hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
4836790f7f179775fa2922a17970fb8bf8a4796d
95
py
Python
test_tools.py
dahcase/gee_tools
4aa445e3a25ef2b9dd19762dc21ef5dcc9debc04
[ "MIT" ]
null
null
null
test_tools.py
dahcase/gee_tools
4aa445e3a25ef2b9dd19762dc21ef5dcc9debc04
[ "MIT" ]
null
null
null
test_tools.py
dahcase/gee_tools
4aa445e3a25ef2b9dd19762dc21ef5dcc9debc04
[ "MIT" ]
1
2022-01-13T23:39:05.000Z
2022-01-13T23:39:05.000Z
# coding=utf-8 from geetools.tests import test_tools import unittest unittest.main(test_tools)
19
37
0.831579
28d0fb86c9812083762bb3cabbe48c954743b199
22,075
py
Python
dis_snek/api/http/http_requests/guild.py
ShardlessBun/Dis-Snek
fd15b06c531e82a9682a7b139deec0df7b2aa2d0
[ "MIT" ]
null
null
null
dis_snek/api/http/http_requests/guild.py
ShardlessBun/Dis-Snek
fd15b06c531e82a9682a7b139deec0df7b2aa2d0
[ "MIT" ]
null
null
null
dis_snek/api/http/http_requests/guild.py
ShardlessBun/Dis-Snek
fd15b06c531e82a9682a7b139deec0df7b2aa2d0
[ "MIT" ]
null
null
null
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from dis_snek.client.const import Absent, MISSING from dis_snek.client.utils.serializer import dict_filter_none from ..route import Route if TYPE_CHECKING: from dis_snek.models.discord.snowflake import Snowflake_Type class GuildRequests: request: Any async def get_guilds( self, limit: int = 200, before: Optional["Snowflake_Type"] = None, after: Optional["Snowflake_Type"] = None ) -> List[Dict]: """ Get a list of partial guild objects the current user is a member of req. `guilds` scope. parameters: limit: max number of guilds to return (1-200) before: get guilds before this guild ID after: get guilds after this guild ID returns: List[guilds] """ params: Dict[str, Union[int, str]] = {"limit": limit} if before: params["before"] = before if after: params["after"] = after return await self.request(Route("GET", "/users/@me/guilds", params=params)) async def get_guild(self, guild_id: "Snowflake_Type", with_counts: Optional[bool] = True) -> dict: """ Get the guild object for the given ID. parameters: guild_id: the id of the guild with_counts: when `true`, will return approximate member and presence counts for the guild returns: a guild object """ return await self.request( Route("GET", f"/guilds/{guild_id}"), params={"with_counts": int(with_counts)} # type: ignore ) async def get_guild_preview(self, guild_id: "Snowflake_Type") -> dict: """ Get a guild's preview. parameters: guild_id: the guilds ID returns: guild preview object """ return await self.request(Route("GET", f"/guilds/{guild_id}/preview")) async def get_channels(self, guild_id: "Snowflake_Type") -> List[Dict]: """ Get a guilds channels. parameters: guild_id: the id of the guild returns: List of channels """ return await self.request(Route("GET", f"/guilds/{guild_id}/channels")) async def get_roles(self, guild_id: "Snowflake_Type") -> List[Dict]: """ Get a guild's roles. parameters: guild_id: The ID of the guild returns: List of roles """ return await self.request(Route("GET", f"/guilds/{guild_id}/roles")) async def modify_guild(self, guild_id: "Snowflake_Type", reason: Absent[str] = MISSING, **kwargs) -> None: """ Modify a guild's attributes. parameters: guild_id: The ID of the guild we want to modify reason: The reason for this change kwargs: The params to change """ expected = [ "name", "region", "verification_level", "default_message_notifications", "explicit_content_filter", "afk_channel_id", "afk_timeout", "icon", "owner_id", "splash", "discovery_splash", "banner", "system_channel_id", "system_channel_flags", "rules_channel_id", "public_updates_channel_id", "preferred_locale", "features", "description", ] kwargs_copy = kwargs.copy() for key, value in kwargs.items(): if key not in expected or value is MISSING: del kwargs_copy[key] # only do the request if there is something to modify if kwargs_copy: await self.request(Route("PATCH", f"/guilds/{guild_id}"), data=kwargs_copy, reason=reason) async def delete_guild(self, guild_id: "Snowflake_Type") -> None: """ Delete the guild. parameters: guild_id: The ID of the guild that we want to delete """ return await self.request(Route("DELETE", f"/guilds/{guild_id}")) async def add_guild_member( self, guild_id: "Snowflake_Type", user_id: "Snowflake_Type", access_token: str, nick: str = None, roles: List["Snowflake_Type"] = None, mute: bool = False, deaf: bool = False, ) -> dict: """ Add a user to the guild. All parameters to this endpoint except for `access_token`, `guild_id` and `user_id` are optional. parameters: guild_id: The ID of the guild user_id: The ID of the user to add access_token: The access token of the user nick: value to set users nickname to roles: array of role ids the member is assigned mute: whether the user is muted in voice channels deaf: whether the user is deafened in voice channels returns: Guild Member Object """ return await self.request( Route("PUT", f"/guilds/{guild_id}/members/{user_id}"), data=dict_filter_none( {"access_token": access_token, "nick": nick, "roles": roles, "mute": mute, "deaf": deaf} ), ) async def remove_guild_member( self, guild_id: "Snowflake_Type", user_id: "Snowflake_Type", reason: Absent[str] = MISSING ) -> None: """ Remove a member from a guild. parameters: guild_id: The ID of the guild user_id: The ID of the user to remove reason: The reason for this action """ return await self.request(Route("DELETE", f"/guilds/{guild_id}/members/{user_id}"), reason=reason) async def get_guild_bans(self, guild_id: "Snowflake_Type") -> List[dict]: """ Return a list of ban objects for the users banned from this guild. parameters: guild_id: The ID of the guild to query returns: List of ban objects """ return await self.request(Route("GET", f"/guilds/{guild_id}/bans")) async def get_guild_ban(self, guild_id: "Snowflake_Type", user_id: "Snowflake_Type") -> Optional[dict]: """ Returns a ban object for the given user or a 404 not found if the ban cannot be found. parameters: guild_id: The ID of the guild to query user_id: The ID of the user to query returns: Ban object if exists raises: Not found error if no ban exists """ return await self.request(Route("GET", f"/guilds/{guild_id}/bans/{user_id}")) async def create_guild_ban( self, guild_id: "Snowflake_Type", user_id: "Snowflake_Type", delete_message_days: int = 0, reason: Absent[str] = MISSING, ) -> None: """ Create a guild ban, and optionally delete previous messages sent by the banned user. parameters: guild_id: The ID of the guild to create the ban in user_id: The ID of the user to ban delete_message_days: number of days to delete messages for (0-7) reason: The reason for this action """ return await self.request( Route("PUT", f"/guilds/{guild_id}/bans/{user_id}"), data={"delete_message_days": delete_message_days}, reason=reason, ) async def remove_guild_ban( self, guild_id: "Snowflake_Type", user_id: "Snowflake_Type", reason: Absent[str] = MISSING ) -> None: """ Remove a guild ban. parameters: guild_id: The ID of the guild to remove the ban in user_id: The ID of the user to unban reason: The reason for this action """ return await self.request(Route("DELETE", f"/guilds/{guild_id}/bans/{user_id}"), reason=reason) async def get_guild_prune_count( self, guild_id: "Snowflake_Type", days: int = 7, include_roles: List["Snowflake_Type"] = None ) -> dict: """ Returns an object with one 'pruned' key indicating the number of members that would be removed in a prune operation. parameters: guild_id: The ID of the guild to query days: number of days to count prune for (1-30) include_roles: role(s) to include returns: {"pruned": int} """ payload = {"days": days} if include_roles: payload["include_roles"] = ", ".join(include_roles) return await self.request(Route("GET", f"/guilds/{guild_id}/prune"), params=payload) async def begin_guild_prune( self, guild_id: "Snowflake_Type", days: int = 7, include_roles: Optional[List["Snowflake_Type"]] = None, compute_prune_count: bool = True, reason: Absent[str] = MISSING, ) -> dict: """ Begin a prune operation. parameters: guild_id: The ID of the guild to query days: number of days to count prune for (1-30) include_roles: role(s) to include compute_prune_count: whether 'pruned' is returned, discouraged for large guilds reason: The reason for this action returns: {"pruned": Optional[int]} """ payload = {"days": days, "compute_prune_count": compute_prune_count} if include_roles: payload["include_roles"] = ", ".join(include_roles) return await self.request(Route("POST", f"/guilds/{guild_id}/prune"), data=payload, reason=reason) async def get_guild_invites(self, guild_id: "Snowflake_Type") -> List[dict]: """ Returns a list of invite objects (with invite metadata) for the guild. parameters: guild_id: The ID of the guild to query returns: List of invite objects """ return await self.request(Route("GET", f"/guilds/{guild_id}/invites")) async def create_guild_role(self, guild_id: "Snowflake_Type", payload: dict, reason: Absent[str] = MISSING) -> dict: """ Create a new role for the guild. parameters: guild_id: The ID of the guild payload: A dict representing the role to add reason: The reason for this action returns: Role object """ return await self.request(Route("POST", f"/guilds/{guild_id}/roles"), data=payload, reason=reason) async def modify_guild_role_positions( self, guild_id: "Snowflake_Type", role_id: "Snowflake_Type", position: int, reason: Absent[str] = MISSING ) -> List[dict]: """ Modify the position of a role in the guild. parameters: guild_id: The ID of the guild role_id: The ID of the role to move position: The new position of this role in the hierarchy reason: The reason for this action returns: List of guild roles """ return await self.request( Route("PATCH", f"/guilds/{guild_id}/roles"), data={"id": role_id, "position": position}, reason=reason ) async def modify_guild_role( self, guild_id: "Snowflake_Type", role_id: "Snowflake_Type", payload: dict, reason: Absent[str] = MISSING ) -> dict: """ Modify an existing role for the guild. parameters: guild_id: The ID of the guild role_id: The ID of the role to move payload: A dict representing the role to add reason: The reason for this action returns: Role object """ return await self.request(Route("PATCH", f"/guilds/{guild_id}/roles/{role_id}"), data=payload, reason=reason) async def delete_guild_role( self, guild_id: "Snowflake_Type", role_id: "Snowflake_Type", reason: Absent[str] = MISSING ) -> None: """ Delete a guild role. parameters: role_id: The ID of the role to delete reason: The reason for this action guild_id: The ID of the guild """ return await self.request(Route("DELETE", f"/guilds/{guild_id}/roles/{role_id}"), reason=reason) async def get_guild_voice_regions(self, guild_id: "Snowflake_Type") -> List[dict]: """ Returns a list of voice region objects for the guild. Unlike the similar /voice route, this returns VIP servers when the guild is VIP- enabled. parameters: guild_id: The ID of the guild to query returns: List of voice region objects """ return await self.request(Route("GET", f"/guilds/{guild_id}/regions")) async def get_guild_integrations(self, guild_id: "Snowflake_Type") -> List[dict]: """ Returns a list of integration objects for the guild. parameters: guild_id: The ID of the guild to query returns: list of integration objects """ return await self.request(Route("GET", f"/guilds/{guild_id}/integrations")) async def delete_guild_integration( self, guild_id: "Snowflake_Type", integration_id: "Snowflake_Type", reason: Absent[str] = MISSING ) -> None: """ Delete an integration from the guild. parameters: guild_id: The ID of the guild integration_id: The ID of the integration to remove """ return await self.request(Route("DELETE", f"/guilds/{guild_id}/integrations/{integration_id}"), reason=reason) async def get_guild_widget_settings(self, guild_id: "Snowflake_Type") -> dict: """ Get guild widget settings. parameters: guild_id: The ID of the guild to query returns: guild widget object """ return await self.request(Route("GET", f"/guilds/{guild_id}/widget")) async def get_guild_widget(self, guild_id: "Snowflake_Type") -> dict: """ Returns the widget for the guild. parameters: guild_id: The ID of the guild to query returns: Guild widget """ return await self.request(Route("GET", f"/guilds/{guild_id}/widget.json")) async def get_guild_widget_image(self, guild_id: "Snowflake_Type", style: str = None) -> str: """ Get a url representing a png image widget for the guild. For styles see: https://discord.com/developers/docs/resources/guild#get-guild-widget-image parameters: guild_id: The guild to query style: The style of widget required. returns: A url pointing to this image """ route = Route("GET", f"/guilds/{guild_id}/widget.png{f'?style={style}' if style else ''}") return route.url async def get_guild_welcome_screen(self, guild_id: "Snowflake_Type") -> dict: """ Get the welcome screen for this guild. parameters: guild_id: The ID of the guild to query returns: Welcome screen object """ return await self.request(Route("GET", f"/guilds/{guild_id}/welcome-screen")) async def get_guild_vanity_url(self, guild_id: "Snowflake_Type") -> dict: """ Get a partial invite object for the guilds vanity invite url. parameters: guild_id: The ID of the guild to query returns: `{"code": "abc", "uses": 420}` or `None` """ return await self.request(Route("GET", f"/guilds/{guild_id}/vanity-url")) async def modify_guild_widget( self, guild_id: "Snowflake_Type", enabled: bool = None, channel_id: "Snowflake_Type" = None ) -> dict: """ Modify a guild widget. Args: guild_id: The ID of the guild to modify. enabled: Should the guild widget be enabled channel_id: The widget's channel ID returns: Updated guild widget. """ return await self.request( Route("PATCH", f"/guilds/{guild_id}/widget"), data=dict_filter_none({"enabled": enabled, "channel_id": channel_id}), ) async def modify_guild_welcome_screen( self, guild_id: "Snowflake_Type", enabled: bool, welcome_channels: List["Snowflake_Type"], description: str ) -> dict: """ Modify the guild's welcome screen. parameters: guild_id: The ID of the guild. enabled: Whether the welcome screen is enabled welcome_channels: Channels linked in the welcome screen and their display options description: The server description to show in the welcome screen returns: Updated welcome screen object """ return await self.request( Route("PATCH", f"/guilds/{guild_id}/welcome-screen"), data={"enabled": enabled, "welcome_channels": welcome_channels, "description": description}, ) async def modify_current_user_voice_state( self, guild_id: "Snowflake_Type", channel_id: "Snowflake_Type", suppress: bool = None, request_to_speak_timestamp: str = None, ) -> None: """ Update the current user voice state. parameters: guild_id: The ID of the guild to update. channel_id: The id of the channel the user is currently in suppress: Toggle the user's suppress state. request_to_speak_timestamp: Sets the user's request to speak """ return await self.request( Route("PATCH", f"/guilds/{guild_id}/voice-states/@me"), data=dict_filter_none( { "channel_id": channel_id, "suppress": suppress, "request_to_speak_timestamp": request_to_speak_timestamp, } ), ) async def modify_user_voice_state( self, guild_id: "Snowflake_Type", user_id: "Snowflake_Type", channel_id: "Snowflake_Type", suppress: bool = None ) -> None: """ Modify the voice state of a user. parameters: guild_id: The ID of the guild. user_id: The ID of the user to modify. channel_id: The ID of the channel the user is currently in. suppress: Toggles the user's suppress state. """ return await self.request( Route("PATCH", f"/guilds/{guild_id}/voice-states/{user_id}"), data=dict_filter_none({"channel_id": channel_id, "suppress": suppress}), ) async def create_guild_from_guild_template(self, template_code: str, name: str, icon: str) -> dict: """ Creates a new guild based on a template. note: This endpoint can only be used by bots in less than 10 guilds. parameters: template_code: The code of the template to use. name: The name of the guild (2-100 characters) icon: Data URI scheme returns: The newly created guild object """ return await self.request( Route("POST", f"/guilds/templates/{template_code}"), data={"name": name, "icon": icon} ) async def get_guild_templates(self, guild_id: "Snowflake_Type") -> List[dict]: """ Returns an array of guild templates. parameters: guild_id: The ID of the guild to query. returns: An array of guild templates """ return await self.request(Route("GET", f"/guilds/{guild_id}/templates")) async def create_guild_template(self, guild_id: "Snowflake_Type", name: str, description: str = None) -> dict: """ Create a guild template for the guild. parameters: guild_id: The ID of the guild to create a template for. name: The name of the template description: The description of the template returns: The created guild template """ return await self.request( Route("POST", f"/guilds/{guild_id}/templates"), data=dict_filter_none({"name": name, "description": description}), ) async def sync_guild_template(self, guild_id: "Snowflake_Type", template_code: str) -> dict: """ Sync the template to the guild's current state. parameters: guild_id: The ID of the guild template_code: The code for the template to sync returns: The updated guild template """ return await self.request(Route("PUT", f"/guilds/{guild_id}/templates/{template_code}")) async def modify_guild_template( self, guild_id: "Snowflake_Type", template_code: str, name: str = None, description: str = None ) -> dict: """ Modifies the template's metadata. parameters: guild_id: The ID of the guild template_code: The template code name: The name of the template description: The description of the template returns: The updated guild template """ return await self.request( Route("PATCH", f"/guilds/{guild_id}/templates/{template_code}"), data=dict_filter_none({"name": name, "description": description}), ) async def delete_guild_template(self, guild_id: "Snowflake_Type", template_code: str) -> dict: """ Delete the guild template. parameters: guild_id: The ID of the guild template_code: The ID of the template returns: The deleted template object """ # why on earth does this return the deleted template object? return await self.request(Route("DELETE", f"/guilds/{guild_id}/templates/{template_code}"))
33.497724
151
0.58872
e730b1dbd6eee3e1d7e20a1747b3cae6737a7fc1
3,128
py
Python
Python/NeonOcean.S4.Order/NeonOcean/S4/Order/Tools/Once.py
NeonOcean/Order
7e7cbdb26e98bb276c7b27cedc75164634e64148
[ "CC-BY-4.0" ]
null
null
null
Python/NeonOcean.S4.Order/NeonOcean/S4/Order/Tools/Once.py
NeonOcean/Order
7e7cbdb26e98bb276c7b27cedc75164634e64148
[ "CC-BY-4.0" ]
null
null
null
Python/NeonOcean.S4.Order/NeonOcean/S4/Order/Tools/Once.py
NeonOcean/Order
7e7cbdb26e98bb276c7b27cedc75164634e64148
[ "CC-BY-4.0" ]
null
null
null
from __future__ import annotations import typing from NeonOcean.S4.Order.Tools import Exceptions class Once: def __init__ (self): """ An object for tracking whether or not sections of code that are only suppose to run once have done so already. """ self.Triggered = dict() # type: typing.Dict[str, typing.Set[typing.Any]] def Block (self, identifier: str, reference: typing.Any = None) -> None: """ Signal that a section of code is blocked off. :param identifier: This identifier should be unique to the section of code meant to be blocked. The line number and module name together should be sufficient. :type identifier: str :param reference: If you want the section of code to be run then blocked for every object, set the object as the reference. Other let this be None. """ if not isinstance(identifier, str): raise Exceptions.IncorrectTypeException(identifier, "identifier", (str,)) if identifier not in self.Triggered: identifierReferences = set() # type: typing.Set[typing.Any] identifierReferences.add(reference) self.Triggered[identifier] = set() self.Triggered[identifier].add(reference) def Unblock (self, identifier: str, reference: typing.Any = None) -> None: """ Unblock a previously blocked identifier and reference combination. If it is not blocked nothing will happen. :param identifier: This identifier should be unique to the section of code meant to be blocked. The line number and module name together should be sufficient. :type identifier: str :param reference: If you want the section of code to be run then blocked for every object, set the object as the reference. Other let this be None. """ if identifier not in self.Triggered: return blockedReferences = self.Triggered[identifier] if reference in blockedReferences: blockedReferences.remove(reference) def UnblockIdentifier (self, identifier: str) -> None: """ Remove all blocked references for this identifier. :param identifier: This identifier should be unique to the section of code meant to be blocked. The line number and module name together should be sufficient. :type identifier: str """ if identifier not in self.Triggered: return self.Triggered[identifier] = set() def UnblockAll (self) -> None: """ Remove all blocked identifier and reference combinations. """ self.Triggered = dict() def IsBlocked (self, identifier: str, reference: typing.Any = None) -> bool: """ Get whether or not this combination of identifier and reference has been blocked. :param identifier: This identifier should be unique to the section of code meant to be blocked. The line number and module name together should be sufficient. :type identifier: str :param reference: If you want the section of code to be run then blocked for every object, set the object as the reference. Other let this be None. """ if not isinstance(identifier, str): raise Exceptions.IncorrectTypeException(identifier, "identifier", (str,)) if identifier in self.Triggered: if reference in self.Triggered[identifier]: return True return False
37.238095
160
0.745524
2f162433572bf74f8d9cc228a9e32411493bc956
60,905
py
Python
isstools/widgets/widget_batch_mode.py
elistavitski/isstools
482b40bb0017b1a480ff862c1a53e89dfac947ec
[ "BSD-3-Clause" ]
null
null
null
isstools/widgets/widget_batch_mode.py
elistavitski/isstools
482b40bb0017b1a480ff862c1a53e89dfac947ec
[ "BSD-3-Clause" ]
null
null
null
isstools/widgets/widget_batch_mode.py
elistavitski/isstools
482b40bb0017b1a480ff862c1a53e89dfac947ec
[ "BSD-3-Clause" ]
null
null
null
import inspect import re import pkg_resources from PyQt5 import uic, QtWidgets, QtCore from matplotlib.backends.backend_qt5agg import ( FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure from matplotlib.widgets import Cursor from PyQt5 import uic, QtGui, QtCore, QtWidgets from PyQt5.QtCore import QThread import numpy as np import collections import time as ttime from isstools.elements import elements from isstools.trajectory.trajectory import trajectory_manager from isstools.batch.batch import BatchManager ui_path = pkg_resources.resource_filename('isstools', 'ui/ui_batch_mode.ui') import json import pandas as pd class UIBatchMode(*uic.loadUiType(ui_path)): def __init__(self, plan_funcs, motors_dict, hhm, RE, db, gen_parser, adc_list, enc_list, xia, run_prep_traj, scan_figure, create_log_scan, sample_stages, parent_gui, *args, **kwargs): super().__init__(*args, **kwargs) self.setupUi(self) self.addCanvas() self.plan_funcs = plan_funcs self.plan_funcs_names = [plan.__name__ for plan in plan_funcs] self.motors_dict = motors_dict self.mot_list = self.motors_dict.keys() self.mot_sorted_list = list(self.mot_list) self.mot_sorted_list.sort() self.traj_manager = trajectory_manager(hhm) self.create_log_scan = create_log_scan self.RE = RE self.db = db self.figure = scan_figure self.run_prep_traj = run_prep_traj self.gen_parser = gen_parser self.sample_stages = sample_stages self.parent_gui = parent_gui self.batch_mode_uids = [] self.treeView_batch = elements.TreeView(self, 'all') self.treeView_samples_loop = elements.TreeView(self, 'sample') self.treeView_samples_loop_scans = elements.TreeView(self, 'scan', unique_elements=False) self.treeView_samples = elements.TreeView(self, 'sample') self.treeView_scans = elements.TreeView(self, 'scan') self.push_batch_delete_all.clicked.connect(self.delete_all_batch) self.gridLayout_22.addWidget(self.treeView_samples_loop, 1, 0) self.gridLayout_22.addWidget(self.treeView_samples_loop_scans, 1, 1) self.gridLayout_23.addWidget(self.treeView_samples, 0, 0) self.gridLayout_24.addWidget(self.treeView_batch, 0, 0) self.gridLayout_26.addWidget(self.treeView_scans, 0, 0) self.treeView_batch.setDragDropMode(QtWidgets.QAbstractItemView.InternalMove) # self.treeView_samples.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection) self.treeView_samples.setDragDropMode(QtWidgets.QAbstractItemView.DragOnly) self.treeView_scans.setDragDropMode(QtWidgets.QAbstractItemView.DragOnly) self.treeView_samples_loop.setDragDropMode(QtWidgets.QAbstractItemView.DropOnly) self.treeView_samples_loop_scans.setDragDropMode(QtWidgets.QAbstractItemView.DropOnly) self.batch_running = False self.batch_pause = False self.batch_abort = False self.batch_results = {} self.push_batch_pause.clicked.connect(self.pause_unpause_batch) self.push_batch_abort.clicked.connect(self.abort_batch) self.push_replot_batch.clicked.connect(self.plot_batches) self.last_num_batch_text = 'i0' self.last_den_batch_text = 'it' self.analog_samp_time = '1' self.enc_samp_time = '1' self.adc_list = adc_list self.enc_list = enc_list self.xia = xia self.treeView_batch.header().hide() self.treeView_samples.header().hide() self.treeView_scans.header().hide() self.treeView_samples_loop.header().hide() self.treeView_samples_loop_scans.header().hide() self.push_create_sample.clicked.connect(self.create_new_sample_func) self.push_get_sample.clicked.connect(self.get_sample_pos) self.model_samples = QtGui.QStandardItemModel(self) self.treeView_samples.setModel(self.model_samples) self.push_add_sample.clicked.connect(self.add_new_sample_func) self.push_delete_sample.clicked.connect(self.delete_current_sample) self.model_batch = QtGui.QStandardItemModel(self) self.treeView_batch.setModel(self.model_batch) self.push_add_sample_loop.clicked.connect(self.add_new_sample_loop_func) self.push_delete_sample_loop.clicked.connect(self.delete_current_samples_loop) self.model_samples_loop = QtGui.QStandardItemModel(self) self.treeView_samples_loop.setModel(self.model_samples_loop) self.push_delete_sample_loop_scan.clicked.connect(self.delete_current_samples_loop_scans) self.model_samples_loop_scans = QtGui.QStandardItemModel(self) self.treeView_samples_loop_scans.setModel(self.model_samples_loop_scans) self.push_create_scan.clicked.connect(self.create_new_scan_func) self.push_delete_scan.clicked.connect(self.delete_current_scan) self.push_add_scan.clicked.connect(self.add_new_scan_func) self.model_scans = QtGui.QStandardItemModel(self) self.treeView_scans.setModel(self.model_scans) self.push_batch_run.clicked.connect(self.start_batch) self.push_batch_print_steps.clicked.connect(self.print_batch) self.push_batch_delete.clicked.connect(self.delete_current_batch) self.comboBox_scans.addItems(self.plan_funcs_names) self.comboBox_scans.currentIndexChanged.connect(self.populateParams_batch) self.push_create_scan_update.clicked.connect(self.update_batch_traj) try: self.update_batch_traj() except OSError as err: print('Error loading:', err) self.params1_batch = [] self.params2_batch = [] self.params3_batch = [] if len(self.plan_funcs) != 0: self.populateParams_batch(0) self.comboBox_sample_loop_motor.addItems(self.mot_sorted_list) self.comboBox_sample_loop_motor.currentTextChanged.connect(self.update_loop_values) self.spinBox_sample_loop_rep.valueChanged.connect(self.restore_add_loop) self.spinBox_sample_loop_rep.valueChanged.connect(self.comboBox_sample_loop_motor.setDisabled) self.spinBox_sample_loop_rep.valueChanged.connect(self.doubleSpinBox_motor_range_start.setDisabled) self.spinBox_sample_loop_rep.valueChanged.connect(self.doubleSpinBox_motor_range_stop.setDisabled) self.spinBox_sample_loop_rep.valueChanged.connect(self.doubleSpinBox_motor_range_step.setDisabled) self.spinBox_sample_loop_rep.valueChanged.connect(self.radioButton_sample_rel.setDisabled) self.spinBox_sample_loop_rep.valueChanged.connect(self.radioButton_sample_abs.setDisabled) self.radioButton_sample_rel.toggled.connect(self.set_loop_values) self.last_lut = 0 self.push_load_csv.clicked.connect(self.load_csv) self.push_save_csv.clicked.connect(self.save_csv) #checking which xystage to use: self.stage_x = '' self.stage_y = '' for stage in self.sample_stages: if stage['x'] in self.motors_dict and stage['y'] in self.motors_dict: if self.motors_dict[stage['x']]['object'].connected and\ self.motors_dict[stage['y']]['object'].connected: self.stage_x = stage['x'] self.stage_y = stage['y'] break if self.stage_x == '' or self.stage_y == '': print('No stage set! Batch mode will not work!') def addCanvas(self): self.figure_batch_waterfall = Figure() self.figure_batch_waterfall.set_facecolor(color='#FcF9F6') self.canvas_batch_waterfall = FigureCanvas(self.figure_batch_waterfall) self.canvas_batch_waterfall.motor = '' self.figure_batch_waterfall.ax = self.figure_batch_waterfall.add_subplot(111) self.toolbar_batch_waterfall = NavigationToolbar(self.canvas_batch_waterfall, self, coordinates=True) self.plot_batch_waterfall.addWidget(self.toolbar_batch_waterfall) self.plot_batch_waterfall.addWidget(self.canvas_batch_waterfall) self.canvas_batch_waterfall.draw_idle() self.cursor_batch_waterfall = Cursor(self.figure_batch_waterfall.ax, useblit=True, color='green', linewidth=0.75) self.figure_batch_average = Figure() self.figure_batch_average.set_facecolor(color='#FcF9F6') self.canvas_batch_average = FigureCanvas(self.figure_batch_average) self.canvas_batch_average.motor = '' self.figure_batch_average.ax = self.figure_batch_average.add_subplot(111) self.toolbar_batch_average = NavigationToolbar(self.canvas_batch_average, self, coordinates=True) self.plot_batch_average.addWidget(self.toolbar_batch_average) self.plot_batch_average.addWidget(self.canvas_batch_average) self.canvas_batch_average.draw_idle() self.cursor_batch_average = Cursor(self.figure_batch_average.ax, useblit=True, color='green', linewidth=0.75) def pause_unpause_batch(self): if self.batch_running == True: self.batch_pause = not self.batch_pause if self.batch_pause: print('Pausing batch run... It will pause in the next step.') self.push_batch_pause.setText('Unpause') else: print('Unpausing batch run...') self.push_batch_pause.setText('Pause') self.label_batch_step.setText(self.label_batch_step.text()[9:]) def abort_batch(self): if self.batch_running == True: self.batch_abort = True self.re_abort() def plot_batches(self, data): if self.parent_gui.run_mode == 'batch': self.figure_batch_waterfall.ax.clear() self.toolbar_batch_waterfall._views.clear() self.toolbar_batch_waterfall._positions.clear() self.toolbar_batch_waterfall._update_view() self.canvas_batch_waterfall.draw_idle() self.figure_batch_average.ax.clear() self.toolbar_batch_average._views.clear() self.toolbar_batch_average._positions.clear() self.toolbar_batch_average._update_view() self.canvas_batch_average.draw_idle() df = pd.read_msgpack(data['processing_ret']['data']) #df = pd.DataFrame.from_dict(json.loads(data['processing_ret']['data'])) df = df.sort_values('energy') self.df = df md = data['processing_ret']['metadata'] trajectory_name = md['trajectory_name'] scan_name = md['name'] sample_name = scan_name.split(' - ')[0] e0 = int(md['e0']) if sample_name in self.batch_results: self.batch_results[sample_name]['data'].append(df) self.batch_results[sample_name]['orig_all'] = self.batch_results[sample_name]['orig_all'].append(df, ignore_index=True) self.gen_parser.interp_arrays = self.batch_results[sample_name]['orig_all'] binned = self.gen_parser.bin(e0, e0 - 30, e0 + 50, 10, 0.2, 0.04) self.batch_results[sample_name]['data_all'] = binned else: self.batch_results[sample_name] = {'data': [df]} self.batch_results[sample_name]['orig_all'] = df self.gen_parser.interp_df = self.batch_results[sample_name]['orig_all'] binned = self.gen_parser.bin(e0, e0 - 30, e0 + 50, 10, 0.2, 0.04) self.batch_results[sample_name]['data_all'] = binned largest_range = 0 for sample_index, sample in enumerate(self.batch_results): for data_index, data_set in enumerate(self.batch_results[sample]['data']): if self.listWidget_numerator_batch.count() == 0: self.listWidget_numerator_batch.insertItems(0, list(data_set.keys())) self.listWidget_denominator_batch.insertItems(0, list(data_set.keys())) if len(data_set.keys()): while self.listWidget_numerator_batch.count() == 0 or self.listWidget_denominator_batch.count() == 0: QtCore.QCoreApplication.processEvents() index_num = [index for index, item in enumerate( [self.listWidget_numerator_batch.item(index) for index in range(self.listWidget_numerator_batch.count())]) if item.text() == self.last_num_batch_text] if len(index_num): self.listWidget_numerator_batch.setCurrentRow(index_num[0]) index_den = [index for index, item in enumerate( [self.listWidget_denominator_batch.item(index) for index in range(self.listWidget_denominator_batch.count())]) if item.text() == self.last_den_batch_text] if len(index_den): self.listWidget_denominator_batch.setCurrentRow(index_den[0]) else: if self.listWidget_numerator_batch.currentRow() != -1: self.last_num_batch_text = self.listWidget_numerator_batch.currentItem().text() if self.listWidget_denominator_batch.currentRow() != -1: self.last_den_batch_text = self.listWidget_denominator_batch.currentItem().text() energy_string = 'energy' result = data_set[self.last_num_batch_text] / data_set[self.last_den_batch_text] if self.checkBox_log_batch.checkState() > 0: result = np.log(result) if result.max() - result.min() > largest_range: largest_range = result.max() - result.min() for sample_index, sample in enumerate(self.batch_results): for data_index, data_set in enumerate(self.batch_results[sample]['data']): energy_string = 'energy' result = data_set[self.last_num_batch_text] / data_set[self.last_den_batch_text] data_set_all = self.batch_results[sample]['data_all'] result_all = data_set_all[self.last_num_batch_text] / data_set_all[self.last_den_batch_text] # print('data_set', len(data_set['i0'])) if self.checkBox_log_batch.checkState() > 0: result = np.log(result) result_all = np.log(result_all) distance_multiplier = 1.25 if data_index == 0: text_y = (sample_index * largest_range * distance_multiplier) + (result.max() + result.min()) / 2 bbox_props = dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=1.3) self.figure_batch_waterfall.ax.text(data_set[energy_string].iloc[-1], text_y, sample, size=11, horizontalalignment='right', clip_on=True, bbox=bbox_props) self.figure_batch_average.ax.text(data_set_all[energy_string].iloc[-1], text_y, sample, size=11, horizontalalignment='right', clip_on=True, bbox=bbox_props) self.figure_batch_waterfall.ax.plot(data_set[energy_string].iloc[:len(result)], (sample_index * largest_range * distance_multiplier) + result) self.figure_batch_average.ax.plot(data_set_all[energy_string].iloc[:len(result_all)], (sample_index * largest_range * distance_multiplier) + result_all) self.canvas_batch_waterfall.draw_idle() self.canvas_batch_average.draw_idle() def create_new_sample_func(self): self.create_new_sample(self.lineEdit_sample_name.text(), self.doubleSpinBox_sample_x.value(), self.doubleSpinBox_sample_y.value()) def get_sample_pos(self): if self.stage_x not in self.mot_list: raise Exception('Stage X was not passed to the GUI') if self.stage_y not in self.mot_list: raise Exception('Stage Y was not passed to the GUI') if not self.motors_dict[self.stage_x]['object'].connected or \ not self.motors_dict[self.stage_y]['object'].connected: raise Exception('Stage IOC not connected') x_value = self.motors_dict[self.stage_x]['object'].position y_value = self.motors_dict[self.stage_y]['object'].position self.doubleSpinBox_sample_x.setValue(x_value) self.doubleSpinBox_sample_y.setValue(y_value) def add_new_sample_func(self): indexes = self.treeView_samples.selectedIndexes() for index in indexes: item = index.model().itemFromIndex(index) self.add_new_sample(item) def delete_current_sample(self): view = self.treeView_samples index = view.currentIndex() if index.row() < view.model().rowCount(): view.model().removeRows(index.row(), 1) def add_new_sample_loop_func(self): model_samples = self.treeView_samples_loop.model() data_samples = [] for row in range(model_samples.rowCount()): index = model_samples.index(row, 0) data_samples.append(str(model_samples.data(index))) model_scans = self.treeView_samples_loop_scans.model() data_scans = [] for row in range(model_scans.rowCount()): index = model_scans.index(row, 0) data_scans.append(str(model_scans.data(index))) self.add_new_sample_loop(data_samples, data_scans) def delete_current_samples_loop(self): view = self.treeView_samples_loop index = view.currentIndex() if index.row() < view.model().rowCount(): view.model().removeRows(index.row(), 1) def delete_current_samples_loop_scans(self): view = self.treeView_samples_loop_scans index = view.currentIndex() if index.row() < view.model().rowCount(): view.model().removeRows(index.row(), 1) def delete_current_scan(self): view = self.treeView_scans index = view.currentIndex() if index.row() < view.model().rowCount(): view.model().removeRows(index.row(), 1) def create_new_scan_func(self): self.create_new_scan(self.comboBox_scans.currentText(), self.comboBox_lut.currentText()) def add_new_scan_func(self): indexes = self.treeView_scans.selectedIndexes() for index in indexes: item = index.model().itemFromIndex(index) self.add_new_scan(item) def start_batch(self): print('[Launching Threads]') self.listWidget_numerator_batch.clear() self.listWidget_denominator_batch.clear() self.figure_batch_waterfall.ax.clear() self.canvas_batch_waterfall.draw_idle() self.figure_batch_average.ax.clear() self.canvas_batch_average.draw_idle() self.run_batch() def print_batch(self): print('\n***** Printing Batch Steps *****') self.run_batch(print_only=True) print('***** Finished Batch Steps *****') def delete_current_batch(self): view = self.treeView_batch index = view.currentIndex() if index.row() < view.model().rowCount(): view.model().removeRows(index.row(), 1) def delete_all_batch(self): view = self.treeView_samples if view.model().hasChildren(): view.model().removeRows(0, view.model().rowCount()) view = self.treeView_scans if view.model().hasChildren(): view.model().removeRows(0, view.model().rowCount()) view = self.treeView_samples_loop if view.model().hasChildren(): view.model().removeRows(0, view.model().rowCount()) view = self.treeView_samples_loop_scans if view.model().hasChildren(): view.model().removeRows(0, view.model().rowCount()) view = self.treeView_batch if view.model().hasChildren(): view.model().removeRows(0, view.model().rowCount()) def create_new_sample(self, name, x, y): parent = self.model_samples.invisibleRootItem() item = QtGui.QStandardItem('{} X:{} Y:{}'.format(name, x, y)) item.setDropEnabled(False) item.item_type = 'sample' item.x = x item.y = y # subitem = QtGui.QStandardItem('X: {}'.format(x)) # subitem.setEnabled(False) # item.appendRow(subitem) # subitem = QtGui.QStandardItem('Y: {}'.format(y)) # subitem.setEnabled(False) # item.appendRow(subitem) parent.appendRow(item) self.treeView_samples.expand(self.model_samples.indexFromItem(item)) def add_new_sample(self, item): parent = self.model_batch.invisibleRootItem() new_item = item.clone() new_item.item_type = 'sample' new_item.x = item.x new_item.y = item.y new_item.setEditable(False) new_item.setDropEnabled(False) name = new_item.text()[:new_item.text().find(' X:')] # .split()[0] new_item.setText('Move to "{}" X:{} Y:{}'.format(name, item.x, item.y)) for index in range(item.rowCount()): subitem = QtGui.QStandardItem(item.child(index)) subitem.setEnabled(False) subitem.setDropEnabled(False) new_item.appendRow(subitem) parent.appendRow(new_item) def select_all_samples(self): if len(self.treeView_samples.selectedIndexes()) < self.model_samples.rowCount(): self.treeView_samples.selectAll() else: self.treeView_samples.clearSelection() def create_new_scan(self, curr_type, traj): run_params = {} for i in range(len(self.params1_batch)): if (self.param_types_batch[i] == int): run_params[self.params3_batch[i].text().split('=')[0]] = self.params2_batch[i].value() elif (self.param_types_batch[i] == float): run_params[self.params3_batch[i].text().split('=')[0]] = self.params2_batch[i].value() elif (self.param_types_batch[i] == bool): run_params[self.params3_batch[i].text().split('=')[0]] = bool(self.params2_batch[i].checkState()) elif (self.param_types_batch[i] == str): run_params[self.params3_batch[i].text().split('=')[0]] = self.params2_batch[i].text() params = str(run_params)[1:-1].replace(': ', ':').replace(',', '').replace("'", "") parent = self.model_scans.invisibleRootItem() if self.comboBox_lut.isEnabled(): item = QtGui.QStandardItem('{} Traj:{} {}'.format(curr_type, traj, params)) else: item = QtGui.QStandardItem('{} {}'.format(curr_type, params)) item.setDropEnabled(False) item.item_type = 'sample' parent.appendRow(item) self.treeView_samples.expand(self.model_samples.indexFromItem(item)) def add_new_scan(self, item): parent = self.model_batch.invisibleRootItem() new_item = item.clone() new_item.item_type = 'scan' new_item.setEditable(False) new_item.setDropEnabled(False) name = new_item.text().split()[0] new_item.setText('Run {}'.format(new_item.text())) for index in range(item.rowCount()): subitem = QtGui.QStandardItem(item.child(index)) subitem.setEnabled(False) subitem.setDropEnabled(False) new_item.appendRow(subitem) parent.appendRow(new_item) def update_loop_values(self, text): for motor in self.motors_dict: if self.comboBox_sample_loop_motor.currentText() == self.motors_dict[motor]['name']: curr_mot = self.motors_dict[motor]['object'] break if self.radioButton_sample_rel.isChecked(): if curr_mot.connected == True: self.push_add_sample_loop.setEnabled(True) self.doubleSpinBox_motor_range_start.setValue(-0.5) self.doubleSpinBox_motor_range_stop.setValue(0.5) self.doubleSpinBox_motor_range_step.setValue(0.25) self.push_add_sample_loop.setEnabled(True) else: self.push_add_sample_loop.setEnabled(False) self.doubleSpinBox_motor_range_start.setValue(0) self.doubleSpinBox_motor_range_stop.setValue(0) self.doubleSpinBox_motor_range_step.setValue(0.025) else: if curr_mot.connected == True: self.push_add_sample_loop.setEnabled(True) curr_pos = curr_mot.read()[curr_mot.name]['value'] self.doubleSpinBox_motor_range_start.setValue(curr_pos - 0.1) self.doubleSpinBox_motor_range_stop.setValue(curr_pos + 0.1) self.doubleSpinBox_motor_range_step.setValue(0.025) else: self.push_add_sample_loop.setEnabled(False) self.doubleSpinBox_motor_range_start.setValue(0) self.doubleSpinBox_motor_range_stop.setValue(0) self.doubleSpinBox_motor_range_step.setValue(0.025) def restore_add_loop(self, value): if value: self.push_add_sample_loop.setEnabled(True) def set_loop_values(self, checked): if checked: self.doubleSpinBox_motor_range_start.setValue(-0.5) self.doubleSpinBox_motor_range_stop.setValue(0.5) self.doubleSpinBox_motor_range_step.setValue(0.25) self.push_add_sample_loop.setEnabled(True) else: motor_text = self.comboBox_sample_loop_motor.currentText() self.update_loop_values(motor_text) def add_new_sample_loop(self, samples, scans): parent = self.model_batch.invisibleRootItem() new_item = QtGui.QStandardItem('Sample Loop') new_item.setEditable(False) if self.spinBox_sample_loop_rep.value(): repetitions_item = QtGui.QStandardItem('Repetitions:{}'.format(self.spinBox_sample_loop_rep.value())) else: repetitions_item = QtGui.QStandardItem( 'Motor:{} Start:{} Stop:{} Step:{}'.format(self.comboBox_sample_loop_motor.currentText(), self.doubleSpinBox_motor_range_start.value(), self.doubleSpinBox_motor_range_stop.value(), self.doubleSpinBox_motor_range_step.value())) new_item.appendRow(repetitions_item) if self.radioButton_sample_loop.isChecked(): primary = 'Samples' else: primary = 'Scans' primary_item = QtGui.QStandardItem('Primary:{}'.format(primary)) new_item.appendRow(primary_item) samples_item = QtGui.QStandardItem('Samples') samples_item.setDropEnabled(False) for index in range(len(samples)): subitem = QtGui.QStandardItem(samples[index]) subitem.setDropEnabled(False) samples_item.appendRow(subitem) new_item.appendRow(samples_item) scans_item = QtGui.QStandardItem('Scans') scans_item.setDropEnabled(False) for index in range(len(scans)): subitem = QtGui.QStandardItem(scans[index]) subitem.setDropEnabled(False) scans_item.appendRow(subitem) new_item.appendRow(scans_item) parent.appendRow(new_item) self.treeView_batch.expand(self.model_batch.indexFromItem(new_item)) for index in range(new_item.rowCount()): self.treeView_batch.expand(new_item.child(index).index()) def populateParams_batch(self, index): if self.comboBox_scans.currentText()[: 5] != 'tscan': self.comboBox_lut.setEnabled(False) else: self.comboBox_lut.setEnabled(True) for i in range(len(self.params1_batch)): self.gridLayout_31.removeWidget(self.params1_batch[i]) self.gridLayout_31.removeWidget(self.params2_batch[i]) self.gridLayout_31.removeWidget(self.params3_batch[i]) self.params1_batch[i].deleteLater() self.params2_batch[i].deleteLater() self.params3_batch[i].deleteLater() self.params1_batch = [] self.params2_batch = [] self.params3_batch = [] self.param_types_batch = [] plan_func = self.plan_funcs[index] signature = inspect.signature(plan_func) for i in range(0, len(signature.parameters)): default = re.sub(r':.*?=', '=', str(signature.parameters[list(signature.parameters)[i]])) if default == str(signature.parameters[list(signature.parameters)[i]]): default = re.sub(r':.*', '', str(signature.parameters[list(signature.parameters)[i]])) self.addParamControl(list(signature.parameters)[i], default, signature.parameters[list(signature.parameters)[i]].annotation, grid=self.gridLayout_31, params=[self.params1_batch, self.params2_batch, self.params3_batch]) self.param_types_batch.append(signature.parameters[list(signature.parameters)[i]].annotation) def addParamControl(self, name, default, annotation, grid, params): rows = int((grid.count()) / 3) param1 = QtWidgets.QLabel(str(rows + 1)) param2 = None def_val = '' if default.find('=') != -1: def_val = re.sub(r'.*=', '', default) if annotation == int: param2 = QtWidgets.QSpinBox() param2.setMaximum(100000) param2.setMinimum(-100000) def_val = int(def_val) param2.setValue(def_val) elif annotation == float: param2 = QtWidgets.QDoubleSpinBox() param2.setMaximum(100000) param2.setMinimum(-100000) def_val = float(def_val) param2.setValue(def_val) elif annotation == bool: param2 = QtWidgets.QCheckBox() if def_val == 'True': def_val = True else: def_val = False param2.setCheckState(def_val) param2.setTristate(False) elif annotation == str: param2 = QtWidgets.QLineEdit() def_val = str(def_val) param2.setText(def_val) if param2 is not None: param3 = QtWidgets.QLabel(default) grid.addWidget(param1, rows, 0, QtCore.Qt.AlignTop) grid.addWidget(param2, rows, 1, QtCore.Qt.AlignTop) grid.addWidget(param3, rows, 2, QtCore.Qt.AlignTop) params[0].append(param1) params[1].append(param2) params[2].append(param3) def update_batch_traj(self): self.trajectories = self.traj_manager.read_info(silent=True) self.comboBox_lut.clear() self.comboBox_lut.addItems( ['{}-{}'.format(lut, self.trajectories[lut]['name']) for lut in self.trajectories if lut != '9']) def load_csv(self): user_filepath = '/GPFS/xf08id/User Data/{}.{}.{}/'.format(self.RE.md['year'], self.RE.md['cycle'], self.RE.md['PROPOSAL']) filename = QtWidgets.QFileDialog.getOpenFileName(caption='Select file to load', directory=user_filepath, filter='*.csv', parent=self)[0] if filename: batman = BatchManager(self) batman.load_csv(filename) def save_csv(self): user_filepath = '/GPFS/xf08id/User Data/{}.{}.{}/'.format(self.RE.md['year'], self.RE.md['cycle'], self.RE.md['PROPOSAL']) filename = QtWidgets.QFileDialog.getSaveFileName(caption='Select file to save', directory=user_filepath, filter='*.csv', parent=self)[0] if filename: if filename[-4:] != '.csv': filename += '.csv' batman = BatchManager(self) batman.save_csv(filename) def check_pause_abort_batch(self): if self.batch_abort: print('**** Aborting Batch! ****') raise Exception('Abort button pressed by user') elif self.batch_pause: self.label_batch_step.setText('[Paused] {}'.format(self.label_batch_step.text())) while self.batch_pause: QtCore.QCoreApplication.processEvents() def run_batch(self, print_only=False): try: self.last_lut = 0 current_index = 0 self.current_uid_list = [] if print_only is False: self.parent_gui.run_mode = 'batch' self.batch_running = True self.batch_pause = False self.batch_abort = False # Send sampling time to the pizzaboxes: value = int( round(float(self.analog_samp_time) / self.adc_list[0].sample_rate.value * 100000)) for adc in self.adc_list: adc.averaging_points.put(str(value)) for enc in self.enc_list: enc.filter_dt.put(float(self.enc_samp_time) * 100000) if self.xia.input_trigger is not None: self.xia.input_trigger.unit_sel.put(1) # ms, not us self.xia.input_trigger.period_sp.put(int(self.xia_samp_time)) self.batch_results = {} for batch_index in range(self.model_batch.rowCount()): index = self.model_batch.index(batch_index, 0) text = str(self.model_batch.data(index)) item = self.model_batch.item(batch_index) font = QtGui.QFont() font.setWeight(QtGui.QFont.Bold) item.setFont(font) item.setText(text) if text.find('Move to ') == 0: name = text[text.find('"') + 1:text.rfind('"')] item_x = text[text.find('" X:') + 4:text.find(' Y:')] item_y = text[text.find(' Y:') + 3:] print('Move to sample "{}" (X: {}, Y: {})'.format(name, item_x, item_y)) ### Uncomment if print_only == False: self.label_batch_step.setText('Move to sample "{}" (X: {}, Y: {})'.format(name, item_x, item_y)) self.check_pause_abort_batch() self.motors_dict[self.stage_x]['object'].move(item_x, wait=False) self.motors_dict[self.stage_y]['object'].move(item_y, wait=False) ttime.sleep(0.2) while (self.motors_dict[self.stage_x]['object'].moving or \ self.motors_dict[self.stage_y]['object'].moving): QtCore.QCoreApplication.processEvents() ### Uncomment if text.find('Run ') == 0: scan_type = text.split()[0] scans = collections.OrderedDict({}) scans_text = text[text.find(' ') + 1:] # scans_tree.child(scans_index).text() scan_name = scans_text[:scans_text.find(' ')] scans_text = scans_text[scans_text.find(' ') + 1:] i = 2 if scan_name in scans: sn = scan_name while sn in scans: sn = '{}-{}'.format(scan_name, i) i += 1 scan_name = sn scans[scan_name] = collections.OrderedDict((k.strip(), v.strip()) for k, v in (item.split(':') for item in scans_text.split(' ') if len(item) > 1)) # print(json.dumps(scans, indent=2)) for scan in scans: if 'Traj' in scans[scan]: lut = scans[scan]['Traj'][:scans[scan]['Traj'].find('-')] traj_name = scans[scan]['Traj'][scans[scan]['Traj'].find('-') + 1:] ### Uncomment if self.last_lut != lut: print('Init trajectory {} - {}'.format(lut, traj_name)) if print_only == False: self.label_batch_step.setText('Init trajectory {} - {}'.format(lut, traj_name)) self.check_pause_abort_batch() self.traj_manager.init(int(lut)) self.last_lut = lut print('Prepare trajectory {} - {}'.format(lut, traj_name)) if print_only == False: self.label_batch_step.setText('Prepare trajectory {} - {}'.format(lut, traj_name)) self.check_pause_abort_batch() self.run_prep_traj() if 'name' in scans[scan]: old_name = scans[scan]['name'] scans[scan]['name'] = '{}-{}'.format(scans[scan]['name'], traj_name[:traj_name.find('.txt')]) if scan.find('-') != -1: scan_name = scan[:scan.find('-')] else: scan_name = scan ### Uncomment if print_only == False: if 'name' in scans[scan]: self.label_batch_step.setText( 'Execute {} - name: {}'.format(scan_name, scans[scan]['name'])) self.check_pause_abort_batch() else: self.label_batch_step.setText('Execute {}'.format(scan_name)) self.check_pause_abort_batch() uid = self.plan_funcs[self.plan_funcs_names.index(scan_name)](**scans[scan]) if uid: self.batch_mode_uids.extend(uid) ### Uncomment (previous line) if 'name' in scans[scan]: print('Execute {} - name: {}'.format(scan_name, scans[scan]['name'])) scans[scan]['name'] = old_name else: print('Execute {}'.format(scan_name)) if text == 'Sample Loop': print('Running Sample Loop...') repetitions = item.child(0).text() rep_type = repetitions[:repetitions.find(':')] if rep_type == 'Repetitions': repetitions = np.arange(int(repetitions[repetitions.find(':') + 1:])) elif rep_type == 'Motor': repetitions = repetitions.split(' ') rep_motor = repetitions[0][repetitions[0].find(':') + 1:] rep_motor = self.motors_dict[rep_motor]['object'] rep_start = float(repetitions[1][repetitions[1].find(':') + 1:]) rep_stop = float(repetitions[2][repetitions[2].find(':') + 1:]) rep_step = float(repetitions[3][repetitions[3].find(':') + 1:]) repetitions = np.arange(rep_start, rep_stop + rep_step, rep_step) primary = item.child(1).text() primary = primary[primary.find(':') + 1:] samples = collections.OrderedDict({}) if item.child(2).text() != 'Samples': raise Exception('Where are the samples?') samples_tree = item.child(2) for sample_index in range(samples_tree.rowCount()): sample_text = samples_tree.child(sample_index).text() sample_name = sample_text[:sample_text.find(' X:')] sample_text = sample_text[sample_text.find(' X:') + 1:].split() samples[sample_name] = collections.OrderedDict({sample_text[0][ 0:sample_text[0].find(':')]: float( sample_text[0][sample_text[0].find(':') + 1:]), sample_text[1][ 0:sample_text[1].find(':')]: float( sample_text[1][sample_text[1].find(':') + 1:])}) scans = collections.OrderedDict({}) if item.child(3).text() != 'Scans': raise Exception('Where are the scans?') scans_tree = item.child(3) for scans_index in range(scans_tree.rowCount()): scans_text = scans_tree.child(scans_index).text() scan_name = scans_text[:scans_text.find(' ')] scans_text = scans_text[scans_text.find(' ') + 1:] i = 2 if scan_name in scans: sn = scan_name while sn in scans: sn = '{}-{}'.format(scan_name, i) i += 1 scan_name = sn scans[scan_name] = collections.OrderedDict((k.strip(), v.strip()) for k, v in (item.split(':') for item in scans_text.split(' ') if len(item) > 1)) # print(json.dumps(samples, indent=2)) # print(json.dumps(scans, indent=2)) print('-' * 40) for step_number, rep in enumerate(repetitions): print('Step #{}'.format(step_number + 1)) if rep_type == 'Motor': print('Move {} to {} {}'.format(rep_motor.name, rep, rep_motor.egu)) ### Uncomment if print_only == False: self.label_batch_step.setText( 'Move {} to {} {} | Loop step number: {}/{}'.format(rep_motor.name, rep, rep_motor.egu, step_number + 1, len(repetitions))) self.check_pause_abort_batch() if hasattr(rep_motor, 'move'): rep_motor.move(rep) elif hasattr(rep_motor, 'put'): rep_motor.put(rep) ### Uncomment if primary == 'Samples': for index, sample in enumerate(samples): print('-' * 40) print('Move to sample {} (X: {}, Y: {})'.format(sample, samples[sample]['X'], samples[sample]['Y'])) ### Uncomment if print_only == False: self.label_batch_step.setText( 'Move to sample {} (X: {}, Y: {}) | Loop step number: {}/{}'.format(sample, samples[ sample][ 'X'], samples[ sample][ 'Y'], step_number + 1, len( repetitions))) self.check_pause_abort_batch() self.motors_dict[self.stage_x]['object'].move(samples[sample]['X'], wait=False) self.motors_dict[self.stage_y]['object'].move(samples[sample]['Y'], wait=False) ttime.sleep(0.2) while (self.motors_dict[self.stage_x]['object'].moving or \ self.motors_dict[self.stage_y]['object'].moving): QtCore.QCoreApplication.processEvents() ### Uncomment for scan in scans: if 'Traj' in scans[scan]: lut = scans[scan]['Traj'][:scans[scan]['Traj'].find('-')] traj_name = scans[scan]['Traj'][scans[scan]['Traj'].find('-') + 1:] ### Uncomment if self.last_lut != lut: print('Init trajectory {} - {}'.format(lut, traj_name)) if print_only == False: self.label_batch_step.setText( 'Init trajectory {} - {} | Loop step number: {}/{}'.format(lut, traj_name, step_number + 1, len( repetitions))) self.check_pause_abort_batch() self.traj_manager.init(int(lut)) self.last_lut = lut print('Prepare trajectory {} - {}'.format(lut, traj_name)) if print_only == False: self.label_batch_step.setText( 'Prepare trajectory {} - {} | Loop step number: {}/{}'.format(lut, traj_name, step_number + 1, len( repetitions))) self.check_pause_abort_batch() self.run_prep_traj() if 'name' in scans[scan]: old_name = scans[scan]['name'] scans[scan]['name'] = '{} - {} - {} - {}'.format(sample, scans[scan]['name'], traj_name[ :traj_name.find('.txt')], rep + 1) if scan.find('-') != -1: scan_name = scan[:scan.find('-')] else: scan_name = scan ### Uncomment if print_only == False: if 'name' in scans[scan]: self.label_batch_step.setText( 'Execute {} - name: {} | Loop step number: {}/{}'.format(scan_name, scans[scan][ 'name'], step_number + 1, len( repetitions))) self.check_pause_abort_batch() else: self.label_batch_step.setText( 'Execute {} | Loop step number: {}'.format(scan_name, step_number + 1)) self.check_pause_abort_batch() uid = self.plan_funcs[self.plan_funcs_names.index(scan_name)](**scans[scan]) if uid: self.batch_mode_uids.extend(uid) ### Uncomment (previous line) if 'name' in scans[scan]: print('Execute {} - name: {}'.format(scan_name, scans[scan]['name'])) scans[scan]['name'] = old_name else: print('Execute {}'.format(scan_name)) elif primary == 'Scans': for index_scan, scan in enumerate(scans): for index, sample in enumerate(samples): print('-' * 40) print('Move to sample {} (X: {}, Y: {})'.format(sample, samples[sample]['X'], samples[sample]['Y'])) ### Uncomment if print_only == False: self.label_batch_step.setText( 'Move to sample {} (X: {}, Y: {}) | Loop step number: {}/{}'.format(sample, samples[ sample][ 'X'], samples[ sample][ 'Y'], step_number + 1, len( repetitions))) self.check_pause_abort_batch() self.motors_dict[self.stage_x]['object'].move(samples[sample]['X'], wait=False) self.motors_dict[self.stage_y]['object'].move(samples[sample]['Y'], wait=False) ttime.sleep(0.2) while (self.motors_dict[self.stage_x]['object'].moving or \ self.motors_dict[self.stage_y]['object'].moving): QtCore.QCoreApplication.processEvents() ### Uncomment lut = scans[scan]['Traj'][:scans[scan]['Traj'].find('-')] traj_name = scans[scan]['Traj'][scans[scan]['Traj'].find('-') + 1:] if self.last_lut != lut: print('Init trajectory {} - {}'.format(lut, traj_name)) if print_only == False: self.label_batch_step.setText( 'Init trajectory {} - {} | Loop step number: {}/{}'.format(lut, traj_name, step_number + 1, len( repetitions))) self.check_pause_abort_batch() self.traj_manager.init(int(lut)) self.last_lut = lut print('Prepare trajectory {} - {}'.format(lut, traj_name)) if print_only == False: self.label_batch_step.setText( 'Prepare trajectory {} - {} | Loop step number: {}/{}'.format(lut, traj_name, step_number + 1, len( repetitions))) self.check_pause_abort_batch() self.run_prep_traj() old_name = scans[scan]['name'] scans[scan]['name'] = '{} - {} - {} - {}'.format(sample, scans[scan]['name'], traj_name[:traj_name.find('.txt')], rep + 1) if scan.find('-') != -1: scan_name = scan[:scan.find('-')] else: scan_name = scan print('Execute {} - name: {}'.format(scan_name, scans[scan]['name'])) ### Uncomment if print_only == False: self.label_batch_step.setText( 'Execute {} - name: {} | Loop step number: {}/{}'.format(scan_name, scans[scan][ 'name'], step_number + 1, len(repetitions))) self.check_pause_abort_batch() uid = self.plan_funcs[self.plan_funcs_names.index(scan_name)](**scans[scan]) if uid: self.batch_mode_uids.extend(uid) ### Uncomment (previous line) scans[scan]['name'] = old_name print('-' * 40) font = QtGui.QFont() item.setFont(font) item.setText(text) if print_only == False: self.batch_running = False self.batch_processor.go = 0 self.label_batch_step.setText('Finished (Idle)') except Exception as e: print(e) print('Batch run aborted!') font = QtGui.QFont() item.setFont(font) item.setText(text) self.batch_running = False self.batch_processor.go = 0 self.label_batch_step.setText('Aborted! (Idle)') return def setAnalogSampTime(self, text): self.analog_samp_time = text def setEncSampTime(self, text): self.enc_samp_time = text def setXiaSampTime(self, text): self.xia_samp_time = text def re_abort(self): if self.RE.state != 'idle': self.RE.abort() self.RE.is_aborted = True
53.803004
131
0.482686
09f88ec52cb4b1182dc69684d2728fe4ffa1f97e
5,464
py
Python
clifford/tools/g3c/object_fitting.py
rotu/clifford
7a0a0e83be9e2b67da2681d66e8cb4ede912fa51
[ "BSD-3-Clause" ]
null
null
null
clifford/tools/g3c/object_fitting.py
rotu/clifford
7a0a0e83be9e2b67da2681d66e8cb4ede912fa51
[ "BSD-3-Clause" ]
null
null
null
clifford/tools/g3c/object_fitting.py
rotu/clifford
7a0a0e83be9e2b67da2681d66e8cb4ede912fa51
[ "BSD-3-Clause" ]
null
null
null
from . import * @numba.njit def val_fit_circle(point_list): """ Performs Leo Dorsts circle fitting technique """ # Check if there are just 3 points if point_list.shape[0] == 3: best_obj = point_list[0, :] for i in range(1, 3): best_obj = omt_func(best_obj, point_list[i, :]) return val_normalised(best_obj) # Loop over our points and construct the matrix accumulator_matrix = np.zeros((32, 32)) for i in range(point_list.shape[0]): # Get the point as a left gmt matrix P_i_l = get_left_gmt_matrix(point_list[i,:]) # Multiply and add accumulator_matrix += P_i_l @ mask0 @ P_i_l accumulator_matrix = accumulator_matrix @ mask1 # Find the eigenvalues of the matrix e_vals, e_vecs = np.linalg.eig(accumulator_matrix) # Find the smallest and second smallest non negative eigenvalues min_eval = np.inf min_eval_index = -1 min_eval_index2 = -1 for i in range(len(e_vals)): this_e_val = e_vals[i] if this_e_val < min_eval and this_e_val > 0: min_eval = this_e_val min_eval_index2 = min_eval_index min_eval_index = i best_sphere = val_normalised(mask1@np.real(e_vecs[:, min_eval_index])) second_best_sphere = val_normalised(mask1@np.real(e_vecs[:, min_eval_index2])) best_circle = val_normalised(mask3@dual_func(omt_func(best_sphere,second_best_sphere))) return best_circle def fit_circle(point_list): """ Performs Leo Dorsts circle fitting technique """ return layout.MultiVector(value=val_fit_circle(np.array([p.value for p in point_list]))) @numba.njit def val_fit_line(point_list): """ Does line fitting with combo J.Lasenbys method and L. Dorsts """ # Check if there are just 2 points if point_list.shape[0] == 2: best_obj = point_list[0, :] for i in range(1, 2): best_obj = omt_func(best_obj, point_list[i, :]) return val_normalised(omt_func(best_obj, ninf_val)) accumulator_matrix = np.zeros((32, 32)) for i in range(point_list.shape[0]): P_i_l = get_left_gmt_matrix(point_list[i, :]) P_i_r = get_right_gmt_matrix(point_list[i, :]) accumulator_matrix += mask3@P_i_l@P_i_r # Find the eigenvalues of the matrix e_vals, e_vecs = np.linalg.eig(accumulator_matrix) # Find the smallest non negative eigenvalue min_eval = np.inf min_eval_index = -1 for i in range(len(e_vals)): if e_vals[i] < min_eval and e_vals[i] > 0: min_eval = e_vals[i] min_eval_index = i best_line = mask3@omt_func(dual_func(e_vecs[:, min_eval_index]),ninf_val) return val_normalised(best_line) def fit_line(point_list): """ Does line fitting with combo J.Lasenbys method and L. Dorsts """ return layout.MultiVector(value=val_fit_line(np.array([p.value for p in point_list]))) @numba.njit def val_fit_sphere(point_list): """ Performs Leo Dorsts sphere fitting technique """ # Check if there are just 4 points if point_list.shape[0] == 4: best_sphere = point_list[0, :] for i in range(1, 4): best_sphere = omt_func(best_sphere, point_list[i, :]) return val_normalised(best_sphere) # Loop over our points and construct the matrix accumulator_matrix = np.zeros((32, 32)) for i in range(point_list.shape[0]): # Get the point as a left gmt matrix P_i_l = get_left_gmt_matrix(point_list[i, :]) # Multiply and add accumulator_matrix += P_i_l @ mask0 @ P_i_l accumulator_matrix = accumulator_matrix @ mask1 # Find the eigenvalues of the matrix e_vals, e_vecs = np.linalg.eig(accumulator_matrix) # Find the smallest non negative eigenvalues min_eval = np.inf min_eval_index = -1 for i in range(len(e_vals)): if e_vals[i] < min_eval and e_vals[i] > 0: min_eval = e_vals[i] min_eval_index = i best_sphere = val_normalised(mask4@dual_func(np.real(e_vecs[:, min_eval_index]))) return best_sphere def fit_sphere(point_list): """ Performs Leo Dorsts sphere fitting technique """ return layout.MultiVector(value=val_fit_sphere(np.array([p.value for p in point_list]))) @numba.njit def val_fit_plane(point_list): """ Does plane fitting with combo J.Lasenbys method and L. Dorsts """ # Check if there are just 3 points if point_list.shape[0] == 3: best_obj = point_list[0, :] for i in range(1, 3): best_obj = omt_func(best_obj, point_list[i, :]) return val_normalised(omt_func(best_obj, ninf_val)) accumulator_matrix = np.zeros((32, 32)) for i in range(point_list.shape[0]): P_i_l = get_left_gmt_matrix(point_list[i, :]) P_i_r = get_right_gmt_matrix(point_list[i, :]) accumulator_matrix += mask4@P_i_l@P_i_r e_vals, e_vecs = np.linalg.eig(accumulator_matrix) min_eval = np.inf min_eval_index = -1 for i in range(len(e_vals)): if e_vals[i] < min_eval and e_vals[i] > 0: min_eval = e_vals[i] min_eval_index = i best_plane = val_normalised(mask4@e_vecs[:, min_eval_index]) return best_plane def fit_plane(point_list): """ Does plane fitting with combo J.Lasenbys method and L. Dorsts """ return layout.MultiVector(value=val_fit_plane(np.array([p.value for p in point_list])))
35.025641
92
0.660322
e9ee0b3ef0f9af7cce9474de078f5f83a0f73c38
77,753
py
Python
examples/python/bus_driver_scheduling_flow_sat.py
mingodad/or-tools
2c67e00f3a8a861440f0b8016e209c51990a0403
[ "Apache-2.0" ]
null
null
null
examples/python/bus_driver_scheduling_flow_sat.py
mingodad/or-tools
2c67e00f3a8a861440f0b8016e209c51990a0403
[ "Apache-2.0" ]
null
null
null
examples/python/bus_driver_scheduling_flow_sat.py
mingodad/or-tools
2c67e00f3a8a861440f0b8016e209c51990a0403
[ "Apache-2.0" ]
2
2020-02-26T18:11:33.000Z
2020-12-02T07:44:34.000Z
# Copyright 2010-2018 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This model implements a bus driver scheduling problem. Constraints: - max driving time per driver <= 9h - max working time per driver <= 12h - min working time per driver >= 6.5h (soft) - 30 min break after each 4h of driving time per driver - 10 min preparation time before the first shift - 15 min cleaning time after the last shift - 2 min waiting time after each shift for passenger boarding and alighting """ from __future__ import print_function import argparse import collections import math from ortools.sat.python import cp_model PARSER = argparse.ArgumentParser() PARSER.add_argument( '--instance', default=1, type=int, help='Instance number (1..3).') PARSER.add_argument( '--output_proto', default="", help='Output file to write the cp_model' 'proto to.') PARSER.add_argument('--params', default="", help='Sat solver parameters.') SAMPLE_SHIFTS_SMALL = [ # # column description: # - shift id # - shift start time as hh:mm string (for logging and readability purposes) # - shift end time as hh:mm string (for logging and readability purposes) # - shift start minute # - shift end minute # - shift duration in minutes # [0, '05:18', '06:00', 318, 360, 42], [1, '05:26', '06:08', 326, 368, 42], [2, '05:40', '05:56', 340, 356, 16], [3, '06:06', '06:51', 366, 411, 45], [4, '06:40', '07:52', 400, 472, 72], [5, '06:42', '07:13', 402, 433, 31], [6, '06:48', '08:15', 408, 495, 87], [7, '06:59', '08:07', 419, 487, 68], [8, '07:20', '07:36', 440, 456, 16], [9, '07:35', '08:22', 455, 502, 47], [10, '07:50', '08:55', 470, 535, 65], [11, '08:00', '09:05', 480, 545, 65], [12, '08:00', '08:35', 480, 515, 35], [13, '08:11', '09:41', 491, 581, 90], [14, '08:28', '08:50', 508, 530, 22], [15, '08:35', '08:45', 515, 525, 10], [16, '08:40', '08:50', 520, 530, 10], [17, '09:03', '10:28', 543, 628, 85], [18, '09:23', '09:49', 563, 589, 26], [19, '09:30', '09:40', 570, 580, 10], [20, '09:57', '10:20', 597, 620, 23], [21, '10:09', '11:03', 609, 663, 54], [22, '10:20', '10:30', 620, 630, 10], [23, '11:00', '11:10', 660, 670, 10], [24, '11:45', '12:24', 705, 744, 39], [25, '12:18', '13:00', 738, 780, 42], [26, '13:18', '14:44', 798, 884, 86], [27, '13:53', '14:49', 833, 889, 56], [28, '14:03', '14:50', 843, 890, 47], [29, '14:28', '15:15', 868, 915, 47], [30, '14:30', '15:41', 870, 941, 71], [31, '14:48', '15:35', 888, 935, 47], [32, '15:03', '15:50', 903, 950, 47], [33, '15:28', '16:54', 928, 1014, 86], [34, '15:38', '16:25', 938, 985, 47], [35, '15:40', '15:56', 940, 956, 16], [36, '15:58', '16:45', 958, 1005, 47], [37, '16:04', '17:30', 964, 1050, 86], [38, '16:28', '17:15', 988, 1035, 47], [39, '16:36', '17:21', 996, 1041, 45], [40, '16:50', '17:00', 1010, 1020, 10], [41, '16:54', '18:20', 1014, 1100, 86], [42, '17:01', '17:13', 1021, 1033, 12], [43, '17:19', '18:31', 1039, 1111, 72], [44, '17:23', '18:10', 1043, 1090, 47], [45, '17:34', '18:15', 1054, 1095, 41], [46, '18:04', '19:29', 1084, 1169, 85], [47, '18:34', '19:58', 1114, 1198, 84], [48, '19:56', '20:34', 1196, 1234, 38], [49, '20:05', '20:48', 1205, 1248, 43] ] # yapf:disable SAMPLE_SHIFTS_MEDIUM = [ [0, '04:30', '04:53', 270, 293, 23], [1, '04:46', '04:56', 286, 296, 10], [2, '04:52', '05:56', 292, 356, 64], [3, '04:53', '05:23', 293, 323, 30], [4, '05:07', '05:44', 307, 344, 37], [5, '05:10', '06:06', 310, 366, 56], [6, '05:18', '06:03', 318, 363, 45], [7, '05:30', '05:40', 330, 340, 10], [8, '05:30', '05:40', 330, 340, 10], [9, '05:33', '06:15', 333, 375, 42], [10, '05:40', '05:50', 340, 350, 10], [11, '05:43', '06:08', 343, 368, 25], [12, '05:54', '07:20', 354, 440, 86], [13, '06:04', '06:37', 364, 397, 33], [14, '06:13', '06:58', 373, 418, 45], [15, '06:14', '07:40', 374, 460, 86], [16, '06:15', '07:15', 375, 435, 60], [17, '06:16', '06:26', 376, 386, 10], [18, '06:17', '06:34', 377, 394, 17], [19, '06:20', '06:36', 380, 396, 16], [20, '06:22', '07:06', 382, 426, 44], [21, '06:24', '07:50', 384, 470, 86], [22, '06:27', '06:44', 387, 404, 17], [23, '06:30', '06:40', 390, 400, 10], [24, '06:31', '06:43', 391, 403, 12], [25, '06:33', '07:53', 393, 473, 80], [26, '06:34', '07:09', 394, 429, 35], [27, '06:40', '06:56', 400, 416, 16], [28, '06:44', '07:17', 404, 437, 33], [29, '06:46', '06:58', 406, 418, 12], [30, '06:49', '07:43', 409, 463, 54], [31, '06:50', '07:05', 410, 425, 15], [32, '06:52', '07:36', 412, 456, 44], [33, '06:54', '07:27', 414, 447, 33], [34, '06:56', '08:23', 416, 503, 87], [35, '07:04', '07:44', 424, 464, 40], [36, '07:11', '08:36', 431, 516, 85], [37, '07:17', '07:35', 437, 455, 18], [38, '07:22', '08:06', 442, 486, 44], [39, '07:27', '08:15', 447, 495, 48], [40, '07:35', '07:45', 455, 465, 10], [41, '07:43', '08:08', 463, 488, 25], [42, '07:50', '08:37', 470, 517, 47], [43, '07:58', '08:45', 478, 525, 47], [44, '08:00', '08:35', 480, 515, 35], [45, '08:06', '08:51', 486, 531, 45], [46, '08:10', '08:45', 490, 525, 35], [47, '08:15', '08:30', 495, 510, 15], [48, '08:16', '09:00', 496, 540, 44], [49, '08:18', '09:16', 498, 556, 58], [50, '08:20', '08:36', 500, 516, 16], [51, '08:27', '09:07', 507, 547, 40], [52, '08:30', '08:45', 510, 525, 15], [53, '08:35', '09:15', 515, 555, 40], [54, '08:46', '09:30', 526, 570, 44], [55, '08:51', '09:17', 531, 557, 26], [56, '08:55', '09:15', 535, 555, 20], [57, '08:58', '09:38', 538, 578, 40], [58, '09:00', '09:35', 540, 575, 35], [59, '09:00', '09:16', 540, 556, 16], [60, '09:20', '09:36', 560, 576, 16], [61, '09:31', '09:43', 571, 583, 12], [62, '09:33', '10:15', 573, 615, 42], [63, '09:54', '10:05', 594, 605, 11], [64, '10:11', '10:38', 611, 638, 27], [65, '10:18', '11:00', 618, 660, 42], [66, '10:21', '10:47', 621, 647, 26], [67, '10:25', '11:04', 625, 664, 39], [68, '10:26', '11:08', 626, 668, 42], [69, '10:44', '12:11', 644, 731, 87], [70, '11:00', '11:16', 660, 676, 16], [71, '11:15', '11:54', 675, 714, 39], [72, '11:16', '11:28', 676, 688, 12], [73, '11:20', '11:30', 680, 690, 10], [74, '11:21', '11:47', 681, 707, 26], [75, '11:25', '12:04', 685, 724, 39], [76, '11:34', '11:45', 694, 705, 11], [77, '11:35', '12:14', 695, 734, 39], [78, '11:41', '12:23', 701, 743, 42], [79, '11:44', '12:35', 704, 755, 51], [80, '11:46', '11:58', 706, 718, 12], [81, '12:00', '12:10', 720, 730, 10], [82, '12:04', '12:15', 724, 735, 11], [83, '12:04', '13:04', 724, 784, 60], [84, '12:11', '12:38', 731, 758, 27], [85, '12:15', '12:54', 735, 774, 39], [86, '12:25', '13:10', 745, 790, 45], [87, '12:30', '12:40', 750, 760, 10], [88, '12:34', '13:58', 754, 838, 84], [89, '12:38', '13:25', 758, 805, 47], [90, '12:48', '13:35', 768, 815, 47], [91, '13:00', '13:16', 780, 796, 16], [92, '13:05', '13:44', 785, 824, 39], [93, '13:08', '13:55', 788, 835, 47], [94, '13:14', '14:38', 794, 878, 84], [95, '13:23', '13:49', 803, 829, 26], [96, '13:25', '14:04', 805, 844, 39], [97, '13:28', '14:54', 808, 894, 86], [98, '13:31', '13:43', 811, 823, 12], [99, '13:34', '14:58', 814, 898, 84], [100, '13:38', '14:25', 818, 865, 47], [101, '13:38', '15:04', 818, 904, 86], [102, '13:39', '14:33', 819, 873, 54], [103, '13:40', '13:50', 820, 830, 10], [104, '13:43', '14:10', 823, 850, 27], [105, '13:48', '14:35', 828, 875, 47], [106, '13:48', '14:35', 828, 875, 47], [107, '13:53', '14:40', 833, 880, 47], [108, '13:58', '15:24', 838, 924, 86], [109, '13:58', '14:25', 838, 865, 27], [110, '14:00', '14:16', 840, 856, 16], [111, '14:13', '15:00', 853, 900, 47], [112, '14:20', '15:31', 860, 931, 71], [113, '14:25', '15:02', 865, 902, 37], [114, '14:34', '14:45', 874, 885, 11], [115, '14:40', '15:51', 880, 951, 71], [116, '14:40', '14:56', 880, 896, 16], [117, '14:46', '14:58', 886, 898, 12], [118, '14:49', '15:43', 889, 943, 54], [119, '14:52', '15:21', 892, 921, 29], [120, '14:58', '16:24', 898, 984, 86], [121, '14:59', '15:53', 899, 953, 54], [122, '15:00', '15:10', 900, 910, 10], [123, '15:00', '15:35', 900, 935, 35], [124, '15:08', '15:45', 908, 945, 37], [125, '15:12', '15:36', 912, 936, 24], [126, '15:18', '16:05', 918, 965, 47], [127, '15:24', '16:05', 924, 965, 41], [128, '15:31', '15:43', 931, 943, 12], [129, '15:35', '15:54', 935, 954, 19], [130, '15:36', '16:21', 936, 981, 45], [131, '15:39', '16:33', 939, 993, 54], [132, '15:48', '16:35', 948, 995, 47], [133, '15:50', '17:01', 950, 1021, 71], [134, '16:03', '16:50', 963, 1010, 47], [135, '16:18', '17:44', 978, 1064, 86], [136, '16:24', '17:05', 984, 1025, 41], [137, '16:28', '17:15', 988, 1035, 47], [138, '16:34', '17:15', 994, 1035, 41], [139, '16:38', '17:25', 998, 1045, 47], [140, '16:40', '16:56', 1000, 1016, 16], [141, '16:45', '17:04', 1005, 1024, 19], [142, '16:52', '17:36', 1012, 1056, 44], [143, '16:58', '17:45', 1018, 1065, 47], [144, '17:04', '18:30', 1024, 1110, 86], [145, '17:04', '17:45', 1024, 1065, 41], [146, '17:09', '18:03', 1029, 1083, 54], [147, '17:18', '18:44', 1038, 1124, 86], [148, '17:28', '18:15', 1048, 1095, 47], [149, '17:29', '18:41', 1049, 1121, 72], [150, '17:36', '18:21', 1056, 1101, 45], [151, '17:38', '18:25', 1058, 1105, 47], [152, '17:40', '17:56', 1060, 1076, 16], [153, '17:45', '18:04', 1065, 1084, 19], [154, '17:46', '17:58', 1066, 1078, 12], [155, '17:48', '18:35', 1068, 1115, 47], [156, '17:49', '18:43', 1069, 1123, 54], [157, '17:55', '18:14', 1075, 1094, 19], [158, '17:58', '18:45', 1078, 1125, 47], [159, '18:00', '19:11', 1080, 1151, 71], [160, '18:04', '18:45', 1084, 1125, 41], [161, '18:09', '19:03', 1089, 1143, 54], [162, '18:13', '19:00', 1093, 1140, 47], [163, '18:13', '18:40', 1093, 1120, 27], [164, '18:19', '19:13', 1099, 1153, 54], [165, '18:28', '19:25', 1108, 1165, 57], [166, '18:48', '19:28', 1128, 1168, 40], [167, '19:03', '19:45', 1143, 1185, 42], [168, '19:20', '19:36', 1160, 1176, 16], [169, '19:21', '19:31', 1161, 1171, 10], [170, '19:25', '20:04', 1165, 1204, 39], [171, '19:26', '20:08', 1166, 1208, 42], [172, '19:30', '19:40', 1170, 1180, 10], [173, '19:44', '20:33', 1184, 1233, 49], [174, '19:48', '21:09', 1188, 1269, 81], [175, '19:53', '21:02', 1193, 1262, 69], [176, '20:04', '20:29', 1204, 1229, 25], [177, '20:17', '21:03', 1217, 1263, 46], [178, '20:20', '20:57', 1220, 1257, 37], [179, '20:29', '21:18', 1229, 1278, 49], [180, '20:35', '21:54', 1235, 1314, 79], [181, '20:40', '20:50', 1240, 1250, 10], [182, '20:47', '21:42', 1247, 1302, 55], [183, '21:00', '21:10', 1260, 1270, 10], [184, '21:07', '21:44', 1267, 1304, 37], [185, '21:14', '22:03', 1274, 1323, 49], [186, '21:39', '21:55', 1299, 1315, 16], [187, '21:40', '22:17', 1300, 1337, 37], [188, '21:40', '21:50', 1300, 1310, 10], [189, '21:48', '22:03', 1308, 1323, 15], [190, '22:17', '23:03', 1337, 1383, 46], [191, '22:43', '23:08', 1363, 1388, 25], [192, '23:35', '01:05', 1415, 1505, 90], [193, '23:46', '00:01', 1426, 1441, 15], [194, '23:47', '00:33', 1427, 1473, 46], [195, '23:52', '00:24', 1432, 1464, 32], [196, '23:58', '00:38', 1438, 1478, 40], [197, '00:02', '00:12', 1442, 1452, 10], [198, '00:07', '00:39', 1447, 1479, 32], [199, '00:25', '01:12', 1465, 1512, 47] ] # yapf:disable SAMPLE_SHIFTS_LARGE = [ [0, '04:18', '05:00', 258, 300, 42], [1, '04:27', '05:08', 267, 308, 41], [2, '04:29', '05:26', 269, 326, 57], [3, '04:29', '04:55', 269, 295, 26], [4, '04:30', '04:53', 270, 293, 23], [5, '04:30', '04:51', 270, 291, 21], [6, '04:31', '04:53', 271, 293, 22], [7, '04:33', '05:15', 273, 315, 42], [8, '04:34', '04:44', 274, 284, 10], [9, '04:34', '05:03', 274, 303, 29], [10, '04:35', '04:50', 275, 290, 15], [11, '04:36', '04:46', 276, 286, 10], [12, '04:37', '05:18', 277, 318, 41], [13, '04:41', '05:13', 281, 313, 32], [14, '04:42', '05:23', 282, 323, 41], [15, '04:43', '04:53', 283, 293, 10], [16, '04:44', '05:45', 284, 345, 61], [17, '04:45', '05:11', 285, 311, 26], [18, '04:46', '05:01', 286, 301, 15], [19, '04:46', '04:56', 286, 296, 10], [20, '04:47', '05:14', 287, 314, 27], [21, '04:48', '05:30', 288, 330, 42], [22, '04:49', '05:41', 289, 341, 52], [23, '04:49', '05:18', 289, 318, 29], [24, '04:50', '05:33', 290, 333, 43], [25, '04:52', '05:56', 292, 356, 64], [26, '04:52', '05:07', 292, 307, 15], [27, '04:53', '05:19', 293, 319, 26], [28, '04:53', '05:23', 293, 323, 30], [29, '04:55', '05:27', 295, 327, 32], [30, '04:57', '05:38', 297, 338, 41], [31, '05:00', '06:00', 300, 360, 60], [32, '05:00', '05:54', 300, 354, 54], [33, '05:01', '05:33', 301, 333, 32], [34, '05:01', '05:26', 301, 326, 25], [35, '05:02', '05:29', 302, 329, 27], [36, '05:02', '05:12', 302, 312, 10], [37, '05:03', '05:45', 303, 345, 42], [38, '05:03', '05:18', 303, 318, 15], [39, '05:03', '06:28', 303, 388, 85], [40, '05:03', '05:13', 303, 313, 10], [41, '05:04', '06:24', 304, 384, 80], [42, '05:07', '05:44', 307, 344, 37], [43, '05:08', '05:48', 308, 348, 40], [44, '05:10', '06:06', 310, 366, 56], [45, '05:11', '05:37', 311, 337, 26], [46, '05:11', '05:53', 311, 353, 42], [47, '05:13', '06:15', 313, 375, 62], [48, '05:13', '05:38', 313, 338, 25], [49, '05:16', '05:44', 316, 344, 28], [50, '05:17', '05:27', 317, 327, 10], [51, '05:18', '06:40', 318, 400, 82], [52, '05:18', '06:03', 318, 363, 45], [53, '05:18', '06:11', 318, 371, 53], [54, '05:18', '06:00', 318, 360, 42], [55, '05:19', '06:34', 319, 394, 75], [56, '05:20', '06:17', 320, 377, 57], [57, '05:22', '05:59', 322, 359, 37], [58, '05:24', '05:48', 324, 348, 24], [59, '05:25', '05:40', 325, 340, 15], [60, '05:26', '06:08', 326, 368, 42], [61, '05:27', '06:30', 327, 390, 63], [62, '05:27', '05:54', 327, 354, 27], [63, '05:28', '05:53', 328, 353, 25], [64, '05:29', '05:44', 329, 344, 15], [65, '05:30', '05:40', 330, 340, 10], [66, '05:30', '05:40', 330, 340, 10], [67, '05:30', '05:40', 330, 340, 10], [68, '05:32', '06:53', 332, 413, 81], [69, '05:33', '07:00', 333, 420, 87], [70, '05:33', '06:15', 333, 375, 42], [71, '05:33', '05:47', 333, 347, 14], [72, '05:37', '06:13', 337, 373, 36], [73, '05:37', '06:05', 337, 365, 28], [74, '05:38', '06:33', 338, 393, 55], [75, '05:38', '06:04', 338, 364, 26], [76, '05:38', '06:18', 338, 378, 40], [77, '05:39', '05:54', 339, 354, 15], [78, '05:40', '05:56', 340, 356, 16], [79, '05:40', '06:41', 340, 401, 61], [80, '05:40', '05:50', 340, 350, 10], [81, '05:41', '06:23', 341, 383, 42], [82, '05:41', '06:01', 341, 361, 20], [83, '05:43', '06:08', 343, 368, 25], [84, '05:44', '07:10', 344, 430, 86], [85, '05:44', '05:55', 344, 355, 11], [86, '05:45', '06:44', 345, 404, 59], [87, '05:47', '06:17', 347, 377, 30], [88, '05:48', '07:08', 348, 428, 80], [89, '05:48', '06:30', 348, 390, 42], [90, '05:50', '06:50', 350, 410, 60], [91, '05:50', '06:00', 350, 360, 10], [92, '05:50', '06:00', 350, 360, 10], [93, '05:50', '06:51', 350, 411, 61], [94, '05:52', '06:33', 352, 393, 41], [95, '05:52', '06:36', 352, 396, 44], [96, '05:52', '06:23', 352, 383, 31], [97, '05:54', '06:14', 354, 374, 20], [98, '05:54', '07:20', 354, 440, 86], [99, '05:55', '06:40', 355, 400, 45], [100, '05:55', '06:27', 355, 387, 32], [101, '05:56', '06:35', 356, 395, 39], [102, '05:56', '06:06', 356, 366, 10], [103, '05:57', '06:21', 357, 381, 24], [104, '05:58', '07:23', 358, 443, 85], [105, '05:58', '06:23', 358, 383, 25], [106, '05:58', '06:08', 358, 368, 10], [107, '05:58', '06:43', 358, 403, 45], [108, '06:00', '06:10', 360, 370, 10], [109, '06:00', '06:16', 360, 376, 16], [110, '06:00', '07:01', 360, 421, 61], [111, '06:01', '07:00', 361, 420, 59], [112, '06:01', '06:13', 361, 373, 12], [113, '06:01', '06:45', 361, 405, 44], [114, '06:03', '06:50', 363, 410, 47], [115, '06:04', '06:37', 364, 397, 33], [116, '06:04', '07:30', 364, 450, 86], [117, '06:05', '06:24', 365, 384, 19], [118, '06:06', '06:51', 366, 411, 45], [119, '06:07', '06:43', 367, 403, 36], [120, '06:08', '07:30', 368, 450, 82], [121, '06:10', '06:20', 370, 380, 10], [122, '06:10', '07:17', 370, 437, 67], [123, '06:11', '06:54', 371, 414, 43], [124, '06:11', '06:21', 371, 381, 10], [125, '06:13', '06:38', 373, 398, 25], [126, '06:13', '06:58', 373, 418, 45], [127, '06:13', '06:53', 373, 413, 40], [128, '06:14', '07:03', 374, 423, 49], [129, '06:14', '06:47', 374, 407, 33], [130, '06:14', '07:40', 374, 460, 86], [131, '06:15', '07:15', 375, 435, 60], [132, '06:16', '06:28', 376, 388, 12], [133, '06:16', '06:26', 376, 386, 10], [134, '06:17', '06:34', 377, 394, 17], [135, '06:18', '07:06', 378, 426, 48], [136, '06:18', '07:38', 378, 458, 80], [137, '06:18', '07:02', 378, 422, 44], [138, '06:19', '06:53', 379, 413, 34], [139, '06:20', '07:25', 380, 445, 65], [140, '06:20', '06:36', 380, 396, 16], [141, '06:20', '06:30', 380, 390, 10], [142, '06:20', '06:30', 380, 390, 10], [143, '06:21', '06:49', 381, 409, 28], [144, '06:22', '07:06', 382, 426, 44], [145, '06:24', '07:50', 384, 470, 86], [146, '06:24', '06:57', 384, 417, 33], [147, '06:26', '07:45', 386, 465, 79], [148, '06:26', '07:10', 386, 430, 44], [149, '06:27', '06:44', 387, 404, 17], [150, '06:28', '06:53', 388, 413, 25], [151, '06:28', '07:14', 388, 434, 46], [152, '06:29', '07:03', 389, 423, 34], [153, '06:30', '06:40', 390, 400, 10], [154, '06:30', '07:37', 390, 457, 67], [155, '06:31', '06:43', 391, 403, 12], [156, '06:33', '07:14', 393, 434, 41], [157, '06:33', '07:53', 393, 473, 80], [158, '06:34', '08:16', 394, 496, 102], [159, '06:34', '07:09', 394, 429, 35], [160, '06:34', '07:07', 394, 427, 33], [161, '06:36', '07:21', 396, 441, 45], [162, '06:37', '07:22', 397, 442, 45], [163, '06:37', '06:54', 397, 414, 17], [164, '06:38', '07:30', 398, 450, 52], [165, '06:38', '07:18', 398, 438, 40], [166, '06:39', '07:33', 399, 453, 54], [167, '06:40', '07:52', 400, 472, 72], [168, '06:40', '06:50', 400, 410, 10], [169, '06:40', '07:22', 400, 442, 42], [170, '06:40', '06:56', 400, 416, 16], [171, '06:41', '08:00', 401, 480, 79], [172, '06:42', '07:26', 402, 446, 44], [173, '06:42', '07:13', 402, 433, 31], [174, '06:43', '07:08', 403, 428, 25], [175, '06:43', '07:30', 403, 450, 47], [176, '06:43', '07:23', 403, 443, 40], [177, '06:44', '07:17', 404, 437, 33], [178, '06:44', '08:13', 404, 493, 89], [179, '06:46', '07:01', 406, 421, 15], [180, '06:46', '06:58', 406, 418, 12], [181, '06:47', '07:04', 407, 424, 17], [182, '06:48', '08:15', 408, 495, 87], [183, '06:48', '07:34', 408, 454, 46], [184, '06:48', '07:37', 408, 457, 49], [185, '06:49', '07:43', 409, 463, 54], [186, '06:50', '08:00', 410, 480, 70], [187, '06:50', '07:00', 410, 420, 10], [188, '06:50', '07:05', 410, 425, 15], [189, '06:51', '07:18', 411, 438, 27], [190, '06:52', '07:36', 412, 456, 44], [191, '06:53', '07:37', 413, 457, 44], [192, '06:54', '08:20', 414, 500, 86], [193, '06:54', '07:27', 414, 447, 33], [194, '06:54', '07:20', 414, 440, 26], [195, '06:56', '08:23', 416, 503, 87], [196, '06:57', '07:12', 417, 432, 15], [197, '06:57', '07:58', 417, 478, 61], [198, '06:57', '07:45', 417, 465, 48], [199, '06:57', '07:40', 417, 460, 43], [200, '06:58', '07:23', 418, 443, 25], [201, '06:59', '07:53', 419, 473, 54], [202, '06:59', '08:07', 419, 487, 68], [203, '07:00', '07:10', 420, 430, 10], [204, '07:00', '07:16', 420, 436, 16], [205, '07:01', '08:30', 421, 510, 89], [206, '07:01', '07:13', 421, 433, 12], [207, '07:01', '07:43', 421, 463, 42], [208, '07:03', '08:30', 423, 510, 87], [209, '07:04', '07:37', 424, 457, 33], [210, '07:04', '07:44', 424, 464, 40], [211, '07:05', '07:52', 425, 472, 47], [212, '07:05', '08:05', 425, 485, 60], [213, '07:05', '07:46', 425, 466, 41], [214, '07:06', '07:51', 426, 471, 45], [215, '07:07', '08:08', 427, 488, 61], [216, '07:07', '07:52', 427, 472, 45], [217, '07:07', '08:16', 427, 496, 69], [218, '07:07', '07:27', 427, 447, 20], [219, '07:09', '07:50', 429, 470, 41], [220, '07:09', '08:40', 429, 520, 91], [221, '07:09', '08:03', 429, 483, 54], [222, '07:10', '07:20', 430, 440, 10], [223, '07:11', '08:36', 431, 516, 85], [224, '07:12', '08:00', 432, 480, 48], [225, '07:12', '07:47', 432, 467, 35], [226, '07:13', '07:54', 433, 474, 41], [227, '07:13', '07:38', 433, 458, 25], [228, '07:14', '07:59', 434, 479, 45], [229, '07:16', '08:50', 436, 530, 94], [230, '07:16', '07:28', 436, 448, 12], [231, '07:17', '07:35', 437, 455, 18], [232, '07:17', '07:58', 437, 478, 41], [233, '07:18', '08:06', 438, 486, 48], [234, '07:18', '08:44', 438, 524, 86], [235, '07:19', '08:13', 439, 493, 54], [236, '07:20', '08:02', 440, 482, 42], [237, '07:20', '08:07', 440, 487, 47], [238, '07:20', '07:30', 440, 450, 10], [239, '07:20', '07:57', 440, 477, 37], [240, '07:20', '07:36', 440, 456, 16], [241, '07:21', '07:48', 441, 468, 27], [242, '07:22', '08:06', 442, 486, 44], [243, '07:22', '08:25', 442, 505, 63], [244, '07:24', '08:27', 444, 507, 63], [245, '07:24', '08:05', 444, 485, 41], [246, '07:26', '08:23', 446, 503, 57], [247, '07:26', '08:52', 446, 532, 86], [248, '07:27', '08:07', 447, 487, 40], [249, '07:27', '07:42', 447, 462, 15], [250, '07:27', '08:15', 447, 495, 48], [251, '07:28', '07:53', 448, 473, 25], [252, '07:28', '08:09', 448, 489, 41], [253, '07:28', '07:38', 448, 458, 10], [254, '07:30', '08:35', 450, 515, 65], [255, '07:31', '07:43', 451, 463, 12], [256, '07:32', '08:13', 452, 493, 41], [257, '07:34', '09:00', 454, 540, 86], [258, '07:34', '08:33', 454, 513, 59], [259, '07:34', '09:04', 454, 544, 90], [260, '07:35', '08:22', 455, 502, 47], [261, '07:35', '07:45', 455, 465, 10], [262, '07:35', '08:16', 455, 496, 41], [263, '07:36', '08:17', 456, 497, 41], [264, '07:36', '08:36', 456, 516, 60], [265, '07:37', '07:50', 457, 470, 13], [266, '07:40', '07:56', 460, 476, 16], [267, '07:40', '08:20', 460, 500, 40], [268, '07:40', '08:45', 460, 525, 65], [269, '07:41', '08:39', 461, 519, 58], [270, '07:41', '07:51', 461, 471, 10], [271, '07:42', '08:30', 462, 510, 48], [272, '07:42', '08:21', 462, 501, 39], [273, '07:43', '08:08', 463, 488, 25], [274, '07:43', '08:24', 463, 504, 41], [275, '07:44', '09:10', 464, 550, 86], [276, '07:44', '08:43', 464, 523, 59], [277, '07:46', '08:28', 466, 508, 42], [278, '07:46', '07:58', 466, 478, 12], [279, '07:47', '08:00', 467, 480, 13], [280, '07:48', '09:14', 468, 554, 86], [281, '07:49', '08:32', 469, 512, 43], [282, '07:50', '08:55', 470, 535, 65], [283, '07:50', '08:00', 470, 480, 10], [284, '07:50', '08:37', 470, 517, 47], [285, '07:50', '08:26', 470, 506, 36], [286, '07:51', '08:18', 471, 498, 27], [287, '07:52', '08:21', 472, 501, 29], [288, '07:53', '08:35', 473, 515, 42], [289, '07:54', '09:19', 474, 559, 85], [290, '07:55', '08:53', 475, 533, 58], [291, '07:56', '08:54', 476, 534, 58], [292, '07:57', '08:39', 477, 519, 42], [293, '07:57', '08:10', 477, 490, 13], [294, '07:58', '08:45', 478, 525, 47], [295, '07:58', '08:23', 478, 503, 25], [296, '08:00', '08:10', 480, 490, 10], [297, '08:00', '09:05', 480, 545, 65], [298, '08:00', '08:16', 480, 496, 16], [299, '08:00', '08:35', 480, 515, 35], [300, '08:01', '08:13', 481, 493, 12], [301, '08:01', '08:43', 481, 523, 42], [302, '08:03', '09:26', 483, 566, 83], [303, '08:04', '09:29', 484, 569, 85], [304, '08:05', '08:21', 485, 501, 16], [305, '08:05', '08:47', 485, 527, 42], [306, '08:06', '08:51', 486, 531, 45], [307, '08:06', '09:03', 486, 543, 57], [308, '08:07', '08:20', 487, 500, 13], [309, '08:08', '08:55', 488, 535, 47], [310, '08:08', '08:50', 488, 530, 42], [311, '08:10', '08:45', 490, 525, 35], [312, '08:10', '09:15', 490, 555, 65], [313, '08:10', '08:20', 490, 500, 10], [314, '08:11', '09:41', 491, 581, 90], [315, '08:12', '08:55', 492, 535, 43], [316, '08:13', '08:38', 493, 518, 25], [317, '08:14', '09:38', 494, 578, 84], [318, '08:15', '08:30', 495, 510, 15], [319, '08:16', '08:30', 496, 510, 14], [320, '08:16', '08:28', 496, 508, 12], [321, '08:16', '09:00', 496, 540, 44], [322, '08:17', '09:13', 497, 553, 56], [323, '08:18', '09:16', 498, 556, 58], [324, '08:18', '09:05', 498, 545, 47], [325, '08:20', '08:36', 500, 516, 16], [326, '08:20', '08:55', 500, 535, 35], [327, '08:20', '09:05', 500, 545, 45], [328, '08:20', '08:30', 500, 510, 10], [329, '08:20', '09:25', 500, 565, 65], [330, '08:21', '08:38', 501, 518, 17], [331, '08:21', '08:47', 501, 527, 26], [332, '08:22', '08:45', 502, 525, 23], [333, '08:23', '09:10', 503, 550, 47], [334, '08:24', '09:48', 504, 588, 84], [335, '08:26', '08:46', 506, 526, 20], [336, '08:27', '09:07', 507, 547, 40], [337, '08:28', '08:50', 508, 530, 22], [338, '08:28', '09:56', 508, 596, 88], [339, '08:28', '09:23', 508, 563, 55], [340, '08:29', '09:20', 509, 560, 51], [341, '08:30', '09:05', 510, 545, 35], [342, '08:30', '08:45', 510, 525, 15], [343, '08:30', '08:40', 510, 520, 10], [344, '08:30', '09:35', 510, 575, 65], [345, '08:31', '08:43', 511, 523, 12], [346, '08:31', '09:13', 511, 553, 42], [347, '08:34', '09:58', 514, 598, 84], [348, '08:35', '08:55', 515, 535, 20], [349, '08:35', '09:15', 515, 555, 40], [350, '08:35', '08:45', 515, 525, 10], [351, '08:36', '08:46', 516, 526, 10], [352, '08:36', '09:00', 516, 540, 24], [353, '08:38', '09:20', 518, 560, 42], [354, '08:38', '09:35', 518, 575, 57], [355, '08:38', '09:14', 518, 554, 36], [356, '08:39', '09:33', 519, 573, 54], [357, '08:40', '09:45', 520, 585, 65], [358, '08:40', '08:50', 520, 530, 10], [359, '08:40', '08:56', 520, 536, 16], [360, '08:42', '09:25', 522, 565, 43], [361, '08:43', '09:08', 523, 548, 25], [362, '08:44', '09:35', 524, 575, 51], [363, '08:45', '09:00', 525, 540, 15], [364, '08:45', '09:05', 525, 545, 20], [365, '08:46', '09:24', 526, 564, 38], [366, '08:46', '08:58', 526, 538, 12], [367, '08:46', '09:30', 526, 570, 44], [368, '08:48', '10:11', 528, 611, 83], [369, '08:48', '10:13', 528, 613, 85], [370, '08:49', '09:43', 529, 583, 54], [371, '08:50', '09:30', 530, 570, 40], [372, '08:50', '10:00', 530, 600, 70], [373, '08:50', '09:00', 530, 540, 10], [374, '08:51', '09:17', 531, 557, 26], [375, '08:53', '09:20', 533, 560, 27], [376, '08:53', '09:35', 533, 575, 42], [377, '08:55', '09:34', 535, 574, 39], [378, '08:55', '09:15', 535, 555, 20], [379, '08:58', '09:38', 538, 578, 40], [380, '08:58', '10:26', 538, 626, 88], [381, '08:59', '09:53', 539, 593, 54], [382, '08:59', '09:50', 539, 590, 51], [383, '09:00', '09:35', 540, 575, 35], [384, '09:00', '09:16', 540, 556, 16], [385, '09:00', '09:10', 540, 550, 10], [386, '09:00', '09:16', 540, 556, 16], [387, '09:01', '09:13', 541, 553, 12], [388, '09:03', '09:45', 543, 585, 42], [389, '09:03', '10:28', 543, 628, 85], [390, '09:05', '09:44', 545, 584, 39], [391, '09:05', '09:25', 545, 565, 20], [392, '09:08', '09:53', 548, 593, 45], [393, '09:08', '10:04', 548, 604, 56], [394, '09:09', '10:03', 549, 603, 54], [395, '09:10', '10:15', 550, 615, 65], [396, '09:10', '09:20', 550, 560, 10], [397, '09:11', '09:38', 551, 578, 27], [398, '09:13', '10:00', 553, 600, 47], [399, '09:14', '09:39', 554, 579, 25], [400, '09:14', '10:05', 554, 605, 51], [401, '09:15', '09:54', 555, 594, 39], [402, '09:16', '09:28', 556, 568, 12], [403, '09:18', '10:43', 558, 643, 85], [404, '09:18', '10:41', 558, 641, 83], [405, '09:18', '09:58', 558, 598, 40], [406, '09:19', '10:13', 559, 613, 54], [407, '09:20', '09:30', 560, 570, 10], [408, '09:20', '09:36', 560, 576, 16], [409, '09:21', '09:47', 561, 587, 26], [410, '09:23', '10:30', 563, 630, 67], [411, '09:23', '10:05', 563, 605, 42], [412, '09:23', '09:49', 563, 589, 26], [413, '09:24', '09:35', 564, 575, 11], [414, '09:25', '09:35', 565, 575, 10], [415, '09:25', '10:04', 565, 604, 39], [416, '09:28', '10:08', 568, 608, 40], [417, '09:29', '09:45', 569, 585, 16], [418, '09:29', '10:20', 569, 620, 51], [419, '09:29', '10:56', 569, 656, 87], [420, '09:29', '10:23', 569, 623, 54], [421, '09:30', '09:40', 570, 580, 10], [422, '09:31', '09:43', 571, 583, 12], [423, '09:33', '10:58', 573, 658, 85], [424, '09:33', '10:15', 573, 615, 42], [425, '09:34', '09:45', 574, 585, 11], [426, '09:35', '10:14', 575, 614, 39], [427, '09:38', '10:45', 578, 645, 67], [428, '09:39', '10:33', 579, 633, 54], [429, '09:40', '09:56', 580, 596, 16], [430, '09:40', '09:50', 580, 590, 10], [431, '09:41', '10:08', 581, 608, 27], [432, '09:41', '10:23', 581, 623, 42], [433, '09:44', '10:35', 584, 635, 51], [434, '09:44', '11:11', 584, 671, 87], [435, '09:44', '09:55', 584, 595, 11], [436, '09:45', '10:24', 585, 624, 39], [437, '09:46', '09:58', 586, 598, 12], [438, '09:48', '10:30', 588, 630, 42], [439, '09:48', '11:13', 588, 673, 85], [440, '09:48', '10:04', 588, 604, 16], [441, '09:49', '10:43', 589, 643, 54], [442, '09:50', '10:00', 590, 600, 10], [443, '09:51', '10:17', 591, 617, 26], [444, '09:53', '10:49', 593, 649, 56], [445, '09:53', '11:00', 593, 660, 67], [446, '09:54', '10:05', 594, 605, 11], [447, '09:55', '10:34', 595, 634, 39], [448, '09:56', '10:38', 596, 638, 42], [449, '09:57', '10:20', 597, 620, 23], [450, '09:59', '11:26', 599, 686, 87], [451, '09:59', '10:50', 599, 650, 51], [452, '09:59', '10:53', 599, 653, 54], [453, '10:00', '10:16', 600, 616, 16], [454, '10:00', '10:10', 600, 610, 10], [455, '10:01', '10:13', 601, 613, 12], [456, '10:03', '11:28', 603, 688, 85], [457, '10:03', '10:45', 603, 645, 42], [458, '10:04', '10:15', 604, 615, 11], [459, '10:05', '10:44', 605, 644, 39], [460, '10:08', '11:15', 608, 675, 67], [461, '10:09', '11:03', 609, 663, 54], [462, '10:10', '10:20', 610, 620, 10], [463, '10:11', '10:38', 611, 638, 27], [464, '10:11', '10:53', 611, 653, 42], [465, '10:14', '11:05', 614, 665, 51], [466, '10:14', '11:41', 614, 701, 87], [467, '10:14', '10:25', 614, 625, 11], [468, '10:15', '10:54', 615, 654, 39], [469, '10:16', '10:28', 616, 628, 12], [470, '10:18', '11:43', 618, 703, 85], [471, '10:18', '11:00', 618, 660, 42], [472, '10:19', '11:13', 619, 673, 54], [473, '10:20', '10:30', 620, 630, 10], [474, '10:20', '10:36', 620, 636, 16], [475, '10:21', '10:47', 621, 647, 26], [476, '10:23', '11:30', 623, 690, 67], [477, '10:23', '10:45', 623, 645, 22], [478, '10:24', '10:35', 624, 635, 11], [479, '10:25', '11:04', 625, 664, 39], [480, '10:26', '11:08', 626, 668, 42], [481, '10:29', '11:20', 629, 680, 51], [482, '10:29', '11:23', 629, 683, 54], [483, '10:29', '11:56', 629, 716, 87], [484, '10:30', '10:40', 630, 640, 10], [485, '10:31', '10:43', 631, 643, 12], [486, '10:33', '11:15', 633, 675, 42], [487, '10:33', '11:58', 633, 718, 85], [488, '10:34', '10:45', 634, 645, 11], [489, '10:35', '11:14', 635, 674, 39], [490, '10:38', '11:45', 638, 705, 67], [491, '10:39', '11:33', 639, 693, 54], [492, '10:40', '10:50', 640, 650, 10], [493, '10:40', '10:56', 640, 656, 16], [494, '10:41', '11:23', 641, 683, 42], [495, '10:41', '11:08', 641, 668, 27], [496, '10:44', '12:11', 644, 731, 87], [497, '10:44', '11:35', 644, 695, 51], [498, '10:44', '10:55', 644, 655, 11], [499, '10:45', '11:24', 645, 684, 39], [500, '10:46', '10:58', 646, 658, 12], [501, '10:48', '12:13', 648, 733, 85], [502, '10:48', '11:30', 648, 690, 42], [503, '10:49', '11:43', 649, 703, 54], [504, '10:50', '11:00', 650, 660, 10], [505, '10:51', '11:17', 651, 677, 26], [506, '10:53', '12:00', 653, 720, 67], [507, '10:53', '11:20', 653, 680, 27], [508, '10:54', '11:05', 654, 665, 11], [509, '10:55', '11:34', 655, 694, 39], [510, '10:56', '11:38', 656, 698, 42], [511, '10:59', '11:14', 659, 674, 15], [512, '10:59', '12:26', 659, 746, 87], [513, '10:59', '11:53', 659, 713, 54], [514, '10:59', '11:50', 659, 710, 51], [515, '11:00', '11:16', 660, 676, 16], [516, '11:00', '11:10', 660, 670, 10], [517, '11:01', '11:13', 661, 673, 12], [518, '11:03', '11:45', 663, 705, 42], [519, '11:03', '12:28', 663, 748, 85], [520, '11:04', '11:15', 664, 675, 11], [521, '11:05', '11:44', 665, 704, 39], [522, '11:08', '12:15', 668, 735, 67], [523, '11:09', '12:03', 669, 723, 54], [524, '11:10', '11:20', 670, 680, 10], [525, '11:11', '11:38', 671, 698, 27], [526, '11:11', '11:53', 671, 713, 42], [527, '11:14', '11:25', 674, 685, 11], [528, '11:14', '12:05', 674, 725, 51], [529, '11:14', '12:38', 674, 758, 84], [530, '11:14', '12:41', 674, 761, 87], [531, '11:15', '11:54', 675, 714, 39], [532, '11:16', '11:28', 676, 688, 12], [533, '11:18', '12:00', 678, 720, 42], [534, '11:19', '12:13', 679, 733, 54], [535, '11:20', '11:30', 680, 690, 10], [536, '11:20', '11:36', 680, 696, 16], [537, '11:21', '11:47', 681, 707, 26], [538, '11:23', '12:30', 683, 750, 67], [539, '11:23', '11:49', 683, 709, 26], [540, '11:24', '12:48', 684, 768, 84], [541, '11:24', '11:35', 684, 695, 11], [542, '11:25', '12:04', 685, 724, 39], [543, '11:26', '12:08', 686, 728, 42], [544, '11:29', '11:44', 689, 704, 15], [545, '11:29', '12:23', 689, 743, 54], [546, '11:29', '12:20', 689, 740, 51], [547, '11:29', '12:54', 689, 774, 85], [548, '11:30', '11:40', 690, 700, 10], [549, '11:31', '11:43', 691, 703, 12], [550, '11:33', '12:15', 693, 735, 42], [551, '11:34', '12:58', 694, 778, 84], [552, '11:34', '11:45', 694, 705, 11], [553, '11:35', '12:14', 695, 734, 39], [554, '11:38', '12:45', 698, 765, 67], [555, '11:39', '12:33', 699, 753, 54], [556, '11:40', '11:56', 700, 716, 16], [557, '11:40', '11:50', 700, 710, 10], [558, '11:41', '12:08', 701, 728, 27], [559, '11:41', '12:23', 701, 743, 42], [560, '11:44', '11:55', 704, 715, 11], [561, '11:44', '13:14', 704, 794, 90], [562, '11:44', '13:08', 704, 788, 84], [563, '11:44', '12:35', 704, 755, 51], [564, '11:45', '12:24', 705, 744, 39], [565, '11:46', '11:58', 706, 718, 12], [566, '11:48', '12:30', 708, 750, 42], [567, '11:49', '12:43', 709, 763, 54], [568, '11:50', '12:00', 710, 720, 10], [569, '11:51', '12:17', 711, 737, 26], [570, '11:53', '12:49', 713, 769, 56], [571, '11:53', '13:00', 713, 780, 67], [572, '11:54', '13:18', 714, 798, 84], [573, '11:54', '12:05', 714, 725, 11], [574, '11:55', '12:40', 715, 760, 45], [575, '11:55', '12:34', 715, 754, 39], [576, '11:56', '12:35', 716, 755, 39], [577, '11:57', '12:20', 717, 740, 23], [578, '11:58', '12:29', 718, 749, 31], [579, '11:59', '12:50', 719, 770, 51], [580, '11:59', '12:53', 719, 773, 54], [581, '11:59', '13:24', 719, 804, 85], [582, '11:59', '12:14', 719, 734, 15], [583, '12:00', '12:16', 720, 736, 16], [584, '12:00', '12:10', 720, 730, 10], [585, '12:01', '12:45', 721, 765, 44], [586, '12:01', '12:13', 721, 733, 12], [587, '12:03', '12:50', 723, 770, 47], [588, '12:04', '12:15', 724, 735, 11], [589, '12:04', '13:04', 724, 784, 60], [590, '12:04', '13:28', 724, 808, 84], [591, '12:05', '12:44', 725, 764, 39], [592, '12:08', '13:11', 728, 791, 63], [593, '12:08', '12:39', 728, 759, 31], [594, '12:09', '13:03', 729, 783, 54], [595, '12:10', '12:20', 730, 740, 10], [596, '12:11', '12:55', 731, 775, 44], [597, '12:11', '12:38', 731, 758, 27], [598, '12:14', '13:05', 734, 785, 51], [599, '12:14', '12:25', 734, 745, 11], [600, '12:14', '13:44', 734, 824, 90], [601, '12:14', '13:38', 734, 818, 84], [602, '12:15', '12:54', 735, 774, 39], [603, '12:16', '12:28', 736, 748, 12], [604, '12:18', '13:00', 738, 780, 42], [605, '12:19', '13:13', 739, 793, 54], [606, '12:20', '12:30', 740, 750, 10], [607, '12:20', '13:31', 740, 811, 71], [608, '12:20', '12:30', 740, 750, 10], [609, '12:20', '12:36', 740, 756, 16], [610, '12:21', '12:47', 741, 767, 26], [611, '12:23', '12:45', 743, 765, 22], [612, '12:24', '12:35', 744, 755, 11], [613, '12:24', '13:48', 744, 828, 84], [614, '12:25', '13:10', 745, 790, 45], [615, '12:25', '13:04', 745, 784, 39], [616, '12:26', '13:05', 746, 785, 39], [617, '12:28', '13:54', 748, 834, 86], [618, '12:28', '12:38', 748, 758, 10], [619, '12:28', '13:15', 748, 795, 47], [620, '12:29', '13:23', 749, 803, 54], [621, '12:30', '13:41', 750, 821, 71], [622, '12:30', '12:40', 750, 760, 10], [623, '12:31', '13:15', 751, 795, 44], [624, '12:31', '12:43', 751, 763, 12], [625, '12:33', '12:48', 753, 768, 15], [626, '12:33', '13:20', 753, 800, 47], [627, '12:34', '13:58', 754, 838, 84], [628, '12:34', '13:34', 754, 814, 60], [629, '12:34', '12:45', 754, 765, 11], [630, '12:35', '13:14', 755, 794, 39], [631, '12:38', '13:25', 758, 805, 47], [632, '12:38', '13:25', 758, 805, 47], [633, '12:38', '14:04', 758, 844, 86], [634, '12:39', '13:33', 759, 813, 54], [635, '12:40', '13:51', 760, 831, 71], [636, '12:40', '12:50', 760, 770, 10], [637, '12:40', '12:56', 760, 776, 16], [638, '12:41', '13:08', 761, 788, 27], [639, '12:43', '13:30', 763, 810, 47], [640, '12:44', '12:55', 764, 775, 11], [641, '12:44', '14:08', 764, 848, 84], [642, '12:45', '13:24', 765, 804, 39], [643, '12:46', '12:58', 766, 778, 12], [644, '12:46', '13:21', 766, 801, 35], [645, '12:48', '14:14', 768, 854, 86], [646, '12:48', '13:35', 768, 815, 47], [647, '12:48', '12:58', 768, 778, 10], [648, '12:48', '13:35', 768, 815, 47], [649, '12:49', '13:43', 769, 823, 54], [650, '12:50', '14:01', 770, 841, 71], [651, '12:50', '13:00', 770, 780, 10], [652, '12:50', '13:00', 770, 780, 10], [653, '12:51', '13:17', 771, 797, 26], [654, '12:53', '13:20', 773, 800, 27], [655, '12:53', '13:24', 773, 804, 31], [656, '12:53', '13:40', 773, 820, 47], [657, '12:54', '14:18', 774, 858, 84], [658, '12:54', '13:05', 774, 785, 11], [659, '12:55', '13:34', 775, 814, 39], [660, '12:58', '14:24', 778, 864, 86], [661, '12:58', '13:25', 778, 805, 27], [662, '12:58', '13:45', 778, 825, 47], [663, '12:58', '13:45', 778, 825, 47], [664, '12:59', '13:53', 779, 833, 54], [665, '13:00', '13:10', 780, 790, 10], [666, '13:00', '13:16', 780, 796, 16], [667, '13:00', '14:11', 780, 851, 71], [668, '13:01', '13:13', 781, 793, 12], [669, '13:03', '13:34', 783, 814, 31], [670, '13:03', '13:50', 783, 830, 47], [671, '13:04', '13:15', 784, 795, 11], [672, '13:04', '14:28', 784, 868, 84], [673, '13:05', '13:44', 785, 824, 39], [674, '13:08', '13:55', 788, 835, 47], [675, '13:08', '14:34', 788, 874, 86], [676, '13:08', '13:55', 788, 835, 47], [677, '13:09', '14:03', 789, 843, 54], [678, '13:10', '13:20', 790, 800, 10], [679, '13:10', '14:21', 790, 861, 71], [680, '13:13', '14:00', 793, 840, 47], [681, '13:13', '13:40', 793, 820, 27], [682, '13:14', '14:38', 794, 878, 84], [683, '13:14', '13:25', 794, 805, 11], [684, '13:15', '13:54', 795, 834, 39], [685, '13:16', '13:28', 796, 808, 12], [686, '13:18', '14:05', 798, 845, 47], [687, '13:18', '14:44', 798, 884, 86], [688, '13:18', '14:05', 798, 845, 47], [689, '13:19', '14:13', 799, 853, 54], [690, '13:20', '13:36', 800, 816, 16], [691, '13:20', '14:31', 800, 871, 71], [692, '13:20', '13:30', 800, 810, 10], [693, '13:21', '13:47', 801, 827, 26], [694, '13:23', '14:10', 803, 850, 47], [695, '13:23', '13:49', 803, 829, 26], [696, '13:24', '14:48', 804, 888, 84], [697, '13:24', '13:35', 804, 815, 11], [698, '13:25', '14:04', 805, 844, 39], [699, '13:28', '14:15', 808, 855, 47], [700, '13:28', '14:54', 808, 894, 86], [701, '13:28', '13:55', 808, 835, 27], [702, '13:28', '14:15', 808, 855, 47], [703, '13:29', '14:23', 809, 863, 54], [704, '13:30', '13:40', 810, 820, 10], [705, '13:30', '14:41', 810, 881, 71], [706, '13:31', '13:43', 811, 823, 12], [707, '13:33', '14:20', 813, 860, 47], [708, '13:34', '14:58', 814, 898, 84], [709, '13:34', '13:45', 814, 825, 11], [710, '13:35', '14:14', 815, 854, 39], [711, '13:38', '14:25', 818, 865, 47], [712, '13:38', '14:25', 818, 865, 47], [713, '13:38', '15:04', 818, 904, 86], [714, '13:39', '14:33', 819, 873, 54], [715, '13:40', '13:50', 820, 830, 10], [716, '13:40', '13:56', 820, 836, 16], [717, '13:40', '14:51', 820, 891, 71], [718, '13:43', '14:30', 823, 870, 47], [719, '13:43', '14:10', 823, 850, 27], [720, '13:44', '15:09', 824, 909, 85], [721, '13:44', '13:55', 824, 835, 11], [722, '13:45', '14:24', 825, 864, 39], [723, '13:46', '13:58', 826, 838, 12], [724, '13:48', '14:35', 828, 875, 47], [725, '13:48', '15:14', 828, 914, 86], [726, '13:48', '14:35', 828, 875, 47], [727, '13:49', '14:43', 829, 883, 54], [728, '13:50', '14:00', 830, 840, 10], [729, '13:50', '15:01', 830, 901, 71], [730, '13:51', '14:17', 831, 857, 26], [731, '13:53', '14:40', 833, 880, 47], [732, '13:53', '14:49', 833, 889, 56], [733, '13:54', '14:05', 834, 845, 11], [734, '13:54', '15:19', 834, 919, 85], [735, '13:55', '14:34', 835, 874, 39], [736, '13:57', '14:20', 837, 860, 23], [737, '13:58', '15:24', 838, 924, 86], [738, '13:58', '14:45', 838, 885, 47], [739, '13:58', '14:45', 838, 885, 47], [740, '13:58', '14:25', 838, 865, 27], [741, '13:59', '14:53', 839, 893, 54], [742, '14:00', '14:16', 840, 856, 16], [743, '14:00', '14:10', 840, 850, 10], [744, '14:00', '15:11', 840, 911, 71], [745, '14:01', '14:13', 841, 853, 12], [746, '14:03', '14:50', 843, 890, 47], [747, '14:04', '14:15', 844, 855, 11], [748, '14:04', '15:29', 844, 929, 85], [749, '14:05', '14:44', 845, 884, 39], [750, '14:08', '14:55', 848, 895, 47], [751, '14:08', '14:55', 848, 895, 47], [752, '14:08', '15:34', 848, 934, 86], [753, '14:09', '15:03', 849, 903, 54], [754, '14:10', '15:21', 850, 921, 71], [755, '14:10', '14:20', 850, 860, 10], [756, '14:13', '15:00', 853, 900, 47], [757, '14:13', '14:40', 853, 880, 27], [758, '14:14', '15:40', 854, 940, 86], [759, '14:14', '14:25', 854, 865, 11], [760, '14:15', '14:54', 855, 894, 39], [761, '14:16', '14:28', 856, 868, 12], [762, '14:18', '15:05', 858, 905, 47], [763, '14:18', '15:44', 858, 944, 86], [764, '14:18', '15:05', 858, 905, 47], [765, '14:19', '15:13', 859, 913, 54], [766, '14:20', '15:31', 860, 931, 71], [767, '14:20', '14:30', 860, 870, 10], [768, '14:20', '14:36', 860, 876, 16], [769, '14:21', '14:47', 861, 887, 26], [770, '14:23', '15:10', 863, 910, 47], [771, '14:23', '14:45', 863, 885, 22], [772, '14:24', '15:50', 864, 950, 86], [773, '14:24', '14:35', 864, 875, 11], [774, '14:25', '15:02', 865, 902, 37], [775, '14:26', '14:52', 866, 892, 26], [776, '14:28', '15:15', 868, 915, 47], [777, '14:28', '14:55', 868, 895, 27], [778, '14:28', '15:54', 868, 954, 86], [779, '14:28', '15:15', 868, 915, 47], [780, '14:29', '15:23', 869, 923, 54], [781, '14:30', '15:41', 870, 941, 71], [782, '14:30', '14:40', 870, 880, 10], [783, '14:31', '14:43', 871, 883, 12], [784, '14:33', '15:20', 873, 920, 47], [785, '14:34', '16:00', 874, 960, 86], [786, '14:34', '14:45', 874, 885, 11], [787, '14:35', '15:11', 875, 911, 36], [788, '14:38', '15:25', 878, 925, 47], [789, '14:38', '15:25', 878, 925, 47], [790, '14:38', '16:04', 878, 964, 86], [791, '14:39', '15:33', 879, 933, 54], [792, '14:40', '14:50', 880, 890, 10], [793, '14:40', '15:51', 880, 951, 71], [794, '14:40', '14:56', 880, 896, 16], [795, '14:43', '15:30', 883, 930, 47], [796, '14:43', '15:10', 883, 910, 27], [797, '14:44', '15:00', 884, 900, 16], [798, '14:44', '16:10', 884, 970, 86], [799, '14:45', '15:19', 885, 919, 34], [800, '14:46', '14:58', 886, 898, 12], [801, '14:48', '15:35', 888, 935, 47], [802, '14:48', '15:35', 888, 935, 47], [803, '14:48', '17:04', 888, 1024, 136], [804, '14:49', '15:43', 889, 943, 54], [805, '14:50', '16:01', 890, 961, 71], [806, '14:50', '15:00', 890, 900, 10], [807, '14:51', '15:17', 891, 917, 26], [808, '14:52', '15:27', 892, 927, 35], [809, '14:52', '15:21', 892, 921, 29], [810, '14:53', '15:40', 893, 940, 47], [811, '14:54', '15:08', 894, 908, 14], [812, '14:54', '16:20', 894, 980, 86], [813, '14:58', '16:24', 898, 984, 86], [814, '14:58', '15:45', 898, 945, 47], [815, '14:58', '15:25', 898, 925, 27], [816, '14:58', '15:45', 898, 945, 47], [817, '14:59', '15:53', 899, 953, 54], [818, '15:00', '15:10', 900, 910, 10], [819, '15:00', '15:35', 900, 935, 35], [820, '15:00', '16:11', 900, 971, 71], [821, '15:00', '15:16', 900, 916, 16], [822, '15:01', '15:13', 901, 913, 12], [823, '15:02', '15:16', 902, 916, 14], [824, '15:03', '15:50', 903, 950, 47], [825, '15:04', '16:30', 904, 990, 86], [826, '15:08', '16:34', 908, 994, 86], [827, '15:08', '15:55', 908, 955, 47], [828, '15:08', '15:55', 908, 955, 47], [829, '15:08', '15:45', 908, 945, 37], [830, '15:09', '16:14', 909, 974, 65], [831, '15:09', '16:03', 909, 963, 54], [832, '15:10', '16:21', 910, 981, 71], [833, '15:10', '15:20', 910, 920, 10], [834, '15:11', '15:24', 911, 924, 13], [835, '15:12', '15:36', 912, 936, 24], [836, '15:13', '16:00', 913, 960, 47], [837, '15:13', '15:40', 913, 940, 27], [838, '15:14', '16:40', 914, 1000, 86], [839, '15:16', '15:28', 916, 928, 12], [840, '15:16', '15:55', 916, 955, 39], [841, '15:18', '16:05', 918, 965, 47], [842, '15:18', '16:44', 918, 1004, 86], [843, '15:18', '16:05', 918, 965, 47], [844, '15:19', '16:13', 919, 973, 54], [845, '15:19', '15:34', 919, 934, 15], [846, '15:20', '15:30', 920, 930, 10], [847, '15:20', '16:31', 920, 991, 71], [848, '15:20', '15:36', 920, 936, 16], [849, '15:21', '15:47', 921, 947, 26], [850, '15:21', '16:06', 921, 966, 45], [851, '15:23', '16:10', 923, 970, 47], [852, '15:24', '16:50', 924, 1010, 86], [853, '15:24', '16:05', 924, 965, 41], [854, '15:27', '15:51', 927, 951, 24], [855, '15:27', '15:44', 927, 944, 17], [856, '15:28', '16:15', 928, 975, 47], [857, '15:28', '16:54', 928, 1014, 86], [858, '15:28', '16:15', 928, 975, 47], [859, '15:28', '15:55', 928, 955, 27], [860, '15:29', '16:23', 929, 983, 54], [861, '15:30', '16:41', 930, 1001, 71], [862, '15:30', '15:40', 930, 940, 10], [863, '15:31', '15:43', 931, 943, 12], [864, '15:33', '16:20', 933, 980, 47], [865, '15:34', '17:00', 934, 1020, 86], [866, '15:34', '16:15', 934, 975, 41], [867, '15:35', '15:54', 935, 954, 19], [868, '15:36', '16:21', 936, 981, 45], [869, '15:38', '16:25', 938, 985, 47], [870, '15:38', '16:25', 938, 985, 47], [871, '15:38', '16:39', 938, 999, 61], [872, '15:39', '16:33', 939, 993, 54], [873, '15:40', '15:50', 940, 950, 10], [874, '15:40', '16:51', 940, 1011, 71], [875, '15:40', '15:56', 940, 956, 16], [876, '15:43', '16:10', 943, 970, 27], [877, '15:43', '16:30', 943, 990, 47], [878, '15:44', '17:10', 944, 1030, 86], [879, '15:44', '16:25', 944, 985, 41], [880, '15:45', '16:04', 945, 964, 19], [881, '15:46', '15:58', 946, 958, 12], [882, '15:48', '16:35', 948, 995, 47], [883, '15:48', '16:35', 948, 995, 47], [884, '15:48', '17:14', 948, 1034, 86], [885, '15:49', '16:43', 949, 1003, 54], [886, '15:50', '16:00', 950, 960, 10], [887, '15:50', '17:01', 950, 1021, 71], [888, '15:51', '16:18', 951, 978, 27], [889, '15:52', '16:36', 952, 996, 44], [890, '15:53', '16:40', 953, 1000, 47], [891, '15:54', '17:20', 954, 1040, 86], [892, '15:54', '16:35', 954, 995, 41], [893, '15:55', '16:14', 955, 974, 19], [894, '15:58', '16:25', 958, 985, 27], [895, '15:58', '16:45', 958, 1005, 47], [896, '15:58', '16:45', 958, 1005, 47], [897, '15:58', '17:24', 958, 1044, 86], [898, '15:59', '17:11', 959, 1031, 72], [899, '15:59', '16:53', 959, 1013, 54], [900, '16:00', '16:10', 960, 970, 10], [901, '16:00', '16:16', 960, 976, 16], [902, '16:01', '16:13', 961, 973, 12], [903, '16:03', '16:50', 963, 1010, 47], [904, '16:04', '17:30', 964, 1050, 86], [905, '16:04', '16:45', 964, 1005, 41], [906, '16:05', '16:24', 965, 984, 19], [907, '16:06', '16:51', 966, 1011, 45], [908, '16:08', '16:55', 968, 1015, 47], [909, '16:08', '17:34', 968, 1054, 86], [910, '16:08', '16:55', 968, 1015, 47], [911, '16:09', '17:03', 969, 1023, 54], [912, '16:09', '17:21', 969, 1041, 72], [913, '16:10', '16:20', 970, 980, 10], [914, '16:13', '16:40', 973, 1000, 27], [915, '16:13', '17:00', 973, 1020, 47], [916, '16:14', '16:55', 974, 1015, 41], [917, '16:14', '17:40', 974, 1060, 86], [918, '16:15', '16:34', 975, 994, 19], [919, '16:16', '16:28', 976, 988, 12], [920, '16:18', '17:05', 978, 1025, 47], [921, '16:18', '17:05', 978, 1025, 47], [922, '16:18', '17:44', 978, 1064, 86], [923, '16:19', '17:31', 979, 1051, 72], [924, '16:19', '17:13', 979, 1033, 54], [925, '16:20', '16:30', 980, 990, 10], [926, '16:20', '16:36', 980, 996, 16], [927, '16:21', '16:48', 981, 1008, 27], [928, '16:22', '17:06', 982, 1026, 44], [929, '16:23', '17:10', 983, 1030, 47], [930, '16:24', '17:05', 984, 1025, 41], [931, '16:24', '17:50', 984, 1070, 86], [932, '16:25', '16:44', 985, 1004, 19], [933, '16:28', '17:15', 988, 1035, 47], [934, '16:28', '17:15', 988, 1035, 47], [935, '16:28', '16:55', 988, 1015, 27], [936, '16:28', '17:54', 988, 1074, 86], [937, '16:29', '17:23', 989, 1043, 54], [938, '16:29', '17:41', 989, 1061, 72], [939, '16:30', '16:40', 990, 1000, 10], [940, '16:31', '16:43', 991, 1003, 12], [941, '16:33', '17:20', 993, 1040, 47], [942, '16:34', '17:15', 994, 1035, 41], [943, '16:34', '18:00', 994, 1080, 86], [944, '16:35', '16:54', 995, 1014, 19], [945, '16:36', '17:21', 996, 1041, 45], [946, '16:38', '17:25', 998, 1045, 47], [947, '16:38', '17:25', 998, 1045, 47], [948, '16:38', '18:04', 998, 1084, 86], [949, '16:39', '17:33', 999, 1053, 54], [950, '16:39', '17:51', 999, 1071, 72], [951, '16:40', '16:56', 1000, 1016, 16], [952, '16:40', '16:50', 1000, 1010, 10], [953, '16:43', '17:10', 1003, 1030, 27], [954, '16:43', '17:30', 1003, 1050, 47], [955, '16:44', '17:25', 1004, 1045, 41], [956, '16:44', '18:10', 1004, 1090, 86], [957, '16:45', '17:04', 1005, 1024, 19], [958, '16:46', '16:58', 1006, 1018, 12], [959, '16:48', '18:14', 1008, 1094, 86], [960, '16:48', '17:35', 1008, 1055, 47], [961, '16:48', '17:35', 1008, 1055, 47], [962, '16:49', '18:01', 1009, 1081, 72], [963, '16:49', '17:43', 1009, 1063, 54], [964, '16:50', '17:00', 1010, 1020, 10], [965, '16:51', '17:18', 1011, 1038, 27], [966, '16:52', '17:36', 1012, 1056, 44], [967, '16:53', '17:40', 1013, 1060, 47], [968, '16:54', '18:20', 1014, 1100, 86], [969, '16:54', '17:35', 1014, 1055, 41], [970, '16:55', '17:14', 1015, 1034, 19], [971, '16:58', '17:25', 1018, 1045, 27], [972, '16:58', '17:45', 1018, 1065, 47], [973, '16:58', '17:45', 1018, 1065, 47], [974, '16:58', '18:24', 1018, 1104, 86], [975, '16:59', '18:11', 1019, 1091, 72], [976, '16:59', '17:53', 1019, 1073, 54], [977, '17:00', '17:16', 1020, 1036, 16], [978, '17:00', '17:10', 1020, 1030, 10], [979, '17:01', '17:13', 1021, 1033, 12], [980, '17:03', '17:50', 1023, 1070, 47], [981, '17:04', '18:30', 1024, 1110, 86], [982, '17:04', '17:45', 1024, 1065, 41], [983, '17:05', '17:24', 1025, 1044, 19], [984, '17:06', '17:51', 1026, 1071, 45], [985, '17:08', '17:55', 1028, 1075, 47], [986, '17:08', '17:55', 1028, 1075, 47], [987, '17:08', '18:34', 1028, 1114, 86], [988, '17:09', '18:03', 1029, 1083, 54], [989, '17:09', '18:21', 1029, 1101, 72], [990, '17:10', '17:20', 1030, 1040, 10], [991, '17:13', '17:40', 1033, 1060, 27], [992, '17:13', '18:00', 1033, 1080, 47], [993, '17:14', '17:55', 1034, 1075, 41], [994, '17:14', '18:40', 1034, 1120, 86], [995, '17:15', '17:34', 1035, 1054, 19], [996, '17:16', '17:28', 1036, 1048, 12], [997, '17:18', '18:05', 1038, 1085, 47], [998, '17:18', '18:05', 1038, 1085, 47], [999, '17:18', '18:44', 1038, 1124, 86], [1000, '17:19', '18:31', 1039, 1111, 72], [1001, '17:19', '18:13', 1039, 1093, 54], [1002, '17:20', '17:36', 1040, 1056, 16], [1003, '17:20', '17:30', 1040, 1050, 10], [1004, '17:21', '17:47', 1041, 1067, 26], [1005, '17:22', '18:06', 1042, 1086, 44], [1006, '17:23', '18:10', 1043, 1090, 47], [1007, '17:24', '18:50', 1044, 1130, 86], [1008, '17:24', '18:05', 1044, 1085, 41], [1009, '17:25', '17:44', 1045, 1064, 19], [1010, '17:28', '17:55', 1048, 1075, 27], [1011, '17:28', '18:15', 1048, 1095, 47], [1012, '17:28', '18:15', 1048, 1095, 47], [1013, '17:28', '18:54', 1048, 1134, 86], [1014, '17:29', '18:41', 1049, 1121, 72], [1015, '17:29', '18:23', 1049, 1103, 54], [1016, '17:30', '17:40', 1050, 1060, 10], [1017, '17:31', '17:43', 1051, 1063, 12], [1018, '17:33', '18:20', 1053, 1100, 47], [1019, '17:34', '18:15', 1054, 1095, 41], [1020, '17:34', '19:00', 1054, 1140, 86], [1021, '17:35', '17:54', 1055, 1074, 19], [1022, '17:36', '18:21', 1056, 1101, 45], [1023, '17:38', '18:25', 1058, 1105, 47], [1024, '17:38', '19:04', 1058, 1144, 86], [1025, '17:38', '18:25', 1058, 1105, 47], [1026, '17:39', '18:51', 1059, 1131, 72], [1027, '17:39', '18:33', 1059, 1113, 54], [1028, '17:40', '17:56', 1060, 1076, 16], [1029, '17:40', '17:50', 1060, 1070, 10], [1030, '17:43', '18:10', 1063, 1090, 27], [1031, '17:43', '18:30', 1063, 1110, 47], [1032, '17:44', '18:25', 1064, 1105, 41], [1033, '17:44', '19:14', 1064, 1154, 90], [1034, '17:45', '18:04', 1065, 1084, 19], [1035, '17:46', '17:58', 1066, 1078, 12], [1036, '17:48', '18:35', 1068, 1115, 47], [1037, '17:48', '18:35', 1068, 1115, 47], [1038, '17:48', '19:14', 1068, 1154, 86], [1039, '17:49', '19:01', 1069, 1141, 72], [1040, '17:49', '18:43', 1069, 1123, 54], [1041, '17:50', '18:00', 1070, 1080, 10], [1042, '17:51', '18:17', 1071, 1097, 26], [1043, '17:52', '18:36', 1072, 1116, 44], [1044, '17:53', '18:40', 1073, 1120, 47], [1045, '17:54', '18:35', 1074, 1115, 41], [1046, '17:54', '18:57', 1074, 1137, 63], [1047, '17:55', '18:14', 1075, 1094, 19], [1048, '17:58', '18:45', 1078, 1125, 47], [1049, '17:58', '18:45', 1078, 1125, 47], [1050, '17:58', '18:25', 1078, 1105, 27], [1051, '17:58', '19:26', 1078, 1166, 88], [1052, '17:59', '18:53', 1079, 1133, 54], [1053, '18:00', '19:11', 1080, 1151, 71], [1054, '18:00', '18:10', 1080, 1090, 10], [1055, '18:00', '18:16', 1080, 1096, 16], [1056, '18:01', '18:13', 1081, 1093, 12], [1057, '18:03', '18:50', 1083, 1130, 47], [1058, '18:04', '18:45', 1084, 1125, 41], [1059, '18:04', '19:29', 1084, 1169, 85], [1060, '18:05', '18:24', 1085, 1104, 19], [1061, '18:06', '18:51', 1086, 1131, 45], [1062, '18:08', '18:55', 1088, 1135, 47], [1063, '18:08', '19:06', 1088, 1146, 58], [1064, '18:08', '18:55', 1088, 1135, 47], [1065, '18:09', '19:03', 1089, 1143, 54], [1066, '18:10', '18:20', 1090, 1100, 10], [1067, '18:10', '19:21', 1090, 1161, 71], [1068, '18:13', '19:00', 1093, 1140, 47], [1069, '18:13', '18:40', 1093, 1120, 27], [1070, '18:14', '19:43', 1094, 1183, 89], [1071, '18:14', '18:55', 1094, 1135, 41], [1072, '18:15', '18:34', 1095, 1114, 19], [1073, '18:16', '18:28', 1096, 1108, 12], [1074, '18:17', '18:27', 1097, 1107, 10], [1075, '18:18', '19:41', 1098, 1181, 83], [1076, '18:18', '18:58', 1098, 1138, 40], [1077, '18:18', '19:05', 1098, 1145, 47], [1078, '18:19', '19:13', 1099, 1153, 54], [1079, '18:20', '19:31', 1100, 1171, 71], [1080, '18:20', '18:36', 1100, 1116, 16], [1081, '18:20', '18:30', 1100, 1110, 10], [1082, '18:22', '19:05', 1102, 1145, 43], [1083, '18:23', '19:05', 1103, 1145, 42], [1084, '18:24', '19:27', 1104, 1167, 63], [1085, '18:24', '19:05', 1104, 1145, 41], [1086, '18:25', '18:44', 1105, 1124, 19], [1087, '18:28', '19:25', 1108, 1165, 57], [1088, '18:28', '18:55', 1108, 1135, 27], [1089, '18:28', '19:08', 1108, 1148, 40], [1090, '18:28', '19:15', 1108, 1155, 47], [1091, '18:29', '19:23', 1109, 1163, 54], [1092, '18:30', '19:05', 1110, 1145, 35], [1093, '18:30', '18:40', 1110, 1120, 10], [1094, '18:31', '18:43', 1111, 1123, 12], [1095, '18:33', '19:15', 1113, 1155, 42], [1096, '18:34', '19:58', 1114, 1198, 84], [1097, '18:34', '19:14', 1114, 1154, 40], [1098, '18:35', '18:55', 1115, 1135, 20], [1099, '18:36', '19:20', 1116, 1160, 44], [1100, '18:38', '19:25', 1118, 1165, 47], [1101, '18:38', '19:23', 1118, 1163, 45], [1102, '18:38', '19:56', 1118, 1196, 78], [1103, '18:39', '19:33', 1119, 1173, 54], [1104, '18:40', '18:50', 1120, 1130, 10], [1105, '18:40', '19:45', 1120, 1185, 65], [1106, '18:40', '18:56', 1120, 1136, 16], [1107, '18:43', '19:10', 1123, 1150, 27], [1108, '18:43', '19:30', 1123, 1170, 47], [1109, '18:44', '19:24', 1124, 1164, 40], [1110, '18:45', '19:05', 1125, 1145, 20], [1111, '18:46', '18:58', 1126, 1138, 12], [1112, '18:48', '19:35', 1128, 1175, 47], [1113, '18:48', '20:12', 1128, 1212, 84], [1114, '18:48', '20:11', 1128, 1211, 83], [1115, '18:48', '19:28', 1128, 1168, 40], [1116, '18:49', '19:43', 1129, 1183, 54], [1117, '18:50', '19:00', 1130, 1140, 10], [1118, '18:51', '19:01', 1131, 1141, 10], [1119, '18:53', '19:35', 1133, 1175, 42], [1120, '18:53', '19:15', 1133, 1155, 22], [1121, '18:53', '20:00', 1133, 1200, 67], [1122, '18:55', '19:15', 1135, 1155, 20], [1123, '18:55', '19:34', 1135, 1174, 39], [1124, '18:58', '19:38', 1138, 1178, 40], [1125, '18:59', '19:53', 1139, 1193, 54], [1126, '18:59', '19:50', 1139, 1190, 51], [1127, '18:59', '19:53', 1139, 1193, 54], [1128, '19:00', '19:16', 1140, 1156, 16], [1129, '19:00', '19:10', 1140, 1150, 10], [1130, '19:00', '19:16', 1140, 1156, 16], [1131, '19:01', '19:13', 1141, 1153, 12], [1132, '19:03', '20:26', 1143, 1226, 83], [1133, '19:03', '19:45', 1143, 1185, 42], [1134, '19:05', '19:44', 1145, 1184, 39], [1135, '19:05', '19:25', 1145, 1165, 20], [1136, '19:08', '20:15', 1148, 1215, 67], [1137, '19:08', '19:35', 1148, 1175, 27], [1138, '19:09', '19:49', 1149, 1189, 40], [1139, '19:09', '20:03', 1149, 1203, 54], [1140, '19:10', '19:20', 1150, 1160, 10], [1141, '19:10', '19:20', 1150, 1160, 10], [1142, '19:11', '19:53', 1151, 1193, 42], [1143, '19:14', '20:26', 1154, 1226, 72], [1144, '19:14', '19:35', 1154, 1175, 21], [1145, '19:14', '19:24', 1154, 1164, 10], [1146, '19:14', '20:05', 1154, 1205, 51], [1147, '19:15', '19:30', 1155, 1170, 15], [1148, '19:15', '19:54', 1155, 1194, 39], [1149, '19:18', '20:39', 1158, 1239, 81], [1150, '19:18', '20:00', 1158, 1200, 42], [1151, '19:19', '20:14', 1159, 1214, 55], [1152, '19:20', '19:30', 1160, 1170, 10], [1153, '19:20', '19:36', 1160, 1176, 16], [1154, '19:21', '19:31', 1161, 1171, 10], [1155, '19:23', '20:30', 1163, 1230, 67], [1156, '19:23', '19:35', 1163, 1175, 12], [1157, '19:24', '19:45', 1164, 1185, 21], [1158, '19:24', '19:45', 1164, 1185, 21], [1159, '19:25', '20:04', 1165, 1204, 39], [1160, '19:26', '20:08', 1166, 1208, 42], [1161, '19:29', '20:02', 1169, 1202, 33], [1162, '19:29', '20:18', 1169, 1218, 49], [1163, '19:29', '20:41', 1169, 1241, 72], [1164, '19:30', '19:40', 1170, 1180, 10], [1165, '19:33', '20:54', 1173, 1254, 81], [1166, '19:33', '20:17', 1173, 1217, 44], [1167, '19:34', '19:55', 1174, 1195, 21], [1168, '19:35', '20:14', 1175, 1214, 39], [1169, '19:38', '20:05', 1178, 1205, 27], [1170, '19:38', '20:45', 1178, 1245, 67], [1171, '19:39', '20:12', 1179, 1212, 33], [1172, '19:40', '19:50', 1180, 1190, 10], [1173, '19:40', '19:56', 1180, 1196, 16], [1174, '19:41', '20:27', 1181, 1227, 46], [1175, '19:43', '19:55', 1183, 1195, 12], [1176, '19:44', '20:05', 1184, 1205, 21], [1177, '19:44', '20:33', 1184, 1233, 49], [1178, '19:44', '21:00', 1184, 1260, 76], [1179, '19:45', '20:24', 1185, 1224, 39], [1180, '19:48', '20:37', 1188, 1237, 49], [1181, '19:48', '21:09', 1188, 1269, 81], [1182, '19:50', '20:00', 1190, 1200, 10], [1183, '19:52', '20:29', 1192, 1229, 37], [1184, '19:53', '20:08', 1193, 1208, 15], [1185, '19:53', '21:02', 1193, 1262, 69], [1186, '19:53', '20:20', 1193, 1220, 27], [1187, '19:54', '20:19', 1194, 1219, 25], [1188, '19:55', '20:34', 1195, 1234, 39], [1189, '19:56', '20:34', 1196, 1234, 38], [1190, '19:59', '20:48', 1199, 1248, 49], [1191, '19:59', '21:20', 1199, 1280, 81], [1192, '20:00', '20:16', 1200, 1216, 16], [1193, '20:00', '20:10', 1200, 1210, 10], [1194, '20:03', '20:42', 1203, 1242, 39], [1195, '20:03', '21:24', 1203, 1284, 81], [1196, '20:04', '20:29', 1204, 1229, 25], [1197, '20:05', '20:48', 1205, 1248, 43], [1198, '20:07', '20:44', 1207, 1244, 37], [1199, '20:08', '20:40', 1208, 1240, 32], [1200, '20:08', '20:35', 1208, 1235, 27], [1201, '20:10', '20:20', 1210, 1220, 10], [1202, '20:10', '20:22', 1210, 1222, 12], [1203, '20:11', '20:47', 1211, 1247, 36], [1204, '20:14', '21:04', 1214, 1264, 50], [1205, '20:14', '21:03', 1214, 1263, 49], [1206, '20:17', '21:03', 1217, 1263, 46], [1207, '20:18', '21:39', 1218, 1299, 81], [1208, '20:20', '20:30', 1220, 1230, 10], [1209, '20:20', '20:57', 1220, 1257, 37], [1210, '20:20', '20:36', 1220, 1236, 16], [1211, '20:22', '20:59', 1222, 1259, 37], [1212, '20:22', '20:42', 1222, 1242, 20], [1213, '20:24', '20:49', 1224, 1249, 25], [1214, '20:27', '21:22', 1227, 1282, 55], [1215, '20:29', '21:18', 1229, 1278, 49], [1216, '20:30', '21:07', 1230, 1267, 37], [1217, '20:30', '20:40', 1230, 1240, 10], [1218, '20:30', '20:40', 1230, 1240, 10], [1219, '20:30', '21:40', 1230, 1300, 70], [1220, '20:32', '21:18', 1232, 1278, 46], [1221, '20:35', '21:54', 1235, 1314, 79], [1222, '20:37', '21:14', 1237, 1274, 37], [1223, '20:38', '21:08', 1238, 1268, 30], [1224, '20:40', '20:50', 1240, 1250, 10], [1225, '20:40', '21:17', 1240, 1277, 37], [1226, '20:40', '20:56', 1240, 1256, 16], [1227, '20:44', '21:33', 1244, 1293, 49], [1228, '20:47', '21:33', 1247, 1293, 46], [1229, '20:47', '21:42', 1247, 1302, 55], [1230, '20:50', '21:00', 1250, 1260, 10], [1231, '20:50', '22:00', 1250, 1320, 70], [1232, '20:50', '22:09', 1250, 1329, 79], [1233, '20:50', '21:27', 1250, 1287, 37], [1234, '20:52', '21:29', 1252, 1289, 37], [1235, '20:53', '21:20', 1253, 1280, 27], [1236, '20:56', '21:11', 1256, 1271, 15], [1237, '20:59', '21:48', 1259, 1308, 49], [1238, '21:00', '21:10', 1260, 1270, 10], [1239, '21:00', '21:37', 1260, 1297, 37], [1240, '21:02', '21:48', 1262, 1308, 46], [1241, '21:05', '22:24', 1265, 1344, 79], [1242, '21:07', '21:44', 1267, 1304, 37], [1243, '21:07', '22:02', 1267, 1322, 55], [1244, '21:08', '21:38', 1268, 1298, 30], [1245, '21:10', '22:25', 1270, 1345, 75], [1246, '21:10', '21:20', 1270, 1280, 10], [1247, '21:10', '21:47', 1270, 1307, 37], [1248, '21:14', '22:03', 1274, 1323, 49], [1249, '21:17', '22:03', 1277, 1323, 46], [1250, '21:20', '22:18', 1280, 1338, 58], [1251, '21:20', '21:57', 1280, 1317, 37], [1252, '21:20', '21:30', 1280, 1290, 10], [1253, '21:22', '21:59', 1282, 1319, 37], [1254, '21:24', '21:49', 1284, 1309, 25], [1255, '21:27', '22:21', 1287, 1341, 54], [1256, '21:30', '22:07', 1290, 1327, 37], [1257, '21:30', '22:20', 1290, 1340, 50], [1258, '21:30', '21:40', 1290, 1300, 10], [1259, '21:32', '22:18', 1292, 1338, 46], [1260, '21:32', '22:01', 1292, 1321, 29], [1261, '21:35', '22:54', 1295, 1374, 79], [1262, '21:37', '22:14', 1297, 1334, 37], [1263, '21:39', '21:55', 1299, 1315, 16], [1264, '21:40', '22:17', 1300, 1337, 37], [1265, '21:40', '21:50', 1300, 1310, 10], [1266, '21:41', '22:08', 1301, 1328, 27], [1267, '21:47', '22:16', 1307, 1336, 29], [1268, '21:47', '22:51', 1307, 1371, 64], [1269, '21:47', '22:33', 1307, 1353, 46], [1270, '21:48', '22:03', 1308, 1323, 15], [1271, '21:50', '22:55', 1310, 1375, 65], [1272, '21:50', '22:27', 1310, 1347, 37], [1273, '21:50', '22:00', 1310, 1320, 10], [1274, '21:52', '22:29', 1312, 1349, 37], [1275, '21:53', '22:19', 1313, 1339, 26], [1276, '22:00', '22:38', 1320, 1358, 38], [1277, '22:00', '22:10', 1320, 1330, 10], [1278, '22:02', '22:12', 1322, 1332, 10], [1279, '22:02', '22:48', 1322, 1368, 46], [1280, '22:04', '22:31', 1324, 1351, 27], [1281, '22:05', '23:24', 1325, 1404, 79], [1282, '22:07', '22:44', 1327, 1364, 37], [1283, '22:07', '22:39', 1327, 1359, 32], [1284, '22:09', '22:25', 1329, 1345, 16], [1285, '22:10', '23:25', 1330, 1405, 75], [1286, '22:13', '22:38', 1333, 1358, 25], [1287, '22:13', '22:53', 1333, 1373, 40], [1288, '22:17', '22:27', 1337, 1347, 10], [1289, '22:17', '23:03', 1337, 1383, 46], [1290, '22:19', '22:46', 1339, 1366, 27], [1291, '22:22', '22:59', 1342, 1379, 37], [1292, '22:24', '22:48', 1344, 1368, 24], [1293, '22:27', '22:52', 1347, 1372, 25], [1294, '22:27', '23:21', 1347, 1401, 54], [1295, '22:28', '23:08', 1348, 1388, 40], [1296, '22:30', '23:17', 1350, 1397, 47], [1297, '22:32', '22:42', 1352, 1362, 10], [1298, '22:32', '23:11', 1352, 1391, 39], [1299, '22:34', '23:01', 1354, 1381, 27], [1300, '22:35', '23:54', 1355, 1434, 79], [1301, '22:37', '23:14', 1357, 1394, 37], [1302, '22:43', '23:23', 1363, 1403, 40], [1303, '22:43', '23:08', 1363, 1388, 25], [1304, '22:47', '23:33', 1367, 1413, 46], [1305, '22:47', '22:57', 1367, 1377, 10], [1306, '22:49', '23:16', 1369, 1396, 27], [1307, '22:52', '23:29', 1372, 1409, 37], [1308, '22:53', '23:15', 1373, 1395, 22], [1309, '22:55', '23:55', 1375, 1435, 60], [1310, '22:57', '23:51', 1377, 1431, 54], [1311, '22:58', '23:38', 1378, 1418, 40], [1312, '23:02', '23:41', 1382, 1421, 39], [1313, '23:02', '23:12', 1382, 1392, 10], [1314, '23:04', '23:31', 1384, 1411, 27], [1315, '23:05', '00:24', 1385, 1464, 79], [1316, '23:07', '23:44', 1387, 1424, 37], [1317, '23:13', '23:53', 1393, 1433, 40], [1318, '23:13', '23:38', 1393, 1418, 25], [1319, '23:17', '00:03', 1397, 1443, 46], [1320, '23:17', '23:27', 1397, 1407, 10], [1321, '23:19', '23:46', 1399, 1426, 27], [1322, '23:22', '23:59', 1402, 1439, 37], [1323, '23:25', '00:25', 1405, 1465, 60], [1324, '23:27', '00:21', 1407, 1461, 54], [1325, '23:28', '00:08', 1408, 1448, 40], [1326, '23:32', '23:42', 1412, 1422, 10], [1327, '23:34', '00:01', 1414, 1441, 27], [1328, '23:35', '01:05', 1415, 1505, 90], [1329, '23:37', '00:09', 1417, 1449, 32], [1330, '23:43', '00:23', 1423, 1463, 40], [1331, '23:43', '00:08', 1423, 1448, 25], [1332, '23:46', '00:01', 1426, 1441, 15], [1333, '23:47', '23:57', 1427, 1437, 10], [1334, '23:47', '00:33', 1427, 1473, 46], [1335, '23:52', '00:24', 1432, 1464, 32], [1336, '23:55', '00:49', 1435, 1489, 54], [1337, '23:57', '00:57', 1437, 1497, 60], [1338, '23:58', '00:38', 1438, 1478, 40], [1339, '00:02', '00:12', 1442, 1452, 10], [1340, '00:07', '00:39', 1447, 1479, 32], [1341, '00:13', '00:38', 1453, 1478, 25], [1342, '00:13', '00:51', 1453, 1491, 38], [1343, '00:15', '01:14', 1455, 1514, 59], [1344, '00:17', '01:23', 1457, 1523, 66], [1345, '00:23', '00:33', 1463, 1473, 10], [1346, '00:24', '00:40', 1464, 1480, 16], [1347, '00:25', '01:12', 1465, 1512, 47], [1348, '00:28', '01:07', 1468, 1507, 39], [1349, '00:33', '01:05', 1473, 1505, 32], [1350, '00:43', '01:21', 1483, 1521, 38], [1351, '00:44', '00:54', 1484, 1494, 10], [1352, '00:47', '01:09', 1487, 1509, 22], [1353, '00:47', '01:26', 1487, 1526, 39], [1354, '00:54', '01:04', 1494, 1504, 10], [1355, '00:57', '01:07', 1497, 1507, 10] ] # yapf:disable def find_minimum_number_of_drivers(shifts, params): """Minimize the number of needed drivers.""" num_shifts = len(shifts) # All durations are in minutes. max_driving_time = 540 # 8 hours. max_driving_time_without_pauses = 240 # 4 hours min_pause_after_4h = 30 min_delay_between_shifts = 2 max_working_time = 720 min_working_time = 390 # 6.5 hours extra_time = 10 + 25 # Computed data. total_driving_time = sum(shift[5] for shift in shifts) min_num_drivers = int( math.ceil(total_driving_time * 1.0 / max_driving_time)) min_start_time = min(shift[3] for shift in shifts) max_end_time = max(shift[4] for shift in shifts) print('Bus driver scheduling') print(' num shifts =', num_shifts) print(' total driving time =', total_driving_time, 'minutes') print(' min num drivers =', min_num_drivers) print(' min start time =', min_start_time) print(' max end time =', max_end_time) # We are going to build a flow from a the start of the day to the end # of the day. # # Along the path, we will accumulate driving time, accrued time since the # last break, and total working time. model = cp_model.CpModel() # Per node info driving_time = {} working_time = {} no_break_driving_time = {} incoming_literals = collections.defaultdict(list) outgoing_literals = collections.defaultdict(list) outgoing_source_literals = [] incoming_sink_literals = [] # Create all the shift variables before iterating on the transitions # between these shifts. for shift in range(num_shifts): driving_time[shift] = model.NewIntVar(0, max_driving_time, 'dt_%i' % shift) no_break_driving_time[shift] = model.NewIntVar( 0, max_driving_time_without_pauses, 'nbdt_%i' % shift) working_time[shift] = model.NewIntVar( 0, max_working_time, 'wt_%i' % shift) for shift in range(num_shifts): duration = shifts[shift][5] # Arc from source to shift. # - set the working time of the driver # - increase driving time and driving time since the last break source_lit = model.NewBoolVar('from source to %i' % shift) outgoing_source_literals.append(source_lit) incoming_literals[shift].append(source_lit) model.Add(driving_time[shift] == duration).OnlyEnforceIf(source_lit) model.Add(no_break_driving_time[shift] == duration).OnlyEnforceIf( source_lit) model.Add(working_time[shift] == duration + extra_time).OnlyEnforceIf( source_lit) # Arc from shift to sink # - checks that working time is greater than min_working_time sink_lit = model.NewBoolVar('from %i to sink' % shift) outgoing_literals[shift].append(sink_lit) incoming_sink_literals.append(sink_lit) #model.Add(working_time[shift] >= min_working_time).OnlyEnforceIf(sink_lit) #model.Add(working_time[shift] < min_working_time).OnlyEnforceIf(sink_lit.Not()) for other in range(num_shifts): delay = shifts[other][3] - shifts[shift][4] if delay < min_delay_between_shifts: continue other_duration = shifts[other][5] lit = model.NewBoolVar('from %i to %i' % (shift, other)) # Increase driving time model.Add(driving_time[other] == driving_time[shift] + other_duration).OnlyEnforceIf(lit) # Increase no_break_driving or reset it to 0 depending on the delay if delay >= min_pause_after_4h: model.Add(no_break_driving_time[other] == other_duration).OnlyEnforceIf(lit) else: model.Add( no_break_driving_time[other] == no_break_driving_time[shift] + other_duration).OnlyEnforceIf(lit) # Increase working time model.Add(working_time[other] == working_time[shift] + delay + other_duration).OnlyEnforceIf(lit) # Add arc outgoing_literals[shift].append(lit) incoming_literals[other].append(lit) # Create dag constraint. for shift in range(num_shifts): model.Add(sum(outgoing_literals[shift]) == 1) model.Add(sum(incoming_literals[shift]) == 1) # Num drivers num_drivers = model.NewIntVar(min_num_drivers, min_num_drivers * 3, 'num_drivers') model.Add(sum(incoming_sink_literals) == num_drivers) model.Add(sum(outgoing_source_literals) == num_drivers) model.Minimize(num_drivers) # Solve model. solver = cp_model.CpSolver() solver.parameters.log_search_progress = True solver.parameters.num_search_workers = 8 status = solver.Solve(model) if status != cp_model.OPTIMAL and status != cp_model.FEASIBLE: return -1 # Display solution optimal_num_drivers = int(solver.ObjectiveValue()) print('minimal number of drivers =', optimal_num_drivers) return optimal_num_drivers def main(args): """Optimize the bus driver allocation in two passes.""" print('----------- first pass: minimize the number of drivers') shifts = [] if args.instance == 1: shifts = SAMPLE_SHIFTS_SMALL elif args.instance == 2: shifts = SAMPLE_SHIFTS_MEDIUM elif args.instance == 3: shifts = SAMPLE_SHIFTS_LARGE num_drivers = find_minimum_number_of_drivers(shifts, args.params) print('----------- second pass: minimize the sum of working times') #bus_driver_scheduling(False, num_drivers) if __name__ == '__main__': main(PARSER.parse_args())
42.768427
88
0.4722
42c017f2704ef055179c438cf9da10b67cb5e942
195
py
Python
Thesis@3.9.1/Lib/site-packages/django/contrib/sitemaps/apps.py
nverbois/TFE21-232
7113837b5263b5c508bfc6903cb6982b48aa7ee4
[ "MIT" ]
null
null
null
Thesis@3.9.1/Lib/site-packages/django/contrib/sitemaps/apps.py
nverbois/TFE21-232
7113837b5263b5c508bfc6903cb6982b48aa7ee4
[ "MIT" ]
null
null
null
Thesis@3.9.1/Lib/site-packages/django/contrib/sitemaps/apps.py
nverbois/TFE21-232
7113837b5263b5c508bfc6903cb6982b48aa7ee4
[ "MIT" ]
null
null
null
from django.apps import AppConfig from django.utils.translation import gettext_lazy as _ class SiteMapsConfig(AppConfig): name = "django.contrib.sitemaps" verbose_name = _("Site Maps")
24.375
54
0.769231
011c49aa9a44446c1dea7cd8168289b9f4d4a546
495
py
Python
example/ABC119-D.py
koba-e964/SortedSet
f614979eb8ba3370707b8f599ade5b9fc4c3fe87
[ "Unlicense" ]
43
2021-09-05T11:23:23.000Z
2022-03-31T04:21:31.000Z
example/ABC119-D.py
koba-e964/SortedSet
f614979eb8ba3370707b8f599ade5b9fc4c3fe87
[ "Unlicense" ]
2
2022-03-04T14:10:32.000Z
2022-03-07T17:45:28.000Z
example/ABC119-D.py
koba-e964/SortedSet
f614979eb8ba3370707b8f599ade5b9fc4c3fe87
[ "Unlicense" ]
11
2022-01-20T13:36:35.000Z
2022-03-20T12:22:46.000Z
# https://atcoder.jp/contests/abc119/submissions/28441723 # paste SortedSet here import sys input = sys.stdin.readline INF = 1 << 60 A, B, Q = map(int, input().split()) s = SortedSet([-INF] + [int(input()) for i in range(A)] + [INF]) t = SortedSet([-INF] + [int(input()) for i in range(B)] + [INF]) for i in range(Q): x = int(input()) s0 = x - s.le(x) s1 = s.ge(x) - x t0 = x - t.le(x) t1 = t.ge(x) - x print(min(max(s0, t0), max(s1, t1), s0 + t1 + min(s0, t1), s1 + t0 + min(s1, t0)))
26.052632
83
0.575758
dca99a25d0b354777b6ac1ea3a5b36e54ed762e6
15,085
py
Python
concordia/admin/__init__.py
Violet26/concordia
d126f80808b22e428881fb6c429f0dcb695fc8b2
[ "CC0-1.0" ]
1
2020-02-03T22:23:27.000Z
2020-02-03T22:23:27.000Z
concordia/admin/__init__.py
Violet26/concordia
d126f80808b22e428881fb6c429f0dcb695fc8b2
[ "CC0-1.0" ]
9
2021-03-19T12:43:20.000Z
2022-02-10T15:40:48.000Z
concordia/admin/__init__.py
Violet26/concordia
d126f80808b22e428881fb6c429f0dcb695fc8b2
[ "CC0-1.0" ]
null
null
null
from urllib.parse import urljoin from django.conf import settings from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.decorators import permission_required from django.contrib.auth.models import User from django.db.models import Count from django.shortcuts import get_object_or_404, render from django.template.defaultfilters import truncatechars from django.urls import path from django.utils.decorators import method_decorator from django.utils.html import format_html from django_admin_multiple_choice_list_filter.list_filters import ( MultipleChoiceListFilter, ) from tabular_export.admin import export_to_csv_action, export_to_excel_action from exporter import views as exporter_views from importer.tasks import import_items_into_project_from_url from ..models import ( Asset, Campaign, CarouselSlide, Item, Project, Resource, SimpleContentBlock, SimplePage, SiteReport, Tag, Topic, Transcription, UserAssetTagCollection, ) from ..views import ReportCampaignView from .actions import ( anonymize_action, publish_action, publish_item_action, reopen_asset_action, unpublish_action, unpublish_item_action, ) from .filters import AcceptedFilter, RejectedFilter, SubmittedFilter from .forms import ( AdminItemImportForm, BleachedDescriptionAdminForm, SimpleContentBlockAdminForm, ) class ProjectListFilter(MultipleChoiceListFilter): title = "Project" def lookups(self, request, model_admin): choices = Project.objects.values_list("pk", "title") return tuple(choices) class AssetProjectListFilter(ProjectListFilter): parameter_name = "item__project__in" class ItemProjectListFilter(ProjectListFilter): parameter_name = "project__in" class ConcordiaUserAdmin(UserAdmin): list_display = UserAdmin.list_display + ("date_joined", "transcription_count") def get_queryset(self, request): qs = super().get_queryset(request) qs = qs.annotate(Count("transcription")) return qs def transcription_count(self, obj): return obj.transcription__count EXPORT_FIELDS = ( "username", "email", "first_name", "last_name", "is_active", "is_staff", "is_superuser", "date_joined", "last_login", "transcription__count", ) def export_users_as_csv(self, request, queryset): return export_to_csv_action( self, request, queryset, field_names=self.EXPORT_FIELDS ) def export_users_as_excel(self, request, queryset): return export_to_excel_action( self, request, queryset, field_names=self.EXPORT_FIELDS ) transcription_count.admin_order_field = "transcription__count" actions = (anonymize_action, export_users_as_csv, export_users_as_excel) admin.site.unregister(User) admin.site.register(User, ConcordiaUserAdmin) class CustomListDisplayFieldsMixin: """ Mixin which provides some custom text formatters for list display fields used on multiple models """ def truncated_description(self, obj): return truncatechars(obj.description, 200) truncated_description.short_description = "Description" def truncated_metadata(self, obj): if obj.metadata: return format_html("<code>{}</code>", truncatechars(obj.metadata, 200)) else: return "" truncated_metadata.allow_tags = True truncated_metadata.short_description = "Metadata" @admin.register(Campaign) class CampaignAdmin(admin.ModelAdmin, CustomListDisplayFieldsMixin): form = BleachedDescriptionAdminForm list_display = ( "title", "short_description", "published", "display_on_homepage", "ordering", "truncated_metadata", ) list_editable = ("display_on_homepage", "ordering", "published") list_display_links = ("title",) prepopulated_fields = {"slug": ("title",)} search_fields = ["title", "description"] list_filter = ("published", "display_on_homepage") actions = (publish_action, unpublish_action) def get_urls(self): urls = super().get_urls() app_label = self.model._meta.app_label model_name = self.model._meta.model_name custom_urls = [ path( "exportCSV/<path:campaign_slug>", exporter_views.ExportCampaignToCSV.as_view(), name=f"{app_label}_{model_name}_export-csv", ), path( "exportBagIt/<path:campaign_slug>", exporter_views.ExportCampaignToBagIt.as_view(), name=f"{app_label}_{model_name}_export-bagit", ), path( "report/<path:campaign_slug>", ReportCampaignView.as_view(), name=f"{app_label}_{model_name}_report", ), ] return custom_urls + urls @admin.register(Resource) class ResourceAdmin(admin.ModelAdmin, CustomListDisplayFieldsMixin): list_display = ("campaign", "topic", "sequence", "title", "resource_url") list_display_links = ("campaign", "topic", "sequence", "title") @admin.register(Topic) class TopicAdmin(admin.ModelAdmin): form = BleachedDescriptionAdminForm list_display = ("id", "title", "slug") list_display_links = ("id", "title", "slug") prepopulated_fields = {"slug": ("title",)} @admin.register(Project) class ProjectAdmin(admin.ModelAdmin, CustomListDisplayFieldsMixin): form = BleachedDescriptionAdminForm # todo: add foreignKey link for campaign list_display = ("id", "title", "slug", "campaign", "published") list_display_links = ("id", "title", "slug") prepopulated_fields = {"slug": ("title",)} search_fields = ["title", "campaign__title"] list_filter = ("published", "topics", "campaign") actions = (publish_action, unpublish_action) def get_urls(self): urls = super().get_urls() app_label = self.model._meta.app_label model_name = self.model._meta.model_name custom_urls = [ path( "<path:object_id>/item-import/", self.admin_site.admin_view(self.item_import_view), name=f"{app_label}_{model_name}_item-import", ) ] return custom_urls + urls @method_decorator(permission_required("concordia.add_campaign")) @method_decorator(permission_required("concordia.change_campaign")) @method_decorator(permission_required("concordia.add_project")) @method_decorator(permission_required("concordia.change_project")) @method_decorator(permission_required("concordia.add_item")) @method_decorator(permission_required("concordia.change_item")) def item_import_view(self, request, object_id): project = get_object_or_404(Project, pk=object_id) if request.method == "POST": form = AdminItemImportForm(request.POST) if form.is_valid(): import_url = form.cleaned_data["import_url"] import_job = import_items_into_project_from_url( request.user, project, import_url ) else: form = AdminItemImportForm() import_job = None media = self.media context = { **self.admin_site.each_context(request), "app_label": self.model._meta.app_label, "add": False, "change": False, "save_as": False, "save_on_top": False, "opts": self.model._meta, "title": f"Import Items into “{project.title}”", "object_id": object_id, "original": project, "media": media, "preserved_filters": self.get_preserved_filters(request), "is_popup": False, "has_view_permission": True, "has_add_permission": True, "has_change_permission": True, "has_delete_permission": False, "has_editable_inline_admin_formsets": False, "project": project, "form": form, "import_job": import_job, } return render(request, "admin/concordia/project/item_import.html", context) @admin.register(Item) class ItemAdmin(admin.ModelAdmin): list_display = ("title", "item_id", "campaign_title", "project", "published") list_display_links = ("title", "item_id") search_fields = [ "title", "item_id", "item_url", "project__campaign__title", "project__title", ] list_filter = ( "published", "project__topics", "project__campaign", ItemProjectListFilter, ) actions = (publish_item_action, unpublish_item_action) def get_queryset(self, request): qs = super().get_queryset(request) qs = qs.select_related("project", "project__campaign") return qs def campaign_title(self, obj): return obj.project.campaign.title @admin.register(Asset) class AssetAdmin(admin.ModelAdmin, CustomListDisplayFieldsMixin): list_display = ( "published", "transcription_status", "item_id", "year", "sequence", "difficulty", "truncated_media_url", "media_type", "truncated_metadata", ) list_display_links = ("item_id", "sequence") prepopulated_fields = {"slug": ("title",)} search_fields = [ "title", "media_url", "item__project__campaign__title", "item__project__title", "item__item_id", ] list_filter = ( "transcription_status", "published", "item__project__topics", "item__project__campaign", AssetProjectListFilter, "media_type", ) actions = ( publish_action, reopen_asset_action, unpublish_action, export_to_csv_action, export_to_excel_action, ) autocomplete_fields = ("item",) ordering = ("item__item_id", "sequence") def get_queryset(self, request): qs = super().get_queryset(request) return qs.select_related("item").order_by("item__item_id", "sequence") def lookup_allowed(self, key, value): if key in ("item__project__id__exact"): return True else: return super().lookup_allowed(key, value) def item_id(self, obj): return obj.item.item_id def truncated_media_url(self, obj): return format_html( '<a target="_blank" href="{}">{}</a>', urljoin(settings.MEDIA_URL, obj.media_url), truncatechars(obj.media_url, 100), ) truncated_media_url.allow_tags = True truncated_media_url.short_description = "Media URL" def get_readonly_fields(self, request, obj=None): if obj: return self.readonly_fields + ("item",) return self.readonly_fields def change_view(self, request, object_id, extra_context=None, **kwargs): if object_id: if extra_context is None: extra_context = {} extra_context["transcriptions"] = ( Transcription.objects.filter(asset__pk=object_id) .select_related("user", "reviewed_by") .order_by("-pk") ) return super().change_view( request, object_id, extra_context=extra_context, **kwargs ) @admin.register(Tag) class TagAdmin(admin.ModelAdmin): list_display = ("id", "value") list_display_links = ("id", "value") search_fields = ["value"] @admin.register(UserAssetTagCollection) class UserAssetTagCollectionAdmin(admin.ModelAdmin): list_display = ("id", "asset", "user", "created_on", "updated_on") list_display_links = ("id", "asset") date_hierarchy = "created_on" search_fields = ["asset__title", "asset__campaign__title", "asset__project__title"] list_filter = ( "asset__item__project__campaign", "asset__item__project", "user__is_staff", ) @admin.register(Transcription) class TranscriptionAdmin(admin.ModelAdmin): list_display = ( "id", "asset", "user", "truncated_text", "created_on", "updated_on", "accepted", "rejected", ) list_display_links = ("id", "asset") list_filter = ( SubmittedFilter, AcceptedFilter, RejectedFilter, "asset__item__project__campaign", "asset__item__project", ) search_fields = ["text", "user__username", "user__email"] readonly_fields = ( "asset", "user", "created_on", "updated_on", "submitted", "accepted", "rejected", "reviewed_by", "supersedes", "text", ) actions = (export_to_csv_action, export_to_excel_action) def truncated_text(self, obj): return truncatechars(obj.text, 100) truncated_text.short_description = "Text" @admin.register(SimpleContentBlock) class SimpleContentBlockAdmin(admin.ModelAdmin): form = SimpleContentBlockAdminForm list_display = ("slug", "created_on", "updated_on") readonly_fields = ("created_on", "updated_on") fieldsets = ( (None, {"fields": ("created_on", "updated_on", "slug")}), ("Body", {"classes": ("markdown-preview",), "fields": ("body",)}), ) @admin.register(CarouselSlide) class CarouselSlideAdmin(admin.ModelAdmin): list_display = ("headline", "published", "ordering") readonly_fields = ("created_on", "updated_on") @admin.register(SimplePage) class SimplePageAdmin(admin.ModelAdmin): list_display = ("path", "title", "created_on", "updated_on") readonly_fields = ("created_on", "updated_on") fieldsets = ( (None, {"fields": ("created_on", "updated_on", "path", "title")}), ("Body", {"classes": ("markdown-preview",), "fields": ("body",)}), ) @admin.register(SiteReport) class SiteReportAdmin(admin.ModelAdmin): list_display = ("created_on", "campaign", "topic") list_filter = ("campaign", "topic") def export_to_csv(self, request, queryset): return export_to_csv_action( self, request, queryset, field_names=SiteReport.DEFAULT_EXPORT_FIELDNAMES ) def export_to_excel(self, request, queryset): return export_to_excel_action( self, request, queryset, field_names=SiteReport.DEFAULT_EXPORT_FIELDNAMES ) actions = (export_to_csv, export_to_excel) FIELDNAME_SORT_KEYS = [ "created", "user", "campaign", "topic", "project", "item", "asset", "transcription", "tag", ] def fieldname_sort_key(self, key): for i, prefix in enumerate(self.FIELDNAME_SORT_KEYS): if prefix in key: return (i, key) else: return (1024, key)
28.898467
87
0.638117
0737bb4aaabbea17fc036794c0f0477485f296db
7,283
py
Python
business_rules/operators.py
Buzzvil/business-rules
1b47959008a5e4f31f0d655756d34436de6785a6
[ "MIT" ]
null
null
null
business_rules/operators.py
Buzzvil/business-rules
1b47959008a5e4f31f0d655756d34436de6785a6
[ "MIT" ]
2
2021-02-02T01:32:46.000Z
2021-02-02T05:45:09.000Z
business_rules/operators.py
Buzzvil/business-rules
1b47959008a5e4f31f0d655756d34436de6785a6
[ "MIT" ]
null
null
null
from __future__ import annotations import inspect import re from decimal import Decimal from functools import wraps from .fields import FIELD_NO_INPUT, FIELD_NUMERIC, FIELD_SELECT, FIELD_SELECT_MULTIPLE, FIELD_TEXT from .utils import float_to_decimal, fn_name_to_pretty_label class BaseType(object): def __init__(self, value): self.value = self._assert_valid_value_and_cast(value) def _assert_valid_value_and_cast(self, value): raise NotImplemented() @classmethod def get_all_operators(cls): methods = inspect.getmembers(cls) return [ {'name': m[0], 'label': m[1].label, 'input_type': m[1].input_type} for m in methods if getattr(m[1], 'is_operator', False) ] def export_type(cls): """ Decorator to expose the given class to business_rules.export_rule_data. """ cls.export_in_rule_data = True return cls def type_operator(input_type, label=None, assert_type_for_arguments=True): """Decorator to make a function into a type operator. - assert_type_for_arguments - if True this patches the operator function so that arguments passed to it will have _assert_valid_value_and_cast called on them to make type errors explicit. """ def wrapper(func): func.is_operator = True func.label = label or fn_name_to_pretty_label(func.__name__) func.input_type = input_type @wraps(func) def inner(self, *args, **kwargs): if assert_type_for_arguments: args = [self._assert_valid_value_and_cast(arg) for arg in args] kwargs = dict((k, self._assert_valid_value_and_cast(v)) for k, v in kwargs.items()) return func(self, *args, **kwargs) return inner return wrapper @export_type class StringType(BaseType): name = "string" def _assert_valid_value_and_cast(self, value): value = value or "" if not isinstance(value, str): raise AssertionError("{0} is not a valid string type.".format(value)) return value @type_operator(FIELD_TEXT) def equal_to(self, other_string): return self.value == other_string @type_operator(FIELD_TEXT, label="Equal To (case insensitive)") def equal_to_case_insensitive(self, other_string): return self.value.lower() == other_string.lower() @type_operator(FIELD_TEXT) def starts_with(self, other_string): return self.value.startswith(other_string) @type_operator(FIELD_TEXT) def ends_with(self, other_string): return self.value.endswith(other_string) @type_operator(FIELD_TEXT) def contains(self, other_string): return other_string in self.value @type_operator(FIELD_TEXT) def matches_regex(self, regex): return re.search(regex, self.value) @type_operator(FIELD_NO_INPUT) def non_empty(self): return bool(self.value) @export_type class NumericType(BaseType): EPSILON = Decimal('0.000001') name = "numeric" @staticmethod def _assert_valid_value_and_cast(value): if isinstance(value, float): # In python 2.6, casting float to Decimal doesn't work return float_to_decimal(value) if isinstance(value, int): return Decimal(value) if isinstance(value, Decimal): return value else: raise AssertionError("{0} is not a valid numeric type.".format(value)) @type_operator(FIELD_NUMERIC) def equal_to(self, other_numeric): return abs(self.value - other_numeric) <= self.EPSILON @type_operator(FIELD_NUMERIC) def greater_than(self, other_numeric): return (self.value - other_numeric) > self.EPSILON @type_operator(FIELD_NUMERIC) def greater_than_or_equal_to(self, other_numeric): return self.greater_than(other_numeric) or self.equal_to(other_numeric) @type_operator(FIELD_NUMERIC) def less_than(self, other_numeric): return (other_numeric - self.value) > self.EPSILON @type_operator(FIELD_NUMERIC) def less_than_or_equal_to(self, other_numeric): return self.less_than(other_numeric) or self.equal_to(other_numeric) @export_type class BooleanType(BaseType): name = "boolean" def _assert_valid_value_and_cast(self, value): if type(value) != bool: raise AssertionError("{0} is not a valid boolean type".format(value)) return value @type_operator(FIELD_NO_INPUT) def is_true(self): return self.value @type_operator(FIELD_NO_INPUT) def is_false(self): return not self.value @export_type class SelectType(BaseType): name = "select" def _assert_valid_value_and_cast(self, value): if not hasattr(value, '__iter__'): raise AssertionError("{0} is not a valid select type".format(value)) return value @staticmethod def _case_insensitive_equal_to(value_from_list, other_value): if isinstance(value_from_list, str) and isinstance(other_value, str): return value_from_list.lower() == other_value.lower() else: return value_from_list == other_value @type_operator(FIELD_SELECT, assert_type_for_arguments=False) def contains(self, other_value): for val in self.value: if self._case_insensitive_equal_to(val, other_value): return True return False @type_operator(FIELD_SELECT, assert_type_for_arguments=False) def does_not_contain(self, other_value): for val in self.value: if self._case_insensitive_equal_to(val, other_value): return False return True @export_type class SelectMultipleType(BaseType): name = "select_multiple" def _assert_valid_value_and_cast(self, value): if not hasattr(value, '__iter__'): raise AssertionError("{0} is not a valid select multiple type".format(value)) return value @type_operator(FIELD_SELECT_MULTIPLE) def contains_all(self, other_value): select = SelectType(self.value) for other_val in other_value: if not select.contains(other_val): return False return True @type_operator(FIELD_SELECT_MULTIPLE) def is_contained_by(self, other_value): other_select_multiple = SelectMultipleType(other_value) return other_select_multiple.contains_all(self.value) @type_operator(FIELD_SELECT_MULTIPLE) def shares_at_least_one_element_with(self, other_value): select = SelectType(self.value) for other_val in other_value: if select.contains(other_val): return True return False @type_operator(FIELD_SELECT_MULTIPLE) def shares_exactly_one_element_with(self, other_value): found_one = False select = SelectType(self.value) for other_val in other_value: if select.contains(other_val): if found_one: return False found_one = True return found_one @type_operator(FIELD_SELECT_MULTIPLE) def shares_no_elements_with(self, other_value): return not self.shares_at_least_one_element_with(other_value)
30.991489
99
0.679528
5fecd6797fa75051cc09a88bfbdb9dc80a0548c2
18,339
py
Python
prcslib/sexpdata.py
kazssym/prcslib-python
ce8d00b7d3ab9b5df39b5abca417e751999830c4
[ "MIT" ]
1
2019-09-21T14:17:44.000Z
2019-09-21T14:17:44.000Z
prcslib/sexpdata.py
kazssym/prcslib-python
ce8d00b7d3ab9b5df39b5abca417e751999830c4
[ "MIT" ]
2
2021-02-13T04:11:10.000Z
2022-03-05T02:43:47.000Z
prcslib/sexpdata.py
kazssym/prcslib-python
ce8d00b7d3ab9b5df39b5abca417e751999830c4
[ "MIT" ]
null
null
null
# [[[cog import cog; cog.outl('"""\n%s\n"""' % file('README.rst').read()) ]]] """ S-expression parser for Python ============================== `sexpdata` is a simple S-expression parser/serializer. It has simple `load` and `dump` functions like `pickle`, `json` or `PyYAML` module. >>> from sexpdata import loads, dumps >>> loads('("a" "b")') ['a', 'b'] >>> print(dumps(['a', 'b'])) ("a" "b") You can install `sexpdata` from PyPI_:: pip install sexpdata Links: * `Documentation (at Read the Docs) <http://sexpdata.readthedocs.org/>`_ * `Repository (at GitHub) <https://github.com/tkf/sexpdata>`_ * `Issue tracker (at GitHub) <https://github.com/tkf/sexpdata/issues>`_ * `PyPI <http://pypi.python.org/pypi/sexpdata>`_ * `Travis CI <https://travis-ci.org/#!/tkf/sexpdata>`_ License ------- `sexpdata` is licensed under the terms of the BSD 2-Clause License. See the source code for more information. """ # [[[end]]] # Copyright (c) 2012 Takafumi Arakaki # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. __version__ = '0.0.3' __author__ = 'Takafumi Arakaki' __license__ = 'BSD License' __all__ = [ # API functions: 'load', 'loads', 'dump', 'dumps', # Utility functions: 'car', 'cdr', # S-expression classes: 'Symbol', 'String', 'Quoted', ] import re from string import whitespace import functools BRACKETS = {'(': ')', '[': ']'} ### Python 3 compatibility try: unicode PY3 = False except NameError: basestring = unicode = str # Python 3 PY3 = True def uformat(s, *args, **kwds): """Alias of ``unicode(s).format(...)``.""" return tounicode(s).format(*args, **kwds) ### Utility def tounicode(string): """ Decode `string` if it is not unicode. Do nothing in Python 3. """ if not isinstance(string, unicode): string = unicode(string, 'utf-8') return string def return_as(converter): """ Decorator to convert result of a function. It is just a function composition. The following two codes are equivalent. Using `@return_as`:: @return_as(converter) def generator(args): ... result = generator(args) Manually do the same:: def generator(args): ... result = converter(generator(args)) Example: >>> @return_as(list) ... def f(): ... for i in range(3): ... yield i ... >>> f() # this gives a list, not an iterator [0, 1, 2] """ def wrapper(generator): @functools.wraps(generator) def func(*args, **kwds): return converter(generator(*args, **kwds)) return func return wrapper ### Interface def load(filelike, **kwds): """ Load object from S-expression stored in `filelike`. :arg filelike: A text stream object. See :func:`loads` for valid keyword arguments. >>> import io >>> fp = io.StringIO() >>> sexp = [Symbol('a'), Symbol('b')] # let's dump and load this object >>> dump(sexp, fp) >>> _ = fp.seek(0) >>> load(fp) == sexp True """ return loads(filelike.read(), **kwds) def loads(string, **kwds): """ Load object from S-expression `string`. :arg string: String containing an S-expression. :type nil: str or None :keyword nil: A symbol interpreted as an empty list. Default is ``'nil'``. :type true: str or None :keyword true: A symbol interpreted as True. Default is ``'t'``. :type false: str or None :keyword false: A symbol interpreted as False. Default is ``None``. :type line_comment: str :keyword line_comment: Beginning of line comment. Default is ``';'``. >>> loads("(a b)") [Symbol('a'), Symbol('b')] >>> loads("a") Symbol('a') >>> loads("(a 'b)") [Symbol('a'), Quoted(Symbol('b'))] >>> loads("(a '(b))") [Symbol('a'), Quoted([Symbol('b')])] >>> loads(''' ... ;; This is a line comment. ... ("a" "b") ; this is also a comment. ... ''') ['a', 'b'] >>> loads(''' ... # This is a line comment. ... ("a" "b") # this is also a comment. ... ''', line_comment='#') ['a', 'b'] ``nil`` is converted to an empty list by default. You can use keyword argument `nil` to change what symbol must be interpreted as nil: >>> loads("nil") [] >>> loads("null", nil='null') [] >>> loads("nil", nil=None) Symbol('nil') ``t`` is converted to True by default. You can use keyword argument `true` to change what symbol must be converted to True.: >>> loads("t") True >>> loads("#t", true='#t') True >>> loads("t", true=None) Symbol('t') No symbol is converted to False by default. You can use keyword argument `false` to convert a symbol to False. >>> loads("#f") Symbol('#f') >>> loads("#f", false='#f') False >>> loads("nil", false='nil', nil=None) False """ obj = parse(string, **kwds) assert len(obj) == 1 # FIXME: raise an appropriate error return obj[0] def dump(obj, filelike, **kwds): """ Write `obj` as an S-expression into given stream `filelike`. :arg obj: A Python object. :arg filelike: A text stream object. See :func:`dumps` for valid keyword arguments. >>> import io >>> fp = io.StringIO() >>> dump([Symbol('a'), Symbol('b')], fp) >>> print(fp.getvalue()) (a b) """ filelike.write(unicode(dumps(obj))) def dumps(obj, **kwds): """ Convert python object into an S-expression. :arg obj: A Python object. :type str_as: ``'symbol'`` or ``'string'`` :keyword str_as: How string should be interpreted. Default is ``'string'``. :type tuple_as: ``'list'`` or ``'array'`` :keyword tuple_as: How tuple should be interpreted. Default is ``'list'``. :type true_as: str :keyword true_as: How True should be interpreted. Default is ``'t'`` :type false_as: str :keyword false_as: How False should be interpreted. Default is ``'()'`` :type none_as: str :keyword none_as: How None should be interpreted. Default is ``'()'`` Basic usage: >>> print(dumps(['a', 'b'])) ("a" "b") >>> print(dumps(['a', 'b'], str_as='symbol')) (a b) >>> print(dumps(dict(a=1, b=2))) (:a 1 :b 2) >>> print(dumps([None, True, False, ()])) (() t () ()) >>> print(dumps([None, True, False, ()], ... none_as='null', true_as='#t', false_as='#f')) (null #t #f ()) >>> print(dumps(('a', 'b'))) ("a" "b") >>> print(dumps(('a', 'b'), tuple_as='array')) ["a" "b"] More verbose usage: >>> print(dumps([Symbol('a'), Symbol('b')])) (a b) >>> print(dumps(Symbol('a'))) a >>> print(dumps([Symbol('a'), Quoted(Symbol('b'))])) (a 'b) >>> print(dumps([Symbol('a'), Quoted([Symbol('b')])])) (a '(b)) """ return tosexp(obj, **kwds) def car(obj): """ Alias of ``obj[0]``. >>> car(loads('(a . b)')) Symbol('a') >>> car(loads('(a b)')) Symbol('a') """ return obj[0] def cdr(obj): """ `cdr`-like function. >>> cdr(loads('(a . b)')) Symbol('b') >>> cdr(loads('(a b)')) [Symbol('b')] >>> cdr(loads('(a . (b))')) [Symbol('b')] >>> cdr(loads('(a)')) [] >>> cdr(loads('(a . nil)')) [] """ # This is very lazy implementation. Probably the best way to do # it is to define `Cons` S-expression class. if len(obj) > 2: dot = obj[1] if isinstance(dot, Symbol) and dot.value() == '.': return obj[2] return obj[1:] ### Core def tosexp(obj, str_as='string', tuple_as='list', true_as='t', false_as='()', none_as='()'): """ Convert an object to an S-expression (`dumps` is just calling this). See this table for comparison of lispy languages, to support them as much as possible: `Lisp: Common Lisp, Scheme/Racket, Clojure, Emacs Lisp - Hyperpolyglot <http://hyperpolyglot.org/lisp>`_ """ _tosexp = lambda x: tosexp( x, str_as=str_as, tuple_as=tuple_as, true_as=true_as, false_as=false_as, none_as=none_as) if isinstance(obj, list): return Bracket(obj, '(').tosexp(_tosexp) elif isinstance(obj, tuple): if tuple_as == 'list': return Bracket(obj, '(').tosexp(_tosexp) elif tuple_as == 'array': return Bracket(obj, '[').tosexp(_tosexp) else: raise ValueError(uformat("tuple_as={0!r} is not valid", tuple_as)) elif obj is True: # must do this before ``isinstance(obj, int)`` return true_as elif obj is False: return false_as elif obj is None: return none_as elif isinstance(obj, (int, float)): return str(obj) elif isinstance(obj, basestring): if str_as == 'symbol': return obj elif str_as == 'string': return String(obj).tosexp() else: raise ValueError(uformat("str_as={0!r} is not valid", str_as)) elif isinstance(obj, dict): return _tosexp(dict_to_plist(obj)) elif isinstance(obj, SExpBase): return obj.tosexp(_tosexp) else: raise TypeError(uformat( "Object of type '{0}' cannot be converted by `tosexp`. " "It's value is '{1!r}'", type(obj), obj)) @return_as(list) def dict_to_plist(obj): for key in obj: yield Symbol(uformat(":{0}", key)) yield obj[key] class SExpBase(object): def __init__(self, val): self._val = val def __repr__(self): return uformat("{0}({1!r})", self.__class__.__name__, self._val) def __eq__(self, other): if isinstance(other, self.__class__): return self._val == other._val else: return False def value(self): return self._val def tosexp(self, tosexp=tosexp): """ Decode this object into an S-expression string. :arg tosexp: A function to be used when converting sub S-expression. """ raise NotImplementedError @classmethod def quote(cls, string): for (s, q) in cls._lisp_quoted_specials: string = string.replace(s, q) return tounicode(string) @classmethod def unquote(cls, string): return cls._lisp_quoted_to_raw.get(string, string) class Symbol(SExpBase): _lisp_quoted_specials = [ ('\\', '\\\\'), # must come first to avoid doubly quoting "\" ("'", r"\'"), ("`", r"\`"), ('"', r'\"'), ('(', r'\('), (')', r'\)'), ('[', r'\['), (']', r'\]'), (' ', r'\ '), ('.', r'\.'), (',', r'\,'), ('?', r'\?'), (';', r'\;'), ('#', r'\#'), ] _lisp_quoted_to_raw = dict((q, r) for (r, q) in _lisp_quoted_specials) def tosexp(self, tosexp=None): return self.quote(self._val) class String(SExpBase): _lisp_quoted_specials = [ # from Pymacs ('\\', '\\\\'), # must come first to avoid doubly quoting "\" ('"', '\\"'), ('\b', '\\b'), ('\f', '\\f'), ('\n', '\\n'), ('\r', '\\r'), ('\t', '\\t')] _lisp_quoted_to_raw = dict((q, r) for (r, q) in _lisp_quoted_specials) def tosexp(self, tosexp=None): return uformat('"{0}"', self.quote(self._val)) class Quoted(SExpBase): def tosexp(self, tosexp=tosexp): return uformat("'{0}", tosexp(self._val)) class Bracket(SExpBase): def __init__(self, val, bra): assert bra in BRACKETS # FIXME: raise an appropriate error super(Bracket, self).__init__(val) self._bra = bra def __repr__(self): return uformat("{0}({1!r}, {2!r})", self.__class__.__name__, self._val, self._bra) def tosexp(self, tosexp=tosexp): bra = self._bra ket = BRACKETS[self._bra] c = ' '.join(tosexp(v) for v in self._val) return uformat("{0}{1}{2}", bra, c, ket) def bracket(val, bra): if bra == '(': return val else: return Bracket(val, bra) class ExpectClosingBracket(Exception): def __init__(self, got, expect): super(ExpectClosingBracket, self).__init__(uformat( "Not enough closing brackets. " "Expected {0!r} to be the last letter in the sexp. " "Got: {1!r}", expect, got)) class ExpectNothing(Exception): def __init__(self, got): super(ExpectNothing, self).__init__(uformat( "Too many closing brackets. " "Expected no character left in the sexp. " "Got: {0!r}", got)) class Parser(object): closing_brackets = set(BRACKETS.values()) atom_end = \ set(BRACKETS) | set(closing_brackets) | set('"\'') | set(whitespace) atom_end_or_escape_re = re.compile("|".join(map(re.escape, atom_end | set('\\')))) quote_or_escape_re = re.compile(r'"|\\') def __init__(self, string, string_to=None, nil='nil', true='t', false=None, line_comment=';'): self.string = string self.nil = nil self.true = true self.false = false self.string_to = (lambda x: x) if string_to is None else string_to self.line_comment = line_comment def parse_str(self, i): string = self.string chars = [] append = chars.append search = self.quote_or_escape_re.search assert string[i] == '"' # never fail while True: i += 1 match = search(string, i) end = match.start() append(string[i:end]) c = match.group() if c == '"': i = end + 1 break elif c == '\\': i = end + 1 append(String.unquote(c + string[i])) else: raise ExpectClosingBracket('"', None) return (i, ''.join(chars)) def parse_atom(self, i): string = self.string chars = [] append = chars.append search = self.atom_end_or_escape_re.search atom_end = self.atom_end while True: match = search(string, i) if not match: append(string[i:]) i = len(string) break end = match.start() append(string[i:end]) c = match.group() if c in atom_end: i = end # this is different from str break elif c == '\\': i = end + 1 append(Symbol.unquote(c + string[i])) i += 1 else: raise ExpectClosingBracket('"', None) return (i, self.atom(''.join(chars))) def atom(self, token): if token == self.nil: return [] if token == self.true: return True if token == self.false: return False return Symbol(token) def parse_sexp(self, i): string = self.string len_string = len(self.string) sexp = [] append = sexp.append while i < len_string: c = string[i] if c == '"': (i, subsexp) = self.parse_str(i) append(self.string_to(subsexp)) elif c in whitespace: i += 1 continue elif c in BRACKETS: close = BRACKETS[c] (i, subsexp) = self.parse_sexp(i + 1) append(bracket(subsexp, c)) try: nc = string[i] except IndexError: nc = None if nc != close: raise ExpectClosingBracket(nc, close) i += 1 elif c in self.closing_brackets: break elif c == "'": (i, subsexp) = self.parse_sexp(i + 1) append(Quoted(subsexp[0])) sexp.extend(subsexp[1:]) elif c == self.line_comment: i = string.find('\n', i) + 1 if i <= 0: i = len_string break else: (i, subsexp) = self.parse_atom(i) append(subsexp) return (i, sexp) def parse(self): (i, sexp) = self.parse_sexp(0) if i < len(self.string): raise ExpectNothing(self.string[i:]) return sexp def parse(string, **kwds): """ Parse s-expression. >>> parse("(a b)") [[Symbol('a'), Symbol('b')]] >>> parse("a") [Symbol('a')] >>> parse("(a 'b)") [[Symbol('a'), Quoted(Symbol('b'))]] >>> parse("(a '(b))") [[Symbol('a'), Quoted([Symbol('b')])]] """ return Parser(string, **kwds).parse()
27.371642
79
0.537925
d9bd8deb88faf0310ae2f10260c80cf96678032b
1,925
py
Python
aiida_abacus/calculations/functions.py
materials-science/aiida-abacus
b59e56f92b31dbe5ddf317bc4ab74eda6c3d3ea7
[ "MIT" ]
null
null
null
aiida_abacus/calculations/functions.py
materials-science/aiida-abacus
b59e56f92b31dbe5ddf317bc4ab74eda6c3d3ea7
[ "MIT" ]
null
null
null
aiida_abacus/calculations/functions.py
materials-science/aiida-abacus
b59e56f92b31dbe5ddf317bc4ab74eda6c3d3ea7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from aiida.engine import calcfunction @calcfunction def create_kpoints_from_distance(structure, distance, force_parity, system_2d): """[Refer to `aiida_quantumespresso/calculations/functions/create_kpoints_from_distance`, v.3.4.2] Calculation function to compute a k-point mesh for a structure with a guaranteed minimum k-point distance. Generate a uniformly spaced kpoint mesh for a given structure. The spacing between kpoints in reciprocal space is guaranteed to be at least the defined distance. :param structure: the StructureData to which the mesh should apply :param distance: a Float with the desired distance between kpoints in reciprocal space :param force_parity: a Bool to specify whether the generated mesh should maintain parity :returns: a KpointsData with the generated mesh """ from numpy import linalg from aiida.orm import KpointsData epsilon = 1e-5 kpoints = KpointsData() kpoints.set_cell_from_structure(structure) kpoints.set_kpoints_mesh_from_density( distance.value, force_parity=force_parity.value ) lengths_vector = [linalg.norm(vector) for vector in structure.cell] lengths_kpoint = kpoints.get_kpoints_mesh()[0] is_symmetric_cell = all( abs(length - lengths_vector[0]) < epsilon for length in lengths_vector ) is_symmetric_mesh = all( length == lengths_kpoint[0] for length in lengths_kpoint ) # If the vectors of the cell all have the same length, the kpoint mesh should be isotropic as well if is_symmetric_cell and not is_symmetric_mesh: nkpoints = max(lengths_kpoint) kpoints.set_kpoints_mesh([nkpoints, nkpoints, nkpoints]) # TODO: cope with 2d system structures if system_2d.value is True: mesh, off = kpoints.get_kpoints_mesh() mesh[2] = 1 kpoints.set_kpoints_mesh(mesh) return kpoints
37.745098
209
0.735065
4cac96847cd151b377797181ae95a15356a20e93
14,638
py
Python
GitHub_RankingsScraperShell.py
cassandrarogers/Rankings
64ae37ecc3009b59c672b6ccf63813fcac054abc
[ "MIT" ]
2
2018-06-21T20:36:44.000Z
2019-05-02T12:49:39.000Z
GitHub_RankingsScraperShell.py
cassandrarogers/Rankings
64ae37ecc3009b59c672b6ccf63813fcac054abc
[ "MIT" ]
null
null
null
GitHub_RankingsScraperShell.py
cassandrarogers/Rankings
64ae37ecc3009b59c672b6ccf63813fcac054abc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon May 21 15:30:15 2018 Rankings Scraper Shell @author: rogers """ def GetRankings(ranking, **kwargs): import pandas as pd import datetime from selenium import webdriver from selenium.webdriver.support.wait import WebDriverWait from itertools import islice import urllib.request as urllib2 from bs4 import BeautifulSoup from DemoFunctions_GitHub import DEMO_append_metadata, DEMO_export_to_csv date = datetime.date.today() url = kwargs.get('url', None) ranking_year = kwargs.get('ranking_year', date.year) publication_year = kwargs.get('publication_year', date.year) publication_month = kwargs.get('publication_month', date.month) publication_day = kwargs.get('publication_day', date.day) ranking_scope = kwargs.get('ranking_scope', 'National') primary_ranking = kwargs.get('primary_ranking', 1) publication_date = datetime.date(month = int(publication_month), day = int(publication_day), year = int(publication_year)) print('\n','Ranking Metadata: ', '\n\n' , 'Ranking Year: ', ranking_year, '\n' , 'Publication Date: ', publication_date, '\n' , 'Scope: ', ranking_scope, '\n' , 'Primary: ', primary_ranking, '\n\n') print('Initiating web scraping...') driver = webdriver.Chrome('C:/Users/rogers/chromedriver.exe') if ranking == "US_News_Best_Colleges": driver.switch_to_window(driver.current_window_handle) ##UNCOMMENT THIS SECTION TO LOGIN TO US NEWS COMPASS #driver.get("https://secure.usnews.com/member/login") #username = driver.find_element_by_xpath('//*[@id="username"]') #password = driver.find_element_by_xpath('//*[@id="password"]') # ENTER US NEWS COMPASS LOGIN DETAILS #username.send_keys('') #USERNAME #password.send_keys('') #PASSWORD #driver.find_element_by_xpath('//*[@id="login_form"]/input[3]').click() driver.get(str(url)) # navigate to the college profile college_name = driver.find_element_by_xpath('/html/body/div[2]/div/div/div[2]/div[3]/div/div[1]/div[2]/h1').text ul = driver.find_elements_by_xpath('//*[@id="content-main"]/div[1]/div[2]/ul') data =[] rank =[] rankname =[] college_list =[] for u in ul: data = u.text.splitlines() for d in data: if d.startswith('At'): data.remove(d) for part in data: rankname.append('US News - ' + str(part.split('in', 1)[1]).strip(' \n#')) rank.append(str(part.split('in', 1)[0]).strip(' \n#')) college_list.append(college_name) print(college_name + '- Data captured successfully') driver.quit() df = pd.DataFrame(list(zip(rank, rankname, college_list))) df.columns = ['Rank', 'Ranking Name', 'School'] #print(df.head()) #append the metadata to the df df = DEMO_append_metadata(df, ranking_year, publication_date, ranking_scope, primary_ranking) ## export data to a csv DEMO_export_to_csv(df, ranking, ranking_year) if ranking == "US_News_Online_Programs": ##UNCOMMENT THIS SECTION TO LOGIN TO US NEWS COMPASS #driver.get("https://secure.usnews.com/member/login") #username = driver.find_element_by_xpath('//*[@id="username"]') #password = driver.find_element_by_xpath('//*[@id="password"]') # ENTER US NEWS COMPASS LOGIN DETAILS #username.send_keys('') #USERNAME #password.send_keys('') #PASSWORD #driver.find_element_by_xpath('//*[@id="login_form"]/input[3]').click() data =[] Ranks =[] RankingName =[] college_list = [] driver.get(url) li = driver.find_elements_by_xpath('//*[@id="content-main"]/div[1]/div[2]') for l in li: data = l.text.splitlines() data = [x for x in data if not x.startswith('Online Programs Rankings')] data = [item.replace('#', '') for item in data] Rank = [d.split(' in ')[:1] for d in data] RN = [d.split(' in ')[1:] for d in data] college_name1 = driver.find_element_by_xpath('/html/body/div[2]/div/div/div[1]/div[2]/div/div[1]/div[2]/h1').text college_name2 = driver.find_element_by_xpath('/html/body/div[2]/div/div/div[1]/div[2]/div/div[1]/div[2]/h1/span/a').text college_name = college_name1.replace(college_name2, '').rstrip() college_rep = [college_name] * len(Rank) for item in Rank: Ranks.append(str(item).strip("[").strip("]").strip("'")) for R in RN: RankingName.append('US News Online Programs - ' + str(R).strip("[").strip("]").strip("'").strip("\"")) for college in college_rep: college_list.append(college) print(college_name, ' - Data captured successfully') driver.quit() df = pd.DataFrame(list(zip(Ranks, RankingName, college_list))) df.columns = ['Rank', 'Ranking Name', 'School'] #print(df) #append the metadata to the df df = DEMO_append_metadata(df, ranking_year, publication_date, ranking_scope, primary_ranking) ## export data to a csv DEMO_export_to_csv(df, ranking, ranking_year) if ranking == "US_News_Graduate_Schools": ##UNCOMMENT THIS SECTION TO LOGIN TO US NEWS COMPASS #driver.get("https://secure.usnews.com/member/login") #username = driver.find_element_by_xpath('//*[@id="username"]') #password = driver.find_element_by_xpath('//*[@id="password"]') # ENTER US NEWS COMPASS LOGIN DETAILS #username.send_keys('') #USERNAME #password.send_keys('') #PASSWORD #driver.find_element_by_xpath('//*[@id="login_form"]/input[3]').click() data =[] Ranks =[] RankingName =[] college_list = [] driver.get(url) li = driver.find_elements_by_xpath('//*[@id="content"]/div[3]/div[2]/div/ul') for l in li: data = l.text.splitlines() data = [num for num in data if num != 'Tie'] data = [item.replace('#', '') for item in data] Rank = data[::2] RN = data[1::2] college_name = driver.find_element_by_xpath('//*[@id="content"]/h1').text.rstrip() college_rep = [college_name] * len(Rank) for item in Rank: Ranks.append(item) for R in RN: RankingName.append('US News Graduate Schools - ' + str(R)) for college in college_rep: college_list.append(college) print(college_name, '- Data captured successfully') driver.quit() df = pd.DataFrame(list(zip(Ranks, RankingName, college_list))) df.columns = ['Rank', 'Ranking Name', 'School'] #print(df) #append the metadata to the df df = DEMO_append_metadata(df, ranking_year, publication_date, ranking_scope, primary_ranking) ## export data to a csv DEMO_export_to_csv(df, ranking, ranking_year) if ranking == 'PayScale_College_Salary_Report': # get arg for # of schools, or get top 25 schools by default limit = kwargs.get('limit', 25) driver.get('https://www.payscale.com/college-salary-report/bachelors') wait = WebDriverWait(driver, 20) element = driver.find_element_by_xpath('//*[@id="collegeSalaryReportContent"]/div/div/div[2]/div/div/div/div[2]/a') driver.execute_script("return arguments[0].scrollIntoView(0, document.documentElement.scrollHeight-10);", element) driver.find_element_by_xpath('//*[@id="collegeSalaryReportContent"]/div/div/div[2]/div/div/div/div[2]/a').click() wait print('Full List Loaded') data1 =[] trs = driver.find_elements_by_xpath('//*[@id="collegeSalaryReportContent"]/div/div/div[2]/div/div/table/tbody/tr') # get the visible rows for tr in islice(trs, limit): tds = tr.find_elements_by_tag_name('td') data = (list(filter(None, (td.text for td in tds)))) data1.insert(len(data1),data) print(data[1] + ' - Data captured successfully') driver.quit() df = pd.DataFrame(data1) # drop duplicate column of school names df.drop([2], axis=1,inplace = True) #set the columns to the table header df.columns = ['Rank', 'School', 'School Type', 'Early Career Pay','Mid-Career Pay', '% High Meaning','% STEM Degrees'] df.insert(1,'Ranking Name', 'PayScale - College Salary Report') #print(df) #append the metadata to the df df = DEMO_append_metadata(df, ranking_year, publication_date, ranking_scope, primary_ranking) ## export data to a csv DEMO_export_to_csv(df, ranking, ranking_year) if ranking == 'Forbes': ## ENTER COLLEGE NAMES HERE colleges = ['Illinois Institute of Technology', 'Colorado School of Mines', 'Case Western Reserve University', 'Northeastern University', 'New Jersey Institute of Technology', 'University of Texas at Dallas', 'University of Maryland, Baltimore County', 'Missouri University of Science and Technology', 'Michigan Technological University', 'New Mexico Institute of Mining and Technology', 'University of Massachusetts Lowell', 'Louisiana Tech University', 'Massachusetts Institute of Technology', 'California Institute of Technology', 'Carnegie Mellon University', 'Rensselaer Polytechnic Institute', 'Georgia Institute of Technology', 'Virginia Tech', 'Texas Tech University', 'Princeton University', 'The College of New Jersey', 'Rutgers University-New Brunswick', 'Stevens Institute of Technology', 'Montclair State University', 'Seton Hall University', 'Rowan University' ] ## ENTER URLS TO CAPTURE HERE urls =['https://www.forbes.com/colleges/illinois-institute-of-technology/', 'https://www.forbes.com/colleges/colorado-school-of-mines/', 'https://www.forbes.com/colleges/case-western-reserve-university/', 'https://www.forbes.com/colleges/northeastern-university/', 'https://www.forbes.com/colleges/new-jersey-institute-of-technology/', 'https://www.forbes.com/colleges/the-university-of-texas-at-dallas/', 'https://www.forbes.com/colleges/university-of-maryland-baltimore-county/', 'https://www.forbes.com/colleges/missouri-university-of-science-and-technology/', 'https://www.forbes.com/colleges/michigan-technological-university/', 'https://www.forbes.com/colleges/new-mexico-institute-of-mining-and-technology/', 'https://www.forbes.com/colleges/university-of-massachusetts-lowell/', 'https://www.forbes.com/colleges/louisiana-tech-university/', 'https://www.forbes.com/colleges/massachusetts-institute-of-technology/', 'https://www.forbes.com/colleges/california-institute-of-technology/', 'https://www.forbes.com/colleges/carnegie-mellon-university/', 'https://www.forbes.com/colleges/rensselaer-polytechnic-institute/', 'https://www.forbes.com/colleges/georgia-institute-of-technology-main-campus/', 'https://www.forbes.com/colleges/virginia-polytechnic-institute-and-state-university/', 'https://www.forbes.com/colleges/texas-tech-university/', 'https://www.forbes.com/colleges/princeton-university/', 'https://www.forbes.com/colleges/the-college-of-new-jersey/', 'https://www.forbes.com/colleges/rutgers-university-new-brunswick/', 'https://www.forbes.com/colleges/stevens-institute-of-technology/', 'https://www.forbes.com/colleges/montclair-state-university/', 'https://www.forbes.com/colleges/seton-hall-university/', 'https://www.forbes.com/colleges/rowan-university/' ] rank =[] rankname =[] college_list =[] for idx, college in enumerate(colleges): page = urllib2.urlopen(urls[idx]) tidy = BeautifulSoup(page, 'lxml') div = tidy.find('div', {'class':'forbeslists fright'}) li = div.findAll('li') div1 = tidy.findAll('div', {'class':'rankonlist'}) for d in div1: rankname.append('Forbes - ' + str(d.text.split(' ', 1)[1]).strip('\" \n')) rank.append(str(d.text.split(' ', 1)[0]).strip (' \n#')) college_list.append(colleges[idx]) for l in li: if ':' not in l.text: rank.append(str(l.text.split('in')[0]).strip(' \n#')) rankname.append('Forbes - ' + 'Top Colleges - ' + str(l.text.split('in')[1]).strip(' \n#')) college_list.append(colleges[idx]) else: rankname.append('Forbes - ' + str(l.text.split(':')[0]).strip('\" \n')) rank.append(str(l.text.split(':')[1]).strip(' \n')) college_list.append(colleges[idx]) print(colleges[idx] + ' - Data captured successfully') df = pd.DataFrame(list(zip(rank, rankname, college_list))) df.columns = ['Rank', 'Ranking Name', 'School'] #print(df) #append the metadata to the df df = DEMO_append_metadata(df, ranking_year, publication_date, ranking_scope, primary_ranking) ## export data to a csv DEMO_export_to_csv(df, ranking, ranking_year) return df;
43.307692
128
0.576718
7a416fadc03b039aeeb53260ace412577993da89
1,393
py
Python
test.py
MenesesGHZ/KNN-python
db9cc4eb4e11a068ddb639664a9c8d1df548c308
[ "MIT" ]
null
null
null
test.py
MenesesGHZ/KNN-python
db9cc4eb4e11a068ddb639664a9c8d1df548c308
[ "MIT" ]
null
null
null
test.py
MenesesGHZ/KNN-python
db9cc4eb4e11a068ddb639664a9c8d1df548c308
[ "MIT" ]
null
null
null
import numpy as np import math from knn import KNN from graphs import display_knn_test_graph def test(): # Dataset -> Labeled Examples X = np.array([ [1, 3.6], #blue [2.2, 6.4], #blue [3.3, 0.8], #blue [3.8, 7.4], #orange [4.3, 5.1], #blue [5.6, 9.2], #orange [5.6, 2.8], #orange [6.8, 8.2], #orange [6.8, 1.8], #orange [7.9, 8.2], #blue [7.9, 3.7], #orange [9.1, 7.3] #blue ]) Y = np.array([[1,1,1,0,1,0,0,0,0,1,0,1]]).T # Loading Model euclidean_norm = lambda v1,v2: math.sqrt(sum((v1-v2)**2)) knn_model = KNN(X,Y,norm=euclidean_norm,k=5) # Test Data interval = (0,10) random_points = np.array([ np.random.uniform(*interval,2), np.random.uniform(*interval,2), np.random.uniform(*interval,2) ]) # Predictions predictions = knn_model.predict(random_points) # Display Results with Plotly category_names = ["orange","blue"] category_colors = {"orange":"rgba(255,165,0,0.8)", "blue":"rgba(0, 255, 255,0.9)", "blue_pred":"rgba(0,0,255,0.75)", "orange_pred":"rgba(255,70,0,0.8)"} display_knn_test_graph(X,Y,random_points,predictions,category_names,category_colors)
29.020833
88
0.511127
241c62827da27889eecf1131b9959b6f886d28fa
1,851
py
Python
ooobuild/cssdyn/xml/__init__.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/cssdyn/xml/__init__.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
ooobuild/cssdyn/xml/__init__.py
Amourspirit/ooo_uno_tmpl
64e0c86fd68f24794acc22d63d8d32ae05dd12b8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from ...dyn.xml.attribute import Attribute as Attribute from ...dyn.xml.attribute_container import AttributeContainer as AttributeContainer from ...dyn.xml.attribute_data import AttributeData as AttributeData from ...dyn.xml.export_filter import ExportFilter as ExportFilter from ...dyn.xml.fast_attribute import FastAttribute as FastAttribute from ...dyn.xml.import_filter import ImportFilter as ImportFilter from ...dyn.xml.namespace_container import NamespaceContainer as NamespaceContainer from ...dyn.xml.para_user_defined_attributes_supplier import ParaUserDefinedAttributesSupplier as ParaUserDefinedAttributesSupplier from ...dyn.xml.text_user_defined_attributes_supplier import TextUserDefinedAttributesSupplier as TextUserDefinedAttributesSupplier from ...dyn.xml.user_defined_attributes_supplier import UserDefinedAttributesSupplier as UserDefinedAttributesSupplier from ...dyn.xml.x_export_filter import XExportFilter as XExportFilter from ...dyn.xml.x_import_filter import XImportFilter as XImportFilter from ...dyn.xml.x_import_filter2 import XImportFilter2 as XImportFilter2 from ...dyn.xml.xml_export_filter import XMLExportFilter as XMLExportFilter from ...dyn.xml.xml_import_filter import XMLImportFilter as XMLImportFilter
57.84375
131
0.829281
0d09936106bf5b756aed5db0fb6884f9f6b195bb
285
py
Python
Util.py
CvvT/ElfParse
20f190a940ff2a48d80b05a282cfa0086c63ea75
[ "Apache-2.0" ]
8
2015-11-19T01:51:51.000Z
2019-10-12T09:57:37.000Z
Util.py
CvvT/ElfParse
20f190a940ff2a48d80b05a282cfa0086c63ea75
[ "Apache-2.0" ]
null
null
null
Util.py
CvvT/ElfParse
20f190a940ff2a48d80b05a282cfa0086c63ea75
[ "Apache-2.0" ]
15
2015-09-19T19:56:41.000Z
2019-10-12T09:57:38.000Z
__author__ = 'CwT' import struct def getStrbyfd(file, addr): file.seek(addr) # print hex(addr) str = [] byte = struct.unpack("B", file.read(1))[0] while byte: str.append(chr(byte)) byte = struct.unpack("B", file.read(1))[0] return ''.join(str)
21.923077
50
0.578947
caab6b4215b9980ad964992aa39b17c02d20ec70
3,076
py
Python
SQM_discreteness/utils.py
Ohyeon5/SQM_basis
a04662f1a4520128dd347b1e84d14717feb0655a
[ "Apache-2.0" ]
1
2020-09-22T10:32:20.000Z
2020-09-22T10:32:20.000Z
utils.py
Ohyeon5/SQM_discreteness
4f44d4f3e15e834ed544df35c065b715f1f7ce92
[ "Apache-2.0" ]
1
2021-08-23T06:59:46.000Z
2021-08-23T06:59:46.000Z
utils.py
Ohyeon5/SQM_discreteness
4f44d4f3e15e834ed544df35c065b715f1f7ce92
[ "Apache-2.0" ]
null
null
null
# utilization functions import numpy as np import pandas as pd import argparse import configparser import matplotlib.pyplot as plt # read configuration from the config.ini files def get_configs(): parser = argparse.ArgumentParser() parser.add_argument("--config", dest="config", help="Configuration file used to run the script", required=True) parser.add_argument("--model_name", type=str, default=None, help='network type') parser.add_argument("-e", "--epochs", type=int, default=None, help='number of epochs') args = parser.parse_args() config = configparser.RawConfigParser(allow_no_value=True) config.read(args.config) # initialize parameter param = dict() param['device_name'] = config.get('Device','name',fallback='test_device') # path param['data_path'] = config.get('Path','data_path') param['img_path'] = param['data_path'] + config.get('Path','img_path', fallback='20bn-jester-v1') param['csv_labels'] = param['data_path'] + config.get('Path','csv_labels',fallback='jester-v1-labels.csv') param['csv_train'] = param['data_path'] + config.get('Path','csv_train', fallback='jester-v1-train.csv') param['csv_val'] = param['data_path'] + config.get('Path','csv_val', fallback='jester-v1-validation.csv') param['csv_test'] = param['data_path'] + config.get('Path','csv_test', fallback='jester-v1-test.csv') # model param['model_name'] = config.get('Model','model_name', fallback='test_model') param['model_path'] = config.get('Model','model_path', fallback='./saved_models/') param['batch_size'] = config.getint('Model','batch_size',fallback=20) param['epochs'] = config.getint('Model','epochs', fallback=300) # Data param['labels'] = config.get('Data','labels').split(',') # need to implement if empty use all labels # if param['labels'] is 'all': use all the labels from csv_labels file if 'all' in param['labels']: param['labels'] = pd.read_csv(param['csv_labels'], index_col=False).values.squeeze().tolist() param['skip'] = config.getint('Data','skip', fallback=2) param['im_size'] = config.getint('Data','im_size',fallback=50) # mode param['train'] = config.getboolean('Mode','train', fallback=True) param['test'] = config.getboolean('Mode','test' , fallback=False) # overwrite experiment specific parameters if args.model_name is not None: param['model_name'] = args.model_name if args.epochs is not None: param['epochs'] = args.epochs return param def plot_grad_flow(named_parameters): ave_grads = [] layers = [] for n, p in named_parameters: if(p.requires_grad) and ("bias" not in n): layers.append(n) ave_grads.append(p.grad.abs().mean()) plt.plot(ave_grads, alpha=0.3, color="b") plt.hlines(0, 0, len(ave_grads)+1, linewidth=1, color="k" ) plt.xticks(range(0,len(ave_grads), 1), layers, rotation="vertical") plt.xlim(xmin=0, xmax=len(ave_grads)) plt.xlabel("Layers") plt.ylabel("average gradient") plt.title("Gradient flow") plt.grid(True) plt.savefig('gard_flow.png')
42.136986
112
0.68498
a0c9c5b42624f567a0a7e9328de03ae28ae55223
7,952
py
Python
spark_auto_mapper_fhir/value_sets/observation_interpretation_codes.py
imranq2/SparkAutoMapper.FHIR
dd23b218fb0097d1edc2f3e688e8d6d4d7278bd2
[ "Apache-2.0" ]
1
2020-10-31T23:25:07.000Z
2020-10-31T23:25:07.000Z
spark_auto_mapper_fhir/value_sets/observation_interpretation_codes.py
icanbwell/SparkAutoMapper.FHIR
98f368e781b46523142c7cb513c670d659a93c9b
[ "Apache-2.0" ]
null
null
null
spark_auto_mapper_fhir/value_sets/observation_interpretation_codes.py
icanbwell/SparkAutoMapper.FHIR
98f368e781b46523142c7cb513c670d659a93c9b
[ "Apache-2.0" ]
null
null
null
from __future__ import annotations from spark_auto_mapper_fhir.fhir_types.uri import FhirUri from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode from spark_auto_mapper.type_definitions.defined_types import AutoMapperTextInputType # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class ObservationInterpretationCodesCode(GenericTypeCode): """ ObservationInterpretationCodes From: http://hl7.org/fhir/ValueSet/observation-interpretation in valuesets.xml A categorical assessment, providing a rough qualitative interpretation of the observation value, such as “normal”/ “abnormal”,”low” / “high”, “better” / “worse”, “susceptible” / “resistant”, “expected”/ “not expected”. The value set is intended to be for ANY use where coded representation of an interpretation is needed. Notes: This is being communicated in v2.x in OBX-8 (Observation Interpretation), in v3 in ObservationInterpretation (CWE) in R1 (Representative Realm) and in FHIR in Observation.interpretation. Historically these values come from the laboratory domain, and these codes are extensively used. The value set binding is extensible, so codes outside the value set that are needed for interpretation concepts (i.e. particular meanings) that are not included in the value set can be used, and these new codes may also be added to the value set and published in a future version. """ def __init__(self, value: AutoMapperTextInputType): super().__init__(value=value) """ http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation """ codeset: FhirUri = ( "http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation" ) class ObservationInterpretationCodesCodeValues: """ Codes that specify interpretation of genetic analysis, such as "positive", "negative", "carrier", "responsive", etc. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ GeneticObservationInterpretation = ObservationInterpretationCodesCode( "_GeneticObservationInterpretation" ) """ Interpretations of change of quantity and/or severity. At most one of B or W and one of U or D allowed. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ ObservationInterpretationChange = ObservationInterpretationCodesCode( "_ObservationInterpretationChange" ) """ Technical exceptions resulting in the inability to provide an interpretation. At most one allowed. Does not imply normality or severity. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ ObservationInterpretationExceptions = ObservationInterpretationCodesCode( "_ObservationInterpretationExceptions" ) """ Interpretation of normality or degree of abnormality (including critical or "alert" level). Concepts in this category are mutually exclusive, i.e., at most one is allowed. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ ObservationInterpretationNormality = ObservationInterpretationCodesCode( "_ObservationInterpretationNormality" ) """ Interpretations of anti-microbial susceptibility testing results (microbiology). At most one allowed. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ ObservationInterpretationSusceptibility = ObservationInterpretationCodesCode( "_ObservationInterpretationSusceptibility" ) """ The observation/test result is interpreted as being outside the inclusion range for a particular protocol within which the result is being reported. Example: A positive result on a Hepatitis screening test. Open Issue: EX, HX, LX: These three concepts do not seem to meet a clear need in the vocabulary, and their use in observation interpretation appears likely to be covered by other existing concepts (e.g., A, H, L). The only apparent significant difference is their reference to use in protocols for exclusion of study subjects. These concepts/codes were proposed by RCRIM for use in the CTLaboratory message. They were submitted and approved in the November 2005 Harmonization cycle in proposal "030103C_VOCAB_RCRIM_l_quade_RCRIM Obs Interp_20051028154455". However, this proposal was not fully implemented in the vocabulary. The proposal recommended creation of the x_ClinicalResearchExclusion domain in ObservationInterpretation with a value set including those three concepts/codes, but there is no subdomain of that name or equivalent with a binding to either of the value sets that contain these concepts/codes. Members of the OO WG have recently attempted to contact members of RCRIM regarding these concepts, both by email and at the recent WGM in Atlanta, without response. It is felt by OO that the best course of action to take at this time is to add this comprehensive Open Issue rather than deprecate these three concepts at this time, until further discussion is held. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ OutsideThreshold = ObservationInterpretationCodesCode("EX") """ Hold for Medical Review Usage Note: This code is not intended for use in V3 artifacts. It is included in the code system to maintain alignment with the V2 Table 0078 "Interpretation Codes." From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ HoldForMedicalReview = ObservationInterpretationCodesCode("HM") """ Interpretations of the presence or absence of a component / analyte or organism in a test or of a sign in a clinical observation. In keeping with laboratory data processing practice, these concepts provide a categorical interpretation of the "meaning" of the quantitative value for the same observation. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ ObservationInterpretationDetection = ObservationInterpretationCodesCode( "ObservationInterpretationDetection" ) """ Interpretation of the observed result taking into account additional information (contraindicators) about the patient's situation. Concepts in this category are mutually exclusive, i.e., at most one is allowed. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ ObservationInterpretationExpectation = ObservationInterpretationCodesCode( "ObservationInterpretationExpectation" ) """ Interpretation qualifiers in separate OBX segments Usage Note: This code is not intended for use in V3 artifacts. It is included in the code system to maintain alignment with the V2 Table 0078 "Interpretation Codes." From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ InterpretationQualifiersInSeparateOBXSegments = ObservationInterpretationCodesCode( "OBX" ) """ Interpretations of the presence and level of reactivity of the specified component / analyte with the reagent in the performed laboratory test. From: http://terminology.hl7.org/CodeSystem/v3-ObservationInterpretation in v3-codesystems.xml """ ReactivityObservationInterpretation = ObservationInterpretationCodesCode( "ReactivityObservationInterpretation" )
47.903614
98
0.743587
c42b9176df1cc76071d99aff4b2a7e191dd7bb76
347
py
Python
tests/test_result.py
efremov-dma/elasticmagic
90a39153289a545bd14084b9ffb17b87121da405
[ "Apache-2.0" ]
25
2015-04-27T12:43:12.000Z
2021-04-06T07:11:48.000Z
tests/test_result.py
efremov-dma/elasticmagic
90a39153289a545bd14084b9ffb17b87121da405
[ "Apache-2.0" ]
41
2015-09-28T10:51:59.000Z
2021-07-23T16:09:19.000Z
tests/test_result.py
efremov-dma/elasticmagic
90a39153289a545bd14084b9ffb17b87121da405
[ "Apache-2.0" ]
12
2015-08-28T17:30:02.000Z
2021-12-01T15:36:23.000Z
from elasticmagic import agg, types from elasticmagic.result import SearchResult def test_search_result_with_error_and_aggregations(): raw_result = {'error': True} res = SearchResult( raw_result, aggregations={'types': agg.Terms(field='type', type=types.Integer)} ) assert res.aggregations['types'].buckets == []
28.916667
75
0.708934
5c08b7981a94fbb7cee01547e252be61efd8b4b3
1,863
py
Python
2015/solutions/24.py
adtok/advent-of-code
df1f61759bd8f3bfd7995b7e2a124d7f6e97ba01
[ "MIT" ]
null
null
null
2015/solutions/24.py
adtok/advent-of-code
df1f61759bd8f3bfd7995b7e2a124d7f6e97ba01
[ "MIT" ]
null
null
null
2015/solutions/24.py
adtok/advent-of-code
df1f61759bd8f3bfd7995b7e2a124d7f6e97ba01
[ "MIT" ]
null
null
null
"""Advent of Code 2015: Day 24""" import itertools import functools from typing import Callable, List def parse_input(input_file: str) -> List[int]: """Parses a file of line-separated integers into a list""" with open(input_file, "r") as file: data = list(map(int, file)) return data def product(weights: List[int]) -> int: """Returns the product of a list of integers""" return functools.reduce(lambda a, b: a * b, weights, 1) def target_sum(weights: List[int], num_groups: int) -> int: """Determines the weight a group of presents needs to be""" return sum(weights) // num_groups def minimum_quantum_entanglement(weights: List[int], num_groups: int): """Determines the minimum quantum entanglement""" num_presents = len(weights) target = target_sum(weights, num_groups) min_qe = float("inf") for group_size in itertools.count(1): found = False for combination in itertools.combinations(weights, group_size): if sum(combination) != target: continue found = True quantum_entanglement = product(combination) min_qe = min(min_qe, quantum_entanglement) if found or group_size == num_presents: break result = min_qe return result def part_one(input_file: str) -> int: weights = parse_input(input_file) result = minimum_quantum_entanglement(weights, 3) return result def part_two(input_file: str) -> int: weights = parse_input(input_file) result = minimum_quantum_entanglement(weights, 4) return result def solve(func: Callable[[str], int]): input_file = "data/24.solution" result = func(input_file) print(f"The solution for {func.__name__!r} is {result}") def main(): solve(part_one) solve(part_two) if __name__ == "__main__": main()
26.239437
71
0.66452
dcb746f824588e134e0f944fa3ca64479a088790
7,537
py
Python
python/sqlflow_submitter/xgboost/explain.py
Kelang-Tian/sqlflow
36eab7802cff31d862c1983d23407647339fd18a
[ "Apache-2.0" ]
2
2020-07-02T09:21:24.000Z
2021-07-20T03:29:12.000Z
python/sqlflow_submitter/xgboost/explain.py
Anxuy/sqlflow
400eff5f9d20dcf4af8ee5e940b078bfeca98197
[ "Apache-2.0" ]
null
null
null
python/sqlflow_submitter/xgboost/explain.py
Anxuy/sqlflow
400eff5f9d20dcf4af8ee5e940b078bfeca98197
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import shap import six import xgboost as xgb from sqlflow_submitter import db, explainer def xgb_shap_dataset(datasource, select, feature_column_names, label_spec, feature_specs, is_pai, pai_explain_table, transform_fn=None, feature_column_code=""): label_column_name = label_spec["feature_name"] if is_pai: pai_table_parts = pai_explain_table.split(".") formatted_pai_table = "odps://%s/tables/%s" % (pai_table_parts[0], pai_table_parts[1]) stream = db.pai_maxcompute_db_generator(formatted_pai_table, feature_column_names, label_column_name, feature_specs) selected_cols = db.pai_selected_cols(formatted_pai_table) else: conn = db.connect_with_data_source(datasource) stream = db.db_generator(conn.driver, conn, select, feature_column_names, label_spec, feature_specs) selected_cols = db.selected_cols(conn.driver, conn, select) if transform_fn: column_names = transform_fn.get_column_names() else: column_names = feature_column_names # NOTE(sneaxiy): pandas.DataFrame does not support Tensor whose rank is larger than 2. # But `INDICATOR` would generate one hot vector for each element, and pandas.DataFrame # would not accept `INDICATOR` results as its input. In a word, we do not support # `TO EXPLAIN` when using `INDICATOR`. xs = pd.DataFrame(columns=column_names) dtypes = [] i = 0 for row, label in stream(): features = db.read_features_from_row(row, selected_cols, feature_column_names, feature_specs) if transform_fn: features = transform_fn(features) # TODO(sneaxiy): support sparse features in `TO EXPLAIN` features = [item[0] for item in features] xs.loc[i] = features if i == 0: for f in features: if isinstance(f, np.ndarray): if f.dtype == np.float32 or f.dtype == np.float64: dtypes.append('float32') elif f.dtype == np.int32 or f.dtype == np.int64: dtypes.append('int64') else: raise ValueError('Not supported data type {}'.format( f.dtype)) elif isinstance(f, (np.float32, np.float64, float)): dtypes.append('float32') elif isinstance(f, (np.int32, np.int64, six.integer_types)): dtypes.append('int64') else: raise ValueError('Not supported data type {}'.format( type(f))) i += 1 # NOTE(typhoonzero): set dtype to the feature's actual type, or the dtype # may be "object". Use below code to reproduce: # import pandas as pd # feature_column_names=["a", "b"] # xs = pd.DataFrame(columns=feature_column_names) # for i in range(10): # xs.loc[i] = [int(j) for j in range(2)] # print(xs.dtypes) for dtype, name in zip(dtypes, column_names): xs[name] = xs[name].astype(dtype) return xs def xgb_shap_values(x): bst = xgb.Booster() bst.load_model("my_model") explainer = shap.TreeExplainer(bst) return explainer.shap_values(x), explainer.shap_interaction_values( x), explainer.expected_value def explain(datasource, select, feature_field_meta, feature_column_names, label_spec, summary_params, result_table="", is_pai=False, pai_explain_table="", hdfs_namenode_addr="", hive_location="", hdfs_user="", hdfs_pass="", oss_dest=None, oss_ak=None, oss_sk=None, oss_endpoint=None, oss_bucket_name=None, transform_fn=None, feature_column_code=""): x = xgb_shap_dataset(datasource, select, feature_column_names, label_spec, feature_field_meta, is_pai, pai_explain_table, transform_fn=transform_fn, feature_column_code=feature_column_code) shap_values, shap_interaction_values, expected_value = xgb_shap_values(x) if result_table != "": if is_pai: # TODO(typhoonzero): the shape of shap_values is (3, num_samples, num_features) # use the first dimension here, should find out how to use the other two. write_shap_values(shap_values[0], "pai_maxcompute", None, result_table, feature_column_names, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass) else: conn = connect_with_data_source(datasource) write_shap_values(shap_values[0], conn.driver, conn, result_table, feature_column_names, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass) return if summary_params.get("plot_type") == "decision": explainer.plot_and_save( lambda: shap.decision_plot(expected_value, shap_interaction_values, x, show=False, feature_display_range=slice( None, -40, -1), alpha=1), is_pai, oss_dest, oss_ak, oss_sk, oss_endpoint, oss_bucket_name) else: explainer.plot_and_save( lambda: shap.summary_plot( shap_values, x, show=False, **summary_params), is_pai, oss_dest, oss_ak, oss_sk, oss_endpoint, oss_bucket_name) def write_shap_values(shap_values, driver, conn, result_table, feature_column_names, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass): with db.buffered_db_writer(driver, conn, result_table, feature_column_names, 100, hdfs_namenode_addr, hive_location, hdfs_user, hdfs_pass) as w: for row in shap_values: w.write(list(row))
40.740541
91
0.551546
2cea00cdafc40a96424e3b0f137007f7cc06e2a2
1,871
py
Python
app/core/admin.py
tusharkhatiwada/swim-app-api
23050f86275569ab032a287c50268b6c641fbe0e
[ "MIT" ]
null
null
null
app/core/admin.py
tusharkhatiwada/swim-app-api
23050f86275569ab032a287c50268b6c641fbe0e
[ "MIT" ]
1
2019-08-20T17:40:23.000Z
2019-08-20T17:40:23.000Z
app/core/admin.py
tusharkhatiwada/swim-app-api
23050f86275569ab032a287c50268b6c641fbe0e
[ "MIT" ]
2
2019-10-24T07:31:22.000Z
2019-10-25T08:39:36.000Z
from django.contrib import admin from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from django.contrib.auth.models import Group from rest_framework.authtoken.models import Token from django.utils.translation import gettext as _ from core import models @admin.register(models.User) class UserAdmin(BaseUserAdmin): ordering = ['id'] list_display = ['email', 'name'] fieldsets = ( (None, {'fields': ('email', 'password')}), (_('Personal Info'), {'fields': ('name',)}), ( _('Permissions'), { 'fields': ( 'is_active', 'is_staff', 'is_superuser', ) } ), (_('Important dates'), {'fields': ('last_login',)}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ('email', 'password1', 'password2') }), ) class InlineCompetition(admin.TabularInline): model = models.Competition extra = 3 @admin.register(models.Swimmer) class SwimmerAdmin(admin.ModelAdmin): inlines = [InlineCompetition] ordering = ['id'] list_display = ( 'thumbnail', 'user', 'age', 'city_of_birth', 'fathers_name', 'mothers_name', 'country', 'city', 'state', 'max_heart_rate', 'rest_heart_rate', 'height_in_cm', 'weight_in_pound', 'distance', 'stroke_rate', 'main_stroke', 'school', 'phone_no') list_filter = ('city', 'state') search_fields = ['city', 'school', 'fathers_name'] list_display_links = ['user'] @admin.register(models.Game) class GamesAdmin(admin.ModelAdmin): list_display = ( 'name', 'start_date', 'end_date', ) admin.site.site_header = 'Swim App' admin.site.site_title = 'Swim App' admin.site.unregister(Group) admin.site.unregister(Token)
26.728571
72
0.590593
afd58db5d410a62f537d6b673687eec09ed7ac61
5,346
py
Python
modin/engines/dask/pandas_on_dask/frame/partition_manager.py
ienkovich/modin
b7e1188f7ba01e3a313996e092a65b63f6b76fa0
[ "ECL-2.0", "Apache-2.0" ]
1
2021-05-19T04:01:17.000Z
2021-05-19T04:01:17.000Z
modin/engines/dask/pandas_on_dask/frame/partition_manager.py
ienkovich/modin
b7e1188f7ba01e3a313996e092a65b63f6b76fa0
[ "ECL-2.0", "Apache-2.0" ]
57
2021-01-22T15:52:03.000Z
2021-06-12T18:22:04.000Z
modin/engines/dask/pandas_on_dask/frame/partition_manager.py
ienkovich/modin
b7e1188f7ba01e3a313996e092a65b63f6b76fa0
[ "ECL-2.0", "Apache-2.0" ]
1
2022-01-29T12:12:42.000Z
2022-01-29T12:12:42.000Z
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import numpy as np from modin.engines.base.frame.partition_manager import BaseFrameManager from .axis_partition import ( PandasOnDaskFrameColumnPartition, PandasOnDaskFrameRowPartition, ) from .partition import PandasOnDaskFramePartition from modin.error_message import ErrorMessage import pandas from distributed.client import _get_global_client import cloudpickle as pkl def deploy_func(df, apply_func, call_queue_df=None, call_queues_other=None, *others): if call_queue_df is not None and len(call_queue_df) > 0: for call, kwargs in call_queue_df: if isinstance(call, bytes): call = pkl.loads(call) if isinstance(kwargs, bytes): kwargs = pkl.loads(kwargs) df = call(df, **kwargs) new_others = np.empty(shape=len(others), dtype=object) for i, call_queue_other in enumerate(call_queues_other): other = others[i] if call_queue_other is not None and len(call_queue_other) > 0: for call, kwargs in call_queue_other: if isinstance(call, bytes): call = pkl.loads(call) if isinstance(kwargs, bytes): kwargs = pkl.loads(kwargs) other = call(other, **kwargs) new_others[i] = other if isinstance(apply_func, bytes): apply_func = pkl.loads(apply_func) return apply_func(df, new_others) class DaskFrameManager(BaseFrameManager): """This class implements the interface in `BaseFrameManager`.""" # This object uses RayRemotePartition objects as the underlying store. _partition_class = PandasOnDaskFramePartition _column_partitions_class = PandasOnDaskFrameColumnPartition _row_partition_class = PandasOnDaskFrameRowPartition @classmethod def get_indices(cls, axis, partitions, index_func): """ This gets the internal indices stored in the partitions. Parameters ---------- axis : 0 or 1 This axis to extract the labels (0 - index, 1 - columns). partitions : NumPy array The array of partitions from which need to extract the labels. index_func : callable The function to be used to extract the function. Returns ------- Index A Pandas Index object. Notes ----- These are the global indices of the object. This is mostly useful when you have deleted rows/columns internally, but do not know which ones were deleted. """ client = _get_global_client() ErrorMessage.catch_bugs_and_request_email(not callable(index_func)) func = cls.preprocess_func(index_func) if axis == 0: # We grab the first column of blocks and extract the indices new_idx = ( [idx.apply(func).future for idx in partitions.T[0]] if len(partitions.T) else [] ) else: new_idx = ( [idx.apply(func).future for idx in partitions[0]] if len(partitions) else [] ) new_idx = client.gather(new_idx) return new_idx[0].append(new_idx[1:]) if len(new_idx) else new_idx @classmethod def broadcast_apply(cls, axis, apply_func, left, right, other_name="r"): def mapper(df, others): other = pandas.concat(others, axis=axis ^ 1) return apply_func(df, **{other_name: other}) client = _get_global_client() return np.array( [ [ PandasOnDaskFramePartition( client.submit( deploy_func, part.future, mapper, part.call_queue, [obj[col_idx].call_queue for obj in right] if axis else [obj.call_queue for obj in right[row_idx]], *( [obj[col_idx].future for obj in right] if axis else [obj.future for obj in right[row_idx]] ), pure=False, ) ) for col_idx, part in enumerate(left[row_idx]) ] for row_idx in range(len(left)) ] )
39.021898
87
0.589974
c6f72e4d7a4123c914394056c2c541f68d3c22c7
3,537
py
Python
components/google-cloud/tests/experimental/custom_job/integration/test_custom_job_complie.py
ryansteakley/pipelines
98677b2190fb327be68e4bb0d00c520593707f21
[ "Apache-2.0" ]
1
2020-05-29T06:45:46.000Z
2020-05-29T06:45:46.000Z
components/google-cloud/tests/experimental/custom_job/integration/test_custom_job_complie.py
ryansteakley/pipelines
98677b2190fb327be68e4bb0d00c520593707f21
[ "Apache-2.0" ]
null
null
null
components/google-cloud/tests/experimental/custom_job/integration/test_custom_job_complie.py
ryansteakley/pipelines
98677b2190fb327be68e4bb0d00c520593707f21
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The Kubeflow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test google-cloud-pipeline-Components to ensure the compile without error.""" import json import os import unittest import kfp from kfp import components from kfp.v2 import compiler from google_cloud_pipeline_components.experimental.custom_job import custom_job class CustomJobCompileTest(unittest.TestCase): def setUp(self): super(CustomJobCompileTest, self).setUp() self._project = "test_project" self._location = "us-central1" self._test_input_string = "test_input_string" self._package_path = "pipeline.json" self._container_component = components.load_component_from_text( "name: Producer\n" "inputs:\n" "- {name: input_text, type: String, description: 'Represents an input parameter.'}\n" "outputs:\n" "- {name: output_value, type: String, description: 'Represents an output paramter.'}\n" "implementation:\n" " container:\n" " image: google/cloud-sdk:latest\n" " command:\n" " - sh\n" " - -c\n" " - |\n" " set -e -x\n" " echo '$0, this is an output parameter' | gsutil cp - '$1'\n" " - {inputValue: input_text}\n" " - {outputPath: output_value}\n") self._python_componeont = self._create_a_pytnon_based_component() def tearDown(self): if os.path.exists(self._package_path): os.remove(self._package_path) def _create_a_pytnon_based_component(self) -> callable: """Creates a test python based component factory.""" @kfp.v2.dsl.component def sum_numbers(a: int, b: int) -> int: return a + b return sum_numbers def test_container_based_custom_job_op_compile(self): custom_job_op = custom_job.custom_training_job_op( self._container_component) @kfp.dsl.pipeline(name="training-test") def pipeline(): custom_job_task = custom_job_op( self._test_input_string, project=self._project, location=self._location) compiler.Compiler().compile( pipeline_func=pipeline, package_path=self._package_path) with open(self._package_path) as f: executor_output_json = json.load(f, strict=False) with open( os.path.join( os.path.dirname(__file__), '../testdata/custom_job_container_component_pipeline.json') ) as ef: expected_executor_output_json = json.load(ef, strict=False) # Ignore the kfp SDK & schema version during comparision del executor_output_json['pipelineSpec']['sdkVersion'] del executor_output_json['pipelineSpec']['schemaVersion'] self.assertEqual(executor_output_json, expected_executor_output_json)
37.62766
99
0.642635
f7319d88946b78f26293dd74a23f8a820010f76c
4,775
py
Python
.environment/lib/python3.8/site-packages/docplex/mp/engine_factory.py
LuisMi1245/QPath-and-Snakes
48f784da67d9720c955890a28543c9863e02a455
[ "MIT" ]
null
null
null
.environment/lib/python3.8/site-packages/docplex/mp/engine_factory.py
LuisMi1245/QPath-and-Snakes
48f784da67d9720c955890a28543c9863e02a455
[ "MIT" ]
null
null
null
.environment/lib/python3.8/site-packages/docplex/mp/engine_factory.py
LuisMi1245/QPath-and-Snakes
48f784da67d9720c955890a28543c9863e02a455
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------- # Source file provided under Apache License, Version 2.0, January 2004, # http://www.apache.org/licenses/ # (c) Copyright IBM Corp. 2015, 2016 # -------------------------------------------------------------------------- # gendoc: ignore from docplex.mp.engine import NoSolveEngine, ZeroSolveEngine from docplex.mp.utils import is_string from docplex.mp.error_handler import docplex_fatal class EngineFactory(object): """ A factory class that manages creation of solver instances. """ _default_engine_map = {"nosolve": NoSolveEngine, "zero": ZeroSolveEngine } def __init__(self, env=None): self._engine_types_by_agent = self._default_engine_map.copy() # no cplex engine type yet? if env is not None: self._resolve_cplex(env) def _get_engine_type_from_agent(self, agent, default_engine, default_engine_name): if agent is None: return default_engine elif is_string(agent): agent_key = agent.lower() engine_type = self._engine_types_by_agent.get(agent_key) if engine_type: return engine_type elif 'cplex' == agent_key: print('* warning: CPLEX runtime not found in path, using {0} instead'.format(default_engine_name)) return self._engine_types_by_agent.get(default_engine_name) elif '.' in agent: # assuming a qualified name, e.g. com.ibm.docplex.quantum.QuantumEngine from docplex.mp.internal.mloader import import_class try: agent_class = import_class(agent) return agent_class except ValueError as ve: print( "Cannot load agent class {0}, expecting 'cplex' or valid class path, error: {1}".format( agent, str(ve))) raise ve else: docplex_fatal("Unexpected agent name: {0}, expecting 'cplex' or valid class path", agent) else: # try a class type try: # noinspection PyUnresolvedReferences from inspect import isclass if isclass(agent): return agent except ImportError: if type(agent) == type: return agent # agent cannot be mapped to any class. docplex_fatal("* unexpected agent: {0!r} -expecting 'cplex', class or class name", agent) def _is_cplex_resolved(self): return hasattr(self, "_cplex_engine_type") def _resolve_cplex(self, env): # INTERNAL if env is None: docplex_fatal("need an environment to resolve cplex, got None") if not self._is_cplex_resolved(): if env.has_cplex: env.check_cplex_version() from docplex.mp.cplex_engine import CplexEngine self._cplex_engine_type = CplexEngine # noinspection PyTypeChecker self._engine_types_by_agent["cplex"] = CplexEngine else: self._cplex_engine_type = None def _ensure_cplex_resolved(self, env): if not self._is_cplex_resolved(): self._resolve_cplex(env) assert self._is_cplex_resolved() def new_engine(self, agent, env, model, context=None): self._ensure_cplex_resolved(env) # compute a default engine and kwargs to use.. kwargs = {} if self._cplex_engine_type: # default is CPLEX if we have it default_engine_type = self._cplex_engine_type default_engine_name = 'cplex' else: default_engine_type = NoSolveEngine default_engine_name = 'nosolve' if context is not None: kwargs['context'] = context engine_type = self._get_engine_type_from_agent(agent=agent, default_engine=default_engine_type, default_engine_name=default_engine_name) assert engine_type is not None try: return engine_type(model, **kwargs) except TypeError: docplex_fatal("agent: {0!s} failed to create instance from model, kwargs.", agent) def extend(self, new_agent, new_engine): # INTERNAL assert new_engine is not None self._engine_types_by_agent[new_agent] = new_engine
39.46281
115
0.553927
146aa1e4089e245131e6204d9835b10f12c57304
347
py
Python
XiuxiuService/AliSDK/top/api/rest/AlibabaAliqinFcIotCardofferRequest.py
nightHearter/XiuxiuService
281c2d5eef85936edcd0d9ec97c8d165078f444c
[ "MIT" ]
null
null
null
XiuxiuService/AliSDK/top/api/rest/AlibabaAliqinFcIotCardofferRequest.py
nightHearter/XiuxiuService
281c2d5eef85936edcd0d9ec97c8d165078f444c
[ "MIT" ]
null
null
null
XiuxiuService/AliSDK/top/api/rest/AlibabaAliqinFcIotCardofferRequest.py
nightHearter/XiuxiuService
281c2d5eef85936edcd0d9ec97c8d165078f444c
[ "MIT" ]
null
null
null
''' Created by auto_sdk on 2017.04.21 ''' from top.api.base import RestApi class AlibabaAliqinFcIotCardofferRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.billreal = None self.billsource = None def getapiname(self): return 'alibaba.aliqin.fc.iot.cardoffer'
26.692308
56
0.731988
243832ce8da6f53e18b0f5f7c2b15bd3ceb02ebc
1,268
py
Python
numba/tests/test_unsigned_arith.py
liuzhenhai/numba
855a2b262ae3d82bd6ac1c3e1c0acb36ee2e2acf
[ "BSD-2-Clause" ]
1
2015-01-29T06:52:36.000Z
2015-01-29T06:52:36.000Z
numba/tests/test_unsigned_arith.py
shiquanwang/numba
a41c85fdd7d6abf8ea1ebe9116939ddc2217193b
[ "BSD-2-Clause" ]
null
null
null
numba/tests/test_unsigned_arith.py
shiquanwang/numba
a41c85fdd7d6abf8ea1ebe9116939ddc2217193b
[ "BSD-2-Clause" ]
null
null
null
import numpy as np import unittest from numba import void, int32, uint32, jit, int64 @jit(void(uint32[:], uint32, uint32)) def prng(X, A, C): for i in range(X.shape[0]): for j in range(100): v = (A * X[i] + C) X[i] = v & 0xffffffff @jit(uint32()) def unsigned_literal(): return abs(0xFFFFFFFF) @jit(int64()) def unsigned_literal_64(): return 0x100000000 @jit(int64(int32)) def constant_int_add(a): return 0xffffffff + a class Test(unittest.TestCase): def test_prng(self): N = 100 A = 1664525 C = 1013904223 X0 = np.arange(N, dtype=np.uint32) X1 = X0.copy() prng.py_func(X0, A, C) prng(X1, A, C) self.assertTrue(np.all(X1 >= 0)) self.assertTrue(np.all(X0 == X1)) def test_unsigned_literal(self): got = unsigned_literal() expect = abs(0xFFFFFFFF) self.assertEqual(expect, got) def test_unsigned_literal_64(self): got = unsigned_literal_64() expect = 0x100000000 self.assertEqual(expect, got) def test_constant_int_add(self): got = constant_int_add(1) expect = 0xffffffff + 1 self.assertEqual(expect, got) if __name__ == '__main__': unittest.main()
23.481481
49
0.601735
6d2c44d8c0e7d6cdfbfa8ab703f917b2a8871b7f
337
py
Python
coursework2/task1/mapper.py
foundnet/UOE_EP_coursework1
25ab8ff2beaa4fbde5a0d4519abb84d8e43cf9d8
[ "Apache-2.0" ]
null
null
null
coursework2/task1/mapper.py
foundnet/UOE_EP_coursework1
25ab8ff2beaa4fbde5a0d4519abb84d8e43cf9d8
[ "Apache-2.0" ]
null
null
null
coursework2/task1/mapper.py
foundnet/UOE_EP_coursework1
25ab8ff2beaa4fbde5a0d4519abb84d8e43cf9d8
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import sys import os file_name = os.environ["mapreduce_map_input_file"] file_name = file_name[file_name.rfind("/")+1:] for line in sys.stdin: line = line.strip() token_list = line.split(" ") for item in token_list: if item.strip() != "": print item.strip() + "\t" + file_name + "\t1"
22.466667
57
0.620178
4b3645c2bd6c51656ff5aa50a95b177164be0c94
47
py
Python
run.py
mdaue/sanic_scaffolding
70a5f3423f92d2377cddea04836f5107d0503e77
[ "MIT" ]
3
2017-04-06T14:06:49.000Z
2020-02-23T21:10:57.000Z
run.py
mdaue/sanic_scaffolding
70a5f3423f92d2377cddea04836f5107d0503e77
[ "MIT" ]
null
null
null
run.py
mdaue/sanic_scaffolding
70a5f3423f92d2377cddea04836f5107d0503e77
[ "MIT" ]
null
null
null
#!/usr/bin/env python import sanic_scaffolding
15.666667
24
0.808511
efe54d25a0348dae43c095647fa90b313a6c8c60
4,921
py
Python
third_party/nucleus/io/fastq.py
ruif2009/deepvariant
c7fd07016577c253f81ef253aed65c416e4c0ef7
[ "BSD-3-Clause" ]
null
null
null
third_party/nucleus/io/fastq.py
ruif2009/deepvariant
c7fd07016577c253f81ef253aed65c416e4c0ef7
[ "BSD-3-Clause" ]
null
null
null
third_party/nucleus/io/fastq.py
ruif2009/deepvariant
c7fd07016577c253f81ef253aed65c416e4c0ef7
[ "BSD-3-Clause" ]
1
2022-02-03T21:54:57.000Z
2022-02-03T21:54:57.000Z
# Copyright 2018 Google Inc. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Class for reading FASTQ files. API for reading: with FastqReader(input_path) as reader: for record in reader: print(record) API for writing: with FastqWriter(output_path) as writer: for record in records: writer.write(record) where `record` is a nucleus.genomics.v1.FastqRecord protocol buffer. If the path contains '.tfrecord' as an extension, a TFRecord file is assumed. Otherwise, it is treated as a true FASTQ file. In either case, an extension of '.gz' will cause the file to be treated as compressed. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from third_party.nucleus.io import genomics_reader from third_party.nucleus.io import genomics_writer from third_party.nucleus.io.python import fastq_reader from third_party.nucleus.io.python import fastq_writer from third_party.nucleus.protos import fastq_pb2 class NativeFastqReader(genomics_reader.GenomicsReader): """Class for reading from native FASTQ files. Most users will want to use FastqReader instead, because it dynamically dispatches between reading native FASTQ files and TFRecord files based on the filename's extension. """ def __init__(self, input_path): """Initializes a NativeFastqReader. Args: input_path: string. A path to a resource containing FASTQ records. """ super(NativeFastqReader, self).__init__() fastq_path = input_path.encode('utf8') if fastq_path.endswith('.gz'): options = fastq_pb2.FastqReaderOptions( compression_type=fastq_pb2.FastqReaderOptions.GZIP) else: options = fastq_pb2.FastqReaderOptions() self._reader = fastq_reader.FastqReader.from_file(fastq_path, options) self.header = None def query(self): raise NotImplementedError('Can not query a FASTQ file') def iterate(self): """Returns an iterable of FastqRecord protos in the file.""" return self._reader.iterate() def __exit__(self, exit_type, exit_value, exit_traceback): self._reader.__exit__(exit_type, exit_value, exit_traceback) class FastqReader(genomics_reader.DispatchingGenomicsReader): """Class for reading FastqRecord protos from FASTQ or TFRecord files.""" def _native_reader(self, input_path, **kwargs): return NativeFastqReader(input_path, **kwargs) def _record_proto(self): return fastq_pb2.FastqRecord class NativeFastqWriter(genomics_writer.GenomicsWriter): """Class for writing to native FASTQ files. Most users will want FastqWriter, which will write to either native FASTQ files or TFRecord files, based on the output filename's extension. """ def __init__(self, output_path): """Initializer for NativeFastqWriter. Args: output_path: str. The path to which to write the FASTQ file. """ super(NativeFastqWriter, self).__init__() writer_options = fastq_pb2.FastqWriterOptions() self._writer = fastq_writer.FastqWriter.to_file(output_path, writer_options) def write(self, proto): self._writer.write(proto) def __exit__(self, exit_type, exit_value, exit_traceback): self._writer.__exit__(exit_type, exit_value, exit_traceback) class FastqWriter(genomics_writer.DispatchingGenomicsWriter): """Class for writing FastqRecord protos to FASTQ or TFRecord files.""" def _native_writer(self, output_path): return NativeFastqWriter(output_path)
36.451852
80
0.766917
357b7489b9159212c268319ba5d1ecadbc52ffa7
836
py
Python
1980.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
1
2022-01-14T08:45:32.000Z
2022-01-14T08:45:32.000Z
1980.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
null
null
null
1980.py
ShawonBarman/URI-Online-judge-Ad-Hoc-level-problem-solution-in-python
9a0f0ad5efd4a9e73589c357ab4b34b7c73a11da
[ "MIT" ]
null
null
null
def factorial(num): if num == 0 or num == 1: return 1 elif num == 2: return 2 elif num == 3: return 6 elif num == 4: return 24 elif num == 5: return 120 elif num == 6: return 720 elif num == 7: return 5040 elif num == 8: return 40320 elif num == 9: return 362880 elif num == 10: return 3628800 elif num == 11: return 39916800 elif num == 12: return 479001600 elif num == 13: return 6227020800 elif num == 14: return 87178291200 elif num == 15: return 1307674368000 s = input() while s != "0": length = len(s) z = factorial(length) print(z) try: s = input() except EOFError: break
20.390244
29
0.4689
0c550b8eec4852984083ef098b534c0aa9c89eae
5,860
py
Python
single_stage_detector/ssd/model/anchor_utils.py
matthew-frank/training
dc72f48cc5279f80e8e1736d0756c83f9e3cf116
[ "Apache-2.0" ]
567
2018-09-13T05:07:49.000Z
2020-11-23T11:52:11.000Z
single_stage_detector/ssd/model/anchor_utils.py
matthew-frank/training
dc72f48cc5279f80e8e1736d0756c83f9e3cf116
[ "Apache-2.0" ]
222
2018-09-14T10:15:39.000Z
2020-11-20T22:21:09.000Z
single_stage_detector/ssd/model/anchor_utils.py
matthew-frank/training
dc72f48cc5279f80e8e1736d0756c83f9e3cf116
[ "Apache-2.0" ]
279
2018-09-16T12:40:29.000Z
2020-11-17T14:22:52.000Z
import math import torch from torch import nn, Tensor from typing import List, Optional from model.image_list import ImageList class AnchorGenerator(nn.Module): """ Module that generates anchors for a set of feature maps and image sizes. The module support computing anchors at multiple sizes and aspect ratios per feature map. This module assumes aspect ratio = height / width for each anchor. sizes and aspect_ratios should have the same number of elements, and it should correspond to the number of feature maps. sizes[i] and aspect_ratios[i] can have an arbitrary number of elements, and AnchorGenerator will output a set of sizes[i] * aspect_ratios[i] anchors per spatial location for feature map i. Args: sizes (Tuple[Tuple[int]]): aspect_ratios (Tuple[Tuple[float]]): """ __annotations__ = { "cell_anchors": List[torch.Tensor], } def __init__( self, sizes=((128, 256, 512),), aspect_ratios=((0.5, 1.0, 2.0),), ): super(AnchorGenerator, self).__init__() if not isinstance(sizes[0], (list, tuple)): # TODO change this sizes = tuple((s,) for s in sizes) if not isinstance(aspect_ratios[0], (list, tuple)): aspect_ratios = (aspect_ratios,) * len(sizes) assert len(sizes) == len(aspect_ratios) self.sizes = sizes self.aspect_ratios = aspect_ratios self.cell_anchors = [self.generate_anchors(size, aspect_ratio) for size, aspect_ratio in zip(sizes, aspect_ratios)] # TODO: https://github.com/pytorch/pytorch/issues/26792 # For every (aspect_ratios, scales) combination, output a zero-centered anchor with those values. # (scales, aspect_ratios) are usually an element of zip(self.scales, self.aspect_ratios) # This method assumes aspect ratio = height / width for an anchor. def generate_anchors(self, scales: List[int], aspect_ratios: List[float], dtype: torch.dtype = torch.float32, device: torch.device = torch.device("cpu")): scales = torch.as_tensor(scales, dtype=dtype, device=device) aspect_ratios = torch.as_tensor(aspect_ratios, dtype=dtype, device=device) h_ratios = torch.sqrt(aspect_ratios) w_ratios = 1 / h_ratios ws = (w_ratios[:, None] * scales[None, :]).view(-1) hs = (h_ratios[:, None] * scales[None, :]).view(-1) base_anchors = torch.stack([-ws, -hs, ws, hs], dim=1) / 2 return base_anchors.round() def set_cell_anchors(self, dtype: torch.dtype, device: torch.device): self.cell_anchors = [cell_anchor.to(dtype=dtype, device=device) for cell_anchor in self.cell_anchors] def num_anchors_per_location(self): return [len(s) * len(a) for s, a in zip(self.sizes, self.aspect_ratios)] # For every combination of (a, (g, s), i) in (self.cell_anchors, zip(grid_sizes, strides), 0:2), # output g[i] anchors that are s[i] distance apart in direction i, with the same dimensions as a. def grid_anchors(self, grid_sizes: List[List[int]], strides: List[List[Tensor]]) -> List[Tensor]: anchors = [] cell_anchors = self.cell_anchors assert cell_anchors is not None if not (len(grid_sizes) == len(strides) == len(cell_anchors)): raise ValueError("Anchors should be Tuple[Tuple[int]] because each feature " "map could potentially have different sizes and aspect ratios. " "There needs to be a match between the number of " "feature maps passed and the number of sizes / aspect ratios specified.") for size, stride, base_anchors in zip( grid_sizes, strides, cell_anchors ): grid_height, grid_width = size stride_height, stride_width = stride device = base_anchors.device # For output anchor, compute [x_center, y_center, x_center, y_center] shifts_x = torch.arange( 0, grid_width, dtype=torch.float32, device=device ) * stride_width shifts_y = torch.arange( 0, grid_height, dtype=torch.float32, device=device ) * stride_height shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) shift_x = shift_x.reshape(-1) shift_y = shift_y.reshape(-1) shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) # For every (base anchor, output anchor) pair, # offset each zero-centered base anchor by the center of the output anchor. anchors.append( (shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4) ) return anchors def forward(self, image_list: ImageList, feature_maps: List[Tensor]) -> List[Tensor]: grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] image_size = image_list.tensors.shape[-2:] dtype, device = feature_maps[0].dtype, feature_maps[0].device strides = [[torch.tensor(image_size[0] // g[0], dtype=torch.int64, device=device), torch.tensor(image_size[1] // g[1], dtype=torch.int64, device=device)] for g in grid_sizes] self.set_cell_anchors(dtype, device) anchors_over_all_feature_maps = self.grid_anchors(grid_sizes, strides) anchors: List[List[torch.Tensor]] = [] for _ in range(len(image_list.image_sizes)): anchors_in_image = [anchors_per_feature_map for anchors_per_feature_map in anchors_over_all_feature_maps] anchors.append(anchors_in_image) anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors] return anchors
44.393939
117
0.636519
763ab4ee80df1b0a20c7881ccd062ebbae8175e8
250
py
Python
custom/up_nrhm/urls.py
kkrampa/commcare-hq
d64d7cad98b240325ad669ccc7effb07721b4d44
[ "BSD-3-Clause" ]
1
2020-05-05T13:10:01.000Z
2020-05-05T13:10:01.000Z
custom/up_nrhm/urls.py
kkrampa/commcare-hq
d64d7cad98b240325ad669ccc7effb07721b4d44
[ "BSD-3-Clause" ]
1
2019-12-09T14:00:14.000Z
2019-12-09T14:00:14.000Z
custom/up_nrhm/urls.py
MaciejChoromanski/commcare-hq
fd7f65362d56d73b75a2c20d2afeabbc70876867
[ "BSD-3-Clause" ]
5
2015-11-30T13:12:45.000Z
2019-07-01T19:27:07.000Z
from __future__ import absolute_import from __future__ import unicode_literals from django.conf.urls import url from custom.up_nrhm.views import asha_af_report urlpatterns = [ url(r'^asha_af_report/$', asha_af_report, name='asha_af_report'), ]
25
69
0.804
26c2b6ded4fa12dcb8e5522435547b7263d92309
179
py
Python
configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
YuxinZou/mmclassification
2037260ea6c98a3b115e97727e1151a1c2c32f7a
[ "Apache-2.0" ]
1
2022-03-15T07:36:04.000Z
2022-03-15T07:36:04.000Z
configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
YuxinZou/mmclassification
2037260ea6c98a3b115e97727e1151a1c2c32f7a
[ "Apache-2.0" ]
5
2022-03-02T02:58:56.000Z
2022-03-23T05:51:53.000Z
configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
YuxinZou/mmclassification
2037260ea6c98a3b115e97727e1151a1c2c32f7a
[ "Apache-2.0" ]
1
2021-12-28T18:30:40.000Z
2021-12-28T18:30:40.000Z
_base_ = 'mobilenet-v2_8xb32_in1k.py' _deprecation_ = dict( expected='mobilenet-v2_8xb32_in1k.py', reference='https://github.com/open-mmlab/mmclassification/pull/508', )
25.571429
72
0.748603
aff762a7edcf62c15bcc1704da5489fd1a6c3cc7
2,535
py
Python
day8/day8.py
BLannoo/Advent-of-Code-2020
a4efa637e5885a3f849b8bad13c7115c82bdec97
[ "MIT" ]
null
null
null
day8/day8.py
BLannoo/Advent-of-Code-2020
a4efa637e5885a3f849b8bad13c7115c82bdec97
[ "MIT" ]
null
null
null
day8/day8.py
BLannoo/Advent-of-Code-2020
a4efa637e5885a3f849b8bad13c7115c82bdec97
[ "MIT" ]
null
null
null
from dataclasses import dataclass def test_silver_example(): assert 5 == run_till_loop(read_instructions("example.txt"))[0] def test_silver(): assert 1548 == run_till_loop(read_instructions("input.txt"))[0] def test_gold_example(): assert 8 == run_till_loop(read_instructions("example.txt"), True)[0] def test_gold(): assert 1375 == run_till_loop(read_instructions("input.txt"), True)[0] @dataclass(frozen=True) class Instruction: description: str def execute(self): if self.operation() == "nop": return 1, 0 if self.operation() == "acc": return 1, self.argument() assert self.operation() == "jmp" return self.argument(), 0 def operation(self): return self.description[:3] def argument(self): return int(self.description[3:]) def read_instructions(file_name: str): with open(file_name) as file: instructions = [ Instruction(line) for line in file.read().split("\n") ] return instructions def run_till_loop(instructions, branching=False, next_pointer=0): pointers = [next_pointer] accumulator = 0 while pointers[-1] not in pointers[:-2]: pointer_increment, accumulator_increment = instructions[pointers[-1]].execute() next_pointer = pointers[-1] + pointer_increment pointers.append(next_pointer) accumulator += accumulator_increment if next_pointer == len(instructions): return accumulator, next_pointer next_instruction = instructions[next_pointer] if branching and "acc" != next_instruction.operation(): corrected_instructions = correct_instructions(instructions, next_pointer) branch_accumulator, final_pointer = run_till_loop(corrected_instructions, False, next_pointer) if final_pointer == len(instructions): return branch_accumulator + accumulator, final_pointer return accumulator, next_pointer def correct_instructions(instructions, next_pointer): next_instruction = instructions[next_pointer] corrected_instructions = instructions.copy() if "nop" == next_instruction.operation(): correction = "jmp" elif "jmp" == next_instruction.operation(): correction = "nop" else: raise Exception(f"Invalid operation {next_instruction.operation()}") corrected_instructions[next_pointer] = Instruction(f"{correction} {next_instruction.argument()}") return corrected_instructions
31.296296
106
0.67929
71d0832275c7552dd377158c32acab0a02ee0a0a
104,399
py
Python
src/com/dtmilano/android/viewclient.py
Fuzion24/AndroidViewClient
b1dad1f059cb564aca8e55247dc16d55a3248ee9
[ "Apache-2.0" ]
3
2016-06-22T17:24:57.000Z
2020-05-29T20:08:18.000Z
src/com/dtmilano/android/viewclient.py
Fuzion24/AndroidViewClient
b1dad1f059cb564aca8e55247dc16d55a3248ee9
[ "Apache-2.0" ]
null
null
null
src/com/dtmilano/android/viewclient.py
Fuzion24/AndroidViewClient
b1dad1f059cb564aca8e55247dc16d55a3248ee9
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Copyright (C) 2012-2014 Diego Torres Milano Created on Feb 2, 2012 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. @author: Diego Torres Milano ''' __version__ = '8.6.0' import sys import warnings if sys.executable: if 'monkeyrunner' in sys.executable: warnings.warn( ''' You should use a 'python' interpreter, not 'monkeyrunner' for this module ''', RuntimeWarning) import subprocess import re import socket import os import types import time import signal import copy import pickle import platform import xml.parsers.expat import unittest from com.dtmilano.android.adb import adbclient DEBUG = False DEBUG_DEVICE = DEBUG and False DEBUG_RECEIVED = DEBUG and False DEBUG_TREE = DEBUG and False DEBUG_GETATTR = DEBUG and False DEBUG_CALL = DEBUG and False DEBUG_COORDS = DEBUG and False DEBUG_TOUCH = DEBUG and False DEBUG_STATUSBAR = DEBUG and False DEBUG_WINDOWS = DEBUG and False DEBUG_BOUNDS = DEBUG and False DEBUG_DISTANCE = DEBUG and False WARNINGS = False VIEW_SERVER_HOST = 'localhost' VIEW_SERVER_PORT = 4939 ADB_DEFAULT_PORT = 5555 OFFSET = 25 ''' This assumes the smallest touchable view on the screen is approximately 50px x 50px and touches it at M{(x+OFFSET, y+OFFSET)} ''' USE_ADB_CLIENT_TO_GET_BUILD_PROPERTIES = True ''' Use C{AdbClient} to obtain the needed properties. If this is C{False} then C{adb shell getprop} is used ''' SKIP_CERTAIN_CLASSES_IN_GET_XY_ENABLED = False ''' Skips some classes related with the Action Bar and the PhoneWindow$DecorView in the coordinates calculation @see: L{View.getXY()} ''' VIEW_CLIENT_TOUCH_WORKAROUND_ENABLED = False ''' Under some conditions the touch event should be longer [t(DOWN) << t(UP)]. C{True} enables a workaround to delay the events.''' # some device properties VERSION_SDK_PROPERTY = 'ro.build.version.sdk' VERSION_RELEASE_PROPERTY = 'ro.build.version.release' # some constants for the attributes ID_PROPERTY = 'mID' ID_PROPERTY_UI_AUTOMATOR = 'uniqueId' TEXT_PROPERTY = 'text:mText' TEXT_PROPERTY_API_10 = 'mText' TEXT_PROPERTY_UI_AUTOMATOR = 'text' WS = u"\xfe" # the whitespace replacement char for TEXT_PROPERTY LEFT_PROPERTY = 'layout:mLeft' LEFT_PROPERTY_API_8 = 'mLeft' TOP_PROPERTY = 'layout:mTop' TOP_PROPERTY_API_8 = 'mTop' WIDTH_PROPERTY = 'layout:getWidth()' WIDTH_PROPERTY_API_8 = 'getWidth()' HEIGHT_PROPERTY = 'layout:getHeight()' HEIGHT_PROPERTY_API_8 = 'getHeight()' GET_VISIBILITY_PROPERTY = 'getVisibility()' LAYOUT_TOP_MARGIN_PROPERTY = 'layout:layout_topMargin' IS_FOCUSED_PROPERTY_UI_AUTOMATOR = 'focused' IS_FOCUSED_PROPERTY = 'focus:isFocused()' # visibility VISIBLE = 0x0 INVISIBLE = 0x4 GONE = 0x8 RegexType = type(re.compile('')) IP_RE = re.compile('^(\d{1,3}\.){3}\d{1,3}$') ID_RE = re.compile('id/([^/]*)(/(\d+))?') def _nd(name): ''' @return: Returns a named decimal regex ''' return '(?P<%s>\d+)' % name def _nh(name): ''' @return: Returns a named hex regex ''' return '(?P<%s>[0-9a-f]+)' % name def _ns(name, greedy=False): ''' NOTICE: this is using a non-greedy (or minimal) regex @type name: str @param name: the name used to tag the expression @type greedy: bool @param greedy: Whether the regex is greedy or not @return: Returns a named string regex (only non-whitespace characters allowed) ''' return '(?P<%s>\S+%s)' % (name, '' if greedy else '?') class Window: ''' Window class ''' def __init__(self, num, winId, activity, wvx, wvy, wvw, wvh, px, py, visibility): ''' Constructor @type num: int @param num: Ordering number in Window Manager @type winId: str @param winId: the window ID @type activity: str @param activity: the activity (or sometimes other component) owning the window @type wvx: int @param wvx: window's virtual X @type wvy: int @param wvy: window's virtual Y @type wvw: int @param wvw: window's virtual width @type wvh: int @param wvh: window's virtual height @type px: int @param px: parent's X @type py: int @param py: parent's Y @type visibility: int @param visibility: visibility of the window ''' if DEBUG_COORDS: print >> sys.stderr, "Window(%d, %s, %s, %d, %d, %d, %d, %d, %d, %d)" % \ (num, winId, activity, wvx, wvy, wvw, wvh, px, py, visibility) self.num = num self.winId = winId self.activity = activity self.wvx = wvx self.wvy = wvy self.wvw = wvw self.wvh = wvh self.px = px self.py = py self.visibility = visibility def __str__(self): return "Window(%d, wid=%s, a=%s, x=%d, y=%d, w=%d, h=%d, px=%d, py=%d, v=%d)" % \ (self.num, self.winId, self.activity, self.wvx, self.wvy, self.wvw, self.wvh, self.px, self.py, self.visibility) class ViewNotFoundException(Exception): ''' ViewNotFoundException is raised when a View is not found. ''' def __init__(self, attr, value, root): if isinstance(value, RegexType): msg = "Couldn't find View with %s that matches '%s' in tree with root=%s" % (attr, value.pattern, root) else: msg = "Couldn't find View with %s='%s' in tree with root=%s" % (attr, value, root) super(Exception, self).__init__(msg) class View: ''' View class ''' @staticmethod def factory(arg1, arg2, version=-1, forceviewserveruse=False): ''' View factory @type arg1: ClassType or dict @type arg2: View instance or AdbClient ''' if type(arg1) == types.ClassType: cls = arg1 attrs = None else: cls = None attrs = arg1 if isinstance(arg2, View): view = arg2 device = None else: device = arg2 view = None if attrs and attrs.has_key('class'): clazz = attrs['class'] if clazz == 'android.widget.TextView': return TextView(attrs, device, version, forceviewserveruse) elif clazz == 'android.widget.EditText': return EditText(attrs, device, version, forceviewserveruse) else: return View(attrs, device, version, forceviewserveruse) elif cls: if view: return cls.__copy(view) else: return cls(attrs, device, version, forceviewserveruse) elif view: return copy.copy(view) else: return View(attrs, device, version, forceviewserveruse) @classmethod def __copy(cls, view): ''' Copy constructor ''' return cls(view.map, view.device, view.version, view.forceviewserveruse) def __init__(self, map, device, version=-1, forceviewserveruse=False): ''' Constructor @type map: map @param map: the map containing the (attribute, value) pairs @type device: MonkeyDevice @param device: the device containing this View @type version: int @param version: the Android SDK version number of the platform where this View belongs. If this is C{-1} then the Android SDK version will be obtained in this constructor. @type forceviewserveruse: boolean @param forceviewserveruse: Force the use of C{ViewServer} even if the conditions were given to use C{UiAutomator}. ''' self.map = map ''' The map that contains the C{attr},C{value} pairs ''' self.device = device ''' The MonkeyDevice ''' self.children = [] ''' The children of this View ''' self.parent = None ''' The parent of this View ''' self.windows = {} self.currentFocus = None ''' The current focus ''' self.build = {} ''' Build properties ''' self.version = version ''' API version number ''' self.forceviewserveruse = forceviewserveruse ''' Force ViewServer use ''' if version != -1: self.build[VERSION_SDK_PROPERTY] = version else: try: if USE_ADB_CLIENT_TO_GET_BUILD_PROPERTIES: self.build[VERSION_SDK_PROPERTY] = int(device.getProperty(VERSION_SDK_PROPERTY)) else: self.build[VERSION_SDK_PROPERTY] = int(device.shell('getprop ' + VERSION_SDK_PROPERTY)[:-2]) except: self.build[VERSION_SDK_PROPERTY] = -1 version = self.build[VERSION_SDK_PROPERTY] self.useUiAutomator = (version >= 16) and not forceviewserveruse ''' Whether to use UIAutomator or ViewServer ''' self.idProperty = None ''' The id property depending on the View attribute format ''' self.textProperty = None ''' The text property depending on the View attribute format ''' self.leftProperty = None ''' The left property depending on the View attribute format ''' self.topProperty = None ''' The top property depending on the View attribute format ''' self.widthProperty = None ''' The width property depending on the View attribute format ''' self.heightProperty = None ''' The height property depending on the View attribute format ''' self.isFocusedProperty = None ''' The focused property depending on the View attribute format ''' if version >= 16 and self.useUiAutomator: self.idProperty = ID_PROPERTY_UI_AUTOMATOR self.textProperty = TEXT_PROPERTY_UI_AUTOMATOR self.leftProperty = LEFT_PROPERTY self.topProperty = TOP_PROPERTY self.widthProperty = WIDTH_PROPERTY self.heightProperty = HEIGHT_PROPERTY self.isFocusedProperty = IS_FOCUSED_PROPERTY_UI_AUTOMATOR elif version > 10 and (version < 16 or self.useUiAutomator): self.idProperty = ID_PROPERTY self.textProperty = TEXT_PROPERTY self.leftProperty = LEFT_PROPERTY self.topProperty = TOP_PROPERTY self.widthProperty = WIDTH_PROPERTY self.heightProperty = HEIGHT_PROPERTY self.isFocusedProperty = IS_FOCUSED_PROPERTY elif version == 10: self.idProperty = ID_PROPERTY self.textProperty = TEXT_PROPERTY_API_10 self.leftProperty = LEFT_PROPERTY self.topProperty = TOP_PROPERTY self.widthProperty = WIDTH_PROPERTY self.heightProperty = HEIGHT_PROPERTY self.isFocusedProperty = IS_FOCUSED_PROPERTY elif version >= 7 and version < 10: self.idProperty = ID_PROPERTY self.textProperty = TEXT_PROPERTY_API_10 self.leftProperty = LEFT_PROPERTY_API_8 self.topProperty = TOP_PROPERTY_API_8 self.widthProperty = WIDTH_PROPERTY_API_8 self.heightProperty = HEIGHT_PROPERTY_API_8 self.isFocusedProperty = IS_FOCUSED_PROPERTY elif version > 0 and version < 7: self.idProperty = ID_PROPERTY self.textProperty = TEXT_PROPERTY_API_10 self.leftProperty = LEFT_PROPERTY self.topProperty = TOP_PROPERTY self.widthProperty = WIDTH_PROPERTY self.heightProperty = HEIGHT_PROPERTY self.isFocusedProperty = IS_FOCUSED_PROPERTY elif version == -1: self.idProperty = ID_PROPERTY self.textProperty = TEXT_PROPERTY self.leftProperty = LEFT_PROPERTY self.topProperty = TOP_PROPERTY self.widthProperty = WIDTH_PROPERTY self.heightProperty = HEIGHT_PROPERTY self.isFocusedProperty = IS_FOCUSED_PROPERTY else: self.idProperty = ID_PROPERTY self.textProperty = TEXT_PROPERTY self.leftProperty = LEFT_PROPERTY self.topProperty = TOP_PROPERTY self.widthProperty = WIDTH_PROPERTY self.heightProperty = HEIGHT_PROPERTY self.isFocusedProperty = IS_FOCUSED_PROPERTY def __getitem__(self, key): return self.map[key] def __getattr__(self, name): if DEBUG_GETATTR: print >>sys.stderr, "__getattr__(%s) version: %d" % (name, self.build[VERSION_SDK_PROPERTY]) # NOTE: # I should try to see if 'name' is a defined method # but it seems that if I call locals() here an infinite loop is entered if self.map.has_key(name): r = self.map[name] elif self.map.has_key(name + '()'): # the method names are stored in the map with their trailing '()' r = self.map[name + '()'] elif name.count("_") > 0: mangledList = self.allPossibleNamesWithColon(name) mangledName = self.intersection(mangledList, self.map.keys()) if len(mangledName) > 0 and self.map.has_key(mangledName[0]): r = self.map[mangledName[0]] else: # Default behavior raise AttributeError, name else: # try removing 'is' prefix if DEBUG_GETATTR: print >> sys.stderr, " __getattr__: trying without 'is' prefix" suffix = name[2:].lower() if self.map.has_key(suffix): r = self.map[suffix] else: # Default behavior raise AttributeError, name # if the method name starts with 'is' let's assume its return value is boolean # if name[:2] == 'is': # r = True if r == 'true' else False if r == 'true': r = True elif r == 'false': r = False # this should not cached in some way def innerMethod(): if DEBUG_GETATTR: print >>sys.stderr, "innerMethod: %s returning %s" % (innerMethod.__name__, r) return r innerMethod.__name__ = name # this should work, but then there's problems with the arguments of innerMethod # even if innerMethod(self) is added #setattr(View, innerMethod.__name__, innerMethod) #setattr(self, innerMethod.__name__, innerMethod) return innerMethod def __call__(self, *args, **kwargs): if DEBUG_CALL: print >>sys.stderr, "__call__(%s)" % (args if args else None) def getClass(self): ''' Gets the L{View} class @return: the L{View} class or C{None} if not defined ''' try: return self.map['class'] except: return None def getId(self): ''' Gets the L{View} Id @return: the L{View} C{Id} or C{None} if not defined @see: L{getUniqueId()} ''' try: return self.map['resource-id'] except: pass try: return self.map[self.idProperty] except: return None def getContentDescription(self): ''' Gets the content description. ''' try: return self.map['content-desc'] except: return None def getParent(self): ''' Gets the parent. ''' return self.parent def getText(self): ''' Gets the text attribute. @return: the text attribute or C{None} if not defined ''' try: return self.map[self.textProperty] except Exception: return None def getHeight(self): ''' Gets the height. ''' if self.useUiAutomator: return self.map['bounds'][1][1] - self.map['bounds'][0][1] else: try: return int(self.map[self.heightProperty]) except: return 0 def getWidth(self): ''' Gets the width. ''' if self.useUiAutomator: return self.map['bounds'][1][0] - self.map['bounds'][0][0] else: try: return int(self.map[self.widthProperty]) except: return 0 def getUniqueId(self): ''' Gets the unique Id of this View. @see: L{ViewClient.__splitAttrs()} for a discussion on B{Unique Ids} ''' try: return self.map['uniqueId'] except: return None def getVisibility(self): ''' Gets the View visibility ''' try: if self.map[GET_VISIBILITY_PROPERTY] == 'VISIBLE': return VISIBLE elif self.map[GET_VISIBILITY_PROPERTY] == 'INVISIBLE': return INVISIBLE elif self.map[GET_VISIBILITY_PROPERTY] == 'GONE': return GONE else: return -2 except: return -1 def getX(self): ''' Gets the View X coordinate ''' if DEBUG_COORDS: print >>sys.stderr, "getX(%s %s ## %s)" % (self.getClass(), self.getId(), self.getUniqueId()) x = 0 if self.useUiAutomator: x = self.map['bounds'][0][0] else: try: if GET_VISIBILITY_PROPERTY in self.map and self.map[GET_VISIBILITY_PROPERTY] == 'VISIBLE': _x = int(self.map[self.leftProperty]) if DEBUG_COORDS: print >>sys.stderr, " getX: VISIBLE adding %d" % _x x += _x except: warnings.warn("View %s has no '%s' property" % (self.getId(), self.leftProperty)) if DEBUG_COORDS: print >>sys.stderr, " getX: returning %d" % (x) return x def getY(self): ''' Gets the View Y coordinate ''' if DEBUG_COORDS: print >>sys.stderr, "getY(%s %s ## %s)" % (self.getClass(), self.getId(), self.getUniqueId()) y = 0 if self.useUiAutomator: y = self.map['bounds'][0][1] else: try: if GET_VISIBILITY_PROPERTY in self.map and self.map[GET_VISIBILITY_PROPERTY] == 'VISIBLE': _y = int(self.map[self.topProperty]) if DEBUG_COORDS: print >>sys.stderr, " getY: VISIBLE adding %d" % _y y += _y except: warnings.warn("View %s has no '%s' property" % (self.getId(), self.topProperty)) if DEBUG_COORDS: print >>sys.stderr, " getY: returning %d" % (y) return y def getXY(self, debug=False): ''' Returns the I{screen} coordinates of this C{View}. @return: The I{screen} coordinates of this C{View} ''' if DEBUG_COORDS or debug: try: id = self.getId() except: id = "NO_ID" print >> sys.stderr, "getXY(%s %s ## %s)" % (self.getClass(), id, self.getUniqueId()) x = self.getX() y = self.getY() if self.useUiAutomator: return (x, y) parent = self.parent if DEBUG_COORDS: print >> sys.stderr, " getXY: x=%s y=%s parent=%s" % (x, y, parent.getUniqueId() if parent else "None") hx = 0 ''' Hierarchy accumulated X ''' hy = 0 ''' Hierarchy accumulated Y ''' if DEBUG_COORDS: print >> sys.stderr, " getXY: not using UiAutomator, calculating parent coordinates" while parent != None: if DEBUG_COORDS: print >> sys.stderr, " getXY: parent: %s %s <<<<" % (parent.getClass(), parent.getId()) if SKIP_CERTAIN_CLASSES_IN_GET_XY_ENABLED: if parent.getClass() in [ 'com.android.internal.widget.ActionBarView', 'com.android.internal.widget.ActionBarContextView', 'com.android.internal.view.menu.ActionMenuView', 'com.android.internal.policy.impl.PhoneWindow$DecorView' ]: if DEBUG_COORDS: print >> sys.stderr, " getXY: skipping %s %s (%d,%d)" % (parent.getClass(), parent.getId(), parent.getX(), parent.getY()) parent = parent.parent continue if DEBUG_COORDS: print >> sys.stderr, " getXY: parent=%s x=%d hx=%d y=%d hy=%d" % (parent.getId(), x, hx, y, hy) hx += parent.getX() hy += parent.getY() parent = parent.parent (wvx, wvy) = self.__dumpWindowsInformation(debug=debug) if DEBUG_COORDS or debug: print >>sys.stderr, " getXY: wv=(%d, %d) (windows information)" % (wvx, wvy) try: fw = self.windows[self.currentFocus] if DEBUG_STATUSBAR: print >> sys.stderr, " getXY: focused window=", fw print >> sys.stderr, " getXY: deciding whether to consider statusbar offset because current focused windows is at", (fw.wvx, fw.wvy), "parent", (fw.px, fw.py) except KeyError: fw = None (sbw, sbh) = self.__obtainStatusBarDimensionsIfVisible() if DEBUG_COORDS or debug: print >>sys.stderr, " getXY: sb=(%d, %d) (statusbar dimensions)" % (sbw, sbh) statusBarOffset = 0 pwx = 0 pwy = 0 if fw: if DEBUG_COORDS: print >>sys.stderr, " getXY: focused window=", fw, "sb=", (sbw, sbh) if fw.wvy <= sbh: # it's very unlikely that fw.wvy < sbh, that is a window over the statusbar if DEBUG_STATUSBAR: print >>sys.stderr, " getXY: yes, considering offset=", sbh statusBarOffset = sbh else: if DEBUG_STATUSBAR: print >>sys.stderr, " getXY: no, ignoring statusbar offset fw.wvy=", fw.wvy, ">", sbh if fw.py == fw.wvy: if DEBUG_STATUSBAR: print >>sys.stderr, " getXY: but wait, fw.py == fw.wvy so we are adjusting by ", (fw.px, fw.py) pwx = fw.px pwy = fw.py else: if DEBUG_STATUSBAR: print >>sys.stderr, " getXY: fw.py=%d <= fw.wvy=%d, no adjustment" % (fw.py, fw.wvy) if DEBUG_COORDS or DEBUG_STATUSBAR or debug: print >>sys.stderr, " getXY: returning (%d, %d) ***" % (x+hx+wvx+pwx, y+hy+wvy-statusBarOffset+pwy) print >>sys.stderr, " x=%d+%d+%d+%d" % (x,hx,wvx,pwx) print >>sys.stderr, " y=%d+%d+%d-%d+%d" % (y,hy,wvy,statusBarOffset,pwy) return (x+hx+wvx+pwx, y+hy+wvy-statusBarOffset+pwy) def getCoords(self): ''' Gets the coords of the View @return: A tuple containing the View's coordinates ((L, T), (R, B)) ''' if DEBUG_COORDS: print >>sys.stderr, "getCoords(%s %s ## %s)" % (self.getClass(), self.getId(), self.getUniqueId()) (x, y) = self.getXY(); w = self.getWidth() h = self.getHeight() return ((x, y), (x+w, y+h)) def getPositionAndSize(self): ''' Gets the position and size (X,Y, W, H) @return: A tuple containing the View's coordinates (X, Y, W, H) ''' (x, y) = self.getXY(); w = self.getWidth() h = self.getHeight() return (x, y, w, h) def getCenter(self): ''' Gets the center coords of the View @author: U{Dean Morin <https://github.com/deanmorin>} ''' (left, top), (right, bottom) = self.getCoords() x = left + (right - left) / 2 y = top + (bottom - top) / 2 return (x, y) def __obtainStatusBarDimensionsIfVisible(self): sbw = 0 sbh = 0 for winId in self.windows: w = self.windows[winId] if DEBUG_COORDS: print >> sys.stderr, " __obtainStatusBarDimensionsIfVisible: w=", w, " w.activity=", w.activity, "%%%" if w.activity == 'StatusBar': if w.wvy == 0 and w.visibility == 0: if DEBUG_COORDS: print >> sys.stderr, " __obtainStatusBarDimensionsIfVisible: statusBar=", (w.wvw, w.wvh) sbw = w.wvw sbh = w.wvh break return (sbw, sbh) def __obtainVxVy(self, m): wvx = int(m.group('vx')) wvy = int(m.group('vy')) return wvx, wvy def __obtainVwVh(self, m): (wvx, wvy) = self.__obtainVxVy(m) wvx1 = int(m.group('vx1')) wvy1 = int(m.group('vy1')) return (wvx1-wvx, wvy1-wvy) def __obtainPxPy(self, m): px = int(m.group('px')) py = int(m.group('py')) return (px, py) def __dumpWindowsInformation(self, debug=False): self.windows = {} self.currentFocus = None dww = self.device.shell('dumpsys window windows') if DEBUG_WINDOWS or debug: print >> sys.stderr, dww lines = dww.split('\n') widRE = re.compile('^ *Window #%s Window{%s (u\d+ )?%s?.*}:' % (_nd('num'), _nh('winId'), _ns('activity', greedy=True))) currentFocusRE = re.compile('^ mCurrentFocus=Window{%s .*' % _nh('winId')) viewVisibilityRE = re.compile(' mViewVisibility=0x%s ' % _nh('visibility')) # This is for 4.0.4 API-15 containingFrameRE = re.compile('^ *mContainingFrame=\[%s,%s\]\[%s,%s\] mParentFrame=\[%s,%s\]\[%s,%s\]' % (_nd('cx'), _nd('cy'), _nd('cw'), _nd('ch'), _nd('px'), _nd('py'), _nd('pw'), _nd('ph'))) contentFrameRE = re.compile('^ *mContentFrame=\[%s,%s\]\[%s,%s\] mVisibleFrame=\[%s,%s\]\[%s,%s\]' % (_nd('x'), _nd('y'), _nd('w'), _nd('h'), _nd('vx'), _nd('vy'), _nd('vx1'), _nd('vy1'))) # This is for 4.1 API-16 framesRE = re.compile('^ *Frames: containing=\[%s,%s\]\[%s,%s\] parent=\[%s,%s\]\[%s,%s\]' % (_nd('cx'), _nd('cy'), _nd('cw'), _nd('ch'), _nd('px'), _nd('py'), _nd('pw'), _nd('ph'))) contentRE = re.compile('^ *content=\[%s,%s\]\[%s,%s\] visible=\[%s,%s\]\[%s,%s\]' % (_nd('x'), _nd('y'), _nd('w'), _nd('h'), _nd('vx'), _nd('vy'), _nd('vx1'), _nd('vy1'))) policyVisibilityRE = re.compile('mPolicyVisibility=%s ' % _ns('policyVisibility', greedy=True)) for l in range(len(lines)): m = widRE.search(lines[l]) if m: num = int(m.group('num')) winId = m.group('winId') activity = m.group('activity') wvx = 0 wvy = 0 wvw = 0 wvh = 0 px = 0 py = 0 visibility = -1 policyVisibility = 0x0 for l2 in range(l+1, len(lines)): m = widRE.search(lines[l2]) if m: l += (l2-1) break m = viewVisibilityRE.search(lines[l2]) if m: visibility = int(m.group('visibility')) if DEBUG_COORDS: print >> sys.stderr, "__dumpWindowsInformation: visibility=", visibility if self.build[VERSION_SDK_PROPERTY] >= 17: wvx, wvy = (0, 0) wvw, wvh = (0, 0) if self.build[VERSION_SDK_PROPERTY] >= 16: m = framesRE.search(lines[l2]) if m: px, py = self.__obtainPxPy(m) m = contentRE.search(lines[l2+1]) if m: # FIXME: the information provided by 'dumpsys window windows' in 4.2.1 (API 16) # when there's a system dialog may not be correct and causes the View coordinates # be offset by this amount, see # https://github.com/dtmilano/AndroidViewClient/issues/29 wvx, wvy = self.__obtainVxVy(m) wvw, wvh = self.__obtainVwVh(m) elif self.build[VERSION_SDK_PROPERTY] == 15: m = containingFrameRE.search(lines[l2]) if m: px, py = self.__obtainPxPy(m) m = contentFrameRE.search(lines[l2+1]) if m: wvx, wvy = self.__obtainVxVy(m) wvw, wvh = self.__obtainVwVh(m) elif self.build[VERSION_SDK_PROPERTY] == 10: m = containingFrameRE.search(lines[l2]) if m: px, py = self.__obtainPxPy(m) m = contentFrameRE.search(lines[l2+1]) if m: wvx, wvy = self.__obtainVxVy(m) wvw, wvh = self.__obtainVwVh(m) else: warnings.warn("Unsupported Android version %d" % self.build[VERSION_SDK_PROPERTY]) #print >> sys.stderr, "Searching policyVisibility in", lines[l2] m = policyVisibilityRE.search(lines[l2]) if m: policyVisibility = 0x0 if m.group('policyVisibility') == 'true' else 0x8 self.windows[winId] = Window(num, winId, activity, wvx, wvy, wvw, wvh, px, py, visibility + policyVisibility) else: m = currentFocusRE.search(lines[l]) if m: self.currentFocus = m.group('winId') if self.currentFocus in self.windows and self.windows[self.currentFocus].visibility == 0: if DEBUG_COORDS or debug: print >> sys.stderr, "__dumpWindowsInformation: focus=", self.currentFocus print >> sys.stderr, "__dumpWindowsInformation:", self.windows[self.currentFocus] w = self.windows[self.currentFocus] return (w.wvx, w.wvy) else: if DEBUG_COORDS: print >> sys.stderr, "__dumpWindowsInformation: (0,0)" return (0,0) def touch(self, type=adbclient.DOWN_AND_UP): ''' Touches the center of this C{View} ''' (x, y) = self.getCenter() if DEBUG_TOUCH: print >>sys.stderr, "should touch @ (%d, %d)" % (x, y) if VIEW_CLIENT_TOUCH_WORKAROUND_ENABLED and type == adbclient.DOWN_AND_UP: if WARNINGS: print >> sys.stderr, "ViewClient: touch workaround enabled" self.device.touch(x, y, adbclient.DOWN) time.sleep(50/1000.0) self.device.touch(x+10, y+10, adbclient.UP) else: self.device.touch(x, y, type) def longTouch(self, duration=2000): ''' Long touches this C{View} @param duration: duration in ms ''' c = self.getCenter() self.device.longTouch(c, c, duration, 1) def allPossibleNamesWithColon(self, name): l = [] for i in range(name.count("_")): name = name.replace("_", ":", 1) l.append(name) return l def intersection(self, l1, l2): return list(set(l1) & set(l2)) def containsPoint(self, (x, y)): (X, Y, W, H) = self.getPositionAndSize() return (((x >= X) and (x <= (X+W)) and ((y >= Y) and (y <= (Y+H))))) def add(self, child): ''' Adds a child @type child: View @param child: The child to add ''' child.parent = self self.children.append(child) def isClickable(self): return self.__getattr__('isClickable')() def isFocused(self): ''' Gets the focused value @return: the focused value. If the property cannot be found returns C{False} ''' try: return True if self.map[self.isFocusedProperty].lower() == 'true' else False except Exception: return False def variableNameFromId(self): _id = self.getId() if _id: var = _id.replace('.', '_').replace(':', '___').replace('/', '_') else: _id = self.getUniqueId() m = ID_RE.match(_id) if m: var = m.group(1) if m.group(3): var += m.group(3) if re.match('^\d', var): var = 'id_' + var return var def writeImageToFile(self, filename, format="PNG"): ''' Write the View image to the specified filename in the specified format. @type filename: str @param filename: Absolute path and optional filename receiving the image. If this points to a directory, then the filename is determined by this View unique ID and format extension. @type format: str @param format: Image format (default format is PNG) ''' if not os.path.isabs(filename): raise ValueError("writeImageToFile expects an absolute path") if os.path.isdir(filename): filename = os.path.join(filename, self.variableNameFromId() + '.' + format.lower()) if DEBUG: print >> sys.stderr, "writeImageToFile: saving image to '%s' in %s format" % (filename, format) #self.device.takeSnapshot().getSubImage(self.getPositionAndSize()).writeToFile(filename, format) # crop: # im.crop(box) ⇒ image # Returns a copy of a rectangular region from the current image. # The box is a 4-tuple defining the left, upper, right, and lower pixel coordinate. ((l, t), (r, b)) = self.getCoords() box = (l, t, r, b) if DEBUG: print >> sys.stderr, "writeImageToFile: cropping", box, " reconnect=", self.device.reconnect self.device.takeSnapshot(reconnect=self.device.reconnect).crop(box).save(filename, format) def __smallStr__(self): __str = unicode("View[", 'utf-8', 'replace') if "class" in self.map: __str += " class=" + self.map['class'] __str += " id=%s" % self.getId() __str += " ] parent=" if self.parent and "class" in self.parent.map: __str += "%s" % self.parent.map["class"] else: __str += "None" return __str def __tinyStr__(self): __str = unicode("View[", 'utf-8', 'replace') if "class" in self.map: __str += " class=" + re.sub('.*\.', '', self.map['class']) __str += " id=%s" % self.getId() __str += " ]" return __str def __microStr__(self): __str = unicode('', 'utf-8', 'replace') if "class" in self.map: __str += re.sub('.*\.', '', self.map['class']) id = self.getId().replace('id/no_id/', '-') __str += id ((L, T), (R, B)) = self.getCoords() __str += '@%04d%04d%04d%04d' % (L, T, R, B) __str += '' return __str def __str__(self): __str = unicode("View[", 'utf-8', 'replace') if "class" in self.map: __str += " class=" + self.map["class"].__str__() + " " for a in self.map: __str += a + "=" # decode() works only on python's 8-bit strings if isinstance(self.map[a], unicode): __str += self.map[a] else: __str += unicode(str(self.map[a]), 'utf-8', errors='replace') __str += " " __str += "] parent=" if self.parent: if "class" in self.parent.map: __str += "%s" % self.parent.map["class"] else: __str += self.parent.getId().__str__() else: __str += "None" return __str class TextView(View): ''' TextView class. ''' pass class EditText(TextView): ''' EditText class. ''' def type(self, text, alreadyTouch = False): if not alreadyTouch: self.touch() time.sleep(0.5) escaped = text.replace('%s', '\\%s') encoded = escaped.replace(' ', '%s') self.device.type(encoded) time.sleep(0.5) def setText(self, text): """ This function makes sure that any previously entered text is deleted before setting the value of the field. """ if self.text() == text: return self.touch() guardrail = 0 maxSize = len(self.text()) + 1 while maxSize > guardrail: guardrail += 1 self.device.press('KEYCODE_DEL', adbclient.DOWN_AND_UP) self.device.press('KEYCODE_FORWARD_DEL', adbclient.DOWN_AND_UP) self.type(text,alreadyTouch=True) def backspace(self): self.touch() time.sleep(1) self.device.press('KEYCODE_DEL', adbclient.DOWN_AND_UP) class UiAutomator2AndroidViewClient(): ''' UiAutomator XML to AndroidViewClient ''' def __init__(self, device, version): self.device = device self.version = version self.root = None self.nodeStack = [] self.parent = None self.views = [] self.idCount = 1 def StartElement(self, name, attributes): ''' Expat start element event handler ''' if name == 'hierarchy': pass elif name == 'node': # Instantiate an Element object attributes['uniqueId'] = 'id/no_id/%d' % self.idCount bounds = re.split('[\][,]', attributes['bounds']) attributes['bounds'] = ((int(bounds[1]), int(bounds[2])), (int(bounds[4]), int(bounds[5]))) if DEBUG_BOUNDS: print >> sys.stderr, "bounds=", attributes['bounds'] self.idCount += 1 child = View.factory(attributes, self.device, self.version) self.views.append(child) # Push element onto the stack and make it a child of parent if not self.nodeStack: self.root = child else: self.parent = self.nodeStack[-1] self.parent.add(child) self.nodeStack.append(child) def EndElement(self, name): ''' Expat end element event handler ''' if name == 'hierarchy': pass elif name == 'node': self.nodeStack.pop() def CharacterData(self, data): ''' Expat character data event handler ''' if data.strip(): data = data.encode() element = self.nodeStack[-1] element.cdata += data def Parse(self, uiautomatorxml): # Create an Expat parser parser = xml.parsers.expat.ParserCreate() # Set the Expat event handlers to our methods parser.StartElementHandler = self.StartElement parser.EndElementHandler = self.EndElement parser.CharacterDataHandler = self.CharacterData # Parse the XML File try: parserStatus = parser.Parse(uiautomatorxml.encode(encoding='utf-8', errors='replace'), True) except xml.parsers.expat.ExpatError, ex: print >>sys.stderr, "ERROR: Offending XML:\n", repr(uiautomatorxml) raise RuntimeError(ex) return self.root class Excerpt2Code(): ''' Excerpt XML to code ''' def __init__(self): self.data = None def StartElement(self, name, attributes): ''' Expat start element event handler ''' if name == 'excerpt': pass else: warnings.warn("Unexpected element: '%s'" % name) def EndElement(self, name): ''' Expat end element event handler ''' if name == 'excerpt': pass def CharacterData(self, data): ''' Expat character data event handler ''' if data.strip(): data = data.encode() if not self.data: self.data = data else: self.data += data def Parse(self, excerpt): # Create an Expat parser parser = xml.parsers.expat.ParserCreate() # Set the Expat event handlers to our methods parser.StartElementHandler = self.StartElement parser.EndElementHandler = self.EndElement parser.CharacterDataHandler = self.CharacterData # Parse the XML parserStatus = parser.Parse(excerpt, 1) return self.data class ViewClient: ''' ViewClient is a I{ViewServer} client. ViewServer backend ================== If not running the ViewServer is started on the target device or emulator and then the port mapping is created. UiAutomator backend =================== No service is started. ''' def __init__(self, device, serialno, adb=None, autodump=True, forceviewserveruse=False, localport=VIEW_SERVER_PORT, remoteport=VIEW_SERVER_PORT, startviewserver=True, ignoreuiautomatorkilled=False): ''' Constructor @type device: MonkeyDevice @param device: The device running the C{View server} to which this client will connect @type serialno: str @param serialno: the serial number of the device or emulator to connect to @type adb: str @param adb: the path of the C{adb} executable or None and C{ViewClient} will try to find it @type autodump: boolean @param autodump: whether an automatic dump is performed at the end of this constructor @type forceviewserveruse: boolean @param forceviewserveruse: Force the use of C{ViewServer} even if the conditions to use C{UiAutomator} are satisfied @type localport: int @param localport: the local port used in the redirection @type remoteport: int @param remoteport: the remote port used to start the C{ViewServer} in the device or emulator @type startviewserver: boolean @param startviewserver: Whether to start the B{global} ViewServer @type ignoreuiautomatorkilled: boolean @param ignoreuiautomatorkilled: Ignores received B{Killed} message from C{uiautomator} ''' if not device: raise Exception('Device is not connected') self.device = device ''' The C{MonkeyDevice} device instance ''' if not serialno: raise ValueError("Serialno cannot be None") self.serialno = self.__mapSerialNo(serialno) ''' The serial number of the device ''' if DEBUG_DEVICE: print >> sys.stderr, "ViewClient: using device with serialno", self.serialno if adb: if not os.access(adb, os.X_OK): raise Exception('adb="%s" is not executable' % adb) else: # Using adbclient we don't need adb executable yet (maybe it's needed if we want to # start adb if not running) adb = ViewClient.__obtainAdbPath() self.adb = adb ''' The adb command ''' self.root = None ''' The root node ''' self.viewsById = {} ''' The map containing all the L{View}s indexed by their L{View.getUniqueId()} ''' self.display = {} ''' The map containing the device's display properties: width, height and density ''' for prop in [ 'width', 'height', 'density' ]: self.display[prop] = -1 if USE_ADB_CLIENT_TO_GET_BUILD_PROPERTIES: try: self.display[prop] = int(device.getProperty('display.' + prop)) except: if WARNINGS: warnings.warn("Couldn't determine display %s" % prop) else: # these values are usually not defined as properties, so we stick to the -1 set # before pass self.build = {} ''' The map containing the device's build properties: version.sdk, version.release ''' for prop in [VERSION_SDK_PROPERTY, VERSION_RELEASE_PROPERTY]: self.build[prop] = -1 try: if USE_ADB_CLIENT_TO_GET_BUILD_PROPERTIES: self.build[prop] = device.getProperty(prop) else: self.build[prop] = device.shell('getprop ro.build.' + prop)[:-2] except: if WARNINGS: warnings.warn("Couldn't determine build %s" % prop) if prop == VERSION_SDK_PROPERTY: # we expect it to be an int self.build[prop] = int(self.build[prop] if self.build[prop] else -1) self.ro = {} ''' The map containing the device's ro properties: secure, debuggable ''' for prop in ['secure', 'debuggable']: try: self.ro[prop] = device.shell('getprop ro.' + prop)[:-2] except: if WARNINGS: warnings.warn("Couldn't determine ro %s" % prop) self.ro[prop] = 'UNKNOWN' self.forceViewServerUse = forceviewserveruse ''' Force the use of ViewServer even if the conditions to use UiAutomator are satisfied ''' self.useUiAutomator = (self.build[VERSION_SDK_PROPERTY] >= 16) and not forceviewserveruse # jelly bean 4.1 & 4.2 if DEBUG: print >> sys.stderr, " ViewClient.__init__: useUiAutomator=", self.useUiAutomator, "sdk=", self.build[VERSION_SDK_PROPERTY], "forceviewserveruse=", forceviewserveruse ''' If UIAutomator is supported by the device it will be used ''' self.ignoreUiAutomatorKilled = ignoreuiautomatorkilled ''' On some devices (i.e. Nexus 7 running 4.2.2) uiautomator is killed just after generating the dump file. In many cases the file is already complete so we can ask to ignore the 'Killed' message by setting L{ignoreuiautomatorkilled} to C{True}. Changes in v2.3.21 that uses C{/dev/tty} instead of a file may have turned this variable unnecessary, however it has been kept for backward compatibility. ''' if self.useUiAutomator: self.textProperty = TEXT_PROPERTY_UI_AUTOMATOR else: if self.build[VERSION_SDK_PROPERTY] <= 10: self.textProperty = TEXT_PROPERTY_API_10 else: self.textProperty = TEXT_PROPERTY if startviewserver: if not self.serviceResponse(device.shell('service call window 3')): try: self.assertServiceResponse(device.shell('service call window 1 i32 %d' % remoteport)) except: msg = 'Cannot start View server.\n' \ 'This only works on emulator and devices running developer versions.\n' \ 'Does hierarchyviewer work on your device?\n' \ 'See https://github.com/dtmilano/AndroidViewClient/wiki/Secure-mode\n\n' \ 'Device properties:\n' \ ' ro.secure=%s\n' \ ' ro.debuggable=%s\n' % (self.ro['secure'], self.ro['debuggable']) raise Exception(msg) self.localPort = localport self.remotePort = remoteport # FIXME: it seems there's no way of obtaining the serialno from the MonkeyDevice subprocess.check_call([self.adb, '-s', self.serialno, 'forward', 'tcp:%d' % self.localPort, 'tcp:%d' % self.remotePort]) self.windows = None ''' The list of windows as obtained by L{ViewClient.list()} ''' if autodump: self.dump() def __del__(self): # should clean up some things pass @staticmethod def __obtainAdbPath(): ''' Obtains the ADB path attempting know locations for different OSs ''' osName = platform.system() isWindows = False if osName.startswith('Windows'): adb = 'adb.exe' isWindows = True else: adb = 'adb' ANDROID_HOME = os.environ['ANDROID_HOME'] if os.environ.has_key('ANDROID_HOME') else '/opt/android-sdk' HOME = os.environ['HOME'] if os.environ.has_key('HOME') else '' possibleChoices = [ os.path.join(ANDROID_HOME, 'platform-tools', adb), os.path.join(HOME, "android", 'platform-tools', adb), os.path.join(HOME, "android-sdk", 'platform-tools', adb), adb, ] if osName.startswith('Windows'): possibleChoices.append(os.path.join("""C:\Program Files\Android\android-sdk\platform-tools""", adb)) possibleChoices.append(os.path.join("""C:\Program Files (x86)\Android\android-sdk\platform-tools""", adb)) elif osName.startswith('Linux'): possibleChoices.append(os.path.join("opt", "android-sdk-linux", 'platform-tools', adb)) possibleChoices.append(os.path.join(HOME, "opt", "android-sdk-linux", 'platform-tools', adb)) possibleChoices.append(os.path.join(HOME, "android-sdk-linux", 'platform-tools', adb)) elif osName.startswith('Mac'): possibleChoices.append(os.path.join("opt", "android-sdk-mac_x86", 'platform-tools', adb)) possibleChoices.append(os.path.join(HOME, "opt", "android-sdk-mac", 'platform-tools', adb)) possibleChoices.append(os.path.join(HOME, "android-sdk-mac", 'platform-tools', adb)) possibleChoices.append(os.path.join(HOME, "opt", "android-sdk-mac_x86", 'platform-tools', adb)) possibleChoices.append(os.path.join(HOME, "android-sdk-mac_x86", 'platform-tools', adb)) else: # Unsupported OS pass for exeFile in possibleChoices: if os.access(exeFile, os.X_OK): return exeFile for path in os.environ["PATH"].split(os.pathsep): exeFile = os.path.join(path, adb) if exeFile != None and os.access(exeFile, os.X_OK if not isWindows else os.F_OK): return exeFile raise Exception('adb="%s" is not executable. Did you forget to set ANDROID_HOME in the environment?' % adb) @staticmethod def __mapSerialNo(serialno): serialno = serialno.strip() #ipRE = re.compile('^\d+\.\d+.\d+.\d+$') if IP_RE.match(serialno): if DEBUG_DEVICE: print >>sys.stderr, "ViewClient: adding default port to serialno", serialno, ADB_DEFAULT_PORT return serialno + ':%d' % ADB_DEFAULT_PORT ipPortRE = re.compile('^\d+\.\d+.\d+.\d+:\d+$') if ipPortRE.match(serialno): # nothing to map return serialno if re.search("[.*()+]", serialno): raise ValueError("Regular expression not supported as serialno in ViewClient") return serialno @staticmethod def __obtainDeviceSerialNumber(device): if DEBUG_DEVICE: print >>sys.stderr, "ViewClient: obtaining serial number for connected device" serialno = device.getProperty('ro.serialno') if not serialno: serialno = device.shell('getprop ro.serialno') if serialno: serialno = serialno[:-2] if not serialno: qemu = device.shell('getprop ro.kernel.qemu') if qemu: qemu = qemu[:-2] if qemu and int(qemu) == 1: # FIXME !!!!! # this must be calculated from somewhere, though using a fixed serialno for now warnings.warn("Running on emulator but no serial number was specified then 'emulator-5554' is used") serialno = 'emulator-5554' if not serialno: # If there's only one device connected get its serialno adb = ViewClient.__obtainAdbPath() if DEBUG_DEVICE: print >>sys.stderr, " using adb=%s" % adb s = subprocess.Popen([adb, 'get-serialno'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env={}).communicate()[0][:-1] if s != 'unknown': serialno = s if DEBUG_DEVICE: print >>sys.stderr, " serialno=%s" % serialno if not serialno: warnings.warn("Couldn't obtain the serialno of the connected device") return serialno @staticmethod def setAlarm(timeout): osName = platform.system() if osName.startswith('Windows'): # alarm is not implemented in Windows return signal.alarm(timeout) @staticmethod def connectToDeviceOrExit(timeout=60, verbose=False, ignoresecuredevice=False, ignoreversioncheck=False, serialno=None): ''' Connects to a device which serial number is obtained from the script arguments if available or using the default regex C{.*}. If the connection is not successful the script exits. L{MonkeyRunner.waitForConnection()} returns a L{MonkeyDevice} even if the connection failed. Then, to detect this situation, C{device.wake()} is attempted and if it fails then it is assumed the previous connection failed. @type timeout: int @param timeout: timeout for the connection @type verbose: bool @param verbose: Verbose output @type ignoresecuredevice: bool @param ignoresecuredevice: Ignores the check for a secure device @type ignoreversioncheck: bool @param ignoreversioncheck: Ignores the check for a supported ADB version @type serialno: str @param serialno: The device or emulator serial number @return: the device and serialno used for the connection ''' progname = os.path.basename(sys.argv[0]) if serialno is None: # eat all the extra options the invoking script may have added args = sys.argv while len(args) > 1 and args[1][0] == '-': args.pop(1) serialno = args[1] if len(args) > 1 else \ os.environ['ANDROID_SERIAL'] if os.environ.has_key('ANDROID_SERIAL') \ else '.*' if IP_RE.match(serialno): # If matches an IP address format and port was not specified add the default serialno += ':%d' % ADB_DEFAULT_PORT if verbose: print >> sys.stderr, 'Connecting to a device with serialno=%s with a timeout of %d secs...' % \ (serialno, timeout) ViewClient.setAlarm(timeout+5) device = adbclient.AdbClient(serialno, ignoreversioncheck=ignoreversioncheck) ViewClient.setAlarm(0) if verbose: print >> sys.stderr, 'Connected to device with serialno=%s' % serialno secure = device.getSystemProperty('ro.secure') debuggable = device.getSystemProperty('ro.debuggable') versionProperty = device.getProperty(VERSION_SDK_PROPERTY) if versionProperty: version = int(versionProperty) else: if verbose: print "Couldn't obtain device SDK version" version = -1 # we are going to use UiAutomator for versions >= 16 that's why we ignore if the device # is secure if this is true if secure == '1' and debuggable == '0' and not ignoresecuredevice and version < 16: print >> sys.stderr, "%s: ERROR: Device is secure, AndroidViewClient won't work." % progname if verbose: print >> sys.stderr, " secure=%s debuggable=%s version=%d ignoresecuredevice=%s" % \ (secure, debuggable, version, ignoresecuredevice) sys.exit(2) if re.search("[.*()+]", serialno) and not re.search("(\d{1,3}\.){3}\d{1,3}", serialno): # if a regex was used we have to determine the serialno used serialno = ViewClient.__obtainDeviceSerialNumber(device) if verbose: print >> sys.stderr, 'Actual device serialno=%s' % serialno return device, serialno @staticmethod def traverseShowClassIdAndText(view, extraInfo=None, noextrainfo=None): ''' Shows the View class, id and text if available. This function can be used as a transform function to L{ViewClient.traverse()} @type view: I{View} @param view: the View @type extraInfo: method @param extraInfo: the View method to add extra info @type noextrainfo: bool @param noextrainfo: Don't add extra info @return: the string containing class, id, and text if available ''' try: eis = '' if extraInfo: eis = extraInfo(view).__str__() if not eis and noextrainfo: eis = noextrainfo if eis: eis = ' ' + eis return u'%s %s %s%s' % (view.getClass(), view.getId(), view.getText(), eis) except Exception, e: return u'Exception in view=%s: %s' % (view.__smallStr__(), e) @staticmethod def traverseShowClassIdTextAndUniqueId(view): ''' Shows the View class, id, text if available and unique id. This function can be used as a transform function to L{ViewClient.traverse()} @type view: I{View} @param view: the View @return: the string containing class, id, and text if available and unique Id ''' return ViewClient.traverseShowClassIdAndText(view, View.getUniqueId) @staticmethod def traverseShowClassIdTextAndContentDescription(view): ''' Shows the View class, id, text if available and unique id. This function can be used as a transform function to L{ViewClient.traverse()} @type view: I{View} @param view: the View @return: the string containing class, id, and text if available and the content description ''' return ViewClient.traverseShowClassIdAndText(view, View.getContentDescription, 'NAF') @staticmethod def traverseShowClassIdTextAndCenter(view): ''' Shows the View class, id and text if available. This function can be used as a transform function to L{ViewClient.traverse()} @type view: I{View} @param view: the View @return: the string containing class, id, and text if available ''' return ViewClient.traverseShowClassIdAndText(view, View.getCenter) @staticmethod def traverseShowClassIdTextPositionAndSize(view): ''' Shows the View class, id and text if available. This function can be used as a transform function to L{ViewClient.traverse()} @type view: I{View} @param view: the View @return: the string containing class, id, and text if available ''' return ViewClient.traverseShowClassIdAndText(view, View.getPositionAndSize) # methods that can be used to transform ViewClient.traverse output TRAVERSE_CIT = traverseShowClassIdAndText ''' An alias for L{traverseShowClassIdAndText(view)} ''' TRAVERSE_CITUI = traverseShowClassIdTextAndUniqueId ''' An alias for L{traverseShowClassIdTextAndUniqueId(view)} ''' TRAVERSE_CITCD = traverseShowClassIdTextAndContentDescription ''' An alias for L{traverseShowClassIdTextAndContentDescription(view)} ''' TRAVERSE_CITC = traverseShowClassIdTextAndCenter ''' An alias for L{traverseShowClassIdTextAndCenter(view)} ''' TRAVERSE_CITPS = traverseShowClassIdTextPositionAndSize ''' An alias for L{traverseShowClassIdTextPositionAndSize(view)} ''' @staticmethod def sleep(secs=1.0): ''' Sleeps for the specified number of seconds. @type secs: float @param secs: number of seconds ''' time.sleep(secs) def assertServiceResponse(self, response): ''' Checks whether the response received from the server is correct or raises and Exception. @type response: str @param response: Response received from the server @raise Exception: If the response received from the server is invalid ''' if not self.serviceResponse(response): raise Exception('Invalid response received from service.') def serviceResponse(self, response): ''' Checks the response received from the I{ViewServer}. @return: C{True} if the response received matches L{PARCEL_TRUE}, C{False} otherwise ''' PARCEL_TRUE = "Result: Parcel(00000000 00000001 '........')\r\n" ''' The TRUE response parcel ''' if DEBUG: print >>sys.stderr, "serviceResponse: comparing '%s' vs Parcel(%s)" % (response, PARCEL_TRUE) return response == PARCEL_TRUE def setViews(self, received): ''' Sets L{self.views} to the received value splitting it into lines. @type received: str @param received: the string received from the I{View Server} ''' if not received or received == "": raise ValueError("received is empty") self.views = [] ''' The list of Views represented as C{str} obtained after splitting it into lines after being received from the server. Done by L{self.setViews()}. ''' self.__parseTree(received.split("\n")) if DEBUG: print >>sys.stderr, "there are %d views in this dump" % len(self.views) def setViewsFromUiAutomatorDump(self, received): ''' Sets L{self.views} to the received value parsing the received XML. @type received: str @param received: the string received from the I{UI Automator} ''' if not received or received == "": raise ValueError("received is empty") self.views = [] ''' The list of Views represented as C{str} obtained after splitting it into lines after being received from the server. Done by L{self.setViews()}. ''' self.__parseTreeFromUiAutomatorDump(received) if DEBUG: print >>sys.stderr, "there are %d views in this dump" % len(self.views) def __splitAttrs(self, strArgs): ''' Splits the C{View} attributes in C{strArgs} and optionally adds the view id to the C{viewsById} list. Unique Ids ========== It is very common to find C{View}s having B{NO_ID} as the Id. This turns very difficult to use L{self.findViewById()}. To help in this situation this method assigns B{unique Ids}. The B{unique Ids} are generated using the pattern C{id/no_id/<number>} with C{<number>} starting at 1. @type strArgs: str @param strArgs: the string containing the raw list of attributes and values @return: Returns the attributes map. ''' if self.useUiAutomator: raise RuntimeError("This method is not compatible with UIAutomator") # replace the spaces in text:mText to preserve them in later split # they are translated back after the attribute matches textRE = re.compile('%s=%s,' % (self.textProperty, _nd('len'))) m = textRE.search(strArgs) if m: __textStart = m.end() __textLen = int(m.group('len')) __textEnd = m.end() + __textLen s1 = strArgs[__textStart:__textEnd] s2 = s1.replace(' ', WS) strArgs = strArgs.replace(s1, s2, 1) idRE = re.compile("(?P<viewId>id/\S+)") attrRE = re.compile('%s(?P<parens>\(\))?=%s,(?P<val>[^ ]*)' % (_ns('attr'), _nd('len')), flags=re.DOTALL) hashRE = re.compile('%s@%s' % (_ns('class'), _nh('oid'))) attrs = {} viewId = None m = idRE.search(strArgs) if m: viewId = m.group('viewId') if DEBUG: print >>sys.stderr, "found view with id=%s" % viewId for attr in strArgs.split(): m = attrRE.match(attr) if m: __attr = m.group('attr') __parens = '()' if m.group('parens') else '' __len = int(m.group('len')) __val = m.group('val') if WARNINGS and __len != len(__val): warnings.warn("Invalid len: expected: %d found: %d s=%s e=%s" % (__len, len(__val), __val[:50], __val[-50:])) if __attr == self.textProperty: # restore spaces that have been replaced __val = __val.replace(WS, ' ') attrs[__attr + __parens] = __val else: m = hashRE.match(attr) if m: attrs['class'] = m.group('class') attrs['oid'] = m.group('oid') else: if DEBUG: print >>sys.stderr, attr, "doesn't match" if True: # was assignViewById if not viewId: # If the view has NO_ID we are assigning a default id here (id/no_id) which is # immediately incremented if another view with no id was found before to generate # a unique id viewId = "id/no_id/1" if viewId in self.viewsById: # sometimes the view ids are not unique, so let's generate a unique id here i = 1 while True: newId = re.sub('/\d+$', '', viewId) + '/%d' % i if not newId in self.viewsById: break i += 1 viewId = newId if DEBUG: print >>sys.stderr, "adding viewById %s" % viewId # We are assigning a new attribute to keep the original id preserved, which could have # been NO_ID repeated multiple times attrs['uniqueId'] = viewId return attrs def __parseTree(self, receivedLines): ''' Parses the View tree contained in L{receivedLines}. The tree is created and the root node assigned to L{self.root}. This method also assigns L{self.viewsById} values using L{View.getUniqueId} as the key. @type receivedLines: str @param receivedLines: the string received from B{View Server} ''' self.root = None self.viewsById = {} self.views = [] parent = None parents = [] treeLevel = -1 newLevel = -1 lastView = None for v in receivedLines: if v == '' or v == 'DONE' or v == 'DONE.': break attrs = self.__splitAttrs(v) if not self.root: if v[0] == ' ': raise Exception("Unexpected root element starting with ' '.") self.root = View.factory(attrs, self.device, self.build[VERSION_SDK_PROPERTY], self.forceViewServerUse) if DEBUG: self.root.raw = v treeLevel = 0 newLevel = 0 lastView = self.root parent = self.root parents.append(parent) else: newLevel = (len(v) - len(v.lstrip())) if newLevel == 0: raise Exception("newLevel==0 treeLevel=%d but tree can have only one root, v=%s" % (treeLevel, v)) child = View.factory(attrs, self.device, self.build[VERSION_SDK_PROPERTY], self.forceViewServerUse) if DEBUG: child.raw = v if newLevel == treeLevel: parent.add(child) lastView = child elif newLevel > treeLevel: if (newLevel - treeLevel) != 1: raise Exception("newLevel jumps %d levels, v=%s" % ((newLevel-treeLevel), v)) parent = lastView parents.append(parent) parent.add(child) lastView = child treeLevel = newLevel else: # newLevel < treeLevel for i in range(treeLevel - newLevel): parents.pop() parent = parents.pop() parents.append(parent) parent.add(child) treeLevel = newLevel lastView = child self.views.append(lastView) self.viewsById[lastView.getUniqueId()] = lastView def __parseTreeFromUiAutomatorDump(self, receivedXml): parser = UiAutomator2AndroidViewClient(self.device, self.build[VERSION_SDK_PROPERTY]) start_xml_index = receivedXml.index("<") self.root = parser.Parse(receivedXml[start_xml_index:]) self.views = parser.views self.viewsById = {} for v in self.views: self.viewsById[v.getUniqueId()] = v def getRoot(self): ''' Gets the root node of the C{View} tree @return: the root node of the C{View} tree ''' return self.root def traverse(self, root="ROOT", indent="", transform=View.__str__, stream=sys.stdout): ''' Traverses the C{View} tree and prints its nodes. The nodes are printed converting them to string but other transformations can be specified by providing a method name as the C{transform} parameter. @type root: L{View} @param root: the root node from where the traverse starts @type indent: str @param indent: the indentation string to use to print the nodes @type transform: method @param transform: a method to use to transform the node before is printed ''' if type(root) == types.StringType and root == "ROOT": root = self.root return ViewClient.__traverse(root, indent, transform, stream) # if not root: # return # # s = transform(root) # if s: # print >>stream, "%s%s" % (indent, s) # # for ch in root.children: # self.traverse(ch, indent=indent+" ", transform=transform, stream=stream) @staticmethod def __traverse(root, indent="", transform=View.__str__, stream=sys.stdout): if not root: return s = transform(root) if s: ius = "%s%s" % (indent, s if isinstance(s, unicode) else unicode(s, 'utf-8', 'replace')) print >>stream, ius.encode('utf-8', 'replace') for ch in root.children: ViewClient.__traverse(ch, indent=indent+" ", transform=transform, stream=stream) def dump(self, window=-1, sleep=1): ''' Dumps the window content. Sleep is useful to wait some time before obtaining the new content when something in the window has changed. @type window: int or str @param window: the window id or name of the window to dump. The B{name} is the package name or the window name (i.e. StatusBar) for system windows. The window id can be provided as C{int} or C{str}. The C{str} should represent and C{int} in either base 10 or 16. Use -1 to dump all windows. This parameter only is used when the backend is B{ViewServer} and it's ignored for B{UiAutomator}. @type sleep: int @param sleep: sleep in seconds before proceeding to dump the content @return: the list of Views as C{str} received from the server after being split into lines ''' if sleep > 0: time.sleep(sleep) if self.useUiAutomator: # NOTICE: # Using /dev/tty this works even on devices with no sdcard received = unicode(self.device.shell('uiautomator dump /dev/tty >/dev/null'), encoding='utf-8', errors='replace') if not received: raise RuntimeError('ERROR: Empty UiAutomator dump was received') if DEBUG: self.received = received if DEBUG_RECEIVED: print >>sys.stderr, "received %d chars" % len(received) print >>sys.stderr print >>sys.stderr, repr(received) print >>sys.stderr onlyKilledRE = re.compile('[\n\S]*Killed[\n\r\S]*', re.MULTILINE) if onlyKilledRE.search(received): MONKEY = 'com.android.commands.monkey' extraInfo = '' if self.device.shell('ps | grep "%s"' % MONKEY): extraInfo = "\nIt is know that '%s' conflicts with 'uiautomator'. Please kill it and try again." % MONKEY raise RuntimeError('''ERROR: UiAutomator output contains no valid information. UiAutomator was killed, no reason given.''' + extraInfo) if self.ignoreUiAutomatorKilled: if DEBUG_RECEIVED: print >>sys.stderr, "ignoring UiAutomator Killed" killedRE = re.compile('</hierarchy>[\n\S]*Killed', re.MULTILINE) if killedRE.search(received): received = re.sub(killedRE, '</hierarchy>', received) elif DEBUG_RECEIVED: print "UiAutomator Killed: NOT FOUND!" # It seems that API18 uiautomator spits this message to stdout dumpedToDevTtyRE = re.compile('</hierarchy>[\n\S]*UI hierchary dumped to: /dev/tty.*', re.MULTILINE) if dumpedToDevTtyRE.search(received): received = re.sub(dumpedToDevTtyRE, '</hierarchy>', received) if DEBUG_RECEIVED: print >>sys.stderr, "received=", received # API19 seems to send this warning as part of the XML. # Let's remove it if present received = received.replace('WARNING: linker: libdvm.so has text relocations. This is wasting memory and is a security risk. Please fix.\r\n', '') if re.search('\[: not found', received): raise RuntimeError('''ERROR: Some emulator images (i.e. android 4.1.2 API 16 generic_x86) does not include the '[' command. While UiAutomator back-end might be supported 'uiautomator' command fails. You should force ViewServer back-end.''') if re.search('could not get idle state', received): raise RuntimeError('''The view is being refreshed too frequently to dump''') self.setViewsFromUiAutomatorDump(received) else: if isinstance(window, str): if window != '-1': self.list(sleep=0) found = False for wId in self.windows: try: if window == self.windows[wId]: window = wId found = True break except: pass try: if int(window) == wId: window = wId found = True break except: pass try: if int(window, 16) == wId: window = wId found = True break except: pass if not found: raise RuntimeError("ERROR: Cannot find window '%s' in %s" % (window, self.windows)) else: window = -1 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((VIEW_SERVER_HOST, self.localPort)) except socket.error, ex: raise RuntimeError("ERROR: Connecting to %s:%d: %s" % (VIEW_SERVER_HOST, self.localPort, ex)) cmd = 'dump %x\r\n' % window if DEBUG: print >>sys.stderr, "executing: '%s'" % cmd s.send(cmd) received = "" doneRE = re.compile("DONE") ViewClient.setAlarm(120) while True: if DEBUG_RECEIVED: print >>sys.stderr, " reading from socket..." received += s.recv(1024) if doneRE.search(received[-7:]): break s.close() ViewClient.setAlarm(0) if DEBUG: self.received = received if DEBUG_RECEIVED: print >>sys.stderr, "received %d chars" % len(received) print >>sys.stderr print >>sys.stderr, received print >>sys.stderr if received: for c in received: if ord(c) > 127: received = unicode(received, encoding='utf-8', errors='replace') break self.setViews(received) if DEBUG_TREE: self.traverse(self.root) return self.views def list(self, sleep=1): ''' List the windows. Sleep is useful to wait some time before obtaining the new content when something in the window has changed. This also sets L{self.windows} as the list of windows. @type sleep: int @param sleep: sleep in seconds before proceeding to dump the content @return: the list of windows ''' if sleep > 0: time.sleep(sleep) if self.useUiAutomator: raise Exception("Not implemented yet: listing windows with UiAutomator") else: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((VIEW_SERVER_HOST, self.localPort)) except socket.error, ex: raise RuntimeError("ERROR: Connecting to %s:%d: %s" % (VIEW_SERVER_HOST, self.localPort, ex)) s.send('list\r\n') received = "" doneRE = re.compile("DONE") while True: received += s.recv(1024) if doneRE.search(received[-7:]): break s.close() if DEBUG: self.received = received if DEBUG_RECEIVED: print >>sys.stderr, "received %d chars" % len(received) print >>sys.stderr print >>sys.stderr, received print >>sys.stderr self.windows = {} for line in received.split('\n'): if not line: break if doneRE.search(line): break values = line.split() if len(values) > 1: package = values[1] else: package = "UNKNOWN" if len(values) > 0: wid = values[0] else: wid = '00000000' self.windows[int('0x' + wid, 16)] = package return self.windows def findViewById(self, viewId, root="ROOT", viewFilter=None): ''' Finds the View with the specified viewId. @type viewId: str @param viewId: the ID of the view to find @type root: str @type root: View @param root: the root node of the tree where the View will be searched @type: viewFilter: function @param viewFilter: a function that will be invoked providing the candidate View as a parameter and depending on the return value (C{True} or C{False}) the View will be selected and returned as the result of C{findViewById()} or ignored. This can be C{None} and no extra filtering is applied. @return: the C{View} found or C{None} ''' if not root: return None if type(root) == types.StringType and root == "ROOT": return self.findViewById(viewId, self.root, viewFilter) if root.getId() == viewId: if viewFilter: if viewFilter(root): return root else: return root if re.match('^id/no_id', viewId) or re.match('^id/.+/.+', viewId): if root.getUniqueId() == viewId: if viewFilter: if viewFilter(root): return root; else: return root for ch in root.children: foundView = self.findViewById(viewId, ch, viewFilter) if foundView: if viewFilter: if viewFilter(foundView): return foundView else: return foundView def findViewByIdOrRaise(self, viewId, root="ROOT", viewFilter=None): ''' Finds the View or raise a ViewNotFoundException. @type viewId: str @param viewId: the ID of the view to find @type root: str @type root: View @param root: the root node of the tree where the View will be searched @type: viewFilter: function @param viewFilter: a function that will be invoked providing the candidate View as a parameter and depending on the return value (C{True} or C{False}) the View will be selected and returned as the result of C{findViewById()} or ignored. This can be C{None} and no extra filtering is applied. @return: the View found @raise ViewNotFoundException: raise the exception if View not found ''' view = self.findViewById(viewId, root, viewFilter) if view: return view else: raise ViewNotFoundException("ID", viewId, root) def findViewByTag(self, tag, root="ROOT"): ''' Finds the View with the specified tag ''' return self.findViewWithAttribute('getTag()', tag, root) def findViewByTagOrRaise(self, tag, root="ROOT"): ''' Finds the View with the specified tag or raise a ViewNotFoundException ''' view = self.findViewWithAttribute('getTag()', tag, root) if view: return view else: raise ViewNotFoundException("tag", tag, root) def __findViewsWithAttributeInTree(self, attr, val, root): matchingViews = [] if not self.root: print >>sys.stderr, "ERROR: no root, did you forget to call dump()?" return matching_views if type(root) == types.StringType and root == "ROOT": root = self.root if DEBUG: print >>sys.stderr, "__findViewWithAttributeInTree: type val=", type(val) if DEBUG: print >>sys.stderr, "__findViewWithAttributeInTree: checking if root=%s has attr=%s == %s" % (root.__smallStr__(), attr, val) if root and attr in root.map and root.map[attr] == val: if DEBUG: print >>sys.stderr, "__findViewWithAttributeInTree: FOUND: %s" % root.__smallStr__() matchingViews.append(root) else: for ch in root.children: matchingViews += self.__findViewsWithAttributeInTree(attr, val, ch) return matchingViews def __findViewWithAttributeInTree(self, attr, val, root): if not self.root: print >>sys.stderr, "ERROR: no root, did you forget to call dump()?" return None if type(root) == types.StringType and root == "ROOT": root = self.root if DEBUG: print >>sys.stderr, "__findViewWithAttributeInTree: type val=", type(val) if DEBUG: print >>sys.stderr, "__findViewWithAttributeInTree: checking if root=%s has attr=%s == %s" % (root.__smallStr__(), attr, val) if isinstance(val, RegexType): return self.__findViewWithAttributeInTreeThatMatches(attr, val, root) else: if root and attr in root.map and root.map[attr] == val: if DEBUG: print >>sys.stderr, "__findViewWithAttributeInTree: FOUND: %s" % root.__smallStr__() return root else: for ch in root.children: v = self.__findViewWithAttributeInTree(attr, val, ch) if v: return v return None def __findViewWithAttributeInTreeOrRaise(self, attr, val, root): view = self.__findViewWithAttributeInTree(attr, val, root) if view: return view else: raise ViewNotFoundException(attr, val, root) def __findViewWithAttributeInTreeThatMatches(self, attr, regex, root, rlist=[]): if not self.root: print >>sys.stderr, "ERROR: no root, did you forget to call dump()?" return None if type(root) == types.StringType and root == "ROOT": root = self.root if DEBUG: print >>sys.stderr, "__findViewWithAttributeInTreeThatMatches: checking if root=%s attr=%s matches %s" % (root.__smallStr__(), attr, regex) if root and attr in root.map and regex.match(root.map[attr]): if DEBUG: print >>sys.stderr, "__findViewWithAttributeInTreeThatMatches: FOUND: %s" % root.__smallStr__() return root #print >>sys.stderr, "appending root=%s to rlist=%s" % (root.__smallStr__(), rlist) #return rlist.append(root) else: for ch in root.children: v = self.__findViewWithAttributeInTreeThatMatches(attr, regex, ch, rlist) if v: return v #print >>sys.stderr, "appending v=%s to rlist=%s" % (v.__smallStr__(), rlist) #return rlist.append(v) return None #return rlist def findViewWithAttribute(self, attr, val, root="ROOT"): ''' Finds the View with the specified attribute and value ''' return self.__findViewWithAttributeInTree(attr, val, root) def findViewsWithAttribute(self, attr, val, root="ROOT"): ''' Finds the Views with the specified attribute and value. This allows you to see all items that match your criteria in the view hierarchy Usage: buttons = v.findViewsWithAttribute("class", "android.widget.Button") ''' return self.__findViewsWithAttributeInTree(attr, val, root) def findViewWithAttributeOrRaise(self, attr, val, root="ROOT"): ''' Finds the View or raise a ViewNotFoundException. @return: the View found @raise ViewNotFoundException: raise the exception if View not found ''' view = self.findViewWithAttribute(attr, val, root) if view: return view else: raise ViewNotFoundException(attr, val, root) def findViewWithAttributeThatMatches(self, attr, regex, root="ROOT"): ''' Finds the list of Views with the specified attribute matching regex ''' return self.__findViewWithAttributeInTreeThatMatches(attr, regex, root) def findViewWithText(self, text, root="ROOT"): if DEBUG: print >>sys.stderr, "findViewWithText(%s, %s)" % (text, root) if isinstance(text, RegexType): return self.findViewWithAttributeThatMatches(self.textProperty, text, root) #l = self.findViewWithAttributeThatMatches(TEXT_PROPERTY, text) #ll = len(l) #if ll == 0: # return None #elif ll == 1: # return l[0] #else: # print >>sys.stderr, "WARNING: findViewWithAttributeThatMatches invoked by findViewWithText returns %d items." % ll # return l else: return self.findViewWithAttribute(self.textProperty, text, root) def findViewWithTextOrRaise(self, text, root="ROOT"): ''' Finds the View or raise a ViewNotFoundException. @return: the View found @raise ViewNotFoundException: raise the exception if View not found ''' if DEBUG: print >>sys.stderr, "findViewWithTextOrRaise(%s, %s)" % (text, root) view = self.findViewWithText(text, root) if view: return view else: raise ViewNotFoundException("text", text, root) def findViewWithContentDescription(self, contentdescription, root="ROOT"): ''' Finds the View with the specified content description ''' return self.__findViewWithAttributeInTree('content-desc', contentdescription, root) def findViewWithContentDescriptionOrRaise(self, contentdescription, root="ROOT"): ''' Finds the View with the specified content description ''' return self.__findViewWithAttributeInTreeOrRaise('content-desc', contentdescription, root) def findViewsContainingPoint(self, (x, y), _filter=None): ''' Finds the list of Views that contain the point (x, y). ''' if not _filter: _filter = lambda v: True return [v for v in self.views if (v.containsPoint((x,y)) and _filter(v))] def getViewIds(self): ''' @deprecated: Use L{getViewsById} instead. Returns the Views map. ''' return self.viewsById def getViewsById(self): ''' Returns the Views map. The keys are C{uniqueIds} and the values are C{View}s. ''' return self.viewsById def __getFocusedWindowPosition(self): return self.__getFocusedWindowId() def getSdkVersion(self): ''' Gets the SDK version. ''' return self.build[VERSION_SDK_PROPERTY] def isKeyboardShown(self): ''' Whether the keyboard is displayed. ''' return self.device.isKeyboardShown() def writeImageToFile(self, filename, _format="PNG"): ''' Write the View image to the specified filename in the specified _format. @type filename: str @param filename: Absolute path and optional filename receiving the image. If this points to a directory, then the filename is determined by the serialno of the device and _format extension. @type _format: str @param _format: Image _format (default _format is PNG) ''' if not os.path.isabs(filename): raise ValueError("writeImageToFile expects an absolute path") if os.path.isdir(filename): filename = os.path.join(filename, self.serialno + '.' + _format.lower()) if DEBUG: print >> sys.stderr, "writeImageToFile: saving image to '%s' in %s _format" % (filename, _format) self.device.takeSnapshot().save(filename, _format) @staticmethod def __pickleable(tree): ''' Makes the tree pickleable. ''' def removeDeviceReference(view): ''' Removes the reference to a L{MonkeyDevice}. ''' view.device = None ########################################################################################### # FIXME: Unfortunatelly deepcopy does not work with MonkeyDevice objects, which is # sadly the reason why we cannot pickle the tree and we need to remove the MonkeyDevice # references. # We wanted to copy the tree to preserve the original and make piclkleable the copy. #treeCopy = copy.deepcopy(tree) treeCopy = tree # IMPORTANT: # This assumes that the first element in the list is the tree root ViewClient.__traverse(treeCopy[0], transform=removeDeviceReference) ########################################################################################### return treeCopy def distance(self, tree): ''' Calculates the distance between this tree and the tree passed as argument. @type tree: list of Views @param tree: Tree of Views @return: the distance ''' ################################################################ #FIXME: this should copy the entire tree and then transform it # ################################################################ pickleableViews = ViewClient.__pickleable(self.views) pickleableTree = ViewClient.__pickleable(tree) s1 = pickle.dumps(pickleableViews) s2 = pickle.dumps(pickleableTree) if DEBUG_DISTANCE: print >>sys.stderr, "distance: calculating distance between", s1[:20], "and", s2[:20] l1 = len(s1) l2 = len(s2) t = float(max(l1, l2)) if l1 == l2: if DEBUG_DISTANCE: print >>sys.stderr, "distance: trees have same length, using Hamming distance" return ViewClient.__hammingDistance(s1, s2)/t else: if DEBUG_DISTANCE: print >>sys.stderr, "distance: trees have different length, using Levenshtein distance" return ViewClient.__levenshteinDistance(s1, s2)/t @staticmethod def __hammingDistance(s1, s2): ''' Finds the Hamming distance between two strings. @param s1: string @param s2: string @return: the distance @raise ValueError: if the lenght of the strings differ ''' l1 = len(s1) l2 = len(s2) if l1 != l2: raise ValueError("Hamming distance requires strings of same size.") return sum(ch1 != ch2 for ch1, ch2 in zip(s1, s2)) def hammingDistance(self, tree): ''' Finds the Hamming distance between this tree and the one passed as argument. ''' s1 = ' '.join(map(View.__str__, self.views)) s2 = ' '.join(map(View.__str__, tree)) return ViewClient.__hammingDistance(s1, s2) @staticmethod def __levenshteinDistance(s, t): ''' Find the Levenshtein distance between two Strings. Python version of Levenshtein distance method implemented in Java at U{http://www.java2s.com/Code/Java/Data-Type/FindtheLevenshteindistancebetweentwoStrings.htm}. This is the number of changes needed to change one String into another, where each change is a single character modification (deletion, insertion or substitution). The previous implementation of the Levenshtein distance algorithm was from U{http://www.merriampark.com/ld.htm} Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large strings. This implementation of the Levenshtein distance algorithm is from U{http://www.merriampark.com/ldjava.htm}:: StringUtils.getLevenshteinDistance(null, *) = IllegalArgumentException StringUtils.getLevenshteinDistance(*, null) = IllegalArgumentException StringUtils.getLevenshteinDistance("","") = 0 StringUtils.getLevenshteinDistance("","a") = 1 StringUtils.getLevenshteinDistance("aaapppp", "") = 7 StringUtils.getLevenshteinDistance("frog", "fog") = 1 StringUtils.getLevenshteinDistance("fly", "ant") = 3 StringUtils.getLevenshteinDistance("elephant", "hippo") = 7 StringUtils.getLevenshteinDistance("hippo", "elephant") = 7 StringUtils.getLevenshteinDistance("hippo", "zzzzzzzz") = 8 StringUtils.getLevenshteinDistance("hello", "hallo") = 1 @param s: the first String, must not be null @param t: the second String, must not be null @return: result distance @raise ValueError: if either String input C{null} ''' if s is None or t is None: raise ValueError("Strings must not be null") n = len(s) m = len(t) if n == 0: return m elif m == 0: return n if n > m: tmp = s s = t t = tmp n = m; m = len(t) p = [None]*(n+1) d = [None]*(n+1) for i in range(0, n+1): p[i] = i for j in range(1, m+1): if DEBUG_DISTANCE: if j % 100 == 0: print >>sys.stderr, "DEBUG:", int(j/(m+1.0)*100),"%\r", t_j = t[j-1] d[0] = j for i in range(1, n+1): cost = 0 if s[i-1] == t_j else 1 # minimum of cell to the left+1, to the top+1, diagonally left and up +cost d[i] = min(min(d[i-1]+1, p[i]+1), p[i-1]+cost) _d = p p = d d = _d if DEBUG_DISTANCE: print >> sys.stderr, "\n" return p[n] def levenshteinDistance(self, tree): ''' Finds the Levenshtein distance between this tree and the one passed as argument. ''' s1 = ' '.join(map(View.__microStr__, self.views)) s2 = ' '.join(map(View.__microStr__, tree)) return ViewClient.__levenshteinDistance(s1, s2) @staticmethod def excerpt(str, execute=False): code = Excerpt2Code().Parse(str) if execute: exec code else: return code class CulebraOptions: ''' Culebra options helper class ''' HELP = 'help' VERBOSE = 'verbose' VERSION = 'version' IGNORE_SECURE_DEVICE = 'ignore-secure-device' IGNORE_VERSION_CHECK = 'ignore-version-check' FORCE_VIEW_SERVER_USE = 'force-view-server-use' DO_NOT_START_VIEW_SERVER = 'do-not-start-view-server' DO_NOT_IGNORE_UIAUTOMATOR_KILLED = 'do-not-ignore-uiautomator-killed' FIND_VIEWS_BY_ID = 'find-views-by-id' FIND_VIEWS_WITH_TEXT = 'find-views-with-text' FIND_VIEWS_WITH_CONTENT_DESCRIPTION = 'find-views-with-content-description' USE_REGEXPS = 'use-regexps' VERBOSE_COMMENTS = 'verbose-comments' UNIT_TEST_CLASS = 'unit-test-class' UNIT_TEST_METHOD = 'unit-test-method' USE_JAR = 'use-jar' USE_DICTIONARY = 'use-dictionary' DICTIONARY_KEYS_FROM = 'dictionary-keys-from' AUTO_REGEXPS = 'auto-regexps' START_ACTIVITY = 'start-activity' OUTPUT = 'output' INTERACTIVE = 'interactive' WINDOW = 'window' APPEND_TO_SYS_PATH = 'append-to-sys-path' SAVE_SCREENSHOT = 'save-screenshot' SAVE_VIEW_SCREENSHOTS = 'save-view-screenshots' GUI = 'gui' SCALE = 'scale' DO_NOT_VERIFY_INITIAL_SCREEN_DUMP = 'do-not-verify-initial-screen-dump' SHORT_OPTS = 'HVvIEFSkw:i:t:d:rCUM:j:D:K:R:a:o:Aps:W:GuP:' LONG_OPTS = [HELP, VERBOSE, VERSION, IGNORE_SECURE_DEVICE, IGNORE_VERSION_CHECK, FORCE_VIEW_SERVER_USE, DO_NOT_START_VIEW_SERVER, DO_NOT_IGNORE_UIAUTOMATOR_KILLED, WINDOW + '=', FIND_VIEWS_BY_ID + '=', FIND_VIEWS_WITH_TEXT + '=', FIND_VIEWS_WITH_CONTENT_DESCRIPTION + '=', USE_REGEXPS, VERBOSE_COMMENTS, UNIT_TEST_CLASS, UNIT_TEST_METHOD + '=', USE_JAR + '=', USE_DICTIONARY + '=', DICTIONARY_KEYS_FROM + '=', AUTO_REGEXPS + '=', START_ACTIVITY + '=', OUTPUT + '=', INTERACTIVE, APPEND_TO_SYS_PATH, SAVE_SCREENSHOT + '=', SAVE_VIEW_SCREENSHOTS + '=', GUI, DO_NOT_VERIFY_INITIAL_SCREEN_DUMP, SCALE + '=', ] LONG_OPTS_ARG = {WINDOW: 'WINDOW', FIND_VIEWS_BY_ID: 'BOOL', FIND_VIEWS_WITH_TEXT: 'BOOL', FIND_VIEWS_WITH_CONTENT_DESCRIPTION: 'BOOL', USE_JAR: 'BOOL', USE_DICTIONARY: 'BOOL', DICTIONARY_KEYS_FROM: 'VALUE', AUTO_REGEXPS: 'LIST', START_ACTIVITY: 'COMPONENT', OUTPUT: 'FILENAME', SAVE_SCREENSHOT: 'FILENAME', SAVE_VIEW_SCREENSHOTS: 'DIR', UNIT_TEST_METHOD: 'NAME', SCALE: 'FLOAT'} OPTS_HELP = { 'H': 'prints this help', 'V': 'verbose comments', 'k': 'don\'t ignore UiAutomator killed', 'w': 'use WINDOW content (default: -1, all windows)', 'i': 'whether to use findViewById() in script', 't': 'whether to use findViewWithText() in script', 'd': 'whether to use findViewWithContentDescription', 'r': 'use regexps in matches', 'U': 'generates unit test class and script', 'M': 'generates unit test method. Can be used with or without -U', 'j': 'use jar and appropriate shebang to run script (deprecated)', 'D': 'use a dictionary to store the Views found', 'K': 'dictionary keys from: id, text, content-description', 'R': 'auto regexps (i.e. clock), implies -r. help list options', 'a': 'starts Activity before dump', 'o': 'output filename', 'A': 'interactive', 'p': 'append environment variables values to sys.path', 's': 'save screenshot to file', 'W': 'save View screenshots to files in directory', 'E': 'ignores ADB version check', 'G': 'presents the GUI (EXPERIMENTAL)', 'P': 'scale percentage (i.e. 0.5)', 'u': 'do not verify initial screen dump state', } class CulebraTestCase(unittest.TestCase): kwargs1 = None kwargs2 = None serialno = None options = {} @classmethod def setUpClass(cls): cls.kwargs1 = {'ignoreversioncheck': False, 'verbose': False, 'ignoresecuredevice': False} cls.kwargs2 = {'startviewserver': True, 'forceviewserveruse': False, 'autodump': False, 'ignoreuiautomatorkilled': True} def setUp(self): self.device, self.serialno = ViewClient.connectToDeviceOrExit(serialno=self.serialno, **self.kwargs1) if self.options[CulebraOptions.START_ACTIVITY]: self.device.startActivity(component=self.options[CulebraOptions.START_ACTIVITY]) self.vc = ViewClient(self.device, self.serialno, **self.kwargs2) def tearDown(self): pass @staticmethod def main(): # if you want to specify tests classes and methods in the command line you will be forced # to include -s or --serialno and the serial number of the device (could be a regexp) # as ViewClient would have no way of determine what it is ser = ['-s', '--serialno'] old = '%(failfast)' new = ' %s s The serial number to connect to\n%s' % (', '.join(ser), old) unittest.TestProgram.USAGE = unittest.TestProgram.USAGE.replace(old, new) if len(sys.argv) >= 2 and sys.argv[1] in ser: sys.argv.pop(1) CulebraTestCase.serialno = sys.argv.pop(1) unittest.main() if __name__ == "__main__": try: vc = ViewClient(None) except: print "%s: Don't expect this to do anything" % __file__
38.325624
202
0.562371
389185dbd3902154e239648b04013c0b63f6333d
11,003
py
Python
tests/optimize/test_lie_algebra.py
jsmz97/pennylane
de7b7c0b452c8d59867d11f84b9c332a36e08ab1
[ "Apache-2.0" ]
3
2022-01-19T13:41:52.000Z
2022-01-22T03:38:58.000Z
tests/optimize/test_lie_algebra.py
jsmz97/pennylane
de7b7c0b452c8d59867d11f84b9c332a36e08ab1
[ "Apache-2.0" ]
1
2021-05-18T07:38:21.000Z
2021-05-18T07:38:21.000Z
tests/optimize/test_lie_algebra.py
jsmz97/pennylane
de7b7c0b452c8d59867d11f84b9c332a36e08ab1
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for the ``LieAlgebraOptimizer``. """ import pytest from scipy.sparse.linalg import expm import numpy as np import pennylane as qml from pennylane.optimize import LieAlgebraOptimizer def circuit_1(): """Simple circuit.""" qml.Hadamard(wires=[0]) qml.Hadamard(wires=[1]) def circuit_2(): """Simply parameterized circuit.""" qml.RX(0.1, wires=[0]) qml.RY(0.5, wires=[1]) qml.CNOT(wires=[0, 1]) qml.RY(0.6, wires=[0]) def circuit_3(): """Three-qubit circuit.""" qml.RY(0.5, wires=[0]) qml.RY(0.6, wires=[1]) qml.RY(0.7, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) qml.RX(-0.6, wires=[0]) qml.RX(-0.3, wires=[1]) qml.RX(-0.2, wires=[2]) hamiltonian_1 = qml.Hamiltonian( coeffs=[-1.0] * 3, observables=[qml.PauliX(0), qml.PauliZ(1), qml.PauliY(0) @ qml.PauliX(1)], ) hamiltonian_2 = qml.Hamiltonian( coeffs=[-0.2, 0.3, -0.15], observables=[ qml.PauliY(1), qml.PauliZ(0) @ qml.PauliZ(1), qml.PauliX(0) @ qml.PauliX(1), ], ) hamiltonian_3 = qml.Hamiltonian( coeffs=[-2.0], observables=[qml.PauliY(0) @ qml.PauliY(1) @ qml.PauliY(2)] ) @pytest.mark.parametrize( "circuit,hamiltonian", [ (circuit_1, hamiltonian_1), (circuit_1, hamiltonian_2), (circuit_2, hamiltonian_1), (circuit_2, hamiltonian_2), (circuit_3, hamiltonian_3), ], ) def test_lie_algebra_omegas(circuit, hamiltonian): """Test that we calculate the Riemannian gradient coefficients Tr{[rho, H] P_j} correctly.""" # pylint: disable=no-member nqubits = max([max(ps.wires) for ps in hamiltonian.ops]) + 1 wires = range(nqubits) dev = qml.device("default.qubit", wires=nqubits) @qml.qnode(dev) def get_state(): circuit() return qml.state() @qml.qnode(dev) def lie_circuit(): circuit() return qml.expval(hamiltonian) phi = get_state() rho = np.outer(phi, phi.conj()) hamiltonian_np = qml.utils.sparse_hamiltonian(hamiltonian, wires).toarray() lie_algebra_np = hamiltonian_np @ rho - rho @ hamiltonian_np opt = LieAlgebraOptimizer(circuit=lie_circuit) ops = opt.get_su_n_operators(None)[0] omegas_np = [] for op in ops: op = qml.utils.expand(op.matrix, op.wires, wires) omegas_np.append(-np.trace(lie_algebra_np @ op).imag / 2) omegas = opt.get_omegas() assert np.allclose(omegas, omegas_np) @pytest.mark.parametrize( "circuit,hamiltonian", [ (circuit_1, hamiltonian_1), (circuit_1, hamiltonian_2), (circuit_2, hamiltonian_1), (circuit_2, hamiltonian_2), (circuit_3, hamiltonian_3), ], ) def test_lie_algebra_omegas_restricted(circuit, hamiltonian): """Test that we calculate the (restricted) Riemannian gradient coefficients correctly.""" # pylint: disable=no-member nqubits = max([max(ps.wires) for ps in hamiltonian.ops]) + 1 wires = range(nqubits) dev = qml.device("default.qubit", wires=nqubits) @qml.qnode(dev) def get_state(): circuit() return qml.state() @qml.qnode(dev) def lie_circuit(): circuit() return qml.expval(hamiltonian) phi = get_state() rho = np.outer(phi, phi.conj()) hamiltonian_np = qml.utils.sparse_hamiltonian(hamiltonian, wires).toarray() lie_algebra_np = hamiltonian_np @ rho - rho @ hamiltonian_np restriction = qml.Hamiltonian( coeffs=[1.0] * 3, observables=[qml.PauliX(0), qml.PauliY(1), qml.PauliY(0) @ qml.PauliY(1)], ) opt = LieAlgebraOptimizer(circuit=lie_circuit, restriction=restriction) ops = opt.get_su_n_operators(restriction)[0] omegas_np = [] for op in ops: op = qml.utils.expand(op.matrix, op.wires, wires) omegas_np.append(-np.trace(lie_algebra_np @ op).imag / 2) omegas = opt.get_omegas() assert np.allclose(omegas, omegas_np) @pytest.mark.parametrize( "circuit,hamiltonian", [ (circuit_1, hamiltonian_1), (circuit_1, hamiltonian_2), (circuit_2, hamiltonian_1), (circuit_2, hamiltonian_2), ], ) def test_lie_algebra_evolution(circuit, hamiltonian): """Test that the optimizer produces the correct unitary to append.""" # pylint: disable=no-member nqubits = max([max(ps.wires) for ps in hamiltonian.ops]) + 1 wires = range(nqubits) dev = qml.device("default.qubit", wires=nqubits) @qml.qnode(dev) def get_state(): circuit() return qml.state() @qml.qnode(dev) def lie_circuit(): circuit() return qml.expval(hamiltonian) phi = get_state() rho = np.outer(phi, phi.conj()) hamiltonian_np = qml.utils.sparse_hamiltonian(hamiltonian, wires).toarray() lie_algebra_np = hamiltonian_np @ rho - rho @ hamiltonian_np phi_exact = expm(-0.001 * lie_algebra_np) @ phi rho_exact = np.outer(phi_exact, phi_exact.conj()) opt = LieAlgebraOptimizer(circuit=lie_circuit, stepsize=0.001, exact=True) opt.step() cost_pl = opt.circuit() cost_exact = np.trace(rho_exact @ hamiltonian_np) assert np.allclose(cost_pl, cost_exact, atol=1e-2) @pytest.mark.parametrize( "circuit,hamiltonian", [ (circuit_1, hamiltonian_1), (circuit_1, hamiltonian_2), (circuit_2, hamiltonian_1), (circuit_2, hamiltonian_2), (circuit_3, hamiltonian_3), ], ) def test_lie_algebra_step(circuit, hamiltonian): """Test that we can take subsequent steps with the optimizer.""" nqubits = max([max(ps.wires) for ps in hamiltonian.ops]) + 1 dev = qml.device("default.qubit", wires=nqubits) @qml.qnode(dev) def lie_circuit(): circuit() return qml.expval(hamiltonian) opt = LieAlgebraOptimizer(circuit=lie_circuit) opt.step() opt.step() @pytest.mark.parametrize( "circuit,hamiltonian", [ (circuit_1, hamiltonian_1), (circuit_1, hamiltonian_2), (circuit_2, hamiltonian_1), (circuit_2, hamiltonian_2), (circuit_3, hamiltonian_3), ], ) def test_lie_algebra_step_trotterstep(circuit, hamiltonian): """Test that we can take subsequent steps with the optimizer.""" nqubits = max([max(ps.wires) for ps in hamiltonian.ops]) + 1 dev = qml.device("default.qubit", wires=nqubits) @qml.qnode(dev) def lie_circuit(): circuit() return qml.expval(hamiltonian) opt = LieAlgebraOptimizer(circuit=lie_circuit, trottersteps=3) opt.step() opt.step() def test_lie_algebra_circuit_input_1_check(): """Test that a type error is raise for non-QNode circuits.""" def circuit(): qml.RY(0.5, wires=0) with pytest.raises(TypeError, match="circuit must be a QNode"): LieAlgebraOptimizer(circuit=circuit, stepsize=0.001) def test_lie_algebra_hamiltonian_input_1_check(): """Test that a type error is raise for non-QNode circuits.""" @qml.qnode(qml.device("default.qubit", wires=3)) def circuit(): qml.RY(0.5, wires=0) return qml.state() with pytest.raises( TypeError, match="circuit must return the expectation value of a Hamiltonian", ): LieAlgebraOptimizer(circuit=circuit, stepsize=0.001) def test_lie_algebra_nqubits_check(): """Test that we warn if the system is too big.""" @qml.qnode(qml.device("default.qubit", wires=5)) def circuit(): qml.RY(0.5, wires=0) return qml.expval(qml.Hamiltonian(coeffs=[-1.0], observables=[qml.PauliX(0)])) with pytest.warns(UserWarning, match="The exact Riemannian gradient is exponentially"): LieAlgebraOptimizer(circuit=circuit, stepsize=0.001) def test_lie_algebra_restriction_check(): """Test that a type error is raise for non-QNode circuits.""" @qml.qnode(qml.device("default.qubit", wires=3)) def circuit(): qml.RY(0.5, wires=0) return qml.expval(qml.Hamiltonian(coeffs=[-1.0], observables=[qml.PauliX(0)])) restriction = "not_a_hamiltonian" with pytest.raises( TypeError, match="restriction must be a Hamiltonian", ): LieAlgebraOptimizer(circuit=circuit, restriction=restriction, stepsize=0.001) def test_docstring_example(): """Test the docstring example with Trotterized evolution.""" hamiltonian = qml.Hamiltonian( coeffs=[-1.0] * 3, observables=[qml.PauliX(0), qml.PauliZ(1), qml.PauliY(0) @ qml.PauliX(1)], ) @qml.qnode(qml.device("default.qubit", wires=2)) def quant_fun(): qml.RX(0.1, wires=[0]) qml.RY(0.5, wires=[1]) qml.CNOT(wires=[0, 1]) qml.RY(0.6, wires=[0]) return qml.expval(hamiltonian) opt = LieAlgebraOptimizer(circuit=quant_fun, stepsize=0.1) for step in range(6): circuit, cost = opt.step_and_cost() print(f"Step {step} - cost {cost}") print(circuit()) assert np.isclose(cost, -2.23, atol=1e-2) def test_docstring_example_exact(): """Test that the optimizer works with matrix exponential.""" hamiltonian = qml.Hamiltonian( coeffs=[-1.0] * 3, observables=[qml.PauliX(0), qml.PauliZ(1), qml.PauliY(0) @ qml.PauliX(1)], ) @qml.qnode(qml.device("default.qubit", wires=2)) def quant_fun(): qml.RX(0.1, wires=[0]) qml.RY(0.5, wires=[1]) qml.CNOT(wires=[0, 1]) qml.RY(0.6, wires=[0]) return qml.expval(hamiltonian) opt = LieAlgebraOptimizer(circuit=quant_fun, stepsize=0.1, exact=True) for step in range(6): _, cost = opt.step_and_cost() print(f"Step {step} - cost {cost}") assert np.isclose(cost, -2.23, atol=1e-2) def test_example_shots(): """Test that the optimizer works with finite shots.""" hamiltonian = qml.Hamiltonian( coeffs=[-1.0] * 3, observables=[qml.PauliX(0), qml.PauliZ(1), qml.PauliY(0) @ qml.PauliX(1)], ) @qml.qnode(qml.device("default.qubit", wires=2, shots=1000)) def quant_fun(): qml.RX(0.1, wires=[0]) qml.RY(0.5, wires=[1]) qml.CNOT(wires=[0, 1]) qml.RY(0.6, wires=[0]) return qml.expval(hamiltonian) opt = LieAlgebraOptimizer(circuit=quant_fun, stepsize=0.1, exact=False) for step in range(3): _, cost = opt.step_and_cost() print(f"Step {step} - cost {cost}")
29.263298
97
0.644097
af0dc418e06e950ec43c98ccb0d1391a44d5d83f
9,680
py
Python
pyquil/api/_compiler.py
notmgsk/pyquil
db42246e4cf0a7801a58250ab16629c27815997a
[ "Apache-2.0" ]
1
2019-03-11T13:37:20.000Z
2019-03-11T13:37:20.000Z
pyquil/api/_compiler.py
notmgsk/pyquil
db42246e4cf0a7801a58250ab16629c27815997a
[ "Apache-2.0" ]
null
null
null
pyquil/api/_compiler.py
notmgsk/pyquil
db42246e4cf0a7801a58250ab16629c27815997a
[ "Apache-2.0" ]
null
null
null
############################################################################## # Copyright 2016-2018 Rigetti Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import logging import warnings from typing import Dict, Any, List, Optional, Tuple from collections import Counter from rpcq import Client from rpcq.messages import (BinaryExecutableRequest, BinaryExecutableResponse, NativeQuilRequest, TargetDevice, PyQuilExecutableResponse, ParameterSpec, RewriteArithmeticRequest) from pyquil.api._base_connection import ForestConnection from pyquil.api._qac import AbstractCompiler from pyquil.api._error_reporting import _record_call from pyquil.device import AbstractDevice from pyquil.parser import parse_program from pyquil.quil import Program, Measurement, Declare _log = logging.getLogger(__name__) PYQUIL_PROGRAM_PROPERTIES = ["native_quil_metadata", "num_shots"] def _extract_attribute_dictionary_from_program(program: Program) -> Dict[str, Any]: """ Collects the attributes from PYQUIL_PROGRAM_PROPERTIES on the Program object program into a dictionary. :param program: Program to collect attributes from. :return: Dictionary of attributes, keyed on the string attribute name. """ attrs = {} for prop in PYQUIL_PROGRAM_PROPERTIES: attrs[prop] = getattr(program, prop) return attrs def _extract_program_from_pyquil_executable_response(response: PyQuilExecutableResponse) -> Program: """ Unpacks a rpcq PyQuilExecutableResponse object into a pyQuil Program object. :param response: PyQuilExecutableResponse object to be unpacked. :return: Resulting pyQuil Program object. """ p = Program(response.program) for attr, val in response.attributes.items(): setattr(p, attr, val) return p def _collect_classical_memory_write_locations(program: Program) -> List[Optional[Tuple[int, int]]]: """Collect classical memory locations that are the destination of MEASURE instructions These locations are important for munging output buffers returned from the QPU server to the shape expected by the user. This is secretly stored on BinaryExecutableResponse. We're careful to make sure these objects are json serializable. :return: list whose value `(q, m)` at index `addr` records that the `m`-th measurement of qubit `q` was measured into `ro` address `addr`. A value of `None` means nothing was measured into `ro` address `addr`. """ ro_size = None for instr in program: if isinstance(instr, Declare) and instr.name == "ro": if ro_size is not None: raise ValueError("I found multiple places where a register named `ro` is declared! " "Please only declare one register named `ro`.") ro_size = instr.memory_size measures_by_qubit: Dict[int, int] = Counter() ro_sources: Dict[int, Tuple[int, int]] = {} for instr in program: if isinstance(instr, Measurement): q = instr.qubit.index if instr.classical_reg: offset = instr.classical_reg.offset assert instr.classical_reg.name == "ro", instr.classical_reg.name if offset in ro_sources: _log.warning(f"Overwriting the measured result in register " f"{instr.classical_reg} from qubit {ro_sources[offset]} " f"to qubit {q}") # we track how often each qubit is measured (per shot) and into which register it is # measured in its n-th measurement. ro_sources[offset] = (q, measures_by_qubit[q]) measures_by_qubit[q] += 1 if ro_size: return [ro_sources.get(i) for i in range(ro_size)] elif ro_sources: raise ValueError("Found MEASURE instructions, but no 'ro' or 'ro_table' " "region was declared.") else: return [] def _collect_memory_descriptors(program: Program) -> Dict[str, ParameterSpec]: """Collect Declare instructions that are important for building the patch table. This is secretly stored on BinaryExecutableResponse. We're careful to make sure these objects are json serializable. :return: A dictionary of variable names to specs about the declared region. """ return { instr.name: ParameterSpec(type=instr.memory_type, length=instr.memory_size) for instr in program if isinstance(instr, Declare) } class QPUCompiler(AbstractCompiler): @_record_call def __init__(self, endpoint: str, device: AbstractDevice, timeout: int = 10, name: Optional[str] = None) -> None: """ Client to communicate with the Compiler Server. :param endpoint: TCP or IPC endpoint of the Compiler Server :param device: PyQuil Device object to use as compilation target :param timeout: Number of seconds to wait for a response from the client. :param name: Name of the lattice being targeted """ self.client = Client(endpoint, timeout=timeout) self.target_device = TargetDevice(isa=device.get_isa().to_dict(), specs=device.get_specs().to_dict()) self.name = name def get_version_info(self) -> dict: return self.client.call('get_version_info') @_record_call def quil_to_native_quil(self, program: Program) -> Program: request = NativeQuilRequest(quil=program.out(), target_device=self.target_device) response = self.client.call('quil_to_native_quil', request).asdict() # type: Dict nq_program = parse_program(response['quil']) nq_program.native_quil_metadata = response['metadata'] nq_program.num_shots = program.num_shots return nq_program @_record_call def native_quil_to_executable(self, nq_program: Program) -> BinaryExecutableResponse: if nq_program.native_quil_metadata is None: warnings.warn("It looks like you're trying to call `native_quil_to_binary` on a " "Program that hasn't been compiled via `quil_to_native_quil`. This is " "ok if you've hand-compiled your program to our native gateset, " "but be careful!") if self.name is not None: targeted_lattice = self.client.call('get_config_info')['lattice_name'] if targeted_lattice and targeted_lattice != self.name: warnings.warn(f'You requested compilation for device {self.name}, ' f'but you are engaged on device {targeted_lattice}.') arithmetic_request = RewriteArithmeticRequest(quil=nq_program.out()) arithmetic_response = self.client.call('resolve_gate_parameter_arithmetic', arithmetic_request) request = BinaryExecutableRequest(quil=arithmetic_response.quil, num_shots=nq_program.num_shots) response = self.client.call('native_quil_to_binary', request) # hack! we're storing a little extra info in the executable binary that we don't want to # expose to anyone outside of our own private lives: not the user, not the Forest server, # not anyone. response.recalculation_table = arithmetic_response.recalculation_table response.memory_descriptors = _collect_memory_descriptors(nq_program) response.ro_sources = _collect_classical_memory_write_locations(nq_program) return response class QVMCompiler(AbstractCompiler): @_record_call def __init__(self, endpoint: str, device: AbstractDevice, timeout: float = None) -> None: """ Client to communicate with the Compiler Server. :param endpoint: TCP or IPC endpoint of the Compiler Server :param device: PyQuil Device object to use as compilation target """ self.client = Client(endpoint, timeout=timeout) self.target_device = TargetDevice(isa=device.get_isa().to_dict(), specs=device.get_specs().to_dict()) def get_version_info(self) -> dict: return self.client.call('get_version_info') @_record_call def quil_to_native_quil(self, program: Program) -> Program: request = NativeQuilRequest(quil=program.out(), target_device=self.target_device) response = self.client.call('quil_to_native_quil', request).asdict() # type: Dict nq_program = parse_program(response['quil']) nq_program.native_quil_metadata = response['metadata'] nq_program.num_shots = program.num_shots return nq_program @_record_call def native_quil_to_executable(self, nq_program: Program) -> PyQuilExecutableResponse: return PyQuilExecutableResponse( program=nq_program.out(), attributes=_extract_attribute_dictionary_from_program(nq_program))
44
104
0.665702
66d5524755827697fe10230599637df076846136
585
py
Python
turnero/turnero_app/migrations/0004_auto_20190618_1259.py
Juannauta/Turnero
4af8186cf95508713ec9bcc076740ffbc40b2bb8
[ "MIT" ]
null
null
null
turnero/turnero_app/migrations/0004_auto_20190618_1259.py
Juannauta/Turnero
4af8186cf95508713ec9bcc076740ffbc40b2bb8
[ "MIT" ]
null
null
null
turnero/turnero_app/migrations/0004_auto_20190618_1259.py
Juannauta/Turnero
4af8186cf95508713ec9bcc076740ffbc40b2bb8
[ "MIT" ]
null
null
null
# Generated by Django 2.2.2 on 2019-06-18 12:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('turnero_app', '0003_auto_20190618_1256'), ] operations = [ migrations.AddField( model_name='serviciosusuarios', name='fecha_creacion', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='serviciosusuarios', name='fecha_finalización', field=models.DateTimeField(null=True), ), ]
24.375
54
0.606838
8d0d3b5fabca091a8eb2d15cd070993902d29727
1,009
py
Python
12 Preprocessing pipeline/train.py
aishifugi/generating-sound-with-neural-networks
e0f0b875510178f7e31764a080ca7e463af46e38
[ "MIT" ]
81
2020-11-16T12:26:55.000Z
2022-03-26T18:04:21.000Z
12 Preprocessing pipeline/train.py
aishifugi/generating-sound-with-neural-networks
e0f0b875510178f7e31764a080ca7e463af46e38
[ "MIT" ]
3
2021-06-22T14:40:50.000Z
2022-01-16T17:35:49.000Z
11 Implementing VAE/code/train.py
musikalkemist/generating-sound-with-neural-networks
4e71d22683edb9bd56aa46de3f022f4e1dec1cf1
[ "MIT" ]
27
2021-01-15T16:00:18.000Z
2022-03-16T09:11:41.000Z
from tensorflow.keras.datasets import mnist from autoencoder import VAE LEARNING_RATE = 0.0005 BATCH_SIZE = 32 EPOCHS = 100 def load_mnist(): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype("float32") / 255 x_train = x_train.reshape(x_train.shape + (1,)) x_test = x_test.astype("float32") / 255 x_test = x_test.reshape(x_test.shape + (1,)) return x_train, y_train, x_test, y_test def train(x_train, learning_rate, batch_size, epochs): autoencoder = VAE( input_shape=(28, 28, 1), conv_filters=(32, 64, 64, 64), conv_kernels=(3, 3, 3, 3), conv_strides=(1, 2, 2, 1), latent_space_dim=2 ) autoencoder.summary() autoencoder.compile(learning_rate) autoencoder.train(x_train, batch_size, epochs) return autoencoder if __name__ == "__main__": x_train, _, _, _ = load_mnist() autoencoder = train(x_train[:10000], LEARNING_RATE, BATCH_SIZE, EPOCHS) autoencoder.save("model")
25.871795
75
0.666006
8394a39db3f52ccba924ececb588c9535ef09a14
3,173
py
Python
kubeseal.py
p3lim/sublime-kubeseal
e91f5f771e5731e1c512c487788472ef1bfe9c02
[ "MIT" ]
null
null
null
kubeseal.py
p3lim/sublime-kubeseal
e91f5f771e5731e1c512c487788472ef1bfe9c02
[ "MIT" ]
2
2021-05-12T20:28:03.000Z
2021-05-15T13:23:55.000Z
kubeseal.py
p3lim/sublime-kubeseal
e91f5f771e5731e1c512c487788472ef1bfe9c02
[ "MIT" ]
null
null
null
import re import subprocess import sublime import sublime_plugin ANSI_ESCAPE = re.compile(r'\x1B\[[0-?]*[ -/]*[@-~]') settings = None def plugin_loaded(): ''' Called when the plugin is loaded, used to load the settings for the package. ''' global settings settings = sublime.load_settings('kuebseal.sublime-settings') class ConvertSecret(object): ''' Wrapper for the process used to convert a Secret to a SealedSecret using kubeseal. :param sublime.View view: The view of the file to be converted. ''' def __init__(self, view): self.view = view self.window = view.window() self.encoding = view.encoding() if self.encoding == 'Undefined': self.encoding = 'utf-8' self.cmd = settings.get('cmd', ['kubeseal', '-o', 'yaml']) # < current view > replaced current view def convert(self, region): ''' Attempts to convert the contents of the current view from a Secret manifest to a SealedSecret manifest. :param sublime.Region region: The region for the file to convert :returns: str: Returns the SealedSecret manifest if no errors arose, else the original content. ''' contents = self.view.substr(region) # run the kubeseal command output, error = self._exec(contents) if error: # there was an error, display it self._show_errors(error) # return the original content return contents # hide any existing errors self._hide_errors() # return the converted output return output def _exec(self, stdin): ''' Runs kubeseal with the given input. :param str stdin: Stdin for the process, the file content to convert :returns: stdout, stderr: Returns the SealedSecret manifest if successful, an empty stdout and error if unsuccessful. ''' proc = subprocess.Popen( self.cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, stderr = proc.communicate(stdin.encode()) if stderr or proc.returncode != 0: return '', stderr.decode('utf-8') return stdout.decode(self.encoding), None def _show_errors(self, errors): ''' Show the stderr of a failed process in an output panel. :param str stderr: Stderr output of a process. ''' panel = self.window.create_output_panel('kubeseal') panel.set_scratch(True) panel.run_command('select_all') panel.run_command('right_delete') panel.run_command('insert', {'characters': ANSI_ESCAPE.sub('', errors)}) self.window.run_command('show_panel', {'panel': 'output.kubeseal'}) def _hide_errors(self): ''' Hide any previously displayed error panel. ''' self.window.run_command('hide_panel', {'panel': 'output.kubeseal'}) class KubesealCommand(sublime_plugin.TextCommand): ''' The `kubeseal` command, invoked by the command palette. ''' def run(self, edit): ''' Converts the current file viewed, replacing its contents. ''' converter = ConvertSecret(self.view) # get the entire view region region = sublime.Region(0, self.view.size()) # run the formatter with the given region replacement = converter.convert(region) # replace the region if the content has changes if self.view.substr(region) != replacement: self.view.replace(edit, region, replacement)
27.353448
105
0.714151
ce5587d9c8c65a6544e904ea0549dbe6c2e6b9c3
329
py
Python
aetherguild/framework/utils/sentry.py
katajakasa/aetherguild3
4dc5485398d39cc2be47820d1194d91fe73a0435
[ "MIT" ]
null
null
null
aetherguild/framework/utils/sentry.py
katajakasa/aetherguild3
4dc5485398d39cc2be47820d1194d91fe73a0435
[ "MIT" ]
null
null
null
aetherguild/framework/utils/sentry.py
katajakasa/aetherguild3
4dc5485398d39cc2be47820d1194d91fe73a0435
[ "MIT" ]
null
null
null
from raven.handlers.logging import SentryHandler from raven_aiohttp import AioHttpTransport from raven import Client class AsyncSentryHandler(SentryHandler): def __init__(self, *args, **kwargs): kwargs['client'] = Client(transport=AioHttpTransport) super(AsyncSentryHandler, self).__init__(*args, **kwargs)
32.9
65
0.765957
4da255bf08eec678cb6fe113f3829e1bfec4d259
3,471
py
Python
src/test/data_structure/list_exercise_test.py
EduHubICT/python-basic
43765320e7ff4d5d13a11684f8320513f47ea1ff
[ "MIT" ]
null
null
null
src/test/data_structure/list_exercise_test.py
EduHubICT/python-basic
43765320e7ff4d5d13a11684f8320513f47ea1ff
[ "MIT" ]
3
2020-06-13T14:48:36.000Z
2020-07-02T15:51:13.000Z
src/test/data_structure/list_exercise_test.py
Big0one/python-basic
43765320e7ff4d5d13a11684f8320513f47ea1ff
[ "MIT" ]
1
2020-06-06T22:51:50.000Z
2020-06-06T22:51:50.000Z
import unittest from src.main.data_structure.list_exercise import * class TestList(unittest.TestCase): def test_find_average(self): self.assertEqual(find_average([1, 2, 3]), 2) self.assertEqual(find_average([1, 2, 3, 4, 5, 6, 7, -1]), 3.375) def test_sort_list(self): self.assertEqual(list_sort([3, 5, 1, 9]), [1, 3, 5, 9]) def test_find_max(self): self.assertEqual(find_max([0, 3, 2, 4, 5, 6, 100]), 100) def test_find_min(self): self.assertEqual(find_min([2, 4, 3, 5, -1, -1000]), -1000) def test_find_sum(self): self.assertEqual(find_sum([1, 2, 3, 4]), 10) def test_sort_list_bubble(self): self.assertEqual( sort_list_bubble_asc([10, 9, 8, 7, 5, 1, 2, 4, 3, 6]), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ) def test_sort_list_bubble_dsc(self): self.assertEqual( sort_list_bubble_dsc([10, 9, 8, 7, 5, 1, 2, 4, 3, 6]), [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], ) def test_binary_search(self): self.assertEqual(binary_search([1, 5, 15, 35, 100, 305, 390], 100), "Yes") self.assertEqual(binary_search([1, 5, 15, 35, 100, 305, 390], 1000), "No") self.assertEqual(binary_search([1, 5, 15, 35, 100, 305, 390], 390), "Yes") self.assertEqual(binary_search([1, 5], 100), "No") def test_recursive_binary_search(self): self.assertEqual( binary_search_recursive([1, 2, 3, 4, 5, 6, 7, 8], 3, 0, 7), "Yes" ) def test_binary_search_index(self): self.assertEqual( binary_search_target_index([1, 5, 15, 100, 100, 305, 390], 100, True), 3 ) def test_binary_search_similar_target_count(self): self.assertEqual(binary_search_count([1, 5, 15, 100, 100, 305, 390], 100), 2) def test_binary_search_circular_sorted(self): self.assertEqual( binary_search_circular_sorted([12, 13, 14, 1, 2, 3, 4], 14), "Yes" ) def test_find_square(self): self.assertEqual( find_square([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), [1, 4, 9, 16, 25, 36, 49, 64, 81, 100], ) self.assertEqual(find_square([20, 12, 11]), [400, 144, 121]) def test_find_prime(self): self.assertEqual( find_prime_number([11, 12, 33, 84, 95, 101]), [True, False, False, False, False, True], ) def test_insertion_sort_asc(self): self.assertEqual(insertion_sort_asc([5, 4, 3, 2, 1]), [1, 2, 3, 4, 5]) self.assertEqual( insertion_sort_asc([5, 10, 3, 22, 23, 24, 25]), [3, 5, 10, 22, 23, 24, 25] ) self.assertEqual( insertion_sort_asc([10, 9, 8, 7, 5, 1, 2, 4, 3, 6]), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ) def test_insertion_sort_dsc(self): self.assertEqual(insertion_sort_dsc([1, 2, 3, 4, 5]), [5, 4, 3, 2, 1]) self.assertEqual( insertion_sort_dsc([5, 10, 3, 22, 23, 24, 25]), [25, 24, 23, 22, 10, 5, 3] ) self.assertEqual( insertion_sort_dsc([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], ) def test_specified_type_item(self): self.assertEqual(specified_type_item([1, 2, "abc", 2.2], int), 2) def test_remove_duplicates(self): self.assertEqual(remove_duplicates([1, 2, 2, 3, 3, 4, 4]), [1, 2, 3, 4]) if __name__ == "__main__": unittest.main()
34.366337
86
0.553155
2d812d5fa0739929ba357062a212fedbb4c78de3
857
py
Python
tests/test_multivariate/test_sample_analysis.py
anukaal/probnum-evaluation
5074229cd6fa33aa1884eded792be5c78ba9fb4c
[ "MIT" ]
5
2021-05-01T17:20:08.000Z
2021-05-03T09:13:28.000Z
tests/test_multivariate/test_sample_analysis.py
anukaal/probnum-evaluation
5074229cd6fa33aa1884eded792be5c78ba9fb4c
[ "MIT" ]
9
2021-02-14T11:45:44.000Z
2021-06-07T09:37:33.000Z
tests/test_multivariate/test_sample_analysis.py
anukaal/probnum-evaluation
5074229cd6fa33aa1884eded792be5c78ba9fb4c
[ "MIT" ]
2
2021-02-14T10:31:21.000Z
2022-03-29T12:37:52.000Z
"""Tests for sample analysis functions.""" import numpy as np import pytest from probnumeval import multivariate @pytest.fixture def fake_samples(): return np.random.rand(100, 3) @pytest.fixture def fake_reference(): return np.random.rand(3) @pytest.mark.parametrize("p", [1, 2, np.inf]) def test_sample_sample_distance(fake_samples, p): ssdist = multivariate.sample_sample_distance(fake_samples, p=p) np.testing.assert_allclose(ssdist.shape, (100,)) @pytest.mark.parametrize("p", [1, 2, np.inf]) def test_sample_reference_distance(fake_samples, fake_reference, p): srdist = multivariate.sample_reference_distance(fake_samples, fake_reference, p=p) np.testing.assert_allclose(srdist.shape, (100,)) def test_gaussianity_p_value(): with pytest.raises(NotImplementedError): multivariate.gaussianity_p_value(None)
25.969697
86
0.757293
fbfcc818b154bd8f75bc8cc3cc661ff72a26ce82
5,124
py
Python
aoc2021/d20.py
jbudynek/advent-of-code
16ab71b110e9766b445bce3d3172b11d421b2f75
[ "CC0-1.0" ]
null
null
null
aoc2021/d20.py
jbudynek/advent-of-code
16ab71b110e9766b445bce3d3172b11d421b2f75
[ "CC0-1.0" ]
null
null
null
aoc2021/d20.py
jbudynek/advent-of-code
16ab71b110e9766b445bce3d3172b11d421b2f75
[ "CC0-1.0" ]
null
null
null
# coding: utf-8 from collections import Counter from timeit import default_timer as timer import numpy as np # Helpers ########## def print_field(xyids, DBG=True): coords = xyids.keys() if(DBG): print(xyids) x_min = min(coords, key=lambda t: t[0])[0]-1 x_max = max(coords, key=lambda t: t[0])[0]+1 y_min = min(coords, key=lambda t: t[1])[1]-1 y_max = max(coords, key=lambda t: t[1])[1]+1 if(DBG): print(x_min, x_max, y_min, y_max) for yy in range(y_min, y_max+1): ss = "" for xx in range(x_min, x_max+1): if (xx, yy) in xyids: ss += str(xyids[(xx, yy)]) else: ss += " " print(ss) def create_world(ccc, DBG=True): field = {} x = -1 y = -1 v_id = 0 for line in ccc: y += 1 x = -1 for c in line: x += 1 if c == '#': field[(x, y)] = 1 else: field[(x, y)] = 0 if DBG: print(field) return field def get_bounds(tracks, DBG): coords = tracks.keys() x_min = min(coords, key=lambda t: t[0])[0] x_max = max(coords, key=lambda t: t[0])[0] y_min = min(coords, key=lambda t: t[1])[1] y_max = max(coords, key=lambda t: t[1])[1] return (x_min, x_max, y_min, y_max) # Main function ########## def parse_algo(line): algo = np.zeros(512, dtype=int) idx = 0 for cc in line: if cc == '#': algo[idx] = 1 idx += 1 return algo def process(world, xy, algo, fill): dirs = [(-1, -1), (0, -1), (1, -1), (-1, 0), (0, 0), (1, 0), (-1, 1), (0, 1), (1, 1)] bin_string = '' for d in dirs: nxy = (xy[0]+d[0], xy[1]+d[1]) if nxy not in world: bin_string += str(fill) elif world[nxy] == 1: bin_string += '1' else: bin_string += '0' return int(bin_string, 2) def enhance(input_val, nb_steps, DBG=True): algo = parse_algo(input_val[0]) world = create_world(input_val[2:], DBG) if DBG: print_field(world) for step in range(nb_steps): fill = 0 if algo[0] == 1: fill = step % 2 (x_min, x_max, y_min, y_max) = get_bounds(world, DBG) new_world = world.copy() for x in range(x_min-1, x_max+2): for y in range(y_min-1, y_max+2): xy = (x, y) nxy_val = process(world, xy, algo, fill) new_world[xy] = algo[nxy_val] if DBG: print_field(new_world) world = new_world return Counter(new_world.values())[1] def boom_part1(input_val, DBG=True): return enhance(input_val, 2, DBG) def boom_part2(input_val, DBG=True): return enhance(input_val, 50, DBG) # Testing and timing ########## def print_time(t_start, t_end): s = t_end-t_start print(int(s*1000), "ms = ", int(s), "s = ", int(s/60), "min") RED_FG = '\x1b[91m' GREEN_FG = '\x1b[92m' YELLOW_FG = '\x1b[93m' DEFAULT_FG = '\x1b[39m' def output_test(cc, t_start, t_end, result, expected): result = str(result) expected = str(expected) flag = (result == expected) sflag = "" if flag == True: sflag = GREEN_FG+str(flag)+DEFAULT_FG else: sflag = RED_FG+str(flag)+DEFAULT_FG if(expected == "None"): print("*** "+str(cc) + " *** -> Result = "+str(result)) else: print("*** "+str(cc) + " *** -> Result = "+str(result) + " -> success = " + sflag + " -> expected " + expected) print_time(t_start, t_end) return flag def test_part1(cc=None, expected=None, DBG=False): t_start = timer() result = boom_part1(cc, DBG) t_end = timer() return output_test(cc, t_start, t_end, result, expected) def test_part2(cc=None, expected=None, DBG=False): t_start = timer() result = boom_part2(cc, DBG) t_end = timer() return output_test(cc, t_start, t_end, result, expected) # Test cases ########## tt1 = """..#.#..#####.#.#.#.###.##.....###.##.#..###.####..#####..#....#..#..##..###..######.###...####..#..#####..##..#.#####...##.#.#..#.##..#.#......#.###.######.###.####...#.##.##..#..#..#####.....#.#....###..#.##......#.....#..#..#..##..#...##.######.####.####.#.#...#.......#..#.#.#...####.##.#......#..#...##.#.##..#...##.#.##..###.#......#.#.......#.#.#.####.###.##...#.....####.#..#..#.##.#....##..#.####....##...##..#...#......#.#.......#.......##..####..#...#.#.#...##..#.#..###..#####........#..####......#..# #..#. #.... ##..# ..#.. ..###""" tt1 = tt1.splitlines() test_part1(tt1, 35, True) test_part2(tt1, 3351, False) # Real data ########## INPUT_FILE = "input-d20.txt" f = open(INPUT_FILE, "r") contents = f.read() puzzle_input = contents.splitlines() f.close() # part 1 t_start = timer() ret = boom_part1(puzzle_input, DBG=False) t_end = timer() print_time(t_start, t_end) print(ret) # part 2 t_start = timer() ret = boom_part2(puzzle_input, DBG=False) t_end = timer() print_time(t_start, t_end) print(ret) # PART 1 OK = 5663 # PART 2 OK = 19638
23.18552
521
0.484192
cb28b7beeb920baca8daaf50418b4bc6b6bb5333
98,805
py
Python
test/test_c10d.py
wxwoods/mctorch
7cd6eb51fdd01fa75ed9245039a4f145ba342de2
[ "BSD-3-Clause" ]
1
2019-07-23T11:20:58.000Z
2019-07-23T11:20:58.000Z
test/test_c10d.py
wxwoods/mctorch
7cd6eb51fdd01fa75ed9245039a4f145ba342de2
[ "BSD-3-Clause" ]
null
null
null
test/test_c10d.py
wxwoods/mctorch
7cd6eb51fdd01fa75ed9245039a4f145ba342de2
[ "BSD-3-Clause" ]
null
null
null
import copy import math import multiprocessing import os import random import sys import tempfile import threading import time import unittest from datetime import timedelta from itertools import groupby from functools import wraps from collections import namedtuple import torch import common_utils as common from torch import nn import torch.nn.functional as F import torch.distributed as c10d import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel from common_utils import TestCase, load_tests, run_tests from common_utils import retry_on_address_already_in_use_error # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests if not c10d.is_available(): print('c10d not available, skipping tests') sys.exit(0) TIMEOUT_DEFAULT = 30 TIMEOUT_OVERRIDE = {} TestSkip = namedtuple('TestSkip', 'exit_code, message') TEST_SKIPS = { "multi-gpu": TestSkip(75, "Need at least 2 CUDA devices"), "nccl": TestSkip(76, "c10d not compiled with NCCL support"), "known_issues": TestSkip(77, "Test skipped due to known issues") } def skip_if_not_multigpu(func): """Multi-GPU tests requires at least 2 GPUS. Skip if this is not met.""" @wraps(func) def wrapper(*args, **kwargs): if torch.cuda.is_available() and torch.cuda.device_count() >= 2: return func(*args, **kwargs) sys.exit(TEST_SKIPS['multi-gpu'].exit_code) return wrapper def skip_if_lt_x_gpu(x): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): if torch.cuda.is_available() and torch.cuda.device_count() >= x: return func(*args, **kwargs) sys.exit(TEST_SKIPS['multi-gpu'].exit_code) return wrapper return decorator def skip_if_not_nccl(func): """Skips a test if NCCL is not available (for c10d).""" @wraps(func) def wrapper(*args, **kwargs): if hasattr(c10d, "ProcessGroupNCCL"): return func(*args, **kwargs) sys.exit(TEST_SKIPS['nccl'].exit_code) return wrapper def skip_for_known_issues(func): """Skips a test due to known issues (for c10d).""" @wraps(func) def wrapper(*args, **kwargs): sys.exit(TEST_SKIPS['known_issues'].exit_code) return wrapper def get_timeout(test_id): return TIMEOUT_OVERRIDE.get(test_id.split('.')[-1], TIMEOUT_DEFAULT) def gpus_for_rank(world_size): """Multigpu tests are designed to simulate the multi nodes with multi GPUs on each node. Nccl backend requires equal #GPUs in each process. On a single node, all visible GPUs are evenly divided to subsets, each process only uses a subset. """ visible_devices = list(range(torch.cuda.device_count())) gpus_per_process = torch.cuda.device_count() // world_size gpus_for_rank = [] for rank in range(world_size): gpus_for_rank.append(visible_devices[rank * gpus_per_process: (rank + 1) * gpus_per_process]) return gpus_for_rank def simple_reduce_tests(rank, world_size): return [ ( c10d.ReduceOp.SUM, torch.Tensor([rank + 1.0]), torch.Tensor([float(world_size * (world_size + 1) / 2)]), ), ( c10d.ReduceOp.PRODUCT, torch.Tensor([rank + 1.0]), torch.Tensor([float(math.factorial(world_size))]), ), ( c10d.ReduceOp.MIN, torch.Tensor([rank + 1.0]), torch.Tensor([1.0]), ), ( c10d.ReduceOp.MAX, torch.Tensor([rank + 1.0]), torch.Tensor([world_size]), ), ] def simple_multi_input_reduce_tests(rank, world_size): return [ ( c10d.ReduceOp.SUM, [torch.Tensor([2 * rank + 0.0]), torch.Tensor([2 * rank + 1.0])], torch.Tensor([float(world_size * (2 * world_size - 1))]), ), ( c10d.ReduceOp.PRODUCT, [torch.Tensor([2 * rank + 1.0]), torch.Tensor([2 * rank + 2.0])], torch.Tensor([float(math.factorial(2 * world_size))]), ), ( c10d.ReduceOp.MIN, [torch.Tensor([2 * rank + 1.0]), torch.Tensor([2 * rank + 2.0])], torch.Tensor([1.0]), ), ( c10d.ReduceOp.MAX, [torch.Tensor([2 * rank + 1.0]), torch.Tensor([2 * rank + 2.0])], torch.Tensor([2 * world_size]), ), ] class StoreTestBase(object): def _create_store(self, i): raise RuntimeError("not implemented") def _test_set_get(self, fs): fs.add("key", 1) fs.add("key", 2) fs.add("key", 3) fs.set("key0", "value0") fs.add("key3", 1) fs.set("key1", "value1") fs.add("key3", 2) fs.set("key2", "value2") fs.add("key3", 3) fs.add("key3", 4) fs.add("key3", 5) fs.add("key3", 6) self.assertEqual(b"6", fs.get("key")) self.assertEqual(b"value0", fs.get("key0")) self.assertEqual(b"value1", fs.get("key1")) self.assertEqual(b"value2", fs.get("key2")) self.assertEqual(b"21", fs.get("key3")) def test_set_get(self): self._test_set_get(self._create_store()) class FileStoreTest(TestCase, StoreTestBase): def setUp(self): super(FileStoreTest, self).setUp() self.file = tempfile.NamedTemporaryFile(delete=False) def _create_store(self): store = c10d.FileStore(self.file.name, 1) store.set_timeout(timedelta(seconds=300)) return store class PrefixFileStoreTest(TestCase, StoreTestBase): def setUp(self): super(PrefixFileStoreTest, self).setUp() self.file = tempfile.NamedTemporaryFile(delete=False) self.filestore = c10d.FileStore(self.file.name, 1) self.prefix = "test_prefix" self.filestore.set_timeout(timedelta(seconds=300)) def _create_store(self): return c10d.PrefixStore(self.prefix, self.filestore) def create_tcp_store(addr): """ Creates a TCP store. Retries if the chosen port is already in use. """ ports = [] for _ in range(10): try: port = common.find_free_port() ports.append(port) return c10d.TCPStore(addr, port, 1, True) except RuntimeError as error: if str(error) == "Address already in use": continue raise raise RuntimeError("Unable to find free port (tried %s)" % ", ".join(ports)) class TCPStoreTest(TestCase, StoreTestBase): def _create_store(self): store = create_tcp_store('localhost') store.set_timeout(timedelta(seconds=300)) return store def test_address_already_in_use(self): with self.assertRaisesRegex(RuntimeError, "^Address already in use$"): addr = 'localhost' port = common.find_free_port() # Use noqa to silence flake8. # Need to store in an unused variable here to ensure the first # object is not destroyed before the second object is created. store1 = c10d.TCPStore(addr, port, 1, True) # noqa: F841 store2 = c10d.TCPStore(addr, port, 1, True) # noqa: F841 class PrefixTCPStoreTest(TestCase, StoreTestBase): def setUp(self): super(PrefixTCPStoreTest, self).setUp() self.tcpstore = create_tcp_store('localhost') self.prefix = "test_prefix" self.tcpstore.set_timeout(timedelta(seconds=300)) def _create_store(self): return c10d.PrefixStore(self.prefix, self.tcpstore) class RendezvousTest(TestCase): def test_unknown_handler(self): with self.assertRaisesRegex(RuntimeError, "^No rendezvous handler"): c10d.rendezvous('invalid://') class RendezvousEnvTest(TestCase): @retry_on_address_already_in_use_error def test_common_errors(self): # TODO remove this hack if not hasattr(c10d, "ProcessGroupNCCL"): raise unittest.SkipTest("C10D is not built with NCCL process group," " skipping test") vars = { "WORLD_SIZE": "1", "RANK": "0", "MASTER_ADDR": "127.0.0.1", "MASTER_PORT": common.find_free_port(), } class Env(object): def __init__(self, vars): self.vars = vars def __enter__(self): for key, value in self.vars.items(): os.environ[key] = str(value) def __exit__(self, type, value, traceback): for key in self.vars.keys(): del os.environ[key] def without(d, key): d = d.copy() d.pop(key) return d def withouts(d, keys): d = d.copy() for key in keys: d.pop(key) return d with Env(without(vars, 'WORLD_SIZE')): with self.assertRaisesRegex(ValueError, 'WORLD_SIZE expected'): gen = c10d.rendezvous('env://') next(gen) c10d.init_process_group(backend='nccl', world_size=1) self.assertEqual(c10d.get_rank(), 0) self.assertEqual(c10d.get_world_size(), 1) c10d.destroy_process_group() with Env(without(vars, 'RANK')): with self.assertRaisesRegex(ValueError, 'RANK expected'): gen = c10d.rendezvous('env://') next(gen) c10d.init_process_group(backend='nccl', rank=0) self.assertEqual(c10d.get_rank(), 0) self.assertEqual(c10d.get_world_size(), 1) c10d.destroy_process_group() with Env(withouts(vars, ['RANK', 'WORLD_SIZE'])): c10d.init_process_group(backend='nccl', rank=0, world_size=1) self.assertEqual(c10d.get_rank(), 0) self.assertEqual(c10d.get_world_size(), 1) c10d.destroy_process_group() with Env(vars): c10d.init_process_group(backend='nccl') self.assertEqual(c10d.get_rank(), 0) self.assertEqual(c10d.get_world_size(), 1) c10d.destroy_process_group() with Env(without(vars, 'MASTER_ADDR')): with self.assertRaisesRegex(ValueError, 'MASTER_ADDR expected'): gen = c10d.rendezvous('env://') next(gen) with Env(without(vars, 'MASTER_PORT')): with self.assertRaisesRegex(ValueError, 'MASTER_PORT expected'): gen = c10d.rendezvous('env://') next(gen) with Env(without(vars, 'WORLD_SIZE')): gen = c10d.rendezvous('env://?world_size={}'.format(1)) _, _, size = next(gen) self.assertEqual(size, 1) with Env(without(vars, 'RANK')): gen = c10d.rendezvous('env://?rank={}'.format(0)) _, rank, _ = next(gen) self.assertEqual(rank, 0) with Env(withouts(vars, ['RANK', 'WORLD_SIZE'])): gen = c10d.rendezvous('env://?rank={}&world_size={}'.format(0, 1)) _, rank, size = next(gen) self.assertEqual(rank, 0) self.assertEqual(size, 1) @retry_on_address_already_in_use_error def test_nominal(self): os.environ['WORLD_SIZE'] = '1' os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = str(common.find_free_port()) # Single rank os.environ['RANK'] = '0' gen0 = c10d.rendezvous('env://') store0, rank0, size0 = next(gen0) self.assertEqual(0, rank0) self.assertEqual(1, size0) store0.set("key0", "value0") # check with get self.assertEqual(b"value0", store0.get("key0")) class RendezvousFileTest(TestCase): def test_common_errors(self): with self.assertRaisesRegex(ValueError, 'path missing'): gen = c10d.rendezvous('file://?rank=0&world_size=1') next(gen) with self.assertRaisesRegex(ValueError, 'rank parameter missing'): gen = c10d.rendezvous('file:///tmp/foo?world_size=1') next(gen) with self.assertRaisesRegex(ValueError, 'size parameter missing'): gen = c10d.rendezvous('file:///tmp/foo?rank=0') next(gen) def test_nominal(self): with tempfile.NamedTemporaryFile(delete=False) as file: url = 'file://%s?world_size=%d' % (file.name, 2) gen0 = c10d.rendezvous(url + "&rank=0") store0, rank0, size0 = next(gen0) self.assertEqual(0, rank0) self.assertEqual(2, size0) gen1 = c10d.rendezvous(url + "&rank=1") store1, rank1, size1 = next(gen1) self.assertEqual(1, rank1) self.assertEqual(2, size1) # Set value on both stores store0.set("key0", "value0") store1.set("key1", "value1") # Cross check with get self.assertEqual(b"value0", store1.get("key0")) self.assertEqual(b"value1", store0.get("key1")) class RendezvousTCPTest(TestCase): def test_common_errors(self): with self.assertRaisesRegex(ValueError, 'port number missing'): gen = c10d.rendezvous('tcp://127.0.0.1?rank=0&world_size=1') next(gen) with self.assertRaisesRegex(ValueError, 'rank parameter missing'): gen = c10d.rendezvous('tcp://127.0.0.1:23456?world_size=1') next(gen) with self.assertRaisesRegex(ValueError, 'size parameter missing'): gen = c10d.rendezvous('tcp://127.0.0.1:23456?rank=0') next(gen) @retry_on_address_already_in_use_error def test_nominal(self): addr = 'localhost' port = common.find_free_port() url = 'tcp://%s:%d?world_size=%d' % (addr, port, 1) gen0 = c10d.rendezvous(url + "&rank=0") store0, rank0, size0 = next(gen0) self.assertEqual(0, rank0) self.assertEqual(1, size0) # Set value on the single store store0.set("key0", "value0") # check with get self.assertEqual(b"value0", store0.get("key0")) class MultiProcessTestCase(TestCase): MAIN_PROCESS_RANK = -1 @property def world_size(self): return 4 @staticmethod def join_or_run(fn): @wraps(fn) def wrapper(self): if self.rank == self.MAIN_PROCESS_RANK: self._join_processes(fn) else: fn(self) return wrapper # The main process spawns N subprocesses that run the test. # This function patches overwrites every test function to either # assume the role of the main process and join its subprocesses, # or run the underlying test function. @classmethod def setUpClass(cls): for attr in dir(cls): if attr.startswith('test'): fn = getattr(cls, attr) setattr(cls, attr, cls.join_or_run(fn)) def setUp(self): super(MultiProcessTestCase, self).setUp() self.rank = self.MAIN_PROCESS_RANK self.file = tempfile.NamedTemporaryFile(delete=False) self.processes = [self._spawn_process(rank) for rank in range(int(self.world_size))] def tearDown(self): super(MultiProcessTestCase, self).tearDown() for p in self.processes: p.terminate() def _spawn_process(self, rank): name = 'process ' + str(rank) process = multiprocessing.Process(target=self._run, name=name, args=(rank,)) process.start() return process def _run(self, rank): self.rank = rank # self.id() == e.g. '__main__.TestDistributed.test_get_rank' # We're retreiving a corresponding test and executing it. getattr(self, self.id().split(".")[2])() sys.exit(0) def _join_processes(self, fn): timeout = get_timeout(self.id()) start_time = time.time() for p in self.processes: p.join(timeout) elapsed_time = time.time() - start_time self._check_return_codes(elapsed_time) def _check_return_codes(self, elapsed_time): """ Checks that the return codes of all spawned processes match, and skips tests if they returned a return code indicating a skipping condition. """ first_process = self.processes[0] for i, p in enumerate(self.processes): if p.exitcode is None: raise RuntimeError('Process {} terminated or timed out after {} seconds'.format(i, elapsed_time)) self.assertEqual(p.exitcode, first_process.exitcode) for skip in TEST_SKIPS.values(): if first_process.exitcode == skip.exit_code: raise unittest.SkipTest(skip.message) self.assertEqual(first_process.exitcode, 0) @property def is_master(self): return self.rank == 0 class TimeoutTest(TestCase): def _test_store_timeout(self, backend, init_method, c2p): try: c10d.distributed_c10d.init_process_group( backend=backend, init_method=init_method, world_size=1, rank=0, timeout=timedelta(seconds=1)) default_store = c10d.distributed_c10d._get_default_store() tik = time.time() with self.assertRaisesRegex(RuntimeError, "Timeout"): default_store.get("nonexistent key") tok = time.time() c10d.destroy_process_group() c2p.append(float(tok - tik)) except RuntimeError as e: # catch "Address already in use" error and report it to the main # thread c2p.append(e) def _init_methods(self): f = tempfile.NamedTemporaryFile(delete=False) yield "file://%s" % f.name f.close() yield "tcp://127.0.0.1:%d" % common.find_free_port() def _test_default_store_timeout(self, backend): for init_method in self._init_methods(): c2p = [] t = threading.Thread( target=self._test_store_timeout, args=(backend, init_method, c2p)) t.daemon = True t.start() t.join(5) self.assertEqual(1, len(c2p)) if isinstance(c2p[0], float): # waiting time should be 1s, use 3s to rule out false alarm self.assertGreater(3, c2p[0]) elif isinstance(c2p[0], RuntimeError): # let @retry_on_address_already_in_use_error handle the error raise c2p[0] else: raise RuntimeError("Unexpected type {}".format(type(c2p[0]))) @retry_on_address_already_in_use_error def test_default_store_timeout_nccl(self): # TODO remove this hack if not hasattr(c10d, "ProcessGroupNCCL"): raise unittest.SkipTest("C10D is not built with NCCL process group," " skipping test") self._test_default_store_timeout('nccl') @retry_on_address_already_in_use_error def test_default_store_timeout_gloo(self): self._test_default_store_timeout('gloo') class ProcessGroupGlooTest(MultiProcessTestCase): def opts(self, threads=2): opts = c10d.ProcessGroupGloo.Options() opts.devices = [c10d.ProcessGroupGloo.create_tcp_device(interface="lo")] opts.timeout = 5.0 opts.threads = threads return opts def test_broadcast_checks(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) t1 = torch.zeros([1], dtype=torch.float32) t2 = torch.zeros([1], dtype=torch.float64) t3 = torch.zeros([2], dtype=torch.float32) with self.assertRaisesRegex(ValueError, "invalid root rank"): opts = c10d.BroadcastOptions() opts.rootRank = -1 opts.rootTensor = 0 pg.broadcast([t1], opts) with self.assertRaisesRegex(ValueError, "invalid root rank"): opts = c10d.BroadcastOptions() opts.rootRank = self.world_size opts.rootTensor = 0 pg.broadcast([t1], opts) with self.assertRaisesRegex(ValueError, "invalid root tensor"): opts = c10d.BroadcastOptions() opts.rootRank = self.rank opts.rootTensor = -1 pg.broadcast([t1], opts) with self.assertRaisesRegex(ValueError, "invalid root tensor"): opts = c10d.BroadcastOptions() opts.rootRank = self.rank opts.rootTensor = 1 pg.broadcast([t1], opts) with self.assertRaisesRegex(ValueError, "invalid root tensor"): opts = c10d.BroadcastOptions() opts.rootRank = self.rank opts.rootTensor = 0 pg.broadcast([], opts) with self.assertRaisesRegex(ValueError, "invalid tensor type"): opts = c10d.BroadcastOptions() opts.rootRank = self.rank opts.rootTensor = 0 pg.broadcast([t1, t2], opts) with self.assertRaisesRegex(ValueError, "invalid tensor size"): opts = c10d.BroadcastOptions() opts.rootRank = self.rank opts.rootTensor = 0 pg.broadcast([t1, t3], opts) def _test_broadcast_basics(self, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) def broadcast(xs, rootRank, rootTensor): opts = c10d.BroadcastOptions() opts.rootRank = rootRank opts.rootTensor = rootTensor work = pg.broadcast(xs, opts) work.wait() # Every rank is root once for i in range(self.world_size): # Run with 1 input tensor x = fn(torch.Tensor([self.rank])) broadcast([x], i, 0) self.assertEqual(torch.Tensor([i]), x) # Run with 2 input tensors num = 2 for j in range(num): xs = [ fn(torch.Tensor([self.rank * num + 0.0])), fn(torch.Tensor([self.rank * num + 1.0])), ] broadcast(xs, i, j) self.assertEqual(torch.Tensor([i * num + j]), xs[0]) self.assertEqual(torch.Tensor([i * num + j]), xs[1]) # Test overloaded convenience function x = torch.Tensor([self.rank + 1.0]) work = pg.broadcast(x, root=0) work.wait() self.assertEqual(torch.Tensor([1.0]), x) def test_broadcast_basics(self): self._test_broadcast_basics(lambda t: t.clone()) @skip_if_not_multigpu def test_broadcast_basics_cuda(self): self._test_broadcast_basics(lambda t: t.clone().cuda()) def _test_broadcast_stress(self, inputs): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) work_handles = [ pg.broadcast(inputs[i], root=(i % self.world_size)) for i in range(len(inputs)) ] for i, work_handle in enumerate(work_handles): work_handle.wait() self.assertEqual( torch.Tensor([ (i * self.world_size) + (i % self.world_size) ]), inputs[i], "Mismatch in iteration %d" % i, ) def test_broadcast_stress(self): inputs = [torch.Tensor([i * self.world_size + self.rank]) for i in range(1000)] self._test_broadcast_stress(inputs) @skip_if_not_multigpu def test_broadcast_stress_cuda(self): inputs = [torch.Tensor([i * self.world_size + self.rank]).cuda() for i in range(1000)] self._test_broadcast_stress(inputs) def test_allreduce_checks(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) t1 = torch.zeros([1], dtype=torch.float32) t2 = torch.zeros([1], dtype=torch.float64) t3 = torch.zeros([2], dtype=torch.float32) with self.assertRaisesRegex(ValueError, "requires non-empty tensor list"): opts = c10d.AllreduceOptions() pg.allreduce([], opts) with self.assertRaisesRegex(ValueError, "invalid tensor type"): opts = c10d.AllreduceOptions() pg.allreduce([t1, t2], opts) with self.assertRaisesRegex(ValueError, "invalid tensor size"): opts = c10d.AllreduceOptions() pg.allreduce([t1, t3], opts) def _test_allreduce_basics(self, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) # Single input tests tests = simple_reduce_tests(self.rank, self.world_size) for (op, input, output) in tests: opts = c10d.AllreduceOptions() opts.reduceOp = op tensor = fn(input) work = pg.allreduce([tensor], opts) work.wait() self.assertEqual(output, tensor) # Multi input tests tests = simple_multi_input_reduce_tests(self.rank, self.world_size) for (op, inputs, output) in tests: opts = c10d.AllreduceOptions() opts.reduceOp = op tensors = [fn(input) for input in inputs] work = pg.allreduce(tensors, opts) work.wait() for tensor in tensors: self.assertEqual(output, tensor) # Test overloaded convenience function (defaults to using sum) x = fn(torch.Tensor([self.rank + 1.0])) work = pg.allreduce(x) work.wait() self.assertEqual(torch.Tensor([float(self.world_size * (self.world_size + 1) / 2)]), x) def test_allreduce_basics(self): self._test_allreduce_basics(lambda t: t.clone()) @skip_if_not_multigpu def test_allreduce_basics_cuda(self): self._test_allreduce_basics(lambda t: t.clone().cuda()) def _test_allreduce_stress(self, inputs): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) work_handles = [pg.allreduce(inputs[i]) for i in range(len(inputs))] for i, work_handle in enumerate(work_handles): work_handle.wait() self.assertEqual( torch.Tensor([ (i * self.world_size) + (self.world_size * (self.world_size - 1) / 2) ]), inputs[i], "Mismatch in iteration %d" % i, ) def test_allreduce_stress(self): inputs = [torch.Tensor([i + self.rank]) for i in range(1000)] self._test_allreduce_stress(inputs) @skip_if_not_multigpu def test_allreduce_stress_cuda(self): inputs = [torch.Tensor([i + self.rank]).cuda() for i in range(1000)] self._test_allreduce_stress(inputs) def test_scatter_checks(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) t1 = torch.zeros([1], dtype=torch.float32) t2 = torch.zeros([1], dtype=torch.float64) t3 = torch.zeros([2], dtype=torch.float32) with self.assertRaisesRegex(ValueError, "invalid root rank"): opts = c10d.ScatterOptions() opts.rootRank = -1 pg.scatter([t1], [], opts) with self.assertRaisesRegex(ValueError, "invalid root rank"): opts = c10d.ScatterOptions() opts.rootRank = self.world_size pg.scatter([t1], [], opts) with self.assertRaisesRegex(ValueError, "requires a single-element output tensor list"): opts = c10d.ScatterOptions() opts.rootRank = 0 pg.scatter([], [], opts) with self.assertRaisesRegex(ValueError, "requires a single-element output tensor list"): opts = c10d.ScatterOptions() opts.rootRank = 0 pg.scatter([t1, t1], [], opts) with self.assertRaisesRegex(ValueError, "requires a single-element input list"): opts = c10d.ScatterOptions() opts.rootRank = self.rank pg.scatter([t1], [], opts) with self.assertRaisesRegex(ValueError, "requires a single-element input list"): opts = c10d.ScatterOptions() opts.rootRank = self.rank pg.scatter([t1], [[t1] * self.world_size, [t1] * self.world_size], opts) with self.assertRaisesRegex(ValueError, "requires a single-element input list"): opts = c10d.ScatterOptions() opts.rootRank = self.rank pg.scatter([t1], [[t1] * (self.world_size - 1)], opts) with self.assertRaisesRegex(ValueError, "requires a single-element input list"): opts = c10d.ScatterOptions() opts.rootRank = self.rank pg.scatter([t1], [[t1] * (self.world_size + 1)], opts) with self.assertRaisesRegex(ValueError, "requires a single-element input list"): opts = c10d.ScatterOptions() opts.rootRank = self.rank pg.scatter([t1], [[t1] * (self.world_size + 1)], opts) with self.assertRaisesRegex(ValueError, "invalid tensor type"): opts = c10d.ScatterOptions() opts.rootRank = self.rank pg.scatter([t1], [[t2] * self.world_size], opts) with self.assertRaisesRegex(ValueError, "invalid tensor size"): opts = c10d.ScatterOptions() opts.rootRank = self.rank pg.scatter([t1], [[t3] * self.world_size], opts) with self.assertRaisesRegex(ValueError, "requires empty input on non-root"): opts = c10d.ScatterOptions() opts.rootRank = (self.rank + 1) % self.world_size pg.scatter([t1], [[t1] * self.world_size], opts) def _test_scatter_basics(self, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) # Preallocate tensors for input/output input = [fn(torch.Tensor([self.rank])) for _ in range(self.world_size)] outputs = [fn(torch.Tensor([-1])) for _ in range(self.world_size)] # Take turns being the scatter root and accumulate work items work = [] for i in range(self.world_size): opts = c10d.ScatterOptions() opts.rootRank = i if i == self.rank: work.append(pg.scatter([outputs[i]], [input], opts)) else: work.append(pg.scatter([outputs[i]], [], opts)) # Wait for work to complete for i in range(self.world_size): work[i].wait() self.assertEqual(torch.Tensor([i]), outputs[i]) def test_scatter_basics(self): self._test_scatter_basics(lambda t: t.clone()) @skip_if_not_multigpu def test_scatter_basics_cuda(self): self._test_scatter_basics(lambda t: t.clone().cuda()) def _test_scatter_stress(self, inputs, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) outputs = [ [fn(torch.Tensor([-1])) for _ in range(self.world_size)] for _ in range(len(inputs)) ] work_handles = [] for i in range(len(inputs)): for root in range(self.world_size): opts = c10d.ScatterOptions() opts.rootRank = root if root == self.rank: work = pg.scatter([outputs[i][root]], [[fn(e) for e in inputs[i]]], opts) else: work = pg.scatter([outputs[i][root]], [], opts) work_handles.append(work) for i, work_handle in enumerate(work_handles): work_handle.wait() iter = i // self.world_size root = i % self.world_size self.assertEqual( torch.Tensor([iter + root]), outputs[iter][root], "Mismatch in iteration %d for rank %d" % (iter, root) ) def test_scatter_stress(self): inputs = [ [torch.Tensor([i + self.rank]) for _ in range(self.world_size)] for i in range(1000) ] self._test_scatter_stress(inputs, lambda t: t.clone()) @unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/15963") @skip_if_not_multigpu def test_scatter_stress_cuda(self): inputs = [ [torch.Tensor([i + self.rank]) for _ in range(self.world_size)] for i in range(1000) ] self._test_scatter_stress(inputs, lambda t: t.clone().cuda()) def test_gather_checks(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) t1 = torch.zeros([1], dtype=torch.float32) t2 = torch.zeros([1], dtype=torch.float64) t3 = torch.zeros([2], dtype=torch.float32) with self.assertRaisesRegex(ValueError, "invalid root rank"): opts = c10d.GatherOptions() opts.rootRank = -1 pg.gather([], [t1], opts) with self.assertRaisesRegex(ValueError, "invalid root rank"): opts = c10d.GatherOptions() opts.rootRank = self.world_size pg.gather([], [t1], opts) with self.assertRaisesRegex(ValueError, "requires a single-element input tensor list"): opts = c10d.GatherOptions() opts.rootRank = 0 pg.gather([], [], opts) with self.assertRaisesRegex(ValueError, "requires a single-element input tensor list"): opts = c10d.GatherOptions() opts.rootRank = 0 pg.gather([], [t1, t1], opts) with self.assertRaisesRegex(ValueError, "requires a single-element output list"): opts = c10d.GatherOptions() opts.rootRank = self.rank pg.gather([], [t1], opts) with self.assertRaisesRegex(ValueError, "requires a single-element output list"): opts = c10d.GatherOptions() opts.rootRank = self.rank pg.gather([[t1] * self.world_size, [t1] * self.world_size], [t1], opts) with self.assertRaisesRegex(ValueError, "requires a single-element output list"): opts = c10d.GatherOptions() opts.rootRank = self.rank pg.gather([[t1] * (self.world_size - 1)], [t1], opts) with self.assertRaisesRegex(ValueError, "requires a single-element output list"): opts = c10d.GatherOptions() opts.rootRank = self.rank pg.gather([[t1] * (self.world_size + 1)], [t1], opts) with self.assertRaisesRegex(ValueError, "invalid tensor type"): opts = c10d.GatherOptions() opts.rootRank = self.rank pg.gather([[t2] * self.world_size], [t1], opts) with self.assertRaisesRegex(ValueError, "invalid tensor size"): opts = c10d.GatherOptions() opts.rootRank = self.rank pg.gather([[t3] * self.world_size], [t1], opts) with self.assertRaisesRegex(ValueError, "requires empty output on non-root"): opts = c10d.GatherOptions() opts.rootRank = (self.rank + 1) % self.world_size pg.gather([[t1] * self.world_size], [t1], opts) def _test_gather_basics(self, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) # Preallocate tensors for input/output input = [fn(torch.Tensor([self.rank]))] outputs = [fn(torch.Tensor([-1])) for _ in range(self.world_size)] # Take turns being the gather root and accumulate work items work = [] for i in range(self.world_size): opts = c10d.GatherOptions() opts.rootRank = i if i == self.rank: work.append(pg.gather([outputs], input, opts)) else: work.append(pg.gather([], input, opts)) # Wait for work to complete expected = [torch.Tensor([rank]) for rank in range(self.world_size)] for i in range(self.world_size): work[i].wait() if i == self.rank: self.assertEqual(expected, outputs) def test_gather_basics(self): self._test_gather_basics(lambda t: t.clone()) @skip_if_not_multigpu def test_gather_basics_cuda(self): self._test_gather_basics(lambda t: t.clone().cuda()) def _test_gather_stress(self, inputs, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) work_handles = [] outputs = [ [ [fn(torch.Tensor([-1])) for _ in range(self.world_size)] ] for _ in range(len(inputs)) ] expected_outputs = [ [ [torch.Tensor([i + j]) for j in range(self.world_size)] ] for i in range(len(inputs)) ] for i in range(len(inputs)): for root in range(self.world_size): opts = c10d.GatherOptions() opts.rootRank = root if root == self.rank: work = pg.gather(outputs[i], [fn(inputs[i])], opts) else: work = pg.gather([], [fn(inputs[i])], opts) work_handles.append(work) for i, work_handle in enumerate(work_handles): work_handle.wait() iter = i // self.world_size root = i % self.world_size if root == self.rank: self.assertEqual( expected_outputs[iter], outputs[iter], "Mismatch in iteration %d for root %d" % (iter, root) ) def test_gather_stress(self): inputs = [torch.Tensor([i + self.rank]) for i in range(1000)] self._test_gather_stress(inputs, lambda t: t.clone()) @skip_if_not_multigpu def test_gather_stress_cuda(self): inputs = [torch.Tensor([i + self.rank]).cuda() for i in range(1000)] self._test_gather_stress(inputs, lambda t: t.clone().cuda()) def test_allgather_checks(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) t1 = torch.zeros([1], dtype=torch.float32) t2 = torch.zeros([1], dtype=torch.float64) t3 = torch.zeros([2], dtype=torch.float32) with self.assertRaisesRegex(ValueError, "requires non-empty input tensor list"): pg.allgather([], []) with self.assertRaisesRegex(ValueError, "requires input/output tensor lists to have the same length"): pg.allgather([], [t1]) with self.assertRaisesRegex(ValueError, "requires input/output tensor lists to have the same length"): pg.allgather([[t1] * self.world_size, [t1] * self.world_size], [t1]) with self.assertRaisesRegex(ValueError, "invalid output tensor list"): pg.allgather([[t1] * (self.world_size - 1)], [t1]) with self.assertRaisesRegex(ValueError, "invalid output tensor list"): pg.allgather([[t1] * (self.world_size + 1)], [t1]) with self.assertRaisesRegex(ValueError, "invalid tensor type"): pg.allgather([[t1, t1] * (self.world_size), [t1, t1] * (self.world_size)], [t1, t2]) with self.assertRaisesRegex(ValueError, "invalid tensor size"): pg.allgather([[t1, t1] * (self.world_size), [t1, t1] * (self.world_size)], [t1, t3]) with self.assertRaisesRegex(ValueError, "invalid tensor type"): pg.allgather([([t1, t2] * (self.world_size))[:self.world_size]], [t1]) with self.assertRaisesRegex(ValueError, "invalid tensor size"): pg.allgather([([t1, t3] * (self.world_size))[:self.world_size]], [t1]) def _test_allgather_basics(self, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) # Run with N input tensor per rank for n in [1, 2, 3]: input = [ fn(torch.Tensor([n * self.rank + i])) for i in range(n) ] output = [ [ fn(torch.Tensor([-1])) for _ in range(n * self.world_size) ] for _ in range(n) ] expected_output = [ [ torch.Tensor([i]) for i in range(n * self.world_size) ] for _ in range(n) ] work = pg.allgather(output, input) work.wait() self.assertEqual(expected_output, output) def test_allgather_basics(self): self._test_allgather_basics(lambda t: t.clone()) @skip_if_not_multigpu def test_allgather_basics_cuda(self): self._test_allgather_basics(lambda t: t.clone().cuda()) def _test_allgather_stress(self, inputs, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) work_handles = [] outputs = [ [ [fn(torch.Tensor([-1])) for _ in range(self.world_size)] ] for _ in range(len(inputs)) ] expected_outputs = [ [ [torch.Tensor([i + j]) for j in range(self.world_size)] ] for i in range(len(inputs)) ] for i in range(len(inputs)): work = pg.allgather(outputs[i], [fn(inputs[i])]) work_handles.append(work) for i, work_handle in enumerate(work_handles): work_handle.wait() self.assertEqual( expected_outputs[i], outputs[i], "Mismatch in iteration %d" % i ) def test_allgather_stress(self): inputs = [torch.Tensor([i + self.rank]) for i in range(1000)] self._test_allgather_stress(inputs, lambda t: t.clone()) @skip_if_not_multigpu def test_allgather_stress_cuda(self): inputs = [torch.Tensor([i + self.rank]).cuda() for i in range(1000)] self._test_allgather_stress(inputs, lambda t: t.clone().cuda()) def test_reduce_checks(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) t1 = torch.zeros([1], dtype=torch.float32) with self.assertRaisesRegex(ValueError, "invalid root rank"): opts = c10d.ReduceOptions() opts.rootRank = -1 opts.rootTensor = 0 pg.reduce([t1], opts) with self.assertRaisesRegex(ValueError, "invalid root rank"): opts = c10d.ReduceOptions() opts.rootRank = self.world_size opts.rootTensor = 0 pg.reduce([t1], opts) with self.assertRaisesRegex(ValueError, "invalid root tensor"): opts = c10d.ReduceOptions() opts.rootRank = self.rank opts.rootTensor = 1 pg.reduce([t1], opts) with self.assertRaisesRegex(ValueError, "requires a single-element tensor list"): opts = c10d.ReduceOptions() opts.rootRank = self.rank opts.rootTensor = 0 pg.reduce([t1, t1], opts) def _test_reduce_basics(self, fn): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) for (op, input, output) in simple_reduce_tests(self.rank, self.world_size): for root in range(self.world_size): opts = c10d.ReduceOptions() opts.reduceOp = op opts.rootRank = root tmp = fn(input) work = pg.reduce([tmp], opts) work.wait() if root == self.rank: self.assertEqual(output, tmp) def test_reduce_basics(self): self._test_reduce_basics(lambda t: t.clone()) @skip_if_not_multigpu def test_reduce_basics_cuda(self): self._test_reduce_basics(lambda t: t.clone().cuda()) def _test_reduce_stress(self, inputs): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts(threads=8)) work_handles = [] outputs = [] for i in range(len(inputs)): for root in range(self.world_size): opts = c10d.ReduceOptions() opts.rootRank = root tmp = inputs[i].clone() outputs.append(tmp) work = pg.reduce([tmp], opts) work_handles.append(work) for i, work_handle in enumerate(work_handles): work_handle.wait() iter = i // self.world_size root = i % self.world_size if root == self.rank: self.assertEqual( torch.Tensor([ (iter * self.world_size) + (self.world_size * (self.world_size - 1) / 2) ]), outputs[i], "Mismatch in iteration %d with root rank %d" % (iter, root), ) def test_reduce_stress(self): inputs = [torch.Tensor([i + self.rank]) for i in range(1000)] self._test_reduce_stress(inputs) @skip_if_not_multigpu def test_reduce_stress_cuda(self): inputs = [torch.Tensor([i + self.rank]).cuda() for i in range(1000)] self._test_reduce_stress(inputs) def test_send_recv_all_to_all(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size, self.opts()) # Preallocate tensors for input/output inputs = [torch.Tensor([self.rank]) for _ in range(self.world_size)] outputs = [torch.Tensor([-1]) for _ in range(self.world_size)] # Issue sends send_work = [] for i in range(self.world_size): if i == self.rank: continue send_work.append(pg.send([inputs[i]], i, 0)) # Issue recvs recv_work = [] for i in range(self.world_size): if i == self.rank: continue recv_work.append(pg.recv([outputs[i]], i, 0)) # Wait for sends to complete for work in send_work: work.wait() self.assertTrue(work.is_completed()) # Wait for recvs to complete for work in recv_work: work.wait() self.assertTrue(work.is_completed()) # Test that every output other than our own contains the respective rank for i in range(self.world_size): if i == self.rank: continue self.assertEqual(torch.Tensor([i]), outputs[i]) def test_timeout_kwarg(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo( store, self.rank, self.world_size, timeout=timedelta(seconds=0.5)) # Wait on barrier pg.barrier().wait() # Sleep on one of the processes to trigger barrier timeout if self.rank == 0: time.sleep(1.0) # The barrier will now time out with self.assertRaisesRegex(RuntimeError, " (Timed out|closed) "): pg.barrier().wait() def test_barrier_implies_wait(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupGloo(store, self.rank, self.world_size) # Kick off allreduce operations size = (100, 100) num = 16 tensors = [torch.full(size, float(i)) for i in range(num)] for tensor in tensors: # Note: leak the returned work handle pg.allreduce(tensor) # Barrier should ensure all previous work has completed pg.barrier().wait() for i, tensor in enumerate(tensors): self.assertEqual(torch.full(size, float(i * self.world_size)), tensor) class ProcessGroupNCCLTest(TestCase): MAIN_PROCESS_RANK = 0 def setUp(self): if not hasattr(c10d, "ProcessGroupNCCL"): raise unittest.SkipTest("C10D is not built with NCCL process group," " skipping test") self.rank = self.MAIN_PROCESS_RANK self.world_size = 1 self.file = tempfile.NamedTemporaryFile(delete=False) self.num_gpus = torch.cuda.device_count() if self.num_gpus < 2: raise unittest.SkipTest("NCCL test requires 2+ GPUs") def tearDown(self): pass def test_broadcast_ops(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) def broadcast(xs, rootRank, rootTensor): opts = c10d.BroadcastOptions() opts.rootRank = rootRank opts.rootTensor = rootTensor work = pg.broadcast(xs, opts) work.wait() # for every root tensor for rt in range(self.num_gpus): tensors = [] for i in range(self.num_gpus): tensors.append(torch.Tensor([i]).cuda(i)) broadcast(tensors, self.rank, rt) for i in range(self.num_gpus): self.assertEqual(tensors[i], tensors[rt]) def test_allreduce_ops(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) def allreduce(tensors, op): opts = c10d.AllreduceOptions() opts.reduceOp = op work = pg.allreduce(tensors, opts) work.wait() # Sum tensors = [] for i in range(self.num_gpus): tensors.append(torch.Tensor([i + 1]).cuda(i)) allreduce(tensors, c10d.ReduceOp.SUM) for i in range(self.num_gpus): self.assertEqual( torch.Tensor([float(self.num_gpus * (self.num_gpus + 1) / 2)]), tensors[i]) # Product tensors = [] for i in range(self.num_gpus): tensors.append(torch.Tensor([i + 1]).cuda(i)) allreduce(tensors, c10d.ReduceOp.PRODUCT) for i in range(self.num_gpus): self.assertEqual( torch.Tensor([float(math.factorial(self.num_gpus))]), tensors[i]) # Min tensors = [] for i in range(self.num_gpus): tensors.append(torch.Tensor([i + 1]).cuda(i)) allreduce(tensors, c10d.ReduceOp.MIN) for i in range(self.num_gpus): self.assertEqual(torch.Tensor([1.0]), tensors[i]) # Max tensors = [] for i in range(self.num_gpus): tensors.append(torch.Tensor([i + 1]).cuda(i)) allreduce(tensors, c10d.ReduceOp.MAX) for i in range(self.num_gpus): self.assertEqual(torch.Tensor([self.num_gpus]), tensors[i]) def test_reduce_ops(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) def reduce(xs, rootRank, rootTensor): opts = c10d.ReduceOptions() opts.rootRank = rootRank opts.rootTensor = rootTensor work = pg.reduce(xs, opts) work.wait() # for every root tensor for rt in range(self.num_gpus): tensors = [] for i in range(self.num_gpus): tensors.append(torch.Tensor([i + 1]).cuda(i)) reduce(tensors, self.rank, rt) self.assertEqual( torch.Tensor([float(self.num_gpus * (self.num_gpus + 1) / 2)]), tensors[rt]) def test_allgather_ops(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) def allgather(output_ts, input_ts): work = pg.allgather(output_ts, input_ts) work.wait() tensors = [] output_ts = [[] for _ in range(self.num_gpus)] for idx, ls in enumerate(output_ts): for _ in range(self.world_size * self.num_gpus): ls.append(torch.Tensor([0]).cuda(idx)) for i in range(self.num_gpus): tensors.append(torch.Tensor([i]).cuda(i)) allgather(output_ts, tensors) # Verification for device_ts in output_ts: for s_idx, t in enumerate(device_ts): self.assertEqual(torch.Tensor([s_idx]), t) def test_reduce_scatter_ops(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) def reduce_scatter(outputs, input_lists, op): opts = c10d.ReduceScatterOptions() opts.reduceOp = op work = pg.reduce_scatter(outputs, input_lists, opts) work.wait() virtual_rank = self.rank * self.world_size virtual_world_size = self.num_gpus * self.world_size output = [ torch.Tensor([0]).cuda(i) for i in range(self.num_gpus) ] # 0 1 2 # 0 [0..11] [1..12] # 1 [3..14] # 2 # 3 # Sum tensor_lists = [ [ torch.Tensor([self.rank * self.num_gpus + i + j]).cuda(i) for j in range(virtual_world_size) ] for i in range(self.num_gpus) ] reduce_scatter(output, tensor_lists, c10d.ReduceOp.SUM) for i in range(self.num_gpus): expected = torch.Tensor([ float(self.num_gpus * (self.num_gpus - 1) / 2) + (virtual_rank + i) * virtual_world_size ]) self.assertEqual(expected, output[i]) # Min reduce_scatter(output, tensor_lists, c10d.ReduceOp.MIN) for i in range(self.num_gpus): expected = torch.Tensor([self.rank * self.world_size + i]) self.assertEqual(expected, output[i]) # Max reduce_scatter(output, tensor_lists, c10d.ReduceOp.MAX) for i in range(self.num_gpus): expected = torch.Tensor( [self.rank * self.world_size + i + virtual_world_size - 1] ) self.assertEqual(expected, output[i]) # Product tensor_lists = [ [ torch.Tensor([ (self.rank * self.num_gpus + i + j) % virtual_world_size + 1 ]).cuda(i) for j in range(virtual_world_size) ] for i in range(self.num_gpus) ] reduce_scatter(output, tensor_lists, c10d.ReduceOp.PRODUCT) for i in range(self.num_gpus): expected = torch.Tensor([float(math.factorial(virtual_world_size))]) self.assertEqual(expected, output[i]) def test_barrier(self): store = c10d.FileStore(self.file.name, self.world_size) pg = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) def allreduce(tensors): opts = c10d.AllreduceOptions() work = pg.allreduce(tensors, opts) return work # Making the collective to operate on # 1, 2, 3, 4, .... self.num_gpus GPUs tensors_list = [[] for _ in range(2, self.num_gpus + 1)] for i in range(2, self.num_gpus + 1): for j in range(i): tensors_list[i - 2].append(torch.Tensor([j + 1]).cuda(j)) works = [] for tensors in tensors_list: work = allreduce(tensors) works.append(work) # Barrier will ensure that all previous work is completed pg.barrier().wait() for i in range(2, self.num_gpus + 1): for j in range(i): self.assertEqual( torch.Tensor([float(i * (i + 1) / 2)]), tensors_list[i - 2][j]) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 50, bias=False) self.fc3 = nn.Linear(50, 4, bias=False) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return F.softmax(x, dim=1) class DoubleGpuNet(nn.Module): def __init__(self, gpus): super(DoubleGpuNet, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0]) self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1]) self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[1]) self.relu = nn.ReLU() self.no_grad_param = nn.Parameter(torch.Tensor([2, 2]).long(), requires_grad=False).to(gpus[0]) def forward(self, x): dev0 = self.fc1.weight.device dev1 = self.fc2.weight.device x = self.relu(self.fc1(x.to(dev0))) x = self.relu(self.fc2(x.to(dev1))) x = self.fc3(x) return F.softmax(x, dim=1).to(dev0) class QuadraGpuNet(nn.Module): def __init__(self, gpus): super(QuadraGpuNet, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0]) self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1]) self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[2]) self.fc4 = nn.Linear(4, 4, bias=False).to(gpus[3]) self.relu = nn.ReLU() self.no_grad_param = nn.Parameter(torch.Tensor([2, 2]).long(), requires_grad=False).to(gpus[0]) def forward(self, x): dev0 = self.fc1.weight.device dev1 = self.fc2.weight.device dev2 = self.fc3.weight.device dev3 = self.fc4.weight.device x = self.relu(self.fc1(x.to(dev0))) x = self.relu(self.fc2(x.to(dev1))) x = self.relu(self.fc3(x.to(dev2))) x = self.fc4(x.to(dev3)) return F.softmax(x, dim=1).to(dev0) class DistributedDataParallelTest(MultiProcessTestCase): def tearDown(self): # DistributedDataParallel test doesn't seem to call FileStore destructor # TODO: investigate this test and the test is known to have issues # Use this hack to remove files for that test try: os.remove(self.file.name) except OSError: pass @property def world_size(self): return 2 def _prepare_single_device_module(self, process_group, gpus, global_batch_size): model = Net() ddp_model = DistributedDataParallel( copy.deepcopy(model).cuda(gpus[0]), device_ids=gpus, process_group=process_group, bucket_cap_mb=0.001) model.cuda(gpus[0]) input = torch.randn(global_batch_size, 2).cuda(gpus[0]) target = torch.randn(global_batch_size, 4).cuda(gpus[0]) return model, ddp_model, input, target def _prepare_multi_device_module(self, process_group, gpus, global_batch_size): self.assertTrue( len(gpus) == 2 or len(gpus) == 4, "unexpected devices for ddp tests {}".format(gpus)) if len(gpus) == 2: model = DoubleGpuNet(gpus) elif len(gpus) == 4: model = QuadraGpuNet(gpus) ddp_model = DistributedDataParallel( copy.deepcopy(model), process_group=process_group, bucket_cap_mb=0.001) input = torch.randn(global_batch_size, 2).to(gpus[0]) target = torch.randn(global_batch_size, 4) return model, ddp_model, input, target def _test_ddp_with_process_group(self, process_group, gpus, multi_gpu=False): local_batch_size = len(gpus) global_batch_size = self.world_size * local_batch_size if multi_gpu: model, ddp_model, input, target = \ self._prepare_multi_device_module( process_group, gpus, global_batch_size) else: model, ddp_model, input, target = \ self._prepare_single_device_module( process_group, gpus, global_batch_size) def step_model(model, input, target): model.train() output = model(input) loss = F.mse_loss(output, target.to(output.device)) loss.backward() def update_parameters(model): for param in model.parameters(): param.data -= param.grad param.grad = None # check two model parameters over 2 iterations for iteration in range(2): # single cpu/gpu training step_model(model, input, target) # DDP training, DDP scatters subsets of input_cpu to nodes/GPUs step_model(ddp_model, input[self.rank * local_batch_size: (self.rank + 1) * local_batch_size], target[self.rank * local_batch_size: (self.rank + 1) * local_batch_size]) # Update weights and run a second iteration to shake out errors update_parameters(model) update_parameters(ddp_model) self.assertEqual(len(list(model.parameters())), len(list(ddp_model.parameters()))) for i, j in zip(model.parameters(), ddp_model.parameters()): self.assertEqual(i, j) # Shuffle the input so that DDP input is different torch.manual_seed(1337 + iteration) input = input[torch.randperm(global_batch_size)] def _test_gloo_backend(self, gpus, multi_gpu=False, use_str=False): if use_str: gpus = list(map(lambda i: torch.device('cuda:' + str(i)), gpus)) store = c10d.FileStore(self.file.name, self.world_size) options = c10d.ProcessGroupGloo.Options() options.devices = [c10d.ProcessGroupGloo.create_tcp_device(interface="lo")] process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) self._test_ddp_with_process_group(process_group, gpus, multi_gpu) @skip_if_not_multigpu def test_gloo_backend(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_gloo_backend(gpus) @skip_if_not_multigpu def test_gloo_backend_str(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_gloo_backend(gpus, use_str=True) @skip_if_lt_x_gpu(4) def test_gloo_backend_2gpu_module(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_gloo_backend(gpus[:2], multi_gpu=True) @skip_if_lt_x_gpu(4) def test_gloo_backend_2gpu_module_str(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_gloo_backend(gpus[:2], multi_gpu=True, use_str=True) @skip_if_lt_x_gpu(8) def test_gloo_backend_4gpu_module(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_gloo_backend(gpus[:4], multi_gpu=True) @skip_if_lt_x_gpu(8) def test_gloo_backend_4gpu_module_str(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_gloo_backend(gpus[:4], multi_gpu=True, use_str=True) def _test_nccl_backend(self, gpus, multi_gpu=False, use_str=False): if use_str: gpus = list(map(lambda i: torch.device('cuda:' + str(i)), gpus)) store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) self._test_ddp_with_process_group(process_group, gpus, multi_gpu) @skip_if_not_multigpu @skip_if_not_nccl def test_nccl_backend(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_nccl_backend(gpus) @skip_if_not_multigpu @skip_if_not_nccl def test_nccl_backend_str(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_nccl_backend(gpus, use_str=True) @skip_if_lt_x_gpu(4) @skip_if_not_nccl def test_nccl_backend_2gpu_module(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_nccl_backend(gpus[:2], multi_gpu=True) @skip_if_lt_x_gpu(4) @skip_if_not_nccl def test_nccl_backend_2gpu_module_str(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_nccl_backend(gpus[:2], multi_gpu=True, use_str=True) @skip_if_lt_x_gpu(8) @skip_if_not_nccl def test_nccl_backend_4gpu_module(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_nccl_backend(gpus[:4], multi_gpu=True) @skip_if_lt_x_gpu(8) @skip_if_not_nccl def test_nccl_backend_4gpu_module_str(self): gpus = gpus_for_rank(self.world_size)[self.rank] self._test_nccl_backend(gpus[:4], multi_gpu=True, use_str=True) @skip_if_lt_x_gpu(4) @skip_if_not_nccl def test_ddp_multi_device_module_config(self): gpus = gpus_for_rank(self.world_size)[self.rank] self.assertTrue(len(gpus) >= 2, "expecting at least 2 gpus per process") store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) gpus = gpus[:2] model = DoubleGpuNet(gpus) with self.assertRaisesRegex(AssertionError, "output_device .* single-device CUDA"): ddp_model = DistributedDataParallel( model, output_device=gpus[1], process_group=process_group) with self.assertRaisesRegex(AssertionError, "device_ids .* single-device CUDA"): ddp_model = DistributedDataParallel( model, device_ids=gpus, process_group=process_group) with self.assertRaisesRegex(AssertionError, "only works with CUDA devices"): model.fc1 = model.fc1.cpu() ddp_model = DistributedDataParallel(model, process_group=process_group) model = model.cpu() with self.assertRaisesRegex(AssertionError, "device_ids .* single-device CUDA"): ddp_model = DistributedDataParallel( model, device_ids=gpus, process_group=process_group) @skip_if_not_multigpu @skip_if_not_nccl @skip_for_known_issues def test_dist_broadcast_coalesced_nccl(self): store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) device = torch.device('cuda') for fine_grained in [False, True]: target = torch.arange(60, dtype=torch.float16, device=device).chunk(5) target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) target += torch.arange(60, dtype=torch.float16, device=device).chunk(5) target += torch.arange(60, dtype=torch.float64, device=device).chunk(5) target += torch.arange(60, dtype=torch.float16, device=device).chunk(5) target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) if self.is_master: # All processes should have these tensors in the end. tensors = target else: # Non-master processes start with empty tensors and should be # filled with the tensors from the master. tensors = torch.zeros(60, dtype=torch.float16, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float32, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float16, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float64, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float16, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float32, device=device).chunk(5) c10d._dist_broadcast_coalesced( process_group, tensors, buffer_size=256, fine_grained=fine_grained) self.assertEqual(tensors, target) @skip_if_not_multigpu def test_dist_broadcast_coalesced_gloo(self): store = c10d.FileStore(self.file.name, self.world_size) options = c10d.ProcessGroupGloo.Options() options.devices = [c10d.ProcessGroupGloo.create_tcp_device(interface="lo")] process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) device = torch.device('cuda') for fine_grained in [False, True]: target = torch.arange(60, dtype=torch.float16, device=device).chunk(5) target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) target += torch.arange(60, dtype=torch.float16, device=device).chunk(5) target += torch.arange(60, dtype=torch.float64, device=device).chunk(5) target += torch.arange(60, dtype=torch.float16, device=device).chunk(5) target += torch.arange(60, dtype=torch.float32, device=device).chunk(5) if self.is_master: # All processes should have these tensors in the end. tensors = target else: # Non-master processes start with empty tensors and should be # filled with the tensors from the master. tensors = torch.zeros(60, dtype=torch.float16, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float32, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float16, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float64, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float16, device=device).chunk(5) tensors += torch.zeros(60, dtype=torch.float32, device=device).chunk(5) c10d._dist_broadcast_coalesced( process_group, tensors, buffer_size=128, fine_grained=fine_grained) self.assertEqual(tensors, target) @skip_if_not_multigpu def test_sync_params_no_buffers(self): store = c10d.FileStore(self.file.name, self.world_size) options = c10d.ProcessGroupGloo.Options() options.devices = [c10d.ProcessGroupGloo.create_tcp_device(interface="lo")] process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) # Use all available devices on every process here (data is small, so should be fine). devices = gpus_for_rank(self.world_size)[self.rank] target = torch.arange(10, dtype=torch.float64, device='cuda:{}'.format(devices[0])).chunk(5) parameter_data = [target] parameter_data += [torch.zeros(10, device=torch.device('cuda', d)).chunk(5) for d in devices[1:]] buffer_data = [[]] * len(parameter_data) c10d._sync_params( process_group, parameter_data=parameter_data, buffer_data=buffer_data, devices=devices, broadcast_bucket_size=10, broadcast_buffers=False) for device_data in parameter_data: for i, parameter in enumerate(device_data): self.assertEqual(parameter, target[i]) @skip_if_not_multigpu def test_sync_params_with_buffers(self): store = c10d.FileStore(self.file.name, self.world_size) options = c10d.ProcessGroupGloo.Options() options.devices = [c10d.ProcessGroupGloo.create_tcp_device(interface="lo")] process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size, options) devices = gpus_for_rank(self.world_size)[self.rank] target = torch.arange(10, dtype=torch.float64, device='cuda:{}'.format(devices[0])).chunk(5) parameter_data = [target] parameter_data += [torch.zeros(10, device=torch.device('cuda', d)).chunk(5) for d in devices[1:]] # sync_params should do a dist_broadcast for buffers, so we only populate the master buffers and # then check that other processes' tensors end up matching. if self.is_master: buffer_data = [target] buffer_data += [torch.zeros(10, device=torch.device('cuda', d)).chunk(5) for d in devices[1:]] else: buffer_data = [torch.zeros(10, device=torch.device('cuda', d)).chunk(5) for d in devices] c10d._sync_params( process_group, parameter_data=parameter_data, buffer_data=buffer_data, devices=devices, broadcast_bucket_size=10, broadcast_buffers=True) for device_data in parameter_data: for i, parameter in enumerate(device_data): self.assertEqual(parameter, target[i]) for device_data in buffer_data: for i, buffer in enumerate(device_data): self.assertEqual(buffer, target[i]) @skip_if_not_multigpu @skip_if_not_nccl def test_fp16(self): store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) gpus = gpus_for_rank(self.world_size)[self.rank] model = nn.Linear(1, 1, bias=False).cuda(gpus[0]).half() nn.init.constant_(model.weight, 1) ddp_model = DistributedDataParallel( model, device_ids=[gpus[0]], process_group=process_group, bucket_cap_mb=0.001, ) # Input 2**15, so that the gradients will overflow with a # world_size of 2, unless we normalize the gradient by the # world_size before the reduction input = torch.Tensor([[2**15]]).cuda(gpus[0]).half() # Step model ddp_model.train() output = ddp_model(input) loss = output.sum() loss.backward() self.assertFalse( any(torch.isinf(p.grad).any() for p in ddp_model.parameters()) ) @skip_if_not_nccl @skip_if_not_multigpu def test_queue_reduction(self): # Set up process group. store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) # Get this process' split of devices. devices = gpus_for_rank(self.world_size)[self.rank] grads_batch = [(torch.ones(10, device=torch.device('cuda', d)) * (self.rank + 1)).chunk(5) for d in devices] work, local_grad_sum = c10d._queue_reduction(process_group, grads_batch, devices) # The first return value should be the allreduce work item. self.assertTrue(isinstance(work, c10d.Work)) # The second return value will be the finished allreduced gradients. self.assertTrue(isinstance(local_grad_sum, torch.Tensor)) # Wait for the allreduce to finish. work.wait() # The expected result of the allreduce should be the average self.assertEqual(local_grad_sum, torch.ones(10) * (self.world_size + 1) * len(devices) / 2.0) @skip_if_not_nccl @skip_if_not_multigpu def test_sync_reduction(self): # Set up process group. store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) # Get this process' split of devices. devices = gpus_for_rank(self.world_size)[self.rank] grads_batch = [(torch.ones(10, device=torch.device('cuda', d)) * (self.rank + 1)).chunk(5) for d in devices] work, local_grad_sum = c10d._queue_reduction(process_group, grads_batch, devices) c10d._sync_reduction(work, grads_batch[0], local_grad_sum) # The expected result of the allreduce should be the average self.assertEqual(grads_batch[0], (torch.ones(10) * (self.world_size + 1) * len(devices) / 2.0).chunk(5)) @skip_if_not_nccl @skip_if_not_multigpu def test_arbitrary_forward_return_value(self): """ Note: this test can be sped up by only running it on a CPU module once DistributedDataParallel supports them. """ store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) class ForwardReturnValueModule(nn.Module): def __init__(self): super(ForwardReturnValueModule, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 4, bias=False) self.fc3 = nn.Linear(4, 4, bias=False) self.relu = nn.ReLU() def forward(self, x, fn): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) # The first softmax does NOT include fc3 in its autograd graph # whereas the second softmax DOES. If we pass only the first # tensor we see in the output to the reducer, it marks the # gradient for fc3 as ready (because it doesn't show up). If # downstream uses of this return value choose to differentiate # against the second output tensor, it would still receive a # gradient and a callback for this tensor, resulting in a crash. return fn( F.softmax(x, dim=1), F.softmax(self.fc3(x), dim=1), ) device_id = gpus_for_rank(self.world_size)[self.rank][0] model = DistributedDataParallel( ForwardReturnValueModule().float().to(device_id), device_ids=[device_id], process_group=process_group, ) batch_size = 4 criterion = nn.CrossEntropyLoss() input = torch.rand([batch_size, 2], dtype=torch.float) target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) # Always run "backward" to ensure the reducer is called by autograd. # If we don't correctly capture the output tensors from the return value, # the reducer won't see a hook for the unused parameter, and throw an error. # The correct capture is what we're testing in this function. def test(box, unbox): output = model(input, fn=box) loss = criterion(unbox(output), target) loss.backward() # Test with identity return value test( box=lambda x, y: (x, y), unbox=lambda obj: obj[1], ) # Test with list return value test( box=lambda x, y: ["foo", x, "bar", y], unbox=lambda obj: obj[3], ) # Test with tuple return value test( box=lambda x, y: ("foo", x, "bar", y), unbox=lambda obj: obj[3], ) # Test with dict return value test( box=lambda x, y: {"foo": "bar", "a": x, "b": y}, unbox=lambda obj: obj["b"], ) # Test with list with dict return value test( box=lambda x, y: ["foo", "bar", {"a": x, "b": y}], unbox=lambda obj: obj[2]["b"], ) # Test with dict with list return value test( box=lambda x, y: {"foo": "bar", "list": [0, x, 1, y]}, unbox=lambda obj: obj["list"][3], ) @skip_if_not_nccl @skip_if_not_multigpu def test_find_unused_parameters_kwarg(self): """ Note: this test can be sped up by only running it on a CPU module once DistributedDataParallel supports them. """ store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) class FindUnusedParametersModule(nn.Module): def __init__(self): super(FindUnusedParametersModule, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 4, bias=False) self.fc3 = nn.Linear(4, 4, bias=False) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) # Return the fc3 module so that the caller can invoke it # outside of the forward function. While this is bad practice, # we can use it to trigger a reducer error. return (F.softmax(x, dim=1), self.fc3) device_id = gpus_for_rank(self.world_size)[self.rank][0] batch_size = 4 criterion = nn.CrossEntropyLoss() input = torch.rand([batch_size, 2], dtype=torch.float) target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) def test_find_unused_parameters(find_unused_parameters, test_default=False): if test_default: model = DistributedDataParallel( FindUnusedParametersModule().float().to(device_id), device_ids=[device_id], process_group=process_group, ) else: model = DistributedDataParallel( FindUnusedParametersModule().float().to(device_id), device_ids=[device_id], process_group=process_group, find_unused_parameters=find_unused_parameters, ) output, fc3 = model(input) output = fc3(output) loss = criterion(output, target) loss.backward() # First test that finding unused params under these conditions is to # trigger an error when `backward` is called (because fc3 is an unused # parameter and will therefore be marked ready twice). try: test_find_unused_parameters(True) except Exception as ex: self.assertTrue( str(ex).startswith("Expected to mark a variable ready only once.")) else: self.fail("Expected exception") # Then test that the default behavior can be overridden by setting # `find_unused_parameters=False`. try: test_find_unused_parameters(False) except Exception as ex: self.fail("Unexpected exception: %s" % ex) # Test find_unused_parameters defaults to False try: test_find_unused_parameters(True, test_default=True) except Exception as ex: self.fail("Unexpected exception: %s" % ex) @skip_if_not_nccl @skip_if_not_multigpu def test_multiple_outputs_multiple_backward(self): """ Note: this test can be sped up by only running it on a CPU module once DistributedDataParallel supports them. """ store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) class MultipleOutputModule(nn.Module): def __init__(self): super(MultipleOutputModule, self).__init__() def define_module(): return nn.Sequential( nn.Linear(2, 10, bias=False), nn.ReLU(), nn.Linear(10, 4, bias=False), nn.ReLU(), ) self.module0 = define_module() self.module1 = define_module() def forward(self, x): return ( F.softmax(self.module0(x), dim=1), F.softmax(self.module1(x), dim=1), ) device_id = gpus_for_rank(self.world_size)[self.rank][0] model = DistributedDataParallel( MultipleOutputModule().float().to(device_id), device_ids=[device_id], process_group=process_group, ) batch_size = 4 criterion = nn.CrossEntropyLoss() input = torch.rand([batch_size, 2], dtype=torch.float) target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) # Compute loss and gradients for both outputs output1, output2 = model(input) loss1 = criterion(output1, target) loss1.backward() loss2 = criterion(output2, target) loss2.backward() @skip_if_not_nccl @skip_if_not_multigpu def test_no_used_parameters(self): """ Note: this test can be sped up by only running it on a CPU module once DistributedDataParallel supports them. """ store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) class NoUsedParameters(nn.Module): def __init__(self): super(NoUsedParameters, self).__init__() # Make sure this module has some parameters, only to then decide # to never use them from the `forward` function. self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 4, bias=False) self.fc3 = nn.Linear(4, 4, bias=False) self.relu = nn.ReLU() def forward(self, x): return x * 0.0 device_id = gpus_for_rank(self.world_size)[self.rank][0] model = DistributedDataParallel( NoUsedParameters().float().to(device_id), device_ids=[device_id], process_group=process_group, find_unused_parameters=True, ) batch_size = 4 input = torch.rand([batch_size, 2], dtype=torch.float) # After initialization, no parameter has their gradient set. for p in model.parameters(): self.assertTrue(p.requires_grad) self.assertIsNone(p.grad) # Run `forward` function. model(input) # Because none of the parameters were used, we expect reduction for # all parameters will be executed right when initializing the reducer. # Once `forward` returns, all the parameter's gradients must be set. for p in model.parameters(): self.assertTrue(p.requires_grad) self.assertIsNotNone(p.grad) self.assertTrue(torch.is_tensor(p.grad)) self.assertEqual(p.size(), p.grad.size()) @skip_if_not_nccl @skip_if_not_multigpu def test_no_grad(self): """ Note: this test can be sped up by only running it on a CPU module once DistributedDataParallel supports them. """ store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) class NoGradModule(nn.Module): def __init__(self): super(NoGradModule, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 4, bias=False) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) return F.softmax(x, dim=1) device_id = gpus_for_rank(self.world_size)[self.rank][0] model = DistributedDataParallel( NoGradModule().float().to(device_id), device_ids=[device_id], process_group=process_group, ) batch_size = 4 input = torch.rand([batch_size, 2], dtype=torch.float) def check_no_grads(): for p in model.parameters(): self.assertTrue(p.requires_grad) self.assertIsNone(p.grad) # After initialization, no parameter has their gradient set. check_no_grads() # Run `forward` function with torch.no_grad() with torch.no_grad(): output = model(input) self.assertTrue(torch.is_tensor(output)) # No parameter should have their gradient set. check_no_grads() @skip_if_not_nccl @skip_if_not_multigpu def test_ignored_output(self): """ Note: this test can be sped up by only running it on a CPU module once DistributedDataParallel supports them. """ store = c10d.FileStore(self.file.name, self.world_size) process_group = c10d.ProcessGroupNCCL(store, self.rank, self.world_size) class IgnoredOutput(nn.Module): def __init__(self): super(IgnoredOutput, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 4, bias=False) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) return F.softmax(x, dim=1) device_id = gpus_for_rank(self.world_size)[self.rank][0] model = DistributedDataParallel( IgnoredOutput().float().to(device_id), device_ids=[device_id], process_group=process_group, ) batch_size = 4 criterion = nn.CrossEntropyLoss() input = torch.rand([batch_size, 2], dtype=torch.float) target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]).to(device_id) # Run a few iterations where we ignore the output. for _ in range(4): output = model(input) del output # Run a few iterations where we use the output. for _ in range(4): output = model(input) loss = criterion(output, target) loss.backward() class ReducerModule(nn.Module): def __init__(self): super(ReducerModule, self).__init__() self.fc1 = nn.Linear(2, 10, bias=False) self.fc2 = nn.Linear(10, 4, bias=False) self.fc3 = nn.Linear(4, 4, bias=False) self.relu = nn.ReLU() def forward(self, x, use_fc3=True): x = self.relu(self.fc1(x)).float() x = self.relu(self.fc2(x)).float() if use_fc3: x = self.fc3(x).float() return F.softmax(x, dim=1) class ReducerTest(TestCase): def setUp(self): self.store = c10d.FileStore("/dev/null", 1) self.process_group = c10d.ProcessGroupGloo(self.store, 0, 1) def test_single_dtype_single_bucket(self): model = ReducerModule() parameters = list(model.parameters()) buckets = [list(range(len(parameters)))] dist.Reducer([parameters], buckets, self.process_group) def _create_mixed_precision_model(self): model = ReducerModule() model.float() model.fc1.double() return model def test_multi_dtype_single_bucket(self): model = self._create_mixed_precision_model() # Raise if there are multiple types per bucket. # In this case we create one bucket for all parameters. with self.assertRaises(RuntimeError): parameters = [list(model.parameters())] buckets = [list(range(len(parameters[0])))] dist.Reducer(parameters, buckets, self.process_group) def test_multi_dtype_multi_bucket(self): model = self._create_mixed_precision_model() parameters = [list(model.parameters())] group_by_type = groupby( range(len(parameters[0])), key=lambda i: parameters[0][i].type()) buckets = [list(indices) for _, indices in group_by_type] dist.Reducer(parameters, buckets, self.process_group) def _create_reducer_for_models(self, models): parameters = [list(model.parameters()) for model in models] group_by_type = groupby( range(len(parameters[0])), key=lambda i: parameters[0][i].type()) buckets = [list(indices) for _, indices in group_by_type] return dist.Reducer(parameters, buckets, self.process_group) def test_forward_backward_single_replica(self): batch_size = 10 model = self._create_mixed_precision_model() reducer = self._create_reducer_for_models([model]) loss = nn.CrossEntropyLoss() input = torch.rand([batch_size, 2], dtype=torch.double) target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) output = loss(model(input), target) reducer.prepare_for_backward(output) output.backward() def test_forward_backward_multi_replica(self): batch_size = 10 num_replicas = 2 models = [self._create_mixed_precision_model() for _ in range(num_replicas)] reducer = self._create_reducer_for_models(models) loss = nn.CrossEntropyLoss() input = torch.rand([batch_size, 2], dtype=torch.double).chunk(num_replicas) target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) outputs = [models[i](input[i]) for i in range(num_replicas)] output = loss(torch.cat(outputs), target) reducer.prepare_for_backward(output) output.backward() # The reducer will have reduced the gradients for all model replicas. # Verify that they are equal across model replicas. for parameters in zip(*[model.parameters() for model in models]): for parameter in parameters: self.assertEqual(parameters[0].grad, parameter.grad) def test_forward_backward_unused_parameters(self): batch_size = 10 model = self._create_mixed_precision_model() reducer = self._create_reducer_for_models([model]) loss = nn.CrossEntropyLoss() input = torch.rand([batch_size, 2], dtype=torch.double) target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) output = loss(model(input, use_fc3=False), target) # Check that the grad of fc3 is not set. self.assertEqual(None, model.fc3.weight.grad) # Compute and accumulate gradients. reducer.prepare_for_backward(output) output.backward() # The reducer will have marked the grad of fc3 as ready, because # it doesn't show up in the autograd graph of `output`. # This should result in its contents being equal to zero. self.assertEqual(torch.zeros(model.fc3.weight.size()), model.fc3.weight.grad) def test_forward_backward_optimizer(self): batch_size = 10 model = self._create_mixed_precision_model() reducer = self._create_reducer_for_models([model]) loss = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) for i in range(3): input = torch.rand([batch_size, 2], dtype=torch.double) target = torch.LongTensor([random.randrange(4) for _ in range(batch_size)]) # The `zero_grad` function calls `detach_` and `zero_` on the grad # tensors of model parameters. If we tried to set the grad tensors # to a view of the reducer's bucket tensors, this would blow up. optimizer.zero_grad() # Unused parameter only in the first iteration. output = loss(model(input, use_fc3=(i > 0)), target) reducer.prepare_for_backward(output) output.backward() optimizer.step() class ComputeBucketAssignmentTest(TestCase): def test_single_limit_single_dtype(self): tensors = [ torch.empty([100], dtype=torch.float), torch.empty([200], dtype=torch.float), torch.empty([100], dtype=torch.float), torch.empty([50], dtype=torch.float), ] result = dist._compute_bucket_assignment_by_size(tensors, [400]) self.assertEqual([[0], [1], [2], [3]], result) def test_single_limit_multi_dtype(self): tensors = [ torch.empty([50], dtype=torch.float), torch.empty([25], dtype=torch.double), torch.empty([50], dtype=torch.float), torch.empty([25], dtype=torch.double), torch.empty([50], dtype=torch.float), torch.empty([25], dtype=torch.double), ] result = dist._compute_bucket_assignment_by_size(tensors, [400]) self.assertEqual([[0, 2], [1, 3], [4], [5]], result) def test_multi_limit_single_dtype(self): tensors = [ torch.empty([10], dtype=torch.float), torch.empty([10], dtype=torch.float), torch.empty([10], dtype=torch.float), torch.empty([10], dtype=torch.float), ] result = dist._compute_bucket_assignment_by_size(tensors, [40, 80]) self.assertEqual([[0], [1, 2], [3]], result) def test_multi_limit_multi_dtype(self): tensors = [ torch.empty([50], dtype=torch.float), torch.empty([25], dtype=torch.double), torch.empty([50], dtype=torch.float), torch.empty([25], dtype=torch.double), torch.empty([50], dtype=torch.float), torch.empty([25], dtype=torch.double), ] result = dist._compute_bucket_assignment_by_size(tensors, [200, 400]) self.assertEqual([[0], [1], [2, 4], [3, 5]], result) if __name__ == '__main__': assert not torch.cuda._initialized, "test_distributed must not have initialized CUDA context on main process" run_tests()
37.972713
113
0.593361
96b6ce0fa76a7f37b1fa3abdc8caa4a635ae05c4
586
py
Python
velkozz_web_api/apps/social_media_api/migrations/0002_auto_20210216_0106.py
velkoz-data-ingestion/velkozz_web_api
519a6a90e5fdf5bab8ba2daf637768c5fd424a12
[ "MIT" ]
null
null
null
velkozz_web_api/apps/social_media_api/migrations/0002_auto_20210216_0106.py
velkoz-data-ingestion/velkozz_web_api
519a6a90e5fdf5bab8ba2daf637768c5fd424a12
[ "MIT" ]
null
null
null
velkozz_web_api/apps/social_media_api/migrations/0002_auto_20210216_0106.py
velkoz-data-ingestion/velkozz_web_api
519a6a90e5fdf5bab8ba2daf637768c5fd424a12
[ "MIT" ]
null
null
null
# Generated by Django 3.1.5 on 2021-02-16 01:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('social_media_api', '0001_initial'), ] operations = [ migrations.AlterField( model_name='scienceposts', name='permalink', field=models.CharField(max_length=300, null=True), ), migrations.AlterField( model_name='wallstreetbetsposts', name='permalink', field=models.CharField(max_length=300, null=True), ), ]
24.416667
62
0.59727
2bba1321f2937a721b5004173eb96266ad21b4ee
13,658
py
Python
src/rogerthat/bizz/friend_helper.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
src/rogerthat/bizz/friend_helper.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
src/rogerthat/bizz/friend_helper.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Green Valley Belgium NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.7@@ import StringIO import collections from contextlib import closing import json import logging from google.appengine.api import memcache from google.appengine.ext import db import cloudstorage from mcfw.consts import MISSING from mcfw.properties import azzert from mcfw.serialization import s_any, ds_any from rogerthat.consts import FRIEND_HELPER_BUCKET from rogerthat.dal.profile import get_service_profile from rogerthat.dal.roles import list_service_roles, get_service_role_by_id from rogerthat.dal.service import get_service_menu_items, get_service_identity from rogerthat.models import ServiceTranslation, ServiceInteractionDef, UserProfile, Branding from rogerthat.to.friends import FriendTO from rogerthat.utils import guid, today from rogerthat.utils.service import get_service_user_from_service_identity_user, add_slash_default from rogerthat.utils.transactions import run_in_transaction class FriendHelper(object): """Helper class for creating a FriendTO. There are 2 types. - One which gets the data from the datastore - One which gets the data from cloud storage cache """ def __repr__(self): return '%(class)s(user=\'%(user)s\', friend_type=%(friend_type)s)' % { 'class': self.__class__.__name__, 'user': self.user, 'friend_type': self.friend_type } __str__ = __repr__ def __init__(self, user, friend_type): self.user = user self.friend_type = friend_type self.brandings = {} self._translator = None @staticmethod def from_data_store(user, friend_type): return _FriendDatastoreHelper(user, friend_type) @staticmethod def from_cloud_storage(user, friend_type, cloud_storage_path): return FriendCloudStorageHelper(user, friend_type, cloud_storage_path) def add_to_memcache(self, cloud_storage_path, value): if len(value) < memcache.MAX_VALUE_SIZE: memcache.set(cloud_storage_path, value, time=3600) # @UndefinedVariable @classmethod def serialize(cls, user, friend_type): # type: (users.User, int) -> FriendCloudStorageHelper if friend_type == FriendTO.TYPE_SERVICE: assert '/' in user.email() datastore_helper = FriendHelper.from_data_store(user, friend_type) def trans(): data = {} flow_keys = [] for method in ('get_service_profile', 'get_profile_info', 'list_service_menu_items', 'list_roles', 'get_share_sid', '_get_all_translations', 'get_service_data', 'get_brandings'): logging.debug('Serializing result of %s', method) f = getattr(datastore_helper, method) obj = f() if obj: if isinstance(obj, dict) or not isinstance(obj, collections.Iterable): data[method] = obj else: is_menu_items_method = method == 'list_service_menu_items' for i, model in enumerate(obj): data['%s-%s' % (method, i)] = model if is_menu_items_method and model.staticFlowKey: flow_keys.append(model.staticFlowKey) if flow_keys: flows = db.get(flow_keys) for flow in flows: data['flow-%s' % flow.key()] = flow return data # TODO: Change xg to False once ServiceTranslationSet uses same parent key as other service data data = run_in_transaction(trans, xg=True) with closing(StringIO.StringIO()) as stream: s_any(stream, data) serialized_value = stream.getvalue() serialized_length = len(serialized_value) logging.info('Size of serialized FriendHelper for %s: %d', user, serialized_length) cloud_storage_path = FriendCloudStorageHelper.create_cloudstorage_path(user.email()) with cloudstorage.open(cloud_storage_path, 'w') as f: f.write(serialized_value) datastore_helper.add_to_memcache(cloud_storage_path, serialized_value) return FriendCloudStorageHelper.from_cloud_storage(user, friend_type, cloud_storage_path) @property def is_service(self): # type: () -> bool return self.friend_type == FriendTO.TYPE_SERVICE @property def service_user(self): # type: () -> users.User return get_service_user_from_service_identity_user(self.user) @property def service_identity_user(self): # type: () -> users.User return add_slash_default(self.user) @property def profile_info_user(self): # type: () -> users.User return self.service_identity_user if self.is_service else self.user def get_service_profile(self): # type: () -> ServiceProfile raise NotImplementedError() def get_service_data(self): # type: () -> dict raise NotImplementedError() def get_profile_info(self): raise NotImplementedError() def list_service_menu_items(self): raise NotImplementedError() def list_roles(self): # type: () -> list[ServiceRole] raise NotImplementedError() def get_role(self, role_id): raise NotImplementedError() def get_message_flow(self, key): raise NotImplementedError() def get_share_sid(self): raise NotImplementedError() def set_service_identity_user(self): raise NotImplementedError() def get_brandings(self): raise NotImplementedError() def get_branding(self, branding_hash): raise NotImplementedError() def _get_all_translations(self): raise NotImplementedError() def get_translator(self): from rogerthat.bizz.i18n import DummyTranslator, Translator if self.is_service: if not self._translator: translations = self._get_all_translations() service_profile = self.get_service_profile() if translations: self._translator = Translator(translations, service_profile.supportedLanguages) else: self._translator = DummyTranslator(service_profile.defaultLanguage) return self._translator class _FriendDatastoreHelper(FriendHelper): def __init__(self, user, friend_type): super(_FriendDatastoreHelper, self).__init__(user, friend_type) self.has_data = False self._service_profile = None self._profile_info = None self._brandings = {} def __getattribute__(self, item): if item.startswith('get'): self._ensure_data() return super(_FriendDatastoreHelper, self).__getattribute__(item) def _ensure_data(self): if self.has_data: return else: if self.is_service: self._service_profile = get_service_profile(self.service_user) self._profile_info = get_service_identity(self.service_identity_user) else: self._profile_info = db.get(UserProfile.createKey(self.user)) self.has_data = True def get_service_profile(self): # type: () -> ServiceProfile if self.is_service: return self._service_profile def get_profile_info(self): # type: () -> ServiceIdentity azzert(self._profile_info) return self._profile_info def get_service_data(self): if self.is_service: service_identity = self.get_profile_info() return service_identity.appData and json.loads(service_identity.appData) def list_service_menu_items(self): return get_service_menu_items(self.user) if self.is_service else [] def list_roles(self): return list_service_roles(self.service_user) def get_role(self, role_id): if self.is_service: return get_service_role_by_id(self.service_user, role_id) def get_message_flow(self, key): if self.is_service: return db.get(key) def _get_all_translations(self): if self.is_service: from rogerthat.bizz.i18n import get_all_translations, get_active_translation_set s = get_active_translation_set(self.get_service_profile()) if s: translation_types = ServiceTranslation.HOME_TYPES + ServiceTranslation.IDENTITY_TYPES translations = get_all_translations(s, translation_types) return translations def get_share_sid(self): if self.is_service: service_identity = self.get_profile_info() if service_identity.shareEnabled: return ServiceInteractionDef.get(service_identity.shareSIDKey) def set_service_identity_user(self, service_identity_user): azzert(add_slash_default(self.user) == service_identity_user) def get_brandings(self): if not self.is_service: return {} if self._brandings: return self._brandings brandings_to_get = [] profile_info = self.get_profile_info() translator = self.get_translator() for language in translator.supported_languages: if profile_info.menuBranding and profile_info.menuBranding not in brandings_to_get: brandings_to_get.append(translator.translate(ServiceTranslation.HOME_BRANDING, profile_info.menuBranding, language)) keys = [Branding.create_key(b_hash) for b_hash in brandings_to_get] self._brandings = {branding.hash: branding for branding in db.get(keys)} if keys else {} return self._brandings def get_branding(self, branding_hash): return self.get_brandings()[branding_hash] class FriendCloudStorageHelper(FriendHelper): def __init__(self, user, friend_type, cloud_storage_path): FriendHelper.__init__(self, user, friend_type) self.cloud_storage_path = cloud_storage_path @staticmethod def create_cloudstorage_path(user): # type: (str) -> str return '/'.join([FRIEND_HELPER_BUCKET, str(today()), user, guid()]) @property def _data(self): if not hasattr(self, '_internal_data'): data_from_memcache = memcache.get(self.cloud_storage_path) # @UndefinedVariable if data_from_memcache: with closing(StringIO.StringIO()) as stream: stream.write(data_from_memcache) stream.seek(0) self._internal_data = ds_any(stream) else: with cloudstorage.open(self.cloud_storage_path, 'r') as f: self.add_to_memcache(self.cloud_storage_path, f.read()) f.seek(0) self._internal_data = ds_any(f) return self._internal_data def _get(self, method): model = self._data.get(method, MISSING) if model is not MISSING: return model if '%s-0' % method in self._data: x = 0 models = [] while True: model = self._data.get('%s-%s' % (method, x)) if not model: break models.append(model) x += 1 return models return None def get_service_profile(self): # type: () -> ServiceProfile if self.is_service: return self._get('get_service_profile') def get_profile_info(self): return self._get('get_profile_info') def get_service_data(self): return self._get('get_service_data') def list_service_menu_items(self): return self._get('list_service_menu_items') or [] def list_roles(self): # type: () -> list[ServiceRole] return self._get('list_roles') or [] def get_role(self, role_id): if self.is_service: for role in self.list_roles(): if role.role_id == role_id: return role def get_message_flow(self, key): if self.is_service: return self._data.get('flow-%s' % key) def _get_all_translations(self): if self.is_service: return self._get('_get_all_translations') def get_share_sid(self): if self.is_service: return self._get('get_share_sid') def set_service_identity_user(self, service_identity_user): if add_slash_default(self.user) != service_identity_user: # this can happen when a helper is created with supplying a service user self.user = service_identity_user for m in ('get_profile_info', 'get_share_sid', 'get_service_data'): self._data[m] = MISSING def get_brandings(self): return self._get('get_brandings') def get_branding(self, branding_hash): return self.get_brandings()[branding_hash]
36.324468
110
0.647825
536f80faaadafb43135fd6ff29ef9eaf3df78ce0
1,531
py
Python
helper_functions.py
SatyadevaNaidu/EdgeDetectionOfAnImage
8562677fe02baf7160342970d663e9c0b2b76d16
[ "Unlicense" ]
null
null
null
helper_functions.py
SatyadevaNaidu/EdgeDetectionOfAnImage
8562677fe02baf7160342970d663e9c0b2b76d16
[ "Unlicense" ]
null
null
null
helper_functions.py
SatyadevaNaidu/EdgeDetectionOfAnImage
8562677fe02baf7160342970d663e9c0b2b76d16
[ "Unlicense" ]
null
null
null
from pathlib import Path from skimage import io from scipy import ndimage import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg def read_colorimg(imgpath): # Read the color image color_img = mpimg.imread(imgpath) # Convert the color to grayscale gray_img = np.dot(color_img[...,:3], [0.33, 0.33, 0.33]) # Save the color image as a grayscale image # Pad the image with boundary zeroes padded_img = np.pad(gray_img, (1,), 'constant', constant_values=0) return padded_img[:, :].tolist() def verify_result(pixel_values, new_pixel_values, mask): # Creating the original image array from the list orig_image = np.asarray(pixel_values)[1:-1,1:-1] edges_image = np.asarray(new_pixel_values) correct_edges_image = ndimage.convolve(orig_image, np.array(mask)[::-1, ::-1], mode='constant', cval=0) # Comparing each updated value against the correct answer comparison = edges_image == correct_edges_image print(f"{comparison.all()} result") def view_images(imgpath, new_pixel_values): orig_image = mpimg.imread(imgpath) edges_image = np.asarray(new_pixel_values) plt.rcParams['font.size'] = 30 plt.rcParams['axes.titlepad'] = 20 fig, axes = plt.subplots(1, 2, figsize=(8, 4)) ax = axes.ravel() ax[0].imshow(orig_image) ax[0].set_title("Input image") ax[1].imshow(edges_image, cmap='gray', vmin = 0, vmax = 255) ax[1].set_title("Edges of the image") plt.show()
38.275
108
0.677988
a4b6162ef9aead54081487d8d8c6298ecd74d06d
5,112
py
Python
setup.py
carlinmack/tqdm
6888abd3dc33582d8437d825e11a7ef45d186397
[ "MIT" ]
1
2019-11-12T23:28:21.000Z
2019-11-12T23:28:21.000Z
setup.py
carlinmack/tqdm
6888abd3dc33582d8437d825e11a7ef45d186397
[ "MIT" ]
2
2019-11-28T23:26:50.000Z
2020-10-30T12:45:23.000Z
setup.py
carlinmack/tqdm
6888abd3dc33582d8437d825e11a7ef45d186397
[ "MIT" ]
1
2021-08-30T15:26:47.000Z
2021-08-30T15:26:47.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import os try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup def find_packages(where='.'): # os.walk -> list[(dirname, list[subdirs], list[files])] return [folder.replace("/", ".").lstrip(".") for (folder, _, fils) in os.walk(where) if "__init__.py" in fils] import sys from io import open as io_open # Get version from tqdm/_version.py __version__ = None src_dir = os.path.abspath(os.path.dirname(__file__)) version_file = os.path.join(src_dir, 'tqdm', '_version.py') with io_open(version_file, mode='r') as fd: exec(fd.read()) # Executing makefile commands if specified if sys.argv[1].lower().strip() == 'make': import pymake # Filename of the makefile fpath = os.path.join(src_dir, 'Makefile') pymake.main(['-f', fpath] + sys.argv[2:]) # Stop to avoid setup.py raising non-standard command error sys.exit(0) extras_require = {} requirements_dev = os.path.join(src_dir, 'requirements-dev.txt') with io_open(requirements_dev, mode='r') as fd: extras_require['dev'] = [i.strip().split('#', 1)[0].strip() for i in fd.read().strip().split('\n')] README_rst = '' fndoc = os.path.join(src_dir, 'README.rst') with io_open(fndoc, mode='r', encoding='utf-8') as fd: README_rst = fd.read() setup( name='tqdm', version=__version__, description='Fast, Extensible Progress Meter', long_description=README_rst, license='MPLv2.0, MIT Licences', url='https://github.com/tqdm/tqdm', maintainer='tqdm developers', maintainer_email='python.tqdm@gmail.com', platforms=['any'], packages=['tqdm'] + ['tqdm.' + i for i in find_packages('tqdm')], provides=['tqdm'], extras_require=extras_require, entry_points={'console_scripts': ['tqdm=tqdm.cli:main'], }, package_data={'tqdm': ['CONTRIBUTING.md', 'LICENCE', 'examples/*.py', 'tqdm.1', 'requirements-dev.txt']}, python_requires='>=2.6, !=3.0.*, !=3.1.*', classifiers=[ # Trove classifiers # (https://pypi.org/pypi?%3Aaction=list_classifiers) 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: MacOS X', 'Environment :: Other Environment', 'Environment :: Win32 (MS Windows)', 'Environment :: X11 Applications', 'Framework :: IPython', 'Framework :: Jupyter', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Other Audience', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: MIT License', 'License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)', 'Operating System :: MacOS', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft', 'Operating System :: Microsoft :: MS-DOS', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: POSIX :: BSD', 'Operating System :: POSIX :: BSD :: FreeBSD', 'Operating System :: POSIX :: Linux', 'Operating System :: POSIX :: SunOS/Solaris', 'Operating System :: Unix', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation', 'Programming Language :: Python :: Implementation :: IronPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Programming Language :: Unix Shell', 'Topic :: Desktop Environment', 'Topic :: Education :: Computer Aided Instruction (CAI)', 'Topic :: Education :: Testing', 'Topic :: Office/Business', 'Topic :: Other/Nonlisted Topic', 'Topic :: Software Development :: Build Tools', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Pre-processors', 'Topic :: Software Development :: User Interfaces', 'Topic :: System :: Installation/Setup', 'Topic :: System :: Logging', 'Topic :: System :: Monitoring', 'Topic :: System :: Shells', 'Topic :: Terminals', 'Topic :: Utilities' ], keywords='progressbar progressmeter progress bar meter' ' rate eta console terminal time', test_suite='nose.collector', tests_require=['nose', 'flake8', 'coverage'], )
40.571429
74
0.603678
b8b80bdaa75ee426a8d629b8c7efaf3b1d5c70f8
9,893
py
Python
frontera/tests/test_utils_url.py
TeamHG-Memex/frontera
06ab4002428528a2d8b67c1e82368cc5988b2228
[ "BSD-3-Clause" ]
3
2015-11-11T19:37:16.000Z
2017-03-15T13:33:54.000Z
frontera/tests/test_utils_url.py
TeamHG-Memex/frontera
06ab4002428528a2d8b67c1e82368cc5988b2228
[ "BSD-3-Clause" ]
null
null
null
frontera/tests/test_utils_url.py
TeamHG-Memex/frontera
06ab4002428528a2d8b67c1e82368cc5988b2228
[ "BSD-3-Clause" ]
2
2016-09-08T08:30:24.000Z
2018-10-02T22:00:47.000Z
import unittest from frontera.utils.url import parse_url, parse_domain_from_url, \ parse_domain_from_url_fast, safe_url_string, canonicalize_url simple_url = 'http://www.example.com' complete_url = 'http://username:password@www.example.com:80/some/page/do?a=1&b=2&c=3#frag' class TestParseUrl(unittest.TestCase): def test_simple_url(self): self.assertEqual(parse_url(simple_url), ('http', 'www.example.com', '', '', '', '')) def test_complete_url(self): self.assertEqual(parse_url(complete_url), ('http', 'username:password@www.example.com:80', '/some/page/do', '', 'a=1&b=2&c=3', 'frag')) def test_already_parsed(self): result = parse_url(simple_url) self.assertEqual(parse_url(result), result) class TestParseDomainFromUrl(unittest.TestCase): def test_simple_url(self): self.assertEqual(parse_domain_from_url(simple_url), ('www.example.com', 'example.com', 'http', 'example', 'com', 'www')) def test_complete_url(self): self.assertEqual(parse_domain_from_url(complete_url), ('www.example.com', 'example.com', 'http', 'example', 'com', 'www')) def test_missing_tld(self): self.assertEqual(parse_domain_from_url('http://www.example'), ('www.example', 'example', 'http', 'example', '', 'www')) def test_missing_subdomain(self): self.assertEqual(parse_domain_from_url('https://example.com'), ('example.com', 'example.com', 'https', 'example', 'com', '')) def test_missing_scheme(self): self.assertEqual(parse_domain_from_url('www.example.com'), ('www.example.com', 'example.com', '', 'example', 'com', 'www')) class TestParseDomainFromUrlFast(unittest.TestCase): def test_simple_url(self): self.assertEqual(parse_domain_from_url_fast(simple_url), ('www.example.com', 'www.example.com', 'http', '', '', '')) def test_complete_url(self): self.assertEqual(parse_domain_from_url_fast(complete_url), ('username:password@www.example.com:80', 'www.example.com', 'http', '', '', '')) class TestSafeUrlString(unittest.TestCase): def test_safe_url_string(self): # Motoko Kusanagi (Cyborg from Ghost in the Shell) motoko = u'\u8349\u8599 \u7d20\u5b50' self.assertEqual(safe_url_string(motoko), # note the %20 for space '%E8%8D%89%E8%96%99%20%E7%B4%A0%E5%AD%90') self.assertEqual(safe_url_string(motoko), safe_url_string(safe_url_string(motoko))) self.assertEqual(safe_url_string(u'\xa9'), # copyright symbol '%C2%A9') self.assertEqual(safe_url_string(u'\xa9', 'iso-8859-1'), '%A9') self.assertEqual(safe_url_string("http://www.scrapy.org/"), 'http://www.scrapy.org/') alessi = u'/ecommerce/oggetto/Te \xf2/tea-strainer/1273' self.assertEqual(safe_url_string(alessi), '/ecommerce/oggetto/Te%20%C3%B2/tea-strainer/1273') self.assertEqual(safe_url_string("http://www.example.com/test?p(29)url(http://www.another.net/page)"), "http://www.example.com/test?p(29)url(http://www.another.net/page)") self.assertEqual(safe_url_string("http://www.example.com/Brochures_&_Paint_Cards&PageSize=200"), "http://www.example.com/Brochures_&_Paint_Cards&PageSize=200") safeurl = safe_url_string(u"http://www.example.com/\xa3", encoding='latin-1') self.assert_(isinstance(safeurl, str)) self.assertEqual(safeurl, "http://www.example.com/%A3") safeurl = safe_url_string(u"http://www.example.com/\xa3", encoding='utf-8') self.assert_(isinstance(safeurl, str)) self.assertEqual(safeurl, "http://www.example.com/%C2%A3") class TestCanonicalizeUrl(unittest.TestCase): def test_simple_case(self): self.assertEqual(canonicalize_url("http://www.example.com/"), "http://www.example.com/") def test_returns_str(self): assert isinstance(canonicalize_url(u"http://www.example.com"), str) def test_append_missing_path(self): self.assertEqual(canonicalize_url("http://www.example.com"), "http://www.example.com/") def test_typical_usage(self): self.assertEqual(canonicalize_url("http://www.example.com/do?a=1&b=2&c=3"), "http://www.example.com/do?a=1&b=2&c=3") self.assertEqual(canonicalize_url("http://www.example.com/do?c=1&b=2&a=3"), "http://www.example.com/do?a=3&b=2&c=1") self.assertEqual(canonicalize_url("http://www.example.com/do?&a=1"), "http://www.example.com/do?a=1") def test_sorting(self): self.assertEqual(canonicalize_url("http://www.example.com/do?c=3&b=5&b=2&a=50"), "http://www.example.com/do?a=50&b=2&b=5&c=3") def test_keep_blank_values(self): self.assertEqual(canonicalize_url("http://www.example.com/do?b=&a=2", keep_blank_values=False), "http://www.example.com/do?a=2") self.assertEqual(canonicalize_url("http://www.example.com/do?b=&a=2"), "http://www.example.com/do?a=2&b=") self.assertEqual(canonicalize_url("http://www.example.com/do?b=&c&a=2", keep_blank_values=False), "http://www.example.com/do?a=2") self.assertEqual(canonicalize_url("http://www.example.com/do?b=&c&a=2"), "http://www.example.com/do?a=2&b=&c=") self.assertEqual(canonicalize_url(u'http://www.example.com/do?1750,4'), 'http://www.example.com/do?1750%2C4=') def test_spaces(self): self.assertEqual(canonicalize_url("http://www.example.com/do?q=a space&a=1"), "http://www.example.com/do?a=1&q=a+space") self.assertEqual(canonicalize_url("http://www.example.com/do?q=a+space&a=1"), "http://www.example.com/do?a=1&q=a+space") self.assertEqual(canonicalize_url("http://www.example.com/do?q=a%20space&a=1"), "http://www.example.com/do?a=1&q=a+space") def test_normalize_percent_encoding_in_path(self): self.assertEqual(canonicalize_url("http://www.example.com/a%a3do"), "http://www.example.com/a%A3do"), def test_normalize_percent_encoding_in_query_arguments(self): self.assertEqual(canonicalize_url("http://www.example.com/do?k=b%a3"), "http://www.example.com/do?k=b%A3") def test_non_ascii_percent_encoding_in_path(self): self.assertEqual(canonicalize_url("http://www.example.com/a do?a=1"), "http://www.example.com/a%20do?a=1"), self.assertEqual(canonicalize_url("http://www.example.com/a %20do?a=1"), "http://www.example.com/a%20%20do?a=1"), self.assertEqual(canonicalize_url("http://www.example.com/a do\xc2\xa3.html?a=1"), "http://www.example.com/a%20do%C2%A3.html?a=1") def test_non_ascii_percent_encoding_in_query_argument(self): self.assertEqual(canonicalize_url(u"http://www.example.com/do?price=\xa3500&a=5&z=3"), u"http://www.example.com/do?a=5&price=%C2%A3500&z=3") self.assertEqual(canonicalize_url("http://www.example.com/do?price=\xc2\xa3500&a=5&z=3"), "http://www.example.com/do?a=5&price=%C2%A3500&z=3") self.assertEqual(canonicalize_url("http://www.example.com/do?price(\xc2\xa3)=500&a=1"), "http://www.example.com/do?a=1&price%28%C2%A3%29=500") def test_auth_and_ports(self): self.assertEqual(canonicalize_url(u"http://user:pass@www.example.com:81/do?now=1"), u"http://user:pass@www.example.com:81/do?now=1") def test_remove_fragments(self): self.assertEqual(canonicalize_url(u"http://user:pass@www.example.com/do?a=1#frag"), u"http://user:pass@www.example.com/do?a=1") self.assertEqual(canonicalize_url(u"http://user:pass@www.example.com/do?a=1#frag", keep_fragments=True), u"http://user:pass@www.example.com/do?a=1#frag") def test_dont_convert_safe_chars(self): self.assertEqual(canonicalize_url( "http://www.simplybedrooms.com/White-Bedroom-Furniture/Bedroom-Mirror:-Josephine-Cheval-Mirror.html"), "http://www.simplybedrooms.com/White-Bedroom-Furniture/Bedroom-Mirror:-Josephine-Cheval-Mirror.html") def test_safe_characters_unicode(self): # urllib.quote uses a mapping cache of encoded characters. when parsing # an already percent-encoded url, it will fail if that url was not # percent-encoded as utf-8, that's why canonicalize_url must always # convert the urls to string. the following test asserts that # functionality. self.assertEqual(canonicalize_url(u'http://www.example.com/caf%E9-con-leche.htm'), 'http://www.example.com/caf%E9-con-leche.htm') def test_domains_are_case_insensitive(self): self.assertEqual(canonicalize_url("http://www.EXAMPLE.com/"), "http://www.example.com/") def test_quoted_slash_and_question_sign(self): self.assertEqual(canonicalize_url("http://foo.com/AC%2FDC+rocks%3f/?yeah=1"), "http://foo.com/AC%2FDC+rocks%3F/?yeah=1") self.assertEqual(canonicalize_url("http://foo.com/AC%2FDC/"), "http://foo.com/AC%2FDC/")
49.964646
114
0.610836
507097d6242b3861342f22d46deb67628b3095e5
3,356
py
Python
suji/kansuji.py
jikyo/suji4p
00b7f6f0ac088810cbb379f6a1687db7d329a996
[ "Apache-2.0" ]
3
2021-02-16T10:53:33.000Z
2021-09-21T07:55:09.000Z
suji/kansuji.py
jikyo/suji4p
00b7f6f0ac088810cbb379f6a1687db7d329a996
[ "Apache-2.0" ]
1
2021-02-15T11:19:43.000Z
2021-02-24T07:29:03.000Z
suji/kansuji.py
jikyo/suji4p
00b7f6f0ac088810cbb379f6a1687db7d329a996
[ "Apache-2.0" ]
null
null
null
""" The entry point to the kansuji methods. This provides a method to convert from the mixed japanese number notation to Kansuji string value, and a method to convert from mixed number notations to Kansuji string. """ from suji.converter import values class Kansuji: __zero = '零' __minus = 'マイナス' __number = { 1: '一', 2: '二', 3: '三', 4: '四', 5: '五', 6: '六', 7: '七', 8: '八', 9: '九', } __radic = [ 10000000000000000, 1000000000000, 100000000, 10000, 1000, 100, 10, ] __radic_kanji = [ '京', '兆', '億', '万', '千', '百', '十', ] # __before_the_decimal_point = '割' # __radic_adp = [ # 0.1, # 0.01, # 0.001, # ] # __radic_adp_kanji = [ # '分', # '厘', # '毛', # ] @staticmethod def __value(v, index, one): if v == 0: return '' if v < 0: return Kansuji.__minus + Kansuji.__value(-1 * v, index, one) if v in Kansuji.__number: return Kansuji.__number[v] if len(Kansuji.__radic) <= index: if v in Kansuji.__number: return Kansuji.__number[v] else: return '' nd = divmod(v, Kansuji.__radic[index]) if nd[0] == 0: return Kansuji.__value(v, index + 1, one) prefix = '' if nd[0] != 1: prefix = Kansuji.__value(nd[0], index + 1, one) elif one: prefix = Kansuji.__number[1] return prefix \ + Kansuji.__radic_kanji[index] \ + Kansuji.__value(nd[1], index + 1, one) @staticmethod def value(v, one=True): v = int(v) if v == 0: return Kansuji.__zero return Kansuji.__value(v, 0, one) def kansujis(src, one=True): """ Convert from mixed Japanese number notations to Knasuji string values. The return value is a list of Kansuji value objects. If the input string has no number notation, `kansujis` returns a empty list. The result object has three keys: `val`, `beg`, and `end`: :val: the string value of the Kansuji notation. :beg: the start postion of the found number notation at the input string. :end: the end postion of the found number notation. :param src: a input string. :param one: a boolean flag for the display `ichi`. Default is True. :return: a list of the Kansuji value objects. """ val = values(src) for v in val: v['val'] = Kansuji.value(v['val'], one) return val def kansuji(src, one=True): """ Convert from mixed number notations to Kansuji string. The return value is a converted str. If the input string has no number notation, `kansuji` returns the input str. :param src: a input string. :param one: a boolean flag for the display `ichi`. Default is True. :return: a converted str. """ vals = values(src) if 0 == len(vals): return src start = 0 s = '' for v in vals: s += src[start:v['beg']] s += Kansuji.value(v['val'], one) start = v['end'] s += src[start:len(src)] return s __all__ = ['kansujis', 'kansuji']
23.633803
98
0.532181
5ec556c10c387c722a187725bdfd445dd0e002a0
1,738
py
Python
python_src/2020_08_august_contest/day_23.py
BurnySc2/leetcode-solutions
db86cc945f81d2b84891c5446f4887253011890e
[ "MIT" ]
null
null
null
python_src/2020_08_august_contest/day_23.py
BurnySc2/leetcode-solutions
db86cc945f81d2b84891c5446f4887253011890e
[ "MIT" ]
1
2021-08-01T09:56:31.000Z
2021-08-01T09:56:31.000Z
python_src/2020_08_august_contest/day_23.py
BurnySc2/leetcode-solutions
db86cc945f81d2b84891c5446f4887253011890e
[ "MIT" ]
null
null
null
from typing import List, Dict from collections import deque # TOO SLOW class StreamChecker: def __init__(self, words: List[str]): self.words = words self.keep_track = deque() self.word_counter: Dict[str, List[str]] = {word: list(word) for word in words} self.longest_word = max(len(i) for i in words) self.words_ending_with_char = {} for i in words: char = i[-1] if char not in self.words_ending_with_char: self.words_ending_with_char[char] = [i] else: self.words_ending_with_char[char].append(i) def query(self, letter: str) -> bool: self.keep_track.append(letter) if len(self.keep_track) > self.longest_word: self.keep_track.popleft() for word in self.words_ending_with_char.get(letter, []): if word[-1] == letter: word_as_list = self.word_counter[word] if len(self.keep_track) >= len(word) and all( i == j for i, j in zip(word_as_list[::-1], reversed(self.keep_track)) ): return True return False if __name__ == "__main__": # fmt: off s = StreamChecker(["ab", "ba", "aaab", "abab", "baa"]) q = ["a","a","a","a","a","b","a","b","a","b","b","b","a","b","a","b","b","b","b","a","b","a","b","a","a","a","b","a","a","a"] expected = [False,False,False,False,False,True,True,True,True,True,False,False,True,True,True,True,False,False,False,True,True,True,True,True,True,False,True,True,True,False] # fmt: on for query, expect in zip(q, expected): value = s.query(query) print(query, value, expect) assert value is expect
39.5
178
0.567319
81fd8d5ff99dac0ea700184d0817a4a885871b75
1,832
py
Python
python/src/nnabla/backward_function/clip_grad_by_value.py
sdonatti/nnabla
ac4a42e62dd358f16bd79c08a9a9f3d83c0100c9
[ "Apache-2.0" ]
1
2020-08-03T12:49:19.000Z
2020-08-03T12:49:19.000Z
python/src/nnabla/backward_function/clip_grad_by_value.py
sdonatti/nnabla
ac4a42e62dd358f16bd79c08a9a9f3d83c0100c9
[ "Apache-2.0" ]
1
2020-11-09T07:33:29.000Z
2020-11-09T07:33:29.000Z
python/src/nnabla/backward_function/clip_grad_by_value.py
sdonatti/nnabla
ac4a42e62dd358f16bd79c08a9a9f3d83c0100c9
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nnabla as nn from .backward_function import BackwardFunction class ClipGradByValueBackward(BackwardFunction): @property def name(self): return 'ClipGradByValueBackward' def _create_forward_inputs_and_outputs(self, inputs, outputs): # Inputs on the forward graph inputs_fwd = [] for i in range(self._num_inputs_fwd): need_grad = self.forward_func.inputs[i].need_grad v = nn.Variable(inputs[i].shape, need_grad=need_grad) v.data = inputs[i].data v.grad = outputs[i].data inputs_fwd += [v] # Outputs on the forward graph outputs_fwd = [] for i in range(self._num_outputs_fwd): inp = inputs[self._num_inputs_fwd + i] v = nn.Variable(inp.shape) v.grad = inp.data outputs_fwd += [v] return inputs_fwd, outputs_fwd def backward_impl(self, inputs, outputs, prop_down, accum): # inputs: [inputs_fwd_graph] + [inputs_bwd_graph] or # [inputs_fwd_graph] + [outputs_fwd_graph] + [inputs_bwd_graph] raise NotImplementedError( "The backward method of ClipGradByValueBackward class is not implemented.")
37.387755
87
0.679039
05b0b553be8e24e6ac5375afb2e581a459beef8a
1,372
py
Python
autobahntestsuite/autobahntestsuite/case/case5_2.py
rishabh-bector/autobahn-testsuite
57030060630c10b22be44774973eaa61987b716c
[ "Apache-2.0" ]
595
2015-10-20T09:01:18.000Z
2022-03-28T08:48:27.000Z
autobahntestsuite/autobahntestsuite/case/case5_2.py
rishabh-bector/autobahn-testsuite
57030060630c10b22be44774973eaa61987b716c
[ "Apache-2.0" ]
73
2015-12-03T14:21:56.000Z
2022-02-05T01:53:05.000Z
autobahntestsuite/autobahntestsuite/case/case5_2.py
rishabh-bector/autobahn-testsuite
57030060630c10b22be44774973eaa61987b716c
[ "Apache-2.0" ]
65
2015-11-04T15:58:37.000Z
2022-02-09T03:49:24.000Z
############################################################################### ## ## Copyright (c) Crossbar.io Technologies GmbH ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ############################################################################### from case import Case class Case5_2(Case): DESCRIPTION = """Send Pong fragmented into 2 fragments.""" EXPECTATION = """Connection is failed immediately, since control message MUST NOT be fragmented.""" def onOpen(self): self.expected[Case.OK] = [] self.expectedClose = {"closedByMe":False,"closeCode":[self.p.CLOSE_STATUS_CODE_PROTOCOL_ERROR],"requireClean":False} self.p.sendFrame(opcode = 10, fin = False, payload = "fragment1") self.p.sendFrame(opcode = 0, fin = True, payload = "fragment2") self.p.killAfter(1)
41.575758
123
0.610787
6ce8d9e7e39fcdea894ebc81df888ae15bbc04a3
1,298
py
Python
Lib/site-packages/wagtailimportexport/forms.py
nateonmission/nateonmission.com
c7c5078ca2160fa97cb6cdc0497438547f82ae41
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/wagtailimportexport/forms.py
nateonmission/nateonmission.com
c7c5078ca2160fa97cb6cdc0497438547f82ae41
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/wagtailimportexport/forms.py
nateonmission/nateonmission.com
c7c5078ca2160fa97cb6cdc0497438547f82ae41
[ "bzip2-1.0.6" ]
null
null
null
from django import forms from django.utils.translation import ugettext as _ try: from wagtail.admin.widgets import AdminPageChooser from wagtail.core.models import Page except ImportError: # fallback for Wagtail <2.0 from wagtail.wagtailadmin.widgets import AdminPageChooser from wagtail.wagtailcore.models import Page class ImportFromAPIForm(forms.Form): source_page_id = forms.IntegerField() source_site_base_url = forms.URLField() parent_page = forms.ModelChoiceField( queryset=Page.objects.all(), widget=AdminPageChooser(can_choose_root=True, user_perms='copy_to'), label=_("Destination parent page"), help_text=_("Imported pages will be created as children of this page.") ) class ImportFromFileForm(forms.Form): file = forms.FileField(label=_("File to import")) parent_page = forms.ModelChoiceField( queryset=Page.objects.all(), widget=AdminPageChooser(can_choose_root=True, user_perms='copy_to'), label=_("Destination parent page"), help_text=_("Imported pages will be created as children of this page.") ) class ExportForm(forms.Form): root_page = forms.ModelChoiceField( queryset=Page.objects.all(), widget=AdminPageChooser(can_choose_root=True), )
34.157895
79
0.724191
359883fbfbbc5abcbce84f615b78aa3d0b55511d
2,246
py
Python
preprocess.py
Huy-Ngo/dependency-size
791b9a8cc3ae632d702ab0d12f13556698018a44
[ "MIT" ]
null
null
null
preprocess.py
Huy-Ngo/dependency-size
791b9a8cc3ae632d702ab0d12f13556698018a44
[ "MIT" ]
7
2020-12-15T14:05:06.000Z
2021-01-13T09:52:52.000Z
preprocess.py
Huy-Ngo/dependency-size
791b9a8cc3ae632d702ab0d12f13556698018a44
[ "MIT" ]
null
null
null
from urllib3 import PoolManager, disable_warnings disable_warnings() import json import pprint import requirements def request_pkg_info(pkg_name, pkg_ver = ''): """Get json response from pypi Parameters: pkg_name : str pkg_ver : str Returns: json/dict """ url = '' if pkg_ver == '': url = f'https://pypi.org/pypi/{pkg_name}/json' else: url = f'https://pypi.org/pypi/{pkg_name}/{pkg_ver}/json' http = PoolManager() r = http.request('GET', url) r_json = json.loads(r.data.decode('utf-8')) return r_json def get_basic_info(pkg_info, filename='', requires_format=True): """Get basic information such as name, requires_dist, size from what request_pkg_info() returns Parameters: pkg_info : json/dict filename : str requires_format : bool Returns: json/dict Notes: For `requires_dist` key, it is a list of tuples. Each tuple is a requirement of package. First element of that tuple is pkg_name Second element of that tuple is a list of conditions as tuples. Examples: Try to run this file and see the output in stdout. """ basic_info = {} basic_info['name'] = pkg_info['info']['name'] if requires_format and pkg_info['info']['requires_dist'] is not None: req_dist = [ite for ite in pkg_info['info']['requires_dist'] if 'extra ' not in ite] basic_info['requires_dist'] = [(ite.name, ite.specs) for ite in requirements.parse("\n".join(req_dist))] else: basic_info['requires_dist'] = pkg_info['info']['requires_dist'] if filename == '': basic_info['size'] = pkg_info['urls'][0]['size'] else: for url_info in pkg_info['urls']: if url_info['filename'] == filename: basic_info['size'] = url_info['size'] return basic_info def lazy_get_pkg(pkg_name, pkg_ver = '', filename='', requires_format=True): return get_basic_info(request_pkg_info(pkg_name, pkg_ver), filename, requires_format) if __name__ == '__main__': pkg_info = lazy_get_pkg('requests') pprint.PrettyPrinter(indent=2).pprint(pkg_info)
28.43038
92
0.625557
535a243224a9cf101dbd3e2441ccde5a3c2b1349
375
py
Python
pythonlatex/__init__.py
jordyril/PythonLaTeX
547c699b7f01ab90a023893f7e6a9736e78534e5
[ "MIT" ]
null
null
null
pythonlatex/__init__.py
jordyril/PythonLaTeX
547c699b7f01ab90a023893f7e6a9736e78534e5
[ "MIT" ]
null
null
null
pythonlatex/__init__.py
jordyril/PythonLaTeX
547c699b7f01ab90a023893f7e6a9736e78534e5
[ "MIT" ]
null
null
null
""" A library complementing/building upon the package 'pylatex' by Jelte Fennema (see https://github.com/JelteF/PyLaTeX for the original package) .. :copyright: (c) 2019 by Jordy Rillaerts. :license: MIT, see License for more details. """ from .figure import Figure, SubFigure from .table import Table from .saving import LatexSaving from .value_old import LatexValue
31.25
91
0.762667
d3f8337903e468d168279143c8c57c038bb31e29
861
py
Python
distribution_procedures/__init__.py
Art-Ev/AequilibraE-GUI
0c6ea37dcb5079cca499a4e17f0f96586c887be7
[ "MIT" ]
22
2018-08-31T13:05:07.000Z
2021-11-18T08:50:26.000Z
distribution_procedures/__init__.py
Art-Ev/AequilibraE-GUI
0c6ea37dcb5079cca499a4e17f0f96586c887be7
[ "MIT" ]
65
2018-06-30T18:20:02.000Z
2022-03-21T04:51:43.000Z
distribution_procedures/__init__.py
Art-Ev/AequilibraE-GUI
0c6ea37dcb5079cca499a4e17f0f96586c887be7
[ "MIT" ]
6
2018-10-18T23:16:32.000Z
2022-02-10T13:39:18.000Z
""" ----------------------------------------------------------------------------------------------------------- Package: AequilibraE Name: QGIS distribution dialogs and procedures initializer Purpose: Original Author: Pedro Camargo (c@margo.co) Contributors: Last edited by: Pedro Camargo Website: www.AequilibraE.com Repository: https://github.com/AequilibraE/AequilibraE Created: 2016-10-30 Updated: 2018-08-08 Copyright: (c) AequilibraE authors Licence: See LICENSE.TXT ----------------------------------------------------------------------------------------------------------- """ from .distribution_models_dialog import DistributionModelsDialog from .ipf_procedure import IpfProcedure from .calibrate_gravity_procedure import CalibrateGravityProcedure from .apply_gravity_procedure import ApplyGravityProcedure
34.44
108
0.586527
291cf3015459404140adaf6df24ea49d5a77aa6e
169
py
Python
community_library/delivery_management/apps.py
kiruthihan10/Community-Library
d2f68e27e14586e7a2bafab42024e1e9c57834f1
[ "MIT" ]
null
null
null
community_library/delivery_management/apps.py
kiruthihan10/Community-Library
d2f68e27e14586e7a2bafab42024e1e9c57834f1
[ "MIT" ]
null
null
null
community_library/delivery_management/apps.py
kiruthihan10/Community-Library
d2f68e27e14586e7a2bafab42024e1e9c57834f1
[ "MIT" ]
null
null
null
from django.apps import AppConfig class DeliveryManagementConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'delivery_management'
24.142857
56
0.792899
1d3890e348d6a74e2c24fa00e3fe92a19c2bbfdd
1,597
py
Python
Golem/golem_run.py
shyam-chipsoft/Tools
bfc5a15f585da429f7e87968e3401a9934eda13b
[ "MIT" ]
5
2021-03-25T09:16:28.000Z
2021-06-12T06:48:43.000Z
Golem/golem_run.py
shyam-chipsoft/Tools
bfc5a15f585da429f7e87968e3401a9934eda13b
[ "MIT" ]
null
null
null
Golem/golem_run.py
shyam-chipsoft/Tools
bfc5a15f585da429f7e87968e3401a9934eda13b
[ "MIT" ]
1
2021-07-20T05:37:16.000Z
2021-07-20T05:37:16.000Z
import os import re import time import json import collections import copy from os import listdir global_settings = '' golem_settings = [] golems = [] interval = 0 configFile = r'./config.json' def runCmd(s): # print s os.system(s + ' 2>&1') def loadCfg(): jsonfile = file(configFile) jsonobj = json.load(jsonfile) global global_settings global golem_settings global golems global interval global_settings = jsonobj["global_settings"] interval = jsonobj["global_settings"]["start_interval_sec"] for i in range(len(jsonobj["golem_settings"])): golem_settings.append(jsonobj["golem_settings"][i]) for i in range(len(jsonobj["golems"])): golems.append(jsonobj["golems"][i]) jsonfile.close def runRobots(): strPatternQuot = re.compile('\"') strPatternSpace = re.compile(' ') global_settings_text = json.dumps(global_settings, separators=(',',':')) global_settings_text = strPatternQuot.sub('\\"',global_settings_text) global_settings_text = strPatternSpace.sub('',global_settings_text) for i in range(len(golems)): golem_settings_text = json.dumps(golem_settings[golems[i]], separators=(',',':')) golem_settings_text = strPatternQuot.sub('\\"',golem_settings_text) golem_settings_text = strPatternSpace.sub('',golem_settings_text) print("\n############# ROBOT %d #############" %i) cmd = './Golem --global_settings %s --golem_settings %s &' % (global_settings_text, golem_settings_text) runCmd(cmd) time.sleep(interval) loadCfg() runRobots()
28.017544
112
0.673137
2485e70d3a644b2f5d1501898a0247a909633992
1,236
py
Python
examples/test_show_file_choosers.py
mdmintz/seleniumspot
f5c225aa4fcd0b4124fc990e3892c36736290ce8
[ "MIT" ]
1
2022-02-26T15:09:58.000Z
2022-02-26T15:09:58.000Z
examples/test_show_file_choosers.py
mdmintz/seleniumspot
f5c225aa4fcd0b4124fc990e3892c36736290ce8
[ "MIT" ]
null
null
null
examples/test_show_file_choosers.py
mdmintz/seleniumspot
f5c225aa4fcd0b4124fc990e3892c36736290ce8
[ "MIT" ]
null
null
null
""" self.show_file_choosers() is used to show hidden file-upload fields. Verify that one can choose a file after the hidden input is visible. """ import os from seleniumbase import BaseCase class FileUpload(BaseCase): def test_show_file_choosers(self): self.open("https://imgbb.com/upload") choose_file_selector = 'input[type="file"]' uploaded_image = "#anywhere-upload-queue li.queue-item" self.assert_element_not_visible(choose_file_selector) self.show_file_choosers() self.highlight(choose_file_selector) self.assert_element(choose_file_selector) self.assert_attribute(choose_file_selector, "value", "") self.assert_element_not_visible(uploaded_image) dir_name = os.path.dirname(os.path.abspath(__file__)) my_file = "screenshot.png" file_path = os.path.join(dir_name, "example_logs/%s" % my_file) self.choose_file(choose_file_selector, file_path) if self.browser != "safari": seen_path = "%s\\%s" % ("C:\\fakepath", my_file) self.assert_attribute(choose_file_selector, "value", seen_path) self.demo_mode = True self.assert_element(uploaded_image)
42.62069
76
0.679612
4c4522fbd0bde8cfe854c3c71b7a51160b73f08f
10,799
py
Python
nylon/preprocessing/preprocessing.py
admariner/nylon
a66cc594b83f50bcc38bd199382755ffbc99cfb8
[ "MIT" ]
80
2021-06-14T15:30:17.000Z
2022-01-27T03:56:43.000Z
nylon/preprocessing/preprocessing.py
admariner/nylon
a66cc594b83f50bcc38bd199382755ffbc99cfb8
[ "MIT" ]
24
2021-06-14T17:29:27.000Z
2021-08-09T14:43:40.000Z
nylon/preprocessing/preprocessing.py
admariner/nylon
a66cc594b83f50bcc38bd199382755ffbc99cfb8
[ "MIT" ]
10
2021-06-21T16:30:44.000Z
2021-07-17T12:48:32.000Z
import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from prince.ca import CA from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from autocorrect import Speller from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from sklearn.preprocessing import (OneHotEncoder, StandardScaler, FunctionTransformer, LabelEncoder) from pandas.api.types import is_numeric_dtype import warnings warnings.filterwarnings('ignore') def initial_preprocessor( data, json_file): ''' initial preprocessing function that's called in the case that the user doesn't provide a preprocessing option :param data: dataframe :param json_file: is the json file with the specifications for preprocessing :return initially preprocessed dataframe ''' object_columns = [ col for col, col_type in data.dtypes.iteritems() if col_type == 'object'] # Handles dates without timestamps for col in object_columns: try: data[col] = pd.to_datetime(data[col], infer_datetime_format=True) except ValueError: pass # get target column target = json_file['data']['target'] y = data[target] # remove rows where target is NaN data = data[y.notna()] y = y[y.notna()] del data[target] df_pre_transform = data.copy() X_train, X_test, y_train, y_test = train_test_split( data, y, test_size=0.2, shuffle = json_file['shuffle']) data = { 'train': pd.concat([X_train], axis=1), 'test': pd.concat([X_test], axis=1) } # preprocess the dataset data, full_pipeline = structured_preprocessor(data) y_split = {'train' : y_train, 'test' : y_test} target_transformers = preprocess_y_data(y, y_split, target) return data, y_split, df_pre_transform, target_transformers def preprocess_y_data(y_full, y_split, target): target_transformers = None if not is_numeric_dtype(y_full): enc = LabelEncoder() fitted_enc = enc.fit(y_full) y_split['train'] = pd.Series(fitted_enc.transform(y_split['train'])) y_split['train'].name = target y_split['test'] = pd.Series(fitted_enc.transform(y_split['test'])) y_split['test'].name = target target_transformers = [fitted_enc] return target_transformers def structured_preprocessor(data, ca_threshold=0.5, text=[]): ''' structured preprocessing function that's called in the case that the user doesn't provide a preprocessing option, called after the initial changes :param data: dataframe :param ca_threshold: is correspondence analysis threshold for removing columns :param text: textual columns that require preprocessing by lemmatization, tokenization :return preprocessed dataframe ''' # Preprocessing for datetime columns process_dates(data) # This will be used inside process_text once complete if len(text) > 0: text_preprocessing(data, text) # identifies the categorical and numerical columns categorical_columns = data['train'].select_dtypes( exclude=["number"]).columns numeric_columns = data['train'].columns[data['train'].dtypes.apply( lambda c: np.issubdtype(c, np.number))] # Removes text columns from categorical columns to use in separate pipeline categorical_columns = [ cat_cols for cat_cols in categorical_columns if cat_cols not in text] full_pipeline = ColumnTransformer([], remainder="passthrough") if len(numeric_columns) != 0: # pipeline for numeric columns num_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy="median")), ('std_scaler', StandardScaler()) ]) full_pipeline.transformers.append( ("num", num_pipeline, numeric_columns)) if len(text) != 0: # Each text col needs a separate pipeline for x in range(len(text)): full_pipeline.transformers.append( (f"text_{x}", Pipeline( [ ('test', FunctionTransformer( lambda x: np.reshape( x.to_numpy(), (-1, 1)))), ('imputer', SimpleImputer( strategy="constant", fill_value="")), ('raveler', FunctionTransformer( lambda x: x.ravel(), accept_sparse=True)), ('vect', TfidfVectorizer()), ('densifier', FunctionTransformer( lambda x: x.todense(), accept_sparse=True)), ('embedder', FunctionTransformer( textembedder, accept_sparse=True))]), text[x])) if len(categorical_columns) != 0: combined = pd.concat([data['train'], data['test']], axis=0) ca_threshold = combined.shape[0] * \ .25 if ca_threshold is None else combined.shape[0] * ca_threshold if too_many_values(combined[categorical_columns], ca_threshold): cat_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy="constant", fill_value="")), ('one_hotencoder', OneHotEncoder(handle_unknown='ignore')), ('transformer', FunctionTransformer(lambda x: x.toarray(), accept_sparse=True)), ('ca', CA(n_components=-1)) ]) else: cat_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy="constant", fill_value="")), ('label_enconder', LabelEncoder()) ]) full_pipeline.transformers.append( ('cat', cat_pipeline, categorical_columns)) train = full_pipeline.fit_transform(data['train']) train_cols = generate_column_labels(full_pipeline, numeric_columns, text) test = full_pipeline.transform(data['test']) test_cols = generate_column_labels(full_pipeline, numeric_columns, text) # Ternary clause because when running housing.csv, # the product of preprocessing is np array, but not when using landslide # data... not sure why data['train'] = pd.DataFrame( (train.toarray() if not isinstance( train, np.ndarray) else train), columns=train_cols) data['test'] = pd.DataFrame( (test.toarray() if not isinstance( test, np.ndarray) else test), columns=test_cols) return data, full_pipeline def process_dates(data): ''' function to process dates :param data: dataframe :return dataframe with dates preprocessed ''' for df in data: df = data[df] datetime_cols = df.select_dtypes('datetime64') for col in datetime_cols: df[f'{col}_DayOfWeek'] = df[col].dt.day_name() df[f'{col}_Year'] = df[col].dt.year df[f'{col}_Month'] = df[col].dt.month_name() df[f'{col}_MonthDay'] = df[col].dt.day del df[col] # Preprocesses text for word embedding def text_preprocessing(data, text_cols): ''' function to process text :param data: dataframe :param text_cols: are the text columns that can be preprocessed :return dataframe with dates preprocessed ''' lemmatizer = WordNetLemmatizer() combined = pd.concat([data['train'], data['test']], axis=0) spell = Speller(fast=True) for col in text_cols: combined[col] = combined[col].apply( lambda x: x.lower() if isinstance(x, str) else x) stop_words = set(stopwords.words('english')) for col in text_cols: preprocessed_text = [] for words in combined[col]: if words is not np.nan: words = word_tokenize(words) words = [word for word in words if word.isalpha()] words = [word for word in words if word not in stop_words] words = [spell(word) for word in words] words = [lemmatizer.lemmatize(word) for word in words] preprocessed_text.append(' '.join(words)) else: preprocessed_text.append(np.nan) combined[col] = preprocessed_text data['train'] = combined.iloc[:len(data['train'])] data['test'] = combined.iloc[len(data['train']):] def textembedder(text): ''' function to embed textual columns :param text: the text columns :return the text in embedded columns ''' total = list() for i in text: total.append(np.sum(i)) return np.reshape(total, (-1, 1)) # Sees if one hot encoding occurred, if not just uses numeric cols def generate_column_labels(full_pipeline, numeric_cols, text_cols): # Check if one hot encoding was performed if 'cat' in full_pipeline.named_transformers_: # If ca was used if isinstance(full_pipeline.named_transformers_['cat'][-1], CA): ca = full_pipeline.named_transformers_['cat'][-1] encoded_cols = [f'CA_{x}' for x in range(len(ca.eigenvalues_))] cols = [*list(numeric_cols), *encoded_cols, *text_cols] else: try: encoded_cols = full_pipeline.named_transformers_[ 'cat']['one_hotencoder'].get_feature_names() cols = [*list(numeric_cols), *encoded_cols, *text_cols] except Exception as error: # For debugging only (error) cols = list(numeric_cols) return cols else: return [*list(numeric_cols), *text_cols] # Method to calculate how many columns the data set will # have after one hot encoding # Decides whether CA is needed or not essentially # mca_threshold is the len of the dataset * .25 to calculate the proportion of # when to apply CA def too_many_values(data, ca_threshold): total_unique = 0 for col in data: if total_unique > ca_threshold: return True # Use value_counts() due to same columns having strings and floats total_unique += len(data[col].value_counts()) return False
34.39172
150
0.602278
6b7425f79dff273142b8fe3b553aa948595ab192
4,408
py
Python
test/functional/interface_bitcoin_cli.py
brebcoin/brebcoin
17829cdd63d79e8950da03d9c4ff16a4dd847875
[ "MIT" ]
null
null
null
test/functional/interface_bitcoin_cli.py
brebcoin/brebcoin
17829cdd63d79e8950da03d9c4ff16a4dd847875
[ "MIT" ]
null
null
null
test/functional/interface_bitcoin_cli.py
brebcoin/brebcoin
17829cdd63d79e8950da03d9c4ff16a4dd847875
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test brebcoin-cli""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_process_error, get_auth_cookie class TestBitcoinCli(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def run_test(self): """Main test logic""" cli_response = self.nodes[0].cli("-version").send_cli() assert("Brebcoin Core RPC client version" in cli_response) self.log.info("Compare responses from getwalletinfo RPC and `brebcoin-cli getwalletinfo`") if self.is_wallet_compiled(): cli_response = self.nodes[0].cli.getwalletinfo() rpc_response = self.nodes[0].getwalletinfo() assert_equal(cli_response, rpc_response) self.log.info("Compare responses from getblockchaininfo RPC and `brebcoin-cli getblockchaininfo`") cli_response = self.nodes[0].cli.getblockchaininfo() rpc_response = self.nodes[0].getblockchaininfo() assert_equal(cli_response, rpc_response) user, password = get_auth_cookie(self.nodes[0].datadir) self.log.info("Test -stdinrpcpass option") assert_equal(0, self.nodes[0].cli('-rpcuser=%s' % user, '-stdinrpcpass', input=password).getblockcount()) assert_raises_process_error(1, "Incorrect rpcuser or rpcpassword", self.nodes[0].cli('-rpcuser=%s' % user, '-stdinrpcpass', input="foo").echo) self.log.info("Test -stdin and -stdinrpcpass") assert_equal(["foo", "bar"], self.nodes[0].cli('-rpcuser=%s' % user, '-stdin', '-stdinrpcpass', input=password + "\nfoo\nbar").echo()) assert_raises_process_error(1, "Incorrect rpcuser or rpcpassword", self.nodes[0].cli('-rpcuser=%s' % user, '-stdin', '-stdinrpcpass', input="foo").echo) self.log.info("Test connecting to a non-existing server") assert_raises_process_error(1, "Could not connect to the server", self.nodes[0].cli('-rpcport=1').echo) self.log.info("Test connecting with non-existing RPC cookie file") assert_raises_process_error(1, "Could not locate RPC credentials", self.nodes[0].cli('-rpccookiefile=does-not-exist', '-rpcpassword=').echo) self.log.info("Make sure that -getinfo with arguments fails") assert_raises_process_error(1, "-getinfo takes no arguments", self.nodes[0].cli('-getinfo').help) self.log.info("Compare responses from `brebcoin-cli -getinfo` and the RPCs data is retrieved from.") cli_get_info = self.nodes[0].cli('-getinfo').send_cli() if self.is_wallet_compiled(): wallet_info = self.nodes[0].getwalletinfo() network_info = self.nodes[0].getnetworkinfo() blockchain_info = self.nodes[0].getblockchaininfo() assert_equal(cli_get_info['version'], network_info['version']) assert_equal(cli_get_info['protocolversion'], network_info['protocolversion']) if self.is_wallet_compiled(): assert_equal(cli_get_info['walletversion'], wallet_info['walletversion']) assert_equal(cli_get_info['balance'], wallet_info['balance']) assert_equal(cli_get_info['blocks'], blockchain_info['blocks']) assert_equal(cli_get_info['timeoffset'], network_info['timeoffset']) assert_equal(cli_get_info['connections'], network_info['connections']) assert_equal(cli_get_info['proxy'], network_info['networks'][0]['proxy']) assert_equal(cli_get_info['difficulty'], blockchain_info['difficulty']) assert_equal(cli_get_info['testnet'], blockchain_info['chain'] == "test") if self.is_wallet_compiled(): assert_equal(cli_get_info['balance'], wallet_info['balance']) assert_equal(cli_get_info['keypoololdest'], wallet_info['keypoololdest']) assert_equal(cli_get_info['keypoolsize'], wallet_info['keypoolsize']) assert_equal(cli_get_info['paytxfee'], wallet_info['paytxfee']) assert_equal(cli_get_info['relayfee'], network_info['relayfee']) # unlocked_until is not tested because the wallet is not encrypted if __name__ == '__main__': TestBitcoinCli().main()
55.1
160
0.695554
97caf7a7584269ae9301e26ea3de8b2ab1f000dd
4,354
py
Python
dc_checking/ldgplot.py
yuemning/dc-bucket-elim
c962b8fc638efbacbabbdf8c6f170c5a11be072d
[ "MIT" ]
2
2020-08-24T08:37:56.000Z
2020-10-02T02:37:12.000Z
dc_checking/ldgplot.py
yuemning/dc-bucket-elim
c962b8fc638efbacbabbdf8c6f170c5a11be072d
[ "MIT" ]
null
null
null
dc_checking/ldgplot.py
yuemning/dc-bucket-elim
c962b8fc638efbacbabbdf8c6f170c5a11be072d
[ "MIT" ]
1
2020-11-24T20:40:42.000Z
2020-11-24T20:40:42.000Z
import matplotlib.pyplot as plt import networkx as nx import math def distance(pos1, pos2): return math.sqrt((pos1[0] - pos2[0])**2 + (pos1[1] - pos2[1])**2) class LDGPlot(): """Plotting tool for labeled distance graph. Given a reference to labeled distance graph LDG, plot the graph. Assumes LDG is unmodified during initialization. """ def __init__(self, g): self.ldg = g # Find uncontrollable nodes self.u_nodes = set() for e in self.ldg.edges(data=True): _, _, data = e if data['labelType'] is not None: self.u_nodes.add(data['label']) self.c_nodes = set(self.ldg.nodes()).difference(self.u_nodes) # Compute layout # self.pos = nx.layout.spring_layout(self.ldg) # self.pos = nx.random_layout(self.ldg) self.pos = nx.planar_layout(self.ldg) self.xmin = None self.xmax = None self.ymin = None self.ymax = None # Parameters self.curve_ratio = 0.2 def plot(self): """Plot the current LDG. Notice that a node can have attributes 'color'. And an edge can have attributes 'color', 'linewidth' and 'linestyle'. """ pos = self.pos curr_nodes = set(self.ldg.nodes()) c_nodes = list(curr_nodes.intersection(self.c_nodes)) u_nodes = list(curr_nodes.intersection(self.u_nodes)) labels = {} node2data = {} for v, data in self.ldg.nodes(data=True): labels[v] = v node2data[v] = data node_color = [node2data[v]['color'] if 'color' in node2data[v] else 'w' for v in c_nodes] nx.draw_networkx_nodes(self.ldg, pos, nodelist=c_nodes, node_shape = 'o', node_color = node_color, node_size = 250, alpha = 1, linewidths=1, edgecolors= 'black') node_color = [node2data[v]['color'] if 'color' in node2data[v] else 'w' for v in u_nodes] nx.draw_networkx_nodes(self.ldg, pos, nodelist=u_nodes, node_shape = 's', node_color = node_color, node_size = 250, alpha = 1, linewidths=1, edgecolors= 'black') nx.draw_networkx_labels(self.ldg, pos, labels, font_size=10) ax = plt.gca() for e in self.ldg.edges(data=True, keys=True): s, t, key, data = e linestyle = '-' if 'linestyle' in data: linestyle = data['linestyle'] color = 'black' if 'color' in data: color = data['color'] linewidth = 1 if 'linewidth' in data: linewidth = data['linewidth'] ax.annotate("", xy=pos[t], xycoords='data', xytext=pos[s], textcoords='data', arrowprops=dict(arrowstyle="->", color=color, linestyle=linestyle, linewidth=linewidth, shrinkA=8, shrinkB=8, patchA=None, patchB=None, connectionstyle="arc3,rad=rrr".replace('rrr',str(self.curve_ratio*key + self.curve_ratio) ), ), ) weight = data['weight'] label = "" if data['labelType'] == 'lower': label = "L:" + data['label'] + ":" elif data['labelType'] == 'upper': label = "U:" + data['label'] + ":" pos_distance = distance(pos[s], pos[t]) pos_delta = pos[t] - pos[s] pos_label = (pos[s] + pos[t]) /2 sine = pos_delta[1] / pos_distance cosine = pos_delta[0] / pos_distance half_distance = (self.curve_ratio * key + self.curve_ratio)/2 pos_offset = [sine * half_distance * pos_distance, -cosine * half_distance * pos_distance] ax.annotate("{}{}".format(label, weight), xy=pos_label + pos_offset, xycoords='data') if self.xmin is not None: plt.axis('equal') ax.set(xlim=(self.xmin, self.xmax), ylim=(self.ymin, self.ymax)) else: self.xmin, self.xmax, self.ymin, self.ymax = plt.axis('equal') plt.show()
39.225225
169
0.522508
2f51b7f1451ae7b2cd94c7303e318f07fedf0a1e
17,023
py
Python
registered/routing.py
paulswartz/registered
3f59f4886d723631d1304503558e0f5ea53a3139
[ "MIT" ]
null
null
null
registered/routing.py
paulswartz/registered
3f59f4886d723631d1304503558e0f5ea53a3139
[ "MIT" ]
null
null
null
registered/routing.py
paulswartz/registered
3f59f4886d723631d1304503558e0f5ea53a3139
[ "MIT" ]
null
null
null
""" Calculate shortest/fastest paths for missing intervals. """ from difflib import SequenceMatcher from itertools import count import os import sys import attr import folium import osmnx as ox import rtree import shapely from shapely.geometry import MultiPoint, box import networkx as nx from registered.routing_helpers import ( clean_width, ensure_set, restrictions_in_polygon, angle_offset, cut, ) DEFAULT_COLORS = ["red", "yellow", "blue", "green"] USEFUL_NODE_TAGS = [] USEFUL_WAY_TAGS = [ "oneway", "name", "highway", "maxspeed", "service", "access", "width", "maxheight", ] def configure_osmnx(**kwargs): """ Set configuration for OSMNX. """ ox.config( cache_folder=os.environ.get("OSMNX_CACHE_DIR", "./cache"), useful_tags_node=USEFUL_NODE_TAGS, useful_tags_way=USEFUL_WAY_TAGS, **kwargs, ) class EmptyGraph(Exception): """ Raised if the graph does not have any data. """ class NodesCache: """ Cache of the nodes Frame. Currently only used to generate a known-unique ID for a new node. """ # pylint: disable=too-few-public-methods def __init__(self, gdf): self.counter = count(gdf.index.max() + 1) def new_id(self): """ Return a new ID to use for a newly-created node. """ return next(self.counter) class EdgesCache: """ Cache of the edges GeoDataFrame, with some helpful methods for querying/updating. """ def __init__(self, gdf): self.gdf = gdf self.counter = count() capacity = int(len(gdf) * 1.1) props = rtree.index.Property( index_capacity=capacity, dimension=2, variant=rtree.index.RT_Star, fill_factor=0.9, ) self.index = rtree.index.Index( ( (next(self.counter), t.geometry.bounds, t.Index) for t in gdf.itertuples() ), properties=props, ) def nearest_edges(self, point): """ Return the nearest edges to the given point. If more than one edge is closest (and they aren't service roads), returns the one where the point is on the right (not left) side. """ # get a few nearest edges to test, then get the actual closest one nearest = self.gdf.loc[self.index.nearest(point.bounds, 4, objects="raw")] distances = nearest["geometry"].map(point.distance, na_action="ignore") # bias against starting on a motorway distances.loc[nearest.highway.str.startswith("motorway")] *= 3 if hasattr(point, "description"): # bias the distance towards more similar names. this helps put # the point on the right edge, given a description like # "Washington St @ Blah St". name_ratio = nearest["name"].map( lambda x: SequenceMatcher(None, point.description, x).ratio(), na_action="ignore", ) if name_ratio.notna().any(): name_ratio = name_ratio.fillna(name_ratio.mean()) distances = distances / name_ratio min_distance = distances.min() + 1e-6 within_distance = nearest.loc[distances <= min_distance] if len(within_distance) < 2: # only one closest edge, return it return within_distance if within_distance["highway"].eq("service").all(): # all edges are service roads, so allow going either direction return within_distance # otherwise, find which of the multiple edges has the point on the # right-hand side. def calc_angle(row): # might need to be updated if we stare simplifying the graph. in # that case, we'd need to find the bearing at the projection of # point on the given geometry. -ps (tail_x, tail_y) = row["geometry"].coords[0] angle_bearing = ox.bearing.get_bearing((tail_y, tail_x), (point.y, point.x)) return angle_offset(row["bearing"], angle_bearing) offset = within_distance.apply(calc_angle, axis=1) # offsets >0 are on the right-hand side idx = offset.idxmax() return within_distance.loc[[idx]] def geometry(self, from_node, to_node=None): """ Return the geometry for the given from/to edge. """ if to_node is None: edge = from_node else: edge = (from_node, to_node, 0) return self.gdf.loc[edge, "geometry"] def update(self, graph): """ Update the cache with the new edges from the given graph. """ gdf = ox.graph_to_gdfs(graph, nodes=False) gdf = gdf.loc[~gdf.index.isin(self.gdf.index)] self.gdf = self.gdf.append(gdf) self.gdf.sort_index(inplace=True) for edge in gdf.itertuples(): self.index.insert(next(self.counter), edge.geometry.bounds, edge.Index) @attr.s(repr=False) class RestrictedGraph: """ Model a OSM street graph with turn restrictions. - `graph`: a `nx.MultiDiGraph` representing the primitive graph - `restricted_nodes`: a Set of node IDs which have a turn restriction - `restrictions`: a List of (v, {from_osmids}, {to_osmids}) triples which represent invalid turns """ graph = attr.ib() restricted_nodes = attr.ib(factory=set) restrictions = attr.ib(factory=list) def __attrs_post_init__(self): # pylint: disable=attribute-defined-outside-init (nodes, edges) = ox.utils_graph.graph_to_gdfs(self.graph) self._nodes_cache = NodesCache(nodes) self._edges_cache = EdgesCache(edges) self._created_nodes = {} def shortest_path(self, from_point, to_point, weight="travel_time"): """ Calculate the shortest path from/to given lat/lon pairs. The shortest path is either by travel time (default) or by length (weight="length"). """ orig = self.closest_node(from_point) dest = self.closest_node(to_point) try: (_length, path) = nx.shortest_path_with_turn_restrictions( self.graph, orig, dest, self.restricted, weight=weight ) except nx.NetworkXNoPath: return None return path def compass_direction(self, path): """ Return the compass direction the path takes at the end. North = 0, East = 90, South = 180, West = 270 None if the direction is unknown (path is only a single node). """ if len(path) < 2: return None (second, last) = path[-2:] attrs = self.graph.edges[second, last, 0] return attrs["bearing"] def closest_node(self, point): """ Return the ID of the closest node to the given Point. If there isn't an existing node that's close, find the nearest edges and split them at the given point, returning the new node ID. """ if point.wkb in self._created_nodes: return self._created_nodes[point.wkb] ox.utils.log(f"finding closest edge to {point.wkt}") nearest_edges = self._edges_cache.nearest_edges(point) snapped_point = shapely.ops.nearest_points( nearest_edges.iloc[0].geometry, point )[0] ox.utils.log(f"snapping {point.wkt} to {snapped_point.wkt}") name = self._nodes_cache.new_id() ox.utils.log(f"creating new node {name}") for nearest_edge in nearest_edges.index: self.split_edge_at_point(nearest_edge, name, snapped_point) self._created_nodes[point.wkb] = name return name def split_edge_at_point(self, edge, name, point): """ Given an edge, the new node ID, and a Point, split the given edge in two at Point. """ # 1. create a new node at point # 2. delete the old edge # 3. create two new edges, from head to node, and node to tail ox.utils.log(f"splitting {edge} at {point.wkt}") (head, tail) = edge[:2] edge_attrs = self.graph.edges[edge].copy() ox.utils.log(f"edge OSM ID(s): {edge_attrs['osmid']}") length = edge_attrs.pop("length") del edge_attrs["travel_time"] # simple edges don't have a geometry in the graph, only in the cache edge_attrs.pop("geometry", None) geometry = self._edges_cache.geometry(edge) head_percent = geometry.project(point, normalized=True) [head_geometry, tail_geometry] = cut(geometry, head_percent) subgraph = nx.MultiDiGraph(crs=self.graph.graph["crs"]) subgraph.add_node(name, y=point.y, x=point.x, geometry=point) subgraph.add_node(head, **self.graph.nodes[head]) subgraph.add_node(tail, **self.graph.nodes[tail]) subgraph.add_edge( head, name, **edge_attrs, length=length * head_percent, geometry=head_geometry, ) subgraph.add_edge( name, tail, **edge_attrs, length=length * (1 - head_percent), geometry=tail_geometry, ) return self.update(subgraph, name) def update(self, subgraph, name): """ Updates the current RestrictedGraph with a new node (name) and edges. Also updates the caches. """ subgraph = self.add_graph_features(subgraph) self.graph.update(subgraph) self._edges_cache.update(subgraph) return name def path_length(self, path): """ Returns the length (in meters) of the given path. """ return sum(ox.utils_graph.get_route_edge_attributes(self.graph, path, "length")) def folium_map(self, from_point, to_point, paths, **kwargs): """ Create a `folium.Map` with the given from/to points, and optionally some paths. Returns the map. """ route_map = folium.Map( tiles="https://cdn.mbta.com/osm_tiles/{z}/{x}/{y}.png", attr="&copy; <a href='http://osm.org/copyright'>OpenStreetMap</a> contributors", zoom_start=1, **kwargs, ) for (path, color) in zip(paths, DEFAULT_COLORS): locations = [ (row[1], row[0]) for (from_node, to_node) in zip(path, path[1:]) for row in self._edges_cache.geometry(from_node, to_node).coords ] folium.PolyLine(locations, weight=2, color=color).add_to(route_map) folium.Marker( (from_point.y, from_point.x), icon=folium.Icon(icon="play", color="green") ).add_to(route_map) folium.Marker( (to_point.y, to_point.x), icon=folium.Icon(icon="stop", color="red") ).add_to(route_map) [east, north, west, south] = MultiPoint([from_point, to_point]).bounds route_map.fit_bounds([(north, east), (south, west)]) return route_map QUERIES = { # This Overpass API query gets private access roads which don't block # public service vehicles (PSVs) aka buses. "drive_service": {"network_type": "drive_service"}, "PSV": {"custom_filter": '["highway"]["access"="private"]["psv"!~"no"]'}, "parking": {"custom_filter": '["highway"]["service"~"parking|parking_aisle"]'}, } @classmethod def from_points(cls, points): """ Create a RestrictedGraph covering a list of (lat, lon) points. The polygon covering all the points is generated by finding the bounding box for the points, then querying the OSM API for that box. """ # pylint: disable=protected-access if not points: raise EmptyGraph("unable to build graph with no points") polygon = box(*MultiPoint(list(points)).buffer(0.02).bounds) graph = nx.MultiDiGraph() for name, kwargs in cls.QUERIES.items(): try: ox.utils.log(f"fetching {name} graph") extra_graph = ox.graph_from_polygon( polygon, retain_all=True, simplify=False, clean_periphery=False, truncate_by_edge=False, **kwargs, ) except ox._errors.EmptyOverpassResponse: pass else: graph.update(extra_graph) if len(graph) == 0: raise EmptyGraph(f"unable to build graph from {polygon.wkt}") ox.utils.log("fetching restrictions") (restricted_nodes, restrictions) = restrictions_in_polygon(polygon) # simplification disabled for now; causes a test failure -ps # graph = ox.simplification.simplify_graph(graph) ox.utils.log("adding graph features") graph = cls.add_graph_features(graph) return cls( graph=graph, restricted_nodes=restricted_nodes, restrictions=restrictions ) @classmethod def add_graph_features(cls, graph): """ Update the given graph with important features. - width in meters - speeds in km/h - travel times - bearings in degrees """ graph = cls.add_widths(graph) # impute speed on all edges missing data graph = ox.add_edge_speeds( graph, hwy_speeds={ "motorway": 90, "trunk": 90, "trunk_link": 60, "primary": 60, "secondary": 50, "tertiary": 30, "private": 16, "service": 16, "residential": 16, }, ) # calculate travel time (seconds) for all edges graph = ox.add_edge_travel_times(graph) # penalize some types of edges graph = cls.add_edge_penalties(graph) # add edge bearings graph = ox.add_edge_bearings(graph) return graph @staticmethod def add_widths(graph): """ Add "width_m" and "maxheight_m" to each edge with a width value, normalizing it to meters. """ widths = nx.get_edge_attributes(graph, "width") widths_m = {k: clean_width(v) for (k, v) in widths.items()} nx.set_edge_attributes(graph, values=widths_m, name="width_m") maxheights = nx.get_edge_attributes(graph, "maxheight") maxheights_m = {k: clean_width(v) for (k, v) in maxheights.items()} nx.set_edge_attributes(graph, values=maxheights_m, name="maxheight_m") return graph @classmethod def add_edge_penalties(cls, graph): """ Penalize some edges to reduce their use in routing. """ edges = ox.utils_graph.graph_to_gdfs( graph, nodes=False, fill_edge_geometry=False ) key = ["travel_time", "length"] # penalize residential streets residential = edges["highway"].eq("residential") edges.loc[residential, key] *= 1.5 # penalize narrow streets if "width_m" in edges.columns: narrow = edges["width_m"] < 5 edges.loc[narrow, key] *= 1.5 # heavily penalize edges with a height limit if "maxheight_m" in edges.columns: bus_height = 3.7 # ~12ft edges.loc[ edges["maxheight_m"] < bus_height, ["travel_time", "length"] ] = sys.float_info.max nx.set_edge_attributes(graph, values=edges["travel_time"], name="travel_time") nx.set_edge_attributes(graph, values=edges["length"], name="length") return graph # pylint: disable=too-many-arguments def restricted(self, origin, turn, dest, from_attrs, to_attrs): """ Return a boolean indicating if the given turn is restricted. A turn is restricted if there is a `via` relation of `type` `restriction` and a `restriction` starting with `no_` (like `no_left_turn` or `no_uturn`) It is also restricted if the first and last nodes are the same (a U-turn). """ if origin == dest: # avoid u-turns return True from_bearing = from_attrs.get("bearing") to_bearing = to_attrs.get("bearing") offset = angle_offset(from_bearing, to_bearing) if abs(offset) > 135: # avoid making U-ish turns return True if turn not in self.restricted_nodes: return False from_ways = ensure_set(from_attrs["osmid"]) to_ways = ensure_set(to_attrs["osmid"]) for (node, invalid_from, invalid_to) in self.restrictions: if node != turn: continue if (invalid_from & from_ways) and (invalid_to & to_ways): return True return False
33.509843
98
0.592845
ac2bfd3f8ca5020afd95b3b3edc68d8b70d76ccb
4,093
py
Python
mmtbx/refinement/real_space/weight.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
155
2016-11-23T12:52:16.000Z
2022-03-31T15:35:44.000Z
mmtbx/refinement/real_space/weight.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
590
2016-12-10T11:31:18.000Z
2022-03-30T23:10:09.000Z
mmtbx/refinement/real_space/weight.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
115
2016-11-15T08:17:28.000Z
2022-02-09T15:30:14.000Z
from __future__ import absolute_import, division, print_function from cctbx.array_family import flex import mmtbx.refinement.real_space.individual_sites import random from six.moves import range class run(object): def __init__( self, map_data, xray_structure, pdb_hierarchy, geometry_restraints_manager, gradients_method="fd", ncs_groups=None, rms_bonds_limit=0.015, rms_angles_limit=2.0, real_space_gradients_delta=1./4, max_iterations = 100, range_size=10, n_ranges=10, default_weight=50): """ Fast determination of optimal data/restraints weight for real-space refinement of individual sites. """ self.msg_strings = [] # split chains into chunks result = [] for model in pdb_hierarchy.models(): for chain in model.chains(): if(chain.is_protein() or chain.is_na()): residue_range_sel = flex.size_t() cntr = 0 for rg in chain.residue_groups(): i_seqs = rg.atoms().extract_i_seq() cntr += 1 if(cntr<10): residue_range_sel.extend(i_seqs) else: result.append(residue_range_sel) residue_range_sel = flex.size_t() residue_range_sel.extend(i_seqs) cntr = 0 if(len(result)==0): assert residue_range_sel.size()>0 result.append(residue_range_sel) self.msg_strings.append("number of chunks: %d"%len(result)) # randomly pick chunks random_chunks = [] if(len(result)>0): if len(result) <= n_ranges: # just try them all, no need to randomize random_chunks = list(range(len(result))) else: while len(random_chunks) <= n_ranges: # Put only unique choices until got enough lenght. # Could be slightly slow when len(random_chunks) slightly > n_ranges rc = random.choice(range(len(result))) if rc not in random_chunks: random_chunks.append(rc) self.msg_strings.append("random chunks:"%random_chunks) # setup refinery xrs_dc = xray_structure.deep_copy_scatterers() sel_all = flex.bool(xrs_dc.scatterers().size(), True) grm_dc = geometry_restraints_manager.select(sel_all) ro = mmtbx.refinement.real_space.individual_sites.box_refinement_manager( xray_structure = xrs_dc, target_map = map_data, geometry_restraints_manager = grm_dc.geometry, real_space_gradients_delta = real_space_gradients_delta, max_iterations = max_iterations, ncs_groups = ncs_groups, gradients_method = gradients_method) optimal_weights = flex.double() # loop over chunks: determine best weight for each chunk if(len(result)==0): random_chunks = [None] for chunk in random_chunks: if(chunk is None): sel = flex.bool(xrs_dc.scatterers().size(), True) else: sel = result[chunk] sel = flex.bool(xrs_dc.scatterers().size(), sel) ro.refine( selection = sel, rms_bonds_limit = rms_bonds_limit, rms_angles_limit = rms_angles_limit) self.msg_strings.append("chunk %s optimal weight: %9.4f"%( str(chunk), ro.weight_optimal)) if(ro.weight_optimal is not None): optimal_weights.append(ro.weight_optimal) # select overall best weight sel = flex.sort_permutation(optimal_weights) optimal_weights = optimal_weights.select(sel) self.weight = flex.mean_default( optimal_weights[:optimal_weights.size()//2], default_weight) #mean = flex.mean(optimal_weights) #sel = optimal_weights < mean*3 #sel &= optimal_weights > mean/3 #if(sel.count(True)>0): # optimal_weights = optimal_weights.select(sel) #self.weight = flex.mean_default(optimal_weights, default_weight) self.msg_strings.append("overall best weight: %9.4f"%self.weight) def show(self, log, prefix=""): for m in self.msg_strings: print("%s %s"%(prefix, m), file=log)
37.898148
78
0.645248
c4a8203576982b399f56c445eecafc281301430f
123
py
Python
CommentManagement/admin.py
officialrafsan/travelxpRED
2209fba418496c7e64dde8cba271cfb8020856ac
[ "MIT" ]
null
null
null
CommentManagement/admin.py
officialrafsan/travelxpRED
2209fba418496c7e64dde8cba271cfb8020856ac
[ "MIT" ]
null
null
null
CommentManagement/admin.py
officialrafsan/travelxpRED
2209fba418496c7e64dde8cba271cfb8020856ac
[ "MIT" ]
null
null
null
from django.contrib import admin # Register your models here. from .models import Comment admin.site.register([Comment])
17.571429
32
0.788618
a98c6b223b5351f3333cb0749a3b8a5380ef7968
3,749
py
Python
test/websockets/test_poller.py
autokrator-uog/backend
0a2d46f9b52465ed8dfc9234858d6a93f3754c05
[ "MIT" ]
null
null
null
test/websockets/test_poller.py
autokrator-uog/backend
0a2d46f9b52465ed8dfc9234858d6a93f3754c05
[ "MIT" ]
null
null
null
test/websockets/test_poller.py
autokrator-uog/backend
0a2d46f9b52465ed8dfc9234858d6a93f3754c05
[ "MIT" ]
1
2019-06-09T23:51:13.000Z
2019-06-09T23:51:13.000Z
import json import pytest from unittest.mock import patch from endpoints.websockets.poller import NewInfoPollerThread class TestPoller(object): @pytest.fixture() def patch_accounts_service_client(self): p = patch("endpoints.websockets.poller.AccountsServiceClient") yield p.start().return_value p.stop() @pytest.fixture() def patch_get_all_account_ids_to_update(self): p = patch("endpoints.websockets.poller.get_all_account_ids_to_update") yield p.start() p.stop() @pytest.fixture() def patch_get_socket_for_account_id(self): p = patch("endpoints.websockets.poller.get_socket_for_account_id") yield p.start() p.stop() @pytest.fixture() def poller_thread(self, flask_app, patch_accounts_service_client, patch_get_all_account_ids_to_update, patch_get_socket_for_account_id): return NewInfoPollerThread(flask_app) def test_poller_nothing_to_poll(self, poller_thread, patch_accounts_service_client, patch_get_all_account_ids_to_update, patch_get_socket_for_account_id): patch_get_all_account_ids_to_update.return_value = [] poller_thread.poll() patch_accounts_service_client.get_account_statement.assert_not_called() patch_get_socket_for_account_id.assert_not_called() def test_poller_no_change(self, poller_thread, patch_accounts_service_client, patch_get_all_account_ids_to_update, patch_get_socket_for_account_id): patch_get_all_account_ids_to_update.return_value = [1] patch_accounts_service_client.get_account_statement.return_value = [] # first poll, sets up poller_thread.poll() assert patch_get_all_account_ids_to_update.called patch_accounts_service_client.get_account_statement.assert_called_with(1) patch_get_socket_for_account_id.assert_not_called() # must reset the mocks patch_get_all_account_ids_to_update.reset_mock() patch_accounts_service_client.get_account_statement.reset_mock() patch_get_socket_for_account_id.reset_mock() # second poll, no change poller_thread.poll() assert patch_get_all_account_ids_to_update.called patch_accounts_service_client.get_account_statement.assert_called_with(1) patch_get_socket_for_account_id.assert_not_called() def test_poller_changed(self, poller_thread, patch_accounts_service_client, patch_get_all_account_ids_to_update, patch_get_socket_for_account_id): patch_get_all_account_ids_to_update.return_value = [1] patch_accounts_service_client.get_account_statement.return_value = [] # first poll, sets up poller_thread.poll() assert patch_get_all_account_ids_to_update.called patch_accounts_service_client.get_account_statement.assert_called_with(1) patch_get_socket_for_account_id.assert_not_called() # must reset the mocks patch_get_all_account_ids_to_update.reset_mock() patch_accounts_service_client.get_account_statement.reset_mock() patch_get_socket_for_account_id.reset_mock() # set up the change patch_accounts_service_client.get_account_statement.return_value = [{"Amount": 1234}] # second poll, should detect change and fire a message on websockets poller_thread.poll() assert patch_get_all_account_ids_to_update.called patch_accounts_service_client.get_account_statement.assert_called_with(1) patch_get_socket_for_account_id.return_value.send.assert_called_with(json.dumps({ "update_type": "new_statement_item", "for_account_id": 1, "data": { "Amount": 1234 } }))
39.882979
158
0.750067
84636c407610f85147e110c66ef90f189d473e39
3,053
py
Python
utils/python-rpc/framework/rpc.py
Aifolin/motifcoin
82c3c5378240f43e6cfde762c4c2dbc92b645cc3
[ "MIT" ]
null
null
null
utils/python-rpc/framework/rpc.py
Aifolin/motifcoin
82c3c5378240f43e6cfde762c4c2dbc92b645cc3
[ "MIT" ]
null
null
null
utils/python-rpc/framework/rpc.py
Aifolin/motifcoin
82c3c5378240f43e6cfde762c4c2dbc92b645cc3
[ "MIT" ]
1
2019-08-05T13:04:45.000Z
2019-08-05T13:04:45.000Z
# Copyright (c) 2018 The Motif Project # # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are # permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of # conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list # of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be # used to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL # THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF # THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import requests import json class Response(dict): def __init__(self, d): for k in d.keys(): if type(d[k]) == dict: self[k] = Response(d[k]) elif type(d[k]) == list: self[k] = [] for i in range(len(d[k])): if type(d[k][i]) == dict: self[k].append(Response(d[k][i])) else: self[k].append(d[k][i]) else: self[k] = d[k] def __getattr__(self, key): return self[key] def __setattr__(self, key, value): self[key] = value def __eq__(self, other): if type(other) == dict: return self == Response(other) if self.keys() != other.keys(): return False for k in self.keys(): if self[k] != other[k]: return False return True class JSONRPC(object): def __init__(self, url): self.url = url def send_request(self, path, inputs, result_field = None): res = requests.post( self.url + path, data=json.dumps(inputs), headers={'content-type': 'application/json'}) res = res.json() assert 'error' not in res, res if result_field: res = res[result_field] return Response(res) def send_json_rpc_request(self, inputs): return self.send_request("/json_rpc", inputs, 'result')
36.345238
89
0.636096
f97abad955bb08abe18f04537086fb478104bcbe
2,863
py
Python
tests/test_atprogram.py
martinabr/pydgilib
9e27b11e74518375ae78959a71f896e92a51cdb1
[ "BSD-3-Clause" ]
2
2019-04-05T13:27:54.000Z
2020-10-09T22:56:22.000Z
tests/test_atprogram.py
martinabr/pydgilib
9e27b11e74518375ae78959a71f896e92a51cdb1
[ "BSD-3-Clause" ]
null
null
null
tests/test_atprogram.py
martinabr/pydgilib
9e27b11e74518375ae78959a71f896e92a51cdb1
[ "BSD-3-Clause" ]
1
2019-09-11T07:48:45.000Z
2019-09-11T07:48:45.000Z
"""This module holds the automated tests for atprogram.""" from atprogram.atprogram import (atprogram, get_device_info, get_project_size) from os import path, getcwd import pytest project_path = path.join(getcwd(), "UnitTest", "UnitTest") def test_atprogram_simple(): """test_atprogram_simple.""" assert not atprogram(project_path=project_path, clean=True, build=True, program=True) # @pytest.mark.parametrize("verbose", (0, 3)) @pytest.mark.parametrize("verbose", (3,)) # @pytest.mark.parametrize("clean", (True, False)) @pytest.mark.parametrize("clean", (False,)) @pytest.mark.parametrize("build", (True, False)) @pytest.mark.parametrize("erase, program", [(False, False), (True, False), (True, True)]) @pytest.mark.parametrize("verify", (False,)) # @pytest.mark.parametrize("verify", # (pytest.param(True, marks=pytest.mark.xfail), False)) @pytest.mark.parametrize("return_output", (True, False)) @pytest.mark.parametrize("dry_run", (True, False)) def test_atprogram( verbose, clean, build, erase, program, verify, return_output, dry_run): """test_atprogram.""" result = atprogram( project_path=project_path, verbose=verbose, clean=clean, build=build, erase=erase, program=program, verify=verify, return_output=return_output, dry_run=dry_run) assert not result or (return_output and result[-1] == '0') @pytest.mark.parametrize("make_command, atprogram_command", [ ("--version", "--version"), (None, "--version"), ("--version", None), pytest.param(None, None, marks=pytest.mark.xfail( raises=ValueError), strict=True)]) def test_atprogram_command(make_command, atprogram_command): """test_atprogram_command.""" assert 0 == atprogram(make_command=make_command, atprogram_command=atprogram_command) def test_get_device_info(): """test_get_device_info.""" info = get_device_info(verbose=2) assert isinstance(info, dict) assert info.keys() == set(('Target voltage', 'Device information', 'Memory Information')) assert 'Name' in info['Device information'] assert info['Memory Information'].keys() == set((['base', 'fuses'])) def test_get_project_size(): """test_get_project_size.""" atprogram(project_path=project_path, clean=False, build=True, erase=False, program=False, verify=False) size = get_project_size(project_path, verbose=2) assert isinstance(size, dict) size_keys = ('text', 'data', 'bss', 'dec', 'hex', 'filename') assert size.keys() == set(size_keys) for key in size_keys[:-1]: assert isinstance(size[key], int) def test_atprogram_invalid_command(): """test_atprogram_not_a_command.""" assert atprogram(atprogram_command="invalid_command")
38.173333
80
0.670625
45a2ce77620071bcb68dc6184bc3c4f73fcdb744
986
py
Python
mautrix/util/config/string.py
tulir/mautrix-appservice-python
d180603445bb0bc465a7b2ff918c4ac28a5dbfc2
[ "MIT" ]
1
2018-08-24T13:33:30.000Z
2018-08-24T13:33:30.000Z
mautrix/util/config/string.py
tulir/mautrix-appservice-python
d180603445bb0bc465a7b2ff918c4ac28a5dbfc2
[ "MIT" ]
4
2018-07-10T11:43:46.000Z
2018-09-03T22:08:02.000Z
mautrix/util/config/string.py
tulir/mautrix-appservice-python
d180603445bb0bc465a7b2ff918c4ac28a5dbfc2
[ "MIT" ]
2
2018-07-03T04:07:08.000Z
2018-09-10T03:13:59.000Z
# Copyright (c) 2022 Tulir Asokan # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from __future__ import annotations from abc import ABC import io from ruamel.yaml import YAML from ruamel.yaml.comments import CommentedMap from .base import BaseConfig from .recursive_dict import RecursiveDict yaml = YAML() yaml.indent(4) yaml.width = 200 class BaseStringConfig(BaseConfig, ABC): def __init__(self, data: str, base_data: str) -> None: super().__init__() self._data = yaml.load(data) self._base = RecursiveDict(yaml.load(base_data), CommentedMap) def load(self) -> None: pass def load_base(self) -> RecursiveDict[CommentedMap] | None: return self._base def save(self) -> str: buf = io.StringIO() yaml.dump(self._data, buf) return buf.getvalue()
25.947368
70
0.690669
c3c17b03c67cfe5844a9c17f022e8aac18ff91dc
1,752
py
Python
stackapp/utils.py
Taycode/teamwave-interview
9136920d58e945da750f462be2b3bbc22be0d7b1
[ "MIT" ]
null
null
null
stackapp/utils.py
Taycode/teamwave-interview
9136920d58e945da750f462be2b3bbc22be0d7b1
[ "MIT" ]
6
2020-06-05T20:34:24.000Z
2021-06-10T18:17:05.000Z
stackapp/utils.py
Taycode/teamwave-interview
9136920d58e945da750f462be2b3bbc22be0d7b1
[ "MIT" ]
null
null
null
import requests from datetime import datetime class StackAPIQuestion: tags = [] owner = {} is_answered = False view_count = None answer_count = None score = None last_activity_date = None creation_date = None last_edit_date = None question_id = None link = None title = None def __init__(self, data): self.tags = data['tags'] self.owner = data['owner'] self.is_answered = data['is_answered'] self.view_count = data['view_count'] self.answer_count = data['answer_count'] self.score = data['score'] self.last_activity_date = data['last_activity_date'] self.creation_date = data['creation_date'] if 'last_edit_date' in data.values(): self.last_edit_date = data['last_edit_date'] self.question_id = data['question_id'] self.link = data['link'] self.title = data['title'] def __str__(self): return self.title class StackAPIConsumer: url = 'https://api.stackexchange.com/2.2/search' params = {'site': 'stackoverflow'} @classmethod def consume(cls, data): date = data['fromdate'] if date is not None: date = datetime(year=date.year, month=date.month, day=date.day) milliseconds = int(round(date.timestamp())) data['fromdate'] = milliseconds date = data['todate'] if date is not None: date = datetime(year=date.year, month=date.month, day=date.day) milliseconds = int(round(date.timestamp())) data['todate'] = milliseconds print(data) cls.params.update(data) response = requests.get(cls.url, params=cls.params) return response
29.2
75
0.609018
69d31c8d4c59a0861108541d7832f94494cf6a53
423
py
Python
python/tb_web_crawler/venv/Scripts/pip3-script.py
GG-yuki/bugs
aabd576e9e57012a3390007af890b7c6ab6cdda8
[ "MIT" ]
null
null
null
python/tb_web_crawler/venv/Scripts/pip3-script.py
GG-yuki/bugs
aabd576e9e57012a3390007af890b7c6ab6cdda8
[ "MIT" ]
null
null
null
python/tb_web_crawler/venv/Scripts/pip3-script.py
GG-yuki/bugs
aabd576e9e57012a3390007af890b7c6ab6cdda8
[ "MIT" ]
null
null
null
#!C:\Users\Yuki\Desktop\bugs\python\tb_web_crawler\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')() )
32.538462
74
0.673759
e6d5c8dd7d848239b73593327590af1705e8bc45
1,526
py
Python
Tests/Data/Elliptic/square_1x1_SteadyStateDiffusion_Python/bcs_laplace_eq.py
fwitte/ogs
0b367872fc58ecd4e1dbfe1dcebbc847da6639d7
[ "BSD-3-Clause" ]
1
2021-06-25T13:43:06.000Z
2021-06-25T13:43:06.000Z
Tests/Data/Elliptic/square_1x1_SteadyStateDiffusion_Python/bcs_laplace_eq.py
fwitte/ogs
0b367872fc58ecd4e1dbfe1dcebbc847da6639d7
[ "BSD-3-Clause" ]
13
2015-01-09T13:08:57.000Z
2018-01-25T12:56:17.000Z
Tests/Data/Elliptic/square_1x1_SteadyStateDiffusion_Python/bcs_laplace_eq.py
fwitte/ogs
0b367872fc58ecd4e1dbfe1dcebbc847da6639d7
[ "BSD-3-Clause" ]
2
2018-03-01T13:07:12.000Z
2018-03-01T13:16:22.000Z
import OpenGeoSys from math import pi, sin, cos, sinh, cosh a = 2.0*pi/3.0 # analytical solution used to set the Dirichlet BCs def solution(x, y): return sin(a*x) * sinh(a*y) # gradient of the analytical solution used to set the Neumann BCs def grad_solution(x, y): return a * cos(a*x) * sinh(a*y), \ a * sin(a*x) * cosh(a*y) # Dirichlet BCs class BCTop(OpenGeoSys.BoundaryCondition): def getDirichletBCValue(self, t, coords, node_id, primary_vars): x, y, z = coords assert y == 1.0 and z == 0.0 value = solution(x, y) return (True, value) class BCLeft(OpenGeoSys.BoundaryCondition): def getDirichletBCValue(self, t, coords, node_id, primary_vars): x, y, z = coords assert x == 0.0 and z == 0.0 value = solution(x, y) return (True, value) class BCBottom(OpenGeoSys.BoundaryCondition): def getDirichletBCValue(self, t, coords, node_id, primary_vars): x, y, z = coords assert y == 0.0 and z == 0.0 value = solution(x, y) return (True, value) # Neumann BC class BCRight(OpenGeoSys.BoundaryCondition): def getFlux(self, t, coords, primary_vars): x, y, z = coords assert x == 1.0 and z == 0.0 value = grad_solution(x, y)[0] Jac = [ 0.0 ] # value does not depend on primary variable return (True, value, Jac) # instantiate BC objects referenced in OpenGeoSys' prj file bc_top = BCTop() bc_right = BCRight() bc_bottom = BCBottom() bc_left = BCLeft()
28.792453
68
0.629096
3a9a158fa9dac7aa96a2b71a844672d46805c04b
3,586
py
Python
Rendering/Label/Testing/Python/labeledMesh.py
forestGzh/VTK
bc98327275bd5cfa95c5825f80a2755a458b6da8
[ "BSD-3-Clause" ]
1,755
2015-01-03T06:55:00.000Z
2022-03-29T05:23:26.000Z
Rendering/Label/Testing/Python/labeledMesh.py
forestGzh/VTK
bc98327275bd5cfa95c5825f80a2755a458b6da8
[ "BSD-3-Clause" ]
29
2015-04-23T20:58:30.000Z
2022-03-02T16:16:42.000Z
Rendering/Label/Testing/Python/labeledMesh.py
forestGzh/VTK
bc98327275bd5cfa95c5825f80a2755a458b6da8
[ "BSD-3-Clause" ]
1,044
2015-01-05T22:48:27.000Z
2022-03-31T02:38:26.000Z
#!/usr/bin/env python import vtk from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # demonstrate use of point labeling and the selection window # Create the RenderWindow, Renderer and both Actors # ren1 = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # Create a selection window xmin = 200 xLength = 100 xmax = xmin + xLength ymin = 200 yLength = 100 ymax = ymin + yLength pts = vtk.vtkPoints() pts.InsertPoint(0, xmin, ymin, 0) pts.InsertPoint(1, xmax, ymin, 0) pts.InsertPoint(2, xmax, ymax, 0) pts.InsertPoint(3, xmin, ymax, 0) rect = vtk.vtkCellArray() rect.InsertNextCell(5) rect.InsertCellPoint(0) rect.InsertCellPoint(1) rect.InsertCellPoint(2) rect.InsertCellPoint(3) rect.InsertCellPoint(0) selectRect = vtk.vtkPolyData() selectRect.SetPoints(pts) selectRect.SetLines(rect) rectMapper = vtk.vtkPolyDataMapper2D() rectMapper.SetInputData(selectRect) rectActor = vtk.vtkActor2D() rectActor.SetMapper(rectMapper) # Create asphere sphere = vtk.vtkSphereSource() sphereMapper = vtk.vtkPolyDataMapper() sphereMapper.SetInputConnection(sphere.GetOutputPort()) sphereActor = vtk.vtkActor() sphereActor.SetMapper(sphereMapper) # Generate ids for labeling ids = vtk.vtkIdFilter() ids.SetInputConnection(sphere.GetOutputPort()) ids.PointIdsOn() ids.CellIdsOn() ids.FieldDataOn() # Create labels for points visPts = vtk.vtkSelectVisiblePoints() visPts.SetInputConnection(ids.GetOutputPort()) visPts.SetRenderer(ren1) visPts.SelectionWindowOn() visPts.SetSelection(xmin, xmin + xLength, ymin, ymin + yLength) ldm = vtk.vtkLabeledDataMapper() ldm.SetInputConnection(visPts.GetOutputPort()) # ldm.SetLabelFormat.("%g") # ldm.SetLabelModeToLabelScalars() # ldm.SetLabelModeToLabelNormals() ldm.SetLabelModeToLabelFieldData() # ldm.SetLabeledComponent(0) pointLabels = vtk.vtkActor2D() pointLabels.SetMapper(ldm) # Create labels for cells cc = vtk.vtkCellCenters() cc.SetInputConnection(ids.GetOutputPort()) visCells = vtk.vtkSelectVisiblePoints() visCells.SetInputConnection(cc.GetOutputPort()) visCells.SetRenderer(ren1) visCells.SelectionWindowOn() visCells.SetSelection(xmin, xmin + xLength, ymin, ymin + yLength) cellMapper = vtk.vtkLabeledDataMapper() cellMapper.SetInputConnection(visCells.GetOutputPort()) # cellMapper.SetLabelFormat("%g") # cellMapper.SetLabelModeToLabelScalars() # cellMapper.SetLabelModeToLabelNormals() cellMapper.SetLabelModeToLabelFieldData() cellMapper.GetLabelTextProperty().SetColor(0, 1, 0) cellLabels = vtk.vtkActor2D() cellLabels.SetMapper(cellMapper) # Add the actors to the renderer, set the background and size # ren1.AddActor(sphereActor) ren1.AddActor2D(rectActor) ren1.AddActor2D(pointLabels) ren1.AddActor2D(cellLabels) ren1.SetBackground(1, 1, 1) renWin.SetSize(500, 500) renWin.Render() # render the image # def PlaceWindow (xmin, ymin): global xLength, yLength xmax = xmin + xLength ymax = ymin + yLength visPts.SetSelection(xmin, xmax, ymin, ymax) visCells.SetSelection(xmin, xmax, ymin, ymax) pts.InsertPoint(0, xmin, ymin, 0) pts.InsertPoint(1, xmax, ymin, 0) pts.InsertPoint(2, xmax, ymax, 0) pts.InsertPoint(3, xmin, ymax, 0) pts.Modified() # because insertions don't modify object - performance reasons renWin.Render() def MoveWindow (): y = 100 while y < 300: x = 100 while x < 300: PlaceWindow(x, y) x += 25 y += 25 MoveWindow() PlaceWindow(xmin, ymin) #iren.Start()
24.731034
66
0.754322
5d53ef86436aec0e2952ea793119166be04857eb
10,429
py
Python
bela/lex.py
BLIPNTU/bela
49cd9087bef88020af28a04eb67ab7dc09e17753
[ "MIT" ]
2
2022-01-26T14:11:45.000Z
2022-03-08T06:54:00.000Z
bela/lex.py
BLIPNTU/bela
49cd9087bef88020af28a04eb67ab7dc09e17753
[ "MIT" ]
null
null
null
bela/lex.py
BLIPNTU/bela
49cd9087bef88020af28a04eb67ab7dc09e17753
[ "MIT" ]
1
2022-03-16T11:31:40.000Z
2022-03-16T11:31:40.000Z
# -*- coding: utf-8 -*- # This code is a part of BELA package: https://github.com/letuananh/bela # :developer: Le Tuan Anh <tuananh.ke@gmail.com> # :license: MIT, see LICENSE for more details. """ Lexical Analyser """ import logging from pathlib import Path from collections import defaultdict as dd from collections import Counter from chirptext import chio from chirptext import ttl from .common import tokenize from .common import NLTK_AVAILABLE from .common import _process_token, InvalidTokenException def read_lexicon(lex_name): p = Path(__file__).parent / 'data' / lex_name forms = set() with chio.open(p) as _lex_stream: for line in _lex_stream: if line.startswith("#"): continue else: forms.add(line.strip()) return forms # TODO add all BELA special keywords _KEYWORDS = ['babyname', 'adultname', 'siblingname', 'strangername', '...', 'english', 'chinese', 'malay', 'tamil'] if NLTK_AVAILABLE: from nltk.corpus import words # English words from nltk.corpus import stopwords _ENGLISH_WORDS = set(words.words()) _ENGLISH_WORDS.update(stopwords.words('english')) else: _ENGLISH_WORDS = set() _ENGLISH_WORDS.update(("'s", "ok", "'m", "'ll", "n't", "okay", "'re", "'d", "'ve")) _MANDARIN_WORDS = read_lexicon('cmn_lex.txt.gz') _MALAY_WORDS = read_lexicon('msa_lex.txt.gz') # [2021-03-11 木 11:48] # Adopted from https://github.com/letuananh/lelesk/blob/master/lelesk/util.py # LeLESK: MIT License if NLTK_AVAILABLE: # from nltk.tokenize import word_tokenize from nltk import pos_tag from nltk.stem import WordNetLemmatizer wnl = WordNetLemmatizer() def ptpos_to_wn(ptpos, default='x'): ''' Penn Treebank Project POS to WN ''' if ptpos.startswith('JJ'): return 'a' elif ptpos.startswith('NN'): return 'n' elif ptpos.startswith('RB'): return 'r' elif ptpos.startswith('VB'): return 'v' else: return default def _tokenize(words): if NLTK_AVAILABLE: tags = pos_tag(words) tokens = [(w, t, wnl.lemmatize(w, pos=ptpos_to_wn(t, default='n'))) for w, t in tags] return tokens else: return words class LexicalAnalyser: def __init__(self, lang_lex_map=None, word_only=False, ellipsis=False, non_word='', lemmatizer=True, **kwargs): self.utterances = ttl.Document() self.word_sent_map = dd(set) self.lang_word_sent_map = dd(lambda: dd(set)) self.lang_word_speaker_map = dd(lambda: dd(set)) self.word_only = word_only self.ellipsis = ellipsis self.non_word = non_word self.lemmatizer = lemmatizer # setup built-in language-lexicon map self.lang_lex_map = { 'English': _ENGLISH_WORDS, 'Mandarin': _MANDARIN_WORDS, 'Malay': _MALAY_WORDS } # allow custom language_map self.__custom_lang_lex_map = lang_lex_map if lang_lex_map else {} self.word_speaker_map = dd(set) self.word_map = dd(Counter) def analyse(self, external_tokenizer=True): self.word_sent_map.clear() self.word_map.clear() for utterance in self.utterances: language = utterance.tag.language.value speaker = utterance.tag.speaker.value # source = utterance.tag.source.value tokens = [t.lower() for t in tokenize( utterance.text, language=language, ellipsis=self.ellipsis, non_word=self.non_word, word_only=self.word_only, nlp_tokenizer=external_tokenizer)] self.word_map[language].update(tokens) for token in tokens: self.word_speaker_map[token] = speaker self.word_sent_map[token].add(utterance.text) self.lang_word_speaker_map[language][token].add(speaker) self.lang_word_sent_map[language][token].add(utterance.text) def gen_type_token_map(self): ratio_map = {} for lang, counter in self.word_map.items(): count_token = len(list(counter.elements())) count_type = len(counter) ratio = count_token / count_type if count_type > 0 else 0 ratio_map[lang] = (count_token, count_type, ratio) return ratio_map def gen_type_token_list(self): _list = [(lang, count_token, count_type, ratio) for lang, (count_token, count_type, ratio) in self.gen_type_token_map().items()] _list.sort(key=lambda x: -x[3]) return _list def add(self, text, language, **kwargs): sent = self.utterances.sents.new(text) sent.tag.language = language for k, v in kwargs.items(): sent.tag[k] = v def is_special_token(self, word, language): ''' Determine if a given token is a special token (keywords, markup, etc.) ''' return word == '###' or word.startswith(':') def is_unknown(self, word, language): '''Check if a word is a known word (exists in the current lexicon)''' if word in _KEYWORDS: return False elif language in self.lang_lex_map: if word in self.lang_lex_map[language]: return False elif language not in self.__custom_lang_lex_map: return True else: return word not in self.__custom_lang_lex_map[language] elif language in self.__custom_lang_lex_map: return word not in self.__custom_lang_lex_map[language] else: return False def to_dict(self, ignore_empty=True): stats_dict = {'languages': [], 'lexicon': [], 'errors': []} __lemmatize_error = False for lang, count_token, count_type, ratio in self.gen_type_token_list(): if ignore_empty and not count_type and not count_token and not ratio: continue stats_dict['languages'].append({ 'language': lang, 'types': count_type, 'tokens': count_token, 'ratio': round(ratio, 2) }) for lang, counter in self.word_map.items(): lang_lexicon = {'language': lang, 'vocabs': []} for word, freq in counter.most_common(): _is_special = self.is_special_token(word, lang) if _is_special: try: _process_token(word) _is_unknown = False except InvalidTokenException: _is_unknown = True else: lemma = word # try to lemmatize if possible if NLTK_AVAILABLE and self.lemmatizer and not __lemmatize_error and lang == 'English': try: __, tag = pos_tag([word])[0] lemma = wnl.lemmatize(word, pos=ptpos_to_wn(tag, default='n')) except Exception as e: # logging.getLogger(__name__).exception("BELA.Lemmatizer crashed") # do not lemmatize if NLTK crashed __lemmatize_error = True if isinstance(e, LookupError): if 'omw-1.4' in str(e): stats_dict['errors'].append(f'Lexicon was generated without lemmatizer. OMW-1.4 data not found.') else: stats_dict['errors'].append(f'Lexicon was generated without lemmatizer. Unknown resource missing.') else: stats_dict['errors'].append('Lexicon was generated without lemmatizer. Unknown error was raised.') _is_unknown = self.is_unknown(lemma, lang) _lex_entry = { 'word': word, 'freq': freq, 'sents': list(self.lang_word_sent_map[lang][word]), 'speakers': list(self.lang_word_speaker_map[lang][word]), 'special_code': _is_special, 'unknown_word': _is_unknown } lang_lexicon['vocabs'].append(_lex_entry) if not ignore_empty or lang_lexicon['vocabs']: stats_dict['lexicon'].append(lang_lexicon) return stats_dict class CorpusLexicalAnalyser: ''' Analyse a corpus text ''' def __init__(self, filepath=':memory:', lang_lex_map=None, word_only=False, lemmatizer=True, **kwargs): self.filepath = filepath self.word_only = word_only self.lemmatizer = lemmatizer self.__lang_lex_map = {} if lang_lex_map is None else lang_lex_map self.profiles = dd(self._create_lex_analyzer) def _create_lex_analyzer(self): return LexicalAnalyser(lang_lex_map=self.__lang_lex_map, word_only=self.word_only, lemmatizer=self.lemmatizer) def read(self, **kwargs): ''' Read the CSV file content specified by self.filepath ''' for text, language, source, speaker in chio.read_csv_iter(self.filepath, **kwargs): self.add(text, language, source=source, speaker=speaker) return self def add(self, text, language, source='', speaker=''): if text is None: text = '' if language is None: language = '' if source is None: source = '' if speaker is None: speaker = '' self.profiles['ALL'].add(text, language, source=source, speaker=speaker) self.profiles[speaker].add(text, language, source=source, speaker=speaker) def analyse(self, external_tokenizer=True): ''' Analyse all available profiles (i.e. speakers) ''' for profile in self.profiles.values(): profile.analyse(external_tokenizer=external_tokenizer) return self def to_dict(self): ''' Export analysed result as a JSON-ready object ''' profile_list = [] for pname in sorted(self.profiles.keys()): profile = self.profiles[pname] profile_list.append({ 'name': pname, 'stats': profile.to_dict() }) return profile_list
39.059925
136
0.587784
f3f7ca17dc94a0e8163b08c43f193a17c5bf3785
3,505
py
Python
testing_selenium_capabilities/tests/test_template.py
ikostan/SELENIUM_WEBDRIVER_WORKING_WITH_ELEMENTS
5039e777e4831d1a89d4056047c24e54bbfec5b3
[ "Unlicense" ]
null
null
null
testing_selenium_capabilities/tests/test_template.py
ikostan/SELENIUM_WEBDRIVER_WORKING_WITH_ELEMENTS
5039e777e4831d1a89d4056047c24e54bbfec5b3
[ "Unlicense" ]
1
2021-06-02T00:02:27.000Z
2021-06-02T00:02:27.000Z
testing_selenium_capabilities/tests/test_template.py
ikostan/SELENIUM_WEBDRIVER_WORKING_WITH_ELEMENTS
5039e777e4831d1a89d4056047c24e54bbfec5b3
[ "Unlicense" ]
1
2019-08-07T01:37:25.000Z
2019-08-07T01:37:25.000Z
import unittest import datetime from drivers.driver import Driver from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver import ActionChains from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC class MyTestCase(unittest.TestCase): @classmethod def setUpClass(cls): cls.driver = None cls.test_url = '' cls.test_title = '' def setUp(self): if self.driver is not None: self.driver.quit() self.driver = None @unittest.skip('not ready') def test_chrome(self): browser = 'chrome' self.generic_method(browser) @unittest.skip('not ready') def test_ie(self): browser = 'ie' self.generic_method(browser) @unittest.skip('not ready') def test_opera(self): browser = 'opera' self.generic_method(browser) @unittest.skip('not ready') def test_mozilla(self): browser = 'mozilla' self.generic_method(browser) @unittest.skip('not ready') def test_edge(self): browser = 'edge' self.generic_method(browser) def generic_method(self, browser): try: self.open_test_web_page(browser) except Exception as ec: print('\nERROR: {}'.format(ec)) self.take_screen_shot() raise def open_test_web_page(self, browser): # Open test web page and verify URL + Title self.driver = Driver(browser).get_driver() self.driver.get(self.test_url) self.driver.maximize_window() WebDriverWait(self.driver, 15).until(EC.title_contains(self.test_title)) self.assertEqual(self.test_url, self.driver.current_url) self.assertEqual(self.test_title, self.driver.title) def take_screen_shot(self): """Take a Screen-shot of the webpage when test Failed.""" now = datetime.datetime.now() filename = 'screenshot-{}-{}.png'.format(self.driver.name, datetime.datetime.strftime(now, '%Y-%m-%d_%H-%M-%S')) self.driver.save_screenshot(filename) print('\nScreenshot saved as {}'.format(filename)) def screenshots_collector(self): ''' Collect all screenshots and put them into screenshots directory :return: ''' import os import shutil screenshots_folder = 'screenshots' if not os.path.exists(os.curdir + '\\screenshots'): os.mkdir(screenshots_folder) now = datetime.datetime.now() folder_name = '{}\\screenshots_{}_{}'.format(screenshots_folder, self.driver.name, datetime.datetime.strftime(now, '%Y-%m-%d_%H-%M-%S')) files = os.listdir(os.curdir) for file in files: if '.png' in str(file): if not os.path.exists(os.curdir + '\\' + folder_name): os.mkdir(folder_name) shutil.move(file.split('\\')[-1], os.curdir + '\\' + folder_name) def tearDown(self): self.screenshots_collector() self.driver.stop_client() self.driver.close() @classmethod def tearDownClass(cls): if cls.driver is not None: cls.driver.quit()
31.017699
106
0.602568
1a04aafeb0a59c6303deb04828a2a12be6da0a67
303
py
Python
data/multilingual/Latn.NOB/Mono_12/pdf_to_json_test_Latn.NOB_Mono_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
1
2021-09-19T19:47:35.000Z
2021-09-19T19:47:35.000Z
data/multilingual/Latn.NOB/Mono_12/pdf_to_json_test_Latn.NOB_Mono_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
data/multilingual/Latn.NOB/Mono_12/pdf_to_json_test_Latn.NOB_Mono_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.NOB/Mono_12/udhr_Latn.NOB_Mono_12.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
30.3
73
0.811881
d6e47199339be553f3810ff709dd04f5f2692164
9,372
py
Python
SCRAPE/Lib/site-packages/twisted/trial/_dist/worker.py
Chinmoy-Prasad-Dutta/scrapy_scraper
09f6abfc3bcf10ee28f486d83b450c89a07e066e
[ "MIT" ]
4,612
2015-01-01T12:57:23.000Z
2022-03-30T01:08:23.000Z
SCRAPE/Lib/site-packages/twisted/trial/_dist/worker.py
Chinmoy-Prasad-Dutta/scrapy_scraper
09f6abfc3bcf10ee28f486d83b450c89a07e066e
[ "MIT" ]
1,243
2015-01-23T17:23:59.000Z
2022-03-28T13:46:17.000Z
SCRAPE/Lib/site-packages/twisted/trial/_dist/worker.py
Chinmoy-Prasad-Dutta/scrapy_scraper
09f6abfc3bcf10ee28f486d83b450c89a07e066e
[ "MIT" ]
1,236
2015-01-13T14:41:26.000Z
2022-03-17T07:12:36.000Z
# -*- test-case-name: twisted.trial._dist.test.test_worker -*- # # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ This module implements the worker classes. @since: 12.3 """ import os from zope.interface import implementer from twisted.internet.defer import Deferred from twisted.internet.interfaces import IAddress, ITransport from twisted.internet.protocol import ProcessProtocol from twisted.protocols.amp import AMP from twisted.python.failure import Failure from twisted.python.reflect import namedObject from twisted.trial._dist import ( _WORKER_AMP_STDIN, _WORKER_AMP_STDOUT, managercommands, workercommands, ) from twisted.trial._dist.workerreporter import WorkerReporter from twisted.trial.runner import TestLoader, TrialSuite from twisted.trial.unittest import Todo class WorkerProtocol(AMP): """ The worker-side trial distributed protocol. """ def __init__(self, forceGarbageCollection=False): self._loader = TestLoader() self._result = WorkerReporter(self) self._forceGarbageCollection = forceGarbageCollection def run(self, testCase): """ Run a test case by name. """ case = self._loader.loadByName(testCase) suite = TrialSuite([case], self._forceGarbageCollection) suite.run(self._result) return {"success": True} workercommands.Run.responder(run) def start(self, directory): """ Set up the worker, moving into given directory for tests to run in them. """ os.chdir(directory) return {"success": True} workercommands.Start.responder(start) class LocalWorkerAMP(AMP): """ Local implementation of the manager commands. """ def addSuccess(self, testName): """ Add a success to the reporter. """ self._result.addSuccess(self._testCase) return {"success": True} managercommands.AddSuccess.responder(addSuccess) def _buildFailure(self, error, errorClass, frames): """ Helper to build a C{Failure} with some traceback. @param error: An C{Exception} instance. @param errorClass: The class name of the C{error} class. @param frames: A flat list of strings representing the information need to approximatively rebuild C{Failure} frames. @return: A L{Failure} instance with enough information about a test error. """ errorType = namedObject(errorClass) failure = Failure(error, errorType) for i in range(0, len(frames), 3): failure.frames.append( (frames[i], frames[i + 1], int(frames[i + 2]), [], []) ) return failure def addError(self, testName, error, errorClass, frames): """ Add an error to the reporter. """ failure = self._buildFailure(error, errorClass, frames) self._result.addError(self._testCase, failure) return {"success": True} managercommands.AddError.responder(addError) def addFailure(self, testName, fail, failClass, frames): """ Add a failure to the reporter. """ failure = self._buildFailure(fail, failClass, frames) self._result.addFailure(self._testCase, failure) return {"success": True} managercommands.AddFailure.responder(addFailure) def addSkip(self, testName, reason): """ Add a skip to the reporter. """ self._result.addSkip(self._testCase, reason) return {"success": True} managercommands.AddSkip.responder(addSkip) def addExpectedFailure(self, testName, error, todo): """ Add an expected failure to the reporter. """ _todo = Todo(todo) self._result.addExpectedFailure(self._testCase, error, _todo) return {"success": True} managercommands.AddExpectedFailure.responder(addExpectedFailure) def addUnexpectedSuccess(self, testName, todo): """ Add an unexpected success to the reporter. """ self._result.addUnexpectedSuccess(self._testCase, todo) return {"success": True} managercommands.AddUnexpectedSuccess.responder(addUnexpectedSuccess) def testWrite(self, out): """ Print test output from the worker. """ self._testStream.write(out + "\n") self._testStream.flush() return {"success": True} managercommands.TestWrite.responder(testWrite) def _stopTest(self, result): """ Stop the current running test case, forwarding the result. """ self._result.stopTest(self._testCase) return result def run(self, testCase, result): """ Run a test. """ self._testCase = testCase self._result = result self._result.startTest(testCase) testCaseId = testCase.id() d = self.callRemote(workercommands.Run, testCase=testCaseId) return d.addCallback(self._stopTest) def setTestStream(self, stream): """ Set the stream used to log output from tests. """ self._testStream = stream @implementer(IAddress) class LocalWorkerAddress: """ A L{IAddress} implementation meant to provide stub addresses for L{ITransport.getPeer} and L{ITransport.getHost}. """ @implementer(ITransport) class LocalWorkerTransport: """ A stub transport implementation used to support L{AMP} over a L{ProcessProtocol} transport. """ def __init__(self, transport): self._transport = transport def write(self, data): """ Forward data to transport. """ self._transport.writeToChild(_WORKER_AMP_STDIN, data) def writeSequence(self, sequence): """ Emulate C{writeSequence} by iterating data in the C{sequence}. """ for data in sequence: self._transport.writeToChild(_WORKER_AMP_STDIN, data) def loseConnection(self): """ Closes the transport. """ self._transport.loseConnection() def getHost(self): """ Return a L{LocalWorkerAddress} instance. """ return LocalWorkerAddress() def getPeer(self): """ Return a L{LocalWorkerAddress} instance. """ return LocalWorkerAddress() class LocalWorker(ProcessProtocol): """ Local process worker protocol. This worker runs as a local process and communicates via stdin/out. @ivar _ampProtocol: The L{AMP} protocol instance used to communicate with the worker. @ivar _logDirectory: The directory where logs will reside. @ivar _logFile: The name of the main log file for tests output. """ def __init__(self, ampProtocol, logDirectory, logFile): self._ampProtocol = ampProtocol self._logDirectory = logDirectory self._logFile = logFile self.endDeferred = Deferred() def connectionMade(self): """ When connection is made, create the AMP protocol instance. """ self._ampProtocol.makeConnection(LocalWorkerTransport(self.transport)) if not os.path.exists(self._logDirectory): os.makedirs(self._logDirectory) self._outLog = open(os.path.join(self._logDirectory, "out.log"), "wb") self._errLog = open(os.path.join(self._logDirectory, "err.log"), "wb") # Log data is received via AMP which is UTF-8 unicode. # The log file should be written using a Unicode encoding, and not # the default system encoding which might not be Unicode compatible. self._testLog = open( os.path.join(self._logDirectory, self._logFile), "w", encoding="utf-8", errors="strict", ) self._ampProtocol.setTestStream(self._testLog) logDirectory = self._logDirectory d = self._ampProtocol.callRemote(workercommands.Start, directory=logDirectory) # Ignore the potential errors, the test suite will fail properly and it # would just print garbage. d.addErrback(lambda x: None) def connectionLost(self, reason): """ On connection lost, close the log files that we're managing for stdin and stdout. """ self._outLog.close() self._errLog.close() self._testLog.close() def processEnded(self, reason): """ When the process closes, call C{connectionLost} for cleanup purposes and forward the information to the C{_ampProtocol}. """ self.connectionLost(reason) self._ampProtocol.connectionLost(reason) self.endDeferred.callback(reason) def outReceived(self, data): """ Send data received from stdout to log. """ self._outLog.write(data) def errReceived(self, data): """ Write error data to log. """ self._errLog.write(data) def childDataReceived(self, childFD, data): """ Handle data received on the specific pipe for the C{_ampProtocol}. """ if childFD == _WORKER_AMP_STDOUT: self._ampProtocol.dataReceived(data) else: ProcessProtocol.childDataReceived(self, childFD, data)
29.564669
86
0.637431
519bbb1b087b99a7129a1eb0d99da5eff96f6331
2,923
py
Python
src/code/plots/thesis/dg_growth.py
dvaruas/minority_recommendations
8adcbf5af5c322e4b20d4336b12ecda62a5c4d5f
[ "MIT" ]
null
null
null
src/code/plots/thesis/dg_growth.py
dvaruas/minority_recommendations
8adcbf5af5c322e4b20d4336b12ecda62a5c4d5f
[ "MIT" ]
null
null
null
src/code/plots/thesis/dg_growth.py
dvaruas/minority_recommendations
8adcbf5af5c322e4b20d4336b12ecda62a5c4d5f
[ "MIT" ]
null
null
null
# This plot is to get the degree growth for synthetic growth networks. # Minority fraction = [0.1, 0.2, 0.3, 0.4, 0.5] (x-axis) # homophily values = [0.0, 0.2, 0.5, 0.8, 1.0] (y-axis) import os import sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), os.pardir, os.pardir, os.pardir)) #-------------------------------------------------------------------------------- import matplotlib.pyplot as plt from code.plot_computations.comp_job import ComputationJob from code.plot_computations.degree_growth import DegreeGrowthPlotPoints from code.growth_network.growth_data_manager import GrowNetwork if __name__ == "__main__": minority_fractions = [0.1, 0.2, 0.3, 0.4, 0.5] homophilies = [0.0, 0.2, 0.5, 0.8, 1.0] method = "top_rank" #["pa_homophily", "adamic_adar", "twitter_rank", "ranked_bandit", "top_rank"] ranking_control = 1.0 fig, ax = plt.subplots(nrows=len(minority_fractions), ncols=len(homophilies), sharex=True, sharey=True, figsize=(11, 12)) obj = GrowNetwork() for i, f in enumerate(minority_fractions): for j, h in enumerate(homophilies): params ={"homophily" : h, "minority_probability" : f, "ranking_control" : ranking_control if method in ["ranked_bandit", "top_rank"] else 0.0, "job_type" : method, "parameter_profile" : 0} paths = obj.get_job_paths(all_params=params) comp_jobs = [] for path in paths: cobj = ComputationJob() cobj.set_log_path(path=os.path.join(path, "raw", "logfile.txt")) comp_jobs.append(cobj) plot_data = DegreeGrowthPlotPoints.get_plot_points(job_objs=comp_jobs) ax[i,j].plot(plot_data["minority"]["x"], plot_data["minority"]["y"], "r", label="minority") ax[i,j].plot(plot_data["majority"]["x"], plot_data["majority"]["y"], "b", label="majority") ax[i,j].tick_params(labelsize='large') if (i == len(minority_fractions) - 1): ax[i,j].set_xlabel("$t/t_{0}$", fontsize=12) if (j == 0): ax[i,j].set_ylabel("$\delta(t) / \delta(t_{0})$", fontsize=12) plt.figtext(0.11, 0.97, "h = 0.0", fontsize=12) plt.figtext(0.29, 0.97, "h = 0.2", fontsize=12) plt.figtext(0.47, 0.97, "h = 0.5", fontsize=12) plt.figtext(0.65, 0.97, "h = 0.8", fontsize=12) plt.figtext(0.85, 0.97, "h = 1.0", fontsize=12) plt.figtext(0.97, 0.13, "f = 0.5", fontsize=12, rotation=-90) plt.figtext(0.97, 0.3, "f = 0.4", fontsize=12, rotation=-90) plt.figtext(0.97, 0.48, "f = 0.3", fontsize=12, rotation=-90) plt.figtext(0.97, 0.66, "f = 0.2", fontsize=12, rotation=-90) plt.figtext(0.97, 0.84, "f = 0.1", fontsize=12, rotation=-90) plt.subplots_adjust(left=0.05, bottom=0.06, right=0.95, top=0.95, wspace=0.1, hspace=0.1) plt.show()
47.918033
125
0.588779
c5575f12a27b27ee362320f4c33425e27a28c063
1,710
py
Python
test/test_ip_availabilities_list.py
displague/metal-python
96e64e9ac41025d85ff6f61693165e29e1c366db
[ "MIT" ]
null
null
null
test/test_ip_availabilities_list.py
displague/metal-python
96e64e9ac41025d85ff6f61693165e29e1c366db
[ "MIT" ]
3
2021-09-27T05:10:36.000Z
2021-09-27T06:10:57.000Z
test/test_ip_availabilities_list.py
displague/metal-python
96e64e9ac41025d85ff6f61693165e29e1c366db
[ "MIT" ]
null
null
null
# coding: utf-8 """ Metal API This is the API for Equinix Metal. The API allows you to programmatically interact with all of your Equinix Metal resources, including devices, networks, addresses, organizations, projects, and your user account. The official API docs are hosted at <https://metal.equinix.com/developers/api>. # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: support@equinixmetal.com Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import metal from metal.types.ip_availabilities_list import IPAvailabilitiesList # noqa: E501 from metal.rest import ApiException class TestIPAvailabilitiesList(unittest.TestCase): """IPAvailabilitiesList unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test IPAvailabilitiesList include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = metal.models.ip_availabilities_list.IPAvailabilitiesList() # noqa: E501 if include_optional : return IPAvailabilitiesList( available = [ '' ] ) else : return IPAvailabilitiesList( ) def testIPAvailabilitiesList(self): """Test IPAvailabilitiesList""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
31.090909
312
0.678947
a2a7cb6a8f371b48c84aaa69bbff95190fdd603c
11,046
py
Python
userbot/plugins/solarsystem.py
ghion266/SensibleUserbot
16ad83206fa14fe4315143fa8a94e5687eb06fcb
[ "MIT" ]
44
2021-01-11T13:33:48.000Z
2022-02-05T17:53:33.000Z
userbot/plugins/solarsystem.py
ghion266/SensibleUserbot
16ad83206fa14fe4315143fa8a94e5687eb06fcb
[ "MIT" ]
5
2020-08-25T15:58:13.000Z
2021-02-09T09:57:57.000Z
userbot/plugins/solarsystem.py
ghion266/SensibleUserbot
16ad83206fa14fe4315143fa8a94e5687eb06fcb
[ "MIT" ]
226
2020-02-25T05:58:57.000Z
2022-03-12T04:12:33.000Z
from telethon import events import asyncio from uniborg.util import admin_cmd @borg.on(admin_cmd(pattern=r"solarsystem")) async def _(event): if event.fwd_from: return animation_interval = 0.1 animation_ttl = range(0, 549755813888) await event.edit("Solar") animation_chars = [ "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️🌎◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n🌕◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️☀\n◼️◼️◼️◼️◼️`", "`◼️🌕◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️☀◼️`", "`◼️◼️◼️🌕◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️☀◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️🌎◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️◼️◼️◼️`", "`◼️◼️◼️◼️◼️\n☀◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️🌕\n◼️◼️◼️◼️◼️`", "`◼️☀◼️◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️◼️◼️🌕◼️`", "`◼️◼️◼️☀◼️\n◼️◼️◼️◼️◼️\n◼️◼️🌎◼️◼️\n◼️◼️◼️◼️◼️\n◼️🌕◼️◼️◼️`", ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 549755813888])
66.945455
76
0.080844
6a5ec02889d3e5098dc3073d5c220a9693f85494
8,403
py
Python
dashboard/apps/app1.py
gamyers/solar-697
90ca38072456af385c98b1bdf3c3d563e2c71f15
[ "MIT" ]
1
2021-08-24T00:00:23.000Z
2021-08-24T00:00:23.000Z
dashboard/apps/app1.py
gamyers/solar-697
90ca38072456af385c98b1bdf3c3d563e2c71f15
[ "MIT" ]
null
null
null
dashboard/apps/app1.py
gamyers/solar-697
90ca38072456af385c98b1bdf3c3d563e2c71f15
[ "MIT" ]
2
2021-08-30T20:36:36.000Z
2021-11-02T19:13:33.000Z
import sqlite3 import sys import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html import logzero import numpy as np import pandas as pd import plotly.graph_objects as go import yaml from app import app from dash.dependencies import Input, Output from dash_table import DataTable from logzero import logger sys.path.append("../source") import queries import plot_tools import ts_tools # open and retrieve configuration data try: with open("../source/config.yml", "r") as config_in: cfg = yaml.load(config_in, Loader=yaml.SafeLoader) logger.info(f"{cfg}\n") except: logger.error(f"config file open failure.") exit(1) db_path = cfg["file_paths"]["db_path"] db_files = ts_tools.get_db_files(db_path) logger.info(f"DB Path: {db_path}\n{db_files}\n") # --------------------------begin layout--------------------------# layout_app1 = html.Div( [ # Dropdown row 0 dbc.Row( [ dbc.Col( dcc.Dropdown( id="dd-db-selection", options=[{"label": db, "value": db} for db in db_files], value=cfg["file_names"]["default_db"], placeholder="Select a database", persistence=True, persistence_type="session", ), width={"size": 2, "offset": 0}, ), dbc.Col( [ dcc.Dropdown( id="dd-zipcode-selection", placeholder="Select a Zip Code", persistence=True, ), html.H5(id="dd-zipcode-selection-locale"), ], width={"size": 2, "offset": 1}, ), ], ), # Plots row 1 dbc.Row( [ dbc.Col( [ html.H6( "Data View", style={"display": "inline-block", "textAlign": "center"}, ), dcc.Graph(id="graph-data-view"), ], width={"size": 6}, ), dbc.Col( [ html.H6( "Distribution View", style={"display": "inline-block", "textAlign": "center"}, ), dcc.Graph(id="graph-dist-view"), ], width={"size": 5}, ), ], ), # Plots row 2 dbc.Row( [ dbc.Col( [ html.H6( "Meteorological View", style={"display": "inline-block", "textAlign": "center"}, ), dcc.Graph( id="graph-meteoro-view", ), ], width={"size": 6, "offset": 0}, ), dbc.Col( [ html.H6( "Desciptive Statistics", style={ "display": "inline-block", "textAlign": "center", }, ), DataTable( id="table-desc-stats", style_table={ "height": "395px", }, style_cell={ "backgroundColor": "black", "forgroundColor": "white", }, style_header={ "backgroundColor": "black", "forgroundColor": "white", "fontWeight": "bold", "fontColor": "gold", }, ), ], width={"size": 5}, ), ], ), ], ) # --------------------------begin callbacks--------------------------# @app.callback( Output("dd-zipcode-selection", "options"), Input("dd-db-selection", "value"), ) def get_zipcodes(file_name): logger.info(f"get_zipcodes callback: {file_name}") conn = ts_tools.get_db_connection(db_path, file_name) zipcodes = ts_tools.get_db_zipcodes(conn) conn.close() logger.info(f"app1 zipcodes retrieved\n{zipcodes}") # return the list object to properly populate the dropdown! return [{"label": zipcode, "value": zipcode} for zipcode in zipcodes] # -------------------------------------------------------------------# # @app.callback( # Output("dd-zipcode-selection", "value"), # [ # Input("dd-zipcode-selection", "options"), # ], # ) # def set_zipcode_value(options): # logger.info(f"app1 zipcode selected: {options[0]['value']}") # return options[0]["value"] # -------------------------------------------------------------------# @app.callback( # [ Output("graph-data-view", "figure"), Output("graph-dist-view", "figure"), Output("graph-meteoro-view", "figure"), Output("table-desc-stats", "data"), Output("table-desc-stats", "columns"), Output("dd-zipcode-selection-locale", "children"), # ------------------------------------- Input("dd-db-selection", "value"), Input("dd-zipcode-selection", "value"), ) def graph_output(db_filename, zipcode): cntx = dash.callback_context context = cntx.triggered[0]["prop_id"].split(".")[0] logger.info(f"app1 graph_output #1 Context = {context}\n") # print(f"app1 graph_output #1 Context: {context}") if context == "dd-db-selection": conn = ts_tools.get_db_connection(db_path, db_filename) # zipcodes = ts_tools.get_db_zipcodes(conn) # zipcode = zipcodes[0] locale_data = ts_tools.get_locale_data(conn, zipcode) df = ts_tools.get_irr_data(conn, zipcode) logger.info(f"app1 Made if: {db_filename}, {zipcode}") elif context == "dd-zipcode-selection": conn = ts_tools.get_db_connection(db_path, db_filename) locale_data = ts_tools.get_locale_data(conn, zipcode) df = ts_tools.get_irr_data(conn, zipcode) logger.info(f"app1 Made elif: {db_filename}, {zipcode}") else: db_filename = cfg["file_names"]["default_db"] conn = ts_tools.get_db_connection(db_path, db_filename) zipcodes = ts_tools.get_db_zipcodes(conn) if not zipcode: zipcode = zipcodes[0] locale_data = ts_tools.get_locale_data(conn, zipcode) df = ts_tools.get_irr_data(conn, zipcode) logger.info(f"app1 Made else: {db_filename}, {zipcode}") logger.info(f"app1 passed if/elif/else") df_desc = df.describe().transpose().round(decimals=2).reset_index(drop=False) df_desc.rename(columns={"index": "feature"}, inplace=True) df_desc.insert(loc=1, column="unit", value=[value for value in cfg["data_units"].values()]) desc_columns = [{"id": col, "name": col} for col in df_desc.columns] logger.info(f"app1 passed df_desc") title1 = "Irradiance Data" fig1 = plot_tools.plot_irradiance( df, title=title1, zipcode=zipcode, irr_columns=cfg["irradiance_columns"], locale=locale_data ) logger.info(f"app1 passed {title1}") title2 = "Data Distributions" fig2 = plot_tools.plot_histograms( df, title=title2, zipcode=zipcode, ) logger.info(f"app1 passed {title2}") title3 = "Meteorological Conditions" fig3 = plot_tools.plot_multi_line( df, title=title3, locale=locale_data, columns=cfg["meteorological_fields"], ) logger.info(f"app1 passed {title3}") return ( fig1, fig2, fig3, df_desc.to_dict("records"), desc_columns, f"{locale_data[0]}, {locale_data[2]}", )
32.952941
100
0.471855
e96cfab2bcc41c52643b1b66805b3431e547d7aa
14,914
py
Python
lale/lib/sklearn/random_forest_regressor.py
chiragsahni/lale
a04adcdc14f2e05b846ebd5767186b66fe20463f
[ "Apache-2.0" ]
null
null
null
lale/lib/sklearn/random_forest_regressor.py
chiragsahni/lale
a04adcdc14f2e05b846ebd5767186b66fe20463f
[ "Apache-2.0" ]
null
null
null
lale/lib/sklearn/random_forest_regressor.py
chiragsahni/lale
a04adcdc14f2e05b846ebd5767186b66fe20463f
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sklearn import sklearn.ensemble import lale.docstrings import lale.operators _hyperparams_schema = { "description": "A random forest regressor.", "allOf": [ { "type": "object", "required": [ "n_estimators", "criterion", "max_depth", "min_samples_split", "min_samples_leaf", "max_features", "bootstrap", ], "relevantToOptimizer": [ "n_estimators", "criterion", "max_depth", "min_samples_split", "min_samples_leaf", "max_features", "bootstrap", ], "additionalProperties": False, "properties": { "n_estimators": { "type": "integer", "minimum": 1, "minimumForOptimizer": 10, "maximumForOptimizer": 100, "default": 10, "description": "The number of trees in the forest.", }, "criterion": { "anyOf": [ {"enum": ["mae"], "forOptimizer": False}, {"enum": ["mse", "friedman_mse"]}, ], "default": "mse", "description": "The function to measure the quality of a split.", }, "max_depth": { "anyOf": [ { "type": "integer", "minimum": 1, "minimumForOptimizer": 3, "maximumForOptimizer": 5, }, { "enum": [None], "description": "Nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.", }, ], "default": None, "description": "The maximum depth of the tree.", }, "min_samples_split": { "anyOf": [ { "type": "integer", "minimum": 2, "laleMaximum": "X/maxItems", # number of rows "minimumForOptimizer": 2, "maximumForOptimizer": 5, "forOptimizer": False, "description": "Consider min_samples_split as the minimum number.", }, { "type": "number", "minimum": 0.0, "exclusiveMinimum": True, "maximum": 1.0, "minimumForOptimizer": 0.01, "maximumForOptimizer": 0.5, "default": 0.05, "description": "min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.", }, ], "default": 2, "description": "The minimum number of samples required to split an internal node.", }, "min_samples_leaf": { "anyOf": [ { "type": "integer", "minimum": 1, "laleMaximum": "X/maxItems", # number of rows "minimumForOptimizer": 1, "maximumForOptimizer": 5, "forOptimizer": False, "description": "Consider min_samples_leaf as the minimum number.", }, { "type": "number", "minimum": 0.0, "exclusiveMinimum": True, "minimumForOptimizer": 0.01, "maximum": 0.5, "default": 0.05, "description": "min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum number of samples for each node.", }, ], "default": 1, "description": "The minimum number of samples required to be at a leaf node.", }, "min_weight_fraction_leaf": { "type": "number", "minimum": 0.0, "maximum": 0.5, "default": 0.0, "description": "The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.", }, "max_features": { "anyOf": [ { "type": "integer", "minimum": 2, "forOptimizer": False, "laleMaximum": "X/items/maxItems", # number of columns "description": "Consider max_features features at each split.", }, { "type": "number", "minimum": 0.0, "exclusiveMinimum": True, "minimumForOptimizer": 0.01, "maximum": 1.0, "default": 0.5, "distribution": "uniform", "description": "max_features is a fraction and int(max_features * n_features) features are considered at each split.", }, {"enum": ["auto", "sqrt", "log2", None]}, ], "default": "auto", "description": "The number of features to consider when looking for the best split.", }, "max_leaf_nodes": { "anyOf": [ { "type": "integer", "minimum": 1, "minimumForOptimizer": 3, "maximumForOptimizer": 1000, }, { "enum": [None], "description": "Unlimited number of leaf nodes.", }, ], "default": None, "description": "Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity.", }, "min_impurity_decrease": { "type": "number", "minimum": 0.0, "maximumForOptimizer": 10.0, "default": 0.0, "description": "A node will be split if this split induces a decrease of the impurity greater than or equal to this value.", }, "min_impurity_split": { "anyOf": [{"type": "number", "minimum": 0.0}, {"enum": [None]}], "default": None, "description": "Threshold for early stopping in tree growth.", }, "bootstrap": { "type": "boolean", "default": True, "description": "Whether bootstrap samples are used when building trees. If False, the whole datset is used to build each tree.", }, "oob_score": { "type": "boolean", "default": False, "description": "Whether to use out-of-bag samples to estimate the generalization accuracy.", }, "n_jobs": { "anyOf": [ { "description": "1 unless in joblib.parallel_backend context.", "enum": [None], }, {"description": "Use all processors.", "enum": [-1]}, { "description": "Number of CPU cores.", "type": "integer", "minimum": 1, }, ], "default": None, "description": "The number of jobs to run in parallel for both fit and predict.", }, "random_state": { "description": "Seed of pseudo-random number generator.", "anyOf": [ {"laleType": "numpy.random.RandomState"}, { "description": "RandomState used by np.random", "enum": [None], }, {"description": "Explicit seed.", "type": "integer"}, ], "default": None, }, "verbose": { "type": "integer", "default": 0, "description": "Controls the verbosity when fitting and predicting.", }, "warm_start": { "type": "boolean", "default": False, "description": "When set to True, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest.", }, }, } ], } _input_fit_schema = { "description": "Build a forest of trees from the training set (X, y).", "type": "object", "required": ["X", "y"], "properties": { "X": { "type": "array", "description": "The outer array is over samples aka rows.", "items": { "type": "array", "description": "The inner array is over features aka columns.", "items": {"type": "number"}, }, }, "y": { "description": "The predicted classes.", "anyOf": [ { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, }, {"type": "array", "items": {"type": "number"}}, ], }, "sample_weight": { "anyOf": [ {"type": "array", "items": {"type": "number"}}, {"enum": [None], "description": "Samples are equally weighted."}, ], "description": "Sample weights.", }, }, } _input_predict_schema = { "type": "object", "properties": { "X": { "type": "array", "description": "The outer array is over samples aka rows.", "items": { "type": "array", "description": "The inner array is over features aka columns.", "items": {"type": "number"}, }, } }, } _output_predict_schema = { "description": "The predicted values.", "anyOf": [ { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, }, {"type": "array", "items": {"type": "number"}}, ], } _combined_schemas = { "$schema": "http://json-schema.org/draft-04/schema#", "description": """`Random forest regressor`_ from scikit-learn. .. _`Random forest regressor`: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html """, "documentation_url": "https://lale.readthedocs.io/en/latest/modules/lale.lib.sklearn.random_forest_regressor.html", "import_from": "sklearn.ensemble", "type": "object", "tags": {"pre": [], "op": ["estimator", "regressor"], "post": []}, "properties": { "hyperparams": _hyperparams_schema, "input_fit": _input_fit_schema, "input_predict": _input_predict_schema, "output_predict": _output_predict_schema, }, } RandomForestRegressor = lale.operators.make_operator( sklearn.ensemble.RandomForestRegressor, _combined_schemas ) if sklearn.__version__ >= "0.22": # old: https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.RandomForestRegressor.html # new: https://scikit-learn.org/0.23/modules/generated/sklearn.ensemble.RandomForestRegressor.html from lale.schemas import AnyOf, Float, Int, Null RandomForestRegressor = RandomForestRegressor.customize_schema( n_estimators=Int( desc="The number of trees in the forest.", default=100, forOptimizer=True, minimumForOptimizer=10, maximumForOptimizer=100, ), ccp_alpha=Float( desc="Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than ccp_alpha will be chosen. By default, no pruning is performed.", default=0.0, forOptimizer=False, minimum=0.0, maximumForOptimizer=0.1, ), max_samples=AnyOf( types=[ Null(desc="Draw X.shape[0] samples."), Int(desc="Draw max_samples samples.", minimum=1), Float( desc="Draw max_samples * X.shape[0] samples.", minimum=0.0, exclusiveMinimum=True, maximum=1.0, exclusiveMaximum=True, ), ], desc="If bootstrap is True, the number of samples to draw from X to train each base estimator.", default=None, ), set_as_available=True, ) lale.docstrings.set_docstrings(RandomForestRegressor)
41.427778
215
0.436972
02b7a499c52f149ffc58ef593948b27a0ef09da9
47
py
Python
documentation/models/__init__.py
ElNahoko/HSE_ARNOSH
1a8661db454e6a9e7f775a3ffd58a3936a43bb59
[ "Apache-2.0" ]
1
2019-08-10T17:57:58.000Z
2019-08-10T17:57:58.000Z
documentation/models/__init__.py
ElNahoko/HSE_ARNOSH
1a8661db454e6a9e7f775a3ffd58a3936a43bb59
[ "Apache-2.0" ]
null
null
null
documentation/models/__init__.py
ElNahoko/HSE_ARNOSH
1a8661db454e6a9e7f775a3ffd58a3936a43bb59
[ "Apache-2.0" ]
2
2019-08-14T18:08:04.000Z
2019-09-04T19:01:08.000Z
# -*- coding: utf-8 -*- from . import DOC_HSE
11.75
23
0.574468
2194b0f4c81f699d0b0074a2249dc674e7199f6d
3,538
py
Python
pypeln/task/stage.py
quarckster/pypeln
f4160d0f4d4718b67f79a0707d7261d249459a4b
[ "MIT" ]
1,281
2018-09-20T05:35:27.000Z
2022-03-30T01:29:48.000Z
pypeln/task/stage.py
webclinic017/pypeln
5231806f2cac9d2019dacbbcf913484fd268b8c1
[ "MIT" ]
78
2018-09-18T20:38:12.000Z
2022-03-30T20:16:02.000Z
pypeln/task/stage.py
webclinic017/pypeln
5231806f2cac9d2019dacbbcf913484fd268b8c1
[ "MIT" ]
88
2018-09-24T10:46:14.000Z
2022-03-28T09:34:50.000Z
import typing as tp from dataclasses import dataclass from pypeln import utils as pypeln_utils from pypeln.utils import T, Kwargs from .queue import IterableQueue, OutputQueues from .worker import Worker, StageParams, TaskPool, ProcessFn from .supervisor import Supervisor from . import utils @dataclass class Stage(pypeln_utils.BaseStage[T], tp.Iterable[T]): process_fn: ProcessFn workers: int maxsize: int total_sources: int timeout: float dependencies: tp.List["Stage"] on_start: tp.Optional[tp.Callable[..., tp.Union[Kwargs, tp.Awaitable[Kwargs]]]] on_done: tp.Optional[tp.Callable[..., tp.Union[Kwargs, tp.Awaitable[Kwargs]]]] f_args: tp.List[str] def __hash__(self): return id(self) def build( self, built: tp.Dict["Stage", OutputQueues], output_queue: IterableQueue, main_queue: IterableQueue, ) -> tp.Iterable[Worker]: if self in built: built[self].append(output_queue) return else: built[self] = OutputQueues([output_queue]) input_queue = IterableQueue( maxsize=self.maxsize, total_sources=self.total_sources ) stage_params = StageParams.create( input_queue=input_queue, output_queues=built[self], ) yield Worker( process_fn=self.process_fn, timeout=self.timeout, stage_params=stage_params, main_queue=main_queue, on_start=self.on_start, on_done=self.on_done, f_args=self.f_args, tasks=TaskPool.create(workers=self.workers, timeout=self.timeout), ) for dependency in self.dependencies: yield from dependency.build(built, input_queue, main_queue) def to_iterable(self, maxsize: int, return_index: bool) -> tp.Iterable[T]: # create a running event loop in case it doesn't exist utils.get_running_loop() main_queue: IterableQueue[pypeln_utils.Element] = IterableQueue( maxsize=maxsize, total_sources=1, ) built = {} workers: tp.List[Worker] = list(self.build(built, main_queue, main_queue)) supervisor = Supervisor(workers=workers, main_queue=main_queue) with supervisor: for elem in main_queue: if return_index: yield elem else: yield elem.value async def to_async_iterable( self, maxsize: int, return_index: bool ) -> tp.AsyncIterable[T]: # build stages first to verify reuse main_queue: IterableQueue[pypeln_utils.Element] = IterableQueue( maxsize=maxsize, total_sources=1, ) built = {} workers: tp.List[Worker] = list(self.build(built, main_queue, main_queue)) supervisor = Supervisor(workers=workers, main_queue=main_queue) async with supervisor: async for elem in main_queue: if return_index: yield elem else: yield elem.value def __iter__(self): return self.to_iterable(maxsize=self.maxsize, return_index=False) def __aiter__(self): return self.to_async_iterable(maxsize=self.maxsize, return_index=False) async def _await(self): return [x async for x in self] def __await__(self) -> tp.Generator[tp.Any, None, tp.List[T]]: return self._await().__await__()
29.983051
83
0.619842
250030e6eefea385d925851a5e35a0f9d8d9b471
891
py
Python
modules/Greetings.py
TheReaper62/Embeded
9cfa9422d33d8e5586888227a89d7bf758e680d1
[ "Apache-2.0" ]
1
2021-09-21T10:25:07.000Z
2021-09-21T10:25:07.000Z
modules/Greetings.py
TheReaper62/Embeded
9cfa9422d33d8e5586888227a89d7bf758e680d1
[ "Apache-2.0" ]
null
null
null
modules/Greetings.py
TheReaper62/Embeded
9cfa9422d33d8e5586888227a89d7bf758e680d1
[ "Apache-2.0" ]
null
null
null
import discord from discord.ext import commands from discord.app import slash_command class Greetings(commands.Cog): def __init__(self, client): self.client = client self._last_member = None @commands.Cog.listener() async def on_member_join(self, member): channel = member.guild.system_channel if channel is not None: await channel.send(f'Welcome {member.mention}.') @slash_command() async def hello(self, ctx, *, member: discord.Member = None): """Says hello""" member = member or ctx.author if self._last_member is None or self._last_member.id != member.id: await ctx.respond(f'Hello {member.name}~') else: await ctx.respond(f'Hello {member.name}... This feels familiar.') self._last_member = member def setup(client): client.add_cog(Greetings(client))
31.821429
77
0.652076
9a50963bf64b12aff4a81853feea3d71f2ce9a96
56,962
py
Python
sdk/python/pulumi_aws/rds/instance.py
JakeGinnivan/pulumi-aws
c91ef78932964ac74eda7f5da81f65b0f1798c93
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/rds/instance.py
JakeGinnivan/pulumi-aws
c91ef78932964ac74eda7f5da81f65b0f1798c93
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/rds/instance.py
JakeGinnivan/pulumi-aws
c91ef78932964ac74eda7f5da81f65b0f1798c93
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Instance(pulumi.CustomResource): address: pulumi.Output[str] """ The hostname of the RDS instance. See also `endpoint` and `port`. """ allocated_storage: pulumi.Output[float] """ The allocated storage in gibibytes. If `max_allocated_storage` is configured, this argument represents the initial storage allocation and differences from the configuration will be ignored automatically when Storage Autoscaling occurs. """ allow_major_version_upgrade: pulumi.Output[bool] """ Indicates that major version upgrades are allowed. Changing this parameter does not result in an outage and the change is asynchronously applied as soon as possible. """ apply_immediately: pulumi.Output[bool] """ Specifies whether any database modifications are applied immediately, or during the next maintenance window. Default is `false`. See [Amazon RDS Documentation for more information.](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html) """ arn: pulumi.Output[str] """ The ARN of the RDS instance. """ auto_minor_version_upgrade: pulumi.Output[bool] """ Indicates that minor engine upgrades will be applied automatically to the DB instance during the maintenance window. Defaults to true. """ availability_zone: pulumi.Output[str] """ The AZ for the RDS instance. """ backup_retention_period: pulumi.Output[float] """ The days to retain backups for. Must be between `0` and `35`. Must be greater than `0` if the database is used as a source for a Read Replica. [See Read Replica][1]. """ backup_window: pulumi.Output[str] """ The daily time range (in UTC) during which automated backups are created if they are enabled. Example: "09:46-10:16". Must not overlap with `maintenance_window`. """ ca_cert_identifier: pulumi.Output[str] """ The identifier of the CA certificate for the DB instance. """ character_set_name: pulumi.Output[str] """ The character set name to use for DB encoding in Oracle and Microsoft SQL instances (collation). This can't be changed. See [Oracle Character Sets Supported in Amazon RDS](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.OracleCharacterSets.html) or [Server-Level Collation for Microsoft SQL Server](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.Collation.html) for more information. """ copy_tags_to_snapshot: pulumi.Output[bool] """ Copy all Instance `tags` to snapshots. Default is `false`. """ db_subnet_group_name: pulumi.Output[str] """ Name of `DB subnet group`. DB instance will be created in the VPC associated with the DB subnet group. If unspecified, will be created in the `default` VPC, or in EC2 Classic, if available. When working with read replicas, it should be specified only if the source database specifies an instance in another AWS Region. See [DBSubnetGroupName in API action CreateDBInstanceReadReplica](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html) for additional read replica contraints. """ delete_automated_backups: pulumi.Output[bool] """ Specifies whether to remove automated backups immediately after the DB instance is deleted. Default is `true`. """ deletion_protection: pulumi.Output[bool] """ If the DB instance should have deletion protection enabled. The database can't be deleted when this value is set to `true`. The default is `false`. """ domain: pulumi.Output[str] """ The ID of the Directory Service Active Directory domain to create the instance in. """ domain_iam_role_name: pulumi.Output[str] """ The name of the IAM role to be used when making API calls to the Directory Service. """ enabled_cloudwatch_logs_exports: pulumi.Output[list] """ List of log types to enable for exporting to CloudWatch logs. If omitted, no logs will be exported. Valid values (depending on `engine`). MySQL and MariaDB: `audit`, `error`, `general`, `slowquery`. PostgreSQL: `postgresql`, `upgrade`. MSSQL: `agent` , `error`. Oracle: `alert`, `audit`, `listener`, `trace`. """ endpoint: pulumi.Output[str] """ The connection endpoint in `address:port` format. """ engine: pulumi.Output[str] """ (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) The database engine to use. For supported values, see the Engine parameter in [API action CreateDBInstance](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html). Note that for Amazon Aurora instances the engine must match the `DB cluster`'s engine'. For information on the difference between the available Aurora MySQL engines see [Comparison between Aurora MySQL 1 and Aurora MySQL 2](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Updates.20180206.html) in the Amazon RDS User Guide. """ engine_version: pulumi.Output[str] """ The engine version to use. If `auto_minor_version_upgrade` is enabled, you can provide a prefix of the version such as `5.7` (for `5.7.10`) and this attribute will ignore differences in the patch version automatically (e.g. `5.7.17`). For supported values, see the EngineVersion parameter in [API action CreateDBInstance](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html). Note that for Amazon Aurora instances the engine version must match the `DB cluster`'s engine version'. """ final_snapshot_identifier: pulumi.Output[str] """ The name of your final DB snapshot when this DB instance is deleted. Must be provided if `skip_final_snapshot` is set to `false`. """ hosted_zone_id: pulumi.Output[str] """ The canonical hosted zone ID of the DB instance (to be used in a Route 53 Alias record). """ iam_database_authentication_enabled: pulumi.Output[bool] """ Specifies whether or mappings of AWS Identity and Access Management (IAM) accounts to database accounts is enabled. """ identifier: pulumi.Output[str] """ The name of the RDS instance, if omitted, this provider will assign a random, unique identifier. """ identifier_prefix: pulumi.Output[str] """ Creates a unique identifier beginning with the specified prefix. Conflicts with `identifier`. """ instance_class: pulumi.Output[str] """ The instance type of the RDS instance. """ iops: pulumi.Output[float] """ The amount of provisioned IOPS. Setting this implies a storage_type of "io1". """ kms_key_id: pulumi.Output[str] """ The ARN for the KMS encryption key. If creating an encrypted replica, set this to the destination KMS ARN. """ license_model: pulumi.Output[str] """ (Optional, but required for some DB engines, i.e. Oracle SE1) License model information for this DB instance. """ maintenance_window: pulumi.Output[str] """ The window to perform maintenance in. Syntax: "ddd:hh24:mi-ddd:hh24:mi". Eg: "Mon:00:00-Mon:03:00". See [RDS Maintenance Window docs](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Maintenance.html#AdjustingTheMaintenanceWindow) for more information. """ max_allocated_storage: pulumi.Output[float] """ When configured, the upper limit to which Amazon RDS can automatically scale the storage of the DB instance. Configuring this will automatically ignore differences to `allocated_storage`. Must be greater than or equal to `allocated_storage` or `0` to disable Storage Autoscaling. """ monitoring_interval: pulumi.Output[float] """ The interval, in seconds, between points when Enhanced Monitoring metrics are collected for the DB instance. To disable collecting Enhanced Monitoring metrics, specify 0. The default is 0. Valid Values: 0, 1, 5, 10, 15, 30, 60. """ monitoring_role_arn: pulumi.Output[str] """ The ARN for the IAM role that permits RDS to send enhanced monitoring metrics to CloudWatch Logs. You can find more information on the [AWS Documentation](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.html) what IAM permissions are needed to allow Enhanced Monitoring for RDS Instances. """ multi_az: pulumi.Output[bool] """ Specifies if the RDS instance is multi-AZ """ name: pulumi.Output[str] """ The name of the database to create when the DB instance is created. If this parameter is not specified, no database is created in the DB instance. Note that this does not apply for Oracle or SQL Server engines. See the [AWS documentation](http://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html) for more details on what applies for those engines. """ option_group_name: pulumi.Output[str] """ Name of the DB option group to associate. """ parameter_group_name: pulumi.Output[str] """ Name of the DB parameter group to associate. """ password: pulumi.Output[str] """ (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) Password for the master DB user. Note that this may show up in logs, and it will be stored in the state file. """ performance_insights_enabled: pulumi.Output[bool] """ Specifies whether Performance Insights are enabled. Defaults to false. """ performance_insights_kms_key_id: pulumi.Output[str] """ The ARN for the KMS key to encrypt Performance Insights data. When specifying `performance_insights_kms_key_id`, `performance_insights_enabled` needs to be set to true. Once KMS key is set, it can never be changed. """ performance_insights_retention_period: pulumi.Output[float] """ The amount of time in days to retain Performance Insights data. Either 7 (7 days) or 731 (2 years). When specifying `performance_insights_retention_period`, `performance_insights_enabled` needs to be set to true. Defaults to '7'. """ port: pulumi.Output[float] """ The port on which the DB accepts connections. """ publicly_accessible: pulumi.Output[bool] """ Bool to control if instance is publicly accessible. Default is `false`. """ replicas: pulumi.Output[list] replicate_source_db: pulumi.Output[str] """ Specifies that this resource is a Replicate database, and to use this value as the source database. This correlates to the `identifier` of another Amazon RDS Database to replicate (if replicating within a single region) or ARN of the Amazon RDS Database to replicate (if replicating cross-region). Note that if you are creating a cross-region replica of an encrypted database you will also need to specify a `kms_key_id`. See [DB Instance Replication][1] and [Working with PostgreSQL and MySQL Read Replicas](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html) for more information on using Replication. """ resource_id: pulumi.Output[str] """ The RDS Resource ID of this instance. """ s3_import: pulumi.Output[dict] """ Restore from a Percona Xtrabackup in S3. See [Importing Data into an Amazon RDS MySQL DB Instance](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html) * `bucket_name` (`str`) - The bucket name where your backup is stored * `bucket_prefix` (`str`) - Can be blank, but is the path to your backup * `ingestionRole` (`str`) - Role applied to load the data. * `sourceEngine` (`str`) - Source engine for the backup * `sourceEngineVersion` (`str`) - Version of the source engine used to make the backup """ security_group_names: pulumi.Output[list] """ List of DB Security Groups to associate. Only used for [DB Instances on the _EC2-Classic_ Platform](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.html#USER_VPC.FindDefaultVPC). """ skip_final_snapshot: pulumi.Output[bool] """ Determines whether a final DB snapshot is created before the DB instance is deleted. If true is specified, no DBSnapshot is created. If false is specified, a DB snapshot is created before the DB instance is deleted, using the value from `final_snapshot_identifier`. Default is `false`. """ snapshot_identifier: pulumi.Output[str] """ Specifies whether or not to create this database from a snapshot. This correlates to the snapshot ID you'd find in the RDS console, e.g: rds:production-2015-06-26-06-05. """ status: pulumi.Output[str] """ The RDS instance status. """ storage_encrypted: pulumi.Output[bool] """ Specifies whether the DB instance is encrypted. Note that if you are creating a cross-region read replica this field is ignored and you should instead declare `kms_key_id` with a valid ARN. The default is `false` if not specified. """ storage_type: pulumi.Output[str] """ One of "standard" (magnetic), "gp2" (general purpose SSD), or "io1" (provisioned IOPS SSD). The default is "io1" if `iops` is specified, "gp2" if not. """ tags: pulumi.Output[dict] """ A map of tags to assign to the resource. """ timezone: pulumi.Output[str] """ Time zone of the DB instance. `timezone` is currently only supported by Microsoft SQL Server. The `timezone` can only be set on creation. See [MSSQL User Guide](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.TimeZone) for more information. """ username: pulumi.Output[str] """ (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) Username for the master DB user. """ vpc_security_group_ids: pulumi.Output[list] """ List of VPC security groups to associate. """ def __init__(__self__, resource_name, opts=None, allocated_storage=None, allow_major_version_upgrade=None, apply_immediately=None, auto_minor_version_upgrade=None, availability_zone=None, backup_retention_period=None, backup_window=None, ca_cert_identifier=None, character_set_name=None, copy_tags_to_snapshot=None, db_subnet_group_name=None, delete_automated_backups=None, deletion_protection=None, domain=None, domain_iam_role_name=None, enabled_cloudwatch_logs_exports=None, engine=None, engine_version=None, final_snapshot_identifier=None, iam_database_authentication_enabled=None, identifier=None, identifier_prefix=None, instance_class=None, iops=None, kms_key_id=None, license_model=None, maintenance_window=None, max_allocated_storage=None, monitoring_interval=None, monitoring_role_arn=None, multi_az=None, name=None, option_group_name=None, parameter_group_name=None, password=None, performance_insights_enabled=None, performance_insights_kms_key_id=None, performance_insights_retention_period=None, port=None, publicly_accessible=None, replicate_source_db=None, s3_import=None, security_group_names=None, skip_final_snapshot=None, snapshot_identifier=None, storage_encrypted=None, storage_type=None, tags=None, timezone=None, username=None, vpc_security_group_ids=None, __props__=None, __name__=None, __opts__=None): """ Provides an RDS instance resource. A DB instance is an isolated database environment in the cloud. A DB instance can contain multiple user-created databases. Changes to a DB instance can occur when you manually change a parameter, such as `allocated_storage`, and are reflected in the next maintenance window. Because of this, this provider may report a difference in its planning phase because a modification has not yet taken place. You can use the `apply_immediately` flag to instruct the service to apply the change immediately (see documentation below). When upgrading the major version of an engine, `allow_major_version_upgrade` must be set to `true`. > **Note:** using `apply_immediately` can result in a brief downtime as the server reboots. See the AWS Docs on [RDS Maintenance][2] for more information. > **Note:** All arguments including the username and password will be stored in the raw state as plain-text. ## RDS Instance Class Types Amazon RDS supports three types of instance classes: Standard, Memory Optimized, and Burstable Performance. For more information please read the AWS RDS documentation about [DB Instance Class Types](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html) ## Example Usage ### Basic Usage ```python import pulumi import pulumi_aws as aws default = aws.rds.Instance("default", allocated_storage=20, engine="mysql", engine_version="5.7", instance_class="db.t2.micro", name="mydb", parameter_group_name="default.mysql5.7", password="foobarbaz", storage_type="gp2", username="foo") ``` ### Storage Autoscaling ```python import pulumi import pulumi_aws as aws example = aws.rds.Instance("example", allocated_storage=50, max_allocated_storage=100) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[float] allocated_storage: The allocated storage in gibibytes. If `max_allocated_storage` is configured, this argument represents the initial storage allocation and differences from the configuration will be ignored automatically when Storage Autoscaling occurs. :param pulumi.Input[bool] allow_major_version_upgrade: Indicates that major version upgrades are allowed. Changing this parameter does not result in an outage and the change is asynchronously applied as soon as possible. :param pulumi.Input[bool] apply_immediately: Specifies whether any database modifications are applied immediately, or during the next maintenance window. Default is `false`. See [Amazon RDS Documentation for more information.](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html) :param pulumi.Input[bool] auto_minor_version_upgrade: Indicates that minor engine upgrades will be applied automatically to the DB instance during the maintenance window. Defaults to true. :param pulumi.Input[str] availability_zone: The AZ for the RDS instance. :param pulumi.Input[float] backup_retention_period: The days to retain backups for. Must be between `0` and `35`. Must be greater than `0` if the database is used as a source for a Read Replica. [See Read Replica][1]. :param pulumi.Input[str] backup_window: The daily time range (in UTC) during which automated backups are created if they are enabled. Example: "09:46-10:16". Must not overlap with `maintenance_window`. :param pulumi.Input[str] ca_cert_identifier: The identifier of the CA certificate for the DB instance. :param pulumi.Input[str] character_set_name: The character set name to use for DB encoding in Oracle and Microsoft SQL instances (collation). This can't be changed. See [Oracle Character Sets Supported in Amazon RDS](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.OracleCharacterSets.html) or [Server-Level Collation for Microsoft SQL Server](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.Collation.html) for more information. :param pulumi.Input[bool] copy_tags_to_snapshot: Copy all Instance `tags` to snapshots. Default is `false`. :param pulumi.Input[str] db_subnet_group_name: Name of `DB subnet group`. DB instance will be created in the VPC associated with the DB subnet group. If unspecified, will be created in the `default` VPC, or in EC2 Classic, if available. When working with read replicas, it should be specified only if the source database specifies an instance in another AWS Region. See [DBSubnetGroupName in API action CreateDBInstanceReadReplica](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html) for additional read replica contraints. :param pulumi.Input[bool] delete_automated_backups: Specifies whether to remove automated backups immediately after the DB instance is deleted. Default is `true`. :param pulumi.Input[bool] deletion_protection: If the DB instance should have deletion protection enabled. The database can't be deleted when this value is set to `true`. The default is `false`. :param pulumi.Input[str] domain: The ID of the Directory Service Active Directory domain to create the instance in. :param pulumi.Input[str] domain_iam_role_name: The name of the IAM role to be used when making API calls to the Directory Service. :param pulumi.Input[list] enabled_cloudwatch_logs_exports: List of log types to enable for exporting to CloudWatch logs. If omitted, no logs will be exported. Valid values (depending on `engine`). MySQL and MariaDB: `audit`, `error`, `general`, `slowquery`. PostgreSQL: `postgresql`, `upgrade`. MSSQL: `agent` , `error`. Oracle: `alert`, `audit`, `listener`, `trace`. :param pulumi.Input[str] engine: (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) The database engine to use. For supported values, see the Engine parameter in [API action CreateDBInstance](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html). Note that for Amazon Aurora instances the engine must match the `DB cluster`'s engine'. For information on the difference between the available Aurora MySQL engines see [Comparison between Aurora MySQL 1 and Aurora MySQL 2](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Updates.20180206.html) in the Amazon RDS User Guide. :param pulumi.Input[str] engine_version: The engine version to use. If `auto_minor_version_upgrade` is enabled, you can provide a prefix of the version such as `5.7` (for `5.7.10`) and this attribute will ignore differences in the patch version automatically (e.g. `5.7.17`). For supported values, see the EngineVersion parameter in [API action CreateDBInstance](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html). Note that for Amazon Aurora instances the engine version must match the `DB cluster`'s engine version'. :param pulumi.Input[str] final_snapshot_identifier: The name of your final DB snapshot when this DB instance is deleted. Must be provided if `skip_final_snapshot` is set to `false`. :param pulumi.Input[bool] iam_database_authentication_enabled: Specifies whether or mappings of AWS Identity and Access Management (IAM) accounts to database accounts is enabled. :param pulumi.Input[str] identifier: The name of the RDS instance, if omitted, this provider will assign a random, unique identifier. :param pulumi.Input[str] identifier_prefix: Creates a unique identifier beginning with the specified prefix. Conflicts with `identifier`. :param pulumi.Input[dict] instance_class: The instance type of the RDS instance. :param pulumi.Input[float] iops: The amount of provisioned IOPS. Setting this implies a storage_type of "io1". :param pulumi.Input[str] kms_key_id: The ARN for the KMS encryption key. If creating an encrypted replica, set this to the destination KMS ARN. :param pulumi.Input[str] license_model: (Optional, but required for some DB engines, i.e. Oracle SE1) License model information for this DB instance. :param pulumi.Input[str] maintenance_window: The window to perform maintenance in. Syntax: "ddd:hh24:mi-ddd:hh24:mi". Eg: "Mon:00:00-Mon:03:00". See [RDS Maintenance Window docs](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Maintenance.html#AdjustingTheMaintenanceWindow) for more information. :param pulumi.Input[float] max_allocated_storage: When configured, the upper limit to which Amazon RDS can automatically scale the storage of the DB instance. Configuring this will automatically ignore differences to `allocated_storage`. Must be greater than or equal to `allocated_storage` or `0` to disable Storage Autoscaling. :param pulumi.Input[float] monitoring_interval: The interval, in seconds, between points when Enhanced Monitoring metrics are collected for the DB instance. To disable collecting Enhanced Monitoring metrics, specify 0. The default is 0. Valid Values: 0, 1, 5, 10, 15, 30, 60. :param pulumi.Input[str] monitoring_role_arn: The ARN for the IAM role that permits RDS to send enhanced monitoring metrics to CloudWatch Logs. You can find more information on the [AWS Documentation](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.html) what IAM permissions are needed to allow Enhanced Monitoring for RDS Instances. :param pulumi.Input[bool] multi_az: Specifies if the RDS instance is multi-AZ :param pulumi.Input[str] name: The name of the database to create when the DB instance is created. If this parameter is not specified, no database is created in the DB instance. Note that this does not apply for Oracle or SQL Server engines. See the [AWS documentation](http://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html) for more details on what applies for those engines. :param pulumi.Input[str] option_group_name: Name of the DB option group to associate. :param pulumi.Input[str] parameter_group_name: Name of the DB parameter group to associate. :param pulumi.Input[str] password: (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) Password for the master DB user. Note that this may show up in logs, and it will be stored in the state file. :param pulumi.Input[bool] performance_insights_enabled: Specifies whether Performance Insights are enabled. Defaults to false. :param pulumi.Input[str] performance_insights_kms_key_id: The ARN for the KMS key to encrypt Performance Insights data. When specifying `performance_insights_kms_key_id`, `performance_insights_enabled` needs to be set to true. Once KMS key is set, it can never be changed. :param pulumi.Input[float] performance_insights_retention_period: The amount of time in days to retain Performance Insights data. Either 7 (7 days) or 731 (2 years). When specifying `performance_insights_retention_period`, `performance_insights_enabled` needs to be set to true. Defaults to '7'. :param pulumi.Input[float] port: The port on which the DB accepts connections. :param pulumi.Input[bool] publicly_accessible: Bool to control if instance is publicly accessible. Default is `false`. :param pulumi.Input[str] replicate_source_db: Specifies that this resource is a Replicate database, and to use this value as the source database. This correlates to the `identifier` of another Amazon RDS Database to replicate (if replicating within a single region) or ARN of the Amazon RDS Database to replicate (if replicating cross-region). Note that if you are creating a cross-region replica of an encrypted database you will also need to specify a `kms_key_id`. See [DB Instance Replication][1] and [Working with PostgreSQL and MySQL Read Replicas](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html) for more information on using Replication. :param pulumi.Input[dict] s3_import: Restore from a Percona Xtrabackup in S3. See [Importing Data into an Amazon RDS MySQL DB Instance](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html) :param pulumi.Input[list] security_group_names: List of DB Security Groups to associate. Only used for [DB Instances on the _EC2-Classic_ Platform](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.html#USER_VPC.FindDefaultVPC). :param pulumi.Input[bool] skip_final_snapshot: Determines whether a final DB snapshot is created before the DB instance is deleted. If true is specified, no DBSnapshot is created. If false is specified, a DB snapshot is created before the DB instance is deleted, using the value from `final_snapshot_identifier`. Default is `false`. :param pulumi.Input[str] snapshot_identifier: Specifies whether or not to create this database from a snapshot. This correlates to the snapshot ID you'd find in the RDS console, e.g: rds:production-2015-06-26-06-05. :param pulumi.Input[bool] storage_encrypted: Specifies whether the DB instance is encrypted. Note that if you are creating a cross-region read replica this field is ignored and you should instead declare `kms_key_id` with a valid ARN. The default is `false` if not specified. :param pulumi.Input[dict] storage_type: One of "standard" (magnetic), "gp2" (general purpose SSD), or "io1" (provisioned IOPS SSD). The default is "io1" if `iops` is specified, "gp2" if not. :param pulumi.Input[dict] tags: A map of tags to assign to the resource. :param pulumi.Input[str] timezone: Time zone of the DB instance. `timezone` is currently only supported by Microsoft SQL Server. The `timezone` can only be set on creation. See [MSSQL User Guide](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.TimeZone) for more information. :param pulumi.Input[str] username: (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) Username for the master DB user. :param pulumi.Input[list] vpc_security_group_ids: List of VPC security groups to associate. The **s3_import** object supports the following: * `bucket_name` (`pulumi.Input[str]`) - The bucket name where your backup is stored * `bucket_prefix` (`pulumi.Input[str]`) - Can be blank, but is the path to your backup * `ingestionRole` (`pulumi.Input[str]`) - Role applied to load the data. * `sourceEngine` (`pulumi.Input[str]`) - Source engine for the backup * `sourceEngineVersion` (`pulumi.Input[str]`) - Version of the source engine used to make the backup """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['allocated_storage'] = allocated_storage __props__['allow_major_version_upgrade'] = allow_major_version_upgrade __props__['apply_immediately'] = apply_immediately __props__['auto_minor_version_upgrade'] = auto_minor_version_upgrade __props__['availability_zone'] = availability_zone __props__['backup_retention_period'] = backup_retention_period __props__['backup_window'] = backup_window __props__['ca_cert_identifier'] = ca_cert_identifier __props__['character_set_name'] = character_set_name __props__['copy_tags_to_snapshot'] = copy_tags_to_snapshot __props__['db_subnet_group_name'] = db_subnet_group_name __props__['delete_automated_backups'] = delete_automated_backups __props__['deletion_protection'] = deletion_protection __props__['domain'] = domain __props__['domain_iam_role_name'] = domain_iam_role_name __props__['enabled_cloudwatch_logs_exports'] = enabled_cloudwatch_logs_exports __props__['engine'] = engine __props__['engine_version'] = engine_version __props__['final_snapshot_identifier'] = final_snapshot_identifier __props__['iam_database_authentication_enabled'] = iam_database_authentication_enabled __props__['identifier'] = identifier __props__['identifier_prefix'] = identifier_prefix if instance_class is None: raise TypeError("Missing required property 'instance_class'") __props__['instance_class'] = instance_class __props__['iops'] = iops __props__['kms_key_id'] = kms_key_id __props__['license_model'] = license_model __props__['maintenance_window'] = maintenance_window __props__['max_allocated_storage'] = max_allocated_storage __props__['monitoring_interval'] = monitoring_interval __props__['monitoring_role_arn'] = monitoring_role_arn __props__['multi_az'] = multi_az __props__['name'] = name __props__['option_group_name'] = option_group_name __props__['parameter_group_name'] = parameter_group_name __props__['password'] = password __props__['performance_insights_enabled'] = performance_insights_enabled __props__['performance_insights_kms_key_id'] = performance_insights_kms_key_id __props__['performance_insights_retention_period'] = performance_insights_retention_period __props__['port'] = port __props__['publicly_accessible'] = publicly_accessible __props__['replicate_source_db'] = replicate_source_db __props__['s3_import'] = s3_import __props__['security_group_names'] = security_group_names __props__['skip_final_snapshot'] = skip_final_snapshot __props__['snapshot_identifier'] = snapshot_identifier __props__['storage_encrypted'] = storage_encrypted __props__['storage_type'] = storage_type __props__['tags'] = tags __props__['timezone'] = timezone __props__['username'] = username __props__['vpc_security_group_ids'] = vpc_security_group_ids __props__['address'] = None __props__['arn'] = None __props__['endpoint'] = None __props__['hosted_zone_id'] = None __props__['replicas'] = None __props__['resource_id'] = None __props__['status'] = None super(Instance, __self__).__init__( 'aws:rds/instance:Instance', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, address=None, allocated_storage=None, allow_major_version_upgrade=None, apply_immediately=None, arn=None, auto_minor_version_upgrade=None, availability_zone=None, backup_retention_period=None, backup_window=None, ca_cert_identifier=None, character_set_name=None, copy_tags_to_snapshot=None, db_subnet_group_name=None, delete_automated_backups=None, deletion_protection=None, domain=None, domain_iam_role_name=None, enabled_cloudwatch_logs_exports=None, endpoint=None, engine=None, engine_version=None, final_snapshot_identifier=None, hosted_zone_id=None, iam_database_authentication_enabled=None, identifier=None, identifier_prefix=None, instance_class=None, iops=None, kms_key_id=None, license_model=None, maintenance_window=None, max_allocated_storage=None, monitoring_interval=None, monitoring_role_arn=None, multi_az=None, name=None, option_group_name=None, parameter_group_name=None, password=None, performance_insights_enabled=None, performance_insights_kms_key_id=None, performance_insights_retention_period=None, port=None, publicly_accessible=None, replicas=None, replicate_source_db=None, resource_id=None, s3_import=None, security_group_names=None, skip_final_snapshot=None, snapshot_identifier=None, status=None, storage_encrypted=None, storage_type=None, tags=None, timezone=None, username=None, vpc_security_group_ids=None): """ Get an existing Instance resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] address: The hostname of the RDS instance. See also `endpoint` and `port`. :param pulumi.Input[float] allocated_storage: The allocated storage in gibibytes. If `max_allocated_storage` is configured, this argument represents the initial storage allocation and differences from the configuration will be ignored automatically when Storage Autoscaling occurs. :param pulumi.Input[bool] allow_major_version_upgrade: Indicates that major version upgrades are allowed. Changing this parameter does not result in an outage and the change is asynchronously applied as soon as possible. :param pulumi.Input[bool] apply_immediately: Specifies whether any database modifications are applied immediately, or during the next maintenance window. Default is `false`. See [Amazon RDS Documentation for more information.](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html) :param pulumi.Input[str] arn: The ARN of the RDS instance. :param pulumi.Input[bool] auto_minor_version_upgrade: Indicates that minor engine upgrades will be applied automatically to the DB instance during the maintenance window. Defaults to true. :param pulumi.Input[str] availability_zone: The AZ for the RDS instance. :param pulumi.Input[float] backup_retention_period: The days to retain backups for. Must be between `0` and `35`. Must be greater than `0` if the database is used as a source for a Read Replica. [See Read Replica][1]. :param pulumi.Input[str] backup_window: The daily time range (in UTC) during which automated backups are created if they are enabled. Example: "09:46-10:16". Must not overlap with `maintenance_window`. :param pulumi.Input[str] ca_cert_identifier: The identifier of the CA certificate for the DB instance. :param pulumi.Input[str] character_set_name: The character set name to use for DB encoding in Oracle and Microsoft SQL instances (collation). This can't be changed. See [Oracle Character Sets Supported in Amazon RDS](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.OracleCharacterSets.html) or [Server-Level Collation for Microsoft SQL Server](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.SQLServer.CommonDBATasks.Collation.html) for more information. :param pulumi.Input[bool] copy_tags_to_snapshot: Copy all Instance `tags` to snapshots. Default is `false`. :param pulumi.Input[str] db_subnet_group_name: Name of `DB subnet group`. DB instance will be created in the VPC associated with the DB subnet group. If unspecified, will be created in the `default` VPC, or in EC2 Classic, if available. When working with read replicas, it should be specified only if the source database specifies an instance in another AWS Region. See [DBSubnetGroupName in API action CreateDBInstanceReadReplica](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstanceReadReplica.html) for additional read replica contraints. :param pulumi.Input[bool] delete_automated_backups: Specifies whether to remove automated backups immediately after the DB instance is deleted. Default is `true`. :param pulumi.Input[bool] deletion_protection: If the DB instance should have deletion protection enabled. The database can't be deleted when this value is set to `true`. The default is `false`. :param pulumi.Input[str] domain: The ID of the Directory Service Active Directory domain to create the instance in. :param pulumi.Input[str] domain_iam_role_name: The name of the IAM role to be used when making API calls to the Directory Service. :param pulumi.Input[list] enabled_cloudwatch_logs_exports: List of log types to enable for exporting to CloudWatch logs. If omitted, no logs will be exported. Valid values (depending on `engine`). MySQL and MariaDB: `audit`, `error`, `general`, `slowquery`. PostgreSQL: `postgresql`, `upgrade`. MSSQL: `agent` , `error`. Oracle: `alert`, `audit`, `listener`, `trace`. :param pulumi.Input[str] endpoint: The connection endpoint in `address:port` format. :param pulumi.Input[str] engine: (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) The database engine to use. For supported values, see the Engine parameter in [API action CreateDBInstance](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html). Note that for Amazon Aurora instances the engine must match the `DB cluster`'s engine'. For information on the difference between the available Aurora MySQL engines see [Comparison between Aurora MySQL 1 and Aurora MySQL 2](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/AuroraMySQL.Updates.20180206.html) in the Amazon RDS User Guide. :param pulumi.Input[str] engine_version: The engine version to use. If `auto_minor_version_upgrade` is enabled, you can provide a prefix of the version such as `5.7` (for `5.7.10`) and this attribute will ignore differences in the patch version automatically (e.g. `5.7.17`). For supported values, see the EngineVersion parameter in [API action CreateDBInstance](https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_CreateDBInstance.html). Note that for Amazon Aurora instances the engine version must match the `DB cluster`'s engine version'. :param pulumi.Input[str] final_snapshot_identifier: The name of your final DB snapshot when this DB instance is deleted. Must be provided if `skip_final_snapshot` is set to `false`. :param pulumi.Input[str] hosted_zone_id: The canonical hosted zone ID of the DB instance (to be used in a Route 53 Alias record). :param pulumi.Input[bool] iam_database_authentication_enabled: Specifies whether or mappings of AWS Identity and Access Management (IAM) accounts to database accounts is enabled. :param pulumi.Input[str] identifier: The name of the RDS instance, if omitted, this provider will assign a random, unique identifier. :param pulumi.Input[str] identifier_prefix: Creates a unique identifier beginning with the specified prefix. Conflicts with `identifier`. :param pulumi.Input[dict] instance_class: The instance type of the RDS instance. :param pulumi.Input[float] iops: The amount of provisioned IOPS. Setting this implies a storage_type of "io1". :param pulumi.Input[str] kms_key_id: The ARN for the KMS encryption key. If creating an encrypted replica, set this to the destination KMS ARN. :param pulumi.Input[str] license_model: (Optional, but required for some DB engines, i.e. Oracle SE1) License model information for this DB instance. :param pulumi.Input[str] maintenance_window: The window to perform maintenance in. Syntax: "ddd:hh24:mi-ddd:hh24:mi". Eg: "Mon:00:00-Mon:03:00". See [RDS Maintenance Window docs](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_UpgradeDBInstance.Maintenance.html#AdjustingTheMaintenanceWindow) for more information. :param pulumi.Input[float] max_allocated_storage: When configured, the upper limit to which Amazon RDS can automatically scale the storage of the DB instance. Configuring this will automatically ignore differences to `allocated_storage`. Must be greater than or equal to `allocated_storage` or `0` to disable Storage Autoscaling. :param pulumi.Input[float] monitoring_interval: The interval, in seconds, between points when Enhanced Monitoring metrics are collected for the DB instance. To disable collecting Enhanced Monitoring metrics, specify 0. The default is 0. Valid Values: 0, 1, 5, 10, 15, 30, 60. :param pulumi.Input[str] monitoring_role_arn: The ARN for the IAM role that permits RDS to send enhanced monitoring metrics to CloudWatch Logs. You can find more information on the [AWS Documentation](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.html) what IAM permissions are needed to allow Enhanced Monitoring for RDS Instances. :param pulumi.Input[bool] multi_az: Specifies if the RDS instance is multi-AZ :param pulumi.Input[str] name: The name of the database to create when the DB instance is created. If this parameter is not specified, no database is created in the DB instance. Note that this does not apply for Oracle or SQL Server engines. See the [AWS documentation](http://docs.aws.amazon.com/cli/latest/reference/rds/create-db-instance.html) for more details on what applies for those engines. :param pulumi.Input[str] option_group_name: Name of the DB option group to associate. :param pulumi.Input[str] parameter_group_name: Name of the DB parameter group to associate. :param pulumi.Input[str] password: (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) Password for the master DB user. Note that this may show up in logs, and it will be stored in the state file. :param pulumi.Input[bool] performance_insights_enabled: Specifies whether Performance Insights are enabled. Defaults to false. :param pulumi.Input[str] performance_insights_kms_key_id: The ARN for the KMS key to encrypt Performance Insights data. When specifying `performance_insights_kms_key_id`, `performance_insights_enabled` needs to be set to true. Once KMS key is set, it can never be changed. :param pulumi.Input[float] performance_insights_retention_period: The amount of time in days to retain Performance Insights data. Either 7 (7 days) or 731 (2 years). When specifying `performance_insights_retention_period`, `performance_insights_enabled` needs to be set to true. Defaults to '7'. :param pulumi.Input[float] port: The port on which the DB accepts connections. :param pulumi.Input[bool] publicly_accessible: Bool to control if instance is publicly accessible. Default is `false`. :param pulumi.Input[str] replicate_source_db: Specifies that this resource is a Replicate database, and to use this value as the source database. This correlates to the `identifier` of another Amazon RDS Database to replicate (if replicating within a single region) or ARN of the Amazon RDS Database to replicate (if replicating cross-region). Note that if you are creating a cross-region replica of an encrypted database you will also need to specify a `kms_key_id`. See [DB Instance Replication][1] and [Working with PostgreSQL and MySQL Read Replicas](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html) for more information on using Replication. :param pulumi.Input[str] resource_id: The RDS Resource ID of this instance. :param pulumi.Input[dict] s3_import: Restore from a Percona Xtrabackup in S3. See [Importing Data into an Amazon RDS MySQL DB Instance](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html) :param pulumi.Input[list] security_group_names: List of DB Security Groups to associate. Only used for [DB Instances on the _EC2-Classic_ Platform](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.html#USER_VPC.FindDefaultVPC). :param pulumi.Input[bool] skip_final_snapshot: Determines whether a final DB snapshot is created before the DB instance is deleted. If true is specified, no DBSnapshot is created. If false is specified, a DB snapshot is created before the DB instance is deleted, using the value from `final_snapshot_identifier`. Default is `false`. :param pulumi.Input[str] snapshot_identifier: Specifies whether or not to create this database from a snapshot. This correlates to the snapshot ID you'd find in the RDS console, e.g: rds:production-2015-06-26-06-05. :param pulumi.Input[str] status: The RDS instance status. :param pulumi.Input[bool] storage_encrypted: Specifies whether the DB instance is encrypted. Note that if you are creating a cross-region read replica this field is ignored and you should instead declare `kms_key_id` with a valid ARN. The default is `false` if not specified. :param pulumi.Input[dict] storage_type: One of "standard" (magnetic), "gp2" (general purpose SSD), or "io1" (provisioned IOPS SSD). The default is "io1" if `iops` is specified, "gp2" if not. :param pulumi.Input[dict] tags: A map of tags to assign to the resource. :param pulumi.Input[str] timezone: Time zone of the DB instance. `timezone` is currently only supported by Microsoft SQL Server. The `timezone` can only be set on creation. See [MSSQL User Guide](http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.html#SQLServer.Concepts.General.TimeZone) for more information. :param pulumi.Input[str] username: (Required unless a `snapshot_identifier` or `replicate_source_db` is provided) Username for the master DB user. :param pulumi.Input[list] vpc_security_group_ids: List of VPC security groups to associate. The **s3_import** object supports the following: * `bucket_name` (`pulumi.Input[str]`) - The bucket name where your backup is stored * `bucket_prefix` (`pulumi.Input[str]`) - Can be blank, but is the path to your backup * `ingestionRole` (`pulumi.Input[str]`) - Role applied to load the data. * `sourceEngine` (`pulumi.Input[str]`) - Source engine for the backup * `sourceEngineVersion` (`pulumi.Input[str]`) - Version of the source engine used to make the backup """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["address"] = address __props__["allocated_storage"] = allocated_storage __props__["allow_major_version_upgrade"] = allow_major_version_upgrade __props__["apply_immediately"] = apply_immediately __props__["arn"] = arn __props__["auto_minor_version_upgrade"] = auto_minor_version_upgrade __props__["availability_zone"] = availability_zone __props__["backup_retention_period"] = backup_retention_period __props__["backup_window"] = backup_window __props__["ca_cert_identifier"] = ca_cert_identifier __props__["character_set_name"] = character_set_name __props__["copy_tags_to_snapshot"] = copy_tags_to_snapshot __props__["db_subnet_group_name"] = db_subnet_group_name __props__["delete_automated_backups"] = delete_automated_backups __props__["deletion_protection"] = deletion_protection __props__["domain"] = domain __props__["domain_iam_role_name"] = domain_iam_role_name __props__["enabled_cloudwatch_logs_exports"] = enabled_cloudwatch_logs_exports __props__["endpoint"] = endpoint __props__["engine"] = engine __props__["engine_version"] = engine_version __props__["final_snapshot_identifier"] = final_snapshot_identifier __props__["hosted_zone_id"] = hosted_zone_id __props__["iam_database_authentication_enabled"] = iam_database_authentication_enabled __props__["identifier"] = identifier __props__["identifier_prefix"] = identifier_prefix __props__["instance_class"] = instance_class __props__["iops"] = iops __props__["kms_key_id"] = kms_key_id __props__["license_model"] = license_model __props__["maintenance_window"] = maintenance_window __props__["max_allocated_storage"] = max_allocated_storage __props__["monitoring_interval"] = monitoring_interval __props__["monitoring_role_arn"] = monitoring_role_arn __props__["multi_az"] = multi_az __props__["name"] = name __props__["option_group_name"] = option_group_name __props__["parameter_group_name"] = parameter_group_name __props__["password"] = password __props__["performance_insights_enabled"] = performance_insights_enabled __props__["performance_insights_kms_key_id"] = performance_insights_kms_key_id __props__["performance_insights_retention_period"] = performance_insights_retention_period __props__["port"] = port __props__["publicly_accessible"] = publicly_accessible __props__["replicas"] = replicas __props__["replicate_source_db"] = replicate_source_db __props__["resource_id"] = resource_id __props__["s3_import"] = s3_import __props__["security_group_names"] = security_group_names __props__["skip_final_snapshot"] = skip_final_snapshot __props__["snapshot_identifier"] = snapshot_identifier __props__["status"] = status __props__["storage_encrypted"] = storage_encrypted __props__["storage_type"] = storage_type __props__["tags"] = tags __props__["timezone"] = timezone __props__["username"] = username __props__["vpc_security_group_ids"] = vpc_security_group_ids return Instance(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
68.217964
1,380
0.708771
6ca3f27854ff5aba9aa7dcdc3ba1c65b78e62959
9,880
py
Python
botenv/lib/python3.9/site-packages/deprecated/classic.py
0xtuytuy/unit-crypto-ski-week-poap-bot
9bab0a6013a29db9ce76311d4f6fa1d0922ac5c1
[ "MIT" ]
169
2017-12-05T15:22:20.000Z
2022-03-08T03:24:56.000Z
botenv/lib/python3.9/site-packages/deprecated/classic.py
0xtuytuy/unit-crypto-ski-week-poap-bot
9bab0a6013a29db9ce76311d4f6fa1d0922ac5c1
[ "MIT" ]
48
2018-06-21T22:39:37.000Z
2022-01-07T17:57:59.000Z
botenv/lib/python3.9/site-packages/deprecated/classic.py
0xtuytuy/unit-crypto-ski-week-poap-bot
9bab0a6013a29db9ce76311d4f6fa1d0922ac5c1
[ "MIT" ]
23
2018-06-21T22:36:48.000Z
2021-12-22T19:31:18.000Z
# -*- coding: utf-8 -*- """ Classic deprecation warning =========================== Classic ``@deprecated`` decorator to deprecate old python classes, functions or methods. .. _The Warnings Filter: https://docs.python.org/3/library/warnings.html#the-warnings-filter """ import functools import inspect import platform import warnings import wrapt try: # If the C extension for wrapt was compiled and wrapt/_wrappers.pyd exists, then the # stack level that should be passed to warnings.warn should be 2. However, if using # a pure python wrapt, a extra stacklevel is required. import wrapt._wrappers _routine_stacklevel = 2 _class_stacklevel = 2 except ImportError: _routine_stacklevel = 3 if platform.python_implementation() == "PyPy": _class_stacklevel = 2 else: _class_stacklevel = 3 string_types = (type(b''), type(u'')) class ClassicAdapter(wrapt.AdapterFactory): """ Classic adapter -- *for advanced usage only* This adapter is used to get the deprecation message according to the wrapped object type: class, function, standard method, static method, or class method. This is the base class of the :class:`~deprecated.sphinx.SphinxAdapter` class which is used to update the wrapped object docstring. You can also inherit this class to change the deprecation message. In the following example, we change the message into "The ... is deprecated.": .. code-block:: python import inspect from deprecated.classic import ClassicAdapter from deprecated.classic import deprecated class MyClassicAdapter(ClassicAdapter): def get_deprecated_msg(self, wrapped, instance): if instance is None: if inspect.isclass(wrapped): fmt = "The class {name} is deprecated." else: fmt = "The function {name} is deprecated." else: if inspect.isclass(instance): fmt = "The class method {name} is deprecated." else: fmt = "The method {name} is deprecated." if self.reason: fmt += " ({reason})" if self.version: fmt += " -- Deprecated since version {version}." return fmt.format(name=wrapped.__name__, reason=self.reason or "", version=self.version or "") Then, you can use your ``MyClassicAdapter`` class like this in your source code: .. code-block:: python @deprecated(reason="use another function", adapter_cls=MyClassicAdapter) def some_old_function(x, y): return x + y """ def __init__(self, reason="", version="", action=None, category=DeprecationWarning): """ Construct a wrapper adapter. :type reason: str :param reason: Reason message which documents the deprecation in your library (can be omitted). :type version: str :param version: Version of your project which deprecates this feature. If you follow the `Semantic Versioning <https://semver.org/>`_, the version number has the format "MAJOR.MINOR.PATCH". :type action: str :param action: A warning filter used to activate or not the deprecation warning. Can be one of "error", "ignore", "always", "default", "module", or "once". If ``None`` or empty, the the global filtering mechanism is used. See: `The Warnings Filter`_ in the Python documentation. :type category: type :param category: The warning category to use for the deprecation warning. By default, the category class is :class:`~DeprecationWarning`, you can inherit this class to define your own deprecation warning category. """ self.reason = reason or "" self.version = version or "" self.action = action self.category = category super(ClassicAdapter, self).__init__() def get_deprecated_msg(self, wrapped, instance): """ Get the deprecation warning message for the user. :param wrapped: Wrapped class or function. :param instance: The object to which the wrapped function was bound when it was called. :return: The warning message. """ if instance is None: if inspect.isclass(wrapped): fmt = "Call to deprecated class {name}." else: fmt = "Call to deprecated function (or staticmethod) {name}." else: if inspect.isclass(instance): fmt = "Call to deprecated class method {name}." else: fmt = "Call to deprecated method {name}." if self.reason: fmt += " ({reason})" if self.version: fmt += " -- Deprecated since version {version}." return fmt.format(name=wrapped.__name__, reason=self.reason or "", version=self.version or "") def __call__(self, wrapped): """ Decorate your class or function. :param wrapped: Wrapped class or function. :return: the decorated class or function. .. versionchanged:: 1.2.4 Don't pass arguments to :meth:`object.__new__` (other than *cls*). .. versionchanged:: 1.2.8 The warning filter is not set if the *action* parameter is ``None`` or empty. """ if inspect.isclass(wrapped): old_new1 = wrapped.__new__ def wrapped_cls(cls, *args, **kwargs): msg = self.get_deprecated_msg(wrapped, None) if self.action: with warnings.catch_warnings(): warnings.simplefilter(self.action, self.category) warnings.warn(msg, category=self.category, stacklevel=_class_stacklevel) else: warnings.warn(msg, category=self.category, stacklevel=_class_stacklevel) if old_new1 is object.__new__: return old_new1(cls) # actually, we don't know the real signature of *old_new1* return old_new1(cls, *args, **kwargs) wrapped.__new__ = staticmethod(wrapped_cls) return wrapped def deprecated(*args, **kwargs): """ This is a decorator which can be used to mark functions as deprecated. It will result in a warning being emitted when the function is used. **Classic usage:** To use this, decorate your deprecated function with **@deprecated** decorator: .. code-block:: python from deprecated import deprecated @deprecated def some_old_function(x, y): return x + y You can also decorate a class or a method: .. code-block:: python from deprecated import deprecated class SomeClass(object): @deprecated def some_old_method(self, x, y): return x + y @deprecated class SomeOldClass(object): pass You can give a *reason* message to help the developer to choose another function/class, and a *version* number to specify the starting version number of the deprecation. .. code-block:: python from deprecated import deprecated @deprecated(reason="use another function", version='1.2.0') def some_old_function(x, y): return x + y The *category* keyword argument allow you to specify the deprecation warning class of your choice. By default, :exc:`DeprecationWarning` is used but you can choose :exc:`FutureWarning`, :exc:`PendingDeprecationWarning` or a custom subclass. .. code-block:: python from deprecated import deprecated @deprecated(category=PendingDeprecationWarning) def some_old_function(x, y): return x + y The *action* keyword argument allow you to locally change the warning filtering. *action* can be one of "error", "ignore", "always", "default", "module", or "once". If ``None``, empty or missing, the the global filtering mechanism is used. See: `The Warnings Filter`_ in the Python documentation. .. code-block:: python from deprecated import deprecated @deprecated(action="error") def some_old_function(x, y): return x + y """ if args and isinstance(args[0], string_types): kwargs['reason'] = args[0] args = args[1:] if args and not callable(args[0]): raise TypeError(repr(type(args[0]))) if args: action = kwargs.get('action') category = kwargs.get('category', DeprecationWarning) adapter_cls = kwargs.pop('adapter_cls', ClassicAdapter) adapter = adapter_cls(**kwargs) wrapped = args[0] if inspect.isclass(wrapped): wrapped = adapter(wrapped) return wrapped elif inspect.isroutine(wrapped): @wrapt.decorator(adapter=adapter) def wrapper_function(wrapped_, instance_, args_, kwargs_): msg = adapter.get_deprecated_msg(wrapped_, instance_) if action: with warnings.catch_warnings(): warnings.simplefilter(action, category) warnings.warn(msg, category=category, stacklevel=_routine_stacklevel) else: warnings.warn(msg, category=category, stacklevel=_routine_stacklevel) return wrapped_(*args_, **kwargs_) return wrapper_function(wrapped) else: raise TypeError(repr(type(wrapped))) return functools.partial(deprecated, **kwargs)
33.720137
102
0.606781
b1f631fc212ea7f8f3f2da1212da43e3df4e7e92
2,219
py
Python
Examples/Tests/ElectrostaticSphereEB/PICMI_inputs_3d.py
hklion/WarpX
3c2d0ee2815ab1df21b9f78d899fe7b1a9651758
[ "BSD-3-Clause-LBNL" ]
1
2021-06-23T23:38:50.000Z
2021-06-23T23:38:50.000Z
Examples/Tests/ElectrostaticSphereEB/PICMI_inputs_3d.py
hklion/WarpX
3c2d0ee2815ab1df21b9f78d899fe7b1a9651758
[ "BSD-3-Clause-LBNL" ]
106
2021-06-08T23:57:54.000Z
2022-03-08T00:36:46.000Z
Examples/Tests/ElectrostaticSphereEB/PICMI_inputs_3d.py
hklion/WarpX
3c2d0ee2815ab1df21b9f78d899fe7b1a9651758
[ "BSD-3-Clause-LBNL" ]
1
2021-06-21T18:50:43.000Z
2021-06-21T18:50:43.000Z
#!/usr/bin/env python3 from pywarpx import picmi ########################## # physics parameters ########################## V_domain_boundary = 0.0 V_embedded_boundary = 1.0 ########################## # numerics parameters ########################## dt = 1e-6 # --- Nb time steps max_steps = 1 # --- grid nx = 64 ny = 64 nz = 64 xmin = -0.5 xmax = 0.5 ymin = -0.5 ymax = 0.5 zmin = -0.5 zmax = 0.5 ########################## # numerics components ########################## grid = picmi.Cartesian3DGrid( number_of_cells = [nx, ny, nz], lower_bound = [xmin, ymin, zmin], upper_bound = [xmax, ymax, zmax], lower_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'], upper_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'], lower_boundary_conditions_particles = ['absorbing', 'absorbing', 'absorbing'], upper_boundary_conditions_particles = ['absorbing', 'absorbing', 'absorbing'], warpx_potential_lo_x = V_domain_boundary, warpx_potential_hi_x = V_domain_boundary, warpx_potential_lo_y = V_domain_boundary, warpx_potential_hi_y = V_domain_boundary, warpx_potential_lo_z = V_domain_boundary, warpx_potential_hi_z = V_domain_boundary, warpx_blocking_factor=8, warpx_max_grid_size = 128 ) solver = picmi.ElectrostaticSolver( grid=grid, method='Multigrid', required_precision=1e-7 ) embedded_boundary = picmi.EmbeddedBoundary( implicit_function="-(x**2+y**2+z**2-radius**2)", potential=V_embedded_boundary, radius = 0.3 ) ########################## # diagnostics ########################## field_diag = picmi.FieldDiagnostic( name = 'diag1', grid = grid, period = 1, data_list = ['Ex', 'Ey', 'Ez', 'phi', 'rho'], write_dir = '.', warpx_file_prefix = 'Python_ElectrostaticSphereEB_plt' ) ########################## # simulation setup ########################## sim = picmi.Simulation( solver = solver, time_step_size = dt, max_steps = max_steps, warpx_embedded_boundary=embedded_boundary, warpx_field_gathering_algo='momentum-conserving' ) sim.add_diagnostic(field_diag) ########################## # simulation run ########################## sim.step(max_steps)
21.970297
82
0.601622
c17e927a9f9a9b00b4a9f1ae20cdbe984b907f2f
7,266
py
Python
nets/off.py
reallongnguyen/Optical-Flow-Guided-Feature
f05081d76ced407c7c68013d49d57f0a20c71715
[ "MIT" ]
19
2018-12-21T03:45:02.000Z
2022-02-11T18:44:55.000Z
nets/off.py
islingio/Optical-Flow-Guided-Feature
f05081d76ced407c7c68013d49d57f0a20c71715
[ "MIT" ]
11
2020-09-25T19:44:20.000Z
2021-09-07T23:55:41.000Z
nets/off.py
islingio/Optical-Flow-Guided-Feature
f05081d76ced407c7c68013d49d57f0a20c71715
[ "MIT" ]
7
2018-10-30T04:03:36.000Z
2020-06-16T00:09:21.000Z
from __future__ import division from __future__ import print_function from __future__ import absolute_import import tensorflow as tf from tensorflow.contrib.layers import l2_regularizer, batch_norm, conv2d from nets import nets_factory # tf.add_check_numerics_ops() # slim = tf.contrib.slim _NUM_CHANELS = 128 sobel_x = tf.constant([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], tf.float32) sobel_x_filter = tf.reshape(sobel_x, [3, 3, 1, 1]) sobel_y_filter = tf.transpose(sobel_x_filter, [1, 0, 2, 3]) def sobel(feature): with tf.variable_scope('sobel'): channels = tf.unstack(feature, axis=3) fx = [] fy = [] for channel in channels: channel = tf.expand_dims(channel, axis=3) filtered_x = tf.nn.conv2d(channel, sobel_x_filter, [1, 1, 1, 1], padding='SAME') filtered_y = tf.nn.conv2d(channel, sobel_y_filter, [1, 1, 1, 1], padding='SAME') fx.append(filtered_x) fy.append(filtered_y) return tf.concat(fx, axis=3), tf.concat(fy, axis=3) def _padding(tensor, out_size): t_width = tensor.get_shape()[1] delta = tf.subtract(out_size, t_width) pad_left = tf.floor_div(delta, 2) pad_right = delta - pad_left return tf.pad( tensor, [ [0, 0], [pad_left, pad_right], [pad_left, pad_right], [0, 0] ], 'CONSTANT' ) def padding_and_concat(list_feature, out_size): padded_list = [] for item in list_feature: padded = tf.cond(tf.equal(out_size, item.get_shape()[1]), lambda: item, lambda: _padding(item, out_size)) shape = item.get_shape() padded.set_shape([shape[0], out_size, out_size, shape[3]]) padded_list.append(padded) return tf.concat(padded_list, axis=3) def off_unit(feature_t0, feature_t1, lower_unit): with tf.variable_scope('off_unit', values=[feature_t0, feature_t1]): # feature_t0 = batch_norm(feature_t0) # feature_t0 = tf.nn.relu(feature_t0) feature_t0 = conv2d(feature_t0, _NUM_CHANELS, 1, padding='SAME', # weights_initializer=tf.truncated_normal_initializer(0, 0.01), # biases_initializer=tf.zeros_initializer, # weights_regularizer=l2_regularizer(1e-3), # biases_regularizer=l2_regularizer(0.0001), # normalizer_fn=batch_norm, scope='conv1x1_t0') # feature_t1 = batch_norm(feature_t1) # feature_t1 = tf.nn.relu(feature_t1) feature_t1 = conv2d(feature_t1, _NUM_CHANELS, 1, padding='SAME', # weights_initializer=tf.truncated_normal_initializer(0, 0.01), # biases_initializer=tf.zeros_initializer, # weights_regularizer=l2_regularizer(1e-3), # biases_regularizer=l2_regularizer(0.0001), # normalizer_fn=batch_norm, scope='conv1x1_t1') ft = tf.subtract(feature_t0, feature_t1) fx, fy = sobel(feature_t0) return tf.concat( [ fx, fy, ft, lower_unit ], axis=3 ) def off_unit_first(feature_t0, feature_t1): with tf.variable_scope('off_unit_first', values=[feature_t0, feature_t1]): # feature_t0 = batch_norm(feature_t0) # feature_t0 = tf.nn.relu(feature_t0) feature_t0 = conv2d(feature_t0, _NUM_CHANELS, 1, padding='SAME', # weights_initializer=tf.truncated_normal_initializer(0, 0.01), # biases_initializer=tf.zeros_initializer, # weights_regularizer=l2_regularizer(1e-3), # biases_regularizer=l2_regularizer(0.0001), # normalizer_fn=batch_norm, scope='conv1x1_t0') # feature_t1 = batch_norm(feature_t1) # feature_t1 = tf.nn.relu(feature_t1) feature_t1 = conv2d(feature_t1, _NUM_CHANELS, 1, padding='SAME', # weights_initializer=tf.truncated_normal_initializer(0, 0.01), # biases_initializer=tf.zeros_initializer, # weights_regularizer=l2_regularizer(1e-3), # biases_regularizer=l2_regularizer(0.0001), # normalizer_fn=batch_norm, scope='conv1x1_t1') ft = tf.subtract(feature_t0, feature_t1) fx, fy = sobel(feature_t0) return tf.concat( [ fx, fy, ft ], axis=3 ) def off_sub_network(list_feature_k0, list_feature_k1, list_feature_k20, list_feature_k21, list_feature_k40, list_feature_k41, num_classes=11, is_training=True): ''' :param list_feature_k0: list of feature with maximum size (k size) of segment t :param list_feature_k1: list of feature with maximum size (k size) of segment t + delta_t :param list_feature_k20: list of feature with k/2 size of segment t :param list_feature_k21: list of feature with k/2 size of segment t + delta_t :param list_feature_k40: list of feature with k/4 size of segment t :param list_feature_k41: list of feature with k/4 size of segment t + delta_t :param num_classes: number classes :return: logits, endpoints ''' resnet_v2_20 = nets_factory.get_network_fn( 'resnet_v2_26', num_classes=num_classes, weight_decay=0.001, is_training=is_training) endpoints = {} with tf.variable_scope('OFFSubNetwork'): with tf.variable_scope('Tier1'): feature_k0 = padding_and_concat(list_feature_k0, 111) feature_k1 = padding_and_concat(list_feature_k1, 111) net = off_unit_first(feature_k0, feature_k1) logits, tier1_enpoints = resnet_v2_20(net) endpoints['tier1'] = tier1_enpoints['OFF/OFFSubNetwork/Tier1/resnet_v2_26/block4'] endpoints['logits_tier1'] = logits with tf.variable_scope('Tier2'): feature_k20 = padding_and_concat(list_feature_k20, 56) feature_k21 = padding_and_concat(list_feature_k21, 56) net = off_unit(feature_k20, feature_k21, lower_unit=endpoints['tier1']) logits, tier2_endpoint = resnet_v2_20(net) endpoints['tier2'] = tier2_endpoint['OFF/OFFSubNetwork/Tier2/resnet_v2_26/block4'] endpoints['logits_tier2'] = logits with tf.variable_scope('Tier3'): feature_k40 = padding_and_concat(list_feature_k40, 28) feature_k41 = padding_and_concat(list_feature_k41, 28) net = off_unit(feature_k40, feature_k41, lower_unit=endpoints['tier2']) logits, tier3_endpoints = resnet_v2_20(net) endpoints['logits_tier3'] = logits endpoints['predictions'] = tier3_endpoints['predictions'] return logits, endpoints
39.064516
94
0.5951
b6e37840740823f0061d05f93aa8117c4bd85acf
1,271
py
Python
src/mpl3115a2_simpletest.py
GAVLab/ros_mpl3115a2
ba6408044187857766b325bbee6c323a9753d051
[ "BSD-3-Clause" ]
null
null
null
src/mpl3115a2_simpletest.py
GAVLab/ros_mpl3115a2
ba6408044187857766b325bbee6c323a9753d051
[ "BSD-3-Clause" ]
null
null
null
src/mpl3115a2_simpletest.py
GAVLab/ros_mpl3115a2
ba6408044187857766b325bbee6c323a9753d051
[ "BSD-3-Clause" ]
null
null
null
# Simple demo of the MPL3115A2 sensor. # Will read the pressure and temperature and print them out every second. # Author: Tony DiCola import time import board import busio import adafruit_mpl3115a2 # Initialize the I2C bus. i2c = busio.I2C(board.SCL, board.SDA) # Initialize the MPL3115A2. sensor = adafruit_mpl3115a2.MPL3115A2(i2c) # Alternatively you can specify a different I2C address for the device: #sensor = adafruit_mpl3115a2.MPL3115A2(i2c, address=0x10) # You can configure the pressure at sealevel to get better altitude estimates. # This value has to be looked up from your local weather forecast or meteorlogical # reports. It will change day by day and even hour by hour with weather # changes. Remember altitude estimation from barometric pressure is not exact! # Set this to a value in pascals: sensor.sealevel_pressure = 102250 # Main loop to read the sensor values and print them every second. while True: pressure = sensor.pressure print('Pressure: {0:0.3f} pascals'.format(pressure)) altitude = sensor.altitude print('Altitude: {0:0.3f} meters'.format(altitude)) temperature = sensor.temperature print('Temperature: {0:0.3f} degrees Celsius'.format(temperature)) time.sleep(1.0)
35.305556
82
0.742722
c45d976077c0f0fbbcbb00951bec3b8c35e0bc17
25,359
py
Python
SimulationToolsUI/ResultsViewerUI.py
keim-hs-esslingen/ki4robofleet
1ff1df5d53ab80c0dcd7b84d87c2df0071e0bf9f
[ "MIT" ]
4
2021-07-06T03:55:25.000Z
2022-03-27T17:05:59.000Z
SimulationToolsUI/ResultsViewerUI.py
keim-hs-esslingen/ki4robofleet
1ff1df5d53ab80c0dcd7b84d87c2df0071e0bf9f
[ "MIT" ]
null
null
null
SimulationToolsUI/ResultsViewerUI.py
keim-hs-esslingen/ki4robofleet
1ff1df5d53ab80c0dcd7b84d87c2df0071e0bf9f
[ "MIT" ]
1
2022-02-23T11:53:05.000Z
2022-02-23T11:53:05.000Z
#!/usr/bin/env python3 # ============================================================================= # Created at Hochschule Esslingen - University of Applied Sciences # Department: Anwendungszentrum KEIM # Contact: emanuel.reichsoellner@hs-esslingen.de # Date: May 2021 # License: MIT License # ============================================================================= # This Script creates a User Interface to read the Simulationresults from the # session_{timestamp}.json Files and to display them in a well-arranged way. # As a nice feature the color theme of the chart can be changed :) # ============================================================================= # Defining our Constants for the Result- Calculation: # we assume 15kWh/100km to calculate the power consumption for the vehicles vehiclePowerConsumption = 0.15 # we assume 401 gram / kWh (German Energymix 2019) to calculate the emissions germanEnergyMix2019 = 401 # we assume 32 cent / kWh (German Energy price) to calculate the energy cost germanEnergyPrice2021 = 0.32 # the usual factor to calculate the monthly fleet Cost is carPrize / 1000 *40 # we assume 22500€ / 1000 * 40 = 900€ / Month # with a daily usage of 10h we assumed the fleetCost to 3€ / h per vehicle vehicleCostPerHour = 3 import sys from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import ( QApplication, QWidget, QFileDialog, QTextEdit, QPushButton, QLabel, QVBoxLayout, ) from PyQt5.QtChart import ( QChart, QChartView, QBarSet, QPercentBarSeries, QBarCategoryAxis, QValueAxis, QStackedBarSeries, ) from PyQt5.QtGui import QPainter, QIcon, QPixmap from PyQt5.QtCore import Qt import os import json import csv import pandas from PyQt5.QtWidgets import * from PyQt5.QtChart import * class Result: def __init__( self, emptyKm, passengerKm, fullfilledRequests, roboTaxis, strategy, pRidingTime, pWaitingTime, lookAheadTime, latenessFactor, realisticTime, simulationExitTime, cpuTime, ): self.emptyKm = float(emptyKm) self.passengerKm = float(passengerKm) self.fullfilledRequests = int(fullfilledRequests) self.roboTaxis = int(roboTaxis) self.strategy = strategy self.pRidingTime = int(pRidingTime) self.pWaitingTime = int(pWaitingTime) self.lookAheadTime = str(lookAheadTime) self.latenessFactor = str(latenessFactor) self.realisticTime = str(realisticTime) self.simulationExitTime = simulationExitTime self.emptyKmPerRequest = self.emptyKm / self.fullfilledRequests self.passengerKmPerRequest = self.passengerKm / self.fullfilledRequests # Waiting Time in Minutes: self.waitingTimePerRequest = self.pWaitingTime / self.fullfilledRequests // 60 # Riding Time in Minutes: self.ridingTimePerRequest = self.pRidingTime / self.fullfilledRequests // 60 self.totalDistancePerRequest = ( self.emptyKmPerRequest + self.passengerKmPerRequest ) self.powerConsumptionPerRequest = ( self.totalDistancePerRequest * vehiclePowerConsumption ) self.emissionsPerRequest = self.powerConsumptionPerRequest * germanEnergyMix2019 self.energyCostPerRequest = ( self.powerConsumptionPerRequest * germanEnergyPrice2021 ) # to calculate the fleet cost, we consider the amount of time which was necessary to # fulfill all requests (simulationExitTime[s]) multiplied by the fleet size (roboTaxis) and cost per vehicle (vehicleCostPerHour/3600s) self.fleetCostPerRequest = ( (self.simulationExitTime * self.roboTaxis * vehicleCostPerHour) / self.fullfilledRequests / 3600 ) self.totalCostPerRequest = self.energyCostPerRequest + self.fleetCostPerRequest self.costPerPassengerKm = self.totalCostPerRequest / self.passengerKmPerRequest self.cpuTime = cpuTime class ResultManager: def __init__(self): self.resultList = [] self.resultIndex = 0 self.numberOfResults = 0 def addResult(self, result): self.resultList.append(result) self.numberOfResults += 1 def getFirstResult(self): if self.numberOfResults > 0: return self.resultList[0] else: return None def getNextResult(self): if self.numberOfResults > 0: if self.resultIndex < self.numberOfResults - 1: self.resultIndex += 1 else: self.resultIndex = 0 return self.resultList[self.resultIndex] else: return None def getPreviousResult(self): if self.numberOfResults > 0: if self.resultIndex > 0: self.resultIndex -= 1 else: self.resultIndex = self.numberOfResults - 1 return self.resultList[self.resultIndex] else: return None class ResultsViewerWindow(QWidget): def __init__(self): super().__init__() self.currentSessionJsonFile = "" self.setWindowTitle("KI4ROBOFLEET Results Viewer v0.4") self.setGeometry(100, 100, 1800, 1200) self.uiInit() self.show() def uiInit(self): self.resultManager = ResultManager() self.gridLayout = QGridLayout(self) ctrlElements = QVBoxLayout() self.sessionFileLabel = QLabel("List of Session Files") self.sessionFileLabel.move(95, 20) ctrlElements.addWidget(self.sessionFileLabel) self.sessionFileList = QListWidget() self.sessionFileList.move(50, 40) ctrlElements.addWidget(self.sessionFileList) ctrlElements1 = QVBoxLayout() buttonReadFile = QPushButton("Read File - Overview", self) buttonReadFile.clicked.connect(self.readFile) ctrlElements1.addWidget(buttonReadFile) nextRunResults = QPushButton("view Details: next Run", self) nextRunResults.clicked.connect(self.nextResult) ctrlElements1.addWidget(nextRunResults) previousRunResults = QPushButton("view Details: previous Run", self) previousRunResults.clicked.connect(self.previousResult) ctrlElements1.addWidget(previousRunResults) self.styleComboBox = QComboBox(self) self.styleComboBox.addItem("Style: Bright Theme") self.styleComboBox.addItem("Style: Blueprint Theme") self.styleComboBox.addItem("Style: Dark Theme") self.styleComboBox.addItem("Style: Sandy Theme") self.styleComboBox.addItem("Style: Blue Theme") self.styleComboBox.addItem("Style: Contrast Theme") self.styleComboBox.addItem("Style: Icy Theme") self.styleComboBox.setCurrentText("Style: Dark Theme") self.styleComboBox.currentIndexChanged.connect(self.changeStyle) ctrlElements1.addWidget(self.styleComboBox) buttonResultCsv = QPushButton("Create Result CSV and HTML", self) buttonResultCsv.clicked.connect(self.createResultCsv) ctrlElements1.addWidget(buttonResultCsv) # self.gridLayout.addLayout(ctrlElements, 0, 0, 1, 3) self.gridLayout.addLayout(ctrlElements, 0, 0) self.gridLayout.addLayout(ctrlElements1, 1, 0) self.chart1 = QChart() self.chartView1 = QChartView(self.chart1) self.chart1.setTheme(QChart.ChartThemeDark) self.gridLayout.addWidget(self.chartView1, 0, 1) self.chart2 = QChart() self.chartView2 = QChartView(self.chart2) self.chart2.setTheme(QChart.ChartThemeDark) self.gridLayout.addWidget(self.chartView2, 0, 2) textResultsLeft = QVBoxLayout() textResultsRight = QVBoxLayout() self.leafIcon = QLabel("") self.leafIcon.setFixedSize(60, 60) self.coinIcon = QLabel("") self.coinIcon.setFixedSize(60, 60) self.simulationRunLabel = QLabel("") self.simulationRunLabel.setFont(QFont("Arial", 18)) self.numberOfRoboTaxis = QLabel("") self.numberOfRoboTaxis.setFont(QFont("Arial", 18)) self.numberOfRequests = QLabel("") self.numberOfRequests.setFont(QFont("Arial", 18)) self.simulationStrategyLabel = QLabel("") self.simulationStrategyLabel.setFont(QFont("Arial", 18)) self.simulationTimeLabel = QLabel("") self.simulationTimeLabel.setFont(QFont("Arial", 18)) self.totalDistance = QLabel("") self.totalDistance.setFont(QFont("Arial", 18)) self.distanceWithPassenger = QLabel("") self.distanceWithPassenger.setFont(QFont("Arial", 18)) self.powerConsumption = QLabel("") self.powerConsumption.setFont(QFont("Arial", 18)) self.energyCost = QLabel("") self.energyCost.setFont(QFont("Arial", 18)) self.fleetCost = QLabel("") self.fleetCost.setFont(QFont("Arial", 18)) self.totalCost = QLabel("") self.totalCost.setFont(QFont("Arial", 18)) self.costPerPassengerKm = QLabel("") self.costPerPassengerKm.setFont(QFont("Arial", 18)) self.emissions = QLabel("") self.emissions.setFont(QFont("Arial", 18)) self.customerWaitingTime = QLabel("") self.customerWaitingTime.setFont(QFont("Arial", 18)) textResultsLeft.setAlignment(Qt.AlignCenter) textResultsLeft.addWidget(self.simulationRunLabel) textResultsLeft.addWidget(self.numberOfRoboTaxis) textResultsLeft.addWidget(self.numberOfRequests) textResultsLeft.addWidget(self.simulationStrategyLabel) textResultsLeft.addWidget(self.simulationTimeLabel) textResultsLeft.addWidget(self.leafIcon) textResultsLeft.addWidget(self.powerConsumption) textResultsLeft.addWidget(self.emissions) textResultsRight.setAlignment(Qt.AlignCenter) textResultsRight.addWidget(self.totalDistance) textResultsRight.addWidget(self.distanceWithPassenger) textResultsRight.addWidget(self.customerWaitingTime) textResultsRight.addWidget(self.coinIcon) textResultsRight.addWidget(self.energyCost) textResultsRight.addWidget(self.fleetCost) textResultsRight.addWidget(self.totalCost) textResultsRight.addWidget(self.costPerPassengerKm) self.gridLayout.addLayout(textResultsLeft, 1, 1) self.gridLayout.addLayout(textResultsRight, 1, 2) self.gridLayout.setColumnStretch(0, 1) self.gridLayout.setColumnStretch(1, 2) self.gridLayout.setColumnStretch(2, 2) self.gridLayout.setRowStretch(0, 1) self.gridLayout.setRowStretch(1, 1) for r, d, f in os.walk("./"): for file in f: if (".json" in file) and ("session" in file): self.sessionFileList.addItem(file) def createChart(self, results): self.gridLayout.removeWidget(self.chartView1) self.gridLayout.removeWidget(self.chartView2) self.chart1 = QChart() self.chartView1 = QChartView(self.chart1) self.gridLayout.addWidget(self.chartView1, 0, 1) self.chart2 = QChart() self.chartView2 = QChartView(self.chart2) self.gridLayout.addWidget(self.chartView2, 0, 2) set1 = [] set1.append(QBarSet("empty")) set1.append(QBarSet("with passenger")) set2 = [] set2.append(QBarSet("RidingTime")) set2.append(QBarSet("WaitingTime")) numberOfRoboTaxis = [] maxKm = 0 maxTime = 0 for result in results: numberOfRoboTaxis.append(str(result.roboTaxis)) set1[0].append(result.emptyKmPerRequest) set1[1].append(result.passengerKmPerRequest) set2[0].append(result.ridingTimePerRequest) set2[1].append(result.waitingTimePerRequest) series1 = QBarSeries() series2 = QBarSeries() for i in range(len(set1)): series1.append(set1[i]) for i in range(len(set2)): series2.append(set2[i]) axisX1 = QBarCategoryAxis() axisX1.setTitleText("Number of RoboTaxis") axisY1 = QValueAxis() axisY1.setTitleText("Distance [km]") axisY1.setRange(0, maxKm) axisX1.append(numberOfRoboTaxis) axisX2 = QBarCategoryAxis() axisX2.setTitleText("Number of RoboTaxis") axisY2 = QValueAxis() axisY2.setTitleText("Time [min]") axisY2.setRange(0, maxTime) axisX2.append(numberOfRoboTaxis) self.chart1.addSeries(series1) self.chart1.setTitle("Driving Distance per Passenger") self.chart1.setAnimationOptions(QChart.SeriesAnimations) self.chart1.addAxis(axisX1, Qt.AlignBottom) self.chart1.addAxis(axisY1, Qt.AlignLeft) self.chartView1.chart().legend().setAlignment(Qt.AlignBottom) self.chart2.addSeries(series2) self.chart2.setTitle("Time per Passenger") self.chart2.setAnimationOptions(QChart.SeriesAnimations) self.chart2.addAxis(axisX2, Qt.AlignBottom) self.chart2.addAxis(axisY2, Qt.AlignLeft) self.chartView2.chart().legend().setAlignment(Qt.AlignBottom) self.changeStyle() def changeStyle(self): if self.styleComboBox.currentIndex() == 0: self.chart1.setTheme(QChart.ChartThemeLight) self.chart2.setTheme(QChart.ChartThemeLight) if self.styleComboBox.currentIndex() == 1: self.chart1.setTheme(QChart.ChartThemeBlueCerulean) self.chart2.setTheme(QChart.ChartThemeBlueCerulean) if self.styleComboBox.currentIndex() == 2: self.chart1.setTheme(QChart.ChartThemeDark) self.chart2.setTheme(QChart.ChartThemeDark) if self.styleComboBox.currentIndex() == 3: self.chart1.setTheme(QChart.ChartThemeBrownSand) self.chart2.setTheme(QChart.ChartThemeBrownSand) if self.styleComboBox.currentIndex() == 4: self.chart1.setTheme(QChart.ChartThemeBlueNcs) self.chart2.setTheme(QChart.ChartThemeBlueNcs) if self.styleComboBox.currentIndex() == 5: self.chart1.setTheme(QChart.ChartThemeHighContrast) self.chart2.setTheme(QChart.ChartThemeHighContrast) if self.styleComboBox.currentIndex() == 6: self.chart1.setTheme(QChart.ChartThemeBlueIcy) self.chart2.setTheme(QChart.ChartThemeBlueIcy) self.chart1.setAnimationOptions(QChart.NoAnimation) self.chart1.setAnimationOptions(QChart.GridAxisAnimations) # self.chart1.setAnimationOptions(QChart.SeriesAnimations) self.chart2.setAnimationOptions(QChart.NoAnimation) self.chart2.setAnimationOptions(QChart.GridAxisAnimations) def readFile(self): try: selectedFile = self.sessionFileList.currentItem().text() self.currentSessionJsonFile = selectedFile print("View Results for", selectedFile) try: self.resultManager = ResultManager() # find path to file pathToFile = "" for r, d, f in os.walk("./"): for file in f: if selectedFile in file: pathToFile = r + "/" + file with open(pathToFile) as sessionFile: data = json.load(sessionFile) # sort Results by num_of_vehicles sortedResults = sorted( data["results"], key=lambda x: x["num_of_vehicles"], reverse=False, ) for result in sortedResults: lookAheadTime = "" if "look_ahead_time" in result: lookAheadTime = str(result["look_ahead_time"]) latenessFactor = "" if "lateness_factor" in result: latenessFactor = str(result["lateness_factor"]) realisticTime = "" if "realistic_time" in result: realisticTime = str(result["realistic_time"]) self.resultManager.addResult( Result( result["d_empty (km)"], result["d_pass (km)"], result["fullfilled requests"], result["num_of_vehicles"], result["strategy"], result["t_drive (sec)"], result["t_wait (sec)"], lookAheadTime, latenessFactor, realisticTime, result["simulation_exit_time (sec)"], result["cpuTime (sec)"], ) ) self.clearFields() self.createChart(self.resultManager.resultList) self.resultManager.resultIndex = self.resultManager.numberOfResults - 1 except: print("Problems by creating Graph") except: print("Please select a Session File!") def nextResult(self): self.viewResults(self.resultManager.getNextResult()) def previousResult(self): self.viewResults(self.resultManager.getPreviousResult()) def clearFields(self): self.simulationRunLabel.setText("") self.numberOfRoboTaxis.setText("") self.simulationStrategyLabel.setText("") self.simulationTimeLabel.setText("") self.totalDistance.setText("") self.powerConsumption.setText("") self.emissions.setText("") self.energyCost.setText("") self.customerWaitingTime.setText("") self.leafIcon.clear() self.coinIcon.clear() self.numberOfRequests.setText("") self.distanceWithPassenger.setText("") self.fleetCost.setText("") self.totalCost.setText("") self.costPerPassengerKm.setText("") def viewResults(self, result): self.leafIcon.setPixmap( QPixmap("./SimulationToolsUI/icons/leaf.png").scaledToWidth(60) ) self.coinIcon.setPixmap( QPixmap("./SimulationToolsUI/icons/coin.png").scaledToWidth(60) ) self.simulationRunLabel.setText( "Run " + str(self.resultManager.resultIndex + 1) + " of " + str(self.resultManager.numberOfResults) ) self.numberOfRoboTaxis.setText("RoboTaxis : " + str(result.roboTaxis)) self.numberOfRequests.setText("Requests : " + str(result.fullfilledRequests)) strategy = "Strategy: " + result.strategy if "look_ahead" in result.strategy: strategy += " " + result.lookAheadTime + "s" if "shared" in result.strategy: strategy += " LF=" + result.latenessFactor + " RT=" + result.realisticTime self.simulationStrategyLabel.setText(strategy) self.simulationTimeLabel.setText( "requiredTime : " + str(int(result.simulationExitTime) // 3600) + "h " + str((int(result.simulationExitTime) % 3600) // 60) + "m " + str(int(result.simulationExitTime) % 60) + "s" ) self.totalDistance.setText( "Total Driving Distance: " + str(float("{:.2f}".format(result.totalDistancePerRequest))) + " km" ) self.distanceWithPassenger.setText( "Distance With Passenger: " + str(float("{:.2f}".format(result.passengerKmPerRequest))) + " km" ) self.powerConsumption.setText( "Power Consumption: " + str(float("{:.2f}".format(result.powerConsumptionPerRequest))) + " kWh" ) self.emissions.setText( "Emissions: " + str(float("{:.2f}".format(result.emissionsPerRequest))) + " g CO2" ) self.energyCost.setText( "Energy Cost: " + str(float("{:.2f}".format(result.energyCostPerRequest))) + " €" ) self.fleetCost.setText( "Fleet Cost: " + str(float("{:.2f}".format(result.fleetCostPerRequest))) + " €" ) self.totalCost.setText( "Total Cost: " + str(float("{:.2f}".format(result.totalCostPerRequest))) + " €" ) self.costPerPassengerKm.setText( "Cost per km: " + str(float("{:.2f}".format(result.costPerPassengerKm))) + " €" ) self.customerWaitingTime.setText( "Waiting Time: " + str(int(result.waitingTimePerRequest)) + " minutes" ) results = [] results.append(result) self.createChart(results) def createResultCsv(self, result): cwd = os.getcwd() if len(self.currentSessionJsonFile) > 0: resultCsvFileName = ( cwd + "/Results/" + self.currentSessionJsonFile.split(".")[0] + ".csv" ) print("Writing Result CSV File...") with open(resultCsvFileName, mode="w") as csv_file: fieldnames = [ "Requests", "Strategy", "reqiredTime[s]", "RoboTaxis", "avDrivingDist[km]", "avPassengerDist[km]", "avWaitingTime[min]", "avPowerConsumption[kWh]", "avEmissions[gCO2]", "avEnergyCost[€]", "avFleetCost[€]", "avTotalCost[€]", "avCostPerPassengerKm[€]", "cpuTime[s]", ] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() for result in self.resultManager.resultList: strategy = result.strategy if "look_ahead" in result.strategy: strategy += " " + result.lookAheadTime + "s" if "shared" in result.strategy: strategy += ( " LF=" + result.latenessFactor + " RT=" + result.realisticTime ) writer.writerow( { "Requests": result.fullfilledRequests, "Strategy": strategy, "reqiredTime[s]": result.simulationExitTime, "RoboTaxis": result.roboTaxis, "avDrivingDist[km]": str( float("{:.2f}".format(result.totalDistancePerRequest)) ), "avPassengerDist[km]": str( float("{:.2f}".format(result.passengerKmPerRequest)) ), "avWaitingTime[min]": str( int(result.waitingTimePerRequest) ), "avPowerConsumption[kWh]": str( float( "{:.2f}".format(result.powerConsumptionPerRequest) ) ), "avEmissions[gCO2]": str( float("{:.2f}".format(result.emissionsPerRequest)) ), "avEnergyCost[€]": str( float("{:.2f}".format(result.energyCostPerRequest)) ), "avFleetCost[€]": str( float("{:.2f}".format(result.fleetCostPerRequest)) ), "avTotalCost[€]": str( float("{:.2f}".format(result.totalCostPerRequest)) ), "avCostPerPassengerKm[€]": str( float("{:.2f}".format(result.costPerPassengerKm)) ), "cpuTime[s]": str(int(result.cpuTime)), } ) print("READY!") print(resultCsvFileName, " was created") # create Result HTML file resultHtmlFileName = resultCsvFileName.split(".")[0] + ".html" pandas.read_csv(resultCsvFileName).to_html(resultHtmlFileName) print(resultHtmlFileName, " was created") else: print("Please first select and read a Result Session JSON File!")
36.698987
143
0.575417
1b678beb2bb546521cfc3b27dd7b3f043f67331e
1,555
py
Python
sdm/tests/test_sdm.py
dougalsutherland/py-sdm
9773bf33438986a8312db82b1c9086c81fae5099
[ "BSD-3-Clause" ]
21
2015-02-17T13:59:52.000Z
2019-05-08T09:25:52.000Z
sdm/tests/test_sdm.py
beartiantian/py-sdm
9773bf33438986a8312db82b1c9086c81fae5099
[ "BSD-3-Clause" ]
2
2015-01-19T17:08:23.000Z
2015-01-22T19:19:06.000Z
sdm/tests/test_sdm.py
dougalsutherland/py-sdm
9773bf33438986a8312db82b1c9086c81fae5099
[ "BSD-3-Clause" ]
5
2016-01-07T06:45:29.000Z
2018-05-21T15:50:05.000Z
from functools import partial import os import numpy as np from sklearn.preprocessing import LabelEncoder from .. import SDC, NuSDC, Features data_dir = os.path.join(os.path.dirname(__file__), 'data') ################################################################################ # TODO: add *real* tests def _check_acc(acc): assert acc >= .85, "accuracy is only {}".format(acc) def test_simple(): div_funcs = ['hellinger', 'kl', 'l2', 'renyi:0.7', 'renyi:0.9', 'renyi:0.99'] Ks = [3, 8] for name in ['gaussian-2d-mean0-std1,2']: # , 'gaussian-20d-mean0-std1,2']: feats = Features.load_from_hdf5(os.path.join(data_dir, name + '.h5')) le = LabelEncoder() y = le.fit_transform(feats.categories) for div_func in div_funcs: for K in Ks: for cls in [SDC, NuSDC]: for wts in [None, np.random.uniform(.7, 1.3, len(feats))]: clf = cls(div_func=div_func, K=K, n_proc=1) acc, preds = clf.crossvalidate( feats, y, sample_weight=wts, num_folds=3) fn = partial(_check_acc, acc) fn.description = "CV: {} - {}, K={}".format( name, div_func, K) yield fn ################################################################################ if __name__ == '__main__': import warnings warnings.filterwarnings('error', module='sdm') import nose nose.main()
31.1
80
0.485531
ed255a93edf617817fa081784ecf413134128468
36
py
Python
moviealert/exceptions.py
ArionMiles/Diomedes
50e50bae65bc35901230ead01fe5c259db1344b0
[ "MIT" ]
10
2019-03-08T12:34:21.000Z
2020-07-20T17:05:34.000Z
moviealert/exceptions.py
ArionMiles/Diomedes
50e50bae65bc35901230ead01fe5c259db1344b0
[ "MIT" ]
12
2019-05-04T18:56:34.000Z
2022-02-10T07:33:50.000Z
moviealert/exceptions.py
ArionMiles/Diomedes
50e50bae65bc35901230ead01fe5c259db1344b0
[ "MIT" ]
1
2019-04-12T16:00:15.000Z
2019-04-12T16:00:15.000Z
class BMSError(Exception): pass
12
26
0.722222
b30dba06436353d8faf55cd5df68ed17d7e1dd52
201
py
Python
packs/consul/actions/parse_nodes.py
userlocalhost2000/st2contrib
1a5f759e76401743ed9023d298a3d767e3885db1
[ "Apache-2.0" ]
164
2015-01-17T16:08:33.000Z
2021-08-03T02:34:07.000Z
packs/consul/actions/parse_nodes.py
userlocalhost2000/st2contrib
1a5f759e76401743ed9023d298a3d767e3885db1
[ "Apache-2.0" ]
442
2015-01-01T11:19:01.000Z
2017-09-06T23:26:17.000Z
packs/consul/actions/parse_nodes.py
userlocalhost2000/st2contrib
1a5f759e76401743ed9023d298a3d767e3885db1
[ "Apache-2.0" ]
202
2015-01-13T00:37:40.000Z
2020-11-07T11:30:10.000Z
from lib import action class ConsulParseNodesAction(action.ConsulBaseAction): def run(self, data): nodes = [] # Loop through the keys, and return the needful return nodes
22.333333
55
0.671642
22eafde8bf7201393d6bda5decdbd7215c7458f8
1,324
py
Python
main.py
fm85/IoTB_Raspi_MQTT-Publish
3290b0ea81d110950bca16984cc88d0d923a58fb
[ "MIT" ]
null
null
null
main.py
fm85/IoTB_Raspi_MQTT-Publish
3290b0ea81d110950bca16984cc88d0d923a58fb
[ "MIT" ]
null
null
null
main.py
fm85/IoTB_Raspi_MQTT-Publish
3290b0ea81d110950bca16984cc88d0d923a58fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ ------------------------------------------------------------------ Projekt: MQTT Client Beispiel Beschreibung: Publiziert exemlarisch einen Sensorwert über MQTT Abhängigkeiten: paho-mqtt (vorher mit pip3 installieren) Institution: GBS Verfasser: F.Reifler Datum: 27.08.2020 ------------------------------------------------------------------ """ import paho.mqtt.client as mqtt import Adafruit_DHT import socket import sys import time myClient = mqtt.Client() mySensorType = 11 mySensorPin = 4 def on_connect(client, userdata, flags, rc): print("Connected with result code" + str(rc)) def initMQTTClient(): myClient.on_connect = on_connect keepalive = 60 myClient.connect("172.20.1.31",1883,keepalive) myClient.loop_start() def getHostname(): return socket.gethostname() def start(): try: initMQTTClient() topic = getHostname() + "/temperature" print("Publishing with the following Topic:" + topic) while(True): time.sleep(2) humidity, temperature = Adafruit_DHT.read(mySensorType, mySensorPin) message = temperature myClient.publish(topic,message) except (KeyboardInterrupt, SystemExit): print("Interrupted") sys.exit(1) start()
25.960784
80
0.602719
eb45a785c3c38d4811ae4891ef509566f4e61c25
9,008
py
Python
trax/supervised/training_test.py
YannickWehr/trax
67dda3b236339a7f6de803a3f84a9e92d0f0442c
[ "Apache-2.0" ]
null
null
null
trax/supervised/training_test.py
YannickWehr/trax
67dda3b236339a7f6de803a3f84a9e92d0f0442c
[ "Apache-2.0" ]
null
null
null
trax/supervised/training_test.py
YannickWehr/trax
67dda3b236339a7f6de803a3f84a9e92d0f0442c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2020 The Trax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for supervised training: core classes and flows.""" import os import time from absl.testing import absltest from jax import test_util # pylint: disable=unused-import from jax.config import config import numpy as np from trax import fastmath from trax import layers as tl from trax import optimizers from trax import shapes from trax import test_utils from trax.supervised import training class TrainingTest(absltest.TestCase): def setUp(self): super().setUp() test_utils.ensure_flag('test_tmpdir') def test_loop_no_eval_task(self): """Runs a training loop with no eval task(s).""" model = tl.Serial(tl.Dense(1)) task = training.TrainTask( _very_simple_data(), tl.L2Loss(), optimizers.SGD(.01)) training_session = training.Loop(model, [task]) # Loop should initialize and run successfully, even with no eval task. training_session.run(n_steps=5) def test_loop_no_eval_task_tfnp(self): """Runs a training loop with no eval task(s), TFNP backend.""" with fastmath.use_backend(fastmath.Backend.TFNP): model = tl.Serial(tl.Dense(1)) task = training.TrainTask( _very_simple_data(), tl.L2Loss(), optimizers.Adam(.01)) training_session = training.Loop(model, [task]) # Loop should initialize and run successfully, even with no eval task. training_session.run(n_steps=5) def test_train_dense_layer(self): """Trains a very simple network on a very simple task.""" model = tl.Serial(tl.Dense(1)) task = training.TrainTask( _very_simple_data(), tl.L2Loss(), optimizers.SGD(.01)) eval_task = training.EvalTask( _very_simple_data(), # deliberately re-using training data [tl.L2Loss()], metric_names=['SGD.L2Loss']) training_session = training.Loop(model, [task], eval_tasks=[eval_task], eval_at=lambda step_n: step_n % 2 == 0) self.assertEqual(0, training_session.step) training_session.run(n_steps=15) self.assertEqual(15, training_session.step) training_session.run(n_steps=5) self.assertEqual(20, training_session.step) def test_train_dense_layer_with_momentum(self): """Trains with an optimizer that has slots / requires initialization.""" model = tl.Serial(tl.Dense(1)) task = training.TrainTask( _very_simple_data(), tl.L2Loss(), optimizers.Momentum(.01)) eval_task = training.EvalTask( _very_simple_data(), # deliberately re-using training data [tl.L2Loss()], metric_names=['Momentum.L2Loss']) training_session = training.Loop(model, [task], eval_tasks=[eval_task], eval_at=lambda step_n: step_n % 2 == 0) self.assertEqual(0, training_session.step) training_session.run(n_steps=20) self.assertEqual(20, training_session.step) def test_train_dense_layer_evals(self): """Trains a very simple network on a very simple task, 2 epochs.""" model = tl.Serial(tl.Dense(1)) task = training.TrainTask( _very_simple_data(), tl.L2Loss(), optimizers.SGD(.01)) eval_task = training.EvalTask( _very_simple_data(), # deliberately re-using training data [tl.L2Loss()]) training_session = training.Loop(model, [task], eval_tasks=[eval_task], eval_at=lambda step_n: False) self.assertEqual(0, training_session.step) training_session.run(n_steps=10) self.assertEqual(10, training_session.step) training_session.run_evals() self.assertEqual(10, training_session.step) # Unchanged def test_summaries_are_written(self): """Training writes down metrics when writting is turned on.""" model = tl.Serial(tl.Dense(1)) task = training.TrainTask( _very_simple_data(), tl.L2Loss(), optimizers.SGD(.01)) eval_task = training.EvalTask( _very_simple_data(), # deliberately re-using training data [tl.L2Loss()], metric_names=['SGD.L2Loss']) tmp_dir = self.create_tempdir().full_path training_session = training.Loop(model, [task], eval_tasks=[eval_task], eval_at=lambda step_n: step_n % 2 == 0, output_dir=tmp_dir) expected_train_metric_dir = os.path.join(tmp_dir, 'train') expected_eval_metric_dir = os.path.join(tmp_dir, 'eval') for directory in [expected_train_metric_dir, expected_eval_metric_dir]: self.assertFalse( os.path.isdir(directory), 'Failed for directory %s.' % directory) training_session.run(n_steps=15) time.sleep(1) # wait for the files to be closed for directory in [expected_train_metric_dir, expected_eval_metric_dir]: self.assertTrue( os.path.isdir(directory), 'Failed for directory %s.' % directory) self.assertEqual( 1, _count_files(directory), 'Failed for directory %s.' % directory) training_session.run(n_steps=5) time.sleep(1) # wait for the files to be closed for directory in [expected_train_metric_dir, expected_eval_metric_dir]: self.assertEqual( 2, _count_files(directory), 'Failed for directory %s.' % directory) def test_restores_step(self): """Training restores step from directory where it saved it.""" model = tl.Serial(tl.Dense(1)) task = training.TrainTask( _very_simple_data(), tl.L2Loss(), optimizers.SGD(.01)) tmp_dir = self.create_tempdir().full_path loop = training.Loop(model, [task], checkpoint_at=lambda step_n: step_n % 2 == 0, output_dir=tmp_dir) loop.run(4) loop2 = training.Loop(model, [task], output_dir=tmp_dir) self.assertEqual(4, loop2.step) def test_trains_on_two_tasks(self): """Trains a very simple network on two very simple tasks.""" model = tl.Serial(tl.Dense(3), tl.Dense(1)) task = training.TrainTask( _very_simple_data(), tl.L2Loss(), optimizers.SGD(.01) ) eval_task = training.EvalTask( _very_simple_data(), # deliberately re-using training data [tl.L2Loss()], ) training_session = training.Loop( model, tasks=(task, task), eval_tasks=(eval_task, eval_task), which_task=lambda step_n: step_n % 2, ) self.assertEqual(0, training_session.step) training_session.run(n_steps=15) self.assertEqual(15, training_session.step) training_session.run(n_steps=5) self.assertEqual(20, training_session.step) def test_can_predict_with_trained_model(self): model = tl.Serial(tl.Dense(3), tl.Branch(tl.Dense(1), tl.Dense(2))) train_tasks, eval_tasks = [], [] for output_dim in [1, 2]: # The head we select from the model: 0 for output_dim 1 and 1 for 2. head_index = output_dim - 1 train_tasks.append(training.TrainTask( _very_simple_data(output_dim), tl.Serial(tl.Select([head_index], n_in=2), tl.L2Loss()), optimizers.SGD(.01) )) eval_tasks.append(training.EvalTask( _very_simple_data(output_dim), # deliberately re-use training data [tl.Serial(tl.Select([head_index], n_in=2), tl.L2Loss())] )) tmp_dir = self.create_tempdir().full_path training_session = training.Loop( model, tasks=train_tasks, eval_tasks=eval_tasks, checkpoint_at=lambda step_n: step_n == 1, output_dir=tmp_dir, which_task=lambda step_n: step_n % 2, ) training_session.run(n_steps=2) trained_model = training_session.eval_model inp = next(_very_simple_data())[0] out = trained_model(inp) self.assertEqual( shapes.signature(out), (shapes.ShapeDtype((8, 1)), shapes.ShapeDtype((8, 2))), ) def _very_simple_data(output_dim=1): """"Returns stream of labeled data that maps small integers to constant pi.""" inputs_batch = np.arange(8).reshape((8, 1)) # 8 items per batch targets_batch = np.pi * np.ones((8, output_dim)) labeled_batch = (inputs_batch, targets_batch, np.ones_like(targets_batch)) while True: yield labeled_batch def _count_files(path): """Returns number of files in a given directory.""" return len([filename for filename in os.listdir(path) if os.path.isfile(os.path.join(path, filename))]) if __name__ == '__main__': config.config_with_absl() absltest.main()
39.336245
80
0.676399
63a383e7cbab3802c707edbaff1f31e38b9ee4b5
407
py
Python
src/imageclassifier/wsgi.py
ootsutsukee/Adv-Pro-Python2-final-project
50f0c8396d114be857f721918fa0013d2f15ff2c
[ "MIT" ]
null
null
null
src/imageclassifier/wsgi.py
ootsutsukee/Adv-Pro-Python2-final-project
50f0c8396d114be857f721918fa0013d2f15ff2c
[ "MIT" ]
null
null
null
src/imageclassifier/wsgi.py
ootsutsukee/Adv-Pro-Python2-final-project
50f0c8396d114be857f721918fa0013d2f15ff2c
[ "MIT" ]
1
2022-02-26T17:50:12.000Z
2022-02-26T17:50:12.000Z
""" WSGI config for imageclassifier project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/4.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'imageclassifier.settings') application = get_wsgi_application()
23.941176
78
0.793612