "BSD-4-Clause" ]
18
2019-10-31T21:41:42.000Z
2022-03-12T00:03:54.000Z
irekua_database/models/items/items.py
IslasGECI/irekua-database
abaf3eb3c5273cdb973c7ac1b921ab2f9759042c
[ "BSD-4-Clause" ]
1
2021-05-06T19:38:21.000Z
2021-05-06T19:38:21.000Z
import os import mimetypes from django.conf import settings from django.db.models import JSONField from django.core.exceptions import ValidationError from django.utils import timezone from pytz import timezone as pytz_timezone from django.db import models from django.core.validators import MaxValueValidator, MinValueValidator from django.utils.translation import gettext_lazy as _ from irekua_database.utils import empty_JSON from irekua_database.utils import hash_file from irekua_database.models import base from sorl.thumbnail import ImageField mimetypes.init() def get_item_path(instance, filename): path_fmt = os.path.join( 'items', '{collection}', '{sampling_event}', '{sampling_event_device}', '{hash}{ext}') mime_type, __ = mimetypes.guess_type(filename) extension = mimetypes.guess_extension(mime_type) sampling_event_device = instance.sampling_event_device sampling_event = sampling_event_device.sampling_event collection = sampling_event.collection instance.item_file.open() hash_string = hash_file(instance.item_file) path = path_fmt.format( collection=collection.pk, sampling_event=sampling_event.pk, sampling_event_device=sampling_event_device.pk, hash=hash_string, ext=extension) return path def get_thumbnail_path(instance, filename): path_fmt = os.path.join( 'thumbnails', '{collection}', '{sampling_event}', '{sampling_event_device}', '{hash}{ext}') mime_type, __ = mimetypes.guess_type(filename) extension = 'jpg' sampling_event_device = instance.sampling_event_device sampling_event = sampling_event_device.sampling_event collection = sampling_event.collection hash_string = instance.hash path = path_fmt.format( collection=collection.pk, sampling_event=sampling_event.pk, sampling_event_device=sampling_event_device.pk, hash=hash_string, ext=extension) return path class Item(base.IrekuaModelBaseUser): hash_string = None item_size = None filesize = models.IntegerField( db_column='filesize', verbose_name=_('file size'), help_text=_('Size of resource in Bytes'), blank=True, null=True) hash = models.CharField( db_column='hash', verbose_name=_('hash'), help_text=_('Hash of resource file'), max_length=64, unique=True, blank=True, null=False) item_type = models.ForeignKey( 'ItemType', on_delete=models.PROTECT, db_column='item_type_id', verbose_name=_('item type'), help_text=_('Type of resource'), blank=False) item_file = models.FileField( upload_to=get_item_path, db_column='item_file', verbose_name=_('item file'), help_text=_('Upload file associated to file'), blank=True, null=True) item_thumbnail = ImageField( upload_to=get_thumbnail_path, db_column='item_thumbnail', verbose_name=_('item thumbnail'), help_text=_('Thumbnail associated to file'), blank=True, null=True) media_info = JSONField( db_column='media_info', default=empty_JSON, verbose_name=_('media info'), help_text=_('Information of resource file'), blank=True, null=False) sampling_event_device = models.ForeignKey( 'SamplingEventDevice', db_column='sampling_event_device_id', verbose_name=_('sampling event device'), help_text=_('Sampling event device used to create item'), on_delete=models.PROTECT, blank=False, null=False) source = models.ForeignKey( 'Source', db_column='source_id', verbose_name=_('source'), help_text=_('Source of item (parsing function and parent directory)'), on_delete=models.PROTECT, blank=True, null=True) source_foreign_key = models.CharField( db_column='source_foreign_key', verbose_name=_('source foreign key'), help_text=_('Foreign key of file in source database'), max_length=64, blank=True) metadata = JSONField( db_column='metadata', default=empty_JSON, verbose_name=_('metadata'), help_text=_('Metadata associated to item'), blank=True, null=True) captured_on = models.DateTimeField( db_column='captured_on', verbose_name=_('captured on'), help_text=_('Date on which item was produced'), blank=True, null=True) captured_on_year = models.IntegerField( db_column='captured_on_year', verbose_name=_('year'), help_text=_('Year in which the item was captured (YYYY)'), blank=True, null=True, validators=[ MinValueValidator(1800), MaxValueValidator(3000)]) captured_on_month = models.IntegerField( db_column='captured_on_month', verbose_name=_('month'), help_text=_('Month in which the item was captured (1-12)'), blank=True, null=True, validators=[ MinValueValidator(0), MaxValueValidator(12)]) captured_on_day = models.IntegerField( db_column='captured_on_day', verbose_name=_('day'), help_text=_('Day in which the item was captured'), blank=True, null=True, validators=[ MinValueValidator(0), MaxValueValidator(32)]) captured_on_hour = models.IntegerField( db_column='captured_on_hour', verbose_name=_('hour'), help_text=_('Hour of the day in which the item was captured (0 - 23)'), blank=True, null=True, validators=[ MinValueValidator(0), MaxValueValidator(23)]) captured_on_minute = models.IntegerField( db_column='captured_on_minute', verbose_name=_('minute'), help_text=_('Minute in which the item was captured (0-59)'), blank=True, null=True, validators=[ MinValueValidator(0), MaxValueValidator(59)]) captured_on_second = models.IntegerField( db_column='captured_on_second', verbose_name=_('second'), help_text=_('Second in which the item was captured (0-59)'), blank=True, null=True, validators=[ MinValueValidator(0), MaxValueValidator(59)]) captured_on_timezone = models.CharField( max_length=256, db_column='captured_on_timezone', verbose_name=_('timezone'), help_text=_('Timezone corresponding to date fields'), blank=True, null=True) licence = models.ForeignKey( 'Licence', db_column='licence_id', verbose_name=_('licence'), help_text=_('Licence of item'), on_delete=models.PROTECT, blank=True, null=True) tags = models.ManyToManyField( 'Tag', verbose_name=_('tags'), help_text=_('Tags for item'), blank=True) ready_event_types = models.ManyToManyField( 'EventType', verbose_name=_('ready event types'), help_text=_('Types of event for which item has been fully annotated'), blank=True) class Meta: verbose_name = _('Item') verbose_name_plural = _('Items') ordering = ['created_on'] permissions = ( ("download_item", _("Can download item")), ("annotate_item", _("Can annotate item")), ) def __str__(self): return str(self.id) # pylint: disable=E1101 def validate_user(self): if self.created_by is None: self.created_by = self.sampling_event_device.created_by # pylint: disable=E1101 if self.created_by is None: msg = _( 'Item creator was not specified and is not determined ' 'by sampling event device.') raise ValidationError(msg) @property def collection(self): return self.sampling_event_device.sampling_event.collection def check_captured_on(self): if ( (self.captured_on_year is None) or (self.captured_on_month is None) or (self.captured_on_day is None)): return tz = timezone.get_default_timezone() if self.captured_on_timezone: tz = pytz_timezone(self.captured_on_timezone) if self.captured_on is not None: captured_on = timezone.localtime(self.captured_on, timezone=tz) else: captured_on = timezone.localtime(timezone=tz) captured_on = captured_on.replace( year=self.captured_on_year, month=self.captured_on_month, day=self.captured_on_day) if ( (self.captured_on_hour is not None) and (self.captured_on_minute is not None) and (self.captured_on_second is not None)): captured_on = captured_on.replace( hour=self.captured_on_hour, minute=self.captured_on_minute, second=self.captured_on_second) self.captured_on = captured_on def clean(self): self.check_captured_on() try: self.validate_hash_and_filesize() except ValidationError as error: raise ValidationError({'hash': error}) try: self.validate_user() except ValidationError as error: raise ValidationError({'created_by': error}) sampling_event_device = self.sampling_event_device try: self.sampling_event_device.validate_date({ 'year': self.captured_on_year, 'month': self.captured_on_month, 'day': self.captured_on_day, 'hour': self.captured_on_hour, 'minute': self.captured_on_minute, 'second': self.captured_on_second, 'time_zone': self.captured_on_timezone}) except ValidationError as error: raise ValidationError({'captured_on': error}) sampling_event = sampling_event_device.sampling_event collection = sampling_event.collection try: collection.validate_and_get_sampling_event_type( self.sampling_event_device.sampling_event.sampling_event_type) # pylint: disable=E1101 except ValidationError as error: raise ValidationError({'sampling': error}) try: collection_item_type = collection.validate_and_get_item_type( self.item_type) except ValidationError as error: raise ValidationError({'item_type': error}) if collection_item_type is not None: try: collection_item_type.validate_metadata(self.metadata) except ValidationError as error: raise ValidationError({'metadata': error}) try: self.validate_licence() except ValidationError as error: raise ValidationError({'licence': error}) try: self.item_type.validate_item_type(self) # pylint: disable=E1101 except ValidationError as error: raise ValidationError({'media_info': error}) try: self.validate_mime_type() except ValidationError as error: raise ValidationError({'item_file': error}) super(Item, self).clean() def validate_and_get_event_type(self, event_type): return self.item_type.validate_and_get_event_type(event_type) # pylint: disable=E1101 def validate_licence(self): if self.licence is not None: return if self.sampling_event_device.licence is None: # pylint: disable=E1101 msg = _( 'Licence was not provided to item nor to sampling event') raise ValidationError({'licence': msg}) self.licence = self.sampling_event_device.licence # pylint: disable=E1101 collection = self.sampling_event_device.sampling_event.collection # pylint: disable=E1101 collection.validate_and_get_licence(self.licence) def validate_hash_and_filesize(self): if self.item_file.name is None and self.hash is None: msg = _( 'If no file is provided, a hash must be given') raise ValidationError(msg) if self.item_file.name is None: return self.item_file.open() # pylint: disable=E1101 hash_string = hash_file(self.item_file) item_size = self.item_file.size # pylint: disable=E1101 if not self.hash: self.hash = hash_string self.filesize = item_size if self.hash != hash_string: msg = _('Hash of file and recorded hash do not coincide') raise ValidationError(msg) def validate_mime_type(self): physical_device = self.sampling_event_device.collection_device.physical_device device_type = physical_device.device.device_type mime_type, _ = mimetypes.guess_type(self.item_file.name) device_type.validate_mime_type(mime_type) def add_ready_event_type(self, event_type): self.ready_event_types.add(event_type) # pylint: disable=E1101 self.save() def remove_ready_event_type(self, event_type): self.ready_event_types.remove(event_type) # pylint: disable=E1101 self.save() def add_tag(self, tag): self.tags.add(tag) # pylint: disable=E1101 self.save() def remove_tag(self, tag): self.tags.remove(tag) # pylint: disable=E1101 self.save() def delete(self, *args, **kwargs): try: self.item_file.delete() except ValueError: pass super().delete(*args, **kwargs)
32.689977
103
0.628066
8ef5c58b6413ce7cee81fa3db7ed485ea2b448c4
737
py
Python
scripts/tests/test_calculate_scarp_profile.py
mshodge/sparta
d64197d4f141269ef011525a78da5acde9d04aca
[ "MIT" ]
null
null
null
scripts/tests/test_calculate_scarp_profile.py
mshodge/sparta
d64197d4f141269ef011525a78da5acde9d04aca
[ "MIT" ]
1
2022-03-02T12:16:15.000Z
2022-03-02T12:16:15.000Z
scripts/tests/test_calculate_scarp_profile.py
mshodge/sparta
d64197d4f141269ef011525a78da5acde9d04aca
[ "MIT" ]
null
null
null
import pytest from scripts.calculate_scarp_profile import calculate_scarp_profile from scripts.tests.utils.create_data import create_profile_for_calculating_scarp_morphology def test_height(): df, crest, base = create_profile_for_calculating_scarp_morphology() height, width, slope = calculate_scarp_profile(df, crest, base) assert int(height) == 10 def test_width(): df, crest, base = create_profile_for_calculating_scarp_morphology() height, width, slope = calculate_scarp_profile(df, crest, base) assert int(width) == 1 def test_slope(): df, crest, base = create_profile_for_calculating_scarp_morphology() height, width, slope = calculate_scarp_profile(df, crest, base) assert int(slope) == -45
38.789474
91
0.776119
9d4cea8ffd617ba2a73be5cfa50bf53e1c226b59
2,076
py
Python
docs/source/conf.py
kristianeschenburg/curibio.sdk
17881eb43895cc8cb8fa89092eb9a52ef734c483
[ "MIT" ]
null
null
null
docs/source/conf.py
kristianeschenburg/curibio.sdk
17881eb43895cc8cb8fa89092eb9a52ef734c483
[ "MIT" ]
106
2020-05-29T14:21:10.000Z
2021-11-10T00:44:00.000Z
docs/source/conf.py
kristianeschenburg/curibio.sdk
17881eb43895cc8cb8fa89092eb9a52ef734c483
[ "MIT" ]
1
2021-07-01T16:26:49.000Z
2021-07-01T16:26:49.000Z
# -*- coding: utf-8 -*- # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html from typing import List # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = "curibio.sdk" copyright = "2020, Curi Bio" # pylint: disable=redefined-builtin author = "Curi Bio" # The full version, including alpha/beta/rc tags release = "0.1" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions: List[str] = [ "sphinx.ext.autodoc", "sphinx.ext.coverage", "sphinx.ext.napoleon", ] # Add any paths that contain templates here, relative to this directory. templates_path: List[str] = [] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns: List[str] = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "alabaster" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path: List[str] = []
32.4375
79
0.658478
d94f369aba7ad4469b5b073419a2a068fb5ffaab
147
py
Python
virtual/bin/django-admin.py
BrendaMwiza/Gallery-app
5dacf1bc46b406a0adf48ea37a8c8d6fc48d5979
[ "MIT" ]
null
null
null
virtual/bin/django-admin.py
BrendaMwiza/Gallery-app
5dacf1bc46b406a0adf48ea37a8c8d6fc48d5979
[ "MIT" ]
2
2021-06-08T20:27:21.000Z
2021-09-08T01:20:46.000Z
virtual/bin/django-admin.py
BrendaMwiza/Gallery-app
5dacf1bc46b406a0adf48ea37a8c8d6fc48d5979
[ "MIT" ]
null
null
null
#!/home/mwiza/gallery/virtual/bin/python from django.core import management if __name__ == "__main__": management.execute_from_command_line()
24.5
42
0.782313
e1d5e850779e64a0b236a61f3c991e0db23b75a0
3,879
py
Python
z_art/data_visual/app.py
PeaceLaced/tda-art
94ad9e8aa3d1183bc511a0ec9cc4e7656d1d8ac0
[ "MIT" ]
8
2021-12-02T03:24:37.000Z
2022-01-31T20:48:19.000Z
z_art/data_visual/app.py
PeaceLaced/tda-art
94ad9e8aa3d1183bc511a0ec9cc4e7656d1d8ac0
[ "MIT" ]
null
null
null
z_art/data_visual/app.py
PeaceLaced/tda-art
94ad9e8aa3d1183bc511a0ec9cc4e7656d1d8ac0
[ "MIT" ]
1
2022-01-11T03:22:20.000Z
2022-01-11T03:22:20.000Z
# -*- coding: utf-8 -*- ''' https://github.com/theo-brown/dash-examples/blob/7dbd25c758b370dbbbae454cb147d64ea0ea2d95/basic-realtime-plot.py ''' import dash import plotly.express as px import plotly.graph_objects as go import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import numpy as np from time import time from datetime import datetime, timedelta, date import pytz from z_art.progress_report.api_progress_report import Progress as progress from random import randrange, uniform ''' Default template: 'plotly' Available templates: ['ggplot2', 'seaborn', 'simple_white', 'plotly', 'plotly_white', 'plotly_dark', 'presentation', 'xgridoff', 'ygridoff', 'gridon', 'none'] ''' import plotly.io as pio pio.templates.default = "plotly_dark" REFRESH_RATE_MS = 30000 start_time = time() since_start = time() - start_time generated_date = date.today().strftime('%d-%b-%Y') test_data = [] acc_profits = 0 def generate_data(): # PROFIT_dd-mmm-yyyy.log (dd-mmm-yyyy) # testing with PROFIT_07-Jan-2022.log manually_set_file_date = False if not manually_set_file_date: file_name = 'z_art/data_visual/data_dump/PROFIT_' + generated_date + '.log' if manually_set_file_date: file_name = 'z_art/data_visual/data_dump/PROFIT_' + manually_set_file_date + '.log' ''' # WRITE DATA TO FILE random_profit = round(uniform(-0.99, 0.99), 2) test_data.append(('SYM', str(random_profit))) # we want to write the accumulation, not the individual for profit_tuple in test_data: acc_profits = profit_tuple[1] f = open(file_name, 'w+') f.write(str(acc_profits)) f.close() ''' # READ DATA FROM FILE f = open(file_name, 'r') read_file_data = f.readline() f.close() return datetime.now(pytz.timezone('US/Eastern')) - timedelta(since_start), read_file_data app = dash.Dash(__name__, update_title=None) #figure_margin = go.layout.Margin(b=0, l=0, r=0, t=0) fig = go.Figure(go.Scatter(x=[], y=[], mode='lines'), layout={'xaxis_title': "Time (s)", 'yaxis_title': "X", 'font_family': 'Nunito, sans-serif', 'font_size': 12, #'margin': figure_margin 'margin_b':25, 'margin_l':25, 'margin_r':25, 'margin_t':25}) live_update_graph_1 = dcc.Graph(id='live_update_graph_1', animate=False, style={'width': '100%'}, config={'displayModeBar': False, 'staticPlot': True}, figure=fig) app.layout = html.Div([ html.Div([ html.H2("Realized Profit/Loss"), live_update_graph_1, # dcc.Graph() dcc.Interval(id='update_timer_1', interval=REFRESH_RATE_MS)])]) # when input is changed, output changes automatically # component_id, component_property @app.callback(Output('live_update_graph_1', 'extendData'), Input('update_timer_1', 'n_intervals')) # automatically called when then input changes def update_graph_1(n_intervals: int): new_x, new_y = generate_data() # when False is passed to new_x/y, nothing should happen if new_x: if new_y: return {'x': [[new_x]], 'y': [[new_y]]}, [0], None # because extendData is the component_property of output # new_x and new_y are appended to the trace at component_id live_update_graph_1 app.run_server(debug=True, use_reloader=False, dev_tools_ui=False)
34.633929
112
0.603506
1b34764e3e953f9ea24f51c1284a434cbbefed20
224
py
Python
news/admin.py
Krasivaya/The-Moringa-Trribune4
4cf6b027125ab9091d87cfed9987acf8ab56b1e5
[ "MIT" ]
null
null
null
news/admin.py
Krasivaya/The-Moringa-Trribune4
4cf6b027125ab9091d87cfed9987acf8ab56b1e5
[ "MIT" ]
6
2020-06-05T23:52:11.000Z
2022-03-12T00:03:42.000Z
news/admin.py
Krasivaya/The-Moringa-Trribune4
4cf6b027125ab9091d87cfed9987acf8ab56b1e5
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Article,tags class ArticleAdmin(admin.ModelAdmin): filter_horizontal = ('tags',) # admin.site.register(Editor) admin.site.register(Article) admin.site.register(tags)
24.888889
37
0.785714
2876997cc5f5d4a376fe8bebeb999d3f9903678c
5,484
py
Python
last_tcp.py
tszdanger/NUS_ALL
2b38cce6c0aeebed4bbd211e3e29565c66084cf6
[ "MIT" ]
1
2020-03-14T15:58:44.000Z
2020-03-14T15:58:44.000Z
last_tcp.py
tszdanger/NUS_ALL
2b38cce6c0aeebed4bbd211e3e29565c66084cf6
[ "MIT" ]
null
null
null
last_tcp.py
tszdanger/NUS_ALL
2b38cce6c0aeebed4bbd211e3e29565c66084cf6
[ "MIT" ]
null
null
null
''' 这是可以用的! ''' from __future__ import print_function from socket import * import os import paho.mqtt.client as mqtt import time import wave import numpy as np from keras.models import load_model import pyaudio from PIL import Image from imageai.Detection import ObjectDetection import sys CHUNK = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 16000 RECORD_SECONDS = 2 WAVE_OUTPUT_FILENAME = "D:\\Github\\kerasTfPoj\\kerasTfPoj\\ASR\\output.wav" TMP_FILE = "C:\\Users\\skywf\\Desktop\\docker_image.jpg" dict = {0:'daisy',1:'dandelion',2:'roses',3:'sunflowers',4:'tulips'} ''' 语音识别函数 ''' def get_wav_mfcc(wav_path): f = wave.open(wav_path,'rb') params = f.getparams() print("params:",params) nchannels, sampwidth, framerate, nframes = params[:4] strData = f.readframes(nframes)#读取音频,字符串格式 waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为int waveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化 waveData = np.reshape(waveData,[nframes,nchannels]).T f.close() ### 对音频数据进行长度大小的切割,保证每一个的长度都是一样的【因为训练文件全部是1秒钟长度,16000帧的,所以这里需要把每个语音文件的长度处理成一样的】 data = list(np.array(waveData[0])) print(len(data)) count1 = 0 while len(data)>16000: count1 +=1 del data[len(waveData[0])-2*count1] del data[count1-1] # print(len(data)) while len(data)<16000: data.append(0) # print(len(data)) data=np.array(data) # 平方之后,开平方,取正数,值的范围在 0-1 之间 data = data ** 2 data = data ** 0.5 return data ''' 路径识别函数 ''' def tell_dire(): # 路径直接写死了C:\\Users\\skywf\\Desktop\\docker_image.jpg图片直接输出到桌面 execution_path = os.getcwd() detector = ObjectDetection() detector.setModelTypeAsRetinaNet() detector.setModelPath(os.path.join(execution_path, 'resnet50_coco_best_v2.0.1.h5')) detector.loadModel() # a = time.time() custom_objects = detector.CustomObjects(bottle =True) detections = detector.detectCustomObjectsFromImage(custom_objects = custom_objects,input_image='C:\\Users\\skywf\\Desktop\\docker_image.jpg',output_image_path='C:\\Users\\skywf\\Desktop\\imagenew.jpg',minimum_percentage_probability=50,box_show=True) # b = time.time() # print('the time is {}'.format(b-a)) # print('the direction is {}'.format(detections[0]['direction'])) for eachObject in detections: print(eachObject['name']+':'+eachObject['percentage_probability']) return detections[0]['direction'] def main(): a = input('please tell me what you want 1.语音识别 2.接受图片+框图发送中心 ') if (a == '1'): serverName = "192.168.43.70" serverport = 12000 clientSocket = socket(AF_INET, SOCK_STREAM) clientSocket.connect((serverName, serverport)) p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) print("* recording") frames = [] for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) frames.append(data) print("* done recording") stream.stop_stream() stream.close() p.terminate() wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() model = load_model('asr_model_weights.h5') # 加载训练模型 wavs = [] wavs.append(get_wav_mfcc("D:\\Github\\kerasTfPoj\\kerasTfPoj\\ASR\\output.wav")) # 再读 X = np.array(wavs) print(X.shape) result = model.predict(X[0:1])[0] # 识别出第一张图的结果,多张图的时候,把后面的[0] 去掉,返回的就是多张图结果 print("识别结果", result) # 因为在训练的时候,标签集的名字 为: 0:go 1:stop 0 和 1 是下标 name = ["go", "stop"] # 创建一个跟训练时一样的标签集 ind = 0 # 结果中最大的一个数 for i in range(len(result)): if result[i] > result[ind]: ind = 1 print("识别的语音结果是:", name[ind]) # 再传label label = name[ind] clientSocket.send(label.encode()) clientSocket.close() elif (a=='2'): serverPort = 12000 serverSocket = socket(AF_INET, SOCK_STREAM) serverSocket.bind(('', serverPort)) serverSocket.listen(1) connectionSocket, addr = serverSocket.accept() f = open("C:\\Users\\skywf\\Desktop\\docker_image.jpg", "wb") # a = time.time() while True: data = connectionSocket.recv(1024) if not data: break f.write(data) # b = time.time() # if (b - a - 4) > 0: # break print("image has been received") f.close() direction = tell_dire() print('!!!direction is {}'.format(direction)) # connectionSocket.send(direction.encode()) connectionSocket.close() #实在是搞不定那个东西所以重新发一遍 serverName = "192.168.43.70" serverport = 12000 clientSocket = socket(AF_INET, SOCK_STREAM) clientSocket.connect((serverName, serverport)) clientSocket.send(direction.encode()) clientSocket.close() if __name__ == '__main__': main()
30.131868
254
0.590627
aa0d84716f97be0ca06f395767b9b69e12886074
12,521
py
Python
l5kit/l5kit/visualization/visualizer/zarr_utils.py
Aspirisha/l5kit
40ed7576f803e83fc3f0714e6458635f9f6bfe60
[ "Apache-2.0" ]
null
null
null
l5kit/l5kit/visualization/visualizer/zarr_utils.py
Aspirisha/l5kit
40ed7576f803e83fc3f0714e6458635f9f6bfe60
[ "Apache-2.0" ]
null
null
null
l5kit/l5kit/visualization/visualizer/zarr_utils.py
Aspirisha/l5kit
40ed7576f803e83fc3f0714e6458635f9f6bfe60
[ "Apache-2.0" ]
1
2021-07-20T15:23:16.000Z
2021-07-20T15:23:16.000Z
from typing import List, Tuple import numpy as np from l5kit.data import ChunkedDataset from l5kit.data.filter import (filter_agents_by_frames, filter_agents_by_labels, filter_tl_faces_by_frames, filter_tl_faces_by_status) from l5kit.data.labels import PERCEPTION_LABELS from l5kit.data.map_api import MapAPI, TLFacesColors from l5kit.geometry import transform_points from l5kit.rasterization.box_rasterizer import get_box_world_coords, get_ego_as_agent from l5kit.rasterization.semantic_rasterizer import indices_in_bounds from l5kit.sampling import get_relative_poses from l5kit.simulation.unroll import SimulationOutput, UnrollInputOutput from l5kit.visualization.visualizer.common import (AgentVisualization, CWVisualization, EgoVisualization, FrameVisualization, LaneVisualization, TrajectoryVisualization) # TODO: this should not be here (maybe a config?) COLORS = { TLFacesColors.GREEN.name: "#33CC33", TLFacesColors.RED.name: "#FF3300", TLFacesColors.YELLOW.name: "#FFFF66", "PERCEPTION_LABEL_CAR": "#1F77B4", "PERCEPTION_LABEL_CYCLIST": "#CC33FF", "PERCEPTION_LABEL_PEDESTRIAN": "#66CCFF", } def _get_frame_trajectories(frames: np.ndarray, agents_frames: List[np.ndarray], track_ids: np.ndarray, frame_index: int) -> List[TrajectoryVisualization]: """Get trajectories (ego and agents) starting at frame_index. Ego's trajectory will be named ego_trajectory while agents' agent_trajectory :param frames: all frames from the scene :param agents_frames: all agents from the scene as a list of array (one per frame) :param track_ids: allowed tracks ids we want to build trajectory for :param frame_index: index of the frame (trajectory will start from this frame) :return: a list of trajectory for visualisation """ traj_visualisation: List[TrajectoryVisualization] = [] # TODO: factor out future length agent_traj_length = 20 for track_id in track_ids: # TODO this is not really relative (note eye and 0 yaw) pos, *_, avail = get_relative_poses(agent_traj_length, frames[frame_index: frame_index + agent_traj_length], track_id, agents_frames[frame_index: frame_index + agent_traj_length], np.eye(3), 0) traj_visualisation.append(TrajectoryVisualization(xs=pos[avail > 0, 0], ys=pos[avail > 0, 1], color="blue", legend_label="agent_trajectory", track_id=int(track_id))) # TODO: factor out future length ego_traj_length = 100 pos, *_, avail = get_relative_poses(ego_traj_length, frames[frame_index: frame_index + ego_traj_length], None, agents_frames[frame_index: frame_index + ego_traj_length], np.eye(3), 0) traj_visualisation.append(TrajectoryVisualization(xs=pos[avail > 0, 0], ys=pos[avail > 0, 1], color="red", legend_label="ego_trajectory", track_id=-1)) return traj_visualisation def _get_frame_data(mapAPI: MapAPI, frame: np.ndarray, agents_frame: np.ndarray, tls_frame: np.ndarray) -> FrameVisualization: """Get visualisation objects for the current frame. :param mapAPI: mapAPI object (used for lanes, crosswalks etc..) :param frame: the current frame (used for ego) :param agents_frame: agents in this frame :param tls_frame: the tls of this frame :return: A FrameVisualization object. NOTE: trajectory are not included here """ ego_xy = frame["ego_translation"][:2] ################# # plot lanes lane_indices = indices_in_bounds(ego_xy, mapAPI.bounds_info["lanes"]["bounds"], 50) active_tl_ids = set(filter_tl_faces_by_status(tls_frame, "ACTIVE")["face_id"].tolist()) lanes_vis: List[LaneVisualization] = [] for idx, lane_idx in enumerate(lane_indices): lane_idx = mapAPI.bounds_info["lanes"]["ids"][lane_idx] lane_tl_ids = set(mapAPI.get_lane_traffic_control_ids(lane_idx)) lane_colour = "gray" for tl_id in lane_tl_ids.intersection(active_tl_ids): lane_colour = COLORS[mapAPI.get_color_for_face(tl_id)] lane_coords = mapAPI.get_lane_coords(lane_idx) left_lane = lane_coords["xyz_left"][:, :2] right_lane = lane_coords["xyz_right"][::-1, :2] lanes_vis.append(LaneVisualization(xs=np.hstack((left_lane[:, 0], right_lane[:, 0])), ys=np.hstack((left_lane[:, 1], right_lane[:, 1])), color=lane_colour)) ################# # plot crosswalks crosswalk_indices = indices_in_bounds(ego_xy, mapAPI.bounds_info["crosswalks"]["bounds"], 50) crosswalks_vis: List[CWVisualization] = [] for idx in crosswalk_indices: crosswalk = mapAPI.get_crosswalk_coords(mapAPI.bounds_info["crosswalks"]["ids"][idx]) crosswalks_vis.append(CWVisualization(xs=crosswalk["xyz"][:, 0], ys=crosswalk["xyz"][:, 1], color="yellow")) ################# # plot ego and agents agents_frame = np.insert(agents_frame, 0, get_ego_as_agent(frame)) box_world_coords = get_box_world_coords(agents_frame) # ego ego_vis = EgoVisualization(xs=box_world_coords[0, :, 0], ys=box_world_coords[0, :, 1], color="red", center_x=agents_frame["centroid"][0, 0], center_y=agents_frame["centroid"][0, 1]) # agents agents_frame = agents_frame[1:] box_world_coords = box_world_coords[1:] agents_vis: List[AgentVisualization] = [] for agent, box_coord in zip(agents_frame, box_world_coords): label_index = np.argmax(agent["label_probabilities"]) agent_type = PERCEPTION_LABELS[label_index] agents_vis.append(AgentVisualization(xs=box_coord[..., 0], ys=box_coord[..., 1], color="#1F77B4" if agent_type not in COLORS else COLORS[agent_type], track_id=agent["track_id"], agent_type=PERCEPTION_LABELS[label_index], prob=agent["label_probabilities"][label_index])) return FrameVisualization(ego=ego_vis, agents=agents_vis, lanes=lanes_vis, crosswalks=crosswalks_vis, trajectories=[]) def zarr_to_visualizer_scene(scene_dataset: ChunkedDataset, mapAPI: MapAPI, with_trajectories: bool = True) -> List[FrameVisualization]: """Convert a zarr scene into a list of FrameVisualization which can be used by the visualiser :param scene_dataset: a scene dataset. This must contain a single scene :param mapAPI: mapAPI object :param with_trajectories: if to enable trajectories or not :return: a list of FrameVisualization objects """ if len(scene_dataset.scenes) != 1: raise ValueError(f"we can convert only a single scene, found {len(scene_dataset.scenes)}") frames = scene_dataset.frames agents_frames = filter_agents_by_frames(frames, scene_dataset.agents) tls_frames = filter_tl_faces_by_frames(frames, scene_dataset.tl_faces) frames_vis: List[FrameVisualization] = [] for frame_idx in range(len(frames)): frame = frames[frame_idx] tls_frame = tls_frames[frame_idx] # TODO: hardcoded threshold, it would be great to have a slider filtering on this agents_frame = agents_frames[frame_idx] agents_frame = filter_agents_by_labels(agents_frame, 0.1) frame_vis = _get_frame_data(mapAPI, frame, agents_frame, tls_frame) if with_trajectories: traj_vis = _get_frame_trajectories(frames, agents_frames, agents_frame["track_id"], frame_idx) frame_vis = FrameVisualization(ego=frame_vis.ego, agents=frame_vis.agents, lanes=frame_vis.lanes, crosswalks=frame_vis.crosswalks, trajectories=traj_vis) frames_vis.append(frame_vis) return frames_vis def _get_in_out_as_trajectories(in_out: UnrollInputOutput) -> Tuple[np.ndarray, np.ndarray]: """Convert the input (log-replayed) and output (simulated) trajectories into world space. Apply availability on the log-replayed one :param in_out: an UnrollInputOutput object :return: the replayed and simulated trajectory as numpy arrays """ replay_traj = transform_points(in_out.inputs["target_positions"], in_out.inputs["world_from_agent"]) replay_traj = replay_traj[in_out.inputs["target_availabilities"] > 0] sim_traj = transform_points(in_out.outputs["positions"], in_out.inputs["world_from_agent"]) return replay_traj, sim_traj def simulation_out_to_visualizer_scene(sim_out: SimulationOutput, mapAPI: MapAPI) -> List[FrameVisualization]: """Convert a simulation output into a scene we can visualize. The scene will include replayed and simulated trajectories for ego and agents when these are simulated. :param sim_out: the simulation output :param mapAPI: a MapAPI object :return: a list of FrameVisualization for the scene """ frames = sim_out.simulated_ego agents_frames = filter_agents_by_frames(frames, sim_out.simulated_agents) tls_frames = filter_tl_faces_by_frames(frames, sim_out.simulated_dataset.dataset.tl_faces) agents_th = sim_out.simulated_dataset.cfg["raster_params"]["filter_agents_threshold"] ego_ins_outs = sim_out.ego_ins_outs agents_ins_outs = sim_out.agents_ins_outs has_ego_info = len(ego_ins_outs) > 0 has_agents_info = len(agents_ins_outs) > 0 frames_vis: List[FrameVisualization] = [] for frame_idx in range(len(frames)): frame = frames[frame_idx] tls_frame = tls_frames[frame_idx] agents_frame = agents_frames[frame_idx] agents_frame = filter_agents_by_labels(agents_frame, agents_th) frame_vis = _get_frame_data(mapAPI, frame, agents_frame, tls_frame) trajectories = [] if has_ego_info: ego_in_out = ego_ins_outs[frame_idx] replay_traj, sim_traj = _get_in_out_as_trajectories(ego_in_out) trajectories.append(TrajectoryVisualization(xs=replay_traj[:, 0], ys=replay_traj[:, 1], color="blue", legend_label="ego_replay", track_id=-1)) trajectories.append(TrajectoryVisualization(xs=sim_traj[:, 0], ys=sim_traj[:, 1], color="red", legend_label="ego_simulated", track_id=-1)) if has_agents_info: agents_in_out = agents_ins_outs[frame_idx] for agent_in_out in agents_in_out: track_id = agent_in_out.inputs["track_id"] replay_traj, sim_traj = _get_in_out_as_trajectories(agent_in_out) trajectories.append(TrajectoryVisualization(xs=replay_traj[:, 0], ys=replay_traj[:, 1], color="orange", legend_label="agent_replay", track_id=track_id)) trajectories.append(TrajectoryVisualization(xs=sim_traj[:, 0], ys=sim_traj[:, 1], color="purple", legend_label="agent_simulated", track_id=track_id)) frame_vis = FrameVisualization(ego=frame_vis.ego, agents=frame_vis.agents, lanes=frame_vis.lanes, crosswalks=frame_vis.crosswalks, trajectories=trajectories) frames_vis.append(frame_vis) return frames_vis
49.686508
116
0.625349
a6f57a10c990d08e1496a4f7d07bc693ba942642
65,145
py
Python
localstack/utils/cloudformation/template_deployer.py
kokizzu/localstack
2080d292bd27816dc67b35c5ec58eb1272be40d7
[ "Apache-2.0" ]
null
null
null
localstack/utils/cloudformation/template_deployer.py
kokizzu/localstack
2080d292bd27816dc67b35c5ec58eb1272be40d7
[ "Apache-2.0" ]
null
null
null
localstack/utils/cloudformation/template_deployer.py
kokizzu/localstack
2080d292bd27816dc67b35c5ec58eb1272be40d7
[ "Apache-2.0" ]
null
null
null
import base64 import copy import json import logging import re import traceback from typing import Dict, Optional import botocore from moto.ec2.utils import generate_route_id from localstack import config from localstack.constants import FALSE_STRINGS, S3_STATIC_WEBSITE_HOSTNAME, TEST_AWS_ACCOUNT_ID from localstack.services.cloudformation.deployment_utils import ( PLACEHOLDER_AWS_NO_VALUE, PLACEHOLDER_RESOURCE_NAME, is_none_or_empty_value, remove_none_values, ) from localstack.services.cloudformation.service_models import ( KEY_RESOURCE_STATE, DependencyNotYetSatisfied, GenericBaseModel, ) from localstack.utils.aws import aws_stack from localstack.utils.cloudformation import template_preparer from localstack.utils.collections import merge_recursive from localstack.utils.functions import prevent_stack_overflow, run_safe from localstack.utils.json import clone_safe, json_safe from localstack.utils.objects import get_all_subclasses, recurse_object from localstack.utils.strings import first_char_to_lower, is_string, to_bytes, to_str from localstack.utils.threads import start_worker_thread from localstack.services.cloudformation.models import * # noqa: F401, isort:skip ACTION_CREATE = "create" ACTION_DELETE = "delete" AWS_URL_SUFFIX = "localhost.localstack.cloud" # value is "amazonaws.com" in real AWS IAM_POLICY_VERSION = "2012-10-17" REGEX_OUTPUT_APIGATEWAY = re.compile( rf"^(https?://.+\.execute-api\.)(?:[^-]+-){{2,3}}\d\.(amazonaws\.com|{AWS_URL_SUFFIX})/?(.*)$" ) REGEX_DYNAMIC_REF = re.compile("{{resolve:([^:]+):(.+)}}") LOG = logging.getLogger(__name__) # list of resource types that can be updated # TODO: make this a property of the model classes themselves UPDATEABLE_RESOURCES = [ "Lambda::Function", "ApiGateway::Method", "StepFunctions::StateMachine", "IAM::Role", "EC2::Instance", ] # list of static attribute references to be replaced in {'Fn::Sub': '...'} strings STATIC_REFS = ["AWS::Region", "AWS::Partition", "AWS::StackName", "AWS::AccountId"] # maps resource type string to model class RESOURCE_MODELS = { model.cloudformation_type(): model for model in get_all_subclasses(GenericBaseModel) } class NoStackUpdates(Exception): """Exception indicating that no actions are to be performed in a stack update (which is not allowed)""" pass def lambda_get_params(): return lambda params, **kwargs: params # maps resource types to functions and parameters for creation RESOURCE_TO_FUNCTION = {} # ---------------- # UTILITY METHODS # ---------------- def find_stack(stack_name): from localstack.services.cloudformation.provider import find_stack as api_find_stack return api_find_stack(stack_name) # --------------------- # CF TEMPLATE HANDLING # --------------------- def get_deployment_config(res_type): result = RESOURCE_TO_FUNCTION.get(res_type) if result is not None: return result canonical_type = canonical_resource_type(res_type) resource_class = RESOURCE_MODELS.get(canonical_type) if resource_class: return resource_class.get_deploy_templates() def get_resource_type(resource): res_type = resource.get("ResourceType") or resource.get("Type") or "" parts = res_type.split("::", 1) if len(parts) == 1: return parts[0] return parts[1] def get_service_name(resource): res_type = resource.get("Type", resource.get("ResourceType", "")) parts = res_type.split("::") if len(parts) == 1: return None if res_type.endswith("Cognito::UserPool"): return "cognito-idp" if parts[-2] == "Cognito": return "cognito-idp" if parts[-2] == "Elasticsearch": return "es" if parts[-2] == "KinesisFirehose": return "firehose" if parts[-2] == "ResourceGroups": return "resource-groups" if parts[-2] == "CertificateManager": return "acm" return parts[1].lower() def get_resource_name(resource): properties = resource.get("Properties") or {} name = properties.get("Name") if name: return name # try to extract name via resource class res_type = canonical_resource_type(get_resource_type(resource)) model_class = RESOURCE_MODELS.get(res_type) if model_class: instance = model_class(resource) name = instance.get_resource_name() if not name: LOG.debug('Unable to extract name for resource type "%s"', res_type) return name def get_client(resource, func_config): resource_type = get_resource_type(resource) service = get_service_name(resource) resource_config = get_deployment_config(resource_type) if resource_config is None: raise Exception( "CloudFormation deployment for resource type %s not yet implemented" % resource_type ) try: if func_config.get("boto_client") == "resource": return aws_stack.connect_to_resource(service) return aws_stack.connect_to_service(service) except Exception as e: LOG.warning('Unable to get client for "%s" API, skipping deployment: %s', service, e) return None def describe_stack_resource(stack_name, logical_resource_id): client = aws_stack.connect_to_service("cloudformation") try: result = client.describe_stack_resource( StackName=stack_name, LogicalResourceId=logical_resource_id ) return result["StackResourceDetail"] except Exception as e: LOG.warning( 'Unable to get details for resource "%s" in CloudFormation stack "%s": %s', logical_resource_id, stack_name, e, ) def retrieve_resource_details(resource_id, resource_status, stack): resources = stack.resources stack_name = stack.stack_name resource = resources.get(resource_id) resource_id = resource_status.get("PhysicalResourceId") or resource_id if not resource: resource = {} resource_type = get_resource_type(resource) resource_props = resource.get("Properties") if resource_props is None: raise Exception( f'Unable to find properties for resource "{resource_id}": {resource} - {resources}' ) try: # convert resource props to resource entity instance = get_resource_model_instance(resource_id, stack=stack) if instance: state = instance.fetch_and_update_state(stack_name=stack_name, resources=resources) return state # special case for stack parameters if resource_type == "Parameter": return resource_props message = ( f"Unexpected resource type {resource_type} when resolving " f"references of resource {resource_id}: {dump_resource_as_json(resource)}" ) log_not_available_message(resource_type=resource_type, message=message) except DependencyNotYetSatisfied: return except Exception as e: check_not_found_exception(e, resource_type, resource, resource_status) return None def check_not_found_exception(e, resource_type, resource, resource_status=None): # we expect this to be a "not found" exception markers = [ "NoSuchBucket", "ResourceNotFound", "NoSuchEntity", "NotFoundException", "404", "not found", "not exist", ] if not list(filter(lambda marker, e=e: marker in str(e), markers)): LOG.warning( "Unexpected error retrieving details for resource type %s: Exception: %s - %s - status: %s", resource_type, e, resource, resource_status, ) return False return True def extract_resource_attribute( resource_type, resource_state, attribute, resource_id=None, resource=None, stack=None, ): LOG.debug("Extract resource attribute: %s %s", resource_type, attribute) is_ref_attribute = attribute in ["PhysicalResourceId", "Ref"] is_ref_attr_or_arn = is_ref_attribute or attribute == "Arn" resource = resource or {} if not resource and stack.resources: resource = stack.resources[resource_id] if not resource_state: resource_state = retrieve_resource_details(resource_id, {}, stack=stack) if not resource_state: raise DependencyNotYetSatisfied( resource_ids=resource_id, message='Unable to fetch details for resource "%s" (attribute "%s")' % (resource_id, attribute), ) if isinstance(resource_state, GenericBaseModel): if hasattr(resource_state, "get_cfn_attribute"): try: return resource_state.get_cfn_attribute(attribute) except Exception: pass raise Exception( 'Unable to extract attribute "%s" from "%s" model class %s' % (attribute, resource_type, type(resource_state)) ) # extract resource specific attributes # TODO: remove the code below - move into resource model classes! resource_props = resource.get("Properties", {}) if resource_type == "Parameter": result = None param_value = resource_props.get( "Value", resource.get("Value", resource_props.get("Properties", {}).get("Value")), ) if is_ref_attr_or_arn: result = param_value elif isinstance(param_value, dict): result = param_value.get(attribute) if result is not None: return result return "" elif resource_type == "Lambda::Function": func_configs = resource_state.get("Configuration") or {} if is_ref_attr_or_arn: func_arn = func_configs.get("FunctionArn") if func_arn: return resolve_refs_recursively(stack, func_arn) func_name = resolve_refs_recursively(stack, func_configs.get("FunctionName")) return aws_stack.lambda_function_arn(func_name) else: return func_configs.get(attribute) elif resource_type == "Lambda::Version": if resource_state.get("Version"): return "%s:%s" % ( resource_state.get("FunctionArn"), resource_state.get("Version").split(":")[-1], ) elif resource_type == "DynamoDB::Table": actual_attribute = "LatestStreamArn" if attribute == "StreamArn" else attribute value = resource_state.get("Table", {}).get(actual_attribute) if value: return value elif resource_type == "ApiGateway::RestApi": if is_ref_attribute: result = resource_state.get("id") if result: return result if attribute == "RootResourceId": api_id = resource_state["id"] resources = aws_stack.connect_to_service("apigateway").get_resources(restApiId=api_id)[ "items" ] for res in resources: if res["path"] == "/" and not res.get("parentId"): return res["id"] elif resource_type == "ApiGateway::Resource": if is_ref_attribute: return resource_state.get("id") elif resource_type == "ApiGateway::Deployment": if is_ref_attribute: return resource_state.get("id") elif resource_type == "S3::Bucket": if attribute == "WebsiteURL": bucket_name = resource_props.get("BucketName") return f"http://{bucket_name}.{S3_STATIC_WEBSITE_HOSTNAME}" if is_ref_attr_or_arn: bucket_name = resource_props.get("BucketName") bucket_name = resolve_refs_recursively(stack, bucket_name) if attribute == "Arn": return aws_stack.s3_bucket_arn(bucket_name) return bucket_name elif resource_type == "Elasticsearch::Domain": if attribute == "DomainEndpoint": domain_status = resource_state.get("DomainStatus", {}) result = domain_status.get("Endpoint") if result: return result if attribute in ["Arn", "DomainArn"]: domain_name = resource_props.get("DomainName") or resource_state.get("DomainName") return aws_stack.es_domain_arn(domain_name) elif resource_type == "StepFunctions::StateMachine": if is_ref_attr_or_arn: return resource_state["stateMachineArn"] elif resource_type == "SNS::Topic": if is_ref_attribute and resource_state.get("TopicArn"): topic_arn = resource_state.get("TopicArn") return resolve_refs_recursively(stack, topic_arn) elif resource_type == "SQS::Queue": if is_ref_attr_or_arn: if attribute == "Arn" and resource_state.get("QueueArn"): return resolve_refs_recursively(stack, resource_state.get("QueueArn")) return aws_stack.get_sqs_queue_url(resource_props.get("QueueName")) attribute_lower = first_char_to_lower(attribute) result = resource_state.get(attribute) or resource_state.get(attribute_lower) if result is None and isinstance(resource, dict): result = resource_props.get(attribute) or resource_props.get(attribute_lower) if result is None: result = get_attr_from_model_instance( resource, attribute, resource_type=resource_type, resource_id=resource_id, ) if is_ref_attribute: for attr in ["Id", "PhysicalResourceId", "Ref"]: if result is None: for obj in [resource_state, resource]: result = result or obj.get(attr) return result def canonical_resource_type(resource_type): if "::" in resource_type and not resource_type.startswith("AWS::"): resource_type = "AWS::%s" % resource_type return resource_type def get_attr_from_model_instance(resource, attribute, resource_type, resource_id=None): resource_type = canonical_resource_type(resource_type) model_class = RESOURCE_MODELS.get(resource_type) if not model_class: if resource_type not in ["AWS::Parameter", "Parameter"]: LOG.debug('Unable to find model class for resource type "%s"', resource_type) return try: inst = model_class(resource_name=resource_id, resource_json=resource) return inst.get_cfn_attribute(attribute) except Exception as e: LOG.debug("Failed to retrieve model attribute: %s", attribute, exc_info=e) def resolve_ref(stack, ref, attribute): stack_name = stack.stack_name resources = stack.resources if ref == "AWS::Region": return aws_stack.get_region() if ref == "AWS::Partition": return "aws" if ref == "AWS::StackName": return stack_name if ref == "AWS::StackId": # TODO return proper stack id! return stack_name if ref == "AWS::AccountId": return TEST_AWS_ACCOUNT_ID if ref == "AWS::NoValue": return PLACEHOLDER_AWS_NO_VALUE if ref == "AWS::NotificationARNs": # TODO! return {} if ref == "AWS::URLSuffix": return AWS_URL_SUFFIX is_ref_attribute = attribute in ["Ref", "PhysicalResourceId", "Arn"] if is_ref_attribute: # extract the Properties here, as we only want to recurse over the resource props... resource_props = resources.get(ref, {}).get("Properties") resolve_refs_recursively(stack, resource_props) return determine_resource_physical_id( resource_id=ref, attribute=attribute, stack=stack, ) if resources.get(ref): if isinstance(resources[ref].get(attribute), (str, int, float, bool, dict)): return resources[ref][attribute] # fetch resource details resource_new = retrieve_resource_details(ref, {}, stack=stack) if not resource_new: raise DependencyNotYetSatisfied( resource_ids=ref, message='Unable to fetch details for resource "%s" (resolving attribute "%s")' % (ref, attribute), ) resource = resources.get(ref) resource_type = get_resource_type(resource) result = extract_resource_attribute( resource_type, resource_new, attribute, resource_id=ref, resource=resource, stack=stack ) if result is None: LOG.warning( 'Unable to extract reference attribute "%s" from resource: %s %s', attribute, resource_new, resource, ) return result # Using a @prevent_stack_overflow decorator here to avoid infinite recursion # in case we load stack exports that have circular dependencies (see issue 3438) # TODO: Potentially think about a better approach in the future @prevent_stack_overflow(match_parameters=True) def resolve_refs_recursively(stack, value): result = _resolve_refs_recursively(stack, value) # localstack specific patches if isinstance(result, str): # we're trying to filter constructed API urls here (e.g. via Join in the template) api_match = REGEX_OUTPUT_APIGATEWAY.match(result) if api_match: prefix = api_match[1] host = api_match[2] path = api_match[3] port = config.service_port("apigateway") return f"{prefix}{host}:{port}/{path}" # basic dynamic reference support # see: https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html # technically there are more restrictions for each of these services but checking each of these # isn't really necessary for the current level of emulation dynamic_ref_match = REGEX_DYNAMIC_REF.match(result) if dynamic_ref_match: service_name = dynamic_ref_match[1] reference_key = dynamic_ref_match[2] # only these 3 services are supported for dynamic references right now if service_name == "ssm": ssm_client = aws_stack.connect_to_service("ssm") return ssm_client.get_parameter(Name=reference_key)["Parameter"]["Value"] elif service_name == "ssm-secure": ssm_client = aws_stack.connect_to_service("ssm") return ssm_client.get_parameter(Name=reference_key, WithDecryption=True)[ "Parameter" ]["Value"] elif service_name == "secretsmanager": # reference key needs to be parsed further # because {{resolve:secretsmanager:secret-id:secret-string:json-key:version-stage:version-id}} # we match for "secret-id:secret-string:json-key:version-stage:version-id" # where # secret-id can either be the secret name or the full ARN of the secret # secret-string *must* be SecretString # all other values are optional secret_id = reference_key [json_key, version_stage, version_id] = [None, None, None] if "SecretString" in reference_key: parts = reference_key.split(":SecretString:") secret_id = parts[0] [json_key, version_stage, version_id] = parts[1].split(":") kwargs = {} # optional args for get_secret_value if version_id: kwargs["VersionId"] = version_id if version_stage: kwargs["VersionStage"] = version_stage secretsmanager_client = aws_stack.connect_to_service("secretsmanager") secret_value = secretsmanager_client.get_secret_value(SecretId=secret_id, **kwargs)[ "SecretString" ] if json_key: return json.loads(secret_value)[json_key] else: return secret_value else: LOG.warning(f"Unsupported service for dynamic parameter: {service_name=}") return result @prevent_stack_overflow(match_parameters=True) # TODO: move Stack model into separate file and add type hints here def _resolve_refs_recursively(stack, value): if isinstance(value, dict): keys_list = list(value.keys()) stripped_fn_lower = keys_list[0].lower().split("::")[-1] if len(keys_list) == 1 else None # process special operators if keys_list == ["Ref"]: ref = resolve_ref(stack, value["Ref"], attribute="Ref") if ref is None: resources = stack.resources msg = 'Unable to resolve Ref for resource "%s" (yet)' % value["Ref"] LOG.debug("%s - %s", msg, resources.get(value["Ref"]) or set(resources.keys())) raise DependencyNotYetSatisfied(resource_ids=value["Ref"], message=msg) ref = resolve_refs_recursively(stack, ref) return ref if stripped_fn_lower == "getatt": attr_ref = value[keys_list[0]] attr_ref = attr_ref.split(".") if isinstance(attr_ref, str) else attr_ref return resolve_ref(stack, attr_ref[0], attribute=attr_ref[1]) if stripped_fn_lower == "join": join_values = value[keys_list[0]][1] join_values = [resolve_refs_recursively(stack, v) for v in join_values] none_values = [v for v in join_values if v is None] if none_values: raise Exception( "Cannot resolve CF fn::Join %s due to null values: %s" % (value, join_values) ) return value[keys_list[0]][0].join([str(v) for v in join_values]) if stripped_fn_lower == "sub": item_to_sub = value[keys_list[0]] attr_refs = {r: {"Ref": r} for r in STATIC_REFS} if not isinstance(item_to_sub, list): item_to_sub = [item_to_sub, {}] result = item_to_sub[0] item_to_sub[1].update(attr_refs) for key, val in item_to_sub[1].items(): val = resolve_refs_recursively(stack, val) result = result.replace("${%s}" % key, val) # resolve placeholders result = resolve_placeholders_in_string(result, stack=stack) return result if stripped_fn_lower == "findinmap": attr = resolve_refs_recursively(stack, value[keys_list[0]][1]) result = resolve_ref(stack, value[keys_list[0]][0], attribute=attr) if not result: resources = stack.resources raise Exception( f"Cannot resolve fn::FindInMap: {value[keys_list[0]]} {list(resources.keys())}" ) key = value[keys_list[0]][2] if not isinstance(key, str): key = resolve_refs_recursively(stack, key) return result.get(key) if stripped_fn_lower == "importvalue": import_value_key = resolve_refs_recursively(stack, value[keys_list[0]]) stack_export = stack.exports_map.get(import_value_key) or {} if not stack_export.get("Value"): LOG.info( 'Unable to find export "%s" in stack "%s", existing export names: %s', import_value_key, stack.stack_name, list(stack.exports_map.keys()), ) return None return stack_export["Value"] if stripped_fn_lower == "if": condition, option1, option2 = value[keys_list[0]] condition = evaluate_condition(stack, condition) return resolve_refs_recursively(stack, option1 if condition else option2) if stripped_fn_lower == "condition": result = evaluate_condition(stack, value[keys_list[0]]) return result if stripped_fn_lower == "not": condition = value[keys_list[0]][0] condition = resolve_refs_recursively(stack, condition) return not condition if stripped_fn_lower in ["and", "or"]: conditions = value[keys_list[0]] results = [resolve_refs_recursively(stack, cond) for cond in conditions] result = all(results) if stripped_fn_lower == "and" else any(results) return result if stripped_fn_lower == "equals": operand1, operand2 = value[keys_list[0]] operand1 = resolve_refs_recursively(stack, operand1) operand2 = resolve_refs_recursively(stack, operand2) return str(operand1) == str(operand2) if stripped_fn_lower == "select": index, values = value[keys_list[0]] index = resolve_refs_recursively(stack, index) values = resolve_refs_recursively(stack, values) return values[index] if stripped_fn_lower == "split": delimiter, string = value[keys_list[0]] delimiter = resolve_refs_recursively(stack, delimiter) string = resolve_refs_recursively(stack, string) return string.split(delimiter) if stripped_fn_lower == "getazs": region = resolve_refs_recursively(stack, value["Fn::GetAZs"]) or aws_stack.get_region() azs = [] for az in ("a", "b", "c", "d"): azs.append("%s%s" % (region, az)) return azs if stripped_fn_lower == "base64": value_to_encode = value[keys_list[0]] value_to_encode = resolve_refs_recursively(stack, value_to_encode) return to_str(base64.b64encode(to_bytes(value_to_encode))) for key, val in dict(value).items(): value[key] = resolve_refs_recursively(stack, val) if isinstance(value, list): for i in range(len(value)): value[i] = resolve_refs_recursively(stack, value[i]) return value def resolve_placeholders_in_string(result, stack): resources = stack.resources def _replace(match): parts = match.group(1).split(".") if len(parts) >= 2: resource_name, _, attr_name = match.group(1).partition(".") resolved = resolve_ref(stack, resource_name.strip(), attribute=attr_name.strip()) if resolved is None: raise DependencyNotYetSatisfied( resource_ids=resource_name, message="Unable to resolve attribute ref %s" % match.group(1), ) return resolved if len(parts) == 1 and parts[0] in resources: resource_json = resources[parts[0]] resource_type = get_resource_type(resource_json) result = extract_resource_attribute( resource_type, resource_json.get(KEY_RESOURCE_STATE, {}), "Ref", stack=stack, resource_id=parts[0], ) if result is None: raise DependencyNotYetSatisfied( resource_ids=parts[0], message="Unable to resolve attribute ref %s" % match.group(1), ) # make sure we resolve any functions/placeholders in the extracted string result = resolve_refs_recursively(stack, result) # make sure we convert the result to string result = "" if result is None else str(result) return result # TODO raise exception here? return match.group(0) regex = r"\$\{([^\}]+)\}" result = re.sub(regex, _replace, result) return result def evaluate_condition(stack, condition): condition = resolve_refs_recursively(stack, condition) condition = resolve_ref(stack, condition, attribute="Ref") condition = resolve_refs_recursively(stack, condition) return condition def evaluate_resource_condition(stack, resource): condition = resource.get("Condition") if condition: condition = evaluate_condition(stack, condition) if condition is False or condition in FALSE_STRINGS or is_none_or_empty_value(condition): return False return True def get_stack_parameter(stack_name, parameter): try: client = aws_stack.connect_to_service("cloudformation") stack = client.describe_stacks(StackName=stack_name)["Stacks"] except Exception: return None stack = stack and stack[0] if not stack: return None result = [p["ParameterValue"] for p in stack["Parameters"] if p["ParameterKey"] == parameter] return (result or [None])[0] def update_resource(resource_id, stack): resources = stack.resources stack_name = stack.stack_name resource = resources[resource_id] resource_type = get_resource_type(resource) if resource_type not in UPDATEABLE_RESOURCES: LOG.warning('Unable to update resource type "%s", id "%s"', resource_type, resource_id) return LOG.info("Updating resource %s of type %s", resource_id, resource_type) instance = get_resource_model_instance(resource_id, stack=stack) if instance: result = instance.update_resource(resource, stack_name=stack_name, resources=resources) instance.fetch_and_update_state(stack_name=stack_name, resources=resources) return result def get_resource_model_instance(resource_id: str, stack) -> Optional[GenericBaseModel]: """Obtain a typed resource entity instance representing the given stack resource.""" resource = stack.resources[resource_id] resource_type = get_resource_type(resource) canonical_type = canonical_resource_type(resource_type) resource_class = RESOURCE_MODELS.get(canonical_type) if not resource_class: return None instance = resource_class(resource) return instance def fix_account_id_in_arns(params): def fix_ids(o, **kwargs): if isinstance(o, dict): for k, v in o.items(): if is_string(v, exclude_binary=True): o[k] = aws_stack.fix_account_id_in_arns(v) elif is_string(o, exclude_binary=True): o = aws_stack.fix_account_id_in_arns(o) return o result = recurse_object(params, fix_ids) return result def convert_data_types(func_details, params): """Convert data types in the "params" object, with the type defs specified in the 'types' attribute of "func_details".""" types = func_details.get("types") or {} attr_names = types.keys() or [] def cast(_obj, _type): if _type == bool: return _obj in ["True", "true", True] if _type == str: if isinstance(_obj, bool): return str(_obj).lower() return str(_obj) if _type in (int, float): return _type(_obj) return _obj def fix_types(o, **kwargs): if isinstance(o, dict): for k, v in o.items(): if k in attr_names: o[k] = cast(v, types[k]) return o result = recurse_object(params, fix_types) return result def log_not_available_message(resource_type: str, message: str): LOG.warning( f"{message}. To find out if {resource_type} is supported in LocalStack Pro, " "please check out our docs at https://docs.localstack.cloud/aws/cloudformation" ) def dump_resource_as_json(resource: Dict) -> str: return str(run_safe(lambda: json.dumps(json_safe(resource))) or resource) # TODO remove this method def prepare_template_body(req_data): return template_preparer.prepare_template_body(req_data) def deploy_resource(stack, resource_id): result = execute_resource_action(resource_id, stack, ACTION_CREATE) return result def delete_resource(stack, resource_id): return execute_resource_action(resource_id, stack, ACTION_DELETE) def execute_resource_action(resource_id: str, stack, action_name: str): stack_name = stack.stack_name resources = stack.resources resource = resources[resource_id] resource_type = get_resource_type(resource) func_details = get_deployment_config(resource_type) if not func_details or action_name not in func_details: if resource_type in ["Parameter"]: return log_not_available_message( resource_type=resource_type, message=f"Action {action_name} for resource type {resource_type} not available", ) return LOG.debug( 'Running action "%s" for resource type "%s" id "%s"', action_name, resource_type, resource_id, ) func_details = func_details[action_name] func_details = func_details if isinstance(func_details, list) else [func_details] results = [] for func in func_details: if callable(func["function"]): result = func["function"](resource_id, resources, resource_type, func, stack_name) results.append(result) continue client = get_client(resource, func) if client: result = configure_resource_via_sdk( stack, resource_id, resource_type, func, action_name, ) results.append(result) return (results or [None])[0] def configure_resource_via_sdk(stack, resource_id, resource_type, func_details, action_name): resources = stack.resources stack_name = stack.stack_name resource = resources[resource_id] if resource_type == "EC2::Instance": if action_name == "create": func_details["boto_client"] = "resource" client = get_client(resource, func_details) function = getattr(client, func_details["function"]) params = func_details.get("parameters") or lambda_get_params() defaults = func_details.get("defaults", {}) resource_props = resource["Properties"] = resource.get("Properties", {}) resource_props = dict(resource_props) resource_state = resource.get(KEY_RESOURCE_STATE, {}) if callable(params): params = params( resource_props, stack_name=stack_name, resources=resources, resource_id=resource_id, ) else: # it could be a list like ['param1', 'param2', {'apiCallParamName': 'cfResourcePropName'}] if isinstance(params, list): _params = {} for param in params: if isinstance(param, dict): _params.update(param) else: _params[param] = param params = _params params = dict(params) for param_key, prop_keys in dict(params).items(): params.pop(param_key, None) if not isinstance(prop_keys, list): prop_keys = [prop_keys] for prop_key in prop_keys: if prop_key == PLACEHOLDER_RESOURCE_NAME: params[param_key] = PLACEHOLDER_RESOURCE_NAME else: if callable(prop_key): prop_value = prop_key( resource_props, stack_name=stack_name, resources=resources, resource_id=resource_id, ) else: prop_value = resource_props.get( prop_key, resource.get(prop_key, resource_state.get(prop_key)), ) if prop_value is not None: params[param_key] = prop_value break # replace PLACEHOLDER_RESOURCE_NAME in params resource_name_holder = {} def fix_placeholders(o, **kwargs): if isinstance(o, dict): for k, v in o.items(): if v == PLACEHOLDER_RESOURCE_NAME: if "value" not in resource_name_holder: resource_name_holder["value"] = get_resource_name(resource) or resource_id o[k] = resource_name_holder["value"] return o recurse_object(params, fix_placeholders) # assign default values if empty params = merge_recursive(defaults, params) # this is an indicator that we should skip this resource deployment, and return if params is None: return # convert refs for param_key, param_value in dict(params).items(): if param_value is not None: params[param_key] = resolve_refs_recursively(stack, param_value) # convert any moto account IDs (123456789012) in ARNs to our format (000000000000) params = fix_account_id_in_arns(params) # convert data types (e.g., boolean strings to bool) params = convert_data_types(func_details, params) # remove None values, as they usually raise boto3 errors params = remove_none_values(params) # convert boolean strings # (TODO: we should find a more reliable mechanism than this opportunistic/probabilistic approach!) params_before_conversion = copy.deepcopy(params) for param_key, param_value in dict(params).items(): # Convert to boolean (TODO: do this recursively?) if str(param_value).lower() in ["true", "false"]: params[param_key] = str(param_value).lower() == "true" # invoke function try: LOG.debug( 'Request for resource type "%s" in region %s: %s %s', resource_type, aws_stack.get_region(), func_details["function"], params, ) try: result = function(**params) except botocore.exceptions.ParamValidationError as e: LOG.debug(f"Trying original parameters: {params_before_conversion}") if "type: <class 'bool'>" not in str(e): raise result = function(**params_before_conversion) except Exception as e: if action_name == "delete" and check_not_found_exception(e, resource_type, resource): return LOG.warning("Error calling %s with params: %s for resource: %s", function, params, resource) raise e return result def get_action_name_for_resource_change(res_change): return {"Add": "CREATE", "Remove": "DELETE", "Modify": "UPDATE"}.get(res_change) # TODO: this shouldn't be called for stack parameters def determine_resource_physical_id(resource_id, stack=None, attribute=None): resources = stack.resources stack_name = stack.stack_name resource = resources.get(resource_id, {}) if not resource: return resource_type = get_resource_type(resource) resource_type = re.sub("^AWS::", "", resource_type) resource_props = resource.get("Properties", {}) # determine result from resource class canonical_type = canonical_resource_type(resource_type) resource_class = RESOURCE_MODELS.get(canonical_type) if resource_class: resource_inst = resource_class(resource) resource_inst.fetch_state_if_missing(stack_name=stack_name, resources=resources) result = resource_inst.get_physical_resource_id(attribute=attribute) if result: return result # TODO: put logic into resource-specific model classes! if resource_type == "ApiGateway::RestApi": result = resource_props.get("id") if result: return result elif resource_type == "ApiGateway::Stage": return resource_props.get("StageName") elif resource_type == "AppSync::DataSource": return resource_props.get("DataSourceArn") elif resource_type == "KinesisFirehose::DeliveryStream": return aws_stack.firehose_stream_arn(resource_props.get("DeliveryStreamName")) elif resource_type == "StepFunctions::StateMachine": return aws_stack.state_machine_arn( resource_props.get("StateMachineName") ) # returns ARN in AWS elif resource_type == "S3::Bucket": if attribute == "Arn": return aws_stack.s3_bucket_arn(resource_props.get("BucketName")) return resource_props.get("BucketName") # Note: "Ref" returns bucket name in AWS elif resource_type == "IAM::Role": if attribute == "Arn": return aws_stack.role_arn(resource_props.get("RoleName")) return resource_props.get("RoleName") elif resource_type == "IAM::Policy": if attribute == "Arn": return aws_stack.policy_arn(resource_props.get("PolicyName")) return resource_props.get("PolicyName") elif resource_type == "DynamoDB::Table": table_name = resource_props.get("TableName") if table_name: return table_name elif resource_type == "Logs::LogGroup": return resource_props.get("LogGroupName") elif resource_type == "ApiGateway::Model": model_name = resource_props.get("Name") if model_name: return model_name res_id = resource.get("PhysicalResourceId") if res_id and attribute in [None, "Ref", "PhysicalResourceId"]: return res_id result = extract_resource_attribute( resource_type, {}, attribute or "PhysicalResourceId", resource_id=resource_id, resource=resource, stack=stack, ) if result is not None: # note that value could be an empty string here (in case of Parameter values) return result LOG.info( 'Unable to determine PhysicalResourceId for "%s" resource, ID "%s"', resource_type, resource_id, ) def update_resource_details(stack, resource_id, details, action=None): resource = stack.resources.get(resource_id, {}) if not resource or not details: return # TODO: we need to rethink this method - this should be encapsulated in the resource model classes. # Also, instead of actively updating the PhysicalResourceId attributes below, they should be # determined and returned by the resource model classes upon request. resource_type = resource.get("Type") or "" resource_type = re.sub("^AWS::", "", resource_type) resource_props = resource.get("Properties", {}) if resource_type == "ApiGateway::RestApi": resource_props["id"] = details["id"] if resource_type == "KMS::Key": resource["PhysicalResourceId"] = details["KeyMetadata"]["KeyId"] if resource_type == "EC2::Instance": if details and isinstance(details, list) and hasattr(details[0], "id"): resource["PhysicalResourceId"] = details[0].id if isinstance(details, dict) and details.get("InstanceId"): resource["PhysicalResourceId"] = details["InstanceId"] if resource_type == "EC2::SecurityGroup": resource["PhysicalResourceId"] = details["GroupId"] if resource_type == "IAM::InstanceProfile": resource["PhysicalResourceId"] = details["InstanceProfile"]["InstanceProfileName"] if resource_type == "StepFunctions::Activity": resource["PhysicalResourceId"] = details["activityArn"] if resource_type == "ApiGateway::Model": resource["PhysicalResourceId"] = details["id"] if resource_type == "EC2::VPC": resource["PhysicalResourceId"] = details["Vpc"]["VpcId"] if resource_type == "EC2::Subnet": resource["PhysicalResourceId"] = details["Subnet"]["SubnetId"] if resource_type == "EC2::RouteTable": resource["PhysicalResourceId"] = details["RouteTable"]["RouteTableId"] if resource_type == "EC2::Route": resource["PhysicalResourceId"] = generate_route_id( resource_props["RouteTableId"], resource_props.get("DestinationCidrBlock", ""), resource_props.get("DestinationIpv6CidrBlock"), ) def add_default_resource_props( resource, stack_name, resource_name=None, resource_id=None, update=False, existing_resources=None, ): """Apply some fixes to resource props which otherwise cause deployments to fail""" res_type = resource["Type"] canonical_type = canonical_resource_type(res_type) resource_class = RESOURCE_MODELS.get(canonical_type) if resource_class is not None: resource_class.add_defaults(resource, stack_name) # ----------------------- # MAIN TEMPLATE DEPLOYER # ----------------------- class TemplateDeployer: def __init__(self, stack): self.stack = stack @property def resources(self): return self.stack.resources @property def stack_name(self): return self.stack.stack_name # ------------------ # MAIN ENTRY POINTS # ------------------ def deploy_stack(self): self.stack.set_stack_status("CREATE_IN_PROGRESS") try: self.apply_changes( self.stack, self.stack, stack_name=self.stack.stack_name, initialize=True, action="CREATE", ) except Exception as e: LOG.info("Unable to create stack %s: %s", self.stack.stack_name, e) self.stack.set_stack_status("CREATE_FAILED") raise def apply_change_set(self, change_set): action = "CREATE" change_set.stack.set_stack_status("%s_IN_PROGRESS" % action) try: self.apply_changes( change_set.stack, change_set, stack_name=change_set.stack_name, action=action, ) except Exception as e: LOG.info( "Unable to apply change set %s: %s", change_set.metadata.get("ChangeSetName"), e ) change_set.metadata["Status"] = "%s_FAILED" % action self.stack.set_stack_status("%s_FAILED" % action) raise def update_stack(self, new_stack): self.stack.set_stack_status("UPDATE_IN_PROGRESS") # apply changes self.apply_changes(self.stack, new_stack, stack_name=self.stack.stack_name, action="UPDATE") def delete_stack(self): if not self.stack: return self.stack.set_stack_status("DELETE_IN_PROGRESS") stack_resources = list(self.stack.resources.values()) resources = {r["LogicalResourceId"]: clone_safe(r) for r in stack_resources} for key, resource in resources.items(): resource["Properties"] = resource.get("Properties", clone_safe(resource)) resource["ResourceType"] = resource.get("ResourceType") or resource.get("Type") for resource_id, resource in resources.items(): # TODO: cache condition value in resource details on deployment and use cached value here if evaluate_resource_condition(self, resource): delete_resource(self, resource_id) self.stack.set_resource_status(resource_id, "DELETE_COMPLETE") # update status self.stack.set_stack_status("DELETE_COMPLETE") # ---------------------------- # DEPENDENCY RESOLUTION UTILS # ---------------------------- def is_deployable_resource(self, resource): resource_type = get_resource_type(resource) entry = get_deployment_config(resource_type) if entry is None and resource_type not in ["Parameter", None]: resource_str = dump_resource_as_json(resource) LOG.warning(f'Unable to deploy resource type "{resource_type}": {resource_str}') return bool(entry and entry.get(ACTION_CREATE)) def is_deployed(self, resource): resource_status = {} resource_id = resource["LogicalResourceId"] details = retrieve_resource_details(resource_id, resource_status, stack=self.stack) return bool(details) def is_updateable(self, resource): """Return whether the given resource can be updated or not.""" if not self.is_deployable_resource(resource) or not self.is_deployed(resource): return False resource_type = get_resource_type(resource) return resource_type in UPDATEABLE_RESOURCES def all_resource_dependencies_satisfied(self, resource): unsatisfied = self.get_unsatisfied_dependencies(resource) return not unsatisfied def get_unsatisfied_dependencies(self, resource): res_deps = self.get_resource_dependencies(resource) return self.get_unsatisfied_dependencies_for_resources(res_deps, resource) def get_unsatisfied_dependencies_for_resources( self, resources, depending_resource=None, return_first=True ): result = {} for resource_id, resource in resources.items(): if self.is_deployable_resource(resource): if not self.is_deployed(resource): LOG.debug( "Dependency for resource %s not yet deployed: %s %s", depending_resource, resource_id, resource, ) result[resource_id] = resource if return_first: break return result def get_resource_dependencies(self, resource): result = {} # Note: using the original, unmodified template here to preserve Ref's ... raw_resources = self.stack.template_original["Resources"] raw_resource = raw_resources[resource["LogicalResourceId"]] dumped = json.dumps(json_safe(raw_resource)) for other_id, other in raw_resources.items(): if resource != other: # TODO: traverse dict instead of doing string search! search1 = '{"Ref": "%s"}' % other_id search2 = '{"Fn::GetAtt": ["%s", ' % other_id if search1 in dumped or search2 in dumped: result[other_id] = other if other_id in resource.get("DependsOn", []): result[other_id] = other return result # ----------------- # DEPLOYMENT UTILS # ----------------- def add_default_resource_props(self, resources=None): resources = resources or self.resources for resource_id, resource in resources.items(): add_default_resource_props( resource, self.stack_name, resource_id=resource_id, existing_resources=resources ) def init_resource_status(self, resources=None, stack=None, action="CREATE"): resources = resources or self.resources stack = stack or self.stack for resource_id, resource in resources.items(): stack.set_resource_status(resource_id, "%s_IN_PROGRESS" % action) def update_resource_details(self, resource_id, result, stack=None, action="CREATE"): stack = stack or self.stack # update resource state update_resource_details(stack, resource_id, result, action) # update physical resource id resource = stack.resources[resource_id] physical_id = resource.get("PhysicalResourceId") physical_id = physical_id or determine_resource_physical_id(resource_id, stack=stack) if not resource.get("PhysicalResourceId") or action == "UPDATE": if physical_id: resource["PhysicalResourceId"] = physical_id # set resource status stack.set_resource_status(resource_id, "%s_COMPLETE" % action, physical_res_id=physical_id) return physical_id def get_change_config(self, action, resource, change_set_id=None): return { "Type": "Resource", "ResourceChange": { "Action": action, "LogicalResourceId": resource.get("LogicalResourceId"), "PhysicalResourceId": resource.get("PhysicalResourceId"), "ResourceType": resource.get("Type"), "Replacement": "False", "ChangeSetId": change_set_id, }, } def resource_config_differs(self, resource_new): """Return whether the given resource properties differ from the existing config (for stack updates).""" resource_id = resource_new["LogicalResourceId"] resource_old = self.resources[resource_id] props_old = resource_old["Properties"] props_new = resource_new["Properties"] ignored_keys = ["LogicalResourceId", "PhysicalResourceId"] old_keys = set(props_old.keys()) - set(ignored_keys) new_keys = set(props_new.keys()) - set(ignored_keys) if old_keys != new_keys: return True for key in old_keys: if props_old[key] != props_new[key]: return True old_status = self.stack.resource_states.get(resource_id) or {} previous_state = ( old_status.get("PreviousResourceStatus") or old_status.get("ResourceStatus") or "" ) if old_status and "DELETE" in previous_state: return True def merge_properties(self, resource_id, old_stack, new_stack): old_resources = old_stack.template["Resources"] new_resources = new_stack.template["Resources"] new_resource = new_resources[resource_id] old_resource = old_resources[resource_id] = old_resources.get(resource_id) or {} for key, value in new_resource.items(): if key == "Properties": continue old_resource[key] = old_resource.get(key, value) old_res_props = old_resource["Properties"] = old_resource.get("Properties", {}) for key, value in new_resource["Properties"].items(): old_res_props[key] = value # overwrite original template entirely old_stack.template_original["Resources"][resource_id] = new_stack.template_original[ "Resources" ][resource_id] def resolve_param( self, logical_id: str, param_type: str, default_value: Optional[str] = None ) -> Optional[str]: if param_type == "AWS::SSM::Parameter::Value<String>": ssm_client = aws_stack.connect_to_service("ssm") param = ssm_client.get_parameter(Name=default_value) return param["Parameter"]["Value"] return None def apply_parameter_changes(self, old_stack, new_stack) -> None: parameters = { p["ParameterKey"]: p for p in old_stack.metadata["Parameters"] # go through current parameter values } for logical_id, value in new_stack.template["Parameters"].items(): default = value.get("Default") provided_param_value = parameters.get(logical_id) param = { "ParameterKey": logical_id, "ParameterValue": provided_param_value if default is None else default, } if default is not None: resolved_value = self.resolve_param(logical_id, value.get("Type"), default) if resolved_value is not None: param["ResolvedValue"] = resolved_value parameters[logical_id] = param parameters.update({p["ParameterKey"]: p for p in new_stack.metadata["Parameters"]}) for change_set in new_stack.change_sets: parameters.update({p["ParameterKey"]: p for p in change_set.metadata["Parameters"]}) # TODO: unclear/undocumented behavior in implicitly updating old_stack parameter here old_stack.metadata["Parameters"] = [v for v in parameters.values() if v] # TODO: fix circular import with cloudformation_api.py when importing Stack here def construct_changes( self, existing_stack, new_stack, initialize=False, change_set_id=None, append_to_changeset=False, ): from localstack.services.cloudformation.provider import StackChangeSet old_resources = existing_stack.template["Resources"] new_resources = new_stack.template["Resources"] deletes = [val for key, val in old_resources.items() if key not in new_resources] adds = [val for key, val in new_resources.items() if initialize or key not in old_resources] modifies = [val for key, val in new_resources.items() if key in old_resources] changes = [] for action, items in (("Remove", deletes), ("Add", adds), ("Modify", modifies)): for item in items: item["Properties"] = item.get("Properties", {}) change = self.get_change_config(action, item, change_set_id=change_set_id) changes.append(change) # append changes to change set if append_to_changeset and isinstance(new_stack, StackChangeSet): new_stack.changes.extend(changes) return changes def apply_changes( self, existing_stack, new_stack, stack_name, change_set_id=None, initialize=False, action=None, ): old_resources = existing_stack.template["Resources"] new_resources = new_stack.template["Resources"] action = action or "CREATE" self.init_resource_status(old_resources, action="UPDATE") # apply parameter changes to existing stack self.apply_parameter_changes(existing_stack, new_stack) # construct changes changes = self.construct_changes( existing_stack, new_stack, initialize=initialize, change_set_id=change_set_id, ) # check if we have actual changes in the stack, and prepare properties contains_changes = False for change in changes: res_action = change["ResourceChange"]["Action"] resource = new_resources.get(change["ResourceChange"]["LogicalResourceId"]) if res_action != "Modify" or self.resource_config_differs(resource): contains_changes = True if res_action in ["Modify", "Add"]: self.merge_properties(resource["LogicalResourceId"], existing_stack, new_stack) if not contains_changes: raise NoStackUpdates("No updates are to be performed.") # merge stack outputs and conditions existing_stack.outputs.update(new_stack.outputs) existing_stack.conditions.update(new_stack.conditions) # start deployment loop return self.apply_changes_in_loop( changes, existing_stack, stack_name, action=action, new_stack=new_stack ) def apply_changes_in_loop(self, changes, stack, stack_name, action=None, new_stack=None): from localstack.services.cloudformation.provider import StackChangeSet def _run(*args): try: self.do_apply_changes_in_loop(changes, stack, stack_name) status = "%s_COMPLETE" % action except Exception as e: LOG.debug( 'Error applying changes for CloudFormation stack "%s": %s %s', stack.stack_name, e, traceback.format_exc(), ) status = "%s_FAILED" % action stack.set_stack_status(status) if isinstance(new_stack, StackChangeSet): new_stack.metadata["Status"] = status new_stack.metadata["ExecutionStatus"] = ( "EXECUTE_FAILED" if "FAILED" in status else "EXECUTE_COMPLETE" ) new_stack.metadata["StatusReason"] = "Deployment %s" % ( "failed" if "FAILED" in status else "succeeded" ) # run deployment in background loop, to avoid client network timeouts return start_worker_thread(_run) def do_apply_changes_in_loop(self, changes, stack, stack_name: str): # apply changes in a retry loop, to resolve resource dependencies and converge to the target state changes_done = [] max_iters = 30 new_resources = stack.resources # apply default props before running the loop for resource_id, resource in new_resources.items(): add_default_resource_props( resource, stack.stack_name, resource_id=resource_id, existing_resources=new_resources, ) # start deployment loop for i in range(max_iters): j = 0 updated = False while j < len(changes): change = changes[j] res_change = change["ResourceChange"] action = res_change["Action"] is_add_or_modify = action in ["Add", "Modify"] resource_id = res_change["LogicalResourceId"] try: if is_add_or_modify: resource = new_resources[resource_id] should_deploy = self.prepare_should_deploy_change( resource_id, change, stack, new_resources ) LOG.debug( 'Handling "%s" for resource "%s" (%s/%s) type "%s" in loop iteration %s (should_deploy=%s)', action, resource_id, j + 1, len(changes), res_change["ResourceType"], i + 1, should_deploy, ) if not should_deploy: del changes[j] stack_action = get_action_name_for_resource_change(action) stack.set_resource_status(resource_id, "%s_COMPLETE" % stack_action) continue if not self.all_resource_dependencies_satisfied(resource): j += 1 continue self.apply_change(change, stack=stack) changes_done.append(change) del changes[j] updated = True except DependencyNotYetSatisfied as e: LOG.debug( 'Dependencies for "%s" not yet satisfied, retrying in next loop: %s', resource_id, e, ) j += 1 if not changes: break if not updated: raise Exception( "Resource deployment loop completed, pending resource changes: %s" % changes ) # clean up references to deleted resources in stack deletes = [c for c in changes_done if c["ResourceChange"]["Action"] == "Remove"] for delete in deletes: stack.template["Resources"].pop(delete["ResourceChange"]["LogicalResourceId"], None) return changes_done def prepare_should_deploy_change(self, resource_id, change, stack, new_resources): resource = new_resources[resource_id] res_change = change["ResourceChange"] action = res_change["Action"] # check resource condition, if present if not evaluate_resource_condition(stack, resource): LOG.debug( 'Skipping deployment of "%s", as resource condition evaluates to false', resource_id ) return # resolve refs in resource details resolve_refs_recursively(stack, resource) if action in ["Add", "Modify"]: is_deployed = self.is_deployed(resource) if action == "Modify" and not is_deployed: action = res_change["Action"] = "Add" if action == "Add": if not self.is_deployable_resource(resource) or is_deployed: return False if action == "Modify" and not self.is_updateable(resource): LOG.debug( 'Action "update" not yet implemented for CF resource type %s', resource.get("Type"), ) return False return True def apply_change(self, change, stack): change_details = change["ResourceChange"] action = change_details["Action"] resource_id = change_details["LogicalResourceId"] resource = stack.resources[resource_id] if not evaluate_resource_condition(stack, resource): return # execute resource action result = None if action == "Add": result = deploy_resource(self, resource_id) elif action == "Remove": result = delete_resource(self, resource_id) elif action == "Modify": result = update_resource(resource_id, stack=stack) # update resource status and physical resource id stack_action = get_action_name_for_resource_change(action) self.update_resource_details(resource_id, result, stack=stack, action=stack_action) return result
38.823004
120
0.622197
bb9556d288b7e77860413533bc99b34e24455841
3,036
py
Python
contrib/linearize/linearize-hashes.py
meowmeowchain/meowmeowcoin
26c661f64bdcc699175144fb912ff6972d36cd96
[ "MIT" ]
null
null
null
contrib/linearize/linearize-hashes.py
meowmeowchain/meowmeowcoin
26c661f64bdcc699175144fb912ff6972d36cd96
[ "MIT" ]
null
null
null
contrib/linearize/linearize-hashes.py
meowmeowchain/meowmeowcoin
26c661f64bdcc699175144fb912ff6972d36cd96
[ "MIT" ]
1
2018-02-26T11:05:26.000Z
2018-02-26T11:05:26.000Z
#!/usr/bin/python # # linearize-hashes.py: List blocks in a linear, no-fork version of the chain. # # Copyright (c) 2013-2014 The Bitcoin developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from __future__ import print_function import json import struct import re import base64 import httplib import sys settings = {} class BitcoinRPC: def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def execute(self, obj): self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print("JSON-RPC: no response", file=sys.stderr) return None body = resp.read() resp_obj = json.loads(body) return resp_obj @staticmethod def build_request(idx, method, params): obj = { 'version' : '1.1', 'method' : method, 'id' : idx } if params is None: obj['params'] = [] else: obj['params'] = params return obj @staticmethod def response_is_error(resp_obj): return 'error' in resp_obj and resp_obj['error'] is not None def get_block_hashes(settings, max_blocks_per_call=10000): rpc = BitcoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpassword']) height = settings['min_height'] while height < settings['max_height']+1: num_blocks = min(settings['max_height']+1-height, max_blocks_per_call) batch = [] for x in range(num_blocks): batch.append(rpc.build_request(x, 'getblockhash', [height + x])) reply = rpc.execute(batch) for x,resp_obj in enumerate(reply): if rpc.response_is_error(resp_obj): print('JSON-RPC: error at height', height+x, ': ', resp_obj['error'], file=sys.stderr) exit(1) assert(resp_obj['id'] == x) # assume replies are in-sequence print(resp_obj['result']) height += num_blocks if __name__ == '__main__': if len(sys.argv) != 2: print("Usage: linearize-hashes.py CONFIG-FILE") sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 9882 if 'min_height' not in settings: settings['min_height'] = 0 if 'max_height' not in settings: settings['max_height'] = 313000 if 'rpcuser' not in settings or 'rpcpassword' not in settings: print("Missing username and/or password in cfg file", file=stderr) sys.exit(1) settings['port'] = int(settings['port']) settings['min_height'] = int(settings['min_height']) settings['max_height'] = int(settings['max_height']) get_block_hashes(settings)
26.631579
90
0.682477
a0bd7e1c90130c106c7622c7e4ea10b9889aa391
6,808
py
Python
platform/gsutil/gslib/tests/test_defacl.py
bopopescu/google-cloud-sdk
b34e6a18f1e89673508166acce816111c3421e4b
[ "Apache-2.0" ]
null
null
null
platform/gsutil/gslib/tests/test_defacl.py
bopopescu/google-cloud-sdk
b34e6a18f1e89673508166acce816111c3421e4b
[ "Apache-2.0" ]
null
null
null
platform/gsutil/gslib/tests/test_defacl.py
bopopescu/google-cloud-sdk
b34e6a18f1e89673508166acce816111c3421e4b
[ "Apache-2.0" ]
1
2020-07-24T20:04:47.000Z
2020-07-24T20:04:47.000Z
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration tests for the defacl command.""" import re import gslib.tests.testcase as case from gslib.tests.testcase.integration_testcase import SkipForS3 from gslib.tests.util import ObjectToURI as suri PUBLIC_READ_JSON_ACL_TEXT = '"entity":"allUsers","role":"READER"' @SkipForS3('S3 does not support default object ACLs.') class TestDefacl(case.GsUtilIntegrationTestCase): """Integration tests for the defacl command.""" _defacl_ch_prefix = ['defacl', 'ch'] _defacl_get_prefix = ['defacl', 'get'] _defacl_set_prefix = ['defacl', 'set'] def _MakeScopeRegex(self, role, entity_type, email_address): template_regex = (r'\{.*"entity":\s*"%s-%s".*"role":\s*"%s".*\}' % (entity_type, email_address, role)) return re.compile(template_regex, flags=re.DOTALL) def testChangeDefaultAcl(self): """Tests defacl ch.""" bucket = self.CreateBucket() test_regex = self._MakeScopeRegex( 'OWNER', 'group', self.GROUP_TEST_ADDRESS) test_regex2 = self._MakeScopeRegex( 'READER', 'group', self.GROUP_TEST_ADDRESS) json_text = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket)], return_stdout=True) self.assertNotRegexpMatches(json_text, test_regex) self.RunGsUtil(self._defacl_ch_prefix + ['-g', self.GROUP_TEST_ADDRESS+':FC', suri(bucket)]) json_text2 = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket)], return_stdout=True) self.assertRegexpMatches(json_text2, test_regex) self.RunGsUtil(self._defacl_ch_prefix + ['-g', self.GROUP_TEST_ADDRESS+':READ', suri(bucket)]) json_text3 = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket)], return_stdout=True) self.assertRegexpMatches(json_text3, test_regex2) def testChangeMultipleBuckets(self): """Tests defacl ch on multiple buckets.""" bucket1 = self.CreateBucket() bucket2 = self.CreateBucket() test_regex = self._MakeScopeRegex( 'READER', 'group', self.GROUP_TEST_ADDRESS) json_text = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket1)], return_stdout=True) self.assertNotRegexpMatches(json_text, test_regex) json_text = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket2)], return_stdout=True) self.assertNotRegexpMatches(json_text, test_regex) self.RunGsUtil(self._defacl_ch_prefix + ['-g', self.GROUP_TEST_ADDRESS+':READ', suri(bucket1), suri(bucket2)]) json_text = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket1)], return_stdout=True) self.assertRegexpMatches(json_text, test_regex) json_text = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket2)], return_stdout=True) self.assertRegexpMatches(json_text, test_regex) def testChangeMultipleAcls(self): """Tests defacl ch with multiple ACL entries.""" bucket = self.CreateBucket() test_regex_group = self._MakeScopeRegex( 'READER', 'group', self.GROUP_TEST_ADDRESS) test_regex_user = self._MakeScopeRegex( 'OWNER', 'user', self.USER_TEST_ADDRESS) json_text = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket)], return_stdout=True) self.assertNotRegexpMatches(json_text, test_regex_group) self.assertNotRegexpMatches(json_text, test_regex_user) self.RunGsUtil(self._defacl_ch_prefix + ['-g', self.GROUP_TEST_ADDRESS+':READ', '-u', self.USER_TEST_ADDRESS+':fc', suri(bucket)]) json_text = self.RunGsUtil(self._defacl_get_prefix + [suri(bucket)], return_stdout=True) self.assertRegexpMatches(json_text, test_regex_group) self.assertRegexpMatches(json_text, test_regex_user) def testEmptyDefAcl(self): bucket = self.CreateBucket() self.RunGsUtil(self._defacl_set_prefix + ['private', suri(bucket)]) self.RunGsUtil(self._defacl_ch_prefix + ['-u', self.USER_TEST_ADDRESS+':fc', suri(bucket)]) def testDeletePermissionsWithCh(self): """Tests removing permissions with defacl ch.""" bucket = self.CreateBucket() test_regex = self._MakeScopeRegex( 'OWNER', 'user', self.USER_TEST_ADDRESS) json_text = self.RunGsUtil( self._defacl_get_prefix + [suri(bucket)], return_stdout=True) self.assertNotRegexpMatches(json_text, test_regex) self.RunGsUtil(self._defacl_ch_prefix + ['-u', self.USER_TEST_ADDRESS+':fc', suri(bucket)]) json_text = self.RunGsUtil( self._defacl_get_prefix + [suri(bucket)], return_stdout=True) self.assertRegexpMatches(json_text, test_regex) self.RunGsUtil(self._defacl_ch_prefix + ['-d', self.USER_TEST_ADDRESS, suri(bucket)]) json_text = self.RunGsUtil( self._defacl_get_prefix + [suri(bucket)], return_stdout=True) self.assertNotRegexpMatches(json_text, test_regex) def testTooFewArgumentsFails(self): """Tests calling defacl with insufficient number of arguments.""" # No arguments for get, but valid subcommand. stderr = self.RunGsUtil(self._defacl_get_prefix, return_stderr=True, expected_status=1) self.assertIn('command requires at least', stderr) # No arguments for set, but valid subcommand. stderr = self.RunGsUtil(self._defacl_set_prefix, return_stderr=True, expected_status=1) self.assertIn('command requires at least', stderr) # No arguments for ch, but valid subcommand. stderr = self.RunGsUtil(self._defacl_ch_prefix, return_stderr=True, expected_status=1) self.assertIn('command requires at least', stderr) # Neither arguments nor subcommand. stderr = self.RunGsUtil(['defacl'], return_stderr=True, expected_status=1) self.assertIn('command requires at least', stderr) class TestDefaclOldAlias(TestDefacl): _defacl_ch_prefix = ['chdefacl'] _defacl_get_prefix = ['getdefacl'] _defacl_set_prefix = ['setdefacl']
42.55
78
0.679201
1243712865aea1f6df050a46ddf79fa365460087
8,549
py
Python
varconlib/scripts/modify_stars.py
DBerke/varconlib
4771cf315c8fa76e1982612f3ac520c0cec098d8
[ "MIT" ]
null
null
null
varconlib/scripts/modify_stars.py
DBerke/varconlib
4771cf315c8fa76e1982612f3ac520c0cec098d8
[ "MIT" ]
null
null
null
varconlib/scripts/modify_stars.py
DBerke/varconlib
4771cf315c8fa76e1982612f3ac520c0cec098d8
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 5 11:58:04 2021 @author: dberke Make changes to the data in star.Star objects, up to rebuilding them entirely. """ import argparse from functools import partial from glob import glob from json.decoder import JSONDecodeError import lzma from multiprocessing import Pool, RLock from pathlib import Path import pickle import time import numpy as np from p_tqdm import p_map, p_umap from tqdm import tqdm import varconlib as vcl from varconlib.exceptions import PickleFilesNotFoundError from varconlib.star import Star stars_to_use = ('HD1581', 'HD190248', 'HD10180', 'HD102117', 'HD102438', 'HD104982', 'HD105837', 'HD106116', 'HD108309', 'HD110619', 'HD111031', 'HD114853', 'HD11505', 'HD115617', 'HD117105', 'HD117207', 'HD117618', 'HD12387', 'HD124292', 'HD125881', 'HD126525', 'HD128674', 'HD134060', 'HD134987', 'HD136352', 'HD136894', 'HD138573', 'HD1388', 'HD140538', 'HD140901', 'HD141937', 'HD143114', 'HD144585', 'HD1461', 'HD146233', 'HD147512', 'HD148211', 'HD148816', 'HD150433', 'HD152391', 'HD154417', 'HD157338', 'HD157347', 'HD161612', 'HD168443', 'HD168871', 'HD171665', 'HD172051', 'HD177409', 'HD177565', 'HD177758', 'HD1835', 'HD183658', 'HD184768', 'HD189567', 'HD189625', 'HD193193', 'HD19467', 'HD196761', 'HD197818', 'HD199288', 'HD199960', 'HD203432', 'HD20407', 'HD204385', 'HD205536', 'HD20619', 'HD2071', 'HD207129', 'HD20766', 'HD20782', 'HD20807', 'HD208704', 'HD210752', 'HD210918', 'HD211415', 'HD212708', 'HD213575', 'HD214953', 'HD215257', 'HD217014', 'HD220507', 'HD222582', 'HD222669', 'HD28821', 'HD30495', 'HD31527', 'HD32724', 'HD361', 'HD37962', 'HD38277', 'HD38858', 'HD38973', 'HD39091', 'HD43587', 'HD43834', 'HD4391', 'HD44420', 'HD44447', 'HD44594', 'HD45184', 'HD45289', 'HD47186', 'HD4915', 'HD55693', 'HD59468', 'HD65907', 'HD6735', 'HD67458', 'HD68168', 'HD68978', 'HD69655', 'HD69830', 'HD70642', 'HD70889', 'HD7134', 'HD72769', 'HD73256', 'HD73524', 'HD7449', 'HD76151', 'HD78429', 'HD78558', 'HD78660', 'HD78747', 'HD82943', 'HD83529', 'HD88725', 'HD88742', 'HD90156', 'HD90905', 'HD92719', 'HD92788', 'HD95521', 'HD96423', 'HD96700', 'HD96937', 'HD97037', 'HD97343', 'HD9782', 'HD97998', 'HD98281', 'Vesta') def recreate_star(star_dir): """Create a Star from a given directory. Parameters ---------- star_dir :`pathlib.Path` The directory in which to find the star's files. Returns ------- None. """ tqdm.write(f'Creating {star_dir.stem}') try: Star(star_dir.stem, star_dir, load_data=False) except PickleFilesNotFoundError: newstar_dir = Path('/Volumes/External Storage/data_output') /\ star_dir.stem tqdm.write('Using external storage files.') Star(star_dir.stem, new_star_dir, load_data=False, output_dir=star_dir) def create_transition_model_corrected_arrays(star_dir): """ Create the transition model-corrected arrays for a Star from a given directory. Parameters ---------- star_dir : `pathlib.Path` The directory in which to find the star's files. Returns ------- None. """ tqdm.write(f'Working on {star_dir.stem}') star = Star(star_dir.stem, star_dir, load_data=True) star.createTransitionModelCorrectedArrays(model_func='quadratic', n_sigma=2.5) star.createPairSeparationArrays() star.saveDataToDisk() def create_pair_model_corrected_arrays(star_dir): """ Create the pair model-corrected array for a Star from a given directory. Parameters ---------- star_dir : `pathlib.Path` The directory in which to find the star's files. Returns ------- None. """ tqdm.write(f'Working on {star_dir.stem}') star = Star(star_dir.stem, star_dir, load_data=True) star.createPairModelCorrectedArrays(model_func='quadratic', n_sigma=4.0) star.saveDataToDisk() def add_pixel_data_to_star(star_dir): """ Add information about the pixel each transition was measured at to a star. Parameters ---------- star_dir : `pathlib.Path` The directory containing the data for the star. Returns ------- None. """ tqdm.write(f'Working on {star_dir.stem}') star = Star(star_dir.stem, star_dir, load_data=True) # Find pickle files in directory search_str = str(star_dir) + f'/HARPS*/pickles_int/*fits.lzma' pickle_files = [Path(path) for path in sorted(glob(search_str))] with open(vcl.final_selection_file, 'r+b') as f: transitions_list = pickle.load(f) num_obs = len(pickle_files) num_cols = 0 for transition in transitions_list: num_cols += len(transition.ordersToFitIn) star.pixelArray = np.full((num_obs, num_cols), -1, dtype=int) for obs_num, pickle_file in enumerate(tqdm(pickle_files)): with lzma.open(pickle_file, 'rb') as f: fits_list = pickle.loads(f.read()) for col_num, fit in enumerate(fits_list): if fit is not None: star.pixelArray[obs_num, col_num] = fit.centralIndex star.saveDataToDisk() def update_stellar_property(star_dir, property_name=None): """ Force an update of the given property for the given star, and save it out. Parameters ---------- star_dir : `pathlib.Path` The directory containing the data for the star. property_name : str The name of the property to be updated for the star. Returns ------- None. """ star = Star(star_dir.stem, star_dir, load_data=True) # Call the star.property name to force it to updates its value. tqdm.write(f'Value of {property_name} for {star_dir.stem}' f' is {getattr(star, property_name)}') star.saveDataToDisk() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Automatically recreate all' ' stars whose names are given.') parser.add_argument('star_names', action='store', type=str, nargs='*', help='The names of stars (directories) containing the' ' stars to be used in the plot. If not given will' ' default to using all stars.') parser.add_argument('--recreate-stars', action='store_true', help='Trigger a full rebuild of stars from the pickled' ' results files (LENGTHY!).') parser.add_argument('--transitions', action='store_true', help='Create the transition model-corrected arrays and' ' pair separation arrays for stars.') parser.add_argument('--pairs', action='store_true', help='Create the pair model-corrected arrays for' ' stars.') parser.add_argument('--pixel-positions', action='store_true', help='Read pickled fits to add pixel positions to' ' star.') parser.add_argument('--update-property', action='store', type=str, help='Update the property with the given name.') args = parser.parse_args() start_time = time.time() output_dir = vcl.output_dir star_dirs = [output_dir / star_name for star_name in args.star_names] if star_dirs == []: # No stars given, fall back on included list: star_dirs = [output_dir / star_name for star_name in stars_to_use] if args.recreate_stars: p_umap(recreate_star, star_dirs) if args.transitions: p_umap(create_transition_model_corrected_arrays, star_dirs) if args.pairs: p_umap(create_pair_model_corrected_arrays, star_dirs) if args.pixel_positions: p_umap(add_pixel_data_to_star, star_dirs) if args.update_property: p_map(partial(update_stellar_property, property_name=args.update_property), star_dirs) duration = time.time() - start_time print(f'Finished in {duration:.2f} seconds.')
34.059761
80
0.608375
880b446c4003ff94b4356e5d4ea4c6a9a1cf066a
371
py
Python
ocm_test_case/users/urls.py
DivinytyToffee/ocm_test_case
448d1651f963bb9a65045e8683f074a2b1d85229
[ "MIT" ]
null
null
null
ocm_test_case/users/urls.py
DivinytyToffee/ocm_test_case
448d1651f963bb9a65045e8683f074a2b1d85229
[ "MIT" ]
5
2022-02-28T23:35:24.000Z
2022-03-31T23:30:17.000Z
ocm_test_case/users/urls.py
DivinytyToffee/ocm_test_case
448d1651f963bb9a65045e8683f074a2b1d85229
[ "MIT" ]
null
null
null
from django.urls import path from ocm_test_case.users.views import ( user_detail_view, user_redirect_view, user_update_view, ) app_name = "users" urlpatterns = [ path("~redirect/", view=user_redirect_view, name="redirect"), path("~update/", view=user_update_view, name="update"), path("<str:username>/", view=user_detail_view, name="detail"), ]
24.733333
66
0.706199
aeb0431f2ee9a66395cfa2ff579b0b6cd2498014
4,044
py
Python
util/visualizer.py
megvii-research/GeneGAN
8a1ba544481978c6f5513e7eed5f11622ad3976f
[ "MIT" ]
5
2021-08-08T17:28:00.000Z
2022-02-18T03:20:56.000Z
util/visualizer.py
megvii-research/GeneGAN
8a1ba544481978c6f5513e7eed5f11622ad3976f
[ "MIT" ]
null
null
null
util/visualizer.py
megvii-research/GeneGAN
8a1ba544481978c6f5513e7eed5f11622ad3976f
[ "MIT" ]
2
2021-08-15T15:38:25.000Z
2021-08-15T21:21:30.000Z
import numpy as np import os import time from . import util from torch.utils.tensorboard import SummaryWriter class Visualizer: """This class includes several functions that can display/save images and print/save logging information. It uses a Python library 'tensorboard' for display. """ def __init__(self, opt): """Initialize the Visualizer class Parameters: opt -- stores all the experiment flags; needs to be a subclass of BaseOptions Step 1: Cache the training/test options Step 2: create an SummaryWriter(tensorboard) object for saveing results Step 3: create a logging file to store training losses """ self.opt = opt # cache the option self.win_size = opt.display_winsize self.name = opt.name self.saved = False # create a logging file to store training losses self.log_name = os.path.join(opt.checkpoints_dir, opt.name, "loss_log.txt") with open(self.log_name, "a") as log_file: now = time.strftime("%c") log_file.write( "================ Training Loss (%s) ================\n" % now ) self.use_tb = True if self.use_tb: self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, "tb_log") self.summary_writer = SummaryWriter(self.log_dir) util.mkdirs([self.log_dir]) def reset(self): """Reset the self.saved status""" self.saved = False def display_current_results(self, visuals, epoch, save_result): """Display current results on tensorboard. Parameters: visuals (OrderedDict) - - dictionary of images to display or save epoch (int) - - the current epoch save_result (bool) - - if save the current results to tensorboard """ if self.use_tb and save_result: show_imgs = [] for i, (label, image) in enumerate(visuals.items()): image_numpy = util.tensor2im(image) show_imgs.append(image_numpy) label = "-".join(visuals.keys()) show_imgs = np.stack(show_imgs, axis=0) self.summary_writer.add_images( "epoch%.3d: %s" % (epoch, label), show_imgs, epoch, dataformats="NHWC" ) self.summary_writer.flush() def plot_current_losses(self, epoch, epoch_iter, dataset_size, losses): """display the current losses on tensorboard: dictionary of error labels and values Parameters: epoch (int) -- current epoch counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 losses (OrderedDict) -- training losses stored in the format of (name, float) pairs """ step = epoch * dataset_size + epoch_iter for k, v in losses.items(): self.summary_writer.add_scalar(k, v, step) # losses: same format as |losses| of plot_current_losses def print_current_losses(self, epoch, iters, losses, t_comp, t_data): """print current losses on console; also save the losses to the disk Parameters: epoch (int) -- current epoch iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) losses (OrderedDict) -- training losses stored in the format of (name, float) pairs t_comp (float) -- computational time per data point (normalized by batch_size) t_data (float) -- data loading time per data point (normalized by batch_size) """ message = "(epoch: %d, iters: %d, time: %.3f, data: %.3f) " % ( epoch, iters, t_comp, t_data, ) for k, v in losses.items(): message += "%s: %.3f " % (k, v) print(message) # print the message with open(self.log_name, "a") as log_file: log_file.write("%s\n" % message) # save the message
39.262136
110
0.598417
7b20270728d12baecc14f1dc7130a8f2b25d381b
3,628
py
Python
test/student/test_record_student.py
StoDevX/stograde
5b4cd58724e8e5218c7a7f2cc2d4f788e71a7931
[ "MIT" ]
7
2016-08-05T00:41:11.000Z
2019-08-22T11:12:10.000Z
test/student/test_record_student.py
StoDevX/cs251-toolkit
a40f358289d67cce7b24fd557230079fae830b7d
[ "MIT" ]
145
2016-08-04T01:07:11.000Z
2019-09-09T22:07:13.000Z
test/student/test_record_student.py
stograde/stograde
17d901a86ff80d20e9f7f798bd27375de34eccb7
[ "MIT" ]
3
2017-02-06T21:52:46.000Z
2019-02-18T10:35:01.000Z
import logging import os import pytest from stograde.common import chdir from stograde.process_assignment.record_result import RecordResult from stograde.process_assignment.submission_warnings import SubmissionWarnings from stograde.process_file.file_result import FileResult from stograde.specs.file_options import FileOptions from stograde.specs.spec import Spec from stograde.specs.spec_file import SpecFile from stograde.student import record_student from stograde.student.student_result import StudentResult from test.utils import git _dir = os.path.dirname(os.path.realpath(__file__)) @pytest.mark.datafiles(os.path.join(_dir, 'fixtures')) def test_record_student(datafiles): student_result = StudentResult('student1') specs = [Spec('hw1', 'hw1', architecture=None, files=[SpecFile('a_file.txt', [], [], [], FileOptions())]), Spec('hw2', 'hw2', architecture=None, files=[SpecFile('b_file.txt', [], [], [], FileOptions())])] with chdir(str(datafiles)): with chdir('student1'): git('init') git('config', 'user.email', 'an_email@email_provider.com') git('config', 'user.name', 'Some Random Name') git('add', os.path.join('hw1', 'a_file.txt')) git('commit', '-m', '"Add file"', '--date="Tue Apr 21 12:28:03 2020 -0500"') git('add', os.path.join('hw2', 'b_file.txt')) git('commit', '-m', '"Add another file"', '--date="Sat Apr 25 20:27:05 2020 -0500"') record_student(student=student_result, specs=specs, basedir='', interact=False, skip_web_compile=False) assert student_result.results[0].student == 'student1' assert student_result.results[0].spec_id == 'hw1' assert student_result.results[0].first_submission == 'Tue Apr 21 12:28:03 2020 -0500' assert student_result.results[0].file_results == [FileResult(file_name='a_file.txt', last_modified='Tue Apr 21 12:28:03 2020 -0500')] assert student_result.results[1].student == 'student1' assert student_result.results[1].spec_id == 'hw2' assert student_result.results[1].first_submission == 'Sat Apr 25 20:27:05 2020 -0500' assert student_result.results[1].file_results == [FileResult(file_name='b_file.txt', last_modified='Sat Apr 25 20:27:05 2020 -0500')] def test_record_student_no_specs(): student = StudentResult('name') record_student(student=student, specs=[], basedir='.', interact=False, skip_web_compile=False) assert student.results == [] @pytest.mark.datafiles(os.path.join(_dir, 'fixtures')) def test_record_student_assignment_folder_missing(datafiles, caplog): student = StudentResult('student1') # student1 has a hw1 directory but not an another_folder directory with chdir(str(datafiles)): with caplog.at_level(logging.DEBUG): record_student(student=student, specs=[Spec('hw1', 'another_folder', None)], basedir='.', interact=False, skip_web_compile=False) assert student.results == [RecordResult('hw1', 'student1', warnings=SubmissionWarnings(assignment_missing=True))] log_messages = {(log.msg, log.levelname) for log in caplog.records} assert log_messages == {("Recording student1's hw1", 'DEBUG')}
43.190476
113
0.62624
86d083a311efe73e7b0541eb8369fee4937f3325
49,175
py
Python
python/proton/_handlers.py
rabih-mourad/qpid-proton
22a8e50a03520491502988da899762d41d788568
[ "Apache-2.0" ]
null
null
null
python/proton/_handlers.py
rabih-mourad/qpid-proton
22a8e50a03520491502988da899762d41d788568
[ "Apache-2.0" ]
null
null
null
python/proton/_handlers.py
rabih-mourad/qpid-proton
22a8e50a03520491502988da899762d41d788568
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from __future__ import absolute_import import errno import logging import socket import time import weakref from ._condition import Condition from ._delivery import Delivery from ._endpoints import Endpoint from ._events import Event, Handler, _dispatch from ._exceptions import ProtonException from ._io import IO from ._message import Message from ._selectable import Selectable from ._transport import Transport from ._url import Url log = logging.getLogger("proton") class OutgoingMessageHandler(Handler): """ A utility for simpler and more intuitive handling of delivery events related to outgoing i.e. sent messages. :param auto_settle: If ``True``, settle all messages (default). Otherwise messages must be explicitly settled. :type auto_settle: ``bool`` :param delegate: A client handler for the endpoint event """ def __init__(self, auto_settle=True, delegate=None): self.auto_settle = auto_settle self.delegate = delegate def on_link_flow(self, event): if event.link.is_sender and event.link.credit \ and event.link.state & Endpoint.LOCAL_ACTIVE \ and event.link.state & Endpoint.REMOTE_ACTIVE: self.on_sendable(event) def on_delivery(self, event): dlv = event.delivery if dlv.link.is_sender and dlv.updated: if dlv.remote_state == Delivery.ACCEPTED: self.on_accepted(event) elif dlv.remote_state == Delivery.REJECTED: self.on_rejected(event) elif dlv.remote_state == Delivery.RELEASED or dlv.remote_state == Delivery.MODIFIED: self.on_released(event) if dlv.settled: self.on_settled(event) if self.auto_settle: dlv.settle() def on_sendable(self, event): """ Called when the sender link has credit and messages can therefore be transferred. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_sendable', event) def on_accepted(self, event): """ Called when the remote peer accepts an outgoing message. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_accepted', event) def on_rejected(self, event): """ Called when the remote peer rejects an outgoing message. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_rejected', event) def on_released(self, event): """ Called when the remote peer releases an outgoing message. Note that this may be in response to either the ``RELEASE`` or ``MODIFIED`` state as defined by the AMQP specification. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_released', event) def on_settled(self, event): """ Called when the remote peer has settled the outgoing message. This is the point at which it should never be retransmitted. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_settled', event) def recv_msg(delivery): msg = Message() msg.decode(delivery.link.recv(delivery.pending)) delivery.link.advance() return msg class Reject(ProtonException): """ An exception that indicates a message should be rejected. """ pass class Release(ProtonException): """ An exception that indicates a message should be released. """ pass class Acking(object): """ A class containing methods for handling received messages. """ def accept(self, delivery): """ Accepts a received message. .. note:: This method cannot currently be used in combination with transactions. See :class:`proton.reactor.Transaction` for transactional methods. :param delivery: The message delivery tracking object :type delivery: :class:`proton.Delivery` """ self.settle(delivery, Delivery.ACCEPTED) def reject(self, delivery): """ Rejects a received message that is considered invalid or unprocessable. .. note:: This method cannot currently be used in combination with transactions. See :class:`proton.reactor.Transaction` for transactional methods. :param delivery: The message delivery tracking object :type delivery: :class:`proton.Delivery` """ self.settle(delivery, Delivery.REJECTED) def release(self, delivery, delivered=True): """ Releases a received message, making it available at the source for any (other) interested receiver. The ``delivered`` parameter indicates whether this should be considered a delivery attempt (and the delivery count updated) or not. .. note:: This method cannot currently be used in combination with transactions. See :class:`proton.reactor.Transaction` for transactional methods. :param delivery: The message delivery tracking object :type delivery: :class:`proton.Delivery` :param delivered: If ``True``, the message will be annotated with a delivery attempt (setting delivery flag :const:`proton.Delivery.MODIFIED`). Otherwise, the message will be returned without the annotation and released (setting delivery flag :const:`proton.Delivery.RELEASED` :type delivered: ``bool`` """ if delivered: self.settle(delivery, Delivery.MODIFIED) else: self.settle(delivery, Delivery.RELEASED) def settle(self, delivery, state=None): """ Settles the message delivery, and optionally updating the delivery state. :param delivery: The message delivery tracking object :type delivery: :class:`proton.Delivery` :param state: The delivery state, or ``None`` if not update is to be performed. :type state: ``int`` or ``None`` """ if state: delivery.update(state) delivery.settle() class IncomingMessageHandler(Handler, Acking): """ A utility for simpler and more intuitive handling of delivery events related to incoming i.e. received messages. :type auto_accept: ``bool`` :param auto_settle: If ``True``, settle all messages (default). Otherwise messages must be explicitly settled. :param delegate: A client handler for the endpoint event """ def __init__(self, auto_accept=True, delegate=None): self.delegate = delegate self.auto_accept = auto_accept def on_delivery(self, event): dlv = event.delivery if not dlv.link.is_receiver: return if dlv.aborted: self.on_aborted(event) dlv.settle() elif dlv.readable and not dlv.partial: event.message = recv_msg(dlv) if event.link.state & Endpoint.LOCAL_CLOSED: if self.auto_accept: dlv.update(Delivery.RELEASED) dlv.settle() else: try: self.on_message(event) if self.auto_accept: dlv.update(Delivery.ACCEPTED) dlv.settle() except Reject: dlv.update(Delivery.REJECTED) dlv.settle() except Release: dlv.update(Delivery.MODIFIED) dlv.settle() elif dlv.updated and dlv.settled: self.on_settled(event) def on_message(self, event): """ Called when a message is received. The message itself can be obtained as a property on the event. For the purpose of referring to this message in further actions (e.g. if explicitly accepting it, the ``delivery`` should be used, also obtainable via a property on the event. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_message', event) def on_settled(self, event): """ Callback for when a message delivery is settled by the remote peer. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_settled', event) def on_aborted(self, event): """ Callback for when a message delivery is aborted by the remote peer. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_aborted', event) class EndpointStateHandler(Handler): """ A utility that exposes 'endpoint' events - ie the open/close for links, sessions and connections in a more intuitive manner. A ``XXX_opened()`` method will be called when both local and remote peers have opened the link, session or connection. This can be used to confirm a locally initiated action for example. A ``XXX_opening()`` method will be called when the remote peer has requested an open that was not initiated locally. By default this will simply open locally, which then triggers the ``XXX_opened()`` call. The same applies to close. :param peer_close_is_error: If ``True``, a peer endpoint closing will be treated as an error with an error callback. Otherwise (default), the normal callbacks for the closing will occur. :type peer_close_is_error: ``bool`` :param delegate: A client handler for the endpoint event """ def __init__(self, peer_close_is_error=False, delegate=None): self.delegate = delegate self.peer_close_is_error = peer_close_is_error @classmethod def is_local_open(cls, endpoint): """ Test if local ``enpoint`` is open (ie has state :const:`proton.Endpoint.LOCAL_ACTIVE`). :param endpoint: The local endpoint to be tested. :type endpoint: Any child of :class:`proton.Endpoint` :return: ``True`` if local endpoint is in state :const:`proton.Endpoint.LOCAL_ACTIVE`, ``False`` otherwise. :rtype: ``bool`` """ return endpoint.state & Endpoint.LOCAL_ACTIVE @classmethod def is_local_uninitialised(cls, endpoint): """ Test if local ``enpoint`` is uninitialised (ie has state :const:`proton.Endpoint.LOCAL_UNINIT`). :param endpoint: The local endpoint to be tested. :type endpoint: Any child of :class:`proton.Endpoint` :return: ``True`` if local endpoint is in state :const:`proton.Endpoint.LOCAL_UNINIT`, ``False`` otherwise. :rtype: ``bool`` """ return endpoint.state & Endpoint.LOCAL_UNINIT @classmethod def is_local_closed(cls, endpoint): """ Test if local ``enpoint`` is closed (ie has state :const:`proton.Endpoint.LOCAL_CLOSED`). :param endpoint: The local endpoint to be tested. :type endpoint: Any child of :class:`proton.Endpoint` :return: ``True`` if local endpoint is in state :const:`proton.Endpoint.LOCAL_CLOSED`, ``False`` otherwise. :rtype: ``bool`` """ return endpoint.state & Endpoint.LOCAL_CLOSED @classmethod def is_remote_open(cls, endpoint): """ Test if remote ``enpoint`` is open (ie has state :const:`proton.Endpoint.LOCAL_ACTIVE`). :param endpoint: The remote endpoint to be tested. :type endpoint: Any child of :class:`proton.Endpoint` :return: ``True`` if remote endpoint is in state :const:`proton.Endpoint.LOCAL_ACTIVE`, ``False`` otherwise. :rtype: ``bool`` """ return endpoint.state & Endpoint.REMOTE_ACTIVE @classmethod def is_remote_closed(cls, endpoint): """ Test if remote ``enpoint`` is closed (ie has state :const:`proton.Endpoint.REMOTE_CLOSED`). :param endpoint: The remote endpoint to be tested. :type endpoint: Any child of :class:`proton.Endpoint` :return: ``True`` if remote endpoint is in state :const:`proton.Endpoint.REMOTE_CLOSED`, ``False`` otherwise. :rtype: ``bool`` """ return endpoint.state & Endpoint.REMOTE_CLOSED @classmethod def print_error(cls, endpoint, endpoint_type): """ Logs an error message related to an error condition at an endpoint. :param endpoint: The endpoint to be tested :type endpoint: :class:`proton.Endpoint` :param endpoint_type: The endpoint type as a string to be printed in the log message. :type endpoint_type: ``str`` """ if endpoint.remote_condition: log.error(endpoint.remote_condition.description or endpoint.remote_condition.name) elif cls.is_local_open(endpoint) and cls.is_remote_closed(endpoint): log.error("%s closed by peer" % endpoint_type) def on_link_remote_close(self, event): if event.link.remote_condition: self.on_link_error(event) elif self.is_local_closed(event.link): self.on_link_closed(event) else: self.on_link_closing(event) event.link.close() def on_session_remote_close(self, event): if event.session.remote_condition: self.on_session_error(event) elif self.is_local_closed(event.session): self.on_session_closed(event) else: self.on_session_closing(event) event.session.close() def on_connection_remote_close(self, event): if event.connection.remote_condition: if event.connection.remote_condition.name == "amqp:connection:forced": # Treat this the same as just having the transport closed by the peer without # sending any events. Allow reconnection to happen transparently. return self.on_connection_error(event) elif self.is_local_closed(event.connection): self.on_connection_closed(event) else: self.on_connection_closing(event) event.connection.close() def on_connection_local_open(self, event): if self.is_remote_open(event.connection): self.on_connection_opened(event) def on_connection_remote_open(self, event): if self.is_local_open(event.connection): self.on_connection_opened(event) elif self.is_local_uninitialised(event.connection): self.on_connection_opening(event) event.connection.open() def on_session_local_open(self, event): if self.is_remote_open(event.session): self.on_session_opened(event) def on_session_remote_open(self, event): if self.is_local_open(event.session): self.on_session_opened(event) elif self.is_local_uninitialised(event.session): self.on_session_opening(event) event.session.open() def on_link_local_open(self, event): if self.is_remote_open(event.link): self.on_link_opened(event) def on_link_remote_open(self, event): if self.is_local_open(event.link): self.on_link_opened(event) elif self.is_local_uninitialised(event.link): self.on_link_opening(event) event.link.open() def on_connection_opened(self, event): """ Callback for when both the local and remote endpoints of a connection have opened. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_connection_opened', event) def on_session_opened(self, event): """ Callback for when both the local and remote endpoints of a session have opened. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_session_opened', event) def on_link_opened(self, event): """ Callback for when both the local and remote endpoints of a link have opened. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_link_opened', event) def on_connection_opening(self, event): """ Callback for when a remote peer initiates the opening of a connection. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_connection_opening', event) def on_session_opening(self, event): """ Callback for when a remote peer initiates the opening of a session. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_session_opening', event) def on_link_opening(self, event): """ Callback for when a remote peer initiates the opening of a link. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_link_opening', event) def on_connection_error(self, event): """ Callback for when an initiated connection open fails. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_connection_error', event) else: self.print_error(event.connection, "connection") def on_session_error(self, event): """ Callback for when an initiated session open fails. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_session_error', event) else: self.print_error(event.session, "session") event.connection.close() def on_link_error(self, event): """ Callback for when an initiated link open fails. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_link_error', event) else: self.print_error(event.link, "link") event.connection.close() def on_connection_closed(self, event): """ Callback for when both the local and remote endpoints of a connection have closed. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_connection_closed', event) def on_session_closed(self, event): """ Callback for when both the local and remote endpoints of a session have closed. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_session_closed', event) def on_link_closed(self, event): """ Callback for when both the local and remote endpoints of a link have closed. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_link_closed', event) def on_connection_closing(self, event): """ Callback for when a remote peer initiates the closing of a connection. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_connection_closing', event) elif self.peer_close_is_error: self.on_connection_error(event) def on_session_closing(self, event): """ Callback for when a remote peer initiates the closing of a session. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_session_closing', event) elif self.peer_close_is_error: self.on_session_error(event) def on_link_closing(self, event): """ Callback for when a remote peer initiates the closing of a link. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None: _dispatch(self.delegate, 'on_link_closing', event) elif self.peer_close_is_error: self.on_link_error(event) def on_transport_tail_closed(self, event): """ Callback for when the transport tail has closed (ie no further input will be accepted by the transport). :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ self.on_transport_closed(event) def on_transport_closed(self, event): """ Callback for when the transport has closed - ie both the head (input) and tail (output) of the transport pipeline are closed. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if self.delegate is not None and event.connection and self.is_local_open(event.connection): _dispatch(self.delegate, 'on_disconnected', event) class MessagingHandler(Handler, Acking): """ A general purpose handler that makes the proton-c events somewhat simpler to deal with and/or avoids repetitive tasks for common use cases. :param prefetch: Initial flow credit for receiving messages, defaults to 10. :type prefetch: ``int`` :param auto_accept: If ``True``, accept all messages (default). Otherwise messages must be individually accepted or rejected. :type auto_accept: ``bool`` :param auto_settle: If ``True``, settle all messages (default). Otherwise messages must be explicitly settled. :type auto_settle: ``bool`` :param peer_close_is_error: If ``True``, a peer endpoint closing will be treated as an error with an error callback. Otherwise (default), the normal callbacks for the closing will occur. :type peer_close_is_error: ``bool`` """ def __init__(self, prefetch=10, auto_accept=True, auto_settle=True, peer_close_is_error=False): self.handlers = [] if prefetch: self.handlers.append(FlowController(prefetch)) self.handlers.append(EndpointStateHandler(peer_close_is_error, weakref.proxy(self))) self.handlers.append(IncomingMessageHandler(auto_accept, weakref.proxy(self))) self.handlers.append(OutgoingMessageHandler(auto_settle, weakref.proxy(self))) self.fatal_conditions = ["amqp:unauthorized-access"] def on_transport_error(self, event): """ Called when some error is encountered with the transport over which the AMQP connection is to be established. This includes authentication errors as well as socket errors. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if event.transport.condition: if event.transport.condition.info: log.error("%s: %s: %s" % ( event.transport.condition.name, event.transport.condition.description, event.transport.condition.info)) else: log.error("%s: %s" % (event.transport.condition.name, event.transport.condition.description)) if event.transport.condition.name in self.fatal_conditions: event.connection.close() else: logging.error("Unspecified transport error") def on_connection_error(self, event): """ Called when the peer closes the connection with an error condition. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ EndpointStateHandler.print_error(event.connection, "connection") def on_session_error(self, event): """ Called when the peer closes the session with an error condition. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ EndpointStateHandler.print_error(event.session, "session") event.connection.close() def on_link_error(self, event): """ Called when the peer closes the link with an error condition. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ EndpointStateHandler.print_error(event.link, "link") event.connection.close() def on_reactor_init(self, event): """ Called when the event loop - the reactor - starts. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ if hasattr(event.reactor, 'subclass'): setattr(event, event.reactor.subclass.__name__.lower(), event.reactor) self.on_start(event) def on_start(self, event): """ Called when the event loop starts. (Just an alias for on_reactor_init) :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_connection_closed(self, event): """ Called when the connection is closed. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_session_closed(self, event): """ Called when the session is closed. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_link_closed(self, event): """ Called when the link is closed. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_connection_closing(self, event): """ Called when the peer initiates the closing of the connection. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_session_closing(self, event): """ Called when the peer initiates the closing of the session. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_link_closing(self, event): """ Called when the peer initiates the closing of the link. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_disconnected(self, event): """ Called when the socket is disconnected. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_sendable(self, event): """ Called when the sender link has credit and messages can therefore be transferred. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_accepted(self, event): """ Called when the remote peer accepts an outgoing message. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_rejected(self, event): """ Called when the remote peer rejects an outgoing message. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_released(self, event): """ Called when the remote peer releases an outgoing message. Note that this may be in response to either the RELEASE or MODIFIED state as defined by the AMQP specification. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_settled(self, event): """ Called when the remote peer has settled the outgoing message. This is the point at which it should never be retransmitted. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_message(self, event): """ Called when a message is received. The message itself can be obtained as a property on the event. For the purpose of referring to this message in further actions (e.g. if explicitly accepting it, the ``delivery`` should be used, also obtainable via a property on the event. :param event: The underlying event object. Use this to obtain further information on the event. In particular, the message itself may be obtained by accessing ``event.message``. :type event: :class:`proton.Event` """ pass class TransactionHandler(object): """ The interface for transaction handlers - ie objects that want to be notified of state changes related to a transaction. """ def on_transaction_declared(self, event): """ Called when a local transaction is declared. :param event: The underlying event object. Use this to obtain further information on the event. In particular, the :class:`proton.reactor.Transaction` object may be obtained by accessing ``event.transaction``. :type event: :class:`proton.Event` """ pass def on_transaction_committed(self, event): """ Called when a local transaction is discharged successfully (committed). :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_transaction_aborted(self, event): """ Called when a local transaction is discharged unsuccessfully (aborted). :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_transaction_declare_failed(self, event): """ Called when a local transaction declare fails. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass def on_transaction_commit_failed(self, event): """ Called when the commit of a local transaction fails. :param event: The underlying event object. Use this to obtain further information on the event. :type event: :class:`proton.Event` """ pass class TransactionalClientHandler(MessagingHandler, TransactionHandler): """ An extension to the MessagingHandler for applications using transactions. This handler provides all of the callbacks found in :class:`MessagingHandler` and :class:`TransactionHandler`, and provides a convenience method :meth:`accept` for performing a transactional acceptance of received messages. :param prefetch: Initial flow credit for receiving messages, defaults to 10. :type prefetch: ``int`` :param auto_accept: If ``True``, accept all messages (default). Otherwise messages must be individually accepted or rejected. :type auto_accept: ``bool`` :param auto_settle: If ``True``, settle all messages (default). Otherwise messages must be explicitly settled. :type auto_settle: ``bool`` :param peer_close_is_error: If ``True``, a peer endpoint closing will be treated as an error with an error callback. Otherwise (default), the normal callbacks for the closing will occur. :type peer_close_is_error: ``bool`` """ def __init__(self, prefetch=10, auto_accept=False, auto_settle=True, peer_close_is_error=False): super(TransactionalClientHandler, self).__init__(prefetch, auto_accept, auto_settle, peer_close_is_error) def accept(self, delivery, transaction=None): """ A convenience method for accepting a received message as part of a transaction. If no transaction object is supplied, a regular non-transactional acceptance will be performed. :param delivery: Delivery tracking object for received message. :type delivery: :class:`proton.Delivery` :param transaction: Transaction tracking object which is required if the message is being accepted under the transaction. If ``None`` (default), then a normal non-transactional accept occurs. :type transaction: :class:`proton.reactor.Transaction` """ if transaction: transaction.accept(delivery) else: super(TransactionalClientHandler, self).accept(delivery) class FlowController(Handler): def __init__(self, window=1024): self._window = window self._drained = 0 def on_link_local_open(self, event): self._flow(event.link) def on_link_remote_open(self, event): self._flow(event.link) def on_link_flow(self, event): self._flow(event.link) def on_delivery(self, event): self._flow(event.link) def _flow(self, link): if link.is_receiver: self._drained += link.drained() if self._drained == 0: delta = self._window - link.credit link.flow(delta) class Handshaker(Handler): @staticmethod def on_connection_remote_open(event): conn = event.connection if conn.state & Endpoint.LOCAL_UNINIT: conn.open() @staticmethod def on_session_remote_open(event): ssn = event.session if ssn.state() & Endpoint.LOCAL_UNINIT: ssn.open() @staticmethod def on_link_remote_open(event): link = event.link if link.state & Endpoint.LOCAL_UNINIT: link.source.copy(link.remote_source) link.target.copy(link.remote_target) link.open() @staticmethod def on_connection_remote_close(event): conn = event.connection if not conn.state & Endpoint.LOCAL_CLOSED: conn.close() @staticmethod def on_session_remote_close(event): ssn = event.session if not ssn.state & Endpoint.LOCAL_CLOSED: ssn.close() @staticmethod def on_link_remote_close(event): link = event.link if not link.state & Endpoint.LOCAL_CLOSED: link.close() # Back compatibility definitions CFlowController = FlowController CHandshaker = Handshaker class PythonIO: def __init__(self): self.selectables = [] self.delegate = IOHandler() def on_unhandled(self, method, event): event.dispatch(self.delegate) def on_selectable_init(self, event): self.selectables.append(event.context) def on_selectable_updated(self, event): pass def on_selectable_final(self, event): sel = event.context if sel.is_terminal: self.selectables.remove(sel) sel.release() def on_reactor_quiesced(self, event): reactor = event.reactor # check if we are still quiesced, other handlers of # on_reactor_quiesced could have produced events to process if not reactor.quiesced: return reading = [] writing = [] deadline = None for sel in self.selectables: if sel.reading: reading.append(sel) if sel.writing: writing.append(sel) if sel.deadline: if deadline is None: deadline = sel.deadline else: deadline = min(sel.deadline, deadline) if deadline is not None: timeout = deadline - time.time() else: timeout = reactor.timeout if timeout < 0: timeout = 0 timeout = min(timeout, reactor.timeout) readable, writable, _ = IO.select(reading, writing, [], timeout) now = reactor.mark() for s in readable: s.readable() for s in writable: s.writable() for s in self.selectables: if s.deadline and now > s.deadline: s.expired() reactor.yield_() # For C style IO handler need to implement Selector class IOHandler(Handler): def __init__(self): self._selector = IO.Selector() def on_selectable_init(self, event): s = event.selectable self._selector.add(s) s._reactor._selectables += 1 def on_selectable_updated(self, event): s = event.selectable self._selector.update(s) def on_selectable_final(self, event): s = event.selectable self._selector.remove(s) s._reactor._selectables -= 1 s.release() def on_reactor_quiesced(self, event): r = event.reactor if not r.quiesced: return d = r.timer_deadline readable, writable, expired = self._selector.select(r.timeout) now = r.mark() for s in readable: s.readable() for s in writable: s.writable() for s in expired: s.expired() r.yield_() def on_selectable_readable(self, event): s = event.selectable t = s._transport # If we're an acceptor we can't have a transport # and we don't want to do anything here in any case if not t: return capacity = t.capacity() if capacity > 0: try: b = s.recv(capacity) if len(b) > 0: n = t.push(b) else: # EOF handling self.on_selectable_error(event) except socket.error as e: # TODO: What's the error handling to be here? log.error("Couldn't recv: %r" % e) t.close_tail() # Always update as we may have gone to not reading or from # not writing to writing when processing the incoming bytes r = s._reactor self.update(t, s, r.now) def on_selectable_writable(self, event): s = event.selectable t = s._transport # If we're an acceptor we can't have a transport # and we don't want to do anything here in any case if not t: return pending = t.pending() if pending > 0: try: n = s.send(t.peek(pending)) t.pop(n) except socket.error as e: log.error("Couldn't send: %r" % e) # TODO: Error? or actually an exception t.close_head() newpending = t.pending() if newpending != pending: r = s._reactor self.update(t, s, r.now) def on_selectable_error(self, event): s = event.selectable t = s._transport t.close_head() t.close_tail() s.terminate() s._transport = None t._selectable = None s.update() def on_selectable_expired(self, event): s = event.selectable t = s._transport r = s._reactor self.update(t, s, r.now) def on_connection_local_open(self, event): c = event.connection if not c.state & Endpoint.REMOTE_UNINIT: return t = Transport() # It seems perverse, but the C code ignores bind errors too! # and this is required or you get errors because Connector() has already # bound the transport and connection! t.bind_nothrow(c) def on_connection_bound(self, event): c = event.connection t = event.transport reactor = c._reactor # link the new transport to its reactor: t._reactor = reactor if c._acceptor: # this connection was created by the acceptor. There is already a # socket assigned to this connection. Nothing needs to be done. return url = c.url or Url(c.hostname) url.defaults() host = url.host port = int(url.port) if not c.user: user = url.username if user: c.user = user password = url.password if password: c.password = password addrs = socket.getaddrinfo(host, port, socket.AF_UNSPEC, socket.SOCK_STREAM) # Try first possible address log.debug("Connect trying first transport address: %s", addrs[0]) sock = IO.connect(addrs[0]) # At this point we need to arrange to be called back when the socket is writable connector = ConnectSelectable(sock, reactor, addrs[1:], t, self) connector.collect(reactor._collector) connector.writing = True connector.push_event(connector, Event.SELECTABLE_INIT) # TODO: Don't understand why we need this now - how can we get PN_TRANSPORT until the connection succeeds? t._selectable = None @staticmethod def update(transport, selectable, now): try: capacity = transport.capacity() selectable.reading = capacity>0 except: if transport.closed: selectable.terminate() selectable._transport = None transport._selectable = None try: pending = transport.pending() selectable.writing = pending>0 except: if transport.closed: selectable.terminate() selectable._transport = None transport._selectable = None selectable.deadline = transport.tick(now) selectable.update() def on_transport(self, event): t = event.transport r = t._reactor s = t._selectable if s and not s.is_terminal: self.update(t, s, r.now) def on_transport_closed(self, event): t = event.transport r = t._reactor s = t._selectable if s and not s.is_terminal: s.terminate() s._transport = None t._selectable = None r.update(s) t.unbind() class ConnectSelectable(Selectable): def __init__(self, sock, reactor, addrs, transport, iohandler): super(ConnectSelectable, self).__init__(sock, reactor) self._addrs = addrs self._transport = transport self._iohandler = iohandler def readable(self): pass def writable(self): e = self._delegate.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR) t = self._transport if e == 0: log.debug("Connection succeeded") s = self._reactor.selectable(delegate=self._delegate) s._transport = t t._selectable = s self._iohandler.update(t, s, t._reactor.now) # Disassociate from the socket (which has been passed on) self._delegate = None self.terminate() self._transport = None self.update() return elif e == errno.ECONNREFUSED: if len(self._addrs) > 0: log.debug("Connection refused: trying next transport address: %s", self._addrs[0]) sock = IO.connect(self._addrs[0]) self._addrs = self._addrs[1:] self._delegate.close() self._delegate = sock return else: log.debug("Connection refused, but tried all transport addresses") t.condition = Condition("proton.pythonio", "Connection refused to all addresses") else: log.error("Couldn't connect: %s", e) t.condition = Condition("proton.pythonio", "Connection error: %s" % e) t.close_tail() t.close_head() self.terminate() self._transport = None self.update()
34.29219
114
0.619319
3e2b4f818744de59dd95708803bd50673636ee81
10,698
py
Python
subrepos/wtsi-hgi.python-sequencescape-db/sequencescape/tests/sqlalchemy/test_mappers.py
wtsi-hgi/openstack-tenant-cleanup
d998016f44c54666f76f90d8d3efa90e12730fff
[ "MIT" ]
null
null
null
subrepos/wtsi-hgi.python-sequencescape-db/sequencescape/tests/sqlalchemy/test_mappers.py
wtsi-hgi/openstack-tenant-cleanup
d998016f44c54666f76f90d8d3efa90e12730fff
[ "MIT" ]
7
2016-03-03T13:29:44.000Z
2016-03-15T14:30:48.000Z
subrepos/wtsi-hgi.python-sequencescape-db/sequencescape/tests/sqlalchemy/test_mappers.py
wtsi-hgi/openstack-tenant-cleanup
d998016f44c54666f76f90d8d3efa90e12730fff
[ "MIT" ]
null
null
null
import unittest from abc import abstractmethod, ABCMeta from typing import List from sequencescape._sqlalchemy.database_connector import SQLAlchemyDatabaseConnector from sequencescape._sqlalchemy.mappers import SQLAlchemyMapper, SQLAlchemySampleMapper, SQLAlchemyStudyMapper, \ SQLAlchemyLibraryMapper, SQLAlchemyWellMapper, SQLAlchemyMultiplexedLibraryMapper from sequencescape.enums import Property from sequencescape.mappers import Mapper from sequencescape.models import InternalIdModel, Sample, Study from sequencescape.tests._helpers import create_stub_sample, assign_unique_ids, create_stub_study, create_stub_library, \ create_stub_multiplexed_library, create_stub_well from sequencescape.tests.sqlalchemy.stub_database import create_stub_database def _create_connector() -> SQLAlchemyDatabaseConnector: """ Creates a connector to a test database. :return: connector to a test database """ database_location, dialect = create_stub_database() connector = SQLAlchemyDatabaseConnector("%s:///%s" % (dialect, database_location)) return connector class _SQLAlchemyMapperTest(unittest.TestCase, metaclass=ABCMeta): """ Tests for `SQLAlchemyMapper`. """ @staticmethod def _get_internal_ids(models: List[InternalIdModel]) -> List[int]: """ Gets the ids of all of the given models. :param models: the models to get_by_path the ids of :return: the ids of the given models """ return [model.internal_id for model in models] @abstractmethod def _create_model(self) -> InternalIdModel: """ Creates a model of the type the mapper being tested uses. :return: model for use with SUT """ @abstractmethod def _create_mapper(self, connector: SQLAlchemyDatabaseConnector) -> SQLAlchemyMapper: """ Creates the mapper that is to be tested. :return: mapper to be tested """ def setUp(self): self._connector = _create_connector() self._mapper = self._create_mapper(self._connector) def test_add_with_none(self): self.assertRaises(ValueError, self._mapper.add, None) def test_add_with_non_model(self): self.assertRaises(ValueError, self._mapper.add, Mapper) def test_add_with_empty_list(self): self._mapper.add([]) retrieved_models = self._mapper.get_all() self.assertEqual(len(retrieved_models), 0) def test_add_with_model(self): model = self._create_models(1)[0] self._mapper.add(model) retrieved_models = self._mapper.get_all() self.assertEqual(len(retrieved_models), 1) self.assertEqual(retrieved_models[0], model) def test_add_with_model_list(self): models = self._create_models(5) self._mapper.add(models) retrieved_models = self._mapper.get_all() self.assertCountEqual(retrieved_models, models) def test__get_by_property_value_sequence_with_empty_list(self): models = self._create_models(5) models_to_retrieve = [] self._mapper.add(models) retrieved_models = self._mapper._get_by_property_value_sequence( Property.INTERNAL_ID, self._get_internal_ids(models_to_retrieve)) self.assertCountEqual(retrieved_models, models_to_retrieve) def test__get_by_property_value_sequence_with_list_of_existing(self): models = self._create_models(5) models_to_retrieve = [models[0], models[2]] self._mapper.add(models) retrieved_models = self._mapper._get_by_property_value_sequence( Property.INTERNAL_ID, self._get_internal_ids(models_to_retrieve)) self.assertCountEqual(retrieved_models, models_to_retrieve) def test__get_by_property_value_sequence_with_list_of_non_existing(self): models = self._create_models(5) models_to_retrieve = [models.pop(), models.pop()] assert len(models) == 3 self._mapper.add(models) retrieved_models = self._mapper._get_by_property_value_sequence( Property.INTERNAL_ID, self._get_internal_ids(models_to_retrieve)) self.assertCountEqual(retrieved_models, []) def test__get_by_property_value_sequence_with_list_of_both_existing_and_non_existing(self): models = self._create_models(5) models_to_retrieve = [models[0], models[2], models.pop()] assert len(models) == 4 self._mapper.add(models) retrieved_models = self._mapper._get_by_property_value_sequence( Property.INTERNAL_ID, self._get_internal_ids(models_to_retrieve)) self.assertCountEqual(retrieved_models, models_to_retrieve[:2]) def test__get_by_property_value_sequence_returns_correct_type(self): models = self._create_models(5) self._mapper.add(models) retrieved_models = self._mapper._get_by_property_value_sequence( Property.INTERNAL_ID, self._get_internal_ids(models)) self.assertCountEqual(retrieved_models, models) self.assertIsInstance(retrieved_models[0], models[0].__class__) def _create_models(self, number_of_models: int) -> List[InternalIdModel]: """ Creates a number of models to use in tests. :param number_of_models: the number of models to create :return: the models """ return assign_unique_ids([self._create_model() for _ in range(number_of_models)]) class _SQLAssociationMapperTest(_SQLAlchemyMapperTest): """ Tests for `SQLAssociationMapper`. """ @abstractmethod def _get_associated_with_instance(self, internal_id=None) -> InternalIdModel: """ Gets an instance of the type which the objects the mapper deals with can be associated to. :return: instance that the object that the mapper is for can be assocaited with """ def setUp(self): super().setUp() self._associated_with_type = self._get_associated_with_instance().__class__.__name__ self._associated_with_mapper = globals()["SQLAlchemy%sMapper" % self._associated_with_type](self._connector) self._mapper_get_associated_with_x = getattr( self._mapper, "get_associated_with_%s" % self._associated_with_type.lower()) self._mapper_set_association_with_x = getattr( self._mapper, "set_association_with_%s" % self._associated_with_type.lower()) def test__get_associated_with_x_with_non_existent_x(self): self.assertRaises(ValueError, self._mapper_get_associated_with_x, self._get_associated_with_instance()) def test__get_associated_with_x_with_non_associated(self): x = self._get_associated_with_instance() self._associated_with_mapper.add(x) associated = self._mapper_get_associated_with_x(x) self.assertEquals(len(associated), 0) def test__get_associated_with_x_with_value(self): x = self._get_associated_with_instance() self._associated_with_mapper.add(x) models = self._create_models(2) self._mapper.add(models) self._mapper_set_association_with_x(models, x) associated = self._mapper_get_associated_with_x(x) self.assertCountEqual(associated, models) def test__get_associated_with_x_with_empty_list(self): self._mapper_get_associated_with_x([]) def test__get_associated_with_x_with_list(self): models = self._create_models(2) self._mapper.add(models) xs = [self._get_associated_with_instance(i) for i in range(2)] self._associated_with_mapper.add(xs) self._mapper_set_association_with_x(models[0], xs[0]) self._mapper_set_association_with_x(models[1], xs[1]) associated = self._mapper_get_associated_with_x(xs) self.assertCountEqual(associated, models) def test__get_associated_with_x_with_list_and_shared_association(self): xs = [self._get_associated_with_instance(i) for i in range(2)] self._associated_with_mapper.add(xs) model = self._create_model() self._mapper.add(model) self._mapper_set_association_with_x(model, xs[0]) self._mapper_set_association_with_x(model, xs[1]) associated = self._mapper_get_associated_with_x(xs) self.assertCountEqual(associated, [model]) class SQLAlchemySampleMapperTest(_SQLAssociationMapperTest): """ Tests for `SQLAlchemySampleMapper`. """ def _create_model(self) -> InternalIdModel: return create_stub_sample() def _create_mapper(self, connector: SQLAlchemyDatabaseConnector) -> SQLAlchemyMapper: return SQLAlchemySampleMapper(connector) def _get_associated_with_instance(self, internal_id=None) -> InternalIdModel: study = create_stub_study() if internal_id is not None: study.internal_id = internal_id return study class SQLAlchemyStudyMapperTest(_SQLAssociationMapperTest): """ Tests for `SQLAlchemyStudyMapper`. """ def _create_model(self) -> InternalIdModel: return create_stub_study() def _create_mapper(self, connector: SQLAlchemyDatabaseConnector) -> SQLAlchemyMapper: return SQLAlchemyStudyMapper(connector) def _get_associated_with_instance(self, internal_id=None) -> InternalIdModel: study = create_stub_sample() if internal_id is not None: study.internal_id = internal_id return study class SQLAlchemyLibraryMapperTest(_SQLAlchemyMapperTest): """ Tests for `SQLAlchemyLibraryMapper`. """ def _create_model(self) -> InternalIdModel: return create_stub_library() def _create_mapper(self, connector: SQLAlchemyDatabaseConnector) -> SQLAlchemyMapper: return SQLAlchemyLibraryMapper(connector) class SQLAlchemyWellMapperTest(_SQLAlchemyMapperTest): """ Tests for `SQLAlchemyWellMapper`. """ def _create_model(self) -> InternalIdModel: return create_stub_well() def _create_mapper(self, connector: SQLAlchemyDatabaseConnector) -> SQLAlchemyMapper: return SQLAlchemyWellMapper(connector) class SQLAlchemyMultiplexedLibraryMapperTest(_SQLAlchemyMapperTest): """ Tests for `SQLAlchemyMultiplexedLibraryMapper`. """ def _create_model(self) -> InternalIdModel: return create_stub_multiplexed_library() def _create_mapper(self, connector: SQLAlchemyDatabaseConnector) -> SQLAlchemyMapper: return SQLAlchemyMultiplexedLibraryMapper(connector) # Trick required to stop Python's unittest from running the abstract base classes as tests del _SQLAlchemyMapperTest del _SQLAssociationMapperTest if __name__ == "__main__": unittest.main()
37.536842
121
0.726117
a6e2a2e24a8ec8af55ae83a67cb8f6215db9f2d9
6,351
py
Python
tests/test_tocdirective.py
flat35hd99/jupyter-book
4d5b474e6f2b80c4d1d206e4554740ff82a344dc
[ "BSD-3-Clause" ]
2,109
2020-05-02T23:47:18.000Z
2022-03-31T22:16:54.000Z
tests/test_tocdirective.py
flat35hd99/jupyter-book
4d5b474e6f2b80c4d1d206e4554740ff82a344dc
[ "BSD-3-Clause" ]
1,158
2020-04-29T18:07:02.000Z
2022-03-31T21:50:57.000Z
tests/test_tocdirective.py
flat35hd99/jupyter-book
4d5b474e6f2b80c4d1d206e4554740ff82a344dc
[ "BSD-3-Clause" ]
360
2020-04-29T14:44:49.000Z
2022-03-31T09:26:23.000Z
import os import shutil from pathlib import Path import pytest import sphinx from bs4 import BeautifulSoup from click.testing import CliRunner from TexSoup import TexSoup from jupyter_book.cli.main import build path_tests = Path(__file__).parent.resolve() path_books = path_tests.joinpath("books") path_root = path_tests.parent SPHINX_VERSION = f".sphinx{sphinx.version_info[0]}" def test_toc_startwithlist(cli: CliRunner, temp_with_override, file_regression): """Testing a basic _toc.yml for tableofcontents directive""" path_output = temp_with_override.joinpath("mybook").absolute() # Regular TOC should work p_toc = path_books.joinpath("toc") path_toc = p_toc.joinpath("_toc_startwithlist.yml") result = cli.invoke( build, [ p_toc.as_posix(), "--path-output", path_output.as_posix(), "--toc", path_toc.as_posix(), "-W", ], ) # print(result.output) assert result.exit_code == 0 path_toc_directive = path_output.joinpath("_build", "html", "index.html") # print(path_toc_directive.read_text(encoding="utf8")) # get the tableofcontents markup soup = BeautifulSoup(path_toc_directive.read_text(encoding="utf8"), "html.parser") toc = soup.find_all("div", class_="toctree-wrapper") assert len(toc) == 1 file_regression.check(toc[0].prettify(), extension=".html", encoding="utf8") def test_toc_parts(cli: CliRunner, temp_with_override, file_regression): """Testing `header` in _toc.yml""" path_input = temp_with_override.joinpath("mybook_input").absolute() path_output = temp_with_override.joinpath("mybook").absolute() # Regular TOC should work p_toc = path_books.joinpath("toc") shutil.copytree(p_toc, path_input) # setup correct files (path_input / "subfolder" / "asubpage.md").unlink() for i in range(4): (path_input / "subfolder" / f"asubpage{i+1}.md").write_text( f"# A subpage {i+1}\n", encoding="utf8" ) path_toc = path_input.joinpath("_toc_parts.yml") result = cli.invoke( build, [ path_input.as_posix(), "--path-output", path_output.as_posix(), "--toc", path_toc.as_posix(), "-W", ], ) # print(result.output) assert result.exit_code == 0 path_index = path_output.joinpath("_build", "html", "index.html") # get the tableofcontents markup soup = BeautifulSoup(path_index.read_text(encoding="utf8"), "html.parser") toc = soup.find_all("div", class_="toctree-wrapper") assert len(toc) == 2 file_regression.check( toc[0].prettify(), basename="test_toc_parts_directive", extension=f"{SPHINX_VERSION}.html", encoding="utf8", ) # check the sidebar structure is correct file_regression.check( soup.select(".bd-links")[0].prettify(), basename="test_toc_parts_sidebar", extension=f"{SPHINX_VERSION}.html", encoding="utf8", ) @pytest.mark.skipif( os.name == "nt", reason="Theme error writing content1: " "filename, directory name, or volume label syntax is incorrect", ) def test_toc_urllink(cli: CliRunner, temp_with_override, file_regression): """Testing with additional `url` link key in _toc.yml""" path_output = temp_with_override.joinpath("mybook").absolute() # Regular TOC should work p_toc = path_books.joinpath("toc") path_toc = p_toc.joinpath("_toc_urllink.yml") result = cli.invoke( build, [ p_toc.as_posix(), "--path-output", path_output.as_posix(), "--toc", path_toc.as_posix(), ], ) print(result.output) assert result.exit_code == 0 path_toc_directive = path_output.joinpath("_build", "html", "index.html") # get the tableofcontents markup soup = BeautifulSoup(path_toc_directive.read_text(encoding="utf8"), "html.parser") toc = soup.find_all("div", class_="toctree-wrapper") assert len(toc) == 1 file_regression.check(toc[0].prettify(), extension=".html", encoding="utf8") @pytest.mark.requires_tex def test_toc_latex_parts(cli: CliRunner, temp_with_override, file_regression): """Testing LaTex output""" path_input = temp_with_override.joinpath("mybook_input").absolute() path_output = temp_with_override.joinpath("mybook").absolute() # Regular TOC should work p_toc = path_books.joinpath("toc") shutil.copytree(p_toc, path_input) # setup correct files (path_input / "subfolder" / "asubpage.md").unlink() for i in range(4): (path_input / "subfolder" / f"asubpage{i+1}.md").write_text( f"# A subpage {i+1}\n", encoding="utf8" ) path_toc = path_input.joinpath("_toc_parts.yml") result = cli.invoke( build, [ path_input.as_posix(), "--path-output", path_output.as_posix(), "--toc", path_toc.as_posix(), "--builder", "pdflatex", "-W", ], ) assert result.exit_code == 0, result.output # reading the tex file path_output_file = path_output.joinpath("_build", "latex", "python.tex") file_content = TexSoup(path_output_file.read_text()) file_regression.check(str(file_content.document), extension=".tex", encoding="utf8") @pytest.mark.requires_tex def test_toc_latex_urllink(cli: CliRunner, temp_with_override, file_regression): """Testing LaTex output""" path_output = temp_with_override.joinpath("mybook").absolute() # Regular TOC should work p_toc = path_books.joinpath("toc") path_toc = p_toc.joinpath("_toc_urllink.yml") result = cli.invoke( build, [ p_toc.as_posix(), "--path-output", path_output.as_posix(), "--toc", path_toc.as_posix(), "--builder", "pdflatex", ], ) assert result.exit_code == 0, result.output # reading the tex file path_output_file = path_output.joinpath("_build", "latex", "python.tex") file_content = TexSoup(path_output_file.read_text()) file_regression.check(str(file_content.document), extension=".tex", encoding="utf8")
32.403061
88
0.636593
d6ae6c9571c6389e45ea0d359b35250b90312c03
1,248
py
Python
qutip-doc/guide/scripts/floquet_ex1.py
quantshah/quantshah.github.io
d32f33f4090cd356671950701dd3cb58798bf9bf
[ "MIT" ]
null
null
null
qutip-doc/guide/scripts/floquet_ex1.py
quantshah/quantshah.github.io
d32f33f4090cd356671950701dd3cb58798bf9bf
[ "MIT" ]
null
null
null
qutip-doc/guide/scripts/floquet_ex1.py
quantshah/quantshah.github.io
d32f33f4090cd356671950701dd3cb58798bf9bf
[ "MIT" ]
null
null
null
from qutip import * from scipy import * delta = 0.2 * 2*pi; eps0 = 1.0 * 2*pi A = 0.5 * 2*pi; omega = 1.0 * 2*pi T = (2*pi)/omega tlist = linspace(0.0, 10 * T, 101) psi0 = basis(2,0) H0 = - delta/2.0 * sigmax() - eps0/2.0 * sigmaz() H1 = A/2.0 * sigmaz() args = {'w': omega} H = [H0, [H1, lambda t,args: sin(args['w'] * t)]] # find the floquet modes for the time-dependent hamiltonian f_modes_0,f_energies = floquet_modes(H, T, args) # decompose the inital state in the floquet modes f_coeff = floquet_state_decomposition(f_modes_0, f_energies, psi0) # calculate the wavefunctions using the from the floquet modes p_ex = zeros(len(tlist)) for n, t in enumerate(tlist): psi_t = floquet_wavefunction_t(f_modes_0, f_energies, f_coeff, t, H, T, args) p_ex[n] = expect(num(2), psi_t) # For reference: calculate the same thing with mesolve p_ex_ref = mesolve(H, psi0, tlist, [], [num(2)], args).expect[0] # plot the results from pylab import * plot(tlist, real(p_ex), 'ro', tlist, 1-real(p_ex), 'bo') plot(tlist, real(p_ex_ref), 'r', tlist, 1-real(p_ex_ref), 'b') xlabel('Time') ylabel('Occupation probability') legend(("Floquet $P_1$", "Floquet $P_0$", "Lindblad $P_1$", "Lindblad $P_0$")) show()
32.842105
81
0.64984
24def60c6b00ec03f01337726625b7c6cdbf1e0a
9,226
py
Python
datasets/Frey.py
rist-ro/argo
a10c33346803239db8a64c104db7f22ec4e05bef
[ "MIT" ]
4
2020-12-07T19:13:13.000Z
2022-01-30T18:52:18.000Z
datasets/Frey.py
rist-ro/argo
a10c33346803239db8a64c104db7f22ec4e05bef
[ "MIT" ]
12
2020-09-25T22:41:28.000Z
2022-02-09T23:46:34.000Z
datasets/Frey.py
rist-ro/argo
a10c33346803239db8a64c104db7f22ec4e05bef
[ "MIT" ]
2
2021-03-02T18:31:04.000Z
2021-03-02T21:56:43.000Z
""" Module for managing Frey faces dataset """ import numpy as np import os.path import urllib.request from .ImageDataset import ImageDataset ## TODO Check wiythout point from scipy.io import loadmat import pdb class Frey(ImageDataset): """ This class manage the dataset Frey faces, properties of the datasets are uniquely determined by the params dictionary It compares the parameters and complete them with the default one. It then return a unique id identifier Parameters --------- params : dict dictionary that can contain +-------------+-----------+-----------+-----------+-------------------------------------------------------------+ | params Key | values | default v | id short | Short description | +=============+===========+===========+===========+=============================================================+ | binary | 0,1 | 0 | "-c", "-d"| load continuous or binary Frey faces | +-------------+-----------+-----------+-----------+-------------------------------------------------------------+ | stochastic | 0,1 | 0 | "-st" | sample using Bernoulli from the continuous Frey faces after every| | | | | | epoch during training, see IWAE and LVAE papers that claim | | | | | | this techniques reduces overfitting; this function only | | | | | | loads continuous Frey faces to be used later | +-------------+-----------+-----------+-----------+-------------------------------------------------------------+ | data_dir | path str | None | | path of the dataset. In some cases cannot be set | | | | | | (non binary mnist only) | +-------------+-----------+-----------+-----------+-------------------------------------------------------------+ | subsampilng | integer | None |"-subsamp" | Reduce the dataset providing 1 data over `subsamping` | | | | | | samples | +-------------+-----------+-----------+-----------+-------------------------------------------------------------+ | clip_low | bool | None | "-clipL" | clip the dataset to a minimum value (used to avoid zero | | | | | | gradient) (-clipLH in case of also high) | +-------------+-----------+-----------+-----------+-------------------------------------------------------------+ | clip_high | bool | None | "-clipH" | clip the dataset to a max value | +-------------+-----------+-----------+-----------+-------------------------------------------------------------+ | id_note | string | "" | id_note | Arbitrary string to append to the id | +-------------+-----------+-----------+-----------+-------------------------------------------------------------+ # TODO: train/test split customizable """ default_params = { 'binary' : 0, 'stochastic' : 0, 'subsampling' : None, 'clip_high' :None, 'clip_low' : None, 'id_note' : None } def __init__(self, params): super().__init__(params) self._id = self.dataset_id(params) self._binary_input = self._params['binary'] self.data_dir = "datasets/Freyfaces_data" if not os.path.exists(self.data_dir): os.makedirs(self.data_dir) fileName = self.data_dir + '/frey_rawface.mat' if not os.path.isfile(fileName): # see http://dohmatob.github.io/research/2016/10/22/VAE.html origin = ( 'http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat' ) print('Downloading data from %s' % origin) urllib.request.urlretrieve(origin, fileName) if self._binary_input==0 or (self._binary_input==0 and self._params['stochastic']==1): dtype = 'float32' else: dtype = 'int32' self.img_rows = 28 self.img_cols = 20 ff = loadmat(fileName, squeeze_me=True, struct_as_record=False) ff = ff["ff"].T.reshape((-1, self.img_rows, self.img_cols)) n_pixels = self.img_rows * self.img_cols X_train = ff[:1600] X_test = ff[1600:1900] X_train = X_train.astype(dtype) / 255. X_test = X_test.astype(dtype) / 255. self._train_set_x = X_train.reshape((len(X_train), n_pixels)) self._test_set_x = X_test.reshape((len(X_test), n_pixels)) # choose a subset if self._params['subsampling']: self._train_set_x, self._train_set_y = \ self.sub_sample(self._train_set_x, self._train_set_y, self._params['subsampling']) self._test_set_x, self._test_set_y = \ self.sub_sample(self._test_set_x, self._test_set_y, self._params['subsampling']) #clip clip_low = self._params['clip_low'] clip_high = self._params['clip_high'] if (clip_low is not None) or (clip_high is not None): m = clip_low if clip_low is not None else 0 M = clip_high if clip_high is not None else 1 self._train_set_x = np.clip(self._train_set_x, a_min=m, a_max=M) self._test_set_x = np.clip(self._test_set_x, a_min=m, a_max=M) implemented_params_keys = ['dataName', 'binary', 'stochastic', 'position_label', 'subsampling', 'clip_high', 'clip_low', 'data_dir', 'id_note'] # all the admitted keys @staticmethod def dataset_id(params): """ This method interprets the parameters and generate an id """ # TODO: missing features are train/test? Frey.check_params_impl(params) id = 'Frey' # binary or continuous id_binary = {0:'-c',1:'-d'} id += id_binary[params['binary']] # stochastic id += '-st' + str(params["stochastic"]) # subsampling if params['subsampling']: id += '-ss'+str(params['subsampling']) # clip # TODO The parameters of clip should be the values to which you clip clip_high = False if params['clip_high'] : id += '-cH' clip_high = True if params['clip_low'] : id += '-cL' if clip_high: id += "H" # id note (keep last) if params['id_note']: id += params['id_note'] return id @staticmethod def sub_sample(data_set_x, data_set_y, subsampling): """ return a value every "subsampling" :param data_set_x :param data_set_y :param subsampling: integer < dim(data_set) :return: dataset_x, dataset_y """ len_train = len(data_set_x) reshuf_index_train = np.random.permutation(len_train) new_len_train = int(len_train / subsampling) data_set_x = data_set_x[reshuf_index_train[:new_len_train]] data_set_y = data_set_y[reshuf_index_train[:new_len_train]] return data_set_x, data_set_y @staticmethod def class_filter(data_set_x, data_set_y, classes, position_label): """ return the dataset with labels in the list classes :param data_set_x: data :param data_set_y: labels :param classes: list of classes :param position_label: list of classes :return: (dataset_x, dataset_y) with filtered elemnts not in classes """ ix_mtch_class_train = np.in1d(data_set_y, classes) data_set_x = data_set_x[ix_mtch_class_train] data_set_y = data_set_y[ix_mtch_class_train] if position_label: def replace_with_position(label_set, classes): label_set_new = np.copy(label_set) for ix, class_ in enumerate(classes): label_set_new[label_set == class_] = ix return label_set_new data_set_y = replace_with_position(data_set_y, classes) return data_set_x, data_set_y ''' def get_data_dict(self): if not self._binary_input or (self.params['binary'] and not self.params['stochastic']): ds["train_set_y"] = self._train_set_y ds["test_set_y"] = self._test_set_y return ds ''' @property def input_size(self): return self.img_rows*self.img_cols @property def output_size(self): pass @property def color_images(self): return 0 @property def image_shape(self): return (self.img_rows,self.img_cols,1) # 1 is the number of channels
39.09322
127
0.483525
96f3d3c26446d1cb4e5c8d751818e51692e17317
2,840
py
Python
silver/models/transactions/codes.py
DocTocToc/silver
f1b4a8871fc4a37c8813d3c010bc70dc59c0a6e5
[ "Apache-2.0" ]
222
2017-01-15T10:30:57.000Z
2022-03-08T20:34:46.000Z
silver/models/transactions/codes.py
DocTocToc/silver
f1b4a8871fc4a37c8813d3c010bc70dc59c0a6e5
[ "Apache-2.0" ]
141
2017-01-11T10:56:49.000Z
2021-10-12T11:51:00.000Z
silver/models/transactions/codes.py
DocTocToc/silver
f1b4a8871fc4a37c8813d3c010bc70dc59c0a6e5
[ "Apache-2.0" ]
76
2017-01-10T13:50:27.000Z
2022-03-25T21:37:00.000Z
# Copyright (c) 2017 Presslabs SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. DEFAULT_FAIL_CODE = 'default' FAIL_CODES = { DEFAULT_FAIL_CODE: { 'message': 'The transaction has failed.' }, 'insufficient_funds': { 'message': 'Your payment method doesn\'t have sufficient funds.', 'solve_message': 'Add more funds to your payment method or use another payment method.' }, 'expired_payment_method': { 'message': 'Your payment method has expired.', 'solve_message': 'Renew your payment method or use another one.' }, 'expired_card': { 'message': 'Your credit card has expired.', 'solve_message': 'Renew your credit card or use another payment method.' }, 'invalid_payment_method': { 'message': 'The provided payment method is not valid.', 'solve_message': 'Make sure you entered your credentials correctly.' }, 'invalid_card': { 'message': 'The provided credit card is not valid.', 'solve_message': 'Make sure you entered your credentials correctly.' }, 'limit_exceeded': { 'message': 'The attempted transaction exceeds the withdrawal limit of ' 'the payment method.', 'solve_message': 'Raise your payment method\'s limit or use another one.' }, 'transaction_declined': { 'message': 'The tranasction has been declined by the payment processor.', 'solve_message': 'Use another payment method or try again later.' }, 'transaction_declined_by_bank': { 'message': 'Your bank has declined the transaction.', 'solve_message': 'Contact your bank or try again later.' }, 'transaction_hard_declined': { 'message': 'The tranasction has been declined by the payment processor.', 'solve_message': 'Use another payment method.' }, 'transaction_hard_declined_by_bank': { 'message': 'Your bank has declined the transaction.', 'solve_message': 'Contact your bank or use another payment method.' } } DEFAULT_REFUND_CODE = 'default' REFUND_CODES = { DEFAULT_REFUND_CODE: { 'message': 'The transaction has been refunded.' }, } DEFAULT_CANCEL_CODE = 'default' CANCEL_CODES = { DEFAULT_CANCEL_CODE: { 'message': 'The transaction has been canceled.' } }
36.883117
95
0.669014
405888c552be25abc64027e896c8e0c698577202
8,459
py
Python
tests/integration/test_lost_part/test.py
chalice19/ClickHouse
2f38e7bc5c2113935ab86260439bb543a1737291
[ "Apache-2.0" ]
8,629
2016-06-14T21:03:01.000Z
2019-09-23T07:46:38.000Z
tests/integration/test_lost_part/test.py
chalice19/ClickHouse
2f38e7bc5c2113935ab86260439bb543a1737291
[ "Apache-2.0" ]
4,335
2016-06-15T12:58:31.000Z
2019-09-23T11:18:43.000Z
tests/integration/test_lost_part/test.py
chalice19/ClickHouse
2f38e7bc5c2113935ab86260439bb543a1737291
[ "Apache-2.0" ]
1,700
2016-06-15T09:25:11.000Z
2019-09-23T11:16:38.000Z
#!/usr/bin/env python3 import pytest import time import ast import random from helpers.cluster import ClickHouseCluster from helpers.test_tools import assert_eq_with_retry cluster = ClickHouseCluster(__file__) node1 = cluster.add_instance("node1", with_zookeeper=True) node2 = cluster.add_instance("node2", with_zookeeper=True) @pytest.fixture(scope="module") def start_cluster(): try: cluster.start() yield cluster finally: cluster.shutdown() def remove_part_from_disk(node, table, part_name): part_path = node.query( "SELECT path FROM system.parts WHERE table = '{}' and name = '{}'".format( table, part_name ) ).strip() if not part_path: raise Exception("Part " + part_name + "doesn't exist") node.exec_in_container( ["bash", "-c", "rm -r {p}/*".format(p=part_path)], privileged=True ) def test_lost_part_same_replica(start_cluster): for node in [node1, node2]: node.query( "CREATE TABLE mt0 (id UInt64, date Date) ENGINE ReplicatedMergeTree('/clickhouse/tables/t', '{}') ORDER BY tuple() PARTITION BY date".format( node.name ) ) node1.query("SYSTEM STOP MERGES mt0") node2.query("SYSTEM STOP REPLICATION QUEUES") for i in range(5): node1.query("INSERT INTO mt0 VALUES ({}, toDate('2020-10-01'))".format(i)) for i in range(20): parts_to_merge = node1.query( "SELECT parts_to_merge FROM system.replication_queue" ) if parts_to_merge: parts_list = list(sorted(ast.literal_eval(parts_to_merge))) print("Got parts list", parts_list) if len(parts_list) < 3: raise Exception("Got too small parts list {}".format(parts_list)) break time.sleep(1) victim_part_from_the_middle = random.choice(parts_list[1:-1]) print("Will corrupt part", victim_part_from_the_middle) remove_part_from_disk(node1, "mt0", victim_part_from_the_middle) node1.query("DETACH TABLE mt0") node1.query("ATTACH TABLE mt0") node1.query("SYSTEM START MERGES mt0") for i in range(10): result = node1.query("SELECT count() FROM system.replication_queue") if int(result) == 0: break time.sleep(1) else: assert False, "Still have something in replication queue:\n" + node1.query( "SELECT count() FROM system.replication_queue FORMAT Vertical" ) assert node1.contains_in_log( "Created empty part" ), "Seems like empty part {} is not created or log message changed".format( victim_part_from_the_middle ) assert node1.query("SELECT COUNT() FROM mt0") == "4\n" node2.query("SYSTEM START REPLICATION QUEUES") assert_eq_with_retry(node2, "SELECT COUNT() FROM mt0", "4") assert_eq_with_retry(node2, "SELECT COUNT() FROM system.replication_queue", "0") def test_lost_part_other_replica(start_cluster): for node in [node1, node2]: node.query( "CREATE TABLE mt1 (id UInt64) ENGINE ReplicatedMergeTree('/clickhouse/tables/t1', '{}') ORDER BY tuple()".format( node.name ) ) node1.query("SYSTEM STOP MERGES mt1") node2.query("SYSTEM STOP REPLICATION QUEUES") for i in range(5): node1.query("INSERT INTO mt1 VALUES ({})".format(i)) for i in range(20): parts_to_merge = node1.query( "SELECT parts_to_merge FROM system.replication_queue" ) if parts_to_merge: parts_list = list(sorted(ast.literal_eval(parts_to_merge))) print("Got parts list", parts_list) if len(parts_list) < 3: raise Exception("Got too small parts list {}".format(parts_list)) break time.sleep(1) victim_part_from_the_middle = random.choice(parts_list[1:-1]) print("Will corrupt part", victim_part_from_the_middle) remove_part_from_disk(node1, "mt1", victim_part_from_the_middle) # other way to detect broken parts node1.query("CHECK TABLE mt1") node2.query("SYSTEM START REPLICATION QUEUES") for i in range(10): result = node2.query("SELECT count() FROM system.replication_queue") if int(result) == 0: break time.sleep(1) else: assert False, "Still have something in replication queue:\n" + node2.query( "SELECT * FROM system.replication_queue FORMAT Vertical" ) assert node1.contains_in_log( "Created empty part" ), "Seems like empty part {} is not created or log message changed".format( victim_part_from_the_middle ) assert_eq_with_retry(node2, "SELECT COUNT() FROM mt1", "4") assert_eq_with_retry(node2, "SELECT COUNT() FROM system.replication_queue", "0") node1.query("SYSTEM START MERGES mt1") assert_eq_with_retry(node1, "SELECT COUNT() FROM mt1", "4") assert_eq_with_retry(node1, "SELECT COUNT() FROM system.replication_queue", "0") def test_lost_part_mutation(start_cluster): for node in [node1, node2]: node.query( "CREATE TABLE mt2 (id UInt64) ENGINE ReplicatedMergeTree('/clickhouse/tables/t2', '{}') ORDER BY tuple()".format( node.name ) ) node1.query("SYSTEM STOP MERGES mt2") node2.query("SYSTEM STOP REPLICATION QUEUES") for i in range(2): node1.query("INSERT INTO mt2 VALUES ({})".format(i)) node1.query( "ALTER TABLE mt2 UPDATE id = 777 WHERE 1", settings={"mutations_sync": "0"} ) for i in range(20): parts_to_mutate = node1.query("SELECT count() FROM system.replication_queue") # two mutations for both replicas if int(parts_to_mutate) == 4: break time.sleep(1) remove_part_from_disk(node1, "mt2", "all_1_1_0") # other way to detect broken parts node1.query("CHECK TABLE mt2") node1.query("SYSTEM START MERGES mt2") for i in range(10): result = node1.query("SELECT count() FROM system.replication_queue") if int(result) == 0: break time.sleep(1) else: assert False, "Still have something in replication queue:\n" + node1.query( "SELECT * FROM system.replication_queue FORMAT Vertical" ) assert_eq_with_retry(node1, "SELECT COUNT() FROM mt2", "1") assert_eq_with_retry(node1, "SELECT SUM(id) FROM mt2", "777") assert_eq_with_retry(node1, "SELECT COUNT() FROM system.replication_queue", "0") node2.query("SYSTEM START REPLICATION QUEUES") assert_eq_with_retry(node2, "SELECT COUNT() FROM mt2", "1") assert_eq_with_retry(node2, "SELECT SUM(id) FROM mt2", "777") assert_eq_with_retry(node2, "SELECT COUNT() FROM system.replication_queue", "0") def test_lost_last_part(start_cluster): for node in [node1, node2]: node.query( "CREATE TABLE mt3 (id UInt64, p String) ENGINE ReplicatedMergeTree('/clickhouse/tables/t3', '{}') " "ORDER BY tuple() PARTITION BY p".format(node.name) ) node1.query("SYSTEM STOP MERGES mt3") node2.query("SYSTEM STOP REPLICATION QUEUES") for i in range(1): node1.query("INSERT INTO mt3 VALUES ({}, 'x')".format(i)) # actually not important node1.query( "ALTER TABLE mt3 UPDATE id = 777 WHERE 1", settings={"mutations_sync": "0"} ) partition_id = node1.query("select partitionId('x')").strip() remove_part_from_disk(node1, "mt3", "{}_0_0_0".format(partition_id)) # other way to detect broken parts node1.query("CHECK TABLE mt3") node1.query("SYSTEM START MERGES mt3") for i in range(10): result = node1.query("SELECT count() FROM system.replication_queue") assert int(result) <= 1, "Have a lot of entries in queue {}".format( node1.query("SELECT * FROM system.replication_queue FORMAT Vertical") ) if node1.contains_in_log("Cannot create empty part") and node1.contains_in_log( "DROP/DETACH PARTITION" ): break time.sleep(1) else: assert False, "Don't have required messages in node1 log" node1.query("ALTER TABLE mt3 DROP PARTITION ID '{}'".format(partition_id)) assert_eq_with_retry(node1, "SELECT COUNT() FROM mt3", "0") assert_eq_with_retry(node1, "SELECT COUNT() FROM system.replication_queue", "0")
32.786822
153
0.642866
d791c148d21ea31024a77e6c77d768a1b716bcea
22,369
py
Python
optable_submission/optable_package/optable/dataset/table.py
pfnet-research/KDD-Cup-AutoML-5
54202eb6aa414316a70faa8e07a68e1c8ca7bd1b
[ "MIT" ]
18
2019-07-22T06:35:37.000Z
2021-03-20T08:37:56.000Z
optable_submission/optable_package/optable/dataset/table.py
pfnet-research/KDD-Cup-AutoML-5
54202eb6aa414316a70faa8e07a68e1c8ca7bd1b
[ "MIT" ]
1
2020-03-22T21:06:57.000Z
2020-03-22T21:06:57.000Z
optable_submission/optable_package/optable/dataset/table.py
pfnet-research/KDD-Cup-AutoML-5
54202eb6aa414316a70faa8e07a68e1c8ca7bd1b
[ "MIT" ]
11
2019-07-23T04:06:08.000Z
2020-05-12T08:44:01.000Z
import collections import threading import gc import traceback import pandas as pd import numpy as np from optable.dataset import feature_types from optable import _core class Table(object): """avalble for only automl data frame """ def __init__(self, df, time_col=None, label_encoders={}, min_time=None): self.__df = df self.__time_col = time_col self.__min_time = min_time self.__cache = {} self.__pseudo_target = None self.__adversarial_true_count = None self.__adversarial_total_count = None self.__new_data = {} if self.__time_col is not None: time_data = self.__df[self.__time_col] time_data.index = range(len(time_data)) if min_time is None: raise ValueError("min_time is None") time_data = time_data - min_time time_data = time_data.astype(int).values time_data = time_data / 1e9 second_time_data = time_data.astype(int) minute_time_data = second_time_data // 60 hour_time_data = minute_time_data // 60 day_time_data = hour_time_data // 24 second_time_data = second_time_data.astype(np.float32) minute_time_data = minute_time_data.astype(np.float32) hour_time_data = hour_time_data.astype(np.float32) day_time_data = day_time_data.astype(np.float32) time_data = time_data.astype(np.float32) """ time_data[time_data < 0] = np.nan second_time_data[second_time_data < 0] = np.nan minute_time_data[minute_time_data < 0] = np.nan hour_time_data[hour_time_data < 0] = np.nan day_time_data[day_time_data < 0] = np.nan """ self.__time_data = time_data self.__second_time_data = second_time_data self.__minute_time_data = minute_time_data self.__hour_time_data = hour_time_data self.__day_time_data = day_time_data self.__sorted_time_index = \ np.argsort(time_data).astype(np.int32) else: self.__sorted_time_index = None self.__hist_time_data = None self.__ftypes = pd.Series( self.__automl_df_to_ftypes(), self.__df.dtypes.index) self.__label_encoders = label_encoders self.__tfidf_vectorizers = {} self.__preprocess() self.__ftypes = pd.Series( self.__automl_df_to_ftypes(), self.__df.dtypes.index) self.__nunique = pd.Series( [self.__df[col].nunique() for col in self.__df], self.__df.dtypes.index) self.__set_new_data_lock = threading.Lock() @property def ftypes(self): return self.__ftypes @property def df(self): return self.__df @property def sorted_time_index(self): return self.__sorted_time_index @property def time_data(self): return self.__time_data @property def second_time_data(self): return self.__second_time_data @property def minute_time_data(self): return self.__minute_time_data @property def hour_time_data(self): return self.__hour_time_data @property def day_time_data(self): return self.__day_time_data @property def has_time(self): if self.__time_col is None: return False return True def get_lightgbm_df(self, max_cat_nunique=30): columns = [] col_idx = [] cat_idx = [] idx = 0 lightgbm_feature_types = [ feature_types.numerical, feature_types.categorical, feature_types.mc_processed_numerical, feature_types.c_processed_numerical, feature_types.t_processed_numerical, feature_types.n_processed_categorical, feature_types.mc_processed_categorical, feature_types.c_processed_categorical, feature_types.t_processed_categorical, feature_types.aggregate_processed_numerical, feature_types.aggregate_processed_categorical ] cat_feature_types = [ feature_types.categorical, feature_types.aggregate_processed_categorical, feature_types.n_processed_categorical, feature_types.mc_processed_categorical, feature_types.c_processed_categorical, feature_types.t_processed_categorical, ] for col_i, col in enumerate(self.__df.columns): for ftype in lightgbm_feature_types: if col.startswith(ftype.prefix): if ftype in cat_feature_types: if self.__nunique[col] <= max_cat_nunique: cat_idx.append(idx) columns.append(col) col_idx.append(col_i) idx += 1 else: columns.append(col) col_idx.append(col_i) idx += 1 break return self.__df.take(col_idx, axis=1, is_copy=False), cat_idx def set_ftypes(self, ftypes): if isinstance(ftypes, list): self.__ftypes[:] = ftypes elif isinstance(ftypes, dict): for k in ftypes: self.__ftypes[k] = ftypes[k] @property def nunique(self): return self.__nunique def set_new_data(self, data, name): self.__set_new_data_lock.acquire() if name in self.__df.columns or name in self.__new_data: print("duplicated", name) try: self.__new_data[name] = data except Exception as e: print(name) traceback.print_exc() finally: self.__set_new_data_lock.release() @property def new_data_size(self): return len(self.__new_data) def get_new_data(self): cat_feature_types = [ feature_types.categorical, feature_types.aggregate_processed_categorical, feature_types.n_processed_categorical, feature_types.mc_processed_categorical, feature_types.c_processed_categorical, feature_types.t_processed_categorical, ] is_cat = [ feature_types.column_name_to_ftype(key) in cat_feature_types for key in self.__new_data] return [self.__new_data[key] for key in self.__new_data], is_cat def clear_new_data(self): self.__new_data = {} def confirm_new_data(self): new_df = pd.DataFrame(self.__new_data) for name in self.__new_data: prefix = "{}_".format(name.split("_")[0]) self.__ftypes[name] = feature_types.prefix_to_ftype[prefix] self.__nunique[name] = new_df[name].nunique() self.__new_data = {} gc.collect() self.__df = pd.concat([self.__df, new_df], axis=1) gc.collect() def test_concat(self, test_df): pass def __preprocess(self): cols_of_each_ftype = self.cols_of_each_ftype # numericalでnuniqueが低いものはcategoricalに """ if len(self.__df) > 1000: columns = self.__df.columns for col in columns: if self.__ftypes[col] == feature_types.numerical: if self.__df[col].nunique() <= 10: self.__df["{}{}".format( feature_types.categorical.prefix, col, )] = self.__df[col].astype(str) self.__df.drop(col, axis=1, inplace=True) print("numerical {} change to categorical".format(col)) self.__ftypes = pd.Series( self.__automl_df_to_ftypes(), self.__df.dtypes.index) """ import time new_data = {} columns = self.__df.columns for col in columns: start = time.time() if self.__ftypes[col] == feature_types.time: # Time preprocess self.__df[col] = pd.to_datetime(self.__df[col]) """ # time numericalize if self.__min_time is not None: self.__df["{}numericalized_{}".format( feature_types.t_processed_numerical.prefix, col, )] = ((self.__df[col] - self.__min_time).astype(int) / 1e9).astype(np.float32) else: self.__df["{}numericalized_{}".format( feature_types.t_processed_numerical.prefix, col, )] = (self.__df[col].astype(int) / 1e9).astype(np.float32) """ max_min_time_diff = self.__df[col].max() - self.__df[col].min() # time hour if max_min_time_diff > pd.Timedelta('2 hours'): new_data["{}hour_{}".format( feature_types.t_processed_numerical.prefix, col, )] = self.__df[col].dt.hour.values.astype(np.float32) # time year if max_min_time_diff > pd.Timedelta('500 days'): new_data["{}year_{}".format( feature_types.t_processed_numerical.prefix, col, )] = self.__df[col].dt.year.values.astype(np.float32) # time doy if max_min_time_diff > pd.Timedelta('100 days'): new_data["{}doy_{}".format( feature_types.t_processed_numerical.prefix, col, )] = self.__df[col].dt.dayofyear.values.astype(np.float32) # time dow if max_min_time_diff > pd.Timedelta('2 days'): new_data["{}dow_{}".format( feature_types.t_processed_numerical.prefix, col, )] = self.__df[col].dt.dayofweek.values.astype(np.float32) # weekend if max_min_time_diff > pd.Timedelta('2 days'): new_data["{}id_weekend_{}".format( feature_types.t_processed_categorical.prefix, col, )] = (self.__df[col].dt.dayofweek >= 5).astype(np.int32) # time zone if max_min_time_diff > pd.Timedelta('8 hours'): new_data["{}time_zone_{}".format( feature_types.t_processed_categorical.prefix, col, )] = (self.__df[col].dt.hour.values // 6).astype(np.int32) self.__df[col] = ( (self.__df[col] - self.__min_time).astype( int) / 1e9).astype(np.float32) elif self.__ftypes[col] == feature_types.categorical: # categorical preprocess processing_data = \ self.__df[col].fillna("").values categorical_manager = \ _core.CategoricalManager(processing_data) self.set_cache( ("categorical_manager", col), categorical_manager ) if col in self.__label_encoders: self.__df[col] = self.__label_encoders[col].transform( processing_data ).astype(np.int32) else: self.__df[col] = categorical_manager.label() # frequency encoding new_data["{}frequency_{}".format( feature_types.c_processed_numerical.prefix, col )] = categorical_manager.frequency() if self.has_time: # processing_data = self.__df[col].values """ new_data["{}neighbor_nunique_{}".format( feature_types.c_processed_numerical.prefix, col )] = _core.not_temporal_to_many_aggregate( np.roll(processing_data, -1), processing_data, processing_data, 'nunique') \ / _core.not_temporal_to_many_aggregate( np.ones_like(processing_data), processing_data, processing_data, 'sum') new_data["{}time_variance_{}".format( feature_types.c_processed_numerical.prefix, col )] = _core.not_temporal_to_many_aggregate( np.arange(len(processing_data)), processing_data, processing_data, 'variance') """ """ new_data["{}neighbor_count_{}".format( feature_types.c_processed_numerical.prefix, col )] = categorical_manager.sequential_count_encoding( self.__sorted_time_index, len(self.__df) // 30) """ if categorical_manager.has_null: new_data["{}_is_null_{}".format( feature_types.c_processed_categorical.prefix, col )] = categorical_manager.is_null() elif self.__ftypes[col] == feature_types.multi_categorical: # multi categorical preprocess processing_data = \ self.__df[col].fillna("").values multi_categorical_manager = \ _core.MultiCategoricalManager(processing_data) self.set_cache( ("multi_categorical_manager", col), multi_categorical_manager ) counter = collections.Counter(processing_data) if np.median([value for key, value in counter.most_common()]) > 1: self.set_cache( ("substance_categorical", col), True ) categorical_manager = \ _core.CategoricalManager(processing_data) self.set_cache( ("categorical_manager", col), categorical_manager ) # frequency encoding """ self.__df["{}frequency_{}".format( feature_types.c_processed_numerical.prefix, col )] = categorical_manager.frequency() """ else: self.set_cache( ("substance_categorical", col), False ) # length # nunique # duplicated length = multi_categorical_manager.length() nunique = multi_categorical_manager.nunique() # duplicated = length - nunique duplicated = multi_categorical_manager.duplicates() new_data["{}length_{}".format( feature_types.mc_processed_numerical.prefix, col )] = length new_data["{}nunique_{}".format( feature_types.mc_processed_numerical.prefix, col )] = nunique new_data["{}duplicated_{}".format( feature_types.mc_processed_numerical.prefix, col )] = duplicated # max_count # min_count new_data["{}max_count_{}".format( feature_types.mc_processed_numerical.prefix, col )] = multi_categorical_manager.max_count() new_data["{}min_count_{}".format( feature_types.mc_processed_numerical.prefix, col )] = multi_categorical_manager.min_count() # mode new_data["{}mode_{}".format( feature_types.mc_processed_categorical.prefix, col )] = multi_categorical_manager.mode().astype(int) # max_tfidf_words """ new_data["{}max_tfidf_words_{}".format( feature_types.mc_processed_categorical.prefix, col )] = multi_categorical_manager.max_tfidf_words().astype(int) """ # hashed tf-idf """ multi_categorical_manager.calculate_hashed_tfidf(10) for vectorized_idx in range(10): self.__df["{}hashed_tfidf_{}_{}".format( feature_types.mc_processed_numerical.prefix, col, vectorized_idx, )] = multi_categorical_manager.get_hashed_tfidf( vectorized_idx) """ # tf-idf vectorize """ for vectorized_idx in range(10): new_data["{}tfidf_{}_{}".format( feature_types.mc_processed_numerical.prefix, col, vectorized_idx, )] = multi_categorical_manager.tfidf(vectorized_idx) """ for vectorized_idx in range(10): new_data["{}count_{}_{}".format( feature_types.mc_processed_numerical.prefix, col, vectorized_idx, )] = multi_categorical_manager.count(vectorized_idx) # svd """ svd_values = \ multi_categorical_manager.truncated_svd(10, False, False) """ """ tfidf_values = multi_categorical_manager.get_tfidf_matrix() from sklearn.decomposition import TruncatedSVD svd_values = TruncatedSVD( n_components=10, random_state=10, algorithm='arpack', n_iter=5).fit_transform(tfidf_values) """ """ for svd_idx in range(10): new_data["{}svd_{}_{}".format( feature_types.mc_processed_numerical.prefix, col, svd_idx, )] = svd_values[:, svd_idx] """ self.__df.drop(col, axis=1, inplace=True) del processing_data self.__df[col] = "" gc.collect() elif self.__ftypes[col] == feature_types.numerical: # numerical preprocess if pd.isnull(self.__df[col]).all(): continue if ( len(np.unique(self.__df[col].values[ np.isfinite(self.__df[col].values)] )) == 1 ): self.__df.drop(col, axis=1, inplace=True) continue """ mode, mode_count = \ collections.Counter( self.__df[col].values[ np.isfinite(self.__df[col].values)] ).most_common(1)[0] mode_freq = mode_count / len(self.__df) if mode_freq >= 1: self.__df.drop(col, axis=1, inplace=True) continue if mode_freq > 0.1: new_data["{}_is_mode_{}".format( feature_types.n_processed_categorical.prefix, col )] = (self.__df[col].values == mode).astype(np.int32) """ if pd.isnull(self.__df[col]).any(): new_data["{}_is_null_{}".format( feature_types.n_processed_categorical.prefix, col )] = pd.isnull(self.__df[col]).astype(np.int32) self.__df[col] = self.__df[col].astype(np.float32) print(col, time.time() - start) new_data = pd.DataFrame(new_data) self.__df = pd.concat([self.__df, new_data], axis=1) def __automl_df_to_ftypes(self): ftypes = {} for col in self.__df.columns: prefix = "{}_".format(col.split("_")[0]) ftypes[col] = feature_types.prefix_to_ftype[prefix] return ftypes @property def cols_of_each_ftype(self): cols_of_each_ftype = {ftype: [] for ftype in feature_types.ftypes} for col in self.__df: cols_of_each_ftype[self.__ftypes[col]].append(col) return cols_of_each_ftype def has_cache(self, key): return key in self.__cache def get_cache(self, key): if self.has_cache(key): return self.__cache[key] else: return None def set_cache(self, key, value): self.__cache[key] = value @property def cache_keys(self): return self.__cache.keys() def clear_cache(self): self.__cache = {} gc.collect() _core.malloc_trim(0) @property def pseudo_target(self): return self.__pseudo_target @property def has_pseudo_target(self): return (self.__pseudo_target is not None) def set_pseudo_target(self, pseudo_target): self.__pseudo_target = pseudo_target @property def has_adversarial_count(self): return (self.__adversarial_true_count is not None) @property def adversarial_true_count(self): return self.__adversarial_true_count @property def adversarial_total_count(self): return self.__adversarial_total_count def set_adversarial_count(self, true_count, total_count): self.__adversarial_true_count = true_count self.__adversarial_total_count = total_count @property def has_hist_time_data(self): return self.__hist_time_data is not None @property def hist_time_data(self): return self.__hist_time_data def set_interval_for_hist(self, interval): hist_time_data = self.__time_data // interval hist_time_data = hist_time_data.astype(np.float32) hist_time_data[hist_time_data < 0] = np.nan self.__hist_time_data = hist_time_data
38.042517
79
0.534758
5d9df367fff50523716450c1d4ba55a310094bb2
1,657
py
Python
buhayra/getpaths.py
jmigueldelgado/buhayra
7236be088f3c3600cfd76650e1f80e0630653fe1
[ "MIT" ]
5
2018-04-24T20:30:50.000Z
2021-11-20T15:15:18.000Z
buhayra/getpaths.py
jmigueldelgado/buhayra
7236be088f3c3600cfd76650e1f80e0630653fe1
[ "MIT" ]
50
2018-04-12T11:02:46.000Z
2021-02-05T10:22:33.000Z
buhayra/getpaths.py
jmigueldelgado/buhayra
7236be088f3c3600cfd76650e1f80e0630653fe1
[ "MIT" ]
2
2018-04-06T16:05:16.000Z
2021-08-25T15:34:20.000Z
from os.path import expanduser,exists import sys import socket import os from buhayra.location import * ### add your hostname and things will run smoothly if socket.gethostname()=='vouga': home = { 'home' : expanduser("~"), 'scratch' : os.path.join(expanduser("~"), 'scratch')} elif socket.gethostname()=='compute': home = { 'home' : expanduser("~"), 'scratch' : os.path.join(expanduser("~"), 'scratch')} elif socket.gethostname()=='ubuntuserver': home = { 'home' : expanduser("~"), 'scratch' : 'None'} elif socket.gethostname()=='MEKONG': home = { 'home' : expanduser("~"), 'scratch' : os.path.join(expanduser("~"), 'scratch')} else: home = { 'home' : expanduser("~"), 'scratch' : '/mnt/scratch/martinsd'} if location['region']==None: home['proj'] =os.path.join(home['home'],'proj','buhayra') else: home['proj'] =os.path.join(home['home'],'proj','buhayra'+'_'+location['region']) home['scratch'] = home['scratch']+'_'+location['region'] home['parameters'] = os.path.join(home['proj'],'buhayra','parameters') sardir=os.path.join(home['scratch'],'s1a_scenes') sarIn=os.path.join(sardir,'in') sarOut=os.path.join(sardir,'out') dirDEMs=os.path.join(home['scratch'],'dem') edgeOut = os.path.join(home['scratch'],'edges') polOut = os.path.join(home['scratch'],'watermasks') procOut = os.path.join(home['scratch'],'processed_watermasks') orbits_url = 'http://aux.sentinel1.eo.esa.int/RESORB/' # sys.path.insert(0, home['parameters']) if exists(os.path.join(home['proj'],'buhayra','credentials.py')): from buhayra.credentials import *
29.070175
84
0.630054
80ce87ed5499a8b624b033430c91c0db8a3d4e99
1,149
py
Python
src/templates/v0.1.9/modules/pyldavis/scripts/zip.py
whatevery1says/we1s-templates
ce16ae4a39e3286ed7d9bf4a95bff001ac2d123e
[ "MIT" ]
null
null
null
src/templates/v0.1.9/modules/pyldavis/scripts/zip.py
whatevery1says/we1s-templates
ce16ae4a39e3286ed7d9bf4a95bff001ac2d123e
[ "MIT" ]
null
null
null
src/templates/v0.1.9/modules/pyldavis/scripts/zip.py
whatevery1says/we1s-templates
ce16ae4a39e3286ed7d9bf4a95bff001ac2d123e
[ "MIT" ]
null
null
null
"""zip.py. Create zip archives of one or more dfr-browsers. Last update: 2020-07-25 """ # Python imports import os import re import shutil from IPython.display import display, HTML # Zip function def zip(models=None): """Zip pyLDAvis visualizations to the current directory. The `models` parameter takes a string (e.g. 'topics25') or a list (e.g. ['topics25', 'topics50']). If left blank or set to `All` or `None`, all available models will be zipped. """ current_dir = os.getcwd() if models == None or models.lower() == 'all': models = [model for model in os.listdir(current_dir) if os.path.isdir(model) and model.startswith('topics')] elif isinstance(models, str): models = [models] for model in models: print('Zipping ' + model + '...') source = os.path.join(current_dir, model) temp = os.path.join(current_dir, model + '_temp') if os.path.exists(temp): shutil.rmtree(temp) shutil.copytree(source, temp) shutil.make_archive(model, 'zip', temp) shutil.rmtree(temp) display(HTML('<p style="color:green;">Done!</p>'))
31.054054
116
0.638816
143fe1d59c184d30bd16cb56cfe46cc191970ff8
33,743
py
Python
mmdet/models/dense_heads/fcos_reid_head_focal_sub_triqueue3.py
CvlabAssignment/AlignPS
297f4166921d2095f9381e38e04129a103069406
[ "Apache-2.0" ]
null
null
null
mmdet/models/dense_heads/fcos_reid_head_focal_sub_triqueue3.py
CvlabAssignment/AlignPS
297f4166921d2095f9381e38e04129a103069406
[ "Apache-2.0" ]
null
null
null
mmdet/models/dense_heads/fcos_reid_head_focal_sub_triqueue3.py
CvlabAssignment/AlignPS
297f4166921d2095f9381e38e04129a103069406
[ "Apache-2.0" ]
null
null
null
import re import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import Scale, normal_init from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init from mmdet.core import distance2bbox, force_fp32, multi_apply, multiclass_nms, multiclass_nms_reid from ..builder import HEADS, build_loss from .anchor_free_head_reid import AnchorFreeHeadReid from .labeled_matching_layer_queue import LabeledMatchingLayerQueue from .unlabeled_matching_layer import UnlabeledMatchingLayer from .triplet_loss import TripletLossFilter INF = 1e8 @HEADS.register_module() class FCOSReidHeadFocalSubTriQueue3(AnchorFreeHeadReid): """Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_. The FCOS head does not use anchor boxes. Instead bounding boxes are predicted at each pixel and a centerness measure is used to supress low-quality predictions. Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training tricks used in official repo, which will bring remarkable mAP gains of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for more detail. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. strides (list[int] | list[tuple[int, int]]): Strides of points in multiple feature levels. Default: (4, 8, 16, 32, 64). regress_ranges (tuple[tuple[int, int]]): Regress range of multiple level points. center_sampling (bool): If true, use center sampling. Default: False. center_sample_radius (float): Radius of center sampling. Default: 1.5. norm_on_bbox (bool): If true, normalize the regression targets with FPN strides. Default: False. centerness_on_reg (bool): If true, position centerness on the regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. Default: False. conv_bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise False. Default: "auto". loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. loss_centerness (dict): Config of centerness loss. norm_cfg (dict): dictionary to construct and config norm layer. Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). Example: >>> self = FCOSHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_score, bbox_pred, centerness = self.forward(feats) >>> assert len(cls_score) == len(self.scales) """ # noqa: E501 def __init__(self, num_classes, in_channels, #regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), # (512, INF)), regress_ranges=((-1, INF), (-2, -1), (-2, -1), (-2, -1), (-2, -1)), #regress_ranges=((-1, INF), (-2, -1), (-2, -1)), #regress_ranges=((-1, 128), (128, INF), (-2, -1), (-2, -1), # (-2, -1)), #regress_ranges=((-1, INF),), #regress_ranges=((-2, -1), (-1, INF), (-2, -1), (-2, -1), # (-2, -1)), #regress_ranges=((-2, -1), (-2, -1), (-1, INF), (-2, -1), # (-2, -1)), #regress_ranges=((-1, 128), (128, INF), (-2, -1), (-2, -1), # (-2, -1)), #regress_ranges=((-1, 128), (128, 256), (256, INF), (-2, -1), # (-2, -1)), #regress_ranges=((-2, -1), (-1, 256), (256, INF), (-2, -1), # (-2, -1)), #regress_ranges=((-1, INF), (-1, INF), (-1, INF), (-1, INF), # (-1, INF)), center_sampling=False, center_sample_radius=1.5, norm_on_bbox=False, centerness_on_reg=False, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), **kwargs): self.regress_ranges = regress_ranges self.center_sampling = center_sampling self.center_sample_radius = center_sample_radius self.norm_on_bbox = norm_on_bbox self.centerness_on_reg = centerness_on_reg self.background_id = -2 super().__init__( num_classes, in_channels, loss_cls=loss_cls, loss_bbox=loss_bbox, norm_cfg=norm_cfg, **kwargs) self.loss_centerness = build_loss(loss_centerness) self.loss_tri = TripletLossFilter() def _init_layers(self): """Initialize layers of the head.""" super()._init_layers() #self._init_reid_convs() self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) #self.conv_reid = nn.Conv2d(self.feat_channels, self.feat_channels, 3, padding=1) # num_person = 483 num_person = 5532 # queue_size = 500 queue_size = 5000 #self.classifier_reid = nn.Linear(self.feat_channels, num_person) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) self.labeled_matching_layer = LabeledMatchingLayerQueue(num_persons=num_person, feat_len=self.in_channels) # for mot17half self.unlabeled_matching_layer = UnlabeledMatchingLayer(queue_size=queue_size, feat_len=self.in_channels) def _init_reid_convs(self): """Initialize classification conv layers of the head.""" self.reid_convs = nn.ModuleList() #for i in range(self.stacked_convs): for i in range(1): chn = self.in_channels if i == 0 else self.feat_channels if self.dcn_on_last_conv and i == self.stacked_convs - 1: conv_cfg = dict(type='DCNv2') else: conv_cfg = self.conv_cfg self.reid_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=conv_cfg, #norm_cfg=self.norm_cfg, norm_cfg=dict(type='BN', requires_grad=True), bias=self.conv_bias)) def init_weights(self): """Initialize weights of the head.""" super().init_weights() normal_init(self.conv_centerness, std=0.01) #normal_init(self.conv_reid, std=0.01) #for m in self.reid_convs: # if isinstance(m.conv, nn.Conv2d): # normal_init(m.conv, std=0.01) def forward(self, feats, proposals=None): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: cls_scores (list[Tensor]): Box scores for each scale level, \ each is a 4D-tensor, the channel number is \ num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each \ scale level, each is a 4D-tensor, the channel number is \ num_points * 4. centernesses (list[Tensor]): Centerss for each scale level, \ each is a 4D-tensor, the channel number is num_points * 1. """ #print(len(feats), self.scales, self.strides) #print(len(tuple([feats[0]])), nn.ModuleList([self.scales[0]]), [self.strides[0]]) #for single stage prediction #return multi_apply(self.forward_single, tuple([feats[0]]), nn.ModuleList([self.scales[0]]), # [self.strides[0]]) feats = list(feats) h, w = feats[0].shape[2], feats[0].shape[3] mean_value = nn.functional.adaptive_avg_pool2d(feats[0], 1) mean_value = F.upsample(input=mean_value, size=(h, w), mode='bilinear') feats[0] = feats[0] - mean_value return multi_apply(self.forward_single, feats, self.scales, self.strides) def forward_single(self, x, scale, stride): """Forward features of a single scale levle. Args: x (Tensor): FPN feature maps of the specified stride. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. stride (int): The corresponding stride for feature maps, only used to normalize the bbox prediction when self.norm_on_bbox is True. Returns: tuple: scores for each class, bbox predictions and centerness \ predictions of input feature maps. """ #print(x.shape) #print('feat shape: ', x.shape, 'stride: ', stride) cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x) if self.centerness_on_reg: centerness = self.conv_centerness(reg_feat) else: centerness = self.conv_centerness(cls_feat) reid_feat = x #for reid_layer in self.reid_convs: # reid_feat = reid_layer(reid_feat) #reid_feat = self.conv_reid(reid_feat) # scale the bbox_pred of different level # float to avoid overflow when enabling FP16 bbox_pred = scale(bbox_pred).float() if self.norm_on_bbox: bbox_pred = F.relu(bbox_pred) if not self.training: bbox_pred *= stride else: bbox_pred = bbox_pred.exp() return cls_score, bbox_pred, centerness, reid_feat @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses', 'reid_feat')) def loss(self, cls_scores, bbox_preds, centernesses, reid_feats, gt_bboxes, gt_labels, gt_ids, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4. centernesses (list[Tensor]): Centerss for each scale level, each is a 4D-tensor, the channel number is num_points * 1. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert len(cls_scores) == len(bbox_preds) == len(centernesses) == len(reid_feats) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) labels, ids, bbox_targets = self.get_targets(all_level_points, gt_bboxes, gt_labels, gt_ids) num_imgs = cls_scores[0].size(0) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) for bbox_pred in bbox_preds ] flatten_centerness = [ centerness.permute(0, 2, 3, 1).reshape(-1) for centerness in centernesses ] flatten_reid = [ reid_feat.permute(0, 2, 3, 1).reshape(-1, self.feat_channels) for reid_feat in reid_feats ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_bbox_preds = torch.cat(flatten_bbox_preds) flatten_centerness = torch.cat(flatten_centerness) flatten_reid = torch.cat(flatten_reid) #print("flatten reid", flatten_reid.shape) flatten_labels = torch.cat(labels) flatten_ids = torch.cat(ids) flatten_bbox_targets = torch.cat(bbox_targets) # repeat points to align with bbox_preds flatten_points = torch.cat( [points.repeat(num_imgs, 1) for points in all_level_points]) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((flatten_labels >= 0) & (flatten_labels < bg_class_ind)).nonzero().reshape(-1) #pos_inds = nonzero((flatten_labels >= 0) & (flatten_labels < bg_class_ind)).reshape(-1) num_pos = len(pos_inds) loss_cls = self.loss_cls( flatten_cls_scores, flatten_labels, avg_factor=num_pos + num_imgs) # avoid num_pos is 0 pos_bbox_preds = flatten_bbox_preds[pos_inds] pos_centerness = flatten_centerness[pos_inds] # background index ''' bg_inds = ((flatten_labels < 0) | (flatten_labels == bg_class_ind)).nonzero().reshape(-1) num_bg = len(bg_inds) bg_cls_scores = flatten_cls_scores[bg_inds] if num_bg > num_pos: cls_ids = torch.argsort(bg_cls_scores.squeeze(), descending=True) bg_inds = bg_inds[cls_ids[:num_pos]] ''' pos_reid = flatten_reid[pos_inds] #bg_reid = flatten_reid[bg_inds] #pos_reid = torch.cat((pos_reid, bg_reid)) # pos_reid_o = pos_reid.clone() pos_reid = F.normalize(pos_reid) if num_pos > 0: pos_bbox_targets = flatten_bbox_targets[pos_inds] pos_centerness_targets = self.centerness_target(pos_bbox_targets) pos_points = flatten_points[pos_inds] pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds) pos_decoded_target_preds = distance2bbox(pos_points, pos_bbox_targets) # centerness weighted iou loss loss_bbox = self.loss_bbox( pos_decoded_bbox_preds, pos_decoded_target_preds, weight=pos_centerness_targets, avg_factor=pos_centerness_targets.sum()) loss_centerness = self.loss_centerness(pos_centerness, pos_centerness_targets) pos_reid_ids = flatten_ids[pos_inds] #bg_reid_ids = flatten_ids[bg_inds] #pos_reid_ids = torch.cat((pos_reid_ids, bg_reid_ids)) #loss_oim = self.loss_reid(pos_reid, pos_reid_ids) #print(pos_reid.shape, pos_reid_ids.shape) #print(pos_reid_ids) # reid oim loss labeled_matching_scores, labeled_matching_reid, labeled_matching_ids = self.labeled_matching_layer(pos_reid, pos_reid_ids) labeled_matching_scores *= 10 unlabeled_matching_scores = self.unlabeled_matching_layer(pos_reid, pos_reid_ids) unlabeled_matching_scores *= 10 matching_scores = torch.cat((labeled_matching_scores, unlabeled_matching_scores), dim=1) pid_labels = pos_reid_ids.clone() pid_labels[pid_labels == -2] = -1 p_i = F.softmax(matching_scores, dim=1) #focal_p_i = 0.25 * (1 - p_i)**2 * p_i.log() focal_p_i = (1 - p_i)**2 * p_i.log() #focal_p_i = 2*(1 - p_i)**2 * p_i.log() #focal_p_i = 0.75*(1 - p_i)**2 * p_i.log() #focal_p_i = 1.25*(1 - p_i)**2 * p_i.log() #focal_p_i = 0.5*(1 - p_i)**2 * p_i.log() #loss_oim = F.nll_loss(focal_p_i, pid_labels, reduction='none', ignore_index=-1) loss_oim = F.nll_loss(focal_p_i, pid_labels, ignore_index=-1) pos_reid1 = torch.cat((pos_reid, labeled_matching_reid), dim=0) pid_labels1 = torch.cat((pid_labels, labeled_matching_ids), dim=0) loss_tri = self.loss_tri(pos_reid1, pid_labels1) #loss_oim = F.cross_entropy(matching_scores, pid_labels, ignore_index=-1) ''' # softmax matching_scores = self.classifier_reid(pos_reid).contiguous() loss_oim = F.cross_entropy(matching_scores, pos_reid_ids, ignore_index=-1) ''' else: loss_bbox = pos_bbox_preds.sum() loss_centerness = pos_centerness.sum() loss_oim = pos_reid.sum() loss_tri = pos_reid.sum() print('no gt box') return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_centerness=loss_centerness, loss_oim=loss_oim, loss_tri=loss_tri), dict(pos_reid=pos_reid, pos_reid_ids=pos_reid_ids, out_preds=p_i) @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses', 'reid_feats')) def get_bboxes(self, cls_scores, bbox_preds, centernesses, reid_feats, img_metas, cfg=None, rescale=None): """Transform network output for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_points * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_points * 4, H, W) centernesses (list[Tensor]): Centerness for each scale level with shape (N, num_points * 1, H, W) img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. \ The first item is an (n, 5) tensor, where the first 4 columns \ are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ 5-th column is a score between 0 and 1. The second item is a \ (n,) tensor where each item is the predicted class label of \ the corresponding box. """ assert len(cls_scores) == len(bbox_preds) == len(reid_feats) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] centerness_pred_list = [ centernesses[i][img_id].detach() for i in range(num_levels) ] reid_feat_list = [ reid_feats[i][img_id].detach() for i in range(num_levels) ] # print('1', img_metas) # print('img type',img_metas[0]) # img_shape = img_metas[img_id]['img_shape'] img_metas.data[img_id]['img_shape'] img_shape = img_metas[0]['img_shape'] scale_factor = img_metas[0]['scale_factor'] det_bboxes = self._get_bboxes_single(cls_score_list, bbox_pred_list, centerness_pred_list, reid_feat_list, mlvl_points, img_shape, scale_factor, cfg, rescale) result_list.append(det_bboxes) return result_list def _get_bboxes_single(self, cls_scores, bbox_preds, centernesses, reid_feats, mlvl_points, img_shape, scale_factor, cfg, rescale=False): """Transform outputs for a single batch item into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for a single scale level Has shape (num_points * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for a single scale level with shape (num_points * 4, H, W). centernesses (list[Tensor]): Centerness for a single scale level with shape (num_points * 4, H, W). mlvl_points (list[Tensor]): Box reference for a single scale level with shape (num_total_points, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arrange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Returns: Tensor: Labeled boxes in shape (n, 5 + dim), where the first 4 columns \ are bounding box positions (tl_x, tl_y, br_x, br_y) and the \ 5-th column is a score between 0 and 1, dim is the reid feature dimension. """ cfg = self.test_cfg if cfg is None else cfg assert len(cls_scores) == len(bbox_preds) == len(mlvl_points) == len(reid_feats) mlvl_bboxes = [] mlvl_scores = [] mlvl_centerness = [] mlvl_reid_feats = [] for cls_score, bbox_pred, centerness, points, reid_feat in zip( cls_scores, bbox_preds, centernesses, mlvl_points, reid_feats): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) #reid_feat = reid_feat.permute(1, 2, 0).reshape(-1, 256) reid_feat = reid_feat.permute(1, 2, 0).reshape(-1, self.in_channels) nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = (scores * centerness[:, None]).max(dim=1) _, topk_inds = max_scores.topk(nms_pre) points = points[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] centerness = centerness[topk_inds] reid_feat = reid_feat[topk_inds, :] bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_centerness.append(centerness) mlvl_reid_feats.append(reid_feat) mlvl_bboxes = torch.cat(mlvl_bboxes) mlvl_reid_feats = torch.cat(mlvl_reid_feats) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) mlvl_centerness = torch.cat(mlvl_centerness) det_bboxes, det_labels, det_reid_feats = multiclass_nms_reid( mlvl_bboxes, mlvl_scores, mlvl_reid_feats, cfg.score_thr, cfg.nms, cfg.max_per_img, score_factors=mlvl_centerness) return det_bboxes, det_labels, det_reid_feats def _get_points_single(self, featmap_size, stride, dtype, device, flatten=False): """Get points according to feature map sizes.""" y, x = super()._get_points_single(featmap_size, stride, dtype, device) points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride), dim=-1) + stride // 2 return points def get_targets(self, points, gt_bboxes_list, gt_labels_list, gt_ids_list): """Compute regression, classification and centerss targets for points in multiple images. Args: points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels_list (list[Tensor]): Ground truth labels of each box, each has shape (num_gt,). Returns: tuple: concat_lvl_labels (list[Tensor]): Labels of each level. \ concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ level. """ #for single stage prediction #points = [points[0]] #print(points, self.regress_ranges) #print(len(points), len(self.regress_ranges)) assert len(points) == len(self.regress_ranges) num_levels = len(points) # expand regress ranges to align with points expanded_regress_ranges = [ points[i].new_tensor(self.regress_ranges[i])[None].expand_as( points[i]) for i in range(num_levels) ] # concat all levels points and regress ranges concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) concat_points = torch.cat(points, dim=0) # the number of points per img, per lvl num_points = [center.size(0) for center in points] # get labels and bbox_targets of each image labels_list, ids_list, bbox_targets_list = multi_apply( self._get_target_single, gt_bboxes_list, gt_labels_list, gt_ids_list, points=concat_points, regress_ranges=concat_regress_ranges, num_points_per_lvl=num_points) # split to per img, per level labels_list = [labels.split(num_points, 0) for labels in labels_list] ids_list = [ids.split(num_points, 0) for ids in ids_list] bbox_targets_list = [ bbox_targets.split(num_points, 0) for bbox_targets in bbox_targets_list ] # concat per level image concat_lvl_labels = [] concat_lvl_ids = [] concat_lvl_bbox_targets = [] for i in range(num_levels): concat_lvl_labels.append( torch.cat([labels[i] for labels in labels_list])) concat_lvl_ids.append( torch.cat([ids[i] for ids in ids_list])) bbox_targets = torch.cat( [bbox_targets[i] for bbox_targets in bbox_targets_list]) if self.norm_on_bbox: bbox_targets = bbox_targets / self.strides[i] concat_lvl_bbox_targets.append(bbox_targets) return concat_lvl_labels, concat_lvl_ids, concat_lvl_bbox_targets def _get_target_single(self, gt_bboxes, gt_labels, gt_ids, points, regress_ranges, num_points_per_lvl): """Compute regression and classification targets for a single image.""" num_points = points.size(0) num_gts = gt_labels.size(0) if num_gts == 0: return gt_labels.new_full((num_points,), self.background_label), \ gt_ids.new_full((num_points,), self.background_id), \ gt_bboxes.new_zeros((num_points, 4)) areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( gt_bboxes[:, 3] - gt_bboxes[:, 1]) # TODO: figure out why these two are different # areas = areas[None].expand(num_points, num_gts) areas = areas[None].repeat(num_points, 1) regress_ranges = regress_ranges[:, None, :].expand( num_points, num_gts, 2) gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) xs, ys = points[:, 0], points[:, 1] xs = xs[:, None].expand(num_points, num_gts) ys = ys[:, None].expand(num_points, num_gts) left = xs - gt_bboxes[..., 0] right = gt_bboxes[..., 2] - xs top = ys - gt_bboxes[..., 1] bottom = gt_bboxes[..., 3] - ys bbox_targets = torch.stack((left, top, right, bottom), -1) if self.center_sampling: # condition1: inside a `center bbox` radius = self.center_sample_radius center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2 center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2 center_gts = torch.zeros_like(gt_bboxes) stride = center_xs.new_zeros(center_xs.shape) # project the points on current lvl back to the `original` sizes lvl_begin = 0 for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl): lvl_end = lvl_begin + num_points_lvl stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius lvl_begin = lvl_end x_mins = center_xs - stride y_mins = center_ys - stride x_maxs = center_xs + stride y_maxs = center_ys + stride center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0], x_mins, gt_bboxes[..., 0]) center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1], y_mins, gt_bboxes[..., 1]) center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2], gt_bboxes[..., 2], x_maxs) center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3], gt_bboxes[..., 3], y_maxs) cb_dist_left = xs - center_gts[..., 0] cb_dist_right = center_gts[..., 2] - xs cb_dist_top = ys - center_gts[..., 1] cb_dist_bottom = center_gts[..., 3] - ys center_bbox = torch.stack( (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1) inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0 else: # condition1: inside a gt bbox inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 # condition2: limit the regression range for each location max_regress_distance = bbox_targets.max(-1)[0] inside_regress_range = ( (max_regress_distance >= regress_ranges[..., 0]) & (max_regress_distance <= regress_ranges[..., 1])) # if there are still more than one objects for a location, # we choose the one with minimal area areas[inside_gt_bbox_mask == 0] = INF areas[inside_regress_range == 0] = INF min_area, min_area_inds = areas.min(dim=1) labels = gt_labels[min_area_inds] ids = gt_ids[min_area_inds] labels[min_area == INF] = self.background_label # set as BG ids[min_area == INF] = self.background_id # set as unannotated bbox_targets = bbox_targets[range(num_points), min_area_inds] return labels, ids, bbox_targets def centerness_target(self, pos_bbox_targets): """Compute centerness targets. Args: pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape (num_pos, 4) Returns: Tensor: Centerness target. """ # only calculate pos centerness targets, otherwise there may be nan left_right = pos_bbox_targets[:, [0, 2]] top_bottom = pos_bbox_targets[:, [1, 3]] centerness_targets = ( left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) return torch.sqrt(centerness_targets)
45.537112
134
0.568207
9f58820fd1300eddcc367e67674e3f152e8d0857
2,111
py
Python
marmot/features/phrase/tests/test_pos_feature_extractor.py
qe-team/marmot
38e09ff1d0a3025a6b7edeaaf6086ed047ec45ff
[ "0BSD" ]
19
2015-08-21T13:06:37.000Z
2021-07-26T09:56:29.000Z
marmot/features/phrase/tests/test_pos_feature_extractor.py
qe-team/marmot
38e09ff1d0a3025a6b7edeaaf6086ed047ec45ff
[ "0BSD" ]
36
2015-01-13T13:01:07.000Z
2016-06-22T06:59:59.000Z
marmot/features/phrase/tests/test_pos_feature_extractor.py
qe-team/marmot
38e09ff1d0a3025a6b7edeaaf6086ed047ec45ff
[ "0BSD" ]
8
2015-12-11T16:41:47.000Z
2019-04-08T16:28:40.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import unittest from marmot.features.phrase.pos_feature_extractor import POSFeatureExtractor # test a class which extracts source and target token count features, and the source/target token count ratio class POSFeatureExtractorTests(unittest.TestCase): def setUp(self): self.extractor = POSFeatureExtractor('english', 'spanish') def test_get_features(self): obj = {'source': ['a', 'boy', 'hits', 'the', 'small', 'dog', 'severely'], 'target': ['uno', 'nino', 'abati', 'el', 'perro'], 'alignments': [[], [0, 1], [2, 3], [3], [4]], 'target_pos': ['ART', 'NC', 'VLfin', 'ART', 'NC'], 'source_pos': ['DT', 'NN', 'VBZ', 'DT', 'JJ', 'NN', 'RB'], 'token': ['uno', 'perro'], 'index': (3, 5), 'source_token': ['the', 'small', 'dog', 'severely'], 'source_index': (3, 7)} ''' 0 - 'percentage_content_words_src', 1 - 'percentage_content_words_tg', 2 - 'percentage_verbs_src', 3 - 'percentage_verbs_tg', 4 - 'percentage_nouns_src', 5 - 'percentage_nouns_tg', 6 - 'percentage_pronouns_src', 7 - 'percentage_pronouns_tg', 8 - 'ratio_content_words_src_tg', 9 - 'ratio_verbs_src_tg', 10 - 'ratio_nouns_src_tg', 11 - 'ratio_pronouns_src_tg' ''' all_pos = self.extractor.get_features(obj) self.assertAlmostEqual(all_pos[0], 0.75) self.assertAlmostEqual(all_pos[1], 0.5) self.assertAlmostEqual(all_pos[2], 0.0) self.assertAlmostEqual(all_pos[3], 0.0) self.assertAlmostEqual(all_pos[4], 0.25) self.assertAlmostEqual(all_pos[5], 0.5) self.assertAlmostEqual(all_pos[6], 0.0) self.assertAlmostEqual(all_pos[7], 0.0) self.assertAlmostEqual(all_pos[8], 1.5) self.assertAlmostEqual(all_pos[9], 1.0) self.assertAlmostEqual(all_pos[10], 0.5) self.assertAlmostEqual(all_pos[11], 1.0) if __name__ == '__main__': unittest.main()
37.696429
109
0.582662
ed53da4819086fdaf0a557682d7c4be0c58e4721
65,787
py
Python
n2vc/n2vc_juju_conn.py
TCSOSM-20/N2VC
d99f3f2f67d693c30494be7ad19b97f3f5528961
[ "Apache-2.0" ]
null
null
null
n2vc/n2vc_juju_conn.py
TCSOSM-20/N2VC
d99f3f2f67d693c30494be7ad19b97f3f5528961
[ "Apache-2.0" ]
null
null
null
n2vc/n2vc_juju_conn.py
TCSOSM-20/N2VC
d99f3f2f67d693c30494be7ad19b97f3f5528961
[ "Apache-2.0" ]
null
null
null
## # Copyright 2019 Telefonica Investigacion y Desarrollo, S.A.U. # This file is part of OSM # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache License, Version 2.0 please # contact with: nfvlabs@tid.es ## import asyncio import base64 import binascii import logging import os import re import time from juju.action import Action from juju.application import Application from juju.client import client from juju.controller import Controller from juju.errors import JujuAPIError from juju.machine import Machine from juju.model import Model from n2vc.exceptions import ( N2VCBadArgumentsException, N2VCException, N2VCConnectionException, N2VCExecutionException, N2VCInvalidCertificate, N2VCNotFound, MethodNotImplemented, JujuK8sProxycharmNotSupported, ) from n2vc.juju_observer import JujuModelObserver from n2vc.n2vc_conn import N2VCConnector from n2vc.n2vc_conn import obj_to_dict, obj_to_yaml from n2vc.provisioner import AsyncSSHProvisioner from n2vc.libjuju import Libjuju class N2VCJujuConnector(N2VCConnector): """ #################################################################################### ################################### P U B L I C #################################### #################################################################################### """ BUILT_IN_CLOUDS = ["localhost", "microk8s"] def __init__( self, db: object, fs: object, log: object = None, loop: object = None, url: str = "127.0.0.1:17070", username: str = "admin", vca_config: dict = None, on_update_db=None, ): """Initialize juju N2VC connector """ # parent class constructor N2VCConnector.__init__( self, db=db, fs=fs, log=log, loop=loop, url=url, username=username, vca_config=vca_config, on_update_db=on_update_db, ) # silence websocket traffic log logging.getLogger("websockets.protocol").setLevel(logging.INFO) logging.getLogger("juju.client.connection").setLevel(logging.WARN) logging.getLogger("model").setLevel(logging.WARN) self.log.info("Initializing N2VC juju connector...") """ ############################################################## # check arguments ############################################################## """ # juju URL if url is None: raise N2VCBadArgumentsException("Argument url is mandatory", ["url"]) url_parts = url.split(":") if len(url_parts) != 2: raise N2VCBadArgumentsException( "Argument url: bad format (localhost:port) -> {}".format(url), ["url"] ) self.hostname = url_parts[0] try: self.port = int(url_parts[1]) except ValueError: raise N2VCBadArgumentsException( "url port must be a number -> {}".format(url), ["url"] ) # juju USERNAME if username is None: raise N2VCBadArgumentsException( "Argument username is mandatory", ["username"] ) # juju CONFIGURATION if vca_config is None: raise N2VCBadArgumentsException( "Argument vca_config is mandatory", ["vca_config"] ) if "secret" in vca_config: self.secret = vca_config["secret"] else: raise N2VCBadArgumentsException( "Argument vca_config.secret is mandatory", ["vca_config.secret"] ) # pubkey of juju client in osm machine: ~/.local/share/juju/ssh/juju_id_rsa.pub # if exists, it will be written in lcm container: _create_juju_public_key() if "public_key" in vca_config: self.public_key = vca_config["public_key"] else: self.public_key = None # TODO: Verify ca_cert is valid before using. VCA will crash # if the ca_cert isn't formatted correctly. def base64_to_cacert(b64string): """Convert the base64-encoded string containing the VCA CACERT. The input string.... """ try: cacert = base64.b64decode(b64string).decode("utf-8") cacert = re.sub(r"\\n", r"\n", cacert,) except binascii.Error as e: self.log.debug("Caught binascii.Error: {}".format(e)) raise N2VCInvalidCertificate(message="Invalid CA Certificate") return cacert self.ca_cert = vca_config.get("ca_cert") if self.ca_cert: self.ca_cert = base64_to_cacert(vca_config["ca_cert"]) if "api_proxy" in vca_config: self.api_proxy = vca_config["api_proxy"] self.log.debug( "api_proxy for native charms configured: {}".format(self.api_proxy) ) else: self.warning( "api_proxy is not configured. Support for native charms is disabled" ) self.api_proxy = None if "enable_os_upgrade" in vca_config: self.enable_os_upgrade = vca_config["enable_os_upgrade"] else: self.enable_os_upgrade = True if "apt_mirror" in vca_config: self.apt_mirror = vca_config["apt_mirror"] else: self.apt_mirror = None self.cloud = vca_config.get('cloud') self.k8s_cloud = None if "k8s_cloud" in vca_config: self.k8s_cloud = vca_config.get("k8s_cloud") self.log.debug('Arguments have been checked') # juju data self.controller = None # it will be filled when connect to juju self.juju_models = {} # model objects for every model_name self.juju_observers = {} # model observers for every model_name self._connecting = ( False # while connecting to juju (to avoid duplicate connections) ) self._authenticated = ( False # it will be True when juju connection be stablished ) self._creating_model = False # True during model creation self.libjuju = Libjuju( endpoint=self.url, api_proxy=self.api_proxy, enable_os_upgrade=self.enable_os_upgrade, apt_mirror=self.apt_mirror, username=self.username, password=self.secret, cacert=self.ca_cert, loop=self.loop, log=self.log, db=self.db, n2vc=self, ) # create juju pub key file in lcm container at # ./local/share/juju/ssh/juju_id_rsa.pub self._create_juju_public_key() self.log.info("N2VC juju connector initialized") async def get_status(self, namespace: str, yaml_format: bool = True): # self.log.info('Getting NS status. namespace: {}'.format(namespace)) _nsi_id, ns_id, _vnf_id, _vdu_id, _vdu_count = self._get_namespace_components( namespace=namespace ) # model name is ns_id model_name = ns_id if model_name is None: msg = "Namespace {} not valid".format(namespace) self.log.error(msg) raise N2VCBadArgumentsException(msg, ["namespace"]) status = {} models = await self.libjuju.list_models(contains=ns_id) for m in models: status[m] = await self.libjuju.get_model_status(m) if yaml_format: return obj_to_yaml(status) else: return obj_to_dict(status) async def create_execution_environment( self, namespace: str, db_dict: dict, reuse_ee_id: str = None, progress_timeout: float = None, total_timeout: float = None, ) -> (str, dict): self.log.info( "Creating execution environment. namespace: {}, reuse_ee_id: {}".format( namespace, reuse_ee_id ) ) machine_id = None if reuse_ee_id: model_name, application_name, machine_id = self._get_ee_id_components( ee_id=reuse_ee_id ) else: ( _nsi_id, ns_id, _vnf_id, _vdu_id, _vdu_count, ) = self._get_namespace_components(namespace=namespace) # model name is ns_id model_name = ns_id # application name application_name = self._get_application_name(namespace=namespace) self.log.debug( "model name: {}, application name: {}, machine_id: {}".format( model_name, application_name, machine_id ) ) # create or reuse a new juju machine try: if not await self.libjuju.model_exists(model_name): await self.libjuju.add_model(model_name, cloud_name=self.cloud) machine, new = await self.libjuju.create_machine( model_name=model_name, machine_id=machine_id, db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, ) # id for the execution environment ee_id = N2VCJujuConnector._build_ee_id( model_name=model_name, application_name=application_name, machine_id=str(machine.entity_id), ) self.log.debug("ee_id: {}".format(ee_id)) if new: # write ee_id in database self._write_ee_id_db(db_dict=db_dict, ee_id=ee_id) except Exception as e: message = "Error creating machine on juju: {}".format(e) self.log.error(message) raise N2VCException(message=message) # new machine credentials credentials = { "hostname": machine.dns_name, } self.log.info( "Execution environment created. ee_id: {}, credentials: {}".format( ee_id, credentials ) ) return ee_id, credentials async def register_execution_environment( self, namespace: str, credentials: dict, db_dict: dict, progress_timeout: float = None, total_timeout: float = None, ) -> str: self.log.info( "Registering execution environment. namespace={}, credentials={}".format( namespace, credentials ) ) if credentials is None: raise N2VCBadArgumentsException( message="credentials are mandatory", bad_args=["credentials"] ) if credentials.get("hostname"): hostname = credentials["hostname"] else: raise N2VCBadArgumentsException( message="hostname is mandatory", bad_args=["credentials.hostname"] ) if credentials.get("username"): username = credentials["username"] else: raise N2VCBadArgumentsException( message="username is mandatory", bad_args=["credentials.username"] ) if "private_key_path" in credentials: private_key_path = credentials["private_key_path"] else: # if not passed as argument, use generated private key path private_key_path = self.private_key_path _nsi_id, ns_id, _vnf_id, _vdu_id, _vdu_count = self._get_namespace_components( namespace=namespace ) # model name model_name = ns_id # application name application_name = self._get_application_name(namespace=namespace) # register machine on juju try: if not self.api_proxy: msg = "Cannot provision machine: api_proxy is not defined" self.log.error(msg=msg) raise N2VCException(message=msg) if not await self.libjuju.model_exists(model_name): await self.libjuju.add_model(model_name, cloud_name=self.cloud) machine_id = await self.libjuju.provision_machine( model_name=model_name, hostname=hostname, username=username, private_key_path=private_key_path, db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, ) except Exception as e: self.log.error("Error registering machine: {}".format(e)) raise N2VCException( message="Error registering machine on juju: {}".format(e) ) self.log.info("Machine registered: {}".format(machine_id)) # id for the execution environment ee_id = N2VCJujuConnector._build_ee_id( model_name=model_name, application_name=application_name, machine_id=str(machine_id), ) self.log.info("Execution environment registered. ee_id: {}".format(ee_id)) return ee_id async def install_configuration_sw( self, ee_id: str, artifact_path: str, db_dict: dict, progress_timeout: float = None, total_timeout: float = None, config: dict = None, num_units: int = 1, ): self.log.info( ( "Installing configuration sw on ee_id: {}, " "artifact path: {}, db_dict: {}" ).format(ee_id, artifact_path, db_dict) ) # check arguments if ee_id is None or len(ee_id) == 0: raise N2VCBadArgumentsException( message="ee_id is mandatory", bad_args=["ee_id"] ) if artifact_path is None or len(artifact_path) == 0: raise N2VCBadArgumentsException( message="artifact_path is mandatory", bad_args=["artifact_path"] ) if db_dict is None: raise N2VCBadArgumentsException( message="db_dict is mandatory", bad_args=["db_dict"] ) try: ( model_name, application_name, machine_id, ) = N2VCJujuConnector._get_ee_id_components(ee_id=ee_id) self.log.debug( "model: {}, application: {}, machine: {}".format( model_name, application_name, machine_id ) ) except Exception: raise N2VCBadArgumentsException( message="ee_id={} is not a valid execution environment id".format( ee_id ), bad_args=["ee_id"], ) # remove // in charm path while artifact_path.find("//") >= 0: artifact_path = artifact_path.replace("//", "/") # check charm path if not self.fs.file_exists(artifact_path, mode="dir"): msg = "artifact path does not exist: {}".format(artifact_path) raise N2VCBadArgumentsException(message=msg, bad_args=["artifact_path"]) if artifact_path.startswith("/"): full_path = self.fs.path + artifact_path else: full_path = self.fs.path + "/" + artifact_path try: await self.libjuju.deploy_charm( model_name=model_name, application_name=application_name, path=full_path, machine_id=machine_id, db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, config=config, num_units=num_units, ) except Exception as e: raise N2VCException( message="Error desploying charm into ee={} : {}".format(ee_id, e) ) self.log.info("Configuration sw installed") async def install_k8s_proxy_charm( self, charm_name: str, namespace: str, artifact_path: str, db_dict: dict, progress_timeout: float = None, total_timeout: float = None, config: dict = None, ) -> str: """ Install a k8s proxy charm :param charm_name: Name of the charm being deployed :param namespace: collection of all the uuids related to the charm. :param str artifact_path: where to locate the artifacts (parent folder) using the self.fs the final artifact path will be a combination of this artifact_path and additional string from the config_dict (e.g. charm name) :param dict db_dict: where to write into database when the status changes. It contains a dict with {collection: <str>, filter: {}, path: <str>}, e.g. {collection: "nsrs", filter: {_id: <nsd-id>, path: "_admin.deployed.VCA.3"} :param float progress_timeout: :param float total_timeout: :param config: Dictionary with additional configuration :returns ee_id: execution environment id. """ self.log.info('Installing k8s proxy charm: {}, artifact path: {}, db_dict: {}' .format(charm_name, artifact_path, db_dict)) if not self.k8s_cloud: raise JujuK8sProxycharmNotSupported("There is not k8s_cloud available") if artifact_path is None or len(artifact_path) == 0: raise N2VCBadArgumentsException( message="artifact_path is mandatory", bad_args=["artifact_path"] ) if db_dict is None: raise N2VCBadArgumentsException(message='db_dict is mandatory', bad_args=['db_dict']) # remove // in charm path while artifact_path.find('//') >= 0: artifact_path = artifact_path.replace('//', '/') # check charm path if not self.fs.file_exists(artifact_path, mode="dir"): msg = 'artifact path does not exist: {}'.format(artifact_path) raise N2VCBadArgumentsException(message=msg, bad_args=['artifact_path']) if artifact_path.startswith('/'): full_path = self.fs.path + artifact_path else: full_path = self.fs.path + '/' + artifact_path _, ns_id, _, _, _ = self._get_namespace_components(namespace=namespace) model_name = '{}-k8s'.format(ns_id) await self.libjuju.add_model(model_name, self.k8s_cloud) application_name = self._get_application_name(namespace) try: await self.libjuju.deploy_charm( model_name=model_name, application_name=application_name, path=full_path, machine_id=None, db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, config=config ) except Exception as e: raise N2VCException(message='Error deploying charm: {}'.format(e)) self.log.info('K8s proxy charm installed') ee_id = N2VCJujuConnector._build_ee_id( model_name=model_name, application_name=application_name, machine_id="k8s", ) self._write_ee_id_db(db_dict=db_dict, ee_id=ee_id) return ee_id async def get_ee_ssh_public__key( self, ee_id: str, db_dict: dict, progress_timeout: float = None, total_timeout: float = None, ) -> str: self.log.info( ( "Generating priv/pub key pair and get pub key on ee_id: {}, db_dict: {}" ).format(ee_id, db_dict) ) # check arguments if ee_id is None or len(ee_id) == 0: raise N2VCBadArgumentsException( message="ee_id is mandatory", bad_args=["ee_id"] ) if db_dict is None: raise N2VCBadArgumentsException( message="db_dict is mandatory", bad_args=["db_dict"] ) try: ( model_name, application_name, machine_id, ) = N2VCJujuConnector._get_ee_id_components(ee_id=ee_id) self.log.debug( "model: {}, application: {}, machine: {}".format( model_name, application_name, machine_id ) ) except Exception: raise N2VCBadArgumentsException( message="ee_id={} is not a valid execution environment id".format( ee_id ), bad_args=["ee_id"], ) # try to execute ssh layer primitives (if exist): # generate-ssh-key # get-ssh-public-key output = None application_name = N2VCJujuConnector._format_app_name(application_name) # execute action: generate-ssh-key try: output, _status = await self.libjuju.execute_action( model_name=model_name, application_name=application_name, action_name="generate-ssh-key", db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, ) except Exception as e: self.log.info( "Skipping exception while executing action generate-ssh-key: {}".format( e ) ) # execute action: get-ssh-public-key try: output, _status = await self.libjuju.execute_action( model_name=model_name, application_name=application_name, action_name="get-ssh-public-key", db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, ) except Exception as e: msg = "Cannot execute action get-ssh-public-key: {}\n".format(e) self.log.info(msg) raise N2VCExecutionException(e, primitive_name="get-ssh-public-key") # return public key if exists return output["pubkey"] if "pubkey" in output else output async def add_relation( self, ee_id_1: str, ee_id_2: str, endpoint_1: str, endpoint_2: str ): self.log.debug( "adding new relation between {} and {}, endpoints: {}, {}".format( ee_id_1, ee_id_2, endpoint_1, endpoint_2 ) ) # check arguments if not ee_id_1: message = "EE 1 is mandatory" self.log.error(message) raise N2VCBadArgumentsException(message=message, bad_args=["ee_id_1"]) if not ee_id_2: message = "EE 2 is mandatory" self.log.error(message) raise N2VCBadArgumentsException(message=message, bad_args=["ee_id_2"]) if not endpoint_1: message = "endpoint 1 is mandatory" self.log.error(message) raise N2VCBadArgumentsException(message=message, bad_args=["endpoint_1"]) if not endpoint_2: message = "endpoint 2 is mandatory" self.log.error(message) raise N2VCBadArgumentsException(message=message, bad_args=["endpoint_2"]) # get the model, the applications and the machines from the ee_id's model_1, app_1, _machine_1 = self._get_ee_id_components(ee_id_1) model_2, app_2, _machine_2 = self._get_ee_id_components(ee_id_2) # model must be the same if model_1 != model_2: message = "EE models are not the same: {} vs {}".format(ee_id_1, ee_id_2) self.log.error(message) raise N2VCBadArgumentsException( message=message, bad_args=["ee_id_1", "ee_id_2"] ) # add juju relations between two applications try: await self.libjuju.add_relation( model_name=model_1, application_name_1=app_1, application_name_2=app_2, relation_1=endpoint_1, relation_2=endpoint_2, ) except Exception as e: message = "Error adding relation between {} and {}: {}".format( ee_id_1, ee_id_2, e ) self.log.error(message) raise N2VCException(message=message) async def remove_relation(self): # TODO self.log.info("Method not implemented yet") raise MethodNotImplemented() async def deregister_execution_environments(self): self.log.info("Method not implemented yet") raise MethodNotImplemented() async def delete_namespace( self, namespace: str, db_dict: dict = None, total_timeout: float = None ): self.log.info("Deleting namespace={}".format(namespace)) # check arguments if namespace is None: raise N2VCBadArgumentsException( message="namespace is mandatory", bad_args=["namespace"] ) _nsi_id, ns_id, _vnf_id, _vdu_id, _vdu_count = self._get_namespace_components( namespace=namespace ) if ns_id is not None: try: models = await self.libjuju.list_models(contains=ns_id) for model in models: await self.libjuju.destroy_model( model_name=model, total_timeout=total_timeout ) except Exception as e: raise N2VCException( message="Error deleting namespace {} : {}".format(namespace, e) ) else: raise N2VCBadArgumentsException( message="only ns_id is permitted to delete yet", bad_args=["namespace"] ) self.log.info("Namespace {} deleted".format(namespace)) async def delete_execution_environment( self, ee_id: str, db_dict: dict = None, total_timeout: float = None ): self.log.info("Deleting execution environment ee_id={}".format(ee_id)) # check arguments if ee_id is None: raise N2VCBadArgumentsException( message="ee_id is mandatory", bad_args=["ee_id"] ) model_name, application_name, _machine_id = self._get_ee_id_components( ee_id=ee_id ) # destroy the application try: await self.libjuju.destroy_model( model_name=model_name, total_timeout=total_timeout ) except Exception as e: raise N2VCException( message=( "Error deleting execution environment {} (application {}) : {}" ).format(ee_id, application_name, e) ) # destroy the machine # try: # await self._juju_destroy_machine( # model_name=model_name, # machine_id=machine_id, # total_timeout=total_timeout # ) # except Exception as e: # raise N2VCException( # message='Error deleting execution environment {} (machine {}) : {}' # .format(ee_id, machine_id, e)) self.log.info("Execution environment {} deleted".format(ee_id)) async def exec_primitive( self, ee_id: str, primitive_name: str, params_dict: dict, db_dict: dict = None, progress_timeout: float = None, total_timeout: float = None, ) -> str: self.log.info( "Executing primitive: {} on ee: {}, params: {}".format( primitive_name, ee_id, params_dict ) ) # check arguments if ee_id is None or len(ee_id) == 0: raise N2VCBadArgumentsException( message="ee_id is mandatory", bad_args=["ee_id"] ) if primitive_name is None or len(primitive_name) == 0: raise N2VCBadArgumentsException( message="action_name is mandatory", bad_args=["action_name"] ) if params_dict is None: params_dict = dict() try: ( model_name, application_name, _machine_id, ) = N2VCJujuConnector._get_ee_id_components(ee_id=ee_id) except Exception: raise N2VCBadArgumentsException( message="ee_id={} is not a valid execution environment id".format( ee_id ), bad_args=["ee_id"], ) if primitive_name == "config": # Special case: config primitive try: await self.libjuju.configure_application( model_name=model_name, application_name=application_name, config=params_dict, ) actions = await self.libjuju.get_actions( application_name=application_name, model_name=model_name, ) self.log.debug( "Application {} has these actions: {}".format( application_name, actions ) ) if "verify-ssh-credentials" in actions: # execute verify-credentials num_retries = 20 retry_timeout = 15.0 for _ in range(num_retries): try: self.log.debug("Executing action verify-ssh-credentials...") output, ok = await self.libjuju.execute_action( model_name=model_name, application_name=application_name, action_name="verify-ssh-credentials", db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, ) if ok == "failed": self.log.debug( "Error executing verify-ssh-credentials: {}. Retrying..." ) await asyncio.sleep(retry_timeout) continue self.log.debug("Result: {}, output: {}".format(ok, output)) break except asyncio.CancelledError: raise else: self.log.error( "Error executing verify-ssh-credentials after {} retries. ".format( num_retries ) ) else: msg = "Action verify-ssh-credentials does not exist in application {}".format( application_name ) self.log.debug(msg=msg) except Exception as e: self.log.error("Error configuring juju application: {}".format(e)) raise N2VCExecutionException( message="Error configuring application into ee={} : {}".format( ee_id, e ), primitive_name=primitive_name, ) return "CONFIG OK" else: try: output, status = await self.libjuju.execute_action( model_name=model_name, application_name=application_name, action_name=primitive_name, db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, **params_dict ) if status == "completed": return output else: raise Exception("status is not completed: {}".format(status)) except Exception as e: self.log.error( "Error executing primitive {}: {}".format(primitive_name, e) ) raise N2VCExecutionException( message="Error executing primitive {} into ee={} : {}".format( primitive_name, ee_id, e ), primitive_name=primitive_name, ) async def disconnect(self): self.log.info("closing juju N2VC...") try: await self.libjuju.disconnect() except Exception as e: raise N2VCConnectionException( message="Error disconnecting controller: {}".format(e), url=self.url ) """ #################################################################################### ################################### P R I V A T E ################################## #################################################################################### """ def _write_ee_id_db(self, db_dict: dict, ee_id: str): # write ee_id to database: _admin.deployed.VCA.x try: the_table = db_dict["collection"] the_filter = db_dict["filter"] the_path = db_dict["path"] if not the_path[-1] == ".": the_path = the_path + "." update_dict = {the_path + "ee_id": ee_id} # self.log.debug('Writing ee_id to database: {}'.format(the_path)) self.db.set_one( table=the_table, q_filter=the_filter, update_dict=update_dict, fail_on_empty=True, ) except asyncio.CancelledError: raise except Exception as e: self.log.error("Error writing ee_id to database: {}".format(e)) @staticmethod def _build_ee_id(model_name: str, application_name: str, machine_id: str): """ Build an execution environment id form model, application and machine :param model_name: :param application_name: :param machine_id: :return: """ # id for the execution environment return "{}.{}.{}".format(model_name, application_name, machine_id) @staticmethod def _get_ee_id_components(ee_id: str) -> (str, str, str): """ Get model, application and machine components from an execution environment id :param ee_id: :return: model_name, application_name, machine_id """ if ee_id is None: return None, None, None # split components of id parts = ee_id.split(".") model_name = parts[0] application_name = parts[1] machine_id = parts[2] return model_name, application_name, machine_id def _get_application_name(self, namespace: str) -> str: """ Build application name from namespace :param namespace: :return: app-vnf-<vnf id>-vdu-<vdu-id>-cnt-<vdu-count> """ # TODO: Enforce the Juju 50-character application limit # split namespace components _, _, vnf_id, vdu_id, vdu_count = self._get_namespace_components( namespace=namespace ) if vnf_id is None or len(vnf_id) == 0: vnf_id = "" else: # Shorten the vnf_id to its last twelve characters vnf_id = "vnf-" + vnf_id[-12:] if vdu_id is None or len(vdu_id) == 0: vdu_id = "" else: # Shorten the vdu_id to its last twelve characters vdu_id = "-vdu-" + vdu_id[-12:] if vdu_count is None or len(vdu_count) == 0: vdu_count = "" else: vdu_count = "-cnt-" + vdu_count application_name = "app-{}{}{}".format(vnf_id, vdu_id, vdu_count) return N2VCJujuConnector._format_app_name(application_name) async def _juju_create_machine( self, model_name: str, application_name: str, machine_id: str = None, db_dict: dict = None, progress_timeout: float = None, total_timeout: float = None, ) -> Machine: self.log.debug( "creating machine in model: {}, existing machine id: {}".format( model_name, machine_id ) ) # get juju model and observer (create model if needed) model = await self._juju_get_model(model_name=model_name) observer = self.juju_observers[model_name] # find machine id in model machine = None if machine_id is not None: self.log.debug("Finding existing machine id {} in model".format(machine_id)) # get juju existing machines in the model existing_machines = await model.get_machines() if machine_id in existing_machines: self.log.debug( "Machine id {} found in model (reusing it)".format(machine_id) ) machine = model.machines[machine_id] if machine is None: self.log.debug("Creating a new machine in juju...") # machine does not exist, create it and wait for it machine = await model.add_machine( spec=None, constraints=None, disks=None, series="xenial" ) # register machine with observer observer.register_machine(machine=machine, db_dict=db_dict) # id for the execution environment ee_id = N2VCJujuConnector._build_ee_id( model_name=model_name, application_name=application_name, machine_id=str(machine.entity_id), ) # write ee_id in database self._write_ee_id_db(db_dict=db_dict, ee_id=ee_id) # wait for machine creation await observer.wait_for_machine( machine_id=str(machine.entity_id), progress_timeout=progress_timeout, total_timeout=total_timeout, ) else: self.log.debug("Reusing old machine pending") # register machine with observer observer.register_machine(machine=machine, db_dict=db_dict) # machine does exist, but it is in creation process (pending), wait for # create finalisation await observer.wait_for_machine( machine_id=machine.entity_id, progress_timeout=progress_timeout, total_timeout=total_timeout, ) self.log.debug("Machine ready at " + str(machine.dns_name)) return machine async def _juju_provision_machine( self, model_name: str, hostname: str, username: str, private_key_path: str, db_dict: dict = None, progress_timeout: float = None, total_timeout: float = None, ) -> str: if not self.api_proxy: msg = "Cannot provision machine: api_proxy is not defined" self.log.error(msg=msg) raise N2VCException(message=msg) self.log.debug( "provisioning machine. model: {}, hostname: {}, username: {}".format( model_name, hostname, username ) ) if not self._authenticated: await self._juju_login() # get juju model and observer model = await self._juju_get_model(model_name=model_name) observer = self.juju_observers[model_name] # TODO check if machine is already provisioned machine_list = await model.get_machines() provisioner = AsyncSSHProvisioner( host=hostname, user=username, private_key_path=private_key_path, log=self.log, ) params = None try: params = await provisioner.provision_machine() except Exception as ex: msg = "Exception provisioning machine: {}".format(ex) self.log.error(msg) raise N2VCException(message=msg) params.jobs = ["JobHostUnits"] connection = model.connection() # Submit the request. self.log.debug("Adding machine to model") client_facade = client.ClientFacade.from_connection(connection) results = await client_facade.AddMachines(params=[params]) error = results.machines[0].error if error: msg = "Error adding machine: {}".format(error.message) self.log.error(msg=msg) raise ValueError(msg) machine_id = results.machines[0].machine # Need to run this after AddMachines has been called, # as we need the machine_id self.log.debug("Installing Juju agent into machine {}".format(machine_id)) asyncio.ensure_future( provisioner.install_agent( connection=connection, nonce=params.nonce, machine_id=machine_id, api=self.api_proxy, ) ) # wait for machine in model (now, machine is not yet in model, so we must # wait for it) machine = None for _ in range(10): machine_list = await model.get_machines() if machine_id in machine_list: self.log.debug("Machine {} found in model!".format(machine_id)) machine = model.machines.get(machine_id) break await asyncio.sleep(2) if machine is None: msg = "Machine {} not found in model".format(machine_id) self.log.error(msg=msg) raise Exception(msg) # register machine with observer observer.register_machine(machine=machine, db_dict=db_dict) # wait for machine creation self.log.debug("waiting for provision finishes... {}".format(machine_id)) await observer.wait_for_machine( machine_id=machine_id, progress_timeout=progress_timeout, total_timeout=total_timeout, ) self.log.debug("Machine provisioned {}".format(machine_id)) return machine_id async def _juju_deploy_charm( self, model_name: str, application_name: str, charm_path: str, machine_id: str, db_dict: dict, progress_timeout: float = None, total_timeout: float = None, config: dict = None, ) -> (Application, int): # get juju model and observer model = await self._juju_get_model(model_name=model_name) observer = self.juju_observers[model_name] # check if application already exists application = None if application_name in model.applications: application = model.applications[application_name] if application is None: # application does not exist, create it and wait for it self.log.debug( "deploying application {} to machine {}, model {}".format( application_name, machine_id, model_name ) ) self.log.debug("charm: {}".format(charm_path)) machine = model.machines[machine_id] # series = None application = await model.deploy( entity_url=charm_path, application_name=application_name, channel="stable", num_units=1, series=machine.series, to=machine_id, config=config, ) # register application with observer observer.register_application(application=application, db_dict=db_dict) self.log.debug( "waiting for application deployed... {}".format(application.entity_id) ) retries = await observer.wait_for_application( application_id=application.entity_id, progress_timeout=progress_timeout, total_timeout=total_timeout, ) self.log.debug("application deployed") else: # register application with observer observer.register_application(application=application, db_dict=db_dict) # application already exists, but not finalised self.log.debug("application already exists, waiting for deployed...") retries = await observer.wait_for_application( application_id=application.entity_id, progress_timeout=progress_timeout, total_timeout=total_timeout, ) self.log.debug("application deployed") return application, retries async def _juju_execute_action( self, model_name: str, application_name: str, action_name: str, db_dict: dict, progress_timeout: float = None, total_timeout: float = None, **kwargs ) -> Action: # get juju model and observer model = await self._juju_get_model(model_name=model_name) observer = self.juju_observers[model_name] application = await self._juju_get_application( model_name=model_name, application_name=application_name ) unit = None for u in application.units: if await u.is_leader_from_status(): unit = u if unit is not None: actions = await application.get_actions() if action_name in actions: self.log.debug( 'executing action "{}" using params: {}'.format(action_name, kwargs) ) action = await unit.run_action(action_name, **kwargs) # register action with observer observer.register_action(action=action, db_dict=db_dict) await observer.wait_for_action( action_id=action.entity_id, progress_timeout=progress_timeout, total_timeout=total_timeout, ) self.log.debug("action completed with status: {}".format(action.status)) output = await model.get_action_output(action_uuid=action.entity_id) status = await model.get_action_status(uuid_or_prefix=action.entity_id) if action.entity_id in status: status = status[action.entity_id] else: status = "failed" return output, status raise N2VCExecutionException( message="Cannot execute action on charm", primitive_name=action_name ) async def _juju_configure_application( self, model_name: str, application_name: str, config: dict, db_dict: dict, progress_timeout: float = None, total_timeout: float = None, ): # get the application application = await self._juju_get_application( model_name=model_name, application_name=application_name ) self.log.debug( "configuring the application {} -> {}".format(application_name, config) ) res = await application.set_config(config) self.log.debug( "application {} configured. res={}".format(application_name, res) ) # Verify the config is set new_conf = await application.get_config() for key in config: value = new_conf[key]["value"] self.log.debug(" {} = {}".format(key, value)) if config[key] != value: raise N2VCException( message="key {} is not configured correctly {} != {}".format( key, config[key], new_conf[key] ) ) # check if 'verify-ssh-credentials' action exists # unit = application.units[0] actions = await application.get_actions() if "verify-ssh-credentials" not in actions: msg = ( "Action verify-ssh-credentials does not exist in application {}" ).format(application_name) self.log.debug(msg=msg) return False # execute verify-credentials num_retries = 20 retry_timeout = 15.0 for _ in range(num_retries): try: self.log.debug("Executing action verify-ssh-credentials...") output, ok = await self._juju_execute_action( model_name=model_name, application_name=application_name, action_name="verify-ssh-credentials", db_dict=db_dict, progress_timeout=progress_timeout, total_timeout=total_timeout, ) self.log.debug("Result: {}, output: {}".format(ok, output)) return True except asyncio.CancelledError: raise except Exception as e: self.log.debug( "Error executing verify-ssh-credentials: {}. Retrying...".format(e) ) await asyncio.sleep(retry_timeout) else: self.log.error( "Error executing verify-ssh-credentials after {} retries. ".format( num_retries ) ) return False async def _juju_get_application(self, model_name: str, application_name: str): """Get the deployed application.""" model = await self._juju_get_model(model_name=model_name) application_name = N2VCJujuConnector._format_app_name(application_name) if model.applications and application_name in model.applications: return model.applications[application_name] else: raise N2VCException( message="Cannot get application {} from model {}".format( application_name, model_name ) ) async def _juju_get_model(self, model_name: str) -> Model: """ Get a model object from juju controller If the model does not exits, it creates it. :param str model_name: name of the model :returns Model: model obtained from juju controller or Exception """ # format model name model_name = N2VCJujuConnector._format_model_name(model_name) if model_name in self.juju_models: return self.juju_models[model_name] if self._creating_model: self.log.debug("Another coroutine is creating a model. Wait...") while self._creating_model: # another coroutine is creating a model, wait await asyncio.sleep(0.1) # retry (perhaps another coroutine has created the model meanwhile) if model_name in self.juju_models: return self.juju_models[model_name] try: self._creating_model = True # get juju model names from juju model_list = await self.controller.list_models() if model_name not in model_list: self.log.info( "Model {} does not exist. Creating new model...".format(model_name) ) config_dict = {"authorized-keys": self.public_key} if self.apt_mirror: config_dict["apt-mirror"] = self.apt_mirror if not self.enable_os_upgrade: config_dict["enable-os-refresh-update"] = False config_dict["enable-os-upgrade"] = False if self.cloud in self.BUILT_IN_CLOUDS: model = await self.controller.add_model( model_name=model_name, config=config_dict, cloud_name=self.cloud, ) else: model = await self.controller.add_model( model_name=model_name, config=config_dict, cloud_name=self.cloud, credential_name=self.cloud, ) self.log.info("New model created, name={}".format(model_name)) else: self.log.debug( "Model already exists in juju. Getting model {}".format(model_name) ) model = await self.controller.get_model(model_name) self.log.debug("Existing model in juju, name={}".format(model_name)) self.juju_models[model_name] = model self.juju_observers[model_name] = JujuModelObserver(n2vc=self, model=model) return model except Exception as e: msg = "Cannot get model {}. Exception: {}".format(model_name, e) self.log.error(msg) raise N2VCException(msg) finally: self._creating_model = False async def _juju_add_relation( self, model_name: str, application_name_1: str, application_name_2: str, relation_1: str, relation_2: str, ): # get juju model and observer model = await self._juju_get_model(model_name=model_name) r1 = "{}:{}".format(application_name_1, relation_1) r2 = "{}:{}".format(application_name_2, relation_2) self.log.debug("adding relation: {} -> {}".format(r1, r2)) try: await model.add_relation(relation1=r1, relation2=r2) except JujuAPIError as e: # If one of the applications in the relationship doesn't exist, or the # relation has already been added, # let the operation fail silently. if "not found" in e.message: return if "already exists" in e.message: return # another execption, raise it raise e async def _juju_destroy_application(self, model_name: str, application_name: str): self.log.debug( "Destroying application {} in model {}".format(application_name, model_name) ) # get juju model and observer model = await self._juju_get_model(model_name=model_name) observer = self.juju_observers[model_name] application = model.applications.get(application_name) if application: observer.unregister_application(application_name) await application.destroy() else: self.log.debug("Application not found: {}".format(application_name)) async def _juju_destroy_machine( self, model_name: str, machine_id: str, total_timeout: float = None ): self.log.debug( "Destroying machine {} in model {}".format(machine_id, model_name) ) if total_timeout is None: total_timeout = 3600 # get juju model and observer model = await self._juju_get_model(model_name=model_name) observer = self.juju_observers[model_name] machines = await model.get_machines() if machine_id in machines: machine = model.machines[machine_id] observer.unregister_machine(machine_id) # TODO: change this by machine.is_manual when this is upstreamed: # https://github.com/juju/python-libjuju/pull/396 if "instance-id" in machine.safe_data and machine.safe_data[ "instance-id" ].startswith("manual:"): self.log.debug("machine.destroy(force=True) started.") await machine.destroy(force=True) self.log.debug("machine.destroy(force=True) passed.") # max timeout end = time.time() + total_timeout # wait for machine removal machines = await model.get_machines() while machine_id in machines and time.time() < end: self.log.debug( "Waiting for machine {} is destroyed".format(machine_id) ) await asyncio.sleep(0.5) machines = await model.get_machines() self.log.debug("Machine destroyed: {}".format(machine_id)) else: self.log.debug("Machine not found: {}".format(machine_id)) async def _juju_destroy_model(self, model_name: str, total_timeout: float = None): self.log.debug("Destroying model {}".format(model_name)) if total_timeout is None: total_timeout = 3600 end = time.time() + total_timeout model = await self._juju_get_model(model_name=model_name) if not model: raise N2VCNotFound(message="Model {} does not exist".format(model_name)) uuid = model.info.uuid # destroy applications for application_name in model.applications: try: await self._juju_destroy_application( model_name=model_name, application_name=application_name ) except Exception as e: self.log.error( "Error destroying application {} in model {}: {}".format( application_name, model_name, e ) ) # destroy machines machines = await model.get_machines() for machine_id in machines: try: await self._juju_destroy_machine( model_name=model_name, machine_id=machine_id ) except asyncio.CancelledError: raise except Exception: # ignore exceptions destroying machine pass await self._juju_disconnect_model(model_name=model_name) self.log.debug("destroying model {}...".format(model_name)) await self.controller.destroy_model(uuid) # self.log.debug('model destroy requested {}'.format(model_name)) # wait for model is completely destroyed self.log.debug("Waiting for model {} to be destroyed...".format(model_name)) last_exception = "" while time.time() < end: try: # await self.controller.get_model(uuid) models = await self.controller.list_models() if model_name not in models: self.log.debug( "The model {} ({}) was destroyed".format(model_name, uuid) ) return except asyncio.CancelledError: raise except Exception as e: last_exception = e await asyncio.sleep(5) raise N2VCException( "Timeout waiting for model {} to be destroyed {}".format( model_name, last_exception ) ) async def _juju_login(self): """Connect to juju controller """ # if already authenticated, exit function if self._authenticated: return # if connecting, wait for finish # another task could be trying to connect in parallel while self._connecting: await asyncio.sleep(0.1) # double check after other task has finished if self._authenticated: return try: self._connecting = True self.log.info( "connecting to juju controller: {} {}:{}{}".format( self.url, self.username, self.secret[:8] + "...", " with ca_cert" if self.ca_cert else "", ) ) # Create controller object self.controller = Controller(loop=self.loop) # Connect to controller await self.controller.connect( endpoint=self.url, username=self.username, password=self.secret, cacert=self.ca_cert, ) self._authenticated = True self.log.info("juju controller connected") except Exception as e: message = "Exception connecting to juju: {}".format(e) self.log.error(message) raise N2VCConnectionException(message=message, url=self.url) finally: self._connecting = False async def _juju_logout(self): """Logout of the Juju controller.""" if not self._authenticated: return False # disconnect all models for model_name in self.juju_models: try: await self._juju_disconnect_model(model_name) except Exception as e: self.log.error( "Error disconnecting model {} : {}".format(model_name, e) ) # continue with next model... self.log.info("Disconnecting controller") try: await self.controller.disconnect() except Exception as e: raise N2VCConnectionException( message="Error disconnecting controller: {}".format(e), url=self.url ) self.controller = None self._authenticated = False self.log.info("disconnected") async def _juju_disconnect_model(self, model_name: str): self.log.debug("Disconnecting model {}".format(model_name)) if model_name in self.juju_models: await self.juju_models[model_name].disconnect() self.juju_models[model_name] = None self.juju_observers[model_name] = None else: self.warning("Cannot disconnect model: {}".format(model_name)) def _create_juju_public_key(self): """Recreate the Juju public key on lcm container, if needed Certain libjuju commands expect to be run from the same machine as Juju is bootstrapped to. This method will write the public key to disk in that location: ~/.local/share/juju/ssh/juju_id_rsa.pub """ # Make sure that we have a public key before writing to disk if self.public_key is None or len(self.public_key) == 0: if "OSMLCM_VCA_PUBKEY" in os.environ: self.public_key = os.getenv("OSMLCM_VCA_PUBKEY", "") if len(self.public_key) == 0: return else: return pk_path = "{}/.local/share/juju/ssh".format(os.path.expanduser("~")) file_path = "{}/juju_id_rsa.pub".format(pk_path) self.log.debug( "writing juju public key to file:\n{}\npublic key: {}".format( file_path, self.public_key ) ) if not os.path.exists(pk_path): # create path and write file os.makedirs(pk_path) with open(file_path, "w") as f: self.log.debug("Creating juju public key file: {}".format(file_path)) f.write(self.public_key) else: self.log.debug("juju public key file already exists: {}".format(file_path)) @staticmethod def _format_model_name(name: str) -> str: """Format the name of the model. Model names may only contain lowercase letters, digits and hyphens """ return name.replace("_", "-").replace(" ", "-").lower() @staticmethod def _format_app_name(name: str) -> str: """Format the name of the application (in order to assure valid application name). Application names have restrictions (run juju deploy --help): - contains lowercase letters 'a'-'z' - contains numbers '0'-'9' - contains hyphens '-' - starts with a lowercase letter - not two or more consecutive hyphens - after a hyphen, not a group with all numbers """ def all_numbers(s: str) -> bool: for c in s: if not c.isdigit(): return False return True new_name = name.replace("_", "-") new_name = new_name.replace(" ", "-") new_name = new_name.lower() while new_name.find("--") >= 0: new_name = new_name.replace("--", "-") groups = new_name.split("-") # find 'all numbers' groups and prefix them with a letter app_name = "" for i in range(len(groups)): group = groups[i] if all_numbers(group): group = "z" + group if i > 0: app_name += "-" app_name += group if app_name[0].isdigit(): app_name = "z" + app_name return app_name
35.909934
98
0.553787
73bd1f775f1fc4631196b6923d52f00882d3e8bd
843
py
Python
tests/constraints/test_faulting_stress_measurement.py
pnnl/SOSAT
610f99e0bb80f2f5e7836e7e3b6b816e029838bb
[ "BSD-3-Clause" ]
null
null
null
tests/constraints/test_faulting_stress_measurement.py
pnnl/SOSAT
610f99e0bb80f2f5e7836e7e3b6b816e029838bb
[ "BSD-3-Clause" ]
1
2021-03-22T18:59:05.000Z
2021-03-22T18:59:05.000Z
tests/constraints/test_faulting_stress_measurement.py
pnnl/SOSAT
610f99e0bb80f2f5e7836e7e3b6b816e029838bb
[ "BSD-3-Clause" ]
null
null
null
import pytest from scipy.stats import uniform import numpy as np import matplotlib.pyplot as plt from SOSAT import StressState from SOSAT.constraints import StressMeasurement from SOSAT.constraints import FaultConstraint # depth in meters depth = 1228.3 # density in kg/m^3 avg_overburden_density = 2580.0 # pore pressure gradient in MPa/km pore_pressure_grad = 9.955 pore_pressure = pore_pressure_grad * (1.0 / 1000) * depth ss = StressState(depth=depth, avg_overburden_density=avg_overburden_density, pore_pressure=pore_pressure) fc = FaultConstraint() ss.add_constraint(fc) smc = StressMeasurement(shmin_dist=uniform(loc=25.0, scale=5.0)) ss.add_constraint(smc) fig = ss.plot_posterior() plt.savefig("faulting_stress_measurement_constraint_posterior.png")
26.34375
67
0.737841
6f132afe4146d6ef0a382bfd930b3131f9013b47
41
py
Python
src/models/__init__.py
atgmello/ml-challenge-2020
2bf3fc81b96059a2d1e813e6784e21b66760df3b
[ "MIT" ]
5
2020-12-17T13:20:18.000Z
2021-05-09T01:28:19.000Z
src/models/__init__.py
atgmello/ml-challenge-2020
2bf3fc81b96059a2d1e813e6784e21b66760df3b
[ "MIT" ]
null
null
null
src/models/__init__.py
atgmello/ml-challenge-2020
2bf3fc81b96059a2d1e813e6784e21b66760df3b
[ "MIT" ]
null
null
null
from .challenge_metric import ndcg_score
20.5
40
0.878049
76d6d589708476da6e71807b0c4b7ed621bf6ad1
266
py
Python
myerp/custom/doctype/property_setter/property_setter.py
smthakor1979/MyERP
b05c44ae0054072f2a410381069215d287e7f0ba
[ "MIT" ]
null
null
null
myerp/custom/doctype/property_setter/property_setter.py
smthakor1979/MyERP
b05c44ae0054072f2a410381069215d287e7f0ba
[ "MIT" ]
null
null
null
myerp/custom/doctype/property_setter/property_setter.py
smthakor1979/MyERP
b05c44ae0054072f2a410381069215d287e7f0ba
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2020, suresh thakor and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class PropertySetter(Document): pass
24.181818
52
0.778195
aaa03234cb6e86de9d7f6a547e73d4d182386741
5,367
py
Python
dataset_reader_v2.py
lopa23/flim_optcrf
2d9a1dba37a7e5e6beae66c536b07bb7ae4bdfe9
[ "Apache-2.0" ]
null
null
null
dataset_reader_v2.py
lopa23/flim_optcrf
2d9a1dba37a7e5e6beae66c536b07bb7ae4bdfe9
[ "Apache-2.0" ]
null
null
null
dataset_reader_v2.py
lopa23/flim_optcrf
2d9a1dba37a7e5e6beae66c536b07bb7ae4bdfe9
[ "Apache-2.0" ]
null
null
null
import os import sys import torch import torch.nn as nn import numpy as np from torch.utils.data import Dataset import matplotlib.image as mpimg from matplotlib import pyplot as plt from skimage.transform import rescale, resize import scipy.io import h5py import tables from torch.utils.data import DataLoader def kron(matrix1, matrix2): """ Kronecker product of matrices a and b with leading batch dimensions. Batch dimensions are broadcast. The number of them mush :type a: torch.Tensor :type b: torch.Tensor :rtype: torch.Tensor """ r=matrix1.size(0) R=repeat_along_diag(matrix2,r) #R=torch.zeros(n*m,n*m) return R def rgb2gray(rgb): r, g, b=rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] gray= .2989*r + .5870*g+ .114*b return gray def repeat_along_diag(a, r): m,n = a.shape out = np.zeros((r,m,r,n), dtype=np.float32) diag = np.einsum('ijik->ijk',out) diag[:] = (a) return out.reshape(-1,n*r) def read_mat_file(fname): file = tables.open_file(fname) Q = file.root.HH[:] p=file.root.f[:] G=file.root.D[:] m=file.root.m[:] m=int(m[0].item()) Q=torch.tensor(Q).float(); E=torch.eye(m) #Q=torch.from_numpy(kron(E,Q)).float() print("Size m, Q",m, Q.size()) n=Q.size(0) p=torch.tensor(p).float(); p=p.t() p1=p.size(0) G=torch.tensor(G).float(); if(p1==1): G=G.t() gx=G.size(0) gy=G.size(1) h = torch.tensor(np.zeros((gx, 1))).float(); temp=np.zeros((1,n)) temp[0,n-1]=.000000001 A = torch.from_numpy(temp); b = torch.from_numpy(np.zeros((1,1))); return Q, p, G, h, A, b, m class MyDataset(Dataset): def __init__(self, data_root): self.samples = [] self.data_root=data_root self.train_folder=[]; idx=0 for folname in os.listdir(data_root): self.train_folder.append(os.path.join(self.data_root, folname)) print(self.train_folder[0]) subfolnames=os.listdir(self.train_folder[idx]); idx1=0 # this is to avoid reading the output folder for folname in subfolnames: if folname !='output': subfolnames[idx1]=folname idx1=idx1+1 subfol_path1=os.path.join(self.train_folder[idx],subfolnames[0]); subfol_path2=os.path.join(self.train_folder[idx],subfolnames[1]); print(subfol_path1,' ',subfol_path2) #reading 1st modality for thisfile in os.listdir(subfol_path1): this_filepath = os.path.join(subfol_path1, thisfile) if(this_filepath.find('image.bmp')!=-1): img= mpimg.imread(this_filepath); if(img.ndim >2): img=rgb2gray(img) img=img.astype(np.float32) img=torch.from_numpy(img) #img=img.unsqueeze(0) elif(this_filepath.find('truth.bmp')!=-1): target= torch.from_numpy(mpimg.imread(this_filepath)) elif(this_filepath.find('.txt')!=-1): label = np.loadtxt(this_filepath, dtype='i', delimiter=',') n1, n2=label.shape if(n2>1): Pixel_pos1=torch.from_numpy(label[:,[0, 1]]) Pixel_pos1=Pixel_pos1.type(torch.uint8) anno1=torch.from_numpy(label[:,2]) else: Pixel_pos1=None anno1=torch.from_numpy(label) elif(this_filepath.find('.mat')!=-1): Q1, p1, G1, h1, A1, b1, m1=read_mat_file(this_filepath) #reading 2nd modality for thisfile in os.listdir(subfol_path2): this_filepath = os.path.join(subfol_path2, thisfile) if(this_filepath.find('.txt')!=-1): label = np.loadtxt(this_filepath, dtype='i', delimiter=',') n1, n2=label.shape if(n2>1): Pixel_pos2=torch.from_numpy(label[:,[0, 1]]) Pixel_pos2=Pixel_pos2.type(torch.uint8) anno2=torch.from_numpy(label[:,2]) else: Pixel_pos2=None anno2=torch.from_numpy(label) elif(this_filepath.find('.mat')!=-1): Q2, p2, G2, h2, A2, b2, m2=read_mat_file(this_filepath) idx=idx+1 item=(img, target, anno1, Pixel_pos1, Q1, p1, G1, h1, m1, anno2, Pixel_pos2, Q2, p2, G2, h2, m2) self.samples.append(item) #self.samples.append({'image': img, 'target': target, 'Anno':anno, 'Pixel_pos':Pixel_pos, 'Q':Q, 'p':p, 'G':G, 'h':h, 'm':m}) def __len__(self): return len(self.samples) def __getitem__(self, idx): return idx, self.samples[idx]
31.385965
137
0.505124
61c27d56b8f63ab62b4595fe987b77a9f2b357ee
775
py
Python
crawling_scraping/chapter02/save_sqlite3.py
mmakmo/python
74c577f8d688de62b6e6574ea1457a322450ae64
[ "MIT" ]
null
null
null
crawling_scraping/chapter02/save_sqlite3.py
mmakmo/python
74c577f8d688de62b6e6574ea1457a322450ae64
[ "MIT" ]
null
null
null
crawling_scraping/chapter02/save_sqlite3.py
mmakmo/python
74c577f8d688de62b6e6574ea1457a322450ae64
[ "MIT" ]
null
null
null
import sqlite3 conn = sqlite3.connect('top_cities.db') c = conn.cursor() c.execute('DROP TABLE IF EXISTS cities') c.execute(''' CREATE TABLE cities ( rank integer, city text, population integer ) ''') c.execute('INSERT INTO cities VALUES (?, ?, ?)', (1, '上海', 24150000)) c.execute('INSERT INTO cities VALUES (:rank, :city, :population)', {'rank': 2, 'city': 'カラチ', 'population': 23500000}) c.executemany('INSERT INTO cities VALUES (:rank, :city, :population)', [ {'rank': 3, 'city': '北京', 'population': 21516000}, {'rank': 4, 'city': '天津', 'population': 14722100}, {'rank': 5, 'city': 'イスタンブル', 'population': 14160467}, ]) conn.commit() c.execute('SELECT * FROM cities') for row in c.fetchall(): print(row) conn.close()
25.833333
118
0.614194
49b4e788c06559c0cae74d0cbc80a5167b7f6293
1,782
py
Python
test/modules/md/test_741_setup_errors.py
tititiou36/httpd
1348607c00ba58ce371f2f8ecb08abf610227043
[ "Apache-2.0" ]
2,529
2015-01-02T11:52:53.000Z
2022-03-30T19:54:27.000Z
test/modules/md/test_741_setup_errors.py
tititiou36/httpd
1348607c00ba58ce371f2f8ecb08abf610227043
[ "Apache-2.0" ]
133
2015-04-21T05:50:45.000Z
2022-03-30T14:23:40.000Z
test/modules/md/test_741_setup_errors.py
tititiou36/httpd
1348607c00ba58ce371f2f8ecb08abf610227043
[ "Apache-2.0" ]
1,113
2015-01-01T14:47:02.000Z
2022-03-29T16:47:18.000Z
# test ACME error responses and their processing import os import pytest from .md_conf import MDConf from .md_env import MDTestEnv @pytest.mark.skipif(condition=not MDTestEnv.has_acme_server(), reason="no ACME test server configured") class TestSetupErrors: @pytest.fixture(autouse=True, scope='class') def _class_scope(self, env, acme): env.APACHE_CONF_SRC = "data/test_auto" acme.start(config='default') env.check_acme() env.clear_store() MDConf(env).install() assert env.apache_restart() == 0 @pytest.fixture(autouse=True, scope='function') def _method_scope(self, env, request): env.clear_store() self.mcmd = os.path.join(env.test_dir, "../modules/md/http_challenge_foobar.py") self.test_domain = env.get_request_domain(request) def test_md_741_001(self, env): # setup an MD with a MDMessageCmd that make the http-01 challenge file invalid # before the ACME server is asked to retrieve it. This will result in # an "invalid" domain authorization. # The certificate sign-up will be attempted again after 4 seconds and # of course fail again. # Verify that the error counter for the staging job increments, so # that our retry logic goes into proper delayed backoff. domain = self.test_domain domains = [domain] conf = MDConf(env) conf.add("MDCAChallenges http-01") conf.add(f"MDMessageCmd {self.mcmd} {env.store_dir}") conf.add_md(domains) conf.add_vhost(domains) conf.install() assert env.apache_restart() == 0 md = env.await_error(domain, errors=2, timeout=10) assert md assert md['renewal']['errors'] > 0
36.367347
88
0.657688
3dbe9b22c2a6c7662cbd5d53f840709ef2551e35
3,862
py
Python
src/vision/process_frame_util.py
CornellDataScience/self-driving-car
449044840abdeed9f547a16cd192950e23ba189c
[ "MIT" ]
3
2021-09-29T21:15:25.000Z
2021-11-11T20:57:07.000Z
src/vision/process_frame_util.py
CornellDataScience/self-driving-car
449044840abdeed9f547a16cd192950e23ba189c
[ "MIT" ]
44
2021-09-28T05:38:43.000Z
2022-03-31T21:29:48.000Z
src/vision/process_frame_util.py
CornellDataScience/self-driving-car
449044840abdeed9f547a16cd192950e23ba189c
[ "MIT" ]
null
null
null
import numpy as np import cv2 import math def get_features(frame): orb = cv2.ORB_create() # Replacement for orb.detect(frame, None) Gives many more points pts = cv2.goodFeaturesToTrack( np.mean(frame, axis=2).astype(np.uint8), 3000, qualityLevel=0.01, minDistance=7 ) # print("pts: ", alt_pts) kps = [cv2.KeyPoint(x=f[0][0], y=f[0][1], size=20) for f in pts] kps, des = orb.compute(frame, kps) # print("kps: ", kps) # return np.array([(kp.pt[0], kp.pt[1]) for kp in kps]), des return kps, des # def get_features2(frame): # orb = cv2.ORB_create() def match_frames(des1, des2): # print(des1, des2) matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # matches = matcher.knnMatch(des1, des2, k=1) matches = matcher.match(des1, des2) # print(matches) matches = [m for m in matches if m.distance <= 24] # Previous Default: 32 matches = sorted(matches, key=lambda x: x.distance) return matches def process_frame(frame, prev_frame): # orb = cv2.ORB_create() prev_kps, prev_des = get_features(prev_frame) kps, des = get_features(frame) # print(kps) cv2.drawKeypoints(frame, kps, frame, color=(0, 255, 0), flags=0) # for p in kps: # cv2.circle(frame, (int(p[0]), int(p[1])), color=(0, 255, 0), radius=3) matches = match_frames(prev_des, des) # if matches: # print("", len(matches), " matches found") # frame = cv2.drawMatches(frame, kps, prev_frame, prev_kps, matches[:10], None, 2, flags=2) transitory_vec = 0 stationary_left_vec = 0 left_count = 0 stationary_right_vec = 0 right_count = 0 for m in matches: idx1 = kps[m.trainIdx] idx2 = prev_kps[m.queryIdx] pt1 = (int(idx1.pt[0]), int(idx1.pt[1])) pt2 = (int(idx2.pt[0]), int(idx2.pt[1])) x1 = pt1[0] x2 = pt2[0] transitory_vec += x2 - x1 if x2 > frame.shape[1] / 2: stationary_right_vec += x2 - x1 right_count += 1 else: stationary_left_vec += x2 - x1 left_count += 1 if math.hypot(pt1[0] - pt2[0], pt1[1] - pt2[1]) <= 100: cv2.line(frame, pt1, pt2, (int(255 * (1 - m.distance / 32)), 0, 0), 2) vect = str((stationary_left_vec, stationary_right_vec)) adj_vect = str( ( round(stationary_left_vec / max(1, left_count), 2), round(stationary_right_vec / max(1, right_count), 2), ) ) phrase = ( "Vectors: " + vect + "Adjusted: " + adj_vect + "Count: " + str((left_count, right_count)) + "=" + str(left_count + right_count) ) # TODO: Possible improvements to direction estimation # - Check ratio of matches between left and right # (if turning left, there will be more matches on the right) # - Use previous (1 or more) estimation data as well # (if turning left more likely to be turning left) # - Look at up/down movement for better differentiating FORWARD/BACKWARD # - Give different weightings to vectors depending on match distance # - If average pixel difference is increasing then FORWARD # If decreasing then BACKWARD (change in pixel distance increases/decreases) if stationary_left_vec < 0 and stationary_right_vec > 0: phrase = "FORWARD " + phrase elif stationary_left_vec > 0 and stationary_right_vec < 0: phrase = "BACKWARD " + phrase elif stationary_left_vec < 0 and stationary_right_vec < 0: phrase = "LEFT " + phrase elif stationary_left_vec > 0 and stationary_right_vec > 0: phrase = "RIGHT " + phrase # print(phrase) loc = (10, 20) frame = cv2.putText(frame, phrase, loc, cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0)) return frame
30.171875
99
0.606163
f002c88ce3873b7bdae2bd5e9a946b7d0dfbf75f
1,862
py
Python
src/sardana/sardanavalue.py
schooft/sardana
76287b416650f40da79871ee3849340d0ff31f1d
[ "CC-BY-3.0" ]
null
null
null
src/sardana/sardanavalue.py
schooft/sardana
76287b416650f40da79871ee3849340d0ff31f1d
[ "CC-BY-3.0" ]
null
null
null
src/sardana/sardanavalue.py
schooft/sardana
76287b416650f40da79871ee3849340d0ff31f1d
[ "CC-BY-3.0" ]
null
null
null
#!/usr/bin/env python ############################################################################## ## # This file is part of Sardana ## # http://www.sardana-controls.org/ ## # Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain ## # Sardana is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. ## # Sardana is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. ## # You should have received a copy of the GNU Lesser General Public License # along with Sardana. If not, see <http://www.gnu.org/licenses/>. ## ############################################################################## """This module is part of the Python Sardana libray. It defines the base classes for Sardana values""" from __future__ import absolute_import __all__ = ["SardanaValue"] __docformat__ = 'restructuredtext' import time class SardanaValue(object): def __init__(self, value=None, exc_info=None, timestamp=None, dtype=None, dformat=None): self.value = value self.error = exc_info is not None self.exc_info = exc_info if timestamp is None: timestamp = time.time() self.timestamp = timestamp self.dtype = dtype self.dformat = dformat def __repr__(self): v = None if self.error: v = "<Error>" else: v = self.value return "{0.__class__.__name__}(value={1}, timestamp={0.timestamp})".format(self, v) def __str__(self): return repr(self)
30.52459
91
0.619764
89924655132eaf8c956b9196e0548e13577be0c7
21,912
py
Python
ep_clustering/kalman_filter/_kalman_filter.py
aicherc/EP_Collapsed_Gibbs
3b2e8c3addeab2343837b9e86e9cb57b00798b9a
[ "MIT" ]
1
2019-12-14T01:14:56.000Z
2019-12-14T01:14:56.000Z
ep_clustering/kalman_filter/_kalman_filter.py
aicherc/EP_Collapsed_Gibbs
3b2e8c3addeab2343837b9e86e9cb57b00798b9a
[ "MIT" ]
null
null
null
ep_clustering/kalman_filter/_kalman_filter.py
aicherc/EP_Collapsed_Gibbs
3b2e8c3addeab2343837b9e86e9cb57b00798b9a
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Likelihood Objects for Gibbs Sampler """ # Import Modules import numpy as np # Author Information __author__ = "Christopher Aicher" class KalmanFilter(object): """ Kalman Filter Object N - dimension of state vector T - number of time points Args: y (N by T ndarray): observations y_count (N by T ndarray): counts of observations (0 indicates missing) A (N ndarray): AR Coefficients (diagonal matrix) lambduh (N ndarray): factor loadings sigma2_x (double): variance of latent process sigma2_y (N ndarray): variance of observation errors (diagonal matrix) eta_mean (T ndarray): latent cluster mean eta_var (T ndarray): latent cluster variance mu_0 (N ndarray): prior mean for x at time -1 V_0 (N by N ndarray): prior variance for x at time -1 Attributes: y_T (T by N ndarray): observations y_count_T (T by N ndarray): counts of observations (0 indicates missing) A (N ndarray): AR Coefficients (diagonal matrix) lambduh (N ndarray): factor loadings sigma2_x (double): variance of latent process sigma2_y (N ndarray): variance of observation errors (diagonal matrix) eta_mean (T ndarray): latent cluster mean eta_var (T ndarray): latent cluster variance Methods: - kalman_filter_step - filter_pass - smoothing_pass - calculate_log_likelihood - calculate_cond_log_likelihood - sample_x - sample_eta """ def __init__(self, y, A, lambduh, sigma2_x, sigma2_y, eta_mean, eta_var, mu_0=None, V_0=None, y_count=None): if np.isscalar(A): A = np.array([A]) if np.isscalar(lambduh): lambduh = np.array([lambduh]) if np.isscalar(sigma2_y): sigma2_y = np.array([sigma2_y]) self.y_T = y.T self.T, self.N = np.shape(self.y_T) self.A = A self.lambduh = lambduh self.sigma2_x = sigma2_x self.sigma2_y = sigma2_y self.eta_mean = eta_mean self.eta_var = eta_var if mu_0 is None: self.mu_0 = np.zeros(self.N) if V_0 is None: self.V_0 = np.ones(self.N) self.V_0 *= self.sigma2_x/(1.0-self.A**2) self.V_0 = np.diag(self.V_0) if y_count is None: y_count = 1.0 - np.isnan(y) y_count[np.isnan(y)] = 0 self.y_count_T = y_count.T # Scalar Division is much more efficient that np.linalg.solve if self.N == 1: self.linalg_solve = lambda a, x: x/a else: self.linalg_solve = np.linalg.solve self._check_attrs() return def _check_attrs(self): """ Check that attrs are valid """ if np.size(self.A) != self.N: raise ValueError("A must be a N ndarray") if np.size(self.lambduh) != self.N: raise ValueError("lambduh must be a N ndarray") if np.size(self.sigma2_y) != self.N: raise ValueError("sigma2_y must be a N ndarray") if np.any(self.sigma2_y < 0): raise ValueError("sigma2_y must be nonnegative") if self.sigma2_x < 0: raise ValueError("sigma2_x must be nonnegative") if np.size(self.eta_mean) != self.T: raise ValueError("eta_mean must be a T ndarray") if np.size(self.eta_var) != self.T: raise ValueError("eta_var must be a T ndarray") if np.any(self.eta_var < 0): raise ValueError("eta_var must be nonnegative") if np.size(self.mu_0) != self.N: raise ValueError("mu_0 must be a N ndarray") if np.shape(self.V_0) != (self.N, self.N): raise ValueError("V_0 must be a N by N ndarray") if np.any(np.linalg.eigvals(self.V_0) < 0): raise ValueError("V_0 must be nonnegative") if np.shape(self.y_count_T) != np.shape(self.y_T): raise ValueError("y_count and y do not have the same shape") if np.any(self.y_count_T < 0): raise ValueError("y_count must be nonnegative") return def kalman_filter_step(self, t, mu_prev, V_prev): """ Apply Kalman Filter to new observation at time t Args: t (int): time index t mu_prev (N ndarray): filtered mean at time t-1 V_prev (N by N ndarray): filtered variance at time t-1 Returns: out (dict): dictionary containing - mu_filter (N ndarray) - filtered mean at time t - V_filter (N by N ndarray) - filtered variance at time t - S_t (N by N ndarray) - predictive variance for observation y_t - mu_predict (N ndarray) - predictive mean for time t - V_predict (N by N ndarray) - predictive variance for time t """ # Predict y_t = self.y_T[t] y_count_t = self.y_count_T[t] mu_predict = self.A * mu_prev + self.lambduh * self.eta_mean[t] Q = (np.eye(self.N)*self.sigma2_x + np.outer(self.lambduh, self.lambduh)*self.eta_var[t]) V_predict = _mult_diag_matrix(self.A, _mult_diag_matrix(self.A, V_prev, on_right=True)) + Q is_obs = y_count_t > 0 V_yx = V_predict[is_obs,:] V_yy = V_yx[:,is_obs] if np.any(is_obs): # Observation Variance S_t = V_yy + np.diag(self.sigma2_y[is_obs] / y_count_t[is_obs]) if np.any(np.isnan(S_t)): raise ValueError("DEBUG") # Gain Matrix K_t = self.linalg_solve(S_t, V_yx).T # Filter mu_filter = mu_predict + K_t.dot(y_t[is_obs] - mu_predict[is_obs]) V_filter = V_predict - K_t.dot(V_yx) else: # No observations -> No filter update step S_t = np.array([]) mu_filter = mu_predict V_filter = V_predict out = { 'mu_predict': mu_predict, 'V_predict': V_predict, 'S_t': S_t, 'mu_filter': mu_filter, 'V_filter': V_filter, } return out def filter_pass(self): """ One pass of the Kalman Filter Returns: out (list of T dicts): containing - mu_filter (N ndarray) - filtered mean at time t - V_filter (N by N ndarray) - filtered variance at time t - S_t (N by N ndarray) - predictive variance for observation y_t - mu_predict (N ndarray) - predictive mean for time t - V_predict (N by N ndarray) - predictive variance for time t """ mu = self.mu_0 V = self.V_0 out = [None]*self.T for t in range(0, self.T): out[t] = self.kalman_filter_step(t, mu, V) mu, V = out[t]['mu_filter'], out[t]['V_filter'] return out def calculate_log_likelihood(self): """ Calculate the log-likelihood of y Returns: log_like (double): log-likelihood of observations """ log_like = 0.0 mu = self.mu_0 V = self.V_0 for t in range(0, self.T): kalman_result = self.kalman_filter_step(t, mu, V) y_t = self.y_T[t] y_count_t = self.y_count_T[t] is_obs = y_count_t > 0 log_like += _gaussian_log_likelihood(y_t[is_obs], mean=kalman_result['mu_predict'][is_obs], variance=kalman_result['S_t']) mu, V = kalman_result['mu_filter'], kalman_result['V_filter'] return np.asscalar(log_like) def calculate_cond_log_likelihood(self, i): """ Calculate the conditional log-likelihood of y_i given other y Args: i (int): index of stream Returns: cond_log_like (double): conditional log-likelihood of stream i """ cond_log_like = 0.0 mu = self.mu_0 V = self.V_0 for t in range(0, self.T): kalman_result = self.kalman_filter_step(t, mu, V) y_t = self.y_T[t] y_count_t = self.y_count_T[t] is_obs = y_count_t > 0 if is_obs[i]: cond_log_like += _gaussian_cond_log_likelihood( x=y_t[is_obs], mean=kalman_result['mu_predict'][is_obs], variance=kalman_result['S_t'], i=(np.cumsum(is_obs)[i] - 1), ) mu, V = kalman_result['mu_filter'], kalman_result['V_filter'] return cond_log_like def smoothing_pass(self, filter_out=None, calc_prev=False): """ One pass of the Kalman Smoothing Args: filter_out (list of dicts): output of filter_pass (optional) Will call `filter_pass` if not supplied calc_prev (bool): calculate smoothed posterior for t=-1 Returns: out (list of T dicts): containing - mu_smoothed (N ndarray) - filtered mean at time t - V_smoothed (N by N ndarray) - filtered variance at time t - J_t (N by N ndarray) - backward filter matrix If calc_prev is True, then smoothing_pass() will also return the dict prev (for t=-1) """ out = [None]*self.T # Forward Kalman Filter if filter_out is None: filter_out = self.filter_pass() # Backward Smoothing Pass mu_smoothed = filter_out[self.T-1]['mu_filter'] V_smoothed = filter_out[self.T-1]['V_filter'] out[self.T-1] = {'mu_smoothed': mu_smoothed, 'V_smoothed': V_smoothed, 'J_t': None} for t in reversed(range(0, self.T-1)): mu_filter = filter_out[t]['mu_filter'] V_filter = filter_out[t]['V_filter'] mu_predict_next = filter_out[t+1]['mu_predict'] V_predict_next = filter_out[t+1]['V_predict'] J_t = self.linalg_solve(V_predict_next, _mult_diag_matrix(self.A, V_filter)).T mu_smoothed = mu_filter + J_t.dot(mu_smoothed-mu_predict_next) V_smoothed = (V_filter + J_t.dot(V_smoothed - V_predict_next).dot(J_t.T)) out[t] = {'mu_smoothed': mu_smoothed, 'V_smoothed': V_smoothed, 'J_t': J_t} if not calc_prev: return out else: # Handle t = -1 mu_filter = self.mu_0 V_filter = self.V_0 mu_predict_next = filter_out[0]['mu_predict'] V_predict_next = filter_out[0]['V_predict'] J_t = self.linalg_solve(V_predict_next, _mult_diag_matrix(self.A, V_filter)).T mu_smoothed = mu_filter + J_t.dot(mu_smoothed-mu_predict_next) V_smoothed = (V_filter + J_t.dot(V_smoothed - V_predict_next).dot(J_t.T)) prev = {'mu_smoothed': mu_smoothed, 'V_smoothed': V_smoothed, 'J_t': J_t} return out, prev def _backward_pass(self, filter_out = None, smoothing_out = None): """ Helper function for moments of G(X_t) ~ Pr(Y_{t:T} | X_t) G(X_t) ~ Pr(X_t | Y_{1:T}) / Pr(X_t | Y_{1:t-1}) Returns: out (list of T dicts): containing - mu_beta (N ndarray) - backward filtered mean at time t - V_beta (N by N ndarray) - backward filtered variance at time t """ out = [None]*self.T # Perform Filter and Smoother if necessary if filter_out is None: filter_out = self.filter_pass() if smoothing_out is None: smoothing_out = self.smoothing_pass(filter_out = filter_out) for t in range(0, self.T): mu_predict = filter_out[t]['mu_predict'] V_predict = filter_out[t]['V_predict'] mu_smoothed = smoothing_out[t]['mu_smoothed'] V_smoothed = smoothing_out[t]['V_smoothed'] if np.allclose(V_smoothed, V_predict): # If Pr(Y_{s:T} | X_s) = 1, e.g. no observations in s:T # Then set V_beta = Inf V_beta = np.diag(np.inf * np.ones(self.N)) mu_beta = np.zeros(self.N) else: V_beta = V_smoothed.dot( np.eye(self.N) + self.linalg_solve(V_predict - V_smoothed, V_smoothed) ) mu_beta = V_beta.dot( self.linalg_solve(V_smoothed, mu_smoothed) - self.linalg_solve(V_predict, mu_predict) ) out[t] = { "mu_beta": mu_beta, "V_beta": V_beta, } return out def moment_eta(self): """ Return the mean and (diag) variance of the latent process given Y. Returns the marginal moments of likelihood fo the latent process for EP. Note that eta_mean, eta_variance are the parameters of [Pr(Y | \eta_s)] Returns: eta_mean (T ndarray): mean of eta likelihood eta_variance (T ndarray): variance of eta likelihood """ eta_mean = np.zeros(self.T) eta_variance = np.zeros(self.T) filter_out = self.filter_pass() smoothing_out = self.smoothing_pass(filter_out = filter_out) beta_out = self._backward_pass( filter_out = filter_out, smoothing_out = smoothing_out ) # Constants sigma2_eta = (self.lambduh.dot(self.lambduh))**-1 * self.sigma2_x p_beta = (self.lambduh.dot(self.lambduh))**-1 * self.lambduh p_alpha = -1.0 * p_beta * self.A for t in range(0, self.T): # alpha(X_{t-1}) ~ Pr(X_{t-1} | Y_{1:t-1}) if t == 0: mu_alpha = self.mu_0 V_alpha = self.V_0 else: mu_alpha = filter_out[t-1]["mu_filter"] V_alpha = filter_out[t-1]["V_filter"] # beta(X_t) ~ Pr(Y_{t:T} | X_t) mu_beta = beta_out[t]["mu_beta"] V_beta = beta_out[t]["V_beta"] eta_mean[t] = p_alpha.dot(mu_alpha) + p_beta.dot(mu_beta) eta_variance[t] = ( p_alpha.dot(V_alpha.dot(p_alpha)) + p_beta.dot(V_beta.dot(p_beta)) + sigma2_eta ) return eta_mean, eta_variance def _old_moment_eta(self): """ Old (incorrect) EP moment update step Use `moment_eta` instead. Return the mean and variance of the likelihood of the latent process given Y (integrating out X). Returns: eta_mean (T ndarray): mean of eta eta_variance (T ndarray): variance of eta """ eta_mean = np.zeros(self.T) eta_variance = np.zeros(self.T) smoothing_out, prev = self.smoothing_pass(calc_prev=True) # Handle t = 0 J_prev = prev['J_t'] mu_prev = prev['mu_smoothed'] V_prev = prev['V_smoothed'] mu = smoothing_out[0]['mu_smoothed'] V = smoothing_out[0]['V_smoothed'] eta_mean[0] = (mu - self.A * mu_prev) / self.lambduh eta_variance[0] = (self.sigma2_x + (V + self.A**2 * V_prev - 2 * V * J_prev * self.A) / (self.lambduh**2)) # Handle t = 1:T-1 for t in range(1, self.T): J_prev = smoothing_out[t-1]['J_t'] mu_prev = mu V_prev = V mu = smoothing_out[t]['mu_smoothed'] V = smoothing_out[t]['V_smoothed'] eta_mean[t] = (mu - self.A * mu_prev) / self.lambduh eta_variance[t] = (self.sigma2_x + (V + self.A**2 * V_prev - 2 * V * J_prev * self.A) / (self.lambduh**2)) return eta_mean, eta_variance def sample_x(self, filter_out=None): """ Sample latent process using forward filter backward sampler Args: filter_out (list of dicts): output of filter_pass (optional) Will call filter_pass if not supplied Returns: x (T by N ndarray): sample from latent state conditioned on y """ x = np.zeros((self.T,self.N)) # Forward Kalman Filter if filter_out is None: filter_out = self.filter_pass() # Backwards Sampler mu = filter_out[self.T-1]['mu_filter'] V = filter_out[self.T-1]['V_filter'] #x_next = np.random.multivariate_normal(mean=mu, cov=V) x_next = _sample_multivariate_normal(mu, V) x[self.T-1,:] = x_next for t in reversed(range(0, self.T-1)): mu_filter = filter_out[t]['mu_filter'] V_filter = filter_out[t]['V_filter'] mu_predict_next = filter_out[t+1]['mu_predict'] V_predict_next = filter_out[t+1]['V_predict'] J_t = self.linalg_solve(V_predict_next, _mult_diag_matrix(self.A, V_filter)).T mu = mu_filter + J_t.dot(x_next - mu_predict_next) V = V_filter - J_t.dot(_mult_diag_matrix(self.A, V_filter)) # x_next = np.random.multivariate_normal(mu, V) x_next = _sample_multivariate_normal(mu, V) x[t,:] = x_next return x def sample_eta(self, x=None): """ Sample latent process Args: x (T by N ndarray): sampled x (optional) Returns: eta (T ndarray): sampled eta """ if x is None: x = self.sample_x() eta = np.zeros(self.T) # Handle t = 0 mean_1 = self.eta_mean[0] var_1 = self.eta_var[0] mean_2 = np.sum( self.lambduh * (x[0] - self.A * self.mu_0) ) / np.sum(self.lambduh ** 2) var_2 = np.sum( self.lambduh ** 2 / (self.sigma2_x + self.A**2 * np.diag(self.V_0)) ) ** -1 var = 1.0/(1.0/var_1 + 1.0/var_2) mean = (mean_1/var_1 + mean_2/var_2) * var eta[0] = np.random.randn(1)*np.sqrt(var) + mean # Handle t = 1:T-1 for t in range(1, self.T): mean_1 = self.eta_mean[t] var_1 = self.eta_var[t] mean_2 = np.sum( self.lambduh * (x[t] - self.A * x[t-1]) ) / np.sum(self.lambduh ** 2) var_2 = self.sigma2_x / np.sum(self.lambduh ** 2) var = 1.0/(1.0/var_1 + 1.0/var_2) mean = (mean_1/var_1 + mean_2/var_2) * var eta[t] = np.random.randn(1)*np.sqrt(var) + mean return eta def sample_y(self, x=None, filter_out=None): """ Sample new observations based on latent process conditioned on y Args: x (T by N ndarray): sample from latent state conditioned on y filter_out (list of dicts): output of filter_pass (optional) Only used if x is not supplied Returns: y (T by N ndarray): sample of observations conditioned on y """ y = np.zeros((self.T, self.N)) # Draw X is not supplied if x is None: x = self.sample_x(filter_out=filter_out) # Y is a noisy version of X y = x + _mult_diag_matrix(self.sigma2_y, np.random.normal(size=np.shape(x)), on_right = True) return y #UTILITY FUNCTION def _mult_diag_matrix(D, mtx, on_right=False): """ Multiply diagonal matrix D to mtx Args: D (N ndarray) - diagonal matrix mtx (ndarray) - matrix to multiply on_right (bool) - whether to return D * mtx (False) or mtx * D (True) """ if not on_right: return (D*mtx.T).T else: return D*mtx def _sample_multivariate_normal(mean, cov): """ Alternative to numpy.random.multivariate_normal """ if np.size(mean) == 1: x = np.random.normal(loc = mean, scale = np.sqrt(cov)) return x else: L = np.linalg.cholesky(cov) x = L.dot(np.random.normal(size = np.size(mean))) + mean return x def _gaussian_log_likelihood(x, mean, variance): """ Calculate the log-likelihood of multivariate Gaussian """ N = np.size(x) log_like = - N/2.0 * np.log(2*np.pi) if N == 1: log_like += - 0.5 * np.log(variance) log_like += - 0.5 * (x-mean)**2/variance elif N == 0: log_like = 0.0 else: log_like += - 0.5 * np.linalg.slogdet(variance)[1] log_like += - 0.5 * np.sum((x-mean)*np.linalg.solve(variance, x-mean)) return log_like def _gaussian_cond_log_likelihood(x, mean, variance, i): """ Calculate the conditional log-likelihood of multivariate Gaussian """ N = np.size(x) if i >= N: raise ValueError("Index i is too large for x") if N == 1: return _gaussian_log_likelihood(x, mean, variance) j = np.arange(N) != i V_ii = variance[i,i] V_ij = variance[i,j] V_jj = variance[np.ix_(j,j)] mu_i = mean[i] mu_j = mean[j] K_ij = np.linalg.solve(V_jj, V_ij.T).T cond_mean = mean[i] + K_ij.dot(x[j] - mu_j) cond_variance = V_ii - K_ij.dot(V_ij.T) cond_log_like = _gaussian_log_likelihood(x[i], cond_mean, cond_variance) return cond_log_like def _categorical_sample(probs): """ Draw a categorical random variable over {0,...,K-1} Args: probs (K ndarray) - probability of each value Returns: draw (int) - random outcome """ return int(np.sum(np.random.rand(1) > np.cumsum(probs))) #EOF
34.947368
94
0.550612
d58ffe0b469ae75cb515a71731bb472f9a1c0fcf
1,028
py
Python
my_awesome_project/users/admin.py
CoderSaty/my_awesome_project
0be26e70e1974d3d58d37f760634380a6a170692
[ "MIT" ]
null
null
null
my_awesome_project/users/admin.py
CoderSaty/my_awesome_project
0be26e70e1974d3d58d37f760634380a6a170692
[ "MIT" ]
16
2022-01-25T11:25:04.000Z
2022-03-31T11:26:21.000Z
my_awesome_project/users/admin.py
CoderSaty/my_awesome_project
0be26e70e1974d3d58d37f760634380a6a170692
[ "MIT" ]
null
null
null
from django.contrib import admin from django.contrib.auth import admin as auth_admin from django.contrib.auth import get_user_model from django.utils.translation import gettext_lazy as _ from my_awesome_project.users.forms import UserAdminChangeForm, UserAdminCreationForm User = get_user_model() @admin.register(User) class UserAdmin(auth_admin.UserAdmin): form = UserAdminChangeForm add_form = UserAdminCreationForm fieldsets = ( (None, {"fields": ("username", "password")}), (_("Personal info"), {"fields": ("name", "email")}), ( _("Permissions"), { "fields": ( "is_active", "is_staff", "is_superuser", "groups", "user_permissions", ), }, ), (_("Important dates"), {"fields": ("last_login", "date_joined")}), ) list_display = ["username", "name", "is_superuser"] search_fields = ["name"]
29.371429
85
0.569066
e2abbee5eade9f93305f197db136a68143e31b13
10,103
py
Python
train.py
ihsangkcl/RFM
a3a549add23863bf76f2a9629f73a4bb4d9682a1
[ "Apache-2.0" ]
null
null
null
train.py
ihsangkcl/RFM
a3a549add23863bf76f2a9629f73a4bb4d9682a1
[ "Apache-2.0" ]
null
null
null
train.py
ihsangkcl/RFM
a3a549add23863bf76f2a9629f73a4bb4d9682a1
[ "Apache-2.0" ]
1
2022-01-19T20:25:37.000Z
2022-01-19T20:25:37.000Z
import torch from utils.utils import data_prefetcher_two, cal_fam, setup_seed, calRes from pretrainedmodels import xception import utils.datasets_profiles as dp from torch.utils.data import DataLoader from torch.optim import Adam import numpy as np import argparse import random import time np.set_printoptions(precision=3) parser = argparse.ArgumentParser() parser.add_argument('--device', default="cuda:0", type=str) parser.add_argument('--modelname', default="xception", type=str) parser.add_argument('--distributed', default=False, action='store_true') parser.add_argument('--upper', default="xbase", type=str, help='the prefix used in save files') parser.add_argument('--eH', default=120, type=int) parser.add_argument('--eW', default=120, type=int) parser.add_argument('--batch_size', default=16, type=int) parser.add_argument('--max_batch', default=500000, type=int) parser.add_argument('--num_workers', default=4, type=int) parser.add_argument('--logbatch', default=3000, type=int) parser.add_argument('--savebatch', default=30000, type=int) parser.add_argument('--seed', default=5, type=int) parser.add_argument('--lr', default=0.0002, type=float, help='learning rate') parser.add_argument('--pin_memory', '-p', default=False, action='store_true') parser.add_argument('--resume_model', default=None) parser.add_argument('--resume_optim', default=None) parser.add_argument('--save_model', default=True, action='store_true') parser.add_argument('--save_optim', default=False, action='store_true') args = parser.parse_args() modelname = args.modelname upper = args.upper #args.resume_model = "./models/baseline.pth" #args.resume_model = "./models/xbase_xception_model_batch_12000" args.resume_model = "./models/dffd_xception_model-RFM_" #args.resume_model = "./models/dffd_xception_model-baseline_" def Eval(model, lossfunc, dtloader): model.eval() sumloss = 0. y_true_all = None y_pred_all = None with torch.no_grad(): for (j, batch) in enumerate(dtloader): x, y_true = batch y_pred = model.forward(x.cuda()) loss = lossfunc(y_pred, y_true.cuda()) sumloss += loss.detach()*len(x) y_pred = torch.nn.functional.softmax( y_pred.detach(), dim=1)[:, 1].flatten() if y_true_all is None: y_true_all = y_true y_pred_all = y_pred else: y_true_all = torch.cat((y_true_all, y_true)) y_pred_all = torch.cat((y_pred_all, y_pred)) return sumloss/len(y_true_all), y_true_all.detach(), y_pred_all.detach() def Log(log): print(log) f = open("./logs/"+upper+"_"+modelname+".log", "a") f.write(log+"\n") f.close() if __name__ == "__main__": Log("\nModel:%s BatchSize:%d lr:%f" % (modelname, args.batch_size, args.lr)) torch.cuda.set_device(args.device) setup_seed(args.seed) print("cudnn.version:%s enabled:%s benchmark:%s deterministic:%s" % (torch.backends.cudnn.version(), torch.backends.cudnn.enabled, torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic)) MAX_TPR_4 = 0. model = eval(modelname)(num_classes=2, pretrained=False).cuda() if args.distributed: model = torch.nn.DataParallel(model) optim = Adam(model.parameters(), lr=args.lr, weight_decay=0) if args.resume_model is not None: model.load_state_dict(torch.load(args.resume_model,map_location='cuda:0')) if args.resume_optim is not None: optim.load_state_dict(torch.load(args.resume_optim)) lossfunc = torch.nn.CrossEntropyLoss() dataset = dp.Stylespace() trainsetR = dataset.getTrainsetR() trainsetF = dataset.getTrainsetF() validset = dataset.getValidset() testsetR = dataset.getTestsetR() TestsetList, TestsetName = dataset.getsetlist(real=False, setType=2) setup_seed(args.seed) traindataloaderR = DataLoader( trainsetR, batch_size=int(args.batch_size/2), shuffle=True, pin_memory=args.pin_memory, num_workers=args.num_workers ) traindataloaderF = DataLoader( trainsetF, batch_size=int(args.batch_size/2), shuffle=True, pin_memory=args.pin_memory, num_workers=args.num_workers ) validdataloader = DataLoader( validset, batch_size=args.batch_size*2, pin_memory=args.pin_memory, num_workers=args.num_workers ) testdataloaderR = DataLoader( testsetR, batch_size=args.batch_size*2, pin_memory=args.pin_memory, num_workers=args.num_workers ) testdataloaderList = [] for tmptestset in TestsetList: testdataloaderList.append( DataLoader( tmptestset, batch_size=args.batch_size*2, pin_memory=args.pin_memory, num_workers=args.num_workers ) ) print("Loaded model") batchind = 0 e = 0 sumcnt = 0 sumloss = 0. while True: # prefetcher = data_prefetcher_two(traindataloaderR, traindataloaderF) # data, y_true = prefetcher.next() # while data is not None and batchind < args.max_batch: # stime = time.time() # sumcnt += len(data) # ''' ↓ the implementation of RFM ↓ ''' # model.eval() # mask = cal_fam(model, data) # imgmask = torch.ones_like(mask) # imgh = imgw = 224 # for i in range(len(mask)): # maxind = np.argsort(mask[i].cpu().numpy().flatten())[::-1] # pointcnt = 0 # for pointind in maxind: # pointx = pointind//imgw # pointy = pointind % imgw # if imgmask[i][0][pointx][pointy] == 1: # maskh = random.randint(1, args.eH) # maskw = random.randint(1, args.eW) # sh = random.randint(1, maskh) # sw = random.randint(1, maskw) # top = max(pointx-sh, 0) # bot = min(pointx+(maskh-sh), imgh) # lef = max(pointy-sw, 0) # rig = min(pointy+(maskw-sw), imgw) # imgmask[i][:, top:bot, lef:rig] = torch.zeros_like(imgmask[i][:, top:bot, lef:rig]) # pointcnt += 1 # if pointcnt >= 3: # break # data = imgmask * data + (1-imgmask) * (torch.rand_like(data)*2-1.) # ''' ↑ the implementation of RFM ↑ ''' # model.train() # y_pred = model.forward(data) # loss = lossfunc(y_pred, y_true) # flood = (loss-0.04).abs() + 0.04 # sumloss += loss.detach()*len(data) # data, y_true = prefetcher.next() # optim.zero_grad() # flood.backward() # optim.step() # batchind += 1 # print("Train %06d loss:%.5f avgloss:%.5f lr:%.6f time:%.4f" % (batchind, loss, sumloss/sumcnt, optim.param_groups[0]["lr"], time.time()-stime), end="\r") if batchind % args.logbatch == 0: print() # Log("epoch:%03d batch:%06d loss:%.5f avgloss:%.5f" % (e, batchind, loss, sumloss/sumcnt)) loss_valid, y_true_valid, y_pred_valid = Eval(model, lossfunc, validdataloader) ap, acc, AUC, TPR_2, TPR_3, TPR_4, fprs, tprs ,ths = calRes(y_true_valid, y_pred_valid) Log("AUC:%.6f TPR_2:%.6f TPR_3:%.6f TPR_4:%.6f %s" % (AUC, TPR_2, TPR_3, TPR_4, "validset")) loss_r, y_true_r, y_pred_r = Eval(model, lossfunc, testdataloaderR) sumAUC = sumTPR_2 = sumTPR_3 = sumTPR_4 = sumFPRS = sumTPRS = sumTHS = 0 for i, tmptestdataloader in enumerate(testdataloaderList): loss_f, y_true_f, y_pred_f = Eval(model, lossfunc, tmptestdataloader) ap, acc, AUC, TPR_2, TPR_3, TPR_4, fprs, tprs, ths = calRes(torch.cat((y_true_r, y_true_f)), torch.cat((y_pred_r, y_pred_f))) sumAUC += AUC sumTPR_2 += TPR_2 sumTPR_3 += TPR_3 sumTPR_4 += TPR_4 np.savetxt('./logs/fprs'+TestsetName[i]+'.out', fprs, delimiter=',') np.savetxt('./logs/tprs'+TestsetName[i]+'.out', tprs, delimiter=',') #np.savetxt('./logs/fprs'+TestsetName[i]+'.out', fprs, delimiter=',') #sumFPRS += fprs #sumTPRS += tprs #sumTHS += ths Log("AUC:%.6f TPR_2:%.6f TPR_3:%.6f TPR_4:%.6f %s" % (AUC, TPR_2, TPR_3, TPR_4, TestsetName[i])) if len(testdataloaderList) > 1: Log("AUC:%.6f TPR_2:%.6f TPR_3:%.6f TPR_4:%.6f Test" % (sumAUC/len(testdataloaderList), sumTPR_2/len(testdataloaderList), sumTPR_3/len(testdataloaderList), sumTPR_4/len(testdataloaderList))) TPR_4 = (sumTPR_4)/len(testdataloaderList) if batchind % args.savebatch == 0 or TPR_4 > MAX_TPR_4: MAX_TPR_4 = TPR_4 if args.save_model: torch.save(model.state_dict(), "./models/" + upper+"_"+modelname+"_model_batch_"+str(batchind)) if args.save_optim: torch.save(optim.state_dict(), "./models/" + upper+"_"+modelname+"_optim_batch_"+str(batchind)) print("-------------------------------------------") # e += 1
37.418519
204
0.558349
c7b9172b4bfc356c1d80589467ef26fa3deeaa8c
2,198
py
Python
backend/routes/organisation/route.py
amooabeebadesina/nuxt-netlify
edaf0c78ecc85e296452537ad82372c02239253e
[ "MIT" ]
null
null
null
backend/routes/organisation/route.py
amooabeebadesina/nuxt-netlify
edaf0c78ecc85e296452537ad82372c02239253e
[ "MIT" ]
null
null
null
backend/routes/organisation/route.py
amooabeebadesina/nuxt-netlify
edaf0c78ecc85e296452537ad82372c02239253e
[ "MIT" ]
null
null
null
from typing import List from fastapi import APIRouter, HTTPException, Response, status, Depends from odmantic import ObjectId from database.database_methods import Database from models.organisation.model import Job, JobResponse, JobDetails from utilities.validate_session import validate_org_session job_router = APIRouter() job_database = Database(Job) @job_router.get("/all", response_model=List[JobDetails]) async def get_jobs(): jobs = [job for job in await job_database.find()] return jobs @job_router.post('/create/', response_model=JobResponse, dependencies=[Depends(validate_org_session)]) async def create_job(job_data: Job): # There's no way to check if there's an identical job for now. await job_database.save(job_data) return { "action": "Job Created", "message": "Job Post created" } @job_router.get('/get/{job_id}/', response_model=JobDetails, dependencies=[Depends(validate_org_session)]) async def get_job(job_id: ObjectId): job = await job_database.find_one(Job.id == job_id) if not job: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Job does not exist" ) return job @job_router.put('/update/{job_id}/', response_model=JobResponse, dependencies=[Depends(validate_org_session)]) async def update_job(job_id: ObjectId, job_data: Job): job = await job_database.find_one(Job.id == job_id) if not job: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Job don't exist" ) await job_database.save(job_data) return { "action": "Job Update", "message": "Job details have been updated" } @job_router.delete('/delete/{job_id}/', response_model=JobResponse, dependencies=[Depends(validate_org_session)]) async def delete_job(job_id: ObjectId): job = await job_database.find_one(Job.id == job_id) if not job: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Job does not exist!" ) await job_database.delete(job) return { "action": "Job Delete", "message": "Job Post deleted" }
31.855072
113
0.695177
f6eb55081a75b770b658c51ee4dc5b294719dd7e
5,477
py
Python
pde/fields/tests/test_tensorial.py
noah-ziethen/py-pde
b88e86439290c31284a4ac665a8e9ff34d08b494
[ "MIT" ]
null
null
null
pde/fields/tests/test_tensorial.py
noah-ziethen/py-pde
b88e86439290c31284a4ac665a8e9ff34d08b494
[ "MIT" ]
null
null
null
pde/fields/tests/test_tensorial.py
noah-ziethen/py-pde
b88e86439290c31284a4ac665a8e9ff34d08b494
[ "MIT" ]
null
null
null
''' .. codeauthor:: David Zwicker <david.zwicker@ds.mpg.de> ''' import numpy as np import pytest from .test_generic import iter_grids from ..tensorial import Tensor2Field from ..base import FieldBase from ...grids import UnitGrid, CartesianGrid def test_tensors(): """ test some tensor calculations """ grid = CartesianGrid([[0.1, 0.3], [-2, 3]], [3, 4]) t1 = Tensor2Field(grid, np.full((2, 2) + grid.shape, 1)) t2 = Tensor2Field(grid, np.full((2, 2) + grid.shape, 2)) np.testing.assert_allclose(t2.average, [[2, 2], [2, 2]]) assert t1.magnitude == pytest.approx(2) t3 = t1 + t2 assert t3.grid == grid np.testing.assert_allclose(t3.data, 3) t1 += t2 np.testing.assert_allclose(t1.data, 3) field = Tensor2Field.random_uniform(grid) trace = field.trace() from ..scalar import ScalarField assert isinstance(trace, ScalarField) np.testing.assert_allclose(trace.data, field.data.trace()) t1 = Tensor2Field(grid) t1.data[0, 0, :] = 1 t1.data[0, 1, :] = 2 t1.data[1, 0, :] = 3 t1.data[1, 1, :] = 4 for method, value in [('min', 1), ('max', 4), ('norm', np.linalg.norm([[1, 2], [3, 4]])), ('squared_sum', 30), ('trace', 5), ('invariant1', 5), ('invariant2', -1)]: p1 = t1.to_scalar(method) assert p1.data.shape == grid.shape np.testing.assert_allclose(p1.data, value) t2 = FieldBase.from_state(t1.attributes, data=t1.data) assert t1 == t2 assert t1.grid is t2.grid attrs = Tensor2Field.unserialize_attributes(t1.attributes_serialized) t2 = FieldBase.from_state(attrs, data=t1.data) assert t1 == t2 assert t1.grid is not t2.grid def test_tensor_symmetrize(): """ test advanced tensor calculations """ grid = CartesianGrid([[0.1, 0.3], [-2, 3]], [2, 2]) t1 = Tensor2Field(grid) t1.data[0, 0, :] = 1 t1.data[0, 1, :] = 2 t1.data[1, 0, :] = 3 t1.data[1, 1, :] = 4 # traceless = False t2 = t1.copy() t1.symmetrize(make_traceless=False, inplace=True) tr = t1.trace() assert np.all(tr.data == 5) t1_trans = np.swapaxes(t1.data, 0, 1) np.testing.assert_allclose(t1.data, t1_trans.data) ts = t1.copy() ts.symmetrize(make_traceless=False, inplace=True) np.testing.assert_allclose(t1.data, ts.data) # traceless = True t2.symmetrize(make_traceless=True, inplace=True) tr = t2.trace() assert np.all(tr.data == 0) t2_trans = np.swapaxes(t2.data, 0, 1) np.testing.assert_allclose(t2.data, t2_trans.data) ts = t2.copy() ts.symmetrize(make_traceless=True, inplace=True) np.testing.assert_allclose(t2.data, ts.data) @pytest.mark.parametrize("grid", iter_grids()) def test_add_interpolated_tensor(grid): """ test the `add_interpolated` method """ f = Tensor2Field(grid) a = np.random.random(f.data_shape) c = tuple(grid.point_to_cell(grid.get_random_point())) c_data = (Ellipsis,) + c p = grid.cell_to_point(c, cartesian=False) f.add_interpolated(p, a) np.testing.assert_almost_equal(f.data[c_data], a / grid.cell_volumes[c]) f.add_interpolated(grid.get_random_point(cartesian=False), a) np.testing.assert_almost_equal(f.integral, 2 * a) f.data = 0 # reset add_interpolated = grid.make_add_interpolated_compiled() c = tuple(grid.point_to_cell(grid.get_random_point())) c_data = (Ellipsis,) + c p = grid.cell_to_point(c, cartesian=False) add_interpolated(f.data, p, a) np.testing.assert_almost_equal(f.data[c_data], a / grid.cell_volumes[c]) add_interpolated(f.data, grid.get_random_point(cartesian=False), a) np.testing.assert_almost_equal(f.integral, 2 * a) def test_tensor_invariants(): """ test the invariants """ # dim == 1 f = Tensor2Field.random_uniform(UnitGrid([3])) np.testing.assert_allclose(f.to_scalar('invariant1').data, f.to_scalar('invariant3').data) np.testing.assert_allclose(f.to_scalar('invariant2').data, 0) # dim == 2 f = Tensor2Field.random_uniform(UnitGrid([3, 3])) invs = [f.to_scalar(f'invariant{i}').data for i in range(1, 4)] np.testing.assert_allclose(2 * invs[1], invs[2]) a = np.random.uniform(0, 2 * np.pi) # pick random rotation angle rot = Tensor2Field(f.grid) rot.data[0, 0, ...] = np.cos(a) rot.data[0, 1, ...] = np.sin(a) rot.data[1, 0, ...] = -np.sin(a) rot.data[1, 1, ...] = np.cos(a) f_rot = rot @ f @ rot.transpose() # apply the transpose for i, inv in enumerate(invs, 1): np.testing.assert_allclose(inv, f_rot.to_scalar(f'invariant{i}').data, err_msg=f'Mismatch in invariant {i}') # dim == 3 from scipy.spatial.transform import Rotation f = Tensor2Field.random_uniform(UnitGrid([1, 1, 1])) rot = Tensor2Field(f.grid) rot_mat = Rotation.from_rotvec(np.random.randn(3)).as_matrix() rot.data = rot_mat.reshape(3, 3, 1, 1, 1) f_rot = rot @ f @ rot.transpose() # apply the transpose for i in range(1, 4): np.testing.assert_allclose(f.to_scalar(f'invariant{i}').data, f_rot.to_scalar(f'invariant{i}').data, err_msg=f'Mismatch in invariant {i}')
34.23125
78
0.607267
86dc7abdc6e9a6e22a581a2b0ad7208329c4e565
3,721
py
Python
src/util/args.py
xavihart/pixel-nerf
1009af6a66f1f1a513120d1737e21e6a93ec6c64
[ "BSD-2-Clause" ]
1
2021-12-14T15:42:12.000Z
2021-12-14T15:42:12.000Z
src/util/args.py
xavihart/pixel-nerf
1009af6a66f1f1a513120d1737e21e6a93ec6c64
[ "BSD-2-Clause" ]
null
null
null
src/util/args.py
xavihart/pixel-nerf
1009af6a66f1f1a513120d1737e21e6a93ec6c64
[ "BSD-2-Clause" ]
null
null
null
import sys import os import argparse from pyhocon import ConfigFactory def parse_args( callback=None, training=False, default_conf="conf/default_mv.conf", default_expname="example", default_data_format="dvr", default_num_epochs=100, default_lr=1e-4, default_gamma=1.00, default_datadir="data", default_ray_batch_size=50000, ): parser = argparse.ArgumentParser() parser.add_argument("--conf", "-c", type=str, default=None) parser.add_argument("--resume", "-r", action="store_true", help="continue training") parser.add_argument( "--gpu_id", type=str, default="0", help="GPU(s) to use, space delimited" ) parser.add_argument( "--name", "-n", type=str, default=default_expname, help="experiment name" ) parser.add_argument( "--dataset_format", "-F", type=str, default=None, help="Dataset format, multi_obj | dvr | dvr_gen | dvr_dtu | srn", ) parser.add_argument( "--exp_group_name", "-G", type=str, default=None, help="if we want to group some experiments together", ) parser.add_argument( "--logs_path", type=str, default="logs", help="logs output directory", ) parser.add_argument( "--checkpoints_path", type=str, default="checkpoints", help="checkpoints output directory", ) parser.add_argument( "--visual_path", type=str, default="visuals", help="visualization output directory", ) parser.add_argument( "--epochs", type=int, default=default_num_epochs, help="number of epochs to train for", ) parser.add_argument("--lr", type=float, default=default_lr, help="learning rate") parser.add_argument( "--gamma", type=float, default=default_gamma, help="learning rate decay factor" ) parser.add_argument( "--datadir", "-D", type=str, default=None, help="Dataset directory" ) parser.add_argument( "--ray_batch_size", "-R", type=int, default=default_ray_batch_size, help="Ray batch size" ) if callback is not None: parser = callback(parser) args = parser.parse_args() if args.exp_group_name is not None: args.logs_path = os.path.join(args.logs_path, args.exp_group_name) args.checkpoints_path = os.path.join(args.checkpoints_path, args.exp_group_name) args.visual_path = os.path.join(args.visual_path, args.exp_group_name) os.makedirs(os.path.join(args.checkpoints_path, args.name), exist_ok=True) os.makedirs(os.path.join(args.visual_path, args.name), exist_ok=True) PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..")) EXPCONF_PATH = os.path.join(PROJECT_ROOT, "expconf.conf") expconf = ConfigFactory.parse_file(EXPCONF_PATH) if args.conf is None: args.conf = expconf.get_string("config." + args.name, default_conf) if args.conf is None: args.conf = expconf.get_string("config." + args.name, default_conf) if args.datadir is None: args.datadir = expconf.get_string("datadir." + args.name, default_datadir) conf = ConfigFactory.parse_file(args.root + args.conf) if args.dataset_format is None: args.dataset_format = conf.get_string("data.format", default_data_format) args.gpu_id = list(map(int, args.gpu_id.split())) print("EXPERIMENT NAME:", args.name) if training: print("CONTINUE?", "yes" if args.resume else "no") print("* Config file:", args.conf) print("* Dataset format:", args.dataset_format) print("* Dataset location:", args.datadir) return args, conf
32.929204
97
0.649019
9006ce18bba659bad8fd7eb81726085dda59b4e4
174
py
Python
gettingstarted/wsgi.py
Daniil-7/Tatem-Avto-Saransk
b348322e10217cdaea873eabfd5c37dd413f54dc
[ "MIT" ]
null
null
null
gettingstarted/wsgi.py
Daniil-7/Tatem-Avto-Saransk
b348322e10217cdaea873eabfd5c37dd413f54dc
[ "MIT" ]
null
null
null
gettingstarted/wsgi.py
Daniil-7/Tatem-Avto-Saransk
b348322e10217cdaea873eabfd5c37dd413f54dc
[ "MIT" ]
null
null
null
import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "gettingstarted.settings") application = get_wsgi_application()
24.857143
74
0.83908
badecb0eed443c9ef7e550973cf1c5d3c49800ab
33,249
py
Python
mmdet/models/dense_heads/cascade_rpn_head.py
hokmund/mmdetection
7d49b7b535456929333d71a543159a00d7ae2faf
[ "Apache-2.0" ]
94
2021-03-07T01:34:35.000Z
2022-03-05T15:47:41.000Z
mmdet/models/dense_heads/cascade_rpn_head.py
hokmund/mmdetection
7d49b7b535456929333d71a543159a00d7ae2faf
[ "Apache-2.0" ]
13
2021-10-09T07:08:17.000Z
2022-01-06T05:53:45.000Z
mmdet/models/dense_heads/cascade_rpn_head.py
hokmund/mmdetection
7d49b7b535456929333d71a543159a00d7ae2faf
[ "Apache-2.0" ]
19
2021-06-08T14:04:07.000Z
2022-01-17T20:06:42.000Z
from __future__ import division import copy import warnings import torch import torch.nn as nn from mmcv import ConfigDict from mmcv.ops import DeformConv2d, batched_nms from mmcv.runner import BaseModule, ModuleList from mmdet.core import (RegionAssigner, build_assigner, build_sampler, images_to_levels, multi_apply) from ..builder import HEADS, build_head from .base_dense_head import BaseDenseHead from .rpn_head import RPNHead class AdaptiveConv(BaseModule): """AdaptiveConv used to adapt the sampling location with the anchors. Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the conv kernel. Default: 3 stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 1 dilation (int or tuple, optional): Spacing between kernel elements. Default: 3 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 bias (bool, optional): If set True, adds a learnable bias to the output. Default: False. type (str, optional): Type of adaptive conv, can be either 'offset' (arbitrary anchors) or 'dilation' (uniform anchor). Default: 'dilation'. init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=3, groups=1, bias=False, type='dilation', init_cfg=dict( type='Normal', std=0.01, override=dict(name='conv'))): super(AdaptiveConv, self).__init__(init_cfg) assert type in ['offset', 'dilation'] self.adapt_type = type assert kernel_size == 3, 'Adaptive conv only supports kernels 3' if self.adapt_type == 'offset': assert stride == 1 and padding == 1 and groups == 1, \ 'Adaptive conv offset mode only supports padding: {1}, ' \ f'stride: {1}, groups: {1}' self.conv = DeformConv2d( in_channels, out_channels, kernel_size, padding=padding, stride=stride, groups=groups, bias=bias) else: self.conv = nn.Conv2d( in_channels, out_channels, kernel_size, padding=dilation, dilation=dilation) def forward(self, x, offset): """Forward function.""" if self.adapt_type == 'offset': N, _, H, W = x.shape assert offset is not None assert H * W == offset.shape[1] # reshape [N, NA, 18] to (N, 18, H, W) offset = offset.permute(0, 2, 1).reshape(N, -1, H, W) offset = offset.contiguous() x = self.conv(x, offset) else: assert offset is None x = self.conv(x) return x @HEADS.register_module() class StageCascadeRPNHead(RPNHead): """Stage of CascadeRPNHead. Args: in_channels (int): Number of channels in the input feature map. anchor_generator (dict): anchor generator config. adapt_cfg (dict): adaptation config. bridged_feature (bool, optional): whether update rpn feature. Default: False. with_cls (bool, optional): wheather use classification branch. Default: True. sampling (bool, optional): wheather use sampling. Default: True. init_cfg (dict or list[dict], optional): Initialization config dict. Default: None """ def __init__(self, in_channels, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[1.0], strides=[4, 8, 16, 32, 64]), adapt_cfg=dict(type='dilation', dilation=3), bridged_feature=False, with_cls=True, sampling=True, init_cfg=None, **kwargs): self.with_cls = with_cls self.anchor_strides = anchor_generator['strides'] self.anchor_scales = anchor_generator['scales'] self.bridged_feature = bridged_feature self.adapt_cfg = adapt_cfg super(StageCascadeRPNHead, self).__init__( in_channels, anchor_generator=anchor_generator, init_cfg=init_cfg, **kwargs) # override sampling and sampler self.sampling = sampling if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) # use PseudoSampler when sampling is False if self.sampling and hasattr(self.train_cfg, 'sampler'): sampler_cfg = self.train_cfg.sampler else: sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) if init_cfg is None: self.init_cfg = dict( type='Normal', std=0.01, override=[dict(name='rpn_reg')]) if self.with_cls: self.init_cfg['override'].append(dict(name='rpn_cls')) def _init_layers(self): """Init layers of a CascadeRPN stage.""" self.rpn_conv = AdaptiveConv(self.in_channels, self.feat_channels, **self.adapt_cfg) if self.with_cls: self.rpn_cls = nn.Conv2d(self.feat_channels, self.num_anchors * self.cls_out_channels, 1) self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1) self.relu = nn.ReLU(inplace=True) def forward_single(self, x, offset): """Forward function of single scale.""" bridged_x = x x = self.relu(self.rpn_conv(x, offset)) if self.bridged_feature: bridged_x = x # update feature cls_score = self.rpn_cls(x) if self.with_cls else None bbox_pred = self.rpn_reg(x) return bridged_x, cls_score, bbox_pred def forward(self, feats, offset_list=None): """Forward function.""" if offset_list is None: offset_list = [None for _ in range(len(feats))] return multi_apply(self.forward_single, feats, offset_list) def _region_targets_single(self, anchors, valid_flags, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, featmap_sizes, label_channels=1): """Get anchor targets based on region for single level.""" assign_result = self.assigner.assign( anchors, valid_flags, gt_bboxes, img_meta, featmap_sizes, self.anchor_scales[0], self.anchor_strides, gt_bboxes_ignore=gt_bboxes_ignore, gt_labels=None, allowed_border=self.train_cfg.allowed_border) flat_anchors = torch.cat(anchors) sampling_result = self.sampler.sample(assign_result, flat_anchors, gt_bboxes) num_anchors = flat_anchors.shape[0] bbox_targets = torch.zeros_like(flat_anchors) bbox_weights = torch.zeros_like(flat_anchors) labels = flat_anchors.new_zeros(num_anchors, dtype=torch.long) label_weights = flat_anchors.new_zeros(num_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: if not self.reg_decoded_bbox: pos_bbox_targets = self.bbox_coder.encode( sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) else: pos_bbox_targets = sampling_result.pos_gt_bboxes bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 if gt_labels is None: labels[pos_inds] = 1 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if self.train_cfg.pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg.pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds) def region_targets(self, anchor_list, valid_flag_list, gt_bboxes_list, img_metas, featmap_sizes, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, unmap_outputs=True): """See :func:`StageCascadeRPNHead.get_targets`.""" num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( self._region_targets_single, anchor_list, valid_flag_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, featmap_sizes=featmap_sizes, label_channels=label_channels) # no valid anchors if any([labels is None for labels in all_labels]): return None # sampled anchors of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) # split targets to a list w.r.t. multiple levels labels_list = images_to_levels(all_labels, num_level_anchors) label_weights_list = images_to_levels(all_label_weights, num_level_anchors) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors) return (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) def get_targets(self, anchor_list, valid_flag_list, gt_bboxes, img_metas, featmap_sizes, gt_bboxes_ignore=None, label_channels=1): """Compute regression and classification targets for anchors. Args: anchor_list (list[list]): Multi level anchors of each image. valid_flag_list (list[list]): Multi level valid flags of each image. gt_bboxes (list[Tensor]): Ground truth bboxes of each image. img_metas (list[dict]): Meta info of each image. featmap_sizes (list[Tensor]): Feature mapsize each level gt_bboxes_ignore (list[Tensor]): Ignore bboxes of each images label_channels (int): Channel of label. Returns: cls_reg_targets (tuple) """ if isinstance(self.assigner, RegionAssigner): cls_reg_targets = self.region_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, featmap_sizes, gt_bboxes_ignore_list=gt_bboxes_ignore, label_channels=label_channels) else: cls_reg_targets = super(StageCascadeRPNHead, self).get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, label_channels=label_channels) return cls_reg_targets def anchor_offset(self, anchor_list, anchor_strides, featmap_sizes): """ Get offest for deformable conv based on anchor shape NOTE: currently support deformable kernel_size=3 and dilation=1 Args: anchor_list (list[list[tensor])): [NI, NLVL, NA, 4] list of multi-level anchors anchor_strides (list[int]): anchor stride of each level Returns: offset_list (list[tensor]): [NLVL, NA, 2, 18]: offset of DeformConv kernel. """ def _shape_offset(anchors, stride, ks=3, dilation=1): # currently support kernel_size=3 and dilation=1 assert ks == 3 and dilation == 1 pad = (ks - 1) // 2 idx = torch.arange(-pad, pad + 1, dtype=dtype, device=device) yy, xx = torch.meshgrid(idx, idx) # return order matters xx = xx.reshape(-1) yy = yy.reshape(-1) w = (anchors[:, 2] - anchors[:, 0]) / stride h = (anchors[:, 3] - anchors[:, 1]) / stride w = w / (ks - 1) - dilation h = h / (ks - 1) - dilation offset_x = w[:, None] * xx # (NA, ks**2) offset_y = h[:, None] * yy # (NA, ks**2) return offset_x, offset_y def _ctr_offset(anchors, stride, featmap_size): feat_h, feat_w = featmap_size assert len(anchors) == feat_h * feat_w x = (anchors[:, 0] + anchors[:, 2]) * 0.5 y = (anchors[:, 1] + anchors[:, 3]) * 0.5 # compute centers on feature map x = x / stride y = y / stride # compute predefine centers xx = torch.arange(0, feat_w, device=anchors.device) yy = torch.arange(0, feat_h, device=anchors.device) yy, xx = torch.meshgrid(yy, xx) xx = xx.reshape(-1).type_as(x) yy = yy.reshape(-1).type_as(y) offset_x = x - xx # (NA, ) offset_y = y - yy # (NA, ) return offset_x, offset_y num_imgs = len(anchor_list) num_lvls = len(anchor_list[0]) dtype = anchor_list[0][0].dtype device = anchor_list[0][0].device num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] offset_list = [] for i in range(num_imgs): mlvl_offset = [] for lvl in range(num_lvls): c_offset_x, c_offset_y = _ctr_offset(anchor_list[i][lvl], anchor_strides[lvl], featmap_sizes[lvl]) s_offset_x, s_offset_y = _shape_offset(anchor_list[i][lvl], anchor_strides[lvl]) # offset = ctr_offset + shape_offset offset_x = s_offset_x + c_offset_x[:, None] offset_y = s_offset_y + c_offset_y[:, None] # offset order (y0, x0, y1, x2, .., y8, x8, y9, x9) offset = torch.stack([offset_y, offset_x], dim=-1) offset = offset.reshape(offset.size(0), -1) # [NA, 2*ks**2] mlvl_offset.append(offset) offset_list.append(torch.cat(mlvl_offset)) # [totalNA, 2*ks**2] offset_list = images_to_levels(offset_list, num_level_anchors) return offset_list def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, bbox_targets, bbox_weights, num_total_samples): """Loss function on single scale.""" # classification loss if self.with_cls: labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) loss_cls = self.loss_cls( cls_score, labels, label_weights, avg_factor=num_total_samples) # regression loss bbox_targets = bbox_targets.reshape(-1, 4) bbox_weights = bbox_weights.reshape(-1, 4) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) if self.reg_decoded_bbox: # When the regression loss (e.g. `IouLoss`, `GIouLoss`) # is applied directly on the decoded bounding boxes, it # decodes the already encoded coordinates to absolute format. anchors = anchors.reshape(-1, 4) bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) loss_reg = self.loss_bbox( bbox_pred, bbox_targets, bbox_weights, avg_factor=num_total_samples) if self.with_cls: return loss_cls, loss_reg return None, loss_reg def loss(self, anchor_list, valid_flag_list, cls_scores, bbox_preds, gt_bboxes, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: anchor_list (list[list]): Multi level anchors of each image. cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Default: None Returns: dict[str, Tensor]: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds] label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, featmap_sizes, gt_bboxes_ignore=gt_bboxes_ignore, label_channels=label_channels) if cls_reg_targets is None: return None (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets if self.sampling: num_total_samples = num_total_pos + num_total_neg else: # 200 is hard-coded average factor, # which follows guided anchoring. num_total_samples = sum([label.numel() for label in labels_list]) / 200.0 # change per image, per level anchor_list to per_level, per_image mlvl_anchor_list = list(zip(*anchor_list)) # concat mlvl_anchor_list mlvl_anchor_list = [ torch.cat(anchors, dim=0) for anchors in mlvl_anchor_list ] losses = multi_apply( self.loss_single, cls_scores, bbox_preds, mlvl_anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_samples=num_total_samples) if self.with_cls: return dict(loss_rpn_cls=losses[0], loss_rpn_reg=losses[1]) return dict(loss_rpn_reg=losses[1]) def get_bboxes(self, anchor_list, cls_scores, bbox_preds, img_metas, cfg, rescale=False): """Get proposal predict.""" assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, anchor_list[img_id], img_shape, scale_factor, cfg, rescale) result_list.append(proposals) return result_list def refine_bboxes(self, anchor_list, bbox_preds, img_metas): """Refine bboxes through stages.""" num_levels = len(bbox_preds) new_anchor_list = [] for img_id in range(len(img_metas)): mlvl_anchors = [] for i in range(num_levels): bbox_pred = bbox_preds[i][img_id].detach() bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) img_shape = img_metas[img_id]['img_shape'] bboxes = self.bbox_coder.decode(anchor_list[img_id][i], bbox_pred, img_shape) mlvl_anchors.append(bboxes) new_anchor_list.append(mlvl_anchors) return new_anchor_list # TODO: temporary plan def _get_bboxes_single(self, cls_scores, bbox_preds, mlvl_anchors, img_shape, scale_factor, cfg, rescale=False): """Transform outputs for a single batch item into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (num_anchors * 4, H, W). mlvl_anchors (list[Tensor]): Box reference for each scale level with shape (num_total_anchors, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Returns: Tensor: Labeled boxes have the shape of (n,5), where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. """ cfg = self.test_cfg if cfg is None else cfg cfg = copy.deepcopy(cfg) # bboxes from different level should be independent during NMS, # level_ids are used as labels for batched NMS to separate them level_ids = [] mlvl_scores = [] mlvl_bbox_preds = [] mlvl_valid_anchors = [] for idx in range(len(cls_scores)): rpn_cls_score = cls_scores[idx] rpn_bbox_pred = bbox_preds[idx] assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] rpn_cls_score = rpn_cls_score.permute(1, 2, 0) if self.use_sigmoid_cls: rpn_cls_score = rpn_cls_score.reshape(-1) scores = rpn_cls_score.sigmoid() else: rpn_cls_score = rpn_cls_score.reshape(-1, 2) # We set FG labels to [0, num_class-1] and BG label to # num_class in RPN head since mmdet v2.5, which is unified to # be consistent with other head since mmdet v2.0. In mmdet v2.0 # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. scores = rpn_cls_score.softmax(dim=1)[:, 0] rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4) anchors = mlvl_anchors[idx] if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre: # sort is faster than topk # _, topk_inds = scores.topk(cfg.nms_pre) if torch.onnx.is_in_onnx_export(): # sort op will be converted to TopK in onnx # and k<=3480 in TensorRT _, topk_inds = scores.topk(cfg.nms_pre) scores = scores[topk_inds] else: ranked_scores, rank_inds = scores.sort(descending=True) topk_inds = rank_inds[:cfg.nms_pre] scores = ranked_scores[:cfg.nms_pre] rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] anchors = anchors[topk_inds, :] mlvl_scores.append(scores) mlvl_bbox_preds.append(rpn_bbox_pred) mlvl_valid_anchors.append(anchors) level_ids.append( scores.new_full((scores.size(0), ), idx, dtype=torch.long)) scores = torch.cat(mlvl_scores) anchors = torch.cat(mlvl_valid_anchors) rpn_bbox_pred = torch.cat(mlvl_bbox_preds) proposals = self.bbox_coder.decode( anchors, rpn_bbox_pred, max_shape=img_shape) ids = torch.cat(level_ids) # Skip nonzero op while exporting to ONNX if cfg.min_bbox_size >= 0 and (not torch.onnx.is_in_onnx_export()): w = proposals[:, 2] - proposals[:, 0] h = proposals[:, 3] - proposals[:, 1] valid_inds = torch.nonzero( (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size), as_tuple=False).squeeze() if valid_inds.sum().item() != len(proposals): proposals = proposals[valid_inds, :] scores = scores[valid_inds] ids = ids[valid_inds] # deprecate arguments warning if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg: warnings.warn( 'In rpn_proposal or test_cfg, ' 'nms_thr has been moved to a dict named nms as ' 'iou_threshold, max_num has been renamed as max_per_img, ' 'name of original arguments and the way to specify ' 'iou_threshold of NMS will be deprecated.') if 'nms' not in cfg: cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr)) if 'max_num' in cfg: if 'max_per_img' in cfg: assert cfg.max_num == cfg.max_per_img, f'You ' \ f'set max_num and ' \ f'max_per_img at the same time, but get {cfg.max_num} ' \ f'and {cfg.max_per_img} respectively' \ 'Please delete max_num which will be deprecated.' else: cfg.max_per_img = cfg.max_num if 'nms_thr' in cfg: assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set' \ f' iou_threshold in nms and ' \ f'nms_thr at the same time, but get' \ f' {cfg.nms.iou_threshold} and {cfg.nms_thr}' \ f' respectively. Please delete the nms_thr ' \ f'which will be deprecated.' dets, keep = batched_nms(proposals, scores, ids, cfg.nms) return dets[:cfg.max_per_img] @HEADS.register_module() class CascadeRPNHead(BaseDenseHead): """The CascadeRPNHead will predict more accurate region proposals, which is required for two-stage detectors (such as Fast/Faster R-CNN). CascadeRPN consists of a sequence of RPNStage to progressively improve the accuracy of the detected proposals. More details can be found in ``https://arxiv.org/abs/1909.06720``. Args: num_stages (int): number of CascadeRPN stages. stages (list[dict]): list of configs to build the stages. train_cfg (list[dict]): list of configs at training time each stage. test_cfg (dict): config at testing time. """ def __init__(self, num_stages, stages, train_cfg, test_cfg, init_cfg=None): super(CascadeRPNHead, self).__init__(init_cfg) assert num_stages == len(stages) self.num_stages = num_stages # Be careful! Pretrained weights cannot be loaded when use # nn.ModuleList self.stages = ModuleList() for i in range(len(stages)): train_cfg_i = train_cfg[i] if train_cfg is not None else None stages[i].update(train_cfg=train_cfg_i) stages[i].update(test_cfg=test_cfg) self.stages.append(build_head(stages[i])) self.train_cfg = train_cfg self.test_cfg = test_cfg def loss(self): """loss() is implemented in StageCascadeRPNHead.""" pass def get_bboxes(self): """get_bboxes() is implemented in StageCascadeRPNHead.""" pass def forward_train(self, x, img_metas, gt_bboxes, gt_labels=None, gt_bboxes_ignore=None, proposal_cfg=None): """Forward train function.""" assert gt_labels is None, 'RPN does not require gt_labels' featmap_sizes = [featmap.size()[-2:] for featmap in x] device = x[0].device anchor_list, valid_flag_list = self.stages[0].get_anchors( featmap_sizes, img_metas, device=device) losses = dict() for i in range(self.num_stages): stage = self.stages[i] if stage.adapt_cfg['type'] == 'offset': offset_list = stage.anchor_offset(anchor_list, stage.anchor_strides, featmap_sizes) else: offset_list = None x, cls_score, bbox_pred = stage(x, offset_list) rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, bbox_pred, gt_bboxes, img_metas) stage_loss = stage.loss(*rpn_loss_inputs) for name, value in stage_loss.items(): losses['s{}.{}'.format(i, name)] = value # refine boxes if i < self.num_stages - 1: anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, img_metas) if proposal_cfg is None: return losses else: proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score, bbox_pred, img_metas, self.test_cfg) return losses, proposal_list def simple_test_rpn(self, x, img_metas): """Simple forward test function.""" featmap_sizes = [featmap.size()[-2:] for featmap in x] device = x[0].device anchor_list, _ = self.stages[0].get_anchors( featmap_sizes, img_metas, device=device) for i in range(self.num_stages): stage = self.stages[i] if stage.adapt_cfg['type'] == 'offset': offset_list = stage.anchor_offset(anchor_list, stage.anchor_strides, featmap_sizes) else: offset_list = None x, cls_score, bbox_pred = stage(x, offset_list) if i < self.num_stages - 1: anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, img_metas) proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score, bbox_pred, img_metas, self.test_cfg) return proposal_list def aug_test_rpn(self, x, img_metas): """Augmented forward test function.""" raise NotImplementedError
42.301527
79
0.552618
d7b3828e372a6c55bc2d9e7aff06c0f7cd79fa9b
4,571
py
Python
vnpy/trader/app/ctaStrategy/strategy/strategyDoubleMa.py
black0144/vnpy
0d0ea30dad14a0150f7500ff9a62528030321426
[ "MIT" ]
18
2019-02-21T05:42:41.000Z
2022-03-31T10:17:51.000Z
vnpy/trader/app/ctaStrategy/strategy/strategyDoubleMa.py
black0144/vnpy
0d0ea30dad14a0150f7500ff9a62528030321426
[ "MIT" ]
1
2018-06-12T10:08:24.000Z
2018-06-12T10:08:24.000Z
vnpy/trader/app/ctaStrategy/strategy/strategyDoubleMa.py
black0144/vnpy
0d0ea30dad14a0150f7500ff9a62528030321426
[ "MIT" ]
5
2017-12-20T09:57:17.000Z
2021-08-01T19:47:14.000Z
# encoding: UTF-8 """ 这里的Demo是一个最简单的双均线策略实现 """ from __future__ import division from vnpy.trader.vtConstant import EMPTY_STRING, EMPTY_FLOAT from vnpy.trader.app.ctaStrategy.ctaTemplate import (CtaTemplate, BarGenerator, ArrayManager) ######################################################################## class DoubleMaStrategy(CtaTemplate): """双指数均线策略Demo""" className = 'DoubleMaStrategy' author = u'用Python的交易员' # 策略参数 fastWindow = 10 # 快速均线参数 slowWindow = 60 # 慢速均线参数 initDays = 10 # 初始化数据所用的天数 # 策略变量 fastMa0 = EMPTY_FLOAT # 当前最新的快速EMA fastMa1 = EMPTY_FLOAT # 上一根的快速EMA slowMa0 = EMPTY_FLOAT slowMa1 = EMPTY_FLOAT # 参数列表,保存了参数的名称 paramList = ['name', 'className', 'author', 'vtSymbol', 'fastWindow', 'slowWindow'] # 变量列表,保存了变量的名称 varList = ['inited', 'trading', 'pos', 'fastMa0', 'fastMa1', 'slowMa0', 'slowMa1'] # 同步列表,保存了需要保存到数据库的变量名称 syncList = ['pos'] #---------------------------------------------------------------------- def __init__(self, ctaEngine, setting): """Constructor""" super(DoubleMaStrategy, self).__init__(ctaEngine, setting) self.bg = BarGenerator(self.onBar) self.am = ArrayManager() # 注意策略类中的可变对象属性(通常是list和dict等),在策略初始化时需要重新创建, # 否则会出现多个策略实例之间数据共享的情况,有可能导致潜在的策略逻辑错误风险, # 策略类中的这些可变对象属性可以选择不写,全都放在__init__下面,写主要是为了阅读 # 策略时方便(更多是个编程习惯的选择) #---------------------------------------------------------------------- def onInit(self): """初始化策略(必须由用户继承实现)""" self.writeCtaLog(u'双EMA演示策略初始化') initData = self.loadBar(self.initDays) for bar in initData: self.onBar(bar) self.putEvent() #---------------------------------------------------------------------- def onStart(self): """启动策略(必须由用户继承实现)""" self.writeCtaLog(u'双EMA演示策略启动') self.putEvent() #---------------------------------------------------------------------- def onStop(self): """停止策略(必须由用户继承实现)""" self.writeCtaLog(u'双EMA演示策略停止') self.putEvent() #---------------------------------------------------------------------- def onTick(self, tick): """收到行情TICK推送(必须由用户继承实现)""" self.bg.updateTick(tick) #---------------------------------------------------------------------- def onBar(self, bar): """收到Bar推送(必须由用户继承实现)""" am = self.am am.updateBar(bar) if not am.inited: return # 计算快慢均线 fastMa = am.sma(self.fastWindow, array=True) self.fastMa0 = fastMa[-1] self.fastMa1 = fastMa[-2] slowMa = am.sma(self.slowWindow, array=True) self.slowMa0 = slowMa[-1] self.slowMa1 = slowMa[-2] # 判断买卖 crossOver = self.fastMa0>self.slowMa0 and self.fastMa1<self.slowMa1 # 金叉上穿 crossBelow = self.fastMa0<self.slowMa0 and self.fastMa1>self.slowMa1 # 死叉下穿 # 金叉和死叉的条件是互斥 # 所有的委托均以K线收盘价委托(这里有一个实盘中无法成交的风险,考虑添加对模拟市价单类型的支持) if crossOver: # 如果金叉时手头没有持仓,则直接做多 if self.pos == 0: self.buy(bar.close, 1) # 如果有空头持仓,则先平空,再做多 elif self.pos < 0: self.cover(bar.close, 1) self.buy(bar.close, 1) # 死叉和金叉相反 elif crossBelow: if self.pos == 0: self.short(bar.close, 1) elif self.pos > 0: self.sell(bar.close, 1) self.short(bar.close, 1) # 发出状态更新事件 self.putEvent() #---------------------------------------------------------------------- def onOrder(self, order): """收到委托变化推送(必须由用户继承实现)""" # 对于无需做细粒度委托控制的策略,可以忽略onOrder pass #---------------------------------------------------------------------- def onTrade(self, trade): """收到成交推送(必须由用户继承实现)""" # 对于无需做细粒度委托控制的策略,可以忽略onOrder pass #---------------------------------------------------------------------- def onStopOrder(self, so): """停止单推送""" pass
30.072368
86
0.429009
5b6255b2c504e6bb2c61221dc40eaff55dee5413
1,431
py
Python
templatebot/__main__.py
PascalRoose/tgbot-template
72c87679e1598629a2739c06d7e69030ddbfd4f6
[ "MIT" ]
null
null
null
templatebot/__main__.py
PascalRoose/tgbot-template
72c87679e1598629a2739c06d7e69030ddbfd4f6
[ "MIT" ]
null
null
null
templatebot/__main__.py
PascalRoose/tgbot-template
72c87679e1598629a2739c06d7e69030ddbfd4f6
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import os from telegram.ext import messagequeue as mq from telegram.utils import helpers from telegram.utils.request import Request from .utils.conf import settings, DIRS, MEMKEY from .utils.log import init_logger from .utils.tg import MQBot, get_updater, load_handlers, load_jobs mqueue = mq.MessageQueue(all_burst_limit=10, all_time_limit_ms=3000) request = Request(con_pool_size=8) bot = MQBot(token=settings.TOKEN, request=request, mqueue=mqueue) init_logger(os.path.join(DIRS.user_log_dir, f'{bot.get_me().username}.log')) log = logging.getLogger(__name__) persistance_path = os.path.join(DIRS.user_cache_dir, 'telegram.pkl') updater = get_updater(bot=bot, persistence_path=persistance_path) load_handlers(updater.dispatcher) load_jobs(updater.job_queue) if settings.ADMIN == 0: print(f'Please start the bot using the following link to become admin: ' f'{helpers.create_deep_linked_url(bot.get_me().username, MEMKEY, group=False)}') if settings.WEBHOOK.ENABLED: updater.start_webhook(listen=settings.WEBHOOK.IP, port=settings.WEBHOOK.PORT, url_path=settings.WEBHOOK.PATH, webhook_url=settings.WEBHOOK.URL) log.info(f'Started webhook listener on: {settings.WEBHOOK.URL}') else: updater.start_polling() log.info('Started polling...') updater.idle()
33.27907
90
0.732355
2186665e6b4529941795a1bac30cd465f9d7b74e
6,279
py
Python
examples/QKD/qkd_eqsn.py
pritamsinha2304/QuNetSim
65a7486d532816724b5c98cfdcc0910404bfe0e2
[ "MIT" ]
61
2020-02-15T00:59:20.000Z
2022-03-08T10:29:23.000Z
examples/QKD/qkd_eqsn.py
pritamsinha2304/QuNetSim
65a7486d532816724b5c98cfdcc0910404bfe0e2
[ "MIT" ]
50
2020-01-28T12:18:50.000Z
2021-12-16T21:38:19.000Z
examples/QKD/qkd_eqsn.py
pritamsinha2304/QuNetSim
65a7486d532816724b5c98cfdcc0910404bfe0e2
[ "MIT" ]
27
2020-01-21T12:59:28.000Z
2022-02-21T14:23:00.000Z
import numpy as np import random import time from qunetsim.components import Host from qunetsim.components import Network from qunetsim.objects import Qubit from qunetsim.objects import Logger from qunetsim.backends import EQSNBackend Logger.DISABLED = True wait_time = 10 # !! Warning: this Crypto algorithm is really bad! # !! Warning: Do not use it as a real Crypto Algorithm! # key has to be a string def encrypt(key, text): encrypted_text = "" for char in text: encrypted_text += chr(ord(key[0]) ^ ord(char)) return encrypted_text def decrypt(key, encrypted_text): return encrypt(key, encrypted_text) def get_next_classical_message(host, receive_from_id, buffer, sequence_nr): buffer = buffer + host.get_classical(receive_from_id, wait=-1) msg = "ACK" while msg == "ACK" or (msg.split(':')[0] != ("%d" % sequence_nr)): if len(buffer) == 0: buffer = buffer + host.get_classical(receive_from_id, wait=-1) ele = buffer.pop(0) msg = ele.content return msg def alice_qkd(alice, msg_buff, secret_key, receiver): sequence_nr = 0 # iterate over all bits in the secret key. for bit in secret_key: ack = False while not ack: print("Alice sent %d key bits" % (sequence_nr + 1)) # get a random base. 0 for Z base and 1 for X base. base = random.randint(0, 1) # create qubit q_bit = Qubit(alice) # Set qubit to the bit from the secret key. if bit == 1: q_bit.X() # Apply basis change to the bit if necessary. if base == 1: q_bit.H() # Send Qubit to Bob alice.send_qubit(receiver, q_bit, await_ack=True) # Get measured basis of Bob message = get_next_classical_message( alice, receiver, msg_buff, sequence_nr) # Compare to send basis, if same, answer with 0 and set ack True and go to next bit, # otherwise, send 1 and repeat. if message == ("%d:%d") % (sequence_nr, base): ack = True alice.send_classical(receiver, ("%d:0" % sequence_nr), await_ack=True) else: ack = False alice.send_classical(receiver, ("%d:1" % sequence_nr), await_ack=True) sequence_nr += 1 def eve_qkd(eve, msg_buff, key_size, sender): sequence_nr = 0 received_counter = 0 key_array = [] while received_counter < key_size: # decide for a measurement base measurement_base = random.randint(0, 1) # wait for the qubit q_bit = eve.get_data_qubit(sender, wait=wait_time) while q_bit is None: q_bit = eve.get_data_qubit(sender, wait=wait_time) # measure qubit in right measurement basis if measurement_base == 1: q_bit.H() bit = q_bit.measure() # Send Alice the base in which Bob has measured eve.send_classical(sender, "%d:%d" % (sequence_nr, measurement_base), await_ack=True) # get the return message from Alice, to know if the bases have matched msg = get_next_classical_message(eve, sender, msg_buff, sequence_nr) # Check if the bases have matched if msg == ("%d:0" % sequence_nr): received_counter += 1 print("Eve received %d key bits." % received_counter) key_array.append(bit) sequence_nr += 1 return key_array # helper function, used to make the key to a string def key_array_to_key_string(key_array): key_string_binary = ''.join([str(x) for x in key_array]) return ''.join(chr(int(''.join(x), 2)) for x in zip(*[iter(key_string_binary)] * 8)) def alice_send_message(alice, secret_key, receiver): msg_to_eve = "Hi Eve, how are you?" secret_key_string = key_array_to_key_string(secret_key) encrypted_msg_to_eve = encrypt(secret_key_string, msg_to_eve) print("Alice sends encrypted message") alice.send_classical( receiver, "-1:" + encrypted_msg_to_eve, await_ack=True) def eve_receive_message(eve, msg_buff, eve_key, sender): encrypted_msg_from_alice = get_next_classical_message( eve, sender, msg_buff, -1) encrypted_msg_from_alice = encrypted_msg_from_alice.split(':')[1] secret_key_string = key_array_to_key_string(eve_key) decrypted_msg_from_alice = decrypt( secret_key_string, encrypted_msg_from_alice) print("Eve received decoded message: %s" % decrypted_msg_from_alice) def main(): # Initialize a network network = Network.get_instance() backend = EQSNBackend() # Define the host IDs in the network nodes = ['Alice', 'Bob'] network.delay = 0.0 # Start the network with the defined hosts network.start(nodes, backend) # Initialize the host Alice host_alice = Host('Alice', backend) # Add a one-way connection (classical and quantum) to Bob host_alice.add_connection('Bob') host_alice.delay = 0.0 # Start listening host_alice.start() host_bob = Host('Bob', backend) # Bob adds his own one-way connection to Alice host_bob.add_connection('Alice') host_bob.delay = 0.0 host_bob.start() # Add the hosts to the network # The network is: Alice <--> Bob network.add_host(host_alice) network.add_host(host_bob) # Generate random key key_size = 20 # the size of the key in bit secret_key = np.random.randint(2, size=key_size) # Concatentate functions def alice_func(alice): msg_buff = [] alice_qkd(alice, msg_buff, secret_key, host_bob.host_id) alice_send_message(alice, secret_key, host_bob.host_id) def bob_func(eve): msg_buff = [] eve_key = eve_qkd(eve, msg_buff, key_size, host_alice.host_id) eve_receive_message(eve, msg_buff, eve_key, host_alice.host_id) # Run Bob and Alice t1 = host_alice.run_protocol(alice_func, ()) t2 = host_bob.run_protocol(bob_func, ()) t1.join() t2.join() network.stop(True) if __name__ == '__main__': main()
30.480583
96
0.629877
f7caf3e9b395602c33812d4dab7e428005a17d7d
85
py
Python
backend/metric/ulca-metric-api/src/services/__init__.py
agupta54/ulca
c1f570ac254ce2ac73f40c49716458f4f7cbaee2
[ "MIT" ]
3
2022-01-12T06:51:51.000Z
2022-02-23T18:54:33.000Z
backend/metric/ulca-metric-api/src/services/__init__.py
agupta54/ulca
c1f570ac254ce2ac73f40c49716458f4f7cbaee2
[ "MIT" ]
6
2021-08-31T19:21:26.000Z
2022-01-03T05:53:42.000Z
backend/metric/ulca-metric-api/src/services/__init__.py
agupta54/ulca
c1f570ac254ce2ac73f40c49716458f4f7cbaee2
[ "MIT" ]
8
2021-08-12T08:07:49.000Z
2022-01-25T04:40:51.000Z
from .metriccronjob import CronProcessor from .mismatchcron import AlertCronProcessor
42.5
44
0.894118
5acecf2be0f1820422b92530928b5c26dfadcb89
3,271
py
Python
backend/migrations/versions/6680bd9737cf_.py
kzagorulko/flower-system
7203862e6366ac08c7be939ef443aa274c04ec63
[ "MIT" ]
3
2020-10-26T08:54:43.000Z
2021-05-29T09:55:34.000Z
backend/migrations/versions/6680bd9737cf_.py
kzagorulko/flower-system
7203862e6366ac08c7be939ef443aa274c04ec63
[ "MIT" ]
28
2020-10-25T10:20:54.000Z
2021-02-04T10:51:57.000Z
backend/migrations/versions/6680bd9737cf_.py
kzagorulko/flower-system
7203862e6366ac08c7be939ef443aa274c04ec63
[ "MIT" ]
1
2020-11-12T10:07:07.000Z
2020-11-12T10:07:07.000Z
"""added roles, more fields for users Revision ID: 6680bd9737cf Revises: 498f307695d6 Create Date: 2020-11-01 15:01:10.385506 """ from alembic import op import sqlalchemy as sa from uuid import uuid4 # revision identifiers, used by Alembic. revision = '6680bd9737cf' down_revision = '498f307695d6' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### t_roles = op.create_table( 'roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=50), nullable=False), sa.Column('display_name', sa.String(length=64), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('display_name'), sa.UniqueConstraint('name') ) op.add_column( 'users', sa.Column('deactivated', sa.Boolean(), nullable=True) ) op.add_column( 'users', sa.Column('display_name', sa.String(length=50), nullable=True) ) op.add_column( 'users', sa.Column('email', sa.String(length=50), nullable=True) ) op.add_column( 'users', sa.Column('path_to_image', sa.String(length=120), nullable=True) ) op.add_column( 'users', sa.Column('role_id', sa.Integer(), nullable=True) ) op.add_column('users', sa.Column('session', sa.String(length=36))) t_users = sa.Table( 'users', sa.MetaData(), sa.Column('id', sa.Integer), sa.Column('username', sa.String), sa.Column('deactivated', sa.Boolean), sa.Column('display_name', sa.String), sa.Column('email', sa.String), sa.Column('session', sa.String), sa.Column('role_id', sa.Integer) ) connection = op.get_bind() connection.execute( sa.insert(t_roles).values( {'name': 'admin', 'display_name': 'Администрация'} ) ) users = connection.execute( sa.select([t_users.c.id, t_users.c.username]) ).fetchall() for user in users: connection.execute( sa.update(t_users).where( t_users.c.id == user[0] ).values( email=f'{user[1]}@example.org', deactivated=False, display_name='Иван', session=str(uuid4()), role_id=1 ) ) op.alter_column('users', 'deactivated', nullable=False) op.alter_column('users', 'display_name', nullable=False) op.alter_column('users', 'email', nullable=False) op.create_unique_constraint('uq_email', 'users', ['email']) op.create_foreign_key( 'fk_users_roles', 'users', 'roles', ['role_id'], ['id'] ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint('fk_users_roles', 'users', type_='foreignkey') op.drop_constraint('uq_email', 'users', type_='unique') op.drop_column('users', 'role_id') op.drop_column('users', 'path_to_image') op.drop_column('users', 'email') op.drop_column('users', 'display_name') op.drop_column('users', 'deactivated') op.drop_column('users', 'session') op.drop_table('roles') # ### end Alembic commands ###
29.736364
72
0.602874
663a6bd89833d89ea6568a4458d8a2e14abd8641
4,037
py
Python
pearll/models/encoders.py
LondonNode/Anvil
bc50fd7b16af36051157814e2548a98e787b03de
[ "MIT" ]
13
2022-01-17T14:43:05.000Z
2022-03-10T04:05:36.000Z
pearll/models/encoders.py
LondonNode/Anvil
bc50fd7b16af36051157814e2548a98e787b03de
[ "MIT" ]
3
2022-02-24T18:29:12.000Z
2022-03-22T11:09:07.000Z
pearll/models/encoders.py
LondonNode/Anvil
bc50fd7b16af36051157814e2548a98e787b03de
[ "MIT" ]
null
null
null
from typing import Dict, List, Optional, Type import numpy as np import torch as T from gym import spaces from pearll.common.type_aliases import Tensor from pearll.common.utils import to_numpy from pearll.models.utils import preprocess_inputs class IdentityEncoder(T.nn.Module): """This encoder passes the input through unchanged.""" def __init__(self): super().__init__() def forward( self, observations: Tensor, actions: Optional[Tensor] = None ) -> T.Tensor: # Some algorithms use both the observations and actions as input (e.g. DDPG for conitnuous Q function) input = preprocess_inputs(observations, actions) return input class FlattenEncoder(T.nn.Module): """This encoder flattens the input.""" def __init__(self): super().__init__() def forward( self, observations: Tensor, actions: Optional[Tensor] = None ) -> T.Tensor: # Some algorithms use both the observations and actions as input (e.g. DDPG for conitnuous Q function) # Make sure observations is a torch tensor, get error if numpy for some reason?? input = preprocess_inputs(observations, actions) return T.flatten(input) class MLPEncoder(T.nn.Module): """This is a single layer MLP encoder""" def __init__(self, input_size, output_size): super().__init__() self.model = T.nn.Linear(input_size, output_size) def forward( self, observations: Tensor, actions: Optional[Tensor] = None ) -> T.Tensor: input = preprocess_inputs(observations, actions) return self.model(input) class CNNEncoder(T.nn.Module): """ CNN from DQN nature paper: Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533. :param observation_space: :param output_size: number neurons in the last layer. :param activation_fn: the activation function after each layer """ def __init__( self, observation_space: spaces.Box, output_size: int = 512, activation_fn: Type[T.nn.Module] = T.nn.ReLU, ): super().__init__() # We assume CxHxW images (channels first) # Re-ordering will be done by pre-preprocessing or wrapper n_input_channels = observation_space.shape[0] self.cnn = T.nn.Sequential( T.nn.Conv2d(n_input_channels, 32, kernel_size=8, stride=4, padding=0), activation_fn(), T.nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0), activation_fn(), T.nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0), activation_fn(), T.nn.Flatten(), ) # Compute shape by doing one forward pass with T.no_grad(): n_flatten = self.cnn( T.as_tensor(observation_space.sample()[None]).float() ).shape[1] self.linear = T.nn.Sequential(T.nn.Linear(n_flatten, output_size), T.nn.ReLU()) def forward(self, observations: Tensor) -> T.Tensor: return self.linear(self.cnn(observations)) class DictEncoder(T.nn.Module): """ Handles dictionary observations, e.g. from GoalEnv :param labels: dictionary labels to extract for model :param encoder: encoder module to run after extracting array from dictionary """ def __init__( self, labels: List[str] = ["observation", "desired_goal"], encoder: T.nn.Module = IdentityEncoder(), ) -> None: super().__init__() self.labels = labels self.encoder = encoder def forward( self, observations: Dict[str, Tensor], actions: Optional[Tensor] = None ) -> T.Tensor: obs = [observations[label] for label in self.labels] obs = to_numpy(*obs) if len(self.labels) > 1: shape_length = len(observations[self.labels[0]].shape) obs = np.concatenate(obs, axis=shape_length - 1) return self.encoder(obs, actions)
32.296
110
0.640822
eec19b0a270d0368a67155f95545f6cb4a27c586
232
py
Python
deepCoral/config.py
Fassial/Air-Writing-with-TL
9b9047c5bd5aef3a869e2d5166be1c0cf0c5ccf0
[ "MIT" ]
1
2021-06-16T16:45:01.000Z
2021-06-16T16:45:01.000Z
deepCoral/config.py
Fassial/Air-Writing-with-TL
9b9047c5bd5aef3a869e2d5166be1c0cf0c5ccf0
[ "MIT" ]
null
null
null
deepCoral/config.py
Fassial/Air-Writing-with-TL
9b9047c5bd5aef3a869e2d5166be1c0cf0c5ccf0
[ "MIT" ]
1
2020-04-21T01:31:26.000Z
2020-04-21T01:31:26.000Z
CFG = { "datapath": "../dataset", "kwargs": {"n_workers": 4}, "batch_size": 20, "n_epoches": 20, "lr": 1e-3, "momentum": .9, "log_interval": 10, "l2_decay": 0, "lambda": 10, "backbone": "naive_cnnblstm", "n_class": 31 }
15.466667
30
0.573276
ec32317fc34abfe3179a308b772cda01e15661a5
1,421
py
Python
chapter_5/py_5_11_merge_sort.py
kfrime/algo-in-python
e017dd20385fd9ea2086a72698fbfcb7d706dd86
[ "MIT" ]
null
null
null
chapter_5/py_5_11_merge_sort.py
kfrime/algo-in-python
e017dd20385fd9ea2086a72698fbfcb7d706dd86
[ "MIT" ]
null
null
null
chapter_5/py_5_11_merge_sort.py
kfrime/algo-in-python
e017dd20385fd9ea2086a72698fbfcb7d706dd86
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ 5.11 归并排序 """ from __future__ import print_function def merge_sort(alist): """ 归并排序是一种递归算法,不断将列表拆分为一半。 如果列表为空或有一个项,则按定义(基本情况)进行排序。 如果列表有多个项,我们分割列表,并递归调用两个半部分的合并排序。 一旦对这两半排序完成,就执行合并操作。 合并是获取两个较小的排序列表并将它们组合成单个排序的新列表的过程。 O(nlog^n) """ print("Splitting ", alist) if len(alist) > 1: mid = len(alist) // 2 left_half = alist[:mid] right_half = alist[mid:] merge_sort(left_half) merge_sort(right_half) i = j = k = 0 # print("left ", left_half) # print("right ", right_half # 合并,通过重复从排序列表中取最小的项目,将项目逐个放回切分后的原始列表(alist)。 while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]: alist[k] = left_half[i] i = i + 1 else: alist[k] = right_half[j] j = j + 1 k = k + 1 # 合并左边的剩余部分 while i < len(left_half): alist[k] = left_half[i] i = i + 1 k = k + 1 # 合并右边的剩余部分 while j < len(right_half): alist[k] = right_half[j] j = j + 1 k = k + 1 print("Merging ", alist) def test_merge_sort(): alist = [54, 26, 93, 17, 77, 31, 44, 55, 20] print(alist) merge_sort(alist) print(alist) if __name__ == "__main__": test_merge_sort()
20.3
57
0.508797
bcfb66caf5352bd01b439eb7f7f07d216623919a
6,533
py
Python
src/finmag/util/versions.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
10
2018-03-24T07:43:17.000Z
2022-03-26T10:42:27.000Z
src/finmag/util/versions.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
21
2018-03-26T15:08:53.000Z
2021-07-10T16:11:14.000Z
src/finmag/util/versions.py
davidcortesortuno/finmag
9ac0268d2c0e45faf1284cee52a73525aa589e2b
[ "BSL-1.0" ]
7
2018-04-09T11:50:48.000Z
2021-06-10T09:23:25.000Z
import os import re import sh import sys import logging import finmag logger = logging.getLogger('finmag') def get_linux_issue(): try: f = open("/etc/issue") except IOError: logger.error("Can't read /etc/issue -- this is odd?") raise RuntimeError("Cannot establish linux version") issue = f.readline() # only return first line issue = issue.replace('\\l', '') issue = issue.replace('\\n', '') #logger.debug("Linux OS = '%s'" % issue) return issue.strip() # get rid of white space left and right def get_version_python(): version = sys.version.split(' ')[0] assert version.count('.') == 2, "Unknown version format: %s" % version return version def get_module_version(name): try: m = __import__(name) return m.__version__ except ImportError: return None def get_version_ipython(): try: return get_module_version('IPython') except ValueError: # This is needed due to a strange error seen in some test runs: # # /usr/lib/python2.7/dist-packages/IPython/utils/io.py:32: in __init__ # > raise ValueError("fallback required, but not specified") # E ValueError: fallback required, but not specified # # It seems that this can happen because standard output is caught by # py.test, but providing the -s switch didn't help either. return None def get_version_dolfin(): return get_module_version('dolfin') def get_version_numpy(): return get_module_version('numpy') def get_version_matplotlib(): # this will only do a look-up of matplotlib's version if it is already # imported. If matplotlib hasn't been imported yet, it won't do so either. if "matplotlib" not in sys.modules: return "lazily loaded" return get_module_version('matplotlib') def get_version_scipy(): return get_module_version('scipy') def get_version_boostpython(): """ Determine and return the boost-python version. We check the name of the symlink of libboost_python. If libboost_python.so is installed, returns a string with the version number, otherwise returns None. Raises NotImplementedError if the version cannot be determined. This may mean the file is not available, or not available in the standard place (/usr/lib). """ # get version number as string maj, min_, rev = get_version_python().split('.') # libfile = /usr/lib/libboost_python-py27.so' or similar libfile = '/usr/lib/libboost_python-py%s%s.so' % (maj, min_) try: filename = os.readlink(libfile) except OSError: raise NotImplementedError( "Cannot locate %s. Cannot determine boost-python version." % libfile) # expect filename to be something like 'libboost_python-py27.so.1.49.0' version = filename.split(".so.")[1] return version def get_debian_package_version(pkg_name): """ Determine and return the version of the given Debian package (as a string). This only works on Debian-derived systems (such as Debian or Ubuntu) as it internally calls 'dpkg -s' to determine the version number. If the package is installed, returns a string with the version number, otherwise returns None. Warns if the version cannot be determined due to an unsupported system. """ import subprocess import re version = None try: with open(os.devnull, 'w') as devnull: output = subprocess.check_output( ['dpkg', '-s', pkg_name], stderr=devnull) except subprocess.CalledProcessError as e: logger.warning( "Could not determine version of {} using dpkg.".format(pkg_name)) if e.returncode == 1: logger.warning( "The package {} is probably not installed.".format(pkg_name)) elif e.returncode == 127: logger.warning( "This does not seem to be a debian-derived Linux distribution.") else: logger.warning("Can't determine cause of error.") return None lines = output.split('\n') version_str = filter(lambda s: s.startswith('Version'), lines)[0] version = re.sub('Version: ', '', version_str) return version def get_version_sundials(): return finmag.native.sundials.get_sundials_version() def get_version_paraview(): try: # XXX TODO: There should be a more cross-platform way of # determining the Paraview version, but the only method I could # find is in the thread [1], and it doesn't work any more for # recent versions of Paraview. It's quite annoying that something # as simple as "import paraview; paraview.__version__" doesn't # work... # # [1] http://blog.gmane.org/gmane.comp.science.paraview.user/month=20090801/page=34 version = get_debian_package_version('paraview') except: try: sh.pvpython('--version') except sh.ErrorReturnCode_1 as ex: # This is fine. (Oddly, pvpython returns # with exit code 1 if successful...) m = re.match('paraview version (.*)', ex.stderr.strip()) version = m.group(1) return version def running_binary_distribution(): """Return True if this is the cython-based binary distribution or False if it is source distribtion """ thefile = __file__ if thefile.endswith('.py') or thefile.endswith('.pyc'): #logger.debug("Running source code version") return False elif thefile.endswith('.so'): #logger.debug("Binary finmag distribution") return True else: logger.error("thefile=%s" % thefile) raise RuntimeError("Checking running_binary_distribution failed!") def loose_compare_ubuntu_version(v1, v2): if not v1.startswith('Ubuntu') or not v2.startswith('Ubuntu'): return False from distutils.version import LooseVersion t1 = LooseVersion(v1).version t2 = LooseVersion(v2).version if t1[3] == t2[3] and t1[4] == t2[4]: return True return False if __name__ == "__main__": linux_issue = get_linux_issue() print("__file__ = %s" % __file__) print("Linux issue: %s" % linux_issue) print("Binary distribution: %s" % running_binary_distribution()) print("Sundials version: %s" % get_version_sundials()) print loose_compare_ubuntu_version('Ubuntu 12.04.1 LTS', "Ubuntu 12.04.2 LTS")
31.109524
91
0.651462
2042b01c1eb81f3808555cd623e984970ef80393
1,717
py
Python
model/user.py
maximatorrus/automated_testing_python
259f0c9a94bbe81b6a8d2076aeed66054c73ea45
[ "Apache-2.0" ]
null
null
null
model/user.py
maximatorrus/automated_testing_python
259f0c9a94bbe81b6a8d2076aeed66054c73ea45
[ "Apache-2.0" ]
null
null
null
model/user.py
maximatorrus/automated_testing_python
259f0c9a94bbe81b6a8d2076aeed66054c73ea45
[ "Apache-2.0" ]
null
null
null
from sys import maxsize class User: def __init__(self, firstname=None, middlename=None, lastname=None, nickname=None, title=None, company=None, address=None, telephone=None, mobile=None, work=None, fax=None, email_=None, email2=None, email3=None, homepage=None, byear=None, ayear=None, bday=None, bmonth=None, aday=None, amonth=None, id=None, secondaryphone=None, all_phones_from_home_page=None, all_emails_from_home_page=None): self.firstname = firstname self.middlename = middlename self.lastname = lastname self.nickname = nickname self.title = title self.company = company self.address = address self.telephone = telephone self.mobile = mobile self.work = work self.fax = fax self.email_ = email_ self.email2 = email2 self.email3 = email3 self.homepage = homepage self.byear = byear self.ayear = ayear self.bday = bday self.bmonth = bmonth self.aday = aday self.amonth = amonth self.id = id self.secondaryphone = secondaryphone self.all_phones_from_home_page = all_phones_from_home_page self.all_emails_from_home_page = all_emails_from_home_page def __repr__(self): return "%s:%s:%s" % (self.id, self.firstname, self.lastname) def __eq__(self, other): return (self.id is None or other.id is None or self.id == other.id) and self.firstname == other.firstname\ and self.lastname == other.lastname def id_or_max(self): if self.id: return int(self.id) else: return maxsize
35.770833
119
0.624927
e301612a559918174491b08498c275178d00627b
6,832
py
Python
bert_onnx.py
MatRazor/ONNXRuntime_tutorial_collection
9fe46311896391f769a51cc4d07814e6bfafd8ee
[ "MIT" ]
2
2021-03-12T16:29:03.000Z
2021-07-24T17:07:14.000Z
bert_onnx.py
MatRazor/ONNXRuntime_tutorial_collection
9fe46311896391f769a51cc4d07814e6bfafd8ee
[ "MIT" ]
null
null
null
bert_onnx.py
MatRazor/ONNXRuntime_tutorial_collection
9fe46311896391f769a51cc4d07814e6bfafd8ee
[ "MIT" ]
1
2021-11-11T18:36:25.000Z
2021-11-11T18:36:25.000Z
# %% ## Most part of the code taken from https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/notebooks/PyTorch_Bert-Squad_OnnxRuntime_CPU.ipynb import os import requests from transformers import BertConfig, BertForQuestionAnswering, BertTokenizer from transformers.data.processors.squad import SquadV1Processor from transformers import squad_convert_examples_to_features import torch import torch.nn as nn import onnxruntime import matplotlib.pyplot as plt from timeit import Timer import numpy as np def load_bert(): # The following code is adapted from HuggingFace transformers # https://github.com/huggingface/transformers/blob/master/examples/run_squad.py # Load pretrained model and tokenizer config_class, model_class, tokenizer_class = (BertConfig, BertForQuestionAnswering, BertTokenizer) config = config_class.from_pretrained(model_name_or_path, cache_dir = cache_dir) tokenizer = tokenizer_class.from_pretrained(model_name_or_path, do_lower_case = True, cache_dir = cache_dir) model = model_class.from_pretrained(model_name_or_path, from_tf = False, config = config, cache_dir = cache_dir) # load some examples processor = SquadV1Processor() examples = processor.get_dev_examples(None, filename=predict_file) # Convert examples to features features, dataset = squad_convert_examples_to_features( examples=examples[:total_samples], # convert just enough examples for this notebook tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=False, return_dataset='pt' ) return model, features, dataset # %% def speed(inst, number=10, repeat=20): timer = Timer(inst, globals=globals()) raw = np.array(timer.repeat(repeat, number=number)) ave = raw.sum() / len(raw) / number mi, ma = raw.min() / number, raw.max() / number print("Average %1.3g min=%1.3g max=%1.3g" % (ave, mi, ma)) return ave # %% if __name__ == '__main__': # Create a cache directory to store pretrained model. cache_dir = os.path.join(".", "cache_models") if not os.path.exists(cache_dir): os.makedirs(cache_dir) # Download Stanford Question Answering Dataset (SQuAD) dataset (BERT trained on it) predict_file_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json" file_name = "dev-v1.1.json" predict_file = os.path.join(cache_dir, file_name) if not os.path.exists(predict_file): print("Start downloading predict file.") r = requests.get(predict_file_url) with open(predict_file, 'wb') as f: f.write(r.content) print("Predict file downloaded.") # %% # Bert Base Code for the Demo model_name_or_path = "bert-base-cased" max_seq_length = 128 doc_stride = 128 max_query_length = 64 # Total samples to inference. It shall be large enough to get stable latency measurement. total_samples = 100 # Load BERT PyTorch model, features, dataset = load_bert() output_dir = os.path.join(".", "onnx_models") if not os.path.exists(output_dir): os.makedirs(output_dir) export_model_path = os.path.join(output_dir, 'bert-base-cased-squad.onnx') # %% data = dataset[0] inputs = { 'input_ids' : data[0].reshape(1, max_seq_length), 'attention_mask' : data[1].reshape(1, max_seq_length), 'token_type_ids' : data[2].reshape(1, max_seq_length) } model.eval() # dynamic elements symbolic_names = {0 : 'batch_size', 1 : 'max_seq_length'} torch.onnx.export(model, args = tuple(inputs.values()), f = export_model_path, opset_version = 11, do_constant_folding = True, input_names = ['input_ids', 'input_mask', 'segment_ids'], output_names = ['start', 'end'], dynamic_axes = {'input_ids' : symbolic_names, 'input_mask' : symbolic_names, 'segment_ids' : symbolic_names, 'start' : symbolic_names, 'end' : symbolic_names} ) print('Model exported successfully in:', export_model_path) #%% print("Starting Pytorch...") # torch model torch_avg_time = [] with torch.no_grad(): for i in range(total_samples): data = dataset[i] inputs = { 'input_ids' : data[0].reshape(1, max_seq_length), 'attention_mask' : data[1].reshape(1, max_seq_length), 'token_type_ids' : data[2].reshape(1, max_seq_length) } ave_torch = speed("model(**inputs)") torch_avg_time.append(ave_torch) # ONNXRuntime print("Starting ONNX...") # Create a session session = onnxruntime.InferenceSession(export_model_path) # %% # Inference through Onnxruntime onnxruntime_avg_time = [] for i in range(total_samples): data = dataset[i] ort_inputs = { 'input_ids' : data[0].reshape(1, max_seq_length).numpy(), 'input_mask' : data[1].reshape(1, max_seq_length).numpy(), 'segment_ids' : data[2].reshape(1, max_seq_length).numpy() } ave_onnx = speed("session.run(None, ort_inputs)") onnxruntime_avg_time.append(ave_onnx) # %% torch_avg_final = sum(torch_avg_time) / len(torch_avg_time) print("Execution time for PyTorch") print(torch_avg_final) onnx_avg_final = sum(onnxruntime_avg_time) / len(onnxruntime_avg_time) print("Execution time for ONNX Runtime") print(onnx_avg_final) # %% # Plotting Performances names = ['std_inference', 'onnxruntime_inference'] values = [torch_avg_final * 10e2, onnx_avg_final * 10e2] fig = plt.figure(figsize=(9,10)) plt.yticks(np.arange(0, 170, 5)) plt.xlabel('Inference Engines', fontsize='large', fontweight='bold') plt.ylabel('Time [ms]', fontsize='large', fontweight='bold') plt.title('BERT average inference performance (SQuAD set)', fontsize='large', fontweight='bold') plt.bar(names, values) plt.show() # %%
39.264368
178
0.604508
e9dbc3bb63cc70147aea01926500fb2d7b65b029
956
py
Python
migrations/versions/f6e9c6582972_initial_migration.py
Meziu/srb2_highscores
9d2805309b523c74186ead71aeabdb754c8b5746
[ "Unlicense" ]
1
2020-05-21T13:30:54.000Z
2020-05-21T13:30:54.000Z
migrations/versions/f6e9c6582972_initial_migration.py
Meziu/srb2_highscores
9d2805309b523c74186ead71aeabdb754c8b5746
[ "Unlicense" ]
24
2020-05-20T21:34:22.000Z
2021-05-03T18:29:03.000Z
migrations/versions/f6e9c6582972_initial_migration.py
Meziu/srb2_highscores
9d2805309b523c74186ead71aeabdb754c8b5746
[ "Unlicense" ]
7
2020-05-20T15:57:20.000Z
2021-05-03T17:01:49.000Z
"""Initial migration. Revision ID: f6e9c6582972 Revises: Create Date: 2020-06-17 20:17:27.108433 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'f6e9c6582972' down_revision = None branch_labels = None depends_on = None def upgrade(): op.create_table( 'voted', sa.Column('ip', sa.String(length=15), nullable=False), sa.Column('map', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('ip', 'map') ) op.drop_constraint('highscores_ibfk_1', 'highscores', type_='foreignkey') op.add_column('maps', sa.Column('image', sa.LargeBinary(), nullable=True)) op.add_column('maps', sa.Column('votes', sa.Integer(), nullable=False, default=0)) def downgrade(): op.drop_column('maps', 'votes') op.drop_column('maps', 'image') op.create_foreign_key('highscores_ibfk_1', 'highscores', 'maps', ['map_id'], ['id']) op.drop_table('voted')
26.555556
88
0.675732
703f941c469ea74cbd1f6cf3056e0e412618a4f5
2,947
py
Python
admixtureworkflow.py
janneengestoft/birc-project
95b201648a851efaab1682388e8bb617752b4812
[ "MIT" ]
null
null
null
admixtureworkflow.py
janneengestoft/birc-project
95b201648a851efaab1682388e8bb617752b4812
[ "MIT" ]
null
null
null
admixtureworkflow.py
janneengestoft/birc-project
95b201648a851efaab1682388e8bb617752b4812
[ "MIT" ]
null
null
null
from gwf import Workflow, AnonymousTarget from scripts.modpath import modpath gwf = Workflow() # Chromosome and group to perform admixture analysis on vcffile = '../../../../primatediversity/data/PG_baboons_pananu3_23_2_2021/output.filtered.snps.chr7.removed.AB.pass.vep.vcf.gz' chr = '7' pop = 'females' popfile = 'females.txt' ks = range(4, 11) def vcf_filter(vcf_file, chrom, popfile, pop): output_vcf = f'steps/recode_vcf/chr{chrom}_{pop}.recode.vcf' base_name = modpath(output_vcf, suffix=('.recode.vcf', '')) inputs = [vcf_file] outputs = [output_vcf] options = { 'memory': '2g', 'walltime': '02:00:00' } spec = f''' mkdir -p steps/recode_vcf vcftools --gzvcf {vcf_file} --recode --keep data/{popfile} \ --out {base_name} ''' return AnonymousTarget(inputs=inputs, outputs=outputs, options=options, spec=spec) def vcf2bed(chrom, pop): filtered_vcf = f'steps/recode_vcf/chr{chrom}_{pop}.recode.vcf' bed = f'steps/plink/chr{chrom}_{pop}.bed' base_name = modpath(bed, suffix=('.bed', '')) pruned_bed = f'steps/plink/chr{chrom}_{pop}.pruned.bed' inputs = [filtered_vcf] outputs = [pruned_bed] options = { 'memory': '2g', 'walltime': '02:00:00' } spec = f''' mkdir -p steps/plink plink --vcf {filtered_vcf} --make-bed --double-id --geno 0.025 --indep-pairwise 50 10 0.1 \ --out {base_name} plink --bfile {base_name} --extract {base_name}.prune.in --make-bed --out {base_name}.pruned ''' return AnonymousTarget(inputs=inputs, outputs=outputs, options=options, spec=spec) def admixture(k, chrom, pop): bedfile = f'steps/plink/chr{chrom}_{pop}.pruned.bed' outputq = f'results/admixture/chr{chrom}_{pop}/chr{chrom}_{pop}.pruned.{k}.Q' outputp = f'results/admixture/chr{chrom}_{pop}/chr{chrom}_{pop}.pruned.{k}.P' no_path = f'chr{chrom}_{pop}.pruned.{k}' logs = f'results/admixture/crossvalidation/log_chr{chrom}_{pop}.{k}.out' inputs = [bedfile] outputs = [outputq, outputp, logs] options = { 'memory': '5g', 'walltime': '8:00:00' } spec = f''' mkdir -p results/admixture/chr{chrom}_{pop} mkdir -p results/admixture/crossvalidation admixture --cv {bedfile} {k} | tee {logs} mv {no_path}* results/admixture/chr{chrom}_{pop} ''' return AnonymousTarget(inputs=inputs, outputs=outputs, options=options, spec=spec) gwf.target_from_template( name='exctract_pop', template=vcf_filter( vcf_file=vcffile, chrom=chr, popfile=popfile, pop=pop ) ) gwf.target_from_template( name='vcf2bed', template=vcf2bed( chrom=chr, pop=pop ) ) for k in ks: gwf.target_from_template( name=f'admixture_{k}', template=admixture( k=k, chrom=chr, pop=pop ) )
24.558333
127
0.620631
1b53918df9199a440d6a3e0547020f598785d17d
5,450
py
Python
scrape_mars.py
Areej32/webscraping
5431e1830287804e5ae857cef4bd00546b75683b
[ "ADSL" ]
null
null
null
scrape_mars.py
Areej32/webscraping
5431e1830287804e5ae857cef4bd00546b75683b
[ "ADSL" ]
null
null
null
scrape_mars.py
Areej32/webscraping
5431e1830287804e5ae857cef4bd00546b75683b
[ "ADSL" ]
null
null
null
# Scrape Web Data about Mars and Return one Library to collect all the scrape data # Dependencies from bs4 import BeautifulSoup as bs import requests import pandas as pd from splinter import Browser from splinter.exceptions import ElementDoesNotExist import time # Define scrape function def scrape(): # Create a library that holds all the Mars' Data mars_library = {} # Use splinter to navigate the JPL's Featured Space Image and scrape the current Featured Mars Image url (https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars) # Execute Chromedriver executable_path = {'executable_path': 'chromedriver.exe'} browser = Browser('chrome', **executable_path, headless=False) # #### NASA Mars News # We will scrape the lastest News Title and Paragragh Text from NASA Mars News Site(https://mars.nasa.gov/news/). # URL of page to be scraped url1 = 'https://mars.nasa.gov/news/?page=0&per_page=40&order=publish_date+desc%2Ccreated_at+desc&search=&category=19%2C165%2C184%2C204&blank_scope=Latest' #Visit the page using the browser browser.visit(url1) # assign html content html = browser.html # Create a Beautiful Soup object soup1 = bs(html, "html5lib") # Extract the text from the class="content_title" and clean up the text use strip news_title = soup1.find_all('div', class_='content_title')[0].find('a').text.strip() # Extract the paragraph from the class="rollover_description_inner" and clean up the text use strip news_p = soup1.find_all('div', class_='rollover_description_inner')[0].text.strip() # put infos into Library mars_library['news_title'] = news_title mars_library['news_p'] = news_p # #### JPL Mars Space Images - Featured Image # URL of page to be scraped url2 = 'https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars' #Visit the page using the browser browser.visit(url2) # assign html content html = browser.html # Create a Beautiful Soup object soup2 = bs(html, "html5lib") #Scrape Path for the Feature Image. got the partial path of the url partial_address = soup2.find_all('a', class_='fancybox')[0].get('data-fancybox-href').strip() #combine the root url to get the full address featured_image_url = "https://www.jpl.nasa.gov"+partial_address # Put infos into Library mars_library['featured_image_url'] = featured_image_url # #### Mars Weather # Use splinter to scrape the latest Mars weather tweet from the Mars Weather twitter account (https://twitter.com/marswxreport?lang=en) # URL of page to be scraped url3 = 'https://twitter.com/marswxreport?lang=en' #Visit the page using the browser browser.visit(url3) # assign html content html = browser.html # Create a Beautiful Soup object soup3 = bs(html, "html5lib") #scrap latest Mars weather tweet mars_weather = soup3.find_all('p', class_='TweetTextSize TweetTextSize--normal js-tweet-text tweet-text')[0].text # Put infos into Library mars_library['mars_weather'] = mars_weather # #### Mars Facts # Use Pandas to scrape the table from Mars Facts webpage and convert the data to a HTML table string # URL of page to be scraped url4 = 'https://space-facts.com/mars/' # use Pandas to get the url table tables = pd.read_html(url4) # Convert list of table into pandas dataframe df = tables[0] # update column name df.columns=['description','value'] #Set the index to the description column df.set_index('description', inplace=True) # Use pandas to generate HTML tables from DataFrames and save as html file mars_facts=df.to_html(justify='left') # Put infos into Library mars_library['mars_facts'] = mars_facts # #### Mars Hemisperes # USGS Astrogeology site to obtain high resolution images for each of Mar's hemispheres # URL of page to be scraped url5 = 'https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' #Visit the page using the browser browser.visit(url5) # assign html content html = browser.html # Create a Beautiful Soup object soup5 = bs(html,"html5lib") # assigned list to store: hemisphere_image_urls = [] # create empty dict dict = {} # get all the title results = soup5.find_all('h3') # Loop through each result for result in results: # Get text info from result itema = result.text time.sleep(1) browser.click_link_by_partial_text(itema) time.sleep(1) # assign html content htmla = browser.html # Create a Beautiful Soup object soupa = bs(htmla,"html5lib") time.sleep(1) # Grab the image link linka = soupa.find_all('div', class_="downloads")[0].find_all('a')[0].get("href") # Pass title to Dict time.sleep(1) dict["title"]=itema # Pass url to Dict dict["img_url"]=linka # Append Dict to the list hemisphere_image_urls.append(dict) # Clean Up Dict dict = {} browser.visit(url5) time.sleep(1) # Put infos into Library mars_library['hemisphere_image_urls']=hemisphere_image_urls # Return Library return mars_library
20.335821
170
0.66789
17a5d64261a56bf5aad08882c39fcb29af627714
3,944
py
Python
explainable_ai/util/fig_plotter.py
banna88/Configuration-Space-Reduction
3d061deaf2cb06597037bb085b4769483e42fd53
[ "MIT" ]
null
null
null
explainable_ai/util/fig_plotter.py
banna88/Configuration-Space-Reduction
3d061deaf2cb06597037bb085b4769483e42fd53
[ "MIT" ]
null
null
null
explainable_ai/util/fig_plotter.py
banna88/Configuration-Space-Reduction
3d061deaf2cb06597037bb085b4769483e42fd53
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import pandas as pd from ast import literal_eval import json import numpy as np import matplotlib.patches as mpatches from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler version = 'v1' # v1, v2 def plot_learning_vs_no_learning(): plt.figure() plt_index = 1 for title in [ 'Packet Loss (%)', 'Latency (%)', 'Adaptation Space', 'Analysis Time (sec)', ]: data = { 'explainable_learning': [], 'learning': [] } for file_name in ['explainable_learning', 'learning']: path = 'data/results/' + version + '/' file_data = open(path + file_name + '.txt').readlines() file_data = [x.strip() for x in file_data] learning_size = 11 no_learning_size = 11 for line in file_data: content = line.split(';') if len(content) > 1 and int(content[0]) == 1: # skip training cycle continue if title == 'Packet Loss (%)': if len(content) == no_learning_size: data[file_name].append(float(content[7])) elif len(content) == learning_size: data[file_name].append(float(content[7])) elif title == 'Latency (%)': if len(content) == no_learning_size: data[file_name].append(float(content[8])) elif len(content) == learning_size: data[file_name].append(float(content[8])) elif title == 'Adaptation Space': if len(content) == no_learning_size: data[file_name].append(int(content[4])) elif len(content) == learning_size: data[file_name].append(int(content[4])) elif title == 'Analysis Time (sec)': if len(content) == no_learning_size: data[file_name].append(float(content[5]) / 1000) elif len(content) == learning_size: data[file_name].append(float(content[5]) / 1000) print({ 'title': title, 'explainable_learning_avg': np.average(data['explainable_learning']), 'learning_avg': np.average(data['learning']) }) plt.subplot(2, 2, plt_index) boxplot = plt.boxplot( [data[x] for x in ['learning', 'explainable_learning']], positions=[1, 2], widths=.3, labels=['regular', 'explainable'], patch_artist=True, #showfliers=False, #notch=True, medianprops={'color': 'black', 'linewidth': 2} ) for index, box in enumerate(boxplot['boxes']): box.set(facecolor=[ 'orange', 'green'][index]) #box.set(facecolor=['orange', 'dodgerblue'][index]) plt.ylabel(title, fontsize='20') plt.xticks(size = 20) plt.yticks(size = 15) #plt.figlegend(bbox_to_anchor=(1.1, 1.05), loc="upper left") plt_index += 1 plt.show() def plot_training_selection(): data = json.load(open('data/model_training/' + version + '_training.json')) labels = { 'packet_loss': 'Packet Loss Model', 'latency': 'Latency Model' } plt.figure() for item in data: plt.plot(item['training_samples'], item['accuracy'], label=labels[item['target']]) plt.ylabel('Accuracy (%)') plt.xlabel('Training Samples\n(Total Samples = ' + str(data[0]['total_samples']) + ')') plt.xticks(data[0]['training_samples']) plt.ylim(top=1.0, bottom=0.0) plt.grid() plt.legend() plt.show() #plot_learning_vs_no_learning() plot_training_selection() #for i in range(300, 0, -1): # plot_selected_adaptation_options(i)
32.595041
91
0.540061
1d09abce70057b11a403ddcbda399d9f444807cc
3,293
py
Python
gym_bot_app/tasks/did_not_train_updater.py
raascode/GymBot
10ea5ef7639d41bd243761a85507c2509427dc99
[ "Apache-2.0" ]
8
2018-12-02T10:15:19.000Z
2022-01-27T09:03:26.000Z
gym_bot_app/tasks/did_not_train_updater.py
raascode/GymBot
10ea5ef7639d41bd243761a85507c2509427dc99
[ "Apache-2.0" ]
4
2021-02-10T02:20:38.000Z
2021-10-19T20:54:21.000Z
gym_bot_app/tasks/did_not_train_updater.py
raascode/GymBot
10ea5ef7639d41bd243761a85507c2509427dc99
[ "Apache-2.0" ]
9
2018-07-27T09:05:43.000Z
2022-01-24T12:18:38.000Z
from datetime import time, timedelta, datetime from typing import List from telegram import ParseMode from telegram.ext import CallbackQueryHandler from gym_bot_app.models import Trainee, Group from gym_bot_app.tasks import Task from gym_bot_app.utils import get_trainees_that_selected_today_and_did_not_train_yet from gym_bot_app.decorators import repeats, run_for_all_groups class DidNotTrainUpdaterTask(Task): """Telegram gym bot update trainee did not go to gym task.""" DEFAULT_TARGET_TIME = time(hour=23, minute=55, second=0, microsecond=0) DID_NOT_TRAIN_QUERY_IDENTIFIER = 'did_not_train_updater' DATE_FORMAT = '%d/%m/%Y' DID_NOT_GO_TO_GYM_PLURAL_MSG = 'אפסים מאופסים {trainees}' WENT_TO_GYM_INDIVIDUAL_MSG = 'אפס מאופס {trainees}' def __init__(self, target_time=None, *args, **kwargs): super(DidNotTrainUpdaterTask, self).__init__(*args, **kwargs) self.target_time = target_time or self.DEFAULT_TARGET_TIME def get_start_time(self): """Start time of did not train updater based on the target time.""" return self._seconds_until_time(target_time=self.target_time) @repeats(every_seconds=timedelta(days=1).total_seconds()) @run_for_all_groups def execute(self, group: Group): """Override method to execute did not train updater. Sends did not go to gym message with the trainees of today that did not train to the given group chat. """ self.logger.info('Executing did not train updater with %s', group) relevant_trainees = get_trainees_that_selected_today_and_did_not_train_yet(group) self.logger.debug('Relevant trainees %s', relevant_trainees) if relevant_trainees: # The use of timedelta here is to make sure that we remain within the same day we wanted to not_trained_time = (datetime.today() - timedelta(hours=2)).date() for trainee in relevant_trainees: if not trainee.get_training_info(training_date=not_trained_time): trainee.add_training_info(training_date=not_trained_time, trained=False) did_not_go_to_gym_msg = self._get_did_not_go_to_gym_msg(trainees) self.updater.bot.send_message(chat_id=group.id, text=did_not_go_to_gym_msg, parse_mode=ParseMode.MARKDOWN) else: self.logger.debug('There are no trainees that said they would train and did not') def _get_did_not_go_to_gym_msg(self, trainees: List[Trainee]): """Generate did not go to gym message based on the given trainees. Args: trainees(list): trainees that will be included in the message. Returns: str. message of did not go to gym with the given trainees. """ trainee_string = ' '.join(trainee.get_mention_string() for trainee in trainees) if len(trainees) > 1: self.logger.debug('More than one trainee therefore creating plural msg') did_not_go_msg = self.DID_NOT_GO_TO_GYM_PLURAL_MSG.format(trainees=trainee_string) else: self.logger.debug('One trainee creating msg for individual') did_not_go_msg = self.WENT_TO_GYM_INDIVIDUAL_MSG.format(trainees=trainee_string) return did_not_go_msg
43.328947
118
0.711509
24d69ee2d4c36a119c9007a9fb07364a5e29c403
344
py
Python
Python/Algorithm/FunctionValidanting.py
piovezan/SOpt
a5ec90796b7bdf98f0675457fc4bb99c8695bc40
[ "MIT" ]
148
2017-08-03T01:49:27.000Z
2022-03-26T10:39:30.000Z
Python/Algorithm/FunctionValidanting.py
piovezan/SOpt
a5ec90796b7bdf98f0675457fc4bb99c8695bc40
[ "MIT" ]
3
2017-11-23T19:52:05.000Z
2020-04-01T00:44:40.000Z
Python/Algorithm/FunctionValidanting.py
piovezan/SOpt
a5ec90796b7bdf98f0675457fc4bb99c8695bc40
[ "MIT" ]
59
2017-08-03T01:49:19.000Z
2022-03-31T23:24:38.000Z
def pedeChute(): while True: try: chute = int(input("chute: ")) if chute == 0: return chute except: pass def jogo(): while True: #algo aqui chute = pedeChute() #sempre será válido #algo aqui #https://pt.stackoverflow.com/q/449742/101
20.235294
47
0.482558
b18f8d784adf9c64137c910b0deb3f8526254810
2,725
py
Python
docker/package/package_generator.py
serokell/tezos-packaging
74397ce01721a3366043895710b229f1d53a5504
[ "Apache-2.0", "MIT" ]
43
2019-12-12T11:54:15.000Z
2022-03-08T01:10:36.000Z
docker/package/package_generator.py
serokell/tezos-packaging
74397ce01721a3366043895710b229f1d53a5504
[ "Apache-2.0", "MIT" ]
226
2019-12-10T13:39:22.000Z
2022-03-30T12:30:17.000Z
docker/package/package_generator.py
serokell/tezos-packaging
74397ce01721a3366043895710b229f1d53a5504
[ "Apache-2.0", "MIT" ]
11
2020-08-11T09:25:05.000Z
2022-03-05T15:51:46.000Z
# SPDX-FileCopyrightText: 2020 TQ Tezos <https://tqtezos.com/> # # SPDX-License-Identifier: LicenseRef-MIT-TQ import os, shutil, argparse from .fedora import build_fedora_package from .packages import packages from .ubuntu import build_ubuntu_package is_ubuntu = None is_source = None package_to_build = None source_archive = None parser = argparse.ArgumentParser() parser.add_argument("--os", required=True) parser.add_argument("--type", help="package type", required=True) parser.add_argument("--package", help="specify binary to package") parser.add_argument( "--sources", help="specify source archive for single ubuntu package" ) args = parser.parse_args() if args.os == "ubuntu": is_ubuntu = True elif args.os == "fedora": is_ubuntu = False else: raise Exception( "Unexpected package target OS, only 'ubuntu' and 'fedora' are supported." ) if args.type == "source": is_source = True elif args.type == "binary": is_source = False else: raise Exception( "Unexpected package format, only 'source' and 'binary' are supported." ) package_to_build = args.package source_archive = args.sources if is_ubuntu: run_deps = [ "libev-dev", "libgmp-dev", "libhidapi-dev", "libffi-dev", "zlib1g-dev", "libpq-dev", ] else: run_deps = [ "libev-devel", "gmp-devel", "hidapi-devel", "libffi-devel", "zlib-devel", "libpq-devel", ] build_deps = [ "make", "m4", "perl", "pkg-config", "wget", "unzip", "rsync", "gcc", "cargo", "opam", "git", "autoconf", ] common_deps = run_deps + build_deps ubuntu_versions = [ "bionic", # 18.04 "focal", # 20.04 "hirsute", # 21.04 ] pwd = os.getcwd() home = os.environ["HOME"] for package in packages: if package_to_build is None or package.name == package_to_build: if is_ubuntu: build_ubuntu_package( package, ubuntu_versions, common_deps, is_source, source_archive ) else: build_fedora_package(package, build_deps, run_deps, is_source) os.mkdir("out") if not is_source: if is_ubuntu: exts = [".deb"] else: exts = [".rpm"] else: if is_ubuntu: exts = [".orig.tar.gz", ".dsc", ".changes", ".debian.tar.xz", ".buildinfo"] else: exts = [".src.rpm"] if is_ubuntu: artifacts_dir = "." else: subdir = "SRPMS" if is_source else "RPMS/x86_64" artifacts_dir = f"{home}/rpmbuild/{subdir}" for f in os.listdir(artifacts_dir): for ext in exts: if f.endswith(ext): shutil.copy(f"{artifacts_dir}/{f}", os.path.join("out", f))
23.09322
83
0.616147
aee0523670b853d2509a9968d763f4058261652c
15,419
py
Python
.history/src/Simulador_20200711171005.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
.history/src/Simulador_20200711171005.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
.history/src/Simulador_20200711171005.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from Matriz_esferica import Matriz_esferica from Individuo import Individuo, Fabrica_individuo import random from itertools import permutations import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from scipy.sparse import csr_matrix, lil_matrix class Simulador(): SADIO = 0 INFECTADO_TIPO_1 = 1 #assintomáticos e o infectado inicial INFECTADO_TIPO_2 = 2 #sintomático CURADO = 3 MORTO = 4 def __init__( self, tamanho_matriz, #numero de linhas e colunas da matriz esférica percentual_inicial_tipo1, #percentual inicial da população que será infectada tipo 1 percentual_inicial_tipo2, #percentual inicial da população que será infectada tipo 2 chance_infeccao, #chance que um infectado tipo 2 tem de infectar um indivíduo saudável chance_infeccao_tipo2, #chance de um indivíduo infectado se tornar contagioso chance_morte, #chance de um indivíduo tipo 2 morrer ao fim de uma atualização atualizacoes_cura): #número de atualizações necessárias para a cura de um indivíduo tipo 1 ou 2 self.num_atualizacoes = 0 self.lista_infectados_tipo_2 = [] self.lista_infectados_tipo_1 = [] self.num_curados = 0 self.num_mortos = 0 self.chance_infeccao = chance_infeccao self.chance_infeccao_tipo2 = chance_infeccao_tipo2 self.chance_morte = chance_morte self.atualizacoes_cura = atualizacoes_cura self.populacao_inicial = int(tamanho_matriz**2) self.num_inicial_tipo2 = int(self.populacao_inicial * percentual_inicial_tipo2) self.num_inicial_tipo1 = 1 + int(self.populacao_inicial * percentual_inicial_tipo1) self.num_inicial_sadios = self.populacao_inicial - (self.num_inicial_tipo2 + self.num_inicial_tipo1) self.matriz_status = lil_matrix((tamanho_matriz, tamanho_matriz),dtype= np.uint8) self.matriz_atualizacoes_cura = lil_matrix((tamanho_matriz, tamanho_matriz),dtype= np.uint8) #self.matriz_status = self.df_individuos.to_numpy() self.popular(tamanho_matriz) self.lista_matrizes_status = [] #objeto que é responsável por validar a movimentação no grid n x n self.matriz_esferica = Matriz_esferica(tamanho_matriz) dict = { 'num_sadios':self.num_inicial_sadios, 'num_infect_t1':self.num_inicial_tipo1, 'num_infect_t2':self.num_inicial_tipo2, 'num_curados':0, 'num_mortos':0} #dataframe que guardará os resultados de cada atualização self.dataframe = pd.DataFrame(dict,index = [0]) self.salvar_posicionamento() def criar_individuo(self, status, posicao): self.matriz_status[posicao[0], posicao[1]] = status if status == self.INFECTADO_TIPO_1 or status == self.INFECTADO_TIPO_2: self.matriz_atualizacoes_cura[posicao[0], posicao[1]] = self.atualizacoes_cura def salvar_posicionamento(self): self.lista_matrizes_status.append(self.matriz_status) def verificar_infeccao(self, lista_infectantes): lista_novos_infectados_tipo1 = [] lista_novos_infectados_tipo2 = [] #itera sobre sobre a lista de individuos que infectam e cada um realiza a tividade de infectar for indice_infectante in lista_infectantes: #busca os vizinhos do infectante atual lista_vizinhos = self.matriz_esferica.get_vizinhos(indice_infectante) #Para cada vizinho, se ele for sadio, é gerado um número aleatório para verificar se foi infectado for indice_vizinho in lista_vizinhos: #verificação de SADIO if self.verifica_status(indice_vizinho) == self.SADIO: #verificação do novo status novo_status = self.infectar(chance_infeccao, chance_infeccao_tipo2) #se for um infectado tipo 1 if novo_status == Individuo.INFECTADO_TIPO_1: #adiciona na lista de novos tipo 1 lista_novos_infectados_tipo1.append(indice_vizinho) self.criar_individuo(Individuo.INFECTADO_TIPO_1,indice_vizinho) if novo_status == Individuo.INFECTADO_TIPO_2: #adiciona na lista de novos tipo 1 lista_novos_infectados_tipo2.append(indice_vizinho) self.criar_individuo(Individuo.INFECTADO_TIPO_2,indice_vizinho) return lista_novos_infectados_tipo1, lista_novos_infectados_tipo2 def checagem_morte_individual(self, chance_morte, indice): rng_morte = random.random() if rng_morte <= chance_morte: self.matriz_status[indice[0], indice[1]] = self.MORTO return self.MORTO else: return self.checar_cura_individual(indice) def checar_cura_individual(self, indice): self.matriz_atualizacoes_cura[indice[0], indice[1]] = self.matriz_atualizacoes_cura[indice[0], indice[1]] - 1 if self.matriz_atualizacoes_cura[indice[0], indice[1]] == 0: self.matriz_status[indice[0], indice[1]] = self.CURADO return self.CURADO else: return self.matriz_status[indice[0], indice[1]] def checagem_morte_cura_lista(self, lista_infectantes_tipo2): lista_curados = [] lista_mortos = [] for indice_infectante in lista_infectantes_tipo2: self.checagem_morte_individual(self.chance_morte, indice_infectante) if self.verifica_status(indice_infectante) == Individuo.MORTO: lista_mortos.append(indice_infectante) if self.verifica_status(indice_infectante) == Individuo.CURADO: lista_curados.append(indice_infectante) return lista_mortos, lista_curados def checagem_cura_lista(self, lista_infectantes): lista_curados = [] for indice_infectante in lista_infectantes: self.checar_cura_individual(indice_infectante) if self.verifica_status(indice_infectante) == Individuo.CURADO: lista_curados.append(indice_infectante) return lista_curados def iterar(self): #Verifica os novos infectados por infectantes do tipo 1 e 2 print(self.lista_infectados_tipo_1+self.lista_infectados_tipo_2) lista_novos_infectados_tipo1, lista_novos_infectados_tipo2 = self.verificar_infeccao(self.lista_infectados_tipo_1+self.lista_infectados_tipo_2) #Verifica morte/cura dos infectados tipo 2 lista_mortos, lista_curados_t2 = self.checagem_morte_cura_lista(self.lista_infectados_tipo_2) #Verifica cura dos infectados tipo 1 lista_curados_t1 = self.checagem_cura_lista(self.lista_infectados_tipo_1) #remove os mortos e curados das listas de infectantes tipo 1 e 2 nova_lista_infectados_t2 = [] for indice in self.lista_infectados_tipo_2: if indice not in lista_mortos: if indice not in lista_curados_t2: nova_lista_infectados_t2.append(indice) self.lista_infectados_tipo_2 = nova_lista_infectados_t2 nova_lista_infectados_t1 = [] for indice in self.lista_infectados_tipo_1: if indice not in lista_curados_t1: nova_lista_infectados_t1.append(indice) self.lista_infectados_tipo_1 = nova_lista_infectados_t1 #atualiza o número de mortos self.num_mortos = self.num_mortos + len(lista_mortos) + 1 #atualiza o número de curados print("curados da rodada") print(len(lista_curados_t1) + len(lista_curados_t2)) self.num_curados = self.num_curados + len(lista_curados_t1) + len(lista_curados_t2) #movimentar infectantes: nova_lista_infectados_t1 = [] for indice in self.lista_infectados_tipo_1: nova_lista_infectados_t1.append(self.mover_infectante(indice)) self.lista_infectados_tipo_1 = nova_lista_infectados_t1 nova_lista_infectados_t2 = [] for indice in self.lista_infectados_tipo_2: nova_lista_infectados_t2.append(self.mover_infectante(indice)) self.lista_infectados_tipo_2 = nova_lista_infectados_t2 print(self.lista_infectados_tipo_1+self.lista_infectados_tipo_2) #adicionar os novos infectados tipo 1 e 2 para as respectivas listas self.lista_infectados_tipo_2 = self.lista_infectados_tipo_2 + lista_novos_infectados_tipo2 self.lista_infectados_tipo_1 = self.lista_infectados_tipo_1 + lista_novos_infectados_tipo1 #populacao_sadia = self.dataframe.iloc[-1]['num_sadios'] - len(lista_novos_infectados_tipo2+lista_novos_infectados_tipo1+lista_curados_t1+lista_curados_t2+) dict = { 'num_sadios':self.populacao_inicial - self.num_mortos - self.num_curados - len(self.lista_infectados_tipo_1) - len(self.lista_infectados_tipo_2) , 'num_infect_t1':len(self.lista_infectados_tipo_1), 'num_infect_t2':len(self.lista_infectados_tipo_2), 'num_curados':self.num_curados, 'num_mortos':self.num_mortos} # dict = { # 'num_sadios':self.dataframe.iloc[-1]['num_sadios'] - np.sum(self.matriz_status[self.matriz_status != 0].toarray()), # 'num_infect_t1':np.sum(self.matriz_status[self.matriz_status == 1].toarray()), # 'num_infect_t2':np.sum(self.matriz_status[self.matriz_status == 2].toarray()), # 'num_curados':np.sum(self.matriz_status[self.matriz_status == 3].toarray()), # 'num_mortos':np.sum(self.matriz_status[self.matriz_status == 4].toarray())} self.dataframe = self.dataframe.append(dict, ignore_index=True) # print("num t1: ", len(self.lista_infectados_tipo_1)) # print("num t2: ", len(self.lista_infectados_tipo_2)) # print("num curados: ", self.num_curados) # print("num mortos: ", self.num_mortos) # print("---------") # #salva a nova matriz de status self.salvar_posicionamento() #adiciona 1 ao número de atualizações realizadas na matriz self.num_atualizacoes +=1 def infectar(self, chance_infeccao, chance_infeccao_tipo2): saida = Individuo.SADIO #número aleatório para chance de infectar o vizinho rng_infeccao = random.random() if rng_infeccao <= chance_infeccao: #número aleatório para chance de infecção tipo 1 ou 2 rng_infeccao_tipo2 = random.random() if rng_infeccao_tipo2 <= chance_infeccao_tipo2: saida = Individuo.INFECTADO_TIPO_2 else: saida = Individuo.INFECTADO_TIPO_1 return saida def popular(self, tamanho_matriz): #lista de possíveis combinações de índices da matriz de dados permutacoes = permutations(list(range(tamanho_matriz)),2) #conversão para lista de tuplas(x,y) lista_indices = list(permutacoes) #embaralhamento dos índices random.shuffle(lista_indices) #cria o primeiro tipo1: indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_1, indice) self.lista_infectados_tipo_1.append(indice) #cria o restante dos tipos 1 for i in range(1,self.num_inicial_tipo1): indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_1,indice) self.lista_infectados_tipo_1.append(indice) #cria o restante dos tipo 2: for indice in range(self.num_inicial_tipo2): indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_2,indice) self.lista_infectados_tipo_2.append(indice) def trocar(self,matriz,ponto_ini,ponto_final): x_ini = ponto_ini[0] y_ini = ponto_ini[1] x_fin = ponto_final[0] y_fin = ponto_final[1] aux = matriz[x_fin,y_fin] matriz[x_fin,y_fin] = matriz[x_ini,y_ini] matriz[x_ini,y_ini] = aux def verifica_status(self, indice): return self.matriz_status[indice[0], indice[1]] def mover_infectante(self, posicao_inicial): pos_x, pos_y = posicao_inicial[0], posicao_inicial[1] rng_posicao = random.random() if rng_posicao <=0.25: #move pra cima pos_x -= 1 elif rng_posicao <=0.5: #move pra baixo pos_x += 1 elif rng_posicao <=0.75: #move para esquerda pos_y -= 1 else: #move para direita pos_y += 1 posicao_final= self.matriz_esferica.valida_ponto_matriz(pos_x, pos_y) self.trocar(self.matriz_status, posicao_inicial, posicao_final) self.trocar(self.matriz_atualizacoes_cura, posicao_inicial, posicao_final) return posicao_final chance_infeccao = 0.3 chance_infeccao_tipo2 = 0.3 chance_morte = 0.1 atualizacoes_cura = 10 percentual_inicial_tipo1 = 0.0 percentual_inicial_tipo2 = 0.0 sim = Simulador( 5, percentual_inicial_tipo1, percentual_inicial_tipo2, chance_infeccao, chance_infeccao_tipo2, chance_morte,atualizacoes_cura) #print(sim.lista_matrizes_posicionamento[0]) #print(sim.lista_infectados_tipo_2) #print(sim.lista_infectados_tipo_1) cmap = ListedColormap(['w', 'y', 'r', 'blue', 'black']) while (sim.dataframe.iloc[-1]['num_infect_t1']+sim.dataframe.iloc[-1]['num_infect_t2']) > 0: #plt.matshow(sim.matriz_status.toarray(), cmap = cmap, vmin= 0, vmax = 4) print(sim.dataframe.iloc[-1]) sim.iterar() #print(sim.dataframe.iloc[-1]) #print("xxxxxxxxxxxxxxxxxTipo: ",type(sim.lista_matrizes_posicionamento[len(sim.lista_matrizes_posicionamento)-1].toarray())) print(sim.dataframe) #plt.show() # for i in range(12): # #plt.matshow(sim.lista_matrizes_status[i].toarray(), cmap = cmap, vmin= 0, vmax = 4) # print(i) # print("Status") # print(sim.matriz_status.toarray()) # print("Cura") # print(sim.matriz_atualizacoes_cura.toarray()) # sim.iterar() # m = sim.matriz_atualizacoes_cura[sim.matriz_status == 1 or sim.matriz_status == 2].toarray() # print(m) #plt.show() #print(sim.dataframe) # print(sim.lista_infectados_tipo_1) # print(sim.lista_infectados_tipo_2) # sim.iterar() # print(sim.lista_infectados_tipo_1) # print(sim.lista_infectados_tipo_2) # print(sim.dataframe) # print("status inicial: ", sim.df_individuos[1][0].status) # print("Novos infectados: ", sim.verificar_infeccao(sim.lista_infectados_tipo_1)) # plt.show()
40.153646
170
0.651858
bd7d3f20ccbd0581bf494538eef0d62bb3f12c4a
2,519
py
Python
tools/c7n_gcp/tests/test_gcp_storage.py
dnouri/cloud-custodian
4e8b3b45f60731df942ffe6b61645416d7a67daa
[ "Apache-2.0" ]
1
2020-09-07T21:10:29.000Z
2020-09-07T21:10:29.000Z
tools/c7n_gcp/tests/test_gcp_storage.py
dnouri/cloud-custodian
4e8b3b45f60731df942ffe6b61645416d7a67daa
[ "Apache-2.0" ]
1
2021-02-10T02:20:45.000Z
2021-02-10T02:20:45.000Z
tools/c7n_gcp/tests/test_gcp_storage.py
dnouri/cloud-custodian
4e8b3b45f60731df942ffe6b61645416d7a67daa
[ "Apache-2.0" ]
1
2021-10-15T11:29:54.000Z
2021-10-15T11:29:54.000Z
# Copyright 2019 Capital One Services, LLC # Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 import time from gcp_common import BaseTest class BucketTest(BaseTest): def test_bucket_query(self): project_id = 'cloud-custodian' factory = self.replay_flight_data('bucket-query', project_id) p = self.load_policy( {'name': 'all-buckets', 'resource': 'gcp.bucket'}, session_factory=factory) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0]['id'], "staging.cloud-custodian.appspot.com") self.assertEqual(resources[0]['storageClass'], "STANDARD") def test_bucket_get(self): project_id = 'cloud-custodian' bucket_name = "staging.cloud-custodian.appspot.com" factory = self.replay_flight_data( 'bucket-get-resource', project_id) p = self.load_policy({'name': 'bucket', 'resource': 'gcp.bucket'}, session_factory=factory) bucket = p.resource_manager.get_resource({ "bucket_name": bucket_name, }) self.assertEqual(bucket['name'], bucket_name) self.assertEqual(bucket['id'], "staging.cloud-custodian.appspot.com") self.assertEqual(bucket['storageClass'], "STANDARD") self.assertEqual(bucket['location'], "EU") def test_enable_uniform_bucket_level_access(self): project_id = 'custodian-1291' bucket_name = 'c7n-dev-test' factory = self.replay_flight_data( 'bucket-uniform-bucket-access', project_id) p = self.load_policy({ 'name': 'bucket', 'resource': 'gcp.bucket', 'filters': [ {'name': 'c7n-dev-test'}, {'iamConfiguration.uniformBucketLevelAccess.enabled': False}, ], 'actions': ['set-uniform-access']}, session_factory=factory) resources = p.run() self.assertEqual(len(resources), 1) if self.recording: time.sleep(5) bucket = p.resource_manager.get_resource({ "bucket_name": bucket_name, }) self.assertEqual(bucket['name'], bucket_name) self.assertEqual(bucket['id'], bucket_name) self.assertEqual(bucket['storageClass'], "REGIONAL") self.assertEqual(bucket['location'], "US-EAST1") self.assertJmes('iamConfiguration.uniformBucketLevelAccess.enabled', bucket, True)
38.753846
90
0.616118
f64682d3a903f6073a2f0e8588812417574d7c8c
2,685
py
Python
apps/search/src/search/search_controller.py
vsosrc/hue
d8bc236d8d622759fa5988ff32246e4c750e7503
[ "Apache-2.0" ]
null
null
null
apps/search/src/search/search_controller.py
vsosrc/hue
d8bc236d8d622759fa5988ff32246e4c750e7503
[ "Apache-2.0" ]
null
null
null
apps/search/src/search/search_controller.py
vsosrc/hue
d8bc236d8d622759fa5988ff32246e4c750e7503
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -- coding: utf-8 -- # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from desktop.lib.exceptions_renderable import PopupException from search.api import SolrApi from search.conf import SOLR_URL from search.models import Collection from django.utils.translation import ugettext as _ LOG = logging.getLogger(__name__) class SearchController(object): """ Glue the models to the views. """ def __init__(self, user): self.user = user def get_search_collections(self): # TODO perms return Collection.objects.filter(enabled=True) def delete_collection(self, collection_id): id = collection_id try: Collection.objects.get(id=collection_id).delete() except Exception, e: LOG.warn('Error deleting collection: %s' % e) id = -1 return id def copy_collection(self, collection_id): id = -1 try: copy = Collection.objects.get(id=collection_id) copy.label += _(' (Copy)') copy.id = copy.pk = None copy.save() facets = copy.facets facets.id = None facets.save() copy.facets = facets result = copy.result result.id = None result.save() copy.result = result sorting = copy.sorting sorting.id = None sorting.save() copy.sorting = sorting copy.save() id = copy.id except Exception, e: LOG.warn('Error copying collection: %s' % e) def is_collection(self, collection_name): solr_collections = SolrApi(SOLR_URL.get(), self.user).collections() return collection_name in solr_collections def is_core(self, core_name): solr_cores = SolrApi(SOLR_URL.get(), self.user).cores() return core_name in solr_cores def get_solr_collection(self): return SolrApi(SOLR_URL.get(), self.user).collections() def get_all_indexes(self): return self.get_solr_collection().keys() + SolrApi(SOLR_URL.get(), self.user).cores().keys()
27.680412
96
0.700931
a982299d94cd2afc01eeceb33dd70f04c8f1b198
18,746
py
Python
wagtail/images/models.py
simo97/wagtail
ef404c775559722b9ad6be61a2cc6d6ca6ed8f69
[ "BSD-3-Clause" ]
null
null
null
wagtail/images/models.py
simo97/wagtail
ef404c775559722b9ad6be61a2cc6d6ca6ed8f69
[ "BSD-3-Clause" ]
null
null
null
wagtail/images/models.py
simo97/wagtail
ef404c775559722b9ad6be61a2cc6d6ca6ed8f69
[ "BSD-3-Clause" ]
null
null
null
import hashlib import os.path from collections import OrderedDict from contextlib import contextmanager from io import BytesIO from django.conf import settings from django.core import checks from django.core.files import File from django.db import models from django.forms.utils import flatatt from django.urls import reverse from django.utils.functional import cached_property from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from taggit.managers import TaggableManager from unidecode import unidecode from willow.image import Image as WillowImage from wagtail.admin.utils import get_object_usage from wagtail.core import hooks from wagtail.core.models import CollectionMember from wagtail.images.exceptions import InvalidFilterSpecError from wagtail.images.rect import Rect from wagtail.search import index from wagtail.search.queryset import SearchableQuerySetMixin class SourceImageIOError(IOError): """ Custom exception to distinguish IOErrors that were thrown while opening the source image """ pass class ImageQuerySet(SearchableQuerySetMixin, models.QuerySet): pass def get_upload_to(instance, filename): """ Obtain a valid upload path for an image file. This needs to be a module-level function so that it can be referenced within migrations, but simply delegates to the `get_upload_to` method of the instance, so that AbstractImage subclasses can override it. """ return instance.get_upload_to(filename) def get_rendition_upload_to(instance, filename): """ Obtain a valid upload path for an image rendition file. This needs to be a module-level function so that it can be referenced within migrations, but simply delegates to the `get_upload_to` method of the instance, so that AbstractRendition subclasses can override it. """ return instance.get_upload_to(filename) class AbstractImage(CollectionMember, index.Indexed, models.Model): title = models.CharField(max_length=255, verbose_name=_('title')) file = models.ImageField( verbose_name=_('file'), upload_to=get_upload_to, width_field='width', height_field='height' ) width = models.IntegerField(verbose_name=_('width'), editable=False) height = models.IntegerField(verbose_name=_('height'), editable=False) created_at = models.DateTimeField(verbose_name=_('created at'), auto_now_add=True, db_index=True) uploaded_by_user = models.ForeignKey( settings.AUTH_USER_MODEL, verbose_name=_('uploaded by user'), null=True, blank=True, editable=False, on_delete=models.SET_NULL ) tags = TaggableManager(help_text=None, blank=True, verbose_name=_('tags')) focal_point_x = models.PositiveIntegerField(null=True, blank=True) focal_point_y = models.PositiveIntegerField(null=True, blank=True) focal_point_width = models.PositiveIntegerField(null=True, blank=True) focal_point_height = models.PositiveIntegerField(null=True, blank=True) file_size = models.PositiveIntegerField(null=True, editable=False) # A SHA-1 hash of the file contents file_hash = models.CharField(max_length=40, blank=True, editable=False) # To hold the current rotation angle of the image angle = models.IntegerField(null=True, blank=True, default=0) objects = ImageQuerySet.as_manager() def is_stored_locally(self): """ Returns True if the image is hosted on the local filesystem """ try: self.file.path return True except NotImplementedError: return False def get_file_size(self): if self.file_size is None: try: self.file_size = self.file.size except Exception as e: # File not found # # Have to catch everything, because the exception # depends on the file subclass, and therefore the # storage being used. raise SourceImageIOError(str(e)) self.save(update_fields=['file_size']) return self.file_size def _set_file_hash(self, file_contents): self.file_hash = hashlib.sha1(file_contents).hexdigest() def get_file_hash(self): if self.file_hash == '': with self.open_file() as f: self._set_file_hash(f.read()) self.save(update_fields=['file_hash']) return self.file_hash def get_upload_to(self, filename): folder_name = 'original_images' filename = self.file.field.storage.get_valid_name(filename) # do a unidecode in the filename and then # replace non-ascii characters in filename with _ , to sidestep issues with filesystem encoding filename = "".join((i if ord(i) < 128 else '_') for i in unidecode(filename)) # Truncate filename so it fits in the 100 character limit # https://code.djangoproject.com/ticket/9893 full_path = os.path.join(folder_name, filename) if len(full_path) >= 95: chars_to_trim = len(full_path) - 94 prefix, extension = os.path.splitext(filename) filename = prefix[:-chars_to_trim] + extension full_path = os.path.join(folder_name, filename) return full_path def get_usage(self): return get_object_usage(self) @property def usage_url(self): return reverse('wagtailimages:image_usage', args=(self.id,)) search_fields = CollectionMember.search_fields + [ index.SearchField('title', partial_match=True, boost=10), index.AutocompleteField('title'), index.FilterField('title'), index.RelatedFields('tags', [ index.SearchField('name', partial_match=True, boost=10), index.AutocompleteField('name'), ]), index.FilterField('uploaded_by_user'), ] def __str__(self): return self.title @contextmanager def open_file(self): # Open file if it is closed close_file = False try: image_file = self.file if self.file.closed: # Reopen the file if self.is_stored_locally(): self.file.open('rb') else: # Some external storage backends don't allow reopening # the file. Get a fresh file instance. #1397 storage = self._meta.get_field('file').storage image_file = storage.open(self.file.name, 'rb') close_file = True except IOError as e: # re-throw this as a SourceImageIOError so that calling code can distinguish # these from IOErrors elsewhere in the process raise SourceImageIOError(str(e)) # Seek to beginning image_file.seek(0) try: yield image_file finally: if close_file: image_file.close() @contextmanager def get_willow_image(self): with self.open_file() as image_file: yield WillowImage.open(image_file) def get_rect(self): return Rect(0, 0, self.width, self.height) def get_focal_point(self): if self.focal_point_x is not None and \ self.focal_point_y is not None and \ self.focal_point_width is not None and \ self.focal_point_height is not None: return Rect.from_point( self.focal_point_x, self.focal_point_y, self.focal_point_width, self.focal_point_height, ) def has_focal_point(self): return self.get_focal_point() is not None def set_focal_point(self, rect): if rect is not None: self.focal_point_x = rect.centroid_x self.focal_point_y = rect.centroid_y self.focal_point_width = rect.width self.focal_point_height = rect.height else: self.focal_point_x = None self.focal_point_y = None self.focal_point_width = None self.focal_point_height = None def get_suggested_focal_point(self): with self.get_willow_image() as willow: faces = willow.detect_faces() if faces: # Create a bounding box around all faces left = min(face[0] for face in faces) top = min(face[1] for face in faces) right = max(face[2] for face in faces) bottom = max(face[3] for face in faces) focal_point = Rect(left, top, right, bottom) else: features = willow.detect_features() if features: # Create a bounding box around all features left = min(feature[0] for feature in features) top = min(feature[1] for feature in features) right = max(feature[0] for feature in features) bottom = max(feature[1] for feature in features) focal_point = Rect(left, top, right, bottom) else: return None # Add 20% to width and height and give it a minimum size x, y = focal_point.centroid width, height = focal_point.size width *= 1.20 height *= 1.20 width = max(width, 100) height = max(height, 100) return Rect.from_point(x, y, width, height) @classmethod def get_rendition_model(cls): """ Get the Rendition model for this Image model """ return cls.renditions.rel.related_model def get_rendition(self, filter): if isinstance(filter, str): filter = Filter(spec=filter) cache_key = filter.get_cache_key(self) Rendition = self.get_rendition_model() try: rendition = self.renditions.get( filter_spec=filter.spec, focal_point_key=cache_key, ) except Rendition.DoesNotExist: # Generate the rendition image generated_image = filter.run(self, BytesIO()) # Generate filename input_filename = os.path.basename(self.file.name) input_filename_without_extension, input_extension = os.path.splitext(input_filename) # A mapping of image formats to extensions FORMAT_EXTENSIONS = { 'jpeg': '.jpg', 'png': '.png', 'gif': '.gif', } output_extension = filter.spec.replace('|', '.') + FORMAT_EXTENSIONS[generated_image.format_name] if cache_key: output_extension = cache_key + '.' + output_extension # Truncate filename to prevent it going over 60 chars output_filename_without_extension = input_filename_without_extension[:(59 - len(output_extension))] output_filename = output_filename_without_extension + '.' + output_extension rendition, created = self.renditions.get_or_create( filter_spec=filter.spec, focal_point_key=cache_key, defaults={'file': File(generated_image.f, name=output_filename)} ) return rendition def is_portrait(self): return (self.width < self.height) def is_landscape(self): return (self.height < self.width) @property def filename(self): return os.path.basename(self.file.name) @property def default_alt_text(self): # by default the alt text field (used in rich text insertion) is populated # from the title. Subclasses might provide a separate alt field, and # override this return self.title def is_editable_by_user(self, user): from wagtail.images.permissions import permission_policy return permission_policy.user_has_permission_for_instance(user, 'change', self) class Meta: abstract = True class Image(AbstractImage): admin_form_fields = ( 'title', 'file', 'collection', 'tags', 'focal_point_x', 'focal_point_y', 'focal_point_width', 'focal_point_height', ) class Meta: verbose_name = _('image') verbose_name_plural = _('images') class Filter: """ Represents one or more operations that can be applied to an Image to produce a rendition appropriate for final display on the website. Usually this would be a resize operation, but could potentially involve colour processing, etc. """ def __init__(self, spec=None): # The spec pattern is operation1-var1-var2|operation2-var1 self.spec = spec @cached_property def operations(self): # Search for operations self._search_for_operations() # Build list of operation objects operations = [] for op_spec in self.spec.split('|'): op_spec_parts = op_spec.split('-') if op_spec_parts[0] not in self._registered_operations: raise InvalidFilterSpecError("Unrecognised operation: %s" % op_spec_parts[0]) op_class = self._registered_operations[op_spec_parts[0]] operations.append(op_class(*op_spec_parts)) return operations def run(self, image, output): with image.get_willow_image() as willow: original_format = willow.format_name # Fix orientation of image willow = willow.auto_orient() env = { 'original-format': original_format, } for operation in self.operations: willow = operation.run(willow, image, env) or willow # Find the output format to use if 'output-format' in env: # Developer specified an output format output_format = env['output-format'] else: # Default to outputting in original format output_format = original_format # Convert BMP files to PNG if original_format == 'bmp': output_format = 'png' # Convert unanimated GIFs to PNG as well if original_format == 'gif' and not willow.has_animation(): output_format = 'png' if output_format == 'jpeg': # Allow changing of JPEG compression quality if 'jpeg-quality' in env: quality = env['jpeg-quality'] elif hasattr(settings, 'WAGTAILIMAGES_JPEG_QUALITY'): quality = settings.WAGTAILIMAGES_JPEG_QUALITY else: quality = 85 # If the image has an alpha channel, give it a white background if willow.has_alpha(): willow = willow.set_background_color_rgb((255, 255, 255)) return willow.save_as_jpeg(output, quality=quality, progressive=True, optimize=True) elif output_format == 'png': return willow.save_as_png(output, optimize=True) elif output_format == 'gif': return willow.save_as_gif(output) def get_cache_key(self, image): vary_parts = [] for operation in self.operations: for field in getattr(operation, 'vary_fields', []): value = getattr(image, field, '') vary_parts.append(str(value)) vary_string = '-'.join(vary_parts) # Return blank string if there are no vary fields if not vary_string: return '' return hashlib.sha1(vary_string.encode('utf-8')).hexdigest()[:8] _registered_operations = None @classmethod def _search_for_operations(cls): if cls._registered_operations is not None: return operations = [] for fn in hooks.get_hooks('register_image_operations'): operations.extend(fn()) cls._registered_operations = dict(operations) class AbstractRendition(models.Model): filter_spec = models.CharField(max_length=255, db_index=True) file = models.ImageField(upload_to=get_rendition_upload_to, width_field='width', height_field='height') width = models.IntegerField(editable=False) height = models.IntegerField(editable=False) focal_point_key = models.CharField(max_length=16, blank=True, default='', editable=False) @property def url(self): return self.file.url @property def alt(self): return self.image.title @property def attrs(self): """ The src, width, height, and alt attributes for an <img> tag, as a HTML string """ return flatatt(self.attrs_dict) @property def attrs_dict(self): """ A dict of the src, width, height, and alt attributes for an <img> tag. """ return OrderedDict([ ('src', self.url), ('width', self.width), ('height', self.height), ('alt', self.alt), ]) def img_tag(self, extra_attributes={}): attrs = self.attrs_dict.copy() attrs.update(extra_attributes) return mark_safe('<img{}>'.format(flatatt(attrs))) def __html__(self): return self.img_tag() def get_upload_to(self, filename): folder_name = 'images' filename = self.file.field.storage.get_valid_name(filename) return os.path.join(folder_name, filename) @classmethod def check(cls, **kwargs): errors = super(AbstractRendition, cls).check(**kwargs) if not cls._meta.abstract: if not any( set(constraint) == set(['image', 'filter_spec', 'focal_point_key']) for constraint in cls._meta.unique_together ): errors.append( checks.Error( "Custom rendition model %r has an invalid unique_together setting" % cls, hint="Custom rendition models must include the constraint " "('image', 'filter_spec', 'focal_point_key') in their unique_together definition.", obj=cls, id='wagtailimages.E001', ) ) return errors class Meta: abstract = True class Rendition(AbstractRendition): image = models.ForeignKey(Image, related_name='renditions', on_delete=models.CASCADE) class Meta: unique_together = ( ('image', 'filter_spec', 'focal_point_key'), )
34.208029
111
0.616505
675a302cf444d9735bc54159b5fce1527384a630
663
py
Python
fsdet/config/defaults.py
wz940216/few-shot-object-detection-custom
66277921a9c38b0f0d55a4f0d07c54363b17070b
[ "Apache-2.0" ]
4
2021-08-01T01:11:43.000Z
2021-11-01T07:14:18.000Z
fsdet/config/defaults.py
wz940216/few-shot-object-detection-custom
66277921a9c38b0f0d55a4f0d07c54363b17070b
[ "Apache-2.0" ]
null
null
null
fsdet/config/defaults.py
wz940216/few-shot-object-detection-custom
66277921a9c38b0f0d55a4f0d07c54363b17070b
[ "Apache-2.0" ]
1
2021-07-12T08:19:23.000Z
2021-07-12T08:19:23.000Z
from detectron2.config import CfgNode as CN from detectron2.config.defaults import _C # adding additional default values built on top of the default values in detectron2 _CC = _C # FREEZE Parameters _CC.MODEL.BACKBONE.FREEZE = False _CC.MODEL.PROPOSAL_GENERATOR.FREEZE = False _CC.MODEL.ROI_HEADS.FREEZE_FEAT = False # choose from "FastRCNNOutputLayers" and "CosineSimOutputLayers" _CC.MODEL.ROI_HEADS.OUTPUT_LAYER = "FastRCNNOutputLayers" # scale of cosine similarity (set to -1 for learnable scale) _CC.MODEL.ROI_HEADS.COSINE_SCALE = 20.0 # Backward Compatible options. _CC.MUTE_HEADER = True # Number of data loading threads _C.DATALOADER.NUM_WORKERS = 0
30.136364
83
0.80543
ef49c704b88afc03df0a6e9c6612cb725ce5b0f6
61
py
Python
src/timeatlas/metadata/__init__.py
fredmontet/timeatlas
9a439a913ef9a8a1ef9833b42e5fb4e988d7e35e
[ "MIT" ]
10
2020-08-25T09:23:02.000Z
2021-01-12T14:00:35.000Z
src/timeatlas/metadata/__init__.py
fredmontet/timeatlas
9a439a913ef9a8a1ef9833b42e5fb4e988d7e35e
[ "MIT" ]
140
2020-06-30T11:59:47.000Z
2021-08-23T20:58:43.000Z
src/timeatlas/metadata/__init__.py
fredmontet/timeatlas
9a439a913ef9a8a1ef9833b42e5fb4e988d7e35e
[ "MIT" ]
null
null
null
from .metadata import Metadata __all__ = [ 'Metadata' ]
10.166667
30
0.672131
7618b04373475ca406b4ebe19fdcfabbc188a6e7
529
py
Python
mmdet/version.py
ccw1996/mmdetection
6b87ac22b8d9dea8cc28b9ce84909e6c311e6268
[ "Apache-2.0" ]
2
2021-11-27T03:30:42.000Z
2022-01-01T05:14:18.000Z
mmdet/version.py
Bella-ing/mmdetection
70f6d9cfade4a2f0b198e4f64776521d181b28be
[ "Apache-2.0" ]
1
2020-05-20T08:13:44.000Z
2020-05-20T08:13:44.000Z
mmdet/version.py
Bella-ing/mmdetection
70f6d9cfade4a2f0b198e4f64776521d181b28be
[ "Apache-2.0" ]
null
null
null
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.22.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
26.45
56
0.642722
a18d9e84e9e9123d545f3da558d943e975bcfa2a
2,323
py
Python
accounts/webService/userAPI.py
vahidtwo/simpleSocialSite
40d971f04b7127811b7e277ddb3068fb451e9574
[ "MIT" ]
1
2020-05-16T16:14:51.000Z
2020-05-16T16:14:51.000Z
accounts/webService/userAPI.py
vahidtwo/simpleSocialSite
40d971f04b7127811b7e277ddb3068fb451e9574
[ "MIT" ]
5
2021-03-18T23:21:18.000Z
2022-01-13T02:10:19.000Z
accounts/webService/userAPI.py
vahidtwo/simpleSocialSite
40d971f04b7127811b7e277ddb3068fb451e9574
[ "MIT" ]
null
null
null
from django.http import JsonResponse from rest_framework.parsers import FileUploadParser from rest_framework.status import ( HTTP_400_BAD_REQUEST, HTTP_200_OK, HTTP_404_NOT_FOUND ) from rest_framework.views import APIView from rest_framework.permissions import IsAuthenticated from accounts.models import User from accounts.serializers import UserSerializer from chanel.models import Follow from chanel.serializers import FollowSerializer from posts.models import Post class UserAPI(APIView): permission_classes = (IsAuthenticated,) parser_class = (FileUploadParser,) def put(self, request): _request_perms = request.data try: _request_perms['title'] = str(_request_perms.get('picture').name) except Exception: pass user = request.user ser = UserSerializer(user, _request_perms, partial=True) if ser.is_valid(): ser.save() return JsonResponse(data={'msg': 'user update', 'success': True}, status=HTTP_200_OK) else: return JsonResponse(data={'msg': ser.errors, 'success': False}, status=HTTP_400_BAD_REQUEST) def get(self, request, username=None): data = {} data['user_post_count'] = Post.objects.filter(author=request.user).count() if username: try: user = User.objects.get(username=username) except User.DoesNotExist: return JsonResponse(data={'msg': 'user not found', 'success': False}, status=HTTP_404_NOT_FOUND) follower = Follow.objects.filter(chanel__owner=user) following = Follow.objects.filter(user=user) data['follower'] = FollowSerializer(follower, many=True).data data['follower_count'] = follower.count() data['following'] = FollowSerializer(following, many=True).data data['following_count'] = following.count() data['user_data'] = UserSerializer(user).data return JsonResponse(data={'data': data, 'success': True}, status=HTTP_200_OK) else: data['user_data'] = UserSerializer(request.user).data follower = Follow.objects.filter(chanel__owner=request.user) following = Follow.objects.filter(user=request.user) data['follower'] = FollowSerializer(follower, many=True).data data['follower_count'] = follower.count() data['following'] = FollowSerializer(following, many=True).data data['following_count'] = following.count() return JsonResponse(data={'data': data, 'success': True}, status=HTTP_200_OK)
39.372881
100
0.754628
5c46ff58add2dce689de09d41ce6de546ad3db41
465
py
Python
Typing/exa.py
simone-trubian/blog-posts
85a80df1f8ef85e796470656838792f29c80c3a8
[ "BSD-3-Clause" ]
null
null
null
Typing/exa.py
simone-trubian/blog-posts
85a80df1f8ef85e796470656838792f29c80c3a8
[ "BSD-3-Clause" ]
null
null
null
Typing/exa.py
simone-trubian/blog-posts
85a80df1f8ef85e796470656838792f29c80c3a8
[ "BSD-3-Clause" ]
null
null
null
from typing import Tuple, TypeVar # This will Fail! def incBoth(x: int, y:int) -> (int, int): return(x + 1, y + 1) #def incBoth(x: int, y:int) -> Tuple[int, int]: # return(x + 1, y + 1) Pair = Tuple[int, int] Num = TypeVar('Num', int, float, complex) def incPair(x: int, y:int) -> Pair: return(x + 1, y + 1) #def add(x: int, y: int) -> int: # return x + y def add(x: Num, y: Num) -> Num: return x + y # Wrong var = add('hello ', 'reader')
18.6
47
0.55914
411a19b63653dcbabb4faa1cf86122114b7af75b
2,226
py
Python
sensor_callbacks.py
motorox/sensors-raspi
dc8ba50bd5deb2afdc2381c4fbf915cd66819603
[ "MIT" ]
null
null
null
sensor_callbacks.py
motorox/sensors-raspi
dc8ba50bd5deb2afdc2381c4fbf915cd66819603
[ "MIT" ]
1
2018-05-16T08:38:59.000Z
2018-05-16T08:38:59.000Z
sensor_callbacks.py
motorox/sensors-raspi
dc8ba50bd5deb2afdc2381c4fbf915cd66819603
[ "MIT" ]
null
null
null
import time from sensor_utils import calcAccel, calcGyro, calcHum, calcMagn, calcTmpTarget class SensorCallbacks: data = {} def __init__(self, addr): self.data['addr'] = addr self.data['keys'] = 0 def tmp007(self, v): objT = (v[1]<<8)+v[0] ambT = (v[3]<<8)+v[2] #print 'ObjT: ', objT #print 'Ambient: ', ambT/128.0 self.data['ambtemp'] = ambT/128.0 targetT = calcTmpTarget(objT, ambT) self.data['temp'] = targetT celsiusVal = (targetT - 32)*5.0/9.0 #FAHR to Celsius self.data['celsiustemp'] = celsiusVal #print "T007 %.1f" % celsiusVal def lux(self, v): lux = (v[1]<<8)+v[0] self.data['lux'] = lux #print 'Lux', lux def keys(self, v): keys = v[0] self.data['keys'] = keys #print 'Keys', keys def humidity(self, v): rawT = (v[1]<<8)+v[0] rawH = (v[3]<<8)+v[2] (t, rh) = calcHum(rawT, rawH) self.data['humdtemp'] = t self.data['humd'] = rh #print "HUMD %.1f" % rh #print "TEMP %.1f" % t def baro(self, v): rawT = ((v[2]<<16) + (v[1]<<8)+v[0])/100.0 # in Celsius rawP = ((v[5]<<16) + (v[4]<<8)+v[3])/100.0 # in hPa self.data['barotemp'] = rawT self.data['baropress'] = rawP self.data['time'] = long(time.time() * 1000) def movement(self, v): # enable magnetometer mx = (v[13]<<8)+v[12] my = (v[15]<<8)+v[14] mz = (v[17]<<8)+v[16] (mgnx, mgny, mgnz) = calcMagn(mx, my, mz) self.data['magnx'] = mgnx self.data['magny'] = mgny self.data['magnz'] = mgnz # enable accelerometer ax = (v[7]<<8)+v[6] ay = (v[9]<<8)+v[8] az = (v[11]<<8)+v[10] (axyz, mag) = calcAccel(ax, ay, az) self.data['accelx'] = axyz[0] self.data['accely'] = axyz[1] self.data['accelz'] = axyz[2] # enable gyroscope gx = (v[1]<<8)+v[0] gy = (v[3]<<8)+v[2] gz = (v[5]<<8)+v[4] gxyz = calcGyro(gx, gy, gz) self.data['gyrox'] = gxyz[0] self.data['gyroy'] = gxyz[1] self.data['gyroz'] = gxyz[2]
29.289474
78
0.478437
f1ad5862a439dba9506139c01d07126ec3e546b5
1,013
py
Python
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/cli.py
jlant/cookiecutter-pyproj
ad5895f65b7e6e2541f8aee7498c125a0c144e62
[ "MIT" ]
null
null
null
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/cli.py
jlant/cookiecutter-pyproj
ad5895f65b7e6e2541f8aee7498c125a0c144e62
[ "MIT" ]
null
null
null
{{cookiecutter.project_slug}}/{{cookiecutter.project_slug}}/cli.py
jlant/cookiecutter-pyproj
ad5895f65b7e6e2541f8aee7498c125a0c144e62
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Click command line interface for {{ cookiecutter.project_slug }}. Notes ----- Click is a great Python package for creating nice command line interfaces. Please see `Click documentation <http://click.pocoo.org/>`_. """ import sys import click import {{cookiecutter.project_slug}} @click.command() @click.option("--verbose", is_flag=True, help="Print detailed results from analysis/model") def main(verbose): """Command line interface for iris. Run all analysis, models, and/or main script from a command line interface. """ click.echo("Running analysis from a Click command line interface") {{cookiecutter.project_slug}}.main() click.echo("Click allows you to easily add various commands and options " "as you see fit.") click.echo() if verbose: click.echo("Verbose mode is on.") click.echo("Can print more detailed results from your analysis/model.") return 0 if __name__ == "__main__": sys.exit(main())
25.974359
91
0.685094
1630f80e291bd8ee2f184901062605f46466ccd8
3,552
py
Python
siam_tracker/models/alexnet.py
songheony/SPM-Tracker
41fd91ec42cf9072fe44d45c5bb68993f28a12ad
[ "MIT" ]
32
2019-08-30T09:50:03.000Z
2021-10-12T08:36:25.000Z
siam_tracker/models/alexnet.py
songheony/SPM-Tracker
41fd91ec42cf9072fe44d45c5bb68993f28a12ad
[ "MIT" ]
3
2019-09-05T09:45:52.000Z
2020-12-02T02:42:08.000Z
siam_tracker/models/alexnet.py
songheony/SPM-Tracker
41fd91ec42cf9072fe44d45c5bb68993f28a12ad
[ "MIT" ]
16
2019-09-10T09:04:53.000Z
2021-09-13T12:44:47.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from math import ceil from torch import nn from collections import OrderedDict from .base import BackBoneCNN, NetworkInfo class AlexNetConv(BackBoneCNN): """ The standard AlexNet convolutional backbone. For more details, please refer to AlexNet paper: "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012 """ num_blocks = 5 blocks = dict( conv1=NetworkInfo(stride=4, channel=96, rf=15, size_func=lambda x: int(ceil(x / 4.0))), conv2=NetworkInfo(stride=8, channel=256, rf=39, size_func=lambda x: int(ceil(x / 8.0))), conv3=NetworkInfo(stride=8, channel=384, rf=55, size_func=lambda x: int(ceil(x / 8.0))), conv4=NetworkInfo(stride=8, channel=384, rf=71, size_func=lambda x: int(ceil(x / 8.0))), conv5=NetworkInfo(stride=8, channel=256, rf=87, size_func=lambda x: int(ceil(x / 8.0))), ) def __init__(self, padding=True): super(AlexNetConv, self).__init__() if padding: self.conv1 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(3, 96, 11, stride=2, padding=5, bias=True)), ('relu', nn.ReLU()), ('pool', nn.MaxPool2d(3, stride=2, padding=1, dilation=1)), ('norm', nn.LocalResponseNorm(size=5, alpha=1e-4, beta=0.75, k=1.0))])) self.conv2 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(96, 256, 5, stride=1, padding=2, groups=2, bias=True)), ('relu', nn.ReLU()), ('pool', nn.MaxPool2d(3, stride=2, padding=1, dilation=1)), ('norm', nn.LocalResponseNorm(size=5, alpha=1e-4, beta=0.75, k=1.0))])) self.conv3 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(256, 384, kernel_size=3, padding=1, bias=True)), ('relu', nn.ReLU())])) self.conv4 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2, bias=True)), ('relu', nn.ReLU())])) self.conv5 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2, bias=True)), ('relu', nn.ReLU())])) else: self.conv1 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(3, 96, 11, stride=2, padding=0, bias=True)), ('relu', nn.ReLU()), ('pool', nn.MaxPool2d(3, stride=2, padding=0, dilation=1)), ('norm', nn.LocalResponseNorm(size=5, alpha=1e-4, beta=0.75, k=1.0))])) self.conv2 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(96, 256, 5, stride=1, padding=0, groups=2, bias=True)), ('relu', nn.ReLU()), ('pool', nn.MaxPool2d(3, stride=2, padding=0, dilation=1)), ('norm', nn.LocalResponseNorm(size=5, alpha=1e-4, beta=0.75, k=1.0))])) self.conv3 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(256, 384, kernel_size=3, padding=0, bias=True)), ('relu', nn.ReLU())])) self.conv4 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(384, 384, kernel_size=3, padding=0, groups=2, bias=True)), ('relu', nn.ReLU())])) self.conv5 = nn.Sequential(OrderedDict([ ('conv', nn.Conv2d(384, 256, kernel_size=3, padding=0, groups=2, bias=True)), ('relu', nn.ReLU())]))
50.742857
96
0.560811
04acc1265af3116ae378f05cee69520a7bf29133
6,936
py
Python
backend/falling_brook_31504/settings.py
crowdbotics-apps/falling-brook-31504
6b71c01e67f9716a207c77fc15ce7a96723d9de5
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/falling_brook_31504/settings.py
crowdbotics-apps/falling-brook-31504
6b71c01e67f9716a207c77fc15ce7a96723d9de5
[ "FTL", "AML", "RSA-MD" ]
7
2021-10-18T03:00:36.000Z
2021-10-18T03:00:44.000Z
backend/falling_brook_31504/settings.py
crowdbotics-apps/falling-brook-31504
6b71c01e67f9716a207c77fc15ce7a96723d9de5
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" Django settings for falling_brook_31504 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging from modules.manifest import get_modules env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', ] MODULES_APPS = get_modules() INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS + MODULES_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'falling_brook_31504.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'web_build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'falling_brook_31504.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
29.641026
112
0.731257
be411d7942432939d76dc1f79faf68059457c4e9
7,042
py
Python
demo/demo.py
ChenRIT/Essentia
8309d52b1e46562646129dc0c481897fa352bff4
[ "Apache-2.0" ]
null
null
null
demo/demo.py
ChenRIT/Essentia
8309d52b1e46562646129dc0c481897fa352bff4
[ "Apache-2.0" ]
null
null
null
demo/demo.py
ChenRIT/Essentia
8309d52b1e46562646129dc0c481897fa352bff4
[ "Apache-2.0" ]
null
null
null
import sys sys.path.append('./scripts/essentia') import json import flask import networkx as nx from networkx.readwrite import json_graph # from scripts.fsa import * # from scripts.generate_word_alignment import * # from scripts.preprocessing import create_valid_groups from generate_word_alignment import nlp, make_alignment_matrix, make_alignment_matrix_with_rules from preprocessing import create_valid_groups from fsa import create_fsa, process_sents, generate_pairwise_paths, find_phrase_paraphrases, idx_to_node, start_state, end_state sultan_aligner = True def prep_graph(G_temp, names): # Adding the names to the graph print("names: {}".format(names)) for n, n_data in G_temp.nodes(data=True): n_data['name'] = names[n] # Collapsing long paths collapse_paths(G_temp) # The graph needs attribute name (used when mouse hover over nodes) and # a weight attribute on each edge G = nx.MultiDiGraph() node2id, id2node = {}, {} for id_, n in enumerate(G_temp): node2id[n] = id_ id2node[id_] = n for i in range(len(id2node)): if id2node[i] == 0 or id2node[i] == 1: x_pos = 100 + id2node[i] * 700 G.add_node(i, name=G_temp.nodes[id2node[i]]['name'], group=id2node[i], size=8, fixed=True, x=x_pos, y=200) else: G.add_node(i, name=G_temp.nodes[id2node[i]]['name'], group=2, size=5, fixed=False) for (x, y) in G_temp.edges(): G.add_edge(node2id[x], node2id[y], weight=1) return G def collapse_paths(G): has_collapse = True while has_collapse: has_collapse = False for (x, y) in G.edges(): if G.in_degree(x) == 1 and G.out_degree(x) == 1 and \ G.in_degree(y) == 1 and G.out_degree(y) == 1: has_collapse = True new_node = str(x) + ' ' + str(y) new_name = G.nodes[x]['name'] + ' ' + G.nodes[y]['name'] G.add_node(new_node, name=new_name) for (z, _) in G.in_edges(x): G.add_edge(z, new_node) for (_, z) in G.out_edges(y): G.add_edge(new_node, z) G.remove_nodes_from([x, y]) break return G def build_graph_test(sents): # TODO: We should make a graph from sentences # This is a dummy solution for now. G = nx.read_adjlist('example.adjlist', create_using=nx.MultiDiGraph(), nodetype=int) raw_names = json.load(open('node_to_text_dic.json', 'r')) names = {} for node_str, values_str in raw_names.items(): node = int(node_str) if node == 0: names[node] = 'START' elif node == 1: names[node] = 'END' else: values = eval(values_str) if values_str != "" else {} all_words = list(set([values[x][1].lower() for x in values])) names[node] = '/'.join(all_words) return G, names def build_graph(sents): origin_sents = sents tk_sents = {} for i, sent in enumerate(sents): doc = nlp(sent) tk_st = [tk.text for tk in doc] tk_sents[i] = tk_st align_matrix = None sents_cluster = None if sultan_aligner: align_matrix = make_alignment_matrix(origin_sents) #merge_chunks(align_matrix, tk_sents, origin_sents) sents_cluster = create_valid_groups(align_matrix, tk_sents) else: align_matrix = make_alignment_matrix_with_rules(origin_sents) sents_cluster = create_valid_groups(align_matrix, tk_sents) #sents_cluster = [range(len(align_matrix))] # print("sentence clusters: {}".format(sents_cluster)) # print(align_matrix) fsa = create_fsa(tk_sents) for cluster in sents_cluster: fsa = process_sents(fsa, tk_sents, align_matrix, cluster) raw_names = idx_to_node names = {} for node_str, values_str in raw_names.items(): # print("node_str: {}".format(node_str)) # print("values_str: {}".format(values_str)) node = int(node_str) if node == start_state: names[node] = 'START' elif node == end_state: names[node] = 'END' else: values = eval(values_str) if values_str != "" else {} all_words = list(set([values[x][1].lower() for x in values])) names[node] = '/'.join(all_words) return fsa, names def main(): print('Wrote node-link JSON data to force/force.json') # Serve the file over http to allow for cross origin requests app = flask.Flask(__name__, static_folder="force") @app.route('/<path:path>') def static_proxy(path): return flask.send_from_directory(app.static_folder, path) @app.route('/') def index(): return flask.send_from_directory(app.static_folder, "index.html") @app.route('/render', methods=['POST']) def renderit(): sents = flask.request.form['sents'].split('\r\n') G, names = build_graph(sents) # writing optional expressions #pair_to_paths = generate_pairwise_paths(G) #print("pair_to_paths: {}".format(pair_to_paths)) #ndpair_to_exps = find_optional_exps(pair_to_paths) #print("ndpair_to_exps: {}".format(ndpair_to_exps)) # Output alternative expressions nd_pair_to_paras = find_phrase_paraphrases(G) with open('./demo/force/alt_exp.txt', 'w') as out_file: #out_file.write("Optional expressions:\n") # out_file.write('This is a test!\n') # out_file.write(' (1) This is another test!\n') # out_file.write(' (*) This is nothing!\n') count = 0 for _, v in nd_pair_to_paras.items(): # for exp in v: # out_file.write(exp) # out_file.write('\n') #print("v: {}".format(v)) out_file.write("Group {}: ".format(count)) out_file.write(str(v)) out_file.write('\n\n') count += 1 # Post-processing for demo G = prep_graph(G, names) # merge consecutive nodes together for demo # write json formatted data d = json_graph.node_link_data(G) # node-link format to serialize # write json json.dump(d, open('./demo/force/force.json', 'w')) return flask.send_from_directory(app.static_folder, "force.html") # this is to avoid caching @app.after_request def add_header(r): """ Add headers to both force latest IE rendering engine or Chrome Frame, and also to cache the rendered page for 10 minutes. """ r.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" r.headers["Pragma"] = "no-cache" r.headers["Expires"] = "0" r.headers['Cache-Control'] = 'public, max-age=0' return r app.run(port=8000) if __name__ == "__main__": main()
35.928571
128
0.596279