hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
a761022844f7e41562d983142585602cd2c64882
207
py
Python
process_2.py
renansantosmendes/benchmark_tests
106f842b304a7fc9fa348ea0b6d50f448e46538b
[ "Apache-2.0" ]
null
null
null
process_2.py
renansantosmendes/benchmark_tests
106f842b304a7fc9fa348ea0b6d50f448e46538b
[ "Apache-2.0" ]
null
null
null
process_2.py
renansantosmendes/benchmark_tests
106f842b304a7fc9fa348ea0b6d50f448e46538b
[ "Apache-2.0" ]
null
null
null
from datetime import datetime print('Process 2') print('start:', datetime.now().strftime("%d/%m/%Y %H:%M:%S")) for _ in range(100000000): pass print('end:', datetime.now().strftime("%d/%m/%Y %H:%M:%S"))
29.571429
61
0.63285
6e27cf1290f844f27aaf54398c3595aa12f64f0d
9,082
py
Python
trimesh/scene/lighting.py
LinJiarui/trimesh
5f925bbab447e733d6f1ebf0956b202d18271ee1
[ "MIT" ]
1
2020-05-22T13:56:05.000Z
2020-05-22T13:56:05.000Z
trimesh/scene/lighting.py
LinJiarui/trimesh
5f925bbab447e733d6f1ebf0956b202d18271ee1
[ "MIT" ]
null
null
null
trimesh/scene/lighting.py
LinJiarui/trimesh
5f925bbab447e733d6f1ebf0956b202d18271ee1
[ "MIT" ]
null
null
null
""" lighting.py -------------- Hold basic information about lights. Forked from the light model in `pyrender`: https://github.com/mmatl/pyrender """ import abc import sys import numpy as np from .. import util from .. import visual from .. import transformations if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta('ABC', (), {}) # default light color _DEFAULT_RGBA = np.array([60, 60, 60, 255], dtype=np.uint8) class Light(ABC): """ Base class for all light objects. Attributes ---------- name : str, optional Name of the light. color : (4,) uint8 RGBA value for the light's color in linear space. intensity : float Brightness of light. The units that this is defined in depend on the type of light: point and spot lights use luminous intensity in candela (lm/sr) while directional lights use illuminance in lux (lm/m2). radius : float Cutoff distance at which light's intensity may be considered to have reached zero. Supported only for point and spot lights Must be > 0.0 If None, the radius is assumed to be infinite. """ def __init__(self, name=None, color=None, intensity=None, radius=None): if name is None: # if name is not passed, make it something unique self.name = 'light_{}'.format(util.unique_id(6).upper()) else: # otherwise assign it self.name = name self.color = color self.intensity = intensity self.radius = radius @property def color(self): return self._color @color.setter def color(self, value): if value is None: self._color = _DEFAULT_RGBA else: value = visual.to_rgba(value) if len(value.shape) == 2: value = value[0] if value.shape != (4,): raise ValueError("couldn't convert color to RGBA!") # uint8 RGB color self._color = value @property def intensity(self): return self._intensity @intensity.setter def intensity(self, value): if value is not None: self._intensity = float(value) else: self._intensity = 1.0 @property def radius(self): return self._radius @radius.setter def radius(self, value): if value is None or value < 0.0: self._radius = value else: self._radius = float(value) class DirectionalLight(Light): """ Directional lights are light sources that act as though they are infinitely far away and emit light in the direction of the local -z axis. This light type inherits the orientation of the node that it belongs to; position and scale are ignored except for their effect on the inherited node orientation. Because it is at an infinite distance, the light is not attenuated. Its intensity is defined in lumens per metre squared, or lux (lm/m2). Attributes ---------- name : str, optional Name of the light. color : (4,) unit8 RGBA value for the light's color in linear space. intensity : float Brightness of light. The units that this is defined in depend on the type of light. point and spot lights use luminous intensity in candela (lm/sr), while directional lights use illuminance in lux (lm/m2). radius : float Cutoff distance at which light's intensity may be considered to have reached zero. Supported only for point and spot lights, must be > 0. If None, the radius is assumed to be infinite. """ def __init__(self, name=None, color=None, intensity=None, radius=None): super(DirectionalLight, self).__init__( name=name, color=color, intensity=intensity, radius=radius ) class PointLight(Light): """ Point lights emit light in all directions from their position in space; rotation and scale are ignored except for their effect on the inherited node position. The brightness of the light attenuates in a physically correct manner as distance increases from the light's position (i.e. brightness goes like the inverse square of the distance). Point light intensity is defined in candela, which is lumens per square radian (lm/sr). Attributes ---------- name : str, optional Name of the light. color : (4,) uint8 RGBA value for the light's color in linear space. intensity : float Brightness of light. The units that this is defined in depend on the type of light. point and spot lights use luminous intensity in candela (lm/sr), while directional lights use illuminance in lux (lm/m2). radius : float Cutoff distance at which light's intensity may be considered to have reached zero. Supported only for point and spot lights, must be > 0. If None, the radius is assumed to be infinite. """ def __init__(self, name=None, color=None, intensity=None, radius=None): super(PointLight, self).__init__( name=name, color=color, intensity=intensity, radius=radius ) class SpotLight(Light): """ Spot lights emit light in a cone in the direction of the local -z axis. The angle and falloff of the cone is defined using two numbers, the `innerConeAngle` and `outerConeAngle`. As with point lights, the brightness also attenuates in a physically correct manner as distance increases from the light's position (i.e. brightness goes like the inverse square of the distance). Spot light intensity refers to the brightness inside the `innerConeAngle` (and at the location of the light) and is defined in candela, which is lumens per square radian (lm/sr). A spot light's position and orientation are inherited from its node transform. Inherited scale does not affect cone shape, and is ignored except for its effect on position and orientation. Attributes ---------- name : str, optional Name of the light. color : (4,) uint8 RGBA value for the light's color in linear space. intensity : float Brightness of light. The units that this is defined in depend on the type of light. point and spot lights use luminous intensity in candela (lm/sr), while directional lights use illuminance in lux (lm/m2). radius : float Cutoff distance at which light's intensity may be considered to have reached zero. Supported only for point and spot lights, must be > 0. If None, the radius is assumed to be infinite. innerConeAngle : float Angle, in radians, from centre of spotlight where falloff begins. Must be greater than or equal to `0` and less than `outerConeAngle`. outerConeAngle : float Angle, in radians, from centre of spotlight where falloff ends. Must be greater than `innerConeAngle` and less than or equal to `PI / 2.0`. """ def __init__(self, name=None, color=None, intensity=None, radius=None, innerConeAngle=0.0, outerConeAngle=np.pi / 4.0): super(SpotLight, self).__init__( name=name, color=color, intensity=intensity, radius=radius ) self.outerConeAngle = outerConeAngle self.innerConeAngle = innerConeAngle @property def innerConeAngle(self): return self._innerConeAngle @innerConeAngle.setter def innerConeAngle(self, value): if value < 0.0 or value > self.outerConeAngle: raise ValueError('Invalid value for inner cone angle') self._innerConeAngle = float(value) @property def outerConeAngle(self): return self._outerConeAngle @outerConeAngle.setter def outerConeAngle(self, value): if value < 0.0 or value > np.pi / 2.0 + 1e-9: raise ValueError('Invalid value for outer cone angle') self._outerConeAngle = float(value) def autolight(scene): """ Generate a list of lights for a scene that looks decent. Parameters -------------- scene : trimesh.Scene Scene with geometry Returns -------------- lights : [Light] List of light objects transforms : (len(lights), 4, 4) float Transformation matrices for light positions. """ # create two default point lights lights = [PointLight(), PointLight()] # create two translation matrices for bounds corners transforms = [transformations.translation_matrix(b) for b in scene.bounds] return lights, transforms
32.205674
91
0.62233
f7c83712130bfd4becefa3c99a09f0c9e7be5c28
20,999
py
Python
litex/soc/cores/cpu/vexriscv_smp/core.py
JosephBushagour/litex
2b49430f2c53c4a8caa66b678af4660127b546e4
[ "ADSL" ]
null
null
null
litex/soc/cores/cpu/vexriscv_smp/core.py
JosephBushagour/litex
2b49430f2c53c4a8caa66b678af4660127b546e4
[ "ADSL" ]
null
null
null
litex/soc/cores/cpu/vexriscv_smp/core.py
JosephBushagour/litex
2b49430f2c53c4a8caa66b678af4660127b546e4
[ "ADSL" ]
null
null
null
# # This file is part of LiteX. # # Copyright (c) 2020 Florent Kermarrec <florent@enjoy-digital.fr> # Copyright (c) 2020 Dolu1990 <charles.papon.90@gmail.com> # SPDX-License-Identifier: BSD-2-Clause import os from os import path from migen import * from litex import get_data_mod from litex.soc.interconnect import wishbone from litex.soc.interconnect.csr import * from litex.soc.cores.cpu import CPU, CPU_GCC_TRIPLE_RISCV32 import os class Open(Signal): pass # Variants ----------------------------------------------------------------------------------------- CPU_VARIANTS = { "standard": "VexRiscv", "linux": "VexRiscv", # Similar to standard. } # VexRiscv SMP ------------------------------------------------------------------------------------- class VexRiscvSMP(CPU): name = "vexriscv" human_name = "VexRiscv SMP" variants = CPU_VARIANTS data_width = 32 endianness = "little" gcc_triple = CPU_GCC_TRIPLE_RISCV32 linker_output_format = "elf32-littleriscv" nop = "nop" io_regions = {0x80000000: 0x80000000} # Origin, Length. # Default parameters. cpu_count = 1 dcache_size = 4096 icache_size = 4096 dcache_ways = 1 icache_ways = 1 coherent_dma = False litedram_width = 32 dcache_width = 32 icache_width = 32 aes_instruction = False out_of_order_decoder = True wishbone_memory = False with_fpu = False cpu_per_fpu = 4 with_rvc = False dtlb_size = 4 itlb_size = 4 # Command line configuration arguments. @staticmethod def args_fill(parser): parser.add_argument("--cpu-count", default=1, help="Number of CPU(s) in the cluster.", type=int) parser.add_argument("--with-coherent-dma", action="store_true", help="Enable Coherent DMA Slave interface.") parser.add_argument("--without-coherent-dma", action="store_true", help="Disable Coherent DMA Slave interface.") parser.add_argument("--dcache-width", default=None, help="L1 data cache bus width.") parser.add_argument("--icache-width", default=None, help="L1 instruction cache bus width.") parser.add_argument("--dcache-size", default=None, help="L1 data cache size in byte per CPU.") parser.add_argument("--dcache-ways", default=None, help="L1 data cache ways per CPU.") parser.add_argument("--icache-size", default=None, help="L1 instruction cache size in byte per CPU.") parser.add_argument("--icache-ways", default=None, help="L1 instruction cache ways per CPU") parser.add_argument("--aes-instruction", default=None, help="Enable AES instruction acceleration.") parser.add_argument("--without-out-of-order-decoder", action="store_true", help="Reduce area at cost of peripheral access speed") parser.add_argument("--with-wishbone-memory" , action="store_true", help="Disable native LiteDRAM interface") parser.add_argument("--with-fpu" , action="store_true", help="Enable the F32/F64 FPU") parser.add_argument("--cpu-per-fpu" , default="4", help="Maximal ratio between CPU count and FPU count. Will instanciate as many FPU as necessary.") parser.add_argument("--with-rvc" , action="store_true", help="Enable RISC-V compressed instruction support") parser.add_argument("--dtlb-size", default=4, help="Data TLB size.") parser.add_argument("--itlb-size", default=4, help="Instruction TLB size.") @staticmethod def args_read(args): VexRiscvSMP.cpu_count = args.cpu_count if int(args.cpu_count) != 1: VexRiscvSMP.icache_width = 64 VexRiscvSMP.dcache_width = 64 VexRiscvSMP.dcache_size = 8192 VexRiscvSMP.icache_size = 8192 VexRiscvSMP.dcache_ways = 2 VexRiscvSMP.icache_ways = 2 VexRiscvSMP.coherent_dma = True if(args.with_coherent_dma): VexRiscvSMP.coherent_dma = bool(True) if(args.without_coherent_dma): VexRiscvSMP.coherent_dma = bool(False) if(args.dcache_width): VexRiscvSMP.dcache_width = int(args.dcache_width) if(args.icache_width): VexRiscvSMP.icache_width = int(args.icache_width) if(args.dcache_size): VexRiscvSMP.dcache_size = int(args.dcache_size) if(args.icache_size): VexRiscvSMP.icache_size = int(args.icache_size) if(args.dcache_ways): VexRiscvSMP.dcache_ways = int(args.dcache_ways) if(args.icache_ways): VexRiscvSMP.icache_ways = int(args.icache_ways) if(args.aes_instruction): VexRiscvSMP.aes_instruction = bool(args.aes_instruction) if(args.without_out_of_order_decoder): VexRiscvSMP.out_of_order_decoder = False if(args.with_wishbone_memory): VexRiscvSMP.wishbone_memory = True if(args.with_fpu): VexRiscvSMP.with_fpu = True VexRiscvSMP.icache_width = 64 VexRiscvSMP.dcache_width = 64 # Required for F64 if(args.cpu_per_fpu): VexRiscvSMP.cpu_per_fpu = args.cpu_per_fpu if(args.with_rvc): VexRiscvSMP.with_rvc = True if(args.dtlb_size): VexRiscvSMP.dtlb_size = int(args.dtlb_size) if(args.itlb_size): VexRiscvSMP.itlb_size = int(args.itlb_size) # ABI. @staticmethod def get_abi(): abi = "ilp32" if VexRiscvSMP.with_fpu: abi +="d" return abi # Arch. @staticmethod def get_arch(): arch = "rv32ima" if VexRiscvSMP.with_fpu: arch += "fd" if VexRiscvSMP.with_rvc: arch += "c" return arch # Memory Mapping. @property def mem_map(self): return { "rom": 0x00000000, "sram": 0x10000000, "main_ram": 0x40000000, "csr": 0xf0000000, "clint": 0xf0010000, "plic": 0xf0c00000, } # GCC Flags. @property def gcc_flags(self): flags = f" -march={VexRiscvSMP.get_arch()} -mabi={VexRiscvSMP.get_abi()}" flags += f" -D__vexriscv__" flags += f" -DUART_POLLING" return flags # Cluster Name Generation. @staticmethod def generate_cluster_name(): ldw = f"Ldw{VexRiscvSMP.litedram_width}" VexRiscvSMP.cluster_name = f"VexRiscvLitexSmpCluster_" \ f"Cc{VexRiscvSMP.cpu_count}" \ "_" \ f"Iw{VexRiscvSMP.icache_width}" \ f"Is{VexRiscvSMP.icache_size}" \ f"Iy{VexRiscvSMP.icache_ways}" \ "_" \ f"Dw{VexRiscvSMP.dcache_width}" \ f"Ds{VexRiscvSMP.dcache_size}" \ f"Dy{VexRiscvSMP.dcache_ways}" \ "_" \ f"ITs{VexRiscvSMP.itlb_size}" \ f"DTs{VexRiscvSMP.dtlb_size}" \ f"{'_'+ldw if not VexRiscvSMP.wishbone_memory else ''}" \ f"{'_Cdma' if VexRiscvSMP.coherent_dma else ''}" \ f"{'_Aes' if VexRiscvSMP.aes_instruction else ''}" \ f"{'_Ood' if VexRiscvSMP.out_of_order_decoder else ''}" \ f"{'_Wm' if VexRiscvSMP.wishbone_memory else ''}" \ f"{'_Fpu' + str(VexRiscvSMP.cpu_per_fpu) if VexRiscvSMP.with_fpu else ''}" \ f"{'_Rvc' if VexRiscvSMP.with_rvc else ''}" # Default Configs Generation. @staticmethod def generate_default_configs(): # Single cores. for data_width in [16, 32, 64, 128]: VexRiscvSMP.litedram_width = data_width VexRiscvSMP.icache_width = 32 VexRiscvSMP.dcache_width = 32 VexRiscvSMP.coherent_dma = False VexRiscvSMP.cpu_count = 1 # Low cache amount. VexRiscvSMP.dcache_size = 4096 VexRiscvSMP.icache_size = 4096 VexRiscvSMP.dcache_ways = 1 VexRiscvSMP.icache_ways = 1 # Without DMA. VexRiscvSMP.coherent_dma = False VexRiscvSMP.generate_cluster_name() VexRiscvSMP.generate_netlist() # With DMA. VexRiscvSMP.coherent_dma = True VexRiscvSMP.generate_cluster_name() VexRiscvSMP.generate_netlist() # High cache amount. VexRiscvSMP.dcache_size = 8192 VexRiscvSMP.icache_size = 8192 VexRiscvSMP.dcache_ways = 2 VexRiscvSMP.icache_ways = 2 VexRiscvSMP.icache_width = 32 if data_width < 64 else 64 VexRiscvSMP.dcache_width = 32 if data_width < 64 else 64 # Without DMA. VexRiscvSMP.coherent_dma = False VexRiscvSMP.generate_cluster_name() VexRiscvSMP.generate_netlist() # With DMA. VexRiscvSMP.coherent_dma = True VexRiscvSMP.generate_cluster_name() VexRiscvSMP.generate_netlist() # Multi cores. for core_count in [2,4]: VexRiscvSMP.litedram_width = 128 VexRiscvSMP.icache_width = 64 VexRiscvSMP.dcache_width = 64 VexRiscvSMP.dcache_size = 8192 VexRiscvSMP.icache_size = 8192 VexRiscvSMP.dcache_ways = 2 VexRiscvSMP.icache_ways = 2 VexRiscvSMP.coherent_dma = True VexRiscvSMP.cpu_count = core_count VexRiscvSMP.generate_cluster_name() VexRiscvSMP.generate_netlist() # Netlist Generation. @staticmethod def generate_netlist(): print(f"Generating cluster netlist") vdir = get_data_mod("cpu", "vexriscv_smp").data_location gen_args = [] if(VexRiscvSMP.coherent_dma): gen_args.append("--coherent-dma") gen_args.append(f"--cpu-count={VexRiscvSMP.cpu_count}") gen_args.append(f"--ibus-width={VexRiscvSMP.icache_width}") gen_args.append(f"--dbus-width={VexRiscvSMP.dcache_width}") gen_args.append(f"--dcache-size={VexRiscvSMP.dcache_size}") gen_args.append(f"--icache-size={VexRiscvSMP.icache_size}") gen_args.append(f"--dcache-ways={VexRiscvSMP.dcache_ways}") gen_args.append(f"--icache-ways={VexRiscvSMP.icache_ways}") gen_args.append(f"--litedram-width={VexRiscvSMP.litedram_width}") gen_args.append(f"--aes-instruction={VexRiscvSMP.aes_instruction}") gen_args.append(f"--out-of-order-decoder={VexRiscvSMP.out_of_order_decoder}") gen_args.append(f"--wishbone-memory={VexRiscvSMP.wishbone_memory}") gen_args.append(f"--fpu={VexRiscvSMP.with_fpu}") gen_args.append(f"--cpu-per-fpu={VexRiscvSMP.cpu_per_fpu}") gen_args.append(f"--rvc={VexRiscvSMP.with_rvc}") gen_args.append(f"--netlist-name={VexRiscvSMP.cluster_name}") gen_args.append(f"--netlist-directory={vdir}") gen_args.append(f"--dtlb-size={VexRiscvSMP.dtlb_size}") gen_args.append(f"--itlb-size={VexRiscvSMP.itlb_size}") cmd = 'cd {path} && sbt "runMain vexriscv.demo.smp.VexRiscvLitexSmpClusterCmdGen {args}"'.format(path=os.path.join(vdir, "ext", "VexRiscv"), args=" ".join(gen_args)) if os.system(cmd) != 0: raise OSError('Failed to run sbt') def __init__(self, platform, variant): self.platform = platform self.variant = "standard" self.human_name = self.human_name + "-" + variant.upper() self.reset = Signal() self.jtag_clk = Signal() self.jtag_enable = Signal() self.jtag_capture = Signal() self.jtag_shift = Signal() self.jtag_update = Signal() self.jtag_reset = Signal() self.jtag_tdo = Signal() self.jtag_tdi = Signal() self.interrupt = Signal(32) self.pbus = pbus = wishbone.Interface() self.periph_buses = [pbus] # Peripheral buses (Connected to main SoC's bus). self.memory_buses = [] # Memory buses (Connected directly to LiteDRAM). # # # self.cpu_params = dict( # Clk / Rst. i_debugCd_external_clk = ClockSignal(), i_debugCd_external_reset = ResetSignal() | self.reset, # Interrupts. i_interrupts = self.interrupt, # JTAG. i_jtag_clk = self.jtag_clk, i_debugPort_enable = self.jtag_enable, i_debugPort_capture = self.jtag_capture, i_debugPort_shift = self.jtag_shift, i_debugPort_update = self.jtag_update, i_debugPort_reset = self.jtag_reset, i_debugPort_tdi = self.jtag_tdi, o_debugPort_tdo = self.jtag_tdo, # Peripheral Bus (Master). o_peripheral_CYC = pbus.cyc, o_peripheral_STB = pbus.stb, i_peripheral_ACK = pbus.ack, o_peripheral_WE = pbus.we, o_peripheral_ADR = pbus.adr, i_peripheral_DAT_MISO = pbus.dat_r, o_peripheral_DAT_MOSI = pbus.dat_w, o_peripheral_SEL = pbus.sel, i_peripheral_ERR = pbus.err, o_peripheral_CTI = pbus.cti, o_peripheral_BTE = pbus.bte ) if VexRiscvSMP.coherent_dma: self.dma_bus = dma_bus = wishbone.Interface(data_width=VexRiscvSMP.dcache_width) dma_bus_stall = Signal() dma_bus_inhibit = Signal() self.cpu_params.update( # DMA Bus (Slave). i_dma_wishbone_CYC = dma_bus.cyc, i_dma_wishbone_STB = dma_bus.stb & ~dma_bus_inhibit, o_dma_wishbone_ACK = dma_bus.ack, i_dma_wishbone_WE = dma_bus.we, i_dma_wishbone_SEL = dma_bus.sel, i_dma_wishbone_ADR = dma_bus.adr, o_dma_wishbone_DAT_MISO = dma_bus.dat_r, i_dma_wishbone_DAT_MOSI = dma_bus.dat_w, o_dma_wishbone_STALL = dma_bus_stall ) self.sync += [ If(dma_bus.stb & dma_bus.cyc & ~dma_bus_stall, dma_bus_inhibit.eq(1), ), If(dma_bus.ack, dma_bus_inhibit.eq(0) ) ] def set_reset_address(self, reset_address): assert not hasattr(self, "reset_address") self.reset_address = reset_address assert reset_address == 0x00000000 def add_sources(self, platform): vdir = get_data_mod("cpu", "vexriscv_smp").data_location print(f"VexRiscv cluster : {self.cluster_name}") if not path.exists(os.path.join(vdir, self.cluster_name + ".v")): self.generate_netlist() # Add RAM. # By default, use Generic RAM implementation. ram_filename = "Ram_1w_1rs_Generic.v" # On Altera/Intel platforms, use specific implementation. from litex.build.altera import AlteraPlatform if isinstance(platform, AlteraPlatform): ram_filename = "Ram_1w_1rs_Intel.v" platform.add_source(os.path.join(vdir, ram_filename), "verilog") # Add Cluster. platform.add_source(os.path.join(vdir, self.cluster_name + ".v"), "verilog") def add_soc_components(self, soc, soc_region_cls): # Define number of CPUs soc.add_config("CPU_COUNT", VexRiscvSMP.cpu_count) soc.add_constant("CPU_ISA", VexRiscvSMP.get_arch()) # Constants for cache so we can add them in the DTS. if (VexRiscvSMP.dcache_size > 0): soc.add_constant("cpu_dcache_size", VexRiscvSMP.dcache_size) soc.add_constant("cpu_dcache_ways", VexRiscvSMP.dcache_ways) soc.add_constant("cpu_dcache_block_size", 64) # hardwired? if (VexRiscvSMP.icache_size > 0): soc.add_constant("cpu_icache_size", VexRiscvSMP.icache_size) soc.add_constant("cpu_icache_ways", VexRiscvSMP.icache_ways) soc.add_constant("cpu_icache_block_size", 64) # hardwired? # Constants for TLB so we can add them in the DTS # full associative so only the size is described. if (VexRiscvSMP.dtlb_size > 0): soc.add_constant("cpu_dtlb_size", VexRiscvSMP.dtlb_size) soc.add_constant("cpu_dtlb_ways", VexRiscvSMP.dtlb_size) if (VexRiscvSMP.itlb_size > 0): soc.add_constant("cpu_itlb_size", VexRiscvSMP.itlb_size) soc.add_constant("cpu_itlb_ways", VexRiscvSMP.itlb_size) # Add PLIC as Bus Slave self.plicbus = plicbus = wishbone.Interface() self.cpu_params.update( i_plicWishbone_CYC = plicbus.cyc, i_plicWishbone_STB = plicbus.stb, o_plicWishbone_ACK = plicbus.ack, i_plicWishbone_WE = plicbus.we, i_plicWishbone_ADR = plicbus.adr, o_plicWishbone_DAT_MISO = plicbus.dat_r, i_plicWishbone_DAT_MOSI = plicbus.dat_w ) soc.bus.add_slave("plic", self.plicbus, region=soc_region_cls(origin=soc.mem_map.get("plic"), size=0x400000, cached=False)) # Add CLINT as Bus Slave self.clintbus = clintbus = wishbone.Interface() self.cpu_params.update( i_clintWishbone_CYC = clintbus.cyc, i_clintWishbone_STB = clintbus.stb, o_clintWishbone_ACK = clintbus.ack, i_clintWishbone_WE = clintbus.we, i_clintWishbone_ADR = clintbus.adr, o_clintWishbone_DAT_MISO = clintbus.dat_r, i_clintWishbone_DAT_MOSI = clintbus.dat_w, ) soc.bus.add_slave("clint", clintbus, region=soc_region_cls(origin=soc.mem_map.get("clint"), size=0x10000, cached=False)) def add_memory_buses(self, address_width, data_width): VexRiscvSMP.litedram_width = data_width VexRiscvSMP.generate_cluster_name() from litedram.common import LiteDRAMNativePort if(not VexRiscvSMP.wishbone_memory): ibus = LiteDRAMNativePort(mode="both", address_width=32, data_width=VexRiscvSMP.litedram_width) dbus = LiteDRAMNativePort(mode="both", address_width=32, data_width=VexRiscvSMP.litedram_width) self.memory_buses.append(ibus) self.memory_buses.append(dbus) self.cpu_params.update( # Instruction Memory Bus (Master). o_iBridge_dram_cmd_valid = ibus.cmd.valid, i_iBridge_dram_cmd_ready = ibus.cmd.ready, o_iBridge_dram_cmd_payload_we = ibus.cmd.we, o_iBridge_dram_cmd_payload_addr = ibus.cmd.addr, o_iBridge_dram_wdata_valid = ibus.wdata.valid, i_iBridge_dram_wdata_ready = ibus.wdata.ready, o_iBridge_dram_wdata_payload_data = ibus.wdata.data, o_iBridge_dram_wdata_payload_we = ibus.wdata.we, i_iBridge_dram_rdata_valid = ibus.rdata.valid, o_iBridge_dram_rdata_ready = ibus.rdata.ready, i_iBridge_dram_rdata_payload_data = ibus.rdata.data, # Data Memory Bus (Master). o_dBridge_dram_cmd_valid = dbus.cmd.valid, i_dBridge_dram_cmd_ready = dbus.cmd.ready, o_dBridge_dram_cmd_payload_we = dbus.cmd.we, o_dBridge_dram_cmd_payload_addr = dbus.cmd.addr, o_dBridge_dram_wdata_valid = dbus.wdata.valid, i_dBridge_dram_wdata_ready = dbus.wdata.ready, o_dBridge_dram_wdata_payload_data = dbus.wdata.data, o_dBridge_dram_wdata_payload_we = dbus.wdata.we, i_dBridge_dram_rdata_valid = dbus.rdata.valid, o_dBridge_dram_rdata_ready = dbus.rdata.ready, i_dBridge_dram_rdata_payload_data = dbus.rdata.data, ) def do_finalize(self): assert hasattr(self, "reset_address") self.specials += Instance(self.cluster_name, **self.cpu_params) # Add Verilog sources self.add_sources(self.platform)
45.15914
180
0.58879
5e9d9f9f17099a123562474edb9fb0e2f24798ae
2,099
py
Python
tests/data_gen.py
Naillik1/python-schema-registry-client
2a69fe619cb2409eed1ac82d79048c0f68818b29
[ "MIT" ]
null
null
null
tests/data_gen.py
Naillik1/python-schema-registry-client
2a69fe619cb2409eed1ac82d79048c0f68818b29
[ "MIT" ]
null
null
null
tests/data_gen.py
Naillik1/python-schema-registry-client
2a69fe619cb2409eed1ac82d79048c0f68818b29
[ "MIT" ]
null
null
null
import datetime import os import os.path import faker fake = faker.Faker() epoch = datetime.datetime.utcfromtimestamp(0) AVRO_SCHEMAS_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "avro_schemas") def unix_time_millis(dt): return (dt - epoch).total_seconds() * 1000.0 def get_schema_path(fname): return os.path.join(AVRO_SCHEMAS_DIR, fname) def load_schema_file(fname): fname = get_schema_path(fname) with open(fname) as f: return f.read() def create_basic_item(i): return {"name": fake.first_name(), "number": fake.pyint(max_value=100)} def create_adv_item(i): friends = map(create_basic_item, range(1, 3)) family = map(create_basic_item, range(1, 3)) basic = create_basic_item(i) basic["family"] = dict(map(lambda bi: (bi["name"], bi), family)) basic["friends"] = dict(map(lambda bi: (bi["name"], bi), friends)) return basic def create_logical_item(): return {"metadata": {"timestamp": fake.past_datetime(), "total": fake.pydecimal(left_digits=2, right_digits=2)}} def create_nested_schema(): return { "name": fake.first_name(), "uid": fake.pyint(min_value=0, max_value=9999, step=1), "order": {"uid": fake.pyint(min_value=0, max_value=9999, step=1)}, } BASIC_SCHEMA = load_schema_file(os.path.join(AVRO_SCHEMAS_DIR, "basic_schema.avsc")) ADVANCED_SCHEMA = load_schema_file(os.path.join(AVRO_SCHEMAS_DIR, "adv_schema.avsc")) BASIC_ITEMS = map(create_basic_item, range(1, 20)) USER_V1 = load_schema_file(os.path.join(AVRO_SCHEMAS_DIR, "user_v1.avsc")) USER_V2 = load_schema_file(os.path.join(AVRO_SCHEMAS_DIR, "user_v2.avsc")) LOGICAL_TYPES_SCHEMA = load_schema_file(os.path.join(AVRO_SCHEMAS_DIR, "logical_types_schema.avsc")) ADVANCED_ITEMS = map(create_adv_item, range(1, 20)) NESTED_SCHENA = load_schema_file(os.path.join(AVRO_SCHEMAS_DIR, "nested_schema.avsc")) ORDER_SCHENA = load_schema_file(os.path.join(AVRO_SCHEMAS_DIR, "order_schema.avsc")) def cleanup(files): for f in files: try: os.remove(f) except OSError: pass
29.985714
116
0.710815
74708b81ab15b8e15762e2e62b27fa3334060928
40,706
py
Python
sc_utils/sc.py
manuflores/time_machine
a8c3a7292ad4d8a7707173151eee35d9d79d5170
[ "MIT" ]
null
null
null
sc_utils/sc.py
manuflores/time_machine
a8c3a7292ad4d8a7707173151eee35d9d79d5170
[ "MIT" ]
null
null
null
sc_utils/sc.py
manuflores/time_machine
a8c3a7292ad4d8a7707173151eee35d9d79d5170
[ "MIT" ]
null
null
null
import scipy.io as sio import scipy.stats as st #import scanpy as sc import numpy as np #import numba import pandas as pd import anndata as ad from scipy import sparse #from psutil import virtual_memory import time import os import seaborn as sns import toolz as tz import h5py import tqdm from sklearn.utils import sparsefuncs # Correct p-vals using Benjamini-Hochberg procedure from statsmodels.stats.multitest import multipletests def check_sparsity(adata): "Returns the percentage of zeros in dataset." if not sparse.isspmatrix_csr(adata.X): adata.X = sparse.csr_matrix(adata.X) sparsity = (1 - adata.X.data.shape[0] / (adata.n_obs*adata.n_vars))*100 return sparsity # Make curried to allow kwarg calls on tz.pipe() @tz.curry def get_count_stats( adata, mt_prefix = None, ribo_prefix = None)-> ad.AnnData: """ Returns an AnnData with extra columns in its `obs` object for the number of counts per cell `n_counts` (and log10 (counts) ), abd the number of expressed genes in each cell `n_genes`. Additionally it can get the fraction of mitochondrial and ribosomal genes if prefixes are provided. TODO: Add filtering functionality Params ------ adata (ad.AnnData) Input dataset in AnnData format. It should contain a count matrix (cells x genes) as the `.X` object in the AnnData. mt_prefix (str, default = 'MT-'): Prefix to match mitochondrial genes. For human the prefix is `MT-` and for the mouse is `mt-`. ribo_prefix(default=None) For human the prefixes are ('RPS', 'RPL'). Returns ------- adata (ad.AnnData) AnnData with columns in the `.obs` dataframe corresponding to count stats. """ if not sparse.isspmatrix_csr(adata.X): adata.X = sparse.csr_matrix(adata.X) # Number of transcripts per cell adata.obs['n_counts'] = adata.X.sum(axis = 1) adata.obs['log_counts'] = np.log10(adata.obs.n_counts) # Number of genes with more than one count adata.obs['n_genes'] = (adata.X > 0).sum(axis = 1) # Get mitochondrial and ribosomal genes if mt_prefix is not None: # Use string methods from pandas to make bool array mito_genes = adata.var.gene_name.str.startswith(mt_prefix) if mito_genes.sum()> 1: # Compute the fraction of mitochondrial genes adata.obs["frac_mito"] = adata[:, mito_genes].X.A.sum(axis =1) / adata.obs.n_counts if ribo_prefix is not None: if isinstance(ribo_prefix, (list, tuple)): # Initialize bool array ribo_genes = np.zeros(adata.n_vars, dtype = bool) # Loop through each prefix and flip to True # where we get a match. for prefix in ribo_prefix: ribo_genes_tmp = adata.var.gene_name.str.startswith(prefix) ribo_genes +=ribo_genes_tmp if ribo_genes.sum()> 1: adata.obs["frac_ribo"] = adata[:, ribo_genes].X.A.sum(axis =1) / adata.obs.n_counts return adata # Curry to be able to add arguments in a tz.pipe @tz.curry def lognorm_cells( adata_, scaling_factor = 1e4, log = True)-> ad.AnnData: """ Cell count normalization as in scanpy.pp.normalize_total. Expects count matrix in sparse.csr_matrix format. Each gene's expression value in a given cell is given by : g_i = \mathrm{ln} ( \frac{g_i \times \beta }{\sum g_i} + 1 ) where β is the scaling factor. Params ------ adata_ (ad.AnnData): Count matrix with cell and gene annotations. scaling_factor(float, default = 1e4) Factor to scale gene counts to represent the counts in the cell. If scaling_factor =1e6, the values will represent counts per million. log (bool, default = True) Optional argument to allow for returning the scaled cells without normalizing. Returns ------- adata (ad.AnnData): Anndata with normalized and log transformed count matrix. """ # Make a copy because normalization is done in-place adata = adata_.copy() if not sparse.isspmatrix_csr(adata.X): adata.X = sparse.csr_matrix(adata.X) # Get total counts per cell from `obs` df if 'n_counts' in adata.obs.columns: counts = adata.obs.n_counts.values else: counts = adata.X.sum(axis = 1).flatten() # Convert to numpy matrix to array to be able to flatten scaled_counts = np.array(counts).flatten() / scaling_factor # Efficient normalization in-place for sparse matrix sparsefuncs.inplace_csr_row_scale(adata.X, 1/scaled_counts) # Call the log1p() method on the csr_matrix if log: adata.X = adata.X.log1p() return adata # Curry to enable adding arguments in a tz.pipe() @tz.curry def cv_filter( adata, min_mean = 0.025, min_cv= 1, return_highly_variable = False)-> ad.AnnData: """ Performs the Coefficient of Variation filtering according to the Poisson / Binomial counting statistics. The model assumes the coefficient of variation per gene is given by : \mathrm{log} (CV) \approx - \frac{1}{2}\mathrm{log} (\mu) + \epsilon The values will be computed assuming a normalized and log-scaled count matrix. Params ------ min_mean (float, default = 0.025). Lower bound cutoff for the mean of the gene feature. min_cv (float, default = None) Lower bound for the coefficient of variation of the gene feature. Recommended value 1. return_highly_variable(bool, default = True) Whether to return an AnnData with the columns corresponding to only the highly variable genes. Note: even when running with `return_highly_variable=False` the function will return genes only with nonzero mean and nonzero variance, i.e. it will discard those genes. Returns ------- adata_filt (ad.AnnData) AnnData with coeffifient of variation stats on the `var` dataframe. """ # Calculate mean and variance across cells mean, var = sparsefuncs.mean_variance_axis(adata.X, axis = 0) # Check if there are nonzero values for the mean or variance ix_nonzero = list(set(np.nonzero(mean)[0]).intersection(set(np.nonzero(var)[0]))) if len(ix_nonzero) > 0: # Use numpy-like filtering to select only genes with nonzero entries adata = adata[:, ix_nonzero].copy() # Recompute mean and variance of genes across cells mean, var = sparsefuncs.mean_variance_axis(adata.X, axis = 0) # Get nonzero mean indices nz = np.nonzero(mean) # Check that there are no nonzero mean values assert adata.n_vars == nz[0].shape[0] std_dev = np.sqrt(var) # Element-wise coefficient of variation cv = std_dev / mean log_cv = np.log(cv) log_mean = np.log(mean) df_gene_stats = pd.DataFrame( np.vstack([mean, log_mean, var, cv, log_cv]).T, columns=["mean", "log_mean", "var", "cv", "log_cv"], index = adata.var.index ) new_adata_var = pd.concat( [adata.var, df_gene_stats], axis = 1 ) adata.var = new_adata_var slope, intercept, r, pval, stderr = st.linregress(log_mean, log_cv) # Check that slope is approx -1/2 print(f'The slope of the model is {np.round(slope,3)}.') poisson_prediction_cv = slope*log_mean + intercept # Binary array of highly variable genes gene_sel = log_cv > poisson_prediction_cv adata.var['highly_variable'] = gene_sel.astype(int) if min_mean and min_cv is not None: adata_filt = adata[:,((adata.var.highly_variable == True)&\ (adata.var['mean'] > min_mean)&\ (adata.var['cv'] > min_cv))].copy() else: adata_filt = adata[:, adata.var.highly_variable == True].copy() if return_highly_variable: return adata_filt else: return adata def nmf_wrapper_sc( data:np.array, marker_dict, n_clusters = 10, n_enriched_feats=1, feature_names=None, )->tuple: """ Python wrapper to implement NMF algorithm. It returns the W and H matrices, the cluster_labels per sample, and the top enriched features per cluster. Assumes that either that either sklearn or the sklearn.decomposition.NMF class are loaded in the workspace. Params ------- data: (pd.DataFrame or np.array) Dataset to be decomposed. All datapoints need to be non-negative. marker_dict(dict) feature_names (array-like): Name of the columns of the dataset. This is used to compute the feature enrichment. n_enriched_feats (int): number of top enriched features to extract from each cluster. In the scRNAseq case, it amounts to get the top genes in each cluster. n_clusters (int): Number of components to make the matrix factorization. Returns -------- nmf_W (np.ndarray): Cluster matrix, it has (n_samples, n_clusters) shape. nmf_H (np.ndarray): Feature coefficient matrix, it has (n_clusters, n_feats) cluster_labels (list): Cluster label per sample. enriched_feats (list or list of lists): List of enriched features per cluster. """ from sklearn.decomposition import NMF # Get the feature_names if feature_names == None and type(data) == pd.DataFrame: feature_names = data.columns.to_list() elif feature_names == None and type(data) == np.ndarray: print("No feature names provided, feature enrichment will not be annotated.") else: pass #nmf = NMF(n_components=n_clusters).fit(data) # Get W and H matrices nmf_W = nmf.transform(data) nmf_H = nmf.components_ # Initialize list to store cluster labels cluster_labels = [] # Store the number of samples (rows in the original dataset) n_samples = nmf_W.shape[0] #  Get sample cluster labels iterating over W matrix's rows for i in range(n_samples): # Get the index for which the value is maximal. cluster_labels.append(nmf_W[i].argmax()) # Initialize to store enriched features enriched_feats = [] # Get features cluster coefficients # iterates over the H rows for cluster_idx, cluster in enumerate(nmf_H): top_feats = [ marker_dict[feature_names[i]] for i in cluster.argsort()[: -n_enriched_feats - 1 : -1] ] enriched_feats.append(top_feats) if n_enriched_feats == 1: enriched_feats = np.array(enriched_feats).flatten() return nmf_W, nmf_H, cluster_labels, enriched_feats def safe_gene_selection( adata, input_list, gene_colname = 'gene_name', #keep_order=False )-> ad.AnnData: """ Returns a new adata with a subset of query genes. TODO: Handle case when we want to keep the query list. Note: It will only return the genes that are in the dataset. If any of the query genes are not in the dataset, the gene names will be dismissed. If you're not too sure of the exact gene names check the `df.gene_colname.str.contains()` or the `df.gene_colname.str.startswith()` function. Params ------ adata(ad.AnnData) Dataset to select from. input_list(array-like) Query list with gene names. gene_colname (str, default = 'gene_name') Name of the column in the .var object from which to make the query against. Returns ------- new_adata (ad.AnnData) Subset of original anndata containg only query genes. Example ------- # Initalize dummy list and shuffle it gene_names = list('ABCDEFGHIJ') rng = np.random.default_rng(seed = 9836) gene_names = rng.permutation(gene_names) print(gene_names) # Create adata with random 5 cell 10 gene count matrix a = ad.AnnData( X = np.random.random((5, 10)), var= pd.DataFrame(gene_names, columns = ['gene_name']) ) my_list = ['A', 'C', 'B','D'] ada_new = sc.safe_gene_selection(a, my_list) print(ada.var.gene_name.values) >>> array(['A', 'B', 'C', 'D'], dtype=object) """ # Gets the indices of the rows contained in my_list using bool array isin_indexer = adata.var[gene_colname].isin(input_list).values.nonzero()[0] # Returns the indices that sort the values # selected with the indexer array new_ixs = np.argsort(adata.var[gene_colname].values[isin_indexer]) isin_list_sorted_ixs = isin_indexer[new_ixs] adata_new = adata[:, isin_list_sorted_ixs].copy() return adata_new def make_hist_from_latent(data, sample_id, cols_list, channels, resolution, export_path, export = True, **kwargs): """ Returns an n-d histogram from the latent space representation of a sample. Params ------ data (pd.DataFrame) Dataframe containing latent representation coordinates of a sample. sample_id (str) Name of the sample to encode. cols_list (list) List of the columns to extract the representation from. channels (int) Size of the first dimension which will serve as a "channel" dimension. resolution (int) Size of the second and third dimension. export (bool, default = True ) Whether to export the resulting histogram as an image. **kwargs Keyword arguments passed to the np.histogramdd function. Returns ------- hist(array-like) 3D histogram of the sample's latent space representation. """ # Extract latent space to compute bounds data_ = data[cols_list] # Round to first decimal mins_ = np.round(data_.min() - 0.01, 1) maxs_ = np.round(data_.max() - 0.01, 1) print(f'maxs: {maxs_}, mins: {mins_}') bounds = list(zip(mins_, maxs_)) # Get the data for the corresponding samples = data[data['sample_id_unique'] == sample_id][cols_list].values print(f'Number of cells in dataset: {samples.shape}' ) # Get n-d hist of data hist, edges = np.histogramdd( samples, bins = (channels, resolution, resolution), range = bounds, #normed = True, **kwargs ) if export: sample_id = sample_id.split(' ')[0].split('/')[0] fname = export_path + 'latent_' + sample_id + '.npy' np.save(fname, hist) return fname, hist else: return hist def simple_bootstrap_df(df, n_boostrap = 10, reset_index = False): """ TO-DO: write documentation. """ n_cells = df.shape[0] # Sample n_cells #df_list = df_bootstrap = df.copy() # Define original data as bs_sample zero df_bootstrap['bs_sample'] = 0 for i in range(1, n_boostrap +1): bootstrap_sample = df.sample(df.shape[0], replace = True) bootstrap_sample['bootstrap_sample'] = i df_bootstrap = pd.concat([df_bootstrap, bootstrap_sample]) # if reset_index: df_bootstrap = df_bootstrap.reset_index(drop = True) return df_bootstrap def stratified_bootstrap_df(df, col_stratify = 'cell_ontology_class', n_bootstrap = 10, reset_index = False, verbose = True): """ Returns a new dataframe by sampling n_bootstrap datasets with replacement from the original dataframe df. In this version it also keeps the relative proportion of datapoints on col_stratify. Params ------- df () col_stratify (str, default = 'cell_ontology_class') n_bootstrap(int, defualt = 10) Number of bootstrap samples. reset_index(bool, default = True) Whether to reset the index of the new dataset. Returns ------- df_bootstrap(pd.DataFrame) Dataset with bootstrapped samples. It contains the original dataset. """ df_bootstrap = df.copy() # Name the original dataset bs sample zero df_bootstrap['bootstrap_sample'] = 0 for i in range(1, n_bootstrap + 1): sampling_ix = ( df.groupby(col_stratify) .apply(lambda group_df: group_df.sample(group_df.shape[0], replace=True)) .index.get_level_values(1) ) bootstrap_sample = df.loc[sampling_ix, :] bootstrap_sample['bootstrap_sample'] = i df_bootstrap = pd.concat([df_bootstrap, bootstrap_sample]) if reset_index: df_bootstrap = df_bootstrap.reset_index(drop = True) if verbose: n_non_sampled = len(set(df.index) - set(df_bootstrap[df_bootstrap['bootstrap_sample'] != 0].index)) print(f'Number of indices not sampled: {n_non_sampled}') return df_bootstrap def get_cell_type_props(df, var_id, agg_var = 'age'): """ Returns a dataframe with cell type proportions across the Tabula Muris' dataset tissues, for a specified age section. Params ------ df (pd.DataFrame) Summary dataframe of Tabula Muris senis. It should contains the following columns = ['age', 'age_code', 'tissue', 'cell_ontology_class'] agg_var (str) Particular variable to select for. Common used examples are age and mouse.id. Returns ------- normalized_tissue(pd.DataFrame) Tissue with cell type proportions """ sub_df = df[df[agg_var] == var_id] tissue_counts = ( sub_df.groupby(["tissue", "cell_ontology_class"]) .size() .to_frame() .reset_index() .rename(columns={0: "counts"}) ) pivot = pd.pivot_table( data = tissue_counts, index ="tissue", columns = 'cell_ontology_class', fill_value = 0 ) # Try alternative #pivot = sub_df.groupby(["tissue", "cell_ontology_class"]).size().unstack() tissue_total = pivot.sum(axis = 1) normalized_tissue = pivot.div(tissue_total, axis = 'rows') normalized_tissue = normalized_tissue.droplevel([None], axis = 1) # Annotate with age column normalized_tissue =normalized_tissue.T normalized_tissue[agg_var] = var_id normalized_tissue = normalized_tissue.fillna(0) return normalized_tissue def get_single_tissue(df_tissues, tissue_name, agg_var, drop_zeros = True): """ Returns cell type proportions of a single tissue. Params ------ df_tissues(pd.DataFrame) Pivoted dataframe of (cell_types, tissues) shape. tissue_name (str) Name of the tissue to select agg_var (str) Particular variable to select for. Common used examples are age and mouse.id. Returns ------- tissue (pd.DataFrame) Subdataframe of a single tissue of shape """ tissue = pd.pivot_table( data = df_tissues[[tissue_name, agg_var]].reset_index(), index = 'cell_ontology_class', columns = agg_var, aggfunc= 'mean', fill_value = 0 ) # Drop the multiindex name that corresponds to the tissue name tissue = tissue.droplevel(None, axis = 1) if drop_zeros: # Eliminate all cell types with no counts in tissue tissue = tissue[tissue.sum(axis = 1) > 0] # Drop the individuals with no counts for given tissue tissue = tissue.loc[:, (tissue !=0).any(axis = 0)] # Renormalize due to aggregation effects if agg_var == 'age': tissue = tissue / tissue.sum(axis = 0) return tissue def read_cancer_adata( path, h5_fname, meta_fname)->(ad.AnnData, pd.DataFrame): """ Load and convert .h5 file to AnnData from the publication: https://www.nature.com/articles/s41591-020-0844-1 """ # Load metadata file df_meta = pd.read_csv(path + meta_fname) h5_file = h5py.File(path + h5_fname) dset_name = list(h5_file.keys())[0] data = h5_file[dset_name]["data"][()] indices = h5_file[dset_name]["indices"][()] indptr = h5_file[dset_name]["indptr"][()] shape = h5_file[dset_name]["shape"][()] gene_names = h5_file[dset_name]["gene_names"][()] gene_names = [x.decode('ascii') for x in gene_names] barcodes = h5_file[dset_name]["barcodes"][()] barcodes = [x.decode('ascii') for x in barcodes] adata = ad.AnnData( X = sparse.csc_matrix( (data, indices, indptr), shape = shape ).T, #obs = df_meta, var= pd.DataFrame(gene_names, columns = ['gene_names']) ) # Check if count matrix is in csr format #assert sparse.isspmatrix_csr(adata.X) return adata, df_meta def load_pbmc_markers(): pbmc_cell_type_markers = { 'IL2RA' :'T cell', 'TNFRSF18' :'T cell', 'CD3D': 'T cell', 'BATF': 'T helper', 'IL7R': 'T helper', 'CD4': 'T helper', 'GNLY': 'NK T cell', 'NKG7': 'NK T cell', 'CD56': 'NK T cell', 'CCL5': 'Cytotoxic T cell', 'CD8A': 'Cytotoxic T cell', 'CD16': 'Cytotoxic T cell', 'MS4A1': 'B cell', 'CD79A': 'B cell', 'LYZ': 'Monocyte', 'FCGR3A': 'Monocyte', 'MS4A7': 'Monocyte', 'CD163': 'Macrophage', 'GBP1': 'Macrophage', 'FCER1A': 'Dendritic', 'LAD1': 'Dendritic', 'LAMP3': 'Dendritic', 'FLT3': 'Dendritic', 'CST3': 'Dendritic', 'PPBP': 'Megakaryocytes', } return pbmc_cell_type_markers def load_cell_type_collapser(): cell_type_collapser = { 'B cell': 'B cell', 'T cell': 'T cell', 'Cytotoxic T cell': 'T cell', 'T helper': 'T cell', 'NK T cell': 'T cell', 'Macrophage': 'Monocyte', 'Monocyte': 'Monocyte', 'Dendritic': 'Monocyte', 'Megakaryocytes': 'Monocyte' } return cell_type_collapser def confusion_matrix(pred_labels, true_labels): """ Returns a confusion matrix from a multiclass classification set of labels. Params ------ pred_labels (array-like): List of labels as predicted by a classification algorithm. true_labels (array-like): List of ground truth labels. Returns ------- conf_mat (array-like): Confusion matrix. """ n_labels = int(max(np.max(pred_labels), np.max(true_labels)) + 1) conf_mat = np.zeros(shape = (n_labels, n_labels)) for (i, j) in zip(pred_labels, true_labels): conf_mat[i,j] +=1 return conf_mat def element_wise_entropy(px): """ Returns a numpy array with element wise entropy calculated as -pi*log_2(p_i). Params ------ px (np.array) Array of individual probabilities, i.e. a probability vector or distribution. Returns ------- entropy (np.array) Array of element-wise entropies. """ if isinstance(px, list): px = np.array(px) # Make a copy of input array entropy = px.copy() # Get indices of nonzero probability values nz = np.nonzero(entropy) # Compute -pi*log_2(p_i) element-wise entropy[nz] *= - np.log2(entropy[nz]) return entropy def entropy(ps): "Returns the entropy of a probability distribution `ps`." # Get nonzero indices nz = np.nonzero(ps) # Compute entropy for nonzero indices entropy = np.sum(-ps[nz]*np.log2(ps[nz])) return entropy # EXPERIMENTAL: gene analysis def score_cells_percentile(val, percs, score_hi=1, score_low=-1): """ Returns a score given value of a single cell. Cells with score = -1 will be cells in low prototype (cells below the bottom percentile). Conversely, cells with a score =1, will be the top prototype. Params ------ val (float): Value of the cell at given dimension. percs (tuple): Tuple of top and bottom percentiles to compare with. Returns ------- score(int) Score of the cell. """ low_perc, hi_perc = percs if val > hi_perc: score = score_hi elif val < low_perc: score = score_low else: score = 0 return score def score_cells_along_component(df_proj, latent_dim, percs = (10, 90)): """ Returns an array of scores for each of the cells along a latent dimension. Params ------ latent_dim (array-like) Array of values for each cell in the latent dimension or component. percs (tuple, default= (10,90)) Low and bottom percentiles to compute. Returns ------- scores (array-like) List of scores for each cell. """ low_perc, hi_perc = np.percentile(df_proj[latent_dim], percs) scores = [score_cells_percentile(p, (low_perc, hi_perc)) for p in df_proj[latent_dim]] return scores # def get_scanpy_deg_report_df(adata, groups = ('-1','1')): # """ # Returns a report dataframe of differentially expressed genes. # It expects an adata with a report dictionary from the output of # scanpy.tl.rank_genes_groups(). # Params # ------ # adata (ad.AnnData) # AnnData with rank_genes_groups dictionary in `.uns` object. # Ideally, this adata would only contain "prototype" cells, # that is, the cells on the extremes of a given component. # groups (tuple, default = (-1,1)) # Tuple of groups for which to extract the DEG results. # """ # deg_result_dict = adata.uns['rank_genes_groups'] # # Make a report dataframe. # df_report = pd.DataFrame() # for g in groups: # df = pd.DataFrame( # np.vstack( # [deg_result_dict["names"][g], # deg_result_dict["logfoldchanges"][g], # deg_result_dict["pvals_adj"][g]] # ).T, # columns=["gene_name", "log_fc", "pval_adj"], # ) # df["group"] = g # df_report = pd.concat([df_report, df]) # return df_report # Curry to enable passing arguments to .apply() method @tz.curry def is_significant(l1_score, thresh_over = -.8, thresh_under = .5): if l1_score < thresh_over or l1_score > thresh_under: return 1 else: return 0 def over_under_exp(l1_score): "To be used after extracting significant genes." if l1_score < 0 : return 'over' elif l1_score > 0: return 'under' else: return None def deg_analysis( adata, groupby_col = 'scores', groups = [-1,1], thresh_under= .5, thresh_over = -.5, return_all_genes = False )->pd.DataFrame: """ TO-DO: Enable parallelism Returns a dataframe containing the report of differential gene expression (DEG) analysis between two groups of cells. It tests the hypothesis that all genes in group 1 have higher values (are overexpressed) than genes in group -1 using non-parametric tests. It assumes genes are log-normed and expects that the AnnData has a column that indicates the groups of cells to make the analysis on, in the `obs` DataFrame. The function uses the Kolmogorov-Smirnov (KS) 2-sample test on the ECDFs and the L1-norm on the histogram of the gene distributions, respectively. We use the L1 norm to assign a significance of over or underexpression. We consider a L1 score < -0.5 for a gene to be overexpressed in group 1 and a L1 score of > 0.5 to be underexpressed in group 1. Params ------ adata (ad.AnnData) AnnData with an .obs dataframe containing a column to select the groups. group_by (str, default = 'scores') Column that indicates the groups to make the test on. groups (list, default = (-1,1)) Name of the groups. Returns ------- df_report (pd.DataFrame) Notes ----- The KS runs the following hypothesis test: * *H0*: The ECDF of gene$_i$ in (group 1) $F$ is equal to the distribution of (group -1) $G$, i.e. $F(u) = G(u)$ for all quantiles $u$. * *H1* : The distribution $F$ for gene$_i$ has **higher values** in (group 1) compared to (group -1). Having higher values implies that for a given quantile *u*, the values of the CDF of (group 1) will be lower than those of the non-lactating state, that is $F(u) <= G(u)$ for all quantiles $u$. The L1 norm is computed as reported in [Chen *et al* (2020)] (https://www.pnas.org/content/117/46/28784) """ df_report = pd.DataFrame() # Get gene name from the `.var` dataframe gene_names = adata.var.gene_name.values # Unpack groups gp_lo, gp_hi = groups # Loop through all genes for ix in tqdm.tqdm(range(adata.n_vars)): gene_name = gene_names[ix] # Extract distributions as arrays gene_distro_lo = adata[adata.obs[groupby_col]== gp_lo, ix].X.A.flatten() gene_distro_hi = adata[adata.obs[groupby_col]== gp_hi, ix].X.A.flatten() # Run KS test # Second element in results tuple is P-value ks_test_pval = st.ks_2samp( gene_distro_lo, gene_distro_hi, alternative = 'greater', #mode = 'exact' )[1] # Compute L1 norm l1_score = l1_norm(gene_distro_hi, gene_distro_lo) # log2 fold-change of means log_fold_change = np.log2(gene_distro_hi.mean() / gene_distro_lo.mean()) # Wrap into a dataframe #pd.DataFrame( df = { 'gene_name': gene_name, 'ks_pval' : ks_test_pval, 'l1_score' : l1_score, 'log_fc': log_fold_change } #) df_report = df_report.append(df, ignore_index = True) df_report.reset_index(drop =True, inplace = True) df_report = df_report.sort_values(by = ['l1_score'], ascending = True) _, pvals_corr, _, _ = multipletests(df_report.ks_pval.values, method = 'fdr_bh') df_report['ks_pval_BH'] = pvals_corr if return_all_genes: return df_report else: # df_report['is_signif'] = df_report.l1_score.apply( is_significant(thresh_over = thresh_over, thresh_under = thresh_under) ) df_deg = df_report[df_report['is_signif']==1] df_deg['deg_type'] = df_deg.l1_score.apply(over_under_exp) return df_deg def deg_test( adata, annot_cols, groupby = 'scores', groups = [-1,1], return_melted = True )->(pd.DataFrame): """ Runs DEG analysis and return dataframes for visualization. Params ------ adata (ad.AnnData) Annotated count matrix in AnnData format. annot_cols (list) Subset of the columns in the adata `obs` dataframe to use for visualization. groupby (str, default = 'scores') Column that indicates the groups to make the test on. groups(list, default = [-1,1]) Name of the groups. return_melted(bool, default = True) If set to True, it returns a melted version of the df_viz dataframe, useful for plotting distribution plots (e.g. boxplots, violinplots) of the differentially expressed genes. Returns ------- df_deg (pd.DataFrame) Report dataframe from DEG analysis. df_viz (pd.DataFrame) DataFrame to visualize scatterplots colored by gene counts, or heatmaps. df_distro_viz (pd.DataFrame, optional) Tidy dataframe to visualize distributions of genes. Example ------- ### Assuming an anndata is loaded in workspace # Run DEG analysis and plot overexpressed gene distributions. df_deg, df_viz, df_distro_viz = sc.deg_test(adata, annot_cols) df_viz_prototype = df_distro_viz[df_distro_viz['scores'] != 0] plt.figure(figsize = (4, 9)) sns.violinplot( data = df_viz_prototype[df_viz_prototype['deg_type'] == 'over'], y = 'gene_name', x = 'log(counts)', hue = 'classification column', palette= viz.get_binary_palettes()[1], split = True, scale = 'width', inner = 'quartile', cut = 0 ) """ df_deg = deg_analysis(adata, groupby_col = groupby, groups = groups) overexp_genes = df_deg[df_deg['deg_type'] == 'over'].gene.to_list() underexp_genes = df_deg[df_deg['deg_type'] == 'under'].gene.to_list() deg_gene_list = overexp_genes + underexp_genes # Get a subset of the original adata containing the DE genes only. de_genes_adata = safe_gene_selection(adata, deg_gene_list) # Make DataFrame for visualization de_genes_df = pd.DataFrame( de_genes_adata.X.A, columns = de_genes_adata.var.gene_name ) # Concatenate annotation with gene values # This dataset serves to make scatterplots using # the gene expression values to color the dots df_viz = pd.concat( [adata.obs[annot_cols], de_genes_df.set_index(adata.obs.index)], axis = 1 ) if return_melted: # Melt to visualize the distribution of genes # across groups, e.g. violinplots df_distro_viz = pd.melt( df_viz, id_vars = annot_cols, value_vars = de_genes_df.columns.to_list(), var_name = 'gene_name', value_name = 'log(counts)' ) # Check that melt frame is of length n_de_genes * n_cells assert df_distro_viz.shape[0] == len(deg_gene_list)*adata.n_obs # Add column indicating whether gene is over or underexpressed # in group 1 gene_dge_type_mapper= dict(df_deg[['gene_name', 'deg_type']].values) df_distro_viz['deg_type'] = df_distro_viz.gene_name.map( gene_dge_type_mapper ) return df_deg, df_viz, df_distro_viz else: return df_deg, df_viz def annot_genes(gene, gene_sets_tuple): """ Helper function to annotate a given gene in prototype cells enriched genes. Returns -1 if gene is in bottom prototype, 1 if in top prototype. """ gene_set_low, gene_set_hi = gene_sets_tuple if gene in gene_set_low: y = -1 elif gene in gene_set_hi: y = 1 else: y = 0 return y def fisher_enrichment_test( df_annot, annotation, group, group_colname = 'cluster_labels', n_top = 5 )->pd.DataFrame: """ Returns a report dataframe with the top 5 enriched functions for a given subset of data. This function is especially suited for statistical enrichment tests after clustering. Params ------ df_annot (pd.DataFrame) Annotated dataframe containing the 'annotation' column and a 'clus_col_name' column. annotation (str) Annotation to make the enrichment test on. In the case of gene set enrichment this could be a Gene Ontology or COG annotation. cluster (int or str) Cluster (or in general group of data points) to test. clus_col_name (str) Name of the cluster column in the df_annot dataframe. Returns ------- df_report (pd.DataFrame) Report dataframe with pvalues and annotation names. """ # Get subset of completely annotated genes df_test = df_annot[pd.notnull(df_annot[annotation])] # Number of genes with valid annotation M = df_test.shape[0] # Extract data for given cluster df_clus = df_test[df_test[group_colname] == group] # Get n_top categories to test (defaults to 5) cats = df_clus[annotation].value_counts().head(n_top).index.to_list() # Number of genes in the cluster (sample size) N = df_clus.shape[0] # Initialize pvalue array pvals = np.empty(len(cats)) # Loop through the top categories for i, cat in enumerate(cats): df_cat = df_test[df_test[annotation] == cat] # Total number of genes that map to given category (total number of white balls) n = df_cat.shape[0] # Number of genes inside cluster that map to given category (number of white balls in sample) x = df_clus[df_clus[annotation] == cat].shape[0] # Sweep through the probabilities from x to n pmfs = st.hypergeom.pmf(k = np.arange(x, n + 1), N = N, n = n, M = M) # Compute pval pvals[i] = pmfs.sum() # Save results df_report = pd.DataFrame( {'categories': cats, 'pval': pvals} ) df_report['group'] = group df_report['annot'] = annotation return df_report def run_fisher_test_go( df_report_deg, path, groupby, clus_col_name = 'prototype', groups = [-1,1], n_top = 5, organism = 'human' )->(pd.DataFrame, pd.DataFrame): """ Returns (1) a dataframe with enriched Gene Ontology terms for a set of differentially expressed genes, and (2) a more detailed dataframe of the Gene Ontology terms with their GO ID, and whether or not they are Transcription Factors. Params ------ df_report_deg(pd.DataFrame) Differentially DEG report dataframe. path_to_ds(str) Path to drug screen dataset. n_top (int) Number of categories to compute the Fisher enrichment test. organism (str, default = 'human') Name of the organism. Currently handling ['human', 'mouse']. Returns ------- df_enrichment_report(pd.DataFrame) Report of enriched GO terms with corresponding pvals. df_go_red (pd.DataFrame) Dataframe of enriched genes with their corresponding GO biological process. """ # path = 'path_to_drug_screen' # Unpack groups gp_lo, gp_hi = groups #Load Gene Ontology dataset (from QuickGO annotation) df_go = pd.read_csv(path + 'go/go_lite_' + organism +'.csv') # Get gene names of DEG genes genes_disease = df_report_deg[df_report_deg[groupby]== gp_lo]['gene_name'].values genes_healthy = df_report_deg[df_report_deg[groupby] == gp_hi]['gene_name'].values gene_sets = (genes_disease, genes_healthy) # Annotate genes as prototypes: # These annotations will help the Fisher enrichment test function df_go['deg_type'] = [annot_genes(g, gene_sets) for g in df_go.gene_name.values] # Compute FET for bottom and top prototypes df_enrichment_lo_prot = fisher_enrichment_test( df_annot = df_go, group_colname = clus_col_name, annotation = 'GO NAME', group = -1, n_top = n_top ) df_enrichment_top_prot = fisher_enrichment_test( df_annot = df_go, group_colname = clus_col_name, annotation = 'GO NAME', group = 1, n_top = n_top ) df_enrichment_report = pd.concat([df_enrichment_lo_prot, df_enrichment_top_prot]) df_enrichment_report = df_enrichment_report.\ sort_values(by = ['group', 'pval']).reset_index(drop = True) #df_enrichment_report = df_enrichment_report.rename(columns = {'clusters':'prototype'}) # Get GO categories for differentially expressed genes # i.e. in prototypes -1 or 1 (not in 0). try: df_go_red = df_go[df_go['deg_type'].isin([-1,1])] except: df_go_red = df_go[df_go['deg_type'].isin(['-1','1'])] # Load Transcription Factor gene names path_to_tfs = path + '../trns/' + organism + '_trn/'+ organism + '_tfs.csv' tf = pd.read_csv(path_to_tfs) # Annotate if DEG genes are TFs df_go_red['is_tf'] = df_go_red.gene_name.apply( lambda x: 1 if x in tf['gene_name'].unique() else 0 ) return df_enrichment_report, df_go_red def ecdf(x, plot = False, label = None)->(np.array, np.array): ''' Returns ECDF of a 1-D array. Optionally Params ------ x(array or list) Input array, distribution of a random variable. plot (bool, default= False) If True return the plot of the ECDF label(str) Label for the plot Returns ------- x_sorted : sorted x array. ecdf : array containing the ECDF of x. ''' x_sorted = np.sort(x) n = len (x) ecdf = np.linspace(0, 1, len(x_sorted)) if label is None and plot is True: plt.scatter(x_sorted, ecdf, alpha = 0.7) elif label is not None and plot is True: plt.scatter(x_sorted, ecdf, alpha = 0.7, label = label) else: pass return x_sorted, ecdf def freedman_diaconis_rule(arr): """ Calculates the number of bins for a histogram using the Freedman-Diaconis Rule. Modified from https://github.com/justinbois/bebi103/blob/master/bebi103/viz.py """ h = 2* (np.percentile(arr, q=75) - np.percentile(arr, q = 25))/ np.cbrt(len(arr)) if h == 0.0: n_bins = 3 else: n_bins = int(np.ceil(arr.max() - arr.min()) / h) return n_bins def l1_norm(arr1, arr2): ''' Compute the L1-norm between two histograms. It uses the Freedman-Diaconis criterion to determine the number of bins. It will be positive if the mean(arr2) > mean(arr1) following the convention from PopAlign. Modified from https://github.com/thomsonlab/popalign/blob/master/popalign/popalign.py Parameters ---------- arr1 (array-like) Distribution of gene for population 1. arr2 (array-like) Distribution of gene for population 2. Returns ------- l1_score(float) L1 norm between normalized histograms of gene distributions. Example ------- import numpy as np from sc_utils import sc x = np.random.normal(loc = 0, size = 100) y = np.random.normal(loc = 3, size = 100) sc.l1_norm(x, y) >>>1.46 ''' if len(arr1) == len(arr2): nbins = freedman_diaconis_rule(arr1) else: nbins_1 = freedman_diaconis_rule(arr1) nbins_2 = freedman_diaconis_rule(arr2) nbins = int((nbins_1 + nbins_2)/2) max1, max2 = np.max(arr1), np.max(arr2) # get max values from the two subpopulations max_ = max(max1,max2) # get max value to define histogram range if max_ == 0: return 0 else: b1, be1 = np.histogram(arr1, bins=nbins, range=(0,max_)) # compute histogram bars b2, be2 = np.histogram(arr2, bins=nbins, range=(0,max_)) # compute histogram bars b1 = b1/len(arr1) # scale bin values b2 = b2/len(arr2) # scale bin values if arr1.mean()>=arr2.mean(): # sign l1-norm value based on mean difference l1_score = -np.linalg.norm(b1-b2, ord=1) return l1_score else: l1_score = np.linalg.norm(b1-b2, ord=1) return l1_score
26.211204
101
0.662163
745b201f2d653134665cbef21d2a264d92288e7f
2,265
py
Python
kucoin/exceptions.py
nielskool/python-kucoin
a511b2b2dd157d23d61b3df6af004ddd8b30c45c
[ "MIT" ]
null
null
null
kucoin/exceptions.py
nielskool/python-kucoin
a511b2b2dd157d23d61b3df6af004ddd8b30c45c
[ "MIT" ]
null
null
null
kucoin/exceptions.py
nielskool/python-kucoin
a511b2b2dd157d23d61b3df6af004ddd8b30c45c
[ "MIT" ]
null
null
null
# coding=utf-8 import json # System error codes # Code Meaning # 403000 No Auth -- The requested is forbidden for current API key. # 404000 Url Not Found -- The request resource could not be found # 400100 Parameter Error -- You tried to access the resource with invalid parameters # 411100 User are frozen -- User are frozen, please contact us via support center. # 500000 Internal Server Error -- We had a problem with our server. Try again later. class KucoinAPIException(Exception): """Exception class to handle general API Exceptions `code` values `message` format """ def __init__(self, response): self.code = '' self.message = 'Unknown Error' try: json_res = response.json() except ValueError: self.message = response.content else: if 'error' in json_res: self.message = json_res['error'] if 'msg' in json_res: self.message = json_res['msg'] if 'message' in json_res and json_res['message'] != 'No message available': self.message += ' - {}'.format(json_res['message']) if 'code' in json_res: self.code = json_res['code'] if 'data' in json_res: try: self.message += " " + json.dumps(json_res['data']) except ValueError: pass self.status_code = response.status_code self.response = response self.request = getattr(response, 'request', None) def __str__(self): # pragma: no cover return 'KucoinAPIException {}: {}'.format(self.code, self.message) class KucoinRequestException(Exception): def __init__(self, message): self.message = message def __str__(self): return 'KucoinRequestException: {}'.format(self.message) class MarketOrderException(Exception): def __init__(self, message): self.message = message def __str__(self): return 'MarketOrderException: {}'.format(self.message) class LimitOrderException(Exception): def __init__(self, message): self.message = message def __str__(self): return 'MarketOrderException: {}'.format(self.message)
30.608108
87
0.617219
d853120e4fa42fef3c8bf617cb14b911a05406f8
4,258
py
Python
btclib/electrum.py
giubby84/btclib
0dd7e4e8ca43451a03b577fd7ec95715a1a21711
[ "MIT" ]
null
null
null
btclib/electrum.py
giubby84/btclib
0dd7e4e8ca43451a03b577fd7ec95715a1a21711
[ "MIT" ]
null
null
null
btclib/electrum.py
giubby84/btclib
0dd7e4e8ca43451a03b577fd7ec95715a1a21711
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (C) 2017-2020 The btclib developers # # This file is part of btclib. It is subject to the license terms in the # LICENSE file found in the top-level directory of this distribution. # # No part of btclib including this file, may be copied, modified, propagated, # or distributed except according to the terms contained in the LICENSE file. """Electrum entropy / mnemonic / seed functions. Electrum mnemonic is versioned, conveying BIP32 derivation rule too. """ import hmac from hashlib import pbkdf2_hmac, sha512 from typing import Tuple from .entropy import ( BinStr, Entropy, _entropy_from_indexes, _indexes_from_entropy, binstr_from_entropy, ) from .mnemonic import ( Mnemonic, _indexes_from_mnemonic, _mnemonic_from_indexes, _wordlists, ) _MNEMONIC_VERSIONS = { "standard": "01", # P2PKH and P2MS-P2SH wallets "segwit": "100", # P2WPKH and P2WSH wallets "2fa": "101", # Two-factor authenticated wallets "2fa_segwit": "102", # Two-factor authenticated wallets, using segwit } def version_from_mnemonic(mnemonic: Mnemonic) -> Tuple[str, str]: """Return the (Electrum version, clean mnemonic) tuple. The clean mnemonic is free from spurious whitespace characters (extra spaces, tab, newline, return, formfeed, etc.) """ # split remove spurious whitespaces mnemonic = " ".join(mnemonic.split()) s = hmac.new(b"Seed version", mnemonic.encode(), sha512).hexdigest() if s.startswith(_MNEMONIC_VERSIONS["standard"]): return "standard", mnemonic if s.startswith(_MNEMONIC_VERSIONS["segwit"]): return "segwit", mnemonic if s.startswith(_MNEMONIC_VERSIONS["2fa"]): return "2fa", mnemonic if s.startswith(_MNEMONIC_VERSIONS["2fa_segwit"]): return "2fa_segwit", mnemonic m = f"unknown electrum mnemonic version: '{s[:3]}'; " m += f"not in {list(_MNEMONIC_VERSIONS.keys())}" raise ValueError(m) def mnemonic_from_entropy( entropy: Entropy, version_str: str = "standard", lang: str = "en" ) -> Mnemonic: """Convert input entropy to Electrum versioned mnemonic sentence. Input entropy can be expressed as binary 0/1 string, bytes-like, or integer. In the case of binary 0/1 string and bytes-like, leading zeros are considered redundant padding. """ if version_str not in _MNEMONIC_VERSIONS: m = f"unknown electrum mnemonic version: '{version_str}'; " m += f"not in {list(_MNEMONIC_VERSIONS.keys())}" raise ValueError(m) version = _MNEMONIC_VERSIONS[version_str] binstr_entropy = binstr_from_entropy(entropy) int_entropy = int(binstr_entropy, 2) base = _wordlists.language_length(lang) invalid = True while invalid: # electrum considers entropy as integer, losing any leading zero # so the value of binstr_entropy before the while must be updated nbits = int_entropy.bit_length() binstr_entropy = binstr_from_entropy(int_entropy, nbits) indexes = _indexes_from_entropy(binstr_entropy, base) mnemonic = _mnemonic_from_indexes(indexes, lang) # version validity check s = hmac.new(b"Seed version", mnemonic.encode(), sha512).hexdigest() if s.startswith(version): invalid = False # next trial int_entropy += 1 return mnemonic def entropy_from_mnemonic(mnemonic: Mnemonic, lang: str = "en") -> BinStr: "Return the entropy from the Electrum versioned mnemonic sentence." # verify that it is a valid Electrum mnemonic sentence version_from_mnemonic(mnemonic) indexes = _indexes_from_mnemonic(mnemonic, lang) base = _wordlists.language_length(lang) return _entropy_from_indexes(indexes, base) def _seed_from_mnemonic(mnemonic: Mnemonic, passphrase: str) -> Tuple[str, bytes]: "Return (version, seed) from the provided Electrum mnemonic." # clean up mnemonic from spurious whitespaces version, mnemonic = version_from_mnemonic(mnemonic) hf_name = "sha512" password = mnemonic.encode() salt = ("electrum" + passphrase).encode() iterations = 2048 dksize = 64 return version, pbkdf2_hmac(hf_name, password, salt, iterations, dksize)
33.007752
82
0.701738
3f2fb14e8e893774b003e34adcac03b390a8ca48
4,881
py
Python
modules/face_detection/lib/common/face.py
TestLEM/MagicMirror
45bbe9de71e65e68c65684200c07138777e3aed4
[ "MIT" ]
null
null
null
modules/face_detection/lib/common/face.py
TestLEM/MagicMirror
45bbe9de71e65e68c65684200c07138777e3aed4
[ "MIT" ]
1
2018-05-14T06:45:31.000Z
2018-05-14T06:45:31.000Z
modules/face_detection/lib/common/face.py
TestLEM/MagicMirror
45bbe9de71e65e68c65684200c07138777e3aed4
[ "MIT" ]
null
null
null
# coding: utf8 """Face Detection - MagicMirror Module The MIT License (MIT) Based on work by Paul-Vincent Roll (Copyright 2016) (MIT License) Reference link - https://github.com/normyx/MMM-Facial-Recognition-OCV3 """ import cv2 import sys class FaceDetection: 'Face Detection Class' def __init__(self, haar_scale_factor, haar_min_neighbors_face, haar_min_size_face, haar_faces_file=None, haar_min_neighbors_eyes=None, haar_min_size_eyes=None, haar_eyes_file=None) : self.haar_scale_factor = haar_scale_factor self.haar_min_neighbors_face = haar_min_neighbors_face self.haar_min_size_face = haar_min_size_face self.haar_faces_file = haar_min_size_face self.haar_min_neighbors_eyes = haar_min_neighbors_eyes self.haar_min_size_eyes = haar_min_size_eyes self.haar_eyes_file = haar_eyes_file if haar_faces_file is not None : self.haar_faces = cv2.CascadeClassifier(haar_faces_file) if haar_eyes_file is not None : self.haar_eyes = cv2.CascadeClassifier(haar_eyes_file) def detect_single(self, image): """Return bounds (x, y, width, height) of detected face in grayscale image. If no face or more than one face are detected, None is returned. """ faces = self.haar_faces.detectMultiScale(image, scaleFactor=self.haar_scale_factor, minNeighbors=self.haar_min_neighbors_face, minSize=self.haar_min_size_face, flags=cv2.CASCADE_SCALE_IMAGE) if len(faces) != 1: return None return faces[0] def detect_faces(self, image): """Return bounds (x, y, width, height) of detected face in grayscale image. return all faces found in the image """ faces = self.haar_faces.detectMultiScale(image, scaleFactor=self.haar_scale_factor, minNeighbors=self.haar_min_neighbors_face, minSize=self.haar_min_size_face, flags=cv2.CASCADE_SCALE_IMAGE) if len(faces) == 0: return None return faces def detect_eyes(self, image): eyes = self.haar_eyes.detectMultiScale(image, scaleFactor=self.haar_scale_factor, minNeighbors=self.haar_min_neighbors_eyes, minSize=self.haar_min_size_eyes, flags=cv2.CASCADE_SCALE_IMAGE) return eyes def eyes_to_face(self, eyes): """Return bounds (x, y, width, height) of estimated face location based on the location of a pair of eyes. TODO: Sort through multiple eyes (> 2) to find pairs and detect multiple faces. """ if (len(eyes) != 2): print("Don't know what to do with {0} eye(s).".format(len(eyes))) for eye in eyes: print('{0:4d} {1:4d} {2:3d} {3:3d}' .format(eye[0], eye[1], eye[2], eye[3])) return None x0, y0, w0, h0 = eyes[0] x1, y1, w1, h1 = eyes[1] # compute centered coordinates for the eyes and face cx0 = x0 + int(0.5*w0) cx1 = x1 + int(0.5*w1) cy0 = y0 + int(0.5*h0) cy1 = y1 + int(0.5*h1) left_cx = min(cx0, cx1) right_cx = max(cx0, cx1) x_face_center = int((left_cx + right_cx)/2) y_face_center = int((cy0 + cy1)/2) eye_width = right_cx - left_cx # eye_width is about 2/5 the total face width # and 2/6 the total height w = int(5 * eye_width / 2) h = int(3 * eye_width) x = max(0, x_face_center - int(1.25 * eye_width)) y = max(0, y_face_center - int(1.5 * eye_width)) return [[x, y, w, h]] def crop(self, image, x, y, w, h, crop_height): """Crop box defined by x, y (upper left corner) and w, h (width and height) to an image with the same aspect ratio as the face training data. Might return a smaller crop if the box is near the edge of the image. """ midy = y + h / 2 y1 = int(max(0, midy - crop_height / 2)) y2 = int(min(image.shape[0] - 1, midy + crop_height / 2)) return image[y1:y2, x:x + w] def resize(self, image, face_width, face_height): """Resize a face image to the proper size for training and detection. """ return cv2.resize(image, (face_width, face_height), interpolation=cv2.INTER_LANCZOS4)
42.077586
97
0.563204
db3569b6a400d6d819528d299bef52118e849072
1,548
py
Python
pypy/module/pypyjit/test_pypy_c/test_thread.py
kantai/passe-pypy-taint-tracking
b60a3663f8fe89892dc182c8497aab97e2e75d69
[ "MIT" ]
2
2016-07-06T23:30:20.000Z
2017-05-30T15:59:31.000Z
pypy/module/pypyjit/test_pypy_c/test_thread.py
kantai/passe-pypy-taint-tracking
b60a3663f8fe89892dc182c8497aab97e2e75d69
[ "MIT" ]
null
null
null
pypy/module/pypyjit/test_pypy_c/test_thread.py
kantai/passe-pypy-taint-tracking
b60a3663f8fe89892dc182c8497aab97e2e75d69
[ "MIT" ]
2
2020-07-09T08:14:22.000Z
2021-01-15T18:01:25.000Z
from pypy.module.pypyjit.test_pypy_c.test_00_model import BaseTestPyPyC class TestThread(BaseTestPyPyC): def test_simple(self): def main(n): import thread def f(): i = 0 while i < n: i += 1 done.release() done = thread.allocate_lock() done.acquire() thread.start_new_thread(f, ()) done.acquire() return 0 log = self.run(main, [500]) assert round(log.result, 6) == round(main(500), 6) loop, = log.loops_by_filename(self.filepath) assert loop.match(""" i2 = int_lt(i0, i1) guard_true(i2, descr=...) i3 = int_add(i0, 1) --THREAD-TICK-- jump(..., descr=...) """) def test_tls(self): def main(n): import thread local = thread._local() local.x = 1 i = 0 while i < n: i += local.x return 0 log = self.run(main, [500]) assert round(log.result, 6) == round(main(500), 6) loop, = log.loops_by_filename(self.filepath) assert loop.match(""" i53 = int_lt(i48, i27) guard_true(i53, descr=...) i54 = int_add_ovf(i48, i47) guard_no_overflow(descr=...) --TICK-- i58 = arraylen_gc(p43, descr=...) jump(p0, p1, p3, p5, p10, p12, p14, i54, i27, i47, p45, p43, descr=...) """)
30.352941
83
0.46447
b73bf83dff0169b1857156ab42c8351a1397a486
4,652
py
Python
skhep/math/kinematics.py
AdvaitDhingra/scikit-hep
1e08901447c3e42e4c4b703ea6c09e3bd0db25af
[ "BSD-3-Clause" ]
150
2016-11-14T14:09:29.000Z
2022-03-18T16:37:03.000Z
skhep/math/kinematics.py
AdvaitDhingra/scikit-hep
1e08901447c3e42e4c4b703ea6c09e3bd0db25af
[ "BSD-3-Clause" ]
123
2017-01-30T10:03:04.000Z
2022-03-31T06:26:09.000Z
skhep/math/kinematics.py
AdvaitDhingra/scikit-hep
1e08901447c3e42e4c4b703ea6c09e3bd0db25af
[ "BSD-3-Clause" ]
41
2017-01-11T11:42:56.000Z
2021-12-06T22:38:32.000Z
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license, see LICENSE. """ Mathematical functions relevant to kinematics ============================================= """ # ----------------------------------------------------------------------------- # Import statements # ----------------------------------------------------------------------------- from __future__ import absolute_import from hepunits.units import MeV, ns from hepunits.constants import hbar from .numeric import isequal def Kallen_function(x, y, z): """ The Kallen function, aka triangle or lambda function, named after physicist Anders Olof Gunnar Kallen [Kallen]_: .. math:: \\begin{eqnarray} \\lambda(x,y,z) &=& x^2 + y^2 + z^2 - 2 x y - 2 y z - 2 z x \\\\ &=& (x-y-z)^2 - 4 y z \\\\ &=& [ x - (\\sqrt{y}+\\sqrt{z})^2 ] [ x - (\\sqrt{y}-\\sqrt{z})^2 ] \\,\\,\\,\\mathrm{if} \\,\\,\\,y, z > 0 \\end{eqnarray} Example ------- Calculate in the rest frame of a particle of mass M decaying to 2 particles labeled 1 and 2, :math:`P (M) \\to p1 (m1) + p2 (m2)`, the momenta of 1 and 2 given by :math:`p = |\\mathbf{p1}| = |\\mathbf{p2}|`: >>> from skhep.math import Kallen_function >>> from hepunits.units import MeV, GeV >>> from math import sqrt >>> M = 5.279 * GeV; m1 = 493.7 * MeV; m2 = 139.6 * MeV >>> p = sqrt( Kallen_function( M**2, m1**2, m2**2 ) ) / (2*M) >>> print p / GeV # print the CMS momentum in GeV 2.61453580221 References ---------- .. [Kallen] https://en.wikipedia.org/wiki/K%C3%A4ll%C3%A9n_function """ return (x - y - z) ** 2 - 4 * y * z # faster to evaluate condensed form used def Armenteros_Podolanski_variables(pplus_3Dvec, pminus_3Dvec): """ Calculate the Armenteros Podolanski [APPaper]_ variables :math:`(\\alpha,q_T)` for a 2-body decay. Definition ---------- .. math:: \\alpha = \\frac{p_L^+ - p_L^-}{p_L^+ + p_L^-} q_T = \\frac{| p^- \\times p^{\\mathrm mother}|}{|p^{\\mathrm mother}|} where the longitudinal momentum along the direction of flight of the mother particle is .. math:: p_L^\\pm = \\frac{p^\\pm \\cdot p^{\\mathrm mother}}{|p^{\\mathrm mother}|} and :math:`q_T` is the transverse momentum of the daughter particles with respect to the direction of flight of the mother particle. These expressions can be simplified to .. math:: \\alpha = \\frac{|p^+|^2 - |p^-|^2}{|p^+ + p^-|^2} q_T = \\frac{| p^+ \\times p^- |}{|p^+ + p^-|} Parameters ----------- pplus_3Dvec : Vector3D 3D-momentum vector of the positively-charged daughter particle. pminus_3Dvec : Vector3D 3D-momentum vector of the negatively-charged daughter particle. Returns ------- Tuple :math:`(\\alpha,q_T)`. References ---------- .. [APPaper] J. Podolanski and R. Armenteros, III. Analysis of V-events, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 13, http://dx.doi.org/10.1080/14786440108520416 """ mother_mag = (pplus_3Dvec + pminus_3Dvec).mag if isequal(mother_mag, 0.0): raise ValueError("Total momentum has zero magnitude!") # Longitudinal momentum asymmetry, i.e. imbalance alpha = (pplus_3Dvec.mag2 - pminus_3Dvec.mag2) / mother_mag ** 2 # Transverse momentum of positively-charged particle along the mother particle momentum direction qT = (pplus_3Dvec.cross(pminus_3Dvec)).mag / mother_mag return (qT, alpha) def lifetime_to_width(tau): """Convert from a particle lifetime to a decay width. Parameters ----------- tau : float > 0 Particle lifetime, typically in picoseconds (any HEP time unit is OK). Returns ------- Particle decay width, in the HEP standard energy unit MeV. """ if tau <= 0: raise ValueError("Input provided, %s <= 0!".format(tau)) # Just need to first make sure that the lifetime is in the standard unit ns return hbar / float(tau / ns) def width_to_lifetime(Gamma): """Convert from a particle decay width to a lifetime. Parameters ---------- Gamma : float > 0 Particle decay width, typically in MeV (any HEP energy unit is OK). Returns ------- Particle lifetime, in the HEP standard time unit ns. """ if Gamma <= 0.0: raise ValueError("Input provided, %s <= 0!".format(Gamma)) # Just need to first make sure that the width is in the standard unit MeV return hbar / float(Gamma / MeV)
31.221477
214
0.577171
23fc7d0ab823421072cdd9518fa3a12ec0b8c149
715
py
Python
mysite/client/views.py
willem-vanheemstrasystems/django-frontend
01d9918577fb864b0d1c12d459328b6aac041002
[ "MIT" ]
null
null
null
mysite/client/views.py
willem-vanheemstrasystems/django-frontend
01d9918577fb864b0d1c12d459328b6aac041002
[ "MIT" ]
null
null
null
mysite/client/views.py
willem-vanheemstrasystems/django-frontend
01d9918577fb864b0d1c12d459328b6aac041002
[ "MIT" ]
null
null
null
from django.http import HttpResponse from django.shortcuts import render # Create your views here. # All Django wants returned is an HttpResponse. Or an exception. def index(request): # The code below loads the template called client/index.html # and passes it a context. # The context is a dictionary mapping template variable names to Python objects. context = {} # The render() function takes the request object as its first argument, # a template name as its second argument # and a dictionary as its optional third argument. # It returns an HttpResponse object of the given template rendered with the given context. return render(request, 'client/index.html', context)
42.058824
94
0.744056
a437761b3c790f80198068cdb15c0f56b2956207
2,268
py
Python
tempest/exceptions.py
mail2nsrajesh/tempest
1a3b3dc50b418d3a15839830d7d1ff88c8c76cff
[ "Apache-2.0" ]
null
null
null
tempest/exceptions.py
mail2nsrajesh/tempest
1a3b3dc50b418d3a15839830d7d1ff88c8c76cff
[ "Apache-2.0" ]
null
null
null
tempest/exceptions.py
mail2nsrajesh/tempest
1a3b3dc50b418d3a15839830d7d1ff88c8c76cff
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib import exceptions class BuildErrorException(exceptions.TempestException): message = "Server %(server_id)s failed to build and is in ERROR status" class SnapshotNotFoundException(exceptions.TempestException): message = "Server snapshot image %(image_id)s not found." class ImageKilledException(exceptions.TempestException): message = "Image %(image_id)s 'killed' while waiting for '%(status)s'" class AddImageException(exceptions.TempestException): message = "Image %(image_id)s failed to become ACTIVE in the allotted time" class VolumeResourceBuildErrorException(exceptions.TempestException): message = ("%(resource_name)s %(resource_id)s failed to build and is in " "ERROR status") class VolumeRestoreErrorException(exceptions.TempestException): message = "Volume %(volume_id)s failed to restore and is in ERROR status" class StackBuildErrorException(exceptions.TempestException): message = ("Stack %(stack_identifier)s is in %(stack_status)s status " "due to '%(stack_status_reason)s'") class ServerUnreachable(exceptions.TempestException): message = ("Server %(server_id)s is not reachable via " "the configured network") # NOTE(andreaf) This exception is added here to facilitate the migration # of get_network_from_name and preprov_creds to tempest.lib, and it should # be migrated along with them class InvalidTestResource(exceptions.TempestException): message = "%(name)s is not a valid %(type)s, or the name is ambiguous" class RFCViolation(exceptions.RestClientException): message = "RFC Violation"
35.4375
79
0.746473
39bc8903a08fd25a5772e278aa2856177dd94f0e
632
py
Python
src/odontology/person/migrations/0026_auto_20160228_0216.py
nanomolina/JP
248a47bced4dac850f85d28968ddf279cd123400
[ "Apache-2.0" ]
2
2016-06-23T15:35:29.000Z
2022-01-11T00:55:21.000Z
src/odontology/person/migrations/0026_auto_20160228_0216.py
nanomolina/JP
248a47bced4dac850f85d28968ddf279cd123400
[ "Apache-2.0" ]
27
2016-06-24T12:28:01.000Z
2022-01-13T00:37:25.000Z
src/odontology/person/migrations/0026_auto_20160228_0216.py
nanomolina/JP
248a47bced4dac850f85d28968ddf279cd123400
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-02-28 05:16 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('person', '0025_auto_20160227_1505'), ] operations = [ migrations.AlterField( model_name='dentist', name='register_number', field=models.PositiveIntegerField(), ), migrations.AlterField( model_name='patient', name='tel', field=models.CharField(blank=True, max_length=250, null=True), ), ]
24.307692
74
0.599684
c6e41d2a0c3a4e9209c96ede09d530a7387f2061
8,693
py
Python
atom/nucleus/python/nucleus_api/models/page_audit_log.py
AbhiGupta03/SDK
f3a61aae7a847f07f0c22a154ca88dc378e9d25e
[ "Apache-2.0" ]
null
null
null
atom/nucleus/python/nucleus_api/models/page_audit_log.py
AbhiGupta03/SDK
f3a61aae7a847f07f0c22a154ca88dc378e9d25e
[ "Apache-2.0" ]
null
null
null
atom/nucleus/python/nucleus_api/models/page_audit_log.py
AbhiGupta03/SDK
f3a61aae7a847f07f0c22a154ca88dc378e9d25e
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Hydrogen Nucleus API The Hydrogen Nucleus API # noqa: E501 OpenAPI spec version: 1.9.5 Contact: info@hydrogenplatform.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from nucleus_api.configuration import Configuration class PageAuditLog(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'content': 'list[AuditLog]', 'first': 'bool', 'last': 'bool', 'number': 'int', 'number_of_elements': 'int', 'size': 'int', 'sort': 'list[Sort]', 'total_elements': 'int', 'total_pages': 'int' } attribute_map = { 'content': 'content', 'first': 'first', 'last': 'last', 'number': 'number', 'number_of_elements': 'number_of_elements', 'size': 'size', 'sort': 'sort', 'total_elements': 'total_elements', 'total_pages': 'total_pages' } def __init__(self, content=None, first=None, last=None, number=None, number_of_elements=None, size=None, sort=None, total_elements=None, total_pages=None, _configuration=None): # noqa: E501 """PageAuditLog - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._content = None self._first = None self._last = None self._number = None self._number_of_elements = None self._size = None self._sort = None self._total_elements = None self._total_pages = None self.discriminator = None if content is not None: self.content = content if first is not None: self.first = first if last is not None: self.last = last if number is not None: self.number = number if number_of_elements is not None: self.number_of_elements = number_of_elements if size is not None: self.size = size if sort is not None: self.sort = sort if total_elements is not None: self.total_elements = total_elements if total_pages is not None: self.total_pages = total_pages @property def content(self): """Gets the content of this PageAuditLog. # noqa: E501 :return: The content of this PageAuditLog. # noqa: E501 :rtype: list[AuditLog] """ return self._content @content.setter def content(self, content): """Sets the content of this PageAuditLog. :param content: The content of this PageAuditLog. # noqa: E501 :type: list[AuditLog] """ self._content = content @property def first(self): """Gets the first of this PageAuditLog. # noqa: E501 :return: The first of this PageAuditLog. # noqa: E501 :rtype: bool """ return self._first @first.setter def first(self, first): """Sets the first of this PageAuditLog. :param first: The first of this PageAuditLog. # noqa: E501 :type: bool """ self._first = first @property def last(self): """Gets the last of this PageAuditLog. # noqa: E501 :return: The last of this PageAuditLog. # noqa: E501 :rtype: bool """ return self._last @last.setter def last(self, last): """Sets the last of this PageAuditLog. :param last: The last of this PageAuditLog. # noqa: E501 :type: bool """ self._last = last @property def number(self): """Gets the number of this PageAuditLog. # noqa: E501 :return: The number of this PageAuditLog. # noqa: E501 :rtype: int """ return self._number @number.setter def number(self, number): """Sets the number of this PageAuditLog. :param number: The number of this PageAuditLog. # noqa: E501 :type: int """ self._number = number @property def number_of_elements(self): """Gets the number_of_elements of this PageAuditLog. # noqa: E501 :return: The number_of_elements of this PageAuditLog. # noqa: E501 :rtype: int """ return self._number_of_elements @number_of_elements.setter def number_of_elements(self, number_of_elements): """Sets the number_of_elements of this PageAuditLog. :param number_of_elements: The number_of_elements of this PageAuditLog. # noqa: E501 :type: int """ self._number_of_elements = number_of_elements @property def size(self): """Gets the size of this PageAuditLog. # noqa: E501 :return: The size of this PageAuditLog. # noqa: E501 :rtype: int """ return self._size @size.setter def size(self, size): """Sets the size of this PageAuditLog. :param size: The size of this PageAuditLog. # noqa: E501 :type: int """ self._size = size @property def sort(self): """Gets the sort of this PageAuditLog. # noqa: E501 :return: The sort of this PageAuditLog. # noqa: E501 :rtype: list[Sort] """ return self._sort @sort.setter def sort(self, sort): """Sets the sort of this PageAuditLog. :param sort: The sort of this PageAuditLog. # noqa: E501 :type: list[Sort] """ self._sort = sort @property def total_elements(self): """Gets the total_elements of this PageAuditLog. # noqa: E501 :return: The total_elements of this PageAuditLog. # noqa: E501 :rtype: int """ return self._total_elements @total_elements.setter def total_elements(self, total_elements): """Sets the total_elements of this PageAuditLog. :param total_elements: The total_elements of this PageAuditLog. # noqa: E501 :type: int """ self._total_elements = total_elements @property def total_pages(self): """Gets the total_pages of this PageAuditLog. # noqa: E501 :return: The total_pages of this PageAuditLog. # noqa: E501 :rtype: int """ return self._total_pages @total_pages.setter def total_pages(self, total_pages): """Sets the total_pages of this PageAuditLog. :param total_pages: The total_pages of this PageAuditLog. # noqa: E501 :type: int """ self._total_pages = total_pages def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(PageAuditLog, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PageAuditLog): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, PageAuditLog): return True return self.to_dict() != other.to_dict()
26.183735
194
0.573105
c705c1a6771d1e6e244cdaf8366f687a2223de24
2,677
py
Python
src/compas_rhino/conduits/labels.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
null
null
null
src/compas_rhino/conduits/labels.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
null
null
null
src/compas_rhino/conduits/labels.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
null
null
null
from __future__ import print_function from __future__ import absolute_import from __future__ import division from System.Drawing.Color import FromArgb from Rhino.Geometry import Point3d from compas_rhino.conduits.base import BaseConduit from compas.utilities import color_to_rgb __all__ = ['LabelsConduit'] class LabelsConduit(BaseConduit): """A Rhino display conduit for labels. Parameters ---------- labels : list of 2-tuple A list of label tuples. Each tuple contains a position and text for the label. color : list of 2-tuple, optional The colors of the labels. Each color is a tuple with a background color and a text color. Default is ``((0, 0, 0), (255, 255, 255))`` for all labels. Attributes ---------- color : list of RGB colors A color specification per label. labels : list A list of label tuples. Each tuple contains a position and text for the label. Examples -------- .. code-block:: python from random import randint from compas_rhino.conduits import LabelsConduit labels = [([1.0 * randint(0, 100), 1.0 * randint(0, 100), 0.0], str(i)) for i in range(100)] conduit = LabelsConduit(labels) with conduit.enabled(): for i in range(100): conduit.labels = [([1.0 * randint(0, 100), 1.0 * randint(0, 100), 0.0], str(i)) for i in range(100)] conduit.redraw(pause=0.1) """ def __init__(self, labels, color=None, **kwargs): super(LabelsConduit, self).__init__(**kwargs) self._default_color = FromArgb(0, 0, 0) self._default_textcolor = FromArgb(255, 255, 255) self._color = None self.labels = labels or [] self.color = color @property def color(self): return self._colors @color.setter def color(self, color): if color: color[:] = [(FromArgb(* color_to_rgb(bgc)), FromArgb(* color_to_rgb(tc))) for bgc, tc in color] l = len(self.labels) # noqa: E741 c = len(color) if c < l: color += [(self._default_color, self._default_textcolor) for i in range(l - c)] elif c > l: color[:] = color[:l] self._color = color def DrawForeground(self, e): for i, (pos, text) in enumerate(self.labels): if self.color: color, textcolor = self.color[i] e.Display.DrawDot(Point3d(*pos), text, color, textcolor) else: e.Display.DrawDot(Point3d(*pos), text, self._default_color, self._default_textcolor)
31.869048
116
0.598058
ae808d6d8dae482f65da07c13b4c6de824a23c55
38,361
py
Python
distributed/comm/tests/test_comms.py
aiudirog/distributed
d956ef6b7ae09634fe9307e9da1e2de1fc487e8d
[ "BSD-3-Clause" ]
null
null
null
distributed/comm/tests/test_comms.py
aiudirog/distributed
d956ef6b7ae09634fe9307e9da1e2de1fc487e8d
[ "BSD-3-Clause" ]
null
null
null
distributed/comm/tests/test_comms.py
aiudirog/distributed
d956ef6b7ae09634fe9307e9da1e2de1fc487e8d
[ "BSD-3-Clause" ]
null
null
null
import asyncio import os import sys import threading import types import warnings from functools import partial import pkg_resources import pytest from tornado import ioloop from tornado.concurrent import Future import dask import distributed from distributed.comm import ( CommClosedError, asyncio_tcp, connect, get_address_host, get_local_address_for, inproc, listen, parse_address, parse_host_port, resolve_address, unparse_host_port, ) from distributed.comm.registry import backends, get_backend from distributed.metrics import time from distributed.protocol import Serialized, deserialize, serialize, to_serialize from distributed.utils import get_ip, get_ipv6 from distributed.utils_test import ( get_cert, get_client_ssl_context, get_server_ssl_context, has_ipv6, requires_ipv6, ) EXTERNAL_IP4 = get_ip() if has_ipv6(): with warnings.catch_warnings(record=True): warnings.simplefilter("always") EXTERNAL_IP6 = get_ipv6() @pytest.fixture(params=["tornado", "asyncio"]) def tcp(monkeypatch, request): """Set the TCP backend to either tornado or asyncio""" if request.param == "tornado": import distributed.comm.tcp as tcp else: import distributed.comm.asyncio_tcp as tcp monkeypatch.setitem(backends, "tcp", tcp.TCPBackend()) monkeypatch.setitem(backends, "tls", tcp.TLSBackend()) return tcp ca_file = get_cert("tls-ca-cert.pem") # The Subject field of our test certs cert_subject = ( (("countryName", "XY"),), (("localityName", "Dask-distributed"),), (("organizationName", "Dask"),), (("commonName", "localhost"),), ) def check_tls_extra(info): assert isinstance(info, dict) assert info["peercert"]["subject"] == cert_subject assert "cipher" in info cipher_name, proto_name, secret_bits = info["cipher"] # Most likely assert "AES" in cipher_name assert "TLS" in proto_name assert secret_bits >= 128 tls_kwargs = dict( listen_args={"ssl_context": get_server_ssl_context()}, connect_args={"ssl_context": get_client_ssl_context()}, ) @pytest.mark.asyncio async def get_comm_pair(listen_addr, listen_args={}, connect_args={}, **kwargs): q = asyncio.Queue() async def handle_comm(comm): await q.put(comm) listener = await listen(listen_addr, handle_comm, **listen_args, **kwargs) comm = await connect(listener.contact_address, **connect_args, **kwargs) serv_comm = await q.get() return (comm, serv_comm) def get_tcp_comm_pair(**kwargs): return get_comm_pair("tcp://", **kwargs) def get_tls_comm_pair(**kwargs): kwargs.update(tls_kwargs) return get_comm_pair("tls://", **kwargs) def get_inproc_comm_pair(**kwargs): return get_comm_pair("inproc://", **kwargs) async def debug_loop(): """ Debug helper """ while True: loop = ioloop.IOLoop.current() print(".", loop, loop._handlers) await asyncio.sleep(0.5) # # Test utility functions # def test_parse_host_port(tcp): f = parse_host_port assert f("localhost:123") == ("localhost", 123) assert f("127.0.0.1:456") == ("127.0.0.1", 456) assert f("localhost:123", 80) == ("localhost", 123) assert f("localhost", 80) == ("localhost", 80) with pytest.raises(ValueError): f("localhost") assert f("[::1]:123") == ("::1", 123) assert f("[fe80::1]:123", 80) == ("fe80::1", 123) assert f("[::1]", 80) == ("::1", 80) with pytest.raises(ValueError): f("[::1]") with pytest.raises(ValueError): f("::1:123") with pytest.raises(ValueError): f("::1") def test_unparse_host_port(tcp): f = unparse_host_port assert f("localhost", 123) == "localhost:123" assert f("127.0.0.1", 123) == "127.0.0.1:123" assert f("::1", 123) == "[::1]:123" assert f("[::1]", 123) == "[::1]:123" assert f("127.0.0.1") == "127.0.0.1" assert f("127.0.0.1", None) == "127.0.0.1" assert f("127.0.0.1", "*") == "127.0.0.1:*" assert f("::1") == "[::1]" assert f("[::1]") == "[::1]" assert f("::1", "*") == "[::1]:*" def test_get_address_host(tcp): f = get_address_host assert f("tcp://127.0.0.1:123") == "127.0.0.1" assert f("inproc://%s/%d/123" % (get_ip(), os.getpid())) == get_ip() def test_resolve_address(tcp): f = resolve_address assert f("tcp://127.0.0.1:123") == "tcp://127.0.0.1:123" assert f("127.0.0.2:789") == "tcp://127.0.0.2:789" assert f("tcp://0.0.0.0:456") == "tcp://0.0.0.0:456" assert f("tcp://0.0.0.0:456") == "tcp://0.0.0.0:456" if has_ipv6(): assert f("tcp://[::1]:123") == "tcp://[::1]:123" assert f("tls://[::1]:123") == "tls://[::1]:123" # OS X returns '::0.0.0.2' as canonical representation assert f("[::2]:789") in ("tcp://[::2]:789", "tcp://[::0.0.0.2]:789") assert f("tcp://[::]:123") == "tcp://[::]:123" assert f("localhost:123") == "tcp://127.0.0.1:123" assert f("tcp://localhost:456") == "tcp://127.0.0.1:456" assert f("tls://localhost:456") == "tls://127.0.0.1:456" def test_get_local_address_for(tcp): f = get_local_address_for assert f("tcp://127.0.0.1:80") == "tcp://127.0.0.1" assert f("tcp://8.8.8.8:4444") == "tcp://" + get_ip() if has_ipv6(): assert f("tcp://[::1]:123") == "tcp://[::1]" inproc_arg = "inproc://%s/%d/444" % (get_ip(), os.getpid()) inproc_res = f(inproc_arg) assert inproc_res.startswith("inproc://") assert inproc_res != inproc_arg # # Test concrete transport APIs # @pytest.mark.asyncio async def test_tcp_listener_does_not_call_handler_on_handshake_error(tcp): handle_comm_called = False async def handle_comm(comm): nonlocal handle_comm_called handle_comm_called = True with dask.config.set({"distributed.comm.timeouts.connect": 0.01}): listener = await tcp.TCPListener("127.0.0.1", handle_comm) host, port = listener.get_host_port() # connect without handshake: reader, writer = await asyncio.open_connection(host=host, port=port) # wait a bit to let the listener side hit the timeout on the handshake: await asyncio.sleep(0.02) assert not handle_comm_called writer.close() await writer.wait_closed() @pytest.mark.asyncio async def test_tcp_specific(tcp): """ Test concrete TCP API. """ async def handle_comm(comm): assert comm.peer_address.startswith("tcp://" + host) assert comm.extra_info == {} msg = await comm.read() msg["op"] = "pong" await comm.write(msg) await comm.close() listener = await tcp.TCPListener("127.0.0.1", handle_comm) host, port = listener.get_host_port() assert host in ("localhost", "127.0.0.1", "::1") assert port > 0 l = [] async def client_communicate(key, delay=0): addr = "%s:%d" % (host, port) comm = await connect(listener.contact_address) assert comm.peer_address == "tcp://" + addr assert comm.extra_info == {} await comm.write({"op": "ping", "data": key}) if delay: await asyncio.sleep(delay) msg = await comm.read() assert msg == {"op": "pong", "data": key} l.append(key) await comm.close() await client_communicate(key=1234) # Many clients at once N = 100 futures = [client_communicate(key=i, delay=0.05) for i in range(N)] await asyncio.gather(*futures) assert set(l) == {1234} | set(range(N)) @pytest.mark.asyncio async def test_tls_specific(tcp): """ Test concrete TLS API. """ async def handle_comm(comm): assert comm.peer_address.startswith("tls://" + host) check_tls_extra(comm.extra_info) msg = await comm.read() msg["op"] = "pong" await comm.write(msg) await comm.close() server_ctx = get_server_ssl_context() client_ctx = get_client_ssl_context() listener = await tcp.TLSListener("127.0.0.1", handle_comm, ssl_context=server_ctx) host, port = listener.get_host_port() assert host in ("localhost", "127.0.0.1", "::1") assert port > 0 l = [] async def client_communicate(key, delay=0): addr = "%s:%d" % (host, port) comm = await connect(listener.contact_address, ssl_context=client_ctx) assert comm.peer_address == "tls://" + addr check_tls_extra(comm.extra_info) await comm.write({"op": "ping", "data": key}) if delay: await asyncio.sleep(delay) msg = await comm.read() assert msg == {"op": "pong", "data": key} l.append(key) await comm.close() await client_communicate(key=1234) # Many clients at once N = 100 futures = [client_communicate(key=i, delay=0.05) for i in range(N)] await asyncio.gather(*futures) assert set(l) == {1234} | set(range(N)) @pytest.mark.asyncio async def test_comm_failure_threading(tcp): """ When we fail to connect, make sure we don't make a lot of threads. We only assert for PY3, because the thread limit only is set for python 3. See github PR #2403 discussion for info. """ if tcp is asyncio_tcp: pytest.skip("not applicable for asyncio") async def sleep_for_60ms(): max_thread_count = 0 for x in range(60): await asyncio.sleep(0.001) thread_count = threading.active_count() if thread_count > max_thread_count: max_thread_count = thread_count return max_thread_count original_thread_count = threading.active_count() # tcp.TCPConnector() sleep_future = sleep_for_60ms() with pytest.raises(IOError): await connect("tcp://localhost:28400", 0.052) max_thread_count = await sleep_future # 2 is the number set by BaseTCPConnector.executor (ThreadPoolExecutor) assert max_thread_count <= 2 + original_thread_count # tcp.TLSConnector() sleep_future = sleep_for_60ms() with pytest.raises(IOError): await connect( "tls://localhost:28400", 0.052, ssl_context=get_client_ssl_context() ) max_thread_count = await sleep_future assert max_thread_count <= 2 + original_thread_count async def check_inproc_specific(run_client): """ Test concrete InProc API. """ listener_addr = inproc.global_manager.new_address() addr_head = listener_addr.rpartition("/")[0] client_addresses = set() N_MSGS = 3 async def handle_comm(comm): assert comm.peer_address.startswith("inproc://" + addr_head) client_addresses.add(comm.peer_address) for i in range(N_MSGS): msg = await comm.read() msg["op"] = "pong" await comm.write(msg) await comm.close() listener = await inproc.InProcListener(listener_addr, handle_comm) assert ( listener.listen_address == listener.contact_address == "inproc://" + listener_addr ) l = [] async def client_communicate(key, delay=0): comm = await connect(listener.contact_address) assert comm.peer_address == "inproc://" + listener_addr for i in range(N_MSGS): await comm.write({"op": "ping", "data": key}) if delay: await asyncio.sleep(delay) msg = await comm.read() assert msg == {"op": "pong", "data": key} l.append(key) with pytest.raises(CommClosedError): await comm.read() await comm.close() client_communicate = partial(run_client, client_communicate) await client_communicate(key=1234) # Many clients at once N = 20 futures = [client_communicate(key=i, delay=0.001) for i in range(N)] await asyncio.gather(*futures) assert set(l) == {1234} | set(range(N)) assert len(client_addresses) == N + 1 assert listener.contact_address not in client_addresses def run_coro(func, *args, **kwargs): return func(*args, **kwargs) def run_coro_in_thread(func, *args, **kwargs): fut = Future() main_loop = ioloop.IOLoop.current() def run(): thread_loop = ioloop.IOLoop() # need fresh IO loop for run_sync() try: res = thread_loop.run_sync(partial(func, *args, **kwargs), timeout=10) except Exception: main_loop.add_callback(fut.set_exc_info, sys.exc_info()) else: main_loop.add_callback(fut.set_result, res) finally: thread_loop.close() t = threading.Thread(target=run) t.start() return fut @pytest.mark.asyncio async def test_inproc_specific_same_thread(): await check_inproc_specific(run_coro) @pytest.mark.asyncio async def test_inproc_specific_different_threads(): await check_inproc_specific(run_coro_in_thread) # # Test communications through the abstract API # async def check_client_server( addr, check_listen_addr=None, check_contact_addr=None, listen_args={}, connect_args={}, ): """ Abstract client / server test. """ async def handle_comm(comm): scheme, loc = parse_address(comm.peer_address) assert scheme == bound_scheme msg = await comm.read() assert msg["op"] == "ping" msg["op"] = "pong" await comm.write(msg) msg = await comm.read() assert msg["op"] == "foobar" await comm.close() # Arbitrary connection args should be ignored listen_args = listen_args or {"xxx": "bar"} connect_args = connect_args or {"xxx": "foo"} listener = await listen(addr, handle_comm, **listen_args) # Check listener properties bound_addr = listener.listen_address bound_scheme, bound_loc = parse_address(bound_addr) assert bound_scheme in backends assert bound_scheme == parse_address(addr)[0] if check_listen_addr is not None: check_listen_addr(bound_loc) contact_addr = listener.contact_address contact_scheme, contact_loc = parse_address(contact_addr) assert contact_scheme == bound_scheme if check_contact_addr is not None: check_contact_addr(contact_loc) else: assert contact_addr == bound_addr # Check client <-> server comms l = [] async def client_communicate(key, delay=0): comm = await connect(listener.contact_address, **connect_args) assert comm.peer_address == listener.contact_address await comm.write({"op": "ping", "data": key}) await comm.write({"op": "foobar"}) if delay: await asyncio.sleep(delay) msg = await comm.read() assert msg == {"op": "pong", "data": key} l.append(key) await comm.close() await client_communicate(key=1234) # Many clients at once futures = [client_communicate(key=i, delay=0.05) for i in range(20)] await asyncio.gather(*futures) assert set(l) == {1234} | set(range(20)) listener.stop() @pytest.mark.gpu @pytest.mark.asyncio async def test_ucx_client_server(): pytest.importorskip("distributed.comm.ucx") ucp = pytest.importorskip("ucp") addr = ucp.get_address() await check_client_server("ucx://" + addr) def tcp_eq(expected_host, expected_port=None): def checker(loc): host, port = parse_host_port(loc) assert host == expected_host if expected_port is not None: assert port == expected_port else: assert 1023 < port < 65536 return checker tls_eq = tcp_eq def inproc_check(): expected_ip = get_ip() expected_pid = os.getpid() def checker(loc): ip, pid, suffix = loc.split("/") assert ip == expected_ip assert int(pid) == expected_pid return checker @pytest.mark.asyncio async def test_default_client_server_ipv4(tcp): # Default scheme is (currently) TCP await check_client_server("127.0.0.1", tcp_eq("127.0.0.1")) await check_client_server("127.0.0.1:3201", tcp_eq("127.0.0.1", 3201)) await check_client_server("0.0.0.0", tcp_eq("0.0.0.0"), tcp_eq(EXTERNAL_IP4)) await check_client_server( "0.0.0.0:3202", tcp_eq("0.0.0.0", 3202), tcp_eq(EXTERNAL_IP4, 3202) ) # IPv4 is preferred for the bound address await check_client_server("", tcp_eq("0.0.0.0"), tcp_eq(EXTERNAL_IP4)) await check_client_server( ":3203", tcp_eq("0.0.0.0", 3203), tcp_eq(EXTERNAL_IP4, 3203) ) @requires_ipv6 @pytest.mark.asyncio async def test_default_client_server_ipv6(tcp): await check_client_server("[::1]", tcp_eq("::1")) await check_client_server("[::1]:3211", tcp_eq("::1", 3211)) await check_client_server("[::]", tcp_eq("::"), tcp_eq(EXTERNAL_IP6)) await check_client_server( "[::]:3212", tcp_eq("::", 3212), tcp_eq(EXTERNAL_IP6, 3212) ) @pytest.mark.asyncio async def test_tcp_client_server_ipv4(tcp): await check_client_server("tcp://127.0.0.1", tcp_eq("127.0.0.1")) await check_client_server("tcp://127.0.0.1:3221", tcp_eq("127.0.0.1", 3221)) await check_client_server("tcp://0.0.0.0", tcp_eq("0.0.0.0"), tcp_eq(EXTERNAL_IP4)) await check_client_server( "tcp://0.0.0.0:3222", tcp_eq("0.0.0.0", 3222), tcp_eq(EXTERNAL_IP4, 3222) ) await check_client_server("tcp://", tcp_eq("0.0.0.0"), tcp_eq(EXTERNAL_IP4)) await check_client_server( "tcp://:3223", tcp_eq("0.0.0.0", 3223), tcp_eq(EXTERNAL_IP4, 3223) ) @requires_ipv6 @pytest.mark.asyncio async def test_tcp_client_server_ipv6(tcp): await check_client_server("tcp://[::1]", tcp_eq("::1")) await check_client_server("tcp://[::1]:3231", tcp_eq("::1", 3231)) await check_client_server("tcp://[::]", tcp_eq("::"), tcp_eq(EXTERNAL_IP6)) await check_client_server( "tcp://[::]:3232", tcp_eq("::", 3232), tcp_eq(EXTERNAL_IP6, 3232) ) @pytest.mark.asyncio async def test_tls_client_server_ipv4(tcp): await check_client_server("tls://127.0.0.1", tls_eq("127.0.0.1"), **tls_kwargs) await check_client_server( "tls://127.0.0.1:3221", tls_eq("127.0.0.1", 3221), **tls_kwargs ) await check_client_server( "tls://", tls_eq("0.0.0.0"), tls_eq(EXTERNAL_IP4), **tls_kwargs ) @requires_ipv6 @pytest.mark.asyncio async def test_tls_client_server_ipv6(tcp): await check_client_server("tls://[::1]", tls_eq("::1"), **tls_kwargs) @pytest.mark.asyncio async def test_inproc_client_server(): await check_client_server("inproc://", inproc_check()) await check_client_server(inproc.new_address(), inproc_check()) # # TLS certificate handling # @pytest.mark.asyncio async def test_tls_reject_certificate(tcp): cli_ctx = get_client_ssl_context() serv_ctx = get_server_ssl_context() # These certs are not signed by our test CA bad_cert_key = ("tls-self-signed-cert.pem", "tls-self-signed-key.pem") bad_cli_ctx = get_client_ssl_context(*bad_cert_key) bad_serv_ctx = get_server_ssl_context(*bad_cert_key) async def handle_comm(comm): scheme, loc = parse_address(comm.peer_address) assert scheme == "tls" await comm.close() # Listener refuses a connector not signed by the CA listener = await listen("tls://", handle_comm, ssl_context=serv_ctx) with pytest.raises(EnvironmentError) as excinfo: comm = await connect( listener.contact_address, timeout=0.5, ssl_context=bad_cli_ctx ) await comm.write({"x": "foo"}) # TODO: why is this necessary in Tornado 6 ? if os.name != "nt": try: # See https://serverfault.com/questions/793260/what-does-tlsv1-alert-unknown-ca-mean # assert "unknown ca" in str(excinfo.value) pass except AssertionError: if os.name == "nt": assert "An existing connection was forcibly closed" in str( excinfo.value ) else: raise # Sanity check comm = await connect(listener.contact_address, timeout=2, ssl_context=cli_ctx) await comm.close() # Connector refuses a listener not signed by the CA listener = await listen("tls://", handle_comm, ssl_context=bad_serv_ctx) with pytest.raises(EnvironmentError) as excinfo: await connect(listener.contact_address, timeout=2, ssl_context=cli_ctx) # XXX: For asyncio this is just a timeout error # assert "certificate verify failed" in str(excinfo.value.__cause__) # # Test communication closing # async def check_comm_closed_implicit(addr, delay=None, listen_args={}, connect_args={}): async def handle_comm(comm): await comm.close() listener = await listen(addr, handle_comm, **listen_args) comm = await connect(listener.contact_address, **connect_args) with pytest.raises(CommClosedError): await comm.write({}) await comm.read() comm = await connect(listener.contact_address, **connect_args) with pytest.raises(CommClosedError): await comm.read() @pytest.mark.asyncio async def test_tcp_comm_closed_implicit(tcp): await check_comm_closed_implicit("tcp://127.0.0.1") @pytest.mark.asyncio async def test_tls_comm_closed_implicit(tcp): await check_comm_closed_implicit("tls://127.0.0.1", **tls_kwargs) @pytest.mark.asyncio async def test_inproc_comm_closed_implicit(): await check_comm_closed_implicit(inproc.new_address()) async def check_comm_closed_explicit(addr, listen_args={}, connect_args={}): a, b = await get_comm_pair(addr, listen_args=listen_args, connect_args=connect_args) a_read = a.read() b_read = b.read() await a.close() # In-flight reads should abort with CommClosedError with pytest.raises(CommClosedError): await a_read with pytest.raises(CommClosedError): await b_read # New reads as well with pytest.raises(CommClosedError): await a.read() with pytest.raises(CommClosedError): await b.read() # And writes with pytest.raises(CommClosedError): await a.write({}) with pytest.raises(CommClosedError): await b.write({}) await b.close() @pytest.mark.asyncio async def test_tcp_comm_closed_explicit(tcp): await check_comm_closed_explicit("tcp://127.0.0.1") @pytest.mark.xfail( sys.version_info[:2] == (3, 7), reason="This test fails on python 3.7 with certain versions of openssl", ) @pytest.mark.asyncio async def test_tls_comm_closed_explicit(tcp): await check_comm_closed_explicit("tls://127.0.0.1", **tls_kwargs) @pytest.mark.asyncio async def test_inproc_comm_closed_explicit(): await check_comm_closed_explicit(inproc.new_address()) @pytest.mark.asyncio async def test_inproc_comm_closed_explicit_2(): listener_errors = [] async def handle_comm(comm): # Wait try: await comm.read() except CommClosedError: assert comm.closed() listener_errors.append(True) else: await comm.close() listener = await listen("inproc://", handle_comm) comm = await connect(listener.contact_address) await comm.close() assert comm.closed() start = time() while len(listener_errors) < 1: assert time() < start + 1 await asyncio.sleep(0.01) assert len(listener_errors) == 1 with pytest.raises(CommClosedError): await comm.read() with pytest.raises(CommClosedError): await comm.write("foo") comm = await connect(listener.contact_address) await comm.write("foo") with pytest.raises(CommClosedError): await comm.read() with pytest.raises(CommClosedError): await comm.write("foo") assert comm.closed() comm = await connect(listener.contact_address) await comm.write("foo") start = time() while not comm.closed(): await asyncio.sleep(0.01) assert time() < start + 2 await comm.close() await comm.close() @pytest.mark.asyncio async def test_comm_closed_on_buffer_error(tcp): # Internal errors from comm.stream.write, such as # BufferError should lead to the stream being closed # and not re-used. See GitHub #4133 if tcp is asyncio_tcp: pytest.skip("Not applicable for asyncio") reader, writer = await get_tcp_comm_pair() def _write(data): raise BufferError writer.stream.write = _write with pytest.raises(BufferError): await writer.write("x") assert writer.stream is None await reader.close() await writer.close() # # Various stress tests # async def echo(comm): message = await comm.read() await comm.write(message) @pytest.mark.asyncio async def test_retry_connect(tcp, monkeypatch): async def echo(comm): message = await comm.read() await comm.write(message) class UnreliableConnector(tcp.TCPConnector): def __init__(self): self.num_failures = 2 self.failures = 0 super().__init__() async def connect(self, address, deserialize=True, **connection_args): if self.failures > self.num_failures: return await super().connect(address, deserialize, **connection_args) else: self.failures += 1 raise OSError() class UnreliableBackend(tcp.TCPBackend): _connector_class = UnreliableConnector monkeypatch.setitem(backends, "tcp", UnreliableBackend()) listener = await listen("tcp://127.0.0.1:1234", echo) try: comm = await connect(listener.contact_address) await comm.write(b"test") msg = await comm.read() assert msg == b"test" finally: listener.stop() @pytest.mark.asyncio async def test_handshake_slow_comm(tcp, monkeypatch): class SlowComm(tcp.TCP): def __init__(self, *args, delay_in_comm=0.5, **kwargs): super().__init__(*args, **kwargs) self.delay_in_comm = delay_in_comm async def read(self, *args, **kwargs): await asyncio.sleep(self.delay_in_comm) return await super().read(*args, **kwargs) async def write(self, *args, **kwargs): await asyncio.sleep(self.delay_in_comm) res = await super(type(self), self).write(*args, **kwargs) return res class SlowConnector(tcp.TCPConnector): comm_class = SlowComm class SlowBackend(tcp.TCPBackend): def get_connector(self): return SlowConnector() monkeypatch.setitem(backends, "tcp", SlowBackend()) listener = await listen("tcp://127.0.0.1:1234", echo) try: comm = await connect(listener.contact_address) await comm.write(b"test") msg = await comm.read() assert msg == b"test" import dask with dask.config.set({"distributed.comm.timeouts.connect": "100ms"}): with pytest.raises( IOError, match="Timed out during handshake while connecting to" ): await connect(listener.contact_address) finally: listener.stop() async def check_connect_timeout(addr): t1 = time() with pytest.raises(IOError): await connect(addr, timeout=0.15) dt = time() - t1 assert 1 >= dt >= 0.1 @pytest.mark.asyncio async def test_tcp_connect_timeout(tcp): await check_connect_timeout("tcp://127.0.0.1:44444") @pytest.mark.asyncio async def test_inproc_connect_timeout(): await check_connect_timeout(inproc.new_address()) async def check_many_listeners(addr): async def handle_comm(comm): pass listeners = [] N = 100 for i in range(N): listener = await listen(addr, handle_comm) listeners.append(listener) assert len({l.listen_address for l in listeners}) == N assert len({l.contact_address for l in listeners}) == N for listener in listeners: listener.stop() @pytest.mark.asyncio async def test_tcp_many_listeners(tcp): await check_many_listeners("tcp://127.0.0.1") await check_many_listeners("tcp://0.0.0.0") await check_many_listeners("tcp://") @pytest.mark.asyncio async def test_inproc_many_listeners(): await check_many_listeners("inproc://") # # Test deserialization # async def check_listener_deserialize(addr, deserialize, in_value, check_out): q = asyncio.Queue() async def handle_comm(comm): try: msg = await comm.read() except Exception as exc: q.put_nowait(exc) else: q.put_nowait(msg) await comm.close() async with listen(addr, handle_comm, deserialize=deserialize) as listener: comm = await connect(listener.contact_address) await comm.write(in_value) out_value = await q.get() if isinstance(out_value, Exception): raise out_value # Prevents deadlocks, get actual deserialization exception check_out(out_value) await comm.close() async def check_connector_deserialize(addr, deserialize, in_value, check_out): done = asyncio.Event() async def handle_comm(comm): await comm.write(in_value) await done.wait() await comm.close() async with listen(addr, handle_comm) as listener: comm = await connect(listener.contact_address, deserialize=deserialize) out_value = await comm.read() done.set() await comm.close() check_out(out_value) async def check_deserialize(addr): """ Check the "deserialize" flag on connect() and listen(). """ # Test with Serialize and Serialized objects msg = { "op": "update", "x": b"abc", "to_ser": [to_serialize(123)], "ser": Serialized(*serialize(456)), } msg_orig = msg.copy() def check_out_false(out_value): # Check output with deserialize=False out_value = out_value.copy() # in case transport passed the object as-is to_ser = out_value.pop("to_ser") ser = out_value.pop("ser") expected_msg = msg_orig.copy() del expected_msg["ser"] del expected_msg["to_ser"] assert out_value == expected_msg assert isinstance(ser, Serialized) assert deserialize(ser.header, ser.frames) == 456 assert isinstance(to_ser, (tuple, list)) and len(to_ser) == 1 (to_ser,) = to_ser # The to_serialize() value could have been actually serialized # or not (it's a transport-specific optimization) if isinstance(to_ser, Serialized): assert deserialize(to_ser.header, to_ser.frames) == 123 else: assert to_ser == to_serialize(123) def check_out_true(out_value): # Check output with deserialize=True expected_msg = msg.copy() expected_msg["ser"] = 456 expected_msg["to_ser"] = [123] # Notice, we allow "to_ser" to be a tuple or a list assert list(out_value.pop("to_ser")) == expected_msg.pop("to_ser") assert out_value == expected_msg await check_listener_deserialize(addr, False, msg, check_out_false) await check_connector_deserialize(addr, False, msg, check_out_false) await check_listener_deserialize(addr, True, msg, check_out_true) await check_connector_deserialize(addr, True, msg, check_out_true) # Test with long bytestrings, large enough to be transferred # as a separate payload # TODO: currently bytestrings are not transferred as a separate payload _uncompressible = os.urandom(1024 ** 2) * 4 # end size: 8 MB msg = { "op": "update", "x": _uncompressible, "to_ser": (to_serialize(_uncompressible),), "ser": Serialized(*serialize(_uncompressible)), } msg_orig = msg.copy() def check_out(deserialize_flag, out_value): # Check output with deserialize=False assert sorted(out_value) == sorted(msg_orig) out_value = out_value.copy() # in case transport passed the object as-is to_ser = out_value.pop("to_ser") ser = out_value.pop("ser") expected_msg = msg_orig.copy() del expected_msg["ser"] del expected_msg["to_ser"] assert out_value == expected_msg if deserialize_flag: assert isinstance(ser, (bytes, bytearray)) assert bytes(ser) == _uncompressible else: assert isinstance(ser, Serialized) assert deserialize(ser.header, ser.frames) == _uncompressible assert isinstance(to_ser, tuple) and len(to_ser) == 1 (to_ser,) = to_ser # The to_serialize() value could have been actually serialized # or not (it's a transport-specific optimization) if isinstance(to_ser, Serialized): assert deserialize(to_ser.header, to_ser.frames) == _uncompressible else: assert to_ser == to_serialize(_uncompressible) await check_listener_deserialize(addr, False, msg, partial(check_out, False)) await check_connector_deserialize(addr, False, msg, partial(check_out, False)) await check_listener_deserialize(addr, True, msg, partial(check_out, True)) await check_connector_deserialize(addr, True, msg, partial(check_out, True)) @pytest.mark.asyncio async def test_tcp_deserialize(tcp): await check_deserialize("tcp://") @pytest.mark.asyncio async def test_inproc_deserialize(): await check_deserialize("inproc://") async def check_deserialize_roundtrip(addr): """ Sanity check round-tripping with "deserialize" on and off. """ # Test with long bytestrings, large enough to be transferred # as a separate payload _uncompressible = os.urandom(1024 ** 2) * 4 # end size: 4 MB msg = { "op": "update", "x": _uncompressible, "to_ser": [to_serialize(_uncompressible)], "ser": Serialized(*serialize(_uncompressible)), } for should_deserialize in (True, False): a, b = await get_comm_pair(addr, deserialize=should_deserialize) await a.write(msg) got = await b.read() await b.write(got) got = await a.read() assert sorted(got) == sorted(msg) for k in ("op", "x"): assert got[k] == msg[k] if should_deserialize: assert isinstance(got["to_ser"][0], (bytes, bytearray)) assert isinstance(got["ser"], (bytes, bytearray)) else: assert isinstance(got["to_ser"][0], (to_serialize, Serialized)) assert isinstance(got["ser"], Serialized) @pytest.mark.asyncio async def test_inproc_deserialize_roundtrip(): await check_deserialize_roundtrip("inproc://") @pytest.mark.asyncio async def test_tcp_deserialize_roundtrip(tcp): await check_deserialize_roundtrip("tcp://") def _raise_eoferror(): raise EOFError class _EOFRaising: def __reduce__(self): return _raise_eoferror, () async def check_deserialize_eoferror(addr): """ EOFError when deserializing should close the comm. """ async def handle_comm(comm): await comm.write({"data": to_serialize(_EOFRaising())}) with pytest.raises(CommClosedError): await comm.read() async with listen(addr, handle_comm) as listener: comm = await connect(listener.contact_address, deserialize=deserialize) with pytest.raises(CommClosedError): await comm.read() @pytest.mark.asyncio async def test_tcp_deserialize_eoferror(tcp): await check_deserialize_eoferror("tcp://") # # Test various properties # async def check_repr(a, b): assert "closed" not in repr(a) assert "closed" not in repr(b) await a.close() assert "closed" in repr(a) assert a.local_address in repr(a) assert b.peer_address in repr(a) await b.close() assert "closed" in repr(b) assert a.local_address in repr(b) assert b.peer_address in repr(b) @pytest.mark.asyncio async def test_tcp_repr(tcp): a, b = await get_tcp_comm_pair() assert a.local_address in repr(b) assert b.local_address in repr(a) await check_repr(a, b) @pytest.mark.asyncio async def test_tls_repr(tcp): a, b = await get_tls_comm_pair() assert a.local_address in repr(b) assert b.local_address in repr(a) await check_repr(a, b) @pytest.mark.asyncio async def test_inproc_repr(): a, b = await get_inproc_comm_pair() assert a.local_address in repr(b) assert b.local_address in repr(a) await check_repr(a, b) async def check_addresses(a, b): assert a.peer_address == b.local_address assert a.local_address == b.peer_address a.abort() b.abort() @pytest.mark.asyncio async def test_tcp_adresses(tcp): a, b = await get_tcp_comm_pair() await check_addresses(a, b) @pytest.mark.asyncio async def test_tls_adresses(tcp): a, b = await get_tls_comm_pair() await check_addresses(a, b) @pytest.mark.asyncio async def test_inproc_adresses(): a, b = await get_inproc_comm_pair() await check_addresses(a, b) def test_register_backend_entrypoint(): # Code adapted from pandas backend entry point testing # https://github.com/pandas-dev/pandas/blob/2470690b9f0826a8feb426927694fa3500c3e8d2/pandas/tests/plotting/test_backend.py#L50-L76 dist = pkg_resources.get_distribution("distributed") if dist.module_path not in distributed.__file__: # We are running from a non-installed distributed, and this test is invalid pytest.skip("Testing a non-installed distributed") mod = types.ModuleType("dask_udp") mod.UDPBackend = lambda: 1 sys.modules[mod.__name__] = mod entry_point_name = "distributed.comm.backends" backends_entry_map = pkg_resources.get_entry_map("distributed") if entry_point_name not in backends_entry_map: backends_entry_map[entry_point_name] = dict() backends_entry_map[entry_point_name]["udp"] = pkg_resources.EntryPoint( "udp", mod.__name__, attrs=["UDPBackend"], dist=dist ) # The require is disabled here since particularly unit tests may install # dirty or dev versions which are conflicting with backend entrypoints if # they are demanding for exact, stable versions. This should not fail the # test result = get_backend("udp", require=False) assert result == 1
29.171863
134
0.649748
c4d0693a17d9d19cab8a1932f2dcca210fbfb618
3,343
py
Python
activelo/examples/suggestions.py
jzf2101/boardlaw
29126c2a6ab7f11154fb242c303d3b11f1566201
[ "MIT" ]
20
2021-01-20T17:15:18.000Z
2022-01-25T21:51:29.000Z
activelo/examples/suggestions.py
jzf2101/boardlaw
29126c2a6ab7f11154fb242c303d3b11f1566201
[ "MIT" ]
17
2021-01-21T08:14:11.000Z
2021-06-09T22:27:00.000Z
activelo/examples/suggestions.py
jzf2101/boardlaw
29126c2a6ab7f11154fb242c303d3b11f1566201
[ "MIT" ]
3
2021-02-15T05:18:41.000Z
2021-06-30T14:11:26.000Z
import matplotlib.pyplot as plt import numpy as np from rebar import arrdict import torch import torch.distributions import activelo def winrate(black, white): return 1/(1 + np.exp(-(black - white))) def residual_vs_mean(Σ): return np.diag(Σ - np.outer(Σ.mean(0), Σ.mean(0))/Σ.mean()) def resid_var(ranks, truth): return (((truth - truth.mean()) - (ranks - ranks.mean()))**2).sum()/((truth - truth.mean())**2).sum() def status(soln): return f'{soln.σresid:.2f}σd, {soln.resid_var:.0%} resid var' def plot(trace, truth=None, t=-1): soln = trace[t] N = len(soln.μ) fig, axes = plt.subplots(1, 3) fig.set_size_inches(18, 6) ax = axes[0] μd = soln.μ - soln.μ.mean() σd = residual_vs_mean(soln.Σ)**.5 ax.errorbar(np.arange(N), μd, yerr=σd, marker='.', linestyle='', capsize=2) if truth is not None: ax.plot(truth - truth.mean()) ax.set_title(f'μ±σ vs. mean agent') ax.set_xlabel(status(soln)) ax = axes[1] eigs = np.linalg.eigvalsh(soln.Σ) ax.plot(eigs) ax.set_yscale('log') ax.set_title(f'Σ spectrum') ax.set_xlabel(f'condition: {eigs.max()/eigs.min():.0G}') ax = axes[2] T = len(trace) if isinstance(trace, list) else len(trace.μ) ax.imshow(soln.n, cmap='Greens') ax.set_title('games played') ax.set_xlabel(f'{T} rounds, {int(soln.n.sum()/(2*T))} games per') return fig def simulate(truth, n_games=256, σresid_tol=.1): n_agents = len(truth) wins = torch.zeros((n_agents, n_agents)) games = torch.zeros((n_agents, n_agents)) trace = [] ranks = torch.full((n_agents,), 0.) while True: soln = activelo.solve(games, wins) ranks = torch.as_tensor(soln.μ) black, white = activelo.suggest(soln) black_wins = torch.distributions.Binomial(n_games, winrate(truth[black], truth[white])).sample() wins[black, white] += black_wins wins[white, black] += n_games - black_wins games[black, white] += n_games games[white, black] += n_games soln['n'] = games.clone() soln['w'] = wins.clone() soln['σresid'] = residual_vs_mean(soln.Σ).mean()**.5 soln['resid_var'] = resid_var(ranks, truth) trace.append(arrdict.arrdict({k: v for k, v in soln.items() if k != 'trace'})) plt.close() from IPython import display display.clear_output(wait=True) display.display(plot(trace, truth)) if soln.σresid < σresid_tol: break trace = arrdict.stack(trace) return trace def linear_ranks(n_agents=10): return torch.linspace(1, 5, n_agents).float() def log_ranks(n_agents=10): return torch.linspace(1, 50, n_agents).float().log() def pow_ranks(n_agents=10, pow=.5): return torch.linspace(1, 50, n_agents).float().pow(pow) def simulate_log_ranks(): truth = log_ranks(10) trace = simulate(truth) plot(trace, truth) def random_ranks(n_agents=10): deltas = torch.randn((n_agents,))/n_agents**.5 totals = deltas.cumsum(0) totals = totals - totals.min() return torch.sort(totals).values def simulate_random_ranks(): counts = [] for _ in range(100): ranks = random_ranks(n_agents=10) trace = simulate(ranks) counts.append(len(trace.n)) q = np.quantile(counts, .95) return q
29.584071
105
0.62429
766d98dda5296612a02e04f8a5aa3003c52d46c9
2,312
py
Python
examples/tensorflow/mnist/run_preprocess_mnist.py
graykode/cella
b17859976becd1fca30a0ea897928a08157d22a2
[ "Apache-2.0" ]
71
2020-07-16T10:04:40.000Z
2022-02-11T13:26:55.000Z
examples/tensorflow/mnist/run_preprocess_mnist.py
graykode/cella
b17859976becd1fca30a0ea897928a08157d22a2
[ "Apache-2.0" ]
16
2020-08-10T19:24:16.000Z
2022-02-10T02:22:56.000Z
examples/tensorflow/mnist/run_preprocess_mnist.py
graykode/cella
b17859976becd1fca30a0ea897928a08157d22a2
[ "Apache-2.0" ]
5
2020-08-12T02:43:16.000Z
2021-10-03T18:46:13.000Z
# Copyright 2020-present Tae Hwan Jung # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import argparse from tqdm import tqdm import tensorflow as tf from tensorflow.keras import datasets from matorage import * def normalize_img(image, label): """Normalizes images: `uint8` -> `float32`.""" return tf.cast(image, tf.float32) / 255.0, label def data_save(dataset, evaluate=False): data_config = DataConfig( endpoint="127.0.0.1:9000", access_key="minio", secret_key="miniosecretkey", dataset_name="mnist", additional={ "mode": "train" if not evaluate else "test", "framework": "tensorflow", }, attributes=[("image", "float32", (28, 28)), ("target", "int64", (1)),], ) total_dataset = len(dataset[0]) dataset = tf.data.Dataset.from_tensor_slices(dataset) dataset = dataset.map( normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE ) dataset = dataset.batch(60).prefetch(tf.data.experimental.AUTOTUNE) data_saver = DataSaver(config=data_config, refresh=True) for (image, target) in tqdm(dataset, total=total_dataset // 60): data_saver({"image": image, "target": target}) data_saver.disconnect() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Tensorflow V2 MNIST Example") parser.add_argument("--train", action="store_true", default=False) parser.add_argument("--test", action="store_true", default=False) args = parser.parse_args() train_dataset, test_dataset = datasets.mnist.load_data() start = time.time() if args.train: data_save(train_dataset, evaluate=False) if args.test: data_save(test_dataset, evaluate=True) end = time.time() print(end - start)
31.671233
79
0.688581
668a999d03e6fa16982a5c337bd77549cf9ba245
5,902
py
Python
bot/pilot.py
abbenson/ballbot
44ea6abba026ec47c2dcd79450186d9ea43a9e7d
[ "BSD-2-Clause" ]
null
null
null
bot/pilot.py
abbenson/ballbot
44ea6abba026ec47c2dcd79450186d9ea43a9e7d
[ "BSD-2-Clause" ]
null
null
null
bot/pilot.py
abbenson/ballbot
44ea6abba026ec47c2dcd79450186d9ea43a9e7d
[ "BSD-2-Clause" ]
null
null
null
"""Autonomous control client that solves IEEE Hardware Competition 2014. UPDATE (Vijay - 9/27/15): Pilot does not work since the last year's code has been erased. This file is here for reference and is expected to be modified for IEEE Hardware Competition 2016. Please do not instantiate Pilot before it is fixed. """ import sys import time import lib.lib as lib import client.ctrl_client as ctrl_client_mod import client.sub_client as sub_client_mod class Pilot: """Autonomous control client based on comprehensive state machine.""" def __init__(self, ctrl_addr="tcp://127.0.0.1:60000", sub_addr="tcp://127.0.0.1:60001"): # Get config, build logger self.config = lib.get_config() self.logger = lib.get_logger() # Build control client try: self.ctrl_client = ctrl_client_mod.CtrlClient(ctrl_addr) except Exception, e: self.logger.error("Couldn't build CtrlClient; ctrl_addr: {}," " error: {}".format(ctrl_addr, e)) sys.exit(-1) # Build sub client try: self.sub_client = sub_client_mod.SubClient(sub_addr) except Exception, e: self.logger.error("Couldn't build SubClient; sub_addr: {}," " error: {}".format(sub_addr, e)) sys.exit(-1) # Initialize other members self.ITEM_BACKUP_TIME = 0.2 # Order in which activities are solved. self.acts = ["simon", "etch", "rubiks", "card"] def call(self, obj_name, method_name, param_dict=dict()): """Light wrapper around ctrl_client to handle result unpacking.""" result = self.ctrl_client.call(obj_name, method_name, param_dict) if result['type'] == 'error': self.logger.error("API call error: {}".format(result['msg'])) return None else: return result['call_return'] def bail(self, msg): """Log error message and exit cleanly, stopping all systems. :param msg: Error message to log. :type msg: string """ self.logger.error("Can't handle follower result: {}".format(msg)) self.call('ctrl', 'stop_full') sys.exit(1) def move(self, speed, angle): self.call('driver', 'move', {'speed': speed, 'angle': angle}) def drive(self, speed, angle, duration): return self.call('driver', 'drive', {'speed': speed, 'angle': angle, 'duration': duration}) def wait_for_start(self): """Waits for color sensor to say it sees start signal. """ return self.call('color_sensor', 'watch_for_not_color', {'color': 'red', "timeout": 180}) def follow(self): """Helper function for calling line_follower. Will kick out at intersection. """ dir_of_intersection = \ self.call('follower', 'analog_state') return dir_of_intersection def rotate_90(self, direction): """call on driver api with whatever args are needed Pass either "cc" or "c". """ return self.call('driver', 'rough_rotate_90', {'direction': direction}) def solve_activity(self, activity): """pass name of activity to solve, will fix as needed. Choices are: etch, rubiks, simon, card """ return self.call(activity, 'solve') def follow_ignoring_turns(self): return self.call('follower', 'follow_ignoring_turns') def find_dir_of_turn(self): return self.call('follower', 'find_dir_of_turn') def find_dir_of_int(self): return self.call('follower', 'find_dir_of_int') def rotate_to_line(self, direction): return self.call('follower', 'rotate_to_line', {'direction': direction}) def wait_for_ready(self): return self.call('color_sensor', 'wait_for_ready') def run(self): """Main pilot interface with outside world. start script will call, and pilot will handle all other logic. """ # wait for Start signal to indicate time to run. # self.wait_for_start() time.sleep(10) self.wait_for_ready() self.drive(40, 0, 0.7) # Leave starting block for activity in self.acts: # Follow to intersection. self.follow_ignoring_turns() # keep track of direction of branch for returning to main path. act_dir = self.find_dir_of_int() self.rotate_to_line(act_dir) # go to act. self.follow_ignoring_turns() # Activities we aren't solving. if activity == 'card': self.drive(40, 0, 0.2) time.sleep(1) self.drive(40, 180, 0.2) elif activity == 'simon': self.logger.debug("Not doing simon") else: self.solve_activity(activity) # Leave box and return to path. self.move(40, 180) time.sleep(self.ITEM_BACKUP_TIME) self.move(0, 0) self.rotate_90('right') time.sleep(0.5) self.rotate_to_line('right') # line follow back to path self.follow_ignoring_turns() # turn back to path if act_dir == 'left': self.rotate_to_line('right') elif act_dir == 'right': self.rotate_to_line('left') else: # error case but somehow possible. # Guess turn direction. self.rotate_to_line('right') self.follow_ignoring_turns() self.drive(40, 0, 0.5) if __name__ == "__main__": Pilot().run()
31.393617
75
0.569976
345993dd20ab0cd74debf64aa7eec8a67522278e
20,454
py
Python
hyperband/search.py
niyatham/scikit-hyperband
a5c694c9bb770c8f9a2f3104c0e4326f504594b1
[ "BSD-3-Clause" ]
null
null
null
hyperband/search.py
niyatham/scikit-hyperband
a5c694c9bb770c8f9a2f3104c0e4326f504594b1
[ "BSD-3-Clause" ]
null
null
null
hyperband/search.py
niyatham/scikit-hyperband
a5c694c9bb770c8f9a2f3104c0e4326f504594b1
[ "BSD-3-Clause" ]
null
null
null
""" ========= Hyperband ========= This module contains a scikit-learn compatible implementation of the hyperband algorithm[^1]. Compared to the civismlext implementation, this supports multimetric scoring, and the option to turn the last round of hyperband (the randomized search round) off. References ---------- .. [1] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. and Talwalkar, A., 2017. Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1), pp.6765-6816. """ import copy import numpy as np from scipy.stats import rankdata from sklearn.utils import check_random_state from sklearn.model_selection._search import BaseSearchCV, ParameterSampler __all__ = ['HyperbandSearchCV'] class HyperbandSearchCV(BaseSearchCV): """Hyperband search on hyper parameters. HyperbandSearchCV implements a ``fit`` and a ``score`` method. It also implements ``predict``, ``predict_proba``, ``decision_function``, ``transform`` and ``inverse_transform`` if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings using the hyperband algorithm [1]_ . If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the scikit-learn `User Guide <http://scikit-learn.org/stable/modules/grid_search.html#randomized-parameter-search>`_. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. resource_param : str, default='n_estimators' The name of the cost parameter for the estimator ``estimator`` to be fitted. Typically, this is the number of decision trees ``n_estimators`` in an ensemble or the number of iterations for estimators trained with stochastic gradient descent. eta : float, default=3 The inverse of the proportion of configurations that are discarded in each round of hyperband. min_iter : int, default=1 The minimum amount of resource that should be allocated to the cost parameter ``resource_param`` for a single configuration of the hyperparameters. max_iter : int, default=81 The maximum amount of resource that can be allocated to the cost parameter ``resource_param`` for a single configuration of the hyperparameters. skip_last : int, default=0 The number of last rounds to skip. For example, this can be used to skip the last round of hyperband, which is standard randomized search. It can also be used to inspect intermediate results, although warm-starting HyperbandSearchCV is not supported. scoring : string, callable, list/tuple, dict or None, default: None A single string (see :ref:`scoring_parameter`) or a callable (see :ref:`scoring`) to evaluate the predictions on the test set. For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as keys and callables as values. NOTE that when using custom scorers, each scorer should return a single value. Metric functions returning a list/array of values can be wrapped into multiple scorers that return one value each. See :ref:`multimetric_grid_search` for an example. If None, the estimator's default scorer (if available) is used. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer `User Guide <http://scikit-learn.org/stable/modules/cross_validation.html>`_ for the various cross-validation strategies that can be used here. refit : boolean, or string default=True Refit an estimator using the best found parameters on the whole dataset. For multiple metric evaluation, this needs to be a string denoting the scorer that would be used to find the best parameters for refitting the estimator at the end. The refitted estimator is made available at the ``best_estimator_`` attribute and permits using ``predict`` directly on this ``HyperbandSearchCV`` instance. Also for multiple metric evaluation, the attributes ``best_index_``, ``best_score_`` and ``best_parameters_`` will only be available if ``refit`` is set and all of them will be determined w.r.t this specific scorer. See ``scoring`` parameter to know more about multiple metric evaluation. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int, RandomState instance or None, optional, default=None Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. return_train_score : boolean, optional, default=False If ``False``, the ``cv_results_`` attribute will not include training scores. Attributes ---------- cv_results_ : dict of numpy (masked) ndarrays A dict with keys as column headers and values as columns, that can be imported into a pandas ``DataFrame``. For instance the below given table +------------+-----------+------------+-----------------+---+---------+ |param_kernel|param_gamma|param_degree|split0_test_score|...|rank_t...| +============+===========+============+=================+===+=========+ | 'poly' | -- | 2 | 0.8 |...| 2 | +------------+-----------+------------+-----------------+---+---------+ | 'poly' | -- | 3 | 0.7 |...| 4 | +------------+-----------+------------+-----------------+---+---------+ | 'rbf' | 0.1 | -- | 0.8 |...| 3 | +------------+-----------+------------+-----------------+---+---------+ | 'rbf' | 0.2 | -- | 0.9 |...| 1 | +------------+-----------+------------+-----------------+---+---------+ will be represented by a ``cv_results_`` dict of:: { 'param_kernel': masked_array(data = ['poly', 'poly', 'rbf', 'rbf'], mask = [False False False False]...) 'param_gamma': masked_array(data = [-- -- 0.1 0.2], mask = [ True True False False]...), 'param_degree': masked_array(data = [2.0 3.0 -- --], mask = [False False True True]...), 'split0_test_score' : [0.8, 0.7, 0.8, 0.9], 'split1_test_score' : [0.82, 0.5, 0.7, 0.78], 'mean_test_score' : [0.81, 0.60, 0.75, 0.82], 'std_test_score' : [0.02, 0.01, 0.03, 0.03], 'rank_test_score' : [2, 4, 3, 1], 'split0_train_score' : [0.8, 0.9, 0.7], 'split1_train_score' : [0.82, 0.5, 0.7], 'mean_train_score' : [0.81, 0.7, 0.7], 'std_train_score' : [0.03, 0.03, 0.04], 'mean_fit_time' : [0.73, 0.63, 0.43, 0.49], 'std_fit_time' : [0.01, 0.02, 0.01, 0.01], 'mean_score_time' : [0.007, 0.06, 0.04, 0.04], 'std_score_time' : [0.001, 0.002, 0.003, 0.005], 'params' : [{'kernel': 'poly', 'degree': 2}, ...], } NOTE The key ``'params'`` is used to store a list of parameter settings dicts for all the parameter candidates. The ``mean_fit_time``, ``std_fit_time``, ``mean_score_time`` and ``std_score_time`` are all in seconds. For multi-metric evaluation, the scores for all the scorers are available in the ``cv_results_`` dict at the keys ending with that scorer's name (``'_<scorer_name>'``) instead of ``'_score'`` shown above. ('split0_test_precision', 'mean_train_precision' etc.) best_estimator_ : estimator or dict Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if ``refit=False``. For multi-metric evaluation, this attribute is present only if ``refit`` is specified. See ``refit`` parameter for more information on allowed values. best_score_ : float Mean cross-validated score of the best_estimator. For multi-metric evaluation, this is not available if ``refit`` is ``False``. See ``refit`` parameter for more information. best_params_ : dict Parameter setting that gave the best results on the hold out data. For multi-metric evaluation, this is not available if ``refit`` is ``False``. See ``refit`` parameter for more information. best_index_ : int The index (of the ``cv_results_`` arrays) which corresponds to the best candidate parameter setting. The dict at ``search.cv_results_['params'][search.best_index_]`` gives the parameter setting for the best model, that gives the highest mean score (``search.best_score_``). For multi-metric evaluation, this is not available if ``refit`` is ``False``. See ``refit`` parameter for more information. scorer_ : function or a dict Scorer function used on the held out data to choose the best parameters for the model. For multi-metric evaluation, this attribute holds the validated ``scoring`` dict which maps the scorer key to the scorer callable. n_splits_ : int The number of cross-validation splits (folds/iterations). References ---------- .. [1] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. and Talwalkar, A., 2017. Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1), pp.6765-6816. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`sklearn.model_selection.GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`sklearn.model_selection.ParameterSampler`: A generator over parameter settings, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, resource_param='n_estimators', eta=3, min_iter=1, max_iter=81, skip_last=0, scoring=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise', return_train_score=False): self.param_distributions = param_distributions self.resource_param = resource_param self.eta = eta self.min_iter = min_iter self.max_iter = max_iter self.skip_last = skip_last self.random_state = random_state super(HyperbandSearchCV, self).__init__( estimator=estimator, scoring=scoring, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score, return_train_score=return_train_score) def _run_search(self, evaluate_candidates): self._validate_input() s_max = int(np.floor(np.log(self.max_iter / self.min_iter) / np.log(self.eta))) B = (s_max + 1) * self.max_iter refit_metric = self.refit if self.multimetric_ else 'score' random_state = check_random_state(self.random_state) if self.skip_last > s_max: raise ValueError('skip_last is higher than the total number of rounds') for round_index, s in enumerate(reversed(range(s_max + 1))): n = int(np.ceil(int(B / self.max_iter / (s + 1)) * np.power(self.eta, s))) # initial number of iterations per config r = self.max_iter / np.power(self.eta, s) configurations = list(ParameterSampler(param_distributions=self.param_distributions, n_iter=n, random_state=random_state)) if self.verbose > 0: print('Starting bracket {0} (out of {1}) of hyperband' .format(round_index + 1, s_max + 1)) for i in range((s + 1) - self.skip_last): n_configs = np.floor(n / np.power(self.eta, i)) # n_i n_iterations = int(r * np.power(self.eta, i)) # r_i n_to_keep = int(np.floor(n_configs / self.eta)) if self.verbose > 0: msg = ('Starting successive halving iteration {0} out of' ' {1}. Fitting {2} configurations, with' ' resource_param {3} set to {4}') if n_to_keep > 0: msg += ', and keeping the best {5} configurations.' msg = msg.format(i + 1, s + 1, len(configurations), self.resource_param, n_iterations, n_to_keep) print(msg) # Set the cost parameter for every configuration parameters = copy.deepcopy(configurations) for configuration in parameters: configuration[self.resource_param] = n_iterations results = evaluate_candidates(parameters) if n_to_keep > 0: top_configurations = [x for _, x in sorted(zip(results['rank_test_%s' % refit_metric], results['params']), key=lambda x: x[0])] configurations = top_configurations[:n_to_keep] if self.skip_last > 0: print('Skipping the last {0} successive halving iterations' .format(self.skip_last)) def fit(self, X, y=None, groups=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. """ super().fit(X, y, groups) s_max = int(np.floor(np.log(self.max_iter / self.min_iter) / np.log(self.eta))) B = (s_max + 1) * self.max_iter brackets = [] for round_index, s in enumerate(reversed(range(s_max + 1))): n = int(np.ceil(int(B / self.max_iter / (s + 1)) * np.power(self.eta, s))) n_configs = int(sum([np.floor(n / np.power(self.eta, i)) for i in range((s + 1) - self.skip_last)])) bracket = (round_index + 1) * np.ones(n_configs) brackets.append(bracket) self.cv_results_['hyperband_bracket'] = np.hstack(brackets) return self def _validate_input(self): if not isinstance(self.min_iter, int) or self.min_iter <= 0: raise ValueError('min_iter should be a positive integer, got %s' % self.min_iter) if not isinstance(self.max_iter, int) or self.max_iter <= 0: raise ValueError('max_iter should be a positive integer, got %s' % self.max_iter) if self.max_iter < self.min_iter: raise ValueError('max_iter should be bigger than min_iter, got' 'max_iter=%d and min_iter=%d' % (self.max_iter, self.min_iter)) if not isinstance(self.skip_last, int) or self.skip_last < 0: raise ValueError('skip_last should be an integer, got %s' % self.skip_last) if not isinstance(self.eta, int) or not self.eta > 1: raise ValueError('eta should be a positive integer, got %s' % self.eta) if self.resource_param not in self.estimator.get_params().keys(): raise ValueError('resource_param is set to %s, but base_estimator %s ' 'does not have a parameter with that name' % (self.resource_param, self.estimator.__class__.__name__))
43.892704
106
0.598123
5576aabf6585e0ecec0ca80bbe230b776039b556
6,763
py
Python
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/dns/dnsnsecrec.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/dns/dnsnsecrec.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/dns/dnsnsecrec.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2008-2016 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class dnsnsecrec(base_resource) : def __init__(self) : self._hostname = None self._type = None self._nextnsec = None self._nextrecs = None self._ttl = None self.___count = None @property def hostname(self) : r"""Name of the domain.<br/>Minimum length = 1. """ try : return self._hostname except Exception as e: raise e @hostname.setter def hostname(self, hostname) : r"""Name of the domain.<br/>Minimum length = 1 """ try : self._hostname = hostname except Exception as e: raise e @property def type(self) : r"""Type of records to display. Available settings function as follows: * ADNS - Display all authoritative address records. * PROXY - Display all proxy address records. * ALL - Display all address records.<br/>Possible values = ALL, ADNS, PROXY. """ try : return self._type except Exception as e: raise e @type.setter def type(self, type) : r"""Type of records to display. Available settings function as follows: * ADNS - Display all authoritative address records. * PROXY - Display all proxy address records. * ALL - Display all address records.<br/>Possible values = ALL, ADNS, PROXY """ try : self._type = type except Exception as e: raise e @property def nextnsec(self) : r"""Next nsec record in the chain. """ try : return self._nextnsec except Exception as e: raise e @property def nextrecs(self) : r"""An array of record types associated with the nsec record.<br/>Possible values = A, NS, CNAME, SOA, MX, AAAA, SRV, RRSIG, NSEC, DNSKEY, PTR, TXT, NAPTR. """ try : return self._nextrecs except Exception as e: raise e @property def ttl(self) : r"""Time to Live (TTL), in seconds, for the record. """ try : return self._ttl except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(dnsnsecrec_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.dnsnsecrec except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.hostname is not None : return str(self.hostname) return None except Exception as e : raise e @classmethod def get(cls, client, name="", option_="") : r""" Use this API to fetch all the dnsnsecrec resources that are configured on netscaler. """ try : if not name : obj = dnsnsecrec() response = obj.get_resources(client, option_) else : if type(name) != cls : if type(name) is not list : obj = dnsnsecrec() obj.hostname = name response = obj.get_resource(client, option_) else : if name and len(name) > 0 : response = [dnsnsecrec() for _ in range(len(name))] obj = [dnsnsecrec() for _ in range(len(name))] for i in range(len(name)) : obj[i] = dnsnsecrec() obj[i].hostname = name[i] response[i] = obj[i].get_resource(client, option_) return response except Exception as e : raise e @classmethod def get_args(cls, client, args) : r""" Use this API to fetch all the dnsnsecrec resources that are configured on netscaler. # This uses dnsnsecrec_args which is a way to provide additional arguments while fetching the resources. """ try : obj = dnsnsecrec() option_ = options() option_.args = nitro_util.object_to_string_withoutquotes(args) response = obj.get_resources(client, option_) return response except Exception as e : raise e @classmethod def get_filtered(cls, client, filter_) : r""" Use this API to fetch filtered set of dnsnsecrec resources. filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = dnsnsecrec() option_ = options() option_.filter = filter_ response = obj.getfiltered(client, option_) return response except Exception as e : raise e @classmethod def count(cls, client) : r""" Use this API to count the dnsnsecrec resources configured on NetScaler. """ try : obj = dnsnsecrec() option_ = options() option_.count = True response = obj.get_resources(client, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e : raise e @classmethod def count_filtered(cls, client, filter_) : r""" Use this API to count filtered the set of dnsnsecrec resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = dnsnsecrec() option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(client, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e : raise e class Type: ALL = "ALL" ADNS = "ADNS" PROXY = "PROXY" class Nextrecs: A = "A" NS = "NS" CNAME = "CNAME" SOA = "SOA" MX = "MX" AAAA = "AAAA" SRV = "SRV" RRSIG = "RRSIG" NSEC = "NSEC" DNSKEY = "DNSKEY" PTR = "PTR" TXT = "TXT" NAPTR = "NAPTR" class dnsnsecrec_response(base_response) : def __init__(self, length=1) : self.dnsnsecrec = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.dnsnsecrec = [dnsnsecrec() for _ in range(length)]
27.052
157
0.686382
545e005ee35d86e386166bb61ac29a671bfdbcb1
430
py
Python
vit/formatter/uda_indicator.py
kinifwyne/vit
e2cbafce922b1e09c4a66e7dc9592c51fe628e9d
[ "MIT" ]
179
2020-07-28T08:21:51.000Z
2022-03-30T21:39:37.000Z
vit/formatter/uda_indicator.py
kinifwyne/vit
e2cbafce922b1e09c4a66e7dc9592c51fe628e9d
[ "MIT" ]
255
2017-02-01T11:49:12.000Z
2020-07-26T22:31:25.000Z
vit/formatter/uda_indicator.py
kinifwyne/vit
e2cbafce922b1e09c4a66e7dc9592c51fe628e9d
[ "MIT" ]
26
2017-01-17T20:31:13.000Z
2020-06-17T13:09:01.000Z
from vit.formatter import Formatter class UdaIndicator(Formatter): def format(self, value, task): if not value: return self.markup_none(self.colorize()) else: indicator = self.formatter.indicator_uda[self.column] return (len(indicator), (self.colorize(value), indicator)) def colorize(self, value=None): return self.colorizer.uda_indicator(self.column, value)
33.076923
70
0.665116
fd64ede867a6b709ab8fa1a73e0eb6214b2ec612
30,976
py
Python
src/tests/ast_test.py
jtolds/pants-lang
33d0a4238598af12068f650edb6d72766ca180ec
[ "MIT" ]
5
2015-04-28T02:13:22.000Z
2017-11-25T07:41:21.000Z
src/tests/ast_test.py
jtolds/pants-lang
33d0a4238598af12068f650edb6d72766ca180ec
[ "MIT" ]
null
null
null
src/tests/ast_test.py
jtolds/pants-lang
33d0a4238598af12068f650edb6d72766ca180ec
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Copyright (c) 2012, JT Olds <hello@jtolds.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # """ Pants http://www.pants-lang.org/ AST tests """ __author__ = "JT Olds" __author_email__ = "hello@jtolds.com" from unittest import TestCase from ast.parse import parse from common.errors import ParserError class ParsingTests(TestCase): def testSimpleParse(self): self.assertEqual(repr(parse("hey. there")), "Program([" "Application([" "Term(Variable('hey', 1, 1), [OpenCall(1, 4)], 1, 1), " "Term(Variable('there', 1, 6), [], 1, 6)" "], 1, 1)" "], 1, 1)") def testArrayVsIndex(self): self.assertEqual(repr(parse("call. thing [value]")), "Program([" "Application([" "Term(Variable('call', 1, 1), [OpenCall(1, 5)], 1, 1), " "Term(Variable('thing', 1, 7), [], 1, 7), " "Term(Array([" "Application([" "Term(Variable('value', 1, 14), [], 1, 14)" "], 1, 14)" "], 1, 13), [], 1, 13)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("call. thing[key]")), "Program([" "Application([" "Term(Variable('call', 1, 1), [OpenCall(1, 5)], 1, 1), " "Term(Variable('thing', 1, 7), [Index([" "Application([" "Term(Variable('key', 1, 13), [], 1, 13)" "], 1, 13)" "], 1, 12)], 1, 7)" "], 1, 1)" "], 1, 1)") def testCallVsField(self): self.assertEqual(repr(parse("call. thing1. notafield")), "Program([" "Application([" "Term(Variable('call', 1, 1), [OpenCall(1, 5)], 1, 1), " "Term(Variable('thing1', 1, 7), [OpenCall(1, 13)], 1, 7), " "Term(Variable('notafield', 1, 15), [], 1, 15)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("call. thing1.afield")), "Program([" "Application([" "Term(Variable('call', 1, 1), [OpenCall(1, 5)], 1, 1), " "Term(Variable('thing1', 1, 7), [Field('afield', 1, 13)], 1, 7)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("call. function..afield")), "Program([" "Application([" "Term(Variable('call', 1, 1), [OpenCall(1, 5)], 1, 1), " "Term(Variable('function', 1, 7), [" "OpenCall(1, 15), " "Field('afield', 1, 16)" "], 1, 7)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("call. function..afuncfield.")), "Program([" "Application([" "Term(Variable('call', 1, 1), [OpenCall(1, 5)], 1, 1), " "Term(Variable('function', 1, 7), [" "OpenCall(1, 15), " "Field('afuncfield', 1, 16), " "OpenCall(1, 27)" "], 1, 7)" "], 1, 1)" "], 1, 1)") def testClosedCall(self): self.assertEqual(repr(parse("f(arg)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "ClosedCall([], [" "PositionalOutArgument(Application([" "Term(Variable('arg', 1, 3), [], 1, 3)" "], 1, 3), 1, 3)" "], 1, 2)" "], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f(arg1, arg2)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "ClosedCall([], [" "PositionalOutArgument(Application([" "Term(Variable('arg1', 1, 3), [], 1, 3)" "], 1, 3), 1, 3), " "PositionalOutArgument(Application([" "Term(Variable('arg2', 1, 9), [], 1, 9)" "], 1, 9), 1, 9)" "], 1, 2)" "], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f (arg)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [], 1, 1), " "Term(Subexpression([" "Application([" "Term(Variable('arg', 1, 4), [], 1, 4)" "], 1, 4)" "], 1, 3), [], 1, 3)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f.(arg)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "OpenCall(1, 2), " "ClosedCall([], [" "PositionalOutArgument(Application([" "Term(Variable('arg', 1, 4), [], 1, 4)" "], 1, 4), 1, 4)" "], 1, 3)" "], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f. (arg)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [OpenCall(1, 2)], 1, 1), " "Term(Subexpression([" "Application([" "Term(Variable('arg', 1, 5), [], 1, 5)" "], 1, 5)" "], 1, 4), [], 1, 4)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f(arg1;arg2)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "ClosedCall([" "PositionalOutArgument(Application([" "Term(Variable('arg1', 1, 3), [], 1, 3)" "], 1, 3), 1, 3)" "], [" "PositionalOutArgument(Application([" "Term(Variable('arg2', 1, 8), [], 1, 8)" "], 1, 8), 1, 8)" "], 1, 2)" "], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f(arg1,arg2;arg3)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "ClosedCall([" "PositionalOutArgument(Application([" "Term(Variable('arg1', 1, 3), [], 1, 3)" "], 1, 3), 1, 3), " "PositionalOutArgument(Application([" "Term(Variable('arg2', 1, 8), [], 1, 8)" "], 1, 8), 1, 8)" "], [" "PositionalOutArgument(Application([" "Term(Variable('arg3', 1, 13), [], 1, 13)" "], 1, 13), 1, 13)" "], 1, 2)" "], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f(arg1,arg2,;arg3)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "ClosedCall([" "PositionalOutArgument(Application([" "Term(Variable('arg1', 1, 3), [], 1, 3)" "], 1, 3), 1, 3), " "PositionalOutArgument(Application([" "Term(Variable('arg2', 1, 8), [], 1, 8)" "], 1, 8), 1, 8)" "], [" "PositionalOutArgument(Application([" "Term(Variable('arg3', 1, 14), [], 1, 14)" "], 1, 14), 1, 14)" "], 1, 2)" "], 1, 1)" "], 1, 1)" "], 1, 1)") def testSingleLists(self): self.assertEqual(repr(parse("[z,]")), "Program([" "Application([" "Term(Array([" "Application([" "Term(Variable('z', 1, 2), [], 1, 2)" "], 1, 2)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{test1:test2,}")), "Program([" "Application([" "Term(Dict([" "DictDefinition(Application([" "Term(Variable('test1', 1, 2), [], 1, 2)" "], 1, 2), Application([" "Term(Variable('test2', 1, 8), [], 1, 8)" "], 1, 8), 1, 2)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f(arg1,)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "ClosedCall([], [" "PositionalOutArgument(Application([" "Term(Variable('arg1', 1, 3), [], 1, 3)" "], 1, 3), 1, 3)" "], 1, 2)" "], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a,;| null}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Variable('null', 1, 8), [], 1, 8)" "], 1, 8)" "], [" "RequiredInArgument('a', 1, 3)" "], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|b,| null}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Variable('null', 1, 7), [], 1, 7)" "], 1, 7)" "], [], [" "RequiredInArgument('b', 1, 3)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") def testFunctions(self): self.assertEqual(repr(parse("{}")), "Program([" "Application([" "Term(Dict([], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertRaisesRegexp(ParserError, "Error at line 1, column 10: unexpected input at close of function", parse, "{|| thing:thing}") self.assertEqual(repr(parse("{thing1:thing2}")), "Program([" "Application([" "Term(Dict([" "DictDefinition(Application([" "Term(Variable('thing1', 1, 2), [], 1, 2)" "], 1, 2), Application([" "Term(Variable('thing2', 1, 9), [], 1, 9)" "], 1, 9), 1, 2)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{null}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Variable('null', 1, 2), [], 1, 2)" "], 1, 2)" "], [], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{{thing1:thing2}}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Dict([" "DictDefinition(Application([" "Term(Variable('thing1', 1, 3), [], 1, 3)" "], 1, 3), Application([" "Term(Variable('thing2', 1, 10), [], 1, 10)" "], 1, 10), 1, 3)" "], 1, 2), [], 1, 2)" "], 1, 2)" "], [], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a| print(\"hi\"); null}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Variable('print', 1, 6), [" "ClosedCall([], [" "PositionalOutArgument(Application([" "Term(String(False, 'hi', 1, 12), [], 1, 12)" "], 1, 12), 1, 12)" "], 1, 11)" "], 1, 6)" "], 1, 6), " "Application([" "Term(Variable('null', 1, 19), [], 1, 19)" "], 1, 19)" "], [], [" "RequiredInArgument('a', 1, 3)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a,| null}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Variable('null', 1, 7), [], 1, 7)" "], 1, 7)" "], [], [" "RequiredInArgument('a', 1, 3)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a,b| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 8), [], 1, 8)" "], 1, 8)" "], [], [" "RequiredInArgument('a', 1, 3), " "RequiredInArgument('b', 1, 5)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a,b,| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 9), [], 1, 9)" "], 1, 9)" "], [], [" "RequiredInArgument('a', 1, 3), " "RequiredInArgument('b', 1, 5)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a,b,c:3| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 12), [], 1, 12)" "], 1, 12)" "], [], [" "RequiredInArgument('a', 1, 3), " "RequiredInArgument('b', 1, 5), " "DefaultInArgument('c', Application([" "Term(Integer(3, 1, 9), [], 1, 9)" "], 1, 9), 1, 7)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a,b,c:3,d:4,:(opt)| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 23), [], 1, 23)" "], 1, 23)" "], [], [" "RequiredInArgument('a', 1, 3), " "RequiredInArgument('b', 1, 5), " "DefaultInArgument('c', Application([" "Term(Integer(3, 1, 9), [], 1, 9)" "], 1, 9), 1, 7), " "DefaultInArgument('d', Application([" "Term(Integer(4, 1, 13), [], 1, 13)" "], 1, 13), 1, 11), " "SplatInArgument('opt', 1, 15)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertRaisesRegexp(ParserError, r"Error at line 1, column 16: unexpected input for argument list", parse, "{|a,b,c:3,d:4,q(opt)| 0}") self.assertEqual(repr(parse("{|| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 5), [], 1, 5)" "], 1, 5)" "], [], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{||}")), "Program([" "Application([" "Term(Function([], [], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|;| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 6), [], 1, 6)" "], 1, 6)" "], [], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a;| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 7), [], 1, 7)" "], 1, 7)" "], [" "RequiredInArgument('a', 1, 3)" "], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a,b;| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 9), [], 1, 9)" "], 1, 9)" "], [" "RequiredInArgument('a', 1, 3), " "RequiredInArgument('b', 1, 5)" "], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|a,b,;| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 10), [], 1, 10)" "], 1, 10)" "], [" "RequiredInArgument('a', 1, 3), " "RequiredInArgument('b', 1, 5)" "], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|:(var),a,b,;| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 17), [], 1, 17)" "], 1, 17)" "], [" "SplatInArgument('var', 1, 3), " "RequiredInArgument('a', 1, 10), " "RequiredInArgument('b', 1, 12)" "], [], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|:(var),a,b,d;e,f,g:5,h:7,:(j)| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 34), [], 1, 34)" "], 1, 34)" "], [" "SplatInArgument('var', 1, 3), " "RequiredInArgument('a', 1, 10), " "RequiredInArgument('b', 1, 12), " "RequiredInArgument('d', 1, 14)" "], [" "RequiredInArgument('e', 1, 16), " "RequiredInArgument('f', 1, 18), " "DefaultInArgument('g', Application([" "Term(Integer(5, 1, 22), [], 1, 22)" "], 1, 22), 1, 20), " "DefaultInArgument('h', Application([" "Term(Integer(7, 1, 26), [], 1, 26)" "], 1, 26), 1, 24), " "SplatInArgument('j', 1, 28)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|:(a);:(b)| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 14), [], 1, 14)" "], 1, 14)" "], [" "SplatInArgument('a', 1, 3)" "], [" "SplatInArgument('b', 1, 8)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("{|;::(b)| 0}")), "Program([" "Application([" "Term(Function([" "Application([" "Term(Integer(0, 1, 11), [], 1, 11)" "], 1, 11)" "], [], [" "KeywordInArgument('b', 1, 4)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") def testListExpansion(self): self.assertEqual(repr(parse("f(thing, :(thing))")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "ClosedCall([], [" "PositionalOutArgument(Application([" "Term(Variable('thing', 1, 3), [], 1, 3)" "], 1, 3), 1, 3), " "SplatOutArgument([" "Application([" "Term(Variable('thing', 1, 12), [], 1, 12)" "], 1, 12)" "], 1, 10)" "], 1, 2)" "], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertRaisesRegexp(ParserError, "Error at line 1, column 3: unexpected input for function call", parse, "f(:,(thing),thing)") self.assertEqual(repr(parse("f(*,(thing),thing)")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "ClosedCall([], [" "PositionalOutArgument(Application([" "Term(Variable('*', 1, 3), [], 1, 3)" "], 1, 3), 1, 3), " "PositionalOutArgument(Application([" "Term(Subexpression([" "Application([" "Term(Variable('thing', 1, 6), [], 1, 6)" "], 1, 6)" "], 1, 5), [], 1, 5)" "], 1, 5), 1, 5), " "PositionalOutArgument(Application([" "Term(Variable('thing', 1, 13), [], 1, 13)" "], 1, 13), 1, 13)" "], 1, 2)" "], 1, 1)" "], 1, 1)" "], 1, 1)") def testByteString(self): self.assertEqual(repr(parse("f. b\"thing\"")), "Program([" "Application([" "Term(Variable('f', 1, 1), [" "OpenCall(1, 2)" "], 1, 1), " "Term(String(True, 'thing', 1, 4), [], 1, 4)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f. b \"thing\"")), "Program([" "Application([" "Term(Variable('f', 1, 1), [OpenCall(1, 2)], 1, 1), " "Term(Variable('b', 1, 4), [], 1, 4), " "Term(String(False, 'thing', 1, 6), [], 1, 6)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f. b\"\"")), "Program([" "Application([" "Term(Variable('f', 1, 1), [OpenCall(1, 2)], 1, 1), " "Term(String(True, '', 1, 4), [], 1, 4)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("f. b \"\"")), "Program([" "Application([" "Term(Variable('f', 1, 1), [OpenCall(1, 2)], 1, 1), " "Term(Variable('b', 1, 4), [], 1, 4), " "Term(String(False, '', 1, 6), [], 1, 6)" "], 1, 1)" "], 1, 1)") def testParses(self): self.assertRaisesRegexp(ParserError, r"Error at line 1, column 4: unexpected input", parse, ".x := 3") self.assertEqual(repr(parse("x := 1")), "Program([" "Assignment(True, VariableAssignee(Variable('x', 1, 1), 1, 1), " "Application([" "Term(Integer(1, 1, 6), [], 1, 6)" "], 1, 6), 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("(a b).thing")), "Program([" "Application([" "Term(Subexpression([" "Application([" "Term(Variable('a', 1, 2), [], 1, 2), " "Term(Variable('b', 1, 4), [], 1, 4)" "], 1, 2)" "], 1, 1), [" "Field('thing', 1, 6)" "], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("(a b).thing := 3")), "Program([" "Assignment(True, FieldAssignee(Term(Subexpression([" "Application([" "Term(Variable('a', 1, 2), [], 1, 2), " "Term(Variable('b', 1, 4), [], 1, 4)" "], 1, 2)" "], 1, 1), [], 1, 1), Field('thing', 1, 6), 1, 1), " "Application([" "Term(Integer(3, 1, 16), [], 1, 16)" "], 1, 16), 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("z.thing := 3; x[4] := 5")), "Program([" "Assignment(" "True, " "FieldAssignee(" "Term(Variable('z', 1, 1), [], 1, 1), " "Field('thing', 1, 2), 1, 1), " "Application([" "Term(Integer(3, 1, 12), [], 1, 12)" "], 1, 12), 1, 1), " "Assignment(" "True, " "IndexAssignee(" "Term(Variable('x', 1, 15), [], 1, 15), " "Index([" "Application([" "Term(Integer(4, 1, 17), [], 1, 17)" "], 1, 17)" "], 1, 16), 1, 15), " "Application([" "Term(Integer(5, 1, 23), [], 1, 23)" "], 1, 23), 1, 15)" "], 1, 1)") self.assertEqual(repr(parse("x = 1")), "Program([" "Assignment(" "False, " "VariableAssignee(Variable('x', 1, 1), 1, 1), " "Application([" "Term(Integer(1, 1, 5), [], 1, 5)" "], 1, 5), 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("(a b).thing = 3")), "Program([" "Assignment(" "False, " "FieldAssignee(" "Term(Subexpression([" "Application([" "Term(Variable('a', 1, 2), [], 1, 2), " "Term(Variable('b', 1, 4), [], 1, 4)" "], 1, 2)" "], 1, 1), [], 1, 1), " "Field('thing', 1, 6), 1, 1), " "Application([" "Term(Integer(3, 1, 15), [], 1, 15)" "], 1, 15), 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("z.thing = 3; x[4] = 5")), "Program([" "Assignment(" "False, " "FieldAssignee(" "Term(Variable('z', 1, 1), [], 1, 1), " "Field('thing', 1, 2), 1, 1), " "Application([" "Term(Integer(3, 1, 11), [], 1, 11)" "], 1, 11), 1, 1), " "Assignment(" "False, " "IndexAssignee(" "Term(Variable('x', 1, 14), [], 1, 14), " "Index([" "Application([" "Term(Integer(4, 1, 16), [], 1, 16)" "], 1, 16)" "], 1, 15), 1, 14), " "Application([" "Term(Integer(5, 1, 21), [], 1, 21)" "], 1, 21), 1, 14)" "], 1, 1)") def testNewlines(self): self.assertEqual(repr(parse("f; f")), "Program([" "Application([" "Term(Variable('f', 1, 1), [], 1, 1)" "], 1, 1), " "Application([" "Term(Variable('f', 1, 4), [], 1, 4)" "], 1, 4)" "], 1, 1)") self.assertEqual(repr(parse("f\nf")), "Program([" "Application([" "Term(Variable('f', 1, 1), [], 1, 1)" "], 1, 1), " "Application([" "Term(Variable('f', 2, 1), [], 2, 1)" "], 2, 1)" "], 1, 1)") self.assertEqual(repr(parse("hey there; how are you; ")), "Program([" "Application([" "Term(Variable('hey', 1, 1), [], 1, 1), " "Term(Variable('there', 1, 5), [], 1, 5)" "], 1, 1), " "Application([" "Term(Variable('how', 1, 12), [], 1, 12), " "Term(Variable('are', 1, 16), [], 1, 16), " "Term(Variable('you', 1, 20), [], 1, 20)" "], 1, 12)" "], 1, 1)") self.assertEqual(repr(parse("hey there\nhow are you\n")), "Program([" "Application([" "Term(Variable('hey', 1, 1), [], 1, 1), " "Term(Variable('there', 1, 5), [], 1, 5)" "], 1, 1), " "Application([" "Term(Variable('how', 2, 1), [], 2, 1), " "Term(Variable('are', 2, 5), [], 2, 5), " "Term(Variable('you', 2, 9), [], 2, 9)" "], 2, 1)" "], 1, 1)") self.assertEqual(repr(parse("(f\nf)")), "Program([" "Application([" "Term(Subexpression([" "Application([" "Term(Variable('f', 1, 2), [], 1, 2), " "Term(Variable('f', 2, 1), [], 2, 1)" "], 1, 2)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("(f;f)")), "Program([" "Application([" "Term(Subexpression([" "Application([" "Term(Variable('f', 1, 2), [], 1, 2)" "], 1, 2), " "Application([" "Term(Variable('f', 1, 4), [], 1, 4)" "], 1, 4)" "], 1, 1), [], 1, 1)" "], 1, 1)" "], 1, 1)") def testFloatingPoint(self): self.assertEqual(repr(parse("x = 3")), "Program([" "Assignment(" "False, " "VariableAssignee(Variable('x', 1, 1), 1, 1), " "Application([" "Term(Integer(3, 1, 5), [], 1, 5)" "], 1, 5), 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("x = 3.0")), "Program([" "Assignment(" "False, " "VariableAssignee(Variable('x', 1, 1), 1, 1), " "Application([" "Term(Float(3.0, 1, 5), [], 1, 5)" "], 1, 5), 1, 1)" "], 1, 1)") def testEquality(self): self.assertEqual(repr(parse("x <. 3")), "Program([" "Application([" "Term(Variable('x', 1, 1), [], 1, 1), " "Term(Variable('<', 1, 3), [OpenCall(1, 4)], 1, 3), " "Term(Integer(3, 1, 6), [], 1, 6)" "], 1, 1)" "], 1, 1)") self.assertEqual(repr(parse("x ==. 3")), "Program([" "Application([" "Term(Variable('x', 1, 1), [], 1, 1), " "Term(Variable('==', 1, 3), [OpenCall(1, 5)], 1, 3), " "Term(Integer(3, 1, 7), [], 1, 7)" "], 1, 1)" "], 1, 1)") def testComments(self): self.assertEqual(repr(parse("# ||||| this comment shouldn't fail { \n 1 " "\n")), "Program([" "Application([" "Term(Integer(1, 2, 2), [], 2, 2)" "], 2, 2)" "], 1, 1)") self.assertEqual(repr(parse("# ||||| this comment shouldn't fail { \n " "# ||||| this comment shouldn't fail { \n 1 \n")), "Program([" "Application([" "Term(Integer(1, 3, 2), [], 3, 2)" "], 3, 2)" "], 1, 1)") self.assertEqual(repr(parse("\n 1 # ||||| this comment shouldn't fail { " "\n # ||||| this comment shouldn't fail { \n \n")), "Program([" "Application([" "Term(Integer(1, 2, 4), [], 2, 4)" "], 2, 4)" "], 1, 1)") self.assertEqual(repr(parse("\n 1 # ||||| this comment shouldn't fail { " "\n 2 # ||||| this comment shouldn't fail { \n \n")), "Program([" "Application([" "Term(Integer(1, 2, 4), [], 2, 4)" "], 2, 4), " "Application([" "Term(Integer(2, 3, 2), [], 3, 2)" "], 3, 2)" "], 1, 1)")
34.804494
80
0.375
aa90ee3ba7a379e9d033b7d1eafc5264d35a4a0c
5,044
py
Python
voltha/adapters/adtran_olt/flow/flow_tables.py
addyess/voltha
50af3d103b045a36db12736ead9064cea7028aff
[ "Apache-2.0" ]
null
null
null
voltha/adapters/adtran_olt/flow/flow_tables.py
addyess/voltha
50af3d103b045a36db12736ead9064cea7028aff
[ "Apache-2.0" ]
null
null
null
voltha/adapters/adtran_olt/flow/flow_tables.py
addyess/voltha
50af3d103b045a36db12736ead9064cea7028aff
[ "Apache-2.0" ]
null
null
null
# Copyright 2017-present Adtran, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from flow_entry import FlowEntry from evc import EVC class DeviceFlows(object): """ Tracks existing flows on the device """ def __init__(self): self._flow_table = dict() # Key = (str)Flow ID, Value = FlowEntry def __getitem__(self, item): flow_id = item.flow_id if isinstance(item, FlowEntry) else item return self._flow_table[flow_id] def __iter__(self): for _flow_id, _flow in self._flow_table.items(): yield _flow_id, _flow def itervalues(self): for _flow in self._flow_table.values(): yield _flow def iterkeys(self): for _id in self._flow_table.keys(): yield _id def items(self): return self._flow_table.items() def values(self): return self._flow_table.values() def keys(self): return self._flow_table.keys() def __len__(self): return len(self._flow_table) def add(self, flow): assert isinstance(flow, FlowEntry) if flow.flow_id not in self._flow_table: self._flow_table[flow.flow_id] = flow return flow def get(self, item): flow_id = item.flow_id if isinstance(item, FlowEntry) else item return self._flow_table.get(flow_id) def remove(self, item): flow_id = item.flow_id if isinstance(item, FlowEntry) else item return self._flow_table.pop(flow_id, default=None) def clear_all(self): self._flow_table = dict() class DownstreamFlows(object): """ Tracks existing flows that are downstream (NNI as source port) The downstream table is slightly different than the base DeviceFlows table as it is used to track flows that will become EVCs. The base table tracks flows that will be EVC-maps (or related to them). The downstream table is also indexed by a downstream signature that is composed as follows: <dev-id>.<ingress-port-number>.<s-tag>.* In comparison, the upstream flows is similar, but instead of '*' it has the c-tag (if any). TODO: Drop device ID from signatures once flow tables are unique to a device handler """ def __init__(self): self._signature_table = dict() # Key = (str)Downstream signature # | # +-> downstream-signature # | # +-> 'evc' -> EVC # | # +-> flow-ids -> flow-entries... def __getitem__(self, signature): assert isinstance(signature, str) return self._signature_table[signature] def __iter__(self): for _flow_id, _flow in self._signature_table.items(): yield _flow_id, _flow def itervalues(self): for _flow in self._signature_table.values(): yield _flow def iterkeys(self): for _id in self._signature_table.keys(): yield _id def items(self): return self._signature_table.items() def values(self): return self._signature_table.values() def keys(self): return self._signature_table.keys() def __len__(self): return len(self._signature_table) def get(self, signature): assert isinstance(signature, str) return self._signature_table.get(signature) def add(self, signature): assert isinstance(signature, str) """ Can be called by upstream flow to reserve a slot """ if signature not in self._signature_table: self._signature_table[signature] = DownstreamFlows.SignatureTableEntry(signature) return self._signature_table[signature] def remove(self, signature): assert isinstance(signature, str) return self._signature_table.pop(signature) def clear_all(self): self._signature_table = dict() class SignatureTableEntry(object): def __init__(self, signature): self._signature = signature self._evc = None self._flow_table = DeviceFlows() @property def evc(self): return self._evc @evc.setter def evc(self, evc): assert isinstance(evc, (EVC, type(None))) self._evc = evc @property def flows(self): return self._flow_table
30.756098
93
0.618557
89d46abc887f3b9f316dfb0a7148dc234ea9593a
1,668
py
Python
tests/test_helper.py
zillionare/backtesting
a6272a0e8d86aa01c67c674a1d6ad49d140df472
[ "MIT" ]
null
null
null
tests/test_helper.py
zillionare/backtesting
a6272a0e8d86aa01c67c674a1d6ad49d140df472
[ "MIT" ]
null
null
null
tests/test_helper.py
zillionare/backtesting
a6272a0e8d86aa01c67c674a1d6ad49d140df472
[ "MIT" ]
null
null
null
import datetime import unittest import numpy as np from backtest.common.helper import jsonify, tabulate_numpy_array class HelperTest(unittest.TestCase): def test_jsonify(self): class Foo: def __init__(self): self.a = 1 self.b = 2 self.c = 3 foo = Foo() obj = { "numpy": np.array([0.1, 0.2, 0.3]), "time": datetime.datetime(2020, 1, 1, 0, 0, 0), "list": [1, 2, 3], "dict": {"a": 1, "b": 2}, "str": "hello", "bool": False, "None": None, "structure_array": np.array( [(1, 2, 3), (4, 5, 6)], dtype=[("a", int), ("b", int), ("c", int)] ), "foo": foo, } actual = jsonify(obj) exp = { "numpy": [0.1, 0.2, 0.3], "time": "2020-01-01T00:00:00", "list": [1, 2, 3], "dict": {"a": 1, "b": 2}, "str": "hello", "bool": False, "None": None, "structure_array": [[1, 2, 3], [4, 5, 6]], "foo": {"a": 1, "b": 2, "c": 3}, } self.assertDictEqual(actual, exp) def test_tabulate_numpy_array(self): arr = np.array( [(1, 2, 3), (4, 5, 6)], dtype=[("a", int), ("b", int), ("c", int)] ) actual = tabulate_numpy_array(arr) exp = [["a", "b", "c"], [1, 2, 3], [4, 5, 6]] exp = """╒═════╤═════╤═════╕ │ a │ b │ c │ ╞═════╪═════╪═════╡ │ 1 │ 2 │ 3 │ ├─────┼─────┼─────┤ │ 4 │ 5 │ 6 │ ╘═════╧═════╧═════╛""" self.assertEqual(exp, actual)
26.47619
82
0.375899
6a0e9c137e7bc97d364c77047c5c6e29bc5d946a
83,828
bzl
Python
go_deps.bzl
netsec-ethz/netsec-scion
38afcbac6ca32f49a412883fe4369e31419b3f50
[ "Apache-2.0" ]
2
2018-01-23T11:42:34.000Z
2019-08-26T23:26:31.000Z
go_deps.bzl
netsec-ethz/netsec-scion
38afcbac6ca32f49a412883fe4369e31419b3f50
[ "Apache-2.0" ]
26
2017-12-05T14:56:37.000Z
2019-11-18T09:58:43.000Z
go_deps.bzl
netsec-ethz/netsec-scion
38afcbac6ca32f49a412883fe4369e31419b3f50
[ "Apache-2.0" ]
6
2018-02-02T10:15:35.000Z
2019-11-17T14:41:26.000Z
# Generated from go.mod by gazelle. DO NOT EDIT load("@bazel_gazelle//:deps.bzl", "go_repository") def go_deps(): go_repository( name = "af_inet_netaddr", importpath = "inet.af/netaddr", sum = "h1:tvgqez5ZQoBBiBAGNU/fmJy247yB/7++kcLOEoMYup0=", version = "v0.0.0-20210903134321-85fa6c94624e", ) go_repository( name = "co_honnef_go_tools", importpath = "honnef.co/go/tools", sum = "h1:UoveltGrhghAA7ePc+e+QYDHXrBps2PqFZiHkGR/xK8=", version = "v0.0.1-2020.1.4", ) go_repository( name = "com_github_alecthomas_template", importpath = "github.com/alecthomas/template", sum = "h1:JYp7IbQjafoB+tBA3gMyHYHrpOtNuDiK/uB5uXxq5wM=", version = "v0.0.0-20190718012654-fb15b899a751", ) go_repository( name = "com_github_alecthomas_units", importpath = "github.com/alecthomas/units", sum = "h1:UQZhZ2O0vMHr2cI+DC1Mbh0TJxzA3RcLoMsFw+aXw7E=", version = "v0.0.0-20190924025748-f65c72e2690d", ) go_repository( name = "com_github_anmitsu_go_shlex", importpath = "github.com/anmitsu/go-shlex", sum = "h1:kFOfPq6dUM1hTo4JG6LR5AXSUEsOjtdm0kw0FtQtMJA=", version = "v0.0.0-20161002113705-648efa622239", ) go_repository( name = "com_github_antihax_optional", importpath = "github.com/antihax/optional", sum = "h1:xK2lYat7ZLaVVcIuj82J8kIro4V6kDe0AUDFboUCwcg=", version = "v1.0.0", ) go_repository( name = "com_github_antlr_antlr4", importpath = "github.com/antlr/antlr4", sum = "h1:yxMh4HIdsSh2EqxUESWvzszYMNzOugRyYCeohfwNULM=", version = "v0.0.0-20181218183524-be58ebffde8e", ) go_repository( name = "com_github_armon_circbuf", importpath = "github.com/armon/circbuf", sum = "h1:QEF07wC0T1rKkctt1RINW/+RMTVmiwxETico2l3gxJA=", version = "v0.0.0-20150827004946-bbbad097214e", ) go_repository( name = "com_github_armon_consul_api", importpath = "github.com/armon/consul-api", sum = "h1:G1bPvciwNyF7IUmKXNt9Ak3m6u9DE1rF+RmtIkBpVdA=", version = "v0.0.0-20180202201655-eb2c6b5be1b6", ) go_repository( name = "com_github_armon_go_metrics", importpath = "github.com/armon/go-metrics", sum = "h1:8GUt8eRujhVEGZFFEjBj46YV4rDjvGrNxb0KMWYkL2I=", version = "v0.0.0-20180917152333-f0300d1749da", ) go_repository( name = "com_github_armon_go_radix", importpath = "github.com/armon/go-radix", sum = "h1:F4z6KzEeeQIMeLFa97iZU6vupzoecKdU5TX24SNppXI=", version = "v1.0.0", ) go_repository( name = "com_github_azure_go_ansiterm", importpath = "github.com/Azure/go-ansiterm", sum = "h1:w+iIsaOQNcT7OZ575w+acHgRric5iCyQh+xv+KJ4HB8=", version = "v0.0.0-20170929234023-d6e3b3328b78", ) go_repository( name = "com_github_bazelbuild_rules_go", importpath = "github.com/bazelbuild/rules_go", sum = "h1:SfxjyO/V68rVnzOHop92fB0gv/Aa75KNLAN0PMqXbIw=", version = "v0.29.0", ) go_repository( name = "com_github_beorn7_perks", importpath = "github.com/beorn7/perks", sum = "h1:VlbKKnNfV8bJzeqoa4cOKqO6bYr3WgKZxO8Z16+hsOM=", version = "v1.0.1", ) go_repository( name = "com_github_bgentry_speakeasy", importpath = "github.com/bgentry/speakeasy", sum = "h1:ByYyxL9InA1OWqxJqqp2A5pYHUrCiAL6K3J+LKSsQkY=", version = "v0.1.0", ) go_repository( name = "com_github_bketelsen_crypt", importpath = "github.com/bketelsen/crypt", sum = "h1:w/jqZtC9YD4DS/Vp9GhWfWcCpuAL58oTnLoI8vE9YHU=", version = "v0.0.4", ) go_repository( name = "com_github_bradfitz_go_smtpd", importpath = "github.com/bradfitz/go-smtpd", sum = "h1:ckJgFhFWywOx+YLEMIJsTb+NV6NexWICk5+AMSuz3ss=", version = "v0.0.0-20170404230938-deb6d6237625", ) go_repository( name = "com_github_buger_jsonparser", importpath = "github.com/buger/jsonparser", sum = "h1:D21IyuvjDCshj1/qq+pCNd3VZOAEI9jy6Bi131YlXgI=", version = "v0.0.0-20181115193947-bf1c66bbce23", ) go_repository( name = "com_github_buildkite_go_buildkite_v2", importpath = "github.com/buildkite/go-buildkite/v2", sum = "h1:aWsgMl3lA6xLSAyAhEO0DaHg7a7GVf/50mqVDC1Zt0A=", version = "v2.8.1", ) go_repository( name = "com_github_burntsushi_toml", importpath = "github.com/BurntSushi/toml", sum = "h1:WXkYYl6Yr3qBf1K79EBnL4mak0OimBfB0XUf9Vl28OQ=", version = "v0.3.1", ) go_repository( name = "com_github_burntsushi_xgb", importpath = "github.com/BurntSushi/xgb", sum = "h1:1BDTz0u9nC3//pOCMdNH+CiXJVYJh5UQNCOBG7jbELc=", version = "v0.0.0-20160522181843-27f122750802", ) go_repository( name = "com_github_cenkalti_backoff", importpath = "github.com/cenkalti/backoff", sum = "h1:tNowT99t7UNflLxfYYSlKYsBpXdEet03Pg2g16Swow4=", version = "v2.2.1+incompatible", ) go_repository( name = "com_github_census_instrumentation_opencensus_proto", importpath = "github.com/census-instrumentation/opencensus-proto", sum = "h1:glEXhBS5PSLLv4IXzLA5yPRVX4bilULVyxxbrfOtDAk=", version = "v0.2.1", ) go_repository( name = "com_github_cespare_xxhash", importpath = "github.com/cespare/xxhash", sum = "h1:a6HrQnmkObjyL+Gs60czilIUGqrzKutQD6XZog3p+ko=", version = "v1.1.0", ) go_repository( name = "com_github_cespare_xxhash_v2", importpath = "github.com/cespare/xxhash/v2", sum = "h1:6MnRN8NT7+YBpUIWxHtefFZOKTAPgGjpQSxqLNn0+qY=", version = "v2.1.1", ) go_repository( name = "com_github_cheekybits_genny", importpath = "github.com/cheekybits/genny", sum = "h1:uGGa4nei+j20rOSeDeP5Of12XVm7TGUd4dJA9RDitfE=", version = "v1.0.0", ) go_repository( name = "com_github_chzyer_logex", importpath = "github.com/chzyer/logex", sum = "h1:Swpa1K6QvQznwJRcfTfQJmTE72DqScAa40E+fbHEXEE=", version = "v1.1.10", ) go_repository( name = "com_github_chzyer_readline", importpath = "github.com/chzyer/readline", sum = "h1:fY5BOSpyZCqRo5OhCuC+XN+r/bBCmeuuJtjz+bCNIf8=", version = "v0.0.0-20180603132655-2972be24d48e", ) go_repository( name = "com_github_chzyer_test", importpath = "github.com/chzyer/test", sum = "h1:q763qf9huN11kDQavWsoZXJNW3xEE4JJyHa5Q25/sd8=", version = "v0.0.0-20180213035817-a1ea475d72b1", ) go_repository( name = "com_github_client9_misspell", importpath = "github.com/client9/misspell", sum = "h1:ta993UF76GwbvJcIo3Y68y/M3WxlpEHPWIGDkJYwzJI=", version = "v0.3.4", ) go_repository( name = "com_github_cncf_udpa_go", importpath = "github.com/cncf/udpa/go", sum = "h1:cqQfy1jclcSy/FwLjemeg3SR1yaINm74aQyupQ0Bl8M=", version = "v0.0.0-20201120205902-5459f2c99403", ) go_repository( name = "com_github_cncf_xds_go", importpath = "github.com/cncf/xds/go", sum = "h1:OZmjad4L3H8ncOIR8rnb5MREYqG8ixi5+WbeUsquF0c=", version = "v0.0.0-20210312221358-fbca930ec8ed", ) go_repository( name = "com_github_codahale_hdrhistogram", importpath = "github.com/codahale/hdrhistogram", sum = "h1:qMd81Ts1T2OTKmB4acZcyKaMtRnY5Y44NuXGX2GFJ1w=", version = "v0.0.0-20161010025455-3a0bb77429bd", ) go_repository( name = "com_github_containerd_containerd", importpath = "github.com/containerd/containerd", sum = "h1:xjvXQWABwS2uiv3TWgQt5Uth60Gu86LTGZXMJkjc7rY=", version = "v1.3.0", ) go_repository( name = "com_github_containerd_stargz_snapshotter_estargz", importpath = "github.com/containerd/stargz-snapshotter/estargz", sum = "h1:5e7heayhB7CcgdTkqfZqrNaNv15gABwr3Q2jBTbLlt4=", version = "v0.4.1", ) go_repository( name = "com_github_coreos_bbolt", importpath = "github.com/coreos/bbolt", sum = "h1:wZwiHHUieZCquLkDL0B8UhzreNWsPHooDAG3q34zk0s=", version = "v1.3.2", ) go_repository( name = "com_github_coreos_etcd", importpath = "github.com/coreos/etcd", sum = "h1:jFneRYjIvLMLhDLCzuTuU4rSJUjRplcJQ7pD7MnhC04=", version = "v3.3.10+incompatible", ) go_repository( name = "com_github_coreos_go_semver", importpath = "github.com/coreos/go-semver", sum = "h1:wkHLiw0WNATZnSG7epLsujiMCgPAc9xhjJ4tgnAxmfM=", version = "v0.3.0", ) go_repository( name = "com_github_coreos_go_systemd", importpath = "github.com/coreos/go-systemd", sum = "h1:Wf6HqHfScWJN9/ZjdUKyjop4mf3Qdd+1TvvltAvM3m8=", version = "v0.0.0-20190321100706-95778dfbb74e", ) go_repository( name = "com_github_coreos_go_systemd_v22", importpath = "github.com/coreos/go-systemd/v22", sum = "h1:D9/bQk5vlXQFZ6Kwuu6zaiXJ9oTPe68++AzAJc1DzSI=", version = "v22.3.2", ) go_repository( name = "com_github_coreos_pkg", importpath = "github.com/coreos/pkg", sum = "h1:lBNOc5arjvs8E5mO2tbpBpLoyyu8B6e44T7hJy6potg=", version = "v0.0.0-20180928190104-399ea9e2e55f", ) go_repository( name = "com_github_cpuguy83_go_md2man_v2", importpath = "github.com/cpuguy83/go-md2man/v2", sum = "h1:EoUDS0afbrsXAZ9YQ9jdu/mZ2sXgT1/2yyNng4PGlyM=", version = "v2.0.0", ) go_repository( name = "com_github_creack_pty", importpath = "github.com/creack/pty", sum = "h1:uDmaGzcdjhF4i/plgjmEsriH11Y0o7RKapEf/LDaM3w=", version = "v1.1.9", ) go_repository( name = "com_github_cyberdelia_templates", importpath = "github.com/cyberdelia/templates", sum = "h1:/ovYnF02fwL0kvspmy9AuyKg1JhdTRUgPw4nUxd9oZM=", version = "v0.0.0-20141128023046-ca7fffd4298c", ) go_repository( name = "com_github_davecgh_go_spew", importpath = "github.com/davecgh/go-spew", sum = "h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=", version = "v1.1.1", ) go_repository( name = "com_github_dchest_cmac", importpath = "github.com/dchest/cmac", sum = "h1:qoavXEzRRUfup81LsDQv4fnUQbLyorpPz6WxiwdiU7A=", version = "v0.0.0-20150527144652-62ff55a1048c", ) go_repository( name = "com_github_decred_dcrd_crypto_blake256", importpath = "github.com/decred/dcrd/crypto/blake256", sum = "h1:/8DMNYp9SGi5f0w7uCm6d6M4OU2rGFK09Y2A4Xv7EE0=", version = "v1.0.0", ) go_repository( name = "com_github_decred_dcrd_dcrec_secp256k1_v4", importpath = "github.com/decred/dcrd/dcrec/secp256k1/v4", sum = "h1:1iy2qD6JEhHKKhUOA9IWs7mjco7lnw2qx8FsRI2wirE=", version = "v4.0.0-20210816181553-5444fa50b93d", ) go_repository( name = "com_github_deepmap_oapi_codegen", importpath = "github.com/deepmap/oapi-codegen", sum = "h1:qpyRY+dzjMai5QejjA53ebnBtcSvIcZOtYwVlsgdxOc=", version = "v1.9.0", ) go_repository( name = "com_github_dgrijalva_jwt_go", importpath = "github.com/dgrijalva/jwt-go", sum = "h1:7qlOGliEKZXTDg6OTjfoBKDXWrumCAMpl/TFQ4/5kLM=", version = "v3.2.0+incompatible", ) go_repository( name = "com_github_dgryski_go_sip13", importpath = "github.com/dgryski/go-sip13", sum = "h1:RMLoZVzv4GliuWafOuPuQDKSm1SJph7uCRnnS61JAn4=", version = "v0.0.0-20181026042036-e10d5fee7954", ) go_repository( name = "com_github_docker_cli", importpath = "github.com/docker/cli", sum = "h1:2HQmlpI3yI9deH18Q6xiSOIjXD4sLI55Y/gfpa8/558=", version = "v0.0.0-20191017083524-a8ff7f821017", ) go_repository( name = "com_github_docker_distribution", importpath = "github.com/docker/distribution", sum = "h1:a5mlkVzth6W5A4fOsS3D2EO5BUmsJpcB+cRlLU7cSug=", version = "v2.7.1+incompatible", ) go_repository( name = "com_github_docker_docker", importpath = "github.com/docker/docker", sum = "h1:Cvj7S8I4Xpx78KAl6TwTmMHuHlZ/0SM60NUneGJQ7IE=", version = "v1.4.2-0.20190924003213-a8608b5b67c7", ) go_repository( name = "com_github_docker_docker_credential_helpers", importpath = "github.com/docker/docker-credential-helpers", sum = "h1:zI2p9+1NQYdnG6sMU26EX4aVGlqbInSQxQXLvzJ4RPQ=", version = "v0.6.3", ) go_repository( name = "com_github_docker_go_connections", importpath = "github.com/docker/go-connections", sum = "h1:El9xVISelRB7BuFusrZozjnkIM5YnzCViNKohAFqRJQ=", version = "v0.4.0", ) go_repository( name = "com_github_docker_go_units", importpath = "github.com/docker/go-units", sum = "h1:3uh0PgVws3nIA0Q+MwDC8yjEPf9zjRfZZWXZYDct3Tw=", version = "v0.4.0", ) go_repository( name = "com_github_docopt_docopt_go", importpath = "github.com/docopt/docopt-go", sum = "h1:bWDMxwH3px2JBh6AyO7hdCn/PkvCZXii8TGj7sbtEbQ=", version = "v0.0.0-20180111231733-ee0de3bc6815", ) go_repository( name = "com_github_dustin_go_humanize", importpath = "github.com/dustin/go-humanize", sum = "h1:VSnTsYCnlFHaM2/igO1h6X3HA71jcobQuxemgkq4zYo=", version = "v1.0.0", ) go_repository( name = "com_github_dvyukov_go_fuzz", importpath = "github.com/dvyukov/go-fuzz", sum = "h1:q1oJaUPdmpDm/VyXosjgPgr6wS7c5iV2p0PwJD73bUI=", version = "v0.0.0-20210103155950-6a8e9d1f2415", ) go_repository( name = "com_github_emicklei_go_restful", importpath = "github.com/emicklei/go-restful", sum = "h1:spTtZBk5DYEvbxMVutUuTyh1Ao2r4iyvLdACqsl/Ljk=", version = "v2.9.5+incompatible", ) go_repository( name = "com_github_emojisum_emojisum", importpath = "github.com/emojisum/emojisum", sum = "h1:3fEA+fY1ujuzNCOgd6Y1E/JndDFIm34GcYkdmwba0bI=", version = "v0.0.0-20210601164913-cb9db27ebae2", ) go_repository( name = "com_github_envoyproxy_go_control_plane", importpath = "github.com/envoyproxy/go-control-plane", sum = "h1:dulLQAYQFYtG5MTplgNGHWuV2D+OBD+Z8lmDBmbLg+s=", version = "v0.9.9-0.20210512163311-63b5d3c536b0", ) go_repository( name = "com_github_envoyproxy_protoc_gen_validate", importpath = "github.com/envoyproxy/protoc-gen-validate", sum = "h1:EQciDnbrYxy13PgWoY8AqoxGiPrpgBZ1R8UNe3ddc+A=", version = "v0.1.0", ) go_repository( name = "com_github_fatih_color", importpath = "github.com/fatih/color", sum = "h1:8xPHl4/q1VyqGIPif1F+1V3Y3lSmrq01EabUW3CoW5s=", version = "v1.9.0", ) go_repository( name = "com_github_flynn_go_shlex", importpath = "github.com/flynn/go-shlex", sum = "h1:BHsljHzVlRcyQhjrss6TZTdY2VfCqZPbv5k3iBFa2ZQ=", version = "v0.0.0-20150515145356-3f9db97f8568", ) go_repository( name = "com_github_francoispqt_gojay", importpath = "github.com/francoispqt/gojay", sum = "h1:d2m3sFjloqoIUQU3TsHBgj6qg/BVGlTBeHDUmyJnXKk=", version = "v1.2.13", ) go_repository( name = "com_github_fsnotify_fsnotify", importpath = "github.com/fsnotify/fsnotify", sum = "h1:mZcQUHVQUQWoPXXtuf9yuEXKudkV2sx1E06UadKWpgI=", version = "v1.5.1", ) go_repository( name = "com_github_getkin_kin_openapi", importpath = "github.com/getkin/kin-openapi", sum = "h1:W/s5/DNnDCR8P+pYyafEWlGk4S7/AfQUWXgrRSSAzf8=", version = "v0.80.0", ) go_repository( name = "com_github_ghodss_yaml", importpath = "github.com/ghodss/yaml", sum = "h1:wQHKEahhL6wmXdzwWG11gIVCkOv05bNOh+Rxn0yngAk=", version = "v1.0.0", ) go_repository( name = "com_github_gin_contrib_sse", importpath = "github.com/gin-contrib/sse", sum = "h1:Y/yl/+YNO8GZSjAhjMsSuLt29uWRFHdHYUb5lYOV9qE=", version = "v0.1.0", ) go_repository( name = "com_github_gin_gonic_gin", importpath = "github.com/gin-gonic/gin", sum = "h1:QmUZXrvJ9qZ3GfWvQ+2wnW/1ePrTEJqPKMYEU3lD/DM=", version = "v1.7.4", ) go_repository( name = "com_github_gliderlabs_ssh", importpath = "github.com/gliderlabs/ssh", sum = "h1:j3L6gSLQalDETeEg/Jg0mGY0/y/N6zI2xX1978P0Uqw=", version = "v0.1.1", ) go_repository( name = "com_github_go_chi_chi_v5", importpath = "github.com/go-chi/chi/v5", sum = "h1:4xKeALZdMEsuI5s05PU2Bm89Uc5iM04qFubUCl5LfAQ=", version = "v5.0.2", ) go_repository( name = "com_github_go_chi_cors", importpath = "github.com/go-chi/cors", sum = "h1:eHuqxsIw89iXcWnWUN8R72JMibABJTN/4IOYI5WERvw=", version = "v1.1.1", ) go_repository( name = "com_github_go_errors_errors", importpath = "github.com/go-errors/errors", sum = "h1:LUHzmkK3GUKUrL/1gfBUxAHzcev3apQlezX/+O7ma6w=", version = "v1.0.1", ) go_repository( name = "com_github_go_gl_glfw", importpath = "github.com/go-gl/glfw", sum = "h1:QbL/5oDUmRBzO9/Z7Seo6zf912W/a6Sr4Eu0G/3Jho0=", version = "v0.0.0-20190409004039-e6da0acd62b1", ) go_repository( name = "com_github_go_gl_glfw_v3_3_glfw", importpath = "github.com/go-gl/glfw/v3.3/glfw", sum = "h1:WtGNWLvXpe6ZudgnXrq0barxBImvnnJoMEhXAzcbM0I=", version = "v0.0.0-20200222043503-6f7a984d4dc4", ) go_repository( name = "com_github_go_kit_kit", importpath = "github.com/go-kit/kit", sum = "h1:wDJmvq38kDhkVxi50ni9ykkdUr1PKgqKOoi01fa0Mdk=", version = "v0.9.0", ) go_repository( name = "com_github_go_kit_log", importpath = "github.com/go-kit/log", sum = "h1:DGJh0Sm43HbOeYDNnVZFl8BvcYVvjD5bqYJvp0REbwQ=", version = "v0.1.0", ) go_repository( name = "com_github_go_logfmt_logfmt", importpath = "github.com/go-logfmt/logfmt", sum = "h1:TrB8swr/68K7m9CcGut2g3UOihhbcbiMAYiuTXdEih4=", version = "v0.5.0", ) go_repository( name = "com_github_go_logr_logr", importpath = "github.com/go-logr/logr", sum = "h1:QvGt2nLcHH0WK9orKa+ppBPAxREcH364nPUedEpK0TY=", version = "v0.2.0", ) go_repository( name = "com_github_go_openapi_jsonpointer", importpath = "github.com/go-openapi/jsonpointer", sum = "h1:gZr+CIYByUqjcgeLXnQu2gHYQC9o73G2XUeOFYEICuY=", version = "v0.19.5", ) go_repository( name = "com_github_go_openapi_jsonreference", importpath = "github.com/go-openapi/jsonreference", sum = "h1:5cxNfTy0UVC3X8JL5ymxzyoUZmo8iZb+jeTWn7tUa8o=", version = "v0.19.3", ) go_repository( name = "com_github_go_openapi_spec", importpath = "github.com/go-openapi/spec", sum = "h1:0XRyw8kguri6Yw4SxhsQA/atC88yqrk0+G4YhI2wabc=", version = "v0.19.3", ) go_repository( name = "com_github_go_openapi_swag", importpath = "github.com/go-openapi/swag", sum = "h1:gm3vOOXfiuw5i9p5N9xJvfjvuofpyvLA9Wr6QfK5Fng=", version = "v0.19.14", ) go_repository( name = "com_github_go_playground_assert_v2", importpath = "github.com/go-playground/assert/v2", sum = "h1:MsBgLAaY856+nPRTKrp3/OZK38U/wa0CcBYNjji3q3A=", version = "v2.0.1", ) go_repository( name = "com_github_go_playground_locales", importpath = "github.com/go-playground/locales", sum = "h1:u50s323jtVGugKlcYeyzC0etD1HifMjqmJqb8WugfUU=", version = "v0.14.0", ) go_repository( name = "com_github_go_playground_universal_translator", importpath = "github.com/go-playground/universal-translator", sum = "h1:82dyy6p4OuJq4/CByFNOn/jYrnRPArHwAcmLoJZxyho=", version = "v0.18.0", ) go_repository( name = "com_github_go_playground_validator_v10", importpath = "github.com/go-playground/validator/v10", sum = "h1:NgTtmN58D0m8+UuxtYmGztBJB7VnPgjj221I1QHci2A=", version = "v10.9.0", ) go_repository( name = "com_github_go_stack_stack", importpath = "github.com/go-stack/stack", sum = "h1:5SgMzNM5HxrEjV0ww2lTmX6E2Izsfxas4+YHWRs3Lsk=", version = "v1.8.0", ) go_repository( name = "com_github_go_task_slim_sprig", importpath = "github.com/go-task/slim-sprig", sum = "h1:p104kn46Q8WdvHunIJ9dAyjPVtrBPhSr3KT2yUst43I=", version = "v0.0.0-20210107165309-348f09dbbbc0", ) go_repository( name = "com_github_goccy_go_json", importpath = "github.com/goccy/go-json", sum = "h1:CvMH7LotYymYuLGEohBM1lTZWX4g6jzWUUl2aLFuBoE=", version = "v0.7.8", ) go_repository( name = "com_github_godbus_dbus_v5", importpath = "github.com/godbus/dbus/v5", sum = "h1:9349emZab16e7zQvpmsbtjc18ykshndd8y2PG3sgJbA=", version = "v5.0.4", ) go_repository( name = "com_github_gogo_protobuf", importpath = "github.com/gogo/protobuf", sum = "h1:Ov1cvc58UF3b5XjBnZv7+opcTcQFZebYjWzi34vdm4Q=", version = "v1.3.2", ) go_repository( name = "com_github_golang_glog", importpath = "github.com/golang/glog", sum = "h1:VKtxabqXZkF25pY9ekfRL6a582T4P37/31XEstQ5p58=", version = "v0.0.0-20160126235308-23def4e6c14b", ) go_repository( name = "com_github_golang_groupcache", importpath = "github.com/golang/groupcache", sum = "h1:1r7pUrabqp18hOBcwBwiTsbnFeTZHV9eER/QT5JVZxY=", version = "v0.0.0-20200121045136-8c9f03a8e57e", ) go_repository( name = "com_github_golang_lint", importpath = "github.com/golang/lint", sum = "h1:2hRPrmiwPrp3fQX967rNJIhQPtiGXdlQWAxKbKw3VHA=", version = "v0.0.0-20180702182130-06c8688daad7", ) go_repository( name = "com_github_golang_mock", importpath = "github.com/golang/mock", sum = "h1:ErTB+efbowRARo13NNdxyJji2egdxLGQhRaY+DUumQc=", version = "v1.6.0", ) go_repository( name = "com_github_golang_protobuf", importpath = "github.com/golang/protobuf", sum = "h1:ROPKBNFfQgOUMifHyP+KYbvpjbdoFNs+aK7DXlji0Tw=", version = "v1.5.2", ) go_repository( name = "com_github_golang_snappy", importpath = "github.com/golang/snappy", sum = "h1:fHPg5GQYlCeLIPB9BZqMVR5nR9A+IM5zcgeTdjMYmLA=", version = "v0.0.3", ) go_repository( name = "com_github_golangci_lint_1", importpath = "github.com/golangci/lint-1", sum = "h1:utua3L2IbQJmauC5IXdEA547bcoU5dozgQAfc8Onsg4=", version = "v0.0.0-20181222135242-d2cdd8c08219", ) go_repository( name = "com_github_google_btree", importpath = "github.com/google/btree", sum = "h1:0udJVsspx3VBr5FwtLhQQtuAsVc79tTq0ocGIPAU6qo=", version = "v1.0.0", ) go_repository( name = "com_github_google_go_cmp", importpath = "github.com/google/go-cmp", sum = "h1:BKbKCqvP6I+rmFHt06ZmyQtvB8xAkWdhFyr0ZUNZcxQ=", version = "v0.5.6", ) go_repository( name = "com_github_google_go_containerregistry", importpath = "github.com/google/go-containerregistry", sum = "h1:/+mFTs4AlwsJ/mJe8NDtKb7BxLtbZFpcn8vDsneEkwQ=", version = "v0.5.1", ) go_repository( name = "com_github_google_go_github", importpath = "github.com/google/go-github", sum = "h1:N0LgJ1j65A7kfXrZnUDaYCs/Sf4rEjNlfyDHW9dolSY=", version = "v17.0.0+incompatible", ) go_repository( name = "com_github_google_go_querystring", importpath = "github.com/google/go-querystring", sum = "h1:Avad62mreCc9la5buHvHZXbvsY+GPYUVjd8xsi48FYY=", version = "v1.0.1-0.20190318165438-c8c88dbee036", ) go_repository( name = "com_github_google_gofuzz", importpath = "github.com/google/gofuzz", sum = "h1:Hsa8mG0dQ46ij8Sl2AYJDUv1oA9/d6Vk+3LG99Oe02g=", version = "v1.1.0", ) go_repository( name = "com_github_google_gopacket", importpath = "github.com/google/gopacket", sum = "h1:eR3RuANqlK0CQoHJxUdXQNsco+gJykcti01+wqBCuPs=", version = "v1.1.16-0.20190123011826-102d5ca2098c", ) go_repository( name = "com_github_google_martian", importpath = "github.com/google/martian", sum = "h1:/CP5g8u/VJHijgedC/Legn3BAbAaWPgecwXBIDzw5no=", version = "v2.1.0+incompatible", ) go_repository( name = "com_github_google_martian_v3", importpath = "github.com/google/martian/v3", sum = "h1:d8MncMlErDFTwQGBK1xhv026j9kqhvw1Qv9IbWT1VLQ=", version = "v3.2.1", ) go_repository( name = "com_github_google_pprof", importpath = "github.com/google/pprof", sum = "h1:K6RDEckDVWvDI9JAJYCmNdQXq6neHJOYx3V6jnqNEec=", version = "v0.0.0-20210720184732-4bb14d4b1be1", ) go_repository( name = "com_github_google_renameio", importpath = "github.com/google/renameio", sum = "h1:GOZbcHa3HfsPKPlmyPyN2KEohoMXOhdMbHrvbpl2QaA=", version = "v0.1.0", ) go_repository( name = "com_github_google_uuid", importpath = "github.com/google/uuid", sum = "h1:EVhdT+1Kseyi1/pUmXKaFxYsDNy9RQYkMWRH68J/W7Y=", version = "v1.1.2", ) go_repository( name = "com_github_googleapis_gax_go", importpath = "github.com/googleapis/gax-go", sum = "h1:j0GKcs05QVmm7yesiZq2+9cxHkNK9YM6zKx4D2qucQU=", version = "v2.0.0+incompatible", ) go_repository( name = "com_github_googleapis_gax_go_v2", importpath = "github.com/googleapis/gax-go/v2", sum = "h1:6DWmvNpomjL1+3liNSZbVns3zsYzzCjm6pRBO1tLeso=", version = "v2.1.0", ) go_repository( name = "com_github_googleapis_gnostic", importpath = "github.com/googleapis/gnostic", sum = "h1:DLJCy1n/vrD4HPjOvYcT8aYQXpPIzoRZONaYwyycI+I=", version = "v0.4.1", ) go_repository( name = "com_github_gopherjs_gopherjs", importpath = "github.com/gopherjs/gopherjs", sum = "h1:EGx4pi6eqNxGaHF6qqu48+N2wcFQ5qg5FXgOdqsJ5d8=", version = "v0.0.0-20181017120253-0766667cb4d1", ) go_repository( name = "com_github_gorilla_mux", importpath = "github.com/gorilla/mux", sum = "h1:i40aqfkR1h2SlN9hojwV5ZA91wcXFOvkdNIeFDP5koI=", version = "v1.8.0", ) go_repository( name = "com_github_gorilla_websocket", importpath = "github.com/gorilla/websocket", sum = "h1:WDFjx/TMzVgy9VdMMQi2K2Emtwi2QcUQsztZ/zLaH/Q=", version = "v1.4.0", ) go_repository( name = "com_github_gregjones_httpcache", importpath = "github.com/gregjones/httpcache", sum = "h1:pdN6V1QBWetyv/0+wjACpqVH+eVULgEjkurDLq3goeM=", version = "v0.0.0-20180305231024-9cad4c3443a7", ) go_repository( name = "com_github_grpc_ecosystem_go_grpc_middleware", importpath = "github.com/grpc-ecosystem/go-grpc-middleware", sum = "h1:+9834+KizmvFV7pXQGSXQTsaWhq2GjuNUt0aUU0YBYw=", version = "v1.3.0", ) go_repository( name = "com_github_grpc_ecosystem_go_grpc_prometheus", importpath = "github.com/grpc-ecosystem/go-grpc-prometheus", sum = "h1:Ovs26xHkKqVztRpIrF/92BcuyuQ/YW4NSIpoGtfXNho=", version = "v1.2.0", ) go_repository( name = "com_github_grpc_ecosystem_grpc_gateway", importpath = "github.com/grpc-ecosystem/grpc-gateway", sum = "h1:gmcG1KaJ57LophUzW0Hy8NmPhnMZb4M0+kPpLofRdBo=", version = "v1.16.0", ) go_repository( name = "com_github_grpc_ecosystem_grpc_opentracing", importpath = "github.com/grpc-ecosystem/grpc-opentracing", sum = "h1:MJG/KsmcqMwFAkh8mTnAwhyKoB+sTAnY4CACC110tbU=", version = "v0.0.0-20180507213350-8e809c8a8645", ) go_repository( name = "com_github_hashicorp_consul_api", importpath = "github.com/hashicorp/consul/api", sum = "h1:MwZJp86nlnL+6+W1Zly4JUuVn9YHhMggBirMpHGD7kw=", version = "v1.10.1", ) go_repository( name = "com_github_hashicorp_consul_sdk", importpath = "github.com/hashicorp/consul/sdk", sum = "h1:OJtKBtEjboEZvG6AOUdh4Z1Zbyu0WcxQ0qatRrZHTVU=", version = "v0.8.0", ) go_repository( name = "com_github_hashicorp_errwrap", importpath = "github.com/hashicorp/errwrap", sum = "h1:hLrqtEDnRye3+sgx6z4qVLNuviH3MR5aQ0ykNJa/UYA=", version = "v1.0.0", ) go_repository( name = "com_github_hashicorp_go_cleanhttp", importpath = "github.com/hashicorp/go-cleanhttp", sum = "h1:dH3aiDG9Jvb5r5+bYHsikaOUIpcM0xvgMXVoDkXMzJM=", version = "v0.5.1", ) go_repository( name = "com_github_hashicorp_go_hclog", importpath = "github.com/hashicorp/go-hclog", sum = "h1:d4QkX8FRTYaKaCZBoXYY8zJX2BXjWxurN/GA2tkrmZM=", version = "v0.12.0", ) go_repository( name = "com_github_hashicorp_go_immutable_radix", importpath = "github.com/hashicorp/go-immutable-radix", sum = "h1:AKDB1HM5PWEA7i4nhcpwOrO2byshxBjXVn/J/3+z5/0=", version = "v1.0.0", ) go_repository( name = "com_github_hashicorp_go_msgpack", importpath = "github.com/hashicorp/go-msgpack", sum = "h1:zKjpN5BK/P5lMYrLmBHdBULWbJ0XpYR+7NGzqkZzoD4=", version = "v0.5.3", ) go_repository( name = "com_github_hashicorp_go_multierror", importpath = "github.com/hashicorp/go-multierror", sum = "h1:B9UzwGQJehnUY1yNrnwREHc3fGbC2xefo8g4TbElacI=", version = "v1.1.0", ) go_repository( name = "com_github_hashicorp_go_net", importpath = "github.com/hashicorp/go.net", sum = "h1:sNCoNyDEvN1xa+X0baata4RdcpKwcMS6DH+xwfqPgjw=", version = "v0.0.1", ) go_repository( name = "com_github_hashicorp_go_rootcerts", importpath = "github.com/hashicorp/go-rootcerts", sum = "h1:jzhAVGtqPKbwpyCPELlgNWhE1znq+qwJtW5Oi2viEzc=", version = "v1.0.2", ) go_repository( name = "com_github_hashicorp_go_sockaddr", importpath = "github.com/hashicorp/go-sockaddr", sum = "h1:GeH6tui99pF4NJgfnhp+L6+FfobzVW3Ah46sLo0ICXs=", version = "v1.0.0", ) go_repository( name = "com_github_hashicorp_go_syslog", importpath = "github.com/hashicorp/go-syslog", sum = "h1:KaodqZuhUoZereWVIYmpUgZysurB1kBLX2j0MwMrUAE=", version = "v1.0.0", ) go_repository( name = "com_github_hashicorp_go_uuid", importpath = "github.com/hashicorp/go-uuid", sum = "h1:fv1ep09latC32wFoVwnqcnKJGnMSdBanPczbHAYm1BE=", version = "v1.0.1", ) go_repository( name = "com_github_hashicorp_golang_lru", importpath = "github.com/hashicorp/golang-lru", sum = "h1:0hERBMJE1eitiLkihrMvRVBYAkpHzc/J3QdDN+dAcgU=", version = "v0.5.1", ) go_repository( name = "com_github_hashicorp_hcl", importpath = "github.com/hashicorp/hcl", sum = "h1:0Anlzjpi4vEasTeNFn2mLJgTSwt0+6sfsiTG8qcWGx4=", version = "v1.0.0", ) go_repository( name = "com_github_hashicorp_logutils", importpath = "github.com/hashicorp/logutils", sum = "h1:dLEQVugN8vlakKOUE3ihGLTZJRB4j+M2cdTm/ORI65Y=", version = "v1.0.0", ) go_repository( name = "com_github_hashicorp_mdns", importpath = "github.com/hashicorp/mdns", sum = "h1:XFSOubp8KWB+Jd2PDyaX5xUd5bhSP/+pTDZVDMzZJM8=", version = "v1.0.1", ) go_repository( name = "com_github_hashicorp_memberlist", importpath = "github.com/hashicorp/memberlist", sum = "h1:5+RffWKwqJ71YPu9mWsF7ZOscZmwfasdA8kbdC7AO2g=", version = "v0.2.2", ) go_repository( name = "com_github_hashicorp_serf", importpath = "github.com/hashicorp/serf", sum = "h1:EBWvyu9tcRszt3Bxp3KNssBMP1KuHWyO51lz9+786iM=", version = "v0.9.5", ) go_repository( name = "com_github_hpcloud_tail", importpath = "github.com/hpcloud/tail", sum = "h1:nfCOvKYfkgYP8hkirhJocXT2+zOD8yUNjXaWfTlyFKI=", version = "v1.0.0", ) go_repository( name = "com_github_iancoleman_strcase", importpath = "github.com/iancoleman/strcase", sum = "h1:ECW73yc9MY7935nNYXUkK7Dz17YuSUI9yqRqYS8aBww=", version = "v0.0.0-20190422225806-e506e3ef7365", ) go_repository( name = "com_github_ianlancetaylor_demangle", importpath = "github.com/ianlancetaylor/demangle", sum = "h1:mV02weKRL81bEnm8A0HT1/CAelMQDBuQIfLw8n+d6xI=", version = "v0.0.0-20200824232613-28f6c0f3b639", ) go_repository( name = "com_github_inconshreveable_mousetrap", importpath = "github.com/inconshreveable/mousetrap", sum = "h1:Z8tu5sraLXCXIcARxBp/8cbvlwVa7Z1NHg9XEKhtSvM=", version = "v1.0.0", ) go_repository( name = "com_github_jellevandenhooff_dkim", importpath = "github.com/jellevandenhooff/dkim", sum = "h1:ujPKutqRlJtcfWk6toYVYagwra7HQHbXOaS171b4Tg8=", version = "v0.0.0-20150330215556-f50fe3d243e1", ) go_repository( name = "com_github_joefitzgerald_rainbow_reporter", importpath = "github.com/joefitzgerald/rainbow-reporter", sum = "h1:AuMG652zjdzI0YCCnXAqATtRBpGXMcAnrajcaTrSeuo=", version = "v0.1.0", ) go_repository( name = "com_github_jonboulle_clockwork", importpath = "github.com/jonboulle/clockwork", sum = "h1:VKV+ZcuP6l3yW9doeqz6ziZGgcynBVQO+obU0+0hcPo=", version = "v0.1.0", ) go_repository( name = "com_github_josharian_intern", importpath = "github.com/josharian/intern", sum = "h1:vlS4z54oSdjm0bgjRigI+G1HpF+tI+9rE5LLzOg8HmY=", version = "v1.0.0", ) go_repository( name = "com_github_jpillora_backoff", importpath = "github.com/jpillora/backoff", sum = "h1:uvFg412JmmHBHw7iwprIxkPMI+sGQ4kzOWsMeHnm2EA=", version = "v1.0.0", ) go_repository( name = "com_github_json_iterator_go", importpath = "github.com/json-iterator/go", sum = "h1:PV8peI4a0ysnczrg+LtxykD8LfKY9ML6u2jnxaEnrnM=", version = "v1.1.12", ) go_repository( name = "com_github_jstemmer_go_junit_report", importpath = "github.com/jstemmer/go-junit-report", sum = "h1:6QPYqodiu3GuPL+7mfx+NwDdp2eTkp9IfEUpgAwUN0o=", version = "v0.9.1", ) go_repository( name = "com_github_jtolds_gls", importpath = "github.com/jtolds/gls", sum = "h1:xdiiI2gbIgH/gLH7ADydsJ1uDOEzR8yvV7C0MuV77Wo=", version = "v4.20.0+incompatible", ) go_repository( name = "com_github_julienschmidt_httprouter", importpath = "github.com/julienschmidt/httprouter", sum = "h1:U0609e9tgbseu3rBINet9P48AI/D3oJs4dN7jwJOQ1U=", version = "v1.3.0", ) go_repository( name = "com_github_kisielk_errcheck", importpath = "github.com/kisielk/errcheck", sum = "h1:e8esj/e4R+SAOwFwN+n3zr0nYeCyeweozKfO23MvHzY=", version = "v1.5.0", ) go_repository( name = "com_github_kisielk_gotool", importpath = "github.com/kisielk/gotool", sum = "h1:AV2c/EiW3KqPNT9ZKl07ehoAGi4C5/01Cfbblndcapg=", version = "v1.0.0", ) go_repository( name = "com_github_konsorten_go_windows_terminal_sequences", importpath = "github.com/konsorten/go-windows-terminal-sequences", sum = "h1:CE8S1cTafDpPvMhIxNJKvHsGVBgn1xWYf1NbHQhywc8=", version = "v1.0.3", ) go_repository( name = "com_github_kr_fs", importpath = "github.com/kr/fs", sum = "h1:Jskdu9ieNAYnjxsi0LbQp1ulIKZV1LAFgK1tWhpZgl8=", version = "v0.1.0", ) go_repository( name = "com_github_kr_logfmt", importpath = "github.com/kr/logfmt", sum = "h1:T+h1c/A9Gawja4Y9mFVWj2vyii2bbUNDw3kt9VxK2EY=", version = "v0.0.0-20140226030751-b84e30acd515", ) go_repository( name = "com_github_kr_pretty", importpath = "github.com/kr/pretty", sum = "h1:WgNl7dwNpEZ6jJ9k1snq4pZsg7DOEN8hP9Xw0Tsjwk0=", version = "v0.3.0", ) go_repository( name = "com_github_kr_pty", importpath = "github.com/kr/pty", sum = "h1:hyz3dwM5QLc1Rfoz4FuWJQG5BN7tc6K1MndAUnGpQr4=", version = "v1.1.5", ) go_repository( name = "com_github_kr_text", importpath = "github.com/kr/text", sum = "h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=", version = "v0.2.0", ) go_repository( name = "com_github_labstack_echo_v4", importpath = "github.com/labstack/echo/v4", sum = "h1:LF5Iq7t/jrtUuSutNuiEWtB5eiHfZ5gSe2pcu5exjQw=", version = "v4.2.1", ) go_repository( name = "com_github_labstack_gommon", importpath = "github.com/labstack/gommon", sum = "h1:JEeO0bvc78PKdyHxloTKiF8BD5iGrH8T6MSeGvSgob0=", version = "v0.3.0", ) go_repository( name = "com_github_leodido_go_urn", importpath = "github.com/leodido/go-urn", sum = "h1:BqpAaACuzVSgi/VLzGZIobT2z4v53pjosyNd9Yv6n/w=", version = "v1.2.1", ) go_repository( name = "com_github_lestrrat_go_backoff_v2", importpath = "github.com/lestrrat-go/backoff/v2", sum = "h1:oNb5E5isby2kiro9AgdHLv5N5tint1AnDVVf2E2un5A=", version = "v2.0.8", ) go_repository( name = "com_github_lestrrat_go_blackmagic", importpath = "github.com/lestrrat-go/blackmagic", sum = "h1:XzdxDbuQTz0RZZEmdU7cnQxUtFUzgCSPq8RCz4BxIi4=", version = "v1.0.0", ) go_repository( name = "com_github_lestrrat_go_codegen", importpath = "github.com/lestrrat-go/codegen", sum = "h1:HWA03icqONV45riBbrVx+VOjL6esg4LUAuYlvpl/ZLU=", version = "v1.0.2", ) go_repository( name = "com_github_lestrrat_go_httpcc", importpath = "github.com/lestrrat-go/httpcc", sum = "h1:FszVC6cKfDvBKcJv646+lkh4GydQg2Z29scgUfkOpYc=", version = "v1.0.0", ) go_repository( name = "com_github_lestrrat_go_iter", importpath = "github.com/lestrrat-go/iter", sum = "h1:q8faalr2dY6o8bV45uwrxq12bRa1ezKrB6oM9FUgN4A=", version = "v1.0.1", ) go_repository( name = "com_github_lestrrat_go_jwx", importpath = "github.com/lestrrat-go/jwx", sum = "h1:wO7fEc3PW56wpQBMU5CyRkrk4DVsXxCoJg7oIm5HHE4=", version = "v1.2.7", ) go_repository( name = "com_github_lestrrat_go_option", importpath = "github.com/lestrrat-go/option", sum = "h1:WqAWL8kh8VcSoD6xjSH34/1m8yxluXQbDeKNfvFeEO4=", version = "v1.0.0", ) go_repository( name = "com_github_lucas_clemente_quic_go", importpath = "github.com/lucas-clemente/quic-go", sum = "h1:5vFnKtZ6nHDFsc/F3uuiF4T3y/AXaQdxjUqiVw26GZE=", version = "v0.23.0", ) go_repository( name = "com_github_lunixbochs_vtclean", importpath = "github.com/lunixbochs/vtclean", sum = "h1:xu2sLAri4lGiovBDQKxl5mrXyESr3gUr5m5SM5+LVb8=", version = "v1.0.0", ) go_repository( name = "com_github_magiconair_properties", importpath = "github.com/magiconair/properties", sum = "h1:b6kJs+EmPFMYGkow9GiUyCyOvIwYetYJ3fSaWak/Gls=", version = "v1.8.5", ) go_repository( name = "com_github_mailru_easyjson", importpath = "github.com/mailru/easyjson", sum = "h1:UGYAvKxe3sBsEDzO8ZeWOSlIQfWFlxbzLZe7hwFURr0=", version = "v0.7.7", ) go_repository( name = "com_github_marten_seemann_qpack", importpath = "github.com/marten-seemann/qpack", sum = "h1:jvTsT/HpCn2UZJdP+UUB53FfUUgeOyG5K1ns0OJOGVs=", version = "v0.2.1", ) go_repository( name = "com_github_marten_seemann_qtls_go1_15", importpath = "github.com/marten-seemann/qtls-go1-15", sum = "h1:RehYMOyRW8hPVEja1KBVsFVNSm35Jj9Mvs5yNoZZ28A=", version = "v0.1.4", ) go_repository( name = "com_github_marten_seemann_qtls_go1_16", importpath = "github.com/marten-seemann/qtls-go1-16", sum = "h1:xbHbOGGhrenVtII6Co8akhLEdrawwB2iHl5yhJRpnco=", version = "v0.1.4", ) go_repository( name = "com_github_marten_seemann_qtls_go1_17", importpath = "github.com/marten-seemann/qtls-go1-17", sum = "h1:P9ggrs5xtwiqXv/FHNwntmuLMNq3KaSIG93AtAZ48xk=", version = "v0.1.0", ) go_repository( name = "com_github_matryer_moq", importpath = "github.com/matryer/moq", sum = "h1:HvFwW+cm9bCbZ/+vuGNq7CRWXql8c0y8nGeYpqmpvmk=", version = "v0.0.0-20190312154309-6cfb0558e1bd", ) go_repository( name = "com_github_mattn_go_colorable", importpath = "github.com/mattn/go-colorable", sum = "h1:c1ghPdyEDarC70ftn0y+A/Ee++9zz8ljHG1b13eJ0s8=", version = "v0.1.8", ) go_repository( name = "com_github_mattn_go_isatty", importpath = "github.com/mattn/go-isatty", sum = "h1:yVuAays6BHfxijgZPzw+3Zlu5yQgKGP2/hcQbHb7S9Y=", version = "v0.0.14", ) go_repository( name = "com_github_mattn_go_sqlite3", importpath = "github.com/mattn/go-sqlite3", sum = "h1:4rQjbDxdu9fSgI/r3KN72G3c2goxknAqHHgPWWs8UlI=", version = "v1.14.4", ) go_repository( name = "com_github_matttproud_golang_protobuf_extensions", importpath = "github.com/matttproud/golang_protobuf_extensions", sum = "h1:4hp9jkHxhMHkqkrB3Ix0jegS5sx/RkqARlsWZ6pIwiU=", version = "v1.0.1", ) go_repository( name = "com_github_maxbrunsfeld_counterfeiter_v6", importpath = "github.com/maxbrunsfeld/counterfeiter/v6", sum = "h1:g+4J5sZg6osfvEfkRZxJ1em0VT95/UOZgi/l7zi1/oE=", version = "v6.2.2", ) go_repository( name = "com_github_mdlayher_raw", importpath = "github.com/mdlayher/raw", sum = "h1:aFkJ6lx4FPip+S+Uw4aTegFMct9shDvP+79PsSxpm3w=", version = "v0.0.0-20191009151244-50f2db8cc065", ) go_repository( name = "com_github_microcosm_cc_bluemonday", importpath = "github.com/microcosm-cc/bluemonday", sum = "h1:SIYunPjnlXcW+gVfvm0IlSeR5U3WZUOLfVmqg85Go44=", version = "v1.0.1", ) go_repository( name = "com_github_microsoft_go_winio", importpath = "github.com/Microsoft/go-winio", sum = "h1:+hMXMk01us9KgxGb7ftKQt2Xpf5hH/yky+TDA+qxleU=", version = "v0.4.14", ) go_repository( name = "com_github_miekg_dns", importpath = "github.com/miekg/dns", sum = "h1:gPxPSwALAeHJSjarOs00QjVdV9QoBvc1D2ujQUr5BzU=", version = "v1.1.26", ) go_repository( name = "com_github_mitchellh_cli", importpath = "github.com/mitchellh/cli", sum = "h1:tEElEatulEHDeedTxwckzyYMA5c86fbmNIUL1hBIiTg=", version = "v1.1.0", ) go_repository( name = "com_github_mitchellh_go_homedir", importpath = "github.com/mitchellh/go-homedir", sum = "h1:lukF9ziXFxDFPkA1vsr5zpc1XuPDn/wFntq5mG+4E0Y=", version = "v1.1.0", ) go_repository( name = "com_github_mitchellh_go_testing_interface", importpath = "github.com/mitchellh/go-testing-interface", sum = "h1:fzU/JVNcaqHQEcVFAKeR41fkiLdIPrefOvVG1VZ96U0=", version = "v1.0.0", ) go_repository( name = "com_github_mitchellh_gox", importpath = "github.com/mitchellh/gox", sum = "h1:lfGJxY7ToLJQjHHwi0EX6uYBdK78egf954SQl13PQJc=", version = "v0.4.0", ) go_repository( name = "com_github_mitchellh_iochan", importpath = "github.com/mitchellh/iochan", sum = "h1:C+X3KsSTLFVBr/tK1eYN/vs4rJcvsiLU338UhYPJWeY=", version = "v1.0.0", ) go_repository( name = "com_github_mitchellh_mapstructure", importpath = "github.com/mitchellh/mapstructure", sum = "h1:6h7AQ0yhTcIsmFmnAwQls75jp2Gzs4iB8W7pjMO+rqo=", version = "v1.4.2", ) go_repository( name = "com_github_modern_go_concurrent", importpath = "github.com/modern-go/concurrent", sum = "h1:TRLaZ9cD/w8PVh93nsPXa1VrQ6jlwL5oN8l14QlcNfg=", version = "v0.0.0-20180306012644-bacd9c7ef1dd", ) go_repository( name = "com_github_modern_go_reflect2", importpath = "github.com/modern-go/reflect2", sum = "h1:xBagoLtFs94CBntxluKeaWgTMpvLxC4ur3nMaC9Gz0M=", version = "v1.0.2", ) go_repository( name = "com_github_morikuni_aec", importpath = "github.com/morikuni/aec", sum = "h1:nP9CBfwrvYnBRgY6qfDQkygYDmYwOilePFkwzv4dU8A=", version = "v1.0.0", ) go_repository( name = "com_github_munnerz_goautoneg", importpath = "github.com/munnerz/goautoneg", sum = "h1:7PxY7LVfSZm7PEeBTyK1rj1gABdCO2mbri6GKO1cMDs=", version = "v0.0.0-20120707110453-a547fc61f48d", ) go_repository( name = "com_github_mwitkow_go_conntrack", importpath = "github.com/mwitkow/go-conntrack", sum = "h1:KUppIJq7/+SVif2QVs3tOP0zanoHgBEVAwHxUSIzRqU=", version = "v0.0.0-20190716064945-2f068394615f", ) go_repository( name = "com_github_neelance_astrewrite", importpath = "github.com/neelance/astrewrite", sum = "h1:D6paGObi5Wud7xg83MaEFyjxQB1W5bz5d0IFppr+ymk=", version = "v0.0.0-20160511093645-99348263ae86", ) go_repository( name = "com_github_neelance_sourcemap", importpath = "github.com/neelance/sourcemap", sum = "h1:eFXv9Nu1lGbrNbj619aWwZfVF5HBrm9Plte8aNptuTI=", version = "v0.0.0-20151028013722-8c68805598ab", ) go_repository( name = "com_github_niemeyer_pretty", importpath = "github.com/niemeyer/pretty", sum = "h1:fD57ERR4JtEqsWbfPhv4DMiApHyliiK5xCTNVSPiaAs=", version = "v0.0.0-20200227124842-a10e7caefd8e", ) go_repository( name = "com_github_nxadm_tail", importpath = "github.com/nxadm/tail", sum = "h1:nPr65rt6Y5JFSKQO7qToXr7pePgD6Gwiw05lkbyAQTE=", version = "v1.4.8", ) go_repository( name = "com_github_nytimes_gziphandler", importpath = "github.com/NYTimes/gziphandler", sum = "h1:lsxEuwrXEAokXB9qhlbKWPpo3KMLZQ5WB5WLQRW1uq0=", version = "v0.0.0-20170623195520-56545f4a5d46", ) go_repository( name = "com_github_oklog_ulid", importpath = "github.com/oklog/ulid", sum = "h1:EGfNDEx6MqHz8B3uNV6QAib1UR2Lm97sHi3ocA6ESJ4=", version = "v1.3.1", ) go_repository( name = "com_github_oneofone_xxhash", importpath = "github.com/OneOfOne/xxhash", sum = "h1:KMrpdQIwFcEqXDklaen+P1axHaj9BSKzvpUUfnHldSE=", version = "v1.2.2", ) go_repository( name = "com_github_onsi_ginkgo", importpath = "github.com/onsi/ginkgo", sum = "h1:29JGrr5oVBm5ulCWet69zQkzWipVXIol6ygQUe/EzNc=", version = "v1.16.4", ) go_repository( name = "com_github_onsi_gomega", importpath = "github.com/onsi/gomega", sum = "h1:7lLHu94wT9Ij0o6EWWclhu0aOh32VxhkwEJvzuWPeak=", version = "v1.13.0", ) go_repository( name = "com_github_opencontainers_go_digest", importpath = "github.com/opencontainers/go-digest", sum = "h1:apOUWs51W5PlhuyGyz9FCeeBIOUDA/6nW8Oi/yOhh5U=", version = "v1.0.0", ) go_repository( name = "com_github_opencontainers_image_spec", importpath = "github.com/opencontainers/image-spec", sum = "h1:JMemWkRwHx4Zj+fVxWoMCFm/8sYGGrUVojFA6h/TRcI=", version = "v1.0.1", ) go_repository( name = "com_github_opentracing_opentracing_go", importpath = "github.com/opentracing/opentracing-go", sum = "h1:uEJPy/1a5RIPAJ0Ov+OIO8OxWu77jEv+1B0VhjKrZUs=", version = "v1.2.0", ) go_repository( name = "com_github_openzipkin_zipkin_go", importpath = "github.com/openzipkin/zipkin-go", sum = "h1:A/ADD6HaPnAKj3yS7HjGHRK77qi41Hi0DirOOIQAeIw=", version = "v0.1.1", ) go_repository( name = "com_github_pascaldekloe_goe", importpath = "github.com/pascaldekloe/goe", sum = "h1:Lgl0gzECD8GnQ5QCWA8o6BtfL6mDH5rQgM4/fX3avOs=", version = "v0.0.0-20180627143212-57f6aae5913c", ) go_repository( name = "com_github_patrickmn_go_cache", importpath = "github.com/patrickmn/go-cache", sum = "h1:MUIwjEiAMYk8zkXXUQeb5itrXF+HpS2pfxNsA2a7AiY=", version = "v2.1.1-0.20180815053127-5633e0862627+incompatible", ) go_repository( name = "com_github_pelletier_go_toml", importpath = "github.com/pelletier/go-toml", sum = "h1:tjENF6MfZAg8e4ZmZTeWaWiT2vXtsoO6+iuOjFhECwM=", version = "v1.9.4", ) go_repository( name = "com_github_pkg_diff", importpath = "github.com/pkg/diff", sum = "h1:aoZm08cpOy4WuID//EZDgcC4zIxODThtZNPirFr42+A=", version = "v0.0.0-20210226163009-20ebb0f2a09e", ) go_repository( name = "com_github_pkg_errors", importpath = "github.com/pkg/errors", sum = "h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=", version = "v0.9.1", ) go_repository( name = "com_github_pkg_sftp", importpath = "github.com/pkg/sftp", sum = "h1:VasscCm72135zRysgrJDKsntdmPN+OuU3+nnHYA9wyc=", version = "v1.10.1", ) go_repository( name = "com_github_pmezard_go_difflib", importpath = "github.com/pmezard/go-difflib", sum = "h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=", version = "v1.0.0", ) go_repository( name = "com_github_posener_complete", importpath = "github.com/posener/complete", sum = "h1:NP0eAhjcjImqslEwo/1hq7gpajME0fTLTezBKDqfXqo=", version = "v1.2.3", ) go_repository( name = "com_github_prometheus_client_golang", importpath = "github.com/prometheus/client_golang", sum = "h1:HNkLOAEQMIDv/K+04rukrLx6ch7msSRwf3/SASFAGtQ=", version = "v1.11.0", ) go_repository( name = "com_github_prometheus_client_model", importpath = "github.com/prometheus/client_model", sum = "h1:uq5h0d+GuxiXLJLNABMgp2qUWDPiLvgCzz2dUR+/W/M=", version = "v0.2.0", ) go_repository( name = "com_github_prometheus_common", importpath = "github.com/prometheus/common", sum = "h1:HRmM4uANZDAjdvbsdfOoqI5UDbjz0faKeMs/cGPKKI0=", version = "v0.32.0", ) go_repository( name = "com_github_prometheus_procfs", importpath = "github.com/prometheus/procfs", sum = "h1:mxy4L2jP6qMonqmq+aTtOx1ifVWUgG/TAmntgbh3xv4=", version = "v0.6.0", ) go_repository( name = "com_github_prometheus_tsdb", importpath = "github.com/prometheus/tsdb", sum = "h1:YZcsG11NqnK4czYLrWd9mpEuAJIHVQLwdrleYfszMAA=", version = "v0.7.1", ) go_repository( name = "com_github_puerkitobio_purell", importpath = "github.com/PuerkitoBio/purell", sum = "h1:WEQqlqaGbrPkxLJWfBwQmfEAE1Z7ONdDLqrN38tNFfI=", version = "v1.1.1", ) go_repository( name = "com_github_puerkitobio_urlesc", importpath = "github.com/PuerkitoBio/urlesc", sum = "h1:d+Bc7a5rLufV/sSk/8dngufqelfh6jnri85riMAaF/M=", version = "v0.0.0-20170810143723-de5bf2ad4578", ) go_repository( name = "com_github_rogpeppe_fastuuid", importpath = "github.com/rogpeppe/fastuuid", sum = "h1:Ppwyp6VYCF1nvBTXL3trRso7mXMlRrw9ooo375wvi2s=", version = "v1.2.0", ) go_repository( name = "com_github_rogpeppe_go_internal", importpath = "github.com/rogpeppe/go-internal", sum = "h1:FCbCCtXNOY3UtUuHUYaghJg4y7Fd14rXifAYUAtL9R8=", version = "v1.8.0", ) go_repository( name = "com_github_russross_blackfriday", importpath = "github.com/russross/blackfriday", sum = "h1:HyvC0ARfnZBqnXwABFeSZHpKvJHJJfPz81GNueLj0oo=", version = "v1.5.2", ) go_repository( name = "com_github_russross_blackfriday_v2", importpath = "github.com/russross/blackfriday/v2", sum = "h1:lPqVAte+HuHNfhJ/0LC98ESWRz8afy9tM/0RK8m9o+Q=", version = "v2.0.1", ) go_repository( name = "com_github_ryanuber_columnize", importpath = "github.com/ryanuber/columnize", sum = "h1:UFr9zpz4xgTnIE5yIMtWAMngCdZ9p/+q6lTbgelo80M=", version = "v0.0.0-20160712163229-9b3edd62028f", ) go_repository( name = "com_github_sagikazarmark_crypt", importpath = "github.com/sagikazarmark/crypt", sum = "h1:AyO7PGna28P9TMH93Bsxd7m9QC4xE6zyGQTXCo7ZrA8=", version = "v0.1.0", ) go_repository( name = "com_github_sclevine_spec", importpath = "github.com/sclevine/spec", sum = "h1:1Jwdf9jSfDl9NVmt8ndHqbTZ7XCCPbh1jI3hkDBHVYA=", version = "v1.2.0", ) go_repository( name = "com_github_sean_seed", importpath = "github.com/sean-/seed", sum = "h1:nn5Wsu0esKSJiIVhscUtVbo7ada43DJhG55ua/hjS5I=", version = "v0.0.0-20170313163322-e2103e2c3529", ) go_repository( name = "com_github_sergi_go_diff", importpath = "github.com/sergi/go-diff", sum = "h1:XU+rvMAioB0UC3q1MFrIQy4Vo5/4VsRDQQXHsEya6xQ=", version = "v1.2.0", ) go_repository( name = "com_github_shurcool_component", importpath = "github.com/shurcooL/component", sum = "h1:Fth6mevc5rX7glNLpbAMJnqKlfIkcTjZCSHEeqvKbcI=", version = "v0.0.0-20170202220835-f88ec8f54cc4", ) go_repository( name = "com_github_shurcool_events", importpath = "github.com/shurcooL/events", sum = "h1:vabduItPAIz9px5iryD5peyx7O3Ya8TBThapgXim98o=", version = "v0.0.0-20181021180414-410e4ca65f48", ) go_repository( name = "com_github_shurcool_github_flavored_markdown", importpath = "github.com/shurcooL/github_flavored_markdown", sum = "h1:qb9IthCFBmROJ6YBS31BEMeSYjOscSiG+EO+JVNTz64=", version = "v0.0.0-20181002035957-2122de532470", ) go_repository( name = "com_github_shurcool_go", importpath = "github.com/shurcooL/go", sum = "h1:MZM7FHLqUHYI0Y/mQAt3d2aYa0SiNms/hFqC9qJYolM=", version = "v0.0.0-20180423040247-9e1955d9fb6e", ) go_repository( name = "com_github_shurcool_go_goon", importpath = "github.com/shurcooL/go-goon", sum = "h1:llrF3Fs4018ePo4+G/HV/uQUqEI1HMDjCeOf2V6puPc=", version = "v0.0.0-20170922171312-37c2f522c041", ) go_repository( name = "com_github_shurcool_gofontwoff", importpath = "github.com/shurcooL/gofontwoff", sum = "h1:Yoy/IzG4lULT6qZg62sVC+qyBL8DQkmD2zv6i7OImrc=", version = "v0.0.0-20180329035133-29b52fc0a18d", ) go_repository( name = "com_github_shurcool_gopherjslib", importpath = "github.com/shurcooL/gopherjslib", sum = "h1:UOk+nlt1BJtTcH15CT7iNO7YVWTfTv/DNwEAQHLIaDQ=", version = "v0.0.0-20160914041154-feb6d3990c2c", ) go_repository( name = "com_github_shurcool_highlight_diff", importpath = "github.com/shurcooL/highlight_diff", sum = "h1:vYEG87HxbU6dXj5npkeulCS96Dtz5xg3jcfCgpcvbIw=", version = "v0.0.0-20170515013008-09bb4053de1b", ) go_repository( name = "com_github_shurcool_highlight_go", importpath = "github.com/shurcooL/highlight_go", sum = "h1:7pDq9pAMCQgRohFmd25X8hIH8VxmT3TaDm+r9LHxgBk=", version = "v0.0.0-20181028180052-98c3abbbae20", ) go_repository( name = "com_github_shurcool_home", importpath = "github.com/shurcooL/home", sum = "h1:MPblCbqA5+z6XARjScMfz1TqtJC7TuTRj0U9VqIBs6k=", version = "v0.0.0-20181020052607-80b7ffcb30f9", ) go_repository( name = "com_github_shurcool_htmlg", importpath = "github.com/shurcooL/htmlg", sum = "h1:crYRwvwjdVh1biHzzciFHe8DrZcYrVcZFlJtykhRctg=", version = "v0.0.0-20170918183704-d01228ac9e50", ) go_repository( name = "com_github_shurcool_httperror", importpath = "github.com/shurcooL/httperror", sum = "h1:eHRtZoIi6n9Wo1uR+RU44C247msLWwyA89hVKwRLkMk=", version = "v0.0.0-20170206035902-86b7830d14cc", ) go_repository( name = "com_github_shurcool_httpfs", importpath = "github.com/shurcooL/httpfs", sum = "h1:SWV2fHctRpRrp49VXJ6UZja7gU9QLHwRpIPBN89SKEo=", version = "v0.0.0-20171119174359-809beceb2371", ) go_repository( name = "com_github_shurcool_httpgzip", importpath = "github.com/shurcooL/httpgzip", sum = "h1:fxoFD0in0/CBzXoyNhMTjvBZYW6ilSnTw7N7y/8vkmM=", version = "v0.0.0-20180522190206-b1c53ac65af9", ) go_repository( name = "com_github_shurcool_issues", importpath = "github.com/shurcooL/issues", sum = "h1:T4wuULTrzCKMFlg3HmKHgXAF8oStFb/+lOIupLV2v+o=", version = "v0.0.0-20181008053335-6292fdc1e191", ) go_repository( name = "com_github_shurcool_issuesapp", importpath = "github.com/shurcooL/issuesapp", sum = "h1:Y+TeIabU8sJD10Qwd/zMty2/LEaT9GNDaA6nyZf+jgo=", version = "v0.0.0-20180602232740-048589ce2241", ) go_repository( name = "com_github_shurcool_notifications", importpath = "github.com/shurcooL/notifications", sum = "h1:TQVQrsyNaimGwF7bIhzoVC9QkKm4KsWd8cECGzFx8gI=", version = "v0.0.0-20181007000457-627ab5aea122", ) go_repository( name = "com_github_shurcool_octicon", importpath = "github.com/shurcooL/octicon", sum = "h1:bu666BQci+y4S0tVRVjsHUeRon6vUXmsGBwdowgMrg4=", version = "v0.0.0-20181028054416-fa4f57f9efb2", ) go_repository( name = "com_github_shurcool_reactions", importpath = "github.com/shurcooL/reactions", sum = "h1:LneqU9PHDsg/AkPDU3AkqMxnMYL+imaqkpflHu73us8=", version = "v0.0.0-20181006231557-f2e0b4ca5b82", ) go_repository( name = "com_github_shurcool_sanitized_anchor_name", importpath = "github.com/shurcooL/sanitized_anchor_name", sum = "h1:PdmoCO6wvbs+7yrJyMORt4/BmY5IYyJwS/kOiWx8mHo=", version = "v1.0.0", ) go_repository( name = "com_github_shurcool_users", importpath = "github.com/shurcooL/users", sum = "h1:YGaxtkYjb8mnTvtufv2LKLwCQu2/C7qFB7UtrOlTWOY=", version = "v0.0.0-20180125191416-49c67e49c537", ) go_repository( name = "com_github_shurcool_webdavfs", importpath = "github.com/shurcooL/webdavfs", sum = "h1:JtcyT0rk/9PKOdnKQzuDR+FSjh7SGtJwpgVpfZBRKlQ=", version = "v0.0.0-20170829043945-18c3829fa133", ) go_repository( name = "com_github_sirupsen_logrus", importpath = "github.com/sirupsen/logrus", sum = "h1:UBcNElsrwanuuMsnGSlYmtmgbb23qDR5dG+6X6Oo89I=", version = "v1.6.0", ) go_repository( name = "com_github_smartystreets_assertions", importpath = "github.com/smartystreets/assertions", sum = "h1:UVQPSSmc3qtTi+zPPkCXvZX9VvW/xT/NsRvKfwY81a8=", version = "v1.0.0", ) go_repository( name = "com_github_smartystreets_goconvey", importpath = "github.com/smartystreets/goconvey", sum = "h1:I6tZjLXD2Q1kjvNbIzB1wvQBsXmKXiVrhpRE8ZjP5jY=", version = "v1.6.7", ) go_repository( name = "com_github_soheilhy_cmux", importpath = "github.com/soheilhy/cmux", sum = "h1:0HKaf1o97UwFjHH9o5XsHUOF+tqmdA7KEzXLpiyaw0E=", version = "v0.1.4", ) go_repository( name = "com_github_songgao_water", importpath = "github.com/songgao/water", sum = "h1:+y4hCMc/WKsDbAPsOQZgBSaSZ26uh2afyaWeVg/3s/c=", version = "v0.0.0-20190725173103-fd331bda3f4b", ) go_repository( name = "com_github_sourcegraph_annotate", importpath = "github.com/sourcegraph/annotate", sum = "h1:yKm7XZV6j9Ev6lojP2XaIshpT4ymkqhMeSghO5Ps00E=", version = "v0.0.0-20160123013949-f4cad6c6324d", ) go_repository( name = "com_github_sourcegraph_syntaxhighlight", importpath = "github.com/sourcegraph/syntaxhighlight", sum = "h1:qpG93cPwA5f7s/ZPBJnGOYQNK/vKsaDaseuKT5Asee8=", version = "v0.0.0-20170531221838-bd320f5d308e", ) go_repository( name = "com_github_spaolacci_murmur3", importpath = "github.com/spaolacci/murmur3", sum = "h1:qLC7fQah7D6K1B0ujays3HV9gkFtllcxhzImRR7ArPQ=", version = "v0.0.0-20180118202830-f09979ecbc72", ) go_repository( name = "com_github_spf13_afero", importpath = "github.com/spf13/afero", sum = "h1:xoax2sJ2DT8S8xA2paPFjDCScCNeWsg75VG0DLRreiY=", version = "v1.6.0", ) go_repository( name = "com_github_spf13_cast", importpath = "github.com/spf13/cast", sum = "h1:s0hze+J0196ZfEMTs80N7UlFt0BDuQ7Q+JDnHiMWKdA=", version = "v1.4.1", ) go_repository( name = "com_github_spf13_cobra", importpath = "github.com/spf13/cobra", sum = "h1:+KmjbUw1hriSNMF55oPrkZcb27aECyrj8V2ytv7kWDw=", version = "v1.2.1", ) go_repository( name = "com_github_spf13_jwalterweatherman", importpath = "github.com/spf13/jwalterweatherman", sum = "h1:ue6voC5bR5F8YxI5S67j9i582FU4Qvo2bmqnqMYADFk=", version = "v1.1.0", ) go_repository( name = "com_github_spf13_pflag", importpath = "github.com/spf13/pflag", sum = "h1:iy+VFUOCP1a+8yFto/drg2CJ5u0yRoB7fZw3DKv/JXA=", version = "v1.0.5", ) go_repository( name = "com_github_spf13_viper", importpath = "github.com/spf13/viper", sum = "h1:yR6EXjTp0y0cLN8OZg1CRZmOBdI88UcGkhgyJhu6nZk=", version = "v1.9.0", ) go_repository( name = "com_github_stretchr_objx", importpath = "github.com/stretchr/objx", sum = "h1:Hbg2NidpLE8veEBkEZTL3CvlkUIVzuU9jDplZO54c48=", version = "v0.2.0", ) go_repository( name = "com_github_stretchr_testify", importpath = "github.com/stretchr/testify", sum = "h1:nwc3DEeHmmLAfoZucVR881uASk0Mfjw8xYJ99tb5CcY=", version = "v1.7.0", ) go_repository( name = "com_github_subosito_gotenv", importpath = "github.com/subosito/gotenv", sum = "h1:Slr1R9HxAlEKefgq5jn9U+DnETlIUa6HfgEzj0g5d7s=", version = "v1.2.0", ) go_repository( name = "com_github_tarm_serial", importpath = "github.com/tarm/serial", sum = "h1:UyzmZLoiDWMRywV4DUYb9Fbt8uiOSooupjTq10vpvnU=", version = "v0.0.0-20180830185346-98f6abe2eb07", ) go_repository( name = "com_github_tmc_grpc_websocket_proxy", importpath = "github.com/tmc/grpc-websocket-proxy", sum = "h1:LnC5Kc/wtumK+WB441p7ynQJzVuNRJiqddSIE3IlSEQ=", version = "v0.0.0-20190109142713-0ad062ec5ee5", ) go_repository( name = "com_github_uber_jaeger_client_go", importpath = "github.com/uber/jaeger-client-go", sum = "h1:R9ec3zO3sGpzs0abd43Y+fBZRJ9uiH6lXyR/+u6brW4=", version = "v2.29.1+incompatible", ) go_repository( name = "com_github_uber_jaeger_lib", importpath = "github.com/uber/jaeger-lib", sum = "h1:iMSCV0rmXEogjNWPh2D0xk9YVKvrtGoHJNe9ebLu/pw=", version = "v2.0.0+incompatible", ) go_repository( name = "com_github_ugorji_go", importpath = "github.com/ugorji/go", sum = "h1:tGiWC9HENWE2tqYycIqFTNorMmFRVhNwCpDOpWqnk8E=", version = "v1.2.6", ) go_repository( name = "com_github_ugorji_go_codec", importpath = "github.com/ugorji/go/codec", sum = "h1:7kbGefxLoDBuYXOms4yD7223OpNMMPNPZxXk5TvFcyQ=", version = "v1.2.6", ) go_repository( name = "com_github_valyala_bytebufferpool", importpath = "github.com/valyala/bytebufferpool", sum = "h1:GqA5TC/0021Y/b9FG4Oi9Mr3q7XYx6KllzawFIhcdPw=", version = "v1.0.0", ) go_repository( name = "com_github_valyala_fasttemplate", importpath = "github.com/valyala/fasttemplate", sum = "h1:TVEnxayobAdVkhQfrfes2IzOB6o+z4roRkPF52WA1u4=", version = "v1.2.1", ) go_repository( name = "com_github_viant_assertly", importpath = "github.com/viant/assertly", sum = "h1:5x1GzBaRteIwTr5RAGFVG14uNeRFxVNbXPWrK2qAgpc=", version = "v0.4.8", ) go_repository( name = "com_github_viant_toolbox", importpath = "github.com/viant/toolbox", sum = "h1:6TteTDQ68CjgcCe8wH3D3ZhUQQOJXMTbj/D9rkk2a1k=", version = "v0.24.0", ) go_repository( name = "com_github_vishvananda_netlink", importpath = "github.com/vishvananda/netlink", sum = "h1:cPXZWzzG0NllBLdjWoD1nDfaqu98YMv+OneaKc8sPOA=", version = "v1.1.1-0.20201029203352-d40f9887b852", ) go_repository( name = "com_github_vishvananda_netns", importpath = "github.com/vishvananda/netns", sum = "h1:4hwBBUfQCFe3Cym0ZtKyq7L16eZUtYKs+BaHDN6mAns=", version = "v0.0.0-20200728191858-db3c7e526aae", ) go_repository( name = "com_github_xeipuuv_gojsonpointer", importpath = "github.com/xeipuuv/gojsonpointer", sum = "h1:J9EGpcZtP0E/raorCMxlFGSTBrsSlaDGf3jU/qvAE2c=", version = "v0.0.0-20180127040702-4e3ac2762d5f", ) go_repository( name = "com_github_xeipuuv_gojsonreference", importpath = "github.com/xeipuuv/gojsonreference", sum = "h1:EzJWgHovont7NscjpAxXsDA8S8BMYve8Y5+7cuRE7R0=", version = "v0.0.0-20180127040603-bd5ef7bd5415", ) go_repository( name = "com_github_xeipuuv_gojsonschema", importpath = "github.com/xeipuuv/gojsonschema", sum = "h1:LhYJRs+L4fBtjZUfuSZIKGeVu0QRy8e5Xi7D17UxZ74=", version = "v1.2.0", ) go_repository( name = "com_github_xiang90_probing", importpath = "github.com/xiang90/probing", sum = "h1:eY9dn8+vbi4tKz5Qo6v2eYzo7kUS51QINcR5jNpbZS8=", version = "v0.0.0-20190116061207-43a291ad63a2", ) go_repository( name = "com_github_xordataexchange_crypt", importpath = "github.com/xordataexchange/crypt", sum = "h1:ESFSdwYZvkeru3RtdrYueztKhOBCSAAzS4Gf+k0tEow=", version = "v0.0.3-0.20170626215501-b2862e3d0a77", ) go_repository( name = "com_github_yuin_goldmark", importpath = "github.com/yuin/goldmark", sum = "h1:dPmz1Snjq0kmkz159iL7S6WzdahUTHnHB5M56WFVifs=", version = "v1.3.5", ) go_repository( name = "com_google_cloud_go", importpath = "cloud.google.com/go", sum = "h1:wPBktZFzYBcCZVARvwVKqH1uEj+aLXofJEtrb4oOsio=", version = "v0.93.3", ) go_repository( name = "com_google_cloud_go_bigquery", importpath = "cloud.google.com/go/bigquery", sum = "h1:PQcPefKFdaIzjQFbiyOgAqyx8q5djaE7x9Sqe712DPA=", version = "v1.8.0", ) go_repository( name = "com_google_cloud_go_datastore", importpath = "cloud.google.com/go/datastore", sum = "h1:/May9ojXjRkPBNVrq+oWLqmWCkr4OU5uRY29bu0mRyQ=", version = "v1.1.0", ) go_repository( name = "com_google_cloud_go_firestore", importpath = "cloud.google.com/go/firestore", sum = "h1:dMIWvm+3O0E3DM7kcZPH0FBQ94Xg/OMkdTNDaY9itbI=", version = "v1.6.0", ) go_repository( name = "com_google_cloud_go_pubsub", importpath = "cloud.google.com/go/pubsub", sum = "h1:ukjixP1wl0LpnZ6LWtZJ0mX5tBmjp1f8Sqer8Z2OMUU=", version = "v1.3.1", ) go_repository( name = "com_google_cloud_go_storage", importpath = "cloud.google.com/go/storage", sum = "h1:STgFzyU5/8miMl0//zKh2aQeTyeaUH3WN9bSUiJ09bA=", version = "v1.10.0", ) go_repository( name = "com_shuralyov_dmitri_app_changes", importpath = "dmitri.shuralyov.com/app/changes", sum = "h1:hJiie5Bf3QucGRa4ymsAUOxyhYwGEz1xrsVk0P8erlw=", version = "v0.0.0-20180602232624-0a106ad413e3", ) go_repository( name = "com_shuralyov_dmitri_gpu_mtl", importpath = "dmitri.shuralyov.com/gpu/mtl", sum = "h1:VpgP7xuJadIUuKccphEpTJnWhS2jkQyMt6Y7pJCD7fY=", version = "v0.0.0-20190408044501-666a987793e9", ) go_repository( name = "com_shuralyov_dmitri_html_belt", importpath = "dmitri.shuralyov.com/html/belt", sum = "h1:SPOUaucgtVls75mg+X7CXigS71EnsfVUK/2CgVrwqgw=", version = "v0.0.0-20180602232347-f7d459c86be0", ) go_repository( name = "com_shuralyov_dmitri_service_change", importpath = "dmitri.shuralyov.com/service/change", sum = "h1:GvWw74lx5noHocd+f6HBMXK6DuggBB1dhVkuGZbv7qM=", version = "v0.0.0-20181023043359-a85b471d5412", ) go_repository( name = "com_shuralyov_dmitri_state", importpath = "dmitri.shuralyov.com/state", sum = "h1:ivON6cwHK1OH26MZyWDCnbTRZZf0IhNsENoNAKFS1g4=", version = "v0.0.0-20180228185332-28bcc343414c", ) go_repository( name = "com_sourcegraph_sourcegraph_go_diff", importpath = "sourcegraph.com/sourcegraph/go-diff", sum = "h1:eTiIR0CoWjGzJcnQ3OkhIl/b9GJovq4lSAVRt0ZFEG8=", version = "v0.5.0", ) go_repository( name = "com_sourcegraph_sqs_pbtypes", importpath = "sourcegraph.com/sqs/pbtypes", sum = "h1:JPJh2pk3+X4lXAkZIk2RuE/7/FoK9maXw+TNPJhVS/c=", version = "v0.0.0-20180604144634-d3ebe8f20ae4", ) go_repository( name = "in_gopkg_alecthomas_kingpin_v2", importpath = "gopkg.in/alecthomas/kingpin.v2", sum = "h1:jMFz6MfLP0/4fUyZle81rXUoxOBFi19VUFKVDOQfozc=", version = "v2.2.6", ) go_repository( name = "in_gopkg_check_v1", importpath = "gopkg.in/check.v1", sum = "h1:Hei/4ADfdWqJk1ZMxUNpqntNwaWcugrBjAiHlqqRiVk=", version = "v1.0.0-20201130134442-10cb98267c6c", ) go_repository( name = "in_gopkg_errgo_v2", importpath = "gopkg.in/errgo.v2", sum = "h1:0vLT13EuvQ0hNvakwLuFZ/jYrLp5F3kcWHXdRggjCE8=", version = "v2.1.0", ) go_repository( name = "in_gopkg_fsnotify_v1", importpath = "gopkg.in/fsnotify.v1", sum = "h1:xOHLXZwVvI9hhs+cLKq5+I5onOuwQLhQwiu63xxlHs4=", version = "v1.4.7", ) go_repository( name = "in_gopkg_inf_v0", importpath = "gopkg.in/inf.v0", sum = "h1:73M5CoZyi3ZLMOyDlQh031Cx6N9NDJ2Vvfl76EDAgDc=", version = "v0.9.1", ) go_repository( name = "in_gopkg_ini_v1", importpath = "gopkg.in/ini.v1", sum = "h1:tGK/CyBg7SMzb60vP1M03vNZ3VDu3wGQJwn7Sxi9r3c=", version = "v1.63.2", ) go_repository( name = "in_gopkg_resty_v1", importpath = "gopkg.in/resty.v1", sum = "h1:CuXP0Pjfw9rOuY6EP+UvtNvt5DSqHpIxILZKT/quCZI=", version = "v1.12.0", ) go_repository( name = "in_gopkg_tomb_v1", importpath = "gopkg.in/tomb.v1", sum = "h1:uRGJdciOHaEIrze2W8Q3AKkepLTh2hOroT7a+7czfdQ=", version = "v1.0.0-20141024135613-dd632973f1e7", ) go_repository( name = "in_gopkg_yaml_v2", importpath = "gopkg.in/yaml.v2", sum = "h1:D8xgwECY7CYvx+Y2n4sBz93Jn9JRvxdiyyo8CTfuKaY=", version = "v2.4.0", ) go_repository( name = "in_gopkg_yaml_v3", importpath = "gopkg.in/yaml.v3", sum = "h1:h8qDotaEPuJATrMmW04NCwg7v22aHH28wwpauUhK9Oo=", version = "v3.0.0-20210107192922-496545a6307b", ) go_repository( name = "io_etcd_go_bbolt", importpath = "go.etcd.io/bbolt", sum = "h1:Z/90sZLPOeCy2PwprqkFa25PdkusRzaj9P8zm/KNyvk=", version = "v1.3.2", ) go_repository( name = "io_etcd_go_etcd_api_v3", importpath = "go.etcd.io/etcd/api/v3", sum = "h1:GsV3S+OfZEOCNXdtNkBSR7kgLobAa/SO6tCxRa0GAYw=", version = "v3.5.0", ) go_repository( name = "io_etcd_go_etcd_client_pkg_v3", importpath = "go.etcd.io/etcd/client/pkg/v3", sum = "h1:2aQv6F436YnN7I4VbI8PPYrBhu+SmrTaADcf8Mi/6PU=", version = "v3.5.0", ) go_repository( name = "io_etcd_go_etcd_client_v2", importpath = "go.etcd.io/etcd/client/v2", sum = "h1:ftQ0nOOHMcbMS3KIaDQ0g5Qcd6bhaBrQT6b89DfwLTs=", version = "v2.305.0", ) go_repository( name = "io_k8s_code_generator", importpath = "k8s.io/code-generator", sum = "h1:kM/68Y26Z/u//TFc1ggVVcg62te8A2yQh57jBfD0FWQ=", version = "v0.19.7", ) go_repository( name = "io_k8s_gengo", importpath = "k8s.io/gengo", sum = "h1:JApXBKYyB7l9xx+DK7/+mFjC7A9Bt5A93FPvFD0HIFE=", version = "v0.0.0-20201113003025-83324d819ded", ) go_repository( name = "io_k8s_klog_v2", importpath = "k8s.io/klog/v2", sum = "h1:7+X0fUguPyrKEC4WjH8iGDg3laWgMo5tMnRTIGTTxGQ=", version = "v2.4.0", ) go_repository( name = "io_k8s_kube_openapi", importpath = "k8s.io/kube-openapi", sum = "h1:+WnxoVtG8TMiudHBSEtrVL1egv36TkkJm+bA8AxicmQ=", version = "v0.0.0-20200805222855-6aeccd4b50c6", ) go_repository( name = "io_k8s_sigs_structured_merge_diff_v4", importpath = "sigs.k8s.io/structured-merge-diff/v4", sum = "h1:YXTMot5Qz/X1iBRJhAt+vI+HVttY0WkSqqhKxQ0xVbA=", version = "v4.0.1", ) go_repository( name = "io_k8s_sigs_yaml", importpath = "sigs.k8s.io/yaml", sum = "h1:kr/MCeFWJWTwyaHoR9c8EjH9OumOmoF9YGiZd7lFm/Q=", version = "v1.2.0", ) go_repository( name = "io_opencensus_go", importpath = "go.opencensus.io", sum = "h1:gqCw0LfLxScz8irSi8exQc7fyQ0fKQU/qnC/X8+V/1M=", version = "v0.23.0", ) go_repository( name = "io_opentelemetry_go_proto_otlp", importpath = "go.opentelemetry.io/proto/otlp", sum = "h1:rwOQPCuKAKmwGKq2aVNnYIibI6wnV7EvzgfTCzcdGg8=", version = "v0.7.0", ) go_repository( name = "io_rsc_binaryregexp", importpath = "rsc.io/binaryregexp", sum = "h1:HfqmD5MEmC0zvwBuF187nq9mdnXjXsSivRiXN7SmRkE=", version = "v0.2.0", ) go_repository( name = "io_rsc_quote_v3", importpath = "rsc.io/quote/v3", sum = "h1:9JKUTTIUgS6kzR9mK1YuGKv6Nl+DijDNIc0ghT58FaY=", version = "v3.1.0", ) go_repository( name = "io_rsc_sampler", importpath = "rsc.io/sampler", sum = "h1:7uVkIFmeBqHfdjD+gZwtXXI+RODJ2Wc4O7MPEh/QiW4=", version = "v1.3.0", ) go_repository( name = "org_apache_git_thrift_git", importpath = "git.apache.org/thrift.git", sum = "h1:OR8VhtwhcAI3U48/rzBsVOuHi0zDPzYI1xASVcdSgR8=", version = "v0.0.0-20180902110319-2566ecd5d999", ) go_repository( name = "org_go4", importpath = "go4.org", sum = "h1:+hE86LblG4AyDgwMCLTE6FOlM9+qjHSYS+rKqxUVdsM=", version = "v0.0.0-20180809161055-417644f6feb5", ) go_repository( name = "org_go4_grpc", importpath = "grpc.go4.org", sum = "h1:tmXTu+dfa+d9Evp8NpJdgOy6+rt8/x4yG7qPBrtNfLY=", version = "v0.0.0-20170609214715-11d0a25b4919", ) go_repository( name = "org_go4_intern", importpath = "go4.org/intern", sum = "h1:VFTf+jjIgsldaz/Mr00VaCSswHJrI2hIjQygE/W4IMg=", version = "v0.0.0-20210108033219-3eb7198706b2", ) go_repository( name = "org_go4_unsafe_assume_no_moving_gc", importpath = "go4.org/unsafe/assume-no-moving-gc", sum = "h1:1tk03FUNpulq2cuWpXZWj649rwJpk0d20rxWiopKRmc=", version = "v0.0.0-20201222180813-1025295fd063", ) go_repository( name = "org_golang_google_api", importpath = "google.golang.org/api", sum = "h1:08F9XVYTLOGeSQb3xI9C0gXMuQanhdGed0cWFhDozbI=", version = "v0.56.0", ) go_repository( name = "org_golang_google_appengine", importpath = "google.golang.org/appengine", sum = "h1:FZR1q0exgwxzPzp/aF+VccGrSfxfPpkBqjIIEq3ru6c=", version = "v1.6.7", ) go_repository( name = "org_golang_google_genproto", importpath = "google.golang.org/genproto", sum = "h1:z+ErRPu0+KS02Td3fOAgdX+lnPDh/VyaABEJPD4JRQs=", version = "v0.0.0-20210828152312-66f60bf46e71", ) go_repository( name = "org_golang_google_grpc", importpath = "google.golang.org/grpc", sum = "h1:AGJ0Ih4mHjSeibYkFGh1dD9KJ/eOtZ93I6hoHhukQ5Q=", version = "v1.40.0", ) go_repository( name = "org_golang_google_grpc_cmd_protoc_gen_go_grpc", importpath = "google.golang.org/grpc/cmd/protoc-gen-go-grpc", sum = "h1:M1YKkFIboKNieVO5DLUEVzQfGwJD30Nv2jfUgzb5UcE=", version = "v1.1.0", ) go_repository( name = "org_golang_google_grpc_examples", importpath = "google.golang.org/grpc/examples", sum = "h1:mwWI8e38dmQeNvKtf/J7P9pdLzoXKnB0V5RBdMl0wNU=", version = "v0.0.0-20210630181457-52546c5d89b7", ) go_repository( name = "org_golang_google_protobuf", importpath = "google.golang.org/protobuf", sum = "h1:SnqbnDw1V7RiZcXPx5MEeqPv2s79L9i7BJUlG/+RurQ=", version = "v1.27.1", ) go_repository( name = "org_golang_x_build", importpath = "golang.org/x/build", sum = "h1:E2M5QgjZ/Jg+ObCQAudsXxuTsLj7Nl5RV/lZcQZmKSo=", version = "v0.0.0-20190111050920-041ab4dc3f9d", ) go_repository( name = "org_golang_x_crypto", importpath = "golang.org/x/crypto", sum = "h1:7I4JAnoQBe7ZtJcBaYHi5UtiO8tQHbUSXxL+pnGRANg=", version = "v0.0.0-20210921155107-089bfa567519", ) go_repository( name = "org_golang_x_exp", importpath = "golang.org/x/exp", sum = "h1:QE6XYQK6naiK1EPAe1g/ILLxN5RBoH5xkJk3CqlMI/Y=", version = "v0.0.0-20200224162631-6cc2880d07d6", ) go_repository( name = "org_golang_x_image", importpath = "golang.org/x/image", sum = "h1:+qEpEAPhDZ1o0x3tHzZTQDArnOixOzGD9HUJfcg0mb4=", version = "v0.0.0-20190802002840-cff245a6509b", ) go_repository( name = "org_golang_x_lint", importpath = "golang.org/x/lint", sum = "h1:VLliZ0d+/avPrXXH+OakdXhpJuEoBZuwh1m2j7U6Iug=", version = "v0.0.0-20210508222113-6edffad5e616", ) go_repository( name = "org_golang_x_mobile", importpath = "golang.org/x/mobile", sum = "h1:4+4C/Iv2U4fMZBiMCc98MG1In4gJY5YRhtpDNeDeHWs=", version = "v0.0.0-20190719004257-d2bd2a29d028", ) go_repository( name = "org_golang_x_mod", importpath = "golang.org/x/mod", sum = "h1:Gz96sIWK3OalVv/I/qNygP42zyoKp3xptRVCWRFEBvo=", version = "v0.4.2", ) go_repository( name = "org_golang_x_net", importpath = "golang.org/x/net", sum = "h1:O7DYs+zxREGLKzKoMQrtrEacpb0ZVXA5rIwylE2Xchk=", version = "v0.0.0-20220127200216-cd36cc0744dd", ) go_repository( name = "org_golang_x_oauth2", importpath = "golang.org/x/oauth2", sum = "h1:Qmd2pbz05z7z6lm0DrgQVVPuBm92jqujBKMHMOlOQEw=", version = "v0.0.0-20210819190943-2bc19b11175f", ) go_repository( name = "org_golang_x_perf", importpath = "golang.org/x/perf", sum = "h1:xYq6+9AtI+xP3M4r0N1hCkHrInHDBohhquRgx9Kk6gI=", version = "v0.0.0-20180704124530-6e6d33e29852", ) go_repository( name = "org_golang_x_sync", importpath = "golang.org/x/sync", sum = "h1:5KslGYwFpkhGh+Q16bwMP3cOontH8FOep7tGV86Y7SQ=", version = "v0.0.0-20210220032951-036812b2e83c", ) go_repository( name = "org_golang_x_sys", importpath = "golang.org/x/sys", sum = "h1:fLOSk5Q00efkSvAm+4xcoXD+RRmLmmulPn5I3Y9F2EM=", version = "v0.0.0-20211216021012-1d35b9e2eb4e", ) go_repository( name = "org_golang_x_term", importpath = "golang.org/x/term", sum = "h1:JGgROgKl9N8DuW20oFS5gxc+lE67/N3FcwmBPMe7ArY=", version = "v0.0.0-20210927222741-03fcf44c2211", ) go_repository( name = "org_golang_x_text", importpath = "golang.org/x/text", sum = "h1:olpwvP2KacW1ZWvsR7uQhoyTYvKAupfQrRGBFM352Gk=", version = "v0.3.7", ) go_repository( name = "org_golang_x_time", importpath = "golang.org/x/time", sum = "h1:O8mE0/t419eoIwhTFpKVkHiTs/Igowgfkj25AcZrtiE=", version = "v0.0.0-20210220033141-f8bda1e9f3ba", ) go_repository( name = "org_golang_x_tools", importpath = "golang.org/x/tools", sum = "h1:ouewzE6p+/VEB31YYnTbEJdi8pFqKp4P4n85vwo3DHA=", version = "v0.1.5", ) go_repository( name = "org_golang_x_xerrors", importpath = "golang.org/x/xerrors", sum = "h1:go1bK/D/BFZV2I8cIQd1NKEZ+0owSTG1fDTci4IqFcE=", version = "v0.0.0-20200804184101-5ec99f83aff1", ) go_repository( name = "org_uber_go_atomic", importpath = "go.uber.org/atomic", sum = "h1:ADUqmZGgLDDfbSL9ZmPxKTybcoEYHgpYfELNoN+7hsw=", version = "v1.7.0", ) go_repository( name = "org_uber_go_goleak", importpath = "go.uber.org/goleak", sum = "h1:z+mqJhf6ss6BSfSM671tgKyZBFPTTJM+HLxnhPC3wu0=", version = "v1.1.10", ) go_repository( name = "org_uber_go_multierr", importpath = "go.uber.org/multierr", sum = "h1:y6IPFStTAIT5Ytl7/XYmHvzXQ7S3g/IeZW9hyZ5thw4=", version = "v1.6.0", ) go_repository( name = "org_uber_go_zap", importpath = "go.uber.org/zap", sum = "h1:MTjgFu6ZLKvY6Pvaqk97GlxNBuMpV4Hy/3P6tRGlI2U=", version = "v1.17.0", ) go_repository( name = "tools_gotest", importpath = "gotest.tools", sum = "h1:VsBPFP1AI068pPrMxtb/S8Zkgf9xEmTLJjfM+P5UIEo=", version = "v2.2.0+incompatible", )
37.675506
74
0.639583
937dfe2b2c345bd1cbd3cfa466db456a4c9a915c
7,955
py
Python
webbpsf/tests/test_psfgrid.py
AldenJurling/webbpsf
9d368ab988a600047f5476020a38c682f59cca6a
[ "BSD-3-Clause" ]
18
2015-07-16T18:44:26.000Z
2021-05-29T08:30:44.000Z
webbpsf/tests/test_psfgrid.py
AldenJurling/webbpsf
9d368ab988a600047f5476020a38c682f59cca6a
[ "BSD-3-Clause" ]
178
2015-01-15T18:59:37.000Z
2019-12-09T14:54:31.000Z
webbpsf/tests/test_psfgrid.py
AldenJurling/webbpsf
9d368ab988a600047f5476020a38c682f59cca6a
[ "BSD-3-Clause" ]
14
2015-10-06T15:09:00.000Z
2019-03-20T13:50:50.000Z
import os import astropy.convolution from astropy.io import fits import numpy as np import pytest from .. import gridded_library from .. import webbpsf_core from .. import utils def test_compare_to_calc_psf_oversampled(): """ Check that the output PSF matches calc_psf and is saved in the correct slice of the array: for a distorted, oversampled case This case also uses an even length array, so we'll need to subtract 0.5 from the detector position because psf_grid value in the meta data has been shifted during calc_psf to account for it being an even length array and this shift shouldn't happen 2x (ie again in calc_psf call below) """ oversample = 2 fov_pixels = 10 # Create PSF grid fgs = webbpsf_core.FGS() fgs.detector = "FGS1" grid = fgs.psf_grid(all_detectors=False, num_psfs=4, oversample=oversample, fov_pixels=fov_pixels) # Pull one of the PSFs out of the grid psfnum = 1 loc = grid.meta["grid_xypos"][psfnum] locy = int(float(loc[1]) - 0.5) locx = int(float(loc[0]) - 0.5) gridpsf = grid.data[psfnum, :, :] # Using meta data, create the expected same PSF via calc_psf fgs.detector_position = (locx, locy) calcpsf = fgs.calc_psf(oversample=oversample, fov_pixels=fov_pixels)["OVERDIST"].data kernel = astropy.convolution.Box2DKernel(width=oversample) convpsf = astropy.convolution.convolve(calcpsf, kernel) # Compare to make sure they are in fact the same PSF assert gridpsf.shape == calcpsf.shape assert np.array_equal(gridpsf, convpsf) def test_compare_to_calc_psf_detsampled(): """ Check that the output PSF matches calc_psf and is saved in the correct slice of the array: for an un-distorted, detector sampled case """ oversample = 2 fov_arcsec = 0.5 # Create PSF grid mir = webbpsf_core.MIRI() mir.filter = "F560W" mir.detector = "MIRIM" grid = mir.psf_grid(all_detectors=False, num_psfs=4, use_detsampled_psf=True, add_distortion=False, oversample=oversample, fov_arcsec=fov_arcsec) # Pull one of the PSFs out of the grid psfnum = 1 loc = grid.meta["grid_xypos"][psfnum] locy = int(float(loc[1])) locx = int(float(loc[0])) gridpsf = grid.data[psfnum, :, :] # Using meta data, create the expected same PSF via calc_psf mir.detector_position = (locx, locy) mir.options['output_mode'] = 'Detector Sampled Image' calcpsf = mir.calc_psf(oversample=oversample, fov_arcsec=fov_arcsec)["DET_SAMP"].data kernel = astropy.convolution.Box2DKernel(width=1) convpsf = astropy.convolution.convolve(calcpsf, kernel) # Compare to make sure they are in fact the same PSF assert gridpsf.shape == calcpsf.shape assert np.array_equal(gridpsf, convpsf) def test_all(): """ Check that running all the detectors works (ie setting all_detectors=True). In particular for NIRCam, test that the detectors pulled are correct (shortwave vs longwave) with respect to the filter """ nir = webbpsf_core.NIRCam() longfilt = "F250M" shortfilt = "F140M" # Case 1: Shortwave -> check that only the SW detectors are applied for the SW filter nir.filter = shortfilt grid1 = nir.psf_grid(all_detectors=True, num_psfs=1, add_distortion=False, fov_pixels=1, oversample=2) det_list = [] for hdu in grid1: det_list.append(hdu.meta["detector"][0]) assert len(grid1) == len(gridded_library.CreatePSFLibrary.nrca_short_detectors) assert set(det_list) == set(gridded_library.CreatePSFLibrary.nrca_short_detectors) # Case 2: Longwave -> check that only the LW detectors are applied for the LW filter nir.filter = longfilt grid2 = nir.psf_grid(all_detectors=True, num_psfs=1, add_distortion=False, fov_pixels=1, oversample=2) det_list = [] for hdu in grid2: det_list.append(hdu.meta["detector"][0]) assert len(grid2) == len(gridded_library.CreatePSFLibrary.nrca_long_detectors) assert set(det_list) == set(gridded_library.CreatePSFLibrary.nrca_long_detectors) def test_one_psf(): """Check that setting num_psfs = 1 produces the PSF in the right location""" oversample = 2 fov_pixels = 11 nis = webbpsf_core.NIRISS() nis.filter = "F140M" # Case 1: The PSF is centered on the detector (with single_psf_centered=True) grid1 = nis.psf_grid(all_detectors=False, num_psfs=1, add_distortion=True, oversample=oversample, fov_pixels=fov_pixels, single_psf_centered=True, use_detsampled_psf=False) # Case 2: The PSF is set to a specific position (with nis.detector_position = (10, 0)) nis.detector_position = (10, 0) # it's set as (x,y) grid2 = nis.psf_grid(all_detectors=False, num_psfs=1, add_distortion=True, oversample=oversample, fov_pixels=fov_pixels, single_psf_centered=False, use_detsampled_psf=False) # Compare Case 2 to the calc_psf output to make sure it's placing the PSF in the right location calc = nis.calc_psf(add_distortion=True, oversample=2, fov_pixels=11) kernel = astropy.convolution.Box2DKernel(width=oversample) convpsf = astropy.convolution.convolve(calc["OVERDIST"].data, kernel) assert grid1.meta["grid_xypos"] == [(1023, 1023)] # the default is the center of the NIS aperture assert grid2.meta["grid_xypos"] == [(10, 0)] # it's in (x,y) assert np.array_equal(convpsf, grid2.data[0, :, :]) def test_nircam_errors(): """Check that there are checks for incorrect value setting - particularly with NIRCam""" longfilt = "F250M" shortfilt = "F140M" longdet = "NRCB5" shortdet = "NRCA3" nir = webbpsf_core.NIRCam() # Shouldn't error - applying SW to SW and LW to LW nir.filter = longfilt nir.detector = longdet nir.psf_grid(all_detectors=False, num_psfs=1, fov_pixels=1, detector_oversample=2, fft_oversample=2) nir.filter = shortfilt nir.detector = shortdet nir.psf_grid(all_detectors=False, num_psfs=1, fov_pixels=1, detector_oversample=2, fft_oversample=2) # Should error - Bad filter/detector combination (LW filt to SW det) with pytest.raises(RuntimeError) as excinfo: # Errors inside calc_psf() call nir.filter = longfilt nir.detector = shortdet nir.psf_grid(all_detectors=False, num_psfs=1, fov_pixels=1) # error assert "RuntimeError" in str(excinfo) # Should error - Bad filter/detector combination (SW filt to LW det) with pytest.raises(RuntimeError) as excinfo: # Errors inside calc_psf() call nir.filter = shortfilt nir.detector = longdet nir.psf_grid(all_detectors=False, num_psfs=1, fov_pixels=1) # error assert "RuntimeError" in str(excinfo) # Should error - Bad num_psfs entry (must be a square number) with pytest.raises(ValueError) as excinfo: nir.psf_grid(all_detectors=False, num_psfs=2, fov_pixels=1) # error assert "ValueError" in str(excinfo) def test_saving(tmpdir): """Test saving files works properly""" # Create a temp directory to place file in file = str(tmpdir.join("test1")) # Test using default calc_psf values fgs = webbpsf_core.FGS() fgs.filter = "FGS" fgs.detector = "FGS2" grid = fgs.psf_grid(all_detectors=False, num_psfs=4, save=True, outfile=file, overwrite=True) # Check that the saved file matches the returned file (and thus that the save worked through properly) with fits.open(os.path.join(file[:-5], "test1_fgs2_fgs.fits")) as infile: # Check data assert np.array_equal(infile[0].data, grid.data) # Check meta data model = utils.to_griddedpsfmodel(infile) assert model.meta.keys() == grid.meta.keys() assert model.meta["grid_xypos"] == grid.meta["grid_xypos"] assert model.meta["oversampling"] == grid.meta["oversampling"] # Remove temporary directory tmpdir.remove()
38.995098
106
0.69956
a406d93cf2e32116c3941f9abb5b90bb3ff01b92
806
py
Python
func.py
cclauss/Pythonista-sm
ef5c6527f36334a2b4dc3f0a92f957161aa3bdd3
[ "Apache-2.0" ]
3
2021-08-23T02:49:09.000Z
2021-08-24T01:48:14.000Z
func.py
cclauss/Pythonista-sm
ef5c6527f36334a2b4dc3f0a92f957161aa3bdd3
[ "Apache-2.0" ]
null
null
null
func.py
cclauss/Pythonista-sm
ef5c6527f36334a2b4dc3f0a92f957161aa3bdd3
[ "Apache-2.0" ]
1
2021-08-23T03:02:39.000Z
2021-08-23T03:02:39.000Z
# -*-coding:utf-8-*- from random import choice def xor(a, b): return list(map(lambda x, y: x ^ y, a, b)) def rotl(x, n): return ((x << n) & 0xffffffff) | ((x >> (32 - n)) & 0xffffffff) def get_uint32_be(key_data): return (key_data[0] << 24) | (key_data[1] << 16) | (key_data[2] << 8) | ( key_data[3]) def put_uint32_be(n): return [((n >> 24) & 0xff), ((n >> 16) & 0xff), ((n >> 8) & 0xff), (n & 0xff)] def padding(data, block=16): return data + [(16 - len(data) % block) for _ in range(16 - len(data) % block)] def un_padding(data): return data[:-data[-1]] def list_to_bytes(data): return b''.join([bytes((i, )) for i in data]) def bytes_to_list(data): return [i for i in data] def random_hex(x): return ''.join([choice('0123456789abcdef') for _ in range(x)])
19.190476
79
0.581886
d1009416e76a7f24f5482519f2c9b6a0331099b6
551
py
Python
test/code/for/for3.py
BBN-Q/pyqgl2
7acc8b244ee7799c21df03ecff8325e15cdb94d3
[ "Apache-2.0" ]
10
2017-09-30T14:31:42.000Z
2021-12-12T07:52:05.000Z
test/code/for/for3.py
BBN-Q/pyqgl2
7acc8b244ee7799c21df03ecff8325e15cdb94d3
[ "Apache-2.0" ]
56
2017-04-11T15:47:15.000Z
2019-10-11T15:50:35.000Z
test/code/for/for3.py
BBN-Q/pyqgl2
7acc8b244ee7799c21df03ecff8325e15cdb94d3
[ "Apache-2.0" ]
3
2019-06-20T07:08:39.000Z
2020-10-24T19:29:05.000Z
from qgl2.qgl2 import concur, qreg, qgl2decl from qgl2.qgl2 import Qbit @qgl2decl def func_a1(a: qreg, b: qreg, c: qreg): with concur: for q in [a, b, c]: X90(a) func_b(q) @qgl2decl def func_a2(a: qreg, b: qreg, c: qreg): for q in [a, b, c]: X90(a) func_b(q) @qgl2decl def func_b(a: qreg): for x in [1, 2, 3]: X180(a, x) for x in [4, 5, 6]: Y90(a, x) @qgl2main def main(): x = Qbit(1) y = Qbit(2) z = Qbit(3) func_a1(x, y, z) func_a2(x, y, z)
15.742857
44
0.504537
ad819f0433d0d28b2c26f36d2d21cc5b6218d495
4,770
py
Python
sif/samplers/elliptical_slice_sampler.py
JamesBrofos/Sif
a38ddb14f598f9f35d3ed9e872260b938e961433
[ "MIT" ]
1
2022-03-24T18:59:27.000Z
2022-03-24T18:59:27.000Z
sif/samplers/elliptical_slice_sampler.py
JamesBrofos/Sif
a38ddb14f598f9f35d3ed9e872260b938e961433
[ "MIT" ]
4
2020-03-24T15:39:08.000Z
2021-02-02T21:44:05.000Z
sif/samplers/elliptical_slice_sampler.py
JamesBrofos/Sif
a38ddb14f598f9f35d3ed9e872260b938e961433
[ "MIT" ]
1
2019-11-05T19:28:06.000Z
2019-11-05T19:28:06.000Z
import numpy as np from numpy.random import multivariate_normal, uniform class EllipticalSliceSampler: """Elliptical Slice Sampler Class The elliptical slice sampling algorithm is a Markov chain Monte carlo approach to sampling from posterior distributions that consist of an arbitrary likelihood times a multivariate normal prior. The elliptical slice sampling algorithm is advantageous because it is conceptually simple and easy to implement and because it is has no free parameters. The algorithm operates by randomly selecting a candidate from an ellipse defined by two vectors, one of which is assumed to be drawn from the target posterior and another that is an auxiliary random sample of a zero-mean multivariate normal. The algorithm iteratively shrinks the range from which candidates can be drawn until a candidate proposal is accepted. """ def __init__(self, mean, covariance, log_likelihood_func): """Initialize the parameters of the elliptical slice sampler object. Parameters: mean (numpy array): A mean vector of a multivariate Gaussian. covariance (numpy array): A two-dimensional positive-definite covariance matrix of a multivariate Gaussian. log_likelihood_func (function): A log-likelihood function that maps a given sample (as its exclusive input) to a real number reflecting the log-likelihood of the observational data under the input parameters. """ self.mean = mean self.covariance = covariance self.log_likelihood_func = log_likelihood_func def __sample(self, f): """Internal function that draws an individual sample according to the elliptical slice sampling routine. The input is drawn from the target distribution and the output is as well. Parameters: f (numpy array): A vector representing a parameter state that has been sampled from the target posterior distribution. Note that a sufficiently high `burnin` parameter can be leveraged to achieve good mixing for this purpose. """ # Choose the ellipse for this sampling iteration. nu = multivariate_normal(np.zeros(self.mean.shape), self.covariance) # Set the candidate acceptance threshold. log_y = self.log_likelihood_func(f) + np.log(uniform()) # Set the bracket for selecting candidates on the ellipse. theta = np.random.uniform(0., 2.*np.pi) theta_min, theta_max = theta - 2.*np.pi, theta # Iterates until an candidate is selected. while True: # Generates a point on the ellipse defines by `nu` and the input. We # also compute the log-likelihood of the candidate and compare to # our threshold. fp = (f - self.mean)*np.cos(theta) + nu*np.sin(theta) + self.mean log_fp = self.log_likelihood_func(fp) if log_fp > log_y: return fp else: # If the candidate is not selected, shrink the bracket and # generate a new `theta`, which will yield a new candidate # point on the ellipse. if theta < 0.: theta_min = theta else: theta_max = theta theta = uniform(theta_min, theta_max) def sample(self, n_samples, burnin=1000): """This function is user-facing and is used to generate a specified number of samples from the target distribution using elliptical slice sampling. The `burnin` parameter defines how many iterations should be performed (and excluded) to achieve convergence to the target distribution. Parameters: n_samples (int): The number of samples to produce from this sampling routine. burnin (int, optional): The number of burnin iterations to perform. This is necessary to achieve samples that are representative of the true posterior and correctly characterize uncertainty. """ # Compute the total number of samples. total_samples = n_samples + burnin # Initialize a matrix to store the samples. The first sample is chosen # to be a draw from the multivariate normal prior. samples = np.zeros((total_samples, self.covariance.shape[0])) samples[0] = multivariate_normal(mean=self.mean, cov=self.covariance) for i in range(1, total_samples): samples[i] = self.__sample(samples[i-1]) # Throw out the burnin iterations. return samples[burnin:]
48.673469
80
0.656184
3726a56e530db949e18d19c23650c2724564d748
1,303
py
Python
syloga/utils/predicates.py
xaedes/python-symbolic-logic-to-gate
a0dc9be9e04290008cf709fac789d224ab8c14b0
[ "MIT" ]
null
null
null
syloga/utils/predicates.py
xaedes/python-symbolic-logic-to-gate
a0dc9be9e04290008cf709fac789d224ab8c14b0
[ "MIT" ]
null
null
null
syloga/utils/predicates.py
xaedes/python-symbolic-logic-to-gate
a0dc9be9e04290008cf709fac789d224ab8c14b0
[ "MIT" ]
null
null
null
import collections.abc def is_hashable(x): """ Determines whether x is hashable. :returns: True if the specified x is hashable, False otherwise. :rtype: bool """ return hasattr(x, "__hash__") and callable(x.__hash__) def is_mappable_collection(expression): non_collection_types = (str, bytes, bytearray) collection_types = (collections.abc.Sequence, dict) if isinstance(expression, non_collection_types): return False if isinstance(expression, collection_types): return True def decide_predicate_usage(predicate, default_predicate=False, list_combinator = any): p = predicate dp = default_predicate decide_list = lambda p, dp, x: list_combinator((decide_predicate_usage(p_,dp)(x) for p_ in p)) is_container = lambda f: isinstance(f, collections.abc.Container) return lambda x: ( p if type(p) == bool else isinstance(x, p) if type(p) == type else p(x) if callable(p) else str(x).startswith(p) if type(p) == str else decide_list(p,dp,x) if type(p) == list else (x in p) if is_container(p) else decide_predicate_usage(dp,dp)(x) if p != dp else dp )
37.228571
98
0.6132
429905f0f2103ce1286258397621e2880e677679
4,084
py
Python
application/workprogramsapp/expertise/serializers.py
18ariana/analytics_backend
bfcda70564dd14dadb72de6a70fe2d66790eae85
[ "MIT" ]
null
null
null
application/workprogramsapp/expertise/serializers.py
18ariana/analytics_backend
bfcda70564dd14dadb72de6a70fe2d66790eae85
[ "MIT" ]
null
null
null
application/workprogramsapp/expertise/serializers.py
18ariana/analytics_backend
bfcda70564dd14dadb72de6a70fe2d66790eae85
[ "MIT" ]
null
null
null
from rest_framework import serializers from dataprocessing.serializers import userProfileSerializer # from workprogramsapp.educational_program.serializers import EducationalProgramSerializer from workprogramsapp.expertise.models import UserExpertise, Expertise, ExpertiseComments from workprogramsapp.serializers import WorkProgramShortForExperiseSerializer class UserExpertiseSerializer(serializers.ModelSerializer): class Meta: model = UserExpertise fields = "__all__" def to_representation(self, value): self.fields['expert'] = userProfileSerializer(many=False) self.fields['expertise'] = ExpertiseSerializer(many=False, read_only=True) return super().to_representation(value) class UserExpertiseForExpertiseSerializer(serializers.ModelSerializer): class Meta: model = UserExpertise fields = ['id','expert', 'stuff_status', 'user_expertise_status', 'expert_result'] def to_representation(self, value): self.fields['expert'] = userProfileSerializer(many=False) return super().to_representation(value) class ExpertiseSerializer(serializers.ModelSerializer): """ Автоматически добавляет пользователя-создателя как лидера экспертизы """ user_status_in_expertise = serializers.SerializerMethodField() def get_user_status_in_expertise(self, instance): request = self.context.get("request") user_statuses = \ { "expertise_master": False, "expertise_member": bool(UserExpertise.objects.filter( expert=request.user, expertise_id=instance.id, stuff_status="EX")), "structural_leader": bool(Expertise.objects.filter( pk=instance.id, work_program__structural_unit__user_in_structural_unit__user=request.user, work_program__structural_unit__user_in_structural_unit__status__in=["leader", "deputy"]).distinct()) } for group in request.user.groups.all(): if group.name == "expertise_master": user_statuses["expertise_master"] = True return user_statuses def create(self, validated_data): is_exp_exist = Expertise.objects.filter(work_program=validated_data['work_program']) if is_exp_exist: print("такая экспертиза уже существует") return is_exp_exist[0] exp = Expertise.objects.create(**validated_data) request = self.context.get('request') UserExpertise.objects.create(expertise=exp, expert=request.user, stuff_status="AU") # ??? return exp def to_representation(self, value): self.fields['work_program'] = WorkProgramShortForExperiseSerializer(many=False, read_only=True) self.fields['experts'] = userProfileSerializer(many=True, read_only=True) self.fields['expertse_users_in_rpd'] = UserExpertiseForExpertiseSerializer(many=True, read_only=True) return super().to_representation(value) class Meta: model = Expertise fields = "__all__" # class ExpertiseWithUsersStatusSerializer(serializers.ModelSerializer): # """ # Автоматически добавляет пользователя-создателя как лидера экспертизы # """ # work_program = WorkProgramShortForExperiseSerializer(many=False, read_only=True) # expertse_users_in_rpd = UserExpertiseForExpertiseSerializer(many=True, read_only=True) # # # class Meta: # model = Expertise # fields = ['work_program', 'expertse_users_in_rpdd'] class CommentSerializer(serializers.ModelSerializer): def to_representation(self, value): self.fields['user_expertise'] = OnlyUserExpertiseSerializer(many=False, read_only=True) return super().to_representation(value) class Meta: model = ExpertiseComments fields = "__all__" class OnlyUserExpertiseSerializer(serializers.ModelSerializer): expert = userProfileSerializer(many=False) class Meta: model = UserExpertise fields = ['expert']
38.168224
120
0.703967
0e014161fbaa35d955c951cc01f317c5e803ac51
1,492
py
Python
docs/conf.py
ionelmc/python-lazy-object-proxy
0581e276c6fd4c72c5b46cc45bdb3d341c16cfa9
[ "BSD-2-Clause" ]
209
2015-01-05T22:05:19.000Z
2022-03-04T06:59:07.000Z
docs/conf.py
ionelmc/python-lazy-object-proxy
0581e276c6fd4c72c5b46cc45bdb3d341c16cfa9
[ "BSD-2-Clause" ]
58
2015-03-10T06:28:03.000Z
2022-03-11T06:21:13.000Z
docs/conf.py
ionelmc/python-lazy-object-proxy
0581e276c6fd4c72c5b46cc45bdb3d341c16cfa9
[ "BSD-2-Clause" ]
38
2015-01-05T13:28:44.000Z
2022-02-14T18:57:21.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import traceback import sphinx_py3doc_enhanced_theme extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.extlinks', 'sphinx.ext.ifconfig', 'sphinx.ext.napoleon', 'sphinx.ext.todo', 'sphinx.ext.viewcode', ] source_suffix = '.rst' master_doc = 'index' project = 'lazy-object-proxy' year = '2014-2021' author = 'Ionel Cristian Mărieș' copyright = '{0}, {1}'.format(year, author) try: from pkg_resources import get_distribution version = release = get_distribution('lazy_object_proxy').version except Exception: traceback.print_exc() version = release = '1.6.0' pygments_style = 'trac' templates_path = ['.'] extlinks = { 'issue': ('https://github.com/ionelmc/python-lazy-object-proxy/issues/%s', '#'), 'pr': ('https://github.com/ionelmc/python-lazy-object-proxy/pull/%s', 'PR #'), } html_theme = "sphinx_py3doc_enhanced_theme" html_theme_path = [sphinx_py3doc_enhanced_theme.get_html_theme_path()] html_theme_options = { 'githuburl': 'https://github.com/ionelmc/python-lazy-object-proxy/' } html_use_smartypants = True html_last_updated_fmt = '%b %d, %Y' html_split_index = False html_sidebars = { '**': ['searchbox.html', 'globaltoc.html', 'sourcelink.html'], } html_short_title = '%s-%s' % (project, version) napoleon_use_ivar = True napoleon_use_rtype = False napoleon_use_param = False
27.127273
84
0.705764
41165c1e2720fe747fd40f7e94b8c1c70db67240
37
py
Python
processors/postprocessors/__init__.py
Zvezdin/blockchain-predictor
df6f939037471dd50b7b9c96673d89b04b646ef2
[ "MIT" ]
35
2017-10-25T17:10:35.000Z
2022-03-20T18:12:06.000Z
processors/postprocessors/__init__.py
Zvezdin/blockchain-predictor
df6f939037471dd50b7b9c96673d89b04b646ef2
[ "MIT" ]
2
2017-09-20T17:39:15.000Z
2018-04-01T17:20:29.000Z
processors/postprocessors/__init__.py
Zvezdin/blockchain-predictor
df6f939037471dd50b7b9c96673d89b04b646ef2
[ "MIT" ]
10
2017-12-01T13:47:04.000Z
2021-12-16T06:53:17.000Z
from .postprocessors_imports import *
37
37
0.864865
00c89d09d384ff3306ba9948eee9edc5197a70eb
4,605
py
Python
TermProject/crawler/crawler_thread.py
MadCreeper/SJTU_ICE2602
bb2b41e4a056ec1017f3a531c30c67172753289d
[ "MIT" ]
null
null
null
TermProject/crawler/crawler_thread.py
MadCreeper/SJTU_ICE2602
bb2b41e4a056ec1017f3a531c30c67172753289d
[ "MIT" ]
null
null
null
TermProject/crawler/crawler_thread.py
MadCreeper/SJTU_ICE2602
bb2b41e4a056ec1017f3a531c30c67172753289d
[ "MIT" ]
null
null
null
# SJTU EE208 # -*-coding:utf-8-*- import os import math import re import string import sys from typing import final import urllib import urllib.error import urllib.parse import urllib.request from urllib.request import Request, urlopen import hashlib import threading import queue import time from bs4 import BeautifulSoup import argparse import bloomFilter # 自己实现的BloomFilter类 TIMEOUTSECONDS = 3 #访问超时时间 MAXFILENAMELENGTH = 50 #文件名最长不超过的长度 SELF_URL_MARKER = "SELF_URL_TAG:" # 爬取到的网页写入文件时,在html文件末尾附上该网页的url方便查询 header = {'User-Agent': 'user-agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36 Edg/80.0.361.54'} def valid_filename(s): valid_chars = "-_(). %s%s" % (string.ascii_letters, string.digits) s = ''.join((c if c != '.' else '+') for c in s if c in valid_chars) # 去掉文件名. return s[:MAXFILENAMELENGTH] + '.html' # 防止文件名过长 def get_page(page,coding = 'utf-8'): global successful global failed try: request = Request(page, headers=header) content = urlopen(request,timeout = TIMEOUTSECONDS).read() except: raise ValueError else: return content.decode(coding) def get_all_links(content, page): # html content, page url links = [] soup = BeautifulSoup(content, features="html.parser") for href_tag in soup.findAll("a",{"href" : re.compile("^http|^/|")}): url = href_tag.get("href","") if url[:4] != "http": url = urllib.parse.urljoin(page,url) links.append(url) return links def add_page_to_folder(page, content): index_filename = 'index.txt' folder = 'html_gog' filename = valid_filename(page) #print(filename) index = open(index_filename, 'a') index.write(str(page) + '\t' + str(filename) + '\n') index.close() #print(page_link) if not os.path.exists(folder): os.mkdir(folder) f = open(os.path.join(folder, filename), 'w',encoding='utf-8') #在windows系统运行务必设置encoding='utf-8',否则系统会尝试用gbk写然后报错 f.write("<!- "+SELF_URL_MARKER + page + " -->" + "\n") f.write(str(content)) f.close() def match_required_url(url,restriction_url): return (restriction_url == '*' or restriction_url in url) count = 0 MAXCOUNT = 50 successful = 0 failed = 0 crawl_only = "https://www.gog.com/game/" def crawl(): global successful global failed global crawl_only while True: page = q.get(block = True,timeout = TIMEOUTSECONDS) if not crawled.find(page): #print("current page:",page) try: print("getting:",page) content = get_page(page) except: print(page,"not found or cannot open!") failed += 1 q.task_done() # 访问url失败时也要调用queue.task_done() continue else: successful += 1 add_page_to_folder(page, content) outlinks = get_all_links(content, page) #print(outlinks) global count for link in outlinks: if (not crawled.find(link)) and count < MAXCOUNT and match_required_url(link,crawl_only): q.put(link) count += 1 if varLock.acquire(): graph[page] = outlinks crawled.add(page) varLock.release() print("Tasks left:",q.qsize()) q.task_done() if __name__ == '__main__': # seed = str(sys.argv[1]) #method = sys.argv[2] #max_page = int(sys.argv[3]) parser = argparse.ArgumentParser() parser.add_argument("-s") parser.add_argument("-thread") parser.add_argument("-page") args = parser.parse_args() seed = args.s #起始网页url THREAD_NUM = int(args.thread) # 线程数 MAXCOUNT = int(args.page) #目标网页数 start_time = time.time() # 计时器 varLock = threading.Lock() q = queue.Queue() bitset_len = 20 * MAXCOUNT crawled = bloomFilter.BloomFilter(bitset_len, bloomFilter.get_optimal_k(bitset_len,MAXCOUNT)) graph = {} q.put(seed) for i in range(THREAD_NUM): t = threading.Thread(target=crawl) t.daemon = True t.start() print("Start Working!") q.join() # 等待queue为空 end_time = time.time() print(f"total time used:{(end_time - start_time)}") print(f"successful: {successful}, failed: {failed}")
27.410714
169
0.593485
95dfa3a3620375551be1123939ae07b02b93773f
446
py
Python
examples/meetapp/modules/meetings/domain/time.py
pcah/python-clean-architecture
20630d0b3b4c00f6503a26cc98c45df12bc31b3b
[ "MIT" ]
278
2019-01-10T07:57:29.000Z
2022-03-31T22:47:13.000Z
examples/meetapp/modules/meetings/domain/time.py
asuzukosi/python-clean-architecture
20630d0b3b4c00f6503a26cc98c45df12bc31b3b
[ "MIT" ]
80
2018-11-17T23:44:39.000Z
2021-12-15T18:29:04.000Z
examples/meetapp/modules/meetings/domain/time.py
lhaze/dharma
20630d0b3b4c00f6503a26cc98c45df12bc31b3b
[ "MIT" ]
29
2018-11-19T20:11:13.000Z
2022-03-02T06:27:34.000Z
import datetime import typing as t from meetapp.modules.shared_domain.clock import IClockService from pca.domain import ValueObject from pca.utils.dependency_injection import ( Inject, inject, ) class MeetingTerm(ValueObject): start_date: t.Optional[datetime] = None end_date: t.Optional[datetime] = None @inject def is_after_start(self, clock: IClockService = Inject()): return clock.now() > self.start_date
22.3
62
0.73991
59ef1f04e894d72c0ecf0712cb5c700a7e2d9806
4,669
py
Python
hazel/util.py
aasensio/hazel2
d9b551915f5d2bb399e03b054dffe4ca42fedeb5
[ "MIT" ]
17
2018-08-31T11:13:59.000Z
2022-01-12T02:30:56.000Z
hazel/util.py
aasensio/hazel2
d9b551915f5d2bb399e03b054dffe4ca42fedeb5
[ "MIT" ]
26
2018-04-03T15:09:21.000Z
2021-05-27T10:10:45.000Z
hazel/util.py
aasensio/hazel2
d9b551915f5d2bb399e03b054dffe4ca42fedeb5
[ "MIT" ]
3
2018-05-01T13:47:21.000Z
2019-09-23T20:49:08.000Z
import numpy as np import h5py from asciitree import LeftAligned from collections import OrderedDict from asciitree.drawing import BoxStyle, BOX_DOUBLE, BOX_BLANK __all__ = ['i0_allen', '_extract_parameter_cycles', 'isint', 'fvoigt', 'lower_dict_keys', 'show_tree'] def i0_allen(wavelength, muAngle): """ Return the solar intensity at a specific wavelength and heliocentric angle wavelength: wavelength in angstrom muAngle: cosine of the heliocentric angle """ C = 2.99792458e10 H = 6.62606876e-27 if (muAngle == 0): return 0.0 lambdaIC = 1e4 * np.asarray([0.20,0.22,0.245,0.265,0.28,0.30,0.32,0.35,0.37,0.38,0.40,0.45,0.50,0.55,0.60,0.80,1.0,1.5,2.0,3.0,5.0,10.0]) uData = np.asarray([0.12,-1.3,-0.1,-0.1,0.38,0.74,0.88,0.98,1.03,0.92,0.91,0.99,0.97,0.93,0.88,0.73,0.64,0.57,0.48,0.35,0.22,0.15]) vData = np.asarray([0.33,1.6,0.85,0.90,0.57, 0.20, 0.03,-0.1,-0.16,-0.05,-0.05,-0.17,-0.22,-0.23,-0.23,-0.22,-0.20,-0.21,-0.18,-0.12,-0.07,-0.07]) lambdaI0 = 1e4 * np.asarray([0.20,0.22,0.24,0.26,0.28,0.30,0.32,0.34,0.36,0.37,0.38,0.39,0.40,0.41,0.42,0.43,0.44,0.45,0.46,0.48,0.50,0.55,0.60,0.65,0.70,0.75,\ 0.80,0.90,1.00,1.10,1.20,1.40,1.60,1.80,2.00,2.50,3.00,4.00,5.00,6.00,8.00,10.0,12.0]) I0 = np.asarray([0.06,0.21,0.29,0.60,1.30,2.45,3.25,3.77,4.13,4.23,4.63,4.95,5.15,5.26,5.28,5.24,5.19,5.10,5.00,4.79,4.55,4.02,3.52,3.06,2.69,2.28,2.03,\ 1.57,1.26,1.01,0.81,0.53,0.36,0.238,0.160,0.078,0.041,0.0142,0.0062,0.0032,0.00095,0.00035,0.00018]) I0 *= 1e14 * (lambdaI0 * 1e-8)**2 / C u = np.interp(wavelength, lambdaIC, uData) v = np.interp(wavelength, lambdaIC, vData) i0 = np.interp(wavelength, lambdaI0, I0) return (1.0 - u - v + u * muAngle + v * muAngle**2)* i0 def _extract_parameter_cycles(s): tmp = s[0].split('->') value = float(tmp[0]) cycle1 = tmp[1].strip() cycles = [cycle1] + s[1:] return value, cycles def isint(str): try: int(str) return True except ValueError: return False def isfloat(str): if (str is None): return False try: float(str) return True except ValueError: return False def toint(l): return [int(x) if isint(x) else x for x in l] def tofloat(l): return [float(x) if isfloat(x) else None for x in l] def tobool(l): return True if l == 'True' else False def onlyint(l): return [i for i in l if isinstance(i, int)] def fvoigt(damp,v): """ Fast implementation of the Voigt-Faraday function Parameters ---------- damp : float damping parameter v : float normalized wavelength (lambda-lambda0) / sigma Returns ------- voigt, faraday : float Value of the Voigt and Faraday functions Notes ----- A rational approximation to the complex error function is used after Hui, Armstrong, and Wray(1978, JQSRT 19, 509). H and F are the real and imaginary parts of such function, respectively. The procedure is inspired on that in SIR (Ruiz Cobo & del Toro Iniesta 1992, ApJ 398, 385). On its turn, that routine was taken from modifications by A. Wittmann (1986) to modifications by S.K. Solanki (1985) to an original FORTRAN routine written by J.W. Harvey and A. Nordlund. """ A = [122.607931777104326, 214.382388694706425, 181.928533092181549,\ 93.155580458138441, 30.180142196210589, 5.912626209773153,\ 0.564189583562615] B = [122.60793177387535, 352.730625110963558, 457.334478783897737,\ 348.703917719495792, 170.354001821091472, 53.992906912940207,\ 10.479857114260399,1.] z = np.array(damp*np.ones(len(v)) + -abs(v)*1j) Z = ((((((A[6]*z+A[5])*z+A[4])*z+A[3])*z+A[2])*z+A[1])*z+A[0])/\ (((((((z+B[6])*z+B[5])*z+B[4])*z+B[3])*z+B[2])*z+B[1])*z+B[0]) h = np.real(Z) f = np.sign(v)*np.imag(Z)*0.5 return h, f def lower_dict_keys(d): out = {} for k, v in d.items(): out[k.lower()] = v return out def show_tree(hdf5_file): tree = {hdf5_file: OrderedDict()} f = h5py.File(hdf5_file, 'r') for k, v in f.items(): tree[hdf5_file][k] = OrderedDict() for k2, v2 in v.items(): tree[hdf5_file][k][f'{k2} -> {v2.shape} {v2.dtype}'] = OrderedDict() chrs = dict( UP_AND_RIGHT=u"\u2514", HORIZONTAL=u"\u2500", VERTICAL=u"\u2502", VERTICAL_AND_RIGHT=u"\u251C" ) tr = LeftAligned(draw=BoxStyle(gfx = chrs, horiz_len=1)) print(tr(tree))
31.761905
164
0.591776
9500142e5839de59843767c91bf48c8217f319c0
5,206
py
Python
setup.py
eliasfernandez/django-simplecms
fd2d4b0c53a1262a7253e2428e5bd8a4e8074ce4
[ "BSD-2-Clause" ]
null
null
null
setup.py
eliasfernandez/django-simplecms
fd2d4b0c53a1262a7253e2428e5bd8a4e8074ce4
[ "BSD-2-Clause" ]
null
null
null
setup.py
eliasfernandez/django-simplecms
fd2d4b0c53a1262a7253e2428e5bd8a4e8074ce4
[ "BSD-2-Clause" ]
null
null
null
# coding=utf-8 from distutils.core import setup import codecs import os import sys from distutils.util import convert_path from fnmatch import fnmatchcase from setuptools import setup import cms # Provided as an attribute, so you can append to these instead # of replicating them: standard_exclude = ["*.py", "*.pyc", "*$py.class", "*~", ".*", "*.bak"] standard_exclude_directories = [ ".*", "CVS", "_darcs", "./build", "./dist", "EGG-INFO", "*.egg-info" ] # (c) 2005 Ian Bicking and contributors; written for Paste (http://pythonpaste.org) # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php # Note: you may want to copy this into your setup.py file verbatim, as # you can't import this from another package, when you don't know if # that package is installed yet. def find_package_data( where=".", package="", exclude=standard_exclude, exclude_directories=standard_exclude_directories, only_in_packages=True, show_ignored=False): """ Return a dictionary suitable for use in ``package_data`` in a distutils ``setup.py`` file. The dictionary looks like:: {"package": [files]} Where ``files`` is a list of all the files in that package that don"t match anything in ``exclude``. If ``only_in_packages`` is true, then top-level directories that are not packages won"t be included (but directories under packages will). Directories matching any pattern in ``exclude_directories`` will be ignored; by default directories with leading ``.``, ``CVS``, and ``_darcs`` will be ignored. If ``show_ignored`` is true, then all the files that aren"t included in package data are shown on stderr (for debugging purposes). Note patterns use wildcards, or can be exact paths (including leading ``./``), and all searching is case-insensitive. """ out = {} stack = [(convert_path(where), "", package, only_in_packages)] while stack: where, prefix, package, only_in_packages = stack.pop(0) for name in os.listdir(where): fn = os.path.join(where, name) if os.path.isdir(fn): bad_name = False for pattern in exclude_directories: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True if show_ignored: print >> sys.stderr, ( "Directory %s ignored by pattern %s" % (fn, pattern)) break if bad_name: continue if (os.path.isfile(os.path.join(fn, "__init__.py")) and not prefix): if not package: new_package = name else: new_package = package + "." + name stack.append((fn, "", new_package, False)) else: stack.append((fn, prefix + name + "/", package, only_in_packages)) elif package or not only_in_packages: # is a file bad_name = False for pattern in exclude: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True if show_ignored: print >> sys.stderr, ( "File %s ignored by pattern %s" % (fn, pattern)) break if bad_name: continue out.setdefault(package, []).append(prefix+name) return out long_description = open('README.md').read() setup( name='django-simplecms', version=cms.VERSION, packages=['cms', 'cms.context_processors', 'cms.templatetags', 'cms.utils', ], include_package_data=True, package_data=find_package_data('.'), description='A Django app for cms purposes that covers 90% of tasks we need from a cms', long_description=long_description, author='Elías Fernández', author_email='eliasfernandez@gmail.com', license='BSD License', url='http://github.com/eliasfernandez/django-simplecms', platforms=["any"], install_requires=[ "Django==1.11", "pillow", "django-mptt", "django-tinymce", "django-suit", "django-filer" ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English (mostly)', 'Operating System :: OS Independent', 'Programming Language :: Python', ], )
36.661972
100
0.528045
8a9490609b406aac75fafb5cf975907e222fec60
5,941
py
Python
scripts/release_scripts/repo_specific_changes_fetcher.py
siddharthmehta02/oppia
973f777a6c5a8c3442846bda839e63856dfddf72
[ "Apache-2.0" ]
4
2021-09-16T16:46:53.000Z
2022-02-06T13:00:14.000Z
scripts/release_scripts/repo_specific_changes_fetcher.py
siddharthmehta02/oppia
973f777a6c5a8c3442846bda839e63856dfddf72
[ "Apache-2.0" ]
null
null
null
scripts/release_scripts/repo_specific_changes_fetcher.py
siddharthmehta02/oppia
973f777a6c5a8c3442846bda839e63856dfddf72
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2020 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS-IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script that provides changes specific to oppia repo to be written to release summary file. """ from __future__ import absolute_import from __future__ import unicode_literals import os import re from core import python_utils from scripts import common GIT_CMD_DIFF_NAMES_ONLY_FORMAT_STRING = 'git diff --name-only %s %s' GIT_CMD_SHOW_FORMAT_STRING = 'git show %s:feconf.py' VERSION_RE_FORMAT_STRING = r'%s\s*=\s*(\d+|\.)+' FECONF_SCHEMA_VERSION_CONSTANT_NAMES = [ 'CURRENT_STATE_SCHEMA_VERSION', 'CURRENT_COLLECTION_SCHEMA_VERSION'] FECONF_FILEPATH = os.path.join('', 'feconf.py') def get_changed_schema_version_constant_names(release_tag_to_diff_against): """Returns a list of schema version constant names in feconf that have changed since the release against which diff is being checked. Args: release_tag_to_diff_against: str. The release tag to diff against. Returns: list(str). List of version constant names in feconf that changed. """ changed_version_constants_in_feconf = [] git_show_cmd = (GIT_CMD_SHOW_FORMAT_STRING % release_tag_to_diff_against) old_feconf = common.run_cmd(git_show_cmd.split(' ')) with python_utils.open_file(FECONF_FILEPATH, 'r') as feconf_file: new_feconf = feconf_file.read() for version_constant in FECONF_SCHEMA_VERSION_CONSTANT_NAMES: old_version = re.findall( VERSION_RE_FORMAT_STRING % version_constant, old_feconf)[0] new_version = re.findall( VERSION_RE_FORMAT_STRING % version_constant, new_feconf)[0] if old_version != new_version: changed_version_constants_in_feconf.append(version_constant) return changed_version_constants_in_feconf def _get_changed_filenames_since_tag(release_tag_to_diff_against): """Get names of changed files from git since a given release. Args: release_tag_to_diff_against: str. The release tag to diff against. Returns: list(str). List of filenames for files that have been modified since the release against which diff is being checked. """ diff_cmd = ( GIT_CMD_DIFF_NAMES_ONLY_FORMAT_STRING % ( release_tag_to_diff_against, 'HEAD')) return common.run_cmd(diff_cmd.split(' ')).splitlines() def get_setup_scripts_changes_status(release_tag_to_diff_against): """Returns a dict of setup script filepaths with a status of whether they have changed or not since the release against which diff is being checked. Args: release_tag_to_diff_against: str. The release tag to diff against. Returns: dict. Dict consisting of key as script name and value as boolean indicating whether or not the script is modified since the release against which diff is being checked. """ setup_script_filepaths = [ 'scripts/%s' % item for item in [ 'setup.py', 'setup_gae.py', 'install_third_party_libs.py', 'install_third_party.py']] changed_filenames = _get_changed_filenames_since_tag( release_tag_to_diff_against) changes_dict = { script_filepath: script_filepath in changed_filenames for script_filepath in setup_script_filepaths} return changes_dict def get_changed_storage_models_filenames(release_tag_to_diff_against): """Returns a list of filepaths in core/storage whose contents have changed since the release against which diff is being checked. Args: release_tag_to_diff_against: str. The release tag to diff against. Returns: list(str). The changed filenames in core/storage (if any). """ changed_model_filenames = _get_changed_filenames_since_tag( release_tag_to_diff_against) return [ model_filename for model_filename in changed_model_filenames if model_filename.startswith('core/storage')] def get_changes(release_tag_to_diff_against): """Collects changes in storage models, setup scripts and feconf since the release tag passed in arguments. Args: release_tag_to_diff_against: str. The release tag to diff against. Returns: list(str). A list of lines to be written to the release summary file. These lines describe the changed storage model names, setup script names and feconf schema version names since the release against which diff is being checked. """ changes = [] feconf_version_changes = get_changed_schema_version_constant_names( release_tag_to_diff_against) if feconf_version_changes: changes.append( '\n### Feconf version changes:\nThis indicates that a ' 'migration may be needed\n\n') for var in feconf_version_changes: changes.append('* %s\n' % var) setup_changes = get_setup_scripts_changes_status( release_tag_to_diff_against) if setup_changes: changes.append('\n### Changed setup scripts:\n') for var in setup_changes.keys(): changes.append('* %s\n' % var) storage_changes = get_setup_scripts_changes_status( release_tag_to_diff_against) if storage_changes: changes.append('\n### Changed storage models:\n') for item in storage_changes: changes.append('* %s\n' % item) return changes
37.13125
80
0.722606
77a9e67414d95cbbf70efc27b9197a98209483f6
1,001
py
Python
concat.py
leoGCoelho/Snscrape-Dataframe-Builder
1759cade1d349c7e7fc84b26089385d0e4df132f
[ "MIT" ]
2
2020-12-01T14:35:21.000Z
2021-05-17T05:58:28.000Z
concat.py
leoGCoelho/Snscrape-Dataframe-Builder
1759cade1d349c7e7fc84b26089385d0e4df132f
[ "MIT" ]
null
null
null
concat.py
leoGCoelho/Snscrape-Dataframe-Builder
1759cade1d349c7e7fc84b26089385d0e4df132f
[ "MIT" ]
2
2021-02-11T16:53:01.000Z
2022-01-15T21:44:17.000Z
import pandas import json import sys def cleandata(data): for jsonf in data: #jsonf["texto"] = "" jsonf.pop("user", None) jsonf.pop("outlinks", None) jsonf.pop("tcooutlinks", None) jsonf.pop("replyCount", None) jsonf.pop("retweetCount", None) jsonf.pop("likeCount", None) jsonf.pop("quoteCount", None) jsonf.pop("conversationId", None) jsonf.pop("likeCount", None) jsonf.pop("source", None) jsonf.pop("sourceUrl", None) jsonf.pop("media", None) jsonf.pop("retweetedTweet", None) jsonf.pop("quotedTweet", None) jsonf.pop("likeCount", None) jsonf.pop("mentionedUsers", None) return data data1 = [json.loads(line) for line in open(sys.argv[1], 'r')] data1 = cleandata(data1) data2 = [json.loads(line) for line in open(sys.argv[2], 'r')] data2 = cleandata(data2) data = data1 + data2 json.dump(data, sys.argv[3]) print(len(data), len(data1), len(data2))
26.342105
61
0.607393
60bd79822b202fa9a25ff85bbb57e09aec57c957
983
py
Python
recipes/flask/__init__.py
lbovet/kivy-ios
679fc62256ffb87b6101840563fc2952d7166e1b
[ "MIT" ]
2
2021-02-05T10:13:05.000Z
2021-11-12T07:31:57.000Z
recipes/flask/__init__.py
lbovet/kivy-ios
679fc62256ffb87b6101840563fc2952d7166e1b
[ "MIT" ]
6
2020-01-31T18:04:48.000Z
2021-06-05T10:53:55.000Z
recipes/flask/__init__.py
lbovet/kivy-ios
679fc62256ffb87b6101840563fc2952d7166e1b
[ "MIT" ]
1
2021-04-08T19:51:07.000Z
2021-04-08T19:51:07.000Z
# pure-python package, this can be removed when we'll support any python package from toolchain import PythonRecipe, shprint from os.path import join import sh, os class FlaskRecipe(PythonRecipe): version = "master" url = "https://github.com/mitsuhiko/flask/archive/{version}.zip" depends = ["python","jinja2","werkzeug","itsdangerous","click"] def install(self): arch = list(self.filtered_archs)[0] build_dir = self.get_build_dir(arch.arch) os.chdir(build_dir) hostpython = sh.Command(self.ctx.hostpython) build_env = arch.get_env() dest_dir = join(self.ctx.dist_dir, "root", "python") build_env['PYTHONPATH'] = join(dest_dir, 'lib', 'python2.7', 'site-packages') cmd = sh.Command("sed") shprint(cmd, "-i", "", "s/setuptools/distutils.core/g", "./setup.py", _env=build_env) shprint(hostpython, "setup.py", "install", "--prefix", dest_dir, _env=build_env) recipe = FlaskRecipe()
39.32
93
0.660224
5f6249bc9801e57bbd60ec0126322e058368a7a8
3,473
py
Python
alipay/aop/api/domain/SignData.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/SignData.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/SignData.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class SignData(object): def __init__(self): self._ori_app_id = None self._ori_char_set = None self._ori_out_biz_no = None self._ori_sign = None self._ori_sign_type = None self._partner_id = None @property def ori_app_id(self): return self._ori_app_id @ori_app_id.setter def ori_app_id(self, value): self._ori_app_id = value @property def ori_char_set(self): return self._ori_char_set @ori_char_set.setter def ori_char_set(self, value): self._ori_char_set = value @property def ori_out_biz_no(self): return self._ori_out_biz_no @ori_out_biz_no.setter def ori_out_biz_no(self, value): self._ori_out_biz_no = value @property def ori_sign(self): return self._ori_sign @ori_sign.setter def ori_sign(self, value): self._ori_sign = value @property def ori_sign_type(self): return self._ori_sign_type @ori_sign_type.setter def ori_sign_type(self, value): self._ori_sign_type = value @property def partner_id(self): return self._partner_id @partner_id.setter def partner_id(self, value): self._partner_id = value def to_alipay_dict(self): params = dict() if self.ori_app_id: if hasattr(self.ori_app_id, 'to_alipay_dict'): params['ori_app_id'] = self.ori_app_id.to_alipay_dict() else: params['ori_app_id'] = self.ori_app_id if self.ori_char_set: if hasattr(self.ori_char_set, 'to_alipay_dict'): params['ori_char_set'] = self.ori_char_set.to_alipay_dict() else: params['ori_char_set'] = self.ori_char_set if self.ori_out_biz_no: if hasattr(self.ori_out_biz_no, 'to_alipay_dict'): params['ori_out_biz_no'] = self.ori_out_biz_no.to_alipay_dict() else: params['ori_out_biz_no'] = self.ori_out_biz_no if self.ori_sign: if hasattr(self.ori_sign, 'to_alipay_dict'): params['ori_sign'] = self.ori_sign.to_alipay_dict() else: params['ori_sign'] = self.ori_sign if self.ori_sign_type: if hasattr(self.ori_sign_type, 'to_alipay_dict'): params['ori_sign_type'] = self.ori_sign_type.to_alipay_dict() else: params['ori_sign_type'] = self.ori_sign_type if self.partner_id: if hasattr(self.partner_id, 'to_alipay_dict'): params['partner_id'] = self.partner_id.to_alipay_dict() else: params['partner_id'] = self.partner_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = SignData() if 'ori_app_id' in d: o.ori_app_id = d['ori_app_id'] if 'ori_char_set' in d: o.ori_char_set = d['ori_char_set'] if 'ori_out_biz_no' in d: o.ori_out_biz_no = d['ori_out_biz_no'] if 'ori_sign' in d: o.ori_sign = d['ori_sign'] if 'ori_sign_type' in d: o.ori_sign_type = d['ori_sign_type'] if 'partner_id' in d: o.partner_id = d['partner_id'] return o
29.939655
79
0.596314
dca8b2877b3a8eb2abab7015fcfe8fb8c1ae32fb
3,158
py
Python
paper_figures/CIDU2012/fig_rbf_ridge_mu_z.py
aragilar/astroML
d3f6279eb632957662338761cb559a1dcd541fb0
[ "BSD-2-Clause" ]
6
2019-08-31T16:43:43.000Z
2021-07-10T06:06:20.000Z
paper_figures/CIDU2012/fig_rbf_ridge_mu_z.py
aragilar/astroML
d3f6279eb632957662338761cb559a1dcd541fb0
[ "BSD-2-Clause" ]
34
2018-09-10T22:35:07.000Z
2022-02-08T21:17:39.000Z
paper_figures/CIDU2012/fig_rbf_ridge_mu_z.py
aragilar/astroML
d3f6279eb632957662338761cb559a1dcd541fb0
[ "BSD-2-Clause" ]
10
2017-06-22T09:21:19.000Z
2020-01-26T03:54:26.000Z
""" Regularized Regression Example ------------------------------ This performs regularized regression on a gaussian basis function model. """ # Author: Jake VanderPlas <vanderplas@astro.washington.edu> # License: BSD # The figure is an example from astroML: see http://astroML.github.com import numpy as np from matplotlib import pyplot as plt from scipy.stats import lognorm from sklearn.linear_model import LinearRegression, Ridge, Lasso from astroML.cosmology import Cosmology from astroML.datasets import generate_mu_z from astroML.density_estimation import FunctionDistribution #---------------------------------------------------------------------- # generate data np.random.seed(0) z_sample, mu_sample, dmu = generate_mu_z(100, random_state=0) cosmo = Cosmology() z = np.linspace(0.01, 2, 1000) mu = np.asarray(map(cosmo.mu, z)) #------------------------------------------------------------ # Manually convert data to a gaussian basis # note that we're ignoring errors here, for the sake of example. def gaussian_basis(x, mu, sigma): return np.exp(-0.5 * ((x - mu) / sigma) ** 2) centers = np.linspace(0, 1.8, 100) widths = 0.2 X = gaussian_basis(z_sample[:, np.newaxis], centers, widths) #------------------------------------------------------------ # Set up the figure to plot the results fig = plt.figure(figsize=(12, 7)) fig.subplots_adjust(left=0.07, right=0.95, bottom=0.08, top=0.95, hspace=0.1, wspace=0.15) classifier = [LinearRegression, Ridge, Lasso] kwargs = [dict(), dict(alpha=0.005), dict(alpha=0.001)] labels = ['Linear Regression', 'Ridge Regression', 'Lasso Regression'] for i in range(3): clf = classifier[i](fit_intercept=True, **kwargs[i]) clf.fit(X, mu_sample) w = clf.coef_ fit = clf.predict(gaussian_basis(z[:, None], centers, widths)) # plot fit ax = fig.add_subplot(231 + i) ax.xaxis.set_major_formatter(plt.NullFormatter()) # plot curves for regularized fits if i == 0: ax.set_ylabel('$\mu$') else: ax.yaxis.set_major_formatter(plt.NullFormatter()) curves = 37 + w * gaussian_basis(z[:, np.newaxis], centers, widths) curves = curves[:, abs(w) > 0.01] ax.plot(z, curves, c='gray', lw=1, alpha=0.5) ax.plot(z, fit, '-k') ax.plot(z, mu, '--', c='gray') ax.errorbar(z_sample, mu_sample, dmu, fmt='.k', ecolor='gray', lw=1) ax.set_xlim(0.001, 1.8) ax.set_ylim(36, 48) ax.text(0.05, 0.95, labels[i], ha='left', va='top', transform=ax.transAxes) # plot weights ax = plt.subplot(234 + i) ax.xaxis.set_major_locator(plt.MultipleLocator(0.5)) ax.set_xlabel('z') if i == 0: ax.set_ylabel(r'$\theta$') w *= 1E-12 ax.text(0, 1, r'$\rm \times 10^{12}$', transform=ax.transAxes, fontsize=16) ax.scatter(centers, w, s=9, lw=0, c='k') ax.set_xlim(-0.05, 1.8) if i == 1: ax.set_ylim(-2, 4) elif i == 2: ax.set_ylim(-0.5, 2) ax.text(0.05, 0.95, labels[i], ha='left', va='top', transform=ax.transAxes) plt.show()
30.660194
75
0.586764
699eb50da7f46d79f3feabd34ccbbab3ed2f4cc9
2,325
py
Python
pycspr/serialisation/byte_array/encoder/cl_value.py
MrKrautee/casper-python-sdk
13e9da83de8892583da7ada91e4231e6f85e5e13
[ "Apache-2.0" ]
2
2021-10-05T07:50:20.000Z
2021-10-06T09:58:19.000Z
pycspr/serialisation/byte_array/encoder/cl_value.py
MrKrautee/casper-python-sdk
13e9da83de8892583da7ada91e4231e6f85e5e13
[ "Apache-2.0" ]
null
null
null
pycspr/serialisation/byte_array/encoder/cl_value.py
MrKrautee/casper-python-sdk
13e9da83de8892583da7ada91e4231e6f85e5e13
[ "Apache-2.0" ]
null
null
null
import typing import pycspr.serialisation.byte_array.encoder.cl_complex as complex_encoder import pycspr.serialisation.byte_array.encoder.cl_primitive as primitives_encoder import pycspr.serialisation.byte_array.encoder.cl_type as type_encoder from pycspr.types import CLTypeKey from pycspr.types import CLValue # Map: CL type <-> encoder. ENCODERS = { CLTypeKey.ANY: complex_encoder.encode_any, CLTypeKey.BOOL: primitives_encoder.encode_bool, CLTypeKey.BYTE_ARRAY: primitives_encoder.encode_byte_array, CLTypeKey.I32: primitives_encoder.encode_i32, CLTypeKey.I64: primitives_encoder.encode_i64, CLTypeKey.KEY: complex_encoder.encode_storage_key, CLTypeKey.LIST: complex_encoder.encode_list, CLTypeKey.MAP: complex_encoder.encode_map, CLTypeKey.OPTION: complex_encoder.encode_option, CLTypeKey.PUBLIC_KEY: complex_encoder.encode_public_key, CLTypeKey.STRING: primitives_encoder.encode_string, CLTypeKey.TUPLE_1: complex_encoder.encode_tuple1, CLTypeKey.TUPLE_2: complex_encoder.encode_tuple2, CLTypeKey.TUPLE_3: complex_encoder.encode_tuple3, CLTypeKey.U8: primitives_encoder.encode_u8, CLTypeKey.U32: primitives_encoder.encode_u32, CLTypeKey.U64: primitives_encoder.encode_u64, CLTypeKey.U128: primitives_encoder.encode_u128, CLTypeKey.U256: primitives_encoder.encode_u256, CLTypeKey.U512: primitives_encoder.encode_u512, CLTypeKey.UNIT: primitives_encoder.encode_unit, CLTypeKey.RESULT: complex_encoder.encode_result, CLTypeKey.UREF: complex_encoder.encode_uref, } def encode(value: CLValue) -> bytes: """Encodes a CL value as an array of bytes. :param value: A CL value that encapsulates both the associated CL type & it's pythonic value representation. :returns: A byte array representation conformant to CL serialisation protocol. """ encoder = ENCODERS[value.cl_type.typeof] if value.cl_type.typeof in {CLTypeKey.LIST, CLTypeKey.OPTION}: return encoder(value.parsed, ENCODERS[value.cl_type.inner_type.typeof]) else: return encoder(value.parsed) def encode_cl_value(entity: CLValue) -> bytes: """Encodes a CL value. """ return primitives_encoder.encode_u8_array(encode(entity)) + \ type_encoder.encode_cl_type(entity.cl_type)
39.40678
112
0.772473
3cf22817c517c6f885704c8ec9c12fa1d0fc1eb7
6,735
py
Python
tools/debug/common.py
gnomonsis/nncf_pytorch
9fc4a92b5cb1b2c240e633c4ffa69b4fae1917fb
[ "Apache-2.0" ]
null
null
null
tools/debug/common.py
gnomonsis/nncf_pytorch
9fc4a92b5cb1b2c240e633c4ffa69b4fae1917fb
[ "Apache-2.0" ]
4
2020-07-17T11:12:35.000Z
2021-12-15T15:20:24.000Z
tools/debug/common.py
gnomonsis/nncf_pytorch
9fc4a92b5cb1b2c240e633c4ffa69b4fae1917fb
[ "Apache-2.0" ]
null
null
null
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import os import torch from functools import partial from torch import nn from examples.common.model_loader import load_model from examples.common.utils import print_statistics from nncf.checkpoint_loading import load_state from nncf.layers import NNCFConv2d, NNCFLinear from nncf.model_creation import create_compressed_model def dump_in_out_hook(module, inputs, output): dump_out_hook(module, inputs, output) dump_path = get_dump_path(module) if dump_path: key = 0 output_dir = os.path.abspath(os.path.join(dump_path, os.pardir)) file_name = os.path.basename(dump_path) for input_ in inputs: key += 1 input_data = input_.data.cpu().numpy().flatten() dump_name = '.'.join([file_name, "in", str(key)]) npy_path, _ = save_dump(dump_name, output_dir, input_data) add_full_dump_path(module, npy_path) def dump_out_hook(module, inputs, output): dump_path = get_dump_path(module) if dump_path: output_data = output.data.cpu().numpy().flatten() output_dir = os.path.abspath(os.path.join(dump_path, os.pardir)) file_name = os.path.basename(dump_path) dump_name = '.'.join([file_name, "out"]) npy_path, _ = save_dump(dump_name, output_dir, output_data, force=False) add_full_dump_path(module, npy_path) def get_dump_path(module): if hasattr(module, "dump_path"): return module.dump_path return None def set_dump_path(layer, path): layer.dump_path = path def add_full_dump_path(layer, full_path): if not hasattr(layer, 'dump_full_paths'): layer.dump_full_paths = [] layer.dump_full_paths.append(full_path) def get_full_dump_paths(layer): if hasattr(layer, 'dump_full_paths'): return layer.dump_full_paths return None def is_weightable(layer): return isinstance(layer, (nn.Conv2d, nn.Linear)) and \ not isinstance(layer, (NNCFConv2d, NNCFLinear)) def has_sparse_quant_weights(layer, name): from nncf.quantization.layers import SymmetricQuantizer from nncf.sparsity.rb.layers import RBSparsifyingWeight return (isinstance(layer, RBSparsifyingWeight) and ('sparsified_weight' in name)) or \ (isinstance(layer, SymmetricQuantizer) and ('quantized_weight' in name)) def save_dump_(path, ext, saver, data, force=False): full_path = '.'.join([path, ext]) if not os.path.exists(full_path) or force: print("Saving dump to {}".format(full_path)) saver(full_path, data) else: print("Dump already exists " + full_path) return full_path def save_dump(dump_name, output_dir, data, force=False): path = os.path.join(output_dir, dump_name) npy_path = save_dump_(path, "npy", np.save, data, force) txt_path = save_dump_(path, "txt", partial(np.savetxt, fmt="%s"), data, force) return npy_path, txt_path def register_print_hooks(path, model, data_to_compare, num_layers=-1, dump_activations=False, prefix='', idx=0): for name, children in model.named_children(): name_full = "{}{}".format(prefix, name) idx = register_print_hooks(path, children, data_to_compare, num_layers, dump_activations, prefix=name_full + ".", idx=idx) within_range = (num_layers == -1) or idx < num_layers has_weights = has_sparse_quant_weights(children, name_full) or is_weightable(children) within_type = has_weights if not dump_activations else dump_activations if within_range and within_type: # always there for activations if dump_activation is enabled # always there for weights if dump_activation is disabled name_full = name_full.replace('/', '_') dump_path = os.path.join(path, '.'.join([str(idx), name_full])) idx += 1 if is_weightable(children): output_dir = os.path.abspath(os.path.join(dump_path, os.pardir)) file_name = os.path.basename(dump_path) def dump_attr(attr): if hasattr(children, attr): dump_name = '.'.join([file_name, attr]) data = children.weight.data.numpy() save_dump(dump_name, output_dir, data, force=False) data_to_compare[dump_name] = data dump_attr('weight') dump_attr('bias') else: set_dump_path(children, dump_path) hook = dump_in_out_hook if dump_activations else dump_out_hook children.register_forward_hook(hook) return idx def load_torch_model(config, cuda=False): weights = config.get('weights') model = load_model(config.get('model'), pretrained=config.get('pretrained', True) if weights is None else False, num_classes=config.get('num_classes', 1000), model_params=config.get('model_params', {})) compression_ctrl, model = create_compressed_model(model, config) if weights: sd = torch.load(weights, map_location='cpu') load_state(model, sd) if cuda: model = model.cuda() model = torch.nn.DataParallel(model) print_statistics(compression_ctrl.statistics()) return model def compare_activations(ir_dump_txt, torch_dump_npy): with open(ir_dump_txt, 'r') as fin: first_line = fin.readline() if "shape:" in first_line: data = fin.read().splitlines(True) with open(ir_dump_txt, 'w') as fout: fout.writelines(data) ie = np.loadtxt(ir_dump_txt, dtype=np.float32) pt = np.load(torch_dump_npy) print("Size, [ MIN, MAX ]") print_info = lambda np_array: print( "{} [{:.3f}, {:.3f}]".format(np_array.size, np_array.min().item(), np_array.max().item())) print_info(ie) print_info(pt) print("Maximum of absolute difference: {:.7f}".format(abs(ie - pt).max())) def print_args(args): for arg in sorted(vars(args)): print("{: <27s}: {}".format(arg, getattr(args, arg)))
38.267045
112
0.659688
3108988ec48dd8c6366194c264142f6616003fc3
7,035
py
Python
thola_nautobot/forms.py
inexio/thola-nautobot
0b152784c9c7c0562423595251960a9e102ba221
[ "BSD-2-Clause" ]
5
2021-07-13T12:07:39.000Z
2021-07-23T08:18:46.000Z
thola_nautobot/forms.py
inexio/thola-nautobot
0b152784c9c7c0562423595251960a9e102ba221
[ "BSD-2-Clause" ]
2
2021-07-06T11:04:17.000Z
2021-08-24T02:54:08.000Z
thola_nautobot/forms.py
inexio/thola-nautobot
0b152784c9c7c0562423595251960a9e102ba221
[ "BSD-2-Clause" ]
null
null
null
"""Forms for thola nautobot.""" import django_rq from django import forms from django.conf import settings from nautobot.dcim.models import Device, Site, DeviceRole from thola_nautobot.choices import TholaOnboardingStatusChoice from thola_nautobot.models import TholaConfig, TholaOnboarding from thola_nautobot.thola.client import thola_read_available_components from thola_nautobot.thola.snmp_config import SNMPConfig PLUGIN_SETTINGS = settings.PLUGINS_CONFIG["thola_nautobot"] class TholaConfigForm(forms.ModelForm): """Form for creating a new Thola Config instance.""" device = forms.ModelChoiceField( queryset=Device.objects.all(), required=True, help_text="Device to monitor with Thola." ) snmp_community = forms.CharField( required=False, label="SNMP community", help_text="Community string for SNMP to use. (def: " + str(PLUGIN_SETTINGS["snmp_community"]) + ")" ) snmp_version = forms.CharField( required=False, label="SNMP version", help_text="SNMP version to use. (def: " + str(PLUGIN_SETTINGS["snmp_version"]) + ")" ) snmp_port = forms.IntegerField( required=False, label="SNMP port", help_text="Port for SNMP to use. (def: " + str(PLUGIN_SETTINGS["snmp_port"]) + ")" ) snmp_discover_par_requests = forms.IntegerField( required=False, label="SNMP discover par requests", help_text="The amount of parallel connection requests used while trying to get a valid SNMP connection. " "(def: " + str(PLUGIN_SETTINGS["snmp_discover_par_requests"]) + ")" ) snmp_discover_retries = forms.IntegerField( required=False, label="SNMP discover retries", help_text="The retries used while trying to get a valid SNMP connection. (def: " + str( PLUGIN_SETTINGS["snmp_discover_retries"]) + ")" ) snmp_discover_timeout = forms.IntegerField( required=False, label="SNMP discover timeout", help_text="The timeout in seconds used while trying to get a valid SNMP connection. (def: " + str( PLUGIN_SETTINGS["snmp_discover_timeout"]) + ")" ) http_password = forms.CharField( required=False, label="HTTP password", help_text="Password for HTTP/HTTPS authentication." ) http_port = forms.IntegerField( required=False, label="HTTP port", help_text="Port for HTTP to use." ) http_username = forms.CharField( required=False, label="HTTP username", help_text="Username for HTTP/HTTPS authentication." ) https_port = forms.IntegerField( required=False, label="HTTPS port", help_text="Port for HTTPS to use." ) class Meta: model = TholaConfig fields = [ "device", "snmp_community", "snmp_version", "snmp_port", "snmp_discover_par_requests", "snmp_discover_retries", "snmp_discover_timeout", "http_password", "http_port", "http_username", "https_port" ] def save(self, commit=True, **kwargs): """Save the model and the associated components.""" model = super().save(commit=False) snmp_config = SNMPConfig(model.snmp_community, model.snmp_version, model.snmp_port, model.snmp_discover_retries, model.snmp_discover_timeout, model.snmp_discover_par_requests) components = thola_read_available_components(snmp_config, model.device.primary_ip4) if components.get('error'): raise RuntimeError(components.get('error')) model.interfaces = "interfaces" in components.get('available_components') model.cpu = "cpu" in components.get('available_components') model.memory = "memory" in components.get('available_components') model.disk = "disk" in components.get('available_components') model.hardware_health = "hardware_health" in components.get('available_components') model.ups = "ups" in components.get('available_components') model.server = "server" in components.get('available_components') model.save() return model class TholaOnboardingForm(forms.ModelForm): """Form for creating a new Thola Onboarding task.""" ip = forms.CharField( required=True, label="IP address", help_text="IP address of the device." ) site = forms.ModelChoiceField( queryset=Site.objects.all(), required=True, help_text="Site of the device." ) role = forms.ModelChoiceField( queryset=DeviceRole.objects.all(), required=True, help_text="Role of the device." ) snmp_community = forms.CharField( required=False, label="SNMP community", help_text="Community string for SNMP to use. (def: " + str(PLUGIN_SETTINGS["snmp_community"]) + ")" ) snmp_version = forms.CharField( required=False, label="SNMP version", help_text="SNMP version to use. (def: " + str(PLUGIN_SETTINGS["snmp_version"]) + ")" ) snmp_port = forms.IntegerField( required=False, label="SNMP port", help_text="Port for SNMP to use. (def: " + str(PLUGIN_SETTINGS["snmp_port"]) + ")" ) snmp_discover_par_requests = forms.IntegerField( required=False, label="SNMP discover par requests", help_text="The amount of parallel connection requests used while trying to get a valid SNMP connection. " "(def: " + str(PLUGIN_SETTINGS["snmp_discover_par_requests"]) + ")" ) snmp_discover_retries = forms.IntegerField( required=False, label="SNMP discover retries", help_text="The retries used while trying to get a valid SNMP connection. (def: " + str( PLUGIN_SETTINGS["snmp_discover_retries"]) + ")" ) snmp_discover_timeout = forms.IntegerField( required=False, label="SNMP discover timeout", help_text="The timeout in seconds used while trying to get a valid SNMP connection. (def: " + str( PLUGIN_SETTINGS["snmp_discover_timeout"]) + ")" ) class Meta: model = TholaOnboarding fields = [ "ip", "site", "role", "snmp_community", "snmp_version", "snmp_port", "snmp_discover_par_requests", "snmp_discover_retries", "snmp_discover_timeout" ] def save(self, commit=True, **kwargs): """Save the model and the associated components.""" model = super().save(commit=False) model.status = TholaOnboardingStatusChoice.STATUS_PENDING model.save() queue = django_rq.get_queue('default') queue.enqueue("thola_nautobot.worker.onboard_device", onboarding=model) return model
33.822115
120
0.634968
03051b0be023643784d9e41f4aae7905620c3fb0
965
py
Python
src/my_happy_modin/data_management/functions/default_methods/str_default.py
ggservice007/my-happy-modin
ab293ecfa04516a5c9f76284e09b45cdd7588186
[ "Apache-2.0" ]
null
null
null
src/my_happy_modin/data_management/functions/default_methods/str_default.py
ggservice007/my-happy-modin
ab293ecfa04516a5c9f76284e09b45cdd7588186
[ "Apache-2.0" ]
2
2021-01-27T11:25:26.000Z
2021-01-27T12:47:53.000Z
src/my_happy_modin/data_management/functions/default_methods/str_default.py
ggservice007/my-happy-modin
ab293ecfa04516a5c9f76284e09b45cdd7588186
[ "Apache-2.0" ]
null
null
null
# Licensed to my_happy_modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The my_happy_modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. from .series_default import SeriesDefault class StrDefault(SeriesDefault): @classmethod def frame_wrapper(cls, df): return df.squeeze(axis=1).str
45.952381
95
0.779275
6d39733c626d6ae40bd7089dc79580e67e5772f7
2,814
py
Python
yardstick/benchmark/scenarios/parser/parser.py
kkltcjk/kklt
5388eb439616a442dde496ef77ba6b71169369e0
[ "Apache-2.0" ]
null
null
null
yardstick/benchmark/scenarios/parser/parser.py
kkltcjk/kklt
5388eb439616a442dde496ef77ba6b71169369e0
[ "Apache-2.0" ]
null
null
null
yardstick/benchmark/scenarios/parser/parser.py
kkltcjk/kklt
5388eb439616a442dde496ef77ba6b71169369e0
[ "Apache-2.0" ]
null
null
null
############################################################################## # Copyright (c) 2015 Huawei Technologies Co.,Ltd and other. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ############################################################################## from __future__ import print_function from __future__ import absolute_import import pkg_resources import logging import subprocess from yardstick.benchmark.scenarios import base LOG = logging.getLogger(__name__) class Parser(base.Scenario): """running Parser Yang-to-Tosca module as a tool validating output against expected outcome more info https://wiki.opnfv.org/parser """ __scenario_type__ = "Parser" SETUP_SCRIPT = "parser_setup.sh" TEARDOWN_SCRIPT = "parser_teardown.sh" PARSER_SCRIPT = "parser.sh" def __init__(self, scenario_cfg, context_cfg): self.scenario_cfg = scenario_cfg self.context_cfg = context_cfg self.setup_done = False def setup(self): """scenario setup""" self.setup_script = pkg_resources.resource_filename( "yardstick.benchmark.scenarios.parser", Parser.SETUP_SCRIPT) cmd = "%s" % (self.setup_script) subprocess.call(cmd, shell=True) self.setup_done = True def run(self, result): """execute the translation""" options = self.scenario_cfg['options'] yangfile = options.get("yangfile", '~/yardstick/samples/yang.yaml') toscafile = options.get("toscafile", '~/yardstick/samples/tosca.yaml') self.parser_script = pkg_resources.resource_filename( "yardstick.benchmark.scenarios.parser", Parser.PARSER_SCRIPT) if not self.setup_done: self.setup() cmd1 = "%s %s %s" % (self.parser_script, yangfile, toscafile) cmd2 = "chmod 777 %s" % (self.parser_script) subprocess.call(cmd2, shell=True) p = subprocess.Popen(cmd1, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) p.communicate() print("yangtotosca finished") result['yangtotosca'] = "success" if p.returncode == 0 else "fail" def teardown(self): ''' for scenario teardown remove parser and pyang ''' self.teardown_script = pkg_resources.resource_filename( "yardstick.benchmark.scenarios.parser", Parser.TEARDOWN_SCRIPT) subprocess.call(self.teardown_script, shell=True) self.teardown_done = True def _test(): '''internal test function''' pass if __name__ == '__main__': _test()
32.72093
78
0.629353
8a47b6e5b5496c80fff7880ca098034da5ca4928
7,471
py
Python
week1/utilities/ltr_utils.py
gsingers/search_with_machine_learning_course
94622c24eb07e52793cf5e2289f2f69359bb87af
[ "Apache-2.0" ]
11
2021-12-30T18:55:56.000Z
2022-03-15T17:33:10.000Z
week1/utilities/ltr_utils.py
gsingers/search_with_machine_learning_course
94622c24eb07e52793cf5e2289f2f69359bb87af
[ "Apache-2.0" ]
9
2021-12-31T05:24:33.000Z
2022-03-08T07:44:45.000Z
week1/utilities/ltr_utils.py
gsingers/search_with_machine_learning_course
94622c24eb07e52793cf5e2289f2f69359bb87af
[ "Apache-2.0" ]
127
2021-12-24T17:03:26.000Z
2022-03-13T17:20:21.000Z
import json import requests def create_rescore_ltr_query(user_query, query_obj, click_prior_query, ltr_model_name, ltr_store_name, active_features=None, rescore_size=500, main_query_weight=1, rescore_query_weight=2): # Create the base query, use a much bigger window #add on the rescore print("IMPLEMENT ME: create_rescore_ltr_query") return query_obj # take an existing query and add in an SLTR so we can use it for explains to see how much SLTR contributes def create_sltr_simple_query(user_query, query_obj, click_prior_query, ltr_model_name, ltr_store_name, active_features=None): # Create the base query, use a much bigger window #add on the rescore sltr = { "sltr": { "params": { "keywords": user_query, "click_prior_query": click_prior_query }, "model": ltr_model_name, # Since we are using a named store, as opposed to simply '_ltr', we need to pass it in "store": ltr_store_name, } } if active_features is not None and len(active_features) > 0: sltr["active_features"] = active_features query_obj["query"]["bool"]["should"].append(sltr) return query_obj, len(query_obj["query"]["bool"]["should"]) def create_sltr_hand_tuned_query(user_query, query_obj, click_prior_query, ltr_model_name, ltr_store_name, active_features=None): # Create the base query, use a much bigger window #add on the rescore sltr = { "sltr": { "params": { "keywords": user_query, "click_prior_query": click_prior_query }, "model": ltr_model_name, # Since we are using a named store, as opposed to simply '_ltr', we need to pass it in "store": ltr_store_name, } } if active_features is not None and len(active_features) > 0: sltr["active_features"] = active_features query_obj["query"]["function_score"]["query"]["bool"]["should"].append(sltr) return query_obj, len(query_obj["query"]["function_score"]["query"]["bool"]["should"]) def create_feature_log_query(query, doc_ids, click_prior_query, featureset_name, ltr_store_name, size=200, terms_field="_id"): print("IMPLEMENT ME: create_feature_log_query") return None # Item is a Pandas namedtuple def get_features(item, exclusions, col_names): features = {} for idx, f in enumerate(item): col_name = col_names[idx] if col_name not in exclusions: # add it to the features # Do we also have a normalized version? If so, skip this one, else add. # if we do have a normalized one, add it, but name it w/o the norm here so that it matches our featureset in LTR # there probably is a better way of doing this ^^ normed = "%s_norm" % col_name if normed not in col_names: features[col_name.replace('_norm', '')] = f return features def to_xgb_format(qid, doc_id, rank, query_str, product_name, grade, features): if features is not None: featuresAsStrs = ["%s:%.4f" % (idx + 1, feature) for idx, feature in enumerate(features.values())] else: featuresAsStrs = "" comment = "# %s\t%s\t%s\t%s" % (doc_id, rank, query_str, product_name) return "%.4f\tqid:%s\t%s %s" % (grade, qid, "\t".join(featuresAsStrs), comment.replace('\n','')) def write_training_file(train_data, output_file, feat_map): print("Writing XGB Training file to %s" % (output_file)) col_names = train_data.keys() # We don't want to write everything out, some items we've been tracking are reserved or not needed for the model exclusions = {"query_id", "doc_id", "rank", "query", "sku", "product_name", "grade", "clicks", "num_impressions"} with open(output_file, 'bw') as output: for item in train_data.itertuples(index=False): # skip the first 'index' element from the DF # Pull out the specific items from the Pandas named tuple. The rest goes in the features map. # if there is a norm version, take that # features = get_features(item, exclusions, col_names) xgb_format = to_xgb_format(item.query_id, item.doc_id, item.rank, item.query, item.product_name, item.grade, features) output.write(bytes(xgb_format + "\n", 'utf-8')) # We need to write out the feature map, probably more needed here if feat_map: print("Writing feature map to %s" % feat_map) with open(feat_map, 'w') as feat_map_file: item = train_data.iloc[1:2] features = get_features(item, exclusions, col_names) feat_map_file.write("0\tna\tq\n") for idx, feat in enumerate(features.keys()): #https://docs.rs/xgboost/0.1.4/xgboost/struct.FeatureMap.html are the only docs I can find on the format if feat != "onSale": feat_map_file.write('{}\t{}\tq\n'.format(idx+1,feat))#idx+2 b/c we are one-based for this else: #Kludgy way of handling onSale being at some point. For now, write it out as 'q' # Bug in LTR prevents 'indicator'/boolean features, so model as q for now by # encoding onSale as a percentage discount feat_map_file.write('{}\t{}\tq\n'.format(idx+1,feat)) #make the q an i def write_opensearch_ltr_model(model_name, model, model_file, objective="rank:pairwise"): model_str = '[' + ','.join(list(model)) + ']' #print(model_str) os_model = { "model": { "name": model_name, "model": { "type": "model/xgboost+json", "definition": '{"objective":"%s", "splits": %s}' % (objective, model_str) } } } print("Saving XGB LTR-ready model to %s.ltr" % model_file) with open("%s.ltr" % model_file, 'w') as ltr_model: ltr_model.write(json.dumps(os_model)) def create_ltr_store(ltr_model_path, auth, delete_old=True): if delete_old: resp = requests.delete(ltr_model_path, auth=auth, verify=False) print("Deleted old store response status: %s" % resp.status_code) # Create our new LTR storage resp = requests.put(ltr_model_path, auth=auth, verify=False) print("Create the new store at %s response status: %s" % (ltr_model_path, resp.status_code)) return resp def post_featureset(featureset_path, ltr_feature_set, auth, headers={"Content-Type": 'application/json'}): print("POSTing the featureset to %s" % (featureset_path)) resp = requests.post(featureset_path, headers=headers, data=json.dumps(ltr_feature_set), auth=auth, verify=False) return resp def delete_model(model_path, auth): print("Deleting model from %s" % model_path) response = requests.delete(model_path, auth=auth, verify=False) print("\tDelete Model Response: %s: %s" % (response.status_code, response.text)) return response def upload_model(model_path, os_model, auth): print("Uploading model to %s" % model_path) headers = {"Content-Type": 'application/json'} response = requests.post(model_path, data=json.dumps(os_model), headers=headers, auth=auth, verify=False) print("\tUpload Model Response: %s: %s" % (response.status_code, response.text)) return response
46.987421
129
0.641146
37bda1b97752813dbac9e4cab4d4b1cae1d2bb1e
721
py
Python
detectron2_ofa/modeling/meta_arch/build.py
qdmy/Adelaidet-Quantization
e88cf41c62dc3944d2bd57ffc1d365535b0a1c4b
[ "Apache-2.0" ]
null
null
null
detectron2_ofa/modeling/meta_arch/build.py
qdmy/Adelaidet-Quantization
e88cf41c62dc3944d2bd57ffc1d365535b0a1c4b
[ "Apache-2.0" ]
null
null
null
detectron2_ofa/modeling/meta_arch/build.py
qdmy/Adelaidet-Quantization
e88cf41c62dc3944d2bd57ffc1d365535b0a1c4b
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2_ofa.utils.registry import Registry from third_party.quantization.convert_to_quantization import convert2quantization META_ARCH_REGISTRY = Registry("META_ARCH") # noqa F401 isort:skip META_ARCH_REGISTRY.__doc__ = """ Registry for meta-architectures, i.e. the whole model. The registered object will be called with `obj(cfg)` and expected to return a `nn.Module` object. """ def build_model(cfg): """ Built the whole model, defined by `cfg.MODEL.META_ARCHITECTURE`. """ meta_arch = cfg.MODEL.META_ARCHITECTURE model = META_ARCH_REGISTRY.get(meta_arch)(cfg) convert2quantization(model, cfg) return model
32.772727
81
0.762829
ae3c23e8ad133f678ac0c9def2a065bb82465e49
2,229
py
Python
merlin/io/shuffle.py
mikemckiernan/core
7621a8c4596a9f002d846d4618736fcf2c606419
[ "Apache-2.0" ]
1
2022-03-28T17:22:54.000Z
2022-03-28T17:22:54.000Z
merlin/io/shuffle.py
NVIDIA-Merlin/core
78ecdddf83735fa3041e0778d6fdac37c3c1dd92
[ "Apache-2.0" ]
27
2022-02-17T18:18:05.000Z
2022-03-31T23:44:08.000Z
merlin/io/shuffle.py
mikemckiernan/core
7621a8c4596a9f002d846d4618736fcf2c606419
[ "Apache-2.0" ]
5
2022-02-17T17:46:41.000Z
2022-03-11T03:23:28.000Z
# # Copyright (c) 2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import enum import warnings import pandas as pd from packaging.version import Version _IGNORE_INDEX_SUPPORTED = Version(pd.__version__) >= Version("1.3.0") try: import cudf _CUDF_IGNORE_INDEX_SUPPORTED = Version(cudf.__version__) >= Version("22.04.0") except ImportError: _CUDF_IGNORE_INDEX_SUPPORTED = None class Shuffle(enum.Enum): PER_PARTITION = 0 PER_WORKER = 1 FULL = 2 # # Helper Function definitions # def _check_shuffle_arg(shuffle): if shuffle is None: return shuffle if isinstance(shuffle, Shuffle): if shuffle == Shuffle.FULL: raise ValueError('`shuffle="full"` is not yet supported.') elif shuffle is True: shuffle = Shuffle.PER_WORKER warnings.warn("`shuffle=True` is deprecated. Using `PER_WORKER`.", DeprecationWarning) elif shuffle is False: shuffle = None else: raise ValueError(f"`shuffle={shuffle}` not recognized.") return shuffle def shuffle_df(df, size=None, keep_index=False): """Shuffles a DataFrame, returning a new dataframe with randomly ordered rows""" size = size or len(df) if isinstance(df, pd.DataFrame): if _IGNORE_INDEX_SUPPORTED: return df.sample(n=size, ignore_index=not keep_index) else: # Pandas<1.3.0 if keep_index: return df.sample(n=size) return df.sample(n=size).reset_index(drop=True) else: if _CUDF_IGNORE_INDEX_SUPPORTED: return df.sample(n=size, ignore_index=not keep_index) else: return df.sample(n=size, keep_index=keep_index)
28.948052
94
0.685509
f6d88397320f26d43dbd14b9aeb19ddadeb6483e
1,742
py
Python
Shriram.py
Shriram2004/mobilerobot-openloopcontrol
58b0cf5a67a3b25c356a7ea6b7435fbef909134e
[ "BSD-3-Clause" ]
null
null
null
Shriram.py
Shriram2004/mobilerobot-openloopcontrol
58b0cf5a67a3b25c356a7ea6b7435fbef909134e
[ "BSD-3-Clause" ]
null
null
null
Shriram.py
Shriram2004/mobilerobot-openloopcontrol
58b0cf5a67a3b25c356a7ea6b7435fbef909134e
[ "BSD-3-Clause" ]
null
null
null
from robomaster import robot import time from robomaster import camera if __name__ == '__main__' : ep_robot = robot.Robot() ep_robot.initialize(conn_type="ap") ep_chassis = ep_robot.chassis ep_camera = ep_robot.camera ep_led = ep_robot.led ''' x = x-axis movement distance,( meters) [-5,5] y = y-axis movement distance,( meters) [-5,5] z = rotation about z axis ( degree)[-180,180] xy_speed = xy axis movement speed,( unit meter/second) [0.5,2] ''' print("Camera streaming started...") ep_camera.start_video_stream(display=True, resolution=camera.STREAM_360P) ep_chassis.move(x=1, y=0, z=0, xy_speed=0.75).wait_for_completed() ep_led.set_led(comp="all",r=0,g=255,b=0,effect="on") time.sleep(2) ep_chassis.move(x=0, y=1, z=0, xy_speed=0.75).wait_for_completed() ep_led.set_led(comp="all",r=255,g=0,b=0,effect="on") time.sleep(2) ep_chassis.move(x=1.5, y=0, z=0, xy_speed=0.75).wait_for_completed() ep_led.set_led(comp="all",r=0,g=0,b=255,effect="on") time.sleep(2) ep_chassis.move(x=0, y=0, z=90, xy_speed=0.75).wait_for_completed() ep_led.set_led(comp="all",r=255,g=0,b=0,effect="on") time.sleep(2) ep_chassis.move(x=2, y=0, z=0, xy_speed=0.75).wait_for_completed() ep_led.set_led(comp="all",r=0,g=255,b=0,effect="on") time.sleep(2) ep_chassis.move(x=0, y=0, z=90, xy_speed=0.75).wait_for_completed() ep_led.set_led(comp="all",r=0,g=0,b=255,effect="on") time.sleep(2) ep_chassis.move(x=2.5, y=0, z=0, xy_speed=0.75).wait_for_completed() ep_camera.stop_video_stream() print("Stopped video streaming...") ep_robot.close()
30.561404
78
0.635476
1d247176b2a0de7d9d8f73fd1bc327141c1cc156
1,903
py
Python
nova/tests/functional/api_sample_tests/test_hosts.py
zjzh/nova
7bb21723171c59b93e28f5d508c2b6df39220f13
[ "Apache-2.0" ]
1,874
2015-01-04T05:18:34.000Z
2022-03-31T03:30:28.000Z
nova/tests/functional/api_sample_tests/test_hosts.py
woraser/nova
fc3890667e4971e3f0f35ac921c2a6c25f72adec
[ "Apache-2.0" ]
132
2017-03-27T11:31:52.000Z
2022-03-30T08:45:02.000Z
nova/tests/functional/api_sample_tests/test_hosts.py
woraser/nova
fc3890667e4971e3f0f35ac921c2a6c25f72adec
[ "Apache-2.0" ]
1,996
2015-01-04T15:11:51.000Z
2022-03-31T11:03:13.000Z
# Copyright 2012 Nebula, Inc. # Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova.tests.functional.api_sample_tests import api_sample_base class HostsSampleJsonTest(api_sample_base.ApiSampleTestBaseV21): ADMIN_API = True sample_dir = "os-hosts" def test_host_startup(self): response = self._do_get('os-hosts/%s/startup' % self.compute.host) self._verify_response('host-get-startup', {}, response, 200) def test_host_reboot(self): response = self._do_get('os-hosts/%s/reboot' % self.compute.host) self._verify_response('host-get-reboot', {}, response, 200) def test_host_shutdown(self): response = self._do_get('os-hosts/%s/shutdown' % self.compute.host) self._verify_response('host-get-shutdown', {}, response, 200) def test_host_maintenance(self): response = self._do_put('os-hosts/%s' % self.compute.host, 'host-put-maintenance-req', {}) self._verify_response('host-put-maintenance-resp', {}, response, 200) def test_host_get(self): response = self._do_get('os-hosts/%s' % self.compute.host) self._verify_response('host-get-resp', {}, response, 200) def test_hosts_list(self): response = self._do_get('os-hosts') self._verify_response('hosts-list-resp', {}, response, 200)
40.489362
78
0.683657
2e7b681f5dfe300e2d21978047986ed64c3864f0
287
py
Python
acronym/acronym.py
oscantillomen/Exercism-Python
1a598769aff0e4dd58294fcd692ca0402061717e
[ "MIT" ]
null
null
null
acronym/acronym.py
oscantillomen/Exercism-Python
1a598769aff0e4dd58294fcd692ca0402061717e
[ "MIT" ]
null
null
null
acronym/acronym.py
oscantillomen/Exercism-Python
1a598769aff0e4dd58294fcd692ca0402061717e
[ "MIT" ]
null
null
null
import re def abbreviate(words): cleanString = re.sub(r'[_-]', ' ', words) word_list = re.split(r"\s", cleanString) filtered_list = list(filter(lambda word: word, word_list)) acronym = "".join(list(map(lambda word: word[0], filtered_list))) return(acronym.upper())
28.7
69
0.655052
1423e06cf801d2a7a5814d1e0e7fa33ad5f375da
388
py
Python
src/datasets/__init__.py
pengkangzaia/mvts-ano-eval
976ffa2f151c8f91ce007e9a455bb4f97f89f2c9
[ "MIT" ]
24
2021-09-04T08:51:55.000Z
2022-03-30T16:45:54.000Z
src/datasets/__init__.py
pengkangzaia/mvts-ano-eval
976ffa2f151c8f91ce007e9a455bb4f97f89f2c9
[ "MIT" ]
3
2021-10-12T02:34:34.000Z
2022-03-18T10:37:35.000Z
src/datasets/__init__.py
pengkangzaia/mvts-ano-eval
976ffa2f151c8f91ce007e9a455bb4f97f89f2c9
[ "MIT" ]
15
2021-09-18T03:41:02.000Z
2022-03-21T09:03:01.000Z
from .dataset import Dataset from .swat import Swat from .wadi import Wadi from .damadics import Damadics from .msl_entity import Msl_entity from .smap_entity import Smap_entity from .smd_entity import Smd_entity from .multi_entity_dataset import MultiEntityDataset __all__ = [ 'Dataset', 'Swat', 'Wadi', 'Damadics', 'Msl_entity', 'Smap_entity', 'Smd_entity', 'MultiEntityDataset' ]
29.846154
106
0.786082
a184f881311d4826481b37a2d183be0f83c72b49
10,189
py
Python
tulip/transys/compositions.py
krooken/tulip-control
bb004422b575dccea8d19c33acfeb04b37c62a5a
[ "BSD-3-Clause" ]
null
null
null
tulip/transys/compositions.py
krooken/tulip-control
bb004422b575dccea8d19c33acfeb04b37c62a5a
[ "BSD-3-Clause" ]
null
null
null
tulip/transys/compositions.py
krooken/tulip-control
bb004422b575dccea8d19c33acfeb04b37c62a5a
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020 by California Institute of Technology # and University of Texas at Austin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CALTECH # OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF # USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. """Compositions of transys""" import copy from itertools import product from functools import reduce from operator import or_ from tulip.transys import KripkeStructure as KS from tulip.transys import WeightedKripkeStructure as WKS from tulip.transys import MarkovChain as MC from tulip.transys import MarkovDecisionProcess as MDP def sum_values(*values): """Return the sum of values, considering only elements that are not None. An item v,w in values can be anything that contains __add__ function such that v+0 and v+w is defined. """ # Cannot simply return sum([v for v in values if v is not None]) # because it does 0 + v which will not work for v of type, e.g., VectorCost current = 0 for v in values: if v is not None: current = v + current return current def mult_values(*values): """Return the product of values, considering only elements that are not None. An item v,w in values can be anything that contains __mul__ function such that v*1 and v*w is defined. """ current = 1 for v in values: if v is not None: current = v * current return current def neglect_none(*values): """Return a tuple of values, considering only elements that are not None. If the tuple only has one element, just return that element. """ ret = tuple([v for v in values if v is not None]) if len(ret) == 1: return ret[0] return ret def synchronous_parallel(models, transition_attr_operations={}): """Construct a model that represents the synchronous paralel composition of the given models (i.e., tensor product in graph theory https://en.wikipedia.org/wiki/Tensor_product_of_graphs) It follows definition 2.42 (synchronous product) in U{[BK08] <https://tulip-control.sourceforge.io/doc/bibliography.html#bk08>}, with the only exception that Act does not have the be the same for all the models in models. @type models: `list` of objects of types `KripeStructure`, `WeightedKripkeStructure`, `MarkovChain` or `MarkovDecisionProcess` @type transition_attr_operations: `dict` whose key is the transition attribute key and value is the operation to be performed for this transition attribute. For an attribute whose operation is not specified, a tuple of attribute values from all models will be used. @return: the synchronous parallel composition of all the objects in models @rtype: one of the following types: * L{transys.KripkeStructure} * L{transys.WeightedKripkeStructure} * L{transys.MarkovChain} * L{transys.MarkovDecisionProcess} """ # Let models = [K_1, ..., K_n]. # Let # * prod_states = [S_1, ..., S_n] where S_i is the set of states of K_i # * prod_initials = [I_1, ..., I_n] where I_i is the set of initial # states of K_i prod_states = [] prod_initials = [] # Construct prod_states and prod_initials and # construct the composed model ts with all the atomic propositions. composed_type = _get_composed_model_type(models) if composed_type is None: raise TypeError("Can only compose [WKS, KS] or [MDP, MC, KS]") ts = composed_type() for model in models: prod_states.append(set(model.states)) prod_initials.append(model.states.initial) ts.atomic_propositions.add_from(model.atomic_propositions) # Compute the state of ts: S = S_1 \times ... \times S_n. # Also, compute the label at each state (s_1, ..., s_n). # By definition L(s_1, ..., s_n) = \bigcup_i L_i(s_i) # where L_i is the labeling function of K_i. for state in product(*prod_states): ts.states.add(state) ts.states[state]["ap"] = reduce( or_, [models[i].states[state[i]]["ap"] for i in range(len(models))] ) # Compute the initial state of ts: I = I_1 \times ... \times I_n for state in product(*prod_initials): ts.states.initial.add(state) # Compute the set of actions if type(ts) == MDP: prod_actions = [list(m.actions) for m in models if type(m) == MDP] if len(prod_actions) == 1: ts.actions.add_from(prod_actions[0]) else: ts.actions.add_from(list(product(*prod_actions))) if WKS.cost_label not in transition_attr_operations: transition_attr_operations[WKS.cost_label] = sum_values if MC.probability_label not in transition_attr_operations: transition_attr_operations[MC.probability_label] = mult_values if MDP.action_label not in transition_attr_operations: transition_attr_operations[MDP.action_label] = neglect_none # Compute the transition of ts according to the rule # ((s_1, ..., s_n), (a_1, ..., a_n), (s_1', ..., s_n')) # in the transition relation of ts # iff (s_i, a_i, s_i') is in the transition relation of K_i for all i for from_state in ts.states: transitions = [ models[coord].transitions.find(from_state[coord]) for coord in range(len(models)) ] for transition in product(*transitions): to_state = tuple(t[1] for t in transition) attr = _get_transition_attr(transition, transition_attr_operations) ts.transitions.add( from_state, to_state, attr, ) return ts def apply_policy(model, policy): """Apply the policy on the MarkovDecisionProcess and return the induced MarkovChain @type model: `MarkovDecisionProcess` @type policy: An object such that for any state in model.states, policy[state] is an action in model.actions @return: the induced MarkovChain """ result_model_type = _get_apply_policy_model_type(model) result = result_model_type() result.states.add_from(model.states) result.states.initial.add_from(model.states.initial) result.atomic_propositions.add_from(model.atomic_propositions) for state in model.states: result.states[state]["ap"] = copy.deepcopy(model.states[state]["ap"]) action = policy[state] for transition in model.transitions.find(state): if transition[2][MDP.action_label] != action: continue transition_attr = copy.deepcopy(transition[2]) del transition_attr[MDP.action_label] result.transitions.add(transition[0], transition[1], transition_attr) return result def _get_transition_attr(trans_prod, transition_attr_operations): """Return the attribute of a transition constructed by taking the product of transitions in trans_prod. @type trans_prod: `list` of `Transitions` objects @type transition_attr_operations: `dict` whose key is the transition attribute key and value is the operation to be performed for this transition attribute. For an attribute whose operation is not specified, a tuple of attribute values from all models will be used. """ trans_attr = {} for idx, trans in enumerate(trans_prod): for trans_attr_key, trans_attr_value in trans[2].items(): if trans_attr_key not in trans_attr: trans_attr[trans_attr_key] = [None for i in range(len(trans_prod))] trans_attr[trans_attr_key][idx] = trans_attr_value for key, val in trans_attr.items(): operation = transition_attr_operations.get(key, None) if operation is None: trans_attr[key] = tuple(val) else: trans_attr[key] = operation(*val) return trans_attr def _get_composed_model_type(models): """Return the class of model obtained from taking a composition of those given by models @type models: `list` of objects of type KripkeStructure, WeightedKripkeStructure, MarkovChain or MarkovDecisionProcess """ if all(type(m) in [MDP, MC, KS] for m in models): if any(type(m) == MDP for m in models): return MDP if any(type(m) == MC for m in models): return MC return KS if all(type(m) in [WKS, KS] for m in models): if any(type(m) == WKS for m in models): return WKS return KS return None def _get_apply_policy_model_type(model): """Return the class of model obtained from applying a policy on the given model @type model: KripkeStructure, WeightedKripkeStructure or MarkovDecisionProcess """ if type(model) == MDP: return MC raise TypeError("Cannot apply policy for model of type {}".format(type(model)))
39.492248
92
0.689862
6ef27ea96c861dae9bd6822848ae3a66c2e8125f
7,324
py
Python
src/oci/artifacts/models/container_repository_collection.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
249
2017-09-11T22:06:05.000Z
2022-03-04T17:09:29.000Z
src/oci/artifacts/models/container_repository_collection.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
228
2017-09-11T23:07:26.000Z
2022-03-23T10:58:50.000Z
src/oci/artifacts/models/container_repository_collection.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
224
2017-09-27T07:32:43.000Z
2022-03-25T16:55:42.000Z
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ContainerRepositoryCollection(object): """ List of container repository results. """ def __init__(self, **kwargs): """ Initializes a new ContainerRepositoryCollection object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param layer_count: The value to assign to the layer_count property of this ContainerRepositoryCollection. :type layer_count: int :param layers_size_in_bytes: The value to assign to the layers_size_in_bytes property of this ContainerRepositoryCollection. :type layers_size_in_bytes: int :param image_count: The value to assign to the image_count property of this ContainerRepositoryCollection. :type image_count: int :param items: The value to assign to the items property of this ContainerRepositoryCollection. :type items: list[oci.artifacts.models.ContainerRepositorySummary] :param remaining_items_count: The value to assign to the remaining_items_count property of this ContainerRepositoryCollection. :type remaining_items_count: int :param repository_count: The value to assign to the repository_count property of this ContainerRepositoryCollection. :type repository_count: int """ self.swagger_types = { 'layer_count': 'int', 'layers_size_in_bytes': 'int', 'image_count': 'int', 'items': 'list[ContainerRepositorySummary]', 'remaining_items_count': 'int', 'repository_count': 'int' } self.attribute_map = { 'layer_count': 'layerCount', 'layers_size_in_bytes': 'layersSizeInBytes', 'image_count': 'imageCount', 'items': 'items', 'remaining_items_count': 'remainingItemsCount', 'repository_count': 'repositoryCount' } self._layer_count = None self._layers_size_in_bytes = None self._image_count = None self._items = None self._remaining_items_count = None self._repository_count = None @property def layer_count(self): """ **[Required]** Gets the layer_count of this ContainerRepositoryCollection. Total number of layers. :return: The layer_count of this ContainerRepositoryCollection. :rtype: int """ return self._layer_count @layer_count.setter def layer_count(self, layer_count): """ Sets the layer_count of this ContainerRepositoryCollection. Total number of layers. :param layer_count: The layer_count of this ContainerRepositoryCollection. :type: int """ self._layer_count = layer_count @property def layers_size_in_bytes(self): """ **[Required]** Gets the layers_size_in_bytes of this ContainerRepositoryCollection. Total storage in bytes consumed by layers. :return: The layers_size_in_bytes of this ContainerRepositoryCollection. :rtype: int """ return self._layers_size_in_bytes @layers_size_in_bytes.setter def layers_size_in_bytes(self, layers_size_in_bytes): """ Sets the layers_size_in_bytes of this ContainerRepositoryCollection. Total storage in bytes consumed by layers. :param layers_size_in_bytes: The layers_size_in_bytes of this ContainerRepositoryCollection. :type: int """ self._layers_size_in_bytes = layers_size_in_bytes @property def image_count(self): """ **[Required]** Gets the image_count of this ContainerRepositoryCollection. Total number of images. :return: The image_count of this ContainerRepositoryCollection. :rtype: int """ return self._image_count @image_count.setter def image_count(self, image_count): """ Sets the image_count of this ContainerRepositoryCollection. Total number of images. :param image_count: The image_count of this ContainerRepositoryCollection. :type: int """ self._image_count = image_count @property def items(self): """ **[Required]** Gets the items of this ContainerRepositoryCollection. Collection of container repositories. :return: The items of this ContainerRepositoryCollection. :rtype: list[oci.artifacts.models.ContainerRepositorySummary] """ return self._items @items.setter def items(self, items): """ Sets the items of this ContainerRepositoryCollection. Collection of container repositories. :param items: The items of this ContainerRepositoryCollection. :type: list[oci.artifacts.models.ContainerRepositorySummary] """ self._items = items @property def remaining_items_count(self): """ **[Required]** Gets the remaining_items_count of this ContainerRepositoryCollection. Estimated number of remaining results. :return: The remaining_items_count of this ContainerRepositoryCollection. :rtype: int """ return self._remaining_items_count @remaining_items_count.setter def remaining_items_count(self, remaining_items_count): """ Sets the remaining_items_count of this ContainerRepositoryCollection. Estimated number of remaining results. :param remaining_items_count: The remaining_items_count of this ContainerRepositoryCollection. :type: int """ self._remaining_items_count = remaining_items_count @property def repository_count(self): """ **[Required]** Gets the repository_count of this ContainerRepositoryCollection. Total number of repositories. :return: The repository_count of this ContainerRepositoryCollection. :rtype: int """ return self._repository_count @repository_count.setter def repository_count(self, repository_count): """ Sets the repository_count of this ContainerRepositoryCollection. Total number of repositories. :param repository_count: The repository_count of this ContainerRepositoryCollection. :type: int """ self._repository_count = repository_count def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
32.40708
245
0.670126
8d3d091fb392074516d18416c8441c455bc83f43
1,624
py
Python
alipay/aop/api/response/AntMerchantExpandDeliveryGoodsinfoSyncResponse.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/response/AntMerchantExpandDeliveryGoodsinfoSyncResponse.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/response/AntMerchantExpandDeliveryGoodsinfoSyncResponse.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AntMerchantExpandDeliveryGoodsinfoSyncResponse(AlipayResponse): def __init__(self): super(AntMerchantExpandDeliveryGoodsinfoSyncResponse, self).__init__() self._assign_item_id = None self._error_code = None self._error_desc = None self._success = None @property def assign_item_id(self): return self._assign_item_id @assign_item_id.setter def assign_item_id(self, value): self._assign_item_id = value @property def error_code(self): return self._error_code @error_code.setter def error_code(self, value): self._error_code = value @property def error_desc(self): return self._error_desc @error_desc.setter def error_desc(self, value): self._error_desc = value @property def success(self): return self._success @success.setter def success(self, value): self._success = value def parse_response_content(self, response_content): response = super(AntMerchantExpandDeliveryGoodsinfoSyncResponse, self).parse_response_content(response_content) if 'assign_item_id' in response: self.assign_item_id = response['assign_item_id'] if 'error_code' in response: self.error_code = response['error_code'] if 'error_desc' in response: self.error_desc = response['error_desc'] if 'success' in response: self.success = response['success']
29
119
0.676724
7c02ec58680adb1c83f933074a5eb599cb3e27c7
10,737
py
Python
zorg/buildbot/util/artifacts.py
antiagainst/llvm-zorg
a5b58cdd800d0d45b1bdd1f7fe058db6acbfd918
[ "Apache-2.0" ]
27
2019-01-15T03:03:58.000Z
2022-03-22T23:31:36.000Z
zorg/buildbot/util/artifacts.py
antiagainst/llvm-zorg
a5b58cdd800d0d45b1bdd1f7fe058db6acbfd918
[ "Apache-2.0" ]
21
2020-05-29T01:12:26.000Z
2022-03-29T20:06:22.000Z
zorg/buildbot/util/artifacts.py
antiagainst/llvm-zorg
a5b58cdd800d0d45b1bdd1f7fe058db6acbfd918
[ "Apache-2.0" ]
38
2019-02-10T02:46:33.000Z
2022-03-26T10:27:29.000Z
import os import buildbot import config from buildbot.steps.shell import WithProperties from zorg.buildbot.util.phasedbuilderutils import setProperty, determine_phase_id from zorg.buildbot.util.phasedbuilderutils import set_config_option # Get some parameters about where to upload and download results from. is_production = set_config_option('Master Options', 'is_production') if is_production: rsync_user = set_config_option('Master Options', 'rsync_user', 'buildmaster') master_name = set_config_option('Master Options', 'master_name', 'localhost') master_protocol = set_config_option('Master Options', 'master_protocol', 'http') base_download_url = '%s://%s/artifacts' % (master_protocol, master_name) base_package_url = '%s://%s/packages' % (master_protocol, master_name) package_url = set_config_option('Master Options', 'package_url', base_package_url) artifacts_path = set_config_option('Master Options', 'artifacts_path', os.path.expanduser('~/artifacts')) curl_flags = set_config_option('Master Options', 'curl_flags', '-fvLo') else: import getpass rsync_user = getpass.getuser() master_name = 'localhost' master_protocol = 'http' base_download_url = 'http://%s/~%s/artifacts' % (master_name, rsync_user) package_url = 'http://%s/~%s/packages' % (master_name, rsync_user) artifacts_path = os.path.expanduser('~/artifacts') curl_flags = '-fvLo' base_rsync_path = '%s@%s:%s' % (rsync_user, master_name, artifacts_path) # This method is used in determining the name of a given compiler archive def _determine_compiler_kind(props): # we need to differentiate between configure/make style builds (clang) # from buildit style builde (apple-clang) buildName = props['buildername'] kind = buildName subname = buildName if '_' in buildName: kind,subname = buildName.split('_', 1) if 'clang' in kind: subname = kind for kind in ('apple-clang','clang'): if kind in subname: return kind raise ValueError, "unknown compiler" # compiler_path and archive_name should be completely deterministic. Any # methods acting on an archive should use the following two methods to # calculate the path and/or name for an archive def _determine_archive_name(props): # phase_id must be set upstream. Usually by a phase builder archive_name = _determine_compiler_kind(props) if props.has_key('phase_id') and props['phase_id']: archive_name += '-' + props['phase_id'] + '.tar.gz' else: raise ValueError, "phase_id doesn't exist" return archive_name def _determine_compiler_path(props): # We need to segregate compiler builds based on both branch and builder # TODO: better solution when branch is None compiler_path = props['buildername'] if props.has_key('default_branch') and props['default_branch']: compiler_path = props['default_branch'] elif props.has_key('branch') and props['branch']: compiler_path = props['branch'] elif props.has_key('use_builder') and props['use_builder']: compiler_path = props['use_builder'] return compiler_path def _determine_bootstrap_url(props): if props.has_key('scheduler'): name= '' if props['scheduler'].startswith('phase2'): # always use phase1 compiler for phase2 # TODO: this shouldn't be hard coded name = 'clang-x86_64-darwin11-nobootstrap-RAincremental' else: # always use phase2 compiler for phase3 & phase4 compiler builds # TODO: this shouldn't be hard coded name = 'clang-x86_64-darwin11-RA' curl = base_download_url + '/' + name + '/clang-' + props['phase_id'] curl += '.tar.gz' return curl else: # if we get this far, we can assume that someone clicked 'rebuild' # (otherwise it would have a scheduler, or not have a phase_id) # we'll fall back to the phase1 build for this compiler curl = base_download_url + '/clang-x86_64-darwin11-nobootstrap-RA/' curl += props['buildername'] + '.tar.gz' return curl def GetCompilerRoot(f): # The following steps are used to retrieve a compiler archive # clean out any existing archives f.addStep(buildbot.steps.shell.ShellCommand( name='rm.host-compiler', command=['rm', '-rfv', 'host-compiler', 'host-compiler.tar.gz'], haltOnFailure=False, description=['rm', 'host-compiler'], workdir=WithProperties('%(builddir)s'))) setProperty(f, 'rootURL', WithProperties( base_download_url + '/%(getpath)s/%(getname)s', getpath=_determine_compiler_path, getname=_determine_archive_name)) # curl down the archive f.addStep(buildbot.steps.shell.ShellCommand( name='download.artifacts', command=['curl', curl_flags, 'host-compiler.tar.gz', WithProperties('%(rootURL)s')], haltOnFailure=True, description=['download build artifacts'], workdir=WithProperties('%(builddir)s'))) # extract the compiler root from the archive f.addStep(buildbot.steps.shell.ShellCommand( name='unzip', command=['tar', '-zxvf','../host-compiler.tar.gz'], haltOnFailure=True, description=['extract', 'host-compiler'], workdir='host-compiler')) return f def uploadArtifacts(f, rootdir='clang-install'): #phase_id is required to make sure that path to archives are deterministic. setProperty(f, 'phase_id', WithProperties('%(get_phase_id)s', get_phase_id = determine_phase_id)) # we always create/name a compiler archive based on the same criteria archive_path = WithProperties('%(builddir)s/%(getname)s', getname=_determine_archive_name) if rootdir.endswith('install'): cit_path = 'clang-build/**/bin/c-index-test' copy_command = 'cp %s %s/bin/' % (cit_path, rootdir) f.addStep(buildbot.steps.shell.ShellCommand( name='add.cit', haltOnFailure=True, command = ['sh', '-c', copy_command], description=['add c-index-test to root'], workdir=WithProperties('%(builddir)s'))) f.addStep(buildbot.steps.shell.ShellCommand( name='tar.and.zip', haltOnFailure=True, command=['tar', '-czv', '--exclude', '.svn', '-f', archive_path, './'], description=['tar', '&', 'zip'], workdir=rootdir)) # Upload the archive. archive_dest = WithProperties(base_rsync_path +'/%(getpath)s/', getpath=_determine_compiler_path) f.addStep(buildbot.steps.shell.ShellCommand( name='upload.artifacts', haltOnFailure=True, command=['rsync', '-pave', 'ssh', archive_path, archive_dest], description=['upload build artifacts'], workdir=WithProperties('%(builddir)s'))) # Set the artifact URL in a property for easy access from the build log. download_str = base_download_url + '/%(getpath)s/%(getname)s' artifactsURL = WithProperties(download_str, getpath=_determine_compiler_path, getname=_determine_archive_name) setProperty(f, 'artifactsURL', artifactsURL) return f def project_from_name(builder_name): for project in ('apple-clang', 'clang'): if project in builder_name: return project raise RuntimeError('Invalid builder name.') def determine_url(props): if props.has_key('phase_id') and props.has_key('category'): if props['category'].startswith('build-'): return _determine_bootstrap_url(props) project = project_from_name(props['buildername']) name = props['use_builder'] curl = base_download_url + '/' + name + '/' + project_from_name(name) curl += '-' + props['phase_id'] + '.tar.gz' return curl # phase_id does not exist, so this has to be a manually triggered build. # we will fall back to the latest_validated build for the use_builder # property if it exists, otherwise, fall back to the latest_validated build # for this builder. curl = base_download_url + '/validated_builds/' if props.has_key('use_builder'): curl += props['use_builder'] + '.tar.gz' else: curl += props['buildername'] + '.tar.gz' return curl def GetCompilerArtifacts(f): f.addStep(buildbot.steps.shell.ShellCommand( name='rm.host-compiler', command=['rm', '-rfv', 'host-compiler', 'host-compiler.tar.gz'], haltOnFailure=False, description=['rm', 'host-compiler'], workdir=WithProperties('%(builddir)s'))) f.addStep(buildbot.steps.shell.ShellCommand( name='download.artifacts', command=['curl', curl_flags, 'host-compiler.tar.gz', WithProperties('%(get_curl)s', get_curl=determine_url)], haltOnFailure=True, description=['download build artifacts'], workdir=WithProperties('%(builddir)s'))) f.addStep(buildbot.steps.shell.ShellCommand( name='unzip', command=['tar', '-zxvf','../host-compiler.tar.gz'], haltOnFailure=True, description=['extract', 'host-compiler'], workdir='host-compiler')) return f def GetCCFromCompilerArtifacts(f, base_dir): def get_cc(status, stdin, stdout): lines = filter(bool, stdin.split('\n')) for line in lines: if 'bin/clang' in line: cc_path = line return { 'cc_path' : cc_path } return { } f.addStep(buildbot.steps.shell.SetProperty( name='find.cc', command=['find', base_dir, '-name', 'clang'], extract_fn=get_cc, workdir=WithProperties('%(builddir)s'))) return f def GetCXXFromCompilerArtifacts(f, base_dir): def get_cxx(status, stdin, stdout): lines = filter(bool, stdin.split('\n')) for line in lines: if 'bin/clang++' in line: cxx_path = line return { 'cxx_path' : cxx_path } return { } f.addStep(buildbot.steps.shell.SetProperty( name='find.cxx', command=['find', base_dir, '-name', 'clang++'], extract_fn=get_cxx, workdir=WithProperties('%(builddir)s'))) return f
44.924686
85
0.627084
0b1062297ea37b4cfb0804fe69a246100aa038c9
226
py
Python
WeBlog/app/main/__init__.py
imrocky1976/web
3af7fbd82af8b4d2737672779d5742825b94a6fe
[ "MIT" ]
null
null
null
WeBlog/app/main/__init__.py
imrocky1976/web
3af7fbd82af8b4d2737672779d5742825b94a6fe
[ "MIT" ]
4
2020-03-24T17:13:37.000Z
2022-03-08T21:09:48.000Z
WeBlog/app/main/__init__.py
imrocky1976/web
3af7fbd82af8b4d2737672779d5742825b94a6fe
[ "MIT" ]
null
null
null
from flask import Blueprint main = Blueprint('main', __name__) from app.main import errors, views from app.models import Permission @main.app_context_processor def inject_permissions(): return dict(Permission=Permission)
25.111111
38
0.80531
bed260805baa1ef468d9e95986e74259460d4d45
120
py
Python
dryadic/learning/stan/logistic/__init__.py
ohsu-comp-bio/dryads
015f6d3186a5146809334e2490c072e675b22891
[ "MIT" ]
null
null
null
dryadic/learning/stan/logistic/__init__.py
ohsu-comp-bio/dryads
015f6d3186a5146809334e2490c072e675b22891
[ "MIT" ]
null
null
null
dryadic/learning/stan/logistic/__init__.py
ohsu-comp-bio/dryads
015f6d3186a5146809334e2490c072e675b22891
[ "MIT" ]
null
null
null
from .classifiers import BaseLogistic from .stan_models import gauss_model __all__ = ['BaseLogistic', 'gauss_model']
17.142857
41
0.791667
75db4daa25a7d76e3b2d9e3e7df002cf9c0d800e
2,341
py
Python
docs/sphinx/source/conf.py
jmairal/arsenic
7828cf15f93eac40962c222594ff1fe537fff49c
[ "BSD-3-Clause" ]
null
null
null
docs/sphinx/source/conf.py
jmairal/arsenic
7828cf15f93eac40962c222594ff1fe537fff49c
[ "BSD-3-Clause" ]
null
null
null
docs/sphinx/source/conf.py
jmairal/arsenic
7828cf15f93eac40962c222594ff1fe537fff49c
[ "BSD-3-Clause" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os # -- Project information ----------------------------------------------------- project = 'Cyanure' copyright = '2019, Julien Mairal' author = 'Julien Mairal' # The full version, including alpha/beta/rc tags release = '1.0.0' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.inheritance_diagram', 'numpydoc', 'autodocsumm' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] autosummary_generate = True autodoc_default_options = {"autosummary": True} numpydoc_show_class_members = False source_encoding = 'utf-8' #source_encoding = 'iso-8859-15' language = 'en' html_output_encoding = 'utf-8' #html_output_encoding = 'ISO-8859-1'
32.068493
79
0.6651
caa74b617f4a51cafa48cd436ddebbb8f145a9a6
2,314
py
Python
tests/unittests/hub/test_pipeline_manager.py
krishnakatyal/towhee
c5e043aa1509cf46644ca6b53f691d6ed2647212
[ "Apache-2.0" ]
null
null
null
tests/unittests/hub/test_pipeline_manager.py
krishnakatyal/towhee
c5e043aa1509cf46644ca6b53f691d6ed2647212
[ "Apache-2.0" ]
1
2022-01-19T06:21:07.000Z
2022-01-19T06:21:07.000Z
tests/unittests/hub/test_pipeline_manager.py
jennyli-z/towhee
55c55fd961229575b75eae269b55090c839f8dcd
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path from shutil import rmtree from requests.exceptions import HTTPError from towhee.utils.git_utils import GitUtils from towhee.hub.pipeline_manager import PipelineManager public_path = Path(__file__).parent.parent.resolve() class TestPipelineManager(unittest.TestCase): """ Unit test for PipelineManager. """ def test_create(self): repo = 'pipeline-operator' manager = PipelineManager('towhee', repo) with self.assertRaises(HTTPError): manager.create('psw') def test_exists_create(self): repo = 'ci-test' manager = PipelineManager('towhee', repo) manager.create('psw') def test_init_pipeline(self): temp_repo = 'pipeline-template' git = GitUtils(author='towhee', repo=temp_repo) git.clone(local_repo_path=public_path / 'test_cache' / temp_repo) pipeline_repo = 'init-pipeline' pipeline_manager = PipelineManager('towhee', pipeline_repo) if not (public_path / 'test_cache' / pipeline_repo).exists(): (public_path / 'test_cache' / pipeline_repo).mkdir() pipeline_manager.init_pipeline(file_temp=public_path / 'test_cache' / temp_repo, file_dest=public_path / 'test_cache' / pipeline_repo) self.assertTrue(pipeline_manager.check(public_path / 'test_cache' / pipeline_repo)) rmtree(public_path / 'test_cache' / temp_repo) rmtree(public_path / 'test_cache' / pipeline_repo) def test_check(self): repo = 'ci-test' manager = PipelineManager('towhee', repo) self.assertTrue(manager.check(public_path / 'mock_pipelines/ci_test')) if __name__ == '__main__': unittest.main()
36.15625
142
0.709162
e48457d47dc71461ba3b0e36528b75154c99c67e
391
py
Python
mundo1/ex020.py
Igor3550/Exercicios-de-python
e0f6e043df4f0770ac15968485fbb19698b4ac6b
[ "MIT" ]
null
null
null
mundo1/ex020.py
Igor3550/Exercicios-de-python
e0f6e043df4f0770ac15968485fbb19698b4ac6b
[ "MIT" ]
null
null
null
mundo1/ex020.py
Igor3550/Exercicios-de-python
e0f6e043df4f0770ac15968485fbb19698b4ac6b
[ "MIT" ]
null
null
null
# faça um programa que leia os quatro nomes dos alunos e sorteie a ordem de apresentação do trabalho import random a1 = input('Digite o nome do primeiro aluno: ') a2 = input('Digite o nome do segundo aluno: ') a3 = input('Digite o nome do terceiro aluno: ') a4 = input('Digite o nome do quarto aluno: ') x = [a1, a2, a3, a4] random.shuffle(x) print('A ordem de apresentação é {}'.format(x))
39.1
100
0.710997
8950b0e7c929d22387c214c33748c48839c85eb8
6,422
py
Python
ros/src/tl_detector/tl_detector.py
MadridTeam/ROSCentral
9bcedf04c64f3b3d992077ae02ac501b92063336
[ "MIT" ]
null
null
null
ros/src/tl_detector/tl_detector.py
MadridTeam/ROSCentral
9bcedf04c64f3b3d992077ae02ac501b92063336
[ "MIT" ]
null
null
null
ros/src/tl_detector/tl_detector.py
MadridTeam/ROSCentral
9bcedf04c64f3b3d992077ae02ac501b92063336
[ "MIT" ]
1
2018-10-23T15:20:53.000Z
2018-10-23T15:20:53.000Z
#!/usr/bin/env python import rospy from std_msgs.msg import Int32 from geometry_msgs.msg import PoseStamped, Pose from styx_msgs.msg import TrafficLightArray, TrafficLight from styx_msgs.msg import Lane from sensor_msgs.msg import Image from cv_bridge import CvBridge from light_classification.tl_classifier import TLClassifier import tf import cv2 import yaml from scipy.spatial import KDTree STATE_COUNT_THRESHOLD = 3 class TLDetector(object): def __init__(self): rospy.init_node('tl_detector') self.pose = None self.waypoints = None self.camera_image = None self.lights = [] self.waypoints_2d = None self.waypoint_tree = None sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) ''' /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and helps you acquire an accurate ground truth data source for the traffic light classifier by sending the current color state of all traffic lights in the simulator. When testing on the vehicle, the color state will not be available. You'll need to rely on the position of the light and the camera image to predict it. ''' sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb) sub6 = rospy.Subscriber('/image_color', Image, self.image_cb) config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1) self.bridge = CvBridge() self.light_classifier = TLClassifier(False) self.listener = tf.TransformListener() self.state = TrafficLight.UNKNOWN self.last_state = TrafficLight.UNKNOWN self.last_wp = -1 self.state_count = 0 rospy.spin() def pose_cb(self, msg): self.pose = msg def waypoints_cb(self, waypoints): self.waypoints = waypoints if not self.waypoints_2d: self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints] self.waypoint_tree = KDTree(self.waypoints_2d) def traffic_cb(self, msg): self.lights = msg.lights def image_cb(self, msg): #rospy.logwarn('IMAGE Callback') """Identifies red lights in the incoming camera image and publishes the index of the waypoint closest to the red light's stop line to /traffic_waypoint Args: msg (Image): image from car-mounted camera """ self.has_image = True self.camera_image = msg light_wp, state = self.process_traffic_lights() ''' Publish upcoming red lights at camera frequency. Each predicted state has to occur `STATE_COUNT_THRESHOLD` number of times till we start using it. Otherwise the previous stable state is used. ''' if self.state != state: self.state_count = 0 self.state = state elif self.state_count >= STATE_COUNT_THRESHOLD: self.last_state = self.state light_wp = light_wp if state == TrafficLight.RED else -1 self.last_wp = light_wp self.upcoming_red_light_pub.publish(Int32(light_wp)) else: self.upcoming_red_light_pub.publish(Int32(self.last_wp)) self.state_count += 1 def get_closest_waypoint(self, x, y): """Identifies the closest path waypoint to the given position https://en.wikipedia.org/wiki/Closest_pair_of_points_problem Args: pose (Pose): position to match a waypoint to Returns: int: index of the closest waypoint in self.waypoints """ #TODO implement closest_wp_idx = self.waypoint_tree.query([x, y], 1)[1] return closest_wp_idx def get_light_state(self, light): """Determines the current color of the traffic light Args: light (TrafficLight): light to classify Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ if(not self.has_image): self.prev_light_loc = None return False cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "bgr8") #Get classification return self.light_classifier.get_classification(cv_image) def process_traffic_lights(self): """Finds closest visible traffic light, if one exists, and determines its location and color Returns: int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists) int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ closest_light = None line_wp_idx = None # List of positions that correspond to the line to stop in front of for a given intersection stop_line_positions = self.config['stop_line_positions'] if not self.pose is None and not self.waypoint_tree is None: car_position = self.get_closest_waypoint(self.pose.pose.position.x, self.pose.pose.position.x) #TODO find the closest visible traffic light (if one exists) diff = len(self.waypoints.waypoints) for i, light in enumerate(self.lights): # Get stop line waypoint index line = stop_line_positions[i] temp_wp_idx = self.get_closest_waypoint(line[0], line[1]) # Find closest stop line waypoint index d = temp_wp_idx - car_position if d >= 0 and d < diff: diff = d closest_light = light line_wp_idx = temp_wp_idx if closest_light: state = self.get_light_state(closest_light) rospy.logerr("Manish: {}, {}".format(line_wp_idx, state)) return line_wp_idx, state #self.waypoints = None return -1, TrafficLight.UNKNOWN if __name__ == '__main__': try: TLDetector() except rospy.ROSInterruptException: rospy.logerr('Could not start traffic node.')
35.877095
107
0.642479
da8a93bc1d2923d330fc2cff04fc2eb99ac6f311
4,260
py
Python
Interfaces/Spacecraft/LoadMMS.py
tulasinandan/TurbAn
14e912157107ad46c4c65bcac745da738d93c1c6
[ "BSD-2-Clause-Patent" ]
null
null
null
Interfaces/Spacecraft/LoadMMS.py
tulasinandan/TurbAn
14e912157107ad46c4c65bcac745da738d93c1c6
[ "BSD-2-Clause-Patent" ]
null
null
null
Interfaces/Spacecraft/LoadMMS.py
tulasinandan/TurbAn
14e912157107ad46c4c65bcac745da738d93c1c6
[ "BSD-2-Clause-Patent" ]
10
2019-03-22T15:30:12.000Z
2021-02-10T02:55:50.000Z
import sys import os sys.path.insert(0,os.environ['HOME']+'/AJGAR/TurbAn') import pandas as pd import numpy as np import TurbAn.Analysis.Simulations as af import TurbAn.Analysis.TimeSeries.Time_Series_Analysis as tsa def create_df_ascii(dirname,chop_ends=100,hampel_filter=None,lowpass_freq=None,spacecraft=1): try: print('Creating Data Frame from '+dirname) except: print("No directory given, exiting") return spacecraft = str(spacecraft) cadence=os.path.basename(dirname) if cadence == 'B': suffix=spacecraft+'_resB1.dat' elif cadence == 'electrons': suffix=spacecraft+'_resNe_1.dat' elif cadence == 'ions': suffix=spacecraft+'_resNi_1.dat' elif cadence == 'B_hmp': suffix=spacecraft+'_resB1_hmp.dat' elif cadence == 'B_hmp_lp': suffix=spacecraft+'_resB1_hmp_lp.dat' elif cadence == 'electrons_hmp': suffix=spacecraft+'_resNe_1_hmp.dat' elif cadence == 'electrons_hmp_lp': suffix=spacecraft+'_resNe_1_hmp_lp.dat' elif cadence == 'ions_hmp': suffix=spacecraft+'_resNi_1_hmp.dat' elif cadence == 'ions_hmp_lp': suffix=spacecraft+'_resNi_1_hmp_lp.dat' b =np.loadtxt(dirname+'/B' +suffix) dt=b[2,0]-b[1,0] nt=len(b[:,0]); print('Number of entries nt=',nt) nt=nt if nt%2==0 else nt-1 # if chop_ends is not None: b=b[chop_ends:nt,:][:-chop_ends,:] vi=np.loadtxt(dirname+'/Vi_'+suffix)[chop_ends:nt,:][:-chop_ends,:] ve=np.loadtxt(dirname+'/Ve_'+suffix)[chop_ends:nt,:][:-chop_ends,:] ni=np.loadtxt(dirname+'/Ni_'+suffix)[chop_ends:nt,:][:-chop_ends,:] ne=np.loadtxt(dirname+'/Ne_'+suffix)[chop_ends:nt,:][:-chop_ends,:] R =np.loadtxt(dirname+'/R' +suffix)[chop_ends:nt,:][:-chop_ends,:] else: b=b[:nt,:] vi=np.loadtxt(dirname+'/Vi_'+suffix)[:nt,:] ve=np.loadtxt(dirname+'/Ve_'+suffix)[:nt,:] ni=np.loadtxt(dirname+'/Ni_'+suffix)[:nt,:] ne=np.loadtxt(dirname+'/Ne_'+suffix)[:nt,:] R =np.loadtxt(dirname+'/R' +suffix)[:nt,:] # if hampel_filter is not None: from .Hampel import spectral_hampel_scalar, spectral_hampel_vector print('Running Spectral Hampel filter on ...') print('... p+ velocity') vi[:,1],vi[:,2],vi[:,3]=spectral_hampel_vector(vi[:,1],vi[:,2],vi[:,3],dt,\ hampel_filter['p+'][0],hampel_filter['p+'][1]) print('... e- velocity') ve[:,1],ve[:,2],ve[:,3]=spectral_hampel_vector(ve[:,1],ve[:,2],ve[:,3],dt,\ hampel_filter['e-'][0],hampel_filter['e-'][1]) print('... p+ density') ni[:,1] = spectral_hampel_scalar(ni[:,1],dt,hampel_filter['p+'][0],hampel_filter['p+'][1]) print('... e- density') ne[:,1] = spectral_hampel_scalar(ne[:,1],dt,hampel_filter['e-'][0],hampel_filter['e-'][1]) if 'chop_edges' in hampel_filter: chop_edges=hampel_filter['chop_edges'] b = b[chop_edges:,:][:-chop_edges,:] vi=vi[chop_edges:,:][:-chop_edges,:] ve=ve[chop_edges:,:][:-chop_edges,:] ni=ni[chop_edges:,:][:-chop_edges,:] ne=ne[chop_edges:,:][:-chop_edges,:] R = R[chop_edges:,:][:-chop_edges,:] if lowpass_freq is not None and type(lowpass_freq) is not dict: temp=lowpass_freq lowpass_freq={} for i in 'vi','ve','ni','ne': lowpass_freq[i]=temp temp=None if lowpass_freq is not None: print('Applying low-pass filter on ...') print('vi at ',str(lowpass_freq['vi']),' ... and ...') print('ve at ',str(lowpass_freq['ve']),' ... ') for i in range(1,4): vi[:,i]=tsa.lowpass_sharp(vi[:,i],dt,lowpass_freq['vi']) ve[:,i]=tsa.lowpass_sharp(ve[:,i],dt,lowpass_freq['ve']) print('ni at ',str(lowpass_freq['ni']),' ... ') ni[:,1]=tsa.lowpass_sharp(ni[:,1],dt,lowpass_freq['ni']) print('ne at ',str(lowpass_freq['ne']),' ... ') ne[:,1]=tsa.lowpass_sharp(ne[:,1],dt,lowpass_freq['ne']) df=pd.DataFrame({'t':R[:,0],'x':R[:,1],'y':R[:,2],'z':R[:,3],'bx':b[:,1],\ 'by':b[:,2],'bz':b[:,3],'vix':vi[:,1],'viy':vi[:,2],\ 'viz':vi[:,3],'ni':ni[:,1],'vex':ve[:,1],'vey':ve[:,2],\ 'vez':ve[:,3],'ne':ne[:,1]}) return df
39.813084
96
0.586385
bbc0769297cf7408c5110e84c296caf3b3bfc977
1,945
py
Python
google-cloud-sdk/lib/surface/container/builds/describe.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
1
2017-11-29T18:52:27.000Z
2017-11-29T18:52:27.000Z
google-cloud-sdk/.install/.backup/lib/surface/container/builds/describe.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
null
null
null
google-cloud-sdk/.install/.backup/lib/surface/container/builds/describe.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
1
2020-07-25T12:09:01.000Z
2020-07-25T12:09:01.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Describe build command.""" from googlecloudsdk.api_lib.cloudbuild import cloudbuild_util from googlecloudsdk.calliope import base class Describe(base.DescribeCommand): """Get information about a particular build.""" @staticmethod def Args(parser): """Register flags for this command. Args: parser: An argparse.ArgumentParser-like object. It is mocked out in order to capture some information, but behaves like an ArgumentParser. """ parser.add_argument( 'build', help=('The build to describe. The ID of the build is printed at the ' 'end of the build submission process, or in the ID column when ' 'listing builds.'), ) def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Returns: Some value that we want to have printed later. """ client = cloudbuild_util.GetClientInstance() resources = self.context['registry'] build_ref = resources.Parse( args.build, collection='cloudbuild.projects.builds') return client.projects_builds.Get( client.MESSAGES_MODULE.CloudbuildProjectsBuildsGetRequest( projectId=build_ref.projectId, id=build_ref.id))
34.122807
79
0.71054
5b798cbd462f59029f5d2ca4e4bf424e27bff8eb
9,025
py
Python
test/python/circuit/test_circuit_load_from_qpy.py
irajput/qiskit-terra
e9f06e457bfb67afe1b36b6b9b0b315eb1a24800
[ "Apache-2.0" ]
1
2021-07-06T09:07:47.000Z
2021-07-06T09:07:47.000Z
test/python/circuit/test_circuit_load_from_qpy.py
evercodes/qiskit-terra
649fec2cd1644c43eabc39b0a588c0a9347a2b50
[ "Apache-2.0" ]
null
null
null
test/python/circuit/test_circuit_load_from_qpy.py
evercodes/qiskit-terra
649fec2cd1644c43eabc39b0a588c0a9347a2b50
[ "Apache-2.0" ]
null
null
null
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test cases for the circuit qasm_file and qasm_string method.""" import io import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit.random import random_circuit from qiskit.circuit.gate import Gate from qiskit.circuit.instruction import Instruction from qiskit.circuit.parameter import Parameter from qiskit.opflow import X, Y, Z from qiskit.test import QiskitTestCase from qiskit.circuit.qpy_serialization import dump, load class TestLoadFromQPY(QiskitTestCase): """Test circuit.from_qasm_* set of methods.""" def test_qpy_full_path(self): """Test full path qpy serialization for basic circuit.""" qr_a = QuantumRegister(4, "a") qr_b = QuantumRegister(4, "b") cr_c = ClassicalRegister(4, "c") cr_d = ClassicalRegister(4, "d") q_circuit = QuantumCircuit( qr_a, qr_b, cr_c, cr_d, name="MyCircuit", metadata={"test": 1, "a": 2}, global_phase=3.14159, ) q_circuit.h(qr_a) q_circuit.cx(qr_a, qr_b) q_circuit.barrier(qr_a) q_circuit.barrier(qr_b) q_circuit.measure(qr_a, cr_c) q_circuit.measure(qr_b, cr_d) qpy_file = io.BytesIO() dump(q_circuit, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(q_circuit, new_circ) self.assertEqual(q_circuit.global_phase, new_circ.global_phase) self.assertEqual(q_circuit.metadata, new_circ.metadata) self.assertEqual(q_circuit.name, new_circ.name) def test_circuit_with_conditional(self): """Test that instructions with conditions are correctly serialized.""" qc = QuantumCircuit(1, 1) qc.x(0).c_if(qc.cregs[0], 1) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_int_parameter(self): """Test that integer parameters are correctly serialized.""" qc = QuantumCircuit(1) qc.rx(3, 0) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_float_parameter(self): """Test that float parameters are correctly serialized.""" qc = QuantumCircuit(1) qc.rx(3.14, 0) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_numpy_float_parameter(self): """Test that numpy float parameters are correctly serialized.""" qc = QuantumCircuit(1) qc.rx(np.float32(3.14), 0) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_numpy_int_parameter(self): """Test that numpy integer parameters are correctly serialized.""" qc = QuantumCircuit(1) qc.rx(np.int16(3), 0) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_unitary_gate(self): """Test that numpy array parameters are correctly serialized""" qc = QuantumCircuit(1) unitary = np.array([[0, 1], [1, 0]]) qc.unitary(unitary, 0) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_opaque_gate(self): """Test that custom opaque gate is correctly serialized""" custom_gate = Gate("black_box", 1, []) qc = QuantumCircuit(1) qc.append(custom_gate, [0]) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_opaque_instruction(self): """Test that custom opaque instruction is correctly serialized""" custom_gate = Instruction("black_box", 1, 0, []) qc = QuantumCircuit(1) qc.append(custom_gate, [0]) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_custom_gate(self): """Test that custom gate is correctly serialized""" custom_gate = Gate("black_box", 1, []) custom_definition = QuantumCircuit(1) custom_definition.h(0) custom_definition.rz(1.5, 0) custom_definition.sdg(0) custom_gate.definition = custom_definition qc = QuantumCircuit(1) qc.append(custom_gate, [0]) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) self.assertEqual(qc.decompose(), new_circ.decompose()) def test_custom_instruction(self): """Test that custom instruction is correctly serialized""" custom_gate = Instruction("black_box", 1, 0, []) custom_definition = QuantumCircuit(1) custom_definition.h(0) custom_definition.rz(1.5, 0) custom_definition.sdg(0) custom_gate.definition = custom_definition qc = QuantumCircuit(1) qc.append(custom_gate, [0]) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) self.assertEqual(qc.decompose(), new_circ.decompose()) def test_parameter(self): """Test that a circuit with a parameter is correctly serialized.""" theta = Parameter("theta") qc = QuantumCircuit(5, 1) qc.h(0) for i in range(4): qc.cx(i, i + 1) qc.barrier() qc.rz(theta, range(5)) qc.barrier() for i in reversed(range(4)): qc.cx(i, i + 1) qc.h(0) qc.measure(0, 0) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) self.assertEqual(qc.bind_parameters({theta: 3.14}), new_circ.bind_parameters({theta: 3.14})) def test_bound_parameter(self): """Test a circuit with a bound parameter is correctly serialized.""" theta = Parameter("theta") qc = QuantumCircuit(5, 1) qc.h(0) for i in range(4): qc.cx(i, i + 1) qc.barrier() qc.rz(theta, range(5)) qc.barrier() for i in reversed(range(4)): qc.cx(i, i + 1) qc.h(0) qc.measure(0, 0) qc.assign_parameters({theta: 3.14}) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circ = load(qpy_file)[0] self.assertEqual(qc, new_circ) def test_parameter_expression(self): """Test a circuit with a parameter expression.""" theta = Parameter("theta") phi = Parameter("phi") sum_param = theta + phi qc = QuantumCircuit(5, 1) qc.h(0) for i in range(4): qc.cx(i, i + 1) qc.barrier() qc.rz(sum_param, range(3)) qc.rz(phi, 3) qc.rz(theta, 4) qc.barrier() for i in reversed(range(4)): qc.cx(i, i + 1) qc.h(0) qc.measure(0, 0) qpy_file = io.BytesIO() dump(qc, qpy_file) qpy_file.seek(0) new_circuit = load(qpy_file)[0] self.assertEqual(qc, new_circuit) def test_string_parameter(self): """Test a PauliGate instruction that has string parameters.""" circ = (X ^ Y ^ Z).to_circuit_op().to_circuit() qpy_file = io.BytesIO() dump(circ, qpy_file) qpy_file.seek(0) new_circuit = load(qpy_file)[0] self.assertEqual(circ, new_circuit) def test_multiple_circuits(self): """Test multiple circuits can be serialized together.""" circuits = [] for i in range(10): circuits.append( random_circuit(10, 10, measure=True, conditional=True, reset=True, seed=42 + i) ) qpy_file = io.BytesIO() dump(circuits, qpy_file) qpy_file.seek(0) new_circs = load(qpy_file) self.assertEqual(circuits, new_circs)
32.937956
100
0.603546
c66b5c089b1ef1413e83ff11e1f3090c27167078
6,120
py
Python
src/fuzzy_potato/database/postgres.py
cezary986/fuzzy-potato
11a7e74529d7ffe925aed6a4fd4e5979043d0a84
[ "MIT" ]
null
null
null
src/fuzzy_potato/database/postgres.py
cezary986/fuzzy-potato
11a7e74529d7ffe925aed6a4fd4e5979043d0a84
[ "MIT" ]
null
null
null
src/fuzzy_potato/database/postgres.py
cezary986/fuzzy-potato
11a7e74529d7ffe925aed6a4fd4e5979043d0a84
[ "MIT" ]
null
null
null
import sys from typing import List from fuzzy_potato.core import BaseStorage, SegmentData, WordData, GramData, TextData import logging import time import psycopg2 from .sql import create_db_sql, delete_data_sql, insert_gram_sql, insert_word_sql, insert_segment_sql, begin_insert, \ end_insert, fuzzy_match_words, fuzzy_match_segments, match_word_for_segments, get_db_statistics sys.path.append('..') class DataBaseConnector: def __init__(self): self.connection = None self.cursor = None self.port = None self.host = None self.username = None self.password = None self.database_name = None def connect(self, port: str, host: str, username: str, password: str, database_name: str): self.port = port self.host = host self.username = username self.password = password self.database_name = database_name self._connect_self() def _connect_self(self): try: self.connection = psycopg2.connect( user=self.username, password=self.password, host=self.host, port=self.port, database=self.database_name) self.cursor = self.connection.cursor() except psycopg2.Error as error: logging.error('Error while connecting to PostgreSQL') logging.error(error) raise Exception('Error while connecting to PostgreSQL', str(error)) def disconnect(self): if self.connection: self.cursor.close() self.connection.close() logging.info("Closing PostgreSQL connection") def execute_query(self, sql: str, fetch=False): if self.connection.closed > 0: self._connect_self() try: self.cursor.execute(sql) self.connection.commit() logging.debug('Query finished successfully') if fetch: return self.cursor.fetchall() except psycopg2.DatabaseError as error: logging.error('Error while running query: ' + sql) self.cursor.execute("ROLLBACK") self.connection.commit() logging.error(error) raise error class PostgresStorage(BaseStorage): def __init__(self, config): self.db_connector = DataBaseConnector() self.db_connector.connect( port=config['port'], host=config['host'], username=config['username'], password=config['password'], database_name=config['database_name'], ) def finish(self): self.db_connector.disconnect() def setup_database(self): try: self.db_connector.execute_query(create_db_sql) except Exception as error: logging.error('Failed to setup database tables') logging.error(error) raise error def drop_database(self): try: self.db_connector.execute_query(delete_data_sql) except Exception as error: logging.error('Failed to drop database tables') logging.error(error) raise error @staticmethod def _save_word(word: WordData): sql = insert_word_sql(word.text, word.position) for key, gram in word.grams.items(): sql += insert_gram_sql(gram.text, gram.word_position) return sql def _save_segment(self, segment: SegmentData): sql = begin_insert() sql += insert_segment_sql(segment.text) for word in segment.words: sql += self._save_word(word) sql += end_insert() self.db_connector.execute_query(sql) def save_data(self, data: TextData): try: maximum = len(data.segments) for i, segment in enumerate(data.segments): self._save_segment(segment) logging.info('Indexing progress: ' + str((i / maximum) * 100) + '%') except psycopg2.DatabaseError as error: logging.error('Failed to save text data') logging.error(error) raise error def match_grams_for_words(self, grams: List[GramData], limit=10) -> list: try: start_time = time.time() result = self.db_connector.execute_query( fuzzy_match_words(grams, limit), fetch=True) logging.info("Query executed in: %s seconds" % (time.time() - start_time)) logging.info('Query matched') return result except psycopg2.DatabaseError as error: logging.error('Failed to match query') logging.error(error) raise error def match_grams_for_segments(self, grams: List[GramData], limit=10) -> list: try: result = self.db_connector.execute_query(fuzzy_match_segments(grams, limit), fetch=True) logging.info('Query matched') return result except psycopg2.DatabaseError as error: logging.error('Failed to match query') logging.error(error) raise error def match_words_for_segments(self, words: List[WordData], limit=10) -> list: try: result = self.db_connector.execute_query( match_word_for_segments(words, limit), fetch=True) logging.info('Query matched') return result except psycopg2.DatabaseError as error: logging.error('Failed to match query') logging.error(error) def get_db_statistics(self) -> dict: try: result = self.db_connector.execute_query( get_db_statistics(), fetch=True) return { 'gram_count': result[0][0], 'word_count': result[1][0], 'segment_count': result[2][0], 'gram_word_count': result[3][0], 'gram_segment_count': result[4][0], 'segment_word_count': result[5][0], } except psycopg2.DatabaseError as error: logging.error('Failed to match query') logging.error(error) raise error
34.772727
120
0.604248
3b22d5d7c0b8aa3ab508be2a4f63da7d09f6b867
8,286
py
Python
preprocess.py
lbda1/OpenNMT-py-AMR-to-text
b59347246fb330feff4139b677014554e8b9aad0
[ "MIT" ]
26
2019-03-29T07:52:43.000Z
2021-12-29T02:41:31.000Z
preprocess.py
lbda1/OpenNMT-py-AMR-to-text
b59347246fb330feff4139b677014554e8b9aad0
[ "MIT" ]
1
2020-02-15T10:31:58.000Z
2020-02-17T14:19:26.000Z
preprocess.py
lbda1/OpenNMT-py-AMR-to-text
b59347246fb330feff4139b677014554e8b9aad0
[ "MIT" ]
5
2019-06-30T19:57:46.000Z
2021-04-01T07:56:53.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Pre-process Data / features files and build vocabulary """ import argparse import glob import sys import gc import codecs import torch from onmt.utils.logging import init_logger, logger import onmt.inputters as inputters import onmt.opts as opts def check_existing_pt_files(opt): """ Checking if there are existing .pt files to avoid tampering """ # We will use glob.glob() to find sharded {train|valid}.[0-9]*.pt # when training, so check to avoid tampering with existing pt files # or mixing them up. for t in ['train', 'valid', 'vocab']: pattern = opt.save_data + '.' + t + '*.pt' if glob.glob(pattern): sys.stderr.write("Please backup existing pt file: %s, " "to avoid tampering!\n" % pattern) sys.exit(1) def parse_args(): """ Parsing arguments """ parser = argparse.ArgumentParser( description='preprocess.py', formatter_class=argparse.ArgumentDefaultsHelpFormatter) opts.add_md_help_argument(parser) opts.preprocess_opts(parser) opt = parser.parse_args() torch.manual_seed(opt.seed) check_existing_pt_files(opt) return opt def build_save_in_shards_using_shards_size(src_corpus, tgt_corpus, fields, corpus_type, opt): """ Divide src_corpus and tgt_corpus into smaller multiples src_copus and tgt corpus files, then build shards, each shard will have opt.shard_size samples except last shard. The reason we do this is to avoid taking up too much memory due to sucking in a huge corpus file. """ with codecs.open(src_corpus, "r", encoding="utf-8") as fsrc: with codecs.open(tgt_corpus, "r", encoding="utf-8") as ftgt: src_data = fsrc.readlines() tgt_data = ftgt.readlines() src_corpus = "".join(src_corpus.split(".")[:-1]) tgt_corpus = "".join(tgt_corpus.split(".")[:-1]) num_shards = int(len(src_data) / opt.shard_size) for x in range(num_shards): f = codecs.open(src_corpus + ".{0}.txt".format(x), "w", encoding="utf-8") f.writelines( src_data[x * opt.shard_size: (x + 1) * opt.shard_size]) f.close() f = codecs.open(tgt_corpus + ".{0}.txt".format(x), "w", encoding="utf-8") f.writelines( tgt_data[x * opt.shard_size: (x + 1) * opt.shard_size]) f.close() num_written = num_shards * opt.shard_size if len(src_data) > num_written: f = codecs.open(src_corpus + ".{0}.txt".format(num_shards), 'w', encoding="utf-8") f.writelines( src_data[num_shards * opt.shard_size:]) f.close() f = codecs.open(tgt_corpus + ".{0}.txt".format(num_shards), 'w', encoding="utf-8") f.writelines( tgt_data[num_shards * opt.shard_size:]) f.close() src_list = sorted(glob.glob(src_corpus + '.*.txt')) tgt_list = sorted(glob.glob(tgt_corpus + '.*.txt')) ret_list = [] for index, src in enumerate(src_list): dataset = inputters.build_dataset( fields, opt.data_type, src_path=src, tgt_path=tgt_list[index], src_dir=opt.src_dir, src_seq_length=opt.src_seq_length, tgt_seq_length=opt.tgt_seq_length, src_seq_length_trunc=opt.src_seq_length_trunc, tgt_seq_length_trunc=opt.tgt_seq_length_trunc, dynamic_dict=opt.dynamic_dict, sample_rate=opt.sample_rate, window_size=opt.window_size, window_stride=opt.window_stride, window=opt.window, image_channel_size=opt.image_channel_size, reentrancies=opt.reentrancies) pt_file = "{:s}.{:s}.{:d}.pt".format( opt.save_data, corpus_type, index) # We save fields in vocab.pt seperately, so make it empty. dataset.fields = [] logger.info(" * saving %sth %s data shard to %s." % (index, corpus_type, pt_file)) torch.save(dataset, pt_file) ret_list.append(pt_file) del dataset.examples gc.collect() del dataset gc.collect() return ret_list def build_save_dataset(corpus_type, fields, opt): """ Building and saving the dataset """ assert corpus_type in ['train', 'valid'] if corpus_type == 'train': src_corpus = opt.train_src tgt_corpus = opt.train_tgt else: src_corpus = opt.valid_src tgt_corpus = opt.valid_tgt if (opt.shard_size > 0): return build_save_in_shards_using_shards_size(src_corpus, tgt_corpus, fields, corpus_type, opt) # For data_type == 'img' or 'audio', currently we don't do # preprocess sharding. We only build a monolithic dataset. # But since the interfaces are uniform, it would be not hard # to do this should users need this feature. dataset = inputters.build_dataset( fields, opt.data_type, src_path=src_corpus, tgt_path=tgt_corpus, src_dir=opt.src_dir, src_seq_length=opt.src_seq_length, tgt_seq_length=opt.tgt_seq_length, src_seq_length_trunc=opt.src_seq_length_trunc, tgt_seq_length_trunc=opt.tgt_seq_length_trunc, dynamic_dict=opt.dynamic_dict, sample_rate=opt.sample_rate, window_size=opt.window_size, window_stride=opt.window_stride, window=opt.window, image_channel_size=opt.image_channel_size, reentrancies=opt.reentrancies) # We save fields in vocab.pt seperately, so make it empty. dataset.fields = [] pt_file = "{:s}.{:s}.pt".format(opt.save_data, corpus_type) logger.info(" * saving %s dataset to %s." % (corpus_type, pt_file)) torch.save(dataset, pt_file) return [pt_file] def build_save_vocab(train_dataset, fields, opt): """ Building and saving the vocab """ fields = inputters.build_vocab(train_dataset, fields, opt.data_type, opt.share_vocab, opt.src_vocab, opt.src_vocab_size, opt.src_words_min_frequency, opt.tgt_vocab, opt.tgt_vocab_size, opt.tgt_words_min_frequency) # Can't save fields, so remove/reconstruct at training time. vocab_file = opt.save_data + '.vocab.pt' torch.save(inputters.save_fields_to_vocab(fields), vocab_file) def main(): opt = parse_args() if (opt.max_shard_size > 0): raise AssertionError("-max_shard_size is deprecated, please use \ -shard_size (number of examples) instead.") init_logger(opt.log_file) logger.info("Extracting features...") src_nfeats = inputters.get_num_features( opt.data_type, opt.train_src, 'src') tgt_nfeats = inputters.get_num_features( opt.data_type, opt.train_tgt, 'tgt') logger.info(" * number of source features: %d." % src_nfeats) logger.info(" * number of target features: %d." % tgt_nfeats) logger.info("Building `Fields` object...") fields = inputters.get_fields(opt.data_type, src_nfeats, tgt_nfeats) logger.info("Building & saving training data...") train_dataset_files = build_save_dataset('train', fields, opt) logger.info("Building & saving validation data...") valid_dataset_files = build_save_dataset('valid', fields, opt) logger.info("Building & saving vocabulary...") build_save_vocab(train_dataset_files + valid_dataset_files, fields, opt) if __name__ == "__main__": main()
35.562232
79
0.585687
dc116ea2c4d8027a75206414f2b79ae657e3d3e1
3,846
py
Python
experiments/ashvin/icml2020/hand/sparse/bc_l2_sweep1.py
Asap7772/railrl_evalsawyer
baba8ce634d32a48c7dfe4dc03b123e18e96e0a3
[ "MIT" ]
null
null
null
experiments/ashvin/icml2020/hand/sparse/bc_l2_sweep1.py
Asap7772/railrl_evalsawyer
baba8ce634d32a48c7dfe4dc03b123e18e96e0a3
[ "MIT" ]
null
null
null
experiments/ashvin/icml2020/hand/sparse/bc_l2_sweep1.py
Asap7772/railrl_evalsawyer
baba8ce634d32a48c7dfe4dc03b123e18e96e0a3
[ "MIT" ]
null
null
null
""" AWR + SAC from demo experiment """ from rlkit.demos.source.dict_to_mdp_stacked_path_loader import DictToMDPStackedPathLoader from rlkit.launchers.experiments.awac.awac_rl import experiment import rlkit.misc.hyperparameter as hyp from rlkit.launchers.arglauncher import run_variants from rlkit.torch.sac.policies import GaussianPolicy if __name__ == "__main__": variant = dict( num_epochs=501, num_eval_steps_per_epoch=1000, num_trains_per_train_loop=1000, num_expl_steps_per_train_loop=1000, min_num_steps_before_training=1000, max_path_length=1000, batch_size=1024, replay_buffer_size=int(1E6), layer_size=256, # policy_class=GaussianMixturePolicy, policy_class=GaussianPolicy, policy_kwargs=dict( hidden_sizes=[256, 256, 256, 256, ], std_architecture="values", max_log_std=0, min_log_std=-6, # num_gaussians=10, ), algorithm="SAC", version="normal", collection_mode='batch', trainer_kwargs=dict( discount=0.99, soft_target_tau=5e-3, target_update_period=1, policy_lr=3E-4, qf_lr=3E-4, reward_scale=1, beta=1, use_automatic_entropy_tuning=True, alpha=0, compute_bc=True, bc_num_pretrain_steps=0, q_num_pretrain1_steps=0, q_num_pretrain2_steps=0, policy_weight_decay=1e-4, bc_loss_type="mse", rl_weight=1.0, use_awr_update=False, use_reparam_update=False, reparam_weight=0.0, awr_weight=0.0, bc_weight=1.0, ), num_exps_per_instance=1, region='us-west-1', path_loader_class=DictToMDPStackedPathLoader, path_loader_kwargs=dict( obs_key="state_observation", demo_paths=[ # dict( # path="demos/icml2020/hand/pen2_sparse.npy", # obs_dict=True, # is_demo=True, # ), # dict( # path="demos/icml2020/hand/pen_bc5.npy", # obs_dict=False, # is_demo=False, # train_split=0.9, # ), ], stack_obs=1, ), add_env_demos=True, # logger_variant=dict( # tensorboard=True, # ), load_demos=True, pretrain_policy=True, pretrain_rl=True, # save_pretrained_algorithm=True, # snapshot_mode="all", # save_paths=True, ) search_space = { 'env': ["relocate-sparse-v0", "hammer-sparse-v0", "door-sparse-v0", ], 'trainer_kwargs.bc_loss_type': ["mle"], 'trainer_kwargs.awr_loss_type': ["mle"], 'seedid': range(3), 'trainer_kwargs.beta': [1, ], 'trainer_kwargs.use_automatic_entropy_tuning': [False], # 'policy_kwargs.max_log_std': [0, ], # 'policy_kwargs.min_log_std': [-6, ], # 'policy_kwargs.std': [0.01, ], 'trainer_kwargs.reparam_weight': [0.0, ], 'trainer_kwargs.awr_weight': [0.0], 'trainer_kwargs.bc_weight': [1.0, ], 'trainer_kwargs.policy_weight_decay': [1e-3, 1e-4, 1e-5, ], 'trainer_kwargs.policy_lr': [1e-3, 3e-4, 1e-4], # 'policy_kwargs.num_gaussians': [1, 3, 10, 30], 'path_loader_kwargs.stack_obs': [1, ] } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) variants = [] for variant in sweeper.iterate_hyperparameters(): variants.append(variant) run_variants(experiment, variants, run_id=0)
30.768
89
0.568383
564f42379009f7cf4f834832d5878c55213cbfe7
5,419
py
Python
parser/team19/BDTytus/Gramaticas/Descendente/gramatica.py
strickergt128/tytus
93216dd9481ea0775da1d2967dc27be66872537f
[ "MIT" ]
null
null
null
parser/team19/BDTytus/Gramaticas/Descendente/gramatica.py
strickergt128/tytus
93216dd9481ea0775da1d2967dc27be66872537f
[ "MIT" ]
null
null
null
parser/team19/BDTytus/Gramaticas/Descendente/gramatica.py
strickergt128/tytus
93216dd9481ea0775da1d2967dc27be66872537f
[ "MIT" ]
null
null
null
#ANALIZADOR LEXICO #---------------------------------------------------------------------------------------- reservadas = { 'add' : 'ADD', 'all' : 'ALL', 'alter' :'ALTER', 'rand' : 'AND', 'as' : 'AS', 'asc':'ASC', 'between' : 'BETWEEN', 'by' : 'BY', 'case' : 'CASE', 'check' : 'CHECK', 'column' : 'COLUMN', 'constraint' : 'CONSTRAINT', 'create' : 'CREATE', 'current' : 'CURRENT_SESSION', 'database' : 'DATABASE', 'databases' : 'DATABASES', 'delete' : 'DELETE', 'desc' : 'DESC', 'distinct' : 'DISTINCT', 'drop' : 'DROP', 'else' : 'ELSE', 'end' : 'END', 'enum' : 'ENUM', 'except' : 'EXCEPT', 'exists' : 'EXISTS', 'false' : 'FALSE', 'first' : 'FIRST', 'foreign' : 'FOREIGN', 'from' : 'FROM', 'full' : 'FULL', 'greatest' : 'GREATEST', 'group' : 'GROUP', 'having' : 'HAVING', 'if' : 'IF', 'in' : 'IN', 'inherits' : 'INHERITS', 'inner' : 'INNER', 'intersect' : 'INTERSECT', 'into' : 'INTO', 'is' : 'IS', 'isnull' : 'ISNULL', 'join': 'JOIN', 'key': 'KEY', 'last': 'LAST', 'least': 'LEAST', 'left': 'LEFT', 'like': 'LIKE', 'limit': 'LIMIT', 'mode': 'MODE', 'natural': 'NATURAL', 'not': 'NOT', 'notnull': 'NOTNULL', 'null': 'NULL', 'nulls': 'NULLS', 'offset': 'OFFSET', 'on': 'ON', 'or': 'OR', 'order': 'ORDER', 'outer': 'OUTER', 'owner': 'OWNER', 'primary': 'PRIMARY', 'references': 'REFERENCES', 'rename': 'RENAME', 'replace': 'REPLACE', 'returning': 'RETURNING', 'right': 'RIGHT', 'select': 'SELECT', 'session_user': 'SESSION_USER', 'set': 'SET', 'show': 'SHOW', 'symmetric': 'SYMMETRIC', 'table': 'TABLE', 'then': 'THEN', 'true': 'TRUE', 'type': 'TYPE', 'union': 'UNION', 'unique': 'UNIQUE', 'unknow': 'UNKNOW', 'update': 'UPDATE', 'values': 'VALUES', 'when': 'WHEN', 'where': 'WHERE', 'yes': 'YES', #EXTRAS 'no': 'NO', 'off': 'OFF' } tokens = [ 'PARENT_D', 'PARENT_I', 'LLAVE_ABRE', 'LLAVE_CIERRE', 'COMA', 'P_COMA', 'PUNTO', 'MAS', 'MENOS', 'AND', 'CONCATENACION', 'XOR', 'NOT_SIMBOLO', 'POTENCIA', 'POR', 'DIVISION', 'ENTERO', 'DECIMAL', 'CARACTER', 'CADENA', 'TYPECAST', 'MODULO', 'ORSIGNO', 'SHIFTLEFT', 'SHIFTRIGHT', 'MAYORQUE', 'MENORQUE', 'MAYORIGUAL', 'MENORIGUAL', 'IGUAL', 'DISTINTO', 'DIFERENTE', 'CORABRE', 'CORCIERRE', 'ID', 'BINARIO' ] + list(reservadas.values()) # Tokens t_PARENT_D = r'\(' t_PARENT_I = r'\)' t_LLAVE_ABRE = r'\{' t_LLAVE_CIERRE = r'\}' t_COMA = r',' t_P_COMA = r';' t_PUNTO = r'\.' t_MAS = r'\+' t_MENOS = r'-' t_AND = r'&' t_CONCATENACION = r'\|\|' t_XOR = r'\#' t_NOT_SIMBOLO = r'~' t_POTENCIA = r'\^' t_POR = r'\*' t_DIVISION = r'/' t_TYPECAST = r'[:]{2}' t_MODULO = r'%' t_ORSIGNO = r'[|]' t_SHIFTLEFT = r'<<' t_SHIFTRIGHT = r'>>' t_MAYORIGUAL = r'>=' t_MENORIGUAL = r'<=' t_DISTINTO = r'<>' t_MAYORQUE = r'>' t_MENORQUE = r'<' t_IGUAL = r'=' t_DIFERENTE = r'!=' t_CORABRE = r'\[' t_CORCIERRE = r']' def t_ENTERO(t): r'\d+' try: t.value = int(t.value) except ValueError: print("Integer value too large %d", t.value) t.value = 0 return t def t_DECIMAL(t): r'\d+\.\d+' try: t.value = float(t.value) except ValueError: print("Float value too large %d", t.value) t.value = 0 return t def t_CARACTER(t): r'\'.?\'' t.value = t.value[1:-1] # remuevo las comillas simples return t def t_CADENA(t): r'\".*?\"' t.value = t.value[1:-1] # remuevo las comillas dobles return t def t_ID(t): r'[a-zA-Z_][a-zA-Z0-9_]*' t.type = reservadas.get(t.value.lower(), 'ID') return t def t_COMMENTLINE(t): r'-{2}[^\n]*(\n|\Z)' t.lexer.lineno += 1 print("Comentario de una linea leido: "+ t.value[2:]) def t_COMMENTMULTI(t): r'[/][*][^*]*[*]+([^/*][^*]*[*]+)*[/]' t.lexer.lineno += t.value.count('\n') print("Comentario multilinea leido: "+ t.value[2:-2]) def t_BINARIO(t): r'B\'[0-1]+\'' t.value = t.value[2:-1] #Remuevo las comillas y la B al inicio return t # Caracteres ignorados t_ignore = " \t" def t_newline(t): r'\n+' t.lexer.lineno += t.value.count("\n") def t_error(t): print("Carácter ilegal '%s'" % t.value[0]) t.lexer.skip(1) # Construyendo el analizador léxico import ply.lex as lex lexer = lex.lex() #ANALIZADOR SINTACTICO #---------------------------------------------------------------------------------------- def p_expresiones_evaluar(t): '''expresiones : expresion expresiones_prima ''' def p_expresiones_prima(t): '''expresiones_prima : expresion expresiones_prima | ''' def p_expresion_evaluar(t): '''expresion : select_expresion ''' def p_enumerated_type(t): 'select_expresion : SELECT POR FROM ID ' def p_error(t): print("Error sintáctico en " + str(t.value) + ", Fila: " + str(t.lexer.lineno)) # Construyendo el analizador sintactico import ply.yacc as yacc parser = yacc.yacc() f = open("./entrada.txt", "r") input = f.read() parser.parse(input)
21.589641
89
0.498062
fc8c3db3bf355966288084c5b82279b85192d38d
4,568
py
Python
Muta3DMaps/core/Mods/ProcessI3D.py
NatureGeorge/SIFTS_Plus_Muta_Maps
60f84e6024508e65ee3791103762b95666d3c646
[ "MIT" ]
null
null
null
Muta3DMaps/core/Mods/ProcessI3D.py
NatureGeorge/SIFTS_Plus_Muta_Maps
60f84e6024508e65ee3791103762b95666d3c646
[ "MIT" ]
null
null
null
Muta3DMaps/core/Mods/ProcessI3D.py
NatureGeorge/SIFTS_Plus_Muta_Maps
60f84e6024508e65ee3791103762b95666d3c646
[ "MIT" ]
null
null
null
# @Date: 2019-08-16T23:34:20+08:00 # @Email: 1730416009@stu.suda.edu.cn # @Filename: ProcessI3D.py # @Last modified time: 2019-11-25T21:23:31+08:00 import pandas as pd import wget, time, os from urllib import request from retrying import retry from multiprocessing.dummy import Pool from xml.etree import ElementTree from ..Utils.Logger import RunningLogger from ..Utils.FileIO import file_o class RetrieveI3D: # Reference: https://interactome3d.irbbarcelona.org/help.php#restful CONFIG = { 'INTERACTION_SIFTS_COL': ['i3d_TYPE', 'pdb_id', 'i3d_BIO_UNIT', 'i3d_FILENAME', 'i3d_SAME_MODEL', 'i3d_CHAIN_COMPO', 'i3d_pdb_type', 'i3d_INTERACT_COMPO', 'Entry', 'chain_id', 'i3d_MODEL', 'i3d_SEQ_IDENT', 'i3d_COVERAGE', 'i3d_DOMAIN', 'i3d_model_len', 'i3d_model_range' ], 'DOWNLOAD_URL': 'https://interactome3d.irbbarcelona.org/api/%s?', # %s=%s&%s=%s } def __init__(self, **kwargs): self.downloadFolder = kwargs["downloadFolder"] self.Logger = RunningLogger("RetrieveI3D", kwargs["loggingPath"]) def get_interactions_meta(self, species='human', struct_type=None, filePath=None, related_unp=None, related_pdb=None, outputPath=None): if filePath is None: url = "https://interactome3d.irbbarcelona.org/user_data/%s/download/complete/interactions.dat" % species filePath = os.path.join(self.downloadFolder, 'I3D_META_interactions_%s_%s.dat' % (species, time.strftime("%Y_%m_%d", time.localtime()))) self.Logger.logger.info("Downloading File: %s" % filePath) wget.download(url, out=filePath) self.Logger.logger.info("\n") dfrm = pd.read_csv(filePath, sep='\t', na_values=["-"]) if struct_type is not None: dfrm = dfrm[dfrm['TYPE'] == struct_type].reset_index(drop=True) dfrm["i3d_SAME_MODEL"] = dfrm.apply(lambda x: x["MODEL1"] == x["MODEL2"], axis=1) dfrm['i3d_CHAIN_COMPO'] = dfrm.apply(lambda x: '%s_%s' % (x['CHAIN1'], x['CHAIN2']), axis=1) dfrm["i3d_pdb_type"] = dfrm.apply(lambda x: "ho" if x['PROT1'] == x['PROT2'] else "he", axis=1) dfrm['i3d_INTERACT_COMPO'] = dfrm.apply(lambda x: '%s_%s' % tuple(sorted([x['PROT1'], x['PROT2']])), axis=1) # Need to check dfrm['PDB_ID'] = dfrm.apply(lambda x: x['PDB_ID'].upper(), axis=1) common_cols = ['TYPE', 'PDB_ID', 'BIO_UNIT', 'FILENAME', 'i3d_SAME_MODEL', 'i3d_CHAIN_COMPO', 'i3d_pdb_type', 'i3d_INTERACT_COMPO'] s_cols = ['PROT', 'CHAIN', 'MODEL', 'SEQ_IDENT', 'COVERAGE', 'SEQ_BEGIN', 'SEQ_END', 'DOMAIN'] get_s_cols = lambda num: ['%s%s' % (i, num) for i in s_cols] df1, df2 = dfrm[common_cols+get_s_cols(1)].copy(), dfrm[common_cols+get_s_cols(2)].copy() df1.columns, df2.columns = common_cols+s_cols, common_cols+s_cols df12 = pd.concat([df1, df2]).reset_index(drop=True) df12['i3d_model_len'] = df12.apply(lambda x: x['SEQ_END'] - x['SEQ_BEGIN'] + 1, axis=1) df12['i3d_model_range'] = df12.apply(lambda x: '[[%d, %d]]' % (x['SEQ_BEGIN'], x['SEQ_END']), axis=1) if related_unp is not None: df12 = df12[df12['PROT'].isin(related_unp)] if related_pdb is not None: df12 = df12[df12['PDB_ID'].isin(related_pdb)] df12.drop(columns=['SEQ_BEGIN', 'SEQ_END'], inplace=True) self.Logger.logger.warning("Raw Order of I3D Column Names: " + str(df12.columns)) df12.columns = self.CONFIG['INTERACTION_SIFTS_COL'] file_o(outputPath, df12) return df12 @retry(stop_max_attempt_number=3, wait_fixed=1000) def download_pdb_from_Interactome3D(self, filename, type='interaction'): url = RetrieveI3D.CONFIG['DOWNLOAD_URL'] % 'getPdbFile' + 'filename=%s&type=%s' % (filename, type) xmlPage = request.urlopen(url).read() xmlPage = xmlPage.decode('utf-8') node = ElementTree.XML(xmlPage) with open(os.path.join(self.downloadFolder, filename), 'w') as fw: fw.write(node[0][0][1].text) time.sleep(2) def download_model_script(self, fileName_list, chunksize=100): for i in range(0, len(fileName_list), chunksize): chunk_li = fileName_list[i:i+chunksize] pool = Pool(processes=20) pool.map(self.download_pdb_from_Interactome3D, chunk_li)
49.652174
148
0.616243
8c876eecc08108ee97c29e4a222f00f7c6df18b9
6,438
py
Python
webapi/tct-security-tcs-tests/inst.xpk.py
linshen/crosswalk-test-suite
e206b2c35fc09e583f3202fc7fc8a656c8e2b5de
[ "BSD-3-Clause" ]
null
null
null
webapi/tct-security-tcs-tests/inst.xpk.py
linshen/crosswalk-test-suite
e206b2c35fc09e583f3202fc7fc8a656c8e2b5de
[ "BSD-3-Clause" ]
null
null
null
webapi/tct-security-tcs-tests/inst.xpk.py
linshen/crosswalk-test-suite
e206b2c35fc09e583f3202fc7fc8a656c8e2b5de
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import os import shutil import glob import time import sys import subprocess import string from optparse import OptionParser, make_option SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) PKG_NAME = os.path.basename(SCRIPT_DIR) PARAMETERS = None #XW_ENV = "export DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/5000/dbus/user_bus_socket" SRC_DIR = "/home/app/content" PKG_SRC_DIR = "%s/tct/opt/%s" % (SRC_DIR, PKG_NAME) def doCMD(cmd): # Do not need handle timeout in this short script, let tool do it print "-->> \"%s\"" % cmd output = [] cmd_return_code = 1 cmd_proc = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) while True: output_line = cmd_proc.stdout.readline().strip("\r\n") cmd_return_code = cmd_proc.poll() if output_line == '' and cmd_return_code != None: break sys.stdout.write("%s\n" % output_line) sys.stdout.flush() output.append(output_line) return (cmd_return_code, output) def updateCMD(cmd=None): if "pkgcmd" in cmd: cmd = "su - %s -c '%s;%s'" % (PARAMETERS.user, XW_ENV, cmd) return cmd def getUSERID(): if PARAMETERS.mode == "SDB": cmd = "sdb -s %s shell id -u %s" % ( PARAMETERS.device, PARAMETERS.user) else: cmd = "ssh %s \"id -u %s\"" % ( PARAMETERS.device, PARAMETERS.user ) return doCMD(cmd) def getPKGID(pkg_name=None): if PARAMETERS.mode == "SDB": cmd = "sdb -s %s shell %s" % ( PARAMETERS.device, updateCMD('pkgcmd -l')) else: cmd = "ssh %s \"%s\"" % ( PARAMETERS.device, updateCMD('pkgcmd -l')) (return_code, output) = doCMD(cmd) if return_code != 0: return None test_pkg_id = None for line in output: pkg_infos = line.split() if len(pkg_infos) == 4: continue name = pkg_infos[5] name = name.lstrip('[').rstrip(']') print "name is: %s" % name if pkg_name == name: test_pkg_id = pkg_infos[3] test_pkg_id = test_pkg_id.lstrip('[').rstrip(']') print test_pkg_id break return test_pkg_id def doRemoteCMD(cmd=None): if PARAMETERS.mode == "SDB": cmd = "sdb -s %s shell %s" % (PARAMETERS.device, updateCMD(cmd)) else: cmd = "ssh %s \"%s\"" % (PARAMETERS.device, updateCMD(cmd)) return doCMD(cmd) def doRemoteCopy(src=None, dest=None): if PARAMETERS.mode == "SDB": cmd_prefix = "sdb -s %s push" % PARAMETERS.device cmd = "%s %s %s" % (cmd_prefix, src, dest) else: cmd = "scp -r %s %s:/%s" % (src, PARAMETERS.device, dest) (return_code, output) = doCMD(cmd) doRemoteCMD("sync") if return_code != 0: return True else: return False def uninstPKGs(): action_status = True for root, dirs, files in os.walk(SCRIPT_DIR): for file in files: if file.endswith(".xpk"): pkg_id = getPKGID(os.path.basename(os.path.splitext(file)[0])) if not pkg_id: action_status = False continue (return_code, output) = doRemoteCMD( "pkgcmd -u -t xpk -q -n %s" % pkg_id) for line in output: if "Failure" in line: action_status = False break (return_code, output) = doRemoteCMD( "rm -rf %s" % PKG_SRC_DIR) if return_code != 0: action_status = False return action_status def instPKGs(): action_status = True (return_code, output) = doRemoteCMD( "mkdir -p %s" % PKG_SRC_DIR) if return_code != 0: action_status = False for root, dirs, files in os.walk(SCRIPT_DIR): for file in files: if file.endswith(".xpk"): if not doRemoteCopy(os.path.join(root, file), "%s/%s" % (SRC_DIR, file)): action_status = False (return_code, output) = doRemoteCMD( "pkgcmd -i -t xpk -q -p %s/%s" % (SRC_DIR, file)) doRemoteCMD("rm -rf %s/%s" % (SRC_DIR, file)) for line in output: if "Failure" in line: action_status = False break return action_status def main(): try: usage = "usage: inst.py -i" opts_parser = OptionParser(usage=usage) opts_parser.add_option( "-m", dest="mode", action="store", help="Specify mode") opts_parser.add_option( "-s", dest="device", action="store", help="Specify device") opts_parser.add_option( "-i", dest="binstpkg", action="store_true", help="Install package") opts_parser.add_option( "-u", dest="buninstpkg", action="store_true", help="Uninstall package") opts_parser.add_option( "-a", dest="user", action="store", help="User name") global PARAMETERS (PARAMETERS, args) = opts_parser.parse_args() except Exception, e: print "Got wrong option: %s, exit ..." % e sys.exit(1) if not PARAMETERS.user: PARAMETERS.user = "app" if not PARAMETERS.mode: PARAMETERS.mode = "SDB" if PARAMETERS.mode == "SDB": if not PARAMETERS.device: (return_code, output) = doCMD("sdb devices") for line in output: if str.find(line, "\tdevice") != -1: PARAMETERS.device = line.split("\t")[0] break else: PARAMETERS.mode = "SSH" if not PARAMETERS.device: print "No device provided" sys.exit(1) user_info = getUSERID() re_code = user_info[0] if re_code == 0 : global XW_ENV userid = user_info[1][0] XW_ENV = "export DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/%s/dbus/user_bus_socket"%str(userid) else: print "[Error] cmd commands error : %s"%str(user_info[1]) sys.exit(1) if PARAMETERS.binstpkg and PARAMETERS.buninstpkg: print "-i and -u are conflict" sys.exit(1) if PARAMETERS.buninstpkg: if not uninstPKGs(): sys.exit(1) else: if not instPKGs(): sys.exit(1) if __name__ == "__main__": main() sys.exit(0)
29.805556
106
0.559491
cc55177840ffd09963c3c065b4c3adc3219f3e5c
1,453
py
Python
examples/quickstart/show_config.py
mvdoc/pycortex
bc8a93cac9518e3c1cd89650c703f9f3814e805b
[ "BSD-2-Clause" ]
423
2015-01-06T02:46:46.000Z
2022-03-23T17:20:38.000Z
examples/quickstart/show_config.py
mvdoc/pycortex
bc8a93cac9518e3c1cd89650c703f9f3814e805b
[ "BSD-2-Clause" ]
243
2015-01-03T02:10:03.000Z
2022-03-31T19:29:48.000Z
examples/quickstart/show_config.py
mvdoc/pycortex
bc8a93cac9518e3c1cd89650c703f9f3814e805b
[ "BSD-2-Clause" ]
136
2015-03-23T20:35:59.000Z
2022-03-09T13:39:10.000Z
""" ===================================================== Finding out where the config and filestore are ===================================================== Easily locating your config file and filestore locations. This comes in useful when things don't work because the config file is not set correctly. """ from __future__ import print_function import cortex from cortex.options import config ########################################################## # Finding where your config file is. print(cortex.options.usercfg) ########################################################## # Finding where the current filestore is. # Useful for when your subjects don't show up in cortex.db, and all you have is S1. print(config.get('basic', 'filestore')) ########################################################## # Finding where pycortex is looking for colormaps. # Useful for when you get color map not found messages. print(config.get('webgl', 'colormaps')) ########################################################## # To look at your config file, it is recommended that you open it with a text editor. # However, you *can* still look at options from within pycortex. # sections gets the upper-level sections in the config file sections = config.sections() print(sections) # items gets the option items within a section as a list of key-value pairs. basic_config = config.items('paths_default') print(basic_config)
39.27027
90
0.572608
718ae37a2d0621d4bb9413b03e79621ab4169923
2,955
py
Python
mbta/models.py
MAPC/bostonparks
5efa651736bd9cd7c42372922c50286ff2a61262
[ "BSD-3-Clause" ]
null
null
null
mbta/models.py
MAPC/bostonparks
5efa651736bd9cd7c42372922c50286ff2a61262
[ "BSD-3-Clause" ]
1
2015-05-01T01:30:49.000Z
2015-05-01T01:30:49.000Z
mbta/models.py
MAPC/bostonparks
5efa651736bd9cd7c42372922c50286ff2a61262
[ "BSD-3-Clause" ]
2
2015-05-01T01:31:38.000Z
2019-10-28T05:20:16.000Z
from django.contrib.gis.db import models # Create your models here. class MBTAStop(models.Model): # Stops.csv stop_id = models.CharField(max_length=256) stop_code = models.CharField(max_length=256) stop_name = models.CharField(max_length=256) stop_desc = models.CharField(max_length=256) zone_id = models.CharField(max_length=256) stop_url = models.TextField() location_type = models.CharField(max_length=256) parent_station = models.CharField(max_length=256) lat_long = models.PointField(blank=True, null=True,srid=26986) objects = models.GeoManager() # required for anything special like __distance_gt # ALL FILES LOCATED IN /home/django/MBTA_DATA class MBTAAgency(models.Model): agency_id = models.CharField(max_length=256) agency_name = models.CharField(max_length=256) agency_url = models.TextField() agency_timezone = models.CharField(max_length=256) agency_lang = models.CharField(max_length=2) agency_phone = models.CharField(max_length=16) # class MBTACalendar(models.Model): service_id = models.CharField(max_length=256) monday = models.BooleanField(default=False) tuesday = models.BooleanField(default=False) wednesday = models.BooleanField(default=False) thursday = models.BooleanField(default=False) friday = models.BooleanField(default=False) saturday = models.BooleanField(default=False) sunday = models.BooleanField(default=False) start_date = models.DateField() end_date = models.DateField() # #class MBTACalendarDate(models.Model): # service_id # date # exception_type # class MBTACFeedInfo(models.Model): feed_publisher_name = models.CharField(max_length=256) feed_publisher_url = models.TextField() feed_lang = models.CharField(max_length=2) feed_start_date = models.DateField() feed_end_date = models.DateField() feed_version = models.CharField(max_length=256) # class MBTAFrequencies(models.Model): trip_id = models.CharField(max_length=256) start_time = models.TimeField() end_time = models.TimeField() headway_secs = models.IntegerField() # #class MBTARoutes(models.Model): # route_id = models.CharField(max_length=256) # agency_id = models.CharField(max_length=256) # route_short_name # route_long_name # route_desc # route_type # route_url # route_color # route_text_color # #class MBTAShapes(models.Model): # shape_id # shape_pt_lat # shape_pt_lon # shape_pt_sequence # shape_dist_traveled # #class MBTAStopTimes(models.Model): # trip_id # arrival_time # departure_time # stop_id # stop_sequence # stop_headsign # pickup_type # drop_off_type # #class MBTATransfers(models.Model): # from_stop_id # to_stop_id # transfer_type # min_transfer_time # #class MBTATrips(models.Model): # route_id # service_id # trip_id # trip_headsign # direction_id # block_id # shape_id
28.68932
86
0.731641
c2f821f3bf147e3783a05613f188203e201c157b
19,827
py
Python
mergify_engine/tests/unit/test_worker.py
GuillaumeOj/mergify-engine
c11c05d2fa7db8e7195c57147f1c6a845009a718
[ "Apache-2.0" ]
null
null
null
mergify_engine/tests/unit/test_worker.py
GuillaumeOj/mergify-engine
c11c05d2fa7db8e7195c57147f1c6a845009a718
[ "Apache-2.0" ]
null
null
null
mergify_engine/tests/unit/test_worker.py
GuillaumeOj/mergify-engine
c11c05d2fa7db8e7195c57147f1c6a845009a718
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import asyncio import sys import time from unittest import mock from freezegun import freeze_time import httpx import pytest from mergify_engine import exceptions from mergify_engine import logs from mergify_engine import utils from mergify_engine import worker from mergify_engine.clients import http if sys.version_info < (3, 8): # https://github.com/pytest-dev/pytest-asyncio/issues/69 pytest.skip( "mock + pytest-asyncio requires python3.8 or higher", allow_module_level=True, ) @pytest.fixture() async def redis(): r = await utils.create_aredis_for_stream() await r.flushdb() try: yield r finally: await r.flushdb() r.connection_pool.disconnect() async def run_worker(): w = worker.Worker() w.start() timeout = 10 started_at = time.monotonic() while ( w._redis is None or (await w._redis.zcard("streams")) > 0 ) and time.monotonic() - started_at < timeout: await asyncio.sleep(0.5) w.stop() await w.wait_shutdown_complete() fake_subscription = {} @pytest.mark.asyncio @mock.patch("mergify_engine.worker.run_engine") async def test_worker_with_waiting_tasks(run_engine, redis, logger_checker): stream_names = [] for installation_id in range(8): for pull_number in range(2): for data in range(3): owner = f"owner-{installation_id}" repo = f"repo-{installation_id}" stream_names.append(f"stream~owner-{installation_id}") await worker.push( redis, owner, repo, pull_number, "pull_request", {"payload": data}, ) # Check everything we push are in redis assert 8 == (await redis.zcard("streams")) assert 8 == len(await redis.keys("stream~*")) for stream_name in stream_names: assert 6 == (await redis.xlen(stream_name)) await run_worker() # Check redis is empty assert 0 == (await redis.zcard("streams")) assert 0 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) # Check engine have been run with expect data assert 16 == len(run_engine.mock_calls) assert ( mock.call( "owner-0", "repo-0", 0, [ {"event_type": "pull_request", "data": {"payload": 0}}, {"event_type": "pull_request", "data": {"payload": 1}}, {"event_type": "pull_request", "data": {"payload": 2}}, ], ) in run_engine.mock_calls ) @pytest.mark.asyncio @mock.patch("mergify_engine.worker.run_engine") @mock.patch("mergify_engine.clients.github.aget_client") @mock.patch("mergify_engine.github_events.extract_pull_numbers_from_event") async def test_worker_expanded_events( extract_pull_numbers_from_event, aget_client, run_engine, redis, logger_checker, ): client = mock.Mock( name="foo", owner="owner", repo="repo", auth=mock.Mock(installation={"id": 12345}, owner="owner", repo="repo"), ) client.__aenter__ = mock.AsyncMock(return_value=client) client.__aexit__ = mock.AsyncMock() client.items.return_value = mock.AsyncMock() aget_client.return_value = client extract_pull_numbers_from_event.return_value = [123, 456, 789] await worker.push( redis, "owner", "repo", 123, "pull_request", {"payload": "whatever"}, ) await worker.push( redis, "owner", "repo", None, "comment", {"payload": "foobar"}, ) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 2 == (await redis.xlen("stream~owner")) await run_worker() # Check redis is empty assert 0 == (await redis.zcard("streams")) assert 0 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) # Check engine have been run with expect data assert 3 == len(run_engine.mock_calls) assert run_engine.mock_calls[0] == mock.call( "owner", "repo", 123, [ {"event_type": "pull_request", "data": {"payload": "whatever"}}, {"event_type": "comment", "data": {"payload": "foobar"}}, ], ) assert run_engine.mock_calls[1] == mock.call( "owner", "repo", 456, [ {"event_type": "comment", "data": {"payload": "foobar"}}, ], ) assert run_engine.mock_calls[2] == mock.call( "owner", "repo", 789, [ {"event_type": "comment", "data": {"payload": "foobar"}}, ], ) @pytest.mark.asyncio @mock.patch("mergify_engine.worker.run_engine") async def test_worker_with_one_task(run_engine, redis, logger_checker): await worker.push( redis, "owner", "repo", 123, "pull_request", {"payload": "whatever"}, ) await worker.push( redis, "owner", "repo", 123, "comment", {"payload": "foobar"}, ) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 2 == (await redis.xlen("stream~owner")) await run_worker() # Check redis is empty assert 0 == (await redis.zcard("streams")) assert 0 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) # Check engine have been run with expect data assert 1 == len(run_engine.mock_calls) assert run_engine.mock_calls[0] == mock.call( "owner", "repo", 123, [ {"event_type": "pull_request", "data": {"payload": "whatever"}}, {"event_type": "comment", "data": {"payload": "foobar"}}, ], ) @pytest.mark.asyncio @mock.patch("mergify_engine.worker.run_engine") async def test_consume_unexisting_stream(run_engine, redis, logger_checker): p = worker.StreamProcessor(redis) await p.consume("stream~notexists") assert len(run_engine.mock_calls) == 0 @pytest.mark.asyncio @mock.patch("mergify_engine.worker.run_engine") async def test_consume_good_stream(run_engine, redis, logger_checker): await worker.push( redis, "owner", "repo", 123, "pull_request", {"payload": "whatever"}, ) await worker.push( redis, "owner", "repo", 123, "comment", {"payload": "foobar"}, ) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 2 == await redis.xlen("stream~owner") assert 0 == len(await redis.hgetall("attempts")) p = worker.StreamProcessor(redis) await p.consume("stream~owner") assert len(run_engine.mock_calls) == 1 assert run_engine.mock_calls[0] == mock.call( "owner", "repo", 123, [ {"event_type": "pull_request", "data": {"payload": "whatever"}}, {"event_type": "comment", "data": {"payload": "foobar"}}, ], ) # Check redis is empty assert 0 == (await redis.zcard("streams")) assert 0 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) @pytest.mark.asyncio @mock.patch("mergify_engine.worker.daiquiri.getLogger") @mock.patch("mergify_engine.worker.run_engine") async def test_stream_processor_retrying_pull(run_engine, logger_class, redis): logs.setup_logging() logger = logger_class.return_value # One retries once, the other reaches max_retry run_engine.side_effect = [ exceptions.MergeableStateUnknown(mock.Mock()), exceptions.MergeableStateUnknown(mock.Mock()), mock.Mock(), exceptions.MergeableStateUnknown(mock.Mock()), exceptions.MergeableStateUnknown(mock.Mock()), ] await worker.push( redis, "owner", "repo", 123, "pull_request", {"payload": "whatever"}, ) await worker.push( redis, "owner", "repo", 42, "comment", {"payload": "foobar"}, ) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 2 == await redis.xlen("stream~owner") assert 0 == len(await redis.hgetall("attempts")) p = worker.StreamProcessor(redis) await p.consume("stream~owner") assert len(run_engine.mock_calls) == 2 assert run_engine.mock_calls == [ mock.call( "owner", "repo", 123, [ {"event_type": "pull_request", "data": {"payload": "whatever"}}, ], ), mock.call( "owner", "repo", 42, [ {"event_type": "comment", "data": {"payload": "foobar"}}, ], ), ] # Check stream still there and attempts recorded assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert { b"pull~owner~repo~42": b"1", b"pull~owner~repo~123": b"1", } == await redis.hgetall("attempts") await p.consume("stream~owner") assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 1 == len(await redis.hgetall("attempts")) assert len(run_engine.mock_calls) == 4 assert {b"pull~owner~repo~42": b"2"} == await redis.hgetall("attempts") await p.consume("stream~owner") assert len(run_engine.mock_calls) == 5 # Too many retries, everything is gone assert 3 == len(logger.info.mock_calls) assert 1 == len(logger.error.mock_calls) assert logger.info.mock_calls[0].args == ( "failed to process pull request, retrying", ) assert logger.info.mock_calls[1].args == ( "failed to process pull request, retrying", ) assert logger.error.mock_calls[0].args == ( "failed to process pull request, abandoning", ) assert 0 == (await redis.zcard("streams")) assert 0 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) @pytest.mark.asyncio @mock.patch.object(worker, "LOG") @mock.patch("mergify_engine.worker.run_engine") async def test_stream_processor_retrying_stream_recovered(run_engine, logger, redis): logs.setup_logging() response = mock.Mock() response.json.return_value = {"message": "boom"} response.status_code = 401 run_engine.side_effect = http.HTTPClientSideError( message="foobar", request=response.request, response=response ) await worker.push( redis, "owner", "repo", 123, "pull_request", {"payload": "whatever"}, ) await worker.push( redis, "owner", "repo", 123, "comment", {"payload": "foobar"}, ) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 2 == await redis.xlen("stream~owner") assert 0 == len(await redis.hgetall("attempts")) p = worker.StreamProcessor(redis) await p.consume("stream~owner") assert len(run_engine.mock_calls) == 1 assert run_engine.mock_calls[0] == mock.call( "owner", "repo", 123, [ {"event_type": "pull_request", "data": {"payload": "whatever"}}, {"event_type": "comment", "data": {"payload": "foobar"}}, ], ) # Check stream still there and attempts recorded assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 1 == len(await redis.hgetall("attempts")) assert {b"stream~owner": b"1"} == await redis.hgetall("attempts") run_engine.side_effect = None await p.consume("stream~owner") assert len(run_engine.mock_calls) == 2 assert 0 == (await redis.zcard("streams")) assert 0 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) assert 1 == len(logger.info.mock_calls) assert 0 == len(logger.error.mock_calls) assert logger.info.mock_calls[0].args == ("failed to process stream, retrying",) @pytest.mark.asyncio @mock.patch.object(worker, "LOG") @mock.patch("mergify_engine.worker.run_engine") async def test_stream_processor_retrying_stream_failure(run_engine, logger, redis): logs.setup_logging() response = mock.Mock() response.json.return_value = {"message": "boom"} response.status_code = 401 run_engine.side_effect = http.HTTPClientSideError( message="foobar", request=response.request, response=response ) await worker.push( redis, "owner", "repo", 123, "pull_request", {"payload": "whatever"}, ) await worker.push( redis, "owner", "repo", 123, "comment", {"payload": "foobar"}, ) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 2 == await redis.xlen("stream~owner") assert 0 == len(await redis.hgetall("attempts")) p = worker.StreamProcessor(redis) await p.consume("stream~owner") assert len(run_engine.mock_calls) == 1 assert run_engine.mock_calls[0] == mock.call( "owner", "repo", 123, [ {"event_type": "pull_request", "data": {"payload": "whatever"}}, {"event_type": "comment", "data": {"payload": "foobar"}}, ], ) # Check stream still there and attempts recorded assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 1 == len(await redis.hgetall("attempts")) assert {b"stream~owner": b"1"} == await redis.hgetall("attempts") await p.consume("stream~owner") assert len(run_engine.mock_calls) == 2 assert {b"stream~owner": b"2"} == await redis.hgetall("attempts") await p.consume("stream~owner") assert len(run_engine.mock_calls) == 3 # Still there assert 3 == len(logger.info.mock_calls) assert 0 == len(logger.error.mock_calls) assert logger.info.mock_calls[0].args == ("failed to process stream, retrying",) assert logger.info.mock_calls[1].args == ("failed to process stream, retrying",) assert logger.info.mock_calls[2].args == ("failed to process stream, retrying",) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 1 == len(await redis.hgetall("attempts")) @pytest.mark.asyncio @mock.patch("mergify_engine.worker.daiquiri.getLogger") @mock.patch("mergify_engine.worker.run_engine") async def test_stream_processor_pull_unexpected_error(run_engine, logger_class, redis): logs.setup_logging() logger = logger_class.return_value run_engine.side_effect = Exception await worker.push( redis, "owner", "repo", 123, "pull_request", {"payload": "whatever"}, ) p = worker.StreamProcessor(redis) await p.consume("stream~owner") await p.consume("stream~owner") # Exception have been logged, redis must be clean assert len(run_engine.mock_calls) == 2 assert len(logger.error.mock_calls) == 2 assert logger.error.mock_calls[0].args == ("failed to process pull request",) assert logger.error.mock_calls[1].args == ("failed to process pull request",) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) @pytest.mark.asyncio @mock.patch("mergify_engine.worker.run_engine") async def test_stream_processor_date_scheduling(run_engine, redis, logger_checker): # Don't process it before 2040 with freeze_time("2040-01-01"): await worker.push( redis, "owner1", "repo", 123, "pull_request", {"payload": "whatever"}, ) unwanted_owner_id = "owner1" with freeze_time("2020-01-01"): await worker.push( redis, "owner2", "repo", 321, "pull_request", {"payload": "foobar"}, ) wanted_owner_id = "owner2" assert 2 == (await redis.zcard("streams")) assert 2 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) s = worker.StreamSelector(1, redis) p = worker.StreamProcessor(redis) received = [] def fake_engine(owner, repo, pull_number, sources): received.append(owner) run_engine.side_effect = fake_engine with freeze_time("2020-01-14"): async with s.next_stream() as stream_name: assert stream_name is not None await p.consume(stream_name) assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) assert received == [wanted_owner_id] with freeze_time("2030-01-14"): async with s.next_stream() as stream_name: assert stream_name is None assert 1 == (await redis.zcard("streams")) assert 1 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) assert received == [wanted_owner_id] # We are in 2041, we have something todo :) with freeze_time("2041-01-14"): async with s.next_stream() as stream_name: assert stream_name is not None await p.consume(stream_name) assert 0 == (await redis.zcard("streams")) assert 0 == len(await redis.keys("stream~*")) assert 0 == len(await redis.hgetall("attempts")) assert received == [wanted_owner_id, unwanted_owner_id] @pytest.mark.asyncio async def test_worker_debug_report(redis, logger_checker): stream_names = [] for installation_id in range(8): for pull_number in range(2): for data in range(3): owner = f"owner-{installation_id}" repo = f"repo-{installation_id}" stream_names.append(f"stream~owner-{installation_id}") await worker.push( redis, owner, repo, pull_number, "pull_request", {"payload": data}, ) await worker.async_status() @pytest.mark.asyncio @mock.patch("mergify_engine.worker.run_engine") async def test_stream_processor_retrying_after_read_error(run_engine, redis): response = mock.Mock() response.json.return_value = {"message": "boom"} response.status_code = 503 run_engine.side_effect = httpx.ReadError( "Server disconnected while attempting read", request=mock.Mock(), ) p = worker.StreamProcessor(redis) with pytest.raises(worker.StreamRetry): await p._run_engine_and_translate_exception_to_retries( "stream-owner", "owner", "repo", 1234, [] )
29.416914
87
0.60231
21e54d48216fc15030f876f6cc6181428cec9170
4,370
py
Python
evalml/pipelines/components/estimators/estimator.py
ObinnaObeleagu/evalml
3b5bf62b08a5a5bc6485ba5387a08c32e1857473
[ "BSD-3-Clause" ]
1
2021-07-28T14:20:35.000Z
2021-07-28T14:20:35.000Z
evalml/pipelines/components/estimators/estimator.py
ObinnaObeleagu/evalml
3b5bf62b08a5a5bc6485ba5387a08c32e1857473
[ "BSD-3-Clause" ]
null
null
null
evalml/pipelines/components/estimators/estimator.py
ObinnaObeleagu/evalml
3b5bf62b08a5a5bc6485ba5387a08c32e1857473
[ "BSD-3-Clause" ]
null
null
null
from abc import abstractmethod from pandas.core.indexes import range from evalml.exceptions import MethodPropertyNotFoundError from evalml.model_family import ModelFamily from evalml.pipelines.components import ComponentBase from evalml.utils import infer_feature_types class Estimator(ComponentBase): """A component that fits and predicts given data. To implement a new Estimator, define your own class which is a subclass of Estimator, including a name and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters). Define an `__init__` method which sets up any necessary state and objects. Make sure your `__init__` only uses standard keyword arguments and calls `super().__init__()` with a parameters dict. You may also override the `fit`, `transform`, `fit_transform` and other methods in this class if appropriate. To see some examples, check out the definitions of any Estimator component. Arguments: parameters (dict): Dictionary of parameters for the component. Defaults to None. component_obj (obj): Third-party objects useful in component implementation. Defaults to None. random_seed (int): Seed for the random number generator. Defaults to 0. """ # We can't use the inspect module to dynamically determine this because of issue 1582 predict_uses_y = False model_family = ModelFamily.NONE """ModelFamily.NONE""" modifies_features = True modifies_target = False @property @classmethod @abstractmethod def supported_problem_types(cls): """Problem types this estimator supports""" def __init__(self, parameters=None, component_obj=None, random_seed=0, **kwargs): self.input_feature_names = None super().__init__( parameters=parameters, component_obj=component_obj, random_seed=random_seed, **kwargs ) def _manage_woodwork(self, X, y=None): """Function to convert the input and target data to Pandas data structures.""" if X is not None: X = infer_feature_types(X) if y is not None: y = infer_feature_types(y) return X, y def fit(self, X, y=None): X, y = self._manage_woodwork(X, y) self.input_feature_names = list(X.columns) self._component_obj.fit(X, y) return self def predict(self, X): """Make predictions using selected features. Arguments: X (pd.DataFrame, np.ndarray): Data of shape [n_samples, n_features] Returns: pd.Series: Predicted values """ try: X = infer_feature_types(X) if isinstance(X.columns, range.RangeIndex): X.columns = [x for x in X.columns] predictions = self._component_obj.predict(X) except AttributeError: raise MethodPropertyNotFoundError( "Estimator requires a predict method or a component_obj that implements predict" ) return infer_feature_types(predictions) def predict_proba(self, X): """Make probability estimates for labels. Arguments: X (pd.DataFrame, or np.ndarray): Features Returns: pd.Series: Probability estimates """ try: X = infer_feature_types(X) pred_proba = self._component_obj.predict_proba(X) except AttributeError: raise MethodPropertyNotFoundError( "Estimator requires a predict_proba method or a component_obj that implements predict_proba" ) return infer_feature_types(pred_proba) @property def feature_importance(self): """Returns importance associated with each feature. Returns: np.ndarray: Importance associated with each feature """ try: return self._component_obj.feature_importances_ except AttributeError: raise MethodPropertyNotFoundError( "Estimator requires a feature_importance property or a component_obj that implements feature_importances_" ) def __eq__(self, other): return ( super().__eq__(other) and self.supported_problem_types == other.supported_problem_types )
35.819672
122
0.661556
b36849a5e073b156a4d691268d1790eebba70920
587
py
Python
scripts/configs/_base_/recog_datasets/aic_test.py
hoho303/AIC_2021
fcb626db91ed81bcb3f72eb7868106cfcb5d92fb
[ "Apache-2.0" ]
null
null
null
scripts/configs/_base_/recog_datasets/aic_test.py
hoho303/AIC_2021
fcb626db91ed81bcb3f72eb7868106cfcb5d92fb
[ "Apache-2.0" ]
null
null
null
scripts/configs/_base_/recog_datasets/aic_test.py
hoho303/AIC_2021
fcb626db91ed81bcb3f72eb7868106cfcb5d92fb
[ "Apache-2.0" ]
null
null
null
test_prefix = '/content/drive/Shareddrives/Google Drive/AIClub/HCM_AI_CHALLENGE/Data/Vin_text/Reg/Crop/' test_ann_file ='/content/drive/Shareddrives/Google Drive/AIClub/HCM_AI_CHALLENGE/Data/Vin_text/Reg/test.txt' test = dict( type='OCRDataset', img_prefix=test_prefix, ann_file=test_ann_file, loader=dict( type='HardDiskLoader', repeat=1, parser=dict( type='LineStrParser', keys=['filename', 'text'], keys_idx=[0, 1], separator='\t')), pipeline=None, test_mode=False) test_list = [test]
27.952381
108
0.647359
7436bf0d89fad1be0cc741a9c78c5a16fc7ae1b5
1,184
py
Python
catkin_ws/src/joystick_control/src/heading_to_usv.py
championway/asv_ros
4ded50c48077e1e63586cd32be2354633c163975
[ "MIT" ]
null
null
null
catkin_ws/src/joystick_control/src/heading_to_usv.py
championway/asv_ros
4ded50c48077e1e63586cd32be2354633c163975
[ "MIT" ]
null
null
null
catkin_ws/src/joystick_control/src/heading_to_usv.py
championway/asv_ros
4ded50c48077e1e63586cd32be2354633c163975
[ "MIT" ]
1
2021-05-08T20:05:02.000Z
2021-05-08T20:05:02.000Z
#!/usr/bin/env python import rospy import math from duckiepond.msg import Heading from duckiepond_vehicle.msg import UsvDrive class MotorCmd(object): def __init__(self): self.node_name = rospy.get_name() rospy.loginfo("[%s] Initializing " %(self.node_name)) self.heading = None self.pub_motor_cmd = rospy.Publisher("cmd_drive",UsvDrive,queue_size=1) self.sub_heading = rospy.Subscriber("boat_heading",Heading,self.cbHeading,queue_size=1) rospy.Timer(rospy.Duration(0.1), self.send_motor_cmd) def send_motor_cmd(self, event): if self.heading is None: return mcd_msg = UsvDrive() mcd_msg.header.stamp = rospy.Time.now() speed = self.heading.speed*math.sin(self.heading.phi) difference = self.heading.speed*math.cos(self.heading.phi) mcd_msg.left = max(min(speed - difference , 1),-1) mcd_msg.right = max(min(speed + difference , 1),-1) self.pub_motor_cmd.publish(mcd_msg) def cbHeading(self,msg): self.heading = msg if __name__ == "__main__": rospy.init_node("heading_to_usv") commander = MotorCmd() rospy.spin()
30.358974
95
0.661318
a622470f5659f8f0ef518cbf77eda6ed073431d4
3,255
py
Python
AutoUpgrade_Selenium/AutoUpgrade.py
yanqiaoyu/SetofAutomatedScripts
0001f2a438963c75f48a797ecbc1d72fa9bb43a4
[ "Apache-2.0" ]
null
null
null
AutoUpgrade_Selenium/AutoUpgrade.py
yanqiaoyu/SetofAutomatedScripts
0001f2a438963c75f48a797ecbc1d72fa9bb43a4
[ "Apache-2.0" ]
null
null
null
AutoUpgrade_Selenium/AutoUpgrade.py
yanqiaoyu/SetofAutomatedScripts
0001f2a438963c75f48a797ecbc1d72fa9bb43a4
[ "Apache-2.0" ]
null
null
null
''' @Author: YanQiaoYu @Github: https://github.com/yanqiaoyu?tab=repositories @Date: 2020-06-29 13:46:06 @LastEditors: YanQiaoYu @LastEditTime: 2020-07-02 13:37:50 @FilePath: /SetofAutomatedScripts/AutoUpgrade_Selenium/AutoUpgrade.py ''' from pynput import keyboard from pynput.keyboard import Key, Controller from selenium import webdriver import time from selenium.webdriver.support.select import Select class Upgrade: ''' @description: 初始化函数 @param {type} @return: ''' def __init__(self): self.driver = webdriver.Chrome() self.URL = "http://tplinkdeco.net" self.Time2Sleep = 3 self.DutName = "\"X60\"" self.keyboard = Controller() self.reboottime = 100 ''' @description: 登陆功能 @param {type} @return: ''' def Login(self): self.driver.get("http://tplinkdeco.net") time.sleep(self.Time2Sleep) self.driver.find_element_by_xpath("//*[@id=\"local-login-pwd\"]/div[2]/div[1]/span[2]/input[1]").send_keys("1234567890") time.sleep(self.Time2Sleep) self.driver.find_element_by_id("local-login-button").click() time.sleep(self.Time2Sleep) ''' @description: 登陆之后到上传固件之前的一些跳转操作 @param {type} @return: ''' def PrepareUpgrade(self): self.driver.find_element_by_xpath("//*[@id=\"main-menu\"]/div/div/ul/li[2]/a/span[1]").click() time.sleep(self.Time2Sleep) self.driver.find_element_by_xpath("//*[@id=\"navigator\"]/div[1]/div/ul/li[2]/a/span[2]").click() time.sleep(self.Time2Sleep) self.driver.find_element_by_xpath("//*[@id=\"navigator\"]/div[1]/div/ul/li[2]/ul/li[1]/a/span[2]").click() time.sleep(self.Time2Sleep) self.driver.find_element_by_xpath("//*[@id=\"manual-upgrade-file\"]/div[2]/div[1]/div[1]/span[2]/label").click() time.sleep(self.Time2Sleep) ''' @description: 通过Pynput进行固件选择 @param {type} @return: ''' def ChooseFileAndUpgrade(self): #自定义选择升级固件的操作 self.keyboard.press(Key.right) self.keyboard.release(Key.right) time.sleep(self.Time2Sleep) self.keyboard.press(Key.enter) self.keyboard.release(Key.enter) time.sleep(self.Time2Sleep) ''' @description: 选中固件之后,对下拉框进行操作,并开始升级 @param {type} @return: ''' def ConfirmUpgrade(self): a = self.driver.find_element_by_xpath("//*[@value=\"- Please Select -\"]") a.click() time.sleep(self.Time2Sleep) self.driver.find_element_by_xpath("//*[@id=\"global-combobox-options\"]/div/div[3]/div/div/ul/li").click() time.sleep(self.Time2Sleep) self.driver.find_element_by_xpath("//*[@id=\"local-upgrade-btn\"]/div[2]/div[1]/a/span[2]").click() time.sleep(self.Time2Sleep) self.driver.find_element_by_id("firmware-upgrade-msg-btn-ok").click() ''' @description: 等待重启 @param {type} @return: ''' def WaitingReboot(self): time.sleep(self.reboottime) a=Upgrade() for i in range(100): try: a.Login() a.PrepareUpgrade() a.ChooseFileAndUpgrade() a.ConfirmUpgrade() a.WaitingReboot() except Exception: pass
30.420561
128
0.619355
ee88dbdc0fa930fa4a5a4e31ac95483f754e4fd5
1,468
py
Python
scripts/cscap/tileflow/ingest_tileflow.py
akrherz/datateam
2efbaa24ff2e28115eeabce9193c3d3b152068d8
[ "MIT" ]
5
2017-05-20T04:51:55.000Z
2022-03-07T18:55:27.000Z
scripts/cscap/tileflow/ingest_tileflow.py
isudatateam/datateam
eb8e1dad6c05cb1b236689862fe87c56b25ea6fc
[ "MIT" ]
275
2017-03-09T20:31:30.000Z
2022-03-30T22:43:47.000Z
scripts/cscap/tileflow/ingest_tileflow.py
isudatateam/datateam
eb8e1dad6c05cb1b236689862fe87c56b25ea6fc
[ "MIT" ]
3
2020-06-01T15:03:06.000Z
2021-02-01T13:46:58.000Z
"""Tileflow ingest""" import sys import datetime import pytz import pandas as pd import psycopg2 import numpy as np from pyiem.cscap_utils import get_config, get_spreadsheet_client, Spreadsheet CENTRAL_TIME = [ "ISUAG", "GILMORE", "SERF", "CLAY_C", "CLAY_R", "MUDS2", "MUDS3_OLD", "MUDS4", "SERF_SD", "SERF_IA", "STORY", "UBWC", ] def gio_process(filename): """This is a manually generated file by gio""" pgconn = psycopg2.connect(database="sustainablecorn") cursor = pgconn.cursor() sql = """ INSERT into tileflow_data(uniqueid, plotid, valid, discharge_mm, discharge_mm_qc) VALUES (%s, %s, %s, %s, %s) """ for i, line in enumerate(open(filename)): if i == 0: continue (uniqueid, plotid, date, localtime, flow) = line.strip().split(",") if localtime == "": localtime = "00:00" if flow == "": flow = None ts = datetime.datetime.strptime( "%s %s" % (date, localtime), "%Y-%m-%d %H:%M" ) offset = 6 if uniqueid in CENTRAL_TIME else 5 ts = ts + datetime.timedelta(hours=offset) ts = ts.replace(tzinfo=pytz.utc) cursor.execute(sql, (uniqueid, plotid, ts, flow, flow)) cursor.close() pgconn.commit() pgconn.close() def main(argv): """Go Main""" fn = argv[1] gio_process(fn) if __name__ == "__main__": main(sys.argv)
22.9375
77
0.576975
49a6fe9c44ccb6f48e3d5322205b5c29141bf082
309
py
Python
netdisco/discoverables/lg_smart_device.py
jjlawren/netdisco
ffc3cd092bff359b1c1fc1ed51940624b3c8076b
[ "Apache-2.0" ]
234
2016-04-18T23:47:08.000Z
2021-04-15T09:18:11.000Z
env/lib/python3.7/site-packages/netdisco/discoverables/lg_smart_device.py
seanmitch/UPnP
f3cb1ef62657f166971c1c470ce5dfd58bdeeac9
[ "Unlicense" ]
175
2016-04-13T11:25:29.000Z
2019-05-27T03:20:00.000Z
env/lib/python3.7/site-packages/netdisco/discoverables/lg_smart_device.py
seanmitch/UPnP
f3cb1ef62657f166971c1c470ce5dfd58bdeeac9
[ "Unlicense" ]
185
2016-04-13T11:32:11.000Z
2021-03-31T14:26:39.000Z
"""Discover LG smart devices.""" from . import MDNSDiscoverable # pylint: disable=too-few-public-methods class Discoverable(MDNSDiscoverable): """Add support for discovering LG smart devices.""" def __init__(self, nd): super(Discoverable, self).__init__(nd, '_lg-smart-device._tcp.local.')
28.090909
78
0.718447
76889a7ba77dff97aa0e87cbcc10c6ff4cb4c4b6
273
py
Python
setup.py
igred8/laser-rb
1c3d1acc821a5bdaebba8fe63f1013430a1fe80f
[ "MIT" ]
null
null
null
setup.py
igred8/laser-rb
1c3d1acc821a5bdaebba8fe63f1013430a1fe80f
[ "MIT" ]
null
null
null
setup.py
igred8/laser-rb
1c3d1acc821a5bdaebba8fe63f1013430a1fe80f
[ "MIT" ]
null
null
null
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='Simulations, calculations, reports, and misc. for the UV laser transport to the photo cathode.', author='igad', license='MIT', )
24.818182
113
0.688645
56522c908b53f9d0b9195dffa7c67dd2a6581e75
1,004
py
Python
UniShared_python/website/forms.py
UniShared/unishared
0abc36be9e4262a4928945f70ec030e46e05149b
[ "MIT" ]
null
null
null
UniShared_python/website/forms.py
UniShared/unishared
0abc36be9e4262a4928945f70ec030e46e05149b
[ "MIT" ]
null
null
null
UniShared_python/website/forms.py
UniShared/unishared
0abc36be9e4262a4928945f70ec030e46e05149b
[ "MIT" ]
2
2019-03-03T17:34:48.000Z
2019-04-23T17:34:14.000Z
from django.forms import ModelForm, Form, CharField, ValidationError from website.models import NoteTakingBuddy, Training __author__ = 'arnaud' class DocumentTitleForm(Form): title = CharField(max_length=256) def clean_title(self): title = self.cleaned_data['title'] result = Training.objects.filter(title__icontains=title) if not result.exists(): raise ValidationError('This document doesn\'t exists') class NoteTakingBuddyForm(ModelForm): class Meta: model = NoteTakingBuddy exclude = ('hub', 'user', 'score',) def __init__(self, *args, **kwargs): self._hub = kwargs.pop('hub', None) self._user = kwargs.pop('user', None) super(NoteTakingBuddyForm, self).__init__(*args, **kwargs) def save(self, commit=True): inst = self.instance inst.hub = self._hub inst.user = self._user inst.score = inst.get_score() if commit: inst.save() return inst
30.424242
68
0.64243
994bd523542806d6a443bbb56fb9bf904539bca7
13,071
py
Python
cinder/volume/drivers/dell_emc/sc/storagecenter_iscsi.py
liangintel/stx-cinder
f4c43797a3f8c0caebfd8fb67244c084d26d9741
[ "Apache-2.0" ]
null
null
null
cinder/volume/drivers/dell_emc/sc/storagecenter_iscsi.py
liangintel/stx-cinder
f4c43797a3f8c0caebfd8fb67244c084d26d9741
[ "Apache-2.0" ]
null
null
null
cinder/volume/drivers/dell_emc/sc/storagecenter_iscsi.py
liangintel/stx-cinder
f4c43797a3f8c0caebfd8fb67244c084d26d9741
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2015-2017 Dell Inc, or its subsidiaries. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Volume driver for Dell Storage Center.""" from oslo_log import log as logging from oslo_utils import excutils from cinder import exception from cinder.i18n import _ from cinder import interface from cinder.volume import driver from cinder.volume.drivers.dell_emc.sc import storagecenter_common LOG = logging.getLogger(__name__) @interface.volumedriver class SCISCSIDriver(storagecenter_common.SCCommonDriver, driver.ISCSIDriver): """Implements commands for Dell Storage Center ISCSI management. To enable the driver add the following line to the cinder configuration: volume_driver=cinder.volume.drivers.dell_emc.sc.\ dell_storagecenter_iscsi.SCISCSIDriver Version history: .. code-block:: none 1.0.0 - Initial driver 1.1.0 - Added extra spec support for Storage Profile selection 1.2.0 - Added consistency group support. 2.0.0 - Switched to inheriting functional objects rather than volume driver. 2.1.0 - Added support for ManageableVD. 2.2.0 - Driver retype support for switching volume's Storage Profile. Added API 2.2 support. 2.3.0 - Added Legacy Port Mode Support 2.3.1 - Updated error handling. 2.4.0 - Added Replication V2 support. 2.4.1 - Updated Replication support to V2.1. 2.5.0 - ManageableSnapshotsVD implemented. 3.0.0 - ProviderID utilized. 3.1.0 - Failback Supported. 3.2.0 - Live Volume support. 3.3.0 - Support for a secondary DSM. 3.4.0 - Support for excluding a domain. 3.5.0 - Support for AFO. 3.6.0 - Server type support. 3.7.0 - Support for Data Reduction, Group QOS and Volume QOS. 4.0.0 - Driver moved to dell_emc. """ VERSION = '4.0.0' CI_WIKI_NAME = "Dell_Storage_CI" def __init__(self, *args, **kwargs): super(SCISCSIDriver, self).__init__(*args, **kwargs) self.backend_name = ( self.configuration.safe_get('volume_backend_name') or 'Dell-iSCSI') def initialize_connection(self, volume, connector): # Initialize_connection will find or create a server identified by the # connector on the Dell backend. It will then map the volume to it # and return the properties as follows.. # {'driver_volume_type': 'iscsi', # data = {'target_discovered': False, # 'target_iqn': preferred iqn, # 'target_iqns': all iqns, # 'target_portal': preferred portal, # 'target_portals': all portals, # 'target_lun': preferred lun, # 'target_luns': all luns, # } # We use id to name the volume name as it is a # known unique name. volume_name = volume.get('id') provider_id = volume.get('provider_id') islivevol = self._is_live_vol(volume) initiator_name = connector.get('initiator') multipath = connector.get('multipath', False) LOG.info('initialize_ connection: %(vol)s:%(pid)s:' '%(intr)s. Multipath is %(mp)r', {'vol': volume_name, 'pid': provider_id, 'intr': initiator_name, 'mp': multipath}) with self._client.open_connection() as api: try: # Find the volume on the storage center. Note that if this # is live volume and we are swapped this will be the back # half of the live volume. scvolume = api.find_volume(volume_name, provider_id, islivevol) if scvolume: # Get the SSN it is on. ssn = scvolume['instanceId'].split('.')[0] # Find our server. scserver = api.find_server(initiator_name, ssn) # No? Create it. if scserver is None: scserver = api.create_server( [initiator_name], self.configuration.dell_server_os, ssn) # if we have a server and a volume lets bring them # together. if scserver is not None: mapping = api.map_volume(scvolume, scserver) if mapping is not None: # Since we just mapped our volume we had best # update our sc volume object. scvolume = api.get_volume(scvolume['instanceId']) # Our return. iscsiprops = {} # Three cases that should all be satisfied with the # same return of Target_Portal and Target_Portals. # 1. Nova is calling us so we need to return the # Target_Portal stuff. It should ignore the # Target_Portals stuff. # 2. OS brick is calling us in multipath mode so we # want to return Target_Portals. It will ignore # the Target_Portal stuff. # 3. OS brick is calling us in single path mode so # we want to return Target_Portal and # Target_Portals as alternates. iscsiprops = api.find_iscsi_properties(scvolume) # If this is a live volume we need to map up our # secondary volume. Note that if we have failed # over we do not wish to do this. if islivevol: sclivevolume = api.get_live_volume(provider_id) # Only map if we are not failed over. if (sclivevolume and not api.is_failed_over(provider_id, sclivevolume)): secondaryprops = self.initialize_secondary( api, sclivevolume, initiator_name) # Combine with iscsiprops iscsiprops['target_iqns'] += ( secondaryprops['target_iqns']) iscsiprops['target_portals'] += ( secondaryprops['target_portals']) iscsiprops['target_luns'] += ( secondaryprops['target_luns']) # Return our iscsi properties. iscsiprops['discard'] = True return {'driver_volume_type': 'iscsi', 'data': iscsiprops} # Re-raise any backend exception. except exception.VolumeBackendAPIException: with excutils.save_and_reraise_exception(): LOG.error('Failed to initialize connection') # If there is a data structure issue then detail the exception # and bail with a Backend Exception. except Exception as error: LOG.error(error) raise exception.VolumeBackendAPIException(error) # We get here because our mapping is none or we have no valid iqn to # return so blow up. raise exception.VolumeBackendAPIException( _('Unable to map volume')) def initialize_secondary(self, api, sclivevolume, initiatorname): """Initialize the secondary connection of a live volume pair. :param api: Dell SC api. :param sclivevolume: Dell SC live volume object. :param initiatorname: Cinder iscsi initiator from the connector. :return: ISCSI properties. """ # Find our server. secondary = api.find_server(initiatorname, sclivevolume['secondaryScSerialNumber']) # No? Create it. if secondary is None: secondary = api.create_server( [initiatorname], self.configuration.dell_server_os, sclivevolume['secondaryScSerialNumber']) if secondary: if api.map_secondary_volume(sclivevolume, secondary): # Get our volume and get our properties. secondaryvol = api.get_volume( sclivevolume['secondaryVolume']['instanceId']) if secondaryvol: return api.find_iscsi_properties(secondaryvol) # Dummy return on failure. data = {'target_discovered': False, 'target_iqn': None, 'target_iqns': [], 'target_portal': None, 'target_portals': [], 'target_lun': None, 'target_luns': [], } LOG.warning('Unable to map live volume secondary volume' ' %(vol)s to secondary server intiator: %(init)r', {'vol': sclivevolume['secondaryVolume']['instanceName'], 'init': initiatorname}) return data def terminate_connection(self, volume, connector, force=False, **kwargs): # Grab some quick info. volume_name = volume.get('id') provider_id = volume.get('provider_id') initiator_name = None if not connector else connector.get('initiator') LOG.debug('Terminate connection: %(vol)s:%(initiator)s', {'vol': volume_name, 'initiator': initiator_name}) with self._client.open_connection() as api: try: # Find the volume on the storage center. Note that if this # is live volume and we are swapped this will be the back # half of the live volume. islivevol = self._is_live_vol(volume) scvolume = api.find_volume(volume_name, provider_id, islivevol) if scvolume: # Get the SSN it is on. ssn = scvolume['instanceId'].split('.')[0] # Unmap our secondary if not failed over.. if islivevol: sclivevolume = api.get_live_volume(provider_id) if (sclivevolume and not api.is_failed_over(provider_id, sclivevolume)): self.terminate_secondary(api, sclivevolume, initiator_name) # Find our server. scserver = (None if not initiator_name else api.find_server(initiator_name, ssn)) # If we have a server and a volume lets pull them apart. if ((scserver and api.unmap_volume(scvolume, scserver) is True) or (not scserver and api.unmap_all(scvolume))): LOG.debug('Connection terminated') return except Exception: with excutils.save_and_reraise_exception(): LOG.error('Failed to terminate connection ' '%(initiator)s %(vol)s', {'initiator': initiator_name, 'vol': volume_name}) raise exception.VolumeBackendAPIException( _('Terminate connection failed')) def terminate_secondary(self, api, sclivevolume, initiatorname): secondaryvol = api.get_volume( sclivevolume['secondaryVolume']['instanceId']) if secondaryvol: if initiatorname: # Find our server. secondary = api.find_server( initiatorname, sclivevolume['secondaryScSerialNumber']) return api.unmap_volume(secondaryvol, secondary) else: return api.unmap_all(secondaryvol) else: LOG.debug('terminate_secondary: secondary volume not found.')
46.187279
79
0.536761
818f3eedd771f0c558e9bda6ed59518c44d532dd
13,049
py
Python
src/train.py
andi611/CS-Tacotron
8a0d61899e95802b18024cdf0710ea405bc08878
[ "MIT" ]
20
2019-03-07T13:19:37.000Z
2022-03-27T22:00:55.000Z
src/train.py
andi611/CS-Tacotron
8a0d61899e95802b18024cdf0710ea405bc08878
[ "MIT" ]
5
2020-01-28T22:20:22.000Z
2022-02-09T23:36:55.000Z
src/train.py
samirsahoo007/CS-Tacotron-Pytorch
fe63ef5ddcfc83345cc9c3d128b72a1c4de12682
[ "MIT" ]
8
2019-12-18T07:12:40.000Z
2021-12-21T08:54:38.000Z
# -*- coding: utf-8 -*- # """*********************************************************************************************""" # FileName [ train.py ] # Synopsis [ Trainining script for Tacotron speech synthesis model ] # Author [ Ting-Wei Liu (Andi611) ] # Copyright [ Copyleft(c), Speech Lab, NTU, Taiwan ] """*********************************************************************************************""" """ Usage: train.py [options] Options: --checkpoint_dir <dir> Directory where to save model checkpoints [default: checkpoints]. --checkpoint_path <name> Restore model from checkpoint path if given. --data_root <dir> Directory contains preprocessed features. --meta_text <name> Name of the model-ready training transcript. --summary_comment <str> Comment for log summary writer. -h, --help Show this help message and exit """ ############### # IMPORTATION # ############### import os import sys import time #-----------------------# import numpy as np import librosa.display #---------------------# from utils import audio from utils.plot import plot_alignment, plot_spectrogram from utils.text import text_to_sequence, symbols #----------------------------------------------# import torch from torch import nn from torch import optim from torch.autograd import Variable import torch.backends.cudnn as cudnn from torch.utils import data #----------------------------------------# from model.tacotron import Tacotron from config import config, get_training_args #------------------------------------------# from nnmnkwii.datasets import FileSourceDataset, FileDataSource from tensorboardX import SummaryWriter #################### # GLOBAL VARIABLES # #################### global_step = 0 global_epoch = 0 USE_CUDA = torch.cuda.is_available() if USE_CUDA: cudnn.benchmark = False DATA_ROOT = None META_TEXT = None def _pad(seq, max_len): return np.pad(seq, (0, max_len - len(seq)), mode='constant', constant_values=0) def _pad_2d(x, max_len): x = np.pad(x, [(0, max_len - len(x)), (0, 0)], mode="constant", constant_values=0) return x #################### # TEXT DATA SOURCE # #################### class TextDataSource(FileDataSource): def __init__(self): pass #self._cleaner_names = [x.strip() for x in hparams.cleaners.split(',')] def collect_files(self): meta = os.path.join(DATA_ROOT, META_TEXT) with open(meta, 'r', encoding='utf-8') as f: lines = f.readlines() lines = list(map(lambda l: l.split("|")[-1][:-1], lines)) return lines def collect_features(self, text): return np.asarray(text_to_sequence(text), dtype=np.int32) ################### # NPY DATA SOURCE # ################### class _NPYDataSource(FileDataSource): def __init__(self, col): self.col = col def collect_files(self): meta = os.path.join(DATA_ROOT, META_TEXT) with open(meta, 'r', encoding='utf-8') as f: lines = f.readlines() lines = list(map(lambda l: l.split("|")[self.col], lines)) paths = list(map(lambda f: os.path.join(DATA_ROOT, f), lines)) return paths def collect_features(self, path): return np.load(path) ######################## # MEL SPEC DATA SOURCE # ######################## class MelSpecDataSource(_NPYDataSource): def __init__(self): super(MelSpecDataSource, self).__init__(1) ########################### # LINEAR SPEC DATA SOURCE # ########################### class LinearSpecDataSource(_NPYDataSource): def __init__(self): super(LinearSpecDataSource, self).__init__(0) ####################### # PYTORCH DATA SOURCE # ####################### class PyTorchDataset(object): def __init__(self, X, Mel, Y): self.X = X self.Mel = Mel self.Y = Y def __getitem__(self, idx): return self.X[idx], self.Mel[idx], self.Y[idx] def __len__(self): return len(self.X) ############## # COLLATE FN # ############## """ Create batch """ def collate_fn(batch): r = config.outputs_per_step input_lengths = [len(x[0]) for x in batch] max_input_len = np.max(input_lengths) max_target_len = np.max([len(x[1]) for x in batch]) + 1 # Add single zeros frame at least, so plus 1 if max_target_len % r != 0: max_target_len += r - max_target_len % r assert max_target_len % r == 0 a = np.array([_pad(x[0], max_input_len) for x in batch], dtype=np.int) x_batch = torch.LongTensor(a) input_lengths = torch.LongTensor(input_lengths) b = np.array([_pad_2d(x[1], max_target_len) for x in batch], dtype=np.float32) mel_batch = torch.FloatTensor(b) c = np.array([_pad_2d(x[2], max_target_len) for x in batch], dtype=np.float32) y_batch = torch.FloatTensor(c) return x_batch, input_lengths, mel_batch, y_batch ####################### # LEARNING RATE DECAY # ####################### def _learning_rate_decay(init_lr, global_step): warmup_steps = 6000.0 step = global_step + 1. lr = init_lr * warmup_steps**0.5 * np.minimum(step * warmup_steps**-1.5, step**-0.5) return lr ############### # SAVE STATES # ############### def save_states(global_step, mel_outputs, linear_outputs, attn, y, input_lengths, checkpoint_dir=None): idx = min(1, len(input_lengths) - 1) # idx = np.random.randint(0, len(input_lengths)) input_length = input_lengths[idx] # Alignment path = os.path.join(checkpoint_dir, "step{}_alignment.png".format( global_step)) alignment = attn[idx].cpu().data.numpy() # alignment = attn[idx].cpu().data.numpy()[:, :input_length] plot_alignment(alignment.T, path, info="tacotron, step={}".format(global_step)) # Predicted spectrogram path = os.path.join(checkpoint_dir, "step{}_predicted_spectrogram.png".format( global_step)) linear_output = linear_outputs[idx].cpu().data.numpy() plot_spectrogram(linear_output, path) # Predicted audio signal signal = audio.inv_spectrogram(linear_output.T) path = os.path.join(checkpoint_dir, "step{}_predicted.wav".format( global_step)) audio.save_wav(signal, path) # Target spectrogram path = os.path.join(checkpoint_dir, "step{}_target_spectrogram.png".format( global_step)) linear_output = y[idx].cpu().data.numpy() plot_spectrogram(linear_output, path) ################### # SAVE CHECKPOINT # ################### def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch): checkpoint_path = os.path.join(checkpoint_dir, "checkpoint_step{}.pth".format(global_step)) torch.save({"state_dict": model.state_dict(), "optimizer": optimizer.state_dict(), "global_step": step, "global_epoch": epoch,}, checkpoint_path) ################# # TACOTRON STEP # ################# """ One step of training: Train a single batch of data on Tacotron """ def tacotron_step(model, optimizer, criterion, x, input_lengths, mel, y, init_lr, sample_rate, clip_thresh, running_loss, data_len, global_step): #---decay learning rate---# current_lr = _learning_rate_decay(init_lr, global_step) for param_group in optimizer.param_groups: param_group['lr'] = current_lr optimizer.zero_grad() #---sort by length---# sorted_lengths, indices = torch.sort(input_lengths.view(-1), dim=0, descending=True) sorted_lengths = sorted_lengths.long().numpy() #---feed data---# x, mel, y = Variable(x[indices]), Variable(mel[indices]), Variable(y[indices]) if USE_CUDA: x, mel, y = x.cuda(), mel.cuda(), y.cuda() mel_outputs, linear_outputs, attn = model(x, mel, input_lengths=sorted_lengths) #---Loss---# mel_loss = criterion(mel_outputs, mel) n_priority_freq = int(3000 / (sample_rate * 0.5) * model.linear_dim) linear_loss = 0.5 * criterion(linear_outputs, y) + 0.5 * criterion(linear_outputs[:, :, :n_priority_freq], y[:, :, :n_priority_freq]) loss = mel_loss + linear_loss #---log loss---# total_L = loss.item() running_loss += loss.item() avg_L = running_loss / (data_len) mel_L = mel_loss.item() linear_L = linear_loss.item() #---update model---# loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_thresh) optimizer.step() #---wrap up returns---# Ms = { 'mel_outputs' : mel_outputs, 'linear_outputs' : linear_outputs, 'attn' : attn, 'sorted_lengths' : sorted_lengths, 'grad_norm' : grad_norm, 'current_lr' : current_lr } Ls = { 'total_L': total_L, 'avg_L' : avg_L, 'mel_L' : mel_L, 'linear_L' : linear_L } return model, optimizer, Ms, Ls ######### # TRAIN # ######### def train(model, optimizer, data_loader, summary_comment, init_lr=0.002, checkpoint_dir=None, checkpoint_interval=None, nepochs=None, clip_thresh=1.0, sample_rate=20000): if USE_CUDA: model = model.cuda() model.train() writer = SummaryWriter() if summary_comment == None else SummaryWriter(summary_comment) global global_step, global_epoch criterion = nn.L1Loss() while global_epoch < nepochs: start = time.time() running_loss = 0. for x, input_lengths, mel, y in data_loader: model, optimizer, Ms, Rs = tacotron_step(model, optimizer, criterion, x, input_lengths, mel, y, init_lr, sample_rate, clip_thresh, running_loss, len(data_loader), global_step) mel_outputs = Ms['mel_outputs'] linear_outputs = Ms['linear_outputs'] attn = Ms['attn'] sorted_lengths = Ms['sorted_lengths'] grad_norm = Ms['grad_norm'] current_lr = Ms['current_lr'] total_L = Rs['total_L'] avg_L = Rs['avg_L'] mel_L = Rs['mel_L'] linear_L = Rs['linear_L'] duration = time.time() - start if global_step > 0 and global_step % checkpoint_interval == 0: save_states(global_step, mel_outputs, linear_outputs, attn, y, sorted_lengths, checkpoint_dir) save_checkpoint(model, optimizer, global_step, checkpoint_dir, global_epoch) log = '[{}] total_L: {:.3f}, avg_L: {:.3f}, mel_L: {:.3f}, mag_L: {:.3f}, grad_norm: {:.3f}, lr: {:.5f}, t: {:.2f}s, saved: T'.format(global_step, total_L, avg_L, mel_L, linear_L, grad_norm, current_lr, duration) print(log) elif global_step % 5 == 0: log = '[{}] total_L: {:.3f}, avg_L: {:.3f}, mel_L: {:.3f}, mag_L: {:.3f}, grad_norm: {:.3f}, lr: {:.5f}, t: {:.2f}s, saved: F'.format(global_step, total_L, avg_L, mel_L, linear_L, grad_norm, current_lr, duration) print(log, end='\r') # Logs writer.add_scalar('total_loss', total_L, global_step) writer.add_scalar('averaged_loss', avg_L, global_step) writer.add_scalar('mel_loss', mel_L, global_step) writer.add_scalar('linear_loss', linear_L, global_step) writer.add_scalar('grad_norm', grad_norm, global_step) writer.add_scalar('learning_rate', current_lr, global_step) global_step += 1 start = time.time() global_epoch += 1 ####################### # INITIALIZE TRAINING # ####################### """ Setup and prepare for Tacotron training. """ def initialize_training(checkpoint_path): # Input dataset definitions X = FileSourceDataset(TextDataSource()) Mel = FileSourceDataset(MelSpecDataSource()) Y = FileSourceDataset(LinearSpecDataSource()) # Dataset and Dataloader setup dataset = PyTorchDataset(X, Mel, Y) data_loader = data.DataLoader(dataset, batch_size=config.batch_size, num_workers=config.num_workers, shuffle=True, collate_fn=collate_fn, pin_memory=config.pin_memory) # Model model = Tacotron(n_vocab=len(symbols), embedding_dim=config.embedding_dim, mel_dim=config.num_mels, linear_dim=config.num_freq, r=config.outputs_per_step, padding_idx=config.padding_idx, use_memory_mask=config.use_memory_mask) optimizer = optim.Adam(model.parameters(), lr=config.initial_learning_rate, betas=(config.adam_beta1, config.adam_beta2), weight_decay=config.weight_decay) # Load checkpoint if checkpoint_path != None: print("Load checkpoint from: {}".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint["state_dict"]) optimizer.load_state_dict(checkpoint["optimizer"]) try: global_step = checkpoint["global_step"] global_epoch = checkpoint["global_epoch"] except: print('Warning: global step and global epoch unable to restore!') sys.exit(0) return model, optimizer, data_loader ######## # MAIN # ######## def main(): args = get_training_args() global DATA_ROOT, META_TEXT if args.data_root != None: DATA_ROOT = args.data_root if args.meta_text != None: META_TEXT = args.meta_text checkpoint_dir = args.checkpoint_dir checkpoint_path = args.checkpoint_path os.makedirs(checkpoint_dir, exist_ok=True) model, optimizer, data_loader = initialize_training(checkpoint_path) # Train! try: train(model, optimizer, data_loader, args.summary_comment, init_lr=config.initial_learning_rate, checkpoint_dir=checkpoint_dir, checkpoint_interval=config.checkpoint_interval, nepochs=config.nepochs, clip_thresh=config.clip_thresh, sample_rate=config.sample_rate) except KeyboardInterrupt: print() pass print("Finished") sys.exit(0) if __name__ == "__main__": main()
28.869469
216
0.653153
63b8aabc6ee3156e9e90c5c682bcdba5bd57abd0
1,592
py
Python
src/util/__init__.py
Mathtin/overlord
a800f0903e99ffe989efb778937b89d2707ee510
[ "MIT" ]
null
null
null
src/util/__init__.py
Mathtin/overlord
a800f0903e99ffe989efb778937b89d2707ee510
[ "MIT" ]
null
null
null
src/util/__init__.py
Mathtin/overlord
a800f0903e99ffe989efb778937b89d2707ee510
[ "MIT" ]
1
2021-02-15T23:12:45.000Z
2021-02-15T23:12:45.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ MIT License Copyright (c) 2020-present Daniel [Mathtin] Shiko <wdaniil@mail.ru> Project: Overlord discord bot Contributors: Danila [DeadBlasoul] Popov <dead.blasoul@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __author__ = "Mathtin" from .config import ConfigView, ConfigParser, ConfigManager from .exceptions import InvalidConfigException, NotCoroutineException from .resources import STRINGS as R from .common import get_module_element, dict_fancy_table, pretty_days, pretty_seconds, parse_control_message, \ limit_traceback, FORMATTERS
43.027027
111
0.799623
549b38a358011cb46f39af64b34b4863070dcdca
12,010
py
Python
objectModel/Python/cdm/objectmodel/projections/cdm_projection.py
CBA-Consult/CDM
892bceac7a15167c85342cc1c61d7ecdf5f1b78d
[ "CC-BY-4.0", "MIT" ]
null
null
null
objectModel/Python/cdm/objectmodel/projections/cdm_projection.py
CBA-Consult/CDM
892bceac7a15167c85342cc1c61d7ecdf5f1b78d
[ "CC-BY-4.0", "MIT" ]
null
null
null
objectModel/Python/cdm/objectmodel/projections/cdm_projection.py
CBA-Consult/CDM
892bceac7a15167c85342cc1c61d7ecdf5f1b78d
[ "CC-BY-4.0", "MIT" ]
1
2021-09-24T16:51:04.000Z
2021-09-24T16:51:04.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. from typing import Optional, TYPE_CHECKING from cdm.enums import CdmObjectType, CdmAttributeContextType from cdm.objectmodel import CdmObjectDefinition, CdmOperationCollection, CdmAttributeContext from cdm.resolvedmodel import ResolvedAttributeSet from cdm.resolvedmodel.expression_parser.expression_tree import ExpressionTree from cdm.resolvedmodel.expression_parser.input_values import InputValues from cdm.resolvedmodel.expression_parser.node import Node from cdm.resolvedmodel.projections.condition_expression import ConditionExpression from cdm.resolvedmodel.projections.projection_attribute_state_set import ProjectionAttributeStateSet from cdm.resolvedmodel.projections.projection_context import ProjectionContext from cdm.resolvedmodel.projections.projection_resolution_common_util import ProjectionResolutionCommonUtil from cdm.utilities import Errors, logger, AttributeContextParameters if TYPE_CHECKING: from cdm.objectmodel import CdmCorpusContext, CdmEntityReference from cdm.utilities import ResolveOptions, VisitCallback from cdm.resolvedmodel.projections.projection_directive import ProjectionDirective class CdmProjection(CdmObjectDefinition): """Class for Projection""" def __init__(self, ctx: 'CdmCorpusContext') -> None: super().__init__(ctx) # Property of a projection that holds the condition expression string self.condition = None # type: str # Property of a projection that holds a collection of operations self.operations = CdmOperationCollection(ctx, self) # type: CdmOperationCollection # Property of a projection that holds the source of the operation self.source = None # type: CdmEntityReference # --- internal --- # Condition expression tree that is built out of a condition expression string self._condition_expression_tree_root = None # type: Node self._TAG = CdmProjection.__name__ def copy(self, res_opt: Optional['ResolveOptions'] = None, host: Optional['CdmProjection'] = None) -> 'CdmProjection': logger.error(self._TAG, self.ctx, 'Projection operation not implemented yet.', 'copy') return CdmProjection(self.ctx) def get_name(self) -> str: return 'projection' @property def object_type(self) -> 'CdmObjectType': return CdmObjectType.PROJECTION_DEF def is_derived_from(self, base: str, res_opt: Optional['ResolveOptions'] = None) -> bool: # Since projections don't support inheritance, return false return False def validate(self) -> bool: missing_fields = [] if not bool(self.source): missing_fields.append('source') if len(missing_fields) > 0: logger.error(self._TAG, self.ctx, Errors.validate_error_string(self.at_corpus_path, missing_fields)) return False return True def visit(self, path_from: str, pre_children: 'VisitCallback', post_children: 'VisitCallback') -> bool: path = '' if not self.ctx.corpus._block_declared_path_changes: path = self._declared_path if not path: path = path_from + 'projection' self._declared_path = path if pre_children and pre_children(self, path): return False if self.source: if self.source.visit(path + '/source/', pre_children, post_children): return True result = False if self.operations and len(self.operations) > 0: # since self.Operations.VisitList results is non-unique attribute context paths if there are 2 or more operations of the same type. # e.g. with composite keys # the solution is to add a unique identifier to the path by adding the operation index or opIdx for op_index in range(len(self.operations)): self.operations[op_index]._index = op_index + 1 if self.operations[op_index] and self.operations[op_index].visit('{}/operation/index{}/'.format(path, op_index + 1), pre_children, post_children): result = True else: result = False if result: return True if post_children and post_children(self, path): return True return False def _fetch_resolved_traits(self, res_opt: Optional['ResolveOptions'] = None) -> 'ResolvedTraitSet': return self.source._fetch_resolved_traits(res_opt) def _construct_projection_context(self, proj_directive: 'ProjectionDirective', attr_ctx: 'CdmAttributeContext') -> 'ProjectionContext': """ A function to construct projection context and populate the resolved attribute set that ExtractResolvedAttributes method can then extract This function is the entry point for projection resolution. This function is expected to do the following 3 things: - Create an condition expression tree & default if appropriate - Create and initialize Projection Context - Process operations """ proj_context = None if not self.condition: # if no condition is provided, get default condition and persist self.condition = ConditionExpression._get_default_condition_expression(self.operations, self.owner) # create an expression tree based on the condition tree = ExpressionTree() self._condition_expression_tree_root = tree._construct_expression_tree(self.condition) if not self._condition_expression_tree_root: logger.info(self._TAG, self.ctx, 'Optional expression missing. Implicit expression will automatically apply.', CdmProjection._construct_projection_context.__name__) if attr_ctx: # Add projection to context tree acp_proj = AttributeContextParameters() acp_proj._under = attr_ctx acp_proj._type = CdmAttributeContextType.PROJECTION acp_proj._name = self.fetch_object_definition_name() acp_proj._regarding = proj_directive._owner_ref acp_proj._include_traits = False ac_proj = CdmAttributeContext._create_child_under(proj_directive._res_opt, acp_proj) acp_source = AttributeContextParameters() acp_source._under = ac_proj acp_source._type = CdmAttributeContextType.SOURCE acp_source._name = 'source' acp_source._regarding = None acp_source._include_traits = False ac_source = CdmAttributeContext._create_child_under(proj_directive._res_opt, acp_source) if self.source.fetch_object_definition(proj_directive._res_opt).object_type == CdmObjectType.PROJECTION_DEF: # A Projection proj_context = self.source.explicit_reference._construct_projection_context(proj_directive, ac_source) else: # An Entity Reference acp_source_projection = AttributeContextParameters() acp_source_projection._under = ac_source acp_source_projection._type = CdmAttributeContextType.ENTITY acp_source_projection._name = self.source.named_reference if self.source.named_reference else self.source.explicit_reference.get_name() acp_source_projection._regarding = self.source acp_source_projection._include_traits = False ras = self.source._fetch_resolved_attributes(proj_directive._res_opt, acp_source_projection) # Initialize the projection context ctx = proj_directive._owner.ctx if proj_directive._owner else None pas_set = None # if polymorphic keep original source as previous state poly_source_set = None if proj_directive._is_source_polymorphic: poly_source_set = ProjectionResolutionCommonUtil._get_polymorphic_source_set(proj_directive, ctx, self.source, acp_source_projection) # now initialize projection attribute state pas_set = ProjectionResolutionCommonUtil._initialize_projection_attribute_state_set( proj_directive, ctx, ras, proj_directive._is_source_polymorphic, poly_source_set ) proj_context = ProjectionContext(proj_directive, ras.attribute_context) proj_context._current_attribute_state_set = pas_set is_condition_valid = False if self._condition_expression_tree_root: input = InputValues() input.no_max_depth = proj_directive._has_no_maximum_depth input.is_array = proj_directive._is_array input.reference_only = proj_directive._is_reference_only input.normalized = proj_directive._is_normalized input.structured = proj_directive._is_structured input.is_virtual = proj_directive._is_virtual current_depth = proj_directive._current_depth current_depth += 1 input.next_depth = current_depth proj_directive._current_depth = current_depth input.max_depth = proj_directive._maximum_depth input.min_cardinality = proj_directive._cardinality._minimum_number if proj_directive._cardinality else None input.max_cardinality = proj_directive._cardinality._maximum_number if proj_directive._cardinality else None is_condition_valid = ExpressionTree._evaluate_expression_tree(self._condition_expression_tree_root, input) if is_condition_valid and self.operations and len(self.operations) > 0: # Just in case operations were added programmatically, reindex operations for i in range(len(self.operations)): self.operations[i]._index = i + 1 # Operation acp_gen_attr_set = AttributeContextParameters() acp_gen_attr_set._under = attr_ctx acp_gen_attr_set._type = CdmAttributeContextType.GENERATED_SET acp_gen_attr_set._name = '_generatedAttributeSet' ac_gen_attr_set = CdmAttributeContext._create_child_under(proj_directive._res_opt, acp_gen_attr_set) # Start with an empty list for each projection pas_operations = ProjectionAttributeStateSet(proj_context._current_attribute_state_set._ctx) for operation in self.operations: # Evaluate projections and apply to empty state new_pas_operations = operation._append_projection_attribute_state(proj_context, pas_operations, ac_gen_attr_set) # If the operations fails or it is not implemented the projection cannot be evaluated so keep previous valid state. if new_pas_operations is not None: pas_operations = new_pas_operations # Finally update the current state to the projection context proj_context._current_attribute_state_set = pas_operations return proj_context def _extract_resolved_attributes(self, proj_ctx: 'ProjectionContext') -> 'ResolvedAttributeSet': """Create resolved attribute set based on the CurrentResolvedAttribute array""" resolved_attribute_set = ResolvedAttributeSet() resolved_attribute_set.attribute_context = proj_ctx._current_attribute_context for pas in proj_ctx._current_attribute_state_set._states: resolved_attribute_set.merge(pas._current_resolved_attribute, pas._current_resolved_attribute.att_ctx) return resolved_attribute_set
48.04
176
0.690341
265bee6194b3a183bd0ebeab6d3b711a414c7d3a
12,398
py
Python
rfsoc_sam/quick_widgets.py
schelleg/rfsoc_sam
2a4ae0fc1686d1e3146cbea5d8578c7432910b92
[ "BSD-3-Clause" ]
39
2020-02-22T00:40:51.000Z
2022-03-30T00:39:45.000Z
rfsoc_sam/quick_widgets.py
schelleg/rfsoc_sam
2a4ae0fc1686d1e3146cbea5d8578c7432910b92
[ "BSD-3-Clause" ]
7
2021-01-19T18:46:19.000Z
2022-03-10T10:25:43.000Z
rfsoc_sam/quick_widgets.py
schelleg/rfsoc_sam
2a4ae0fc1686d1e3146cbea5d8578c7432910b92
[ "BSD-3-Clause" ]
19
2020-02-25T10:42:51.000Z
2021-12-15T06:40:41.000Z
__author__ = "David Northcote" __organisation__ = "The Univeristy of Strathclyde" __support__ = "https://github.com/strath-sdr/rfsoc_sam" import ipywidgets as ipw class Label(): """Helper class for label widgets. """ def __init__(self, value, svalue='', evalue='', dict_id=''): self._svalue = svalue self._evalue = evalue self._label = ipw.Label(value=''.join([self._svalue,value,self._evalue])) self._dict_id = dict_id @property def value(self): return self._label.value @value.setter def value(self, value): self._label.value = ''.join([self._svalue,value,self._evalue]) def get_widget(self): return self._label class DropDown(): """Helper class for dropdown widgets. """ def __init__(self, callback, options, value, description, dict_id = '', description_width='150px', layout_width='300px'): def on_value_change(change): callback({self._dict_id : change['new']}) self._dict_id = dict_id self._dropdown = ipw.Dropdown(options=options, value=value, description=description, style={'description_width': description_width}, layout = {'width': layout_width},) self._dropdown.observe(on_value_change, names='value') @property def value(self): return self._dropdown.value @value.setter def value(self, value): self._dropdown.value = value def get_widget(self): return self._dropdown class CheckBox(): """Helper class for CheckBox widgets. """ def __init__(self, callback, value, description, indent=True, dict_id = '', description_width='150px', layout_width='300px'): def on_value_change(change): callback({self._dict_id : change['new']}) self._dict_id = dict_id self._checkbox = ipw.Checkbox(value=value, description=description, indent=indent, style={'description_width': description_width}, layout = {'width': layout_width},) self._checkbox.observe(on_value_change, names='value') @property def value(self): return self._checkbox.value @value.setter def value(self, value): self._checkbox.value = value def get_widget(self): return self._checkbox class FloatText(): """Helper class for float text widgets. """ def __init__(self, callback, value, min_value, max_value, step, description, dict_id = '', description_width='150px', layout_width='300px'): def on_value_change(change): callback({self._dict_id : change['new']}) self._dict_id = dict_id self._text_box = ipw.BoundedFloatText( value=value, min=min_value, max=max_value, step=step, description=description, continuous_update=False, style={'description_width': description_width}, layout = {'width': layout_width}, disabled=False ) self._text_box.observe(on_value_change, names='value') @property def value(self): return self._text_box.value @value.setter def value(self, value): self._text_box.value = value @property def step(self): return self._text_box.step @step.setter def step(self, step): self._text_box.step = step def get_widget(self): return self._text_box class IntText(): """Helper class for integer text widgets. """ def __init__(self, callback, value, min_value, max_value, step, description, dict_id = '', description_width='150px', layout_width='300px'): def on_value_change(change): callback({self._dict_id : change['new']}) self._dict_id = dict_id self._text_box = ipw.BoundedIntText( value=value, min=min_value, max=max_value, step=step, description=description, continuous_update=False, style={'description_width': description_width}, layout = {'width': layout_width}, disabled=False ) self._text_box.observe(on_value_change, names='value') @property def value(self): return self._text_box.value @value.setter def value(self, value): self._text_box.value = value @property def step(self): return self._text_box.step @step.setter def step(self, step): self._text_box.step = step def get_widget(self): return self._text_box class Button(): """Helper class for button widgets. """ def __init__(self, callback, description_on = ' ', description_off = ' ', state = True, dict_id = ''): self._state = state self._dict_id = dict_id self._callback = callback self._button_colour = 'green' self._description_on = description_on self._description_off = description_off self._button = ipw.Button(description=self._description_on if self._state else self._description_off, layout=ipw.Layout(margin='auto', border='none')) self._button.on_click(lambda _: self.on_click()) if self._state: self._button.style.button_color = self.button_colour else: self._button.style.button_color = 'rgb(128, 128, 128)' @property def button_colour(self): return self._button_colour @button_colour.setter def button_colour(self, button_colour): self._button_colour = button_colour if self._state: self._button.style.button_color = self._button_colour @property def value(self): return self._state @value.setter def value(self, state): self._state = state if self._state: self._button.style.button_color = self.button_colour self._button.description = self._description_on else: self._button.style.button_color = 'rgb(128, 128, 128)' self._button.description = self._description_off def configure_state(self, state): self.value = state self._callback({self._dict_id : self._state}) def on_click(self): self._state = not self._state self._callback({self._dict_id : self._state}) if self._state: self._button.style.button_color = self.button_colour self._button.description = self._description_on else: self._button.style.button_color = 'rgb(128, 128, 128)' self._button.description = self._description_off def get_widget(self): return self._button class QuickButton(): """Helper class for button widgets. """ def __init__(self, callback, description_on = ' ', description_off = ' ', state = True, dict_id = ''): self._state = state self._dict_id = dict_id self._callback = callback self._button_colour = 'green' self._description_on = description_on self._description_off = description_off self._button = ipw.Button(description=self._description_on if self._state else self._description_off, layout=ipw.Layout(margin='auto', border='none')) self._button.on_click(lambda _: self.on_click()) if self._state: self._button.style.button_color = self.button_colour else: self._button.style.button_color = 'rgb(128, 128, 128)' @property def button_colour(self): return self._button_colour @button_colour.setter def button_colour(self, button_colour): self._button_colour = button_colour if self._state: self._button.style.button_color = self._button_colour @property def value(self): return self._state @value.setter def value(self, state): self._state = state if self._state: self._button.style.button_color = self.button_colour self._button.description = self._description_on else: self._button.style.button_color = 'rgb(128, 128, 128)' self._button.description = self._description_off def on_click(self): if self._state: self._button.style.button_color = 'rgb(128, 128, 128)' self._button.description = self._description_off self._callback() self._button.style.button_color = self.button_colour self._button.description = self._description_on else: self._button.style.button_color = self.button_colour self._button.description = self._description_on self._callback() self._button.style.button_color = 'rgb(128, 128, 128)' self._button.description = self._description_off def get_widget(self): return self._button class Accordion(): """Helper class for accordion widgets. """ def __init__(self, title, widgets, callback=None, dict_id='', selected_index=0): def on_value_change(change): if self._callback is not None: if change['new'] is None: self._callback(self._dict_id, change['new']) self._title = title self._widgets = widgets self._vbox = ipw.VBox([]) self._callback = callback for i in range(len(self._widgets)): self._vbox.children+=(self._widgets[i],) self._accordion = ipw.Accordion(children=[self._vbox], layout=ipw.Layout(width='auto'), selected_index=selected_index) self._accordion.set_title(0, self._title) self._accordion.observe(callback, names='selected_index') @property def selected_index(self): return self._accordion.selected_index @selected_index.setter def selected_index(self, selected_index): self._accordion.selected_index = selected_index def get_widget(self): return self._accordion class Image(): """Helper class for displaying images. """ def __init__(self, image_file, image_format='png', width=200, height=200): file = open(image_file, "rb") image = file.read() self._image = ipw.Image(value=image, format=image_format, width=width, height=height) def update_image(self, image_file): file = open(image_file, "rb") image = file.read() self._image.value = image def get_widget(self): return self._image
30.461916
109
0.532344
543287c1e4538b1cb8dfb7b35d7a47ad8569d28f
2,659
py
Python
yanxidemo/yanxi.py
MisterZhouZhou/python3demo
da0b6771cc12e8e1066a115c3f72a90c100108ac
[ "Apache-2.0" ]
3
2019-03-04T08:39:57.000Z
2019-12-06T08:29:47.000Z
yanxidemo/yanxi.py
MisterZhouZhou/python3demo
da0b6771cc12e8e1066a115c3f72a90c100108ac
[ "Apache-2.0" ]
null
null
null
yanxidemo/yanxi.py
MisterZhouZhou/python3demo
da0b6771cc12e8e1066a115c3f72a90c100108ac
[ "Apache-2.0" ]
null
null
null
from urllib import request from bs4 import BeautifulSoup from wordcloud import WordCloud,ImageColorGenerator,STOPWORDS import collections import matplotlib.pyplot as plt def getHtml(): url = r'http://www.tvzn.com/14784/yanyuanbiao.html' # 模拟真实浏览器进行访问 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36'} page = request.Request(url, headers=headers) page_info = request.urlopen(page).read() page_info = page_info.decode('utf-8') return page_info def getActorNames(contents1, contents2): actorNamesList = [] for content in contents1: mainActorName = content.find("p", class_="mh-title").find("a", class_="mh-actor").string actorNamesList.append(mainActorName) for content in contents2: notMainActorName = content.find("p", class_="mh-l").find(class_="mh-actor").string actorNamesList.append(notMainActorName) return actorNamesList def collectionNames(namelist): surnamelist = [] givennamelist = [] surname_dict = {} for actorname in nameList: surnamelist.append(actorname[0]) for givenname in actorname[2:]: givennamelist.append(givenname) if actorname[0] not in surname_dict: surname_dict[actorname[0]] = 1 else: surname_dict[actorname[0]] += 1 return surnamelist, givennamelist, surname_dict def wordCount(surenamelist): word_count = collections.Counter(surenamelist) backgroud_Image = plt.imread('test1.jpg') # 设置词云属性 wc = WordCloud(font_path="/Users/zhouwei/Desktop/zw/python3/yanxidemo/simsun.ttc", # 设置字体 background_color="white", # 背景颜色 max_words=2000, # 词云显示的最大词数 mask=backgroud_Image, # 设置背景图片 max_font_size=100, # 字体最大值 stopwords=STOPWORDS, random_state=30, width=1000, height=860) wc.generate_from_frequencies(word_count) img_colors = ImageColorGenerator(backgroud_Image) wc.recolor(color_func=img_colors) plt.imshow(wc) plt.axis('off') plt.show() if __name__ == '__main__': html = getHtml() # 将获取到的内容转换成BeautifulSoup格式,并将html.parser作为解析器 soup = BeautifulSoup(html, 'html.parser') # 获取主演数据 contents1 = soup.find('ul', class_="gclearfix").findAll("li") # 获取非主演数据 contents2 = soup.find('ul', class_="glearfix").findAll("li") nameList = getActorNames(contents1, contents2) surnamelist, givennamelist, surname_dict = collectionNames(nameList) wordCount(surnamelist)
34.089744
134
0.66604
65487ac6bc96018c017cba330330a5f730b93d71
221
py
Python
job_app/celeryconfig.py
ahmedezzeldin93/heyjobs
ada72a4ede5eabf04f465ecd0b5f677253e95579
[ "MIT" ]
null
null
null
job_app/celeryconfig.py
ahmedezzeldin93/heyjobs
ada72a4ede5eabf04f465ecd0b5f677253e95579
[ "MIT" ]
null
null
null
job_app/celeryconfig.py
ahmedezzeldin93/heyjobs
ada72a4ede5eabf04f465ecd0b5f677253e95579
[ "MIT" ]
null
null
null
broker_url = 'pyamqp://localhost:5672' task_serializer = 'json' result_serializer = 'json' accept_content = ['json'] timezone = 'Europe/Berlin' enable_utc = True CELERY_IMPORTS=("job_app.tasks") CELERY_IGNORE_RESULT=False
27.625
38
0.778281
35bba7f7eae15fd12f54b2b51b4bc56f7001158b
590
py
Python
2020/src_39th_week.py
fabichoi/1d1p
e978ed5f385114598ef2298385ed19ae61b06f5c
[ "MIT" ]
null
null
null
2020/src_39th_week.py
fabichoi/1d1p
e978ed5f385114598ef2298385ed19ae61b06f5c
[ "MIT" ]
1
2021-08-29T14:31:17.000Z
2021-08-29T14:31:17.000Z
2020/src_39th_week.py
fabichoi/1d1p
e978ed5f385114598ef2298385ed19ae61b06f5c
[ "MIT" ]
null
null
null
# TopCoder : FriendScore class FriendScore: def highestScore(self, friends): ans = 0 n = len(friends[0]) for i in range(n): cnt = 0 for j in range(n): if i == j: continue if friends[i][j] == 'Y': cnt += 1 else: for k in range(n): if friends[j][k] == 'Y' and friends[k][i] == 'Y': cnt += 1 break ans = max(ans, cnt) return ans
24.583333
73
0.345763
213ca6c7cee21fa66c4e77d089af006f4b88e9af
975
py
Python
chapter-4/charter/renderers/pdf/line_series.py
lucasbyAI/Modular-Programming-with-Python
387bff88e256eb2a4c3be2207908be274270be90
[ "MIT" ]
38
2016-06-07T07:52:00.000Z
2022-02-08T21:29:02.000Z
chapter-4/charter/renderers/pdf/line_series.py
lucasbyAI/Modular-Programming-with-Python
387bff88e256eb2a4c3be2207908be274270be90
[ "MIT" ]
null
null
null
chapter-4/charter/renderers/pdf/line_series.py
lucasbyAI/Modular-Programming-with-Python
387bff88e256eb2a4c3be2207908be274270be90
[ "MIT" ]
35
2016-06-17T07:39:25.000Z
2022-02-02T18:18:49.000Z
# charter.renderers.pdf.line_series # # Renderer for drawing a line series onto the chart in PDF format. from ...constants import * ############################################################################# def draw(chart, canvas): avail_width = CHART_WIDTH - Y_AXIS_WIDTH - MARGIN bucket_width = avail_width / len(chart['x_axis']) bottom = X_AXIS_HEIGHT max_top = CHART_HEIGHT - TITLE_HEIGHT avail_height = max_top - bottom left = Y_AXIS_WIDTH prev_y = None for y_value in chart['series']: y = ((y_value - chart['y_min']) / (chart['y_max'] - chart['y_min'])) cur_y = bottom + int(y * avail_height) if prev_y != None: canvas.setStrokeColorRGB(0.25, 0.25, 0.625) canvas.setLineWidth(1) canvas.line(left - bucket_width / 2, prev_y, left + bucket_width / 2, cur_y) prev_y = cur_y left = left + bucket_width
28.676471
77
0.548718
23e3dc35b2733751a5984742fc0105c7314e08bc
22,744
py
Python
pyjade/lexer.py
edemocracy/pyjade
4a4f52235795fd6367181a27a6bc1919acc7a2c5
[ "MIT" ]
2
2019-02-27T10:36:17.000Z
2019-02-27T13:18:26.000Z
pyjade/lexer.py
edemocracy/pyjade
4a4f52235795fd6367181a27a6bc1919acc7a2c5
[ "MIT" ]
null
null
null
pyjade/lexer.py
edemocracy/pyjade
4a4f52235795fd6367181a27a6bc1919acc7a2c5
[ "MIT" ]
1
2018-06-20T07:43:53.000Z
2018-06-20T07:43:53.000Z
from __future__ import absolute_import import re from collections import deque import six class Token: def __init__(self, **kwds): self.buffer = None self.__dict__.update(kwds) def __str__(self): return self.__dict__.__str__() def regexec(regex, input): matches = regex.match(input) if matches: return (input[matches.start():matches.end()],) + matches.groups() return None def detect_closing_bracket(string): count = 0 pos = string.find('[') while True: if string[pos] == '[': count += 1 if string[pos] == ']': count -= 1 pos += 1 if count == 0: return pos def replace_string_brackets(splitted_string): sval_replaced = [] old_delim = None for i in splitted_string: if old_delim is None: sval_replaced.append(i) if i in ('"', "'"): old_delim = i continue if i in ('"', "'"): if i == old_delim: old_delim = None sval_replaced.append(i) continue sval_replaced.append(re.sub(r'\[|\]', '*', i)) return ''.join(sval_replaced) class Lexer(object): RE_INPUT = re.compile(r'\r\n|\r') RE_COMMENT = re.compile(r'^ *\/\/(-)?([^\n]*)') RE_TAG = re.compile(r'^(\w[-:\w]*)') RE_DOT_BLOCK_START = re.compile(r'^\.\n') RE_FILTER = re.compile(r'^:(\w+)') RE_DOCTYPE = re.compile(r'^(?:!!!|doctype) *([^\n]+)?') RE_ID = re.compile(r'^#([\w-]+)') RE_CLASS = re.compile(r'^\.([\w-]+)') RE_STRING = re.compile(r'^(?:\| ?)([^\n]+)') RE_TEXT = re.compile(r'^([^\n]+)') RE_EXTENDS = re.compile(r'^extends? +([^\n]+)') RE_PREPEND = re.compile(r'^prepend +([^\n]+)') RE_APPEND = re.compile(r'^append +([^\n]+)') RE_BLOCK = re.compile(r'''^block(( +(?:(prepend|append) +)?([^\n]*))|\n)''') RE_YIELD = re.compile(r'^yield *') RE_INCLUDE = re.compile(r'^include +([^\n]+)') RE_ASSIGNMENT = re.compile(r'^(-\s+var\s+)?(\w+) += *([^;\n]+)( *;? *)') RE_MIXIN = re.compile(r'^mixin +([-\w]+)(?: *\((.*)\))?') RE_CALL = re.compile(r'^\+\s*([-.\w]+)(?: *\((.*)\))?') RE_CONDITIONAL = re.compile(r'^(?:- *)?(if|unless|else if|elif|else)\b([^\n]*)') RE_BLANK = re.compile(r'^\n *\n') # RE_WHILE = re.compile(r'^while +([^\n]+)') RE_EACH = re.compile(r'^(?:- *)?(?:each|for) +([\w, ]+) +in +([^\n]+)') RE_CODE = re.compile(r'^(!?=|-)([^\n]+)') RE_ATTR_INTERPOLATE = re.compile(r'#\{([^}]+)\}') RE_ATTR_PARSE = re.compile(r'''^['"]|['"]$''') RE_INDENT_TABS = re.compile(r'^\n(\t*) *') RE_INDENT_SPACES = re.compile(r'^\n( *)') RE_COLON = re.compile(r'^: *') RE_INLINE = re.compile(r'(?<!\\)#\[') RE_INLINE_ESCAPE = re.compile(r'\\#\[') STRING_SPLITS = re.compile(r'([\'"])(.*?)(?<!\\)(\1)') def __init__(self, string, **options): if isinstance(string, six.binary_type): string = six.text_type(string, 'utf8') self.options = options self.input = self.RE_INPUT.sub('\n', string) self.colons = self.options.get('colons', False) self.deferredTokens = deque() self.lastIndents = 0 self.lineno = 1 self.stash = deque() self.indentStack = deque() self.indentRe = None self.pipeless = False self.isTextBlock = False def tok(self, type, val=None): return Token(type=type, line=self.lineno, val=val, inline_level=self.options.get('inline_level', 0)) def consume(self, len): self.input = self.input[len:] def scan(self, regexp, type): captures = regexec(regexp, self.input) # print regexp,type, self.input, captures if captures: # print captures self.consume(len(captures[0])) # print 'a',self.input if len(captures) == 1: return self.tok(type, None) return self.tok(type, captures[1]) def defer(self, tok): self.deferredTokens.append(tok) def lookahead(self, n): # print self.stash fetch = n - len(self.stash) while True: fetch -= 1 if not fetch >= 0: break self.stash.append(self.next()) return self.stash[n - 1] def indexOfDelimiters(self, start, end): str, nstart, nend, pos = self.input, 0, 0, 0 for i, s in enumerate(str): if start == s: nstart += 1 elif end == s: nend += 1 if nend == nstart: pos = i break return pos def stashed(self): # print self.stash return len(self.stash) and self.stash.popleft() def deferred(self): return len(self.deferredTokens) and self.deferredTokens.popleft() def eos(self): # print 'eos',bool(self.input) if self.input: return if self.indentStack: self.indentStack.popleft() return self.tok('outdent') else: return self.tok('eos') def consumeBlank(self): captures = regexec(self.RE_BLANK, self.input) if not captures: return self.lineno += 1 self.consume(len(captures[0]) - 1) return captures def blank(self): if self.pipeless: return if self.consumeBlank(): return self.next() def comment(self): captures = regexec(self.RE_COMMENT, self.input) if captures: self.consume(len(captures[0])) tok = self.tok('comment', captures[2]) tok.buffer = '-' != captures[1] return tok def tag(self): captures = regexec(self.RE_TAG, self.input) # print self.input,captures,re.match('^(\w[-:\w]*)',self.input) if captures: self.consume(len(captures[0])) name = captures[1] if name.endswith(':'): name = name[:-1] tok = self.tok('tag', name) self.defer(self.tok(':')) while self.input[0] == ' ': self.input = self.input[1:] else: tok = self.tok('tag', name) return tok def textBlockStart(self): captures = regexec(self.RE_DOT_BLOCK_START, self.input) if captures is None: return if len(self.indentStack) > 0: self.textBlockTagIndent = self.indentStack[0] else: self.textBlockTagIndent = 0 self.consume(1) self.isTextBlock = True return self.textBlockContinue(isStart=True) def textBlockContinue(self, isStart=False): if not self.isTextBlock: return tokens = deque() while True: if self.consumeBlank(): if not isStart: tokens.append(self.tok('string', '')) continue eos = self.eos() if eos is not None: if isStart: return eos tokens.append(eos) break nextIndent = self.captureIndent() if nextIndent is None or len(nextIndent[1]) <= self.textBlockTagIndent: self.isTextBlock = False if isStart: return self.tok('newline') break padding = 0 if not isStart and len(nextIndent[1]) > self.textBlockIndent: padding = len(nextIndent[1]) - self.textBlockIndent self.consume(1 + padding) self.input = '\n' + self.input indent = self.indent() if isStart: self.textBlockIndent = indent.val padding = 0 itoks = self.scanInline(self.RE_TEXT, 'string') indentChar = self.indentRe == self.RE_INDENT_TABS and '\t' or ' ' if itoks: itoks[0].val = (indentChar * padding) + itoks[0].val if isStart: for tok in itoks or []: self.defer(tok) return indent tokens.extend(itoks) if not tokens: firstTok = None else: firstTok = tokens.popleft() while tokens: if tokens[-1].type == 'string' and not tokens[-1].val: tokens.pop() continue self.defer(tokens.popleft()) self.isTextBlock = False return firstTok def filter(self): return self.scan(self.RE_FILTER, 'filter') def doctype(self): # print self.scan(self.RE_DOCTYPE, 'doctype') return self.scan(self.RE_DOCTYPE, 'doctype') def id(self): return self.scan(self.RE_ID, 'id') def className(self): return self.scan(self.RE_CLASS, 'class') def processInline(self, val): sval = self.STRING_SPLITS.split(val) sval_stripped = [i.strip() for i in sval] if sval_stripped.count('"') % 2 != 0 or sval_stripped.count("'") % 2 != 0: raise Exception('Unbalanced quotes found inside inline jade at line %s.' % self.lineno) sval_replaced = replace_string_brackets(sval) start_inline = self.RE_INLINE.search(sval_replaced).start() try: closing = start_inline + detect_closing_bracket(sval_replaced[start_inline:]) except IndexError: raise Exception('The end of the string was reached with no closing bracket found at line %s.' % self.lineno) textl = val[:start_inline] code = val[start_inline:closing][2:-1] textr = val[closing:] toks = deque() toks.append(self.tok('string', self.RE_INLINE_ESCAPE.sub('#[', textl))) ilexer = InlineLexer(code, inline_level=self.options.get('inline_level', 0) + 1) while True: tok = ilexer.advance() if tok.type == 'eos': break toks.append(tok) if self.RE_INLINE.search(textr): toks.extend(self.processInline(textr)) else: toks.append(self.tok('string', self.RE_INLINE_ESCAPE.sub('#[', textr))) return toks def scanInline(self, regexp, type): ret = self.scan(regexp, type) if ret is None: return ret if self.RE_INLINE.search(ret.val): ret = self.processInline(ret.val) if ret: ret[0].val = ret[0].val.lstrip() else: ret.val = self.RE_INLINE_ESCAPE.sub('#[', ret.val) ret = deque([ret]) return ret def scanInlineProcess(self, regexp, type_): toks = self.scanInline(regexp, type_) if not toks: return None firstTok = toks.popleft() for tok in toks: self.defer(tok) return firstTok def string(self): return self.scanInlineProcess(self.RE_STRING, 'string') def text(self): return self.scanInlineProcess(self.RE_TEXT, 'text') def extends(self): return self.scan(self.RE_EXTENDS, 'extends') def prepend(self): captures = regexec(self.RE_PREPEND, self.input) if captures: self.consume(len(captures[0])) mode, name = 'prepend', captures[1] tok = self.tok('block', name) tok.mode = mode return tok def append(self): captures = regexec(self.RE_APPEND, self.input) if captures: self.consume(len(captures[0])) mode, name = 'append', captures[1] tok = self.tok('block', name) tok.mode = mode return tok def block(self): captures = regexec(self.RE_BLOCK, self.input) if captures: self.consume(len(captures[0])) mode = captures[3] or 'replace' name = captures[4] or '' tok = self.tok('block', name) tok.mode = mode return tok def _yield(self): return self.scan(self.RE_YIELD, 'yield') def include(self): return self.scan(self.RE_INCLUDE, 'include') def assignment(self): captures = regexec(self.RE_ASSIGNMENT, self.input) if captures: self.consume(len(captures[0])) name, val = captures[2:4] tok = self.tok('assignment') tok.name = name tok.val = val return tok def mixin(self): captures = regexec(self.RE_MIXIN, self.input) if captures: self.consume(len(captures[0])) tok = self.tok('mixin', captures[1]) tok.args = captures[2] return tok def call(self): captures = regexec(self.RE_CALL, self.input) if captures: self.consume(len(captures[0])) tok = self.tok('call', captures[1]) tok.args = captures[2] return tok def conditional(self): captures = regexec(self.RE_CONDITIONAL, self.input) if captures: self.consume(len(captures[0])) type, sentence = captures[1:] tok = self.tok('conditional', type) tok.sentence = sentence return tok # def _while(self): # captures = regexec(self.RE_WHILE,self.input) # if captures: # self.consume(len(captures[0])) # return self.tok('code','while(%s)'%captures[1]) def each(self): captures = regexec(self.RE_EACH, self.input) if captures: self.consume(len(captures[0])) tok = self.tok('each', None) tok.keys = [x.strip() for x in captures[1].split(',')] tok.code = captures[2] return tok def code(self): captures = regexec(self.RE_CODE, self.input) if captures: self.consume(len(captures[0])) flags, name = captures[1:] tok = self.tok('code', name) tok.escape = flags.startswith('=') #print captures tok.buffer = '=' in flags # print tok.buffer return tok def attrs(self): if '(' == self.input[0]: index = self.indexOfDelimiters('(', ')') string = self.input[1:index] tok = self.tok('attrs') l = len(string) colons = self.colons states = ['key'] class Namespace: key = u'' val = u'' quote = u'' literal = True def reset(self): self.key = self.val = self.quote = u'' self.literal = True def __str__(self): return dict(key=self.key, val=self.val, quote=self.quote, literal=self.literal).__str__() ns = Namespace() def state(): return states[-1] def interpolate(attr): attr, num = self.RE_ATTR_INTERPOLATE.subn(lambda matchobj: '%s+"{}".format(%s)+%s' % (ns.quote, matchobj.group(1), ns.quote), attr) return attr, (num > 0) self.consume(index + 1) from .utils import odict tok.attrs = odict() tok.static_attrs = set() str_nums = list(map(str, range(10))) # print '------' def parse(c): real = c if colons and ':' == c: c = '=' ns.literal = ns.literal and (state() not in ('object', 'array', 'expr')) # print ns, c, states if c in (',', '\n') or (c == ' ' and state() == 'val' and len(states) == 2 and ns.val.strip()): s = state() if s in ('expr', 'array', 'string', 'object'): ns.val += c else: states.append('key') ns.val = ns.val.strip() ns.key = ns.key.strip() if not ns.key: return # ns.literal = ns.quote if not ns.literal: if '!' == ns.key[-1]: ns.literal = True ns.key = ns.key[:-1] ns.key = ns.key.strip("'\"") if not ns.val: tok.attrs[ns.key] = True else: tok.attrs[ns.key], is_interpolated = interpolate(ns.val) ns.literal = ns.literal and not is_interpolated if ns.literal: tok.static_attrs.add(ns.key) ns.reset() elif '=' == c: s = state() if s == 'key char': ns.key += real elif s in ('val', 'expr', 'array', 'string', 'object'): ns.val += real else: states.append('val') elif '(' == c: if state() in ('val', 'expr'): states.append('expr') ns.val += c elif ')' == c: if state() in ('val', 'expr'): states.pop() ns.val += c elif '{' == c: if 'val' == state(): states.append('object') ns.val += c elif '}' == c: if 'object' == state(): states.pop() ns.val += c elif '[' == c: if 'val' == state(): states.append('array') ns.val += c elif ']' == c: if 'array' == state(): states.pop() ns.val += c elif c in ('"', "'"): s = state() if 'key' == s: states.append('key char') elif 'key char' == s: states.pop() elif 'string' == s: if c == ns.quote: states.pop() ns.val += c else: states.append('string') ns.val += c ns.quote = c elif '' == c: pass else: s = state() ns.literal = ns.literal and (s in ('key', 'string') or c in str_nums) # print c, s, ns.literal if s in ('key', 'key char'): ns.key += c else: ns.val += c for char in string: parse(char) parse(',') return tok def captureIndent(self): if self.indentRe: captures = regexec(self.indentRe, self.input) else: regex = self.RE_INDENT_TABS captures = regexec(regex, self.input) if captures and not captures[1]: regex = self.RE_INDENT_SPACES captures = regexec(regex, self.input) if captures and captures[1]: self.indentRe = regex return captures def indent(self): captures = self.captureIndent() if captures: indents = len(captures[1]) self.lineno += 1 self.consume(indents + 1) if not self.input: return self.tok('newline') if self.input[0] in (' ', '\t'): raise Exception('Invalid indentation, you can use tabs or spaces but not both') if '\n' == self.input[0]: return self.tok('newline') if self.indentStack and indents < self.indentStack[0]: while self.indentStack and self.indentStack[0] > indents: self.stash.append(self.tok('outdent')) self.indentStack.popleft() tok = self.stash.pop() elif indents and (not self.indentStack or indents != self.indentStack[0]): self.indentStack.appendleft(indents) tok = self.tok('indent', indents) else: tok = self.tok('newline') return tok def pipelessText(self): if self.pipeless: if '\n' == self.input[0]: return i = self.input.find('\n') if -1 == i: i = len(self.input) str = self.input[:i] self.consume(len(str)) return self.tok('text', str) def colon(self): return self.scan(self.RE_COLON, ':') def advance(self): return self.stashed() or self.next() def next(self): return self.deferred() \ or self.textBlockContinue() \ or self.blank() \ or self.eos() \ or self.pipelessText() \ or self._yield() \ or self.doctype() \ or self.extends() \ or self.append() \ or self.prepend() \ or self.block() \ or self.include() \ or self.mixin() \ or self.call() \ or self.conditional() \ or self.each() \ or self.assignment() \ or self.tag() \ or self.textBlockStart() \ or self.filter() \ or self.code() \ or self.id() \ or self.className() \ or self.attrs() \ or self.indent() \ or self.comment() \ or self.colon() \ or self.string() \ or self.text() ##or self._while() \ class InlineLexer(Lexer): def next(self): return self.deferred() \ or self.blank() \ or self.eos() \ or self.pipelessText() \ or self.mixin() \ or self.call() \ or self.assignment() \ or self.tag() \ or self.code() \ or self.id() \ or self.className() \ or self.attrs() \ or self.colon() \ or self.string() \ or self.text()
32.537911
147
0.471201
da3bc1afef32a0020bb900f54579368d6746d452
5,077
py
Python
linefood/hooks.py
ahmadRagheb/linefood
834f2ee6adbce5f454d627b32fab43a62329db18
[ "MIT" ]
6
2017-08-21T23:09:29.000Z
2021-05-25T12:48:57.000Z
linefood/hooks.py
bharathjinka09/linefood
834f2ee6adbce5f454d627b32fab43a62329db18
[ "MIT" ]
10
2018-03-09T16:14:49.000Z
2020-11-28T13:58:30.000Z
linefood/hooks.py
bharathjinka09/linefood
834f2ee6adbce5f454d627b32fab43a62329db18
[ "MIT" ]
13
2017-12-21T10:04:01.000Z
2022-01-31T00:05:50.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from . import __version__ as app_version app_name = "linefood" app_title = "linefood" app_publisher = "ahmad ragheb" app_description = "linefood application " app_icon = "octicon octicon-file-directory" app_color = "red" app_email = "ahmedragheb75@gmail.com" app_license = "MIT" # Includes in <head> # ------------------ # include js, css files in header of desk.html # app_include_css = "/assets/linefood/css/linefood.css" # app_include_js = "/assets/linefood/js/linefood.js" # include js, css files in header of web template # "/assets/linefood/css/main-style.css", web_include_css = [ "/assets/linefood/css/bootstrap.css", "/assets/linefood/css/style.css", "/assets/linefood/css/responsive.css", "/assets/linefood/css/animate.css", "/assets/linefood/css/colors/color1.css", "/assets/linefood/css/owl.carousel.min.css", ] # "/assets/linefood/js/main-scripts.js", web_include_js = [ "/assets/linefood/js/jquery.min.js", "/assets/linefood/js/tether.min.js", "/assets/linefood/js/bootstrap.min.js", "/assets/linefood/js/jquery.easing.js", "/assets/linefood/js/parallax.js", "/assets/linefood/js/jquery-waypoints.js", "/assets/linefood/js/jquery-countTo.js", "/assets/linefood/js/jquery.countdown.js", "/assets/linefood/js/jquery.flexslider-min.js", "/assets/linefood/js/images-loaded.js", "/assets/linefood/js/jquery.isotope.min.js", "/assets/linefood/js/magnific.popup.min.js", "/assets/linefood/js/jquery.hoverdir.js", "/assets/linefood/js/owl.carousel.min.js", "/assets/linefood/js/equalize.min.js", "/assets/linefood/js/gmap3.min.js", "/assets/linefood/js/jquery-ui.js", "/assets/linefood/js/jquery.cookie.js", "/assets/linefood/js/main.js", "/assets/linefood/rev-slider/js/jquery.themepunch.tools.min.js", "/assets/linefood/rev-slider/js/jquery.themepunch.revolution.min.js", "/assets/linefood/js/rev-slider.js", "/assets/linefood/js/switcher.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.actions.min.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.carousel.min.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.kenburn.min.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.layeranimation.min.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.migration.min.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.navigation.min.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.parallax.min.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.slideanims.min.js", "/assets/linefood/rev-slider/js/extensions/revolution.extension.video.min.js" ] # include js in page # page_js = {"page" : "public/js/file.js"} # page_js = {"main" : "public/js/main-scripts.js"} # include js in doctype views # doctype_js = {"doctype" : "public/js/doctype.js"} # doctype_list_js = {"doctype" : "public/js/doctype_list.js"} # doctype_tree_js = {"doctype" : "public/js/doctype_tree.js"} # Home Pages # ---------- # application home page (will override Website Settings) home_page = "line_food" # website user home page (by Role) # role_home_page = { # "Role": "home_page" # } # role_home_page = { # "Guest": "home" # } # Website user home page (by function) # get_website_user_home_page = "linefood.utils.get_home_page" # Generators # ---------- # automatically create page for each record of this doctype # website_generators = ["Web Page"] # Installation # ------------ # before_install = "linefood.install.before_install" # after_install = "linefood.install.after_install" # Desk Notifications # ------------------ # See frappe.core.notifications.get_notification_config # notification_config = "linefood.notifications.get_notification_config" # Permissions # ----------- # Permissions evaluated in scripted ways # permission_query_conditions = { # "Event": "frappe.desk.doctype.event.event.get_permission_query_conditions", # } # # has_permission = { # "Event": "frappe.desk.doctype.event.event.has_permission", # } # Document Events # --------------- # Hook on document methods and events # doc_events = { # "*": { # "on_update": "method", # "on_cancel": "method", # "on_trash": "method" # } # } # Scheduled Tasks # --------------- # scheduler_events = { # "all": [ # "linefood.tasks.all" # ], # "daily": [ # "linefood.tasks.daily" # ], # "hourly": [ # "linefood.tasks.hourly" # ], # "weekly": [ # "linefood.tasks.weekly" # ] # "monthly": [ # "linefood.tasks.monthly" # ] # } # Testing # ------- # before_tests = "linefood.install.before_tests" # Overriding Whitelisted Methods # ------------------------------ # # override_whitelisted_methods = { # "frappe.desk.doctype.event.event.get_events": "linefood.event.get_events" # } fixtures = [ { "dt": "Custom Field", "filters": [["name", "in", ["Blog Post-image"]]] } ]
28.683616
91
0.677565
3cfdcff8c91dafc0afc9a6996e8e030e3cba655e
216
py
Python
condastats/__init__.py
sophiamyang/condastats
f275d96d24e0cadf9963e88770c29ceeaaa80c05
[ "BSD-3-Clause" ]
3
2020-01-17T22:17:22.000Z
2021-12-10T18:32:55.000Z
condastats/__init__.py
sophiamyang/condastats
f275d96d24e0cadf9963e88770c29ceeaaa80c05
[ "BSD-3-Clause" ]
7
2021-03-17T13:45:44.000Z
2022-03-25T00:04:47.000Z
condastats/__init__.py
sophiamyang/condastats
f275d96d24e0cadf9963e88770c29ceeaaa80c05
[ "BSD-3-Clause" ]
3
2019-11-03T20:28:31.000Z
2021-03-17T16:19:13.000Z
# -*- coding: utf-8 -*- """Top-level package for condastats.""" __author__ = """Sophia Man Yang""" __version__ = '0.1.2' from ._version import get_versions __version__ = get_versions()['version'] del get_versions
19.636364
39
0.694444
192935158eea8fd1f3fe7e7393f209cfa7f44b89
255
py
Python
web/apis/moments/urls.py
KhomDrake/Remember-Backend
233f72ef3a54300e25946bdc3a1baae5b56d7a25
[ "MIT" ]
null
null
null
web/apis/moments/urls.py
KhomDrake/Remember-Backend
233f72ef3a54300e25946bdc3a1baae5b56d7a25
[ "MIT" ]
null
null
null
web/apis/moments/urls.py
KhomDrake/Remember-Backend
233f72ef3a54300e25946bdc3a1baae5b56d7a25
[ "MIT" ]
null
null
null
from django.urls import path, include from .views import MomentsView from rest_framework.routers import SimpleRouter router = SimpleRouter() router.register('', MomentsView, basename='api.moments') urlpatterns = [ path('', include(router.urls)), ]
21.25
56
0.756863
227b70ab0a4331f272563cd0cc376816a46cf874
691
py
Python
autos/urls.py
Shadow-AI/dj4e-samples
60f21f3c6bbb4bd96641ced82b18be109364452a
[ "MIT" ]
null
null
null
autos/urls.py
Shadow-AI/dj4e-samples
60f21f3c6bbb4bd96641ced82b18be109364452a
[ "MIT" ]
null
null
null
autos/urls.py
Shadow-AI/dj4e-samples
60f21f3c6bbb4bd96641ced82b18be109364452a
[ "MIT" ]
null
null
null
from django.urls import path from . import views app_name = 'autos' urlpatterns = [ path('', views.MainView.as_view(), name='all'), path('main/create/', views.AutoCreate.as_view(), name='auto_create'), path('main/<int:pk>/update/', views.AutoUpdate.as_view(), name="auto_update"), path('main/<int:pk>/delete/', views.AutoDelete.as_view(), name="auto_delete"), path('lookup/', views.MakeView.as_view(), name='make_list'), path('lookup/create/', views.MakeCreate.as_view(), name='make_create'), path('lookup/<int:pk>/update/', views.MakeUpdate.as_view(), name='make_update'), path('lookup/<int:pk>/delete/', views.MakeDelete.as_view(), name='make_delete'), ]
43.1875
84
0.678726
6db7465b3be71272e821089d42dee9664498ea8f
6,281
py
Python
ml3d/datasets/scannet.py
eiiijiiiy/Open3D-ML
2a04231df0be39e2b8030e480d342cee5574fb9a
[ "MIT" ]
null
null
null
ml3d/datasets/scannet.py
eiiijiiiy/Open3D-ML
2a04231df0be39e2b8030e480d342cee5574fb9a
[ "MIT" ]
null
null
null
ml3d/datasets/scannet.py
eiiijiiiy/Open3D-ML
2a04231df0be39e2b8030e480d342cee5574fb9a
[ "MIT" ]
null
null
null
import open3d as o3d import numpy as np import os, argparse, pickle, sys from os.path import exists, join, isfile, dirname, abspath, split from pathlib import Path from glob import glob import logging import yaml from .base_dataset import BaseDataset from ..utils import Config, make_dir, DATASET from .utils import BEVBox3D logging.basicConfig( level=logging.INFO, format='%(levelname)s - %(asctime)s - %(module)s - %(message)s', ) log = logging.getLogger(__name__) class Scannet(BaseDataset): """ Scannet 3D dataset for Object Detection, used in visualizer, training, or test """ def __init__(self, dataset_path, name='Scannet', cache_dir='./logs/cache', use_cache=False, **kwargs): """ Initialize Args: dataset_path (str): path to the dataset kwargs: """ super().__init__(dataset_path=dataset_path, name=name, cache_dir=cache_dir, use_cache=use_cache, **kwargs) cfg = self.cfg self.name = cfg.name self.dataset_path = cfg.dataset_path self.num_classes = 18 self.classes = [ 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin' ] self.cat2label = {cat: self.classes.index(cat) for cat in self.classes} self.label2cat = {self.cat2label[t]: t for t in self.cat2label} self.cat_ids = np.array( [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) self.cat_ids2class = { nyu40id: i for i, nyu40id in enumerate(list(self.cat_ids)) } self.label_to_names = self.get_label_to_names() available_scenes = [] files = os.listdir(dataset_path) for f in files: if 'scene' in f and f.endswith('.npy'): available_scenes.append(f[:12]) available_scenes = list(set(available_scenes)) resource_path = Path(__file__).parent / '_resources' / 'scannet' train_files = open(resource_path / 'scannetv2_train.txt').read().split('\n')[:-1] val_files = open(resource_path / 'scannetv2_val.txt').read().split('\n')[:-1] test_files = open(resource_path / 'scannetv2_test.txt').read().split('\n')[:-1] self.train_scenes = [] self.val_scenes = [] self.test_scenes = [] for scene in available_scenes: if scene in train_files: self.train_scenes.append(join(self.dataset_path, scene)) elif scene in val_files: self.val_scenes.append(join(self.dataset_path, scene)) elif scene in test_files: self.test_scenes.append(join(self.dataset_path, scene)) self.semantic_ids = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39 ] def get_label_to_names(self): return self.label2cat @staticmethod def read_lidar(path): assert Path(path).exists() data = np.load(path) return data def read_label(self, scene): instance_mask = np.load(scene + '_ins_label.npy') semantic_mask = np.load(scene + '_sem_label.npy') bboxes = np.load(scene + '_bbox.npy') ## For filtering semantic labels to have same classes as object detection. # for i in range(semantic_mask.shape[0]): # semantic_mask[i] = self.cat_ids2class.get(semantic_mask[i], 0) remapper = np.ones(150) * (-100) for i, x in enumerate(self.semantic_ids): remapper[x] = i semantic_mask = remapper[semantic_mask] objects = [] for box in bboxes: name = self.label2cat[self.cat_ids2class[int(box[-1])]] center = box[:3] size = [box[3], box[5], box[4]] # w, h, l yaw = 0.0 objects.append(Object3d(name, center, size, yaw)) return objects, semantic_mask, instance_mask def get_split(self, split): return ScannetSplit(self, split=split) def get_split_list(self, split): if split in ['train', 'training']: return self.train_scenes elif split in ['test', 'testing']: return self.test_scenes elif split in ['val', 'validation']: return self.val_scenes raise ValueError("Invalid split {}".format(split)) def is_tested(self): pass def save_test_result(self): pass class ScannetSplit(): def __init__(self, dataset, split='train'): self.cfg = dataset.cfg self.path_list = dataset.get_split_list(split) log.info("Found {} pointclouds for {}".format(len(self.path_list), split)) self.split = split self.dataset = dataset def __len__(self): return len(self.path_list) def get_data(self, idx): scene = self.path_list[idx] pc = self.dataset.read_lidar(scene + '_vert.npy') feat = pc[:, 3:] pc = pc[:, :3] bboxes, semantic_mask, instance_mask = self.dataset.read_label(scene) data = { 'point': pc, 'feat': feat, 'calib': None, 'bounding_boxes': bboxes, 'label': semantic_mask.astype(np.int32), 'instance': instance_mask.astype(np.int32) } return data def get_attr(self, idx): pc_path = self.path_list[idx] name = Path(pc_path).name.split('.')[0] attr = {'name': name, 'path': str(pc_path), 'split': self.split} return attr class Object3d(BEVBox3D): """ Stores object specific details like bbox coordinates. """ def __init__(self, name, center, size, yaw): super().__init__(center, size, yaw, name, -1.0) self.occlusion = 0.0 DATASET._register_module(Scannet)
29.767773
82
0.559943