hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
5431e40cf94a88341629a34f7423dff257d33bc7
13,705
py
Python
data_steward/cdr_cleaner/cleaning_rules/measurement_table_suppression.py
ratuagga/curation
047b984f20643e21bf3ab1e309903abaf816ecd5
[ "MIT" ]
1
2019-03-18T18:22:41.000Z
2019-03-18T18:22:41.000Z
data_steward/cdr_cleaner/cleaning_rules/measurement_table_suppression.py
nishanthpp93/curation
ac9f38b2f4580ae806121dd929293159132c7d2a
[ "MIT" ]
null
null
null
data_steward/cdr_cleaner/cleaning_rules/measurement_table_suppression.py
nishanthpp93/curation
ac9f38b2f4580ae806121dd929293159132c7d2a
[ "MIT" ]
1
2021-09-16T14:25:19.000Z
2021-09-16T14:25:19.000Z
""" Removing irrelevant observation records from the RDR dataset. Original Issue: DC-481, 699 The intent is to clean data in the measurement table. The rule intends to reset invalid fields values to null, drop records that do not provide meaningful data, and drop duplicate records. """ # Python Imports import logging # Project imports from common import MEASUREMENT, JINJA_ENV from cdr_cleaner.cleaning_rules.base_cleaning_rule import BaseCleaningRule from constants.bq_utils import WRITE_TRUNCATE from constants.cdr_cleaner import clean_cdr as cdr_consts LOGGER = logging.getLogger(__name__) ISSUE_NUMBERS = ['DC-699', 'DC-481'] INVALID_VALUES_RECORDS = 'dc699_save_9999999_as_null' SITES_WITH_ONLY_BAD_DATA = 'dc699_sites_with_only_null_or_zero_meas_data' SAVE_BAD_SITE_DATA = 'dc699_save_bad_site_data' SAVE_NULL_VALUE_RECORDS = 'dc699_save_null_records_from_measurement' SAVE_DUPLICATE_RECORDS = 'dc699_save_measurement_duplicates' # Save rows that will be altered to a sandbox dataset. NULL_VALUES_SAVE_QUERY = JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project}}.{{sandbox}}.{{save_table}}` AS ( SELECT * FROM `{{project}}.{{dataset}}.measurement` WHERE value_as_number = 9999999 )""") # Alter rows by changing 9999999 to NULL NULL_VALUES_UPDATE_QUERY = JINJA_ENV.from_string(""" SELECT measurement_id, person_id, measurement_concept_id, measurement_date, measurement_datetime, measurement_type_concept_id, operator_concept_id, CASE WHEN value_as_number = 9999999 THEN NULL ELSE value_as_number END AS value_as_number, value_as_concept_id, unit_concept_id, range_low, range_high, provider_id, visit_occurrence_id, measurement_source_value, measurement_source_concept_id, unit_source_value, value_source_value from `{{project}}.{{dataset}}.measurement` """) # Identify sites who submitted "junk" data. Either all nulls or zero values in # the value_as_number field. These sites should be saved to a table to make # programmatic access easier SITES_TO_REMOVE_DATA_FOR = JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project}}.{{sandbox}}.{{save_table}}` AS ( -- join the measurment and mapping table and only store EHR site records -- WITH joined_table AS ( SELECT * FROM `{{project}}.{{dataset}}.measurement` AS m JOIN `{{project}}.{{dataset}}.measurement_ext` AS me USING (measurement_id) WHERE src_id LIKE 'EHR site%' ), -- get the src_id of sites having something greater than 0 in the value_as_number field -- values_containing_srcs AS( SELECT DISTINCT(src_id) FROM joined_table AS jt GROUP BY src_id, value_as_number HAVING value_as_number > 0 ), -- get the src_id of sites having either 0 or null in the value_as_number field -- junk_srcs AS ( SELECT DISTINCT(src_id) FROM joined_table AS jt GROUP BY src_id, value_as_number HAVING value_as_number = 0 OR value_as_number IS NULL) -- select those src_ids from junk_srcs that do not exist in value containing sources -- -- this means the site never submitted anything other than 0 or null in the -- -- value_as_number field -- SELECT js.src_id FROM junk_srcs AS js WHERE js.src_id NOT IN (SELECT src_id FROM values_containing_srcs) )""") # store data from sites that will be dropped. NULL_AND_ZERO_VALUES_SAVE_QUERY = JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project}}.{{sandbox}}.{{save_table}}` AS ( SELECT * FROM `{{project}}.{{dataset}}.measurement` AS m JOIN `{{project}}.{{dataset}}.measurement_ext` AS me USING (measurement_id) WHERE me.src_id IN (SELECT src_id FROM `{{project}}.{{sandbox}}.{{id_table}}`) AND m.value_as_number = 0 )""") # Update value_as_number for any site that has only submitted junk, i.e. 0 or null # for value_as_number SET_NULL_WHEN_ONLY_ZEROS_SUBMITTED = JINJA_ENV.from_string(""" UPDATE `{{project}}.{{dataset}}.measurement` as m SET value_as_number = NULL FROM `{{project}}.{{dataset}}.measurement_ext` AS me WHERE m.measurement_id = me.measurement_id AND me.src_id IN (SELECT src_id FROM `{{project}}.{{sandbox}}.{{id_table}}`) """) # Save records that will be dropped when # value_as_number IS NULL AND value_as_concept_id IS NULL SAVE_NULL_DROP_RECORDS = JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project}}.{{sandbox}}.{{save_table}}` AS ( SELECT * FROM `{{project}}.{{dataset}}.measurement` AS m WHERE m.value_as_number IS NULL AND m.value_as_concept_id IS NULL )""") # Only select records that we want to keep SELECT_RECORDS_WITH_VALID_DATA = JINJA_ENV.from_string(""" SELECT * FROM `{{project}}.{{dataset}}.measurement` AS m WHERE m.value_as_number IS NOT NULL OR m.value_as_concept_id IS NOT NULL """) # Sandbox duplicate records based on the fields: person_id, # measurement_source_concept_id, unit_concept_id, measurement_concept_id, # measurement_datetime, value_as_number, value_as_concept_id # Had to use grouping because ROW_NUMBER OVER cannot partition by value_as_number SANDBOX_DUPLICATES = JINJA_ENV.from_string(""" -- identify duplicates with this context table statement -- -- only add duplicate field identifiers to this statement -- CREATE OR REPLACE TABLE `{{project}}.{{sandbox}}.{{save_table}}` AS ( WITH cte AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY person_id, measurement_source_concept_id, unit_concept_id, measurement_concept_id, measurement_datetime, CAST(value_as_number AS string), value_as_concept_id ORDER BY person_id, measurement_source_concept_id, unit_concept_id, measurement_concept_id, measurement_datetime, value_as_number, value_as_concept_id, measurement_id) AS row_num FROM `{{project}}.{{dataset}}.measurement` ) -- select all fields from the table for sandboxing -- SELECT * FROM cte WHERE row_num > 1 )""") REMOVE_DUPLICATES = JINJA_ENV.from_string(""" -- Select only the records that have not been sandboxed -- SELECT * FROM `{{project}}.{{dataset}}.measurement` WHERE measurement_id NOT IN (SELECT measurement_id FROM `{{project}}.{{sandbox}}.{{id_table}}`) """) class MeasurementRecordsSuppression(BaseCleaningRule): """ Suppress measurement rows by values. Suppress measurement rows if: 1. Convert value_as_number = 9999999 to value_as_number IS NULL, 2. value_as_number IS NULL AND value_as_concept_id IS NULL, 3. drop all measurement data from a site if value_as_number = 0 for all records submitted by the site. 4. Eliminate duplicate rows based on the fields: person_id, measurement_source_concept_id, unit_concept_id, measurement_concept_id, measurement_datetime, value_as_number, and value_as_concept_id. """ def __init__(self, project_id, dataset_id, sandbox_dataset_id): """ Initialize the class with proper info. Set the issue numbers, description and affected datasets. As other tickets may affect this SQL, append them to the list of Jira Issues. DO NOT REMOVE ORIGINAL JIRA ISSUE NUMBERS! """ desc = (f'Clean the measurement table after it was de-identified. ' f'Remove rows that do not contribute high quality data.') super().__init__(issue_numbers=ISSUE_NUMBERS, description=desc, affected_datasets=[ cdr_consts.DEID_BASE, cdr_consts.CONTROLLED_TIER_DEID_CLEAN ], project_id=project_id, dataset_id=dataset_id, sandbox_dataset_id=sandbox_dataset_id, affected_tables=[MEASUREMENT]) def get_query_specs(self): """ Return a list of dictionary query specifications. :return: A list of dictionaries. Each dictionary contains a single query and a specification for how to execute that query. The specifications are optional but the query is required. """ save_null_values = { cdr_consts.QUERY: NULL_VALUES_SAVE_QUERY.render( project=self.project_id, dataset=self.dataset_id, sandbox=self.sandbox_dataset_id, save_table=INVALID_VALUES_RECORDS), } update_to_null_values = { cdr_consts.QUERY: NULL_VALUES_UPDATE_QUERY.render(project=self.project_id, dataset=self.dataset_id), cdr_consts.DESTINATION_TABLE: MEASUREMENT, cdr_consts.DESTINATION_DATASET: self.dataset_id, cdr_consts.DISPOSITION: WRITE_TRUNCATE } identify_bad_sites = { cdr_consts.QUERY: SITES_TO_REMOVE_DATA_FOR.render( project=self.project_id, dataset=self.dataset_id, sandbox=self.sandbox_dataset_id, save_table=SITES_WITH_ONLY_BAD_DATA) } save_data_from_bad_sites = { cdr_consts.QUERY: NULL_AND_ZERO_VALUES_SAVE_QUERY.render( project=self.project_id, dataset=self.dataset_id, sandbox=self.sandbox_dataset_id, save_table=SAVE_BAD_SITE_DATA, id_table=SITES_WITH_ONLY_BAD_DATA) } set_null_for_zero_from_bad_sites = { cdr_consts.QUERY: SET_NULL_WHEN_ONLY_ZEROS_SUBMITTED.render( project=self.project_id, dataset=self.dataset_id, sandbox=self.sandbox_dataset_id, id_table=SITES_WITH_ONLY_BAD_DATA) } save_null_records_before_dropping = { cdr_consts.QUERY: SAVE_NULL_DROP_RECORDS.render( project=self.project_id, dataset=self.dataset_id, sandbox=self.sandbox_dataset_id, save_table=SAVE_NULL_VALUE_RECORDS) } keep_records_with_good_data = { cdr_consts.QUERY: SELECT_RECORDS_WITH_VALID_DATA.render(project=self.project_id, dataset=self.dataset_id), cdr_consts.DESTINATION_TABLE: MEASUREMENT, cdr_consts.DESTINATION_DATASET: self.dataset_id, cdr_consts.DISPOSITION: WRITE_TRUNCATE } sandbox_duplicates = { cdr_consts.QUERY: SANDBOX_DUPLICATES.render(project=self.project_id, dataset=self.dataset_id, sandbox=self.sandbox_dataset_id, save_table=SAVE_DUPLICATE_RECORDS) } remove_duplicates = { cdr_consts.QUERY: REMOVE_DUPLICATES.render(project=self.project_id, dataset=self.dataset_id, sandbox=self.sandbox_dataset_id, id_table=SAVE_DUPLICATE_RECORDS), cdr_consts.DESTINATION_TABLE: MEASUREMENT, cdr_consts.DESTINATION_DATASET: self.dataset_id, cdr_consts.DISPOSITION: WRITE_TRUNCATE } return [ save_null_values, update_to_null_values, identify_bad_sites, save_data_from_bad_sites, set_null_for_zero_from_bad_sites, save_null_records_before_dropping, keep_records_with_good_data, sandbox_duplicates, remove_duplicates ] def setup_rule(self, client): """ Function to run any data upload options before executing a query. """ pass def setup_validation(self, client): """ Run required steps for validation setup This abstract method was added to the base class after this rule was authored. This rule needs to implement logic to setup validation on cleaning rules that will be updating or deleting the values. Until done no issue exists for this yet. """ raise NotImplementedError("Please fix me.") def validate_rule(self): """ Validates the cleaning rule which deletes or updates the data from the tables This abstract method was added to the base class after this rule was authored. This rule needs to implement logic to run validation on cleaning rules that will be updating or deleting the values. Until done no issue exists for this yet. """ raise NotImplementedError("Please fix me.") def get_sandbox_tablenames(self): return [ INVALID_VALUES_RECORDS, SITES_WITH_ONLY_BAD_DATA, SAVE_BAD_SITE_DATA, SAVE_NULL_VALUE_RECORDS, SAVE_DUPLICATE_RECORDS ] if __name__ == '__main__': import cdr_cleaner.args_parser as parser import cdr_cleaner.clean_cdr_engine as clean_engine ARGS = parser.parse_args() if ARGS.list_queries: clean_engine.add_console_logging() query_list = clean_engine.get_query_list( ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(MeasurementRecordsSuppression,)]) for query in query_list: LOGGER.info(query) else: clean_engine.add_console_logging(ARGS.console_log) clean_engine.clean_dataset(ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(MeasurementRecordsSuppression,)])
37.651099
173
0.667056
e48acc6cd30ca365c381557de5bb8b05ce37398d
1,903
py
Python
tests/test_coax.py
BetaPollux/EMToolbox
c9e8e06dd45b764fe7f29f0118c78cf3ae31a4a8
[ "MIT" ]
1
2021-02-19T22:36:14.000Z
2021-02-19T22:36:14.000Z
tests/test_coax.py
BetaPollux/EMToolbox
c9e8e06dd45b764fe7f29f0118c78cf3ae31a4a8
[ "MIT" ]
null
null
null
tests/test_coax.py
BetaPollux/EMToolbox
c9e8e06dd45b764fe7f29f0118c78cf3ae31a4a8
[ "MIT" ]
null
null
null
#!/usr/bin/python3 '''Test TLine Coax functions''' import math from pytest import approx import emtoolbox.tline.coax as coax import emtoolbox.utils.conversions as convert import emtoolbox.utils.constants as const FREQ = 100e6 W = 2 * math.pi * FREQ EPSR = 2.3 RADIUS_W = convert.meters_from_mils(16) RADIUS_S = convert.meters_from_mils(58) def test_impedance(): zc = coax.impedance(RADIUS_W, RADIUS_S, EPSR) assert zc == approx(50.0, abs=1.0) def test_inductance(): ind = coax.inductance(RADIUS_W, RADIUS_S) assert ind == approx(0.2576e-6, rel=1e-3) def test_capacitance(): cap = coax.capacitance(RADIUS_W, RADIUS_S, EPSR) assert cap == approx(99.2e-12, rel=1e-3) def test_conductance_simple(): sigma = 10 con = coax.conductance_simple(RADIUS_W, RADIUS_S, sigma) cap = coax.capacitance(RADIUS_W, RADIUS_S, EPSR) assert con == approx(sigma / (const.EPS0 * EPSR) * cap, rel=1e-3) def test_conductance_loss_tangent(): tan = 0.02 con = coax.conductance_loss_tangent(RADIUS_W, RADIUS_S, EPSR, tan) cap = coax.capacitance(RADIUS_W, RADIUS_S, EPSR) assert con(W) == approx(W * tan * cap, rel=1e-3) def test_conductance_loss_tangent_mult(): tan = 0.02 con1 = coax.conductance_loss_tangent(RADIUS_W, RADIUS_S, EPSR, tan) con2 = coax.conductance_loss_tangent(RADIUS_W, 2 * RADIUS_S, EPSR, tan) assert con1(W) != con2(W) def test_resistance_dc(): rad = convert.wire_radius_awg(28) res = coax.resistance_dc(rad, const.COND_CU) assert res == approx(0.213, rel=1e-3) def test_resistance_skin_effect(): res = coax.resistance_skin_effect(RADIUS_W, const.COND_CU) assert res(W) == approx(1.022, rel=1e-3) def test_resistance_skin_effect_mult(): res1 = coax.resistance_skin_effect(RADIUS_W, const.COND_CU) res2 = coax.resistance_skin_effect(2 * RADIUS_W, const.COND_CU) assert res1(W) != res2(W)
27.57971
75
0.712559
e53a114bd5dbf81fdf7ba717dd01ea93e5b84065
5,669
py
Python
robocop/checkers/__init__.py
MalikMlitat/robotframework-robocop
615d535f30e72a8638a6084a692f683b97ee1fcb
[ "Apache-2.0" ]
null
null
null
robocop/checkers/__init__.py
MalikMlitat/robotframework-robocop
615d535f30e72a8638a6084a692f683b97ee1fcb
[ "Apache-2.0" ]
2
2021-11-04T20:27:48.000Z
2022-03-24T00:23:54.000Z
robocop/checkers/__init__.py
MalikMlitat/robotframework-robocop
615d535f30e72a8638a6084a692f683b97ee1fcb
[ "Apache-2.0" ]
null
null
null
""" Robocop rules are internally grouped into checkers. Each checker can scan for multiple related issues (like ``LengthChecker`` checks both for minimum and maximum length of a keyword). You can refer to specific rule reported by checkers by its name or id (for example `too-long-keyword` or `0501`). Checkers are categorized into following groups: * 01: base * 02: documentation * 03: naming * 04: errors * 05: lengths * 06: tags * 07: comments * 08: duplications * 09: misc * 10: spacing * 11-50: not yet used: reserved for future internal checkers * 51-99: reserved for external checkers Checker has two basic types: - ``VisitorChecker`` uses Robot Framework parsing API and Python `ast` module for traversing Robot code as nodes, - ``RawFileChecker`` simply reads Robot file as normal file and scans every line. Every rule has a `unique id` made of 4 digits where first 2 are `checker id` while 2 latter are `rule id`. `Unique id` as well as `rule name` can be used to refer to the rule (e.g. in include/exclude statements, configurations etc.). You can optionally configure rule severity or other parameters. """ import inspect try: from robot.api.parsing import ModelVisitor except ImportError: from robot.parsing.model.visitor import ModelVisitor from robot.utils import FileReader from robocop.utils import modules_from_paths, modules_in_current_dir from robocop.exceptions import RuleNotFoundError, RuleParamNotFoundError, RuleReportsNotFoundError class BaseChecker: rules = None def __init__(self): self.disabled = False self.source = None self.lines = None self.issues = [] self.rules = {} self.templated_suite = False def param(self, rule, param_name): try: return self.rules[rule].config[param_name].value except KeyError: if rule not in self.rules: raise RuleNotFoundError(rule, self) from None if param_name not in self.rules[rule].config: raise RuleParamNotFoundError(self.rules[rule], param_name, self) from None def report( self, rule, node=None, lineno=None, col=None, end_lineno=None, end_col=None, ext_disablers=None, **kwargs, ): if rule not in self.rules: raise ValueError(f"Missing definition for message with name {rule}") message = self.rules[rule].prepare_message( source=self.source, node=node, lineno=lineno, col=col, end_lineno=end_lineno, end_col=end_col, ext_disablers=ext_disablers, **kwargs, ) if message.enabled: self.issues.append(message) class VisitorChecker(BaseChecker, ModelVisitor): # noqa type = "visitor_checker" def scan_file(self, ast_model, filename, in_memory_content, templated=False): self.issues = [] self.source = filename self.templated_suite = templated if in_memory_content is not None: self.lines = in_memory_content.splitlines(keepends=True) else: self.lines = None self.visit_File(ast_model) return self.issues def visit_File(self, node): # noqa """Perform generic ast visit on file node.""" self.generic_visit(node) class RawFileChecker(BaseChecker): # noqa type = "rawfile_checker" def scan_file(self, ast_model, filename, in_memory_content, templated=False): self.issues = [] self.source = filename self.templated_suite = templated if in_memory_content is not None: self.lines = in_memory_content.splitlines(keepends=True) else: self.lines = None self.parse_file() return self.issues def parse_file(self): """Read file line by line and for each call check_line method.""" if self.lines is not None: for lineno, line in enumerate(self.lines): self.check_line(line, lineno + 1) else: with FileReader(self.source) as file_reader: for lineno, line in enumerate(file_reader.readlines()): self.check_line(line, lineno + 1) def check_line(self, line, lineno): raise NotImplementedError def init(linter): """For each module get `rules` dictionary and visitors. Instantiate each visitor and map it to the rule class instance using `reports` visitor attribute.""" for module in get_modules(linter.config.ext_rules): classes = inspect.getmembers(module, inspect.isclass) module_rules = {rule.name: rule for rule in getattr(module, "rules", {}).values()} for checker in classes: if issubclass(checker[1], BaseChecker) and getattr(checker[1], "reports", False): checker_instance = checker[1]() for reported_rule in checker_instance.reports: if reported_rule not in module_rules: raise RuleReportsNotFoundError(reported_rule, checker_instance) from None checker_instance.rules[reported_rule] = module_rules[reported_rule] linter.register_checker(checker_instance) def get_modules(ext_rules): yield from modules_in_current_dir(__file__, __name__) yield from modules_from_paths(ext_rules) def get_rules(): for module in modules_in_current_dir(__file__, __name__): module_name = module.__name__.split(".")[-1] for rule in getattr(module, "rules", {}).values(): yield module_name, rule
34.779141
113
0.656553
267cd8c622ef7863a820e02d9f56fb5c310108bf
190
py
Python
PE20.py
TIJMacLean/Project-Euler
a7b7297c9fed2026d063e7f209f9ff61f45f0ccb
[ "Apache-2.0" ]
null
null
null
PE20.py
TIJMacLean/Project-Euler
a7b7297c9fed2026d063e7f209f9ff61f45f0ccb
[ "Apache-2.0" ]
null
null
null
PE20.py
TIJMacLean/Project-Euler
a7b7297c9fed2026d063e7f209f9ff61f45f0ccb
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri May 15 00:06:30 2020 @author: Tom """ from math import factorial number = str(factorial(100)) print(number) print(sum([int(i) for i in number]))
15.833333
36
0.657895
5078d3c7316d47ce99d16a0359f5067724af6afd
38,012
py
Python
mesonbuild/rewriter.py
regolith-linux/meson
938e7037319852dd75c9da17c402d6903ab22fe3
[ "Apache-2.0" ]
1
2020-01-03T07:15:50.000Z
2020-01-03T07:15:50.000Z
mesonbuild/rewriter.py
regolith-linux/meson
938e7037319852dd75c9da17c402d6903ab22fe3
[ "Apache-2.0" ]
null
null
null
mesonbuild/rewriter.py
regolith-linux/meson
938e7037319852dd75c9da17c402d6903ab22fe3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2016 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This class contains the basic functionality needed to run any interpreter # or an interpreter-based tool. # This tool is used to manipulate an existing Meson build definition. # # - add a file to a target # - remove files from a target # - move targets # - reindent? from .ast import IntrospectionInterpreter, build_target_functions, AstConditionLevel, AstIDGenerator, AstIndentationGenerator, AstPrinter from mesonbuild.mesonlib import MesonException from . import mlog, environment from functools import wraps from typing import List, Dict, Optional from .mparser import Token, ArrayNode, ArgumentNode, AssignmentNode, BaseNode, BooleanNode, ElementaryNode, IdNode, FunctionNode, StringNode import json, os, re, sys class RewriterException(MesonException): pass def add_arguments(parser, formatter=None): parser.add_argument('-s', '--sourcedir', type=str, default='.', metavar='SRCDIR', help='Path to source directory.') parser.add_argument('-V', '--verbose', action='store_true', default=False, help='Enable verbose output') parser.add_argument('-S', '--skip-errors', dest='skip', action='store_true', default=False, help='Skip errors instead of aborting') subparsers = parser.add_subparsers(dest='type', title='Rewriter commands', description='Rewrite command to execute') # Target tgt_parser = subparsers.add_parser('target', help='Modify a target', formatter_class=formatter) tgt_parser.add_argument('-s', '--subdir', default='', dest='subdir', help='Subdirectory of the new target (only for the "add_target" action)') tgt_parser.add_argument('--type', dest='tgt_type', choices=rewriter_keys['target']['target_type'][2], default='executable', help='Type of the target to add (only for the "add_target" action)') tgt_parser.add_argument('target', help='Name or ID of the target') tgt_parser.add_argument('operation', choices=['add', 'rm', 'add_target', 'rm_target', 'info'], help='Action to execute') tgt_parser.add_argument('sources', nargs='*', help='Sources to add/remove') # KWARGS kw_parser = subparsers.add_parser('kwargs', help='Modify keyword arguments', formatter_class=formatter) kw_parser.add_argument('operation', choices=rewriter_keys['kwargs']['operation'][2], help='Action to execute') kw_parser.add_argument('function', choices=list(rewriter_func_kwargs.keys()), help='Function type to modify') kw_parser.add_argument('id', help='ID of the function to modify (can be anything for "project")') kw_parser.add_argument('kwargs', nargs='*', help='Pairs of keyword and value') # Default options def_parser = subparsers.add_parser('default-options', help='Modify the project default options', formatter_class=formatter) def_parser.add_argument('operation', choices=rewriter_keys['default_options']['operation'][2], help='Action to execute') def_parser.add_argument('options', nargs='*', help='Key, value pairs of configuration option') # JSON file/command cmd_parser = subparsers.add_parser('command', help='Execute a JSON array of commands', formatter_class=formatter) cmd_parser.add_argument('json', help='JSON string or file to execute') class RequiredKeys: def __init__(self, keys): self.keys = keys def __call__(self, f): @wraps(f) def wrapped(*wrapped_args, **wrapped_kwargs): assert(len(wrapped_args) >= 2) cmd = wrapped_args[1] for key, val in self.keys.items(): typ = val[0] # The type of the value default = val[1] # The default value -- None is required choices = val[2] # Valid choices -- None is for everything if key not in cmd: if default is not None: cmd[key] = default else: raise RewriterException('Key "{}" is missing in object for {}' .format(key, f.__name__)) if not isinstance(cmd[key], typ): raise RewriterException('Invalid type of "{}". Required is {} but provided was {}' .format(key, typ.__name__, type(cmd[key]).__name__)) if choices is not None: assert(isinstance(choices, list)) if cmd[key] not in choices: raise RewriterException('Invalid value of "{}": Possible values are {} but provided was "{}"' .format(key, choices, cmd[key])) return f(*wrapped_args, **wrapped_kwargs) return wrapped class MTypeBase: def __init__(self, node: Optional[BaseNode] = None): if node is None: self.node = self._new_node() # lgtm [py/init-calls-subclass] (node creation does not depend on base class state) else: self.node = node self.node_type = None for i in self.supported_nodes(): # lgtm [py/init-calls-subclass] (listing nodes does not depend on base class state) if isinstance(self.node, i): self.node_type = i def _new_node(self): # Overwrite in derived class return BaseNode() def can_modify(self): return self.node_type is not None def get_node(self): return self.node def supported_nodes(self): # Overwrite in derived class return [] def set_value(self, value): # Overwrite in derived class mlog.warning('Cannot set the value of type', mlog.bold(type(self).__name__), '--> skipping') def add_value(self, value): # Overwrite in derived class mlog.warning('Cannot add a value of type', mlog.bold(type(self).__name__), '--> skipping') def remove_value(self, value): # Overwrite in derived class mlog.warning('Cannot remove a value of type', mlog.bold(type(self).__name__), '--> skipping') def remove_regex(self, value): # Overwrite in derived class mlog.warning('Cannot remove a regex in type', mlog.bold(type(self).__name__), '--> skipping') class MTypeStr(MTypeBase): def __init__(self, node: Optional[BaseNode] = None): super().__init__(node) def _new_node(self): return StringNode(Token('', '', 0, 0, 0, None, '')) def supported_nodes(self): return [StringNode] def set_value(self, value): self.node.value = str(value) class MTypeBool(MTypeBase): def __init__(self, node: Optional[BaseNode] = None): super().__init__(node) def _new_node(self): return StringNode(Token('', '', 0, 0, 0, None, False)) def supported_nodes(self): return [BooleanNode] def set_value(self, value): self.node.value = bool(value) class MTypeID(MTypeBase): def __init__(self, node: Optional[BaseNode] = None): super().__init__(node) def _new_node(self): return StringNode(Token('', '', 0, 0, 0, None, '')) def supported_nodes(self): return [IdNode] def set_value(self, value): self.node.value = str(value) class MTypeList(MTypeBase): def __init__(self, node: Optional[BaseNode] = None): super().__init__(node) def _new_node(self): return ArrayNode(ArgumentNode(Token('', '', 0, 0, 0, None, '')), 0, 0, 0, 0) def _new_element_node(self, value): # Overwrite in derived class return BaseNode() def _ensure_array_node(self): if not isinstance(self.node, ArrayNode): tmp = self.node self.node = self._new_node() self.node.args.arguments += [tmp] def _check_is_equal(self, node, value) -> bool: # Overwrite in derived class return False def _check_regex_matches(self, node, regex: str) -> bool: # Overwrite in derived class return False def get_node(self): if isinstance(self.node, ArrayNode): if len(self.node.args.arguments) == 1: return self.node.args.arguments[0] return self.node def supported_element_nodes(self): # Overwrite in derived class return [] def supported_nodes(self): return [ArrayNode] + self.supported_element_nodes() def set_value(self, value): if not isinstance(value, list): value = [value] self._ensure_array_node() self.node.args.arguments = [] # Remove all current nodes for i in value: self.node.args.arguments += [self._new_element_node(i)] def add_value(self, value): if not isinstance(value, list): value = [value] self._ensure_array_node() for i in value: self.node.args.arguments += [self._new_element_node(i)] def _remove_helper(self, value, equal_func): def check_remove_node(node): for j in value: if equal_func(i, j): return True return False if not isinstance(value, list): value = [value] self._ensure_array_node() removed_list = [] for i in self.node.args.arguments: if not check_remove_node(i): removed_list += [i] self.node.args.arguments = removed_list def remove_value(self, value): self._remove_helper(value, self._check_is_equal) def remove_regex(self, regex: str): self._remove_helper(regex, self._check_regex_matches) class MTypeStrList(MTypeList): def __init__(self, node: Optional[BaseNode] = None): super().__init__(node) def _new_element_node(self, value): return StringNode(Token('', '', 0, 0, 0, None, str(value))) def _check_is_equal(self, node, value) -> bool: if isinstance(node, StringNode): return node.value == value return False def _check_regex_matches(self, node, regex: str) -> bool: if isinstance(node, StringNode): return re.match(regex, node.value) is not None return False def supported_element_nodes(self): return [StringNode] class MTypeIDList(MTypeList): def __init__(self, node: Optional[BaseNode] = None): super().__init__(node) def _new_element_node(self, value): return IdNode(Token('', '', 0, 0, 0, None, str(value))) def _check_is_equal(self, node, value) -> bool: if isinstance(node, IdNode): return node.value == value return False def _check_regex_matches(self, node, regex: str) -> bool: if isinstance(node, StringNode): return re.match(regex, node.value) is not None return False def supported_element_nodes(self): return [IdNode] rewriter_keys = { 'default_options': { 'operation': (str, None, ['set', 'delete']), 'options': (dict, {}, None) }, 'kwargs': { 'function': (str, None, None), 'id': (str, None, None), 'operation': (str, None, ['set', 'delete', 'add', 'remove', 'remove_regex', 'info']), 'kwargs': (dict, {}, None) }, 'target': { 'target': (str, None, None), 'operation': (str, None, ['src_add', 'src_rm', 'target_rm', 'target_add', 'info']), 'sources': (list, [], None), 'subdir': (str, '', None), 'target_type': (str, 'executable', ['both_libraries', 'executable', 'jar', 'library', 'shared_library', 'shared_module', 'static_library']), } } rewriter_func_kwargs = { 'dependency': { 'language': MTypeStr, 'method': MTypeStr, 'native': MTypeBool, 'not_found_message': MTypeStr, 'required': MTypeBool, 'static': MTypeBool, 'version': MTypeStrList, 'modules': MTypeStrList }, 'target': { 'build_by_default': MTypeBool, 'build_rpath': MTypeStr, 'dependencies': MTypeIDList, 'gui_app': MTypeBool, 'link_with': MTypeIDList, 'export_dynamic': MTypeBool, 'implib': MTypeBool, 'install': MTypeBool, 'install_dir': MTypeStr, 'install_rpath': MTypeStr, 'pie': MTypeBool }, 'project': { 'default_options': MTypeStrList, 'meson_version': MTypeStr, 'license': MTypeStrList, 'subproject_dir': MTypeStr, 'version': MTypeStr } } class Rewriter: def __init__(self, sourcedir: str, generator: str = 'ninja', skip_errors: bool = False): self.sourcedir = sourcedir self.interpreter = IntrospectionInterpreter(sourcedir, '', generator, visitors = [AstIDGenerator(), AstIndentationGenerator(), AstConditionLevel()]) self.skip_errors = skip_errors self.modefied_nodes = [] self.to_remove_nodes = [] self.to_add_nodes = [] self.functions = { 'default_options': self.process_default_options, 'kwargs': self.process_kwargs, 'target': self.process_target, } self.info_dump = None def analyze_meson(self): mlog.log('Analyzing meson file:', mlog.bold(os.path.join(self.sourcedir, environment.build_filename))) self.interpreter.analyze() mlog.log(' -- Project:', mlog.bold(self.interpreter.project_data['descriptive_name'])) mlog.log(' -- Version:', mlog.cyan(self.interpreter.project_data['version'])) def add_info(self, cmd_type: str, cmd_id: str, data: dict): if self.info_dump is None: self.info_dump = {} if cmd_type not in self.info_dump: self.info_dump[cmd_type] = {} self.info_dump[cmd_type][cmd_id] = data def print_info(self): if self.info_dump is None: return sys.stderr.write(json.dumps(self.info_dump, indent=2)) def on_error(self): if self.skip_errors: return mlog.cyan('-->'), mlog.yellow('skipping') return mlog.cyan('-->'), mlog.red('aborting') def handle_error(self): if self.skip_errors: return None raise MesonException('Rewriting the meson.build failed') def find_target(self, target: str): def check_list(name: str) -> List[BaseNode]: result = [] for i in self.interpreter.targets: if name == i['name'] or name == i['id']: result += [i] return result targets = check_list(target) if targets: if len(targets) == 1: return targets[0] else: mlog.error('There are multiple targets matching', mlog.bold(target)) for i in targets: mlog.error(' -- Target name', mlog.bold(i['name']), 'with ID', mlog.bold(i['id'])) mlog.error('Please try again with the unique ID of the target', *self.on_error()) self.handle_error() return None # Check the assignments tgt = None if target in self.interpreter.assignments: node = self.interpreter.assignments[target][0] if isinstance(node, FunctionNode): if node.func_name in ['executable', 'jar', 'library', 'shared_library', 'shared_module', 'static_library', 'both_libraries']: tgt = self.interpreter.assign_vals[target][0] return tgt def find_dependency(self, dependency: str): def check_list(name: str): for i in self.interpreter.dependencies: if name == i['name']: return i return None dep = check_list(dependency) if dep is not None: return dep # Check the assignments if dependency in self.interpreter.assignments: node = self.interpreter.assignments[dependency][0] if isinstance(node, FunctionNode): if node.func_name in ['dependency']: name = self.interpreter.flatten_args(node.args)[0] dep = check_list(name) return dep @RequiredKeys(rewriter_keys['default_options']) def process_default_options(self, cmd): # First, remove the old values kwargs_cmd = { 'function': 'project', 'id': "/", 'operation': 'remove_regex', 'kwargs': { 'default_options': ['{}=.*'.format(x) for x in cmd['options'].keys()] } } self.process_kwargs(kwargs_cmd) # Then add the new values if cmd['operation'] != 'set': return kwargs_cmd['operation'] = 'add' kwargs_cmd['kwargs']['default_options'] = [] cdata = self.interpreter.coredata options = { **cdata.builtins, **cdata.builtins_per_machine.host, **{'build.' + k: o for k, o in cdata.builtins_per_machine.build.items()}, **cdata.backend_options, **cdata.base_options, **cdata.compiler_options.host, **{'build.' + k: o for k, o in cdata.compiler_options.build.items()}, **cdata.user_options, } for key, val in sorted(cmd['options'].items()): if key not in options: mlog.error('Unknown options', mlog.bold(key), *self.on_error()) self.handle_error() continue try: val = options[key].validate_value(val) except MesonException as e: mlog.error('Unable to set', mlog.bold(key), mlog.red(str(e)), *self.on_error()) self.handle_error() continue kwargs_cmd['kwargs']['default_options'] += ['{}={}'.format(key, val)] self.process_kwargs(kwargs_cmd) @RequiredKeys(rewriter_keys['kwargs']) def process_kwargs(self, cmd): mlog.log('Processing function type', mlog.bold(cmd['function']), 'with id', mlog.cyan("'" + cmd['id'] + "'")) if cmd['function'] not in rewriter_func_kwargs: mlog.error('Unknown function type', cmd['function'], *self.on_error()) return self.handle_error() kwargs_def = rewriter_func_kwargs[cmd['function']] # Find the function node to modify node = None arg_node = None if cmd['function'] == 'project': if cmd['id'] != '/': mlog.error('The ID for the function type project must be "/"', *self.on_error()) return self.handle_error() node = self.interpreter.project_node arg_node = node.args elif cmd['function'] == 'target': tmp = self.find_target(cmd['id']) if tmp: node = tmp['node'] arg_node = node.args elif cmd['function'] == 'dependency': tmp = self.find_dependency(cmd['id']) if tmp: node = tmp['node'] arg_node = node.args if not node: mlog.error('Unable to find the function node') assert(isinstance(node, FunctionNode)) assert(isinstance(arg_node, ArgumentNode)) # Print kwargs info if cmd['operation'] == 'info': info_data = {} for key, val in sorted(arg_node.kwargs.items()): info_data[key] = None if isinstance(val, ElementaryNode): info_data[key] = val.value elif isinstance(val, ArrayNode): data_list = [] for i in val.args.arguments: element = None if isinstance(i, ElementaryNode): element = i.value data_list += [element] info_data[key] = data_list self.add_info('kwargs', '{}#{}'.format(cmd['function'], cmd['id']), info_data) return # Nothing else to do # Modify the kwargs num_changed = 0 for key, val in sorted(cmd['kwargs'].items()): if key not in kwargs_def: mlog.error('Cannot modify unknown kwarg', mlog.bold(key), *self.on_error()) self.handle_error() continue # Remove the key from the kwargs if cmd['operation'] == 'delete': if key in arg_node.kwargs: mlog.log(' -- Deleting', mlog.bold(key), 'from the kwargs') del arg_node.kwargs[key] num_changed += 1 else: mlog.log(' -- Key', mlog.bold(key), 'is already deleted') continue if key not in arg_node.kwargs: arg_node.kwargs[key] = None modifyer = kwargs_def[key](arg_node.kwargs[key]) if not modifyer.can_modify(): mlog.log(' -- Skipping', mlog.bold(key), 'because it is to complex to modify') # Apply the operation val_str = str(val) if cmd['operation'] == 'set': mlog.log(' -- Setting', mlog.bold(key), 'to', mlog.yellow(val_str)) modifyer.set_value(val) elif cmd['operation'] == 'add': mlog.log(' -- Adding', mlog.yellow(val_str), 'to', mlog.bold(key)) modifyer.add_value(val) elif cmd['operation'] == 'remove': mlog.log(' -- Removing', mlog.yellow(val_str), 'from', mlog.bold(key)) modifyer.remove_value(val) elif cmd['operation'] == 'remove_regex': mlog.log(' -- Removing all values matching', mlog.yellow(val_str), 'from', mlog.bold(key)) modifyer.remove_regex(val) # Write back the result arg_node.kwargs[key] = modifyer.get_node() num_changed += 1 if num_changed > 0 and node not in self.modefied_nodes: self.modefied_nodes += [node] def find_assignment_node(self, node: BaseNode) -> AssignmentNode: if hasattr(node, 'ast_id') and node.ast_id in self.interpreter.reverse_assignment: return self.interpreter.reverse_assignment[node.ast_id] return None @RequiredKeys(rewriter_keys['target']) def process_target(self, cmd): mlog.log('Processing target', mlog.bold(cmd['target']), 'operation', mlog.cyan(cmd['operation'])) target = self.find_target(cmd['target']) if target is None and cmd['operation'] != 'target_add': mlog.error('Unknown target', mlog.bold(cmd['target']), *self.on_error()) return self.handle_error() # Make source paths relative to the current subdir def rel_source(src: str) -> str: subdir = os.path.abspath(os.path.join(self.sourcedir, target['subdir'])) if os.path.isabs(src): return os.path.relpath(src, subdir) elif not os.path.exists(src): return src # Trust the user when the source doesn't exist # Make sure that the path is relative to the subdir return os.path.relpath(os.path.abspath(src), subdir) if target is not None: cmd['sources'] = [rel_source(x) for x in cmd['sources']] # Utility function to get a list of the sources from a node def arg_list_from_node(n): args = [] if isinstance(n, FunctionNode): args = list(n.args.arguments) if n.func_name in build_target_functions: args.pop(0) elif isinstance(n, ArrayNode): args = n.args.arguments elif isinstance(n, ArgumentNode): args = n.arguments return args to_sort_nodes = [] if cmd['operation'] == 'src_add': node = None if target['sources']: node = target['sources'][0] else: node = target['node'] assert(node is not None) # Generate the current source list src_list = [] for i in target['sources']: for j in arg_list_from_node(i): if isinstance(j, StringNode): src_list += [j.value] # Generate the new String nodes to_append = [] for i in sorted(set(cmd['sources'])): if i in src_list: mlog.log(' -- Source', mlog.green(i), 'is already defined for the target --> skipping') continue mlog.log(' -- Adding source', mlog.green(i), 'at', mlog.yellow('{}:{}'.format(os.path.join(node.subdir, environment.build_filename), node.lineno))) token = Token('string', node.subdir, 0, 0, 0, None, i) to_append += [StringNode(token)] # Append to the AST at the right place arg_node = None if isinstance(node, (FunctionNode, ArrayNode)): arg_node = node.args elif isinstance(node, ArgumentNode): arg_node = node assert(arg_node is not None) arg_node.arguments += to_append # Mark the node as modified if arg_node not in to_sort_nodes and not isinstance(node, FunctionNode): to_sort_nodes += [arg_node] if node not in self.modefied_nodes: self.modefied_nodes += [node] elif cmd['operation'] == 'src_rm': # Helper to find the exact string node and its parent def find_node(src): for i in target['sources']: for j in arg_list_from_node(i): if isinstance(j, StringNode): if j.value == src: return i, j return None, None for i in cmd['sources']: # Try to find the node with the source string root, string_node = find_node(i) if root is None: mlog.warning(' -- Unable to find source', mlog.green(i), 'in the target') continue # Remove the found string node from the argument list arg_node = None if isinstance(root, (FunctionNode, ArrayNode)): arg_node = root.args elif isinstance(root, ArgumentNode): arg_node = root assert(arg_node is not None) mlog.log(' -- Removing source', mlog.green(i), 'from', mlog.yellow('{}:{}'.format(os.path.join(string_node.subdir, environment.build_filename), string_node.lineno))) arg_node.arguments.remove(string_node) # Mark the node as modified if arg_node not in to_sort_nodes and not isinstance(root, FunctionNode): to_sort_nodes += [arg_node] if root not in self.modefied_nodes: self.modefied_nodes += [root] elif cmd['operation'] == 'target_add': if target is not None: mlog.error('Can not add target', mlog.bold(cmd['target']), 'because it already exists', *self.on_error()) return self.handle_error() id_base = re.sub(r'[- ]', '_', cmd['target']) target_id = id_base + '_exe' if cmd['target_type'] == 'executable' else '_lib' source_id = id_base + '_sources' # Build src list src_arg_node = ArgumentNode(Token('string', cmd['subdir'], 0, 0, 0, None, '')) src_arr_node = ArrayNode(src_arg_node, 0, 0, 0, 0) src_far_node = ArgumentNode(Token('string', cmd['subdir'], 0, 0, 0, None, '')) src_fun_node = FunctionNode(cmd['subdir'], 0, 0, 0, 0, 'files', src_far_node) src_ass_node = AssignmentNode(cmd['subdir'], 0, 0, source_id, src_fun_node) src_arg_node.arguments = [StringNode(Token('string', cmd['subdir'], 0, 0, 0, None, x)) for x in cmd['sources']] src_far_node.arguments = [src_arr_node] # Build target tgt_arg_node = ArgumentNode(Token('string', cmd['subdir'], 0, 0, 0, None, '')) tgt_fun_node = FunctionNode(cmd['subdir'], 0, 0, 0, 0, cmd['target_type'], tgt_arg_node) tgt_ass_node = AssignmentNode(cmd['subdir'], 0, 0, target_id, tgt_fun_node) tgt_arg_node.arguments = [ StringNode(Token('string', cmd['subdir'], 0, 0, 0, None, cmd['target'])), IdNode(Token('string', cmd['subdir'], 0, 0, 0, None, source_id)) ] src_ass_node.accept(AstIndentationGenerator()) tgt_ass_node.accept(AstIndentationGenerator()) self.to_add_nodes += [src_ass_node, tgt_ass_node] elif cmd['operation'] == 'target_rm': to_remove = self.find_assignment_node(target['node']) if to_remove is None: to_remove = target['node'] self.to_remove_nodes += [to_remove] mlog.log(' -- Removing target', mlog.green(cmd['target']), 'at', mlog.yellow('{}:{}'.format(os.path.join(to_remove.subdir, environment.build_filename), to_remove.lineno))) elif cmd['operation'] == 'info': # List all sources in the target src_list = [] for i in target['sources']: for j in arg_list_from_node(i): if isinstance(j, StringNode): src_list += [j.value] test_data = { 'name': target['name'], 'sources': src_list } self.add_info('target', target['id'], test_data) # Sort files for i in to_sort_nodes: convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] path_sorter = lambda key: ([(key.count('/') <= idx, alphanum_key(x)) for idx, x in enumerate(key.split('/'))]) unknown = [x for x in i.arguments if not isinstance(x, StringNode)] sources = [x for x in i.arguments if isinstance(x, StringNode)] sources = sorted(sources, key=lambda x: path_sorter(x.value)) i.arguments = unknown + sources def process(self, cmd): if 'type' not in cmd: raise RewriterException('Command has no key "type"') if cmd['type'] not in self.functions: raise RewriterException('Unknown command "{}". Supported commands are: {}' .format(cmd['type'], list(self.functions.keys()))) self.functions[cmd['type']](cmd) def apply_changes(self): assert(all(hasattr(x, 'lineno') and hasattr(x, 'colno') and hasattr(x, 'subdir') for x in self.modefied_nodes)) assert(all(hasattr(x, 'lineno') and hasattr(x, 'colno') and hasattr(x, 'subdir') for x in self.to_remove_nodes)) assert(all(isinstance(x, (ArrayNode, FunctionNode)) for x in self.modefied_nodes)) assert(all(isinstance(x, (ArrayNode, AssignmentNode, FunctionNode)) for x in self.to_remove_nodes)) # Sort based on line and column in reversed order work_nodes = [{'node': x, 'action': 'modify'} for x in self.modefied_nodes] work_nodes += [{'node': x, 'action': 'rm'} for x in self.to_remove_nodes] work_nodes = list(sorted(work_nodes, key=lambda x: (x['node'].lineno, x['node'].colno), reverse=True)) work_nodes += [{'node': x, 'action': 'add'} for x in self.to_add_nodes] # Generating the new replacement string str_list = [] for i in work_nodes: new_data = '' if i['action'] == 'modify' or i['action'] == 'add': printer = AstPrinter() i['node'].accept(printer) printer.post_process() new_data = printer.result.strip() data = { 'file': os.path.join(i['node'].subdir, environment.build_filename), 'str': new_data, 'node': i['node'], 'action': i['action'] } str_list += [data] # Load build files files = {} for i in str_list: if i['file'] in files: continue fpath = os.path.realpath(os.path.join(self.sourcedir, i['file'])) fdata = '' # Create an empty file if it does not exist if not os.path.exists(fpath): with open(fpath, 'w'): pass with open(fpath, 'r') as fp: fdata = fp.read() # Generate line offsets numbers m_lines = fdata.splitlines(True) offset = 0 line_offsets = [] for j in m_lines: line_offsets += [offset] offset += len(j) files[i['file']] = { 'path': fpath, 'raw': fdata, 'offsets': line_offsets } # Replace in source code def remove_node(i): offsets = files[i['file']]['offsets'] raw = files[i['file']]['raw'] node = i['node'] line = node.lineno - 1 col = node.colno start = offsets[line] + col end = start if isinstance(node, (ArrayNode, FunctionNode)): end = offsets[node.end_lineno - 1] + node.end_colno # Only removal is supported for assignments elif isinstance(node, AssignmentNode) and i['action'] == 'rm': if isinstance(node.value, (ArrayNode, FunctionNode)): remove_node({'file': i['file'], 'str': '', 'node': node.value, 'action': 'rm'}) raw = files[i['file']]['raw'] while raw[end] != '=': end += 1 end += 1 # Handle the '=' while raw[end] in [' ', '\n', '\t']: end += 1 files[i['file']]['raw'] = raw[:start] + i['str'] + raw[end:] for i in str_list: if i['action'] in ['modify', 'rm']: remove_node(i) elif i['action'] in ['add']: files[i['file']]['raw'] += i['str'] + '\n' # Write the files back for key, val in files.items(): mlog.log('Rewriting', mlog.yellow(key)) with open(val['path'], 'w') as fp: fp.write(val['raw']) target_operation_map = { 'add': 'src_add', 'rm': 'src_rm', 'add_target': 'target_add', 'rm_target': 'target_rm', 'info': 'info', } def list_to_dict(in_list: List[str]) -> Dict[str, str]: result = {} it = iter(in_list) try: for i in it: # calling next(it) is not a mistake, we're taking the next element from # the iterator, avoiding the need to preprocess it into a sequence of # key value pairs. result[i] = next(it) except StopIteration: raise TypeError('in_list parameter of list_to_dict must have an even length.') return result def generate_target(options) -> List[dict]: return [{ 'type': 'target', 'target': options.target, 'operation': target_operation_map[options.operation], 'sources': options.sources, 'subdir': options.subdir, 'target_type': options.tgt_type, }] def generate_kwargs(options) -> List[dict]: return [{ 'type': 'kwargs', 'function': options.function, 'id': options.id, 'operation': options.operation, 'kwargs': list_to_dict(options.kwargs), }] def generate_def_opts(options) -> List[dict]: return [{ 'type': 'default_options', 'operation': options.operation, 'options': list_to_dict(options.options), }] def genreate_cmd(options) -> List[dict]: if os.path.exists(options.json): with open(options.json, 'r') as fp: return json.load(fp) else: return json.loads(options.json) # Map options.type to the actual type name cli_type_map = { 'target': generate_target, 'tgt': generate_target, 'kwargs': generate_kwargs, 'default-options': generate_def_opts, 'def': generate_def_opts, 'command': genreate_cmd, 'cmd': genreate_cmd, } def run(options): if not options.verbose: mlog.set_quiet() try: rewriter = Rewriter(options.sourcedir, skip_errors=options.skip) rewriter.analyze_meson() if options.type is None: mlog.error('No command specified') return 1 commands = cli_type_map[options.type](options) if not isinstance(commands, list): raise TypeError('Command is not a list') for i in commands: if not isinstance(i, object): raise TypeError('Command is not an object') rewriter.process(i) rewriter.apply_changes() rewriter.print_info() return 0 except Exception as e: raise e finally: mlog.set_verbose()
39.390674
156
0.567242
3ed53783999823af30b91fa38dd3764fa219c256
3,088
py
Python
core/settings/common.py
themightychris/prevention-point
a92f98b25d32dd30bb33e7cb1ac7f10439f5203f
[ "MIT" ]
1
2020-07-18T02:14:51.000Z
2020-07-18T02:14:51.000Z
core/settings/common.py
themightychris/prevention-point
a92f98b25d32dd30bb33e7cb1ac7f10439f5203f
[ "MIT" ]
null
null
null
core/settings/common.py
themightychris/prevention-point
a92f98b25d32dd30bb33e7cb1ac7f10439f5203f
[ "MIT" ]
1
2020-02-22T18:21:04.000Z
2020-02-22T18:21:04.000Z
""" Django settings for preventionpoint project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'gz!+^ra#d*j&rpq@^udd89hwzq7%z%%!c=pgl)wac!+rcp8+d-' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework_simplejwt.authentication.JWTAuthentication', ], } INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'core', 'rest_framework_swagger', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'core.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'core.wsgi.application' # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/New_York' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
26.169492
91
0.701425
1567a8bc81286172983347092f627c5cf7988cbc
3,629
py
Python
python_experiments/paper_figures/vldbj/draw_index_update_time.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
8
2020-04-14T23:17:00.000Z
2021-06-21T12:34:04.000Z
python_experiments/paper_figures/vldbj/draw_index_update_time.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
null
null
null
python_experiments/paper_figures/vldbj/draw_index_update_time.py
RapidsAtHKUST/SimRank
3a601b08f9a3c281e2b36b914e06aba3a3a36118
[ "MIT" ]
1
2021-01-17T16:26:50.000Z
2021-01-17T16:26:50.000Z
import matplotlib.pyplot as plt import numpy as np from data_analysis.vldbj_data_parsing.generate_index_markdown import * def get_name_dict(): with open('data_names.json') as ifs: return eval(''.join(ifs.readlines())) # data set abbreviation dictionary data_names = get_name_dict() # figure parameters FIG_SIZE_MULTIPLE = (32, 6) LABEL_SIZE = 22 TICK_SIZE = 22 LEGEND_SIZE = 22 def get_algorithm_indexing_time_lst(tag): if tag in [tsf_tag]: return [4.36215e-06, 3.85213e-06, 4.10121e-06, 4.10403e-06, 4.64019e-06, 1.18873e-05, # 2.71164e-05, 1.72031e-05, 1.69887e-05, 2.52288e-05, 1.39529e-05, 1.50784e-05, 5.99948e-05, 1.0361e-05, 1.42169e-05] elif tag in [reads_d_tag]: return [0.00522976, 0.00612305, 0.00374263, 0.00103439, 0.00722572, 0.00366369, # 0.00847435, 0.00673668, 0.020272, 0.0117233, 0.00976721, 0.0828088, 0, 0.00699347, 0.0430287] elif tag in [reads_rq_tag]: return [0.000235797, 0.000275629, 0.00020318, 7.15575e-05, 0.000356041, 0.000165915, # 0.000449374, 0.000430675, 0.00149114, 0.000618879, 0.000762481, 0.00199481, 0.0045728, 0.000455444, 0.00191903] else: return [0.00130415, 0.00241406, 0.00237629, 0.00163426, 0.0139743, 0.0493718, # 0.124753, 0.102021, 0.271308, 0.268973, 1.25391, 2.47118, 9.09415, 0.56654, 8.8932] def draw_index_update_time(): data_set_lst = [ 'ca-GrQc', 'ca-HepTh', 'p2p-Gnutella06', 'wiki-Vote', 'email-Enron', 'email-EuAll', 'web-Stanford', 'web-BerkStan', 'web-Google', 'cit-Patents', 'soc-LiveJournal1', 'wiki-Link', 'digg-friends', 'flickr-growth', ] algorithm_lst = [tsf_tag, reads_d_tag, reads_rq_tag, local_push_tag] time_dict = dict() for algo in algorithm_lst: time_dict[algo] = dict(zip(data_set_lst, get_algorithm_indexing_time_lst(algo))) with open('data_set_lst.json') as ifs: data_set_lst = json.load(ifs) g_names = list(map(lambda data: data_names[data], data_set_lst)) size_of_fig = (FIG_SIZE_MULTIPLE[0], FIG_SIZE_MULTIPLE[1]) fig, ax = plt.subplots() N = len(g_names) # indent lst width = 0.2 ind = 1.2 * np.arange(N) # the x locations for the groups indent_lst = list(map(lambda idx: ind + idx * width, range(5))) # other lst hatch_lst = ["//", '', 'O', '--', ] algorithm_tag_lst = [local_push_tag, reads_d_tag, reads_rq_tag, tsf_tag] label_lst = ["FLP", "READS_D", "READS-Rq", "TSF"] color_lst = ['blue', '#fe01b1', '#ceb301', 'brown'] # 1st: bars for idx, tag in enumerate(algorithm_tag_lst): ax.bar(indent_lst[idx], [time_dict[tag][data] for data in data_set_lst], width, hatch=hatch_lst[idx], label=label_lst[idx], edgecolor=color_lst[idx], fill=False) # 2nd: x and y's ticks and labels ax.set_xticks(ind + 1.5 * width) ax.set_xticklabels(g_names, fontsize=LABEL_SIZE) plt.xticks(fontsize=TICK_SIZE) plt.yscale('log') ax.set_ylabel("Avg Update Time (s)", fontsize=LABEL_SIZE) plt.yticks(fontsize=TICK_SIZE) plt.ylim(10 ** -6, 13) # 3rd: figure properties fig.set_size_inches(*size_of_fig) # set ratio plt.legend(prop={'size': LEGEND_SIZE, "weight": "bold"}, loc="upper left", ncol=5) fig.savefig("./figures/" + 'index_update_time.pdf', bbox_inches='tight', dpi=300) if __name__ == '__main__': os.system('mkdir -p figures') draw_index_update_time()
34.561905
109
0.628823
2642b0f1c4d7d81e2520c391ca6ecca925d68467
7,508
py
Python
src/compas_blender/conversions/mesh.py
Sam-Bouten/compas
011c7779ded9b69bb602568b470bb0443e336f62
[ "MIT" ]
null
null
null
src/compas_blender/conversions/mesh.py
Sam-Bouten/compas
011c7779ded9b69bb602568b470bb0443e336f62
[ "MIT" ]
null
null
null
src/compas_blender/conversions/mesh.py
Sam-Bouten/compas
011c7779ded9b69bb602568b470bb0443e336f62
[ "MIT" ]
null
null
null
import bpy import bmesh from compas.datastructures import Mesh from compas.geometry import Point from ._geometry import BlenderGeometry class BlenderMesh(BlenderGeometry): """Wrapper for Blender meshes. Examples -------- .. code-block:: python pass """ @property def object(self): """:blender:`bpy.types.Object` - The Blender scene object.""" return self._object @object.setter def object(self, obj): mesh = bpy.data.meshes.new_from_object(obj) self._object = obj self._geometry = mesh @property def geometry(self): """:blender:`bpy.types.Mesh` - The mesh data block.""" return self._geometry @geometry.setter def geometry(self, data): self._object = None self._geometry = data @property def bmesh(self): """:blender:`bpy.types.BMesh` - The mesh data structure.""" return bmesh.from_edit_mesh(self.mesh) @property def location(self): """:class:`compas.geometry.Point` - The location of the object in the scene.""" return Point(self.geometry.location) @property def vertices(self): """List[:class:`compas.geometry.Point`] - The mesh vertex locations.""" point = self.location return [point + list(vertex.co) for vertex in self.geometry.vertices] @property def faces(self): """List[List[:obj:`int`]] - The mesh face vertices.""" return [list(face.vertices) for face in self.geometry.polygons] @classmethod def from_bmesh(cls, bm, name=None, free=True): """Construct a Blender mesh wrappper from a BMesh. Parameters ---------- bm : :blender:`bpy.types.BMesh` The Blender mesh data structure. name : :obj:`str`, optional The name of the data block. free : :obj:`bool`, optional Free the data structure once the data block is created. Returns ------- :class:`compas_blender.conversions.BlenderMesh` """ data = bpy.data.meshes.new(name or 'Mesh') bm.to_mesh(data) if free: bm.free() mesh = cls() mesh.geometry = data return mesh @classmethod def from_monkey(cls, name=None): """Construct a Blender mesh wrappper from the Blender monkey. Parameters ---------- name : :obj:`str`, optional The name of the data block. Returns ------- :class:`compas_blender.conversions.BlenderMesh` """ bm = bmesh.new() bmesh.ops.create_monkey(bm) data = bpy.data.meshes.new(name or 'Mesh') bm.to_mesh(data) bm.free() mesh = cls() mesh.geometry = data return mesh def to_compas(self, cls=None): """Convert the Blender mesh to a COMPAS mesh. Parameters ---------- cls : :class:`compas.datastructures.Mesh`, optional The type of COMPAS mesh. Returns ------- :class:`compas.datastructure.Mesh` """ cls = cls or Mesh return cls.from_vertices_and_faces(self.vertices, self.faces) # def get_vertex_coordinates(self, vertex): # return add_vectors(self.location, self.geometry.vertices[vertex].co) # def get_vertices_coordinates(self): # xyzs = [vertex.co for vertex in self.geometry.vertices] # return {vertex: add_vectors(self.location, xyz) for vertex, xyz in enumerate(xyzs)} # def set_vertices_coordinates(self, xyzs): # for vertex, xyz in xyzs.items(): # self.geometry.vertices[vertex].co = subtract_vectors(xyz, self.location) # def get_vertices_colors(self, vertices=None): # colors = {} # col = self.geometry.vertex_colors.active # if col: # if not vertices: # vertices = range(len(self.geometry.vertices)) # for face in self.geometry.polygons: # for i in face.loop_indices: # j = self.geometry.loops[i].vertex_index # if (j in vertices) and (not colors.get(j, None)): # colors[j] = list(col.data[i].color)[:3] # return colors # def set_vertices_colors(self, colors): # if self.geometry.vertex_colors: # col = self.geometry.vertex_colors.active # else: # col = self.geometry.vertex_colors.new() # for face in self.geometry.polygons: # for i in face.loop_indices: # j = self.geometry.loops[i].vertex_index # if j in colors: # col.data[i].color = list(colors[j]) + [1] # def unset_vertices_colors(self): # vertex_colors = self.geometry.vertex_colors # while vertex_colors: # vertex_colors.remove(vertex_colors[0]) # def get_edge_vertex_indices(self, edge): # return list(self.geometry.edges[edge].vertices) # def get_edges_vertex_indices(self, edges=None): # if not edges: # edges = range(len(self.geometry.edges)) # return {edge: self.get_edge_vertex_indices(edge=edge) for edge in edges} # def edge_length(self, edge): # u, v = self.geometry.edges[edge].vertices # sp, ep = [list(self.geometry.vertices[i].co) for i in [u, v]] # return distance_point_point(sp, ep) # def edges_lengths(self, edges=None): # if not edges: # edges = range(len(self.geometry.edges)) # return {edge: self.edge_length(edge=edge) for edge in edges} # def get_face_vertex_indices(self, face): # return list(self.geometry.polygons[face].vertices) # def get_faces_vertex_indices(self, faces=None): # if not faces: # faces = range(len(self.geometry.polygons)) # return {face: self.get_face_vertex_indices(face=face) for face in faces} # def face_normal(self, face): # return list(self.geometry.polygons[face].normal) # def faces_normals(self, faces=None): # if not faces: # faces = range(len(self.geometry.polygons)) # return {face: self.face_normal(face=face) for face in faces} # def face_area(self, face): # return self.geometry.polygons[face].area # def faces_areas(self, faces=None): # if not faces: # faces = range(len(self.geometry.polygons)) # return {face: self.face_area(face=face) for face in faces} # def bevel(self, width=0.2, segments=1, only_vertices=False): # self.object.modifiers.new('bevel', type='BEVEL') # self.object.modifiers['bevel'].width = width # self.object.modifiers['bevel'].segments = segments # self.object.modifiers['bevel'].use_only_vertices = only_vertices # self.refresh() # def subdivide(self, levels=1, type='SIMPLE'): # self.object.modifiers.new('subdivision', type='SUBSURF') # self.object.modifiers['subdivision'].levels = levels # self.object.modifiers['subdivision'].subdivision_type = type # or 'CATMULL_CLARK' # self.refresh() # def triangulate(self): # self.object.modifiers.new('triangulate', type='TRIANGULATE') # self.refresh() # def get_vertices_and_faces(self): # vertices = self.get_vertices_coordinates() # faces = self.get_faces_vertex_indices() # return vertices, faces
33.07489
93
0.598428
52255ac7b03099ea5f57578d88a1865bc054d6ba
2,255
py
Python
xlsxwriter/test/comparison/test_chart_axis16.py
totdiao/XlsxWriter
3d65858d8933bddb8262d500bcc2005f28fde645
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/comparison/test_chart_axis16.py
totdiao/XlsxWriter
3d65858d8933bddb8262d500bcc2005f28fde645
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/comparison/test_chart_axis16.py
totdiao/XlsxWriter
3d65858d8933bddb8262d500bcc2005f28fde645
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2016, John McNamara, jmcnamara@cpan.org # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'chart_axis16.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.ignore_files = [] self.ignore_elements = {'xl/charts/chart1.xml': ['<c:formatCode']} def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'stock'}) date_format = workbook.add_format({'num_format': 14}) chart.axis_ids = [43572608, 43812736] data = [ [39083, 39084, 39085, 39086, 39087], [27.2, 25.03, 19.05, 20.34, 18.5], [23.49, 19.55, 15.12, 17.84, 16.34], [25.45, 23.05, 17.32, 20.45, 17.34], ] for row in range(5): worksheet.write(row, 0, data[0][row], date_format) worksheet.write(row, 1, data[1][row]) worksheet.write(row, 2, data[2][row]) worksheet.write(row, 3, data[3][row]) worksheet.set_column('A:D', 11) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$B$1:$B$5', }) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$C$1:$C$5', }) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$D$1:$D$5', }) chart.set_x_axis({ 'minor_unit': 14, 'major_unit': 1, 'major_unit_type': 'months' }) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
27.5
79
0.531707
ddf2cbe644bbef8c11949874032bd8bbb57979b7
7,592
py
Python
symphony/bdk/gen/pod_model/stream_list.py
symphony-elias/symphony-bdk-python
0d1cd94a9982e3687ea52c49acdb5f942ecd9bec
[ "Apache-2.0" ]
17
2018-09-06T09:58:18.000Z
2021-07-13T12:54:20.000Z
symphony/bdk/gen/pod_model/stream_list.py
symphony-elias/symphony-bdk-python
0d1cd94a9982e3687ea52c49acdb5f942ecd9bec
[ "Apache-2.0" ]
59
2018-11-21T15:17:57.000Z
2021-08-03T10:00:43.000Z
symphony/bdk/gen/pod_model/stream_list.py
symphony-elias/symphony-bdk-python
0d1cd94a9982e3687ea52c49acdb5f942ecd9bec
[ "Apache-2.0" ]
37
2018-09-01T03:07:48.000Z
2021-07-06T10:21:50.000Z
""" Pod API This document refers to Symphony API calls that do not need encryption or decryption of content. - sessionToken can be obtained by calling the authenticationAPI on the symphony back end and the key manager respectively. Refer to the methods described in authenticatorAPI.yaml. - Actions are defined to be atomic, ie will succeed in their entirety or fail and have changed nothing. - If it returns a 40X status then it will have made no change to the system even if ome subset of the request would have succeeded. - If this contract cannot be met for any reason then this is an error and the response code will be 50X. # noqa: E501 The version of the OpenAPI document: 20.13.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from typing import List from symphony.bdk.gen.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from symphony.bdk.gen.pod_model.stream_attributes import StreamAttributes globals()['StreamAttributes'] = StreamAttributes class StreamList(ModelSimple): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a pod_model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'value': ([StreamAttributes],), } @cached_property def discriminator(): return None attribute_map = {} _composed_schemas = None required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): """StreamList - a pod_model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] ([StreamAttributes]): A list of streams of which the requesting user is a member.. # noqa: E501 Keyword Args: value ([StreamAttributes]): A list of streams of which the requesting user is a member.. # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the pod_model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ # required up here when default value is not given _path_to_item = kwargs.pop('_path_to_item', ()) if 'value' in kwargs: value = kwargs.pop('value') elif args: args = list(args) value = args.pop(0) else: raise ApiTypeError( "value is required, but not passed in args or kwargs and doesn't have default", path_to_item=_path_to_item, valid_classes=(self.__class__,), ) _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value: List[StreamAttributes] = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), )
41.26087
637
0.597866
0ded02dbd45a8b53d8326ab6a12b226ec75dd7ee
8,780
py
Python
DynatraceSyntheticConverter/commands/generate.py
Appdynamics/DynatraceSyntheticConverter
6a43357640a140ac6d0625731175cf3f3a557c0f
[ "Apache-2.0" ]
2
2021-09-06T07:08:02.000Z
2022-01-20T20:37:42.000Z
DynatraceSyntheticConverter/commands/generate.py
Appdynamics/DynatraceSyntheticConverter
6a43357640a140ac6d0625731175cf3f3a557c0f
[ "Apache-2.0" ]
null
null
null
DynatraceSyntheticConverter/commands/generate.py
Appdynamics/DynatraceSyntheticConverter
6a43357640a140ac6d0625731175cf3f3a557c0f
[ "Apache-2.0" ]
3
2021-02-09T19:32:43.000Z
2021-04-19T13:42:36.000Z
import os import re from click import command import glob import json from pathlib import Path import logging CONVERSION_SNIPPET_BASE = 'DynatraceSyntheticConverter/resources/conversionSnippets/' @command( name='generate', help=''' Generate python scripts from Dynatrace synthetic monitor JSON. Generated scripts are placed in the output directory and will overwrite existing scripts of the same name. ''') def generate(): logging.info(f'-----Launching generate step-----') if not os.path.exists('output'): os.makedirs('output') for file in glob.iglob('input/*.json'): filename = Path(file).stem schema = json.loads(open(file).read()) # if file is the complete synthetic config taken from API, not just downloaded script if 'script' in schema: schema = schema['script'] if 'configuration' not in schema or 'events' not in schema: continue if schema['type'] == 'clickpath' or schema['type'] == 'availability': logging.info(f'Converting {filename}') events = schema['events'] code = open(CONVERSION_SNIPPET_BASE + 'base.txt').read() eventsCode = '' hasUnsupportedElements = False for event in events: if event['type'] == 'navigate': eventsCode += __genNavigateCode(event) elif event['type'] == 'keystrokes': eventsCode += __genKeystrokesCode(event) elif event['type'] == 'click': eventsCode += __genClickCode(event) elif event['type'] == 'javascript': eventsCode += __genJsCode(event) elif event['type'] == 'selectOption': eventsCode += __genSelectOptionCode(event) else: hasUnsupportedElements = True logging.debug(f'{event["type"]} is not yet supported') if 'validate' in event: eventsCode += __genTextMatchCode(event) if hasUnsupportedElements: logging.info(f'{filename} not fully converted, contains unsupported elements') # trim trailing newline when we append our events code code = code.replace('# $EVENT_STEPS', eventsCode[:-1]) with open(f'output/{Path(file).stem}.py', 'w') as outfile: logging.debug(f'Saving {filename}') outfile.write(code) else: logging.error(f'Schema type {schema["type"]} for {filename} is not supported. Skipping...') def __genNavigateCode(event) -> str: url = event['url'] description = event['description'] code = open(CONVERSION_SNIPPET_BASE + 'actions/navigate.txt').read() \ .replace('$URL', url) \ .replace('$DESCRIPTION', description) return code def __genKeystrokesCode(event): # next event target locator where the type is css and value contains a #, else grab the first one locators = event['target']['locators'] selector = __selectorFromLocators(locators) keys = event['textValue'] description = event['description'] code = open(CONVERSION_SNIPPET_BASE + 'actions/keystrokes.txt').read() \ .replace('$SELECTOR_TYPE', selector['selectorType']) \ .replace('$SELECTOR_STRING', selector['selectorString']) \ .replace('$KEYS', keys) \ .replace('$DESCRIPTION', description) return code def __genClickCode(event): locators = event['target']['locators'] selector = __selectorFromLocators(locators) description = event['description'] code = open(CONVERSION_SNIPPET_BASE + 'actions/click.txt').read() \ .replace('$SELECTOR_TYPE', selector['selectorType']) \ .replace('$SELECTOR_STRING', selector['selectorString']) \ .replace('$DESCRIPTION', description) return code def __genSelectOptionCode(event): locators = event['target']['locators'] selector = __selectorFromLocators(locators) description = event['description'] selections = event['selections'][0]['index'] # TODO: this'll not work for multi selects code = open(CONVERSION_SNIPPET_BASE + 'actions/selectOption.txt').read() \ .replace('$SELECTOR_TYPE', selector['selectorType']) \ .replace('$SELECTOR_STRING', selector['selectorString']) \ .replace('$DESCRIPTION', description) \ .replace('$INDEX', str(selections)) return code def __genTextMatchCode(event): code = "" for validator in event['validate']: if validator['type'] == 'content_match' or validator['type'] == 'text_match': if validator['failIfFound']: code += open(CONVERSION_SNIPPET_BASE + 'validators/textMatchFailIfFound.txt').read() else: code += open(CONVERSION_SNIPPET_BASE + 'validators/textMatchFailIfNotFound.txt').read() code = code.replace('$TEXT', validator['match']) if validator['type'] == 'element_match': locators = validator['target']['locators'] selector = __selectorFromLocators(locators) if validator['failIfFound']: code += open( CONVERSION_SNIPPET_BASE + 'validators/elementMatchFailIfFound.txt').read() else: code += open(CONVERSION_SNIPPET_BASE + 'validators/elementMatchFailIfNotFound.txt').read() code = code.replace('$SELECTOR_TYPE', selector['selectorType']) \ .replace('$SELECTOR_STRING', selector['selectorString']) return code def __genJsCode(event): description = event['description'] code = open(CONVERSION_SNIPPET_BASE + 'actions/jsCode.txt').read() \ .replace('$DESCRIPTION', description) \ .replace('$JS_CODE', event['javaScript'].replace('\n', '\t\t')) return code def __selectorFromLocators(locators): cssIdLocator = \ next((locator for locator in locators if locator['type'] == 'css' and 'contains' not in locator['value']), None) if cssIdLocator is not None: cssID = cssIdLocator['value'].replace("\"", "\\\"").replace('\'', '') return { 'selectorType': 'By.CSS_SELECTOR', 'selectorString': cssID } cssContainsLocator = \ next((locator for locator in locators if locator['type'] == 'css' and 'contains' in locator['value']), None) if cssContainsLocator is not None: val = cssContainsLocator['value'].replace('\'', '') content = re.search(r'\((.*)\)', val).group(1).replace("\"", "\\\"") tag = val.split(':')[0] return { 'selectorType': 'By.XPATH', 'selectorString': f"//{tag}[contains(text(), {content})]" } if next((locator for locator in locators if locator['type'] == 'dom'), None) is not None: if (locator := next((locator for locator in locators if 'getElementsByName' in locator['value']), None)) is not None: val = locator['value'].replace('\'', '') content = re.search(r'\((.*)\)', val).group(1) return { 'selectorType': 'By.NAME', 'selectorString': content } if (locator := next((locator for locator in locators if 'querySelector' in locator['value']), None)) is not None: val = locator['value'].replace('\'', '') content = re.search(r'\((.*)\)', val).group(1) return { 'selectorType': 'By.CSS_SELECTOR', 'selectorString': content } if (locator := next((locator for locator in locators if 'getElementsByClassName' in locator['value']), None)) is not None: val = locator['value'].replace('\'', '') content = re.search(r'\((.*)\)', val).group(1) return { 'selectorType': 'By.CLASS_NAME', 'selectorString': content } if (locator := next((locator for locator in locators if 'getElementsByName' in locator['value']), None)) is not None: val = locator['value'].replace('\'', '') content = re.search(r'\((.*)\)', val).group(1) return { 'selectorType': 'By.NAME', 'selectorString': content } if (locator := next((locator for locator in locators if 'getElementById' in locator['value']), None)) is not None: val = locator['value'].replace('\'', '') content = re.search(r'\((.*)\)', val).group(1) return { 'selectorType': 'By.ID', 'selectorString': content } return 'None # TODO: locator found is ' + locators[0]["value"].replace("\"", "\\\"")
40.460829
130
0.586902
7de39c671abe872e0ac1d88cfa9a40523de61ce8
322
py
Python
vec_env/vec_remove_dict_obs.py
leesharkey/train-procgen-pfrl
16d39132d284a3f826633945694be83dd659d471
[ "Apache-2.0" ]
20
2020-10-27T09:24:20.000Z
2021-07-20T12:22:42.000Z
vec_env/vec_remove_dict_obs.py
leesharkey/train-procgen-pfrl
16d39132d284a3f826633945694be83dd659d471
[ "Apache-2.0" ]
1
2021-04-04T23:59:39.000Z
2021-04-08T18:40:30.000Z
vec_env/vec_remove_dict_obs.py
leesharkey/train-procgen-pfrl
16d39132d284a3f826633945694be83dd659d471
[ "Apache-2.0" ]
1
2021-03-07T19:01:04.000Z
2021-03-07T19:01:04.000Z
from .vec_env import VecEnvObservationWrapper class VecExtractDictObs(VecEnvObservationWrapper): def __init__(self, venv, key): self.key = key super().__init__(venv=venv, observation_space=venv.observation_space.spaces[self.key]) def process(self, obs): return obs[self.key]
26.833333
70
0.695652
b1cc72e889686b228106bab5037c7d98a0ca7e2b
775
py
Python
Version0.2/Python/Gencode/runcode.py
glwagner/Exasim
ee4540443435f958fa2ca78d59cbf9cff0fe69de
[ "MIT" ]
37
2020-12-09T20:24:36.000Z
2022-02-18T17:19:23.000Z
Version0.2/Python/Gencode/runcode.py
glwagner/Exasim
ee4540443435f958fa2ca78d59cbf9cff0fe69de
[ "MIT" ]
25
2020-11-25T20:37:33.000Z
2022-02-25T15:53:11.000Z
Version0.2/Python/Gencode/runcode.py
glwagner/Exasim
ee4540443435f958fa2ca78d59cbf9cff0fe69de
[ "MIT" ]
8
2020-11-30T15:34:06.000Z
2022-01-09T21:06:00.000Z
import os def runcode(app): print("run code..."); mpirun = app['mpirun']; if app['platform'] == "cpu": if app['mpiprocs']==1: mystr = "./app/serial" + app['appname'] + " datain/ dataout/out"; else: mystr = mpirun + " -np " + str(app['mpiprocs']) + " ./app/mpi" + app['appname'] + " datain/ dataout/out"; os.system(mystr); elif app['platform'] == "gpu": if app['mpiprocs']==1: mystr = "./app/gpu" + app['appname'] + " datain/ dataout/out"; else: mystr = mpirun + " -np " + str(app['mpiprocs']) + " ./app/gpumpi" + app['appname'] + " datain/ dataout/out"; os.system(mystr); else: error("app['platform'] must be either cpu or gpu"); return mystr
32.291667
120
0.507097
b8cc96e05ebc5ce702aa839784ee990fcba30467
587
py
Python
military-overlay/utils-source-and-test-data/pairwise-test-generation/Complete_test_scripts/scripts/change data source.py
Esri/military-features-data
20ad73fc34385f9ac78bc274e7cab5777980df61
[ "Apache-2.0" ]
35
2015-01-01T16:45:43.000Z
2022-03-05T15:10:46.000Z
military-overlay/utils-source-and-test-data/pairwise-test-generation/Complete_test_scripts/scripts/change data source.py
Esri/military-features-data
20ad73fc34385f9ac78bc274e7cab5777980df61
[ "Apache-2.0" ]
285
2015-01-02T18:03:12.000Z
2019-04-11T04:34:57.000Z
military-overlay/utils-source-and-test-data/pairwise-test-generation/Complete_test_scripts/scripts/change data source.py
Esri/military-features-data
20ad73fc34385f9ac78bc274e7cab5777980df61
[ "Apache-2.0" ]
31
2015-01-01T16:45:44.000Z
2021-09-13T12:16:03.000Z
# -*- coding: utf-8 -*- # --------------------------------------------------------------------------- # change data source.py # Created on: 2016-08-29 10:26:31.00000 # (generated by ArcGIS/ModelBuilder) # Description: # --------------------------------------------------------------------------- # Import arcpy module import arcpy inputProject = arcpy.mp.ArcGISProject("CURRENT") inputFeatureDS = arcpy.GetParameterAsText(0) outputFeatureDS = arcpy.GetParameterAsText(1) inputProject.updateConnectionProperties(inputFeatureDS, outputFeatureDS) inputProject.save() del inputProject
30.894737
77
0.575809
c41c8909d025db75790ed493d8ba34a5911c39f8
1,983
py
Python
tests/models/test_train.py
nathdip/unit_testing_python
b9c01f4d4c32f5e5c7b40988ccc7837e8cd5e17f
[ "MIT" ]
null
null
null
tests/models/test_train.py
nathdip/unit_testing_python
b9c01f4d4c32f5e5c7b40988ccc7837e8cd5e17f
[ "MIT" ]
null
null
null
tests/models/test_train.py
nathdip/unit_testing_python
b9c01f4d4c32f5e5c7b40988ccc7837e8cd5e17f
[ "MIT" ]
null
null
null
import pytest import numpy as np import sys from models.train import split_into_training_and_testing_sets # Declare the test class class TestSplitIntoTrainingAndTestingSets(object): # Fill in with the correct mandatory argument def test_on_one_row(self): test_argument = np.array([[1382.0, 390167.0]]) with pytest.raises(ValueError) as exc_info: split_into_training_and_testing_sets(test_argument) expected_error_msg = "Argument data_array must have at least 2 rows," " it actually has just 1" assert exc_info.match(expected_error_msg) # Add a reason for the expected failure @pytest.mark.xfail(reason="Using TDD, model_test() has not" "yet been implemented") class TestModelTest(object): def test_on_linear_data(self): test_input = np.array([[1.0, 3.0], [2.0, 5.0], [3.0, 7.0]]) expected = 1.0 actual = model_test(test_input, 2.0, 1.0) message = "model_test({0}) should return {1}, but it actually returned {2}".format(test_input, expected, actual) assert actual == pytest.approx(expected), message def test_on_one_dimensional_array(self): test_input = np.array([1.0, 2.0, 3.0, 4.0]) with pytest.raises(ValueError) as exc_info: model_test(test_input, 1.0, 1.0) class TestGetDataAsNumpyArray(object): # Add a reason for skipping the test @pytest.mark.skipif(sys.version_info > (2, 7), reason="Works only on Python 2.7 or lower") def test_on_clean_file(self): expected = np.array([[2081.0, 314942.0], [1059.0, 186606.0], [1148.0, 206186.0] ] ) actual = get_data_as_numpy_array("example_clean_data.txt", num_columns=2) message = "Expected return value: {0}, Actual return value: {1}".format(expected, actual) assert actual == pytest.approx(expected), message
43.108696
120
0.640444
a93f057a249a0371ffa4613d50e19691fdd576e0
9,397
py
Python
mrcnn/config.py
CaelynCheung1996/CLS-Mask_R-CNN
e6a640bfbe0797e9a12d3f903025ca8f5ef6090f
[ "MIT" ]
1
2021-08-09T08:06:59.000Z
2021-08-09T08:06:59.000Z
mrcnn/config.py
comp-imaging-sci/CLS-Mask_R-CNN
e6a640bfbe0797e9a12d3f903025ca8f5ef6090f
[ "MIT" ]
null
null
null
mrcnn/config.py
comp-imaging-sci/CLS-Mask_R-CNN
e6a640bfbe0797e9a12d3f903025ca8f5ef6090f
[ "MIT" ]
null
null
null
""" Mask R-CNN Base Configurations class. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import numpy as np # Base Configuration Class # Don't use this class directly. Instead, sub-class it and override # the configurations you need to change. class Config(object): """Base configuration class. For custom configurations, create a sub-class that inherits from this one and override properties that need to be changed. """ # Name the configurations. For example, 'COCO', 'Experiment 3', ...etc. # Useful if your code needs to do things differently depending on which # experiment is running. NAME = None # Override in sub-classes # NUMBER OF GPUs to use. When using only a CPU, this needs to be set to 1. GPU_COUNT = 1 # Number of images to train with on each GPU. A 12GB GPU can typically # handle 2 images of 1024x1024px. # Adjust based on your GPU memory and image sizes. Use the highest # number that your GPU can handle for best performance. IMAGES_PER_GPU = 2 # Number of training steps per epoch # This doesn't need to match the size of the training set. Tensorboard # updates are saved at the end of each epoch, so setting this to a # smaller number means getting more frequent TensorBoard updates. # Validation stats are also calculated at each epoch end and they # might take a while, so don't set this too small to avoid spending # a lot of time on validation stats. STEPS_PER_EPOCH = 1000 # Number of validation steps to run at the end of every training epoch. # A bigger number improves accuracy of validation stats, but slows # down the training. VALIDATION_STEPS = 50 # Backbone network architecture # Supported values are: resnet50, resnet101. # You can also provide a callable that should have the signature # of model.resnet_graph. If you do so, you need to supply a callable # to COMPUTE_BACKBONE_SHAPE as well BACKBONE = "resnet101" # Only useful if you supply a callable to BACKBONE. Should compute # the shape of each layer of the FPN Pyramid. # See model.compute_backbone_shapes COMPUTE_BACKBONE_SHAPE = None # The strides of each layer of the FPN Pyramid. These values # are based on a Resnet101 backbone. BACKBONE_STRIDES = [4, 8, 16, 32, 64] # Size of the fully-connected layers in the classification graph FPN_CLASSIF_FC_LAYERS_SIZE = 1024 # Size of the top-down layers used to build the feature pyramid TOP_DOWN_PYRAMID_SIZE = 256 # Number of classification classes (including background) NUM_CLASSES = 1 # Override in sub-classes # Length of square anchor side in pixels RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512) # Ratios of anchors at each cell (width/height) # A value of 1 represents a square anchor, and 0.5 is a wide anchor RPN_ANCHOR_RATIOS = [0.5, 1, 2] # Anchor stride # If 1 then anchors are created for each cell in the backbone feature map. # If 2, then anchors are created for every other cell, and so on. RPN_ANCHOR_STRIDE = 1 # Non-max suppression threshold to filter RPN proposals. # You can increase this during training to generate more propsals. RPN_NMS_THRESHOLD = 0.7 # How many anchors per image to use for RPN training RPN_TRAIN_ANCHORS_PER_IMAGE = 256 # ROIs kept after tf.nn.top_k and before non-maximum suppression PRE_NMS_LIMIT = 6000 # ROIs kept after non-maximum suppression (training and inference) POST_NMS_ROIS_TRAINING = 2000 POST_NMS_ROIS_INFERENCE = 1000 # If enabled, resizes instance masks to a smaller size to reduce # memory load. Recommended when using high-resolution images. USE_MINI_MASK = True MINI_MASK_SHAPE = (56, 56) # (height, width) of the mini-mask # Input image resizing # Generally, use the "square" resizing mode for training and predicting # and it should work well in most cases. In this mode, images are scaled # up such that the small side is = IMAGE_MIN_DIM, but ensuring that the # scaling doesn't make the long side > IMAGE_MAX_DIM. Then the image is # padded with zeros to make it a square so multiple images can be put # in one batch. # Available resizing modes: # none: No resizing or padding. Return the image unchanged. # square: Resize and pad with zeros to get a square image # of size [max_dim, max_dim]. # pad64: Pads width and height with zeros to make them multiples of 64. # If IMAGE_MIN_DIM or IMAGE_MIN_SCALE are not None, then it scales # up before padding. IMAGE_MAX_DIM is ignored in this mode. # The multiple of 64 is needed to ensure smooth scaling of feature # maps up and down the 6 levels of the FPN pyramid (2**6=64). # crop: Picks random crops from the image. First, scales the image based # on IMAGE_MIN_DIM and IMAGE_MIN_SCALE, then picks a random crop of # size IMAGE_MIN_DIM x IMAGE_MIN_DIM. Can be used in training only. # IMAGE_MAX_DIM is not used in this mode. IMAGE_RESIZE_MODE = "square" IMAGE_MIN_DIM = 800 IMAGE_MAX_DIM = 1024 # Minimum scaling ratio. Checked after MIN_IMAGE_DIM and can force further # up scaling. For example, if set to 2 then images are scaled up to double # the width and height, or more, even if MIN_IMAGE_DIM doesn't require it. # However, in 'square' mode, it can be overruled by IMAGE_MAX_DIM. IMAGE_MIN_SCALE = 0 # Number of color channels per image. RGB = 3, grayscale = 1, RGB-D = 4 # Changing this requires other changes in the code. See the WIKI for more # details: https://github.com/matterport/Mask_RCNN/wiki IMAGE_CHANNEL_COUNT = 3 # Image mean (RGB) MEAN_PIXEL = np.array([123.7, 116.8, 103.9]) # Number of ROIs per image to feed to classifier/mask heads # The Mask RCNN paper uses 512 but often the RPN doesn't generate # enough positive proposals to fill this and keep a positive:negative # ratio of 1:3. You can increase the number of proposals by adjusting # the RPN NMS threshold. TRAIN_ROIS_PER_IMAGE = 200 # Percent of positive ROIs used to train classifier/mask heads ROI_POSITIVE_RATIO = 0.33 # Pooled ROIs POOL_SIZE = 7 MASK_POOL_SIZE = 14 # Shape of output mask # To change this you also need to change the neural network mask branch MASK_SHAPE = [28, 28] # Maximum number of ground truth instances to use in one image MAX_GT_INSTANCES = 100 # Bounding box refinement standard deviation for RPN and final detections. RPN_BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2]) BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2]) # Max number of final detections DETECTION_MAX_INSTANCES = 100 # Minimum probability value to accept a detected instance # ROIs below this threshold are skipped DETECTION_MIN_CONFIDENCE = 0.7 # Non-maximum suppression threshold for detection DETECTION_NMS_THRESHOLD = 0.3 # Learning rate and momentum # The Mask RCNN paper uses lr=0.02, but on TensorFlow it causes # weights to explode. Likely due to differences in optimizer # implementation. LEARNING_RATE = 0.001 LEARNING_MOMENTUM = 0.9 # Weight decay regularization WEIGHT_DECAY = 0.0001 # Loss weights for more precise optimization. # Can be used for R-CNN training setup. LOSS_WEIGHTS = { "rpn_class_loss": 1., "rpn_bbox_loss": 1., "mrcnn_class_loss": 1., "mrcnn_bbox_loss": 1., "mrcnn_mask_loss": 1. } # Use RPN ROIs or externally generated ROIs for training # Keep this True for most situations. Set to False if you want to train # the head branches on ROI generated by code rather than the ROIs from # the RPN. For example, to debug the classifier head without having to # train the RPN. USE_RPN_ROIS = True # Train or freeze batch normalization layers # None: Train BN layers. This is the normal mode # False: Freeze BN layers. Good when using a small batch size # True: (don't use). Set layer in training mode even when predicting TRAIN_BN = False # Defaulting to False since batch size is often small # Gradient norm clipping GRADIENT_CLIP_NORM = 5.0 def __init__(self): """Set values of computed attributes.""" # Effective batch size self.BATCH_SIZE = self.IMAGES_PER_GPU * self.GPU_COUNT # Input image size if self.IMAGE_RESIZE_MODE == "crop": self.IMAGE_SHAPE = np.array([self.IMAGE_MIN_DIM, self.IMAGE_MIN_DIM, self.IMAGE_CHANNEL_COUNT]) else: self.IMAGE_SHAPE = np.array([self.IMAGE_MAX_DIM, self.IMAGE_MAX_DIM, self.IMAGE_CHANNEL_COUNT]) # Image meta data length # See compose_image_meta() for details self.IMAGE_META_SIZE = 1 + 3 + 3 + 4 + 1 + self.NUM_CLASSES def display(self): """Display Configuration values.""" print("\nConfigurations:") for a in dir(self): if not a.startswith("__") and not callable(getattr(self, a)): print("{:30} {}".format(a, getattr(self, a))) print("\n")
39.483193
80
0.689156
eaec92fa3bc58170d4c0437232e0da3bccb8f274
3,251
py
Python
package/awesome_panel/express/fontawesome/share_link.py
slamer59/awesome-panel
91c30bd6d6859eadf9c65b1e143952f7e64d5290
[ "Apache-2.0" ]
179
2019-12-04T14:54:53.000Z
2022-03-30T09:08:38.000Z
package/awesome_panel/express/fontawesome/share_link.py
slamer59/awesome-panel
91c30bd6d6859eadf9c65b1e143952f7e64d5290
[ "Apache-2.0" ]
62
2019-12-14T16:51:28.000Z
2022-03-19T18:47:12.000Z
package/awesome_panel/express/fontawesome/share_link.py
slamer59/awesome-panel
91c30bd6d6859eadf9c65b1e143952f7e64d5290
[ "Apache-2.0" ]
35
2019-12-08T13:19:53.000Z
2022-03-25T10:33:02.000Z
"""This module provides button to share on social media""" import urllib.parse import panel as pn import param DEFAULT_URL = "https://awesome-panel.org" DEFAULT_CLASS = "fas fa-external-link-alt" DEFAULT_TEXT = "Checkout" FACEBOOK_CLASS = "fab fa-facebook-f" LINKEDIN_CLASS = "fab fa-linkedin-in" TWITTER_CLASS = "fab fa-twitter" REDDIT_CLASS = "fab fa-reddit-alien" MAIL_CLASS = "fas fa-envelope" class ShareOnBase(param.Parameterized): """Base class for implementing ShareOnFacebook, ShareOnLinkedIn links etc. - The href property should be overridden """ url = param.String(DEFAULT_URL) icon_class = param.String(DEFAULT_CLASS) text = param.String(DEFAULT_TEXT) @property def _url_parsed( self, ): return urllib.parse.quote(self.url).replace( "/", "%2F", ) @property def href( self, ) -> str: """The href to goto when clicked Override this method in a base class Raises: NotImplementedError: Returns: str: A href string """ raise NotImplementedError() def __html__( self, ) -> str: """A html string with link and icon tags Returns: str: A html string with link and icon tags """ return ( f'<a href="{self.href}" class="button-share-link">' f'<i class="{self.icon_class}"></i></a>' ) @param.depends( "url", "icon_class", ) def view( self, ) -> pn.pane.HTML: """A HTML pane with the a link and icon Returns: pn.pane.HTML: A HTML pane with the link and icon """ return pn.pane.HTML(self.__html__()) class ShareOnFacebook(ShareOnBase): """A Share on Facebook button""" icon_class = param.String(FACEBOOK_CLASS) @property def href( self, ): return f"https://www.facebook.com/sharer/sharer.php?u={self._url_parsed}" class ShareOnLinkedIn(ShareOnBase): """A Share on LinkedIn button""" icon_class = param.String(LINKEDIN_CLASS) @property def href( self, ): return ( f"http://www.linkedin.com/shareArticle?mini=true&url={self._url_parsed}" f"&title={self.text}" ) class ShareOnTwitter(ShareOnBase): """A Share on Twitter button""" icon_class = param.String(TWITTER_CLASS) @property def href( self, ): return f"https://twitter.com/intent/tweet?url={self._url_parsed}&text={self.text}" class ShareOnReddit(ShareOnBase): """A Share on Reddit button""" icon_class = param.String(REDDIT_CLASS) @property def href( self, ): return f"https://reddit.com/submit?url={self._url_parsed}&amp;title={self.text}" class ShareOnMail(ShareOnBase): """A Share on Mail button""" icon_class = param.String(MAIL_CLASS) @property def href( self, ): return f"mailto:?subject={self._url_parsed}&amp;body={self.text}&nbsp;{self._url_parsed}"
23.056738
98
0.574285
78d9d12b23563627abfef8b8596cdb6fbecf9dbe
1,830
py
Python
backend/db/admin.py
ChansongJo/PsychoLingExperiment
0d731b0552a92127a29df7b5929dcbc54e6c81fb
[ "MIT" ]
null
null
null
backend/db/admin.py
ChansongJo/PsychoLingExperiment
0d731b0552a92127a29df7b5929dcbc54e6c81fb
[ "MIT" ]
7
2020-07-23T07:21:19.000Z
2021-05-30T04:48:57.000Z
backend/db/admin.py
ChansongJo/PsychoLingExperiment
0d731b0552a92127a29df7b5929dcbc54e6c81fb
[ "MIT" ]
null
null
null
from django.contrib import admin from import_export.admin import ImportExportModelAdmin from import_export import resources from backend.db.models import Trial, Subject, Stimulus class TrialResource(resources.ModelResource): class Meta: model = Trial def dehydrate_session_id(self, obj): return obj.session_id.to_representation() def dehydrate_stimulus(self, obj): return obj.stimulus.to_representation() def after_export(self, queryset, data, *args, **kwargs): stimulus = data['stimulus'] del data['stimulus'] subject = data['session_id'] del data['session_id'] # fast transpose zip(*arr) subject_columns = queryset[0].session_id.get_representation_columns() for col_name, col_data in zip(subject_columns, zip(*subject)): data.append_col(col_data, header='subject_' + col_name) stimulus_columns = queryset[0].stimulus.get_representation_columns() for col_name, col_data in zip(stimulus_columns, zip(*stimulus)): data.append_col(col_data, header='stimulus_' + col_name) class SubjectResource(resources.ModelResource): class Meta: model = Subject class StimulusResource(resources.ModelResource): class Meta: model = Stimulus fields = ('sentence', 'is_grammatical', 'type', 'group', 'event', 'id') import_id_fields = [] @admin.register(Trial) class TrialAdmin(ImportExportModelAdmin): resource_class = TrialResource list_filter = ('session_id', 'exp_date') @admin.register(Subject) class SubjectAdmin(ImportExportModelAdmin): resource_class = SubjectResource @admin.register(Stimulus) class StimulusAdmin(ImportExportModelAdmin): resource_class = StimulusResource list_filter = ('is_grammatical', 'type', 'group', 'id')
31.016949
79
0.708743
de998d5ca6bb3018acfc0429fcc03f941d577d2c
3,102
py
Python
project/cms_menus.py
kremazar/Django
64a29d911f92a24cce84ba928860d94703c88c9e
[ "MIT" ]
null
null
null
project/cms_menus.py
kremazar/Django
64a29d911f92a24cce84ba928860d94703c88c9e
[ "MIT" ]
null
null
null
project/cms_menus.py
kremazar/Django
64a29d911f92a24cce84ba928860d94703c88c9e
[ "MIT" ]
null
null
null
from menus.base import NavigationNode from menus.menu_pool import menu_pool from django.utils.translation import ugettext_lazy as _ from cms.menu_bases import CMSAttachMenu from menus.base import Modifier from cms.models import Page class TestMenu(CMSAttachMenu): name = _("test menu") def get_nodes(self, request): nodes = [] n = NavigationNode(_('sample root page'), "/", 1) n2 = NavigationNode(_('sample settings page'), "/bye/", 2) n3 = NavigationNode(_('sample account page'), "/hello/", 3) n4 = NavigationNode(_('sample my profile page'), "/hello/world/", 4, 3) nodes.append(n) nodes.append(n2) nodes.append(n3) nodes.append(n4) return nodes class UserMenu(Menu): def get_nodes(self, request): return [ NavigationNode(_("Profile"), reverse(profile), 1, attr={'visible_for_anonymous': False}), NavigationNode(_("Log in"), reverse(login), 3, attr={'visible_for_authenticated': False}), NavigationNode(_("Sign up"), reverse(logout), 4, attr={'visible_for_authenticated': False}), NavigationNode(_("Log out"), reverse(logout), 2, attr={'visible_for_anonymous': False}), ] class MyExampleModifier(Modifier): """ This modifier makes the changed_by attribute of a page accessible for the menu system. """ def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb): # only do something when the menu has already been cut if post_cut: # only consider nodes that refer to cms pages # and put them in a dict for efficient access page_nodes = {n.id: n for n in nodes if n.attr["is_page"]} # retrieve the attributes of interest from the relevant pages pages = Page.objects.filter(id__in=page_nodes.keys()).values('id', 'changed_by') # loop over all relevant pages for page in pages: # take the node referring to the page node = page_nodes[page['id']] # put the changed_by attribute on the node node.attr["changed_by"] = page['changed_by'] return nodes class Level(Modifier): """ marks all node levels """ post_cut = True def modify(self, request, nodes, namespace, root_id, post_cut, breadcrumb): if breadcrumb: return nodes for node in nodes: if not node.parent: if post_cut: node.menu_level = 0 else: node.level = 0 self.mark_levels(node, post_cut) return nodes def mark_levels(self, node, post_cut): for child in node.children: if post_cut: child.menu_level = node.menu_level + 1 else: child.level = node.level + 1 self.mark_levels(child, post_cut) menu_pool.register_modifier(Level) menu_pool.register_modifier(MyExampleModifier) menu_pool.register_menu(TestMenu)
37.373494
108
0.60735
be009f6115bef7e90b9bc196adb39a83603a92bb
2,748
py
Python
backend/constants.py
jak2030/recurse-interview
9920f8b1b0cc4c7b1eed75e3b7c086178ad8b817
[ "MIT" ]
1
2019-07-26T18:40:12.000Z
2019-07-26T18:40:12.000Z
backend/constants.py
jak2030/bardi-b
9920f8b1b0cc4c7b1eed75e3b7c086178ad8b817
[ "MIT" ]
7
2020-09-06T15:46:23.000Z
2022-02-18T06:18:29.000Z
backend/constants.py
jak2030/recurse-coding-exercise
9920f8b1b0cc4c7b1eed75e3b7c086178ad8b817
[ "MIT" ]
null
null
null
import os DATA_DIR = os.getenv("BARDI_B_DATA_DIR") # The directory in which to store all models. MODELS_DIR = os.path.join(DATA_DIR, "models/") # The root directory for all data generated by the app... # TODO: Use a database :P SHAKESPEARE_DATA_DIR = os.path.join(DATA_DIR, "shakespeare/") VILLAINS = [ {"play": "hamlet", "character": "claudius"}, {"play": "king-lear", "character": "regan"}, {"play": "king-lear", "character": "goneral"}, {"play": "king-lear", "character": "edmund"}, {"play": "othello", "character": "iago"}, {"play": "much-ado-about-nothing", "character": "don-john"}, {"play": "macbeth", "character": "lady-macbeth"}, {"play": "richard-iii", "character": "richard-iii"}, {"play": "julius-caesar", "character": "cassius"}, {"play": "romeo-and-juliet", "character": "tybalt"}, ] JESTERS = [ {"character": "a-fool", "play": "timon-of-athens"}, {"character": "autolycus", "play": "the-winters-tale"}, {"character": "citizen", "play": "julius-caesar"}, {"character": "cloten", "play": "cymbeline"}, {"character": "clown", "play": "othello"}, {"character": "clown", "play": "titus-andronicus"}, {"character": "costard", "play": "loves-labours-lost"}, {"character": "dogberry", "play": "much-ado-about-nothing"}, {"character": "dromio of ephesus", "play": "the-comedy-of-errors"}, {"character": "dromio of syracuse", "play": "the-comedy-of-errors"}, {"character": "falstaff", "play": "henry-iv-part-1"}, {"character": "falstaff", "play": "henry-iv-part-2"}, {"character": "feste", "play": "twelfth-night"}, {"character": "grumio", "play": "the-taming-of-the-shrew"}, {"character": "launce", "play": "two-gentlemen-of-verona"}, {"character": "launcelot gobbo", "play": "the-merchant-of-venice"}, {"character": "lavache", "play": "alls-well-that-ends-well"}, {"character": "nick bottom", "play": "a-midsummer-nights-dream"}, {"character": "pompey", "play": "measure-for-measure"}, {"character": "puck", "play": "a-midsummer-nights-dream"}, {"character": "speed", "play": "two-gentlemen-of-verona"}, {"character": "the-fool", "play": "king-lear"}, {"character": "the-gravediggers", "play": "hamlet"}, {"character": "the-porter", "play": "macbeth"}, {"character": "thersites", "play": "troilus-and-cressida"}, {"character": "touchstone", "play": "as-you-like-it"}, {"character": "trinculo", "play": "the-tempest"}, {"character": "yorick", "play": "hamlet"}, ] DREAMERS = [ {"character": "ophelia", "play": "hamlet"}, {"character": "hamlet", "play": "hamlet"}, {"character": "julia", "play": "romeo-and-juliet"}, {"character": "romeo", "play": "romeo-and-juliet"}, ]
45.8
72
0.598253
1327a485957358b1e27a970be2d0cf98ec6a170f
1,891
py
Python
popbl_servicesapp/flask_app/auth/application/models.py
xetxezarreta/master-popbl1
253880b9ba358f63f666893cdbbffe7391fcd096
[ "MIT" ]
null
null
null
popbl_servicesapp/flask_app/auth/application/models.py
xetxezarreta/master-popbl1
253880b9ba358f63f666893cdbbffe7391fcd096
[ "MIT" ]
1
2021-06-02T00:57:11.000Z
2021-06-02T00:57:11.000Z
popbl_servicesapp/flask_app/auth/application/models.py
xetxezarreta/master-popbl1
253880b9ba358f63f666893cdbbffe7391fcd096
[ "MIT" ]
null
null
null
from sqlalchemy import Column, DateTime, Integer, String, TEXT, ForeignKey from sqlalchemy.orm import relationship from sqlalchemy.sql import func from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class BaseModel(Base): __abstract__ = True creation_date = Column(DateTime(timezone=True), server_default=func.now()) update_date = Column(DateTime, nullable=False, server_default=func.now(), onupdate=func.now()) def __repr__(self): fields = "" for c in self.__table__.columns: if fields == "": fields = "{}='{}'".format(c.name, getattr(self, c.name)) else: fields = "{}, {}='{}'".format( fields, c.name, getattr(self, c.name)) return "<{}({})>".format(self.__class__.__name__, fields) @staticmethod def list_as_dict(items): return [i.as_dict() for i in items] def as_dict(self): return {c.name: getattr(self, c.name) for c in self.__table__.columns} class User(BaseModel): ROL_CLIENT = "client" ROL_ADMIN = "admin" __tablename__ = "user" id = Column(Integer, primary_key=True) name = Column(TEXT, nullable=False) password = Column(TEXT, nullable=False) rol = Column(TEXT, nullable=False) permissions = relationship("Permission", lazy="joined", cascade='all, delete-orphan') def as_dict(self): d = super().as_dict() return d class Permission(BaseModel): C_OWN_ORDER = "C OWN ORDER" R_OWN_ORDER = "R OWN ORDER" U_OWN_ORDER = "U OWN ORDER" D_OWN_ORDER = "D OWN ORDER" C_ALL = "C ALL ALL" R_ALL = "R ALL ALL" U_ALL = "U ALL ALL" D_ALL = "D ALL ALL" __tablename__ = "permission" rol = Column(TEXT, ForeignKey('user.rol'), primary_key=True ) permission = Column(TEXT, primary_key=True)
30.015873
89
0.628239
54c6faced63184f3ceb3d8f31a1f157150c8e909
28,086
py
Python
Fuzzy_clustering/ver_tf2/skopt/searchcv.py
joesider9/forecasting_library
db07ff8f0f2693983058d49004f2fc6f8849d197
[ "Apache-2.0" ]
null
null
null
Fuzzy_clustering/ver_tf2/skopt/searchcv.py
joesider9/forecasting_library
db07ff8f0f2693983058d49004f2fc6f8849d197
[ "Apache-2.0" ]
null
null
null
Fuzzy_clustering/ver_tf2/skopt/searchcv.py
joesider9/forecasting_library
db07ff8f0f2693983058d49004f2fc6f8849d197
[ "Apache-2.0" ]
null
null
null
try: from collections.abc import Sized except ImportError: from collections import Sized from collections import defaultdict from functools import partial import numpy as np from scipy.stats import rankdata import sklearn from sklearn.base import is_classifier, clone from joblib import Parallel, delayed from sklearn.model_selection._search import BaseSearchCV from sklearn.utils import check_random_state from sklearn.utils.fixes import MaskedArray from sklearn.utils.validation import indexable, check_is_fitted try: from sklearn.metrics import check_scoring except ImportError: from sklearn.metrics.scorer import check_scoring from . import Optimizer from .utils import point_asdict, dimensions_aslist, eval_callbacks from .space import check_dimension from .callbacks import check_callback class BayesSearchCV(BaseSearchCV): """Bayesian optimization over hyper parameters. BayesSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. Parameters are presented as a list of skopt.space.Dimension objects. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each search point. This object is assumed to implement the scikit-learn estimator api. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. search_spaces : dict, list of dict or list of tuple containing (dict, int). One of these cases: 1. dictionary, where keys are parameter names (strings) and values are skopt.space.Dimension instances (Real, Integer or Categorical) or any other valid value that defines skopt dimension (see skopt.Optimizer docs). Represents search space over parameters of the provided estimator. 2. list of dictionaries: a list of dictionaries, where every dictionary fits the description given in case 1 above. If a list of dictionary objects is given, then the search is performed sequentially for every parameter space with maximum number of evaluations set to self.n_iter. 3. list of (dict, int > 0): an extension of case 2 above, where first element of every tuple is a dictionary representing some search subspace, similarly as in case 2, and second element is a number of iterations that will be spent optimizing over this subspace. n_iter : int, default=50 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. Consider increasing ``n_points`` if you want to try more parameter settings in parallel. optimizer_kwargs : dict, optional Dict of arguments passed to :class:`Optimizer`. For example, ``{'base_estimator': 'RF'}`` would use a Random Forest surrogate instead of the default Gaussian Process. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. At maximum there are ``n_points`` times ``cv`` jobs available during each iteration. n_points : int, default=1 Number of parameter settings to sample in parallel. If this does not align with ``n_iter``, the last iteration will sample less points. See also :func:`~Optimizer.ask` pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. return_train_score : boolean, default=False If ``'True'``, the ``cv_results_`` attribute will include training scores. Examples -------- >>> from skopt import BayesSearchCV >>> # parameter ranges are specified by one of below >>> from skopt.space import Real, Categorical, Integer >>> >>> from sklearn.datasets import load_iris >>> from sklearn.svm import SVC >>> from sklearn.model_selection import train_test_split >>> >>> X, y = load_iris(True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... train_size=0.75, ... random_state=0) >>> >>> # log-uniform: understand as search over p = exp(x) by varying x >>> opt = BayesSearchCV( ... SVC(), ... { ... 'C': Real(1e-6, 1e+6, prior='log-uniform'), ... 'gamma': Real(1e-6, 1e+1, prior='log-uniform'), ... 'degree': Integer(1,8), ... 'kernel': Categorical(['linear', 'poly', 'rbf']), ... }, ... n_iter=32 ... ) >>> >>> # executes bayesian optimization >>> _ = opt.fit(X_train, y_train) >>> >>> # model can be saved, used for predictions or scoring >>> print(opt.score(X_test, y_test)) 0.973... Attributes ---------- cv_results_ : dict of numpy (masked) ndarrays A dict with keys as column headers and values as columns, that can be imported into a pandas ``DataFrame``. For instance the below given table +--------------+-------------+-------------------+---+---------------+ | param_kernel | param_gamma | split0_test_score |...|rank_test_score| +==============+=============+===================+===+===============+ | 'rbf' | 0.1 | 0.8 |...| 2 | +--------------+-------------+-------------------+---+---------------+ | 'rbf' | 0.2 | 0.9 |...| 1 | +--------------+-------------+-------------------+---+---------------+ | 'rbf' | 0.3 | 0.7 |...| 1 | +--------------+-------------+-------------------+---+---------------+ will be represented by a ``cv_results_`` dict of:: { 'param_kernel' : masked_array(data = ['rbf', 'rbf', 'rbf'], mask = False), 'param_gamma' : masked_array(data = [0.1 0.2 0.3], mask = False), 'split0_test_score' : [0.8, 0.9, 0.7], 'split1_test_score' : [0.82, 0.5, 0.7], 'mean_test_score' : [0.81, 0.7, 0.7], 'std_test_score' : [0.02, 0.2, 0.], 'rank_test_score' : [3, 1, 1], 'split0_train_score' : [0.8, 0.9, 0.7], 'split1_train_score' : [0.82, 0.5, 0.7], 'mean_train_score' : [0.81, 0.7, 0.7], 'std_train_score' : [0.03, 0.03, 0.04], 'mean_fit_time' : [0.73, 0.63, 0.43, 0.49], 'std_fit_time' : [0.01, 0.02, 0.01, 0.01], 'mean_score_time' : [0.007, 0.06, 0.04, 0.04], 'std_score_time' : [0.001, 0.002, 0.003, 0.005], 'params' : [{'kernel' : 'rbf', 'gamma' : 0.1}, ...], } NOTE that the key ``'params'`` is used to store a list of parameter settings dict for all the parameter candidates. The ``mean_fit_time``, ``std_fit_time``, ``mean_score_time`` and ``std_score_time`` are all in seconds. best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. best_index_ : int The index (of the ``cv_results_`` arrays) which corresponds to the best candidate parameter setting. The dict at ``search.cv_results_['params'][search.best_index_]`` gives the parameter setting for the best model, that gives the highest mean score (``search.best_score_``). scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. n_splits_ : int The number of cross-validation splits (folds/iterations). Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. """ def __init__(self, estimator, search_spaces, optimizer_kwargs=None, n_iter=50, scoring=None, fit_params=None, n_jobs=1, n_points=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise', return_train_score=False): self.search_spaces = search_spaces self.n_iter = n_iter self.n_points = n_points self.random_state = random_state self.optimizer_kwargs = optimizer_kwargs self._check_search_space(self.search_spaces) # Temporary fix for compatibility with sklearn 0.20 and 0.21 # See scikit-optimize#762 # To be consistent with sklearn 0.21+, fit_params should be deprecated # in the constructor and be passed in ``fit``. self.fit_params = fit_params super(BayesSearchCV, self).__init__( estimator=estimator, scoring=scoring, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score, return_train_score=return_train_score) def _check_search_space(self, search_space): """Checks whether the search space argument is correct""" if len(search_space) == 0: raise ValueError( "The search_spaces parameter should contain at least one" "non-empty search space, got %s" % search_space ) # check if space is a single dict, convert to list if so if isinstance(search_space, dict): search_space = [search_space] # check if the structure of the space is proper if isinstance(search_space, list): # convert to just a list of dicts dicts_only = [] # 1. check the case when a tuple of space, n_iter is provided for elem in search_space: if isinstance(elem, tuple): if len(elem) != 2: raise ValueError( "All tuples in list of search spaces should have" "length 2, and contain (dict, int), got %s" % elem ) subspace, n_iter = elem if (not isinstance(n_iter, int)) or n_iter < 0: raise ValueError( "Number of iterations in search space should be" "positive integer, got %s in tuple %s " % (n_iter, elem) ) # save subspaces here for further checking dicts_only.append(subspace) elif isinstance(elem, dict): dicts_only.append(elem) else: raise TypeError( "A search space should be provided as a dict or" "tuple (dict, int), got %s" % elem) # 2. check all the dicts for correctness of contents for subspace in dicts_only: for k, v in subspace.items(): check_dimension(v) else: raise TypeError( "Search space should be provided as a dict or list of dict," "got %s" % search_space) # copied for compatibility with 0.19 sklearn from 0.18 BaseSearchCV @property def best_score_(self): check_is_fitted(self, 'cv_results_') return self.cv_results_['mean_test_score'][self.best_index_] # copied for compatibility with 0.19 sklearn from 0.18 BaseSearchCV @property def best_params_(self): check_is_fitted(self, 'cv_results_') return self.cv_results_['params'][self.best_index_] # copied for compatibility with 0.19 sklearn from 0.18 BaseSearchCV def _fit(self, X, y, groups, parameter_iterable): """ Actual fitting, performing the search over parameters. Taken from https://github.com/scikit-learn/scikit-learn/blob/0.18.X .../sklearn/model_selection/_search.py """ estimator = self.estimator cv = sklearn.model_selection._validation.check_cv( self.cv, y, classifier=is_classifier(estimator)) self.scorer_ = check_scoring( self.estimator, scoring=self.scoring) X, y, groups = indexable(X, y, groups) n_splits = cv.get_n_splits(X, y, groups) if self.verbose > 0 and isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(n_splits, n_candidates, n_candidates * n_splits)) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch cv_iter = list(cv.split(X, y, groups)) out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )(delayed(sklearn.model_selection._validation._fit_and_score)( clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, fit_params=self.fit_params, return_train_score=self.return_train_score, return_n_test_samples=True, return_times=True, return_parameters=True, error_score=self.error_score ) for parameters in parameter_iterable for train, test in cv_iter) # if one choose to see train score, "out" will contain train score info if self.return_train_score: (train_scores, test_scores, test_sample_counts, fit_time, score_time, parameters) = zip(*out) else: (test_scores, test_sample_counts, fit_time, score_time, parameters) = zip(*out) candidate_params = parameters[::n_splits] n_candidates = len(candidate_params) results = dict() def _store(key_name, array, weights=None, splits=False, rank=False): """A small helper to store the scores/times to the cv_results_""" array = np.array(array, dtype=np.float64).reshape(n_candidates, n_splits) if splits: for split_i in range(n_splits): results["split%d_%s" % (split_i, key_name)] = array[:, split_i] array_means = np.average(array, axis=1, weights=weights) results['mean_%s' % key_name] = array_means # Weighted std is not directly available in numpy array_stds = np.sqrt(np.average((array - array_means[:, np.newaxis]) ** 2, axis=1, weights=weights)) results['std_%s' % key_name] = array_stds if rank: results["rank_%s" % key_name] = np.asarray( rankdata(-array_means, method='min'), dtype=np.int32) # Computed the (weighted) mean and std for test scores alone # NOTE test_sample counts (weights) remain the same for all candidates test_sample_counts = np.array(test_sample_counts[:n_splits], dtype=np.int) _store('test_score', test_scores, splits=True, rank=True, weights=test_sample_counts if self.iid else None) if self.return_train_score: _store('train_score', train_scores, splits=True) _store('fit_time', fit_time) _store('score_time', score_time) best_index = np.flatnonzero(results["rank_test_score"] == 1)[0] best_parameters = candidate_params[best_index] # Use one MaskedArray and mask all the places where the param is not # applicable for that candidate. Use defaultdict as each candidate may # not contain all the params param_results = defaultdict(partial( MaskedArray, np.empty(n_candidates,), mask=True, dtype=object)) for cand_i, params in enumerate(candidate_params): for name, value in params.items(): # An all masked empty array gets created for the key # `"param_%s" % name` at the first occurence of `name`. # Setting the value at an index also unmasks that index param_results["param_%s" % name][cand_i] = value results.update(param_results) # Store a list of param dicts at the key 'params' results['params'] = candidate_params self.cv_results_ = results self.best_index_ = best_index self.n_splits_ = n_splits if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best_parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self def _fit_best_model(self, X, y): """Fit the estimator copy with best parameters found to the provided data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], Target relative to X for classification or regression. Returns ------- self """ self.best_estimator_ = clone(self.estimator) self.best_estimator_.set_params(**self.best_params_) self.best_estimator_.fit(X, y, **(self.fit_params or {})) return self def _make_optimizer(self, params_space): """Instantiate skopt Optimizer class. Parameters ---------- params_space : dict Represents parameter search space. The keys are parameter names (strings) and values are skopt.space.Dimension instances, one of Real, Integer or Categorical. Returns ------- optimizer: Instance of the `Optimizer` class used for for search in some parameter space. """ kwargs = self.optimizer_kwargs_.copy() kwargs['dimensions'] = dimensions_aslist(params_space) optimizer = Optimizer(**kwargs) return optimizer def _step(self, X, y, search_space, optimizer, groups=None, n_points=1): """Generate n_jobs parameters and evaluate them in parallel. """ # get parameter values to evaluate params = optimizer.ask(n_points=n_points) # convert parameters to python native types params = [[np.array(v).item() for v in p] for p in params] # make lists into dictionaries params_dict = [point_asdict(search_space, p) for p in params] # HACK: self.cv_results_ is reset at every call to _fit, keep current all_cv_results = self.cv_results_ # HACK: this adds compatibility with different versions of sklearn refit = self.refit self.refit = False self._fit(X, y, groups, params_dict) self.refit = refit # merge existing and new cv_results_ for k in self.cv_results_: all_cv_results[k].extend(self.cv_results_[k]) all_cv_results["rank_test_score"] = list(np.asarray( rankdata(-np.array(all_cv_results['mean_test_score']), method='min'), dtype=np.int32)) if self.return_train_score: all_cv_results["rank_train_score"] = list(np.asarray( rankdata(-np.array(all_cv_results['mean_train_score']), method='min'), dtype=np.int32)) self.cv_results_ = all_cv_results self.best_index_ = np.argmax(self.cv_results_['mean_test_score']) # feed the point and objective back into optimizer local_results = self.cv_results_['mean_test_score'][-len(params):] # optimizer minimizes objective, hence provide negative score return optimizer.tell(params, [-score for score in local_results]) @property def total_iterations(self): """ Count total iterations that will be taken to explore all subspaces with `fit` method. Returns ------- max_iter: int, total number of iterations to explore """ total_iter = 0 for elem in self.search_spaces: if isinstance(elem, tuple): space, n_iter = elem else: n_iter = self.n_iter total_iter += n_iter return total_iter def _run_search(self, x): pass def fit(self, X, y=None, groups=None, callback=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. y : array-like, shape = [n_samples] or [n_samples, n_output] Target relative to X for classification or regression (class labels should be integers or strings). groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. callback: [callable, list of callables, optional] If callable then `callback(res)` is called after each parameter combination tested. If list of callables, then each callable in the list is called. """ # check if space is a single dict, convert to list if so search_spaces = self.search_spaces if isinstance(search_spaces, dict): search_spaces = [search_spaces] callbacks = check_callback(callback) if self.optimizer_kwargs is None: self.optimizer_kwargs_ = {} else: self.optimizer_kwargs_ = dict(self.optimizer_kwargs) random_state = check_random_state(self.random_state) self.optimizer_kwargs_['random_state'] = random_state # Instantiate optimizers for all the search spaces. optimizers = [] for search_space in search_spaces: if isinstance(search_space, tuple): search_space = search_space[0] optimizers.append(self._make_optimizer(search_space)) self.optimizers_ = optimizers # will save the states of the optimizers self.cv_results_ = defaultdict(list) self.best_index_ = None self.multimetric_ = False n_points = self.n_points for search_space, optimizer in zip(search_spaces, optimizers): # if not provided with search subspace, n_iter is taken as # self.n_iter if isinstance(search_space, tuple): search_space, n_iter = search_space else: n_iter = self.n_iter # do the optimization for particular search space while n_iter > 0: # when n_iter < n_points points left for evaluation n_points_adjusted = min(n_iter, n_points) optim_result = self._step( X, y, search_space, optimizer, groups=groups, n_points=n_points_adjusted ) n_iter -= n_points if eval_callbacks(callbacks, optim_result): break # Refit the best model on the the whole dataset if self.refit: self._fit_best_model(X, y) return self
40.645441
79
0.596667
a19c627fc940c953e5199b96a6d56234703313f5
1,588
py
Python
image-downloader/instagram-image-download.py
MayankShrivastava17/mini-project
c6fa2c95caba792ec4641eaeafaa5ab18f9e7abd
[ "MIT" ]
1
2021-05-25T13:30:05.000Z
2021-05-25T13:30:05.000Z
image-downloader/instagram-image-download.py
MayankShrivastava17/mini-project
c6fa2c95caba792ec4641eaeafaa5ab18f9e7abd
[ "MIT" ]
null
null
null
image-downloader/instagram-image-download.py
MayankShrivastava17/mini-project
c6fa2c95caba792ec4641eaeafaa5ab18f9e7abd
[ "MIT" ]
null
null
null
from sys import argv import urllib from bs4 import BeautifulSoup import datetime def ShowHelp(): print 'Insta Image Downloader' print '' print 'Usage:' print 'insta.py [OPTION] [URL]' print '' print 'Options:' print '-u [Instagram URL]\tDownload single photo from Instagram URL' print '-f [File path]\t\tDownload Instagram photo(s) using file list' print '-h, --help\t\tShow this help message' print '' print 'Example:' print 'python insta.py -u https://instagram.com/p/xxxxx' print 'python insta.py -f /home/username/filelist.txt' print '' exit() def DownloadSingleFile(fileURL): print 'Downloading image...' f = urllib.urlopen(fileURL) htmlSource = f.read() soup = BeautifulSoup(htmlSource,'html.parser') metaTag = soup.find_all('meta', {'property':'og:image'}) imgURL = metaTag[0]['content'] fileName = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S") + '.jpg' urllib.urlretrieve(imgURL, fileName) print 'Done. Image saved to disk as ' + fileName if __name__ == '__main__': if len(argv) == 1: ShowHelp() if argv[1] in ('-h', '--help'): ShowHelp() elif argv[1] == '-u': instagramURL = argv[2] DownloadSingleFile(instagramURL) elif argv[1] == '-f': filePath = argv[2] f = open(filePath) line = f.readline() while line: instagramURL = line.rstrip('\n') DownloadSingleFile(instagramURL) line = f.readline() f.close()
33.083333
78
0.593199
a9cd1d4dfae01e8e61648e2c63a50ff0b3b56b77
616
py
Python
admin_privileges.py
julencosme/python-crash-course
6b37d7346e235273c266110932207cd67ce4eb0e
[ "MIT" ]
null
null
null
admin_privileges.py
julencosme/python-crash-course
6b37d7346e235273c266110932207cd67ce4eb0e
[ "MIT" ]
null
null
null
admin_privileges.py
julencosme/python-crash-course
6b37d7346e235273c266110932207cd67ce4eb0e
[ "MIT" ]
null
null
null
# Module for classes: Admin and Privileges. class Privileges(): """Represent admin user's privileges.""" def __init__(self): self.privileges = ["can add a post", "can delete a post", "can ban a user", "can add admin user"] def describe_admin_privileges(self): print("Privileges of the admin user(s) are as follows: " + str(self.privileges)) class Admin(Privileges): """Represent the privileges, specific to an admin user.""" def __init__(self): """Intialize the attributes of the parent class.""" super().__init__()
28
66
0.613636
060d9086996942f4a71b95d24fa49db47dc99bdb
3,602
py
Python
tests/test_spacingd.py
function2-llx/MONAI
4cddaa830b61b88ec78e089bb5f21e05bb1a78f4
[ "Apache-2.0" ]
1
2022-02-15T09:32:28.000Z
2022-02-15T09:32:28.000Z
tests/test_spacingd.py
function2-llx/MONAI
4cddaa830b61b88ec78e089bb5f21e05bb1a78f4
[ "Apache-2.0" ]
null
null
null
tests/test_spacingd.py
function2-llx/MONAI
4cddaa830b61b88ec78e089bb5f21e05bb1a78f4
[ "Apache-2.0" ]
null
null
null
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import List, Tuple import numpy as np import torch from parameterized import parameterized from monai.transforms import Spacingd from monai.utils.enums import PostFix from tests.utils import TEST_NDARRAYS, assert_allclose TESTS: List[Tuple] = [] for p in TEST_NDARRAYS: TESTS.append( ( "spacing 3d", {"image": p(np.ones((2, 10, 15, 20))), PostFix.meta("image"): {"affine": p(np.eye(4))}}, dict(keys="image", pixdim=(1, 2, 1.4)), ("image", PostFix.meta("image"), "image_transforms"), (2, 10, 8, 15), p(np.diag([1, 2, 1.4, 1.0])), ) ) TESTS.append( ( "spacing 2d", {"image": np.ones((2, 10, 20)), PostFix.meta("image"): {"affine": np.eye(3)}}, dict(keys="image", pixdim=(1, 2)), ("image", PostFix.meta("image"), "image_transforms"), (2, 10, 10), np.diag((1, 2, 1)), ) ) TESTS.append( ( "spacing 2d no metadata", {"image": np.ones((2, 10, 20))}, dict(keys="image", pixdim=(1, 2)), ("image", PostFix.meta("image"), "image_transforms"), (2, 10, 10), np.diag((1, 2, 1)), ) ) TESTS.append( ( "interp all", { "image": np.arange(20).reshape((2, 1, 10)), "seg": np.ones((2, 1, 10)), PostFix.meta("image"): {"affine": np.eye(4)}, PostFix.meta("seg"): {"affine": np.eye(4)}, }, dict(keys=("image", "seg"), mode="nearest", pixdim=(1, 0.2)), ("image", PostFix.meta("image"), "image_transforms", "seg", PostFix.meta("seg"), "seg_transforms"), (2, 1, 46), np.diag((1, 0.2, 1, 1)), ) ) TESTS.append( ( "interp sep", { "image": np.ones((2, 1, 10)), "seg": np.ones((2, 1, 10)), PostFix.meta("image"): {"affine": np.eye(4)}, PostFix.meta("seg"): {"affine": np.eye(4)}, }, dict(keys=("image", "seg"), mode=("bilinear", "nearest"), pixdim=(1, 0.2)), ("image", PostFix.meta("image"), "image_transforms", "seg", PostFix.meta("seg"), "seg_transforms"), (2, 1, 46), np.diag((1, 0.2, 1, 1)), ) ) class TestSpacingDCase(unittest.TestCase): @parameterized.expand(TESTS) def test_spacingd(self, _, data, kw_args, expected_keys, expected_shape, expected_affine): res = Spacingd(**kw_args)(data) if isinstance(data["image"], torch.Tensor): self.assertEqual(data["image"].device, res["image"].device) self.assertEqual(expected_keys, tuple(sorted(res))) np.testing.assert_allclose(res["image"].shape, expected_shape) assert_allclose(res[PostFix.meta("image")]["affine"], expected_affine) if __name__ == "__main__": unittest.main()
36.02
111
0.54442
30f3884a50ae2a4a205514fdc73d2de677bd9d6b
3,691
py
Python
app/models.py
ephantuskaranja/Pitches
eaa25816199ac7060f5deb5882760071e5b74979
[ "Unlicense" ]
null
null
null
app/models.py
ephantuskaranja/Pitches
eaa25816199ac7060f5deb5882760071e5b74979
[ "Unlicense" ]
null
null
null
app/models.py
ephantuskaranja/Pitches
eaa25816199ac7060f5deb5882760071e5b74979
[ "Unlicense" ]
null
null
null
from . import db from flask_login import UserMixin from . import login_manager from werkzeug.security import generate_password_hash, check_password_hash from sqlalchemy.sql import func class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(255)) email = db.Column(db.String(255), unique=True, index=True) password_hash = db.Column(db.String(255)) pitches = db.relationship('Content', backref='user', lazy='dynamic') comments = db.relationship('Comment', backref='user', lazy='dynamic') votes = db.relationship('Vote', backref='user', lazy='dynamic') def __repr__(self): return f'User{self.username}' pass_secure = db.Column(db.String(255)) @property def password(self): raise AttributeError('You cannot read the password attribute') @password.setter def password(self, password): self.pass_secure = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.pass_secure, password) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class Category(db.Model): __tablename__ = 'categories' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(255)) pitches = db.relationship('Content', backref='category', lazy='dynamic') def save_category(self): db.session.add(self) db.session.commit() @classmethod def get_categories(cls): categories = Category.query.all() return categories class Content(db.Model): __tablename__ = 'pitches' id = db.Column(db.Integer, primary_key=True) content = db.Column(db.String(255)) category_id = db.Column(db.Integer, db.ForeignKey("categories.id")) user_id = db.Column(db.Integer, db.ForeignKey("users.id")) comments = db.relationship('Comment', backref='pitch', lazy='dynamic') votes = db.relationship('Vote', backref='content', lazy='dynamic') def save_content(self): db.session.add(self) db.session.commit() @classmethod def get_pitches(cls, category_id): pitches = Content.query.order_by(Content.id.desc()).filter_by(category_id=category_id).all() return pitches class Comment(db.Model): __tablename__ = 'comments' id = db.Column(db.Integer, primary_key=True) comment = db.Column(db.String(255)) content_id = db.Column(db.Integer, db.ForeignKey("pitches.id")) user_id = db.Column(db.Integer, db.ForeignKey("users.id")) def save_comment(self): db.session.add(self) db.session.commit() @classmethod def get_comments(cls, content_id): comments = Comment.query.order_by(Comment.id.desc()).filter_by(content_id=content_id).all() return comments class Vote(db.Model): __tablename__ = 'votes' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey("users.id")) content_id = db.Column(db.Integer, db.ForeignKey("pitches.id")) vote_number = db.Column(db.Integer) def save_vote(self): db.session.add(self) db.session.commit() @classmethod def get_votes(cls,user_id,content_id): votes = Vote.query.filter_by(user_id=user_id,content_id=content_id).all() return votes @classmethod def num_vote(cls,content_id): found_votes = db.session.query(func.sum(Vote.vote_number)) found_votes = found_votes.filter_by(content_id=content_id).group_by(Vote.content_id) votes_list = sum([i[0] for i in found_votes.all()]) return votes_list
31.547009
100
0.684638
615ca80daebf4c7b55a408dbb693c3c298d0d7a7
220
py
Python
tests/date/test_construct.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
5,049
2016-07-04T07:16:34.000Z
2022-03-31T07:41:48.000Z
tests/date/test_construct.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
536
2016-07-05T22:46:29.000Z
2022-03-22T12:41:54.000Z
tests/date/test_construct.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
373
2016-07-05T19:51:51.000Z
2022-03-23T16:57:46.000Z
from pendulum import Date from ..conftest import assert_date def test_construct(): d = Date(2016, 10, 20) assert_date(d, 2016, 10, 20) def test_today(): d = Date.today() assert isinstance(d, Date)
13.75
34
0.659091
57b18f30f170a4f198a6d7504c6e843a81117428
31,352
py
Python
astropy/table/index.py
jayvdb/astropy
bc6d8f106dd5b60bf57a8e6e29c4e2ae2178991f
[ "BSD-3-Clause" ]
445
2019-01-26T13:50:26.000Z
2022-03-18T05:17:38.000Z
astropy/table/index.py
jayvdb/astropy
bc6d8f106dd5b60bf57a8e6e29c4e2ae2178991f
[ "BSD-3-Clause" ]
242
2019-01-29T15:48:27.000Z
2022-03-31T22:09:21.000Z
astropy/table/index.py
jayvdb/astropy
bc6d8f106dd5b60bf57a8e6e29c4e2ae2178991f
[ "BSD-3-Clause" ]
31
2019-03-10T09:51:27.000Z
2022-02-14T23:11:12.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ The Index class can use several implementations as its engine. Any implementation should implement the following: __init__(data, row_index) : initialize index based on key/row list pairs add(key, row) -> None : add (key, row) to existing data remove(key, data=None) -> boolean : remove data from self[key], or all of self[key] if data is None shift_left(row) -> None : decrement row numbers after row shift_right(row) -> None : increase row numbers >= row find(key) -> list : list of rows corresponding to key range(lower, upper, bounds) -> list : rows in self[k] where k is between lower and upper (<= or < based on bounds) sort() -> None : make row order align with key order sorted_data() -> list of rows in sorted order (by key) replace_rows(row_map) -> None : replace row numbers based on slice items() -> list of tuples of the form (key, data) Notes ----- When a Table is initialized from another Table, indices are (deep) copied and their columns are set to the columns of the new Table. Column creation: Column(c) -> deep copy of indices c[[1, 2]] -> deep copy and reordering of indices c[1:2] -> reference array.view(Column) -> no indices """ from copy import deepcopy import numpy as np from .bst import MinValue, MaxValue from .sorted_array import SortedArray class QueryError(ValueError): ''' Indicates that a given index cannot handle the supplied query. ''' pass class Index: ''' The Index class makes it possible to maintain indices on columns of a Table, so that column values can be queried quickly and efficiently. Column values are stored in lexicographic sorted order, which allows for binary searching in O(log n). Parameters ---------- columns : list or None List of columns on which to create an index. If None, create an empty index for purposes of deep copying. engine : type, instance, or None Indexing engine class to use (from among SortedArray, BST, FastBST, FastRBT, and SCEngine) or actual engine instance. If the supplied argument is None (by default), use SortedArray. unique : bool (defaults to False) Whether the values of the index must be unique ''' def __new__(cls, *args, **kwargs): self = super().__new__(cls) # If (and only if) unpickling for protocol >= 2, then args and kwargs # are both empty. The class __init__ requires at least the `columns` # arg. In this case return a bare `Index` object which is then morphed # by the unpickling magic into the correct SlicedIndex object. if not args and not kwargs: return self self.__init__(*args, **kwargs) return SlicedIndex(self, slice(0, 0, None), original=True) def __init__(self, columns, engine=None, unique=False): # Local imports to avoid import problems. from .table import Table, Column from astropy.time import Time if engine is not None and not isinstance(engine, type): # create from data self.engine = engine.__class__ self.data = engine self.columns = columns return # by default, use SortedArray self.engine = engine or SortedArray if columns is None: # this creates a special exception for deep copying columns = [] data = [] row_index = [] elif len(columns) == 0: raise ValueError("Cannot create index without at least one column") elif len(columns) == 1: col = columns[0] row_index = Column(col.argsort()) data = Table([col[row_index]]) else: num_rows = len(columns[0]) # replace Time columns with approximate form and remainder new_columns = [] for col in columns: if isinstance(col, Time): new_columns.append(col.jd) remainder = col - col.__class__(col.jd, format='jd', scale=col.scale) new_columns.append(remainder.jd) else: new_columns.append(col) # sort the table lexicographically and keep row numbers table = Table(columns + [np.arange(num_rows)], copy_indices=False) sort_columns = new_columns[::-1] try: lines = table[np.lexsort(sort_columns)] except TypeError: # arbitrary mixins might not work with lexsort lines = table[table.argsort()] data = lines[lines.colnames[:-1]] row_index = lines[lines.colnames[-1]] self.data = self.engine(data, row_index, unique=unique) self.columns = columns def __len__(self): ''' Number of rows in index. ''' return len(self.columns[0]) def replace_col(self, prev_col, new_col): ''' Replace an indexed column with an updated reference. Parameters ---------- prev_col : Column Column reference to replace new_col : Column New column reference ''' self.columns[self.col_position(prev_col.info.name)] = new_col def reload(self): ''' Recreate the index based on data in self.columns. ''' self.__init__(self.columns, engine=self.engine) def col_position(self, col_name): ''' Return the position of col_name in self.columns. Parameters ---------- col_name : str Name of column to look up ''' for i, c in enumerate(self.columns): if c.info.name == col_name: return i raise ValueError(f"Column does not belong to index: {col_name}") def insert_row(self, pos, vals, columns): ''' Insert a new row from the given values. Parameters ---------- pos : int Position at which to insert row vals : list or tuple List of values to insert into a new row columns : list Table column references ''' key = [None] * len(self.columns) for i, col in enumerate(columns): try: key[i] = vals[self.col_position(col.info.name)] except ValueError: # not a member of index continue num_rows = len(self.columns[0]) if pos < num_rows: # shift all rows >= pos to the right self.data.shift_right(pos) self.data.add(tuple(key), pos) def get_row_specifier(self, row_specifier): ''' Return an iterable corresponding to the input row specifier. Parameters ---------- row_specifier : int, list, ndarray, or slice ''' if isinstance(row_specifier, (int, np.integer)): # single row return (row_specifier,) elif isinstance(row_specifier, (list, np.ndarray)): return row_specifier elif isinstance(row_specifier, slice): col_len = len(self.columns[0]) return range(*row_specifier.indices(col_len)) raise ValueError("Expected int, array of ints, or slice but " "got {} in remove_rows".format(row_specifier)) def remove_rows(self, row_specifier): ''' Remove the given rows from the index. Parameters ---------- row_specifier : int, list, ndarray, or slice Indicates which row(s) to remove ''' rows = [] # To maintain the correct row order, we loop twice, # deleting rows first and then reordering the remaining rows for row in self.get_row_specifier(row_specifier): self.remove_row(row, reorder=False) rows.append(row) # second pass - row order is reversed to maintain # correct row numbers for row in reversed(sorted(rows)): self.data.shift_left(row) def remove_row(self, row, reorder=True): ''' Remove the given row from the index. Parameters ---------- row : int Position of row to remove reorder : bool Whether to reorder indices after removal ''' # for removal, form a key consisting of column values in this row if not self.data.remove(tuple([col[row] for col in self.columns]), row): raise ValueError(f"Could not remove row {row} from index") # decrement the row number of all later rows if reorder: self.data.shift_left(row) def find(self, key): ''' Return the row values corresponding to key, in sorted order. Parameters ---------- key : tuple Values to search for in each column ''' return self.data.find(key) def same_prefix(self, key): ''' Return rows whose keys contain the supplied key as a prefix. Parameters ---------- key : tuple Prefix for which to search ''' return self.same_prefix_range(key, key, (True, True)) def same_prefix_range(self, lower, upper, bounds=(True, True)): ''' Return rows whose keys have a prefix in the given range. Parameters ---------- lower : tuple Lower prefix bound upper : tuple Upper prefix bound bounds : tuple (x, y) of bools Indicates whether the search should be inclusive or exclusive with respect to the endpoints. The first argument x corresponds to an inclusive lower bound, and the second argument y to an inclusive upper bound. ''' n = len(lower) ncols = len(self.columns) a = MinValue() if bounds[0] else MaxValue() b = MaxValue() if bounds[1] else MinValue() # [x, y] search corresponds to [(x, min), (y, max)] # (x, y) search corresponds to ((x, max), (x, min)) lower = lower + tuple((ncols - n) * [a]) upper = upper + tuple((ncols - n) * [b]) return self.data.range(lower, upper, bounds) def range(self, lower, upper, bounds=(True, True)): ''' Return rows within the given range. Parameters ---------- lower : tuple Lower prefix bound upper : tuple Upper prefix bound bounds : tuple (x, y) of bools Indicates whether the search should be inclusive or exclusive with respect to the endpoints. The first argument x corresponds to an inclusive lower bound, and the second argument y to an inclusive upper bound. ''' return self.data.range(lower, upper, bounds) def replace(self, row, col_name, val): ''' Replace the value of a column at a given position. Parameters ---------- row : int Row number to modify col_name : str Name of the Column to modify val : col.info.dtype Value to insert at specified row of col ''' self.remove_row(row, reorder=False) key = [c[row] for c in self.columns] key[self.col_position(col_name)] = val self.data.add(tuple(key), row) def replace_rows(self, col_slice): ''' Modify rows in this index to agree with the specified slice. For example, given an index {'5': 1, '2': 0, '3': 2} on a column ['2', '5', '3'], an input col_slice of [2, 0] will result in the relabeling {'3': 0, '2': 1} on the sliced column ['3', '2']. Parameters ---------- col_slice : list Indices to slice ''' row_map = dict((row, i) for i, row in enumerate(col_slice)) self.data.replace_rows(row_map) def sort(self): ''' Make row numbers follow the same sort order as the keys of the index. ''' self.data.sort() def sorted_data(self): ''' Returns a list of rows in sorted order based on keys; essentially acts as an argsort() on columns. ''' return self.data.sorted_data() def __getitem__(self, item): ''' Returns a sliced version of this index. Parameters ---------- item : slice Input slice Returns ------- SlicedIndex A sliced reference to this index. ''' return SlicedIndex(self, item) def __str__(self): return str(self.data) def __repr__(self): return str(self) def __deepcopy__(self, memo): ''' Return a deep copy of this index. Notes ----- The default deep copy must be overridden to perform a shallow copy of the index columns, avoiding infinite recursion. Parameters ---------- memo : dict ''' # Bypass Index.__new__ to create an actual Index, not a SlicedIndex. index = super().__new__(self.__class__) index.__init__(None, engine=self.engine) index.data = deepcopy(self.data, memo) index.columns = self.columns[:] # new list, same columns memo[id(self)] = index return index class SlicedIndex: ''' This class provides a wrapper around an actual Index object to make index slicing function correctly. Since numpy expects array slices to provide an actual data view, a SlicedIndex should retrieve data directly from the original index and then adapt it to the sliced coordinate system as appropriate. Parameters ---------- index : Index The original Index reference index_slice : slice The slice to which this SlicedIndex corresponds original : bool Whether this SlicedIndex represents the original index itself. For the most part this is similar to index[:] but certain copying operations are avoided, and the slice retains the length of the actual index despite modification. ''' def __init__(self, index, index_slice, original=False): self.index = index self.original = original self._frozen = False if isinstance(index_slice, tuple): self.start, self._stop, self.step = index_slice else: # index_slice is an actual slice num_rows = len(index.columns[0]) self.start, self._stop, self.step = index_slice.indices(num_rows) @property def length(self): return 1 + (self.stop - self.start - 1) // self.step @property def stop(self): ''' The stopping position of the slice, or the end of the index if this is an original slice. ''' return len(self.index) if self.original else self._stop def __getitem__(self, item): ''' Returns another slice of this Index slice. Parameters ---------- item : slice Index slice ''' if self.length <= 0: # empty slice return SlicedIndex(self.index, slice(1, 0)) start, stop, step = item.indices(self.length) new_start = self.orig_coords(start) new_stop = self.orig_coords(stop) new_step = self.step * step return SlicedIndex(self.index, (new_start, new_stop, new_step)) def sliced_coords(self, rows): ''' Convert the input rows to the sliced coordinate system. Parameters ---------- rows : list Rows in the original coordinate system Returns ------- sliced_rows : list Rows in the sliced coordinate system ''' if self.original: return rows else: rows = np.array(rows) row0 = rows - self.start if self.step != 1: correct_mod = np.mod(row0, self.step) == 0 row0 = row0[correct_mod] if self.step > 0: ok = (row0 >= 0) & (row0 < self.stop - self.start) else: ok = (row0 <= 0) & (row0 > self.stop - self.start) return row0[ok] // self.step def orig_coords(self, row): ''' Convert the input row from sliced coordinates back to original coordinates. Parameters ---------- row : int Row in the sliced coordinate system Returns ------- orig_row : int Row in the original coordinate system ''' return row if self.original else self.start + row * self.step def find(self, key): return self.sliced_coords(self.index.find(key)) def where(self, col_map): return self.sliced_coords(self.index.where(col_map)) def range(self, lower, upper): return self.sliced_coords(self.index.range(lower, upper)) def same_prefix(self, key): return self.sliced_coords(self.index.same_prefix(key)) def sorted_data(self): return self.sliced_coords(self.index.sorted_data()) def replace(self, row, col, val): if not self._frozen: self.index.replace(self.orig_coords(row), col, val) def copy(self): if not self.original: # replace self.index with a new object reference self.index = deepcopy(self.index) return self.index def insert_row(self, pos, vals, columns): if not self._frozen: self.copy().insert_row(self.orig_coords(pos), vals, columns) def get_row_specifier(self, row_specifier): return [self.orig_coords(x) for x in self.index.get_row_specifier(row_specifier)] def remove_rows(self, row_specifier): if not self._frozen: self.copy().remove_rows(row_specifier) def replace_rows(self, col_slice): if not self._frozen: self.index.replace_rows([self.orig_coords(x) for x in col_slice]) def sort(self): if not self._frozen: self.copy().sort() def __repr__(self): if self.original: return repr(self.index) return 'Index slice {} of\n{}'.format( (self.start, self.stop, self.step), self.index) def __str__(self): return repr(self) def replace_col(self, prev_col, new_col): self.index.replace_col(prev_col, new_col) def reload(self): self.index.reload() def col_position(self, col_name): return self.index.col_position(col_name) def get_slice(self, col_slice, item): ''' Return a newly created index from the given slice. Parameters ---------- col_slice : Column object Already existing slice of a single column item : list or ndarray Slice for retrieval ''' from .table import Table if len(self.columns) == 1: return Index([col_slice], engine=self.data.__class__) t = Table(self.columns, copy_indices=False) with t.index_mode('discard_on_copy'): new_cols = t[item].columns.values() return Index(new_cols, engine=self.data.__class__) @property def columns(self): return self.index.columns @property def data(self): return self.index.data def get_index(table, table_copy=None, names=None): """ Inputs a table and some subset of its columns as table_copy. List or tuple containing names of columns as names,and returns an index corresponding to this subset or list or None if no such index exists. Parameters ---------- table : `Table` Input table table_copy : `Table`, optional Subset of the columns in the ``table`` argument names : list, tuple, optional Subset of column names in the ``table`` argument Returns ------- Index of columns or None """ if names is not None and table_copy is not None: raise ValueError('one and only one argument from "table_copy" or' ' "names" is required') if names is None and table_copy is None: raise ValueError('one and only one argument from "table_copy" or' ' "names" is required') if names is not None: names = set(names) else: names = set(table_copy.colnames) if not names <= set(table.colnames): raise ValueError(f'{names} is not a subset of table columns') for name in names: for index in table[name].info.indices: if set([col.info.name for col in index.columns]) == names: return index return None def get_index_by_names(table, names): ''' Returns an index in ``table`` corresponding to the ``names`` columns or None if no such index exists. Parameters ---------- table : `Table` Input table nmaes : tuple, list Column names ''' names = list(names) for index in table.indices: index_names = [col.info.name for col in index.columns] if index_names == names: return index else: return None class _IndexModeContext: ''' A context manager that allows for special indexing modes, which are intended to improve performance. Currently the allowed modes are "freeze", in which indices are not modified upon column modification, "copy_on_getitem", in which indices are copied upon column slicing, and "discard_on_copy", in which indices are discarded upon table copying/slicing. ''' _col_subclasses = {} def __init__(self, table, mode): ''' Parameters ---------- table : Table The table to which the mode should be applied mode : str Either 'freeze', 'copy_on_getitem', or 'discard_on_copy'. In 'discard_on_copy' mode, indices are not copied whenever columns or tables are copied. In 'freeze' mode, indices are not modified whenever columns are modified; at the exit of the context, indices refresh themselves based on column values. This mode is intended for scenarios in which one intends to make many additions or modifications on an indexed column. In 'copy_on_getitem' mode, indices are copied when taking column slices as well as table slices, so col[i0:i1] will preserve indices. ''' self.table = table self.mode = mode # Used by copy_on_getitem self._orig_classes = [] if mode not in ('freeze', 'discard_on_copy', 'copy_on_getitem'): raise ValueError("Expected a mode of either 'freeze', " "'discard_on_copy', or 'copy_on_getitem', got " "'{}'".format(mode)) def __enter__(self): if self.mode == 'discard_on_copy': self.table._copy_indices = False elif self.mode == 'copy_on_getitem': for col in self.table.columns.values(): self._orig_classes.append(col.__class__) col.__class__ = self._get_copy_on_getitem_shim(col.__class__) else: for index in self.table.indices: index._frozen = True def __exit__(self, exc_type, exc_value, traceback): if self.mode == 'discard_on_copy': self.table._copy_indices = True elif self.mode == 'copy_on_getitem': for col in reversed(self.table.columns.values()): col.__class__ = self._orig_classes.pop() else: for index in self.table.indices: index._frozen = False index.reload() def _get_copy_on_getitem_shim(self, cls): """ This creates a subclass of the column's class which overrides that class's ``__getitem__``, such that when returning a slice of the column, the relevant indices are also copied over to the slice. Ideally, rather than shimming in a new ``__class__`` we would be able to just flip a flag that is checked by the base class's ``__getitem__``. Unfortunately, since the flag needs to be a Python variable, this slows down ``__getitem__`` too much in the more common case where a copy of the indices is not needed. See the docstring for ``astropy.table._column_mixins`` for more information on that. """ if cls in self._col_subclasses: return self._col_subclasses[cls] def __getitem__(self, item): value = cls.__getitem__(self, item) if type(value) is type(self): value = self.info.slice_indices(value, item, len(self)) return value clsname = f'_{cls.__name__}WithIndexCopy' new_cls = type(str(clsname), (cls,), {'__getitem__': __getitem__}) self._col_subclasses[cls] = new_cls return new_cls class TableIndices(list): ''' A special list of table indices allowing for retrieval by column name(s). Parameters ---------- lst : list List of indices ''' def __init__(self, lst): super().__init__(lst) def __getitem__(self, item): ''' Retrieve an item from the list of indices. Parameters ---------- item : int, str, tuple, or list Position in list or name(s) of indexed column(s) ''' if isinstance(item, str): item = [item] if isinstance(item, (list, tuple)): item = list(item) for index in self: try: for name in item: index.col_position(name) if len(index.columns) == len(item): return index except ValueError: pass # index search failed raise IndexError(f"No index found for {item}") return super().__getitem__(item) class TableLoc: """ A pseudo-list of Table rows allowing for retrieval of rows by indexed column values. Parameters ---------- table : Table Indexed table to use """ def __init__(self, table): self.table = table self.indices = table.indices if len(self.indices) == 0: raise ValueError("Cannot create TableLoc object with no indices") def _get_rows(self, item): """ Retrieve Table rows indexes by value slice. """ if isinstance(item, tuple): key, item = item else: key = self.table.primary_key index = self.indices[key] if len(index.columns) > 1: raise ValueError("Cannot use .loc on multi-column indices") if isinstance(item, slice): # None signifies no upper/lower bound start = MinValue() if item.start is None else item.start stop = MaxValue() if item.stop is None else item.stop rows = index.range((start,), (stop,)) else: if not isinstance(item, (list, np.ndarray)): # single element item = [item] # item should be a list or ndarray of values rows = [] for key in item: p = index.find((key,)) if len(p) == 0: raise KeyError(f'No matches found for key {key}') else: rows.extend(p) return rows def __getitem__(self, item): """ Retrieve Table rows by value slice. Parameters ---------- item : column element, list, ndarray, slice or tuple Can be a value of the table primary index, a list/ndarray of such values, or a value slice (both endpoints are included). If a tuple is provided, the first element must be an index to use instead of the primary key, and the second element must be as above. """ rows = self._get_rows(item) if len(rows) == 0: # no matches found raise KeyError(f'No matches found for key {item}') elif len(rows) == 1: # single row return self.table[rows[0]] return self.table[rows] def __setitem__(self, key, value): """ Assign Table row's by value slice. Parameters ---------- key : column element, list, ndarray, slice or tuple Can be a value of the table primary index, a list/ndarray of such values, or a value slice (both endpoints are included). If a tuple is provided, the first element must be an index to use instead of the primary key, and the second element must be as above. value : New values of the row elements. Can be a list of tuples/lists to update the row. """ rows = self._get_rows(key) if len(rows) == 0: # no matches found raise KeyError(f'No matches found for key {key}') elif len(rows) == 1: # single row self.table[rows[0]] = value else: # multiple rows if len(rows) == len(value): for row, val in zip(rows, value): self.table[row] = val else: raise ValueError('Right side should contain {} values'.format(len(rows))) class TableLocIndices(TableLoc): def __getitem__(self, item): """ Retrieve Table row's indices by value slice. Parameters ---------- item : column element, list, ndarray, slice or tuple Can be a value of the table primary index, a list/ndarray of such values, or a value slice (both endpoints are included). If a tuple is provided, the first element must be an index to use instead of the primary key, and the second element must be as above. """ rows = self._get_rows(item) if len(rows) == 0: # no matches found raise KeyError(f'No matches found for key {item}') elif len(rows) == 1: # single row return rows[0] return rows class TableILoc(TableLoc): ''' A variant of TableLoc allowing for row retrieval by indexed order rather than data values. Parameters ---------- table : Table Indexed table to use ''' def __init__(self, table): super().__init__(table) def __getitem__(self, item): if isinstance(item, tuple): key, item = item else: key = self.table.primary_key index = self.indices[key] rows = index.sorted_data()[item] table_slice = self.table[rows] if len(table_slice) == 0: # no matches found raise IndexError(f'Invalid index for iloc: {item}') return table_slice
32.658333
89
0.577794
5af1c6181ea714a1dccc6bd6184735400939d2d7
8,296
py
Python
__main__.py
qntnt/badman-scraper
f54f1b5f48dfa64d455c39c86c34cad99202c893
[ "MIT" ]
null
null
null
__main__.py
qntnt/badman-scraper
f54f1b5f48dfa64d455c39c86c34cad99202c893
[ "MIT" ]
null
null
null
__main__.py
qntnt/badman-scraper
f54f1b5f48dfa64d455c39c86c34cad99202c893
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import pandas as pd import csv from multiprocessing.pool import ThreadPool from get_result import get_result_with_context from alive_progress import alive_bar import argparse import os from loguru import logger import sys from textutils import similarity, clean_address import tkinter as tk from tkinter import filedialog, simpledialog if __name__ == '__main__': def noneOrEmpty(s: str): return s is None or len(s.strip()) == 0 root = tk.Tk() try: TMP_DIR = '.tmp' if TMP_DIR not in os.listdir(): os.makedirs(TMP_DIR) # Parse command line arguments parser = argparse.ArgumentParser(description='Find detailed parcel data based on xlsx formatted parcel listings.', allow_abbrev=True) parser.add_argument('-input_file', type=str, required=False, help='Path to parcel listings .xlsx file',) parser.add_argument('-concurrency', type=int, required=False, help='The number of concurrent threads to process parcels (be careful not to set this too high)') parser.add_argument('-output_file', type=str, required=False, help='The output .csv file') parser.add_argument( '-log', type=str, required=False, help='The log level for output', choices=('CRITICAL', 'ERROR','WARNING', 'SUCCESS', 'INFO', 'DEBUG', 'TRACE'), default='INFO' ) args = parser.parse_args() logger.configure( handlers = [ { 'sink': sys.stdout, 'format':'<green>{time:YYYY:MM:DD HH:mm:ss zz}</green> | <level>{level}: {message}</level>', 'level': args.log, }, ], ) input_file = args.input_file if input_file is None: root.withdraw() input_file = filedialog.askopenfilename(title='Select input Excel file', filetypes=[('Excel files', '.xlsx .xls',)]) output_file = args.output_file if output_file is None: root.withdraw() output_file = filedialog.asksaveasfilename( title='Save output as', filetypes=[('Csv files', '.csv',)], initialfile='output.csv' ) concurrency = args.concurrency if concurrency is None: root.withdraw() concurrency = simpledialog.askinteger( 'Set concurrency', 'Set the number of documents to request and process at the same time.', minvalue=1, maxvalue=200, initialvalue=20 ) concurrency = max(1, min(200, concurrency)) df = pd.read_excel(input_file) field_names = [ 'parcel_number', 'alt_parcel_number', 'county', 'township', 'property_address', 'owner', 'owner_address', 'tax_district', 'neighborhood', 'property_class', 'property_subclass', ] parcels = {} unprocessed_parcels = set() parcel_ids = df['PARCEL_C'] # Find unprocessed parcels if os.path.exists(output_file): logger.info('Checking input for unprocessed parcels') with open(output_file, 'r', newline='') as out_csv: out_reader = csv.DictReader(out_csv) with alive_bar(len(parcel_ids)) as progress: for row in out_reader: parcel_id = row['parcel_number'] owner = row['owner'] property_address = row['property_address'] if (not noneOrEmpty(owner) and 'property address' not in property_address.lower()) and parcel_id not in parcels: parcels[parcel_id] = row for parcel_id in parcel_ids: if str(parcel_id) not in parcels: unprocessed_parcels.add(parcel_id) progress() else: unprocessed_parcels = parcel_ids logger.info('{count} unprocessed parcels', count=len(unprocessed_parcels)) broken_parcels = set() # Process unprocessed parcels logger.info('Processing parcels. Writing to {file}. This may take a while...', file=output_file) with open(output_file, 'w', newline='') as out_csv: out_writer = csv.DictWriter(out_csv, fieldnames=field_names) # Set up file out_writer.writeheader() for processed_parcel in parcels.values(): out_writer.writerow(processed_parcel) out_csv.flush() with alive_bar(len(unprocessed_parcels)) as progress, ThreadPool(concurrency) as pool: for result in pool.imap(get_result_with_context(broken_parcels), unprocessed_parcels): try: out_writer.writerow(result) out_csv.flush() progress() except Exception as e: print(e) progress() broken_file = None # Report broken parcels if len(broken_parcels) > 0: path, file = os.path.split(output_file) filename = os.path.join(path, 'broken_parcels.csv') logger.warning('Some parcels are broken. Writing their ids to \"{file}\"', file=filename) with open(filename, 'w', newline='') as broken_csv: out_writer = csv.DictWriter(broken_csv, fieldnames=['broken_parcel_id']) out_writer.writeheader() for parcel_id in broken_parcels: out_writer.writerow({ 'broken_parcel_id': parcel_id }) broken_file = filename # Clean up files logger.info('Cleaning temporary files') for rootpath, dirs, files in os.walk(TMP_DIR, topdown=False): for name in files: os.remove(os.path.join(rootpath, name)) for name in dirs: os.rmdir(os.path.join(rootpath, name)) os.rmdir(TMP_DIR) # Post-process output path, ext = os.path.splitext(output_file) post_processed_output_filename = path + '_post_processed' + ext logger.info('Post-processing output to {file}', file=post_processed_output_filename) rows = [] with open(output_file, 'r', newline='') as output_file: out_reader = csv.DictReader(output_file) for row in out_reader: rows.append(row) with open(post_processed_output_filename, 'w', newline='') as outfile: post_processed_field_names = field_names + [ 'property_address_owner_address_similarity' ] outwriter = csv.DictWriter(outfile, fieldnames=post_processed_field_names) outwriter.writeheader() with alive_bar(len(rows)) as progress: for row in rows: processed_row = row processed_row['property_address'] = clean_address(processed_row['property_address']) processed_row['owner_address'] = clean_address(processed_row['owner_address']) processed_row['property_address_owner_address_similarity'] = similarity(row['property_address'], row['owner_address']) outwriter.writerow(processed_row) outfile.flush() progress() broken_message = '' if not noneOrEmpty(broken_file): broken_message = '\nBroken parcels written to file: {}'.format(broken_file) tk.messagebox.showinfo( 'badman-scraper', '''Processing complete! Processed {} files Output to files: "{}" and "{}"{}'''.format( len(parcel_ids), output_file.name, post_processed_output_filename, broken_message ), ) except Exception as e: root.withdraw() tk.messagebox.showerror('badman-scraper', '{}'.format(e)) raise e
41.273632
167
0.566056
0205d1fa24498ef2142fa494f41a70730ccd75ff
473
py
Python
boil/template/environment.py
soursoup/boil
dbd9711cc082d2fd357f9bb66311ba524102d2e7
[ "MIT" ]
4
2018-04-01T18:02:14.000Z
2022-02-28T16:58:37.000Z
boil/template/environment.py
bzurkowski/boil
dbd9711cc082d2fd357f9bb66311ba524102d2e7
[ "MIT" ]
null
null
null
boil/template/environment.py
bzurkowski/boil
dbd9711cc082d2fd357f9bb66311ba524102d2e7
[ "MIT" ]
null
null
null
import jinja2 from boil.common import filters class Environment(jinja2.Environment): def __init__(self, package_name): loader = jinja2.PackageLoader(package_name) super(Environment, self).__init__( loader=loader, keep_trailing_newline=True, trim_blocks=True, lstrip_blocks=True) self._setup_filters() def _setup_filters(self): self.filters.update(filters.TEMPLATE_FILTERS.copy())
24.894737
60
0.668076
22f434fc3e638032d8123b8ec6e90228a56cd5ae
487
py
Python
sam/layer/python/liftlog/custom_encoder.py
nickznaj/lift-log
022f80c3daaaea268f162f55545e63277fde59d8
[ "MIT" ]
null
null
null
sam/layer/python/liftlog/custom_encoder.py
nickznaj/lift-log
022f80c3daaaea268f162f55545e63277fde59d8
[ "MIT" ]
null
null
null
sam/layer/python/liftlog/custom_encoder.py
nickznaj/lift-log
022f80c3daaaea268f162f55545e63277fde59d8
[ "MIT" ]
null
null
null
from decimal import Decimal import datetime import json class CustomEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, Decimal): if o % 1 != 0: return float(o) else: return int(o) elif isinstance(o, datetime.datetime): return o.strftime("%Y-%m-%d") elif isinstance(o, datetime.date): return o.strftime("%Y-%m-%d") return json.JSONEncoder.default(self, o)
28.647059
48
0.562628
46ced261fe7e78ab37a6f98b22eea860cf16a799
3,525
py
Python
-Loan-Defaulters/code.py
nishantmaru01/ga-learner-dsmp-repo
959fa690d32c4d06efa274cc9b69b06c6dd7ea0a
[ "MIT" ]
null
null
null
-Loan-Defaulters/code.py
nishantmaru01/ga-learner-dsmp-repo
959fa690d32c4d06efa274cc9b69b06c6dd7ea0a
[ "MIT" ]
null
null
null
-Loan-Defaulters/code.py
nishantmaru01/ga-learner-dsmp-repo
959fa690d32c4d06efa274cc9b69b06c6dd7ea0a
[ "MIT" ]
null
null
null
# -------------- #Importing header files import pandas as pd from sklearn.model_selection import train_test_split # Code starts here data=pd.read_csv(path) X=data.drop(['customer.id','paid.back.loan'],axis=1) y=data['paid.back.loan'] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size = 0.3,random_state = 0) # Code ends here # -------------- #Importing header files import matplotlib.pyplot as plt # Code starts here fully_paid=y_train.value_counts() fully_paid.plot(kind='bar') # Code ends here # -------------- #Importing header files import numpy as np from sklearn.preprocessing import LabelEncoder # Code starts here X_train['int.rate']=X_train['int.rate'].str.replace("%","").astype(float)/100 X_test['int.rate']=X_test['int.rate'].str.replace("%","").astype(float)/100 num_df=X_train.select_dtypes(exclude='object') cat_df=X_train.select_dtypes(include='object') # Code ends here # -------------- #Importing header files import seaborn as sns # Code starts here cols=num_df.columns fig ,axes=plt.subplots(nrows = 9 , ncols = 1) for i in range(9): axes[i]=sns.boxplot(x=y_train, y=num_df[cols[i]]) # Code ends here # -------------- # Code starts here cols=cat_df.columns fig ,axes=plt.subplots(nrows = 2 , ncols = 2) for i in range(2): for j in range(2): axes[i,j]=sns.countplot(x=X_train[cols[i*2+j]],hue=y_train) # Code ends here # -------------- #Importing header files from sklearn.tree import DecisionTreeClassifier # Code starts here for col in cat_df.columns: #Filling null values with 'NA' X_train[col].fillna('NA',inplace=True) #Initalising a label encoder object le=LabelEncoder() #Fitting and transforming the column in X_train with 'le' X_train[col]=le.fit_transform(X_train[col]) #Filling null values with 'NA' X_test[col].fillna('NA',inplace=True) #Fitting the column in X_test with 'le' X_test[col]=le.transform(X_test[col]) # Replacing the values of y_train y_train.replace({'No':0,'Yes':1},inplace=True) # Replacing the values of y_test y_test.replace({'No':0,'Yes':1},inplace=True) #Initialising 'Decision Tree' model model=DecisionTreeClassifier(random_state=0) #Training the 'Decision Tree' model model.fit(X_train, y_train) #Finding the accuracy of 'Decision Tree' model acc=model.score(X_test, y_test) #Printing the accuracy print(acc) # Code ends here # -------------- #Importing header files from sklearn.model_selection import GridSearchCV #Parameter grid parameter_grid = {'max_depth': np.arange(3,10), 'min_samples_leaf': range(10,50,10)} # Code starts here model_2=DecisionTreeClassifier(random_state=0) p_tree=GridSearchCV(estimator=model_2, param_grid=parameter_grid, cv=5) p_tree.fit(X_train,y_train) acc_2=p_tree.score(X_test,y_test) # Code ends here # -------------- #Importing header files from io import StringIO from sklearn.tree import export_graphviz from sklearn import tree from sklearn import metrics from IPython.display import Image import pydotplus # Code starts here dot_data=export_graphviz(decision_tree=p_tree.best_estimator_, out_file=None, feature_names=X.columns, filled = True,class_names=['loan_paid_back_yes','loan_paid_back_no']) graph_big=pydotplus.graph_from_dot_data(dot_data) # show graph - do not delete/modify the code below this line img_path = user_data_dir+'/file.png' graph_big.write_png(img_path) plt.figure(figsize=(20,15)) plt.imshow(plt.imread(img_path)) plt.axis('off') plt.show() # Code ends here
22.03125
172
0.719716
2eaeae5b653de99ab8b322973bae0d2745ad4c1c
154
py
Python
src/main.py
SergioSV96/MyOwnBlockchain
ee62ccedfa42b22ded3501557d5ad16d83329de0
[ "MIT" ]
1
2021-11-04T22:20:39.000Z
2021-11-04T22:20:39.000Z
src/main.py
SergioSV96/MyOwnBlockchain
ee62ccedfa42b22ded3501557d5ad16d83329de0
[ "MIT" ]
null
null
null
src/main.py
SergioSV96/MyOwnBlockchain
ee62ccedfa42b22ded3501557d5ad16d83329de0
[ "MIT" ]
null
null
null
from src.blockchain import Blockchain blockchain = Blockchain() blockchain.add_block("Second!") blockchain.add_block("Third!") print(blockchain)
19.25
38
0.75974
5abae6098056742e71eac805d6881655c858b488
2,439
py
Python
2020/util.py
vypxl/aoc
4187837ecd8bf7464efa4953588b8c53d5675cfb
[ "WTFPL" ]
1
2022-01-08T23:39:52.000Z
2022-01-08T23:39:52.000Z
2020/util.py
vypxl/aoc
4187837ecd8bf7464efa4953588b8c53d5675cfb
[ "WTFPL" ]
null
null
null
2020/util.py
vypxl/aoc
4187837ecd8bf7464efa4953588b8c53d5675cfb
[ "WTFPL" ]
2
2020-12-19T16:44:54.000Z
2020-12-19T19:00:55.000Z
from os.path import basename import re import itertools as it # pylint: disable=unused-import import numpy as np # pylint: disable=unused-import import networkx as nx # pylint: disable=unused-import import matplotlib.pyplot as plt # pylint: disable=unused-import from toolz.curried import * # pylint: disable=unused-wildcard-import import __main__ as mainmodule def get_day(): return re.findall(r"\d+", basename(mainmodule.__file__))[0] def data(day=None): return open(f"{day or get_day()}.in").read() def data_lines(day=None): return data(day).splitlines() def data_nums(day=None, by=None): return nums(data(day), by) def data_lines_nums(day=None, by=None): return list(map(lambda l: nums(l, by), data_lines(day=day))) def nums(s, by=None): if by is None: by = r"[-\d]+" return list(map(int, re.findall(by, s))) def call(f): return f() def init(xs): return xs[:-1] async def qCollect(q): xs = [] while not q.empty(): item = await q.get() xs.append(item) return xs async def qFill(q, xs): for x in xs: await q.put(x) return q def tr(s, a, b): return s.translate(str.maketrans(a, b)) def nx_from_node_list(nodes, directed=False, weighted=False): ctor = lambda x: nx.DiGraph(x, directed=True) if directed else nx.Graph if weighted: el = [(group[0], dest[0], { 'weight': dest[1] }) for group in nodes for dest in group[1] if dest] else: el = [(group[0], dest) for group in nodes for dest in group[1] if dest] return ctor(el) def nx_draw_graph(G, weighted=False): pos = nx.shell_layout(G) if weighted: edge_labels = dict([((u, v, ), d['weight']) for u, v, d in G.edges(data=True)]) nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) nx.draw(G, pos, arrows=True, with_labels=True, node_size=1800) plt.show() def np_print_grid(grid, chars): for i in range(grid.shape[0]): for j in range(grid.shape[1]): print(chars[grid[i, j]], end='') print('') lmap = compose(list, map) attr = curry(flip(getattr)) # pylint: disable=no-value-for-parameter mapattr = compose(map, attr) applyN = curry(lambda f, n, x: reduce(lambda x, f: f(x), [f] * n, x)) swap = lambda t: (t[1], t[0]) flatten = lambda l: [item for sublist in l for item in sublist] prod = reduce(lambda a, b: a * b) fst = lambda x: x[0] snd = lambda x: x[1] thd = lambda x: x[2]
29.385542
105
0.645346
7b6d9bea24f3b8938ef97c1125ff2b2eb5992cbf
574
py
Python
neighbor/urls.py
LewisNjagi/neighborhood
cbefac55b930999629dba202a784a096799949a4
[ "MIT" ]
null
null
null
neighbor/urls.py
LewisNjagi/neighborhood
cbefac55b930999629dba202a784a096799949a4
[ "MIT" ]
null
null
null
neighbor/urls.py
LewisNjagi/neighborhood
cbefac55b930999629dba202a784a096799949a4
[ "MIT" ]
2
2021-04-14T05:56:06.000Z
2021-04-15T14:20:02.000Z
from django.urls import path, include from . import views urlpatterns=[ path('',views.index,name = 'index'), path('profile/<str:username>/',views.profile,name = 'profile'), path('hoods/',views.hoods,name = 'hoods'), path('single_hood/<hood_id>',views.single_hood,name = 'single_hood'), path('results/',views.search_profile,name = 'results'), path('join_hood/<id>',views.join,name='join'), path('leave_hood/<id>',views.leave,name='leave'), path('api/profile/', views.ProfileList.as_view()), path('api/users/', views.UserList.as_view()), ]
41
73
0.667247
e8528ac4c8b1b91a44ff3ccd628ea7e9a7dc8c5f
35,020
py
Python
airflow/contrib/hooks/bigquery_hook.py
siyuan-platform/airflow
a6c28f34de52f9aa6b62111aac8fa586694e6807
[ "Apache-2.0" ]
null
null
null
airflow/contrib/hooks/bigquery_hook.py
siyuan-platform/airflow
a6c28f34de52f9aa6b62111aac8fa586694e6807
[ "Apache-2.0" ]
null
null
null
airflow/contrib/hooks/bigquery_hook.py
siyuan-platform/airflow
a6c28f34de52f9aa6b62111aac8fa586694e6807
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ from builtins import range from past.builtins import basestring import logging import time from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook from airflow.hooks.dbapi_hook import DbApiHook from apiclient.discovery import build, HttpError from pandas.io.gbq import GbqConnector, \ _parse_data as gbq_parse_data, \ _check_google_client_version as gbq_check_google_client_version, \ _test_google_api_imports as gbq_test_google_api_imports from pandas.tools.merge import concat logging.getLogger("bigquery").setLevel(logging.INFO) class BigQueryHook(GoogleCloudBaseHook, DbApiHook): """ Interact with BigQuery. This hook uses the Google Cloud Platform connection. """ conn_name_attr = 'bigquery_conn_id' def __init__(self, bigquery_conn_id='bigquery_default', delegate_to=None): super(BigQueryHook, self).__init__( conn_id=bigquery_conn_id, delegate_to=delegate_to) def get_conn(self): """ Returns a BigQuery PEP 249 connection object. """ service = self.get_service() project = self._get_field('project') return BigQueryConnection(service=service, project_id=project) def get_service(self): """ Returns a BigQuery service object. """ http_authorized = self._authorize() return build('bigquery', 'v2', http=http_authorized) def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df(self, bql, parameters=None): """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param bql: The BigQuery SQL to execute. :type bql: string """ service = self.get_service() project = self._get_field('project') connector = BigQueryPandasConnector(project, service) schema, pages = connector.run_query(bql) dataframe_list = [] while len(pages) > 0: page = pages.pop() dataframe_list.append(gbq_parse_data(schema, page)) if len(dataframe_list) > 0: return concat(dataframe_list, ignore_index=True) else: return gbq_parse_data(schema, []) class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__(self, project_id, service, reauth=False, verbose=False): gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose class BigQueryConnection(object): """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def close(self): """ BigQueryConnection does not have anything to close. """ pass def commit(self): """ BigQueryConnection does not support transactions. """ pass def cursor(self): """ Return a new :py:class:`Cursor` object using the connection. """ return BigQueryCursor(*self._args, **self._kwargs) def rollback(self): raise NotImplementedError( "BigQueryConnection does not have transactions") class BigQueryBaseCursor(object): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__(self, service, project_id): self.service = service self.project_id = project_id def run_query( self, bql, destination_dataset_table = False, write_disposition = 'WRITE_EMPTY', allow_large_results=False, udf_config = False, use_legacy_sql=True): """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param bql: The BigQuery SQL to execute. :type bql: string :param destination_dataset_table: The dotted <dataset>.<table> BigQuery table to save the query results. :param write_disposition: What to do if the table already exists in BigQuery. :param allow_large_results: Whether to allow large results. :type allow_large_results: boolean :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :type udf_config: list :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). :type use_legacy_sql: boolean """ configuration = { 'query': { 'query': bql, 'useLegacySql': use_legacy_sql } } if destination_dataset_table: assert '.' in destination_dataset_table, ( 'Expected destination_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(destination_dataset_table) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_dataset_table, default_project_id=self.project_id) configuration['query'].update({ 'allowLargeResults': allow_large_results, 'writeDisposition': write_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } }) if udf_config: assert isinstance(udf_config, list) configuration['query'].update({ 'userDefinedFunctionResources': udf_config }) return self.run_with_configuration(configuration) def run_extract( # noqa self, source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=',', print_header=True): """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted <dataset>.<table> BigQuery table to use as the source data. :type source_project_dataset_table: string :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: string :param export_format: File format to export. :type export_format: string :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: string :param print_header: Whether to print a header for a CSV file extract. :type print_header: boolean """ source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header return self.run_with_configuration(configuration) def run_copy(self, source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED'): """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the source data. Use a list if there are multiple source tables. If <project> is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: (project:|project.)<dataset>.<table> :type destination_project_dataset_table: string :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string """ source_project_dataset_tables = ( [source_project_dataset_tables] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') source_project_dataset_tables_fixup.append({ 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table }) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table } } } return self.run_with_configuration(configuration) def run_load(self, destination_project_dataset_table, schema_fields, source_uris, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=','): """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table> BigQuery table to load data into. If <project> is not included, project will be the project defined in the connection json. :type destination_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string """ destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table') configuration = { 'load': { 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'schema': { 'fields': schema_fields }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, } } if source_format == 'CSV': configuration['load']['skipLeadingRows'] = skip_leading_rows configuration['load']['fieldDelimiter'] = field_delimiter return self.run_with_configuration(configuration) def run_with_configuration(self, configuration): """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ jobs = self.service.jobs() job_data = { 'configuration': configuration } # Send query and wait for reply. query_reply = jobs \ .insert(projectId=self.project_id, body=job_data) \ .execute() job_id = query_reply['jobReference']['jobId'] job = jobs.get(projectId=self.project_id, jobId=job_id).execute() # Wait for query to finish. while not job['status']['state'] == 'DONE': logging.info('Waiting for job to complete: %s, %s', self.project_id, job_id) time.sleep(5) job = jobs.get(projectId=self.project_id, jobId=job_id).execute() # Check if job had errors. if 'errorResult' in job['status']: raise Exception( 'BigQuery job failed. Final error was: {}. The job was: {}'.format( job['status']['errorResult'], job ) ) return job_id def get_schema(self, dataset_id, table_id): """ Get the schema for a given datset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :return: a table schema """ tables_resource = self.service.tables() \ .get(projectId=self.project_id, datasetId=dataset_id, tableId=table_id) \ .execute() return tables_resource['schema'] def get_tabledata(self, dataset_id, table_id, max_results=None, page_token=None, start_index=None): """ Get the data of a given dataset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: map containing the requested rows. """ optional_params = {} if max_results: optional_params['maxResults'] = max_results if page_token: optional_params['pageToken'] = page_token if start_index: optional_params['startIndex'] = start_index return ( self.service.tabledata() .list( projectId=self.project_id, datasetId=dataset_id, tableId=table_id, **optional_params) .execute() ) def run_table_delete(self, deletion_dataset_table, ignore_if_missing=False): """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted (<project>.|<project>:)<dataset>.<table> that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: boolean :return: """ assert '.' in deletion_dataset_table, ( 'Expected deletion_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(deletion_dataset_table) deletion_project, deletion_dataset, deletion_table = \ _split_tablename(table_input=deletion_dataset_table, default_project_id=self.project_id) try: tables_resource = self.service.tables() \ .delete(projectId=deletion_project, datasetId=deletion_dataset, tableId=deletion_table) \ .execute() logging.info('Deleted table %s:%s.%s.', deletion_project, deletion_dataset, deletion_table) except HttpError: if not ignore_if_missing: raise Exception( 'Table deletion failed. Table does not exist.') else: logging.info('Table does not exist. Skipping.') def run_table_upsert(self, dataset_id, table_resource, project_id=None): """ creates a new, empty table in the dataset; If the table already exists, update the existing table. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ # check to see if the table exists table_id = table_resource['tableReference']['tableId'] project_id = project_id if project_id is not None else self.project_id tables_list_resp = self.service.tables().list(projectId=project_id, datasetId=dataset_id).execute() while True: for table in tables_list_resp.get('tables', []): if table['tableReference']['tableId'] == table_id: # found the table, do update logging.info('table %s:%s.%s exists, updating.', project_id, dataset_id, table_id) return self.service.tables().update(projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() # If there is a next page, we need to check the next page. if 'nextPageToken' in tables_list_resp: tables_list_resp = self.service.tables()\ .list(projectId=project_id, datasetId=dataset_id, pageToken=tables_list_resp['nextPageToken'])\ .execute() # If there is no next page, then the table doesn't exist. else: # do insert logging.info('table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id) return self.service.tables().insert(projectId=project_id, datasetId=dataset_id, body=table_resource).execute() def run_grant_dataset_view_access(self, source_dataset, view_dataset, view_table, source_project = None, view_project = None): """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param source_project: the project of the source dataset. If None, self.project_id will be used. :type source_project: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ # Apply default values to projects source_project = source_project if source_project else self.project_id view_project = view_project if view_project else self.project_id # we don't want to clobber any existing accesses, so we have to get # info on the dataset before we can add view access source_dataset_resource = self.service.datasets().get(projectId=source_project, datasetId=source_dataset).execute() access = source_dataset_resource['access'] if 'access' in source_dataset_resource else [] view_access = {'view': {'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table}} # check to see if the view we want to add already exists. if view_access not in access: logging.info('granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) access.append(view_access) return self.service.datasets().patch(projectId=source_project, datasetId=source_dataset, body={'access': access}).execute() else: # if view is already in access, do nothing. logging.info('table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset) return source_dataset_resource class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__(self, service, project_id): super(BigQueryCursor, self).__init__(service=service, project_id=project_id) self.buffersize = None self.page_token = None self.job_id = None self.buffer = [] self.all_pages_loaded = False @property def description(self): """ The schema description method is not currently implemented. """ raise NotImplementedError def close(self): """ By default, do nothing """ pass @property def rowcount(self): """ By default, return -1 to indicate that this is not supported. """ return -1 def execute(self, operation, parameters=None): """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: string :param parameters: Parameters to substitute into the query. :type parameters: dict """ bql = _bind_parameters(operation, parameters) if parameters else operation self.job_id = self.run_query(bql) def executemany(self, operation, seq_of_parameters): """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: string :param parameters: List of dictionary parameters to substitute into the query. :type parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def fetchone(self): """ Fetch the next row of a query result set. """ return self.next() def next(self): """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if len(self.buffer) == 0: if self.all_pages_loaded: return None query_results = ( self.service.jobs() .getQueryResults( projectId=self.project_id, jobId=self.job_id, pageToken=self.page_token) .execute() ) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = ([ _bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f']) ]) self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.page_token = None self.job_id = None self.page_token = None return None return self.buffer.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break else: result.append(one) return result def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break else: result.append(one) return result def get_arraysize(self): """ Specifies the number of rows to fetch at a time with .fetchmany() """ return self._buffersize if self.buffersize else 1 def set_arraysize(self, arraysize): """ Specifies the number of rows to fetch at a time with .fetchmany() """ self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes): """ Does nothing by default """ pass def setoutputsize(self, size, column=None): """ Does nothing by default """ pass def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in parameters.iteritems(): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s): """ Helper method that escapes parameters to a SQL query. """ e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field, bq_type): """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER' or bq_type == 'TIMESTAMP': return int(string_field) elif bq_type == 'FLOAT': return float(string_field) elif bq_type == 'BOOLEAN': assert string_field in set(['true', 'false']) return string_field == 'true' else: return string_field def _split_tablename(table_input, default_project_id, var_name=None): assert default_project_id is not None, "INTERNAL: No default project is specified" def var_print(var_name): if var_name is None: return "" else: return "Format exception for {var}: ".format(var=var_name) cmpt = table_input.split(':') if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception(( '{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) cmpt = rest.split('.') if len(cmpt) == 3: assert project_id is None, ( "{var}Use either : or . to specify project" ).format(var=var_print(var_name)) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception(( '{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) if project_id is None: if var_name is not None: logging.info( 'project not included in {var}: ' '{input}; using project "{project}"'.format( var=var_name, input=table_input, project=default_project_id)) project_id = default_project_id return project_id, dataset_id, table_id
39.795455
99
0.604483
6a9d3727fac72c95f23838e45e0ddcbcadeab746
7,923
py
Python
features/steps/knowledge-source-steps.py
YaphetKG/translator-testing-framework
e6125d8c35a90588c8b5701e340e427a8e0991c9
[ "BSD-3-Clause" ]
5
2019-08-06T18:09:02.000Z
2020-07-16T19:58:31.000Z
features/steps/knowledge-source-steps.py
YaphetKG/translator-testing-framework
e6125d8c35a90588c8b5701e340e427a8e0991c9
[ "BSD-3-Clause" ]
1
2019-08-20T21:12:18.000Z
2019-08-20T21:12:18.000Z
features/steps/knowledge-source-steps.py
YaphetKG/translator-testing-framework
e6125d8c35a90588c8b5701e340e427a8e0991c9
[ "BSD-3-Clause" ]
15
2019-07-10T18:10:32.000Z
2020-01-13T16:22:45.000Z
from behave import given, when, then import json import requests import jsonpath_rw import logging from contextlib import closing """ Knowldege-source tests """ @given('a knowledge source at "{url}"') def step_impl(context, url): """ Given a base URL of a knowledge source """ context.base_url = url @when('we fire "{query}" query') def step_impl(context, query): """ Fire a knowledge-source query """ url = context.base_url+query print('url:',url,'\n') with closing(requests.get(url)) as response: context.response = response context.response_json = response.json() @when('we fire "{query}" query with the following body') def step_impl(context, query): """ Fire a knowledge-source query """ url = context.base_url+query print('url:',url,'\n') with closing(requests.post(url, json=json.loads(context.text))) as response: context.response = response context.response_json = response.json() @then('the response contains the following entries in "{key}" of "{parent}"') def step_impl(context, key, parent): """ This step checks whether all values specified in the test are contained in the response """ entries = set() print('Collected entries:') for entry in context.response_json: print(' ', entry[parent][key]) entries.add(entry[parent][key]) print('Tested entries:') for row in context.table: print(' ', row[key]) assert row[key] in entries def _get_collected_entries(field_value): collected_entries = set() # Some fields may be a list of values if isinstance(field_value, list): for item in field_value: print(' ', item) collected_entries.add(item) else: # assume a simple scalar print(' ', field_value) collected_entries.add(field_value) return collected_entries def _aggregate_collected_entries(context, key): collected_entries = set() for entry in context.response_json: field_value = entry[key] [collected_entries.add(e) for e in _get_collected_entries(field_value)] return collected_entries @then('the response contains the following entries in the field "{key}"') def step_impl(context, key): """ This step checks whether all values specified in the test are contained within the field of the response """ print('Collected entries:') field_value = context.response_json[key] collected_entries = _get_collected_entries(field_value) print('Tested entries:') for row in context.table: value = row[key] print(' ', value) assert value in collected_entries @then('some entry in the response contains "{value}" in field "{key}"') def step_impl(context, value, key): """ This step checks whether all values specified in the test are contained in the response """ print('Collected entries:') collected_entries = _aggregate_collected_entries(context, key) print('Tested entry:') print(' ', value) assert value in collected_entries @then('some entry in the response contains one of the following values in field "{key}"') def step_impl(context, key): """ This step checks whether all values specified in the test are contained in the response """ print('Collected entries:') collected_entries = _aggregate_collected_entries(context, key) print('Tested entries:') for row in context.table: value = row[key] print(' ', value) assert value in collected_entries @then('the response entries contain the following entries in the field "{key}"') def step_impl(context, key): """ This step checks whether all values specified in the test are contained within the field of the response """ print('Collected entries:') collected_entries = _aggregate_collected_entries(context, key) print('Tested entries:') for row in context.table: value = row[key] print(' ', value) assert value in collected_entries @then('the response only contains the following entries in "{key}" of "{parent}"') def step_impl(context, key, parent): """ This step checks whether all values found in the response are contained in the test table """ collected_entries = set() print('Collected entries:') for row in context.table: field_value = row[key] # Some fields may be a list of values if isinstance(field_value, list): for item in field_value: print(' ', item) collected_entries.add(item) else: # assume a simple scalar print(' ', field_value) collected_entries.add(field_value) print('Tested entries:') tested_entries = set() for entry in context.response_json: field_value = entry.get(parent).get(key) if isinstance(field_value, list): for item in field_value: tested_entries.add(item) else: # assume a simple scalar tested_entries.add(field_value) for item in tested_entries: print(' ', item) assert item in collected_entries @then('the response only contains the following entries in "{key}"') def step_impl(context, key): """ This step checks whether all values found in the response are contained in the test table """ entries = set() print('Collected entries:') for row in context.table: print(' ', row[key]) entries.add(row[key]) print('Tested entries:') for entry in context.response_json: print(' ', entry[key]) assert entry[key] in entries @then('the size of the response is {size}') def step_impl(context, size): """ This step checks the size of the response """ assert len(context.response_json) == int(size) @then('the size of entry "{key}" is {size}') def step_impl(context, key, size): """ This step checks the size of the response """ assert len(context.response_json[key]) == int(size) @then('the response should have a field "{field}" with "{data_type}" "{value}"') def step_impl(context, field, data_type, value): """ The response should have a result with a field containing a defined value of a specified data type. """ result = context.response_json field_expr = jsonpath_rw.parse(field) fields = field_expr.find(result) assert len(fields) != 0 if data_type == "string": value = str(value) elif data_type == "integer": value = int(value) elif data_type == "float": value = float(value) elif data_type == "boolean": value = eval(value) else: logging.error("Unhandled data_type: {}".format(data_type)) assert False is_found = False for f in fields: if f.value == value: is_found = True break assert is_found is True @then('the response should have some entry with field "{field}" with "{data_type}" "{value}"') def step_impl(context, field, data_type, value): """ The response should have some entry with a field containing a defined value of a specified data type. """ field_expr = jsonpath_rw.parse(field) for entry in context.response_json: results = field_expr.find(entry) assert len(results) != 0 if data_type == "string": value = str(value) elif data_type == "integer": value = int(value) elif data_type == "float": value = float(value) elif data_type == "boolean": value = eval(value) else: logging.error("Unhandled data_type: {}".format(data_type)) assert False is_found = False for r in results: if r.value == value: is_found = True break assert is_found is True
30.011364
108
0.641929
35186548e4c5ef295c999ff259cf2ca3bb56e5ea
10,048
py
Python
nova_powervm/virt/powervm/event.py
openstack/nova-powervm
376d9493e2a10313068508daf9054d7ecf6d121f
[ "Apache-2.0" ]
24
2015-10-18T02:55:20.000Z
2021-11-17T11:43:51.000Z
nova_powervm/virt/powervm/event.py
openstack/nova-powervm
376d9493e2a10313068508daf9054d7ecf6d121f
[ "Apache-2.0" ]
null
null
null
nova_powervm/virt/powervm/event.py
openstack/nova-powervm
376d9493e2a10313068508daf9054d7ecf6d121f
[ "Apache-2.0" ]
12
2015-10-26T17:38:05.000Z
2021-07-21T12:45:19.000Z
# Copyright 2014, 2017 IBM Corp. # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from eventlet import greenthread from nova.compute import power_state from nova.compute import task_states from nova import context as ctx from nova import exception from nova.virt import event from oslo_concurrency import lockutils from oslo_log import log as logging from pypowervm import adapter as pvm_apt from pypowervm import util as pvm_util from pypowervm.wrappers import event as pvm_evt from nova_powervm.virt.powervm import vm LOG = logging.getLogger(__name__) _INST_ACTIONS_HANDLED = {'PartitionState', 'NVRAM'} _NO_EVENT_TASK_STATES = { task_states.SPAWNING, task_states.RESIZE_MIGRATING, task_states.RESIZE_REVERTING, task_states.REBOOTING, task_states.REBOOTING_HARD, task_states.REBOOT_STARTED_HARD, task_states.PAUSING, task_states.UNPAUSING, task_states.SUSPENDING, task_states.RESUMING, task_states.POWERING_OFF, task_states.POWERING_ON, task_states.RESCUING, task_states.UNRESCUING, task_states.REBUILDING, task_states.REBUILD_SPAWNING, task_states.MIGRATING, task_states.DELETING, task_states.SOFT_DELETING, task_states.RESTORING, task_states.SHELVING, task_states.SHELVING_OFFLOADING, task_states.UNSHELVING, } _LIFECYCLE_EVT_LOCK = 'pvm_lifecycle_event' _CONTEXT = None def _get_instance(inst, pvm_uuid): global _CONTEXT if inst is not None: return inst with lockutils.lock('get_context_once'): if _CONTEXT is None: _CONTEXT = ctx.get_admin_context() LOG.debug('PowerVM Nova Event Handler: Getting inst for id %s', pvm_uuid) return vm.get_instance(_CONTEXT, pvm_uuid) class PowerVMNovaEventHandler(pvm_apt.WrapperEventHandler): """Used to receive and handle events from PowerVM and convert to Nova.""" def __init__(self, driver): self._driver = driver self._lifecycle_handler = PowerVMLifecycleEventHandler(self._driver) self._uuid_cache = {} def _get_inst_uuid(self, inst, pvm_uuid): """Retrieve instance UUID from cache keyed by the PVM UUID. :param inst: the instance object. :param pvm_uuid: the PowerVM uuid of the vm :return inst: the instance object. :return inst_uuid: The nova instance uuid """ inst_uuid = self._uuid_cache.get(pvm_uuid) if not inst_uuid: inst = _get_instance(inst, pvm_uuid) inst_uuid = inst.uuid if inst else None if inst_uuid: self._uuid_cache[pvm_uuid] = inst_uuid return inst, inst_uuid def _handle_inst_event(self, inst, pvm_uuid, details): """Handle an instance event. This method will check if an instance event signals a change in the state of the instance as known to OpenStack and if so, trigger an event upward. :param inst: the instance object. :param pvm_uuid: the PowerVM uuid of the vm :param details: Parsed Details from the event :return inst: The nova instance, which may be None """ # If the NVRAM has changed for this instance and a store is configured. if 'NVRAM' in details and self._driver.nvram_mgr is not None: # Schedule the NVRAM for the instance to be stored. # We'll need to fetch the instance object in the event we don't # have the object and the UUID isn't cached. By updating the # object reference here and returning it the process method will # save the object in its cache. inst, inst_uuid = self._get_inst_uuid(inst, pvm_uuid) if inst_uuid is None: return None LOG.debug('Handle NVRAM event for PowerVM LPAR %s', pvm_uuid) self._driver.nvram_mgr.store(inst_uuid) # If the state of the vm changed see if it should be handled if 'PartitionState' in details: self._lifecycle_handler.process(inst, pvm_uuid) return inst def process(self, events): """Process the event that comes back from PowerVM. :param events: The pypowervm Event wrapper. """ inst_cache = {} for pvm_event in events: try: if pvm_event.etype in (pvm_evt.EventType.NEW_CLIENT, pvm_evt.EventType.CACHE_CLEARED): # TODO(efried): Should we pull and check all the LPARs? self._uuid_cache.clear() continue # See if this uri (from data) ends with a PowerVM UUID. pvm_uuid = pvm_util.get_req_path_uuid( pvm_event.data, preserve_case=True) if pvm_uuid is None: continue # Is it an instance event? if not pvm_event.data.endswith('LogicalPartition/' + pvm_uuid): continue # Are we deleting? Meaning we need to clear the cache entry. if pvm_event.etype == pvm_evt.EventType.DELETE_URI: try: del self._uuid_cache[pvm_uuid] except KeyError: pass continue # Pull all the pieces of the event. details = (pvm_event.detail.split(',') if pvm_event.detail else []) # Is it one we care about? if not _INST_ACTIONS_HANDLED & set(details): continue inst_cache[pvm_event.data] = self._handle_inst_event( inst_cache.get(pvm_event.data), pvm_uuid, details) except Exception: # We deliberately keep this exception clause as broad as # possible - we don't want *any* error to stop us from # attempting to process the next event. LOG.exception('Unable to process PowerVM event %s', str(pvm_event)) class PowerVMLifecycleEventHandler(object): """Because lifecycle events are weird, we need our own handler. Lifecycle events that come back from the hypervisor are very 'surface value'. They tell you that it started, stopped, migrated, etc... However, multiple events may come in quickly that represent a bigger action. For instance a restart will generate a stop and then a start rapidly. Nova being asynchronous can flip those events around. Where the start would flow through before the stop. That is bad. We need to make sure that these events that can be linked to bigger lifecycle events can be wiped out if the converse action is run against it. Ex. Don't send a stop event up to nova if you received a start event shortly after it. """ def __init__(self, driver): self._driver = driver self._delayed_event_threads = {} @lockutils.synchronized(_LIFECYCLE_EVT_LOCK) def _emit_event(self, pvm_uuid, inst): # Get the current state try: pvm_state = vm.get_vm_qp(self._driver.adapter, pvm_uuid, 'PartitionState') except exception.InstanceNotFound: LOG.debug("LPAR %s was deleted while event was delayed.", pvm_uuid, instance=inst) return LOG.debug('New state %s for partition %s', pvm_state, pvm_uuid, instance=inst) inst = _get_instance(inst, pvm_uuid) if inst is None: LOG.debug("Not emitting LifecycleEvent: no instance for LPAR %s", pvm_uuid) return # If we're in the middle of a nova-driven operation, no event necessary if inst.task_state in _NO_EVENT_TASK_STATES: LOG.debug("Not emitting LifecycleEvent: instance task_state is %s", inst.task_state, instance=inst) return # See if it's really a change of state from what OpenStack knows transition = vm.translate_event(pvm_state, inst.power_state) if transition is None: LOG.debug("No LifecycleEvent necessary for pvm_state(%s) and " "power_state(%s).", pvm_state, power_state.STATE_MAP[inst.power_state], instance=inst) return # Log as if normal event lce = event.LifecycleEvent(inst.uuid, transition) LOG.info('Sending LifecycleEvent for instance state change to: %s', pvm_state, instance=inst) self._driver.emit_event(lce) # Delete out the queue del self._delayed_event_threads[pvm_uuid] @lockutils.synchronized(_LIFECYCLE_EVT_LOCK) def process(self, inst, pvm_uuid): """Emits the event, or adds it to the queue for delayed emission. :param inst: The nova instance. May be None. :param pvm_uuid: The PowerVM LPAR UUID. """ # Cancel out the current delay event. Can happen as it goes # from SHUTTING_DOWN to NOT_ACTIVATED, multiple delayed events # can come in at once. Only want the last. if pvm_uuid in self._delayed_event_threads: self._delayed_event_threads[pvm_uuid].cancel() # Spawn in the background elem = greenthread.spawn_after(15, self._emit_event, pvm_uuid, inst) self._delayed_event_threads[pvm_uuid] = elem
38.945736
79
0.640625
97cad1e3d62d043708cb4a9ee2802ac046580b1d
559
py
Python
davarocr/davarocr/davar_rcg/models/recognizors/__init__.py
icedream2/DAVAR-Lab-OCR
c8b82f45516850eeadcab2739fb2a4292f2fdca1
[ "Apache-2.0" ]
387
2021-01-02T07:50:15.000Z
2022-03-31T04:30:03.000Z
davarocr/davarocr/davar_rcg/models/recognizors/__init__.py
icedream2/DAVAR-Lab-OCR
c8b82f45516850eeadcab2739fb2a4292f2fdca1
[ "Apache-2.0" ]
70
2021-05-04T18:28:18.000Z
2022-03-31T14:14:52.000Z
davarocr/davarocr/davar_rcg/models/recognizors/__init__.py
icedream2/DAVAR-Lab-OCR
c8b82f45516850eeadcab2739fb2a4292f2fdca1
[ "Apache-2.0" ]
83
2021-01-05T08:28:26.000Z
2022-03-31T07:14:03.000Z
""" ################################################################################################## # Copyright Info : Copyright (c) Davar Lab @ Hikvision Research Institute. All rights reserved. # Filename : __init__.py # Abstract : # Current Version: 1.0.0 # Date : 2021-05-01 ################################################################################################## """ from .general import GeneralRecognizor from .rf_learning import RFLRecognizor __all__ = [ 'GeneralRecognizor', 'RFLRecognizor', ]
31.055556
98
0.418605
2beb532b8d9deb40b0e8fb339fd926126f15f204
1,739
py
Python
CAPG/Reacher/capg_swimmer.py
Mee321/HAPG_exp
ccd0d92ad2ffcd8438efbd6bc09123a4c3aafabe
[ "MIT" ]
null
null
null
CAPG/Reacher/capg_swimmer.py
Mee321/HAPG_exp
ccd0d92ad2ffcd8438efbd6bc09123a4c3aafabe
[ "MIT" ]
null
null
null
CAPG/Reacher/capg_swimmer.py
Mee321/HAPG_exp
ccd0d92ad2ffcd8438efbd6bc09123a4c3aafabe
[ "MIT" ]
null
null
null
import gym from garage.baselines import LinearFeatureBaseline from garage.theano.baselines import GaussianMLPBaseline from garage.baselines import ZeroBaseline from garage.envs import normalize from garage.envs.box2d import CartpoleEnv from garage.envs.mujoco import SwimmerEnv from garage.theano.algos.capg import CAPG from garage.theano.envs import TheanoEnv from garage.theano.policies import GaussianMLPPolicy from garage.theano.baselines import GaussianMLPBaseline from garage.misc.instrument import run_experiment from garage.misc.ext import set_seed import numpy as np for i in range(5): seed = np.random.randint(1,10000) env_name = "CAPG_Reacher" hidden_sizes = (32, 32) env = TheanoEnv(normalize(gym.make("Reacher-v2"))) policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=hidden_sizes) backup_policy = GaussianMLPPolicy(env.spec, hidden_sizes=hidden_sizes) mix_policy = GaussianMLPPolicy(env.spec, hidden_sizes=hidden_sizes) pos_eps_policy = GaussianMLPPolicy(env.spec, hidden_sizes=hidden_sizes) neg_eps_policy = GaussianMLPPolicy(env.spec, hidden_sizes=hidden_sizes) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = CAPG( env=env, policy=policy, backup_policy=backup_policy, mix_policy=mix_policy, pos_eps_policy=pos_eps_policy, neg_eps_policy=neg_eps_policy, n_timestep=1e6, learning_rate=0.02, batch_size=5000, minibatch_size=500, n_sub_itr = 10, center_adv=True, baseline=baseline, max_path_length=500, decay_learing_rate=True, discount=0.99, log_dir='./capg/' + env_name + "seed" + str(seed) + '/', ) algo.train()
34.78
76
0.734905
909b284aa8efb4729ee3fd36cbe1a608dbafb85a
7,161
py
Python
braindrAnalysis/braindrAnalysis.py
amitasviper/braindr-analysis
e16ef5042d8b369be7ac68b160dd3f886e3ddf6d
[ "MIT" ]
1
2018-08-10T16:33:17.000Z
2018-08-10T16:33:17.000Z
braindrAnalysis/braindrAnalysis.py
amitasviper/braindr-analysis
e16ef5042d8b369be7ac68b160dd3f886e3ddf6d
[ "MIT" ]
null
null
null
braindrAnalysis/braindrAnalysis.py
amitasviper/braindr-analysis
e16ef5042d8b369be7ac68b160dd3f886e3ddf6d
[ "MIT" ]
3
2018-07-10T18:00:24.000Z
2019-08-31T22:53:43.000Z
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd import simplejson as json import os from .due import due, Doi from xgboost import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.model_selection import StratifiedKFold __all__ = ["aggregate_braindr_votes", "model"] # Use duecredit (duecredit.org) to provide a citation to relevant work to # be cited. This does nothing, unless the user has duecredit installed, # And calls this with duecredit (as in `python -m duecredit script.py`): due.cite(Doi("10.1167/13.9.30"), description="Analysis for braindr", tags=["reference-implementation"], path='braindr-results') log = {} def model(bdr_pivot, learning_rates=[0.1], n_estimators=[200], max_depth=[2], test_size=0.33): # bdr_pivot = pd.DataFrame(braindr_pivot) X = bdr_pivot[[c for c in bdr_pivot.columns if c not in ['plain_average', 'truth']]].values y = bdr_pivot.truth.values log["X_shape"] = X.shape log['y_shape'] = y.shape seed = 7 # test_size = 0.33 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=seed, stratify=y) log['X_train_shape'] = X_train.shape # make sure everyone has a vote in the train and test assert(np.isfinite(X_train).sum(0).all()), 'not everyone has a vote' assert(np.isfinite(X_test).sum(0).all()), 'not everyone has a vote' model = XGBClassifier() # run the grid search param_grid = dict(learning_rate=learning_rates, max_depth=max_depth, n_estimators=n_estimators) kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed) grid_search = GridSearchCV(model, param_grid, scoring="neg_log_loss", n_jobs=-1, cv=kfold) grid_result = grid_search.fit(X_train, y_train) # results log["Best: %f using %s"] = (grid_result.best_score_, grid_result.best_params_) y_pred_prob = grid_result.predict_proba(X_test)[:, 1] log['y_pred_prob'] = y_pred_prob.tolist() log["y_test"] = y_test.tolist() B = grid_result.best_estimator_.get_booster() fscores = B.get_fscore() fdf = pd.DataFrame([fscores]).T.rename(columns={0: 'F'}) not_col = ['plain_average', 'truth'] users = [c for c in bdr_pivot.columns if c not in not_col] fdf['user'] = fdf.index.map(lambda x: users[int(x[1:])]) fdf.sort_values('F', inplace=True) log['user_importance'] = fdf[::-1].to_json(orient='records') return grid_result def aggregate_braindr_votes(braindr_data, pass_labels, fail_labels, learning_rates=[0.1], n_estimators=[200], max_depth=[2], test_size=0.33): """ Function that aggregates braindr data using the XGBoost model Parameters ---------- braindr_data : string. This is the path to the braindr data downloaded from firebase or a URL to the data pass_labels : list of strings a list of names that are considered passing fail_labels : list of strings a list of names that are considered failing learning_rates : list of floats a list of learning rates to grid search in XGBoost n_estimators : list of ints a list of number of estimators to grid search in XGBoost max_depth : list of ints a list of maximum tree depth for to grid search in XGBoost test_size : float fraction of data to put into test set Returns ------- anon_path : string path to anonymized data """ assert isinstance(braindr_data, str), "input a string path to\ braindr_data" if braindr_data.startswith('http'): braindr_df = pd.read_csv(braindr_data) else: assert(os.path.exists(braindr_data)), "please give a valid path\ to braindr data" braindr_df = pd.read_table(braindr_data) braindr_df['subject_name'] = braindr_df.image_id.map(lambda x: x.split('__')[0]) braindr_df_pass_subset = braindr_df[braindr_df.subject_name.isin(pass_labels)] braindr_df_fail_subset = braindr_df[braindr_df.subject_name.isin(fail_labels)] braindr_df_pass_subset['truth'] = 1 braindr_df_fail_subset['truth'] = 0 braindr_subset = braindr_df_pass_subset.append(braindr_df_fail_subset, ignore_index=True) # count users contributions user_counts = braindr_subset.groupby('username')\ .apply(lambda x: x.shape[0]) username_keep = user_counts[user_counts >= user_counts.describe()['75%']]\ .index.values bdr = braindr_subset[braindr_subset.username.isin(username_keep)] bdr_pivot = braindr_subset.pivot_table(columns="username", index='image_id', values='vote', aggfunc=np.mean) uname_img_counts = pd.DataFrame() for uname in bdr_pivot.columns: uname_img_counts.loc[uname, 'counts'] = (pd.isnull(bdr_pivot[uname]) == False).sum() username_keep = uname_img_counts[uname_img_counts.counts >= uname_img_counts.describe().loc['75%']['counts']] username_keep = username_keep.index.values bdr = braindr_subset[braindr_subset.username.isin(username_keep)] bdr_pivot = bdr.pivot_table(columns="username", index='image_id', values='vote', aggfunc=np.mean) truth_vals = bdr.groupby('image_id').apply(lambda x: x.truth.values[0]) bdr_pivot['truth'] = truth_vals plain_avg = bdr_pivot[bdr_pivot.columns[:-1]].mean(1) bdr_pivot['plain_average'] = plain_avg log['bdr_pivot'] = bdr_pivot.to_json(orient='columns') grid_result = model(bdr_pivot, learning_rates=learning_rates, n_estimators=n_estimators, max_depth=max_depth, test_size=test_size) modelUsers = [c for c in bdr_pivot.columns if c not in ['plain_average', 'truth']] braindr_full_pivot = braindr_df[braindr_df.username.isin(modelUsers)]\ .pivot_table(columns='username', index='image_id', values='vote', aggfunc=np.mean) # braindr_full_pivot = braindr_full_pivot[modelUsers] log['braindr_full_pivot_shape'] = braindr_full_pivot.shape X_all = braindr_full_pivot.values y_all_pred = grid_result.best_estimator_.predict_proba(X_all) # model.predict_proba(X_all) plain_avg = braindr_full_pivot.mean(1) braindr_full_pivot['average_label'] = plain_avg braindr_full_pivot['xgboost_label'] = y_all_pred[:, 1] log['output'] = braindr_full_pivot.to_json(orient='columns') return log # braindr_full_pivot.to_json(orient='columns')
40.230337
113
0.641391
30b9b4ecdbc1d610f0347ce3be7152ab0e1299d3
18,639
py
Python
dpnp/dpnp_iface_statistics.py
Rubtsowa/dpnp
ef404c0f284b0c508ed1e556e140f02f76ae5551
[ "BSD-2-Clause" ]
null
null
null
dpnp/dpnp_iface_statistics.py
Rubtsowa/dpnp
ef404c0f284b0c508ed1e556e140f02f76ae5551
[ "BSD-2-Clause" ]
null
null
null
dpnp/dpnp_iface_statistics.py
Rubtsowa/dpnp
ef404c0f284b0c508ed1e556e140f02f76ae5551
[ "BSD-2-Clause" ]
null
null
null
# cython: language_level=3 # distutils: language = c++ # -*- coding: utf-8 -*- # ***************************************************************************** # Copyright (c) 2016-2020, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** """ Interface of the statistics function of the DPNP Notes ----- This module is a face or public interface file for the library it contains: - Interface functions - documentation for the functions - The functions parameters check """ import numpy from dpnp.dpnp_algo import * from dpnp.dparray import dparray from dpnp.dpnp_utils import * import dpnp __all__ = [ 'amax', 'amin', 'average', 'correlate', 'cov', 'max', 'mean', 'median', 'min', 'std', 'var', ] def amax(input, axis=None, out=None): """ Return the maximum of an array or maximum along an axis. For full documentation refer to :obj:`numpy.amax`. See Also -------- :obj:`dpnp.amin` : The minimum value of an array along a given axis, propagating any NaNs. :obj:`dpnp.nanmax` : The maximum value of an array along a given axis, ignoring any NaNs. :obj:`dpnp.maximum` : Element-wise maximum of two arrays, propagating any NaNs. :obj:`dpnp.fmax` : Element-wise maximum of two arrays, ignoring any NaNs. :obj:`dpnp.argmax` : Return the indices of the maximum values. :obj:`dpnp.nanmin` : Return minimum of an array or minimum along an axis, ignoring any NaNs. :obj:`dpnp.minimum` : Element-wise minimum of array elements. :obj:`dpnp.fmin` : Element-wise minimum of array elements. Notes ----- This function works exactly the same as :obj:`dpnp.max`. """ return max(input, axis=axis, out=out) def amin(input, axis=None, out=None): """ Return the minimum of an array or minimum along an axis. For full documentation refer to :obj:`numpy.amin`. See Also -------- :obj:`dpnp.amax` : The maximum value of an array along a given axis, propagating any NaNs. :obj:`dpnp.nanmin` : Return minimum of an array or minimum along an axis, ignoring any NaNs. :obj:`dpnp.minimum` : Element-wise minimum of array elements. :obj:`dpnp.fmin` : Element-wise minimum of array elements. :obj:`dpnp.argmin` : Return the indices of the minimum values. :obj:`dpnp.nanmax` : The maximum value of an array along a given axis, ignoring any NaNs. :obj:`dpnp.maximum` : Element-wise maximum of two arrays, propagating any NaNs. :obj:`dpnp.fmax` : Element-wise maximum of two arrays, ignoring any NaNs. Notes ----- This function works exactly the same as :obj:`dpnp.min`. """ return min(input, axis=axis, out=out) def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. For full documentation refer to :obj:`numpy.average`. Limitations ----------- Input array is supported as :obj:`dpnp.ndarray`. Prameters ``axis`` is supported only with default value ``None``. Prameters ``weights`` is supported only with default value ``None``. Prameters ``returned`` is supported only with default value ``False``. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- :obj:`dpnp.mean` : Compute the arithmetic mean along the specified axis. Examples -------- >>> import dpnp as np >>> data = np.arange(1, 5) >>> [i for i in data] [1, 2, 3, 4] >>> np.average(data) 2.5 """ if not use_origin_backend(a): if not isinstance(a, dparray): pass elif axis is not None: pass elif weights is not None: pass elif returned: pass else: array_avg = dpnp_average(a) # scalar returned if array_avg.shape == (1,): return array_avg.dtype.type(array_avg[0]) return array_avg return call_origin(numpy.average, a, axis, weights, returned) def correlate(a, v, mode='valid'): """ Cross-correlation of two 1-dimensional sequences. For full documentation refer to :obj:`numpy.correlate`. Limitations ----------- Input arrays are supported as :obj:`dpnp.ndarray`. Size and shape of input arrays are supported to be equal. Prameters ``mode`` is supported only with default value ``"valid``. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- :obj:`dpnp.convolve` : Discrete, linear convolution of two one-dimensional sequences. Examples -------- >>> import dpnp as np >>> x = np.correlate([1, 2, 3], [0, 1, 0.5]) >>> [i for i in x] [3.5] """ if not use_origin_backend(a): if not isinstance(a, dparray): pass elif not isinstance(v, dparray): pass elif a.size != v.size or a.size == 0: pass elif a.shape != v.shape: pass elif mode != 'valid': pass else: return dpnp_correlate(a, v) return call_origin(numpy.correlate, a, v, mode=mode) def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None): """ Estimate a covariance matrix, given data and weights. For full documentation refer to :obj:`numpy.cov`. Limitations ----------- Input array ``m`` is supported as :obj:`dpnp.ndarray`. Dimension of input array ``m`` is limited by ``m.ndim > 2``. Size and shape of input arrays are supported to be equal. Prameters ``y`` is supported only with default value ``None``. Prameters ``rowvar`` is supported only with default value ``True``. Prameters ``bias`` is supported only with default value ``False``. Prameters ``ddof`` is supported only with default value ``None``. Prameters ``fweights`` is supported only with default value ``None``. Prameters ``aweights`` is supported only with default value ``None``. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. .. seealso:: :obj:`dpnp.corrcoef` normalized covariance matrix. Examples -------- >>> import dpnp as np >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x.shape (2, 3) >>> [i for i in x] [0, 1, 2, 2, 1, 0] >>> out = np.cov(x) >>> out.shape (2, 2) >>> [i for i in out] [1.0, -1.0, -1.0, 1.0] """ if not use_origin_backend(m): if not isinstance(m, dparray): pass elif m.ndim > 2: pass elif y is not None: pass elif not rowvar: pass elif bias: pass elif ddof is not None: pass elif fweights is not None: pass elif aweights is not None: pass else: return dpnp_cov(m) return call_origin(numpy.cov, m, y, rowvar, bias, ddof, fweights, aweights) def max(input, axis=None, out=None, keepdims=numpy._NoValue, initial=numpy._NoValue, where=numpy._NoValue): """ Return the maximum of an array or maximum along an axis. Limitations ----------- Input array is supported as :obj:`dpnp.ndarray`. Otherwise the function will be executed sequentially on CPU. Prameters ``out`` is supported only with default value ``None``. Input array data types are limited by supported DPNP :ref:`Data types`. Examples -------- >>> import dpnp as np >>> a = np.arange(4).reshape((2,2)) >>> a.shape (2, 2) >>> [i for i in a] [0, 1, 2, 3] >>> np.max(a) 3 """ if not use_origin_backend(input): if not isinstance(input, dparray): pass elif out is not None: pass elif keepdims is not numpy._NoValue: pass elif initial is not numpy._NoValue: pass elif where is not numpy._NoValue: pass else: result = dpnp_max(input, axis=axis) # scalar returned if result.shape == (1,): return result.dtype.type(result[0]) return result return call_origin(numpy.max, input, axis, out, keepdims, initial, where) def mean(a, axis=None, **kwargs): """ Compute the arithmetic mean along the specified axis. For full documentation refer to :obj:`numpy.mean`. Limitations ----------- Input array is supported as :obj:`dpnp.ndarray`. Keyword arguments ``kwargs`` are currently unsupported. Size of input array is limited by ``a.size > 0``. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- :obj:`dpnp.average` : Weighted average. :obj:`dpnp.std` : Compute the standard deviation along the specified axis. :obj:`dpnp.var` : Compute the variance along the specified axis. :obj:`dpnp.nanmean` : Compute the arithmetic mean along the specified axis, ignoring NaNs. :obj:`dpnp.nanstd` : Compute the standard deviation along the specified axis, while ignoring NaNs. :obj:`dpnp.nanvar` : Compute the variance along the specified axis, while ignoring NaNs. Examples -------- >>> import dpnp as np >>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) 2.5 """ if not use_origin_backend(a) and not kwargs: if not isinstance(a, dparray): pass elif a.size == 0: pass else: result = dpnp_mean(a, axis=axis) # scalar returned if result.shape == (1,): return result.dtype.type(result[0]) return result return call_origin(numpy.mean, a, axis=axis, **kwargs) def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): """ Compute the median along the specified axis. For full documentation refer to :obj:`numpy.median`. Limitations ----------- Input array is supported as :obj:`dpnp.ndarray`. Prameters ``axis`` is supported only with default value ``None``. Prameters ``out`` is supported only with default value ``None``. Prameters ``overwrite_input`` is supported only with default value ``False``. Prameters ``keepdims`` is supported only with default value ``False``. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- :obj:`dpnp.mean` : Compute the arithmetic mean along the specified axis. :obj:`dpnp.percentile` : Compute the q-th percentile of the data along the specified axis. Examples -------- >>> import dpnp as np >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> np.median(a) 3.5 """ if not use_origin_backend(a): if not isinstance(a, dparray): pass elif axis is not None: pass elif out is not None: pass elif overwrite_input: pass elif keepdims: pass else: result = dpnp_median(a) # scalar returned if result.shape == (1,): return result.dtype.type(result[0]) return result return call_origin(numpy.median, a, axis, out, overwrite_input, keepdims) def min(input, axis=None, out=None, keepdims=numpy._NoValue, initial=numpy._NoValue, where=numpy._NoValue): """ Return the minimum along a given axis. Limitations ----------- Input array is supported as :obj:`dpnp.ndarray`. Otherwise the function will be executed sequentially on CPU. Prameters ``out`` is supported only with default value ``None``. Input array data types are limited by supported DPNP :ref:`Data types`. Examples -------- >>> import dpnp as np >>> a = np.arange(4).reshape((2,2)) >>> a.shape (2, 2) >>> [i for i in a] [0, 1, 2, 3] >>> np.min(a) 0 """ if not use_origin_backend(input): if not isinstance(input, dparray): pass elif out is not None: pass elif keepdims is not numpy._NoValue: pass elif initial is not numpy._NoValue: pass elif where is not numpy._NoValue: pass else: result = dpnp_min(input, axis=axis) # scalar returned if result.shape == (1,): return result.dtype.type(result[0]) return result return call_origin(numpy.min, input, axis, out, keepdims, initial, where) def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=numpy._NoValue): """ Compute the standard deviation along the specified axis. For full documentation refer to :obj:`numpy.std`. Limitations ----------- Input array is supported as :obj:`dpnp.ndarray`. Size of input array is limited by ``a.size > 0``. Prameters ``axis`` is supported only with default value ``None``. Prameters ``dtype`` is supported only with default value ``None``. Prameters ``out`` is supported only with default value ``None``. Prameters ``keepdims`` is supported only with default value ``numpy._NoValue``. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- :obj:`dpnp.var` : Compute the variance along the specified axis. :obj:`dpnp.mean` : Compute the arithmetic mean along the specified axis. :obj:`dpnp.nanmean` : Compute the arithmetic mean along the specified axis, ignoring NaNs. :obj:`dpnp.nanstd` : Compute the standard deviation along the specified axis, while ignoring NaNs. :obj:`dpnp.nanvar` : Compute the variance along the specified axis, while ignoring NaNs. Examples -------- >>> import dpnp as np >>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) 1.118033988749895 """ if not use_origin_backend(a): if not isinstance(a, dparray): pass elif a.size == 0: pass elif axis is not None: pass elif dtype is not None: pass elif out is not None: pass elif keepdims is not numpy._NoValue: pass else: result = dpnp_std(a, ddof) if result.shape == (1,): return result.dtype.type(result[0]) return result return call_origin(numpy.std, a, axis, dtype, out, ddof, keepdims) def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=numpy._NoValue): """ Compute the variance along the specified axis. For full documentation refer to :obj:`numpy.var`. Limitations ----------- Input array is supported as :obj:`dpnp.ndarray`. Size of input array is limited by ``a.size > 0``. Prameters ``axis`` is supported only with default value ``None``. Prameters ``dtype`` is supported only with default value ``None``. Prameters ``out`` is supported only with default value ``None``. Prameters ``keepdims`` is supported only with default value ``numpy._NoValue``. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP :ref:`Data types`. See Also -------- :obj:`dpnp.std` : Compute the standard deviation along the specified axis. :obj:`dpnp.mean` : Compute the arithmetic mean along the specified axis. :obj:`dpnp.nanmean` : Compute the arithmetic mean along the specified axis, ignoring NaNs. :obj:`dpnp.nanstd` : Compute the standard deviation along the specified axis, while ignoring NaNs. :obj:`dpnp.nanvar` : Compute the variance along the specified axis, while ignoring NaNs. Examples -------- >>> import dpnp as np >>> a = np.array([[1, 2], [3, 4]]) >>> np.var(a) 1.25 """ if not use_origin_backend(a): if not isinstance(a, dparray): pass elif a.size == 0: pass elif axis is not None: pass elif dtype is not None: pass elif out is not None: pass elif keepdims is not numpy._NoValue: pass else: result = dpnp_var(a, ddof) if result.shape == (1,): return result.dtype.type(result[0]) return result return call_origin(numpy.var, a, axis, dtype, out, ddof, keepdims)
31.32605
107
0.597779
7675177ca8977aa2ed494932468ee28c1b5fc775
19,613
py
Python
hydsensread/file_reader/abstract_file_reader.py
cgq-qgc/HydroSensorReader
956e522102ad8a4be172123049a43de235123ef6
[ "MIT" ]
1
2019-03-11T12:43:51.000Z
2019-03-11T12:43:51.000Z
hydsensread/file_reader/abstract_file_reader.py
cgq-qgc/HydroSensorReader
956e522102ad8a4be172123049a43de235123ef6
[ "MIT" ]
19
2018-11-22T13:51:59.000Z
2022-01-18T15:47:43.000Z
hydsensread/file_reader/abstract_file_reader.py
cgq-qgc/HydroSensorReader
956e522102ad8a4be172123049a43de235123ef6
[ "MIT" ]
4
2018-11-22T14:29:51.000Z
2021-12-03T01:14:49.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import warnings import os.path as osp from abc import abstractmethod, ABCMeta from collections import defaultdict from typing import Dict, List, Union, Tuple from xml.etree import ElementTree as ET import bs4 import matplotlib.axes as mp_axe import matplotlib.dates as mdates import matplotlib.pyplot as plt from pandas import DataFrame from pandas.plotting import register_matplotlib_converters from hydsensread import file_parser from hydsensread.site_and_records import ( DrillingSite, geographical_coordinates, Sample, SensorPlateform) register_matplotlib_converters() sample_ana_type = Dict[str, Sample] sample_dict = Dict[str, sample_ana_type] date_list = List[datetime.datetime] class LineDefinition(object): """ Line definition element to pass to the plot method """ def __init__(self, parameter, color: str = 'blue', linestyle: str = '-', outward: int = 0, linewidth: float = 2, make_grid: bool = False) -> None: self.param = parameter self.linestyle = linestyle self.color = color self.outward = outward self.linewidth = linewidth self.make_grid = make_grid class AbstractFileReader(object, metaclass=ABCMeta): """ Interface permettant de lire un fichier provenant d'un datalogger quelconque classe permettant d'extraire des données d'un fichier quelconque. Un fichier de donnée est en général composé de : - Entete d'information sur l'environnement de prise de données - Entete d'information sur les colonnes de données - Les colonnes de données """ TXT_FILE_TYPES = ['dat', 'lev', 'txt'] XLS_FILES_TYPES = ['xls', 'xlsx'] XML_FILES_TYPES = ['xle', 'xml'] CSV_FILES_TYPES = ['csv'] WEB_XML_FILES_TYPES = ['http'] MONTH_S_DAY_S_YEAR_HMS_DATE_STRING_FORMAT = '%m/%d/%y %H:%M:%S' YEAR_S_MONTH_S_DAY_HM_DATE_STRING_FORMAT = '%Y/%m/%d %H:%M' YEAR_S_MONTH_S_DAY_HMS_DATE_STRING_FORMAT = ( YEAR_S_MONTH_S_DAY_HM_DATE_STRING_FORMAT + ":%S") YEAR_S_MONTH_S_DAY_HMSMS_DATE_STRING_FORMAT = ( YEAR_S_MONTH_S_DAY_HMS_DATE_STRING_FORMAT + ".%f") def __init__(self, file_path: str = None, header_length: int = 10, request_params: dict = None, encoding='utf8', wait_read=False, csv_delim_regex: str = None): """ :param file_path: path to the file to treat :param header_length: header length :param request_params: request parameter for web element :param encoding: encoding type :default = 'utf-8' :param wait_read: if wait_read is True, will wait to read the file content. This is usefull for hierarchi-class. :param csv_delim_regex: a regex used to determine the delimiter of csv files when parsing the data See file_reader.compagny_file_reader.solinst_file_reader.py for an example """ self.request_params = request_params self._file = file_path self._header_length = header_length self._encoding = encoding self._csv_delim_regex = csv_delim_regex self._site_of_interest = None self.file_reader = self._set_file_reader() if not wait_read: self.file_reader.read_file() @property def sites(self): return self._site_of_interest def _set_file_reader(self) -> Union[file_parser.CSVFileParser, file_parser.EXCELFileParser, file_parser.TXTFileParser, file_parser.WEBFileParser]: """ set the good file parser to open and read the provided file :return: """ file_reader = "" file_ext = self.file_extension try: if file_ext in self.TXT_FILE_TYPES: file_reader = file_parser.TXTFileParser( file_path=self._file, header_length=self._header_length, encoding=self._encoding) elif file_ext in self.XLS_FILES_TYPES: file_reader = file_parser.EXCELFileParser( file_path=self._file, header_length=self._header_length) elif file_ext in self.CSV_FILES_TYPES: file_reader = file_parser.CSVFileParser( file_path=self._file, header_length=self._header_length, csv_delim_regex=self._csv_delim_regex) elif file_ext in self.WEB_XML_FILES_TYPES or 'http' in self._file: file_reader = file_parser.WEBFileParser( file_path=self._file, requests_params=self.request_params) elif file_ext in self.XML_FILES_TYPES: file_reader = file_parser.XMLFileParser(file_path=self._file) except ValueError as e: print(self._file) print("File ext: {}".format(file_ext)) raise e else: return file_reader def read_file(self): self._make_site() self._make_data() @property def file_extension(self): ext = osp.splitext(self._file)[1] if ext == '': raise ValueError("The path given doesn't point to a file name.") else: return ext[1:].lower() @property def file_content(self) -> Union[ET.ElementTree, bs4.BeautifulSoup, list, ]: return self.file_reader.get_file_content def _make_site(self): """ Create a site object by reading the file header and the data header to know what was recorded. """ self._read_file_header() self._read_file_data_header() def _make_data(self): """Read and classify the data.""" self._read_file_data() @abstractmethod def _read_file_header(self): """Read the file header.""" pass @abstractmethod def _read_file_data_header(self): """Read the data header (what was recorded).""" pass @abstractmethod def _read_file_data(self): """Read and classify the data columns.""" pass class TimeSeriesFileReader(AbstractFileReader): def __init__(self, file_path: str = None, header_length: int = 10, encoding='utf8', wait_read: bool = False, csv_delim_regex: str = None): super().__init__(file_path, header_length, encoding=encoding, wait_read=wait_read, csv_delim_regex=csv_delim_regex) self._site_of_interest = SensorPlateform() self._date_list = [] self.header_content = {} if not wait_read: self.read_file() @property def time_series_dates(self): return self._date_list @abstractmethod def _get_date_list(self) -> date_list: pass @property def sites(self) -> SensorPlateform: return self._site_of_interest @property def records(self) -> DataFrame: return self.sites.records @records.setter def records(self, value: DataFrame): self._site_of_interest.records = value def plot(self, main_axis_def: LineDefinition, other_axis, legend_loc='upper left', *args, **kwargs) -> Tuple[plt.Figure, List[plt.Axes]]: """ :param main_axis_def: :param other_axis: :param legend_loc: :param args: :param kwargs: :return: """ fig, main_axis = plt.subplots(figsize=(20, 10)) main_axis = self._add_first_axis(main_axis, main_axis_def) all_axis = [main_axis] for lines in other_axis: new_axis = self._add_axe_to_plot(main_axis, lines) all_axis.append(new_axis) self._set_date_time_plot_format(main_axis) fig.legend(loc=legend_loc) return fig, all_axis def remove_duplicates(self) -> DataFrame: self.records = self.records.drop_duplicates() return self.records def _add_axe_to_plot(self, parent_plot, new_line_def: LineDefinition, **kwargs) -> mp_axe.Axes: new_axis = parent_plot.twinx() new_axis.plot(self.records[new_line_def.param], color=new_line_def.color, linestyle=new_line_def.linestyle, linewidth=new_line_def.linewidth, **kwargs) new_axis.grid(new_line_def.make_grid) new_axis.set_ylabel(new_line_def.param, color=new_line_def.color) new_axis.spines["right"].set_color(new_line_def.color) if new_line_def.outward != 0: new_axis.spines["right"].set_position( ("outward", new_line_def.outward)) return new_axis def _add_first_axis(self, main_axis: mp_axe.Axes, line_def: LineDefinition, **kwargs) -> mp_axe.Axes: main_axis.plot(self.records[line_def.param], color=line_def.color, linestyle=line_def.linestyle, linewidth=line_def.linewidth, **kwargs) main_axis.set_ylabel(line_def.param, color=line_def.color) main_axis.spines['left'].set_color(line_def.color) main_axis.set_title(self.sites.site_name + " - Visit date: " + str(self.sites.visit_date)) main_axis.grid(line_def.make_grid) return main_axis @staticmethod def _set_date_time_plot_format(axis: mp_axe.Axes): myFmt = mdates.DateFormatter('(%Y-%m-%d) %H:%M') axis.xaxis.set_major_formatter(myFmt) axis.grid(True, axis='x') class GeochemistryFileReader(AbstractFileReader): def __init__(self, file_path: str = None, header_length: int = 10, **kwargs): super().__init__(file_path, header_length) self._site_of_interest = defaultdict(dict) # dict of Samples self.project = None self.report_date = None self.analysis_methode = None def _read_file_header(self): pass def _read_file_data_header(self): pass def create_sample(self, sample_name: str): sample = Sample(site_name=sample_name) self._site_of_interest[sample_name] = sample yield self._site_of_interest[sample_name] def create_complete_sample(self, site_name: str = None, visit_date: datetime.datetime = None, lab_sample_name: str = None, sample_type: str = None, project_name: str = None): sample = Sample(site_name, visit_date, lab_sample_name, sample_type, project_name) self._site_of_interest[site_name] = sample class TimeSeriesGeochemistryFileReader(TimeSeriesFileReader, GeochemistryFileReader): TIME_SERIES_DATA = 'timeSerie' GEOCHEMISTRY_DATA = 'samples' def __init__(self, file_path: str = None, header_length: int = 10, encoding='utf-8'): """ class between TimeSeriesFileReader and GeochemistryFileReader. internal data structure is like: self._site_of_interest [TIMES_SERIES] [site_name] SensorPlateform [GEOCHEMISTRY] [date : datetime.datetime] [sample_name:str] Sample """ warnings.warn("""Deprecated class. Needs to be adapted to site.py and records.py refactoring Don't know if this class is still usefull if a pandas.Dataframe is used. Maybe a MultiIndex can do the trick ! - 2018-04-03""", DeprecationWarning) # TimeSeriesFileReader.__init__(self, file_path, header_length, encoding=encoding) # GeochemistryFileReader.__init__(self, file_path, header_length) super().__init__(file_path, header_length, encoding=encoding) self._site_of_interest = defaultdict(dict) self._site_of_interest[self.TIME_SERIES_DATA] = defaultdict(SensorPlateform) self._site_of_interest[self.GEOCHEMISTRY_DATA] = defaultdict(dict) # dict sorted by [samp_name][samp_date] def get_sample_by_date(self, p_date, p_samp_name) -> Sample: try: return self._site_of_interest[self.GEOCHEMISTRY_DATA][p_date][p_samp_name] except: return None def get_time_series_data(self, site_name=None) -> Union[SensorPlateform, dict]: """ get all sites avaible that have a time serie OR get all timeseries for the given "site_name" with this structure: [TIMES_SERIES] [site_name] SensorPlateform :param site_name: :return: """ if site_name is not None: return self._site_of_interest[self.TIME_SERIES_DATA][site_name] else: return self._site_of_interest[self.TIME_SERIES_DATA] def get_geochemistry_data(self) -> dict: """ get the dictionnary for geochemistry in this structure: [GEOCHEMISTRY] [date : datetime.datetime] [sample_name:str] Sample :return: """ return self._site_of_interest[self.GEOCHEMISTRY_DATA] def _get_date_list(self, site_name) -> date_list: """ get all dates for the given site_name. No matter the parameter :param site_name: :return: """ return self.get_time_series_data(site_name).get_dates() @TimeSeriesFileReader.time_series_dates.getter def time_series_dates(self, site_name): """ overide of time_series_dates property getter. Needs to have a site_name because of the dict structure :param site_name: :return: """ self._date_list = self._get_date_list(site_name) return self._date_list def makes_samples_with_time_series(self, site_name): """ make sample with all the time series for the given site_name :param site_name: :return: """ sample_name = self.get_time_series_data(site_name).site_name project = self.get_time_series_data(site_name).project_name # iterate through all dates for dates in self._get_date_list(site_name): # create a sample samp = Sample(site_name=sample_name, visit_date=dates, lab_sample_name=None, sample_type='automatic', analysis_type=None, project_name=project) # create and add a record to the sample for rec in self.get_time_series_data(site_name).get_records(): val = rec.get_value_at_date(dates) param = rec.parameter unit = rec.parameter_unit if val is not None: samp.create_complete_record(dates, param, unit, val, None, dates, None) # add the sample to the geochemistry datas self.get_geochemistry_data()[dates][sample_name] = samp def make_time_series_with_samples(self): """ take all the samples in self._site_of_interest[self.GEOCHEMISTRY_DATA] and create a time serie for each record. After all timeseries are made, they are filled with all the sampling data :return: """ self._site_of_interest[self.TIME_SERIES_DATA].clear() self._site_of_interest[self.TIME_SERIES_DATA] = defaultdict(SensorPlateform) self._create_time_series_with_samples() self._fill_time_series_with_samples_data() def _create_time_series_with_samples(self): """ create time serie entry for each parameters available for each samples remember, geochemistry data structure is like: [GEOCHEMISTRY] [date : datetime.datetime] [sample_name:str] Sample :return: """ for sampled_dates in self.get_geochemistry_data().keys(): for samples_at_date in self.get_geochemistry_data()[sampled_dates].keys(): for records_in_sample in self.get_sample_by_date(sampled_dates, samples_at_date).get_records(): self._add_time_serie_value_by_geochemistry_record(records_in_sample, samples_at_date) def _add_time_serie_value_by_geochemistry_record(self, rec, sample_name): param = rec.parameter unit = rec.parameter_unit val = [rec.value] val_date = [rec.sampling_date] try: self.get_time_series_data(sample_name).create_time_serie(param, unit, val_date, val) except: pass def _fill_time_series_with_samples_data(self): """ fill the time series for the given parameter with all the values avaible :return: """ for site in self.get_time_series_data(): for ts in self.get_time_series_data(site).get_records(): for _dates in self.get_geochemistry_data(): rec = self.get_sample_by_date(_dates, site).get_record_by_parameter(ts.parameter) try: ts.add_value(rec.sampling_date, rec.value) except KeyError as k: continue except AttributeError as a: pass except Exception as e: print(type(e)) print(e) ts.reorder_values() class DrillingFileReader(AbstractFileReader): def __init__(self, file_path: str = None, header_length: int = None, request_params: dict = None): super().__init__(file_path, header_length, request_params) self._site_of_interest = defaultdict(dict) def create_drilling_site(self, site_name: str): self.create_complete_drilling_site(site_name=site_name) yield self._site_of_interest[site_name] def create_complete_drilling_site(self, site_name: str, visit_date: datetime.datetime = None, project_name: str = None, other_identifier: str = None, coordinates_x_y_z: geographical_coordinates = None, drilling_depth: float = 0.0, drill_dip: float = 0.0, drill_azimut: float = 0.0, drilling_diameter: float = 0.0): drilling_site = DrillingSite(site_name=site_name, visit_date=visit_date, project_name=project_name, other_identifier=other_identifier, coordinates_x_y_z=coordinates_x_y_z, drill_azimut=drill_azimut, drill_dip=drill_dip, drilling_depth=drilling_depth, drilling_diameter=drilling_diameter) self._site_of_interest[site_name] = drilling_site return self._site_of_interest[site_name]
38.684418
115
0.607556
aa2612977acaacbf43c1c1f8e3f1682ddad4bc9c
10,969
py
Python
artworks/views.py
mnosinov/artworks_project
b6901ff83c1cd370ce1539f09b464ecb995e1ce3
[ "MIT" ]
null
null
null
artworks/views.py
mnosinov/artworks_project
b6901ff83c1cd370ce1539f09b464ecb995e1ce3
[ "MIT" ]
null
null
null
artworks/views.py
mnosinov/artworks_project
b6901ff83c1cd370ce1539f09b464ecb995e1ce3
[ "MIT" ]
null
null
null
import os from django.shortcuts import render, redirect from django.urls import reverse_lazy from django.views.generic import View, ListView from django.views.generic.detail import DetailView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.contrib import messages from django.forms.models import model_to_dict from django.conf import settings from django.core.files.storage import FileSystemStorage from formtools.wizard.views import SessionWizardView from .insertdatahelper import InserDataHelper from .models import Genre, Author, Artwork, ArtworkType, Painting, Media, Book from . import forms def index(request): return render(request, 'artworks/index.html') class InsertSampleDataView(View): def get(self, request, *args, **kwargs): InserDataHelper(request).reset_data() messages.success(request, 'Sample Data have been successfully inserted.') return redirect('index') # Genre ----------------------------------------------- class GenreListView(ListView): model = Genre class GenreDetailView(DetailView): model = Genre class GenreCreateView(CreateView): model = Genre fields = ('title', 'artwork_type') success_url = reverse_lazy('genres') class GenreUpdateView(UpdateView): model = Genre fields = ('title', 'artwork_type') success_url = reverse_lazy('genres') class GenreDeleteView(DeleteView): model = Genre success_url = reverse_lazy('genres') # Author ----------------------------------------------- class AuthorListView(ListView): model = Author class AuthorDetailView(DetailView): model = Author class AuthorCreateView(CreateView): model = Author fields = ('name',) success_url = reverse_lazy('authors') class AuthorUpdateView(UpdateView): model = Author fields = ('name',) success_url = reverse_lazy('authors') class AuthorDeleteView(DeleteView): model = Author success_url = reverse_lazy('authors') # Art Work ----------------------------------------------- class ArtworkListView(ListView): model = Artwork class ArtworkDetailView(DetailView): model = Artwork def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) artwork = kwargs['object'] if artwork.type == ArtworkType.PAINTING: context['painting'] = Painting.objects.get(pk=artwork.id) elif artwork.type == ArtworkType.MUSIC: context['music'] = Media.objects.get(pk=artwork.id) elif artwork.type == ArtworkType.MOVIE: context['movie'] = Media.objects.get(pk=artwork.id) elif artwork.type == ArtworkType.BOOK: context['book'] = Book.objects.get(pk=artwork.id) return context class ArtworkUpdateView(UpdateView): model = Artwork fields = ('name',) success_url = reverse_lazy('artworks') class ArtworkDeleteView(DeleteView): model = Artwork success_url = reverse_lazy('artworks') def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) artwork = kwargs['object'] if artwork.type == ArtworkType.PAINTING: context['painting'] = Painting.objects.get(pk=artwork.id) elif artwork.type == ArtworkType.MUSIC: context['music'] = Media.objects.get(pk=artwork.id) elif artwork.type == ArtworkType.MOVIE: context['movie'] = Media.objects.get(pk=artwork.id) elif artwork.type == ArtworkType.BOOK: context['book'] = Book.objects.get(pk=artwork.id) return context # multistep wizard form for artwork ----------------------------------------------- class ArtworkWizard(SessionWizardView): # form_list = [ # ArtworkForm1, # ArtworkPaintingForm2, ArtworkBookForm2, ArtworkMovieForm2, ArtworkMusicForm2, # ] # template_name = 'artworks/artwork_wizard_single_unified_template.html' # forms FORMS = [ ("form1", forms.ArtworkForm1), ("painting_form2", forms.ArtworkPaintingForm2), ("painting_form3", forms.ArtworkPaintingForm3), ("painting_form4", forms.ArtworkPaintingForm4), ("painting_form5", forms.ArtworkPaintingForm5), ("music_form2", forms.ArtworkMusicForm2), ("music_form3", forms.ArtworkMusicForm3), ("music_form4", forms.ArtworkMusicForm4), ("movie_form2", forms.ArtworkMovieForm2), ("movie_form3", forms.ArtworkMovieForm3), ("movie_form4", forms.ArtworkMovieForm4), ("book_form2", forms.ArtworkBookForm2), ("book_form3", forms.ArtworkBookForm3), ("book_form4", forms.ArtworkBookForm4), ("book_form5", forms.ArtworkBookForm5), ] # form templates TEMPLATES = { "form1": "artworks/artwork_wizard/form1.html", "painting_form2": "artworks/artwork_wizard/painting_form2.html", "painting_form3": "artworks/artwork_wizard/painting_form3.html", "painting_form4": "artworks/artwork_wizard/painting_form4.html", "painting_form5": "artworks/artwork_wizard/painting_form5.html", "music_form2": "artworks/artwork_wizard/music_form2.html", "music_form3": "artworks/artwork_wizard/music_form3.html", "music_form4": "artworks/artwork_wizard/music_form4.html", "movie_form2": "artworks/artwork_wizard/movie_form2.html", "movie_form3": "artworks/artwork_wizard/movie_form3.html", "movie_form4": "artworks/artwork_wizard/movie_form4.html", "book_form2": "artworks/artwork_wizard/book_form2.html", "book_form3": "artworks/artwork_wizard/book_form3.html", "book_form4": "artworks/artwork_wizard/book_form4.html", "book_form5": "artworks/artwork_wizard/book_form5.html", } file_storage = FileSystemStorage(location=os.path.join(settings.MEDIA_ROOT, 'book_covers')) # conditions def is_painting(wizard): cleaned_data = wizard.get_cleaned_data_for_step('form1') or {'type': 'NONE'} return cleaned_data['type'] == ArtworkType.PAINTING def is_music(wizard): cleaned_data = wizard.get_cleaned_data_for_step('form1') or {'type': 'NONE'} return cleaned_data['type'] == ArtworkType.MUSIC def is_movie(wizard): cleaned_data = wizard.get_cleaned_data_for_step('form1') or {'type': 'NONE'} return cleaned_data['type'] == ArtworkType.MOVIE def is_book(wizard): cleaned_data = wizard.get_cleaned_data_for_step('form1') or {'type': 'NONE'} return cleaned_data['type'] == ArtworkType.BOOK condition_dict = { "painting_form2": is_painting, "painting_form3": is_painting, "painting_form4": is_painting, "painting_form5": is_painting, "music_form2": is_music, "music_form3": is_music, "music_form4": is_music, "movie_form2": is_movie, "movie_form3": is_movie, "movie_form4": is_movie, "book_form2": is_book, "book_form3": is_book, "book_form4": is_book, "book_form5": is_book, } def get_template_names(self): return [ArtworkWizard.TEMPLATES[self.steps.current]] def get_form_initial(self, step): if 'pk' in self.kwargs: artwork_id = self.kwargs['pk'] if step in ('form1', 'painting_form2', 'painting_form5', 'music_form2', 'movie_form2', 'book_form2', 'music_form4', 'movie_form4', 'book_form5'): artwork = Artwork.objects.get(pk=artwork_id) return model_to_dict(artwork) elif step in ('painting_form3', 'painting_form4'): painting = Painting.objects.get(pk=artwork_id) return model_to_dict(painting) elif step in ('music_form3', 'movie_form3'): media = Media.objects.get(pk=artwork_id) return model_to_dict(media) elif step in ('book_form3', 'book_form4'): book = Book.objects.get(pk=artwork_id) return model_to_dict(book) else: return self.initial_dict.get(step, {}) else: return self.initial_dict.get(step, {}) def done(self, form_list, form_dict, **kwargs): # save data from all of the steps artwork_type = form_dict['form1'].cleaned_data['type'] artwork = Artwork( type=artwork_type, author=form_dict['form1'].cleaned_data['author'], title=form_dict['form1'].cleaned_data['title'], pub_year=form_dict['form1'].cleaned_data['pub_year'], ) # if pk exists then it is UPDATE mode if 'pk' in self.kwargs: artwork.id = self.kwargs['pk'] artwork.save() if artwork_type == ArtworkType.PAINTING: genre = form_dict['painting_form2'].cleaned_data['genre'] price = form_dict['painting_form5'].cleaned_data['price'] painting = Painting( artwork=artwork, height=form_dict['painting_form3'].cleaned_data['height'], width=form_dict['painting_form3'].cleaned_data['width'], paint=form_dict['painting_form4'].cleaned_data['paint'], ) painting.save() success_message = 'Painting successfully saved.' elif artwork_type == ArtworkType.MUSIC: genre = form_dict['music_form2'].cleaned_data['genre'] price = form_dict['music_form4'].cleaned_data['price'] music = Media( artwork=artwork, media_type=Media.Type.MUSIC, duration=form_dict['music_form3'].cleaned_data['duration'], ) music.save() success_message = 'Music successfully saved.' elif artwork_type == ArtworkType.MOVIE: genre = form_dict['movie_form2'].cleaned_data['genre'] price = form_dict['movie_form4'].cleaned_data['price'] movie = Media( artwork=artwork, media_type=Media.Type.VIDEO, duration=form_dict['movie_form3'].cleaned_data['duration'], ) movie.save() success_message = 'Movie successfully saved.' elif artwork_type == ArtworkType.BOOK: genre = form_dict['book_form2'].cleaned_data['genre'] price = form_dict['book_form5'].cleaned_data['price'] book = Book( artwork=artwork, pages=form_dict['book_form3'].cleaned_data['pages'], cover=form_dict['book_form4'].cleaned_data['cover'], ) book.save() success_message = 'Book successfully saved.' artwork.genre = genre artwork.price = price artwork.save() messages.success(self.request, success_message) return redirect('artworks')
36.082237
95
0.630595
b21c29454fa8780097d49b65427a698b46e63dc6
1,738
py
Python
pyweather/apmodel.py
ravigoel08/py-open-weather
08e6945f78ab43112a84f6989677e4b4fd389ecf
[ "MIT" ]
5
2021-01-05T09:46:10.000Z
2021-05-26T10:58:18.000Z
pyweather/apmodel.py
ravigoel08/py-open-weather
08e6945f78ab43112a84f6989677e4b4fd389ecf
[ "MIT" ]
1
2021-07-21T12:32:08.000Z
2021-07-21T12:32:08.000Z
pyweather/apmodel.py
ravigoel08/py-open-weather
08e6945f78ab43112a84f6989677e4b4fd389ecf
[ "MIT" ]
3
2021-01-18T13:14:13.000Z
2021-04-26T14:14:54.000Z
from __future__ import annotations from typing import List, Dict from pydantic import BaseModel, Field import orjson def orjson_dumps(v, *, default): # orjson.dumps returns bytes, to match standard json.dumps we need to decode return orjson.dumps(v, default=default).decode() class Main(BaseModel): aqi: int = Field( None, description="Air Quality Index Possible values: 1, 2, 3, 4, 5. Where 1 = Good, 2 = Fair, 3 = Moderate, 4 = Poor, 5 = Very Poor.", ) class Components(BaseModel): co: float = Field(None, description="Сoncentration of CO (Carbon monoxide), μg/m3") no: float = Field( None, description="Сoncentration of NO (Nitrogen monoxide), μg/m3" ) no2: float = Field( None, description="Сoncentration of NO2 (Nitrogen dioxide), μg/m3" ) o3: float = Field(None, description="Сoncentration of O3 (Ozone), μg/m3") so2: float = Field( None, description="Сoncentration of SO2 (Sulphur dioxide), μg/m3" ) pm2_5: float = Field( None, description="Сoncentration of PM2.5 (Fine particles matter), μg/m3" ) pm10: float = Field( None, description="Сoncentration of PM10 (Coarse particulate matter), μg/m3" ) nh3: float = Field(None, description="Сoncentration of NH3 (Ammonia), μg/m3") class ListItem(BaseModel): dt: int = Field(None, description="Date and time, Unix, UTC") main: Main components: Components class AirpolData(BaseModel): coord: Dict[str, float] = Field( None, description="Coordinates from the specified location (latitude, longitude)", ) list: List[ListItem] class Config: json_loads = orjson.loads json_dumps = orjson_dumps
29.457627
137
0.661105
16e1bc4da530742dcf7746ad524e2b410fa4a288
2,355
py
Python
update.py
Jimgersnap/DJ-Roomba-legacy
3c4ded6635213c7497bfb432a6c7adafe0532c1b
[ "MIT" ]
2
2019-07-16T04:42:56.000Z
2020-06-02T05:36:57.000Z
update.py
Jimgersnap/DJ-Roomba-legacy
3c4ded6635213c7497bfb432a6c7adafe0532c1b
[ "MIT" ]
null
null
null
update.py
Jimgersnap/DJ-Roomba-legacy
3c4ded6635213c7497bfb432a6c7adafe0532c1b
[ "MIT" ]
null
null
null
import os import subprocess import sys def y_n(q): while True: ri = input('{} (y/n): '.format(q)) if ri.lower() in ['yes', 'y']: return True elif ri.lower() in ['no', 'n']: return False def main(): print('Starting...') # Make sure that we're in a Git repository if not os.path.isdir('.git'): raise EnvironmentError("This isn't a Git repository.") # Make sure that we can actually use Git on the command line # because some people install Git Bash without allowing access to Windows CMD try: subprocess.check_call('git --version', shell=True, stdout=subprocess.DEVNULL) except subprocess.CalledProcessError: raise EnvironmentError("Couldn't use Git on the CLI. You will need to run 'git pull' yourself.") print("Passed Git checks...") # Check that the current working directory is clean sp = subprocess.check_output('git status --porcelain', shell=True, universal_newlines=True) if sp: oshit = y_n('You have modified files that are tracked by Git (e.g the bot\'s source files).\n' 'We can try to reset your folder to a clean version for you. Continue?') if oshit: try: subprocess.check_call('git reset --hard', shell=True) except subprocess.CalledProcessError: raise OSError("Could not reset the directory to a clean state.") else: print('Okay. Cancelling update process for now.') return print("Attempting to update the bot using Git...") try: subprocess.check_call('git pull', shell=True) except subprocess.CalledProcessError: raise OSError("Could not update the bot. You will need to run 'git pull' yourself.") print("Attempting to update dependencies...") try: subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-U', '-r', 'requirements.txt'], shell=True) except subprocess.CalledProcessError: raise OSError("Could not update dependencies. You will need to run '{0} -m pip install -U -r requirements.txt' yourself.".format(sys.executable)) try: from musicbot.constants import VERSION print('DJ Roomba is at version {0}'.format(VERSION)) except Exception: pass print("Done!") if __name__ == '__main__': main()
35.681818
153
0.64034
adf2c701927ee7ecd456b6eb9b37a41950e0b429
5,223
py
Python
tests/test_evaluator.py
denisra/pypoker
c6443b215786d6d33f032dc74faaf00ebc193f09
[ "MIT" ]
null
null
null
tests/test_evaluator.py
denisra/pypoker
c6443b215786d6d33f032dc74faaf00ebc193f09
[ "MIT" ]
null
null
null
tests/test_evaluator.py
denisra/pypoker
c6443b215786d6d33f032dc74faaf00ebc193f09
[ "MIT" ]
null
null
null
from pypoker.cards import * from pypoker.evaluator import * class TestSetup: def setup(self): self.deck = CardsDeck() self.royal_flush = Hand(self.deck[8:13]) # [TS, JS, QS, KS, AS] self.straight_flush = Hand(self.deck[5:10]) # [7S, 8S, 9S, TS, JS] self.four_of_kind = Hand(self.deck[0:52:13] + [self.deck[1]]) # [2S, 2D, 2C, 2H, 3S] self.full_house = Hand(self.deck[0:39:13] + self.deck[11:26:13]) #[2S, 2D, 2C, KS, KD] self.flush = Hand(self.deck[3:12:2]) # [5S, 7S, 9S, JS, KS] self.straight = Hand(self.deck[:3] + self.deck[16:18]) # [2S, 3S, 4S, 5D, 6D] self.low_straight = Hand([Card('A', 'diamonds')] + self.deck[:4]) #[AD, 2S, 3S, 4S, 5S]) self.three_of_kind = Hand(self.deck[0:39:13] + self.deck[1:3]) #[2S, 2D, 2C, 3S, 4S] self.two_pair = Hand(self.deck[0:26:13] + self.deck[11:26:13] + [self.deck[5]]) #[2S, 2D, KS, KD, 7S] self.pair = Hand(self.deck[3:12:3] + self.deck[11:25:13]) # [5S, 8S, JS, KS, KD] self.high_card = Hand(self.deck[9:18:2]) # [JS, KS, 2D, 4D, 6D] self.high_card_A = Hand(self.deck[9:26:4]) # [JS, 2D, 6D, TD, AD] self.seven_card_straight_flush = Hand(self.deck[5:12]) self.seven_card_royal_flush = Hand(self.deck[6:13]) class TestHand(TestSetup): def test_hand(self): ranks1 = sorted([int(rank) for rank, suit in self.deck[:5]], reverse=True) suits1 = len(set([suit for rank, suit in self.deck[:5]])) assert ranks1 == self.straight.ranks #assert suits1 == len(set(self.straight.suits)) ranks2 = sorted([int(rank) if rank != 'A' else 1 for rank, suit in [ Card('A', 'diamonds')] + self.deck[:4]], reverse=True) suits2 = len(set([suit for rank, suit in [Card('A', 'diamonds')] + self.deck[:4]])) assert ranks2 == self.low_straight.ranks assert suits2 == len(set(self.low_straight.suits)) class TestEvaluator(TestSetup): def test_evaluator(self): ev_royal_flush = Evaluator(self.royal_flush) assert ev_royal_flush.straight_flush() ev_straight = Evaluator(self.straight) assert ev_straight.straight() assert not ev_straight.flush() assert not ev_straight.straight_flush() ev_low_straight = Evaluator(self.low_straight) assert ev_low_straight.straight() assert ev_low_straight.flush() == False ev_two_pair = Evaluator(self.two_pair) assert ev_two_pair.two_pair() ev_straight_flush = Evaluator(self.straight_flush) assert ev_straight_flush.straight() and ev_straight_flush.flush() ev_four_of_kind = Evaluator(self.four_of_kind) assert ev_four_of_kind.kind(4) assert not ev_four_of_kind.kind(2) ev_full_house = Evaluator(self.full_house) assert ev_full_house.kind(3) and ev_full_house.kind(2) ev_flush = Evaluator(self.flush) assert ev_flush.flush() ev_three_of_kind = Evaluator(self.three_of_kind) assert ev_three_of_kind.kind(3) ev_pair = Evaluator(self.pair) assert ev_pair.kind(2) ev_high_card = Evaluator(self.high_card) #assert ev_high_card ev_seven_card_straight_flush = Evaluator(self.seven_card_straight_flush) assert ev_seven_card_straight_flush.straight() assert ev_seven_card_straight_flush.flush() ###### Evaluate hand_value method ##### assert ev_royal_flush.hand_value() == HandValue(800, None, self.royal_flush.ranks) assert ev_straight_flush.hand_value() == HandValue(800, None, self.straight_flush.ranks) assert ev_four_of_kind.hand_value() == HandValue(700, [2], self.four_of_kind.ranks) assert ev_full_house.hand_value() == HandValue(600, [2, 13], None) assert ev_flush.hand_value() == HandValue(500, None, self.flush.ranks) assert ev_straight.hand_value() == HandValue(400, None, self.straight.ranks) assert ev_three_of_kind.hand_value() == HandValue(300, [2], None) assert ev_two_pair.hand_value() == HandValue(200, [13, 2], self.two_pair.ranks) assert ev_pair.hand_value() == HandValue(100, [13], self.pair.ranks) assert ev_high_card.hand_value() == HandValue(0, None, self.high_card.ranks) ##### __gt__ method #### assert ev_royal_flush > ev_straight_flush assert not ev_straight_flush > ev_royal_flush assert ev_straight_flush < ev_royal_flush assert ev_straight > ev_low_straight assert ev_low_straight < ev_straight assert not ev_straight > ev_straight #### best_hand method #### assert Evaluator.best_hand([self.royal_flush, self.straight]) == [self.royal_flush] assert Evaluator.best_hand([self.royal_flush, self.royal_flush]) == [self.royal_flush, self.royal_flush] assert Evaluator.best_hand([self.low_straight, self.straight]) == [self.straight] assert Evaluator.best_hand([self.flush, self.full_house, self.pair]) == [self.full_house] assert Evaluator.best_hand([self.high_card, self.high_card_A]) == [self.high_card_A] assert Evaluator.best_hand([self.high_card_A, self.three_of_kind]) == [self.three_of_kind]
52.23
112
0.655945
8586cd4102f631e11c0fe1adfe6d647a8b2f263a
219
py
Python
wagtailcommerce/frontend/context_processors.py
theplusagency/wagtail-commerce
6047170f29199ccaf2778534976ab0970c2877e7
[ "BSD-3-Clause" ]
3
2019-04-12T15:38:43.000Z
2019-09-22T10:23:20.000Z
wagtailcommerce/frontend/context_processors.py
wagtailcommerce/wagtailcommerce
308ed8348483806c16062d09a7e69ec44d9a2e73
[ "BSD-3-Clause" ]
null
null
null
wagtailcommerce/frontend/context_processors.py
wagtailcommerce/wagtailcommerce
308ed8348483806c16062d09a7e69ec44d9a2e73
[ "BSD-3-Clause" ]
null
null
null
from wagtailcommerce.stores.utils import get_store def store(request): store = getattr(request, 'store', None) return { 'store': store, 'store_currency': store.currency if store else '' }
19.909091
57
0.648402
21ffccac6fdcad481809e1713c166d90cc55b961
5,845
py
Python
kitsune/search/utils.py
joshua-s/kitsune
b4b79b8aa89d0dc3c50cc6dee8a9ceb8cd758cd5
[ "BSD-3-Clause" ]
1
2020-11-03T23:46:56.000Z
2020-11-03T23:46:56.000Z
kitsune/search/utils.py
983834572/kitsune
d4b3dcdce3294214dbc659c375c8491504473213
[ "BSD-3-Clause" ]
null
null
null
kitsune/search/utils.py
983834572/kitsune
d4b3dcdce3294214dbc659c375c8491504473213
[ "BSD-3-Clause" ]
1
2020-11-03T23:47:55.000Z
2020-11-03T23:47:55.000Z
import subprocess import time from itertools import islice from django.conf import settings import bleach from kitsune.lib.sumo_locales import LOCALES call = lambda x: subprocess.Popen(x, stdout=subprocess.PIPE).communicate() class FakeLogger(object): """Fake logger that we can pretend is a Python Logger Why? Well, because Django has logging settings that prevent me from setting up a logger here that uses the stdout that the Django BaseCommand has. At some point p while fiddling with it, I figured, 'screw it--I'll just write my own' and did. The minor ramification is that this isn't a complete implementation so if it's missing stuff, we'll have to add it. """ def __init__(self, stdout): self.stdout = stdout def _out(self, level, msg, *args): msg = msg % args self.stdout.write('%s %-8s: %s\n' % ( time.strftime('%H:%M:%S'), level, msg)) def info(self, msg, *args): self._out('INFO', msg, *args) def error(self, msg, *args): self._out('ERROR', msg, *args) def clean_excerpt(excerpt): return bleach.clean(excerpt, tags=['b', 'i']) def locale_or_default(locale): """Return `locale` or, if `locale` isn't a known locale, a default. Default is taken from Django's LANGUAGE_CODE setting. """ if locale not in LOCALES: locale = settings.LANGUAGE_CODE return locale def create_batch_id(): """Returns a batch_id""" # TODO: This is silly, but it's a good enough way to distinguish # between batches by looking at a Record. This is just over the # number of seconds in a day. return str(int(time.time()))[-6:] def chunked(iterable, n): """Returns chunks of n length of iterable If len(iterable) % n != 0, then the last chunk will have length less than n. Example: >>> chunked([1, 2, 3, 4, 5], 2) [(1, 2), (3, 4), (5,)] """ iterable = iter(iterable) while 1: t = tuple(islice(iterable, n)) if t: yield t else: return class ComposedList(object): """Takes counts and pretends they're sublists of a big list This helps in the case where you know the lengths of the sublists, need to treat them all as a big list, but don't want to actually have to generate the lists. With ComposedList, you do pagination and other things including slice the list and get the bounds of the sublists you need allowing you to generate just those tiny bits rather than the whole thing. Handles "length", "index", and "slicing" as if they were operations on the complete list. **length** Length of the ComposedList is the sum of the counts of the sublists. **index** Returns a tuple (kind, index) for the index if the FDL were one big list of (kind, index) tuples. Raises IndexError if the index exceeds the list. **slice** Returns a list of (kind, (start, stop)) tuples for the kinds that are in the slice bounds. The start and stop are not indexes--they're slice start and stop, so it's start up to but not including stop. For example:: >>> cl = ComposedList() >>> # group a has 5 items indexed 0 through 4 ... >>> cl.set_count('a', 5) >>> # group b has 2 items indexed 0 and 1 ... >>> cl.set_count('b', 2) >>> cl[1:7] [('a', (1, 5)) ('b', (0, 2))] This is the same if this were a real list: >>> reallist = [('a', 0), ('a', 1), ('a', 2), ('a', 3) ... ('a', 4), ('b', 0), ('b', 1)] >>> reallist[1:7] [('a', 1), ('a', 2), ('a', 3), ('a', 4), ('b', 0), ('b', 1)] """ def __init__(self): self.counts = [] def set_count(self, kind, count): """Adds a (kind, count) to the counts >>> cl = ComposedList() >>> cl.set_count('wiki', 10) :arg kind: str. e.g. 'wiki' :arg count: int. e.g. 40 .. Note:: The order you call set_count() is important. If you have three groups of things, you need to call set_count() in the order you want those things returned in a slice. """ self.counts.append((kind, count)) def __repr__(self): return repr(self.counts) def __len__(self): """Returns the total length of the composed list""" return sum(mem[1] for mem in self.counts) def __getitem__(self, key): """Returns the 'index' or 'slice' of this composed list""" if isinstance(key, slice): start = key.start stop = key.stop docs = [] # figure out the start for mem in self.counts: if start is not None: if start <= mem[1]: if stop <= mem[1]: docs.append((mem[0], (start, stop))) break docs.append((mem[0], (start, mem[1]))) start = None else: start = start - mem[1] stop = stop - mem[1] else: if stop <= mem[1]: docs.append((mem[0], (0, stop))) break else: docs.append((mem[0], (0, mem[1]))) stop = stop - mem[1] return docs if isinstance(key, int): for mem in self.counts: if key < mem[1]: return (mem[0], key) else: key = key - mem[1] if key >= 0: raise IndexError('Index exceeded list length.')
28.373786
74
0.538751
64ae0c6fd48d4fa68ab30eceffe74256d7df68d6
9,835
py
Python
scripts/log_stats.py
aw32/sched
b6ef35c5b517875a5954c70e2dc366fab3721a60
[ "BSD-2-Clause" ]
null
null
null
scripts/log_stats.py
aw32/sched
b6ef35c5b517875a5954c70e2dc366fab3721a60
[ "BSD-2-Clause" ]
null
null
null
scripts/log_stats.py
aw32/sched
b6ef35c5b517875a5954c70e2dc366fab3721a60
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2019, Alex Wiens <awiens@mail.upb.de>, Achim Lösch <achim.loesch@upb.de> # SPDX-License-Identifier: BSD-2-Clause import sys import json import io import math import datetime resource_short = {"IntelXeon":"C", "NvidiaTesla":"G", "MaxelerVectis":"F"} class App: def __init__(self): self.tids = [] self.tasks = [] def arrival_time(self): return self.tasks[0].arrival def load_apps(tasks): pools = [] for tid in tasks.keys(): pools += [[tid]] for tid in tasks.keys(): ownpool = None # search own pool for p in pools: if tid in p: ownpool = p pools.remove(p) break # search pool with dependencies deppools = [] for d in tasks[tid].dep: for p in pools: if d in p: deppools.append(p) pools.remove(p) break # merge for d in deppools: ownpool += d # put back pools.append(ownpool) apps = [] for p in pools: a = App() a.tids = sorted(p) for tid in a.tids: a.tasks.append(tasks[tid]) apps.append(a) return apps class Task: def __init__(self): self.parts = [] self.dep = [] self.tid = None self.name = None self.arrival = None self.checkpoints = None self.size = None self.newtask = None self.endtask = None self.state = None self.finish = None class TaskPart: def __init__(self): self.start = None self.stop = None self.res = None self.res_short = None self.startevent = None self.stopevent = None self.startprogress = 0 self.progress = None class Schedule: def __init__(self): self.schedule = None class Algorithm: def __init__(self, name, algorithm): self.name = name self.algorithm = algorithm self.parameters = [] class Algo: def __init__(self): self.start = None self.stop = None class EventLog: def __init__(self): self.jsonobjects = [] self.reset() self.filepath = None self.schedule_start = None self.schedule_stop = None def reset(self): self.resources = [] self.tasks = {} self.algos = [] self.minstart = None self.maxstop = None self.resstop = {} self.schedules = [] self.apps = [] self.measure = [] self.algorithm = None self.algorithm_parameters = [] def get_app_id(self, taskid): for ix,a in enumerate(self.apps): if taskid in a.tids: return ix return -1 def start_time(self): if self.schedule_start != None and "realtime" in self.schedule_start: realtime = self.schedule_start["realtime"] return datetime.datetime.fromtimestamp(int(realtime[0:realtime.find(".")])) return None def stop_time(self): start = self.start_time() leng = self.length() if start != None and leng != None: return start + datetime.timedelta(seconds=leng) return None def length(self): if self.schedule_start != None and self.schedule_stop != None: start = self.schedule_start["time"] stop = self.schedule_stop["time"] return float(stop) - float(start) return None def real_stop_time(self): start = self.start_time() leng = self.length() if start != None and leng != None: return start + datetime.timedelta(seconds=leng) return None def real_length(self): if self.schedule_start != None and self.schedule_stop != None: if "walltime" in self.schedule_start and "walltime" in self.schedule_stop: start = self.schedule_start["walltime"] stop = self.schedule_stop["walltime"] else: start = self.schedule_start["time"] stop = self.schedule_stop["time"] return float(stop) - float(start) return None def loadEvents(filepath): # load lines jsonlines = None with open(filepath, "r") as jsonf: jsonlines = jsonf.readlines() log = EventLog() log.filepath = filepath # load json objects from lines for line in jsonlines: #print(line) try: obj = json.load(io.StringIO(line)) log.jsonobjects.append(obj) except Exception as e: if line != None and line != "": print(e) for o in log.jsonobjects: if "event" not in o: continue if o["event"] == "SCHEDULER_START": log.reset() log.schedule_start = o elif o["event"] == "SCHEDULER_STOP": log.schedule_stop = o elif o["event"] == "ALGORITHM": log.algorithm = Algorithm(o["algorithm"], o) elif o["event"] == "ALGORITHM_PARAM": log.algorithm_parameters.append(o) elif o["event"] == "NEWTASK": t = Task() t.tid = o["id"] t.dep = o["dep"] t.name = o["name"] t.size = o["size"] t.arrival = o["time"] t.checkpoints = o["checkpoints"] t.newtask = o log.tasks[t.tid] = t elif o["event"] == "SCHEDULE": s = Schedule() s.schedule = o log.schedules.append(s) elif o["event"] == "RESOURCES": log.resources = o["resources"] elif o["event"] == "ENDTASK": # tasks.append(o) t = o["times"] #if minstart == None or t["started"] < minstart: # minstart = float(t["started"]) #if maxstop == None or t["finished"] > maxstop: # maxstop = float(t["finished"]) tid = o["id"] if tid in log.tasks: log.tasks[tid].endtask = o if "state" in o: log.tasks[tid].state = o["state"] elif o["event"] == "TASK_START": tid = o["id"] t = None if tid not in log.tasks: t = Task() log.tasks[tid] = t else: t = log.tasks[tid] # check if last part was finished (update message) if len(t.parts) > 0 and t.parts[-1].stop == None: continue p = TaskPart() p.start = float(o["time"]) #* 1000000000.0 #print(tid, p.start, "START") p.startevent = o if log.minstart == None or p.start < log.minstart: log.minstart = float(p.start) p.res = o["res"] if p.res in resource_short: p.res_short = resource_short[p.res] else: p.res_short = p.res # set start progress if available if len(t.parts) > 0: p.startprogress = t.parts[-1].progress t.parts.append(p) elif o["event"] == "TASK_STARTED": tid = o["id"] time = float(o["time"]) #* 1000000000.0 #print(tid, time, "STARTED") elif o["event"] == "TASK_SUSPENDED" or o["event"] == "TASK_FINISHED": tid = o["id"] t = log.tasks[tid] p = t.parts[-1] p.stop = float(o["time"]) #* 1000000000.0 p.stopevent = o #print(tid, p.stop, o["event"]) if o["event"] == "TASK_SUSPENDED": if "progress" in o: p.progress = o["progress"] else: p.progress = 0 elif o["event"] == "TASK_FINISHED": p.progress = t.checkpoints t.finish = o["time"] if log.maxstop == None or p.stop > log.maxstop: log.maxstop = float(p.stop) elif o["event"] == "COMPUTER_ALGOSTART": a = Algo() a.start = float(o["time"]) log.algos.append(a) if log.minstart == None or a.start < log.minstart: log.minstart = float(a.start) elif o["event"] == "COMPUTER_ALGOSTOP": log.algos[-1].stop = float(o["time"]) elif o["event"] == "MEASURE": log.measure.append(o) # add parameters to algorithm object if log.algorithm != None: log.algorithm.parameters += log.algorithm_parameters # compute task stop times for t in log.tasks: for p in log.tasks[t].parts: r = p.startevent["res"] if r not in log.resstop: log.resstop[r] = 0.0 if p.stop != None and p.stop > log.resstop[r]: log.resstop[r] = p.stop # default resources if len(log.resources) == 0: log.resources = ["IntelXeon","NvidiaTesla","MaxelerVectis","Scheduler"] log.apps = App.load_apps(log.tasks) # sort apps def min_app(a): return min(a.tids) log.apps.sort(key=min_app) return log def stat(self, metric): if metric == "makespan": return self.maxstop - self.minstart if self.maxstop != None and self.minstart != None else None elif metric == "mintime": return self.minstart elif metric == "maxtime": return self.maxstop elif metric == "events": return len(self.jsonobjects) return None class WrapApp: def __init__(self): self.tasks = [] self.name = None self.size = None self.status = None self.signaled = None self.signaled_signal = None self.id = None self.added = None self.started = None self.finished = None self.aborted = None self.state = None class WrapLog: def __init__(self): self.filepath = None self.jsonobjects = [] self.apps = [] def loadWrapLog(filepath): log = None try: # load lines jsonlines = None with open(filepath, "r") as jsonf: jsonlines = jsonf.readlines() log = WrapLog() log.filepath = filepath for line in jsonlines: #print(line) try: obj = json.load(io.StringIO(line)) log.jsonobjects.append(obj) except Exception as e: if line != None and line != "": print(e) for o in log.jsonobjects: if o["event"] == "WRAPAPP": app = WrapApp() app.tasks = o["tasks"] app.name = o["name"] app.size = o["size"] app.status = o["status"] app.signaled = o["signaled"] app.signaled_signal = o["signaled_signal"] if "endtask" in o and "id" in o["endtask"]: app.id = o["endtask"]["id"] app.added = o["endtask"]["times"]["added"] app.started = o["endtask"]["times"]["started"] app.finished = o["endtask"]["times"]["finished"] app.aborted = o["endtask"]["times"]["aborted"] app.state = o["endtask"]["state"] log.apps.append(app) except Exception as e: print(e) return log if __name__ == "__main__": if len(sys.argv)<3: print(sys.argv[0], "eventlogfile", "stat") print("stats:") print("\t\tmakespan") print("\t\tmintime") print("\t\tmaxtime") print("\t\tevents") sys.exit(1) jsonfilename = sys.argv[1] statname = sys.argv[2] #print(len(jsonobjects), "events") log = EventLog.loadEvents(jsonfilename) #print(resources) #print("min",minstart) #print("max",maxstop) #for r in resstop: # print(r, resstop[r]) print(log.stat(statname))
25.153453
98
0.625928
051e18928f181a8d2918ae5c52401ac314d25a0f
4,429
py
Python
run_examples.py
dylanljones/dqmc
d4969b6624c1b596d8b2fd0dcaefb16064958eee
[ "MIT" ]
1
2022-01-18T22:27:47.000Z
2022-01-18T22:27:47.000Z
run_examples.py
dylanljones/dqmc
d4969b6624c1b596d8b2fd0dcaefb16064958eee
[ "MIT" ]
null
null
null
run_examples.py
dylanljones/dqmc
d4969b6624c1b596d8b2fd0dcaefb16064958eee
[ "MIT" ]
null
null
null
# coding: utf-8 # # This code is part of dqmc. # # Copyright (c) 2022, Dylan Jones # # This code is licensed under the MIT License. The copyright notice in the # LICENSE file in the root directory and this permission notice shall # be included in all copies or substantial portions of the Software. import os.path import numpy as np import matplotlib.pyplot as plt from dqmc import map_params, parse from dqmc.data import Database, compute_datasets def transform_results(results): tresults = [list() for _ in range(len(results[0]))] num_res = len(tresults) for res in results: for i in range(num_res): tresults[i].append(res[i]) # Last result is user callback, so not guaranted to be convertible to np.array out = [np.array(x) for x in tresults[:-1]] last = tresults[-1] try: last = np.array(last) except Exception: # noqa pass out.append(last) return out def average_observables(results): # Only use observables, not Green's functions (first two items) tresults = transform_results(results)[2:] # Average observables for i in range(len(tresults) - 1): tresults[i] = np.mean(tresults[i], axis=1) return tresults def compute_data_temp(db, file, temps, interactions, max_workers=-1, batch=None, overwrite=False): print(f"Running simulations for {file}") p_default = parse(file) for u in interactions: p = p_default.copy(u=u) params = map_params(p, temp=temps) # Check which datasets allready exist missing = db.find_missing(params, overwrite) # Compute missing datasets and store in database head = f"U={u}" if missing: compute_datasets(db, missing, max_workers, batch_size=batch, header=head) else: print(f"{head}: Found existing data!") print("Done!\n") def plot_local_moment(db, file, temps, interactions, save=True): p_default = parse(file) directory, filename = os.path.split(file) name = os.path.splitext(filename)[0] figpath = os.path.join(directory, name + "_moment" + ".png") fig, ax = plt.subplots() ax.set_xscale("log") for u in interactions: p = p_default.copy(u=u) params = map_params(p, temp=temps) results = db.get_results(*params) n_up, n_dn, n_double, moment, _ = average_observables(results) ax.plot(temps, moment, marker="o", ms=3, label=f"$U={u}$") ax.set_xlabel(r"$T$") ax.set_ylabel(r"$\langle m_z^2 \rangle$") ax.set_ylim(0.48, 1.02) ax.set_xticks([0.1, 1, 10, 100]) ax.set_xticklabels(["0.1", "1", "10", "100"]) ax.grid() ax.legend() fig.tight_layout() if save: fig.savefig(figpath) return fig, ax def plot_magnetization(db, file, temps, interactions, save=True): p_default = parse(file) directory, filename = os.path.split(file) name = os.path.splitext(filename)[0] figpath = os.path.join(directory, name + "_mag" + ".png") fig, ax = plt.subplots() ax.set_xscale("log") for u in interactions: p = p_default.copy(u=u) params = map_params(p, temp=temps) results = db.get_results(*params) n_up, n_dn, n_double, moment, _ = average_observables(results) mag = n_up - n_dn ax.plot(temps, mag, marker="o", ms=3, label=f"$U={u}$") ax.set_xlabel(r"$T$") ax.set_ylabel(r"$\langle m_z \rangle$") # ax.set_ylim(0.48, 1.02) ax.set_xticks([0.1, 1, 10, 100]) ax.set_xticklabels(["0.1", "1", "10", "100"]) ax.grid() ax.legend() fig.tight_layout() if save: fig.savefig(figpath) return fig, ax def main(): root = "examples" batch = None overwrite = False db = Database(os.path.join(root, "examples.hdf5")) temps = np.geomspace(0.1, 100, 20) inter = [1, 2, 4, 6, 8] max_workers = -1 # Find all text files in `root` directory files = list() for name in os.listdir(root): if os.path.splitext(name)[1] == ".txt": path = os.path.join(root, name) files.append(path) print(f"Found {len(files)} input files!") print() # Run simulations for each input file for file in files: compute_data_temp(db, file, temps, inter, max_workers, batch, overwrite) plot_local_moment(db, file, temps, inter) if __name__ == "__main__": main()
28.947712
85
0.62452
0d3f8555557252a45274ebac4e4e8cd0cad05610
497
py
Python
plotly/validators/layout/scene/zaxis/_gridcolor.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/layout/scene/zaxis/_gridcolor.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
27
2020-04-28T21:23:12.000Z
2021-06-25T15:36:38.000Z
plotly/validators/layout/scene/zaxis/_gridcolor.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class GridcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name='gridcolor', parent_name='layout.scene.zaxis', **kwargs ): super(GridcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'plot'), role=kwargs.pop('role', 'style'), **kwargs )
26.157895
70
0.609658
7b2b36ccedc8942471d98a57e09c428b3ad651e3
7,134
py
Python
nas-search/preprocessing.py
jsrimr/single-path-nas
2f07922ec51f71d0eab08d07bab3394ab2f423e9
[ "Apache-2.0" ]
428
2019-04-08T00:57:29.000Z
2022-03-10T02:10:49.000Z
nas-search/preprocessing.py
jsrimr/single-path-nas
2f07922ec51f71d0eab08d07bab3394ab2f423e9
[ "Apache-2.0" ]
15
2019-04-12T16:34:54.000Z
2021-03-21T14:56:48.000Z
nas-search/preprocessing.py
jsrimr/single-path-nas
2f07922ec51f71d0eab08d07bab3394ab2f423e9
[ "Apache-2.0" ]
67
2019-04-08T03:49:49.000Z
2021-10-05T07:43:04.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ImageNet preprocessing (TPU models).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf IMAGE_SIZE = 224 CROP_PADDING = 32 def distorted_bounding_box_crop(image_bytes, bbox, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0), max_attempts=100, scope=None): """Generates cropped_image using one of the bboxes randomly distorted. See `tf.image.sample_distorted_bounding_box` for more documentation. Args: image_bytes: `Tensor` of binary image data. bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]` where each coordinate is [0, 1) and the coordinates are arranged as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole image. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. aspect_ratio_range: An optional list of `float`s. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `float`s. The cropped area of the image must contain a fraction of the supplied image within in this range. max_attempts: An optional `int`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. scope: Optional `str` for name scope. Returns: cropped image `Tensor` """ with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]): shape = tf.image.extract_jpeg_shape(image_bytes) sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( shape, bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, _ = sample_distorted_bounding_box # Crop the image to the specified bounding box. offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) return image def _at_least_x_are_equal(a, b, x): """At least `x` of `a` and `b` `Tensors` are equal.""" match = tf.equal(a, b) match = tf.cast(match, tf.int32) return tf.greater_equal(tf.reduce_sum(match), x) def _decode_and_random_crop(image_bytes, image_size): """Make a random crop of image_size.""" bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) image = distorted_bounding_box_crop( image_bytes, bbox, min_object_covered=0.1, aspect_ratio_range=(3. / 4, 4. / 3.), area_range=(0.08, 1.0), max_attempts=10, scope=None) original_shape = tf.image.extract_jpeg_shape(image_bytes) bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3) image = tf.cond( bad, lambda: _decode_and_center_crop(image_bytes, image_size), lambda: tf.image.resize_bicubic([image], # pylint: disable=g-long-lambda [image_size, image_size])[0]) return image def _decode_and_center_crop(image_bytes, image_size): """Crops to center of image with padding then scales image_size.""" shape = tf.image.extract_jpeg_shape(image_bytes) image_height = shape[0] image_width = shape[1] padded_center_crop_size = tf.cast( ((image_size / (image_size + CROP_PADDING)) * tf.cast(tf.minimum(image_height, image_width), tf.float32)), tf.int32) offset_height = ((image_height - padded_center_crop_size) + 1) // 2 offset_width = ((image_width - padded_center_crop_size) + 1) // 2 crop_window = tf.stack([offset_height, offset_width, padded_center_crop_size, padded_center_crop_size]) image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) image = tf.image.resize_bicubic([image], [image_size, image_size])[0] return image def _flip(image): """Random horizontal image flip.""" image = tf.image.random_flip_left_right(image) return image def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. Returns: A preprocessed image `Tensor`. """ image = _decode_and_random_crop(image_bytes, image_size) image = _flip(image) image = tf.reshape(image, [image_size, image_size, 3]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) return image def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. Returns: A preprocessed image `Tensor`. """ image = _decode_and_center_crop(image_bytes, image_size) image = tf.reshape(image, [image_size, image_size, 3]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) return image def preprocess_image(image_bytes, is_training=False, use_bfloat16=False, image_size=IMAGE_SIZE): """Preprocesses the given image. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. is_training: `bool` for whether the preprocessing is for training. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. Returns: A preprocessed image `Tensor` with value range of [0, 255]. """ if is_training: return preprocess_for_train(image_bytes, use_bfloat16, image_size) else: return preprocess_for_eval(image_bytes, use_bfloat16, image_size)
37.350785
80
0.690496
b0adf90c0302054054e805fc6ee46aec9e32bf46
4,300
py
Python
authors/apps/notifications/tests/test_models.py
MuhweziDeo/Ah-backend-xmen
60c830977fa39a7eea9ab978a9ba0c3beb0c4d88
[ "BSD-3-Clause" ]
4
2019-01-07T09:15:17.000Z
2020-11-09T09:58:54.000Z
authors/apps/notifications/tests/test_models.py
MuhweziDeo/Ah-backend-xmen
60c830977fa39a7eea9ab978a9ba0c3beb0c4d88
[ "BSD-3-Clause" ]
34
2019-01-07T15:30:14.000Z
2019-03-06T08:23:34.000Z
authors/apps/notifications/tests/test_models.py
MuhweziDeo/Ah-backend-xmen
60c830977fa39a7eea9ab978a9ba0c3beb0c4d88
[ "BSD-3-Clause" ]
10
2018-12-18T14:43:52.000Z
2020-02-07T08:27:50.000Z
from django.test import TestCase from authors.apps.notifications.models import Notification, NotificationManager from authors.apps.profiles.models import Profile from authors.apps.authentication.models import User class TestModel(TestCase): def _create_notification(self, sender=None, receiver=None, message=None): with self.assertRaises(TypeError): Notification.objects.create_notification( sender=sender, receiver=receiver, message=message ) def _create_profile(self): user = User.objects.create(username='jake2', email='jake2@jake.jake') return Profile.objects.get(user=user) def test_create_notification_missing_sender_and_receiver_fails(self): with self.assertRaises(TypeError): Notification.objects.create_notification( sender=None, receiver=None, message="Your article has received a new comment" ) def test_create_notification_missing_sender_fails(self): receiver = self._create_profile() self._create_notification( None, receiver, "Your article has received a new comment") def test_create_notification_missing_receiver_fails(self): sender = self._create_profile() self._create_notification( sender, None, "Your article has received a new comment") def test_create_notification_missing_message_fails(self): r_user = User.objects.create(username='jake', email='jake@jake.jake') receiver = Profile.objects.get(user=r_user) s_user = User.objects.create(username='jake2', email='jake2@jake.jake') sender = Profile.objects.get(user=s_user) with self.assertRaises(TypeError): Notification.objects.create_notification( sender=sender, receiver=receiver, message=None ) def test_create_notification_valid_data_succeeds(self): r_user = User.objects.create(username='jake', email='jake@jake.jake') receiver = Profile.objects.get(user=r_user) s_user = User.objects.create(username='jake1', email='jake1@jake.jake') sender = Profile.objects.get(user=s_user) notice = Notification.objects.create_notification( sender=sender, receiver=receiver, message="Your article has received a new comment" ) self.assertIn(notice, Notification.objects.all()) def test_get_all_notifications_succeeds(self): r_user = User.objects.create(username='jake', email='jake@jake.jake') receiver = Profile.objects.get(user=r_user) s_user = User.objects.create(username='jake1', email='jake1@jake.jake') sender = Profile.objects.get(user=s_user) Notification.objects.create_notification( sender=sender, receiver=receiver, message="Your article has received a new comment" ) notices = Notification.objects.get_all(receiver) self.assertEqual(1,len(list(notices))) def test_get_unread_notifications_succeeds(self): r_user = User.objects.create(username='jake', email='jake@jake.jake') receiver = Profile.objects.get(user=r_user) s_user = User.objects.create(username='jake1', email='jake1@jake.jake') sender = Profile.objects.get(user=s_user) notice = Notification.objects.create_notification( sender=sender, receiver=receiver, message="Your article has received a new comment" ) notice.is_read = True notice.save() Notification.objects.create_notification( sender=sender, receiver=receiver, message="Your article has received a new comment" ) all_notices = Notification.objects.get_all(receiver) self.assertEqual(2, len(list(all_notices))) unread_notices = Notification.objects.get_unread(receiver) self.assertEqual(1, len(list(unread_notices))) Notification.objects.mark_all_as_read(receiver) unread_notices = Notification.objects.get_unread(receiver) self.assertEqual(0, len(list(unread_notices)))
42.156863
79
0.659302
00283d77fce3078d3d2326d537f07d544609e13c
703
py
Python
app/main/views.py
mzazakeith/news-highlight
8ac928bb074ad53e217648a3a76f83969438137a
[ "MIT" ]
null
null
null
app/main/views.py
mzazakeith/news-highlight
8ac928bb074ad53e217648a3a76f83969438137a
[ "MIT" ]
null
null
null
app/main/views.py
mzazakeith/news-highlight
8ac928bb074ad53e217648a3a76f83969438137a
[ "MIT" ]
null
null
null
from flask import render_template,request,redirect,url_for from . import main from ..requests import get_sources,get_article @main.route('/') def index(): """ Function that returns the index page and all its data """ sport_news = get_sources('sports') tech_news = get_sources('technology') title = 'ZIGS News-Breaking News,Latest News & Headlines' return render_template('index.html', title=title, sports=sport_news, technology=tech_news) # @main.route('/source/<id>') def articles(id): """ View articles """ article = get_article(id) print(article) title = f'ZIGS News ~ {id}' return render_template('news.html', title=title, article=article)
27.038462
94
0.691323
b62a0d47a1afd135b5901fbf3fad61804d21b248
2,699
py
Python
edcnlp/utils/utils.py
edchengg/MyNLP
350c14efebc1440d6e132c6c516f0a02625df320
[ "MIT" ]
1
2021-10-31T21:40:25.000Z
2021-10-31T21:40:25.000Z
edcnlp/utils/utils.py
edchengg/MyNLP
350c14efebc1440d6e132c6c516f0a02625df320
[ "MIT" ]
null
null
null
edcnlp/utils/utils.py
edchengg/MyNLP
350c14efebc1440d6e132c6c516f0a02625df320
[ "MIT" ]
null
null
null
from edcnlp.utils.constant import MODELS_dict import torch from transformers import BertConfig, BertTokenizer def display(option): sorted(option.items(), key=lambda s: s[0]) for k, v in option.items(): print(k, '=', v) def build_pretrained_model_from_huggingface(option, add_tokens=None): # Define pretrained model pretrained_model_dic = MODELS_dict[option['pretrained_model']] ckpt = pretrained_model_dic['checkpoint'] Pretrained_model = pretrained_model_dic['model'].from_pretrained(ckpt, output_hidden_states=True) if 'uncased' in option['pretrained_model']: indicator = True else: indicator = False tokenizer = pretrained_model_dic['tokenizer'].from_pretrained(ckpt, do_lower_case=indicator) if 'Bert' in option['pretrained_model']: tokenizer.bos_token = '[CLS]' tokenizer.eos_token = '[SEP]' tokenizer.unk_token = '[UNK]' tokenizer.sep_token = '[SEP]' tokenizer.cls_token = '[CLS]' tokenizer.mask_token = '[MASK]' tokenizer.pad_token = '[PAD]' if add_tokens != None: tokenizer.add_tokens(add_tokens) print('We have added', add_tokens, 'tokens') Pretrained_model.resize_token_embeddings(len(tokenizer)) return Pretrained_model, tokenizer def build_pretrained_model_from_ckpt(option, add_tokens, device): ''' Loading a pretrained model from a pytorch ckpt BERT BASED :param option: :return: ''' # define BERT model pretrained_model_dic = MODELS_dict['Bert_base_uncased'] # config = BertConfig.from_json_file(option['pretrained_model'] + '/config.json') # config.output_hidden_states = True # Pretrained_model = pretrained_model_dic['model'](config=config) # Pretrained_model.load_state_dict(torch.load(option['pretrained_model'] + '/pytorch_model.bin', map_location=device), # strict=False) Pretrained_model = pretrained_model_dic['model'].from_pretrained(option['pretrained_model']) lower_case_flag = True print('lower_case_flag: ', lower_case_flag) tokenizer = BertTokenizer.from_pretrained( option['pretrained_model'], do_lower_case=lower_case_flag) tokenizer.bos_token = '[CLS]' tokenizer.eos_token = '[SEP]' tokenizer.unk_token = '[UNK]' tokenizer.sep_token = '[SEP]' tokenizer.cls_token = '[CLS]' tokenizer.mask_token = '[MASK]' tokenizer.pad_token = '[PAD]' if add_tokens != None: tokenizer.add_tokens(add_tokens) print('We have added', add_tokens, 'tokens') Pretrained_model.resize_token_embeddings(len(tokenizer)) return Pretrained_model, tokenizer
38.014085
122
0.690997
c1e6cb405e76572e742225373b25cbee65975e1e
5,857
py
Python
repost_sles/main.py
SaiFi0102/repost_sles
453d671f071135ac62609a4ecdfd15b304d69c49
[ "MIT" ]
1
2021-07-27T19:50:07.000Z
2021-07-27T19:50:07.000Z
repost_sles/main.py
SaiFi0102/repost_sles
453d671f071135ac62609a4ecdfd15b304d69c49
[ "MIT" ]
null
null
null
repost_sles/main.py
SaiFi0102/repost_sles
453d671f071135ac62609a4ecdfd15b304d69c49
[ "MIT" ]
null
null
null
import frappe import datetime import os import json from frappe.utils import flt def repost_all_stock_vouchers(from_date, repost_gle=True, update_source_doc=False): import repost_sles.overrides from manufacturing_dv.events.stock_entry import validate frappe.flags.ignored_closed_or_disabled = 1 frappe.flags.do_not_update_reserved_qty = 1 frappe.db.auto_commit_on_many_writes = 1 print("Repost GLEs: {0}".format(repost_gle)) print("Update Source Documents: {0}".format(update_source_doc)) date_where_condition = "" date_and_condition = "" if from_date: print("From Date: {0}".format(frappe.format(from_date))) date_condition = "posting_date >= {0}".format(frappe.db.escape(from_date)) date_where_condition = "where {0}".format(date_condition) date_and_condition = "and {0}".format(date_condition) print("Enabling Allow Negative Stock") frappe.db.set_value("Stock Settings", None, "allow_negative_stock", 1) filename = "repost_all_stock_vouchers_checkpoint.json" if not os.path.isfile(filename): print("No checkpoint found") print("Updating Purchase Valuation Rates") precs = frappe.db.sql("select 'Purchase Receipt' as doctype, name from `tabPurchase Receipt` where docstatus=1 {0}".format(date_and_condition)) pinvs = frappe.db.sql("select 'Purchase Invoice' as doctype, name from `tabPurchase Invoice` where docstatus=1 {0}".format(date_and_condition)) for doctype, name in precs + pinvs: doc = frappe.get_doc(doctype, name) doc.set_landed_cost_voucher_amount() doc.update_valuation_rate("items") for d in doc.items: d.db_update() doc.clear_cache() frappe.db.commit() print("Getting Stock Vouchers List") vouchers = frappe.db.sql(""" select distinct voucher_type, voucher_no from `tabStock Ledger Entry` sle {0} order by posting_date, posting_time, creation """.format(date_where_condition)) print("Deleting SLEs") frappe.db.sql("delete from `tabStock Ledger Entry` {0}".format(date_where_condition)) if repost_gle: print("Deleting GLEs") for voucher_type, voucher_no in vouchers: frappe.db.sql("""delete from `tabGL Entry` where voucher_type=%s and voucher_no=%s""", (voucher_type, voucher_no)) print() frappe.db.commit() else: print("Checkpoint found") with open(filename, "r") as f: vouchers = json.loads(f.read()) start_time = datetime.datetime.now() print("Starting at: {0}".format(start_time)) i = 0 for voucher_type, voucher_no in vouchers: try: if not frappe.db.exists(voucher_type, voucher_no): i += 1 print("{0} / {1}: {2} {3} NOT FOUND! Skipping" .format(i, len(vouchers), voucher_type, voucher_no)) continue doc = frappe.get_doc(voucher_type, voucher_no) if voucher_type == "Stock Entry": doc.calculate_rate_and_amount() validate(doc, 'validate', set_cullet_rate=False) if update_source_doc: doc.db_update() for d in doc.items: d.db_update() elif voucher_type=="Purchase Receipt": if doc.is_subcontracted == "Yes": doc.validate() default_cost_center = frappe.get_cached_value("Company", doc.company, "cost_center") for d in doc.items: if not d.cost_center: d.cost_center = default_cost_center elif voucher_type=="Delivery Note": for d in doc.items: if d.target_warehouse: d.db_set('target_warehouse', None) doc.update_stock_ledger() if repost_gle: doc.make_gl_entries(repost_future_gle=False, from_repost=True) frappe.db.commit() i += 1 doc.clear_cache() now_time = datetime.datetime.now() total_duration = now_time - start_time repost_rate = flt(i) / total_duration.seconds if total_duration.seconds else "Inf" remaining_duration = datetime.timedelta(seconds=(len(vouchers) - i) / flt(repost_rate)) if flt(repost_rate) else "N/A" print("{0} / {1}: Elapsed Time: {4} | Rate: {5:.2f} Vouchers/Sec | ETA: {6} | {2} {3}".format(i, len(vouchers), voucher_type, voucher_no, total_duration, flt(repost_rate), remaining_duration)) except: with open(filename, "w") as f: print("Creating checkpoint") f.write(json.dumps(vouchers[i:])) frappe.db.rollback() raise print("Disabling Allow Negative Stock") frappe.db.set_value("Stock Settings", None, "allow_negative_stock", 0) frappe.db.commit() frappe.db.auto_commit_on_many_writes = 0 if os.path.isfile(filename): print("Deleting Checkpoint") os.remove(filename) def set_basic_rate_manually(item_code, rate, from_date, to_date): rate = flt(rate) print("Item Code: {0}".format(item_code)) print("Rate: {0}".format(frappe.format(rate))) print("From Date: {0}".format(from_date)) print("To Date: {0}".format(to_date)) date_condition = "" if from_date: date_condition += " and ste.posting_date >= %(from_date)s" if from_date: date_condition += " and ste.posting_date <= %(to_date)s" args = { 'item_code': item_code, 'from_date': from_date, 'to_date': to_date, 'rate': rate } stes = frappe.db.sql_list(""" select distinct ste.name from `tabStock Entry` ste inner join `tabStock Entry Detail` d on d.parent = ste.name where ste.purpose in ('Manufacture', 'Repack', 'Material Receipt') and ste.docstatus < 2 and d.item_code = %(item_code)s and ifnull(d.t_warehouse, '') != '' {0} """.format(date_condition), args) if stes: for name in stes: print(name) frappe.db.sql(""" update `tabStock Entry Detail` d inner join `tabStock Entry` ste on d.parent = ste.name set d.basic_rate = %(rate)s, d.set_basic_rate_manually = 1 where ste.purpose in ('Manufacture', 'Repack', 'Material Receipt') and ste.docstatus < 2 and d.item_code = %(item_code)s and ifnull(d.t_warehouse, '') != '' {0} """.format(date_condition), args) else: print("No Manufacture/Repack Entry found with Finished Good Item {0} found".format(item_code))
30.989418
145
0.708554
671f62ecb41dde76cdf0010ef917b978f1691a8c
1,368
py
Python
tools/refactoring/datagetters.py
ImagiaViz/inviwo
a00bb6b0551bc1cf26dc0366c827c1a557a9603d
[ "BSD-2-Clause" ]
349
2015-01-30T09:21:52.000Z
2022-03-25T03:10:02.000Z
tools/refactoring/datagetters.py
liu3xing3long/inviwo
69cca9b6ecd58037bda0ed9e6f53d02f189f19a7
[ "BSD-2-Clause" ]
641
2015-09-23T08:54:06.000Z
2022-03-23T09:50:55.000Z
tools/refactoring/datagetters.py
liu3xing3long/inviwo
69cca9b6ecd58037bda0ed9e6f53d02f189f19a7
[ "BSD-2-Clause" ]
124
2015-02-27T23:45:02.000Z
2022-02-21T09:37:14.000Z
import sys import os import re import colorama colorama.init() import refactoring # Note: refactoring.py need to be in the current working directory #paths = [ # "/Users/petst/Work/Projects/Inviwo-Developent/Private/Inviwo-dev", # "/Users/petst/Work/Projects/Inviwo-Developent/Private/Inviwo-research" #] paths = [ "C:/Users/petst55/Work/Inviwo/Inviwo-dev", "C:/Users/petst55/Work/Inviwo/Inviwo-research" ] excludespatterns = ["*/ext/*", "*moc_*", "*cmake*", "*/proteindocking/*", "*/proteindocking2/*", "*/genetree/*", "*/vrnbase/*"]; files = refactoring.find_files(paths, ['*.h', '*.cpp'], excludes=excludespatterns) def replace(pattern, replacement) : print("Matches:") matches = refactoring.find_matches(files, pattern) print("\n") print("Replacing:") refactoring.replace_matches(matches, pattern, replacement) replacements1 = { "getValueAsSingleDouble" : "getAsNormalizedDouble", "getValueAsVec2Double" : "getAsNormalizedDVec2", "getValueAsVec3Double" : "getAsNormalizedDVec3", "getValueAsVec4Double" : "getAsNormalizedDVec4", "setValueFromSingleDouble" : "setFromDouble", "setValueFromVec2Double" : "setFromDVec2", "setValueFromVec3Double" : "setFromDVec3", "setValueFromVec4Double" : "setFromDVec4" } print("Looking in " + str(len(files)) + " files") for k,v in replacements1.items(): replace(r"\b"+k+r"\b", v)
29.73913
128
0.716374
9f0930252da80a641b99fa16d582df66bcbfdad7
1,829
py
Python
setup.py
emory-libraries/emory-baggins
53c202782c1b52925b0cbd685a7faa617a6251d0
[ "Apache-2.0" ]
2
2016-10-18T21:30:15.000Z
2017-03-14T13:40:23.000Z
setup.py
emory-libraries/emory-baggins
53c202782c1b52925b0cbd685a7faa617a6251d0
[ "Apache-2.0" ]
null
null
null
setup.py
emory-libraries/emory-baggins
53c202782c1b52925b0cbd685a7faa617a6251d0
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os from setuptools import setup, find_packages import baggins LONG_DESCRIPTION = None try: # read the description if it's there with open('README.md') as desc_f: LONG_DESCRIPTION = desc_f.read() except: pass CLASSIFIERS = [ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Archiving', 'Topic :: Utilities' ] requirements = [ 'eulxml', 'requests', 'pymarc', 'bagit', 'eulfedora', 'pyyaml', 'cached-property', 'awesome-slugify', ] test_requirements = ['pytest', 'pytest-cov', 'mock'] setup( name='baggins', version=baggins.__version__, author='Emory University Libraries', author_email='libsysdev-l@listserv.cc.emory.edu', url='https://github.com/emory-libraries/emory-baggins', license='Apache License, Version 2.0', packages=find_packages(), install_requires=requirements, dependency_links=["git+ssh://git@github.com/LibraryOfCongress/bagit-python.git@master#egg=bagit"], setup_requires=['pytest-runner'], tests_require=test_requirements, extras_require={ 'test': test_requirements, }, description='scripts and utilities for creating bagit archives of digital content', long_description=LONG_DESCRIPTION, classifiers=CLASSIFIERS, scripts=['scripts/lsdi-bagger'], package_data={'baggins': [ "lsdi/content/*.*" ]} )
27.712121
102
0.669218
bd88f4ca60a3611487daa4eb999b8a5770ea6f82
1,242
py
Python
OOP_the_internet_herokuapp/src/page/form_auth_page.py
AntonioIonica/Automation_testing
6f7c94c55677b0958e6fada24058f1a00d2c0d0e
[ "MIT" ]
null
null
null
OOP_the_internet_herokuapp/src/page/form_auth_page.py
AntonioIonica/Automation_testing
6f7c94c55677b0958e6fada24058f1a00d2c0d0e
[ "MIT" ]
null
null
null
OOP_the_internet_herokuapp/src/page/form_auth_page.py
AntonioIonica/Automation_testing
6f7c94c55677b0958e6fada24058f1a00d2c0d0e
[ "MIT" ]
null
null
null
""" Login on Form authentication page taking the user and the password from the text (italic words) """ from selenium.webdriver.common.by import By from OOP_the_internet_herokuapp.src.page.base_page import BasePage class FormAuth(BasePage): USR = (By.ID, 'username') PWD = (By.ID, 'password') LOGIN_BTN = (By.XPATH, '//*[@id="login"]/button') TEXT_AUTH = (By.XPATH, '//*[@id="content"]/div/h4') def invalid_login(self): self.driver.find_element(*self.USR).send_keys('admin') self.driver.find_element(*self.PWD).send_keys('test123') self.driver.find_element(*self.LOGIN_BTN).click() self.driver.implicitly_wait(3) def valid_login(self): auth_text = self.driver.find_element(*self.TEXT_AUTH).text text_list = auth_text.split('.')[1].split() print(text_list) usr = [text_list[i + 1] for i in range(0, len(text_list)) if text_list[i] == 'Enter'] pwd = [text_list[i + 1] for i in range(0, len(text_list)) if text_list[i] == 'and'] self.driver.find_element(*self.USR).send_keys(usr) self.driver.find_element(*self.PWD).send_keys(pwd) self.driver.find_element(*self.LOGIN_BTN).click() self.driver.implicitly_wait(3)
37.636364
93
0.663446
4eaf787ad7501957ff06c5f4067d15003f89f8b1
310
py
Python
Hacker Rank/Python/Exception.py
Ahmad-Fahad/Python
5a5f8f3395f7085947430b8309f6af70b2e25a77
[ "Apache-2.0" ]
null
null
null
Hacker Rank/Python/Exception.py
Ahmad-Fahad/Python
5a5f8f3395f7085947430b8309f6af70b2e25a77
[ "Apache-2.0" ]
null
null
null
Hacker Rank/Python/Exception.py
Ahmad-Fahad/Python
5a5f8f3395f7085947430b8309f6af70b2e25a77
[ "Apache-2.0" ]
null
null
null
t = int(input()) while t>0: t-=1 dividend, divisor = input().split() try: q = int(dividend)//int(divisor) print(q) except ZeroDivisionError: print("Error Code: integer division or modulo by zero") except ValueError: print("Error Code: invalid literal for int() with base 10: {}".format(divisor))
23.846154
81
0.687097
389891c275bd40bbd1a08da7cc62658b9a217ab8
1,932
py
Python
models/beta/vss.py
YorkSu/hat
b646b6689f3d81c985ed13f3d5c23b6c717fd07d
[ "Apache-2.0" ]
1
2019-04-10T04:49:30.000Z
2019-04-10T04:49:30.000Z
models/beta/vss.py
Suger131/HAT-tf2.0
b646b6689f3d81c985ed13f3d5c23b6c717fd07d
[ "Apache-2.0" ]
null
null
null
models/beta/vss.py
Suger131/HAT-tf2.0
b646b6689f3d81c985ed13f3d5c23b6c717fd07d
[ "Apache-2.0" ]
1
2019-06-14T05:53:42.000Z
2019-06-14T05:53:42.000Z
""" VGG-Swish-SE For Cifar10 本模型默认总参数量[参考基准:cifar10]: Total params: 16,402,790 Trainable params: 16,390,246 Non-trainable params: 12,544 """ from hat.models.advance import AdvNet class vss(AdvNet): """ VSS """ def args(self): self.CONV_KI = 'he_normal' self.CONV_KR = None # l2(0.0005) self.TIME = [2, 2, 3, 3, 3] self.CONV = [64, 128, 256, 512, 512] self.BATCH_SIZE = 128 self.EPOCHS = 384 self.OPT = 'Adam' def build_model(self): # params processing self.CONV_ = list(zip( self.TIME, self.CONV, )) x_in = self.input(self.INPUT_SHAPE) x = x_in for ix, i in enumerate(self.CONV_): if ix: x = self.poolx(x) x = self.repeat(self.conv_s, *i)(x) x = self.SE(x) x = self.GAPool(x) x = self.local_s(x, 1024) x = self.dropout(x, 0.3 ) x = self.local_s(x, 1024) x = self.dropout(x, 0.3 ) x = self.local(x, self.NUM_CLASSES, activation='softmax') return self.Model(inputs=x_in, outputs=x, name='vss') def conv_s(self, x_in, filters, kernel_size=3): x = self.conv( x_in, filters, kernel_size, kernel_initializer=self.CONV_KI, kernel_regularizer=self.CONV_KR ) x = self.bn(x) x = self.swish(x) # x = self.SE(x) return x def local_s(self, x_in, units): x = self.local( x_in, units, activation=None, kernel_initializer=self.CONV_KI, ) x = self.bn(x) x = self.swish(x) return x def poolx(self, x_in, pool_size=3, strides=2): maxx = self.maxpool(x_in, pool_size=pool_size, strides=strides) avgx = self.avgpool(x_in, pool_size=pool_size, strides=strides) x = self.add([maxx, avgx]) return x # test part if __name__ == "__main__": mod = vss(DATAINFO={'INPUT_SHAPE': (256, 256, 3), 'NUM_CLASSES': 120}, built=True) mod.summary()
19.714286
84
0.586439
96a789a1572b5b11a0e3a8353f82c7b70e9d7249
2,805
py
Python
calc_stats.py
jianguoz/DNNC-few-shot-intent
ea6f39a225d62f87c05f3628206b06dcaeb56f01
[ "MIT" ]
30
2020-11-13T22:21:51.000Z
2022-03-02T03:46:46.000Z
calc_stats.py
jianguoz/DNNC-few-shot-intent
ea6f39a225d62f87c05f3628206b06dcaeb56f01
[ "MIT" ]
5
2021-04-14T04:48:59.000Z
2021-08-04T11:22:43.000Z
calc_stats.py
jianguoz/DNNC-few-shot-intent
ea6f39a225d62f87c05f3628206b06dcaeb56f01
[ "MIT" ]
7
2020-11-17T08:56:40.000Z
2022-03-30T06:22:48.000Z
# Copyright 2020, Salesforce.com, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import glob import sys import torch from models.utils import THRESHOLDS def main(): file_name = sys.argv[1] if len(sys.argv) >= 3: best_index = int(sys.argv[2]) else: best_index = None in_acc = [] oos_recall = [] oos_prec = [] oos_f1 = [] with open(file_name, 'r') as f: for line in f: in_acc.append([]) oos_recall.append([]) oos_prec.append([]) oos_f1.append([]) for elms in line.strip().split(): elms = elms.split(',') in_acc[-1].append(float(elms[0])) oos_recall[-1].append(float(elms[1])) oos_prec[-1].append(float(elms[2])) oos_f1[-1].append(float(elms[3])) in_acc = torch.FloatTensor(in_acc) * 100 oos_recall = torch.FloatTensor(oos_recall) * 100 oos_prec = torch.FloatTensor(oos_prec) * 100 oos_f1 = torch.FloatTensor(oos_f1) * 100 if best_index is None: best_index = (in_acc.mean(dim = 0) + oos_recall.mean(dim = 0)).max(dim = 0)[1] print() print('Best threshold: {} (index: {})'.format(THRESHOLDS[best_index], best_index)) print('Best in_acc: {} std: {}'.format(in_acc.mean(dim = 0)[best_index], in_acc.std(dim = 0)[best_index])) print('Best oos_recall: {} std: {}'.format(oos_recall.mean(dim = 0)[best_index], oos_recall.std(dim = 0)[best_index])) print('Best oos_prec: {} std: {}'.format(oos_prec.mean(dim = 0)[best_index], oos_prec.std(dim = 0)[best_index])) print('Best oos_f1: {} std: {}'.format(oos_f1.mean(dim = 0)[best_index], oos_f1.std(dim = 0)[best_index])) if __name__ == '__main__': main()
48.362069
462
0.653476
af63580a7c0606ac4c2771534c5efbdf0ef0ef49
1,567
py
Python
aliyun-python-sdk-airec/aliyunsdkairec/request/v20181012/QuerySingleAggregationReportRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
1
2021-03-08T02:59:17.000Z
2021-03-08T02:59:17.000Z
aliyun-python-sdk-airec/aliyunsdkairec/request/v20181012/QuerySingleAggregationReportRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
1
2020-05-31T14:51:47.000Z
2020-05-31T14:51:47.000Z
aliyun-python-sdk-airec/aliyunsdkairec/request/v20181012/QuerySingleAggregationReportRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RoaRequest from aliyunsdkairec.endpoint import endpoint_data class QuerySingleAggregationReportRequest(RoaRequest): def __init__(self): RoaRequest.__init__(self, 'Airec', '2018-10-12', 'QuerySingleAggregationReport','airec') self.set_uri_pattern('/openapi/instances/[InstanceId]/sync-reports/single-aggregation-report') self.set_method('GET') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_InstanceId(self): return self.get_path_params().get('InstanceId') def set_InstanceId(self,InstanceId): self.add_path_param('InstanceId',InstanceId)
40.179487
97
0.774729
73efe75c50a3a004c875914b98e876a15b6825ba
1,895
py
Python
uhd_restpy/testplatform/sessions/ixnetwork/topology/localipv6address_db0b032b0167051f08ee1b875f3bb0d5.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
20
2019-05-07T01:59:14.000Z
2022-02-11T05:24:47.000Z
uhd_restpy/testplatform/sessions/ixnetwork/topology/localipv6address_db0b032b0167051f08ee1b875f3bb0d5.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
60
2019-04-03T18:59:35.000Z
2022-02-22T12:05:05.000Z
uhd_restpy/testplatform/sessions/ixnetwork/topology/localipv6address_db0b032b0167051f08ee1b875f3bb0d5.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
13
2019-05-20T10:48:31.000Z
2021-10-06T07:45:44.000Z
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from uhd_restpy.base import Base from uhd_restpy.files import Files from typing import List, Any, Union class LocalIpv6Address(Base): """ The LocalIpv6Address class encapsulates a required localIpv6Address resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'localIpv6Address' _SDM_ATT_MAP = { 'Count': 'count', } _SDM_ENUM_MAP = { } def __init__(self, parent, list_op=False): super(LocalIpv6Address, self).__init__(parent, list_op) @property def Count(self): # type: () -> int """ Returns ------- - number: total number of values """ return self._get_attribute(self._SDM_ATT_MAP['Count'])
36.442308
157
0.718734
f914e149a54efbf7a03106daa08f2bb56f200639
11,751
py
Python
webdriver_wharf/app.py
mshriver/webdriver-wharf
d02091805dea2830a0fcd1044ba51339cafa453a
[ "MIT" ]
4
2017-12-21T10:30:24.000Z
2021-11-27T13:58:55.000Z
webdriver_wharf/app.py
mshriver/webdriver-wharf
d02091805dea2830a0fcd1044ba51339cafa453a
[ "MIT" ]
13
2017-05-18T14:58:45.000Z
2019-07-02T20:52:59.000Z
webdriver_wharf/app.py
mshriver/webdriver-wharf
d02091805dea2830a0fcd1044ba51339cafa453a
[ "MIT" ]
4
2017-05-18T15:46:21.000Z
2020-03-17T14:21:56.000Z
import logging import os from datetime import datetime from pkg_resources import require from threading import Thread from time import sleep, time from operator import attrgetter from apscheduler.schedulers.background import BackgroundScheduler from docker.errors import APIError from flask import Flask, jsonify, request, render_template from pytz import utc from requests.exceptions import RequestException from webdriver_wharf import db, interactions, lock pool = set() logger = logging.getLogger(__name__) image_name = os.environ.get("WEBDRIVER_WHARF_IMAGE", "cfmeqe/cfme_sel_stable") # Number of containers to have on "hot standby" for checkout pool_size = int(os.environ.get("WEBDRIVER_WHARF_POOL_SIZE", 4)) # Max time for an appliance to be checked out before it's forcibly checked in, in seconds. max_checkout_time = int(os.environ.get("WEBDRIVER_WHARF_MAX_CHECKOUT_TIME", 3600)) pull_interval = int(os.environ.get("WEBDRIVER_WHARF_IMAGE_PULL_INTERVAL", 3600)) rebalance_interval = int(os.environ.get("WEBDRIVER_WHARF_REBALANCE_INTERVAL", 3600 * 6)) no_content = ("", 204) application = Flask("webdriver_wharf") @application.route("/checkout") def checkout(): if not pool: logger.info("Pool exhausted on checkout, waiting for an available container") balance_containers.trigger() # Sleep until we get a container back with selenium running while True: try: with lock: container = pool.pop() keepalive(container) if not interactions.check_selenium(container): continue break except KeyError: # pool pop blew up, still no containers in the pool sleep(1) logger.info("Container %s checked out", container.name) info = container_info(container) info.update(expiry_info(container)) balance_containers.trigger() return jsonify(**{container.name: info}) @application.route("/checkin/<container_name>") def checkin(container_name): if container_name == "all": for container in interactions.containers(): stop_async(container) logger.info("All containers checked in") else: container = db.Container.from_name(container_name) if container: stop_async(container) logger.info("Container %s checked in", container.name) balance_containers.trigger() return no_content @application.route("/pull") def pull(): pull_latest_image.trigger() logger.info("Pull latest image triggered") return no_content @application.route("/rebalance") def balance(): balance_containers.trigger() logger.info("Rebalance triggered") return no_content @application.route("/renew/<container_name>") def renew(container_name): container = db.Container.from_name(container_name) if container: keepalive(container) logger.info("Container %s renewed", container.name) out = expiry_info(container) else: out = {} return jsonify(**out) @application.route("/status") def status(): containers = interactions.running() return jsonify( **{container.name: container_info(container) for container in containers} ) @application.route("/status/<container_name>") def container_status(container_name): container = db.Container.from_name(container_name) if container: out = {container_name: container_info(container)} else: out = {} return jsonify(**out) @application.route("/") def index(): return render_template("index.html", max_checkout_time=max_checkout_time) def container_info(container): host = requesting_host() host_noport = host.split(":")[0] data = { "image_id": container.image_id, "checked_out": container.checked_out, "checkin_url": "http://{}/checkin/{}".format(host, container.name), "renew_url": "http://{}/renew/{}".format(host, container.name), } def porturl(key, viewkey, fmt): the_port = getattr(container, key) if the_port: data[key] = the_port data[viewkey] = fmt.format(host=host_noport, port=the_port) else: data.setdefault("missing_keys", []).extend([key, viewkey]) porturl("webdriver_port", "webdriver_url", "http://{host}:{port}/wd/hub") porturl("vnc_port", "vnc_display", "vnc://{host}:{port}") porturl("http_port", "fileviewer_url", "http://{host}:{port}/") return data def keepalive(container): with db.transaction() as session: container.checked_out = datetime.utcnow() session.merge(container) def _stop_async_worker(container): interactions.stop(container) balance_containers.trigger() def stop_async(container): with lock: try: pool.remove(container) except KeyError: pass Thread(target=_stop_async_worker, args=(container,)).start() def expiry_info(container): # Expiry time for checkout and renew returns, plus renewl url # includes 'now' as seen by the wharf in addition to the expire time so # client can choose how to best handle renewals without doing host = requesting_host() now = int(time()) expire_time = now + max_checkout_time return { "renew_url": "http://{}/renew/{}".format(host, container.name), "now": now, "expire_time": expire_time, "expire_interval": max_checkout_time, } def requesting_host(): return request.headers.get("Host") # Scheduled tasks use docker for state, so use memory for jobs scheduler = BackgroundScheduler( { "apschedule.jobstores.default": {"type": "sqlite", "engine": db.engine()}, "apscheduler.executors.default": { "class": "apscheduler.executors.pool:ThreadPoolExecutor", "max_workers": "15", }, }, daemon=True, ) @scheduler.scheduled_job( "interval", id="pull_latest_image", seconds=pull_interval, timezone=utc ) def pull_latest_image(): # Try to pull a new image if interactions.pull(image_name): # If we got a new image, trigger a rebalance balance_containers.trigger() pull_latest_image.trigger = lambda: scheduler.modify_job( "pull_latest_image", next_run_time=datetime.now() ) def stop_outdated(): # Clean up before interacting with the pool: # - checks in containers that are checked out longer than the max lifetime # - stops containers that aren't running if their image is out of date # - stops containers from the pool not running selenium for container in interactions.containers(): if container.checked_out: checked_out_time = ( datetime.utcnow() - container.checked_out ).total_seconds() if checked_out_time > max_checkout_time: logger.info( "Container %s checked out longer than %d seconds, forcing stop", container.name, max_checkout_time, ) interactions.stop(container) continue else: if container.image_id != interactions.last_pulled_image_id: logger.info("Container %s running an old image", container.name) interactions.stop(container) continue @scheduler.scheduled_job( "interval", id="balance_containers", seconds=rebalance_interval, timezone=utc ) def balance_containers(): try: stop_outdated() pool_balanced = False while not pool_balanced: # Grabs/releases the lock each time through the loop so checkouts don't have to wait # too long if a container's being destroyed with lock: # Make sure the number of running containers that aren't checked out containers = interactions.containers() running = interactions.running(*containers) not_running = containers - running checked_out = set(filter(lambda c: bool(c.checked_out), running)) # Reset the global pool based on the current derived state pool.clear() pool.update(running - checked_out) pool_stat_str = "%d/%d - %d checked out - %d to destroy" % ( len(pool), pool_size, len(checked_out), len(not_running), ) containers_to_start = pool_size - len(pool) containers_to_stop = len(pool) - pool_size # Starting containers can happen at-will, and shouldn't be done under lock # so that checkouts don't have to block unless the pool is exhausted if containers_to_start > 0: if containers_to_start > 4: # limit the number of ocntainers to start so we # don't spend *too* much time refilling the pool if # there's more work to be done containers_to_start = 4 logger.info( "Pool %s, adding %d containers", pool_stat_str, containers_to_start ) interactions.create_containers(image_name, containers_to_start) # after starting, continue the loop to ensure that # starting new containers happens before destruction continue # Stopping containers does need to happen under lock to ensure that # simultaneous balance_containers don't attempt to stop the same container # This should be rare, since containers are never returned to the pool, # but can happen if, for example, the configured pool size changes if containers_to_stop > 0: logger.debug("%d containers to stop", containers_to_stop) with lock: oldest_container = min(pool, key=attrgetter("created")) logger.info( "Pool %s, removing oldest container %s", pool_stat_str, oldest_container.name, ) interactions.stop(oldest_container) # again, continue the loop here to save destroys for last continue # If we've made it this far... logger.info("Pool balanced, %s", pool_stat_str) pool_balanced = True except (APIError, RequestException) as exc: logger.error("%s while balancing containers, retrying." % type(exc).__name__) logger.exception(exc) balance_containers.trigger() balance_containers.trigger = lambda: scheduler.modify_job( "balance_containers", next_run_time=datetime.now() ) # starts the scheduler before handling the first request @application.before_first_request def _wharf_init(): version = require("webdriver-wharf")[0].version logger.info("version %s", version) # Before doing anything else, grab the image or explode logger.info("Pulling image %s -- this could take a while", image_name) interactions.pull(image_name) logger.info("done") scheduler.start() balance_containers.trigger() # Give the scheduler and executor a nice cool glass of STFU # This supresses informational messages about the task be fired by the scheduler, # as well as warnings from the executor that the task is already running. # For our purposes, neither is notable. logging.getLogger("apscheduler.scheduler").setLevel(logging.ERROR) logging.getLogger("apscheduler.executors.default").setLevel(logging.ERROR) logger.info("Initializing pool, ready for checkout")
35.077612
96
0.647434
72ade9097be0b41e1fbcf47b7bb112f4cab7d473
2,399
py
Python
test/functional/p2p_timeouts.py
bitcoinlimitededition/bitcoinlimitededition
befc25e21abf8e02f260474210bd074a4f0b07b2
[ "MIT" ]
null
null
null
test/functional/p2p_timeouts.py
bitcoinlimitededition/bitcoinlimitededition
befc25e21abf8e02f260474210bd074a4f0b07b2
[ "MIT" ]
null
null
null
test/functional/p2p_timeouts.py
bitcoinlimitededition/bitcoinlimitededition
befc25e21abf8e02f260474210bd074a4f0b07b2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2016-2017 The Bitcoinlimitededition Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test various net timeouts. - Create three bitcoinlimitededitiond nodes: no_verack_node - we never send a verack in response to their version no_version_node - we never send a version (only a ping) no_send_node - we never send any P2P message. - Start all three nodes - Wait 1 second - Assert that we're connected - Send a ping to no_verack_node and no_version_node - Wait 30 seconds - Assert that we're still connected - Send a ping to no_verack_node and no_version_node - Wait 31 seconds - Assert that we're no longer connected (timeout to receive version/verack is 60 seconds) """ from time import sleep from test_framework.mininode import * from test_framework.test_framework import BitcoinlimitededitionTestFramework from test_framework.util import * class TestP2PConn(P2PInterface): def on_version(self, message): # Don't send a verack in response pass class TimeoutsTest(BitcoinlimitededitionTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def run_test(self): # Setup the p2p connections and start up the network thread. no_verack_node = self.nodes[0].add_p2p_connection(TestP2PConn()) no_version_node = self.nodes[0].add_p2p_connection(TestP2PConn(), send_version=False) no_send_node = self.nodes[0].add_p2p_connection(TestP2PConn(), send_version=False) network_thread_start() sleep(1) assert no_verack_node.connected assert no_version_node.connected assert no_send_node.connected no_verack_node.send_message(msg_ping()) no_version_node.send_message(msg_ping()) sleep(30) assert "version" in no_verack_node.last_message assert no_verack_node.connected assert no_version_node.connected assert no_send_node.connected no_verack_node.send_message(msg_ping()) no_version_node.send_message(msg_ping()) sleep(31) assert not no_verack_node.connected assert not no_version_node.connected assert not no_send_node.connected if __name__ == '__main__': TimeoutsTest().main()
31.565789
93
0.732805
03cef242ac6c2d4d3d1b6c47b7c2ca2da4b57a0b
105
py
Python
backend-django/src/alpaca/urls.py
ryanpinnock10/Trading-Bot
2f8d3b30f0a47423eed66d67566460fc099f188e
[ "MIT" ]
1
2021-11-08T01:44:14.000Z
2021-11-08T01:44:14.000Z
backend-django/src/alpaca/urls.py
webclinic017/Trading-Bot-9
2f8d3b30f0a47423eed66d67566460fc099f188e
[ "MIT" ]
1
2021-03-30T13:11:11.000Z
2021-03-30T13:11:11.000Z
backend-django/src/alpaca/urls.py
webclinic017/Trading-Bot-9
2f8d3b30f0a47423eed66d67566460fc099f188e
[ "MIT" ]
1
2021-11-08T01:44:11.000Z
2021-11-08T01:44:11.000Z
from django.urls import path, include from . import views urlpatterns = [ path('', views.index), ]
13.125
37
0.67619
1582abd02def58da37b0cc1a41f13aea738a7cbc
1,235
py
Python
flypy/tests/test_calling_conv.py
filmackay/flypy
d64e70959c5c8af9e914dcc3ce1068fb99859c3a
[ "BSD-2-Clause" ]
null
null
null
flypy/tests/test_calling_conv.py
filmackay/flypy
d64e70959c5c8af9e914dcc3ce1068fb99859c3a
[ "BSD-2-Clause" ]
null
null
null
flypy/tests/test_calling_conv.py
filmackay/flypy
d64e70959c5c8af9e914dcc3ce1068fb99859c3a
[ "BSD-2-Clause" ]
1
2020-01-01T00:43:24.000Z
2020-01-01T00:43:24.000Z
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import import unittest from flypy import jit class TestCallingConventionFromPython(unittest.TestCase): def test_varargs(self): @jit def f(a, b, *args): return [a, b, args[1]] self.assertEqual(f(1, 2, 0, 3, 0), [1, 2, 3]) class TestCallingFlypyConvention(unittest.TestCase): def test_varargs(self): @jit def g(a, b, *args): return [a, b, args[1]] @jit def f(a, b, c, d, e): return g(a, b, c, d, e) self.assertEqual(f(1, 2, 0, 3, 0), [1, 2, 3]) def test_unpacking(self): @jit def g(a, b, c): return [a, b, c] @jit def f(*args): return g(*args) self.assertEqual(f(1, 2, 3), [1, 2, 3]) def test_unpacking2(self): raise unittest.SkipTest("unpacking with additional varargs") @jit def g(a, b, *args): return [a, b, args[0]] @jit def f(*args): return g(*args) self.assertEqual(f(1, 2, 3), [1, 2, 3]) # TODO: Test unpacking with GenericTuple if __name__ == '__main__': unittest.main()
22.053571
68
0.526316
e0fb16f468e597808b30f6895f84bf9527341d73
7,275
py
Python
c3lingo/models.py
c3lingo/c3lingo
b9d0c84164ec3b2ab60da87b0f6f36e10b4b27e9
[ "MIT" ]
5
2020-04-22T19:49:41.000Z
2020-12-30T16:17:37.000Z
c3lingo/models.py
c3lingo/c3lingo
b9d0c84164ec3b2ab60da87b0f6f36e10b4b27e9
[ "MIT" ]
7
2020-05-16T13:55:40.000Z
2021-09-22T18:56:41.000Z
c3lingo/models.py
c3lingo/c3lingo
b9d0c84164ec3b2ab60da87b0f6f36e10b4b27e9
[ "MIT" ]
1
2020-04-27T15:19:20.000Z
2020-04-27T15:19:20.000Z
from django.db import models from django.contrib.auth.models import User from django.utils.crypto import get_random_string import hashlib class Language(models.Model): """A language we support, spoken or otherwise.""" # Language code. # For spoken languages, if possible, follow Django's convention of # using RFC 3066 (https://docs.djangoproject.com/en/3.0/topics/i18n/). # For signed languages, use ISO 639-3. code = models.CharField(max_length=8) # User-visible language name, in English, for our team's use. name_en = models.CharField(max_length=100) # User-visible language name, in the form users of that language # will most likely recognize (i.e. in the language itself, if it # has a written form). name_self = models.CharField(max_length=100) def __str__(self): return self.code class Conference(models.Model): """A public event in which one or more talks will be translated. Example: the 36C3. """ shortname = models.CharField(max_length=100) # e.g. 36c3 # e.g. "36th Chaos Communication Congress" name = models.TextField() image_url = models.TextField(blank=True) start = models.DateTimeField(null=True) end = models.DateTimeField(null=True) # The latest version of the Fahrplan JSON we imported. fahrplan_version = models.TextField(blank=True) def __str__(self): return self.shortname class Room(models.Model): """A Room is where Talks are given during a Conference. E.g. "Hall Ada" """ conference = models.ForeignKey(Conference, on_delete=models.PROTECT) name = models.TextField() def __str__(self): return '{conf}/{name}'.format(conf=self.conference, name=self.name) class TalkBaseModel(models.Model): """The translatable properties of a talk: title, subtitle, etc. In Talk, these are imported untranslated from the Fahrplan.""" title = models.TextField(blank=True) subtitle = models.TextField(blank=True) abstract = models.TextField(blank=True) description = models.TextField(blank=True) class Meta: abstract = True class Talk(TalkBaseModel): """A single presentation given at a Conference.""" conference = models.ForeignKey(Conference, on_delete=models.PROTECT) fahrplan_id = models.CharField(max_length=100) fahrplan_guid = models.CharField(max_length=100) # These fields are untranlsated and imported from the Fahrplan logo_url = models.TextField(blank=True) talk_type = models.TextField(blank=True) speakers = models.TextField(blank=True) # comma-separated list of speakers from the Fahrplan language = models.ForeignKey(Language, on_delete=models.PROTECT) room = models.ForeignKey(Room, on_delete=models.PROTECT) start = models.DateTimeField() end = models.DateTimeField() class Meta: unique_together = [['conference', 'fahrplan_id']] def __str__(self): return '{conf}/{title}'.format(conf=self.conference, title=self.title) @property def slug(self): return '{conference_name}-{fahrplan_id}-{name}'.format( conference_name=self.conference.acronym, fahrplan_id=self.fahrplan_id, name=parametrize(self.name), ) @property def watch_url(self): return 'https://media.ccc.de/v/{slug}'.format(slug=self.slug) @property def slides_url(self): return 'https://speakers.c3lingo.org/talks/{guid}/'.format(self.guid) class Translation(TalkBaseModel): """A translation of the properties of a talk (title, subtitle, etc.)""" author = models.ForeignKey(User, null=True, on_delete=models.SET_NULL) talk = models.ForeignKey(Talk, on_delete=models.CASCADE) language = models.ForeignKey(Language, on_delete=models.PROTECT) class Meta: unique_together = [['talk', 'language']] def __str__(self): return '{talk} ({language})'.format(talk=self.talk, language=self.language) class Translator(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) confirmed = models.BooleanField() bio = models.TextField(blank=True) contact_info = models.TextField(blank=True) # Used to authenticate requests to the iCal URL. secret_token = models.CharField(max_length=64, default=lambda: get_random_string(64)) @property def avatar_url(self): """Automatically generated Gravatar URL from the email. TODO: this leaks the email address (MD5 is rainbowed to death) TODO: how does the Chaos community feel about Gravatar? """ return 'https://www.gravatar.com/avatar/{}'.format( hashlib.md5(self.user.email.lower()).hexdigest(), ) def __str__(self): return str(self.user) class TranslatorSpeaks(models.Model): """Indicates that a translator speaks a given language.""" user = models.ForeignKey(User, on_delete=models.CASCADE) language = models.ForeignKey(Language, on_delete=models.PROTECT) def __str__(self): return '{translator}: {language}'.format(translator=self.user, language=self.language) class Booth(models.Model): """Represents a translation booth that contains a console.""" room = models.ForeignKey(Room, on_delete=models.PROTECT) name = models.TextField() # e.g. "Hall A booth 1" location = models.TextField() # How to get there (c3nav link, free # text, ...) dect = models.CharField(max_length=30, blank=True) # How many translators we want in this booth for a typical talk desired_occupancy = models.PositiveIntegerField() # How many translators can fit in this booth, max maximum_occupancy = models.PositiveIntegerField() def __str__(self): return '{room}/{name}'.format(room=self.room, name=self.name) class Shift(models.Model): """A shift is an opportunity for a number of Translators to translate a given Talk in a given Booth.""" booth = models.ForeignKey(Booth, on_delete=models.PROTECT) talk = models.ForeignKey(Talk, on_delete=models.CASCADE) # The language may not be defined, e.g. if we have a booth used # for multiple languages based on availability/interest. language = models.ForeignKey(Language, blank=True, null=True, on_delete=models.PROTECT) @property def language_or_any(self): if self.language is not None: return self.language return '*' def __str__(self): return '{talk} ({src} -> {dst})'.format( talk=self.talk, src=self.talk.language, dst=self.language_or_any ) class ShiftAssignment(models.Model): """Represents a Translator volunteering for a Shift.""" shift = models.ForeignKey(Shift, on_delete=models.CASCADE) user = models.ForeignKey(User, on_delete=models.CASCADE) waitlisted = models.BooleanField(default=True) freeloaded = models.BooleanField(default=False) comment = models.TextField(blank=True) def __str__(self): return '{user} {langfrom} -> {langto} {talk}'.format( user=self.user, langfrom=self.shift.talk.language, langto=self.shift.language, talk=self.shift.talk )
35.144928
97
0.683574
c26de2405b6a7cad7acd36c8766a6714bacb6c33
21,150
py
Python
indicators/ind_ann.py
AwesomeTrading/backtrader-live
8d29b6161055e711618ab47338e0ef055f3bddf5
[ "Apache-2.0" ]
27
2019-09-23T12:21:08.000Z
2022-01-21T07:47:27.000Z
indicators/ind_ann.py
AwesomeTrading/backtrader-live
8d29b6161055e711618ab47338e0ef055f3bddf5
[ "Apache-2.0" ]
null
null
null
indicators/ind_ann.py
AwesomeTrading/backtrader-live
8d29b6161055e711618ab47338e0ef055f3bddf5
[ "Apache-2.0" ]
16
2020-01-10T14:09:37.000Z
2022-02-23T00:41:58.000Z
from __future__ import (absolute_import, division, print_function, unicode_literals) import backtrader as bt from backtrader.functions import Logic import math import ccxt class ANN(bt.Indicator): lines = ('ann', 'prediction' ) plotinfo = dict( subplot=True, plotlinelabels=True, plotlinevalues=True, plotvaluetags=True, ) params = ( ('threshold', 0.12), ) def __init__(self): super(ANN, self).__init__() l0_0 = l0_1 = l0_2 = l0_3 = l0_4 = l0_5 = l0_6 = l0_7 = l0_8 = l0_9 = l0_10 = l0_11 = l0_12 = l0_13 = l0_14 = self.getDiff() l1_0 = self.PineActivationFunctionTanh( l0_0 * 5.040340774 + l0_1 * -1.3025994088 + l0_2 * 19.4225543981 + l0_3 * 1.1796960423 + l0_4 * 2.4299395823 + l0_5 * 3.159003445 + l0_6 * 4.6844527551 + l0_7 * -6.1079267196 + l0_8 * -2.4952869198 + l0_9 * -4.0966081154 + l0_10 * -2.2432843111 + l0_11 * -0.6105764807 + l0_12 * -0.0775684605 + l0_13 * -0.7984753138 + l0_14 * 3.4495907342) l1_1 = self.PineActivationFunctionTanh( l0_0 * 5.9559031982 + l0_1 * -3.1781960056 + l0_2 * -1.6337491061 + l0_3 * -4.3623166512 + l0_4 * 0.9061990402 + l0_5 * -0.731285093 + l0_6 * -6.2500232251 + l0_7 * 0.1356087758 + l0_8 * -0.8570572885 + l0_9 * -4.0161353298 + l0_10 * 1.5095552083 + l0_11 * 1.324789197 + l0_12 * -0.1011973878 + l0_13 * -2.3642090162 + l0_14 * -0.7160862442) l1_2 = self.PineActivationFunctionTanh( l0_0 * 4.4350881378 + l0_1 * -2.8956461034 + l0_2 * 1.4199762607 + l0_3 * -0.6436844261 + l0_4 * 1.1124274281 + l0_5 * -4.0976954985 + l0_6 * 2.9317456342 + l0_7 * 0.0798318393 + l0_8 * -5.5718144311 + l0_9 * -0.6623352208 + l0_10 * 3.2405203222 + l0_11 * -10.6253384513 + l0_12 * 4.7132919253 + l0_13 * -5.7378151597 + l0_14 * 0.3164836695) l1_3 = self.PineActivationFunctionTanh( l0_0 * -6.1194605467 + l0_1 * 7.7935605604 + l0_2 * -0.7587522153 + l0_3 * 9.8382495905 + l0_4 * 0.3274314734 + l0_5 * 1.8424796541 + l0_6 * -1.2256355427 + l0_7 * -1.5968600758 + l0_8 * 1.9937700922 + l0_9 * 5.0417809111 + l0_10 * -1.9369944654 + l0_11 * 6.1013201778 + l0_12 * 1.5832910747 + l0_13 * -2.148403244 + l0_14 * 1.5449437366) l1_4 = self.PineActivationFunctionTanh( l0_0 * 3.5700040028 + l0_1 * -4.4755892733 + l0_2 * 0.1526702072 + l0_3 * -0.3553664401 + l0_4 * -2.3777962662 + l0_5 * -1.8098849587 + l0_6 * -3.5198449134 + l0_7 * -0.4369370497 + l0_8 * 2.3350169623 + l0_9 * 1.9328960346 + l0_10 * 1.1824141812 + l0_11 * 3.0565148049 + l0_12 * -9.3253401534 + l0_13 * 1.6778555498 + l0_14 * -3.045794332) l1_5 = self.PineActivationFunctionTanh( l0_0 * 3.6784907623 + l0_1 * 1.1623683715 + l0_2 * 7.1366362145 + l0_3 * -5.6756546585 + l0_4 * 12.7019884334 + l0_5 * -1.2347823331 + l0_6 * 2.3656619827 + l0_7 * -8.7191778213 + l0_8 * -13.8089238753 + l0_9 * 5.4335943836 + l0_10 * -8.1441181338 + l0_11 * -10.5688113287 + l0_12 * 6.3964140758 + l0_13 * -8.9714236223 + l0_14 * -34.0255456929) l1_6 = self.PineActivationFunctionTanh( l0_0 * -0.4344517548 + l0_1 * -3.8262167437 + l0_2 * -0.2051098003 + l0_3 * 0.6844201221 + l0_4 * 1.1615893422 + l0_5 * -0.404465314 + l0_6 * -0.1465747632 + l0_7 * -0.006282458 + l0_8 * 0.1585655487 + l0_9 * 1.1994484991 + l0_10 * -0.9879081404 + l0_11 * -0.3564970612 + l0_12 * 1.5814717823 + l0_13 * -0.9614804676 + l0_14 * 0.9204822346) l1_7 = self.PineActivationFunctionTanh( l0_0 * -4.2700957175 + l0_1 * 9.4328591157 + l0_2 * -4.3045548 + l0_3 * 5.0616868842 + l0_4 * 3.3388781058 + l0_5 * -2.1885073225 + l0_6 * -6.506301518 + l0_7 * 3.8429000108 + l0_8 * -1.6872237349 + l0_9 * 2.4107095799 + l0_10 * -3.0873985314 + l0_11 * -2.8358325447 + l0_12 * 2.4044366491 + l0_13 * 0.636779082 + l0_14 * -13.2173215035) l1_8 = self.PineActivationFunctionTanh( l0_0 * -8.3224697492 + l0_1 * -9.4825530183 + l0_2 * 3.5294389835 + l0_3 * 0.1538618049 + l0_4 * -13.5388631898 + l0_5 * -0.1187936017 + l0_6 * -8.4582741139 + l0_7 * 5.1566299292 + l0_8 * 10.345519938 + l0_9 * 2.9211759333 + l0_10 * -5.0471804233 + l0_11 * 4.9255989983 + l0_12 * -9.9626142544 + l0_13 * 23.0043143258 + l0_14 * 20.9391809343) l1_9 = self.PineActivationFunctionTanh( l0_0 * -0.9120518654 + l0_1 * 0.4991807488 + l0_2 * -1.877244586 + l0_3 * 3.1416466525 + l0_4 * 1.063709676 + l0_5 * 0.5210126835 + l0_6 * -4.9755780108 + l0_7 * 2.0336532347 + l0_8 * -1.1793121093 + l0_9 * -0.730664855 + l0_10 * -2.3515987428 + l0_11 * -0.1916546514 + l0_12 * -2.2530340504 + l0_13 * -0.2331829119 + l0_14 * 0.7216218149) l1_10 = self.PineActivationFunctionTanh( l0_0 * -5.2139618683 + l0_1 * 1.0663790028 + l0_2 * 1.8340834959 + l0_3 * 1.6248173447 + l0_4 * -0.7663740145 + l0_5 * 0.1062788171 + l0_6 * 2.5288021501 + l0_7 * -3.4066549066 + l0_8 * -4.9497988755 + l0_9 * -2.3060668143 + l0_10 * -1.3962486274 + l0_11 * 0.6185583427 + l0_12 * 0.2625299576 + l0_13 * 2.0270246444 + l0_14 * 0.6372015811) l1_11 = self.PineActivationFunctionTanh( l0_0 * 0.2020072665 + l0_1 * 0.3885852709 + l0_2 * -0.1830248843 + l0_3 * -1.2408598444 + l0_4 * -0.6365798088 + l0_5 * 1.8736534268 + l0_6 * 0.656206442 + l0_7 * -0.2987482678 + l0_8 * -0.2017485963 + l0_9 * -1.0604095303 + l0_10 * 0.239793356 + l0_11 * -0.3614172938 + l0_12 * 0.2614678044 + l0_13 * 1.0083551762 + l0_14 * -0.5473833797) l1_12 = self.PineActivationFunctionTanh( l0_0 * -0.4367517149 + l0_1 * -10.0601304934 + l0_2 * 1.9240604838 + l0_3 * -1.3192184047 + l0_4 * -0.4564760159 + l0_5 * -0.2965270368 + l0_6 * -1.1407423613 + l0_7 * 2.0949647291 + l0_8 * -5.8212599297 + l0_9 * -1.3393321939 + l0_10 * 7.6624548265 + l0_11 * 1.1309391851 + l0_12 * -0.141798054 + l0_13 * 5.1416736187 + l0_14 * -1.8142503125) l1_13 = self.PineActivationFunctionTanh( l0_0 * 1.103948336 + l0_1 * -1.4592033032 + l0_2 * 0.6146278432 + l0_3 * 0.5040966421 + l0_4 * -2.4276090772 + l0_5 * -0.0432902426 + l0_6 * -0.0044259999 + l0_7 * -0.5961347308 + l0_8 * 0.3821026107 + l0_9 * 0.6169102373 + l0_10 * -0.1469847611 + l0_11 * -0.0717167683 + l0_12 * -0.0352403695 + l0_13 * 1.2481310788 + l0_14 * 0.1339628411) l1_14 = self.PineActivationFunctionTanh( l0_0 * -9.8049980534 + l0_1 * 13.5481068519 + l0_2 * -17.1362809025 + l0_3 * 0.7142100864 + l0_4 * 4.4759163422 + l0_5 * 4.5716161777 + l0_6 * 1.4290884628 + l0_7 * 8.3952862712 + l0_8 * -7.1613700432 + l0_9 * -3.3249489518 + l0_10 * -0.7789587912 + l0_11 * -1.7987628873 + l0_12 * 13.364752545 + l0_13 * 5.3947219678 + l0_14 * 12.5267547127) l1_15 = self.PineActivationFunctionTanh( l0_0 * 0.9869461803 + l0_1 * 1.9473351905 + l0_2 * 2.032925759 + l0_3 * 7.4092080633 + l0_4 * -1.9257741399 + l0_5 * 1.8153585328 + l0_6 * 1.1427866392 + l0_7 * -0.3723167449 + l0_8 * 5.0009927384 + l0_9 * -0.2275103411 + l0_10 * 2.8823012914 + l0_11 * -3.0633141934 + l0_12 * -2.785334815 + l0_13 * 2.727981E-4 + l0_14 * -0.1253009512) l1_16 = self.PineActivationFunctionTanh( l0_0 * 4.9418118585 + l0_1 * -2.7538199876 + l0_2 * -16.9887588104 + l0_3 * 8.8734475297 + l0_4 * -16.3022734814 + l0_5 * -4.562496601 + l0_6 * -1.2944373699 + l0_7 * -9.6022946986 + l0_8 * -1.018393866 + l0_9 * -11.4094515429 + l0_10 * 24.8483091382 + l0_11 * -3.0031522277 + l0_12 * 0.1513114555 + l0_13 * -6.7170487021 + l0_14 * -14.7759227576) l1_17 = self.PineActivationFunctionTanh( l0_0 * 5.5931454656 + l0_1 * 2.22272078 + l0_2 * 2.603416897 + l0_3 * 1.2661196599 + l0_4 * -2.842826446 + l0_5 * -7.9386099121 + l0_6 * 2.8278849111 + l0_7 * -1.2289445238 + l0_8 * 4.571484248 + l0_9 * 0.9447425595 + l0_10 * 4.2890688351 + l0_11 * -3.3228258483 + l0_12 * 4.8866215526 + l0_13 * 1.0693412194 + l0_14 * -1.963203112) l1_18 = self.PineActivationFunctionTanh( l0_0 * 0.2705520264 + l0_1 * 0.4002328199 + l0_2 * 0.1592515845 + l0_3 * 0.371893552 + l0_4 * -1.6639467871 + l0_5 * 2.2887318884 + l0_6 * -0.148633664 + l0_7 * -0.6517792263 + l0_8 * -0.0993032992 + l0_9 * -0.964940376 + l0_10 * 0.1286342935 + l0_11 * 0.4869943595 + l0_12 * 1.4498648166 + l0_13 * -0.3257333384 + l0_14 * -1.3496419812) l1_19 = self.PineActivationFunctionTanh( l0_0 * -1.3223200798 + l0_1 * -2.2505204324 + l0_2 * 0.8142804525 + l0_3 * -0.848348177 + l0_4 * 0.7208860589 + l0_5 * 1.2033423756 + l0_6 * -0.1403005786 + l0_7 * 0.2995941644 + l0_8 * -1.1440473062 + l0_9 * 1.067752916 + l0_10 * -1.2990534679 + l0_11 * 1.2588583869 + l0_12 * 0.7670409455 + l0_13 * 2.7895972983 + l0_14 * -0.5376152512) l1_20 = self.PineActivationFunctionTanh( l0_0 * 0.7382351572 + l0_1 * -0.8778865631 + l0_2 * 1.0950766363 + l0_3 * 0.7312146997 + l0_4 * 2.844781386 + l0_5 * 2.4526730903 + l0_6 * -1.9175165077 + l0_7 * -0.7443755288 + l0_8 * -3.1591419438 + l0_9 * 0.8441602697 + l0_10 * 1.1979484448 + l0_11 * 2.138098544 + l0_12 * 0.9274159536 + l0_13 * -2.1573448803 + l0_14 * -3.7698356464) l1_21 = self.PineActivationFunctionTanh( l0_0 * 5.187120117 + l0_1 * -7.7525670576 + l0_2 * 1.9008346975 + l0_3 * -1.2031603996 + l0_4 * 5.917669142 + l0_5 * -3.1878682719 + l0_6 * 1.0311747828 + l0_7 * -2.7529484612 + l0_8 * -1.1165884578 + l0_9 * 2.5524942323 + l0_10 * -0.38623241 + l0_11 * 3.7961317445 + l0_12 * -6.128820883 + l0_13 * -2.1470707709 + l0_14 * 2.0173792965) l1_22 = self.PineActivationFunctionTanh( l0_0 * -6.0241676562 + l0_1 * 0.7474455584 + l0_2 * 1.7435724844 + l0_3 * 0.8619835076 + l0_4 * -0.1138406797 + l0_5 * 6.5979359352 + l0_6 * 1.6554154348 + l0_7 * -3.7969458806 + l0_8 * 1.1139097376 + l0_9 * -1.9588417 + l0_10 * 3.5123392221 + l0_11 * 9.4443103128 + l0_12 * -7.4779291395 + l0_13 * 3.6975940671 + l0_14 * 8.5134262747) l1_23 = self.PineActivationFunctionTanh( l0_0 * -7.5486576471 + l0_1 * -0.0281420865 + l0_2 * -3.8586839454 + l0_3 * -0.5648792233 + l0_4 * -7.3927282026 + l0_5 * -0.3857538046 + l0_6 * -2.9779885698 + l0_7 * 4.0482279965 + l0_8 * -1.1522499578 + l0_9 * -4.1562500212 + l0_10 * 0.7813134307 + l0_11 * -1.7582667612 + l0_12 * 1.7071109988 + l0_13 * 6.9270873208 + l0_14 * -4.5871357362) l1_24 = self.PineActivationFunctionTanh( l0_0 * -5.3603442228 + l0_1 * -9.5350611629 + l0_2 * 1.6749984422 + l0_3 * -0.6511065892 + l0_4 * -0.8424823239 + l0_5 * 1.9946675213 + l0_6 * -1.1264361638 + l0_7 * 0.3228676616 + l0_8 * 5.3562230396 + l0_9 * -1.6678168952 + l0_10 * 1.2612580068 + l0_11 * -3.5362671399 + l0_12 * -9.3895191366 + l0_13 * 2.0169228673 + l0_14 * -3.3813191557) l1_25 = self.PineActivationFunctionTanh( l0_0 * 1.1362866429 + l0_1 * -1.8960071702 + l0_2 * 5.7047307243 + l0_3 * -1.6049785053 + l0_4 * -4.8353898931 + l0_5 * -1.4865381145 + l0_6 * -0.2846893475 + l0_7 * 2.2322095997 + l0_8 * 2.0930488668 + l0_9 * 1.7141411002 + l0_10 * -3.4106032176 + l0_11 * 3.0593289612 + l0_12 * -5.0894813904 + l0_13 * -0.5316299133 + l0_14 * 0.4705265416) l1_26 = self.PineActivationFunctionTanh( l0_0 * -0.9401400975 + l0_1 * -0.9136086957 + l0_2 * -3.3808688582 + l0_3 * 4.7200776773 + l0_4 * 3.686296919 + l0_5 * 14.2133723935 + l0_6 * 1.5652940954 + l0_7 * -0.2921139433 + l0_8 * 1.0244504511 + l0_9 * -7.6918299134 + l0_10 * -0.594936135 + l0_11 * -1.4559914156 + l0_12 * 2.8056435224 + l0_13 * 2.6103905733 + l0_14 * 2.3412348872) l1_27 = self.PineActivationFunctionTanh( l0_0 * 1.1573980186 + l0_1 * 2.9593661909 + l0_2 * 0.4512594325 + l0_3 * -0.9357210858 + l0_4 * -1.2445804495 + l0_5 * 4.2716471631 + l0_6 * 1.5167912375 + l0_7 * 1.5026853293 + l0_8 * 1.3574772038 + l0_9 * -1.9754386842 + l0_10 * 6.727671436 + l0_11 * 8.0145772889 + l0_12 * 7.3108970663 + l0_13 * -2.5005627841 + l0_14 * 8.9604502277) l1_28 = self.PineActivationFunctionTanh( l0_0 * 6.3576350212 + l0_1 * -2.9731672725 + l0_2 * -2.7763558082 + l0_3 * -3.7902984555 + l0_4 * -1.0065574585 + l0_5 * -0.7011836061 + l0_6 * -1.0298068578 + l0_7 * 1.201007784 + l0_8 * -0.7835862254 + l0_9 * -3.9863597435 + l0_10 * 6.7851825502 + l0_11 * 1.1120256721 + l0_12 * -2.263287351 + l0_13 * 1.8314374104 + l0_14 * -2.279102097) l1_29 = self.PineActivationFunctionTanh( l0_0 * -7.8741911036 + l0_1 * -5.3370618518 + l0_2 * 11.9153868964 + l0_3 * -4.1237170553 + l0_4 * 2.9491152758 + l0_5 * 1.0317132502 + l0_6 * 2.2992199883 + l0_7 * -2.0250502364 + l0_8 * -11.0785995839 + l0_9 * -6.3615588554 + l0_10 * -1.1687644976 + l0_11 * 6.3323478015 + l0_12 * 6.0195076962 + l0_13 * -2.8972208702 + l0_14 * 3.6107747183) l2_0 = self.PineActivationFunctionTanh( l1_0 * -0.590546797 + l1_1 * 0.6608304658 + l1_2 * -0.3358268839 + l1_3 * -0.748530283 + l1_4 * -0.333460383 + l1_5 * -0.3409307681 + l1_6 * 0.1916558198 + l1_7 * -0.1200399453 + l1_8 * -0.5166151854 + l1_9 * -0.8537164676 + l1_10 * -0.0214448647 + l1_11 * -0.553290271 + l1_12 * -1.2333302892 + l1_13 * -0.8321813811 + l1_14 * -0.4527761741 + l1_15 * 0.9012545631 + l1_16 * 0.415853215 + l1_17 * 0.1270548319 + l1_18 * 0.2000460279 + l1_19 * -0.1741942671 + l1_20 * 0.419830522 + l1_21 * -0.059839291 + l1_22 * -0.3383001769 + l1_23 * 0.1617814073 + l1_24 * 0.3071848006 + l1_25 * -0.3191182045 + l1_26 * -0.4981831822 + l1_27 * -1.467478375 + l1_28 * -0.1676432563 + l1_29 * 1.2574849126) l2_1 = self.PineActivationFunctionTanh( l1_0 * -0.5514235841 + l1_1 * 0.4759190049 + l1_2 * 0.2103576983 + l1_3 * -0.4754377924 + l1_4 * -0.2362941295 + l1_5 * 0.1155082119 + l1_6 * 0.7424215794 + l1_7 * -0.3674198672 + l1_8 * 0.8401574461 + l1_9 * 0.6096563193 + l1_10 * 0.7437935674 + l1_11 * -0.4898638101 + l1_12 * -0.4168668092 + l1_13 * -0.0365111095 + l1_14 * -0.342675224 + l1_15 * 0.1870268765 + l1_16 * -0.5843050987 + l1_17 * -0.4596547471 + l1_18 * 0.452188522 + l1_19 * -0.6737126684 + l1_20 * 0.6876072741 + l1_21 * -0.8067776704 + l1_22 * 0.7592979467 + l1_23 * -0.0768239468 + l1_24 * 0.370536097 + l1_25 * -0.4363884671 + l1_26 * -0.419285676 + l1_27 * 0.4380251141 + l1_28 * 0.0822528948 + l1_29 * -0.2333910809) l2_2 = self.PineActivationFunctionTanh( l1_0 * -0.3306539521 + l1_1 * -0.9382247194 + l1_2 * 0.0746711276 + l1_3 * -0.3383838985 + l1_4 * -0.0683232217 + l1_5 * -0.2112358049 + l1_6 * -0.9079234054 + l1_7 * 0.4898595603 + l1_8 * -0.2039825863 + l1_9 * 1.0870698641 + l1_10 * -1.1752901237 + l1_11 * 1.1406403923 + l1_12 * -0.6779626786 + l1_13 * 0.4281048906 + l1_14 * -0.6327670055 + l1_15 * -0.1477678844 + l1_16 * 0.2693637584 + l1_17 * 0.7250738509 + l1_18 * 0.7905904504 + l1_19 * -1.6417250883 + l1_20 * -0.2108095534 + l1_21 * -0.2698557472 + l1_22 * -0.2433656685 + l1_23 * -0.6289943273 + l1_24 * 0.436428207 + l1_25 * -0.8243825184 + l1_26 * -0.8583496686 + l1_27 * 0.0983131026 + l1_28 * -0.4107462518 + l1_29 * 0.5641683087) l2_3 = self.PineActivationFunctionTanh( l1_0 * 1.7036869992 + l1_1 * -0.6683507666 + l1_2 * 0.2589197112 + l1_3 * 0.032841148 + l1_4 * -0.4454796342 + l1_5 * -0.6196149423 + l1_6 * -0.1073622976 + l1_7 * -0.1926393101 + l1_8 * 1.5280232458 + l1_9 * -0.6136527036 + l1_10 * -1.2722934357 + l1_11 * 0.2888655811 + l1_12 * -1.4338638512 + l1_13 * -1.1903556863 + l1_14 * -1.7659663905 + l1_15 * 0.3703086867 + l1_16 * 1.0409140889 + l1_17 * 0.0167382209 + l1_18 * 0.6045646461 + l1_19 * 4.2388788116 + l1_20 * 1.4399738234 + l1_21 * 0.3308571935 + l1_22 * 1.4501137667 + l1_23 * 0.0426123724 + l1_24 * -0.708479795 + l1_25 * -1.2100800732 + l1_26 * -0.5536278651 + l1_27 * 1.3547250573 + l1_28 * 1.2906250286 + l1_29 * 0.0596007114) l2_4 = self.PineActivationFunctionTanh( l1_0 * -0.462165126 + l1_1 * -1.0996742176 + l1_2 * 1.0928262999 + l1_3 * 1.806407067 + l1_4 * 0.9289147669 + l1_5 * 0.8069022793 + l1_6 * 0.2374237802 + l1_7 * -2.7143979019 + l1_8 * -2.7779203877 + l1_9 * 0.214383903 + l1_10 * -1.3111536623 + l1_11 * -2.3148813568 + l1_12 * -2.4755355804 + l1_13 * -0.6819733236 + l1_14 * 0.4425615226 + l1_15 * -0.1298218043 + l1_16 * -1.1744832824 + l1_17 * -0.395194848 + l1_18 * -0.2803397703 + l1_19 * -0.4505071197 + l1_20 * -0.8934956598 + l1_21 * 3.3232916348 + l1_22 * -1.7359534851 + l1_23 * 3.8540421743 + l1_24 * 1.4424032523 + l1_25 * 0.2639823693 + l1_26 * 0.3597053634 + l1_27 * -1.0470693728 + l1_28 * 1.4133480357 + l1_29 * 0.6248098695) l2_5 = self.PineActivationFunctionTanh( l1_0 * 0.2215807411 + l1_1 * -0.5628295071 + l1_2 * -0.8795982905 + l1_3 * 0.9101585104 + l1_4 * -1.0176831976 + l1_5 * -0.0728884401 + l1_6 * 0.6676331658 + l1_7 * -0.7342174108 + l1_8 * 9.4428E-4 + l1_9 * 0.6439774272 + l1_10 * -0.0345236026 + l1_11 * 0.5830977027 + l1_12 * -0.4058921837 + l1_13 * -0.3991888077 + l1_14 * -1.0090426973 + l1_15 * -0.9324780698 + l1_16 * -0.0888749165 + l1_17 * 0.2466351736 + l1_18 * 0.4993304601 + l1_19 * -1.115408696 + l1_20 * 0.9914246705 + l1_21 * 0.9687743445 + l1_22 * 0.1117130875 + l1_23 * 0.7825109733 + l1_24 * 0.2217023612 + l1_25 * 0.3081256411 + l1_26 * -0.1778007966 + l1_27 * -0.3333287743 + l1_28 * 1.0156352461 + l1_29 * -0.1456257813) l2_6 = self.PineActivationFunctionTanh( l1_0 * -0.5461783383 + l1_1 * 0.3246015999 + l1_2 * 0.1450605434 + l1_3 * -1.3179944349 + l1_4 * -1.5481775261 + l1_5 * -0.679685633 + l1_6 * -0.9462335139 + l1_7 * -0.6462399371 + l1_8 * 0.0991658683 + l1_9 * 0.1612892194 + l1_10 * -1.037660602 + l1_11 * -0.1044778824 + l1_12 * 0.8309203243 + l1_13 * 0.7714766458 + l1_14 * 0.2566767663 + l1_15 * 0.8649416329 + l1_16 * -0.5847461285 + l1_17 * -0.6393969272 + l1_18 * 0.8014049359 + l1_19 * 0.2279568228 + l1_20 * 1.0565217821 + l1_21 * 0.134738029 + l1_22 * 0.3420395576 + l1_23 * -0.2417397219 + l1_24 * 0.3083072038 + l1_25 * 0.6761739059 + l1_26 * -0.4653817053 + l1_27 * -1.0634057566 + l1_28 * -0.5658892281 + l1_29 * -0.6947283681) l2_7 = self.PineActivationFunctionTanh( l1_0 * -0.5450410944 + l1_1 * 0.3912849372 + l1_2 * -0.4118641117 + l1_3 * 0.7124695074 + l1_4 * -0.7510266122 + l1_5 * 1.4065673913 + l1_6 * 0.9870731545 + l1_7 * -0.2609363107 + l1_8 * -0.3583639958 + l1_9 * 0.5436375706 + l1_10 * 0.4572450099 + l1_11 * -0.4651538878 + l1_12 * -0.2180218212 + l1_13 * 0.5241262959 + l1_14 * -0.8529323253 + l1_15 * -0.4200378937 + l1_16 * 0.4997885721 + l1_17 * -1.1121528189 + l1_18 * 0.5992411048 + l1_19 * -1.0263270781 + l1_20 * -1.725160642 + l1_21 * -0.2653995722 + l1_22 * 0.6996703032 + l1_23 * 0.348549086 + l1_24 * 0.6522482482 + l1_25 * -0.7931928436 + l1_26 * -0.5107994359 + l1_27 * 0.0509642698 + l1_28 * 0.8711187423 + l1_29 * 0.8999449627) l2_8 = self.PineActivationFunctionTanh( l1_0 * -0.7111081522 + l1_1 * 0.4296245062 + l1_2 * -2.0720732038 + l1_3 * -0.4071818684 + l1_4 * 1.0632721681 + l1_5 * 0.8463224325 + l1_6 * -0.6083948423 + l1_7 * 1.1827669608 + l1_8 * -0.9572307844 + l1_9 * -0.9080517673 + l1_10 * -0.0479029057 + l1_11 * -1.1452853213 + l1_12 * 0.2884352688 + l1_13 * 0.1767851586 + l1_14 * -1.089314461 + l1_15 * 1.2991763966 + l1_16 * 1.6236630806 + l1_17 * -0.7720263697 + l1_18 * -0.5011541755 + l1_19 * -2.3919413568 + l1_20 * 0.0084018338 + l1_21 * 0.9975216139 + l1_22 * 0.4193541029 + l1_23 * 1.4623834571 + l1_24 * -0.6253069691 + l1_25 * 0.6119677341 + l1_26 * 0.5423948388 + l1_27 * 1.0022450377 + l1_28 * -1.2392984069 + l1_29 * 1.5021529822) self.l3_0 = self.PineActivationFunctionTanh( l2_0 * 0.3385061186 + l2_1 * 0.6218531956 + l2_2 * -0.7790340983 + l2_3 * 0.1413078332 + l2_4 * 0.1857010624 + l2_5 * -0.1769456351 + l2_6 * -0.3242337911 + l2_7 * -0.503944883 + l2_8 * 0.1540568869) self.lines.prediction = self.l3_0 # self.lines.prediction = l0_0 self.lines.ann = Cmp2(self.l3_0, self.p.threshold, 1, 0) def getDiff(self): yesterday = (self.data1.open(-1) + self.data1.high(-1) + self.data1.low(-1) + self.data1.close(-1)) / 4 today = (self.data1.open(0) + self.data1.high(0) + self.data1.low(0) + self.data1.close(0)) / 4 delta = today-yesterday percentage = delta / today return percentage def exp(self, v): return pow(math.e, v) def PineActivationFunctionLinear(self, v): return v def PineActivationFunctionTanh(self, v): return (self.exp(v) - self.exp(-v)) / (self.exp(v) + self.exp(-v)) class Cmp2(bt.Logic): def __init__(self, a, b, r1, r2): super(Cmp2, self).__init__(a, b, r1, r2) self.a = self.args[0] self.b = self.args[1] self.r1 = self.args[2] self.r2 = self.args[3] def next(self): if self.a[0] > self.b[0]: self[0] = self.r1[0] elif self.a[0] < -self.b[0]: self[0] = self.r2[0] else: self[0] = self.r2[0] def once(self, start, end): # cache python dictionary lookups dst = self.array srca = self.a.array for i in range(start, end): if srca[i] > self.b: dst[i] = self.r1 elif srca[i] < -self.b: dst[i] = self.r2 else: dst[i] = dst[i-1]
136.451613
708
0.650496
ee412f12c250f786d2341d88fdeb57aa342bd73f
14,104
py
Python
backend/api/tests/ActividadTestCase.py
kukiamarilla/polijira
510dbc1473db973ac71fc68fa5a9b758b90a780b
[ "MIT" ]
1
2022-03-02T02:28:49.000Z
2022-03-02T02:28:49.000Z
backend/api/tests/ActividadTestCase.py
kukiamarilla/polijira
510dbc1473db973ac71fc68fa5a9b758b90a780b
[ "MIT" ]
22
2021-09-01T17:44:25.000Z
2021-10-07T19:39:09.000Z
backend/api/tests/ActividadTestCase.py
kukiamarilla/polijira
510dbc1473db973ac71fc68fa5a9b758b90a780b
[ "MIT" ]
null
null
null
from django.test import TestCase from django.test.client import Client from backend.api.models import Actividad, Miembro, MiembroSprint, Proyecto, SprintBacklog, Sprint, Usuario class ActividadTestCase(TestCase): """ ActividadTestCase Tests para probar funcionalidad de CRUD de Actividades Args: TestCase (TestCase): Tests del módulo Django """ fixtures = [ "backend/api/fixtures/testing/auth.json", "backend/api/fixtures/testing/usuarios.json", "backend/api/fixtures/testing/permisos.json", "backend/api/fixtures/testing/roles.json", "backend/api/fixtures/testing/proyectos.json", "backend/api/fixtures/testing/permisosProyecto.json", "backend/api/fixtures/testing/plantillas.json", "backend/api/fixtures/testing/rolesProyecto.json", "backend/api/fixtures/testing/miembros.json", "backend/api/fixtures/testing/horarios.json", "backend/api/fixtures/testing/user-stories.json", "backend/api/fixtures/testing/product-backlogs.json", "backend/api/fixtures/testing/registro-user-stories.json", "backend/api/fixtures/testing/sprints.json", "backend/api/fixtures/testing/sprintbacklogs.json", "backend/api/fixtures/testing/miembrosprints.json", "backend/api/fixtures/testing/actividades.json" ] def setUp(self): """ setUp Configura el TestCase """ self.client = Client() def test_crear_actividad(self): """ test_crear_actividad Prueba crear una Actividad """ print("\nProbando crear una Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() request_data = { "titulo": "Actividad", "sprint_backlog": 1, "descripcion": "Holiii", "horas": 2 } response = self.client.post("/api/actividades/", request_data) self.assertEquals(response.status_code, 200) actividad = Actividad.objects.filter(**request_data) self.assertEquals(len(actividad), 1) def test_modificar_actividad(self): """ test_modificar_actividad Prueba modificar una Actividad """ print("\nProbando modificar una Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() request_data = { "titulo": "Actividad", "descripcion": "Holiii :)", "horas": 3 } self.client.put("/api/actividades/1/", request_data, content_type="application/json") actividad = Actividad.objects.filter(**request_data) self.assertEquals(len(actividad), 1) def test_eliminar_actividad(self): """ test_eliminar_actividad Prueba eliminar una Actividad """ print("\nProbando eliminar una Actividad") self.client.login( username="testing", password="polijira2021" ) response = self.client.delete("/api/actividades/1/") self.assertEquals(response.status_code, 200) actividad = Actividad.objects.filter(pk=1) self.assertEquals(len(actividad), 0) def test_error_validacion_crear_actividad_campos(self): """ test_error_validacion_crear_actividad_campos Prueba validar la existencia de los campos: Sprint Backlog, Descripcion y Horas. En Crear Actividad """ print("\nProbando validar la existencia de: Sprint Backlog, Descripcion y Horas. En Crear Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() response = self.client.post("/api/actividades/") self.assertEquals(response.status_code, 422) body = response.json() self.assertEquals(body.get("errors").get("sprint_backlog"), ["No se pasó: Sprint Backlog"]) self.assertEquals(body.get("errors").get("descripcion"), ["No se pasó: Descripcion"]) self.assertEquals(body.get("errors").get("horas"), ["No se pasó: Horas"]) def test_error_validacion_crear_actividad_sprint_backlog(self): """ test_error_validacion_crear_actividad_sprint_backlog Prueba validar la existencia del campo Sprint Backlog en la BD al Crear Actividad """ print("\nProbando validar la existencia del campo Sprint Backlog en la BD al Crear Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() request_data = { "sprint_backlog": 1000, "descripcion": "Holiii", "horas": 2 } response = self.client.post("/api/actividades/", request_data) self.assertEquals(response.status_code, 422) body = response.json() self.assertEquals(body.get("errors").get("sprint_backlog"), [ "No se encontró el Sprint Backlog en la base de datos"]) def test_error_validacion_crear_actividad_horas(self): """ test_error_validacion_crear_actividad_horas Prueba validar que el valor de la hora sea mayor a cero al Crear Actividad """ print("\nProbando validar que el valor de la hora sea mayor a cero al Crear Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() request_data = { "sprint_backlog": 1, "descripcion": "Holiii", "horas": -2 } response = self.client.post("/api/actividades/", request_data) self.assertEquals(response.status_code, 422) body = response.json() self.assertEquals(body.get("errors").get("horas"), ["La hora no puede ser negativa"]) def test_validar_miembro_proyecto_crear_actividad(self): """ test_validar_miembro_proyecto_crear_actividad Prueba validar que el usuario sea miembro del proyecto al Crear Actividad """ print("\nProbando validar que el usuario sea miembro del proyecto al Crear Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.proyecto = Proyecto.objects.get(pk=4) sprint.save() request_data = { "titulo": "Actividad", "sprint_backlog": 1, "descripcion": "Holiii", "horas": 2 } response = self.client.post("/api/actividades/", request_data) self.assertEquals(response.status_code, 403) body = response.json() self.assertEquals(body.get("message"), "Usted no es miembro de este Proyecto") self.assertEquals(body.get("error"), "forbidden") def test_validar_miembro_sprint_crear_actividad(self): """ test_validar_miembro_sprint_crear_actividad Prueba validar que el usuario sea miembro del sprint al Crear Actividad """ print("\nProbando validar que el usuario sea miembro del sprint al Crear Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() miembro_sprint = MiembroSprint.objects.get(pk=2) miembro_sprint.miembro_proyecto = Miembro.objects.get(pk=2) miembro_sprint.save() request_data = { "titulo": "Actividad", "sprint_backlog": 1, "descripcion": "Holiii", "horas": 2 } response = self.client.post("/api/actividades/", request_data) self.assertEquals(response.status_code, 403) body = response.json() self.assertEquals(body.get("message"), "Usted no es miembro de este Sprint") self.assertEquals(body.get("error"), "forbidden") def test_validar_desarrollador_crear_actividad(self): """ test_validar_desarrollador_crear_actividad Prueba validar que el usuario sea desarrollador del User Story al Crear Actividad """ print("\nProbando validar que el usuario sea desarrollador del User Story al Crear Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() sprint_backlog = SprintBacklog.objects.get(pk=1) sprint_backlog.desarrollador = MiembroSprint.objects.get(pk=1) sprint_backlog.save() request_data = { "titulo": "Actividad", "sprint_backlog": 1, "descripcion": "Holiii", "horas": 2 } response = self.client.post("/api/actividades/", request_data) self.assertEquals(response.status_code, 403) body = response.json() self.assertEquals(body.get("message"), "Usted no es desarrollador del User Story") self.assertEquals(body.get("error"), "forbidden") def test_validar_sprint_crear_actividad(self): """ test_validar_sprint_crear_actividad Prueba validar que el sprint este activo al Crear Actividad """ print("\nProbando validar que el sprint este activo al Crear Actividad") self.client.login( username="testing", password="polijira2021" ) request_data = { "titulo": "Actividad", "sprint_backlog": 1, "descripcion": "Holiii", "horas": 2 } response = self.client.post("/api/actividades/", request_data) self.assertEquals(response.status_code, 400) body = response.json() self.assertEquals(body.get("message"), "Para registrar una actividad el Sprint debe estar Activo") self.assertEquals(body.get("error"), "bad_request") def test_error_validacion_modificar_actividad_campos(self): """ test_error_validacion_modificar_actividad_campos Prueba validar la existencia de los campos: Sprint Backlog, Descripcion y Horas. En Modificar Actividad """ print("\nProbando validar la existencia de: Sprint Backlog, Descripcion y Horas. En Modificar Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() response = self.client.put("/api/actividades/1/") self.assertEquals(response.status_code, 422) body = response.json() self.assertEquals(body.get("errors").get("descripcion"), ["No se pasó: Descripcion"]) self.assertEquals(body.get("errors").get("horas"), ["No se pasó: Horas"]) def test_error_validacion_modificar_actividad_horas(self): """ test_error_validacion_modificar_actividad_horas Prueba validar que el valor de la hora sea mayor a cero en Modificar Actividad """ print("\nProbando validar que el valor de la hora sea mayor a cero en Modificar Actividad") self.client.login( username="testing", password="polijira2021" ) sprint = Sprint.objects.get(pk=2) sprint.estado = "A" sprint.save() request_data = { "descripcion": "Holiii", "horas": -2 } response = self.client.put("/api/actividades/1/", request_data, "application/json") self.assertEquals(response.status_code, 422) body = response.json() self.assertEquals(body.get("errors").get("horas"), ["La hora no puede ser negativa"]) def test_validar_desarrollador_modificar_actividad(self): """ test_validar_desarrollador_modificar_actividad Prueba validar que el usuario sea desarrollador del User Story al Modificar Actividad """ print("\nProbando validar que el usuario sea desarrollador del User Story al Modificar Actividad") self.client.login( username="testing", password="polijira2021" ) actividad = Actividad.objects.get(pk=1) actividad.desarrollador = Usuario.objects.get(pk=2) actividad.save() request_data = { "titulo": "Actividad", "descripcion": "Holiii", "horas": 2 } response = self.client.put("/api/actividades/1/", request_data, "application/json") self.assertEquals(response.status_code, 403) body = response.json() self.assertEquals(body.get("message"), "Usted no es desarrollador de esta Actividad") self.assertEquals(body.get("error"), "forbidden") def test_validar_actividad_modificar_actividad(self): """ test_validar_actividad_modificar_activida Prueba validar que exista la actividad en la BD al Modificar Actividad """ print("\nProbando validar que exista la actividad en la BD al Modificar Actividad") self.client.login( username="testing", password="polijira2021" ) request_data = { "titulo": "Actividad", "descripcion": "Holiii", "horas": 2 } response = self.client.put("/api/actividades/1000/", request_data, "application/json") self.assertEquals(response.status_code, 404) body = response.json() self.assertEquals(body.get("message"), "No existe la Actividad") self.assertEquals(body.get("error"), "not_found")
39.841808
113
0.620391
c111f50abf6f68f4b8047bf46e38cd39b38530b1
931
py
Python
benchmark.py
marangonico/xplane_airports
00259ab889d9c8e1af2f0be54e1ca7bd4b9ffe1f
[ "MIT" ]
null
null
null
benchmark.py
marangonico/xplane_airports
00259ab889d9c8e1af2f0be54e1ca7bd4b9ffe1f
[ "MIT" ]
null
null
null
benchmark.py
marangonico/xplane_airports
00259ab889d9c8e1af2f0be54e1ca7bd4b9ffe1f
[ "MIT" ]
null
null
null
import gc import timeit from xplane_airports.AptDat import AptDat from pathlib import Path xplane_installation = Path('/Users/tyler/design') assert xplane_installation.is_dir(), f"{xplane_installation} does not exist or is not a directory" iterations = 3 print(f"Repeating {iterations} iterations of parsing 35,000+ airports from disk (this will take awhile)") # Tyler observes: We can't just run a bunch of iterations using timeit(), because it disables GC, # and we use gigabytes of RAM per parse of our giant files. # # It's not realistic to benchmark us parsing multiple 300 MB files... there are only so many airports in the world! total_seconds = 0 for i in range(iterations): total_seconds += timeit.timeit(lambda: AptDat(xplane_installation / 'Resources/default scenery/default apt dat/Earth nav data/apt.dat'), number=1) gc.collect() print(f"Average time over {iterations} runs: {total_seconds / iterations}")
42.318182
150
0.771214
9e3eeea2326a13340afe81214bbb5c767deac0f1
9,478
py
Python
bokeh/_testing/plugins/project.py
samwill/bokeh
228132eba4b696b91b2a77f7e9d07771ba868093
[ "BSD-3-Clause" ]
1
2021-05-03T15:19:05.000Z
2021-05-03T15:19:05.000Z
bokeh/_testing/plugins/project.py
samwill/bokeh
228132eba4b696b91b2a77f7e9d07771ba868093
[ "BSD-3-Clause" ]
3
2021-09-08T03:16:42.000Z
2022-03-12T00:57:18.000Z
bokeh/_testing/plugins/project.py
samwill/bokeh
228132eba4b696b91b2a77f7e9d07771ba868093
[ "BSD-3-Clause" ]
2
2021-01-12T18:22:24.000Z
2021-10-30T00:32:02.000Z
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2020, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Define a Pytest plugin for a Bokeh-specific testing tools ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import socket import time from contextlib import closing from threading import Thread # External imports import pytest from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from tornado.ioloop import IOLoop from tornado.web import RequestHandler # Bokeh imports import bokeh.server.views.ws as ws from bokeh._testing.util.selenium import INIT, RESULTS, wait_for_canvas_resize from bokeh.io import save from bokeh.server.server import Server #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- pytest_plugins = ( "bokeh._testing.plugins.project", "bokeh._testing.plugins.file_server", "bokeh._testing.plugins.selenium", ) __all__ = ( 'bokeh_app_info', 'bokeh_model_page', 'bokeh_server_page', 'find_free_port', 'output_file_url', 'single_plot_page', 'test_file_path_and_url', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- @pytest.fixture def output_file_url(request, file_server): from bokeh.io import output_file filename = request.function.__name__ + '.html' file_obj = request.fspath.dirpath().join(filename) file_path = file_obj.strpath url = file_path.replace('\\', '/') # Windows-proof output_file(file_path, mode='inline') def tear_down(): if file_obj.isfile(): file_obj.remove() request.addfinalizer(tear_down) return file_server.where_is(url) @pytest.fixture def test_file_path_and_url(request, file_server): filename = request.function.__name__ + '.html' file_obj = request.fspath.dirpath().join(filename) file_path = file_obj.strpath url = file_path.replace('\\', '/') # Windows-proof def tear_down(): if file_obj.isfile(): file_obj.remove() request.addfinalizer(tear_down) return file_path, file_server.where_is(url) class _ExitHandler(RequestHandler): def initialize(self, io_loop): self.io_loop = io_loop async def get(self, *args, **kwargs): self.io_loop.stop() def find_free_port(): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind(('', 0)) return s.getsockname()[1] @pytest.fixture def bokeh_app_info(request, driver): ''' Start a Bokeh server app and return information needed to test it. Returns a tuple (url, message_test_port), where the latter is defined as namedtuple('MessageTestPort', ['sent', 'received']) and will contain all messages that the Bokeh Server sends/receives while running during the test. ''' def func(modify_doc): from collections import namedtuple MessageTestPort = namedtuple('MessageTestPort', ['sent', 'received']) ws._message_test_port = MessageTestPort([], []) port = find_free_port() def worker(): io_loop = IOLoop() server = Server({'/': modify_doc}, port=port, io_loop=io_loop, extra_patterns=[('/exit', _ExitHandler, dict(io_loop=io_loop))]) server.start() server.io_loop.start() t = Thread(target=worker) t.start() def cleanup(): driver.get("http://localhost:%d/exit" % port) # XXX (bev) this line is a workaround for https://github.com/bokeh/bokeh/issues/7970 # and should be removed when that issue is resolved driver.get_log('browser') ws._message_test_port = None t.join() request.addfinalizer(cleanup) return "http://localhost:%d/" % port, ws._message_test_port return func class _BokehPageMixin: @property def results(self): WebDriverWait(self._driver, 10).until(EC.staleness_of(self.test_div)) self.test_div = self._driver.find_element_by_class_name("bokeh-test-div") return self._driver.execute_script(RESULTS) @property def driver(self): return self._driver def init_results(self): self._driver.execute_script(INIT) self.test_div = self._driver.find_element_by_class_name("bokeh-test-div") def click_element_at_position(self, element, x, y): actions = ActionChains(self._driver) actions.move_to_element_with_offset(element, x, y) actions.click() actions.perform() def double_click_element_at_position(self, element, x, y): actions = ActionChains(self._driver) actions.move_to_element_with_offset(element, x, y) actions.click() actions.click() actions.perform() def drag_element_at_position(self, element, x, y, dx, dy, mod=None): actions = ActionChains(self._driver) if mod: actions.key_down(mod) actions.move_to_element_with_offset(element, x, y) actions.click_and_hold() actions.move_by_offset(dx, dy) actions.release() if mod: actions.key_up(mod) actions.perform() def send_keys(self, *keys): actions = ActionChains(self._driver) actions.send_keys(*keys) actions.perform() def has_no_console_errors(self): return self._has_no_console_errors(self._driver) class _BokehModelPage(_BokehPageMixin): def __init__(self, model, driver, output_file_url, has_no_console_errors): self._driver = driver self._model = model self._has_no_console_errors = has_no_console_errors save(self._model) self._driver.get(output_file_url) self.init_results() class _CanvasMixin: def click_canvas_at_position(self, x, y): self.click_element_at_position(self.canvas, x, y) def double_click_canvas_at_position(self, x, y): self.double_click_element_at_position(self.canvas, x, y) def click_custom_action(self): button = self._driver.find_element_by_class_name("bk-toolbar-button-custom-action") button.click() def drag_canvas_at_position(self, x, y, dx, dy, mod=None): self.drag_element_at_position(self.canvas, x, y, dx, dy, mod) def get_toolbar_button(self, name): return self.driver.find_element_by_class_name('bk-tool-icon-' + name) @pytest.fixture() def bokeh_model_page(driver, output_file_url, has_no_console_errors): def func(model): return _BokehModelPage(model, driver, output_file_url, has_no_console_errors) return func class _SinglePlotPage(_BokehModelPage, _CanvasMixin): # model may be a layout, but should only contain a single plot def __init__(self, model, driver, output_file_url, has_no_console_errors): super().__init__(model, driver, output_file_url, has_no_console_errors) self.canvas = self._driver.find_element_by_tag_name('canvas') wait_for_canvas_resize(self.canvas, self._driver) @pytest.fixture() def single_plot_page(driver, output_file_url, has_no_console_errors): def func(model): return _SinglePlotPage(model, driver, output_file_url, has_no_console_errors) return func class _BokehServerPage(_BokehPageMixin, _CanvasMixin): def __init__(self, modify_doc, driver, bokeh_app_info, has_no_console_errors): self._driver = driver self._has_no_console_errors = has_no_console_errors self._app_url, self.message_test_port = bokeh_app_info(modify_doc) time.sleep(0.1) self._driver.get(self._app_url) self.init_results() self.canvas = self._driver.find_element_by_tag_name('canvas') wait_for_canvas_resize(self.canvas, self._driver) @pytest.fixture() def bokeh_server_page(driver, bokeh_app_info, has_no_console_errors): def func(modify_doc): return _BokehServerPage(modify_doc, driver, bokeh_app_info, has_no_console_errors) return func #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
32.682759
96
0.5977
197b7b6d2cfe8653de3bd9be040b2452a756bc7b
401
py
Python
questionsApp/wsgi.py
javitocor/PsychologicalTest-React-Django-
459ef21b85e3e9432ac7c2dfd8d0d12115c925bd
[ "MIT" ]
1
2021-09-30T12:12:10.000Z
2021-09-30T12:12:10.000Z
questionsApp/wsgi.py
javitocor/PsychologicalTest-React-Django-
459ef21b85e3e9432ac7c2dfd8d0d12115c925bd
[ "MIT" ]
null
null
null
questionsApp/wsgi.py
javitocor/PsychologicalTest-React-Django-
459ef21b85e3e9432ac7c2dfd8d0d12115c925bd
[ "MIT" ]
1
2021-12-23T00:41:41.000Z
2021-12-23T00:41:41.000Z
""" WSGI config for questionsApp project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'questionsApp.settings') application = get_wsgi_application()
23.588235
78
0.790524
2883ede219aab0b942a5717218b15935f5f9e78a
66,811
py
Python
compiler/gdsMill/mpmath/tests/test_functions2.py
panicmarvin/OpenRAM
abf47bab50adb48337c59b72ccd6023c1999f3fc
[ "BSD-3-Clause" ]
null
null
null
compiler/gdsMill/mpmath/tests/test_functions2.py
panicmarvin/OpenRAM
abf47bab50adb48337c59b72ccd6023c1999f3fc
[ "BSD-3-Clause" ]
null
null
null
compiler/gdsMill/mpmath/tests/test_functions2.py
panicmarvin/OpenRAM
abf47bab50adb48337c59b72ccd6023c1999f3fc
[ "BSD-3-Clause" ]
1
2020-01-23T07:12:52.000Z
2020-01-23T07:12:52.000Z
import math from mpmath import * def test_bessel(): mp.dps = 15 assert j0(1).ae(0.765197686557966551) assert j0(pi).ae(-0.304242177644093864) assert j0(1000).ae(0.0247866861524201746) assert j0(-25).ae(0.0962667832759581162) assert j1(1).ae(0.440050585744933516) assert j1(pi).ae(0.284615343179752757) assert j1(1000).ae(0.00472831190708952392) assert j1(-25).ae(0.125350249580289905) assert besselj(5,1).ae(0.000249757730211234431) assert besselj(5,pi).ae(0.0521411843671184747) assert besselj(5,1000).ae(0.00502540694523318607) assert besselj(5,-25).ae(0.0660079953984229934) assert besselj(-3,2).ae(-0.128943249474402051) assert besselj(-4,2).ae(0.0339957198075684341) assert besselj(3,3+2j).ae(0.424718794929639595942 + 0.625665327745785804812j) assert besselj(0.25,4).ae(-0.374760630804249715) assert besselj(1+2j,3+4j).ae(0.319247428741872131 - 0.669557748880365678j) assert (besselj(3, 10**10) * 10**5).ae(0.76765081748139204023) assert bessely(-0.5, 0) == 0 assert bessely(0.5, 0) == -inf assert bessely(1.5, 0) == -inf assert bessely(0,0) == -inf assert bessely(-0.4, 0) == -inf assert bessely(-0.6, 0) == inf assert bessely(-1, 0) == inf assert bessely(-1.4, 0) == inf assert bessely(-1.6, 0) == -inf assert bessely(-1, 0) == inf assert bessely(-2, 0) == -inf assert bessely(-3, 0) == inf assert bessely(0.5, 0) == -inf assert bessely(1, 0) == -inf assert bessely(1.5, 0) == -inf assert bessely(2, 0) == -inf assert bessely(2.5, 0) == -inf assert bessely(3, 0) == -inf assert bessely(0,0.5).ae(-0.44451873350670655715) assert bessely(1,0.5).ae(-1.4714723926702430692) assert bessely(-1,0.5).ae(1.4714723926702430692) assert bessely(3.5,0.5).ae(-138.86400867242488443) assert bessely(0,3+4j).ae(4.6047596915010138655-8.8110771408232264208j) assert bessely(0,j).ae(-0.26803248203398854876+1.26606587775200833560j) assert (bessely(3, 10**10) * 10**5).ae(0.21755917537013204058) assert besseli(0,0) == 1 assert besseli(1,0) == 0 assert besseli(2,0) == 0 assert besseli(-1,0) == 0 assert besseli(-2,0) == 0 assert besseli(0,0.5).ae(1.0634833707413235193) assert besseli(1,0.5).ae(0.25789430539089631636) assert besseli(-1,0.5).ae(0.25789430539089631636) assert besseli(3.5,0.5).ae(0.00068103597085793815863) assert besseli(0,3+4j).ae(-3.3924877882755196097-1.3239458916287264815j) assert besseli(0,j).ae(besselj(0,1)) assert (besseli(3, 10**10) * mpf(10)**(-4342944813)).ae(4.2996028505491271875) assert besselk(0,0) == inf assert besselk(1,0) == inf assert besselk(2,0) == inf assert besselk(-1,0) == inf assert besselk(-2,0) == inf assert besselk(0,0.5).ae(0.92441907122766586178) assert besselk(1,0.5).ae(1.6564411200033008937) assert besselk(-1,0.5).ae(1.6564411200033008937) assert besselk(3.5,0.5).ae(207.48418747548460607) assert besselk(0,3+4j).ae(-0.007239051213570155013+0.026510418350267677215j) assert besselk(0,j).ae(-0.13863371520405399968-1.20196971531720649914j) assert (besselk(3, 10**10) * mpf(10)**4342944824).ae(1.1628981033356187851) def test_hankel(): mp.dps = 15 assert hankel1(0,0.5).ae(0.93846980724081290423-0.44451873350670655715j) assert hankel1(1,0.5).ae(0.2422684576748738864-1.4714723926702430692j) assert hankel1(-1,0.5).ae(-0.2422684576748738864+1.4714723926702430692j) assert hankel1(1.5,0.5).ae(0.0917016996256513026-2.5214655504213378514j) assert hankel1(1.5,3+4j).ae(0.0066806866476728165382-0.0036684231610839127106j) assert hankel2(0,0.5).ae(0.93846980724081290423+0.44451873350670655715j) assert hankel2(1,0.5).ae(0.2422684576748738864+1.4714723926702430692j) assert hankel2(-1,0.5).ae(-0.2422684576748738864-1.4714723926702430692j) assert hankel2(1.5,0.5).ae(0.0917016996256513026+2.5214655504213378514j) assert hankel2(1.5,3+4j).ae(14.783528526098567526-7.397390270853446512j) def test_struve(): mp.dps = 15 assert struveh(2,3).ae(0.74238666967748318564) assert struveh(-2.5,3).ae(0.41271003220971599344) assert struvel(2,3).ae(1.7476573277362782744) assert struvel(-2.5,3).ae(1.5153394466819651377) def test_whittaker(): mp.dps = 15 assert whitm(2,3,4).ae(49.753745589025246591) assert whitw(2,3,4).ae(14.111656223052932215) def test_kelvin(): mp.dps = 15 assert ber(2,3).ae(0.80836846563726819091) assert ber(3,4).ae(-0.28262680167242600233) assert ber(-3,2).ae(-0.085611448496796363669) assert bei(2,3).ae(-0.89102236377977331571) assert bei(-3,2).ae(-0.14420994155731828415) assert ker(2,3).ae(0.12839126695733458928) assert ker(-3,2).ae(-0.29802153400559142783) assert ker(0.5,3).ae(-0.085662378535217097524) assert kei(2,3).ae(0.036804426134164634000) assert kei(-3,2).ae(0.88682069845786731114) assert kei(0.5,3).ae(0.013633041571314302948) def test_hyper_misc(): mp.dps = 15 assert hyp0f1(1,0) == 1 assert hyp1f1(1,2,0) == 1 assert hyp1f2(1,2,3,0) == 1 assert hyp2f1(1,2,3,0) == 1 assert hyp2f2(1,2,3,4,0) == 1 assert hyp2f3(1,2,3,4,5,0) == 1 # Degenerate case: 0F0 assert hyper([],[],0) == 1 assert hyper([],[],-2).ae(exp(-2)) # Degenerate case: 1F0 assert hyper([2],[],1.5) == 4 # assert hyp2f1((1,3),(2,3),(5,6),mpf(27)/32).ae(1.6) assert hyp2f1((1,4),(1,2),(3,4),mpf(80)/81).ae(1.8) assert hyp2f1((2,3),(1,1),(3,2),(2+j)/3).ae(1.327531603558679093+0.439585080092769253j) mp.dps = 25 v = mpc('1.2282306665029814734863026', '-0.1225033830118305184672133') assert hyper([(3,4),2+j,1],[1,5,j/3],mpf(1)/5+j/8).ae(v) mp.dps = 15 def test_elliptic_integrals(): mp.dps = 15 assert ellipk(0).ae(pi/2) assert ellipk(0.5).ae(gamma(0.25)**2/(4*sqrt(pi))) assert ellipk(1) == inf assert ellipk(1+0j) == inf assert ellipk(-1).ae('1.3110287771460599052') assert ellipk(-2).ae('1.1714200841467698589') assert isinstance(ellipk(-2), mpf) assert isinstance(ellipe(-2), mpf) assert ellipk(-50).ae('0.47103424540873331679') mp.dps = 30 n1 = +fraction(99999,100000) n2 = +fraction(100001,100000) mp.dps = 15 assert ellipk(n1).ae('7.1427724505817781901') assert ellipk(n2).ae(mpc('7.1427417367963090109', '-1.5707923998261688019')) assert ellipe(n1).ae('1.0000332138990829170') v = ellipe(n2) assert v.real.ae('0.999966786328145474069137') assert (v.imag*10**6).ae('7.853952181727432') assert ellipk(2).ae(mpc('1.3110287771460599052', '-1.3110287771460599052')) assert ellipk(50).ae(mpc('0.22326753950210985451', '-0.47434723226254522087')) assert ellipk(3+4j).ae(mpc('0.91119556380496500866', '0.63133428324134524388')) assert ellipk(3-4j).ae(mpc('0.91119556380496500866', '-0.63133428324134524388')) assert ellipk(-3+4j).ae(mpc('0.95357894880405122483', '0.23093044503746114444')) assert ellipk(-3-4j).ae(mpc('0.95357894880405122483', '-0.23093044503746114444')) assert isnan(ellipk(nan)) assert isnan(ellipe(nan)) assert ellipk(inf) == 0 assert isinstance(ellipk(inf), mpc) assert ellipk(-inf) == 0 assert ellipk(1+0j) == inf assert ellipe(0).ae(pi/2) assert ellipe(0.5).ae(pi**(mpf(3)/2)/gamma(0.25)**2 +gamma(0.25)**2/(8*sqrt(pi))) assert ellipe(1) == 1 assert ellipe(1+0j) == 1 assert ellipe(inf) == mpc(0,inf) assert ellipe(-inf) == inf assert ellipe(3+4j).ae(1.4995535209333469543-1.5778790079127582745j) assert ellipe(3-4j).ae(1.4995535209333469543+1.5778790079127582745j) assert ellipe(-3+4j).ae(2.5804237855343377803-0.8306096791000413778j) assert ellipe(-3-4j).ae(2.5804237855343377803+0.8306096791000413778j) assert ellipe(2).ae(0.59907011736779610372+0.59907011736779610372j) assert ellipe('1e-1000000000').ae(pi/2) assert ellipk('1e-1000000000').ae(pi/2) assert ellipe(-pi).ae(2.4535865983838923) mp.dps = 50 assert ellipk(1/pi).ae('1.724756270009501831744438120951614673874904182624739673') assert ellipe(1/pi).ae('1.437129808135123030101542922290970050337425479058225712') assert ellipk(-10*pi).ae('0.5519067523886233967683646782286965823151896970015484512') assert ellipe(-10*pi).ae('5.926192483740483797854383268707108012328213431657645509') v = ellipk(pi) assert v.real.ae('0.973089521698042334840454592642137667227167622330325225') assert v.imag.ae('-1.156151296372835303836814390793087600271609993858798016') v = ellipe(pi) assert v.real.ae('0.4632848917264710404078033487934663562998345622611263332') assert v.imag.ae('1.0637961621753130852473300451583414489944099504180510966') mp.dps = 15 def test_exp_integrals(): mp.dps = 15 x = +e z = e + sqrt(3)*j assert ei(x).ae(8.21168165538361560) assert li(x).ae(1.89511781635593676) assert si(x).ae(1.82104026914756705) assert ci(x).ae(0.213958001340379779) assert shi(x).ae(4.11520706247846193) assert chi(x).ae(4.09647459290515367) assert fresnels(x).ae(0.437189718149787643) assert fresnelc(x).ae(0.401777759590243012) assert airyai(x).ae(0.0108502401568586681) assert airybi(x).ae(8.98245748585468627) assert ei(z).ae(3.72597969491314951 + 7.34213212314224421j) assert li(z).ae(2.28662658112562502 + 1.50427225297269364j) assert si(z).ae(2.48122029237669054 + 0.12684703275254834j) assert ci(z).ae(0.169255590269456633 - 0.892020751420780353j) assert shi(z).ae(1.85810366559344468 + 3.66435842914920263j) assert chi(z).ae(1.86787602931970484 + 3.67777369399304159j) assert fresnels(z/3).ae(0.034534397197008182 + 0.754859844188218737j) assert fresnelc(z/3).ae(1.261581645990027372 + 0.417949198775061893j) assert airyai(z).ae(-0.0162552579839056062 - 0.0018045715700210556j) assert airybi(z).ae(-4.98856113282883371 + 2.08558537872180623j) assert li(0) == 0.0 assert li(1) == -inf assert li(inf) == inf assert isinstance(li(0.7), mpf) assert si(inf).ae(pi/2) assert si(-inf).ae(-pi/2) assert ci(inf) == 0 assert ci(0) == -inf assert isinstance(ei(-0.7), mpf) assert airyai(inf) == 0 assert airybi(inf) == inf assert airyai(-inf) == 0 assert airybi(-inf) == 0 assert fresnels(inf) == 0.5 assert fresnelc(inf) == 0.5 assert fresnels(-inf) == -0.5 assert fresnelc(-inf) == -0.5 assert shi(0) == 0 assert shi(inf) == inf assert shi(-inf) == -inf assert chi(0) == -inf assert chi(inf) == inf def test_ei(): mp.dps = 15 assert ei(0) == -inf assert ei(inf) == inf assert ei(-inf) == -0.0 assert ei(20+70j).ae(6.1041351911152984397e6 - 2.7324109310519928872e6j) # tests for the asymptotic expansion # values checked with Mathematica ExpIntegralEi mp.dps = 50 r = ei(20000) s = '3.8781962825045010930273870085501819470698476975019e+8681' assert str(r) == s r = ei(-200) s = '-6.8852261063076355977108174824557929738368086933303e-90' assert str(r) == s r =ei(20000 + 10*j) sre = '-3.255138234032069402493850638874410725961401274106e+8681' sim = '-2.1081929993474403520785942429469187647767369645423e+8681' assert str(r.real) == sre and str(r.imag) == sim mp.dps = 15 # More asymptotic expansions assert chi(-10**6+100j).ae('1.3077239389562548386e+434288 + 7.6808956999707408158e+434287j') assert shi(-10**6+100j).ae('-1.3077239389562548386e+434288 - 7.6808956999707408158e+434287j') mp.dps = 15 assert ei(10j).ae(-0.0454564330044553726+3.2291439210137706686j) assert ei(100j).ae(-0.0051488251426104921+3.1330217936839529126j) u = ei(fmul(10**20, j, exact=True)) assert u.real.ae(-6.4525128526578084421345e-21, abs_eps=0, rel_eps=8*eps) assert u.imag.ae(pi) assert ei(-10j).ae(-0.0454564330044553726-3.2291439210137706686j) assert ei(-100j).ae(-0.0051488251426104921-3.1330217936839529126j) u = ei(fmul(-10**20, j, exact=True)) assert u.real.ae(-6.4525128526578084421345e-21, abs_eps=0, rel_eps=8*eps) assert u.imag.ae(-pi) assert ei(10+10j).ae(-1576.1504265768517448+436.9192317011328140j) u = ei(-10+10j) assert u.real.ae(7.6698978415553488362543e-7, abs_eps=0, rel_eps=8*eps) assert u.imag.ae(3.141595611735621062025) def test_e1(): mp.dps = 15 assert e1(0) == inf assert e1(inf) == 0 assert e1(-inf) == mpc(-inf, -pi) assert e1(10j).ae(0.045456433004455372635 + 0.087551267423977430100j) assert e1(100j).ae(0.0051488251426104921444 - 0.0085708599058403258790j) assert e1(fmul(10**20, j, exact=True)).ae(6.4525128526578084421e-21 - 7.6397040444172830039e-21j, abs_eps=0, rel_eps=8*eps) assert e1(-10j).ae(0.045456433004455372635 - 0.087551267423977430100j) assert e1(-100j).ae(0.0051488251426104921444 + 0.0085708599058403258790j) assert e1(fmul(-10**20, j, exact=True)).ae(6.4525128526578084421e-21 + 7.6397040444172830039e-21j, abs_eps=0, rel_eps=8*eps) def test_expint(): mp.dps = 15 assert expint(0,0) == inf assert expint(0,1).ae(1/e) assert expint(0,1.5).ae(2/exp(1.5)/3) assert expint(1,1).ae(-ei(-1)) assert expint(2,0).ae(1) assert expint(3,0).ae(1/2.) assert expint(4,0).ae(1/3.) assert expint(-2, 0.5).ae(26/sqrt(e)) assert expint(-1,-1) == 0 assert expint(-2,-1).ae(-e) assert expint(5.5, 0).ae(2/9.) assert expint(2.00000001,0).ae(100000000./100000001) assert expint(2+3j,4-j).ae(0.0023461179581675065414+0.0020395540604713669262j) assert expint('1.01', '1e-1000').ae(99.9999999899412802) assert expint('1.000000000001', 3.5).ae(0.00697013985754701819446) assert expint(2,3).ae(3*ei(-3)+exp(-3)) assert (expint(10,20)*10**10).ae(0.694439055541231353) assert expint(3,inf) == 0 assert expint(3.2,inf) == 0 assert expint(3.2+2j,inf) == 0 assert expint(1,3j).ae(-0.11962978600800032763 + 0.27785620120457163717j) assert expint(1,3).ae(0.013048381094197037413) assert expint(1,-3).ae(-ei(3)-pi*j) #assert expint(3) == expint(1,3) assert expint(1,-20).ae(-25615652.66405658882 - 3.1415926535897932385j) assert expint(1000000,0).ae(1./999999) assert expint(0,2+3j).ae(-0.025019798357114678171 + 0.027980439405104419040j) assert expint(-1,2+3j).ae(-0.022411973626262070419 + 0.038058922011377716932j) assert expint(-1.5,0) == inf def test_trig_integrals(): mp.dps = 30 assert si(mpf(1)/1000000).ae('0.000000999999999999944444444444446111') assert ci(mpf(1)/1000000).ae('-13.2382948930629912435014366276') assert si(10**10).ae('1.5707963267075846569685111517747537') assert ci(10**10).ae('-4.87506025174822653785729773959e-11') assert si(10**100).ae(pi/2) assert (ci(10**100)*10**100).ae('-0.372376123661276688262086695553') assert si(-3) == -si(3) assert ci(-3).ae(ci(3) + pi*j) # Test complex structure mp.dps = 15 assert mp.ci(50).ae(-0.0056283863241163054402) assert mp.ci(50+2j).ae(-0.018378282946133067149+0.070352808023688336193j) assert mp.ci(20j).ae(1.28078263320282943611e7+1.5707963267949j) assert mp.ci(-2+20j).ae(-4.050116856873293505e6+1.207476188206989909e7j) assert mp.ci(-50+2j).ae(-0.0183782829461330671+3.0712398455661049023j) assert mp.ci(-50).ae(-0.0056283863241163054+3.1415926535897932385j) assert mp.ci(-50-2j).ae(-0.0183782829461330671-3.0712398455661049023j) assert mp.ci(-2-20j).ae(-4.050116856873293505e6-1.207476188206989909e7j) assert mp.ci(-20j).ae(1.28078263320282943611e7-1.5707963267949j) assert mp.ci(50-2j).ae(-0.018378282946133067149-0.070352808023688336193j) assert mp.si(50).ae(1.5516170724859358947) assert mp.si(50+2j).ae(1.497884414277228461-0.017515007378437448j) assert mp.si(20j).ae(1.2807826332028294459e7j) assert mp.si(-2+20j).ae(-1.20747603112735722103e7-4.050116856873293554e6j) assert mp.si(-50+2j).ae(-1.497884414277228461-0.017515007378437448j) assert mp.si(-50).ae(-1.5516170724859358947) assert mp.si(-50-2j).ae(-1.497884414277228461+0.017515007378437448j) assert mp.si(-2-20j).ae(-1.20747603112735722103e7+4.050116856873293554e6j) assert mp.si(-20j).ae(-1.2807826332028294459e7j) assert mp.si(50-2j).ae(1.497884414277228461+0.017515007378437448j) assert mp.chi(50j).ae(-0.0056283863241163054+1.5707963267948966192j) assert mp.chi(-2+50j).ae(-0.0183782829461330671+1.6411491348185849554j) assert mp.chi(-20).ae(1.28078263320282943611e7+3.1415926535898j) assert mp.chi(-20-2j).ae(-4.050116856873293505e6+1.20747571696809187053e7j) assert mp.chi(-2-50j).ae(-0.0183782829461330671-1.6411491348185849554j) assert mp.chi(-50j).ae(-0.0056283863241163054-1.5707963267948966192j) assert mp.chi(2-50j).ae(-0.0183782829461330671-1.500443518771208283j) assert mp.chi(20-2j).ae(-4.050116856873293505e6-1.20747603112735722951e7j) assert mp.chi(20).ae(1.2807826332028294361e7) assert mp.chi(2+50j).ae(-0.0183782829461330671+1.500443518771208283j) assert mp.shi(50j).ae(1.5516170724859358947j) assert mp.shi(-2+50j).ae(0.017515007378437448+1.497884414277228461j) assert mp.shi(-20).ae(-1.2807826332028294459e7) assert mp.shi(-20-2j).ae(4.050116856873293554e6-1.20747603112735722103e7j) assert mp.shi(-2-50j).ae(0.017515007378437448-1.497884414277228461j) assert mp.shi(-50j).ae(-1.5516170724859358947j) assert mp.shi(2-50j).ae(-0.017515007378437448-1.497884414277228461j) assert mp.shi(20-2j).ae(-4.050116856873293554e6-1.20747603112735722103e7j) assert mp.shi(20).ae(1.2807826332028294459e7) assert mp.shi(2+50j).ae(-0.017515007378437448+1.497884414277228461j) def ae(x,y,tol=1e-12): return abs(x-y) <= abs(y)*tol assert fp.ci(fp.inf) == 0 assert ae(fp.ci(fp.ninf), fp.pi*1j) assert ae(fp.si(fp.inf), fp.pi/2) assert ae(fp.si(fp.ninf), -fp.pi/2) assert fp.si(0) == 0 assert ae(fp.ci(50), -0.0056283863241163054402) assert ae(fp.ci(50+2j), -0.018378282946133067149+0.070352808023688336193j) assert ae(fp.ci(20j), 1.28078263320282943611e7+1.5707963267949j) assert ae(fp.ci(-2+20j), -4.050116856873293505e6+1.207476188206989909e7j) assert ae(fp.ci(-50+2j), -0.0183782829461330671+3.0712398455661049023j) assert ae(fp.ci(-50), -0.0056283863241163054+3.1415926535897932385j) assert ae(fp.ci(-50-2j), -0.0183782829461330671-3.0712398455661049023j) assert ae(fp.ci(-2-20j), -4.050116856873293505e6-1.207476188206989909e7j) assert ae(fp.ci(-20j), 1.28078263320282943611e7-1.5707963267949j) assert ae(fp.ci(50-2j), -0.018378282946133067149-0.070352808023688336193j) assert ae(fp.si(50), 1.5516170724859358947) assert ae(fp.si(50+2j), 1.497884414277228461-0.017515007378437448j) assert ae(fp.si(20j), 1.2807826332028294459e7j) assert ae(fp.si(-2+20j), -1.20747603112735722103e7-4.050116856873293554e6j) assert ae(fp.si(-50+2j), -1.497884414277228461-0.017515007378437448j) assert ae(fp.si(-50), -1.5516170724859358947) assert ae(fp.si(-50-2j), -1.497884414277228461+0.017515007378437448j) assert ae(fp.si(-2-20j), -1.20747603112735722103e7+4.050116856873293554e6j) assert ae(fp.si(-20j), -1.2807826332028294459e7j) assert ae(fp.si(50-2j), 1.497884414277228461+0.017515007378437448j) assert ae(fp.chi(50j), -0.0056283863241163054+1.5707963267948966192j) assert ae(fp.chi(-2+50j), -0.0183782829461330671+1.6411491348185849554j) assert ae(fp.chi(-20), 1.28078263320282943611e7+3.1415926535898j) assert ae(fp.chi(-20-2j), -4.050116856873293505e6+1.20747571696809187053e7j) assert ae(fp.chi(-2-50j), -0.0183782829461330671-1.6411491348185849554j) assert ae(fp.chi(-50j), -0.0056283863241163054-1.5707963267948966192j) assert ae(fp.chi(2-50j), -0.0183782829461330671-1.500443518771208283j) assert ae(fp.chi(20-2j), -4.050116856873293505e6-1.20747603112735722951e7j) assert ae(fp.chi(20), 1.2807826332028294361e7) assert ae(fp.chi(2+50j), -0.0183782829461330671+1.500443518771208283j) assert ae(fp.shi(50j), 1.5516170724859358947j) assert ae(fp.shi(-2+50j), 0.017515007378437448+1.497884414277228461j) assert ae(fp.shi(-20), -1.2807826332028294459e7) assert ae(fp.shi(-20-2j), 4.050116856873293554e6-1.20747603112735722103e7j) assert ae(fp.shi(-2-50j), 0.017515007378437448-1.497884414277228461j) assert ae(fp.shi(-50j), -1.5516170724859358947j) assert ae(fp.shi(2-50j), -0.017515007378437448-1.497884414277228461j) assert ae(fp.shi(20-2j), -4.050116856873293554e6-1.20747603112735722103e7j) assert ae(fp.shi(20), 1.2807826332028294459e7) assert ae(fp.shi(2+50j), -0.017515007378437448+1.497884414277228461j) def test_airy(): mp.dps = 15 assert (airyai(10)*10**10).ae(1.1047532552898687) assert (airybi(10)/10**9).ae(0.45564115354822515) assert (airyai(1000)*10**9158).ae(9.306933063179556004) assert (airybi(1000)/10**9154).ae(5.4077118391949465477) assert airyai(-1000).ae(0.055971895773019918842) assert airybi(-1000).ae(-0.083264574117080633012) assert (airyai(100+100j)*10**188).ae(2.9099582462207032076 + 2.353013591706178756j) assert (airybi(100+100j)/10**185).ae(1.7086751714463652039 - 3.1416590020830804578j) def test_hyper_0f1(): mp.dps = 15 v = 8.63911136507950465 assert hyper([],[(1,3)],1.5).ae(v) assert hyper([],[1/3.],1.5).ae(v) assert hyp0f1(1/3.,1.5).ae(v) assert hyp0f1((1,3),1.5).ae(v) # Asymptotic expansion assert hyp0f1(3,1e9).ae('4.9679055380347771271e+27455') assert hyp0f1(3,1e9j).ae('-2.1222788784457702157e+19410 + 5.0840597555401854116e+19410j') def test_hyper_1f1(): mp.dps = 15 v = 1.2917526488617656673 assert hyper([(1,2)],[(3,2)],0.7).ae(v) assert hyper([(1,2)],[(3,2)],0.7+0j).ae(v) assert hyper([0.5],[(3,2)],0.7).ae(v) assert hyper([0.5],[1.5],0.7).ae(v) assert hyper([0.5],[(3,2)],0.7+0j).ae(v) assert hyper([0.5],[1.5],0.7+0j).ae(v) assert hyper([(1,2)],[1.5+0j],0.7).ae(v) assert hyper([0.5+0j],[1.5],0.7).ae(v) assert hyper([0.5+0j],[1.5+0j],0.7+0j).ae(v) assert hyp1f1(0.5,1.5,0.7).ae(v) assert hyp1f1((1,2),1.5,0.7).ae(v) # Asymptotic expansion assert hyp1f1(2,3,1e10).ae('2.1555012157015796988e+4342944809') assert (hyp1f1(2,3,1e10j)*10**10).ae(-0.97501205020039745852 - 1.7462392454512132074j) # Shouldn't use asymptotic expansion assert hyp1f1(-2, 1, 10000).ae(49980001) def test_hyper_2f1(): mp.dps = 15 v = 1.0652207633823291032 assert hyper([(1,2), (3,4)], [2], 0.3).ae(v) assert hyper([(1,2), 0.75], [2], 0.3).ae(v) assert hyper([0.5, 0.75], [2.0], 0.3).ae(v) assert hyper([0.5, 0.75], [2.0], 0.3+0j).ae(v) assert hyper([0.5+0j, (3,4)], [2.0], 0.3+0j).ae(v) assert hyper([0.5+0j, (3,4)], [2.0], 0.3).ae(v) assert hyper([0.5, (3,4)], [2.0+0j], 0.3).ae(v) assert hyper([0.5+0j, 0.75+0j], [2.0+0j], 0.3+0j).ae(v) v = 1.09234681096223231717 + 0.18104859169479360380j assert hyper([(1,2),0.75+j], [2], 0.5).ae(v) assert hyper([0.5,0.75+j], [2.0], 0.5).ae(v) assert hyper([0.5,0.75+j], [2.0], 0.5+0j).ae(v) assert hyper([0.5,0.75+j], [2.0+0j], 0.5+0j).ae(v) v = 0.9625 - 0.125j assert hyper([(3,2),-1],[4], 0.1+j/3).ae(v) assert hyper([1.5,-1.0],[4], 0.1+j/3).ae(v) assert hyper([1.5,-1.0],[4+0j], 0.1+j/3).ae(v) assert hyper([1.5+0j,-1.0+0j],[4+0j], 0.1+j/3).ae(v) v = 1.02111069501693445001 - 0.50402252613466859521j assert hyper([(2,10),(3,10)],[(4,10)],1.5).ae(v) assert hyper([0.2,(3,10)],[0.4+0j],1.5).ae(v) assert hyper([0.2,(3,10)],[0.4+0j],1.5+0j).ae(v) v = 0.76922501362865848528 + 0.32640579593235886194j assert hyper([(2,10),(3,10)],[(4,10)],4+2j).ae(v) assert hyper([0.2,(3,10)],[0.4+0j],4+2j).ae(v) assert hyper([0.2,(3,10)],[(4,10)],4+2j).ae(v) def test_hyper_2f1_hard(): mp.dps = 15 # Singular cases assert hyp2f1(2,-1,-1,3).ae(0.25) assert hyp2f1(2,-2,-2,3).ae(0.25) assert hyp2f1(2,-1,-1,3,eliminate=False) == 7 assert hyp2f1(2,-2,-2,3,eliminate=False) == 34 assert hyp2f1(2,-2,-3,3) == 14 assert hyp2f1(2,-3,-2,3) == inf assert hyp2f1(2,-1.5,-1.5,3) == 0.25 assert hyp2f1(1,2,3,0) == 1 assert hyp2f1(0,1,0,0) == 1 assert hyp2f1(0,0,0,0) == 1 assert isnan(hyp2f1(1,1,0,0)) assert hyp2f1(2,-1,-5, 0.25+0.25j).ae(1.1+0.1j) assert hyp2f1(2,-5,-5, 0.25+0.25j, eliminate=False).ae(163./128 + 125./128*j) assert hyp2f1(0.7235, -1, -5, 0.3).ae(1.04341) assert hyp2f1(0.7235, -5, -5, 0.3, eliminate=False).ae(1.2939225017815903812) assert hyp2f1(-1,-2,4,1) == 1.5 assert hyp2f1(1,2,-3,1) == inf assert hyp2f1(-2,-2,1,1) == 6 assert hyp2f1(1,-2,-4,1).ae(5./3) assert hyp2f1(0,-6,-4,1) == 1 assert hyp2f1(0,-3,-4,1) == 1 assert hyp2f1(0,0,0,1) == 1 assert hyp2f1(1,0,0,1,eliminate=False) == 1 assert hyp2f1(1,1,0,1) == inf assert hyp2f1(1,-6,-4,1) == inf assert hyp2f1(-7.2,-0.5,-4.5,1) == 0 assert hyp2f1(-7.2,-1,-2,1).ae(-2.6) assert hyp2f1(1,-0.5,-4.5, 1) == inf assert hyp2f1(1,0.5,-4.5, 1) == -inf # Check evaluation on / close to unit circle z = exp(j*pi/3) w = (nthroot(2,3)+1)*exp(j*pi/12)/nthroot(3,4)**3 assert hyp2f1('1/2','1/6','1/3', z).ae(w) assert hyp2f1('1/2','1/6','1/3', z.conjugate()).ae(w.conjugate()) assert hyp2f1(0.25, (1,3), 2, '0.999').ae(1.06826449496030635) assert hyp2f1(0.25, (1,3), 2, '1.001').ae(1.06867299254830309446-0.00001446586793975874j) assert hyp2f1(0.25, (1,3), 2, -1).ae(0.96656584492524351673) assert hyp2f1(0.25, (1,3), 2, j).ae(0.99041766248982072266+0.03777135604180735522j) assert hyp2f1(2,3,5,'0.99').ae(27.699347904322690602) assert hyp2f1((3,2),-0.5,3,'0.99').ae(0.68403036843911661388) assert hyp2f1(2,3,5,1j).ae(0.37290667145974386127+0.59210004902748285917j) assert fsum([hyp2f1((7,10),(2,3),(-1,2), 0.95*exp(j*k)) for k in range(1,15)]).ae(52.851400204289452922+6.244285013912953225j) assert fsum([hyp2f1((7,10),(2,3),(-1,2), 1.05*exp(j*k)) for k in range(1,15)]).ae(54.506013786220655330-3.000118813413217097j) assert fsum([hyp2f1((7,10),(2,3),(-1,2), exp(j*k)) for k in range(1,15)]).ae(55.792077935955314887+1.731986485778500241j) assert hyp2f1(2,2.5,-3.25,0.999).ae(218373932801217082543180041.33) # Branches assert hyp2f1(1,1,2,1.01).ae(4.5595744415723676911-3.1104877758314784539j) assert hyp2f1(1,1,2,1.01+0.1j).ae(2.4149427480552782484+1.4148224796836938829j) assert hyp2f1(1,1,2,3+4j).ae(0.14576709331407297807+0.48379185417980360773j) assert hyp2f1(1,1,2,4).ae(-0.27465307216702742285 - 0.78539816339744830962j) assert hyp2f1(1,1,2,-4).ae(0.40235947810852509365) # Other: # Cancellation with a large parameter involved (bug reported on sage-devel) assert hyp2f1(112, (51,10), (-9,10), -0.99999).ae(-1.6241361047970862961e-24, abs_eps=0, rel_eps=eps*16) def test_hyper_3f2_etc(): assert hyper([1,2,3],[1.5,8],-1).ae(0.67108992351533333030) assert hyper([1,2,3,4],[5,6,7], -1).ae(0.90232988035425506008) assert hyper([1,2,3],[1.25,5], 1).ae(28.924181329701905701) assert hyper([1,2,3,4],[5,6,7],5).ae(1.5192307344006649499-1.1529845225075537461j) assert hyper([1,2,3,4,5],[6,7,8,9],-1).ae(0.96288759462882357253) assert hyper([1,2,3,4,5],[6,7,8,9],1).ae(1.0428697385885855841) assert hyper([1,2,3,4,5],[6,7,8,9],5).ae(1.33980653631074769423-0.07143405251029226699j) assert hyper([1,2.79,3.08,4.37],[5.2,6.1,7.3],5).ae(1.0996321464692607231-1.7748052293979985001j) assert hyper([1,1,1],[1,2],1) == inf assert hyper([1,1,1],[2,(101,100)],1).ae(100.01621213528313220) # slow -- covered by doctests #assert hyper([1,1,1],[2,3],0.9999).ae(1.2897972005319693905) def test_hyper_u(): mp.dps = 15 assert hyperu(2,-3,0).ae(0.05) assert hyperu(2,-3.5,0).ae(4./99) assert hyperu(2,0,0) == 0.5 assert hyperu(-5,1,0) == -120 assert hyperu(-5,2,0) == inf assert hyperu(-5,-2,0) == 0 assert hyperu(7,7,3).ae(0.00014681269365593503986) #exp(3)*gammainc(-6,3) assert hyperu(2,-3,4).ae(0.011836478100271995559) assert hyperu(3,4,5).ae(1./125) assert hyperu(2,3,0.0625) == 256 assert hyperu(-1,2,0.25+0.5j) == -1.75+0.5j assert hyperu(0.5,1.5,7.25).ae(2/sqrt(29)) assert hyperu(2,6,pi).ae(0.55804439825913399130) assert (hyperu((3,2),8,100+201j)*10**4).ae(-0.3797318333856738798 - 2.9974928453561707782j) assert (hyperu((5,2),(-1,2),-5000)*10**10).ae(-5.6681877926881664678j) # XXX: fails because of undetected cancellation in low level series code # Alternatively: could use asymptotic series here, if convergence test # tweaked back to recognize this one #assert (hyperu((5,2),(-1,2),-500)*10**7).ae(-1.82526906001593252847j) def test_hyper_2f0(): mp.dps = 15 assert hyper([1,2],[],3) == hyp2f0(1,2,3) assert hyp2f0(2,3,7).ae(0.0116108068639728714668 - 0.0073727413865865802130j) assert hyp2f0(2,3,0) == 1 assert hyp2f0(0,0,0) == 1 assert hyp2f0(-1,-1,1).ae(2) assert hyp2f0(-4,1,1.5).ae(62.5) assert hyp2f0(-4,1,50).ae(147029801) assert hyp2f0(-4,1,0.0001).ae(0.99960011997600240000) assert hyp2f0(0.5,0.25,0.001).ae(1.0001251174078538115) assert hyp2f0(0.5,0.25,3+4j).ae(0.85548875824755163518 + 0.21636041283392292973j) # Important: cancellation check assert hyp2f0((1,6),(5,6),-0.02371708245126284498).ae(0.996785723120804309) # Should be exact; polynomial case assert hyp2f0(-2,1,0.5+0.5j) == 0 assert hyp2f0(1,-2,0.5+0.5j) == 0 # There used to be a bug in thresholds that made one of the following hang for d in [15, 50, 80]: mp.dps = d assert hyp2f0(1.5, 0.5, 0.009).ae('1.006867007239309717945323585695344927904000945829843527398772456281301440034218290443367270629519483 + 1.238277162240704919639384945859073461954721356062919829456053965502443570466701567100438048602352623e-46j') def test_hyper_1f2(): mp.dps = 15 assert hyper([1],[2,3],4) == hyp1f2(1,2,3,4) a1,b1,b2 = (1,10),(2,3),1./16 assert hyp1f2(a1,b1,b2,10).ae(298.7482725554557568) assert hyp1f2(a1,b1,b2,100).ae(224128961.48602947604) assert hyp1f2(a1,b1,b2,1000).ae(1.1669528298622675109e+27) assert hyp1f2(a1,b1,b2,10000).ae(2.4780514622487212192e+86) assert hyp1f2(a1,b1,b2,100000).ae(1.3885391458871523997e+274) assert hyp1f2(a1,b1,b2,1000000).ae('9.8851796978960318255e+867') assert hyp1f2(a1,b1,b2,10**7).ae('1.1505659189516303646e+2746') assert hyp1f2(a1,b1,b2,10**8).ae('1.4672005404314334081e+8685') assert hyp1f2(a1,b1,b2,10**20).ae('3.6888217332150976493e+8685889636') assert hyp1f2(a1,b1,b2,10*j).ae(-16.163252524618572878 - 44.321567896480184312j) assert hyp1f2(a1,b1,b2,100*j).ae(61938.155294517848171 + 637349.45215942348739j) assert hyp1f2(a1,b1,b2,1000*j).ae(8455057657257695958.7 + 6261969266997571510.6j) assert hyp1f2(a1,b1,b2,10000*j).ae(-8.9771211184008593089e+60 + 4.6550528111731631456e+59j) assert hyp1f2(a1,b1,b2,100000*j).ae(2.6398091437239324225e+193 + 4.1658080666870618332e+193j) assert hyp1f2(a1,b1,b2,1000000*j).ae('3.5999042951925965458e+613 + 1.5026014707128947992e+613j') assert hyp1f2(a1,b1,b2,10**7*j).ae('-8.3208715051623234801e+1939 - 3.6752883490851869429e+1941j') assert hyp1f2(a1,b1,b2,10**8*j).ae('2.0724195707891484454e+6140 - 1.3276619482724266387e+6141j') assert hyp1f2(a1,b1,b2,10**20*j).ae('-1.1734497974795488504e+6141851462 + 1.1498106965385471542e+6141851462j') def test_hyper_2f3(): mp.dps = 15 assert hyper([1,2],[3,4,5],6) == hyp2f3(1,2,3,4,5,6) a1,a2,b1,b2,b3 = (1,10),(2,3),(3,10), 2, 1./16 # Check asymptotic expansion assert hyp2f3(a1,a2,b1,b2,b3,10).ae(128.98207160698659976) assert hyp2f3(a1,a2,b1,b2,b3,1000).ae(6.6309632883131273141e25) assert hyp2f3(a1,a2,b1,b2,b3,10000).ae(4.6863639362713340539e84) assert hyp2f3(a1,a2,b1,b2,b3,100000).ae(8.6632451236103084119e271) assert hyp2f3(a1,a2,b1,b2,b3,10**6).ae('2.0291718386574980641e865') assert hyp2f3(a1,a2,b1,b2,b3,10**7).ae('7.7639836665710030977e2742') assert hyp2f3(a1,a2,b1,b2,b3,10**8).ae('3.2537462584071268759e8681') assert hyp2f3(a1,a2,b1,b2,b3,10**20).ae('1.2966030542911614163e+8685889627') assert hyp2f3(a1,a2,b1,b2,b3,10*j).ae(-18.551602185587547854 - 13.348031097874113552j) assert hyp2f3(a1,a2,b1,b2,b3,100*j).ae(78634.359124504488695 + 74459.535945281973996j) assert hyp2f3(a1,a2,b1,b2,b3,1000*j).ae(597682550276527901.59 - 65136194809352613.078j) assert hyp2f3(a1,a2,b1,b2,b3,10000*j).ae(-1.1779696326238582496e+59 + 1.2297607505213133872e+59j) assert hyp2f3(a1,a2,b1,b2,b3,100000*j).ae(2.9844228969804380301e+191 + 7.5587163231490273296e+190j) assert hyp2f3(a1,a2,b1,b2,b3,1000000*j).ae('7.4859161049322370311e+610 - 2.8467477015940090189e+610j') assert hyp2f3(a1,a2,b1,b2,b3,10**7*j).ae('-1.7477645579418800826e+1938 - 1.7606522995808116405e+1938j') assert hyp2f3(a1,a2,b1,b2,b3,10**8*j).ae('-1.6932731942958401784e+6137 - 2.4521909113114629368e+6137j') assert hyp2f3(a1,a2,b1,b2,b3,10**20*j).ae('-2.0988815677627225449e+6141851451 + 5.7708223542739208681e+6141851452j') def test_hyper_2f2(): mp.dps = 15 assert hyper([1,2],[3,4],5) == hyp2f2(1,2,3,4,5) a1,a2,b1,b2 = (3,10),4,(1,2),1./16 assert hyp2f2(a1,a2,b1,b2,10).ae(448225936.3377556696) assert hyp2f2(a1,a2,b1,b2,10000).ae('1.2012553712966636711e+4358') assert hyp2f2(a1,a2,b1,b2,-20000).ae(-0.04182343755661214626) assert hyp2f2(a1,a2,b1,b2,10**20).ae('1.1148680024303263661e+43429448190325182840') def test_orthpoly(): mp.dps = 15 assert jacobi(-4,2,3,0.7).ae(22800./4913) assert jacobi(3,2,4,5.5) == 4133.125 assert jacobi(1.5,5/6.,4,0).ae(-1.0851951434075508417) assert jacobi(-2, 1, 2, 4).ae(-0.16) assert jacobi(2, -1, 2.5, 4).ae(34.59375) #assert jacobi(2, -1, 2, 4) == 28.5 assert legendre(5, 7) == 129367 assert legendre(0.5,0).ae(0.53935260118837935667) assert legendre(-1,-1) == 1 assert legendre(0,-1) == 1 assert legendre(0, 1) == 1 assert legendre(1, -1) == -1 assert legendre(7, 1) == 1 assert legendre(7, -1) == -1 assert legendre(8,1.5).ae(15457523./32768) assert legendre(j,-j).ae(2.4448182735671431011 + 0.6928881737669934843j) assert chebyu(5,1) == 6 assert chebyt(3,2) == 26 assert legendre(3.5,-1) == inf assert legendre(4.5,-1) == -inf assert legendre(3.5+1j,-1) == mpc(inf,inf) assert legendre(4.5+1j,-1) == mpc(-inf,-inf) assert laguerre(4, -2, 3).ae(-1.125) assert laguerre(3, 1+j, 0.5).ae(0.2291666666666666667 + 2.5416666666666666667j) def test_hermite(): mp.dps = 15 assert hermite(-2, 0).ae(0.5) assert hermite(-1, 0).ae(0.88622692545275801365) assert hermite(0, 0).ae(1) assert hermite(1, 0) == 0 assert hermite(2, 0).ae(-2) assert hermite(0, 2).ae(1) assert hermite(1, 2).ae(4) assert hermite(1, -2).ae(-4) assert hermite(2, -2).ae(14) assert hermite(0.5, 0).ae(0.69136733903629335053) assert hermite(9, 0) == 0 assert hermite(4,4).ae(3340) assert hermite(3,4).ae(464) assert hermite(-4,4).ae(0.00018623860287512396181) assert hermite(-3,4).ae(0.0016540169879668766270) assert hermite(9, 2.5j).ae(13638725j) assert hermite(9, -2.5j).ae(-13638725j) assert hermite(9, 100).ae(511078883759363024000) assert hermite(9, -100).ae(-511078883759363024000) assert hermite(9, 100j).ae(512922083920643024000j) assert hermite(9, -100j).ae(-512922083920643024000j) assert hermite(-9.5, 2.5j).ae(-2.9004951258126778174e-6 + 1.7601372934039951100e-6j) assert hermite(-9.5, -2.5j).ae(-2.9004951258126778174e-6 - 1.7601372934039951100e-6j) assert hermite(-9.5, 100).ae(1.3776300722767084162e-22, abs_eps=0, rel_eps=eps) assert hermite(-9.5, -100).ae('1.3106082028470671626e4355') assert hermite(-9.5, 100j).ae(-9.7900218581864768430e-23 - 9.7900218581864768430e-23j, abs_eps=0, rel_eps=eps) assert hermite(-9.5, -100j).ae(-9.7900218581864768430e-23 + 9.7900218581864768430e-23j, abs_eps=0, rel_eps=eps) assert hermite(2+3j, -1-j).ae(851.3677063883687676 - 1496.4373467871007997j) def test_gegenbauer(): mp.dps = 15 assert gegenbauer(1,2,3).ae(12) assert gegenbauer(2,3,4).ae(381) assert gegenbauer(0,0,0) == 0 assert gegenbauer(2,-1,3) == 0 assert gegenbauer(-7, 0.5, 3).ae(8989) assert gegenbauer(1, -0.5, 3).ae(-3) assert gegenbauer(1, -1.5, 3).ae(-9) assert gegenbauer(1, -0.5, 3).ae(-3) assert gegenbauer(-0.5, -0.5, 3).ae(-2.6383553159023906245) assert gegenbauer(2+3j, 1-j, 3+4j).ae(14.880536623203696780 + 20.022029711598032898j) #assert gegenbauer(-2, -0.5, 3).ae(-12) def test_legenp(): mp.dps = 15 assert legenp(2,0,4) == legendre(2,4) assert legenp(-2, -1, 0.5).ae(0.43301270189221932338) assert legenp(-2, -1, 0.5, type=3).ae(0.43301270189221932338j) assert legenp(-2, 1, 0.5).ae(-0.86602540378443864676) assert legenp(2+j, 3+4j, -j).ae(134742.98773236786148 + 429782.72924463851745j) assert legenp(2+j, 3+4j, -j, type=3).ae(802.59463394152268507 - 251.62481308942906447j) assert legenp(2,4,3).ae(0) assert legenp(2,4,3,type=3).ae(0) assert legenp(2,1,0.5).ae(-1.2990381056766579701) assert legenp(2,1,0.5,type=3).ae(1.2990381056766579701j) assert legenp(3,2,3).ae(-360) assert legenp(3,3,3).ae(240j*2**0.5) assert legenp(3,4,3).ae(0) assert legenp(0,0.5,2).ae(0.52503756790433198939 - 0.52503756790433198939j) assert legenp(-1,-0.5,2).ae(0.60626116232846498110 + 0.60626116232846498110j) assert legenp(-2,0.5,2).ae(1.5751127037129959682 - 1.5751127037129959682j) assert legenp(-2,0.5,-0.5).ae(-0.85738275810499171286) def test_legenq(): mp.dps = 15 f = legenq # Evaluation at poles assert isnan(f(3,2,1)) assert isnan(f(3,2,-1)) assert isnan(f(3,2,1,type=3)) assert isnan(f(3,2,-1,type=3)) # Evaluation at 0 assert f(0,1,0,type=2).ae(-1) assert f(-2,2,0,type=2,zeroprec=200).ae(0) assert f(1.5,3,0,type=2).ae(-2.2239343475841951023) assert f(0,1,0,type=3).ae(j) assert f(-2,2,0,type=3,zeroprec=200).ae(0) assert f(1.5,3,0,type=3).ae(2.2239343475841951022*(1-1j)) # Standard case, degree 0 assert f(0,0,-1.5).ae(-0.8047189562170501873 + 1.5707963267948966192j) assert f(0,0,-0.5).ae(-0.54930614433405484570) assert f(0,0,0,zeroprec=200).ae(0) assert f(0,0,0.5).ae(0.54930614433405484570) assert f(0,0,1.5).ae(0.8047189562170501873 - 1.5707963267948966192j) assert f(0,0,-1.5,type=3).ae(-0.80471895621705018730) assert f(0,0,-0.5,type=3).ae(-0.5493061443340548457 - 1.5707963267948966192j) assert f(0,0,0,type=3).ae(-1.5707963267948966192j) assert f(0,0,0.5,type=3).ae(0.5493061443340548457 - 1.5707963267948966192j) assert f(0,0,1.5,type=3).ae(0.80471895621705018730) # Standard case, degree 1 assert f(1,0,-1.5).ae(0.2070784343255752810 - 2.3561944901923449288j) assert f(1,0,-0.5).ae(-0.72534692783297257715) assert f(1,0,0).ae(-1) assert f(1,0,0.5).ae(-0.72534692783297257715) assert f(1,0,1.5).ae(0.2070784343255752810 - 2.3561944901923449288j) # Standard case, degree 2 assert f(2,0,-1.5).ae(-0.0635669991240192885 + 4.5160394395353277803j) assert f(2,0,-0.5).ae(0.81866326804175685571) assert f(2,0,0,zeroprec=200).ae(0) assert f(2,0,0.5).ae(-0.81866326804175685571) assert f(2,0,1.5).ae(0.0635669991240192885 - 4.5160394395353277803j) # Misc orders and degrees assert f(2,3,1.5,type=2).ae(-5.7243340223994616228j) assert f(2,3,1.5,type=3).ae(-5.7243340223994616228) assert f(2,3,0.5,type=2).ae(-12.316805742712016310) assert f(2,3,0.5,type=3).ae(-12.316805742712016310j) assert f(2,3,-1.5,type=2).ae(-5.7243340223994616228j) assert f(2,3,-1.5,type=3).ae(5.7243340223994616228) assert f(2,3,-0.5,type=2).ae(-12.316805742712016310) assert f(2,3,-0.5,type=3).ae(-12.316805742712016310j) assert f(2+3j, 3+4j, 0.5, type=3).ae(0.0016119404873235186807 - 0.0005885900510718119836j) assert f(2+3j, 3+4j, -1.5, type=3).ae(0.008451400254138808670 + 0.020645193304593235298j) assert f(-2.5,1,-1.5).ae(3.9553395527435335749j) assert f(-2.5,1,-0.5).ae(1.9290561746445456908) assert f(-2.5,1,0).ae(1.2708196271909686299) assert f(-2.5,1,0.5).ae(-0.31584812990742202869) assert f(-2.5,1,1.5).ae(-3.9553395527435335742 + 0.2993235655044701706j) assert f(-2.5,1,-1.5,type=3).ae(0.29932356550447017254j) assert f(-2.5,1,-0.5,type=3).ae(-0.3158481299074220287 - 1.9290561746445456908j) assert f(-2.5,1,0,type=3).ae(1.2708196271909686292 - 1.2708196271909686299j) assert f(-2.5,1,0.5,type=3).ae(1.9290561746445456907 + 0.3158481299074220287j) assert f(-2.5,1,1.5,type=3).ae(-0.29932356550447017254) def test_agm(): mp.dps = 15 assert agm(0,0) == 0 assert agm(0,1) == 0 assert agm(1,1) == 1 assert agm(7,7) == 7 assert agm(j,j) == j assert (1/agm(1,sqrt(2))).ae(0.834626841674073186) assert agm(1,2).ae(1.4567910310469068692) assert agm(1,3).ae(1.8636167832448965424) assert agm(1,j).ae(0.599070117367796104+0.599070117367796104j) assert agm(2) == agm(1,2) assert agm(-3,4).ae(0.63468509766550907+1.3443087080896272j) def test_gammainc(): mp.dps = 15 assert gammainc(2,5).ae(6*exp(-5)) assert gammainc(2,0,5).ae(1-6*exp(-5)) assert gammainc(2,3,5).ae(-6*exp(-5)+4*exp(-3)) assert gammainc(-2.5,-0.5).ae(-0.9453087204829418812-5.3164237738936178621j) assert gammainc(0,2,4).ae(0.045121158298212213088) assert gammainc(0,3).ae(0.013048381094197037413) assert gammainc(0,2+j,1-j).ae(0.00910653685850304839-0.22378752918074432574j) assert gammainc(0,1-j).ae(0.00028162445198141833+0.17932453503935894015j) assert gammainc(3,4,5,True).ae(0.11345128607046320253) assert gammainc(3.5,0,inf).ae(gamma(3.5)) assert gammainc(-150.5,500).ae('6.9825435345798951153e-627') assert gammainc(-150.5,800).ae('4.6885137549474089431e-788') assert gammainc(-3.5, -20.5).ae(0.27008820585226911 - 1310.31447140574997636j) assert gammainc(-3.5, -200.5).ae(0.27008820585226911 - 5.3264597096208368435e76j) # XXX real part assert gammainc(0,0,2) == inf assert gammainc(1,b=1).ae(0.6321205588285576784) assert gammainc(3,2,2) == 0 assert gammainc(2,3+j,3-j).ae(-0.28135485191849314194j) # Regularized upper gamma assert isnan(gammainc(0, 0, regularized=True)) assert gammainc(-1, 0, regularized=True) == inf assert gammainc(1, 0, regularized=True) == 1 assert gammainc(0, 5, regularized=True) == 0 assert gammainc(0, 2+3j, regularized=True) == 0 assert gammainc(0, 5000, regularized=True) == 0 assert gammainc(0, 10**30, regularized=True) == 0 assert gammainc(-1, 5, regularized=True) == 0 assert gammainc(-1, 5000, regularized=True) == 0 assert gammainc(-1, 10**30, regularized=True) == 0 assert gammainc(-1, -5, regularized=True) == 0 assert gammainc(-1, -5000, regularized=True) == 0 assert gammainc(-1, -10**30, regularized=True) == 0 assert gammainc(-1, 3+4j, regularized=True) == 0 assert gammainc(1, 5, regularized=True).ae(exp(-5)) assert gammainc(1, 5000, regularized=True).ae(exp(-5000)) assert gammainc(1, 10**30, regularized=True).ae(exp(-10**30)) assert gammainc(1, 3+4j, regularized=True).ae(exp(-3-4j)) assert gammainc(-1000000,2).ae('1.3669297209397347754e-301037', abs_eps=0, rel_eps=8*eps) assert gammainc(-1000000,2,regularized=True) == 0 assert gammainc(-1000000,3+4j).ae('-1.322575609404222361e-698979 - 4.9274570591854533273e-698978j', abs_eps=0, rel_eps=8*eps) assert gammainc(-1000000,3+4j,regularized=True) == 0 assert gammainc(2+3j, 4+5j, regularized=True).ae(0.085422013530993285774-0.052595379150390078503j) assert gammainc(1000j, 1000j, regularized=True).ae(0.49702647628921131761 + 0.00297355675013575341j) # Generalized assert gammainc(3,4,2) == -gammainc(3,2,4) assert gammainc(4, 2, 3).ae(1.2593494302978947396) assert gammainc(4, 2, 3, regularized=True).ae(0.20989157171631578993) assert gammainc(0, 2, 3).ae(0.035852129613864082155) assert gammainc(0, 2, 3, regularized=True) == 0 assert gammainc(-1, 2, 3).ae(0.015219822548487616132) assert gammainc(-1, 2, 3, regularized=True) == 0 assert gammainc(0, 2, 3).ae(0.035852129613864082155) assert gammainc(0, 2, 3, regularized=True) == 0 # Should use upper gammas assert gammainc(5, 10000, 12000).ae('1.1359381951461801687e-4327', abs_eps=0, rel_eps=8*eps) # Should use lower gammas assert gammainc(10000, 2, 3).ae('8.1244514125995785934e4765') def test_gammainc_expint_n(): # These tests are intended to check all cases of the low-level code # for upper gamma and expint with small integer index. # Need to cover positive/negative arguments; small/large/huge arguments # for both positive and negative indices, as well as indices 0 and 1 # which may be special-cased mp.dps = 15 assert expint(-3,3.5).ae(0.021456366563296693987) assert expint(-2,3.5).ae(0.014966633183073309405) assert expint(-1,3.5).ae(0.011092916359219041088) assert expint(0,3.5).ae(0.0086278238349481430685) assert expint(1,3.5).ae(0.0069701398575483929193) assert expint(2,3.5).ae(0.0058018939208991255223) assert expint(3,3.5).ae(0.0049453773495857807058) assert expint(-3,-3.5).ae(-4.6618170604073311319) assert expint(-2,-3.5).ae(-5.5996974157555515963) assert expint(-1,-3.5).ae(-6.7582555017739415818) assert expint(0,-3.5).ae(-9.4615577024835182145) assert expint(1,-3.5).ae(-13.925353995152335292 - 3.1415926535897932385j) assert expint(2,-3.5).ae(-15.62328702434085977 - 10.995574287564276335j) assert expint(3,-3.5).ae(-10.783026313250347722 - 19.242255003237483586j) assert expint(-3,350).ae(2.8614825451252838069e-155, abs_eps=0, rel_eps=8*eps) assert expint(-2,350).ae(2.8532837224504675901e-155, abs_eps=0, rel_eps=8*eps) assert expint(-1,350).ae(2.8451316155828634555e-155, abs_eps=0, rel_eps=8*eps) assert expint(0,350).ae(2.8370258275042797989e-155, abs_eps=0, rel_eps=8*eps) assert expint(1,350).ae(2.8289659656701459404e-155, abs_eps=0, rel_eps=8*eps) assert expint(2,350).ae(2.8209516419468505006e-155, abs_eps=0, rel_eps=8*eps) assert expint(3,350).ae(2.8129824725501272171e-155, abs_eps=0, rel_eps=8*eps) assert expint(-3,-350).ae(-2.8528796154044839443e+149) assert expint(-2,-350).ae(-2.8610072121701264351e+149) assert expint(-1,-350).ae(-2.8691813842677537647e+149) assert expint(0,-350).ae(-2.8774025343659421709e+149) u = expint(1,-350) assert u.ae(-2.8856710698020863568e+149) assert u.imag.ae(-3.1415926535897932385) u = expint(2,-350) assert u.ae(-2.8939874026504650534e+149) assert u.imag.ae(-1099.5574287564276335) u = expint(3,-350) assert u.ae(-2.9023519497915044349e+149) assert u.imag.ae(-192422.55003237483586) assert expint(-3,350000000000000000000000).ae('2.1592908471792544286e-152003068666138139677919', abs_eps=0, rel_eps=8*eps) assert expint(-2,350000000000000000000000).ae('2.1592908471792544286e-152003068666138139677919', abs_eps=0, rel_eps=8*eps) assert expint(-1,350000000000000000000000).ae('2.1592908471792544286e-152003068666138139677919', abs_eps=0, rel_eps=8*eps) assert expint(0,350000000000000000000000).ae('2.1592908471792544286e-152003068666138139677919', abs_eps=0, rel_eps=8*eps) assert expint(1,350000000000000000000000).ae('2.1592908471792544286e-152003068666138139677919', abs_eps=0, rel_eps=8*eps) assert expint(2,350000000000000000000000).ae('2.1592908471792544286e-152003068666138139677919', abs_eps=0, rel_eps=8*eps) assert expint(3,350000000000000000000000).ae('2.1592908471792544286e-152003068666138139677919', abs_eps=0, rel_eps=8*eps) assert expint(-3,-350000000000000000000000).ae('-3.7805306852415755699e+152003068666138139677871') assert expint(-2,-350000000000000000000000).ae('-3.7805306852415755699e+152003068666138139677871') assert expint(-1,-350000000000000000000000).ae('-3.7805306852415755699e+152003068666138139677871') assert expint(0,-350000000000000000000000).ae('-3.7805306852415755699e+152003068666138139677871') u = expint(1,-350000000000000000000000) assert u.ae('-3.7805306852415755699e+152003068666138139677871') assert u.imag.ae(-3.1415926535897932385) u = expint(2,-350000000000000000000000) assert u.imag.ae(-1.0995574287564276335e+24) assert u.ae('-3.7805306852415755699e+152003068666138139677871') u = expint(3,-350000000000000000000000) assert u.imag.ae(-1.9242255003237483586e+47) assert u.ae('-3.7805306852415755699e+152003068666138139677871') # Small case; no branch cut assert gammainc(-3,3.5).ae(0.00010020262545203707109) assert gammainc(-2,3.5).ae(0.00040370427343557393517) assert gammainc(-1,3.5).ae(0.0016576839773997501492) assert gammainc(0,3.5).ae(0.0069701398575483929193) assert gammainc(1,3.5).ae(0.03019738342231850074) assert gammainc(2,3.5).ae(0.13588822540043325333) assert gammainc(3,3.5).ae(0.64169439772426814072) # Small case; with branch cut assert gammainc(-3,-3.5).ae(0.03595832954467563286 - 0.52359877559829887308j) assert gammainc(-2,-3.5).ae(-0.88024704597962022221 - 1.5707963267948966192j) assert gammainc(-1,-3.5).ae(4.4637962926688170771 - 3.1415926535897932385j) assert gammainc(0,-3.5).ae(-13.925353995152335292 - 3.1415926535897932385j) assert gammainc(1,-3.5).ae(33.115451958692313751) assert gammainc(2,-3.5).ae(-82.788629896730784377) assert gammainc(3,-3.5).ae(240.08702670051927469) # Asymptotic case; no branch cut assert gammainc(-3,350).ae(6.5424095113340358813e-163, abs_eps=0, rel_eps=8*eps) assert gammainc(-2,350).ae(2.296312222489899769e-160, abs_eps=0, rel_eps=8*eps) assert gammainc(-1,350).ae(8.059861834133858573e-158, abs_eps=0, rel_eps=8*eps) assert gammainc(0,350).ae(2.8289659656701459404e-155, abs_eps=0, rel_eps=8*eps) assert gammainc(1,350).ae(9.9295903962649792963e-153, abs_eps=0, rel_eps=8*eps) assert gammainc(2,350).ae(3.485286229089007733e-150, abs_eps=0, rel_eps=8*eps) assert gammainc(3,350).ae(1.2233453960006379793e-147, abs_eps=0, rel_eps=8*eps) # Asymptotic case; branch cut u = gammainc(-3,-350) assert u.ae(6.7889565783842895085e+141) assert u.imag.ae(-0.52359877559829887308) u = gammainc(-2,-350) assert u.ae(-2.3692668977889832121e+144) assert u.imag.ae(-1.5707963267948966192) u = gammainc(-1,-350) assert u.ae(8.2685354361441858669e+146) assert u.imag.ae(-3.1415926535897932385) u = gammainc(0,-350) assert u.ae(-2.8856710698020863568e+149) assert u.imag.ae(-3.1415926535897932385) u = gammainc(1,-350) assert u.ae(1.0070908870280797598e+152) assert u.imag == 0 u = gammainc(2,-350) assert u.ae(-3.5147471957279983618e+154) assert u.imag == 0 u = gammainc(3,-350) assert u.ae(1.2266568422179417091e+157) assert u.imag == 0 # Extreme asymptotic case assert gammainc(-3,350000000000000000000000).ae('5.0362468738874738859e-152003068666138139677990', abs_eps=0, rel_eps=8*eps) assert gammainc(-2,350000000000000000000000).ae('1.7626864058606158601e-152003068666138139677966', abs_eps=0, rel_eps=8*eps) assert gammainc(-1,350000000000000000000000).ae('6.1694024205121555102e-152003068666138139677943', abs_eps=0, rel_eps=8*eps) assert gammainc(0,350000000000000000000000).ae('2.1592908471792544286e-152003068666138139677919', abs_eps=0, rel_eps=8*eps) assert gammainc(1,350000000000000000000000).ae('7.5575179651273905e-152003068666138139677896', abs_eps=0, rel_eps=8*eps) assert gammainc(2,350000000000000000000000).ae('2.645131287794586675e-152003068666138139677872', abs_eps=0, rel_eps=8*eps) assert gammainc(3,350000000000000000000000).ae('9.2579595072810533625e-152003068666138139677849', abs_eps=0, rel_eps=8*eps) u = gammainc(-3,-350000000000000000000000) assert u.ae('8.8175642804468234866e+152003068666138139677800') assert u.imag.ae(-0.52359877559829887308) u = gammainc(-2,-350000000000000000000000) assert u.ae('-3.0861474981563882203e+152003068666138139677824') assert u.imag.ae(-1.5707963267948966192) u = gammainc(-1,-350000000000000000000000) assert u.ae('1.0801516243547358771e+152003068666138139677848') assert u.imag.ae(-3.1415926535897932385) u = gammainc(0,-350000000000000000000000) assert u.ae('-3.7805306852415755699e+152003068666138139677871') assert u.imag.ae(-3.1415926535897932385) assert gammainc(1,-350000000000000000000000).ae('1.3231857398345514495e+152003068666138139677895') assert gammainc(2,-350000000000000000000000).ae('-4.6311500894209300731e+152003068666138139677918') assert gammainc(3,-350000000000000000000000).ae('1.6209025312973255256e+152003068666138139677942') def test_incomplete_beta(): mp.dps = 15 assert betainc(-2,-3,0.5,0.75).ae(63.4305673311255413583969) assert betainc(4.5,0.5+2j,2.5,6).ae(0.2628801146130621387903065 + 0.5162565234467020592855378j) assert betainc(4,5,0,6).ae(90747.77142857142857142857) def test_erf(): mp.dps = 15 assert erf(0) == 0 assert erf(1).ae(0.84270079294971486934) assert erf(3+4j).ae(-120.186991395079444098 - 27.750337293623902498j) assert erf(-4-3j).ae(-0.99991066178539168236 + 0.00004972026054496604j) assert erf(pi).ae(0.99999112385363235839) assert erf(1j).ae(1.6504257587975428760j) assert erf(-1j).ae(-1.6504257587975428760j) assert isinstance(erf(1), mpf) assert isinstance(erf(-1), mpf) assert isinstance(erf(0), mpf) assert isinstance(erf(0j), mpc) assert erf(inf) == 1 assert erf(-inf) == -1 assert erfi(0) == 0 assert erfi(1/pi).ae(0.371682698493894314) assert erfi(inf) == inf assert erfi(-inf) == -inf assert erf(1+0j) == erf(1) assert erfc(1+0j) == erfc(1) assert erf(0.2+0.5j).ae(1 - erfc(0.2+0.5j)) assert erfc(0) == 1 assert erfc(1).ae(1-erf(1)) assert erfc(-1).ae(1-erf(-1)) assert erfc(1/pi).ae(1-erf(1/pi)) assert erfc(-10) == 2 assert erfc(-1000000) == 2 assert erfc(-inf) == 2 assert erfc(inf) == 0 assert isnan(erfc(nan)) assert (erfc(10**4)*mpf(10)**43429453).ae('3.63998738656420') mp.dps = 50 # This one does not use the asymptotic series assert (erfc(10)*10**45).ae('2.0884875837625447570007862949577886115608181193212') # This one does assert (erfc(50)*10**1088).ae('2.0709207788416560484484478751657887929322509209954') mp.dps = 15 assert str(erfc(10**50)) == '3.66744826532555e-4342944819032518276511289189166050822943970058036665661144537831658646492088707747292249493384317534' assert erfinv(0) == 0 assert erfinv(0.5).ae(0.47693627620446987338) assert erfinv(-0.5).ae(-0.47693627620446987338) assert erfinv(1) == inf assert erfinv(-1) == -inf assert erf(erfinv(0.95)).ae(0.95) assert erf(erfinv(0.999999999995)).ae(0.999999999995) assert erf(erfinv(-0.999999999995)).ae(-0.999999999995) mp.dps = 50 assert erf(erfinv('0.99999999999999999999999999999995')).ae('0.99999999999999999999999999999995') assert erf(erfinv('0.999999999999999999999999999999995')).ae('0.999999999999999999999999999999995') assert erf(erfinv('-0.999999999999999999999999999999995')).ae('-0.999999999999999999999999999999995') mp.dps = 15 # Complex asymptotic expansions v = erfc(50j) assert v.real == 1 assert v.imag.ae('-6.1481820666053078736e+1083') assert erfc(-100+5j).ae(2) assert (erfc(100+5j)*10**4335).ae(2.3973567853824133572 - 3.9339259530609420597j) assert erfc(100+100j).ae(0.00065234366376857698698 - 0.0039357263629214118437j) def test_pdf(): mp.dps = 15 assert npdf(-inf) == 0 assert npdf(inf) == 0 assert npdf(5,0,2).ae(npdf(5+4,4,2)) assert quadts(lambda x: npdf(x,-0.5,0.8), [-inf, inf]) == 1 assert ncdf(0) == 0.5 assert ncdf(3,3) == 0.5 assert ncdf(-inf) == 0 assert ncdf(inf) == 1 assert ncdf(10) == 1 # Verify that this is computed accurately assert (ncdf(-10)*10**24).ae(7.619853024160526) def test_lambertw(): mp.dps = 15 assert lambertw(0) == 0 assert lambertw(0+0j) == 0 assert lambertw(inf) == inf assert isnan(lambertw(nan)) assert lambertw(inf,1).real == inf assert lambertw(inf,1).imag.ae(2*pi) assert lambertw(-inf,1).real == inf assert lambertw(-inf,1).imag.ae(3*pi) assert lambertw(0,-1) == -inf assert lambertw(0,1) == -inf assert lambertw(0,3) == -inf assert lambertw(e).ae(1) assert lambertw(1).ae(0.567143290409783873) assert lambertw(-pi/2).ae(j*pi/2) assert lambertw(-log(2)/2).ae(-log(2)) assert lambertw(0.25).ae(0.203888354702240164) assert lambertw(-0.25).ae(-0.357402956181388903) assert lambertw(-1./10000,0).ae(-0.000100010001500266719) assert lambertw(-0.25,-1).ae(-2.15329236411034965) assert lambertw(0.25,-1).ae(-3.00899800997004620-4.07652978899159763j) assert lambertw(-0.25,-1).ae(-2.15329236411034965) assert lambertw(0.25,1).ae(-3.00899800997004620+4.07652978899159763j) assert lambertw(-0.25,1).ae(-3.48973228422959210+7.41405453009603664j) assert lambertw(-4).ae(0.67881197132094523+1.91195078174339937j) assert lambertw(-4,1).ae(-0.66743107129800988+7.76827456802783084j) assert lambertw(-4,-1).ae(0.67881197132094523-1.91195078174339937j) assert lambertw(1000).ae(5.24960285240159623) assert lambertw(1000,1).ae(4.91492239981054535+5.44652615979447070j) assert lambertw(1000,-1).ae(4.91492239981054535-5.44652615979447070j) assert lambertw(1000,5).ae(3.5010625305312892+29.9614548941181328j) assert lambertw(3+4j).ae(1.281561806123775878+0.533095222020971071j) assert lambertw(-0.4+0.4j).ae(-0.10396515323290657+0.61899273315171632j) assert lambertw(3+4j,1).ae(-0.11691092896595324+5.61888039871282334j) assert lambertw(3+4j,-1).ae(0.25856740686699742-3.85211668616143559j) assert lambertw(-0.5,-1).ae(-0.794023632344689368-0.770111750510379110j) assert lambertw(-1./10000,1).ae(-11.82350837248724344+6.80546081842002101j) assert lambertw(-1./10000,-1).ae(-11.6671145325663544) assert lambertw(-1./10000,-2).ae(-11.82350837248724344-6.80546081842002101j) assert lambertw(-1./100000,4).ae(-14.9186890769540539+26.1856750178782046j) assert lambertw(-1./100000,5).ae(-15.0931437726379218666+32.5525721210262290086j) assert lambertw((2+j)/10).ae(0.173704503762911669+0.071781336752835511j) assert lambertw((2+j)/10,1).ae(-3.21746028349820063+4.56175438896292539j) assert lambertw((2+j)/10,-1).ae(-3.03781405002993088-3.53946629633505737j) assert lambertw((2+j)/10,4).ae(-4.6878509692773249+23.8313630697683291j) assert lambertw(-(2+j)/10).ae(-0.226933772515757933-0.164986470020154580j) assert lambertw(-(2+j)/10,1).ae(-2.43569517046110001+0.76974067544756289j) assert lambertw(-(2+j)/10,-1).ae(-3.54858738151989450-6.91627921869943589j) assert lambertw(-(2+j)/10,4).ae(-4.5500846928118151+20.6672982215434637j) mp.dps = 50 assert lambertw(pi).ae('1.073658194796149172092178407024821347547745350410314531') mp.dps = 15 # Former bug in generated branch assert lambertw(-0.5+0.002j).ae(-0.78917138132659918344 + 0.76743539379990327749j) assert lambertw(-0.5-0.002j).ae(-0.78917138132659918344 - 0.76743539379990327749j) assert lambertw(-0.448+0.4j).ae(-0.11855133765652382241 + 0.66570534313583423116j) assert lambertw(-0.448-0.4j).ae(-0.11855133765652382241 - 0.66570534313583423116j) def test_meijerg(): mp.dps = 15 assert meijerg([[2,3],[1]],[[0.5,2],[3,4]], 2.5).ae(4.2181028074787439386) assert meijerg([[],[1+j]],[[1],[1]], 3+4j).ae(271.46290321152464592 - 703.03330399954820169j) assert meijerg([[0.25],[1]],[[0.5],[2]],0) == 0 assert meijerg([[0],[]],[[0,0,'1/3','2/3'], []], '2/27').ae(2.2019391389653314120) # Verify 1/z series being used assert meijerg([[-3],[-0.5]], [[-1],[-2.5]], -0.5).ae(-1.338096165935754898687431) assert meijerg([[1-(-1)],[1-(-2.5)]], [[1-(-3)],[1-(-0.5)]], -2.0).ae(-1.338096165935754898687431) assert meijerg([[-3],[-0.5]], [[-1],[-2.5]], -1).ae(-(pi+4)/(4*pi)) a = 2.5 b = 1.25 for z in [mpf(0.25), mpf(2)]: x1 = hyp1f1(a,b,z) x2 = gamma(b)/gamma(a)*meijerg([[1-a],[]],[[0],[1-b]],-z) x3 = gamma(b)/gamma(a)*meijerg([[1-0],[1-(1-b)]],[[1-(1-a)],[]],-1/z) assert x1.ae(x2) assert x1.ae(x3) def test_appellf1(): mp.dps = 15 assert appellf1(2,-2,1,1,2,3).ae(-1.75) assert appellf1(2,1,-2,1,2,3).ae(-8) assert appellf1(2,1,-2,1,0.5,0.25).ae(1.5) assert appellf1(-2,1,3,2,3,3).ae(19) assert appellf1(1,2,3,4,0.5,0.125).ae( 1.53843285792549786518) def test_coulomb(): # Note: most tests are doctests # Test for a bug: mp.dps = 15 assert coulombg(mpc(-5,0),2,3).ae(20.087729487721430394) def test_hyper_param_accuracy(): mp.dps = 15 As = [n+1e-10 for n in range(-5,-1)] Bs = [n+1e-10 for n in range(-12,-5)] assert hyper(As,Bs,10).ae(-381757055858.652671927) assert legenp(0.5, 100, 0.25).ae(-2.4124576567211311755e+144) assert (hyp1f1(1000,1,-100)*10**24).ae(5.2589445437370169113) assert (hyp2f1(10, -900, 10.5, 0.99)*10**24).ae(1.9185370579660768203) assert (hyp2f1(1000,1.5,-3.5,-1.5)*10**385).ae(-2.7367529051334000764) assert hyp2f1(-5, 10, 3, 0.5, zeroprec=500) == 0 assert (hyp1f1(-10000, 1000, 100)*10**424).ae(-3.1046080515824859974) assert (hyp2f1(1000,1.5,-3.5,-0.75,maxterms=100000)*10**231).ae(-4.0534790813913998643) assert legenp(2, 3, 0.25) == 0 try: hypercomb(lambda a: [([],[],[],[],[a],[-a],0.5)], [3]) assert 0 except ValueError: pass assert hypercomb(lambda a: [([],[],[],[],[a],[-a],0.5)], [3], infprec=200) == inf assert meijerg([[],[]],[[0,0,0,0],[]],0.1).ae(1.5680822343832351418) assert (besselk(400,400)*10**94).ae(1.4387057277018550583) mp.dps = 5 (hyp1f1(-5000.5, 1500, 100)*10**185).ae(8.5185229673381935522) (hyp1f1(-5000, 1500, 100)*10**185).ae(9.1501213424563944311) mp.dps = 15 (hyp1f1(-5000.5, 1500, 100)*10**185).ae(8.5185229673381935522) (hyp1f1(-5000, 1500, 100)*10**185).ae(9.1501213424563944311) assert hyp0f1(fadd(-20,'1e-100',exact=True), 0.25).ae(1.85014429040102783e+49) assert hyp0f1((-20*10**100+1, 10**100), 0.25).ae(1.85014429040102783e+49) def test_hypercomb_zero_pow(): # check that 0^0 = 1 assert hypercomb(lambda a: (([0],[a],[],[],[],[],0),), [0]) == 1 assert meijerg([[-1.5],[]],[[0],[-0.75]],0).ae(1.4464090846320771425) def test_spherharm(): mp.dps = 15 t = 0.5; r = 0.25 assert spherharm(0,0,t,r).ae(0.28209479177387814347) assert spherharm(1,-1,t,r).ae(0.16048941205971996369 - 0.04097967481096344271j) assert spherharm(1,0,t,r).ae(0.42878904414183579379) assert spherharm(1,1,t,r).ae(-0.16048941205971996369 - 0.04097967481096344271j) assert spherharm(2,-2,t,r).ae(0.077915886919031181734 - 0.042565643022253962264j) assert spherharm(2,-1,t,r).ae(0.31493387233497459884 - 0.08041582001959297689j) assert spherharm(2,0,t,r).ae(0.41330596756220761898) assert spherharm(2,1,t,r).ae(-0.31493387233497459884 - 0.08041582001959297689j) assert spherharm(2,2,t,r).ae(0.077915886919031181734 + 0.042565643022253962264j) assert spherharm(3,-3,t,r).ae(0.033640236589690881646 - 0.031339125318637082197j) assert spherharm(3,-2,t,r).ae(0.18091018743101461963 - 0.09883168583167010241j) assert spherharm(3,-1,t,r).ae(0.42796713930907320351 - 0.10927795157064962317j) assert spherharm(3,0,t,r).ae(0.27861659336351639787) assert spherharm(3,1,t,r).ae(-0.42796713930907320351 - 0.10927795157064962317j) assert spherharm(3,2,t,r).ae(0.18091018743101461963 + 0.09883168583167010241j) assert spherharm(3,3,t,r).ae(-0.033640236589690881646 - 0.031339125318637082197j) assert spherharm(0,-1,t,r) == 0 assert spherharm(0,-2,t,r) == 0 assert spherharm(0,1,t,r) == 0 assert spherharm(0,2,t,r) == 0 assert spherharm(1,2,t,r) == 0 assert spherharm(1,3,t,r) == 0 assert spherharm(1,-2,t,r) == 0 assert spherharm(1,-3,t,r) == 0 assert spherharm(2,3,t,r) == 0 assert spherharm(2,4,t,r) == 0 assert spherharm(2,-3,t,r) == 0 assert spherharm(2,-4,t,r) == 0 assert spherharm(3,4.5,0.5,0.25).ae(-22.831053442240790148 + 10.910526059510013757j) assert spherharm(2+3j, 1-j, 1+j, 3+4j).ae(-2.6582752037810116935 - 1.0909214905642160211j) assert spherharm(-6,2.5,t,r).ae(0.39383644983851448178 + 0.28414687085358299021j) assert spherharm(-3.5, 3, 0.5, 0.25).ae(0.014516852987544698924 - 0.015582769591477628495j) assert spherharm(-3, 3, 0.5, 0.25) == 0 assert spherharm(-6, 3, 0.5, 0.25).ae(-0.16544349818782275459 - 0.15412657723253924562j) assert spherharm(-6, 1.5, 0.5, 0.25).ae(0.032208193499767402477 + 0.012678000924063664921j) assert spherharm(3,0,0,1).ae(0.74635266518023078283) assert spherharm(3,-2,0,1) == 0 assert spherharm(3,-2,1,1).ae(-0.16270707338254028971 - 0.35552144137546777097j)
52.483111
256
0.67658
2090a40e7df0d5462e034ccfb57770676a75d8a2
787
py
Python
code/tests/test_tile.py
Nocty-chan/cs224n-squad
0c0b342621e038aba8e20ff411da13dfa173351d
[ "Apache-2.0" ]
2
2018-04-15T06:13:41.000Z
2019-07-25T20:22:34.000Z
code/tests/test_tile.py
Nocty-chan/cs224n-squad
0c0b342621e038aba8e20ff411da13dfa173351d
[ "Apache-2.0" ]
1
2020-11-10T04:51:36.000Z
2020-11-10T04:51:36.000Z
code/tests/test_tile.py
Nocty-chan/cs224n-squad
0c0b342621e038aba8e20ff411da13dfa173351d
[ "Apache-2.0" ]
3
2018-08-08T08:48:04.000Z
2020-02-10T09:52:41.000Z
import numpy as np H = 2 N = 2 M = 3 c = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) # N x 2H q = np.array([[1, 2, 3, 0], [5, 6, 7, 4], [8, 9 , 10, 11]]) # M x 2H q_tile = np.tile(q, (N, 1, 1)) # N x M x 2H q_tile = np.transpose(q_tile, (0, 2, 1)) # N x 2H x M c = np.reshape(c, (N, 2*H, 1)) result = (c * q_tile) # N x 2H x M result = np.transpose(result, (0, 2, 1)) result = np.reshape(result, (-1, 2 * H )) print (result) # C_1 * Q ; C_2 * Q w_1 = np.array([1, 2, 3, 4]) w_2 = np.array([5, 6, 7, 8]) w_3 = np.array([13, 12, 11, 10]) # term1 term1 = np.dot(c.reshape(N, 2*H), w_1) term2 = np.dot(q, w_2) term3 = np.dot(result, w_3).reshape(N, M) print (term1) print (term2) print (term3) result = term1.reshape(N, 1) + term3 result = result + term2.reshape(1, M) print (result)
20.179487
68
0.550191
fc27000ef7ef911da644b215ede6e94c738924fc
50,583
py
Python
tests/test_eda/test_slcs.py
logstar/scedar
f8cd7dab9f885a0c58d127a9ee3b143d7e4bae06
[ "MIT" ]
17
2018-07-24T08:07:03.000Z
2020-01-14T11:06:31.000Z
tests/test_eda/test_slcs.py
benstear/scedar
056fc2fd1bdb2473700e4c24ec4dab3996f2b5fc
[ "MIT" ]
2
2021-05-30T15:40:56.000Z
2021-11-08T08:38:42.000Z
tests/test_eda/test_slcs.py
benstear/scedar
056fc2fd1bdb2473700e4c24ec4dab3996f2b5fc
[ "MIT" ]
8
2018-08-23T01:06:59.000Z
2019-11-07T22:19:47.000Z
import scipy.sparse as spsp import numpy as np import seaborn as sns import scedar.eda as eda import matplotlib as mpl mpl.use("agg", warn=False) # noqa import matplotlib.pyplot as plt import pytest class TestSingleLabelClassifiedSamples(object): """docstring for TestSingleLabelClassifiedSamples""" np.random.seed(123) sfm3x3_arr = np.arange(9, dtype='float64').reshape(3, 3) sfm_2x0 = np.array([[], []]) sfm5x10_arr = np.random.ranf(50).reshape(5, 10) sfm5x10_lst = list(map(list, np.random.ranf(50).reshape(5, 10))) def test_init_empty_labs(self): # wrong lab length. Although 2x0, there are 2 empty samples with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples(self.sfm_2x0, []) sfm1 = eda.SingleLabelClassifiedSamples(np.array([[], []]), [1, 0]) assert sfm1._x.shape == (2, 0) assert sfm1._sids.shape == (2,) assert sfm1.labs == [1, 0] assert sfm1._fids.shape == (0,) # wrong x dim with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples(np.empty(0), []) # ok sfm2 = eda.SingleLabelClassifiedSamples(np.empty((0, 0)), []) assert sfm2._x.shape == (0, 0) assert sfm2._sids.shape == (0,) assert sfm2.labs == [] assert sfm2._fids.shape == (0,) def test_init_wrong_lab_len(self): with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples( self.sfm3x3_arr, [0, 1], None, None) def test_init_non1d_labs(self): with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples(self.sfm3x3_arr, [[0], [1], [2]], [0, 1, 2], [0, 1, 2]) with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples(self.sfm3x3_arr, [[0, 1], [1, 2], [2, 3]], [0, 1, 2], [0, 1, 2]) def test_init_bad_lab_type(self): with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples( self.sfm3x3_arr, [False, True, 2], [0, 1, 1], None) with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples( self.sfm3x3_arr, [[0], [0, 1], 2], [0, 1, 1], None) with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples( self.sfm3x3_arr, np.array([0, 1, 2]), [0, 1, 1], None) with pytest.raises(Exception) as excinfo: eda.SingleLabelClassifiedSamples( self.sfm3x3_arr, [(0), (0, 1), 2], [0, 1, 1], None) def test_valid_init(self): eda.SingleLabelClassifiedSamples( self.sfm5x10_arr, [0, 1, 1, 2, 0], list(range(5)), list(range(10))) eda.SingleLabelClassifiedSamples( self.sfm5x10_arr, [0, 1, 1, 2, 0], None, list(range(10))) eda.SingleLabelClassifiedSamples( self.sfm5x10_arr, ['a', 'a', 'b', 'd', 'c'], list(range(5)), None) eda.SingleLabelClassifiedSamples( np.arange(100).reshape(-1, 10), list(range(10))) eda.SingleLabelClassifiedSamples( np.arange(100).reshape(10, -1), list('abcdefghij')) def test_sort_by_labels(self): x = np.array([[0, 0], [1, 1], [100, 100], [150, 150], [125, 125], [6, 6], [10, 10], [8, 8]]) slcs = eda.SingleLabelClassifiedSamples( x, [0, 0, 1, 1, 1, 2, 2, 2], metric='euclidean') slcs_ls = slcs.sort_by_labels() assert slcs_ls.labs == [0, 0, 2, 2, 2, 1, 1, 1] assert slcs_ls.fids == list(range(2)) assert slcs_ls.sids == [0, 1, 5, 7, 6, 2, 4, 3] def test_sort_by_labels_empty_mat(self): sfm = eda.SingleLabelClassifiedSamples(np.array([[], []]), [1, 0]) sfm1 = sfm.sort_by_labels() assert sfm1._x.shape == (2, 0) assert sfm1._sids.shape == (2,) assert sfm1.labs == [1, 0] assert sfm1._fids.shape == (0,) sfm2 = eda.SingleLabelClassifiedSamples(np.empty((0, 0)), []).sort_by_labels() assert sfm2._x.shape == (0, 0) assert sfm2._sids.shape == (0,) assert sfm2.labs == [] assert sfm2._fids.shape == (0,) def test_lab_sorted_sids(self): qsids = [0, 1, 5, 3, 2, 4] qlabs = [0, 0, 2, 1, 1, 1] rsids = [3, 4, 2, 5, 1, 0] slab_csamples = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), qlabs, qsids) rs_qsids, rs_qlabs = slab_csamples.lab_sorted_sids(rsids) np.testing.assert_equal(rs_qsids, np.array([3, 4, 2, 5, 1, 0])) np.testing.assert_equal(rs_qlabs, np.array([1, 1, 1, 2, 0, 0])) rs_qsids, rs_qlabs = slab_csamples.lab_sorted_sids() np.testing.assert_equal(rs_qsids, np.array([0, 1, 3, 2, 4, 5])) np.testing.assert_equal(rs_qlabs, np.array([0, 0, 1, 1, 1, 2])) def test_filter_min_class_n(self): sids = [0, 1, 2, 3, 4, 5] labs = [0, 0, 0, 1, 2, 2] slab_csamples = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs, sids, None) min_cl_n = 2 mcnf_slab_csamples = slab_csamples.filter_min_class_n(min_cl_n) np.testing.assert_equal(mcnf_slab_csamples.sids, np.array([0, 1, 2, 4, 5])) np.testing.assert_equal(mcnf_slab_csamples.labs, np.array([0, 0, 0, 2, 2])) np.testing.assert_equal(mcnf_slab_csamples._x.shape, (5, 10)) np.testing.assert_equal(mcnf_slab_csamples.fids, slab_csamples.fids) np.testing.assert_equal(mcnf_slab_csamples._x, slab_csamples._x[np.array([0, 1, 2, 4, 5])]) s_inds = np.array([0, 1, 2, 4, 5]) np.testing.assert_equal(mcnf_slab_csamples._d, slab_csamples._d[s_inds][:, s_inds]) def test_ind_x(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 0, 1, 2, 2] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) # select sf ss_slcs = slcs.ind_x([0, 5], list(range(9))) assert ss_slcs._x.shape == (2, 9) assert ss_slcs.sids == ['a', 'f'] assert ss_slcs.labs == [0, 2] assert ss_slcs.fids == list(range(10, 19)) np.testing.assert_equal( ss_slcs.d, slcs._d[np.ix_((0, 5), (0, 5))]) # select with Default ss_slcs = slcs.ind_x() assert ss_slcs._x.shape == (6, 10) assert ss_slcs.sids == list('abcdef') assert ss_slcs.labs == labs assert ss_slcs.fids == list(range(10, 20)) np.testing.assert_equal(ss_slcs.d, slcs._d) # select with None ss_slcs = slcs.ind_x(None, None) assert ss_slcs._x.shape == (6, 10) assert ss_slcs.sids == list('abcdef') assert ss_slcs.labs == labs assert ss_slcs.fids == list(range(10, 20)) np.testing.assert_equal(ss_slcs.d, slcs._d) # select non-existent inds with pytest.raises(IndexError) as excinfo: slcs.ind_x([6]) with pytest.raises(IndexError) as excinfo: slcs.ind_x(None, ['a']) def test_ind_x_empty(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 0, 1, 2, 2] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) empty_s = slcs.ind_x([]) assert empty_s._x.shape == (0, 10) assert empty_s._d.shape == (0, 0) assert empty_s._sids.shape == (0,) assert empty_s._fids.shape == (10,) assert empty_s._labs.shape == (0,) empty_f = slcs.ind_x(None, []) assert empty_f._x.shape == (6, 0) assert empty_f._d.shape == (6, 6) assert empty_f._sids.shape == (6,) assert empty_f._fids.shape == (0,) assert empty_f._labs.shape == (6,) empty_sf = slcs.ind_x([], []) assert empty_sf._x.shape == (0, 0) assert empty_sf._d.shape == (0, 0) assert empty_sf._sids.shape == (0,) assert empty_sf._fids.shape == (0,) assert empty_sf._labs.shape == (0,) def test_relabel(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 0, 1, 2, 2] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) new_labs = ['a', 'b', 'c', 'd', 'e', 'f'] slcs_rl = slcs.relabel(new_labs) assert slcs_rl.labs == new_labs assert slcs_rl._x is not slcs._x assert slcs_rl._d is not slcs._d assert slcs_rl._sids is not slcs._sids assert slcs_rl._fids is not slcs._fids np.testing.assert_equal(slcs_rl._x, slcs._x) np.testing.assert_equal(slcs_rl._d, slcs._d) np.testing.assert_equal(slcs_rl._sids, slcs._sids) np.testing.assert_equal(slcs_rl._fids, slcs._fids) def test_merge_labels(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 1, 1, 2, 3] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) slcs.merge_labels([1, 2, 3], 5) new_labs = [0, 0, 5, 5, 5, 5] assert slcs.labs == new_labs assert slcs.sids == sids assert slcs.fids == fids assert slcs.labs_to_sids([5]) == (('c', 'd', 'e', 'f'),) assert slcs.sids_to_labs(sids).tolist() == new_labs assert slcs._uniq_labs.tolist() == [0, 5] assert slcs._uniq_lab_cnts.tolist() == [2, 4] def test_merge_labels_wrong_args(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 1, 1, 2, 3] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) # wrong new lab type with pytest.raises(ValueError) as excinfo: slcs.merge_labels([1, 2, 3], [5]) # wrong m lab type with pytest.raises(ValueError) as excinfo: slcs.merge_labels([[], [1]], 1) # duplicated m labs with pytest.raises(ValueError) as excinfo: slcs.merge_labels([1, 1, 2], 1) # m lab not in original lab with pytest.raises(ValueError) as excinfo: slcs.merge_labels([0, 1, 5], 1) def test_id_x(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 0, 1, 2, 2] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) # select sf ss_slcs = slcs.id_x(['a', 'f'], list(range(10, 15))) assert ss_slcs._x.shape == (2, 5) assert ss_slcs.sids == ['a', 'f'] assert ss_slcs.labs == [0, 2] assert ss_slcs.fids == list(range(10, 15)) np.testing.assert_equal( ss_slcs.d, slcs._d[np.ix_((0, 5), (0, 5))]) # select with Default ss_slcs = slcs.id_x() assert ss_slcs._x.shape == (6, 10) assert ss_slcs.sids == list('abcdef') assert ss_slcs.labs == labs assert ss_slcs.fids == list(range(10, 20)) np.testing.assert_equal(ss_slcs.d, slcs._d) # select with None ss_slcs = slcs.id_x(None, None) assert ss_slcs._x.shape == (6, 10) assert ss_slcs.sids == list('abcdef') assert ss_slcs.labs == labs assert ss_slcs.fids == list(range(10, 20)) np.testing.assert_equal(ss_slcs.d, slcs._d) # select non-existent inds # id lookup raises ValueError with pytest.raises(ValueError) as excinfo: slcs.id_x([6]) with pytest.raises(ValueError) as excinfo: slcs.id_x(None, ['a']) def test_id_x_empty(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 0, 1, 2, 2] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) empty_s = slcs.id_x([]) assert empty_s._x.shape == (0, 10) assert empty_s._d.shape == (0, 0) assert empty_s._sids.shape == (0,) assert empty_s._fids.shape == (10,) assert empty_s._labs.shape == (0,) empty_f = slcs.id_x(None, []) assert empty_f._x.shape == (6, 0) assert empty_f._d.shape == (6, 6) assert empty_f._sids.shape == (6,) assert empty_f._fids.shape == (0,) assert empty_f._labs.shape == (6,) empty_sf = slcs.id_x([], []) assert empty_sf._x.shape == (0, 0) assert empty_sf._d.shape == (0, 0) assert empty_sf._sids.shape == (0,) assert empty_sf._fids.shape == (0,) assert empty_sf._labs.shape == (0,) def test_lab_x(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 0, 1, 2, 2] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) # select sf ss_slcs = slcs.lab_x([0, 2]) assert ss_slcs._x.shape == (5, 10) assert ss_slcs.sids == ['a', 'b', 'c', 'e', 'f'] assert ss_slcs.labs == [0, 0, 0, 2, 2] assert ss_slcs.fids == list(range(10, 20)) ss_s_inds = [0, 1, 2, 4, 5] np.testing.assert_equal(ss_slcs.d, slcs._d[np.ix_(ss_s_inds, ss_s_inds)]) # select sf ss_slcs = slcs.lab_x(0) assert ss_slcs._x.shape == (3, 10) assert ss_slcs.sids == ['a', 'b', 'c'] assert ss_slcs.labs == [0, 0, 0] assert ss_slcs.fids == list(range(10, 20)) ss_s_inds = [0, 1, 2] np.testing.assert_equal(ss_slcs.d, slcs._d[np.ix_(ss_s_inds, ss_s_inds)]) # select with None slcs_n = slcs.lab_x(None) np.testing.assert_equal(slcs_n._x, slcs._x) np.testing.assert_equal(slcs_n._d, slcs._d) np.testing.assert_equal(slcs_n._sids, slcs._sids) np.testing.assert_equal(slcs_n._fids, slcs._fids) np.testing.assert_equal(slcs_n._labs, slcs._labs) # select non-existent labs with pytest.raises(ValueError) as excinfo: slcs.lab_x([-1]) with pytest.raises(ValueError) as excinfo: slcs.lab_x([0, 3]) with pytest.raises(ValueError) as excinfo: slcs.lab_x([0, -3]) def test_lab_x_empty(self): sids = list('abcdef') fids = list(range(10, 20)) labs = [0, 0, 0, 1, 2, 2] slcs = eda.SingleLabelClassifiedSamples( np.random.ranf(60).reshape(6, -1), labs=labs, sids=sids, fids=fids) # select sf empty_s = slcs.lab_x([]) assert empty_s._x.shape == (0, 10) assert empty_s._d.shape == (0, 0) assert empty_s._sids.shape == (0,) assert empty_s._labs.shape == (0,) assert empty_s._fids.shape == (10,) assert empty_s._labs.shape == (0,) def test_feature_importance_across_labs(self): # Generate simple dataset with gaussian noise x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(500, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(200, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(300, 8)) x = np.vstack((c1x, c2x, c3x)) labs = [0] * 500 + [1] * 200 + [2] * 300 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs) # binary logistic regression f_importance_list, bst = slcs.feature_importance_across_labs( [0, 1], silent=0) assert f_importance_list[0][0] == 3 # multi class softmax f_importance_list2, bst2 = slcs.feature_importance_across_labs( [0, 1, 2], random_state=123, silent=1) assert f_importance_list2[0][0] == 3 assert f_importance_list2 != f_importance_list # multiclass with provided parames xgb_params = { 'eta': 0.3, 'max_depth': 6, 'silent': 0, 'nthread': 1, 'alpha': 1, 'lambda': 0, 'seed': 0, 'objective': 'multi:softmax', 'eval_metric': 'merror', 'num_class': 3 } f_importance_list3, bst3 = slcs.feature_importance_across_labs( [0, 1, 2], random_state=123, xgb_params=xgb_params) assert f_importance_list3 == f_importance_list2 # shuffle features f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True) assert f_importance_list2[0][0] == 3 # bootstrapping f_importance_list5, bst5 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) f_importance_list6, bst6 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) assert f_importance_list5 == f_importance_list6 assert f_importance_list5[0][0] == 3 def test_feature_importance_across_labs_bootstrap(self): # Generate simple dataset with gaussian noise x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(50, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(20, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(30, 8)) x = np.vstack((c1x, c2x, c3x)) labs = [0] * 50 + [1] * 20 + [2] * 30 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs) # bootstrapping f_importance_list, bst = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) f_importance_list2, bst2 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) assert f_importance_list == f_importance_list2 assert f_importance_list2[0][0] == 3 # no feature shuffling f_importance_list3, bst3 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=False, num_bootstrap_round=10) # provide resampling size f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=False, bootstrap_size=30, num_bootstrap_round=10) f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, bootstrap_size=30, num_bootstrap_round=10) def test_feature_importance_across_labs_bootstrap_npd(self): # Generate simple dataset with gaussian noise x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(50, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(20, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(30, 8)) x = np.vstack((c1x, c2x, c3x)) labs = [0] * 50 + [1] * 20 + [2] * 30 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs, use_pdist=False) # bootstrapping f_importance_list, bst = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) f_importance_list2, bst2 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) assert f_importance_list == f_importance_list2 assert f_importance_list2[0][0] == 3 # no feature shuffling f_importance_list3, bst3 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=False, num_bootstrap_round=10) # provide resampling size f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=False, bootstrap_size=30, num_bootstrap_round=10) f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, bootstrap_size=30, num_bootstrap_round=10) def test_feature_importance_across_labs_bootstrap_sparse(self): # Generate simple dataset with gaussian noise x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(50, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(20, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(30, 8)) x = spsp.csr_matrix(np.vstack((c1x, c2x, c3x))) labs = [0] * 50 + [1] * 20 + [2] * 30 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs, metric='cosine') # bootstrapping f_importance_list, bst = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) f_importance_list2, bst2 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) assert f_importance_list == f_importance_list2 assert f_importance_list2[0][0] == 3 # no feature shuffling f_importance_list3, bst3 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=False, num_bootstrap_round=10) # provide resampling size f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=False, bootstrap_size=30, num_bootstrap_round=10) f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, bootstrap_size=30, num_bootstrap_round=10) def test_feature_importance_across_labs_bootstrap_sparse_npd(self): # Generate simple dataset with gaussian noise x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(50, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(20, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(30, 8)) x = spsp.csr_matrix(np.vstack((c1x, c2x, c3x))) labs = [0] * 50 + [1] * 20 + [2] * 30 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs, metric='cosine', use_pdist=False) # bootstrapping f_importance_list, bst = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) f_importance_list2, bst2 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) assert f_importance_list == f_importance_list2 assert f_importance_list2[0][0] == 3 # no feature shuffling f_importance_list3, bst3 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=False, num_bootstrap_round=10) # provide resampling size f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=False, bootstrap_size=30, num_bootstrap_round=10) f_importance_list4, bst4 = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, bootstrap_size=30, num_bootstrap_round=10) # resampling procedure will be repeated until all unique labels exist # in the resample. def test_feature_importance_across_labs_bootstrap_resample(self): x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(500, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(1, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(30, 8)) x = np.vstack((c1x, c2x, c3x)) labs = [0] * 500 + [1] * 1 + [2] * 30 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs) # bootstrapping f_importance_list, bst = slcs.feature_importance_across_labs( [0, 1], random_state=123, shuffle_features=True, num_bootstrap_round=10) def test_feature_importance_across_labs_wrong_args(self): # Generate simple dataset with gaussian noise x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(50, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(20, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(30, 8)) x = np.vstack((c1x, c2x, c3x)) labs = [0] * 50 + [1] * 20 + [2] * 30 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs) with pytest.raises(ValueError) as excinfo: slcs.feature_importance_across_labs([0, 3]) with pytest.raises(ValueError) as excinfo: slcs.feature_importance_across_labs([0, 3], num_boost_round=0) with pytest.raises(ValueError) as excinfo: slcs.feature_importance_across_labs([0, 3], num_boost_round=0.5) with pytest.raises(ValueError) as excinfo: slcs.feature_importance_across_labs([0, 3], num_boost_round=-1) with pytest.raises(ValueError) as excinfo: slcs.feature_importance_across_labs([-1]) with pytest.raises(ValueError) as excinfo: slcs.feature_importance_across_labs([3, 5]) # meaningless to run this on empty matrix with pytest.raises(ValueError) as excinfo: slcs.feature_importance_across_labs([]) def test_feature_importance_distintuishing_labs(self): # Generate simple dataset with gaussian noise x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(500, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(200, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(300, 8)) x = np.vstack((c1x, c2x, c3x)) labs = [0] * 500 + [1] * 200 + [2] * 300 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs) # binary logistic regression f_importance_list, bst = slcs.feature_importance_distintuishing_labs( [0, 1], silent=0) assert f_importance_list[0][0] == 2 def test_feature_importance_each_lab(self): # Generate simple dataset with gaussian noise x_centers = np.array([[0, 0, 1, 1, 5, 50, 10, 37], [0, 0, 1.5, 5, 5, 50, 10, 35], [0, 0, 10, 10, 5, 50, 10, 33]]) np.random.seed(1920) c1x = np.array(x_centers[0]) + np.random.normal(size=(500, 8)) c2x = np.array(x_centers[1]) + np.random.normal(size=(200, 8)) c3x = np.array(x_centers[2]) + np.random.normal(size=(300, 8)) x = np.vstack((c1x, c2x, c3x)) labs = [0] * 500 + [1] * 200 + [2] * 300 slcs = eda.SingleLabelClassifiedSamples(x, labs=labs) # binary logistic regression ulab_fi_lut = slcs.feature_importance_each_lab() assert ulab_fi_lut[0][-1][0] == 3 print(ulab_fi_lut) assert ulab_fi_lut[1][-1][0] == 2 def test_cross_labs(self): rsids = [0, 1, 2, 3, 4] rlabs = [0, 0, 0, 1, 1] rscl_samples = eda.SingleLabelClassifiedSamples( self.sfm5x10_lst, rlabs, rsids) qsids = [0, 1, 2, 3, 4] qlabs = [1, 1, 0, 2, 3] qscl_samples = eda.SingleLabelClassifiedSamples( self.sfm5x10_lst, qlabs, qsids) cross_lab_lut = rscl_samples.cross_labs(qscl_samples) test_lut = { 0: (3, ((0, 1), (1, 2))), 1: (2, ((2, 3), (1, 1))) } assert cross_lab_lut == test_lut qsids2 = [0, 1, 2] qlabs2 = [1, 1, 0] qscl_samples2 = eda.SingleLabelClassifiedSamples( self.sfm3x3_arr, qlabs2, qsids2) cross_lab_lut2 = rscl_samples.cross_labs(qscl_samples2) test_lut2 = { 0: (3, ((0, 1), (1, 2))) } assert cross_lab_lut2 == test_lut2 with pytest.raises(Exception) as excinfo: rscl_samples.cross_labs([1, 2, 3]) qsfm = eda.SampleFeatureMatrix(self.sfm5x10_lst) with pytest.raises(Exception) as excinfo: rscl_samples.cross_labs(qsfm) # Contains mismatch to rsids mm_qsids = [0, 1, 6] mm_qlabs = [1, 1, 0] mm_qscl_samples = eda.SingleLabelClassifiedSamples(self.sfm3x3_arr, mm_qlabs, mm_qsids) with pytest.raises(Exception) as excinfo: rscl_samples.cross_labs(mm_qscl_samples) @pytest.mark.mpl_image_compare def test_tsne_feature_gradient_plot(self): sids = list(range(8)) fids = [str(i) for i in range(10)] labs = list(range(8)) np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] slab_csamples = eda.SingleLabelClassifiedSamples( x_sorted, labs, sids=sids, fids=fids) return slab_csamples.tsne_feature_gradient_plot( '5', figsize=(10, 10), s=50) @pytest.mark.mpl_image_compare def test_tsne_feature_gradient_plot_abclabs(self): sids = list(range(8)) fids = [str(i) for i in range(10)] labs = list(range(8)) np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] g = x_sorted[:, 5] slab_csamples = eda.SingleLabelClassifiedSamples( x_sorted, labs, sids=sids, fids=fids) return slab_csamples.tsne_feature_gradient_plot( '5', labels=list('abcdefgh'), figsize=(10, 10), s=50) # select specific labels to plot gradient @pytest.mark.mpl_image_compare def test_tsne_feature_gradient_plot_sslabs(self): sids = list(range(8)) fids = [str(i) for i in range(10)] labs = list(range(8)) np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] g = x_sorted[:, 5] slab_csamples = eda.SingleLabelClassifiedSamples( x_sorted, labs, sids=sids, fids=fids) return slab_csamples.tsne_feature_gradient_plot( '5', selected_labels=[5, 6, 7], figsize=(10, 10), s=50) @pytest.mark.mpl_image_compare def test_tsne_plot(self): sids = list(range(8)) fids = [str(i) for i in range(10)] labs = list(range(8)) np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] g = x_sorted[:, 5] slab_csamples = eda.SingleLabelClassifiedSamples( x_sorted, labs, sids=sids, fids=fids) return slab_csamples.tsne_plot(g, figsize=(10, 10), s=50) @pytest.mark.mpl_image_compare def test_tsne_plot_abclabs(self): sids = list(range(8)) fids = [str(i) for i in range(10)] labs = list(range(8)) np.random.seed(123) np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] g = x_sorted[:, 5] slab_csamples = eda.SingleLabelClassifiedSamples( x_sorted, labs, sids=sids, fids=fids) return slab_csamples.tsne_plot(g, labels=list('abcdefgh'), figsize=(10, 10), s=50) def test_tsne_feature_gradient_plot_wrong_args(self): sids = list(range(8)) fids = [str(i) for i in range(10)] labs = list(range(8)) np.random.seed(123) x = np.random.ranf(80).reshape(8, -1) x_sorted = x[np.argsort(x[:, 5])] slab_csamples = eda.SingleLabelClassifiedSamples( x, labs, sids=sids, fids=fids) with pytest.raises(ValueError): slab_csamples.tsne_feature_gradient_plot([0, 1]) with pytest.raises(ValueError): slab_csamples.tsne_feature_gradient_plot(11) with pytest.raises(ValueError): slab_csamples.tsne_feature_gradient_plot(11) with pytest.raises(ValueError): slab_csamples.tsne_feature_gradient_plot(-1) with pytest.raises(ValueError): slab_csamples.tsne_feature_gradient_plot(5) with pytest.raises(ValueError): slab_csamples.tsne_feature_gradient_plot('123') @pytest.mark.mpl_image_compare def test_swarm_a(self): # array([[0, 1], # [2, 3], # [4, 5], # [6, 7], # [8, 9]]) tslcs = eda.SingleLabelClassifiedSamples(np.arange(10).reshape(5, 2), [0, 0, 1, 2, 3], ['1', '2', '3', '4', '5'], ['a', 'z']) return tslcs.feature_swarm_plot('a', transform=lambda x: x + 200, selected_labels=[0, 2, 3], title='test', xlab='x', ylab='y') @pytest.mark.mpl_image_compare def test_dmat_heatmap(self): x = [[0, 0], [1, 1], [2, 2], [10, 10], [12, 12], [11, 11], [100, 100]] tslcs = eda.SingleLabelClassifiedSamples(x, [0, 0, 0, 1, 1, 1, 2], metric='euclidean') return tslcs.dmat_heatmap(selected_labels=[0, 1], transform=lambda x: x + 100) @pytest.mark.mpl_image_compare def test_xmat_heatmap(self): x = [[0, 0], [1, 1], [2, 2], [10, 10], [12, 12], [11, 11], [100, 100]] tslcs = eda.SingleLabelClassifiedSamples(x, [0, 0, 0, 1, 1, 1, 2], metric='euclidean') return tslcs.xmat_heatmap(selected_labels=[0, 1], selected_fids=[1, 0], col_labels=['spec1', 'spec2'], transform=lambda x: x + 200) @pytest.mark.mpl_image_compare def test_swarm_minimal_z(self): tslcs = eda.SingleLabelClassifiedSamples(np.arange(10).reshape(5, 2), [0, 0, 1, 2, 3], ['1', '2', '3', '4', '5'], ['a', 'z']) return tslcs.feature_swarm_plot('z') def test_swarm_wrong_args(self): tslcs = eda.SingleLabelClassifiedSamples(np.arange(10).reshape(5, 2), [0, 0, 1, 2, 3], ['1', '2', '3', '4', '5'], ['a', 'z']) # non-callable transform with pytest.raises(ValueError) as excinfo: tslcs.feature_swarm_plot('z', transform=1) # wrong label size with pytest.raises(ValueError) as excinfo: tslcs.feature_swarm_plot('z', labels=[0, 2, 1]) def test_getters(self): tslcs = eda.SingleLabelClassifiedSamples(np.arange(10).reshape(5, 2), [0, 0, 1, 2, 3], ['a', 'b', 'c', '1', '2'], ['a', 'z']) np.testing.assert_equal(tslcs.x, np.array( np.arange(10).reshape(5, 2), dtype='float64')) np.testing.assert_equal( tslcs.sids, np.array(['a', 'b', 'c', '1', '2'])) np.testing.assert_equal(tslcs.fids, np.array(['a', 'z'])) np.testing.assert_equal(tslcs.labs, np.array([0, 0, 1, 2, 3])) assert tslcs.x is not tslcs._x assert tslcs.sids is not tslcs._sids assert tslcs.fids is not tslcs._fids assert tslcs.labs is not tslcs._labs def test_lab_to_sids(self): tslcs = eda.SingleLabelClassifiedSamples(np.arange(10).reshape(5, 2), [0, 0, 1, 2, 3], ['a', 'b', 'c', '1', '2'], ['a', 'z']) qsid_arr = tslcs.labs_to_sids((0, 1)) np.testing.assert_equal(qsid_arr, (('a', 'b'), ('c',))) def test_sids_to_labs(self): tslcs = eda.SingleLabelClassifiedSamples(np.arange(10).reshape(5, 2), [0, 0, 1, 2, 3], ['a', 'b', 'c', '1', '2'], ['a', 'z']) qlab_arr = tslcs.sids_to_labs(('a', 'b', '2')) np.testing.assert_equal(qlab_arr, np.array([0, 0, 3])) qlab_arr = tslcs.sids_to_labs(('1', 'a', 'b', '2')) np.testing.assert_equal(qlab_arr, np.array([2, 0, 0, 3])) class TestMDLSingleLabelClassifiedSamples(object): """docstring for TestMDLSingleLabelClassifiedSamples""" np.random.seed(5009) x50x5 = np.vstack((np.zeros((30, 5)), np.random.ranf((20, 5)))) labs50 = [0]*10 + [1]*35 + [2]*5 # for some how parallel computation will exceed certain limit when running # in pytest. downgrading matplotlib to 3.1.0 prevents such problem from # happening. # def test_pytest(self): # mdl_slcs = eda.MDLSingleLabelClassifiedSamples( # self.x50x5, labs=self.labs50, encode_type="distance", # mdl_method=eda.mdl.GKdeMdl, metric="euclidean") # for i in range(10): # data_no_lab_mdl = mdl_slcs.no_lab_mdl(nprocs=3) def test_mdl_computation(self): mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, metric="euclidean") no_lab_mdl = mdl_slcs.no_lab_mdl() (ulab_mdl_sum, ulab_s_ind_l, ulab_cnt_l, ulab_mdl_l, cluster_mdl) = mdl_slcs.lab_mdl() assert ulab_s_ind_l == [list(range(10)), list(range(10, 45)), list(range(45, 50))] assert ulab_mdl_sum == np.sum(ulab_mdl_l) ulab_cnt_l = [10, 35, 5] for i in range(3): ci_mdl = eda.MDLSingleLabelClassifiedSamples( self.x50x5[ulab_s_ind_l[i], :], labs=[self.labs50[ii] for ii in ulab_s_ind_l[i]], metric="euclidean") np.testing.assert_allclose( ci_mdl.no_lab_mdl(), ulab_mdl_l[i] - cluster_mdl * ulab_cnt_l[i] / 50) def test_data_mdl_computation_mp(self): mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, metric="euclidean") no_lab_mdl = mdl_slcs.no_lab_mdl(nprocs=2) (ulab_mdl_sum, ulab_s_ind_l, ulab_cnt_l, ulab_mdl_l, cluster_mdl) = mdl_slcs.lab_mdl(nprocs=2) assert ulab_s_ind_l == [list(range(10)), list(range(10, 45)), list(range(45, 50))] assert ulab_mdl_sum == np.sum(ulab_mdl_l) ulab_cnt_l = [10, 35, 5] for i in range(3): ci_mdl = eda.MDLSingleLabelClassifiedSamples( self.x50x5[ulab_s_ind_l[i], :], labs=[self.labs50[ii] for ii in ulab_s_ind_l[i]], metric="euclidean") np.testing.assert_allclose( ci_mdl.no_lab_mdl(nprocs=5), ulab_mdl_l[i] - cluster_mdl * ulab_cnt_l[i] / 50) def test_distance_mdl_computation(self): mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, encode_type="distance", mdl_method=eda.mdl.GKdeMdl, metric="euclidean") no_lab_mdl = mdl_slcs.no_lab_mdl(nprocs=1) (ulab_mdl_sum, ulab_s_ind_l, ulab_cnt_l, ulab_mdl_l, cluster_mdl) = mdl_slcs.lab_mdl(nprocs=1) assert ulab_s_ind_l == [list(range(10)), list(range(10, 45)), list(range(45, 50))] assert ulab_mdl_sum == np.sum(ulab_mdl_l) ulab_cnt_l = [10, 35, 5] for i in range(3): ci_mdl = eda.MDLSingleLabelClassifiedSamples( mdl_slcs._x[ulab_s_ind_l[i]], labs=[self.labs50[ii] for ii in ulab_s_ind_l[i]], metric="euclidean", encode_type=mdl_slcs._encode_type, mdl_method=mdl_slcs._mdl_method) np.testing.assert_allclose( ci_mdl.no_lab_mdl(nprocs=1), ulab_mdl_l[i] - cluster_mdl * ulab_cnt_l[i] / 50) def test_distance_mdl_computation_mp(self): mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, encode_type="data", mdl_method=eda.mdl.GKdeMdl, metric="euclidean") data_no_lab_mdl = mdl_slcs.no_lab_mdl(nprocs=2) mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, encode_type="distance", mdl_method=eda.mdl.GKdeMdl, metric="euclidean") no_lab_mdl = mdl_slcs.no_lab_mdl(nprocs=2) (ulab_mdl_sum, ulab_s_ind_l, ulab_cnt_l, ulab_mdl_l, cluster_mdl) = mdl_slcs.lab_mdl(nprocs=2) assert ulab_s_ind_l == [list(range(10)), list(range(10, 45)), list(range(45, 50))] assert ulab_mdl_sum == np.sum(ulab_mdl_l) ulab_cnt_l = [10, 35, 5] for i in range(3): ci_mdl = eda.MDLSingleLabelClassifiedSamples( mdl_slcs._x[ulab_s_ind_l[i]].copy(), labs=[self.labs50[ii] for ii in ulab_s_ind_l[i]], metric="euclidean", encode_type="distance", mdl_method=eda.mdl.GKdeMdl) ci_mdl_no_lab_res = ci_mdl.no_lab_mdl(nprocs=2) np.testing.assert_allclose( ci_mdl_no_lab_res, ulab_mdl_l[i] - cluster_mdl * ulab_cnt_l[i] / 50) def test_mdl_method(self): zigk_mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, mdl_method=eda.mdl.ZeroIGKdeMdl, metric="euclidean") gk_mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, mdl_method=eda.mdl.GKdeMdl, metric="euclidean") assert gk_mdl_slcs._mdl_method is eda.mdl.GKdeMdl assert zigk_mdl_slcs._mdl_method is eda.mdl.ZeroIGKdeMdl assert zigk_mdl_slcs.no_lab_mdl() != gk_mdl_slcs.no_lab_mdl() for mdl_method in eda.MDL_METHODS: mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, mdl_method=mdl_method, metric="euclidean") (ulab_mdl_sum, ulab_s_ind_l, ulab_cnt_l, ulab_mdl_l, cluster_mdl) = mdl_slcs.lab_mdl() assert ulab_s_ind_l == [list(range(10)), list(range(10, 45)), list(range(45, 50))] assert ulab_mdl_sum == np.sum(ulab_mdl_l) ulab_cnt_l = [10, 35, 5] for i in range(3): ci_mdl = eda.MDLSingleLabelClassifiedSamples( self.x50x5[ulab_s_ind_l[i], :], labs=[self.labs50[ii] for ii in ulab_s_ind_l[i]], mdl_method=mdl_method, metric="euclidean") np.testing.assert_allclose( ci_mdl.no_lab_mdl(), ulab_mdl_l[i] - cluster_mdl * ulab_cnt_l[i] / 50) def test_wrong_mdl_method(self): with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, mdl_method="123", metric="euclidean").no_lab_mdl() with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, mdl_method=int, metric="euclidean").no_lab_mdl() with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, mdl_method="ZeroIMdl", metric="euclidean").no_lab_mdl() with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, mdl_method=2, metric="euclidean").no_lab_mdl() def test_wrong_encode_type(self): with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, encode_type="123", metric="euclidean").no_lab_mdl() with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, encode_type=1, metric="euclidean").no_lab_mdl() with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, encode_type=None, metric="euclidean").no_lab_mdl() def test_auto_param(self): eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, encode_type="auto", mdl_method=None, metric="euclidean") eda.MDLSingleLabelClassifiedSamples( np.zeros((100, 101)), labs=[0]*100, encode_type="auto", mdl_method=None, metric="euclidean") eda.MDLSingleLabelClassifiedSamples( np.ones((100, 100)), labs=[0]*100, encode_type="auto", mdl_method=None, metric="euclidean") eda.MDLSingleLabelClassifiedSamples( [[], []], labs=[0]*2, encode_type="auto", mdl_method=None, metric="euclidean") def test_lab_mdl_ret_internal(self): mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, metric="euclidean") ((ulab_mdl_sum, ulab_s_ind_l, ulab_cnt_l, ulab_mdl_l, cluster_mdl), mdl_l) = mdl_slcs.lab_mdl(ret_internal=True) np.testing.assert_allclose(sum(mdl_l) + cluster_mdl, sum(ulab_mdl_l)) lab_mdl_res = mdl_slcs.lab_mdl() ulab_mdl_sum2 = lab_mdl_res.ulab_mdl_sum assert ulab_mdl_sum2 == ulab_mdl_sum assert ulab_mdl_sum2 == np.sum(lab_mdl_res.ulab_mdls) def test_per_col_encoders_wrong_xshape(self): with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples.per_col_encoders( np.zeros(10), "data") with pytest.raises(ValueError) as excinfo: eda.MDLSingleLabelClassifiedSamples.per_col_encoders( np.zeros((10, 10, 10)), "data") def test_encode_mdl(self): mdl_slcs = eda.MDLSingleLabelClassifiedSamples( self.x50x5, labs=self.labs50, metric="euclidean") # wrong dimensions with pytest.raises(ValueError) as excinfo: mdl_slcs.encode(np.zeros((10, 3))) with pytest.raises(ValueError) as excinfo: mdl_slcs.encode(np.zeros(20)) with pytest.raises(ValueError) as excinfo: mdl_slcs.encode(np.zeros(20), col_summary_func=1) with pytest.raises(ValueError) as excinfo: mdl_slcs.encode(np.zeros(20), col_summary_func=None) emdl = mdl_slcs.encode(np.arange(100).reshape(-1, 5)) emdl2 = mdl_slcs.encode(np.arange(100).reshape(-1, 5), nprocs=2) np.testing.assert_approx_equal(emdl, emdl2) emdl3 = eda.MDLSingleLabelClassifiedSamples( self.x50x5, mdl_method=eda.mdl.GKdeMdl, labs=self.labs50, metric="euclidean").encode(np.arange(100).reshape(-1, 5)) assert emdl != emdl3 emdl4 = eda.MDLSingleLabelClassifiedSamples( np.zeros((50, 5)), mdl_method=eda.mdl.GKdeMdl, labs=self.labs50, metric="euclidean").encode(np.arange(100).reshape(-1, 5)) assert emdl != emdl4 emdl5 = eda.MDLSingleLabelClassifiedSamples( np.zeros((50, 5)), mdl_method=eda.mdl.GKdeMdl, labs=self.labs50, metric="euclidean").encode(np.arange(100).reshape(-1, 5), non_zero_only=True) assert emdl5 != emdl3 emdl6 = eda.MDLSingleLabelClassifiedSamples( self.x50x5, encode_type="distance", mdl_method=eda.mdl.GKdeMdl, labs=self.labs50, metric="euclidean").encode( np.arange(100).reshape(-1, 50), non_zero_only=True) assert emdl5 != emdl3
43.456186
79
0.567681
afb6dd7a678773d5f7b1fc15bd92bc36579fb00b
3,035
py
Python
scitail/models/entailment/simple_overlap.py
allenai/scitail
2e57f46a4620d50e85323c4a642114426db67393
[ "Apache-2.0" ]
40
2018-02-01T04:20:50.000Z
2022-03-08T02:31:08.000Z
scitail/models/entailment/simple_overlap.py
allenai/scitail
2e57f46a4620d50e85323c4a642114426db67393
[ "Apache-2.0" ]
6
2018-02-06T03:41:00.000Z
2018-10-22T06:13:59.000Z
scitail/models/entailment/simple_overlap.py
allenai/scitail
2e57f46a4620d50e85323c4a642114426db67393
[ "Apache-2.0" ]
8
2018-02-08T09:06:16.000Z
2019-07-17T23:12:17.000Z
from typing import Dict, List, Any import torch from allennlp.common import Params from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.modules import FeedForward from allennlp.nn import InitializerApplicator from allennlp.training.metrics import CategoricalAccuracy @Model.register("simple_overlap") class SimpleOverlap(Model): """ Simple model that applies a feedforward network on overlap-based feature vectors to compute entailment probability """ def __init__(self, vocab: Vocabulary, classifier: FeedForward, initializer: InitializerApplicator = InitializerApplicator()) -> None: super(SimpleOverlap, self).__init__(vocab) self.linear_mlp = classifier self._accuracy = CategoricalAccuracy() self._loss = torch.nn.CrossEntropyLoss() initializer(self) def forward(self, features: torch.Tensor, metadata: List[Dict[str, Any]] = None, label: torch.IntTensor = None) -> Dict[str, torch.Tensor]: """ Parameters ---------- features: torch.Tensor, From a ``FloatField`` over the overlap features computed by the SimpleOverlapReader metadata: List[Dict[str, Any]] Metadata information label : torch.IntTensor, optional (default = None) From a ``LabelField`` Returns ------- An output dictionary consisting of: label_logits : torch.FloatTensor A tensor of shape ``(batch_size, num_labels)`` representing unnormalised log probabilities of the entailment label. label_probs : torch.FloatTensor A tensor of shape ``(batch_size, num_labels)`` representing probabilities of the entailment label. loss : torch.FloatTensor, optional A scalar loss to be optimised. """ label_logits = self.linear_mlp(features) label_probs = torch.nn.functional.softmax(label_logits) output_dict = {"label_logits": label_logits, "label_probs": label_probs} if label is not None: loss = self._loss(label_logits, label.long().view(-1)) self._accuracy(label_logits, label.squeeze(-1)) output_dict["loss"] = loss return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: return { 'accuracy': self._accuracy.get_metric(reset), } @classmethod def from_params(cls, vocab: Vocabulary, params: Params) -> 'SimpleOverlap': classifier = FeedForward.from_params(params.pop('classifier')) init_params = params.pop('initializer', None) initializer = (InitializerApplicator.from_params(init_params) if init_params is not None else InitializerApplicator()) return cls(vocab=vocab, classifier=classifier, initializer=initializer)
37.469136
95
0.637891
f2ad3c78a1401c26baf86e913c05027330312ee2
3,927
py
Python
spikeextractors/extractors/openephysextractors/openephysextractors.py
TRuikes/spikeextractors
c3cbdaa18629aeb5ecb52f648e69b503a4f091d2
[ "MIT" ]
null
null
null
spikeextractors/extractors/openephysextractors/openephysextractors.py
TRuikes/spikeextractors
c3cbdaa18629aeb5ecb52f648e69b503a4f091d2
[ "MIT" ]
null
null
null
spikeextractors/extractors/openephysextractors/openephysextractors.py
TRuikes/spikeextractors
c3cbdaa18629aeb5ecb52f648e69b503a4f091d2
[ "MIT" ]
null
null
null
from spikeextractors import RecordingExtractor, SortingExtractor from pathlib import Path import numpy as np from spikeextractors.extraction_tools import check_get_traces_args, check_valid_unit_id try: import pyopenephys HAVE_OE = True except ImportError: HAVE_OE = False class OpenEphysRecordingExtractor(RecordingExtractor): extractor_name = 'OpenEphysRecording' has_default_locations = False installed = HAVE_OE # check at class level if installed or not is_writable = False mode = 'folder' installation_mesg = "To use the OpenEphys extractor, install pyopenephys: \n\n pip install pyopenephys\n\n" # error message when not installed def __init__(self, folder_path, *, experiment_id=0, recording_id=0, dtype='float'): assert HAVE_OE, "To use the OpenEphys extractor, install pyopenephys: \n\n pip install pyopenephys\n\n" assert dtype == 'int16' or 'float' in dtype, "'dtype' can be int16 (memory map) or 'float' (load into memory)" RecordingExtractor.__init__(self) self._recording_file = folder_path self._recording = pyopenephys.File(folder_path).experiments[experiment_id].recordings[recording_id] self._dtype = dtype self._kwargs = {'folder_path': str(Path(folder_path).absolute()), 'experiment_id': experiment_id, 'recording_id': recording_id, 'dtype': dtype} def get_channel_ids(self): return list(range(self._recording.analog_signals[0].signal.shape[0])) def get_num_frames(self): return self._recording.analog_signals[0].signal.shape[1] def get_sampling_frequency(self): return float(self._recording.sample_rate.rescale('Hz').magnitude) @check_get_traces_args def get_traces(self, channel_ids=None, start_frame=None, end_frame=None): if self._dtype == 'int16': return self._recording.analog_signals[0].signal[channel_ids, start_frame:end_frame] elif self._dtype == 'float': return self._recording.analog_signals[0].signal[channel_ids, start_frame:end_frame] * \ self._recording.analog_signals[0].gain class OpenEphysSortingExtractor(SortingExtractor): extractor_name = 'OpenEphysSortingExtractor' installed = HAVE_OE # check at class level if installed or not is_writable = False mode = 'file' installation_mesg = "To use the OpenEphys extractor, install pyopenephys: \n\n pip install pyopenephys\n\n" # error message when not installed def __init__(self, folder_path, *, experiment_id=0, recording_id=0): assert HAVE_OE, "To use the OpenEphys extractor, install pyopenephys: \n\n pip install pyopenephys\n\n" SortingExtractor.__init__(self) self._recording_file = folder_path self._recording = pyopenephys.File(folder_path).experiments[experiment_id].recordings[recording_id] self._spiketrains = self._recording.spiketrains self._unit_ids = list([np.unique(st.clusters)[0] for st in self._spiketrains]) self._sampling_frequency = float(self._recording.sample_rate.rescale('Hz').magnitude) self._kwargs = {'folder_path': str(Path(folder_path).absolute()), 'experiment_id': experiment_id, 'recording_id': recording_id} def get_unit_ids(self): return self._unit_ids @check_valid_unit_id def get_unit_spike_train(self, unit_id, start_frame=None, end_frame=None): start_frame, end_frame = self._cast_start_end_frame(start_frame, end_frame) if start_frame is None: start_frame = 0 if end_frame is None: end_frame = np.Inf st = self._spiketrains[unit_id] inds = np.where((start_frame <= (st.times * self._recording.sample_rate)) & ((st.times * self._recording.sample_rate) < end_frame)) return (st.times[inds] * self._recording.sample_rate).magnitude
47.313253
147
0.708429
be4cfef0edb04b8e98a10691a1d87292eec1ec54
14,967
py
Python
crowdsourcing/viewsets/task.py
ramcn/sept20
e6f6e238d0561ebf3353158161f1b20052e8b08b
[ "MIT" ]
null
null
null
crowdsourcing/viewsets/task.py
ramcn/sept20
e6f6e238d0561ebf3353158161f1b20052e8b08b
[ "MIT" ]
null
null
null
crowdsourcing/viewsets/task.py
ramcn/sept20
e6f6e238d0561ebf3353158161f1b20052e8b08b
[ "MIT" ]
null
null
null
from crowdsourcing.serializers.task import * from rest_framework import status, viewsets from rest_framework.response import Response from rest_framework.decorators import detail_route, list_route from django.shortcuts import get_object_or_404 from crowdsourcing.permissions.project import IsProjectOwnerOrCollaborator from crowdsourcing.models import Task, TaskWorker, TaskWorkerResult, WorkerRequesterRating from django.utils import timezone from django.db.models import Q from rest_framework.permissions import IsAuthenticated from crowdsourcing.permissions.task import HasExceededReservedLimit from crowdsourcing.serializers.rating import WorkerRequesterRatingSerializer from crowdsourcing.experimental_models import SubModule from datetime import timedelta class TaskViewSet(viewsets.ModelViewSet): queryset = Task.objects.all() serializer_class = TaskSerializer @detail_route(methods=['post'], permission_classes=[IsProjectOwnerOrCollaborator]) def update_task(self, request, id=None): task_serializer = TaskSerializer(data=request.data) task = self.get_object() if task_serializer.is_valid(): task_serializer.update(task, task_serializer.validated_data) return Response({'status': 'updated task'}) else: return Response(task_serializer.errors, status=status.HTTP_400_BAD_REQUEST) def list(self, request, *args, **kwargs): try: module = request.query_params.get('module') task = Task.objects.filter(module=module) task_serialized = TaskSerializer(task, many=True) return Response(task_serialized.data) except: return Response([]) def destroy(self, request, *args, **kwargs): task_serializer = TaskSerializer() task = self.get_object() task_serializer.delete(task) return Response({'status': 'deleted task'}) @detail_route(methods=['get']) def retrieve_with_data(self, request, *args, **kwargs): task = self.get_object() serializer = TaskSerializer(instance=task, fields=('id', 'task_template', 'module_data', 'status', 'has_comments')) rating = models.WorkerRequesterRating.objects.filter(origin=request.user.userprofile.id, target=task.module.owner.profile.id, origin_type='worker', module=task.module.id) requester_alias = task.module.owner.alias module = task.module.id target = task.module.owner.profile.id if rating.count() != 0: rating_serializer = WorkerRequesterRatingSerializer(instance=rating, many=True, fields=('id', 'weight')) return Response({'data': serializer.data, 'rating': rating_serializer.data, 'requester_alias': requester_alias, 'module': module, 'target': target}, status.HTTP_200_OK) else: return Response({'data': serializer.data, 'requester_alias': requester_alias, 'module': module, 'target': target}, status.HTTP_200_OK) @list_route(methods=['get']) def list_by_module(self, request, **kwargs): tasks = Task.objects.filter(module=request.query_params.get('module_id')) task_serializer = TaskSerializer(instance=tasks, many=True, fields=('id', 'status', 'template_items_monitoring', 'task_workers_monitoring', 'has_comments', 'comments')) response_data = { 'project_name': tasks[0].module.project.name, 'project_id': tasks[0].module.project.id, 'module_name': tasks[0].module.name, 'module_id': tasks[0].module.id, 'tasks': task_serializer.data } return Response(response_data, status.HTTP_200_OK) @list_route(methods=['get']) def sample_by_submodule(self, request, **kwargs): submodule = SubModule.objects.get(fake_module_id=request.query_params.get('fake_module_id')) hours_before_results = submodule.hours_before_results if submodule.created_timestamp + timedelta(hours=submodule.hours_before_results) <= timezone.now(): results_per_round = submodule.results_per_round round_exp = submodule.round_exp sample = len(submodule.taskworkers) == 0 pool = submodule.owner.pool tasks = Task.objects.filter(module=submodule.origin_module.id) task_serializer = TaskSerializer(instance=tasks, many=True, context={'requester': request.user.userprofile.id, 'submodule': submodule.id, 'round_exp': round_exp, 'results_per_round': results_per_round, 'sample': sample, 'pool': pool}, fields=('id', 'status', 'template_items_monitoring', 'has_comments', 'comments', 'task_workers_sampled')) for task in task_serializer.data: task['task_workers_monitoring'] = task['task_workers_sampled'] response_data = { 'project_name': tasks[0].module.project.name, 'project_id': tasks[0].module.project.id, 'module_name': tasks[0].module.name, 'module_id': tasks[0].module.id, 'tasks': task_serializer.data } return Response(response_data, status.HTTP_200_OK) else: return Response([], status.HTTP_200_OK) @detail_route(methods=['get']) def list_comments(self, request, **kwargs): comments = models.TaskComment.objects.filter(task=kwargs['pk']) serializer = TaskCommentSerializer(instance=comments, many=True, fields=('comment', 'id',)) response_data = { 'task': kwargs['pk'], 'comments': serializer.data } return Response(response_data, status.HTTP_200_OK) @detail_route(methods=['post']) def post_comment(self, request, **kwargs): serializer = TaskCommentSerializer(data=request.data) task_comment_data = {} if serializer.is_valid(): comment = serializer.create(task=kwargs['pk'], sender=request.user.userprofile) task_comment_data = TaskCommentSerializer(comment, fields=('id', 'comment',)).data return Response(task_comment_data, status.HTTP_200_OK) class TaskWorkerViewSet(viewsets.ModelViewSet): queryset = TaskWorker.objects.all() serializer_class = TaskWorkerSerializer permission_classes = [IsAuthenticated, HasExceededReservedLimit] lookup_field = 'task__id' def create(self, request, *args, **kwargs): serializer = TaskWorkerSerializer(data=request.data) if serializer.is_valid(): instance, http_status = serializer.create(worker=request.user.userprofile.worker, module=request.data.get('module', None)) serialized_data = {} if http_status == 200: serialized_data = TaskWorkerSerializer(instance=instance).data return Response(serialized_data, http_status) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def destroy(self, request, *args, **kwargs): serializer = TaskWorkerSerializer() obj = self.queryset.get(task=kwargs['task__id'], worker=request.user.userprofile.worker.id) instance, http_status = serializer.create(worker=request.user.userprofile.worker, module=obj.task.module_id) obj.task_status = 6 obj.save() serialized_data = {} if http_status == 200: serialized_data = TaskWorkerSerializer(instance=instance).data return Response(serialized_data, http_status) @list_route(methods=['post']) def bulk_update_status(self, request, *args, **kwargs): task_status = request.data.get('task_status', -1) task_workers = TaskWorker.objects.filter(id__in=tuple(request.data.get('task_workers', []))) task_workers.update(task_status=task_status, last_updated=timezone.now()) return Response(TaskWorkerSerializer(instance=task_workers, many=True, fields=('id', 'task', 'task_status', 'task_worker_results_monitoring', 'worker_alias', 'updated_delta')).data, status.HTTP_200_OK) @list_route(methods=['get']) def list_by_status(self, request, *args, **kwargs): status_map = {1: 'In Progress', 2: 'Submitted', 3: 'Accepted', 4: 'Rejected', 5: 'Returned'} response = dict() for key, value in status_map.iteritems(): task_workers = TaskWorker.objects.filter(worker=request.user.userprofile.worker, task_status=key) serializer = TaskWorkerSerializer(instance=task_workers, many=True, fields=( 'id', 'task_status', 'task', 'requester_alias', 'module', 'project_name', 'is_paid', 'last_updated')) response[value] = serializer.data return Response(response, status.HTTP_200_OK) @detail_route(methods=['get']) def retrieve_with_data_and_results(self, request, *args, **kwargs): task_worker = TaskWorker.objects.get(id=request.query_params['id']) serializer = TaskWorkerSerializer(instance=task_worker, fields=('task', 'task_status', 'task_template', 'has_comments')) rating = models.WorkerRequesterRating.objects.filter(origin=request.user.userprofile.id, target=task_worker.task.module.owner.profile.id, origin_type='worker', module=task_worker.task.module.id) requester_alias = task_worker.task.module.owner.alias module = task_worker.task.module.id target = task_worker.task.module.owner.profile.id if rating.count() != 0: rating_serializer = WorkerRequesterRatingSerializer(instance=rating, many=True, fields=('id', 'weight')) return Response({'data': serializer.data, 'rating': rating_serializer.data, 'requester_alias': requester_alias, 'module': module, 'target': target}, status.HTTP_200_OK) else: return Response({'data': serializer.data, 'requester_alias': requester_alias, 'module': module, 'target': target}, status.HTTP_200_OK) @list_route(methods=['post']) def drop_saved_tasks(self, request, *args, **kwargs): task_ids = request.data.get('task_ids', []) self.queryset.filter(task_id__in=task_ids, worker=request.user.userprofile.worker.id).update( task_status=6, last_updated=timezone.now()) return Response('Success', status.HTTP_200_OK) @list_route(methods=['post']) def bulk_pay_by_module(self, request, *args, **kwargs): module = request.data.get('module') accepted, rejected = 3, 4 task_workers = TaskWorker.objects.filter(task__module=module).filter( Q(task_status=accepted) | Q(task_status=rejected)) task_workers.update(is_paid=True, last_updated=timezone.now()) return Response('Success', status.HTTP_200_OK) class TaskWorkerResultViewSet(viewsets.ModelViewSet): queryset = TaskWorkerResult.objects.all() serializer_class = TaskWorkerResultSerializer # permission_classes = [IsOwnerOrReadOnly] def update(self, request, *args, **kwargs): task_worker_result_serializer = TaskWorkerResultSerializer(data=request.data) task_worker_result = self.queryset.filter(id=kwargs['pk'])[0] status = 1 if 'status' in request.data: status = request.data['status'] task_worker_result.status = status task_worker_result.save() return Response("Success") def retrieve(self, request, *args, **kwargs): worker = get_object_or_404(self.queryset, worker=request.worker) serializer = TaskWorkerResultSerializer(instance=worker) return Response(serializer.data) @list_route(methods=['post'], url_path="submit-results") def submit_results(self, request, *args, **kwargs): task = request.data.get('task', None) template_items = request.data.get('template_items', []) task_status = request.data.get('task_status', None) saved = request.data.get('saved') task_worker = TaskWorker.objects.get(worker=request.user.userprofile.worker, task=task) task_worker.task_status = task_status task_worker.save() task_worker_results = TaskWorkerResult.objects.filter(task_worker_id=task_worker.id) if task_status == 1: serializer = TaskWorkerResultSerializer(data=template_items, many=True, partial=True) else: serializer = TaskWorkerResultSerializer(data=template_items, many=True) if serializer.is_valid(): if task_worker_results.count() != 0: serializer.update(task_worker_results, serializer.validated_data) else: serializer.create(task_worker=task_worker) if task_status == 1 or saved: return Response('Success', status.HTTP_200_OK) elif task_status == 2 and not saved: task_worker_serializer = TaskWorkerSerializer() instance, http_status = task_worker_serializer.create( worker=request.user.userprofile.worker, module=task_worker.task.module_id) serialized_data = {} if http_status == 200: serialized_data = TaskWorkerSerializer(instance=instance).data return Response(serialized_data, http_status) else: return Response(serializer.errors, status.HTTP_400_BAD_REQUEST) class CurrencyViewSet(viewsets.ModelViewSet): from crowdsourcing.models import Currency queryset = Currency.objects.all() serializer_class = CurrencySerializer
51.43299
123
0.615955
493c7ff03d38e6694699c027de894081f8cfa4d3
687
py
Python
Arase/Tools/__init__.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
null
null
null
Arase/Tools/__init__.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
1
2021-06-10T22:51:09.000Z
2021-06-10T22:51:09.000Z
Arase/Tools/__init__.py
mattkjames7/Arase
996167be35a13bbb1fdddfbe75e3a06d124b1d25
[ "MIT" ]
null
null
null
from .ReadCDF import ReadCDF from .CountstoFlux import CountstoFlux from .CountstoPSD import CountstoPSD from .FluxtoCounts import FluxtoCounts from .FluxtoPSD import FluxtoPSD from .PSDtoCounts import PSDtoCounts from .PSDtoFlux import PSDtoFlux from .MaxwellBoltzmannDist import MaxwellBoltzmannDist,MaxwellBoltzmannDistCts,MaxwellBoltzmannDistE from .KappaDist import KappaDist,KappaDistCts from .FitMaxwellianDist import FitMaxwellianDist,FitMaxwellianDistCts from .FitKappaDist import FitKappaDist,FitKappaDistCts from .ListDates import ListDates from .SpecCls import SpecCls from .PSpecCls import PSpecCls from .PSpecPADCls import PSpecPADCls from .RelVelocity import RelVelocity
40.411765
100
0.874818
5531f3e7ae6541c69293005755bf4fa33c3c7639
38,457
py
Python
dannce/engine/processing.py
jessedmarshall/dannce
6518415fc723de51b766664bd8f2ec3793dc9af8
[ "MIT" ]
1
2021-12-07T20:46:58.000Z
2021-12-07T20:46:58.000Z
dannce/engine/processing.py
jessedmarshall/dannce
6518415fc723de51b766664bd8f2ec3793dc9af8
[ "MIT" ]
null
null
null
dannce/engine/processing.py
jessedmarshall/dannce
6518415fc723de51b766664bd8f2ec3793dc9af8
[ "MIT" ]
null
null
null
"""Processing functions for dannce.""" import numpy as np from skimage.color import rgb2gray from skimage.transform import downscale_local_mean as dsm import imageio import os import dannce.engine.serve_data_DANNCE as serve_data_DANNCE import PIL from six.moves import cPickle import scipy.io as sio from dannce.engine import io import matplotlib import warnings matplotlib.use("Agg") import matplotlib.pyplot as plt import yaml import shutil import time def initialize_vids(CONFIG_PARAMS, datadict, e, vids, pathonly=True): """ Initializes video path dictionaries for a training session. This is different than a predict session because it operates over a single animal ("experiment") at a time """ for i in range(len(CONFIG_PARAMS["experiment"][e]["camnames"])): # Rather than opening all vids, only open what is needed based on the # maximum frame ID for this experiment and Camera flist = [] for key in datadict.keys(): if int(key.split("_")[0]) == e: flist.append( datadict[key]["frames"][ CONFIG_PARAMS["experiment"][e]["camnames"][i] ] ) flist = max(flist) # For COM prediction, we don't prepend experiment IDs # So detect this case and act accordingly. basecam = CONFIG_PARAMS["experiment"][e]["camnames"][i] if "_" in basecam: basecam = basecam.split("_")[1] if CONFIG_PARAMS["vid_dir_flag"]: addl = "" else: addl = os.listdir( os.path.join(CONFIG_PARAMS["experiment"][e]["viddir"], basecam,) )[0] r = generate_readers( CONFIG_PARAMS["experiment"][e]["viddir"], os.path.join(basecam, addl), maxopt=flist, # Large enough to encompass all videos in directory. extension=CONFIG_PARAMS["experiment"][e]["extension"], pathonly=pathonly, ) if "_" in CONFIG_PARAMS["experiment"][e]["camnames"][i]: vids[CONFIG_PARAMS["experiment"][e]["camnames"][i]] = {} for key in r: vids[CONFIG_PARAMS["experiment"][e]["camnames"][i]][ str(e) + "_" + key ] = r[key] else: vids[CONFIG_PARAMS["experiment"][e]["camnames"][i]] = r return vids def infer_params(params, dannce_net, prediction): """ Some parameters that were previously specified in configs can just be inferred from others, thus relieving config bloat """ # Grab the camnames from *dannce.mat if not in config if params["camnames"] is None: f = grab_predict_label3d_file() params["camnames"] = io.load_camnames(f) if params["camnames"] is None: raise Exception("No camnames in config or in *dannce.mat") # Infer vid_dir_flag and extension and n_channels_in and chunks # from the videos and video folder organization. # Look into the video directory / camnames[0]. Is there a video file? # If so, vid_dir_flag = True viddir = os.path.join(params["viddir"], params["camnames"][0]) video_files = os.listdir(viddir) if any([".mp4" in file for file in video_files]) or any( [".avi" in file for file in video_files] ): print_and_set(params, "vid_dir_flag", True) else: print_and_set(params, "vid_dir_flag", False) viddir = os.path.join(viddir, video_files[0]) video_files = os.listdir(viddir) extension = ".mp4" if any([".mp4" in file for file in video_files]) else ".avi" print_and_set(params, "extension", extension) video_files = [file for file in video_files if extension in file] if len(video_files) > 1: video_files = sorted(video_files, key=lambda x: int(x.split(".")[0])) chunks = int(video_files[1].split(".")[0]) - int(video_files[0].split(".")[0]) else: chunks = 10000000000000 camf = os.path.join(viddir, video_files[0]) print_and_set(params, "chunks", chunks) # Infer n_channels_in from the video info v = imageio.get_reader(camf) im = v.get_data(0) v.close() print_and_set(params, "n_channels_in", im.shape[-1]) # set the raw im height and width print_and_set(params, "raw_im_h", im.shape[0]) print_and_set(params, "raw_im_w", im.shape[1]) if dannce_net and params["net"] is None: # Here we assume that if the network and expval are specified by the user # then there is no reason to infer anything. net + expval compatibility # are subsequently verified during check_config() # # If both the net and expval are unspecified, then we use the simpler # 'net_type' + 'train_mode' to select the correct network and set expval. # During prediction, the train_mode might be missing, and in any case only the # expval needs to be set. if params["net_type"] is None: raise Exception( "Without a net name, net_type must be specified" ) if not prediction and params["train_mode"] is None: raise Exception("Need to specific train_mode for DANNCE training") if params["net_type"] == "AVG": print_and_set(params, "expval", True) elif params["net_type"] == "MAX": print_and_set(params, "expval", False) else: raise Exception("{} not a valid net_type".format(params["net_type"])) # if not prediction: if params["net_type"] == "AVG" and params["train_mode"] == "finetune": print_and_set(params, "net", "finetune_AVG") elif params["net_type"] == "AVG": # This is the network for training from scratch. # This will also set the network for "continued", but that network # will be ignored, as for continued training the full model file # is loaded in without a call to construct the network. However, a value # for params['net'] is still required for initialization print_and_set(params, "net", "unet3d_big_expectedvalue") elif params["net_type"] == "MAX" and params["train_mode"] == "finetune": print_and_set(params, "net", "finetune_MAX") elif params["net_type"] == "MAX": print_and_set(params, "net", "unet3d_big") elif dannce_net and params["expval"] is None: if "AVG" in params["net"] or "expected" in params["net"]: print_and_set(params, "expval", True) else: print_and_set(params, "expval", False) if dannce_net: #infer crop_height and crop_width if None. Just use max dims of video, as # DANNCE does not need to crop. if params["crop_height"] is None or params["crop_width"] is None: im_h = [] im_w = [] for i in range(len(params["camnames"])): viddir = os.path.join(params["viddir"], params["camnames"][i]) if not params["vid_dir_flag"]: # add intermediate directory to path viddir = os.path.join(params["viddir"], params["camnames"][i], os.listdir(viddir)[0]) video_files = os.listdir(viddir) camf = os.path.join(viddir, video_files[0]) v = imageio.get_reader(camf) im = v.get_data(0) v.close() im_h.append(im.shape[0]) im_w.append(im.shape[1]) if params["crop_height"] is None: print_and_set(params, "crop_height", [0, np.max(im_h)]) if params["crop_width"] is None: print_and_set(params, "crop_width", [0, np.max(im_w)]) if params["max_num_samples"] is not None: if params["max_num_samples"] == "max": print_and_set(params, "maxbatch", "max") elif isinstance(params["max_num_samples"], (int, np.integer)): print_and_set( params, "maxbatch", int(params["max_num_samples"] // params["batch_size"]), ) else: raise TypeError("max_num_samples must be an int or 'max'") else: print_and_set(params, "maxbatch", "max") if params["start_sample"] is not None: if isinstance(params["start_sample"], (int, np.integer)): print_and_set( params, "start_batch", int(params["start_sample"] // params["batch_size"]), ) else: raise TypeError("start_sample must be an int.") else: print_and_set(params, "start_batch", 0) if params["vol_size"] is not None: print_and_set(params, "vmin", -1 * params["vol_size"] / 2) print_and_set(params, "vmax", params["vol_size"] / 2) # There will be straneg behavior if using a mirror acquisition system and are cropping images if params["mirror"] and params["crop_height"][-1] != params["raw_im_h"]: msg = "Note: You are using a mirror acquisition system with image cropping." msg = msg + " All coordinates will be flipped relative to the raw image height, so ensure that your labels are also in that reference frame." warnings.warn(msg) return params def print_and_set(params, varname, value): # Should add new values to params in place, no need to return params[varname] = value print("Setting {} to {}.".format(varname, params[varname])) def check_config(params, dannce_net, prediction): """ Add parameter checks and restrictions here. """ check_camnames(params) if params["exp"] is not None: for expdict in params["exp"]: check_camnames(expdict) if dannce_net: check_net_expval(params) check_vmin_vmax(params) def check_vmin_vmax(params): for v in ["vmin", "vmax", "nvox"]: if params[v] is None: raise Exception( "{} not in parameters. Please add it, or use vol_size instead of vmin and vmax".format( v ) ) def get_ft_wt(params): if params["dannce_finetune_weights"] is not None: weights = os.listdir(params["dannce_finetune_weights"]) weights = [f for f in weights if ".hdf5" in f] weights = weights[0] return os.path.join( params["dannce_finetune_weights"], weights ) def check_camnames(camp): """ Raises an exception if camera names contain '_' """ if "camnames" in camp: for cam in camp["camnames"]: if "_" in cam: raise Exception("Camera names cannot contain '_' ") def check_net_expval(params): """ Raise an exception if the network and expval (i.e. AVG/MAX) are incompatible """ if params["net"] is None: raise Exception("net is None. You must set either net or net_type.") if params["net_type"] is not None: if ( params["net_type"] == 'AVG' and "AVG" not in params["net"] and "expected" not in params["net"] ): raise Exception("net_type is set to AVG, but you are using a MAX network") if ( params["net_type"] == 'MAX' and "MAX" not in params["net"] and params["net"] != "unet3d_big" ): raise Exception("net_type is set to MAX, but you are using a AVG network") if ( params["expval"] and "AVG" not in params["net"] and "expected" not in params["net"] ): raise Exception("expval is set to True but you are using a MAX network") if ( not params["expval"] and "MAX" not in params["net"] and params["net"] != "unet3d_big" ): raise Exception("expval is set to False but you are using an AVG network") def copy_config(RESULTSDIR, main_config, io_config): """ Copies config files into the results directory, and creates results directory if necessary """ print("Saving results to: {}".format(RESULTSDIR)) if not os.path.exists(RESULTSDIR): os.makedirs(RESULTSDIR) mconfig = os.path.join( RESULTSDIR, "copy_main_config_" + main_config.split(os.sep)[-1] ) dconfig = os.path.join(RESULTSDIR, "copy_io_config_" + io_config.split(os.sep)[-1]) shutil.copyfile(main_config, mconfig) shutil.copyfile(io_config, dconfig) def make_data_splits(samples, params, RESULTSDIR, num_experiments): """ Make train/validation splits from list of samples, or load in a specific list of sampleIDs if desired. """ # TODO: Switch to .mat from .pickle so that these lists are easier to read # and change. partition = {} if params["load_valid"] is None: all_inds = np.arange(len(samples)) # extract random inds from each set for validation v = params["num_validation_per_exp"] valid_inds = [] if params["num_validation_per_exp"] > 0: # if 0, do not perform validation for e in range(num_experiments): tinds = [ i for i in range(len(samples)) if int(samples[i].split("_")[0]) == e ] valid_inds = valid_inds + list( np.random.choice(tinds, (v,), replace=False) ) valid_inds = list(np.sort(valid_inds)) train_inds = [i for i in all_inds if i not in valid_inds] assert (set(valid_inds) & set(train_inds)) == set() partition["valid_sampleIDs"] = samples[valid_inds] partition["train_sampleIDs"] = samples[train_inds] # Save train/val inds with open(os.path.join(RESULTSDIR, "val_samples.pickle"), "wb") as f: cPickle.dump(partition["valid_sampleIDs"], f) with open(os.path.join(RESULTSDIR, "train_samples.pickle"), "wb") as f: cPickle.dump(partition["train_sampleIDs"], f) else: # Load validation samples from elsewhere with open(os.path.join(params["load_valid"], "val_samples.pickle"), "rb",) as f: partition["valid_sampleIDs"] = cPickle.load(f) partition["train_sampleIDs"] = [ f for f in samples if f not in partition["valid_sampleIDs"] ] return partition def rename_weights(traindir, kkey, mon): """ At the end of DANNCe or COM training, rename the best weights file with the epoch # and value of the monitored quantity """ # First load in the training.csv r = np.genfromtxt(os.path.join(traindir, "training.csv"), delimiter=",", names=True) e = r["epoch"] q = r[mon] minq = np.min(q) beste = e[np.argmin(q)] newname = "weights." + str(int(beste)) + "-" + "{:.5f}".format(minq) + ".hdf5" os.rename(os.path.join(traindir, kkey), os.path.join(traindir, newname)) def make_paths_safe(params): """Given a parameter dictionary, loops through the keys and replaces any \\ or / with os.sep to promote OS agnosticism """ for key in params.keys(): if isinstance(params[key], str): params[key] = params[key].replace("/", os.sep) params[key] = params[key].replace("\\", os.sep) return params def trim_COM_pickle(fpath, start_sample, end_sample, opath=None): """Trim dictionary entries to the range [start_sample, end_sample]. spath is the output path for saving the trimmed COM dictionary, if desired """ with open(fpath, "rb") as f: save_data = cPickle.load(f) sd = {} for key in save_data: if key >= start_sample and key <= end_sample: sd[key] = save_data[key] with open(opath, "wb") as f: cPickle.dump(sd, f) return sd def save_params(outdir, params): """ Save copy of params to outdir as .mat file """ sio.savemat(os.path.join(outdir, 'copy_params.mat'), prepare_save_metadata(params)) return True def make_none_safe(pdict): if isinstance(pdict, dict): for key in pdict: pdict[key] = make_none_safe(pdict[key]) else: if pdict is None or (isinstance(pdict, list) and None in pdict) or (isinstance(pdict, tuple) and None in pdict): return "None" else: return pdict def prepare_save_metadata(params): """ To save metadata, i.e. the prediction param values associated with COM or DANNCE output, we need to convert loss and metrics and net into names, and remove the 'experiment' field """ # Need to convert None to string but still want to conserve the metadat structure # format, so we don't want to convert the whole dict to a string meta = params.copy() if "experiment" in meta: del meta["experiment"] if "loss" in meta: meta["loss"] = meta["loss"].__name__ if "net" in meta: meta["net"] = meta["net"].__name__ if "metric" in meta: meta["metric"] = [ f.__name__ if not isinstance(f, str) else f for f in meta["metric"] ] make_none_safe(meta) return meta def save_COM_dannce_mat(params, com3d, sampleID): """ Instead of saving 3D COM to com3d.mat, save it into the dannce.mat file, which streamlines subsequent dannce access. """ com = {} com["com3d"] = com3d com["sampleID"] = sampleID com["metadata"] = prepare_save_metadata(params) # Open dannce.mat file, add com and re-save print("Saving COM predictions to " + params["label3d_file"]) rr = sio.loadmat(params["label3d_file"]) # For safety, save old file to temp and delete it at the end sio.savemat(params["label3d_file"]+".temp", rr) rr["com"] = com sio.savemat(params["label3d_file"], rr) os.remove(params["label3d_file"]+".temp") def save_COM_checkpoint(save_data, RESULTSDIR, datadict_, cameras, params): """ Saves COM pickle and matfiles """ # Save undistorted 2D COMs and their 3D triangulations f = open(os.path.join(RESULTSDIR, "com3d.pickle"), "wb") cPickle.dump(save_data, f) f.close() # We need to remove the eID in front of all the keys in datadict # for prepare_COM to run properly datadict_save = {} for key in datadict_: datadict_save[int(float(key.split("_")[-1]))] = datadict_[key] _, com3d_dict = serve_data_DANNCE.prepare_COM( os.path.join(RESULTSDIR, "com3d.pickle"), datadict_save, comthresh=0, weighted=False, camera_mats=cameras, method="median", ) cfilename = os.path.join(RESULTSDIR, "com3d.mat") print("Saving 3D COM to {}".format(cfilename)) samples_keys = list(com3d_dict.keys()) c3d = np.zeros((len(samples_keys), 3)) for i in range(len(samples_keys)): c3d[i] = com3d_dict[samples_keys[i]] sio.savemat( cfilename, { "sampleID": samples_keys, "com": c3d, "metadata": prepare_save_metadata(params), }, ) # Also save a copy into the label3d file save_COM_dannce_mat(params, c3d, samples_keys) def inherit_config(child, parent, keys): """ If a key in keys does not exist in child, assigns the key-value in parent to child. """ for key in keys: if key not in child.keys(): child[key] = parent[key] print( "{} not found in io.yaml file, falling back to main config".format(key) ) return child def grab_predict_label3d_file(defaultdir=""): """ Finds the paths to the training experiment yaml files. """ def_ep = os.path.join(".", defaultdir) label3d_files = os.listdir(def_ep) label3d_files = [ os.path.join(def_ep, f) for f in label3d_files if "dannce.mat" in f ] label3d_files.sort() if len(label3d_files) == 0: raise Exception("Did not find any *dannce.mat file in {}".format(def_ep)) print("Using the following *dannce.mat files: {}".format(label3d_files[0])) return label3d_files[0] def load_expdict(params, e, expdict, _DEFAULT_VIDDIR): """ Load in camnames and video directories and label3d files for a single experiment during training. """ exp = params.copy() exp = make_paths_safe(exp) exp["label3d_file"] = expdict["label3d_file"] exp["base_exp_folder"] = os.path.dirname(exp["label3d_file"]) if "viddir" not in expdict: # if the videos are not at the _DEFAULT_VIDDIR, then it must # be specified in the io.yaml experiment portion exp["viddir"] = os.path.join(exp["base_exp_folder"], _DEFAULT_VIDDIR) else: exp["viddir"] = expdict["viddir"] print("Experiment {} using videos in {}".format(e, exp["viddir"])) l3d_camnames = io.load_camnames(expdict["label3d_file"]) if "camnames" in expdict: exp["camnames"] = expdict["camnames"] elif l3d_camnames is not None: exp["camnames"] = l3d_camnames print("Experiment {} using camnames: {}".format(e, exp["camnames"])) return exp def batch_rgb2gray(imstack): """Convert to gray image-wise. batch dimension is first. """ grayim = np.zeros((imstack.shape[0], imstack.shape[1], imstack.shape[2]), "float32") for i in range(grayim.shape[0]): grayim[i] = rgb2gray(imstack[i].astype("uint8")) return grayim def return_tile(imstack, fac=2): """Crop a larger image into smaller tiles without any overlap.""" height = imstack.shape[1] // fac width = imstack.shape[2] // fac out = np.zeros( (imstack.shape[0] * fac * fac, height, width, imstack.shape[3]), "float32" ) cnt = 0 for i in range(imstack.shape[0]): for j in np.arange(0, imstack.shape[1], height): for k in np.arange(0, imstack.shape[2], width): out[cnt, :, :, :] = imstack[i, j : j + height, k : k + width, :] cnt = cnt + 1 return out def tile2im(imstack, fac=2): """Reconstruct lagrer image from tiled data.""" height = imstack.shape[1] width = imstack.shape[2] out = np.zeros( (imstack.shape[0] // (fac * fac), height * fac, width * fac, imstack.shape[3]), "float32", ) cnt = 0 for i in range(out.shape[0]): for j in np.arange(0, out.shape[1], height): for k in np.arange(0, out.shape[2], width): out[i, j : j + height, k : k + width, :] = imstack[cnt] cnt += 1 return out def downsample_batch(imstack, fac=2, method="PIL"): """Downsample each image in a batch.""" if method == "PIL": out = np.zeros( ( imstack.shape[0], imstack.shape[1] // fac, imstack.shape[2] // fac, imstack.shape[3], ), "float32", ) if out.shape[-1] == 3: # this is just an RGB image, so no need to loop over channels with PIL for i in range(imstack.shape[0]): out[i] = np.array( PIL.Image.fromarray(imstack[i].astype("uint8")).resize( (out.shape[2], out.shape[1]), resample=PIL.Image.LANCZOS ) ) else: for i in range(imstack.shape[0]): for j in range(imstack.shape[3]): out[i, :, :, j] = np.array( PIL.Image.fromarray(imstack[i, :, :, j]).resize( (out.shape[2], out.shape[1]), resample=PIL.Image.LANCZOS ) ) elif method == "dsm": out = np.zeros( ( imstack.shape[0], imstack.shape[1] // fac, imstack.shape[2] // fac, imstack.shape[3], ), "float32", ) for i in range(imstack.shape[0]): for j in range(imstack.shape[3]): out[i, :, :, j] = dsm(imstack[i, :, :, j], (fac, fac)) elif method == "nn": out = imstack[:, ::fac, ::fac] elif fac > 1: raise Exception("Downfac > 1. Not a valid downsampling method") return out def batch_maximum(imstack): """Find the location of the maximum for each image in a batch.""" maxpos = np.zeros((imstack.shape[0], 2)) for i in range(imstack.shape[0]): if np.isnan(imstack[i, 0, 0]): maxpos[i, 0] = np.nan maxpos[i, 1] = np.nan else: ind = np.unravel_index( np.argmax(np.squeeze(imstack[i]), axis=None), np.squeeze(imstack[i]).shape, ) maxpos[i, 0] = ind[1] maxpos[i, 1] = ind[0] return maxpos def generate_readers( viddir, camname, minopt=0, maxopt=300000, pathonly=False, extension=".mp4" ): """Open all mp4 objects with imageio, and return them in a dictionary.""" out = {} mp4files = [ os.path.join(camname, f) for f in os.listdir(os.path.join(viddir, camname)) if extension in f and int(f.rsplit(extension)[0]) <= maxopt and int(f.rsplit(extension)[0]) >= minopt ] # This is a trick (that should work) for getting rid of # awkward sub-directory folder names when they are being used mp4files_scrub = [ os.path.join( os.path.normpath(f).split(os.sep)[0], os.path.normpath(f).split(os.sep)[-1] ) for f in mp4files ] pixelformat = "yuv420p" input_params = [] output_params = [] for i in range(len(mp4files)): if pathonly: out[mp4files_scrub[i]] = os.path.join(viddir, mp4files[i]) else: print("NOTE: Ignoring {} files numbered above {}".format(extensions,maxopt)) out[mp4files_scrub[i]] = imageio.get_reader( os.path.join(viddir, mp4files[i]), pixelformat=pixelformat, input_params=input_params, output_params=output_params, ) return out def cropcom(im, com, size=512): """Crops single input image around the coordinates com.""" minlim_r = int(np.round(com[1])) - size // 2 maxlim_r = int(np.round(com[1])) + size // 2 minlim_c = int(np.round(com[0])) - size // 2 maxlim_c = int(np.round(com[0])) + size // 2 out = im[np.max([minlim_r, 0]) : maxlim_r, np.max([minlim_c, 0]) : maxlim_c, :] dim = out.shape[2] # pad with zeros if region ended up outside the bounds of the original image if minlim_r < 0: out = np.concatenate( (np.zeros((abs(minlim_r), out.shape[1], dim)), out), axis=0 ) if maxlim_r > im.shape[0]: out = np.concatenate( (out, np.zeros((maxlim_r - im.shape[0], out.shape[1], dim))), axis=0 ) if minlim_c < 0: out = np.concatenate( (np.zeros((out.shape[0], abs(minlim_c), dim)), out), axis=1 ) if maxlim_c > im.shape[1]: out = np.concatenate( (out, np.zeros((out.shape[0], maxlim_c - im.shape[1], dim))), axis=1 ) return out def write_config(resultsdir, configdict, message, filename="modelconfig.cfg"): """Write a dictionary of k-v pairs to file. A much more customizable configuration writer. Accepts a dictionary of key-value pairs and just writes them all to file, together with a custom message """ f = open(resultsdir + filename, "w") for key in configdict: f.write("{}: {}\n".format(key, configdict[key])) f.write("message:" + message) def read_config(filename): """Read configuration file. :param filename: Path to configuration file. """ with open(filename) as f: CONFIG_PARAMS = yaml.safe_load(f) return CONFIG_PARAMS def plot_markers_2d(im, markers, newfig=True): """Plot markers in two dimensions.""" if newfig: plt.figure() plt.imshow((im - np.min(im)) / (np.max(im) - np.min(im))) for mark in range(markers.shape[-1]): ind = np.unravel_index( np.argmax(markers[:, :, mark], axis=None), markers[:, :, mark].shape ) plt.plot(ind[1], ind[0], ".r") def preprocess_3d(im_stack): """Easy inception-v3 style image normalization across a set of images.""" im_stack /= 127.5 im_stack -= 1.0 return im_stack def norm_im(im): """Normalize image.""" return (im - np.min(im)) / (np.max(im) - np.min(im)) def plot_markers_3d(stack, nonan=True): """Return the 3d coordinates for each of the peaks in probability maps.""" x = [] y = [] z = [] for mark in range(stack.shape[-1]): ind = np.unravel_index( np.argmax(stack[:, :, :, mark], axis=None), stack[:, :, :, mark].shape ) if ~np.isnan(stack[0, 0, 0, mark]) and nonan: x.append(ind[1]) y.append(ind[0]) z.append(ind[2]) elif ~np.isnan(stack[0, 0, 0, mark]) and not nonan: x.append(ind[1]) y.append(ind[0]) z.append(ind[2]) elif not nonan: x.append(np.nan) y.append(np.nan) z.append(np.nan) return x, y, z def plot_markers_3d_tf(stack, nonan=True): """Return the 3d coordinates for each of the peaks in probability maps.""" import tensorflow as tf with tf.device(stack.device): n_mark = stack.shape[-1] indices = tf.math.argmax(tf.reshape(stack, [-1, n_mark]), output_type="int32") inds = unravel_index(indices, stack.shape[:-1]) if ~tf.math.reduce_any(tf.math.is_nan(stack[0, 0, 0, :])) and ( nonan or not nonan ): x = inds[1] y = inds[0] z = inds[2] elif not nonan: x = tf.Variable(tf.cast(inds[1], "float32")) y = tf.Variable(tf.cast(inds[0], "float32")) z = tf.Variable(tf.cast(inds[3], "float32")) nans = tf.math.is_nan(stack[0, 0, 0, :]) for mark in range(0, n_mark): if nans[mark]: x[mark].assign(np.nan) y[mark].assign(np.nan) z[mark].assign(np.nan) return x, y, z def plot_markers_3d_torch(stack, nonan=True): """Return the 3d coordinates for each of the peaks in probability maps.""" import torch n_mark = stack.shape[-1] index = stack.flatten(0, 2).argmax(dim=0).to(torch.int32) inds = unravel_index(index, stack.shape[:-1]) if ~torch.any(torch.isnan(stack[0, 0, 0, :])) and (nonan or not nonan): x = inds[1] y = inds[0] z = inds[2] elif not nonan: x = inds[1] y = inds[0] z = inds[2] for mark in range(0, n_mark): if torch.isnan(stack[:, :, :, mark]): x[mark] = torch.nan y[mark] = torch.nan z[mark] = torch.nan return x, y, z def unravel_index(index, shape): out = [] for dim in reversed(shape): out.append(index % dim) index = index // dim return tuple(reversed(out)) def grid_channelwise_max(grid_): """Return the max value in each channel over a 3D volume. input-- grid_: shape (nvox, nvox, nvox, nchannels) output-- shape (nchannels,) """ return np.max(np.max(np.max(grid_, axis=0), axis=0), axis=0) def moment_3d(im, mesh, thresh=0): """Get the normalized spatial moments of the 3d image stack. inputs-- im: 3d volume confidence map, one for each channel (marker) i.e. shape (nvox,nvox,nvox,nchannels) mesh: spatial coordinates for every position on im thresh: threshold applied to im before calculating moments """ x = [] y = [] z = [] for mark in range(im.shape[3]): # get normalized probabilities im_norm = (im[:, :, :, mark] * (im[:, :, :, mark] >= thresh)) / np.sum( im[:, :, :, mark] * (im[:, :, :, mark] >= thresh) ) x.append(np.sum(mesh[0] * im_norm)) y.append(np.sum(mesh[1] * im_norm)) z.append(np.sum(mesh[2] * im_norm)) return x, y, z def get_peak_inds(map_): """Return the indices of the peak value of an n-d map.""" return np.unravel_index(np.argmax(map_, axis=None), map_.shape) def get_marker_peaks_2d(stack): """Return the concatenated coordinates of all peaks for each map/marker.""" x = [] y = [] for i in range(stack.shape[-1]): inds = get_peak_inds(stack[:, :, i]) x.append(inds[1]) y.append(inds[0]) return x, y def savedata_expval( fname, params, write=True, data=None, num_markers=20, tcoord=True, pmax=False ): """Save the expected values.""" if data is None: f = open(fname, "rb") data = cPickle.load(f) f.close() d_coords = np.zeros((len(list(data.keys())), 3, num_markers)) t_coords = np.zeros((len(list(data.keys())), 3, num_markers)) sID = np.zeros((len(list(data.keys())),)) p_max = np.zeros((len(list(data.keys())), num_markers)) for (i, key) in enumerate(data.keys()): d_coords[i] = data[key]["pred_coord"] if tcoord: t_coords[i] = np.reshape(data[key]["true_coord_nogrid"], (3, num_markers)) if pmax: p_max[i] = data[key]["pred_max"] sID[i] = data[key]["sampleID"] sdict = { "pred": d_coords, "data": t_coords, "p_max": p_max, "sampleID": sID, "metadata": prepare_save_metadata(params), } if write and data is None: sio.savemat( fname.split(".pickle")[0] + ".mat", sdict, ) elif write and data is not None: sio.savemat(fname, sdict) return d_coords, t_coords, p_max, sID def savedata_tomat( fname, params, vmin, vmax, nvox, write=True, data=None, num_markers=20, tcoord=True, tcoord_scale=True, addCOM=None, ): """Save pickled data to a mat file. From a save_data structure saved to a *.pickle file, save a matfile with useful variables for easier manipulation in matlab. Also return pred_out_world and other variables for plotting within jupyter """ if data is None: f = open(fname, "rb") data = cPickle.load(f) f.close() d_coords = np.zeros((list(data.keys())[-1] + 1, 3, num_markers)) t_coords = np.zeros((list(data.keys())[-1] + 1, 3, num_markers)) p_max = np.zeros((list(data.keys())[-1] + 1, num_markers)) log_p_max = np.zeros((list(data.keys())[-1] + 1, num_markers)) sID = np.zeros((list(data.keys())[-1] + 1,)) for (i, key) in enumerate(data.keys()): d_coords[i] = data[key]["pred_coord"] if tcoord: t_coords[i] = np.reshape(data[key]["true_coord_nogrid"], (3, num_markers)) p_max[i] = data[key]["pred_max"] log_p_max[i] = data[key]["logmax"] sID[i] = data[key]["sampleID"] vsize = (vmax - vmin) / nvox # First, need to move coordinates over to centers of voxels pred_out_world = vmin + d_coords * vsize + vsize / 2 if tcoord and tcoord_scale: t_coords = vmin + t_coords * vsize + vsize / 2 if addCOM is not None: # We use the passed comdict to add back in the com, this is useful # if one wnats to bootstrap on these values for COMnet or otherwise for i in range(len(sID)): pred_out_world[i] = pred_out_world[i] + addCOM[int(sID)][:, np.newaxis] sdict = { "pred": pred_out_world, "data": t_coords, "p_max": p_max, "sampleID": sID, "log_pmax": log_p_max, "metadata": prepare_save_metadata(params), } if write and data is None: sio.savemat( fname.split(".pickle")[0] + ".mat", sdict, ) elif write and data is not None: sio.savemat( fname, sdict, ) return pred_out_world, t_coords, p_max, log_p_max, sID def spatial_expval(map_): """Calculate the spatial expected value of the input. Note there is probably underflow here that I am ignoring, because this doesn't need to be *that* accurate """ map_ = map_ / np.sum(map_) x, y = np.meshgrid(np.arange(map_.shape[1]), np.arange(map_.shape[0])) return np.sum(map_ * x), np.sum(map_ * y) def spatial_var(map_): """Calculate the spatial variance of the input.""" expx, expy = spatial_expval(map_) map_ = map_ / np.sum(map_) x, y = np.meshgrid(np.arange(map_.shape[1]), np.arange(map_.shape[0])) return np.sum(map_ * ((x - expx) ** 2 + (y - expy) ** 2)) def spatial_entropy(map_): """Calculate the spatial entropy of the input.""" map_ = map_ / np.sum(map_) return -1 * np.sum(map_ * np.log(map_)) def dupe_params(exp, dupes, n_views): """ When The number of views (n_views) required as input to the network is greater than the number of actual cameras (e.g. when trying to fine-tune a 6-camera network on data from a 2-camera system), automatically duplicate necessary parameters to match the required n_views. """ for d in dupes: val = exp[d] if n_views % len(val) == 0: num_reps = n_views // len(val) exp[d] = val * num_reps else: prompt = "The length of the {} list must divide evenly into {}. Duplicate a subset of the views starting from the first camera (y/n)?".format( d, n_views ) val_in = input(prompt) if val_in == 'y': num_reps = n_views // len(val) num_extra = n_views % len(val) duped = val * num_reps for i in range(num_extra): duped.append(duped[i]) print("Duping {}. Changed from {} to {}".format(d, val, duped)) exp[d] = duped else: raise Exception( "The length of the {} list must divide evenly into {}. Exiting".format( d, n_views ) ) return exp
33.469974
154
0.579478
0cb725d0ce1c6541bcb13849b3c1ca07f7fae4a4
1,796
py
Python
BlenderRenderController/BlenderRenderController/Scripts/get_project_info.py
Isti115/BlenderRenderController
9f3434326ea9b0f223934d354762ccb417253340
[ "MIT" ]
36
2016-05-23T12:44:03.000Z
2022-01-09T00:15:37.000Z
BlenderRenderController/BlenderRenderController/Scripts/get_project_info.py
Isti115/BlenderRenderController
9f3434326ea9b0f223934d354762ccb417253340
[ "MIT" ]
16
2016-06-01T06:36:13.000Z
2021-03-09T00:13:42.000Z
BlenderRenderController/BlenderRenderController/Scripts/get_project_info.py
Isti115/BlenderRenderController
9f3434326ea9b0f223934d354762ccb417253340
[ "MIT" ]
11
2016-07-02T16:53:00.000Z
2021-08-15T05:47:36.000Z
import os import json import bpy import re from bpy import context from bpy import ops from bpy import data blendPath = bpy.context.blend_data.filepath; projName = bpy.path.display_name_from_filepath( blendPath ); # get number of Scenes and active scene name n_data = bpy.data.scenes a_data = bpy.context.scene # get values from strings N_of_Scenes = str(n_data).partition('[')[-1].rpartition(']')[0] ActiveScene = str(a_data).partition('("')[-1].rpartition('")')[0] # set infos acording to active Scene startFrame = bpy.data.scenes[ActiveScene].frame_start endFrame = bpy.data.scenes[ActiveScene].frame_end outputPath = bpy.data.scenes[ActiveScene].render.filepath # get rendering engine renderingEngine = bpy.context.scene.render.engine """ Error code table: 0: no errors -1: output unset, lenth = 0 -2: output invalid, no slashes in path -3: output is relative, has // at start """ # check if relative rel_chk = outputPath[0:2] if len(outputPath) == 0: errorcode = -1 elif outputPath.count("\\") == 0: errorcode = -2 elif rel_chk == "//": errorcode = -3 else: errorcode = 0 # os.path.isabs(my_path) | true = absolute, false = relative # get output dir minus file name altdir = str(outputPath).rpartition('\\')[:-1][0] #print( "Proj Name: %s\n" % (projName) ) #print( "Start: %s\n" % (startFrame) ) #print( "end: %s\n" % (endFrame) ) data = { 'ProjectName': projName, 'StartFrame': startFrame, 'EndFrame': endFrame, 'OutputDirectory': outputPath, 'NumScenes': N_of_Scenes, 'ActiveScene': ActiveScene, 'AltDir': altdir, 'ErrorCode': errorcode, 'RenderingEngine': renderingEngine }; jsonData = json.dumps(data, indent=4, skipkeys=True, sort_keys=True); with open('blend_info.json', 'w') as f: print(jsonData, file=f) print(jsonData);
24.944444
114
0.698775
a1ef18504dc85cdc9f1ce1e8c7bcb0a0f4013181
1,301
py
Python
PreferencePanes/_metadata.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
4
2019-03-11T18:05:49.000Z
2021-05-22T21:09:09.000Z
PreferencePanes/_metadata.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
PreferencePanes/_metadata.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
1
2019-03-18T18:53:36.000Z
2019-03-18T18:53:36.000Z
# This file is generated by objective.metadata # # Last update: Mon Jul 18 12:18:57 2016 import objc, sys if sys.maxsize > 2 ** 32: def sel32or64(a, b): return b else: def sel32or64(a, b): return a if sys.byteorder == 'little': def littleOrBig(a, b): return a else: def littleOrBig(a, b): return b misc = { } constants = '''$NSPrefPaneHelpMenuAnchorKey$NSPrefPaneHelpMenuInfoPListKey$NSPrefPaneHelpMenuTitleKey$NSPreferencePaneCancelUnselectNotification$NSPreferencePaneDoUnselectNotification$NSPreferencePaneSwitchToPaneNotification$NSPreferencePaneUpdateHelpMenuNotification$NSPreferencePrefPaneIsAvailableNotification$''' enums = '''$NSUnselectCancel@0$NSUnselectLater@2$NSUnselectNow@1$''' misc.update({'kNSPrefPaneHelpMenuAnchorKey': b'anchor'.decode("utf-8"), 'kNSPrefPaneHelpMenuTitleKey': b'title'.decode("utf-8"), 'kNSPrefPaneHelpMenuInfoPListKey': b'NSPrefPaneHelpAnchors'.decode("utf-8")}) r = objc.registerMetaDataForSelector objc._updatingMetadata(True) try: r(b'NSPreferencePane', b'autoSaveTextFields', {'retval': {'type': 'Z'}}) r(b'NSPreferencePane', b'isSelected', {'retval': {'type': 'Z'}}) r(b'NSPreferencePane', b'replyToShouldUnselect:', {'arguments': {2: {'type': 'Z'}}}) finally: objc._updatingMetadata(False) expressions = {} # END OF FILE
40.65625
315
0.753267
281a54250f12daf2f62c8b4b1de93778cc97be51
21,938
py
Python
tf_agents/utils/eager_utils_test.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
2
2021-10-30T16:57:37.000Z
2021-11-17T10:21:17.000Z
tf_agents/utils/eager_utils_test.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
null
null
null
tf_agents/utils/eager_utils_test.py
ayansengupta17/agents
c5a2f1f57d4fd0070eb75204aa0b1663de3e2c0a
[ "Apache-2.0" ]
2
2020-06-05T18:38:16.000Z
2020-07-08T14:41:42.000Z
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for tf_agents.utils.eager_utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools from absl.testing import parameterized import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.utils import eager_utils from tf_agents.utils import test_utils from tensorflow.python.eager import context # TF internal from tensorflow.python.framework import test_util # TF internal def input_fn(): tf.compat.v1.set_random_seed(1) inputs = tf.constant([[1, 2], [2, 3], [3, 4]], dtype=tf.float32) labels = tf.constant([[0], [1], [2]]) return inputs, labels class Network(tf.keras.layers.Layer): def __init__(self, name=None): super(Network, self).__init__(name=name) self._layer = tf.keras.layers.Dense( 3, kernel_initializer=tf.compat.v1.initializers.ones(), name='logits') def call(self, inputs): return self._layer(inputs) class Model(object): def __init__(self, name, network): self._name = name self._network = network def __call__(self, inputs): return self._network(inputs) @property def variables(self): return self._network.variables @property def trainable_variables(self): return self._network.trainable_variables @eager_utils.future_in_eager_mode def loss_fn(self, inputs, labels): logits = self._network(inputs) return tf.compat.v1.losses.sparse_softmax_cross_entropy(labels, logits) @eager_utils.future_in_eager_mode def minimize_loss(loss, optimizer): return optimizer.minimize(loss) class Aux(object): def __init__(self): pass def method(self, inputs, labels, param=0): assert isinstance(self, Aux), self return inputs, labels, tf.convert_to_tensor(value=param) def aux_function(inputs, labels, param=0): return inputs, labels, tf.convert_to_tensor(value=param) @parameterized.named_parameters( ('.func_eager', aux_function, context.eager_mode), ('.func_graph', aux_function, context.graph_mode), ('.method_eager', Aux().method, context.eager_mode), ('.method_graph', Aux().method, context.graph_mode), ) class FutureTest(test_utils.TestCase, parameterized.TestCase): def testCreate(self, func_or_method, run_mode): with run_mode(): future = eager_utils.Future(input_fn) self.assertTrue(callable(future)) self.assertIsInstance(future, eager_utils.Future) inputs, labels = future() self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) def testArgsAtInit(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, inputs, labels) inputs, labels, param = future() self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 0) def testArgsAtCall(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method) inputs, labels, param = future(inputs, labels) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 0) def testArgsAtCallOverwriteKwargsInit(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, param=1) inputs, labels, param = future(inputs, labels, 0) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 0) def testKWArgsAtInit(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future( func_or_method, inputs=inputs, labels=labels, param=1) inputs, labels, param = future() self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 1) def testKWArgsAtCall(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method) inputs, labels, param = future(inputs=inputs, labels=labels, param=1) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 1) def testArgsAtInitKWArgsAtInit(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, inputs, labels=labels) inputs, labels, param = future() self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 0) def testArgsAtInitKWArgsAtCall(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, inputs, param=1) inputs, labels, param = future(labels=labels) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 1) def testOverwriteKWArgsAtCall(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, param=-1) inputs, labels, param = future(inputs, labels, param=1) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 1) def testArgsatInitOverwritedKWArgsAtCall(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, inputs, param=-1) inputs, labels, param = future(labels=labels, param=1) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 1) def testPartialArgsAtCallRaisesError(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, inputs) with self.assertRaisesRegexp(TypeError, 'argument'): future(labels) def testArgsAtInitArgsReplacedAtCall(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, labels, inputs) inputs, labels, param = future(inputs, labels) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 0) def testArgsAtCallKWArgsAtInit(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method, labels=labels) inputs, labels, param = future(inputs) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 0) def testArgsAtCallKWArgsAtCall(self, func_or_method, run_mode): with run_mode(): inputs, labels = input_fn() future = eager_utils.Future(func_or_method) inputs, labels, param = future(inputs, labels=labels) self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) self.assertEqual(self.evaluate(param), 0) class FutureInEagerModeTest(test_utils.TestCase): @test_util.run_in_graph_and_eager_modes() def testCreate(self): decorator = eager_utils.future_in_eager_mode(input_fn) self.assertTrue(callable(decorator)) if context.executing_eagerly(): self.assertTrue(isinstance(decorator(), eager_utils.Future)) inputs, labels = decorator()() else: inputs, labels = decorator() self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) def testDecorator(self): @eager_utils.future_in_eager_mode def aux_fn(inputs, labels): return inputs, labels self.assertTrue(callable(aux_fn)) inputs, labels = input_fn() outputs = aux_fn(inputs, labels) if context.executing_eagerly(): self.assertTrue(isinstance(outputs, eager_utils.Future)) inputs, labels = outputs.__call__() else: inputs, labels = outputs self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) def testDelayedArgs(self): @eager_utils.future_in_eager_mode def aux_fn(inputs, labels): return inputs, labels self.assertTrue(callable(aux_fn)) inputs, labels = input_fn() outputs = aux_fn(inputs, labels) if context.executing_eagerly(): self.assertTrue(isinstance(outputs, eager_utils.Future)) inputs, labels = outputs.__call__() else: inputs, labels = outputs self.assertAllEqual(self.evaluate(inputs), [[1, 2], [2, 3], [3, 4]]) self.assertAllEqual(self.evaluate(labels), [[0], [1], [2]]) class EagerUtilsTest(test_utils.TestCase): @test_util.run_in_graph_and_eager_modes() def testModel(self): inputs, labels = input_fn() model = Model('model', Network()) loss = model.loss_fn(inputs, labels) expected_loss = 1.098612 self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(self.evaluate(loss), expected_loss) @test_util.run_in_graph_and_eager_modes() def testLossDecreasesAfterTrainStep(self): inputs, labels = input_fn() model = Model('model', Network()) loss = model.loss_fn(inputs, labels) optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) train_step = minimize_loss(loss, optimizer) initial_loss = 1.098612 final_loss = 1.064379 self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(self.evaluate(loss), initial_loss) self.evaluate(train_step) self.assertAllClose(self.evaluate(loss), final_loss) class ClipGradsTest(test_utils.TestCase): def testClipGrads(self): xs = tf.Variable(0.0) grads = tf.constant(4.0) gradients_to_variables = [(grads, xs)] clipped_gradients_to_variables = eager_utils.clip_gradient_norms( gradients_to_variables, 3.0) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAlmostEqual(4.0, self.evaluate(gradients_to_variables[0][0])) self.assertAlmostEqual(3.0, self.evaluate(clipped_gradients_to_variables[0][0])) def testClipGradsIndexedSlices(self): xs = tf.Variable(0.0) grads = tf.IndexedSlices(values=tf.constant(4.0), indices=tf.constant([0]), dense_shape=None) gradients_to_variables = [(grads, xs)] clipped_gradients_to_variables = eager_utils.clip_gradient_norms( gradients_to_variables, 3.0) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAlmostEqual( 4.0, self.evaluate(gradients_to_variables[0][0].values)) self.assertAlmostEqual( 3.0, self.evaluate(clipped_gradients_to_variables[0][0].values)) def testClipGradsFn(self): xs = tf.Variable(0.0) grads = tf.constant(4.0) gradients_to_variables = [(grads, xs)] clipped_gradients_to_variables = eager_utils.clip_gradient_norms_fn(3.0)( gradients_to_variables) self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAlmostEqual(4.0, self.evaluate(gradients_to_variables[0][0])) self.assertAlmostEqual(3.0, self.evaluate(clipped_gradients_to_variables[0][0])) class CreateTrainOpTest(test_utils.TestCase): @test_util.run_in_graph_and_eager_modes() def testLossDecreasesAfterTrainOp(self): inputs, labels = input_fn() model = Model('model', Network()) loss = model.loss_fn(inputs, labels) optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) train_step = eager_utils.create_train_step(loss, optimizer) initial_loss = 1.098612 final_loss = 1.064379 self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(self.evaluate(train_step), initial_loss) self.assertAllClose(self.evaluate(loss), final_loss) @test_util.run_in_graph_and_eager_modes() def testCreateTrainOpWithTotalLossFn(self): inputs, labels = input_fn() model = Model('model', Network()) loss = model.loss_fn(inputs, labels) model_2 = Model('model_2', Network()) loss_2 = model_2.loss_fn(inputs, labels) @eager_utils.future_in_eager_mode def tuple_loss(loss, loss_2): return (loss() if callable(loss) else loss, loss_2() if callable(loss_2) else loss_2) tuple_loss_value = tuple_loss(loss, loss_2) def first_element(tuple_value): return tuple_value[0] optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) loss = eager_utils.create_train_step( tuple_loss_value, optimizer, total_loss_fn=first_element) expected_loss = 1.098612 self.evaluate(tf.compat.v1.global_variables_initializer()) train_step_model_0, train_step_model_1 = self.evaluate(loss) self.assertAllClose(train_step_model_0, expected_loss) self.assertAllClose(train_step_model_1, expected_loss) @test_util.run_in_graph_and_eager_modes() def testMultipleCallsTrainStep(self): inputs, labels = input_fn() model = Model('model', Network()) loss = model.loss_fn(inputs, labels) optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) train_step = eager_utils.create_train_step(loss, optimizer) initial_loss = 1.098612 final_loss = 1.033917 self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(self.evaluate(train_step), initial_loss) if context.executing_eagerly(): for _ in range(5): train_step = eager_utils.create_train_step(loss, optimizer) train_step = eager_utils.create_train_step(loss, optimizer) self.assertAllClose(self.evaluate(train_step), final_loss) else: for _ in range(5): self.evaluate(train_step) self.assertAllClose(self.evaluate(train_step), final_loss) @test_util.run_in_graph_and_eager_modes() def testVariablesToTrain(self): inputs, labels = input_fn() model = Model('model', Network()) if context.executing_eagerly(): variables_to_train = lambda: model.trainable_variables else: model(inputs) variables_to_train = model.trainable_variables self.assertEqual(len(variables_to_train), 2) loss = model.loss_fn(inputs, labels) optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) train_step = eager_utils.create_train_step( loss, optimizer, variables_to_train=variables_to_train) expected_loss = 1.098612 self.evaluate(tf.compat.v1.global_variables_initializer()) self.assertAllClose(self.evaluate(train_step), expected_loss) self.assertEqual(len(model.trainable_variables), 2) class HasSelfClsArgTest(test_utils.TestCase): def testDirect(self): def func(): pass func2 = lambda: 0 class A(object): def method(self): pass @classmethod def class_method(cls): pass @staticmethod def static_method(): pass self.assertFalse(eager_utils.has_self_cls_arg(func)) self.assertFalse(eager_utils.has_self_cls_arg(func2)) self.assertFalse(eager_utils.has_self_cls_arg(A.static_method)) self.assertTrue(eager_utils.has_self_cls_arg(A.method)) self.assertTrue(eager_utils.has_self_cls_arg(A().method)) self.assertTrue(eager_utils.has_self_cls_arg(A.class_method)) self.assertTrue(eager_utils.has_self_cls_arg(A().class_method)) self.assertTrue(eager_utils.has_self_cls_arg(A.__dict__['method'])) self.assertTrue(eager_utils.has_self_cls_arg(A.__dict__['class_method'])) self.assertFalse(eager_utils.has_self_cls_arg(A.__dict__['static_method'])) def testDecorator(self): def decorator(method): @functools.wraps(method) def _decorator(*args, **kwargs): method(*args, **kwargs) return _decorator class A(object): @decorator def method(self): pass @staticmethod @decorator def static_method(): pass @classmethod @decorator def class_method(cls): pass self.assertTrue(eager_utils.has_self_cls_arg(A.method)) self.assertTrue(eager_utils.has_self_cls_arg(A.class_method)) self.assertFalse(eager_utils.has_self_cls_arg(A.static_method)) @eager_utils.np_function def meshgrid(low, high, nx=2, ny=3): x = np.linspace(low, high, nx) y = np.linspace(low, high, ny) return np.meshgrid(x, y) @eager_utils.np_function(output_dtypes=np.float32) def mean(x): return np.mean(x) @eager_utils.np_function(output_dtypes=lambda x: (x, x)) def repeat(x): return x, x @eager_utils.np_function(output_dtypes=lambda x, y: {'x': x, 'y': y}) def dictionary(x, y): return {'x': x, 'y': y} class NpFunctionTest(test_utils.TestCase): @test_util.run_in_graph_and_eager_modes() def testMeshGrid(self): xv, yv = meshgrid(tf.constant(0), tf.constant(1)) self.assertAllEqual(self.evaluate(xv), [[0., 1.], [0., 1.], [0., 1.]]) self.assertAllEqual(self.evaluate(yv), [[0., 0.], [.5, .5], [1., 1.]]) xv, yv = meshgrid(tf.constant(0.), tf.constant(1.)) self.assertAllEqual(self.evaluate(xv), [[0., 1.], [0., 1.], [0., 1.]]) self.assertAllEqual(self.evaluate(yv), [[0., 0.], [.5, .5], [1., 1.]]) @test_util.run_in_graph_and_eager_modes() def testMeshGridKwargs(self): xv, yv = meshgrid(tf.constant(0), tf.constant(1), nx=2, ny=2) self.assertAllEqual(self.evaluate(xv), [[0., 1.], [0., 1.]]) self.assertAllEqual(self.evaluate(yv), [[0., 0.], [1., 1.]]) @test_util.run_in_graph_and_eager_modes() def testVariables(self): a, b = tf.Variable(0), tf.Variable(1) xv, yv = meshgrid(a, b, nx=2, ny=2) self.evaluate(tf.compat.v1.initializers.global_variables()) self.assertAllEqual(self.evaluate(xv), [[0., 1.], [0., 1.]]) self.assertAllEqual(self.evaluate(yv), [[0., 0.], [1., 1.]]) @test_util.run_in_graph_and_eager_modes() def testGetOutputDtypesInts2Floats(self): x = tf.constant([1, 2, 3]) mean_x = mean(x) self.assertEqual(self.evaluate(mean_x), 2.) @test_util.run_in_graph_and_eager_modes() def testGetOutputDtypesFloats2Floats(self): x = tf.constant([1., 2., 3.]) mean_x = mean(x) self.assertEqual(self.evaluate(mean_x), 2.) @test_util.run_in_graph_and_eager_modes() def testIdentityDtypes(self): x = tf.constant([1]) self.assertAllEqual(self.evaluate(repeat(x)), ([1], [1])) y = tf.constant([1.]) self.assertAllEqual(self.evaluate(repeat(y)), ([1.], [1.])) @test_util.run_in_graph_and_eager_modes() def testInline(self): square = eager_utils.np_function(np.square) x = tf.constant([1, 2, 3]) self.assertAllEqual([1, 4, 9], self.evaluate(square(x))) y = tf.constant([1., 2., 3.]) self.assertAllEqual([1., 4., 9.], self.evaluate(square(y))) @test_util.run_in_graph_and_eager_modes() def testOutputDictionary(self): x = tf.constant([1]) y = tf.constant([1.]) outputs = dictionary(x, y) self.assertAllEqual([1], self.evaluate(outputs['x'])) self.assertAllEqual([1.], self.evaluate(outputs['y'])) @eager_utils.np_function(output_dtypes=np.float32) def np_descent(x, d, mu, n_epochs): n = len(x) f = 2 / n y = np.zeros(n) err = np.zeros(n) w = np.zeros(2) grad = np.zeros(2) for _ in itertools.repeat(None, n_epochs): np.subtract(d, y, out=err) grad[:] = [f * np.sum(err), f * np.dot(err, x)] w = w + mu * grad y = w[0] + w[1] * x return w class NpDescentTest(test_utils.TestCase): def setUp(self): np.random.seed(444) n = 10000 sigma = 0.1 noise = sigma * np.random.randn(n) self._x = np.linspace(0, 2, n) self._d = 3 + 2 * self._x + noise @test_util.run_in_graph_and_eager_modes() def testSolve(self): x, d = tf.constant(self._x), tf.constant(self._d) w = np_descent(x, d, mu=0.001, n_epochs=10000) self.assertAllClose([2.96, 2.03], self.evaluate(w), atol=0.01, rtol=0.01) @test_util.run_all_in_graph_and_eager_modes class DatasetIteratorTest(test_utils.TestCase): def testIteration(self): data = np.arange(100) ds = tf.data.Dataset.from_tensor_slices(data) itr = eager_utils.dataset_iterator(ds) for d in data: self.assertEqual(np.array([d]), self.evaluate(eager_utils.get_next(itr))) if __name__ == '__main__': tf.test.main()
34.988836
79
0.689944
5968249a492308032463e35301e09e109ec5fca3
616
py
Python
PythonMPI/MandelbrotSeq.py
terasakisatoshi/MPI
d4064d8bee356c35a63702c5687726945286213c
[ "MIT" ]
1
2022-02-07T10:51:53.000Z
2022-02-07T10:51:53.000Z
PythonMPI/MandelbrotSeq.py
terasakisatoshi/MPI
d4064d8bee356c35a63702c5687726945286213c
[ "MIT" ]
null
null
null
PythonMPI/MandelbrotSeq.py
terasakisatoshi/MPI
d4064d8bee356c35a63702c5687726945286213c
[ "MIT" ]
1
2022-02-07T10:51:33.000Z
2022-02-07T10:51:33.000Z
import numpy as np import matplotlib.pyplot as plt import time def mandelbrot(x,y,maxit): c=x+y*1j#complex exporession z=0+0j#complex expression it=0 while abs(z)<2 and it<maxit: z=z**2+c it+=1 return it #main x1,x2=-2.0,1.0 y1,y2=-1.0,1.0 w,h=150,100 maxit=1025 C=np.zeros([h,w],dtype=int) dx=(x2-x1)/w dy=(y2-y1)/h start=time.time() for i in range(h): y=y1+i*dy for j in range(w): x=x1+j*dx C[i,j]=mandelbrot(x,y,maxit) plt.imshow(C, aspect="equal") plt.spectral() end=time.time() elapsed_time=end-start print("time= %s" % elapsed_time) plt.show()
18.117647
36
0.623377
6773f7a2442e21a0af672b9805ba9d407085df63
4,999
py
Python
python_analyzer/commands/get_api/_model.py
lars-reimann/python-analyzer
6e0f12acee1c533ca9ef19bbfdc7cc8337e25696
[ "MIT" ]
null
null
null
python_analyzer/commands/get_api/_model.py
lars-reimann/python-analyzer
6e0f12acee1c533ca9ef19bbfdc7cc8337e25696
[ "MIT" ]
5
2021-10-12T10:39:35.000Z
2022-01-01T13:11:19.000Z
python_analyzer/commands/get_api/_model.py
lars-reimann/python-analyzer
6e0f12acee1c533ca9ef19bbfdc7cc8337e25696
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import Any, Optional from python_analyzer.utils import declaration_name, parent_qname class API: @staticmethod def from_json(json: Any) -> API: result = API( json["distribution"], json["package"], json["version"] ) for class_json in json["classes"]: result.add_class(Class.from_json(class_json)) for function_json in json["functions"]: result.add_function(Function.from_json(function_json)) return result def __init__(self, distribution: str, package: str, version: str) -> None: self.distribution: str = distribution self.package: str = package self.version: str = version self.classes: dict[str, Class] = dict() self.functions: dict[str, Function] = dict() def add_class(self, clazz: Class) -> None: self.classes[clazz.qname] = clazz def add_function(self, function: Function) -> None: self.functions[function.qname] = function def is_public_class(self, class_qname: str) -> bool: return class_qname in self.classes and self.classes[class_qname].is_public def is_public_function(self, function_qname: str) -> bool: return function_qname in self.functions and self.functions[function_qname].is_public def class_count(self) -> int: return len(self.classes) def public_class_count(self) -> int: return len([it for it in self.classes.values() if it.is_public]) def function_count(self) -> int: return len(self.functions) def public_function_count(self) -> int: return len([it for it in self.functions.values() if it.is_public]) def parameter_count(self) -> int: return len(self.parameters()) def public_parameter_count(self) -> int: return len([it for it in self.parameters().values() if it.is_public]) def parameters(self) -> dict[str, Parameter]: result: dict[str, Parameter] = {} for function in self.functions.values(): for parameter in function.parameters: parameter_qname = f"{function.qname}.{parameter.name}" result[parameter_qname] = parameter return result def get_default_value(self, parameter_qname: str) -> Optional[str]: function_qname = parent_qname(parameter_qname) parameter_name = declaration_name(parameter_qname) if function_qname not in self.functions: return None for parameter in self.functions[function_qname].parameters: if parameter.name == parameter_name: return parameter.default_value return None def to_json(self) -> Any: return { "distribution": self.distribution, "package": self.package, "version": self.version, "classes": [ clazz.to_json() for clazz in sorted(self.classes.values(), key=lambda it: it.qname) ], "functions": [ function.to_json() for function in sorted(self.functions.values(), key=lambda it: it.qname) ] } class Class: @staticmethod def from_json(json: Any) -> Class: return Class( json["qname"], json["is_public"] ) def __init__(self, qname: str, is_public: bool) -> None: self.qname: str = qname self.is_public: bool = is_public def to_json(self) -> Any: return { "qname": self.qname, "is_public": self.is_public } class Function: @staticmethod def from_json(json: Any) -> Function: return Function( json["qname"], [Parameter.from_json(parameter_json) for parameter_json in json["parameters"]], json["is_public"] ) def __init__(self, qname: str, parameters: list[Parameter], is_public: bool) -> None: self.qname: str = qname self.parameters: list[Parameter] = parameters self.is_public: bool = is_public def to_json(self) -> Any: return { "qname": self.qname, "parameters": [ parameter.to_json() for parameter in self.parameters ], "is_public": self.is_public } class Parameter: @staticmethod def from_json(json: Any) -> Parameter: return Parameter( json["name"], json["default_value"], json["is_public"] ) def __init__(self, name: str, default_value: Optional[str], is_public: bool) -> None: self.name: str = name self.default_value: Optional[str] = default_value self.is_public: bool = is_public def to_json(self) -> Any: return { "name": self.name, "default_value": self.default_value, "is_public": self.is_public }
29.579882
92
0.597119
d12fa580a922544789cbc871aa190ae167dc357f
4,990
py
Python
jenkins_jobs/sphinx/yaml.py
pratikmallya/jenkins-job-builder
83114faba6b85bb0dae066ca3ec4f23871683fb5
[ "Apache-2.0" ]
3
2018-02-20T19:11:48.000Z
2020-04-03T08:44:12.000Z
jenkins_jobs/sphinx/yaml.py
pratikmallya/jenkins-job-builder
83114faba6b85bb0dae066ca3ec4f23871683fb5
[ "Apache-2.0" ]
12
2015-11-30T17:13:11.000Z
2022-03-18T10:58:07.000Z
jenkins_jobs/sphinx/yaml.py
pratikmallya/jenkins-job-builder
83114faba6b85bb0dae066ca3ec4f23871683fb5
[ "Apache-2.0" ]
11
2016-10-25T12:03:32.000Z
2021-04-27T12:16:51.000Z
# Copyright 2012 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Most of this code originated in sphinx.domains.python and # sphinx.ext.autodoc and has been only slightly adapted for use in # subclasses here. # :copyright: Copyright 2007-2011 by the Sphinx team, see AUTHORS. # :license: BSD, see LICENSE for details. import re from sphinx import addnodes from sphinx.domains.python import _pseudo_parse_arglist from sphinx.domains.python import PyModulelevel from sphinx.ext.autodoc import Documenter from sphinx.ext.autodoc import FunctionDocumenter from sphinx.locale import _ yaml_sig_re = re.compile('yaml:\s*(.*)') class PyYAMLFunction(PyModulelevel): def handle_signature(self, sig, signode): """Transform a Python signature into RST nodes. Return (fully qualified name of the thing, classname if any). If inside a class, the current class name is handled intelligently: * it is stripped from the displayed name if present * it is added to the full name (return value) if not present """ name_prefix = None name = sig arglist = None retann = None # determine module and class name (if applicable), as well as full name modname = self.options.get( 'module', self.env.temp_data.get('py:module')) classname = self.env.temp_data.get('py:class') fullname = name signode['module'] = modname signode['class'] = classname signode['fullname'] = fullname sig_prefix = self.get_signature_prefix(sig) if sig_prefix: signode += addnodes.desc_annotation(sig_prefix, sig_prefix) if name_prefix: signode += addnodes.desc_addname(name_prefix, name_prefix) anno = self.options.get('annotation') signode += addnodes.desc_name(name, name) if not arglist: if self.needs_arglist(): # for callables, add an empty parameter list signode += addnodes.desc_parameterlist() if retann: signode += addnodes.desc_returns(retann, retann) if anno: signode += addnodes.desc_annotation(' ' + anno, ' ' + anno) return fullname, name_prefix _pseudo_parse_arglist(signode, arglist) if retann: signode += addnodes.desc_returns(retann, retann) if anno: signode += addnodes.desc_annotation(' ' + anno, ' ' + anno) return fullname, name_prefix def get_index_text(self, modname, name_cls): return _('%s (in module %s)') % (name_cls[0], modname) class YAMLFunctionDocumenter(FunctionDocumenter): priority = FunctionDocumenter.priority + 10 objtype = 'yamlfunction' directivetype = 'yamlfunction' @classmethod def can_document_member(cls, member, membername, isattr, parent): if not FunctionDocumenter.can_document_member(member, membername, isattr, parent): return False if member.__doc__ is not None and yaml_sig_re.match(member.__doc__): return True return False def _find_signature(self, encoding=None): docstrings = Documenter.get_doc(self, encoding, 2) if len(docstrings) != 1: return doclines = docstrings[0] setattr(self, '__new_doclines', doclines) if not doclines: return # match first line of docstring against signature RE match = yaml_sig_re.match(doclines[0]) if not match: return name = match.group(1) # ok, now jump over remaining empty lines and set the remaining # lines as the new doclines i = 1 while i < len(doclines) and not doclines[i].strip(): i += 1 setattr(self, '__new_doclines', doclines[i:]) return name def get_doc(self, encoding=None, ignore=1): lines = getattr(self, '__new_doclines', None) if lines is not None: return [lines] return Documenter.get_doc(self, encoding, ignore) def format_signature(self): result = self._find_signature() self._name = result return '' def format_name(self): return self._name def setup(app): app.add_autodocumenter(YAMLFunctionDocumenter) app.add_directive_to_domain('py', 'yamlfunction', PyYAMLFunction)
34.413793
79
0.649299
160e6071e1da7d7ab2a81e843be45cab88c92203
685
py
Python
app/core/migrations/0003_ingredient.py
Badhansen/recipe-app-api
69b7136ac0616314f354fa27eb6f8b137197d3f8
[ "MIT" ]
null
null
null
app/core/migrations/0003_ingredient.py
Badhansen/recipe-app-api
69b7136ac0616314f354fa27eb6f8b137197d3f8
[ "MIT" ]
null
null
null
app/core/migrations/0003_ingredient.py
Badhansen/recipe-app-api
69b7136ac0616314f354fa27eb6f8b137197d3f8
[ "MIT" ]
1
2020-12-07T07:57:22.000Z
2020-12-07T07:57:22.000Z
# Generated by Django 3.1.2 on 2020-11-03 12:00 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0002_tag'), ] operations = [ migrations.CreateModel( name='Ingredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
28.541667
118
0.617518
9de0ed824ebaabb289cf475e4ffcff88b32489fd
1,574
py
Python
tests/old_suite/interactive/test_pyqt4.py
soleil0-0/pyinstaller
4249a7347f6b81aba9825ded8addb92ee0f85ea9
[ "Apache-2.0" ]
2
2020-09-13T09:15:02.000Z
2021-07-04T04:26:50.000Z
tests/old_suite/interactive/test_pyqt4.py
jeremysanders/pyinstaller
321b24f9a9a5978337735816b36ca6b4a90a2fb4
[ "Apache-2.0" ]
3
2021-06-08T22:52:09.000Z
2021-09-08T02:48:20.000Z
tests/old_suite/interactive/test_pyqt4.py
jeremysanders/pyinstaller
321b24f9a9a5978337735816b36ca6b4a90a2fb4
[ "Apache-2.0" ]
1
2021-09-15T08:52:26.000Z
2021-09-15T08:52:26.000Z
# -*- coding: utf-8 -*- #----------------------------------------------------------------------------- # Copyright (c) 2013-2020, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- import sys from PyQt4 import Qt from PyQt4 import QtCore from PyQt4 import QtGui class MyDialog(QtGui.QDialog): def __init__(self): super(MyDialog, self).__init__() self.label = Qt.QLabel( u"Press <ESC> to exit. Some non-ascii chars: řčšěíáŘ", self) self.setWindowTitle("Hello World from PyQt4") self.resize(400, 200) self.show() def sizeHint(self): return self.label.sizeHint() def keyPressEvent(self, event): if event.key() == QtCore.Qt.Key_Escape: self.close() def main(): app = Qt.QApplication(sys.argv) read_formats = ', '.join([str(format).lower() \ for format in QtGui.QImageReader.supportedImageFormats()]) print("Qt4 plugin paths:", list(app.libraryPaths())) print("Qt4 image read support:", read_formats) print('Qt4 Libraries path:', str(QtCore.QLibraryInfo.location(QtCore.QLibraryInfo.LibrariesPath))) ex = MyDialog() app.exec_() if __name__ == "__main__": main()
29.148148
79
0.595934
38164f531acebbfc578e76147691281232892080
11,345
py
Python
sdk/python/pulumi_aws/ec2/peering_connection_options.py
johnktims/pulumi-aws
c838bc79043f5376c66fc66275a1e012edd3ab7d
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/ec2/peering_connection_options.py
johnktims/pulumi-aws
c838bc79043f5376c66fc66275a1e012edd3ab7d
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/ec2/peering_connection_options.py
johnktims/pulumi-aws
c838bc79043f5376c66fc66275a1e012edd3ab7d
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class PeeringConnectionOptions(pulumi.CustomResource): accepter: pulumi.Output[dict] """ An optional configuration block that allows for [VPC Peering Connection] (http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide) options to be set for the VPC that accepts the peering connection (a maximum of one). * `allowClassicLinkToRemoteVpc` (`bool`) - Allow a local linked EC2-Classic instance to communicate with instances in a peer VPC. This enables an outbound communication from the local ClassicLink connection to the remote VPC. This option is not supported for inter-region VPC peering. * `allowRemoteVpcDnsResolution` (`bool`) - Allow a local VPC to resolve public DNS hostnames to private IP addresses when queried from instances in the peer VPC. * `allowVpcToRemoteClassicLink` (`bool`) - Allow a local VPC to communicate with a linked EC2-Classic instance in a peer VPC. This enables an outbound communication from the local VPC to the remote ClassicLink connection. This option is not supported for inter-region VPC peering. """ requester: pulumi.Output[dict] """ A optional configuration block that allows for [VPC Peering Connection] (http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide) options to be set for the VPC that requests the peering connection (a maximum of one). * `allowClassicLinkToRemoteVpc` (`bool`) - Allow a local linked EC2-Classic instance to communicate with instances in a peer VPC. This enables an outbound communication from the local ClassicLink connection to the remote VPC. This option is not supported for inter-region VPC peering. * `allowRemoteVpcDnsResolution` (`bool`) - Allow a local VPC to resolve public DNS hostnames to private IP addresses when queried from instances in the peer VPC. * `allowVpcToRemoteClassicLink` (`bool`) - Allow a local VPC to communicate with a linked EC2-Classic instance in a peer VPC. This enables an outbound communication from the local VPC to the remote ClassicLink connection. This option is not supported for inter-region VPC peering. """ vpc_peering_connection_id: pulumi.Output[str] """ The ID of the requester VPC peering connection. """ def __init__(__self__, resource_name, opts=None, accepter=None, requester=None, vpc_peering_connection_id=None, __props__=None, __name__=None, __opts__=None): """ Provides a resource to manage VPC peering connection options. > **NOTE on VPC Peering Connections and VPC Peering Connection Options:** This provider provides both a standalone VPC Peering Connection Options and a VPC Peering Connection resource with `accepter` and `requester` attributes. Do not manage options for the same VPC peering connection in both a VPC Peering Connection resource and a VPC Peering Connection Options resource. Doing so will cause a conflict of options and will overwrite the options. Using a VPC Peering Connection Options resource decouples management of the connection options from management of the VPC Peering Connection and allows options to be set correctly in cross-region and cross-account scenarios. Basic usage: Basic cross-account usage: :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[dict] accepter: An optional configuration block that allows for [VPC Peering Connection] (http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide) options to be set for the VPC that accepts the peering connection (a maximum of one). :param pulumi.Input[dict] requester: A optional configuration block that allows for [VPC Peering Connection] (http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide) options to be set for the VPC that requests the peering connection (a maximum of one). :param pulumi.Input[str] vpc_peering_connection_id: The ID of the requester VPC peering connection. The **accepter** object supports the following: * `allowClassicLinkToRemoteVpc` (`pulumi.Input[bool]`) - Allow a local linked EC2-Classic instance to communicate with instances in a peer VPC. This enables an outbound communication from the local ClassicLink connection to the remote VPC. This option is not supported for inter-region VPC peering. * `allowRemoteVpcDnsResolution` (`pulumi.Input[bool]`) - Allow a local VPC to resolve public DNS hostnames to private IP addresses when queried from instances in the peer VPC. * `allowVpcToRemoteClassicLink` (`pulumi.Input[bool]`) - Allow a local VPC to communicate with a linked EC2-Classic instance in a peer VPC. This enables an outbound communication from the local VPC to the remote ClassicLink connection. This option is not supported for inter-region VPC peering. The **requester** object supports the following: * `allowClassicLinkToRemoteVpc` (`pulumi.Input[bool]`) - Allow a local linked EC2-Classic instance to communicate with instances in a peer VPC. This enables an outbound communication from the local ClassicLink connection to the remote VPC. This option is not supported for inter-region VPC peering. * `allowRemoteVpcDnsResolution` (`pulumi.Input[bool]`) - Allow a local VPC to resolve public DNS hostnames to private IP addresses when queried from instances in the peer VPC. * `allowVpcToRemoteClassicLink` (`pulumi.Input[bool]`) - Allow a local VPC to communicate with a linked EC2-Classic instance in a peer VPC. This enables an outbound communication from the local VPC to the remote ClassicLink connection. This option is not supported for inter-region VPC peering. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['accepter'] = accepter __props__['requester'] = requester if vpc_peering_connection_id is None: raise TypeError("Missing required property 'vpc_peering_connection_id'") __props__['vpc_peering_connection_id'] = vpc_peering_connection_id super(PeeringConnectionOptions, __self__).__init__( 'aws:ec2/peeringConnectionOptions:PeeringConnectionOptions', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, accepter=None, requester=None, vpc_peering_connection_id=None): """ Get an existing PeeringConnectionOptions resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[dict] accepter: An optional configuration block that allows for [VPC Peering Connection] (http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide) options to be set for the VPC that accepts the peering connection (a maximum of one). :param pulumi.Input[dict] requester: A optional configuration block that allows for [VPC Peering Connection] (http://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide) options to be set for the VPC that requests the peering connection (a maximum of one). :param pulumi.Input[str] vpc_peering_connection_id: The ID of the requester VPC peering connection. The **accepter** object supports the following: * `allowClassicLinkToRemoteVpc` (`pulumi.Input[bool]`) - Allow a local linked EC2-Classic instance to communicate with instances in a peer VPC. This enables an outbound communication from the local ClassicLink connection to the remote VPC. This option is not supported for inter-region VPC peering. * `allowRemoteVpcDnsResolution` (`pulumi.Input[bool]`) - Allow a local VPC to resolve public DNS hostnames to private IP addresses when queried from instances in the peer VPC. * `allowVpcToRemoteClassicLink` (`pulumi.Input[bool]`) - Allow a local VPC to communicate with a linked EC2-Classic instance in a peer VPC. This enables an outbound communication from the local VPC to the remote ClassicLink connection. This option is not supported for inter-region VPC peering. The **requester** object supports the following: * `allowClassicLinkToRemoteVpc` (`pulumi.Input[bool]`) - Allow a local linked EC2-Classic instance to communicate with instances in a peer VPC. This enables an outbound communication from the local ClassicLink connection to the remote VPC. This option is not supported for inter-region VPC peering. * `allowRemoteVpcDnsResolution` (`pulumi.Input[bool]`) - Allow a local VPC to resolve public DNS hostnames to private IP addresses when queried from instances in the peer VPC. * `allowVpcToRemoteClassicLink` (`pulumi.Input[bool]`) - Allow a local VPC to communicate with a linked EC2-Classic instance in a peer VPC. This enables an outbound communication from the local VPC to the remote ClassicLink connection. This option is not supported for inter-region VPC peering. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["accepter"] = accepter __props__["requester"] = requester __props__["vpc_peering_connection_id"] = vpc_peering_connection_id return PeeringConnectionOptions(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
63.735955
162
0.710621
9a239af58fbe2b0c80bc86a607e9aae74b4768b3
610
py
Python
project/scanner/helpers.py
Mozilla-GitHub-Standards/2c72a3dddbe69ad175e72f759ff33bc6dc22bec05d0e7c304b2fff865cac5390
59bbfbc9ce8fea695ac0cca038dc05033fb081ff
[ "BSD-3-Clause" ]
null
null
null
project/scanner/helpers.py
Mozilla-GitHub-Standards/2c72a3dddbe69ad175e72f759ff33bc6dc22bec05d0e7c304b2fff865cac5390
59bbfbc9ce8fea695ac0cca038dc05033fb081ff
[ "BSD-3-Clause" ]
null
null
null
project/scanner/helpers.py
Mozilla-GitHub-Standards/2c72a3dddbe69ad175e72f759ff33bc6dc22bec05d0e7c304b2fff865cac5390
59bbfbc9ce8fea695ac0cca038dc05033fb081ff
[ "BSD-3-Clause" ]
null
null
null
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from django.utils.html import escapejs from jingo import register # # This is the place to register Django template filters with the jingo # template engine. If you see a filter in the Django documentation [1] # that is not included with Jingo then you can simply import and # register it here as shown below. # # [1] https://docs.djangoproject.com/en/dev/ref/templates/builtins/ # register.filter(escapejs)
33.888889
70
0.757377
8da071939c45ba8026f73d06055c1d73504c698f
7,569
py
Python
tests/core/tests/api.py
mjschultz/django-tastefulpy
c81c7b32da16f9b181589a0311d9819718fdc960
[ "BSD-3-Clause" ]
null
null
null
tests/core/tests/api.py
mjschultz/django-tastefulpy
c81c7b32da16f9b181589a0311d9819718fdc960
[ "BSD-3-Clause" ]
null
null
null
tests/core/tests/api.py
mjschultz/django-tastefulpy
c81c7b32da16f9b181589a0311d9819718fdc960
[ "BSD-3-Clause" ]
null
null
null
from django.contrib.auth.models import User from django.http import HttpRequest from django.test import TestCase from tastefulpy.api import Api from tastefulpy.exceptions import NotRegistered, BadRequest from tastefulpy.resources import Resource, ModelResource from tastefulpy.serializers import Serializer from core.models import Note class NoteResource(ModelResource): class Meta: resource_name = 'notes' queryset = Note.objects.filter(is_active=True) class UserResource(ModelResource): class Meta: resource_name = 'users' queryset = User.objects.all() class ApiTestCase(TestCase): urls = 'core.tests.api_urls' def test_register(self): # NOTE: these have all been registered in core.tests.api_urls api = Api() self.assertEqual(len(api._registry), 0) api.register(NoteResource()) self.assertEqual(len(api._registry), 1) self.assertEqual(sorted(api._registry.keys()), ['notes']) api.register(UserResource()) self.assertEqual(len(api._registry), 2) self.assertEqual(sorted(api._registry.keys()), ['notes', 'users']) api.register(UserResource()) self.assertEqual(len(api._registry), 2) self.assertEqual(sorted(api._registry.keys()), ['notes', 'users']) self.assertEqual(len(api._canonicals), 2) api.register(UserResource(), canonical=False) self.assertEqual(len(api._registry), 2) self.assertEqual(sorted(api._registry.keys()), ['notes', 'users']) self.assertEqual(len(api._canonicals), 2) def test_global_registry(self): api = Api() self.assertEqual(len(api._registry), 0) api.register(NoteResource()) self.assertEqual(len(api._registry), 1) self.assertEqual(sorted(api._registry.keys()), ['notes']) api.register(UserResource()) self.assertEqual(len(api._registry), 2) self.assertEqual(sorted(api._registry.keys()), ['notes', 'users']) api.register(UserResource()) self.assertEqual(len(api._registry), 2) self.assertEqual(sorted(api._registry.keys()), ['notes', 'users']) self.assertEqual(len(api._canonicals), 2) api.register(UserResource(), canonical=False) self.assertEqual(len(api._registry), 2) self.assertEqual(sorted(api._registry.keys()), ['notes', 'users']) self.assertEqual(len(api._canonicals), 2) def test_unregister(self): api = Api() api.register(NoteResource()) api.register(UserResource(), canonical=False) self.assertEqual(sorted(api._registry.keys()), ['notes', 'users']) self.assertEqual(len(api._canonicals), 1) api.unregister('users') self.assertEqual(len(api._registry), 1) self.assertEqual(sorted(api._registry.keys()), ['notes']) self.assertEqual(len(api._canonicals), 1) api.unregister('notes') self.assertEqual(len(api._registry), 0) self.assertEqual(sorted(api._registry.keys()), []) api.unregister('users') self.assertEqual(len(api._registry), 0) self.assertEqual(sorted(api._registry.keys()), []) def test_canonical_resource_for(self): api = Api() note_resource = NoteResource() user_resource = UserResource() api.register(note_resource) api.register(user_resource) self.assertEqual(len(api._canonicals), 2) self.assertEqual(isinstance(api.canonical_resource_for('notes'), NoteResource), True) api_2 = Api() api.unregister(user_resource._meta.resource_name) self.assertRaises(NotRegistered, api.canonical_resource_for, 'users') def test_urls(self): api = Api() api.register(NoteResource()) api.register(UserResource()) patterns = api.urls self.assertEqual(len(patterns), 3) self.assertEqual(sorted([pattern.name for pattern in patterns if hasattr(pattern, 'name')]), ['api_v1_top_level']) self.assertEqual([[pattern.name for pattern in include.url_patterns if hasattr(pattern, 'name')] for include in patterns if hasattr(include, 'reverse_dict')], [['api_dispatch_list', 'api_get_schema', 'api_get_multiple', 'api_dispatch_detail'], ['api_dispatch_list', 'api_get_schema', 'api_get_multiple', 'api_dispatch_detail']]) api = Api(api_name='v2') api.register(NoteResource()) api.register(UserResource()) patterns = api.urls self.assertEqual(len(patterns), 3) self.assertEqual(sorted([pattern.name for pattern in patterns if hasattr(pattern, 'name')]), ['api_v2_top_level']) self.assertEqual([[pattern.name for pattern in include.url_patterns if hasattr(pattern, 'name')] for include in patterns if hasattr(include, 'reverse_dict')], [['api_dispatch_list', 'api_get_schema', 'api_get_multiple', 'api_dispatch_detail'], ['api_dispatch_list', 'api_get_schema', 'api_get_multiple', 'api_dispatch_detail']]) def test_top_level(self): api = Api() api.register(NoteResource()) api.register(UserResource()) request = HttpRequest() resp = api.top_level(request) self.assertEqual(resp.status_code, 200) self.assertEqual(resp.content.decode('utf-8'), '{"notes": {"list_endpoint": "/api/v1/notes/", "schema": "/api/v1/notes/schema/"}, "users": {"list_endpoint": "/api/v1/users/", "schema": "/api/v1/users/schema/"}}') def test_top_level_jsonp(self): api = Api() api.register(NoteResource()) api.register(UserResource()) request = HttpRequest() request.META = {'HTTP_ACCEPT': 'text/javascript'} request.GET = {'callback': 'foo'} resp = api.top_level(request) self.assertEqual(resp.status_code, 200) self.assertEqual(resp['content-type'].split(';')[0], 'text/javascript') self.assertEqual(resp.content.decode('utf-8'), 'foo({"notes": {"list_endpoint": "/api/v1/notes/", "schema": "/api/v1/notes/schema/"}, "users": {"list_endpoint": "/api/v1/users/", "schema": "/api/v1/users/schema/"}})') request = HttpRequest() request.META = {'HTTP_ACCEPT': 'text/javascript'} request.GET = {'callback': ''} try: resp = api.top_level(request) self.fail("Broken callback didn't fail!") except BadRequest: # Regression: We expect this, which is fine, but this used to # be an import error. pass def test_custom_api_serializer(self): """Confirm that an Api can use a custom serializer""" # Origin: https://github.com/toastdriven/django-tastefulpy/pull/817 class JSONSerializer(Serializer): formats = ('json', ) api = Api(serializer_class=JSONSerializer) api.register(NoteResource()) request = HttpRequest() request.META = {'HTTP_ACCEPT': 'text/javascript'} resp = api.top_level(request) self.assertEqual(resp.status_code, 200) self.assertEqual(resp['content-type'], 'application/json', msg="Expected application/json response but received %s" % resp['content-type']) request = HttpRequest() request.META = {'HTTP_ACCEPT': 'application/xml'} resp = api.top_level(request) self.assertEqual(resp.status_code, 200) self.assertEqual(resp['content-type'], 'application/json', msg="Expected application/json response but received %s" % resp['content-type'])
40.913514
336
0.648302
57417c0e0ac1ae7175df666ec7745c5b4c0f940a
5,511
py
Python
SNAKE.py
burleyinnersbm07/pythonSnakeGame
9b669dc3d919a99af053d644fd8151181e5e00d0
[ "MIT" ]
null
null
null
SNAKE.py
burleyinnersbm07/pythonSnakeGame
9b669dc3d919a99af053d644fd8151181e5e00d0
[ "MIT" ]
null
null
null
SNAKE.py
burleyinnersbm07/pythonSnakeGame
9b669dc3d919a99af053d644fd8151181e5e00d0
[ "MIT" ]
null
null
null
import pygame import time import random pygame.init() # Define colors, because the PyGame library # does not do this by default white = (255, 255, 255) darkGray = (50, 50, 50) lightGray = (150, 150, 150) black = (0, 0, 0) red = (245, 0, 0) green = (0, 255, 0) blue = (0, 0, 255) display_width = 800 display_height = 600 gameDisplay = pygame.display.set_mode((display_width, display_height)) # the title of the window pygame.display.set_caption('Snake') # clock clock = pygame.time.Clock() FPS = 15 block_size = 20 font = pygame.font.SysFont(None, 25) # font-size 25 def snake(block_size, snakeList): for XnY in snakeList: pygame.draw.rect(gameDisplay, lightGray, [XnY[0], XnY[1], block_size, block_size]) def message_to_screen(msg, color): screen_text = font.render(msg, True, color) gameDisplay.blit(screen_text, [display_width/2, display_height/2]) # while gameExit is false # the game loop def gameLoop(): gameExit = False gameOver = False # leader/head of the snake starting coords lead_x = display_width/2 lead_y = display_height/2 # track the change in position for constant motion lead_x_change = 0 lead_y_change = 0 # randoms for apple and stuff randAppleX = round(random.randrange(0, display_width - block_size))#/10.0) * 10.0 randAppleY = round(random.randrange(0, display_height - block_size))#/10.0) * 10.0 snakeList = [] snakeLength = 1 while not gameExit: while gameOver == True: gameDisplay.fill(darkGray) message_to_screen("Game over, press C to play again, Q to quit", red) pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: gameOver = False gameExit = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_q: gameExit = True gameOver = False if event.key == pygame.K_c: gameLoop() for event in pygame.event.get(): if event.type == pygame.QUIT: # quit event gameExit = True # stops the loop and makes the X work # moving the snake if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: # if left arrow lead_x_change = -block_size lead_y_change = 0 elif event.key == pygame.K_RIGHT: # if right arrow lead_x_change = block_size lead_y_change = 0 elif event.key == pygame.K_UP: # if up arrow lead_y_change = -block_size lead_x_change = 0 elif event.key == pygame.K_DOWN: # if down arrow lead_y_change = block_size lead_x_change = 0 if lead_x >= display_width or lead_x < 0 or lead_y >= display_height or lead_y < 0: gameOver = True #if event.type == pygame.KEYUP: # if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: # lead_x_change = 0 lead_x += lead_x_change # sum the values lead_y += lead_y_change # sum y values gameDisplay.fill(darkGray) AppleThickness = 30 # draw apple pygame.draw.rect(gameDisplay, red, [randAppleX, randAppleY, AppleThickness, AppleThickness]) # the snakeList snakeHead = [] snakeHead.append(lead_x) snakeHead.append(lead_y) snakeList.append(snakeHead) if len(snakeList) > snakeLength: del snakeList[0] for eachSegment in snakeList[:-1]: if eachSegment == snakeHead: gameOver = True # call snake function # pass variables from the gameLoop() snake(block_size, snakeList) # rect(where, color, coordinates [startX, startY, w, h]) pygame.draw.rect(gameDisplay, lightGray, [lead_x, lead_y, block_size, block_size]) # using fill to draw rectangles # using fill lets you use graphics acceleration #gameDisplay.fill(red, rect=[200, 200, 50, 50]) # draw everything first, then render it pygame.display.update() # logic for collision of snake and apple # if lead_x >= randAppleX and lead_x <= randAppleX + AppleThickness: # if lead_y >= randAppleY and lead_y <= randAppleY + AppleThickness: # randAppleX = round(random.randrange(0, display_width - block_size))#/10.0) * 10.0 # randAppleY = round(random.randrange(0, display_height - block_size))#/10.0) * 10.0 # snakeLength += 1 if lead_x > randAppleX and lead_x < randAppleX + AppleThickness or lead_x + block_size > randAppleX and lead_x + block_size < randAppleX + AppleThickness: if lead_y > randAppleY and lead_y < randAppleY + AppleThickness or lead_y + block_size > randAppleY and lead_y + block_size < randAppleY + AppleThickness: randAppleX = round(random.randrange(0, display_width - block_size))#/10.0) * 10.0 randAppleY = round(random.randrange(0, display_height - block_size))#/10.0) * 10.0 snakeLength += 1 # frames per second # this is the speed at which the snake will move/refresh clock.tick(FPS) pygame.quit() quit() gameLoop()
34.44375
166
0.596625
3504dbf3bead03fe773dea13f1559b56efa25b6b
13,972
py
Python
tests/components/flux_led/test_init.py
liangleslie/core
cc807b4d597daaaadc92df4a93c6e30da4f570c6
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
tests/components/flux_led/test_init.py
liangleslie/core
cc807b4d597daaaadc92df4a93c6e30da4f570c6
[ "Apache-2.0" ]
24,710
2016-04-13T08:27:26.000Z
2020-03-02T12:59:13.000Z
tests/components/flux_led/test_init.py
liangleslie/core
cc807b4d597daaaadc92df4a93c6e30da4f570c6
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Tests for the flux_led component.""" from __future__ import annotations from datetime import timedelta from unittest.mock import AsyncMock, patch import pytest from homeassistant import config_entries from homeassistant.components import flux_led from homeassistant.components.flux_led.const import ( CONF_REMOTE_ACCESS_ENABLED, CONF_REMOTE_ACCESS_HOST, CONF_REMOTE_ACCESS_PORT, DOMAIN, ) from homeassistant.config_entries import ConfigEntryState from homeassistant.const import ( ATTR_FRIENDLY_NAME, CONF_HOST, CONF_NAME, EVENT_HOMEASSISTANT_STARTED, STATE_ON, STATE_UNAVAILABLE, ) from homeassistant.core import HomeAssistant from homeassistant.helpers import entity_registry as er from homeassistant.setup import async_setup_component from homeassistant.util.dt import utcnow from . import ( DEFAULT_ENTRY_TITLE, DHCP_DISCOVERY, FLUX_DISCOVERY, FLUX_DISCOVERY_PARTIAL, IP_ADDRESS, MAC_ADDRESS, MAC_ADDRESS_ONE_OFF, _mocked_bulb, _patch_discovery, _patch_wifibulb, ) from tests.common import MockConfigEntry, async_fire_time_changed @pytest.mark.usefixtures("mock_single_broadcast_address") async def test_configuring_flux_led_causes_discovery(hass: HomeAssistant) -> None: """Test that specifying empty config does discovery.""" with patch( "homeassistant.components.flux_led.discovery.AIOBulbScanner.async_scan" ) as scan, patch( "homeassistant.components.flux_led.discovery.AIOBulbScanner.getBulbInfo" ) as discover: discover.return_value = [FLUX_DISCOVERY] await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert len(scan.mock_calls) == 1 hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(scan.mock_calls) == 2 async_fire_time_changed(hass, utcnow() + flux_led.DISCOVERY_INTERVAL) await hass.async_block_till_done() assert len(scan.mock_calls) == 3 @pytest.mark.usefixtures("mock_multiple_broadcast_addresses") async def test_configuring_flux_led_causes_discovery_multiple_addresses( hass: HomeAssistant, ) -> None: """Test that specifying empty config does discovery.""" with patch( "homeassistant.components.flux_led.discovery.AIOBulbScanner.async_scan" ) as scan, patch( "homeassistant.components.flux_led.discovery.AIOBulbScanner.getBulbInfo" ) as discover: discover.return_value = [FLUX_DISCOVERY] await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert len(scan.mock_calls) == 2 hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(scan.mock_calls) == 4 async_fire_time_changed(hass, utcnow() + flux_led.DISCOVERY_INTERVAL) await hass.async_block_till_done() assert len(scan.mock_calls) == 6 async def test_config_entry_reload(hass: HomeAssistant) -> None: """Test that a config entry can be reloaded.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, unique_id=MAC_ADDRESS ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert config_entry.state == ConfigEntryState.LOADED await hass.config_entries.async_unload(config_entry.entry_id) await hass.async_block_till_done() assert config_entry.state == ConfigEntryState.NOT_LOADED async def test_config_entry_retry(hass: HomeAssistant) -> None: """Test that a config entry can be retried.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, unique_id=MAC_ADDRESS ) config_entry.add_to_hass(hass) with _patch_discovery(no_device=True), _patch_wifibulb(no_device=True): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert config_entry.state == ConfigEntryState.SETUP_RETRY async def test_config_entry_retry_right_away_on_discovery(hass: HomeAssistant) -> None: """Test discovery makes the config entry reload if its in a retry state.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, unique_id=MAC_ADDRESS ) config_entry.add_to_hass(hass) with _patch_discovery(no_device=True), _patch_wifibulb(no_device=True): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert config_entry.state == ConfigEntryState.SETUP_RETRY with _patch_discovery(), _patch_wifibulb(): await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=DHCP_DISCOVERY, ) await hass.async_block_till_done() assert config_entry.state == ConfigEntryState.LOADED async def test_coordinator_retry_right_away_on_discovery_already_setup( hass: HomeAssistant, ) -> None: """Test discovery makes the coordinator force poll if its already setup.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS, CONF_NAME: DEFAULT_ENTRY_TITLE}, unique_id=MAC_ADDRESS, ) config_entry.add_to_hass(hass) bulb = _mocked_bulb() with _patch_discovery(), _patch_wifibulb(device=bulb): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert config_entry.state == ConfigEntryState.LOADED entity_id = "light.bulb_rgbcw_ddeeff" entity_registry = er.async_get(hass) assert entity_registry.async_get(entity_id).unique_id == MAC_ADDRESS state = hass.states.get(entity_id) assert state.state == STATE_ON now = utcnow() bulb.async_update = AsyncMock(side_effect=RuntimeError) async_fire_time_changed(hass, now + timedelta(seconds=50)) await hass.async_block_till_done() state = hass.states.get(entity_id) assert state.state == STATE_UNAVAILABLE bulb.async_update = AsyncMock() with _patch_discovery(), _patch_wifibulb(): await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DHCP}, data=DHCP_DISCOVERY, ) await hass.async_block_till_done() state = hass.states.get(entity_id) assert state.state == STATE_ON @pytest.mark.parametrize( "discovery,title", [ (FLUX_DISCOVERY, DEFAULT_ENTRY_TITLE), (FLUX_DISCOVERY_PARTIAL, DEFAULT_ENTRY_TITLE), ], ) async def test_config_entry_fills_unique_id_with_directed_discovery( hass: HomeAssistant, discovery: dict[str, str], title: str ) -> None: """Test that the unique id is added if its missing via directed (not broadcast) discovery.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, unique_id=None, title=IP_ADDRESS ) config_entry.add_to_hass(hass) last_address = None async def _discovery(self, *args, address=None, **kwargs): # Only return discovery results when doing directed discovery nonlocal last_address last_address = address return [discovery] if address == IP_ADDRESS else [] def _mock_getBulbInfo(*args, **kwargs): nonlocal last_address return [discovery] if last_address == IP_ADDRESS else [] with patch( "homeassistant.components.flux_led.discovery.AIOBulbScanner.async_scan", new=_discovery, ), patch( "homeassistant.components.flux_led.discovery.AIOBulbScanner.getBulbInfo", new=_mock_getBulbInfo, ), _patch_wifibulb(): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert config_entry.state == ConfigEntryState.LOADED assert config_entry.unique_id == MAC_ADDRESS assert config_entry.title == title async def test_time_sync_startup_and_next_day(hass: HomeAssistant) -> None: """Test that time is synced on startup and next day.""" config_entry = MockConfigEntry( domain=DOMAIN, data={CONF_HOST: IP_ADDRESS}, unique_id=MAC_ADDRESS ) config_entry.add_to_hass(hass) bulb = _mocked_bulb() with _patch_discovery(), _patch_wifibulb(device=bulb): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert config_entry.state == ConfigEntryState.LOADED assert len(bulb.async_set_time.mock_calls) == 1 async_fire_time_changed(hass, utcnow() + timedelta(hours=24)) await hass.async_block_till_done() assert len(bulb.async_set_time.mock_calls) == 2 async def test_unique_id_migrate_when_mac_discovered(hass: HomeAssistant) -> None: """Test unique id migrated when mac discovered.""" config_entry = MockConfigEntry( domain=DOMAIN, data={ CONF_REMOTE_ACCESS_HOST: "any", CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_PORT: 1234, CONF_HOST: IP_ADDRESS, CONF_NAME: DEFAULT_ENTRY_TITLE, }, ) config_entry.add_to_hass(hass) bulb = _mocked_bulb() with _patch_discovery(no_device=True), _patch_wifibulb(device=bulb): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert not config_entry.unique_id entity_registry = er.async_get(hass) assert ( entity_registry.async_get("light.bulb_rgbcw_ddeeff").unique_id == config_entry.entry_id ) assert ( entity_registry.async_get("switch.bulb_rgbcw_ddeeff_remote_access").unique_id == f"{config_entry.entry_id}_remote_access" ) with _patch_discovery(), _patch_wifibulb(device=bulb): await hass.config_entries.async_reload(config_entry.entry_id) await hass.async_block_till_done() assert ( entity_registry.async_get("light.bulb_rgbcw_ddeeff").unique_id == config_entry.unique_id ) assert ( entity_registry.async_get("switch.bulb_rgbcw_ddeeff_remote_access").unique_id == f"{config_entry.unique_id}_remote_access" ) async def test_unique_id_migrate_when_mac_discovered_via_discovery( hass: HomeAssistant, ) -> None: """Test unique id migrated when mac discovered via discovery and the mac address from dhcp was one off.""" config_entry = MockConfigEntry( domain=DOMAIN, data={ CONF_REMOTE_ACCESS_HOST: "any", CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_PORT: 1234, CONF_HOST: IP_ADDRESS, CONF_NAME: DEFAULT_ENTRY_TITLE, }, unique_id=MAC_ADDRESS_ONE_OFF, ) config_entry.add_to_hass(hass) bulb = _mocked_bulb() with _patch_discovery(no_device=True), _patch_wifibulb(device=bulb): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert config_entry.unique_id == MAC_ADDRESS_ONE_OFF entity_registry = er.async_get(hass) assert ( entity_registry.async_get("light.bulb_rgbcw_ddeeff").unique_id == MAC_ADDRESS_ONE_OFF ) assert ( entity_registry.async_get("switch.bulb_rgbcw_ddeeff_remote_access").unique_id == f"{MAC_ADDRESS_ONE_OFF}_remote_access" ) for _ in range(2): with _patch_discovery(), _patch_wifibulb(device=bulb): await hass.config_entries.async_reload(config_entry.entry_id) await hass.async_block_till_done() assert ( entity_registry.async_get("light.bulb_rgbcw_ddeeff").unique_id == config_entry.unique_id ) assert ( entity_registry.async_get( "switch.bulb_rgbcw_ddeeff_remote_access" ).unique_id == f"{config_entry.unique_id}_remote_access" ) async def test_name_removed_when_it_matches_entry_title(hass: HomeAssistant) -> None: """Test name is removed when it matches the entry title.""" config_entry = MockConfigEntry( domain=DOMAIN, data={ CONF_REMOTE_ACCESS_HOST: "any", CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_PORT: 1234, CONF_HOST: IP_ADDRESS, CONF_NAME: DEFAULT_ENTRY_TITLE, }, title=DEFAULT_ENTRY_TITLE, ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() assert CONF_NAME not in config_entry.data async def test_entry_is_reloaded_when_title_changes(hass: HomeAssistant) -> None: """Test the entry gets reloaded when the title changes.""" config_entry = MockConfigEntry( domain=DOMAIN, data={ CONF_REMOTE_ACCESS_HOST: "any", CONF_REMOTE_ACCESS_ENABLED: True, CONF_REMOTE_ACCESS_PORT: 1234, CONF_HOST: IP_ADDRESS, }, title=DEFAULT_ENTRY_TITLE, ) config_entry.add_to_hass(hass) with _patch_discovery(), _patch_wifibulb(): await async_setup_component(hass, flux_led.DOMAIN, {flux_led.DOMAIN: {}}) await hass.async_block_till_done() hass.config_entries.async_update_entry(config_entry, title="Shop Light") assert config_entry.title == "Shop Light" await hass.async_block_till_done() assert ( hass.states.get("light.bulb_rgbcw_ddeeff").attributes[ATTR_FRIENDLY_NAME] == "Shop Light" )
36.671916
110
0.707272
12e3d0365cfd2ddb811d5f89a5c9a7ca0eec8f28
6,613
py
Python
custom_components/lovelace_gen/__init__.py
genestealer/Home-Assistant-Configuration
36995da36beddb5cdac46130ad1e3fcce350332b
[ "MIT" ]
8
2019-01-04T08:10:29.000Z
2021-11-05T17:44:35.000Z
custom_components/lovelace_gen/__init__.py
genestealer/Home-Assistant-Configuration
36995da36beddb5cdac46130ad1e3fcce350332b
[ "MIT" ]
1
2022-02-03T03:05:31.000Z
2022-02-05T19:01:34.000Z
custom_components/lovelace_gen/__init__.py
genestealer/Home-Assistant-Configuration
36995da36beddb5cdac46130ad1e3fcce350332b
[ "MIT" ]
4
2020-05-24T18:04:21.000Z
2022-03-09T23:54:05.000Z
import os import logging import json import io import time from collections import OrderedDict import jinja2 from homeassistant.util.yaml import loader from homeassistant.exceptions import HomeAssistantError _LOGGER = logging.getLogger(__name__) def fromjson(value): return json.loads(value) jinja = jinja2.Environment(loader=jinja2.FileSystemLoader("/")) jinja.filters['fromjson'] = fromjson llgen_config = {} def load_yaml(fname, secrets = None, args={}): try: ll_gen = False with open(fname, encoding="utf-8") as f: if f.readline().lower().startswith("# lovelace_gen"): ll_gen = True if ll_gen: stream = io.StringIO(jinja.get_template(fname).render({**args, "_global": llgen_config})) stream.name = fname return loader.yaml.load(stream, Loader=lambda _stream: loader.SafeLineLoader(_stream, secrets)) or OrderedDict() else: with open(fname, encoding="utf-8") as config_file: return loader.yaml.load(config_file, Loader=lambda stream: loader.SafeLineLoader(stream, secrets)) or OrderedDict() except loader.yaml.YAMLError as exc: _LOGGER.error(str(exc)) raise HomeAssistantError(exc) except UnicodeDecodeError as exc: _LOGGER.error("Unable to read file %s: %s", fname, exc) raise HomeAssistantError(exc) def _include_yaml(ldr, node): args = {} if isinstance(node.value, str): fn = node.value else: fn, args, *_ = ldr.construct_sequence(node) fname = os.path.abspath(os.path.join(os.path.dirname(ldr.name), fn)) try: return loader._add_reference(load_yaml(fname, ldr.secrets, args=args), ldr, node) except FileNotFoundError as exc: _LOGGER.error("Unable to include file %s: %s", fname, exc); raise HomeAssistantError(exc) def _uncache_file(ldr, node): path = node.value timestamp = str(time.time()) if '?' in path: return f"{path}&{timestamp}" return f"{path}?{timestamp}" loader.load_yaml = load_yaml loader.SafeLineLoader.add_constructor("!include", _include_yaml) loader.SafeLineLoader.add_constructor("!file", _uncache_file) async def async_setup(hass, config): llgen_config.update(config.get("lovelace_gen")); return True # Allow redefinition of node anchors import yaml def compose_node(self, parent, index): if self.check_event(yaml.events.AliasEvent): event = self.get_event() anchor = event.anchor if anchor not in self.anchors: raise yaml.composer.ComposerError(None, None, "found undefined alias %r" % anchor, event.start_mark) return self.anchors[anchor] event = self.peek_event() anchor = event.anchor self.descend_resolver(parent, index) if self.check_event(yaml.events.ScalarEvent): node = self.compose_scalar_node(anchor) elif self.check_event(yaml.events.SequenceStartEvent): node = self.compose_sequence_node(anchor) elif self.check_event(yaml.events.MappingStartEvent): node = self.compose_mapping_node(anchor) self.ascend_resolver() return node yaml.composer.Composer.compose_node = compose_node # import os # import logging # import json # import io # import time # from collections import OrderedDict # import jinja2 # from homeassistant.util.yaml import loader # from homeassistant.exceptions import HomeAssistantError # _LOGGER = logging.getLogger(__name__) # def fromjson(value): # return json.loads(value) # jinja = jinja2.Environment(loader=jinja2.FileSystemLoader("/")) # jinja.filters['fromjson'] = fromjson # llgen_config = {} # def load_yaml(fname, secrets = None, args={}): # try: # ll_gen = False # with open(fname, encoding="utf-8") as f: # if f.readline().lower().startswith("# lovelace_gen"): # ll_gen = True # if ll_gen: # stream = io.StringIO(jinja.get_template(fname).render({**args, "_global": llgen_config})) # stream.name = fname # return loader.yaml.load(stream, Loader=lambda _stream: loader.SafeLineLoader(_stream, secrets)) or OrderedDict() # else: # with open(fname, encoding="utf-8") as config_file: # return loader.yaml.load(config_file, Loader=lambda stream: loader.SafeLineLoader(stream, secrets)) or OrderedDict() # except loader.yaml.YAMLError as exc: # _LOGGER.error(str(exc)) # raise HomeAssistantError(exc) # except UnicodeDecodeError as exc: # _LOGGER.error("Unable to read file %s: %s", fname, exc) # raise HomeAssistantError(exc) # def _include_yaml(ldr, node): # args = {} # if isinstance(node.value, str): # fn = node.value # else: # fn, args, *_ = ldr.construct_sequence(node) # fname = os.path.abspath(os.path.join(os.path.dirname(ldr.name), fn)) # try: # return loader._add_reference(load_yaml(fname, ldr.secrets, args=args), ldr, node) # except FileNotFoundError as exc: # _LOGGER.error("Unable to include file %s: %s", fname, exc); # raise HomeAssistantError(exc) # def _uncache_file(ldr, node): # path = node.value # timestamp = str(time.time()) # if '?' in path: # return f"{path}&{timestamp}" # return f"{path}?{timestamp}" # loader.load_yaml = load_yaml # loader.SafeLineLoader.add_constructor("!include", _include_yaml) # loader.SafeLineLoader.add_constructor("!file", _uncache_file) # async def async_setup(hass, config): # llgen_config.update(config.get("lovelace_gen")); # return True # # Allow redefinition of node anchors # import yaml # def compose_node(self, parent, index): # if self.check_event(yaml.events.AliasEvent): # event = self.get_event() # anchor = event.anchor # if anchor not in self.anchors: # raise yaml.composer.ComposerError(None, None, "found undefined alias %r" # % anchor, event.start_mark) # return self.anchors[anchor] # event = self.peek_event() # anchor = event.anchor # self.descend_resolver(parent, index) # if self.check_event(yaml.events.ScalarEvent): # node = self.compose_scalar_node(anchor) # elif self.check_event(yaml.events.SequenceStartEvent): # node = self.compose_sequence_node(anchor) # elif self.check_event(yaml.events.MappingStartEvent): # node = self.compose_mapping_node(anchor) # self.ascend_resolver() # return node # yaml.composer.Composer.compose_node = compose_node
33.39899
133
0.668683
8d46fc9c1136ab9aa0b90c8f8915fb4e900a44dd
166,351
py
Python
python/paddle/fluid/framework.py
sunhongwei123/Paddle
cadc6a97040965901adceb102c4946026abf2282
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/framework.py
sunhongwei123/Paddle
cadc6a97040965901adceb102c4946026abf2282
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/framework.py
sunhongwei123/Paddle
cadc6a97040965901adceb102c4946026abf2282
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import collections from collections import defaultdict from collections import Iterable import contextlib from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator import os import re import traceback import six import numpy as np import subprocess import multiprocessing import sys import logging from .. import compat as cpt from .proto import framework_pb2 from . import core from . import unique_name import paddle.version as fluid_version import warnings __all__ = [ 'Program', 'default_startup_program', 'default_main_program', 'program_guard', 'name_scope', 'cuda_places', 'cpu_places', 'cuda_pinned_places', 'in_dygraph_mode', 'is_compiled_with_cuda', 'Variable', 'load_op_library', 'require_version', ] EMPTY_VAR_NAME = core.kEmptyVarName() TEMP_VAR_NAME = core.kTempVarName() GRAD_VAR_SUFFIX = core.kGradVarSuffix() ZERO_VAR_SUFFIX = core.kZeroVarSuffix() CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName() _dygraph_tracer_ = None _dygraph_current_expected_place_ = None def require_version(min_version, max_version=None): """ Check if the installed version of PaddlePaddle is in [min_version, max_version], if the installed version is lower than ``min_version`` or higher than ``max_version``, an exception will be thrown, NO returns if the installed version is satisfied. Args: min_version (str): the minimum version required (like '1.4.0'). max_version (str, optional): the max version required (like '1.6.0'), default is None, meaning any version equal or higher than ``min_version`` is acceptable. Returns: None. Raises: TypeError: if the type of ``min_version`` is not str. TypeError: if the type of ``max_version`` is not str or type(None). ValueError: if the value of ``min_version`` is not in version format. ValueError: if the value of ``max_version`` is not in version format or None. Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``. Examples: .. code-block:: python import paddle.fluid as fluid # any version >= 0.1.0 is acceptable. fluid.require_version('0.1.0') # if 0.1.0 <= version <= 10.0.0, it is acceptable. fluid.require_version(min_version='0.1.0', max_version='10.0.0') """ if not isinstance(min_version, str): raise TypeError( "The type of 'min_version' in require_version must be str, but received %s." % (type(min_version))) if not isinstance(max_version, (str, type(None))): raise TypeError( "The type of 'max_version' in require_version must be str or type(None), but received %s." % (type(max_version))) check_format = re.match(r'\d+(\.\d+){0,3}', min_version) if check_format is None or check_format.group() != min_version: raise ValueError( "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', " "like '1.5.2.0', but received %s" % min_version) if max_version is not None: check_format = re.match(r'\d+(\.\d+){0,3}', max_version) if check_format is None or check_format.group() != max_version: raise ValueError( "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', " "like '1.5.2.0', but received %s" % max_version) version_installed = [ fluid_version.major, fluid_version.minor, fluid_version.patch, fluid_version.rc ] zero_version = ['0', '0', '0', '0'] def version_cmp(ver_a, ver_b): for i in six.moves.range(len(ver_a)): if int(ver_a[i]) > int(ver_b[i]): return 1 elif int(ver_a[i]) < int(ver_b[i]): return -1 return 0 if version_cmp(version_installed, zero_version) == 0: if max_version is not None: warnings.warn( "PaddlePaddle version in [%s, %s] required, but %s installed. " "Maybe you are using a develop version, " "please make sure the version is good with your code." % (min_version, max_version, fluid_version.full_version)) else: warnings.warn( "PaddlePaddle version %s or higher is required, but %s installed, " "Maybe you are using a develop version, " "please make sure the version is good with your code." % (min_version, fluid_version.full_version)) return min_version_split = min_version.split('.') min_version_to_check = min_version_split + zero_version[len( min_version_split):] if max_version is not None: max_version_split = max_version.split('.') max_version_to_check = max_version_split + zero_version[len( max_version_split):] if version_cmp(version_installed, max_version_to_check) > 0 or version_cmp( version_installed, min_version_to_check) < 0: raise Exception( "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed." % (min_version, max_version, fluid_version.full_version)) else: if version_cmp(version_installed, min_version_to_check) < 0: raise Exception( "VersionError: PaddlePaddle version %s or higher is required, but %s installed, " "please upgrade your PaddlePaddle to %s or other higher version." % (min_version, fluid_version.full_version, min_version)) def in_dygraph_mode(): """ This function checks whether the program runs in dynamic graph mode or not. You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api. Returns: bool: Whether the program is running in dynamic graph mode. Examples: .. code-block:: python import paddle.fluid as fluid if fluid.in_dygraph_mode(): print('running in dygraph mode') else: print('not running in dygraph mode') """ return _dygraph_tracer_ is not None def _dygraph_not_support_(func): def __impl__(*args, **kwargs): assert not in_dygraph_mode( ), "We don't support %s in Dygraph mode" % func.__name__ return func(*args, **kwargs) return __impl__ def _dygraph_only_(func): def __impl__(*args, **kwargs): assert in_dygraph_mode( ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__ return func(*args, **kwargs) return __impl__ dygraph_not_support = wrap_decorator(_dygraph_not_support_) dygraph_only = wrap_decorator(_dygraph_only_) def _dygraph_tracer(): return _dygraph_tracer_ def _current_expected_place(): return _dygraph_current_expected_place_ def _cpu_num(): if "CPU_NUM" not in os.environ.keys(): if multiprocessing.cpu_count() > 1: sys.stderr.write( '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n' 'CPU_NUM indicates that how many CPUPlace are used in the current task.\n' 'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n' 'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n' '!!! The default number of CPU_NUM=1.\n'.format( multiprocessing.cpu_count(), multiprocessing.cpu_count())) os.environ['CPU_NUM'] = str(1) cpu_num = os.environ.get('CPU_NUM') return int(cpu_num) def _cuda_ids(): gpus_env = os.getenv("FLAGS_selected_gpus") if gpus_env: device_ids = [int(s) for s in gpus_env.split(",")] else: device_ids = six.moves.range(core.get_cuda_device_count()) return device_ids def is_compiled_with_cuda(): """ Whether this whl package can be used to run the model on GPU. Returns (bool): support gpu or not. Examples: .. code-block:: python import paddle.fluid as fluid support_gpu = fluid.is_compiled_with_cuda() """ return core.is_compiled_with_cuda() def _var_base_to_np(var_base): """ convert VarBase tp numpy Args: var_base(VarBase) : the VarBase to convert Returns (np.ndarray): the np.ndarray contain the value of VarBase """ var = var_base._copy_to(core.CPUPlace(), True) return np.array(var.value().get_tensor()) def cuda_places(device_ids=None): """ **Note**: For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device. The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable. This function creates a list of :code:`fluid.CUDAPlace` objects. If :code:`device_ids` is None, environment variable of :code:`FLAGS_selected_gpus` would be checked first. For example, if :code:`FLAGS_selected_gpus=0,1,2`, the returned list would be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)]. If :code:`FLAGS_selected_gpus` is not set, all visible gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable. If :code:`device_ids` is not None, it should be the device ids of GPUs. For example, if :code:`device_ids=[0,1,2]`, the returned list would be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)]. Parameters: device_ids (list or tuple of int, optional): list of GPU device ids. Returns: list of fluid.CUDAPlace: Created GPU place list. Examples: .. code-block:: python import paddle.fluid as fluid cuda_places = fluid.cuda_places() """ assert core.is_compiled_with_cuda(), \ "Not compiled with CUDA" if device_ids is None: device_ids = _cuda_ids() elif not isinstance(device_ids, (list, tuple)): device_ids = [device_ids] return [core.CUDAPlace(dev_id) for dev_id in device_ids] def cpu_places(device_count=None): """ This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list. If :code:`device_count` is None, the device count would be determined by environment variable :code:`CPU_NUM`. If :code:`CPU_NUM` is not set, the default value is 1, i.e. CPU_NUM=1. :code:`CPU_NUM` indicates the number of devices used in the current task. The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores. Parameters: device_count (int, optional): device number. Default: None. Returns: list of fluid.CPUPlace: Created list of CPU places. Examples: .. code-block:: python import paddle.fluid as fluid cpu_places = fluid.cpu_places() """ if device_count is None: device_count = _cpu_num() return [core.CPUPlace()] * device_count def cuda_pinned_places(device_count=None): """ This function creates a list of :code:`fluid.CUDAPinnedPlace` objects. If :code:`device_count` is None, the device count would be determined by environment variable :code:`CPU_NUM`. If :code:`CPU_NUM` is not set, the default value is 1, i.e. CPU_NUM=1. :code:`CPU_NUM` indicates the number of devices used in the current task. The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores. Parameters: device_count (int, optional): device number. Default: None. Returns: list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places. Examples: .. code-block:: python import paddle.fluid as fluid cuda_pinned_places_cpu_num = fluid.cuda_pinned_places() # or cuda_pinned_places = fluid.cuda_pinned_places(1) """ assert core.is_compiled_with_cuda(), \ "Not compiled with CUDA" if device_count is None: device_count = len(_cuda_ids()) return [core.CUDAPinnedPlace()] * device_count class NameScope(object): def __init__(self, name="", parent=None): self._children = dict() self._name = name self._parent = parent def child(self, prefix): if prefix not in self._children: new_child = NameScope(prefix, self) self._children[prefix] = [new_child] else: new_child = NameScope(prefix + "_%d" % len(self._children[prefix]), self) self._children[prefix].append(new_child) return new_child def parent(self): return self._parent def name(self): return self._name _name_scope = NameScope() @signature_safe_contextmanager def name_scope(prefix=None): """ Generate hierarchical name prefix for the operators. Note: This should only used for debugging and visualization purpose. Don't use it for serious analysis such as graph/program transformations. Args: prefix(str, optional): prefix. Default is none. Examples: .. code-block:: python import paddle.fluid as fluid with fluid.name_scope("s1"): a = fluid.data(name='data', shape=[None, 1], dtype='int32') b = a + 1 with fluid.name_scope("s2"): c = b * 1 with fluid.name_scope("s3"): d = c / 1 with fluid.name_scope("s1"): f = fluid.layers.pow(d, 2.0) with fluid.name_scope("s4"): g = f - 1 # Op are created in the default main program. for op in fluid.default_main_program().block(0).ops: # elementwise_add is created in /s1/ if op.type == 'elementwise_add': assert op.desc.attr("op_namescope") == '/s1/' # elementwise_mul is created in '/s1/s2' elif op.type == 'elementwise_mul': assert op.desc.attr("op_namescope") == '/s1/s2/' # elementwise_div is created in '/s1/s3' elif op.type == 'elementwise_div': assert op.desc.attr("op_namescope") == '/s1/s3/' # elementwise_sum is created in '/s4' elif op.type == 'elementwise_sub': assert op.desc.attr("op_namescope") == '/s4/' # pow is created in /s1_1/ elif op.type == 'pow': assert op.desc.attr("op_namescope") == '/s1_1/' """ # TODO(panyx0718): Only [0-9a-z]. # in dygraph we don't need namescope since it will cause mem leak if not in_dygraph_mode(): assert prefix, "namescope prefix cannot be empty." global _name_scope _name_scope = _name_scope.child(prefix) yield _name_scope = _name_scope.parent() else: yield def _full_name_scope(): global _name_scope scope = _name_scope name = "" while scope: name = scope.name() + "/" + name scope = scope.parent() return name def generate_control_dev_var_name(): import random return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random()) def grad_var_name(var_name): """ Returns: str: gradient name for a certain var name """ return var_name + GRAD_VAR_SUFFIX def convert_np_dtype_to_dtype_(np_dtype): """ Convert the data type in numpy to the data type in Paddle Args: np_dtype(np.dtype): the data type in numpy. Returns: core.VarDesc.VarType: the data type in Paddle. """ dtype = np.dtype(np_dtype) if dtype == np.float32: return core.VarDesc.VarType.FP32 elif dtype == np.float64: return core.VarDesc.VarType.FP64 elif dtype == np.float16: return core.VarDesc.VarType.FP16 elif dtype == np.int32: return core.VarDesc.VarType.INT32 elif dtype == np.int16: return core.VarDesc.VarType.INT16 elif dtype == np.int64: return core.VarDesc.VarType.INT64 elif dtype == np.bool: return core.VarDesc.VarType.BOOL elif dtype == np.uint16: return core.VarDesc.VarType.INT16 elif dtype == np.uint8: return core.VarDesc.VarType.UINT8 elif dtype == np.int8: return core.VarDesc.VarType.INT8 else: raise ValueError("Not supported numpy dtype %s" % dtype) def dtype_is_floating(dtype): """ Check the data type is floating or not. Args: dtype(np.dtype|core.VarDesc.VarType): data type. Could be numpy format or Paddle format Returns(bool): True if data type is a float value """ if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) return dtype in [ core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64 ] def _debug_string_(proto, throw_on_error=True): """ Get the debug string of a protobuf message. The message could be not initialized. Args: proto(google.protobuf.message.Message): The protobuf message throw_on_error(bool): True if raise an error when the protobuf message is not initialized. Returns(str): The debug string of the protobuf message """ error_fields = list() if not proto.IsInitialized(error_fields) and throw_on_error: raise ValueError("{0} are not initialized.\nThe message is {1}:\n". format(error_fields, proto)) return proto.__str__() class Variable(object): """ **Notes**: **The constructor of Variable should not be invoked directly.** **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.** **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data** In Fluid, every input and output of an OP is a variable. In most cases, variables are used for holding different kinds of data or training labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and two variables in different :ref:`api_guide_Block_en` could have the same name. There are many kinds of variables. Each kind of them has its own attributes and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details. Most of a Variable's member variables can be setted to be None. It mean it is not available or will be specified later. Examples: In Static Graph Mode: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ Mode: .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): new_variable = fluid.dygraph.to_variable(np.arange(10)) """ def __init__(self, block, type=core.VarDesc.VarType.LOD_TENSOR, name=None, shape=None, dtype=None, lod_level=None, capacity=None, persistable=None, error_clip=None, stop_gradient=False, is_data=False, need_check_feed=False, belong_to_optimizer=False, **kwargs): self.block = block if name is None: name = unique_name.generate('_generated_var') if dtype is not None: if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) self.belong_to_optimizer = belong_to_optimizer if in_dygraph_mode(): # record vars in tracer rather than blocks self._ivar = kwargs.get("ivar", None) self.stop_gradient_ = kwargs.get("stop_gradient", True) if not self._ivar: self._ivar = core.VarBase( name, type if type else core.VarDesc.VarType.LOD_TENSOR, dtype if dtype else core.VarDesc.VarType.FP32, list(shape) if shape else [], True if persistable else False) if persistable: _dygraph_tracer().trace_var(name, self) self.op = None else: self.error_clip = error_clip is_new_var = False name = cpt.to_text(name) self.desc = self.block.desc.find_var(cpt.to_bytes(name)) if self.desc is None: self.desc = self.block.desc.var(cpt.to_bytes(name)) is_new_var = True if is_new_var: self.desc.set_type(type) elif self.desc.type() != type: raise ValueError( "Variable {0} has been created before. The " "previous type is {1}; the new type is {2}. They" " are not matched".format(self.name, self.desc.type(), type)) if shape is not None: if is_new_var: self.desc.set_shape(shape) else: old_shape = self.shape shape = tuple(shape) if shape != old_shape: raise ValueError( "Variable {0} has been created before. the previous " "shape is {1}; the new shape is {2}. They are not " "matched.".format(self.name, old_shape, shape)) if dtype is not None: if is_new_var: self.desc.set_dtype(dtype) else: old_dtype = self.dtype if dtype != old_dtype: raise ValueError( "Variable {0} has been created before. " "The previous data type is {1}; the new " "data type is {2}. They are not " "matched.".format(self.name, old_dtype, dtype)) if lod_level is not None: if is_new_var: self.desc.set_lod_level(lod_level) else: if lod_level != self.lod_level: raise ValueError( "Variable {0} has been created before. " "The previous lod_level is {1}; the new " "lod_level is {2}. They are not " "matched".format(self.name, self.lod_level, lod_level)) if persistable is not None: if is_new_var: self.desc.set_persistable(persistable) else: if persistable != self.persistable: raise ValueError( "Variable {0} has been created before." "The previous persistable is {1}; the new " "persistable is {2}. They are not matched".format( self.name, self.persistable, persistable)) if need_check_feed and is_new_var: self.desc.set_need_check_feed(need_check_feed) if capacity is not None: if is_new_var: self.desc.set_capacity(capacity) else: # TODO(abhinavarora) : Compare with set capacity once, # get_capacity is implemented pass self.block.vars[name] = self self.op = None self._stop_gradient = stop_gradient self.is_data = is_data @dygraph_only def detach(self): """ **Notes**: **This API is ONLY avaliable in Dygraph mode** Returns a new Variable, detached from the current graph. Returns: ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable. Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph import FC import numpy as np data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') with fluid.dygraph.guard(): fc = FC("fc", 64, num_flatten_dims=2) data = to_variable(data) x = fc(data) y = x.detach() """ if in_dygraph_mode(): new_var = self._cloneVar() self.block.append_op( type="assign", inputs={'X': [self]}, outputs={'Out': [new_var]}, stop_gradient=True) return new_var else: raise AttributeError("static graph model DO NOT supprt detach") @dygraph_only def numpy(self): """ **Notes**: **This API is ONLY avaliable in Dygraph mode** Returns a numpy array shows the value of current :ref:`api_guide_Variable_en` Returns: ndarray: The numpy value of current Variable. Returns type: ndarray: dtype is same as current Variable Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph import FC import numpy as np data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') with fluid.dygraph.guard(): fc = FC("fc", 64, num_flatten_dims=2) data = to_variable(data) x = fc(data) print(x.numpy()) """ if not self._ivar.value().get_tensor()._is_initialized(): raise ValueError("%s is Empty, Please check if it has no data in" % self.name) new_ivar = self._ivar._copy_to(core.CPUPlace(), True) return np.array(new_ivar.value().get_tensor()) @dygraph_only def set_value(self, value): """ **Notes**: **This API is ONLY avaliable in Dygraph mode** Set a new value for this Variable. Args: value (Variable|np.ndarray): the new value. Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph import FC import numpy as np data = np.ones([3, 32, 32], dtype='float32') with fluid.dygraph.guard(): fc = fluid.dygraph.FC("fc", 4) t = to_variable(data) fc(t) # call with default weight custom_weight = np.random.randn(1024, 4).astype("float32") fc.weight.set_value(custom_weight) # change existing weight out = fc(t) # call with different weight """ assert isinstance(value, (Variable, np.ndarray, core.VarBase)), \ "Variable set_value function, arguments type only support Variable, numpy, VarBase" value_np = value if isinstance(value, Variable): value_np = value.numpy() elif isinstance(value, core.VarBase): value_np = _var_base_to_np(value) self_tensor = self._ivar.value().get_tensor() self_tensor_np = np.array(self_tensor) assert self_tensor_np.shape == value_np.shape, \ "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format( self._ivar.name, self_tensor_np.shape, value_np.shape) assert self_tensor_np.dtype == value_np.dtype, \ "Variable dtype not match, Variable [ {} ] need tensor with dtype {} but load tensor with dtype {}".format( self._ivar.name, self_tensor_np.dtype, value_np.dtype) self_tensor.set(value_np, _current_expected_place()) @dygraph_only def backward(self, backward_strategy=None): """ **Notes**: **This API is ONLY avaliable in Dygraph mode** Run backward of current Graph which starts from current Variable Args: backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward Returns: NoneType: None Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): inputs2 = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since # there is no one need gradient on it. tmp.stop_gradient=False inputs2.append(tmp) ret2 = fluid.layers.sums(inputs2) loss2 = fluid.layers.reduce_sum(ret2) backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True loss2.backward(backward_strategy) """ if in_dygraph_mode(): from .dygraph import BackwardStrategy if backward_strategy is None: backward_strategy = BackwardStrategy() backward_strategy.sort_sum_gradient = False self._ivar._run_backward(backward_strategy, _dygraph_tracer()) else: raise ValueError( "Variable.backward() is only avaliable in DyGraph mode") @dygraph_only def gradient(self): """ **Notes**: **This API is ONLY avaliable in Dygraph mode** Get the Gradient of Current Variable Returns: ndarray: Numpy value of the gradient of current Variable Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): inputs2 = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) tmp.stop_gradient=False inputs2.append(tmp) ret2 = fluid.layers.sums(inputs2) loss2 = fluid.layers.reduce_sum(ret2) backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True loss2.backward(backward_strategy) print(loss2.gradient()) """ if self._ivar._grad_ivar() is None: raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \ "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \ "stop_gradient=False, to make sure it has gradient " % self.name) if not self._ivar._grad_ivar().value().get_tensor()._is_initialized(): raise ValueError( "%s's Grad is Empty, Please check if it has no data in" % self.name) new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True) return np.array(new_ivar.value().get_tensor()) @dygraph_only def clear_gradient(self): """ **Notes**: **1. This API is ONLY avaliable in Dygraph mode** **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC** Clear (set to ``0`` ) the Gradient of Current Variable Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): inputs2 = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) tmp.stop_gradient=False inputs2.append(tmp) ret2 = fluid.layers.sums(inputs2) loss2 = fluid.layers.reduce_sum(ret2) backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True loss2.backward(backward_strategy) print(loss2.gradient()) loss2.clear_gradient() print("After clear {}".format(loss2.gradient())) """ self._ivar._clear_gradient() def __str__(self): return self.to_string(True) def to_string(self, throw_on_error, with_details=False): """ Get debug string. Args: throw_on_error (bool): True if raise an exception when self is not initialized. with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False; Returns: str: The debug string. Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print(new_variable.to_string(True)) print("=============with detail===============") print(new_variable.to_string(True, True)) """ if in_dygraph_mode(): # TODO(panyx0718): add more dygraph debug info. tensor = self._ivar.value().get_tensor() if tensor._is_initialized(): return 'name %s, dtype: %s shape: %s %s' % ( self.name, self.dtype, self.shape, str(tensor)) else: return 'name %s, shape: %s, not inited' % (self.name, self.shape) assert isinstance(throw_on_error, bool) and isinstance(with_details, bool) protostr = self.desc.serialize_to_string() proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr)) res_str = _debug_string_(proto, throw_on_error) if with_details: additional_attr = ("error_clip", "stop_gradient") for attr_name in additional_attr: res_str += "%s: %s\n" % (attr_name, cpt.to_text(getattr(self, attr_name))) return res_str __repr__ = __str__ @property def stop_gradient(self): """ Indicating if we stop gradient from current Variable **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False`` Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): value0 = np.arange(26).reshape(2, 13).astype("float32") value1 = np.arange(6).reshape(2, 3).astype("float32") value2 = np.arange(10).reshape(2, 5).astype("float32") fc = fluid.FC("fc1", size=5, dtype="float32") fc2 = fluid.FC("fc2", size=3, dtype="float32") a = fluid.dygraph.to_variable(value0) b = fluid.dygraph.to_variable(value1) c = fluid.dygraph.to_variable(value2) out1 = fc(a) out2 = fc2(b) out1.stop_gradient = True out = fluid.layers.concat(input=[out1, out2, c], axis=1) out.backward() assert (fc._w.gradient() == 0).all() assert (out1.gradient() == 0).all() """ if in_dygraph_mode(): return self._ivar.stop_gradient else: return self._stop_gradient @stop_gradient.setter def stop_gradient(self, s): if in_dygraph_mode(): self._ivar.stop_gradient = s else: self._stop_gradient = s @property def persistable(self): """ Indicating if we current Variable should be long-term alive **Notes: This Property will be deprecated and this API is just to help user understand concept** **1. All Variable's persistable is** ``False`` **except Parameters.** **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("persistable of current Var is: {}".format(new_variable.persistable)) """ if in_dygraph_mode(): return self._ivar.persistable else: return self.desc.persistable() @persistable.setter def persistable(self, p): if in_dygraph_mode(): logging.warn( "There will be no use to set persistable in Dygraph Mode, since " "you can just do it by hold it as normal Python variable") else: self.desc.set_persistable(p) @property def name(self): """ Indicating name of current Variable **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("name of current Var is: {}".format(new_variable.name)) """ if in_dygraph_mode(): return self._ivar.name else: return cpt.to_text(self.desc.name()) @name.setter def name(self, new_name): if in_dygraph_mode(): self._ivar.name = new_name else: self.desc.set_name(new_name) @property def shape(self): """ Indicating shape of current Variable **Notes: This is a read-only property** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("shape of current Var is: {}".format(new_variable.shape)) """ # convert to tuple, make it as same as numpy API. if in_dygraph_mode(): return self._ivar.shape else: return tuple(self.desc.shape()) @property def dtype(self): """ Indicating data type of current Variable **Notes: This is a read-only property** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("Dtype of current Var is: {}".format(new_variable.dtype)) """ if in_dygraph_mode(): return self._ivar.dtype else: return self.desc.dtype() @property @dygraph_not_support def lod_level(self): """ Indicating ``LoD`` info of current Variable, please refer to :ref:`api_fluid_LoDTensor_en` to check the meaning of ``LoD`` **Notes**: **1. This is a read-only property** **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)`` Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("LoD Level of current Var is: {}".format(new_variable.lod_level)) """ # TODO(minqiyang): Support lod_level in dygraph mode if in_dygraph_mode(): raise Exception("Dygraph model DO NOT supprt lod") return self.desc.lod_level() @property def type(self): """ Indicating Type of current Variable **Notes: This is a read-only property** Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') print("Type of current Var is: {}".format(new_variable.type)) """ if in_dygraph_mode(): return self._ivar.type else: return self.desc.type() def _set_error_clip(self, error_clip): """ Set the error_clip. Args: error_clip(BaseErrorClipAttr) : The new error_clip. Returns: None """ self.error_clip = error_clip def _slice_indices(self, slice, length): """ Reference implementation for the slice.indices method. """ # Compute step and length as integers. step = 1 if slice.step is None else slice.step # Raise ValueError for negative length or zero step. if length < 0: raise ValueError("length should not be negative") if step == 0: raise ValueError("slice step cannot be zero") # Find lower and upper bounds for start and stop. lower = -1 if step < 0 else 0 upper = length - 1 if step < 0 else length # Compute start. if slice.start is None: start = upper if step < 0 else lower else: start = slice.start start = max(start + length, lower) if start < 0 else min(start, upper) # Compute stop. if slice.stop is None: stop = lower if step < 0 else upper else: stop = slice.stop stop = max(stop + length, lower) if stop < 0 else min(stop, upper) return start, stop, step def _detectEllipsis(self, item): has_ellipsis = False start = 0 end = len(self.shape) for index, o in enumerate(item): if o is Ellipsis: if has_ellipsis: raise ValueError("Index can have one ellipsis only.") has_ellipsis = True start = index else: if has_ellipsis: end = index return has_ellipsis, start, end def _reconstructSliceinfo(self, item): has_ellipsis, start, end = self._detectEllipsis(item) if has_ellipsis: newitem = [] for i in range(start): newitem.append(item[i]) for i in range(start, end): newitem.append(slice(None, None, None)) for i in range(end, len(item)): newitem.append(item[i]) return newitem else: return None def _detectContinuesSlice(self, item): starts = [] ends = [] for index, o in enumerate(item): if isinstance(o, int): start = int(o) if (index > 0 and index >= self.shape[index]) \ or (index < 0 and (index + self.shape[index]) < 0): raise IndexError("invalid index") start = max(start + self.shape[index], 0) if start < 0 else min( start, self.shape[index]) starts.append(start) ends.append(start + 1) elif isinstance(o, slice): start, stop, step = self._slice_indices(o, self.shape[index]) if step == 1 or step == -1: starts.append(start) ends.append(stop) else: return False, None else: raise IndexError("Valid index accept int or slice or ellipsis") return True, [starts, ends] def _cloneVar(self, copy=False): if not copy: return self.block.create_var( name=unique_name.generate_with_ignorable_key(self.name), dtype=self.dtype) else: return self def _sliceVar(self, axes, starts, ends): new_var = self._cloneVar() self.block.append_op( type="slice", inputs={'Input': [self]}, outputs={'Out': [new_var]}, attrs={'axes': axes, 'starts': starts, 'ends': ends}) return new_var def _concatVar(self, inputs, axis): new_var = self._cloneVar() self.block.append_op( type="concat", inputs={'X': inputs}, outputs={'Out': [new_var]}, attrs={'axis': axis, }) return new_var def _sliceAndConcatVar(self, item, axis): if isinstance(item, slice): if self.shape[axis] < 0: return self._cloneVar(True) start, stop, step = self._slice_indices(item, self.shape[axis]) if step == 1: return self._sliceVar([axis], [start], [stop]) else: vars = [] if step > 0: while start < stop: vars.append( self._sliceVar([axis], [start], [start + 1])) start += step else: while start > stop: vars.append( self._sliceVar([axis], [start], [start + 1])) start += step return self._concatVar(vars, axis) elif isinstance(item, int): if self.shape[axis] < 0: return self._cloneVar(True) index = int(item) if (index > 0 and index >= self.shape[axis]) \ or (index < 0 and (index + self.shape[axis]) < 0): raise IndexError("invalid index") return self._sliceVar([axis], [index], [index + 1]) else: raise IndexError("Valid index accept int or slice or tuple") def __getitem__(self, item): """ Slice the variable. Args: item(int/slice/tuple) : the index. Returns: Sliced variable """ if not isinstance(item, tuple): item = [item] decrease_axis = [] slice_axis = [] slice_start = [] slice_end = [] reverse_axis = [] def fill_constant(shape, dtype, value, force_cpu=False, out=None): self.block.append_op( type='fill_constant', inputs={}, outputs={'Out': [out]}, attrs={ 'shape': shape, 'dtype': out.dtype, 'value': float(value), 'force_cpu': force_cpu or force_init_on_cpu() }, stop_gradient=True) out.stop_gradient = True return out for dim, slice_item in enumerate(item): if isinstance(slice_item, slice): start = slice_item.start end = slice_item.stop step = slice_item.step if slice_item.step else 1 assert (step == 1 or step == -1) if step == -1: reverse_axis.append(dim) assert (start is None and end is None) if start is None and end is None: continue if start is None: start = 0 if end is None: end = 10000000 slice_axis.append(dim) slice_start.append(start) slice_end.append(end) else: decrease_axis.append(dim) slice_axis.append(dim) slice_start.append(slice_item) if isinstance(slice_item, Variable): temp_1 = self.block.create_var(dtype='int32') fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1) temp_end = self.block.create_var(dtype='int32') self.block.append_op( type='elementwise_add', inputs={'X': slice_item, 'Y': temp_1}, outputs={'Out': temp_end}, attrs={'axis': -1}) slice_end.append(temp_end) else: slice_end.append(slice_item + 1 if slice_item != -1 else 10000000) def contain_var(one_list): for ele in one_list: if isinstance(ele, Variable): return True return False def get_new_list_tensor(old_list): new_list_tensor = [] for dim in old_list: if isinstance(dim, Variable): dim.stop_gradient = True new_list_tensor.append(dim) else: assert (isinstance(dim, int)) temp_out = self.block.create_var(dtype='int32') fill_constant( [1], 'int32', dim, force_cpu=True, out=temp_out) new_list_tensor.append(temp_out) return new_list_tensor inputs = {'Input': [self]} attrs = { 'axes': slice_axis, 'starts': [], 'ends': [], 'decrease_axis': decrease_axis } infer_flags = list(1 for i in range(len(slice_axis))) # starts if not contain_var(slice_start): attrs['starts'] = slice_start else: inputs['StartsTensorList'] = get_new_list_tensor(slice_start) for i, dim in enumerate(slice_start): if isinstance(dim, Variable): attrs['starts'].append(-1) infer_flags[i] = -1 else: attrs['starts'].append(dim) # ends if not contain_var(slice_end): attrs['ends'] = slice_end else: inputs['EndsTensorList'] = get_new_list_tensor(slice_end) for i, dim in enumerate(slice_end): if isinstance(dim, Variable): attrs['ends'].append(-1) infer_flags[i] = -1 else: attrs['ends'].append(dim) # infer_flags attrs['infer_flags'] = infer_flags out = self if len(slice_axis) > 0: # append slice_op here slice_out_var = self.block.create_var( name=unique_name.generate_with_ignorable_key(self.name + "_slice"), dtype=self.dtype) self.block.append_op( type="slice", inputs=inputs, outputs={'Out': [slice_out_var]}, attrs=attrs) out = slice_out_var if len(reverse_axis) > 0: reverse_out_var = self.block.create_var( name=unique_name.generate_with_ignorable_key(self.name + "_slice_reverse"), dtype=self.dtype) self.block.append_op( type="reverse", inputs={'X': out}, outputs={'Out': [reverse_out_var]}, attrs={'axis': reverse_axis}) out = reverse_out_var return out def get_all_op_protos(): """ Get all registered op proto from PaddlePaddle C++ end. Returns: list: list of OpProto. """ protostrs = core.get_all_op_protos() ret_values = [] for pbstr in protostrs: op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr)) ret_values.append(op_proto) return ret_values class OpProtoHolder(object): """ A global variable to hold all OpProtos from C++ as a map """ @classmethod def instance(cls): if not hasattr(cls, '_instance'): cls._instance = cls() return cls._instance def __init__(self): assert not hasattr( self.__class__, '_instance'), 'Please use `instance()` to get OpProtoHolder object!' op_protos = get_all_op_protos() self.op_proto_map = {} for proto in op_protos: self.op_proto_map[proto.type] = proto def get_op_proto(self, type): """ Get OpProto by a type string. Args: type(str): The type that operator registered in C++ side. Returns(framework_pb2.OpProto): The OpProto """ if type not in self.op_proto_map: raise ValueError("Operator \"%s\" has not been registered." % type) return self.op_proto_map[type] def update_op_proto(self): op_protos = get_all_op_protos() for proto in op_protos: if proto.type not in self.op_proto_map: self.op_proto_map[proto.type] = proto @staticmethod def generated_op_attr_names(): return { core.op_proto_and_checker_maker.kOpRoleAttrName(), core.op_proto_and_checker_maker.kOpRoleVarAttrName(), core.op_proto_and_checker_maker.kOpNameScopeAttrName(), core.op_proto_and_checker_maker.kOpCreationCallstackAttrName() } class Operator(object): """ In Fluid, all the operation are represented by Operator, and Operator is regarded as a build in an instruction of a Block. Users can use the build in instructions to describe their neural network. Args: block(Block): The block has the current operator. desc(core.OpDesc): The protobuf description of Operator. type(str): The type of operator. Default None. inputs(dict): The input of this Operator. it is a dictionary, for every element, key is the input parameter name, and value is a list of variables. Default None. outputs(dict): The output of this Operator. it is a dictionary, for every element, key is the input parameter name, and value is a list of variables. Default None. attrs(dict): The attributes of this Operator. it is a dictionary, for every element, key is attribute name, and value is the attribute value. The attribute type should be as same as the type registered in C++ side. Default None. Returns: Operator: The initialized Operator. Raises: ValueError: If the passed input, output and attrs doesn't match the initializing Operator's that registered in C++ side. Notes: The constructor of operator should not be invoked directly. Use Block.append_op or Block._prepend_op instead. Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() # var1 += var2 + var3 cur_block.append_op(type="sum", inputs={"X": [var1, var2, var3]}, outputs={"Out": [var1]}) """ OP_WITHOUT_KERNEL_SET = { 'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv', 'listen_and_serv', 'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream' } def __init__(self, block, desc, type=None, inputs=None, outputs=None, attrs=None): if in_dygraph_mode(): if type is None: raise ValueError( "`type` to initialized an Operator can not be None.") self._type = type self.attrs = attrs if attrs else {} else: self.block = block self.desc = desc # note: not add self.attrs here: # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173 op_attrs = attrs if op_attrs is None: op_attrs = dict() del attrs op_maker = core.op_proto_and_checker_maker if op_maker.kOpRoleAttrName() not in op_attrs: op_attrs[op_maker.kOpRoleAttrName( )] = self.block.program._op_role role_var_name = op_maker.kOpRoleVarAttrName() if len(self.block.program. _op_role_var) != 0 and role_var_name not in op_attrs: op_attrs[role_var_name] = self.block.program._op_role_var if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0: del op_attrs[role_var_name] if len(self.desc.type()) != 0: return if type is None: raise ValueError( "`type` to initialized an Operator can not be None.") else: callstack_var_name = op_maker.kOpCreationCallstackAttrName() op_attrs[callstack_var_name] = list( reversed(traceback.format_stack()))[1:] self.desc.set_type(type) proto = OpProtoHolder.instance().get_op_proto(type) namescope_var_name = op_maker.kOpNameScopeAttrName() op_attrs[namescope_var_name] = _full_name_scope() def find_name(var_list, name): for var_name in var_list: if var_list[var_name] is not None and var_name == name: return True return False if inputs is not None: for in_proto in proto.inputs: found = find_name(inputs, in_proto.name) assert found or in_proto.dispensable, "Input {} not found".format( in_proto.name) if found: in_args = inputs[in_proto.name] if not isinstance(in_args, list): in_args = [in_args] if not in_proto.duplicable and len(in_args) > 1: raise ValueError( "Input %s expects only one input, but %d are given." % (in_proto.name, len(in_args))) in_arg_names = [] for index, arg in enumerate(in_args): if isinstance(arg, six.string_types): in_arg_names.append(arg) elif isinstance(arg, six.binary_type): in_arg_names.append(arg.decode()) elif isinstance(arg, Variable): in_arg_names.append(cpt.to_text(arg.name)) else: raise ValueError( "not suprt args type , should be[ string_type, binary_type, Varibale]" ) self.desc.set_input(in_proto.name, in_arg_names) else: self.desc.set_input(in_proto.name, []) if outputs is not None: for m in proto.outputs: if (m.name not in outputs) and m.dispensable: continue if not ((m.name in outputs) or m.dispensable): raise ValueError(("Incorrect setting for output(s) of " "operator \"%s\", should set: [%s].") % (type, m.name)) for out_proto in proto.outputs: if out_proto.name not in outputs: continue out_args = outputs[out_proto.name] if not isinstance(out_args, list): out_args = [out_args] if not out_proto.duplicable and len(out_args) > 1: raise ValueError( "Output %s expects only one output, but %d are given." % (out_proto.name, len(out_args))) out_arg_names = [] for arg in out_args: out_arg_names.append(cpt.to_text(arg.name)) # TODO(minqiyang): could we remove variable's op in static mode? if not in_dygraph_mode(): arg.op = self self.desc.set_output(out_proto.name, out_arg_names) if op_attrs is not None: if not isinstance(op_attrs, dict): raise TypeError("'attrs' should be a dict.") for attr in proto.attrs: attr_name = attr.name if (attr_name not in op_attrs) or ( op_attrs[attr_name] is None): continue attr_val = op_attrs[attr_name] self._update_desc_attr(attr_name, attr_val) self.desc.check_attrs() if self._has_kernel(type): self.desc.infer_var_type(self.block.desc) self.desc.infer_shape(self.block.desc) def _has_kernel(self, op_type): return op_type not in self.OP_WITHOUT_KERNEL_SET def to_string(self, throw_on_error): """ Get debug string. Args: throw_on_error(bool): Whether to raise exception if self is not initialized. Returns: str: The debug string. """ protostr = self.desc.serialize_to_string() proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr)) return _debug_string_(proto, throw_on_error) def __str__(self): return self.to_string(True) __repr__ = __str__ @property def type(self): if in_dygraph_mode(): return self._type else: return self.desc.type() def input(self, name): """ Get the input arguments according to the input parameter name. Args: name(str): The input parameter name. Returns: list: return the list of argument names that associated with \ the specific parameter name. """ return self.desc.input(name) def _rename_input(self, old_name, new_name): """ Rename the `old_name` to `new_name`. Args: old_name(str): The old name of the Operator's input. new_name(str): The new name of the Operator's input. Returns: None """ self.desc._rename_input(old_name, new_name) def _rename_output(self, old_name, new_name): """ Rename the `old_name` to `new_name`. Args: old_name(str): The old name of the Operator's output. new_name(str): The new name of the Operator's output. Returns: None """ self.desc._rename_output(old_name, new_name) @property def input_names(self): return self.desc.input_names() @property def input_arg_names(self): return self.desc.input_arg_names() @property def output_arg_names(self): return self.desc.output_arg_names() def output(self, name): """ Get output arguments by the output parameter name. Args: name(str): The output parameter name. Returns: list: return the list of argument names associated with \ the specific parameter name. """ return self.desc.output(name) @property def output_names(self): return self.desc.output_names() @property def idx(self): for i, op in enumerate(self.block.ops): if op == self: return i raise ValueError( "Can't find op itself in it's block. It could be a bug of Paddle.") def has_attr(self, name): """ Whether this Operator has the attribute with name or not. Args: name(str): the attribute name. Returns: bool: True if has this attribute. """ return self.desc.has_attr(name) def attr_type(self, name): """ Get the type of attribute by attribute's name. Args: name(str): the attribute name. Returns: core.AttrType: the attribute type. """ return self.desc.attr_type(name) def _set_attr(self, name, val): """ Set the value of attribute by attribute's name. Args: name(str): the attribute name. val(bool|int|str|float|list): the value of the attribute. Raises: ValueError: If the type of value doesn't match with desc.attr_type(name). """ self._update_desc_attr(name, val) def _remove_attr(self, name): self.desc.remove_attr(name) def _update_desc_attr(self, name, val): """ Update the value of desc's attribute by attribute's name. Args: name(str): the attribute name. val(bool|int|str|float|list): the value of the attribute. Raises: ValueError: If the type of value doesn't match with desc.attr_type(name). """ if isinstance(val, Block): self.desc.set_block_attr(name, val.desc) elif isinstance(val, list) and val and all( isinstance(v, Block) for v in val): self.desc.set_blocks_attr(name, [v.desc for v in val]) elif isinstance(val, core.BlockDesc) or \ isinstance(val, core.ProgramDesc): self.desc.set_serialized_attr(name, val.serialize_to_string()) else: self.desc._set_attr(name, val) @property def attr_names(self): return self.desc.attr_names() def attr(self, name): """ Get the attribute by name. Args: name(str): the attribute name. Returns: bool|int|str|float|list: The attribute value. The return value can be any valid attribute type. """ return self.desc.attr(name) def _block_attr_id(self, name): """ Get the block attribute's id by name. Args: name(str): the attribute name. Returns: int: the block index. """ return self.desc._block_attr_id(name) def _block_attr(self, name): """ Get the block attribute by name. Args: name(str): the attribute name. Returns: block: the block attribute. """ id = self._block_attr_id(name) assert (id >= 0 and id < len(self.block.program.blocks)) return self.block.program.blocks[id] def _blocks_attr(self, name): """ Get the blocks attribute by name. Args: name(str): the attribute name. Returns: list: list of the blocks attribute. """ attrs = [] for i in self._blocks_attr_ids(name): assert (i >= 0 and i < len(self.block.program.blocks)) attrs.append(self.block.program.blocks[i]) return attrs def _blocks_attr_ids(self, name): """ Get the blocks attribute's ids by name. Args: name(str): the attribute name. Returns: list: list of the blocks ids. """ return self.desc._blocks_attr_ids(name) def all_attrs(self): """ Get the attribute dict. Returns: dict: The Operator's attribute dict, name->attr. """ attr_names = self.attr_names attr_map = {} for n in attr_names: attr_type = self.desc.attr_type(n) if attr_type == core.AttrType.BLOCK: attr_map[n] = self._block_attr(n) continue if attr_type == core.AttrType.BLOCKS: attr_map[n] = self._blocks_attr(n) continue attr_map[n] = self.attr(n) return attr_map class Block(object): """ In Fluid, a Program is consistence of multi-Block, and Block stores VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name. One block could have some child blocks, and child block's name scopes should inherit the parent's so that OpDesc in child block can reference a VarDesc that is stored in the parent block. Please reference the framework.proto for details. Args: program(Program): The Program that the Block belongs to. idx(int): The block's id in the Program. Notes: The constructor of Block should not be invoked directly. Please use `Program._create_block()` to create a block. Examples: .. code-block:: python import paddle.fluid as fluid cur_program = fluid.Program() cur_block = cur_program.current_block() var = cur_block.create_var(name="X", shape=[-1, 23, 48], dtype='float32') cur_block.append_op(type="abs", inputs={"X": [var]}, outputs={"Out": [var]}) """ def __init__(self, program, idx): self.desc = program.desc.block(idx) self.vars = collections.OrderedDict() # var_name --> var self.ops = list() # operator list self.program = program self.removed_vars = collections.OrderedDict() def __str__(self): return self.to_string(True) def to_string(self, throw_on_error, with_details=False): """ Get debug string. Args: throw_on_error(bool): raise exception when self is not initialized when throw_on_error is True. with_details(bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default False. Returns: str: The debug string. """ assert isinstance(throw_on_error, bool) and isinstance(with_details, bool) if with_details: re_add_indent = re.compile(r"\n(.)") res_str = "blocks {\n idx: %d\n parent_idx: %d" % ( self.idx, self.parent_idx) for var in list(self.vars.values()): res_str += "\n vars {\n %s }" % re_add_indent.sub( r"\n \1", var.to_string(throw_on_error, with_details)) for op in self.ops: res_str += "\n ops {\n %s }" % re_add_indent.sub( r"\n \1", op.to_string(throw_on_error)) res_str += "\n}" else: protostr = self.desc.serialize_to_string() proto = framework_pb2.BlockDesc.FromString( six.binary_type(protostr)) res_str = _debug_string_(proto, throw_on_error) return res_str __repr__ = __str__ @property def parent_idx(self): return self.desc.parent @property def forward_block_idx(self): return self.desc.get_forward_block_idx() def _set_forward_block_idx(self, idx): """ Set the forward block Idx. Args: idx(int): the block index. Returns: None """ self.desc._set_forward_block_idx(idx) @property def idx(self): return self.desc.id def var(self, name): """ Get a Variable by name from this block. Args: name(str): the Variable's name. Raises: ValueError: The If input's type is not str, or this block doesn't have a Variable with the giving name. Returns: Variable: the Variable with the giving name. """ if not isinstance(name, six.string_types): raise TypeError( "var require string as parameter, but get %s instead." % (type(name))) v = self.vars.get(name, None) if v is None: raise ValueError("var %s not in this block" % name) return v def _find_var_recursive(self, name): """ Get a Variable by name from this block recursively. Args: name(str): the Variable's name. Returns: Variable: the Variable with the giving name. Or None if not found. """ frontier = list() visited = set() frontier.append(self) prog = self.program while len(frontier) != 0: # BFS cur = frontier[0] frontier = frontier[1:] if id(cur) in visited: continue if cur.has_var(name): return cur.var(name) if cur.parent_idx != -1: frontier.append(prog.block(cur.parent_idx)) if cur.forward_block_idx != -1: frontier.append(prog.block(cur.forward_block_idx)) visited.add(id(cur)) return None def _var_recursive(self, name): """ Get a Variable by name from this block recursively. Args: name(str): the Variable's name. Raises: ValueError: this block and this parent block doesn't have a Variable with the giving name. Returns: Variable: the Variable with the giving name. """ var = self._find_var_recursive(name) if var: return var else: raise ValueError("Var {0} is not found recursively".format(name)) def all_parameters(self): return list(self.iter_parameters()) def iter_parameters(self): return (item[1] for item in six.iteritems(self.vars) if isinstance(item[1], Parameter)) def create_var(self, *args, **kwargs): var = Variable(block=self, *args, **kwargs) if 'initializer' in kwargs: kwargs['initializer'](var, self) return var def has_var(self, name): return name in self.vars def _rename_var(self, name, new_name): """ Rename variable in vars and ops' inputs and outputs Args: name(str): the name that need to be renamed. new_name(str): the name that need to rename to. Raises: ValueError: If this block doesn't have this the giving name, or the type of the var with the giving name is not Parameter or Variable. Returns: Variable: the Variable with the giving name. """ name = cpt.to_text(name) new_name = cpt.to_text(new_name) if not self.has_var(name): raise ValueError("var %s is not in current block" % name) v = self.var(name) if type(v) == Parameter: var_type = "Parameter" stop_gradient = v.stop_gradient trainable = v.trainable optimize_attr = v.optimize_attr regularizer = v.regularizer gradient_clip_attr = v.gradient_clip_attr error_clip = v.error_clip elif type(v) == Variable: var_type = "Variable" error_clip = v.error_clip stop_gradient = v.stop_gradient else: raise ValueError("unsupported var type: %s", type(v)) orig_var_type = v.type self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name)) # NOTE: v is destroyed by C++ after calling _rename_var. d = self.desc.find_var(cpt.to_bytes(new_name)) if var_type == "Parameter": var = Parameter( self, d.shape(), d.dtype(), type=orig_var_type, name=new_name, stop_gradient=stop_gradient, trainable=trainable, optimize_attr=optimize_attr, regularizer=regularizer, gradient_clip_attr=gradient_clip_attr, error_clip=error_clip) elif var_type == "Variable": var = Variable( self, type=orig_var_type, name=new_name, error_clip=error_clip, stop_gradient=stop_gradient) # rename the python side, _sync_with_cpp will only add # new vars/ops to python side. self.vars[new_name] = var del self.vars[name] self._sync_with_cpp() return var def _remove_var(self, name): self._sync_with_cpp() self.desc._remove_var(cpt.to_bytes(name)) del self.vars[name] def create_parameter(self, *args, **kwargs): global_block = self.program.global_block() param = Parameter(global_block, *args, **kwargs) if 'initializer' in kwargs: def _is_inited_by(block, var): init_ops = [] for op in block.ops: if var.name in op.output_arg_names: # In startup_program, "c_broadcast" and "c_sync_comm_stream" # are treated as initialization ops that cause error. # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here. if op.type in ["c_broadcast", "c_sync_comm_stream"]: continue init_ops.append(op) return init_ops initializer = kwargs['initializer'] init_ops = _is_inited_by(global_block, param) init_ops_len = len(init_ops) if init_ops_len > 1: raise RuntimeError("param " + param.name + " is inited by multiple init ops " + str( init_ops)) elif init_ops_len == 1: #TODO already inited, do nothing, should log a warning pass else: initializer(param, self) param.stop_gradient = False return param def append_op(self, *args, **kwargs): """ Appends a new Operator according to the giving arguments. Returns: Operator: the append Operator. """ if in_dygraph_mode(): attrs = kwargs.get("attrs", {}) if _dygraph_tracer_._train_mode == False: # eval mode if ('trainable_statistics' not in attrs ) or not attrs['trainable_statistics']: attrs['is_test'] = True else: attrs['is_test'] = False type = kwargs.get("type", None) op = Operator( block=self, desc=None, type=type, inputs=None, outputs=None, attrs=attrs) # record ops in tracer rather than blocks # # TODO(minqiyang): add op stop_gradient support in static mode too. # currently, we only support stop_gradient in dygraph mode. _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}), kwargs.get("outputs", {}), attrs if attrs else {}, kwargs.get("stop_gradient", False)) else: op_desc = self.desc.append_op() op = Operator( block=self, desc=op_desc, type=kwargs.get("type", None), inputs=kwargs.get("inputs", None), outputs=kwargs.get("outputs", None), attrs=kwargs.get("attrs", None)) self.ops.append(op) return op def _insert_op(self, index, *args, **kwargs): """ Insert a Operator according to the giving arguments. Args: index(int): the place that the operator to insert. Returns: Operator: the insert Operator. """ self._sync_with_cpp() op_desc = self.desc._insert_op(index) op = Operator(block=self, desc=op_desc, *args, **kwargs) self.ops.insert(index, op) return op def _remove_op(self, index): """ Remove the specific position operator. Args: index(int): the position that the operator to insert. Returns: None """ self._sync_with_cpp() self.desc._remove_op(index, index + 1) del self.ops[index] def _slice_ops(self, start, end): """ Return the Operator between start and end. Args: start(int): the start position. end(int): the end position. Returns: list: the Operators between start and end. """ return self.ops[start:end] def _prepend_op(self, *args, **kwargs): if in_dygraph_mode(): type = kwargs.get("type", None) attrs = kwargs.get("attrs", {}) op = Operator( self, None, type=type, inputs=None, outputs=None, attrs=attrs) _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}), kwargs.get("outputs", {}), attrs if attrs else {}, kwargs.get("stop_gradient", False)) else: op_desc = self.desc._prepend_op() op = Operator( self, op_desc, type=kwargs.get("type", None), inputs=kwargs.get("inputs", None), outputs=kwargs.get("outputs", None), attrs=kwargs.get("attrs", None)) self.ops.insert(0, op) return op def _sync_with_cpp(self): """ Sync from the desc on the c++ end. This method is used to synchronize the c++ desc instance generated by backward. """ # sync variables from cpp for var in self.desc.all_vars(): if not self.has_var(var.name()): self.create_var(name=var.name(), desc=var, type=var.type()) # sync variables removed from c++ end for var in list(self.vars.keys()): if not self.desc.find_var(cpt.to_bytes(var)): self.vars.pop(var) # sync operators from cpp ops_in_cpp = [] for op_idx in range(0, self.desc.op_size()): ops_in_cpp.append(self.desc.op(op_idx)) if len(self.ops) != 0: first_op_in_python = self.ops[0].desc last_op_in_python = self.ops[len(self.ops) - 1].desc start_index = None end_index = None for index in range(len(ops_in_cpp)): if first_op_in_python == ops_in_cpp[index]: start_index = index if last_op_in_python == ops_in_cpp[index]: end_index = index assert start_index is not None assert end_index is not None assert start_index <= end_index else: start_index = 0 end_index = -1 # sync ops append to the head of cpp_ops for index in range((start_index - 1 - 1), -1, -1): op_desc = ops_in_cpp[index] op = Operator(self, op_desc) self.ops.insert(0, op) # sync ops append to the end of cpp_ops for index in range((end_index + 1), len(ops_in_cpp)): op_desc = ops_in_cpp[index] op = Operator(self, op_desc) self.ops.append(op) # sync ops removed from c++ end if end_index != -1 and end_index < len(self.ops): ops_in_cpp_index = 0 ops_in_python_index = 0 while ops_in_python_index < len( self.ops) and ops_in_cpp_index < len(ops_in_cpp): if self.ops[ops_in_python_index].desc != ops_in_cpp[ ops_in_cpp_index]: del self.ops[ops_in_python_index] else: ops_in_cpp_index += 1 ops_in_python_index += 1 assert len(self.ops) == len(ops_in_cpp) for index in range(len(self.ops)): assert self.ops[index].desc == ops_in_cpp[index] def _copy_param_info_from(self, other): """ Copy the information of parameters from the other block. Args: other(Block): the other block. Raises: ValueError: If type of input is not Block, or the `other` and this block is not in the same topology. Returns: None """ if not isinstance(other, Block): raise TypeError( "_copy_param_info_from should be invoked with Block") for p in other.iter_parameters(): assert isinstance(p, Parameter) v = self.vars.get(p.name, None) if v is None: raise ValueError("_copy_param_info_from should be invoked with " "same topology") assert isinstance(v, Variable) new_p = Parameter( block=self, shape=v.shape, dtype=v.dtype, type=v.type, lod_level=v.lod_level, stop_gradient=p.stop_gradient, trainable=p.trainable, optimize_attr=p.optimize_attr, regularizer=p.regularizer, gradient_clip_attr=p.gradient_clip_attr, error_clip=p.error_clip, name=v.name) self.vars[new_p.name] = new_p def _clone_variable(self, var, force_persistable=True): """ Clone a variable into current block. Args: var: the variable to be cloned. force_persistable(bool): True means setting the result variable to being persistable. False means setting the persistable the same with that of input var. default: True. Returns: Variable: the new variable cloned from 'var' in current block. """ assert isinstance(var, Variable) ret_var = None # make STEP_SCOPES var can be safely cloned. if var.type == core.VarDesc.VarType.STEP_SCOPES: ret_var = self.create_var( name=var.name, persistable=var.persistable, type=var.type) elif var.type == core.VarDesc.VarType.RAW: ret_var = self.create_var( name=var.name, persistable=var.persistable, type=var.type) elif var.type == core.VarDesc.VarType.SELECTED_ROWS: ret_var = self.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, persistable=True if force_persistable else var.persistable, is_data=var.is_data, need_check_feed=var.desc.need_check_feed()) else: ret_var = self.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, persistable=True if force_persistable else var.persistable, is_data=var.is_data, need_check_feed=var.desc.need_check_feed()) return ret_var class IrNode(object): """ Python IrNode. Beneath it is a core.Node, which is used for Ir Pass. """ def __init__(self, node): """ Construct an IrNode using core.Node. Args: node(core.Node): C++ Node. """ assert isinstance(node, core.Node), 'node must be the instance of core.Node.' self.node = node def name(self): """ Return the node name. Returns: str: node name. """ return self.node.name() def node_type(self): """ Return the node type. Returns: core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable). """ return self.node.node_type() def var(self): """ Return the node variable description. Returns: core.VarDesc: node variable description. """ return self.node.var() def op(self): """ Return the node operator description. Returns: core.OpDesc: node operator description. """ return self.node.op() def id(self): """ Return the node id. Returns: int: node id. """ return self.node.id() def is_op(self): """ If the node is an operator, then return true. Returns: bool: indicate whether the node is an operator. """ return self.node.is_op() def is_var(self): """ If the node is a variable, then return true. Returns: bool: indicate whether the node is a variable. """ return self.node.is_var() def is_ctrl_var(self): """ If the node is a control dependence variable, then return true. Returns: bool: indicate whether the node is a control dependence variable. """ return self.node.is_ctrl_var() def clear_inputs(self): """ Clear the node inputs. After executing the `clear_inputs` function, the node inputs will be empty. """ self.node.clear_inputs() def remove_input_by_id(self, node_id): """ Remove a node from inputs by the given node id. Args: node_id(int): the given node id. """ self.node.remove_input(node_id) def remove_input(self, node): """ Remove a node from inputs. Args: node(IrNode): the node being removed. """ self.node.remove_input(node.node) def append_input(self, node): """ Append a node in inputs. Args: node(IrNode): the node being appended. """ self.node.append_input(node.node) def clear_outputs(self): """ Clear the node outputs. After executing the `clear_outputs` function, the node outputs will be empty. """ self.node.clear_outputs() def remove_output_by_id(self, node_id): """ Remove a node from outputs by the given node id. Args: node_id(int): the given node id. """ self.node.remove_output(node_id) def remove_output(self, node): """ Remove a node from outputs. Args: node(IrNode): the node being removed. """ self.node.remove_output(node.node) def append_output(self, node): """ Append a node in outputs. Args: node(IrNode): the node being appended. """ self.node.append_output(node.node) @property def inputs(self): """ Return the node inputs. Returns: list(IrNode): node inputs wrapped by IrNode. """ return [IrNode(n) for n in self.node.inputs] @property def outputs(self): """ Return the node outputs. Returns: list(IrNode): node outputs wrapped by IrNode. """ return [IrNode(n) for n in self.node.outputs] class IrVarNode(IrNode): """ Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode. """ def __init__(self, node): """ Construct an IrVarNode using core.Node. Args: node(core.Node): C++ Node. """ assert isinstance(node, core.Node) and node.is_var(), \ 'node must be the instance of core.Node and it must be a variable node.' super(IrVarNode, self).__init__(node) self.node = node def set_shape(self, shape): """ Set the node variable shape. Args: shape(list): shape to be set. """ assert self.node.var() is not None, \ "The node variable description cannot be None." self.node.var().set_shape(shape) def persistable(self): """ If the variable node is a persistable variable, then return true. Returns: bool: indicate whether the variable is persistable. """ assert self.node.var() is not None, \ "The node variable description cannot be None." return self.node.var().persistable() def type(self): """ Return the variable type. Returns: core.VarDesc.VarType: the variable type. """ assert self.node.var() is not None, \ "The node variable description cannot be None." return self.node.var().type() def dtype(self): """ Return the variable data type. Returns: core.VarDesc.VarType: the variable data type. """ assert self.node.var() is not None, \ "The node variable description cannot be None." return self.node.var().dtype() def shape(self): """ Return the variable shape. Returns: list: the variable shape. """ assert self.node.var() is not None, \ "The node variable description cannot be None." return self.node.var().shape() @property def inputs(self): """ Return the node inputs. Returns: list(IrOpNode): node inputs wrapped by IrOpNode. """ return [IrOpNode(n) for n in self.node.inputs] @property def outputs(self): """ Return the node outputs. Returns: list(IrOpNode): node outputs wrapped by IrOpNode. """ return [IrOpNode(n) for n in self.node.outputs] class IrOpNode(IrNode): """ Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode. """ def __init__(self, node): """ Construct an IrOpNode using core.Node. Args: node(core.Node): C++ Node. """ assert isinstance(node, core.Node) and node.is_op(), \ 'node must be the instance of core.Node and it must be a operator node.' super(IrOpNode, self).__init__(node) self.node = node def rename_input(self, old_input_name, new_input_name): """ Rename the input of this node. Args: old_input_name(str): the old input name. new_input_name(str): the new input name. """ assert self.node.op() is not None, \ "The node operator description cannot be None." self.node.op()._rename_input(old_input_name, new_input_name) def rename_output(self, old_output_name, new_output_name): """ Rename the output of this node. Args: old_output_name(str): the old output name. new_output_name(str): the new output name. """ assert self.node.op() is not None, \ "The node operator description cannot be None." print("op: {}, old: {}, new: {}\n".format(self.node.op().type( ), old_output_name, new_output_name)) self.node.op()._rename_output(old_output_name, new_output_name) def input(self, name): """ Get the argument name list by the parameter name for input. Args: name(str): the parameter name. Returns: list(str): the argument name list. """ assert self.node.op() is not None, \ "The node operator description cannot be None." return self.node.op().input(name) def output(self, name): """ Get the argument name list by the parameter name for output. Args: name(str): the parameter name. Returns: list(str): the argument name list. """ assert self.node.op() is not None, \ "The node operator description cannot be None." return self.node.op().output(name) def set_type(self, new_type): """ Change the operator type into new type. Args: new_type(str): new operator type to be set. """ assert self.node.op() is not None, \ "The node operator description cannot be None." return self.node.op().set_type(new_type) def set_attr(self, name, val): """ Set the value of attribute by attribute's name. Args: name(str): the attribute name. val(bool|int|str|float|list): the value of the attribute. """ self._update_desc_attr(name, val) def _update_desc_attr(self, name, val): """ Update the value of the op desc's attribute by attribute's name. """ assert self.node.op() is not None, \ "The node operator description cannot be None." desc = self.node.op() if isinstance(val, Block): desc.set_block_attr(name, val.desc) elif isinstance(val, list) and val and \ all(isinstance(v, Block) for v in val): desc.set_blocks_attr(name, [v.desc for v in val]) elif isinstance(val, core.BlockDesc) or \ isinstance(val, core.ProgramDesc): desc.set_serialized_attr(name, val.serialize_to_string()) else: desc._set_attr(name, val) def input_arg_names(self): """ Return input arguments' names of this op node. Returns: list(str): input arguments' names of this op node. """ assert self.node.op() is not None, \ "The node operator description cannot be None." return self.node.op().input_arg_names() def output_arg_names(self): """ Return output arguments' names of this op node. Returns: list(str): output arguments' names of this op node. """ assert self.node.op() is not None, \ "The node operator description cannot be None." return self.node.op().output_arg_names() @property def inputs(self): """ Return the node inputs. Returns: list(IrVarNode): node inputs wrapped by IrVarNode. """ return [IrVarNode(n) for n in self.node.inputs] @property def outputs(self): """ Return the node outputs. Returns: list(IrVarNode): node outputs wrapped by IrVarNode. """ return [IrVarNode(n) for n in self.node.outputs] class IrGraph(object): """ Python IrGraph. Beneath it is a core.Graph, which is used for creating a c++ Ir Pass Graph. An IrGraph is just a graph view of a Program. In an IrGraph, both Variables and Operators are graph nodes. """ def __init__(self, graph, for_test=False): """ Construct an IrGraph using core.Graph. Args: graph(core.Graph): C++ Graph. for_test(bool): True for the test graph and false for the train graph. """ assert isinstance( graph, core.Graph), 'graph must be the instance of core.Graph.' self.graph = graph self._for_test = for_test def clone(self): """ Create a new and duplicated IrGraph. Warns: The method only clones the graph structure, not its attributes. Returns: IrGraph: A new and duplicated graph. """ g = self.graph.clone() return IrGraph(g, self._for_test) def is_test(self): """ If the graph is used for testing, the function returns true. Otherwise, returns false. """ return self._for_test def all_nodes(self): """ Return all nodes included in the graph as a set. """ return {IrNode(node) for node in self.graph.nodes()} def all_var_nodes(self): """ Return all variable nodes included in the graph as a set. """ return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()} def all_persistable_nodes(self): """ Return all persistable variable nodes included in the graph as a set. """ persistable_nodes = set() for node in self.graph.nodes(): if node.is_var() and node.var() is not None and node.var( ).persistable(): persistable_nodes.add(node) return {IrVarNode(p) for p in persistable_nodes} def all_op_nodes(self): """ Return all operator nodes included in the graph as a set. """ return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()} def create_persistable_node(self, name, var_type, shape, var_dtype): """ Create a persistable variable node in the graph. In IrGraph, it can not distinguish between persistable variables and parameters. Args: name(str): the name of the persistable variable node. vart_type(core.VarDesc.VarType): the type of the persistable variable node. shape(list): the shape of the persistable variable node. var_dtype(core.VarDesc.VarType): the data type of the persistable variable node. Returns: IrVarNode: the created persistable variable node. """ var_desc = core.VarDesc(name) var_desc.set_type(var_type) var_desc.set_shape(shape) var_desc.set_dtype(var_dtype) var_desc.set_persistable(True) return IrVarNode(self.graph.create_var_node(var_desc)) def create_var_node(self, name, var_type, shape, var_dtype): """ Create a variable node in the graph. The created variable node is not persistable. Args: name(str): the name of the variable node. vart_type(core.VarDesc.VarType): the type of the variable node. shape(list): the shape of the variable node. var_dtype(core.VarDesc.VarType): the data type of the variable node. Returns: IrVarNode: the created variable node. """ var_desc = core.VarDesc(name) var_desc.set_type(var_type) var_desc.set_shape(shape) var_desc.set_dtype(var_dtype) return IrVarNode(self.graph.create_var_node(var_desc)) def create_var_node_from_desc(self, var_desc): """ Create a variable node by using an existing VarDesc in the graph. Depend on the giving VarDesc, the created variable node may be persistable. Args: var_desc(core.VarDesc): the giving variable description. Returns: IrVarNode: the created variable node. """ return IrVarNode(self.graph.create_var_node(var_desc)) def create_op_node(self, op_type, attrs, inputs, outputs): """ Create a operator node in the graph. Args: op_type(str): the type of the operator node. attrs(dict): the attributes of the operator node. inputs(dict): the inputs of the operator node. outputs(dict): the outpus of the operator node. Returns: IrOpNode: the created operator node. """ op_desc = core.OpDesc() op_desc.set_type(op_type) for attr, value in six.iteritems(attrs): self._update_desc_attr(op_desc, attr, value) for input_name, var_nodes in six.iteritems(inputs): if not isinstance(var_nodes, list): var_nodes = [var_nodes] op_desc.set_input(input_name, [var_node.name() for var_node in var_nodes]) for output_name, var_nodes in six.iteritems(outputs): if not isinstance(var_nodes, list): var_nodes = [var_nodes] op_desc.set_output(output_name, [var_node.name() for var_node in var_nodes]) return IrOpNode(self.graph.create_op_node(op_desc)) def create_op_node_from_desc(self, op_desc): """ Create a operator node by using an existing OpDesc in the graph. Args: op_desc(core.VarDesc): the giving operator description. Returns: IrOpNode: the created operator node. """ return IrOpNode(self.graph.create_op_node(op_desc)) def update_input_link(self, old_input_node, new_input_node, op_node): """ Update the input's link of a operator node. Args: old_input_node(IrNode): the old input node of the giving op_node. new_input_node(IrNode): the new input node of the giving op_node. op_node(IrOpNode): the operator node that is needed to update input's link. """ assert old_input_node.node in self.graph.nodes() and new_input_node.node in \ self.graph.nodes() and op_node.node in self.graph.nodes(), \ 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.' old_input_node.remove_output(op_node) op_node.remove_input(old_input_node) new_input_node.append_output(op_node) op_node.append_input(new_input_node) op_node.rename_input(old_input_node.name(), new_input_node.name()) def update_output_link(self, old_output_node, new_output_node, op_node): """ Update the output's link of an operator node. Args: old_output_node(IrNode): the old output node of the giving op_node. new_output_node(IrNode): the new output node of the giving op_node. op_node(IrOpNode): the operator node that is needed to update input's link. """ assert old_output_node.node in self.graph.nodes() and new_output_node.node in \ self.graph.nodes() and op_node.node in self.graph.nodes(), \ 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.' old_output_node.remove_input(op_node) op_node.remove_output(old_output_node) new_output_node.append_input(op_node) op_node.append_output(new_output_node) op_node.rename_output(old_output_node.name(), new_output_node.name()) def link_to(self, node_in, node_out): """ Connect two nodes. Args: node_in(IrNode): the input node. node_out(IrNode): the output node. """ assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \ 'The two arguments(node_in&node_out) must be in the graph nodes.' node_in.append_output(node_out) node_out.append_input(node_in) def safe_remove_nodes(self, remove_nodes): """ Remove nodes safely since links connected to these removed nodes are also removed. Args: remove_nodes(set): the nodes prepared to be removed. """ if not isinstance(remove_nodes, set): if isinstance(remove_nodes, Iterable): remove_nodes = set(remove_nodes) else: remove_nodes = {remove_nodes} original_nodes = {n.node for n in remove_nodes} core.graph_safe_remove_nodes(self.graph, original_nodes) def resolve_hazard(self): ordered_nodes = core.topology_sort(self.graph) var_nodes = dict() for node in ordered_nodes: if node.is_op() and node.op() is not None: for each_var_name in node.op().input_arg_names(): if each_var_name not in var_nodes: var_nodes[each_var_name] = [ self._find_node_by_name(node.inputs, each_var_name) ] for each_var_name in node.op().output_arg_names(): if each_var_name not in var_nodes: var_nodes[each_var_name] = [ self._find_node_by_name(node.outputs, each_var_name) ] else: var_nodes[each_var_name].append( self._find_node_by_name(node.outputs, each_var_name)) self.graph.resolve_hazard(var_nodes) def has_circle(self): """ Check if the graph has a circle. Returns: bool: True if the graph has a circle else False. """ return core.has_circle(self.graph) def graph_num(self): """ Count the number of unconnected graphs in this graph. Returns: int: the number of unconnected graphs. """ return core.graph_num(self.graph) def topology_sort(self): """ Perform the topology sort operation on the graph. Notes: the `graph` cannot contain a circle. Returns: list(IrNode): nodes in topology order. """ ordered_nodes = core.topology_sort(self.graph) return [IrNode(n) for n in ordered_nodes] def build_adjacency_list(self): """ Build an adjacency list of operations for the `graph`. Returns: dict{IrNode: set(IrNode)}: the adjacency list. """ adj_list = core.build_adjacency_list(self.graph) wrapped_adj_list = dict() for k, v in six.iteritems(adj_list): wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v} return wrapped_adj_list def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True): """ Draw the graph. If `dot` command is installed, the drawn graph will be saved as pdf file type, otherwise dot file type is used. Args: save_path(str): the save path of drawn graph. name(str): the name of drawn graph. marked_nodes(set(IrNode)): nodes that are needed to be marked. Default value is None. remove_ctr_var(bool): If it is set True, all control variable nodes in the graph will be removed. Default value is True. """ def _convert_to_pdf(dot_file_path): pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf' exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \ + ' -o ' + pdf_save_path, shell=True) if exited_code != 0: print('The dot command is needed for creating pdf files.') print('The {} is saved as the dot filetype.'.format( dot_file_path)) remove_ctr_vars = set() if remove_ctr_var: for node in self.all_var_nodes(): if node.is_ctrl_var(): remove_ctr_vars.add(node) self.safe_remove_nodes(remove_ctr_vars) print('Total ops num = {}.'.format(len(self.all_op_nodes()))) if marked_nodes is not None: if not isinstance(marked_nodes, set): if isinstance(marked_nodes, Iterable): marked_nodes = set(marked_nodes) else: marked_nodes = {marked_nodes} marked_nodes = {n.node for n in marked_nodes} remove_ctr_vars = {n.node for n in remove_ctr_vars} marked_nodes = marked_nodes - remove_ctr_vars if self.graph.has('__graphviz__marked_node__'): self.graph.erase('__graphviz__marked_node__') self.graph.set('__graphviz__marked_node__', marked_nodes) if not os.path.exists(save_path): os.makedirs(save_path) viz_dot_path = os.path.join(save_path, name) + '.dot' viz_pass = core.get_pass('graph_viz_pass') viz_pass.set('graph_viz_path', viz_dot_path) viz_pass.apply(self.graph) _convert_to_pdf(viz_dot_path) def to_program(self): """ Convert the graph into a Program. WARN: When the graph includes backward operator nodes, the conversion process may be failed. Usually, this function is only used to convert a test graph. Returns: Program: a program converted from the graph. """ convert_pass = core.get_pass('graph_to_program_pass') desc = core.ProgramDesc() convert_pass.set_not_owned('program', desc) convert_pass.apply(self.graph) program = Program._construct_from_desc(desc) return program def _find_node_by_name(self, nodes, node_name): """ Find a node in the giving nodes set by the name. """ target_node = None for n in nodes: if n.name() == node_name: target_node = n assert target_node is not None, "Cannot find the target node in the giving set." return target_node def _update_desc_attr(self, desc, name, val): """ Update the value of desc's attribute by attribute's name. """ if isinstance(val, Block): desc.set_block_attr(name, val.desc) elif isinstance(val, list) and val and all( isinstance(v, Block) for v in val): desc.set_blocks_attr(name, [v.desc for v in val]) elif isinstance(val, core.BlockDesc) or \ isinstance(val, core.ProgramDesc): desc.set_serialized_attr(name, val.serialize_to_string()) else: desc._set_attr(name, val) class Program(object): """ Create Python Program. It has at least one :ref:`api_guide_Block_en`, when the control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included, it will contain nested block. Please reference the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details. A set of Program usually contains startup program and main program. A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main program will contain the network structure and vars for train. A set of Program can be used for test or train, in train program , Paddle will contain all content to build a train network, in test program Paddle will prune some content which is irrelevant to test, eg. backward ops and vars. **Notes**: **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program` **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,** :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.** Returns: Program: An empty Program. Examples: .. code-block:: python import paddle.fluid as fluid main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program=main_program, startup_program=startup_program): x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32') y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32') z = fluid.layers.fc(name="fc", input=x, size=10, act="relu") print("main program is: {}".format(main_program)) print("start up program is: {}".format(startup_program)) """ def __init__(self): self.desc = core.ProgramDesc() self.blocks = [Block(self, 0)] self.current_block_idx = 0 self._seed = 0 self._current_role = core.op_proto_and_checker_maker.OpRole.Forward self.__op_role_var = [] # for distribute training # _is_distributed = True if under distributed training self._is_distributed = False # _is_chief = True if the trainer is the first one, usually No.0 self._is_chief = False # _parameters_on_pservers records all the parameters distributed on parameter servers. self._parameters_on_pservers = None # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"] self._endpoints = [] # if current role is parameter server, the _ps_endpoint is its "ip:port" self._ps_endpoint = None # trainers_endpoints, it is used for distribution. self._trainers_endpoints = [] # the distributed lookup table names self._distributed_lookup_table = None # use Deep gradient comrepssion or not self._enable_dgc = False self._use_lamb = False self._nccl_comm_num = 1 self._use_hierarchical_allreduce = False self._hierarchical_allreduce_inter_nranks = 0 # if this program has been optimized by distributed optimizer # fleet_opt will be given a value self._fleet_opt = None self._program_config = None # assigned if this program has been parsed by a pipeline optimizer self._pipeline_opt = None # appending gradients times self._appending_grad_times = 0 @property def _op_role(self): """ The operator role. In a enum {Forward, Backward, Optimize}. Notes: this is a low level API. It is used only for ParallelExecutor to duplicate or schedule operator to devices. For example, the forward operator should be executed on every device. The backward operator should be executed on every device and the parameter gradient of backward (use :code:`_op_role_var` to get this variable) operator should be merged to one device. The optimization operators should be executed on only one device and broadcast the optimization result, i.e., the new parameter, to every other device. """ return self._current_role @_op_role.setter def _op_role(self, role): self._current_role = role @property def _op_role_var(self): """ The auxiliary variables for :code:`_op_role` property. See Also: :code:`Program._op_role`'s documentation for details. Notes: This is a very low-level API. Users should not use it directly. """ return self.__op_role_var @contextlib.contextmanager def _backward_role_guard(self): tmp_role = self._current_role OpRole = core.op_proto_and_checker_maker.OpRole self._current_role = OpRole.Backward yield self._current_role = tmp_role @signature_safe_contextmanager def _optimized_guard(self, param_and_grads): """ A with guard to set :code:`Optimization` :code:`OpRole` and :code:`OpRoleVar` automatically. Notes: This is a very low level API. Users should not use it directly. Args: param_and_grads(list): The variables (names) to be optimized. Examples: >>> import paddle.fluid as fluid >>> p, g = backward(...) >>> with program._optimized_guard([p,g]): >>> p = p - 0.001 * g """ tmp_role = self._current_role tmp_var = self.__op_role_var OpRole = core.op_proto_and_checker_maker.OpRole self._current_role = OpRole.Optimize self.__op_role_var = [ var.name if isinstance(var, Variable) else var for var in param_and_grads ] yield self.__op_role_var = tmp_var self._current_role = tmp_role @signature_safe_contextmanager def _lr_schedule_guard(self, is_with_opt=False): """ A with guard to set :code:`LRSched` :code:`OpRole` and :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is set to the target learning rate. Notes: This is a very low level API. Users should not use it directly. Args: is_with_opt: Only set to true if these ops a in the middle of a bunch of optimize ops so that it can be treated correctly. For example, sgd->lr_op->sgd->lr_op->sgd. Examples: >>> import paddle.fluid as fluid >>> p, g = backward(...) >>> with program.lr_schedule_guard(): >>> lr = lr * decay """ tmp_role = self._current_role tmp_var = self.__op_role_var OpRole = core.op_proto_and_checker_maker.OpRole self._current_role = OpRole.LRSched if is_with_opt: self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize) # TODO(typhoonzero): how to set target learning rate var self.__op_role_var = [] yield self.__op_role_var = tmp_var self._current_role = tmp_role def __str__(self): """ Get the protobuf debug string of this Program. Returns: (str): The protobuf debug string. Raises: ValueError: If any of required fields is not set. """ return self.to_string(True) def to_string(self, throw_on_error, with_details=False): """ To debug string. Args: throw_on_error (bool): raise Value error when any of required fields is not set. with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print. Returns: str: The debug string describe current Program. Raises: ValueError: If any of required fields is not set and throw_on_error is True. Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() prog_string = prog.to_string(throw_on_error=True, with_details=False) print("program string without detial: {}".format(prog_string)) prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True) print("program string with detial: {}".format(prog_string_with_detail)) """ assert isinstance(throw_on_error, bool) and isinstance(with_details, bool) if with_details: res_str = "" for block in self.blocks: res_str += block.to_string(throw_on_error, with_details) else: protostr = self.desc.serialize_to_string() proto = framework_pb2.ProgramDesc.FromString( six.binary_type(protostr)) res_str = _debug_string_(proto, throw_on_error) return res_str def _get_desc(self): """ Get the C++ side of `ProgramDesc` object pointer. The C++ object is exposed by :code:`pybind`. Notes: This is a very low level API. Users should not use this API directly. """ return self.desc def _version(self): return self.desc._version() @dygraph_not_support def clone(self, for_test=False): """ **Notes**: **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` . **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`. **3. This API has no effect in Dygraph Mode** Create a new Program with forward content of original one when ``for_test=True``. Create a new Program as the same as original one when ``for_test=False`` Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between training and testing. They have an attribute, :code:`is_test`, to control this behaviour. This method will change the :code:`is_test` attribute of them to :code:`True` when :code:`for_test=True`. * Set for_test to False when we want to clone the program for training. * Set for_test to True when we want to clone the program for testing. We will prune the backward and optimize part of the program when you use :code:`clone` after :code:`Opimizer.minimize`, but we still recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. For Example: .. code-block:: python test_program = fluid.default_main_program().clone(for_test=True) # Here we use clone before Momentum optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9) optimizer.minimize() Args: for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`. Returns: Program: A new Program with forward content of original one when ``for_test=True``. A new Program as the same as original one when ``for_test=False`` Examples: **Notes: The Program's order maybe different after** :code:`clone` **and this will not affect your training or testing progress. In the following example we give you an simple method** :code:`print_prog(program)` **to print Program Descs inorder to make sure you have same print result after** :code:`clone`: .. code-block:: python import paddle.fluid as fluid import six def print_prog(prog): for name, value in sorted(six.iteritems(prog.block(0).vars)): print(value) for op in prog.block(0).ops: print("op type is {}".format(op.type)) print("op inputs are {}".format(op.input_arg_names)) print("op outputs are {}".format(op.output_arg_names)) for key, value in sorted(six.iteritems(op.all_attrs())): if key not in ['op_callstack', 'op_role_var']: print(" [ attrs: {}: {} ]".format(key, value)) 1. To clone a test program, the sample code is: .. code-block:: python import paddle.fluid as fluid import six def print_prog(prog): for name, value in sorted(six.iteritems(prog.block(0).vars)): print(value) for op in prog.block(0).ops: print("op type is {}".format(op.type)) print("op inputs are {}".format(op.input_arg_names)) print("op outputs are {}".format(op.output_arg_names)) for key, value in sorted(six.iteritems(op.all_attrs())): if key not in ['op_callstack', 'op_role_var']: print(" [ attrs: {}: {} ]".format(key, value)) train_program = fluid.Program() startup_program = fluid.Program() # startup_program is used to do some parameter init work, # and main program is used to hold the network with fluid.program_guard(train_program, startup_program): with fluid.unique_name.guard(): img = fluid.layers.data(name='image', shape=[784]) hidden = fluid.layers.fc(input=img, size=200, act='relu') hidden = fluid.layers.dropout(hidden, dropout_prob=0.5) loss = fluid.layers.cross_entropy( input=fluid.layers.fc(hidden, size=10, act='softmax'), label=fluid.layers.data(name='label', shape=[1], dtype='int64')) avg_loss = fluid.layers.mean(loss) test_program = train_program.clone(for_test=False) print_prog(test_program) # Due to parameter sharing usage for train and test, so we need to use startup program of train # instead of using test startup program, while nothing is in test's startup program # In Paddle Fluid we will share weights by using the same Variable name. In train and test program # all parameters will have the same name and this can make train and test program sharing parameters, # that's why we need to use startup program of train. And for startup program of test, it has nothing, # since it is a new program. with fluid.program_guard(train_program, startup_program): with fluid.unique_name.guard(): sgd = fluid.optimizer.SGD(learning_rate=1e-3) sgd.minimize(avg_loss) 2. The clone method can be avoid if you create program for training and program for testing individually. .. code-block:: python import paddle.fluid as fluid import six def print_prog(prog): for name, value in sorted(six.iteritems(prog.block(0).vars)): print(value) for op in prog.block(0).ops: print("op type is {}".format(op.type)) print("op inputs are {}".format(op.input_arg_names)) print("op outputs are {}".format(op.output_arg_names)) for key, value in sorted(six.iteritems(op.all_attrs())): if key not in ['op_callstack', 'op_role_var']: print(" [ attrs: {}: {} ]".format(key, value)) def network(is_test): img = fluid.layers.data(name='image', shape=[784]) hidden = fluid.layers.fc(input=img, size=200, act='relu') hidden = fluid.layers.dropout(hidden, dropout_prob=0.5) loss = fluid.layers.cross_entropy( input=fluid.layers.fc(hidden, size=10, act='softmax'), label=fluid.layers.data(name='label', shape=[1], dtype='int64')) avg_loss = fluid.layers.mean(loss) return avg_loss train_program_2 = fluid.Program() startup_program_2 = fluid.Program() test_program_2 = fluid.Program() with fluid.program_guard(train_program_2, startup_program_2): with fluid.unique_name.guard(): sgd = fluid.optimizer.SGD(learning_rate=1e-3) sgd.minimize(avg_loss) # the test startup program is not used. with fluid.program_guard(test_program_2, fluid.Program()): with fluid.unique_name.guard(): loss = network(is_test=True) print(test_program_2) The two code snippets above will generate and print same programs. """ if for_test: if self._appending_grad_times > 0: forward_prog = Program() forward_prog.desc = core.prune_backward(self.desc) forward_prog.blocks = [ Block(forward_prog, i) for i in six.moves.range(forward_prog.desc.num_blocks()) ] forward_prog._sync_with_cpp() p = forward_prog._inference_optimize(prune_read_op=False) else: p = self._inference_optimize(prune_read_op=False) else: p = Program() p.current_block_idx = self.current_block_idx p._seed = self._seed p.desc = core.ProgramDesc(self.desc) p.blocks = [ Block(p, i) for i in six.moves.range(self.desc.num_blocks()) ] p._current_role = self._current_role p.__op_role_var = self.__op_role_var p._appending_grad_times = self._appending_grad_times p._sync_with_cpp() p._copy_param_info_from(self) p._copy_data_info_from(self) p._copy_dist_param_info_from(self) return p def _prune(self, targets): """ Prune operators and variables which are not needed to generate :code:`targets`. Notes: This is a very low level API. Users should not use this API directly. This API is in flux and not stable. Args: targets(list|Variable|Operator): A list of variables or operators need to be pruned Returns: Program: A new, pruned program. """ if not isinstance(targets, list): targets = [targets] targets_idx = [] for t in targets: if not isinstance(t, Operator): if isinstance(t, Variable): # After transpiler processing, the op that output this # variable maybe has been changed, so t.op is not reliable # and we need to find the current op that generate this # variable here. t.op = None global_block = self.global_block() for idx, op in enumerate(global_block.ops): if t.name in op.output_arg_names: t.op = op break t = t.op if t is None: raise ValueError( "The target variable must have an " "associated operator that generates it.") else: raise ValueError("All targets of prune() can only be " "Variable or Operator.") targets_idx.append([t.block.idx, t.idx]) res = Program() res.desc = core.prune(self.desc, set(), targets_idx) res.blocks = [ Block(res, i) for i in six.moves.range(res.desc.num_blocks()) ] res._sync_with_cpp() return res def _prune_with_input(self, feeded_var_names, targets): """ Prune operators and variables which are not needed to generate :code:`targets`. Prune operators and variables which are needed to generate feeded_var Notes: This is a very low level API. Users should not use this API directly. This API is in flux and not stable. Args: feeded_var_names(list|str): A list of variable names from where pruning start. If it is set as [], this API works just like _prune() targets(list|Variable|Operator): A list of variables or operators need to be pruned Returns: Program: A new, pruned program. """ if not isinstance(feeded_var_names, list): feeded_var_names = [feeded_var_names] if not isinstance(targets, list): targets = [targets] for var in feeded_var_names: if not isinstance(var, six.string_types): raise ValueError("All feeded_var_names of prune() can only be " "str.") targets_idx = [] for t in targets: if not isinstance(t, Operator): if isinstance(t, Variable): # After transpiler processing, the op that output this # variable maybe has been changed, so t.op is not reliable # and we need to find the current op that generate this # variable here. t.op = None global_block = self.global_block() for idx, op in enumerate(global_block.ops): if t.name in op.output_arg_names: t.op = op break t = t.op if t is None: raise ValueError( "The target variable must have an " "associated operator that generates it.") else: raise ValueError("All targets of prune() can only be " "Variable or Operator.") targets_idx.append([t.block.idx, t.idx]) res = Program() res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx) res.blocks = [ Block(res, i) for i in six.moves.range(res.desc.num_blocks()) ] res._sync_with_cpp() return res def _inference_optimize(self, prune_read_op=True): """ This method will create a new program and do following adjustments on it: 1. Remove all reader variables and their creator ops if exist. 2. Remove the :code:`read_op` if exists. 3. change the :code:`is_test` attribute of operators to :code:`True`. All the :code:`Parameter` information will be lost. Args: prune_read_op(bool): remove the read ops that are added by py_reader for cpp inference library Notes: This API is a very low level API. Use :code:`Program.clone(for_test=True)` instead. Returns: Program: The new program. """ res = Program() res.desc = core.ProgramDesc(self.desc) # remove all readers and the read_op if exist read_op_idx = 0 root_block = res.desc.block(0) if prune_read_op: while True: if read_op_idx >= root_block.op_size() or root_block.op( read_op_idx).type() == 'read': break read_op_idx += 1 if read_op_idx < root_block.op_size(): root_block._remove_op(0, read_op_idx + 1) for var in root_block.all_vars(): if var.type() == core.VarDesc.VarType.READER: root_block._remove_var(cpt.to_bytes(var.name())) # change all `is_test` attributes to True for i in six.moves.range(res.desc.num_blocks()): block = res.desc.block(i) for j in six.moves.range(block.op_size()): op = block.op(j) if op.has_attr('is_test'): op._set_attr('is_test', True) res.blocks = [ Block(res, i) for i in six.moves.range(res.desc.num_blocks()) ] res._sync_with_cpp() return res @staticmethod def parse_from_string(binary_str): """ **Notes**: **1. All information about parameters will be lost after serialization** **2. This API has no effect in Dygraph mode** Deserialize a Program from `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_ binary string. This method always use to save and load model Args: binary_str_type (str): the binary prootbuf string. Returns: Program: A deserialized Program. Examples: .. code-block:: python import paddle.fluid as fluid startup_prog = fluid.Program() main_prog = fluid.Program() with fluid.program_guard(startup_prog, main_prog): x = fluid.layers.data( name='X', shape=[1000, 784], dtype='float32', append_batch_size=False) y = fluid.layers.data( name='Y', shape=[784, 100], dtype='float32', append_batch_size=False) z = fluid.layers.mul(x=x, y=y) binary_str = fluid.default_main_program().desc.serialize_to_string() prog_restored = fluid.default_main_program().parse_from_string(binary_str) print(fluid.default_main_program()) print(prog_restored) """ p = Program() p.desc = core.ProgramDesc(binary_str) p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())] p._sync_with_cpp() return p @staticmethod def _construct_from_desc(desc): """ Construct a program from program desc. Args: desc(core.ProgramDesc): The program desc for constructing. Returns: Program: A program. """ p = Program() p.desc = desc p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())] p._sync_with_cpp() return p @property def random_seed(self): """ The default random seed for random operators in Program. ``0`` means get the random seed from random device. **Notes: It must be set before the operators have been added.** Returns: int64: Random seed in current Program Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() random_seed = prog.random_seed x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False) # Here we need to set random seed before we use fluid.layers.dropout print(random_seed) prog.random_seed = 1 z_var = fluid.layers.dropout(x_var, 0.7) print(prog.random_seed) """ return self._seed @property def num_blocks(self): """ The number of :ref:`api_guide_Block_en` in this Program. **Notes: This API has no effect in Dygraph mode** Returns: int(Platform-dependent size): num of :ref:`api_guide_Block_en` in current Program Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() num_blocks = prog.num_blocks print(num_blocks) """ return self.desc.num_blocks() @random_seed.setter def random_seed(self, seed): if not isinstance(seed, int): raise ValueError("Seed must be a integer.") self._seed = seed def __repr__(self): return self.__str__() def global_block(self): """ **Notes**: **This API has no effect in Dygraph mode** Get the first :ref:`api_guide_Block_en` of this Program. Returns: :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en` of this Program. Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() gb_block = prog.global_block() print(gb_block) """ return self.blocks[0] def block(self, index): """ **Notes**: **This API has no effect in Dygraph mode** Get the :code:`index` :ref:`api_guide_Block_en` of this Program Args: index (int) - The index of :ref:`api_guide_Block_en` to get Returns: :ref:`api_guide_Block_en`: The :code:`index` block Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() block_0 = prog.block(0) print(block_0) """ return self.blocks[index] def current_block(self): """ **Notes**: **This API has no effect in Dygraph mode** Get the current :ref:`api_guide_Block_en` . The :code:`current` :ref:`api_guide_Block_en` is the :ref:`api_guide_Block_en` to append operators. Returns: :ref:`api_guide_Block_en`: The :code:`index` :ref:`api_guide_Block_en` Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() current_blk = prog.current_block() print(current_blk) """ return self.blocks[self.current_block_idx] def _create_block(self, parent_idx=None): """ Create a new block with the :code:`parent_idx` and change the current block to new block. Args: parent_idx(int): The parent block index. Returns: Block: The new block. """ new_block_idx = len(self.blocks) parent = self.current_block() if parent_idx is None else self.block( parent_idx) self.desc.append_block(parent.desc) self.current_block_idx = new_block_idx self.blocks.append(Block(self, self.current_block_idx)) return self.current_block() def _rollback(self): """ Exit a code block, i.e., roll back to the parent block. Returns: None """ self.current_block_idx = self.current_block().parent_idx def _sync_with_cpp(self): """ Synchronize Python instance to its binding C++ object instance. If the program is modified in C++ space, this method should be invoked. Notes: This is a very low level API. Users should not invoke it directly. Returns: None """ for block_idx in range(len(self.blocks), self.desc.num_blocks()): self.blocks.append(Block(self, block_idx)) for block in self.blocks: block._sync_with_cpp() def _copy_param_info_from(self, other): """ Copy the information of parameters from other program. Notes: This is a very low level API. Users should not invoke it directly. Args: other(Program): Other program Returns: None """ if not isinstance(other, Program): raise TypeError("_copy_param_info_from should be invoked with " "Program") if len(self.blocks) != len(other.blocks): raise ValueError("_copy_param_info_from should be invoked with two " "program, with represent the same topology") self.global_block()._copy_param_info_from(other.global_block()) def _copy_dist_param_info_from(self, other): """ Copy the information of distributed information from other program. Args: other(Program): Other program Returns: None """ if not isinstance(other, Program): raise TypeError("_copy_dist_param_info_from should be invoked with " "Program") self._is_distributed = other._is_distributed self._is_chief = other._is_chief self._parameters_on_pservers = other._parameters_on_pservers self._endpoints = other._endpoints self._ps_endpoint = other._ps_endpoint self._distributed_lookup_table = other._distributed_lookup_table def _copy_data_info_from(self, other): """ Copy the information of data variables from other program. Notes: This is a very low level API. Users should not invoke it directly. Args: other(Program): Other program Returns: None """ if not isinstance(other, Program): raise TypeError("_copy_param_info_from should be invoked with " "Program") if len(self.blocks) != len(other.blocks): raise ValueError("_copy_param_info_from should be invoked with two " "program, with represent the same topology") for var in list(other.global_block().vars.values()): if var.is_data: self.global_block().var(var.name).is_data = True if var.desc.need_check_feed(): self.global_block().var(var.name).desc.set_need_check_feed(True) @dygraph_not_support def list_vars(self): """ Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned. Returns: iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program. Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32') label = fluid.layers.data(name='label', shape=[128,1], dtype='int64') for var in prog.list_vars(): print(var) """ for each_block in self.blocks: for each_var in list(each_block.vars.values()): yield each_var class Parameter(Variable): """ Parameter is derived from Variable. A parameter is a persistable Variable, and will be updated by optimizers after each iteration. The training of a neural network is essentially the updating of its parameters. Relative to a general Variable, a Parameter has several its own member variables: Args: trainable(bool): True if the parameter need to be updated after iterations. optimize_attr(map): Parameter attributes related with optimizing. Currently, it only contains 'learning_rate'. Default: {'learning_rate': 1.0} regularizer(WeightDecayRegularizer): The Regularizer which will be applied on the parameter. Default: None gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy which will be applied on the parameter. Default: None do_model_average(bool): True if the model average strategy will be applied on this parameter. """ def __init__(self, block, shape, dtype, **kwargs): if shape is None: raise ValueError("The shape of Parameter should not be None") if dtype is None: raise ValueError("The dtype of Parameter should not be None") if len(shape) == 0: raise ValueError( "The dimensions of shape for Parameter must be greater than 0") for each in shape: if each < 0: raise ValueError( "Each dimension of shape for Parameter must be greater than 0, but received %s" % list(shape)) Variable.__init__( self, block, persistable=True, shape=shape, dtype=dtype, **kwargs) self.trainable = kwargs.get('trainable', True) self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0}) self.regularizer = kwargs.get('regularizer', None) self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None) self.do_model_average = kwargs.get('do_model_average', None) self.is_distributed = False def __str__(self): return self.to_string(True) def to_string(self, throw_on_error, with_details=False): """ To debug string. Args: throw_on_error(bool): raise exception when self is not initialized when throw_on_error is True with_details(bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True Returns(str): The debug string. Examples: .. code-block:: python import paddle.fluid as fluid prog = fluid.default_main_program() rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32') debug_str = prog.to_string(throw_on_error=True, with_details=False) print(debug_str) """ assert isinstance(throw_on_error, bool) and isinstance(with_details, bool) if with_details: res_str = Variable.to_string(self, throw_on_error, True) additional_attr = ("trainable", "optimize_attr", "regularizer", "gradient_clip_attr", "do_model_average") for attr_name in additional_attr: res_str += "%s: %s\n" % (attr_name, cpt.to_text(getattr(self, attr_name))) else: res_str = Variable.to_string(self, throw_on_error, False) return res_str __repr__ = __str__ # program is a global instance. _main_program_ = Program() _startup_program_ = Program() def default_startup_program(): """ Get default/global startup program. The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` , `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will initialize them by the OPs in startup :ref:`api_fluid_Program` . The :ref:`api_fluid_layers` function will append these initialization operators into startup program. This method will return the :code:`default` or the :code:`current` startup program. Users can use :ref:`api_fluid_program_guard` to switch :ref:`api_fluid_Program` . Returns: current default startup :ref:`api_fluid_Program` Returns type: :ref:`api_fluid_Program` Examples: .. code-block:: python import paddle.fluid as fluid main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program=main_program, startup_program=startup_program): x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32') y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32') z = fluid.layers.fc(name="fc", input=x, size=10, act="relu") print("main program is: {}".format(fluid.default_main_program())) print("start up program is: {}".format(fluid.default_startup_program())) """ return _startup_program_ def default_main_program(): """ This API can be used to get ``default main program`` which store the descriptions of ``op`` and ``variable``. For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` The ``default_main_program`` is the default value for ``Program`` parameter in a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the :code:`default_main_program` when the program is not specified. If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard` Returns: :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network. Examples: .. code-block:: python import paddle.fluid as fluid # Sample Network: data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32') label = fluid.data(name='label', shape=[None, 1], dtype='int64') conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None) bn1 = fluid.layers.batch_norm(conv1, act='relu') pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2) conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None) bn2 = fluid.layers.batch_norm(conv2, act='relu') pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2) fc1 = fluid.layers.fc(pool2, size=50, act='relu') fc2 = fluid.layers.fc(fc1, size=102, act='softmax') loss = fluid.layers.cross_entropy(input=fc2, label=label) loss = fluid.layers.mean(loss) opt = fluid.optimizer.Momentum( learning_rate=0.1, momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-4)) opt.minimize(loss) #print the number of blocks in the program, 1 in this case print(fluid.default_main_program().num_blocks) #print the description of variable 'image' print(fluid.default_main_program().blocks[0].var('image')) """ return _main_program_ def switch_main_program(program): """ Switch the main program to a new program. Args: program(Program): The new main program Returns: Program: The previous main program """ global _main_program_ prev_program = _main_program_ _main_program_ = program return prev_program def switch_startup_program(program): """ Switch the startup program to a new program Args: program(Program): The new startup program Returns: Program: The previous startup program """ global _startup_program_ prev_program = _startup_program_ _startup_program_ = program return prev_program @signature_safe_contextmanager def program_guard(main_program, startup_program=None): """ Change the global main program and startup program with `"with"` statement. Layer functions in the Python `"with"` block will append operators and variables to the new main programs. Args: main_program(Program): New main program inside `"with"` statement. startup_program(Program, optional): New startup program inside `"with"` statement. :code:`None` means not changing startup program, default_startup_program is still used. Default: None. Examples: .. code-block:: python import paddle.fluid as fluid main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32') hidden = fluid.layers.fc(input=data, size=10, act='relu') Notes: The temporary :code:`Program` can be used if the user does not need to construct either of startup program or main program. Examples: .. code-block:: python import paddle.fluid as fluid main_program = fluid.Program() # does not care about startup program. Just pass a temporary value. with fluid.program_guard(main_program, fluid.Program()): data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32') """ if not isinstance(main_program, Program): raise TypeError("main_program should be Program") main_program = switch_main_program(main_program) if startup_program is not None: if not isinstance(startup_program, Program): raise TypeError("startup_program should be Program") startup_program = switch_startup_program(startup_program) yield switch_main_program(main_program) if startup_program is not None: switch_startup_program(startup_program) def _get_var(name, program=None): """ Get a variable by name from the global block of a program. Args: name(str): name of the variable program(Program|None): program object. If None, default_global_program() will be used. Returns: Variable """ if program is None: program = default_main_program() assert isinstance(name, str) assert isinstance(program, Program) return program.global_block().var(name) @signature_safe_contextmanager def _dygraph_guard(tracer): global _dygraph_tracer_ tmp_trace = _dygraph_tracer_ _dygraph_tracer_ = tracer yield _dygraph_tracer_ = tmp_trace @signature_safe_contextmanager def _dygraph_place_guard(place): global _dygraph_current_expected_place_ tmp_place = _dygraph_current_expected_place_ _dygraph_current_expected_place_ = place yield _dygraph_current_expected_place_ = tmp_place def load_op_library(lib_filename): """ Load a dynamic library, including custom operators and kernels. When library is loaded, ops and kernels registered in the library will be available in PaddlePaddle main process. Please note, the type of custom operators cann't have the same type with the existing operators in the framework. Args: lib_filename (str): name of dynamic library. Examples: .. code-block:: python import paddle.fluid as fluid #fluid.load_op_library('custom_op.so') """ core.load_op_library(lib_filename) OpProtoHolder.instance().update_op_proto()
35.124789
272
0.562407
fe06211fe6dd8f63a49201f071fd5065fe0a89e2
5,422
py
Python
tests/test_call_wasm_contract/test.py
uuosio/python-contract-demos
7d56ba371f2115b0ab895fca3e71092c2523f25d
[ "MIT" ]
2
2020-12-08T13:15:06.000Z
2020-12-29T10:06:44.000Z
tests/test_call_wasm_contract/test.py
uuosio/python-contract-demos
7d56ba371f2115b0ab895fca3e71092c2523f25d
[ "MIT" ]
null
null
null
tests/test_call_wasm_contract/test.py
uuosio/python-contract-demos
7d56ba371f2115b0ab895fca3e71092c2523f25d
[ "MIT" ]
null
null
null
''' Example for call wasm contract. ''' from uuoskit import chainapi, config, wallet from uuoskit import test_helper wasm_abi = { "version": "eosio::abi/1.0", "types": [], "structs": [], "actions": [], "tables": [], "ricardian_clauses": [], "error_messages": [], "abi_extensions": [] } '''c++ code #include <eosio/eosio.hpp> #include <eosio/action.hpp> #include <eosio/print.hpp> extern "C" { __attribute__((eosio_wasm_import)) int call_contract_get_args(void* args, size_t size1); __attribute__((eosio_wasm_import)) int call_contract_set_results(void* result, size_t size1); void apply( uint64_t receiver, uint64_t code, uint64_t action ) { if (receiver == code) { uint64_t args[2]; int args_size = ::call_contract_get_args(&args, sizeof(args)); eosio::print("+++++++++++call: arg size:", args_size, "\n"); eosio::check(args_size == 16, "bad args size"); if (args[0] == eosio::name("calltest1").value) { eosio::print("+++++++++++call: args[1]:", args[1], "\n"); args[1] += 1; ::call_contract_set_results(&args[1], sizeof(uint64_t)); } } } } ''' wasm_code = b'\x00asm\x01\x00\x00\x00\x01)\x08`\x02\x7f\x7f\x01\x7f`\x01\x7f\x00`\x01~\x00`\x02\x7f\x7f\x00`\x03\x7f\x7f\x7f\x01\x7f`\x00\x00`\x01\x7f\x01\x7f`\x03~~~\x00\x02\x86\x01\x07\x03env\x16call_contract_get_args\x00\x00\x03env\x06prints\x00\x01\x03env\x06printi\x00\x02\x03env\x0ceosio_assert\x00\x03\x03env\x07printui\x00\x02\x03env\x19call_contract_set_results\x00\x00\x03env\x06memset\x00\x04\x03\x07\x06\x05\x06\x05\x01\x07\x00\x04\x05\x01p\x01\x01\x01\x05\x03\x01\x00\x01\x06\x16\x03\x7f\x01A\x80\xc0\x00\x0b\x7f\x00A\xfc\xc1\x00\x0b\x7f\x00A\xfc\xc1\x00\x0b\x07\t\x01\x05apply\x00\x0b\n\xcc\x06\x06\x04\x00\x10\t\x0b\xad\x01\x01\x03\x7f \x00!\x01\x02@\x02@\x02@ \x00A\x03qE\r\x00 \x00-\x00\x00E\r\x01 \x00A\x01j!\x01\x03@ \x01A\x03qE\r\x01 \x01-\x00\x00!\x02 \x01A\x01j"\x03!\x01 \x02\r\x00\x0b \x03A\x7fj \x00k\x0f\x0b \x01A|j!\x01\x03@ \x01A\x04j"\x01(\x02\x00"\x02A\x7fs \x02A\xff\xfd\xfbwjqA\x80\x81\x82\x84xqE\r\x00\x0b \x02A\xff\x01qE\r\x01\x03@ \x01-\x00\x01!\x02 \x01A\x01j"\x03!\x01 \x02\r\x00\x0b \x03 \x00k\x0f\x0b \x00 \x00k\x0f\x0b \x01 \x00k\x0b6\x01\x01\x7f#\x00A\x10k"\x00A\x006\x02\x0cA\x00 \x00(\x02\x0c(\x02\x00A\x07jAxq"\x006\x02\x84@A\x00 \x006\x02\x80@A\x00?\x006\x02\x8c@\x0b\x02\x00\x0b\xc1\x01\x01\x02\x7f#\x00A0k"\x03$\x00\x10\x07\x02@ \x00 \x01R\r\x00 \x03A jA\x10\x10\x00!\x04A\x90\xc0\x00\x10\x01 \x04\xac\x10\x02A\xab\xc0\x00\x10\x01\x02@ \x04A\x10F\r\x00A\x00A\xad\xc0\x00\x10\x03\x0b \x03)\x03 !\x00 \x03A\xbb\xc0\x006\x02\x10 \x03A\xbb\xc0\x00\x10\x086\x02\x14 \x03 \x03)\x03\x107\x03\x08 \x03A\x18j \x03A\x08j\x10\x0c\x1a \x00B\x80\x80\xa0\xc8\xb1\x95\xc7\xd1\xc1\x00R\r\x00A\xc5\xc0\x00\x10\x01 \x03)\x03(\x10\x04A\xab\xc0\x00\x10\x01 \x03 \x03)\x03(B\x01|7\x03( \x03A jA\x08rA\x08\x10\x05\x1a\x0bA\x00\x10\n \x03A0j$\x00\x0b\x98\x03\x03\x02\x7f\x01~\x03\x7f \x00B\x007\x03\x00\x02@\x02@\x02@\x02@\x02@ \x01(\x02\x04"\x02A\x0eI\r\x00A\x00A\xdf\xc0\x00\x10\x03A\x0c!\x03\x0c\x01\x0b \x02E\r\x03 \x02A\x0c \x02A\x0cI\x1b"\x03E\r\x01\x0b \x00)\x03\x00!\x04 \x01(\x02\x00!\x05A\x00!\x06\x03@ \x00 \x04B\x05\x86"\x047\x03\x00\x02@\x02@ \x05 \x06j-\x00\x00"\x07A.G\r\x00A\x00!\x07\x0c\x01\x0b\x02@ \x07AOjA\xff\x01qA\x04K\r\x00 \x07APj!\x07\x0c\x01\x0b\x02@ \x07A\x9f\x7fjA\xff\x01qA\x19K\r\x00 \x07A\xa5\x7fj!\x07\x0c\x01\x0bA\x00!\x07A\x00A\xc8\xc1\x00\x10\x03 \x00)\x03\x00!\x04\x0b \x00 \x04 \x07\xadB\xff\x01\x83\x84"\x047\x03\x00 \x06A\x01j"\x06 \x03I\r\x00\x0c\x02\x0b\x0b \x00)\x03\x00!\x04A\x00!\x03\x0b \x00 \x04A\x0c \x03kA\x05lA\x04j\xad\x867\x03\x00 \x02A\rG\r\x00B\x00!\x04\x02@ \x01(\x02\x00-\x00\x0c"\x06A.F\r\x00\x02@ \x06AOjA\xff\x01qA\x04K\r\x00 \x06APj\xadB\xff\x01\x83!\x04\x0c\x01\x0b\x02@ \x06A\x9f\x7fjA\xff\x01qA\x1aO\r\x00 \x06A\xa5\x7fj"\x06\xadB\xff\x01\x83!\x04 \x06A\xff\x01qA\x10I\r\x01A\x00A\x85\xc1\x00\x10\x03\x0c\x01\x0bA\x00A\xc8\xc1\x00\x10\x03\x0b \x00 \x00)\x03\x00 \x04\x847\x03\x00\x0b \x00\x0b\x0b\xae\x02\t\x00A\x90\xc0\x00\x0b\x1b+++++++++++call: arg size:\x00\x00A\xab\xc0\x00\x0b\x02\n\x00\x00A\xad\xc0\x00\x0b\x0ebad args size\x00\x00A\xbb\xc0\x00\x0b\ncalltest1\x00\x00A\xc5\xc0\x00\x0b\x1a+++++++++++call: args[1]:\x00\x00A\xdf\xc0\x00\x0b&string is too long to be a valid name\x00\x00A\x85\xc1\x00\x0bCthirteenth character in name cannot be a letter that comes after j\x00\x00A\xc8\xc1\x00\x0b4character is not in allowed character set for names\x00\x00A\x00\x0b\x04\x00!\x00\x00' src, abi = test_helper.load_code() test_account1 = test_helper.test_account1 test_account2 = test_helper.test_account2 async def run_test(): uuosapi = chainapi.ChainApiAsync(config.network_url) code = uuosapi.mp_compile(test_account1, src) print(test_account1, test_account2) try: r = await uuosapi.deploy_contract(test_account2, wasm_code, wasm_abi, vm_type=0) except chainapi.ChainException as e: print('+++deploy error:', e.json['message']) r = await uuosapi.deploy_python_contract(test_account1, code, abi) args = 'hello,world' try: r = await uuosapi.push_action(test_account1, 'sayhello', args, {test_account1: 'active'}) test_helper.print_console(r) except chainapi.ChainException as e: print('+++test error:', e)
74.273973
3,373
0.68554
6b871a800f1f4f7c0ee8a262f88f897afd71191c
17,532
py
Python
code/mohdashboardapi3.py
yuval-harpaz/covid-19-israel-matlab
cc8619a830bcc10053fc84f96befb869f5523f7b
[ "CC0-1.0" ]
5
2021-04-16T15:12:45.000Z
2021-12-31T22:20:42.000Z
code/mohdashboardapi3.py
yuval-harpaz/covid-19-israel-matlab
cc8619a830bcc10053fc84f96befb869f5523f7b
[ "CC0-1.0" ]
null
null
null
code/mohdashboardapi3.py
yuval-harpaz/covid-19-israel-matlab
cc8619a830bcc10053fc84f96befb869f5523f7b
[ "CC0-1.0" ]
2
2020-07-08T20:44:28.000Z
2020-08-28T17:41:37.000Z
import os import requests import pandas as pd GIT_DIR = '/home/innereye/Repos/israel_moh_covid_dashboard_data' if os.path.isdir(r'C:\Users\User\Documents\Corona'): GIT_DIR = r'C:\Users\User\Documents\Corona' api_query = {'requests': [ {'id': '0', 'queryName': 'lastUpdate', 'single': True, 'parameters': {}}, {'id': '1', 'queryName': 'patientsPerDate', 'single': False, 'parameters': {}}, {'id': '2', 'queryName': 'testResultsPerDate', 'single': False, 'parameters': {}}, {'id': '3', 'queryName': 'contagionDataPerCityPublic', 'single': False, 'parameters': {}}, {'id': '4', 'queryName': 'infectedByPeriodAndAgeAndGender', 'single': False, 'parameters': {}}, {'id': '5', 'queryName': 'hospitalStatus', 'single': False, 'parameters': {}}, {'id': '6', 'queryName': 'isolatedDoctorsAndNurses', 'single': False, 'parameters': {}}, {'id': '7', 'queryName': 'otherHospitalizedStaff', 'single': False, 'parameters': {}}, {'id': '8', 'queryName': 'infectedPerDate', 'single': False, 'parameters': {}}, {'id': '9', 'queryName': 'updatedPatientsOverallStatus', 'single': False, 'parameters': {}}, {'id': '10', 'queryName': 'sickPerDateTwoDays', 'single': False, 'parameters': {}}, {'id': '11', 'queryName': 'sickPerLocation', 'single': False, 'parameters': {}}, {'id': '12', 'queryName': 'deadPatientsPerDate', 'single': False, 'parameters': {}}, {'id': '13', 'queryName': 'recoveredPerDay', 'single': False, 'parameters': {}}, {'id': '14', 'queryName': 'doublingRate', 'single': False, 'parameters': {}}, {'id': '15', 'queryName': 'CalculatedVerified', 'single': False, 'parameters': {}}, {'id': '16', 'queryName': 'deadByPeriodAndAgeAndGender', 'single': False, 'parameters': {}}, {'id': '17', 'queryName': 'breatheByPeriodAndAgeAndGender', 'single': False, 'parameters': {}}, {'id': '18', 'queryName': 'severeByPeriodAndAgeAndGender', 'single': False, 'parameters': {}}, {'id': '19', 'queryName': 'spotlightLastupdate', 'single': False, 'parameters': {}}, {'id': '20', 'queryName': 'patientsStatus', 'single': False, 'parameters': {}}, {'id': '21', 'queryName': 'cumSeriusAndBreath', 'single': False, 'parameters': {}}, {'id': '22', 'queryName': 'LastWeekLabResults', 'single': False, 'parameters': {}}, {'id': '23', 'queryName': 'verifiedDoctorsAndNurses', 'single': False, 'parameters': {}}, {'id': '24', 'queryName': 'isolatedVerifiedDoctorsAndNurses', 'single': False, 'parameters': {}}, {'id': '25', 'queryName': 'spotlightPublic', 'single': False, 'parameters': {}}, {'id': '26', 'queryName': 'vaccinated', 'single': False, 'parameters': {}}, {'id': '27', 'queryName': 'vaccinationsPerAge', 'single': False, 'parameters': {}}, {'id': '28', 'queryName': 'testsPerDate', 'single': False, 'parameters': {}}, {'id': '29', 'queryName': 'averageInfectedPerWeek', 'single': False, 'parameters': {}}, {'id': '30', 'queryName': 'spotlightAggregatedPublic', 'single': True, 'parameters': {}}, {'id': '31', 'queryName': 'HospitalBedStatusSegmentation', 'single': False, 'parameters': {}}, {'id': '32', 'queryName': 'infectionFactor', 'single': False, 'parameters': {}}, {'id': '33', 'queryName': 'vaccinatedVerifiedDaily', 'single': False, 'parameters': {'days': 0}}, {'id': '34', 'queryName': 'vaccinatedVerifiedByAge', 'single': False, 'parameters': {}}, {'id': '35', 'queryName': 'researchGraph', 'single': False, 'parameters': {}}, ]} api_address = 'https://datadashboardapi.health.gov.il/api/queries/_batch' def get_api_data(): data = requests.post(api_address, json=api_query).json() data_dict = {r['queryName']:data[int(r['id'])]['data'] for r in api_query['requests']} return data_dict data = get_api_data() os.chdir(GIT_DIR) DATA_FNAME = 'moh_dashboard_api_data.json' COMMIT_HIST_FNAME = 'commit_history.json' AGES_FNAME = 'ages_dists.csv' ALL_AGES_FNAMES = {'infected':'ages_dists_v2.csv', 'dead':'deaths_ages_dists_v2.csv', 'severe':'severe_ages_dists_v2.csv', 'breathe':'ventilated_ages_dists_v2.csv'} HOSP_FNAME = 'hospitalized_and_infected.csv' VAC_FNAME = 'vaccinated.csv' VAC_AGES_FNAME = 'vaccinated_by_age.csv' VAC_CASES_DAILY = 'cases_by_vaccination_daily.csv' VAC_CASES_AGES = 'cases_by_vaccination_ages.csv' HOSPITALS_FNAME = 'hospital_occupancy.csv' HOSP_HEB_FIELD_NAMES = [ '\xd7\xaa\xd7\xa4\xd7\x95\xd7\xa1\xd7\x94 \xd7\x9b\xd7\x9c\xd7\x9c\xd7\x99\xd7\xaa', '\xd7\xaa\xd7\xa4\xd7\x95\xd7\xa1\xd7\xaa \xd7\xa7\xd7\x95\xd7\xa8\xd7\x95\xd7\xa0\xd7\x94', '\xd7\xa6\xd7\x95\xd7\x95\xd7\xaa \xd7\x91\xd7\x91\xd7\x99\xd7\x93\xd7\x95\xd7\x93'] ISOLATED_FNAME = 'isolated_staff.csv' names_trans = { 'doctors' : u'\u05e8\u05d5\u05e4\u05d0\u05d9\u05dd/\u05d5\u05ea', 'nurses' : u'\u05d0\u05d7\u05d9\u05dd/\u05d5\u05ea', 'others' : u'\u05de\u05e7\u05e6\u05d5\u05e2\u05d5\u05ea\n\u05d0\u05d7\u05e8\u05d9\u05dd'} heb_map = { u'\u05e6\u05d4\u05d5\u05d1': 'yellow', u'\u05e6\u05d4\u05d5\u05d1 ': 'yellow', u'\u05d0\u05d3\u05d5\u05dd': 'red', u'\u05d0\u05d3\u05d5\u05dd ': 'red', u'\u05db\u05ea\u05d5\u05dd': 'orange', u'\u05db\u05ea\u05d5\u05dd ': 'orange', u'\u05d9\u05e8\u05d5\u05e7': 'green', u'\u05d9\u05e8\u05d5\u05e7 ': 'green', u'\u05d0\u05e4\u05d5\u05e8': 'gray', u'\u05d0\u05e4\u05d5\u05e8 ': 'gray', u' \u05e7\u05d8\u05df \u05de-15 ': '<15' } heb_translit = { u'\u05d0': 'a', u'\u05d1': 'b', u'\u05d2': 'g', u'\u05d3': 'd', u'\u05d4': 'h', u'\u05d5': 'v', u'\u05d6': 'z', u'\u05d7': 'j', u'\u05d8': 't', u'\u05d9': 'y', u'\u05da': 'C', u'\u05db': 'c', u'\u05dc': 'l', u'\u05dd': 'M', u'\u05de': 'm', u'\u05df': 'N', u'\u05e0': 'n', u'\u05e1': 's', u'\u05e2': 'e', u'\u05e3': 'f', u'\u05e4': 'p', u'\u05e5': 'X', u'\u05e6': 'x', u'\u05e7': 'q', u'\u05e8': 'r', u'\u05e9': 'SH', u'\u05ea': 'T', '"' : '', ' ': '_' } def safe_str(s): return '%s'%(heb_map.get(s, s)) def safe_int(x): # converts possible None returned by API to 0 return x if x else 0 def add_line_to_file(fname, new_line): opr = open(fname,'r') prev_file = opr.read() # prev_file = file(fname, 'r').read() new_file = prev_file + new_line + '\n' # file(fname, 'w').write(new_file) opf = open(fname,'w') opf.write(new_file) def ages_csv_line(data, prefix='infected'): date = data['lastUpdate']['lastUpdate'] ages_dicts = data[prefix + 'ByPeriodAndAgeAndGender'] period = u'\u05de\u05ea\u05d7\u05d9\u05dc\u05ea \u05e7\u05d5\u05e8\u05d5\u05e0\u05d4' secs = [ent for ent in ages_dicts if ent['period'] == period] ## assert ''.join([s['section'][0] for s in secs]) == '0123456789' assert [s['section'] for s in secs] == [ '0-9', '10-11', '12-15', '16-19', '20-29', '30-39', '40-49', '50-59', '60-69', '70-74', '75+'] males = [safe_int(sec['male']['amount']) for sec in secs] females = [safe_int(sec['female']['amount']) for sec in secs] totals = [m+f for m,f in zip(males, females)] return ','.join([date]+map(str,totals) + map(str, males) + map(str,females)) def update_ages_csv(data): ages_line = ages_csv_line(data) add_line_to_file(AGES_FNAME, ages_line) def update_specific_ages_csv(data, prefix): fname = ALL_AGES_FNAMES[prefix] ages_line = ages_csv_line(data, prefix) add_line_to_file(fname, ages_line) def update_all_ages_csvs(data): for prefix in ALL_AGES_FNAMES.keys(): update_specific_ages_csv(data, prefix) def update_age_vaccinations_csv(data): vac_ages = data['vaccinationsPerAge'] # Check for surprising age group assert len(vac_ages) == 10 new_line = data['lastUpdate']['lastUpdate']+',' + ','.join(['%d,%d,%d'%( g['age_group_population'],g['vaccinated_first_dose'],g['vaccinated_second_dose']) for g in vac_ages]) add_line_to_file(VAC_AGES_FNAME, new_line) def patients_to_csv_line(pat): keys = ['Counthospitalized', 'Counthospitalized_without_release', 'CountEasyStatus', 'CountMediumStatus', 'CountHardStatus', 'CountCriticalStatus' ,'CountBreath', 'CountDeath', 'CountSeriousCriticalCum', 'CountBreathCum', 'CountDeathCum', 'new_hospitalized', 'serious_critical_new', 'patients_hotel', 'patients_home', ] return ','.join([pat['date'][:10]]+[str(pat[key]) for key in keys]) def create_patients_csv(data): start_date = u'2020-03-02T00:00:00.000Z' patients = data['patientsPerDate'] assert patients[0]['date'] == start_date N = len(patients) # Sometimes the json contains multiple entires... argh if len(set([p['date'] for p in patients])) != N: rev_pat_dates = [p['date'] for p in patients[::-1]] pat_dates_fil = sorted(set(rev_pat_dates)) patients = [patients[N-1-rev_pat_dates.index(date)] for date in pat_dates_fil] N = len(patients) pat_lines = map(patients_to_csv_line, patients) recs = data['recoveredPerDay'][-N:] inf = data['infectedPerDate'][-N:] assert recs[0]['date'] == inf[0]['date'] == start_date # assert recs[0]['date'] == start_date tests = [t for t in data['testResultsPerDate'] if t['positiveAmount']!=-1][-N:] tests2 = data['testsPerDate'][-N:] assert tests[0]['date'] == tests2[0]['date'] == start_date epi_lines = [','.join(map(str, [t['positiveAmount'], i['sum'], i['amount'], r['amount'], t['amount'], t['amountVirusDiagnosis'], t['amountPersonTested'], t['amountMagen'], t2['amountSurvey']])) for \ i, r, t, t2 in zip(inf, recs, tests, tests2)] inff = data['infectionFactor'] def repr_if_not_none(x): if x is None: return '' return repr(x) inff_dict = {i['day_date']:repr_if_not_none(i['R']) for i in inff} inff_lines = [inff_dict.get(p['date'], '') for p in patients] title_line = ','.join(['Date', 'Hospitalized', 'Hospitalized without release', 'Easy', 'Medium', 'Hard', 'Critical', 'Ventilated', 'New deaths', 'Serious (cumu)', 'Ventilated (cumu)', 'Dead (cumu)', 'New hosptialized', 'New serious', 'In hotels', 'At home', 'Positive results', 'Total infected', 'New infected', 'New receovered', 'Total tests', 'Tests for idenitifaction', 'People tested', 'Tests for Magen', 'Survey tests', 'Official R']) csv_data = '\n'.join([title_line] + [ ','.join([p,e,i]) for p,e,i in zip(pat_lines, epi_lines, inff_lines)]) opf = open(HOSP_FNAME,'w') opf.write(csv_data+'\n') def create_vaccinated_csv(data): vac = data['vaccinated'] title_line = ','.join([ 'Date', 'Vaccinated (daily)','Vaccinated (cumu)','Vaccinated population percentage', 'Second dose (daily)','Second dose (cumu)','Second dose population precentage']) data_lines = [','.join([d['Day_Date'][:10]]+list(map(str, [ d['vaccinated'], d['vaccinated_cum'], d['vaccinated_population_perc'], d['vaccinated_seconde_dose'], d['vaccinated_seconde_dose_cum'], d['vaccinated_seconde_dose_population_perc']]))) for d in vac] csv_data = '\n'.join([title_line]+data_lines) # file(VAC_FNAME, 'w').write(csv_data+'\n') # assert os.system('git add '+VAC_FNAME) == 0 opf = open(VAC_FNAME,'w') opf.write(csv_data+'\n') def extend_hospital_csv(data): csv_prev_lines = file(HOSPITALS_FNAME).read().splitlines() keys = [k.split(':')[0] for k in csv_prev_lines[0].split(',')[1::3]] hosp_dict = dict([(z['name'].encode('utf8').replace('"','').replace("'",""), (z['normalOccupancy'], z['coronaOccupancy'], z['isolatedTeam'])) for z in data['hospitalStatus']]) new_line = [data['lastUpdate']['lastUpdate'].encode('utf8')] for k in keys: if k in hosp_dict.keys(): no, co, it = hosp_dict[k] if no is None: no = 'None' else: no = '%.2f'%(no) new_line.append('%s,%.2f,%d'%(no,co,it)) else: new_line.append(',,') a,b,c = HOSP_HEB_FIELD_NAMES for k in sorted(list(set(hosp_dict.keys()).difference(set(keys)))): csv_prev_lines[0] += ',%s: %s,%s: %s,%s :%s'%(k,a,k,b,k,c) for j in range(1,len(csv_prev_lines)): csv_prev_lines[j] += ',,,' no, co, it = hosp_dict[k] if no is None: no = 'None' else: no = '%.2f'%(no) new_line.append('%s,%.2f,%d'%(no,co,it)) csv_prev_lines.append(','.join(new_line)) file(HOSPITALS_FNAME, 'w').write('\n'.join(csv_prev_lines)) assert os.system('git add '+HOSPITALS_FNAME) == 0 def update_isolated_csv(data): csv_lines = file(ISOLATED_FNAME).read().splitlines() isols = {item['name'] : item['amount'] for item in data['isolatedDoctorsAndNurses']} veris = {item['name'] : item['amount'] for item in data['verifiedDoctorsAndNurses']} new_line = [data['lastUpdate']['lastUpdate']] + [str(dic[names_trans[k]]) for dic,k in [(isols, 'doctors'),(veris, 'doctors'), (isols, 'nurses'), (veris, 'nurses'), (isols, 'others'), (veris, 'others')]] if new_line[1:] == csv_lines[-1].split(',')[1:]: return file(ISOLATED_FNAME, 'w').write('\n'.join(csv_lines + [','.join(new_line)])) assert os.system('git add '+ISOLATED_FNAME) == 0 city_title_line = ','.join(['Date']+[ 'sickCount', 'actualSick', 'patientDiffPopulationForTenThousands', 'testLast7Days', 'verifiedLast7Days'] + [ u'activeSick', u'activeSickTo1000',u'sickTo10000', u'growthLastWeek', u'positiveTests', u'score', u'color', u'governmentColor', u'firstDose', u'secondDose' ]) def create_city_line(cpp_ent, spp_ent, date): cpp_keys = ['sickCount', 'actualSick', 'patientDiffPopulationForTenThousands', 'testLast7Days', 'verifiedLast7Days'] spp_keys = [u'activeSick', u'activeSickTo1000',u'sickTo10000', u'growthLastWeek', u'positiveTests', u'score', u'color', u'governmentColor', u'firstDose', u'secondDose'] line = ','.join([date]+[safe_str(cpp_ent.get(key, '')) for key in cpp_keys] + \ [safe_str(spp_ent.get(key, '')) for key in spp_keys]) return line def strip_name(name): return ''.join([heb_translit.get(c,c) for c in name]) def update_cities(new_data): date = new_data['lastUpdate']['lastUpdate'] cd_dict = {a['city'] : a for a in new_data['contagionDataPerCityPublic']} sp_dict = {a['name'] : a for a in new_data['spotlightPublic']} for n in set(sp_dict.keys())|set(cd_dict.keys()): line = create_city_line(cd_dict.get(n, {}), sp_dict.get(n, {}), date) fname = 'cities/%s.csv'%(strip_name(n)) try: add_line_to_file(fname, line) except IOError: # file didn't exist - new city name encountered print('New city!') print (fname) file(fname, 'w').write(city_title_line+'\n'+line+'\n') assert os.system('git add ' + fname) == 0 add_line_to_file('cities_transliteration.csv', ('%s,%s'%(n, strip_name(n))).encode('utf-8')) def create_cases_by_vaccinations_daily(data): ## res = ',' + (','*9).join(['All ages', 'Above 60', 'Below 60']) + ','*8 + '\n' res = ',' + ',,,'.join([pre+' - '+suf for pre in ['All ages', 'Above 60', 'Below 60'] for suf in ['fully vaccinated', 'partially vaccinated', 'not vaccinated'] ]) + ','*2 + '\n' res += 'Date' + ',Total Amount,Daily verified,Total serious'*9 + '\n' vvd = data['vaccinatedVerifiedDaily'] for i in range(0, len(vvd), 3): s = sorted(vvd[i:i+3], key=lambda x: x['age_group']) assert s[0]['day_date'] == s[2]['day_date'] == s[2]['day_date'] line = s[0]['day_date']+',' line += ','.join([ str(ss[case_type%vacc_type]) for ss in s for vacc_type in ['vaccinated', 'vaccinated_procces', 'not_vaccinated'] for case_type in ['%s_amount_cum', 'verified_amount_%s', 'Serious_amount_%s']]) res += line + '\n' # file(VAC_CASES_DAILY, 'w').write(res) opf = open(VAC_CASES_DAILY,'w') opf.write(res+'\n') data = get_api_data() create_patients_csv(data) create_vaccinated_csv(data) create_cases_by_vaccinations_daily(data) update_age_vaccinations_csv(data) # vacc = pd.read_json('https://datadashboardapi.health.gov.il/api/queries/vaccinatedVerifiedDaily') # vacc.to_csv('vaccinatedVerifiedDaily.csv') research = pd.read_json('https://datadashboardapi.health.gov.il/api/queries/researchGraph') research.to_csv('researchGraph.csv') # vacc = pd.read_json('https://datadashboardapi.health.gov.il/api/queries/vaccinatedVerifiedDaily') # vacc.to_csv('vaccinatedVerifiedDaily.csv') vacc = pd.read_json('https://datadashboardapi.health.gov.il/api/queries/vaccinationsPerAge') vacc.to_csv('vaccinationsPerAge.csv')
44.953846
104
0.597878