hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
60e7eeab52a00e19d3c68a7d17f751163b8b2396
720
py
Python
tests/test_ratings.py
technicapital/stake-python
8d0a985923318ca7b92f23e0c9a8319a75f37ff2
[ "Apache-2.0" ]
47
2020-09-16T04:17:53.000Z
2022-03-29T12:20:50.000Z
tests/test_ratings.py
technicapital/stake-python
8d0a985923318ca7b92f23e0c9a8319a75f37ff2
[ "Apache-2.0" ]
123
2020-09-10T05:03:43.000Z
2022-02-03T12:13:35.000Z
tests/test_ratings.py
technicapital/stake-python
8d0a985923318ca7b92f23e0c9a8319a75f37ff2
[ "Apache-2.0" ]
5
2021-07-24T08:53:37.000Z
2022-01-24T16:19:50.000Z
import datetime import pytest from stake import RatingsRequest @pytest.mark.asyncio async def test_list_ratings(tracing_client): request = RatingsRequest(symbols=["AAPL", "MSFT"], limit=4) ratings = await tracing_client.ratings.list(request) assert len(ratings) == 4 assert ratings[0].symbol in ("AAPL", "MSFT") assert ratings[0].rating_current == "Buy" assert ratings[0].updated == datetime.datetime( 2021, 7, 16, 11, 40, 23, tzinfo=datetime.timezone.utc ) @pytest.mark.asyncio async def test_list_ratings_unknown(tracing_client): request = RatingsRequest(symbols=["NOTEXIST"], limit=4) ratings = await tracing_client.ratings.list(request) assert len(ratings) == 0
28.8
63
0.718056
a11bc4b05e8c2ebd9c2aa282ac4c66e9d679d0ad
3,111
py
Python
fonts/terminus-font-4.49.1/bin/fnutil.py
xfnw/yaft
c57e8f3014aa5cf743ca0855e543dbafc2e0db22
[ "MIT" ]
null
null
null
fonts/terminus-font-4.49.1/bin/fnutil.py
xfnw/yaft
c57e8f3014aa5cf743ca0855e543dbafc2e0db22
[ "MIT" ]
null
null
null
fonts/terminus-font-4.49.1/bin/fnutil.py
xfnw/yaft
c57e8f3014aa5cf743ca0855e543dbafc2e0db22
[ "MIT" ]
null
null
null
# # Copyright (C) 2017-2020 Dimitar Toshkov Zhekov <dimitar.zhekov@gmail.com> # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # import sys # -- Various -- UNICODE_MAX = 1114111 # 0x10FFFF UNICODE_BMP_MAX = 65535 # 0xFFFF def parse_dec(name, s, min_value=0, max_value=UNICODE_MAX): try: value = int(s) except ValueError: raise Exception('invalid %s format' % name) if min_value is not None and value < min_value: raise Exception('%s must be >= %d' % (name, min_value)) if max_value is not None and value > max_value: raise Exception('%s must be <= %d' % (name, max_value)) return value def parse_hex(name, s, min_value=0, max_value=UNICODE_MAX): try: value = int(s, 16) except ValueError: raise Exception('invalid %s format' % name) if min_value is not None and value < min_value: raise Exception('%s must be >= %X' % (name, min_value)) if max_value is not None and value > max_value: raise Exception('%s must be <= %X' % (name, max_value)) return value def quote(bstr): return b'"%s"' % bstr.replace(b'"', b'""') def unquote(bstr, name=None): if len(bstr) >= 2 and bstr.startswith(b'"') and bstr.endswith(b'"'): bstr = bstr[1 : len(bstr) - 1].replace(b'""', b'"') elif name is not None: raise Exception(name + ' must be quoted') return bstr def message(prefix, severity, text): sys.stderr.write('%s%s%s\n' % (prefix, severity + ': ' if severity else '', text)) def warning(prefix, text): message(prefix, 'warning', text) def split_words(name, value, count): words = value.split(None, count) if len(words) != count: raise Exception('%s must contain %d values' % (name, count)) return words GPL2PLUS_LICENSE = ('' + 'This program is free software; you can redistribute it and/or modify it\n' + 'under the terms of the GNU General Public License as published by the Free\n' + 'Software Foundation; either version 2 of the License, or (at your option)\n' + 'any later version.\n' + '\n' + 'This program is distributed in the hope that it will be useful, but\n' + 'WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY\n' + 'or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License\n' + 'for more details.\n' + '\n' + 'You should have received a copy of the GNU General Public License along\n' + 'with this program; if not, write to the Free Software Foundation, Inc.,\n' + '51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.\n')
31.424242
83
0.704597
77e9eef19a7a4cd7db22331ed32562bf4a949ea4
155,499
py
Python
src/tests/api/test_orders.py
NorDULaN/pretix
e2b9fe8e71f3852721a42c594047d88f5181fd29
[ "ECL-2.0", "Apache-2.0" ]
1
2020-04-25T00:11:00.000Z
2020-04-25T00:11:00.000Z
src/tests/api/test_orders.py
NorDULaN/pretix
e2b9fe8e71f3852721a42c594047d88f5181fd29
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/tests/api/test_orders.py
NorDULaN/pretix
e2b9fe8e71f3852721a42c594047d88f5181fd29
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import copy import datetime import json from decimal import Decimal from unittest import mock import pytest from django.core import mail as djmail from django.dispatch import receiver from django.utils.timezone import now from django_countries.fields import Country from django_scopes import scopes_disabled from pytz import UTC from stripe.error import APIConnectionError from tests.plugins.stripe.test_provider import MockedCharge from pretix.base.channels import SalesChannel from pretix.base.models import ( InvoiceAddress, Order, OrderPosition, Question, SeatingPlan, ) from pretix.base.models.orders import ( CartPosition, OrderFee, OrderPayment, OrderRefund, QuestionAnswer, ) from pretix.base.services.invoices import ( generate_cancellation, generate_invoice, ) from pretix.base.signals import register_sales_channels class FoobarSalesChannel(SalesChannel): identifier = "bar" verbose_name = "Foobar" icon = "home" testmode_supported = False @receiver(register_sales_channels, dispatch_uid="test_orders_register_sales_channels") def base_sales_channels(sender, **kwargs): return ( FoobarSalesChannel(), ) @pytest.fixture def item(event): return event.items.create(name="Budget Ticket", default_price=23) @pytest.fixture def item2(event2): return event2.items.create(name="Budget Ticket", default_price=23) @pytest.fixture def taxrule(event): return event.tax_rules.create(rate=Decimal('19.00')) @pytest.fixture def question(event, item): q = event.questions.create(question="T-Shirt size", type="S", identifier="ABC") q.items.add(item) q.options.create(answer="XL", identifier="LVETRWVU") return q @pytest.fixture def question2(event2, item2): q = event2.questions.create(question="T-Shirt size", type="S", identifier="ABC") q.items.add(item2) return q @pytest.fixture def quota(event, item): q = event.quotas.create(name="Budget Quota", size=200) q.items.add(item) return q @pytest.fixture def order(event, item, taxrule, question): testtime = datetime.datetime(2017, 12, 1, 10, 0, 0, tzinfo=UTC) event.plugins += ",pretix.plugins.stripe" event.save() with mock.patch('django.utils.timezone.now') as mock_now: mock_now.return_value = testtime o = Order.objects.create( code='FOO', event=event, email='dummy@dummy.test', status=Order.STATUS_PENDING, secret="k24fiuwvu8kxz3y1", datetime=datetime.datetime(2017, 12, 1, 10, 0, 0, tzinfo=UTC), expires=datetime.datetime(2017, 12, 10, 10, 0, 0, tzinfo=UTC), total=23, locale='en' ) p1 = o.payments.create( provider='stripe', state='refunded', amount=Decimal('23.00'), payment_date=testtime, ) o.refunds.create( provider='stripe', state='done', source='admin', amount=Decimal('23.00'), execution_date=testtime, payment=p1, ) o.payments.create( provider='banktransfer', state='pending', amount=Decimal('23.00'), ) o.fees.create(fee_type=OrderFee.FEE_TYPE_PAYMENT, value=Decimal('0.25'), tax_rate=Decimal('19.00'), tax_value=Decimal('0.05'), tax_rule=taxrule) o.fees.create(fee_type=OrderFee.FEE_TYPE_PAYMENT, value=Decimal('0.25'), tax_rate=Decimal('19.00'), tax_value=Decimal('0.05'), tax_rule=taxrule, canceled=True) InvoiceAddress.objects.create(order=o, company="Sample company", country=Country('NZ'), vat_id="DE123", vat_id_validated=True) op = OrderPosition.objects.create( order=o, item=item, variation=None, price=Decimal("23"), attendee_name_parts={"full_name": "Peter", "_scheme": "full"}, secret="z3fsn8jyufm5kpk768q69gkbyr5f4h6w", pseudonymization_id="ABCDEFGHKL", ) OrderPosition.objects.create( order=o, item=item, variation=None, price=Decimal("23"), attendee_name_parts={"full_name": "Peter", "_scheme": "full"}, secret="YBiYJrmF5ufiTLdV1iDf", pseudonymization_id="JKLM", canceled=True ) op.answers.create(question=question, answer='S') return o @pytest.fixture def clist_autocheckin(event): c = event.checkin_lists.create(name="Default", all_products=True, auto_checkin_sales_channels=['web']) return c TEST_ORDERPOSITION_RES = { "id": 1, "order": "FOO", "positionid": 1, "item": 1, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter", "_scheme": "full"}, "attendee_name": "Peter", "attendee_email": None, "voucher": None, "tax_rate": "0.00", "tax_value": "0.00", "tax_rule": None, "secret": "z3fsn8jyufm5kpk768q69gkbyr5f4h6w", "addon_to": None, "pseudonymization_id": "ABCDEFGHKL", "checkins": [], "downloads": [], "seat": None, "company": None, "street": None, "zipcode": None, "city": None, "country": None, "state": None, "answers": [ { "question": 1, "answer": "S", "question_identifier": "ABC", "options": [], "option_identifiers": [] } ], "subevent": None, "canceled": False, } TEST_PAYMENTS_RES = [ { "local_id": 1, "created": "2017-12-01T10:00:00Z", "payment_date": "2017-12-01T10:00:00Z", "provider": "stripe", "payment_url": None, "details": { "id": None, "payment_method": None }, "state": "refunded", "amount": "23.00" }, { "local_id": 2, "created": "2017-12-01T10:00:00Z", "payment_date": None, "provider": "banktransfer", "payment_url": None, "details": {}, "state": "pending", "amount": "23.00" } ] TEST_REFUNDS_RES = [ { "local_id": 1, "payment": 1, "source": "admin", "created": "2017-12-01T10:00:00Z", "execution_date": "2017-12-01T10:00:00Z", "provider": "stripe", "state": "done", "amount": "23.00" }, ] TEST_ORDER_RES = { "code": "FOO", "status": "n", "testmode": False, "secret": "k24fiuwvu8kxz3y1", "email": "dummy@dummy.test", "locale": "en", "datetime": "2017-12-01T10:00:00Z", "expires": "2017-12-10T10:00:00Z", "payment_date": "2017-12-01", "sales_channel": "web", "fees": [ { "canceled": False, "fee_type": "payment", "value": "0.25", "description": "", "internal_type": "", "tax_rate": "19.00", "tax_value": "0.05" } ], "url": "http://example.com/dummy/dummy/order/FOO/k24fiuwvu8kxz3y1/", "payment_provider": "banktransfer", "total": "23.00", "comment": "", "checkin_attention": False, "invoice_address": { "last_modified": "2017-12-01T10:00:00Z", "is_business": False, "company": "Sample company", "name": "", "name_parts": {}, "street": "", "zipcode": "", "city": "", "country": "NZ", "state": "", "internal_reference": "", "vat_id": "DE123", "vat_id_validated": True }, "require_approval": False, "positions": [TEST_ORDERPOSITION_RES], "downloads": [], "payments": TEST_PAYMENTS_RES, "refunds": TEST_REFUNDS_RES, } @pytest.mark.django_db def test_order_list(token_client, organizer, event, order, item, taxrule, question): res = dict(TEST_ORDER_RES) with scopes_disabled(): res["positions"][0]["id"] = order.positions.first().pk res["positions"][0]["item"] = item.pk res["positions"][0]["answers"][0]["question"] = question.pk res["last_modified"] = order.last_modified.isoformat().replace('+00:00', 'Z') res["fees"][0]["tax_rule"] = taxrule.pk resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/'.format(organizer.slug, event.slug)) assert resp.status_code == 200 assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?code=FOO'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?code=BAR'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?testmode=false'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?testmode=true'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?status=n'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?status=p'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orders/?email=dummy@dummy.test'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orders/?email=foo@example.org'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?locale=en'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?locale=de'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?modified_since={}'.format( organizer.slug, event.slug, (order.last_modified - datetime.timedelta(hours=1)).isoformat().replace('+00:00', 'Z') )) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?modified_since={}'.format( organizer.slug, event.slug, order.last_modified.isoformat().replace('+00:00', 'Z') )) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?modified_since={}'.format( organizer.slug, event.slug, (order.last_modified + datetime.timedelta(hours=1)).isoformat().replace('+00:00', 'Z') )) assert [] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?include_canceled_positions=false'.format(organizer.slug, event.slug)) assert resp.status_code == 200 assert len(resp.data['results'][0]['positions']) == 1 resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?include_canceled_positions=true'.format(organizer.slug, event.slug)) assert resp.status_code == 200 assert len(resp.data['results'][0]['positions']) == 2 resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?include_canceled_fees=false'.format(organizer.slug, event.slug)) assert resp.status_code == 200 assert len(resp.data['results'][0]['fees']) == 1 resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/?include_canceled_fees=true'.format(organizer.slug, event.slug)) assert resp.status_code == 200 assert len(resp.data['results'][0]['fees']) == 2 @pytest.mark.django_db def test_order_detail(token_client, organizer, event, order, item, taxrule, question): res = dict(TEST_ORDER_RES) with scopes_disabled(): res["positions"][0]["id"] = order.positions.first().pk res["positions"][0]["item"] = item.pk res["fees"][0]["tax_rule"] = taxrule.pk res["positions"][0]["answers"][0]["question"] = question.pk res["last_modified"] = order.last_modified.isoformat().replace('+00:00', 'Z') resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/'.format(organizer.slug, event.slug, order.code)) assert resp.status_code == 200 assert res == resp.data order.status = 'p' order.save() event.settings.ticketoutput_pdf__enabled = True resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/'.format(organizer.slug, event.slug, order.code)) assert len(resp.data['downloads']) == 1 assert len(resp.data['positions'][0]['downloads']) == 1 order.status = 'n' order.save() resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/'.format(organizer.slug, event.slug, order.code)) assert len(resp.data['downloads']) == 0 assert len(resp.data['positions'][0]['downloads']) == 0 event.settings.ticket_download_pending = True resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/'.format(organizer.slug, event.slug, order.code)) assert len(resp.data['downloads']) == 1 assert len(resp.data['positions'][0]['downloads']) == 1 assert len(resp.data['positions']) == 1 resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/?include_canceled_positions=true'.format(organizer.slug, event.slug, order.code)) assert resp.status_code == 200 assert len(resp.data['positions']) == 2 assert len(resp.data['fees']) == 1 resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/?include_canceled_fees=true'.format(organizer.slug, event.slug, order.code)) assert resp.status_code == 200 assert len(resp.data['fees']) == 2 @pytest.mark.django_db def test_payment_list(token_client, organizer, event, order): resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/payments/'.format(organizer.slug, event.slug, order.code)) assert resp.status_code == 200 assert TEST_PAYMENTS_RES == resp.data['results'] @pytest.mark.django_db def test_payment_detail(token_client, organizer, event, order): resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/payments/1/'.format(organizer.slug, event.slug, order.code)) assert resp.status_code == 200 assert TEST_PAYMENTS_RES[0] == resp.data @pytest.mark.django_db def test_payment_create_confirmed(token_client, organizer, event, order): resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'provider': 'banktransfer', 'state': 'confirmed', 'amount': order.total, 'info': { 'foo': 'bar' } }) with scopes_disabled(): p = order.payments.last() assert resp.status_code == 201 assert p.state == OrderPayment.PAYMENT_STATE_CONFIRMED assert p.info_data == {'foo': 'bar'} order.refresh_from_db() assert order.status == Order.STATUS_PAID @pytest.mark.django_db def test_payment_create_pending(token_client, organizer, event, order): resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'provider': 'banktransfer', 'state': 'pending', 'amount': order.total, 'info': { 'foo': 'bar' } }) with scopes_disabled(): p = order.payments.last() assert resp.status_code == 201 assert p.state == OrderPayment.PAYMENT_STATE_PENDING assert p.info_data == {'foo': 'bar'} order.refresh_from_db() assert order.status == Order.STATUS_PENDING @pytest.mark.django_db def test_payment_confirm(token_client, organizer, event, order): resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/2/confirm/'.format( organizer.slug, event.slug, order.code ), format='json', data={'force': True}) with scopes_disabled(): p = order.payments.get(local_id=2) assert resp.status_code == 200 assert p.state == OrderPayment.PAYMENT_STATE_CONFIRMED resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/2/confirm/'.format( organizer.slug, event.slug, order.code ), format='json', data={'force': True}) assert resp.status_code == 400 @pytest.mark.django_db def test_payment_cancel(token_client, organizer, event, order): resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/2/cancel/'.format( organizer.slug, event.slug, order.code )) with scopes_disabled(): p = order.payments.get(local_id=2) assert resp.status_code == 200 assert p.state == OrderPayment.PAYMENT_STATE_CANCELED resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/2/cancel/'.format( organizer.slug, event.slug, order.code )) assert resp.status_code == 400 @pytest.mark.django_db def test_payment_refund_fail(token_client, organizer, event, order, monkeypatch): with scopes_disabled(): order.payments.last().confirm() resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/2/refund/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'amount': '25.00', 'mark_canceled': False }) assert resp.status_code == 400 assert resp.data == {'amount': ['Invalid refund amount, only 23.00 are available to refund.']} resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/2/refund/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'amount': '20.00', 'mark_canceled': False }) assert resp.status_code == 400 assert resp.data == {'amount': ['Partial refund not available for this payment method.']} resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/2/refund/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'mark_canceled': False }) assert resp.status_code == 400 assert resp.data == {'amount': ['Full refund not available for this payment method.']} resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/2/refund/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'amount': '23.00', 'mark_canceled': False }) assert resp.status_code == 400 assert resp.data == {'amount': ['Full refund not available for this payment method.']} resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/1/refund/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'amount': '23.00', 'mark_canceled': False }) assert resp.status_code == 400 assert resp.data == {'detail': 'Invalid state of payment.'} @pytest.mark.django_db def test_payment_refund_success(token_client, organizer, event, order, monkeypatch): def charge_retr(*args, **kwargs): def refund_create(amount): r = MockedCharge() r.id = 'foo' r.status = 'succeeded' return r c = MockedCharge() c.refunds.create = refund_create return c with scopes_disabled(): p1 = order.payments.create( provider='stripe', state='confirmed', amount=Decimal('23.00'), payment_date=order.datetime, info=json.dumps({ 'id': 'ch_123345345' }) ) monkeypatch.setattr("stripe.Charge.retrieve", charge_retr) resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/{}/refund/'.format( organizer.slug, event.slug, order.code, p1.local_id ), format='json', data={ 'amount': '23.00', 'mark_canceled': False, }) assert resp.status_code == 200 with scopes_disabled(): r = order.refunds.get(local_id=resp.data['local_id']) assert r.provider == "stripe" assert r.state == OrderRefund.REFUND_STATE_DONE assert r.source == OrderRefund.REFUND_SOURCE_ADMIN @pytest.mark.django_db def test_payment_refund_unavailable(token_client, organizer, event, order, monkeypatch): def charge_retr(*args, **kwargs): def refund_create(amount): raise APIConnectionError(message='Foo') c = MockedCharge() c.refunds.create = refund_create return c with scopes_disabled(): p1 = order.payments.create( provider='stripe', state='confirmed', amount=Decimal('23.00'), payment_date=order.datetime, info=json.dumps({ 'id': 'ch_123345345' }) ) monkeypatch.setattr("stripe.Charge.retrieve", charge_retr) resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/payments/{}/refund/'.format( organizer.slug, event.slug, order.code, p1.local_id ), format='json', data={ 'amount': '23.00', 'mark_canceled': False, }) assert resp.status_code == 400 assert resp.data == {'detail': 'External error: We had trouble communicating with Stripe. Please try again and contact support if the problem persists.'} with scopes_disabled(): r = order.refunds.last() assert r.provider == "stripe" assert r.state == OrderRefund.REFUND_STATE_FAILED assert r.source == OrderRefund.REFUND_SOURCE_ADMIN @pytest.mark.django_db def test_refund_list(token_client, organizer, event, order): resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/refunds/'.format(organizer.slug, event.slug, order.code)) assert resp.status_code == 200 assert TEST_REFUNDS_RES == resp.data['results'] @pytest.mark.django_db def test_refund_detail(token_client, organizer, event, order): resp = token_client.get('/api/v1/organizers/{}/events/{}/orders/{}/refunds/1/'.format(organizer.slug, event.slug, order.code)) assert resp.status_code == 200 assert TEST_REFUNDS_RES[0] == resp.data @pytest.mark.django_db def test_refund_done(token_client, organizer, event, order): with scopes_disabled(): r = order.refunds.get(local_id=1) r.state = 'transit' r.save() resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/refunds/1/done/'.format( organizer.slug, event.slug, order.code )) with scopes_disabled(): r = order.refunds.get(local_id=1) assert resp.status_code == 200 assert r.state == OrderRefund.REFUND_STATE_DONE resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/refunds/1/done/'.format( organizer.slug, event.slug, order.code )) assert resp.status_code == 400 @pytest.mark.django_db def test_refund_process_mark_refunded(token_client, organizer, event, order): with scopes_disabled(): p = order.payments.get(local_id=1) p.create_external_refund() resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/refunds/2/process/'.format( organizer.slug, event.slug, order.code ), format='json', data={'mark_canceled': True}) with scopes_disabled(): r = order.refunds.get(local_id=1) assert resp.status_code == 200 assert r.state == OrderRefund.REFUND_STATE_DONE order.refresh_from_db() assert order.status == Order.STATUS_CANCELED resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/refunds/2/process/'.format( organizer.slug, event.slug, order.code ), format='json', data={'mark_canceled': True}) assert resp.status_code == 400 @pytest.mark.django_db def test_refund_process_mark_pending(token_client, organizer, event, order): with scopes_disabled(): p = order.payments.get(local_id=1) p.create_external_refund() resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/refunds/2/process/'.format( organizer.slug, event.slug, order.code ), format='json', data={'mark_canceled': False}) with scopes_disabled(): r = order.refunds.get(local_id=1) assert resp.status_code == 200 assert r.state == OrderRefund.REFUND_STATE_DONE order.refresh_from_db() assert order.status == Order.STATUS_PENDING @pytest.mark.django_db def test_refund_cancel(token_client, organizer, event, order): with scopes_disabled(): r = order.refunds.get(local_id=1) r.state = 'transit' r.save() resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/refunds/1/cancel/'.format( organizer.slug, event.slug, order.code )) with scopes_disabled(): r = order.refunds.get(local_id=1) assert resp.status_code == 200 assert r.state == OrderRefund.REFUND_STATE_CANCELED resp = token_client.post('/api/v1/organizers/{}/events/{}/orders/{}/refunds/1/cancel/'.format( organizer.slug, event.slug, order.code )) assert resp.status_code == 400 @pytest.mark.django_db def test_orderposition_list(token_client, organizer, event, order, item, subevent, subevent2, question): i2 = copy.copy(item) i2.pk = None i2.save() with scopes_disabled(): var = item.variations.create(value="Children") var2 = item.variations.create(value="Children") res = dict(TEST_ORDERPOSITION_RES) op = order.positions.first() op.variation = var op.save() res["id"] = op.pk res["item"] = item.pk res["variation"] = var.pk res["answers"][0]["question"] = question.pk resp = token_client.get('/api/v1/organizers/{}/events/{}/orderpositions/'.format(organizer.slug, event.slug)) assert resp.status_code == 200 assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?order__status=n'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?order__status=p'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?item={}'.format(organizer.slug, event.slug, item.pk)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?item__in={},{}'.format( organizer.slug, event.slug, item.pk, i2.pk )) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?item={}'.format(organizer.slug, event.slug, i2.pk)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?variation={}'.format(organizer.slug, event.slug, var.pk)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?variation={}'.format(organizer.slug, event.slug, var2.pk)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?attendee_name=Peter'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?attendee_name=peter'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?attendee_name=Mark'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?secret=z3fsn8jyufm5kpk768q69gkbyr5f4h6w'.format( organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?secret=abc123'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?pseudonymization_id=ABCDEFGHKL'.format( organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?pseudonymization_id=FOO'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?search=FO'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?search=z3fsn8j'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?search=Peter'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?search=5f4h6w'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?order=FOO'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?order=BAR'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?has_checkin=false'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?has_checkin=true'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] with scopes_disabled(): cl = event.checkin_lists.create(name="Default") op.checkins.create(datetime=datetime.datetime(2017, 12, 26, 10, 0, 0, tzinfo=UTC), list=cl) res['checkins'] = [{'datetime': '2017-12-26T10:00:00Z', 'list': cl.pk, 'auto_checked_in': False}] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?has_checkin=true'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] op.subevent = subevent op.save() res['subevent'] = subevent.pk resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?subevent={}'.format(organizer.slug, event.slug, subevent.pk)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?subevent__in={},{}'.format(organizer.slug, event.slug, subevent.pk, subevent2.pk)) assert [res] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?subevent={}'.format(organizer.slug, event.slug, subevent.pk + 1)) assert [] == resp.data['results'] resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?include_canceled_positions=false'.format(organizer.slug, event.slug)) assert len(resp.data['results']) == 1 resp = token_client.get( '/api/v1/organizers/{}/events/{}/orderpositions/?include_canceled_positions=true'.format(organizer.slug, event.slug)) assert len(resp.data['results']) == 2 @pytest.mark.django_db def test_orderposition_detail(token_client, organizer, event, order, item, question): res = dict(TEST_ORDERPOSITION_RES) with scopes_disabled(): op = order.positions.first() res["id"] = op.pk res["item"] = item.pk res["answers"][0]["question"] = question.pk resp = token_client.get('/api/v1/organizers/{}/events/{}/orderpositions/{}/'.format(organizer.slug, event.slug, op.pk)) assert resp.status_code == 200 assert res == resp.data order.status = 'p' order.save() event.settings.ticketoutput_pdf__enabled = True resp = token_client.get('/api/v1/organizers/{}/events/{}/orderpositions/{}/'.format(organizer.slug, event.slug, op.pk)) assert len(resp.data['downloads']) == 1 @pytest.mark.django_db def test_orderposition_detail_canceled(token_client, organizer, event, order, item, question): with scopes_disabled(): op = order.all_positions.filter(canceled=True).first() resp = token_client.get('/api/v1/organizers/{}/events/{}/orderpositions/{}/'.format(organizer.slug, event.slug, op.pk)) assert resp.status_code == 404 resp = token_client.get('/api/v1/organizers/{}/events/{}/orderpositions/{}/?include_canceled_positions=true'.format( organizer.slug, event.slug, op.pk)) assert resp.status_code == 200 @pytest.mark.django_db def test_orderposition_delete(token_client, organizer, event, order, item, question): with scopes_disabled(): op = order.positions.first() resp = token_client.delete('/api/v1/organizers/{}/events/{}/orderpositions/{}/'.format( organizer.slug, event.slug, op.pk )) assert resp.status_code == 400 assert resp.data == ['This operation would leave the order empty. Please cancel the order itself instead.'] with scopes_disabled(): op2 = OrderPosition.objects.create( order=order, item=item, variation=None, price=Decimal("23"), attendee_name_parts={"full_name": "Peter", "_scheme": "full"}, secret="foobar", pseudonymization_id="BAZ", ) order.refresh_from_db() order.total = Decimal('46') order.save() assert order.positions.count() == 2 resp = token_client.delete('/api/v1/organizers/{}/events/{}/orderpositions/{}/'.format( organizer.slug, event.slug, op2.pk )) assert resp.status_code == 204 with scopes_disabled(): assert order.positions.count() == 1 assert order.all_positions.count() == 3 order.refresh_from_db() assert order.total == Decimal('23.25') @pytest.fixture def invoice(order): testtime = datetime.datetime(2017, 12, 10, 10, 0, 0, tzinfo=UTC) with mock.patch('django.utils.timezone.now') as mock_now: mock_now.return_value = testtime return generate_invoice(order) TEST_INVOICE_RES = { "order": "FOO", "number": "DUMMY-00001", "is_cancellation": False, "invoice_from": "", "invoice_to": "Sample company\nNew Zealand\nVAT-ID: DE123", "date": "2017-12-10", "refers": None, "locale": "en", "introductory_text": "", "internal_reference": "", "additional_text": "", "payment_provider_text": "", "footer_text": "", "foreign_currency_display": None, "foreign_currency_rate": None, "foreign_currency_rate_date": None, "lines": [ { "position": 1, "description": "Budget Ticket<br />Attendee: Peter", "gross_value": "23.00", "tax_value": "0.00", "tax_name": "", "tax_rate": "0.00" }, { "position": 2, "description": "Payment fee", "gross_value": "0.25", "tax_value": "0.05", "tax_name": "", "tax_rate": "19.00" } ] } @pytest.mark.django_db def test_invoice_list(token_client, organizer, event, order, invoice): res = dict(TEST_INVOICE_RES) resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/'.format(organizer.slug, event.slug)) assert resp.status_code == 200 assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?order=FOO'.format(organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?order=BAR'.format(organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?number={}'.format( organizer.slug, event.slug, invoice.number)) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?number=XXX'.format( organizer.slug, event.slug)) assert [] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?locale=en'.format( organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?locale=de'.format( organizer.slug, event.slug)) assert [] == resp.data['results'] with scopes_disabled(): ic = generate_cancellation(invoice) resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?is_cancellation=false'.format( organizer.slug, event.slug)) assert [res] == resp.data['results'] resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?is_cancellation=true'.format( organizer.slug, event.slug)) assert len(resp.data['results']) == 1 assert resp.data['results'][0]['number'] == ic.number resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?refers={}'.format( organizer.slug, event.slug, invoice.number)) assert len(resp.data['results']) == 1 assert resp.data['results'][0]['number'] == ic.number resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/?refers={}'.format( organizer.slug, event.slug, ic.number)) assert [] == resp.data['results'] @pytest.mark.django_db def test_invoice_detail(token_client, organizer, event, invoice): res = dict(TEST_INVOICE_RES) resp = token_client.get('/api/v1/organizers/{}/events/{}/invoices/{}/'.format(organizer.slug, event.slug, invoice.number)) assert resp.status_code == 200 assert res == resp.data @pytest.mark.django_db def test_invoice_regenerate(token_client, organizer, event, invoice): with scopes_disabled(): InvoiceAddress.objects.filter(order=invoice.order).update(company="ACME Ltd") resp = token_client.post('/api/v1/organizers/{}/events/{}/invoices/{}/regenerate/'.format( organizer.slug, event.slug, invoice.number )) assert resp.status_code == 204 invoice.refresh_from_db() assert "ACME Ltd" in invoice.invoice_to @pytest.mark.django_db def test_invoice_reissue(token_client, organizer, event, invoice): with scopes_disabled(): InvoiceAddress.objects.filter(order=invoice.order).update(company="ACME Ltd") resp = token_client.post('/api/v1/organizers/{}/events/{}/invoices/{}/reissue/'.format( organizer.slug, event.slug, invoice.number )) assert resp.status_code == 204 invoice.refresh_from_db() assert "ACME Ltd" not in invoice.invoice_to with scopes_disabled(): assert invoice.order.invoices.count() == 3 invoice = invoice.order.invoices.last() assert "ACME Ltd" in invoice.invoice_to @pytest.mark.django_db def test_order_mark_paid_pending(token_client, organizer, event, order): resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_paid/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_PAID @pytest.mark.django_db def test_order_mark_paid_canceled(token_client, organizer, event, order): order.status = Order.STATUS_CANCELED order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_paid/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 order.refresh_from_db() assert order.status == Order.STATUS_CANCELED @pytest.mark.django_db def test_order_mark_paid_expired_quota_free(token_client, organizer, event, order, quota): order.status = Order.STATUS_EXPIRED order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_paid/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 order.refresh_from_db() assert order.status == Order.STATUS_PAID @pytest.mark.django_db def test_order_mark_paid_expired_quota_fill(token_client, organizer, event, order, quota): order.status = Order.STATUS_EXPIRED order.save() quota.size = 0 quota.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_paid/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 order.refresh_from_db() assert order.status == Order.STATUS_EXPIRED @pytest.mark.django_db def test_order_mark_paid_locked(token_client, organizer, event, order): order.status = Order.STATUS_EXPIRED order.save() with event.lock(): resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_paid/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 409 order.refresh_from_db() assert order.status == Order.STATUS_EXPIRED @pytest.mark.django_db def test_order_reactivate(token_client, organizer, event, order, quota): order.status = Order.STATUS_CANCELED order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/reactivate/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_PENDING @pytest.mark.django_db def test_order_reactivate_invalid(token_client, organizer, event, order): resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/reactivate/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 @pytest.mark.django_db def test_order_mark_canceled_pending(token_client, organizer, event, order): djmail.outbox = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_canceled/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_CANCELED assert len(djmail.outbox) == 1 @pytest.mark.django_db def test_order_mark_canceled_pending_fee_not_allowed(token_client, organizer, event, order): djmail.outbox = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_canceled/'.format( organizer.slug, event.slug, order.code ), data={ 'cancellation_fee': '7.00' } ) assert resp.status_code == 400 assert resp.data == {'detail': 'The cancellation fee cannot be higher than the payment credit of this order.'} @pytest.mark.django_db def test_order_mark_canceled_pending_no_email(token_client, organizer, event, order): djmail.outbox = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_canceled/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'send_email': False } ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_CANCELED assert len(djmail.outbox) == 0 @pytest.mark.django_db def test_order_mark_canceled_expired(token_client, organizer, event, order): order.status = Order.STATUS_EXPIRED order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_canceled/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 order.refresh_from_db() assert order.status == Order.STATUS_CANCELED @pytest.mark.django_db def test_order_mark_paid_canceled_keep_fee(token_client, organizer, event, order): order.status = Order.STATUS_PAID order.save() with scopes_disabled(): order.payments.create(state=OrderPayment.PAYMENT_STATE_CONFIRMED, amount=order.total) resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_canceled/'.format( organizer.slug, event.slug, order.code ), data={ 'cancellation_fee': '6.00' } ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_PAID order.refresh_from_db() assert order.status == Order.STATUS_PAID assert order.total == Decimal('6.00') @pytest.mark.django_db def test_order_mark_paid_refunded(token_client, organizer, event, order): order.status = Order.STATUS_PAID order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_refunded/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_CANCELED @pytest.mark.django_db def test_order_mark_canceled_refunded(token_client, organizer, event, order): order.status = Order.STATUS_CANCELED order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_refunded/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 order.refresh_from_db() assert order.status == Order.STATUS_CANCELED @pytest.mark.django_db def test_order_mark_paid_unpaid(token_client, organizer, event, order): order.status = Order.STATUS_PAID order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_pending/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_PENDING @pytest.mark.django_db def test_order_mark_canceled_unpaid(token_client, organizer, event, order): order.status = Order.STATUS_CANCELED order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_pending/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 order.refresh_from_db() assert order.status == Order.STATUS_CANCELED @pytest.mark.django_db def test_order_mark_pending_expired(token_client, organizer, event, order): order.status = Order.STATUS_PENDING order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_expired/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_EXPIRED @pytest.mark.django_db def test_order_mark_paid_expired(token_client, organizer, event, order): order.status = Order.STATUS_PAID order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/mark_expired/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 order.refresh_from_db() assert order.status == Order.STATUS_PAID @pytest.mark.django_db def test_order_extend_paid(token_client, organizer, event, order): order.status = Order.STATUS_PAID order.save() newdate = (now() + datetime.timedelta(days=20)).strftime("%Y-%m-%d") resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/extend/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'expires': newdate } ) assert resp.status_code == 400 order.refresh_from_db() assert order.status == Order.STATUS_PAID @pytest.mark.django_db def test_order_extend_pending(token_client, organizer, event, order): order.status = Order.STATUS_PENDING order.save() newdate = (now() + datetime.timedelta(days=20)).strftime("%Y-%m-%d") resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/extend/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'expires': newdate } ) assert resp.status_code == 200 order.refresh_from_db() assert order.status == Order.STATUS_PENDING assert order.expires.astimezone(event.timezone).strftime("%Y-%m-%d %H:%M:%S") == newdate[:10] + " 23:59:59" @pytest.mark.django_db def test_order_extend_expired_quota_empty(token_client, organizer, event, order, quota): order.status = Order.STATUS_EXPIRED order.save() quota.size = 0 quota.save() newdate = (now() + datetime.timedelta(days=20)).strftime("%Y-%m-%d") resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/extend/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'expires': newdate } ) assert resp.status_code == 400 order.refresh_from_db() assert order.status == Order.STATUS_EXPIRED @pytest.mark.django_db def test_order_extend_expired_quota_ignore(token_client, organizer, event, order, quota): order.status = Order.STATUS_EXPIRED order.save() quota.size = 0 quota.save() newdate = (now() + datetime.timedelta(days=20)).strftime("%Y-%m-%d") resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/extend/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'expires': newdate, 'force': True } ) assert resp.status_code == 200 order.refresh_from_db() assert order.status == Order.STATUS_PENDING assert order.expires.astimezone(event.timezone).strftime("%Y-%m-%d %H:%M:%S") == newdate[:10] + " 23:59:59" @pytest.mark.django_db def test_order_extend_expired_quota_waiting_list(token_client, organizer, event, order, item, quota): order.status = Order.STATUS_EXPIRED order.save() quota.size = 1 quota.save() with scopes_disabled(): event.waitinglistentries.create(item=item, email='foo@bar.com') newdate = (now() + datetime.timedelta(days=20)).strftime("%Y-%m-%d") resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/extend/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'expires': newdate, } ) assert resp.status_code == 200 order.refresh_from_db() assert order.status == Order.STATUS_PENDING assert order.expires.astimezone(event.timezone).strftime("%Y-%m-%d %H:%M:%S") == newdate[:10] + " 23:59:59" @pytest.mark.django_db def test_order_extend_expired_quota_left(token_client, organizer, event, order, quota): order.status = Order.STATUS_EXPIRED order.save() quota.size = 2 quota.save() newdate = (now() + datetime.timedelta(days=20)).strftime("%Y-%m-%d") resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/extend/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'expires': newdate, } ) assert resp.status_code == 200 order.refresh_from_db() assert order.status == Order.STATUS_PENDING assert order.expires.astimezone(event.timezone).strftime("%Y-%m-%d %H:%M:%S") == newdate[:10] + " 23:59:59" @pytest.mark.django_db def test_order_pending_approve(token_client, organizer, event, order): order.require_approval = True order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/approve/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_PENDING assert not resp.data['require_approval'] @pytest.mark.django_db def test_order_invalid_state_approve(token_client, organizer, event, order): order.require_approval = True order.status = Order.STATUS_CANCELED order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/approve/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 order.require_approval = False order.status = Order.STATUS_PENDING order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/approve/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 @pytest.mark.django_db def test_order_pending_deny(token_client, organizer, event, order): order.require_approval = True order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/deny/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 200 assert resp.data['status'] == Order.STATUS_CANCELED assert resp.data['require_approval'] @pytest.mark.django_db def test_order_invalid_state_deny(token_client, organizer, event, order): order.require_approval = True order.status = Order.STATUS_CANCELED order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/deny/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 order.require_approval = False order.status = Order.STATUS_PENDING order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/deny/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 400 ORDER_CREATE_PAYLOAD = { "email": "dummy@dummy.test", "locale": "en", "sales_channel": "web", "fees": [ { "fee_type": "payment", "value": "0.25", "description": "", "internal_type": "", "tax_rule": None } ], "payment_provider": "banktransfer", "invoice_address": { "is_business": False, "company": "Sample company", "name_parts": {"full_name": "Fo"}, "street": "Bar", "state": "", "zipcode": "", "city": "Sample City", "country": "NZ", "internal_reference": "", "vat_id": "" }, "positions": [ { "positionid": 1, "item": 1, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": None, "company": "FOOCORP", "answers": [ { "question": 1, "answer": "S", "options": [] } ], "subevent": None } ], } @pytest.mark.django_db def test_order_create(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.email == "dummy@dummy.test" assert o.locale == "en" assert o.total == Decimal('23.25') assert o.status == Order.STATUS_PENDING assert o.sales_channel == "web" assert not o.testmode with scopes_disabled(): p = o.payments.first() assert p.provider == "banktransfer" assert p.amount == o.total assert p.state == "created" with scopes_disabled(): fee = o.fees.first() assert fee.fee_type == "payment" assert fee.value == Decimal('0.25') ia = o.invoice_address assert ia.company == "Sample company" assert ia.name_parts == {"full_name": "Fo", "_scheme": "full"} assert ia.name_cached == "Fo" with scopes_disabled(): assert o.positions.count() == 1 pos = o.positions.first() assert pos.item == item assert pos.price == Decimal("23.00") assert pos.attendee_name_parts == {"full_name": "Peter", "_scheme": "full"} assert pos.company == "FOOCORP" with scopes_disabled(): answ = pos.answers.first() assert answ.question == question assert answ.answer == "S" @pytest.mark.django_db def test_order_create_simulate(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) question.type = Question.TYPE_CHOICE_MULTIPLE question.save() with scopes_disabled(): opt = question.options.create(answer="L") res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['answers'][0]['options'] = [opt.pk] res['simulate'] = True resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): assert Order.objects.count() == 0 assert QuestionAnswer.objects.count() == 0 assert OrderPosition.objects.count() == 0 assert OrderFee.objects.count() == 0 assert InvoiceAddress.objects.count() == 0 d = resp.data del d['last_modified'] del d['secret'] del d['url'] del d['expires'] del d['invoice_address']['last_modified'] del d['positions'][0]['secret'] assert d == { 'code': 'PREVIEW', 'status': 'n', 'testmode': False, 'email': 'dummy@dummy.test', 'locale': 'en', 'datetime': None, 'payment_date': None, 'payment_provider': None, 'fees': [ { 'fee_type': 'payment', 'value': '0.25', 'description': '', 'internal_type': '', 'tax_rate': '0.00', 'tax_value': '0.00', 'tax_rule': None, 'canceled': False } ], 'total': '23.25', 'comment': '', 'invoice_address': { 'is_business': False, 'company': 'Sample company', 'name': 'Fo', 'name_parts': {'full_name': 'Fo', '_scheme': 'full'}, 'street': 'Bar', 'zipcode': '', 'city': 'Sample City', 'country': 'NZ', 'state': '', 'vat_id': '', 'vat_id_validated': False, 'internal_reference': '' }, 'positions': [ { 'id': 0, 'order': '', 'positionid': 1, 'item': item.pk, 'variation': None, 'price': '23.00', 'attendee_name': 'Peter', 'attendee_name_parts': {'full_name': 'Peter', '_scheme': 'full'}, 'attendee_email': None, 'voucher': None, 'tax_rate': '0.00', 'tax_value': '0.00', 'addon_to': None, 'subevent': None, 'checkins': [], 'downloads': [], 'answers': [ {'question': question.pk, 'answer': 'L', 'question_identifier': 'ABC', 'options': [opt.pk], 'option_identifiers': [opt.identifier]} ], 'tax_rule': None, 'pseudonymization_id': 'PREVIEW', 'seat': None, 'company': "FOOCORP", 'street': None, 'city': None, 'zipcode': None, 'state': None, 'country': None, 'canceled': False } ], 'downloads': [], 'checkin_attention': False, 'payments': [], 'refunds': [], 'require_approval': False, 'sales_channel': 'web', } @pytest.mark.django_db def test_order_create_autocheckin(token_client, organizer, event, item, quota, question, clist_autocheckin): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert "web" in clist_autocheckin.auto_checkin_sales_channels assert o.positions.first().checkins.first().auto_checked_in clist_autocheckin.auto_checkin_sales_channels = [] clist_autocheckin.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert clist_autocheckin.auto_checkin_sales_channels == [] assert o.positions.first().checkins.count() == 0 @pytest.mark.django_db def test_order_create_invoice_address_optional(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['invoice_address'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) with pytest.raises(InvoiceAddress.DoesNotExist): o.invoice_address @pytest.mark.django_db def test_order_create_sales_channel_optional(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['sales_channel'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.sales_channel == "web" @pytest.mark.django_db def test_order_create_sales_channel_invalid(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['sales_channel'] = 'foo' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'sales_channel': ['Unknown sales channel.']} @pytest.mark.django_db def test_order_create_in_test_mode(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['testmode'] = True resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.testmode @pytest.mark.django_db def test_order_create_in_test_mode_saleschannel_limited(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['testmode'] = True res['sales_channel'] = 'bar' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'testmode': ['This sales channel does not provide support for test mode.']} @pytest.mark.django_db def test_order_create_attendee_name_optional(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['attendee_name'] = None res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['positions'][0]['attendee_name_parts'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.positions.first().attendee_name_parts == {} @pytest.mark.django_db def test_order_create_legacy_attendee_name(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['attendee_name'] = 'Peter' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 del res['positions'][0]['attendee_name_parts'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.positions.first().attendee_name_parts == {"_legacy": "Peter"} @pytest.mark.django_db def test_order_create_legacy_invoice_name(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['invoice_address']['name'] = 'Peter' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 del res['invoice_address']['name_parts'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.invoice_address.name_parts == {"_legacy": "Peter"} @pytest.mark.django_db def test_order_create_code_optional(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['code'] = 'ABCDE' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.code == "ABCDE" resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'code': ['This order code is already in use.']} res['code'] = 'ABaDE' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'code': ['This order code contains invalid characters.']} @pytest.mark.django_db def test_order_email_optional(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['email'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert not o.email @pytest.mark.django_db def test_order_create_payment_provider_optional_free(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['price'] = '0.00' res['positions'][0]['status'] = 'p' del res['payment_provider'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert not o.payments.exists() @pytest.mark.django_db def test_order_create_payment_info_optional(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 res['payment_info'] = { 'foo': { 'bar': [1, 2], 'test': False } } resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) p = o.payments.first() assert p.provider == "banktransfer" assert p.amount == o.total assert json.loads(p.info) == res['payment_info'] @pytest.mark.django_db def test_order_create_position_secret_optional(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.positions.first().secret res['positions'][0]['secret'] = "aaa" resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.positions.first().secret == "aaa" resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'secret': ['You cannot assign a position secret that already exists.']}]} @pytest.mark.django_db def test_order_create_tax_rules(token_client, organizer, event, item, quota, question, taxrule): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['fees'][0]['tax_rule'] = taxrule.pk res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk item.tax_rule = taxrule item.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) fee = o.fees.first() assert fee.fee_type == "payment" assert fee.value == Decimal('0.25') assert fee.tax_rate == Decimal('19.00') assert fee.tax_rule == taxrule ia = o.invoice_address assert ia.company == "Sample company" with scopes_disabled(): pos = o.positions.first() assert pos.item == item assert pos.tax_rate == Decimal('19.00') assert pos.tax_value == Decimal('3.67') assert pos.tax_rule == taxrule @pytest.mark.django_db def test_order_create_fee_type_validation(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['fees'][0]['fee_type'] = 'unknown' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'fees': [{'fee_type': ['"unknown" is not a valid choice.']}]} @pytest.mark.django_db def test_order_create_fee_as_percentage(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['fees'][0]['_treat_value_as_percentage'] = True res['fees'][0]['value'] = '10.00' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) fee = o.fees.first() assert fee.value == Decimal('2.30') assert o.total == Decimal('25.30') @pytest.mark.django_db def test_order_create_fee_with_auto_tax(token_client, organizer, event, item, quota, question, taxrule): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['fees'][0]['_split_taxes_like_products'] = True res['fees'][0]['_treat_value_as_percentage'] = True res['fees'][0]['value'] = '10.00' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk item.tax_rule = taxrule item.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) fee = o.fees.first() assert fee.value == Decimal('2.30') assert fee.tax_rate == Decimal('19.00') assert o.total == Decimal('25.30') @pytest.mark.django_db def test_order_create_tax_rule_wrong_event(token_client, organizer, event, item, quota, question, taxrule2): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['fees'][0]['tax_rule'] = taxrule2.pk res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'fees': [{'tax_rule': ['The specified tax rate does not belong to this event.']}]} @pytest.mark.django_db def test_order_create_subevent_not_allowed(token_client, organizer, event, item, quota, question, subevent2): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['subevent'] = subevent2.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'subevent': ['You cannot set a subevent for this event.']}]} @pytest.mark.django_db def test_order_create_empty(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'] = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': ['An order cannot be empty.']} @pytest.mark.django_db def test_order_create_subevent_validation(token_client, organizer, event, item, subevent, subevent2, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'subevent': ['You need to set a subevent.']}]} res['positions'][0]['subevent'] = subevent2.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'subevent': ['The specified subevent does not belong to this event.']}]} @pytest.mark.django_db def test_order_create_item_validation(token_client, organizer, event, item, item2, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) item.active = False item.save() res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'item': ['The specified item is not active.']}]} item.active = True item.save() res['positions'][0]['item'] = item2.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'item': ['The specified item does not belong to this event.']}]} with scopes_disabled(): var2 = item2.variations.create(value="A") quota.variations.add(var2) res['positions'][0]['item'] = item.pk res['positions'][0]['variation'] = var2.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'variation': ['You cannot specify a variation for this item.']}]} with scopes_disabled(): var1 = item.variations.create(value="A") res['positions'][0]['item'] = item.pk res['positions'][0]['variation'] = var1.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'item': ['The product "Budget Ticket" is not assigned to a quota.']}]} with scopes_disabled(): quota.variations.add(var1) resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 res['positions'][0]['variation'] = var2.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [{'variation': ['The specified variation does not belong to the specified item.']}]} res['positions'][0]['variation'] = None resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'variation': ['You should specify a variation for this item.']}]} @pytest.mark.django_db def test_order_create_positionids_addons(token_client, organizer, event, item, quota): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'] = [ { "positionid": 1, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": None, "answers": [], "subevent": None }, { "positionid": 2, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": 1, "answers": [], "subevent": None } ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) pos1 = o.positions.first() pos2 = o.positions.last() assert pos2.addon_to == pos1 @pytest.mark.django_db def test_order_create_positionid_validation(token_client, organizer, event, item, quota): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'] = [ { "positionid": 1, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": None, "answers": [], "subevent": None }, { "positionid": 2, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": 2, "answers": [], "subevent": None } ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {}, { 'addon_to': [ 'If you set addon_to, you need to make sure that the ' 'referenced position ID exists and is transmitted directly ' 'before its add-ons.' ] } ] } res['positions'] = [ { "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": None, "answers": [], "subevent": None }, { "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": 2, "answers": [], "subevent": None } ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [ {'positionid': ["If you set addon_to on any position, you need to specify position IDs manually."]}, {'positionid': ["If you set addon_to on any position, you need to specify position IDs manually."]} ]} res['positions'] = [ { "positionid": 1, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "answers": [], "subevent": None }, { "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "answers": [], "subevent": None } ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {}, { 'positionid': ['If you set position IDs manually, you need to do so for all positions.'] } ] } res['positions'] = [ { "positionid": 1, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "answers": [], "subevent": None }, { "positionid": 3, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "answers": [], "subevent": None } ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {}, { 'positionid': ['Position IDs need to be consecutive.'] } ] } res['positions'] = [ { "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "answers": [], "subevent": None }, { "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "answers": [], "subevent": None } ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.positions.first().positionid == 1 assert o.positions.last().positionid == 2 @pytest.mark.django_db def test_order_create_answer_validation(token_client, organizer, event, item, quota, question, question2): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question2.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [{'answers': [{'question': ['The specified question does not belong to this event.']}]}]} res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['answers'][0]['options'] = [question.options.first().pk] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'answers': [ {'non_field_errors': ['You should not specify options if the question is not of a choice type.']}]}]} question.type = Question.TYPE_CHOICE question.save() res['positions'][0]['answers'][0]['options'] = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [ {'answers': [{'non_field_errors': ['You need to specify options if the question is of a choice type.']}]}]} with scopes_disabled(): question.options.create(answer="L") with scopes_disabled(): res['positions'][0]['answers'][0]['options'] = [ question.options.first().pk, question.options.last().pk, ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [{'answers': [{'non_field_errors': ['You can specify at most one option for this question.']}]}]} question.type = Question.TYPE_FILE question.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [{'answers': [{'non_field_errors': ['File uploads are currently not supported via the API.']}]}]} question.type = Question.TYPE_CHOICE_MULTIPLE question.save() with scopes_disabled(): res['positions'][0]['answers'][0]['options'] = [ question.options.first().pk, question.options.last().pk, ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) pos = o.positions.first() answ = pos.answers.first() assert answ.question == question assert answ.answer == "XL, L" question.type = Question.TYPE_NUMBER question.save() res['positions'][0]['answers'][0]['options'] = [] res['positions'][0]['answers'][0]['answer'] = '3.45' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) pos = o.positions.first() answ = pos.answers.first() assert answ.answer == "3.45" question.type = Question.TYPE_NUMBER question.save() res['positions'][0]['answers'][0]['options'] = [] res['positions'][0]['answers'][0]['answer'] = 'foo' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'answers': [{'non_field_errors': ['A valid number is required.']}]}]} question.type = Question.TYPE_BOOLEAN question.save() res['positions'][0]['answers'][0]['options'] = [] res['positions'][0]['answers'][0]['answer'] = 'True' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) pos = o.positions.first() answ = pos.answers.first() assert answ.answer == "True" question.type = Question.TYPE_BOOLEAN question.save() res['positions'][0]['answers'][0]['answer'] = '0' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) pos = o.positions.first() answ = pos.answers.first() assert answ.answer == "False" question.type = Question.TYPE_BOOLEAN question.save() res['positions'][0]['answers'][0]['answer'] = 'bla' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [{'answers': [{'non_field_errors': ['Please specify "true" or "false" for boolean questions.']}]}]} question.type = Question.TYPE_DATE question.save() res['positions'][0]['answers'][0]['answer'] = '2018-05-14' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) pos = o.positions.first() answ = pos.answers.first() assert answ.answer == "2018-05-14" question.type = Question.TYPE_DATE question.save() res['positions'][0]['answers'][0]['answer'] = 'bla' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'answers': [ {'non_field_errors': ['Date has wrong format. Use one of these formats instead: YYYY-MM-DD.']}]}]} question.type = Question.TYPE_DATETIME question.save() res['positions'][0]['answers'][0]['answer'] = '2018-05-14T13:00:00Z' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) pos = o.positions.first() answ = pos.answers.first() assert answ.answer == "2018-05-14 13:00:00+00:00" question.type = Question.TYPE_DATETIME question.save() res['positions'][0]['answers'][0]['answer'] = 'bla' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'answers': [{'non_field_errors': [ 'Datetime has wrong format. Use one of these formats instead: ' 'YYYY-MM-DDThh:mm[:ss[.uuuuuu]][+HH:MM|-HH:MM|Z].']}]}]} question.type = Question.TYPE_TIME question.save() res['positions'][0]['answers'][0]['answer'] = '13:00:00' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) pos = o.positions.first() answ = pos.answers.first() assert answ.answer == "13:00:00" question.type = Question.TYPE_TIME question.save() res['positions'][0]['answers'][0]['answer'] = 'bla' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{'answers': [ {'non_field_errors': ['Time has wrong format. Use one of these formats instead: hh:mm[:ss[.uuuuuu]].']}]}]} @pytest.mark.django_db def test_order_create_quota_validation(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'] = [ { "positionid": 1, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": None, "answers": [], "subevent": None }, { "positionid": 2, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": 1, "answers": [], "subevent": None } ] quota.size = 0 quota.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'item': ['There is not enough quota available on quota "Budget Quota" to perform the operation.']}, {'item': ['There is not enough quota available on quota "Budget Quota" to perform the operation.']}, ] } quota.size = 1 quota.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {}, {'item': ['There is not enough quota available on quota "Budget Quota" to perform the operation.']}, ] } res['force'] = True resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 @pytest.mark.django_db def test_order_create_quota_consume_cart(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk with scopes_disabled(): cr = CartPosition.objects.create( event=event, cart_id="uxLJBUMEcnxOLI2EuxLYN1hWJq9GKu4yWL9FEgs2m7M0vdFi@api", item=item, price=23, expires=now() + datetime.timedelta(hours=3) ) quota.size = 1 quota.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'item': ['There is not enough quota available on quota "Budget Quota" to perform the operation.']}, ] } res['consume_carts'] = [cr.cart_id] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): assert not CartPosition.objects.filter(pk=cr.pk).exists() @pytest.mark.django_db def test_order_create_quota_consume_cart_expired(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk with scopes_disabled(): cr = CartPosition.objects.create( event=event, cart_id="uxLJBUMEcnxOLI2EuxLYN1hWJq9GKu4yWL9FEgs2m7M0vdFi@api", item=item, price=23, expires=now() - datetime.timedelta(hours=3) ) quota.size = 0 quota.save() res['consume_carts'] = [cr.cart_id] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'item': ['There is not enough quota available on quota "Budget Quota" to perform the operation.']}, ] } @pytest.mark.django_db def test_order_create_free(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['fees'] = [] res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['price'] = '0.00' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.total == Decimal('0.00') assert o.status == Order.STATUS_PAID with scopes_disabled(): p = o.payments.first() assert p.provider == "free" assert p.amount == o.total assert p.state == "confirmed" @pytest.mark.django_db def test_order_create_invalid_payment_provider(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['payment_provider'] = 'foo' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'payment_provider': ['The given payment provider is not known.']} @pytest.mark.django_db def test_order_create_invalid_free_order(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['payment_provider'] = 'free' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == ['You cannot use the "free" payment provider for non-free orders.'] @pytest.mark.django_db def test_order_create_invalid_status(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['status'] = 'e' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'status': ['"e" is not a valid choice.']} @pytest.mark.django_db def test_order_create_paid_generate_invoice(token_client, organizer, event, item, quota, question): event.settings.invoice_generate = 'paid' res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['status'] = 'p' res['payment_date'] = '2019-04-01 08:20:00Z' res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert o.invoices.count() == 1 p = o.payments.first() assert p.provider == "banktransfer" assert p.amount == o.total assert p.state == "confirmed" assert p.payment_date.year == 2019 assert p.payment_date.month == 4 assert p.payment_date.day == 1 assert p.payment_date.hour == 8 assert p.payment_date.minute == 20 @pytest.fixture def seat(event, organizer, item): SeatingPlan.objects.create( name="Plan", organizer=organizer, layout="{}" ) event.seat_category_mappings.create( layout_category='Stalls', product=item ) return event.seats.create(name="A1", product=item, seat_guid="A1") @pytest.mark.django_db def test_order_create_with_seat(token_client, organizer, event, item, quota, seat, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['seat'] = seat.seat_guid res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) p = o.positions.first() assert p.seat == seat @pytest.mark.django_db def test_order_create_with_blocked_seat_allowed(token_client, organizer, event, item, quota, seat, question): seat.blocked = True seat.save() res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['seat'] = seat.seat_guid res['positions'][0]['answers'][0]['question'] = question.pk res['sales_channel'] = 'bar' event.settings.seating_allow_blocked_seats_for_channel = ['bar'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 @pytest.mark.django_db def test_order_create_with_blocked_seat(token_client, organizer, event, item, quota, seat, question): seat.blocked = True seat.save() res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['seat'] = seat.seat_guid res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'seat': ['The selected seat "A1" is not available.']}, ] } @pytest.mark.django_db def test_order_create_with_used_seat(token_client, organizer, event, item, quota, seat, question): CartPosition.objects.create( event=event, cart_id='aaa', item=item, price=21.5, expires=now() + datetime.timedelta(minutes=10), seat=seat ) res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['seat'] = seat.seat_guid res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'seat': ['The selected seat "A1" is not available.']}, ] } @pytest.mark.django_db def test_order_create_with_unknown_seat(token_client, organizer, event, item, quota, seat, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['seat'] = seat.seat_guid + '_' res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'seat': ['The specified seat does not exist.']}, ] } @pytest.mark.django_db def test_order_create_require_seat(token_client, organizer, event, item, quota, seat, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'seat': ['The specified product requires to choose a seat.']}, ] } @pytest.mark.django_db def test_order_create_unseated(token_client, organizer, event, item, quota, seat, question): with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=23) quota.items.add(item2) res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item2.pk res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['seat'] = seat.seat_guid resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'seat': ['The specified product does not allow to choose a seat.']}, ] } @pytest.mark.django_db def test_order_create_with_duplicate_seat(token_client, organizer, event, item, quota, seat, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'] = [ { "positionid": 1, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": None, "answers": [], "subevent": None, "seat": seat.seat_guid }, { "positionid": 2, "item": item.pk, "variation": None, "price": "23.00", "attendee_name_parts": {"full_name": "Peter"}, "attendee_email": None, "addon_to": 1, "answers": [], "subevent": None, "seat": seat.seat_guid } ] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {}, {'seat': ['The selected seat "A1" is not available.']}, ] } @pytest.mark.django_db def test_order_create_with_seat_consumed_from_cart(token_client, organizer, event, item, quota, seat, question): CartPosition.objects.create( event=event, cart_id='aaa', item=item, price=21.5, expires=now() + datetime.timedelta(minutes=10), seat=seat ) res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['seat'] = seat.seat_guid res['positions'][0]['answers'][0]['question'] = question.pk res['consume_carts'] = ['aaa'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) p = o.positions.first() assert p.seat == seat @pytest.mark.django_db def test_order_create_send_no_emails(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk djmail.outbox = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 assert len(djmail.outbox) == 0 @pytest.mark.django_db def test_order_create_send_emails(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['send_mail'] = True djmail.outbox = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 assert len(djmail.outbox) == 1 assert djmail.outbox[0].subject == "Your order: {}".format(resp.data['code']) @pytest.mark.django_db def test_order_create_send_emails_free(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['price'] = '0.00' res['payment_provider'] = 'free' del res['fees'] res['positions'][0]['answers'][0]['question'] = question.pk res['send_mail'] = True djmail.outbox = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 assert len(djmail.outbox) == 1 assert djmail.outbox[0].subject == "Your order: {}".format(resp.data['code']) @pytest.mark.django_db def test_order_create_send_emails_paid(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['send_mail'] = True res['status'] = 'p' djmail.outbox = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 assert len(djmail.outbox) == 2 assert djmail.outbox[0].subject == "Your order: {}".format(resp.data['code']) assert djmail.outbox[1].subject == "Payment received for your order: {}".format(resp.data['code']) @pytest.mark.django_db def test_order_paid_require_payment_method(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['payment_provider'] res['status'] = 'p' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == [ 'You cannot create a paid order without a payment provider.' ] res['status'] = "n" resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) assert not o.payments.exists() @pytest.mark.django_db def test_order_create_auto_pricing(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['positions'][0]['price'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) p = o.positions.first() assert p.price == item.default_price assert o.total == item.default_price + Decimal('0.25') @pytest.mark.django_db def test_order_create_auto_pricing_reverse_charge(token_client, organizer, event, item, quota, question, taxrule): taxrule.eu_reverse_charge = True taxrule.home_country = Country('DE') taxrule.save() item.tax_rule = taxrule item.save() res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['invoice_address']['country'] = 'FR' res['invoice_address']['is_business'] = True res['invoice_address']['vat_id'] = 'FR12345' res['invoice_address']['vat_id_validated'] = True del res['positions'][0]['price'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) p = o.positions.first() assert p.price == Decimal('19.33') assert p.tax_rate == Decimal('0.00') assert p.tax_value == Decimal('0.00') assert o.total == Decimal('19.58') @pytest.mark.django_db def test_order_create_auto_pricing_reverse_charge_require_valid_vatid(token_client, organizer, event, item, quota, question, taxrule): taxrule.eu_reverse_charge = True taxrule.home_country = Country('DE') taxrule.save() item.tax_rule = taxrule item.save() res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['invoice_address']['country'] = 'FR' res['invoice_address']['is_business'] = True res['invoice_address']['vat_id'] = 'FR12345' del res['positions'][0]['price'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) p = o.positions.first() assert p.price == Decimal('23.00') assert p.tax_rate == Decimal('19.00') @pytest.mark.django_db def test_order_create_autopricing_voucher_budget_partially(token_client, organizer, event, item, quota, question, taxrule): with scopes_disabled(): voucher = event.vouchers.create(price_mode="set", value=21.50, item=item, budget=Decimal('2.50'), max_usages=999) res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['voucher'] = voucher.code del res['positions'][0]['price'] del res['positions'][0]['positionid'] res['positions'].append(res['positions'][0]) resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) print(resp.data) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) p = o.positions.first() p2 = o.positions.last() assert p.price == Decimal('21.50') assert p2.price == Decimal('22.00') @pytest.mark.django_db def test_order_create_autopricing_voucher_budget_full(token_client, organizer, event, item, quota, question, taxrule): with scopes_disabled(): voucher = event.vouchers.create(price_mode="set", value=21.50, item=item, budget=Decimal('0.50'), max_usages=999) res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['voucher'] = voucher.code del res['positions'][0]['price'] del res['positions'][0]['positionid'] res['positions'].append(res['positions'][0]) resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == {'positions': [{}, {'voucher': ['The voucher has a remaining budget of 0.00, therefore a ' 'discount of 1.50 can not be given.']}]} @pytest.mark.django_db def test_order_create_voucher_budget_exceeded(token_client, organizer, event, item, quota, question, taxrule): with scopes_disabled(): voucher = event.vouchers.create(price_mode="set", value=21.50, item=item, budget=Decimal('3.00'), max_usages=999) res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['voucher'] = voucher.code res['positions'][0]['price'] = '19.00' del res['positions'][0]['positionid'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) print(resp.data) assert resp.status_code == 400 assert resp.data == {'positions': [{'voucher': ['The voucher has a remaining budget of 3.00, therefore a ' 'discount of 4.00 can not be given.']}]} @pytest.mark.django_db def test_order_create_voucher_price(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['positions'][0]['price'] with scopes_disabled(): voucher = event.vouchers.create(price_mode="set", value=15, item=item) res['positions'][0]['voucher'] = voucher.code resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): o = Order.objects.get(code=resp.data['code']) p = o.positions.first() assert p.voucher == voucher voucher.refresh_from_db() assert voucher.redeemed == 1 assert p.price == Decimal('15.00') assert o.total == Decimal('15.25') @pytest.mark.django_db def test_order_create_voucher_unknown_code(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['positions'][0]['price'] with scopes_disabled(): event.vouchers.create(price_mode="set", value=15, item=item) res['positions'][0]['voucher'] = "FOOBAR" resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'voucher': ['Object with code=FOOBAR does not exist.']}, ] } @pytest.mark.django_db def test_order_create_voucher_redeemed(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk del res['positions'][0]['price'] res['positions'][0]['answers'][0]['question'] = question.pk with scopes_disabled(): voucher = event.vouchers.create(price_mode="set", value=15, item=item, redeemed=1) res['positions'][0]['voucher'] = voucher.code resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'voucher': ['The voucher has already been used the maximum number of times.']}, ] } @pytest.mark.django_db def test_order_create_voucher_redeemed_partially(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['answers'][0]['question'] = question.pk res['positions'][0]['item'] = item.pk del res['positions'][0]['price'] del res['positions'][0]['positionid'] with scopes_disabled(): voucher = event.vouchers.create(price_mode="set", value=15, item=item, redeemed=1, max_usages=2) res['positions'][0]['voucher'] = voucher.code res['positions'].append(copy.copy(res['positions'][0])) res['positions'].append(copy.copy(res['positions'][0])) resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {}, {'voucher': ['The voucher has already been used the maximum number of times.']}, {'voucher': ['The voucher has already been used the maximum number of times.']}, ] } @pytest.mark.django_db def test_order_create_voucher_item_mismatch(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['positions'][0]['price'] with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=23) voucher = event.vouchers.create(price_mode="set", value=15, item=item2, redeemed=0) res['positions'][0]['voucher'] = voucher.code resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'voucher': ['This voucher is not valid for this product.']}, ] } @pytest.mark.django_db def test_order_create_voucher_expired(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['positions'][0]['price'] with scopes_disabled(): voucher = event.vouchers.create(price_mode="set", value=15, item=item, redeemed=0, valid_until=now() - datetime.timedelta(days=1)) res['positions'][0]['voucher'] = voucher.code resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 assert resp.data == { 'positions': [ {'voucher': ['This voucher is expired.']}, ] } @pytest.mark.django_db def test_order_create_voucher_block_quota(token_client, organizer, event, item, quota, question): res = copy.deepcopy(ORDER_CREATE_PAYLOAD) res['positions'][0]['item'] = item.pk res['positions'][0]['answers'][0]['question'] = question.pk del res['positions'][0]['price'] quota.size = 0 quota.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 400 with scopes_disabled(): voucher = event.vouchers.create(price_mode="set", value=15, item=item, redeemed=0, block_quota=True) res['positions'][0]['voucher'] = voucher.code resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/'.format( organizer.slug, event.slug ), format='json', data=res ) assert resp.status_code == 201 REFUND_CREATE_PAYLOAD = { "state": "created", "provider": "manual", "amount": "23.00", "source": "admin", "payment": 2, "info": { "foo": "bar", } } @pytest.mark.django_db def test_refund_create(token_client, organizer, event, order): res = copy.deepcopy(REFUND_CREATE_PAYLOAD) resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/refunds/'.format( organizer.slug, event.slug, order.code ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): r = order.refunds.get(local_id=resp.data['local_id']) assert r.provider == "manual" assert r.amount == Decimal("23.00") assert r.state == "created" assert r.source == "admin" assert r.info_data == {"foo": "bar"} assert r.payment.local_id == 2 order.refresh_from_db() assert order.status == Order.STATUS_PENDING @pytest.mark.django_db def test_refund_create_mark_refunded(token_client, organizer, event, order): res = copy.deepcopy(REFUND_CREATE_PAYLOAD) res['mark_canceled'] = True resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/refunds/'.format( organizer.slug, event.slug, order.code ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): r = order.refunds.get(local_id=resp.data['local_id']) assert r.provider == "manual" assert r.amount == Decimal("23.00") assert r.state == "created" assert r.source == "admin" assert r.info_data == {"foo": "bar"} assert r.payment.local_id == 2 order.refresh_from_db() assert order.status == Order.STATUS_CANCELED @pytest.mark.django_db def test_refund_optional_fields(token_client, organizer, event, order): res = copy.deepcopy(REFUND_CREATE_PAYLOAD) del res['info'] del res['payment'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/refunds/'.format( organizer.slug, event.slug, order.code ), format='json', data=res ) assert resp.status_code == 201 with scopes_disabled(): r = order.refunds.get(local_id=resp.data['local_id']) assert r.provider == "manual" assert r.amount == Decimal("23.00") assert r.state == "created" assert r.source == "admin" del res['state'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/refunds/'.format( organizer.slug, event.slug, order.code ), format='json', data=res ) assert resp.status_code == 400 @pytest.mark.django_db def test_refund_create_invalid_payment(token_client, organizer, event, order): res = copy.deepcopy(REFUND_CREATE_PAYLOAD) res['payment'] = 7 resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/refunds/'.format( organizer.slug, event.slug, order.code ), format='json', data=res ) assert resp.status_code == 400 @pytest.mark.django_db def test_order_delete(token_client, organizer, event, order): resp = token_client.delete( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 403 @pytest.mark.django_db def test_order_delete_test_mode(token_client, organizer, event, order): order.testmode = True order.save() resp = token_client.delete( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 204 with scopes_disabled(): assert not Order.objects.filter(code=order.code).exists() @pytest.mark.django_db def test_order_delete_test_mode_voucher(token_client, organizer, event, order, item): order.testmode = True order.save() with scopes_disabled(): q = event.quotas.create(name="Quota") q.items.add(item) voucher = event.vouchers.create(price_mode="set", value=15, quota=q, redeemed=1) op = order.positions.first() op.voucher = voucher op.save() assert voucher.redeemed == 1 resp = token_client.delete( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 204 with scopes_disabled(): assert not Order.objects.filter(code=order.code).exists() voucher.refresh_from_db() assert voucher.redeemed == 0 @pytest.mark.django_db def test_order_delete_test_mode_voucher_cancelled_position(token_client, organizer, event, order, item): order.testmode = True order.save() with scopes_disabled(): q = event.quotas.create(name="Quota") q.items.add(item) voucher = event.vouchers.create(price_mode="set", value=15, quota=q, redeemed=42) op = order.all_positions.last() op.voucher = voucher op.save() resp = token_client.delete( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 204 with scopes_disabled(): assert not Order.objects.filter(code=order.code).exists() voucher.refresh_from_db() assert voucher.redeemed == 42 @pytest.mark.django_db def test_order_delete_test_mode_voucher_cancelled_order(token_client, organizer, event, order, item): with scopes_disabled(): order.testmode = True order.status = Order.STATUS_CANCELED order.save() q = event.quotas.create(name="Quota") q.items.add(item) voucher = event.vouchers.create(price_mode="set", value=15, quota=q, redeemed=42) op = order.positions.first() op.voucher = voucher op.save() resp = token_client.delete( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ) ) assert resp.status_code == 204 with scopes_disabled(): assert not Order.objects.filter(code=order.code).exists() voucher.refresh_from_db() assert voucher.redeemed == 42 @pytest.mark.django_db def test_order_update_ignore_fields(token_client, organizer, event, order): resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'status': 'c' } ) assert resp.status_code == 200 order.refresh_from_db() assert order.status == 'n' @pytest.mark.django_db def test_order_update_only_partial(token_client, organizer, event, order): resp = token_client.put( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'status': 'c' } ) assert resp.status_code == 405 @pytest.mark.django_db def test_order_update_state_validation(token_client, organizer, event, order): resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'invoice_address': { "is_business": False, "company": "This is my company name", "name": "John Doe", "name_parts": {}, "street": "", "state": "", "zipcode": "", "city": "Paris", "country": "NONEXISTANT", "internal_reference": "", "vat_id": "", } } ) assert resp.status_code == 400 resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'invoice_address': { "is_business": False, "company": "This is my company name", "name": "John Doe", "name_parts": {}, "street": "", "state": "NONEXISTANT", "zipcode": "", "city": "Test", "country": "AU", "internal_reference": "", "vat_id": "", } } ) assert resp.status_code == 400 resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'invoice_address': { "is_business": False, "company": "This is my company name", "name": "John Doe", "name_parts": {}, "street": "", "state": "QLD", "zipcode": "", "city": "Test", "country": "AU", "internal_reference": "", "vat_id": "", } } ) assert resp.status_code == 200 order.invoice_address.refresh_from_db() assert order.invoice_address.state == "QLD" assert order.invoice_address.country == "AU" @pytest.mark.django_db def test_order_update_allowed_fields(token_client, organizer, event, order): event.settings.locales = ['de', 'en'] resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'comment': 'Here is a comment', 'checkin_attention': True, 'email': 'foo@bar.com', 'locale': 'de', 'invoice_address': { "is_business": False, "company": "This is my company name", "name": "John Doe", "name_parts": {}, "street": "", "state": "", "zipcode": "", "city": "Paris", "country": "FR", "internal_reference": "", "vat_id": "", } } ) assert resp.status_code == 200 order.refresh_from_db() assert order.comment == 'Here is a comment' assert order.checkin_attention assert order.email == 'foo@bar.com' assert order.locale == 'de' assert order.invoice_address.company == "This is my company name" assert order.invoice_address.name_cached == "John Doe" assert order.invoice_address.name_parts == {'_legacy': 'John Doe'} assert str(order.invoice_address.country) == "FR" assert not order.invoice_address.vat_id_validated assert order.invoice_address.city == "Paris" with scopes_disabled(): assert order.all_logentries().get(action_type='pretix.event.order.comment') assert order.all_logentries().get(action_type='pretix.event.order.checkin_attention') assert order.all_logentries().get(action_type='pretix.event.order.contact.changed') assert order.all_logentries().get(action_type='pretix.event.order.locale.changed') assert order.all_logentries().get(action_type='pretix.event.order.modified') @pytest.mark.django_db def test_order_update_validated_vat_id(token_client, organizer, event, order): resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'invoice_address': { "is_business": False, "company": "This is my company name", "name": "John Doe", "name_parts": {}, "street": "", "state": "", "zipcode": "", "city": "Paris", "country": "FR", "internal_reference": "", "vat_id": "FR123", "vat_id_validated": True } } ) assert resp.status_code == 200 order.refresh_from_db() assert order.invoice_address.vat_id == "FR123" assert order.invoice_address.vat_id_validated @pytest.mark.django_db def test_order_update_invoiceaddress_delete_create(token_client, organizer, event, order): event.settings.locales = ['de', 'en'] resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'invoice_address': None, } ) assert resp.status_code == 200 order.refresh_from_db() with pytest.raises(InvoiceAddress.DoesNotExist): order.invoice_address resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'invoice_address': { "is_business": False, "company": "This is my company name", "name": "", "name_parts": {}, "street": "", "state": "", "zipcode": "", "city": "Paris", "country": "Fr", "internal_reference": "", "vat_id": "", } } ) assert resp.status_code == 200 order.refresh_from_db() assert order.invoice_address.company == "This is my company name" assert str(order.invoice_address.country) == "FR" assert order.invoice_address.city == "Paris" @pytest.mark.django_db def test_order_update_email_to_none(token_client, organizer, event, order): resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'email': None, } ) assert resp.status_code == 200 order.refresh_from_db() assert order.email is None @pytest.mark.django_db def test_order_update_locale_to_invalid(token_client, organizer, event, order): resp = token_client.patch( '/api/v1/organizers/{}/events/{}/orders/{}/'.format( organizer.slug, event.slug, order.code ), format='json', data={ 'locale': 'de', } ) assert resp.status_code == 400 assert resp.data == {'locale': ['"de" is not a supported locale for this event.']} @pytest.mark.django_db def test_order_create_invoice(token_client, organizer, event, order): event.settings.invoice_generate = 'True' event.settings.invoice_generate_sales_channels = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/create_invoice/'.format( organizer.slug, event.slug, order.code ), format='json', data={} ) assert resp.status_code == 400 event.settings.invoice_generate_sales_channels = ['web'] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/create_invoice/'.format( organizer.slug, event.slug, order.code ), format='json', data={} ) assert resp.status_code == 201 assert resp.data == { 'order': 'FOO', 'number': 'DUMMY-00001', 'is_cancellation': False, 'invoice_from': '', 'invoice_to': 'Sample company\nNew Zealand\nVAT-ID: DE123', 'date': now().date().isoformat(), 'refers': None, 'locale': 'en', 'introductory_text': '', 'additional_text': '', 'payment_provider_text': '', 'footer_text': '', 'lines': [ { 'position': 1, 'description': 'Budget Ticket<br />Attendee: Peter', 'gross_value': '23.00', 'tax_value': '0.00', 'tax_rate': '0.00', 'tax_name': '' }, { 'position': 2, 'description': 'Payment fee', 'gross_value': '0.25', 'tax_value': '0.05', 'tax_rate': '19.00', 'tax_name': '' } ], 'foreign_currency_display': None, 'foreign_currency_rate': None, 'foreign_currency_rate_date': None, 'internal_reference': '' } resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/create_invoice/'.format( organizer.slug, event.slug, order.code ), format='json', data={} ) assert resp.data == {'detail': 'An invoice for this order already exists.'} assert resp.status_code == 400 event.settings.invoice_generate = 'False' resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/create_invoice/'.format( organizer.slug, event.slug, order.code ), format='json', data={} ) assert resp.status_code == 400 assert resp.data == {'detail': 'You cannot generate an invoice for this order.'} @pytest.mark.django_db def test_order_regenerate_secrets(token_client, organizer, event, order): s = order.secret with scopes_disabled(): ps = order.positions.first().secret resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/regenerate_secrets/'.format( organizer.slug, event.slug, order.code ), format='json', data={} ) assert resp.status_code == 200 order.refresh_from_db() assert s != order.secret with scopes_disabled(): assert ps != order.positions.first().secret @pytest.mark.django_db def test_order_resend_link(token_client, organizer, event, order): djmail.outbox = [] resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/resend_link/'.format( organizer.slug, event.slug, order.code ), format='json', data={} ) assert resp.status_code == 204 assert len(djmail.outbox) == 1 order.email = None order.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orders/{}/resend_link/'.format( organizer.slug, event.slug, order.code ), format='json', data={} ) assert resp.status_code == 400 @pytest.mark.django_db def test_orderposition_price_calculation(token_client, organizer, event, order, item): with scopes_disabled(): op = order.positions.first() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('23.00'), 'gross_formatted': '23.00', 'name': '', 'net': Decimal('23.00'), 'rate': Decimal('0.00'), 'tax': Decimal('0.00') } @pytest.mark.django_db def test_orderposition_price_calculation_item_with_tax(token_client, organizer, event, order, item, taxrule): with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=23, tax_rule=taxrule) op = order.positions.first() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ 'item': item2.pk } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('23.00'), 'gross_formatted': '23.00', 'name': '', 'net': Decimal('19.33'), 'rate': Decimal('19.00'), 'tax': Decimal('3.67') } @pytest.mark.django_db def test_orderposition_price_calculation_item_with_variation(token_client, organizer, event, order): with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=23) var = item2.variations.create(default_price=12, value="XS") op = order.positions.first() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ 'item': item2.pk, 'variation': var.pk } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('12.00'), 'gross_formatted': '12.00', 'name': '', 'net': Decimal('12.00'), 'rate': Decimal('0.00'), 'tax': Decimal('0.00') } @pytest.mark.django_db def test_orderposition_price_calculation_subevent(token_client, organizer, event, order, subevent): with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=23) op = order.positions.first() op.subevent = subevent op.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ 'item': item2.pk, 'subevent': subevent.pk } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('23.00'), 'gross_formatted': '23.00', 'name': '', 'net': Decimal('23.00'), 'rate': Decimal('0.00'), 'tax': Decimal('0.00') } @pytest.mark.django_db def test_orderposition_price_calculation_subevent_with_override(token_client, organizer, event, order, subevent): with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=23) se2 = event.subevents.create(name="Foobar", date_from=datetime.datetime(2017, 12, 27, 10, 0, 0, tzinfo=UTC)) se2.subeventitem_set.create(item=item2, price=12) op = order.positions.first() op.subevent = subevent op.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ 'item': item2.pk, 'subevent': se2.pk } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('12.00'), 'gross_formatted': '12.00', 'name': '', 'net': Decimal('12.00'), 'rate': Decimal('0.00'), 'tax': Decimal('0.00') } @pytest.mark.django_db def test_orderposition_price_calculation_voucher_matching(token_client, organizer, event, order, subevent, item): with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=23) q = event.quotas.create(name="Quota") q.items.add(item) q.items.add(item2) voucher = event.vouchers.create(price_mode="set", value=15, quota=q) op = order.positions.first() op.voucher = voucher op.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ 'item': item2.pk, } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('15.00'), 'gross_formatted': '15.00', 'name': '', 'net': Decimal('15.00'), 'rate': Decimal('0.00'), 'tax': Decimal('0.00') } @pytest.mark.django_db def test_orderposition_price_calculation_voucher_not_matching(token_client, organizer, event, order, subevent, item): with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=23) q = event.quotas.create(name="Quota") q.items.add(item) voucher = event.vouchers.create(price_mode="set", value=15, quota=q) op = order.positions.first() op.voucher = voucher op.save() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ 'item': item2.pk, } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('23.00'), 'gross_formatted': '23.00', 'name': '', 'net': Decimal('23.00'), 'rate': Decimal('0.00'), 'tax': Decimal('0.00') } @pytest.mark.django_db def test_orderposition_price_calculation_net_price(token_client, organizer, event, order, subevent, item, taxrule): taxrule.price_includes_tax = False taxrule.save() with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=10, tax_rule=taxrule) op = order.positions.first() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ 'item': item2.pk, } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('11.90'), 'gross_formatted': '11.90', 'name': '', 'net': Decimal('10.00'), 'rate': Decimal('19.00'), 'tax': Decimal('1.90') } @pytest.mark.django_db def test_orderposition_price_calculation_reverse_charge(token_client, organizer, event, order, subevent, item, taxrule): taxrule.price_includes_tax = False taxrule.eu_reverse_charge = True taxrule.home_country = Country('DE') taxrule.save() order.invoice_address.is_business = True order.invoice_address.vat_id = 'ATU1234567' order.invoice_address.vat_id_validated = True order.invoice_address.country = Country('AT') order.invoice_address.save() with scopes_disabled(): item2 = event.items.create(name="Budget Ticket", default_price=10, tax_rule=taxrule) op = order.positions.first() resp = token_client.post( '/api/v1/organizers/{}/events/{}/orderpositions/{}/price_calc/'.format(organizer.slug, event.slug, op.pk), data={ 'item': item2.pk, } ) assert resp.status_code == 200 assert resp.data == { 'gross': Decimal('10.00'), 'gross_formatted': '10.00', 'name': '', 'net': Decimal('10.00'), 'rate': Decimal('0.00'), 'tax': Decimal('0.00') }
35.796271
157
0.604525
4c76cc4e4af5c696e99a31e0332a7c23955ce643
2,104
py
Python
socialserver/api/v3/block.py
niallasher/socialserver-neo
7e7d25d939133d149b56ccd54fbfa62d75cabb73
[ "MIT" ]
null
null
null
socialserver/api/v3/block.py
niallasher/socialserver-neo
7e7d25d939133d149b56ccd54fbfa62d75cabb73
[ "MIT" ]
11
2022-03-10T04:55:09.000Z
2022-03-30T14:24:19.000Z
socialserver/api/v3/block.py
niallasher/socialserver-neo
7e7d25d939133d149b56ccd54fbfa62d75cabb73
[ "MIT" ]
null
null
null
# Copyright (c) Niall Asher 2022 from datetime import datetime from flask_restful import Resource, reqparse from socialserver.db import db from socialserver.util.auth import get_user_from_auth_header, auth_reqd from socialserver.constants import ErrorCodes from pony.orm import db_session class Block(Resource): def __init__(self): self.post_parser = reqparse.RequestParser() # the username to block self.post_parser.add_argument("username", type=str, required=True) self.delete_parser = reqparse.RequestParser() # the username to unblock self.delete_parser.add_argument("username", type=str, required=True) @db_session @auth_reqd def post(self): args = self.post_parser.parse_args() requesting_user_db = get_user_from_auth_header() user_to_follow = db.User.get(username=args["username"]) if user_to_follow is None: return {"error": ErrorCodes.USERNAME_NOT_FOUND.value}, 404 if user_to_follow is requesting_user_db: return {"error": ErrorCodes.CANNOT_BLOCK_SELF.value}, 400 existing_follow = db.Block.get(user=requesting_user_db, blocking=user_to_follow) if existing_follow is not None: return {"error": ErrorCodes.BLOCK_ALREADY_EXISTS.value}, 400 db.Block( user=requesting_user_db, blocking=user_to_follow, creation_time=datetime.utcnow(), ) return {}, 201 @db_session @auth_reqd def delete(self): args = self.delete_parser.parse_args() requesting_user_db = get_user_from_auth_header() user_to_unfollow = db.User.get(username=args["username"]) if user_to_unfollow is None: return {"error": ErrorCodes.USERNAME_NOT_FOUND.value}, 404 existing_follow = db.Block.get( user=requesting_user_db, blocking=user_to_unfollow ) if existing_follow is None: return {"error": ErrorCodes.CANNOT_FIND_BLOCK_ENTRY.value}, 404 existing_follow.delete() return {}, 204
31.402985
88
0.678232
180f4ca07f40040ccc6ffe8a1edbb58ebbf4648e
4,866
py
Python
ark_nlp/factory/predictor/text_classification.py
confstantine/nlp-task
cb152e885bc6f6f1243a12ad90b1c715eb548736
[ "Apache-2.0" ]
1
2021-12-27T04:48:40.000Z
2021-12-27T04:48:40.000Z
ark_nlp/factory/predictor/text_classification.py
confstantine/nlp-task
cb152e885bc6f6f1243a12ad90b1c715eb548736
[ "Apache-2.0" ]
null
null
null
ark_nlp/factory/predictor/text_classification.py
confstantine/nlp-task
cb152e885bc6f6f1243a12ad90b1c715eb548736
[ "Apache-2.0" ]
1
2021-12-27T04:49:35.000Z
2021-12-27T04:49:35.000Z
""" # Copyright 2021 Xiang Wang, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 Author: Xiang Wang, xiangking1995@163.com Status: Active """ import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from torch.autograd import Variable, grad from torch.utils.data import DataLoader, Dataset import torch.nn.functional as F import tqdm from tqdm import tqdm import sklearn.metrics as sklearn_metrics class TCPredictor(object): def __init__( self, module, tokernizer, cat2id ): self.module = module self.module.task = 'SequenceLevel' self.cat2id = cat2id self.tokenizer = tokernizer self.device = list(self.module.parameters())[0].device self.id2cat = {} for cat_, idx_ in self.cat2id.items(): self.id2cat[idx_] = cat_ def _convert_to_transfomer_ids( self, text ): input_ids = self.tokenizer.sequence_to_ids(text) input_ids, input_mask, segment_ids = input_ids features = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': segment_ids } return features def _convert_to_vanilla_ids( self, text ): tokens = vanilla_tokenizer.tokenize(text) length = len(tokens) input_ids = vanilla_tokenizer.sequence_to_ids(tokens) features = { 'input_ids': input_ids, 'length': length if length < vanilla_tokenizer.max_seq_len else vanilla_tokenizer.max_seq_len, } return features def _get_input_ids( self, text ): if self.tokenizer.tokenizer_type == 'vanilla': return self._convert_to_vanilla_ids(text) elif self.tokenizer.tokenizer_type == 'transfomer': return self._convert_to_transfomer_ids(text) elif self.tokenizer.tokenizer_type == 'customized': features = self._convert_to_customized_ids(text) else: raise ValueError("The tokenizer type does not exist") def _get_module_one_sample_inputs( self, features ): return {col: torch.Tensor(features[col]).type(torch.long).unsqueeze(0).to(self.device) for col in features} def predict_one_sample( self, text='', topk=1, return_label_name=True, return_proba=False ): if topk == None: topk = len(self.cat2id) if len(self.cat2id) >2 else 1 features = self._get_input_ids(text) self.module.eval() with torch.no_grad(): inputs = self._get_module_one_sample_inputs(features) logit = self.module(**inputs) logit = torch.nn.functional.softmax(logit, dim=1) probs, indices = logit.topk(topk, dim=1, sorted=True) preds = [] probas = [] for pred_, proba_ in zip(indices.cpu().numpy()[0], probs.cpu().numpy()[0].tolist()): if return_label_name: pred_ = self.id2cat[pred_] preds.append(pred_) if return_proba: probas.append(proba_) if return_proba: return list(zip(preds, probas)) return preds def _get_module_batch_inputs( self, features ): return {col: features[col].type(torch.long).to(self.device) for col in self.inputs_cols} def predict_batch( self, test_data, batch_size=16, shuffle=False, return_label_name=True, return_proba=False ): self.inputs_cols = test_data.dataset_cols preds = [] probas=[] self.module.eval() generator = DataLoader(test_data, batch_size=batch_size, shuffle=False) with torch.no_grad(): for step, inputs in enumerate(generator): inputs = self._get_module_batch_inputs(inputs) logits = self.module(**inputs) preds.extend(torch.max(logits, 1)[1].cpu().numpy()) if return_proba: logits = torch.nn.functional.softmax(logits, dim=1) probas.extend(logits.max(dim=1).values.cpu().detach().numpy()) if return_label_name: preds = [self.id2cat[pred_] for pred_ in preds] if return_proba: return list(zip(preds, probas)) return preds
28.792899
115
0.583847
07c58708d2df7d60c9749cad381bcc905a005eeb
12,243
py
Python
analysis_utils/visualize.py
AIasd/ADFuzz
388d6568e1e1c0dfcd3951481268f01e2f0c2106
[ "MIT" ]
5
2022-01-06T01:10:47.000Z
2022-03-18T15:39:43.000Z
analysis_utils/visualize.py
AIasd/ADFuzz
388d6568e1e1c0dfcd3951481268f01e2f0c2106
[ "MIT" ]
15
2022-01-03T19:36:36.000Z
2022-03-30T03:57:58.000Z
analysis_utils/visualize.py
AIasd/ADFuzz
388d6568e1e1c0dfcd3951481268f01e2f0c2106
[ "MIT" ]
3
2021-11-22T08:01:47.000Z
2022-03-11T08:53:58.000Z
import sys sys.path.append('.') sys.path.append('pymoo') sys.path.append('fuzzing_utils') import os import pickle import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set_theme() # TBD: visualize synthetic function bug distribution (2d) def visualize_synthetic_function_bugs(): pass # -------------------- helper functions for visualize_data -------------------- from mpl_toolkits.mplot3d.proj3d import proj_transform from mpl_toolkits.mplot3d.axes3d import Axes3D from matplotlib.patches import FancyArrowPatch class Arrow3D(FancyArrowPatch): def __init__(self, x, y, z, dx, dy, dz, *args, **kwargs): super().__init__((0, 0), (0, 0), *args, **kwargs) self._xyz = (x, y, z) self._dxdydz = (dx, dy, dz) def draw(self, renderer): x1, y1, z1 = self._xyz dx, dy, dz = self._dxdydz x2, y2, z2 = (x1 + dx, y1 + dy, z1 + dz) xs, ys, zs = proj_transform((x1, x2), (y1, y2), (z1, z2), self.axes.M) self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) super().draw(renderer) def do_3d_projection(self, renderer=None): x1, y1, z1 = self._xyz dx, dy, dz = self._dxdydz x2, y2, z2 = (x1 + dx, y1 + dy, z1 + dz) xs, ys, zs = proj_transform((x1, x2), (y1, y2), (z1, z2), self.axes.M) self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) return np.min(zs) def _arrow3D(ax, x, y, z, dx, dy, dz, *args, **kwargs): '''Add an 3d arrow to an `Axes3D` instance.''' arrow = Arrow3D(x, y, z, dx, dy, dz, *args, **kwargs) ax.add_artist(arrow) setattr(Axes3D, 'arrow3D', _arrow3D) def plot_arrow(ax, values, label, color, plot_dim, legend=False, width=0.001, head_width=0.01): if len(values) == 2: x, y = values yaw = 0 length = 0 head_width = 0 if legend: ax.scatter(x, y, color=color, label=str(label)) else: ax.scatter(x, y, color=color) else: if len(values) == 3: x, y, yaw = values length = 0.05 else: x, y, yaw, length = values if plot_dim == 2: # since yaw will be represented by orientation, its value range is different from others yaw = yaw * 360 yaw = np.deg2rad(yaw) dx = np.cos(yaw)*length*0.1 dy = np.sin(yaw)*length*0.1 if legend: label = str(label) else: label = None if plot_dim == 2: ax.arrow(x, y, dx, dy, color=color, head_width=head_width, alpha=0.5, width=width, label=label) elif plot_dim == 3: # ax.arrow3D(x,y,0.5, x+dx,y+dy,0.7, mutation_scale=20, arrowstyle="-|>", linestyle='dashed', color=color, label=label) ax.scatter(x, y, yaw, color=color, label=label) ax.set_ylim(-0.1, 1.1) ax.set_xlim(-0.1, 1.1) if plot_dim == 3: ax.set_zlim(-0.1, 1.1) def plot_subplot(ax, x_list, y_list, chosen_inds, unique_y_list, legend, mode, chosen_labels, plot_dim, split_label_v_pair=()): x_sublist = x_list[chosen_inds] y_sublist = y_list[chosen_inds] colors = ['black', 'red', 'gray', 'lightgray', 'brown', 'salmon', 'orange', 'yellowgreen', 'green', 'blue', 'purple', 'magenta', 'pink'] for j, y in enumerate(unique_y_list): color = colors[j] x_subset = x_sublist[y_sublist==y] print('\t', 'y', y, 'len(x_subset)', len(x_subset)) for k in range(x_subset.shape[0]): if legend and k == 0: plot_arrow(ax, x_subset[k], y, color, plot_dim, legend=True) else: plot_arrow(ax, x_subset[k], y, color, plot_dim, legend=False) if len(split_label_v_pair) > 0: subplot_split_label, v = split_label_v_pair ax.set_title(subplot_split_label+' = '+v, fontsize=18) else: ax.set_title('samples '+str(chosen_inds[0])+' to '+str(chosen_inds[1]), fontsize=18) if legend: ax.legend(loc='lower right', prop={'size': 16}, fancybox=True, framealpha=0.5) if mode == 'plain': ax.set_xlabel(chosen_labels[0]) ax.set_ylabel(chosen_labels[1]) if plot_dim == 3: ax.set_zlabel(chosen_labels[2]) # extract data from result folder def extract_data_from_fuzzing(folder_path): data_path = os.path.join(folder_path, 'data.pickle') with open(data_path, 'rb') as f_in: data_d = pickle.load(f_in) x_list = data_d['x_list'] y_list = data_d['y_list'] x_labels = np.array(data_d['labels']) print('all x_labels', x_labels) xl = data_d['xl'] xu = data_d['xu'] used_labels_inds = xu - xl > 0 x_list = x_list[:, used_labels_inds] x_labels = x_labels[used_labels_inds] print('used x_labels', x_labels) return x_list, y_list, x_labels def extract_data_from_csv(folder_path, filename, x_labels, y_label): import pandas df = pandas.read_csv(os.path.join(folder_path, filename)) x_list = df[x_labels].to_numpy() y_list = df[y_label].to_numpy() # print('x_list.shape', x_list.shape, 'y_list.shape', y_list.shape) return x_list, y_list, np.array(x_labels) # -------------------- helper functions for visualize_data -------------------- def visualize_data(save_folder_path, initial_x_list, y_list, x_labels, num_subplots, mode, dim, chosen_labels, plot_dim, subplot_split_label=''): # normalize the data first from sklearn.preprocessing import MinMaxScaler transformer = MinMaxScaler().fit(initial_x_list) x_list_normalized = transformer.transform(initial_x_list) if plot_dim == 3: assert dim == plot_dim if subplot_split_label: split_ind = np.where(x_labels==subplot_split_label)[0][0] if mode == 'plain': assert len(chosen_labels) == dim inds_list = [] for chosen_label in chosen_labels: assert chosen_label in x_labels inds_list.append(np.where(x_labels==chosen_label)[0][0]) else: # TBD: when applying dimensionality reduction, exclude the split label if it is used. # dimensionality reduction is only used when input dimension is larger than the visualization dimension assert x_list_normalized.shape[1] > dim if mode == 'pca': from sklearn.decomposition import PCA pca = PCA(n_components=dim, svd_solver='full') pca.fit(x_list_normalized) print('dim', dim, 'pca.explained_variance_ratio_', pca.explained_variance_ratio_) x_list_normalized = pca.transform(x_list_normalized) inds_list = [i for i in range(dim)] elif mode == 'tsne': if plot_dim == 2: assert dim == 2 elif plot_dim == 3: assert dim == 3 from sklearn.manifold import TSNE print('x_list_normalized.shape', x_list_normalized.shape) x_list_normalized = TSNE(n_components=dim).fit_transform(x_list_normalized) inds_list = [i for i in range(dim)] else: print('mode', mode) raise print('mode', mode, 'dim', dim, 'chosen_labels', chosen_labels) print('x_list_normalized.shape', x_list_normalized.shape) print('y_list.shape', y_list.shape) x_list = x_list_normalized[:, inds_list] unique_y_list = np.unique(y_list) if subplot_split_label: v_list = np.unique(x_list_normalized[:, split_ind]) num_subplots = len(v_list) assert num_subplots >= 1 assert x_list_normalized.shape[0] >= num_subplots num_subplots_col_num = int(np.ceil(np.sqrt(num_subplots))) num_subplots_row_num = int(np.ceil(num_subplots / num_subplots_col_num)) if num_subplots > 1: # for the overall plot at the first row num_subplots_row_num += 1 if plot_dim == 2: projection = None else: projection = '3d' unit_size = 6 fig = plt.figure(figsize=(num_subplots_col_num*unit_size, num_subplots_row_num*unit_size)) # draw an overall plot ax = fig.add_subplot(num_subplots_col_num, num_subplots_row_num, 1, projection=projection) chosen_inds = np.arange(0, x_list.shape[0]) plot_subplot(ax, x_list, y_list, chosen_inds, unique_y_list, True, mode, chosen_labels, plot_dim, split_label_v_pair=(subplot_split_label, 'any')) if subplot_split_label: for i, v in enumerate(v_list): ax = fig.add_subplot(num_subplots_col_num, num_subplots_row_num, i+num_subplots_col_num+1, projection=projection) chosen_inds = np.where(x_list_normalized[:, split_ind]==v)[0] print('v', v, 'len(chosen_inds)', len(chosen_inds), chosen_inds[:3]) plot_subplot(ax, x_list, y_list, chosen_inds, unique_y_list, False, mode, chosen_labels, plot_dim, split_label_v_pair=(subplot_split_label, '{:.1f}'.format(v))) fig.suptitle(mode+' with '+str(dim)+' dimensions for different '+subplot_split_label, fontsize=25) else: num_per_subplot = int(np.ceil(len(y_list) / num_subplots)) # draw subplots if num_subplots > 1: for i in range(num_subplots): ax = fig.add_subplot(num_subplots_col_num, num_subplots_row_num, i+num_subplots_col_num+1, projection=projection) left, right = i*num_per_subplot, (i+1)*num_per_subplot if i == num_subplots-1: right = x_list.shape[0] chosen_inds = np.arange(left, right) plot_subplot(ax, x_list, y_list, chosen_inds, unique_y_list, False, mode, chosen_labels, plot_dim) fig.suptitle(mode+' with '+str(dim)+' dimensions for '+str(x_list.shape[0])+' samples', fontsize=25) fig.savefig(os.path.join(save_folder_path, mode+'_'+str(dim)+'_'+str(x_list.shape[0])+'.jpg')) if __name__ == '__main__': # -------------------- Dataset Visualization Parameters-------------------- folder_path = 'no_simulation_dataset_script' filename = 'grid.csv' # The values with these labels will be extracted x_labels = ['ego_pos', 'ego_init_speed', 'other_pos', 'other_init_speed', 'ped_delay', 'ped_init_speed'] # The interested target's label y_label = 'oob' x_list, y_list, x_labels = extract_data_from_csv(folder_path, filename, x_labels, y_label) # -------------------- Fuzzing + Visualization Parameters -------------------- # folder_path = 'no_simulation_function_script/run_results_no_simulation/nsga2/four_modes/2022_05_09_18_03_17,50_10_none_500_coeff_0_0.1_0.5_only_unique_0' # folder_path = 'carla_lbc/run_results/nsga2/town07_front_0/go_straight_town07_one_ped/lbc/2022_05_09_23_07_38,50_10_none_500_coeff_0.0_0.1_0.5_only_unique_0' # x_list, y_list, labels = extract_data_from_folder(folder_path) # -------------------- Common Parameters -------------------- # The number of subsets to split all the data during fuzzing. It needs to be a positive integer and less than or equal to (usually far less than) the number of data points. When it is set to 1, only a plot with all the data points will be shown. num_subplots = 1 # The visualization method. ['plain', 'pca', 'tsne'] mode = 'plain' # The number of dimensions to visualize. For 'plain', 2 to 4 are supported and dim must be equal to len(chosen_labels); For 'pca', 2 to 4 are supported; for 'tsne', 2 to 3 are supported and plot_dim must be equal to dim dim = 4 # The labels used for visualization. It is used only if mode == 'plain' and every label in the chosen_labels must be in labels chosen_labels = ['ego_pos', 'ego_init_speed', 'other_pos', 'other_init_speed'] # The dimensionality for plotting. [2, 3]. Note if plot_dim == 3, currently only dim == 3 is supported. plot_dim = 2 # The label used for splitting subplots (it is either None or an element in x_labels). When it is not None, num_subplots will be determined by the number of unique values of subplot_split_label in x_list. Usually this is set to be a categorical feature. subplot_split_label = 'ped_delay' visualize_data(folder_path, x_list, y_list, x_labels, num_subplots, mode, dim, chosen_labels, plot_dim, subplot_split_label=subplot_split_label)
39.493548
257
0.641264
e405055847775ec11f46a2cef8ba1364477690f6
1,201
py
Python
test/test_action_template_category_resource.py
cvent/octopus-deploy-api-client
0e03e842e1beb29b132776aee077df570b88366a
[ "Apache-2.0" ]
null
null
null
test/test_action_template_category_resource.py
cvent/octopus-deploy-api-client
0e03e842e1beb29b132776aee077df570b88366a
[ "Apache-2.0" ]
null
null
null
test/test_action_template_category_resource.py
cvent/octopus-deploy-api-client
0e03e842e1beb29b132776aee077df570b88366a
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Octopus Server API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 2019.6.7+Branch.tags-2019.6.7.Sha.aa18dc6809953218c66f57eff7d26481d9b23d6a Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import octopus_deploy_swagger_client from octopus_deploy_swagger_client.models.action_template_category_resource import ActionTemplateCategoryResource # noqa: E501 from octopus_deploy_swagger_client.rest import ApiException class TestActionTemplateCategoryResource(unittest.TestCase): """ActionTemplateCategoryResource unit test stubs""" def setUp(self): pass def tearDown(self): pass def testActionTemplateCategoryResource(self): """Test ActionTemplateCategoryResource""" # FIXME: construct object with mandatory attributes with example values # model = octopus_deploy_swagger_client.models.action_template_category_resource.ActionTemplateCategoryResource() # noqa: E501 pass if __name__ == '__main__': unittest.main()
29.292683
135
0.766861
263cc334d16f2aafa2d72e6407cde09d0cc45cd0
26,636
py
Python
tensorflow_transform/beam/analysis_graph_builder.py
LaudateCorpus1/transform
afee306046b8f656355b0170793ee64423f30e23
[ "Apache-2.0" ]
970
2017-02-10T04:33:46.000Z
2022-03-26T08:11:20.000Z
tensorflow_transform/beam/analysis_graph_builder.py
LaudateCorpus1/transform
afee306046b8f656355b0170793ee64423f30e23
[ "Apache-2.0" ]
216
2017-02-23T04:50:59.000Z
2022-03-31T13:52:57.000Z
tensorflow_transform/beam/analysis_graph_builder.py
LaudateCorpus1/transform
afee306046b8f656355b0170793ee64423f30e23
[ "Apache-2.0" ]
238
2017-02-17T16:30:55.000Z
2022-03-03T20:10:25.000Z
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions to create the implementation graph.""" import collections import hashlib import tensorflow as tf from tensorflow_transform import analyzer_nodes from tensorflow_transform import graph_tools from tensorflow_transform import impl_helper from tensorflow_transform import nodes from tensorflow_transform import tf2_utils from tensorflow_transform import tf_utils from tensorflow_transform.beam import analyzer_cache from tensorflow_transform.beam import beam_nodes from tensorflow_transform.beam import combiner_packing_util # TODO(https://issues.apache.org/jira/browse/SPARK-22674): Switch to # `collections.namedtuple` or `typing.NamedTuple` once the Spark issue is # resolved. from tfx_bsl.types import tfx_namedtuple # Used for debugging only. This will point to the most recent graph built. _ANALYSIS_GRAPH = None def _tensor_name(tensor): """Get a name of a tensor without trailing ":0" when relevant.""" # tensor.name is unicode in Python 3 and bytes in Python 2 so convert to # bytes here. name = str(tensor.name) return name[:-2] if name.endswith(':0') else name class _ReadyVisitor(nodes.Visitor): """Visitor to determine if a node is ready to run.""" def __init__(self, graph_analyzer): self._graph_analyzer = graph_analyzer self._visited_operation_def_labels = set() def _validate_operation_label_uniqueness(self, operation_def): assert operation_def.label not in self._visited_operation_def_labels, ( f'An operation with label {operation_def.label} ' 'already exists in the operations graph.') self._visited_operation_def_labels.add(operation_def.label) def visit(self, operation_def, input_values): self._validate_operation_label_uniqueness(operation_def) if isinstance(operation_def, analyzer_nodes.TensorSource): is_ready = all(self._graph_analyzer.ready_to_run(tensor) for tensor in operation_def.tensors) else: is_ready = all(input_values) return (is_ready,) * operation_def.num_outputs def validate_value(self, value): assert isinstance(value, bool) class _TranslateVisitor(nodes.Visitor): """Visitor that translates the operation graph. The original graph is defined by the user in the preprocessing_fn. The translated graph represents a Beam pipeline. """ def __init__(self): self.phase = None self.extracted_values_dict = None self.intermediate_output_signature = None def visit(self, operation_def, input_values): if isinstance(operation_def, analyzer_nodes.TensorSource): tensors = operation_def.tensors label = operation_def.label # Add tensor to signature so it gets produced by the SavedModel. for tensor in tensors: self.intermediate_output_signature[_tensor_name(tensor)] = tensor keys = tuple(map(_tensor_name, tensors)) output = nodes.apply_operation( beam_nodes.ExtractFromDict, self.extracted_values_dict, keys=keys, label=label) return (output,) else: return nodes.OperationNode(operation_def, input_values).outputs def validate_value(self, value): assert isinstance(value, nodes.ValueNode) class _OptimizationView( tfx_namedtuple.namedtuple('_OptimizationView', [ 'prefer_fine_grained_view', 'flattened_view', 'fine_grained_view', 'hashed_path' ])): """A container for operation outputs during _OptimizeVisitor traversal. This is used in order to maintain both a flattened view, and a fine grained view that can be used for caching. `prefer_fine_grained_view` is a hint that means that if True, the `fine_grained_view` should be used. It should be set to true if the upstream view has cacheing operations that haven't been flattened yet. """ def __init__(self, prefer_fine_grained_view, flattened_view, fine_grained_view, hashed_path): if prefer_fine_grained_view and not fine_grained_view: raise ValueError( 'Cannot prefer fine_grained_view when one is not provided') del hashed_path self._validate_flattened_view(flattened_view) self._validate_fine_grained_view(fine_grained_view) super().__init__() def _validate_flattened_view(self, view): assert view is self.flattened_view assert view is not None assert isinstance(view, nodes.ValueNode), view def _validate_fine_grained_view(self, view): assert view is self.fine_grained_view if view is None: return assert isinstance(view, collections.OrderedDict), view for value in view.values(): assert isinstance(value, nodes.ValueNode), value class _OptimizeVisitor(nodes.Visitor): """Visitor optimizes the operation graph (see nodes.py). This operates on the translated graph which is emitted by the `_TranslateVisitor`, and performs optimizations. Namely, when enabled, this enables reading and writing from/to analyzer accumulator cache to avoid recomputing them over already seen datasets. This type of optimization requires also creating a partitioned view of the input data, according to the `is_partitionable` annotation. """ def __init__(self, dataset_keys, cache_dict, tensor_keys_to_paths, cache_output_nodes): """Init method for _OptimizeVisitor. Args: dataset_keys: An iterable of strings which are keys for a partitioned dataset. cache_dict: A dictionary of input cache that can be used in place of a cacheable accumulate operation. A dictionary from dataset_keys to dictionaries of cache keys to PCollections. This can be None if there is no cache. tensor_keys_to_paths: A dictionary from a tensor key to a unique TF graph path hash. cache_output_nodes: A dictionary from (dataset_key, cache_key) to encoded cache ValueNode. This is the output cache for this graph. """ self._sorted_dataset_keys = sorted(dataset_keys) self._cache_dict = cache_dict self._tensor_keys_to_paths = tensor_keys_to_paths self.cache_output_nodes = cache_output_nodes def _validate_operation_def(self, operation_def): if operation_def.cache_coder is not None: if not operation_def.is_partitionable: raise ValueError('Non partitionable OperationDefs cannot be cacheable') if operation_def.is_partitionable or operation_def.cache_coder is not None: if operation_def.num_outputs != 1: raise ValueError('Cacheable OperationDefs must have exactly 1 output') def _make_next_hashed_path(self, parent_hashed_paths, operation_def): # Making a copy of parent_hashed_paths. paths_to_hash = list(parent_hashed_paths) paths_to_hash.append(tf.compat.as_bytes(operation_def.__class__.__name__)) if isinstance(operation_def, beam_nodes.ExtractFromDict): for key in operation_def.keys: path = self._tensor_keys_to_paths[key] paths_to_hash.append(path) else: for attr in sorted( [x for x in dir(operation_def) if x not in operation_def._fields]): if attr.startswith('_') or callable(getattr(operation_def, attr)): continue paths_to_hash.append( tf.compat.as_bytes(str((attr, getattr(operation_def, attr))))) for field in operation_def._fields: paths_to_hash.append( tf.compat.as_bytes( str((field, operation_def.get_field_str(field))))) hash_container = hashlib.sha1() for path in paths_to_hash: if path is None: return None hash_container.update(path) return hash_container.digest() def visit(self, operation_def, input_values): self._validate_operation_def(operation_def) if (isinstance(operation_def, beam_nodes.ApplySavedModel) and operation_def.phase == 0): return self._visit_apply_savedmodel_operation(operation_def, input_values) # When self._cache_dict is None this means that we shouldn't do any cacheing # for this pipeline, and so there's no need to create any fine grained # views. if self._cache_dict is not None and operation_def.is_partitionable: return self._visit_partitionable_operation(operation_def, input_values) if input_values and any(v.fine_grained_view and v.prefer_fine_grained_view for v in input_values): # We can 'flatten' the cached outputs of the parent operation since this # operation doesn't support partitioning. disaggregated_input_values = [] for view in input_values: disaggregated_input_values.extend(view.fine_grained_view.values()) # Checking that all cache has the same size. assert len({len(value) for value in disaggregated_input_values}) == 1 next_inputs = nodes.apply_multi_output_operation( beam_nodes.Flatten, *disaggregated_input_values, label='FlattenCache[{}]'.format(operation_def.label)) else: # Parent operation output is not cacheable, therefore we can just use # a flattened view. next_inputs = tuple(v.flattened_view for v in input_values) flattened_view = nodes.OperationNode(operation_def, next_inputs).outputs return tuple( _OptimizationView( # pylint: disable=g-complex-comprehension prefer_fine_grained_view=False, flattened_view=flat, fine_grained_view=None, hashed_path=None) for flat in flattened_view) def _visit_partitionable_operation(self, operation_def, upstream_views): # This is a hint for whether or not the `fine_grained_view` should be used # downstream. It should be set to true if either the upstream view has # cacheing operations that haven't been flattened yet, or the current # operation is cacheable. all_fine_grained_views_available = all( v.fine_grained_view for v in upstream_views) prefer_fine_grained_view = ( any(v.prefer_fine_grained_view for v in upstream_views) or all_fine_grained_views_available and operation_def.cache_coder is not None) next_hashed_path = self._make_next_hashed_path( [v.hashed_path for v in upstream_views], operation_def) if all_fine_grained_views_available: fine_grained_views = (self._apply_operation_on_fine_grained_view( operation_def, tuple(v.fine_grained_view for v in upstream_views), next_hashed_path),) else: fine_grained_views = (None,) * operation_def.num_outputs flattened_views = nodes.OperationNode( operation_def, tuple(v.flattened_view for v in upstream_views)).outputs assert len(fine_grained_views) == len(flattened_views) return tuple( _OptimizationView( # pylint: disable=g-complex-comprehension prefer_fine_grained_view=prefer_fine_grained_view, flattened_view=flat, fine_grained_view=fine, hashed_path=next_hashed_path) for flat, fine in zip(flattened_views, fine_grained_views)) def _apply_operation_on_fine_grained_view(self, operation_def, fine_grained_views, next_hashed_path): """Applies a shardable operation on a fine grained view. This also updates `cache_output_nodes` when necessary. Args: operation_def: A shardable `OperationDef`. fine_grained_views: A tuple of `_OptimizationView.fine_grained_view`s. next_hashed_path: The hashed path for the currently processed operation_def. Returns: The resulting list of `_OptimizationView.fine_grained_view`s. """ result_fine_grained_view = collections.OrderedDict() cache_entry_key = analyzer_cache.make_cache_entry_key( tf.compat.as_bytes(operation_def.label) + b'-' + next_hashed_path) for (dataset_idx, dataset_key) in enumerate(self._sorted_dataset_keys): # We use an index for the label in order to make beam labels more stable. infix = 'AnalysisIndex{}'.format(dataset_idx) if (operation_def.cache_coder and self._cache_dict.get( dataset_key, {}).get(cache_entry_key) is not None): decode_cache = analyzer_nodes.DecodeCache( dataset_key, cache_entry_key, coder=operation_def.cache_coder, label='DecodeCache[{}][{}]'.format(operation_def.label, infix)) (op_output,) = nodes.OperationNode(decode_cache, tuple()).outputs else: value_nodes = tuple(v[dataset_key] for v in fine_grained_views) (op_output,) = nodes.OperationNode( operation_def._replace( label='{}[{}]'.format(operation_def.label, infix)), value_nodes).outputs if operation_def.cache_coder: encode_cache = nodes.apply_operation( analyzer_nodes.EncodeCache, op_output, coder=operation_def.cache_coder, label='EncodeCache[{}][{}]'.format(operation_def.label, infix)) self.cache_output_nodes[(dataset_key, cache_entry_key)] = encode_cache result_fine_grained_view[dataset_key] = op_output return result_fine_grained_view def _visit_apply_savedmodel_operation(self, operation_def, upstream_views): if any(v.fine_grained_view for v in upstream_views): raise ValueError( 'Was not expecting a fine_grained_view input for ApplySavedModel') (saved_model_path_upstream_view, input_upstream_view) = upstream_views fine_grained_view = collections.OrderedDict() for (dataset_idx, dataset_key) in enumerate(self._sorted_dataset_keys): infix = 'AnalysisIndex{}'.format(dataset_idx) input_node = nodes.apply_operation( beam_nodes.ExtractInputForSavedModel, dataset_key=dataset_key, label='ExtractInputForSavedModel[{}]'.format(infix)) # We use an index for the label in order to make beam labels more stable. (fine_grained_view[dataset_key],) = ( nodes.OperationNode( operation_def._replace( label='{}[{}]'.format(operation_def.label, infix)), (saved_model_path_upstream_view.flattened_view, input_node)).outputs) (flattened_view,) = nodes.OperationNode( operation_def, (saved_model_path_upstream_view.flattened_view, input_upstream_view.flattened_view)).outputs return (_OptimizationView( prefer_fine_grained_view=False, flattened_view=flattened_view, fine_grained_view=fine_grained_view, hashed_path=b'APPLY_SAVEDMODEL'),) def validate_value(self, value): assert isinstance(value, _OptimizationView), value if value.fine_grained_view: assert set(value.fine_grained_view.keys()) == set( self._sorted_dataset_keys), ('{} != {}'.format( value.fine_grained_view.keys(), self._sorted_dataset_keys)) def _perform_cache_optimization(saved_model_future, dataset_keys, tensor_keys_to_paths, cache_dict): """Performs cache optimization on the given graph.""" cache_output_nodes = {} optimize_visitor = _OptimizeVisitor(dataset_keys or {}, cache_dict, tensor_keys_to_paths, cache_output_nodes) optimize_traverser = nodes.Traverser(optimize_visitor) optimized = optimize_traverser.visit_value_node( saved_model_future).flattened_view if cache_dict is None: assert not cache_output_nodes cache_output_nodes = None return optimized, cache_output_nodes class _InspectVisitor(nodes.Visitor): """A visitor that inspects the graph and looks for dataset keys in use.""" def __init__(self, required_dataset_keys_output): self._required_dataset_keys = required_dataset_keys_output def visit(self, operation_def, input_values): if isinstance(operation_def, beam_nodes.ExtractInputForSavedModel): self._required_dataset_keys.add(operation_def.dataset_key) return nodes.OperationNode(operation_def, input_values).outputs def validate_value(self, value): assert isinstance(value, nodes.ValueNode) def _build_analysis_graph_for_inspection(preprocessing_fn, specs, dataset_keys, input_cache, force_tf_compat_v1): """Builds the analysis graph for inspection.""" if not force_tf_compat_v1: assert all([isinstance(s, tf.TypeSpec) for s in specs.values()]), specs graph, structured_inputs, structured_outputs = ( impl_helper.trace_preprocessing_function( preprocessing_fn, specs, use_tf_compat_v1=tf2_utils.use_tf_compat_v1(force_tf_compat_v1))) transform_fn_future, cache_dict = build( graph, structured_inputs, structured_outputs, dataset_keys=dataset_keys, cache_dict=input_cache) return transform_fn_future, cache_dict def get_analysis_dataset_keys(preprocessing_fn, specs, dataset_keys, input_cache, force_tf_compat_v1): """Computes the dataset keys that are required in order to perform analysis. Args: preprocessing_fn: A tf.transform preprocessing_fn. specs: A dict of feature name to tf.TypeSpecs. If `force_tf_compat_v1` is True, this can also be feature specifications. dataset_keys: A set of strings which are dataset keys, they uniquely identify these datasets across analysis runs. input_cache: A cache dictionary. force_tf_compat_v1: If `True`, use Tensorflow in compat.v1 mode. Returns: A set of dataset keys that are required for analysis. """ transform_fn_future, _ = _build_analysis_graph_for_inspection( preprocessing_fn, specs, dataset_keys, input_cache, force_tf_compat_v1) result = set() inspect_visitor = _InspectVisitor(result) inspect_traverser = nodes.Traverser(inspect_visitor) _ = inspect_traverser.visit_value_node(transform_fn_future) # If None is present this means that a flattened version of the entire dataset # is required, therefore this will be returning all of the given dataset_keys. if any(k.is_flattened_dataset_key() for k in result): result = dataset_keys return result def get_analysis_cache_entry_keys(preprocessing_fn, specs, dataset_keys, force_tf_compat_v1): """Computes the cache entry keys that would be useful for analysis. Args: preprocessing_fn: A tf.transform preprocessing_fn. specs: A dict of feature name to tf.TypeSpecs. If `force_tf_compat_v1` is True, this can also be feature specifications. dataset_keys: A set of strings which are dataset keys, they uniquely identify these datasets across analysis runs. force_tf_compat_v1: If `True`, use Tensorflow in compat.v1 mode. Returns: A set of cache entry keys which would be useful for analysis. """ _, cache_dict = _build_analysis_graph_for_inspection(preprocessing_fn, specs, dataset_keys, {}, force_tf_compat_v1) return set([cache_key for _, cache_key in cache_dict.keys()]) def build(graph, input_signature, output_signature, dataset_keys=None, cache_dict=None): """Returns a list of `Phase`s describing how to execute the pipeline. The default graph is assumed to contain some `Analyzer`s which must be executed by doing a full pass over the dataset, and passing the inputs for that analyzer into some implementation, then taking the results and replacing the `Analyzer`s outputs with constants in the graph containing these results. The execution plan is described by a list of `Phase`s. Each phase contains a list of `Analyzer`s, which are the `Analyzer`s which are ready to run in that phase, together with a list of ops, which are the table initializers that are ready to run in that phase. An `Analyzer` or op is ready to run when all its dependencies in the graph have been computed. Thus if the graph is constructed by def preprocessing_fn(input) x = inputs['x'] scaled_0 = x - tft.min(x) scaled_0_1 = scaled_0 / tft.max(scaled_0) Then the first phase will contain the analyzer corresponding to the call to `min`, because `x` is an input and so is ready to compute in the first phase, while the second phase will contain the analyzer corresponding to the call to `max` since `scaled_1` depends on the result of the call to `tft.min` which is computed in the first phase. More generally, we define a level for each op and each `Analyzer` by walking the graph, assigning to each operation the max level of its inputs, to each `Tensor` the level of its operation, unless it's the output of an `Analyzer` in which case we assign the level of its `Analyzer` plus one. Args: graph: A `tf.Graph`. input_signature: A dict whose keys are strings and values are `Tensor`s or `SparseTensor`s. output_signature: A dict whose keys are strings and values are `Tensor`s or `SparseTensor`s. dataset_keys: (Optional) A set of strings which are dataset keys, they uniquely identify these datasets across analysis runs. cache_dict: (Optional): A cache dictionary. Returns: A pair of: * list of `Phase`s * A dictionary of output cache `ValueNode`s. Raises: ValueError: if the graph cannot be analyzed. """ tensor_sinks = graph.get_collection(analyzer_nodes.TENSOR_REPLACEMENTS) graph.clear_collection(analyzer_nodes.TENSOR_REPLACEMENTS) phase = 0 tensor_bindings = [] sink_tensors_ready = { tf_utils.hashable_tensor_or_op(tensor_sink.tensor): False for tensor_sink in tensor_sinks } translate_visitor = _TranslateVisitor() translate_traverser = nodes.Traverser(translate_visitor) analyzers_input_signature = {} graph_analyzer = None extracted_input_node = nodes.apply_operation( beam_nodes.ExtractInputForSavedModel, dataset_key=analyzer_cache._make_flattened_dataset_key(), # pylint: disable=protected-access label='ExtractInputForSavedModel[FlattenedDataset]') while not all(sink_tensors_ready.values()): infix = 'Phase{}'.format(phase) # Determine which table init ops are ready to run in this phase # Determine which keys of pending_tensor_replacements are ready to run # in this phase, based in whether their dependencies are ready. graph_analyzer = graph_tools.InitializableGraphAnalyzer( graph, input_signature, list(sink_tensors_ready.items()), graph_tools.describe_path_as_analyzer_cache_hash) ready_traverser = nodes.Traverser(_ReadyVisitor(graph_analyzer)) # Now create and apply a SavedModel with all tensors in tensor_bindings # bound, which outputs all the tensors in the required tensor tuples. intermediate_output_signature = collections.OrderedDict() saved_model_future = nodes.apply_operation( beam_nodes.CreateSavedModel, *tensor_bindings, table_initializers=tuple(graph_analyzer.ready_table_initializers), output_signature=intermediate_output_signature, label='CreateSavedModelForAnalyzerInputs[{}]'.format(infix)) extracted_values_dict = nodes.apply_operation( beam_nodes.ApplySavedModel, saved_model_future, extracted_input_node, phase=phase, label='ApplySavedModel[{}]'.format(infix)) translate_visitor.phase = phase translate_visitor.intermediate_output_signature = ( intermediate_output_signature) translate_visitor.extracted_values_dict = extracted_values_dict for tensor, value_node, is_asset_filepath in tensor_sinks: hashable_tensor = tf_utils.hashable_tensor_or_op(tensor) # Don't compute a binding/sink/replacement that's already been computed if sink_tensors_ready[hashable_tensor]: continue if not ready_traverser.visit_value_node(value_node): continue translated_value_node = translate_traverser.visit_value_node(value_node) name = _tensor_name(tensor) tensor_bindings.append( nodes.apply_operation( beam_nodes.CreateTensorBinding, translated_value_node, tensor_name=str(tensor.name), dtype_enum=tensor.dtype.as_datatype_enum, is_asset_filepath=is_asset_filepath, label=analyzer_nodes.sanitize_label( 'CreateTensorBinding[{}]'.format(name)))) sink_tensors_ready[hashable_tensor] = True analyzers_input_signature.update(intermediate_output_signature) phase += 1 # We need to make sure that the representation of this output_signature is # deterministic. output_signature = collections.OrderedDict( sorted(output_signature.items(), key=lambda t: t[0])) # TODO(KesterTong): check all table initializers are ready, check all output # tensors are ready. saved_model_future = nodes.apply_operation( beam_nodes.CreateSavedModel, *tensor_bindings, table_initializers=tuple( graph.get_collection(tf.compat.v1.GraphKeys.TABLE_INITIALIZERS)), output_signature=output_signature, label='CreateSavedModel') tensor_keys_to_paths = { tensor_key: graph_analyzer.get_unique_path(analyzers_input_signature[tensor_key]) for tensor_key in analyzers_input_signature } (optimized_saved_model_future, output_cache_value_nodes) = _perform_cache_optimization( saved_model_future, dataset_keys, tensor_keys_to_paths, cache_dict) (optimized_saved_model_future, output_cache_value_nodes) = ( combiner_packing_util.perform_combiner_packing_optimization( optimized_saved_model_future, output_cache_value_nodes, phase)) global _ANALYSIS_GRAPH _ANALYSIS_GRAPH = optimized_saved_model_future return optimized_saved_model_future, output_cache_value_nodes
41.16847
99
0.722631
165d5862a29e79da5dc40f86ec88887da6db3026
4,980
py
Python
sphinx/util/docutils.py
merwok-forks/sphinx
b7cada236f765003a73ab5dca48f975d54c0c298
[ "BSD-2-Clause" ]
null
null
null
sphinx/util/docutils.py
merwok-forks/sphinx
b7cada236f765003a73ab5dca48f975d54c0c298
[ "BSD-2-Clause" ]
null
null
null
sphinx/util/docutils.py
merwok-forks/sphinx
b7cada236f765003a73ab5dca48f975d54c0c298
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ sphinx.util.docutils ~~~~~~~~~~~~~~~~~~~~ Utility functions for docutils. :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ from __future__ import absolute_import import re from copy import copy from contextlib import contextmanager import docutils from docutils.utils import Reporter from docutils.parsers.rst import directives, roles from sphinx.util import logging logger = logging.getLogger(__name__) report_re = re.compile('^(.+?:\\d+): \\((DEBUG|INFO|WARNING|ERROR|SEVERE)/(\\d+)?\\) ' '(.+?)\n?$') if False: # For type annotation from typing import Any, Callable, Iterator, List, Tuple # NOQA from docutils import nodes # NOQA from sphinx.environment import BuildEnvironment # NOQA __version_info__ = tuple(map(int, docutils.__version__.split('.'))) @contextmanager def docutils_namespace(): # type: () -> Iterator[None] """Create namespace for reST parsers.""" try: _directives = copy(directives._directives) _roles = copy(roles._roles) yield finally: directives._directives = _directives roles._roles = _roles class ElementLookupError(Exception): pass class sphinx_domains(object): """Monkey-patch directive and role dispatch, so that domain-specific markup takes precedence. """ def __init__(self, env): # type: (BuildEnvironment) -> None self.env = env self.directive_func = None # type: Callable self.roles_func = None # type: Callable def __enter__(self): # type: () -> None self.enable() def __exit__(self, type, value, traceback): # type: (unicode, unicode, unicode) -> None self.disable() def enable(self): # type: () -> None self.directive_func = directives.directive self.role_func = roles.role directives.directive = self.lookup_directive roles.role = self.lookup_role def disable(self): # type: () -> None directives.directive = self.directive_func roles.role = self.role_func def lookup_domain_element(self, type, name): # type: (unicode, unicode) -> Tuple[Any, List] """Lookup a markup element (directive or role), given its name which can be a full name (with domain). """ name = name.lower() # explicit domain given? if ':' in name: domain_name, name = name.split(':', 1) if domain_name in self.env.domains: domain = self.env.get_domain(domain_name) element = getattr(domain, type)(name) if element is not None: return element, [] # else look in the default domain else: def_domain = self.env.temp_data.get('default_domain') if def_domain is not None: element = getattr(def_domain, type)(name) if element is not None: return element, [] # always look in the std domain element = getattr(self.env.get_domain('std'), type)(name) if element is not None: return element, [] raise ElementLookupError def lookup_directive(self, name, lang_module, document): # type: (unicode, unicode, nodes.document) -> Tuple[Any, List] try: return self.lookup_domain_element('directive', name) except ElementLookupError: return self.directive_func(name, lang_module, document) def lookup_role(self, name, lang_module, lineno, reporter): # type: (unicode, unicode, int, Any) -> Tuple[Any, List] try: return self.lookup_domain_element('role', name) except ElementLookupError: return self.role_func(name, lang_module, lineno, reporter) class WarningStream(object): def write(self, text): # type: (unicode) -> None matched = report_re.search(text) # type: ignore if not matched: logger.warning(text.rstrip("\r\n")) else: location, type, level, message = matched.groups() logger.log(type, message, location=location) class LoggingReporter(Reporter): def __init__(self, source, report_level, halt_level, debug=False, error_handler='backslashreplace'): # type: (unicode, int, int, bool, unicode) -> None stream = WarningStream() Reporter.__init__(self, source, report_level, halt_level, stream, debug, error_handler=error_handler) def set_conditions(self, category, report_level, halt_level, debug=False): # type: (unicode, int, int, bool) -> None Reporter.set_conditions(self, category, report_level, halt_level, debug=debug) def is_html5_writer_available(): # type: () -> bool return __version_info__ > (0, 13, 0)
31.719745
86
0.618675
015f4fc429ef6921c158f8eef83bb97eafcb18f5
598
py
Python
jax/version.py
dirmeier/jax
9ba28d263479ed5b9cada97bf73aec92ccc69bc6
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/version.py
dirmeier/jax
9ba28d263479ed5b9cada97bf73aec92ccc69bc6
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
jax/version.py
dirmeier/jax
9ba28d263479ed5b9cada97bf73aec92ccc69bc6
[ "ECL-2.0", "Apache-2.0" ]
1
2020-07-17T18:17:31.000Z
2020-07-17T18:17:31.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "0.2.4"
37.375
74
0.757525
6855aa245e370b477218d07cd03f449a26758e7c
396
py
Python
myUniSystem/venv/Lib/site-packages/pkg_resources/py2_warn.py
LukasKaziliunas/uniSystemDemo
11e8c19e6d2bd08eb0449e229dbaa2a0300d8263
[ "MIT" ]
1,738
2017-09-21T10:59:12.000Z
2022-03-31T21:05:46.000Z
myUniSystem/venv/Lib/site-packages/pkg_resources/py2_warn.py
LukasKaziliunas/uniSystemDemo
11e8c19e6d2bd08eb0449e229dbaa2a0300d8263
[ "MIT" ]
427
2017-09-29T22:54:36.000Z
2022-02-15T19:26:50.000Z
myUniSystem/venv/Lib/site-packages/pkg_resources/py2_warn.py
LukasKaziliunas/uniSystemDemo
11e8c19e6d2bd08eb0449e229dbaa2a0300d8263
[ "MIT" ]
671
2017-09-21T08:04:01.000Z
2022-03-29T14:30:07.000Z
import sys import warnings import textwrap msg = textwrap.dedent(""" Encountered a version of Setuptools that no longer supports this version of Python. Please head to https://bit.ly/setuptools-py2-sunset for support. """) pre = "Setuptools no longer works on Python 2\n" if sys.version_info < (3,): warnings.warn(pre + "*" * 60 + msg + "*" * 60) raise SystemExit(32)
23.294118
63
0.676768
61dad4fff18ff29d771c46bc16244f38d6f16312
1,781
py
Python
fastrf/app/routes/noise_figure.py
TheDubliner/fastrf
31761f58ab588cf441eaf200fb3862beeef625b5
[ "MIT" ]
4
2020-05-29T01:19:09.000Z
2021-03-16T12:05:26.000Z
fastrf/app/routes/noise_figure.py
TheDubliner/fastrf
31761f58ab588cf441eaf200fb3862beeef625b5
[ "MIT" ]
166
2020-04-16T03:34:53.000Z
2022-01-03T16:55:14.000Z
fastrf/app/routes/noise_figure.py
TheDubliner/fastrf
31761f58ab588cf441eaf200fb3862beeef625b5
[ "MIT" ]
2
2021-04-25T23:55:56.000Z
2022-01-10T13:06:19.000Z
import uuid from typing import Dict, List, Union from fastapi import APIRouter from fastrf.models.noise_figure import NoiseFigure router = APIRouter() class NoiseFigureSpec(NoiseFigure): id: str NOISE_FIGURE_SPECS = [ NoiseFigureSpec(id=uuid.uuid4().hex, value=1.5), NoiseFigureSpec(id=uuid.uuid4().hex, value=1.8), NoiseFigureSpec(id=uuid.uuid4().hex, value=2.2), ] @router.get( "/noise_figure", tags=["Noise Figure"], response_model=List[NoiseFigureSpec] ) def get_all_noise_figure_specs() -> List[Dict[str, Union[str, object]]]: # print(NOISE_FIGURE_SPECS) return [spec.dict(exclude={"unit"}) for spec in NOISE_FIGURE_SPECS] @router.post("/noise_figure", tags=["Noise Figure"]) async def create_noise_figure_spec(request: NoiseFigure) -> None: new_spec = NoiseFigureSpec(id=uuid.uuid4().hex, value=request.value) NOISE_FIGURE_SPECS.append(new_spec) return def remove_noise_figure_spec(noise_figure_spec_id: str) -> bool: # print(NOISE_FIGURE_SPECS) for spec in NOISE_FIGURE_SPECS: if spec.id == noise_figure_spec_id: NOISE_FIGURE_SPECS.remove(spec) return True return False @router.put( "/noise_figure/{noise_figure_id}", tags=["Noise Figure"], ) def edit_single_noise_figure_spec( noise_figure: NoiseFigure, noise_figure_id: str ) -> None: # Delete old entry remove_noise_figure_spec(noise_figure_id) # Add updated entry NOISE_FIGURE_SPECS.append( NoiseFigureSpec(id=noise_figure_id, value=noise_figure.value) ) return @router.delete( "/noise_figure/{noise_figure_id}", tags=["Noise Figure"], ) def remove_single_noise_figure_spec(noise_figure_id: str) -> None: remove_noise_figure_spec(noise_figure_id) return None
25.811594
80
0.723189
ff258d6504dc339b04fbc383d884f9c3f3efe54c
634
py
Python
alibaba/items.py
PandorAstrum/alibaba_skrapy
1548a354785578be1850015eeb439c368f5be4f2
[ "MIT" ]
null
null
null
alibaba/items.py
PandorAstrum/alibaba_skrapy
1548a354785578be1850015eeb439c368f5be4f2
[ "MIT" ]
null
null
null
alibaba/items.py
PandorAstrum/alibaba_skrapy
1548a354785578be1850015eeb439c368f5be4f2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class AlibabaItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() title = scrapy.Field() price = scrapy.Field() min_order = scrapy.Field() short_description = scrapy.Field() supply_ability = scrapy.Field() packaging_delivery = scrapy.Field() description = scrapy.Field() url = scrapy.Field() images_links = scrapy.Field() category = scrapy.Field() sub_category = scrapy.Field()
25.36
52
0.675079
c7a34d32e87338a982188ffcbc8ccf8c55c44274
9,133
py
Python
tests/ut/python/dataset/test_dataset_numpy_slices.py
kungfu-team/mindspore-bert
71501cf52ae01db9d6a73fb64bcfe68a6509dc32
[ "Apache-2.0" ]
null
null
null
tests/ut/python/dataset/test_dataset_numpy_slices.py
kungfu-team/mindspore-bert
71501cf52ae01db9d6a73fb64bcfe68a6509dc32
[ "Apache-2.0" ]
null
null
null
tests/ut/python/dataset/test_dataset_numpy_slices.py
kungfu-team/mindspore-bert
71501cf52ae01db9d6a73fb64bcfe68a6509dc32
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import sys import pytest import numpy as np import pandas as pd import mindspore.dataset as de from mindspore import log as logger import mindspore.dataset.vision.c_transforms as vision def test_numpy_slices_list_1(): logger.info("Test Slicing a 1D list.") np_data = [1, 2, 3] ds = de.NumpySlicesDataset(np_data, shuffle=False) for i, data in enumerate(ds): assert data[0].asnumpy() == np_data[i] def test_numpy_slices_list_2(): logger.info("Test Slicing a 2D list into 1D list.") np_data = [[1, 2], [3, 4]] ds = de.NumpySlicesDataset(np_data, column_names=["col1"], shuffle=False) for i, data in enumerate(ds): assert np.equal(data[0].asnumpy(), np_data[i]).all() def test_numpy_slices_list_3(): logger.info("Test Slicing list in the first dimension.") np_data = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] ds = de.NumpySlicesDataset(np_data, column_names=["col1"], shuffle=False) for i, data in enumerate(ds): assert np.equal(data[0].asnumpy(), np_data[i]).all() def test_numpy_slices_list_append(): logger.info("Test reading data of image list.") DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] resize_height, resize_width = 2, 2 data1 = de.TFRecordDataset(DATA_DIR) resize_op = vision.Resize((resize_height, resize_width)) data1 = data1.map(operations=[vision.Decode(True), resize_op], input_columns=["image"]) res = [] for data in data1.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(data["image"]) ds = de.NumpySlicesDataset(res, column_names=["col1"], shuffle=False) for i, data in enumerate(ds.create_tuple_iterator(output_numpy=True)): assert np.equal(data, res[i]).all() def test_numpy_slices_dict_1(): logger.info("Test Dictionary structure data.") np_data = {"a": [1, 2], "b": [3, 4]} ds = de.NumpySlicesDataset(np_data, shuffle=False) res = [[1, 3], [2, 4]] for i, data in enumerate(ds): assert data[0].asnumpy() == res[i][0] assert data[1].asnumpy() == res[i][1] def test_numpy_slices_tuple_1(): logger.info("Test slicing a list of tuple.") np_data = [([1, 2], [3, 4]), ([11, 12], [13, 14]), ([21, 22], [23, 24])] ds = de.NumpySlicesDataset(np_data, shuffle=False) for i, data in enumerate(ds.create_tuple_iterator(output_numpy=True)): assert np.equal(data, np_data[i]).all() assert sum([1 for _ in ds]) == 3 def test_numpy_slices_tuple_2(): logger.info("Test slicing a tuple of list.") np_data = ([1, 2], [3, 4], [5, 6]) expected = [[1, 3, 5], [2, 4, 6]] ds = de.NumpySlicesDataset(np_data, shuffle=False) for i, data in enumerate(ds.create_tuple_iterator(output_numpy=True)): assert np.equal(data, expected[i]).all() assert sum([1 for _ in ds]) == 2 def test_numpy_slices_tuple_3(): logger.info("Test reading different dimension of tuple data.") features, labels = np.random.sample((5, 2)), np.random.sample((5, 1)) data = (features, labels) ds = de.NumpySlicesDataset(data, column_names=["col1", "col2"], shuffle=False) for i, data in enumerate(ds): assert np.equal(data[0].asnumpy(), features[i]).all() assert data[1].asnumpy() == labels[i] def test_numpy_slices_csv_value(): logger.info("Test loading value of csv file.") csv_file = "../data/dataset/testNumpySlicesDataset/heart.csv" df = pd.read_csv(csv_file) target = df.pop("target") df.pop("state") np_data = (df.values, target.values) ds = de.NumpySlicesDataset(np_data, column_names=["col1", "col2"], shuffle=False) for i, data in enumerate(ds): assert np.equal(np_data[0][i], data[0].asnumpy()).all() assert np.equal(np_data[1][i], data[1].asnumpy()).all() def test_numpy_slices_csv_dict(): logger.info("Test loading csv file as dict.") csv_file = "../data/dataset/testNumpySlicesDataset/heart.csv" df = pd.read_csv(csv_file) df.pop("state") res = df.values ds = de.NumpySlicesDataset(dict(df), shuffle=False) for i, data in enumerate(ds.create_tuple_iterator(output_numpy=True)): assert np.equal(data, res[i]).all() def test_numpy_slices_num_samplers(): logger.info("Test num_samplers.") np_data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] ds = de.NumpySlicesDataset(np_data, shuffle=False, num_samples=2) for i, data in enumerate(ds): assert np.equal(data[0].asnumpy(), np_data[i]).all() assert sum([1 for _ in ds]) == 2 def test_numpy_slices_distributed_sampler(): logger.info("Test distributed sampler.") np_data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] ds = de.NumpySlicesDataset(np_data, shuffle=False, shard_id=0, num_shards=4) for i, data in enumerate(ds): assert np.equal(data[0].asnumpy(), np_data[i * 4]).all() assert sum([1 for _ in ds]) == 2 def test_numpy_slices_distributed_shard_limit(): logger.info("Test Slicing a 1D list.") np_data = [1, 2, 3] num = sys.maxsize with pytest.raises(ValueError) as err: de.NumpySlicesDataset(np_data, num_shards=num, shard_id=0, shuffle=False) assert "Input num_shards is not within the required interval of [1, 2147483647]." in str(err.value) def test_numpy_slices_distributed_zero_shard(): logger.info("Test Slicing a 1D list.") np_data = [1, 2, 3] with pytest.raises(ValueError) as err: de.NumpySlicesDataset(np_data, num_shards=0, shard_id=0, shuffle=False) assert "Input num_shards is not within the required interval of [1, 2147483647]." in str(err.value) def test_numpy_slices_sequential_sampler(): logger.info("Test numpy_slices_dataset with SequentialSampler and repeat.") np_data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] ds = de.NumpySlicesDataset(np_data, sampler=de.SequentialSampler()).repeat(2) for i, data in enumerate(ds): assert np.equal(data[0].asnumpy(), np_data[i % 8]).all() def test_numpy_slices_invalid_column_names_type(): logger.info("Test incorrect column_names input") np_data = [1, 2, 3] with pytest.raises(TypeError) as err: de.NumpySlicesDataset(np_data, column_names=[1], shuffle=False) assert "Argument column_names[0] with value 1 is not of type (<class 'str'>,)." in str(err.value) def test_numpy_slices_invalid_column_names_string(): logger.info("Test incorrect column_names input") np_data = [1, 2, 3] with pytest.raises(ValueError) as err: de.NumpySlicesDataset(np_data, column_names=[""], shuffle=False) assert "column_names[0] should not be empty" in str(err.value) def test_numpy_slices_invalid_empty_column_names(): logger.info("Test incorrect column_names input") np_data = [1, 2, 3] with pytest.raises(ValueError) as err: de.NumpySlicesDataset(np_data, column_names=[], shuffle=False) assert "column_names should not be empty" in str(err.value) def test_numpy_slices_invalid_empty_data_column(): logger.info("Test incorrect column_names input") np_data = [] with pytest.raises(ValueError) as err: de.NumpySlicesDataset(np_data, shuffle=False) assert "Argument data cannot be empty" in str(err.value) def test_numpy_slice_empty_output_shape(): logger.info("running test_numpy_slice_empty_output_shape") dataset = de.NumpySlicesDataset([[[1, 2], [3, 4]]], column_names=["col1"]) dataset = dataset.batch(batch_size=3, drop_remainder=True) assert dataset.output_shapes() == [] if __name__ == "__main__": test_numpy_slices_list_1() test_numpy_slices_list_2() test_numpy_slices_list_3() test_numpy_slices_list_append() test_numpy_slices_dict_1() test_numpy_slices_tuple_1() test_numpy_slices_tuple_2() test_numpy_slices_tuple_3() test_numpy_slices_csv_value() test_numpy_slices_csv_dict() test_numpy_slices_num_samplers() test_numpy_slices_distributed_sampler() test_numpy_slices_distributed_shard_limit() test_numpy_slices_distributed_zero_shard() test_numpy_slices_sequential_sampler() test_numpy_slices_invalid_column_names_type() test_numpy_slices_invalid_column_names_string() test_numpy_slices_invalid_empty_column_names() test_numpy_slices_invalid_empty_data_column() test_numpy_slice_empty_output_shape()
33.825926
103
0.68258
84e37b1184cbc7120d934f75c429ede25acbc1d5
10,785
py
Python
compaction_separation.py
seanys/2D-Irregular-Packing-Algorithm
cc10edff2bc2631fcbcb47acf7bb3215e5c5023c
[ "MIT" ]
29
2020-02-07T06:41:25.000Z
2022-03-16T18:04:07.000Z
compaction_separation.py
seanys/2D-Irregular-Packing-Algorithm
cc10edff2bc2631fcbcb47acf7bb3215e5c5023c
[ "MIT" ]
6
2020-04-27T01:36:27.000Z
2022-01-31T11:59:05.000Z
compaction_separation.py
seanys/2D-Irregular-Packing-Algorithm
cc10edff2bc2631fcbcb47acf7bb3215e5c5023c
[ "MIT" ]
12
2020-05-05T05:34:06.000Z
2022-03-26T07:32:46.000Z
""" 该文件实现了拆分算法 Separation去除重叠 和Compaction压缩当前解 ----------------------------------- Created on Wed Dec 11, 2020 @author: seanys,prinway ----------------------------------- We will update this file soon, now it has some wrong. """ from tools.geofunc import GeoFunc from tools.show import PltFunc from tools.lp import sovleLP,problem from tools.lp_assistant import LPAssistant import pandas as pd import json from shapely.geometry import Polygon,Point,mapping,LineString from interval import Interval import copy import random import math class LPFunction(object): ''' 参考文献:Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming 功能:Compaction与Separation函数处理 ''' def __init__(self,polys,poly_status,width,length,_type): self._type=_type self.all_nfp=pd.read_csv("/Users/sean/Documents/Projects/Data/fu_simplify.csv") self.poly_status=copy.deepcopy(poly_status) self.polys=copy.deepcopy(polys) self.WIDTH=width # print("初始高度:",LPAssistant.getLength(polys)) # self.LENGTH=LPAssistant.getLength(polys) # print(LPAssistant.getLength(polys)) self.LENGTH=length self.DISTANCE=400 self.main() def main(self): # 初始化全部参数,目标参数为z,x1,y1,x2,y..., N=len(self.polys) if self._type=="separation": a,b,c=[[0]*(2*N+N*N) for _ in range(8*N+N*N)],[0 for _ in range(8*N+N*N)],[0 for _ in range(N*2+N*N)] else: # Compaction有x1-xn/y1-yn/z共2N+1个参数,限制距离和边界2N个限制,N*N个两两间的约束 a,b,c=[[0]*(2*N+1) for _ in range(9*N+N*N)],[0 for _ in range(9*N+N*N)],[0 for _ in range(N*2+1)] # 获得常数限制和多边形的限制 self.getConstants() self.getTargetEdges() # 限制全部移动距离 OK for i in range(N): row=i*4 a[row+0][i*2+0],b[row+0]=-1,-self.DISTANCE-self.Xi[i] # -xi>=-DISTANCE-Xi a[row+1][i*2+1],b[row+1]=-1,-self.DISTANCE-self.Yi[i] # -yi>=-DISTANCE-Yi a[row+2][i*2+0],b[row+2]= 1,-self.DISTANCE+self.Xi[i] # xi>=-DISTANCE+Xi a[row+3][i*2+1],b[row+3]= 1,-self.DISTANCE+self.Yi[i] # yi>=-DISTANCE+Yi # 限制无法移出边界 OK for i in range(N): row=4*N+i*4 a[row+0][i*2+0],b[row+0]= 1,self.W_[i] # xi>=Wi* a[row+1][i*2+1],b[row+1]= 1,self.H[i] # yi>=Hi a[row+2][i*2+0],b[row+2]=-1,self.W[i]-self.LENGTH # -xi>=Wi-Length a[row+3][i*2+1],b[row+3]=-1,-self.WIDTH # -yi>=-Width # 限制不出现重叠情况 有一点问题 for i in range(N): for j in range(N): row=8*N+i*N+j if self._type=="separation": if i!=j: a[row][i*2+0],a[row][i*2+1],a[row][j*2+0],a[row][j*2+1],b[row]=self.getOverlapConstrain(i,j) a[row][2*N+i*N+j],c[2*N+i*N+j]=1,1 # 目标函数变化 else: a[row][2*N+i*N+j],c[2*N+i*N+j],b[row]=1,1,0 else: if i!=j: a[row][i*2+0],a[row][i*2+1],a[row][j*2+0],a[row][j*2+1],b[row]=self.getOverlapConstrain(i,j) if self._type=="compaction": # 大于所有形状的位置+高度,z-xi>=w OK for i in range(N): row=8*N+N*N+i a[row][2*N],a[row][i*2],b[row]=1,-1,self.W[i] c[2*N]=1 # 求解计算结果 result,self.final_value=sovleLP(a,b,c,_type=self._type) # 将其转化为坐标,Variable的输出顺序是[a00,..,ann,x1,..,xn,y1,..,yn] placement_points=[] if self._type=="separation": for i in range(N*N,N*N+N): placement_points.append([result[i],result[i+N]]) else: for i in range(len(result)//2): placement_points.append([result[i],result[i+N]]) # 获得最终结果 self.getResult(placement_points) # 更新最终的结果,更新所有的位置 def getResult(self,placement_points): self.final_polys,self.final_poly_status=[],copy.deepcopy(self.poly_status) for i,poly in enumerate(self.polys): self.final_polys.append(GeoFunc.getSlide(poly,placement_points[i][0]-self.Xi[i],placement_points[i][1]-self.Yi[i])) self.final_poly_status[i][1]=[placement_points[i][0],placement_points[i][1]] # for i in range(len(self.polys)): # PltFunc.addPolygon(self.final_polys[i]) # PltFunc.addPolygonColor(self.polys[i]) # 初始化的结果 # PltFunc.showPlt(width=1500,height=1500) def getOverlapConstrain(self,i,j): # 初始化参数 a_xi,a_yi,a_xj,a_yj,b=0,0,0,0,0 # 获取Stationary Poly的参考点的坐标 Xi,Yi=self.Xi[i],self.Yi[i] # 获取参考的边 edge=self.target_edges[i][j] X1,Y1,X2,Y2=edge[0][0],edge[0][1],edge[1][0],edge[1][1] ''' 非重叠情况 式1: (y2-y1)*xj+(x1-x2)*yj+x2*y1-x1*y2>0 右侧距离大于0 式2: (Y2-Y1)*xj+(X1-X2)*yj+X2*Y1-X1*Y2+(xi-Xi)*(Y1-Y2)+(yi-Yi)*(X2-X1)+>0 式3: (Y2-Y1)*xj+(X1-X2)*yj+X2*Y1-X1*Y2+(Y1-Y2)*xi+(X2-X1)*yi-Xi*(Y1-Y2)-Yi*(X2-X1)>0 式4: (Y1-Y2)*xi+(X2-X1)*yi+(Y2-Y1)*xj+(X1-X2)*yj>-X2*Y1+X1*Y2+Xi*(Y1-Y2)+Yi*(X2-X1) 重叠情况 式1: -((y2-y1)*xj+(x1-x2)*yj+x2*y1-x1*y2)-a_ij<0 左侧距离小于0 式2: (y2-y1)*xj+(x1-x2)*yj+x2*y1-x1*y2+a_ij>0 式1: (Y1-Y2)*xi+(X2-X1)*yi+(Y2-Y1)*xj+(X1-X2)*yj+a_ij>-X2*Y1+X1*Y2+Xi*(Y1-Y2)+Yi*(X2-X1) 左侧距离小于0 总结: 重叠的时候由于求出来是负值,最终只增加了一个a_ij,参数肯定是1 ''' a_xi,a_yi,a_xj,a_yj,b=Y1-Y2,X2-X1,Y2-Y1,X1-X2,-X2*Y1+X1*Y2+Xi*(Y1-Y2)+Yi*(X2-X1) return a_xi,a_yi,a_xj,a_yj,b # 获取所有的常数限制 def getConstants(self): self.W=[] # 最高位置到右侧的距离 self.W_=[] # 最高位置到左侧的距离 self.H=[] # 最高点 self.Xi=[] # Xi的初始位置 self.Yi=[] # Yi的初始位置 self.PLACEMENTPOINT=[] for i,poly in enumerate(self.polys): left,bottom,right,top=LPAssistant.getBoundPoint(poly) self.PLACEMENTPOINT.append([top[0],top[1]]) self.Xi.append(top[0]) self.Yi.append(top[1]) self.W.append(right[0]-top[0]) self.W_.append(top[0]-left[0]) self.H.append(top[1]-bottom[1]) # print("W:",self.W) # print("W_:",self.W_) # print("H:",self.H) # print("Xi:",self.Xi) # print("Yi:",self.Yi) # print("PLACEMENTPOINT:",self.PLACEMENTPOINT) # print("Length:",self.LENGTH) # 获取所有两条边之间的关系 def getTargetEdges(self): self.target_edges=[[0]*len(self.polys) for _ in range(len(self.polys))] for i in range(len(self.polys)): for j in range(len(self.polys)): if i==j: continue nfp=self.getNFP(i,j) nfp_edges=GeoFunc.getPolyEdges(nfp) point=self.PLACEMENTPOINT[j] if Polygon(nfp).contains(Point(point)) and self._type=="separation": # 如果包含且是拆分,则寻找距离最近的那个 min_distance=99999999999999 for edge in nfp_edges: left_distance=-self.getRightDistance(edge,point) if left_distance<=min_distance: min_distance=left_distance self.target_edges[i][j]=copy.deepcopy(edge) else: # 如果不包含或者是压缩,则选择最远的 max_distance=-0.00001 for edge in nfp_edges: right_distance=self.getRightDistance(edge,point) if right_distance>=max_distance: max_distance=right_distance self.target_edges[i][j]=copy.deepcopy(edge) @staticmethod def getRightDistance(edge,point): A=edge[1][1]-edge[0][1] B=edge[0][0]-edge[1][0] C=edge[1][0]*edge[0][1]-edge[0][0]*edge[1][1] D=A*point[0]+B*point[1]+C dis=(math.fabs(A*point[0]+B*point[1]+C))/(math.pow(A*A+B*B,0.5)) if D>0: return dis # 右侧返回正 elif D==0: return 0 # 直线上返回0 else: return -dis # 左侧返回负值 def getNFP(self,j,i): # j是固定位置,i是移动位置 row=j*192+i*16+self.poly_status[j][2]*4+self.poly_status[i][2] bottom_pt=LPAssistant.getBottomPoint(self.polys[j]) delta_x,delta_y=bottom_pt[0],bottom_pt[1] nfp=GeoFunc.getSlide(json.loads(self.all_nfp["nfp"][row]),delta_x,delta_y) return nfp def searchForBest(polys,poly_status,width,length): # 记录最优结果 best_poly_status,best_polys=[],[] cur_length=length # 循环检索最优位置(Polys不需要变化) while True: print("允许高度:",cur_length) result_polys,result_poly_status,result_value=searchOneLength(polys,poly_status,width,cur_length,"separation") if result_value==0: best_polys=result_polys break cur_length=cur_length+4 print("开始准确检索") # 精准检索最优结果 for i in range(3): cur_length=cur_length-1 print("允许高度:",cur_length) result_polys,result_poly_status,result_value=searchOneLength(polys,poly_status,width,cur_length,"separation") if result_value!=0: break best_polys=result_polys best_length=cur_length+1 print("Separation最终高度:",best_length) # 执行Compaction代码更新状态,只有在最后这次才需要改poly_status best_polys,best_poly_status,best_length=searchOneLength(best_polys,poly_status,width,best_length,"compaction") print("最终高度:",best_length) return best_polys,poly_status,best_length def searchOneLength(polys,poly_status,width,length,_type): ''' 检索一个确定高度到不会变化 Separation: 检索某个高度是否能够达到0,如果不能达到,就返回最终结果、状态、最终重叠 Compaction: 检索某个高度,返回最终形状、状态、计算高度 ''' input_polys=copy.deepcopy(polys) # 每次输入的形状 last_value=99999999999 final_polys,final_poly_status=[],[] while True: res=LPFunction(input_polys,poly_status,width,length,_type) # 如果没有重叠,或者等于上一个状态 if res.final_value==0 or abs(res.final_value-last_value)<0.001: last_value=res.final_value final_polys=copy.deepcopy(res.final_polys) final_poly_status=copy.deepcopy(res.final_poly_status) break # 如果有变化,则更换状态再试一次 input_polys=copy.deepcopy(res.final_polys) last_value=res.final_value return final_polys,final_poly_status,last_value if __name__ == "__main__": blf = pd.read_csv("record/blf.csv") index = 7 polys,poly_status,width=json.loads(blf["polys"][index]),json.loads(blf["poly_status"][index]),int(blf["width"][index]) searchForBest(polys,poly_status,width,628.1533587455999) # LPFunction(polys,poly_status,width,628.1533587455999,"compaction") # Compaction(polys,poly_status,width)
37.70979
127
0.571164
1aaec58aa695f734eb32540375e9156313d28750
62,139
py
Python
disco/extensions/upgrade_simulation/upgrades/common_functions.py
NREL/disco
19afa1c397c6c24e37222f6cbf027eb88833beda
[ "BSD-3-Clause" ]
2
2022-03-11T20:04:34.000Z
2022-03-14T22:25:29.000Z
disco/extensions/upgrade_simulation/upgrades/common_functions.py
NREL/disco
19afa1c397c6c24e37222f6cbf027eb88833beda
[ "BSD-3-Clause" ]
4
2022-03-11T17:48:50.000Z
2022-03-17T21:39:47.000Z
disco/extensions/upgrade_simulation/upgrades/common_functions.py
NREL/disco
19afa1c397c6c24e37222f6cbf027eb88833beda
[ "BSD-3-Clause" ]
null
null
null
import os import ast import math import json import logging import pathlib import numpy as np import pandas as pd import opendssdirect as dss from .pydss_parameters import * from jade.utils.timing_utils import track_timing, Timer from disco import timer_stats_collector from disco.enums import LoadMultiplierType from disco.exceptions import ( OpenDssCompileError, OpenDssConvergenceError, UpgradesExternalCatalogRequired, UpgradesExternalCatalogMissingObjectDefinition, InvalidOpenDssElementError, ) logger = logging.getLogger(__name__) @track_timing(timer_stats_collector) def reload_dss_circuit(dss_file_list, commands_list=None, **kwargs): """This function clears the circuit and loads dss files and commands. Also solves the circuit and checks for convergence errors Parameters ---------- dss_file_list commands_list Returns ------- """ logger.info("-> Reloading OpenDSS circuit") check_dss_run_command("clear") if dss_file_list is None: raise Exception("No OpenDSS files have been passed to be loaded.") for dss_file in dss_file_list: logger.info(f"Redirecting {dss_file}.") check_dss_run_command(f"Redirect {dss_file}") dc_ac_ratio = kwargs.get('dc_ac_ratio', None) if dc_ac_ratio is not None: change_pv_pctpmpp(dc_ac_ratio=dc_ac_ratio) if commands_list is not None: logger.info(f"Running {len(commands_list)} dss commands") for command_string in commands_list: check_dss_run_command(command_string) if "new " in command_string.lower(): check_dss_run_command("CalcVoltageBases") enable_pydss_solve = kwargs.get("enable_pydss_solve", False) if enable_pydss_solve: pydss_params = define_initial_pydss_settings(**kwargs) circuit_solve_and_check(raise_exception=True, **pydss_params) return pydss_params else: circuit_solve_and_check(raise_exception=True) return kwargs def run_selective_master_dss(master_filepath, **kwargs): """This function executes master.dss file line by line and ignores some commands that Solve yearly mode, export or plot data. Parameters ---------- master_filepath Returns ------- """ run_dir = os.getcwd() check_dss_run_command("Clear") # logger.info("-->Redirecting master file:") # check_dss_run_command(f"Redirect {master_filepath}") # do this instead of redirect master to ignore some lines (e.g., that solve for the whole year) os.chdir(os.path.dirname(master_filepath)) logger.debug(master_filepath) with open(master_filepath, "r") as fr: tlines = fr.readlines() for line in tlines: if ('Solve'.lower() in line.lower()) or ('Export'.lower() in line.lower()) or ('Plot'.lower() in line.lower()): logger.info(f"Skipping this line: {line}") continue else: check_dss_run_command(f"{line}") circuit_solve_and_check(raise_exception=True, **kwargs) os.chdir(run_dir) return @track_timing(timer_stats_collector) def circuit_solve_and_check(raise_exception=False, **kwargs): """This function solves the circuit (both OpenDSS and PyDSS-if enabled) and can raise exception if convergence error occurs Parameters ---------- raise_exception kwargs Returns ------- """ calcvoltagebases = kwargs.pop("calcvoltagebases", False) if calcvoltagebases: check_dss_run_command("CalcVoltageBases") dss_pass_flag = dss_solve_and_check(raise_exception=raise_exception) pass_flag = dss_pass_flag enable_pydss_solve = kwargs.get("enable_pydss_solve", False) if enable_pydss_solve: # if pydss solver is also to be used pydss_pass_flag = pydss_solve_and_check(raise_exception=raise_exception, **kwargs) pass_flag = dss_pass_flag and pydss_pass_flag return pass_flag def dss_solve_and_check(raise_exception=False): """This function solves OpenDSS and returns bool flag which shows if it has converged or not. Parameters ---------- raise_exception Returns ------- bool """ dss.Solution.Solve() logger.debug("Solving circuit using OpenDSS") # check_dss_run_command('CalcVoltageBases') dss_pass_flag = dss.Solution.Converged() if not dss_pass_flag: logger.info(f"OpenDSS Convergence Error") if raise_exception: raise OpenDssConvergenceError("OpenDSS solution did not converge") return dss_pass_flag def dss_run_command_list(command_list): for command_string in command_list: check_dss_run_command(command_string) return def write_text_file(string_list, text_file_path): """This function writes the string contents of a list to a text file Parameters ---------- string_list text_file_path Returns ------- """ pathlib.Path(text_file_path).write_text("\n".join(string_list)) def create_upgraded_master_dss(dss_file_list, upgraded_master_dss_filepath): """Function to create master dss with redirects to upgrades dss file. The redirect paths in this file are relative to the file""" command_list = [] for filename in dss_file_list: rel_filename = os.path.relpath(filename, os.path.dirname(upgraded_master_dss_filepath)) command_list.append(f"Redirect {rel_filename}") return command_list def create_dataframe_from_nested_dict(user_dict, index_names): """This function creates dataframe from a nested dictionary Parameters ---------- user_dict index_names Returns ------- DataFrame """ df = pd.DataFrame.from_dict({(i, j): user_dict[i][j] for i in user_dict.keys() for j in user_dict[i].keys()}, orient='index') df.index.names = index_names return df.reset_index() def get_dictionary_of_duplicates(df, subset, index_field): """This creates a mapping dictionary of duplicate indices in a dataframe Parameters ---------- df subset index_field Returns ------- Dictionary """ df.set_index(index_field, inplace=True) df = df[df.duplicated(keep=False, subset=subset)] tuple_list = df.groupby(subset).apply(lambda x: tuple(x.index)).tolist() mapping_dict = {v: tup[0] for tup in tuple_list for v in tup} return mapping_dict def get_scenario_name(enable_pydss_solve, pydss_volt_var_model): """This function determines the controller scenario Parameters ---------- enable_pydss_solve : bool pydss_volt_var_model Returns ------- str """ if enable_pydss_solve: # scenario = pydss_volt_var_model.control1 # TODO can read in name instead scenario = "control_mode" else: scenario = "pf1" return scenario @track_timing(timer_stats_collector) def change_pv_pctpmpp(dc_ac_ratio): """This function changes PV system pctpmpp based on passed dc-ac ratio newpctpmpp = oldpctpmpp / dc_ac_ratio """ dss.PVsystems.First() for i in range(dss.PVsystems.Count()): newpctpmpp = int(dss.Properties.Value('%Pmpp')) / dc_ac_ratio command_string = f"Edit PVSystem.{dss.PVsystems.Name()} %Pmpp={newpctpmpp}" check_dss_run_command(command_string) dss.PVsystems.Next() def get_feeder_stats(dss): """This function gives metadata stats for a feeder Parameters ---------- dss Returns ------- dict """ load_kw = 0 load_kVABase = 0 pv_kw = 0 pv_kVARated = 0 load_df = dss.utils.loads_to_dataframe() if len(load_df) > 0: load_kw = load_df['kW'].sum() load_kVABase = load_df['kVABase'].sum() pv_df = dss.utils.pvsystems_to_dataframe() if len(pv_df) > 0: pv_kw = pv_df['kW'].sum() pv_kVARated = pv_df['kVARated'].sum() data_dict = { 'total_load(kVABase)': load_kVABase, 'total_load(kW)': load_kw, 'total_PV(kW)': pv_kw, 'total_PV(kVARated)': pv_kVARated, } return data_dict def get_upgrade_stage_stats(dss, upgrade_stage, upgrade_type, xfmr_loading_df, line_loading_df, bus_voltages_df, **kwargs): """This function gives upgrade stage stats for a feeder upgrade_stage can be Initial or Final upgrade_type can be thermal or voltage """ final_dict = {"stage": upgrade_stage, "upgrade_type": upgrade_type} ckt_info_dict = get_circuit_info() final_dict["feeder_components"] = ckt_info_dict final_dict["feeder_components"].update({ "num_nodes": dss.Circuit.NumNodes(), "num_loads": dss.Loads.Count(), "num_lines": dss.Lines.Count(), "num_transformers": dss.Transformers.Count(), "num_pv_systems": dss.PVsystems.Count(), "num_capacitors": dss.Capacitors.Count(), "num_regulators": dss.RegControls.Count(), } ) equipment_dict = combine_equipment_health_stats(xfmr_loading_df, line_loading_df, bus_voltages_df, **kwargs) final_dict.update(equipment_dict) return final_dict def combine_equipment_health_stats(xfmr_loading_df, line_loading_df, bus_voltages_df, **kwargs): line_properties = kwargs.get("line_properties", None) xfmr_properties = kwargs.get("xfmr_properties", None) voltage_properties = kwargs.get("voltage_properties", None) final_dict = {} if line_properties is None: line_properties = ['name', 'phases','normamps', 'kV', 'line_placement', 'length', 'units', 'max_amp_loading', 'max_per_unit_loading', 'status'] if xfmr_properties is None: xfmr_properties = ['name', 'phases', 'windings', 'conns', 'kVs', 'kVAs', 'amp_limit_per_phase','max_amp_loading', 'max_per_unit_loading', 'status'] if voltage_properties is None: voltage_properties = ['name', 'Max per unit voltage', 'Min per unit voltage', 'Overvoltage violation', 'Max voltage_deviation', 'Undervoltage violation', 'Min voltage_deviation'] # some file reformatting if "conns" in xfmr_properties: xfmr_loading_df["conns"] = xfmr_loading_df["conns"].apply(ast.literal_eval) if "kVs" in xfmr_properties: xfmr_loading_df["kVs"] = xfmr_loading_df["kVs"].apply(ast.literal_eval) if "windings" in xfmr_properties: xfmr_loading_df["windings"] = xfmr_loading_df["windings"].astype(int) final_dict.update({"transformer_loading": xfmr_loading_df[xfmr_properties].to_dict(orient="records")}) final_dict.update({"line_loading": line_loading_df[line_properties].to_dict(orient="records")}) final_dict.update({"bus_voltage": bus_voltages_df[voltage_properties].to_dict(orient="records")}) return final_dict def get_circuit_info(): """This collects circuit information: source bus, feeder head info, substation xfmr information Returns ------- Dictionary """ data_dict = {} dss.Vsources.First() data_dict['source_bus'] = dss.CktElement.BusNames()[0].split(".")[0] data_dict["feeder_head_name"] = dss.Circuit.Name() dss.Circuit.SetActiveBus(data_dict['source_bus']) data_dict["feeder_head_basekv"] = dss.Bus.kVBase() data_dict["source_num_nodes"] = dss.Bus.NumNodes() data_dict["total_num_buses_in_circuit"] = len(dss.Circuit.AllBusNames()) if data_dict["source_num_nodes"] > 1: data_dict["feeder_head_basekv"] = round(data_dict["feeder_head_basekv"] * math.sqrt(3), 1) data_dict["substation_xfmr"] = None all_xfmr_df = get_thermal_equipment_info(compute_loading=False, equipment_type="transformer") all_xfmr_df["substation_xfmr_flag"] = all_xfmr_df.apply(lambda x: int( data_dict["source_bus"].lower() in x['bus_names_only']), axis=1) if len(all_xfmr_df.loc[all_xfmr_df["substation_xfmr_flag"] == True]) > 0: data_dict["substation_xfmr"] = all_xfmr_df.loc[all_xfmr_df["substation_xfmr_flag"] == True].to_dict(orient='records')[0] data_dict["substation_xfmr"]["kVs"] = ast.literal_eval(data_dict["substation_xfmr"]["kVs"]) # this checks if the voltage kVs are the same for the substation transformer data_dict["substation_xfmr"]["is_autotransformer_flag"] = len(set(data_dict["substation_xfmr"]["kVs"])) <= 1 return data_dict def create_opendss_definition(config_definition_dict, action_type="New", property_list=None): """This function creates an opendss element definition for any generic equipment Returns ------- str """ command_string = f"{action_type} {config_definition_dict['equipment_type']}.{config_definition_dict['name']}" logger.debug(f"New {config_definition_dict['equipment_type']}.{config_definition_dict['name']} being defined") # these properties contain data (refer OpenDSS manual for more information on these parameters) if property_list is None: property_list = list(set(config_definition_dict.keys()) - {"name", "equipment_type"}) empty_field_values = ["----", "nan", "NaN", "None", None, np.nan] for property_name in property_list: if isinstance(config_definition_dict[property_name], float): if np.isnan(config_definition_dict[property_name]): continue if config_definition_dict[property_name] in empty_field_values: continue # if the value is not empty and is not nan, only then add it into the command string temp_s = f" {property_name}={config_definition_dict[property_name]}" command_string = command_string + temp_s return command_string def ensure_line_config_exists(chosen_option, new_config_type, external_upgrades_technical_catalog): """This function check if a line config exists in the network. If it doesn't exist, it checks the external catalog (if available) and returns a new dss definition string. Returns ------- str """ existing_config_dict = {"linecode": get_line_code(), "geometry": get_line_geometry()} new_config_name = chosen_option[new_config_type].lower() # if linecode or linegeometry is not present in existing network definitions if not existing_config_dict[new_config_type]["name"].str.lower().isin([new_config_name]).any(): # add definition for linecode or linegeometry if external_upgrades_technical_catalog is None: raise UpgradesExternalCatalogRequired(f"External upgrades technical catalog not available to determine line config type") external_config_df = pd.DataFrame(external_upgrades_technical_catalog[new_config_type]) if external_config_df["name"].str.lower().isin([new_config_name]).any(): config_definition_df = external_config_df.loc[external_config_df["name"] == new_config_name] config_definition_dict = dict(config_definition_df.iloc[0]) if config_definition_dict["normamps"] != chosen_option["normamps"]: logger.warning(f"Mismatch between noramps for linecode {new_config_name} and chosen upgrade option normamps: {chosen_option['name']}") # check format of certain fields matrix_fields = [s for s in config_definition_dict.keys() if 'matrix' in s] for field in matrix_fields: config_definition_dict[field] = config_definition_dict[field].replace("'","") config_definition_dict[field] = config_definition_dict[field].replace("[","(") config_definition_dict[field] = config_definition_dict[field].replace("]",")") command_string = create_opendss_definition(config_definition_dict=config_definition_dict) else: raise UpgradesExternalCatalogMissingObjectDefinition( f"{new_config_type} definition for {new_config_name} not found in external catalog." ) else: command_string = None return command_string def get_present_loading_condition(): """ Get present loading condition for all loads Returns ------- DataFrame """ load_dict = {} dss.Circuit.SetActiveClass("Load") flag = dss.ActiveClass.First() while flag > 0: # Get the name of the load load_dict[dss.CktElement.Name()] = { 'Num_phases': float(dss.Properties.Value("phases")), 'kV': float(dss.Properties.Value("kV")), 'kVA': float(dss.Properties.Value("kVA")), 'kW': float(dss.Properties.Value("kW")), 'pf': dss.Properties.Value("pf"), 'Bus1': dss.Properties.Value("bus1"), 'Powers': dss.CktElement.Powers(), 'NetPower': sum(dss.CktElement.Powers()[::2]), } # Move on to the next Load... flag = dss.ActiveClass.Next() load_df = pd.DataFrame.from_dict(load_dict, "index") return load_df def get_present_storage_condition(): """ Get present operating condition for all storage Returns ------- DataFrame """ storage_dict = {} dss.Circuit.SetActiveClass('Storage') flag = dss.ActiveClass.First() while flag > 0: # Get the name of the load storage_dict[dss.CktElement.Name()] = { 'Num_phases': float(dss.Properties.Value("phases")), 'kV': float(dss.Properties.Value("kV")), 'kVA': float(dss.Properties.Value("kVA")), 'kW': float(dss.Properties.Value("kW")), 'pf': dss.Properties.Value("pf"), 'Bus1': dss.Properties.Value("bus1"), 'Powers': dss.CktElement.Powers(), 'NetPower': sum(dss.CktElement.Powers()[::2]), } # Move on to the next ... flag = dss.ActiveClass.Next() storage_df = pd.DataFrame.from_dict(storage_dict, "index") return storage_df def get_present_pvgeneration(): """ Get present generation for all pv systems Returns ------- DataFrame """ pv_dict = {} dss.Circuit.SetActiveClass("PVSystem") flag = dss.ActiveClass.First() while flag: pv_dict[dss.CktElement.Name()] = { 'Num_phases': float(dss.Properties.Value("phases")), 'kV': float(dss.Properties.Value("kV")), 'kVA': float(dss.Properties.Value("kVA")), 'kvar': float(dss.Properties.Value("kvar")), 'Irradiance': float(dss.Properties.Value("Irradiance")), 'connection': dss.Properties.Value("conn"), 'Pmpp': float(dss.Properties.Value("Pmpp")), 'Powers': dss.CktElement.Powers(), 'NetPower': sum(dss.CktElement.Powers()[::2]), 'pf': dss.Properties.Value("pf"), 'Bus1': dss.Properties.Value("bus1"), 'Voltages': dss.CktElement.Voltages(), 'VoltagesMagAng': dss.CktElement.VoltagesMagAng(), 'VoltagesMag': float(dss.CktElement.VoltagesMagAng()[0]), } flag = dss.ActiveClass.Next() > 0 pv_df = pd.DataFrame.from_dict(pv_dict, "index") return pv_df def get_all_transformer_info_instance(upper_limit=None, compute_loading=True): """This collects transformer information Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("transformer") if len(all_df) == 0: return pd.DataFrame() all_df["name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] # extract only enabled lines all_df = all_df.loc[all_df["enabled"] == True] all_df[["wdg", "phases"]] = all_df[["wdg", "phases"]].astype(int) float_fields = ["kV", "kVA", "normhkVA", "emerghkVA", "%loadloss", "%noloadloss", "XHL", "XHT", "XLT", "%R", "Rneut", "Xneut", "X12", "X13", "X23", "RdcOhms"] all_df[float_fields] = all_df[float_fields].astype(float) # define empty new columns all_df['bus_names_only'] = None all_df["amp_limit_per_phase"] = np.nan if compute_loading: all_df["max_amp_loading"] = np.nan all_df["max_per_unit_loading"] = np.nan all_df["status"] = "" for index, row in all_df.iterrows(): # convert type from list to tuple since they are hashable objects (and can be indexed) all_df.at[index, "kVs"] = [float(a) for a in row["kVs"]] all_df.at[index, "kVAs"] = [float(a) for a in row["kVAs"]] all_df.at[index, "Xscarray"] = [float(a) for a in row["Xscarray"]] all_df.at[index, "%Rs"] = [float(a) for a in row["%Rs"]] all_df.at[index, "bus_names_only"] = [a.split(".")[0].lower() for a in row["buses"]] # first winding is considered primary winding primary_kv = float(row["kVs"][0]) primary_kva = float(row["kVAs"][0]) if row["phases"] > 1: amp_limit_per_phase = primary_kva / (primary_kv * math.sqrt(3)) elif row["phases"] == 1: amp_limit_per_phase = primary_kva / primary_kv else: raise InvalidOpenDssElementError(f"Incorrect number of phases for transformer {row['name']}") all_df.at[index, "amp_limit_per_phase"] = amp_limit_per_phase if compute_loading: if upper_limit is None: raise Exception("Transformer upper limit is to be passed to function to compute transformer loading") dss.Circuit.SetActiveElement("Transformer.{}".format(row["name"])) extract_magang = dss.CktElement.CurrentsMagAng()[: 2 * row["phases"]] # extract elements based on num of ph xfmr_current_magnitude = extract_magang[::2] max_amp_loading = max(xfmr_current_magnitude) max_per_unit_loading = round(max_amp_loading / amp_limit_per_phase, 4) all_df.at[index, "max_amp_loading"] = max_amp_loading all_df.at[index, "max_per_unit_loading"] = max_per_unit_loading if max_per_unit_loading > upper_limit: all_df.at[index, "status"] = "overloaded" elif max_per_unit_loading == 0: all_df.at[index, "status"] = "unloaded" else: all_df.at[index, "status"] = "normal" # convert lists to string type (so they can be set as dataframe index later) all_df[['conns', 'kVs']] = all_df[['conns', 'kVs']].astype(str) all_df = all_df.reset_index(drop=True).set_index('name') return all_df.reset_index() def add_info_line_definition_type(all_df): all_df["line_definition_type"] = "line_definition" all_df.loc[all_df["linecode"] != "", "line_definition_type"] = "linecode" all_df.loc[all_df["geometry"] != "", "line_definition_type"] = "geometry" return all_df def determine_line_placement(line_series): """ Distinguish between overhead and underground cables currently there is no way to distinguish directy using opendssdirect/pydss etc. It is done here using property 'height' parameter and if string present in name Parameters ---------- line_series Returns ------- dict """ info_dict = {} info_dict["line_placement"] = None if line_series["line_definition_type"] == "geometry": dss.Circuit.SetActiveClass("linegeometry") dss.ActiveClass.Name(line_series["geometry"]) h = float(dss.Properties.Value("h")) info_dict["h"] = 0 if h >= 0: info_dict["line_placement"] = "overhead" else: info_dict["line_placement"] = "underground" else: if ("oh" in line_series["geometry"].lower()) or ("oh" in line_series["linecode"].lower()): info_dict["line_placement"] = "overhead" elif ("ug" in line_series["geometry"].lower()) or ("ug" in line_series["linecode"].lower()): info_dict["line_placement"] = "underground" else: info_dict["line_placement"] = None return info_dict def get_all_line_info_instance(upper_limit=None, compute_loading=True, ignore_switch=True): """This collects line information Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("line") if len(all_df) == 0: return pd.DataFrame() all_df["name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] # extract only enabled lines all_df = all_df.loc[all_df["enabled"] == True] all_df["phases"] = all_df["phases"].astype(int) all_df[["normamps", "length"]] = all_df[["normamps", "length"]].astype(float) all_df = add_info_line_definition_type(all_df) # define empty new columns all_df["kV"] = np.nan all_df["h"] = np.nan all_df["line_placement"] = "" if compute_loading: all_df["max_amp_loading"] = np.nan all_df["max_per_unit_loading"] = np.nan all_df["status"] = "" for index, row in all_df.iterrows(): dss.Circuit.SetActiveBus(row["bus1"]) kv_b1 = dss.Bus.kVBase() dss.Circuit.SetActiveBus(row["bus2"]) kv_b2 = dss.Bus.kVBase() dss.Circuit.SetActiveElement("Line.{}".format(row["name"])) if round(kv_b1) != round(kv_b2): raise InvalidOpenDssElementError("To and from bus voltages ({} {}) do not match for line {}".format( kv_b2, kv_b1, row['name'])) all_df.at[index, "kV"] = kv_b1 # Distinguish between overhead and underground cables # currently there is no way to distinguish directy using opendssdirect/pydss etc. # It is done here using property 'height' parameter and if string present in name placement_dict = determine_line_placement(row) for key in placement_dict.keys(): all_df.at[index, key] = placement_dict[key] # if line loading is to be computed if compute_loading: if upper_limit is None: raise Exception("Line upper limit is to be passed to function to compute line loading") dss.Circuit.SetActiveElement("Line.{}".format(row["name"])) extract_magang = dss.CktElement.CurrentsMagAng()[: 2 * row["phases"]] line_current = extract_magang[::2] max_amp_loading = max(line_current) max_per_unit_loading = round(max_amp_loading / row["normamps"], 4) all_df.at[index, "max_amp_loading"] = max_amp_loading all_df.at[index, "max_per_unit_loading"] = max_per_unit_loading if max_per_unit_loading > upper_limit: all_df.at[index, "status"] = "overloaded" elif max_per_unit_loading == 0: all_df.at[index, "status"] = "unloaded" else: all_df.at[index, "status"] = "normal" all_df = all_df.reset_index(drop=True).set_index('name') all_df["kV"] = all_df["kV"].round(5) # add units to switch length (needed to plot graph). By default, length of switch is taken as max all_df.loc[(all_df.units == 'none') & (all_df.Switch == True), 'units'] = 'm' # if switch is to be ignored if ignore_switch: all_df = all_df.loc[all_df['Switch'] == False] return all_df.reset_index() def compare_multiple_dataframes(comparison_dict, deciding_column_name, comparison_type="max"): """This function compares all dataframes in a given dictionary based on a deciding column name Returns ------- Dataframe """ summary_df = pd.DataFrame() for df_name in comparison_dict.keys(): summary_df[df_name] = comparison_dict[df_name][deciding_column_name] if comparison_type == "max": label_df = summary_df.idxmax(axis=1) # find dataframe name that has max elif comparison_type == "min": label_df = summary_df.idxmax(axis=1) # find dataframe name that has min else: raise Exception(f"Unknown comparison type {comparison_type} passed.") final_list = [] for index, label in label_df.iteritems(): # index is element name temp_dict = dict(comparison_dict[label].loc[index]) temp_dict.update({"name": index}) final_list.append(temp_dict) final_df = pd.DataFrame(final_list) return final_df @track_timing(timer_stats_collector) def get_thermal_equipment_info(compute_loading, equipment_type, upper_limit=None, ignore_switch=False, **kwargs): """This function determines the thermal equipment loading (line, transformer), based on timepoint multiplier Returns ------- DataFrame """ timepoint_multipliers = kwargs.get("timepoint_multipliers", None) multiplier_type = kwargs.get("multiplier_type", LoadMultiplierType.ORIGINAL) # if there are no multipliers, run on rated load i.e. multiplier=1. 0 # if compute_loading is false, then just run once (no need to check multipliers) if (timepoint_multipliers is None) or (not compute_loading) or (multiplier_type == LoadMultiplierType.ORIGINAL): if compute_loading and multiplier_type != LoadMultiplierType.ORIGINAL: apply_uniform_timepoint_multipliers(multiplier_name=1, field="with_pv", **kwargs) if equipment_type == "line": loading_df = get_all_line_info_instance(compute_loading=compute_loading, upper_limit=upper_limit, ignore_switch=ignore_switch) elif equipment_type == "transformer": loading_df = get_all_transformer_info_instance(compute_loading=compute_loading, upper_limit=upper_limit) return loading_df if multiplier_type == LoadMultiplierType.UNIFORM: comparison_dict = {} for pv_field in timepoint_multipliers["load_multipliers"].keys(): logger.debug(pv_field) for multiplier_name in timepoint_multipliers["load_multipliers"][pv_field]: logger.debug("Multipler name: %s", multiplier_name) # this changes the dss network load and pv apply_uniform_timepoint_multipliers(multiplier_name=multiplier_name, field=pv_field, **kwargs) if equipment_type.lower() == "line": deciding_column_name = "max_per_unit_loading" loading_df = get_all_line_info_instance(compute_loading=compute_loading, upper_limit=upper_limit, ignore_switch=ignore_switch) elif equipment_type.lower() == "transformer": deciding_column_name = "max_per_unit_loading" loading_df = get_all_transformer_info_instance(compute_loading=compute_loading, upper_limit=upper_limit) loading_df.set_index("name", inplace=True) comparison_dict[pv_field+"_"+str(multiplier_name)] = loading_df # compare all dataframe, and create one that contains all worst loading conditions (across all multiplier conditions) loading_df = compare_multiple_dataframes(comparison_dict, deciding_column_name, comparison_type="max") else: raise Exception(f"Undefined multiplier_type {multiplier_type} passed.") return loading_df def get_regcontrol_info(correct_PT_ratio=False, nominal_voltage=None): """This collects enabled regulator control information. If correcting PT ratio, the following information is followed (based on OpenDSS documentation) PT ratio: # If the winding is Wye, the line-to-neutral voltage is used. Else, the line-to-line voltage is used. # Here, bus kV is taken from Bus.kVBase Bus base kV: Returns L-L voltages for 2- and 3-phase. Else for 1-ph, return L-N voltage Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("regcontrol") if len(all_df) == 0: return pd.DataFrame() all_df["name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] float_columns = ['winding', 'vreg', 'band', 'ptratio', 'delay'] all_df[float_columns] = all_df[float_columns].astype(float) all_df['at_substation_xfmr_flag'] = False # by default, reg control is considered to be not at substation xfmr ckt_info_dict = get_circuit_info() sub_xfmr_present = False sub_xfmr_name = None if ckt_info_dict['substation_xfmr'] is not None: sub_xfmr_present = True sub_xfmr_name = ckt_info_dict['substation_xfmr']['name'] if correct_PT_ratio: if nominal_voltage is None: raise Exception("Nominal voltage not provided to correct regcontrol PT ratio.") all_df['old_ptratio'] = all_df['ptratio'] for index, row in all_df.iterrows(): dss.Circuit.SetActiveElement("Regcontrol.{}".format(row["name"])) reg_bus = dss.CktElement.BusNames()[0].split(".")[0] all_df.at[index, "reg_bus"] = reg_bus dss.Circuit.SetActiveBus(reg_bus) all_df.at[index, "bus_num_phases"] = dss.CktElement.NumPhases() all_df.at[index, "bus_kv"] = dss.Bus.kVBase() dss.Circuit.SetActiveElement("Transformer.{}".format(row["transformer"])) all_df.at[index, "transformer_kva"] = float(dss.Properties.Value("kva")) dss.Transformers.Wdg(1) # setting winding to 1, to get kV for winding 1 all_df.at[index, "transformer_kv"] = dss.Transformers.kV() all_df.at[index, "transformer_conn"] = dss.Properties.Value("conn").replace(" ", "") # opendss returns conn with a space all_df.at[index, "transformer_bus1"] = dss.CktElement.BusNames()[0].split(".")[0] all_df.at[index, "transformer_bus2"] = dss.CktElement.BusNames()[1].split(".")[0] if correct_PT_ratio: if (all_df.loc[index]["bus_num_phases"] > 1) and (all_df.loc[index]["transformer_conn"].lower() == "wye"): kV_to_be_used = all_df.loc[index]["transformer_kv"] * 1000 / math.sqrt(3) else: kV_to_be_used = all_df.loc[index]["transformer_kv"] * 1000 # kV_to_be_used = dss.Bus.kVBase() * 1000 all_df.at[index, "ptratio"] = kV_to_be_used / nominal_voltage if sub_xfmr_present and (row["transformer"] == sub_xfmr_name): # if reg control is at substation xfmr all_df.at[index, 'at_substation_xfmr_flag'] = True all_df = all_df.reset_index(drop=True).set_index('name') all_df = all_df.loc[all_df['enabled'] == True] return all_df.reset_index() def get_capacitor_info(nominal_voltage=None, correct_PT_ratio=False): """ This collects capacitor information. For correcting PT ratio, the following information and definitions are followed: # cap banks are 3 phase, 2 phase or 1 phase. 1 phase caps will have LN voltage # PT ratio: Ratio of the PT that converts the monitored voltage to the control voltage. # If the capacitor is Wye, the 1st phase line-to-neutral voltage is monitored. # Else, the line-to-line voltage (1st - 2nd phase) is monitored. # Capacitor kv: Rated kV of the capacitor (not necessarily same as bus rating). # For Phases=2 or Phases=3, it is line-to-line (phase-to-phase) rated voltage. # For all other numbers of phases, it is actual rating. (For Delta connection this is always line-to-line rated voltage). This function doesnt currently check if object is "enabled". Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("capacitor") if len(all_df) == 0: return pd.DataFrame() all_df["capacitor_name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] float_columns = ["phases", "kv"] all_df[float_columns] = all_df[float_columns].astype(float) all_df = all_df.reset_index(drop=True).set_index("capacitor_name") # collect capcontrol information to combine with capcontrols capcontrol_df = get_cap_control_info() capcontrol_df.rename(columns={'name': 'capcontrol_name', 'capacitor': 'capacitor_name', 'type': 'capcontrol_type', 'equipment_type': 'capcontrol_present'}, inplace=True) capcontrol_df = capcontrol_df.set_index("capacitor_name") # with capacitor name as index, concatenate capacitor information with cap controls # TODO are any other checks needed before concatenating dataframes? i.e. if capacitor is not present all_df = pd.concat([all_df, capcontrol_df], axis=1) all_df.index.name = 'capacitor_name' all_df = all_df.reset_index().set_index('capacitor_name') if correct_PT_ratio and (len(capcontrol_df) > 0): if nominal_voltage is None: raise Exception("Nominal voltage not provided to correct capacitor bank PT ratio.") all_df['old_PTratio'] = all_df['PTratio'] # iterate over all capacitors for index, row in all_df.iterrows(): all_df.at[index, "kvar"] = [float(a) for a in row["kvar"]][0] # if capcontrol type is empty, then that capacitor does not have controls # correct PT ratios for existing cap controls if correct_PT_ratio and (len(capcontrol_df) > 0): if row["phases"] > 1 and row["conn"].lower() == "wye": kv_to_be_used = (row['kv'] * 1000) / math.sqrt(3) else: kv_to_be_used = row['kv'] * 1000 all_df.at[index, "PTratio"] = kv_to_be_used / nominal_voltage return all_df.reset_index() def get_cap_control_info(): """This collects capacitor control information Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("capcontrol") if len(all_df) == 0: capcontrol_columns = ['name', 'capacitor', 'type', 'equipment_type'] return pd.DataFrame(columns=capcontrol_columns) all_df["name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] float_columns = ["CTPhase", "CTratio", "DeadTime", "Delay", "DelayOFF", "OFFsetting", "ONsetting", "PTratio", "Vmax", "Vmin"] all_df[float_columns] = all_df[float_columns].astype(float) all_df = all_df.reset_index(drop=True).set_index("name") return all_df.reset_index() def get_line_geometry(): """This collects all line geometry information Returns ------- DataFrame """ active_class_name = 'linegeometry' all_df = dss.utils.class_to_dataframe(active_class_name) if len(all_df) == 0: return pd.DataFrame() all_df['name'] = all_df.index.str.split('.').str[1] all_df['equipment_type'] = all_df.index.str.split('.').str[0] all_df.reset_index(inplace=True, drop=True) return all_df def get_line_code(): """This collects all line codes information Returns ------- DataFrame """ active_class_name = 'linecode' all_df = dss.utils.class_to_dataframe(active_class_name) if len(all_df) == 0: return pd.DataFrame() all_df['name'] = all_df.index.str.split('.').str[1] all_df['equipment_type'] = all_df.index.str.split('.').str[0] all_df.reset_index(inplace=True, drop=True) return all_df def get_wire_data(): """This collects all wire data information Returns ------- DataFrame """ active_class_name = 'wiredata' all_df = dss.utils.class_to_dataframe(active_class_name) if len(all_df) == 0: return pd.DataFrame() all_df['name'] = all_df.index.str.split('.').str[1] all_df['equipment_type'] = all_df.index.str.split('.').str[0] all_df.reset_index(inplace=True, drop=True) return all_df def get_cn_data(): """This collects all cn data information Returns ------- DataFrame """ active_class_name = 'cndata' all_df = dss.utils.class_to_dataframe(active_class_name) if len(all_df) == 0: return pd.DataFrame() all_df['name'] = all_df.index.str.split('.').str[1] all_df['equipment_type'] = all_df.index.str.split('.').str[0] all_df.reset_index(inplace=True, drop=True) return all_df def check_dss_run_command(command_string): """Runs dss command And checks for exception Parameters ---------- command_string : str dss command to be run Raises ------- OpenDssCompileError Raised if the command fails """ logger.debug(f"Running DSS command: {command_string}") result = dss.run_command(f"{command_string}") if result != "": raise OpenDssCompileError(f"OpenDSS run_command failed with message: {result}. \nCommand: {command_string}") @track_timing(timer_stats_collector) def get_bus_voltages(voltage_upper_limit, voltage_lower_limit, raise_exception=True, **kwargs): """This function determines the voltages, based on timepoint multiplier Returns ------- DataFrame """ timepoint_multipliers = kwargs.get("timepoint_multipliers", None) multiplier_type = kwargs.get("multiplier_type", LoadMultiplierType.ORIGINAL) # if there are no multipliers, run on rated load i.e. multiplier=1. 0 # if compute_loading is false, then just run once (no need to check multipliers) if (timepoint_multipliers is None) or (multiplier_type == LoadMultiplierType.ORIGINAL): if multiplier_type != LoadMultiplierType.ORIGINAL: apply_uniform_timepoint_multipliers(multiplier_name=1, field="with_pv", **kwargs) # determine voltage violations after changes bus_voltages_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations = get_bus_voltages_instance( voltage_upper_limit=voltage_upper_limit, voltage_lower_limit=voltage_lower_limit, raise_exception=raise_exception, **kwargs) return bus_voltages_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations if multiplier_type == LoadMultiplierType.UNIFORM: comparison_dict = {} for pv_field in timepoint_multipliers["load_multipliers"].keys(): logger.debug(pv_field) for multiplier_name in timepoint_multipliers["load_multipliers"][pv_field]: logger.debug("Multipler name: %s", multiplier_name) # this changes the dss network load and pv apply_uniform_timepoint_multipliers(multiplier_name=multiplier_name, field=pv_field, **kwargs) bus_voltages_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations = get_bus_voltages_instance( voltage_upper_limit=voltage_upper_limit, voltage_lower_limit=voltage_lower_limit, raise_exception=raise_exception, **kwargs) bus_voltages_df.set_index("name", inplace=True) comparison_dict[pv_field+"_"+str(multiplier_name)] = bus_voltages_df # compare all dataframe, and create one that contains all worst loading conditions (across all multiplier conditions) deciding_column_dict = {"Max per unit voltage": "max", "Min per unit voltage": "min"} bus_voltages_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations = compare_multiple_dataframes_voltage(comparison_dict=comparison_dict, deciding_column_dict=deciding_column_dict, voltage_upper_limit=voltage_upper_limit, voltage_lower_limit=voltage_lower_limit) else: raise Exception(f"Undefined multiplier_type {multiplier_type} passed.") return bus_voltages_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations @track_timing(timer_stats_collector) def get_bus_voltages_instance(voltage_upper_limit, voltage_lower_limit, raise_exception=True, **kwargs): """This computes per unit voltages for all buses in network Returns ------- DataFrame """ circuit_solve_and_check(raise_exception=raise_exception, **kwargs) # this is added as a final check for convergence all_dict = {} all_bus_names = dss.Circuit.AllBusNames() for bus_name in all_bus_names: dss.Circuit.SetActiveBus(bus_name) data_dict = { "name": bus_name, "voltages": dss.Bus.puVmagAngle()[::2], # "kvbase": dss.Bus.kVBase(), } data_dict["Max per unit voltage"] = max(data_dict["voltages"]) data_dict["Min per unit voltage"] = min(data_dict["voltages"]) data_dict['Phase imbalance'] = data_dict["Max per unit voltage"] - data_dict["Min per unit voltage"] # check for overvoltage violation if data_dict["Max per unit voltage"] > voltage_upper_limit: data_dict['Overvoltage violation'] = True data_dict["Max voltage_deviation"] = data_dict["Max per unit voltage"] - voltage_upper_limit else: data_dict['Overvoltage violation'] = False data_dict["Max voltage_deviation"] = 0.0 # check for undervoltage violation if data_dict["Min per unit voltage"] < voltage_lower_limit: data_dict['Undervoltage violation'] = True data_dict["Min voltage_deviation"] = voltage_lower_limit - data_dict["Min per unit voltage"] else: data_dict['Undervoltage violation'] = False data_dict["Min voltage_deviation"] = 0.0 all_dict[data_dict["name"]] = data_dict all_df = pd.DataFrame.from_dict(all_dict, orient='index').reset_index(drop=True) undervoltage_bus_list = list(all_df.loc[all_df['Undervoltage violation'] == True]['name'].unique()) overvoltage_bus_list = list(all_df.loc[all_df['Overvoltage violation'] == True]['name'].unique()) buses_with_violations = list(set(undervoltage_bus_list + overvoltage_bus_list)) return all_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations def compare_multiple_dataframes_voltage(comparison_dict, deciding_column_dict, voltage_upper_limit, voltage_lower_limit): """This function compares all dataframes in a given dictionary based on a deciding column Returns ------- Dataframe """ all_df = pd.DataFrame() for deciding_column_name in deciding_column_dict.keys(): summary_df = pd.DataFrame() comparison_type = deciding_column_dict[deciding_column_name] for df_name in comparison_dict.keys(): label_df = pd.DataFrame() summary_df[df_name] = comparison_dict[df_name][deciding_column_name] if comparison_type == "max": label_df[deciding_column_name] = summary_df.idxmax(axis=1) # find dataframe name that has max elif comparison_type == "min": label_df[deciding_column_name] = summary_df.idxmin(axis=1) # find dataframe name that has min else: raise Exception(f"Unknown comparison type {comparison_type} passed.") final_list = [] for index, row in label_df.iterrows(): # index is element name label = row[deciding_column_name] temp_dict = {deciding_column_name: comparison_dict[label].loc[index][deciding_column_name]} temp_dict.update({"name": index}) final_list.append(temp_dict) temp_df = pd.DataFrame(final_list) temp_df.set_index("name", inplace=True) all_df = pd.concat([all_df, temp_df], axis=1) bus_voltages_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations = get_voltage_violations(voltage_upper_limit=voltage_upper_limit, voltage_lower_limit=voltage_lower_limit, bus_voltages_df=all_df) return bus_voltages_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations def get_voltage_violations(voltage_upper_limit, voltage_lower_limit, bus_voltages_df): """Function to determine voltage violations """ bus_voltages_df['Overvoltage violation'] = False bus_voltages_df['Undervoltage violation'] = False bus_voltages_df['Max voltage_deviation'] = 0.0 bus_voltages_df['Min voltage_deviation'] = 0.0 for index, row in bus_voltages_df.iterrows(): # check for overvoltage violation if row["Max per unit voltage"] > voltage_upper_limit: bus_voltages_df.at[index, 'Overvoltage violation'] = True bus_voltages_df.at[index, "Max voltage_deviation"] = row["Max per unit voltage"] - voltage_upper_limit else: bus_voltages_df.at[index, 'Overvoltage violation'] = False bus_voltages_df.at[index, "Max voltage_deviation"] = 0.0 # check for undervoltage violation if row["Min per unit voltage"] < voltage_lower_limit: bus_voltages_df.at[index, 'Undervoltage violation'] = True bus_voltages_df.at[index, "Min voltage_deviation"] = voltage_lower_limit - row["Min per unit voltage"] else: bus_voltages_df.at[index, 'Undervoltage violation'] = False bus_voltages_df.at[index, "Min voltage_deviation"] = 0.0 bus_voltages_df.reset_index(inplace=True) undervoltage_bus_list = list(bus_voltages_df.loc[bus_voltages_df['Undervoltage violation'] == True]['name'].unique()) overvoltage_bus_list = list(bus_voltages_df.loc[bus_voltages_df['Overvoltage violation'] == True]['name'].unique()) buses_with_violations = list(set(undervoltage_bus_list + overvoltage_bus_list)) return bus_voltages_df, undervoltage_bus_list, overvoltage_bus_list, buses_with_violations def determine_available_line_upgrades(line_loading_df): property_list = ['line_definition_type', 'linecode', 'phases', 'kV', 'Switch', 'normamps', 'r1', 'x1', 'r0', 'x0', 'C1', 'C0', 'rmatrix', 'xmatrix', 'cmatrix', 'Rg', 'Xg', 'rho', 'units', 'spacing', # 'wires', 'EarthModel', 'cncables', 'tscables', 'B1', 'B0', 'emergamps', # 'faultrate', 'pctperm', 'repair', 'basefreq', 'enabled', 'like', 'h', 'line_placement'] if 'line_definition_type' not in line_loading_df.columns: # add line_definition_type if not present line_loading_df = add_info_line_definition_type(line_loading_df) if 'line_placement' not in line_loading_df.columns: for index, row in line_loading_df.iterrows(): # add line_placement and h if not present info_dict = determine_line_placement(row) for key in info_dict.keys(): line_loading_df.at[index, key] = info_dict[key] line_upgrade_options = line_loading_df[property_list + ['geometry']] # remove duplicate line upgrade options (that might have a different name, but same parameters) line_upgrade_options = line_upgrade_options.loc[line_upgrade_options.astype(str).drop_duplicates( subset=property_list).index] line_upgrade_options.reset_index(drop=True, inplace=True) line_upgrade_options = line_upgrade_options.reset_index().rename(columns={'index': 'name'}) line_upgrade_options['name'] = 'line_' + line_upgrade_options['name'].astype(str) line_upgrade_options["kV"] = line_upgrade_options["kV"].round(5) return line_upgrade_options def determine_available_xfmr_upgrades(xfmr_loading_df): """This function creates a dataframe of available transformer upgrades by dropping duplicates from transformer dataframe passed. Input dataframe will need to contain "amp_limit_per_phase" column. So if external catalog is supplied, ensure it contains that column. """ property_list = ['phases', 'windings', 'wdg', 'conn', 'kV', 'kVA', 'tap', '%R', 'Rneut', 'Xneut', 'conns', 'kVs', 'kVAs', 'taps', 'XHL', 'XHT', 'XLT', 'Xscarray', 'thermal', 'n', 'm', 'flrise', 'hsrise', '%loadloss', '%noloadloss', 'normhkVA', 'emerghkVA', 'sub', 'MaxTap', 'MinTap', 'NumTaps', 'subname', '%imag', 'ppm_antifloat', '%Rs', 'bank', 'XfmrCode', 'XRConst', 'X12', 'X13', 'X23', 'LeadLag', 'Core', 'RdcOhms', 'normamps', 'emergamps', 'faultrate', 'pctperm', 'basefreq', 'amp_limit_per_phase'] # TODO: can add capability to add "amp_limit_per_phase" column if not present in input dataframe. # if 'amp_limit_per_phase' not in xfmr_loading_df.columns: xfmr_upgrade_options = xfmr_loading_df[property_list] xfmr_upgrade_options = xfmr_upgrade_options.loc[xfmr_upgrade_options.astype(str).drop_duplicates().index] xfmr_upgrade_options.reset_index(drop=True, inplace=True) xfmr_upgrade_options = xfmr_upgrade_options.reset_index().rename(columns={'index': 'name'}) xfmr_upgrade_options['name'] = 'xfmr_' + xfmr_upgrade_options['name'].astype(str) return xfmr_upgrade_options def get_pv_buses(dss): pv_buses = [] flag = dss.PVsystems.First() while flag > 0: pv_buses.append(dss.Properties.Value('bus1').split('.')[0]) flag = dss.PVsystems.Next() return pv_buses def get_load_buses(dss): load_buses = [] flag = dss.Loads.First() while flag > 0: load_buses.append(dss.Properties.Value('bus1').split('.')[0]) flag = dss.Loads.Next() return load_buses def get_bus_coordinates(): """This function creates a dataframe of all buses in the circuit with their x and y coordinates Returns ------- """ all_bus_names = dss.Circuit.AllBusNames() buses_list = [] for b in all_bus_names: bus_dict = {} dss.Circuit.SetActiveBus(b) bus_dict['bus_name'] = b.lower() bus_dict['x_coordinate'] = dss.Bus.X() bus_dict['y_coordinate'] = dss.Bus.Y() buses_list.append(bus_dict) return pd.DataFrame(buses_list) def convert_summary_dict_to_df(summary_dict): df = pd.DataFrame.from_dict(summary_dict, orient='index') df.index.name = "stage" return df def filter_dictionary(dict_data, wanted_keys): return {k: dict_data.get(k, None) for k in wanted_keys} def compare_dict(old, new): """function to compare two dictionaries with same format. Only compares common elements present in both original and new dictionaries """ field_list = [] change = {} sharedKeys = set(old.keys()).intersection(new.keys()) for key in sharedKeys: change_flag = False for sub_field in old[key]: if old[key][sub_field] != new[key][sub_field]: change_flag = True field_list.append(sub_field) if change_flag: change[key] = field_list return change def create_timepoint_multipliers_dict(timepoint_multipliers): """Creates a dictionary with new load rating, for every property and multiplier. Currently, it only does this for loads. But can be modified to accommodate other elements like PV as well. In raw_dict, value can be accessed as follows: value = raw_dict[property_name][object_name][multiplier_name] In reformatted_dict (which is returned from this function), value can be accessed as follows: value = raw_dict[object_name][property_name][multiplier_name] This value will need to be assigned to the object and run. This hasnt been used yet. Returns ------- dict """ for field in timepoint_multipliers.keys(): if field == "load_multipliers": property_list = ["kW"] object_name = "Load" multiplier_list = [] # get combined list of multipliers for key, value in timepoint_multipliers[field].items(): multiplier_list = multiplier_list + value df = dss.utils.class_to_dataframe(object_name) df.reset_index(inplace=True) df['name'] = df['index'].str.split(".", expand=True)[1] name_list = list(df['name'].values) del df["index"] df.set_index('name', inplace=True) raw_dict = {} for property in property_list: logger.debug(property) df[property] = df[property].astype(float) new_df = pd.DataFrame(index=name_list, columns=multiplier_list) new_df.index.name = 'name' for multiplier in multiplier_list: logger.debug(multiplier) new_df[multiplier] = df[property] * multiplier raw_dict[property] = new_df.T.to_dict() # reformat dictionary to create desired format reformatted_dict = {} for name in name_list: reformatted_dict[name] = {} for property in property_list: reformatted_dict[name][property] = raw_dict[property][name] else: raise Exception(f"Timepoint multiplier has Unsupported key: {field}. Presently, key 'load_multipliers' is supported.") return reformatted_dict @track_timing(timer_stats_collector) def apply_timepoint_multipliers_dict(reformatted_dict, multiplier_name, property_list=None, field="load_multipliers", **kwargs): """This uses a dictionary with the format of output received from create_timepoint_multipliers_dict Currently, it only does works loads. But can be modified to accommodate other elements like PV as well. In input dict: value can be accessed as follows: value = raw_dict[object_name][property_name][multiplier_name] In this function, value will be assigned to corresponding property and run. This hasnt been used yet. Returns ------- dict """ name_list = list(reformatted_dict.keys()) if property_list is None: property_list = list(reformatted_dict[name_list[0]].keys()) if field == "load_multipliers": flag = dss.Loads.First() while flag > 0: flag = dss.Loads.Next() name = dss.Loads.Name() if name not in name_list: # if load name is not present in dictionary keys, continue continue for property in property_list: value = reformatted_dict[name][property][multiplier_name] if property == "kW": dss.Loads.kW(value) else: raise Exception(f"Property {property} not defined in multipliers dict") circuit_solve_and_check(raise_exception=True, **kwargs) else: raise Exception(f"Unsupported key in dictionary. Presently, load_multipliers is supported.") return reformatted_dict def apply_uniform_timepoint_multipliers(multiplier_name, field, **kwargs): """This function applies a uniform mulitplier to all elements. Currently, the multiplier only does works on loads. But can be modified to accommodate other elements like PV as well. It has two options, 1) all pv is enabled. 2) all pv is disabled. Returns ------- bool """ if field == "with_pv": check_dss_run_command("BatchEdit PVSystem..* Enabled=True") elif field == "without_pv": check_dss_run_command("BatchEdit PVSystem..* Enabled=False") else: raise Exception(f"Unknown parameter {field} passed in uniform timepoint multiplier dict." f"Acceptable values are 'with_pv', 'without_pv'") check_dss_run_command(f"set LoadMult = {multiplier_name}") circuit_solve_and_check(raise_exception=True, **kwargs) return True
45.589875
173
0.633531
87370bb6e892a5c77eabbe7a1670d348678913be
2,784
py
Python
modbus_utils.py
davystrong/FlexFact-Tina
6b5b0603834160abb5fcf66b6e3a532a304790c9
[ "MIT" ]
null
null
null
modbus_utils.py
davystrong/FlexFact-Tina
6b5b0603834160abb5fcf66b6e3a532a304790c9
[ "MIT" ]
null
null
null
modbus_utils.py
davystrong/FlexFact-Tina
6b5b0603834160abb5fcf66b6e3a532a304790c9
[ "MIT" ]
null
null
null
from typing import Any, Dict, List, Optional, Tuple, Union from pathlib import Path import xml.etree.cElementTree as ET from pyModbusTCP.client import ModbusClient as mbClient class ModbusClient(mbClient): def __init__(self, host: str, port: int, unit_id: Optional[int] = None, timeout: Optional[float] = None, debug: Optional[bool] = None): try: super().__init__(host=host, port=port, unit_id=unit_id, timeout=timeout, debug=debug, auto_open=True) except ValueError: print("Error with host or port params") def __enter__(self): return self def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any): self.close() class InputEvent: triggers: List[Tuple[int, bool]] def __init__(self): self.triggers = [] class OutputEvent: actions: List[Tuple[int, bool]] def __init__(self): self.actions = [] def parseXMLConfig(filepath: Union[Path, str]): """ Parse config for virtual Modbus. The XML can be exported from (tina/flexfact) Returns (inputs, outputs) """ inputs: Dict[str, InputEvent] = {} outputs: Dict[str, OutputEvent] = {} root = ET.parse(filepath).getroot() for tag in root.findall('EventConfiguration/Event'): event = {} name = tag.get('name') assert name is not None, 'Expected name in XML' if tag.get('iotype') == 'input': event = InputEvent() raw_triggers = tag.find('Triggers') assert raw_triggers is not None, 'Expected Triggers in XML' triggers = [trigger for trigger in raw_triggers.iter( ) if trigger is not tag.find('Triggers')] for element in triggers: raw_address = element.get('address') assert raw_address is not None, 'Expected address in XML' address = int(raw_address) rising = element.tag == 'PositiveEdge' # Rising edge or not event.triggers.append((address, rising)) inputs[name] = event else: event = OutputEvent() raw_actions = tag.find('Actions') assert raw_actions is not None, 'Expected Actions in XML' actions = [action for action in raw_actions.iter( ) if action is not tag.find('Actions')] for element in actions: raw_address = element.get('address') assert raw_address is not None, 'Expected address in XML' address = int(raw_address) value = element.tag == 'Set' # Otherwise it's clr so it should be false event.actions.append((address, value)) outputs[name] = event return inputs, outputs
33.95122
139
0.600934
31766a8fe6d0ebd3b4f604b005bb644463ede400
40
py
Python
script/cgi/perthon/ex/syntax3b.py
ErikNissen/webanwendung
92ea306c1764f74035aa843d98eed186ea2339b4
[ "MIT" ]
null
null
null
script/cgi/perthon/ex/syntax3b.py
ErikNissen/webanwendung
92ea306c1764f74035aa843d98eed186ea2339b4
[ "MIT" ]
null
null
null
script/cgi/perthon/ex/syntax3b.py
ErikNissen/webanwendung
92ea306c1764f74035aa843d98eed186ea2339b4
[ "MIT" ]
null
null
null
def test(): print 1 \ print 2
5.714286
11
0.475
75f668d7f72dbf403894a40fb67931fded96d5a1
7,222
py
Python
scripts/random_swaps.py
sandeepsoni/jca_release
3b9ca41fe5a1ff7074347a6720a4025018c23a88
[ "MIT" ]
7
2021-02-01T18:44:08.000Z
2022-02-10T17:43:31.000Z
scripts/random_swaps.py
sandeepsoni/jca_release
3b9ca41fe5a1ff7074347a6720a4025018c23a88
[ "MIT" ]
null
null
null
scripts/random_swaps.py
sandeepsoni/jca_release
3b9ca41fe5a1ff7074347a6720a4025018c23a88
[ "MIT" ]
1
2021-08-21T19:01:38.000Z
2021-08-21T19:01:38.000Z
import argparse import pandas as pd import os import random from random import choices, sample import numpy as np from collections import defaultdict, Counter from itertools import combinations from helpful_functions import safe_open_w def readArgs (): parser = argparse.ArgumentParser (description="swapping code ") parser.add_argument ("--src-file", type=str, required=True, help="file contains all the observed data") parser.add_argument ("--tgt-file", type=str, required=True, help="file contains all the randomly permuted data") parser.add_argument ("--chunk-size", type=int, required=False, default=1000, help="size of each document") parser.add_argument ("--max-source-size", type=int, required=False, default=None, help="total overall tokens for a source-time combination") parser.add_argument("--keep-all", dest="keep_all", action="store_true") parser.add_argument("--no-keep-all", dest="keep_all", action="store_false") parser.set_defaults(keep_all=True) parser.add_argument ("--epochs", type=str, nargs="+", required=False, default=[], help="the epochs that need to be kept") parser.add_argument("--always-activated", dest="always_activated", action="store_true") parser.add_argument("--not-always-activated", dest="always_activated", action="store_false") parser.set_defaults(always_activated=False) args = parser.parse_args () if not args.keep_all and len(args.epochs) == 0: parser.error('must have non-zero number --epochs when --no-keep-all') return args def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] def make_chunks (text, chunk_size): return [chunk for chunk in chunks (text, chunk_size)] def read_data (filename, chunk_size=1000): # read the data as it is docs = list () with open (filename) as fin: for line in fin: parts = line.strip().split ("\t") epoch = parts[1] source = parts[2].split ("_")[1] text = parts[3] docs.append ([epoch, source, text]) # group all documents from one epoch and # one source grouped = defaultdict (list) for doc in docs: epoch, src, text = doc[0], doc[1], doc[2] grouped[(epoch, src)].append (doc[2]) # coalesce all documents into one grouped = {key: [token for text in grouped[key] for token in text.split()] for key in grouped} # and then make document chunks grouped = {key: make_chunks(grouped[key], chunk_size) for key in grouped} rows = list () for key in grouped: epoch, src = key for chunk in grouped[key]: rows.append ([epoch, src, chunk]) df = pd.DataFrame (rows, columns=["epoch", "orig_source", "text"]) return df def transform_by_permuting (df): # add modified_src column df["mod_source"] = df["orig_source"] # Per epoch, print the initial source distribution epochs = df["epoch"].unique() src_dist = dict () sources = list () for epoch in epochs: epoch_sources = df[df["epoch"] == epoch]["mod_source"].values new_sources = np.random.permutation (epoch_sources) sources.append (new_sources) # assign the new sources df["mod_source"] = pd.Series (np.concatenate (sources, axis=0)) return df def select_docs (df, max_docs=None): if max_docs is None: return df # reorient into a epoch-source dictionary data = dict () for index, row in df.iterrows(): epoch, mod_source = row["epoch"], row["mod_source"] if epoch not in data: data[epoch] = dict () if mod_source not in data[epoch]: data[epoch][mod_source] = list () data[epoch][mod_source].append ((row["orig_source"], row["text"])) # now sweep over every epoch one at a time; then every source one at a time; # and then select a sample for each combination modified_rows = list () for epoch in data: for source in data[epoch]: if len (data[epoch][source]) <= max_docs: # just copy everything for item in data[epoch][source]: modified_rows.append ([epoch, source, item[0], item[1]]) else: items = sample (data[epoch][source], max_docs) for item in items: modified_rows.append ([epoch, source, item[0], item[1]]) mod_df = pd.DataFrame (modified_rows, columns=["epoch", "mod_source", "orig_source", "text"]) return mod_df def select_based_on_time (df, epochs, activated_throughout=False): # reorient into an epoch-source dictionary data = dict () for index, row in df.iterrows(): epoch, mod_source = row["epoch"], row["mod_source"] if epoch not in data: data[epoch] = dict () if mod_source not in data[epoch]: data[epoch][mod_source] = list () data[epoch][mod_source].append ((row["orig_source"], row["text"])) # now select only the relevant source-epoch pairs if len(epochs) > 0 and activated_throughout: # there are a few selected epochs and we want all sources # that are activated throughout them source_map = dict () for epoch in data: if epoch in epochs: for source in data[epoch]: if source not in source_map: source_map[source] = list () source_map[source].append (epoch) relevant_sources = {key for key in source_map if len(source_map[key]) == len (epochs)} elif len (epochs) > 0: # there are few selected epochs and we select all sources within those epochs relevant_sources = set () for epoch in data: if epoch in epochs: for source in data[epoch]: relevant_sources.add (source) elif activated_throughout: # there are not selected epochs but we only want those sources that are activated throughout source_map = dict () for epoch in data: epochs.append (epoch) for source in data[epoch]: if source not in source_map: source_map[source] = list () source_map[source].append (epoch) relevant_sources = {key for key in source_map if len(source_map[key]) == len (epochs)} else: # select everything relevant_sources = set () for epoch in data: epochs.append (epoch) for source in data[epoch]: relevant_sources.add (source) # now create a dataframe out of it modified_rows = list () for epoch in data: for source in data[epoch]: if epoch in epochs and source in relevant_sources: for item in data[epoch][source]: modified_rows.append ([epoch, source, item[0], item[1]]) mod_df = pd.DataFrame (modified_rows, columns=["epoch", "mod_source", "orig_source", "text"]) return mod_df def write_data (df, filename): with safe_open_w (filename) as fout: for index, row in df.iterrows(): tokens = " ".join (row["text"]) epoch = row["epoch"] src = row["mod_source"] orig = row["orig_source"] intersection = f"{epoch}_{src}" fout.write (f"{orig}\t{epoch}\t{intersection}\t{tokens}\n") def main (args): # load data and create per source document chunks df = read_data (args.src_file, chunk_size=args.chunk_size) new_df = transform_by_permuting (df) # restrict to max number of documents per source in every epoch new_df = select_docs (new_df, max_docs = int(args.max_source_size/args.chunk_size)) # restrict further to small number of epochs if necessary # and decide which source time pairs are to be kept if not args.keep_all: new_df = select_based_on_time (new_df, args.epochs, args.always_activated) write_data (new_df, args.tgt_file) if __name__ == "__main__": main (readArgs ())
33.435185
141
0.705345
c7e25259c6ce1ef8a08d27ff5b21772326fbb298
842
py
Python
.circleci/test_examples.py
cloudify-cosmo/cloudify-diamond-plugin
2d5cd1bbb8e5b272d13b26e3ddd45759cde5e8a7
[ "Apache-2.0" ]
4
2016-02-28T17:01:34.000Z
2019-07-15T08:01:19.000Z
.circleci/test_examples.py
cloudify-cosmo/cloudify-diamond-plugin
2d5cd1bbb8e5b272d13b26e3ddd45759cde5e8a7
[ "Apache-2.0" ]
5
2015-10-06T14:46:24.000Z
2020-09-10T05:49:43.000Z
.circleci/test_examples.py
cloudify-cosmo/cloudify-diamond-plugin
2d5cd1bbb8e5b272d13b26e3ddd45759cde5e8a7
[ "Apache-2.0" ]
10
2015-01-21T17:10:36.000Z
2019-07-22T06:30:28.000Z
######## # Copyright (c) 2014-2019 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest blueprint_list = [] @pytest.fixture(scope='function', params=blueprint_list) def blueprint_examples(**_): pass def test_blueprints(blueprint_examples): assert blueprint_examples is None
29.034483
74
0.752969
26504d233ec9c7b4ac597811b834489a07fd4d26
2,936
py
Python
steelscript/netprofiler/appfwk/reports/netprofiler_hostgroup.py
jkraenzle/steelscript-netprofiler
970a8f492203875a35cc13e94237740b31eb01b4
[ "MIT" ]
5
2016-02-29T01:16:36.000Z
2019-12-08T19:04:54.000Z
steelscript/netprofiler/appfwk/reports/netprofiler_hostgroup.py
jkraenzle/steelscript-netprofiler
970a8f492203875a35cc13e94237740b31eb01b4
[ "MIT" ]
5
2015-08-18T19:07:44.000Z
2020-06-04T15:56:38.000Z
steelscript/netprofiler/appfwk/reports/netprofiler_hostgroup.py
jkraenzle/steelscript-netprofiler
970a8f492203875a35cc13e94237740b31eb01b4
[ "MIT" ]
3
2016-02-29T01:16:37.000Z
2020-06-04T00:43:38.000Z
# Copyright (c) 2019 Riverbed Technology, Inc. # # This software is licensed under the terms and conditions of the MIT License # accompanying the software ("License"). This software is distributed "AS IS" # as set forth in the License. import steelscript.appfwk.apps.report.modules.c3 as c3 from steelscript.appfwk.apps.report.models import Report from steelscript.netprofiler.appfwk.datasources.netprofiler import \ NetProfilerTimeSeriesTable, NetProfilerGroupbyTable, \ add_netprofiler_hostgroup_field # # NetProfiler report # report = Report.create("NetProfiler HostGroup Report - ByLocation", position=10, field_order=['netprofiler_device', 'endtime', 'duration', 'resolution', 'hostgroup', 'netprofiler_filterexpr']) section = report.add_section() add_netprofiler_hostgroup_field(report, section, 'ByLocation') # Define a Overall TimeSeries showing Avg Bytes/s p = NetProfilerTimeSeriesTable.create('ts-overall', duration=60, resolution="1min") p.add_column('time', 'Time', datatype='time', iskey=True) p.add_column('avg_bytes', 'Avg Bytes/s', units='B/s') report.add_widget(c3.TimeSeriesWidget, p, "Overall Traffic", width=12) # Define a Pie Chart for top ports p = NetProfilerGroupbyTable.create('ports-bytes', groupby='port_group', duration=60) p.add_column('portgroup', 'Port Group', iskey=True) p.add_column('avg_bytes', 'Avg Bytes/s', units='B/s', sortdesc=True) report.add_widget(c3.PieWidget, p, "Port Groups by Avg Bytes") # Define a Bar Chart for application ports p = NetProfilerGroupbyTable.create('application-bytes', groupby='application_port', duration=60) p.add_column('protoport_name', 'Application Port', iskey=True) p.add_column('avg_bytes', 'Avg Bytes/s', units='B/s', sortdesc=True) report.add_widget(c3.BarWidget, p, "Application Ports by Avg Bytes") # Define a TimeSeries showing Avg Bytes/s for tcp/80 p = NetProfilerTimeSeriesTable.create('ts-tcp80', duration=60, filterexpr='tcp/80', cacheable=False) p.add_column('time', 'Time', datatype='time', iskey=True) p.add_column('avg_bytes', 'Avg Bytes/s', units='B/s') p.add_column('avg_bytes_rtx', 'Avg Retrans Bytes/s', units='B/s') report.add_widget(c3.TimeSeriesWidget, p, "Bandwidth for tcp/80", altaxis=['avg_bytes_rtx']) # Define a TimeSeries showing Avg Bytes/s for tcp/443 p = NetProfilerTimeSeriesTable.create('ts-tcp443', duration=60, filterexpr='tcp/443') p.add_column('time', 'Time', datatype='time', iskey=True) p.add_column('avg_bytes', 'Avg Bytes/s', units='B/s') p.add_column('avg_bytes_rtx', 'Avg Retrans Bytes/s', units='B/s') report.add_widget(c3.TimeSeriesWidget, p, "Bandwidth for tcp/443")
40.219178
78
0.676771
8b20d446a6b0a5a69a61c5e5f0256a7502057207
3,368
py
Python
firebase/firestore-py/lib/students/reader.py
BraydenKO/RamLife
10c9bbb7338fbaf6c3d1c98bb2f559e6cc089ee6
[ "MIT" ]
3
2021-10-03T11:37:11.000Z
2022-01-20T15:39:58.000Z
firebase/firestore-py/lib/students/reader.py
BraydenKO/RamLife
10c9bbb7338fbaf6c3d1c98bb2f559e6cc089ee6
[ "MIT" ]
58
2020-03-10T18:48:52.000Z
2021-08-31T23:19:09.000Z
firebase/firestore-py/lib/students/reader.py
Ramaz-Upper-School/RamLife
5015c72f6e6dc53cd5dd37bd3f0f87caf40ec0c4
[ "MIT" ]
8
2020-09-08T18:29:54.000Z
2021-04-20T23:11:50.000Z
import csv from collections import defaultdict import lib.data as data import lib.utils as utils def read_students(): with open(utils.dir.students) as file: return { row ["ID"]: data.User( first = row ["First Name"], last = row ["Last Name"], email = row ["Email"].lower(), id = row ["ID"], ) for row in csv.DictReader(file) if row ["ID"] not in utils.constants.corrupted_students } def read_periods(): homeroom_locations = {} periods = defaultdict(list) with open(utils.dir.section_schedule) as file: for row in csv.DictReader(file): if row ["SCHOOL_ID"] != "Upper": continue section_id = row ["SECTION_ID"] day = row ["WEEKDAY_NAME"] period_str = row ["BLOCK_NAME"] room = row ["ROOM"] # Handle homerooms try: period_num = int(period_str) except ValueError: if period_str == "HOMEROOM": homeroom_locations [section_id] = room continue periods [section_id].append(data.Period( day = day, room = room, id = section_id, period = period_num )) return periods def read_student_courses(): courses = defaultdict(list) with open(utils.dir.schedule) as file: for row in csv.DictReader(file): if row ["SCHOOL_ID"] != "Upper": continue student = row ["STUDENT_ID"] if student in utils.constants.corrupted_students: continue courses [student].append(row ["SECTION_ID"]) return courses def read_semesters(): with open(utils.dir.section) as file: return { row ["SECTION_ID"]: data.Semesters( semester1 = row ["TERM1"] == "Y", semester2 = row ["TERM2"] == "Y", section_id = row ["SECTION_ID"], ) for row in csv.DictReader(file) if row ["SCHOOL_ID"] == "Upper" } def get_schedules(students, periods, student_courses, semesters): homerooms = {} seniors = set() result = defaultdict(data.DayDefaultDict) ignored = set() for student, courses in student_courses.items(): student = students [student] for section_id in courses: if "UADV" in section_id: homerooms [student] = section_id continue # if section_id in utils.constants.ignored_sections: continue try: semester = semesters [section_id] except KeyError as error: utils.logger.error(f"Section {section_id} was in schedule.csv but not in sections.csv") raise error from None if (semester is not None and not (semester.semester1 if utils.constants.is_semester1 else semester.semester2)): continue elif section_id.startswith("12"): seniors.add(student) if section_id not in periods: # in schedule.csv but not section_schedule.csv ignored.add(section_id) continue for period in periods [section_id]: result [student] [period.day] [period.period - 1] = period for schedule in result.values(): schedule.populate(utils.constants.day_names) if ignored: utils.logger.warning(f"Ignored {len(ignored)} classes") utils.logger.debug("Ignored classes", ignored) return result, homerooms, seniors def set_students_schedules(schedules, homerooms, homeroom_locations): for student, schedule in schedules.items(): if student.id in utils.constants.ignored_students: continue student.homeroom = "SENIOR_HOMEROOM" if student not in homerooms else homerooms [student] student.homeroom_location = "Unavailable" if student not in homerooms else homeroom_locations [homerooms [student]] student.schedule = schedule
31.185185
117
0.708432
394c3f4f6f79572558cb7575e8b65dc97e99fb00
3,548
py
Python
devices/sensors/sht21.py
boretskij/SensorsPy
98ebdf0ec88ff4532918ad16c925a8563780a6bf
[ "MIT" ]
null
null
null
devices/sensors/sht21.py
boretskij/SensorsPy
98ebdf0ec88ff4532918ad16c925a8563780a6bf
[ "MIT" ]
null
null
null
devices/sensors/sht21.py
boretskij/SensorsPy
98ebdf0ec88ff4532918ad16c925a8563780a6bf
[ "MIT" ]
1
2019-10-27T11:38:55.000Z
2019-10-27T11:38:55.000Z
import smbus2 as smbus import time class SHT21: """Class to read temperature and humidity from SHT21. Resources: http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT21_Datasheet_V3.pdf https://github.com/jaques/sht21_python/blob/master/sht21.py Martin Steppuhn's code from http://www.emsystech.de/raspi-sht21 https://github.com/jsilence/python-i2c-sensors/blob/master/sht21.py""" #control constants _SOFTRESET = 0xFE _I2C_ADDRESS = 0x40 _TRIGGER_TEMPERATURE_NO_HOLD = 0xF3 _TRIGGER_HUMIDITY_NO_HOLD = 0xF5 def __init__(self, bus=1, address=0x40): """According to the datasheet the soft reset takes less than 15 ms.""" self.bus = smbus.SMBus(bus) self.bus.write_byte(self._I2C_ADDRESS, self._SOFTRESET) time.sleep(0.015) def get_data(self): temperature = self.read_temperature() humidity = self.read_humidity() return {'temperature':temperature,'humidity':humidity} def read_temperature(self): """Reads the temperature from the sensor. Not that this call blocks for 250ms to allow the sensor to return the data""" data = [] self.bus.write_byte(self._I2C_ADDRESS, self._TRIGGER_TEMPERATURE_NO_HOLD) time.sleep(0.250) data.append(self.bus.read_byte(self._I2C_ADDRESS)) data.append(self.bus.read_byte(self._I2C_ADDRESS)) return self._get_temperature_from_buffer(data) def read_humidity(self): """Reads the humidity from the sensor. Not that this call blocks for 250ms to allow the sensor to return the data""" data = [] self.bus.write_byte(self._I2C_ADDRESS, self._TRIGGER_HUMIDITY_NO_HOLD) time.sleep(0.250) data.append(self.bus.read_byte(self._I2C_ADDRESS)) data.append(self.bus.read_byte(self._I2C_ADDRESS)) return self._get_humidity_from_buffer(data) def _get_temperature_from_buffer(self, data): """This function reads the first two bytes of data and returns the temperature in C by using the following function: T = =46.82 + (172.72 * (ST/2^16)) where ST is the value from the sensor """ unadjusted = (data[0] << 8) + data[1] unadjusted *= 175.72 unadjusted /= 1 << 16 # divide by 2^16 unadjusted -= 46.85 return unadjusted def _get_humidity_from_buffer(self, data): """This function reads the first two bytes of data and returns the relative humidity in percent by using the following function: RH = -6 + (125 * (SRH / 2 ^16)) where SRH is the value read from the sensor """ unadjusted = (data[0] << 8) + data[1] unadjusted *= 125 unadjusted /= 1 << 16 # divide by 2^16 unadjusted -= 6 return unadjusted def close(self): """Closes the i2c connection""" self.bus.close() def __enter__(self): """used to enable python's with statement support""" return self def __exit__(self, type, value, traceback): """with support""" self.close() if __name__ == "__main__": try: bus = smbus.SMBus(0) with SHT21(bus) as sht21: print ("Temperature: %s"%sht21.read_temperature()) print ("Humidity: %s"%sht21.read_humidity()) except: ##print (e) print ('Error creating connection to i2c.')
35.48
133
0.633878
f8dfac8a823f8fb5d407e942861cc1f11e650b09
2,360
py
Python
venv/Lib/site-packages/pyrogram/raw/types/message_entity_bank_card.py
D1ne2021/jjhhhjj
a090da30983b3ef276dfe4cef2ded4526f36002a
[ "MIT" ]
2
2021-12-13T07:09:55.000Z
2022-01-12T12:15:20.000Z
venv/Lib/site-packages/pyrogram/raw/types/message_entity_bank_card.py
hoangkiet1906/Botcie_ver1
c133b915edde06dac690a7dc6ca160f6792fc4c8
[ "MIT" ]
null
null
null
venv/Lib/site-packages/pyrogram/raw/types/message_entity_bank_card.py
hoangkiet1906/Botcie_ver1
c133b915edde06dac690a7dc6ca160f6792fc4c8
[ "MIT" ]
null
null
null
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2021 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.raw.core.primitives import Int, Long, Int128, Int256, Bool, Bytes, String, Double, Vector from pyrogram.raw.core import TLObject from pyrogram import raw from typing import List, Union, Any # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # class MessageEntityBankCard(TLObject): # type: ignore """This object is a constructor of the base type :obj:`~pyrogram.raw.base.MessageEntity`. Details: - Layer: ``126`` - ID: ``0x761e6af4`` Parameters: offset: ``int`` ``32-bit`` length: ``int`` ``32-bit`` """ __slots__: List[str] = ["offset", "length"] ID = 0x761e6af4 QUALNAME = "types.MessageEntityBankCard" def __init__(self, *, offset: int, length: int) -> None: self.offset = offset # int self.length = length # int @staticmethod def read(data: BytesIO, *args: Any) -> "MessageEntityBankCard": # No flags offset = Int.read(data) length = Int.read(data) return MessageEntityBankCard(offset=offset, length=length) def write(self) -> bytes: data = BytesIO() data.write(Int(self.ID, False)) # No flags data.write(Int(self.offset)) data.write(Int(self.length)) return data.getvalue()
31.466667
103
0.614831
3b1ac44f78eddcd8fa9f36aca04dc7a7d2c36893
143
py
Python
ast-transformations-core/src/test/resources/org/jetbrains/research/ml/ast/transformations/ifRedundantLinesRemoval/data/pure/in_10_middle_common_part.py
JetBrains-Research/ast-transformations
0ab408af3275b520cc87a473f418c4b4dfcb0284
[ "MIT" ]
8
2021-01-19T21:15:54.000Z
2022-02-23T19:16:25.000Z
ast-transformations-core/src/test/resources/org/jetbrains/research/ml/ast/transformations/ifRedundantLinesRemoval/data/pure/out_10.py
JetBrains-Research/ast-transformations
0ab408af3275b520cc87a473f418c4b4dfcb0284
[ "MIT" ]
4
2020-11-17T14:28:25.000Z
2022-02-24T07:54:28.000Z
ast-transformations-core/src/test/resources/org/jetbrains/research/ml/ast/transformations/ifRedundantLinesRemoval/data/pure/out_10.py
nbirillo/ast-transformations
717706765a2da29087a0de768fc851698886dd65
[ "MIT" ]
1
2022-02-23T19:16:30.000Z
2022-02-23T19:16:30.000Z
s = input() if s: print('foo') a = 2 b = a + a print('bar') else: print('foo1') a = 2 b = a + a print('bar1')
11
17
0.398601
0509437e275d99661515288fbb3ba85ec8684e52
883
py
Python
test.py
kmapgar01/LDHelloWorld
671246ae5425b4e96ecf925e37b8f68a6c08bbeb
[ "Apache-2.0" ]
null
null
null
test.py
kmapgar01/LDHelloWorld
671246ae5425b4e96ecf925e37b8f68a6c08bbeb
[ "Apache-2.0" ]
null
null
null
test.py
kmapgar01/LDHelloWorld
671246ae5425b4e96ecf925e37b8f68a6c08bbeb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import logging import sys import ldclient from ldclient.config import Config root = logging.getLogger() root.setLevel(logging.INFO) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) root.addHandler(ch) if __name__ == "__main__": sdk_key = "YOUR_SDK_KEY" ldclient.set_config(Config(sdk_key)) user = { "key": "bob@example.com", "firstName": "Bob", "lastName": "Loblaw", "custom": { "groups": "beta_testers" } } show_feature = ldclient.get().variation("YOUR_FLAG_KEY", user, False) if show_feature: print("Showing your feature") else: print("Not showing your feature") ldclient.get().close() # close the client before exiting the program - ensures that all events are delivered
23.236842
110
0.696489
5270a52c40b8e4d133cec4fe91caebc80d02a22a
704
py
Python
main/at-spi2-atk/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
46
2021-06-10T02:27:32.000Z
2022-03-27T11:33:24.000Z
main/at-spi2-atk/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
58
2021-07-03T13:58:20.000Z
2022-03-13T16:45:35.000Z
main/at-spi2-atk/template.py
RoastVeg/cports
803c7f07af341eb32f791b6ec1f237edb2764bd5
[ "BSD-2-Clause" ]
6
2021-07-04T10:46:40.000Z
2022-01-09T00:03:59.000Z
pkgname = "at-spi2-atk" pkgver = "2.38.0" pkgrel = 0 build_style = "meson" hostmakedepends = [ "meson", "pkgconf", "glib-devel", "gettext-tiny", ] makedepends = [ "libglib-devel", "atk-devel", "at-spi2-core-devel", "libxml2-devel" ] pkgdesc = "GTK+ module that bridges ATK to D-Bus AT-SPI" maintainer = "q66 <q66@chimera-linux.org>" license = "LGPL-2.0-or-later" url = "https://gitlab.gnome.org/GNOME/at-spi2-atk" source = f"$(GNOME_SITE)/{pkgname}/{pkgver[:-2]}/{pkgname}-{pkgver}.tar.xz" sha256 = "cfa008a5af822b36ae6287f18182c40c91dd699c55faa38605881ed175ca464f" # non-trivial dbus setup options = ["!check"] @subpackage("at-spi2-atk-devel") def _devel(self): return self.default_devel()
30.608696
75
0.698864
692525e518fa390e8afd65f366b1fd717e37be63
2,736
py
Python
tests/test_mongodb.py
crim-ca/weaver
107fec5e19f20b77061b9405a764da911d2db8a2
[ "Apache-2.0" ]
16
2019-03-18T12:23:05.000Z
2022-02-25T00:39:11.000Z
tests/test_mongodb.py
crim-ca/weaver
107fec5e19f20b77061b9405a764da911d2db8a2
[ "Apache-2.0" ]
346
2019-03-06T21:05:04.000Z
2022-03-31T13:38:37.000Z
tests/test_mongodb.py
crim-ca/weaver
107fec5e19f20b77061b9405a764da911d2db8a2
[ "Apache-2.0" ]
5
2019-03-15T01:38:28.000Z
2021-11-11T15:38:43.000Z
""" Based on unittests in https://github.com/wndhydrnt/python-oauth2/tree/master/oauth2/test. """ import unittest import mock from pymongo.collection import Collection from weaver.datatype import Service from weaver.store.mongodb import MongodbServiceStore class MongodbServiceStoreTestCase(unittest.TestCase): def setUp(self): self.service = dict(name="loving_flamingo", url="http://somewhere.over.the/ocean", type="wps", public=False, auth="token") self.service_public = dict(name="open_pingu", url="http://somewhere.in.the/deep_ocean", type="wps", public=True, auth="token") self.service_special = dict(url="http://wonderload", name="A special Name", type="wps", auth="token") self.sane_name_config = {"assert_invalid": False} def test_fetch_by_name(self): collection_mock = mock.Mock(spec=Collection) collection_mock.find_one.return_value = self.service store = MongodbServiceStore(collection=collection_mock, sane_name_config=self.sane_name_config) service = store.fetch_by_name(name=self.service["name"]) collection_mock.find_one.assert_called_with({"name": self.service["name"]}) assert isinstance(service, dict) def test_save_service_default(self): collection_mock = mock.Mock(spec=Collection) collection_mock.count_documents.return_value = 0 collection_mock.find_one.return_value = self.service store = MongodbServiceStore(collection=collection_mock, sane_name_config=self.sane_name_config) store.save_service(Service(self.service)) collection_mock.insert_one.assert_called_with(self.service) def test_save_service_with_special_name(self): collection_mock = mock.Mock(spec=Collection) collection_mock.count_documents.return_value = 0 collection_mock.find_one.return_value = self.service_special store = MongodbServiceStore(collection=collection_mock, sane_name_config=self.sane_name_config) store.save_service(Service(self.service_special)) collection_mock.insert_one.assert_called_with({ "url": "http://wonderload", "type": "wps", "name": "A_special_Name", "public": False, "auth": "token"}) def test_save_service_public(self): collection_mock = mock.Mock(spec=Collection) collection_mock.count_documents.return_value = 0 collection_mock.find_one.return_value = self.service_public store = MongodbServiceStore(collection=collection_mock, sane_name_config=self.sane_name_config) store.save_service(Service(self.service_public)) collection_mock.insert_one.assert_called_with(self.service_public)
46.372881
115
0.724415
546993aaf88392a64cf10aa5bbbc25d528ecbd35
1,359
py
Python
pyACA/FeatureTimeAcfCoeff.py
ruohoruotsi/pyACA
339e9395b65a217aa5965638af941b32d5c95454
[ "MIT" ]
81
2019-07-08T15:48:03.000Z
2022-03-21T22:52:25.000Z
pyACA/FeatureTimeAcfCoeff.py
ruohoruotsi/pyACA
339e9395b65a217aa5965638af941b32d5c95454
[ "MIT" ]
24
2019-10-03T19:20:18.000Z
2022-02-28T17:20:40.000Z
pyACA/FeatureTimeAcfCoeff.py
ruohoruotsi/pyACA
339e9395b65a217aa5965638af941b32d5c95454
[ "MIT" ]
26
2019-07-18T23:50:52.000Z
2022-03-10T14:59:35.000Z
# -*- coding: utf-8 -*- """ computes the ACF coefficients of a time domain signal Args: x: audio signal iBlockLength: block length in samples iHopLength: hop length in samples f_s: sample rate of audio data (unused) eta: index (or vector of indices) of coeff result Returns: vacf autocorrelation coefficient t time stamp """ import numpy as np import pyACA def FeatureTimeAcfCoeff(x, iBlockLength, iHopLength, f_s, eta=19): # create blocks xBlocks = pyACA.ToolBlockAudio(x, iBlockLength, iHopLength) # number of results iNumOfBlocks = xBlocks.shape[0] if (np.isscalar(eta)): iNumOfResultsPerBlock = 1 else: iNumOfResultsPerBlock = eta.size # compute time stamps t = (np.arange(0, iNumOfBlocks) * iHopLength + (iBlockLength / 2)) / f_s # allocate memory vacf = np.zeros([iNumOfResultsPerBlock, iNumOfBlocks]) for n, block in enumerate(xBlocks): # calculate the acf if not block.sum(): vacf[np.arange(0, iNumOfResultsPerBlock), n] = np.zeros(iNumOfResultsPerBlock) continue else: afCorr = np.correlate(block, block, "full") / np.dot(block, block) # find the coefficients specified in eta vacf[np.arange(0, iNumOfResultsPerBlock), n] = afCorr[iBlockLength + eta] return vacf, t
26.647059
90
0.657837
b3f7974a3a66d3e3830a9c8ed6175bee4f4ced1f
257
py
Python
plans/serializers.py
thestackcoder/notifao_app
e21ab3c0eed72a64ee24508b92045de13c8385bb
[ "MIT" ]
null
null
null
plans/serializers.py
thestackcoder/notifao_app
e21ab3c0eed72a64ee24508b92045de13c8385bb
[ "MIT" ]
null
null
null
plans/serializers.py
thestackcoder/notifao_app
e21ab3c0eed72a64ee24508b92045de13c8385bb
[ "MIT" ]
null
null
null
from rest_framework import serializers from .models import Plan class PlanSerializer(serializers.ModelSerializer): class Meta: model = Plan fields = ['id', 'name', 'price', 'duration', 'notifications', 'emails', 'apps', 'description']
28.555556
102
0.688716
3e3a34d85236a590ad1d9419836ee765d187efe4
905
py
Python
osr2mp4/ImageProcess/Objects/Components/ScorebarBG.py
ADoesGit/osr2mp4-core
b702295998439dce39a421dbefde71c37f5ddb63
[ "MIT" ]
null
null
null
osr2mp4/ImageProcess/Objects/Components/ScorebarBG.py
ADoesGit/osr2mp4-core
b702295998439dce39a421dbefde71c37f5ddb63
[ "MIT" ]
null
null
null
osr2mp4/ImageProcess/Objects/Components/ScorebarBG.py
ADoesGit/osr2mp4-core
b702295998439dce39a421dbefde71c37f5ddb63
[ "MIT" ]
null
null
null
from .AScorebar import AScorebar class ScorebarBG(AScorebar): def __init__(self, frames, start_time, settings, hasfl): AScorebar.__init__(self, frames, settings=settings) self.map_start = start_time self.hasfl = hasfl def add_to_frame(self, background, cur_time, inbreak): AScorebar.animate(self) if self.settings.settings["In-game interface"] or inbreak: # use a more optimised algorithm to draw background and scorebarbg if not self.hasfl: # if in break then reset frame will be background's job. Otherwise it's ScorebarBG's job animating = self.h != 0 if animating or cur_time < self.map_start: self.frame_index = 0 super().add_to_frame(background, 0, -self.h, alpha=self.alpha, topleft=True) elif not inbreak: background.paste(self.frames[1], (0, -self.h)) else: super().add_to_frame(background, 0, -self.h, alpha=self.alpha, topleft=True)
34.807692
92
0.723757
d13c31d0ed4c514c393fa3b27610947346d00789
12,421
py
Python
qa/rpc-tests/util.py
ToranTeam/NewToran
ba40d8884f6f3e0d3aa7a0eb54ada7c6a21e2642
[ "MIT" ]
null
null
null
qa/rpc-tests/util.py
ToranTeam/NewToran
ba40d8884f6f3e0d3aa7a0eb54ada7c6a21e2642
[ "MIT" ]
null
null
null
qa/rpc-tests/util.py
ToranTeam/NewToran
ba40d8884f6f3e0d3aa7a0eb54ada7c6a21e2642
[ "MIT" ]
null
null
null
# Copyright (c) 2014 The Bitcoin Core developers # Copyright (c) 2014-2015 The Dash developers # Copyright (c) 2015-2017 The PIVX developers # Copyright (c) 2017 The TNX developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # # Add python-bitcoinrpc to module search path: import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-bitcoinrpc")) from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def sync_blocks(rpc_connections): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(1) def sync_mempools(rpc_connections): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(1) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "TNX.conf"), 'w') as f: f.write("regtest=1\n"); f.write("rpcuser=rt\n"); f.write("rpcpassword=rt\n"); f.write("port="+str(p2p_port(n))+"\n"); f.write("rpcport="+str(rpc_port(n))+"\n"); return datadir def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. TNXd and TNX-cli must be in search path. """ if not os.path.isdir(os.path.join("cache", "node0")): devnull = open("/dev/null", "w+") # Create cache directories, run TNXd: for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "TNXd"), "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) subprocess.check_call([ os.getenv("BITCOINCLI", "TNX-cli"), "-datadir="+datadir, "-rpcwait", "getblockcount"], stdout=devnull) devnull.close() rpcs = [] for i in range(4): try: url = "http://rt:rt@127.0.0.1:%d"%(rpc_port(i),) rpcs.append(AuthServiceProxy(url)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. # blocks are created with timestamps 10 minutes apart, starting # at 1 Jan 2014 block_time = 1388534400 for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].setgenerate(True, 1) block_time += 10*60 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in TNX.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None): """ Start a TNXd and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) args = [ os.getenv("BITCOIND", "TNXd"), "-datadir="+datadir, "-keypool=1", "-discover=0", "-rest" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) devnull = open("/dev/null", "w+") subprocess.check_call([ os.getenv("BITCOINCLI", "TNX-cli"), "-datadir="+datadir] + _rpchost_to_args(rpchost) + ["-rpcwait", "getblockcount"], stdout=devnull) devnull.close() url = "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) proxy = AuthServiceProxy(url) proxy.url = url # store URL on proxy for info return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None): """ Start multiple TNXds, return RPC connections to them """ if extra_args is None: extra_args = [ None for i in range(num_nodes) ] return [ start_node(i, dirname, extra_args[i], rpchost) for i in range(num_nodes) ] def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: node.stop() del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using it's output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised")
35.795389
104
0.64713
7dd9e2c8e1381ee5428448c4416f56c4296f9c95
1,564
py
Python
tests/test_reader_springer.py
OBrink/chemdataextractor2
152a45f6abbf069d2070232fa5c4038569ac7717
[ "MIT" ]
null
null
null
tests/test_reader_springer.py
OBrink/chemdataextractor2
152a45f6abbf069d2070232fa5c4038569ac7717
[ "MIT" ]
null
null
null
tests/test_reader_springer.py
OBrink/chemdataextractor2
152a45f6abbf069d2070232fa5c4038569ac7717
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ test_reader_springer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Test reader for Springer. .. codeauthor:: Shu Huang <sh2009@cam.ac.uk> """ import unittest import logging import io import os from chemdataextractor.doc.document import Document from chemdataextractor.reader.springer_jats import SpringerJatsReader log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) class TestSpringerJatsReader(unittest.TestCase): def test_detect(self): """Test RscXMLReader can detect an RSC document.""" r = SpringerJatsReader() fname = 'spr_test1.xml' f = io.open(os.path.join(os.path.dirname(__file__), 'data', 'springer', fname), 'rb') content = f.read() f.close() self.assertEqual(r.detect(content, fname=fname), True) def test_direct_usage(self): """Test RscXMLReader used directly to parse file.""" r = SpringerJatsReader() fname = 'spr_test1.xml' f = io.open(os.path.join(os.path.dirname(__file__), 'data', 'springer', fname), 'rb') content = f.read() d = r.readstring(content) f.close() self.assertEqual(len(d.elements), 307) def test_document_usage(self): """Test RscXMLReader used via Document.from_file.""" fname = 'spr_test1.xml' f = io.open(os.path.join(os.path.dirname(__file__), 'data', 'springer', fname), 'rb') d = Document.from_file(f, readers=[SpringerJatsReader()]) self.assertEqual(len(d.elements), 307) if __name__ == '__main__': unittest.main()
30.076923
93
0.642583
1c128f172caf9c4955301a54a9c08032953c1b72
1,551
py
Python
shops/views_autocomplete.py
EDario333/minegocito
5dd0869fa2510bb8152f4a117f33b2a30bb6d69c
[ "MIT" ]
null
null
null
shops/views_autocomplete.py
EDario333/minegocito
5dd0869fa2510bb8152f4a117f33b2a30bb6d69c
[ "MIT" ]
null
null
null
shops/views_autocomplete.py
EDario333/minegocito
5dd0869fa2510bb8152f4a117f33b2a30bb6d69c
[ "MIT" ]
null
null
null
from django.contrib.auth.models import User from django.core.exceptions import ObjectDoesNotExist from django.db.models import Q from django.http import HttpResponse, JsonResponse from django.utils.translation import gettext as _ from users.models import Users import json def my_shops_autocomplete(request): if not request.user.is_authenticated: return User.objects.none() results = [] if request.is_ajax(): term = request.GET.get('term', '') from shops.models import Shops try: user = Users.objects.get(pk=request.user) users=Users.objects.filter(created_by_user=user) my_users=[] my_users.extend(users) my_users.append(user) shops = Shops.objects.filter(created_by_user__in=my_users, name__icontains=term, dropped=False) # This will add also the objects created by users # that I've created for shop in shops: label = shop.name + ' [' + _('City') + '=' label += shop.city.display_name + '; ' label += _('Address line 1') + '=' label += shop.address_line1 + '; ' label += _('Admin') + '=' label += shop.admin.first_name + ' ' label += shop.admin.last_name + ' (' label += shop.admin.email + ')]' if label not in results: results.append(label) except ObjectDoesNotExist: return JsonResponse({'status': 'error', 'msg': _('There are not records matching your query')}) #return JsonResponse(results) data = json.dumps(results) mimetype = "application/json" return HttpResponse(data, mimetype)
27.210526
99
0.672469
7a7bed78c97a031332d9243385018fd4481bc209
949
py
Python
enubeuta/apps/articles/views.py
Enubeuta6/nuwm-forum
8711619b2e37ed5ac0f4876ec18b06d0153e4571
[ "MIT" ]
null
null
null
enubeuta/apps/articles/views.py
Enubeuta6/nuwm-forum
8711619b2e37ed5ac0f4876ec18b06d0153e4571
[ "MIT" ]
null
null
null
enubeuta/apps/articles/views.py
Enubeuta6/nuwm-forum
8711619b2e37ed5ac0f4876ec18b06d0153e4571
[ "MIT" ]
null
null
null
from django.shortcuts import render from .models import Article, Comment from django.http import Http404, HttpResponseRedirect from django.urls import reverse def index(request): latest_articles_list = Article.objects.order_by('-pub_date')[:5] return render(request, 'articles/list.html', {'latest_articles_list': latest_articles_list}) def detail(request, article_id): try: a = Article.objects.get( id = article_id) except: raise Http404("Article not found") latest_comments_list = a.comment_set.order_by('-id')[:10] return render(request, 'articles/detail.html', {'article': a, 'latest_comments_list': latest_comments_list}) def leave_comment(request, article_id): try: a = Article.objects.get( id = article_id) except: raise Http404("Article not found") a.comment_set.create(author_name = request.POST['name'], comment_text = request.POST['text']) return HttpResponseRedirect( reverse('articles:detail', args = (a.id,)))
32.724138
109
0.759747
7f2cd476aaf37399d8e33fe6e36d7a9bc4e8684c
2,924
py
Python
runsync.py
CrownID/maildump
b8f5a264d6b9a9e5d8225c74133451293c36696e
[ "MIT" ]
null
null
null
runsync.py
CrownID/maildump
b8f5a264d6b9a9e5d8225c74133451293c36696e
[ "MIT" ]
null
null
null
runsync.py
CrownID/maildump
b8f5a264d6b9a9e5d8225c74133451293c36696e
[ "MIT" ]
null
null
null
#!/usr/bin/env python #-*- coding:utf-8 -*- import mailproc import ConfigParser import csv import re import os from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool import sqlalchemy from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Boolean, DateTime, Sequence from sqlalchemy.orm import scoped_session, mapper, sessionmaker from sqlalchemy.sql import func from config import REGBASE Base = declarative_base() class Register(Base): __tablename__ = 'dumpjrnl' id = Column(Integer, Sequence('user_id_seq'), primary_key=True) boxname = Column(String, nullable=False) last_status = Column(String, nullable=False) count = Column(Integer, nullable=False, default=0) lastrun_date = Column(String, nullable=False) def __init__ (self, boxname, last_status, count, lastrun_date): self.boxname = boxname self.last_status = last_status self.count = count self.lastrun_date = lastrun_date def __repr__(self): return "<Register('%s','%s', '%s', '%s', '%s')>" \ % (self.id, self.boxname, self.last_status, self.count, \ self.lastrun_date) sqliteng = sqlalchemy.create_engine('sqlite:///'+REGBASE) metadata= Base.metadata.create_all(sqliteng) session_factory=sessionmaker(bind=sqliteng) Session=scoped_session(session_factory) tpool = ThreadPool(4) config=ConfigParser.ConfigParser() #TODO: processing config exception config.read('settings.cfg') #TODO: add option set backing up root directory backuproot=config.get('main', 'backup_root') #TODO compress folder compress=config.get('main', 'compress') #backup mode - simulation (0) or real backup (1) backupmode=config.get('main','backupmode') loglevel=config.get('main','loglevel') addresses=config.get('main','addressfile') csv.register_dialect('addr', delimiter=';', quoting=csv.QUOTE_NONE) reader = csv.DictReader(open(addresses), dialect="addr") pool = {} #TODO: add return values for registart in base def multi_run_wrapper(args): return mailproc.imapclones(*args) for row in reader: for column, value in row.iteritems(): pool.setdefault(column, []).append(value) n=0 args=[] protocol='pop' #DONE: get imap server by email #sqlalchemy for k in pool['address']: login=k basedomain=re.split("@",k)[1] if (pool['protocol'][n]=='imap'): srvname="imap."+basedomain protocol='imap' else: srvname="pop."+basedomain passw = pool['pass'][n] #debug n=n+1 print srvname print passw if not (os.path.exists(backuproot+'/'+k)): os.mkdir(backuproot+'/'+k) localfolder=backuproot+'/'+k element_session=Session() args.append((srvname, k, 'INBOX', localfolder, passw, \ protocol, element_session)) tpool.map(multi_run_wrapper, args) tpool.close() tpool.join()
26.107143
77
0.6987
f9b70f01c826cadcc7e7fe985cae410f4b718216
2,188
py
Python
student-owl/utils/reader.py
StudentOwl/StudentOwl-Monitoreo
c3592a6ef2ab1234e75d2140317bed91dde45a78
[ "MIT" ]
null
null
null
student-owl/utils/reader.py
StudentOwl/StudentOwl-Monitoreo
c3592a6ef2ab1234e75d2140317bed91dde45a78
[ "MIT" ]
5
2021-01-09T17:10:41.000Z
2021-01-20T20:55:39.000Z
student-owl/utils/reader.py
StudentOwl/StudentOwl-Monitoreo
c3592a6ef2ab1234e75d2140317bed91dde45a78
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from os import path from utils.time_utils import convertTimeToTimestamp class ReaderLogFile(object): """ Reader LogFile class Provides methods for obtaining log lines. """ __EXCLUDED_CLASSES = ('system', 'clipboard', 'url', 'keystrokes', 'jpg',) __ACCEPTED_CLASSES = ('app') def __init__(self, pathfile: str, lastLine=0): """ Constructor de clase """ self._pathfile = path.abspath(pathfile) self.lastLine = lastLine def getLines(self) -> list[str]: """ Metodo que devuelve una lista de lineas """ lines = [] pastLastLine = self.lastLine with open(self._pathfile, 'r', encoding='utf8') as file: # file.seek(self.lastLine,0) lines = file.readlines() self.lastLine = len(lines) lines = lines[pastLastLine:] return lines def getJson(self, lines: list[str]) -> str: """ Metodo que procesa las lineas de texto a JSON """ logs = [] for line in lines: if line.strip() != "": line = line.replace(',\n', '').replace('\\', '\\\\') try: line: dict = json.loads(line) if type(line) == dict: line = self.proccessJson(line) if line: logs.append(line) else: print("[ERROR]: Not a dict") except ValueError as err: print("[ERROR]: Not a valid JSON") print(f"\t{err}") print(f"\t{line}") return json.dumps(logs) if len(logs) > 0 else None def proccessJson(self, jsonData: dict) -> dict: if jsonData["class"] in self.__ACCEPTED_CLASSES: if jsonData.get("duration"): jsonData["duration"] = int(jsonData["duration"]) if jsonData.get("time"): jsonData["time"] = convertTimeToTimestamp(jsonData["time"]) return jsonData else: return None
29.972603
77
0.50777
54da9d9171744df866836e3e2740864667129885
142
py
Python
tests/test_units/test_auth/test_openid_connect.py
thanegill/aiogoogle
e398df3886b6f6b254fa5413479f503f5bcbf435
[ "MIT" ]
null
null
null
tests/test_units/test_auth/test_openid_connect.py
thanegill/aiogoogle
e398df3886b6f6b254fa5413479f503f5bcbf435
[ "MIT" ]
null
null
null
tests/test_units/test_auth/test_openid_connect.py
thanegill/aiogoogle
e398df3886b6f6b254fa5413479f503f5bcbf435
[ "MIT" ]
null
null
null
# TODO: def test_authorization_url(): pass def test_decode_and_validate(): pass def test_build_user_creds_jwt_grant(): pass
10.142857
38
0.71831
313fab183c1eb167d08f3d1a914ccd1f16f08e1b
2,155
py
Python
car/agent.py
CarliWasTaken/Backend
56f83999b1521c43b738be1856ffd8eeecf22a93
[ "MIT" ]
1
2021-09-29T12:40:25.000Z
2021-09-29T12:40:25.000Z
car/agent.py
CarliWasTaken/Carli
56f83999b1521c43b738be1856ffd8eeecf22a93
[ "MIT" ]
1
2021-11-15T10:01:27.000Z
2021-11-15T10:01:27.000Z
car/agent.py
CarliWasTaken/Backend
56f83999b1521c43b738be1856ffd8eeecf22a93
[ "MIT" ]
null
null
null
import sys sys.path.append('../') import Adafruit_PCA9685 from log.log import Log from typing import * log: log = Log.get_instance() class Servo(): def __init__(self, pwm: Adafruit_PCA9685.PCA9685, number: int, neutral: int, delta_max: int) -> None: self.__pwm: Adafruit_PCA9685.PCA9685 = pwm self.__number = number self.__neutral = neutral self.__delta_max = delta_max pass # sets the servo to its neutral value def set_neutral(self) -> None: '''Sets a servo to his neutral value This method is for the servo to the corresponding default value. ''' self.__pwm.set_pwm(self.__number, 0, self.__neutral) pass # checks if the value is in the accepted range # def check_value(self, value) -> int: # if value > self.__neutral + self.__delta_max: # value = self.__neutral + self.__delta_max # if value < self.__neutral - self.__delta_max: # value = self.__neutral - self.__delta_max # return value def set_value(self, value: int) -> None: '''Set give value This method is mainly for setting the throttle and the steering angle of the servos/motors Parameter --------- value corresponding value ''' if(self.__number == 8): log.info(f"Throttle: {value}") self.__pwm.set_pwm(self.__number, 0, self.__neutral + value) pass class AgentMoveController(): def __init__(self): self.__pwm: Adafruit_PCA9685.PCA9685 = Adafruit_PCA9685.PCA9685() self.servos: dict = { "steering": Servo(self.__pwm, 0, 1200, 40), "speed": Servo(self.__pwm, 8, 1200, 40), } self.reset_servos() self.__servoMax= 100 self.__servoMin = 0 pass def reset_servos(self) -> None: '''Sets all servos to their neutral value This method is for resetting the servos corresponding to their default values. ''' self.servos["speed"].set_neutral() self.servos["steering"].set_neutral() pass
29.121622
105
0.604176
51338b0e915d2cbfca661d9b921b918994742d0b
1,464
py
Python
test/test_typechecking.py
runtime-jupyter-safety/runtime-jupyter-safety
f62a24b5b4f44fed5111c31441bc6a105441e34c
[ "BSD-3-Clause" ]
null
null
null
test/test_typechecking.py
runtime-jupyter-safety/runtime-jupyter-safety
f62a24b5b4f44fed5111c31441bc6a105441e34c
[ "BSD-3-Clause" ]
20
2020-04-17T02:32:50.000Z
2020-05-07T05:50:32.000Z
test/test_typechecking.py
runtime-jupyter-safety/runtime-jupyter-safety
f62a24b5b4f44fed5111c31441bc6a105441e34c
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import logging from typing import Set from nbsafety.data_model.code_cell import cells from nbsafety.singletons import nbs from nbsafety.types import CellId from test.utils import make_safety_fixture, skipif_known_failing logging.basicConfig(level=logging.ERROR) # Reset dependency graph before each test # _safety_fixture, run_cell_ = make_safety_fixture(trace_messages_enabled=True) _safety_fixture, run_cell_ = make_safety_fixture(mark_typecheck_failures_unsafe=True) def run_cell(cell, cell_id=None, **kwargs): """Mocks the `change active cell` portion of the comm protocol""" if cell_id is not None: nbs().handle({"type": "change_active_cell", "active_cell_id": cell_id}) run_cell_(cell, **kwargs) def get_cell_ids_needing_typecheck() -> Set[CellId]: return { cell.cell_id for cell in cells().all_cells_most_recently_run_for_each_id() if cell.needs_typecheck } def test_int_change_to_str_triggers_typecheck(): run_cell("a = 1", 1) assert not get_cell_ids_needing_typecheck() run_cell("b = 2", 2) assert not get_cell_ids_needing_typecheck() run_cell("logging.info(a + b)", 3) assert not get_cell_ids_needing_typecheck() run_cell('b = "b"', 4) assert get_cell_ids_needing_typecheck() == {3} nbs().check_and_link_multiple_cells() assert not get_cell_ids_needing_typecheck() assert cells().from_id(3)._cached_typecheck_result is False
33.272727
85
0.746585
0ae2afa4a77ba578900565879dc885195429738c
9,460
py
Python
src/xgboost_gpu.py
gmmoliveira/xgboost_gpu
2878e8c4655f37796c88fbc19fd555637ea06f1a
[ "Apache-2.0" ]
null
null
null
src/xgboost_gpu.py
gmmoliveira/xgboost_gpu
2878e8c4655f37796c88fbc19fd555637ea06f1a
[ "Apache-2.0" ]
null
null
null
src/xgboost_gpu.py
gmmoliveira/xgboost_gpu
2878e8c4655f37796c88fbc19fd555637ea06f1a
[ "Apache-2.0" ]
null
null
null
''' Copyright 2020 Guilherme Oliveira SPDX-License-Identifier: Apache-2.0 ======================================================================================================================== Author: Guilherme Oliveira Date: july 06, 2020 Contact: gmmoliveira1@gmail.com License: Apache-2.0 (https://www.apache.org/licenses/LICENSE-2.0) ======================================================================================================================== This script implements functions to facilitate the execution of the XGBoost algorithm on multiple GPUs on a single- machine. ======================================================================================================================== ''' from xgboost.dask import DaskDMatrix, train as dask_xgboost_train, predict as dask_xgboost_predict from dask.dataframe import from_array, from_pandas from dask.distributed import Client from dask_cuda import LocalCUDACluster import numpy as np import pandas as pd def train_xgboost_gpu( X, y, data_chunksize=None, n_gpus=None, n_threads_per_gpu=1, params=None, xgboost_model=None, gpu_cluster=None, client=None ): ''' Trains a XGBoost model on the GPU. :param X: a 2D matrix object of either type numpy ndarray or pandas DataFrame; :param y: a 1D array of one of the following types: numpy ndarray, pandas Series or pandas DataFrame; :param data_chunksize: number of rows to partition input data (both X and y simultaneously) to split among multiple GPU devices. Default value None splits evenly among devices; :param n_gpus: number of GPUs to be used. Default value None selects all available devices. :param n_threads_per_gpu: number of threads per GPU; :param params: xgboost trainning params as a python dict, refer to https://xgboost.readthedocs.io/en/latest/parameter.html :param xgboost_model: xgbooster object to continue training, it may be either a regular XGBoost model or a dask xgboost dict :param gpu_cluster: an existing dask cluster object to use. This param should be used if you call this method too many times in quick successions. Note that this function doesn't close an externally created cluster. :param client: an existing dask client object to use. This param should be used if you call this method too many times in quick successions. Note that this function doesn't close an externally created client. :return: A dictionary containing 2 keys: * 'booster': maps to a XGBoost model * 'history': maps to another dict which informs the history of the training process, as in the following the examṕle: {'train': {'logloss': ['0.48253', '0.35953']}, 'eval': {'logloss': ['0.480385', '0.357756']}}} ''' if gpu_cluster is None: local_gpus = LocalCUDACluster(n_workers=n_gpus, threads_per_worker=n_threads_per_gpu) else: local_gpus = gpu_cluster if client is None: local_dask_client = Client(local_gpus, {'verbose': 0}) else: local_dask_client = client if data_chunksize is None: data_chunksize = X.shape[0] // len(local_gpus.cuda_visible_devices) if params is None: params = { 'learning_rate': 0.3, 'max_depth': 8, 'objective': 'reg:squarederror', 'verbosity': 0, 'tree_method': 'gpu_hist' } if isinstance(X, pd.DataFrame): X = from_pandas(X, chunksize=data_chunksize) else: X = from_array(X, chunksize=data_chunksize) if isinstance(y, pd.DataFrame): y = from_pandas(y, chunksize=data_chunksize) else: y = from_array(y, chunksize=data_chunksize) dtrain = DaskDMatrix(local_dask_client, X, y) if type(xgboost_model) is dict: xgboost_model = xgboost_model['booster'] xgb_model = dask_xgboost_train(local_dask_client, params, dtrain, num_boost_round=100, evals=[(dtrain, 'train')], xgb_model=xgboost_model) if client is None: local_dask_client.close() if gpu_cluster is None: local_gpus.close() return xgb_model def predict_xgboost_gpu( xgb_model, X, data_chunksize=None, n_gpus=None, n_threads_per_gpu=1, gpu_cluster=None, client=None ): ''' Predicts the output for the input features X using the 'xgb_model' running on the GPU. :param xgb_model: a dask XGBoost model to use for predictions :param X: the input features to use for predictions, must be either a numpy ndarray or a pandas DataFrame :param data_chunksize: chunk sizes to be used on a dask dataframe, leave the default value None for auto decision :param n_gpus: number of GPUs to be used. Default value None selects all available devices; :param n_threads_per_gpu: number of threads per GPU; :param gpu_cluster: an existing dask cluster object to use. This param should be used if you call this method too many times in quick successions. Note that this function doesn't close an externally created cluster. :param client: an existing dask cluster object to use. This param should be used if you call this method too many times in quick successions. Note that this function doesn't close an externally created client. :return: If the input features X is a pandas DataFrame, returns a array-like DataFrame of single column containing the predictions; Otherwise, if the input features X is a numpy ndarray, returns a 1D ndarray containing the predictions . ''' if gpu_cluster is None: local_gpus = LocalCUDACluster(n_workers=n_gpus, threads_per_worker=n_threads_per_gpu) else: local_gpus = gpu_cluster if client is None: local_dask_client = Client(local_gpus) else: local_dask_client = client if data_chunksize is None: data_chunksize = X.shape[0] // len(local_gpus.cuda_visible_devices) if isinstance(X, pd.DataFrame): ndarray = False X = from_pandas(X, chunksize=data_chunksize) else: ndarray = True X = from_array(X, chunksize=data_chunksize) y_predicted = dask_xgboost_predict(local_dask_client, xgb_model, X) y_predicted = pd.DataFrame(y_predicted) if client is None: local_dask_client.close() if gpu_cluster is None: local_gpus.close() if ndarray: return y_predicted.to_numpy() return y_predicted def _example(): # the following imports are meant to be used only in the scope of this example, therefore, # they were placed here for performance issues regarding external modules calling this one from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score from sklearn.metrics import explained_variance_score, mean_squared_error, max_error from os.path import exists base_path = '' if exists('../models/'): base_path = '../models/' # [WARNING]: choose carefully the below parameters according to your machine, avoiding, for example, consuming # more memory than what's available n, m = 10 ** 4, 10 rand = np.random.Generator(np.random.PCG64()) print('========== *** XGBoost Classification example *** ==========') params = { 'learning_rate': 0.3, 'max_depth': 8, 'objective': 'binary:hinge', 'verbosity': 0, 'tree_method': 'gpu_hist' } class_proportion = 0.5 X = rand.random(size=(n, m)) y = np.array([1 if np.sum(X[i, :]) > class_proportion * m else 0 for i in range(X.shape[0])]) classification_xgbmodel = train_xgboost_gpu(X, y, params=params, n_gpus=1, n_threads_per_gpu=1, xgboost_model=None) X = rand.random(size=(n, m)) y = np.array([1 if np.sum(X[i, :]) > class_proportion * m else 0 for i in range(X.shape[0])]) y_pred = predict_xgboost_gpu(classification_xgbmodel, X, n_gpus=1, n_threads_per_gpu=1) ''' # my tests have shown that predicting over the GPU is much slower than over the CPU # to predict using the CPU instead of the GPU, use the following example code from xgboost import DMatrix y_pred = classification_xgbmodel['booster'].predict(DMatrix(pd.DataFrame(X, columns=[i for i in range(m)]))) ''' acc = accuracy_score(y, y_pred) cm = confusion_matrix(y, y_pred) print('accuracy: {:.2f}%'.format(acc * 100)) print('confusion matrix:') print(cm) try: print('ROC AUC score: {:.2f}%'.format(roc_auc_score(y, y_pred) * 100)) except: pass # save your model as follows classification_xgbmodel['booster'].save_model(base_path + 'my_classf_model001.xgbmodel') print('========== *** XGBoost Regression example *** ==========') transformation = rand.random(size=m) X = rand.random(size=(n, m)) y = np.matmul(X, transformation) params = { 'learning_rate': 0.3, 'max_depth': 8, 'objective': 'reg:squarederror', 'verbosity': 0, 'tree_method': 'gpu_hist' } regression_xgbmodel = train_xgboost_gpu(X, y, params=params) X = rand.random(size=(n, m)) y = np.matmul(X, transformation) y_pred = predict_xgboost_gpu(regression_xgbmodel, X) ''' # my tests have shown that predicting over the GPU is much slower than over the CPU # to predict using the CPU instead of the GPU, use the following example code from xgboost import DMatrix y_pred = regression_xgbmodel['booster'].predict(DMatrix(pd.DataFrame(X, columns=[i for i in range(m)]))) ''' vscore = explained_variance_score(y, y_pred) mse = mean_squared_error(y, y_pred) me = max_error(y, y_pred) print('Variance score: {:.2f}'.format(vscore)) print('Mean squared error: {:.2f}'.format(mse)) print('Maximum absolute error: {:.2f}'.format(me)) # save your model as follows regression_xgbmodel['booster'].save_model(base_path + 'my_reg_model001.xgbmodel') if __name__ == '__main__': from time import time t_start = time() _example() t_end = time() - t_start print('executed in {:.2f} seconds'.format(t_end))
38.455285
139
0.708245
5ce8389d4e1de163c4206b151dbd4a9273b83f4e
114,484
py
Python
pipeline/pipeline.py
rhefner1/ghidonations
aa1b263ce30c952400a5eac8739b1ef52a2e4fed
[ "Apache-2.0" ]
null
null
null
pipeline/pipeline.py
rhefner1/ghidonations
aa1b263ce30c952400a5eac8739b1ef52a2e4fed
[ "Apache-2.0" ]
2
2015-03-11T04:59:20.000Z
2016-02-08T16:42:06.000Z
pipeline/pipeline.py
rhefner1/ghidonations
aa1b263ce30c952400a5eac8739b1ef52a2e4fed
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python2.5 # # Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Google App Engine Pipeline API for complex, asynchronous workflows.""" __all__ = [ # Public API. 'Error', 'PipelineSetupError', 'PipelineExistsError', 'PipelineRuntimeError', 'SlotNotFilledError', 'SlotNotDeclaredError', 'UnexpectedPipelineError', 'PipelineStatusError', 'Slot', 'Pipeline', 'PipelineFuture', 'After', 'InOrder', 'Retry', 'Abort', 'get_status_tree', 'get_pipeline_names', 'get_root_list', 'create_handlers_map', 'set_enforce_auth', ] import datetime import hashlib import itertools import logging import os import re import sys import threading import time import traceback import urllib import uuid import webapp2 from google.appengine.api import mail from google.appengine.api import files from google.appengine.api import users from google.appengine.api import taskqueue from google.appengine.ext import db # Relative imports import models import json import status_ui import util as mr_util # For convenience _PipelineRecord = models._PipelineRecord _SlotRecord = models._SlotRecord _BarrierRecord = models._BarrierRecord _StatusRecord = models._StatusRecord # Overall TODOs: # - Add a human readable name for start() # - Consider using sha1 of the UUID for user-supplied pipeline keys to ensure # that they keys are definitely not sequential or guessable (Python's uuid1 # method generates roughly sequential IDs). # Potential TODOs: # - Add support for ANY N barriers. # - Allow Pipelines to declare they are "short" and optimize the evaluate() # function to run as many of them in quick succession. # - Add support in all Pipelines for hold/release where up-stream # barriers will fire but do nothing because the Pipeline is not ready. ################################################################################ class Error(Exception): """Base class for exceptions in this module.""" class PipelineSetupError(Error): """Base class for exceptions that happen before Pipeline execution.""" class PipelineExistsError(PipelineSetupError): """A new Pipeline with an assigned idempotence_key cannot be overwritten.""" class PipelineRuntimeError(Error): """Base class for exceptions that happen during Pipeline execution.""" class SlotNotFilledError(PipelineRuntimeError): """A slot that should have been filled already was not yet filled.""" class SlotNotDeclaredError(PipelineRuntimeError): """A slot that was filled or passed along was not previously declared.""" class UnexpectedPipelineError(PipelineRuntimeError): """An assertion failed, potentially leaving the pipeline unable to proceed.""" class PipelineUserError(Error): """Exceptions raised indirectly by developers to cause certain behaviors.""" class Retry(PipelineUserError): """The currently running pipeline should be retried at a later time.""" class Abort(PipelineUserError): """The currently running pipeline should be aborted up to the root.""" class PipelineStatusError(Error): """Exceptions raised when trying to collect pipeline status.""" ################################################################################ _MAX_BARRIERS_TO_NOTIFY = 10 _MAX_ABORTS_TO_BEGIN = 10 _TEST_MODE = False _TEST_ROOT_PIPELINE_KEY = None _DEFAULT_BACKOFF_SECONDS = 15 _DEFAULT_BACKOFF_FACTOR = 2 _DEFAULT_MAX_ATTEMPTS = 3 _RETRY_WIGGLE_TIMEDELTA = datetime.timedelta(seconds=20) _DEBUG = False _MAX_JSON_SIZE = 900000 _ENFORCE_AUTH = True ################################################################################ class Slot(object): """An output that is filled by a Pipeline as it executes.""" def __init__(self, name=None, slot_key=None, strict=False): """Initializer. Args: name: The name of this slot. slot_key: The db.Key for this slot's _SlotRecord if it's already been allocated by an up-stream pipeline. strict: If this Slot was created as an output of a strictly defined pipeline. """ if name is None: raise UnexpectedPipelineError('Slot with key "%s" missing a name.' % slot_key) if slot_key is None: slot_key = db.Key.from_path(_SlotRecord.kind(), uuid.uuid1().hex) self._exists = _TEST_MODE else: self._exists = True self._touched = False self._strict = strict self.name = name self.key = slot_key self.filled = False self._filler_pipeline_key = None self._fill_datetime = None self._value = None @property def value(self): """Returns the current value of this slot. Returns: The value of the slot (a serializable Python type). Raises: SlotNotFilledError if the value hasn't been filled yet. """ if not self.filled: raise SlotNotFilledError('Slot with name "%s", key "%s" not yet filled.' % (self.name, self.key)) return self._value @property def filler(self): """Returns the pipeline ID that filled this slot's value. Returns: A string that is the pipeline ID. Raises: SlotNotFilledError if the value hasn't been filled yet. """ if not self.filled: raise SlotNotFilledError('Slot with name "%s", key "%s" not yet filled.' % (self.name, self.key)) return self._filler_pipeline_key.name() @property def fill_datetime(self): """Returns when the slot was filled. Returns: A datetime.datetime. Raises: SlotNotFilledError if the value hasn't been filled yet. """ if not self.filled: raise SlotNotFilledError('Slot with name "%s", key "%s" not yet filled.' % (self.name, self.key)) return self._fill_datetime def _set_value(self, slot_record): """Sets the value of this slot based on its corresponding _SlotRecord. Does nothing if the slot has not yet been filled. Args: slot_record: The _SlotRecord containing this Slot's value. """ if slot_record.status == _SlotRecord.FILLED: self.filled = True self._filler_pipeline_key = _SlotRecord.filler.get_value_for_datastore( slot_record) self._fill_datetime = slot_record.fill_time self._value = slot_record.value def _set_value_test(self, filler_pipeline_key, value): """Sets the value of this slot for use in testing. Args: filler_pipeline_key: The db.Key of the _PipelineRecord that filled this slot. value: The serializable value set for this slot. """ self.filled = True self._filler_pipeline_key = filler_pipeline_key self._fill_datetime = datetime.datetime.utcnow() # Convert to JSON and back again, to simulate the behavior of production. self._value = json.loads(json.dumps(value)) def __repr__(self): """Returns a string representation of this slot.""" if self.filled: return repr(self._value) else: return 'Slot(name="%s", slot_key="%s")' % (self.name, self.key) class PipelineFuture(object): """A future for accessing the outputs of a Pipeline.""" # NOTE: Do not, ever, add a names() method to this class. Callers cannot do # introspection on their context of being called. Even though the runtime # environment of the Pipeline can allow for that to happen, such behavior # would prevent synchronous simulation and verification, whic is an # unacceptable tradeoff. def __init__(self, output_names, force_strict=False): """Initializer. Args: output_names: The list of require output names that will be strictly enforced by this class. force_strict: If True, force this future to be in strict mode. """ self._after_all_pipelines = set() self._output_dict = { 'default': Slot(name='default'), } self._strict = len(output_names) > 0 or force_strict if self._strict: for name in output_names: if name in self._output_dict: raise UnexpectedPipelineError('Output name reserved: "%s"' % name) self._output_dict[name] = Slot(name=name, strict=True) def _inherit_outputs(self, pipeline_name, already_defined, resolve_outputs=False): """Inherits outputs from a calling Pipeline. Args: pipeline_name: The Pipeline class name (used for debugging). already_defined: Maps output name to stringified db.Key (of _SlotRecords) of any exiting output slots to be inherited by this future. resolve_outputs: When True, this method will dereference all output slots before returning back to the caller, making those output slots' values available. Raises: UnexpectedPipelineError when resolve_outputs is True and any of the output slots could not be retrived from the Datastore. """ for name, slot_key in already_defined.iteritems(): if not isinstance(slot_key, db.Key): slot_key = db.Key(slot_key) slot = self._output_dict.get(name) if slot is None: if self._strict: raise UnexpectedPipelineError( 'Inherited output named "%s" must be filled but ' 'not declared for pipeline class "%s"' % (name, pipeline_name)) else: self._output_dict[name] = Slot(name=name, slot_key=slot_key) else: slot.key = slot_key slot._exists = True if resolve_outputs: slot_key_dict = dict((s.key, s) for s in self._output_dict.itervalues()) all_slots = db.get(slot_key_dict.keys()) for slot, slot_record in zip(slot_key_dict.itervalues(), all_slots): if slot_record is None: raise UnexpectedPipelineError( 'Inherited output named "%s" for pipeline class "%s" is ' 'missing its Slot in the datastore: "%s"' % (slot.name, pipeline_name, slot.key)) slot = slot_key_dict[slot_record.key()] slot._set_value(slot_record) def __getattr__(self, name): """Provides an output Slot instance with the given name if allowed.""" if name not in self._output_dict: if self._strict: raise SlotNotDeclaredError('Undeclared output with name "%s"' % name) self._output_dict[name] = Slot(name=name) slot = self._output_dict[name] return slot class _PipelineMeta(type): """Meta-class for recording all Pipelines that have been defined.""" # List of all Pipeline classes that have been seen. _all_classes = [] def __new__(meta, name, bases, cls_dict): """Initializes the class path of a Pipeline and saves it.""" cls = type.__new__(meta, name, bases, cls_dict) meta._all_classes.append(cls) return cls class ClassProperty(object): """Descriptor that lets us have read-only class properties.""" def __init__(self, method): self.method = method def __get__(self, cls, obj): return self.method(obj) class Pipeline(object): """A Pipeline function-object that performs operations and has a life cycle. Class properties (to be overridden by sub-classes): async: When True, this Pipeline will execute asynchronously and fill the default output slot itself using the complete() method. output_names: List of named outputs (in addition to the default slot) that this Pipeline must output to (no more, no less). public_callbacks: If the callback URLs generated for this class should be accessible by all external requests regardless of login or task queue. admin_callbacks: If the callback URLs generated for this class should be accessible by the task queue ane externally by users logged in as admins. class_path: String identifier for this Pipeline, which is derived from its path in the global system modules dictionary. Modifiable instance properties: backoff_seconds: How many seconds to use as the constant factor in exponential backoff; may be changed by the user backoff_factor: Base factor to use for exponential backoff. The formula followed is (backoff_seconds * backoff_factor^current_attempt). max_attempts: Maximum number of retry attempts to make before failing completely and aborting the entire pipeline up to the root. target: The application version to use for processing this Pipeline. This can be set to the name of a backend to direct Pipelines to run there. Instance properties: pipeline_id: The ID of this pipeline. root_pipeline_id: The ID of the root of this pipeline. queue_name: The queue this pipeline runs on or None if unknown. current_attempt: The current attempt being tried for this pipeline. """ __metaclass__ = _PipelineMeta # To be set by sub-classes async = False output_names = [] public_callbacks = False admin_callbacks = False # Internal only. _class_path = None # Set for each class _send_mail = mail.send_mail_to_admins # For testing def __init__(self, *args, **kwargs): """Initializer. Args: *args: The positional arguments for this function-object. **kwargs: The keyword arguments for this function-object. """ self.args = args self.kwargs = kwargs self.outputs = None self.backoff_seconds = _DEFAULT_BACKOFF_SECONDS self.backoff_factor = _DEFAULT_BACKOFF_FACTOR self.max_attempts = _DEFAULT_MAX_ATTEMPTS self.target = None self.task_retry = False self._current_attempt = 0 self._root_pipeline_key = None self._pipeline_key = None self._context = None self._result_status = None self._set_class_path() if _TEST_MODE: self._context = _PipelineContext('', 'default', '') self._root_pipeline_key = _TEST_ROOT_PIPELINE_KEY self._pipeline_key = db.Key.from_path( _PipelineRecord.kind(), uuid.uuid1().hex) self.outputs = PipelineFuture(self.output_names) self._context.evaluate_test(self) @property def pipeline_id(self): """Returns the ID of this Pipeline as a string or None if unknown.""" if self._pipeline_key is None: return None return self._pipeline_key.name() @property def root_pipeline_id(self): """Returns root pipeline ID as a websafe string or None if unknown.""" if self._root_pipeline_key is None: return None return self._root_pipeline_key.name() @property def is_root(self): """Returns True if this pipeline is a root pipeline, False otherwise.""" return self._root_pipeline_key == self._pipeline_key @property def queue_name(self): """Returns the queue name this Pipeline runs on or None if unknown.""" if self._context: return self._context.queue_name return None @property def base_path(self): """Returns the base path for Pipeline URL handlers or None if unknown.""" if self._context: return self._context.base_path return None @property def has_finalized(self): """Returns True if this pipeline has completed and finalized.""" return self._result_status == _PipelineRecord.DONE @property def was_aborted(self): """Returns True if this pipeline was aborted.""" return self._result_status == _PipelineRecord.ABORTED @property def current_attempt(self): """Returns the current attempt at running this pipeline, starting at 1.""" return self._current_attempt + 1 @property def test_mode(self): """Returns True if the pipeline is running in test mode.""" return _TEST_MODE @ClassProperty def class_path(cls): """Returns the unique string identifier for this Pipeline class. Refers to how to find the Pipeline in the global modules dictionary. """ cls._set_class_path() return cls._class_path @classmethod def from_id(cls, pipeline_id, resolve_outputs=True, _pipeline_record=None): """Returns an instance corresponding to an existing Pipeline. The returned object will have the same properties a Pipeline does while it's running synchronously (e.g., like what it's first allocated), allowing callers to inspect caller arguments, outputs, fill slots, complete the pipeline, abort, retry, etc. Args: pipeline_id: The ID of this pipeline (a string). resolve_outputs: When True, dereference the outputs of this Pipeline so their values can be accessed by the caller. _pipeline_record: Internal-only. The _PipelineRecord instance to use to instantiate this instance instead of fetching it from the datastore. Returns: Pipeline sub-class instances or None if it could not be found. """ pipeline_record = _pipeline_record # Support pipeline IDs and idempotence_keys that are not unicode. if not isinstance(pipeline_id, unicode): try: pipeline_id = pipeline_id.encode('utf-8') except UnicodeDecodeError: pipeline_id = hashlib.sha1(pipeline_id).hexdigest() pipeline_key = db.Key.from_path(_PipelineRecord.kind(), pipeline_id) if pipeline_record is None: pipeline_record = db.get(pipeline_key) if pipeline_record is None: return None try: pipeline_func_class = mr_util.for_name(pipeline_record.class_path) except ImportError, e: logging.warning('Tried to find Pipeline %s#%s, but class could ' 'not be found. Using default Pipeline class instead.', pipeline_record.class_path, pipeline_id) pipeline_func_class = cls params = pipeline_record.params arg_list, kwarg_dict = _dereference_args( pipeline_record.class_path, params['args'], params['kwargs']) outputs = PipelineFuture(pipeline_func_class.output_names) outputs._inherit_outputs( pipeline_record.class_path, params['output_slots'], resolve_outputs=resolve_outputs) stage = pipeline_func_class(*arg_list, **kwarg_dict) stage.backoff_seconds = params['backoff_seconds'] stage.backoff_factor = params['backoff_factor'] stage.max_attempts = params['max_attempts'] stage.task_retry = params['task_retry'] stage.target = params.get('target') # May not be defined for old Pipelines stage._current_attempt = pipeline_record.current_attempt stage._set_values_internal( _PipelineContext('', params['queue_name'], params['base_path']), pipeline_key, _PipelineRecord.root_pipeline.get_value_for_datastore(pipeline_record), outputs, pipeline_record.status) return stage # Methods that can be invoked on a Pipeline instance by anyone with a # valid object (e.g., directly instantiated, retrieve via from_id). def start(self, idempotence_key='', queue_name='default', base_path='/_ah/pipeline', return_task=False): """Starts a new instance of this pipeline. Args: idempotence_key: The ID to use for this Pipeline and throughout its asynchronous workflow to ensure the operations are idempotent. If empty a starting key will be automatically assigned. queue_name: What queue this Pipeline's workflow should execute on. base_path: The relative URL path to where the Pipeline API is mounted for access by the taskqueue API or external requests. return_task: When True, a task to start this pipeline will be returned instead of submitted, allowing the caller to start off this pipeline as part of a separate transaction (potentially leaving this newly allocated pipeline's datastore entities in place if that separate transaction fails for any reason). Returns: A taskqueue.Task instance if return_task was True. This task will *not* have a name, thus to ensure reliable execution of your pipeline you should add() this task as part of a separate Datastore transaction. Raises: PipelineExistsError if the pipeline with the given idempotence key exists. PipelineSetupError if the pipeline could not start for any other reason. """ if not idempotence_key: idempotence_key = uuid.uuid1().hex elif not isinstance(idempotence_key, unicode): try: idempotence_key.encode('utf-8') except UnicodeDecodeError: idempotence_key = hashlib.sha1(idempotence_key).hexdigest() pipeline_key = db.Key.from_path(_PipelineRecord.kind(), idempotence_key) context = _PipelineContext('', queue_name, base_path) future = PipelineFuture(self.output_names, force_strict=True) try: self._set_values_internal( context, pipeline_key, pipeline_key, future, _PipelineRecord.WAITING) return context.start(self, return_task=return_task) except Error: # Pass through exceptions that originate in this module. raise except Exception, e: # Re-type any exceptions that were raised in dependent methods. raise PipelineSetupError('Error starting %s#%s: %s' % ( self, idempotence_key, str(e))) def start_test(self, idempotence_key=None, base_path='', **kwargs): """Starts this pipeline in test fashion. Args: idempotence_key: Dummy idempotence_key to use for this root pipeline. base_path: Dummy base URL path to use for this root pipeline. kwargs: Ignored keyword arguments usually passed to start(). """ if not idempotence_key: idempotence_key = uuid.uuid1().hex pipeline_key = db.Key.from_path(_PipelineRecord.kind(), idempotence_key) context = _PipelineContext('', 'default', base_path) future = PipelineFuture(self.output_names, force_strict=True) self._set_values_internal( context, pipeline_key, pipeline_key, future, _PipelineRecord.WAITING) context.start_test(self) # Pipeline control methods. def retry(self, retry_message=''): """Forces a currently running asynchronous pipeline to retry. Note this may not be called by synchronous or generator pipelines. Those must instead raise the 'Retry' exception during execution. Args: retry_message: Optional message explaining why the retry happened. Returns: True if the Pipeline should be retried, False if it cannot be cancelled mid-flight for some reason. """ if not self.async: raise UnexpectedPipelineError( 'May only call retry() method for asynchronous pipelines.') if self.try_cancel(): self._context.transition_retry(self._pipeline_key, retry_message) return True else: return False def abort(self, abort_message=''): """Mark the entire pipeline up to the root as aborted. Note this should only be called from *outside* the context of a running pipeline. Synchronous and generator pipelines should raise the 'Abort' exception to cause this behavior during execution. Args: abort_message: Optional message explaining why the abort happened. Returns: True if the abort signal was sent successfully; False if the pipeline could not be aborted for any reason. """ # TODO: Use thread-local variable to enforce that this is not called # while a pipeline is executing in the current thread. if (self.async and self._root_pipeline_key == self._pipeline_key and not self.try_cancel()): # Handle the special case where the root pipeline is async and thus # cannot be aborted outright. return False else: return self._context.begin_abort( self._root_pipeline_key, abort_message=abort_message) # Methods used by the Pipeline as it runs. def fill(self, name_or_slot, value): """Fills an output slot required by this Pipeline. Args: name_or_slot: The name of the slot (a string) or Slot record to fill. value: The serializable value to assign to this slot. Raises: UnexpectedPipelineError if the Slot no longer exists. SlotNotDeclaredError if trying to output to a slot that was not declared ahead of time. """ if isinstance(name_or_slot, basestring): slot = getattr(self.outputs, name_or_slot) elif isinstance(name_or_slot, Slot): slot = name_or_slot else: raise UnexpectedPipelineError( 'Could not fill invalid output name: %r' % name_or_slot) if not slot._exists: raise SlotNotDeclaredError( 'Cannot fill output with name "%s" that was just ' 'declared within the Pipeline context.' % slot.name) self._context.fill_slot(self._pipeline_key, slot, value) def set_status(self, message=None, console_url=None, status_links=None): """Sets the current status of this pipeline. This method is purposefully non-transactional. Updates are written to the datastore immediately and overwrite all existing statuses. Args: message: (optional) Overall status message. console_url: (optional) Relative URL to use for the "console" of this pipeline that displays current progress. When None, no console will be displayed. status_links: (optional) Dictionary of readable link names to relative URLs that should be associated with this pipeline as it runs. These links provide convenient access to other dashboards, consoles, etc associated with the pipeline. Raises: PipelineRuntimeError if the status could not be set for any reason. """ if _TEST_MODE: logging.info( 'New status for %s#%s: message=%r, console_url=%r, status_links=%r', self, self.pipeline_id, message, console_url, status_links) return status_key = db.Key.from_path(_StatusRecord.kind(), self.pipeline_id) root_pipeline_key = db.Key.from_path( _PipelineRecord.kind(), self.root_pipeline_id) status_record = _StatusRecord( key=status_key, root_pipeline=root_pipeline_key) try: if message: status_record.message = message if console_url: status_record.console_url = console_url if status_links: # Alphabeticalize the list. status_record.link_names = sorted( db.Text(s) for s in status_links.iterkeys()) status_record.link_urls = [ db.Text(status_links[name]) for name in status_record.link_names] status_record.status_time = datetime.datetime.utcnow() status_record.put() except Exception, e: raise PipelineRuntimeError('Could not set status for %s#%s: %s' % (self, self.pipeline_id, str(e))) def complete(self, default_output=None): """Marks this asynchronous Pipeline as complete. Args: default_output: What value the 'default' output slot should be assigned. Raises: UnexpectedPipelineError if the slot no longer exists or this method was called for a pipeline that is not async. """ # TODO: Enforce that all outputs expected by this async pipeline were # filled before this complete() function was called. May required all # async functions to declare their outputs upfront. if not self.async: raise UnexpectedPipelineError( 'May only call complete() method for asynchronous pipelines.') self._context.fill_slot( self._pipeline_key, self.outputs.default, default_output) def get_callback_url(self, **kwargs): """Returns a relative URL for invoking this Pipeline's callback method. Args: kwargs: Dictionary mapping keyword argument names to single values that should be passed to the callback when it is invoked. Raises: UnexpectedPipelineError if this is invoked on pipeline that is not async. """ # TODO: Support positional parameters. if not self.async: raise UnexpectedPipelineError( 'May only call get_callback_url() method for asynchronous pipelines.') kwargs['pipeline_id'] = self._pipeline_key.name() params = urllib.urlencode(kwargs) return '%s/callback?%s' % (self.base_path, params) def get_callback_task(self, *args, **kwargs): """Returns a task for calling back this Pipeline. Args: params: Keyword argument containing a dictionary of key/value pairs that will be passed to the callback when it is executed. args, kwargs: Passed to the taskqueue.Task constructor. Use these arguments to set the task name (for idempotence), etc. Returns: A taskqueue.Task instance that must be enqueued by the caller. """ if not self.async: raise UnexpectedPipelineError( 'May only call get_callback_task() method for asynchronous pipelines.') params = kwargs.get('params', {}) kwargs['params'] = params params['pipeline_id'] = self._pipeline_key.name() kwargs['url'] = self.base_path + '/callback' kwargs['method'] = 'POST' return taskqueue.Task(*args, **kwargs) def send_result_email(self): """Sends an email to admins indicating this Pipeline has completed. For developer convenience. Automatically called from finalized for root Pipelines that do not override the default action. """ status = 'successful' if self.was_aborted: status = 'aborted' app_id = os.environ['APPLICATION_ID'] shard_index = app_id.find('~') if shard_index != -1: app_id = app_id[shard_index+1:] param_dict = { 'status': status, 'app_id': app_id, 'class_path': self._class_path, 'pipeline_id': self.root_pipeline_id, 'base_path': '%s.appspot.com%s' % (app_id, self.base_path), } subject = ( 'Pipeline %(status)s: App "%(app_id)s", %(class_path)s' '#%(pipeline_id)s' % param_dict) body = """View the pipeline results here: http://%(base_path)s/status?root=%(pipeline_id)s Thanks, The Pipeline API """ % param_dict html = """<html><body> <p>View the pipeline results here:</p> <p><a href="http://%(base_path)s/status?root=%(pipeline_id)s" >http://%(base_path)s/status?root=%(pipeline_id)s</a></p> <p> Thanks, <br> The Pipeline API </p> </body></html> """ % param_dict sender = '%s@%s.appspotmail.com' % (app_id, app_id) try: self._send_mail(sender, subject, body, html=html) except (mail.InvalidSenderError, mail.InvalidEmailError): logging.warning('Could not send result email for ' 'root pipeline ID "%s" from sender "%s"', self.root_pipeline_id, sender) def cleanup(self): """Clean up this Pipeline and all Datastore records used for coordination. Only works when called on a root pipeline. Child pipelines will ignore calls to this method. After this method is called, Pipeline.from_id() and related status methods will return inconsistent or missing results. This method is fire-and-forget and asynchronous. """ if self._root_pipeline_key is None: raise UnexpectedPipelineError( 'Could not cleanup Pipeline with unknown root pipeline ID.') if not self.is_root: return task = taskqueue.Task( params=dict(root_pipeline_key=self._root_pipeline_key), url=self.base_path + '/cleanup', headers={'X-Ae-Pipeline-Key': self._root_pipeline_key}) taskqueue.Queue(self.queue_name).add(task) def with_params(self, **kwargs): """Modify various execution parameters of a Pipeline before it runs. This method has no effect in test mode. Args: kwargs: Attributes to modify on this Pipeline instance before it has been executed. Returns: This Pipeline instance, for easy chaining. """ if _TEST_MODE: logging.info( 'Setting runtime parameters for %s#%s: %r', self, self.pipeline_id, kwargs) return self if self.pipeline_id is not None: raise UnexpectedPipelineError( 'May only call with_params() on a Pipeline that has not yet ' 'been scheduled for execution.') ALLOWED = ('backoff_seconds', 'backoff_factor', 'max_attempts', 'target') for name, value in kwargs.iteritems(): if name not in ALLOWED: raise TypeError('Unexpected keyword: %s=%r' % (name, value)) setattr(self, name, value) return self # Methods implemented by developers for lifecycle management. These # must be idempotent under all circumstances. def run(self, *args, **kwargs): """Runs this Pipeline.""" raise NotImplementedError('Must implement "run" in Pipeline sub-class.') def run_test(self, *args, **kwargs): """Runs this Pipeline in test mode.""" raise NotImplementedError( 'Must implement "run_test" in Pipeline sub-class.') def finalized(self): """Finalizes this Pipeline after execution if it's a generator. Default action as the root pipeline is to email the admins with the status. Implementors be sure to call 'was_aborted' to find out if the finalization that you're handling is for a success or error case. """ if self.pipeline_id == self.root_pipeline_id: self.send_result_email() def finalized_test(self, *args, **kwargs): """Finalized this Pipeline in test mode.""" raise NotImplementedError( 'Must implement "finalized_test" in Pipeline sub-class.') def callback(self, **kwargs): """This Pipeline received an asynchronous callback request.""" raise NotImplementedError( 'Must implement "callback" in Pipeline sub-class.') def try_cancel(self): """This pipeline has been cancelled. Called when a pipeline is interrupted part-way through due to some kind of failure (an abort of the whole pipeline to the root or a forced retry on this child pipeline). Returns: True to indicate that cancellation was successful and this pipeline may go in the retry or aborted state; False to indicate that this pipeline cannot be canceled right now and must remain as-is. """ return False # Internal methods. @classmethod def _set_class_path(cls, module_dict=sys.modules): """Sets the absolute path to this class as a string. Used by the Pipeline API to reconstruct the Pipeline sub-class object at execution time instead of passing around a serialized function. Args: module_dict: Used for testing. """ # Do not traverse the class hierarchy fetching the class path attribute. found = cls.__dict__.get('_class_path') if found is not None: return # Do not set the _class_path for the base-class, otherwise all children's # lookups for _class_path will fall through and return 'Pipeline' above. # This situation can happen if users call the generic Pipeline.from_id # to get the result of a Pipeline without knowing its specific class. if cls is Pipeline: return # This is a brute-force approach to solving the module reverse-lookup # problem, where we want to refer to a class by its stable module name # but have no built-in facility for doing so in Python. found = None for name, module in module_dict.items(): if name == '__main__': continue found = getattr(module, cls.__name__, None) if found is cls: break else: # If all else fails, try the main module. name = '__main__' module = module_dict.get(name) found = getattr(module, cls.__name__, None) if found is not cls: raise ImportError('Could not determine path for Pipeline ' 'function/class "%s"' % cls.__name__) cls._class_path = '%s.%s' % (name, cls.__name__) def _set_values_internal(self, context, pipeline_key, root_pipeline_key, outputs, result_status): """Sets the user-visible values provided as an API by this class. Args: context: The _PipelineContext used for this Pipeline. pipeline_key: The db.Key of this pipeline. root_pipeline_key: The db.Key of the root pipeline. outputs: The PipelineFuture for this pipeline. result_status: The result status of this pipeline. """ self._context = context self._pipeline_key = pipeline_key self._root_pipeline_key = root_pipeline_key self._result_status = result_status self.outputs = outputs def _callback_internal(self, kwargs): """Used to execute callbacks on asynchronous pipelines.""" logging.debug('Callback %s(*%s, **%s)#%s with params: %r', self._class_path, _short_repr(self.args), _short_repr(self.kwargs), self._pipeline_key.name(), kwargs) return self.callback(**kwargs) def _run_internal(self, context, pipeline_key, root_pipeline_key, caller_output): """Used by the Pipeline evaluator to execute this Pipeline.""" self._set_values_internal( context, pipeline_key, root_pipeline_key, caller_output, _PipelineRecord.RUN) logging.debug('Running %s(*%s, **%s)#%s', self._class_path, _short_repr(self.args), _short_repr(self.kwargs), self._pipeline_key.name()) return self.run(*self.args, **self.kwargs) def _finalized_internal(self, context, pipeline_key, root_pipeline_key, caller_output, aborted): """Used by the Pipeline evaluator to finalize this Pipeline.""" result_status = _PipelineRecord.RUN if aborted: result_status = _PipelineRecord.ABORTED self._set_values_internal( context, pipeline_key, root_pipeline_key, caller_output, result_status) logging.debug('Finalizing %s(*%r, **%r)#%s', self._class_path, _short_repr(self.args), _short_repr(self.kwargs), self._pipeline_key.name()) try: self.finalized() except NotImplementedError: pass def __repr__(self): """Returns a string representation of this Pipeline.""" return '%s(*%s, **%s)' % ( self._class_path, _short_repr(self.args), _short_repr(self.kwargs)) # TODO: Change InOrder and After to use a common thread-local list of # execution modifications to apply to the current evaluating pipeline. class After(object): """Causes all contained Pipelines to run after the given ones complete. Must be used in a 'with' block. """ _local = threading.local() def __init__(self, *futures): """Initializer. Args: *futures: PipelineFutures that all subsequent pipelines should follow. May be empty, in which case this statement does nothing. """ for f in futures: if not isinstance(f, PipelineFuture): raise TypeError('May only pass PipelineFuture instances to After()') self._futures = set(futures) def __enter__(self): """When entering a 'with' block.""" After._thread_init() After._local._after_all_futures.extend(self._futures) def __exit__(self, type, value, trace): """When exiting a 'with' block.""" for future in self._futures: After._local._after_all_futures.remove(future) return False @classmethod def _thread_init(cls): """Ensure thread local is initialized.""" if not hasattr(cls._local, '_after_all_futures'): cls._local._after_all_futures = [] class InOrder(object): """Causes all contained Pipelines to run in order. Must be used in a 'with' block. """ _local = threading.local() @classmethod def _add_future(cls, future): """Adds a future to the list of in-order futures thus far. Args: future: The future to add to the list. """ if cls._local._activated: cls._local._in_order_futures.add(future) def __init__(self): """Initializer.""" def __enter__(self): """When entering a 'with' block.""" InOrder._thread_init() if InOrder._local._activated: raise UnexpectedPipelineError('Already in an InOrder "with" block.') InOrder._local._activated = True InOrder._local._in_order_futures.clear() def __exit__(self, type, value, trace): """When exiting a 'with' block.""" InOrder._local._activated = False InOrder._local._in_order_futures.clear() return False @classmethod def _thread_init(cls): """Ensure thread local is initialized.""" if not hasattr(cls._local, '_in_order_futures'): cls._local._in_order_futures = set() cls._local._activated = False ################################################################################ def _short_repr(obj): """Helper function returns a truncated repr() of an object.""" stringified = repr(obj) if len(stringified) > 200: return '%s... (%d bytes)' % (stringified[:200], len(stringified)) return stringified def _write_json_blob(encoded_value): """Writes a JSON encoded value to a Blobstore File. Args: encoded_value: The encoded JSON string. Returns: The blobstore.BlobKey for the file that was created. """ file_name = files.blobstore.create(mime_type='application/json') handle = files.open(file_name, 'a') try: # Chunk the file into individual writes of less than 1MB, since the files # API does not do buffered writes implicitly. for start_index in xrange(0, len(encoded_value), _MAX_JSON_SIZE): end_index = start_index + _MAX_JSON_SIZE handle.write(encoded_value[start_index:end_index]) finally: handle.close() files.finalize(file_name) return files.blobstore.get_blob_key(file_name) def _dereference_args(pipeline_name, args, kwargs): """Dereference a Pipeline's arguments that are slots, validating them. Each argument value passed in is assumed to be a dictionary with the format: {'type': 'value', 'value': 'serializable'} # A resolved value. {'type': 'slot', 'slot_key': 'str() on a db.Key'} # A pending Slot. Args: pipeline_name: The name of the pipeline class; used for debugging. args: Iterable of positional arguments. kwargs: Dictionary of keyword arguments. Returns: Tuple (args, kwargs) where: Args: A list of positional arguments values that are all dereferenced. Kwargs: A list of keyword arguments values that are all dereferenced. Raises: SlotNotFilledError if any of the supplied 'slot_key' records are not present in the Datastore or have not yet been filled. UnexpectedPipelineError if an unknown parameter type was passed. """ lookup_slots = set() for arg in itertools.chain(args, kwargs.itervalues()): if arg['type'] == 'slot': lookup_slots.add(db.Key(arg['slot_key'])) slot_dict = {} for key, slot_record in zip(lookup_slots, db.get(lookup_slots)): if slot_record is None or slot_record.status != _SlotRecord.FILLED: raise SlotNotFilledError( 'Slot "%s" missing its value. From %s(*args=%s, **kwargs=%s)' % (key, pipeline_name, _short_repr(args), _short_repr(kwargs))) slot_dict[key] = slot_record.value arg_list = [] for current_arg in args: if current_arg['type'] == 'slot': arg_list.append(slot_dict[db.Key(current_arg['slot_key'])]) elif current_arg['type'] == 'value': arg_list.append(current_arg['value']) else: raise UnexpectedPipelineError('Unknown parameter type: %r' % current_arg) kwarg_dict = {} for key, current_arg in kwargs.iteritems(): if current_arg['type'] == 'slot': kwarg_dict[key] = slot_dict[db.Key(current_arg['slot_key'])] elif current_arg['type'] == 'value': kwarg_dict[key] = current_arg['value'] else: raise UnexpectedPipelineError('Unknown parameter type: %r' % current_arg) return (arg_list, kwarg_dict) def _generate_args(pipeline, future, queue_name, base_path): """Generate the params used to describe a Pipeline's depedencies. The arguments passed to this method may be normal values, Slot instances (for named outputs), or PipelineFuture instances (for referring to the default output slot). Args: pipeline: The Pipeline instance to generate args for. future: The PipelineFuture for the Pipeline these arguments correspond to. queue_name: The queue to run the pipeline on. base_path: Relative URL for pipeline URL handlers. Returns: Tuple (dependent_slots, output_slot_keys, params_text, params_blob) where: dependent_slots: List of db.Key instances of _SlotRecords on which this pipeline will need to block before execution (passed to create a _BarrierRecord for running the pipeline). output_slot_keys: List of db.Key instances of _SlotRecords that will be filled by this pipeline during its execution (passed to create a _BarrierRecord for finalizing the pipeline). params_text: JSON dictionary of pipeline parameters to be serialized and saved in a corresponding _PipelineRecord. Will be None if the params are too big and must be saved in a blob instead. params_blob: JSON dictionary of pipeline parameters to be serialized and saved in a Blob file, and then attached to a _PipelineRecord. Will be None if the params data size was small enough to fit in the entity. """ params = { 'args': [], 'kwargs': {}, 'after_all': [], 'output_slots': {}, 'class_path': pipeline._class_path, 'queue_name': queue_name, 'base_path': base_path, 'backoff_seconds': pipeline.backoff_seconds, 'backoff_factor': pipeline.backoff_factor, 'max_attempts': pipeline.max_attempts, 'task_retry': pipeline.task_retry, 'target': pipeline.target, } dependent_slots = set() arg_list = params['args'] for current_arg in pipeline.args: if isinstance(current_arg, PipelineFuture): current_arg = current_arg.default if isinstance(current_arg, Slot): arg_list.append({'type': 'slot', 'slot_key': str(current_arg.key)}) dependent_slots.add(current_arg.key) else: arg_list.append({'type': 'value', 'value': current_arg}) kwarg_dict = params['kwargs'] for name, current_arg in pipeline.kwargs.iteritems(): if isinstance(current_arg, PipelineFuture): current_arg = current_arg.default if isinstance(current_arg, Slot): kwarg_dict[name] = {'type': 'slot', 'slot_key': str(current_arg.key)} dependent_slots.add(current_arg.key) else: kwarg_dict[name] = {'type': 'value', 'value': current_arg} after_all = params['after_all'] for other_future in future._after_all_pipelines: slot_key = other_future._output_dict['default'].key after_all.append(str(slot_key)) dependent_slots.add(slot_key) output_slots = params['output_slots'] output_slot_keys = set() for name, slot in future._output_dict.iteritems(): output_slot_keys.add(slot.key) output_slots[name] = str(slot.key) params_encoded = json.dumps(params) params_text = None params_blob = None if len(params_encoded) > _MAX_JSON_SIZE: params_blob = _write_json_blob(params_encoded) else: params_text = params_encoded return dependent_slots, output_slot_keys, params_text, params_blob class _PipelineContext(object): """Internal API for interacting with Pipeline state.""" _gettime = datetime.datetime.utcnow def __init__(self, task_name, queue_name, base_path): """Initializer. Args: task_name: The name of the currently running task or empty if there is no task running. queue_name: The queue this pipeline should run on (may not be the current queue this request is on). base_path: Relative URL for the pipeline's handlers. """ self.task_name = task_name self.queue_name = queue_name self.base_path = base_path self.barrier_handler_path = '%s/output' % base_path self.pipeline_handler_path = '%s/run' % base_path self.finalized_handler_path = '%s/finalized' % base_path self.fanout_handler_path = '%s/fanout' % base_path self.abort_handler_path = '%s/abort' % base_path self.fanout_abort_handler_path = '%s/fanout_abort' % base_path self.session_filled_output_names = set() @classmethod def from_environ(cls, environ=os.environ): """Constructs a _PipelineContext from the task queue environment.""" base_path, unused = (environ['PATH_INFO'].rsplit('/', 1) + [''])[:2] return cls( environ['HTTP_X_APPENGINE_TASKNAME'], environ['HTTP_X_APPENGINE_QUEUENAME'], base_path) def fill_slot(self, filler_pipeline_key, slot, value): """Fills a slot, enqueueing a task to trigger pending barriers. Args: filler_pipeline_key: db.Key or stringified key of the _PipelineRecord that filled this slot. slot: The Slot instance to fill. value: The serializable value to assign. Raises: UnexpectedPipelineError if the _SlotRecord for the 'slot' could not be found in the Datastore. """ if not isinstance(filler_pipeline_key, db.Key): filler_pipeline_key = db.Key(filler_pipeline_key) if _TEST_MODE: slot._set_value_test(filler_pipeline_key, value) else: encoded_value = json.dumps(value, sort_keys=True) value_text = None value_blob = None if len(encoded_value) <= _MAX_JSON_SIZE: value_text = db.Text(encoded_value) else: # The encoded value is too big. Save it as a blob. value_blob = _write_json_blob(encoded_value) def txn(): slot_record = db.get(slot.key) if slot_record is None: raise UnexpectedPipelineError( 'Tried to fill missing slot "%s" ' 'by pipeline ID "%s" with value: %r' % (slot.key, filler_pipeline_key.name(), value)) # NOTE: Always take the override value here. If down-stream pipelines # need a consitent view of all up-stream outputs (meaning, all of the # outputs came from the same retry attempt of the upstream pipeline), # the down-stream pipeline must also wait for the 'default' output # of these up-stream pipelines. slot_record.filler = filler_pipeline_key slot_record.value_text = value_text slot_record.value_blob = value_blob slot_record.status = _SlotRecord.FILLED slot_record.fill_time = self._gettime() slot_record.put() task = taskqueue.Task( url=self.barrier_handler_path, params=dict(slot_key=slot.key), headers={'X-Ae-Slot-Key': slot.key, 'X-Ae-Filler-Pipeline-Key': filler_pipeline_key}) task.add(queue_name=self.queue_name, transactional=True) db.run_in_transaction(txn) self.session_filled_output_names.add(slot.name) def notify_barriers(self, slot_key, cursor, max_to_notify=_MAX_BARRIERS_TO_NOTIFY): """Searches for barriers affected by a slot and triggers completed ones. Args: slot_key: db.Key or stringified key of the _SlotRecord that was filled. cursor: Stringified Datastore cursor where the notification query should pick up. max_to_notify: Used for testing. """ if not isinstance(slot_key, db.Key): slot_key = db.Key(slot_key) query = ( _BarrierRecord.all(cursor=cursor) .filter('blocking_slots =', slot_key)) results = query.fetch(max_to_notify) # Fetch all blocking _SlotRecords for any potentially triggered barriers. blocking_slot_keys = [] for barrier in results: blocking_slot_keys.extend(barrier.blocking_slots) blocking_slot_dict = {} for slot_record in db.get(blocking_slot_keys): if slot_record is None: continue blocking_slot_dict[slot_record.key()] = slot_record task_list = [] updated_barriers = [] for barrier in results: all_ready = True for blocking_slot_key in barrier.blocking_slots: slot_record = blocking_slot_dict.get(blocking_slot_key) if slot_record is None: logging.error('Barrier "%s" relies on Slot "%s" which is missing.', barrier.key(), blocking_slot_key) all_ready = False break if slot_record.status != _SlotRecord.FILLED: all_ready = False break # When all of the blocking_slots have been filled, consider the barrier # ready to trigger. We'll trigger it regardless of the current # _BarrierRecord status, since there could be task queue failures at any # point in this flow; this rolls forward the state and de-dupes using # the task name tombstones. if all_ready: if barrier.status != _BarrierRecord.FIRED: barrier.status = _BarrierRecord.FIRED barrier.trigger_time = self._gettime() updated_barriers.append(barrier) purpose = barrier.key().name() if purpose == _BarrierRecord.START: path = self.pipeline_handler_path countdown = None else: path = self.finalized_handler_path # NOTE: Wait one second before finalization to prevent # contention on the _PipelineRecord entity. countdown = 1 pipeline_key = _BarrierRecord.target.get_value_for_datastore(barrier) task_list.append(taskqueue.Task( url=path, countdown=countdown, name='ae-barrier-fire-%s-%s' % (pipeline_key.name(), purpose), params=dict(pipeline_key=pipeline_key, purpose=purpose), headers={'X-Ae-Pipeline-Key': pipeline_key})) # Blindly overwrite _BarrierRecords that have an updated status. This is # acceptable because by this point all finalization barriers for # generator children should have already had their final outputs assigned. if updated_barriers: db.put(updated_barriers) # Task continuation with sequence number to prevent fork-bombs. if len(results) == max_to_notify: the_match = re.match('(.*)-ae-barrier-notify-([0-9]+)', self.task_name) if the_match: prefix = the_match.group(1) end = int(the_match.group(2)) + 1 else: prefix = self.task_name end = 0 task_list.append(taskqueue.Task( name='%s-ae-barrier-notify-%d' % (prefix, end), url=self.barrier_handler_path, params=dict(slot_key=slot_key, cursor=query.cursor()))) if task_list: try: taskqueue.Queue(self.queue_name).add(task_list) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError): pass def begin_abort(self, root_pipeline_key, abort_message): """Kicks off the abort process for a root pipeline and all its children. Args: root_pipeline_key: db.Key of the root pipeline to abort. abort_message: Message explaining why the abort happened, only saved into the root pipeline. Returns: True if the abort signal was sent successfully; False otherwise. """ def txn(): pipeline_record = db.get(root_pipeline_key) if pipeline_record is None: logging.warning( 'Tried to abort root pipeline ID "%s" but it does not exist.', root_pipeline_key.name()) raise db.Rollback() if pipeline_record.status == _PipelineRecord.ABORTED: logging.warning( 'Tried to abort root pipeline ID "%s"; already in state: %s', root_pipeline_key.name(), pipeline_record.status) raise db.Rollback() if pipeline_record.abort_requested: logging.warning( 'Tried to abort root pipeline ID "%s"; abort signal already sent.', root_pipeline_key.name()) raise db.Rollback() pipeline_record.abort_requested = True pipeline_record.abort_message = abort_message pipeline_record.put() task = taskqueue.Task( url=self.fanout_abort_handler_path, params=dict(root_pipeline_key=root_pipeline_key)) task.add(queue_name=self.queue_name, transactional=True) return True return db.run_in_transaction(txn) def continue_abort(self, root_pipeline_key, cursor=None, max_to_notify=_MAX_ABORTS_TO_BEGIN): """Sends the abort signal to all children for a root pipeline. Args: root_pipeline_key: db.Key of the root pipeline to abort. cursor: The query cursor for enumerating _PipelineRecords when inserting tasks to cause child pipelines to terminate. max_to_notify: Used for testing. """ if not isinstance(root_pipeline_key, db.Key): root_pipeline_key = db.Key(root_pipeline_key) # NOTE: The results of this query may include _PipelineRecord instances # that are not actually "reachable", meaning you cannot get to them by # starting at the root pipeline and following "fanned_out" onward. This # is acceptable because even these defunct _PipelineRecords will properly # set their status to ABORTED when the signal comes, regardless of any # other status they may have had. # # The only gotcha here is if a Pipeline's finalize method somehow modifies # its inputs (like deleting an input file). In the case there are # unreachable child pipelines, it will appear as if two finalize methods # have been called instead of just one. The saving grace here is that # finalize must be idempotent, so this *should* be harmless. query = ( _PipelineRecord.all(cursor=cursor) .filter('root_pipeline =', root_pipeline_key)) results = query.fetch(max_to_notify) task_list = [] for pipeline_record in results: if pipeline_record.status not in ( _PipelineRecord.RUN, _PipelineRecord.WAITING): continue pipeline_key = pipeline_record.key() task_list.append(taskqueue.Task( name='%s-%s-abort' % (self.task_name, pipeline_key.name()), url=self.abort_handler_path, params=dict(pipeline_key=pipeline_key, purpose=_BarrierRecord.ABORT), headers={'X-Ae-Pipeline-Key': pipeline_key})) # Task continuation with sequence number to prevent fork-bombs. if len(results) == max_to_notify: the_match = re.match('(.*)-([0-9]+)', self.task_name) if the_match: prefix = the_match.group(1) end = int(the_match.group(2)) + 1 else: prefix = self.task_name end = 0 task_list.append(taskqueue.Task( name='%s-%d' % (prefix, end), url=self.fanout_abort_handler_path, params=dict(root_pipeline_key=root_pipeline_key, cursor=query.cursor()))) if task_list: try: taskqueue.Queue(self.queue_name).add(task_list) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError): pass def start(self, pipeline, return_task=True): """Starts a pipeline. Args: pipeline: Pipeline instance to run. return_task: When True, do not submit the task to start the pipeline but instead return it for someone else to enqueue. Returns: The task to start this pipeline if return_task was True. Raises: PipelineExistsError if the pipeline with the given ID already exists. """ # Adjust all pipeline output keys for this Pipeline to be children of # the _PipelineRecord, that way we can write them all and submit in a # single transaction. entities_to_put = [] for name, slot in pipeline.outputs._output_dict.iteritems(): slot.key = db.Key.from_path( *slot.key.to_path(), **dict(parent=pipeline._pipeline_key)) _, output_slots, params_text, params_blob = _generate_args( pipeline, pipeline.outputs, self.queue_name, self.base_path) def txn(): pipeline_record = db.get(pipeline._pipeline_key) if pipeline_record is not None: raise PipelineExistsError( 'Pipeline with idempotence key "%s" already exists; params=%s' % (pipeline._pipeline_key.name(), _short_repr(pipeline_record.params))) entities_to_put = [] for name, slot in pipeline.outputs._output_dict.iteritems(): entities_to_put.append(_SlotRecord( key=slot.key, root_pipeline=pipeline._pipeline_key)) entities_to_put.append(_PipelineRecord( key=pipeline._pipeline_key, root_pipeline=pipeline._pipeline_key, is_root_pipeline=True, # Bug in DB means we need to use the storage name here, # not the local property name. params=params_text, params_blob=params_blob, start_time=self._gettime(), class_path=pipeline._class_path, max_attempts=pipeline.max_attempts)) entities_to_put.append(_BarrierRecord( parent=pipeline._pipeline_key, key_name=_BarrierRecord.FINALIZE, target=pipeline._pipeline_key, root_pipeline=pipeline._pipeline_key, blocking_slots=list(output_slots))) db.put(entities_to_put) task = taskqueue.Task( url=self.pipeline_handler_path, params=dict(pipeline_key=pipeline._pipeline_key), headers={'X-Ae-Pipeline-Key': pipeline._pipeline_key}, target=pipeline.target) if return_task: return task task.add(queue_name=self.queue_name, transactional=True) task = db.run_in_transaction(txn) # Immediately mark the output slots as existing so they can be filled # by asynchronous pipelines or used in test mode. for output_slot in pipeline.outputs._output_dict.itervalues(): output_slot._exists = True return task def start_test(self, pipeline): """Starts a pipeline in the test mode. Args: pipeline: The Pipeline instance to test. """ global _TEST_MODE, _TEST_ROOT_PIPELINE_KEY self.start(pipeline, return_task=True) _TEST_MODE = True _TEST_ROOT_PIPELINE_KEY = pipeline._pipeline_key try: self.evaluate_test(pipeline, root=True) finally: _TEST_MODE = False def evaluate_test(self, stage, root=False): """Recursively evaluates the given pipeline in test mode. Args: stage: The Pipeline instance to run at this stage in the flow. root: True if the supplied stage is the root of the pipeline. """ args_adjusted = [] for arg in stage.args: if isinstance(arg, PipelineFuture): arg = arg.default if isinstance(arg, Slot): value = arg.value arg._touched = True else: value = arg args_adjusted.append(value) kwargs_adjusted = {} for name, arg in stage.kwargs.iteritems(): if isinstance(arg, PipelineFuture): arg = arg.default if isinstance(arg, Slot): value = arg.value arg._touched = True else: value = arg kwargs_adjusted[name] = value stage.args, stage.kwargs = args_adjusted, kwargs_adjusted pipeline_generator = mr_util.is_generator_function(stage.run) logging.debug('Running %s(*%s, **%s)', stage._class_path, _short_repr(stage.args), _short_repr(stage.kwargs)) if stage.async: stage.run_test(*stage.args, **stage.kwargs) elif pipeline_generator: all_output_slots = set() try: pipeline_iter = stage.run_test(*stage.args, **stage.kwargs) except NotImplementedError: pipeline_iter = stage.run(*stage.args, **stage.kwargs) all_substages = set() next_value = None last_sub_stage = None while True: try: yielded = pipeline_iter.send(next_value) except StopIteration: break if isinstance(yielded, Pipeline): if yielded in all_substages: raise UnexpectedPipelineError( 'Already yielded pipeline object %r' % yielded) else: all_substages.add(yielded) last_sub_stage = yielded next_value = yielded.outputs all_output_slots.update(next_value._output_dict.itervalues()) else: raise UnexpectedPipelineError( 'Yielded a disallowed value: %r' % yielded) if last_sub_stage: # Generator's outputs inherited from last running sub-stage. # If the generator changes its mind and doesn't yield anything, this # may not happen at all. Missing outputs will be caught when they # are passed to the stage as inputs, or verified from the outside by # the test runner. for slot_name, slot in last_sub_stage.outputs._output_dict.iteritems(): stage.outputs._output_dict[slot_name] = slot # Any inherited slots won't be checked for declaration. all_output_slots.remove(slot) else: # Generator yielded no children, so treat it as a sync function. stage.outputs.default._set_value_test(stage._pipeline_key, None) # Enforce the policy of requiring all undeclared output slots from # child pipelines to be consumed by their parent generator. for slot in all_output_slots: if slot.name == 'default': continue if slot.filled and not slot._strict and not slot._touched: raise SlotNotDeclaredError( 'Undeclared output "%s"; all dynamic outputs from child ' 'pipelines must be consumed.' % slot.name) else: try: result = stage.run_test(*stage.args, **stage.kwargs) except NotImplementedError: result = stage.run(*stage.args, **stage.kwargs) stage.outputs.default._set_value_test(stage._pipeline_key, result) # Enforce strict output usage at the top level. if root: found_outputs = set() for slot in stage.outputs._output_dict.itervalues(): if slot.filled: found_outputs.add(slot.name) if slot.name == 'default': continue if slot.name not in stage.output_names: raise SlotNotDeclaredError( 'Undeclared output from root pipeline "%s"' % slot.name) missing_outputs = set(stage.output_names) - found_outputs if missing_outputs: raise SlotNotFilledError( 'Outputs %r were never filled.' % missing_outputs) logging.debug('Finalizing %s(*%s, **%s)', stage._class_path, _short_repr(stage.args), _short_repr(stage.kwargs)) ran = False try: stage.finalized_test() ran = True except NotImplementedError: pass if not ran: try: stage.finalized() except NotImplementedError: pass def evaluate(self, pipeline_key, purpose=None, attempt=0): """Evaluates the given Pipeline and enqueues sub-stages for execution. Args: pipeline_key: The db.Key or stringified key of the _PipelineRecord to run. purpose: Why evaluate was called ('start', 'finalize', or 'abort'). attempt: The attempt number that should be tried. """ After._thread_init() InOrder._thread_init() InOrder._local._activated = False if not isinstance(pipeline_key, db.Key): pipeline_key = db.Key(pipeline_key) pipeline_record = db.get(pipeline_key) if pipeline_record is None: logging.error('Pipeline ID "%s" does not exist.', pipeline_key.name()) return if pipeline_record.status not in ( _PipelineRecord.WAITING, _PipelineRecord.RUN): logging.error('Pipeline ID "%s" in bad state for purpose "%s": "%s"', pipeline_key.name(), purpose or _BarrierRecord.START, pipeline_record.status) return params = pipeline_record.params root_pipeline_key = \ _PipelineRecord.root_pipeline.get_value_for_datastore(pipeline_record) default_slot_key = db.Key(params['output_slots']['default']) default_slot_record, root_pipeline_record = db.get([ default_slot_key, root_pipeline_key]) if default_slot_record is None: logging.error('Pipeline ID "%s" default slot "%s" does not exist.', pipeline_key.name(), default_slot_key) return if root_pipeline_record is None: logging.error('Pipeline ID "%s" root pipeline ID "%s" is missing.', pipeline_key.name(), root_pipeline_key.name()) return # Always finalize if we're aborting so pipelines have a chance to cleanup # before they terminate. Pipelines must access 'was_aborted' to find # out how their finalization should work. abort_signal = ( purpose == _BarrierRecord.ABORT or root_pipeline_record.abort_requested == True) finalize_signal = ( (default_slot_record.status == _SlotRecord.FILLED and purpose == _BarrierRecord.FINALIZE) or abort_signal) try: pipeline_func_class = mr_util.for_name(pipeline_record.class_path) except ImportError, e: # This means something is wrong with the deployed code. Rely on the # taskqueue system to do retries. retry_message = '%s: %s' % (e.__class__.__name__, str(e)) logging.exception( 'Could not locate %s#%s. %s', pipeline_record.class_path, pipeline_key.name(), retry_message) raise try: pipeline_func = pipeline_func_class.from_id( pipeline_key.name(), resolve_outputs=finalize_signal, _pipeline_record=pipeline_record) except SlotNotFilledError, e: logging.exception( 'Could not resolve arguments for %s#%s. Most likely this means there ' 'is a bug in the Pipeline runtime or some intermediate data has been ' 'deleted from the Datastore. Giving up.', pipeline_record.class_path, pipeline_key.name()) self.transition_aborted(pipeline_key) return except Exception, e: retry_message = '%s: %s' % (e.__class__.__name__, str(e)) logging.exception( 'Instantiating %s#%s raised exception. %s', pipeline_record.class_path, pipeline_key.name(), retry_message) self.transition_retry(pipeline_key, retry_message) if pipeline_record.params['task_retry']: raise else: return else: pipeline_generator = mr_util.is_generator_function( pipeline_func_class.run) caller_output = pipeline_func.outputs if (abort_signal and pipeline_func.async and pipeline_record.status == _PipelineRecord.RUN and not pipeline_func.try_cancel()): logging.warning( 'Could not cancel and abort mid-flight async pipeline: %r#%s', pipeline_func, pipeline_key.name()) return if finalize_signal: try: pipeline_func._finalized_internal( self, pipeline_key, root_pipeline_key, caller_output, abort_signal) except Exception, e: # This means something is wrong with the deployed finalization code. # Rely on the taskqueue system to do retries. retry_message = '%s: %s' % (e.__class__.__name__, str(e)) logging.exception('Finalizing %r#%s raised exception. %s', pipeline_func, pipeline_key.name(), retry_message) raise else: if not abort_signal: self.transition_complete(pipeline_key) return if abort_signal: logging.debug('Marking as aborted %s#%s', pipeline_func, pipeline_key.name()) self.transition_aborted(pipeline_key) return if pipeline_record.current_attempt != attempt: logging.error( 'Received evaluation task for pipeline ID "%s" attempt %d but ' 'current pending attempt is %d', pipeline_key.name(), attempt, pipeline_record.current_attempt) return if pipeline_record.current_attempt >= pipeline_record.max_attempts: logging.error( 'Received evaluation task for pipeline ID "%s" on attempt %d ' 'but that exceeds max attempts %d', pipeline_key.name(), attempt, pipeline_record.max_attempts) return if pipeline_record.next_retry_time is not None: retry_time = pipeline_record.next_retry_time - _RETRY_WIGGLE_TIMEDELTA if self._gettime() <= retry_time: detail_message = ( 'Received evaluation task for pipeline ID "%s" on attempt %d, ' 'which will not be ready until: %s' % (pipeline_key.name(), pipeline_record.current_attempt, pipeline_record.next_retry_time)) logging.warning(detail_message) raise UnexpectedPipelineError(detail_message) if pipeline_record.status == _PipelineRecord.RUN and pipeline_generator: if (default_slot_record.status == _SlotRecord.WAITING and not pipeline_record.fanned_out): # This properly handles the yield-less generator case when the # RUN state transition worked properly but outputting to the default # slot failed. self.fill_slot(pipeline_key, caller_output.default, None) return if (pipeline_record.status == _PipelineRecord.WAITING and pipeline_func.async): self.transition_run(pipeline_key) try: result = pipeline_func._run_internal( self, pipeline_key, root_pipeline_key, caller_output) except Exception, e: if self.handle_run_exception(pipeline_key, pipeline_func, e): raise else: return if pipeline_func.async: return if not pipeline_generator: # Catch any exceptions that are thrown when the pipeline's return # value is being serialized. This ensures that serialization errors # will cause normal abort/retry behavior. try: self.fill_slot(pipeline_key, caller_output.default, result) except Exception, e: retry_message = 'Bad return value. %s: %s' % ( e.__class__.__name__, str(e)) logging.exception( 'Generator %r#%s caused exception while serializing return ' 'value %r. %s', pipeline_func, pipeline_key.name(), result, retry_message) self.transition_retry(pipeline_key, retry_message) if pipeline_func.task_retry: raise else: return expected_outputs = set(caller_output._output_dict.iterkeys()) found_outputs = self.session_filled_output_names if expected_outputs != found_outputs: exception = SlotNotFilledError( 'Outputs %r for pipeline ID "%s" were never filled by "%s".' % ( expected_outputs - found_outputs, pipeline_key.name(), pipeline_func._class_path)) if self.handle_run_exception(pipeline_key, pipeline_func, exception): raise exception return pipeline_iter = result next_value = None last_sub_stage = None sub_stage = None sub_stage_dict = {} sub_stage_ordering = [] while True: try: yielded = pipeline_iter.send(next_value) except StopIteration: break except Exception, e: if self.handle_run_exception(pipeline_key, pipeline_func, e): raise else: return if isinstance(yielded, Pipeline): if yielded in sub_stage_dict: raise UnexpectedPipelineError( 'Already yielded pipeline object %r with pipeline ID %s' % (yielded, yielded.pipeline_id)) last_sub_stage = yielded next_value = PipelineFuture(yielded.output_names) next_value._after_all_pipelines.update(After._local._after_all_futures) next_value._after_all_pipelines.update(InOrder._local._in_order_futures) sub_stage_dict[yielded] = next_value sub_stage_ordering.append(yielded) InOrder._add_future(next_value) # To aid local testing, the task_retry flag (which instructs the # evaluator to raise all exceptions back up to the task queue) is # inherited by all children from the root down. yielded.task_retry = pipeline_func.task_retry else: raise UnexpectedPipelineError( 'Yielded a disallowed value: %r' % yielded) if last_sub_stage: # Final yielded stage inherits outputs from calling pipeline that were not # already filled during the generator's execution. inherited_outputs = params['output_slots'] for slot_name in self.session_filled_output_names: del inherited_outputs[slot_name] sub_stage_dict[last_sub_stage]._inherit_outputs( pipeline_record.class_path, inherited_outputs) else: # Here the generator has yielded nothing, and thus acts as a synchronous # function. We can skip the rest of the generator steps completely and # fill the default output slot to cause finalizing. expected_outputs = set(caller_output._output_dict.iterkeys()) expected_outputs.remove('default') found_outputs = self.session_filled_output_names if expected_outputs != found_outputs: exception = SlotNotFilledError( 'Outputs %r for pipeline ID "%s" were never filled by "%s".' % ( expected_outputs - found_outputs, pipeline_key.name(), pipeline_func._class_path)) if self.handle_run_exception(pipeline_key, pipeline_func, exception): raise exception else: self.fill_slot(pipeline_key, caller_output.default, None) self.transition_run(pipeline_key) return # Allocate any SlotRecords that do not yet exist. entities_to_put = [] for future in sub_stage_dict.itervalues(): for slot in future._output_dict.itervalues(): if not slot._exists: entities_to_put.append(_SlotRecord( key=slot.key, root_pipeline=root_pipeline_key)) # Allocate PipelineRecords and BarrierRecords for generator-run Pipelines. pipelines_to_run = set() all_children_keys = [] all_output_slots = set() for sub_stage in sub_stage_ordering: future = sub_stage_dict[sub_stage] # Catch any exceptions that are thrown when the pipeline's parameters # are being serialized. This ensures that serialization errors will # cause normal retry/abort behavior. try: dependent_slots, output_slots, params_text, params_blob = \ _generate_args(sub_stage, future, self.queue_name, self.base_path) except Exception, e: retry_message = 'Bad child arguments. %s: %s' % ( e.__class__.__name__, str(e)) logging.exception( 'Generator %r#%s caused exception while serializing args for ' 'child pipeline %r. %s', pipeline_func, pipeline_key.name(), sub_stage, retry_message) self.transition_retry(pipeline_key, retry_message) if pipeline_func.task_retry: raise else: return child_pipeline_key = db.Key.from_path( _PipelineRecord.kind(), uuid.uuid1().hex) all_output_slots.update(output_slots) all_children_keys.append(child_pipeline_key) child_pipeline = _PipelineRecord( key=child_pipeline_key, root_pipeline=root_pipeline_key, # Bug in DB means we need to use the storage name here, # not the local property name. params=params_text, params_blob=params_blob, class_path=sub_stage._class_path, max_attempts=sub_stage.max_attempts) entities_to_put.append(child_pipeline) if not dependent_slots: # This child pipeline will run immediately. pipelines_to_run.add(child_pipeline_key) child_pipeline.start_time = self._gettime() else: entities_to_put.append(_BarrierRecord( parent=child_pipeline_key, key_name=_BarrierRecord.START, target=child_pipeline_key, root_pipeline=root_pipeline_key, blocking_slots=list(dependent_slots))) entities_to_put.append(_BarrierRecord( parent=child_pipeline_key, key_name=_BarrierRecord.FINALIZE, target=child_pipeline_key, root_pipeline=root_pipeline_key, blocking_slots=list(output_slots))) db.put(entities_to_put) self.transition_run(pipeline_key, blocking_slot_keys=all_output_slots, fanned_out_pipelines=all_children_keys, pipelines_to_run=pipelines_to_run) def handle_run_exception(self, pipeline_key, pipeline_func, e): """Handles an exception raised by a Pipeline's user code. Args: pipeline_key: The pipeline that raised the error. pipeline_func: The class path name of the Pipeline that was running. e: The exception that was raised. Returns: True if the exception should be re-raised up through the calling stack by the caller of this method. """ if isinstance(e, Retry): retry_message = str(e) logging.warning('User forced retry for pipeline ID "%s" of %r: %s', pipeline_key.name(), pipeline_func, retry_message) self.transition_retry(pipeline_key, retry_message) elif isinstance(e, Abort): abort_message = str(e) logging.warning('User forced abort for pipeline ID "%s" of %r: %s', pipeline_key.name(), pipeline_func, abort_message) pipeline_func.abort(abort_message) else: retry_message = '%s: %s' % (e.__class__.__name__, str(e)) logging.exception('Generator %r#%s raised exception. %s', pipeline_func, pipeline_key.name(), retry_message) self.transition_retry(pipeline_key, retry_message) return pipeline_func.task_retry def transition_run(self, pipeline_key, blocking_slot_keys=None, fanned_out_pipelines=None, pipelines_to_run=None): """Marks an asynchronous or generator pipeline as running. Does nothing if the pipeline is no longer in a runnable state. Args: pipeline_key: The db.Key of the _PipelineRecord to update. blocking_slot_keys: List of db.Key instances that this pipeline's finalization barrier should wait on in addition to the existing one. This is used to update the barrier to include all child outputs. When None, the barrier will not be updated. fanned_out_pipelines: List of db.Key instances of _PipelineRecords that were fanned out by this generator pipeline. This is distinct from the 'pipelines_to_run' list because not all of the pipelines listed here will be immediately ready to execute. When None, then this generator yielded no children. pipelines_to_run: List of db.Key instances of _PipelineRecords that should be kicked off (fan-out) transactionally as part of this transition. When None, no child pipelines will run. All db.Keys in this list must also be present in the fanned_out_pipelines list. Raises: UnexpectedPipelineError if blocking_slot_keys was not empty and the _BarrierRecord has gone missing. """ def txn(): pipeline_record = db.get(pipeline_key) if pipeline_record is None: logging.warning('Pipeline ID "%s" cannot be marked as run. ' 'Does not exist.', pipeline_key.name()) raise db.Rollback() if pipeline_record.status != _PipelineRecord.WAITING: logging.warning('Pipeline ID "%s" in bad state to be marked as run: %s', pipeline_key.name(), pipeline_record.status) raise db.Rollback() pipeline_record.status = _PipelineRecord.RUN if fanned_out_pipelines: # NOTE: We must model the pipeline relationship in a top-down manner, # meaning each pipeline must point forward to the pipelines that it # fanned out to. The reason is race conditions. If evaluate() # dies early, it may create many unused _PipelineRecord and _SlotRecord # instances that never progress. The only way we know which of these # are valid is by traversing the graph from the root, where the # fanned_out property refers to those pipelines that were run using a # transactional task. child_pipeline_list = list(fanned_out_pipelines) pipeline_record.fanned_out = child_pipeline_list if pipelines_to_run: child_indexes = [ child_pipeline_list.index(p) for p in pipelines_to_run] child_indexes.sort() task = taskqueue.Task( url=self.fanout_handler_path, params=dict(parent_key=str(pipeline_key), child_indexes=child_indexes)) task.add(queue_name=self.queue_name, transactional=True) pipeline_record.put() if blocking_slot_keys: # NOTE: Always update a generator pipeline's finalization barrier to # include all of the outputs of any pipelines that it runs, to ensure # that finalized calls will not happen until all child pipelines have # completed. barrier_key = db.Key.from_path( _BarrierRecord.kind(), _BarrierRecord.FINALIZE, parent=pipeline_key) finalize_barrier = db.get(barrier_key) if finalize_barrier is None: raise UnexpectedPipelineError( 'Pipeline ID "%s" cannot update finalize barrier. ' 'Does not exist.' % pipeline_key.name()) else: finalize_barrier.blocking_slots = list( blocking_slot_keys.union(set(finalize_barrier.blocking_slots))) finalize_barrier.put() db.run_in_transaction(txn) def transition_complete(self, pipeline_key): """Marks the given pipeline as complete. Does nothing if the pipeline is no longer in a state that can be completed. Args: pipeline_key: db.Key of the _PipelineRecord that has completed. """ def txn(): pipeline_record = db.get(pipeline_key) if pipeline_record is None: logging.warning( 'Tried to mark pipeline ID "%s" as complete but it does not exist.', pipeline_key.name()) raise db.Rollback() if pipeline_record.status not in ( _PipelineRecord.WAITING, _PipelineRecord.RUN): logging.warning( 'Tried to mark pipeline ID "%s" as complete, found bad state: %s', pipeline_key.name(), pipeline_record.status) raise db.Rollback() pipeline_record.status = _PipelineRecord.DONE pipeline_record.finalized_time = self._gettime() pipeline_record.put() db.run_in_transaction(txn) def transition_retry(self, pipeline_key, retry_message): """Marks the given pipeline as requiring another retry. Does nothing if all attempts have been exceeded. Args: pipeline_key: db.Key of the _PipelineRecord that needs to be retried. retry_message: User-supplied message indicating the reason for the retry. """ def txn(): pipeline_record = db.get(pipeline_key) if pipeline_record is None: logging.warning( 'Tried to retry pipeline ID "%s" but it does not exist.', pipeline_key.name()) raise db.Rollback() if pipeline_record.status not in ( _PipelineRecord.WAITING, _PipelineRecord.RUN): logging.warning( 'Tried to retry pipeline ID "%s", found bad state: %s', pipeline_key.name(), pipeline_record.status) raise db.Rollback() params = pipeline_record.params offset_seconds = (params['backoff_seconds'] * (params['backoff_factor'] ** pipeline_record.current_attempt)) pipeline_record.next_retry_time = ( self._gettime() + datetime.timedelta(seconds=offset_seconds)) pipeline_record.current_attempt += 1 pipeline_record.retry_message = retry_message pipeline_record.status = _PipelineRecord.WAITING if pipeline_record.current_attempt >= pipeline_record.max_attempts: root_pipeline_key = ( _PipelineRecord.root_pipeline.get_value_for_datastore( pipeline_record)) logging.warning( 'Giving up on pipeline ID "%s" after %d attempt(s); causing abort ' 'all the way to the root pipeline ID "%s"', pipeline_key.name(), pipeline_record.current_attempt, root_pipeline_key.name()) # NOTE: We do *not* set the status to aborted here to ensure that # this pipeline will be finalized before it has been marked as aborted. pipeline_record.abort_message = ( 'Aborting after %d attempts' % pipeline_record.current_attempt) task = taskqueue.Task( url=self.fanout_abort_handler_path, params=dict(root_pipeline_key=root_pipeline_key)) task.add(queue_name=self.queue_name, transactional=True) else: task = taskqueue.Task( url=self.pipeline_handler_path, eta=pipeline_record.next_retry_time, params=dict(pipeline_key=pipeline_key, purpose=_BarrierRecord.START, attempt=pipeline_record.current_attempt), headers={'X-Ae-Pipeline-Key': pipeline_key}) task.add(queue_name=self.queue_name, transactional=True) pipeline_record.put() db.run_in_transaction(txn) def transition_aborted(self, pipeline_key): """Makes the given pipeline as having aborted. Does nothing if the pipeline is in a bad state. Args: pipeline_key: db.Key of the _PipelineRecord that needs to be retried. """ def txn(): pipeline_record = db.get(pipeline_key) if pipeline_record is None: logging.warning( 'Tried to abort pipeline ID "%s" but it does not exist.', pipeline_key.name()) raise db.Rollback() if pipeline_record.status not in ( _PipelineRecord.WAITING, _PipelineRecord.RUN): logging.warning( 'Tried to abort pipeline ID "%s", found bad state: %s', pipeline_key.name(), pipeline_record.status) raise db.Rollback() pipeline_record.status = _PipelineRecord.ABORTED pipeline_record.finalized_time = self._gettime() pipeline_record.put() db.run_in_transaction(txn) ################################################################################ class _BarrierHandler(webapp2.RequestHandler): """Request handler for triggering barriers.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return context = _PipelineContext.from_environ(self.request.environ) context.notify_barriers( self.request.get('slot_key'), self.request.get('cursor')) class _PipelineHandler(webapp2.RequestHandler): """Request handler for running pipelines.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return context = _PipelineContext.from_environ(self.request.environ) context.evaluate(self.request.get('pipeline_key'), purpose=self.request.get('purpose'), attempt=int(self.request.get('attempt', '0'))) class _FanoutAbortHandler(webapp2.RequestHandler): """Request handler for fanning out abort notifications.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return context = _PipelineContext.from_environ(self.request.environ) context.continue_abort( self.request.get('root_pipeline_key'), self.request.get('cursor')) class _FanoutHandler(webapp2.RequestHandler): """Request handler for fanning out pipeline children.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return context = _PipelineContext.from_environ(self.request.environ) # Set of stringified db.Keys of children to run. all_pipeline_keys = set() # For backwards compatibility with the old style of fan-out requests. all_pipeline_keys.update(self.request.get_all('pipeline_key')) # Fetch the child pipelines from the parent. This works around the 10KB # task payload limit. This get() is consistent-on-read and the fan-out # task is enqueued in the transaction that updates the parent, so the # fanned_out property is consistent here. parent_key = self.request.get('parent_key') child_indexes = [int(x) for x in self.request.get_all('child_indexes')] if parent_key: parent_key = db.Key(parent_key) parent = db.get(parent_key) for index in child_indexes: all_pipeline_keys.add(str(parent.fanned_out[index])) all_tasks = [] for pipeline_key in all_pipeline_keys: all_tasks.append(taskqueue.Task( url=context.pipeline_handler_path, params=dict(pipeline_key=pipeline_key), headers={'X-Ae-Pipeline-Key': pipeline_key}, name='ae-pipeline-fan-out-' + db.Key(pipeline_key).name())) batch_size = 100 # Limit of taskqueue API bulk add. for i in xrange(0, len(all_tasks), batch_size): batch = all_tasks[i:i+batch_size] try: taskqueue.Queue(context.queue_name).add(batch) except (taskqueue.TombstonedTaskError, taskqueue.TaskAlreadyExistsError): pass class _CleanupHandler(webapp2.RequestHandler): """Request handler for cleaning up a Pipeline.""" def post(self): if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: self.response.set_status(403) return root_pipeline_key = db.Key(self.request.get('root_pipeline_key')) logging.debug('Cleaning up root_pipeline_key=%r', root_pipeline_key) # TODO(user): Accumulate all BlobKeys from _PipelineRecord and # _SlotRecord entities and delete them. pipeline_keys = ( _PipelineRecord.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(pipeline_keys) slot_keys = ( _SlotRecord.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(slot_keys) barrier_keys = ( _BarrierRecord.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(barrier_keys) status_keys = ( _StatusRecord.all(keys_only=True) .filter('root_pipeline =', root_pipeline_key)) db.delete(status_keys) class _CallbackHandler(webapp2.RequestHandler): """Receives asynchronous callback requests from humans or tasks.""" def post(self): self.get() def get(self): # NOTE: The rest of these validations and the undescriptive error code 400 # are present to address security risks of giving external users access to # cause PipelineRecord lookups and execution. This approach is still # vulnerable to timing attacks, since db.get() will have different latency # depending on existence. Luckily, the key names are generally unguessable # UUIDs, so the risk here is low. pipeline_id = self.request.get('pipeline_id') if not pipeline_id: logging.error('"pipeline_id" parameter missing.') self.response.set_status(400) return pipeline_key = db.Key.from_path(_PipelineRecord.kind(), pipeline_id) pipeline_record = db.get(pipeline_key) if pipeline_record is None: logging.error('Pipeline ID "%s" for callback does not exist.', pipeline_id) self.response.set_status(400) return params = pipeline_record.params real_class_path = params['class_path'] try: pipeline_func_class = mr_util.for_name(real_class_path) except ImportError, e: logging.error('Cannot load class named "%s" for pipeline ID "%s".', real_class_path, pipeline_id) self.response.set_status(400) return if 'HTTP_X_APPENGINE_TASKNAME' not in self.request.environ: if pipeline_func_class.public_callbacks: pass elif pipeline_func_class.admin_callbacks: if not users.is_current_user_admin(): logging.error('Unauthorized callback for admin-only pipeline ID "%s"', pipeline_id) self.response.set_status(400) return else: logging.error('External callback for internal-only pipeline ID "%s"', pipeline_id) self.response.set_status(400) return stage = pipeline_func_class.from_id(pipeline_id) if stage is None: logging.error('Pipeline ID "%s" deleted during callback', pipeline_id) self.response.set_status(400) return kwargs = {} for key in self.request.arguments(): if key != 'pipeline_id': kwargs[str(key)] = self.request.get(key) callback_result = stage._callback_internal(kwargs) if callback_result is not None: status_code, content_type, content = callback_result self.response.set_status(status_code) self.response.headers['Content-Type'] = content_type self.response.out.write(content) ################################################################################ def _get_timestamp_ms(when): """Converts a datetime.datetime to integer milliseconds since the epoch. Requires special handling to preserve microseconds. Args: when: A datetime.datetime instance. Returns: Integer time since the epoch in milliseconds. """ ms_since_epoch = float(time.mktime(when.utctimetuple()) * 1000.0) ms_since_epoch += when.microsecond / 1000.0 return int(ms_since_epoch) def _get_internal_status(pipeline_key=None, pipeline_dict=None, slot_dict=None, barrier_dict=None, status_dict=None): """Gets the UI dictionary of a pipeline from a set of status dictionaries. Args: pipeline_key: The key of the pipeline to lookup. pipeline_dict: Dictionary mapping pipeline db.Key to _PipelineRecord. Default is an empty dictionary. slot_dict: Dictionary mapping slot db.Key to _SlotRecord. Default is an empty dictionary. barrier_dict: Dictionary mapping barrier db.Key to _BarrierRecord. Default is an empty dictionary. status_dict: Dictionary mapping status record db.Key to _StatusRecord. Default is an empty dictionary. Returns: Dictionary with the keys: classPath: The pipeline function being run. args: List of positional argument slot dictionaries. kwargs: Dictionary of keyword argument slot dictionaries. outputs: Dictionary of output slot dictionaries. children: List of child pipeline IDs. queueName: Queue on which this pipeline is running. afterSlotKeys: List of Slot Ids after which this pipeline runs. currentAttempt: Number of the current attempt, starting at 1. maxAttempts: Maximum number of attempts before aborting. backoffSeconds: Constant factor for backoff before retrying. backoffFactor: Exponential factor for backoff before retrying. status: Current status of the pipeline. startTimeMs: When this pipeline ran or will run due to retries, if present. endTimeMs: When this pipeline finalized, if present. lastRetryMessage: Why the pipeline failed during the last retry, if there was a failure; may be empty. abortMessage: For root pipelines, why the pipeline was aborted if it was aborted; may be empty. Dictionary will contain these keys if explicit status is set: statusTimeMs: When the status was set as milliseconds since the epoch. statusMessage: Status message, if present. statusConsoleUrl: The relative URL for the console of this pipeline. statusLinks: Dictionary mapping human-readable names to relative URLs for related URLs to this pipeline. Raises: PipelineStatusError if any input is bad. """ if pipeline_dict is None: pipeline_dict = {} if slot_dict is None: slot_dict = {} if barrier_dict is None: barrier_dict = {} if status_dict is None: status_dict = {} pipeline_record = pipeline_dict.get(pipeline_key) if pipeline_record is None: raise PipelineStatusError( 'Could not find pipeline ID "%s"' % pipeline_key.name()) params = pipeline_record.params root_pipeline_key = \ _PipelineRecord.root_pipeline.get_value_for_datastore(pipeline_record) default_slot_key = db.Key(params['output_slots']['default']) start_barrier_key = db.Key.from_path( _BarrierRecord.kind(), _BarrierRecord.START, parent=pipeline_key) finalize_barrier_key = db.Key.from_path( _BarrierRecord.kind(), _BarrierRecord.FINALIZE, parent=pipeline_key) status_record_key = db.Key.from_path( _StatusRecord.kind(), pipeline_key.name()) start_barrier = barrier_dict.get(start_barrier_key) finalize_barrier = barrier_dict.get(finalize_barrier_key) default_slot = slot_dict.get(default_slot_key) status_record = status_dict.get(status_record_key) if finalize_barrier is None: raise PipelineStatusError( 'Finalization barrier missing for pipeline ID "%s"' % pipeline_key.name()) if default_slot is None: raise PipelineStatusError( 'Default output slot with key=%s missing for pipeline ID "%s"' % ( default_slot_key, pipeline_key.name())) output = { 'classPath': pipeline_record.class_path, 'args': list(params['args']), 'kwargs': params['kwargs'].copy(), 'outputs': params['output_slots'].copy(), 'children': [key.name() for key in pipeline_record.fanned_out], 'queueName': params['queue_name'], 'afterSlotKeys': [str(key) for key in params['after_all']], 'currentAttempt': pipeline_record.current_attempt + 1, 'maxAttempts': pipeline_record.max_attempts, 'backoffSeconds': pipeline_record.params['backoff_seconds'], 'backoffFactor': pipeline_record.params['backoff_factor'], } # TODO(user): Truncate args, kwargs, and outputs to < 1MB each so we # can reasonably return the whole tree of pipelines and their outputs. # Coerce each value to a string to truncate if necessary. For now if the # params are too big it will just cause the whole status page to break. # Fix the key names in parameters to match JavaScript style. for value_dict in itertools.chain( output['args'], output['kwargs'].itervalues()): if 'slot_key' in value_dict: value_dict['slotKey'] = value_dict.pop('slot_key') # Figure out the pipeline's status. if pipeline_record.status in (_PipelineRecord.WAITING, _PipelineRecord.RUN): if default_slot.status == _SlotRecord.FILLED: status = 'finalizing' elif (pipeline_record.status == _PipelineRecord.WAITING and pipeline_record.next_retry_time is not None): status = 'retry' elif start_barrier and start_barrier.status == _BarrierRecord.WAITING: # start_barrier will be missing for root pipelines status = 'waiting' else: status = 'run' elif pipeline_record.status == _PipelineRecord.DONE: status = 'done' elif pipeline_record.status == _PipelineRecord.ABORTED: status = 'aborted' output['status'] = status if status_record: output['statusTimeMs'] = _get_timestamp_ms(status_record.status_time) if status_record.message: output['statusMessage'] = status_record.message if status_record.console_url: output['statusConsoleUrl'] = status_record.console_url if status_record.link_names: output['statusLinks'] = dict( zip(status_record.link_names, status_record.link_urls)) # Populate status-depenedent fields. if status in ('run', 'finalizing', 'done', 'retry'): if pipeline_record.next_retry_time is not None: output['startTimeMs'] = _get_timestamp_ms(pipeline_record.next_retry_time) elif start_barrier: # start_barrier will be missing for root pipelines output['startTimeMs'] = _get_timestamp_ms(start_barrier.trigger_time) elif pipeline_record.start_time: # Assume this pipeline ran immediately upon spawning with no # start barrier or it's the root pipeline. output['startTimeMs'] = _get_timestamp_ms(pipeline_record.start_time) if status in ('finalizing',): output['endTimeMs'] = _get_timestamp_ms(default_slot.fill_time) if status in ('done',): output['endTimeMs'] = _get_timestamp_ms(pipeline_record.finalized_time) if pipeline_record.next_retry_time is not None: output['lastRetryMessage'] = pipeline_record.retry_message if pipeline_record.abort_message: output['abortMessage'] = pipeline_record.abort_message return output def _get_internal_slot(slot_key=None, filler_pipeline_key=None, slot_dict=None): """Gets information about a _SlotRecord for display in UI. Args: slot_key: The db.Key of the slot to fetch. filler_pipeline_key: In the case the slot has not yet been filled, assume that the given db.Key (for a _PipelineRecord) will be the filler of the slot in the future. slot_dict: The slot JSON dictionary. Returns: Dictionary with the keys: status: Slot status: 'filled' or 'waiting' fillTimeMs: Time in milliseconds since the epoch of when it was filled. value: The current value of the slot, which is a slot's JSON dictionary. fillerPipelineId: The pipeline ID of what stage has or should fill this slot. Raises: PipelineStatusError if any input is bad. """ if slot_dict is None: slot_dict = {} slot_record = slot_dict.get(slot_key) if slot_record is None: raise PipelineStatusError( 'Could not find data for output slot key "%s".' % slot_key) output = {} if slot_record.status == _SlotRecord.FILLED: output['status'] = 'filled' output['fillTimeMs'] = _get_timestamp_ms(slot_record.fill_time) output['value'] = slot_record.value filler_pipeline_key = \ _SlotRecord.filler.get_value_for_datastore(slot_record) else: output['status'] = 'waiting' if filler_pipeline_key: output['fillerPipelineId'] = filler_pipeline_key.name() return output def get_status_tree(root_pipeline_id): """Gets the full status tree of a pipeline. Args: root_pipeline_id: The root pipeline ID to get status for. Returns: Dictionary with the keys: rootPipelineId: The ID of the root pipeline. slots: Mapping of slot IDs to result of from _get_internal_slot. pipelines: Mapping of pipeline IDs to result of _get_internal_status. Raises: PipelineStatusError if any input is bad. """ root_pipeline_key = db.Key.from_path(_PipelineRecord.kind(), root_pipeline_id) root_pipeline_record = db.get(root_pipeline_key) if root_pipeline_record is None: raise PipelineStatusError( 'Could not find pipeline ID "%s"' % root_pipeline_id) if (root_pipeline_key != _PipelineRecord.root_pipeline.get_value_for_datastore( root_pipeline_record)): raise PipelineStatusError( 'Pipeline ID "%s" is not a root pipeline!' % root_pipeline_id) found_pipeline_dict = dict((stage.key(), stage) for stage in _PipelineRecord.all().filter('root_pipeline =', root_pipeline_key)) found_slot_dict = dict((slot.key(), slot) for slot in _SlotRecord.all().filter('root_pipeline =', root_pipeline_key)) found_barrier_dict = dict((barrier.key(), barrier) for barrier in _BarrierRecord.all().filter('root_pipeline =', root_pipeline_key)) found_status_dict = dict((status.key(), status) for status in _StatusRecord.all().filter('root_pipeline =', root_pipeline_key)) # Breadth-first traversal of _PipelineRecord instances by following # _PipelineRecord.fanned_out property values. valid_pipeline_keys = set([root_pipeline_key]) slot_filler_dict = {} # slot_key to pipeline_key expand_stack = [root_pipeline_record] while expand_stack: old_stack = expand_stack expand_stack = [] for pipeline_record in old_stack: for child_pipeline_key in pipeline_record.fanned_out: # This will let us prune off those pipelines which were allocated in # the Datastore but were never run due to mid-flight task failures. child_pipeline_record = found_pipeline_dict.get(child_pipeline_key) if child_pipeline_record is None: raise PipelineStatusError( 'Pipeline ID "%s" points to child ID "%s" which does not exist.' % (pipeline_record.key().name(), child_pipeline_key.name())) expand_stack.append(child_pipeline_record) valid_pipeline_keys.add(child_pipeline_key) # Figure out the deepest pipeline that's responsible for outputting to # a particular _SlotRecord, so we can report which pipeline *should* # be the filler. child_outputs = child_pipeline_record.params['output_slots'] for output_slot_key in child_outputs.itervalues(): slot_filler_dict[db.Key(output_slot_key)] = child_pipeline_key output = { 'rootPipelineId': root_pipeline_id, 'slots': {}, 'pipelines': {}, } for pipeline_key in found_pipeline_dict.keys(): if pipeline_key not in valid_pipeline_keys: continue output['pipelines'][pipeline_key.name()] = _get_internal_status( pipeline_key=pipeline_key, pipeline_dict=found_pipeline_dict, slot_dict=found_slot_dict, barrier_dict=found_barrier_dict, status_dict=found_status_dict) for slot_key, filler_pipeline_key in slot_filler_dict.iteritems(): output['slots'][str(slot_key)] = _get_internal_slot( slot_key=slot_key, filler_pipeline_key=filler_pipeline_key, slot_dict=found_slot_dict) return output def get_pipeline_names(): """Returns the class paths of all Pipelines defined in alphabetical order.""" class_path_set = set() for cls in _PipelineMeta._all_classes: if cls._class_path is None: cls._set_class_path() if cls._class_path is not None: class_path_set.add(cls._class_path) return sorted(class_path_set) def get_root_list(class_path=None, cursor=None, count=50): """Gets a list root Pipelines. Args: class_path: Optional. If supplied, only return root Pipelines with the given class_path. By default all root pipelines are returned. cursor: Optional. When supplied, the cursor returned from the last call to get_root_list which indicates where to pick up. count: How many pipeline returns to return. Returns: Dictionary with the keys: pipelines: The list of Pipeline records in the same format as returned by get_status_tree, but with only the roots listed. cursor: Cursor to pass back to this function to resume the query. Will only be present if there is another page of results. Raises: PipelineStatusError if any input is bad. """ query = _PipelineRecord.all(cursor=cursor) if class_path: query.filter('class_path =', class_path) query.filter('is_root_pipeline =', True) query.order('-start_time') root_list = query.fetch(count) fetch_list = [] for pipeline_record in root_list: fetch_list.append(db.Key(pipeline_record.params['output_slots']['default'])) fetch_list.append(db.Key.from_path( _BarrierRecord.kind(), _BarrierRecord.FINALIZE, parent=pipeline_record.key())) fetch_list.append(db.Key.from_path( _StatusRecord.kind(), pipeline_record.key().name())) pipeline_dict = dict((stage.key(), stage) for stage in root_list) slot_dict = {} barrier_dict = {} status_dict = {} for entity in db.get(fetch_list): if isinstance(entity, _BarrierRecord): barrier_dict[entity.key()] = entity elif isinstance(entity, _SlotRecord): slot_dict[entity.key()] = entity elif isinstance(entity, _StatusRecord): status_dict[entity.key()] = entity results = [] for pipeline_record in root_list: output = _get_internal_status( pipeline_record.key(), pipeline_dict=pipeline_dict, slot_dict=slot_dict, barrier_dict=barrier_dict, status_dict=status_dict) output['pipelineId'] = pipeline_record.key().name() results.append(output) result_dict = {} cursor = query.cursor() query.with_cursor(cursor) if query.get(keys_only=True): result_dict.update(cursor=cursor) result_dict.update(pipelines=results) return result_dict ################################################################################ def set_enforce_auth(new_status): """Sets whether Pipeline API handlers rely on app.yaml for access control. Args: new_status: If True, then the Pipeline API will enforce its own access control on status and static file handlers. If False, then it will assume app.yaml is doing the enforcement. """ global _ENFORCE_AUTH _ENFORCE_AUTH = new_status def create_handlers_map(prefix='.*'): """Create new handlers map. Args: prefix: url prefix to use. Returns: list of (regexp, handler) pairs for WSGIApplication constructor. """ return [ (prefix + '/output', _BarrierHandler), (prefix + '/run', _PipelineHandler), (prefix + '/finalized', _PipelineHandler), (prefix + '/cleanup', _CleanupHandler), (prefix + '/abort', _PipelineHandler), (prefix + '/fanout', _FanoutHandler), (prefix + '/fanout_abort', _FanoutAbortHandler), (prefix + '/callback', _CallbackHandler), (prefix + '/rpc/tree', status_ui._TreeStatusHandler), (prefix + '/rpc/class_paths', status_ui._ClassPathListHandler), (prefix + '/rpc/list', status_ui._RootListHandler), (prefix + '(/.+)', status_ui._StatusUiHandler), ]
37.242681
81
0.680191
a862db1230101aeff3cfeaed26d27e0070f53e78
16,697
py
Python
tbx/text.py
ronhanson/python-tbx
7f5015bcc231b42617bdc3537fb39e5b05d4f7af
[ "MIT" ]
2
2016-05-27T06:21:27.000Z
2018-12-01T15:02:42.000Z
tbx/text.py
ronhanson/python-tbx
7f5015bcc231b42617bdc3537fb39e5b05d4f7af
[ "MIT" ]
null
null
null
tbx/text.py
ronhanson/python-tbx
7f5015bcc231b42617bdc3537fb39e5b05d4f7af
[ "MIT" ]
2
2018-12-01T15:02:43.000Z
2020-11-23T07:57:09.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: ai ts=4 sts=4 et sw=4 nu """ (c) 2013 - Ronan Delacroix Text Utils :author: Ronan Delacroix """ import json import datetime import os import re import smtplib import unicodedata import six import uuid as UUID import base64 import yaml import io try: import toml except: toml = None from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.mime.text import MIMEText from email.utils import COMMASPACE, formatdate from email import encoders if six.PY3: import html else: import cgi as html def convert_to_snake_case(name): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def normalize_text(text): return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf-8') def slugify(text, delim='-'): """Generates an slightly worse ASCII-only slug.""" punctuation_re = re.compile(r'[\t !"#$%&\'()*\-/<=>?@\[\\\]^_`{|},.:]+') result = [] for word in punctuation_re.split(text.lower()): word = normalize_text(word) if word: result.append(word) return delim.join(result) def slugify_bytes(b): return base64.urlsafe_b64encode(b).decode('utf-8').strip('=').replace('-', '0').replace('_', 'A') def uuid_to_slug(uuid): if isinstance(uuid, str): b = UUID.UUID(uuid) elif isinstance(uuid, UUID.UUID): b = uuid.bytes elif isinstance(uuid, bytes): b = uuid else: b = bytes(uuid) return slugify_bytes(b) def random_slug(): return uuid_to_slug(UUID.uuid4().bytes) def random_short_slug(): return uuid_to_slug(UUID.uuid4().bytes[0:8]) def javascript_escape(s, quote_double_quotes=True): """ Escape characters for javascript strings. """ ustring_re = re.compile(u"([\u0080-\uffff])") def fix(match): return r"\u%04x" % ord(match.group(1)) if type(s) == str: s = s.decode('utf-8') elif type(s) != six.text_type: raise TypeError(s) s = s.replace('\\', '\\\\') s = s.replace('\r', '\\r') s = s.replace('\n', '\\n') s = s.replace('\t', '\\t') s = s.replace("'", "\\'") if quote_double_quotes: s = s.replace('"', '&quot;') return str(ustring_re.sub(fix, s)) def send_mail(send_from, send_to, subject, text, server, mime='plain', files=None): """ Send an email with attachments. :param send_from: from email adress :param send_to: to email adress :param subject: email subject :param text: text of the email in html :param server: SMTP server :param files: files to attach :return: None """ if not files: files = [] assert type(send_to) == list assert type(files) == list msg = MIMEMultipart() msg['From'] = send_from msg['To'] = COMMASPACE.join(send_to) msg['Date'] = formatdate(localtime=True) msg['Subject'] = subject msg.attach(MIMEText(text, mime)) for f in files: part = MIMEBase('application', "octet-stream") fp = open(f, "rb") file_content = fp.read() part.set_payload(file_content) encoders.encode_base64(part) part.add_header('Content-Disposition', 'attachment; filename="%s"' % os.path.basename(f)) msg.attach(part) smtp = smtplib.SMTP(server) smtp.sendmail(send_from, send_to, msg.as_string()) smtp.close() return def hms_to_seconds(time_string): """ Converts string 'hh:mm:ss.ssssss' as a float """ s = time_string.split(':') hours = int(s[0]) minutes = int(s[1]) secs = float(s[2]) return hours * 3600 + minutes * 60 + secs def seconds_to_hms_verbose(t): """ Converts seconds float to 'H hours 8 minutes, 30 seconds' format """ hours = int((t / 3600)) mins = int((t / 60) % 60) secs = int(t % 60) return ' '.join([ (hours + ' hour' + ('s' if hours > 1 else '')) if hours > 0 else '', (mins + ' minute' + ('s' if mins > 1 else '')) if mins > 0 else '', (secs + ' second' + ('s' if secs > 1 else '')) if secs > 0 else '' ]) def seconds_to_hms(seconds): """ Converts seconds float to 'hh:mm:ss.ssssss' format. """ hours = int(seconds / 3600.0) minutes = int((seconds / 60.0) % 60.0) secs = float(seconds % 60.0) return "{0:02d}:{1:02d}:{2:02.6f}".format(hours, minutes, secs) def str_to_bool(v): return str(v).lower() in ("yes", "on", "true", "y", "t", "1") def datetime_handler(obj): return obj.isoformat(sep=' ') if isinstance(obj, datetime.datetime) else None def render_xml(_dict): return dict_to_xml_string("xml", _dict) def render_json(_dict): return json.dumps(_dict, sort_keys=False, indent=4, default=datetime_handler) def render_html(_dict): return dict_to_html(_dict) def render_txt(_dict): return dict_to_plaintext(_dict) def render_yaml(_dict): return yaml.dump(_dict, default_flow_style=False) def render_toml(_dict): if toml: return toml.dumps(_dict) import logging logging.warning("TOML Serialisation is unavailable as toml package is not installed.") return render_yaml(_dict) def render_ini(_dict): import configparser s = io.StringIO() p = configparser.ConfigParser() p.read_dict(_dict) p.write(s) s.close() return s.getvalue() mime_rendering_dict = { 'text/html': render_html, 'application/html': render_html, 'application/xml': render_xml, 'application/json': render_json, 'application/yaml': render_yaml, 'application/toml': render_toml, 'text/plain': render_txt, 'text/yaml': render_yaml, 'text/toml': render_toml, 'text/ini': render_ini } def render_dict_from_mimetype(d, mimetype): return mime_rendering_dict.get(mimetype, render_json)(d) mime_shortcuts = { 'html': 'text/html', 'xml': 'application/xml', 'json': 'application/json', 'text': 'text/plain', 'txt': 'text/plain', 'yaml': 'text/yaml', 'yml': 'text/yaml', 'tml': 'text/toml', 'toml': 'text/toml', 'ini': 'text/ini' } def render_dict_from_format(d, format): return mime_rendering_dict.get(mime_shortcuts.get(format, 'application/json'))(d) def pretty_render(data, format='text', indent=0): """ Render a dict based on a format """ if format == 'json': return render_json(data) elif format == 'html': return render_html(data) elif format == 'xml': return render_xml(data) else: return dict_to_plaintext(data, indent=indent) # DICT TO XML FUNCTION def _dict_to_xml_recurse(parent, dictitem): import lxml.etree as etree if isinstance(dictitem, list): dictitem = {'item': dictitem} if isinstance(dictitem, dict): for (tag, child) in dictitem.items(): if str(tag) == '_text': parent.text = str(child) elif type(child) is type([]): # iterate through the array and convert for listchild in child: elem = etree.Element(tag) parent.append(elem) _dict_to_xml_recurse(elem, listchild) elif len(tag) == 36 and tag[8] == '-' and tag[ 13] == '-': # if uuid is name of the element we try to cook up something nice to display in xml uuid = tag tag = parent.tag.replace('_list', '').replace('_dict', '') elem = etree.Element(tag, uuid=uuid) parent.append(elem) _dict_to_xml_recurse(elem, child) else: try: elem = etree.Element(tag) except ValueError: elem = etree.Element("element", unrecognized=tag) parent.append(elem) _dict_to_xml_recurse(elem, child) else: parent.text = str(dictitem) def dict_to_xml(xml_dict): """ Converts a dictionary to an XML ElementTree Element """ import lxml.etree as etree root_tag = list(xml_dict.keys())[0] root = etree.Element(root_tag) _dict_to_xml_recurse(root, xml_dict[root_tag]) return root def dict_to_xml_string(root_name, _dict): import lxml.etree as etree _dict = {root_name: _dict} xml_root = dict_to_xml(_dict) return etree.tostring(xml_root, pretty_print=True, encoding="UTF-8", xml_declaration=True) # DICT TO TEXT FUNCTION def dict_to_plaintext(_dict, indent=0, result=''): if isinstance(_dict, list): i = 0 if not _dict: result += '\t' * indent + "<empty>\n" for value in _dict: i += 1 if isinstance(value, dict): result += '\t' * indent + "[" + str(i) + "]={DICT}\n" + dict_to_plaintext(value, indent + 1) elif isinstance(value, list): result += '\t' * indent + "[" + str(i) + "]=<LIST>\n" + dict_to_plaintext(value, indent + 1) + "\n" else: result += '\t' * indent + "[" + str(i) + "]=\"" + str(value) + "\"\n" return result elif isinstance(_dict, dict): for key, value in _dict.items(): if isinstance(value, dict): result += '\t' * indent + "{" + str(key) + "}\n" + dict_to_plaintext(value, indent + 1) elif isinstance(value, list): result += '\t' * indent + "<" + str(key) + '>\n' + dict_to_plaintext(value, indent + 1) else: if "\n" in str(value): value = ' '.join([line.strip() for line in str(value).replace("\"", "'").split("\n")]) result += '\t' * indent + str(key) + '=' + "\"" + str(value) + "\"\n" return result else: return "\"" + str(_dict) + "\"" # DICT TO HTML FUNCTION def _dict_to_html_recurse(_dict, indent=0, result=''): if isinstance(_dict, list): i = 0 result += ' ' * indent + "<ul>\n" for value in _dict: i += 1 if isinstance(value, dict): result += ' ' * (indent + 1) + "<li class='row" + str(i % 2) + "'>\n" + _dict_to_html_recurse(value, indent + 2) + ' ' * ( indent + 1) + "</li>\n" elif isinstance(value, list): result += ' ' * (indent + 1) + "<li class='row" + str(i % 2) + "'>\n" + _dict_to_html_recurse(value, indent + 2) + ' ' * ( indent + 1) + "</li>\n" else: result += ' ' * (indent + 1) + "<li class='row" + str(i % 2) + "'><pre>" + html.escape( str(value)) + "</pre></li>\n" result += ' ' * indent + "</ul>\n" return result elif isinstance(_dict, dict): result += ' ' * indent + "<table>\n" i = 0 for key, value in _dict.items(): i += 1 if isinstance(value, dict) or isinstance(value, list): result += ' ' * (indent + 1) + "<tr class='row" + str(i % 2) + "'>\n" result += ' ' * (indent + 2) + "<td>" + str(key) + "</td>\n" result += ' ' * (indent + 2) + "<td>\n" + _dict_to_html_recurse(value, indent + 3) result += ' ' * (indent + 2) + "</td>\n" result += ' ' * (indent + 1) + "</tr>\n" else: value = html.escape(str(value)) result += ' ' * (indent + 1) + "<tr class='row" + str(i % 2) + "'><td>" + str( key) + "</td><td><pre>" + str(value) + "</pre></td></tr>\n" result += ' ' * indent + "</table>\n" return result else: return "<pre>" + html.escape(str(_dict)) + "</pre>" def dict_to_html(_dict, title="Result"): return """ <html> <head> <style> body { font-family: monospace; } table { display : inline-block; border-spacing: 0px; border-collapse: collapse; } td { border : 1px solid grey; padding:3px 10px; } li { border : 1px solid grey; padding:0px 10px 0px 10px; margin: 0px 0px 0px 5px; list-style-type : circle; } ul { display : inline-block; padding:0px 0px 0px 10px; margin:0px;} pre { margin:0 ; } .row0 { background-color:#EAEAFF; } .row1 { background-color:#FFFFFF; } </style> <title>""" + title + """</title> </head> <body> """ + _dict_to_html_recurse(_dict, 2) + " </body>\n</html>" def test_page(title="Result"): result = "<table>" docu = {} i = 0 for func_name, doc in docu.items(): result += "<tr class='row" + str(i) + "'><td>" + doc['friendly_name'] + "</td>" if 'parameters' in doc: result += "<td><form action='" + func_name + "' method='" + doc[ 'method_type'] + "' enctype='multipart/form-data'>" result += "<table width='100%'>" if 'required' in doc['parameters']: result += "<tr><th colspan='2'>Required</th></tr>" for param in doc['parameters']['required']: if param == 'asset_file': result += "<tr><td>" + str(param) + "</td><td><input type='file' name='" + str( param) + "' value=''/></td><tr/>" else: result += "<tr><td>" + str(param) + "</td><td><input type='text' name='" + str( param) + "' value=''/></td><tr/>" if 'optionnal' in doc['parameters']: result += "<tr><th colspan='2'>Optionnal</th></tr>" for param, value in doc['parameters']['optionnal'].items(): if value == None: value = '' result += "<tr><td>" + str(param) + "</td><td><input type='text' name='" + str( param) + "' value='" + str(value) + "'/></td><tr/>" result += "<tr><th colspan='2'><input type='submit'/></th></tr>" result += "</table>" result += "</form></td>" else: result += "<td><a href='" + func_name + "'>" + func_name + "</a></td>" result += "</tr>" i += 1 i = i % 2 result += "</table>" return """ <html> <head> <style> body {font-family: monospace;} table {display : inline-block; border-spacing: 0px; border-collapse: collapse;} td {border: 1px solid grey; padding: 3px 10px;} li {border: 1px solid grey; padding: 0px 10px 0px 10px; margin: 0px 0px 0px 5px; list-style-type: circle;} ul {display: inline-block; padding: 0px 0px 0px 10px; margin:0px;} pre {margin: 0;} .row0 {background-color:#EAEAFF;} .row1 {background-color:#FFFFFF;} </style> <title>""" + title + """</title> </head> <body> """ + result + """ </body> </html>""" def uni(text): """ Tries to force to convert to unicode a text. REALLY DIRTY HACK TO TRY TO DETECT ENCODINGS... :param text: text to convert :return: unicode text """ if type(text) == six.text_type: for encoding in ['latin_1', 'ascii', 'utf-8']: try: strtext = text.encode(encoding) except: pass else: break text = strtext unitext = text for encoding in ['utf-8', 'ascii', 'latin_1']: try: unitext = text.decode(encoding) except: pass else: break return unitext def handle_carriage_return(s:str): if '\r' in s: i = s.rfind('\r') if i>0: return s[i:] return s def xml_get_tag(xml, tag, parent_tag=None, multi_line=False): """ Returns the tag data for the first instance of the named tag, or for all instances if multi is true. If a parent tag is specified, then that will be required before the tag. """ expr_str = '[<:]' + tag + '.*?>(?P<matched_text>.+?)<' if parent_tag: expr_str = '[<:]' + parent_tag + '.*?>.*?' + expr_str expr = re.compile(expr_str, re.DOTALL | re.IGNORECASE) if multi_line: return expr.findall(xml) else: if expr.search(xml): return expr.search(xml).group('matched_text').strip() else: return None
31.563327
137
0.53279
1be8c0cd59308533dc9f3af4f4efe07d2bc4be66
1,980
py
Python
test/test_bar3d.py
CharileWithZoe/pyecharts
dbded9a8932cc13840b7d130802176fd88a97bf8
[ "MIT" ]
11,032
2017-12-21T01:21:38.000Z
2022-03-31T23:02:38.000Z
test/test_bar3d.py
MatteLin/pyecharts
42717ac1a5be330586bba45196cce1ed961fef54
[ "MIT" ]
1,687
2017-12-21T02:10:47.000Z
2022-03-31T14:31:45.000Z
test/test_bar3d.py
MatteLin/pyecharts
42717ac1a5be330586bba45196cce1ed961fef54
[ "MIT" ]
2,528
2017-12-21T07:57:52.000Z
2022-03-30T15:34:51.000Z
import random from unittest.mock import patch from nose.tools import assert_equal, assert_in from pyecharts import options as opts from pyecharts.charts import Bar3D from pyecharts.faker import Faker @patch("pyecharts.render.engine.write_utf8_html_file") def test_bar3d_base(fake_writer): data = [(i, j, random.randint(0, 12)) for i in range(6) for j in range(24)] c = ( Bar3D() .add( "", [[d[1], d[0], d[2]] for d in data], xaxis3d_opts=opts.Axis3DOpts(Faker.clock, type_="category"), yaxis3d_opts=opts.Axis3DOpts(Faker.week_en, type_="category"), zaxis3d_opts=opts.Axis3DOpts(type_="value"), ) .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=20)) ) c.render() _, content = fake_writer.call_args[0] assert_equal(c.theme, "white") assert_equal(c.renderer, "canvas") @patch("pyecharts.render.engine.write_utf8_html_file") def test_bar3d_stack(fake_writer): data1 = [(i, j, random.randint(0, 12)) for i in range(6) for j in range(24)] data2 = [(i, j, random.randint(13, 20)) for i in range(6) for j in range(24)] c = ( Bar3D() .add( "1", [[d[1], d[0], d[2]] for d in data1], xaxis3d_opts=opts.Axis3DOpts(Faker.clock, type_="category"), yaxis3d_opts=opts.Axis3DOpts(Faker.week_en, type_="category"), zaxis3d_opts=opts.Axis3DOpts(type_="value"), ) .add( "2", [[d[1], d[0], d[2]] for d in data2], xaxis3d_opts=opts.Axis3DOpts(Faker.clock, type_="category"), yaxis3d_opts=opts.Axis3DOpts(Faker.week_en, type_="category"), zaxis3d_opts=opts.Axis3DOpts(type_="value"), ) .set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=20)) .set_series_opts(**{"stack": "stack"}) ) c.render() _, content = fake_writer.call_args[0] assert_in("stack", content)
34.736842
81
0.615152
0d6a80402cfc549417a16853a19fc59fa586da24
5,356
py
Python
test/test_basic.py
spalato/qtlets
506fb42823ba088f30b2d85c4f8b0c7a3f0c6cd1
[ "MIT" ]
2
2020-09-22T17:44:51.000Z
2022-01-03T22:47:49.000Z
test/test_basic.py
spalato/qtlets
506fb42823ba088f30b2d85c4f8b0c7a3f0c6cd1
[ "MIT" ]
null
null
null
test/test_basic.py
spalato/qtlets
506fb42823ba088f30b2d85c4f8b0c7a3f0c6cd1
[ "MIT" ]
1
2020-10-02T20:17:36.000Z
2020-10-02T20:17:36.000Z
import sys from collections import namedtuple from functools import partial from random import randint, choices from string import ascii_letters, punctuation, digits from types import SimpleNamespace import pytest from PySide2.QtWidgets import QWidget, QPushButton, QVBoxLayout, QCheckBox, \ QLineEdit from PySide2.QtCore import Qt from PySide2.QtTest import QTest from qtlets.qtlets import HasQtlets from qtlets.widgets import IntEdit, StrEdit TRAITLETS_IS_AVAILABLE = False try: from traitlets import Integer, HasTraits, Unicode TRAITLETS_IS_AVAILABLE = True except ImportError: pass ATTR_IS_AVAILABLE = False try: import attr # attr is a dependency of pytest... ATTR_IS_AVAILABLE = True except ImportError: pass printable = ascii_letters + punctuation + digits @pytest.fixture(params=[int, str]) def data_type(request): return request.param # we could expand our test matrix to test multiple edit_types per dtype. dtypes = { str: SimpleNamespace( dtype=str, init_value="TEST", random_value=lambda : "".join(choices(printable, k=10)), edit_type=StrEdit), int: SimpleNamespace( dtype=int, init_value=1, random_value=lambda : randint(0, 10), edit_type=IntEdit), } if TRAITLETS_IS_AVAILABLE: dtypes[str].traitlet = Unicode dtypes[int].traitlet = Integer @pytest.fixture def dtype_config(data_type): return dtypes[data_type] def vanilla(dtype_config): v = dtype_config.init_value class Data(HasQtlets): def __init__(self, *a, value=v, **kw): super().__init__(*a, **kw) self.value = value return Data() def properties(dtype_config): class Data(HasQtlets): def __init__(self, *a, value=dtype_config.init_value, **kw): super().__init__(*a, **kw) self._value = value @property def value(self): return self._value @value.setter def value(self, v): self._value = v return Data() def traitlets(dtype_config): class Data(HasQtlets, HasTraits): value = dtype_config.traitlet(default_value=dtype_config.init_value) return Data() def attrs(dtype_config): @attr.s class Base: value: dtype_config.dtype = attr.ib(default=dtype_config.init_value) # def __attrs_post_init__(self): # super().__init__() # tsk tsk tsk... class Data(HasQtlets, Base): pass return Data() @pytest.fixture( params=[ vanilla, properties, pytest.param(traitlets, marks=pytest.mark.skipif(not TRAITLETS_IS_AVAILABLE, reason="Requires the `traitlets` module.") ), pytest.param(attrs, marks=pytest.mark.skipif(not ATTR_IS_AVAILABLE, reason="Requires the `attrs` module.") ), ] ) def data_instance(request, dtype_config): return request.param(dtype_config) @pytest.fixture def new_value(dtype_config): def f(current): while (target := dtype_config.random_value()) == current: pass return target return f @pytest.fixture def form(dtype_config, data_instance, new_value): edit_cls = dtype_config.edit_type class Form(QWidget): def __init__(self, parent=None, data=None): super().__init__(parent) self.data = data self.edit = edit_cls("...") self.otheredit = edit_cls("???") # self.otheredit.setEnabled(False) self.button = QPushButton("Roll!") layout = QVBoxLayout() for w in [self.edit, self.otheredit, self.button]: layout.addWidget(w) self.setLayout(layout) data.link_widget(self.edit, "value") data.link_widget(self.otheredit, "value") self.button.clicked.connect(self.on_btn_click) self.setWindowTitle("Directional connection") def on_btn_click(self): self.data.value = new_value(self.data.value) return Form(data=data_instance) @pytest.mark.usefixtures("app") class TestBasic: def test_initial_sync(self, data_instance, form): assert data_instance.value == form.edit.value() assert data_instance.value == form.otheredit.value() def test_external(self, data_instance, form, new_value): data_instance.value = new_value(data_instance.value) assert data_instance.value == form.edit.value() assert data_instance.value == form.otheredit.value() def test_roll(self, data_instance, form): old = data_instance.value #while data_instance.value == old: QTest.mouseClick(form.button, Qt.LeftButton) assert old != data_instance.value assert data_instance.value == form.edit.value() assert data_instance.value == form.otheredit.value() def test_modify_edit(self, data_instance, form, new_value): target = new_value(data_instance.value) assert target != data_instance.value for w in (form.edit, form.otheredit): w.clear() QTest.keyClicks(w, str(target)) QTest.keyClick(w, Qt.Key_Enter) assert data_instance.value == form.edit.value() assert data_instance.value == form.otheredit.value() assert data_instance.value == target
28.338624
107
0.655153
8862ef53228b689ac5cc22f99ba3436928c0c0fc
789
py
Python
Pyinstalled/dist/Resources/Programs/audioTest.py
scriptslay3r/MyRose
b716969b6bb424be3125c6370b0c9f450cf76151
[ "MIT" ]
1
2020-05-10T17:59:35.000Z
2020-05-10T17:59:35.000Z
Pyinstalled/dist/lib/audioTest.py
scriptslay3r/MyRose
b716969b6bb424be3125c6370b0c9f450cf76151
[ "MIT" ]
null
null
null
Pyinstalled/dist/lib/audioTest.py
scriptslay3r/MyRose
b716969b6bb424be3125c6370b0c9f450cf76151
[ "MIT" ]
null
null
null
import pyaudio import wave filename = 'blue.wav' # Set chunk size of 1024 samples per data frame chunk = 1024 # Open the sound file wf = wave.open(filename, 'rb') # Create an interface to PortAudio p = pyaudio.PyAudio() # Open a .Stream object to write the WAV file to # 'output = True' indicates that the sound will be played rather than recorded stream = p.open(format = p.get_format_from_width(wf.getsampwidth()), channels = wf.getnchannels(), rate = wf.getframerate(), output = True) # Read data in chunks data = wf.readframes(chunk) # Play the sound by writing the audio data to the stream while data != '': stream.write(data) data = wf.readframes(chunk) # Close and terminate the stream stream.close() p.terminate()
23.909091
78
0.679341
6f6d3ce3b61745cc3af1e7683fe573fd8536933d
1,015
py
Python
BaseTools/Source/Python/GenFds/OptRomFileStatement.py
DK519/DK_Project
b562574ba2d223aff5dd3f3c3260ee1f9905e735
[ "Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "BSD-2-Clause-Patent", "BSD-3-Clause" ]
1
2019-04-28T16:32:26.000Z
2019-04-28T16:32:26.000Z
BaseTools/Source/Python/GenFds/OptRomFileStatement.py
DK519/DK_Project
b562574ba2d223aff5dd3f3c3260ee1f9905e735
[ "Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "BSD-2-Clause-Patent", "BSD-3-Clause" ]
null
null
null
BaseTools/Source/Python/GenFds/OptRomFileStatement.py
DK519/DK_Project
b562574ba2d223aff5dd3f3c3260ee1f9905e735
[ "Python-2.0", "Zlib", "BSD-2-Clause", "MIT", "BSD-2-Clause-Patent", "BSD-3-Clause" ]
null
null
null
## @file # process OptionROM generation from FILE statement # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # # SPDX-License-Identifier: BSD-2-Clause-Patent # ## # Import Modules # from __future__ import absolute_import import Common.LongFilePathOs as os from .GenFdsGlobalVariable import GenFdsGlobalVariable ## # # class OptRomFileStatement: ## The constructor # # @param self The object pointer # def __init__(self): self.FileName = None self.FileType = None self.OverrideAttribs = None ## GenFfs() method # # Generate FFS # # @param self The object pointer # @param Dict dictionary contains macro and value pair # @retval string Generated FFS file name # def GenFfs(self, Dict = {}, IsMakefile=False): if self.FileName is not None: self.FileName = GenFdsGlobalVariable.ReplaceWorkspaceMacro(self.FileName) return self.FileName
22.065217
85
0.650246
bc5f27d0a93cc2fd9690680acb42296287d91171
2,285
py
Python
src/Honeybee_Energy Simulation Par.py
rdzeldenrust/Honeybee
e91e58badc1c9b082596d2cf97baeccdb6d7d0af
[ "CC-BY-3.0" ]
1
2016-03-04T09:47:42.000Z
2016-03-04T09:47:42.000Z
src/Honeybee_Energy Simulation Par.py
rdzeldenrust/Honeybee
e91e58badc1c9b082596d2cf97baeccdb6d7d0af
[ "CC-BY-3.0" ]
null
null
null
src/Honeybee_Energy Simulation Par.py
rdzeldenrust/Honeybee
e91e58badc1c9b082596d2cf97baeccdb6d7d0af
[ "CC-BY-3.0" ]
null
null
null
# By Mostapha Sadeghipour Roudsari # Sadeghipour@gmail.com # Honeybee started by Mostapha Sadeghipour Roudsari is licensed # under a Creative Commons Attribution-ShareAlike 3.0 Unported License. """ EnergyPlus Shadow Parameters - Provided by Honeybee 0.0.55 Args: timestep_:... shadowCalcPar_: ... doPlantSizingCalculation_: ... solarDistribution_: ... simulationControls_: ... ddyFile_: ... Returns: energySimPar:... """ ghenv.Component.Name = "Honeybee_Energy Simulation Par" ghenv.Component.NickName = 'EnergySimPar' ghenv.Component.Message = 'VER 0.0.55\nSEP_11_2014' ghenv.Component.Category = "Honeybee" ghenv.Component.SubCategory = "09 | Energy | Energy" #compatibleHBVersion = VER 0.0.55\nAUG_25_2014 #compatibleLBVersion = VER 0.0.58\nAUG_20_2014 try: ghenv.Component.AdditionalHelpFromDocStrings = "3" except: pass def main(timestep, shadowCalcPar, solarDistribution, simulationControls, ddyFile): solarDist = { "0" : "MinimalShadowing", "1" : "FullExterior", "2" : "FullInteriorAndExterior", "3" : "FullExteriorWithReflections", "4" : "FullInteriorAndExteriorWithReflections", "MinimalShadowing" : "MinimalShadowing", "FullExterior" : "FullExterior", "FullInteriorAndExterior" : "FullInteriorAndExterior", "FullExteriorWithReflections" : "FullExteriorWithReflections", "FullInteriorAndExteriorWithReflections" : "FullInteriorAndExteriorWithReflections" } # I will add check for inputs later if timestep == None: timestep = 6 if shadowCalcPar == []: shadowCalcPar = ["AverageOverDaysInFrequency", 30, 3000] if solarDistribution == None: solarDistribution = solarDist["4"] else: solarDistribution = solarDist[solarDistribution] if simulationControls == []: simulationControls= [True, True, True, False, True] return [timestep] + shadowCalcPar + [solarDistribution] + simulationControls + [ddyFile] energySimPar = main(timestep_, shadowCalcPar_, solarDistribution_, simulationControls_, ddyFile_)
36.854839
99
0.655142
88bc94d08053a664d77418e30f3b7558713847d0
15,259
py
Python
DPPO/dppo_cont_gae_dist_gpu.py
CAVED123/DPPO
666d54fb95ce6219771a3747bcae29eb88dd8e4b
[ "MIT" ]
1
2020-12-01T13:23:47.000Z
2020-12-01T13:23:47.000Z
DPPO/dppo_cont_gae_dist_gpu.py
CAVED123/DPPO
666d54fb95ce6219771a3747bcae29eb88dd8e4b
[ "MIT" ]
null
null
null
DPPO/dppo_cont_gae_dist_gpu.py
CAVED123/DPPO
666d54fb95ce6219771a3747bcae29eb88dd8e4b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """DPPO_cont_GAE_dist_GPU.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1_GZ3wt0ydAf9Fx7YsFuuvOQduCN_NlDC """ """ Distributed Proximal Policy Optimization (Distributed PPO or DPPO) continuous version implementation with distributed Tensorflow and Python’s multiprocessing package. This implementation uses normalized running rewards with GAE. The code is tested with Gym’s continuous action space environment, Pendulum-v0 on Colab. """ from __future__ import absolute_import, division, print_function, unicode_literals #!pip install -q tf-nightly import tensorflow as tf tf.reset_default_graph() import numpy as np import matplotlib.pyplot as plt import gym import time from multiprocessing import Process # The following class is adapted from OpenAI's baseline: # https://github.com/openai/baselines/blob/master/baselines/common/running_mean_std.py # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm # This class is used for the normalization of rewards in this program before GAE computation. class RunningStats(object): def __init__(self, epsilon=1e-4, shape=()): self.mean = np.zeros(shape, 'float64') self.var = np.ones(shape, 'float64') self.std = np.ones(shape, 'float64') self.count = epsilon def update(self, x): batch_mean = np.mean(x, axis=0) batch_var = np.var(x, axis=0) batch_count = x.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean, batch_var, batch_count): delta = batch_mean - self.mean new_mean = self.mean + delta * batch_count / (self.count + batch_count) m_a = self.var * self.count m_b = batch_var * batch_count M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = M2 / (self.count + batch_count) self.mean = new_mean self.var = new_var self.std = np.maximum(np.sqrt(self.var), 1e-6) self.count = batch_count + self.count class PPO(object): def __init__(self, scope, sess, env, global_PPO=None): self.sess = sess self.env = env #OPT_A = tf.train.AdamOptimizer(A_LR, beta1=0.99, beta2=0.999, name='OPT_A') #OPT_C = tf.train.AdamOptimizer(C_LR, beta1=0.99, beta2=0.999, name='OPT_C') OPT_A = tf.train.AdamOptimizer(A_LR, name='OPT_A') OPT_C = tf.train.AdamOptimizer(C_LR, name='OPT_C') with tf.variable_scope(scope): # scope is either global or wid self.state = tf.placeholder(tf.float32, [None, S_DIM], 'state') # critic with tf.variable_scope('critic'): h1 = tf.layers.dense(self.state, hidden, tf.nn.relu, name='hidden', trainable=True) self.val = tf.layers.dense(h1, 1, name='val', trainable=True) self.critic_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic') self.discounted_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r') self.advantage = self.discounted_r - self.val self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = OPT_C.minimize(self.closs) with tf.variable_scope('cgrads'): self.critic_grad_op = tf.gradients(self.closs, self.critic_params) # actor self.pi, self.pi_params = self._build_anet(scope, 'pi', self.env, trainable=True) self.oldpi, self.oldpi_params = self._build_anet(scope, 'oldpi', self.env, trainable=True) # originally trainable=False with tf.variable_scope('sample_action'): self.sample_op = tf.squeeze(self.pi.sample(1), axis=0) # choosing action with tf.variable_scope('update_oldpi'): self.update_oldpi_op = [oldp.assign(p) for p, oldp in zip(self.pi_params, self.oldpi_params)] self.act = tf.placeholder(tf.float32, [None, A_DIM], 'action') self.adv = tf.placeholder(tf.float32, [None, 1], 'advantage') with tf.variable_scope('loss'): with tf.variable_scope('surrogate'): ratio = self.pi.prob(self.act) / self.oldpi.prob(self.act) surr = ratio * self.adv self.aloss = -tf.reduce_mean(tf.minimum(surr, tf.clip_by_value(ratio, 1.-epsilon, 1.+epsilon)*self.adv)) with tf.variable_scope('atrain'): self.atrain_op = OPT_A.minimize(self.aloss) with tf.variable_scope('agrads'): self.pi_grad_op = tf.gradients(self.aloss, self.pi_params) if scope != net_scope: # not global with tf.name_scope('params'): # push/pull from local/worker perspective with tf.name_scope('push_to_global'): self.push_actor_pi_params = OPT_A.apply_gradients(zip(self.pi_grad_op, global_PPO.pi_params)) self.push_critic_params = OPT_C.apply_gradients(zip(self.critic_grad_op, global_PPO.critic_params)) with tf.name_scope('pull_fr_global'): self.pull_actor_pi_params = [local_params.assign(global_params) for local_params, global_params in zip(self.pi_params, global_PPO.pi_params)] self.pull_critic_params = [local_params.assign(global_params) for local_params, global_params in zip(self.critic_params, global_PPO.critic_params)] def update(self, s, a, r, adv): self.sess.run(self.update_oldpi_op) for _ in range(A_EPOCH): # train actor self.sess.run(self.atrain_op, {self.state: s, self.act: a, self.adv: adv}) # update actor self.sess.run([self.push_actor_pi_params, self.pull_actor_pi_params], {self.state: s, self.act: a, self.adv: adv}) for _ in range(C_EPOCH): # train critic # update critic self.sess.run(self.ctrain_op, {self.state: s, self.discounted_r: r}) self.sess.run([self.push_critic_params, self.pull_critic_params], {self.state: s, self.discounted_r: r}) def _build_anet(self, scope, name, env, trainable): with tf.variable_scope(name): h1 = tf.layers.dense(self.state, hidden, tf.nn.relu, name='hidden', trainable=trainable) mu = self.env.action_space.high * tf.layers.dense(h1, A_DIM, tf.nn.tanh, name='mu', trainable=trainable) sigma = tf.layers.dense(h1, A_DIM, tf.nn.softplus, name='sigma', trainable=trainable) norm_dist = tf.distributions.Normal(loc=mu, scale=sigma) params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/' + name) return norm_dist, params def choose_action(self, s): s = s[None, :] a = self.sess.run(self.sample_op, {self.state: s})[0] return np.clip(a, self.env.action_space.low, self.env.action_space.high) def get_val(self, s): if s.ndim < 2: s = s[None, :] return self.sess.run(self.val, {self.state: s})[0, 0] # This function is adapted from OpenAI's Baseline # GAE computation # returns TD lamda return & advantage def add_vtarg_and_adv(self, R, done, V, v_s_, gamma, lam): # Compute target value using TD(lambda) estimator, and advantage with GAE(lambda) # last element is only used for last vtarg, but we already zeroed it if last new = 1 done = np.append(done, 0) V_plus = np.append(V, v_s_) T = len(R) adv = gaelam = np.empty(T, 'float32') lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-done[t+1] delta = R[t] + gamma * V_plus[t+1] * nonterminal - V_plus[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam #print("adv=", adv.shape) #print("V=", V.shape) #print("V_plus=", V_plus.shape) tdlamret = np.vstack(adv) + V #print("tdlamret=", tdlamret.shape) return tdlamret, adv # tdlamret is critic_target or Qs class Worker(object): def __init__(self, wid, GLOBAL_PPO, GLOBAL_EP, GLOBAL_RUNNING_R, sess): self.wid = wid self.env = gym.make(GAME).unwrapped self.g_ppo = GLOBAL_PPO self.ppo = PPO(wid, sess, self.env, GLOBAL_PPO) self.running_stats_r = RunningStats() self.sess = sess self.GLOBAL_EP = GLOBAL_EP self.GLOBAL_RUNNING_R = GLOBAL_RUNNING_R def work(self): T = 0 t = 0 SESS = self.sess GLOBAL_EP = self.GLOBAL_EP GLOBAL_RUNNING_R = self.GLOBAL_RUNNING_R while SESS.run(GLOBAL_EP) < EP_MAX: s = self.env.reset() buffer_s, buffer_a, buffer_r, buffer_done, buffer_V = [], [], [], [], [] ep_r = 0 for t in range(EP_LEN): a = self.ppo.choose_action(s) s_, r, done, _ = self.env.step(a) buffer_s.append(s) buffer_a.append(a) buffer_r.append(r) buffer_done.append(done) v = self.ppo.get_val(s) buffer_V.append(v) s = s_ ep_r += r # update ppo if (t+1) % BATCH == 0 or t == EP_LEN-1: self.running_stats_r.update(np.array(buffer_r)) buffer_r = np.clip( (np.array(buffer_r) - self.running_stats_r.mean) / self.running_stats_r.std, -stats_CLIP, stats_CLIP ) v_s_ = self.ppo.get_val(s_) tdlamret, adv = self.ppo.add_vtarg_and_adv(np.vstack(buffer_r), np.vstack(buffer_done), np.vstack(buffer_V), v_s_, GAMMA, lamda) bs, ba, br, b_adv = np.vstack(buffer_s), np.vstack(buffer_a), tdlamret, np.vstack(adv) buffer_s, buffer_a, buffer_r, buffer_done, buffer_V = [], [], [], [], [] self.ppo.update(bs, ba, br, b_adv) SESS.run(GLOBAL_EP.assign_add(1.0)) qe = GLOBAL_RUNNING_R.enqueue(ep_r) SESS.run(qe) GAME = 'Pendulum-v0' env = gym.make(GAME).unwrapped net_scope = 'global' EP_MAX = 500 #500 # max number of episodes EP_LEN = 200 # episode length GAMMA = 0.9 lamda = 0.95 #0.95 hidden = 50 #100 A_LR = 0.0001 # actor's learning rate C_LR = 0.0002 # critic's learning rate BATCH = 32 # minibatch size A_EPOCH = 10 # number of epoch C_EPOCH = 10 # number of epoch S_DIM, A_DIM = 3, 1 # state, action dimension stats_CLIP = 10 # upper bound of RunningStats epsilon=0.2 cluster = tf.train.ClusterSpec({ "worker": ["localhost:3331", "localhost:3332", "localhost:3333", "localhost:3334" ], "ps": ["localhost:3330"] }) def parameter_server(): #tf.reset_default_graph() server = tf.train.Server(cluster, job_name="ps", task_index=0) sess = tf.Session(target=server.target) with tf.device("/job:ps/task:0"): GLOBAL_PPO = PPO(net_scope, sess, env, global_PPO=None) # only need its params GLOBAL_EP = tf.Variable(0.0, name='GLOBAL_EP') # num of global episodes # a queue of ep_r GLOBAL_RUNNING_R = tf.FIFOQueue(EP_MAX, tf.float32, shared_name="GLOBAL_RUNNING_R") print("Parameter server: waiting for cluster connection...") sess.run(tf.report_uninitialized_variables()) print("Parameter server: cluster ready!") print("Parameter server: initializing variables...") sess.run(tf.global_variables_initializer()) print("Parameter server: variables initialized") while True: time.sleep(1.0) if sess.run(GLOBAL_RUNNING_R.size()) >= EP_MAX: # GLOBAL_EP starts from 0, hence +1 to max_global_episodes time.sleep(10.0) GLOBAL_RUNNING_R_list = [] ep_r_prev = 0.0 for i in range(sess.run(GLOBAL_RUNNING_R.size())): ep_r = sess.run(GLOBAL_RUNNING_R.dequeue()) if i==0: GLOBAL_RUNNING_R_list.append(ep_r) # for display else: GLOBAL_RUNNING_R_list.append(GLOBAL_RUNNING_R_list[-1]*0.9 + ep_r*0.1) # for display break # display plt.plot(np.arange(len(GLOBAL_RUNNING_R_list)), GLOBAL_RUNNING_R_list) plt.xlabel('episode') plt.ylabel('reward') plt.show() #print("Parameter server: blocking...") #server.join() # currently blocks forever print("Parameter server: ended...") def worker(worker_n): #tf.reset_default_graph() server = tf.train.Server(cluster, job_name="worker", task_index=worker_n) sess = tf.Session(target=server.target) with tf.device("/job:ps/task:0"): GLOBAL_PPO = PPO(net_scope, sess, env, global_PPO=None) # only need its params GLOBAL_EP = tf.Variable(0.0, name='GLOBAL_EP') # num of global episodes # a queue of ep_r GLOBAL_RUNNING_R = tf.FIFOQueue(EP_MAX, tf.float32, shared_name="GLOBAL_RUNNING_R") """ with tf.device(tf.train.replica_device_setter( worker_device='/job:worker/task:' + str(worker_n), cluster=cluster)): """ print("Worker %d: waiting for cluster connection..." % worker_n) sess.run(tf.report_uninitialized_variables()) print("Worker %d: cluster ready!" % worker_n) #while sess.run(tf.report_uninitialized_variables()): while (sess.run(tf.report_uninitialized_variables())).any(): # ********** .any() .all() ********** print("Worker %d: waiting for variable initialization..." % worker_n) time.sleep(1.0) print("Worker %d: variables initialized" % worker_n) w = Worker(str(worker_n), GLOBAL_PPO, GLOBAL_EP, GLOBAL_RUNNING_R, sess) print("Worker %d: created" % worker_n) sess.run(tf.global_variables_initializer()) # got to initialize after Worker creation w.work() print("Worker %d: w.work()" % worker_n) #print("Worker %d: blocking..." % worker_n) server.join() # currently blocks forever print("Worker %d: ended..." % worker_n) start_time = time.time() ps_proc = Process(target=parameter_server, daemon=True) w1_proc = Process(target=worker, args=(0, ), daemon=True) w2_proc = Process(target=worker, args=(1, ), daemon=True) w3_proc = Process(target=worker, args=(2, ), daemon=True) w4_proc = Process(target=worker, args=(3, ), daemon=True) ps_proc.start() w1_proc.start() w2_proc.start() w3_proc.start() w4_proc.start() # if not join, parent will terminate before children # & children will terminate as well cuz children are daemon ps_proc.join() #w1_proc.join() #w2_proc.join() #w3_proc.join() #w4_proc.join() for proc in [w1_proc, w2_proc, w3_proc, w4_proc, ps_proc]: proc.terminate() # only way to kill server is to kill it's process print('All done.') print("--- %s seconds ---" % (time.time() - start_time))
41.352304
171
0.620814
a5b5cd5896b78214c10adc60f01a3d9567777162
762
py
Python
binproperty/models.py
skyydq/GreaterWMS
e14014a73b36ec0f0df03712a229b0931cb388fb
[ "Apache-2.0" ]
1,063
2020-11-15T12:55:15.000Z
2022-03-31T14:33:12.000Z
binproperty/models.py
ashrafali46/GreaterWMS
1aed14a8c26c8ac4571db5e6b07ab7e4fa3c7c72
[ "Apache-2.0" ]
96
2020-11-18T00:06:05.000Z
2022-03-03T09:05:39.000Z
binproperty/models.py
ashrafali46/GreaterWMS
1aed14a8c26c8ac4571db5e6b07ab7e4fa3c7c72
[ "Apache-2.0" ]
349
2020-11-15T13:15:30.000Z
2022-03-31T11:01:15.000Z
from django.db import models class ListModel(models.Model): bin_property = models.CharField(max_length=32, verbose_name="Bin property") creater = models.CharField(max_length=255, verbose_name="Who created") openid = models.CharField(max_length=255, verbose_name="Openid") is_delete = models.BooleanField(default=False, verbose_name='Delete Label') create_time = models.DateTimeField(auto_now_add=True, verbose_name="Create Time") update_time = models.DateTimeField(auto_now=True, blank=True, null=True, verbose_name="Update Time") class Meta: db_table = 'binproperty' verbose_name = 'data id' verbose_name_plural = "data id" ordering = ['bin_property'] def __str__(self): return self.pk
40.105263
104
0.71916
8ea143ca923b68081e8b124796bb1fb1892762f9
1,157
py
Python
test/functional/p2p_mempool.py
satcoin-dev/satcoin
a68f5965a8c28cfcaf8855a661ea3f15de9ae7d5
[ "MIT" ]
4
2021-02-28T04:34:58.000Z
2021-09-14T15:25:31.000Z
test/functional/p2p_mempool.py
satcoin-dev/satcoin
a68f5965a8c28cfcaf8855a661ea3f15de9ae7d5
[ "MIT" ]
null
null
null
test/functional/p2p_mempool.py
satcoin-dev/satcoin
a68f5965a8c28cfcaf8855a661ea3f15de9ae7d5
[ "MIT" ]
1
2021-06-18T13:13:17.000Z
2021-06-18T13:13:17.000Z
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test p2p mempool message. Test that nodes are disconnected if they send mempool messages when bloom filters are not enabled. """ from test_framework.messages import msg_mempool from test_framework.mininode import P2PInterface from test_framework.test_framework import SatcoinTestFramework from test_framework.util import assert_equal class P2PMempoolTests(SatcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [["-peerbloomfilters=0"]] def run_test(self): # Add a p2p connection self.nodes[0].add_p2p_connection(P2PInterface()) #request mempool self.nodes[0].p2p.send_message(msg_mempool()) self.nodes[0].p2p.wait_for_disconnect() #mininode must be disconnected at this point assert_equal(len(self.nodes[0].getpeerinfo()), 0) if __name__ == '__main__': P2PMempoolTests().main()
33.057143
73
0.736387
09bdf12c4d3027726439f2ff668c685fd262aea8
251
py
Python
Vicar/vicar_app/urls.py
cs-fullstack-fall-2018/django-form-post1-jpark1914
230ba02b30ef48bf86dd1f0797859af7c434fbaf
[ "Apache-2.0" ]
null
null
null
Vicar/vicar_app/urls.py
cs-fullstack-fall-2018/django-form-post1-jpark1914
230ba02b30ef48bf86dd1f0797859af7c434fbaf
[ "Apache-2.0" ]
null
null
null
Vicar/vicar_app/urls.py
cs-fullstack-fall-2018/django-form-post1-jpark1914
230ba02b30ef48bf86dd1f0797859af7c434fbaf
[ "Apache-2.0" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('',views.home, name='home'), path('game/', views.index, name='index'), path('game/<int:pk>/',views.detail, name='game'), path('game/add/', views.add, name='add') ]
25.1
53
0.621514
da43b01cc0df7ac2135421ffa3eafdbf0c7fd976
3,628
py
Python
PRL/genP.py
balasbk/game-theory
958e093e64799e2dd445d18bd9966251270f81e7
[ "MIT" ]
1
2020-08-08T09:25:27.000Z
2020-08-08T09:25:27.000Z
PRL/genP.py
makgyver/PRL
5ac125bd0bb68978507e4a5a1f1df4e39f67442d
[ "MIT" ]
1
2020-10-15T11:12:49.000Z
2020-10-15T11:12:49.000Z
PRL/genP.py
balasbk/game-theory
958e093e64799e2dd445d18bd9966251270f81e7
[ "MIT" ]
null
null
null
import numpy as np import random class GenP(object): """Abstract class which representes a generic preference generator. Every specific generator MUST inherit from this class.""" def __init__(self, X, y): """Initializes the preference generator. :param X: training instances :param y: training labels associated to the instances :type X: bidimensional numpy.ndarray :type y: numpy.ndarray """ self.X = X self.y = y self.n = X.shape[0] self.labelset = set(np.unique(y)) def get_random_pref(self): """Returns the identifier of random preference. :returns: a random preference :rtype: tuple """ pass def get_pref_value(self, p): """Retruns the concrete instantiation of a prefernce identifier. :param p: preference identifier :type p: tuple :returns: a preference :rtype: tuple(tuple(numpy.ndarray, int), tuple(numpy.ndarray, int)) """ (ipos, ypos), (ineg, yneg) = p return ((self.X[ipos], ypos), (self.X[ineg], yneg)) def get_all_prefs(self): """Returns the list of all possibile preferences. :returns: the list of all possible preferences :rtype: list """ pass class GenMicroP(GenP): """Micro preference generator. A micro preference describes preferences like (x_i, y_i) is preferred to (x_j, y_j), where (x_i, y_i) in X x Y, while (x_j, y_j) not in X x Y. This kind of preferences are suitable for instance ranking tasks.""" def __init__(self, X, y): GenP.__init__(self, X, y) def get_random_pref(self): ipos = random.randint(0, self.n-1) ypos = self.y[ipos] ineg = random.randint(0, self.n-1) yneg = random.choice(list(self.labelset - set([self.y[ineg]]))) return ((ipos, ypos), (ineg, yneg)) def get_all_prefs(self): lp = [] for i in range(self.n): yp = self.y[i] for j in range(self.n): ypj = self.y[j] for yn in (self.labelset - set([ypj])): lp.append(((i, yp), (j, yn))) return lp def __repr__(self): return "Macro preference generator" class GenMacroP(GenP): """Macro preference generator. A macro preference describes preferences like y_i is preferred to y_j for the instance x_i, where (x_i, y_i) in X x Y, while (x_i, y_j) not in X x Y. This kind of preferences are suitable for label ranking tasks.""" def __init__(self, X, y): GenP.__init__(self, X, y) def get_random_pref(self): ipos = random.randint(0,self.n-1) ypos = self.y[ipos] yneg = random.choice(list(self.labelset-set([self.y[ipos]]))) return ((ipos,ypos),(ipos,yneg)) def get_all_prefs(self): lp = [] for i in range(self.n): yp = self.y[i] for yn in (self.labelset - set([yp])): lp.append(((i, yp), (i, yn))) return lp def __repr__(self): return "Micro preference generator" class GenIP(GenP): """Instance-based preference generator. These are actually degenerate preferences that are simple instances.""" def __init__(self, X): self.X = X self.n = X.shape[0] def get_random_pref(self): return random.randint(0, self.n-1) def get_pref_value(self, p): return self.X[p] def get_all_prefs(self): return range(self.n) def __repr__(self): return "Instance-based preference generator"
29.737705
94
0.592062
77c7f69a03e1d70bdae438b82a05b17ddf030eb1
20,503
py
Python
Lib/test/test_fileio.py
0xb8/cpython-mingw
07ed5a75ac275da2ad9b00e9158b9940ff49acbc
[ "0BSD" ]
21
2019-11-21T03:44:53.000Z
2021-12-03T09:51:44.000Z
Lib/test/test_fileio.py
0xb8/cpython-mingw
07ed5a75ac275da2ad9b00e9158b9940ff49acbc
[ "0BSD" ]
73
2021-06-19T11:08:53.000Z
2022-03-20T08:10:32.000Z
Lib/test/test_fileio.py
0xb8/cpython-mingw
07ed5a75ac275da2ad9b00e9158b9940ff49acbc
[ "0BSD" ]
8
2021-07-14T21:55:18.000Z
2022-01-24T00:12:30.000Z
# Adapted from test_file.py by Daniel Stutzbach import sys import os import io import errno import unittest from array import array from weakref import proxy from functools import wraps from test.support import (TESTFN, TESTFN_UNICODE, check_warnings, run_unittest, make_bad_fd, cpython_only, swap_attr, gc_collect) from collections import UserList import _io # C implementation of io import _pyio # Python implementation of io class AutoFileTests: # file tests for which a test file is automatically set up def setUp(self): self.f = self.FileIO(TESTFN, 'w') def tearDown(self): if self.f: self.f.close() os.remove(TESTFN) def testWeakRefs(self): # verify weak references p = proxy(self.f) p.write(bytes(range(10))) self.assertEqual(self.f.tell(), p.tell()) self.f.close() self.f = None gc_collect() # For PyPy or other GCs. self.assertRaises(ReferenceError, getattr, p, 'tell') def testSeekTell(self): self.f.write(bytes(range(20))) self.assertEqual(self.f.tell(), 20) self.f.seek(0) self.assertEqual(self.f.tell(), 0) self.f.seek(10) self.assertEqual(self.f.tell(), 10) self.f.seek(5, 1) self.assertEqual(self.f.tell(), 15) self.f.seek(-5, 1) self.assertEqual(self.f.tell(), 10) self.f.seek(-5, 2) self.assertEqual(self.f.tell(), 15) def testAttributes(self): # verify expected attributes exist f = self.f self.assertEqual(f.mode, "wb") self.assertEqual(f.closed, False) # verify the attributes are readonly for attr in 'mode', 'closed': self.assertRaises((AttributeError, TypeError), setattr, f, attr, 'oops') def testBlksize(self): # test private _blksize attribute blksize = io.DEFAULT_BUFFER_SIZE # try to get preferred blksize from stat.st_blksize, if available if hasattr(os, 'fstat'): fst = os.fstat(self.f.fileno()) blksize = getattr(fst, 'st_blksize', blksize) self.assertEqual(self.f._blksize, blksize) # verify readinto def testReadintoByteArray(self): self.f.write(bytes([1, 2, 0, 255])) self.f.close() ba = bytearray(b'abcdefgh') with self.FileIO(TESTFN, 'r') as f: n = f.readinto(ba) self.assertEqual(ba, b'\x01\x02\x00\xffefgh') self.assertEqual(n, 4) def _testReadintoMemoryview(self): self.f.write(bytes([1, 2, 0, 255])) self.f.close() m = memoryview(bytearray(b'abcdefgh')) with self.FileIO(TESTFN, 'r') as f: n = f.readinto(m) self.assertEqual(m, b'\x01\x02\x00\xffefgh') self.assertEqual(n, 4) m = memoryview(bytearray(b'abcdefgh')).cast('H', shape=[2, 2]) with self.FileIO(TESTFN, 'r') as f: n = f.readinto(m) self.assertEqual(bytes(m), b'\x01\x02\x00\xffefgh') self.assertEqual(n, 4) def _testReadintoArray(self): self.f.write(bytes([1, 2, 0, 255])) self.f.close() a = array('B', b'abcdefgh') with self.FileIO(TESTFN, 'r') as f: n = f.readinto(a) self.assertEqual(a, array('B', [1, 2, 0, 255, 101, 102, 103, 104])) self.assertEqual(n, 4) a = array('b', b'abcdefgh') with self.FileIO(TESTFN, 'r') as f: n = f.readinto(a) self.assertEqual(a, array('b', [1, 2, 0, -1, 101, 102, 103, 104])) self.assertEqual(n, 4) a = array('I', b'abcdefgh') with self.FileIO(TESTFN, 'r') as f: n = f.readinto(a) self.assertEqual(a, array('I', b'\x01\x02\x00\xffefgh')) self.assertEqual(n, 4) def testWritelinesList(self): l = [b'123', b'456'] self.f.writelines(l) self.f.close() self.f = self.FileIO(TESTFN, 'rb') buf = self.f.read() self.assertEqual(buf, b'123456') def testWritelinesUserList(self): l = UserList([b'123', b'456']) self.f.writelines(l) self.f.close() self.f = self.FileIO(TESTFN, 'rb') buf = self.f.read() self.assertEqual(buf, b'123456') def testWritelinesError(self): self.assertRaises(TypeError, self.f.writelines, [1, 2, 3]) self.assertRaises(TypeError, self.f.writelines, None) self.assertRaises(TypeError, self.f.writelines, "abc") def test_none_args(self): self.f.write(b"hi\nbye\nabc") self.f.close() self.f = self.FileIO(TESTFN, 'r') self.assertEqual(self.f.read(None), b"hi\nbye\nabc") self.f.seek(0) self.assertEqual(self.f.readline(None), b"hi\n") self.assertEqual(self.f.readlines(None), [b"bye\n", b"abc"]) def test_reject(self): self.assertRaises(TypeError, self.f.write, "Hello!") def testRepr(self): self.assertEqual(repr(self.f), "<%s.FileIO name=%r mode=%r closefd=True>" % (self.modulename, self.f.name, self.f.mode)) del self.f.name self.assertEqual(repr(self.f), "<%s.FileIO fd=%r mode=%r closefd=True>" % (self.modulename, self.f.fileno(), self.f.mode)) self.f.close() self.assertEqual(repr(self.f), "<%s.FileIO [closed]>" % (self.modulename,)) def testReprNoCloseFD(self): fd = os.open(TESTFN, os.O_RDONLY) try: with self.FileIO(fd, 'r', closefd=False) as f: self.assertEqual(repr(f), "<%s.FileIO name=%r mode=%r closefd=False>" % (self.modulename, f.name, f.mode)) finally: os.close(fd) def testRecursiveRepr(self): # Issue #25455 with swap_attr(self.f, 'name', self.f): with self.assertRaises(RuntimeError): repr(self.f) # Should not crash def testErrors(self): f = self.f self.assertFalse(f.isatty()) self.assertFalse(f.closed) #self.assertEqual(f.name, TESTFN) self.assertRaises(ValueError, f.read, 10) # Open for reading f.close() self.assertTrue(f.closed) f = self.FileIO(TESTFN, 'r') self.assertRaises(TypeError, f.readinto, "") self.assertFalse(f.closed) f.close() self.assertTrue(f.closed) def testMethods(self): methods = ['fileno', 'isatty', 'seekable', 'readable', 'writable', 'read', 'readall', 'readline', 'readlines', 'tell', 'truncate', 'flush'] self.f.close() self.assertTrue(self.f.closed) for methodname in methods: method = getattr(self.f, methodname) # should raise on closed file self.assertRaises(ValueError, method) self.assertRaises(TypeError, self.f.readinto) self.assertRaises(ValueError, self.f.readinto, bytearray(1)) self.assertRaises(TypeError, self.f.seek) self.assertRaises(ValueError, self.f.seek, 0) self.assertRaises(TypeError, self.f.write) self.assertRaises(ValueError, self.f.write, b'') self.assertRaises(TypeError, self.f.writelines) self.assertRaises(ValueError, self.f.writelines, b'') def testOpendir(self): # Issue 3703: opening a directory should fill the errno # Windows always returns "[Errno 13]: Permission denied # Unix uses fstat and returns "[Errno 21]: Is a directory" try: self.FileIO('.', 'r') except OSError as e: self.assertNotEqual(e.errno, 0) self.assertEqual(e.filename, ".") else: self.fail("Should have raised OSError") @unittest.skipIf(os.name == 'nt', "test only works on a POSIX-like system") def testOpenDirFD(self): fd = os.open('.', os.O_RDONLY) with self.assertRaises(OSError) as cm: self.FileIO(fd, 'r') os.close(fd) self.assertEqual(cm.exception.errno, errno.EISDIR) #A set of functions testing that we get expected behaviour if someone has #manually closed the internal file descriptor. First, a decorator: def ClosedFD(func): @wraps(func) def wrapper(self): #forcibly close the fd before invoking the problem function f = self.f os.close(f.fileno()) try: func(self, f) finally: try: self.f.close() except OSError: pass return wrapper def ClosedFDRaises(func): @wraps(func) def wrapper(self): #forcibly close the fd before invoking the problem function f = self.f os.close(f.fileno()) try: func(self, f) except OSError as e: self.assertEqual(e.errno, errno.EBADF) else: self.fail("Should have raised OSError") finally: try: self.f.close() except OSError: pass return wrapper @ClosedFDRaises def testErrnoOnClose(self, f): f.close() @ClosedFDRaises def testErrnoOnClosedWrite(self, f): f.write(b'a') @ClosedFDRaises def testErrnoOnClosedSeek(self, f): f.seek(0) @ClosedFDRaises def testErrnoOnClosedTell(self, f): f.tell() @ClosedFDRaises def testErrnoOnClosedTruncate(self, f): f.truncate(0) @ClosedFD def testErrnoOnClosedSeekable(self, f): f.seekable() @ClosedFD def testErrnoOnClosedReadable(self, f): f.readable() @ClosedFD def testErrnoOnClosedWritable(self, f): f.writable() @ClosedFD def testErrnoOnClosedFileno(self, f): f.fileno() @ClosedFD def testErrnoOnClosedIsatty(self, f): self.assertEqual(f.isatty(), False) def ReopenForRead(self): try: self.f.close() except OSError: pass self.f = self.FileIO(TESTFN, 'r') os.close(self.f.fileno()) return self.f @ClosedFDRaises def testErrnoOnClosedRead(self, f): f = self.ReopenForRead() f.read(1) @ClosedFDRaises def testErrnoOnClosedReadall(self, f): f = self.ReopenForRead() f.readall() @ClosedFDRaises def testErrnoOnClosedReadinto(self, f): f = self.ReopenForRead() a = array('b', b'x'*10) f.readinto(a) class CAutoFileTests(AutoFileTests, unittest.TestCase): FileIO = _io.FileIO modulename = '_io' class PyAutoFileTests(AutoFileTests, unittest.TestCase): FileIO = _pyio.FileIO modulename = '_pyio' class OtherFileTests: def testAbles(self): try: f = self.FileIO(TESTFN, "w") self.assertEqual(f.readable(), False) self.assertEqual(f.writable(), True) self.assertEqual(f.seekable(), True) f.close() f = self.FileIO(TESTFN, "r") self.assertEqual(f.readable(), True) self.assertEqual(f.writable(), False) self.assertEqual(f.seekable(), True) f.close() f = self.FileIO(TESTFN, "a+") self.assertEqual(f.readable(), True) self.assertEqual(f.writable(), True) self.assertEqual(f.seekable(), True) self.assertEqual(f.isatty(), False) f.close() if sys.platform != "win32": try: f = self.FileIO("/dev/tty", "a") except OSError: # When run in a cron job there just aren't any # ttys, so skip the test. This also handles other # OS'es that don't support /dev/tty. pass else: self.assertEqual(f.readable(), False) self.assertEqual(f.writable(), True) if sys.platform != "darwin" and \ 'bsd' not in sys.platform and \ not sys.platform.startswith(('sunos', 'aix')): # Somehow /dev/tty appears seekable on some BSDs self.assertEqual(f.seekable(), False) self.assertEqual(f.isatty(), True) f.close() finally: os.unlink(TESTFN) def testInvalidModeStrings(self): # check invalid mode strings for mode in ("", "aU", "wU+", "rw", "rt"): try: f = self.FileIO(TESTFN, mode) except ValueError: pass else: f.close() self.fail('%r is an invalid file mode' % mode) def testModeStrings(self): # test that the mode attribute is correct for various mode strings # given as init args try: for modes in [('w', 'wb'), ('wb', 'wb'), ('wb+', 'rb+'), ('w+b', 'rb+'), ('a', 'ab'), ('ab', 'ab'), ('ab+', 'ab+'), ('a+b', 'ab+'), ('r', 'rb'), ('rb', 'rb'), ('rb+', 'rb+'), ('r+b', 'rb+')]: # read modes are last so that TESTFN will exist first with self.FileIO(TESTFN, modes[0]) as f: self.assertEqual(f.mode, modes[1]) finally: if os.path.exists(TESTFN): os.unlink(TESTFN) def testUnicodeOpen(self): # verify repr works for unicode too f = self.FileIO(str(TESTFN), "w") f.close() os.unlink(TESTFN) def testBytesOpen(self): # Opening a bytes filename try: fn = TESTFN.encode("ascii") except UnicodeEncodeError: self.skipTest('could not encode %r to ascii' % TESTFN) f = self.FileIO(fn, "w") try: f.write(b"abc") f.close() with open(TESTFN, "rb") as f: self.assertEqual(f.read(), b"abc") finally: os.unlink(TESTFN) @unittest.skipIf(sys.getfilesystemencoding() != 'utf-8', "test only works for utf-8 filesystems") def testUtf8BytesOpen(self): # Opening a UTF-8 bytes filename try: fn = TESTFN_UNICODE.encode("utf-8") except UnicodeEncodeError: self.skipTest('could not encode %r to utf-8' % TESTFN_UNICODE) f = self.FileIO(fn, "w") try: f.write(b"abc") f.close() with open(TESTFN_UNICODE, "rb") as f: self.assertEqual(f.read(), b"abc") finally: os.unlink(TESTFN_UNICODE) def testConstructorHandlesNULChars(self): fn_with_NUL = 'foo\0bar' self.assertRaises(ValueError, self.FileIO, fn_with_NUL, 'w') self.assertRaises(ValueError, self.FileIO, bytes(fn_with_NUL, 'ascii'), 'w') def testInvalidFd(self): self.assertRaises(ValueError, self.FileIO, -10) self.assertRaises(OSError, self.FileIO, make_bad_fd()) if sys.platform == 'win32': import msvcrt self.assertRaises(OSError, msvcrt.get_osfhandle, make_bad_fd()) def testBadModeArgument(self): # verify that we get a sensible error message for bad mode argument bad_mode = "qwerty" try: f = self.FileIO(TESTFN, bad_mode) except ValueError as msg: if msg.args[0] != 0: s = str(msg) if TESTFN in s or bad_mode not in s: self.fail("bad error message for invalid mode: %s" % s) # if msg.args[0] == 0, we're probably on Windows where there may be # no obvious way to discover why open() failed. else: f.close() self.fail("no error for invalid mode: %s" % bad_mode) def testTruncate(self): f = self.FileIO(TESTFN, 'w') f.write(bytes(bytearray(range(10)))) self.assertEqual(f.tell(), 10) f.truncate(5) self.assertEqual(f.tell(), 10) self.assertEqual(f.seek(0, io.SEEK_END), 5) f.truncate(15) self.assertEqual(f.tell(), 5) self.assertEqual(f.seek(0, io.SEEK_END), 15) f.close() def testTruncateOnWindows(self): def bug801631(): # SF bug <http://www.python.org/sf/801631> # "file.truncate fault on windows" f = self.FileIO(TESTFN, 'w') f.write(bytes(range(11))) f.close() f = self.FileIO(TESTFN,'r+') data = f.read(5) if data != bytes(range(5)): self.fail("Read on file opened for update failed %r" % data) if f.tell() != 5: self.fail("File pos after read wrong %d" % f.tell()) f.truncate() if f.tell() != 5: self.fail("File pos after ftruncate wrong %d" % f.tell()) f.close() size = os.path.getsize(TESTFN) if size != 5: self.fail("File size after ftruncate wrong %d" % size) try: bug801631() finally: os.unlink(TESTFN) def testAppend(self): try: f = open(TESTFN, 'wb') f.write(b'spam') f.close() f = open(TESTFN, 'ab') f.write(b'eggs') f.close() f = open(TESTFN, 'rb') d = f.read() f.close() self.assertEqual(d, b'spameggs') finally: try: os.unlink(TESTFN) except: pass def testInvalidInit(self): self.assertRaises(TypeError, self.FileIO, "1", 0, 0) def testWarnings(self): with check_warnings(quiet=True) as w: self.assertEqual(w.warnings, []) self.assertRaises(TypeError, self.FileIO, []) self.assertEqual(w.warnings, []) self.assertRaises(ValueError, self.FileIO, "/some/invalid/name", "rt") self.assertEqual(w.warnings, []) def testUnclosedFDOnException(self): class MyException(Exception): pass class MyFileIO(self.FileIO): def __setattr__(self, name, value): if name == "name": raise MyException("blocked setting name") return super(MyFileIO, self).__setattr__(name, value) fd = os.open(__file__, os.O_RDONLY) self.assertRaises(MyException, MyFileIO, fd) os.close(fd) # should not raise OSError(EBADF) class COtherFileTests(OtherFileTests, unittest.TestCase): FileIO = _io.FileIO modulename = '_io' @cpython_only def testInvalidFd_overflow(self): # Issue 15989 import _testcapi self.assertRaises(TypeError, self.FileIO, _testcapi.INT_MAX + 1) self.assertRaises(TypeError, self.FileIO, _testcapi.INT_MIN - 1) def test_open_code(self): # Check that the default behaviour of open_code matches # open("rb") with self.FileIO(__file__, "rb") as f: expected = f.read() with _io.open_code(__file__) as f: actual = f.read() self.assertEqual(expected, actual) class PyOtherFileTests(OtherFileTests, unittest.TestCase): FileIO = _pyio.FileIO modulename = '_pyio' def test_open_code(self): # Check that the default behaviour of open_code matches # open("rb") with self.FileIO(__file__, "rb") as f: expected = f.read() with check_warnings(quiet=True) as w: # Always test _open_code_with_warning with _pyio._open_code_with_warning(__file__) as f: actual = f.read() self.assertEqual(expected, actual) self.assertNotEqual(w.warnings, []) def test_main(): # Historically, these tests have been sloppy about removing TESTFN. # So get rid of it no matter what. try: run_unittest(CAutoFileTests, PyAutoFileTests, COtherFileTests, PyOtherFileTests) finally: if os.path.exists(TESTFN): os.unlink(TESTFN) if __name__ == '__main__': test_main()
33.069355
84
0.549724
4b7d6c6529b996ad22ab2e22202dde4e607a3606
545
py
Python
clinicaltrials/frontend/migrations/0020_auto_20180207_1355.py
chadmiller/clinicaltrials-act-tracker
d16f5ff7b1fde673e7b00cd674666a19b19bf092
[ "MIT" ]
13
2018-02-20T12:48:42.000Z
2022-03-09T01:55:23.000Z
clinicaltrials/frontend/migrations/0020_auto_20180207_1355.py
chadmiller/clinicaltrials-act-tracker
d16f5ff7b1fde673e7b00cd674666a19b19bf092
[ "MIT" ]
134
2018-02-19T08:42:54.000Z
2021-12-13T19:50:15.000Z
clinicaltrials/frontend/migrations/0020_auto_20180207_1355.py
chadmiller/clinicaltrials-act-tracker
d16f5ff7b1fde673e7b00cd674666a19b19bf092
[ "MIT" ]
3
2018-03-10T19:56:27.000Z
2019-05-03T15:29:30.000Z
# Generated by Django 2.0 on 2018-02-07 13:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('frontend', '0019_auto_20180122_1147'), ] operations = [ migrations.AlterField( model_name='trial', name='status', field=models.CharField(choices=[('overdue', 'Overdue'), ('ongoing', 'Ongoing'), ('reported', 'Reported'), ('qa', 'Under QA'), ('reported-late', 'Reported (late)')], default='ongoing', max_length=20), ), ]
28.684211
211
0.601835
4764b6be7af692808a91fc22599f83c008da6aa5
1,208
py
Python
yt_p2p/particles.py
brittonsmith/yt_p2p
f85e5033cd2db8fc0bb3a2c5f7a62e3c78666d51
[ "BSD-3-Clause-Clear" ]
null
null
null
yt_p2p/particles.py
brittonsmith/yt_p2p
f85e5033cd2db8fc0bb3a2c5f7a62e3c78666d51
[ "BSD-3-Clause-Clear" ]
null
null
null
yt_p2p/particles.py
brittonsmith/yt_p2p
f85e5033cd2db8fc0bb3a2c5f7a62e3c78666d51
[ "BSD-3-Clause-Clear" ]
null
null
null
""" particle stuff """ #----------------------------------------------------------------------------- # Copyright (c) Britton Smith <brittonsmith@gmail.com>. All rights reserved. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- from yt.data_objects.particle_filters import \ add_particle_filter from yt.utilities.logger import ytLogger as mylog def _pop3(pfilter, data): return ((data['particle_type'] == 5) & (data['particle_mass'].in_units('Msun') < 1e-10)) \ | ((data['particle_type'] == 1) & (data['creation_time'] > 0) & \ (data['particle_mass'].in_units('Msun') > 1)) \ | ((data['particle_type'] == 5) & (data['particle_mass'].in_units('Msun') > 1e-3)) add_particle_filter( "pop3", function=_pop3, filtered_type="all", requires=["particle_type", "creation_time", "particle_mass"]) def add_p2p_particle_filters(ds): pfilters = ["pop3"] for pfilter in pfilters: if not ds.add_particle_filter(pfilter): mylog.warn("Failed to add filter: %s." % pfilter)
34.514286
94
0.580298
53e756cf0d973541ad093d47e6b47dca95145b11
3,231
py
Python
pages/login_page.py
KKashpovski/test_moodle_project
8cd0a53fffe797c47d3b14cc3300c610467432e3
[ "Apache-2.0" ]
null
null
null
pages/login_page.py
KKashpovski/test_moodle_project
8cd0a53fffe797c47d3b14cc3300c610467432e3
[ "Apache-2.0" ]
null
null
null
pages/login_page.py
KKashpovski/test_moodle_project
8cd0a53fffe797c47d3b14cc3300c610467432e3
[ "Apache-2.0" ]
null
null
null
"""Интерактивное поведение страницы авторизации.""" import logging from selenium.webdriver.remote.webelement import WebElement from locators.admin_page_locators import CoursePageLocators from models.auth import AuthData from pages.base_page import BasePage from locators.login_page_locators import LoginPageLocators from locators.personal_data_page_locators import PersonalDataPageLocators logger = logging.getLogger("moodle") class LoginPage(BasePage): def is_auth(self): self.find_element(LoginPageLocators.FORM) element = self.find_elements(LoginPageLocators.USER_BUTTON) if len(element) > 0: return True return False def confirm_exit_window(self): self.find_element(LoginPageLocators.FORM) element = self.find_elements(LoginPageLocators.CONFIRM_EXIT_BUTTON) if len(element) > 0: return True return False def email_input(self) -> WebElement: return self.find_element(LoginPageLocators.LOGIN) def password_input(self) -> WebElement: return self.find_element(LoginPageLocators.PASSWORD) def submit_button(self) -> WebElement: return self.find_element(LoginPageLocators.SUBMIT) def user_menu(self) -> WebElement: return self.find_element(LoginPageLocators.USER_MENU) def exit(self) -> WebElement: return self.find_element(LoginPageLocators.EXIT) def confirm_exit(self): return self.find_element(LoginPageLocators.CONFIRM_EXIT_BUTTON) def auth(self, data: AuthData): logger.info(f'User email is "{data.login}, user password {data.password}"') if self.is_auth(): self.click_element(self.user_menu()) self.click_element(self.exit()) if self.confirm_exit_window(): self.click_element(self.confirm_exit()) self.fill_element(self.email_input(), data.login) self.fill_element(self.password_input(), data.password) self.click_element(self.submit_button()) def user_menu_settings(self) -> WebElement: return self.find_element(LoginPageLocators.USER_MENU_SETTINGS) def go_to_editing_personal_data(self): self.click_element(self.user_menu()) self.click_element(self.user_menu_settings()) self.click_element(self.find_element(PersonalDataPageLocators.EDIT_INFO)) def admin_menu(self) -> WebElement: return self.find_element(LoginPageLocators.ADMIN_BUTTON) def select_course_menu(self) -> WebElement: return self.find_element(LoginPageLocators.ADMIN_BUTTON) def go_to_editing_course_data(self): self.click_element(self.admin_menu()) self.click_element(self.select_course_menu()) self.click_element(self.find_element(CoursePageLocators.COURSE_TUB)) self.click_element(self.find_element(CoursePageLocators.COURSE_CREATE_TUB)) def auth_login_error(self) -> str: return self.find_element(LoginPageLocators.LOGIN_ERROR).text def sign_out(self): if self.is_auth(): self.click_element(self.user_menu()) self.click_element(self.exit()) if self.confirm_exit_window(): self.click_element(self.confirm_exit())
36.303371
83
0.721139
fb42bba5fb242dc48bc3c8645cd47c195df3e831
6,017
py
Python
acdc_nn/cli.py
compbiomed-unito/acdc-nn
0800a5904c36302f19e48e2d2f7ddae9686f3366
[ "MIT" ]
2
2021-07-13T21:41:39.000Z
2022-01-27T23:51:10.000Z
acdc_nn/cli.py
compbiomed-unito/acdc-nn
0800a5904c36302f19e48e2d2f7ddae9686f3366
[ "MIT" ]
1
2021-09-15T15:53:39.000Z
2021-09-15T15:53:39.000Z
acdc_nn/cli.py
compbiomed-unito/acdc-nn
0800a5904c36302f19e48e2d2f7ddae9686f3366
[ "MIT" ]
4
2021-07-13T21:41:40.000Z
2022-01-27T16:41:49.000Z
from acdc_nn import acdc_nn from acdc_nn import util import ddgun import click from warnings import warn import functools class Substitution(click.ParamType): '''Click parameter class for substitutions''' name = 'amino acid substitution' def convert(self, value, param, ctx): if isinstance(value, ddgun.Substitution): return value try: return ddgun.Substitution.parse(value) except Exception as e: self.fail(f"{value!r} is not a valid {self.name}", param, ctx) help_notes = '''Notes: Mutations are written as XNY, meaning that the residue X at position N changes to Y. X and Y are given as a one letter amino acid code and N is 1-based and refers to the the PDB numbering of the relevant chain, and not the position on the sequence. PDB and profile files will be automatically decompressed (by gzip) if the paths end with ".gz". ''' @click.group(epilog=help_notes) def cli(): pass @cli.command(epilog=help_notes) # TODO add option for the weights @click.argument("sub", type=Substitution()) @click.argument("profile", type=click.Path(exists=True, readable=True)) # FIXME use File object def seq(sub, profile): '''Predict DDG of SUB from the protein PROFILE. \b SUB is an amino acid substitution (e.g. Q339P). PROFILE is the path to a protein profile file. Uses a trained ACDC-NN Seq that does not require protein structural information.''' wt_prof = ddgun.Profile(profile) net = acdc_nn.ACDCSeq() ddg = net.predict(sub, wt_prof) click.echo(ddg) @cli.command(epilog=help_notes) @click.argument("sub", type=Substitution()) @click.argument("profile", type=click.Path(exists=True, readable=True)) @click.argument("pdb", type=click.Path(exists=True, readable=True)) @click.argument("chain") #@click.option('--inverse', type=(Substitution(), click.Path(exists=True, readable=True), click.Path(exists=True, readable=True), str), help=') def struct(sub, profile, pdb, chain): #FIXME add inverse mut '''Predict DDG of SUB from the protein PROFILE and PDB structure. \b SUB is an amino acid substitution (e.g. Q339P). PROFILE is the path to a protein profile file. PDB is the path to the protein structure in PDB file. CHAIN is the PDB chain to be used. Uses a trained ACDC-NN that requires protein structural information.''' wt_prof = util.getProfile(profile) #FIXME use Profile wt_struct = acdc_nn.Structure(pdb, chain) net = acdc_nn.ACDC3D() ddg = net.predict(str(sub), wt_prof, wt_struct) click.echo(ddg) @cli.command(epilog=help_notes) @click.argument("sub", type=Substitution()) @click.argument("profile", type=click.Path(exists=True, readable=True)) @click.argument("pdb", type=click.Path(exists=True, readable=True)) @click.argument("chain") @click.argument("isub", type=Substitution()) @click.argument("iprofile", type=click.Path(exists=True, readable=True)) @click.argument("ipdb", type=click.Path(exists=True, readable=True)) @click.argument("ichain") #@click.option('--inverse', type=(Substitution(), click.Path(exists=True, readable=True), click.Path(exists=True, readable=True), str), help=') def istruct(sub, profile, pdb, chain, isub, iprofile, ipdb, ichain): '''Predict DDG using both the wild-type and mutated protein structures. \b SUB is an amino acid substitution (e.g. Q339P). PROFILE is the path to a protein profile file. PDB is the path to the protein structure in PDB file. CHAIN is the PDB chain to be used. ISUB, IPROFILE, IPDB and ICHAIN are the same for the mutated protein. Uses a trained ACDC-NN that requires protein structural information.''' wt_prof = util.getProfile(profile) #FIXME use Profile wt_struct = acdc_nn.Structure(pdb, chain) mt_prof = util.getProfile(iprofile) #FIXME use Profile mt_struct = acdc_nn.Structure(ipdb, ichain) net = acdc_nn.ACDC3D() ddg = net.predict(str(sub), wt_prof, wt_struct, str(isub), mt_prof, mt_struct) click.echo(ddg) # caching for functions @functools.lru_cache(10) def load_nn(seq): return acdc_nn.ACDCSeq() if seq else acdc_nn.ACDC3D() @functools.lru_cache(100) def load_prot_seq(profile): return ddgun.Profile(profile) @functools.lru_cache(100) def load_prot_3d(profile, pdb, chain): return util.getProfile(profile), acdc_nn.Structure(pdb, chain) #FIXME use Profile @cli.command(epilog=help_notes) @click.argument("subs", type=click.File()) def batch(subs): '''Predict DDG of SUBS using available information. SUBS is a table containing one amino acid substitution per row and paths to protein profiles and optionally protein structure. \b Each row can have 2, 4 or 8 fields of tab separated values that are interpreted with the following schema. # \tPredictor \tFields 2 \tACDC-NN Seq \tSUB PROFILE 4 \tACDC-NN \tSUB PROFILE PDB CHAIN 8 \tACDC-NN \tWT-SUB WT-PROFILE WT-PDB WT-CHAIN MT-SUB MT-PROFILE MT-PDB MT-CHAIN For rows with 2 fields, that is, without structural information, the sequence-based ACDC-NN Seq predictor is used. For rows with 4 or 8 fields, the structure-based ACDC-NN is used. Outputs one DDG value for each table row. ''' for row, line in enumerate(subs, 1): fields = line.rstrip('\n\r').split('\t') # detect how many fields are available null_fields = [f in {'', '.', 'NA', 'na'} for f in fields] for i, nf in enumerate(null_fields): if nf: n = i break else: n = len(fields) if n == 2: # only profile seq = True pargs = ddgun.Substitution.parse(fields[0]), load_prot_seq(fields[1]) elif n == 4 or n == 8: # also structure seq = False pargs = ( str(ddgun.Substitution.parse(fields[0])), *load_prot_3d(*fields[1:4])) if n == 8: # also inverse substitution pargs = ( *pargs, str(ddgun.Substitution.parse(fields[4])), *load_prot_3d(*fields[5:8])) else: raise ValueError(f"found {n} fields at line {row}: fields must be 2, 4 or 8") # check that there for i, nf in enumerate(null_fields[n:], n): if not nf: warn(f"found value at column {i} after missing value at column {n}, at line {row}") ddg = load_nn(seq=seq).predict(*pargs) click.echo(ddg)
36.689024
222
0.728436
078e2dd258178612182da452d7cb7c1bbac1f9a1
5,985
py
Python
openmm_ramd/examples/hsp90_ramd_example_api.py
seekrcentral/openmm_ramd
8b0f5094f5c2cfd9d6b77132cc2eaf10d3513d7e
[ "MIT" ]
null
null
null
openmm_ramd/examples/hsp90_ramd_example_api.py
seekrcentral/openmm_ramd
8b0f5094f5c2cfd9d6b77132cc2eaf10d3513d7e
[ "MIT" ]
null
null
null
openmm_ramd/examples/hsp90_ramd_example_api.py
seekrcentral/openmm_ramd
8b0f5094f5c2cfd9d6b77132cc2eaf10d3513d7e
[ "MIT" ]
null
null
null
""" This sample script provides a template that one can use to run their own RAMD simulations. """ import time from sys import stdout import simtk.openmm.app as app import simtk.openmm as mm import simtk.unit as unit import parmed import mdtraj import numpy as np import openmm_ramd.base as base from openmm_ramd import openmm_ramd prmtop_filename = "../data/hsp90_INH.prmtop" input_pdb_file = "../data/hsp90_INH.pdb" # Output equilibration trajectory trajectory_filename = "ramd_trajectory.pdb" # The interval between updates to the equilibration trajectory steps_per_trajectory_update = 50000 # Whether to minimize minimize = True # The total number of RAMD steps to take num_steps = 100000000 # 200 nanoseconds # The interval between energy printed to standard output steps_per_energy_update = 300000 # time step of simulation time_step = 0.002 * unit.picoseconds # Enter the atom indices whose center of mass defines the receptor binding site rec_indices = [569, 583, 605, 617, 1266, 1292, 1299, 1374, 1440, 1459, 1499, 1849, 1872, 1892, 2256, 2295, 2352, 2557] # Indices for VMD selection # 569 583 605 617 1266 1292 1299 1374 1440 1459 1499 1849 1872 1892 2256 2295 2352 2557 # Enter the atom indices of the ligand molecule lig_indices = [3259, 3260, 3261, 3262, 3263, 3264, 3265, 3266, 3267, 3268, 3269, 3270, 3271, 3272, 3273, 3274, 3275, 3276, 3277, 3278, 3279, 3280, 3281, 3282, 3283, 3284, 3285, 3286, 3287, 3288] # Indices for VMD selection # 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 # To hold the ligand in place during the equilibration, a harmonic force # keeps the center of mass of the ligand and binding site at a constant # distance ramd_force_magnitude = 14.0 * unit.kilocalories_per_mole / unit.angstrom # simulation initial and target temperature temperature = 298.15 * unit.kelvin # If constant pressure is desired constant_pressure = True target_pressure = 1.0 * unit.bar # Define which GPU to use cuda_index = "0" # Nonbonded cutoff nonbonded_cutoff = 1.0 * unit.nanometer # The interval between RAMD force evaluations and updates steps_per_RAMD_update = 50 RAMD_cutoff_distance = 0.0025 * unit.nanometer RAMD_max_distance = 1.5 * unit.nanometer #starting_ligand_site_distance = get_site_ligand_distance( # input_pdb_file, rec_indices, lig_indices) #print("Starting ligand-site distance:", starting_ligand_site_distance) # Modify target_distance if you want the ligand to be pulled to a different # distance. For example: # target_distance = 0.6 * unit.nanometers #target_distance = starting_ligand_site_distance ######################################################## # DO NOT MODIFY BELOW UNLESS YOU KNOW WHAT YOU'RE DOING ######################################################## prmtop = app.AmberPrmtopFile(prmtop_filename) mypdb = app.PDBFile(input_pdb_file) pdb_parmed = parmed.load_file(input_pdb_file) assert pdb_parmed.box_vectors is not None, "No box vectors "\ "found in {}. ".format(input_pdb_file) \ + "Box vectors for an anchor must be defined with a CRYST "\ "line within the PDB file." box_vectors = pdb_parmed.box_vectors system = prmtop.createSystem(nonbondedMethod=app.PME, nonbondedCutoff=nonbonded_cutoff, constraints=app.HBonds) if constant_pressure: barostat = mm.MonteCarloBarostat(target_pressure, temperature, 25) system.addForce(barostat) integrator = mm.LangevinIntegrator(temperature, 1/unit.picosecond, time_step) platform = mm.Platform.getPlatformByName('CUDA') properties = {"CudaDeviceIndex": cuda_index, "CudaPrecision": "mixed"} #simulation = app.Simulation(prmtop.topology, system, integrator, platform, properties) simulation = openmm_ramd.RAMDSimulation( prmtop.topology, system, integrator, ramd_force_magnitude, lig_indices, rec_indices, platform, properties) simulation.context.setPositions(mypdb.positions) simulation.context.setPeriodicBoxVectors(*box_vectors) if minimize: simulation.minimizeEnergy() simulation.context.setVelocitiesToTemperature(temperature) simulation.reporters.append(app.StateDataReporter(stdout, steps_per_energy_update, step=True, potentialEnergy=True, temperature=True, volume=True)) pdb_reporter = app.PDBReporter(trajectory_filename, steps_per_trajectory_update) simulation.reporters.append(pdb_reporter) new_com = base.get_ligand_com(system, mypdb.positions, lig_indices) start_time = time.time() counter = 0 while counter < num_steps: old_com = new_com simulation.step(steps_per_RAMD_update) state = simulation.context.getState(getPositions = True) positions = state.getPositions() new_com = base.get_ligand_com(system, positions, lig_indices) com_com_distance = np.linalg.norm(old_com.value_in_unit(unit.nanometers) \ - new_com.value_in_unit(unit.nanometers)) lig_rec_distance = base.get_ligand_receptor_distance(system, positions, lig_indices, rec_indices) if counter % 5000 == 0: print("step:", counter, "lig_rec_distance:", lig_rec_distance) if com_com_distance*unit.nanometers < RAMD_cutoff_distance: print("recomputing force at step:", counter) simulation.recompute_RAMD_force() counter += steps_per_RAMD_update if lig_rec_distance > RAMD_max_distance: print("max distance exceeded at step:", counter) break total_time = time.time() - start_time simulation_in_ns = counter * time_step.value_in_unit(unit.picoseconds) * 1e-3 total_time_in_days = total_time / (86400.0) ns_per_day = simulation_in_ns / total_time_in_days print("RAMD benchmark:", ns_per_day, "ns/day") #end_distance = get_site_ligand_distance(output_pdb_file, rec_indices, # lig_indices) #print("Final ligand-site distance:", end_distance)
36.493902
151
0.738012
6dc2b66f2e19e5091513030a0aef58c85aeb6636
3,697
py
Python
tests/test_grism.py
ucl-exoplanets/wayne
48fd07588cbbab6f5a32038455e36d7fc6b89625
[ "MIT" ]
7
2017-05-30T09:01:50.000Z
2019-04-05T05:46:23.000Z
tests/test_grism.py
ucl-exoplanets/wayne
48fd07588cbbab6f5a32038455e36d7fc6b89625
[ "MIT" ]
1
2018-06-07T17:31:19.000Z
2018-06-07T19:38:27.000Z
tests/test_grism.py
ucl-exoplanets/wayne
48fd07588cbbab6f5a32038455e36d7fc6b89625
[ "MIT" ]
2
2018-04-30T23:16:22.000Z
2020-09-30T18:12:47.000Z
import unittest import numpy as np import numpy.testing from wayne import grism class Test_G141_Grism(unittest.TestCase): def setUp(self): self.g141_grism = grism.G141() def test__init__(self): grism.G141() # pass if no exceptions def test_get_pixel_wl(self): self.assertAlmostEqual(self.g141_grism.get_pixel_wl(50, 50, 100, 50), 11222.2, 1) self.assertAlmostEqual(self.g141_grism.get_pixel_wl(50, 50, 200, 50), 15748.6, 1) self.assertAlmostEqual(self.g141_grism.get_pixel_wl(50, 50, 100, 51), 11222.7, 1) self.assertAlmostEqual(self.g141_grism.get_pixel_wl(50, 60, 100, 50), 11218.8, 1) self.assertAlmostEqual(self.g141_grism.get_pixel_wl(60, 50, 100, 50), 10770.6, 1) # There is no code to stop this, but perhaps in future there should be # Going beyond the detector in ref or normal still gives a value as the calculations are polynomial based # def test_get_pixel_wl_beyond_limits(self): # self.assertAlmostEqual(self.g141_grism.get_pixel_wl(2000, 2000, 100, 50), 11218.8, 1) # self.assertAlmostEqual(self.g141_grism.get_pixel_wl(60, 50, 2000, 2000), 10770.4, 1) def test_get_pixel_wl_per_row(self): # TODO (ryan) should this be 1024 or 1014 in length? wl = self.g141_grism.get_pixel_wl_per_row(50, 50, np.arange(1024)) self.assertEqual(len(wl), 1024) self.assertAlmostEqual(wl.mean(), 29961.2, 1) self.assertAlmostEqual(wl.min(), 8959., 1) self.assertAlmostEqual(wl.max(), 53001.1, 1) def test_get_pixel_wl_per_row_x_values(self): wl = self.g141_grism.get_pixel_wl_per_row(50, 50, np.array([100, 110, 120, 150, 200])) np.testing.assert_array_almost_equal(wl, [11222.2, 11674.8, 12127.5, 13485.4, 15748.6], 1) def test_get_pixel_wl_per_row_y_value(self): wl = self.g141_grism.get_pixel_wl_per_row(50, 50, np.array([100, 110, 120, 150, 200]), 51) np.testing.assert_array_almost_equal(wl, [11222.7, 11675.3, 12127.9, 13485.9, 15749.1], 1) def test_get_pixel_edges_wl_per_row(self): wl = self.g141_grism.get_pixel_edges_wl_per_row(50, 50, np.array([100, 110, 120, 130]), None, 10) np.testing.assert_array_almost_equal(wl, [10995.9, 11448.5, 11901.2, 12353.8, 12806.5], 1) def test_bin_centers_to_limits(self): centers = np.array([-1, 0, 1]) limits = self.g141_grism._bin_centers_to_limits(centers, 1) numpy.testing.assert_array_equal(limits, np.arange(-1.5, 2.)) class Test_SpectrumTrace(unittest.TestCase): def test__init__(self): grism._SpectrumTrace(50, 50, np.zeros(9), np.zeros(9)) # pass if no exceptions class Test_G141_Trace(unittest.TestCase): def test__get_wavelength_calibration_coeffs_50_50(self): # This test is failing yet the result given as not equal isequal :-S g141_trace = grism.G141_Trace(50, 50) # This step is normally done at initialisation trace_50_50 = np.array(g141_trace._get_wavelength_calibration_coeffs(50, 50)) expected_50_50 = np.array([0.0099, 1.8767, 45.2665, 8958.9896]) np.testing.assert_array_almost_equal(trace_50_50, expected_50_50, decimal=4) trace_100_50 = np.array(g141_trace._get_wavelength_calibration_coeffs(100, 50)) expected_100_50 = np.array([0.0096, 1.8812, 45.2776, 8963.6693]) np.testing.assert_array_almost_equal(trace_100_50, expected_100_50, decimal=4) trace_50_100 = np.array(g141_trace._get_wavelength_calibration_coeffs(50, 100)) expected_50_100 = np.array([0.0099, 1.7801, 45.3782, 8958.9896]) np.testing.assert_array_almost_equal(trace_50_100, expected_50_100, decimal=4)
45.641975
109
0.705437
aab9cd307978422a7df5fd48df08cd48b6d0146f
254
py
Python
patterns/util/page_loader.py
constanm/selenium-py
38ef4300ff572014688cc3efe365822eeaea0856
[ "MIT" ]
null
null
null
patterns/util/page_loader.py
constanm/selenium-py
38ef4300ff572014688cc3efe365822eeaea0856
[ "MIT" ]
null
null
null
patterns/util/page_loader.py
constanm/selenium-py
38ef4300ff572014688cc3efe365822eeaea0856
[ "MIT" ]
null
null
null
def require_loaded(func): def load_page(page, *params, **kwds): if not page.is_loaded(): page.load() assert page.is_loaded(), "page should be loaded by now" return func(page, *params, **kwds) return load_page
28.222222
63
0.606299
11b6608b7114676b646efdfde5d0c0e1160099d7
11,295
py
Python
pyvista/plotting/camera.py
rohankumardubey/pyvista
ec5aa343d857d0c7e6a79aeeba340797bc868ced
[ "MIT" ]
1
2021-05-12T07:38:46.000Z
2021-05-12T07:38:46.000Z
pyvista/plotting/camera.py
rohankumardubey/pyvista
ec5aa343d857d0c7e6a79aeeba340797bc868ced
[ "MIT" ]
null
null
null
pyvista/plotting/camera.py
rohankumardubey/pyvista
ec5aa343d857d0c7e6a79aeeba340797bc868ced
[ "MIT" ]
null
null
null
"""Module containing pyvista implementation of vtkCamera.""" import numpy as np import pyvista from pyvista import _vtk class Camera(_vtk.vtkCamera): """PyVista wrapper for the VTK Camera class. Examples -------- Create a camera at the pyvista module level >>> import pyvista >>> camera = pyvista.Camera() Access the active camera of a plotter and get the position of the camera. >>> pl = pyvista.Plotter() >>> pl.camera.position (1.0, 1.0, 1.0) """ def __init__(self): """Initialize a new camera descriptor.""" self._is_parallel_projection = False self._elevation = 0.0 self._azimuth = 0.0 @property def position(self): """Position of the camera in world coordinates. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.position (1.0, 1.0, 1.0) """ return self.GetPosition() @position.setter def position(self, value): """Set the position of the camera. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.position = (2.0, 1.0, 1.0) """ self.SetPosition(value) self._elevation = 0.0 self._azimuth = 0.0 @property def focal_point(self): """Location of the camera's focus in world coordinates. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.focal_point (0.0, 0.0, 0.0) """ return self.GetFocalPoint() @focal_point.setter def focal_point(self, point): """Set the location of the camera's focus in world coordinates. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.focal_point = (2.0, 0.0, 0.0) """ self.SetFocalPoint(point) @property def model_transform_matrix(self): """Return the camera's model transformation matrix. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.model_transform_matrix array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) """ vtk_matrix = self.GetModelTransformMatrix() matrix = np.empty((4, 4)) vtk_matrix.DeepCopy(matrix.ravel(), vtk_matrix) return matrix @model_transform_matrix.setter def model_transform_matrix(self, matrix): """Set the camera's model transformation matrix. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> trans_mat = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) >>> pl.camera.model_transform_matrix = trans_mat """ vtk_matrix = _vtk.vtkMatrix4x4() vtk_matrix.DeepCopy(matrix.ravel()) self.SetModelTransformMatrix(vtk_matrix) @property def is_parallel_projection(self): """Return True if parallel projection is set.""" return self._is_parallel_projection @property def distance(self): """Distance from the camera position to the focal point. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.distance # doctest:+SKIP 1.732050807568 """ return self.GetDistance() @property def thickness(self): """Return the distance between clipping planes. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.thickness 1000.0 """ return self.GetThickness() @thickness.setter def thickness(self, length): """Set the distance between clipping planes. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.thickness = 100 """ self.SetThickness(length) @property def parallel_scale(self): """Scaling used for a parallel projection. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.parallel_scale 1.0 """ return self.GetParallelScale() @parallel_scale.setter def parallel_scale(self, scale): """Set the scaling used for parallel projection. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.parallel_scale = 2.0 """ self.SetParallelScale(scale) def zoom(self, value): """Set the zoom of the camera. In perspective mode, decrease the view angle by the specified factor. In parallel mode, decrease the parallel scale by the specified factor. A value greater than 1 is a zoom-in, a value less than 1 is a zoom-out. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.zoom(2.0) """ self.Zoom(value) @property def up(self): """Return the "up" of the camera. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.up (0.0, 0.0, 1.0) """ return self.GetViewUp() @up.setter def up(self, vector): """Set the "up" of the camera. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.up = (0.410018, 0.217989, 0.885644) """ self.SetViewUp(vector) def enable_parallel_projection(self, flag=True): """Enable parallel projection. The camera will have a parallel projection. Parallel projection is often useful when viewing images or 2D datasets. """ self._is_parallel_projection = flag self.SetParallelProjection(flag) def disable_parallel_projection(self): """Disable the use of perspective projection.""" self.enable_parallel_projection(False) @property def clipping_range(self): """Return the location of the near and far clipping planes along the direction of projection. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.clipping_range (0.01, 1000.01) """ return self.GetClippingRange() @clipping_range.setter def clipping_range(self, points): """Set the location of the near and far clipping planes along the direction of projection. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.clipping_range = (1, 10) """ if points[0] > points[1]: raise ValueError(f'Near point must be lower than the far point.') self.SetClippingRange(points[0], points[1]) def __del__(self): """Delete the camera.""" self.RemoveAllObservers() self.parent = None @property def view_angle(self): """Return the camera view angle. Examples -------- >>> import pyvista >>> plotter = pyvista.Plotter() >>> plotter.camera.view_angle 30.0 """ return self.GetViewAngle() @property def direction(self): """Vector from the camera position to the focal point. Examples -------- >>> import pyvista >>> plotter = pyvista.Plotter() >>> plotter.camera.direction # doctest: +SKIP (0.0, 0.0, -1.0) """ return self.GetDirectionOfProjection() def view_frustum(self, aspect=1.0): """Get the view frustum. Parameters ---------- aspect : float, optional The aspect of the viewport to compute the planes. Defaults to 1.0. Returns ------- frustum : pv.PolyData View frustum. Examples -------- >>> import pyvista >>> plotter = pyvista.Plotter() >>> frustum = plotter.camera.view_frustum(1.0) >>> frustum.n_points 8 >>> frustum.n_cells 6 """ frustum_planes = [0] * 24 self.GetFrustumPlanes(aspect, frustum_planes) planes = _vtk.vtkPlanes() planes.SetFrustumPlanes(frustum_planes) frustum_source = _vtk.vtkFrustumSource() frustum_source.ShowLinesOff() frustum_source.SetPlanes(planes) frustum_source.Update() frustum = pyvista.wrap(frustum_source.GetOutput()) return frustum @property def roll(self): """Rotate the camera about the direction of projection. This will spin the camera about its axis. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.roll -120.00000000000001 """ return self.GetRoll() @roll.setter def roll(self, angle): """Set the rotate of the camera about the direction of projection. This will spin the camera about its axis. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.roll = 45.0 """ self.SetRoll(angle) @property def elevation(self): """Vertical rotation of the scene. Rotate the camera about the cross product of the negative of the direction of projection and the view up vector, using the focal point as the center of rotation. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.elevation 0.0 """ return self._elevation @elevation.setter def elevation(self, angle): """Set the vertical rotation of the scene. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.elevation = 45.0 """ if self._elevation: self.Elevation(-self._elevation) self._elevation = angle self.Elevation(angle) @property def azimuth(self): """Azimuth of the camera. Rotate the camera about the view up vector centered at the focal point. Note that the view up vector is whatever was set via SetViewUp, and is not necessarily perpendicular to the direction of projection. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.azimuth 0.0 """ return self._azimuth @azimuth.setter def azimuth(self, angle): """Set the azimuth rotation of the camera. Examples -------- >>> import pyvista >>> pl = pyvista.Plotter() >>> pl.camera.azimuth = 45.0 """ if self._azimuth: self.Azimuth(-self._azimuth) self._azimuth = angle self.Azimuth(angle)
25.554299
101
0.535812
f4c1ffa0dca42847cd0008bcf2d7680087ac45b4
1,540
py
Python
gfg/arrays/kth_largest_sum_contiguous_subarray.py
rrwt/daily-coding-challenge
b16fc365fd142ebab429e605cb146c8bb0bc97a2
[ "MIT" ]
1
2019-04-18T03:29:02.000Z
2019-04-18T03:29:02.000Z
gfg/arrays/kth_largest_sum_contiguous_subarray.py
rrwt/daily-coding-challenge
b16fc365fd142ebab429e605cb146c8bb0bc97a2
[ "MIT" ]
null
null
null
gfg/arrays/kth_largest_sum_contiguous_subarray.py
rrwt/daily-coding-challenge
b16fc365fd142ebab429e605cb146c8bb0bc97a2
[ "MIT" ]
null
null
null
""" Given an array of integers. Write a program to find the K-th largest sum of contiguous subarray within the array of numbers which has negative and positive numbers. Input: a[] = {20, -5, -1}, k = 3 Output: 14 Explanation: All sum of contiguous subarrays are (20, 15, 14, -5, -6, -1) so the 3rd largest sum is 14. Input: a[] = {10, -10, 20, -40}, k = 6 Output: -10 Explanation: The 6th largest sum among sum of all contiguous subarrays is -10. """ import heapq from typing import Tuple def largest_sum(arr: list, k: int) -> Tuple[list, int]: """ Sum of elements from i to j can be calculated as sum[0:j]-sum[0:i-1] We can store first k sums in a min heap and replace as required. After processing all of the elements, the root of min heap will be the solution, and the min heap will have the k largest elements. Time Complexity: O(n*nlog(k)) Space Complexity: O(n) """ l: int = len(arr) sum_arr: list = [0] # for sum_arr[i-1], when i is 0 for i in range(1, l + 1): sum_arr.append(sum_arr[i - 1] + arr[i - 1]) min_heap: list = [] for i in range(1, l + 1): for j in range(i, l + 1): temp_sum = sum_arr[j] - sum_arr[i - 1] if len(min_heap) < k: heapq.heappush(min_heap, temp_sum) elif temp_sum > min_heap[0]: heapq.heapreplace(min_heap, temp_sum) return min_heap, min_heap[0] if __name__ == "__main__": print(largest_sum([20, -5, -1], 3)) print(largest_sum([10, -10, 20, -40], 6))
31.428571
88
0.619481
95e69e223c0338693b270e860ccd562255eb4384
3,159
py
Python
dataset/inat.py
xiaofanustc/cifar_ssl
23537b91469cf470cb7a92b2fe8b7e372b39f201
[ "MIT" ]
5
2021-07-21T05:59:55.000Z
2022-01-08T08:43:25.000Z
dataset/inat.py
xujinglin/imbalanced-semi-self
7cccaa2a1415b8dac485bd520e7814ed3c2ea31d
[ "MIT" ]
null
null
null
dataset/inat.py
xujinglin/imbalanced-semi-self
7cccaa2a1415b8dac485bd520e7814ed3c2ea31d
[ "MIT" ]
1
2021-07-31T05:25:24.000Z
2021-07-31T05:25:24.000Z
from torch.utils.data import Dataset, DataLoader from torchvision import transforms import os from PIL import Image RGB_statistics = { 'iNaturalist18': { 'mean': [0.466, 0.471, 0.380], 'std': [0.195, 0.194, 0.192] } } def get_data_transform(split, rgb_mean, rbg_std): data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(rgb_mean, rbg_std) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(rgb_mean, rbg_std) ]), 'test': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(rgb_mean, rbg_std) ]) } return data_transforms[split] class INaturalist(Dataset): def __init__(self, root, txt, transform=None): self.img_path = [] self.labels = [] self.transform = transform with open(txt) as f: for line in f: self.img_path.append(os.path.join(root, line.split()[0])) self.labels.append(int(line.split()[1])) def __len__(self): return len(self.labels) def __getitem__(self, index): path = self.img_path[index] label = self.labels[index] with open(path, 'rb') as f: sample = Image.open(f).convert('RGB') if self.transform is not None: sample = self.transform(sample) return sample, label # , index def load_data_inat(data_root, batch_size, phase, sampler_dic=None, num_workers=4, shuffle=True): assert phase in {'train', 'val'} key = 'iNaturalist18' txt = f'./imagenet_inat/data/iNaturalist18/iNaturalist18_{phase}.txt' print(f'===> Loading iNaturalist18 data from {txt}') rgb_mean, rgb_std = RGB_statistics[key]['mean'], RGB_statistics[key]['std'] transform = get_data_transform(phase, rgb_mean, rgb_std) set_inat = INaturalist(data_root, txt, transform) print(f'===> {phase} data length {len(set_inat)}') # if phase == 'test' and test_open: # open_txt = './data/%s/%s_open.txt' % (dataset, dataset) # print('Testing with open sets from %s' % open_txt) # open_set_ = INaturalist('./data/%s/%s_open' % (dataset, dataset), open_txt, transform) # set_ = ConcatDataset([set_, open_set_]) if sampler_dic and phase == 'train': print('Using sampler: ', sampler_dic['sampler']) print('Sampler parameters: ', sampler_dic['params']) return DataLoader(dataset=set_inat, batch_size=batch_size, shuffle=False, sampler=sampler_dic['sampler'](set_inat, **sampler_dic['params']), num_workers=num_workers) else: print('No sampler.') print('Shuffle is %s.' % shuffle) return DataLoader(dataset=set_inat, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
34.714286
117
0.615068
2c799c3555b769d317c45347b87a7f5477c0b4fa
1,728
py
Python
cvnets/layers/random_layers.py
KelOdgSmile/ml-cvnets
503ec3b4ec187cfa0ed451d0f61de22f669b0081
[ "AML" ]
1
2021-12-20T09:25:18.000Z
2021-12-20T09:25:18.000Z
cvnets/layers/random_layers.py
footh/ml-cvnets
d9064fe7e7a2d6a7a9817df936432856a0500a25
[ "AML" ]
null
null
null
cvnets/layers/random_layers.py
footh/ml-cvnets
d9064fe7e7a2d6a7a9817df936432856a0500a25
[ "AML" ]
null
null
null
# # For licensing see accompanying LICENSE file. # Copyright (C) 2020 Apple Inc. All Rights Reserved. # from torch import Tensor from .base_layer import BaseLayer import random from utils.math_utils import bound_fn from collections import OrderedDict class RandomApply(BaseLayer): """ Apply layers randomly during training """ def __init__(self, module_list: list, keep_p: float = 0.8): super(RandomApply, self).__init__() self._modules = OrderedDict() for idx, module in enumerate(module_list): self._modules[str(idx)] = module self.module_indexes = [i for i in range(1, len(self._modules))] n_blocks = len(self.module_indexes) k = int(round(n_blocks * keep_p)) self.keep_k = bound_fn(min_val=1, max_val=n_blocks, value=k) def forward(self, x): if self.training: indexes = [0] + sorted(random.sample(self.module_indexes, k=self.keep_k)) for idx in indexes: x = self._modules[str(idx)](x) else: for idx, layer in self._modules.items(): x = layer(x) return x def profile_module(self, x, *args, **kwargs) -> (Tensor, float, float): params, macs = 0.0, 0.0 for idx, layer in self._modules.items(): x, p, m = layer.profile_module(x) params += p macs += m return x, params, macs def __repr__(self): format_string = self.__class__.__name__ + ' (apply_k (N={})={}, '.format(len(self._modules), self.keep_k) for idx, layer in self._modules.items(): format_string += '\n\t {}'.format(layer) format_string += '\n)' return format_string
33.882353
113
0.605903
7fb10b4d75a59e098c4c632e9382de6e77677137
7,518
py
Python
mmtrack/datasets/got10k_dataset.py
wenry55/mmtracking
89e3d4e7a0d16d56d74f9ed1fd3fb9b5b92c9f1d
[ "Apache-2.0" ]
null
null
null
mmtrack/datasets/got10k_dataset.py
wenry55/mmtracking
89e3d4e7a0d16d56d74f9ed1fd3fb9b5b92c9f1d
[ "Apache-2.0" ]
null
null
null
mmtrack/datasets/got10k_dataset.py
wenry55/mmtracking
89e3d4e7a0d16d56d74f9ed1fd3fb9b5b92c9f1d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) OpenMMLab. All rights reserved. import glob import os import os.path as osp import shutil import time import numpy as np from mmdet.datasets import DATASETS from .base_sot_dataset import BaseSOTDataset @DATASETS.register_module() class GOT10kDataset(BaseSOTDataset): """GOT10k Dataset of single object tracking. The dataset can both support training and testing mode. """ def __init__(self, *args, **kwargs): super(GOT10kDataset, self).__init__(*args, **kwargs) def load_data_infos(self, split='train'): """Load dataset information. Args: split (str, optional): the split of dataset. Defaults to 'train'. Returns: list[dict]: the length of the list is the number of videos. The inner dict is in the following format: { 'video_path': the video path 'ann_path': the annotation path 'start_frame_id': the starting frame number contained in the image name 'end_frame_id': the ending frame number contained in the image name 'framename_template': the template of image name } """ print('Loading GOT10k dataset...') start_time = time.time() assert split in ['train', 'val', 'test', 'val_vot', 'train_vot'] data_infos = [] if split in ['train', 'val', 'test']: videos_list = np.loadtxt( osp.join(self.img_prefix, split, 'list.txt'), dtype=np.str_) else: split = '_'.join(split.split('_')[::-1]) vids_id_list = np.loadtxt( osp.join(self.img_prefix, 'train', f'got10k_{split}_split.txt'), dtype=float) videos_list = [ 'GOT-10k_Train_%06d' % (int(video_id) + 1) for video_id in vids_id_list ] videos_list = sorted(videos_list) for video_name in videos_list: if split in ['val', 'test']: video_path = osp.join(split, video_name) else: video_path = osp.join('train', video_name) ann_path = osp.join(video_path, 'groundtruth.txt') img_names = glob.glob( osp.join(self.img_prefix, video_path, '*.jpg')) end_frame_name = max( img_names, key=lambda x: int(osp.basename(x).split('.')[0])) end_frame_id = int(osp.basename(end_frame_name).split('.')[0]) data_infos.append( dict( video_path=video_path, ann_path=ann_path, start_frame_id=1, end_frame_id=end_frame_id, framename_template='%08d.jpg')) print(f'GOT10k dataset loaded! ({time.time()-start_time:.2f} s)') return data_infos def get_visibility_from_video(self, video_ind): """Get the visible information of instance in a video.""" if not self.test_mode: absense_info_path = osp.join( self.img_prefix, self.data_infos[video_ind]['video_path'], 'absence.label') cover_info_path = osp.join( self.img_prefix, self.data_infos[video_ind]['video_path'], 'cover.label') absense_info = np.loadtxt(absense_info_path, dtype=bool) # The values of key 'cover' are # int numbers in range [0,8], which correspond to # ranges of object visible ratios: 0%, (0%, 15%], # (15%~30%], (30%, 45%], (45%, 60%],(60%, 75%], # (75%, 90%], (90%, 100%) and 100% respectively cover_info = np.loadtxt(cover_info_path, dtype=int) visible = ~absense_info & (cover_info > 0) visible_ratio = cover_info / 8. return dict(visible=visible, visible_ratio=visible_ratio) else: return super(GOT10kDataset, self).get_visibility_from_video(video_ind) def prepare_test_data(self, video_ind, frame_ind): """Get testing data of one frame. We parse one video, get one frame from it and pass the frame information to the pipeline. Args: video_ind (int): video index frame_ind (int): frame index Returns: dict: testing data of one frame. """ ann_infos = self.get_ann_infos_from_video(video_ind) img_infos = self.get_img_infos_from_video(video_ind) img_info = dict( filename=img_infos['filename'][frame_ind], frame_id=frame_ind) if frame_ind == 0: ann_info = dict( bboxes=ann_infos['bboxes'][frame_ind], visible=True) else: ann_info = dict( bboxes=np.array([0] * 4, dtype=np.float32), visible=True) results = dict(img_info=img_info, ann_info=ann_info) self.pre_pipeline(results) results = self.pipeline(results) return results def format_results(self, results, resfile_path=None): """Format the results to txts (standard format for GOT10k Challenge). Args: results (dict(list[ndarray])): Testing results of the dataset. resfile_path (str): Path to save the formatted results. Defaults to None. """ # prepare saved dir assert resfile_path is not None, 'Please give key-value pair \ like resfile_path=xxx in argparse' if not osp.isdir(resfile_path): os.makedirs(resfile_path, exist_ok=True) # transform tracking results format # from [bbox_1, bbox_2, ...] to {'video_1':[bbox_1, bbox_2, ...], ...} track_bboxes = results['track_bboxes'] print('-------- There are total {} images --------'.format( len(track_bboxes))) start_ind = end_ind = 0 for num, video_info in zip(self.num_frames_per_video, self.data_infos): end_ind += num video_name = video_info['video_path'].split('/')[-1] video_resfiles_path = osp.join(resfile_path, video_name) if not osp.isdir(video_resfiles_path): os.makedirs(video_resfiles_path, exist_ok=True) video_bbox_txt = osp.join(video_resfiles_path, '{}_001.txt'.format(video_name)) video_time_txt = osp.join(video_resfiles_path, '{}_time.txt'.format(video_name)) with open(video_bbox_txt, 'w') as f_bbox, open(video_time_txt, 'w') as f_time: for bbox in results['track_bboxes'][start_ind:end_ind]: bbox = [ str(f'{bbox[0]:.4f}'), str(f'{bbox[1]:.4f}'), str(f'{(bbox[2] - bbox[0]):.4f}'), str(f'{(bbox[3] - bbox[1]):.4f}') ] line = ','.join(bbox) + '\n' f_bbox.writelines(line) # We don't record testing time, so we set a default # time in order to test on the server. f_time.writelines('0.0001\n') start_ind += num shutil.make_archive(resfile_path, 'zip', resfile_path) shutil.rmtree(resfile_path)
40.858696
79
0.548018
f902ae452b11069414a9270940293aaa4873d9ad
2,228
py
Python
testing/test_sct_label_utils.py
kousu-1/spinalcordtoolbox
9b1c2179fe31be489dab7f08c43e9bd5902931c0
[ "MIT" ]
null
null
null
testing/test_sct_label_utils.py
kousu-1/spinalcordtoolbox
9b1c2179fe31be489dab7f08c43e9bd5902931c0
[ "MIT" ]
null
null
null
testing/test_sct_label_utils.py
kousu-1/spinalcordtoolbox
9b1c2179fe31be489dab7f08c43e9bd5902931c0
[ "MIT" ]
null
null
null
#!/usr/bin/env python ######################################################################################### # # Test function sct_label_utils # # --------------------------------------------------------------------------------------- # Copyright (c) 2014 Polytechnique Montreal <www.neuro.polymtl.ca> # Author: Augustin Roux # modified: 2014/10/30 # # About the license: see the file LICENSE.TXT ######################################################################################### # TODO: add test to other processes. from __future__ import absolute_import import os from pandas import DataFrame import sct_utils as sct import sct_label_utils def init(param_test): """ Initialize class: param_test """ # initialization folder_data = ['t2'] file_data = ['t2_seg-manual.nii.gz', 't2_seg_labeled.nii.gz'] default_args = ['-i ' + os.path.join(folder_data[0], file_data[0]) + ' -create 1,1,1,1:2,2,2,2', '-i ' + os.path.join(folder_data[0], file_data[0]) + ' -cubic-to-point -o test_centerofmass.nii.gz'] param_test.centers_of_mass = '31,28,25,1' # assign default params if not param_test.args: param_test.args = default_args return param_test def test_integrity(param_test): """ Test integrity of function """ # find the test that is performed and check the integrity of the output index_args = param_test.default_args.index(param_test.args) # Removed because of: # https://travis-ci.org/neuropoly/spinalcordtoolbox/jobs/482061826 param_test.output += "NOT TESTED-- SHOULD BE REACTIVATED ASAP" # if index_args == 1: # # compute center of mass of labeled segmentation # centers_of_mass_image = sct_label_utils.main(['-i', 'test_centerofmass.nii.gz', '-display', '-v', '0']) # # compare with ground truth value # if centers_of_mass_image != param_test.centers_of_mass: # param_test.output += 'WARNING: Center of mass different from gold-standard. \n--> Results: ' \ # + centers_of_mass_image + '\n--> Should be: ' + param_test.centers_of_mass + '\n' # param_test.status = 99 # end test return param_test
33.757576
120
0.58079
5d91e9ccaf9c4c621f5bc5ab89c298c3ebecce86
10,109
py
Python
nova/tests/functional/libvirt/test_reshape.py
nfvri/nova
2ce5a440c44eb512f07adacd313304e226bb56a0
[ "Apache-2.0" ]
null
null
null
nova/tests/functional/libvirt/test_reshape.py
nfvri/nova
2ce5a440c44eb512f07adacd313304e226bb56a0
[ "Apache-2.0" ]
null
null
null
nova/tests/functional/libvirt/test_reshape.py
nfvri/nova
2ce5a440c44eb512f07adacd313304e226bb56a0
[ "Apache-2.0" ]
null
null
null
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time import mock from oslo_config import cfg from oslo_log import log as logging from nova import context from nova import objects from nova.tests.functional.libvirt import base from nova.tests.unit.virt.libvirt import fakelibvirt from nova.virt.libvirt import utils CONF = cfg.CONF LOG = logging.getLogger(__name__) class VGPUReshapeTests(base.ServersTestBase): # the minimum libvirt version needed for vgpu MIN_LIBVIRT_MDEV_SUPPORT = 3004000 def _wait_for_state_change(self, server, expected_status): for i in range(0, 50): server = self.api.get_server(server['id']) if server['status'] == expected_status: return server time.sleep(.1) self.assertEqual(expected_status, server['status']) return server def test_create_servers_with_vgpu(self): """Verify that vgpu reshape works with libvirt driver 1) create two servers with an old tree where the VGPU resource is on the compute provider 2) trigger a reshape 3) check that the allocations of the servers are still valid 4) create another server now against the new tree """ # NOTE(gibi): We cannot simply ask the virt driver to create an old # RP tree with vgpu on the root RP as that code path does not exist # any more. So we have to hack a "bit". We will create a compute # service without vgpu support to have the compute RP ready then we # manually add the VGPU resources to that RP in placement. Also we make # sure that during the instance claim the virt driver does not detect # the old tree as that would be a bad time for reshape. Later when the # compute service is restarted the driver will do the reshape. fake_connection = self._get_connection( # We need more RAM or the 3rd server won't be created host_info=fakelibvirt.HostInfo(kB_mem=8192), libvirt_version=self.MIN_LIBVIRT_MDEV_SUPPORT, mdev_info=fakelibvirt.HostMdevDevicesInfo()) self.mock_conn.return_value = fake_connection # start a compute with vgpu support disabled so the driver will # ignore the content of the above HostMdevDeviceInfo self.flags(enabled_vgpu_types='', group='devices') self.compute = self.start_service('compute', host='compute1') # create the VGPU resource in placement manually compute_rp_uuid = self.placement_api.get( '/resource_providers?name=compute1').body[ 'resource_providers'][0]['uuid'] inventories = self.placement_api.get( '/resource_providers/%s/inventories' % compute_rp_uuid).body inventories['inventories']['VGPU'] = { 'allocation_ratio': 1.0, 'max_unit': 3, 'min_unit': 1, 'reserved': 0, 'step_size': 1, 'total': 3} self.placement_api.put( '/resource_providers/%s/inventories' % compute_rp_uuid, inventories) # now we boot two servers with vgpu extra_spec = {"resources:VGPU": 1} flavor_id = self._create_flavor(extra_spec=extra_spec) server_req = self._build_server(flavor_id) # NOTE(gibi): during instance_claim() there is a # driver.update_provider_tree() call that would detect the old tree and # would fail as this is not a good time to reshape. To avoid that we # temporarily mock update_provider_tree here. with mock.patch('nova.virt.libvirt.driver.LibvirtDriver.' 'update_provider_tree'): created_server1 = self.api.post_server({'server': server_req}) server1 = self._wait_for_state_change(created_server1, 'ACTIVE') created_server2 = self.api.post_server({'server': server_req}) server2 = self._wait_for_state_change(created_server2, 'ACTIVE') # Determine which device is associated with which instance # { inst.uuid: pgpu_name } inst_to_pgpu = {} ctx = context.get_admin_context() for server in (server1, server2): inst = objects.Instance.get_by_uuid(ctx, server['id']) mdevs = list( self.compute.driver._get_all_assigned_mediated_devices(inst)) self.assertEqual(1, len(mdevs)) mdev_uuid = mdevs[0] mdev_info = self.compute.driver._get_mediated_device_information( utils.mdev_uuid2name(mdev_uuid)) inst_to_pgpu[inst.uuid] = mdev_info['parent'] # The VGPUs should have come from different pGPUs self.assertNotEqual(*list(inst_to_pgpu.values())) # verify that the inventory, usages and allocation are correct before # the reshape compute_inventory = self.placement_api.get( '/resource_providers/%s/inventories' % compute_rp_uuid).body[ 'inventories'] self.assertEqual(3, compute_inventory['VGPU']['total']) compute_usages = self.placement_api.get( '/resource_providers/%s/usages' % compute_rp_uuid).body[ 'usages'] self.assertEqual(2, compute_usages['VGPU']) for server in (server1, server2): allocations = self.placement_api.get( '/allocations/%s' % server['id']).body['allocations'] # the flavor has disk=10 and ephemeral=10 self.assertEqual( {'DISK_GB': 20, 'MEMORY_MB': 2048, 'VCPU': 2, 'VGPU': 1}, allocations[compute_rp_uuid]['resources']) # enabled vgpu support self.flags( enabled_vgpu_types=fakelibvirt.NVIDIA_11_VGPU_TYPE, group='devices') # restart compute which will trigger a reshape self.compute = self.restart_compute_service(self.compute) # verify that the inventory, usages and allocation are correct after # the reshape compute_inventory = self.placement_api.get( '/resource_providers/%s/inventories' % compute_rp_uuid).body[ 'inventories'] self.assertNotIn('VGPU', compute_inventory) # NOTE(sbauza): The two instances will use two different pGPUs # That said, we need to check all the pGPU inventories for knowing # which ones are used. usages = {} pgpu_uuid_to_name = {} for pci_device in [fakelibvirt.PGPU1_PCI_ADDR, fakelibvirt.PGPU2_PCI_ADDR, fakelibvirt.PGPU3_PCI_ADDR]: gpu_rp_uuid = self.placement_api.get( '/resource_providers?name=compute1_%s' % pci_device).body[ 'resource_providers'][0]['uuid'] pgpu_uuid_to_name[gpu_rp_uuid] = pci_device gpu_inventory = self.placement_api.get( '/resource_providers/%s/inventories' % gpu_rp_uuid).body[ 'inventories'] self.assertEqual(1, gpu_inventory['VGPU']['total']) gpu_usages = self.placement_api.get( '/resource_providers/%s/usages' % gpu_rp_uuid).body[ 'usages'] usages[pci_device] = gpu_usages['VGPU'] # Make sure that both instances are using different pGPUs used_devices = [dev for dev, usage in usages.items() if usage == 1] avail_devices = list(set(usages.keys()) - set(used_devices)) self.assertEqual(2, len(used_devices)) # Make sure that both instances are using the correct pGPUs for server in [server1, server2]: allocations = self.placement_api.get( '/allocations/%s' % server['id']).body[ 'allocations'] self.assertEqual( {'DISK_GB': 20, 'MEMORY_MB': 2048, 'VCPU': 2}, allocations[compute_rp_uuid]['resources']) rp_uuids = list(allocations.keys()) # We only have two RPs, the compute RP (the root) and the child # pGPU RP gpu_rp_uuid = (rp_uuids[1] if rp_uuids[0] == compute_rp_uuid else rp_uuids[0]) self.assertEqual( {'VGPU': 1}, allocations[gpu_rp_uuid]['resources']) # The pGPU's RP name contains the pGPU name self.assertIn(inst_to_pgpu[server['id']], pgpu_uuid_to_name[gpu_rp_uuid]) # now create one more instance with vgpu against the reshaped tree created_server = self.api.post_server({'server': server_req}) server3 = self._wait_for_state_change(created_server, 'ACTIVE') # find the pGPU that wasn't used before we created the third instance # It should have taken the previously available pGPU device = avail_devices[0] gpu_rp_uuid = self.placement_api.get( '/resource_providers?name=compute1_%s' % device).body[ 'resource_providers'][0]['uuid'] gpu_usages = self.placement_api.get( '/resource_providers/%s/usages' % gpu_rp_uuid).body[ 'usages'] self.assertEqual(1, gpu_usages['VGPU']) allocations = self.placement_api.get( '/allocations/%s' % server3['id']).body[ 'allocations'] self.assertEqual( {'DISK_GB': 20, 'MEMORY_MB': 2048, 'VCPU': 2}, allocations[compute_rp_uuid]['resources']) self.assertEqual( {'VGPU': 1}, allocations[gpu_rp_uuid]['resources'])
44.730088
79
0.62934
2a5da2ceb023068a38d2e7cf71ca796c155a5286
11,394
py
Python
FCB1010/SpecialTransportComponent.py
gaelhuot/FCB1010-Ableton-live
d3cbe36a3d85d5632a09517f7137c68a2206598f
[ "Apache-2.0" ]
2
2021-10-08T11:46:52.000Z
2021-12-15T20:15:53.000Z
FCB1010/SpecialTransportComponent.py
gaelhuot/FCB1010-Ableton-live
d3cbe36a3d85d5632a09517f7137c68a2206598f
[ "Apache-2.0" ]
null
null
null
FCB1010/SpecialTransportComponent.py
gaelhuot/FCB1010-Ableton-live
d3cbe36a3d85d5632a09517f7137c68a2206598f
[ "Apache-2.0" ]
2
2021-10-17T02:24:55.000Z
2022-03-31T02:41:30.000Z
import Live from _Framework.TransportComponent import TransportComponent from _Framework.ButtonElement import ButtonElement from _Framework.EncoderElement import EncoderElement #added from _Framework.SubjectSlot import subject_slot #added #TEMPO_TOP = 300.0 #TEMPO_BOTTOM = 40.0 from .MIDI_Map import TEMPO_TOP from .MIDI_Map import TEMPO_BOTTOM class SpecialTransportComponent(TransportComponent): __doc__ = ' TransportComponent that only uses certain buttons if a shift button is pressed ' def __init__(self): TransportComponent.__init__(self) #self._shift_button = None self._quant_toggle_button = None #self._shift_pressed = False self._last_quant_value = Live.Song.RecordingQuantization.rec_q_eight self.song().add_midi_recording_quantization_listener(self._on_quantisation_changed) self._on_quantisation_changed() self._undo_button = None #added from OpenLabs SpecialTransportComponent script self._redo_button = None #added from OpenLabs SpecialTransportComponent script #self._bts_button = None #added from OpenLabs SpecialTransportComponent script self._tempo_encoder_control = None #new addition return None def disconnect(self): TransportComponent.disconnect(self) #if self._shift_button != None: #self._shift_button.remove_value_listener(self._shift_value) #self._shift_button = None if self._quant_toggle_button != None: self._quant_toggle_button.remove_value_listener(self._quant_toggle_value) self._quant_toggle_button = None self.song().remove_midi_recording_quantization_listener(self._on_quantisation_changed) if (self._undo_button != None): #added from OpenLabs SpecialTransportComponent script self._undo_button.remove_value_listener(self._undo_value) self._undo_button = None if (self._redo_button != None): #added from OpenLabs SpecialTransportComponent script self._redo_button.remove_value_listener(self._redo_value) self._redo_button = None #if (self._bts_button != None): #added from OpenLabs SpecialTransportComponent script #self._bts_button.remove_value_listener(self._bts_value) #self._bts_button = None if (self._tempo_encoder_control != None): #new addition self._tempo_encoder_control.remove_value_listener(self._tempo_encoder_value) self._tempo_encoder_control = None return None #def set_shift_button(self, button): #if not(button == None or isinstance(button, ButtonElement) and button.is_momentary()): #isinstance(button, ButtonElement) #raise AssertionError #if self._shift_button != button: #if self._shift_button != None: #self._shift_button.remove_value_listener(self._shift_value) #self._shift_button = button #if self._shift_button != None: #self._shift_button.add_value_listener(self._shift_value) # #self.update() #return None def set_quant_toggle_button(self, button): if not(button == None or isinstance(button, ButtonElement) and button.is_momentary()): isinstance(button, ButtonElement) raise AssertionError if self._quant_toggle_button != button: if self._quant_toggle_button != None: self._quant_toggle_button.remove_value_listener(self._quant_toggle_value) self._quant_toggle_button = button if self._quant_toggle_button != None: self._quant_toggle_button.add_value_listener(self._quant_toggle_value) self.update() return None #def update(self): #self._on_metronome_changed() #self._on_overdub_changed() #self._on_quantisation_changed() #self._on_nudge_up_changed() #added #self._on_nudge_down_changed #added #def _shift_value(self, value): #if not self._shift_button != None: #raise AssertionError #if not value in range(128): #raise AssertionError #self._shift_pressed = value != 0 #if self.is_enabled(): #self.is_enabled() #self.update() #else: #self.is_enabled() #return None #def _metronome_value(self, value): #if not self._shift_pressed: ###if self._shift_pressed: #TransportComponent._metronome_value(self, value) #def _overdub_value(self, value): #if not self._shift_pressed: #TransportComponent._overdub_value(self, value) #def _nudge_up_value(self, value): #added #if not self._shift_pressed: #TransportComponent._nudge_up_value(self, value) #def _nudge_down_value(self, value): #added #if not self._shift_pressed: #TransportComponent._nudge_down_value(self, value) #def _tap_tempo_value(self, value): # Added as Shift + Tap Tempo #if not self._shift_pressed: ##if self._shift_pressed: #TransportComponent._tap_tempo_value(self, value) def _quant_toggle_value(self, value): assert (self._quant_toggle_button != None) assert (value in range(128)) assert (self._last_quant_value != Live.Song.RecordingQuantization.rec_q_no_q) if self.is_enabled(): # and (not self._shift_pressed): if ((value != 0) or (not self._quant_toggle_button.is_momentary())): quant_value = self.song().midi_recording_quantization if (quant_value != Live.Song.RecordingQuantization.rec_q_no_q): self._last_quant_value = quant_value self.song().midi_recording_quantization = Live.Song.RecordingQuantization.rec_q_no_q else: self.song().midi_recording_quantization = self._last_quant_value #def _on_metronome_changed(self): #if not self._shift_pressed: ##if self._shift_pressed: #TransportComponent._on_metronome_changed(self) #def _on_overdub_changed(self): #if not self._shift_pressed: #TransportComponent._on_overdub_changed(self) #def _on_nudge_up_changed(self): #added #if not self._shift_pressed: #TransportComponent._on_nudge_up_changed(self) #def _on_nudge_down_changed(self): #added #if not self._shift_pressed: #TransportComponent._on_nudge_down_changed(self) def _on_quantisation_changed(self): if self.is_enabled(): quant_value = self.song().midi_recording_quantization quant_on = (quant_value != Live.Song.RecordingQuantization.rec_q_no_q) if quant_on: self._last_quant_value = quant_value if self._quant_toggle_button != None: #((not self._shift_pressed) and (self._quant_toggle_button != None)): if quant_on: self._quant_toggle_button.turn_on() else: self._quant_toggle_button.turn_off() """ from OpenLabs module SpecialTransportComponent """ def set_undo_button(self, undo_button): assert isinstance(undo_button, (ButtonElement, type(None))) if (undo_button != self._undo_button): if (self._undo_button != None): self._undo_button.remove_value_listener(self._undo_value) self._undo_button = undo_button if (self._undo_button != None): self._undo_button.add_value_listener(self._undo_value) self.update() def set_redo_button(self, redo_button): assert isinstance(redo_button, (ButtonElement, type(None))) if (redo_button != self._redo_button): if (self._redo_button != None): self._redo_button.remove_value_listener(self._redo_value) self._redo_button = redo_button if (self._redo_button != None): self._redo_button.add_value_listener(self._redo_value) self.update() #def set_bts_button(self, bts_button): #"back to start" button #assert isinstance(bts_button, (ButtonElement, #type(None))) #if (bts_button != self._bts_button): #if (self._bts_button != None): #self._bts_button.remove_value_listener(self._bts_value) #self._bts_button = bts_button #if (self._bts_button != None): #self._bts_button.add_value_listener(self._bts_value) #self.update() def _undo_value(self, value): #if self._shift_pressed: #added assert (self._undo_button != None) assert (value in range(128)) if self.is_enabled(): if ((value != 0) or (not self._undo_button.is_momentary())): if self.song().can_undo: self.song().undo() def _redo_value(self, value): #if self._shift_pressed: #added assert (self._redo_button != None) assert (value in range(128)) if self.is_enabled(): if ((value != 0) or (not self._redo_button.is_momentary())): if self.song().can_redo: self.song().redo() #def _bts_value(self, value): #assert (self._bts_button != None) #assert (value in range(128)) #if self.is_enabled(): #if ((value != 0) or (not self._bts_button.is_momentary())): #self.song().current_song_time = 0.0 def _tempo_encoder_value(self, value): ##if not self._shift_pressed: #if self._shift_pressed: assert (self._tempo_encoder_control != None) assert (value in range(128)) backwards = (value >= 64) step = 0.1 #step = 1.0 #reduce this for finer control; 1.0 is 1 bpm if backwards: amount = (value - 128) else: amount = value tempo = max(20, min(999, (self.song().tempo + (amount * step)))) self.song().tempo = tempo def set_tempo_encoder(self, control): assert ((control == None) or (isinstance(control, EncoderElement) and (control.message_map_mode() is Live.MidiMap.MapMode.relative_two_compliment))) if (self._tempo_encoder_control != None): self._tempo_encoder_control.remove_value_listener(self._tempo_encoder_value) self._tempo_encoder_control = control if (self._tempo_encoder_control != None): self._tempo_encoder_control.add_value_listener(self._tempo_encoder_value) self.update() @subject_slot('value') def _tempo_value(self, value): #Override to pull tempo range from MIDI_Maps.py assert (self._tempo_control != None) assert (value in range(128)) if self.is_enabled(): fraction = ((TEMPO_TOP - TEMPO_BOTTOM) / 127.0) self.song().tempo = ((fraction * value) + TEMPO_BOTTOM)
42.04428
157
0.628138
5ffc64cf688e2e686baf3cc94801bd15d44e21d5
381
py
Python
host/control_flow_constants.py
laochanlam/cheetah-release
a836bd31f02fb9f612afaf1f90d4d2638c8294e7
[ "MIT" ]
10
2020-06-14T15:17:19.000Z
2022-03-30T19:58:41.000Z
host/control_flow_constants.py
laochanlam/cheetah-release
a836bd31f02fb9f612afaf1f90d4d2638c8294e7
[ "MIT" ]
null
null
null
host/control_flow_constants.py
laochanlam/cheetah-release
a836bd31f02fb9f612afaf1f90d4d2638c8294e7
[ "MIT" ]
3
2020-06-25T22:47:05.000Z
2022-01-26T04:07:28.000Z
CHEETAH_MASTER_IP = '10.243.38.88' CHEETAH_MASTER_PORT = 23456 CHEETAH_WORKER_NODES = 1
1.282828
34
0.186352
016db7b4a9ffd70a1575d693a22c4646caab0fde
6,405
py
Python
data/nyu_depth_raw_loader.py
linpeisensh/sim
e849d76caa0a20507436d4a6f9aab06e659ae6b2
[ "MIT" ]
117
2019-11-17T04:27:58.000Z
2022-03-31T20:41:27.000Z
data/nyu_depth_raw_loader.py
linpeisensh/sim
e849d76caa0a20507436d4a6f9aab06e659ae6b2
[ "MIT" ]
6
2019-12-04T23:08:38.000Z
2022-03-07T10:44:08.000Z
data/nyu_depth_raw_loader.py
linpeisensh/sim
e849d76caa0a20507436d4a6f9aab06e659ae6b2
[ "MIT" ]
29
2019-11-20T06:09:23.000Z
2022-03-07T10:21:13.000Z
from __future__ import division import argparse import numpy as np from path import Path from pebble import ProcessPool import scipy.misc import sys from tqdm import tqdm from collections import Counter import torch parser = argparse.ArgumentParser() parser.add_argument("dataset_dir", metavar='DIR', help='path to original dataset') parser.add_argument("--dump-root", type=str, default='dump', help="Where to dump the data") parser.add_argument("--with-depth", action='store_true', help="If available (e.g. with KITTI), will store depth ground truth along with images, for validation") parser.add_argument("--with-pose", action='store_true', help="If available (e.g. with KITTI), will store pose ground truth along with images, for validation") parser.add_argument("--height", type=int, default=192, help="image height") parser.add_argument("--width", type=int, default=640, help="image width") parser.add_argument("--num-threads", type=int, default=4, help="number of threads to use") args = parser.parse_args() class NYUDepthRawLoader(object): def __init__(self, dataset_dir, img_height=192, img_width=640, get_depth=False, get_pose=False): self.dataset_dir = Path(dataset_dir) self.img_height = img_height self.img_width = img_width self.get_depth = get_depth self.get_pose = get_pose self.img_exts = '.ppm' self.intrinsics = np.array([[518.85790, 0.00000, 325.58245, 0.00000], [ 0.00000, 519.46961, 253.73617, 0.00000], [ 0.00000, 0.00000, 1.00000, 0.00000], [ 0.00000, 0.00000, 0.00000, 1.00000]], dtype=np.float32) self.collect_train_folders() def collect_train_folders(self): self.scenes = [] drive_set = sorted(self.dataset_dir.dirs()) for dr in drive_set: if dr.name == 'toolbox': continue self.scenes.append(dr) def get_intrinsics(self, zoom_x, zoom_y): intrinsics = self.intrinsics intrinsics[0] *= zoom_x / self.img_width intrinsics[1] *= zoom_y / self.img_height return intrinsics def collect_scene_data(self, drive): scene_data = {'dir':drive, 'frame_id':[], 'pose':[], 'rel_path':drive.name} img_files = sorted(drive.files()) for f in img_files: if f.name[0] == 'r': scene_data['frame_id'].append(f.name[:-(len(self.img_exts))]) sample = self.load_image(scene_data, 0) if sample is None: return [] scene_data['intrinsics'] = self.get_intrinsics(sample[1], sample[2]) return scene_data def get_scene_imgs(self, scene_data): def construct_sample(scene_data, i): sample = {'img': self.load_image(scene_data, i)[0], 'id':scene_data['frame_id'][i]} if self.get_depth: sample['depth'] = self.load_depth(scene_data, i)[0] if self.get_pose: sample['pose'] = scene_data['pose'][i] return sample for (i, frame_id) in enumerate(scene_data['frame_id']): yield construct_sample(scene_data, i) def load_image(self, scene_data, tgt_idx): img_file = scene_data['dir']/'{}{}'.format(scene_data['frame_id'][tgt_idx], self.img_exts) if not img_file.isfile(): return None img = scipy.misc.imread(img_file) img = self.crop_image(img) zoom_y = self.img_height / img.shape[0] zoom_x = self.img_width / img.shape[1] if zoom_x != 1 and zoom_y != 1: # print("img resize") img = scipy.misc.imresize(img, (self.img_height, self.img_width)) return img, zoom_x, zoom_y def crop_image(self, image): h, w = image.shape[0], image.shape[1] bbox_h = [h//2 - self.img_height//2, h//2 + self.img_height//2] bbox_w = [w//2 - self.img_width//2, w//2 + self.img_width//2] image = image[bbox_h[0]:bbox_h[1], bbox_w[0]:bbox_w[1]] # print(image.shape) return image def dump_example(args, scene): scene_data = data_loader.collect_scene_data(scene) assert len(scene_data) != 0 dump_dir = args.dump_root/scene_data['rel_path'] dump_dir.makedirs_p() intrinsics = scene_data['intrinsics'] dump_cam_file = dump_dir/'cam.txt' np.savetxt(dump_cam_file, intrinsics) poses_file = dump_dir/'poses.txt' poses = [] idx = 0 for sample in data_loader.get_scene_imgs(scene_data): img = sample["img"] dump_img_file = dump_dir/'{:010d}.jpg'.format(idx) scipy.misc.imsave(dump_img_file, img) if "pose" in sample.keys(): poses.append(sample["pose"].tolist()) if "depth" in sample.keys(): depth_frame_nb = sample["depth_id"] dump_depth_file = dump_dir/'{:010d}.npy'.format(idx) np.save(dump_depth_file, sample["depth"]) idx += 1 if len(poses) != 0: np.savetxt(poses_file, np.array(poses).reshape(-1, 12), fmt='%.6e') if len(dump_dir.files('*.jpg')) < 3: dump_dir.rmtree() def main(): args.dump_root = Path(args.dump_root) args.dump_root.mkdir_p() global data_loader data_loader = NYUDepthRawLoader(args.dataset_dir, img_height=args.height, img_width=args.width, get_depth=args.with_depth, get_pose=args.with_pose) n_scenes = len(data_loader.scenes) print('Found {} potential scenes'.format(n_scenes)) print('Retrieving frames') if args.num_threads == 1: for scene in tqdm(data_loader.scenes): dump_example(args, scene) else: with ProcessPool(max_workers=args.num_threads) as pool: tasks = pool.map(dump_example, [args]*n_scenes, data_loader.scenes) try: for _ in tqdm(tasks.result(), total=n_scenes): pass except KeyboardInterrupt as e: tasks.cancel() raise e if __name__ == '__main__': main()
37.45614
123
0.588915
ec09787ec5050d50d1e06cee8f138ff773a886c6
1,533
py
Python
poco/utils/simplerpc/rpcclient.py
felixonmars/Poco
f44bf05501bb54561c15ef1b7ad5e5342ba96110
[ "Apache-2.0" ]
null
null
null
poco/utils/simplerpc/rpcclient.py
felixonmars/Poco
f44bf05501bb54561c15ef1b7ad5e5342ba96110
[ "Apache-2.0" ]
null
null
null
poco/utils/simplerpc/rpcclient.py
felixonmars/Poco
f44bf05501bb54561c15ef1b7ad5e5342ba96110
[ "Apache-2.0" ]
null
null
null
# encoding=utf-8 from simplerpc import RpcAgent import simplerpc import time class RpcClient(RpcAgent): CONNECTING, CONNECTED, CLOSED = 1, 2, 3 """docstring for RpcClient""" def __init__(self, conn): super(RpcClient, self).__init__() self.conn = conn self.conn.connect_cb = self.on_connect self.conn.close_cb = self.on_close self._status = self.CONNECTING self.conn.connect() @property def DEBUG(self): return simplerpc.DEBUG @DEBUG.setter def DEBUG(self, value): simplerpc.DEBUG = value def on_connect(self): if self._status == self.CONNECTING: self._status = self.CONNECTED def on_close(self): self._status = self.CLOSED def call(self, func, *args, **kwargs): msg, cb = self.format_request(func, *args, **kwargs) self.conn.send(msg) return cb def update(self): if self._status != self.CONNECTED: return data = self.conn.recv() if not data: return for msg in data: self.handle_message(msg, self.conn) def wait_connected(self): for i in range(10): print("waiting for connection...%s" % i) if self._status == self.CONNECTED: return True elif self._status == self.CONNECTING: time.sleep(0.5) else: raise RuntimeError("Connection Closed") raise RuntimeError("connecting timeout")
25.55
60
0.582518
4f938719152240e3743c57c0bb7840194b6c6d46
633
py
Python
code/api/dashboard.py
CiscoSecurity/tr-05-docker-relay
8cf9cced02eb338d06d80419b35e563156ac6c9f
[ "MIT" ]
null
null
null
code/api/dashboard.py
CiscoSecurity/tr-05-docker-relay
8cf9cced02eb338d06d80419b35e563156ac6c9f
[ "MIT" ]
null
null
null
code/api/dashboard.py
CiscoSecurity/tr-05-docker-relay
8cf9cced02eb338d06d80419b35e563156ac6c9f
[ "MIT" ]
1
2021-03-12T14:06:46.000Z
2021-03-12T14:06:46.000Z
from flask import Blueprint from api.utils import jsonify_data, get_jwt, get_json from api.schemas import DashboardTileSchema, DashboardTileDataSchema dashboard_api = Blueprint('dashboard', __name__) @dashboard_api.route('/tiles', methods=['POST']) def tiles(): _ = get_jwt() return jsonify_data([]) @dashboard_api.route('/tiles/tile', methods=['POST']) def tile(): _ = get_jwt() _ = get_json(DashboardTileSchema()) return jsonify_data({}) @dashboard_api.route('/tiles/tile-data', methods=['POST']) def tile_data(): _ = get_jwt() _ = get_json(DashboardTileDataSchema()) return jsonify_data({})
24.346154
68
0.709321
24e95fc227e4ca3903b02431eb8ddcdc2c5edec1
23,649
py
Python
tensorflow/python/ops/linalg_grad.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/python/ops/linalg_grad.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/python/ops/linalg_grad.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Gradients for operators defined in linalg_ops.py. Useful reference for derivative formulas is An extended collection of matrix derivative results for forward and reverse mode algorithmic differentiation by Mike Giles: http://eprints.maths.ox.ac.uk/1079/1/NA-08-01.pdf A detailed derivation of formulas for backpropagating through spectral layers (SVD and Eig) by Ionescu, Vantzos & Sminchisescu: https://arxiv.org/pdf/1509.07838v4.pdf """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linalg_impl as _linalg @ops.RegisterGradient("MatrixInverse") def _MatrixInverseGrad(op, grad): """Gradient for MatrixInverse.""" ainv = op.outputs[0] return -math_ops.matmul( ainv, math_ops.matmul(grad, ainv, adjoint_b=True), adjoint_a=True) @ops.RegisterGradient("MatrixDeterminant") def _MatrixDeterminantGrad(op, grad): """Gradient for MatrixDeterminant.""" a = op.inputs[0] c = op.outputs[0] a_adj_inv = linalg_ops.matrix_inverse(a, adjoint=True) multipliers = array_ops.reshape(grad * c, array_ops.concat([array_ops.shape(c), [1, 1]], 0)) return multipliers * a_adj_inv @ops.RegisterGradient("MatrixSquareRoot") def _MatrixSquareRootGrad(op, grad): """Gradient for MatrixSquareRoot.""" # Let A be an m x m square matrix (or batch of matrices) # Let R = sqrtm(A) # By definition, A = RR # Take the differential: dA = d(RR) = RdR + dRR # Solve the resulting Sylvester equation for dR # Used to find Kronecker products within the Sylvester equation def _KroneckerProduct(b1, b2): """Computes the Kronecker product of two batches of square matrices""" b1_shape = array_ops.shape(b1) b2_shape = array_ops.shape(b2) b1_order = b1_shape[-1] b2_order = b2_shape[-1] shape_slice_size = [math_ops.subtract(array_ops.size(b1_shape), 2)] shape_slice = array_ops.slice(b1_shape, [0], shape_slice_size) # Same for both batches b1_reshape_shape = array_ops.concat( [shape_slice, [b1_order], [1], [b1_order], [1]], 0) b2_reshape_shape = array_ops.concat( [shape_slice, [1], [b2_order], [1], [b2_order]], 0) b1_reshape = array_ops.reshape(b1, b1_reshape_shape) b2_reshape = array_ops.reshape(b2, b2_reshape_shape) order_prod = b1_order * b2_order kprod_shape = array_ops.concat([shape_slice, [order_prod], [order_prod]], 0) return array_ops.reshape(b1_reshape * b2_reshape, kprod_shape) sqrtm = op.outputs[0] # R shape = array_ops.shape(sqrtm) order = shape[-1] # m matrix_count = math_ops.reduce_prod(shape[0:-2]) # Get batch of m x m identity matrices eye = linalg_ops.eye(order, dtype=sqrtm.dtype) # m x m identity matrix eye_flat = array_ops.reshape(eye, [-1]) eye_tiled = array_ops.tile(eye_flat, [matrix_count]) eye_batch = array_ops.reshape(eye_tiled, shape) # The transpose of R is taken in the k1 term instead of k2 in # order to prevent redundant transposition of R (i.e. (R')' = R) sqrtm_transpose = array_ops.matrix_transpose(sqrtm) k1 = _KroneckerProduct(eye_batch, sqrtm_transpose) k2 = _KroneckerProduct(sqrtm, eye_batch) ksum = math_ops.add(k1, k2) # Vectorize dA shape_slice_size = [math_ops.subtract(array_ops.size(shape), 2)] shape_slice = array_ops.slice(shape, [0], shape_slice_size) shape_vec_da = array_ops.concat([shape_slice, [order * order], [1]], 0) vec_da = array_ops.reshape(array_ops.matrix_transpose(grad), shape_vec_da) # Solve for vec(dR) vec_dsqrtm = linalg_ops.matrix_solve(ksum, vec_da) # Solve for dR by inverse vectorizing vec(dR) dsqrtm_transpose = array_ops.reshape(vec_dsqrtm, shape) return array_ops.matrix_transpose(dsqrtm_transpose) @ops.RegisterGradient("LogMatrixDeterminant") def _LogMatrixDeterminantGrad(op, _, grad_b): """Gradient for LogMatrixDeterminant.""" a = op.inputs[0] c = op.outputs[1] a_adj_inv = linalg_ops.matrix_inverse(a, adjoint=True) multipliers = array_ops.reshape( grad_b, array_ops.concat([array_ops.shape(c), [1, 1]], 0)) return multipliers * a_adj_inv @ops.RegisterGradient("Cholesky") def _CholeskyGrad(op, grad): """Gradient for Cholesky.""" # Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1} l = op.outputs[0] num_rows = array_ops.shape(l)[-1] batch_shape = array_ops.shape(l)[:-2] l_inverse = linalg_ops.matrix_triangular_solve(l, linalg_ops.eye( num_rows, batch_shape=batch_shape, dtype=l.dtype)) middle = math_ops.matmul(l, grad, adjoint_a=True) middle = array_ops.matrix_set_diag(middle, 0.5 * array_ops.matrix_diag_part(middle)) middle = array_ops.matrix_band_part(middle, -1, 0) grad_a = math_ops.matmul( math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse) grad_a += _linalg.adjoint(grad_a) return grad_a * 0.5 @ops.RegisterGradient("Qr") def _QrGrad(op, dq, dr): """Gradient for Qr.""" q, r = op.outputs if q.dtype.is_complex: raise NotImplementedError("QrGrad not implemented for dtype: %s" % q.dtype) if (r.shape.ndims is None or r.shape.as_list()[-2] is None or r.shape.as_list()[-1] is None): raise NotImplementedError("QrGrad not implemented with dynamic shapes.") if r.shape.dims[-2].value != r.shape.dims[-1].value: raise NotImplementedError("QrGrad not implemented when ncols > nrows " "or full_matrices is true and ncols != nrows.") qdq = math_ops.matmul(q, dq, adjoint_a=True) qdq_ = qdq - _linalg.adjoint(qdq) rdr = math_ops.matmul(r, dr, adjoint_b=True) rdr_ = rdr - _linalg.adjoint(rdr) tril = array_ops.matrix_band_part(qdq_ + rdr_, -1, 0) def _TriangularSolve(x, r): """Equiv to matmul(x, adjoint(matrix_inverse(r))) if r is upper-tri.""" return _linalg.adjoint( linalg_ops.matrix_triangular_solve( r, _linalg.adjoint(x), lower=False, adjoint=False)) grad_a = math_ops.matmul(q, dr + _TriangularSolve(tril, r)) grad_b = _TriangularSolve(dq - math_ops.matmul(q, qdq), r) return grad_a + grad_b @ops.RegisterGradient("MatrixSolve") def _MatrixSolveGrad(op, grad): """Gradient for MatrixSolve.""" a = op.inputs[0] adjoint_a = op.get_attr("adjoint") c = op.outputs[0] grad_b = linalg_ops.matrix_solve(a, grad, adjoint=not adjoint_a) if adjoint_a: grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True) else: grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True) return (grad_a, grad_b) @ops.RegisterGradient("MatrixSolveLs") def _MatrixSolveLsGrad(op, grad): """Gradients for MatrixSolveLs.""" # TODO(rmlarsen): The implementation could be more efficient: # a) Output the Cholesky factorization from forward op instead of # recomputing it here. # b) Implement a symmetric rank-k update op instead of computing # x*z + transpose(x*z). This pattern occurs other places in TensorFlow. def _Overdetermined(op, grad): """Gradients for the overdetermined case of MatrixSolveLs. This is the backprop for the solution to the normal equations of the first kind: X = F(A, B) = (A^T * A + lambda * I)^{-1} * A^T * B which solve the least squares problem min ||A * X - B||_F^2 + lambda ||X||_F^2. """ a = op.inputs[0] b = op.inputs[1] x = op.outputs[0] l2_regularizer = math_ops.cast(op.inputs[2], a.dtype.base_dtype) # pylint: disable=protected-access chol = linalg_ops._RegularizedGramianCholesky( a, l2_regularizer=l2_regularizer, first_kind=True) # pylint: enable=protected-access # Temporary z = (A^T * A + lambda * I)^{-1} * grad. z = linalg_ops.cholesky_solve(chol, grad) xzt = math_ops.matmul(x, z, adjoint_b=True) zx_sym = xzt + array_ops.matrix_transpose(xzt) grad_a = -math_ops.matmul(a, zx_sym) + math_ops.matmul(b, z, adjoint_b=True) grad_b = math_ops.matmul(a, z) return (grad_a, grad_b, None) def _Underdetermined(op, grad): """Gradients for the underdetermined case of MatrixSolveLs. This is the backprop for the solution to the normal equations of the second kind: X = F(A, B) = A * (A*A^T + lambda*I)^{-1} * B that (for lambda=0) solve the least squares problem min ||X||_F subject to A*X = B. """ a = op.inputs[0] b = op.inputs[1] l2_regularizer = math_ops.cast(op.inputs[2], a.dtype.base_dtype) # pylint: disable=protected-access chol = linalg_ops._RegularizedGramianCholesky( a, l2_regularizer=l2_regularizer, first_kind=False) # pylint: enable=protected-access grad_b = linalg_ops.cholesky_solve(chol, math_ops.matmul(a, grad)) # Temporary tmp = (A * A^T + lambda * I)^{-1} * B. tmp = linalg_ops.cholesky_solve(chol, b) a1 = math_ops.matmul(tmp, a, adjoint_a=True) a1 = -math_ops.matmul(grad_b, a1) a2 = grad - math_ops.matmul(a, grad_b, adjoint_a=True) a2 = math_ops.matmul(tmp, a2, adjoint_b=True) grad_a = a1 + a2 return (grad_a, grad_b, None) fast = op.get_attr("fast") if fast is False: raise ValueError("Gradient not defined for fast=False") matrix_shape = op.inputs[0].get_shape()[-2:] if matrix_shape.is_fully_defined(): if matrix_shape[-2] >= matrix_shape[-1]: return _Overdetermined(op, grad) else: return _Underdetermined(op, grad) else: # We have to defer determining the shape to runtime and use # conditional execution of the appropriate graph. matrix_shape = array_ops.shape(op.inputs[0])[-2:] return control_flow_ops.cond(matrix_shape[-2] >= matrix_shape[-1], lambda: _Overdetermined(op, grad), lambda: _Underdetermined(op, grad)) @ops.RegisterGradient("MatrixTriangularSolve") def _MatrixTriangularSolveGrad(op, grad): """Gradient for MatrixTriangularSolve.""" a = op.inputs[0] adjoint_a = op.get_attr("adjoint") lower_a = op.get_attr("lower") c = op.outputs[0] grad_b = linalg_ops.matrix_triangular_solve( a, grad, lower=lower_a, adjoint=not adjoint_a) if adjoint_a: grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True) else: grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True) if lower_a: grad_a = array_ops.matrix_band_part(grad_a, -1, 0) else: grad_a = array_ops.matrix_band_part(grad_a, 0, -1) return (grad_a, grad_b) @ops.RegisterGradient("SelfAdjointEigV2") def _SelfAdjointEigV2Grad(op, grad_e, grad_v): """Gradient for SelfAdjointEigV2.""" e = op.outputs[0] compute_v = op.get_attr("compute_v") # a = op.inputs[0], which satisfies # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i] with ops.control_dependencies([grad_e, grad_v]): if compute_v: v = op.outputs[1] # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0). # Notice that because of the term involving f, the gradient becomes # infinite (or NaN in practice) when eigenvalues are not unique. # Mathematically this should not be surprising, since for (k-fold) # degenerate eigenvalues, the corresponding eigenvectors are only defined # up to arbitrary rotation in a (k-dimensional) subspace. f = array_ops.matrix_set_diag( math_ops.reciprocal( array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)), array_ops.zeros_like(e)) grad_a = math_ops.matmul( v, math_ops.matmul( array_ops.matrix_diag(grad_e) + f * math_ops.matmul(v, grad_v, adjoint_a=True), v, adjoint_b=True)) else: _, v = linalg_ops.self_adjoint_eig(op.inputs[0]) grad_a = math_ops.matmul(v, math_ops.matmul( array_ops.matrix_diag(grad_e), v, adjoint_b=True)) # The forward op only depends on the lower triangular part of a, so here we # symmetrize and take the lower triangle grad_a = array_ops.matrix_band_part(grad_a + _linalg.adjoint(grad_a), -1, 0) grad_a = array_ops.matrix_set_diag(grad_a, 0.5 * array_ops.matrix_diag_part(grad_a)) return grad_a @ops.RegisterGradient("Svd") def _SvdGrad(op, grad_s, grad_u, grad_v): """Gradient for the singular value decomposition.""" # The derivation for the compute_uv=False case, and most of # the derivation for the full_matrices=True case, are in # Giles' paper (see reference at top of file). A derivation for # the full_matrices=False case is available at # https://j-towns.github.io/papers/svd-derivative.pdf a = op.inputs[0] a_shape = a.get_shape().with_rank_at_least(2) grad_s_mat = array_ops.matrix_diag(grad_s) if not op.get_attr("compute_uv"): s, u, v = linalg_ops.svd(a, compute_uv=True) grad_a = math_ops.matmul(u, math_ops.matmul(grad_s_mat, v, adjoint_b=True)) grad_a.set_shape(a_shape) return grad_a full_matrices = op.get_attr("full_matrices") # TODO(rmlarsen): Make this work with complex types. if a.dtype.is_complex: raise NotImplementedError( "SVD gradient is not implemented for complex types and " "compute_uv=True.") grad_u_shape = grad_u.get_shape().with_rank_at_least(2) grad_v_shape = grad_v.get_shape().with_rank_at_least(2) m = a_shape.dims[-2].merge_with(grad_u_shape[-2]) n = a_shape.dims[-1].merge_with(grad_v_shape[-2]) batch_shape = a_shape[:-2].merge_with(grad_u_shape[:-2]).merge_with( grad_v_shape[:-2]) a_shape = batch_shape.concatenate([m, n]) m = a_shape.dims[-2].value n = a_shape.dims[-1].value # TODO(rmlarsen): Make this work with placeholders. if m is None or n is None: raise NotImplementedError( "SVD gradient has not been implemented for input with unknown " "inner matrix shape.") s = op.outputs[0] u = op.outputs[1] v = op.outputs[2] use_adjoint = False if m > n: # Compute the gradient for A^H = V * S^T * U^H, and (implicitly) take the # Hermitian transpose of the gradient at the end. use_adjoint = True m, n = n, m u, v = v, u grad_u, grad_v = grad_v, grad_u with ops.control_dependencies([grad_s, grad_u, grad_v]): if full_matrices and abs(m - n) > 1: raise NotImplementedError( "svd gradient is not implemented for abs(m - n) > 1 " "when full_matrices is True") s_mat = array_ops.matrix_diag(s) s2 = math_ops.square(s) # NOTICE: Because of the term involving f, the gradient becomes # infinite (or NaN in practice) when singular values are not unique. # Mathematically this should not be surprising, since for (k-fold) # degenerate singular values, the corresponding singular vectors are # only defined up a (k-dimensional) subspace. In practice, this can # lead to numerical instability when singular values are close but not # exactly equal. # Also, even with distinct singular values, the diagonal of f can have Inf # values before setting to zero, which hurt when differentiating through # this op. To avoid that, we add eye to the matrix before taking # the reciprocal. s_shape = array_ops.shape(s) eye = _linalg.eye(s_shape[-1], batch_shape=s_shape[:-1], dtype=s.dtype) f = array_ops.matrix_set_diag( math_ops.reciprocal( array_ops.expand_dims(s2, -2) - array_ops.expand_dims(s2, -1) + eye), array_ops.zeros_like(s)) s_inv_mat = array_ops.matrix_diag(math_ops.reciprocal(s)) v1 = v[..., :, :m] grad_v1 = grad_v[..., :, :m] u_gu = math_ops.matmul(u, grad_u, adjoint_a=True) v_gv = math_ops.matmul(v1, grad_v1, adjoint_a=True) f_u = f * u_gu f_v = f * v_gv term1_nouv = ( grad_s_mat + math_ops.matmul(f_u + _linalg.adjoint(f_u), s_mat) + math_ops.matmul(s_mat, f_v + _linalg.adjoint(f_v))) term1 = math_ops.matmul(u, math_ops.matmul(term1_nouv, v1, adjoint_b=True)) if m == n: grad_a_before_transpose = term1 else: gv1t = array_ops.matrix_transpose(grad_v1) gv1t_v1 = math_ops.matmul(gv1t, v1) term2_nous = gv1t - math_ops.matmul(gv1t_v1, v1, adjoint_b=True) if full_matrices: v2 = v[..., :, m:n] grad_v2 = grad_v[..., :, m:n] v1t_gv2 = math_ops.matmul(v1, grad_v2, adjoint_a=True) term2_nous -= math_ops.matmul(v1t_gv2, v2, adjoint_b=True) u_s_inv = math_ops.matmul(u, s_inv_mat) term2 = math_ops.matmul(u_s_inv, term2_nous) grad_a_before_transpose = term1 + term2 if use_adjoint: grad_a = array_ops.matrix_transpose(grad_a_before_transpose) else: grad_a = grad_a_before_transpose grad_a.set_shape(a_shape) return grad_a def _LeftShift(x): """Shifts next-to-last dimension to the left, adding zero on the right.""" rank = array_ops.rank(x) zeros = array_ops.zeros((rank - 2, 2), dtype=dtypes.int32) pad = array_ops.concat([zeros, array_ops.constant([[0, 1], [0, 0]])], axis=0) return array_ops.pad(x[..., 1:, :], pad) def _RightShift(x): """Shifts next-to-last dimension to the right, adding zero on the left.""" rank = array_ops.rank(x) zeros = array_ops.zeros((rank - 2, 2), dtype=dtypes.int32) pad = array_ops.concat([zeros, array_ops.constant([[1, 0], [0, 0]])], axis=0) return array_ops.pad(x[..., :-1, :], pad) @ops.RegisterGradient("TridiagonalMatMul") def _TridiagonalMatMulGrad(op, grad): """Gradient for TridiagonalMatMul.""" superdiag_conj = array_ops.matrix_transpose(op.inputs[0], conjugate=True) maindiag_conj = array_ops.matrix_transpose(op.inputs[1], conjugate=True) subdiag_conj = array_ops.matrix_transpose(op.inputs[2], conjugate=True) rhs_conj = math_ops.conj(op.inputs[3]) superdiag_grad = math_ops.reduce_sum(_LeftShift(rhs_conj) * grad, axis=-1) maindiag_grad = math_ops.reduce_sum(rhs_conj * grad, axis=-1) subdiag_grad = math_ops.reduce_sum(_RightShift(rhs_conj) * grad, axis=-1) rhs_grad = _RightShift(superdiag_conj * grad) + \ maindiag_conj * grad + _LeftShift(subdiag_conj * grad) superdiag_grad = array_ops.expand_dims(superdiag_grad, -2) maindiag_grad = array_ops.expand_dims(maindiag_grad, -2) subdiag_grad = array_ops.expand_dims(subdiag_grad, -2) return superdiag_grad, maindiag_grad, subdiag_grad, rhs_grad @ops.RegisterGradient("TridiagonalSolve") def _TridiagonalSolveGrad(op, grad): """Gradient for TridiagonalSolveGrad.""" diags = op.inputs[0] x = op.outputs[0] partial_pivoting = op.get_attr("partial_pivoting") # Transposing the matrix within tridiagonal_solve kernel by interchanging # superdiagonal and subdiagonal wouldn't work on GPU due to mismatch with # paddings required by cusparse*gtsv routines. # So constructing the transposed matrix in Python. diags_transposed = _TransposeTridiagonalMatrix(diags) grad_rhs = linalg_ops.tridiagonal_solve(diags_transposed, grad, partial_pivoting=partial_pivoting) grad_diags = -_MatmulExtractingThreeDiagonals(grad_rhs, x) return grad_diags, grad_rhs def _TransposeTridiagonalMatrix(diags): """Transposes a tridiagonal matrix. Args: diags: the diagonals of the input matrix in the compact form (see linalg_ops.tridiagonal_solve). Returns: Diagonals of the transposed matrix in the compact form. """ diag = diags[..., 1, :] if diags.shape.is_fully_defined(): # For fully defined tensor we can concat with a tensor of zeros, which is # faster than using array_ops.pad(). zeros = array_ops.zeros(list(diags.shape[:-2]) + [1], dtype=diags.dtype) superdiag = array_ops.concat((diags[..., 2, 1:], zeros), axis=-1) subdiag = array_ops.concat((zeros, diags[..., 0, :-1]), axis=-1) else: rank = array_ops.rank(diags) zeros = array_ops.zeros((rank - 2, 2), dtype=dtypes.int32) superdiag_pad = array_ops.concat((zeros, array_ops.constant([[0, 1]])), axis=0) superdiag = array_ops.pad(diags[..., 2, 1:], superdiag_pad) subdiag_pad = array_ops.concat((zeros, array_ops.constant([[1, 0]])), axis=0) subdiag = array_ops.pad(diags[..., 0, :-1], subdiag_pad) return array_ops.stack([superdiag, diag, subdiag], axis=-2) def _MatmulExtractingThreeDiagonals(x, y_tr): """Multiplies matrices and extracts three diagonals from the product. With sizes M x K and K x M, this function takes O(MK) time and O(M) space, while using math_ops.matmul, and then extracting the diagonals would take O(M^2 K) time and O(M^2) space. Args: x: first matrix y_tr: second matrix transposed Returns: Diagonals of the product in compact format (see linalg_ops.tridiagonal_solve) """ diag = math_ops.reduce_sum(x * y_tr, axis=-1) if y_tr.shape.is_fully_defined(): zeros = array_ops.zeros( list(x.shape[:-2]) + [1, x.shape[-1]], dtype=x.dtype) superdiag = math_ops.reduce_sum( x * array_ops.concat((y_tr[..., 1:, :], zeros), axis=-2), axis=-1) subdiag = math_ops.reduce_sum( x * array_ops.concat((zeros, y_tr[..., :-1, :]), axis=-2), axis=-1) else: rank = array_ops.rank(y_tr) zeros = array_ops.zeros((rank - 2, 2), dtype=dtypes.int32) superdiag_pad = array_ops.concat( (zeros, array_ops.constant([[0, 1], [0, 0]])), axis=0) superdiag = math_ops.reduce_sum( x * array_ops.pad(y_tr[..., 1:, :], superdiag_pad), axis=-1) subdiag_pad = array_ops.concat( (zeros, array_ops.constant([[1, 0], [0, 0]])), axis=0) subdiag = math_ops.reduce_sum( x * array_ops.pad(y_tr[..., :-1, :], subdiag_pad), axis=-1) return array_ops.stack([superdiag, diag, subdiag], axis=-2)
39.746218
81
0.653854
e23ead7e6c3e444596f035fbf46988ec1b586e00
13,870
py
Python
byteblower/samples/wireless_endpoint/ipv6_tcp.py
shmir/PyByteBlower
fe6962a8f1c5b1fde3184bc05b4d16be7ddb628f
[ "BSD-3-Clause" ]
null
null
null
byteblower/samples/wireless_endpoint/ipv6_tcp.py
shmir/PyByteBlower
fe6962a8f1c5b1fde3184bc05b4d16be7ddb628f
[ "BSD-3-Clause" ]
null
null
null
byteblower/samples/wireless_endpoint/ipv6_tcp.py
shmir/PyByteBlower
fe6962a8f1c5b1fde3184bc05b4d16be7ddb628f
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function import time import random import datetime from byteblower.byteblowerll.byteblower import ByteBlower, DeviceStatus_Reserved import sys configuration = { # Address (IP or FQDN) of the ByteBlower server to use 'server_address': 'byteblower-tp-1300.lab.byteblower.excentis.com', # Interface on the server to create a port on. 'server_interface': 'trunk-1-13', # MAC address of the ByteBlower port which will be generated 'port_mac_address': '00:bb:01:00:00:01', # IP configuration for the ByteBlower Port. # Options are # * DHCP # * SLAAC # * static # if DHCP, use "dhcp" # 'port_ip_address': 'dhcp', # if SLAAC, use "slaac" 'port_ip_address': 'slaac', # if static, use ["ipaddress", prefixlength] # 'port_ip_address': ['3000:3128::24', '64'], # Address (IP or FQDN) of the ByteBlower Meetingpoint to use. The wireless # endpoint *must* be registered on this meetingpoint. # Special value: None. When the address is set to None, the server_address # will be used. 'meetingpoint_address': None, # UUID of the ByteBlower WirelessEndpoint to use. This wireless endpoint # *must* be registered to the meetingpoint configured by # meetingpoint_address. # Special value: None. When the UUID is set to None, the example will # automatically select the first available wireless # endpoint. 'wireless_endpoint_uuid': None, # 'wireless_endpoint_uuid': 'fd9d9566-8aa3-47c3-9d4b-e597362728d1', # TCP port for the HTTP server 'port_tcp_port': 4096, # TCP port for the HTTP Client 'wireless_endpoint_tcp_port': 4096, # HTTP Method # HTTP Method can be GET or PUT # - GET: Standard HTTP download, we retrieve data from the web server # - PUT: Standard HTTP upload, the wireless endpoint will push data to the # webserver 'http_method': 'GET', # 'http_method': 'PUT', # duration, in nanoseconds # Duration of the session 'duration': 10000000000, # TOS value to use on the HTTP client (and server) 'tos': 0 } class Example: def __init__(self, **kwargs): self.server_address = kwargs['server_address'] self.server_interface = kwargs['server_interface'] self.port_mac_address = kwargs['port_mac_address'] self.port_ip_address = kwargs['port_ip_address'] self.meetingpoint_address = kwargs['meetingpoint_address'] if self.meetingpoint_address is None: self.meetingpoint_address = self.server_address self.wireless_endpoint_uuid = kwargs['wireless_endpoint_uuid'] self.port_tcp_port = kwargs['port_tcp_port'] self.wireless_endpoint_tcp_port = kwargs['wireless_endpoint_tcp_port'] # Helper function, we can use this to parse the HTTP Method to the # enumeration used by the API from byteblower.byteblowerll import ParseHTTPRequestMethodFromString self.http_method = ParseHTTPRequestMethodFromString(kwargs['http_method']) self.duration = kwargs['duration'] self.tos = kwargs['tos'] self.server = None self.port = None self.meetingpoint = None self.wireless_endpoint = None def run(self): # duration of the samples taken. (nanoseconds) sample_duration = 100000000 # number of samples to take: # ( test_duration / sample_duration) is just enough, so we are doubling # this so we have more than enough sample_count = 2 * (self.duration / sample_duration) instance = ByteBlower.InstanceGet() assert isinstance(instance, ByteBlower) # Connect to the server self.server = instance.ServerAdd(self.server_address) # create and configure the port. self.port = self.server.PortCreate(self.server_interface) # configure the MAC address on the port port_layer2_config = self.port.Layer2EthIISet() port_layer2_config.MacSet(self.port_mac_address) # configure the IP addressing on the port port_layer3_config = self.port.Layer3IPv6Set() if type(self.port_ip_address) is str and self.port_ip_address.lower() == 'dhcp': # DHCP is configured on the DHCP protocol dhcp_protocol = port_layer3_config.ProtocolDhcpGet() dhcp_protocol.Perform() elif type(self.port_ip_address) is str and self.port_ip_address.lower() == 'slaac': # wait for stateless autoconfiguration to complete port_layer3_config.StatelessAutoconfiguration() else: # Static addressing address = self.port_ip_address[0] prefixlength = self.port_ip_address[1] ip = "{}/{}".format(address, prefixlength) port_layer3_config.IpManualAdd(ip) print("Created port", self.port.DescriptionGet()) # Connect to the meetingpoint self.meetingpoint = instance.MeetingPointAdd(self.meetingpoint_address) # If no WirelessEndpoint UUID was given, search an available one. if self.wireless_endpoint_uuid is None: self.wireless_endpoint_uuid = self.select_wireless_endpoint_uuid() # Get the WirelessEndpoint device self.wireless_endpoint = self.meetingpoint.DeviceGet(self.wireless_endpoint_uuid) print("Using wireless endpoint", self.wireless_endpoint.DescriptionGet()) # Now we have the correct information to start configuring the flow. # Claim the wireless endpoint for ourselves. This means that nobody # but us can use this device. self.wireless_endpoint.Lock(True) # Configure the HTTP server, running on the ByteBlower port. http_server = self.port.ProtocolHttpServerAdd() if self.port_tcp_port is None: self.port_tcp_port = random.randint(10000, 40000) # Configure the TCP port on which the HTTP server wll listen http_server.PortSet(self.port_tcp_port) # Configure the receive window. http_server.ReceiveWindowScalingEnable(True) http_server.ReceiveWindowScalingValueSet(7) # Tell the ByteBlower to sample every sample_duration and keep up to # sample_count samples (see top of this function) http_server.HistorySamplingIntervalDurationSet(sample_duration) http_server.HistorySamplingBufferLengthSet(sample_count) # A HTTP server will not listen for new connections as long it is not # started. You can compare it to e.g. Apache or nginx, it won't accept # new connections as long the daemon is not started. http_server.Start() print("HTTP server configuration:", http_server.DescriptionGet()) # Configure the client. http_client = self.wireless_endpoint.ProtocolHttpClientAdd() # Configure the remote endpoint to which it must connect. # This is the IP address and port of the HTTP server configured above port_layer3_config = self.port.Layer3IPv6Get() ipv6_addresses = port_layer3_config.IpLinkLocalGet() if self.port_ip_address == "dhcp": ipv6_addresses = port_layer3_config.IpDhcpGet() elif self.port_ip_address == "slaac": ipv6_addresses = port_layer3_config.IpStatelessGet() elif isinstance(self.port_ip_address, list): ipv6_addresses = port_layer3_config.IpManualGet() address = None for ipv6_address in ipv6_addresses: address = ipv6_address.split("/")[0] http_client.RemoteAddressSet(address) http_client.RemotePortSet(self.port_tcp_port) http_client.RequestDurationSet(self.duration) http_client.RequestInitialTimeToWaitSet(0) # What will we do? HTTP Get or HTTP PUT? http_client.HttpMethodSet(self.http_method) http_client.TypeOfServiceSet(self.tos) print("HTTP client configuration:", http_client.DescriptionGet()) try: self.wireless_endpoint.Prepare() self.wireless_endpoint.Start() except Exception as e: print("Error couldn't start the WE") print(e.message) sys.exit(-1) # Wait until the device returns. # As long the device is running, the device will be in # - DeviceStatus_Starting # - DeviceStatus_Running # As soon the device has finished the test, it will return to # 'DeviceStatus_Reserved', since we have a Lock on the device. status = self.wireless_endpoint.StatusGet() start_moment = datetime.datetime.now() while status != DeviceStatus_Reserved: time.sleep(1) status = self.wireless_endpoint.StatusGet() now = datetime.datetime.now() print(str(now), ":: Running for", str(now - start_moment), "::", http_server.ClientIdentifiersGet().size(), "client(s) connected") # Wireless Endpoint has returned. Collect and process the results. # It was a new HTTP server. There will thus be only 1 client. client_idents = http_server.ClientIdentifiersGet() if len(client_idents) == 0: print("Nothing connected") sys.exit(-1) first = client_idents[0] http_session = http_server.HttpSessionInfoGet(first) http_hist = http_session.ResultHistoryGet() http_hist.Refresh() # save the results to CSV, this allows further analysis afterwards collected_results = self.collect_results(http_hist) cumulative_result = http_hist.CumulativeLatestGet() mbit_s = cumulative_result.AverageDataSpeedGet().MbpsGet() print("Average throughput", mbit_s, "Mbps") print("Removing the server") self.port.ProtocolHttpServerRemove(http_server) print("Removing the client") self.wireless_endpoint.ProtocolHttpClientRemove(http_client) # Cleanup self.server.PortDestroy(self.port) self.wireless_endpoint.Lock(False) return collected_results def select_wireless_endpoint_uuid(self): """ Walk over all known devices on the meetingpoint. If the device has the status 'Available', return its UUID, otherwise return None :return: a string representing the UUID or None """ from byteblower.byteblowerll import DeviceStatus_Available for device in self.meetingpoint.DeviceListGet(): # is the status Available? if device.StatusGet() == DeviceStatus_Available: # yes, return the UUID return device.DeviceIdentifierGet() # No device found, return None return None def collect_results(self, http_hist): """" Function that writes the results to CSV files. """ sample_duration = http_hist.SamplingIntervalDurationGet() tx_samples = [] for tt in http_hist.IntervalGet(): tx_data = tt.TxByteCountTotalGet() timestamp = tt.TimestampGet() tx_samples.append((timestamp, tx_data, self.bytes_per_sample_to_mbit_s(sample_duration, tx_data))) rx_samples = [] for tt in http_hist.IntervalGet(): rx_data = tt.RxByteCountTotalGet() timestamp = tt.TimestampGet() rx_samples.append((timestamp, rx_data, self.bytes_per_sample_to_mbit_s(sample_duration, rx_data))) cumulative_samples = [] if http_hist.CumulativeLengthGet() > 0: last_cumul = http_hist.CumulativeLatestGet() mbit_s = last_cumul.AverageDataSpeedGet().MbpsGet() uploaded = last_cumul.TxByteCountTotalGet() downloaded = last_cumul.RxByteCountTotalGet() timestamp = last_cumul.TimestampGet() cumulative_samples.append((timestamp, mbit_s, uploaded, downloaded)) return { 'we': { 'uuid': self.wireless_endpoint.DeviceIdentifierGet(), 'givenname': self.wireless_endpoint.DeviceInfoGet().GivenNameGet() }, 'tx': tx_samples, 'rx': rx_samples, 'cumulative': cumulative_samples } @staticmethod def bytes_per_sample_to_mbit_s(sample_duration, n_bytes): """ Utility method for conversion. It converts bytes in a sample to Mbit/s. """ return (n_bytes * 8 * 1e9) / (1e6 * sample_duration) def human_readable_date(bb_timestamp): return str(datetime.datetime.fromtimestamp(bb_timestamp / 1e9)) def make_csv_line(we_uuid, we_name, *items): all_itemslist = [we_uuid, we_name] + list(items) all_items = map(str, all_itemslist) return (", ".join(all_items)) + "\n" if __name__ == '__main__': results = Example(**configuration).run() # Write the results to CSV files, those can be analyzed later. uuid = results['we']['uuid'] givenname = results['we']['givenname'] with open('tx_tcp_server_interval.csv', 'a') as tx_results: for tx_sample in results['tx']: ts = human_readable_date(int(tx_sample[0])) tx_results.write(make_csv_line(uuid, givenname, ts, *list(tx_sample))) with open('rx_tcp_server_interval.csv', 'a') as rx_results: for rx_sample in results['rx']: ts = human_readable_date(int(rx_sample[0])) rx_results.write(make_csv_line(uuid, givenname, ts, *list(rx_sample))) with open('cumulative_http_server.csv', 'a') as res: for cumulative_sample in results['cumulative']: ts = human_readable_date(int(cumulative_sample[0])) res.write(make_csv_line(uuid, givenname, ts, *list(cumulative_sample)))
39.070423
110
0.661067
8b4ae306ce123d222d8f26a0f8932861941dd27d
777
py
Python
src/model/experiment.py
VinGPan/classification_model_search
fab7ce6fc131b858f1b79633e0f7b86d1446c93d
[ "MIT" ]
null
null
null
src/model/experiment.py
VinGPan/classification_model_search
fab7ce6fc131b858f1b79633e0f7b86d1446c93d
[ "MIT" ]
null
null
null
src/model/experiment.py
VinGPan/classification_model_search
fab7ce6fc131b858f1b79633e0f7b86d1446c93d
[ "MIT" ]
null
null
null
from src.model.build_models import build_models from src.model.compute_features import compute_features from src.model.data_cleansing import cleanse from src.model.report import report from src.model.split import split from src.model.utils import read_args, read_yml, makedir from src.utils.logging import logger def run_experiment(yml_name): configs = read_yml(yml_name) makedir("output/" + configs['experiment_name']) cleanse(configs) compute_features(configs) split(configs) build_models(configs) report(configs) if __name__ == '__main__': exp_yml_name = read_args() logger.info('Running experiment ' + str(exp_yml_name)) try: run_experiment(exp_yml_name) except Exception as e: logger.error(e, exc_info=True)
28.777778
58
0.750322
37cec0fe22a79e72cdbdab7484adbeb3a793936b
9,588
py
Python
predict_augmented_npy_maxout2048_extradense.py
pcoster/kaggle-galaxies
bb1908d23ed80e9aeb706166007830760769daf0
[ "BSD-3-Clause" ]
374
2015-01-05T02:18:47.000Z
2021-12-13T10:30:06.000Z
predict_augmented_npy_maxout2048_extradense.py
Adaydl/kaggle-galaxies
bb1908d23ed80e9aeb706166007830760769daf0
[ "BSD-3-Clause" ]
5
2015-01-02T17:17:08.000Z
2016-01-05T18:45:38.000Z
predict_augmented_npy_maxout2048_extradense.py
Adaydl/kaggle-galaxies
bb1908d23ed80e9aeb706166007830760769daf0
[ "BSD-3-Clause" ]
173
2015-01-05T14:26:37.000Z
2021-10-10T14:17:58.000Z
""" Load an analysis file and redo the predictions on the validation set / test set, this time with augmented data and averaging. Store them as numpy files. """ import numpy as np # import pandas as pd import theano import theano.tensor as T import layers import cc_layers import custom import load_data import realtime_augmentation as ra import time import csv import os import cPickle as pickle BATCH_SIZE = 32 # 16 NUM_INPUT_FEATURES = 3 CHUNK_SIZE = 8000 # 10000 # this should be a multiple of the batch size # ANALYSIS_PATH = "analysis/try_convnet_cc_multirot_3x69r45_untied_bias.pkl" ANALYSIS_PATH = "analysis/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense.pkl" DO_VALID = True # disable this to not bother with the validation set evaluation DO_TEST = True # disable this to not generate predictions on the testset target_filename = os.path.basename(ANALYSIS_PATH).replace(".pkl", ".npy.gz") target_path_valid = os.path.join("predictions/final/augmented/valid", target_filename) target_path_test = os.path.join("predictions/final/augmented/test", target_filename) print "Loading model data etc." analysis = np.load(ANALYSIS_PATH) input_sizes = [(69, 69), (69, 69)] ds_transforms = [ ra.build_ds_transform(3.0, target_size=input_sizes[0]), ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45)] num_input_representations = len(ds_transforms) # split training data into training + a small validation set num_train = load_data.num_train num_valid = num_train // 10 # integer division num_train -= num_valid num_test = load_data.num_test valid_ids = load_data.train_ids[num_train:] train_ids = load_data.train_ids[:num_train] test_ids = load_data.test_ids train_indices = np.arange(num_train) valid_indices = np.arange(num_train, num_train+num_valid) test_indices = np.arange(num_test) y_valid = np.load("data/solutions_train.npy")[num_train:] print "Build model" l0 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]) l0_45 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1]) l0r = layers.MultiRotSliceLayer([l0, l0_45], part_size=45, include_flip=True) l0s = cc_layers.ShuffleBC01ToC01BLayer(l0r) l1a = cc_layers.CudaConvnetConv2DLayer(l0s, n_filters=32, filter_size=6, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l1 = cc_layers.CudaConvnetPooling2DLayer(l1a, pool_size=2) l2a = cc_layers.CudaConvnetConv2DLayer(l1, n_filters=64, filter_size=5, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l2 = cc_layers.CudaConvnetPooling2DLayer(l2a, pool_size=2) l3a = cc_layers.CudaConvnetConv2DLayer(l2, n_filters=128, filter_size=3, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3b = cc_layers.CudaConvnetConv2DLayer(l3a, n_filters=128, filter_size=3, pad=0, weights_std=0.1, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3 = cc_layers.CudaConvnetPooling2DLayer(l3b, pool_size=2) l3s = cc_layers.ShuffleC01BToBC01Layer(l3) j3 = layers.MultiRotMergeLayer(l3s, num_views=4) # 2) # merge convolutional parts l4a = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4b = layers.FeatureMaxPoolingLayer(l4a, pool_size=2, feature_dim=1, implementation='reshape') l4c = layers.DenseLayer(l4b, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4 = layers.FeatureMaxPoolingLayer(l4c, pool_size=2, feature_dim=1, implementation='reshape') # l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.0, dropout=0.5, nonlinearity=custom.clip_01) # nonlinearity=layers.identity) l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.1, dropout=0.5, nonlinearity=layers.identity) # l6 = layers.OutputLayer(l5, error_measure='mse') l6 = custom.OptimisedDivGalaxyOutputLayer(l5) # this incorporates the constraints on the output (probabilities sum to one, weighting, etc.) xs_shared = [theano.shared(np.zeros((1,1,1,1), dtype=theano.config.floatX)) for _ in xrange(num_input_representations)] idx = T.lscalar('idx') givens = { l0.input_var: xs_shared[0][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l0_45.input_var: xs_shared[1][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], } compute_output = theano.function([idx], l6.predictions(dropout_active=False), givens=givens) print "Load model parameters" layers.set_param_values(l6, analysis['param_values']) print "Create generators" # set here which transforms to use to make predictions augmentation_transforms = [] for zoom in [1 / 1.2, 1.0, 1.2]: for angle in np.linspace(0, 360, 10, endpoint=False): augmentation_transforms.append(ra.build_augmentation_transform(rotation=angle, zoom=zoom)) augmentation_transforms.append(ra.build_augmentation_transform(rotation=(angle + 180), zoom=zoom, shear=180)) # flipped print " %d augmentation transforms." % len(augmentation_transforms) augmented_data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train', augmentation_transforms=augmentation_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, ds_transforms=ds_transforms) valid_gen = load_data.buffered_gen_mp(augmented_data_gen_valid, buffer_size=1) augmented_data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test', augmentation_transforms=augmentation_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, ds_transforms=ds_transforms) test_gen = load_data.buffered_gen_mp(augmented_data_gen_test, buffer_size=1) approx_num_chunks_valid = int(np.ceil(num_valid * len(augmentation_transforms) / float(CHUNK_SIZE))) approx_num_chunks_test = int(np.ceil(num_test * len(augmentation_transforms) / float(CHUNK_SIZE))) print "Approximately %d chunks for the validation set" % approx_num_chunks_valid print "Approximately %d chunks for the test set" % approx_num_chunks_test if DO_VALID: print print "VALIDATION SET" print "Compute predictions" predictions_list = [] start_time = time.time() for e, (chunk_data, chunk_length) in enumerate(valid_gen): print "Chunk %d" % (e + 1) xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] print " load data onto GPU" for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # make predictions, don't forget to cute off the zeros at the end predictions_chunk_list = [] for b in xrange(num_batches_chunk): if b % 1000 == 0: print " batch %d/%d" % (b + 1, num_batches_chunk) predictions = compute_output(b) predictions_chunk_list.append(predictions) predictions_chunk = np.vstack(predictions_chunk_list) predictions_chunk = predictions_chunk[:chunk_length] # cut off zeros / padding print " compute average over transforms" predictions_chunk_avg = predictions_chunk.reshape(-1, len(augmentation_transforms), 37).mean(1) predictions_list.append(predictions_chunk_avg) time_since_start = time.time() - start_time print " %s since start" % load_data.hms(time_since_start) all_predictions = np.vstack(predictions_list) print "Write predictions to %s" % target_path_valid load_data.save_gz(target_path_valid, all_predictions) print "Evaluate" rmse_valid = analysis['losses_valid'][-1] rmse_augmented = np.sqrt(np.mean((y_valid - all_predictions)**2)) print " MSE (last iteration):\t%.6f" % rmse_valid print " MSE (augmented):\t%.6f" % rmse_augmented if DO_TEST: print print "TEST SET" print "Compute predictions" predictions_list = [] start_time = time.time() for e, (chunk_data, chunk_length) in enumerate(test_gen): print "Chunk %d" % (e + 1) xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] print " load data onto GPU" for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # make predictions, don't forget to cute off the zeros at the end predictions_chunk_list = [] for b in xrange(num_batches_chunk): if b % 1000 == 0: print " batch %d/%d" % (b + 1, num_batches_chunk) predictions = compute_output(b) predictions_chunk_list.append(predictions) predictions_chunk = np.vstack(predictions_chunk_list) predictions_chunk = predictions_chunk[:chunk_length] # cut off zeros / padding print " compute average over transforms" predictions_chunk_avg = predictions_chunk.reshape(-1, len(augmentation_transforms), 37).mean(1) predictions_list.append(predictions_chunk_avg) time_since_start = time.time() - start_time print " %s since start" % load_data.hms(time_since_start) all_predictions = np.vstack(predictions_list) print "Write predictions to %s" % target_path_test load_data.save_gz(target_path_test, all_predictions) print "Done!"
39.45679
214
0.744994
6d7e561a529ea63ba6d2abbd47ec17d39cc7e98e
65,487
py
Python
controllers/ajax.py
Kandongwe/RunestoneServer
f555868521b3717beec0ec42dbcbcb443c64686c
[ "MIT" ]
null
null
null
controllers/ajax.py
Kandongwe/RunestoneServer
f555868521b3717beec0ec42dbcbcb443c64686c
[ "MIT" ]
null
null
null
controllers/ajax.py
Kandongwe/RunestoneServer
f555868521b3717beec0ec42dbcbcb443c64686c
[ "MIT" ]
null
null
null
# ************************* # |docname| - Runestone API # ************************* # This module implements the API that the Runestone Components use to communicate with a Runestone Server. # **Most of this file is Deprecated** # **Do not** make any changes to the following functions. They will be removed in an upcoming release. # def compareAndUpdateCookieData(sid: str): # def hsblog(): # def runlog(): # def gethist(): # def getuser(): # def set_tz_offset(): # def updatelastpage(): # def getCompletionStatus(): # def getAllCompletionStatus(): # def getlastpage(): # def _getCorrectStats(miscdata, event): # def _getStudentResults(question: str): # def getaggregateresults(): # def getpollresults(): # def gettop10Answers(): # def getassignmentgrade(): # def _canonicalize_tz(tstring): # def getAssessResults(): # def tookTimedAssessment(): # def get_datafile(): # def _same_class(user1: str, user2: str) -> bool: # def login_status(): # def get_question_source(): # # TODO: Move these to a new controller file (maybe admin.py) # def preview_question(): # def save_donate(): # def did_donate(): # def broadcast_code(): # def update_selected_question(): # # # Imports # ======= # These are listed in the order prescribed by `PEP 8 # <http://www.python.org/dev/peps/pep-0008/#imports>`_. from collections import Counter import datetime from io import open import json import logging from lxml import html import math import os import random import re import subprocess from textwrap import dedent import uuid # Third-party imports # ------------------- from bleach import clean from dateutil.parser import parse # Local application imports # ------------------------- from feedback import is_server_feedback, fitb_feedback, lp_feedback from rs_practice import _get_qualified_questions logger = logging.getLogger(settings.logger) logger.setLevel(settings.log_level) EVENT_TABLE = { "mChoice": "mchoice_answers", "fillb": "fitb_answers", "dragNdrop": "dragndrop_answers", "clickableArea": "clickablearea_answers", "parsons": "parsons_answers", "codelensq": "codelens_answers", "shortanswer": "shortanswer_answers", "fillintheblank": "fitb_answers", "mchoice": "mchoice_answers", "dragndrop": "dragndrop_answers", "clickablearea": "clickablearea_answers", "parsonsprob": "parsons_answers", } COMMENT_MAP = { "sql": "--", "python": "#", "java": "//", "javascript": "//", "c": "//", "cpp": "//", } def compareAndUpdateCookieData(sid: str): if ( "ipuser" in request.cookies and request.cookies["ipuser"].value != sid and request.cookies["ipuser"].value.endswith("@" + request.client) ): db.useinfo.update_or_insert( db.useinfo.sid == request.cookies["ipuser"].value, sid=sid ) # Endpoints # ========= # # .. _hsblog endpoint: # # hsblog endpoint # --------------- # Given a JSON record of a clickstream event record the event in the ``useinfo`` table. # If the event is an answer to a runestone question record that answer in the database in # one of the xxx_answers tables. # def hsblog(): setCookie = False if auth.user: if request.vars.course != auth.user.course_name: return json.dumps( dict( log=False, message="You appear to have changed courses in another tab. Please switch to this course", ) ) sid = auth.user.username compareAndUpdateCookieData(sid) setCookie = True # we set our own cookie anyway to eliminate many of the extraneous anonymous # log entries that come from auth timing out even but the user hasn't reloaded # the page. # If the incoming data contains an sid then prefer that. if request.vars.sid: sid = request.vars.sid else: if request.vars.clientLoginStatus == "true": logger.error("Session Expired") return json.dumps(dict(log=False, message="Session Expired")) if "ipuser" in request.cookies: sid = request.cookies["ipuser"].value setCookie = True else: sid = str(uuid.uuid1().int) + "@" + request.client setCookie = True act = request.vars.get("act", "") div_id = request.vars.div_id event = request.vars.event course = request.vars.course # Get the current time, rounded to the nearest second -- this is how time time will be stored in the database. ts = datetime.datetime.utcnow() ts -= datetime.timedelta(microseconds=ts.microsecond) tt = request.vars.time if not tt: tt = 0 try: db.useinfo.insert( sid=sid, act=act[0:512], div_id=div_id, event=event, timestamp=ts, course_id=course, ) except Exception as e: logger.error( "failed to insert log record for {} in {} : {} {} {}".format( sid, course, div_id, event, act ) ) logger.error("Details: {}".format(e)) if event == "timedExam" and (act == "finish" or act == "reset" or act == "start"): logger.debug(act) if act == "reset": r = "T" else: r = None try: db.timed_exam.insert( sid=sid, course_name=course, correct=int(request.vars.correct or 0), incorrect=int(request.vars.incorrect or 0), skipped=int(request.vars.skipped or 0), time_taken=int(tt), timestamp=ts, div_id=div_id, reset=r, ) except Exception as e: logger.debug( "failed to insert a timed exam record for {} in {} : {}".format( sid, course, div_id ) ) logger.debug( "correct {} incorrect {} skipped {} time {}".format( request.vars.correct, request.vars.incorrect, request.vars.skipped, request.vars.time, ) ) logger.debug("Error: {}".format(e.message)) # Produce a default result. res = dict(log=True, timestamp=str(ts)) try: pct = float(request.vars.percent) except ValueError: pct = None except TypeError: pct = None # Process this event. if event == "mChoice" and auth.user: answer = request.vars.answer correct = request.vars.correct db.mchoice_answers.insert( sid=sid, timestamp=ts, div_id=div_id, answer=answer, correct=correct, course_name=course, percent=pct, ) elif event == "fillb" and auth.user: answer_json = request.vars.answer correct = request.vars.correct # Grade on the server if needed. do_server_feedback, feedback = is_server_feedback(div_id, course) if do_server_feedback and answer_json is not None: correct, res_update = fitb_feedback(answer_json, feedback) res.update(res_update) pct = res["percent"] # Save this data. db.fitb_answers.insert( sid=sid, timestamp=ts, div_id=div_id, answer=answer_json, correct=correct, course_name=course, percent=pct, ) elif event == "dragNdrop" and auth.user: answers = request.vars.answer minHeight = request.vars.minHeight correct = request.vars.correct db.dragndrop_answers.insert( sid=sid, timestamp=ts, div_id=div_id, answer=answers, correct=correct, course_name=course, min_height=minHeight, percent=pct, ) elif event == "clickableArea" and auth.user: correct = request.vars.correct db.clickablearea_answers.insert( sid=sid, timestamp=ts, div_id=div_id, answer=act, correct=correct, course_name=course, percent=pct, ) elif event == "parsons" and auth.user: correct = request.vars.correct answer = request.vars.answer source = request.vars.source db.parsons_answers.insert( sid=sid, timestamp=ts, div_id=div_id, answer=answer, source=source, correct=correct, course_name=course, percent=pct, ) elif event == "codelensq" and auth.user: correct = request.vars.correct answer = request.vars.answer source = request.vars.source db.codelens_answers.insert( sid=sid, timestamp=ts, div_id=div_id, answer=answer, source=source, correct=correct, course_name=course, percent=pct, ) elif event == "shortanswer" and auth.user: db.shortanswer_answers.insert( sid=sid, answer=act, div_id=div_id, timestamp=ts, course_name=course, ) elif event == "unittest" and auth.user: statslist = act.split(":") if "undefined" not in act: pct = float(statslist[1]) passed = int(statslist[3]) failed = int(statslist[5]) if math.isnan(pct): pct = 0 else: pct = passed = failed = 0 logger.error(f"Got undefined unittest results for {div_id} {sid}") if pct >= 99.99999: correct = "T" else: correct = "F" db.unittest_answers.insert( sid=sid, timestamp=ts, div_id=div_id, correct=correct, passed=passed, failed=failed, course_name=course, percent=pct, ) elif event == "lp_build" and auth.user: ret, new_fields = db.lp_answers._validate_fields( dict(sid=sid, timestamp=ts, div_id=div_id, course_name=course) ) if not ret.errors: do_server_feedback, feedback = is_server_feedback(div_id, course) if do_server_feedback: try: code_snippets = json.loads(request.vars.answer)["code_snippets"] except Exception: code_snippets = [] result = lp_feedback(code_snippets, feedback) # If an error occurred or we're not testing, pass the answer through. res.update(result) # Record the results in the database. correct = result.get("correct") answer = result.get("answer", {}) answer["code_snippets"] = code_snippets ret = db.lp_answers.validate_and_insert( sid=sid, timestamp=ts, div_id=div_id, answer=json.dumps(answer), correct=correct, course_name=course, ) if ret.errors: res.setdefault("errors", []).append(ret.errors.as_dict()) else: res["errors"] = ["No feedback provided."] else: res.setdefault("errors", []).append(ret.errors.as_dict()) response.headers["content-type"] = "application/json" if setCookie: response.cookies["ipuser"] = sid response.cookies["ipuser"]["expires"] = 24 * 3600 * 90 response.cookies["ipuser"]["path"] = "/" if auth.user: response.cookies["last_course"] = auth.user.course_name response.cookies["last_course"]["expires"] = 24 * 3600 * 90 response.cookies["last_course"]["path"] = "/" return json.dumps(res) # .. _runlog endpoint: # # runlog endpoint # --------------- # The `logRunEvent` client-side function calls this endpoint to record TODO... def runlog(): # Log errors and runs with code # response.headers['content-type'] = 'application/json' setCookie = False if auth.user: if request.vars.course != auth.user.course_name: return json.dumps( dict( log=False, message="You appear to have changed courses in another tab. Please switch to this course", ) ) if request.vars.sid: sid = request.vars.sid else: sid = auth.user.username setCookie = True else: if request.vars.clientLoginStatus == "true": logger.error("Session Expired") return json.dumps(dict(log=False, message="Session Expired")) if "ipuser" in request.cookies: sid = request.cookies["ipuser"].value setCookie = True else: sid = str(uuid.uuid1().int) + "@" + request.client setCookie = True div_id = request.vars.div_id course = request.vars.course code = request.vars.code if request.vars.code else "" ts = datetime.datetime.utcnow() error_info = request.vars.errinfo pre = request.vars.prefix if request.vars.prefix else "" post = request.vars.suffix if request.vars.suffix else "" if error_info != "success": event = "ac_error" act = str(error_info)[:512] else: act = "run" if request.vars.event: event = request.vars.event else: event = "activecode" num_tries = 3 done = False while num_tries > 0 and not done: try: db.useinfo.insert( sid=sid, act=act, div_id=div_id, event=event, timestamp=ts, course_id=course, ) done = True except Exception as e: logger.error( "probable Too Long problem trying to insert sid={} act={} div_id={} event={} timestamp={} course_id={} exception={}".format( sid, act, div_id, event, ts, course, e ) ) num_tries -= 1 if num_tries == 0: raise Exception("Runlog Failed to insert into useinfo") if auth.user: if "to_save" in request.vars and ( request.vars.to_save == "True" or request.vars.to_save == "true" ): num_tries = 3 done = False dbcourse = ( db(db.courses.course_name == course).select(**SELECT_CACHE).first() ) while num_tries > 0 and not done: try: db.code.insert( sid=sid, acid=div_id, code=code, emessage=error_info, timestamp=ts, course_id=dbcourse, language=request.vars.lang, ) if request.vars.partner: if _same_class(sid, request.vars.partner): comchar = COMMENT_MAP.get(request.vars.lang, "#") newcode = ( "{} This code was shared by {}\n\n".format(comchar, sid) + code ) db.code.insert( sid=request.vars.partner, acid=div_id, code=newcode, emessage=error_info, timestamp=ts, course_id=dbcourse, language=request.vars.lang, ) else: res = { "message": "You must be enrolled in the same class as your partner" } return json.dumps(res) done = True except Exception as e: num_tries -= 1 logger.error("INSERT into code FAILED retrying -- {}".format(e)) if num_tries == 0: raise Exception("Runlog Failed to insert into code") res = {"log": True} if setCookie: response.cookies["ipuser"] = sid response.cookies["ipuser"]["expires"] = 24 * 3600 * 90 response.cookies["ipuser"]["path"] = "/" return json.dumps(res) # Ajax Handlers for saving and restoring active code blocks def gethist(): """ return the history of saved code by this user for a particular acid :Parameters: - `acid`: id of the active code block - `user`: optional identifier for the owner of the code :Return: - json object containing a list/array of source texts """ codetbl = db.code acid = request.vars.acid # if vars.sid then we know this is being called from the grading interface if request.vars.sid: sid = request.vars.sid if auth.user and verifyInstructorStatus( auth.user.course_name, auth.user.id ): # noqa: F405 course_id = auth.user.course_id else: course_id = None elif auth.user: sid = auth.user.username course_id = auth.user.course_id else: sid = None course_id = None res = {} if sid: query = ( (codetbl.sid == sid) & (codetbl.acid == acid) & (codetbl.course_id == course_id) & (codetbl.timestamp != None) # noqa: E711 ) res["acid"] = acid res["sid"] = sid # get the code they saved in chronological order; id order gets that for us r = db(query).select(orderby=codetbl.id) res["history"] = [row.code for row in r] res["timestamps"] = [ row.timestamp.replace(tzinfo=datetime.timezone.utc).isoformat() for row in r ] response.headers["content-type"] = "application/json" return json.dumps(res) # @auth.requires_login() # This function is deprecated as of June 2019 # We need to keep it in place as long as we continue to serve books # from runestone/static/ When that period is over we can eliminate def getuser(): response.headers["content-type"] = "application/json" if auth.user: try: # return the list of courses that auth.user is registered for to keep them from # accidentally wandering into courses they are not registered for. cres = db( (db.user_courses.user_id == auth.user.id) & (db.user_courses.course_id == db.courses.id) ).select(db.courses.course_name) clist = [] for row in cres: clist.append(row.course_name) res = { "email": auth.user.email, "nick": auth.user.username, "donated": auth.user.donated, "isInstructor": verifyInstructorStatus( # noqa: F405 auth.user.course_name, auth.user.id ), "course_list": clist, } session.timezoneoffset = request.vars.timezoneoffset logger.debug( "setting timezone offset in session %s hours" % session.timezoneoffset ) except Exception: res = dict(redirect=auth.settings.login_url) # ?_next=.... else: res = dict(redirect=auth.settings.login_url) # ?_next=.... if session.readings: res["readings"] = session.readings logger.debug("returning login info: %s" % res) return json.dumps([res]) def set_tz_offset(): session.timezoneoffset = request.vars.timezoneoffset logger.debug("setting timezone offset in session %s hours" % session.timezoneoffset) return "done" # # Ajax Handlers to update and retrieve the last position of the user in the course # def updatelastpage(): lastPageUrl = request.vars.lastPageUrl lastPageScrollLocation = request.vars.lastPageScrollLocation if lastPageUrl is None: return # todo: log request.vars, request.args and request.env.path_info course = request.vars.course completionFlag = request.vars.completionFlag lastPageChapter = lastPageUrl.split("/")[-2] lastPageSubchapter = ".".join(lastPageUrl.split("/")[-1].split(".")[:-1]) if auth.user: done = False num_tries = 3 while not done and num_tries > 0: try: db( (db.user_state.user_id == auth.user.id) & (db.user_state.course_name == course) ).update( last_page_url=lastPageUrl, last_page_chapter=lastPageChapter, last_page_subchapter=lastPageSubchapter, last_page_scroll_location=lastPageScrollLocation, last_page_accessed_on=datetime.datetime.utcnow(), ) done = True except Exception: num_tries -= 1 if num_tries == 0: raise Exception("Failed to save the user state in update_last_page") done = False num_tries = 3 while not done and num_tries > 0: try: db( (db.user_sub_chapter_progress.user_id == auth.user.id) & (db.user_sub_chapter_progress.chapter_id == lastPageChapter) & ( db.user_sub_chapter_progress.sub_chapter_id == lastPageSubchapter ) & ( (db.user_sub_chapter_progress.course_name == course) | ( db.user_sub_chapter_progress.course_name == None ) # Back fill for old entries without course ) ).update( status=completionFlag, end_date=datetime.datetime.utcnow(), course_name=course, ) done = True except Exception: num_tries -= 1 if num_tries == 0: raise Exception("Failed to save sub chapter progress in update_last_page") practice_settings = db(db.course_practice.course_name == auth.user.course_name) if ( practice_settings.count() != 0 and practice_settings.select().first().flashcard_creation_method == 0 ): # Since each authenticated user has only one active course, we retrieve the course this way. course = ( db(db.courses.id == auth.user.course_id).select(**SELECT_CACHE).first() ) # We only retrieve questions to be used in flashcards if they are marked for practice purpose. questions = _get_qualified_questions( course.base_course, lastPageChapter, lastPageSubchapter, db ) if len(questions) > 0: now = datetime.datetime.utcnow() now_local = now - datetime.timedelta( hours=float(session.timezoneoffset) if "timezoneoffset" in session else 0 ) existing_flashcards = db( (db.user_topic_practice.user_id == auth.user.id) & (db.user_topic_practice.course_name == auth.user.course_name) & (db.user_topic_practice.chapter_label == lastPageChapter) & (db.user_topic_practice.sub_chapter_label == lastPageSubchapter) & (db.user_topic_practice.question_name == questions[0].name) ) # There is at least one qualified question in this subchapter, so insert a flashcard for the subchapter. if completionFlag == "1" and existing_flashcards.isempty(): db.user_topic_practice.insert( user_id=auth.user.id, course_name=auth.user.course_name, chapter_label=lastPageChapter, sub_chapter_label=lastPageSubchapter, question_name=questions[0].name, # Treat it as if the first eligible question is the last one asked. i_interval=0, e_factor=2.5, next_eligible_date=now_local.date(), # add as if yesterday, so can practice right away last_presented=now - datetime.timedelta(1), last_completed=now - datetime.timedelta(1), creation_time=now, timezoneoffset=float(session.timezoneoffset) if "timezoneoffset" in session else 0, ) if completionFlag == "0" and not existing_flashcards.isempty(): existing_flashcards.delete() def getCompletionStatus(): if auth.user: lastPageUrl = request.vars.lastPageUrl lastPageChapter = lastPageUrl.split("/")[-2] lastPageSubchapter = ".".join(lastPageUrl.split("/")[-1].split(".")[:-1]) result = db( (db.user_sub_chapter_progress.user_id == auth.user.id) & (db.user_sub_chapter_progress.chapter_id == lastPageChapter) & (db.user_sub_chapter_progress.sub_chapter_id == lastPageSubchapter) & ( (db.user_sub_chapter_progress.course_name == auth.user.course_name) | ( db.user_sub_chapter_progress.course_name == None ) # for backward compatibility ) ).select(db.user_sub_chapter_progress.status) rowarray_list = [] if result: for row in result: res = {"completionStatus": row.status} rowarray_list.append(res) # question: since the javascript in user-highlights.js is going to look only at the first row, shouldn't # we be returning just the *last* status? Or is there no history of status kept anyway? return json.dumps(rowarray_list) else: # haven't seen this Chapter/Subchapter before # make the insertions into the DB as necessary # we know the subchapter doesn't exist db.user_sub_chapter_progress.insert( user_id=auth.user.id, chapter_id=lastPageChapter, sub_chapter_id=lastPageSubchapter, status=-1, start_date=datetime.datetime.utcnow(), course_name=auth.user.course_name, ) # the chapter might exist without the subchapter result = db( (db.user_chapter_progress.user_id == auth.user.id) & (db.user_chapter_progress.chapter_id == lastPageChapter) ).select() if not result: db.user_chapter_progress.insert( user_id=auth.user.id, chapter_id=lastPageChapter, status=-1 ) return json.dumps([{"completionStatus": -1}]) def getAllCompletionStatus(): if auth.user: result = db( (db.user_sub_chapter_progress.user_id == auth.user.id) & (db.user_sub_chapter_progress.course_name == auth.user.course_name) ).select( db.user_sub_chapter_progress.chapter_id, db.user_sub_chapter_progress.sub_chapter_id, db.user_sub_chapter_progress.status, db.user_sub_chapter_progress.status, db.user_sub_chapter_progress.end_date, ) rowarray_list = [] if result: for row in result: if row.end_date is None: endDate = 0 else: endDate = row.end_date.strftime("%d %b, %Y") res = { "chapterName": row.chapter_id, "subChapterName": row.sub_chapter_id, "completionStatus": row.status, "endDate": endDate, } rowarray_list.append(res) return json.dumps(rowarray_list) @auth.requires_login() def getlastpage(): course = request.vars.course course = db(db.courses.course_name == course).select(**SELECT_CACHE).first() result = db( (db.user_state.user_id == auth.user.id) & (db.user_state.course_name == course.course_name) & (db.chapters.course_id == course.base_course) & (db.user_state.last_page_chapter == db.chapters.chapter_label) & (db.sub_chapters.chapter_id == db.chapters.id) & (db.user_state.last_page_subchapter == db.sub_chapters.sub_chapter_label) ).select( db.user_state.last_page_url, db.user_state.last_page_hash, db.chapters.chapter_name, db.user_state.last_page_scroll_location, db.sub_chapters.sub_chapter_name, ) rowarray_list = [] if result: for row in result: res = { "lastPageUrl": row.user_state.last_page_url, "lastPageHash": row.user_state.last_page_hash, "lastPageChapter": row.chapters.chapter_name, "lastPageSubchapter": row.sub_chapters.sub_chapter_name, "lastPageScrollLocation": row.user_state.last_page_scroll_location, } rowarray_list.append(res) return json.dumps(rowarray_list) else: db.user_state.insert(user_id=auth.user.id, course_name=course.course_name) def _getCorrectStats(miscdata, event): # TODO: update this to use the xxx_answer table # select and count grouping by the correct column # this version can suffer from division by zero error sid = None dbtable = EVENT_TABLE[event] # translate event to correct table if auth.user: sid = auth.user.username else: if "ipuser" in request.cookies: sid = request.cookies["ipuser"].value if sid: course = ( db(db.courses.course_name == miscdata["course"]) .select(**SELECT_CACHE) .first() ) tbl = db[dbtable] count_expr = tbl.correct.count() rows = db((tbl.sid == sid) & (tbl.timestamp > course.term_start_date)).select( tbl.correct, count_expr, groupby=tbl.correct ) total = 0 correct = 0 for row in rows: count = row[count_expr] total += count if row[dbtable].correct: correct = count if total > 0: pctcorr = round(float(correct) / total * 100) else: pctcorr = "unavailable" else: pctcorr = "unavailable" miscdata["yourpct"] = pctcorr def _getStudentResults(question: str): """ Internal function to collect student answers """ cc = db(db.courses.id == auth.user.course_id).select().first() qst = ( db( (db.questions.name == question) & (db.questions.base_course == cc.base_course) ) .select() .first() ) tbl_name = EVENT_TABLE[qst.question_type] tbl = db[tbl_name] res = db( (tbl.div_id == question) & (tbl.course_name == cc.course_name) & (tbl.timestamp >= cc.term_start_date) ).select(tbl.sid, tbl.answer, orderby=tbl.sid) resultList = [] if len(res) > 0: currentSid = res[0].sid currentAnswers = [] for row in res: if row.answer: answer = clean(row.answer) else: answer = None if row.sid == currentSid: if answer is not None: currentAnswers.append(answer) else: currentAnswers.sort() resultList.append((currentSid, currentAnswers)) currentAnswers = [answer] if answer is not None else [] currentSid = row.sid currentAnswers.sort() resultList.append((currentSid, currentAnswers)) return resultList def getaggregateresults(): course = request.vars.course question = request.vars.div_id # select act, count(*) from useinfo where div_id = 'question4_2_1' group by act; response.headers["content-type"] = "application/json" if not auth.user: return json.dumps([dict(answerDict={}, misc={}, emess="You must be logged in")]) is_instructor = verifyInstructorStatus(course, auth.user.id) # noqa: F405 # Yes, these two things could be done as a join. but this **may** be better for performance if course in ( "thinkcspy", "pythonds", "fopp", "csawesome", "apcsareview", "StudentCSP", ): start_date = datetime.datetime.utcnow() - datetime.timedelta(days=90) else: start_date = ( db(db.courses.course_name == course) .select(db.courses.term_start_date) .first() .term_start_date ) count = db.useinfo.id.count() try: result = db( (db.useinfo.div_id == question) & (db.useinfo.course_id == course) & (db.useinfo.timestamp >= start_date) ).select(db.useinfo.act, count, groupby=db.useinfo.act) except Exception: return json.dumps( [dict(answerDict={}, misc={}, emess="Sorry, the request timed out")] ) tdata = {} tot = 0 for row in result: tdata[clean(row.useinfo.act)] = row[count] tot += row[count] tot = float(tot) rdata = {} miscdata = {} correct = "" if tot > 0: for key in tdata: all_a = key.split(":") try: answer = all_a[1] if "correct" in key: correct = answer count = int(tdata[key]) if answer in rdata: count += rdata[answer] / 100.0 * tot pct = round(count / tot * 100.0) if answer != "undefined" and answer != "": rdata[answer] = pct except Exception as e: logger.error("Bad data for %s data is %s -- %s" % (question, key, e)) miscdata["correct"] = correct miscdata["course"] = course _getCorrectStats(miscdata, "mChoice") returnDict = dict(answerDict=rdata, misc=miscdata) if auth.user and is_instructor: resultList = _getStudentResults(question) returnDict["reslist"] = resultList return json.dumps([returnDict]) def getpollresults(): course = request.vars.course div_id = request.vars.div_id response.headers["content-type"] = "application/json" query = """select act from useinfo join (select sid, max(id) mid from useinfo where event='poll' and div_id = %s and course_id = %s group by sid) as T on id = T.mid""" rows = db.executesql(query, (div_id, course)) result_list = [] for row in rows: val = row[0].split(":")[0] result_list.append(int(val)) # maps option : count opt_counts = Counter(result_list) if result_list: for i in range(max(result_list)): if i not in opt_counts: opt_counts[i] = 0 # opt_list holds the option numbers from smallest to largest # count_list[i] holds the count of responses that chose option i opt_list = sorted(opt_counts.keys()) count_list = [] for i in opt_list: count_list.append(opt_counts[i]) user_res = None if auth.user: user_res = ( db( (db.useinfo.sid == auth.user.username) & (db.useinfo.course_id == course) & (db.useinfo.div_id == div_id) ) .select(db.useinfo.act, orderby=~db.useinfo.id) .first() ) if user_res: my_vote = user_res.act else: my_vote = -1 return json.dumps([len(result_list), opt_list, count_list, div_id, my_vote]) def gettop10Answers(): course = request.vars.course question = request.vars.div_id response.headers["content-type"] = "application/json" rows = [] try: dbcourse = db(db.courses.course_name == course).select(**SELECT_CACHE).first() count_expr = db.fitb_answers.answer.count() rows = db( (db.fitb_answers.div_id == question) & (db.fitb_answers.course_name == course) & (db.fitb_answers.timestamp > dbcourse.term_start_date) ).select( db.fitb_answers.answer, count_expr, groupby=db.fitb_answers.answer, orderby=~count_expr, limitby=(0, 10), ) res = [ {"answer": clean(row.fitb_answers.answer), "count": row[count_expr]} for row in rows ] except Exception as e: logger.debug(e) res = "error in query" miscdata = {"course": course} _getCorrectStats( miscdata, "fillb" ) # TODO: rewrite _getCorrectStats to use xxx_answers if auth.user and verifyInstructorStatus(course, auth.user.id): # noqa: F405 resultList = _getStudentResults(question) miscdata["reslist"] = resultList return json.dumps([res, miscdata]) def getassignmentgrade(): response.headers["content-type"] = "application/json" if not auth.user: return json.dumps([dict(message="not logged in")]) divid = request.vars.div_id ret = { "grade": "Not graded yet", "comment": "No Comments", "avg": "None", "count": "None", "released": False, } # check that the assignment is released # a_q = ( db( (db.assignments.course == auth.user.course_id) & (db.assignment_questions.assignment_id == db.assignments.id) & (db.assignment_questions.question_id == db.questions.id) & (db.questions.name == divid) ) .select( db.assignments.released, db.assignments.id, db.assignment_questions.points ) .first() ) # if there is no assignment_question # try new way that we store scores and comments # divid is a question; find question_grades row result = ( db( (db.question_grades.sid == auth.user.username) & (db.question_grades.course_name == auth.user.course_name) & (db.question_grades.div_id == divid) ) .select(db.question_grades.score, db.question_grades.comment) .first() ) logger.debug(result) if result: # say that we're sending back result styles in new version, so they can be processed differently without affecting old way during transition. ret["version"] = 2 ret["released"] = a_q.assignments.released if a_q else False if a_q and not a_q.assignments.released: ret["grade"] = "Not graded yet" elif a_q and a_q.assignments.released: ret["grade"] = result.score or "Written Feedback Only" if a_q and a_q.assignments.released == True: ret["max"] = a_q.assignment_questions.points else: ret["max"] = "" if result.comment: ret["comment"] = result.comment return json.dumps([ret]) def _canonicalize_tz(tstring): x = re.search(r"\((.*)\)", tstring) x = x.group(1) y = x.split() if len(y) == 1: return tstring else: zstring = "".join([i[0] for i in y]) return re.sub(r"(.*)\((.*)\)", r"\1({})".format(zstring), tstring) # .. _getAssessResults: # # getAssessResults # ---------------- def getAssessResults(): if not auth.user: # can't query for user's answers if we don't know who the user is, so just load from local storage return "" course = request.vars.course div_id = request.vars.div_id event = request.vars.event if ( verifyInstructorStatus(auth.user.course_name, auth.user) and request.vars.sid ): # retrieving results for grader sid = request.vars.sid else: sid = auth.user.username # TODO This whole thing is messy - get the deadline from the assignment in the db if request.vars.deadline: try: deadline = parse(_canonicalize_tz(request.vars.deadline)) tzoff = session.timezoneoffset if session.timezoneoffset else 0 deadline = deadline + datetime.timedelta(hours=float(tzoff)) deadline = deadline.replace(tzinfo=None) except Exception: logger.error("Bad Timezone - {}".format(request.vars.deadline)) deadline = datetime.datetime.utcnow() else: deadline = datetime.datetime.utcnow() response.headers["content-type"] = "application/json" # Identify the correct event and query the database so we can load it from the server if event == "fillb": rows = ( db( (db.fitb_answers.div_id == div_id) & (db.fitb_answers.course_name == course) & (db.fitb_answers.sid == sid) ) .select( db.fitb_answers.answer, db.fitb_answers.timestamp, orderby=~db.fitb_answers.id, ) .first() ) if not rows: return "" # server doesn't have it so we load from local storage instead # res = {"answer": rows.answer, "timestamp": str(rows.timestamp)} do_server_feedback, feedback = is_server_feedback(div_id, course) if do_server_feedback and rows.answer != None: correct, res_update = fitb_feedback(rows.answer, feedback) res.update(res_update) return json.dumps(res) elif event == "mChoice": rows = ( db( (db.mchoice_answers.div_id == div_id) & (db.mchoice_answers.course_name == course) & (db.mchoice_answers.sid == sid) ) .select( db.mchoice_answers.answer, db.mchoice_answers.timestamp, db.mchoice_answers.correct, orderby=~db.mchoice_answers.id, ) .first() ) if not rows: return "" res = { "answer": rows.answer, "timestamp": str(rows.timestamp), "correct": rows.correct, } return json.dumps(res) elif event == "dragNdrop": rows = ( db( (db.dragndrop_answers.div_id == div_id) & (db.dragndrop_answers.course_name == course) & (db.dragndrop_answers.sid == sid) ) .select( db.dragndrop_answers.answer, db.dragndrop_answers.timestamp, db.dragndrop_answers.correct, db.dragndrop_answers.min_height, orderby=~db.dragndrop_answers.id, ) .first() ) if not rows: return "" res = { "answer": rows.answer, "timestamp": str(rows.timestamp), "correct": rows.correct, "minHeight": str(rows.min_height), } return json.dumps(res) elif event == "clickableArea": rows = ( db( (db.clickablearea_answers.div_id == div_id) & (db.clickablearea_answers.course_name == course) & (db.clickablearea_answers.sid == sid) ) .select( db.clickablearea_answers.answer, db.clickablearea_answers.timestamp, db.clickablearea_answers.correct, orderby=~db.clickablearea_answers.id, ) .first() ) if not rows: return "" res = { "answer": rows.answer, "timestamp": str(rows.timestamp), "correct": rows.correct, } return json.dumps(res) elif event == "timedExam": rows = ( db( (db.timed_exam.reset == None) # noqa: E711 & (db.timed_exam.div_id == div_id) & (db.timed_exam.course_name == course) & (db.timed_exam.sid == sid) ) .select( db.timed_exam.correct, db.timed_exam.incorrect, db.timed_exam.skipped, db.timed_exam.time_taken, db.timed_exam.timestamp, db.timed_exam.reset, orderby=~db.timed_exam.id, ) .first() ) if not rows: return "" res = { "correct": rows.correct, "incorrect": rows.incorrect, "skipped": str(rows.skipped), "timeTaken": str(rows.time_taken), "timestamp": str(rows.timestamp), "reset": str(rows.reset), } return json.dumps(res) elif event == "parsons": rows = ( db( (db.parsons_answers.div_id == div_id) & (db.parsons_answers.course_name == course) & (db.parsons_answers.sid == sid) ) .select( db.parsons_answers.answer, db.parsons_answers.source, db.parsons_answers.timestamp, orderby=~db.parsons_answers.id, ) .first() ) if not rows: return "" res = { "answer": rows.answer, "source": rows.source, "timestamp": str(rows.timestamp), } return json.dumps(res) elif event == "shortanswer": logger.debug(f"Getting shortanswer: deadline is {deadline} ") rows = db( (db.shortanswer_answers.sid == sid) & (db.shortanswer_answers.div_id == div_id) & (db.shortanswer_answers.course_name == course) ).select(orderby=~db.shortanswer_answers.id) if not rows: return "" last_answer = None if not request.vars.deadline: row = rows[0] else: last_answer = rows[0] for row in rows: if row.timestamp <= deadline: break if row.timestamp > deadline: row = None if row and row == last_answer: res = {"answer": row.answer, "timestamp": row.timestamp.isoformat()} else: if row and row.timestamp <= deadline: res = {"answer": row.answer, "timestamp": row.timestamp.isoformat()} else: res = { "answer": "", "timestamp": None, "last_answer": last_answer.answer, "last_timestamp": last_answer.timestamp.isoformat(), } srow = ( db( (db.question_grades.sid == sid) & (db.question_grades.div_id == div_id) & (db.question_grades.course_name == course) ) .select() .first() ) if srow: res["score"] = srow.score res["comment"] = srow.comment return json.dumps(res) elif event == "lp_build": rows = ( db( (db.lp_answers.div_id == div_id) & (db.lp_answers.course_name == course) & (db.lp_answers.sid == sid) ) .select( db.lp_answers.answer, db.lp_answers.timestamp, db.lp_answers.correct, orderby=~db.lp_answers.id, ) .first() ) if not rows: return "" # server doesn't have it so we load from local storage instead answer = json.loads(rows.answer) correct = rows.correct return json.dumps( {"answer": answer, "timestamp": str(rows.timestamp), "correct": correct} ) def tookTimedAssessment(): if auth.user: sid = auth.user.username else: return json.dumps({"tookAssessment": False}) exam_id = request.vars.div_id course = request.vars.course_name rows = ( db( (db.timed_exam.div_id == exam_id) & (db.timed_exam.sid == sid) & (db.timed_exam.course_name == course) ) .select(orderby=~db.timed_exam.id) .first() ) logger.debug(f"checking {exam_id} {sid} {course} {rows}") if rows: return json.dumps({"tookAssessment": True}) else: return json.dumps({"tookAssessment": False}) # The request variable ``code`` must contain JSON-encoded RST to be rendered by Runestone. Only the HTML containing the actual Runestone component will be returned. def preview_question(): begin = """ .. raw:: html <begin_directive> """ end = """ .. raw:: html <end_directive> """ try: code = begin + dedent(json.loads(request.vars.code)) + end with open( "applications/{}/build/preview/_sources/index.rst".format( request.application ), "w", encoding="utf-8", ) as ixf: ixf.write(code) # Note that ``os.environ`` isn't a dict, it's an object whose setter modifies environment variables. So, modifications of a copy/deepcopy still `modify the original environment <https://stackoverflow.com/questions/13142972/using-copy-deepcopy-on-os-environ-in-python-appears-broken>`_. Therefore, convert it to a dict, where modifications will not affect the environment. env = dict(os.environ) # Prevent any changes to the database when building a preview question. env.pop("DBURL", None) # Run a runestone build. # We would like to use sys.executable But when we run web2py # in uwsgi then sys.executable is uwsgi which doesn't work. # Why not just run runestone? if "python" not in settings.python_interpreter: logger.error(f"Error {settings.python_interpreter} is not a valid python") return json.dumps( f"Error: settings.python_interpreter must be set to a valid interpreter not {settings.python_interpreter}" ) popen_obj = subprocess.Popen( [settings.python_interpreter, "-m", "runestone", "build"], # The build must be run from the directory containing a ``conf.py`` and all the needed support files. cwd="applications/{}/build/preview".format(request.application), # Capture the build output as text in case of an error. stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, # Pass the modified environment which doesn't contain ``DBURL``. env=env, ) stdout, stderr = popen_obj.communicate() # If there was an error, return stdout and stderr from the build. if popen_obj.returncode != 0: return json.dumps( "Error: Runestone build failed:\n\n" + stdout + "\n" + stderr ) with open( "applications/{}/build/preview/build/preview/index.html".format( request.application ), "r", encoding="utf-8", ) as ixf: src = ixf.read() tree = html.fromstring(src) if len(tree.cssselect(".runestone")) == 0: src = "" result = re.search( "<begin_directive>(.*)<end_directive>", src, flags=re.DOTALL ) if result: ctext = result.group(1) else: component = tree.cssselect(".system-message") if len(component) > 0: ctext = html.tostring(component[0]).decode("utf-8") logger.debug("error - ", ctext) else: ctext = "Error: Runestone content missing." return json.dumps(ctext) except Exception as ex: return json.dumps("Error: {}".format(ex)) def save_donate(): if auth.user: db(db.auth_user.id == auth.user.id).update(donated=True) def did_donate(): if auth.user: d_status = ( db(db.auth_user.id == auth.user.id).select(db.auth_user.donated).first() ) return json.dumps(dict(donate=d_status.donated)) return json.dumps(dict(donate=False)) def get_datafile(): """ course_id - string, the name of the course acid - the acid of this datafile """ course = request.vars.course_id # the course name the_course = db(db.courses.course_name == course).select(**SELECT_CACHE).first() acid = request.vars.acid file_contents = ( db( (db.source_code.acid == acid) & ( (db.source_code.course_id == the_course.base_course) | (db.source_code.course_id == course) ) ) .select(db.source_code.main_code) .first() ) if file_contents: file_contents = file_contents.main_code else: file_contents = None return json.dumps(dict(data=file_contents)) @auth.requires( lambda: verifyInstructorStatus(auth.user.course_name, auth.user), requires_login=True, ) def broadcast_code(): """ Callable by an instructor to send the code in their scratch activecode to all students in the class. """ the_course = ( db(db.courses.course_name == auth.user.course_name) .select(**SELECT_CACHE) .first() ) cid = the_course.id student_list = db( (db.user_courses.course_id == cid) & (db.auth_user.id == db.user_courses.user_id) ).select() shared_code = ( "{} Instructor shared code on {}\n".format( COMMENT_MAP.get(request.vars.lang, "#"), datetime.datetime.utcnow().date() ) + request.vars.code ) counter = 0 for student in student_list: if student.auth_user.id == auth.user.id: continue sid = student.auth_user.username try: db.code.insert( sid=sid, acid=request.vars.divid, code=shared_code, emessage="", timestamp=datetime.datetime.utcnow(), course_id=cid, language=request.vars.lang, comment="Instructor shared code", ) except Exception as e: logger.error("Failed to insert instructor code! details: {}".format(e)) return json.dumps(dict(mess="failed")) counter += 1 return json.dumps(dict(mess="success", share_count=counter)) def _same_class(user1: str, user2: str) -> bool: user1_course = ( db(db.auth_user.username == user1).select(db.auth_user.course_id).first() ) user2_course = ( db(db.auth_user.username == user2).select(db.auth_user.course_id).first() ) return user1_course == user2_course def login_status(): if auth.user: return json.dumps(dict(status="loggedin", course_name=auth.user.course_name)) else: return json.dumps(dict(status="loggedout", course_name=auth.user.course_name)) auto_gradable_q = [ "clickablearea", "mchoice", "parsonsprob", "dragndrop", "fillintheblank", "quizly", "khanex", ] def get_question_source(): """Called from the selectquestion directive There are 4 cases: 1. If there is only 1 question in the question list then return the html source for it. 2. If there are multiple questions then choose a question at random 3. If a proficiency is selected then select a random question that tests that proficiency 4. If the question is an AB question then see if this student is an A or a B or assign them to one randomly. In the last two cases, first check to see if there is a question for this student for this component that was previously selected. Returns: json: html source for this question """ prof = False points = request.vars.points logger.debug(f"POINTS = {points}") min_difficulty = request.vars.min_difficulty max_difficulty = request.vars.max_difficulty not_seen_ever = request.vars.not_seen_ever autogradable = request.vars.autogradable is_primary = request.vars.primary is_ab = request.vars.AB selector_id = request.vars["selector_id"] assignment_name = request.vars["timedWrapper"] toggle = request.vars["toggleOptions"] questionlist = [] # If the question has a :points: option then those points are the default # however sometimes questions are entered in the web ui without the :points: # and points are assigned in the UI instead. If this is part of an # assignment or timed exam AND the points are set in the web UI we will # use the points from the UI over the :points: If this is an assignment # or exam that is totally written in RST then the points in the UI will match # the points from the assignment anyway. if assignment_name: ui_points = ( db( (db.assignments.name == assignment_name) & (db.assignments.id == db.assignment_questions.assignment_id) & (db.assignment_questions.question_id == db.questions.id) & (db.questions.name == selector_id) ) .select(db.assignment_questions.points) .first() ) logger.debug( f"Assignment Points for {assignment_name}, {selector_id} = {ui_points}" ) if ui_points: points = ui_points.points if request.vars["questions"]: questionlist = request.vars["questions"].split(",") questionlist = [q.strip() for q in questionlist] elif request.vars["proficiency"]: prof = request.vars["proficiency"] query = (db.competency.competency == prof) & ( db.competency.question == db.questions.id ) if is_primary: query = query & (db.competency.is_primary == True) if min_difficulty: query = query & (db.questions.difficulty >= float(min_difficulty)) if max_difficulty: query = query & (db.questions.difficulty <= float(max_difficulty)) if autogradable: query = query & ( (db.questions.autograde == "unittest") | db.questions.question_type.contains(auto_gradable_q, all=False) ) res = db(query).select(db.questions.name) logger.debug(f"Query was {db._lastsql}") if res: questionlist = [row.name for row in res] else: questionlist = [] logger.error(f"No questions found for proficiency {prof}") return json.dumps(f"<p>No Questions found for proficiency: {prof}</p>") if not auth.user: # user is not logged in so just give them a random question from questions list # and be done with it. if questionlist: q = random.choice(questionlist) res = db(db.questions.name == q).select(db.questions.htmlsrc).first() if res: return json.dumps(res.htmlsrc) else: return json.dumps(f"<p>Question {q} is not in the database.</p>") else: return json.dumps(f"<p>No Questions available</p>") logger.debug(f"is_ab is {is_ab}") if is_ab: res = db( (db.user_experiment.sid == auth.user.username) & (db.user_experiment.experiment_id == is_ab) ).select(orderby=db.user_experiment.id) if not res: exp_group = random.randrange(2) db.user_experiment.insert( sid=auth.user.username, experiment_id=is_ab, exp_group=exp_group ) logger.debug(f"added {auth.user.username} to {is_ab} group {exp_group}") else: exp_group = res[0].exp_group logger.debug(f"experimental group is {exp_group}") prev_selection = ( db( (db.selected_questions.sid == auth.user.username) & (db.selected_questions.selector_id == selector_id) ) .select() .first() ) if prev_selection: questionid = prev_selection.selected_id else: questionid = questionlist[exp_group] if not is_ab: poss = set() if not_seen_ever: seenq = db( (db.useinfo.sid == auth.user.username) & (db.useinfo.div_id.contains(questionlist, all=False)) ).select(db.useinfo.div_id) seen = set([x.div_id for x in seenq]) poss = set(questionlist) questionlist = list(poss - seen) if len(questionlist) == 0 and len(poss) > 0: questionlist = list(poss) htmlsrc = "" prev_selection = ( db( (db.selected_questions.sid == auth.user.username) & (db.selected_questions.selector_id == selector_id) ) .select() .first() ) if prev_selection: questionid = prev_selection.selected_id else: # Eliminate any previous exam questions for this student prev_questions = db(db.selected_questions.sid == auth.user.username).select( db.selected_questions.selected_id ) prev_questions = set([row.selected_id for row in prev_questions]) possible = set(questionlist) questionlist = list(possible - prev_questions) if questionlist: questionid = random.choice(questionlist) else: # If there are no questions left we should still return a random question. questionid = random.choice(list(possible)) logger.debug(f"toggle is {toggle}") if toggle: prev_selection = ( db( (db.selected_questions.sid == auth.user.username) & (db.selected_questions.selector_id == selector_id) ) .select() .first() ) if prev_selection: questionid = prev_selection.selected_id else: questionid = request.vars["questions"].split(",")[0] # else: # logger.error( # f"Question ID '{questionid}' not found in select question list of '{selector_id}'." # ) # return json.dumps( # f"<p>Question ID '{questionid}' not found in select question list of '{selector_id}'.</p>" # ) res = db((db.questions.name == questionid)).select(db.questions.htmlsrc).first() if res and not prev_selection: qid = db.selected_questions.insert( selector_id=selector_id, sid=auth.user.username, selected_id=questionid, points=points, ) if not qid: logger.error( f"Failed to insert a selected question for {selector_id} and {auth.user.username}" ) else: logger.debug( f"Did not insert a record for {selector_id}, {questionid} Conditions are {res} QL: {questionlist} PREV: {prev_selection}" ) if res and res.htmlsrc: htmlsrc = res.htmlsrc else: logger.error( f"HTML Source not found for {questionid} in course {auth.user.course_name} for {auth.user.username}" ) htmlsrc = "<p>No preview available</p>" return json.dumps(htmlsrc) @auth.requires_login() def update_selected_question(): """ This endpoint is used by the selectquestion problems that allow the student to select the problem they work on. For example they may have a programming problem that can be solved with writing code, or they can switch to a parsons problem if necessary. Caller must provide: * ``metaid`` -- the id of the selectquestion * ``selected`` -- the id of the real question chosen by the student """ sid = auth.user.username selector_id = request.vars.metaid selected_id = request.vars.selected logger.debug(f"USQ - {selector_id} --> {selected_id} for {sid}") db.selected_questions.update_or_insert( (db.selected_questions.selector_id == selector_id) & (db.selected_questions.sid == sid), selected_id=selected_id, selector_id=selector_id, sid=sid, )
34.340325
379
0.554873
aafc8d2e72cc52f6f98aa56679df42389f794787
7,529
py
Python
src/biokbase/narrative/tests/test_job.py
Tianhao-Gu/narrative-jupyterlab
94a4b4a6bbb583f65ce50c8f8343083aceafff05
[ "MIT" ]
2
2019-05-03T10:12:56.000Z
2020-10-26T05:35:16.000Z
src/biokbase/narrative/tests/test_job.py
Tianhao-Gu/narrative-jupyterlab
94a4b4a6bbb583f65ce50c8f8343083aceafff05
[ "MIT" ]
9
2019-05-19T04:13:55.000Z
2022-03-23T19:18:44.000Z
src/biokbase/narrative/tests/test_job.py
Tianhao-Gu/narrative-jupyterlab
94a4b4a6bbb583f65ce50c8f8343083aceafff05
[ "MIT" ]
2
2019-03-12T17:41:10.000Z
2019-04-24T15:33:50.000Z
import unittest import mock import mock import biokbase.narrative.jobs.jobmanager from biokbase.narrative.jobs.job import Job from .util import TestConfig import os from IPython.display import ( HTML, Javascript ) from .narrative_mock.mockclients import get_mock_client from .narrative_mock.mockcomm import MockComm from contextlib import contextmanager from io import StringIO import sys @contextmanager def capture_stdout(): new_out, new_err = StringIO(), StringIO() old_out, old_err = sys.stdout, sys.stderr try: sys.stdout, sys.stderr = new_out, new_err yield sys.stdout, sys.stderr finally: sys.stdout, sys.stderr = old_out, old_err config = TestConfig() test_jobs = config.load_json_file(config.get('jobs', 'job_info_file')) class JobTest(unittest.TestCase): @classmethod def setUpClass(cls): info = test_jobs["job_info"][0] cls.job_id = info[0] param_info = test_jobs["job_param_info"][cls.job_id] cls.app_id = param_info["app_id"] cls.app_tag = param_info.get("meta", {}).get("tag", "dev") cls.app_version = param_info.get("service_ver", "0.0.1") cls.cell_id = info[10]["cell_id"] cls.run_id = info[10]["run_id"] cls.inputs = param_info["params"] cls.owner = info[2] cls.token_id = "temp_token" @mock.patch("biokbase.narrative.jobs.job.clients.get", get_mock_client) def _mocked_job(self, with_version=True, with_cell_id=True, with_run_id=True, with_token_id=True): kwargs = dict() if with_version: kwargs["app_version"] = self.app_version if with_cell_id: kwargs["cell_id"] = self.cell_id if with_run_id: kwargs["run_id"] = self.run_id if with_token_id: kwargs["token_id"] = self.token_id job = Job(self.job_id, self.app_id, self.inputs, self.owner, tag=self.app_tag, **kwargs) return job def test_job_init(self): job = self._mocked_job() self.assertEqual(job.job_id, self.job_id) self.assertEqual(job.app_id, self.app_id) self.assertEqual(job.inputs, self.inputs) self.assertEqual(job.owner, self.owner) self.assertEqual(job.tag, self.app_tag) self.assertEqual(job.app_version, self.app_version) self.assertEqual(job.cell_id, self.cell_id) self.assertEqual(job.run_id, self.run_id) self.assertEqual(job.token_id, self.token_id) def test_job_from_state(self): job_info = { "params": self.inputs, "service_ver": self.app_version } job = Job.from_state(self.job_id, job_info, self.owner, self.app_id, tag=self.app_tag, cell_id=self.cell_id, run_id=self.run_id, token_id=self.token_id) self.assertEqual(job.job_id, self.job_id) self.assertEqual(job.app_id, self.app_id) self.assertEqual(job.inputs, self.inputs) self.assertEqual(job.owner, self.owner) self.assertEqual(job.tag, self.app_tag) self.assertEqual(job.app_version, self.app_version) self.assertEqual(job.cell_id, self.cell_id) self.assertEqual(job.run_id, self.run_id) self.assertEqual(job.token_id, self.token_id) @mock.patch("biokbase.narrative.jobs.job.clients.get", get_mock_client) def test_job_info(self): job = self._mocked_job() info_str = "App name (id): Test Editor\nVersion: 0.0.1\nStatus: completed\nInputs:\n------\n[" with capture_stdout() as (out, err): job.info() self.assertIn(info_str, out.getvalue().strip()) def test_repr(self): job = self._mocked_job() job_str = job.__repr__() self.assertIn(job.job_id, job_str) @mock.patch("biokbase.narrative.jobs.job.clients.get", get_mock_client) def test_repr_js(self): job = self._mocked_job() js_out = job._repr_javascript_() self.assertIsInstance(js_out, str) # spot check to make sure the core pieces are present. needs the element.html part, job_id, and widget self.assertIn("element.html", js_out) self.assertIn(job.job_id, js_out) self.assertIn("kbaseNarrativeJobStatus", js_out) @mock.patch("biokbase.narrative.jobs.job.clients.get", get_mock_client) def test_job_finished(self): job = self._mocked_job() self.assertTrue(job.is_finished()) @mock.patch("biokbase.narrative.jobs.job.clients.get", get_mock_client) def test_state(self): job = self._mocked_job() state = job.state() self.assertEqual(state['job_id'], job.job_id) self.assertIn('status', state) self.assertIn('canceled', state) self.assertIn('job_state', state) # to do - add a test to only fetch from _last_state if it's populated and in a final state job.state() job.job_id = "not_a_job_id" job._last_state = None # force it to look up. with self.assertRaises(Exception) as e: job.state() self.assertIn("Unable to fetch info for job", str(e.exception)) @mock.patch("biokbase.narrative.jobs.job.clients.get", get_mock_client) def test_show_output_widget(self): job = self._mocked_job() out_widget = job.show_output_widget() @mock.patch("biokbase.narrative.jobs.job.clients.get", get_mock_client) def test_log(self): # Things set up by the mock: # 1. There's 100 total log lines # 2. Each line has its line number embedded in it total_lines = 100 job = self._mocked_job() logs = job.log() # we know there's 100 lines total, so roll with it that way. self.assertEqual(logs[0], total_lines) self.assertEqual(len(logs[1]), total_lines) for i in range(len(logs[1])): line = logs[1][i] self.assertIn("is_error", line) self.assertIn("line", line) self.assertIn(str(i), line["line"]) # grab the last half offset = 50 logs = job.log(first_line=offset) self.assertEqual(logs[0], total_lines) self.assertEqual(len(logs[1]), offset) for i in range(total_lines - offset): self.assertIn(str(i+offset), logs[1][i]["line"]) # grab a bite from the middle num_fetch = 20 logs = job.log(first_line=offset, num_lines=num_fetch) self.assertEqual(logs[0], total_lines) self.assertEqual(len(logs[1]), num_fetch) for i in range(num_fetch): self.assertIn(str(i+offset), logs[1][i]["line"]) # should normalize negative numbers properly logs = job.log(first_line=-5) self.assertEqual(logs[0], total_lines) self.assertEqual(len(logs[1]), total_lines) logs = job.log(num_lines=-5) self.assertEqual(logs[0], total_lines) self.assertEqual(len(logs[1]), 0) @mock.patch("biokbase.narrative.jobs.job.clients.get", get_mock_client) def test_parameters(self): job = self._mocked_job() params = job.parameters() self.assertIsNotNone(params) job.inputs = None params2 = job.parameters() self.assertIsNotNone(params2) self.assertEqual(params, params2) job.job_id = "not_a_job_id" job.inputs = None with self.assertRaises(Exception) as e: job.parameters() self.assertIn("Unable to fetch parameters for job", str(e.exception))
38.413265
110
0.64298
32e11dbb3067ab2d75bfea04e54babba970f55fd
662
py
Python
src/web/server.py
topinfrassi01/Cumulus
13ec845f8e979653a51f9fe5f424c81923fffd92
[ "Apache-2.0" ]
null
null
null
src/web/server.py
topinfrassi01/Cumulus
13ec845f8e979653a51f9fe5f424c81923fffd92
[ "Apache-2.0" ]
null
null
null
src/web/server.py
topinfrassi01/Cumulus
13ec845f8e979653a51f9fe5f424c81923fffd92
[ "Apache-2.0" ]
null
null
null
from flask import Flask, render_template, request from services.get_keywords_for_date import get_keywords_for_date from services.get_articles import get_articles from datetime import date from urllib import parse import json app = Flask(__name__) @app.route('/') def root(): keywords = get_keywords_for_date((date(2017, 2, 3),)) return render_template('index.html', keywords=keywords[0:30]) @app.route('/keyword') @app.route('/keyword/ids=<ids>') def keyword(ids): ids = json.loads(ids[1:-1]) articles = get_articles(ids) return render_template("keywords.html", articles=articles) if __name__ == '__main__': app.run(debug=False)
22.827586
65
0.73716
143812cd34df00be8eb35c4da9070c598812ff8a
68,091
py
Python
kleister/api/user_api.py
kleister/kleister-python
321120b96db59e20b30853b44af3bec6b667db05
[ "Apache-2.0" ]
null
null
null
kleister/api/user_api.py
kleister/kleister-python
321120b96db59e20b30853b44af3bec6b667db05
[ "Apache-2.0" ]
1
2018-03-31T12:33:37.000Z
2018-03-31T12:33:37.000Z
kleister/api/user_api.py
kleister/kleister-python
321120b96db59e20b30853b44af3bec6b667db05
[ "Apache-2.0" ]
null
null
null
""" Kleister OpenAPI API definition for Kleister, manage mod packs for Minecraft # noqa: E501 The version of the OpenAPI document: 1.0.0-alpha1 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from kleister.api_client import ApiClient, Endpoint as _Endpoint from kleister.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types, ) from kleister.model.general_error import GeneralError from kleister.model.team_user import TeamUser from kleister.model.user import User from kleister.model.user_mod import UserMod from kleister.model.user_mod_params import UserModParams from kleister.model.user_pack import UserPack from kleister.model.user_pack_params import UserPackParams from kleister.model.user_team_params import UserTeamParams from kleister.model.validation_error import ValidationError class UserApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __append_user_to_mod(self, user_id, user_mod, **kwargs): """Assign a mod to user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.append_user_to_mod(user_id, user_mod, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_mod (UserModParams): The user mod data to assign Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_mod"] = user_mod return self.call_with_http_info(**kwargs) self.append_user_to_mod = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/mods", "operation_id": "append_user_to_mod", "http_method": "POST", "servers": None, }, params_map={ "all": [ "user_id", "user_mod", ], "required": [ "user_id", "user_mod", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_mod": (UserModParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_mod": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__append_user_to_mod, ) def __append_user_to_pack(self, user_id, user_pack, **kwargs): """Assign a pack to user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.append_user_to_pack(user_id, user_pack, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_pack (UserPackParams): The user pack data to assign Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_pack"] = user_pack return self.call_with_http_info(**kwargs) self.append_user_to_pack = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/packs", "operation_id": "append_user_to_pack", "http_method": "POST", "servers": None, }, params_map={ "all": [ "user_id", "user_pack", ], "required": [ "user_id", "user_pack", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_pack": (UserPackParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_pack": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__append_user_to_pack, ) def __append_user_to_team(self, user_id, user_team, **kwargs): """Assign a team to user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.append_user_to_team(user_id, user_team, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_team (UserTeamParams): The user team data to assign Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_team"] = user_team return self.call_with_http_info(**kwargs) self.append_user_to_team = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/teams", "operation_id": "append_user_to_team", "http_method": "POST", "servers": None, }, params_map={ "all": [ "user_id", "user_team", ], "required": [ "user_id", "user_team", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_team": (UserTeamParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_team": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__append_user_to_team, ) def __create_user(self, user, **kwargs): """Create a new user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_user(user, async_req=True) >>> result = thread.get() Args: user (User): The user data to create Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: User If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user"] = user return self.call_with_http_info(**kwargs) self.create_user = _Endpoint( settings={ "response_type": (User,), "auth": [], "endpoint_path": "/users", "operation_id": "create_user", "http_method": "POST", "servers": None, }, params_map={ "all": [ "user", ], "required": [ "user", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user": (User,), }, "attribute_map": {}, "location_map": { "user": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__create_user, ) def __delete_user(self, user_id, **kwargs): """Delete a specific user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_user(user_id, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id return self.call_with_http_info(**kwargs) self.delete_user = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}", "operation_id": "delete_user", "http_method": "DELETE", "servers": None, }, params_map={ "all": [ "user_id", ], "required": [ "user_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, callable=__delete_user, ) def __delete_user_from_mod(self, user_id, user_mod, **kwargs): """Remove a mod from user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_user_from_mod(user_id, user_mod, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_mod (UserModParams): The user mod data to delete Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_mod"] = user_mod return self.call_with_http_info(**kwargs) self.delete_user_from_mod = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/mods", "operation_id": "delete_user_from_mod", "http_method": "DELETE", "servers": None, }, params_map={ "all": [ "user_id", "user_mod", ], "required": [ "user_id", "user_mod", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_mod": (UserModParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_mod": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__delete_user_from_mod, ) def __delete_user_from_pack(self, user_id, user_pack, **kwargs): """Remove a pack from user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_user_from_pack(user_id, user_pack, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_pack (UserPackParams): The user pack data to delete Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_pack"] = user_pack return self.call_with_http_info(**kwargs) self.delete_user_from_pack = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/packs", "operation_id": "delete_user_from_pack", "http_method": "DELETE", "servers": None, }, params_map={ "all": [ "user_id", "user_pack", ], "required": [ "user_id", "user_pack", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_pack": (UserPackParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_pack": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__delete_user_from_pack, ) def __delete_user_from_team(self, user_id, user_team, **kwargs): """Remove a team from user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_user_from_team(user_id, user_team, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_team (UserTeamParams): The user team data to delete Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_team"] = user_team return self.call_with_http_info(**kwargs) self.delete_user_from_team = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/teams", "operation_id": "delete_user_from_team", "http_method": "DELETE", "servers": None, }, params_map={ "all": [ "user_id", "user_team", ], "required": [ "user_id", "user_team", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_team": (UserTeamParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_team": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__delete_user_from_team, ) def __list_user_mods(self, user_id, **kwargs): """Fetch all mods assigned to user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_user_mods(user_id, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [UserMod] If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id return self.call_with_http_info(**kwargs) self.list_user_mods = _Endpoint( settings={ "response_type": ([UserMod],), "auth": [], "endpoint_path": "/users/{user_id}/mods", "operation_id": "list_user_mods", "http_method": "GET", "servers": None, }, params_map={ "all": [ "user_id", ], "required": [ "user_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, callable=__list_user_mods, ) def __list_user_packs(self, user_id, **kwargs): """Fetch all packs assigned to user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_user_packs(user_id, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [UserPack] If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id return self.call_with_http_info(**kwargs) self.list_user_packs = _Endpoint( settings={ "response_type": ([UserPack],), "auth": [], "endpoint_path": "/users/{user_id}/packs", "operation_id": "list_user_packs", "http_method": "GET", "servers": None, }, params_map={ "all": [ "user_id", ], "required": [ "user_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, callable=__list_user_packs, ) def __list_user_teams(self, user_id, **kwargs): """Fetch all teams assigned to user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_user_teams(user_id, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [TeamUser] If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id return self.call_with_http_info(**kwargs) self.list_user_teams = _Endpoint( settings={ "response_type": ([TeamUser],), "auth": [], "endpoint_path": "/users/{user_id}/teams", "operation_id": "list_user_teams", "http_method": "GET", "servers": None, }, params_map={ "all": [ "user_id", ], "required": [ "user_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, callable=__list_user_teams, ) def __list_users(self, **kwargs): """Fetch all available users # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_users(async_req=True) >>> result = thread.get() Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [User] If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") return self.call_with_http_info(**kwargs) self.list_users = _Endpoint( settings={ "response_type": ([User],), "auth": [], "endpoint_path": "/users", "operation_id": "list_users", "http_method": "GET", "servers": None, }, params_map={ "all": [], "required": [], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": {}, "attribute_map": {}, "location_map": {}, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, callable=__list_users, ) def __permit_user_mod(self, user_id, user_mod, **kwargs): """Update mod perms for user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.permit_user_mod(user_id, user_mod, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_mod (UserModParams): The user mod data to update Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_mod"] = user_mod return self.call_with_http_info(**kwargs) self.permit_user_mod = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/mods", "operation_id": "permit_user_mod", "http_method": "PUT", "servers": None, }, params_map={ "all": [ "user_id", "user_mod", ], "required": [ "user_id", "user_mod", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_mod": (UserModParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_mod": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__permit_user_mod, ) def __permit_user_pack(self, user_id, user_pack, **kwargs): """Update pack perms for user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.permit_user_pack(user_id, user_pack, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_pack (UserPackParams): The user pack data to update Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_pack"] = user_pack return self.call_with_http_info(**kwargs) self.permit_user_pack = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/packs", "operation_id": "permit_user_pack", "http_method": "PUT", "servers": None, }, params_map={ "all": [ "user_id", "user_pack", ], "required": [ "user_id", "user_pack", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_pack": (UserPackParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_pack": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__permit_user_pack, ) def __permit_user_team(self, user_id, user_team, **kwargs): """Update team perms for user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.permit_user_team(user_id, user_team, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user_team (UserTeamParams): The user team data to update Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeneralError If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user_team"] = user_team return self.call_with_http_info(**kwargs) self.permit_user_team = _Endpoint( settings={ "response_type": (GeneralError,), "auth": [], "endpoint_path": "/users/{user_id}/teams", "operation_id": "permit_user_team", "http_method": "PUT", "servers": None, }, params_map={ "all": [ "user_id", "user_team", ], "required": [ "user_id", "user_team", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user_team": (UserTeamParams,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user_team": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__permit_user_team, ) def __show_user(self, user_id, **kwargs): """Fetch a specific user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.show_user(user_id, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: User If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id return self.call_with_http_info(**kwargs) self.show_user = _Endpoint( settings={ "response_type": (User,), "auth": [], "endpoint_path": "/users/{user_id}", "operation_id": "show_user", "http_method": "GET", "servers": None, }, params_map={ "all": [ "user_id", ], "required": [ "user_id", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": [], }, api_client=api_client, callable=__show_user, ) def __update_user(self, user_id, user, **kwargs): """Update a specific user # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_user(user_id, user, async_req=True) >>> result = thread.get() Args: user_id (str): A user UUID or slug user (User): The user data to update Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: User If the method is called asynchronously, returns the request thread. """ kwargs["async_req"] = kwargs.get("async_req", False) kwargs["_return_http_data_only"] = kwargs.get( "_return_http_data_only", True ) kwargs["_preload_content"] = kwargs.get("_preload_content", True) kwargs["_request_timeout"] = kwargs.get("_request_timeout", None) kwargs["_check_input_type"] = kwargs.get("_check_input_type", True) kwargs["_check_return_type"] = kwargs.get("_check_return_type", True) kwargs["_host_index"] = kwargs.get("_host_index") kwargs["user_id"] = user_id kwargs["user"] = user return self.call_with_http_info(**kwargs) self.update_user = _Endpoint( settings={ "response_type": (User,), "auth": [], "endpoint_path": "/users/{user_id}", "operation_id": "update_user", "http_method": "PUT", "servers": None, }, params_map={ "all": [ "user_id", "user", ], "required": [ "user_id", "user", ], "nullable": [], "enum": [], "validation": [], }, root_map={ "validations": {}, "allowed_values": {}, "openapi_types": { "user_id": (str,), "user": (User,), }, "attribute_map": { "user_id": "user_id", }, "location_map": { "user_id": "path", "user": "body", }, "collection_format_map": {}, }, headers_map={ "accept": ["application/json"], "content_type": ["application/json"], }, api_client=api_client, callable=__update_user, )
41.142598
88
0.494397
2ad41f64a55f8393362e82a696f036bfa0f4d399
15,502
py
Python
python/paddle/nn/__init__.py
wangwin/Paddle
b7d185d6caf78630d228dfcb90750a21d637583d
[ "Apache-2.0" ]
null
null
null
python/paddle/nn/__init__.py
wangwin/Paddle
b7d185d6caf78630d228dfcb90750a21d637583d
[ "Apache-2.0" ]
null
null
null
python/paddle/nn/__init__.py
wangwin/Paddle
b7d185d6caf78630d228dfcb90750a21d637583d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: import all neural network related api under this directory, # including layers, linear, conv, rnn etc. # __all__ = [] from .layer import norm __all__ = [] __all__ += norm.__all__ # TODO: define alias in nn directory # from .clip import ErrorClipByValue #DEFINE_ALIAS # from .clip import GradientClipByGlobalNorm #DEFINE_ALIAS # from .clip import GradientClipByNorm #DEFINE_ALIAS # from .clip import GradientClipByValue #DEFINE_ALIAS # from .clip import set_gradient_clip #DEFINE_ALIAS # from .clip import clip #DEFINE_ALIAS # from .clip import clip_by_norm #DEFINE_ALIAS # from .initalizer import Bilinear #DEFINE_ALIAS # from .initalizer import Constant #DEFINE_ALIAS # from .initalizer import MSRA #DEFINE_ALIAS # from .initalizer import Normal #DEFINE_ALIAS # from .initalizer import TruncatedNormal #DEFINE_ALIAS # from .initalizer import Uniform #DEFINE_ALIAS # from .initalizer import Xavier #DEFINE_ALIAS # from .decode import BeamSearchDecoder #DEFINE_ALIAS # from .decode import Decoder #DEFINE_ALIAS # from .decode import beam_search #DEFINE_ALIAS # from .decode import beam_search_decode #DEFINE_ALIAS # from .decode import crf_decoding #DEFINE_ALIAS # from .decode import ctc_greedy_decoder #DEFINE_ALIAS # from .decode import dynamic_decode #DEFINE_ALIAS # from .decode import gather_tree #DEFINE_ALIAS # from .bin.conv import 0 #DEFINE_ALIAS # from .control_flow import case #DEFINE_ALIAS # from .control_flow import cond #DEFINE_ALIAS # from .control_flow import DynamicRNN #DEFINE_ALIAS # from .control_flow import StaticRNN #DEFINE_ALIAS # from .control_flow import switch_case #DEFINE_ALIAS # from .control_flow import while_loop #DEFINE_ALIAS # from .control_flow import rnn #DEFINE_ALIAS # from .layer.conv import Conv2D #DEFINE_ALIAS # from .layer.conv import Conv2DTranspose #DEFINE_ALIAS # from .layer.conv import Conv3D #DEFINE_ALIAS # from .layer.conv import Conv3DTranspose #DEFINE_ALIAS # from .layer.conv import TreeConv #DEFINE_ALIAS # from .layer.conv import Conv1D #DEFINE_ALIAS # from .layer.loss import NCELoss #DEFINE_ALIAS from .layer.loss import CrossEntropyLoss #DEFINE_ALIAS # from .layer.loss import MSELoss #DEFINE_ALIAS from .layer.loss import L1Loss #DEFINE_ALIAS from .layer import loss #DEFINE_ALIAS from .layer import conv #DEFINE_ALIAS from .layer.conv import Conv2D, Conv2DTranspose, Conv3D, Conv3DTranspose #DEFINE_ALIAS from .layer.loss import NLLLoss #DEFINE_ALIAS from .layer.loss import BCELoss #DEFINE_ALIAS # from .layer.learning_rate import CosineDecay #DEFINE_ALIAS # from .layer.learning_rate import ExponentialDecay #DEFINE_ALIAS # from .layer.learning_rate import InverseTimeDecay #DEFINE_ALIAS # from .layer.learning_rate import NaturalExpDecay #DEFINE_ALIAS # from .layer.learning_rate import NoamDecay #DEFINE_ALIAS # from .layer.learning_rate import PiecewiseDecay #DEFINE_ALIAS # from .layer.learning_rate import PolynomialDecay #DEFINE_ALIAS # from .layer.transformer import #DEFINE_ALIAS # from .layer.norm import BatchNorm #DEFINE_ALIAS # from .layer.norm import GroupNorm #DEFINE_ALIAS # from .layer.norm import LayerNorm #DEFINE_ALIAS from .layer.norm import InstanceNorm #DEFINE_ALIAS # from .layer.norm import SpectralNorm #DEFINE_ALIAS from .layer.activation import HSigmoid #DEFINE_ALIAS # from .layer.activation import PReLU #DEFINE_ALIAS from .layer.activation import ReLU #DEFINE_ALIAS from .layer.activation import Sigmoid #DEFINE_ALIAS # from .layer.activation import Softmax #DEFINE_ALIAS # from .layer.activation import LogSoftmax #DEFINE_ALIAS from .layer.extension import RowConv #DEFINE_ALIAS from .layer.activation import LogSoftmax #DEFINE_ALIAS # from .layer.rnn import RNNCell #DEFINE_ALIAS # from .layer.rnn import GRUCell #DEFINE_ALIAS # from .layer.rnn import LSTMCell #DEFINE_ALIAS # from .layer.common import BilinearTensorProduct #DEFINE_ALIAS # from .layer.common import Pool2D #DEFINE_ALIAS # from .layer.common import Embedding #DEFINE_ALIAS # from .layer.common import Linear #DEFINE_ALIAS # from .layer.common import UpSample #DEFINE_ALIAS from .functional.conv import conv2d #DEFINE_ALIAS from .functional.conv import conv2d_transpose #DEFINE_ALIAS from .functional.conv import conv3d #DEFINE_ALIAS from .functional.conv import conv3d_transpose #DEFINE_ALIAS # from .functional.loss import bpr_loss #DEFINE_ALIAS # from .functional.loss import center_loss #DEFINE_ALIAS # from .functional.loss import cross_entropy #DEFINE_ALIAS # from .functional.loss import dice_loss #DEFINE_ALIAS # from .functional.loss import edit_distance #DEFINE_ALIAS # from .functional.loss import huber_loss #DEFINE_ALIAS # from .functional.loss import iou_similarity #DEFINE_ALIAS # from .functional.loss import kldiv_loss #DEFINE_ALIAS # from .functional.loss import log_loss #DEFINE_ALIAS # from .functional.loss import margin_rank_loss #DEFINE_ALIAS # from .functional.loss import mse_loss #DEFINE_ALIAS # from .functional.loss import nce #DEFINE_ALIAS # from .functional.loss import npair_loss #DEFINE_ALIAS # from .functional.loss import rank_loss #DEFINE_ALIAS # from .functional.loss import sampled_softmax_with_cross_entropy #DEFINE_ALIAS # from .functional.loss import sigmoid_cross_entropy_with_logits #DEFINE_ALIAS # from .functional.loss import sigmoid_focal_loss #DEFINE_ALIAS # from .functional.loss import smooth_l1 #DEFINE_ALIAS # from .functional.loss import softmax_with_cross_entropy #DEFINE_ALIAS # from .functional.loss import square_error_cost #DEFINE_ALIAS # from .functional.loss import ssd_loss #DEFINE_ALIAS # from .functional.loss import teacher_student_sigmoid_loss #DEFINE_ALIAS # from .functional.learning_rate import cosine_decay #DEFINE_ALIAS # from .functional.learning_rate import exponential_decay #DEFINE_ALIAS # from .functional.learning_rate import inverse_time_decay #DEFINE_ALIAS # from .functional.learning_rate import natural_exp_decay #DEFINE_ALIAS # from .functional.learning_rate import noam_decay #DEFINE_ALIAS # from .functional.learning_rate import piecewise_decay #DEFINE_ALIAS # from .functional.learning_rate import polynomial_decay #DEFINE_ALIAS # from .functional.learning_rate import linear_lr_warmup #DEFINE_ALIAS # from .functional.transformer import #DEFINE_ALIAS # from .functional.pooling import pool2d #DEFINE_ALIAS # from .functional.pooling import pool3d #DEFINE_ALIAS # from .functional.pooling import adaptive_pool2d #DEFINE_ALIAS # from .functional.pooling import adaptive_pool3d #DEFINE_ALIAS # from .functional.norm import batch_norm #DEFINE_ALIAS # from .functional.norm import data_norm #DEFINE_ALIAS # from .functional.norm import group_norm #DEFINE_ALIAS # from .functional.norm import instance_norm #DEFINE_ALIAS # from .functional.norm import l2_normalize #DEFINE_ALIAS # from .functional.norm import layer_norm #DEFINE_ALIAS # from .functional.norm import lrn #DEFINE_ALIAS # from .functional.norm import spectral_norm #DEFINE_ALIAS # from .functional.vision import affine_channel #DEFINE_ALIAS # from .functional.vision import affine_grid #DEFINE_ALIAS # from .functional.vision import anchor_generator #DEFINE_ALIAS # from .functional.vision import bipartite_match #DEFINE_ALIAS # from .functional.vision import box_clip #DEFINE_ALIAS # from .functional.vision import box_coder #DEFINE_ALIAS # from .functional.vision import box_decoder_and_assign #DEFINE_ALIAS # from .functional.vision import collect_fpn_proposals #DEFINE_ALIAS # from .functional.vision import deformable_conv #DEFINE_ALIAS # from .functional.vision import deformable_roi_pooling #DEFINE_ALIAS # from .functional.vision import density_prior_box #DEFINE_ALIAS # from .functional.vision import detection_output #DEFINE_ALIAS # from .functional.vision import distribute_fpn_proposals #DEFINE_ALIAS # from .functional.vision import fsp_matrix #DEFINE_ALIAS # from .functional.vision import generate_mask_labels #DEFINE_ALIAS # from .functional.vision import generate_proposal_labels #DEFINE_ALIAS # from .functional.vision import generate_proposals #DEFINE_ALIAS # from .functional.vision import grid_sampler #DEFINE_ALIAS # from .functional.vision import image_resize #DEFINE_ALIAS # from .functional.vision import image_resize_short #DEFINE_ALIAS # from .functional.vision import multi_box_head #DEFINE_ALIAS # from .functional.vision import pixel_shuffle #DEFINE_ALIAS # from .functional.vision import prior_box #DEFINE_ALIAS # from .functional.vision import prroi_pool #DEFINE_ALIAS # from .functional.vision import psroi_pool #DEFINE_ALIAS # from .functional.vision import resize_bilinear #DEFINE_ALIAS # from .functional.vision import resize_nearest #DEFINE_ALIAS # from .functional.vision import resize_trilinear #DEFINE_ALIAS # from .functional.vision import retinanet_detection_output #DEFINE_ALIAS # from .functional.vision import retinanet_target_assign #DEFINE_ALIAS # from .functional.vision import roi_align #DEFINE_ALIAS # from .functional.vision import roi_perspective_transform #DEFINE_ALIAS # from .functional.vision import roi_pool #DEFINE_ALIAS # from .functional.vision import shuffle_channel #DEFINE_ALIAS # from .functional.vision import space_to_depth #DEFINE_ALIAS # from .functional.vision import yolo_box #DEFINE_ALIAS # from .functional.vision import yolov3_loss #DEFINE_ALIAS # from .functional.activation import brelu #DEFINE_ALIAS # from .functional.activation import elu #DEFINE_ALIAS # from .functional.activation import erf #DEFINE_ALIAS # from .functional.activation import gelu #DEFINE_ALIAS # from .functional.activation import hard_shrink #DEFINE_ALIAS # from .functional.activation import hard_sigmoid #DEFINE_ALIAS # from .functional.activation import hard_swish #DEFINE_ALIAS from .functional.activation import hsigmoid #DEFINE_ALIAS # from .functional.activation import leaky_relu #DEFINE_ALIAS # from .functional.activation import logsigmoid #DEFINE_ALIAS # from .functional.activation import maxout #DEFINE_ALIAS # from .functional.activation import prelu #DEFINE_ALIAS from .functional.activation import relu #DEFINE_ALIAS # from .functional.activation import relu6 #DEFINE_ALIAS # from .functional.activation import selu #DEFINE_ALIAS from .functional.activation import sigmoid #DEFINE_ALIAS # from .functional.activation import soft_relu #DEFINE_ALIAS # from .functional.activation import softmax #DEFINE_ALIAS # from .functional.activation import softplus #DEFINE_ALIAS # from .functional.activation import softshrink #DEFINE_ALIAS # from .functional.activation import softsign #DEFINE_ALIAS # from .functional.activation import swish #DEFINE_ALIAS # from .functional.activation import tanh_shrink #DEFINE_ALIAS # from .functional.activation import thresholded_relu #DEFINE_ALIAS from .functional.activation import log_softmax #DEFINE_ALIAS # from .functional.extension import add_position_encoding #DEFINE_ALIAS # from .functional.extension import autoincreased_step_counter #DEFINE_ALIAS # from .functional.extension import continuous_value_model #DEFINE_ALIAS # from .functional.extension import filter_by_instag #DEFINE_ALIAS # from .functional.extension import linear_chain_crf #DEFINE_ALIAS # from .functional.extension import merge_selected_rows #DEFINE_ALIAS # from .functional.extension import multiclass_nms #DEFINE_ALIAS # from .functional.extension import polygon_box_transform #DEFINE_ALIAS # from .functional.extension import random_crop #DEFINE_ALIAS from .functional.extension import row_conv #DEFINE_ALIAS # from .functional.extension import rpn_target_assign #DEFINE_ALIAS # from .functional.extension import similarity_focus #DEFINE_ALIAS # from .functional.extension import target_assign #DEFINE_ALIAS # from .functional.extension import temporal_shift #DEFINE_ALIAS # from .functional.extension import warpctc #DEFINE_ALIAS # from .functional.extension import diag_embed #DEFINE_ALIAS # from .functional.rnn import gru_unit #DEFINE_ALIAS # from .functional.rnn import lstm #DEFINE_ALIAS # from .functional.rnn import lstm_unit #DEFINE_ALIAS # from .functional.lod import sequence_concat #DEFINE_ALIAS # from .functional.lod import sequence_conv #DEFINE_ALIAS # from .functional.lod import sequence_enumerate #DEFINE_ALIAS # from .functional.lod import sequence_expand_as #DEFINE_ALIAS # from .functional.lod import sequence_expand #DEFINE_ALIAS # from .functional.lod import sequence_first_step #DEFINE_ALIAS # from .functional.lod import sequence_last_step #DEFINE_ALIAS # from .functional.lod import sequence_mask #DEFINE_ALIAS # from .functional.lod import sequence_pad #DEFINE_ALIAS # from .functional.lod import sequence_pool #DEFINE_ALIAS # from .functional.lod import sequence_reshape #DEFINE_ALIAS # from .functional.lod import sequence_reverse #DEFINE_ALIAS # from .functional.lod import sequence_scatter #DEFINE_ALIAS # from .functional.lod import sequence_slice #DEFINE_ALIAS # from .functional.lod import sequence_softmax #DEFINE_ALIAS # from .functional.lod import sequence_unpad #DEFINE_ALIAS # from .functional.lod import array_length #DEFINE_ALIAS # from .functional.lod import array_read #DEFINE_ALIAS # from .functional.lod import array_write #DEFINE_ALIAS # from .functional.lod import create_array #DEFINE_ALIAS # from .functional.lod import hash #DEFINE_ALIAS # from .functional.lod import im2sequence #DEFINE_ALIAS # from .functional.lod import lod_append #DEFINE_ALIAS # from .functional.lod import lod_reset #DEFINE_ALIAS # from .functional.lod import reorder_lod_tensor_by_rank #DEFINE_ALIAS # from .functional.lod import tensor_array_to_tensor #DEFINE_ALIAS # from .functional.lod import dynamic_gru #DEFINE_ALIAS # from .functional.lod import dynamic_lstm #DEFINE_ALIAS # from .functional.lod import dynamic_lstmp #DEFINE_ALIAS # from .functional.common import dropout #DEFINE_ALIAS # from .functional.common import embedding #DEFINE_ALIAS # from .functional.common import fc #DEFINE_ALIAS # from .functional.common import label_smooth #DEFINE_ALIAS # from .functional.common import one_hot #DEFINE_ALIAS # from .functional.common import pad #DEFINE_ALIAS # from .functional.common import pad_constant_like #DEFINE_ALIAS # from .functional.common import pad2d #DEFINE_ALIAS # from .functional.common import unfold #DEFINE_ALIAS # from .functional.common import bilinear_tensor_product #DEFINE_ALIAS # from .functional.common import assign #DEFINE_ALIAS # from .functional.common import interpolate #DEFINE_ALIAS # from .input import data #DEFINE_ALIAS # from .input import Input #DEFINE_ALIAS
57.414815
87
0.8028
e3f0d92a2ec4e98ce6f7edfbb7abe366e04972bc
6,866
py
Python
lasaft/source_separation/conditioned/cunet/models/dcun_tfc_film_lasaft.py
roger-tseng/Conditioned-Source-Separation-LaSAFT
47cf2b7d11ac442f58127afb4ed5a8af360b20d9
[ "MIT" ]
2
2022-01-03T08:22:24.000Z
2022-02-10T23:25:41.000Z
lasaft/source_separation/conditioned/cunet/models/dcun_tfc_film_lasaft.py
ws-choi/LightSAFT-Net-for-MDX-Challenge
bd38f44cad681deb7f1cf296b2efdd4c018c8212
[ "MIT" ]
null
null
null
lasaft/source_separation/conditioned/cunet/models/dcun_tfc_film_lasaft.py
ws-choi/LightSAFT-Net-for-MDX-Challenge
bd38f44cad681deb7f1cf296b2efdd4c018c8212
[ "MIT" ]
3
2021-05-27T13:25:19.000Z
2021-08-05T11:34:06.000Z
import inspect from argparse import ArgumentParser import torch from torch import nn from lasaft.source_separation.conditioned.LaSAFT import TFC_LaSAFT from lasaft.source_separation.conditioned.cunet.dcun_film import DenseCUNet_FiLM, DenseCUNet_FiLM_Framework from lasaft.source_separation.conditioned.loss_functions import get_conditional_loss from lasaft.utils.functions import get_activation_by_name class DCUN_TFC_FiLM_LaSAFT(DenseCUNet_FiLM): def __init__(self, n_fft, input_channels, internal_channels, n_blocks, n_internal_layers, first_conv_activation, last_activation, t_down_layers, f_down_layers, # TFC_LaSAFT # kernel_size_t, kernel_size_f, bn_factor, min_bn_units, tfc_tdf_bias, tfc_tdf_activation, num_tdfs, dk, # Conditional Mechanism # control_vector_type, control_input_dim, embedding_dim, # Conditional Model # control_type, control_n_layer, condition_to, film_type, gamma_activation, beta_activation ): tfc_tdf_activation = get_activation_by_name(tfc_tdf_activation) def mk_tfc_lasaft(in_channels, internal_channels, f): return TFC_LaSAFT(in_channels, n_internal_layers, internal_channels, kernel_size_t, kernel_size_f, f, bn_factor, min_bn_units, tfc_tdf_bias, tfc_tdf_activation, embedding_dim, num_tdfs, dk) def mk_ds(internal_channels, i, f, t_down_layers): if t_down_layers is None: scale = (2, 2) else: scale = (2, 2) if i in t_down_layers else (1, 2) ds = nn.Sequential( nn.Conv2d(in_channels=internal_channels, out_channels=internal_channels, kernel_size=scale, stride=scale), nn.BatchNorm2d(internal_channels) ) return ds, f // scale[-1] def mk_us(internal_channels, i, f, n, t_down_layers): if t_down_layers is None: scale = (2, 2) else: scale = (2, 2) if i in [n - 1 - s for s in t_down_layers] else (1, 2) us = nn.Sequential( nn.ConvTranspose2d(in_channels=internal_channels, out_channels=internal_channels, kernel_size=scale, stride=scale), nn.BatchNorm2d(internal_channels) ) return us, f * scale[-1] super(DCUN_TFC_FiLM_LaSAFT, self).__init__( n_fft, input_channels, internal_channels, n_blocks, n_internal_layers, mk_tfc_lasaft, mk_ds, mk_us, first_conv_activation, last_activation, t_down_layers, f_down_layers, # Conditional Mechanism # control_vector_type, control_input_dim, embedding_dim, condition_to, control_type, control_n_layer, film_type, gamma_activation, beta_activation ) def forward(self, input_spec, input_condition): condition_embedding = self.embedding(input_condition) gammas, betas = self.condition_generator(condition_embedding) x = self.first_conv(input_spec) encoding_outputs = [] gammas_encoder, gammas_middle, gammas_decoder = gammas betas_encoder, betas_middle, betas_decoder = betas for i in range(self.n): x = self.encoders[i].tfc(x) if self.is_encoder_conditioned: x = self.film(x, gammas_encoder[i], betas_encoder[i]) x = x + self.encoders[i].lasaft(x,condition_embedding) encoding_outputs.append(x) x = self.downsamplings[i](x) x = self.mid_block.tfc(x) if self.is_middle_conditioned: x = self.film(x, gammas_middle, betas_middle) x = x + self.mid_block.lasaft(x,condition_embedding) for i in range(self.n): x = self.upsamplings[i](x) x = torch.cat((x, encoding_outputs[-i - 1]), 1) x = self.decoders[i].tfc(x) if self.is_decoder_conditioned: x = self.film(x, gammas_decoder[i], betas_decoder[i]) x = x + self.decoders[i].lasaft(x,condition_embedding) return self.last_conv(x) class DCUN_TFC_FiLM_LaSAFT_Framework(DenseCUNet_FiLM_Framework): def __init__(self, n_fft, hop_length, num_frame, spec_type, spec_est_mode, optimizer, lr, auto_lr_schedule, train_loss, val_loss, **kwargs): valid_kwargs = inspect.signature(DCUN_TFC_FiLM_LaSAFT.__init__).parameters tfc_net_kwargs = dict((name, kwargs[name]) for name in valid_kwargs if name in kwargs) tfc_net_kwargs['n_fft'] = n_fft spec2spec = DCUN_TFC_FiLM_LaSAFT(**tfc_net_kwargs) train_loss_ = get_conditional_loss(train_loss, n_fft, hop_length, **kwargs) val_loss_ = get_conditional_loss(val_loss, n_fft, hop_length, **kwargs) super(DCUN_TFC_FiLM_LaSAFT_Framework, self).__init__(n_fft, hop_length, num_frame, spec_type, spec_est_mode, spec2spec, optimizer, lr, auto_lr_schedule, train_loss_, val_loss_ ) valid_kwargs = inspect.signature(DCUN_TFC_FiLM_LaSAFT_Framework.__init__).parameters hp = [key for key in valid_kwargs.keys() if key not in ['self', 'kwargs']] hp = hp + [key for key in kwargs if not callable(kwargs[key])] self.save_hyperparameters(*hp) @staticmethod def add_model_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--n_internal_layers', type=int, default=5) parser.add_argument('--kernel_size_t', type=int, default=3) parser.add_argument('--kernel_size_f', type=int, default=3) parser.add_argument('--bn_factor', type=int, default=16) parser.add_argument('--min_bn_units', type=int, default=16) parser.add_argument('--tfc_tdf_bias', type=bool, default=False) parser.add_argument('--tfc_tdf_activation', type=str, default='relu') parser.add_argument('--num_tdfs', type=int, default=6) parser.add_argument('--dk', type=int, default=32) return DenseCUNet_FiLM_Framework.add_model_specific_args(parser)
41.612121
107
0.599913
c3ac20d3fc9b6bc1560422184b6a8b2ba29603bf
1,750
py
Python
data/p4VQE/R4/benchmark/startCirq649.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startCirq649.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startCirq649.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=12 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=9 c.append(cirq.X.on(input_qubit[1])) # number=10 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=11 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.Y.on(input_qubit[3])) # number=5 c.append(cirq.X.on(input_qubit[3])) # number=7 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq649.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
27.777778
77
0.693143
94576bf2550330a3bb745e959d6748e9ac809060
2,569
py
Python
examples/framework_examples/dqn_per.py
1abner1/machin
d10727b52d981c898e31cdd20b48a3d972612bb6
[ "MIT" ]
1
2021-10-08T18:38:50.000Z
2021-10-08T18:38:50.000Z
examples/framework_examples/dqn_per.py
1abner1/machin
d10727b52d981c898e31cdd20b48a3d972612bb6
[ "MIT" ]
null
null
null
examples/framework_examples/dqn_per.py
1abner1/machin
d10727b52d981c898e31cdd20b48a3d972612bb6
[ "MIT" ]
null
null
null
from machin.frame.algorithms import DQNPer from machin.utils.logging import default_logger as logger import torch as t import torch.nn as nn import gym # configurations env = gym.make("CartPole-v0") observe_dim = 4 action_num = 2 max_episodes = 1000 max_steps = 200 solved_reward = 190 solved_repeat = 5 # model definition class QNet(nn.Module): def __init__(self, state_dim, action_num): super().__init__() self.fc1 = nn.Linear(state_dim, 16) self.fc2 = nn.Linear(16, 16) self.fc3 = nn.Linear(16, action_num) def forward(self, state): a = t.relu(self.fc1(state)) a = t.relu(self.fc2(a)) return self.fc3(a) if __name__ == "__main__": q_net = QNet(observe_dim, action_num) q_net_t = QNet(observe_dim, action_num) dqn_per = DQNPer(q_net, q_net_t, t.optim.Adam, nn.MSELoss(reduction="sum")) episode, step, reward_fulfilled = 0, 0, 0 smoothed_total_reward = 0 while episode < max_episodes: episode += 1 total_reward = 0 terminal = False step = 0 state = t.tensor(env.reset(), dtype=t.float32).view(1, observe_dim) while not terminal and step <= max_steps: step += 1 with t.no_grad(): old_state = state # agent model inference action = dqn_per.act_discrete_with_noise({"state": old_state}) state, reward, terminal, _ = env.step(action.item()) state = t.tensor(state, dtype=t.float32).view(1, observe_dim) total_reward += reward dqn_per.store_transition( { "state": {"state": old_state}, "action": {"action": action}, "next_state": {"state": state}, "reward": reward, "terminal": terminal or step == max_steps, } ) # update, update more if episode is longer, else less if episode > 100: for _ in range(step): dqn_per.update() # show reward smoothed_total_reward = smoothed_total_reward * 0.9 + total_reward * 0.1 logger.info(f"Episode {episode} total reward={smoothed_total_reward:.2f}") if smoothed_total_reward > solved_reward: reward_fulfilled += 1 if reward_fulfilled >= solved_repeat: logger.info("Environment solved!") exit(0) else: reward_fulfilled = 0
30.583333
82
0.567925
61f5661ef6e5ae78cf89c16163469b615f9c01c8
3,792
py
Python
ckanext/resourceproxy/blueprint.py
ziveo/ckan
f4cfe5e28789df58b2bf7e73e5989ffda00e5c5c
[ "Apache-2.0" ]
58
2015-01-11T09:05:15.000Z
2022-03-17T23:44:07.000Z
ckanext/resourceproxy/blueprint.py
ziveo/ckan
f4cfe5e28789df58b2bf7e73e5989ffda00e5c5c
[ "Apache-2.0" ]
1,467
2015-01-01T16:47:44.000Z
2022-02-28T16:51:20.000Z
ckanext/resourceproxy/blueprint.py
ziveo/ckan
f4cfe5e28789df58b2bf7e73e5989ffda00e5c5c
[ "Apache-2.0" ]
17
2015-03-13T18:05:05.000Z
2020-11-06T13:55:32.000Z
# encoding: utf-8 from logging import getLogger import requests from six.moves.urllib.parse import urlsplit from flask import Blueprint, make_response import ckan.lib.base as base import ckan.logic as logic from ckan.common import config, _ from ckan.plugins.toolkit import (asint, abort, get_action, c) log = getLogger(__name__) MAX_FILE_SIZE = asint( config.get(u'ckan.resource_proxy.max_file_size', 1024**2) ) CHUNK_SIZE = asint(config.get(u'ckan.resource_proxy.chunk_size', 4096)) resource_proxy = Blueprint(u'resource_proxy', __name__) def proxy_resource(context, data_dict): u'''Chunked proxy for resources. To make sure that the file is not too large, first, we try to get the content length from the headers. If the headers to not contain a content length (if it is a chinked response), we only transfer as long as the transferred data is less than the maximum file size. ''' resource_id = data_dict[u'resource_id'] log.info(u'Proxify resource {id}'.format(id=resource_id)) try: resource = get_action(u'resource_show')(context, {u'id': resource_id}) except logic.NotFound: return abort(404, _(u'Resource not found')) url = resource[u'url'] parts = urlsplit(url) if not parts.scheme or not parts.netloc: return abort(409, _(u'Invalid URL.')) response = make_response() try: # first we try a HEAD request which may not be supported did_get = False r = requests.head(url) # Servers can refuse HEAD requests. 405 is the appropriate # response, but 400 with the invalid method mentioned in the # text, or a 403 (forbidden) status is also possible (#2412, # #2530) if r.status_code in (400, 403, 405): r = requests.get(url, stream=True) did_get = True r.raise_for_status() cl = r.headers.get(u'content-length') if cl and int(cl) > MAX_FILE_SIZE: return abort( 409, ( u'Content is too large to be proxied. Allowed' u'file size: {allowed}, Content-Length: {actual}.' ).format(allowed=MAX_FILE_SIZE, actual=cl) ) if not did_get: r = requests.get(url, stream=True) response.headers[u'content-type'] = r.headers[u'content-type'] response.charset = r.encoding length = 0 for chunk in r.iter_content(chunk_size=CHUNK_SIZE): response.stream.write(chunk) length += len(chunk) if length >= MAX_FILE_SIZE: return abort( 409, headers={u'content-encoding': u''}, detail=u'Content is too large to be proxied.' ) except requests.exceptions.HTTPError as error: details = u'Could not proxy resource. Server responded with %s %s' % ( error.response.status_code, error.response.reason ) return abort(409, detail=details) except requests.exceptions.ConnectionError as error: details = u'''Could not proxy resource because a connection error occurred. %s''' % error return abort(502, detail=details) except requests.exceptions.Timeout: details = u'Could not proxy resource because the connection timed out.' return abort(504, detail=details) return response def proxy_view(id, resource_id): data_dict = {u'resource_id': resource_id} context = { u'model': base.model, u'session': base.model.Session, u'user': c.user } return proxy_resource(context, data_dict) resource_proxy.add_url_rule( u'/dataset/<id>/resource/<resource_id>/proxy', view_func=proxy_view )
33.557522
79
0.63423
c8a14b4587f76fa408024070978fa090eebff443
83
py
Python
xfeat/base/__init__.py
Drunkar/xfeat
7eced097072a67f06548cc778b27b2310c5e5511
[ "MIT" ]
304
2020-06-19T05:00:14.000Z
2022-03-19T19:39:04.000Z
xfeat/base/__init__.py
Drunkar/xfeat
7eced097072a67f06548cc778b27b2310c5e5511
[ "MIT" ]
4
2020-06-28T11:30:33.000Z
2022-02-17T14:31:39.000Z
xfeat/base/__init__.py
Drunkar/xfeat
7eced097072a67f06548cc778b27b2310c5e5511
[ "MIT" ]
15
2020-06-19T08:34:56.000Z
2022-02-17T14:51:30.000Z
from xfeat.base._mixin import TransformerMixin, OptunaSelectorMixin, SelectorMixin
41.5
82
0.879518
352d8d933ebf483eef8d8a10f2b00b5be7060f97
457
py
Python
codes_/1010_Pairs_of_Songs_With_Total_Durations_Divisible_by_60.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
codes_/1010_Pairs_of_Songs_With_Total_Durations_Divisible_by_60.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
codes_/1010_Pairs_of_Songs_With_Total_Durations_Divisible_by_60.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
# %% [1010. Pairs of Songs With Total Durations Divisible by 60](https://leetcode.com/problems/pairs-of-songs-with-total-durations-divisible-by-60/) # 問題:60の倍数となるtimeの2つの要素のペア数を返せ # 解法:collections.Counterを用いる class Solution: def numPairsDivisibleBy60(self, time: List[int]) -> int: c = collections.Counter([t % 60 for t in time]) return ( sum(n * (c.get(60 - t, 0) if t % 30 else n - 1) for t, n in c.items()) // 2 )
45.7
148
0.645514
5b2be9167156d5eea66b339c225e957ab32d2dc2
1,791
py
Python
examples/examples_perf_test.py
m-szalay/Cirq
1bd083a87fdf49212f347d88f15713e90cc72f8f
[ "Apache-2.0" ]
null
null
null
examples/examples_perf_test.py
m-szalay/Cirq
1bd083a87fdf49212f347d88f15713e90cc72f8f
[ "Apache-2.0" ]
null
null
null
examples/examples_perf_test.py
m-szalay/Cirq
1bd083a87fdf49212f347d88f15713e90cc72f8f
[ "Apache-2.0" ]
null
null
null
import cirq import examples.bell_inequality import examples.bernstein_vazirani import examples.grover import examples.place_on_bristlecone import examples.hello_qubit import examples.quantum_fourier_transform import examples.bcs_mean_field import examples.phase_estimator import examples.basic_arithmetic import examples.quantum_teleportation import examples.superdense_coding # Standard test runs do not include performance benchmarks. # coverage: ignore def test_example_runs_bernstein_vazirani_perf(benchmark): benchmark(examples.bernstein_vazirani.main, qubit_count=3) # Check empty oracle case. Cover both biases. a = cirq.NamedQubit('a') assert list(examples.bernstein_vazirani.make_oracle( [], a, [], False)) == [] assert list(examples.bernstein_vazirani.make_oracle( [], a, [], True)) == [cirq.X(a)] def test_example_runs_hello_line_perf(benchmark): benchmark(examples.place_on_bristlecone.main) def test_example_runs_hello_qubit_perf(benchmark): benchmark(examples.hello_qubit.main) def test_example_runs_bell_inequality_perf(benchmark): benchmark(examples.bell_inequality.main) def test_example_runs_quantum_fourier_transform_perf(benchmark): benchmark(examples.quantum_fourier_transform.main) def test_example_runs_bcs_mean_field_perf(benchmark): benchmark(examples.bcs_mean_field.main) def test_example_runs_grover_perf(benchmark): benchmark(examples.grover.main) def test_example_runs_phase_estimator_perf(benchmark): benchmark(examples.phase_estimator.main, qnums=(2,), repetitions=2) def test_example_runs_quantum_teleportation(benchmark): benchmark(examples.quantum_teleportation.main) def test_example_runs_superdense_coding(benchmark): benchmark(examples.superdense_coding.main)
28.428571
71
0.815745
3d6f5e6828de9a3dcba2545ac8f8aa2ad031b8ac
10,641
py
Python
ssguan/ignitor/base/error.py
samuelbaizg/ssguan
97def0609d61e40472554464470758b5fb9eca35
[ "Apache-2.0" ]
1
2015-07-14T14:24:05.000Z
2015-07-14T14:24:05.000Z
ssguan/ignitor/base/error.py
samuelbaizg/ssguan
97def0609d61e40472554464470758b5fb9eca35
[ "Apache-2.0" ]
null
null
null
ssguan/ignitor/base/error.py
samuelbaizg/ssguan
97def0609d61e40472554464470758b5fb9eca35
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2015 www.suishouguan.com # # Licensed under the Private License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://github.com/samuelbaizg/ssguan/blob/master/LICENSE # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import traceback import types CODE_UNKNOWN = 9999 """ Error Code Range: error: 1001 ~ 1039 orm: 1040 ~ 1049 web: 1050 ~ 1069 vfs: 1070 ~ 1079 auth: 1100 ~ 1129 asyn:1130 ~ 1139 schedule:1140 ~ 1149 cache: 1150 ~ 1160 """ class ExceptionWrap(Exception): def __init__(self, exc_info, **data): if isinstance(exc_info, Exception): exc_info = (exc_info.__class__, exc_info, None) if exc_info is None: raise Exception("exc_info can't be null.") if not isinstance(exc_info, tuple) or len(exc_info) != 3: raise Exception("exc_info must be a type of exc_info.") self.__exc_info = exc_info self.__data = data @property def exception(self): return self.__exc_info[1] @property def traceback(self): return self.__exc_info[2] @property def data(self): return self.__data @property def message(self): return str(self.exception) @property def message_tb(self): return "".join(traceback.format_tb(self.traceback)) def __str__(self): return self.message class Error(Exception): def __init__(self, message, *args, **kwargs): self.__message = message self.__args = args self.__kwargs = kwargs @property def code(self): """To be implemented by sub-class""" raise NotImplementedError("Error.code") @property def message(self): message = self.__message if message != None and (self.__args != None and len(self.__args) > 0): message = message % self.__args if message != None and (self.__kwargs != None and len(self.__kwargs) > 0): for key, value in self.__kwargs.items(): message = message.replace("{{%s}}" % key, str(value)) return "%d: %s" % (self.code, message) @property def arguments(self): return self.__kwargs def get_argument(self, key): return self.arguments[key] def __str__(self): return self.message class ProgramError(Error): """ ProgramError is to define the error for programmer codes. """ def __init__(self, message, *args): super(ProgramError, self).__init__(message, *args) @property def code(self): return 1001 class RunError(Error): """ RunError is to define the error for runtime. """ def __init__(self, message, *args): super(RunError, self).__init__(message, *args) @property def code(self): return 1002 class NoDoError(Error): def __init__(self, action, what): super(NoDoError, self).__init__("No support to {{action}} {{what}}", action=action, what=what) @property def code(self): return 1003 class NoFoundError(Error): def __init__(self, it, something): super(NoFoundError, self).__init__("{{it}} {{something}} is not found.", it=str(it), something=str(something)) @property def code(self): return 1004 class NoSupportError(Error): def __init__(self, it, something): super(NoSupportError, self).__init__("{{it}} {{something}} is not supported.", it=str(it), something=str(something)) @property def code(self): return 1005 class InvalidError(Error): def __init__(self, something, why): super(InvalidError, self).__init__("{{something}} is not valid because {{why}}.", something=str(something), why=str(why)) @property def code(self): return 1006 class ClassCastError(Error): def __init__(self, clazz, baseclazz): super(ClassCastError, self).__init__("{{clazz}} is not the sub-class of {{baseClazz}}." , clazz=clazz, baseClazz=baseclazz) @property def code(self): return 1007 class RequiredError(Error): def __init__(self, label): super(RequiredError, self).__init__("{{label}} is required.", label=label) @property def code(self): return 1010 class ChoiceError(Error): def __init__(self, label, choices): super(ChoiceError, self).__init__("The value of {{label}} must be one of {{choices}}.", label=label, choices=",".join(map(str, choices))) @property def code(self): return 1011 class LengthError(Error): def __init__(self, label, minlength, maxlength): super(LengthError, self).__init__("The length of {{label}} must between {{minlength}} and {{maxlength}}.", label=label, minlength=minlength, maxlength=maxlength) @property def code(self): return 1012 class RangeError(Error): def __init__(self, label, mininum, maximum): super(RangeError, self).__init__("The value of {{label}} must between {{mininum}} and {{maximum}}.", label=label, mininum=mininum, maximum=maximum) @property def code(self): return 1013 class CompareError(Error): def __init__(self, label, operator, limitlabel, limit): super(CompareError, self).__init__("The value of {{label}} must {{operator}} {{limitlabel}} {{limit}}.", label=label, operator=operator, limit=limit, limitlabel=limitlabel) @property def code(self): return 1014 class TypeIntError(Error): def __init__(self, label): super(TypeIntError, self).__init__("The value of {{label}} must be an integer.", label=label) @property def code(self): return 1015 class TypeFloatError(Error): def __init__(self, label): super(TypeFloatError, self).__init__("The value of {{label}} must be a float.", label=label) @property def code(self): return 1016 class TypeDateError(Error): def __init__(self, label, fmt=format): super(TypeDateError, self).__init__("The value of {{label}} must be the format {{fmt}}.", label=label, fmt=format) @property def code(self): return 1017 class TypeDatetimeError(Error): def __init__(self, label, fmt=format): super(TypeDatetimeError, self).__init__("The value of {{label}} must be the format {{fmt}}.", label=label, fmt=format) @property def code(self): return 1018 class TypeFormatError(Error): def __init__(self, label, fmt=format): super(TypeFormatError, self).__init__("The format of {{label}} must be the format {{fmt}}.", label=label, fmt=format) @property def code(self): return 1019 class TypeBoolError(Error): def __init__(self, label): super(TypeBoolError, self).__init__("The value of {{label}} must be a bool.", label=label) @property def code(self): return 1020 class TypeListError(Error): def __init__(self, label): super(TypeListError, self).__init__("The value of {{label}} must be instance of list.", label=label) @property def code(self): return 1021 class TypeDictError(Error): def __init__(self, label): super(TypeDictError, self).__init__("The value of {{label}} must be instance of dict.", label=label) @property def code(self): return 1022 class TypeFunctionError(Error): def __init__(self, label): super(TypeFunctionError, self).__init__("The value of {{label}} must be a function.", label=label) @property def code(self): return 1023 class TypeGeneratorError(Error): def __init__(self, label): super(TypeGeneratorError, self).__init__("The value of {{label}} must be instance of generator.", label=label) @property def code(self): return 1024 class TypeStrError(Error): def __init__(self, label): super(TypeStrError, self).__init__("The value of {{label}} must be a str.", label=label) @property def code(self): return 1025 def assert_required(value, label): """ check if value is None or empty str. """ if value is None: raise RequiredError(label) if type(value) == str and len(value.strip()) == 0: raise RequiredError(label) def assert_type_int(value, label): if type(value) != int: raise TypeIntError(label) return True def assert_type_float(value, label): if type(value) != float: raise TypeFloatError(label) return True def assert_type_bool(value, label): if type(value) != bool: raise TypeBoolError(label) def assert_type_list(value, label): if type(value) != list: raise TypeListError(label) def assert_type_dict(value, label): if type(value) != dict: raise TypeDictError(label) def assert_type_generator(value, label): if type(value) != types.GeneratorType: raise TypeGeneratorError(label) def assert_type_function(value, label): if type(value) != types.FunctionType: raise TypeFunctionError(label) def assert_type_str(value, label): if type(value) != str: raise TypeStrError(label) return True def assert_in(value, choices, label): if value not in choices: raise ChoiceError(label, choices) return True def assert_equal(value1, value2, label1, label2): if value1 != value2: raise CompareError(label1, "=", label2, '') def assert_not_equal(value1, value2, label1, label2): if value1 == value2: raise CompareError(label1, "!=", label2, '') def format_exc_info(exc_info): error_class = exc_info[1] tb_message = format_traceback(exc_info[2]) return "%s\n%s" % (str(error_class), tb_message) def format_traceback(traceback1): return "".join(traceback.format_tb(traceback1))
31.114035
181
0.620148
97fd1baee2671bedcf292097f58571ae06a2cdf7
383
py
Python
baselines/deepq/__init__.py
seungjaeryanlee/baselines-tf2
299c2e6fb0b1dc8dd5f25c826eb004cf276a5bfe
[ "MIT" ]
10
2019-06-18T16:20:20.000Z
2021-01-10T04:18:07.000Z
baselines/deepq/__init__.py
seungjaeryanlee/baselines-tf2
299c2e6fb0b1dc8dd5f25c826eb004cf276a5bfe
[ "MIT" ]
5
2019-07-02T03:11:00.000Z
2020-07-27T17:32:41.000Z
baselines/deepq/__init__.py
seungjaeryanlee/baselines-tf2
299c2e6fb0b1dc8dd5f25c826eb004cf276a5bfe
[ "MIT" ]
6
2019-06-03T23:03:40.000Z
2021-03-09T06:51:28.000Z
from baselines.deepq import models # noqa from baselines.deepq.deepq_learner import DEEPQ #noqa from baselines.deepq.deepq import learn # noqa from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer # noqa def wrap_atari_dqn(env): from baselines.common.atari_wrappers import wrap_deepmind return wrap_deepmind(env, frame_stack=True, scale=False)
42.555556
87
0.817232
9e4d7281dfb66b59f488d0c889022130df4e7801
716
py
Python
src/charma/persons/directors/decorators.py
mononobi/charma-server
ed90f5ec0b5ff3996232d5fe49a4f77f96d82ced
[ "BSD-3-Clause" ]
1
2020-01-16T23:36:10.000Z
2020-01-16T23:36:10.000Z
src/charma/persons/directors/decorators.py
mononobi/imovie-server
ed90f5ec0b5ff3996232d5fe49a4f77f96d82ced
[ "BSD-3-Clause" ]
24
2020-06-08T18:27:04.000Z
2021-06-06T12:01:39.000Z
src/charma/persons/directors/decorators.py
mononobi/charma-server
ed90f5ec0b5ff3996232d5fe49a4f77f96d82ced
[ "BSD-3-Clause" ]
1
2020-12-20T05:29:04.000Z
2020-12-20T05:29:04.000Z
# -*- coding: utf-8 -*- """ directors decorators module. """ import charma.persons.directors.services as director_services def director_hook(): """ decorator to register a director hook. :raises InvalidDirectorHookTypeError: invalid director hook type error. :returns: director hook class. :rtype: type """ def decorator(cls): """ decorates the given class and registers an instance of it into available director hooks. :param type cls: director hook class. :returns: director hook class. :rtype: type """ instance = cls() director_services.register_hook(instance) return cls return decorator
19.888889
75
0.638268
194667fbce715d84e883b96c1efccc1d258536af
305
py
Python
data/multilingual/Latn.KDE/Serif_12/pdf_to_json_test_Latn.KDE_Serif_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
1
2021-09-19T19:47:35.000Z
2021-09-19T19:47:35.000Z
data/multilingual/Latn.KDE/Serif_12/pdf_to_json_test_Latn.KDE_Serif_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
data/multilingual/Latn.KDE/Serif_12/pdf_to_json_test_Latn.KDE_Serif_12.py
antoinecarme/pdf_to_json_tests
d57a024fde862e698d916a1178f285883d7a3b2f
[ "BSD-3-Clause" ]
null
null
null
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.KDE/Serif_12/udhr_Latn.KDE_Serif_12.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
30.5
75
0.813115
112896c78c0934e782bbb95bb051cdf0272d0765
410
py
Python
webdjango/migrations/0003_address_street_address_3.py
myog-io/WebDjangular
73d3c40aa449eec5acc59d4493ee94059bddabbd
[ "MIT" ]
1
2018-09-14T15:17:19.000Z
2018-09-14T15:17:19.000Z
webdjango/migrations/0003_address_street_address_3.py
MyOwnGamesLLC/WebDjangular
73d3c40aa449eec5acc59d4493ee94059bddabbd
[ "MIT" ]
41
2018-12-16T16:58:54.000Z
2019-02-22T20:08:58.000Z
webdjango/migrations/0003_address_street_address_3.py
myog-io/WebDjangular
73d3c40aa449eec5acc59d4493ee94059bddabbd
[ "MIT" ]
1
2019-12-10T09:32:49.000Z
2019-12-10T09:32:49.000Z
# Generated by Django 2.1.4 on 2019-01-22 16:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('webdjango', '0002_auto_20181222_2028'), ] operations = [ migrations.AddField( model_name='address', name='street_address_3', field=models.CharField(blank=True, max_length=256), ), ]
21.578947
63
0.614634
513cca381242917ae4dd8a31aa893f598754a716
30,820
py
Python
luigi/hadoop.py
mulby/luigi
230380cc69604550defc5db0f666e0919b015a3c
[ "Apache-2.0" ]
null
null
null
luigi/hadoop.py
mulby/luigi
230380cc69604550defc5db0f666e0919b015a3c
[ "Apache-2.0" ]
null
null
null
luigi/hadoop.py
mulby/luigi
230380cc69604550defc5db0f666e0919b015a3c
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2012 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import random import sys import os import datetime import subprocess import tempfile from itertools import groupby from operator import itemgetter import pickle import binascii import logging import StringIO import re import shutil import signal from hashlib import md5 import luigi import luigi.hdfs import configuration import warnings import mrrunner import json import glob logger = logging.getLogger('luigi-interface') _attached_packages = [] def attach(*packages): """ Attach a python package to hadoop map reduce tarballs to make those packages available on the hadoop cluster""" _attached_packages.extend(packages) def dereference(file): if os.path.islink(file): #by joining with the dirname we are certain to get the absolute path return dereference(os.path.join(os.path.dirname(file), os.readlink(file))) else: return file def get_extra_files(extra_files): result = [] for f in extra_files: if isinstance(f, str): src, dst = f, os.path.basename(f) elif isinstance(f, tuple): src, dst = f else: raise Exception() if os.path.isdir(src): src_prefix = os.path.join(src, '') for base, dirs, files in os.walk(src): for file in files: f_src = os.path.join(base, file) f_src_stripped = f_src[len(src_prefix):] f_dst = os.path.join(dst, f_src_stripped) result.append((f_src, f_dst)) else: result.append((src, dst)) return result def create_packages_archive(packages, filename): """Create a tar archive which will contain the files for the packages listed in packages. """ import tarfile tar = tarfile.open(filename, "w") def add(src, dst): logger.debug('adding to tar: %s -> %s', src, dst) tar.add(src, dst) def add_files_for_package(sub_package_path, root_package_path, root_package_name): for root, dirs, files in os.walk(sub_package_path): if '.svn' in dirs: dirs.remove('.svn') for f in files: if not f.endswith(".pyc") and not f.startswith("."): add(dereference(root + "/" + f), root.replace(root_package_path, root_package_name) + "/" + f) for package in packages: # Put a submodule's entire package in the archive. This is the # magic that usually packages everything you need without # having to attach packages/modules explicitly if not getattr(package, "__path__", None) and '.' in package.__name__: package = __import__(package.__name__.rpartition('.')[0], None, None, 'non_empty') n = package.__name__.replace(".", "/") if getattr(package, "__path__", None): # TODO: (BUG) picking only the first path does not # properly deal with namespaced packages in different # directories p = package.__path__[0] if p.endswith('.egg') and os.path.isfile(p): raise 'egg files not supported!!!' # Add the entire egg file # p = p[:p.find('.egg') + 4] # add(dereference(p), os.path.basename(p)) else: # include __init__ files from parent projects root = [] for parent in package.__name__.split('.')[0:-1]: root.append(parent) module_name = '.'.join(root) directory = '/'.join(root) add(dereference(__import__(module_name, None, None, 'non_empty').__path__[0] + "/__init__.py"), directory + "/__init__.py") add_files_for_package(p, p, n) # include egg-info directories that are parallel: for egg_info_path in glob.glob(p + '*.egg-info'): logger.debug( 'Adding package metadata to archive for "%s" found at "%s"', package.__name__, egg_info_path ) add_files_for_package(egg_info_path, p, n) else: f = package.__file__ if f.endswith("pyc"): f = f[:-3] + "py" if n.find(".") == -1: add(dereference(f), os.path.basename(f)) else: add(dereference(f), n + ".py") tar.close() def flatten(sequence): """A simple generator which flattens a sequence. Only one level is flattned. (1, (2, 3), 4) -> (1, 2, 3, 4) """ for item in sequence: if hasattr(item, "__iter__"): for i in item: yield i else: yield item class HadoopRunContext(object): def __init__(self): self.job_id = None def __enter__(self): self.__old_signal = signal.getsignal(signal.SIGTERM) signal.signal(signal.SIGTERM, self.kill_job) return self def kill_job(self, captured_signal=None, stack_frame=None): if self.job_id: logger.info('Job interrupted, killing job %s', self.job_id) subprocess.call(['mapred', 'job', '-kill', self.job_id]) if captured_signal is not None: # adding 128 gives the exit code corresponding to a signal sys.exit(128 + captured_signal) def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is KeyboardInterrupt: self.kill_job() signal.signal(signal.SIGTERM, self.__old_signal) class HadoopJobError(RuntimeError): def __init__(self, message, out=None, err=None): super(HadoopJobError, self).__init__(message, out, err) self.message = message self.out = out self.err = err def run_and_track_hadoop_job(arglist, tracking_url_callback=None, env=None): ''' Runs the job by invoking the command from the given arglist. Finds tracking urls from the output and attempts to fetch errors using those urls if the job fails. Throws HadoopJobError with information about the error (including stdout and stderr from the process) on failure and returns normally otherwise. ''' logger.info('%s', ' '.join(arglist)) def write_luigi_history(arglist, history): ''' Writes history to a file in the job's output directory in JSON format. Currently just for tracking the job ID in a configuration where no history is stored in the output directory by Hadoop. ''' history_filename = configuration.get_config().get('core', 'history-filename', '') if history_filename and '-output' in arglist: output_dir = arglist[arglist.index('-output') + 1] f = luigi.hdfs.HdfsTarget(os.path.join(output_dir, history_filename)).open('w') f.write(json.dumps(history)) f.close() def track_process(arglist, tracking_url_callback, env=None): # Dump stdout to a temp file, poll stderr and log it temp_stdout = tempfile.TemporaryFile() proc = subprocess.Popen(arglist, stdout=temp_stdout, stderr=subprocess.PIPE, env=env, close_fds=True) # We parse the output to try to find the tracking URL. # This URL is useful for fetching the logs of the job. tracking_url = None job_id = None err_lines = [] with HadoopRunContext() as hadoop_context: while proc.poll() is None: err_line = proc.stderr.readline() err_lines.append(err_line) err_line = err_line.strip() if err_line: logger.info('%s', err_line) err_line = err_line.lower() if err_line.find('tracking url') != -1: tracking_url = err_line.split('tracking url: ')[-1] try: tracking_url_callback(tracking_url) except Exception as e: logger.error("Error in tracking_url_callback, disabling! %s", e) tracking_url_callback = lambda x: None if err_line.find('running job') != -1: # hadoop jar output job_id = err_line.split('running job: ')[-1] if err_line.find('submitted hadoop job:') != -1: # scalding output job_id = err_line.split('submitted hadoop job: ')[-1] hadoop_context.job_id = job_id # Read the rest + stdout err = ''.join(err_lines + [err_line for err_line in proc.stderr]) temp_stdout.seek(0) out = ''.join(temp_stdout.readlines()) if proc.returncode == 0: write_luigi_history(arglist, {'job_id': job_id}) return (out, err) # Try to fetch error logs if possible message = 'Streaming job failed with exit code %d. ' % proc.returncode if not tracking_url: raise HadoopJobError(message + 'Also, no tracking url found.', out, err) try: task_failures = fetch_task_failures(tracking_url) except Exception, e: raise HadoopJobError(message + 'Additionally, an error occurred when fetching data from %s: %s' % (tracking_url, e), out, err) if not task_failures: raise HadoopJobError(message + 'Also, could not fetch output from tasks.', out, err) else: raise HadoopJobError(message + 'Output from tasks below:\n%s' % task_failures, out, err) if tracking_url_callback is None: tracking_url_callback = lambda x: None return track_process(arglist, tracking_url_callback, env) def fetch_task_failures(tracking_url): ''' Uses mechanize to fetch the actual task logs from the task tracker. This is highly opportunistic, and we might not succeed. So we set a low timeout and hope it works. If it does not, it's not the end of the world. TODO: Yarn has a REST API that we should probably use instead: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/MapredAppMasterRest.html ''' import mechanize timeout = 3.0 failures_url = tracking_url.replace('jobdetails.jsp', 'jobfailures.jsp') + '&cause=failed' logger.debug('Fetching data from %s', failures_url) b = mechanize.Browser() b.open(failures_url, timeout=timeout) links = list(b.links(text_regex='Last 4KB')) # For some reason text_regex='All' doesn't work... no idea why links = random.sample(links, min(10, len(links))) # Fetch a random subset of all failed tasks, so not to be biased towards the early fails error_text = [] for link in links: task_url = link.url.replace('&start=-4097', '&start=-100000') # Increase the offset logger.debug('Fetching data from %s', task_url) b2 = mechanize.Browser() try: r = b2.open(task_url, timeout=timeout) data = r.read() except Exception, e: logger.debug('Error fetching data from %s: %s', task_url, e) continue # Try to get the hex-encoded traceback back from the output for exc in re.findall(r'luigi-exc-hex=[0-9a-f]+', data): error_text.append('---------- %s:' % task_url) error_text.append(exc.split('=')[-1].decode('hex')) return '\n'.join(error_text) class JobRunner(object): run_job = NotImplemented class HadoopJobRunner(JobRunner): ''' Takes care of uploading & executing a Hadoop job using Hadoop streaming TODO: add code to support Elastic Mapreduce (using boto) and local execution. ''' def __init__(self, streaming_jar, modules=[], streaming_args=[], libjars=[], libjars_in_hdfs=[], jobconfs={}, input_format=None, output_format=None): self.streaming_jar = streaming_jar self.modules = modules self.streaming_args = streaming_args self.libjars = libjars self.libjars_in_hdfs = libjars_in_hdfs self.jobconfs = jobconfs self.input_format = input_format self.output_format = output_format self.tmp_dir = False def run_job(self, job): packages = [luigi] + self.modules + job.extra_modules() + list(_attached_packages) # find the module containing the job packages.append(__import__(job.__module__, None, None, 'dummy')) # find the path to out runner.py runner_path = mrrunner.__file__ # assume source is next to compiled if runner_path.endswith("pyc"): runner_path = runner_path[:-3] + "py" base_tmp_dir = configuration.get_config().get('core', 'tmp-dir', None) if base_tmp_dir: warnings.warn("The core.tmp-dir configuration item is"\ " deprecated, please use the TMPDIR"\ " environment variable if you wish"\ " to control where luigi.hadoop may"\ " create temporary files and directories.") self.tmp_dir = os.path.join(base_tmp_dir, 'hadoop_job_%016x' % random.getrandbits(64)) os.makedirs(self.tmp_dir) else: self.tmp_dir = tempfile.mkdtemp() logger.debug("Tmp dir: %s", self.tmp_dir) # build arguments config = configuration.get_config() python_executable = config.get('hadoop', 'python-executable', 'python') map_cmd = '{0} mrrunner.py map'.format(python_executable) cmb_cmd = '{0} mrrunner.py combiner'.format(python_executable) red_cmd = '{0} mrrunner.py reduce'.format(python_executable) # replace output with a temporary work directory output_final = job.output().path output_tmp_fn = output_final + '-temp-' + datetime.datetime.now().isoformat().replace(':', '-') tmp_target = luigi.hdfs.HdfsTarget(output_tmp_fn) arglist = luigi.hdfs.load_hadoop_cmd() + ['jar', self.streaming_jar] # 'libjars' is a generic option, so place it first libjars = [libjar for libjar in self.libjars] for libjar in self.libjars_in_hdfs: subprocess.call(luigi.hdfs.load_hadoop_cmd() + ['fs', '-get', libjar, self.tmp_dir]) libjars.append(os.path.join(self.tmp_dir, os.path.basename(libjar))) if libjars: arglist += ['-libjars', ','.join(libjars)] # Add static files and directories extra_files = get_extra_files(job.extra_files()) files = [] for src, dst in extra_files: dst_tmp = '%s_%09d' % (dst.replace('/', '_'), random.randint(0, 999999999)) files += ['%s#%s' % (src, dst_tmp)] # -files doesn't support subdirectories, so we need to create the dst_tmp -> dst manually job._add_link(dst_tmp, dst) if files: arglist += ['-files', ','.join(files)] jobconfs = job.jobconfs() for k, v in self.jobconfs.iteritems(): jobconfs.append('%s=%s' % (k, v)) for conf in jobconfs: arglist += ['-D', conf] arglist += self.streaming_args arglist += ['-mapper', map_cmd] if job.combiner != NotImplemented: arglist += ['-combiner', cmb_cmd] if job.reducer != NotImplemented: arglist += ['-reducer', red_cmd] files = [runner_path, self.tmp_dir + '/packages.tar', self.tmp_dir + '/job-instance.pickle'] for f in files: arglist += ['-file', f] if self.output_format: arglist += ['-outputformat', self.output_format] if self.input_format: arglist += ['-inputformat', self.input_format] for target in luigi.task.flatten(job.input_hadoop()): assert isinstance(target, luigi.hdfs.HdfsTarget) arglist += ['-input', target.path] assert isinstance(job.output(), luigi.hdfs.HdfsTarget) arglist += ['-output', output_tmp_fn] # submit job create_packages_archive(packages, self.tmp_dir + '/packages.tar') job._dump(self.tmp_dir) run_and_track_hadoop_job(arglist) tmp_target.move_dir(output_final) self.finish() def finish(self): # FIXME: check for isdir? if self.tmp_dir and os.path.exists(self.tmp_dir): logger.debug('Removing directory %s', self.tmp_dir) shutil.rmtree(self.tmp_dir) def __del__(self): self.finish() class DefaultHadoopJobRunner(HadoopJobRunner): ''' The default job runner just reads from config and sets stuff ''' def __init__(self): config = configuration.get_config() streaming_jar = config.get('hadoop', 'streaming-jar') super(DefaultHadoopJobRunner, self).__init__(streaming_jar=streaming_jar) # TODO: add more configurable options class LocalJobRunner(JobRunner): ''' Will run the job locally This is useful for debugging and also unit testing. Tries to mimic Hadoop Streaming. TODO: integrate with JobTask ''' def __init__(self, samplelines=None): self.samplelines = samplelines def sample(self, input, n, output): for i, line in enumerate(input): if n is not None and i >= n: break output.write(line) def group(self, input): output = StringIO.StringIO() lines = [] for i, line in enumerate(input): parts = line.rstrip('\n').split('\t') blob = md5(str(i)).hexdigest() # pseudo-random blob to make sure the input isn't sorted lines.append((parts[:-1], blob, line)) for k, _, line in sorted(lines): output.write(line) output.seek(0) return output def run_job(self, job): map_input = StringIO.StringIO() for i in luigi.task.flatten(job.input_hadoop()): self.sample(i.open('r'), self.samplelines, map_input) map_input.seek(0) if job.reducer == NotImplemented: # Map only job; no combiner, no reducer map_output = job.output().open('w') job._run_mapper(map_input, map_output) map_output.close() return job.init_mapper() # run job now... map_output = StringIO.StringIO() job._run_mapper(map_input, map_output) map_output.seek(0) if job.combiner == NotImplemented: reduce_input = self.group(map_output) else: combine_input = self.group(map_output) combine_output = StringIO.StringIO() job._run_combiner(combine_input, combine_output) combine_output.seek(0) reduce_input = self.group(combine_output) job.init_reducer() reduce_output = job.output().open('w') job._run_reducer(reduce_input, reduce_output) reduce_output.close() class BaseHadoopJobTask(luigi.Task): pool = luigi.Parameter(is_global=True, default=None, significant=False) # This value can be set to change the default batching increment. Default is 1 for backwards compatibility. batch_counter_default = 1 final_mapper = NotImplemented final_combiner = NotImplemented final_reducer = NotImplemented mr_priority = NotImplemented _counter_dict = {} task_id = None def jobconfs(self): jcs = [] jcs.append('mapred.job.name=%s' % self.task_id) if self.mr_priority != NotImplemented: jcs.append('mapred.job.priority=%s' % self.mr_priority()) pool = self.pool if pool is not None: # Supporting two schedulers: fair (default) and capacity using the same option scheduler_type = configuration.get_config().get('hadoop', 'scheduler', 'fair') if scheduler_type == 'fair': jcs.append('mapred.fairscheduler.pool=%s' % pool) elif scheduler_type == 'capacity': jcs.append('mapred.job.queue.name=%s' % pool) return jcs def init_local(self): ''' Implement any work to setup any internal datastructure etc here. You can add extra input using the requires_local/input_local methods. Anything you set on the object will be pickled and available on the Hadoop nodes. ''' pass def init_hadoop(self): pass def run(self): self.init_local() self.job_runner().run_job(self) def requires_local(self): ''' Default impl - override this method if you need any local input to be accessible in init() ''' return [] def requires_hadoop(self): return self.requires() # default impl def input_local(self): return luigi.task.getpaths(self.requires_local()) def input_hadoop(self): return luigi.task.getpaths(self.requires_hadoop()) def deps(self): # Overrides the default implementation return luigi.task.flatten(self.requires_hadoop()) + luigi.task.flatten(self.requires_local()) def on_failure(self, exception): if isinstance(exception, HadoopJobError): return """Hadoop job failed with message: {message} stdout: {stdout} stderr: {stderr} """.format(message=exception.message, stdout=exception.out, stderr=exception.err) else: return super(BaseHadoopJobTask, self).on_failure(exception) class JobTask(BaseHadoopJobTask): n_reduce_tasks = 25 reducer = NotImplemented def jobconfs(self): jcs = super(JobTask, self).jobconfs() if self.reducer == NotImplemented: jcs.append('mapred.reduce.tasks=0') else: jcs.append('mapred.reduce.tasks=%s' % self.n_reduce_tasks) return jcs def init_mapper(self): pass def init_combiner(self): pass def init_reducer(self): pass def _setup_remote(self): self._setup_links() def job_runner(self): # We recommend that you define a subclass, override this method and set up your own config """ Get the MapReduce runner for this job If all outputs are HdfsTargets, the DefaultHadoopJobRunner will be used. Otherwise, the LocalJobRunner which streams all data through the local machine will be used (great for testing). """ outputs = luigi.task.flatten(self.output()) for output in outputs: if not isinstance(output, luigi.hdfs.HdfsTarget): warnings.warn("Job is using one or more non-HdfsTarget outputs" + " so it will be run in local mode") return LocalJobRunner() else: return DefaultHadoopJobRunner() def reader(self, input_stream): """Reader is a method which iterates over input lines and outputs records. The default implementation yields one argument containing the line for each line in the input.""" for line in input_stream: yield line, def writer(self, outputs, stdout, stderr=sys.stderr): """Writer format is a method which iterates over the output records from the reducer and formats them for output. The default implementation outputs tab separated items""" for output in outputs: try: print >> stdout, "\t".join(map(str, flatten(output))) except: print >> stderr, output raise def mapper(self, item): """Re-define to process an input item (usually a line of input data) Defaults to identity mapper that sends all lines to the same reducer""" yield None, item combiner = NotImplemented def incr_counter(self, *args, **kwargs): """ Increments a Hadoop counter Since counters can be a bit slow to update, this batches the updates. """ threshold = kwargs.get("threshold", self.batch_counter_default) if len(args) == 2: # backwards compatibility with existing hadoop jobs group_name, count = args key = (group_name,) else: group, name, count = args key = (group, name) ct = self._counter_dict.get(key, 0) ct += count if ct >= threshold: new_arg = list(key)+[ct] self._incr_counter(*new_arg) ct = 0 self._counter_dict[key] = ct def _flush_batch_incr_counter(self): """ Increments any unflushed counter values """ for key, count in self._counter_dict.iteritems(): if count == 0: continue args = list(key) + [count] self._incr_counter(*args) def _incr_counter(self, *args): """ Increments a Hadoop counter Note that this seems to be a bit slow, ~1 ms. Don't overuse this function by updating very frequently. """ if len(args) == 2: # backwards compatibility with existing hadoop jobs group_name, count = args print >> sys.stderr, 'reporter:counter:%s,%s' % (group_name, count) else: group, name, count = args print >> sys.stderr, 'reporter:counter:%s,%s,%s' % (group, name, count) def extra_modules(self): return [] # can be overridden in subclass def extra_files(self): ''' Can be overriden in subclass. Each element is either a string, or a pair of two strings (src, dst). src can be a directory (in which case everything will be copied recursively). dst can include subdirectories (foo/bar/baz.txt etc) Uses Hadoop's -files option so that the same file is reused across tasks. ''' return [] def _add_link(self, src, dst): if not hasattr(self, '_links'): self._links = [] self._links.append((src, dst)) def _setup_links(self): if hasattr(self, '_links'): missing = [] for src, dst in self._links: d = os.path.dirname(dst) if d and not os.path.exists(d): os.makedirs(d) if not os.path.exists(src): missing.append(src) continue if not os.path.exists(dst): # If the combiner runs, the file might already exist, # so no reason to create the link again os.link(src, dst) if missing: raise HadoopJobError( 'Missing files for distributed cache: ' + ', '.join(missing)) def _dump(self, dir=''): """Dump instance to file.""" file_name = os.path.join(dir, 'job-instance.pickle') if self.__module__ == '__main__': d = pickle.dumps(self) module_name = os.path.basename(sys.argv[0]).rsplit('.', 1)[0] d = d.replace('(c__main__', "(c" + module_name) open(file_name, "w").write(d) else: pickle.dump(self, open(file_name, "w")) def _map_input(self, input_stream): """Iterate over input and call the mapper for each item. If the job has a parser defined, the return values from the parser will be passed as arguments to the mapper. If the input is coded output from a previous run, the arguments will be splitted in key and value.""" for record in self.reader(input_stream): for output in self.mapper(*record): yield output if self.final_mapper != NotImplemented: for output in self.final_mapper(): yield output self._flush_batch_incr_counter() def _reduce_input(self, inputs, reducer, final=NotImplemented): """Iterate over input, collect values with the same key, and call the reducer for each uniqe key.""" for key, values in groupby(inputs, key=lambda x: repr(x[0])): for output in reducer(eval(key), (v[1] for v in values)): yield output if final != NotImplemented: for output in final(): yield output self._flush_batch_incr_counter() def _run_mapper(self, stdin=sys.stdin, stdout=sys.stdout): """Run the mapper on the hadoop node.""" self.init_hadoop() self.init_mapper() outputs = self._map_input((line[:-1] for line in stdin)) if self.reducer == NotImplemented: self.writer(outputs, stdout) else: self.internal_writer(outputs, stdout) def _run_reducer(self, stdin=sys.stdin, stdout=sys.stdout): """Run the reducer on the hadoop node.""" self.init_hadoop() self.init_reducer() outputs = self._reduce_input(self.internal_reader((line[:-1] for line in stdin)), self.reducer, self.final_reducer) self.writer(outputs, stdout) def _run_combiner(self, stdin=sys.stdin, stdout=sys.stdout): self.init_hadoop() self.init_combiner() outputs = self._reduce_input(self.internal_reader((line[:-1] for line in stdin)), self.combiner, self.final_combiner) self.internal_writer(outputs, stdout) def internal_reader(self, input_stream): """Reader which uses python eval on each part of a tab separated string. Yields a tuple of python objects.""" for input in input_stream: yield map(eval, input.split("\t")) def internal_writer(self, outputs, stdout): """Writer which outputs the python repr for each item""" for output in outputs: print >> stdout, "\t".join(map(repr, output)) def pickle_reader(job, input_stream): def decode(item): return pickle.loads(binascii.a2b_base64(item)) for line in input_stream: items = line.split('\t') yield map(decode, items) def pickle_writer(job, outputs, stdout): def encode(item): return binascii.b2a_base64(pickle.dumps(item))[:-1] # remove trailing newline for keyval in outputs: print >> stdout, "\t".join(map(encode, keyval))
37.043269
193
0.606587
b8b979bb7ad11dd4bfe266301a21e89e2cb7b90e
979
py
Python
Part 3/Chapter 07/Exercises/exercise_53.py
phuycke/Practice-of-computing-using-Python
9e477bcaecb0e447dfa7184d2071ca338801c86f
[ "MIT" ]
1
2019-08-13T11:12:59.000Z
2019-08-13T11:12:59.000Z
Part 3/Chapter 07/Exercises/exercise_53.py
phuycke/Practice-of-computing-using-Python
9e477bcaecb0e447dfa7184d2071ca338801c86f
[ "MIT" ]
null
null
null
Part 3/Chapter 07/Exercises/exercise_53.py
phuycke/Practice-of-computing-using-Python
9e477bcaecb0e447dfa7184d2071ca338801c86f
[ "MIT" ]
1
2021-05-16T11:42:19.000Z
2021-05-16T11:42:19.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Pieter Huycke email: pieter.huycke@ugent.be GitHub: phuycke """ #%% def hole_counter(string = str): holes = 0 for letter in string: if letter in ["a", "A" "b", "B", "d", "D" "e", "g", "o", "O" "p", "P", "q", "Q"]: holes += 1 return {"Holes counted": holes, "No holes": len(string) - holes} res = hole_counter(string = "right") print(res) #%% def words_with_holes(string = str): word_list = string.split(" ") word_count = 0 for words in word_list: local_count = 0 for letter in words: if letter in ["a", "A" "b", "B", "d", "D", "e", "g", "o", "O" "p", "P", "q", "Q"]: local_count += 1 if local_count >= 2: word_count += 1 break return {"Words with 2 or more holes": word_count} res = words_with_holes(string = "I see I need to go") print(res)
21.282609
94
0.501532
341bb3eb29d46af5ff438987f7f34718f837653a
9,236
py
Python
Source/boost_1_33_1/libs/compatibility/generate_cpp_c_headers.py
spxuw/RFIM
32b78fbb90c7008b1106b0cff4f8023ae83c9b6d
[ "MIT" ]
4
2021-07-31T13:56:01.000Z
2021-11-13T02:55:10.000Z
Source/boost_1_33_1/libs/compatibility/generate_cpp_c_headers.py
spxuw/RFIM
32b78fbb90c7008b1106b0cff4f8023ae83c9b6d
[ "MIT" ]
null
null
null
Source/boost_1_33_1/libs/compatibility/generate_cpp_c_headers.py
spxuw/RFIM
32b78fbb90c7008b1106b0cff4f8023ae83c9b6d
[ "MIT" ]
7
2021-08-31T14:34:23.000Z
2022-01-19T08:25:58.000Z
# This Python script creates a full set of C++ C header files that # are missing on some platforms. # # Usage: # mkdir cpp_c_headers # cd cpp_c_headers # python generate_cpp_c_headers.py # # The files created by this script are in the directory: # root/boost/compatibility/cpp_c_headers # # Supported platforms: # Compaq Alpha, RedHat 6.2 Linux, Compaq C++ V6.3 (cxx) # Compaq Alpha, Tru64 Unix V5.0, Compaq C++ V6.2 (cxx) # Silicon Graphics, IRIX 6.5, MIPSpro Compilers: Version 7.3.1.1m (CC) # # Support for additional platforms can be added by extending the # "defines" Python dictionary below. # # Python is available at: # http://www.python.org/ # # Copyright (c) 2001 Ralf W. Grosse-Kunstleve. Permission to copy, # use, modify, sell and distribute this script is granted provided this # copyright notice appears in all copies. This document is provided "as # is" without express or implied warranty, and with no claim as to its # suitability for any purpose. # # Revision history: # 16 Apr 01 moved to boost CVS tree (R.W. Grosse-Kunstleve) # 17 Jan 01 Alpha Linux cxx V6.3 support (R.W. Grosse-Kunstleve) # 15 Dec 00 posted to boost e-group file upload area (R.W. Grosse-Kunstleve) # Definition of platform specific exclusion of identifiers. defines = { 'defined(__sgi) && defined(_COMPILER_VERSION) && _COMPILER_VERSION <= 740': ( 'btowc', 'fwide', 'fwprintf', 'fwscanf', 'mbrlen', 'mbrtowc', 'mbsinit', 'mbsrtowcs', 'swprintf', 'swscanf', 'towctrans', 'vfwprintf', 'vswprintf', 'vwprintf', 'wcrtomb', 'wcsrtombs', 'wctob', 'wctrans', 'wctrans_t', 'wmemchr', 'wmemcmp', 'wmemcpy', 'wmemmove', 'wmemset', 'wprintf', 'wscanf', ), 'defined(__DECCXX_VER) && __DECCXX_VER <= 60290024': ( 'fwide', ), 'defined(__linux) && defined(__DECCXX_VER) && __DECCXX_VER <= 60390005': ( 'getwchar', 'ungetwc', 'fgetwc', 'vfwprintf', 'fgetws', 'vswprintf', 'wcsftime', 'fputwc', 'vwprintf', 'fputws', 'fwide', 'putwc', 'wprintf', 'fwprintf', 'putwchar', 'wscanf', 'fwscanf', 'swprintf', 'getwc', 'swscanf', ), } # The information below was copied directly from the file: # ISO+IEC+14882-1998.pdf # The exact source of the information is given in the format # PDF #, p. #, Table # # Where # PDF # = page number as shown by the Acrobat Reader # p. # = page number printed at the bottom of the page # Table # = number printed in caption of table hfiles = { 'cassert': ( # PDF 378, p. 352, Table 25 # Macro: assert ), 'cctype': ( # PDF 431, p. 405, Table 45 # Functions: 'isalnum', 'isdigit', 'isprint', 'isupper', 'tolower', 'isalpha', 'isgraph', 'ispunct', 'isxdigit', 'toupper', 'iscntrl', 'islower', 'isspace', ), 'cerrno': ( # PDF 378, p. 352, Table 26 # Macros: EDOM ERANGE errno ), 'cfloat': ( # PDF 361, p. 335, Table 17 # Macros: DBL_DIG DBL_MIN_EXP FLT_MIN_10_EXP LDBL_MAX_10_EXP # DBL_EPSILON FLT_DIG FLT_MIN_EXP LDBL_MAX_EXP # DBL_MANT_DIG FLT_EPSILON FLT_RADIX LDBL_MIN # DBL_MAX FLT_MANT_DIG FLT_ROUNDS LDBL_MIN_10_EXP # DBL_MAX_10_EXP FLT_MAX LDBL_DIG LDBL_MIN_EXP # DBL_MAX_EXP FLT_MAX_10_EXP LDBL_EPSILON # DBL_MIN FLT_MAX_EXP LDBL_MANT_DIG # DBL_MIN_10_EXP FLT_MIN LDBL_MAX ), #'ciso646': ( #), 'climits': ( # PDF 361, p. 335, Table 16 # Macros: CHAR_BIT INT_MAX LONG_MIN SCHAR_MIN UCHAR_MAX USHRT_MAX # CHAR_MAX INT_MIN MB_LEN_MAX SHRT_MAX UINT_MAX # CHAR_MIN LONG_MAX SCHAR_MAX SHRT_MIN ULONG_MAX ), 'clocale': ( # PDF 483, p. 457, Table 62 # Macros: LC_ALL LC_COLLATE LC_CTYPE # LC_MONETARY LC_NUMERIC LC_TIME # NULL # Struct: 'lconv', # Functions: 'localeconv', 'setlocale', ), 'cmath': ( # PDF 622, p. 596, Table 80 # Macro: HUGE_VAL # Functions: 'acos', 'cos', 'fmod', 'modf', 'tan', 'asin', 'cosh', 'frexp', 'pow', 'tanh', 'atan', 'exp', 'ldexp', 'sin', 'atan2', 'fabs', 'log', 'sinh', 'ceil', 'floor', 'log10', 'sqrt', ), 'csetjmp': ( # PDF 372, p. 346, Table 20 # Macro: setjmp # Type: 'jmp_buf', # Function: 'longjmp', ), 'csignal': ( # PDF 372, p. 346, Table 22 # Macros: SIGABRT SIGILL SIGSEGV SIG_DFL # SIG_IGN SIGFPE SIGINT SIGTERM SIG_ERR # Type: 'sig_atomic_t', # Functions: 'raise', 'signal', ), 'cstdarg': ( # PDF 372, p. 346, Table 19 # Macros: va_arg va_end va_start # Type: 'va_list', ), 'cstddef': ( # PDF 353, p. 327, Table 15 # Macros: NULL offsetof # Types: 'ptrdiff_t', 'size_t', ), 'cstdio': ( # PDF 692, p. 666, Table 94 # Macros: BUFSIZ FOPEN_MAX SEEK_CUR TMP_MAX _IONBF stdout # EOF L_tmpnam SEEK_END _IOFBF stderr # FILENAME_MAX NULL <cstdio> SEEK_SET _IOLBF stdin # Types: 'FILE', 'fpos_t', 'size_t', # Functions: 'clearerr', 'fgets', 'fscanf', 'gets', 'rename', 'tmpfile', 'fclose', 'fopen', 'fseek', 'perror', 'rewind', 'tmpnam', 'feof', 'fprintf', 'fsetpos', 'printf', 'scanf', 'ungetc', 'ferror', 'fputc', 'ftell', 'putc', 'setbuf', 'vfprintf', 'fflush', 'fputs', 'fwrite', 'putchar', 'setvbuf', 'vprintf', 'fgetc', 'fread', 'getc', 'puts', 'sprintf', 'vsprintf', 'fgetpos', 'freopen', 'getchar', 'remove', 'sscanf', ), 'cstdlib': ( # PDF 362, p. 336, Table 18 # Macros: EXIT_FAILURE EXIT_SUCCESS # Functions: 'abort', 'atexit', 'exit', # PDF 373, p. 347, Table 23 # Functions: 'getenv', 'system', # PDF 400, p. 374, Table 33 # Functions: 'calloc', 'malloc', 'free', 'realloc', # PDF 433, p. 417, Table 49 # Macros: MB_CUR_MAX # Functions: 'atol', 'mblen', 'strtod', 'wctomb', 'atof', 'mbstowcs', 'strtol', 'wcstombs', 'atoi', 'mbtowc', 'strtoul', # PDF 589, p. 563, Table 78 # Functions: 'bsearch', 'qsort', # PDF 622, p. 596, Table 81 # Macros: RAND_MAX # Types: 'div_t', 'ldiv_t', # Functions: 'abs', 'labs', 'srand', 'div', 'ldiv', 'rand', ), 'cstring': ( # PDF 401, p. 375, Table 34 # Macro: NULL # Type: size_t # Functions: # 'memchr', 'memcmp', # 'memcpy', 'memmove', 'memset', # PDF 432, p. 406, Table 47 # Macro: NULL # Type: 'size_t', # Functions: 'memchr', 'strcat', 'strcspn', 'strncpy', 'strtok', 'memcmp', 'strchr', 'strerror', 'strpbrk', 'strxfrm', 'memcpy', 'strcmp', 'strlen', 'strrchr', 'memmove', 'strcoll', 'strncat', 'strspn', 'memset', 'strcpy', 'strncmp', 'strstr', ), 'ctime': ( # PDF 372, p. 346, Table 21 # Macros: CLOCKS_PER_SEC # Types: # 'clock_t', # Functions: # 'clock', # PDF 401, p. 375, Table 35 # Macros: NULL # Types: 'size_t', 'clock_t', 'time_t', # Struct: 'tm', # Functions: 'asctime', 'clock', 'difftime', 'localtime', 'strftime', 'ctime', 'gmtime', 'mktime', 'time', ), 'cwchar': ( # PDF 432, p. 406, Table 48 # Macros: NULL WCHAR_MAX WCHAR_MIN WEOF # Types: 'mbstate_t', 'wint_t', 'size_t', # Functions: 'btowc', 'getwchar', 'ungetwc', 'wcscpy', 'wcsrtombs', 'wmemchr', 'fgetwc', 'mbrlen', 'vfwprintf', 'wcscspn', 'wcsspn', 'wmemcmp', 'fgetws', 'mbrtowc', 'vswprintf', 'wcsftime', 'wcsstr', 'wmemcpy', 'fputwc', 'mbsinit', 'vwprintf', 'wcslen', 'wcstod', 'wmemmove', 'fputws', 'mbsrtowcs', 'wcrtomb', 'wcsncat', 'wcstok', 'wmemset', 'fwide', 'putwc', 'wcscat', 'wcsncmp', 'wcstol', 'wprintf', 'fwprintf', 'putwchar', 'wcschr', 'wcsncpy', 'wcstoul', 'wscanf', 'fwscanf', 'swprintf', 'wcscmp', 'wcspbrk', 'wcsxfrm', 'getwc', 'swscanf', 'wcscoll', 'wcsrchr', 'wctob', ), 'cwctype': ( # PDF 432, p. 406, Table 46 # Macro: WEOF # Types: 'wctrans_t', 'wctype_t', 'wint_t', # Functions: 'iswalnum', 'iswctype', 'iswlower', 'iswspace', 'towctrans', 'wctrans', 'iswalpha', 'iswdigit', 'iswprint', 'iswupper', 'towlower', 'wctype', 'iswcntrl', 'iswgraph', 'iswpunct', 'iswxdigit', 'towupper', ), } if (__name__ == "__main__"): import sys, string, time now = time.asctime(time.localtime(time.time())) + ' ' + str(time.tzname) for hfile in hfiles.keys(): HFILE = string.upper(hfile) f = open(hfile, 'w') sys.stdout = f print '// This file is automatically generated. Do not edit.' print '//', sys.argv print '//', now print print '#ifndef __' + HFILE + '_HEADER' print '#define __' + HFILE + '_HEADER' print '' print '#include <' + hfile[1:] + '.h>' print '' if (len(hfiles[hfile]) > 0): print 'namespace std {' for s in hfiles[hfile]: n_endif = 0 for d in defines.keys(): if (s in defines[d]): print '#if !(' + d + ')' n_endif = n_endif + 1 print ' using ::' + s + ';' for i in xrange(n_endif): print '#endif' print '}' print '' print '#endif // ' + HFILE + '_HEADER' sys.stdout = sys.__stdout__
34.207407
79
0.580771
3c6d078fda690a62852c4b6dd4570a0e2716036f
432
py
Python
setup.py
wnormandin/df-backend
94006f66ee16cf932b960751c9d491b39dcff0d0
[ "MIT" ]
null
null
null
setup.py
wnormandin/df-backend
94006f66ee16cf932b960751c9d491b39dcff0d0
[ "MIT" ]
1
2019-08-04T20:38:19.000Z
2019-08-04T20:38:19.000Z
setup.py
wnormandin/df-backend
94006f66ee16cf932b960751c9d491b39dcff0d0
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages from df_backend import __version__ setup( name="df_backend", version=__version__, install_requires=[ 'django', 'django-rest-framework', 'django-waitress' ], author='William Normandin', author_email='bill@pokeybill.us', packages=find_packages(), license='MIT', description='Backend API for the DunderFunk game client' )
24
60
0.666667
844ef88e46a93cfeb1e4a8e26d40a9b1f6960df4
2,082
py
Python
src/io_graph.py
SergeyKuz1001/formal_languages_autumn_2020
0cdf5cf16cfe609c88df34b5ee47b4e980f44b69
[ "Apache-2.0" ]
null
null
null
src/io_graph.py
SergeyKuz1001/formal_languages_autumn_2020
0cdf5cf16cfe609c88df34b5ee47b4e980f44b69
[ "Apache-2.0" ]
5
2020-09-09T16:44:54.000Z
2020-12-17T12:15:05.000Z
src/io_graph.py
SergeyKuz1001/formal_languages_autumn_2020
0cdf5cf16cfe609c88df34b5ee47b4e980f44b69
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Sergey Kuzivanov # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .graph import Graph from pygraphblas import Matrix, types from typing import Dict, List, Iterable, Tuple, Optional, Set Vertex = int class IOGraph(Graph): def __init__(self) -> None: super().__init__() self._start_Vs: Set[Vertex] = set() self._final_Vs: Set[Vertex] = set() self._other_N: Optional[int] = None def copy(self) -> "IOGraph": res = super().copy() res._start_Vs = self._start_Vs.copy() res._final_Vs = self._final_Vs.copy() res._other_N = self._other_N return res @property def start_vertexes(self) -> Set[Vertex]: return self._start_Vs @property def final_vertexes(self) -> Set[Vertex]: return self._final_Vs def __matmul__(self, other: "IOGraph") -> "IOGraph": res = super().__matmul__(other) res._start_Vs = { self_start_V * other.count_vertexes + other_start_V for self_start_V in self.start_vertexes for other_start_V in other.start_vertexes } res._final_Vs = { self_final_V * other.count_vertexes + other_final_V for self_final_V in self.final_vertexes for other_final_V in other.final_vertexes } res._other_N = other.count_vertexes return res def vertex_to_pair(self, vertex: Vertex) -> Tuple[Vertex, Vertex]: return (vertex // self._other_N, vertex % self._other_N)
34.131148
75
0.652738
d12698490fd13d7d8e31b7af51cdab1d6c3a659e
2,843
py
Python
tests/python/pants_test/tasks/test_ivy_resolve_integration.py
arloherrine/pants
5f98f7734590eb21a2992a4c28415f838a2e6927
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/tasks/test_ivy_resolve_integration.py
arloherrine/pants
5f98f7734590eb21a2992a4c28415f838a2e6927
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/tasks/test_ivy_resolve_integration.py
arloherrine/pants
5f98f7734590eb21a2992a4c28415f838a2e6927
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import re from pants.util.contextutil import temporary_dir from pants_test.pants_run_integration_test import PantsRunIntegrationTest class IvyResolveIntegrationTest(PantsRunIntegrationTest): def test_ivy_resolve_gives_correct_exception_on_cycles(self): with temporary_dir(root_dir=self.workdir_root()) as workdir: pants_run = self.run_pants_with_workdir([ 'compile', 'testprojects/src/java/com/pants/testproject/cycle1'], workdir) self.assert_failure(pants_run) self.assertIn('Cycle detected', pants_run.stderr_data) def test_java_compile_with_ivy_report(self): # Ensure the ivy report file gets generated with temporary_dir(root_dir=self.workdir_root()) as workdir: ivy_report_dir = '{workdir}/ivy-report'.format(workdir=workdir) pants_run = self.run_pants_with_workdir([ 'compile', 'testprojects/src/java/com/pants/testproject/unicode/main', '--resolve-ivy-report', '--resolve-ivy-outdir={reportdir}'.format(reportdir=ivy_report_dir)], workdir) self.assert_success(pants_run) # Find the ivy report found = False pattern = re.compile('internal-[a-f0-9]+-default\.html$') for f in os.listdir(ivy_report_dir): if os.path.isfile(os.path.join(ivy_report_dir, f)): if pattern.match(f): found = True break self.assertTrue(found, msg="Couldn't find ivy report in {report_dir}" .format(report_dir=ivy_report_dir)) def test_ivy_args(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-args=-blablabla', 'examples/src/scala::' ]) self.assert_failure(pants_run) self.assertIn('Unrecognized option: -blablabla', pants_run.stdout_data) def test_ivy_confs_success(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-confs=default', '--resolve-ivy-confs=sources', '--resolve-ivy-confs=javadoc', '3rdparty:junit' ]) self.assert_success(pants_run) def test_ivy_confs_failure(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-confs=parampampam', '3rdparty:junit' ]) self.assert_failure(pants_run) def test_ivy_confs_ini_failure(self): pants_ini_config = {'resolve.ivy': {'confs': 'parampampam'}} pants_run = self.run_pants([ 'resolve', '3rdparty:junit' ], config=pants_ini_config) self.assert_failure(pants_run)
34.670732
93
0.674991