hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
6a762fb2592438b205199d3906152892bcd08d42
6,617
py
Python
cortex/rois.py
pulkitag/pycortex
f329dccbe3f04dc4556b930f284bcddd760fc76b
[ "BSD-2-Clause" ]
1
2021-03-08T22:52:52.000Z
2021-03-08T22:52:52.000Z
cortex/rois.py
candleinwindsteve/pycortex
988dc996a33f16208537a2e8ffe14e2ae3ea6647
[ "BSD-2-Clause" ]
null
null
null
cortex/rois.py
candleinwindsteve/pycortex
988dc996a33f16208537a2e8ffe14e2ae3ea6647
[ "BSD-2-Clause" ]
null
null
null
import os import tempfile import binascii import cStringIO import numpy as np import networkx as nx from db import surfs from svgroi import get_roipack, _make_layer, _find_layer, parser from lxml import etree from dataset import VertexData from polyutils import Surface, boundary_edges from utils import get_curvature, add_roi import quickflat class ROIpack(object): def __init__(self, subject, roifile): self.subject = subject self.roifile = roifile self.rois = {} self.load_roifile() def load_roifile(self): """Load ROI definitions from self.roifile. """ # Check if file exists if not os.path.exists(self.roifile): print("ROI file %s doesn't exist.." % self.roifile) return # Create basic VertexData to avoid expensive initialization.. empty = VertexData(None, self.subject) # Load ROIs from file if self.roifile.endswith("npz"): roidata = np.load(self.roifile) for roi in roidata.keys(): self.rois[roi] = empty.copy(roidata[roi]) roidata.close() elif self.roifile.endswith("svg"): pts, polys = surfs.getSurf(self.subject, "flat", merge=True, nudge=True) npts = len(pts) svgroipack = get_roipack(self.roifile, pts, polys) for name in svgroipack.names: roimask = np.zeros((npts,)) roimask[svgroipack.get_roi(name)] = 1 self.rois[name] = empty.copy(roimask) elif self.roifile.endswith("hf5"): raise NotImplementedError else: raise ValueError("Don't understand ROI filetype: %s" % self.roifile) def to_npz(self, filename): """Saves npz file containing ROI masks. """ roidata = dict([(name,vd.data) for name,vd in self.rois.iteritems()]) np.savez(filename, **roidata) def to_svg(self, open_inkscape=False, filename=None): """Generate SVG file from vertex ROI masks. """ # Generate temp filename if not provided if filename is None: filename = tempfile.mktemp(suffix=".svg", prefix=self.subject+"-rois-") mpts, mpolys = surfs.getSurf(self.subject, "flat", merge=True, nudge=True) svgmpts = mpts[:,:2].copy() svgmpts -= svgmpts.min(0) svgmpts *= 1024 / svgmpts.max(0)[1] svgmpts[:,1] = 1024 - svgmpts[:,1] npts = len(mpts) svgroipack = get_roipack(filename, mpts, mpolys) # Add default layers # Add curvature from matplotlib import cm curv = VertexData(np.hstack(get_curvature(self.subject)), self.subject) fp = cStringIO.StringIO() curvim = quickflat.make_png(fp, curv, height=1024, with_rois=False, with_labels=False, with_colorbar=False, cmap=cm.gray,recache=True) fp.seek(0) svgroipack.add_roi("curvature", binascii.b2a_base64(fp.read()), add_path=False) # Add thickness # Add ROI boundaries svg = etree.parse(svgroipack.svgfile, parser=parser) # Find boundary vertices for each ROI lsurf, rsurf = [Surface(*pp) for pp in surfs.getSurf(self.subject, "fiducial")] flsurf, frsurf = [Surface(*pp) for pp in surfs.getSurf(self.subject, "flat")] valids = [set(np.unique(flsurf.polys)), set(np.unique(frsurf.polys))] # Construct polygon adjacency graph for each surface polygraphs = [lsurf.poly_graph, rsurf.poly_graph] for roi in self.rois.keys(): print "Adding %s.." % roi masks = self.rois[roi].left, self.rois[roi].right mmpts = svgmpts[:len(masks[0])], svgmpts[len(masks[0]):] roilayer = _make_layer(_find_layer(svg, "rois"), roi) for valid, pgraph, surf, mask, mmp in zip(valids, polygraphs, [lsurf, rsurf], masks, mmpts): if mask.sum() == 0: continue # Find bounds inbound, exbound = surf.get_boundary(np.nonzero(mask)[0]) # Find polys allbpolys = np.unique(surf.connected[inbound+exbound].indices) selbpolys = surf.polys[allbpolys] inpolys = np.in1d(selbpolys, inbound).reshape(selbpolys.shape) expolys = np.in1d(selbpolys, exbound).reshape(selbpolys.shape) badpolys = np.logical_or(inpolys.all(1), expolys.all(1)) boundpolys = np.logical_and(np.logical_or(inpolys, expolys).all(1), ~badpolys) # Walk around boundary boundpolyinds = set(allbpolys[np.nonzero(boundpolys)[0]]) bgraph = nx.Graph() pos = dict() for pa in boundpolyinds: for pb in set(pgraph[pa]) & boundpolyinds: edge = pgraph[pa][pb]["verts"] validverts = list(valid & edge) pos[edge] = mmp[validverts].mean(0) bgraph.add_edge(*edge) cc = nx.cycles.cycle_basis(bgraph) if len(cc) > 1: edges = reduce(set.symmetric_difference, [set(map(lambda l:tuple(sorted(l)), zip(c, c[1:]+[c[0]]))) for c in cc]) eg = nx.from_edgelist(edges) cycles = nx.cycles.cycle_basis(eg) longest = np.argmax(map(len, cycles)) path_order = cycles[longest] else: path_order = cc[0] path_points = [tuple(pos[frozenset(p)]) for p in zip(path_order[:-1], path_order[1:])] # Store poly path = "M %f %f L" % tuple(path_points[0]) path += ", ".join(["%f %f"%p for p in path_points[1:]]) path += "Z " # Insert into SVG svgpath = etree.SubElement(roilayer, "path") svgpath.attrib["style"] = "fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opactiy:1" svgpath.attrib["d"] = path #svgpath.attrib["sodipodi:nodetypes"] = "c" * len(pts) with open(svgroipack.svgfile, "w") as xml: xml.write(etree.tostring(svg, pretty_print=True))
41.099379
144
0.548889
cdb5d1399d4f941bb01e2bf44f49534692f79af4
1,676
py
Python
scripts/view_shield_images.py
charlesblakemore/sem_processing
1ec8ac4b3eff4886f7a86529c590eed7cc15cbba
[ "MIT" ]
null
null
null
scripts/view_shield_images.py
charlesblakemore/sem_processing
1ec8ac4b3eff4886f7a86529c590eed7cc15cbba
[ "MIT" ]
null
null
null
scripts/view_shield_images.py
charlesblakemore/sem_processing
1ec8ac4b3eff4886f7a86529c590eed7cc15cbba
[ "MIT" ]
null
null
null
import sys, os, time, re import numpy as np import matplotlib.pyplot as plt import scipy.optimize as opti from bead_util import find_all_fnames import sem_util as su img_dir = '/Users/manifestation/Stanford/beads/photos/sem/20191014_shield_v2_pc1_second-HF-clean/' max_file = 1000 substr = '2000x_40deg.tif' devlist = [#'/dev4/', \ #'/dev7/', \ #'/dev9/', \ #'/dev23/', \ #'/dev29/', \ #'/dev37/', \ #'/dev47/', \ #'/dev49/', \ #'/dev55/', \ '/dev57/', \ #'/dev64/', \ #'/dev65/', \ #'/dev67/', \ #'/dev76/', \ ] with_info = True show_after = True filenames, _ = find_all_fnames(img_dir, ext='.tif', substr=substr) filenames.sort(key = su.get_devnum) if len(devlist): bad_inds = [] for fileind, filename in enumerate(filenames): found = False for dev in devlist: if dev in filename: found = True break if not found: bad_inds.append(fileind) for ind in bad_inds[::-1]: filenames.pop(ind) axes = [] for fileind, filename in enumerate(filenames[:max_file]): devind = su.get_devnum(filename) imgobj = su.SEMImage() imgobj.load(filename) #imgobj.calibrate(plot=False) fig, ax = plt.subplots(1,1,figsize=(8,8)) if with_info: ax.imshow(imgobj.full_img_arr, cmap='gray') else: ax.imshow(imgobj.img_arr, cmap='gray') ax.set_title('Device {:d}'.format(devind)) fig.tight_layout() if not show_after: plt.show() if show_after: plt.show()
20.691358
98
0.554893
d90bfcd24eba882c1801d443caa84c56dab64b75
1,379
py
Python
2021/d5p1.py
zmerlynn/advent-of-code
20daa2df1ff57fff89fc88ea778cae59755424e3
[ "BSD-3-Clause" ]
null
null
null
2021/d5p1.py
zmerlynn/advent-of-code
20daa2df1ff57fff89fc88ea778cae59755424e3
[ "BSD-3-Clause" ]
null
null
null
2021/d5p1.py
zmerlynn/advent-of-code
20daa2df1ff57fff89fc88ea778cae59755424e3
[ "BSD-3-Clause" ]
1
2021-12-25T00:12:44.000Z
2021-12-25T00:12:44.000Z
#!/usr/bin/python3 import collections import fileinput import numpy as np import re import sys def solve(inp): lines = [] max_x, max_y = 0, 0 for line in inp: p1, p2 = re.split('\s+->\s', line.strip()) p1, p2 = point(p1), point(p2) if p1[0] != p2[0] and p1[1] != p2[1]: continue max_x = int(max(max_x, p1[0], p2[0])) max_y = int(max(max_x, p1[1], p2[1])) lines.append((p1, p2, (p2-p1)/np.linalg.norm(p2-p1))) touching = [ [ 0 for x in range(max_x+1) ] for y in range(max_y+1) ] for p1, p2, shift in lines: pos = p1 last_touch = np.array([-1, -1]) stop = False while True: if not same(pos, last_touch): touching[int(pos[0])][int(pos[1])] += 1 last_touch = np.copy(pos) if stop: break pos += shift if same(pos, p2): stop = True more_than_one = sum([ sum([ 1 if touching[x][y] > 1 else 0 for x in range(max_x+1) ]) for y in range(max_y+1) ]) print(more_than_one) def point(s): x, y = s.split(',') x, y = float(x), float(y) return np.array([x, y]) def round(p): return np.array(p, dtype=int) def same(p1, p2): return np.array_equal(round(p1), round(p2)) if __name__ == "__main__": solve(fileinput.input(sys.argv[1]))
25.537037
116
0.524293
de857c3819b6b326fb3d453eab5b2f6cb8ff999d
3,280
py
Python
waymo_open_dataset/utils/test_utils.py
DKandrew/waymo-open-dataset
b2b2fc8f06ed6801aec1ea2d406d559bff08b6b5
[ "Apache-2.0" ]
1,814
2019-08-20T18:30:38.000Z
2022-03-31T04:14:51.000Z
waymo_open_dataset/utils/test_utils.py
meyerjo/waymo-open-dataset
655c1fddb0071ab24544eb54c6690f09d7a9a1c3
[ "Apache-2.0" ]
418
2019-08-20T22:38:02.000Z
2022-03-31T07:51:15.000Z
waymo_open_dataset/utils/test_utils.py
meyerjo/waymo-open-dataset
655c1fddb0071ab24544eb54c6690f09d7a9a1c3
[ "Apache-2.0" ]
420
2019-08-21T10:59:06.000Z
2022-03-31T08:31:44.000Z
# Copyright 2019 The Waymo Open Dataset Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from waymo_open_dataset.utils import transform_utils __all__ = ['generate_boxes', 'generate_range_image', 'generate_extrinsic'] def generate_boxes(center_x, batch=1): """Generates unit size boxes centered at (center_x, 0.0, 2.0). Args: center_x: center_x for each box batch: batch size Returns: boxes: [batch, len(center_x) + 5, 7]. Each box has unit size, zero heading. They are centered at (center_x, 0.0, 2.0). box_classes: [batch, len(center_x) + 5]. The types are random. num_boxes: [batch]. Number of boxes for each batch dim. """ center_y = np.zeros_like(center_x) center_z = np.ones_like(center_x) * 2.0 heading = np.zeros_like(center_x) dim = np.ones_like(center_x) # [len(center_x), 7] boxes = np.stack([center_x, center_y, center_z, dim, dim, dim, heading], axis=-1) box_padding = np.zeros([5, 7]) boxes = np.concatenate([boxes, box_padding], axis=0) boxes = np.tile(np.expand_dims(boxes, axis=0), [batch, 1, 1]) box_classes = np.tile( np.expand_dims(np.random.randint(1, 5, size=[len(center_x) + 5]), axis=0), [batch, 1]) num_boxes = np.ones([batch]) * len(center_x) return (tf.convert_to_tensor(value=boxes, dtype=tf.float32), tf.convert_to_tensor(value=box_classes, dtype=tf.uint8), tf.convert_to_tensor(value=num_boxes, dtype=tf.int32)) def generate_range_image(indices, values, shape, batch=1): """Generate range images by scattering values to indices. Args: indices: [N, 2] indices. values: [N, ...] values. shape: [3]. batch: batch indices, single integer. Returns: range_image: [batch, shape[...]] """ multiples = tf.concat( [tf.constant([batch]), tf.ones([len(shape)], dtype=tf.int32)], axis=-1) return tf.tile( tf.expand_dims(tf.scatter_nd(indices, values, shape), axis=0), multiples) def generate_extrinsic(yaw, pitch, roll, translation, batch=1): """Generates extrinsic. Args: yaw: scalar tensor pitch: scalar tensor roll: scalar tensor translation: [3] tensor batch: integer Returns: [batch, 4, 4] tensor """ rotation_matrix = transform_utils.get_rotation_matrix(roll, pitch, yaw) return tf.tile( tf.expand_dims( transform_utils.get_transform( rotation_matrix, tf.constant(translation, dtype=tf.float32)), axis=0), [batch, 1, 1])
30.943396
80
0.671646
0b1b21b3c2c1df1dc776f62faaed23d6f2ce353f
3,299
py
Python
fibo/protocols/wallet_protocol.py
Fibo-Network/fibo-blockchain
34471efc081a52443e874749bb8ea3dc50b59891
[ "Apache-2.0" ]
null
null
null
fibo/protocols/wallet_protocol.py
Fibo-Network/fibo-blockchain
34471efc081a52443e874749bb8ea3dc50b59891
[ "Apache-2.0" ]
null
null
null
fibo/protocols/wallet_protocol.py
Fibo-Network/fibo-blockchain
34471efc081a52443e874749bb8ea3dc50b59891
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass from typing import List, Optional, Tuple from fibo.types.blockchain_format.coin import Coin from fibo.types.blockchain_format.program import Program from fibo.types.blockchain_format.sized_bytes import bytes32 from fibo.types.header_block import HeaderBlock from fibo.types.spend_bundle import SpendBundle from fibo.util.ints import uint8, uint32, uint128 from fibo.util.streamable import Streamable, streamable """ Protocol between wallet (SPV node) and full node. Note: When changing this file, also change protocol_message_types.py, and the protocol version in shared_protocol.py """ @dataclass(frozen=True) @streamable class RequestPuzzleSolution(Streamable): coin_name: bytes32 height: uint32 @dataclass(frozen=True) @streamable class PuzzleSolutionResponse(Streamable): coin_name: bytes32 height: uint32 puzzle: Program solution: Program @dataclass(frozen=True) @streamable class RespondPuzzleSolution(Streamable): response: PuzzleSolutionResponse @dataclass(frozen=True) @streamable class RejectPuzzleSolution(Streamable): coin_name: bytes32 height: uint32 @dataclass(frozen=True) @streamable class SendTransaction(Streamable): transaction: SpendBundle @dataclass(frozen=True) @streamable class TransactionAck(Streamable): txid: bytes32 status: uint8 # MempoolInclusionStatus error: Optional[str] @dataclass(frozen=True) @streamable class NewPeakWallet(Streamable): header_hash: bytes32 height: uint32 weight: uint128 fork_point_with_previous_peak: uint32 @dataclass(frozen=True) @streamable class RequestBlockHeader(Streamable): height: uint32 @dataclass(frozen=True) @streamable class RespondBlockHeader(Streamable): header_block: HeaderBlock @dataclass(frozen=True) @streamable class RejectHeaderRequest(Streamable): height: uint32 @dataclass(frozen=True) @streamable class RequestRemovals(Streamable): height: uint32 header_hash: bytes32 coin_names: Optional[List[bytes32]] @dataclass(frozen=True) @streamable class RespondRemovals(Streamable): height: uint32 header_hash: bytes32 coins: List[Tuple[bytes32, Optional[Coin]]] proofs: Optional[List[Tuple[bytes32, bytes]]] @dataclass(frozen=True) @streamable class RejectRemovalsRequest(Streamable): height: uint32 header_hash: bytes32 @dataclass(frozen=True) @streamable class RequestAdditions(Streamable): height: uint32 header_hash: bytes32 puzzle_hashes: Optional[List[bytes32]] @dataclass(frozen=True) @streamable class RespondAdditions(Streamable): height: uint32 header_hash: bytes32 coins: List[Tuple[bytes32, List[Coin]]] proofs: Optional[List[Tuple[bytes32, bytes, Optional[bytes]]]] @dataclass(frozen=True) @streamable class RejectAdditionsRequest(Streamable): height: uint32 header_hash: bytes32 @dataclass(frozen=True) @streamable class RequestHeaderBlocks(Streamable): start_height: uint32 end_height: uint32 @dataclass(frozen=True) @streamable class RejectHeaderBlocks(Streamable): start_height: uint32 end_height: uint32 @dataclass(frozen=True) @streamable class RespondHeaderBlocks(Streamable): start_height: uint32 end_height: uint32 header_blocks: List[HeaderBlock]
21.147436
116
0.776902
7ef0ba2ab96a01aef4994d5de747605120527114
1,913
py
Python
deploy/text_classification/Predictor.py
amirgholipour/mlops_project
ddd88886c4d887b756c79973ea5524660a2c82e1
[ "BSD-3-Clause" ]
null
null
null
deploy/text_classification/Predictor.py
amirgholipour/mlops_project
ddd88886c4d887b756c79973ea5524660a2c82e1
[ "BSD-3-Clause" ]
null
null
null
deploy/text_classification/Predictor.py
amirgholipour/mlops_project
ddd88886c4d887b756c79973ea5524660a2c82e1
[ "BSD-3-Clause" ]
null
null
null
import tensorflow as tf import joblib import numpy as np import json import traceback import sys import os class Predictor(object): def __init__(self): self.loaded = False def load(self): print("Loading model",os.getpid()) self.model = tf.keras.models.load_model('model.h5', compile=False) self.labelencoder = joblib.load('labelencoder.pkl') self.loaded = True print("Loaded model") def predict(self, X,features_names): # data = request.get("data", {}).get("ndarray") # mult_types_array = np.array(data, dtype=object) print ('step1......') print(X) X = tf.constant(X) print ('step2......') print(X) if not self.loaded: self.load() # result = self.model.predict(X) try: result = self.model.predict(X) except Exception as e: print(traceback.format_exception(*sys.exc_info())) raise # reraises the exception print ('step3......') result = tf.sigmoid(result) print ('step4......') print(result) result = tf.math.argmax(result,axis=1) print ('step5......') print(result) print(result.shape) print(self.labelencoder.inverse_transform(result)) print ('step6......') return json.dumps(result.numpy(), cls=JsonSerializer) class JsonSerializer(json.JSONEncoder): def default(self, obj): if isinstance(obj, ( np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.ndarray,)): return obj.tolist() return json.JSONEncoder.default(self, obj)
31.360656
118
0.576581
46bda75ba178ea92567ed3a30dbcd16d090831c2
27,188
py
Python
dbisshit.py
kaplanski/DBISshit
60c7c3c8fd13462c24b627539332917e2a268f16
[ "MIT" ]
null
null
null
dbisshit.py
kaplanski/DBISshit
60c7c3c8fd13462c24b627539332917e2a268f16
[ "MIT" ]
null
null
null
dbisshit.py
kaplanski/DBISshit
60c7c3c8fd13462c24b627539332917e2a268f16
[ "MIT" ]
null
null
null
#!/usr/bin/env python -B #DBISshit! 0.1b - the python app that mimics a database #Copyright (c) 2018 Jan-Daniel Kaplanski ###-------imports------### from subprocess import call from datetime import datetime from os import name as osname from os import chmod from os.path import exists from time import sleep from sys import argv from sys import stdin from io import open from stat import * import re import gzip from sys import path ###-------imports------### ###--------caches-----#### global CACHE_GC; CACHE_GC = [] global CACHE_GC_LST; CACHE_GC_LST = [] ###--------caches-----#### ###----helpful-stuff---### def iprint(arg): print "[IMEM] " + str(arg) def hprint(arg): print "[HELP] " + str(arg) def mprint(arg): print "[MAIN] " + str(arg) def cprint(arg): print "[CLOG] " + str(arg) global EXT; EXT = ".dbis" global changes; changes = [] global commited_changes; commited_changes = [] global OP_CNT; OP_CNT = 1 global HDR_FAIL; HDR_FAIL = False global HTOW_FAIL; HTOW_FAIL = False global EX_HTML; EX_HTML = False global EX_XML; EX_XML = False global DBG_FNC; DBG_FNC = True global EX_DIS; EX_DIS = False global CPR_EN; CPR_EN = False global CPR_M1; CPR_M1 = False global CPR_M2; CPR_M2 = False if EX_DIS == False: if exists(path[0] + "/dbistohtml.py"): EX_HTML = True import dbistohtml as tohtml else: mprint("dbistohtml not found! HTML export disabled!") if exists(path[0] + "/dbistoxml.py"): EX_XML = True import dbistoxml as toxml else: mprint("dbistoxml not found! XML export disabled!") else: raw_input("[DBUG] Export function disabled! Press return to continue..."); stdin.flush() try: dtn = datetime.now().strftime("%H:%M").split(":") dtu = datetime.utcnow().strftime("%H:%M").split(":") if datetime.now().day != datetime.utcnow().day: hrs = int(dtn[0]) + 24 else: hrs = int(dtn[0]) dif_h = hrs - int(dtu[0]) dif_m = int(dtn[1]) - int(dtu[1]) if dif_h < 0: dif_h = abs(dif_h); dif = "-" else: dif = "+" dif = dif + str(dif_h).zfill(2) + str(dif_m).zfill(2) + "UTC" except: mprint("ERR - TIME_DIF_CALC_FAILED") def gettime(): try: return str(datetime.now().replace(microsecond=0).isoformat()) except: return "ERR - GETTIME_FAILED" commited_changes.append("Log of " + gettime() + dif) ###----helpful-stuff---### ###------commands------### def cls(): try: if osname == "nt": call(["cls"]) elif osname == "posix": call(["clear"]) else: mprint("Not supported by this os!") except: mprint("ERR - CLS_FAILED") def importdb(db): global im_fail; im_fail = 0 global inputdb global db_lines try: if exists(db): if CPR_EN == False: inputdb = open(db, mode='rb').read() elif CPR_EN == True: inputdb = gzip.open(db, mode='rb').read() db_lines = inputdb.split("\n") while db_lines.count('') > 0: db_lines.remove("") else: mprint("ERR - FILE_NON_EXISTANT"); exit(127) except: mprint("Failed to open input file!"); im_fail = 42 def readln(ln): global headerln try: htow(db_lines[ln]) return db_lines[ln][len(workln[0])+2:-1] except: mprint("ERR - READ_LN_FAILED") def writeln(ln, val, silent = False): global changes global db_lines try: htow(db_lines[ln]) db_lines[ln] = "{" + workln[0] + ":" + str(val) + "}" changes.append("Line: " + str(ln) + ", Value: " + str(val)) if silent == False: mprint(""); showln(ln) except: False def changelog(): global changes global commited_changes try: cprint("Pending changes:") for i in range(0, len(changes)): cprint(changes[i]) cprint("") cprint("Commited changes:") for j in range(1, len(commited_changes)): cprint(commited_changes[j]) except: mprint("ERR - CHANGELOG_FAILED") def commit(silent=False): global changes global commited_changes global inputdb global db_lines try: outputdb="" commited_changes.extend(changes) changes=[] if silent == False: changelog() for i in range(0, len(db_lines)): outputdb = outputdb + db_lines[i] + "\n" inputdb = outputdb db_lines = inputdb.split("\n") while db_lines.count('') > 0: db_lines.remove("") except: mprint("ERR - COMMIT_FAILED") def offscorr(ln, silent=False): try: if silent == False: mprint("") mprint("ERR - LINE_DEFECT") mprint("ERR at line " + str(ln)) mprint("correcting...") offs_wrln = db_lines[0].count(":") - db_lines[ln].count(":") if silent == False: mprint("offset is " + str(offs_wrln)) to_write = db_lines[ln][len(workln[0])+2:-1] while offs_wrln > 0: to_write = to_write + ":" offs_wrln = offs_wrln - 1 writeln(ln, to_write, True) if silent == False: mprint("Done!") mprint("") except: mprint("ERR - OFFS_CORR_FAILED") def showdb(): try: mprint("") for i in range(1, len(db_lines)): showln(i); mprint("") except: mprint("ERR - SHOW_DB_FAILED") def showln(ln): global HTOW_FAIL global headerln global workln htow(db_lines[ln]) try: if HTOW_FAIL != True: for i in range(0, len(headerln)): iprint(headerln[i] + ": " + workln[i].replace("&dpp;", ":")) elif HTOW_FAIL == True: mprint("Line not read due to errors!"); HTOW_FAIL = False except: offscorr(ln) def writeback(db, dbwb): try: if exists(db): chmod(db, S_IREAD|S_IWRITE) if CPR_EN == False: open(db, mode='wb').write(dbwb) elif CPR_EN == True: gzip.open(db, mode='wb').write(dbwb) mprint("Writeback to " + str(db) + " sucessfull!") except: mprint("Failed to write to " + str(db) + "!") def new(val, cpr): newdb = "[ID:" + str(val) + "]\n" if not argv[2].endswith(EXT) and not argv[2].endswith(EXT + ".gz"): db = argv[2] + EXT try: if cpr == "n": open(db, mode='wb').write(newdb) elif cpr == "y": db = db + ".gz"; gzip.open(db, mode='wb').write(newdb) mprint("Database " + db + " created sucessfully!") except: mprint("Failed to create " + db + "!") def adfln(val): global changes global db_lines try: htow(db_lines[len(db_lines)-1]) try: nid = int(workln[0]) + 1 newln = "{" + str(nid).zfill(len(workln[0])) + ":" + str(val) + "}" except: nid = 1 nid_fill = input("[MAIN] Enter fillup for IDs: ") newln = "{" + str(1).zfill(nid_fill) + ":" + str(val) + "}" db_lines.append(newln) changes.append("ID: " + str(nid) + ", Value: " + str(val)) mprint("") commit(True) showln(nid) except: False def addln(): global changes global db_lines try: htow(db_lines[len(db_lines)-1]) nid = int(workln[0]) + 1 newln = "{" + str(nid).zfill(len(workln[0])) + ":}" except: nid = 1 nid_fill = input("[MAIN] Enter fillup for IDs: ") newln = "{" + str(1).zfill(nid_fill) + ":}" db_lines.append(newln) changes.append("new ID: " + str(nid)) mprint("") commit(True) htow(db_lines[-1]) offscorr(-1, True) for i in range(1, len(headerln)): stdin.flush() val = raw_input("[MAIN] " + headerln[i] + ": ").replace(":", "&dpp;") changeln(-1, i, val) commit() def rmln(ln): global db_lines try: showln(ln) del_in = raw_input("Do you really want to delete this entry? [y/n]: ") if del_in == "y": db_lines.pop(ln) changes.append("Line: " + str(ln) + ", DELETED") commit() elif del_in == "n": mprint("Aborting...") else: mprint("Invalid answer! Returning...") except: mprint("ERR - REMOVE_IMPOSSIBLE") def id2ln(id): id = str(id) global db_lines try: for ln in range(1, len(db_lines)): htow(db_lines[ln]) if workln[0] == id: return ln; break except: mprint("ERR - NO_ID_MATCH") def rmid(id): try: ln = id2ln(id); rmln(ln) except: mprint("ERR - REMOVE_BY_ID_FAILED") def showid(id): try: ln = id2ln(id); showln(ln) except: mprint("ERR - SHOW_BY_ID_FAILED") def readid(id): try: ln = id2ln(id); return readln(ln) except: mprint("ERR - READ_BY_ID_FAIL") def writeid(id, val): try: ln = id2ln(id); writeln(ln, val) except: mprint("ERR - WRITE_IMPOSSIBLE") def changeln(ln, item, val): global changes global db_lines try: htow(db_lines[ln]) workln[item] = str(val) db_lines[ln] = "{" + workln[0] + ":" for i in range(1, len(headerln)): db_lines[ln] = db_lines[ln] + workln[i] + ":" db_lines[ln] = db_lines[ln][:-1] + "}" changes.append("Line|Item: " + str(ln) + "|" + str(item) + ", Value: " + str(val)) except: False def changeid(id, item, val): try: ln=id2ln(id); changeln(ln, item, val) except: mprint("ERR - CHANGE_IMPOSSIBLE") def rebuildheader(): try: old_hlen = len(db_lines[0]) mprint("Current header: " + db_lines[0][len(headerln[0])+2:-1]) inA = raw_input("[RBHD] Append to current header? [y/n/a]: ") if inA == "y": inB = raw_input("[RBHD] Enter addtitional fields, seperator=colon: ") db_lines[0] = db_lines[0][:-1] + ":" + str(inB) + "]" print "[RBHD] New header: " + db_lines[0][1:-1] elif inA == "n": inC = raw_input("[RBHD] Redefine header? [y/n/a]: ") if inC == "y": inD = raw_input("[RBHD] Enter new header, sepreator=colon: ") try: db_lines[0] = "[" + headerln[0] + ":" + str(inD) + "]" except: db_lines[0] = "[ID:" + str(inD) + "]" print "[RBHD] New header: " + db_lines[0][1:-1] elif inC == "n": print "[8088] Contents of register 0x00002A unknown!" elif inC == "a": mprint("Aborting...") else: mprint("Invalid answer! Returning...") elif inA == "a": mprint("Aborting...") else: mprint("Invalid answer! Returning...") get_header(db_lines[0]) commit() except: mprint("ERR - REBUILD_HEADER_FAILED") def mergedb(db1, db2): global inputdb global db_lines global CPR_EN mprint("Merge two databases into one") mprint("") try: if CPR_M2 == True: CPR_EN = True importdb(db2) if CPR_EN == True: CPR_EN = False if exists(db2): chmod(db2, S_IREAD|S_IWRITE) second = inputdb second_lines = db_lines if CPR_M1 == True: CPR_EN = True importdb(db1) if CPR_EN == True: CPR_EN = False get_header(db_lines[0]) htow(db_lines[-1]) lid = workln[0] nid = int(lid) if second_lines[0].find(str(db_lines[0][:-1])) != -1: if second_lines[0] != db_lines[0]: db_lines[0] = second_lines[0] get_header(db_lines[0]) for cnt in range(1, len(db_lines)): offscorr(cnt, True) commit() mprint("New header commited!") for i in range(1, len(second_lines)): htow(second_lines[i]) inputdb = inputdb + "{" + str(nid+1).zfill(len(lid)) + second_lines[i][len(workln[0])+1:] + "\n" nid = nid + 1 mprint("Merged " + str(db1) + " and " + str(db2) + "!") writeback(str(db1.split(".")[0]) + "_" + str(db2.split(".")[0]) + "_merged" + EXT, inputdb) else: mprint("Manual header rebuild needed for " + str(db2)) mprint("ERR - HEADER_NOT_COMPATIBLE") except: mprint("ERR - HEADER_NOT_COMPATIBLE") def sortdb(report=0): try: global rep_out; rep_out = [] mprint("Available rows:") for i in range(1, len(headerln)): print "[SORT] " + str(i) + ". " + headerln[i] sby = input("[SORT] Enter item nr.: ") buffer = [] for j in range(1, len(db_lines)): htow(db_lines[j]); buffer.append(workln[sby] + ":" + str(j)) buffer.sort() for k in range(0, len(buffer)): mprint("") htow(db_lines[int(buffer[k].split(":")[1])]) for l in range(0, len(headerln)): currln = headerln[l] + ": " + workln[l].replace("&dpp;",":") iprint(currln) if report == 1: rep_out.append(currln) if l == 4: rep_out.append("\n") if report == 1: rep_out.append('') if report == 1: out_rep = "Sorted by: " + str(headerln[sby]) + "\n\n" for m in range(0, len(rep_out)-1): if rep_out[m] != "\n": out_rep = out_rep + rep_out[m] + "\n" writeback(str(argv[1]).replace(EXT, '') + "_report.txt", "Report of " + gettime() + dif + "\n" + out_rep) mprint("") except: mprint("ERR - SORT_DB_FAILED") def export(format, cset="utf-8"): if format == "HTML": if EX_HTML == True: try: mprint("Calling external module...") tohtml.embed() except: mprint("ERR - EXPORT_HTML_FAILED") else: mprint("HTML Export is disabled due to dbistohtml.py not found") elif format == "XML": if EX_XML == True: try: mprint("Calling external module...") toxml.embed() except: mprint("ERR - EXPORT_XML_FAILED") else: mprint("XML Export is disabled due to dbistoxml.py not found") else: mprint("Unrecognised format!") def searchdb(col, val, silent=False, nowrite=False): val = str(val) cnt = 0 out_rep = "" mprint('') if nowrite == False: towrite = db_lines[0] + "\n" for i in range(1, len(db_lines)): htow(db_lines[i]) if re.search(val, workln[col], re.IGNORECASE): for k in range(0, len(headerln)): ln = headerln[k] + ": " + workln[k].replace("&dpp;", ":") if silent == False: iprint(ln) if nowrite == False: out_rep = out_rep + ln + "\n" if silent == False: mprint('') if nowrite == False: out_rep = out_rep + "\n" towrite = towrite + db_lines[i] + "\n" cnt = cnt + 1 mprint("Total Items Found: " + str(cnt)) mprint('') if nowrite == False: writeback(str(argv[1]).replace(EXT, '') + "_search_" + headerln[col] + "_" + val + ".txt", "Report of " + gettime() + dif + "\n" + out_rep) writeback(str(argv[1]).replace(EXT, '') + "_search_" + headerln[col] + "_" + val + ".dbis", towrite) def getcount(col, silent=True): global CACHE_GC global CACHE_GC_LST cached = False cnt = 0 while cnt <= len(CACHE_GC): if len(CACHE_GC) > 0: if cnt == len(CACHE_GC): break elif col == CACHE_GC[cnt][0]: cached = True; break else: cnt = cnt + 1; continue else: break if cached == False: CACHE_GC.append([col, cnt]) buf = "" for i in range(1, len(db_lines)): htow(db_lines[i]) val = str(workln[col]) if val != '': if buf.find(val) == -1: buf = buf + val + ":" lst = buf[:-1].split(":") CACHE_GC_LST.append(lst) if silent == False: for j in range(0, len(lst)): mprint(str(headerln[col]) + ": " + str(lst[j]).replace("&dpp;", ":")) else: if silent == False: try: for k in range(0, len(CACHE_GC_LST[CACHE_GC[cnt][1]])): mprint(str(headerln[col]) + ": " + str(CACHE_GC_LST[CACHE_GC[cnt][1]][k]).replace("&dpp;", ":")) mprint("(cached)") except: print "CACHE_GC_LST"; print CACHE_GC_LST print "CACHE_GC"; print CACHE_GC print "CACHE_GC_LST[CACHE_GC[cnt][1]]" print CACHE_GC_LST[CACHE_GC[cnt][1]] mprint('') mprint("Item count: " + str(len(CACHE_GC_LST[CACHE_GC[cnt][1]]))) if cached == True: mprint("(cached)") mprint('') ###------commands------### ###-------makros-------### def start(): importdb(argv[1]) if im_fail == 0: mprint("Imported database " + str(argv[1]) + ":") get_header(db_lines[0]) if HDR_FAIL == False: chmod(argv[1], S_IREAD) mprint("Items: " + str(len(db_lines)-1)) def stop(): global commited_changes commit() if len(commited_changes) > 1: log_commited_changes = "\n" for i in range(0, len(commited_changes)): log_commited_changes = log_commited_changes + commited_changes[i] + "\n" try: open(argv[1] + ".log", mode='ab').write(log_commited_changes) mprint("Writeback to " + argv[1] + ".log sucessfull!") except: mprint("Failed to write to " + argv[1] + ".log!") writeback(argv[1], inputdb) commited_changes = [] else: mprint("No changes made!") ###-------makros-------### ###------read--db------### def get_header(header): global HDR_FAIL global headerln header = str(header) if header[0] == "[" and header[-1] == "]": headerln = header[1:-1].split(":") else: mprint("ERR - HEADER_DEFECT - INTEGRITY"); mprint("ERR at: " + header); HDR_FAIL = True; exit(42) def htow(linein): global HTOW_FAIL; HTOW_FAIL = False global workln; workln = [] linein = str(linein) try: if linein[0] == "{" and linein[-1] == "}": workln = linein[1:-1].split(":") else: mprint("No readable lines detected!"); HTOW_FAIL = True except: mprint("ERR - LINE_DEFECT - INTEGRITY"); HTOW_FAIL = True ###------read-db------### ###----pre-runtime----### def info(): print "DBISshit! - the python app that mimics a database" print " Copyright (c) 2018 Jan-Daniel Kaplanski" print "-------------------------------------------------" print "" def usage(): mprint("Usage: " + argv[0] + " [file]") mprint(" new: " + argv[0] + " new [file]") mprint("merge: " + argv[0] + " merge [file1] [file2]") def help(): hprint("available commands: sort, ls, showdb, showln, addln") hprint(" writeln, writeid, changelog, cls") hprint(" rmln, rmid, changeln, changeid") hprint(" rebuildheader, commit, writeback") hprint(" search, getcount, gc, add") if DBG_FNC == True: hprint(" importdb, adfln, stop") hlpin = raw_input("[HELP] Enter command name: ") if hlpin == "importdb" and DBG_FNC == True: hprint("imports the db into memory") elif hlpin == "ls": hprint("alias for showdb") elif hlpin == "sort": hprint("sorts the database then shows it (no change in structure)") elif hlpin == "search": hprint("searches for a value in a given row, then saves it as a report and .dbis subset") elif hlpin == "getcount": hprint("prints all different values for a col + prints their count") elif hlpin == "gc": hprint("alias for getcount") elif hlpin == "showdb": hprint("prints the entire database") elif hlpin == "showln": hprint("prints a single line at position NUM from memory") elif hlpin == "showid": hprint("prints a single line at ID NUM from memory") elif hlpin == "writeln": hprint("writes a single line at position NUM into memory") elif hlpin == "writeid": hprint("writes a single line at ID NUM into memory") elif hlpin == "changeln": hprint("writes a single value at position NUM, item NUM into memory") elif hlpin == "changeid": hprint("writes a single value at ID NUM, item NUM into memory") elif hlpin == "commit": hprint("commits changes to memory") elif hlpin == "changelog": hprint("prints uncommited changes") elif hlpin == "writeback": hprint("writes the data to disk") elif hlpin == "cls": hprint("clears the screen") elif hlpin == "stop" and DBG_FNC == True: hprint("does commit and writeback") elif hlpin == "adfln" and DBG_FNC == True: hprint("adds a new line") elif hlpin == "addln": hprint("adds a new line and asks for speciffic input values") elif hlpin == "add": hprint("alias for addln") elif hlpin == "rmln": hprint("removes a line") elif hlpin == "rmid": hprint("removes an id") elif hlpin == "rebuildheader": hprint("rebuild the header of the file") else: hprint("unknown command") ###----pre-runtime----### ###------runtime------### def interactive(): global OP_CNT start() if im_fail == 0: while True: if OP_CNT % 15 == 0: mprint("Autosaving...") writeback(argv[1], inputdb) chmod(argv[1], S_IREAD) if OP_CNT % 30 == 0: mprint("Backup...") writeback(argv[1] + ".bak", inputdb) chmod(argv[1], S_IREAD) cmdin = raw_input("[MAIN] Enter command: ") if cmdin == "exit": exin = raw_input("[MAIN] Do you really want to exit? [y/n/f]: ") if exin == "y": stop(); break elif exin == "f": break elif exin == "n": mprint("proceeding...") else: mprint("Invalid answer! Returning...") elif cmdin == "cls": try: cls() info() except: mprint("ERR - CLS_FAILED") elif cmdin == "stop" and DBG_FNC == True: try: stop() except: mprint("ERR - STOP_FAILED") elif cmdin == "changelog": try: changelog() except: mprint("ERR - CALL_CLOG_FAILED") elif cmdin == "help": try: help() except: mprint("ERR - CALL_HELP_FAILED") elif cmdin == "importdb": try: importdb(argv[1]) except: mprint("ERR - IMPORT_DB_FAILED") elif cmdin == "showdb" or cmdin == "ls": try: showdb() except: mprint("ERR - SHOW_DB_IMPOSSIBLE") elif cmdin == "showln": ln = input("[SHLN] Enter line nr.: ") if ln != -42: try: showln(ln) except: mprint("ERR - SHOW_LN_IMPOSSIBLE") else: mprint("Aborting...") elif cmdin == "showid": id = raw_input("[SHID] Enter ID: ") if id != "-42": try: showid(id) except: mprint("ERR - SHOW_ID_IMPOSSIBLE") else: mprint("Aborting...") elif cmdin == "writeln": try: ln = input("[WRLN] Enter line nr.: ") if ln != -42: print "[WRLN] Old value: " + readln(ln) val = raw_input("[WRLN] Enter value: ") if val != "exit": print "[WRLN] You entered: " + val writeln(ln, val) else: mprint("Aborting...") else: mprint("Aborting...") except: mprint("ERR - WRITE_IMPOSSIBLE") elif cmdin == "writeid": try: id = raw_input("[WRID] Enter ID: ") if id != "-42": print "[WRID] Old value: " + readid(id) val = raw_input("[WRID] Enter value: ") if val != "exit": print "[WRID] You entered: " + val writeid(id, val) else: mprint("Aborting...") else: mprint("Aborting...") except: mprint("ERR - WRITE_IMPOSSIBLE") elif cmdin == "changeln": try: ln = input("[CHLN] Enter line nr.: ") if ln != -42: for i in range(1, len(headerln)): print "[CHLN] " + str(i) + ". " + headerln[i] #print "[CHLN] Line: " + readln(ln) it = input("[CHLN] Enter item nr.: ") print "[CHLN] Item: " + workln[it] if it != -42: val = raw_input("[CHLN] Enter value: ") if val != "exit": print "[CHLN] You entered: " + val changeln(ln, it, val) showln(ln) else: mprint("Aborting...") else: mprint("Aborting...") except: mprint("ERR - CHANGE_BY_LN_FAILED") elif cmdin == "changeid": try: id = raw_input("[CHID] Enter ID: ") if id != "-42": #print "[CHID] Old value: " + readid(id) for i in range(1, len(headerln)): print "[CHID] " + str(i) + ". " + headerln[i] it = input("[CHID] Enter item nr.: ") print "[CHID] Item: " + workln[it] if it != -42: val = raw_input("[CHID] Enter value: ") if val != "exit": print "[CHID] You entered: " + val changeid(id, it, val) showid(id) else: mprint("Aborting...") else: mprint("Aborting...") except: mprint("ERR - CHANGE_BY_ID_FAILED") elif cmdin == "adfln": print "[ADLN] Use colons for multiple fields!" print "[ADLN] A new entry should look like this: " + db_lines[0][len(db_lines[0].split(":")[0])+1:-1] nval = raw_input("[ADLN] Enter value: ") if nval != "exit": print "[ADLN] You entered: " + nval try: adfln(nval) except: mprint("ERR - ADF_IMPOSSIBLE") else: mprint("Aborting...") elif cmdin == "addln" or cmdin == "add": try: addln() except: print("ERR - ADD_IMPOSSIBLE") elif cmdin == "rmln": r_ln = input("[RMLN] Enter line nr.: ") if r_ln != 42: try: rmln(r_ln) except: mprint("ERR - REMOVE_IMPOSSIBLE") else: mprint("Aborting...") elif cmdin == "rmid": r_id = raw_input("[RMID] Enter ID: ") if r_id != 42: try: rmid(r_id) except: mprint("ERR - REMOVE_IMPOSSIBLE") else: mprint("Aborting...") elif cmdin == "rebuildheader": try: rebuildheader() except: mprint("ERR - REBUILD_HEADER_FAILED") elif cmdin == "sort": try: set_rep = raw_input("[SORT] Generate report? [y/n/a]: ") if set_rep == "y": sortdb(1) elif set_rep == "n": sortdb() elif set_rep == "a": mprint("Aborting...") else: mprint("Invalid answer! Returning...") except: mprint("ERR - SORTDB_FAILED") elif cmdin == "export": if not EX_DIS: try: form = "" ex_which = raw_input("[EXPR] Export Format? [XML/HTML/a]: ") if ex_which == "XML" or ex_which == "xml": form = "XML" elif ex_which == "HTML" or ex_which == "html": form = "HTML" if form != "": ex_cset = raw_input("[EXPR] Custom charset? (leave empty for utf-8) [...]: ") if ex_cset != "": export(form, ex_cset) else: export(form) elif ex_which == "a": mprint("Aborting...") else: mprint("Invalid answer! Returning...") except: mprint("ERR - EXPORT_FAILED") else: mprint("Export disabled via EX_DIS flag!") elif cmdin == "commit": try: commit() except: mprint("ERR - COMMIT_IMPOSSIBLE") elif cmdin == "getcount" or cmdin == "gc": try: mprint("Available rows:") for i in range(1, len(headerln)): print "[GETC] " + str(i) + ". " + headerln[i] col = input("[GETC] Enter row nr.: ") sil = raw_input("[GETC] Silent? [y/n]: ") if sil == "y": getcount(col, True) elif sil == "n": getcount(col, False) else: mprint("Starting silent!"); getcount(col, True) except: mprint("ERR - GET_COUNT_FAILED") elif cmdin == "search": try: mprint("Available rows:") for i in range(1, len(headerln)): print "[SEDB] " + str(i) + ". " + headerln[i] col = input("[SEDB] Enter row nr.: ") val = raw_input("[SEDB] Enter search value: ") sil = raw_input("[SEDB] Silent? [y/n]: ") wr = raw_input("[SEDB] Create Report + Subset-DB? [y/n]: ") if sil == "y": if wr == "y": searchdb(col, val, True) elif wr == "n": searchdb(col, val, True, True) elif sil == "n": if wr == "y": searchdb(col, val) elif wr == "n": searchdb(col, val, False, True) else: mprint("Starting silent, nowrite!"); searchdb(col, val, True, True) except: mprint("ERR - SEARCH_DB_FAILED") elif cmdin == "writeback": try: writeback(argv[1], inputdb) except: mprint("ERR - WRITEBACK_FAILED") else: mprint("Unknown command. Try 'help' for a list of available commands!") OP_CNT = OP_CNT + 1 def main(): global CPR_EN global CPR_M1 global CPR_M2 try: if len(argv) >= 2: if argv[1] == "help": info() usage() help() elif argv[1] == "new": info() if len(argv) > 2: mprint("Create new header:") mprint("Seperate fields with colons. Example:") mprint("Name:Gender:E-Mail:Phone") newdb_val = raw_input("[Main] Specify new header: ") while True: stdin.flush() in_cpr = raw_input("[Main] Enable compression? [y/n]: ") if in_cpr == "y" or in_cpr == "n": break else: mprint("Invalid answer. Try again!") new(newdb_val, in_cpr) else: mprint("ERR - NO_FILE_NAME") elif argv[1] == "merge": info() if not argv[2].endswith(EXT) and not argv[2].endswith(EXT + ".gz"): mprint("File one does not apply to naming scheme! Aborting!") if not argv[3].endswith(EXT) and not argv[3].endswith(EXT + ".gz"): mprint("File two does not apply to naming scheme! Aborting!") else: if argv[2].endswith(EXT + ".gz"): CPR_M1 = True if argv[3].endswith(EXT + ".gz"): CPR_M2 = True if len(argv) > 3: mergedb(argv[2], argv[3]) else: mprint("ERR - NO_FILE_NAME"); exit(21) else: cls() info() if not argv[1].endswith(EXT) and not argv[1].endswith(EXT + ".gz"): mprint("Entered file does not apply to naming scheme! Aborting!") else: if argv[1].endswith(EXT + ".gz"): CPR_EN = True interactive() if exists(argv[1]): chmod(argv[1], S_IREAD|S_IWRITE) mprint("Good bye!") elif len(argv) < 2: info() print "At least one argument required!" print "Try: " + argv[0] + " help (or specifiy a file)!" except: if HDR_FAIL != True: mprint("ERR - UNKNOWN_ERROR") ###------runtime------### ###-----execution-----### if __name__ == '__main__': main() else: info(); mprint("This is a standalone program. Do not import!"); exit(127) ###-----execution-----### ###------comments-----### ###------comments-----###
33.237164
156
0.608872
b3212ddc8c5b722c1101b999b81c8ed3951de013
9,982
py
Python
src/eval_meas.py
lishuai1993/FairMOT
b224d61a24038cc7dc38d186e48e25e89c5daa6c
[ "MIT" ]
null
null
null
src/eval_meas.py
lishuai1993/FairMOT
b224d61a24038cc7dc38d186e48e25e89c5daa6c
[ "MIT" ]
null
null
null
src/eval_meas.py
lishuai1993/FairMOT
b224d61a24038cc7dc38d186e48e25e89c5daa6c
[ "MIT" ]
null
null
null
import os import os.path as osp import numpy as np from tqdm import tqdm import cv2 import shutil import matplotlib.pyplot as plt import matplotlib matplotlib.use('TkAgg') import _init_paths from tracking_utils import visualization as vis from tracking_utils.log import logger from tracking_utils.timer import Timer # import motmetrics as mm from tracking_utils.evaluation import Evaluator import sys sys.path.append(r'D:\work\code\package\code\code_ls\package') sys.path.append('/home/shuai.li/code/package') import pathcostom as pm def measure2files(results_root, data_root, seqs): """ @param results_root: mot轨迹预测结果文件的根目录,文件中格式 <frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>, <z> @param data_root: gt文件的路径,不包含后三级,因为在Evaluator初始化函数中已经写了全路径的拼接方式 @param seqs: gt路径的倒数第三级路径 @return: 存储seqs中,每一个路径下track结果的评价指标,以及全部文件夹汇总后的指标 """ data_type = 'mot' result_root = "/home/shuai.li/code/FairMOT/MOT15/images/results/temp/" exp_name = "test_evalMot15" accs = [] # eval for seq in tqdm(seqs): result_filename = osp.join(results_root, seq) + '.txt' logger.info('Evaluate seq: {}'.format(seq)) evaluator = Evaluator(data_root, seq, data_type) # 在初始化中,根据data_root, seq自动加载ground truth数据 accs.append(evaluator.eval_file(result_filename)) # 在读取存储的检测结果,并进行计算,一帧对应一个acc对象 # if save_videos: # output_video_path = osp.join(output_dir, '{}.mp4'.format(seq)) # cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -c:v copy {}'.format(output_dir, output_video_path) # os.system(cmd_str) # get summary metrics = mm.metrics.motchallenge_metrics # 18个评价指标 mh = mm.metrics.create() # 创建指标计算工厂,后续传入相关数据即可给出指标 summary = Evaluator.get_summary(accs, seqs, metrics) # 计算MOT challenge中的指标,参数:、eval的帧序列名称、指标序列 strsummary = mm.io.render_summary( # 将eval指标进行字符串格式化,用于在console上面的显示 summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names ) print(strsummary) # 显示在命令行中 Evaluator.save_summary(summary, os.path.join(result_root, 'summary_{}.xlsx'.format(exp_name))) def getbb_perid(): file_result = '/home/shuai.li/dset/MOT/cue_video/compare_index_yhw/result/results.txt' # 追踪的结果文件,result.txt dir_img = '/home/shuai.li/dset/MOT/cue_video/compare_index_yhw/result/frame' # 视频帧的文件夹\ dir_dst = '/home/shuai.li/dset/MOT/cue_video/compare_index_yhw/result/patch_ids' # 结果截图的根目录,每个子文件夹以id命名,长度为5,前面补零 formater = "{:05d}" # 读取结果文件 result_data = np.loadtxt(file_result, delimiter=',', dtype=np.float, usecols=[0, 1, 2, 3, 4, 5]) result_data = result_data.astype(np.int) # 创建全部文件夹 ids = result_data[:, 1].tolist() ids_set = set(ids) for temp in tqdm(ids_set): pm.mkdir_recu(osp.join(dir_dst, formater.format(int(temp)))) # 保存id的bb for temp in tqdm(result_data): imgpath_src = osp.join(dir_img, formater.format(temp[0] - 1) + '.jpg') # 视频帧转换 imgpath_dst = osp.join(dir_dst, formater.format(temp[1]), formater.format(temp[0] - 1) + '.jpg') # id作为文件夹命名 + 视频帧作为文件名 top, bot, left, right = temp[3], temp[3]+temp[5], temp[2], temp[2]+temp[4] img = cv2.imread(imgpath_src) cv2.imwrite(imgpath_dst, img[top:bot, left:right]) def shutil_idfolder_byTspan(Fspan = 18, shutil_func=shutil.copy): """ @param Fspan: 该id的trajectory的时间跨度需要大于等于 1s,当前程序 1s 对应的是18帧左右 @return: """ dir_src = r'D:\work\dset\cue_mot_Data\compare_index_yhw\patch_ids\\' dir_dst = r'D:\work\dset\cue_mot_Data\compare_index_yhw\ge{}frame_perid_inpatch\\'.format(Fspan) idfolders = os.listdir(dir_src) if not osp.exists(dir_dst): os.makedirs(dir_dst) for folder in tqdm(idfolders): framelist = list(map(lambda x: int(x.split('.jpg')[0]), os.listdir(osp.join(dir_src, folder)))) diff = max(framelist) - min(framelist) if diff >= Fspan: if shutil_func == shutil.copytree: shutil_func(osp.join(dir_src, folder), osp.join(dir_dst, folder)) def hist_fspan(bins=5, imgnumbins = 5, range=None): # dir_src_list = [r'D:\work\dset\cue_mot_Data\compare_index_yhw\eq1frame_perid_movefpatch_ids\\', # r'D:\work\dset\cue_mot_Data\compare_index_yhw\lt18frame_perid_inpatch_movefpatch_ids\\', # r'D:\work\dset\cue_mot_Data\compare_index_yhw\patch_ids\\', # ] dir_src_list = [r'D:\work\dset\cue_mot_Data\compare_index_yhw\gap8f_ge60frame_perid_inpatch\\'] rotation = -90 id_folderlist = pm.get_dirflistdir(dir_src_list) print('id_folderlist:\t', len(id_folderlist)) numlist = [] img_numlist = [] for folder in tqdm(id_folderlist): num_perid = list(map(lambda x: int(x.split('.jpg')[0]), os.listdir(folder))) # 注意是帧跨度,而不是图片量 imgnum_perid = len(os.listdir(folder)) try: fspan = max(num_perid) - min(num_perid) except: pass numlist.append(fspan) img_numlist.append(imgnum_perid) a, _ = np.histogram(numlist, bins=bins, density=True) bins = np.array(bins) factor =bins[1:] - bins[:-1] f = a*factor bar_xlabel = [] for i, j in zip(bins[:-1], bins[1:]): bar_xlabel.append(str(i) + '-' + str(j)) fig, ax = plt.subplots(2, 2) fig.suptitle("gap8f_ge60frame_perid_inpatch") xticks = (np.array(bins, dtype=np.int) - 1)//15 # 换算成秒 ax[0][0].hist(numlist, bins=bins) # bins是左闭右开区间 ax[0][0].set_xticks(ticks=bins) ax[0][0].set_xticklabels(labels=xticks, rotation=rotation) ax[0][0].set_xlabel('value of time span in per trajectory') ax[0][0].set_ylim((0, 400)) ax[0][0].set_ylabel('num in per bin') ax[0][1].bar(np.arange(1, len(xticks), 1), f) # bins是左闭右开区间 ax[0][1].set_xticks(ticks=np.arange(1, len(xticks), 1)) ax[0][1].set_xticklabels(labels=xticks[1:], rotation=rotation) ax[0][1].set_xlabel('the percentage of time span in per trajectory') ax[0][1].set_ylim((0, 1)) ax[0][1].set_ylabel('num in per bin') ax[0][1].set_title('time span(s) of per trajectory') b, _ = np.histogram(img_numlist, bins=imgnumbins, density=True) imgnumbins = np.array(imgnumbins) factor = imgnumbins[1:] - imgnumbins[:-1] bf = b * factor xticks = imgnumbins ax[1][0].hist(img_numlist, bins=imgnumbins) # bins是左闭右开区间 ax[1][0].set_xticks(ticks=xticks) ax[1][0].set_xticklabels(labels=xticks, rotation=rotation) ax[1][0].set_xlabel('num of img per trajectory') ax[1][0].set_ylim((0, 400)) ax[1][0].set_ylabel('num in per bin') bar_xlabel = [] for i, j in zip(imgnumbins[:-1], imgnumbins[1:]): bar_xlabel.append(str(i) + '-' + str(j)) ax[1][1].bar(np.arange(1, len(xticks), 1), bf) # bins是左闭右开区间 ax[1][1].set_xticks(ticks=np.arange(1, len(xticks), 1)) ax[1][1].set_xticklabels(labels=xticks[1:], rotation=rotation) ax[1][1].set_xlabel('The percentage of the number of images per trajectory') ax[1][1].set_ylim((0, 1)) ax[1][1].set_ylabel('num in per bin') # plt.title('time span(s) of per trajectory') plt.show() def get_frame_gap_srcvideo(gap = 3, shutil_func=shutil.copy): dir_src = r'D:\work\dset\cue_mot_Data\compare_index_yhw\get60frame_perid_inpatch' dir_dst = r'D:\work\dset\cue_mot_Data\compare_index_yhw\gap{}f_ge60frame_perid_inpatch'.format(gap) frame_orderset = set(range(0, 54000, gap)) folder_list = os.listdir(dir_src) for folder in tqdm(folder_list): frame_set_perid = set(map(lambda x: int(x.split('.jpg')[0]), os.listdir(osp.join(dir_src, folder)))) intersection = frame_set_perid.intersection(frame_orderset) dst_path = osp.join(dir_dst, folder) src_path = osp.join(dir_src, folder) pm.mkdir_recu(dst_path) for order in intersection: shutil_func(osp.join(src_path, '{:05d}.jpg'.format(order)), dst_path) def get_errnum(): dir_src = r'D:\work\dset\cue_mot_Data\compare_index_yhw\gap8f_ge60frame_perid_inpatch\\' folder_list = os.listdir(dir_src) num = 0 for folder in tqdm(folder_list): if '_' in folder: num += 1 print(num) if __name__ == "__main__": # file_pre = "/home/shuai.li/code/FairMOT/MOT15/images/results/temp/" # data_root = "/home/shuai.li/code/FairMOT/MOT15/images/train" # seqs = ['KITTI-13', # 'KITTI-17', # 'ETH-Bahnhof', # 'ETH-Sunnyday', # 'PETS09-S2L1', # 'TUD-Campus', # 'TUD-Stadtmitte', # 'ADL-Rundle-6', # 'ADL-Rundle-8', # 'ETH-Pedcross2', # 'TUD-Stadtmitte', # ] # measure2files(file_pre, data_root, seqs) # getbb_perid() Fspan = 60 # shutil_func = shutil.copytree # shutil_idfolder_byTspan(Fspan= Fspan, shutil_func=shutil_func) # get_frame_gap_srcvideo(gap=8, shutil_func=shutil.copy) bins = list(range(1, 15*8+2, 15)) # [1, 16) tail = list(range(121, 60*10+2, 60)) tail.pop(0) bins.extend(tail) imgnumbins = list(range(0, 150+1, 10)) range=None hist_fspan(bins=bins, imgnumbins=imgnumbins, range=range) # get_errnum()
36.833948
137
0.607794
86df210e442dbdab880476ac63700e71e2505061
494
py
Python
Egzersiz/bilal/regexegzersiz2.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
Egzersiz/bilal/regexegzersiz2.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
Egzersiz/bilal/regexegzersiz2.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
isimler = """ Merhaba 123123123123 2022-12-12 Mr. Simit Mr. Kızılay Mr. Kahverengi Mr. Lacivert Ms. Kırmızı Ms. Yeşil Mrs. Siyah Mrs. Mavi edizibrahim@patika.dev patika@kodluyoruz.com """ ##isimleri ayıklama # pattern = re.compile(r"(Mr|Mrs|Ms).?\s(\w+)") # matches = pattern.finditer(isimler) # for match in matches: # print(match.group(2)) # patika@kodluyoruz.com import re pattern = re.compile(r"(.*)+@+(.*)") matches = pattern.finditer(isimler) for match in matches: print(match)
17.034483
47
0.700405
c6e8e81000aca4a53907836e9ef2b534c990510e
10,600
py
Python
ThirdAssigment/plots.py
PaiZuZe/MAC0460-machineLearning
98031412d8835afad0fde318b5c57a613bfb4fc8
[ "Apache-2.0" ]
null
null
null
ThirdAssigment/plots.py
PaiZuZe/MAC0460-machineLearning
98031412d8835afad0fde318b5c57a613bfb4fc8
[ "Apache-2.0" ]
1
2018-09-16T16:31:36.000Z
2018-09-16T16:31:36.000Z
ThirdAssigment/plots.py
PaiZuZe/MAC0460-machineLearning
98031412d8835afad0fde318b5c57a613bfb4fc8
[ "Apache-2.0" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def plot_points_regression(x, y, title, xlabel, ylabel, prediction=None, legend=False, r_squared=None, position=(90, 100)): """ Plots the data points and the prediction, if there is one. :param x: design matrix :type x: np.array :param y: regression targets :type y: np.array :param title: plot's title :type title: str :param xlabel: x axis label :type xlabel: str :param ylabel: y axis label :type ylabel: str :param prediction: model's prediction :type prediction: np.array :param legend: param to control print legends :type legend: bool :param r_squared: r^2 value :type r_squared: float :param position: text position :type position: tuple """ fig, ax = plt.subplots(1, 1, figsize=(8, 8)) line1, = ax.plot(x, y, 'bo', label='Real data') if prediction is not None: line2, = ax.plot(x, prediction, 'r', label='Predicted data') if legend: plt.legend(handles=[line1, line2], loc=2) ax.set_title(title, fontsize=20, fontweight='bold') if r_squared is not None: bbox_props = dict(boxstyle="square,pad=0.3", fc="white", ec="black", lw=0.2) t = ax.text(position[0], position[1], "$R^2 ={:.4f}$".format(r_squared), size=15, bbox=bbox_props) ax.set_xlabel(xlabel, fontsize=20) ax.set_ylabel(ylabel, fontsize=20) plt.show() def plot_cost_function_curve(X, y, cost_function, title, weights_list=None, cost_list=None, position=(20, 40), range_points=(20, 40)): """ Plots a cost surfice. It assumes that weight.shape == (2,). :param X: design matrix :type X: np.ndarray :param y: regression targets :type y: np.ndarray :param cost_function: function to compute regression cost :type cost_function: lambda: (np.ndarray, np.ndarray, np.ndarray) -> float :param title: plot's title :type title: str :param weights_list: list of weights :type weights_list: list :param cost_list: list of costs :type cost_list: list :param position: surfice rotation position :type position: tuple :param range_points: range of values for w :type range_points: tuple """ w_0, w_1 = 0, 0 ms = np.linspace(w_0 - range_points[0] , w_0 + range_points[0], range_points[0]) bs = np.linspace(w_1 - range_points[1] , w_1 + range_points[1], range_points[1]) M, B = np.meshgrid(ms, bs) MB = np.stack((np.ravel(M), np.ravel(B)), axis=1) size = MB.shape[0] MB = MB.reshape((size, 2, 1)) zs = np.array([cost_function(X, y, MB[i]) for i in range(size)]) Z = zs.reshape(M.shape) fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(M, B, Z, rstride=1, cstride=1, color='b', alpha=0.2) ax.set_xlabel('w[0]', labelpad=30, fontsize=24, fontweight='bold') ax.set_ylabel('w[1]', labelpad=30, fontsize=24, fontweight='bold') ax.set_zlabel('J(w)', labelpad=30, fontsize=24, fontweight='bold') if weights_list is not None and cost_list is not None: ax.plot([weights_list[0][0]], [weights_list[0][1]], [cost_list[0]], markerfacecolor=(1.0, 0.0, 0.0, 1.0), markeredgecolor=(1.0, 0.0, 0.0, 1.0), marker='o', markersize=7) ax.plot([weights_list[-1][0]], [weights_list[-1][1]], [cost_list[-1]], markerfacecolor=(0.0, 0.0, 1.0, 1.0), markeredgecolor=(0.0, 0.0, 1.0, 1.0), marker='o', markersize=7) temp_red = 1.0 temp_blue = 0.0 size = len(weights_list) oldx = 0.0 oldy = 0.0 oldz = 0.0 for w, cost in zip(weights_list, cost_list): rgba_color = (temp_red * 1.0, 0.0, temp_blue * 1.0, 1.0) ax.plot([w[0]], [w[1]], [cost], markerfacecolor=rgba_color, markeredgecolor=rgba_color, marker='.', markersize=4) if oldx + oldy + oldz != 0.0 : rgba_color_weak = list(rgba_color) rgba_color_weak[-1] = 0.3 ax.plot([w[0], oldx],[w[1], oldy], [cost, oldz],color=rgba_color_weak) temp_red += - 1 / size temp_blue += 1 / size oldx = w[0] oldy = w[1] oldz = cost ax.view_init(elev=position[0], azim=position[1]) ax.set_title(title, fontsize=20, fontweight='bold') plt.show() def simple_step_plot(ylist, yname, title, figsize=(4, 4), labels=None): """ Plots values over time. :param ylist: list of values lists :type ylist: list :param yname: value name :type yname: str :param title: plot's title :type title: str :param figsize: plot's size :type figsize: tuple :param labels: label for each values list in ylist :type range_points: list """ y0 = ylist[0] x = np.arange(1, len(y0) + 1, 1) fig, ax = plt.subplots(1, 1, figsize=figsize) for y in ylist: ax.plot(x, y) plt.xlabel('step') plt.ylabel(yname) plt.title(title, fontsize=14, fontweight='bold') plt.grid(True) if labels is not None: plt.legend(labels, loc='upper right') plt.show() def plot9images(images, cls_true, img_shape, cls_pred=None, lspace=0.3): """ Function to show 9 images with their respective classes. If cls_pred is an array, you can see the image and the prediction. :param images: images :type images: np array :param cls_true: true classes :type cls_true: np array :param img_shape: image shape :type img_shape: tuple :param cls_pred: model's prediction :type cls_pred: None or np array :param lspace: space between images :type lspace: float """ assert len(images) == len(cls_true) == 9 if cls_pred is None: title = "Some images with labels" else: title = "Some images with predictions and labels" fig, axes = plt.subplots(3, 3) fig.subplots_adjust(hspace=lspace, wspace=0.3) st = fig.suptitle(title, fontsize=24, fontweight='bold') for i, ax in enumerate(axes.flat): ax.imshow(images[i].reshape(img_shape), cmap=None) if cls_pred is None: xlabel = "Label: {0}".format(cls_true[i]) else: xlabel = "Label: {0}\nPred: {1}".format(cls_true[i], cls_pred[i]) ax.set_xlabel(xlabel) ax.set_xticks([]) ax.set_yticks([]) plt.tight_layout() st.set_y(1.05) fig.subplots_adjust(top=0.85) plt.show() def plot_confusion_matrix(truth, predictions, classes, normalize=False, save=False, cmap=plt.cm.Oranges, path="confusion_matrix.png"): """ This function plots the confusion matrix. Normalization can be applied by setting `normalize=True`. 'cmap' controls the color plot. colors: https://matplotlib.org/1.3.1/examples/color/colormaps_reference.html :param truth: true labels :type truth: np array :param predictions: model predictions :type predictions: np array :param classes: list of classes in order :type classes: list :param normalize: param to normalize cm matrix :type normalize: bool :param save: param to save cm plot :type save: bool :param cmap: plt color map :type cmap: plt.cm :param path: path to save image :type path: str """ acc = np.array(truth) == np.array(predictions) size = float(acc.shape[0]) acc = np.sum(acc.astype("int32")) / size title = "Confusion matrix of {0} examples\n accuracy = {1:.6f}".format(int(size), # noqa acc) cm = confusion_matrix(truth, predictions) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.figure(figsize=(9, 9)) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title, fontsize=24, fontweight='bold') plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label', fontweight='bold') plt.xlabel('Predicted label', fontweight='bold') plt.show() if save: plt.savefig(path) def plot_histogram_from_labels(labels, labels_legend, comment): """ Plot dataset histogram :param label_path: array of labels :type label_path: np.array :param labels_legend: list with the name of labels :type labels_legend: list :param comment: comment to dataset to be printed on title :type comment: str """ data_hist = plt.hist(labels, bins=np.arange(len(labels_legend) + 1) - 0.5, edgecolor='black') axes = plt.gca() axes.set_ylim([0, len(labels)]) plt.title("Histogram of {} data points ({})".format(len(labels), comment)) plt.xticks(np.arange(len(labels_legend) + 1), labels_legend) plt.xlabel("Label") plt.ylabel("Frequency") for i in range(len(labels_legend)): plt.text(data_hist[1][i] + 0.25, data_hist[0][i] + (data_hist[0][i] * 0.01), str(int(data_hist[0][i]))) plt.show() plt.close()
34.304207
93
0.553679
c5721f064e98b77681161a1bb9b152b1c1ec4f9c
13,306
py
Python
colour/models/tests/test_cie_lab.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
colour/models/tests/test_cie_lab.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
colour/models/tests/test_cie_lab.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
"""Defines the unit tests for the :mod:`colour.models.cie_lab` module.""" import numpy as np import unittest from itertools import permutations from colour.models import XYZ_to_Lab, Lab_to_XYZ, Lab_to_LCHab, LCHab_to_Lab from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = "Colour Developers" __copyright__ = "Copyright 2013 Colour Developers" __license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause" __maintainer__ = "Colour Developers" __email__ = "colour-developers@colour-science.org" __status__ = "Production" __all__ = [ "TestXYZ_to_Lab", "TestLab_to_XYZ", "TestLab_to_LCHab", "TestLCHab_to_Lab", ] class TestXYZ_to_Lab(unittest.TestCase): """ Define :func:`colour.models.cie_lab.XYZ_to_Lab` definition unit tests methods. """ def test_XYZ_to_Lab(self): """Test :func:`colour.models.cie_lab.XYZ_to_Lab` definition.""" np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.20654008, 0.12197225, 0.05136952])), np.array([41.52787529, 52.63858304, 26.92317922]), decimal=7, ) np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.14222010, 0.23042768, 0.10495772])), np.array([55.11636304, -41.08791787, 30.91825778]), decimal=7, ) np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.07818780, 0.06157201, 0.28099326])), np.array([29.80565520, 20.01830466, -48.34913874]), decimal=7, ) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.44757, 0.40745]), ), np.array([41.52787529, 38.48089305, -5.73295122]), decimal=7, ) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.34570, 0.35850]), ), np.array([41.52787529, 51.19354174, 19.91843098]), decimal=7, ) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.34570, 0.35850, 1.00000]), ), np.array([41.52787529, 51.19354174, 19.91843098]), decimal=7, ) def test_n_dimensional_XYZ_to_Lab(self): """ Test :func:`colour.models.cie_lab.XYZ_to_Lab` definition n-dimensional support. """ XYZ = np.array([0.20654008, 0.12197225, 0.05136952]) illuminant = np.array([0.31270, 0.32900]) Lab = XYZ_to_Lab(XYZ, illuminant) XYZ = np.tile(XYZ, (6, 1)) Lab = np.tile(Lab, (6, 1)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7 ) illuminant = np.tile(illuminant, (6, 1)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7 ) XYZ = np.reshape(XYZ, (2, 3, 3)) illuminant = np.reshape(illuminant, (2, 3, 2)) Lab = np.reshape(Lab, (2, 3, 3)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7 ) def test_domain_range_scale_XYZ_to_Lab(self): """ Test :func:`colour.models.cie_lab.XYZ_to_Lab` definition domain and range scale support. """ XYZ = np.array([0.20654008, 0.12197225, 0.05136952]) illuminant = np.array([0.31270, 0.32900]) Lab = XYZ_to_Lab(XYZ, illuminant) d_r = (("reference", 1, 1), ("1", 1, 0.01), ("100", 100, 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( XYZ_to_Lab(XYZ * factor_a, illuminant), Lab * factor_b, decimal=7, ) @ignore_numpy_errors def test_nan_XYZ_to_Lab(self): """Test :func:`colour.models.cie_lab.XYZ_to_Lab` definition nan support.""" cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: XYZ = np.array(case) illuminant = np.array(case[0:2]) XYZ_to_Lab(XYZ, illuminant) class TestLab_to_XYZ(unittest.TestCase): """ Define :func:`colour.models.cie_lab.Lab_to_XYZ` definition unit tests methods. """ def test_Lab_to_XYZ(self): """Test :func:`colour.models.cie_lab.Lab_to_XYZ` definition.""" np.testing.assert_almost_equal( Lab_to_XYZ(np.array([41.52787529, 52.63858304, 26.92317922])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7, ) np.testing.assert_almost_equal( Lab_to_XYZ(np.array([55.11636304, -41.08791787, 30.91825778])), np.array([0.14222010, 0.23042768, 0.10495772]), decimal=7, ) np.testing.assert_almost_equal( Lab_to_XYZ(np.array([29.80565520, 20.01830466, -48.34913874])), np.array([0.07818780, 0.06157201, 0.28099326]), decimal=7, ) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 38.48089305, -5.73295122]), np.array([0.44757, 0.40745]), ), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7, ) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 51.19354174, 19.91843098]), np.array([0.34570, 0.35850]), ), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7, ) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 51.19354174, 19.91843098]), np.array([0.34570, 0.35850, 1.00000]), ), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7, ) def test_n_dimensional_Lab_to_XYZ(self): """ Test :func:`colour.models.cie_lab.Lab_to_XYZ` definition n-dimensional support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) illuminant = np.array([0.31270, 0.32900]) XYZ = Lab_to_XYZ(Lab, illuminant) Lab = np.tile(Lab, (6, 1)) XYZ = np.tile(XYZ, (6, 1)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7 ) illuminant = np.tile(illuminant, (6, 1)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7 ) Lab = np.reshape(Lab, (2, 3, 3)) illuminant = np.reshape(illuminant, (2, 3, 2)) XYZ = np.reshape(XYZ, (2, 3, 3)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7 ) def test_domain_range_scale_Lab_to_XYZ(self): """ Test :func:`colour.models.cie_lab.Lab_to_XYZ` definition domain and range scale support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) illuminant = np.array([0.31270, 0.32900]) XYZ = Lab_to_XYZ(Lab, illuminant) d_r = (("reference", 1, 1), ("1", 0.01, 1), ("100", 1, 100)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( Lab_to_XYZ(Lab * factor_a, illuminant), XYZ * factor_b, decimal=7, ) @ignore_numpy_errors def test_nan_Lab_to_XYZ(self): """Test :func:`colour.models.cie_lab.Lab_to_XYZ` definition nan support.""" cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: Lab = np.array(case) illuminant = np.array(case[0:2]) Lab_to_XYZ(Lab, illuminant) class TestLab_to_LCHab(unittest.TestCase): """ Define :func:`colour.models.cie_lab.Lab_to_LCHab` definition unit tests methods. """ def test_Lab_to_LCHab(self): """Test :func:`colour.models.cie_lab.Lab_to_LCHab` definition.""" np.testing.assert_almost_equal( Lab_to_LCHab(np.array([41.52787529, 52.63858304, 26.92317922])), np.array([41.52787529, 59.12425901, 27.08848784]), decimal=7, ) np.testing.assert_almost_equal( Lab_to_LCHab(np.array([55.11636304, -41.08791787, 30.91825778])), np.array([55.11636304, 51.42135412, 143.03889556]), decimal=7, ) np.testing.assert_almost_equal( Lab_to_LCHab(np.array([29.80565520, 20.01830466, -48.34913874])), np.array([29.80565520, 52.32945383, 292.49133666]), decimal=7, ) def test_n_dimensional_Lab_to_LCHab(self): """ Test :func:`colour.models.cie_lab.Lab_to_LCHab` definition n-dimensional arrays support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) LCHab = Lab_to_LCHab(Lab) Lab = np.tile(Lab, (6, 1)) LCHab = np.tile(LCHab, (6, 1)) np.testing.assert_almost_equal(Lab_to_LCHab(Lab), LCHab, decimal=7) Lab = np.reshape(Lab, (2, 3, 3)) LCHab = np.reshape(LCHab, (2, 3, 3)) np.testing.assert_almost_equal(Lab_to_LCHab(Lab), LCHab, decimal=7) def test_domain_range_scale_Lab_to_LCHab(self): """ Test :func:`colour.models.cie_lab.Lab_to_LCHab` definition domain and range scale support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) LCHab = Lab_to_LCHab(Lab) d_r = ( ("reference", 1, 1), ("1", 0.01, np.array([0.01, 0.01, 1 / 360])), ("100", 1, np.array([1, 1, 1 / 3.6])), ) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( Lab_to_LCHab(Lab * factor_a), LCHab * factor_b, decimal=7 ) @ignore_numpy_errors def test_nan_Lab_to_LCHab(self): """ Test :func:`colour.models.cie_lab.Lab_to_LCHab` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: Lab = np.array(case) Lab_to_LCHab(Lab) class TestLCHab_to_Lab(unittest.TestCase): """ Define :func:`colour.models.cie_lab.LCHab_to_Lab` definition unit tests methods. """ def test_LCHab_to_Lab(self): """Test :func:`colour.models.cie_lab.LCHab_to_Lab` definition.""" np.testing.assert_almost_equal( LCHab_to_Lab(np.array([41.52787529, 59.12425901, 27.08848784])), np.array([41.52787529, 52.63858304, 26.92317922]), decimal=7, ) np.testing.assert_almost_equal( LCHab_to_Lab(np.array([55.11636304, 51.42135412, 143.03889556])), np.array([55.11636304, -41.08791787, 30.91825778]), decimal=7, ) np.testing.assert_almost_equal( LCHab_to_Lab(np.array([29.80565520, 52.32945383, 292.49133666])), np.array([29.80565520, 20.01830466, -48.34913874]), decimal=7, ) def test_n_dimensional_LCHab_to_Lab(self): """ Test :func:`colour.models.cie_lab.LCHab_to_Lab` definition n-dimensional arrays support. """ LCHab = np.array([41.52787529, 59.12425901, 27.08848784]) Lab = LCHab_to_Lab(LCHab) LCHab = np.tile(LCHab, (6, 1)) Lab = np.tile(Lab, (6, 1)) np.testing.assert_almost_equal(LCHab_to_Lab(LCHab), Lab, decimal=7) LCHab = np.reshape(LCHab, (2, 3, 3)) Lab = np.reshape(Lab, (2, 3, 3)) np.testing.assert_almost_equal(LCHab_to_Lab(LCHab), Lab, decimal=7) def test_domain_range_scale_LCHab_to_Lab(self): """ Test :func:`colour.models.cie_lab.LCHab_to_Lab` definition domain and range scale support. """ LCHab = np.array([41.52787529, 59.12425901, 27.08848784]) Lab = LCHab_to_Lab(LCHab) d_r = ( ("reference", 1, 1), ("1", np.array([0.01, 0.01, 1 / 360]), 0.01), ("100", np.array([1, 1, 1 / 3.6]), 1), ) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( LCHab_to_Lab(LCHab * factor_a), Lab * factor_b, decimal=7 ) @ignore_numpy_errors def test_nan_LCHab_to_Lab(self): """ Test :func:`colour.models.cie_lab.LCHab_to_Lab` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: LCHab = np.array(case) LCHab_to_Lab(LCHab) if __name__ == "__main__": unittest.main()
32.533007
83
0.56809
a22d4d22a892bb62ff9f39136884bd8bd64256e1
6,212
py
Python
my_args.py
rxys/DAIN
147791520d8bbb4d19e72c0222a59f5f3d7d218c
[ "MIT" ]
null
null
null
my_args.py
rxys/DAIN
147791520d8bbb4d19e72c0222a59f5f3d7d218c
[ "MIT" ]
null
null
null
my_args.py
rxys/DAIN
147791520d8bbb4d19e72c0222a59f5f3d7d218c
[ "MIT" ]
null
null
null
import os import datetime import argparse import numpy import networks import torch modelnames = networks.__all__ # import datasets datasetNames = ('Vimeo_90K_interp') #datasets.__all__ parser = argparse.ArgumentParser(description='DAIN') parser.add_argument('--debug',action = 'store_true', help='Enable debug mode') parser.add_argument('--netName', type=str, default='DAIN', choices = modelnames,help = 'model architecture: ' + ' | '.join(modelnames) + ' (default: DAIN)') parser.add_argument('--datasetName', default='Vimeo_90K_interp', choices= datasetNames,nargs='+', help='dataset type : ' + ' | '.join(datasetNames) + ' (default: Vimeo_90K_interp)') parser.add_argument('--datasetPath',default='',help = 'the path of selected datasets') parser.add_argument('--dataset_split', type = int, default=97, help = 'Split a dataset into trainining and validation by percentage (default: 97)') parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--numEpoch', '-e', type = int, default=100, help= 'Number of epochs to train(default:150)') parser.add_argument('--batch_size', '-b',type = int ,default=1, help = 'batch size (default:1)' ) parser.add_argument('--workers', '-w', type =int,default=8, help = 'parallel workers for loading training samples (default : 1.6*10 = 16)') parser.add_argument('--channels', '-c', type=int,default=3,choices = [1,3], help ='channels of images (default:3)') parser.add_argument('--filter_size', '-f', type=int, default=4, help = 'the size of filters used (default: 4)', choices=[2,4,6, 5,51] ) parser.add_argument('--lr', type =float, default= 0.002, help= 'the basic learning rate for three subnetworks (default: 0.002)') parser.add_argument('--rectify_lr', type=float, default=0.001, help = 'the learning rate for rectify/refine subnetworks (default: 0.001)') parser.add_argument('--save_which', '-s', type=int, default=1, choices=[0,1], help='choose which result to save: 0 ==> interpolated, 1==> rectified') parser.add_argument('--time_step', type=float, default=0.5, help='choose the time steps') parser.add_argument('--flow_lr_coe', type = float, default=0.01, help = 'relative learning rate w.r.t basic learning rate (default: 0.01)') parser.add_argument('--occ_lr_coe', type = float, default=1.0, help = 'relative learning rate w.r.t basic learning rate (default: 1.0)') parser.add_argument('--filter_lr_coe', type = float, default=1.0, help = 'relative learning rate w.r.t basic learning rate (default: 1.0)') parser.add_argument('--ctx_lr_coe', type = float, default=1.0, help = 'relative learning rate w.r.t basic learning rate (default: 1.0)') parser.add_argument('--depth_lr_coe', type = float, default=0.001, help = 'relative learning rate w.r.t basic learning rate (default: 0.01)') # parser.add_argument('--deblur_lr_coe', type = float, default=0.01, help = 'relative learning rate w.r.t basic learning rate (default: 0.01)') parser.add_argument('--alpha', type=float,nargs='+', default=[0.0, 1.0], help= 'the ration of loss for interpolated and rectified result (default: [0.0, 1.0])') parser.add_argument('--epsilon', type = float, default=1e-6, help = 'the epsilon for charbonier loss,etc (default: 1e-6)') parser.add_argument('--weight_decay', type = float, default=0, help = 'the weight decay for whole network ' ) parser.add_argument('--patience', type=int, default=5, help = 'the patience of reduce on plateou') parser.add_argument('--factor', type = float, default=0.2, help = 'the factor of reduce on plateou') # parser.add_argument('--pretrained', dest='SAVED_MODEL', default=None, help ='path to the pretrained model weights') parser.add_argument('--no-date', action='store_true', help='don\'t append date timestamp to folder' ) parser.add_argument('--use_cuda', default= True, type = bool, help='use cuda or not') parser.add_argument('--use_cudnn',default=1,type=int, help = 'use cudnn or not') parser.add_argument('--dtype', default=torch.cuda.FloatTensor, choices = [torch.cuda.FloatTensor,torch.FloatTensor],help = 'tensor data type ') # parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)') parser.add_argument('--uid', type=str, default= None, help='unique id for the training') parser.add_argument('--force', action='store_true', help='force to override the given uid') args = parser.parse_args() import shutil if args.uid == None: unique_id = str(numpy.random.randint(0, 100000)) print("revise the unique id to a random numer " + str(unique_id)) args.uid = unique_id timestamp = datetime.datetime.now().strftime("%a-%b-%d-%H-%M") save_path = './model_weights/'+ args.uid +'-' + timestamp else: save_path = './model_weights/'+ str(args.uid) # print("no pth here : " + save_path + "/best"+".pth") if not os.path.exists(save_path + "/best"+".pth"): # print("no pth here : " + save_path + "/best" + ".pth") os.makedirs(save_path,exist_ok=True) else: if not args.force: raise("please use another uid ") else: print("override this uid" + args.uid) for m in range(1,10): if not os.path.exists(save_path+"/log.txt.bk" + str(m)): shutil.copy(save_path+"/log.txt", save_path+"/log.txt.bk"+str(m)) shutil.copy(save_path+"/args.txt", save_path+"/args.txt.bk"+str(m)) break parser.add_argument('--save_path',default=save_path,help = 'the output dir of weights') parser.add_argument('--log', default = save_path+'/log.txt', help = 'the log file in training') parser.add_argument('--arg', default = save_path+'/args.txt', help = 'the args used') args = parser.parse_args() with open(args.log, 'w') as f: f.close() with open(args.arg, 'w') as f: print(args) print(args,file=f) f.close() if args.use_cudnn: print("cudnn is used") torch.backends.cudnn.benchmark = True # to speed up the else: print("cudnn is not used") torch.backends.cudnn.benchmark = False # to speed up the
52.201681
160
0.673213
25b057e612a0ca3106ae124468875dffffb39e39
2,107
py
Python
bonus_top_interview_questions/227. Basic Calculator II.py
JacopoPan/leetcode-top100-liked-questions
03dc05f087d05805d54b7585ce740338f3128833
[ "MIT" ]
null
null
null
bonus_top_interview_questions/227. Basic Calculator II.py
JacopoPan/leetcode-top100-liked-questions
03dc05f087d05805d54b7585ce740338f3128833
[ "MIT" ]
null
null
null
bonus_top_interview_questions/227. Basic Calculator II.py
JacopoPan/leetcode-top100-liked-questions
03dc05f087d05805d54b7585ce740338f3128833
[ "MIT" ]
null
null
null
""" Runtime: 189 ms, faster than 16.21% of Python3 online submissions for Basic Calculator II. Memory Usage: 20.1 MB, less than 5.55% of Python3 online submissions for Basic Calculator II. """ from typing import List from typing import Optional class Solution: def calculate(self, s: str) -> int: s = s.replace(' ', '') list_eq = [] operand = '' for idx, character in enumerate(s): if character in ['*', '/', '+', '-']: val = int(operand) operand = '' list_eq.append(val) list_eq.append(character) elif idx==len(s)-1: operand += character val = int(operand) list_eq.append(val) else: operand += character temp = [] for idx in range(len(list_eq)): if list_eq[idx-1] == '*': temp.pop() temp.pop() res = list_eq[idx-2]*list_eq[idx] list_eq[idx] = res temp.append(res) elif list_eq[idx-1] == '/': temp.pop() temp.pop() res = list_eq[idx-2]//list_eq[idx] list_eq[idx] = res temp.append(res) else: temp.append(list_eq[idx]) list_eq = temp temp = [] for idx in range(len(list_eq)): if list_eq[idx-1] == '+': temp.pop() temp.pop() res = list_eq[idx-2]+list_eq[idx] list_eq[idx] = res temp.append(res) elif list_eq[idx-1] == '-': temp.pop() temp.pop() res = list_eq[idx-2]-list_eq[idx] list_eq[idx] = res temp.append(res) else: temp.append(list_eq[idx]) list_eq = temp return list_eq[0] def main(): sol = Solution() print('Output:', sol.calculate("1+1+1")) print('Expected:', 3) if __name__ == "__main__": main()
30.985294
93
0.452302
261cb36ffd4219f6f299c0db0ddefcae270fde1b
2,244
py
Python
archived/archive-WSPS/input-checker/input_checker.py
XiaoxiongXie/WRF-SUEWS
51f8d2359b394016e65121f3baab908b1ad4d89c
[ "MIT" ]
2
2020-09-24T09:15:31.000Z
2020-09-28T16:16:30.000Z
archived/archive-WSPS/input-checker/input_checker.py
XiaoxiongXie/WRF-SUEWS
51f8d2359b394016e65121f3baab908b1ad4d89c
[ "MIT" ]
3
2020-09-24T13:46:24.000Z
2020-10-01T09:54:17.000Z
archived/archive-WSPS/input-checker/input_checker.py
XiaoxiongXie/WRF-SUEWS
51f8d2359b394016e65121f3baab908b1ad4d89c
[ "MIT" ]
2
2020-10-01T09:46:58.000Z
2022-01-09T10:38:21.000Z
# %% #import yaml #yaml.warnings({'YAMLLoadWarning': False}) import xarray as xr import numpy as np import pandas as pd import json import glob import os # %% # the check list file with ranges and logics check_file = 'check_file_suews.json' # opening the check list file def open_check_file(check_file): with open(check_file) as cf: cr = json.load(cf) # making the keys upper case to be consistent with wrfinputs cr_temp = {} for key in cr.keys(): # for some reason pop() did not work here!! cr_temp[key.upper()] = cr[key] return cr_temp # checking the range of each parameter def check_range(var, values, cr): min_v = cr[var]['param']['min'] max_v = cr[var]['param']['max'] description = ' should be between '+str(min_v)+' and '+str(max_v) is_accepted_flag = False for value in np.nditer(values): if min_v <= value <= max_v: is_accepted_flag = True if(not is_accepted_flag): is_accepted = 'No' suggestion = 'change the parameter to fall into the acceptable range' else: is_accepted = 'Yes' suggestion = '' return [var, is_accepted, description, suggestion] def check_zd_zh(var, values, cr): return 0 # checks for suews parameters def check_var_suews(var, values, cr, df_sum): logic = cr[var]['logic'] if logic == 'range': out_list = check_range(var, values, cr) elif logic == 'zd-zh': out_list = check_zd_zh(var, values, cr) df_sum.loc[len(df_sum)] = out_list return df_sum cr = open_check_file(check_file) # getting all the wrfinput files fl_wrfinput = glob.glob('wrfinputs/wrfinput_d0?') for wrfinput in fl_wrfinput: df_sum = pd.DataFrame( columns=['Parameter', 'Is acceptable?', 'Description', 'Suggestion']) print('Working on '+wrfinput) print('==========================================================================') print('==================== Check Table for ' + wrfinput+' ========================') ds = xr.open_dataset(wrfinput) for var in ds.data_vars: if 'SUEWS' in var: df_sum = check_var_suews(var, ds[var].values, cr, df_sum) print(df_sum)
23.375
87
0.60205
9d358430f00ecead9b8842c993c9f1dfce303c82
77
py
Python
Contest/ABC017/a/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
Contest/ABC017/a/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
Contest/ABC017/a/main.py
mpses/AtCoder
9c101fcc0a1394754fcf2385af54b05c30a5ae2a
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 print(eval("+eval(input().replace(' ','*'))"*3) // 10)
38.5
54
0.571429
cf6d0c37bd9ca81dc3e1fff8d44fabdfd0a0e04a
8,525
py
Python
habitat_sim/agent/agent.py
BKAUTO/Trinocular-habitat-sim
7ad70669095926cc4d5438befa65b019d0f91a8c
[ "MIT" ]
null
null
null
habitat_sim/agent/agent.py
BKAUTO/Trinocular-habitat-sim
7ad70669095926cc4d5438befa65b019d0f91a8c
[ "MIT" ]
null
null
null
habitat_sim/agent/agent.py
BKAUTO/Trinocular-habitat-sim
7ad70669095926cc4d5438befa65b019d0f91a8c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Union import attr import numpy as np import habitat_sim.bindings as hsim import habitat_sim.errors from habitat_sim import utils from habitat_sim.sensors import SensorSuite from .controls import ActuationSpec, ObjectControls __all__ = ["ActionSpec", "SixDOFPose", "AgentState", "AgentConfiguration", "Agent"] def _default_action_space(): return dict( move_forward=ActionSpec("move_forward", ActuationSpec(amount=0.25)), turn_left=ActionSpec("turn_left", ActuationSpec(amount=10.0)), turn_right=ActionSpec("turn_right", ActuationSpec(amount=10.0)), ) @attr.s(auto_attribs=True) class ActionSpec(object): r"""Defines how a specific action is implemented Args: name (str): Name of the function implementing the action in the move_func_map actuation (ActuationSpec): Arguements that will be passed to the function """ name: str actuation: ActuationSpec = None @attr.s(auto_attribs=True, slots=True) class SixDOFPose(object): r"""Specifies a position with 6 degrees of freedom Args: position (np.array): xyz position rotation (np.quaternion): unit quaternion rotation """ position: np.array = np.zeros(3) rotation: Union[np.quaternion, List] = np.quaternion(1, 0, 0, 0) @attr.s(auto_attribs=True, slots=True) class AgentState(object): position: np.array = np.zeros(3) rotation: Union[np.quaternion, List] = np.quaternion(1, 0, 0, 0) velocity: np.array = np.zeros(3) angular_velocity: np.array = np.zeros(3) force: np.array = np.zeros(3) torque: np.array = np.zeros(3) sensor_states: Dict[str, SixDOFPose] = attr.Factory(dict) @attr.s(auto_attribs=True, slots=True) class AgentConfiguration(object): height: float = 1.5 radius: float = 0.1 mass: float = 32.0 linear_acceleration: float = 20.0 angular_acceleration: float = 4 * np.pi linear_friction: float = 0.5 angular_friction: float = 1.0 coefficient_of_restitution: float = 0.0 sensor_specifications: List[hsim.SensorSpec] = attr.Factory( lambda: [hsim.SensorSpec()] ) action_space: Dict[Any, ActionSpec] = attr.Factory(_default_action_space) body_type: str = "cylinder" @attr.s(auto_attribs=True) class Agent(object): r"""Implements an agent with multiple sensors Args: agent_config (AgentConfiguration): The configuration of the agent Warning: Agents are given controls over a node in the scene graph, but do **not** own this node. This means that errors will occur if the owner of the scene graph is deallocated. Generally the owner of the scene graph is the Simulator. If you'd like to have an agent to control without loading up the simulator, see unit tests for the agent in `tests/test_agent.py`. We recommend letting the simulator create the agent and own the scene graph in almost all cases. Using the scene graph in python is dangerous due to differences in c++ and python memory management """ agent_config: AgentConfiguration = attr.Factory(AgentConfiguration) sensors: SensorSuite = attr.Factory(SensorSuite) controls: ObjectControls = attr.Factory(ObjectControls) body: hsim.AttachedObject = attr.Factory(hsim.AttachedObject) def __attrs_post_init__(self): self.body.object_type = hsim.AttachedObjectType.AGENT self.reconfigure(self.agent_config) def reconfigure( self, agent_config: AgentConfiguration, reconfigure_sensors: bool = True ): r"""Re-create the agent with a new configuration Args: agent_config (AgentConfiguration): New config reconfigure_sensors (bool): Whether or not to also reconfigure the sensors, there are specific cases where false makes sense, but most cases are covered by true """ self.agent_config = agent_config if reconfigure_sensors: self.sensors.clear() for spec in self.agent_config.sensor_specifications: self.sensors.add(hsim.PinholeCamera(spec)) if self.body.is_valid: for _, v in self.sensors.items(): v.attach(self.scene_node.create_child()) def attach(self, scene_node: hsim.SceneNode): r"""Gives the agent control over the specified scene node (but **not** ownership) The agent will recursively call attach for the sensors Args: scene_node (hsim.SceneNode) """ self.body.attach(scene_node) for _, v in self.sensors.items(): v.attach(self.scene_node.create_child()) def detach(self): r"""Detaches the agent from the its current scene_node Recursively calls detach on any sensors """ self.body.detach() for _, v in self.sensors.items(): v.detach() def act(self, action_id: Any) -> bool: r"""Take the action specified by action_id Args: action_id (Any): ID of the action. Retreives the action from agent_config.action_space Returns: bool: Whether or not the action taken resulted in a collision """ habitat_sim.errors.assert_obj_valid(self.body) assert ( action_id in self.agent_config.action_space ), f"No action {action_id} in action space" action = self.agent_config.action_space[action_id] did_collide = False if self.controls.is_body_action(action.name): did_collide = self.controls.action( self.scene_node, action.name, action.actuation, apply_filter=False ) else: for _, v in self.sensors.items(): habitat_sim.errors.assert_obj_valid(v) self.controls.action( v.get_scene_node(), action.name, action.actuation, apply_filter=False, ) return did_collide def get_state(self) -> AgentState: habitat_sim.errors.assert_obj_valid(self.body) state = AgentState( self.body.get_absolute_position(), utils.quat_from_coeffs(self.body.get_rotation()), ) for k, v in self.sensors.items(): habitat_sim.errors.assert_obj_valid(v) state.sensor_states[k] = SixDOFPose( v.get_absolute_position(), state.rotation * utils.quat_from_coeffs(v.get_rotation()), ) return state def set_state(self, state: AgentState, reset_sensors: bool = True): r"""Sets the agents state Args: state (AgentState): The state to set the agent to reset_sensors (bool): Whether or not to reset the sensors to their default intrinsic/extrinsic parameters before setting their extrinsic state """ habitat_sim.errors.assert_obj_valid(self.body) if isinstance(state.rotation, list): state.rotation = utils.quat_from_coeffs(state.rotation) self.body.reset_transformation() self.body.translate(state.position) self.body.set_rotation(utils.quat_to_coeffs(state.rotation)) if reset_sensors: for _, v in self.sensors.items(): v.set_transformation_from_spec() for k, v in state.sensor_states.items(): assert k in self.sensors if isinstance(v.rotation, list): v.rotation = utils.quat_from_coeffs(v.rotation) s = self.sensors[k] s.reset_transformation() s.translate( utils.quat_rotate_vector( state.rotation.inverse(), v.position - state.position ) ) s.set_rotation(utils.quat_to_coeffs(state.rotation.inverse() * v.rotation)) @property def scene_node(self): habitat_sim.errors.assert_obj_valid(self.body) return self.body.get_scene_node() @property def state(self): return self.get_state() @state.setter def state(self, new_state): self.set_state(new_state, reset_sensors=True) def __del__(self): self.detach()
33.431373
117
0.646452
487346778035cb20009d6ce8589677cd1a3a32c3
5,062
py
Python
tests/ti_deps/deps/prev_dagrun_dep.py
rubeshdcube/incubator-airflow
5419fbb78a2ea2388456c356d2f899ea1991b2de
[ "Apache-2.0" ]
4
2017-06-25T14:09:31.000Z
2020-11-20T09:51:24.000Z
tests/ti_deps/deps/prev_dagrun_dep.py
rubeshdcube/incubator-airflow
5419fbb78a2ea2388456c356d2f899ea1991b2de
[ "Apache-2.0" ]
1
2017-07-04T07:31:15.000Z
2017-07-06T06:01:42.000Z
tests/ti_deps/deps/prev_dagrun_dep.py
rubeshdcube/incubator-airflow
5419fbb78a2ea2388456c356d2f899ea1991b2de
[ "Apache-2.0" ]
2
2018-04-09T15:13:50.000Z
2019-06-14T07:19:46.000Z
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datetime import datetime from airflow.ti_deps.deps.prev_dagrun_dep import PrevDagrunDep from airflow.utils.state import State from fake_models import FakeContext, FakeTask, FakeTI class PrevDagrunDepTest(unittest.TestCase): def test_not_depends_on_past(self): """ If depends on past isn't set in the task then the previous dagrun should be ignored, even though there is no previous_ti which would normally fail the dep """ task = FakeTask( depends_on_past=False, start_date=datetime(2016, 1, 1), wait_for_downstream=False) prev_ti = FakeTI( task=task, execution_date=datetime(2016, 1, 2), state=State.SUCCESS, dependents_done=True) ti = FakeTI( task=task, previous_ti=prev_ti, execution_date=datetime(2016, 1, 3)) dep_context = FakeContext(ignore_depends_on_past=False) self.assertTrue(PrevDagrunDep().is_met(ti=ti, dep_context=dep_context)) def test_context_ignore_depends_on_past(self): """ If the context overrides depends_on_past then the dep should be met, even though there is no previous_ti which would normally fail the dep """ task = FakeTask( depends_on_past=True, start_date=datetime(2016, 1, 1), wait_for_downstream=False) prev_ti = FakeTI( task=task, execution_date=datetime(2016, 1, 2), state=State.SUCCESS, dependents_done=True) ti = FakeTI( task=task, previous_ti=prev_ti, execution_date=datetime(2016, 1, 3)) dep_context = FakeContext(ignore_depends_on_past=True) self.assertTrue(PrevDagrunDep().is_met(ti=ti, dep_context=dep_context)) def test_first_task_run(self): """ The first task run for a TI should pass since it has no previous dagrun. """ task = FakeTask( depends_on_past=True, start_date=datetime(2016, 1, 1), wait_for_downstream=False) prev_ti = None ti = FakeTI( task=task, previous_ti=prev_ti, execution_date=datetime(2016, 1, 1)) dep_context = FakeContext(ignore_depends_on_past=False) self.assertTrue(PrevDagrunDep().is_met(ti=ti, dep_context=dep_context)) def test_prev_ti_bad_state(self): """ If the previous TI did not complete execution this dep should fail. """ task = FakeTask( depends_on_past=True, start_date=datetime(2016, 1, 1), wait_for_downstream=False) prev_ti = FakeTI( state=State.NONE, dependents_done=True) ti = FakeTI( task=task, previous_ti=prev_ti, execution_date=datetime(2016, 1, 2)) dep_context = FakeContext(ignore_depends_on_past=False) self.assertFalse(PrevDagrunDep().is_met(ti=ti, dep_context=dep_context)) def test_failed_wait_for_downstream(self): """ If the previous TI specified to wait for the downstream tasks of the previous dagrun then it should fail this dep if the downstream TIs of the previous TI are not done. """ task = FakeTask( depends_on_past=True, start_date=datetime(2016, 1, 1), wait_for_downstream=True) prev_ti = FakeTI( state=State.SUCCESS, dependents_done=False) ti = FakeTI( task=task, previous_ti=prev_ti, execution_date=datetime(2016, 1, 2)) dep_context = FakeContext(ignore_depends_on_past=False) self.assertFalse(PrevDagrunDep().is_met(ti=ti, dep_context=dep_context)) def test_all_met(self): """ Test to make sure all of the conditions for the dep are met """ task = FakeTask( depends_on_past=True, start_date=datetime(2016, 1, 1), wait_for_downstream=True) prev_ti = FakeTI( state=State.SUCCESS, dependents_done=True) ti = FakeTI( task=task, previous_ti=prev_ti, execution_date=datetime(2016, 1, 2)) dep_context = FakeContext(ignore_depends_on_past=False) self.assertTrue(PrevDagrunDep().is_met(ti=ti, dep_context=dep_context))
35.152778
88
0.627815
4880c7d3d760e270416605ea2eeb3e315262a7e1
871
py
Python
plugins/execs.py
CPSLK/userbot
7d3ddd03e6a780493732f83e8015cae6145008f9
[ "MIT" ]
1
2020-07-09T18:17:01.000Z
2020-07-09T18:17:01.000Z
plugins/execs.py
CPSLK/userbot
7d3ddd03e6a780493732f83e8015cae6145008f9
[ "MIT" ]
null
null
null
plugins/execs.py
CPSLK/userbot
7d3ddd03e6a780493732f83e8015cae6145008f9
[ "MIT" ]
1
2020-07-16T02:14:36.000Z
2020-07-16T02:14:36.000Z
import io import re import html import traceback from contextlib import redirect_stdout from pyrogram import Client, Filters from config import cmds @Client.on_message(Filters.command("exec", prefixes=".") & Filters.me) async def execs(client, message): strio = io.StringIO() code = re.split(r"[\n ]+", message.text, 1)[1] exec('async def __ex(client, message): ' + ' '.join('\n ' + l for l in code.split('\n'))) with redirect_stdout(strio): try: await locals()["__ex"](client, message) except: return await message.reply_text(html.escape(traceback.format_exc()), parse_mode="HTML") if strio.getvalue(): out = f"<code>{html.escape(strio.getvalue())}</code>" else: out = "Command executed." await message.edit(out, parse_mode="HTML") cmds.update({'.exec':'Run commands on python'})
29.033333
99
0.649828
8f1e5504dad2e6b433415327a00fa088ad326115
6,583
py
Python
frappe/event_streaming/doctype/document_type_mapping/document_type_mapping.py
Don-Leopardo/frappe
39097b05a7a9904776a435ee2c3d7a579d429389
[ "MIT" ]
3,755
2015-01-06T07:47:43.000Z
2022-03-31T20:54:23.000Z
frappe/event_streaming/doctype/document_type_mapping/document_type_mapping.py
Don-Leopardo/frappe
39097b05a7a9904776a435ee2c3d7a579d429389
[ "MIT" ]
7,369
2015-01-01T19:59:41.000Z
2022-03-31T23:02:05.000Z
frappe/event_streaming/doctype/document_type_mapping/document_type_mapping.py
Don-Leopardo/frappe
39097b05a7a9904776a435ee2c3d7a579d429389
[ "MIT" ]
2,685
2015-01-07T17:51:03.000Z
2022-03-31T23:16:24.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2019, Frappe Technologies and contributors # License: MIT. See LICENSE import frappe import json from frappe import _ from frappe.model.document import Document from frappe.model import default_fields class DocumentTypeMapping(Document): def validate(self): self.validate_inner_mapping() def validate_inner_mapping(self): meta = frappe.get_meta(self.local_doctype) for field_map in self.field_mapping: if field_map.local_fieldname not in default_fields: field = meta.get_field(field_map.local_fieldname) if not field: frappe.throw(_('Row #{0}: Invalid Local Fieldname').format(field_map.idx)) fieldtype = field.get('fieldtype') if fieldtype in ['Link', 'Dynamic Link', 'Table']: if not field_map.mapping and not field_map.default_value: msg = _('Row #{0}: Please set Mapping or Default Value for the field {1} since its a dependency field').format( field_map.idx, frappe.bold(field_map.local_fieldname)) frappe.throw(msg, title='Inner Mapping Missing') if field_map.mapping_type == 'Document' and not field_map.remote_value_filters: msg = _('Row #{0}: Please set remote value filters for the field {1} to fetch the unique remote dependency document').format( field_map.idx, frappe.bold(field_map.remote_fieldname)) frappe.throw(msg, title='Remote Value Filters Missing') def get_mapping(self, doc, producer_site, update_type): remote_fields = [] # list of tuples (local_fieldname, dependent_doc) dependencies = [] for mapping in self.field_mapping: if doc.get(mapping.remote_fieldname): if mapping.mapping_type == 'Document': if not mapping.default_value: dependency = self.get_mapped_dependency(mapping, producer_site, doc) if dependency: dependencies.append((mapping.local_fieldname, dependency)) else: doc[mapping.local_fieldname] = mapping.default_value if mapping.mapping_type == 'Child Table' and update_type != 'Update': doc[mapping.local_fieldname] = get_mapped_child_table_docs(mapping.mapping, doc[mapping.remote_fieldname], producer_site) else: # copy value into local fieldname key and remove remote fieldname key doc[mapping.local_fieldname] = doc[mapping.remote_fieldname] if mapping.local_fieldname != mapping.remote_fieldname: remote_fields.append(mapping.remote_fieldname) if not doc.get(mapping.remote_fieldname) and mapping.default_value and update_type != 'Update': doc[mapping.local_fieldname] = mapping.default_value #remove the remote fieldnames for field in remote_fields: doc.pop(field, None) if update_type != 'Update': doc['doctype'] = self.local_doctype mapping = {'doc': frappe.as_json(doc)} if len(dependencies): mapping['dependencies'] = dependencies return mapping def get_mapped_update(self, update, producer_site): update_diff = frappe._dict(json.loads(update.data)) mapping = update_diff dependencies = [] if update_diff.changed: doc_map = self.get_mapping(update_diff.changed, producer_site, 'Update') mapped_doc = doc_map.get('doc') mapping.changed = json.loads(mapped_doc) if doc_map.get('dependencies'): dependencies += doc_map.get('dependencies') if update_diff.removed: mapping = self.map_rows_removed(update_diff, mapping) if update_diff.added: mapping = self.map_rows(update_diff, mapping, producer_site, operation='added') if update_diff.row_changed: mapping = self.map_rows(update_diff, mapping, producer_site, operation='row_changed') update = {'doc': frappe.as_json(mapping)} if len(dependencies): update['dependencies'] = dependencies return update def get_mapped_dependency(self, mapping, producer_site, doc): inner_mapping = frappe.get_doc('Document Type Mapping', mapping.mapping) filters = json.loads(mapping.remote_value_filters) for key, value in filters.items(): if value.startswith('eval:'): val = frappe.safe_eval(value[5:], None, dict(doc=doc)) filters[key] = val if doc.get(value): filters[key] = doc.get(value) matching_docs = producer_site.get_doc(inner_mapping.remote_doctype, filters=filters) if len(matching_docs): remote_docname = matching_docs[0].get('name') remote_doc = producer_site.get_doc(inner_mapping.remote_doctype, remote_docname) doc = inner_mapping.get_mapping(remote_doc, producer_site, 'Insert').get('doc') return doc return def map_rows_removed(self, update_diff, mapping): removed = [] mapping['removed'] = update_diff.removed for key, value in update_diff.removed.copy().items(): local_table_name = frappe.db.get_value('Document Type Field Mapping', { 'remote_fieldname': key, 'parent': self.name },'local_fieldname') mapping.removed[local_table_name] = value if local_table_name != key: removed.append(key) #remove the remote fieldnames for field in removed: mapping.removed.pop(field, None) return mapping def map_rows(self, update_diff, mapping, producer_site, operation): remote_fields = [] for tablename, entries in update_diff.get(operation).copy().items(): local_table_name = frappe.db.get_value('Document Type Field Mapping', {'remote_fieldname': tablename}, 'local_fieldname') table_map = frappe.db.get_value('Document Type Field Mapping', {'local_fieldname': local_table_name, 'parent': self.name}, 'mapping') table_map = frappe.get_doc('Document Type Mapping', table_map) docs = [] for entry in entries: mapped_doc = table_map.get_mapping(entry, producer_site, 'Update').get('doc') docs.append(json.loads(mapped_doc)) mapping.get(operation)[local_table_name] = docs if local_table_name != tablename: remote_fields.append(tablename) # remove the remote fieldnames for field in remote_fields: mapping.get(operation).pop(field, None) return mapping def get_mapped_child_table_docs(child_map, table_entries, producer_site): """Get mapping for child doctypes""" child_map = frappe.get_doc('Document Type Mapping', child_map) mapped_entries = [] remote_fields = [] for child_doc in table_entries: for mapping in child_map.field_mapping: if child_doc.get(mapping.remote_fieldname): child_doc[mapping.local_fieldname] = child_doc[mapping.remote_fieldname] if mapping.local_fieldname != mapping.remote_fieldname: child_doc.pop(mapping.remote_fieldname, None) mapped_entries.append(child_doc) #remove the remote fieldnames for field in remote_fields: child_doc.pop(field, None) child_doc['doctype'] = child_map.local_doctype return mapped_entries
38.723529
136
0.745557
de8936834be2d4b2cffff2d2c096de83b1812b0f
1,168
py
Python
tests/test_image_to_boxes.py
amenezes/aiopytesseract
9ed8bcebbea87c39b194934e0fa99cf26b328a3c
[ "Apache-2.0" ]
2
2022-02-25T07:09:22.000Z
2022-03-13T04:20:57.000Z
tests/test_image_to_boxes.py
amenezes/aiopytesseract
9ed8bcebbea87c39b194934e0fa99cf26b328a3c
[ "Apache-2.0" ]
null
null
null
tests/test_image_to_boxes.py
amenezes/aiopytesseract
9ed8bcebbea87c39b194934e0fa99cf26b328a3c
[ "Apache-2.0" ]
null
null
null
from pathlib import Path import pytest import aiopytesseract from aiopytesseract.models import Box from aiopytesseract.exceptions import TesseractRuntimeError @pytest.mark.asyncio @pytest.mark.parametrize("image", ["tests/samples/file-sample_150kB.png"]) async def test_image_to_boxes_with_str_image(image): boxes = await aiopytesseract.image_to_boxes(image) assert isinstance(boxes, list) assert isinstance(boxes[0], Box) assert len(boxes) == 78 @pytest.mark.asyncio @pytest.mark.parametrize("image", ["tests/samples/file-sample_150kB.png"]) async def test_image_to_boxes_with_bytes_image(image): boxes = await aiopytesseract.image_to_boxes(Path(image).read_bytes()) assert isinstance(boxes, list) assert isinstance(boxes[0], Box) assert len(boxes) == 78 @pytest.mark.asyncio async def test_image_to_boxes_with_invalid(): with pytest.raises(TesseractRuntimeError): await aiopytesseract.image_to_boxes("tests/samples/file-sample_150kB.pdf") @pytest.mark.asyncio async def test_image_to_boxes_with_type_not_supported(): with pytest.raises(NotImplementedError): await aiopytesseract.image_to_boxes(None)
30.736842
82
0.78339
7a39fbd265fbc708c4a6cda41219da7f26dbe56f
9,508
py
Python
main.py
jackdevey/Govee-CLI
e7fd5818032a5d0640141210a1ccdd9b06c07ea1
[ "WTFPL" ]
2
2021-12-04T03:00:17.000Z
2022-01-16T03:14:55.000Z
main.py
jackdevey/Govee-CLI
e7fd5818032a5d0640141210a1ccdd9b06c07ea1
[ "WTFPL" ]
1
2021-02-24T14:37:56.000Z
2021-03-14T17:00:34.000Z
main.py
jackdevey/Govee-CLI
e7fd5818032a5d0640141210a1ccdd9b06c07ea1
[ "WTFPL" ]
null
null
null
import os import pathlib import requests import json import click import contextVars __author__ = "jack-txt & HarryDev06" @click.group() @click.pass_context def main(ctx): """ Govee API v1.1.0 by jack-txt & HarryDev06 THIS PRODUCT IS NOT AFFILIATED WITH GOVEE """ key = os.environ.get('GOVEE_KEY') # Make a request to Govee asking for devices url = 'https://developer-api.govee.com/v1/devices' headers = {'Govee-API-Key': key} r = requests.get(url, headers=headers) ctx.obj = contextVars.Context(json.loads(r.content)["data"]["devices"], key) @main.command() def viewlicense(): "GNU General Public License v3.0" f = open(os.path.join(pathlib.Path(__file__).parent.absolute(), "LICENSE"), "r") click.echo_via_pager(f.read()) @main.command() def viewrepo(): "Open the repo in your browser" click.echo("Opening Repository in browser") click.launch("https://github.com/jack-txt/govee-api") click.echo("Launched") @main.command() def giraffe(): "Prints a giraffe to the screen" print("""\ ._ o o \_`-)|_ ,"" \ ," ## | ಠ ಠ. ," ## ,-\__ `. ," / `--._;) ," ## / ," ## / """) @main.command() @click.pass_obj def listdevices(ctx): """ Shows the devices registered to your Govee account """ content = ctx.devices # For each device in the users account, display it's details and # assign an iid that can be used to access the device i = 0 for device in content: print("------------------") print("Device iid: " + str(i)) print("Device MAC: " + device["device"]) print("Model Name: " + device["model"]) print("Device Nickname: " + device["deviceName"]) print("Controllable: " + str(device["controllable"])) print("Retrievable: " + str(device["retrievable"])) print("Commands: ") for commands in device["supportCmds"]: print(" " + commands) @main.command() @click.argument("iid", metavar='<iid>') @click.argument("state", metavar='<state>') @click.pass_obj def turn(ctx, iid, state): """ Turn a device on or off """ safe = True try: deviceID = ctx.devices[int(iid)]["device"] model = ctx.devices[int(iid)]["model"] except IndexError: click.echo("Couldn't find device " + iid + ", run listdevices to see the devices on your account.", err=True) safe = False if str(state) != "on" and str(state) != "off" and safe: click.echo(state + " is not valid! [on/off]", err=True) safe = False if safe: # Contact Govee with the requested device and state url = 'https://developer-api.govee.com/v1/devices/control' headers = {'Content-Type': 'application/json', 'Govee-API-Key': ctx.apiKey} jsonToSend = '{"device": "' + deviceID + '","model": "' + model + '","cmd": {"name": "turn", "value": "' + state + '"}} ' r = requests.put(url, data=jsonToSend, headers=headers) if r.status_code == 200: click.secho('Success', fg='green', bold=True) click.echo("Device with iid " + str(iid) + " (" + model + ") was turned " + state) else: click.echo( "There was an error while attempting to turn device " + str(iid) + " " + state + " [Error code: " + str( r.status_code) + "]") @main.command() @click.argument("iid", metavar='<iid>') @click.argument("value", metavar='<value>', ) @click.pass_obj def brightness(ctx, iid, value): """ Change the brightness of a device """ safe = True try: deviceID = ctx.devices[int(iid)]["device"] model = ctx.devices[int(iid)]["model"] except IndexError: click.echo("Couldn't find device " + iid + ", run listdevices to see the devices on your account.", err=True) safe = False if not 0 < int(value) <= 100 and safe: click.echo(value + " must be a whole number and between 0 and 100", err=True) safe = False if safe: # Contact Govee with the requested device and state url = 'https://developer-api.govee.com/v1/devices/control' headers = {'Content-Type': 'application/json', 'Govee-API-Key': ctx.apiKey} jsonToSend = '{"device": "' + deviceID + '","model": "' + model + '","cmd": {"name": "brightness", "value": ' + value + '}} ' r = requests.put(url, data=jsonToSend, headers=headers) if r.status_code == 200: click.secho('Success', fg='green', bold=True) click.echo("Device with iid " + str(iid) + " (" + model + ") was set to " + value + "% brightness") else: click.echo("There was an error while attempting to set brightness on device " + str( iid) + " to " + value + "% [Error code: " + str(r.status_code) + "]", err=True) @main.command() @click.argument("iid", metavar='<iid>') @click.argument("color", metavar='<color>') @click.pass_obj def color(ctx, iid, color): """ Change the color of a device """ if color == "red": hexadec = "#ff0000" elif color == "green": hexadec = "#00ff00" elif color == "blue": hexadec = "#0000ff" elif color == "purple": hexadec = "#B200FF" elif color == "orange": hexadec = "#FFA200" elif color == "skyblue": hexadec = "#00E8FF" elif color == "lime": hexadec = "#4DFF00" elif color == "computub": hexadec = "#0067f4" elif color == "bandev": hexadec = "#5E17EB" elif color == "buddha-quotes": hexadec = "#E80054" elif color == "labyrinth": hexadec = "#0067f4" else: hexadec = color safe = True try: deviceID = ctx.devices[int(iid)]["device"] model = ctx.devices[int(iid)]["model"] except IndexError: click.echo("Couldn't find device " + iid + ", run listdevices to see the devices on your account.", err=True) safe = False hexadec_in = hexadec hexadec = hexadec.replace("#", '') colors = [] while hexadec: colors.append(hexadec[:2]) hexadec = hexadec[2:] try: red = str(int(colors[0], 16)) except ValueError: click.echo("Please enter a valid hexadecimal string, in format #RRGGBB or a color name", err=True) safe = False try: green = str(int(colors[1], 16)) except ValueError: click.echo("Please enter a valid hexadecimal string, in format #RRGGBB or a color name", err=True) safe = False try: blue = str(int(colors[2], 16)) except ValueError: click.echo("Please enter a valid hexadecimal string, in format #RRGGBB or a color name", err=True) safe = False if safe: # Contact Govee with the requested device and state url = 'https://developer-api.govee.com/v1/devices/control' headers = {'Content-Type': 'application/json', 'Govee-API-Key': ctx.apiKey} jsonToSend = '{"device": "' + deviceID + '","model": "' + model + '","cmd": {"name": "color", "value":{"r": ' + red + ', "g": ' + green + ', "b": ' + blue + '}}} ' r = requests.put(url, data=jsonToSend, headers=headers) if r.status_code == 200: click.secho('Success', fg='green', bold=True) click.echo("Device with iid " + str(iid) + " (" + model + ") was set to color to " + hexadec_in) else: click.echo("There was an error while attempting to set color on device " + str( iid) + " to " + hexadec + " [Error code: " + str(r.status_code) + "]", err=True) @main.command() @click.argument("iid", metavar='<iid>') @click.argument("value", metavar='<value>') @click.pass_obj def colortem(ctx, iid, value): """ Change the colour temperature of a device """ safe = True try: deviceID = ctx.devices[int(iid)]["device"] model = ctx.devices[int(iid)]["model"] except IndexError: click.echo("Couldn't find device " + iid + ", run listdevices to see the devices on your account.", err=True) safe = False if not 2000 <= int(value) <= 9000 and safe: click.echo(value + " must be a whole number and between 2000 and 9000", err=True) safe = False if safe: # Contact Govee with the requested device and state url = 'https://developer-api.govee.com/v1/devices/control' headers = {'Content-Type': 'application/json', 'Govee-API-Key': ctx.apiKey} jsonToSend = '{"device": "' + deviceID + '","model": "' + model + '","cmd": {"name": "colorTem", "value": ' + value + '}} ' r = requests.put(url, data=jsonToSend, headers=headers) if r.status_code == 200: click.secho('Success', fg='green', bold=True) click.echo("Device with iid " + str(iid) + " (" + model + ") was set to temperature value " + value) else: click.echo("There was an error while attempting to set temperature value on device " + str( iid) + " to " + value + " [Error code: " + str(r.status_code) + "]", err=True) if __name__ == "__main__": main()
33.013889
171
0.555217
de862c32cff0abe47d4d5365be49d76e13fccf04
2,834
py
Python
augmentor/sl_intents_tool.py
samlet/stack
47db17fd4fdab264032f224dca31a4bb1d19b754
[ "Apache-2.0" ]
3
2020-01-11T13:55:38.000Z
2020-08-25T22:34:15.000Z
augmentor/sl_intents_tool.py
samlet/stack
47db17fd4fdab264032f224dca31a4bb1d19b754
[ "Apache-2.0" ]
null
null
null
augmentor/sl_intents_tool.py
samlet/stack
47db17fd4fdab264032f224dca31a4bb1d19b754
[ "Apache-2.0" ]
1
2021-01-01T05:21:44.000Z
2021-01-01T05:21:44.000Z
import streamlit as st from interacts.common import display_lang_selector from interacts.sl_utils import all_labels, write_styles from interacts.tracker_streamlit import enable_streamlit_tracker from sagas.nlu.utils import fix_sents enable_streamlit_tracker() write_styles() def sidebar(): cur_lang=display_lang_selector() return cur_lang def get_all_intents(): from sagas.tool.intents_tool import intents_tool rs = intents_tool.db.corpus.find({'$and': [ {"intent": {'$not': {'$size': 0}}}, {"intent": {'$exists': True}} ]}) rm = {r['text']: r['intent'] for r in rs} return {r for r in rm.values()} def get_records(lang, chapter, field, fix=False): from sagas.tool.intents_tool import intents_tool text_list = [(doc[field] if not fix else fix_sents(doc[field], lang), doc['text'] if lang != 'en' else f"{doc['chapter'].lower()[:10]}_{doc['index']}", doc['intent'] if 'intent' in doc else '', ) for doc in intents_tool.db.corpus.find({'chapter': chapter})] return text_list def intents_tool_panel(lang): from sagas.tool.intents_tool import intents_tool import sagas item=intents_tool.get_chapters() chapter=st.selectbox('which chapter to modify', item['chapters']) field = f'lang_{lang}' if lang != 'en' else 'text' text_list=get_records(lang, chapter, field) opts = [t[0] for t in text_list if t[2] == ''] # intent modify function only available when the lang==en if lang=='en' and len(opts)>0: sents=st.selectbox('which sentence to modify', opts ) entry=next(t for t in text_list if t[0]==sents) st.markdown(f"{entry[0]} `{entry[2]}`") sel_intents=st.multiselect('choose or input a intent', list(get_all_intents())) st.write(sel_intents) text_intent=st.text_input("intent", sel_intents[0] if len(sel_intents)>0 else '') if text_intent.strip()!='': # sel_intents.append(text_intent) target_intent=text_intent.strip() elif len(sel_intents)>0: target_intent=sel_intents[0] else: target_intent=None if target_intent is not None: if st.button("store"): st.write(f'.. store {target_intent}') intents_tool.set_intent_by_text(sents, target_intent) # refresh list text_list = get_records(lang, chapter, field) # for entry in text_list: # st.markdown(f"{entry[0]} `{entry[1]}`") st.table(sagas.to_df(text_list, columns=[f'text_{lang}', 'text_en' if lang!='en' else 'location', 'intent'])) def main(): lang=sidebar() st.subheader("intents tool") intents_tool_panel(lang) if __name__ == '__main__': main()
34.987654
102
0.627735
c95f070a99b12c02aac6d14a3fade1526cd9a58e
1,005
py
Python
apps/profiles/forms.py
ecognize-hub/ecognize
e448098d7c5e815c68a7650b14b31d23976a8900
[ "Apache-2.0" ]
1
2021-04-17T12:53:34.000Z
2021-04-17T12:53:34.000Z
apps/profiles/forms.py
ecognize-hub/ecognize
e448098d7c5e815c68a7650b14b31d23976a8900
[ "Apache-2.0" ]
null
null
null
apps/profiles/forms.py
ecognize-hub/ecognize
e448098d7c5e815c68a7650b14b31d23976a8900
[ "Apache-2.0" ]
null
null
null
from django import forms from crispy_forms.helper import FormHelper from .models import UserCreatedGroup, UserProfile from django.urls import reverse class CreateNewGroupForm(forms.ModelForm): class Meta: model = UserCreatedGroup fields = ['display_name', 'visible', 'logo', 'join_mode'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_id = 'id_createNewGroupForm' self.helper.form_method = 'post' self.helper.form_action = reverse('api-usergroups-create') class UserSettingsForm(forms.ModelForm): class Meta: model = UserProfile fields = ['visible', 'anyone_can_message'] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_id = 'id-settingsChangeForm' self.helper.form_method = 'post' self.helper.form_action = reverse('profile-settings')
32.419355
66
0.672637
b359f0dc2af009bdedb25781fd48d355169a03d0
1,263
py
Python
corehq/apps/cachehq/tests.py
johan--/commcare-hq
86ee99c54f55ee94e4c8f2f6f30fc44e10e69ebd
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/cachehq/tests.py
johan--/commcare-hq
86ee99c54f55ee94e4c8f2f6f30fc44e10e69ebd
[ "BSD-3-Clause" ]
1
2022-03-12T01:03:25.000Z
2022-03-12T01:03:25.000Z
corehq/apps/cachehq/tests.py
johan--/commcare-hq
86ee99c54f55ee94e4c8f2f6f30fc44e10e69ebd
[ "BSD-3-Clause" ]
null
null
null
from copy import deepcopy from mock import patch from django.test import SimpleTestCase from corehq.apps.cachehq.mixins import CachedCouchDocumentMixin from dimagi.ext.jsonobject import JsonObject, StringProperty class Super(JsonObject): @classmethod def get(cls, *args, **kwargs): pass def save(self, *args, **kwargs): pass class BlogPost(CachedCouchDocumentMixin, Super): title = StringProperty() body = StringProperty() class TestCachedCouchDocumentMixin(SimpleTestCase): @patch.object(Super, 'get') def test_get(self, doc_get): blog_post = BlogPost(title="My favorite colors", body="blue") blog_post['_id'] = 'idssrgglcfoyxdtrunbcae' doc_get.return_value = deepcopy(blog_post) blog_post.save() blog_post.clear_caches() # Make two `get`s and assert that only one made it to Document.get BlogPost.get(blog_post['_id']) BlogPost.get(blog_post['_id']) doc_get.assert_called_once_with(blog_post['_id']) # Update the doc, save, and assert that Document.get was hit again blog_post.body = "Actually, it's purple" blog_post.save() BlogPost.get(blog_post['_id']) self.assertEqual(doc_get.call_count, 2)
30.804878
74
0.688044
a3c8d1cdad61c28d1c9d67e52723b8ce54101cb8
8,255
py
Python
python/ray/air/train/integrations/tensorflow/tensorflow_trainer.py
orcahmlee/ray
298742d7241681ee1f307ec0dd3cd7e9713a3c7d
[ "Apache-2.0" ]
null
null
null
python/ray/air/train/integrations/tensorflow/tensorflow_trainer.py
orcahmlee/ray
298742d7241681ee1f307ec0dd3cd7e9713a3c7d
[ "Apache-2.0" ]
41
2021-09-21T01:13:48.000Z
2022-03-19T07:12:22.000Z
python/ray/air/train/integrations/tensorflow/tensorflow_trainer.py
LaudateCorpus1/ray
20cf2edfef7103c269358a49a48c2159315ee132
[ "Apache-2.0" ]
null
null
null
from typing import Callable, Optional, Dict, Tuple, Type, Union import tensorflow as tf from ray.train.tensorflow import TensorflowConfig from ray.air.trainer import GenDataset from ray.air.train.data_parallel_trainer import DataParallelTrainer, _load_checkpoint from ray.air.config import ScalingConfig, RunConfig, DatasetConfig from ray.air.preprocessor import Preprocessor from ray.air.checkpoint import Checkpoint from ray.util import PublicAPI @PublicAPI(stability="alpha") class TensorflowTrainer(DataParallelTrainer): """A Trainer for data parallel Tensorflow training. This Trainer runs the function ``train_loop_per_worker`` on multiple Ray Actors. These actors already have the necessary TensorFlow process group already configured for distributed TensorFlow training. The ``train_loop_per_worker`` function is expected to take in either 0 or 1 arguments: .. code-block:: python def train_loop_per_worker(): ... .. code-block:: python def train_loop_per_worker(config: Dict): ... If ``train_loop_per_worker`` accepts an argument, then ``train_loop_config`` will be passed in as the argument. This is useful if you want to tune the values in ``train_loop_config`` as hyperparameters. If the ``datasets`` dict contains a training dataset (denoted by the "train" key), then it will be split into multiple dataset shards that can then be accessed by ``ray.train.get_dataset_shard("train")`` inside ``train_loop_per_worker``. All the other datasets will not be split and ``ray.train.get_dataset_shard(...)`` will return the the entire Dataset. Inside the ``train_loop_per_worker`` function, you can use any of the :ref:`Ray Train function utils <train-api-func-utils>`. .. code-block:: python def train_loop_per_worker(): # Report intermediate results for callbacks or logging. train.report(...) # Checkpoints the provided args as restorable state. train.save_checkpoint(...) # Returns dict of last saved checkpoint. train.load_checkpoint() # Returns the Ray Dataset shard for the given key. train.get_dataset_shard("my_dataset") # Returns the total number of workers executing training. train.get_world_size() # Returns the rank of this worker. train.get_world_rank() # Returns the rank of the worker on the current node. train.get_local_rank() You can also use any of the :ref:`TensorFlow specific function utils <train-api-tensorflow-utils>`. .. code-block:: python def train_loop_per_worker(): # Turns off autosharding for a dataset. # You should use this if you are doing # `train.get_dataset_shard(...).to_tf(...)` # as the data will be already sharded. train.tensorflow.prepare_dataset_shard(...) To save a model to use for the ``TensorflowPredictor``, you must save it under the "model" kwarg in ``train.save_checkpoint()``. Example: .. code-block:: python import tensorflow as tf import ray from ray import train from ray.train.tensorflow import prepare_dataset_shard from ray.air.train.integrations.tensorflow import TensorflowTrainer input_size = 1 def build_model(): # toy neural network : 1-layer return tf.keras.Sequential( [tf.keras.layers.Dense( 1, activation="linear", input_shape=(input_size,))] ) def train_loop_for_worker(config): dataset_shard = train.get_dataset_shard("train") strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() with strategy.scope(): model = build_model() model.compile( optimizer="Adam", loss="mean_squared_error", metrics=["mse"]) for epoch in range(config["num_epochs"]): tf_dataset = prepare_dataset_shard( dataset_shard.to_tf( label_column="y", output_signature=( tf.TensorSpec(shape=(None, 1), dtype=tf.float32), tf.TensorSpec(shape=(None), dtype=tf.float32), ), batch_size=1, ) ) model.fit(tf_dataset) train.save_checkpoint( epoch=epoch, model=model.get_weights()) train_dataset = ray.data.from_items( [{"x": x, "y": x + 1} for x in range(32)]) trainer = TensorflowTrainer(scaling_config={"num_workers": 3}, datasets={"train": train_dataset}, train_loop_config={"num_epochs": 2}) result = trainer.fit() Args: train_loop_per_worker: The training function to execute. This can either take in no arguments or a ``config`` dict. train_loop_config: Configurations to pass into ``train_loop_per_worker`` if it accepts an argument. tensorflow_config: Configuration for setting up the TensorFlow backend. If set to None, use the default configuration. This replaces the ``backend_config`` arg of ``DataParallelTrainer``. scaling_config: Configuration for how to scale data parallel training. dataset_config: Configuration for dataset ingest. run_config: Configuration for the execution of the training run. datasets: Any Ray Datasets to use for training. Use the key "train" to denote which dataset is the training dataset. If a ``preprocessor`` is provided and has not already been fit, it will be fit on the training dataset. All datasets will be transformed by the ``preprocessor`` if one is provided. preprocessor: A ray.air.preprocessor.Preprocessor to preprocess the provided datasets. resume_from_checkpoint: A checkpoint to resume training from. """ def __init__( self, *, train_loop_per_worker: Union[Callable[[], None], Callable[[Dict], None]], train_loop_config: Optional[Dict] = None, tensorflow_config: Optional[TensorflowConfig] = None, scaling_config: Optional[ScalingConfig] = None, dataset_config: Optional[Dict[str, DatasetConfig]] = None, run_config: Optional[RunConfig] = None, datasets: Optional[Dict[str, GenDataset]] = None, preprocessor: Optional[Preprocessor] = None, resume_from_checkpoint: Optional[Checkpoint] = None, ): if not tensorflow_config: tensorflow_config = TensorflowConfig() super(TensorflowTrainer, self).__init__( train_loop_per_worker=train_loop_per_worker, train_loop_config=train_loop_config, backend_config=tensorflow_config, scaling_config=scaling_config, dataset_config=dataset_config, run_config=run_config, datasets=datasets, preprocessor=preprocessor, resume_from_checkpoint=resume_from_checkpoint, ) def load_checkpoint( checkpoint: Checkpoint, model: Union[Callable[[], tf.keras.Model], Type[tf.keras.Model], tf.keras.Model], ) -> Tuple[tf.keras.Model, Optional[Preprocessor]]: """Load a Checkpoint from ``TensorflowTrainer``. Args: checkpoint: The checkpoint to load the model and preprocessor from. It is expected to be from the result of a ``TensorflowTrainer`` run. model: A callable that returns a TensorFlow Keras model to use, or an instantiated model. Model weights will be loaded from the checkpoint. Returns: The model with set weights and AIR preprocessor contained within. """ model_weights, preprocessor = _load_checkpoint(checkpoint, "TensorflowTrainer") if isinstance(model, type) or callable(model): model = model() model.set_weights(model_weights) return model, preprocessor
39.309524
87
0.644094
64149d1d8564de5dfecd205e63eb014aa23c352b
7,178
py
Python
gateapi-python/gate_api/models/multi_chain_address_item.py
jarenmt/IEOPUMP
220f7f612d299f7305e82fe6c33661e6871f2d86
[ "MIT" ]
null
null
null
gateapi-python/gate_api/models/multi_chain_address_item.py
jarenmt/IEOPUMP
220f7f612d299f7305e82fe6c33661e6871f2d86
[ "MIT" ]
null
null
null
gateapi-python/gate_api/models/multi_chain_address_item.py
jarenmt/IEOPUMP
220f7f612d299f7305e82fe6c33661e6871f2d86
[ "MIT" ]
null
null
null
# coding: utf-8 """ Gate API v4 Welcome to Gate.io API APIv4 provides spot, margin and futures trading operations. There are public APIs to retrieve the real-time market statistics, and private APIs which needs authentication to trade on user's behalf. # noqa: E501 Contact: support@mail.gate.io Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from gate_api.configuration import Configuration class MultiChainAddressItem(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'chain': 'str', 'address': 'str', 'payment_id': 'str', 'payment_name': 'str', 'obtain_failed': 'int', } attribute_map = { 'chain': 'chain', 'address': 'address', 'payment_id': 'payment_id', 'payment_name': 'payment_name', 'obtain_failed': 'obtain_failed', } def __init__( self, chain=None, address=None, payment_id=None, payment_name=None, obtain_failed=None, local_vars_configuration=None, ): # noqa: E501 # type: (str, str, str, str, int, Configuration) -> None """MultiChainAddressItem - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._chain = None self._address = None self._payment_id = None self._payment_name = None self._obtain_failed = None self.discriminator = None if chain is not None: self.chain = chain if address is not None: self.address = address if payment_id is not None: self.payment_id = payment_id if payment_name is not None: self.payment_name = payment_name if obtain_failed is not None: self.obtain_failed = obtain_failed @property def chain(self): """Gets the chain of this MultiChainAddressItem. # noqa: E501 Name of the chain # noqa: E501 :return: The chain of this MultiChainAddressItem. # noqa: E501 :rtype: str """ return self._chain @chain.setter def chain(self, chain): """Sets the chain of this MultiChainAddressItem. Name of the chain # noqa: E501 :param chain: The chain of this MultiChainAddressItem. # noqa: E501 :type: str """ self._chain = chain @property def address(self): """Gets the address of this MultiChainAddressItem. # noqa: E501 Deposit address # noqa: E501 :return: The address of this MultiChainAddressItem. # noqa: E501 :rtype: str """ return self._address @address.setter def address(self, address): """Sets the address of this MultiChainAddressItem. Deposit address # noqa: E501 :param address: The address of this MultiChainAddressItem. # noqa: E501 :type: str """ self._address = address @property def payment_id(self): """Gets the payment_id of this MultiChainAddressItem. # noqa: E501 Notes that some currencies required(e.g., Tag, Memo) when depositing # noqa: E501 :return: The payment_id of this MultiChainAddressItem. # noqa: E501 :rtype: str """ return self._payment_id @payment_id.setter def payment_id(self, payment_id): """Sets the payment_id of this MultiChainAddressItem. Notes that some currencies required(e.g., Tag, Memo) when depositing # noqa: E501 :param payment_id: The payment_id of this MultiChainAddressItem. # noqa: E501 :type: str """ self._payment_id = payment_id @property def payment_name(self): """Gets the payment_name of this MultiChainAddressItem. # noqa: E501 Note type, `Tag` or `Memo` # noqa: E501 :return: The payment_name of this MultiChainAddressItem. # noqa: E501 :rtype: str """ return self._payment_name @payment_name.setter def payment_name(self, payment_name): """Sets the payment_name of this MultiChainAddressItem. Note type, `Tag` or `Memo` # noqa: E501 :param payment_name: The payment_name of this MultiChainAddressItem. # noqa: E501 :type: str """ self._payment_name = payment_name @property def obtain_failed(self): """Gets the obtain_failed of this MultiChainAddressItem. # noqa: E501 The obtain failed status- 0: address successfully obtained- 1: failed to obtain address # noqa: E501 :return: The obtain_failed of this MultiChainAddressItem. # noqa: E501 :rtype: int """ return self._obtain_failed @obtain_failed.setter def obtain_failed(self, obtain_failed): """Sets the obtain_failed of this MultiChainAddressItem. The obtain failed status- 0: address successfully obtained- 1: failed to obtain address # noqa: E501 :param obtain_failed: The obtain_failed of this MultiChainAddressItem. # noqa: E501 :type: int """ self._obtain_failed = obtain_failed def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value)) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, MultiChainAddressItem): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, MultiChainAddressItem): return True return self.to_dict() != other.to_dict()
29.661157
239
0.602257
d90aea1870c68692fe64741cd0f792932adae3ce
484
py
Python
source/core/migrations/0001_initial.py
pedroaraujocaldeira/reconhecimento-image
2e45237abd1a44907af6aec3666a37f741fd0e82
[ "MIT" ]
null
null
null
source/core/migrations/0001_initial.py
pedroaraujocaldeira/reconhecimento-image
2e45237abd1a44907af6aec3666a37f741fd0e82
[ "MIT" ]
13
2020-06-01T04:33:22.000Z
2022-03-12T00:32:38.000Z
source/core/migrations/0001_initial.py
pedroaraujocaldeira/reconhecimento-image
2e45237abd1a44907af6aec3666a37f741fd0e82
[ "MIT" ]
null
null
null
# Generated by Django 2.1.3 on 2018-11-10 11:27 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.FileField(upload_to='')), ], ), ]
22
114
0.568182
0a156d7cf8e7849d836aab337c6da816ed13483b
791
py
Python
src/scancode/lockfile.py
s4-2/scancode-toolkit
8931b42e2630b94d0cabc834dfb3c16f01f82321
[ "Apache-2.0", "CC-BY-4.0" ]
1,511
2015-07-01T15:29:03.000Z
2022-03-30T13:40:05.000Z
src/scancode/lockfile.py
s4-2/scancode-toolkit
8931b42e2630b94d0cabc834dfb3c16f01f82321
[ "Apache-2.0", "CC-BY-4.0" ]
2,695
2015-07-01T16:01:35.000Z
2022-03-31T19:17:44.000Z
src/scancode/lockfile.py
s4-2/scancode-toolkit
8931b42e2630b94d0cabc834dfb3c16f01f82321
[ "Apache-2.0", "CC-BY-4.0" ]
540
2015-07-01T15:08:19.000Z
2022-03-31T12:13:11.000Z
# # Copyright (c) nexB Inc. and others. All rights reserved. # ScanCode is a trademark of nexB Inc. # SPDX-License-Identifier: Apache-2.0 # See http://www.apache.org/licenses/LICENSE-2.0 for the license text. # See https://github.com/nexB/scancode-toolkit for support or download. # See https://aboutcode.org for more information about nexB OSS projects. # from contextlib import contextmanager import fasteners """ An interprocess lockfile with a timeout. """ class LockTimeout(Exception): pass class FileLock(fasteners.InterProcessLock): @contextmanager def locked(self, timeout): acquired = self.acquire(timeout=timeout) if not acquired: raise LockTimeout(timeout) try: yield finally: self.release()
23.264706
73
0.69153
031bdcb44aabc50f0a0c1a5e81ebad68e0ade9e8
11,602
py
Python
dejavu/database_sql.py
yimikai/dejavu
7f53f2ab6896b38cfd54cc396e2326a98b957d07
[ "MIT" ]
4
2017-06-17T02:08:28.000Z
2020-11-25T04:46:56.000Z
dejavu/database_sql.py
kibichii-icode/dejavu
7f53f2ab6896b38cfd54cc396e2326a98b957d07
[ "MIT" ]
7
2020-02-12T03:00:42.000Z
2021-06-10T21:43:13.000Z
dejavu/database_sql.py
kibichii-icode/dejavu
7f53f2ab6896b38cfd54cc396e2326a98b957d07
[ "MIT" ]
2
2019-09-02T04:28:32.000Z
2021-05-04T10:25:21.000Z
from __future__ import absolute_import from itertools import izip_longest import Queue import MySQLdb as mysql from MySQLdb.cursors import DictCursor from dejavu.database import Database class SQLDatabase(Database): """ Queries: 1) Find duplicates (shouldn't be any, though): select `hash`, `song_id`, `offset`, count(*) cnt from fingerprints group by `hash`, `song_id`, `offset` having cnt > 1 order by cnt asc; 2) Get number of hashes by song: select song_id, song_name, count(song_id) as num from fingerprints natural join songs group by song_id order by count(song_id) desc; 3) get hashes with highest number of collisions select hash, count(distinct song_id) as n from fingerprints group by `hash` order by n DESC; => 26 different songs with same fingerprint (392 times): select songs.song_name, fingerprints.offset from fingerprints natural join songs where fingerprints.hash = "08d3c833b71c60a7b620322ac0c0aba7bf5a3e73"; """ type = "mysql" # tables FINGERPRINTS_TABLENAME = "fingerprints" SONGS_TABLENAME = "songs" # fields FIELD_FINGERPRINTED = "fingerprinted" # creates CREATE_FINGERPRINTS_TABLE = """ CREATE TABLE IF NOT EXISTS `%s` ( `%s` binary(10) not null, `%s` mediumint unsigned not null, `%s` int unsigned not null, INDEX (%s), UNIQUE KEY `unique_constraint` (%s, %s, %s), FOREIGN KEY (%s) REFERENCES %s(%s) ON DELETE CASCADE ) ENGINE=INNODB;""" % ( FINGERPRINTS_TABLENAME, Database.FIELD_HASH, Database.FIELD_SONG_ID, Database.FIELD_OFFSET, Database.FIELD_HASH, Database.FIELD_SONG_ID, Database.FIELD_OFFSET, Database.FIELD_HASH, Database.FIELD_SONG_ID, SONGS_TABLENAME, Database.FIELD_SONG_ID ) CREATE_SONGS_TABLE = """ CREATE TABLE IF NOT EXISTS `%s` ( `%s` mediumint unsigned not null auto_increment, `%s` varchar(250) not null, `%s` tinyint default 0, `%s` binary(20) not null, PRIMARY KEY (`%s`), UNIQUE KEY `%s` (`%s`) ) ENGINE=INNODB;""" % ( SONGS_TABLENAME, Database.FIELD_SONG_ID, Database.FIELD_SONGNAME, FIELD_FINGERPRINTED, Database.FIELD_FILE_SHA1, Database.FIELD_SONG_ID, Database.FIELD_SONG_ID, Database.FIELD_SONG_ID, ) # inserts (ignores duplicates) INSERT_FINGERPRINT = """ INSERT IGNORE INTO %s (%s, %s, %s) values (UNHEX(%%s), %%s, %%s); """ % (FINGERPRINTS_TABLENAME, Database.FIELD_HASH, Database.FIELD_SONG_ID, Database.FIELD_OFFSET) INSERT_SONG = "INSERT INTO %s (%s, %s) values (%%s, UNHEX(%%s));" % ( SONGS_TABLENAME, Database.FIELD_SONGNAME, Database.FIELD_FILE_SHA1) # selects SELECT = """ SELECT %s, %s FROM %s WHERE %s = UNHEX(%%s); """ % (Database.FIELD_SONG_ID, Database.FIELD_OFFSET, FINGERPRINTS_TABLENAME, Database.FIELD_HASH) SELECT_MULTIPLE = """ SELECT HEX(%s), %s, %s FROM %s WHERE %s IN (%%s); """ % (Database.FIELD_HASH, Database.FIELD_SONG_ID, Database.FIELD_OFFSET, FINGERPRINTS_TABLENAME, Database.FIELD_HASH) SELECT_ALL = """ SELECT %s, %s FROM %s; """ % (Database.FIELD_SONG_ID, Database.FIELD_OFFSET, FINGERPRINTS_TABLENAME) SELECT_SONG = """ SELECT %s, HEX(%s) as %s FROM %s WHERE %s = %%s; """ % (Database.FIELD_SONGNAME, Database.FIELD_FILE_SHA1, Database.FIELD_FILE_SHA1, SONGS_TABLENAME, Database.FIELD_SONG_ID) SELECT_NUM_FINGERPRINTS = """ SELECT COUNT(*) as n FROM %s """ % (FINGERPRINTS_TABLENAME) SELECT_UNIQUE_SONG_IDS = """ SELECT COUNT(DISTINCT %s) as n FROM %s WHERE %s = 1; """ % (Database.FIELD_SONG_ID, SONGS_TABLENAME, FIELD_FINGERPRINTED) SELECT_SONGS = """ SELECT %s, %s, HEX(%s) as %s FROM %s WHERE %s = 1; """ % (Database.FIELD_SONG_ID, Database.FIELD_SONGNAME, Database.FIELD_FILE_SHA1, Database.FIELD_FILE_SHA1, SONGS_TABLENAME, FIELD_FINGERPRINTED) # drops DROP_FINGERPRINTS = "DROP TABLE IF EXISTS %s;" % FINGERPRINTS_TABLENAME DROP_SONGS = "DROP TABLE IF EXISTS %s;" % SONGS_TABLENAME # update UPDATE_SONG_FINGERPRINTED = """ UPDATE %s SET %s = 1 WHERE %s = %%s """ % (SONGS_TABLENAME, FIELD_FINGERPRINTED, Database.FIELD_SONG_ID) # delete DELETE_UNFINGERPRINTED = """ DELETE FROM %s WHERE %s = 0; """ % (SONGS_TABLENAME, FIELD_FINGERPRINTED) def __init__(self, **options): super(SQLDatabase, self).__init__() self.cursor = cursor_factory(**options) self._options = options def after_fork(self): # Clear the cursor cache, we don't want any stale connections from # the previous process. Cursor.clear_cache() def setup(self): """ Creates any non-existing tables required for dejavu to function. This also removes all songs that have been added but have no fingerprints associated with them. """ with self.cursor() as cur: cur.execute(self.CREATE_SONGS_TABLE) cur.execute(self.CREATE_FINGERPRINTS_TABLE) cur.execute(self.DELETE_UNFINGERPRINTED) def empty(self): """ Drops tables created by dejavu and then creates them again by calling `SQLDatabase.setup`. .. warning: This will result in a loss of data """ with self.cursor() as cur: cur.execute(self.DROP_FINGERPRINTS) cur.execute(self.DROP_SONGS) self.setup() def delete_unfingerprinted_songs(self): """ Removes all songs that have no fingerprints associated with them. """ with self.cursor() as cur: cur.execute(self.DELETE_UNFINGERPRINTED) def get_num_songs(self): """ Returns number of songs the database has fingerprinted. """ with self.cursor() as cur: cur.execute(self.SELECT_UNIQUE_SONG_IDS) for count, in cur: return count return 0 def get_num_fingerprints(self): """ Returns number of fingerprints the database has fingerprinted. """ with self.cursor() as cur: cur.execute(self.SELECT_NUM_FINGERPRINTS) for count, in cur: return count return 0 def set_song_fingerprinted(self, sid): """ Set the fingerprinted flag to TRUE (1) once a song has been completely fingerprinted in the database. """ with self.cursor() as cur: cur.execute(self.UPDATE_SONG_FINGERPRINTED, (sid,)) def get_songs(self): """ Return songs that have the fingerprinted flag set TRUE (1). """ with self.cursor(cursor_type=DictCursor) as cur: cur.execute(self.SELECT_SONGS) for row in cur: yield row def get_song_by_id(self, sid): """ Returns song by its ID. """ with self.cursor(cursor_type=DictCursor) as cur: cur.execute(self.SELECT_SONG, (sid,)) return cur.fetchone() def insert(self, hash, sid, offset): """ Insert a (sha1, song_id, offset) row into database. """ with self.cursor() as cur: cur.execute(self.INSERT_FINGERPRINT, (hash, sid, offset)) def insert_song(self, songname, file_hash): """ Inserts song in the database and returns the ID of the inserted record. """ with self.cursor() as cur: cur.execute(self.INSERT_SONG, (songname, file_hash)) return cur.lastrowid def query(self, hash): """ Return all tuples associated with hash. If hash is None, returns all entries in the database (be careful with that one!). """ # select all if no key query = self.SELECT_ALL if hash is None else self.SELECT with self.cursor() as cur: cur.execute(query) for sid, offset in cur: yield (sid, offset) def get_iterable_kv_pairs(self): """ Returns all tuples in database. """ return self.query(None) def insert_hashes(self, sid, hashes): """ Insert series of hash => song_id, offset values into the database. """ values = [] for hash, offset in hashes: values.append((hash, sid, offset)) with self.cursor() as cur: for split_values in grouper(values, 1000): cur.executemany(self.INSERT_FINGERPRINT, split_values) def return_matches(self, hashes): """ Return the (song_id, offset_diff) tuples associated with a list of (sha1, sample_offset) values. """ # Create a dictionary of hash => offset pairs for later lookups mapper = {} for hash, offset in hashes: mapper[hash.upper()] = offset # Get an iteratable of all the hashes we need values = mapper.keys() with self.cursor() as cur: for split_values in grouper(values, 1000): # Create our IN part of the query query = self.SELECT_MULTIPLE query = query % ', '.join(['UNHEX(%s)'] * len(split_values)) cur.execute(query, split_values) for hash, sid, offset in cur: # (sid, db_offset - song_sampled_offset) yield (sid, offset - mapper[hash]) def __getstate__(self): return (self._options,) def __setstate__(self, state): self._options, = state self.cursor = cursor_factory(**self._options) def grouper(iterable, n, fillvalue=None): args = [iter(iterable)] * n return (filter(None, values) for values in izip_longest(fillvalue=fillvalue, *args)) def cursor_factory(**factory_options): def cursor(**options): options.update(factory_options) return Cursor(**options) return cursor class Cursor(object): """ Establishes a connection to the database and returns an open cursor. ```python # Use as context manager with Cursor() as cur: cur.execute(query) ``` """ _cache = Queue.Queue(maxsize=5) def __init__(self, cursor_type=mysql.cursors.Cursor, **options): super(Cursor, self).__init__() try: conn = self._cache.get_nowait() except Queue.Empty: conn = mysql.connect(**options) else: # Ping the connection before using it from the cache. conn.ping(True) self.conn = conn self.conn.autocommit(False) self.cursor_type = cursor_type @classmethod def clear_cache(cls): cls._cache = Queue.Queue(maxsize=5) def __enter__(self): self.cursor = self.conn.cursor(self.cursor_type) return self.cursor def __exit__(self, extype, exvalue, traceback): # if we had a MySQL related error we try to rollback the cursor. if extype is mysql.MySQLError: self.cursor.rollback() self.cursor.close() self.conn.commit() # Put it back on the queue try: self._cache.put_nowait(self.conn) except Queue.Full: self.conn.close()
31.02139
128
0.603172
24b54349b1b8fd4fb38bbc59997e291ad1a480fc
14,209
py
Python
utils/dataset/beam_dataset.py
airbert-vln/airbert
a4f667db9fb4021094c738dd8d23739aee3785a5
[ "MIT" ]
17
2021-07-30T14:08:24.000Z
2022-03-30T13:57:02.000Z
utils/dataset/beam_dataset.py
airbert-vln/airbert
a4f667db9fb4021094c738dd8d23739aee3785a5
[ "MIT" ]
4
2021-09-09T03:02:18.000Z
2022-03-24T13:55:55.000Z
utils/dataset/beam_dataset.py
airbert-vln/airbert
a4f667db9fb4021094c738dd8d23739aee3785a5
[ "MIT" ]
2
2021-08-30T11:51:16.000Z
2021-09-03T09:18:50.000Z
# pylint: disable=no-member, not-callable import logging import os import itertools import random import copy from typing import List, Iterator, TypeVar, Union, Tuple import numpy as np import torch from transformers import BertTokenizer from torch.utils.data import Dataset from utils.dataset.common import ( get_headings, get_viewpoints, load_distances, load_json_data, load_nav_graphs, randomize_regions, randomize_tokens, save_json_data, tokenize, ) from utils.dataset.features_reader import FeaturesReader logger = logging.getLogger(__name__) T = TypeVar("T") def shuffle_different(seq: List[T]) -> Iterator[List[T]]: sequences = list(itertools.permutations(seq, len(seq))) random.shuffle(sequences) for s in sequences: l = list(s) if l != seq: yield l def shuffle_non_adjacent(seq: List[T]) -> Iterator[List[T]]: n = len(seq) starting = {i: [j for j in range(n) if abs(j - i) > 1] for i in range(n)} keys = list(starting.keys()) done = [] while keys != []: idx_keys, start = random.choice(list(enumerate(keys))) idx_list, permute = random.choice(list(enumerate(starting[start]))) del starting[start][idx_list] if starting[start] == []: del keys[idx_keys] if {start, permute} in done: continue done.append({start, permute}) shuffled = copy.deepcopy(seq) shuffled[start], shuffled[permute] = shuffled[permute], shuffled[start] yield shuffled class BeamDataset(Dataset): def __init__( self, vln_path: str, beam_path: str, tokenizer: BertTokenizer, features_reader: FeaturesReader, max_instruction_length: int, max_path_length: int, max_num_boxes: int, num_beams: int, num_beams_strict: bool, training: bool, masked_vision: bool, masked_language: bool, default_gpu: bool, num_negatives: int, ground_truth_trajectory: bool, highlighted_language: bool, shuffle_visual_features: bool, shuffler: str = "different", **kwargs, ): # load and tokenize data (with caching) tokenized_path = f"_tokenized_{max_instruction_length}".join( os.path.splitext(vln_path) ) if os.path.exists(tokenized_path): self._vln_data = load_json_data(tokenized_path) else: self._vln_data = load_json_data(vln_path) tokenize(self._vln_data, tokenizer, max_instruction_length) save_json_data(self._vln_data, tokenized_path) self._tokenizer = tokenizer # load navigation graphs scan_list = list(set([item["scan"] for item in self._vln_data])) self._graphs = load_nav_graphs(scan_list) self._distances = load_distances(scan_list) # get all of the viewpoints for this dataset self._viewpoints = get_viewpoints(scan_list, self._graphs, features_reader) # in training we only need 4 beams if training: self._num_beams = num_beams num_beams_strict = False # load beamsearch data temp_beam_data = load_json_data(beam_path) # filter beams based on length self._beam_data = [] for idx, item in enumerate(temp_beam_data): if len(item["ranked_paths"]) >= num_beams: if num_beams_strict: item["ranked_paths"] = item["ranked_paths"][:num_beams] self._beam_data.append(item) elif default_gpu: logger.warning( f"skipping index: {idx} in beam data in from path: {beam_path}" ) # get mapping from path id to vln index path_to_vln = {} for idx, vln_item in enumerate(self._vln_data): path_to_vln[vln_item["path_id"]] = idx # get mapping from beam to vln self._beam_to_vln = {} for idx, beam_item in enumerate(self._beam_data): path_id = int(beam_item["instr_id"].split("_")[0]) if path_id not in path_to_vln: if default_gpu: logger.warning(f"Skipping beam {beam_item['instr_id']}") continue self._beam_to_vln[idx] = path_to_vln[path_id] if shuffler == "different": self._shuffler = shuffle_different elif shuffler == "nonadj": self._shuffler = shuffle_non_adjacent else: raise ValueError(f"Unexpected shuffling mode ({shuffler})") self._features_reader = features_reader self._max_instruction_length = max_instruction_length self._max_path_length = max_path_length self._max_num_boxes = max_num_boxes self._training = training self._masked_vision = masked_vision self._masked_language = masked_language self._highlighted_language = highlighted_language self._ground_truth_trajectory = ground_truth_trajectory self._default_gpu = default_gpu self._shuffle_visual_features = shuffle_visual_features self._num_negatives = num_negatives def __len__(self): return len(self._beam_data) def __getitem__(self, beam_index: int): vln_index = self._beam_to_vln[beam_index] vln_item = self._vln_data[vln_index] # get beam info path_id, instruction_index = map( int, self._beam_data[beam_index]["instr_id"].split("_") ) # get vln info scan_id = vln_item["scan"] heading = vln_item["heading"] gt_path = vln_item["path"] # get the instruction data instr_tokens = torch.tensor(vln_item["instruction_tokens"][instruction_index]) instr_mask = instr_tokens > 0 segment_ids = torch.zeros_like(instr_tokens) # applying a token level loss if self._highlighted_language: instr_highlights = torch.tensor( vln_item["instruction_highlights"][instruction_index] ) else: instr_highlights = torch.tensor([]) # get all of the paths beam_paths = [] for ranked_path in self._beam_data[beam_index]["ranked_paths"]: beam_paths.append([p for p, _, _ in ranked_path]) success = self._get_path_success(scan_id, gt_path, beam_paths) target: Union[List[int], int] # select one positive and three negative paths if self._training: # special case for data_aug with negative samples if "positive" in vln_item and not vln_item["positive"][instruction_index]: target = -1 selected_paths = beam_paths[: self._num_beams] assert not self._ground_truth_trajectory, "Not compatible" # not enough positive or negative paths (this should be rare) if np.sum(success == 1) == 0 or np.sum(success == 0) < self._num_beams - 1: target = -1 # default ignore index if self._ground_truth_trajectory: selected_paths = [self._vln_data[vln_index]["path"]] + beam_paths[ : self._num_beams - 1 ] else: selected_paths = beam_paths[: self._num_beams] else: target = 0 selected_paths = [] # first select a positive if self._ground_truth_trajectory: selected_paths.append(self._vln_data[vln_index]["path"]) else: idx = np.random.choice(np.where(success == 1)[0]) # type: ignore selected_paths.append(beam_paths[idx]) # next select three negatives idxs = np.random.choice( # type: ignore np.where(success == 0)[0], size=self._num_beams - 1, replace=False ) for idx in idxs: selected_paths.append(beam_paths[idx]) # shuffle the visual features from the ground truth as a free negative path if self._shuffle_visual_features: path = self._vln_data[vln_index]["path"] # selected_paths += [ # corr # for corr, _ in zip(shuffle_gen(path), range(self._num_negatives)) # ] for corr, _ in zip(self._shuffler(path), range(self._num_negatives)): selected_paths += [corr] else: target = success selected_paths = beam_paths # This should be used only for testing the influence of shuffled sequences! if self._shuffle_visual_features: if isinstance(target, int): raise ValueError("fix mypy") # we shuffled all positive trajectories # the target is now zero everywhere for i in np.arange(len(success))[success.astype("bool")]: if i > self._num_negatives: break selected_paths.append(next(self._shuffler(selected_paths[i]))) target = np.append(target, 0) # get path features features, boxes, probs, masks = [], [], [], [] for path in selected_paths: f, b, p, m = self._get_path_features(scan_id, path, heading) features.append(f) boxes.append(b) probs.append(p) masks.append(m) # convert data into tensors image_features = torch.tensor(features).float() image_boxes = torch.tensor(boxes).float() image_probs = torch.tensor(probs).float() image_masks = torch.tensor(masks).long() instr_tokens = instr_tokens.repeat(len(features), 1).long() instr_mask = instr_mask.repeat(len(features), 1).long() segment_ids = segment_ids.repeat(len(features), 1).long() instr_highlights = instr_highlights.repeat(len(features), 1).long() # randomly mask image features if self._masked_vision: image_features, image_targets, image_targets_mask = randomize_regions( image_features, image_probs, image_masks ) else: image_targets = torch.ones_like(image_probs) / image_probs.shape[-1] image_targets_mask = torch.zeros_like(image_masks) # randomly mask instruction tokens if self._masked_language: instr_tokens, instr_targets = randomize_tokens( instr_tokens, instr_mask, self._tokenizer ) else: instr_targets = torch.ones_like(instr_tokens) * -1 # construct null return items co_attention_mask = torch.zeros( 2, self._max_path_length * self._max_num_boxes, self._max_instruction_length ).long() instr_id = torch.tensor([path_id, instruction_index]).long() return ( torch.tensor(target).long(), image_features, image_boxes, image_masks, image_targets, image_targets_mask, instr_tokens, instr_mask, instr_targets, instr_highlights, segment_ids, co_attention_mask, instr_id, torch.ones(image_features.shape[0]).bool(), ) def _get_path_success(self, scan_id, path, beam_paths, success_criteria=3): d = self._distances[scan_id] success = np.zeros(len(beam_paths)) for idx, beam_path in enumerate(beam_paths): if d[path[-1]][beam_path[-1]] < success_criteria: success[idx] = 1 return success # TODO move to utils def _get_path_features(self, scan_id: str, path: List[str], first_heading: float): """ Get features for a given path. """ headings = get_headings(self._graphs[scan_id], path, first_heading) # for next headings duplicate the last next_headings = headings[1:] + [headings[-1]] path_length = min(len(path), self._max_path_length) path_features, path_boxes, path_probs, path_masks = [], [], [], [] for path_idx, path_id in enumerate(path[:path_length]): key = scan_id + "-" + path_id # get image features features, boxes, probs = self._features_reader[ key, headings[path_idx], next_headings[path_idx], ] num_boxes = min(len(boxes), self._max_num_boxes) # pad features and boxes (if needed) pad_features = np.zeros((self._max_num_boxes, 2048)) pad_features[:num_boxes] = features[:num_boxes] pad_boxes = np.zeros((self._max_num_boxes, 12)) pad_boxes[:num_boxes, :11] = boxes[:num_boxes, :11] pad_boxes[:, 11] = np.ones(self._max_num_boxes) * path_idx pad_probs = np.zeros((self._max_num_boxes, 1601)) pad_probs[:num_boxes] = probs[:num_boxes] box_pad_length = self._max_num_boxes - num_boxes pad_masks = [1] * num_boxes + [0] * box_pad_length path_features.append(pad_features) path_boxes.append(pad_boxes) path_probs.append(pad_probs) path_masks.append(pad_masks) # pad path lists (if needed) for path_idx in range(path_length, self._max_path_length): pad_features = np.zeros((self._max_num_boxes, 2048)) pad_boxes = np.zeros((self._max_num_boxes, 12)) pad_boxes[:, 11] = np.ones(self._max_num_boxes) * path_idx pad_probs = np.zeros((self._max_num_boxes, 1601)) pad_masks = [0] * self._max_num_boxes path_features.append(pad_features) path_boxes.append(pad_boxes) path_probs.append(pad_probs) path_masks.append(pad_masks) return ( np.vstack(path_features), np.vstack(path_boxes), np.vstack(path_probs), np.hstack(path_masks), )
36.810881
88
0.596946
0ef7b60cb4307d6344c62a2d00af2050e23af348
16,009
py
Python
tasks/models/resnet_evonorm.py
epfml/relaysgd
536f809f2a5fed5f5004b3f49857d67462ac89d2
[ "MIT" ]
3
2021-10-31T21:00:36.000Z
2022-03-03T13:04:16.000Z
tasks/models/resnet_evonorm.py
epfml/relaysgd
536f809f2a5fed5f5004b3f49857d67462ac89d2
[ "MIT" ]
null
null
null
tasks/models/resnet_evonorm.py
epfml/relaysgd
536f809f2a5fed5f5004b3f49857d67462ac89d2
[ "MIT" ]
2
2022-02-19T05:25:09.000Z
2022-03-17T15:41:14.000Z
# -*- coding: utf-8 -*- import math import functools from collections import OrderedDict import torch import torch.nn as nn __all__ = ["resnet_evonorm"] class SwishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, i): ctx.save_for_backward(i) return i * torch.sigmoid(i) @staticmethod def backward(ctx, grad_output): sigmoid_i = torch.sigmoid(ctx.saved_variables[0]) return grad_output * ( sigmoid_i * (1 + ctx.saved_variables[0] * (1 - sigmoid_i)) ) class MemoryEfficientSwish(nn.Module): def forward(self, x): return SwishImplementation.apply(x) @torch.jit.script def instance_std(x, eps): var = torch.var(x, dim=(2, 3), keepdim=True).expand_as(x) if torch.isnan(var).any(): var = torch.zeros(var.shape) return torch.sqrt(var + eps) @torch.jit.script def group_std(x, eps): N, C, H, W = x.size() groups = 32 groups = C if groups > C else groups x = x.view(N, groups, C // groups, H, W) var = torch.var(x, dim=(2, 3, 4), keepdim=True).expand_as(x) return torch.sqrt(var.add(eps)).view(N, C, H, W) class EvoNorm2D(nn.Module): def __init__( self, input, non_linear=True, version="S0", efficient=True, affine=True, momentum=0.9, eps=1e-5, groups=32, training=True, ): super(EvoNorm2D, self).__init__() self.non_linear = non_linear self.version = version self.training = training self.momentum = momentum self.efficient = efficient if self.version == "S0": self.swish = MemoryEfficientSwish() self.groups = groups self.eps = torch.FloatTensor([eps]) if self.version not in ["B0", "S0"]: raise ValueError("Invalid EvoNorm version") self.insize = input self.affine = affine if self.affine: self.gamma = nn.Parameter(torch.ones(1, self.insize, 1, 1)) self.beta = nn.Parameter(torch.zeros(1, self.insize, 1, 1)) if self.non_linear and ( (self.version == "S0" and not self.efficient) or self.version == "B0" ): self.v = nn.Parameter(torch.ones(1, self.insize, 1, 1)) else: self.register_parameter("gamma", None) self.register_parameter("beta", None) self.register_buffer("v", None) self.register_buffer("running_var", torch.ones(1, self.insize, 1, 1)) self.reset_parameters() def reset_parameters(self): self.running_var.fill_(1) def _check_input_dim(self, x): if x.dim() != 4: raise ValueError("expected 4D input (got {}D input)".format(x.dim())) def forward(self, x): self._check_input_dim(x) if self.version == "S0": if self.non_linear: if not self.efficient: num = x * torch.sigmoid( self.v * x ) # Original Swish Implementation, however memory intensive. else: num = self.swish( x ) # Experimental Memory Efficient Variant of Swish if self.eps.device != self.gamma.device: self.eps = self.eps.to(self.gamma.device) return num / group_std(x, eps=self.eps) * self.gamma + self.beta else: return x * self.gamma + self.beta if self.version == "B0": if self.training: var = torch.var(x, dim=(0, 2, 3), unbiased=False, keepdim=True) self.running_var.mul_(self.momentum) self.running_var.add_((1 - self.momentum) * var) else: var = self.running_var if self.non_linear: den = torch.max( (var + self.eps).sqrt(), self.v * x + instance_std(x, eps=self.eps) ) return x / den * self.gamma + self.beta else: return x * self.gamma + self.beta def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding." return nn.Conv2d( in_channels=in_planes, out_channels=out_planes, kernel_size=3, stride=stride, padding=1, bias=False, ) class BasicBlock(nn.Module): expansion = 1 __constants__ = ["downsample"] def __init__( self, in_planes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, version="S0", norm_layer=None, use_bn_stat=False, ): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = functools.partial( nn.BatchNorm2d, track_running_stats=use_bn_stat ) if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(in_planes, planes, stride) self.evo = EvoNorm2D(planes, version=version) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.evo(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): """ [1 * 1, x] [3 * 3, x] [1 * 1, x * 4] """ expansion = 4 def __init__( self, in_planes, out_planes, stride=1, downsample=None, version="S0", norm_layer=None, use_bn_stat=False, ): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = functools.partial( nn.BatchNorm2d, track_running_stats=use_bn_stat ) self.conv1 = nn.Conv2d( in_channels=in_planes, out_channels=out_planes, kernel_size=1, bias=False ) self.evo1 = EvoNorm2D(out_planes, version=version) self.conv2 = nn.Conv2d( in_channels=out_planes, out_channels=out_planes, kernel_size=3, stride=stride, padding=1, bias=False, ) self.evo2 = EvoNorm2D(out_planes, version=version) self.conv3 = nn.Conv2d( in_channels=out_planes, out_channels=out_planes * 4, kernel_size=1, bias=False, ) self.bn3 = norm_layer(out_planes) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.evo1(out) out = self.relu(out) out = self.conv2(out) out = self.evo2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out = out.expand_as(residual) + residual out = self.relu(out) return out class ResNet_cifar(nn.Module): def __init__( self, resnet_size, scaling=1, save_activations=False, use_bn_stat=False, num_classes=10, version="S0", ): super(ResNet_cifar, self).__init__() self.use_bn_stat = use_bn_stat self.version = "S0" if version is None else version # define model. if resnet_size % 6 != 2: raise ValueError("resnet_size must be 6n + 2:", resnet_size) block_nums = (resnet_size - 2) // 6 if resnet_size >= 44: raise NotImplementedError("not supported yet.") else: block_fn = BasicBlock self.num_classes = num_classes # define layers. self.inplanes = int(16 * scaling) self.conv1 = nn.Conv2d( in_channels=3, out_channels=int(16 * scaling), kernel_size=3, stride=1, padding=1, bias=False, ) self.evo1 = EvoNorm2D(int(16 * scaling)) # self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_block( block_fn=block_fn, planes=int(16 * scaling), block_num=block_nums ) self.layer2 = self._make_block( block_fn=block_fn, planes=int(32 * scaling), block_num=block_nums, stride=2 ) self.layer3 = self._make_block( block_fn=block_fn, planes=int(64 * scaling), block_num=block_nums, stride=2 ) self.avgpool = nn.AvgPool2d(kernel_size=8) self.classifier = nn.Linear( in_features=int(64 * scaling * block_fn.expansion), out_features=self.num_classes, ) # weight initialization based on layer type. self._weight_initialization() # a placeholder for activations in the intermediate layers. self.save_activations = save_activations self.activations = None def _weight_initialization(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # elif isinstance(m, nn.Linear): # m.weight.data.normal_(mean=0, std=0.01) # m.bias.data.zero_() def _make_block(self, block_fn, planes, block_num, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block_fn.expansion: downsample = nn.Sequential( nn.Conv2d( self.inplanes, planes * block_fn.expansion, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d( planes * block_fn.expansion, track_running_stats=self.use_bn_stat ), ) layers = [] layers.append( block_fn( in_planes=self.inplanes, planes=planes, stride=stride, downsample=downsample, use_bn_stat=self.use_bn_stat, version=self.version, ) ) self.inplanes = planes * block_fn.expansion for _ in range(1, block_num): layers.append(block_fn(in_planes=self.inplanes, planes=planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.evo1(x) x = self.layer1(x) activation1 = x.clone() x = self.layer2(x) activation2 = x.clone() x = self.layer3(x) activation3 = x.clone() x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.classifier(x) if self.save_activations: self.activations = [activation1, activation2, activation3] return x class ResNet_ImageNet(nn.Module): def __init__(self, resnet_size, use_bn_stat=False, version="S0", num_classes=1000): super(ResNet_ImageNet, self).__init__() self.use_bn_stat = use_bn_stat self.version = "S0" if version is None else version # define model param. model_params = { 18: {"block": BasicBlock, "layers": [2, 2, 2, 2]}, 34: {"block": BasicBlock, "layers": [3, 4, 6, 3]}, 50: {"block": Bottleneck, "layers": [3, 4, 6, 3]}, 101: {"block": Bottleneck, "layers": [3, 4, 23, 3]}, 152: {"block": Bottleneck, "layers": [3, 8, 36, 3]}, } block_fn = model_params[resnet_size]["block"] block_nums = model_params[resnet_size]["layers"] # define layers. self.inplanes = 64 self.conv1 = nn.Conv2d( in_channels=3, out_channels=64, kernel_size=7, stride=2, padding=3, bias=False, ) self.evo1 = EvoNorm2D(64) # self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_block( block_fn=block_fn, planes=64, block_num=block_nums[0] ) self.layer2 = self._make_block( block_fn=block_fn, planes=128, block_num=block_nums[1], stride=2 ) self.layer3 = self._make_block( block_fn=block_fn, planes=256, block_num=block_nums[2], stride=2 ) self.layer4 = self._make_block( block_fn=block_fn, planes=512, block_num=block_nums[3], stride=2 ) self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1) self.classifier = nn.Linear( in_features=512 * block_fn.expansion, out_features=num_classes ) # weight initialization based on layer type. self._weight_initialization() self.train() def _make_block(self, block_fn, planes, block_num, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block_fn.expansion: downsample = nn.Sequential( OrderedDict( [ ( "conv", nn.Conv2d( self.inplanes, planes * block_fn.expansion, kernel_size=1, stride=stride, bias=False, ), ), ( "bn", nn.BatchNorm2d( planes * block_fn.expansion, track_running_stats=self.use_bn_stat, ), ), ] ) ) layers = [] layers.append( block_fn( self.inplanes, planes, stride=stride, downsample=downsample, use_bn_stat=self.use_bn_stat, version=self.version, ) ) self.inplanes = planes * block_fn.expansion for _ in range(1, block_num): layers.append(block_fn(self.inplanes, planes)) return nn.Sequential(*layers) def _weight_initialization(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # elif isinstance(m, nn.Linear): # m.weight.data.normal_(mean=0, std=0.01) # m.bias.data.zero_() def forward(self, x): x = self.conv1(x) x = self.evo1(x) # x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x
30.609943
90
0.528515
3292c7643b2e5ba0db38f609812c657ef2affecb
1,657
py
Python
b88d80170_fake_data/generate.py
archfiery/fake-data
44833995ca2e4410d25a6f354c8d6ddec199040d
[ "Apache-2.0" ]
null
null
null
b88d80170_fake_data/generate.py
archfiery/fake-data
44833995ca2e4410d25a6f354c8d6ddec199040d
[ "Apache-2.0" ]
null
null
null
b88d80170_fake_data/generate.py
archfiery/fake-data
44833995ca2e4410d25a6f354c8d6ddec199040d
[ "Apache-2.0" ]
null
null
null
from .address import * from .company import * from .personal_data import * from .name import first_name """ The amount of information we capture is small, but will be enlarged through iterations Generate numP number of people, and numC number of companies Each person is associated with a company, via different relationships WORKS_AT / OWNS Each company is associated with an address There are 4 files generated person.tsv [name, gender, dob, email, mobile, phone] company.tsv [name, (start, end), isSixHourClosure] address.tsv [number, street, suburb, postcode, state, country] person_company.tsv [person_name, company_name, WORKS_AT / OWNS] company_address.tsv [company_name, address] """ def gen(num_person, num_company): person_file = open('person.tsv', 'wb+') person_set = set() for i in range(num_person): d = dict() fng = first_name() fn, gender = fng[0], fng[1] ln = last_name() d['id'] = i d['name'] = ' '.join([fn, ln]).strip() d['email'] = email(fn, ln) d['dob'] = dob() d['gender'] = gender d['mobile'] = mobile() d['phone'] = landline() p = Person(d) person_set.add(p) person_file.write((p.tsv() + '\n').encode()) person_file.close() company_file = open('company.tsv', 'wb+') company_set = set() for i in range(num_company): d = dict() d['name'] = company_name() d['openingHours'] = '6:00-23:00' d['isSixHourClosure'] = True c = Company(d) company_set.add(c) company_file.write((c.tsv() + '\n').encode()) company_file.close()
23.671429
86
0.617381
9ee82b3bf90650f686fef3d3072123293c838955
1,340
py
Python
src/repovisor/__main__.py
gjcooper/repovisor
22d1861fda8a86f47cd5ff1f286b39c30a218f53
[ "BSD-3-Clause" ]
2
2020-12-17T00:10:56.000Z
2022-03-24T06:09:51.000Z
src/repovisor/__main__.py
gjcooper/repovisor
22d1861fda8a86f47cd5ff1f286b39c30a218f53
[ "BSD-3-Clause" ]
3
2017-11-15T22:57:34.000Z
2019-07-03T00:59:08.000Z
src/repovisor/__main__.py
gjcooper/repovisor
22d1861fda8a86f47cd5ff1f286b39c30a218f53
[ "BSD-3-Clause" ]
null
null
null
from repovisor import repovisor as rv import click @click.group() @click.version_option() def main(): pass @main.command(name='search') @click.argument('folders', nargs=-1, type=click.Path(exists=True, file_okay=False, resolve_path=True)) @click.option('--brief', '-b', is_flag=True, help='Use the short form of reporting status') @click.option('--prune', '-p', is_flag=True, help='Prune directories as soon as we reach a repository') @click.option('--tree', '-t', is_flag=True, help='Show repositories in a tree structure, only used if brief is also selected') @click.option('--hide', is_flag=True, help='Hide repositories that are clean') @click.option('--remote', is_flag=True, help='Warn if repo has no remote') def __search_action(folders, brief, prune, tree, hide, remote): '''search through a set of folders and print status for them''' for repo_level, repo in rv.reposearch(*folders, prune=prune, level=0): view = rv.repo_view(repo, brief=brief) if tree and brief: view = '-'*repo_level + view if hide and not repo.bare: if not repo.state['dirty']: if not repo.state['untracked']: if all(rv.branch_uptodate(b, true_on_missing_origin=not remote) for b in repo.state['refcheck']): continue print(view)
44.666667
126
0.664925
49a805b46937a2becd3fa903497f431c0f9d0315
5,676
py
Python
src/m9_using_objects.py
harperis/03-AccumulatorsAndFunctionsWithParameters
b7103344f95fcf20ca0ce78418ab1cee0597dd1a
[ "MIT" ]
null
null
null
src/m9_using_objects.py
harperis/03-AccumulatorsAndFunctionsWithParameters
b7103344f95fcf20ca0ce78418ab1cee0597dd1a
[ "MIT" ]
null
null
null
src/m9_using_objects.py
harperis/03-AccumulatorsAndFunctionsWithParameters
b7103344f95fcf20ca0ce78418ab1cee0597dd1a
[ "MIT" ]
null
null
null
""" This module lets you practice ** using objects **, including: -- CONSTRUCTING objects, -- applying METHODS to them, and -- accessing their DATA via INSTANCE VARIABLES Authors: David Mutchler, Dave Fisher, Vibha Alangar, Mark Hays, Amanda Stouder, their colleagues and Isaac Harper. """ # Done: 1. PUT YOUR NAME IN THE ABOVE LINE. import rosegraphics as rg import math def main(): two_circles() circle_and_rectangle() lines() """ Calls the other functions to demonstrate and/or test them. """ # Test your functions by putting calls to them here: def two_circles(): window = rg.RoseWindow() center_point1 = rg.Point(100, 100) radius1 = 15 center_point2 = rg.Point(200, 172) radius2 = 25 circle1 = rg.Circle(center_point1, radius1) circle2 = rg.Circle(center_point2, radius2) circle2.fill_color = 'red' circle1.attach_to(window) circle2.attach_to(window) window.render() window.close_on_mouse_click() """ -- Constructs an rg.RoseWindow. -- Constructs and draws two rg.Circle objects on the window such that: -- They fit in the window and are easily visible. -- They have different radii. -- One is filled with some color and one is not filled. -- Waits for the user to press the mouse, then closes the window. """ # ------------------------------------------------------------------ # Done: 2. Implement this function, per its green doc-string above. # -- ANY two rg.Circle objects that meet the criteria are fine. # -- File COLORS.pdf lists all legal color-names. # Put a statement in main to test this function # (by calling this function). # ------------------------------------------------------------------ def circle_and_rectangle(): window = rg.RoseWindow() x = 251 y = 213 center_point = rg.Point(x, y) radius = 35 circle = rg.Circle(center_point, radius) circle.fill_color = 'blue' circle.attach_to(window) a = 50 b = 87 c = 100 d = 300 point1 = rg.Point(a, b) point2 = rg.Point(c, d) rectangle = rg.Rectangle(point1, point2) center = rectangle.get_center() rectangle.attach_to(window) window.render() print(circle.outline_thickness) print(circle.fill_color) print(circle.center) print(x) print(y) print(rectangle.outline_thickness) print(rectangle.fill_color) print(center) print((a + c) / 2) print((b + d) / 2) window.close_on_mouse_click() """ -- Constructs an rg.RoseWindow. -- Constructs and draws a rg.Circle and rg.Rectangle on the window such that: -- They fit in the window and are easily visible. -- The rg.Circle is filled with 'blue' -- Prints (on the console, on SEPARATE lines) the following data associated with your rg.Circle: -- Its outline thickness. -- Its fill color. -- Its center. -- Its center's x coordinate. -- Its center's y coordinate. -- Prints (on the console, on SEPARATE lines) the same data but for your rg.Rectangle. -- Waits for the user to press the mouse, then closes the window. Here is an example of the output on the console, for one particular circle and rectangle: 1 blue Point(180.0, 115.0) 180 115 1 None Point(75.0, 150.0) 75.0 150.0 """ # ------------------------------------------------------------------ # Done: 3. Implement this function, per its green doc-string above. # -- ANY objects that meet the criteria are fine. # Put a statement in main to test this function # (by calling this function). # # IMPORTANT: Use the DOT TRICK to guess the names of the relevant # instance variables for outline thickness, etc. # ------------------------------------------------------------------ def lines(): window = rg.RoseWindow() a = 10 b = 20 c = 300 d = 250 point1 = rg.Point(a, b) point2 = rg.Point(c, d) point3 = rg.Point(250, 123) point4 = rg.Point(100, 75) line1 = rg.Line(point1, point2) line1.thickness = 15 line2 = rg.Line(point3, point4) line1.attach_to(window) line2.attach_to(window) midpoint = rg.Line.get_midpoint(line1) print(midpoint) print((a + c) / 2) print((b + d) / 2) window.render() window.close_on_mouse_click() """ -- Constructs a rg.RoseWindow. -- Constructs and draws on the window two rg.Lines such that: -- They both fit in the window and are easily visible. -- One rg.Line has the default thickness. -- The other rg.Line is thicker (i.e., has a bigger width). -- Uses a rg.Line method to get the midpoint (center) of the thicker rg.Line. -- Then prints (on the console, on SEPARATE lines): -- the midpoint itself -- the x-coordinate of the midpoint -- the y-coordinate of the midpoint Here is an example of the output on the console, if the two endpoints of the thicker line are at (100, 100) and (121, 200): Point(110.5, 150.0) 110.5 150.0 -- Waits for the user to press the mouse, then closes the window. """ # Done: 4. Implement and test this function. # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
31.88764
79
0.570296
181a765b950c68044e014a8b6a685b04ff383012
2,661
py
Python
nmigen/back/verilog.py
davidlattimore/nmigen
8fe319f065807f421b092e7ffb8b90748512bf8c
[ "BSD-2-Clause" ]
1
2022-02-21T16:04:10.000Z
2022-02-21T16:04:10.000Z
nmigen/back/verilog.py
davidlattimore/nmigen
8fe319f065807f421b092e7ffb8b90748512bf8c
[ "BSD-2-Clause" ]
5
2021-03-19T00:08:54.000Z
2021-10-02T15:02:28.000Z
nmigen/back/verilog.py
davidlattimore/nmigen
8fe319f065807f421b092e7ffb8b90748512bf8c
[ "BSD-2-Clause" ]
null
null
null
from .._toolchain.yosys import * from . import rtlil __all__ = ["YosysError", "convert", "convert_fragment"] def _convert_rtlil_text(rtlil_text, *, strip_internal_attrs=False, write_verilog_opts=()): # this version requirement needs to be synchronized with the one in setup.py! yosys = find_yosys(lambda ver: ver >= (0, 9)) yosys_version = yosys.version() script = [] script.append("read_ilang <<rtlil\n{}\nrtlil".format(rtlil_text)) if yosys_version >= (0, 9, 3468): # Yosys >=0.9+3468 (since commit 128522f1) emits the workaround for the `always @*` # initial scheduling issue on its own. script.append("delete w:$verilog_initial_trigger") if yosys_version >= (0, 9, 3527): # Yosys >=0.9+3527 (since commit 656ee70f) supports the `-nomux` option for the `proc` # script pass. Because the individual `proc_*` passes are not a stable interface, # `proc -nomux` is used instead, if available. script.append("proc -nomux") else: # On earlier versions, use individual `proc_*` passes; this is a known range of Yosys # versions and we know it's compatible with what nMigen does. script.append("proc_init") script.append("proc_arst") script.append("proc_dff") script.append("proc_clean") script.append("memory_collect") if strip_internal_attrs: attr_map = [] attr_map.append("-remove generator") attr_map.append("-remove top") attr_map.append("-remove src") attr_map.append("-remove nmigen.hierarchy") attr_map.append("-remove nmigen.decoding") script.append("attrmap {}".format(" ".join(attr_map))) script.append("attrmap -modattr {}".format(" ".join(attr_map))) script.append("write_verilog -norename {}".format(" ".join(write_verilog_opts))) return yosys.run(["-q", "-"], "\n".join(script), # At the moment, Yosys always shows a warning indicating that not all processes can be # translated to Verilog. We carefully emit only the processes that *can* be translated, and # squash this warning. Once Yosys' write_verilog pass is fixed, we should remove this. ignore_warnings=True) def convert_fragment(*args, strip_internal_attrs=False, **kwargs): rtlil_text, name_map = rtlil.convert_fragment(*args, **kwargs) return _convert_rtlil_text(rtlil_text, strip_internal_attrs=strip_internal_attrs), name_map def convert(*args, strip_internal_attrs=False, **kwargs): rtlil_text = rtlil.convert(*args, **kwargs) return _convert_rtlil_text(rtlil_text, strip_internal_attrs=strip_internal_attrs)
42.919355
99
0.682074
e39c818c2a4c0655d637396a59f2761ecfd88c0e
1,026
py
Python
200-299/210-219/219.py
dcragusa/LeetCode
01c30de0832b378a1b054d80d1ea1d3f09a2abd3
[ "MIT" ]
null
null
null
200-299/210-219/219.py
dcragusa/LeetCode
01c30de0832b378a1b054d80d1ea1d3f09a2abd3
[ "MIT" ]
null
null
null
200-299/210-219/219.py
dcragusa/LeetCode
01c30de0832b378a1b054d80d1ea1d3f09a2abd3
[ "MIT" ]
null
null
null
""" Given an integer array nums and an integer k, return true if there are two distinct indices i and j in the array such that nums[i] == nums[j] and abs(i - j) <= k. Example 1: Input: nums = [1, 2, 3, 1], k = 3, Output: True Example 2: Input: nums = [1, 0, 1, 1], k = 1, Output: True Example 3: Input: nums = [1, 2, 3, 1, 2, 3], k = 2, Output: False """ """ We set up a map of number to index. We iterate through nums - if the number if already in the map, we return True if the difference in indices is <= k. We then update the number to index map with the current number and index. """ def contains_nearby_duplicate(nums, k): num_to_idx_map = {} for idx, num in enumerate(nums): if num in num_to_idx_map and idx - num_to_idx_map[num] <= k: return True num_to_idx_map[num] = idx return False assert contains_nearby_duplicate([1, 2, 3, 1], 3) is True assert contains_nearby_duplicate([1, 0, 1, 1], 1) is True assert contains_nearby_duplicate([1, 2, 3, 1, 2, 3], 2) is False
31.090909
117
0.658869
ad2804250b7d6713c9fb127c83cc7f601a78cbad
192
py
Python
src/compas_ui/rhino/ui/COMPAS/dev/COMPAS__saveas_cmd.py
BlockResearchGroup/compas_ui
8b5a6121eee837d306bf20c44c91f94a5c185f90
[ "MIT" ]
null
null
null
src/compas_ui/rhino/ui/COMPAS/dev/COMPAS__saveas_cmd.py
BlockResearchGroup/compas_ui
8b5a6121eee837d306bf20c44c91f94a5c185f90
[ "MIT" ]
3
2022-02-24T17:56:30.000Z
2022-03-31T09:48:40.000Z
src/compas_ui/rhino/ui/COMPAS/dev/COMPAS__saveas_cmd.py
BlockResearchGroup/compas_ui
8b5a6121eee837d306bf20c44c91f94a5c185f90
[ "MIT" ]
null
null
null
from compas_ui.ui import UI __commandname__ = "COMPAS__saveas" @UI.error() def RunCommand(is_interactive): ui = UI() ui.saveas() if __name__ == "__main__": RunCommand(True)
12
34
0.677083
21494b241feb1066318a4c3a63733ebe946e4b39
1,699
py
Python
01_gen_data.py
babarosa08/BaiduXJ
b060d165b9dd36fd2a70b279b68d18e77fe1f8ec
[ "MIT" ]
1
2018-06-14T04:00:03.000Z
2018-06-14T04:00:03.000Z
01_gen_data.py
babarosa08/BaiduXJ
b060d165b9dd36fd2a70b279b68d18e77fe1f8ec
[ "MIT" ]
null
null
null
01_gen_data.py
babarosa08/BaiduXJ
b060d165b9dd36fd2a70b279b68d18e77fe1f8ec
[ "MIT" ]
null
null
null
import os import shutil import sys DATA_PATH = '/home/huligang/workspace/BaiDuXJD2018/data' TRAIN_PATH = '/home/huligang/workspace/BaiDuXJD2018/data/train/' VAL_PATH = '/home/huligang/workspace/BaiDuXJD2018/data/val/' TEST_PATH = '/home/huligang/workspace/BaiDuXJD2018/data/test' TRAIN_FILE = '/home/huligang/workspace/BaiDuXJD2018/datasets/train.txt' TEST_FILE = '/home/huligang/workspace/BaiDuXJD2018/datasets/testV1.txt' def rmrf_mkdir(dirname): if os.path.exists(dirname): shutil.rmtree(dirname) os.mkdir(dirname) rmrf_mkdir(DATA_PATH) rmrf_mkdir(TRAIN_PATH) rmrf_mkdir(TEST_PATH) # rmrf_mkdir(VAL_PATH) # generate train set with open(TRAIN_FILE) as f: lines = f.readlines() for line in lines: line = line.strip().split(' ') image_name = line[0] image_label = line[1] CATEGORY_PATH = os.path.join(TRAIN_PATH, image_label) if not (os.path.exists(CATEGORY_PATH)): os.mkdir(CATEGORY_PATH) src = os.path.join( '/home/huligang/workspace/BaiDuXJD2018/datasets/train', image_name) dst = os.path.join(CATEGORY_PATH, image_name) os.symlink(src, dst) # generate test set with open(TEST_FILE) as f: lines = f.readlines() for line in lines: line = line.strip().split(' ') image_name = line[0] image_label = line[1] CATEGORY_PATH = os.path.join(TEST_PATH, image_label) if not (os.path.exists(CATEGORY_PATH)): os.mkdir(CATEGORY_PATH) src = os.path.join( '/home/huligang/workspace/BaiDuXJD2018/datasets/test', image_name) dst = os.path.join(CATEGORY_PATH, image_name) os.symlink(src, dst)
28.79661
79
0.675103
ee7056fe7a08e4224934ad0836e42cdb48795a8e
9,338
py
Python
script/old/vartsv_table-0.0.1.py
genepii/seqmet
89fdab79131c861d4a5aae364ecdbeb3a9e0ae23
[ "MIT" ]
null
null
null
script/old/vartsv_table-0.0.1.py
genepii/seqmet
89fdab79131c861d4a5aae364ecdbeb3a9e0ae23
[ "MIT" ]
null
null
null
script/old/vartsv_table-0.0.1.py
genepii/seqmet
89fdab79131c861d4a5aae364ecdbeb3a9e0ae23
[ "MIT" ]
null
null
null
import os import sys import getopt import math import copy def main(argv): global tsv global ref global bed global oup global datatype tsv = '' ref = '' bed = '' oup = '' datatype = 'norm' try: opts, args = getopt.getopt(argv, 'ht:r:b:o:d:', ['--help', '--tsv', '--reference', '--bed', '--output', '--datatype']) for opt, arg in opts: if opt in ('-h', '--help'): usage() sys.exit() elif opt in ('-t', '--tsv'): tsv = arg elif opt in ('-r', '--reference'): ref = arg elif opt in ('-b', '--bed'): bed = arg elif opt in ('-o', '--output'): oup = arg elif opt in ('-d', '--datatype'): datatype = arg if tsv == '': usage() sys.exit() if ref == '': usage() sys.exit() if bed == '': usage() sys.exit() if oup == '': oup = inp.split('/')[-1].split('.')[0] except getopt.GetoptError: usage() sys.exit(2) def usage(): print 'usage: ', sys.argv[0], '-h --help -t --tsv -r --ref [fasta] -b --bed [bed12] -o --output [table] -d --datatype [freq,abs,norm]' if __name__ == '__main__': main(sys.argv[1:]) stoplist = ['TAA', 'TGA', 'TAG'] cdt = {'TTT': 'F', 'CTT': 'L', 'ATT': 'I', 'GTT': 'V', 'TTC': 'F', 'CTC': 'L', 'ATC': 'I', 'GTC': 'V', 'TTA': 'L', 'CTA': 'L', 'ATA': 'I', 'GTA': 'V', 'TTG': 'L', 'CTG': 'L', 'ATG': 'M', 'GTG': 'V', 'TCT': 'S', 'CCT': 'P', 'ACT': 'T', 'GCT': 'A', 'TCC': 'S', 'CCC': 'P', 'ACC': 'T', 'GCC': 'A', 'TCA': 'S', 'CCA': 'P', 'ACA': 'T', 'GCA': 'A', 'TCG': 'S', 'CCG': 'P', 'ACG': 'T', 'GCG': 'A', 'TAT': 'Y', 'CAT': 'H', 'AAT': 'N', 'GAT': 'D', 'TAC': 'Y', 'CAC': 'H', 'AAC': 'N', 'GAC': 'D', 'TAA': '*', 'CAA': 'Q', 'AAA': 'K', 'GAA': 'E', 'TAG': '*', 'CAG': 'Q', 'AAG': 'K', 'GAG': 'E', 'TGT': 'C', 'CGT': 'R', 'AGT': 'S', 'GGT': 'G', 'TGC': 'C', 'CGC': 'R', 'AGC': 'S', 'GGC': 'G', 'TGA': '*', 'CGA': 'R', 'AGA': 'R', 'GGA': 'G', 'TGG': 'W', 'CGG': 'R', 'AGG': 'R', 'GGG': 'G'} headers = open(tsv, 'r').read().replace("\r", "").rstrip('\n').split('\n')[0].split('\t') ichrom = headers.index("#CHROM") ipos = headers.index("POS") iref = headers.index("REF") ivar = headers.index("ALT") iaf = headers.index("AF") icount = headers.index("AO") idepth = headers.index("DP") itype = headers.index("TYPE") ref = [ [x.split('\n')[0], ''.join(x.split('\n')[1:])] for x in open(ref, 'r').read().replace("\r", "").rstrip('\n').split('>')[1:]] con = copy.deepcopy(ref) for item in open(tsv, 'r').read().replace("\r", "").rstrip('\n').split('\n')[1:]: var = item.split('\t') refindex = [ x[0] for x in ref ].index(var[ichrom]) if var[itype] == 'snp' and len(var[ivar]) == 1 and float(var[iaf]) >= 0.5: con[refindex][1] = con[refindex][1][0:int(var[ipos])-1] + var[ivar] + con[refindex][1][int(var[ipos]):] elif float(var[iaf]) >= 0.5: con[refindex][1] = con[refindex][1][0:int(var[ipos])-1] + 'X' + con[refindex][1][int(var[ipos]):] qsp = copy.deepcopy(con) for item in open(tsv, 'r').read().replace("\r", "").rstrip('\n').split('\n')[1:]: var = item.split('\t') refindex = [ x[0] for x in ref ].index(var[ichrom]) if var[itype] == 'snp' and len(var[ivar]) == 1 and float(var[iaf]) < 0.5: qsp[refindex][1] = qsp[refindex][1][0:int(var[ipos])-1] + var[ivar] + qsp[refindex][1][int(var[ipos]):] elif float(var[iaf]) < 0.5: qsp[refindex][1] = qsp[refindex][1][0:int(var[ipos])-1] + 'X' + qsp[refindex][1][int(var[ipos]):] refpn_seq = [] refpn_chromname = [] refpn_pnname = [] refpn_pos = [] refpn_fna = [] refpn_faa = [] for item in open(bed, 'r').read().replace("\r", "").rstrip('\n').split('\n'): if item != '': pn = item.split('\t') refpn_seq.append(ref[[x[0] for x in ref].index(pn[0])][1]) refpn_chromname += [pn[0]] refpn_pnname += [pn[3]] part = [] for i in range(len(pn[11].split(','))): y = int(pn[11].split(',')[i]) z = int(pn[10].split(',')[i]) part += range(y,y+z) refpn_pos.append(part) refpn_fna.append([refpn_seq[-1][x] for x in part]) refpn_faa.append([cdt[''.join(refpn_fna[-1][x:x+3])] if ''.join(refpn_fna[-1][x:x+3]) in cdt else 'X' for x in range(0,len(refpn_fna[-1]),3)]) conpn_seq = [] conpn_chromname = [] conpn_pnname = [] conpn_pos = [] conpn_fna = [] conpn_faa = [] for item in open(bed, 'r').read().replace("\r", "").rstrip('\n').split('\n'): if item != '': pn = item.split('\t') conpn_seq.append(con[[x[0] for x in con].index(pn[0])][1]) conpn_chromname += [pn[0]] conpn_pnname += [pn[3]] part = [] for i in range(len(pn[11].split(','))): y = int(pn[11].split(',')[i]) z = int(pn[10].split(',')[i]) part += range(y,y+z) conpn_pos.append(part) conpn_fna.append([conpn_seq[-1][x] for x in part]) conpn_faa.append([cdt[''.join(conpn_fna[-1][x:x+3])] if ''.join(conpn_fna[-1][x:x+3]) in cdt else 'X' for x in range(0,len(conpn_fna[-1]),3)]) qsppn_seq = [] qsppn_chromname = [] qsppn_pnname = [] qsppn_pos = [] qsppn_fna = [] qsppn_faa = [] for item in open(bed, 'r').read().replace("\r", "").rstrip('\n').split('\n'): if item != '': pn = item.split('\t') qsppn_seq.append(qsp[[x[0] for x in qsp].index(pn[0])][1]) qsppn_chromname += [pn[0]] qsppn_pnname += [pn[3]] part = [] for i in range(len(pn[11].split(','))): y = int(pn[11].split(',')[i]) z = int(pn[10].split(',')[i]) part += range(y,y+z) qsppn_pos.append(part) qsppn_fna.append([qsppn_seq[-1][x] for x in part]) qsppn_faa.append([cdt[''.join(qsppn_fna[-1][x:x+3])] if ''.join(qsppn_fna[-1][x:x+3]) in cdt else 'X' for x in range(0,len(qsppn_fna[-1]),3)]) w = open(oup, 'w') for item in open(tsv, 'r').read().replace("\r", "").rstrip('\n').split('\n')[1:]: var = item.split('\t') varoup = [] refindex = [ x[0] for x in ref ].index(var[ichrom]) pnname = [] pnname = [ x for x in refpn_pnname if var[ichrom] == refpn_chromname[refpn_pnname.index(x)] and (int(var[ipos])-1) in refpn_pos[refpn_pnname.index(x)]] varoup.append(var[ichrom].split('|')[0]) varoup.append(var[ichrom].split('|')[1]) varoup.append('CODING') if len(pnname) > 0 else varoup.append('NON_CODING') varoup.append(var[ipos]) varoup.append(','.join(pnname)) if len(pnname) > 0 else varoup.append('__') varoup.append(','.join([ str((((refpn_pos[refpn_pnname.index(x)].index(int(var[ipos])-1))+3)/3)) for x in pnname ])) if len(pnname) > 0 else varoup.append('__') if var[itype] == 'snp': if int(float(var[iaf])*100) >= 50: varoup.append(','.join([ refpn_faa[refpn_pnname.index(x)][(((refpn_pos[refpn_pnname.index(x)].index(int(var[ipos])-1))+3)/3)-1] for x in pnname ]) + '>' + ','.join([ conpn_faa[conpn_pnname.index(x)][(((conpn_pos[conpn_pnname.index(x)].index(int(var[ipos])-1))+3)/3)-1] for x in pnname ])) if len(pnname) > 0 else varoup.append('__') varoup.append( ref[refindex][1][int(var[ipos])-1] + '>' + var[ivar] ) elif int(float(var[iaf])*100) < 50: varoup.append(','.join([ refpn_faa[refpn_pnname.index(x)][(((refpn_pos[refpn_pnname.index(x)].index(int(var[ipos])-1))+3)/3)-1] for x in pnname ]) + '>' + ','.join([ qsppn_faa[qsppn_pnname.index(x)][(((qsppn_pos[qsppn_pnname.index(x)].index(int(var[ipos])-1))+3)/3)-1] for x in pnname ])) if len(pnname) > 0 else varoup.append('__') varoup.append( ref[refindex][1][int(var[ipos])-1] + '>' + qsp[refindex][1][int(var[ipos])-1] ) elif var[itype] == 'ins': varoup.append(','.join([ 'INS' for x in pnname ])) if len(pnname) > 0 else varoup.append('INS') varoup.append( ref[refindex][1][int(var[ipos])-1] + '>' + var[ivar] ) elif var[itype] == 'del': varoup.append(','.join([ 'DEL' for x in pnname ])) if len(pnname) > 0 else varoup.append('DEL') varoup.append( ref[refindex][1][int(var[ipos])-1] + var[iref][1:] + '>' + var[ivar] ) elif var[itype] == 'mnp': varoup.append(','.join([ 'MNP' for x in pnname ])) if len(pnname) > 0 else varoup.append('MNP') varoup.append(','.join([ 'MNP' for x in pnname ])) if len(pnname) > 0 else varoup.append('MNP') else: varoup.append(','.join([ 'COMPLEX' for x in pnname ])) if len(pnname) > 0 else varoup.append('COMPLEX') varoup.append(','.join([ 'COMPLEX' for x in pnname ])) if len(pnname) > 0 else varoup.append('COMPLEX') varoup.append('MAJOR') if int(float(var[iaf])*100) >= 50 else varoup.append('MINOR') val = '' if datatype == 'freq': val = str(int(float(var[iaf])*100)) elif datatype == 'abs': val = '1' elif datatype == 'norm': val = str(int(float(var[iaf])*100) * int(var[idepth])) w.write('|'.join(varoup) + '\t' + val + '\n') w.close() w = open("test.faa", "w") for item in refpn_faa: w.write(''.join(item) + '\n') w.close()
42.834862
344
0.514136
944ee02af1746c07ed2f0fa891fdf9a0b6453cd7
3,877
py
Python
examples/admin/set_password.py
syaiful6/aerospike-client-python
59fa0d36aa899a164282643fe49b27d12aaf323f
[ "Apache-2.0" ]
105
2015-01-07T09:51:13.000Z
2022-03-24T04:23:54.000Z
examples/admin/set_password.py
syaiful6/aerospike-client-python
59fa0d36aa899a164282643fe49b27d12aaf323f
[ "Apache-2.0" ]
180
2015-01-01T19:29:50.000Z
2022-03-19T14:14:06.000Z
examples/admin/set_password.py
syaiful6/aerospike-client-python
59fa0d36aa899a164282643fe49b27d12aaf323f
[ "Apache-2.0" ]
94
2015-01-21T19:17:48.000Z
2022-01-31T07:17:47.000Z
# -*- coding: utf-8 -*- ################################################################################ # Copyright 2013-2021 Aerospike, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ from __future__ import print_function import aerospike import sys from optparse import OptionParser ################################################################################ # Options Parsing ################################################################################ usage = "usage: %prog [options]" optparser = OptionParser(usage=usage, add_help_option=False) optparser.add_option( "--help", dest="help", action="store_true", help="Displays this message.") optparser.add_option( "-h", "--host", dest="host", type="string", default="127.0.0.1", metavar="<ADDRESS>", help="Address of Aerospike server.") optparser.add_option( "-p", "--port", dest="port", type="int", default=3000, metavar="<PORT>", help="Port of the Aerospike server.") optparser.add_option( "-U", "--username", dest="username", type="string", metavar="<USERNAME>", help="Username to connect to database.") optparser.add_option( "-P", "--password", dest="password", type="string", metavar="<PASSWORD>", help="Password to connect to database.") (options, args) = optparser.parse_args() if options.help: optparser.print_help() print() sys.exit(1) if options.username == None or options.password == None: optparser.print_help() print() sys.exit(1) ################################################################################ # Client Configuration ################################################################################ config = { 'hosts': [ (options.host, options.port) ] } ################################################################################ # Application ################################################################################ exitCode = 0 try: # ---------------------------------------------------------------------------- # Connect to Cluster # ---------------------------------------------------------------------------- client = aerospike.client(config).connect(options.username, options.password) # ---------------------------------------------------------------------------- # Perform Operation # ---------------------------------------------------------------------------- try: policy = {} user = "foo-example" password = "bar" client.admin_set_password(user, password, policy) print("OK, password set for 1 user") except Exception as e: print("error: {0}".format(e), file=sys.stderr) print("In case of invalid user first create user using create_user.py") exitCode = 2 # ---------------------------------------------------------------------------- # Close Connection to Cluster # ---------------------------------------------------------------------------- client.close() except Exception, eargs: print("error: {0}".format(eargs), file=sys.stderr) exitCode = 3 ################################################################################ # Exit ################################################################################ sys.exit(exitCode)
32.041322
89
0.446737
cd4fb0bad8846091c96ee09ba6e362b0bcbb3276
12
py
Python
projects/mako/test.py
fleimgruber/python
2e735762c73651cffc027ca850b2a58d87d54b49
[ "Unlicense" ]
25
2021-10-30T19:54:59.000Z
2022-03-29T06:11:02.000Z
projects/mako/test.py
fleimgruber/python
2e735762c73651cffc027ca850b2a58d87d54b49
[ "Unlicense" ]
21
2021-10-19T01:09:38.000Z
2022-03-24T16:08:53.000Z
projects/mako/test.py
fleimgruber/python
2e735762c73651cffc027ca850b2a58d87d54b49
[ "Unlicense" ]
3
2022-01-25T20:25:13.000Z
2022-03-08T02:58:50.000Z
import mako
6
11
0.833333
694afc6bd0008541f5cf1afdac8fb90c75209b2c
1,959
py
Python
cf_xarray/tests/__init__.py
ocefpaf/cf-xarray
7bdb033395c8959a5d8147fe148ec987c1122387
[ "Apache-2.0" ]
91
2020-06-01T16:24:17.000Z
2022-03-30T23:17:45.000Z
cf_xarray/tests/__init__.py
ocefpaf/cf-xarray
7bdb033395c8959a5d8147fe148ec987c1122387
[ "Apache-2.0" ]
245
2020-06-01T16:16:48.000Z
2022-03-31T14:15:59.000Z
cf_xarray/tests/__init__.py
ocefpaf/cf-xarray
7bdb033395c8959a5d8147fe148ec987c1122387
[ "Apache-2.0" ]
29
2020-06-01T15:57:27.000Z
2022-01-19T16:44:14.000Z
import importlib import re from contextlib import contextmanager from distutils import version import dask import pytest @contextmanager def raises_regex(error, pattern): __tracebackhide__ = True with pytest.raises(error) as excinfo: yield message = str(excinfo.value) if not re.search(pattern, message): raise AssertionError( f"exception {excinfo.value!r} did not match pattern {pattern!r}" ) class CountingScheduler: """Simple dask scheduler counting the number of computes. Reference: https://stackoverflow.com/questions/53289286/""" def __init__(self, max_computes=0): self.total_computes = 0 self.max_computes = max_computes def __call__(self, dsk, keys, **kwargs): self.total_computes += 1 if self.total_computes > self.max_computes: raise RuntimeError( "Too many computes. Total: %d > max: %d." % (self.total_computes, self.max_computes) ) return dask.get(dsk, keys, **kwargs) def raise_if_dask_computes(max_computes=0): scheduler = CountingScheduler(max_computes) return dask.config.set(scheduler=scheduler) def _importorskip(modname, minversion=None): try: mod = importlib.import_module(modname) has = True if minversion is not None: if LooseVersion(mod.__version__) < LooseVersion(minversion): raise ImportError("Minimum version not satisfied") except ImportError: has = False func = pytest.mark.skipif(not has, reason=f"requires {modname}") return has, func def LooseVersion(vstring): # Our development version is something like '0.10.9+aac7bfc' # This function just ignored the git commit id. vstring = vstring.split("+")[0] return version.LooseVersion(vstring) has_pint, requires_pint = _importorskip("pint") has_shapely, requires_shapely = _importorskip("shapely")
28.808824
76
0.677897
fb4509267fb994db2e7ad09aa12a9ac7a647e6e4
1,151
py
Python
gui/component/navigation_bar.py
acc-cosc-1336/cosc-1336-fall-2017-RobScaley
44c807ac95a6348f5643941d745b9232a127610e
[ "MIT" ]
null
null
null
gui/component/navigation_bar.py
acc-cosc-1336/cosc-1336-fall-2017-RobScaley
44c807ac95a6348f5643941d745b9232a127610e
[ "MIT" ]
null
null
null
gui/component/navigation_bar.py
acc-cosc-1336/cosc-1336-fall-2017-RobScaley
44c807ac95a6348f5643941d745b9232a127610e
[ "MIT" ]
null
null
null
from tkinter import LEFT from tkinter.ttk import Frame, Button class NavigationBar(Frame): def __init__(self, parent, data_source): Frame.__init__(self, parent) self.data_source = data_source self.init_form() def init_form(self): nextButton = Button(self, text="Next ", command=self.on_next) updateButton = Button(self, text="Update ", command=self.on_update) deleteButton = Button(self, text="Delete ", command=self.on_delete) previousButton = Button(self, text="Previous ", command=self.on_previous) searchButton = Button(self, text="Search ", command=self.master.on_search) nextButton.pack(side=LEFT) previousButton.pack(side=LEFT) updateButton.pack(side=LEFT) deleteButton.pack(side=LEFT) searchButton.pack(side=LEFT) def on_next(self): self.data_source.next_record() def on_update(self): self.data_source.request_update() def on_delete(self): pass def on_previous(self): self.data_source.previous_record()
31.972222
87
0.629018
c60b1a37bc6cd21450aa86672bd743b8fd1b0747
18,363
py
Python
qa/rpc-tests/test_framework/comptool.py
mirzaei-ce/core-rezabit
39c65eab32ca33a498c440556860163731a79195
[ "MIT" ]
null
null
null
qa/rpc-tests/test_framework/comptool.py
mirzaei-ce/core-rezabit
39c65eab32ca33a498c440556860163731a79195
[ "MIT" ]
null
null
null
qa/rpc-tests/test_framework/comptool.py
mirzaei-ce/core-rezabit
39c65eab32ca33a498c440556860163731a79195
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from mininode import * from blockstore import BlockStore, TxStore from util import p2p_port ''' This is a tool for comparing two or more rezabitds to each other using a script provided. To use, create a class that implements get_tests(), and pass it in as the test generator to TestManager. get_tests() should be a python generator that returns TestInstance objects. See below for definition. ''' # TestNode behaves as follows: # Configure with a BlockStore and TxStore # on_inv: log the message but don't request # on_headers: log the chain tip # on_pong: update ping response map (for synchronization) # on_getheaders: provide headers via BlockStore # on_getdata: provide blocks via BlockStore global mininode_lock def wait_until(predicate, attempts=float('inf'), timeout=float('inf')): attempt = 0 elapsed = 0 while attempt < attempts and elapsed < timeout: with mininode_lock: if predicate(): return True attempt += 1 elapsed += 0.05 time.sleep(0.05) return False class RejectResult(object): ''' Outcome that expects rejection of a transaction or block. ''' def __init__(self, code, reason=''): self.code = code self.reason = reason def match(self, other): if self.code != other.code: return False return other.reason.startswith(self.reason) def __repr__(self): return '%i:%s' % (self.code,self.reason or '*') class TestNode(NodeConnCB): def __init__(self, block_store, tx_store): NodeConnCB.__init__(self) self.conn = None self.bestblockhash = None self.block_store = block_store self.block_request_map = {} self.tx_store = tx_store self.tx_request_map = {} self.block_reject_map = {} self.tx_reject_map = {} # When the pingmap is non-empty we're waiting for # a response self.pingMap = {} self.lastInv = [] self.closed = False def on_close(self, conn): self.closed = True def add_connection(self, conn): self.conn = conn def on_headers(self, conn, message): if len(message.headers) > 0: best_header = message.headers[-1] best_header.calc_sha256() self.bestblockhash = best_header.sha256 def on_getheaders(self, conn, message): response = self.block_store.headers_for(message.locator, message.hashstop) if response is not None: conn.send_message(response) def on_getdata(self, conn, message): [conn.send_message(r) for r in self.block_store.get_blocks(message.inv)] [conn.send_message(r) for r in self.tx_store.get_transactions(message.inv)] for i in message.inv: if i.type == 1: self.tx_request_map[i.hash] = True elif i.type == 2: self.block_request_map[i.hash] = True def on_inv(self, conn, message): self.lastInv = [x.hash for x in message.inv] def on_pong(self, conn, message): try: del self.pingMap[message.nonce] except KeyError: raise AssertionError("Got pong for unknown ping [%s]" % repr(message)) def on_reject(self, conn, message): if message.message == 'tx': self.tx_reject_map[message.data] = RejectResult(message.code, message.reason) if message.message == 'block': self.block_reject_map[message.data] = RejectResult(message.code, message.reason) def send_inv(self, obj): mtype = 2 if isinstance(obj, CBlock) else 1 self.conn.send_message(msg_inv([CInv(mtype, obj.sha256)])) def send_getheaders(self): # We ask for headers from their last tip. m = msg_getheaders() m.locator = self.block_store.get_locator(self.bestblockhash) self.conn.send_message(m) # This assumes BIP31 def send_ping(self, nonce): self.pingMap[nonce] = True self.conn.send_message(msg_ping(nonce)) def received_ping_response(self, nonce): return nonce not in self.pingMap def send_mempool(self): self.lastInv = [] self.conn.send_message(msg_mempool()) # TestInstance: # # Instances of these are generated by the test generator, and fed into the # comptool. # # "blocks_and_transactions" should be an array of # [obj, True/False/None, hash/None]: # - obj is either a CBlock, CBlockHeader, or a CTransaction, and # - the second value indicates whether the object should be accepted # into the blockchain or mempool (for tests where we expect a certain # answer), or "None" if we don't expect a certain answer and are just # comparing the behavior of the nodes being tested. # - the third value is the hash to test the tip against (if None or omitted, # use the hash of the block) # - NOTE: if a block header, no test is performed; instead the header is # just added to the block_store. This is to facilitate block delivery # when communicating with headers-first clients (when withholding an # intermediate block). # sync_every_block: if True, then each block will be inv'ed, synced, and # nodes will be tested based on the outcome for the block. If False, # then inv's accumulate until all blocks are processed (or max inv size # is reached) and then sent out in one inv message. Then the final block # will be synced across all connections, and the outcome of the final # block will be tested. # sync_every_tx: analogous to behavior for sync_every_block, except if outcome # on the final tx is None, then contents of entire mempool are compared # across all connections. (If outcome of final tx is specified as true # or false, then only the last tx is tested against outcome.) class TestInstance(object): def __init__(self, objects=None, sync_every_block=True, sync_every_tx=False): self.blocks_and_transactions = objects if objects else [] self.sync_every_block = sync_every_block self.sync_every_tx = sync_every_tx class TestManager(object): def __init__(self, testgen, datadir): self.test_generator = testgen self.connections = [] self.test_nodes = [] self.block_store = BlockStore(datadir) self.tx_store = TxStore(datadir) self.ping_counter = 1 def add_all_connections(self, nodes): for i in range(len(nodes)): # Create a p2p connection to each node test_node = TestNode(self.block_store, self.tx_store) self.test_nodes.append(test_node) self.connections.append(NodeConn('127.0.0.1', p2p_port(i), nodes[i], test_node)) # Make sure the TestNode (callback class) has a reference to its # associated NodeConn test_node.add_connection(self.connections[-1]) def clear_all_connections(self): self.connections = [] self.test_nodes = [] def wait_for_disconnections(self): def disconnected(): return all(node.closed for node in self.test_nodes) return wait_until(disconnected, timeout=10) def wait_for_verack(self): def veracked(): return all(node.verack_received for node in self.test_nodes) return wait_until(veracked, timeout=10) def wait_for_pings(self, counter): def received_pongs(): return all(node.received_ping_response(counter) for node in self.test_nodes) return wait_until(received_pongs) # sync_blocks: Wait for all connections to request the blockhash given # then send get_headers to find out the tip of each node, and synchronize # the response by using a ping (and waiting for pong with same nonce). def sync_blocks(self, blockhash, num_blocks): def blocks_requested(): return all( blockhash in node.block_request_map and node.block_request_map[blockhash] for node in self.test_nodes ) # --> error if not requested if not wait_until(blocks_requested, attempts=20*num_blocks): # print [ c.cb.block_request_map for c in self.connections ] raise AssertionError("Not all nodes requested block") # Send getheaders message [ c.cb.send_getheaders() for c in self.connections ] # Send ping and wait for response -- synchronization hack [ c.cb.send_ping(self.ping_counter) for c in self.connections ] self.wait_for_pings(self.ping_counter) self.ping_counter += 1 # Analogous to sync_block (see above) def sync_transaction(self, txhash, num_events): # Wait for nodes to request transaction (50ms sleep * 20 tries * num_events) def transaction_requested(): return all( txhash in node.tx_request_map and node.tx_request_map[txhash] for node in self.test_nodes ) # --> error if not requested if not wait_until(transaction_requested, attempts=20*num_events): # print [ c.cb.tx_request_map for c in self.connections ] raise AssertionError("Not all nodes requested transaction") # Get the mempool [ c.cb.send_mempool() for c in self.connections ] # Send ping and wait for response -- synchronization hack [ c.cb.send_ping(self.ping_counter) for c in self.connections ] self.wait_for_pings(self.ping_counter) self.ping_counter += 1 # Sort inv responses from each node with mininode_lock: [ c.cb.lastInv.sort() for c in self.connections ] # Verify that the tip of each connection all agree with each other, and # with the expected outcome (if given) def check_results(self, blockhash, outcome): with mininode_lock: for c in self.connections: if outcome is None: if c.cb.bestblockhash != self.connections[0].cb.bestblockhash: return False elif isinstance(outcome, RejectResult): # Check that block was rejected w/ code if c.cb.bestblockhash == blockhash: return False if blockhash not in c.cb.block_reject_map: print 'Block not in reject map: %064x' % (blockhash) return False if not outcome.match(c.cb.block_reject_map[blockhash]): print 'Block rejected with %s instead of expected %s: %064x' % (c.cb.block_reject_map[blockhash], outcome, blockhash) return False elif ((c.cb.bestblockhash == blockhash) != outcome): # print c.cb.bestblockhash, blockhash, outcome return False return True # Either check that the mempools all agree with each other, or that # txhash's presence in the mempool matches the outcome specified. # This is somewhat of a strange comparison, in that we're either comparing # a particular tx to an outcome, or the entire mempools altogether; # perhaps it would be useful to add the ability to check explicitly that # a particular tx's existence in the mempool is the same across all nodes. def check_mempool(self, txhash, outcome): with mininode_lock: for c in self.connections: if outcome is None: # Make sure the mempools agree with each other if c.cb.lastInv != self.connections[0].cb.lastInv: # print c.rpc.getrawmempool() return False elif isinstance(outcome, RejectResult): # Check that tx was rejected w/ code if txhash in c.cb.lastInv: return False if txhash not in c.cb.tx_reject_map: print 'Tx not in reject map: %064x' % (txhash) return False if not outcome.match(c.cb.tx_reject_map[txhash]): print 'Tx rejected with %s instead of expected %s: %064x' % (c.cb.tx_reject_map[txhash], outcome, txhash) return False elif ((txhash in c.cb.lastInv) != outcome): # print c.rpc.getrawmempool(), c.cb.lastInv return False return True def run(self): # Wait until verack is received self.wait_for_verack() test_number = 1 for test_instance in self.test_generator.get_tests(): # We use these variables to keep track of the last block # and last transaction in the tests, which are used # if we're not syncing on every block or every tx. [ block, block_outcome, tip ] = [ None, None, None ] [ tx, tx_outcome ] = [ None, None ] invqueue = [] for test_obj in test_instance.blocks_and_transactions: b_or_t = test_obj[0] outcome = test_obj[1] # Determine if we're dealing with a block or tx if isinstance(b_or_t, CBlock): # Block test runner block = b_or_t block_outcome = outcome tip = block.sha256 # each test_obj can have an optional third argument # to specify the tip we should compare with # (default is to use the block being tested) if len(test_obj) >= 3: tip = test_obj[2] # Add to shared block_store, set as current block # If there was an open getdata request for the block # previously, and we didn't have an entry in the # block_store, then immediately deliver, because the # node wouldn't send another getdata request while # the earlier one is outstanding. first_block_with_hash = True if self.block_store.get(block.sha256) is not None: first_block_with_hash = False with mininode_lock: self.block_store.add_block(block) for c in self.connections: if first_block_with_hash and block.sha256 in c.cb.block_request_map and c.cb.block_request_map[block.sha256] == True: # There was a previous request for this block hash # Most likely, we delivered a header for this block # but never had the block to respond to the getdata c.send_message(msg_block(block)) else: c.cb.block_request_map[block.sha256] = False # Either send inv's to each node and sync, or add # to invqueue for later inv'ing. if (test_instance.sync_every_block): [ c.cb.send_inv(block) for c in self.connections ] self.sync_blocks(block.sha256, 1) if (not self.check_results(tip, outcome)): raise AssertionError("Test failed at test %d" % test_number) else: invqueue.append(CInv(2, block.sha256)) elif isinstance(b_or_t, CBlockHeader): block_header = b_or_t self.block_store.add_header(block_header) else: # Tx test runner assert(isinstance(b_or_t, CTransaction)) tx = b_or_t tx_outcome = outcome # Add to shared tx store and clear map entry with mininode_lock: self.tx_store.add_transaction(tx) for c in self.connections: c.cb.tx_request_map[tx.sha256] = False # Again, either inv to all nodes or save for later if (test_instance.sync_every_tx): [ c.cb.send_inv(tx) for c in self.connections ] self.sync_transaction(tx.sha256, 1) if (not self.check_mempool(tx.sha256, outcome)): raise AssertionError("Test failed at test %d" % test_number) else: invqueue.append(CInv(1, tx.sha256)) # Ensure we're not overflowing the inv queue if len(invqueue) == MAX_INV_SZ: [ c.send_message(msg_inv(invqueue)) for c in self.connections ] invqueue = [] # Do final sync if we weren't syncing on every block or every tx. if (not test_instance.sync_every_block and block is not None): if len(invqueue) > 0: [ c.send_message(msg_inv(invqueue)) for c in self.connections ] invqueue = [] self.sync_blocks(block.sha256, len(test_instance.blocks_and_transactions)) if (not self.check_results(tip, block_outcome)): raise AssertionError("Block test failed at test %d" % test_number) if (not test_instance.sync_every_tx and tx is not None): if len(invqueue) > 0: [ c.send_message(msg_inv(invqueue)) for c in self.connections ] invqueue = [] self.sync_transaction(tx.sha256, len(test_instance.blocks_and_transactions)) if (not self.check_mempool(tx.sha256, tx_outcome)): raise AssertionError("Mempool test failed at test %d" % test_number) print "Test %d: PASS" % test_number, [ c.rpc.getblockcount() for c in self.connections ] test_number += 1 [ c.disconnect_node() for c in self.connections ] self.wait_for_disconnections() self.block_store.close() self.tx_store.close()
44.035971
145
0.602461
e55894eb9b946d49b32faf653e07bece54394cb9
239,821
py
Python
imgaug/augmenters/geometric.py
fmder/imgaug
4c81c7a7503b64f54d76144385ea4330fd7c8a84
[ "MIT" ]
null
null
null
imgaug/augmenters/geometric.py
fmder/imgaug
4c81c7a7503b64f54d76144385ea4330fd7c8a84
[ "MIT" ]
null
null
null
imgaug/augmenters/geometric.py
fmder/imgaug
4c81c7a7503b64f54d76144385ea4330fd7c8a84
[ "MIT" ]
null
null
null
"""Augmenters that apply affine or similar transformations. List of augmenters: * :class:`Affine` * :class:`ScaleX` * :class:`ScaleY` * :class:`TranslateX` * :class:`TranslateY` * :class:`Rotate` * :class:`ShearX` * :class:`ShearY` * :class:`AffineCv2` * :class:`PiecewiseAffine` * :class:`PerspectiveTransform` * :class:`ElasticTransformation` * :class:`Rot90` * :class:`WithPolarWarping` * :class:`Jigsaw` """ from __future__ import print_function, division, absolute_import import math import functools import numpy as np from scipy import ndimage from skimage import transform as tf import cv2 import six.moves as sm import imgaug as ia from imgaug.augmentables.polys import _ConcavePolygonRecoverer from . import meta from . import blur as blur_lib from . import size as size_lib from .. import parameters as iap from .. import dtypes as iadt from .. import random as iarandom _VALID_DTYPES_CV2_ORDER_0 = {"uint8", "uint16", "int8", "int16", "int32", "float16", "float32", "float64", "bool"} _VALID_DTYPES_CV2_ORDER_NOT_0 = {"uint8", "uint16", "int8", "int16", "float16", "float32", "float64", "bool"} # skimage | cv2 # 0 | cv2.INTER_NEAREST # 1 | cv2.INTER_LINEAR # 2 | - # 3 | cv2.INTER_CUBIC # 4 | - _AFFINE_INTERPOLATION_ORDER_SKIMAGE_TO_CV2 = { 0: cv2.INTER_NEAREST, 1: cv2.INTER_LINEAR, 2: cv2.INTER_CUBIC, 3: cv2.INTER_CUBIC, 4: cv2.INTER_CUBIC } # constant, edge, symmetric, reflect, wrap # skimage | cv2 # constant | cv2.BORDER_CONSTANT # edge | cv2.BORDER_REPLICATE # symmetric | cv2.BORDER_REFLECT # reflect | cv2.BORDER_REFLECT_101 # wrap | cv2.BORDER_WRAP _AFFINE_MODE_SKIMAGE_TO_CV2 = { "constant": cv2.BORDER_CONSTANT, "edge": cv2.BORDER_REPLICATE, "symmetric": cv2.BORDER_REFLECT, "reflect": cv2.BORDER_REFLECT_101, "wrap": cv2.BORDER_WRAP } def _handle_order_arg(order, backend): # Peformance in skimage for Affine: # 1.0x order 0 # 1.5x order 1 # 3.0x order 3 # 30.0x order 4 # 60.0x order 5 # measurement based on 256x256x3 batches, difference is smaller # on smaller images (seems to grow more like exponentially with image # size) if order == ia.ALL: if backend in ["auto", "cv2"]: return iap.Choice([0, 1, 3]) # dont use order=2 (bi-quadratic) because that is apparently # currently not recommended (and throws a warning) return iap.Choice([0, 1, 3, 4, 5]) if ia.is_single_integer(order): assert 0 <= order <= 5, ( "Expected order's integer value to be in the interval [0, 5], " "got %d." % (order,)) if backend == "cv2": assert order in [0, 1, 3], ( "Backend \"cv2\" and order=%d was chosen, but cv2 backend " "can only handle order 0, 1 or 3." % (order,)) return iap.Deterministic(order) if isinstance(order, list): assert all([ia.is_single_integer(val) for val in order]), ( "Expected order list to only contain integers, " "got types %s." % (str([type(val) for val in order]),)) assert all([0 <= val <= 5 for val in order]), ( "Expected all of order's integer values to be in range " "0 <= x <= 5, got %s." % (str(order),)) if backend == "cv2": assert all([val in [0, 1, 3] for val in order]), ( "cv2 backend can only handle order 0, 1 or 3. Got order " "list of %s." % (order,)) return iap.Choice(order) if isinstance(order, iap.StochasticParameter): return order raise Exception( "Expected order to be imgaug.ALL, int, list of int or " "StochasticParameter, got %s." % (type(order),)) def _handle_cval_arg(cval): if cval == ia.ALL: # TODO change this so that it is dynamically created per image # (or once per dtype) return iap.Uniform(0, 255) # skimage transform expects float return iap.handle_continuous_param( cval, "cval", value_range=None, tuple_to_uniform=True, list_to_choice=True) # currently used for Affine and PiecewiseAffine # TODO use iap.handle_categorical_string_param() here def _handle_mode_arg(mode): if mode == ia.ALL: return iap.Choice(["constant", "edge", "symmetric", "reflect", "wrap"]) if ia.is_string(mode): return iap.Deterministic(mode) if isinstance(mode, list): assert all([ia.is_string(val) for val in mode]), ( "Expected list of modes to only contain strings, got " "types %s" % (", ".join([str(type(v)) for v in mode]))) return iap.Choice(mode) if isinstance(mode, iap.StochasticParameter): return mode raise Exception( "Expected mode to be imgaug.ALL, a string, a list of strings " "or StochasticParameter, got %s." % (type(mode),)) def _warp_affine_arr(arr, matrix, order=1, mode="constant", cval=0, output_shape=None, backend="auto"): if ia.is_single_integer(cval): cval = [cval] * len(arr.shape[2]) # no changes to zero-sized arrays if arr.size == 0: return arr min_value, _center_value, max_value = \ iadt.get_value_range_of_dtype(arr.dtype) cv2_bad_order = order not in [0, 1, 3] if order == 0: cv2_bad_dtype = ( arr.dtype.name not in _VALID_DTYPES_CV2_ORDER_0) else: cv2_bad_dtype = ( arr.dtype.name not in _VALID_DTYPES_CV2_ORDER_NOT_0 ) cv2_impossible = cv2_bad_order or cv2_bad_dtype use_skimage = ( backend == "skimage" or (backend == "auto" and cv2_impossible) ) if use_skimage: # cval contains 3 values as cv2 can handle 3, but # skimage only 1 cval = cval[0] # skimage does not clip automatically cval = max(min(cval, max_value), min_value) image_warped = _warp_affine_arr_skimage( arr, matrix, cval=cval, mode=mode, order=order, output_shape=output_shape ) else: assert not cv2_bad_dtype, ( not cv2_bad_dtype, "cv2 backend in Affine got a dtype %s, which it " "cannot handle. Try using a different dtype or set " "order=0." % ( arr.dtype,)) image_warped = _warp_affine_arr_cv2( arr, matrix, cval=tuple([int(v) for v in cval]), mode=mode, order=order, output_shape=output_shape ) return image_warped def _warp_affine_arr_skimage(arr, matrix, cval, mode, order, output_shape): iadt.gate_dtypes( arr, allowed=["bool", "uint8", "uint16", "uint32", "int8", "int16", "int32", "float16", "float32", "float64"], disallowed=["uint64", "uint128", "uint256", "int64", "int128", "int256", "float96", "float128", "float256"], augmenter=None) input_dtype = arr.dtype image_warped = tf.warp( arr, matrix.inverse, order=order, mode=mode, cval=cval, preserve_range=True, output_shape=output_shape, ) # tf.warp changes all dtypes to float64, including uint8 if input_dtype == np.bool_: image_warped = image_warped > 0.5 else: image_warped = iadt.restore_dtypes_(image_warped, input_dtype) return image_warped def _warp_affine_arr_cv2(arr, matrix, cval, mode, order, output_shape): iadt.gate_dtypes( arr, allowed=["bool", "uint8", "uint16", "int8", "int16", "int32", "float16", "float32", "float64"], disallowed=["uint32", "uint64", "uint128", "uint256", "int64", "int128", "int256", "float96", "float128", "float256"], augmenter=None) if order != 0: assert arr.dtype.name != "int32", ( "Affine only supports cv2-based transformations of int32 " "arrays when using order=0, but order was set to %d." % ( order,)) input_dtype = arr.dtype if input_dtype in [np.bool_, np.float16]: arr = arr.astype(np.float32) elif input_dtype == np.int8 and order != 0: arr = arr.astype(np.int16) dsize = ( int(np.round(output_shape[1])), int(np.round(output_shape[0])) ) # map key X from skimage to cv2 or fall back to key X mode = _AFFINE_MODE_SKIMAGE_TO_CV2.get(mode, mode) order = _AFFINE_INTERPOLATION_ORDER_SKIMAGE_TO_CV2.get(order, order) # TODO this uses always a tuple of 3 values for cval, even if # #chans != 3, works with 1d but what in other cases? nb_channels = arr.shape[-1] if nb_channels <= 3: # TODO this block can also be when order==0 for any nb_channels, # but was deactivated for now, because cval would always # contain 3 values and not nb_channels values image_warped = cv2.warpAffine( arr, matrix.params[:2], dsize=dsize, flags=order, borderMode=mode, borderValue=cval ) # cv2 warp drops last axis if shape is (H, W, 1) if image_warped.ndim == 2: image_warped = image_warped[..., np.newaxis] else: # warp each channel on its own, re-add channel axis, then stack # the result from a list of [H, W, 1] to (H, W, C). image_warped = [ cv2.warpAffine( arr[:, :, c], matrix.params[:2], dsize=dsize, flags=order, borderMode=mode, borderValue=tuple([cval[0]]) ) for c in sm.xrange(nb_channels)] image_warped = np.stack(image_warped, axis=-1) if input_dtype.name == "bool": image_warped = image_warped > 0.5 elif input_dtype.name in ["int8", "float16"]: image_warped = iadt.restore_dtypes_(image_warped, input_dtype) return image_warped def _compute_affine_warp_output_shape(matrix, input_shape): height, width = input_shape[:2] if height == 0 or width == 0: return matrix, input_shape # determine shape of output image corners = np.array([ [0, 0], [0, height - 1], [width - 1, height - 1], [width - 1, 0] ]) corners = matrix(corners) minc = corners[:, 0].min() minr = corners[:, 1].min() maxc = corners[:, 0].max() maxr = corners[:, 1].max() out_height = maxr - minr + 1 out_width = maxc - minc + 1 if len(input_shape) == 3: output_shape = np.ceil((out_height, out_width, input_shape[2])) else: output_shape = np.ceil((out_height, out_width)) output_shape = tuple([int(v) for v in output_shape.tolist()]) # fit output image in new shape translation = (-minc, -minr) matrix_to_fit = tf.SimilarityTransform(translation=translation) matrix = matrix + matrix_to_fit return matrix, output_shape # TODO allow -1 destinations def apply_jigsaw(arr, destinations): """Move cells of an image similar to a jigsaw puzzle. This function will split the image into ``rows x cols`` cells and move each cell to the target index given in `destinations`. dtype support:: * ``uint8``: yes; fully tested * ``uint16``: yes; fully tested * ``uint32``: yes; fully tested * ``uint64``: yes; fully tested * ``int8``: yes; fully tested * ``int16``: yes; fully tested * ``int32``: yes; fully tested * ``int64``: yes; fully tested * ``float16``: yes; fully tested * ``float32``: yes; fully tested * ``float64``: yes; fully tested * ``float128``: yes; fully tested * ``bool``: yes; fully tested Parameters ---------- arr : ndarray Array with at least two dimensions denoting height and width. destinations : ndarray 2-dimensional array containing for each cell the id of the destination cell. The order is expected to a flattened c-order, i.e. row by row. The height of the image must be evenly divisible by the number of rows in this array. Analogous for the width and columns. Returns ------- ndarray Modified image with cells moved according to `destinations`. """ # pylint complains about unravel_index() here # pylint: disable=unbalanced-tuple-unpacking nb_rows, nb_cols = destinations.shape[0:2] assert arr.ndim >= 2, ( "Expected array with at least two dimensions, but got %d with " "shape %s." % (arr.ndim, arr.shape)) assert (arr.shape[0] % nb_rows) == 0, ( "Expected image height to by divisible by number of rows, but got " "height %d and %d rows. Use cropping or padding to modify the image " "height or change the number of rows." % (arr.shape[0], nb_rows) ) assert (arr.shape[1] % nb_cols) == 0, ( "Expected image width to by divisible by number of columns, but got " "width %d and %d columns. Use cropping or padding to modify the image " "width or change the number of columns." % (arr.shape[1], nb_cols) ) cell_height = arr.shape[0] // nb_rows cell_width = arr.shape[1] // nb_cols dest_rows, dest_cols = np.unravel_index( destinations.flatten(), (nb_rows, nb_cols)) result = np.zeros_like(arr) i = 0 for source_row in np.arange(nb_rows): for source_col in np.arange(nb_cols): # TODO vectorize coords computation dest_row, dest_col = dest_rows[i], dest_cols[i] source_y1 = source_row * cell_height source_y2 = source_y1 + cell_height source_x1 = source_col * cell_width source_x2 = source_x1 + cell_width dest_y1 = dest_row * cell_height dest_y2 = dest_y1 + cell_height dest_x1 = dest_col * cell_width dest_x2 = dest_x1 + cell_width source = arr[source_y1:source_y2, source_x1:source_x2] result[dest_y1:dest_y2, dest_x1:dest_x2] = source i += 1 return result def apply_jigsaw_to_coords(coords, destinations, image_shape): """Move coordinates on an image similar to a jigsaw puzzle. This is the same as :func:`apply_jigsaw`, but moves coordinates within the cells. Parameters ---------- coords : ndarray ``(N, 2)`` array denoting xy-coordinates. destinations : ndarray See :func:`apply_jigsaw`. image_shape : tuple of int ``(height, width, ...)`` shape of the image on which the coordinates are placed. Only height and width are required. Returns ------- ndarray Moved coordinates. """ # pylint complains about unravel_index() here # pylint: disable=unbalanced-tuple-unpacking nb_rows, nb_cols = destinations.shape[0:2] height, width = image_shape[0:2] cell_height = height // nb_rows cell_width = width // nb_cols dest_rows, dest_cols = np.unravel_index( destinations.flatten(), (nb_rows, nb_cols)) result = np.copy(coords) # TODO vectorize this loop for i, (x, y) in enumerate(coords): ooi_x = (x < 0 or x >= width) ooi_y = (y < 0 or y >= height) if ooi_x or ooi_y: continue source_row = int(y // cell_height) source_col = int(x // cell_width) source_cell_idx = (source_row * nb_cols) + source_col dest_row = dest_rows[source_cell_idx] dest_col = dest_cols[source_cell_idx] source_y1 = source_row * cell_height source_x1 = source_col * cell_width dest_y1 = dest_row * cell_height dest_x1 = dest_col * cell_width result[i, 0] = dest_x1 + (x - source_x1) result[i, 1] = dest_y1 + (y - source_y1) return result def generate_jigsaw_destinations(nb_rows, nb_cols, max_steps, random_state, connectivity=4): """Generate a destination pattern for :func:`apply_jigsaw`. Parameters ---------- nb_rows : int Number of rows to split the image into. nb_cols : int Number of columns to split the image into. max_steps : int Maximum number of cells that each cell may be moved. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState RNG or seed to use. If ``None`` the global RNG will be used. connectivity : int, optional Whether a diagonal move of a cell counts as one step (``connectivity=8``) or two steps (``connectivity=4``). Returns ------- ndarray 2-dimensional array containing for each cell the id of the target cell. """ assert connectivity in (4, 8), ( "Expected connectivity of 4 or 8, got %d." % (connectivity,)) random_state = iarandom.RNG(random_state) steps = random_state.integers(0, max_steps, size=(nb_rows, nb_cols), endpoint=True) directions = random_state.integers(0, connectivity, size=(nb_rows, nb_cols, max_steps), endpoint=False) destinations = np.arange(nb_rows*nb_cols).reshape((nb_rows, nb_cols)) for step in np.arange(max_steps): directions_step = directions[:, :, step] for y in np.arange(nb_rows): for x in np.arange(nb_cols): if steps[y, x] > 0: y_target, x_target = { 0: (y-1, x+0), 1: (y+0, x+1), 2: (y+1, x+0), 3: (y+0, x-1), 4: (y-1, x-1), 5: (y-1, x+1), 6: (y+1, x+1), 7: (y+1, x-1) }[directions_step[y, x]] y_target = max(min(y_target, nb_rows-1), 0) x_target = max(min(x_target, nb_cols-1), 0) target_steps = steps[y_target, x_target] if (y, x) != (y_target, x_target) and target_steps >= 1: source_dest = destinations[y, x] target_dest = destinations[y_target, x_target] destinations[y, x] = target_dest destinations[y_target, x_target] = source_dest steps[y, x] -= 1 steps[y_target, x_target] -= 1 return destinations class _AffineSamplingResult(object): def __init__(self, scale=None, translate=None, translate_mode="px", rotate=None, shear=None, cval=None, mode=None, order=None): self.scale = scale self.translate = translate self.translate_mode = translate_mode self.rotate = rotate self.shear = shear self.cval = cval self.mode = mode self.order = order def get_affine_parameters(self, idx, arr_shape, image_shape): scale_y = self.scale[1][idx] # TODO 1 and 0 should be inverted here scale_x = self.scale[0][idx] translate_y = self.translate[1][idx] # TODO same as above translate_x = self.translate[0][idx] assert self.translate_mode in ["px", "percent"], ( "Expected 'px' or 'percent', got '%s'." % (self.translate_mode,)) if self.translate_mode == "percent": translate_y_px = translate_y * arr_shape[0] else: translate_y_px = (translate_y / image_shape[0]) * arr_shape[0] if self.translate_mode == "percent": translate_x_px = translate_x * arr_shape[1] else: translate_x_px = (translate_x / image_shape[1]) * arr_shape[1] rotate_deg = self.rotate[idx] shear_x_deg = self.shear[0][idx] shear_y_deg = self.shear[1][idx] rotate_rad, shear_x_rad, shear_y_rad = np.deg2rad([ rotate_deg, shear_x_deg, shear_y_deg]) # we add the _deg versions of rotate and shear here for PILAffine, # Affine itself only uses *_rad return { "scale_y": scale_y, "scale_x": scale_x, "translate_y_px": translate_y_px, "translate_x_px": translate_x_px, "rotate_rad": rotate_rad, "shear_y_rad": shear_y_rad, "shear_x_rad": shear_x_rad, "rotate_deg": rotate_deg, "shear_y_deg": shear_y_deg, "shear_x_deg": shear_x_deg } def to_matrix(self, idx, arr_shape, image_shape, fit_output, shift_add=(0.5, 0.5)): if 0 in image_shape: return tf.AffineTransform(), arr_shape height, width = arr_shape[0:2] params = self.get_affine_parameters(idx, arr_shape=arr_shape, image_shape=image_shape) # for images we use additional shifts of (0.5, 0.5) as otherwise # we get an ugly black border for 90deg rotations shift_y = height / 2.0 - shift_add[0] shift_x = width / 2.0 - shift_add[1] matrix_to_topleft = tf.SimilarityTransform( translation=[-shift_x, -shift_y]) matrix_shear_y_rot = tf.AffineTransform(rotation=-3.141592/2) matrix_shear_y = tf.AffineTransform(shear=params["shear_y_rad"]) matrix_shear_y_rot_inv = tf.AffineTransform(rotation=3.141592/2) matrix_transforms = tf.AffineTransform( scale=(params["scale_x"], params["scale_y"]), translation=(params["translate_x_px"], params["translate_y_px"]), rotation=params["rotate_rad"], shear=params["shear_x_rad"] ) matrix_to_center = tf.SimilarityTransform( translation=[shift_x, shift_y]) matrix = (matrix_to_topleft + matrix_shear_y_rot + matrix_shear_y + matrix_shear_y_rot_inv + matrix_transforms + matrix_to_center) if fit_output: return _compute_affine_warp_output_shape(matrix, arr_shape) return matrix, arr_shape def to_matrix_cba(self, idx, arr_shape, fit_output, shift_add=(0.0, 0.0)): return self.to_matrix(idx, arr_shape, arr_shape, fit_output, shift_add) def copy(self): return _AffineSamplingResult( scale=self.scale, translate=self.translate, translate_mode=self.translate_mode, rotate=self.rotate, shear=self.shear, cval=self.cval, mode=self.mode, order=self.order ) def _is_identity_matrix(matrix, eps=1e-4): identity = np.float32([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) return np.average(np.abs(identity - matrix.params)) <= eps class Affine(meta.Augmenter): """ Augmenter to apply affine transformations to images. This is mostly a wrapper around the corresponding classes and functions in OpenCV and skimage. Affine transformations involve: - Translation ("move" image on the x-/y-axis) - Rotation - Scaling ("zoom" in/out) - Shear (move one side of the image, turning a square into a trapezoid) All such transformations can create "new" pixels in the image without a defined content, e.g. if the image is translated to the left, pixels are created on the right. A method has to be defined to deal with these pixel values. The parameters `cval` and `mode` of this class deal with this. Some transformations involve interpolations between several pixels of the input image to generate output pixel values. The parameter `order` deals with the method of interpolation used for this. .. note :: While this augmenter supports segmentation maps and heatmaps that have a different size than the corresponding image, it is strongly recommended to use the same aspect ratios. E.g. for an image of shape ``(200, 100, 3)``, good segmap/heatmap array shapes also follow a ``2:1`` ratio and ideally are ``(200, 100, C)``, ``(100, 50, C)`` or ``(50, 25, C)``. Otherwise, transformations involving rotations or shearing will produce unaligned outputs. For performance reasons, there is no explicit validation of whether the aspect ratios are similar. dtype support:: if (backend="skimage", order in [0, 1]):: * ``uint8``: yes; tested * ``uint16``: yes; tested * ``uint32``: yes; tested (1) * ``uint64``: no (2) * ``int8``: yes; tested * ``int16``: yes; tested * ``int32``: yes; tested (1) * ``int64``: no (2) * ``float16``: yes; tested * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: no (2) * ``bool``: yes; tested - (1) scikit-image converts internally to float64, which might affect the accuracy of large integers. In tests this seemed to not be an issue. - (2) results too inaccurate if (backend="skimage", order in [3, 4]):: * ``uint8``: yes; tested * ``uint16``: yes; tested * ``uint32``: yes; tested (1) * ``uint64``: no (2) * ``int8``: yes; tested * ``int16``: yes; tested * ``int32``: yes; tested (1) * ``int64``: no (2) * ``float16``: yes; tested * ``float32``: yes; tested * ``float64``: limited; tested (3) * ``float128``: no (2) * ``bool``: yes; tested - (1) scikit-image converts internally to float64, which might affect the accuracy of large integers. In tests this seemed to not be an issue. - (2) results too inaccurate - (3) ``NaN`` around minimum and maximum of float64 value range if (backend="skimage", order=5]):: * ``uint8``: yes; tested * ``uint16``: yes; tested * ``uint32``: yes; tested (1) * ``uint64``: no (2) * ``int8``: yes; tested * ``int16``: yes; tested * ``int32``: yes; tested (1) * ``int64``: no (2) * ``float16``: yes; tested * ``float32``: yes; tested * ``float64``: limited; not tested (3) * ``float128``: no (2) * ``bool``: yes; tested - (1) scikit-image converts internally to ``float64``, which might affect the accuracy of large integers. In tests this seemed to not be an issue. - (2) results too inaccurate - (3) ``NaN`` around minimum and maximum of float64 value range if (backend="cv2", order=0):: * ``uint8``: yes; tested * ``uint16``: yes; tested * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: yes; tested * ``int16``: yes; tested * ``int32``: yes; tested * ``int64``: no (2) * ``float16``: yes; tested (3) * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: no (1) * ``bool``: yes; tested (3) - (1) rejected by cv2 - (2) changed to ``int32`` by cv2 - (3) mapped internally to ``float32`` if (backend="cv2", order=1): * ``uint8``: yes; fully tested * ``uint16``: yes; tested * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: yes; tested (3) * ``int16``: yes; tested * ``int32``: no (2) * ``int64``: no (2) * ``float16``: yes; tested (4) * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: no (1) * ``bool``: yes; tested (4) - (1) rejected by cv2 - (2) causes cv2 error: ``cv2.error: OpenCV(3.4.4) (...)imgwarp.cpp:1805: error: (-215:Assertion failed) ifunc != 0 in function 'remap'`` - (3) mapped internally to ``int16`` - (4) mapped internally to ``float32`` if (backend="cv2", order=3): * ``uint8``: yes; tested * ``uint16``: yes; tested * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: yes; tested (3) * ``int16``: yes; tested * ``int32``: no (2) * ``int64``: no (2) * ``float16``: yes; tested (4) * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: no (1) * ``bool``: yes; tested (4) - (1) rejected by cv2 - (2) causes cv2 error: ``cv2.error: OpenCV(3.4.4) (...)imgwarp.cpp:1805: error: (-215:Assertion failed) ifunc != 0 in function 'remap'`` - (3) mapped internally to ``int16`` - (4) mapped internally to ``float32`` Parameters ---------- scale : number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {"x": number/tuple/list/StochasticParameter, "y": number/tuple/list/StochasticParameter}, optional Scaling factor to use, where ``1.0`` denotes "no change" and ``0.5`` is zoomed out to ``50`` percent of the original size. * If a single number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``. That value will be used identically for both x- and y-axis. * If a list, then a random value will be sampled from that list per image (again, used for both x- and y-axis). * If a ``StochasticParameter``, then from that parameter a value will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. translate_percent : None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {"x": number/tuple/list/StochasticParameter, "y": number/tuple/list/StochasticParameter}, optional Translation as a fraction of the image height/width (x-translation, y-translation), where ``0`` denotes "no change" and ``0.5`` denotes "half of the axis size". * If ``None`` then equivalent to ``0.0`` unless `translate_px` has a value other than ``None``. * If a single number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``. That sampled fraction value will be used identically for both x- and y-axis. * If a list, then a random value will be sampled from that list per image (again, used for both x- and y-axis). * If a ``StochasticParameter``, then from that parameter a value will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. translate_px : None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {"x": int/tuple/list/StochasticParameter, "y": int/tuple/list/StochasticParameter}, optional Translation in pixels. * If ``None`` then equivalent to ``0`` unless `translate_percent` has a value other than ``None``. * If a single int, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the discrete interval ``[a..b]``. That number will be used identically for both x- and y-axis. * If a list, then a random value will be sampled from that list per image (again, used for both x- and y-axis). * If a ``StochasticParameter``, then from that parameter a value will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. rotate : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Rotation in degrees (**NOT** radians), i.e. expected value range is around ``[-360, 360]``. Rotation happens around the *center* of the image, not the top left corner as in some other frameworks. * If a number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]`` and used as the rotation value. * If a list, then a random value will be sampled from that list per image. * If a ``StochasticParameter``, then this parameter will be used to sample the rotation value per image. shear : number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {"x": int/tuple/list/StochasticParameter, "y": int/tuple/list/StochasticParameter}, optional Shear in degrees (**NOT** radians), i.e. expected value range is around ``[-360, 360]``, with reasonable values being in the range of ``[-45, 45]``. * If a number, then that value will be used for all images as the shear on the x-axis (no shear on the y-axis will be done). * If a tuple ``(a, b)``, then two value will be uniformly sampled per image from the interval ``[a, b]`` and be used as the x- and y-shear value. * If a list, then two random values will be sampled from that list per image, denoting x- and y-shear. * If a ``StochasticParameter``, then this parameter will be used to sample the x- and y-shear values per image. * If a dictionary, then similar to `translate_percent`, i.e. one ``x`` key and/or one ``y`` key are expected, denoting the shearing on the x- and y-axis respectively. The allowed datatypes are again ``number``, ``tuple`` ``(a, b)``, ``list`` or ``StochasticParameter``. order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional Interpolation order to use. Same meaning as in ``skimage``: * ``0``: ``Nearest-neighbor`` * ``1``: ``Bi-linear`` (default) * ``2``: ``Bi-quadratic`` (not recommended by skimage) * ``3``: ``Bi-cubic`` * ``4``: ``Bi-quartic`` * ``5``: ``Bi-quintic`` Method ``0`` and ``1`` are fast, ``3`` is a bit slower, ``4`` and ``5`` are very slow. If the backend is ``cv2``, the mapping to OpenCV's interpolation modes is as follows: * ``0`` -> ``cv2.INTER_NEAREST`` * ``1`` -> ``cv2.INTER_LINEAR`` * ``2`` -> ``cv2.INTER_CUBIC`` * ``3`` -> ``cv2.INTER_CUBIC`` * ``4`` -> ``cv2.INTER_CUBIC`` As datatypes this parameter accepts: * If a single ``int``, then that order will be used for all images. * If a list, then a random value will be sampled from that list per image. * If ``imgaug.ALL``, then equivalant to list ``[0, 1, 3, 4, 5]`` in case of ``backend=skimage`` and otherwise ``[0, 1, 3]``. * If ``StochasticParameter``, then that parameter is queried per image to sample the order value to use. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional The constant value to use when filling in newly created pixels. (E.g. translating by 1px to the right will create a new 1px-wide column of pixels on the left of the image). The value is only used when `mode=constant`. The expected value range is ``[0, 255]`` for ``uint8`` images. It may be a float value. * If this is a single number, then that value will be used (e.g. 0 results in black pixels). * If a tuple ``(a, b)``, then three values (for three image channels) will be uniformly sampled per image from the interval ``[a, b]``. * If a list, then a random value will be sampled from that list per image. * If ``imgaug.ALL`` then equivalent to tuple ``(0, 255)`. * If a ``StochasticParameter``, a new value will be sampled from the parameter per image. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional Method to use when filling in newly created pixels. Same meaning as in ``skimage`` (and :func:`numpy.pad`): * ``constant``: Pads with a constant value * ``edge``: Pads with the edge values of array * ``symmetric``: Pads with the reflection of the vector mirrored along the edge of the array. * ``reflect``: Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. * ``wrap``: Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning. If ``cv2`` is chosen as the backend the mapping is as follows: * ``constant`` -> ``cv2.BORDER_CONSTANT`` * ``edge`` -> ``cv2.BORDER_REPLICATE`` * ``symmetric`` -> ``cv2.BORDER_REFLECT`` * ``reflect`` -> ``cv2.BORDER_REFLECT_101`` * ``wrap`` -> ``cv2.BORDER_WRAP`` The datatype of the parameter may be: * If a single string, then that mode will be used for all images. * If a list of strings, then a random mode will be picked from that list per image. * If ``imgaug.ALL``, then a random mode from all possible modes will be picked. * If ``StochasticParameter``, then the mode will be sampled from that parameter per image, i.e. it must return only the above mentioned strings. fit_output : bool, optional Whether to modify the affine transformation so that the whole output image is always contained in the image plane (``True``) or accept parts of the image being outside the image plane (``False``). This can be thought of as first applying the affine transformation and then applying a second transformation to "zoom in" on the new image so that it fits the image plane, This is useful to avoid corners of the image being outside of the image plane after applying rotations. It will however negate translation and scaling. Note also that activating this may lead to image sizes differing from the input image sizes. To avoid this, wrap ``Affine`` in :class:`imgaug.augmenters.size.KeepSizeByResize`, e.g. ``KeepSizeByResize(Affine(...))``. backend : str, optional Framework to use as a backend. Valid values are ``auto``, ``skimage`` (scikit-image's warp) and ``cv2`` (OpenCV's warp). If ``auto`` is used, the augmenter will automatically try to use ``cv2`` whenever possible (order must be in ``[0, 1, 3]``). It will silently fall back to skimage if order/dtype is not supported by cv2. cv2 is generally faster than skimage. It also supports RGB cvals, while skimage will resort to intensity cvals (i.e. 3x the same value as RGB). If ``cv2`` is chosen and order is ``2`` or ``4``, it will automatically fall back to order ``3``. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.Affine(scale=2.0) Zoom in on all images by a factor of ``2``. >>> aug = iaa.Affine(translate_px=16) Translate all images on the x- and y-axis by 16 pixels (towards the bottom right) and fill up any new pixels with zero (black values). >>> aug = iaa.Affine(translate_percent=0.1) Translate all images on the x- and y-axis by ``10`` percent of their width/height (towards the bottom right). The pixel values are computed per axis based on that axis' size. Fill up any new pixels with zero (black values). >>> aug = iaa.Affine(rotate=35) Rotate all images by ``35`` *degrees*. Fill up any new pixels with zero (black values). >>> aug = iaa.Affine(shear=15) Shear all images by ``15`` *degrees*. Fill up any new pixels with zero (black values). >>> aug = iaa.Affine(translate_px=(-16, 16)) Translate all images on the x- and y-axis by a random value between ``-16`` and ``16`` pixels (to the bottom right) and fill up any new pixels with zero (black values). The translation value is sampled once per image and is the same for both axis. >>> aug = iaa.Affine(translate_px={"x": (-16, 16), "y": (-4, 4)}) Translate all images on the x-axis by a random value between ``-16`` and ``16`` pixels (to the right) and on the y-axis by a random value between ``-4`` and ``4`` pixels to the bottom. The sampling happens independently per axis, so even if both intervals were identical, the sampled axis-wise values would likely be different. This also fills up any new pixels with zero (black values). >>> aug = iaa.Affine(scale=2.0, order=[0, 1]) Same as in the above `scale` example, but uses (randomly) either nearest neighbour interpolation or linear interpolation. If `order` is not specified, ``order=1`` would be used by default. >>> aug = iaa.Affine(translate_px=16, cval=(0, 255)) Same as in the `translate_px` example above, but newly created pixels are now filled with a random color (sampled once per image and the same for all newly created pixels within that image). >>> aug = iaa.Affine(translate_px=16, mode=["constant", "edge"]) Similar to the previous example, but the newly created pixels are filled with black pixels in half of all images (mode ``constant`` with default `cval` being ``0``) and in the other half of all images using ``edge`` mode, which repeats the color of the spatially closest pixel of the corresponding image edge. >>> aug = iaa.Affine(shear={"y": (-45, 45)}) Shear images only on the y-axis. Set `shear` to ``shear=(-45, 45)`` to shear randomly on both axes, using for each image the same sample for both the x- and y-axis. Use ``shear={"x": (-45, 45), "y": (-45, 45)}`` to get independent samples per axis. """ def __init__(self, scale=1.0, translate_percent=None, translate_px=None, rotate=0.0, shear=0.0, order=1, cval=0, mode="constant", fit_output=False, backend="auto", name=None, deterministic=False, random_state=None): super(Affine, self).__init__( name=name, deterministic=deterministic, random_state=random_state) assert backend in ["auto", "skimage", "cv2"], ( "Expected 'backend' to be \"auto\", \"skimage\" or \"cv2\", " "got %s." % (backend,)) self.backend = backend self.order = _handle_order_arg(order, backend) self.cval = _handle_cval_arg(cval) self.mode = _handle_mode_arg(mode) self.scale = self._handle_scale_arg(scale) self.translate = self._handle_translate_arg( translate_px, translate_percent) self.rotate = iap.handle_continuous_param( rotate, "rotate", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.shear, self._shear_param_type = self._handle_shear_arg(shear) self.fit_output = fit_output # Special order, mode and cval parameters for heatmaps and # segmentation maps. These may either be None or a fixed value. # Stochastic parameters are currently *not* supported. # If set to None, the same values as for images will be used. # That is really not recommended for the cval parameter. # # Segmentation map augmentation by default always pads with a # constant value of 0 (background class id), and always uses nearest # neighbour interpolation. While other pad modes and BG class ids # could be used, the interpolation mode has to be NN as any other # mode would lead to averaging class ids, which makes no sense to do. self._order_heatmaps = 3 self._order_segmentation_maps = 0 self._mode_heatmaps = "constant" self._mode_segmentation_maps = "constant" self._cval_heatmaps = 0 self._cval_segmentation_maps = 0 @classmethod def _handle_scale_arg(cls, scale): if isinstance(scale, dict): assert "x" in scale or "y" in scale, ( "Expected scale dictionary to contain at least key \"x\" or " "key \"y\". Found neither of them.") x = scale.get("x", 1.0) y = scale.get("y", 1.0) return ( iap.handle_continuous_param( x, "scale['x']", value_range=(0+1e-4, None), tuple_to_uniform=True, list_to_choice=True), iap.handle_continuous_param( y, "scale['y']", value_range=(0+1e-4, None), tuple_to_uniform=True, list_to_choice=True) ) return iap.handle_continuous_param( scale, "scale", value_range=(0+1e-4, None), tuple_to_uniform=True, list_to_choice=True) @classmethod def _handle_translate_arg(cls, translate_px, translate_percent): # pylint: disable=no-else-return if translate_percent is None and translate_px is None: translate_px = 0 assert translate_percent is None or translate_px is None, ( "Expected either translate_percent or translate_px to be " "provided, but neither of them was.") if translate_percent is not None: # translate by percent if isinstance(translate_percent, dict): assert "x" in translate_percent or "y" in translate_percent, ( "Expected translate_percent dictionary to contain at " "least key \"x\" or key \"y\". Found neither of them.") x = translate_percent.get("x", 0) y = translate_percent.get("y", 0) return ( iap.handle_continuous_param( x, "translate_percent['x']", value_range=None, tuple_to_uniform=True, list_to_choice=True), iap.handle_continuous_param( y, "translate_percent['y']", value_range=None, tuple_to_uniform=True, list_to_choice=True), "percent" ) return ( iap.handle_continuous_param( translate_percent, "translate_percent", value_range=None, tuple_to_uniform=True, list_to_choice=True), None, "percent" ) else: # translate by pixels if isinstance(translate_px, dict): assert "x" in translate_px or "y" in translate_px, ( "Expected translate_px dictionary to contain at " "least key \"x\" or key \"y\". Found neither of them.") x = translate_px.get("x", 0) y = translate_px.get("y", 0) return ( iap.handle_discrete_param( x, "translate_px['x']", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False), iap.handle_discrete_param( y, "translate_px['y']", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False), "px" ) return ( iap.handle_discrete_param( translate_px, "translate_px", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False), None, "px" ) @classmethod def _handle_shear_arg(cls, shear): # pylint: disable=no-else-return if isinstance(shear, dict): assert "x" in shear or "y" in shear, ( "Expected shear dictionary to contain at " "least key \"x\" or key \"y\". Found neither of them.") x = shear.get("x", 0) y = shear.get("y", 0) return ( iap.handle_continuous_param( x, "shear['x']", value_range=None, tuple_to_uniform=True, list_to_choice=True), iap.handle_continuous_param( y, "shear['y']", value_range=None, tuple_to_uniform=True, list_to_choice=True) ), "dict" else: param_type = "other" if ia.is_single_number(shear): param_type = "single-number" return iap.handle_continuous_param( shear, "shear", value_range=None, tuple_to_uniform=True, list_to_choice=True ), param_type def _augment_batch(self, batch, random_state, parents, hooks): samples = self._draw_samples(batch.nb_rows, random_state) if batch.images is not None: batch.images = self._augment_images_by_samples(batch.images, samples) if batch.heatmaps is not None: batch.heatmaps = self._augment_maps_by_samples( batch.heatmaps, samples, "arr_0to1", self._cval_heatmaps, self._mode_heatmaps, self._order_heatmaps, "float32") if batch.segmentation_maps is not None: batch.segmentation_maps = self._augment_maps_by_samples( batch.segmentation_maps, samples, "arr", self._cval_segmentation_maps, self._mode_segmentation_maps, self._order_segmentation_maps, "int32") for augm_name in ["keypoints", "bounding_boxes", "polygons", "line_strings"]: augm_value = getattr(batch, augm_name) if augm_value is not None: for i, cbaoi in enumerate(augm_value): matrix, output_shape = samples.to_matrix_cba( i, cbaoi.shape, self.fit_output) if (not _is_identity_matrix(matrix) and not cbaoi.empty and not 0 in cbaoi.shape[0:2]): # TODO this is hacky if augm_name == "bounding_boxes": # Ensure that 4 points are used for bbs. # to_keypoints_on_images() does return 4 points, # to_xy_array() does not. kpsoi = cbaoi.to_keypoints_on_image() coords = kpsoi.to_xy_array() coords_aug = tf.matrix_transform(coords, matrix.params) kpsoi = kpsoi.fill_from_xy_array_(coords_aug) cbaoi = cbaoi.invert_to_keypoints_on_image_( kpsoi) else: coords = cbaoi.to_xy_array() coords_aug = tf.matrix_transform(coords, matrix.params) cbaoi = cbaoi.fill_from_xy_array_(coords_aug) cbaoi.shape = output_shape augm_value[i] = cbaoi return batch def _augment_images_by_samples(self, images, samples, image_shapes=None, return_matrices=False): nb_images = len(images) input_was_array = ia.is_np_array(images) input_dtype = None if not input_was_array else images.dtype result = [] if return_matrices: matrices = [None] * nb_images for i in sm.xrange(nb_images): image = images[i] image_shape = (image.shape if image_shapes is None else image_shapes[i]) matrix, output_shape = samples.to_matrix(i, image.shape, image_shape, self.fit_output) cval = samples.cval[i] mode = samples.mode[i] order = samples.order[i] if not _is_identity_matrix(matrix): image_warped = _warp_affine_arr( image, matrix, order=order, mode=mode, cval=cval, output_shape=output_shape, backend=self.backend) result.append(image_warped) else: result.append(image) if return_matrices: matrices[i] = matrix # the shapes can change due to fit_output, then it may not be possible # to return an array, even when the input was an array if input_was_array: nb_shapes = len({image.shape for image in result}) if nb_shapes == 1: result = np.array(result, input_dtype) if return_matrices: result = (result, matrices) return result def _augment_maps_by_samples(self, augmentables, samples, arr_attr_name, cval, mode, order, cval_dtype): nb_images = len(augmentables) samples = samples.copy() if cval is not None: samples.cval = np.full((nb_images, 1), cval, dtype=cval_dtype) if mode is not None: samples.mode = [mode] * nb_images if order is not None: samples.order = [order] * nb_images arrs = [getattr(augmentable, arr_attr_name) for augmentable in augmentables] image_shapes = [augmentable.shape for augmentable in augmentables] arrs_aug, matrices = self._augment_images_by_samples( arrs, samples, image_shapes=image_shapes, return_matrices=True) gen = zip(augmentables, arrs_aug, matrices, samples.order) for augmentable_i, arr_aug, matrix, order_i in gen: # skip augmented HM/SM arrs for which the images were not # augmented due to being zero-sized if 0 in augmentable_i.shape: continue # order=3 matches cubic interpolation and can cause values to go # outside of the range [0.0, 1.0] not clear whether 4+ also do that # We don't clip here for Segmentation Maps, because for these # the value range isn't clearly limited to [0, 1] (and they should # also never use order=3 to begin with). # TODO add test for this if order_i >= 3 and isinstance(augmentable_i, ia.HeatmapsOnImage): arr_aug = np.clip(arr_aug, 0.0, 1.0, out=arr_aug) setattr(augmentable_i, arr_attr_name, arr_aug) if self.fit_output: _, output_shape_i = _compute_affine_warp_output_shape( matrix, augmentable_i.shape) else: output_shape_i = augmentable_i.shape augmentable_i.shape = output_shape_i return augmentables def _draw_samples(self, nb_samples, random_state): rngs = random_state.duplicate(12) if isinstance(self.scale, tuple): scale_samples = ( self.scale[0].draw_samples((nb_samples,), random_state=rngs[0]), self.scale[1].draw_samples((nb_samples,), random_state=rngs[1]), ) else: scale_samples = self.scale.draw_samples((nb_samples,), random_state=rngs[2]) scale_samples = (scale_samples, scale_samples) if self.translate[1] is not None: translate_samples = ( self.translate[0].draw_samples((nb_samples,), random_state=rngs[3]), self.translate[1].draw_samples((nb_samples,), random_state=rngs[4]), ) else: translate_samples = self.translate[0].draw_samples( (nb_samples,), random_state=rngs[5]) translate_samples = (translate_samples, translate_samples) rotate_samples = self.rotate.draw_samples((nb_samples,), random_state=rngs[6]) if self._shear_param_type == "dict": shear_samples = ( self.shear[0].draw_samples((nb_samples,), random_state=rngs[7]), self.shear[1].draw_samples((nb_samples,), random_state=rngs[8]) ) elif self._shear_param_type == "single-number": # only shear on the x-axis if a single number was given shear_samples = self.shear.draw_samples((nb_samples,), random_state=rngs[7]) shear_samples = (shear_samples, np.zeros_like(shear_samples)) else: shear_samples = self.shear.draw_samples((nb_samples,), random_state=rngs[7]) shear_samples = (shear_samples, shear_samples) cval_samples = self.cval.draw_samples((nb_samples, 3), random_state=rngs[9]) mode_samples = self.mode.draw_samples((nb_samples,), random_state=rngs[10]) order_samples = self.order.draw_samples((nb_samples,), random_state=rngs[11]) return _AffineSamplingResult( scale=scale_samples, translate=translate_samples, translate_mode=self.translate[2], rotate=rotate_samples, shear=shear_samples, cval=cval_samples, mode=mode_samples, order=order_samples) def get_parameters(self): """See :func:`imgaug.augmenters.meta.Augmenter.get_parameters`.""" return [ self.scale, self.translate, self.rotate, self.shear, self.order, self.cval, self.mode, self.backend, self.fit_output] class ScaleX(Affine): """Apply affine scaling on the x-axis to input data. This is a wrapper around :class:`Affine`. dtype support:: See :class:`imgaug.augmenters.geometric.Affine`. Parameters ---------- scale : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Analogous to ``scale`` in :class:`Affine`, except that this scale value only affects the x-axis. No dictionary input is allowed. order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. fit_output : bool, optional See :class:`Affine`. backend : str, optional See :class:`Affine`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.ScaleX((0.5, 1.5)) Create an augmenter that scales images along the width to sizes between ``50%`` and ``150%``. This does not change the image shape (i.e. height and width), only the pixels within the image are remapped and potentially new ones are filled in. """ def __init__(self, scale, order=1, cval=0, mode="constant", fit_output=False, backend="auto", name=None, deterministic=False, random_state=None): super(ScaleX, self).__init__( scale={"x": scale}, order=order, cval=cval, mode=mode, fit_output=fit_output, backend=backend, name=name, deterministic=deterministic, random_state=random_state ) # TODO make Affine more efficient for translation-only transformations class TranslateX(Affine): """Apply affine translation on the x-axis to input data. This is a wrapper around :class:`Affine`. dtype support:: See :class:`imgaug.augmenters.geometric.Affine`. Parameters ---------- percent : None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Analogous to ``translate_percent`` in :class:`Affine`, except that this translation value only affects the x-axis. No dictionary input is allowed. px : None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {"x": int/tuple/list/StochasticParameter, "y": int/tuple/list/StochasticParameter}, optional Analogous to ``translate_px`` in :class:`Affine`, except that this translation value only affects the x-axis. No dictionary input is allowed. order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. fit_output : bool, optional See :class:`Affine`. backend : str, optional See :class:`Affine`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.TranslateX(px=(-20, 20)) Create an augmenter that translates images along the x-axis by ``-20`` to ``20`` pixels. >>> aug = iaa.TranslateX(percent=(-0.1, 0.1)) Create an augmenter that translates images along the x-axis by ``-10%`` to ``10%`` (relative to the x-axis size). """ def __init__(self, percent=None, px=None, order=1, cval=0, mode="constant", fit_output=False, backend="auto", name=None, deterministic=False, random_state=None): # we don't test here if both are not-None at the same time, because # that is already checked in Affine assert percent is not None or px is not None, ( "Expected either `percent` to be not-None or " "`px` to be not-None, but both were None.") super(TranslateX, self).__init__( translate_percent=({"x": percent} if percent is not None else None), translate_px=({"x": px} if px is not None else None), order=order, cval=cval, mode=mode, fit_output=fit_output, backend=backend, name=name, deterministic=deterministic, random_state=random_state ) # TODO make Affine more efficient for translation-only transformations class TranslateY(Affine): """Apply affine translation on the y-axis to input data. This is a wrapper around :class:`Affine`. dtype support:: See :class:`imgaug.augmenters.geometric.Affine`. Parameters ---------- percent : None or number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Analogous to ``translate_percent`` in :class:`Affine`, except that this translation value only affects the y-axis. No dictionary input is allowed. px : None or int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {"x": int/tuple/list/StochasticParameter, "y": int/tuple/list/StochasticParameter}, optional Analogous to ``translate_px`` in :class:`Affine`, except that this translation value only affects the y-axis. No dictionary input is allowed. order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. fit_output : bool, optional See :class:`Affine`. backend : str, optional See :class:`Affine`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.TranslateY(px=(-20, 20)) Create an augmenter that translates images along the y-axis by ``-20`` to ``20`` pixels. >>> aug = iaa.TranslateY(percent=(-0.1, 0.1)) Create an augmenter that translates images along the y-axis by ``-10%`` to ``10%`` (relative to the y-axis size). """ def __init__(self, percent=None, px=None, order=1, cval=0, mode="constant", fit_output=False, backend="auto", name=None, deterministic=False, random_state=None): # we don't test here if both are not-None at the same time, because # that is already checked in Affine assert percent is not None or px is not None, ( "Expected either `percent` to be not-None or " "`px` to be not-None, but both were None.") super(TranslateY, self).__init__( translate_percent=({"y": percent} if percent is not None else None), translate_px=({"y": px} if px is not None else None), order=order, cval=cval, mode=mode, fit_output=fit_output, backend=backend, name=name, deterministic=deterministic, random_state=random_state ) class ScaleY(Affine): """Apply affine scaling on the y-axis to input data. This is a wrapper around :class:`Affine`. dtype support:: See :class:`imgaug.augmenters.geometric.Affine`. Parameters ---------- scale : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Analogous to ``scale`` in :class:`Affine`, except that this scale value only affects the y-axis. No dictionary input is allowed. order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. fit_output : bool, optional See :class:`Affine`. backend : str, optional See :class:`Affine`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.ScaleY((0.5, 1.5)) Create an augmenter that scales images along the height to sizes between ``50%`` and ``150%``. This does not change the image shape (i.e. height and width), only the pixels within the image are remapped and potentially new ones are filled in. """ def __init__(self, scale, order=1, cval=0, mode="constant", fit_output=False, backend="auto", name=None, deterministic=False, random_state=None): super(ScaleY, self).__init__( scale={"y": scale}, order=order, cval=cval, mode=mode, fit_output=fit_output, backend=backend, name=name, deterministic=deterministic, random_state=random_state ) class Rotate(Affine): """Apply affine rotation on the y-axis to input data. This is a wrapper around :class:`Affine`. It is the same as ``Affine(rotate=<value>)``. dtype support:: See :class:`imgaug.augmenters.geometric.Affine`. Parameters ---------- rotate : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. fit_output : bool, optional See :class:`Affine`. backend : str, optional See :class:`Affine`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.Rotate((-45, 45)) Create an augmenter that rotates images by a random value between ``-45`` and ``45`` degress. """ def __init__(self, rotate, order=1, cval=0, mode="constant", fit_output=False, backend="auto", name=None, deterministic=False, random_state=None): super(Rotate, self).__init__( rotate=rotate, order=order, cval=cval, mode=mode, fit_output=fit_output, backend=backend, name=name, deterministic=deterministic, random_state=random_state ) class ShearX(Affine): """Apply affine shear on the x-axis to input data. This is a wrapper around :class:`Affine`. dtype support:: See :class:`imgaug.augmenters.geometric.Affine`. Parameters ---------- shear : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Analogous to ``shear`` in :class:`Affine`, except that this shear value only affects the x-axis. No dictionary input is allowed. order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. fit_output : bool, optional See :class:`Affine`. backend : str, optional See :class:`Affine`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. """ def __init__(self, shear, order=1, cval=0, mode="constant", fit_output=False, backend="auto", name=None, deterministic=False, random_state=None): super(ShearX, self).__init__( shear={"x": shear}, order=order, cval=cval, mode=mode, fit_output=fit_output, backend=backend, name=name, deterministic=deterministic, random_state=random_state ) class ShearY(Affine): """Apply affine shear on the y-axis to input data. This is a wrapper around :class:`Affine`. dtype support:: See :class:`imgaug.augmenters.geometric.Affine`. Parameters ---------- shear : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Analogous to ``shear`` in :class:`Affine`, except that this shear value only affects the y-axis. No dictionary input is allowed. order : int or iterable of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :class:`Affine`. fit_output : bool, optional See :class:`Affine`. backend : str, optional See :class:`Affine`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. """ def __init__(self, shear, order=1, cval=0, mode="constant", fit_output=False, backend="auto", name=None, deterministic=False, random_state=None): super(ShearY, self).__init__( shear={"y": shear}, order=order, cval=cval, mode=mode, fit_output=fit_output, backend=backend, name=name, deterministic=deterministic, random_state=random_state ) class AffineCv2(meta.Augmenter): """ **Deprecated.** Augmenter to apply affine transformations to images using cv2 (i.e. opencv) backend. .. warning:: This augmenter is deprecated since 0.4.0. Use ``Affine(..., backend='cv2')`` instead. Affine transformations involve: - Translation ("move" image on the x-/y-axis) - Rotation - Scaling ("zoom" in/out) - Shear (move one side of the image, turning a square into a trapezoid) All such transformations can create "new" pixels in the image without a defined content, e.g. if the image is translated to the left, pixels are created on the right. A method has to be defined to deal with these pixel values. The parameters `cval` and `mode` of this class deal with this. Some transformations involve interpolations between several pixels of the input image to generate output pixel values. The parameter `order` deals with the method of interpolation used for this. dtype support:: * ``uint8``: yes; fully tested * ``uint16``: ? * ``uint32``: ? * ``uint64``: ? * ``int8``: ? * ``int16``: ? * ``int32``: ? * ``int64``: ? * ``float16``: ? * ``float32``: ? * ``float64``: ? * ``float128``: ? * ``bool``: ? Parameters ---------- scale : number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {"x": number/tuple/list/StochasticParameter, "y": number/tuple/list/StochasticParameter}, optional Scaling factor to use, where ``1.0`` denotes \"no change\" and ``0.5`` is zoomed out to ``50`` percent of the original size. * If a single number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``. That value will be used identically for both x- and y-axis. * If a list, then a random value will be sampled from that list per image (again, used for both x- and y-axis). * If a ``StochasticParameter``, then from that parameter a value will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. translate_percent : number or tuple of number or list of number or imgaug.parameters.StochasticParameter or dict {"x": number/tuple/list/StochasticParameter, "y": number/tuple/list/StochasticParameter}, optional Translation as a fraction of the image height/width (x-translation, y-translation), where ``0`` denotes "no change" and ``0.5`` denotes "half of the axis size". * If ``None`` then equivalent to ``0.0`` unless `translate_px` has a value other than ``None``. * If a single number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]``. That sampled fraction value will be used identically for both x- and y-axis. * If a list, then a random value will be sampled from that list per image (again, used for both x- and y-axis). * If a ``StochasticParameter``, then from that parameter a value will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. translate_px : int or tuple of int or list of int or imgaug.parameters.StochasticParameter or dict {"x": int/tuple/list/StochasticParameter, "y": int/tuple/list/StochasticParameter}, optional Translation in pixels. * If ``None`` then equivalent to ``0`` unless `translate_percent` has a value other than ``None``. * If a single int, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the discrete interval ``[a..b]``. That number will be used identically for both x- and y-axis. * If a list, then a random value will be sampled from that list per image (again, used for both x- and y-axis). * If a ``StochasticParameter``, then from that parameter a value will be sampled per image (again, used for both x- and y-axis). * If a dictionary, then it is expected to have the keys ``x`` and/or ``y``. Each of these keys can have the same values as described above. Using a dictionary allows to set different values for the two axis and sampling will then happen *independently* per axis, resulting in samples that differ between the axes. rotate : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Rotation in degrees (**NOT** radians), i.e. expected value range is around ``[-360, 360]``. Rotation happens around the *center* of the image, not the top left corner as in some other frameworks. * If a number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]`` and used as the rotation value. * If a list, then a random value will be sampled from that list per image. * If a ``StochasticParameter``, then this parameter will be used to sample the rotation value per image. shear : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Shear in degrees (**NOT** radians), i.e. expected value range is around ``[-360, 360]``. * If a number, then that value will be used for all images. * If a tuple ``(a, b)``, then a value will be uniformly sampled per image from the interval ``[a, b]`` and be used as the rotation value. * If a list, then a random value will be sampled from that list per image. * If a ``StochasticParameter``, then this parameter will be used to sample the shear value per image. order : int or list of int or str or list of str or imaug.ALL or imgaug.parameters.StochasticParameter, optional Interpolation order to use. Allowed are: * ``cv2.INTER_NEAREST`` (nearest-neighbor interpolation) * ``cv2.INTER_LINEAR`` (bilinear interpolation, used by default) * ``cv2.INTER_CUBIC`` (bicubic interpolation over ``4x4`` pixel neighborhood) * ``cv2.INTER_LANCZOS4`` * string ``nearest`` (same as ``cv2.INTER_NEAREST``) * string ``linear`` (same as ``cv2.INTER_LINEAR``) * string ``cubic`` (same as ``cv2.INTER_CUBIC``) * string ``lanczos4`` (same as ``cv2.INTER_LANCZOS``) ``INTER_NEAREST`` (nearest neighbour interpolation) and ``INTER_NEAREST`` (linear interpolation) are the fastest. * If a single ``int``, then that order will be used for all images. * If a string, then it must be one of: ``nearest``, ``linear``, ``cubic``, ``lanczos4``. * If an iterable of ``int``/``str``, then for each image a random value will be sampled from that iterable (i.e. list of allowed order values). * If ``imgaug.ALL``, then equivalant to list ``[cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]``. * If ``StochasticParameter``, then that parameter is queried per image to sample the order value to use. cval : number or tuple of number or list of number or imaug.ALL or imgaug.parameters.StochasticParameter, optional The constant value to use when filling in newly created pixels. (E.g. translating by 1px to the right will create a new 1px-wide column of pixels on the left of the image). The value is only used when `mode=constant`. The expected value range is ``[0, 255]`` for ``uint8`` images. It may be a float value. * If this is a single number, then that value will be used (e.g. 0 results in black pixels). * If a tuple ``(a, b)``, then three values (for three image channels) will be uniformly sampled per image from the interval ``[a, b]``. * If a list, then a random value will be sampled from that list per image. * If ``imgaug.ALL`` then equivalent to tuple ``(0, 255)`. * If a ``StochasticParameter``, a new value will be sampled from the parameter per image. mode : int or str or list of str or list of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional Method to use when filling in newly created pixels. Same meaning as in OpenCV's border mode. Let ``abcdefgh`` be an image's content and ``|`` be an image boundary after which new pixels are filled in, then the valid modes and their behaviour are the following: * ``cv2.BORDER_REPLICATE``: ``aaaaaa|abcdefgh|hhhhhhh`` * ``cv2.BORDER_REFLECT``: ``fedcba|abcdefgh|hgfedcb`` * ``cv2.BORDER_REFLECT_101``: ``gfedcb|abcdefgh|gfedcba`` * ``cv2.BORDER_WRAP``: ``cdefgh|abcdefgh|abcdefg`` * ``cv2.BORDER_CONSTANT``: ``iiiiii|abcdefgh|iiiiiii``, where ``i`` is the defined cval. * ``replicate``: Same as ``cv2.BORDER_REPLICATE``. * ``reflect``: Same as ``cv2.BORDER_REFLECT``. * ``reflect_101``: Same as ``cv2.BORDER_REFLECT_101``. * ``wrap``: Same as ``cv2.BORDER_WRAP``. * ``constant``: Same as ``cv2.BORDER_CONSTANT``. The datatype of the parameter may be: * If a single ``int``, then it must be one of the ``cv2.BORDER_*`` constants. * If a single string, then it must be one of: ``replicate``, ``reflect``, ``reflect_101``, ``wrap``, ``constant``. * If a list of ``int``/``str``, then per image a random mode will be picked from that list. * If ``imgaug.ALL``, then a random mode from all possible modes will be picked. * If ``StochasticParameter``, then the mode will be sampled from that parameter per image, i.e. it must return only the above mentioned strings. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.AffineCv2(scale=2.0) Zoom in on all images by a factor of ``2``. >>> aug = iaa.AffineCv2(translate_px=16) Translate all images on the x- and y-axis by 16 pixels (towards the bottom right) and fill up any new pixels with zero (black values). >>> aug = iaa.AffineCv2(translate_percent=0.1) Translate all images on the x- and y-axis by ``10`` percent of their width/height (towards the bottom right). The pixel values are computed per axis based on that axis' size. Fill up any new pixels with zero (black values). >>> aug = iaa.AffineCv2(rotate=35) Rotate all images by ``35`` *degrees*. Fill up any new pixels with zero (black values). >>> aug = iaa.AffineCv2(shear=15) Shear all images by ``15`` *degrees*. Fill up any new pixels with zero (black values). >>> aug = iaa.AffineCv2(translate_px=(-16, 16)) Translate all images on the x- and y-axis by a random value between ``-16`` and ``16`` pixels (to the bottom right) and fill up any new pixels with zero (black values). The translation value is sampled once per image and is the same for both axis. >>> aug = iaa.AffineCv2(translate_px={"x": (-16, 16), "y": (-4, 4)}) Translate all images on the x-axis by a random value between ``-16`` and ``16`` pixels (to the right) and on the y-axis by a random value between ``-4`` and ``4`` pixels to the bottom. The sampling happens independently per axis, so even if both intervals were identical, the sampled axis-wise values would likely be different. This also fills up any new pixels with zero (black values). >>> aug = iaa.AffineCv2(scale=2.0, order=[0, 1]) Same as in the above `scale` example, but uses (randomly) either nearest neighbour interpolation or linear interpolation. If `order` is not specified, ``order=1`` would be used by default. >>> aug = iaa.AffineCv2(translate_px=16, cval=(0, 255)) Same as in the `translate_px` example above, but newly created pixels are now filled with a random color (sampled once per image and the same for all newly created pixels within that image). >>> aug = iaa.AffineCv2(translate_px=16, mode=["constant", "replicate"]) Similar to the previous example, but the newly created pixels are filled with black pixels in half of all images (mode ``constant`` with default `cval` being ``0``) and in the other half of all images using ``replicate`` mode, which repeats the color of the spatially closest pixel of the corresponding image edge. """ def __init__(self, scale=1.0, translate_percent=None, translate_px=None, rotate=0.0, shear=0.0, order=cv2.INTER_LINEAR, cval=0, mode=cv2.BORDER_CONSTANT, name=None, deterministic=False, random_state=None): super(AffineCv2, self).__init__( name=name, deterministic=deterministic, random_state=random_state) # using a context on __init__ seems to produce no warning, # so warn manually here ia.warn_deprecated( "AffineCv2 is deprecated. " "Use imgaug.augmenters.geometric.Affine(..., backend='cv2') " "instead.", stacklevel=4) available_orders = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4] available_orders_str = ["nearest", "linear", "cubic", "lanczos4"] if order == ia.ALL: self.order = iap.Choice(available_orders) elif ia.is_single_integer(order): assert order in available_orders, ( "Expected order's integer value to be in %s, got %d." % ( str(available_orders), order)) self.order = iap.Deterministic(order) elif ia.is_string(order): assert order in available_orders_str, ( "Expected order to be in %s, got %s." % ( str(available_orders_str), order)) self.order = iap.Deterministic(order) elif isinstance(order, list): valid_types = all( [ia.is_single_integer(val) or ia.is_string(val) for val in order]) assert valid_types, ( "Expected order list to only contain integers/strings, got " "types %s." % (str([type(val) for val in order]),)) valid_orders = all( [val in available_orders + available_orders_str for val in order]) assert valid_orders, ( "Expected all order values to be in %s, got %s." % ( available_orders + available_orders_str, str(order),)) self.order = iap.Choice(order) elif isinstance(order, iap.StochasticParameter): self.order = order else: raise Exception( "Expected order to be imgaug.ALL, int, string, a list of" "int/string or StochasticParameter, got %s." % (type(order),)) if cval == ia.ALL: self.cval = iap.DiscreteUniform(0, 255) else: self.cval = iap.handle_discrete_param( cval, "cval", value_range=(0, 255), tuple_to_uniform=True, list_to_choice=True, allow_floats=True) available_modes = [cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT, cv2.BORDER_REFLECT_101, cv2.BORDER_WRAP, cv2.BORDER_CONSTANT] available_modes_str = ["replicate", "reflect", "reflect_101", "wrap", "constant"] if mode == ia.ALL: self.mode = iap.Choice(available_modes) elif ia.is_single_integer(mode): assert mode in available_modes, ( "Expected mode to be in %s, got %d." % ( str(available_modes), mode)) self.mode = iap.Deterministic(mode) elif ia.is_string(mode): assert mode in available_modes_str, ( "Expected mode to be in %s, got %s." % ( str(available_modes_str), mode)) self.mode = iap.Deterministic(mode) elif isinstance(mode, list): all_valid_types = all([ ia.is_single_integer(val) or ia.is_string(val) for val in mode]) assert all_valid_types, ( "Expected mode list to only contain integers/strings, " "got types %s." % (str([type(val) for val in mode]),)) all_valid_modes = all([ val in available_modes + available_modes_str for val in mode]) assert all_valid_modes, ( "Expected all mode values to be in %s, got %s." % ( str(available_modes + available_modes_str), str(mode))) self.mode = iap.Choice(mode) elif isinstance(mode, iap.StochasticParameter): self.mode = mode else: raise Exception( "Expected mode to be imgaug.ALL, an int, a string, a list of " "int/strings or StochasticParameter, got %s." % (type(mode),)) # scale if isinstance(scale, dict): assert "x" in scale or "y" in scale, ( "Expected scale dictionary to contain at " "least key \"x\" or key \"y\". Found neither of them.") x = scale.get("x", 1.0) y = scale.get("y", 1.0) self.scale = ( iap.handle_continuous_param( x, "scale['x']", value_range=(0+1e-4, None), tuple_to_uniform=True, list_to_choice=True), iap.handle_continuous_param( y, "scale['y']", value_range=(0+1e-4, None), tuple_to_uniform=True, list_to_choice=True) ) else: self.scale = iap.handle_continuous_param( scale, "scale", value_range=(0+1e-4, None), tuple_to_uniform=True, list_to_choice=True) # translate if translate_percent is None and translate_px is None: translate_px = 0 assert translate_percent is None or translate_px is None, ( "Expected either translate_percent or translate_px to be " "provided, but neither of them was.") if translate_percent is not None: # translate by percent if isinstance(translate_percent, dict): assert "x" in translate_percent or "y" in translate_percent, ( "Expected translate_percent dictionary to contain at " "least key \"x\" or key \"y\". Found neither of them.") x = translate_percent.get("x", 0) y = translate_percent.get("y", 0) self.translate = ( iap.handle_continuous_param( x, "translate_percent['x']", value_range=None, tuple_to_uniform=True, list_to_choice=True), iap.handle_continuous_param( y, "translate_percent['y']", value_range=None, tuple_to_uniform=True, list_to_choice=True) ) else: self.translate = iap.handle_continuous_param( translate_percent, "translate_percent", value_range=None, tuple_to_uniform=True, list_to_choice=True) else: # translate by pixels if isinstance(translate_px, dict): assert "x" in translate_px or "y" in translate_px, ( "Expected translate_px dictionary to contain at " "least key \"x\" or key \"y\". Found neither of them.") x = translate_px.get("x", 0) y = translate_px.get("y", 0) self.translate = ( iap.handle_discrete_param( x, "translate_px['x']", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False), iap.handle_discrete_param( y, "translate_px['y']", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False) ) else: self.translate = iap.handle_discrete_param( translate_px, "translate_px", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.rotate = iap.handle_continuous_param( rotate, "rotate", value_range=None, tuple_to_uniform=True, list_to_choice=True) self.shear = iap.handle_continuous_param( shear, "shear", value_range=None, tuple_to_uniform=True, list_to_choice=True) def _augment_images(self, images, random_state, parents, hooks): nb_images = len(images) scale_samples, translate_samples, rotate_samples, shear_samples, \ cval_samples, mode_samples, order_samples = self._draw_samples( nb_images, random_state) result = self._augment_images_by_samples( images, scale_samples, translate_samples, rotate_samples, shear_samples, cval_samples, mode_samples, order_samples) return result @classmethod def _augment_images_by_samples(cls, images, scale_samples, translate_samples, rotate_samples, shear_samples, cval_samples, mode_samples, order_samples): # TODO change these to class attributes order_str_to_int = { "nearest": cv2.INTER_NEAREST, "linear": cv2.INTER_LINEAR, "cubic": cv2.INTER_CUBIC, "lanczos4": cv2.INTER_LANCZOS4 } mode_str_to_int = { "replicate": cv2.BORDER_REPLICATE, "reflect": cv2.BORDER_REFLECT, "reflect_101": cv2.BORDER_REFLECT_101, "wrap": cv2.BORDER_WRAP, "constant": cv2.BORDER_CONSTANT } nb_images = len(images) result = images for i in sm.xrange(nb_images): height, width = images[i].shape[0], images[i].shape[1] shift_x = width / 2.0 - 0.5 shift_y = height / 2.0 - 0.5 scale_x, scale_y = scale_samples[0][i], scale_samples[1][i] translate_x = translate_samples[0][i] translate_y = translate_samples[1][i] if ia.is_single_float(translate_y): translate_y_px = int( np.round(translate_y * images[i].shape[0])) else: translate_y_px = translate_y if ia.is_single_float(translate_x): translate_x_px = int( np.round(translate_x * images[i].shape[1])) else: translate_x_px = translate_x rotate = rotate_samples[i] shear = shear_samples[i] cval = cval_samples[i] mode = mode_samples[i] order = order_samples[i] mode = (mode if ia.is_single_integer(mode) else mode_str_to_int[mode]) order = (order if ia.is_single_integer(order) else order_str_to_int[order]) any_change = ( scale_x != 1.0 or scale_y != 1.0 or translate_x_px != 0 or translate_y_px != 0 or rotate != 0 or shear != 0 ) if any_change: matrix_to_topleft = tf.SimilarityTransform( translation=[-shift_x, -shift_y]) matrix_transforms = tf.AffineTransform( scale=(scale_x, scale_y), translation=(translate_x_px, translate_y_px), rotation=math.radians(rotate), shear=math.radians(shear) ) matrix_to_center = tf.SimilarityTransform( translation=[shift_x, shift_y]) matrix = (matrix_to_topleft + matrix_transforms + matrix_to_center) image_warped = cv2.warpAffine( images[i], matrix.params[:2], dsize=(width, height), flags=order, borderMode=mode, borderValue=tuple([int(v) for v in cval]) ) # cv2 warp drops last axis if shape is (H, W, 1) if image_warped.ndim == 2: image_warped = image_warped[..., np.newaxis] # warp changes uint8 to float64, making this necessary result[i] = image_warped else: result[i] = images[i] return result def _augment_heatmaps(self, heatmaps, random_state, parents, hooks): nb_images = len(heatmaps) scale_samples, translate_samples, rotate_samples, shear_samples, \ cval_samples, mode_samples, order_samples = self._draw_samples( nb_images, random_state) cval_samples = np.zeros((cval_samples.shape[0], 1), dtype=np.float32) mode_samples = ["constant"] * len(mode_samples) arrs = [heatmap_i.arr_0to1 for heatmap_i in heatmaps] arrs_aug = self._augment_images_by_samples( arrs, scale_samples, translate_samples, rotate_samples, shear_samples, cval_samples, mode_samples, order_samples) for heatmap_i, arr_aug in zip(heatmaps, arrs_aug): heatmap_i.arr_0to1 = arr_aug return heatmaps def _augment_segmentation_maps(self, segmaps, random_state, parents, hooks): nb_images = len(segmaps) scale_samples, translate_samples, rotate_samples, shear_samples, \ cval_samples, mode_samples, order_samples = self._draw_samples( nb_images, random_state) cval_samples = np.zeros((cval_samples.shape[0], 1), dtype=np.float32) mode_samples = ["constant"] * len(mode_samples) order_samples = [0] * len(order_samples) arrs = [segmaps_i.arr for segmaps_i in segmaps] arrs_aug = self._augment_images_by_samples( arrs, scale_samples, translate_samples, rotate_samples, shear_samples, cval_samples, mode_samples, order_samples) for segmaps_i, arr_aug in zip(segmaps, arrs_aug): segmaps_i.arr = arr_aug return segmaps def _augment_keypoints(self, keypoints_on_images, random_state, parents, hooks): result = [] nb_images = len(keypoints_on_images) scale_samples, translate_samples, rotate_samples, shear_samples, \ _cval_samples, _mode_samples, _order_samples = self._draw_samples( nb_images, random_state) for i, keypoints_on_image in enumerate(keypoints_on_images): if not keypoints_on_image.keypoints: # AffineCv2 does not change the image shape, hence we can skip # all steps below if there are no keypoints result.append(keypoints_on_image) continue height, width = keypoints_on_image.height, keypoints_on_image.width shift_x = width / 2.0 - 0.5 shift_y = height / 2.0 - 0.5 scale_x, scale_y = scale_samples[0][i], scale_samples[1][i] translate_x = translate_samples[0][i] translate_y = translate_samples[1][i] if ia.is_single_float(translate_y): translate_y_px = int( np.round(translate_y * keypoints_on_image.shape[0])) else: translate_y_px = translate_y if ia.is_single_float(translate_x): translate_x_px = int( np.round(translate_x * keypoints_on_image.shape[1])) else: translate_x_px = translate_x rotate = rotate_samples[i] shear = shear_samples[i] any_change = ( scale_x != 1.0 or scale_y != 1.0 or translate_x_px != 0 or translate_y_px != 0 or rotate != 0 or shear != 0 ) if any_change: matrix_to_topleft = tf.SimilarityTransform( translation=[-shift_x, -shift_y]) matrix_transforms = tf.AffineTransform( scale=(scale_x, scale_y), translation=(translate_x_px, translate_y_px), rotation=math.radians(rotate), shear=math.radians(shear) ) matrix_to_center = tf.SimilarityTransform( translation=[shift_x, shift_y]) matrix = (matrix_to_topleft + matrix_transforms + matrix_to_center) coords = keypoints_on_image.to_xy_array() coords_aug = tf.matrix_transform(coords, matrix.params) kps_new = [kp.deepcopy(x=coords[0], y=coords[1]) for kp, coords in zip(keypoints_on_image.keypoints, coords_aug)] result.append(keypoints_on_image.deepcopy( keypoints=kps_new, shape=keypoints_on_image.shape )) else: result.append(keypoints_on_image) return result def _augment_polygons(self, polygons_on_images, random_state, parents, hooks): return self._augment_polygons_as_keypoints( polygons_on_images, random_state, parents, hooks) def _augment_line_strings(self, line_strings_on_images, random_state, parents, hooks): return self._augment_line_strings_as_keypoints( line_strings_on_images, random_state, parents, hooks) def _augment_bounding_boxes(self, bounding_boxes_on_images, random_state, parents, hooks): return self._augment_bounding_boxes_as_keypoints( bounding_boxes_on_images, random_state, parents, hooks) def get_parameters(self): """See :func:`imgaug.augmenters.meta.Augmenter.get_parameters`.""" return [self.scale, self.translate, self.rotate, self.shear, self.order, self.cval, self.mode] def _draw_samples(self, nb_samples, random_state): rngs = random_state.duplicate(11) if isinstance(self.scale, tuple): scale_samples = ( self.scale[0].draw_samples((nb_samples,), random_state=rngs[0]), self.scale[1].draw_samples((nb_samples,), random_state=rngs[1]), ) else: scale_samples = self.scale.draw_samples((nb_samples,), random_state=rngs[2]) scale_samples = (scale_samples, scale_samples) if isinstance(self.translate, tuple): translate_samples = ( self.translate[0].draw_samples((nb_samples,), random_state=rngs[3]), self.translate[1].draw_samples((nb_samples,), random_state=rngs[4]), ) else: translate_samples = self.translate.draw_samples( (nb_samples,), random_state=rngs[5]) translate_samples = (translate_samples, translate_samples) valid_dts = ["int32", "int64", "float32", "float64"] for i in sm.xrange(2): assert translate_samples[i].dtype.name in valid_dts, ( "Expected translate_samples to have any dtype of %s. " "Got %s." % (str(valid_dts), translate_samples[i].dtype.name,)) rotate_samples = self.rotate.draw_samples((nb_samples,), random_state=rngs[6]) shear_samples = self.shear.draw_samples((nb_samples,), random_state=rngs[7]) cval_samples = self.cval.draw_samples((nb_samples, 3), random_state=rngs[8]) mode_samples = self.mode.draw_samples((nb_samples,), random_state=rngs[9]) order_samples = self.order.draw_samples((nb_samples,), random_state=rngs[10]) return ( scale_samples, translate_samples, rotate_samples, shear_samples, cval_samples, mode_samples, order_samples ) class _PiecewiseAffineSamplingResult(object): def __init__(self, nb_rows, nb_cols, jitter, order, cval, mode): self.nb_rows = nb_rows self.nb_cols = nb_cols self.order = order self.jitter = jitter self.cval = cval self.mode = mode def get_clipped_cval(self, idx, dtype): min_value, _, max_value = iadt.get_value_range_of_dtype(dtype) cval = self.cval[idx] cval = max(min(cval, max_value), min_value) return cval class PiecewiseAffine(meta.Augmenter): """ Apply affine transformations that differ between local neighbourhoods. This augmenter places a regular grid of points on an image and randomly moves the neighbourhood of these point around via affine transformations. This leads to local distortions. This is mostly a wrapper around scikit-image's ``PiecewiseAffine``. See also ``Affine`` for a similar technique. .. note:: This augmenter is very slow. See :ref:`performance`. Try to use ``ElasticTransformation`` instead, which is at least 10x faster. .. note:: For coordinate-based inputs (keypoints, bounding boxes, polygons, ...), this augmenter still has to perform an image-based augmentation, which will make it significantly slower for such inputs than other augmenters. See :ref:`performance`. dtype support:: * ``uint8``: yes; fully tested * ``uint16``: yes; tested (1) * ``uint32``: yes; tested (1) (2) * ``uint64``: no (3) * ``int8``: yes; tested (1) * ``int16``: yes; tested (1) * ``int32``: yes; tested (1) (2) * ``int64``: no (3) * ``float16``: yes; tested (1) * ``float32``: yes; tested (1) * ``float64``: yes; tested (1) * ``float128``: no (3) * ``bool``: yes; tested (1) (4) - (1) Only tested with `order` set to ``0``. - (2) scikit-image converts internally to ``float64``, which might introduce inaccuracies. Tests showed that these inaccuracies seemed to not be an issue. - (3) Results too inaccurate. - (4) Mapped internally to ``float64``. Parameters ---------- scale : float or tuple of float or imgaug.parameters.StochasticParameter, optional Each point on the regular grid is moved around via a normal distribution. This scale factor is equivalent to the normal distribution's sigma. Note that the jitter (how far each point is moved in which direction) is multiplied by the height/width of the image if ``absolute_scale=False`` (default), so this scale can be the same for different sized images. Recommended values are in the range ``0.01`` to ``0.05`` (weak to strong augmentations). * If a single ``float``, then that value will always be used as the scale. * If a tuple ``(a, b)`` of ``float`` s, then a random value will be uniformly sampled per image from the interval ``[a, b]``. * If a list, then a random value will be picked from that list per image. * If a ``StochasticParameter``, then that parameter will be queried to draw one value per image. nb_rows : int or tuple of int or imgaug.parameters.StochasticParameter, optional Number of rows of points that the regular grid should have. Must be at least ``2``. For large images, you might want to pick a higher value than ``4``. You might have to then adjust scale to lower values. * If a single ``int``, then that value will always be used as the number of rows. * If a tuple ``(a, b)``, then a value from the discrete interval ``[a..b]`` will be uniformly sampled per image. * If a list, then a random value will be picked from that list per image. * If a StochasticParameter, then that parameter will be queried to draw one value per image. nb_cols : int or tuple of int or imgaug.parameters.StochasticParameter, optional Number of columns. Analogous to `nb_rows`. order : int or list of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :func:`imgaug.augmenters.geometric.Affine.__init__`. cval : int or float or tuple of float or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :func:`imgaug.augmenters.geometric.Affine.__init__`. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional See :func:`imgaug.augmenters.geometric.Affine.__init__`. absolute_scale : bool, optional Take `scale` as an absolute value rather than a relative value. polygon_recoverer : 'auto' or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer, optional The class to use to repair invalid polygons. If ``"auto"``, a new instance of :class`imgaug.augmentables.polygons._ConcavePolygonRecoverer` will be created. If ``None``, no polygon recoverer will be used. If an object, then that object will be used and must provide a ``recover_from()`` method, similar to :class:`imgaug.augmentables.polygons._ConcavePolygonRecoverer`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.PiecewiseAffine(scale=(0.01, 0.05)) Place a regular grid of points on each image and then randomly move each point around by ``1`` to ``5`` percent (with respect to the image height/width). Pixels between these points will be moved accordingly. >>> aug = iaa.PiecewiseAffine(scale=(0.01, 0.05), nb_rows=8, nb_cols=8) Same as the previous example, but uses a denser grid of ``8x8`` points (default is ``4x4``). This can be useful for large images. """ def __init__(self, scale=0, nb_rows=4, nb_cols=4, order=1, cval=0, mode="constant", absolute_scale=False, polygon_recoverer=None, name=None, deterministic=False, random_state=None): super(PiecewiseAffine, self).__init__( name=name, deterministic=deterministic, random_state=random_state) self.scale = iap.handle_continuous_param( scale, "scale", value_range=(0, None), tuple_to_uniform=True, list_to_choice=True) self.jitter = iap.Normal(loc=0, scale=self.scale) self.nb_rows = iap.handle_discrete_param( nb_rows, "nb_rows", value_range=(2, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.nb_cols = iap.handle_discrete_param( nb_cols, "nb_cols", value_range=(2, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.order = _handle_order_arg(order, backend="skimage") self.cval = _handle_cval_arg(cval) self.mode = _handle_mode_arg(mode) self.absolute_scale = absolute_scale self.polygon_recoverer = polygon_recoverer if polygon_recoverer == "auto": self.polygon_recoverer = _ConcavePolygonRecoverer() # Special order, mode and cval parameters for heatmaps and # segmentation maps. These may either be None or a fixed value. # Stochastic parameters are currently *not* supported. # If set to None, the same values as for images will be used. # That is really not recommended for the cval parameter. self._order_heatmaps = 3 self._order_segmentation_maps = 0 self._mode_heatmaps = "constant" self._mode_segmentation_maps = "constant" self._cval_heatmaps = 0 self._cval_segmentation_maps = 0 def _augment_batch(self, batch, random_state, parents, hooks): samples = self._draw_samples(batch.nb_rows, random_state) if batch.images is not None: batch.images = self._augment_images_by_samples(batch.images, samples) if batch.heatmaps is not None: batch.heatmaps = self._augment_maps_by_samples( batch.heatmaps, "arr_0to1", samples, self._cval_heatmaps, self._mode_heatmaps, self._order_heatmaps) if batch.segmentation_maps is not None: batch.segmentation_maps = self._augment_maps_by_samples( batch.segmentation_maps, "arr", samples, self._cval_segmentation_maps, self._mode_segmentation_maps, self._order_segmentation_maps) # TODO add test for recoverer if batch.polygons is not None: func = functools.partial( self._augment_keypoints_by_samples, samples=samples) batch.polygons = self._apply_to_polygons_as_keypoints( batch.polygons, func, recoverer=self.polygon_recoverer) for augm_name in ["keypoints", "bounding_boxes", "line_strings"]: augm_value = getattr(batch, augm_name) if augm_value is not None: func = functools.partial( self._augment_keypoints_by_samples, samples=samples) cbaois = self._apply_to_cbaois_as_keypoints(augm_value, func) setattr(batch, augm_name, cbaois) return batch def _augment_images_by_samples(self, images, samples): iadt.gate_dtypes( images, allowed=["bool", "uint8", "uint16", "uint32", "int8", "int16", "int32", "float16", "float32", "float64"], disallowed=["uint64", "uint128", "uint256", "int64", "int128", "int256", "float96", "float128", "float256"], augmenter=self) result = images for i, image in enumerate(images): transformer = self._get_transformer( image.shape, image.shape, samples.nb_rows[i], samples.nb_cols[i], samples.jitter[i]) if transformer is not None: input_dtype = image.dtype if image.dtype.kind == "b": image = image.astype(np.float64) image_warped = tf.warp( image, transformer, order=samples.order[i], mode=samples.mode[i], cval=samples.get_clipped_cval(i, image.dtype), preserve_range=True, output_shape=images[i].shape ) if input_dtype.kind == "b": image_warped = image_warped > 0.5 else: # warp seems to change everything to float64, including # uint8, making this necessary image_warped = iadt.restore_dtypes_( image_warped, input_dtype) result[i] = image_warped return result def _augment_maps_by_samples(self, augmentables, arr_attr_name, samples, cval, mode, order): result = augmentables for i, augmentable in enumerate(augmentables): arr = getattr(augmentable, arr_attr_name) transformer = self._get_transformer( arr.shape, augmentable.shape, samples.nb_rows[i], samples.nb_cols[i], samples.jitter[i]) if transformer is not None: arr_warped = tf.warp( arr, transformer, order=order if order is not None else samples.order[i], mode=mode if mode is not None else samples.mode[i], cval=cval if cval is not None else samples.cval[i], preserve_range=True, output_shape=arr.shape ) # skimage converts to float64 arr_warped = arr_warped.astype(arr.dtype) # TODO not entirely clear whether this breaks the value # range -- Affine does # TODO add test for this # order=3 matches cubic interpolation and can cause values # to go outside of the range [0.0, 1.0] not clear whether # 4+ also do that # We don't modify segmaps here, because they don't have a # clear value range of [0, 1] if order >= 3 and isinstance(augmentable, ia.HeatmapsOnImage): arr_warped = np.clip(arr_warped, 0.0, 1.0, out=arr_warped) setattr(augmentable, arr_attr_name, arr_warped) return result def _augment_keypoints_by_samples(self, kpsois, samples): # pylint: disable=pointless-string-statement result = [] for i, kpsoi in enumerate(kpsois): h, w = kpsoi.shape[0:2] transformer = self._get_transformer( kpsoi.shape, kpsoi.shape, samples.nb_rows[i], samples.nb_cols[i], samples.jitter[i]) if transformer is None or len(kpsoi.keypoints) == 0: result.append(kpsoi) else: # Augmentation routine that only modifies keypoint coordinates # This is efficient (coordinates of all other locations in the # image are ignored). The code below should usually work, but # for some reason augmented coordinates are often wildly off # for large scale parameters (lots of jitter/distortion). # The reason for that is unknown. """ coords = keypoints_on_images[i].get_coords_array() coords_aug = transformer.inverse(coords) result.append( ia.KeypointsOnImage.from_coords_array( coords_aug, shape=keypoints_on_images[i].shape ) ) """ # TODO this could be done a little bit more efficient by # removing first all KPs that are outside of the image # plane so that no corresponding distance map has to # be augmented # Image based augmentation routine. Draws the keypoints on # the image plane using distance maps (more accurate than # just marking the points), then augments these images, then # searches for the new (visual) location of the keypoints. # Much slower than directly augmenting the coordinates, but # here the only method that reliably works. dist_maps = kpsoi.to_distance_maps(inverted=True) dist_maps_warped = tf.warp( dist_maps, transformer, order=1, preserve_range=True, output_shape=(kpsoi.shape[0], kpsoi.shape[1], len(kpsoi.keypoints)) ) kps_aug = ia.KeypointsOnImage.from_distance_maps( dist_maps_warped, inverted=True, threshold=0.01, if_not_found_coords={"x": -1, "y": -1}, nb_channels=( None if len(kpsoi.shape) < 3 else kpsoi.shape[2]) ) for kp, kp_aug in zip(kpsoi.keypoints, kps_aug.keypoints): # Keypoints that were outside of the image plane before the # augmentation were replaced with (-1, -1) by default (as # they can't be drawn on the keypoint images). within_image = (0 <= kp.x < w and 0 <= kp.y < h) if within_image: kp.x = kp_aug.x kp.y = kp_aug.y result.append(kpsoi) return result def _draw_samples(self, nb_images, random_state): rss = random_state.duplicate(6) nb_rows_samples = self.nb_rows.draw_samples((nb_images,), random_state=rss[-6]) nb_cols_samples = self.nb_cols.draw_samples((nb_images,), random_state=rss[-5]) order_samples = self.order.draw_samples((nb_images,), random_state=rss[-4]) cval_samples = self.cval.draw_samples((nb_images,), random_state=rss[-3]) mode_samples = self.mode.draw_samples((nb_images,), random_state=rss[-2]) nb_rows_samples = np.clip(nb_rows_samples, 2, None) nb_cols_samples = np.clip(nb_cols_samples, 2, None) nb_cells = nb_rows_samples * nb_cols_samples jitter = self.jitter.draw_samples((int(np.sum(nb_cells)), 2), random_state=rss[-1]) jitter_by_image = [] counter = 0 for nb_cells_i in nb_cells: jitter_img = jitter[counter:counter+nb_cells_i, :] jitter_by_image.append(jitter_img) counter += nb_cells_i return _PiecewiseAffineSamplingResult( nb_rows=nb_rows_samples, nb_cols=nb_cols_samples, jitter=jitter_by_image, order=order_samples, cval=cval_samples, mode=mode_samples) def _get_transformer(self, augmentable_shape, image_shape, nb_rows, nb_cols, jitter_img): # get coords on y and x axis of points to move around # these coordinates are supposed to be at the centers of each cell # (otherwise the first coordinate would be at (0, 0) and could hardly # be moved around before leaving the image), # so we use here (half cell height/width to H/W minus half # height/width) instead of (0, H/W) # pylint: disable=no-else-return y = np.linspace(0, augmentable_shape[0], nb_rows) x = np.linspace(0, augmentable_shape[1], nb_cols) # (H, W) and (H, W) for H=rows, W=cols xx_src, yy_src = np.meshgrid(x, y) # (1, HW, 2) => (HW, 2) for H=rows, W=cols points_src = np.dstack([yy_src.flat, xx_src.flat])[0] any_nonzero = np.any(jitter_img > 0) if not any_nonzero: return None else: # Without this, jitter gets changed between different augmentables. # TODO if left out, only one test failed -- should be more jitter_img = np.copy(jitter_img) if self.absolute_scale: if image_shape[0] > 0: jitter_img[:, 0] = jitter_img[:, 0] / image_shape[0] else: jitter_img[:, 0] = 0.0 if image_shape[1] > 0: jitter_img[:, 1] = jitter_img[:, 1] / image_shape[1] else: jitter_img[:, 1] = 0.0 jitter_img[:, 0] = jitter_img[:, 0] * augmentable_shape[0] jitter_img[:, 1] = jitter_img[:, 1] * augmentable_shape[1] points_dest = np.copy(points_src) points_dest[:, 0] = points_dest[:, 0] + jitter_img[:, 0] points_dest[:, 1] = points_dest[:, 1] + jitter_img[:, 1] # Restrict all destination points to be inside the image plane. # This is necessary, as otherwise keypoints could be augmented # outside of the image plane and these would be replaced by # (-1, -1), which would not conform with the behaviour of the # other augmenters. points_dest[:, 0] = np.clip(points_dest[:, 0], 0, augmentable_shape[0]-1) points_dest[:, 1] = np.clip(points_dest[:, 1], 0, augmentable_shape[1]-1) # tf.warp() results in qhull error if the points are identical, # which is mainly the case if any axis is 0 has_low_axis = any([axis <= 1 for axis in augmentable_shape[0:2]]) has_zero_channels = ( ( augmentable_shape is not None and len(augmentable_shape) == 3 and augmentable_shape[-1] == 0 ) or ( image_shape is not None and len(image_shape) == 3 and image_shape[-1] == 0 ) ) if has_low_axis or has_zero_channels: return None else: matrix = tf.PiecewiseAffineTransform() matrix.estimate(points_src[:, ::-1], points_dest[:, ::-1]) return matrix def get_parameters(self): """See :func:`imgaug.augmenters.meta.Augmenter.get_parameters`.""" return [ self.scale, self.nb_rows, self.nb_cols, self.order, self.cval, self.mode, self.absolute_scale] class _PerspectiveTransformSamplingResult(object): def __init__(self, matrices, max_heights, max_widths, cvals, modes): self.matrices = matrices self.max_heights = max_heights self.max_widths = max_widths self.cvals = cvals self.modes = modes # TODO add arg for image interpolation class PerspectiveTransform(meta.Augmenter): """ Apply random four point perspective transformations to images. Each of the four points is placed on the image using a random distance from its respective corner. The distance is sampled from a normal distribution. As a result, most transformations don't change the image very much, while some "focus" on polygons far inside the image. The results of this augmenter have some similarity with ``Crop``. Code partially from http://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ dtype support:: if (keep_size=False):: * ``uint8``: yes; fully tested * ``uint16``: yes; tested * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: yes; tested (3) * ``int16``: yes; tested * ``int32``: no (2) * ``int64``: no (2) * ``float16``: yes; tested (4) * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: no (1) * ``bool``: yes; tested (4) - (1) rejected by opencv - (2) leads to opencv error: cv2.error: ``OpenCV(3.4.4) (...)imgwarp.cpp:1805: error: (-215:Assertion failed) ifunc != 0 in function 'remap'``. - (3) mapped internally to ``int16``. - (4) mapped intenally to ``float32``. if (keep_size=True):: minimum of ( ``imgaug.augmenters.geometric.PerspectiveTransform(keep_size=False)``, :func:`imgaug.imgaug.imresize_many_images` ) Parameters ---------- scale : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Standard deviation of the normal distributions. These are used to sample the random distances of the subimage's corners from the full image's corners. The sampled values reflect percentage values (with respect to image height/width). Recommended values are in the range ``0.0`` to ``0.1``. * If a single number, then that value will always be used as the scale. * If a tuple ``(a, b)`` of numbers, then a random value will be uniformly sampled per image from the interval ``(a, b)``. * If a list of values, a random value will be picked from the list per image. * If a ``StochasticParameter``, then that parameter will be queried to draw one value per image. keep_size : bool, optional Whether to resize image's back to their original size after applying the perspective transform. If set to ``False``, the resulting images may end up having different shapes and will always be a list, never an array. cval : number or tuple of number or list of number or imaug.ALL or imgaug.parameters.StochasticParameter, optional The constant value used to fill up pixels in the result image that didn't exist in the input image (e.g. when translating to the left, some new pixels are created at the right). Such a fill-up with a constant value only happens, when `mode` is ``constant``. The expected value range is ``[0, 255]`` for ``uint8`` images. It may be a float value. * If this is a single int or float, then that value will be used (e.g. 0 results in black pixels). * If a tuple ``(a, b)``, then a random value is uniformly sampled per image from the interval ``[a, b]``. * If a list, then a random value will be sampled from that list per image. * If ``imgaug.ALL``, then equivalent to tuple ``(0, 255)``. * If a ``StochasticParameter``, a new value will be sampled from the parameter per image. mode : int or str or list of str or list of int or imgaug.ALL or imgaug.parameters.StochasticParameter, optional Parameter that defines the handling of newly created pixels. Same meaning as in OpenCV's border mode. Let ``abcdefgh`` be an image's content and ``|`` be an image boundary, then: * ``cv2.BORDER_REPLICATE``: ``aaaaaa|abcdefgh|hhhhhhh`` * ``cv2.BORDER_CONSTANT``: ``iiiiii|abcdefgh|iiiiiii``, where ``i`` is the defined cval. * ``replicate``: Same as ``cv2.BORDER_REPLICATE``. * ``constant``: Same as ``cv2.BORDER_CONSTANT``. The datatype of the parameter may be: * If a single ``int``, then it must be one of ``cv2.BORDER_*``. * If a single string, then it must be one of: ``replicate``, ``reflect``, ``reflect_101``, ``wrap``, ``constant``. * If a list of ints/strings, then per image a random mode will be picked from that list. * If ``imgaug.ALL``, then a random mode from all possible modes will be picked per image. * If ``StochasticParameter``, then the mode will be sampled from that parameter per image, i.e. it must return only the above mentioned strings. fit_output : bool, optional If ``True``, the image plane size and position will be adjusted to still capture the whole image after perspective transformation. (Followed by image resizing if `keep_size` is set to ``True``.) Otherwise, parts of the transformed image may be outside of the image plane. This setting should not be set to ``True`` when using large `scale` values as it could lead to very large images. polygon_recoverer : 'auto' or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer, optional The class to use to repair invalid polygons. If ``"auto"``, a new instance of :class`imgaug.augmentables.polygons._ConcavePolygonRecoverer` will be created. If ``None``, no polygon recoverer will be used. If an object, then that object will be used and must provide a ``recover_from()`` method, similar to :class:`imgaug.augmentables.polygons._ConcavePolygonRecoverer`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.PerspectiveTransform(scale=(0.01, 0.15)) Apply perspective transformations using a random scale between ``0.01`` and ``0.15`` per image, where the scale is roughly a measure of how far the perspective transformation's corner points may be distanced from the image's corner points. Higher scale values lead to stronger "zoom-in" effects (and thereby stronger distortions). >>> aug = iaa.PerspectiveTransform(scale=(0.01, 0.15), keep_size=False) Same as in the previous example, but images are not resized back to the input image size after augmentation. This will lead to smaller output images. """ _BORDER_MODE_STR_TO_INT = { "replicate": cv2.BORDER_REPLICATE, "constant": cv2.BORDER_CONSTANT } def __init__(self, scale=0, cval=0, mode="constant", keep_size=True, fit_output=False, polygon_recoverer="auto", name=None, deterministic=False, random_state=None): super(PerspectiveTransform, self).__init__( name=name, deterministic=deterministic, random_state=random_state) self.scale = iap.handle_continuous_param( scale, "scale", value_range=(0, None), tuple_to_uniform=True, list_to_choice=True) self.jitter = iap.Normal(loc=0, scale=self.scale) # setting these to 1x1 caused problems for large scales and polygon # augmentation # TODO there is now a recoverer for polygons - are these minima still # needed/sensible? self.min_width = 2 self.min_height = 2 self.cval = _handle_cval_arg(cval) self.mode = self._handle_mode_arg(mode) self.keep_size = keep_size self.fit_output = fit_output self.polygon_recoverer = polygon_recoverer if polygon_recoverer == "auto": self.polygon_recoverer = _ConcavePolygonRecoverer() # Special order, mode and cval parameters for heatmaps and # segmentation maps. These may either be None or a fixed value. # Stochastic parameters are currently *not* supported. # If set to None, the same values as for images will be used. # That is really not recommended for the cval parameter. self._order_heatmaps = cv2.INTER_LINEAR self._order_segmentation_maps = cv2.INTER_NEAREST self._mode_heatmaps = cv2.BORDER_CONSTANT self._mode_segmentation_maps = cv2.BORDER_CONSTANT self._cval_heatmaps = 0 self._cval_segmentation_maps = 0 # TODO unify this somehow with the global _handle_mode_arg() that is # currently used for Affine and PiecewiseAffine @classmethod def _handle_mode_arg(cls, mode): available_modes = [cv2.BORDER_REPLICATE, cv2.BORDER_CONSTANT] available_modes_str = ["replicate", "constant"] if mode == ia.ALL: return iap.Choice(available_modes) if ia.is_single_integer(mode): assert mode in available_modes, ( "Expected mode to be in %s, got %d." % ( str(available_modes), mode)) return iap.Deterministic(mode) if ia.is_string(mode): assert mode in available_modes_str, ( "Expected mode to be in %s, got %s." % ( str(available_modes_str), mode)) return iap.Deterministic(mode) if isinstance(mode, list): valid_types = all([ia.is_single_integer(val) or ia.is_string(val) for val in mode]) assert valid_types, ( "Expected mode list to only contain integers/strings, got " "types %s." % ( ", ".join([str(type(val)) for val in mode]),)) valid_modes = all([val in available_modes + available_modes_str for val in mode]) assert valid_modes, ( "Expected all mode values to be in %s, got %s." % ( str(available_modes + available_modes_str), str(mode))) return iap.Choice(mode) if isinstance(mode, iap.StochasticParameter): return mode raise Exception( "Expected mode to be imgaug.ALL, an int, a string, a list " "of int/strings or StochasticParameter, got %s." % ( type(mode),)) def _augment_batch(self, batch, random_state, parents, hooks): samples_images = self._draw_samples(batch.get_rowwise_shapes(), random_state.copy()) if batch.images is not None: batch.images = self._augment_images_by_samples(batch.images, samples_images) if batch.heatmaps is not None: samples = self._draw_samples( [augmentable.arr_0to1.shape for augmentable in batch.heatmaps], random_state.copy()) batch.heatmaps = self._augment_maps_by_samples( batch.heatmaps, "arr_0to1", samples, samples_images, self._cval_heatmaps, self._mode_heatmaps, self._order_heatmaps) if batch.segmentation_maps is not None: samples = self._draw_samples( [augmentable.arr.shape for augmentable in batch.segmentation_maps], random_state.copy()) batch.segmentation_maps = self._augment_maps_by_samples( batch.segmentation_maps, "arr", samples, samples_images, self._cval_segmentation_maps, self._mode_segmentation_maps, self._order_segmentation_maps) # large scale values cause invalid polygons (unclear why that happens), # hence the recoverer # TODO add test for recoverer if batch.polygons is not None: func = functools.partial( self._augment_keypoints_by_samples, samples_images=samples_images) batch.polygons = self._apply_to_polygons_as_keypoints( batch.polygons, func, recoverer=self.polygon_recoverer) for augm_name in ["keypoints", "bounding_boxes", "line_strings"]: augm_value = getattr(batch, augm_name) if augm_value is not None: func = functools.partial( self._augment_keypoints_by_samples, samples_images=samples_images) cbaois = self._apply_to_cbaois_as_keypoints(augm_value, func) setattr(batch, augm_name, cbaois) return batch def _augment_images_by_samples(self, images, samples): iadt.gate_dtypes( images, allowed=["bool", "uint8", "uint16", "int8", "int16", "float16", "float32", "float64"], disallowed=["uint32", "uint64", "uint128", "uint256", "int32", "int64", "int128", "int256", "float96", "float128", "float256"], augmenter=self) result = images if not self.keep_size: result = list(result) gen = enumerate(zip(images, samples.matrices, samples.max_heights, samples.max_widths, samples.cvals, samples.modes)) for i, (image, matrix, max_height, max_width, cval, mode) in gen: input_dtype = image.dtype if input_dtype.name in ["int8"]: image = image.astype(np.int16) elif input_dtype.name in ["bool", "float16"]: image = image.astype(np.float32) # cv2.warpPerspective only supports <=4 channels and errors # on axes with size zero nb_channels = image.shape[2] has_zero_sized_axis = (image.size == 0) if has_zero_sized_axis: warped = image elif nb_channels <= 4: warped = cv2.warpPerspective( image, matrix, (max_width, max_height), borderValue=cval, borderMode=mode) if warped.ndim == 2 and images[i].ndim == 3: warped = np.expand_dims(warped, 2) else: # warp each channel on its own # note that cv2 removes the channel axis in case of (H,W,1) # inputs warped = [ cv2.warpPerspective( image[..., c], matrix, (max_width, max_height), borderValue=cval[min(c, len(cval)-1)], borderMode=mode, flags=cv2.INTER_LINEAR ) for c in sm.xrange(nb_channels) ] warped = np.stack(warped, axis=-1) if self.keep_size and not has_zero_sized_axis: h, w = image.shape[0:2] warped = ia.imresize_single_image(warped, (h, w)) if input_dtype.name == "bool": warped = warped > 0.5 elif warped.dtype.name != input_dtype.name: warped = iadt.restore_dtypes_(warped, input_dtype) result[i] = warped return result def _augment_maps_by_samples(self, augmentables, arr_attr_name, samples, samples_images, cval, mode, flags): result = augmentables # estimate max_heights/max_widths for the underlying images # this is only necessary if keep_size is False as then the underlying # image sizes change and we need to update them here # TODO this was re-used from before _augment_batch() -- reoptimize if self.keep_size: max_heights_imgs = samples.max_heights max_widths_imgs = samples.max_widths else: max_heights_imgs = samples_images.max_heights max_widths_imgs = samples_images.max_widths gen = enumerate(zip(augmentables, samples.matrices, samples.max_heights, samples.max_widths)) for i, (augmentable_i, matrix, max_height, max_width) in gen: arr = getattr(augmentable_i, arr_attr_name) mode_i = mode if mode is None: mode_i = samples.modes[i] cval_i = cval if cval is None: cval_i = samples.cvals[i] nb_channels = arr.shape[2] image_has_zero_sized_axis = (0 in augmentable_i.shape) map_has_zero_sized_axis = (arr.size == 0) if not image_has_zero_sized_axis: if not map_has_zero_sized_axis: warped = [ cv2.warpPerspective( arr[..., c], matrix, (max_width, max_height), borderValue=cval_i, borderMode=mode_i, flags=flags ) for c in sm.xrange(nb_channels) ] warped = np.stack(warped, axis=-1) setattr(augmentable_i, arr_attr_name, warped) if self.keep_size: h, w = arr.shape[0:2] augmentable_i = augmentable_i.resize((h, w)) else: new_shape = ( max_heights_imgs[i], max_widths_imgs[i] ) + augmentable_i.shape[2:] augmentable_i.shape = new_shape result[i] = augmentable_i return result def _augment_keypoints_by_samples(self, kpsois, samples_images): result = kpsois gen = enumerate(zip(kpsois, samples_images.matrices, samples_images.max_heights, samples_images.max_widths)) for i, (kpsoi, matrix, max_height, max_width) in gen: image_has_zero_sized_axis = (0 in kpsoi.shape) if not image_has_zero_sized_axis: shape_orig = kpsoi.shape shape_new = (max_height, max_width) + kpsoi.shape[2:] kpsoi.shape = shape_new if not kpsoi.empty: kps_arr = kpsoi.to_xy_array() warped = cv2.perspectiveTransform( np.array([kps_arr], dtype=np.float32), matrix) warped = warped[0] for kp, coords in zip(kpsoi.keypoints, warped): kp.x = coords[0] kp.y = coords[1] if self.keep_size: kpsoi = kpsoi.on_(shape_orig) result[i] = kpsoi return result def _draw_samples(self, shapes, random_state): # pylint: disable=invalid-name matrices = [] max_heights = [] max_widths = [] nb_images = len(shapes) rngs = random_state.duplicate(3) cval_samples = self.cval.draw_samples((nb_images, 3), random_state=rngs[0]) mode_samples = self.mode.draw_samples((nb_images,), random_state=rngs[1]) jitter = self.jitter.draw_samples((nb_images, 4, 2), random_state=rngs[2]) # cv2 perspectiveTransform doesn't accept numpy arrays as cval cval_samples_cv2 = cval_samples.tolist() # if border modes are represented by strings, convert them to cv2 # border mode integers if mode_samples.dtype.kind not in ["i", "u"]: for mode, mapped_mode in self._BORDER_MODE_STR_TO_INT.items(): mode_samples[mode_samples == mode] = mapped_mode # modify jitter to the four corner point coordinates # some x/y values have to be modified from `jitter` to `1-jtter` # for that # TODO remove the abs() here. it currently only allows to "zoom-in", # not to "zoom-out" points = np.mod(np.abs(jitter), 1) # top left -- no changes needed, just use jitter # top right points[:, 1, 0] = 1.0 - points[:, 1, 0] # w = 1.0 - jitter # bottom right points[:, 2, 0] = 1.0 - points[:, 2, 0] # w = 1.0 - jitter points[:, 2, 1] = 1.0 - points[:, 2, 1] # h = 1.0 - jitter # bottom left points[:, 3, 1] = 1.0 - points[:, 3, 1] # h = 1.0 - jitter for shape, points_i in zip(shapes, points): h, w = shape[0:2] points_i[:, 0] *= w points_i[:, 1] *= h # Obtain a consistent order of the points and unpack them # individually. # Warning: don't just do (tl, tr, br, bl) = _order_points(...) # here, because the reordered points_i is used further below. points_i = self._order_points(points_i) (tl, tr, br, bl) = points_i # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates min_width = None max_width = None while min_width is None or min_width < self.min_width: width_top = np.sqrt(((tr[0]-tl[0])**2) + ((tr[1]-tl[1])**2)) width_bottom = np.sqrt(((br[0]-bl[0])**2) + ((br[1]-bl[1])**2)) max_width = int(max(width_top, width_bottom)) min_width = int(min(width_top, width_bottom)) if min_width < self.min_width: step_size = (self.min_width - min_width)/2 tl[0] -= step_size tr[0] += step_size bl[0] -= step_size br[0] += step_size # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates min_height = None max_height = None while min_height is None or min_height < self.min_height: height_right = np.sqrt(((tr[0]-br[0])**2) + ((tr[1]-br[1])**2)) height_left = np.sqrt(((tl[0]-bl[0])**2) + ((tl[1]-bl[1])**2)) max_height = int(max(height_right, height_left)) min_height = int(min(height_right, height_left)) if min_height < self.min_height: step_size = (self.min_height - min_height)/2 tl[1] -= step_size tr[1] -= step_size bl[1] += step_size br[1] += step_size # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], [max_width - 1, 0], [max_width - 1, max_height - 1], [0, max_height - 1] ], dtype=np.float32) # compute the perspective transform matrix and then apply it m = cv2.getPerspectiveTransform(points_i, dst) if self.fit_output: m, max_width, max_height = self._expand_transform(m, (h, w)) matrices.append(m) max_heights.append(max_height) max_widths.append(max_width) mode_samples = mode_samples.astype(np.int32) return _PerspectiveTransformSamplingResult( matrices, max_heights, max_widths, cval_samples_cv2, mode_samples) @classmethod def _order_points(cls, pts): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left pts_ordered = np.zeros((4, 2), dtype=np.float32) # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum pointwise_sum = pts.sum(axis=1) pts_ordered[0] = pts[np.argmin(pointwise_sum)] pts_ordered[2] = pts[np.argmax(pointwise_sum)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis=1) pts_ordered[1] = pts[np.argmin(diff)] pts_ordered[3] = pts[np.argmax(diff)] # return the ordered coordinates return pts_ordered @classmethod def _expand_transform(cls, matrix, shape): height, width = shape rect = np.array([ [0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]], dtype=np.float32) dst = cv2.perspectiveTransform(np.array([rect]), matrix)[0] # get min x, y over transformed 4 points # then modify target points by subtracting these minima # => shift to (0, 0) dst -= dst.min(axis=0, keepdims=True) dst = np.around(dst, decimals=0) matrix_expanded = cv2.getPerspectiveTransform(rect, dst) max_width, max_height = dst.max(axis=0) + 1 return matrix_expanded, max_width, max_height def get_parameters(self): """See :func:`imgaug.augmenters.meta.Augmenter.get_parameters`.""" return [self.jitter, self.keep_size, self.cval, self.mode, self.fit_output] class _ElasticTransformationSamplingResult(object): def __init__(self, random_states, alphas, sigmas, orders, cvals, modes): self.random_states = random_states self.alphas = alphas self.sigmas = sigmas self.orders = orders self.cvals = cvals self.modes = modes # TODO add independent sigmas for x/y # TODO add independent alphas for x/y # TODO add backend arg class ElasticTransformation(meta.Augmenter): """ Transform images by moving pixels locally around using displacement fields. The augmenter has the parameters ``alpha`` and ``sigma``. ``alpha`` controls the strength of the displacement: higher values mean that pixels are moved further. ``sigma`` controls the smoothness of the displacement: higher values lead to smoother patterns -- as if the image was below water -- while low values will cause indivdual pixels to be moved very differently from their neighbours, leading to noisy and pixelated images. A relation of 10:1 seems to be good for ``alpha`` and ``sigma``, e.g. ``alpha=10`` and ``sigma=1`` or ``alpha=50``, ``sigma=5``. For ``128x128`` a setting of ``alpha=(0, 70.0)``, ``sigma=(4.0, 6.0)`` may be a good choice and will lead to a water-like effect. Code here was initially inspired by https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a For a detailed explanation, see :: Simard, Steinkraus and Platt Best Practices for Convolutional Neural Networks applied to Visual Document Analysis in Proc. of the International Conference on Document Analysis and Recognition, 2003 .. note:: For coordinate-based inputs (keypoints, bounding boxes, polygons, ...), this augmenter still has to perform an image-based augmentation, which will make it significantly slower for such inputs than other augmenters. See :ref:`performance`. dtype support:: * ``uint8``: yes; fully tested (1) * ``uint16``: yes; tested (1) * ``uint32``: yes; tested (2) * ``uint64``: limited; tested (3) * ``int8``: yes; tested (1) (4) (5) * ``int16``: yes; tested (4) (6) * ``int32``: yes; tested (4) (6) * ``int64``: limited; tested (3) * ``float16``: yes; tested (1) * ``float32``: yes; tested (1) * ``float64``: yes; tested (1) * ``float128``: no * ``bool``: yes; tested (1) (7) - (1) Always handled by ``cv2``. - (2) Always handled by ``scipy``. - (3) Only supported for ``order != 0``. Will fail for ``order=0``. - (4) Mapped internally to ``float64`` when ``order=1``. - (5) Mapped internally to ``int16`` when ``order>=2``. - (6) Handled by ``cv2`` when ``order=0`` or ``order=1``, otherwise by ``scipy``. - (7) Mapped internally to ``float32``. Parameters ---------- alpha : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Strength of the distortion field. Higher values mean that pixels are moved further with respect to the distortion field's direction. Set this to around 10 times the value of `sigma` for visible effects. * If number, then that value will be used for all images. * If tuple ``(a, b)``, then a random value will be uniformly sampled per image from the interval ``[a, b]``. * If a list, then for each image a random value will be sampled from that list. * If ``StochasticParameter``, then that parameter will be used to sample a value per image. sigma : number or tuple of number or list of number or imgaug.parameters.StochasticParameter, optional Standard deviation of the gaussian kernel used to smooth the distortion fields. Higher values (for ``128x128`` images around 5.0) lead to more water-like effects, while lower values (for ``128x128`` images around ``1.0`` and lower) lead to more noisy, pixelated images. Set this to around 1/10th of `alpha` for visible effects. * If number, then that value will be used for all images. * If tuple ``(a, b)``, then a random value will be uniformly sampled per image from the interval ``[a, b]``. * If a list, then for each image a random value will be sampled from that list. * If ``StochasticParameter``, then that parameter will be used to sample a value per image. order : int or list of int or imaug.ALL or imgaug.parameters.StochasticParameter, optional Interpolation order to use. Same meaning as in :func:`scipy.ndimage.map_coordinates` and may take any integer value in the range ``0`` to ``5``, where orders close to ``0`` are faster. * If a single int, then that order will be used for all images. * If a tuple ``(a, b)``, then a random value will be uniformly sampled per image from the interval ``[a, b]``. * If a list, then for each image a random value will be sampled from that list. * If ``imgaug.ALL``, then equivalant to list ``[0, 1, 2, 3, 4, 5]``. * If ``StochasticParameter``, then that parameter is queried per image to sample the order value to use. cval : number or tuple of number or list of number or imgaug.ALL or imgaug.parameters.StochasticParameter, optional The constant intensity value used to fill in new pixels. This value is only used if `mode` is set to ``constant``. For standard ``uint8`` images (value range ``0`` to ``255``), this value may also should also be in the range ``0`` to ``255``. It may be a ``float`` value, even for images with integer dtypes. * If this is a single number, then that value will be used (e.g. ``0`` results in black pixels). * If a tuple ``(a, b)``, then a random value will be uniformly sampled per image from the interval ``[a, b]``. * If a list, then a random value will be picked from that list per image. * If ``imgaug.ALL``, a value from the discrete range ``[0..255]`` will be sampled per image. * If a ``StochasticParameter``, a new value will be sampled from the parameter per image. mode : str or list of str or imgaug.ALL or imgaug.parameters.StochasticParameter, optional Parameter that defines the handling of newly created pixels. May take the same values as in :func:`scipy.ndimage.map_coordinates`, i.e. ``constant``, ``nearest``, ``reflect`` or ``wrap``. * If a single string, then that mode will be used for all images. * If a list of strings, then per image a random mode will be picked from that list. * If ``imgaug.ALL``, then a random mode from all possible modes will be picked. * If ``StochasticParameter``, then the mode will be sampled from that parameter per image, i.e. it must return only the above mentioned strings. polygon_recoverer : 'auto' or None or imgaug.augmentables.polygons._ConcavePolygonRecoverer, optional The class to use to repair invalid polygons. If ``"auto"``, a new instance of :class`imgaug.augmentables.polygons._ConcavePolygonRecoverer` will be created. If ``None``, no polygon recoverer will be used. If an object, then that object will be used and must provide a ``recover_from()`` method, similar to :class:`imgaug.augmentables.polygons._ConcavePolygonRecoverer`. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.ElasticTransformation(alpha=50.0, sigma=5.0) Apply elastic transformations with a strength/alpha of ``50.0`` and smoothness of ``5.0`` to all images. >>> aug = iaa.ElasticTransformation(alpha=(0.0, 70.0), sigma=5.0) Apply elastic transformations with a strength/alpha that comes from the interval ``[0.0, 70.0]`` (randomly picked per image) and with a smoothness of ``5.0``. """ NB_NEIGHBOURING_KEYPOINTS = 3 NEIGHBOURING_KEYPOINTS_DISTANCE = 1.0 KEYPOINT_AUG_ALPHA_THRESH = 0.05 # even at high alphas we don't augment keypoints if the sigma is too low, # because then the pixel movements are mostly gaussian noise anyways KEYPOINT_AUG_SIGMA_THRESH = 1.0 _MAPPING_MODE_SCIPY_CV2 = { "constant": cv2.BORDER_CONSTANT, "nearest": cv2.BORDER_REPLICATE, "reflect": cv2.BORDER_REFLECT_101, "wrap": cv2.BORDER_WRAP } _MAPPING_ORDER_SCIPY_CV2 = { 0: cv2.INTER_NEAREST, 1: cv2.INTER_LINEAR, 2: cv2.INTER_CUBIC, 3: cv2.INTER_CUBIC, 4: cv2.INTER_CUBIC, 5: cv2.INTER_CUBIC } def __init__(self, alpha=0, sigma=0, order=3, cval=0, mode="constant", polygon_recoverer="auto", name=None, deterministic=False, random_state=None): super(ElasticTransformation, self).__init__( name=name, deterministic=deterministic, random_state=random_state) self.alpha = iap.handle_continuous_param( alpha, "alpha", value_range=(0, None), tuple_to_uniform=True, list_to_choice=True) self.sigma = iap.handle_continuous_param( sigma, "sigma", value_range=(0, None), tuple_to_uniform=True, list_to_choice=True) self.order = self._handle_order_arg(order) self.cval = _handle_cval_arg(cval) self.mode = self._handle_mode_arg(mode) self.polygon_recoverer = polygon_recoverer if polygon_recoverer == "auto": self.polygon_recoverer = _ConcavePolygonRecoverer() # Special order, mode and cval parameters for heatmaps and # segmentation maps. These may either be None or a fixed value. # Stochastic parameters are currently *not* supported. # If set to None, the same values as for images will be used. # That is really not recommended for the cval parameter. # self._order_heatmaps = 3 self._order_segmentation_maps = 0 self._mode_heatmaps = "constant" self._mode_segmentation_maps = "constant" self._cval_heatmaps = 0.0 self._cval_segmentation_maps = 0 @classmethod def _handle_order_arg(cls, order): if order == ia.ALL: return iap.Choice([0, 1, 2, 3, 4, 5]) return iap.handle_discrete_param( order, "order", value_range=(0, 5), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) @classmethod def _handle_mode_arg(cls, mode): if mode == ia.ALL: return iap.Choice(["constant", "nearest", "reflect", "wrap"]) if ia.is_string(mode): return iap.Deterministic(mode) if ia.is_iterable(mode): assert all([ia.is_string(val) for val in mode]), ( "Expected mode list to only contain strings, got " "types %s." % ( ", ".join([str(type(val)) for val in mode]),)) return iap.Choice(mode) if isinstance(mode, iap.StochasticParameter): return mode raise Exception( "Expected mode to be imgaug.ALL, a string, a list of strings " "or StochasticParameter, got %s." % (type(mode),)) def _draw_samples(self, nb_images, random_state): rss = random_state.duplicate(nb_images+5) alphas = self.alpha.draw_samples((nb_images,), random_state=rss[-5]) sigmas = self.sigma.draw_samples((nb_images,), random_state=rss[-4]) orders = self.order.draw_samples((nb_images,), random_state=rss[-3]) cvals = self.cval.draw_samples((nb_images,), random_state=rss[-2]) modes = self.mode.draw_samples((nb_images,), random_state=rss[-1]) return _ElasticTransformationSamplingResult( rss[0:-5], alphas, sigmas, orders, cvals, modes) def _augment_batch(self, batch, random_state, parents, hooks): # pylint: disable=invalid-name if batch.images is not None: iadt.gate_dtypes( batch.images, allowed=["bool", "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", "float16", "float32", "float64"], disallowed=["uint128", "uint256", "int128", "int256", "float96", "float128", "float256"], augmenter=self) shapes = batch.get_rowwise_shapes() samples = self._draw_samples(len(shapes), random_state) for i, shape in enumerate(shapes): dx, dy = self._generate_shift_maps( shape[0:2], alpha=samples.alphas[i], sigma=samples.sigmas[i], random_state=samples.random_states[i]) if batch.images is not None: batch.images[i] = self._augment_image_by_samples( batch.images[i], i, samples, dx, dy) if batch.heatmaps is not None: batch.heatmaps[i] = self._augment_hm_or_sm_by_samples( batch.heatmaps[i], i, samples, dx, dy, "arr_0to1", self._cval_heatmaps, self._mode_heatmaps, self._order_heatmaps) if batch.segmentation_maps is not None: batch.segmentation_maps[i] = self._augment_hm_or_sm_by_samples( batch.segmentation_maps[i], i, samples, dx, dy, "arr", self._cval_segmentation_maps, self._mode_segmentation_maps, self._order_segmentation_maps) if batch.keypoints is not None: batch.keypoints[i] = self._augment_kpsoi_by_samples( batch.keypoints[i], i, samples, dx, dy) if batch.bounding_boxes is not None: batch.bounding_boxes[i] = self._augment_bbsoi_by_samples( batch.bounding_boxes[i], i, samples, dx, dy) if batch.polygons is not None: batch.polygons[i] = self._augment_psoi_by_samples( batch.polygons[i], i, samples, dx, dy) if batch.line_strings is not None: batch.line_strings[i] = self._augment_lsoi_by_samples( batch.line_strings[i], i, samples, dx, dy) return batch def _augment_image_by_samples(self, image, row_idx, samples, dx, dy): # pylint: disable=invalid-name min_value, _center_value, max_value = \ iadt.get_value_range_of_dtype(image.dtype) cval = max(min(samples.cvals[row_idx], max_value), min_value) input_dtype = image.dtype if image.dtype.name == "float16": image = image.astype(np.float32) image_aug = self._map_coordinates( image, dx, dy, order=samples.orders[row_idx], cval=cval, mode=samples.modes[row_idx]) if image.dtype.name != input_dtype.name: image_aug = iadt.restore_dtypes_(image_aug, input_dtype) return image_aug def _augment_hm_or_sm_by_samples(self, augmentable, row_idx, samples, dx, dy, arr_attr_name, cval, mode, order): # pylint: disable=invalid-name cval = cval if cval is not None else samples.cvals[row_idx] mode = mode if mode is not None else samples.modes[row_idx] order = order if order is not None else samples.orders[row_idx] # note that we do not have to check for zero-sized axes here, # because _generate_shift_maps(), _map_coordinates(), .resize() # and np.clip() are all known to handle arrays with zero-sized axes arr = getattr(augmentable, arr_attr_name) if arr.shape[0:2] == augmentable.shape[0:2]: arr_warped = self._map_coordinates( arr, dx, dy, order=order, cval=cval, mode=mode) # interpolation in map_coordinates() can cause some values to # be below/above 1.0, so we clip here if order >= 3 and isinstance(augmentable, ia.HeatmapsOnImage): arr_warped = np.clip(arr_warped, 0.0, 1.0, out=arr_warped) setattr(augmentable, arr_attr_name, arr_warped) else: # Heatmaps/Segmaps do not have the same size as augmented # images. This may result in indices of moved pixels being # different. To prevent this, we use the same image size as # for the base images, but that requires resizing the heatmaps # temporarily to the image sizes. height_orig, width_orig = arr.shape[0:2] augmentable = augmentable.resize(augmentable.shape[0:2]) arr = getattr(augmentable, arr_attr_name) # TODO will it produce similar results to first downscale the # shift maps and then remap? That would make the remap # step take less operations and would also mean that the # heatmaps wouldnt have to be scaled up anymore. It would # also simplify the code as this branch could be merged # with the one above. arr_warped = self._map_coordinates( arr, dx, dy, order=order, cval=cval, mode=mode) # interpolation in map_coordinates() can cause some values to # be below/above 1.0, so we clip here if order >= 3 and isinstance(augmentable, ia.HeatmapsOnImage): arr_warped = np.clip(arr_warped, 0.0, 1.0, out=arr_warped) setattr(augmentable, arr_attr_name, arr_warped) augmentable = augmentable.resize((height_orig, width_orig)) return augmentable def _augment_kpsoi_by_samples(self, kpsoi, row_idx, samples, dx, dy): # pylint: disable=misplaced-comparison-constant, invalid-name height, width = kpsoi.shape[0:2] alpha = samples.alphas[row_idx] sigma = samples.sigmas[row_idx] # TODO add test for keypoint alignment when keypoints are empty # Note: this block must be placed after _generate_shift_maps() to # keep samples aligned # Note: we should stop for zero-sized axes early here, event though # there is a height/width check for each keypoint, because the # channel number can also be zero image_has_zero_sized_axes = (0 in kpsoi.shape) params_below_thresh = ( alpha <= self.KEYPOINT_AUG_ALPHA_THRESH or sigma <= self.KEYPOINT_AUG_SIGMA_THRESH) if kpsoi.empty or image_has_zero_sized_axes or params_below_thresh: # ElasticTransformation does not change the shape, hence we can # skip the below steps return kpsoi for kp in kpsoi.keypoints: within_image_plane = (0 <= kp.x < width and 0 <= kp.y < height) if within_image_plane: kp_neighborhood = kp.generate_similar_points_manhattan( self.NB_NEIGHBOURING_KEYPOINTS, self.NEIGHBOURING_KEYPOINTS_DISTANCE, return_array=True ) # We can clip here, because we made sure above that the # keypoint is inside the image plane. Keypoints at the # bottom row or right columns might be rounded outside # the image plane, which we prevent here. We reduce # neighbours to only those within the image plane as only # for such points we know where to move them. xx = np.round(kp_neighborhood[:, 0]).astype(np.int32) yy = np.round(kp_neighborhood[:, 1]).astype(np.int32) inside_image_mask = np.logical_and( np.logical_and(0 <= xx, xx < width), np.logical_and(0 <= yy, yy < height) ) xx = xx[inside_image_mask] yy = yy[inside_image_mask] xxyy = np.concatenate( [xx[:, np.newaxis], yy[:, np.newaxis]], axis=1) xxyy_aug = np.copy(xxyy).astype(np.float32) xxyy_aug[:, 0] += dx[yy, xx] xxyy_aug[:, 1] += dy[yy, xx] med = ia.compute_geometric_median(xxyy_aug) # uncomment to use average instead of median # med = np.average(xxyy_aug, 0) kp.x = med[0] kp.y = med[1] return kpsoi def _augment_psoi_by_samples(self, psoi, row_idx, samples, dx, dy): # pylint: disable=invalid-name func = functools.partial(self._augment_kpsoi_by_samples, row_idx=row_idx, samples=samples, dx=dx, dy=dy) return self._apply_to_polygons_as_keypoints( psoi, func, recoverer=self.polygon_recoverer) def _augment_lsoi_by_samples(self, lsoi, row_idx, samples, dx, dy): # pylint: disable=invalid-name func = functools.partial(self._augment_kpsoi_by_samples, row_idx=row_idx, samples=samples, dx=dx, dy=dy) return self._apply_to_cbaois_as_keypoints(lsoi, func) def _augment_bbsoi_by_samples(self, bbsoi, row_idx, samples, dx, dy): # pylint: disable=invalid-name func = functools.partial(self._augment_kpsoi_by_samples, row_idx=row_idx, samples=samples, dx=dx, dy=dy) return self._apply_to_cbaois_as_keypoints(bbsoi, func) def get_parameters(self): """See :func:`imgaug.augmenters.meta.Augmenter.get_parameters`.""" return [self.alpha, self.sigma, self.order, self.cval, self.mode] @classmethod def _generate_shift_maps(cls, shape, alpha, sigma, random_state): # pylint: disable=protected-access, invalid-name assert len(shape) == 2, ("Expected 2d shape, got %s." % (shape,)) ksize = blur_lib._compute_gaussian_blur_ksize(sigma) ksize = ksize + 1 if ksize % 2 == 0 else ksize padding = ksize h, w = shape[0:2] h_pad = h + 2*padding w_pad = w + 2*padding # The step of random number generation could be batched, so that # random numbers are sampled once for the whole batch. Would get rid # of creating many random_states. dxdy_unsmoothed = random_state.random((2 * h_pad, w_pad)) * 2 - 1 dx_unsmoothed = dxdy_unsmoothed[0:h_pad, :] dy_unsmoothed = dxdy_unsmoothed[h_pad:, :] # TODO could this also work with an average blur? would probably be # faster dx = blur_lib.blur_gaussian_(dx_unsmoothed, sigma) * alpha dy = blur_lib.blur_gaussian_(dy_unsmoothed, sigma) * alpha if padding > 0: dx = dx[padding:-padding, padding:-padding] dy = dy[padding:-padding, padding:-padding] return dx, dy @classmethod def _map_coordinates(cls, image, dx, dy, order=1, cval=0, mode="constant"): """Remap pixels in an image according to x/y shift maps. dtype support:: if (backend="scipy" and order=0):: * ``uint8``: yes * ``uint16``: yes * ``uint32``: yes * ``uint64``: no (1) * ``int8``: yes * ``int16``: yes * ``int32``: yes * ``int64``: no (2) * ``float16``: yes * ``float32``: yes * ``float64``: yes * ``float128``: no (3) * ``bool``: yes - (1) produces array filled with only 0 - (2) produces array filled with <min_value> when testing with <max_value> - (3) causes: 'data type no supported' if (backend="scipy" and order>0):: * ``uint8``: yes (1) * ``uint16``: yes (1) * ``uint32``: yes (1) * ``uint64``: yes (1) * ``int8``: yes (1) * ``int16``: yes (1) * ``int32``: yes (1) * ``int64``: yes (1) * ``float16``: yes (1) * ``float32``: yes (1) * ``float64``: yes (1) * ``float128``: no (2) * ``bool``: yes - (1) rather loose test, to avoid having to re-compute the interpolation - (2) causes: 'data type no supported' if (backend="cv2" and order=0):: * ``uint8``: yes * ``uint16``: yes * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: yes * ``int16``: yes * ``int32``: yes * ``int64``: no (2) * ``float16``: yes * ``float32``: yes * ``float64``: yes * ``float128``: no (3) * ``bool``: no (4) - (1) causes: src data type = 6 is not supported - (2) silently converts to int32 - (3) causes: src data type = 13 is not supported - (4) causes: src data type = 0 is not supported if (backend="cv2" and order=1):: * ``uint8``: yes * ``uint16``: yes * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: no (2) * ``int16``: no (2) * ``int32``: no (2) * ``int64``: no (2) * ``float16``: yes * ``float32``: yes * ``float64``: yes * ``float128``: no (3) * ``bool``: no (4) - (1) causes: src data type = 6 is not supported - (2) causes: OpenCV(3.4.5) (...)/imgwarp.cpp:1805: error: (-215:Assertion failed) ifunc != 0 in function 'remap' - (3) causes: src data type = 13 is not supported - (4) causes: src data type = 0 is not supported if (backend="cv2" and order>=2):: * ``uint8``: yes * ``uint16``: yes * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: no (2) * ``int16``: yes * ``int32``: no (2) * ``int64``: no (2) * ``float16``: yes * ``float32``: yes * ``float64``: yes * ``float128``: no (3) * ``bool``: no (4) - (1) causes: src data type = 6 is not supported - (2) causes: OpenCV(3.4.5) (...)/imgwarp.cpp:1805: error: (-215:Assertion failed) ifunc != 0 in function 'remap' - (3) causes: src data type = 13 is not supported - (4) causes: src data type = 0 is not supported """ # pylint: disable=invalid-name if image.size == 0: return np.copy(image) if order == 0 and image.dtype.name in ["uint64", "int64"]: raise Exception( "dtypes uint64 and int64 are only supported in " "ElasticTransformation for order=0, got order=%d with " "dtype=%s." % (order, image.dtype.name)) input_dtype = image.dtype if image.dtype.name == "bool": image = image.astype(np.float32) elif order == 1 and image.dtype.name in ["int8", "int16", "int32"]: image = image.astype(np.float64) elif order >= 2 and image.dtype.name == "int8": image = image.astype(np.int16) elif order >= 2 and image.dtype.name == "int32": image = image.astype(np.float64) shrt_max = 32767 # maximum of datatype `short` backend = "cv2" if order == 0: bad_dtype_cv2 = ( image.dtype.name in [ "uint32", "uint64", "int64", "float128", "bool"] ) elif order == 1: bad_dtype_cv2 = ( image.dtype.name in [ "uint32", "uint64", "int8", "int16", "int32", "int64", "float128", "bool"] ) else: bad_dtype_cv2 = ( image.dtype.name in [ "uint32", "uint64", "int8", "int32", "int64", "float128", "bool"] ) bad_dx_shape_cv2 = (dx.shape[0] >= shrt_max or dx.shape[1] >= shrt_max) bad_dy_shape_cv2 = (dy.shape[0] >= shrt_max or dy.shape[1] >= shrt_max) if bad_dtype_cv2 or bad_dx_shape_cv2 or bad_dy_shape_cv2: backend = "scipy" assert image.ndim == 3, ( "Expected 3-dimensional image, got %d dimensions." % (image.ndim,)) result = np.copy(image) height, width = image.shape[0:2] if backend == "scipy": h, w = image.shape[0:2] y, x = np.meshgrid( np.arange(h).astype(np.float32), np.arange(w).astype(np.float32), indexing="ij") x_shifted = x + (-1) * dx y_shifted = y + (-1) * dy for c in sm.xrange(image.shape[2]): remapped_flat = ndimage.interpolation.map_coordinates( image[..., c], (y_shifted.flatten(), x_shifted.flatten()), order=order, cval=cval, mode=mode ) remapped = remapped_flat.reshape((height, width)) result[..., c] = remapped else: h, w, nb_channels = image.shape y, x = np.meshgrid( np.arange(h).astype(np.float32), np.arange(w).astype(np.float32), indexing="ij") x_shifted = x + (-1) * dx y_shifted = y + (-1) * dy if image.dtype.kind == "f": cval = float(cval) else: cval = int(cval) border_mode = cls._MAPPING_MODE_SCIPY_CV2[mode] interpolation = cls._MAPPING_ORDER_SCIPY_CV2[order] is_nearest_neighbour = (interpolation == cv2.INTER_NEAREST) map1, map2 = cv2.convertMaps( x_shifted, y_shifted, cv2.CV_16SC2, nninterpolation=is_nearest_neighbour) # remap only supports up to 4 channels if nb_channels <= 4: result = cv2.remap( image, map1, map2, interpolation=interpolation, borderMode=border_mode, borderValue=cval) if image.ndim == 3 and result.ndim == 2: result = result[..., np.newaxis] else: current_chan_idx = 0 result = [] while current_chan_idx < nb_channels: channels = image[..., current_chan_idx:current_chan_idx+4] result_c = cv2.remap( channels, map1, map2, interpolation=interpolation, borderMode=border_mode, borderValue=cval) if result_c.ndim == 2: result_c = result_c[..., np.newaxis] result.append(result_c) current_chan_idx += 4 result = np.concatenate(result, axis=2) if result.dtype.name != input_dtype.name: result = iadt.restore_dtypes_(result, input_dtype) return result class Rot90(meta.Augmenter): """ Rotate images clockwise by multiples of 90 degrees. This could also be achieved using ``Affine``, but ``Rot90`` is significantly more efficient. dtype support:: if (keep_size=False):: * ``uint8``: yes; fully tested * ``uint16``: yes; tested * ``uint32``: yes; tested * ``uint64``: yes; tested * ``int8``: yes; tested * ``int16``: yes; tested * ``int32``: yes; tested * ``int64``: yes; tested * ``float16``: yes; tested * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: yes; tested * ``bool``: yes; tested if (keep_size=True):: minimum of ( ``imgaug.augmenters.geometric.Rot90(keep_size=False)``, :func:`imgaug.imgaug.imresize_many_images` ) Parameters ---------- k : int or list of int or tuple of int or imaug.ALL or imgaug.parameters.StochasticParameter, optional How often to rotate clockwise by 90 degrees. * If a single ``int``, then that value will be used for all images. * If a tuple ``(a, b)``, then a random value will be uniformly sampled per image from the discrete interval ``[a..b]``. * If a list, then for each image a random value will be sampled from that list. * If ``imgaug.ALL``, then equivalant to list ``[0, 1, 2, 3]``. * If ``StochasticParameter``, then that parameter is queried per image to sample the value to use. keep_size : bool, optional After rotation by an odd-valued `k` (e.g. 1 or 3), the resulting image may have a different height/width than the original image. If this parameter is set to ``True``, then the rotated image will be resized to the input image's size. Note that this might also cause the augmented image to look distorted. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.Rot90(1) Rotate all images by 90 degrees. Resize these images afterwards to keep the size that they had before augmentation. This may cause the images to look distorted. >>> aug = iaa.Rot90([1, 3]) Rotate all images by 90 or 270 degrees. Resize these images afterwards to keep the size that they had before augmentation. This may cause the images to look distorted. >>> aug = iaa.Rot90((1, 3)) Rotate all images by 90, 180 or 270 degrees. Resize these images afterwards to keep the size that they had before augmentation. This may cause the images to look distorted. >>> aug = iaa.Rot90((1, 3), keep_size=False) Rotate all images by 90, 180 or 270 degrees. Does not resize to the original image size afterwards, i.e. each image's size may change. """ def __init__(self, k, keep_size=True, name=None, deterministic=False, random_state=None): super(Rot90, self).__init__( name=name, deterministic=deterministic, random_state=random_state) if k == ia.ALL: k = [0, 1, 2, 3] self.k = iap.handle_discrete_param( k, "k", value_range=None, tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.keep_size = keep_size def _draw_samples(self, nb_images, random_state): return self.k.draw_samples((nb_images,), random_state=random_state) def _augment_batch(self, batch, random_state, parents, hooks): # pylint: disable=invalid-name ks = self._draw_samples(batch.nb_rows, random_state) if batch.images is not None: batch.images = self._augment_arrays_by_samples( batch.images, ks, self.keep_size, ia.imresize_single_image) if batch.heatmaps is not None: batch.heatmaps = self._augment_maps_by_samples( batch.heatmaps, "arr_0to1", ks) if batch.segmentation_maps is not None: batch.segmentation_maps = self._augment_maps_by_samples( batch.segmentation_maps, "arr", ks) for augm_name in ["keypoints", "bounding_boxes", "polygons", "line_strings"]: augm_value = getattr(batch, augm_name) if augm_value is not None: func = functools.partial( self._augment_keypoints_by_samples, ks=ks) cbaois = self._apply_to_cbaois_as_keypoints(augm_value, func) setattr(batch, augm_name, cbaois) return batch @classmethod def _augment_arrays_by_samples(cls, arrs, ks, keep_size, resize_func): # pylint: disable=invalid-name input_was_array = ia.is_np_array(arrs) input_dtype = arrs.dtype if input_was_array else None arrs_aug = [] for arr, k_i in zip(arrs, ks): # adding axes here rotates clock-wise instead of ccw arr_aug = np.rot90(arr, k_i, axes=(1, 0)) do_resize = ( keep_size and arr.shape != arr_aug.shape and resize_func is not None) if do_resize: arr_aug = resize_func(arr_aug, arr.shape[0:2]) arrs_aug.append(arr_aug) if keep_size and input_was_array: n_shapes = len({arr.shape for arr in arrs_aug}) if n_shapes == 1: arrs_aug = np.array(arrs_aug, dtype=input_dtype) return arrs_aug def _augment_maps_by_samples(self, augmentables, arr_attr_name, ks): # pylint: disable=invalid-name arrs = [getattr(map_i, arr_attr_name) for map_i in augmentables] arrs_aug = self._augment_arrays_by_samples( arrs, ks, self.keep_size, None) maps_aug = [] gen = zip(augmentables, arrs, arrs_aug, ks) for augmentable_i, arr, arr_aug, k_i in gen: shape_orig = arr.shape setattr(augmentable_i, arr_attr_name, arr_aug) if self.keep_size: augmentable_i = augmentable_i.resize(shape_orig[0:2]) elif k_i % 2 == 1: h, w = augmentable_i.shape[0:2] augmentable_i.shape = tuple( [w, h] + list(augmentable_i.shape[2:])) else: # keep_size was False, but rotated by a multiple of 2, # hence height and width do not change pass maps_aug.append(augmentable_i) return maps_aug def _augment_keypoints_by_samples(self, keypoints_on_images, ks): # pylint: disable=invalid-name result = [] for kpsoi_i, k_i in zip(keypoints_on_images, ks): shape_orig = kpsoi_i.shape if (k_i % 4) == 0: result.append(kpsoi_i) else: k_i = int(k_i) % 4 # this is also correct when k_i is negative h, w = kpsoi_i.shape[0:2] h_aug, w_aug = (h, w) if (k_i % 2) == 0 else (w, h) for kp in kpsoi_i.keypoints: y, x = kp.y, kp.x yr, xr = y, x wr, hr = w, h for _ in sm.xrange(k_i): # for int coordinates this would instead be # xr, yr = (hr - 1) - yr, xr # here we assume that coordinates are always # subpixel-accurate xr, yr = hr - yr, xr wr, hr = hr, wr kp.x = xr kp.y = yr shape_aug = tuple([h_aug, w_aug] + list(kpsoi_i.shape[2:])) kpsoi_i.shape = shape_aug if self.keep_size and (h, w) != (h_aug, w_aug): kpsoi_i = kpsoi_i.on_(shape_orig) kpsoi_i.shape = shape_orig result.append(kpsoi_i) return result def get_parameters(self): """See :func:`imgaug.augmenters.meta.Augmenter.get_parameters`.""" return [self.k, self.keep_size] # TODO semipolar class WithPolarWarping(meta.Augmenter): """Augmenter that applies other augmenters in a polar-transformed space. This augmenter first transforms an image into a polar representation, then applies its child augmenter, then transforms back to cartesian space. The polar representation is still in the image's input dtype (i.e. ``uint8`` stays ``uint8``) and can be visualized. It can be thought of as an "unrolled" version of the image, where previously circular lines appear straight. Hence, applying child augmenters in that space can lead to circular effects. E.g. replacing rectangular pixel areas in the polar representation with black pixels will lead to curved black areas in the cartesian result. This augmenter can create new pixels in the image. It will fill these with black pixels. For segmentation maps it will fill with class id ``0``. For heatmaps it will fill with ``0.0``. This augmenter is limited to arrays with a height and/or width of ``32767`` or less. .. warning:: When augmenting coordinates in polar representation, it is possible that these are shifted outside of the polar image, but are inside the image plane after transforming back to cartesian representation, usually on newly created pixels (i.e. black backgrounds). These coordinates are currently not removed. It is recommended to not use very strong child transformations when also augmenting coordinate-based augmentables. .. warning:: For bounding boxes, this augmenter suffers from the same problem as affine rotations applied to bounding boxes, i.e. the resulting bounding boxes can have unintuitive (seemingly wrong) appearance. This is due to coordinates being "rotated" that are inside the bounding box, but do not fall on the object and actually are background. It is recommended to use this augmenter with caution when augmenting bounding boxes. .. warning:: For polygons, this augmenter should not be combined with augmenters that perform automatic polygon recovery for invalid polygons, as the polygons will frequently appear broken in polar representation and their "fixed" version will be very broken in cartesian representation. Augmenters that perform such polygon recovery are currently ``PerspectiveTransform``, ``PiecewiseAffine`` and ``ElasticTransformation``. dtype support:: * ``uint8``: yes; fully tested * ``uint16``: yes; tested * ``uint32``: no (1) * ``uint64``: no (2) * ``int8``: yes; tested * ``int16``: yes; tested * ``int32``: yes; tested * ``int64``: no (2) * ``float16``: yes; tested (3) * ``float32``: yes; tested * ``float64``: yes; tested * ``float128``: no (1) * ``bool``: yes; tested (4) - (1) OpenCV produces error ``TypeError: Expected cv::UMat for argument 'src'`` - (2) OpenCV produces array of nothing but zeros. - (3) Mapepd to ``float32``. - (4) Mapped to ``uint8``. Parameters ---------- children : imgaug.augmenters.meta.Augmenter or list of imgaug.augmenters.meta.Augmenter or None, optional One or more augmenters to apply to images after they were transformed to polar representation. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.WithPolarWarping(iaa.CropAndPad(percent=(-0.1, 0.1))) Apply cropping and padding in polar representation, then warp back to cartesian representation. >>> aug = iaa.WithPolarWarping( >>> iaa.Affine( >>> translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, >>> rotate=(-35, 35), >>> scale=(0.8, 1.2), >>> shear={"x": (-15, 15), "y": (-15, 15)} >>> ) >>> ) Apply affine transformations in polar representation. >>> aug = iaa.WithPolarWarping(iaa.AveragePooling((2, 8))) Apply average pooling in polar representation. This leads to circular bins. """ def __init__(self, children, name=None, deterministic=False, random_state=None): super(WithPolarWarping, self).__init__( name=name, deterministic=deterministic, random_state=random_state) self.children = meta.handle_children_list(children, self.name, "then") def _augment_batch(self, batch, random_state, parents, hooks): if batch.images is not None: iadt.gate_dtypes( batch.images, allowed=["bool", "uint8", "uint16", "int8", "int16", "int32", "float16", "float32", "float64"], disallowed=["uint32", "uint64", "uint128", "uint256", "int64", "int128", "int256", "float96", "float128", "float256"], augmenter=self) with batch.propagation_hooks_ctx(self, hooks, parents): batch, inv_data_bbs = self._convert_bbs_to_polygons_(batch) inv_data = {} for column in batch.columns: func = getattr(self, "_warp_%s_" % (column.name,)) col_aug, inv_data_col = func(column.value) setattr(batch, column.attr_name, col_aug) inv_data[column.name] = inv_data_col batch = self.children.augment_batch(batch, parents=parents + [self], hooks=hooks) for column in batch.columns: func = getattr(self, "_invert_warp_%s_" % (column.name,)) col_unaug = func(column.value, inv_data[column.name]) setattr(batch, column.attr_name, col_unaug) batch = self._invert_convert_bbs_to_polygons_(batch, inv_data_bbs) return batch @classmethod def _convert_bbs_to_polygons_(cls, batch): batch_contained_polygons = batch.polygons is not None if batch.bounding_boxes is None: return batch, (False, batch_contained_polygons) psois = [bbsoi.to_polygons_on_image() for bbsoi in batch.bounding_boxes] psois = [psoi.subdivide_(2) for psoi in psois] # Mark Polygons that are really Bounding Boxes for psoi in psois: for polygon in psoi.polygons: if polygon.label is None: polygon.label = "$$IMGAUG_BB_AS_POLYGON" else: polygon.label = polygon.label + ";$$IMGAUG_BB_AS_POLYGON" # Merge Fake-Polygons into existing Polygons if batch.polygons is None: batch.polygons = psois else: for psoi, bbs_as_psoi in zip(batch.polygons, psois): assert psoi.shape == bbs_as_psoi.shape, ( "Expected polygons and bounding boxes to have the same " ".shape value, got %s and %s." % (psoi.shape, bbs_as_psoi.shape)) psoi.polygons.extend(bbs_as_psoi.polygons) batch.bounding_boxes = None return batch, (True, batch_contained_polygons) @classmethod def _invert_convert_bbs_to_polygons_(cls, batch, inv_data): batch_contained_bbs, batch_contained_polygons = inv_data if not batch_contained_bbs: return batch bbsois = [] for psoi in batch.polygons: polygons = [] bbs = [] for polygon in psoi.polygons: is_bb = False if polygon.label is None: is_bb = False elif polygon.label == "$$IMGAUG_BB_AS_POLYGON": polygon.label = None is_bb = True elif polygon.label.endswith(";$$IMGAUG_BB_AS_POLYGON"): polygon.label = \ polygon.label[:-len(";$$IMGAUG_BB_AS_POLYGON")] is_bb = True if is_bb: bbs.append(polygon.to_bounding_box()) else: polygons.append(polygon) psoi.polygons = polygons bbsoi = ia.BoundingBoxesOnImage(bbs, shape=psoi.shape) bbsois.append(bbsoi) batch.bounding_boxes = bbsois if not batch_contained_polygons: batch.polygons = None return batch @classmethod def _warp_images_(cls, images): return cls._warp_arrays(images, False) @classmethod def _invert_warp_images_(cls, images_warped, inv_data): return cls._invert_warp_arrays(images_warped, False, inv_data) @classmethod def _warp_heatmaps_(cls, heatmaps): return cls._warp_maps_(heatmaps, "arr_0to1", False) @classmethod def _invert_warp_heatmaps_(cls, heatmaps_warped, inv_data): return cls._invert_warp_maps_(heatmaps_warped, "arr_0to1", False, inv_data) @classmethod def _warp_segmentation_maps_(cls, segmentation_maps): return cls._warp_maps_(segmentation_maps, "arr", True) @classmethod def _invert_warp_segmentation_maps_(cls, segmentation_maps_warped, inv_data): return cls._invert_warp_maps_(segmentation_maps_warped, "arr", True, inv_data) @classmethod def _warp_keypoints_(cls, kpsois): return cls._warp_cbaois_(kpsois) @classmethod def _invert_warp_keypoints_(cls, kpsois_warped, image_shapes_orig): return cls._invert_warp_cbaois_(kpsois_warped, image_shapes_orig) @classmethod def _warp_bounding_boxes_(cls, bbsois): # pylint: disable=useless-return assert bbsois is None, ("Expected BBs to have been converted " "to polygons.") return None @classmethod def _invert_warp_bounding_boxes_(cls, bbsois_warped, _image_shapes_orig): # pylint: disable=useless-return assert bbsois_warped is None, ("Expected BBs to have been converted " "to polygons.") return None @classmethod def _warp_polygons_(cls, psois): return cls._warp_cbaois_(psois) @classmethod def _invert_warp_polygons_(cls, psois_warped, image_shapes_orig): return cls._invert_warp_cbaois_(psois_warped, image_shapes_orig) @classmethod def _warp_line_strings_(cls, lsois): return cls._warp_cbaois_(lsois) @classmethod def _invert_warp_line_strings_(cls, lsois_warped, image_shapes_orig): return cls._invert_warp_cbaois_(lsois_warped, image_shapes_orig) @classmethod def _warp_arrays(cls, arrays, interpolation_nearest): if arrays is None: return None, None flags = cv2.WARP_FILL_OUTLIERS + cv2.WARP_POLAR_LINEAR if interpolation_nearest: flags += cv2.INTER_NEAREST arrays_warped = [] shapes_orig = [] for arr in arrays: if 0 in arr.shape: arrays_warped.append(arr) shapes_orig.append(arr.shape) continue input_dtype = arr.dtype.name if input_dtype == "bool": arr = arr.astype(np.uint8) * 255 elif input_dtype == "float16": arr = arr.astype(np.float32) height, width = arr.shape[0:2] # remap limitation, see docs for warpPolar() assert height <= 32767 and width <= 32767, ( "WithPolarWarping._warp_arrays() can currently only handle " "arrays with axis sizes below 32767, but got shape %s. This " "is an OpenCV limitation." % (arr.shape,)) dest_size = (0, 0) center_xy = (width/2, height/2) max_radius = np.sqrt((height/2.0)**2.0 + (width/2.0)**2.0) if arr.ndim == 3 and arr.shape[-1] > 512: arr_warped = np.stack( [cv2.warpPolar(arr[..., c_idx], dest_size, center_xy, max_radius, flags) for c_idx in np.arange(arr.shape[-1])], axis=-1) else: arr_warped = cv2.warpPolar(arr, dest_size, center_xy, max_radius, flags) if arr_warped.ndim == 2 and arr.ndim == 3: arr_warped = arr_warped[:, :, np.newaxis] if input_dtype == "bool": arr_warped = (arr_warped > 128) elif input_dtype == "float16": arr_warped = arr_warped.astype(np.float16) arrays_warped.append(arr_warped) shapes_orig.append(arr.shape) return arrays_warped, shapes_orig @classmethod def _invert_warp_arrays(cls, arrays_warped, interpolation_nearest, inv_data): shapes_orig = inv_data if arrays_warped is None: return None flags = (cv2.WARP_FILL_OUTLIERS + cv2.WARP_POLAR_LINEAR + cv2.WARP_INVERSE_MAP) if interpolation_nearest: flags += cv2.INTER_NEAREST # TODO this does per iteration almost the same as _warp_arrays() # make DRY arrays_inv = [] for arr_warped, shape_orig in zip(arrays_warped, shapes_orig): if 0 in arr_warped.shape: arrays_inv.append(arr_warped) continue input_dtype = arr_warped.dtype.name if input_dtype == "bool": arr_warped = arr_warped.astype(np.uint8) * 255 elif input_dtype == "float16": arr_warped = arr_warped.astype(np.float32) height, width = shape_orig[0:2] # remap limitation, see docs for warpPolar() assert (arr_warped.shape[0] <= 32767 and arr_warped.shape[1] <= 32767), ( "WithPolarWarping._warp_arrays() can currently only " "handle arrays with axis sizes below 32767, but got " "shape %s. This is an OpenCV limitation." % ( arr_warped.shape,)) dest_size = (width, height) center_xy = (width/2, height/2) max_radius = np.sqrt((height/2.0)**2.0 + (width/2.0)**2.0) if arr_warped.ndim == 3 and arr_warped.shape[-1] > 512: arr_inv = np.stack( [cv2.warpPolar(arr_warped[..., c_idx], dest_size, center_xy, max_radius, flags) for c_idx in np.arange(arr_warped.shape[-1])], axis=-1) else: arr_inv = cv2.warpPolar(arr_warped, dest_size, center_xy, max_radius, flags) if arr_inv.ndim == 2 and arr_warped.ndim == 3: arr_inv = arr_inv[:, :, np.newaxis] if input_dtype == "bool": arr_inv = (arr_inv > 128) elif input_dtype == "float16": arr_inv = arr_inv.astype(np.float16) arrays_inv.append(arr_inv) return arrays_inv @classmethod def _warp_maps_(cls, maps, arr_attr_name, interpolation_nearest): if maps is None: return None, None skipped = [False] * len(maps) arrays = [] shapes_imgs_orig = [] for i, map_i in enumerate(maps): if 0 in map_i.shape: skipped[i] = True arrays.append(np.zeros((0, 0), dtype=np.int32)) shapes_imgs_orig.append(map_i.shape) else: arrays.append(getattr(map_i, arr_attr_name)) shapes_imgs_orig.append(map_i.shape) arrays_warped, warparr_inv_data = cls._warp_arrays( arrays, interpolation_nearest) shapes_imgs_warped = cls._warp_shape_tuples(shapes_imgs_orig) for i, map_i in enumerate(maps): if not skipped[i]: map_i.shape = shapes_imgs_warped[i] setattr(map_i, arr_attr_name, arrays_warped[i]) return maps, (shapes_imgs_orig, warparr_inv_data, skipped) @classmethod def _invert_warp_maps_(cls, maps_warped, arr_attr_name, interpolation_nearest, invert_data): if maps_warped is None: return None shapes_imgs_orig, warparr_inv_data, skipped = invert_data arrays_warped = [] for i, map_warped in enumerate(maps_warped): if skipped[i]: arrays_warped.append(np.zeros((0, 0), dtype=np.int32)) else: arrays_warped.append(getattr(map_warped, arr_attr_name)) arrays_inv = cls._invert_warp_arrays(arrays_warped, interpolation_nearest, warparr_inv_data) for i, map_i in enumerate(maps_warped): if not skipped[i]: map_i.shape = shapes_imgs_orig[i] setattr(map_i, arr_attr_name, arrays_inv[i]) return maps_warped @classmethod def _warp_coords(cls, coords, image_shapes): if coords is None: return None, None image_shapes_warped = cls._warp_shape_tuples(image_shapes) flags = cv2.WARP_POLAR_LINEAR coords_warped = [] for coords_i, shape, shape_warped in zip(coords, image_shapes, image_shapes_warped): if 0 in shape: coords_warped.append(coords_i) continue height, width = shape[0:2] dest_size = (shape_warped[1], shape_warped[0]) center_xy = (width/2, height/2) max_radius = np.sqrt((height/2.0)**2.0 + (width/2.0)**2.0) coords_i_warped = cls.warpPolarCoords( coords_i, dest_size, center_xy, max_radius, flags) coords_warped.append(coords_i_warped) return coords_warped, image_shapes @classmethod def _invert_warp_coords(cls, coords_warped, image_shapes_after_aug, inv_data): image_shapes_orig = inv_data if coords_warped is None: return None flags = cv2.WARP_POLAR_LINEAR + cv2.WARP_INVERSE_MAP coords_inv = [] gen = enumerate(zip(coords_warped, image_shapes_orig)) for i, (coords_i_warped, shape_orig) in gen: if 0 in shape_orig: coords_inv.append(coords_i_warped) continue shape_warped = image_shapes_after_aug[i] height, width = shape_orig[0:2] dest_size = (shape_warped[1], shape_warped[0]) center_xy = (width/2, height/2) max_radius = np.sqrt((height/2.0)**2.0 + (width/2.0)**2.0) coords_i_inv = cls.warpPolarCoords(coords_i_warped, dest_size, center_xy, max_radius, flags) coords_inv.append(coords_i_inv) return coords_inv @classmethod def _warp_cbaois_(cls, cbaois): if cbaois is None: return None, None coords = [cbaoi.to_xy_array() for cbaoi in cbaois] image_shapes = [cbaoi.shape for cbaoi in cbaois] image_shapes_warped = cls._warp_shape_tuples(image_shapes) coords_warped, inv_data = cls._warp_coords(coords, image_shapes) for i, (cbaoi, coords_i_warped) in enumerate(zip(cbaois, coords_warped)): cbaoi = cbaoi.fill_from_xy_array_(coords_i_warped) cbaoi.shape = image_shapes_warped[i] cbaois[i] = cbaoi return cbaois, inv_data @classmethod def _invert_warp_cbaois_(cls, cbaois_warped, image_shapes_orig): if cbaois_warped is None: return None coords = [cbaoi.to_xy_array() for cbaoi in cbaois_warped] image_shapes_after_aug = [cbaoi.shape for cbaoi in cbaois_warped] coords_warped = cls._invert_warp_coords(coords, image_shapes_after_aug, image_shapes_orig) cbaois = cbaois_warped for i, (cbaoi, coords_i_warped) in enumerate(zip(cbaois, coords_warped)): cbaoi = cbaoi.fill_from_xy_array_(coords_i_warped) cbaoi.shape = image_shapes_orig[i] cbaois[i] = cbaoi return cbaois @classmethod def _warp_shape_tuples(cls, shapes): # pylint: disable=invalid-name pi = np.pi result = [] for shape in shapes: if 0 in shape: result.append(shape) continue height, width = shape[0:2] max_radius = np.sqrt((height/2.0)**2.0 + (width/2.0)**2.0) # np.round() is here a replacement for cvRound(). It is not fully # clear whether the two functions behave exactly identical in all # situations. # See # https://github.com/opencv/opencv/blob/master/ # modules/core/include/opencv2/core/fast_math.hpp # for OpenCV's implementation. width = int(np.round(max_radius)) height = int(np.round(max_radius * pi)) result.append(tuple([height, width] + list(shape[2:]))) return result @classmethod def warpPolarCoords(cls, src, dsize, center, maxRadius, flags): # See # https://docs.opencv.org/3.4.8/da/d54/group__imgproc__transform.html # for the equations # or also # https://github.com/opencv/opencv/blob/master/modules/imgproc/src/ # imgwarp.cpp # # pylint: disable=invalid-name, no-else-return assert dsize[0] > 0 assert dsize[1] > 0 dsize_width = dsize[0] dsize_height = dsize[1] center_x = center[0] center_y = center[1] if np.logical_and(flags, cv2.WARP_INVERSE_MAP): rho = src[:, 0] phi = src[:, 1] Kangle = dsize_height / (2*np.pi) angleRad = phi / Kangle if np.bitwise_and(flags, cv2.WARP_POLAR_LOG): Klog = dsize_width / np.log(maxRadius) magnitude = np.exp(rho / Klog) else: Klin = dsize_width / maxRadius magnitude = rho / Klin x = center_x + magnitude * np.cos(angleRad) y = center_y + magnitude * np.sin(angleRad) x = x[:, np.newaxis] y = y[:, np.newaxis] return np.concatenate([x, y], axis=1) else: x = src[:, 0] y = src[:, 1] Kangle = dsize_height / (2*np.pi) Klin = dsize_width / maxRadius I_x, I_y = (x - center_x, y - center_y) magnitude_I, angle_I = cv2.cartToPolar(I_x, I_y) phi = Kangle * angle_I # TODO add semilog support here rho = Klin * magnitude_I return np.concatenate([rho, phi], axis=1) def get_parameters(self): """See :func:`imgaug.augmenters.meta.Augmenter.get_parameters`.""" return [] def get_children_lists(self): """See :func:`imgaug.augmenters.meta.Augmenter.get_children_lists`.""" return [self.children] def _to_deterministic(self): aug = self.copy() aug.children = aug.children.to_deterministic() aug.deterministic = True aug.random_state = self.random_state.derive_rng_() return aug def __str__(self): pattern = ( "%s(" "name=%s, children=%s, deterministic=%s" ")") return pattern % (self.__class__.__name__, self.name, self.children, self.deterministic) class Jigsaw(meta.Augmenter): """Move cells within images similar to jigsaw patterns. .. note:: This augmenter will by default pad images until their height is a multiple of `nb_rows`. Analogous for `nb_cols`. .. note:: This augmenter will resize heatmaps and segmentation maps to the image size, then apply similar padding as for the corresponding images and resize back to the original map size. That also means that images may change in shape (due to padding), but heatmaps/segmaps will not change. For heatmaps/segmaps, this deviates from pad augmenters that will change images and heatmaps/segmaps in corresponding ways and then keep the heatmaps/segmaps at the new size. .. warning:: This augmenter currently only supports augmentation of images, heatmaps, segmentation maps and keypoints. Other augmentables, i.e. bounding boxes, polygons and line strings, will result in errors. dtype support:: See :func:`apply_jigsaw`. Parameters ---------- nb_rows : int or list of int or tuple of int or imgaug.parameters.StochasticParameter How many rows the jigsaw pattern should have. * If a single ``int``, then that value will be used for all images. * If a tuple ``(a, b)``, then a random value will be uniformly sampled per image from the discrete interval ``[a..b]``. * If a list, then for each image a random value will be sampled from that list. * If ``StochasticParameter``, then that parameter is queried per image to sample the value to use. nb_cols : int or list of int or tuple of int or imgaug.parameters.StochasticParameter How many cols the jigsaw pattern should have. * If a single ``int``, then that value will be used for all images. * If a tuple ``(a, b)``, then a random value will be uniformly sampled per image from the discrete interval ``[a..b]``. * If a list, then for each image a random value will be sampled from that list. * If ``StochasticParameter``, then that parameter is queried per image to sample the value to use. max_steps : int or list of int or tuple of int or imgaug.parameters.StochasticParameter, optional How many steps each jigsaw cell may be moved. * If a single ``int``, then that value will be used for all images. * If a tuple ``(a, b)``, then a random value will be uniformly sampled per image from the discrete interval ``[a..b]``. * If a list, then for each image a random value will be sampled from that list. * If ``StochasticParameter``, then that parameter is queried per image to sample the value to use. allow_pad : bool, optional Whether to allow automatically padding images until they are evenly divisible by ``nb_rows`` and ``nb_cols``. name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or imgaug.random.RNG or numpy.random.Generator or numpy.random.BitGenerator or numpy.random.SeedSequence or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> import imgaug.augmenters as iaa >>> aug = iaa.Jigsaw(nb_rows=10, nb_cols=10) Create a jigsaw augmenter that splits images into ``10x10`` cells and shifts them around by ``0`` to ``2`` steps (default setting). >>> aug = iaa.Jigsaw(nb_rows=(1, 4), nb_cols=(1, 4)) Create a jigsaw augmenter that splits each image into ``1`` to ``4`` cells along each axis. >>> aug = iaa.Jigsaw(nb_rows=10, nb_cols=10, max_steps=(1, 5)) Create a jigsaw augmenter that moves the cells in each image by a random amount between ``1`` and ``5`` times (decided per image). Some images will be barely changed, some will be fairly distorted. """ def __init__(self, nb_rows, nb_cols, max_steps=2, allow_pad=True, name=None, deterministic=False, random_state=None): super(Jigsaw, self).__init__( name=name, deterministic=deterministic, random_state=random_state) self.nb_rows = iap.handle_discrete_param( nb_rows, "nb_rows", value_range=(1, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.nb_cols = iap.handle_discrete_param( nb_cols, "nb_cols", value_range=(1, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.max_steps = iap.handle_discrete_param( max_steps, "max_steps", value_range=(0, None), tuple_to_uniform=True, list_to_choice=True, allow_floats=False) self.allow_pad = allow_pad def _augment_batch(self, batch, random_state, parents, hooks): samples = self._draw_samples(batch, random_state) # We resize here heatmaps/segmaps early to the image size in order to # avoid problems where the jigsaw cells don't fit perfectly into # the heatmap/segmap arrays or there are minor padding-related # differences. # TODO This step could most likely be avoided. # TODO add something like # 'with batch.maps_resized_to_image_sizes(): ...' batch, maps_shapes_orig = self._resize_maps(batch) if self.allow_pad: # this is a bit more difficult than one might expect, because we # (a) might have different numbers of rows/cols per image # (b) might have different shapes per image # (c) have non-image data that also requires padding # TODO enable support for stochastic parameters in # PadToMultiplesOf, then we can simple use two # DeterministicLists here to generate rowwise values for i in np.arange(len(samples.destinations)): padder = size_lib.CenterPadToMultiplesOf( width_multiple=samples.nb_cols[i], height_multiple=samples.nb_rows[i]) row = batch.subselect_rows_by_indices([i]) row = padder.augment_batch(row, parents=parents + [self], hooks=hooks) batch = batch.invert_subselect_rows_by_indices_([i], row) if batch.images is not None: for i, image in enumerate(batch.images): image[...] = apply_jigsaw(image, samples.destinations[i]) if batch.heatmaps is not None: for i, heatmap in enumerate(batch.heatmaps): heatmap.arr_0to1 = apply_jigsaw(heatmap.arr_0to1, samples.destinations[i]) if batch.segmentation_maps is not None: for i, segmap in enumerate(batch.segmentation_maps): segmap.arr = apply_jigsaw(segmap.arr, samples.destinations[i]) if batch.keypoints is not None: for i, kpsoi in enumerate(batch.keypoints): xy = kpsoi.to_xy_array() xy[...] = apply_jigsaw_to_coords(xy, samples.destinations[i], image_shape=kpsoi.shape) kpsoi.fill_from_xy_array_(xy) has_other_cbaoi = any([getattr(batch, attr_name) is not None for attr_name in ["bounding_boxes", "polygons", "line_strings"]]) if has_other_cbaoi: raise NotImplementedError( "Jigsaw currently only supports augmentation of images " "and keypoints.") # We don't crop back to the original size, partly because it is # rather cumbersome to implement, partly because the padded # borders might have been moved into the inner parts of the image batch = self._invert_resize_maps(batch, maps_shapes_orig) return batch def _draw_samples(self, batch, random_state): nb_images = batch.nb_rows nb_rows = self.nb_rows.draw_samples((nb_images,), random_state=random_state) nb_cols = self.nb_cols.draw_samples((nb_images,), random_state=random_state) max_steps = self.max_steps.draw_samples((nb_images,), random_state=random_state) destinations = [] for i in np.arange(nb_images): destinations.append( generate_jigsaw_destinations( nb_rows[i], nb_cols[i], max_steps[i], random_state=random_state) ) samples = _JigsawSamples(nb_rows, nb_cols, max_steps, destinations) return samples @classmethod def _resize_maps(cls, batch): # skip computation of rowwise shapes if batch.heatmaps is None and batch.segmentation_maps is None: return batch, (None, None) image_shapes = batch.get_rowwise_shapes() batch.heatmaps, heatmaps_shapes_orig = cls._resize_maps_single_list( batch.heatmaps, "arr_0to1", image_shapes) batch.segmentation_maps, sm_shapes_orig = cls._resize_maps_single_list( batch.segmentation_maps, "arr", image_shapes) return batch, (heatmaps_shapes_orig, sm_shapes_orig) @classmethod def _resize_maps_single_list(cls, augmentables, arr_attr_name, image_shapes): if augmentables is None: return None, None shapes_orig = [] augms_resized = [] for augmentable, image_shape in zip(augmentables, image_shapes): shape_orig = getattr(augmentable, arr_attr_name).shape augm_rs = augmentable.resize(image_shape[0:2]) augms_resized.append(augm_rs) shapes_orig.append(shape_orig) return augms_resized, shapes_orig @classmethod def _invert_resize_maps(cls, batch, shapes_orig): batch.heatmaps = cls._invert_resize_maps_single_list( batch.heatmaps, shapes_orig[0]) batch.segmentation_maps = cls._invert_resize_maps_single_list( batch.segmentation_maps, shapes_orig[1]) return batch @classmethod def _invert_resize_maps_single_list(cls, augmentables, shapes_orig): if shapes_orig is None: return None augms_resized = [] for augmentable, shape_orig in zip(augmentables, shapes_orig): augms_resized.append(augmentable.resize(shape_orig[0:2])) return augms_resized def get_parameters(self): return [self.nb_rows, self.nb_cols, self.max_steps, self.allow_pad] class _JigsawSamples(object): def __init__(self, nb_rows, nb_cols, max_steps, destinations): self.nb_rows = nb_rows self.nb_cols = nb_cols self.max_steps = max_steps self.destinations = destinations
41.758837
223
0.579795
ef6912f36ffa9956d1263aff3fce019a653d1916
1,686
py
Python
visualization_process/embedded_visualization.py
imdreamer2018/privacy-preserving-for-face-recognition
be7dde549c7a168085d89b17635ad8bdd375e04b
[ "MIT" ]
9
2020-07-28T19:59:46.000Z
2021-12-16T07:14:12.000Z
visualization_process/embedded_visualization.py
imdreamer2018/privacy-preserving-for-face-recognition
be7dde549c7a168085d89b17635ad8bdd375e04b
[ "MIT" ]
10
2020-05-17T06:23:39.000Z
2022-02-10T01:53:06.000Z
visualization_process/embedded_visualization.py
imdreamer2018/privacy-preserving-for-face-recognition
be7dde549c7a168085d89b17635ad8bdd375e04b
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import numpy as np from sklearn.manifold import TSNE from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm # load embedded embedded = np.load('../face_embedded_data/paper/embedded_nn4_lfw_10.npy') # load customDataset metadata = np.load('../face_embedded_data/paper/metadata_nn4_lfw_10.npy') print(metadata.shape) targets = np.array([m.name for m in metadata]) print(targets) X_embedded = TSNE(n_components=2, init='pca', method='exact').fit_transform(embedded) # print(X_embedded.shape) # print(X_embedded) colors = iter(cm.rainbow(np.linspace(0, 1, len(list(enumerate(set(targets))))))) print(X_embedded) print(list(enumerate(set(targets)))) # try: # while True: # print(next(colors)) # except StopIteration: # pass def plt3d(): fig = plt.figure() ax = Axes3D(fig) # 添加坐标轴(顺序是Z, Y, X) # ax.set_zlabel('Z', fontdict={'size': 15, 'color': 'red'}) # ax.set_ylabel('Y', fontdict={'size': 15, 'color': 'red'}) # ax.set_xlabel('X', fontdict={'size': 15, 'color': 'red'}) for i, t in enumerate(set(targets)): idx = targets == t ax.scatter(X_embedded[idx, 0], X_embedded[idx, 1], X_embedded[idx, 2], colors=next(colors)) def plt2d(): for i, t in enumerate(set(targets)): idx = targets == t plt.scatter(X_embedded[idx, 0], X_embedded[idx, 1]) plt2d() plt.legend(bbox_to_anchor=(1, 1)) # 添加坐标轴(顺序是Z, Y, X) # ax.set_zlabel('Z', fontdict={'size': 15, 'color': 'red'}) # ax.set_ylabel('Y', fontdict={'size': 15, 'color': 'red'}) # ax.set_xlabel('X', fontdict={'size': 15, 'color': 'red'}) plt.title('Embedded visualization when number of people is 10 ') plt.show()
31.811321
99
0.668446
dd652ada96d9b41ba839df9e3b936e0ca54de346
1,875
py
Python
scanALSpySC_MFedit/example_hdf5.py
MFraund/PyALS_BL11_DAQGUI
88c923ebc31d68e653b49cea2c265f52221c9e95
[ "MIT" ]
1
2022-03-07T11:10:13.000Z
2022-03-07T11:10:13.000Z
scanALSpySC_MFedit/example_hdf5.py
MFraund/PyALS_BL11_DAQGUI
88c923ebc31d68e653b49cea2c265f52221c9e95
[ "MIT" ]
null
null
null
scanALSpySC_MFedit/example_hdf5.py
MFraund/PyALS_BL11_DAQGUI
88c923ebc31d68e653b49cea2c265f52221c9e95
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ @copyright: (C) 2020 Surface Concept GmbH Test HDF5 streaming. """ OUTPUTFILEPATH = "testA.h5" # warning! this file is overwritten if it exists def test_hdf5_streaming(): """ Performs 1 measurement and streams DLD events to a HDF5 file. """ import scTDC device = scTDC.Device(inifilepath="tdc_gpx3.ini", autoinit=False) retcode, errmsg = device.initialize() if retcode < 0: print("Error during initialization : ({}) {}".format(errmsg, retcode)) return success, errmsg = device.hdf5_enable() if not success: print("Error while enabling HDF5 : " + errmsg) return versionstr = device.hdf5_lib_version() print("Version of the libscTDC_hdf5 : " + versionstr) a = scTDC.HDF5DataSelection # short alias datasel = scTDC.HDF5DataSelection(a.X | a.TIME) print("Opening HDF5 file " + OUTPUTFILEPATH) success, errmsg = device.hdf5_open( OUTPUTFILEPATH, "output of example_hdf5.py", datasel) if not success: print("Error while opening HDF5 file : " + errmsg) return print("Starting a measurement") retcode, errmsg = device.do_measurement(time_ms=15000, synchronous=True) if retcode < 0: print("Error while starting measurement : ({}) {}".format( errmsg, retcode)) print("Finished measurements") print("Closing the HDF5 file") # this is very important: the HDF5 will be # incomplete and most likely not even readable at all if it is not closed success, errmsg = device.hdf5_close() if not success: print("Error while closing the HDF5 file") # (it is also possible to aggregate many measurements into one HDF5 file) device.hdf5_disable() device.deinitialize() if __name__ == "__main__": test_hdf5_streaming()
30.241935
78
0.650133
41f09dcbd83519b02b0dd6c9c2188c98fa990e42
43,242
py
Python
bdOdonto/sistema_fichas/migrations/0001_initial.py
FACTOSolution/bdOdonto
e6cbbcef1faa8c77dc6e72b8888e5eaac8f046e2
[ "MIT" ]
null
null
null
bdOdonto/sistema_fichas/migrations/0001_initial.py
FACTOSolution/bdOdonto
e6cbbcef1faa8c77dc6e72b8888e5eaac8f046e2
[ "MIT" ]
null
null
null
bdOdonto/sistema_fichas/migrations/0001_initial.py
FACTOSolution/bdOdonto
e6cbbcef1faa8c77dc6e72b8888e5eaac8f046e2
[ "MIT" ]
1
2019-10-18T20:16:28.000Z
2019-10-18T20:16:28.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-30 18:09 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Aluno', fields=[ ('matricula', models.CharField(max_length=15, primary_key=True, serialize=False)), ('usuario', models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Atendimento', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('data', models.DateField(auto_now=True)), ], ), migrations.CreateModel( name='Dados_Dentes', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('letra', models.CharField(max_length=3)), ('dente', models.PositiveIntegerField(null=True)), ('rec', models.PositiveIntegerField()), ('placa', models.BooleanField()), ('ps', models.PositiveIntegerField()), ('ig', models.BooleanField()), ('pic', models.PositiveIntegerField()), ], ), migrations.CreateModel( name='Ficha_Dentistica', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('motivo_consulta', models.CharField(blank=True, max_length=20, null=True)), ('ultima_consulta', models.CharField(blank=True, max_length=10, null=True)), ('escova_dentes', models.CharField(choices=[('1x', '1x'), ('2x', '2x'), ('3x', '3x')], max_length=20)), ('horario_escovacao', models.CharField(blank=True, max_length=20, null=True)), ('usa_fio_dental', models.CharField(blank=True, max_length=10, null=True)), ('diario_alimentar', models.CharField(blank=True, max_length=30, null=True)), ('frequencia_consumo_acucar', models.CharField(choices=[('3x ao dia', '3x ao dia'), ('5x ao dia', '5x ao dia'), ('>5x ao dia', '>5x ao dia')], max_length=20)), ('horario_consumo_acucar', models.CharField(choices=[('Junto Ã\xa0s refeições', 'Junto Ã\xa0s refeições'), ('Intervalos entre refeições', 'Intervalos entre refeições'), ('Junto Ã\xa0s refeições e nos intervalos das mesmas', 'Junto Ã\xa0s refeições e nos intervalos das mesmas')], max_length=20)), ('toma_medicamento', models.CharField(blank=True, max_length=20, null=True)), ('fluxo_salivar', models.CharField(blank=True, max_length=10, null=True)), ('caracteristica_da_placa1', models.CharField(choices=[('Flocular e pegajosa', 'Flocular e pegajosa'), ('Calcificada', 'Calcificada')], max_length=30, null=True)), ('caracteristica_da_placa2', models.CharField(choices=[('Flocular e pegajosa', 'Flocular e pegajosa'), ('Calcificada', 'Calcificada')], max_length=30, null=True)), ('diag_risco_carie', models.CharField(choices=[('Alto', 'Alto'), ('Médio', 'Médio'), ('Baixo', 'Baixo')], max_length=20)), ('orientacao', models.BooleanField()), ('evidenciacao_de_placa', models.BooleanField()), ('profilaxia', models.BooleanField()), ('fosfato', models.BooleanField()), ('sodio', models.BooleanField()), ('fluoreto', models.BooleanField()), ('clorexidina', models.BooleanField()), ('aquosa_digluconato', models.BooleanField()), ('selamento_fissuras', models.CharField(blank=True, max_length=20, null=True)), ('remineralizacao_de_lesoes_de_carie', models.CharField(blank=True, max_length=20, null=True)), ('outra_medida', models.CharField(blank=True, max_length=20, null=True)), ('restauracoes_provisorias', models.CharField(blank=True, max_length=20, null=True)), ('tratamento_expectante', models.CharField(blank=True, max_length=20, null=True)), ('restauracoes_com_amalgama', models.CharField(blank=True, max_length=20, null=True)), ('restauracao_com_resina', models.CharField(blank=True, max_length=20, null=True)), ('radiografias', models.CharField(blank=True, max_length=20, null=True)), ('observacoes_dentistica', models.CharField(blank=True, max_length=20, null=True)), ('encaminhamento_para', models.CharField(blank=True, max_length=20, null=True)), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Ficha_Diagnostico', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('data', models.DateField(auto_now=True)), ('motivo', models.CharField(max_length=200)), ('historia', models.TextField()), ('ultima_consulta', models.DateField(blank=True, null=True)), ('frequencia_consultas', models.CharField(max_length=200)), ('higiene_propria', models.CharField(max_length=200)), ('frequencia_escova', models.PositiveIntegerField()), ('dentes_sensiveis', models.BooleanField()), ('sangramento_gengiva', models.BooleanField()), ('morde_objetos', models.BooleanField()), ('mobilidade', models.BooleanField()), ('protese', models.BooleanField()), ('range_dentes', models.BooleanField()), ('dificuldade_abrir', models.BooleanField()), ('estalido', models.BooleanField()), ('boca_seca', models.BooleanField()), ('sol_frequente', models.BooleanField()), ('tabagismo', models.BooleanField()), ('tipo_tabagismo', models.CharField(blank=True, max_length=200, null=True)), ('duracao_tabagismo', models.CharField(blank=True, max_length=200, null=True)), ('frequencia_tabagismo', models.CharField(blank=True, max_length=200, null=True)), ('tempo_abandono_tabagismo', models.CharField(blank=True, max_length=200, null=True)), ('alcool', models.BooleanField()), ('frequencia_alcool', models.CharField(blank=True, max_length=200, null=True)), ('drogas_ilicitas', models.BooleanField()), ('def_drogas_ilicitas', models.CharField(blank=True, max_length=200, null=True)), ('tratamento_medico', models.BooleanField()), ('def_tratamento_medico', models.CharField(blank=True, max_length=200, null=True)), ('medicacao', models.BooleanField()), ('def_medicacao', models.CharField(blank=True, max_length=200, null=True)), ('doenca_grave', models.BooleanField()), ('def_doenca_grave', models.CharField(blank=True, max_length=200, null=True)), ('cirurgia', models.BooleanField()), ('def_cirurgia', models.CharField(blank=True, max_length=200, null=True)), ('anticoncepcional', models.BooleanField()), ('gravida', models.BooleanField()), ('tempo_gravidez', models.CharField(blank=True, max_length=200, null=True)), ('alergia', models.BooleanField()), ('def_alergia', models.CharField(blank=True, max_length=200, null=True)), ('reacao_medicamento', models.BooleanField()), ('def_reacao_medicamento', models.CharField(blank=True, max_length=200, null=True)), ('anestesia_dentaria', models.BooleanField()), ('reacao_anestesia_dentaria', models.CharField(blank=True, max_length=200, null=True)), ('anestesia_geral', models.BooleanField()), ('reacao_anestesia_geral', models.CharField(blank=True, max_length=200, null=True)), ('disturbios_respiratorios', models.BooleanField()), ('disturbios_respiratorios_abaixo', models.CharField(blank=True, choices=[('Pneumonia', 'Pneumonia'), ('Sinusite', 'Sinusite'), ('Rinite', 'Rinite'), ('Bronquite', 'Bronquite'), ('Asma', 'Asma'), ('Outro', 'Outro')], max_length=15, null=True)), ('disturbios_respiratorios_outro', models.CharField(blank=True, max_length=15, null=True)), ('hipertenso', models.BooleanField()), ('pressao_arterial', models.CharField(blank=True, max_length=200, null=True)), ('sangramento_excesso', models.BooleanField()), ('palpitacao', models.BooleanField()), ('falta_ar', models.BooleanField()), ('pes_inchados', models.BooleanField()), ('febre_reumatica', models.BooleanField()), ('problema_cardiovascular', models.BooleanField()), ('def_problema_cardiovascular', models.CharField(blank=True, max_length=200, null=True)), ('doencas_transmissiveis', models.BooleanField()), ('doencas_transmissiveis_abaixo', models.CharField(blank=True, choices=[('Pneumonia', 'Pneumonia'), ('Sinusite', 'Sinusite'), ('Rinite', 'Rinite'), ('Bronquite', 'Bronquite'), ('Asma', 'Asma'), ('Outro', 'Outro')], max_length=15, null=True)), ('doencas_transmissiveis_hepatite', models.CharField(blank=True, max_length=5, null=True)), ('doencas_transmissiveis_outro', models.CharField(blank=True, max_length=15, null=True)), ('virus', models.BooleanField()), ('def_virus', models.CharField(blank=True, max_length=200, null=True)), ('diabetes', models.BooleanField()), ('cicatrizacao_demorada', models.BooleanField()), ('perda_peso', models.BooleanField()), ('aumento_freq_urina', models.BooleanField()), ('desmaios', models.BooleanField()), ('convulsoes', models.BooleanField()), ('epilepsia', models.BooleanField()), ('disturbio_sanguineo', models.BooleanField()), ('def_disturbio_sanguineo', models.CharField(blank=True, max_length=200, null=True)), ('outro_problema', models.BooleanField()), ('def_outro_problema', models.CharField(blank=True, max_length=200, null=True)), ('face', models.TextField()), ('atm', models.TextField()), ('m_mastigatorios', models.TextField()), ('g_salivares', models.TextField()), ('g_linfaticos', models.TextField()), ('labios', models.TextField()), ('mucosa_j', models.TextField()), ('gengiva', models.TextField()), ('soalho_boca', models.TextField()), ('lingua', models.TextField()), ('palato', models.TextField()), ('orofaringe', models.TextField()), ('percussao', models.TextField()), ('exames_complementares', models.TextField()), ('necessidade_perio', models.TextField(null=True)), ('necessidade_cirurgia', models.TextField(null=True)), ('necessidade_endo', models.TextField(null=True)), ('necessidade_dentistica', models.TextField(null=True)), ('necessidade_protese', models.TextField(null=True)), ('disc', models.CharField(choices=[('Estágio I', 'Estágio I'), ('Estágio II', 'Estágio II'), ('Estágio III', 'Estágio III'), ('EstágioIV', 'Estágio IV'), ('Outro', 'Outro')], max_length=15, null=True)), ('disc_outro', models.CharField(blank=True, max_length=20, null=True)), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Ficha_Endodontia', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('em_tratamento_med', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('quanto_tempo', models.CharField(blank=True, max_length=10, null=True)), ('alguma_cirurgia', models.CharField(blank=True, max_length=50, null=True)), ('diabetes', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('febre_reumatica', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('alteracoes_sanguineas', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('doencas_cardiovasculares', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('problemas_hemorragicos', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('hipertensao', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('marcapasso', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('gravida', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('tempo_gravidez', models.CharField(blank=True, max_length=10, null=True)), ('hepatite', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('tempo_hepatite', models.CharField(blank=True, max_length=10, null=True)), ('tipo_hepatite', models.CharField(blank=True, max_length=15, null=True)), ('uso_de_medicamento', models.CharField(blank=True, max_length=50, null=True)), ('uso_continuo_de_medicamento', models.CharField(blank=True, max_length=50, null=True)), ('alergia', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=15)), ('outras_informacoes', models.CharField(blank=True, max_length=100, null=True)), ('historia_dental', models.CharField(blank=True, max_length=100, null=True)), ('caracteristicas_da_dor', models.CharField(blank=True, max_length=60, null=True)), ('uso_analgesicos', models.BooleanField()), ('uso_antiinflamatorios', models.BooleanField()), ('uso_antibiotico', models.BooleanField()), ('dente', models.PositiveIntegerField()), ('dor_frio', models.BooleanField()), ('dor_calor', models.BooleanField()), ('dor_percussao_vertical', models.BooleanField()), ('dor_percusao_horizontal', models.BooleanField()), ('dor_palpacao_apical', models.BooleanField()), ('camara_normal', models.BooleanField()), ('camara_calcificada', models.BooleanField()), ('camara_com_perfuracao', models.BooleanField()), ('camara_com_reabsorcao_interna', models.BooleanField()), ('canal_amplo', models.BooleanField()), ('canal_atresiado', models.BooleanField()), ('canal_ja_manipulado', models.BooleanField()), ('canal_obturacao_deficiente', models.BooleanField()), ('canal_rizogenese_incompleta', models.BooleanField()), ('canal_instrumento_fraturado', models.BooleanField()), ('canal_fratura_radicular', models.BooleanField()), ('canal_sobre_obturacao', models.BooleanField()), ('canal_reabsorcao_apical', models.BooleanField()), ('canal_reabsorcao_externa', models.BooleanField()), ('canal_reabsorcao_interna', models.BooleanField()), ('canal_perfuracao', models.BooleanField()), ('pericemento_normal', models.BooleanField()), ('pericemento_espessado', models.BooleanField()), ('pericemento_hipercementose', models.BooleanField()), ('periapice_osteite_rarefaciente_difusa', models.BooleanField()), ('periapice_osteite_rarefaciente_circunscrita', models.BooleanField()), ('diag_clinico_provavel', models.CharField(max_length=100)), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Ficha_Endodontia_Tabela', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('dente1', models.PositiveIntegerField(blank=True, null=True)), ('canal1', models.CharField(blank=True, max_length=20, null=True)), ('ponto_referencia1', models.CharField(blank=True, max_length=5, null=True)), ('cad1', models.PositiveIntegerField(blank=True, null=True)), ('ctp1', models.PositiveIntegerField(blank=True, null=True)), ('crt1', models.PositiveIntegerField(blank=True, null=True)), ('iai1', models.PositiveIntegerField(blank=True, null=True)), ('iaf1', models.PositiveIntegerField(blank=True, null=True)), ('im1', models.PositiveIntegerField(blank=True, null=True)), ('dente2', models.PositiveIntegerField(blank=True, null=True)), ('canal2', models.CharField(blank=True, max_length=20, null=True)), ('ponto_referencia2', models.CharField(blank=True, max_length=5, null=True)), ('cad2', models.PositiveIntegerField(blank=True, null=True)), ('ctp2', models.PositiveIntegerField(blank=True, null=True)), ('crt2', models.PositiveIntegerField(blank=True, null=True)), ('iai2', models.PositiveIntegerField(blank=True, null=True)), ('iaf2', models.PositiveIntegerField(blank=True, null=True)), ('im2', models.PositiveIntegerField(blank=True, null=True)), ('dente3', models.PositiveIntegerField(blank=True, null=True)), ('canal3', models.CharField(blank=True, max_length=20, null=True)), ('ponto_referencia3', models.CharField(blank=True, max_length=5, null=True)), ('cad3', models.PositiveIntegerField(blank=True, null=True)), ('ctp3', models.PositiveIntegerField(blank=True, null=True)), ('crt3', models.PositiveIntegerField(blank=True, null=True)), ('iai3', models.PositiveIntegerField(blank=True, null=True)), ('iaf3', models.PositiveIntegerField(blank=True, null=True)), ('im3', models.PositiveIntegerField(blank=True, null=True)), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Ficha_Ortodontia', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('queixa', models.CharField(max_length=200)), ('cor', models.CharField(choices=[('Branca', 'Branca'), ('Negra', 'Negra'), ('Amarela', 'Amarela'), ('Parda', 'Parda')], max_length=10)), ('doencas', models.CharField(choices=[('Não relata', 'Não relata'), ('Habituais', 'Habituais'), ('Outras', 'Outras')], max_length=10)), ('alergias', models.BooleanField()), ('def_alergias', models.CharField(blank=True, max_length=20, null=True)), ('operacao', models.BooleanField()), ('estado_saude', models.CharField(choices=[('Bom', 'Bom'), ('Regular', 'Regular'), ('Deficiente', 'Deficiente')], max_length=15)), ('traumatismo', models.BooleanField()), ('data_traumatismo', models.CharField(blank=True, max_length=10, null=True)), ('vontade_correcao', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sabe', 'Não sabe')], max_length=15)), ('aparelho', models.BooleanField()), ('tempo_aparelho', models.CharField(blank=True, max_length=10, null=True)), ('observacoes_anamnese', models.TextField()), ('psicologico', models.CharField(choices=[('Normal', 'Normal'), ('Extrovertido', 'Extrovertido'), ('Introvertido', 'Introvertido')], max_length=15)), ('simetria_facial', models.BooleanField()), ('tipo_facial', models.CharField(choices=[('Dolicofacial', 'Dolicofacial'), ('Mesofacial', 'Mesofacial'), ('Braquifacial', 'Braquifacial')], max_length=16)), ('selamento_labial_frontal', models.BooleanField()), ('relacao_ls', models.CharField(choices=[('Normal', 'Normal'), ('Diminuído', 'Diminuído'), ('Aumentado', 'Aumentado')], max_length=15)), ('espessura', models.CharField(choices=[('Normal', 'Normal'), ('Diminuído', 'Diminuído'), ('Aumentado', 'Aumentado')], max_length=15)), ('tonicidade_labial', models.CharField(choices=[('Normal', 'Normal'), ('Diminuído', 'Diminuído'), ('Aumentado', 'Aumentado')], max_length=15)), ('tonicidade_mentoniano', models.CharField(choices=[('Normal', 'Normal'), ('Diminuído', 'Diminuído'), ('Aumentado', 'Aumentado')], max_length=15)), ('zigomatico_frontal', models.CharField(choices=[('Normal', 'Normal'), ('Diminuído', 'Diminuído'), ('Aumentado', 'Aumentado')], max_length=15)), ('observacoes_frontal', models.TextField()), ('simetria_sorriso', models.BooleanField()), ('qtd_gengiva_incisos', models.CharField(choices=[('Normal', 'Normal'), ('Diminuído', 'Diminuído'), ('Aumentado', 'Aumentado')], max_length=15)), ('corredor_bucal', models.CharField(choices=[('Normal', 'Normal'), ('Diminuído', 'Diminuído'), ('Aumentado', 'Aumentado')], max_length=15)), ('observacoes_frontal_sorrindo', models.TextField()), ('perfil', models.CharField(choices=[('Reto', 'Reto'), ('Côncavo', 'Côncavo'), ('Convexo', 'Convexo')], max_length=15)), ('dimensao', models.CharField(choices=[('1/3 faciais proporcionais', '1/3 faciais proporcionais'), ('1/3 inf. aumentado', '1/3 inf. aumentado'), ('1/3 inf. diminuido', '1/3 inf. diminuido')], max_length=30)), ('nariz', models.CharField(choices=[('Normal', 'Normal'), ('Pequeno', 'Pequeno'), ('Grande', 'Grande')], max_length=15)), ('selamento_labial_perfil', models.BooleanField()), ('maxila', models.CharField(choices=[('Normal', 'Normal'), ('Prostruída', 'Prostruída'), ('Retruída', 'Retruída')], max_length=15)), ('zigomatico_perfil', models.CharField(choices=[('Normal', 'Normal'), ('Ausente', 'Ausente'), ('Proeminente', 'Proeminente')], max_length=15)), ('angulo_nasolabial', models.CharField(choices=[('Normal', 'Normal'), ('Fechado', 'Fechado'), ('Aberto', 'Aberto')], max_length=15)), ('posicao_labio_superior', models.CharField(choices=[('Normal', 'Normal'), ('Curto', 'Curto'), ('Longo', 'Longo')], max_length=15)), ('posicao_labio_inferior', models.CharField(choices=[('Normal', 'Normal'), ('Eversão', 'Eversão')], max_length=15)), ('mandibula', models.CharField(choices=[('Normal', 'Normal'), ('Prostruída', 'Prostruída'), ('Retruída', 'Retruída')], max_length=15)), ('qtd_mento', models.CharField(choices=[('Normal', 'Normal'), ('Deficiente', 'Deficiente'), ('Proeminente', 'Proeminente')], max_length=15)), ('sulco_mentolabial', models.CharField(choices=[('Normal', 'Normal'), ('Diminuído', 'Diminuído'), ('Aumentado', 'Aumentado')], max_length=15)), ('observacoes_perfil', models.TextField()), ('respiracao', models.CharField(choices=[('Nasal', 'Nasal'), ('Bucal', 'Bucal'), ('Naso-Bucal', 'Naso-Bucal')], max_length=15)), ('degluticao', models.CharField(choices=[('Normal', 'Normal'), ('Atípica', 'Atípica')], max_length=15)), ('fonacao', models.CharField(choices=[('Normal', 'Normal'), ('Atipica', 'Atípica')], max_length=15)), ('habitos', models.CharField(choices=[('Não relata', 'Não relata'), ('Sucção', 'Sucção'), ('Interposição labial', 'Interposição labial'), ('Interposição', 'Interposição'), ('Onicofagia', 'Onicofagia'), ('Outros', 'Outros')], max_length=25)), ('habitos_outros', models.CharField(max_length=20)), ('atm', models.TextField()), ('observacoes_funcional', models.TextField()), ('dentadura', models.CharField(choices=[('Decidua', 'DecÃ\xaddua'), ('Mista(1o Transit.)', 'Mista(1o Transit.)'), ('Mista(2o Transit.)', 'Mista(2o Transit.)'), ('Mista(Intertransit.)', 'Mista(Intertransit.)'), ('Permanente', 'Permanente'), ('Arco Tipo I', 'Arco Tipo I'), ('Arco Tipo II', 'Arco Tipo II')], max_length=25)), ('erupcao_dentaria', models.CharField(choices=[('Normal', 'Normal'), ('Precoce', 'Precoce'), ('Tardia', 'Tardia')], max_length=15)), ('arco_superior', models.CharField(choices=[('Normal', 'Normal'), ('Amplo', 'Amplo'), ('Atrésico', 'Atrésico')], max_length=15)), ('arco_inferior', models.CharField(choices=[('Normal', 'Normal'), ('Amplo', 'Amplo'), ('Atrésico', 'Atrésico')], max_length=15)), ('linha_med_sup', models.CharField(choices=[('Normal', 'Normal'), ('Desvio p/ direita', 'Desvio p/ direita'), ('Desvio p/ esquerda', 'Desvio p/ esquerda')], max_length=20)), ('linha_med_inf', models.CharField(choices=[('Normal', 'Normal'), ('Desvio p/ direita', 'Desvio p/ direita'), ('Desvio p/ esquerda', 'Desvio p/ esquerda')], max_length=20)), ('trespasse_horizontal', models.CharField(choices=[('Normal', 'Normal'), ('Aumentado', 'Aumentado'), ('Negativo', 'Negativo')], max_length=15)), ('trespasse_vertical', models.CharField(choices=[('Normal', 'Normal'), ('Aumentado', 'Aumentado'), ('Topo', 'Topo'), ('Mordida aberta', 'Mordida aberta'), ('Dentoalveolar', 'Dentoalveolar'), ('Esquelética', 'Esquelética')], max_length=17)), ('mordida_cruzada', models.CharField(choices=[('Ausente', 'Ausente'), ('Anterior', 'Anterior'), ('Unilateral Verdadeira', 'Unilateral Verdadeira'), ('Unilateral Funcional', 'Unilateral Funcional'), ('Bilateral', 'Bilateral'), ('Localizada', 'Localizada')], max_length=17)), ('spee_sup', models.CharField(choices=[('Normal', 'Normal'), ('Acentuada', 'Acentuada')], max_length=15)), ('spee_inf', models.CharField(choices=[('Normal', 'Normal'), ('Acentuada', 'Acentuada')], max_length=15)), ('relacao_caninos_dir', models.CharField(choices=[('Classe I', 'Classe I'), ('Classe II', 'Classe II'), ('Classe III', 'Classe III')], max_length=15)), ('relacao_caninos_esq', models.CharField(choices=[('Classe I', 'Classe I'), ('Classe II', 'Classe II'), ('Classe III', 'Classe III')], max_length=15)), ('relacao_molares_dir', models.CharField(choices=[('Classe I', 'Classe I'), ('Classe II', 'Classe II'), ('Classe III', 'Classe III')], max_length=15)), ('relacao_molares_esq', models.CharField(choices=[('Classe I', 'Classe I'), ('Classe II', 'Classe II'), ('Classe III', 'Classe III')], max_length=15)), ('angle', models.CharField(choices=[('Classe I', 'Classe I'), ('Classe II, 1a', 'Classe II, 1a'), ('Classe II, 2a', 'Classe II, 2a'), ('Classe III', 'Classe III'), ('Subdiv. direita', 'Subdiv. direita'), ('Subdiv. esquerda', 'Subdiv. esquerda')], max_length=15)), ('andrews', models.CharField(choices=[('Classe I', 'Classe I'), ('Classe II', 'Classe II'), ('Classe III', 'Classe III'), ('1/4', '1/4'), ('1/2', '1/2'), ('3/4', '3/4'), ('Total', 'Total')], max_length=15)), ('diagnostico', models.CharField(choices=[('Oclusão normal', 'Oclusão normal'), ('Má oclusão', 'Má oclusão')], max_length=20)), ('observacoes_oclusal', models.TextField()), ('observacoes_odontograma', models.TextField()), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Ficha_Periodontia', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sangramento_gengiva', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('tratamento_gengiva', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('hemorragia_extrac_dentes', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('aparelho_ortodontico', models.BooleanField()), ('alergia_anestesia', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('alergia_antibioticos', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('alergia_sulfas', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('alergia_aspirina', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('alergia_outros', models.CharField(blank=True, max_length=20, null=True)), ('alergia_nao_medicamentos', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('quais_alergias', models.CharField(blank=True, max_length=20, null=True)), ('cuidados_medicos', models.BooleanField()), ('motivo_cuidados_medicos', models.CharField(blank=True, max_length=20, null=True)), ('medicamentos', models.BooleanField()), ('quais_medicamentos', models.CharField(blank=True, max_length=20, null=True)), ('febre_reumatica', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('doencas_cardiovasculares', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('diabetes', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('tonturas', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('anemia', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('acamado', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('inchaco_dor_juntas', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('ulcera', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('figado', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('tuberculose', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('sangramento_excessivo', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('operacao', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('qual_operacao', models.CharField(blank=True, max_length=20, null=True)), ('variacao_peso', models.CharField(choices=[('Aumentou', 'Aumentou'), ('Diminuiu', 'Diminuiu'), ('Sem mudanças', 'Sem mudanças')], max_length=15)), ('radioterapia', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('regiao_radioterapia', models.CharField(blank=True, max_length=20, null=True)), ('tempo_radioterapia', models.CharField(blank=True, max_length=20, null=True)), ('pressao_arterial', models.CharField(choices=[('Alta', 'Alta'), ('Baixa', 'Baixa'), ('Normal', 'Normal')], max_length=10)), ('problema_menstruacao', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('gravida', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('fumante', models.BooleanField()), ('tempo_abandono_tabagismo', models.CharField(blank=True, max_length=20, null=True)), ('cigs_dia', models.PositiveIntegerField(blank=True, null=True)), ('doenca_infec', models.CharField(choices=[('Sim', 'Sim'), ('Não', 'Não'), ('Não sei', 'Não sei')], max_length=10)), ('qual_doenca_infec', models.CharField(blank=True, max_length=20, null=True)), ('drogas_ilicitas', models.BooleanField()), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Ficha_PPR', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('class_kennedy_sup', models.TextField()), ('tratamento_previo_sup', models.TextField()), ('planejamento_protese_sup', models.TextField()), ('observacoes_sup', models.TextField()), ('class_kennedy_inf', models.TextField()), ('tratamento_previo_inf', models.TextField()), ('planejamento_protese_inf', models.TextField()), ('observacoes_inf', models.TextField()), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Ficha_Urgencia', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('historia_clinica', models.CharField(max_length=60)), ('medicamentos', models.CharField(max_length=60)), ('motivo', models.CharField(max_length=60)), ('diagnostico_provavel', models.CharField(max_length=20)), ('atend', models.CharField(choices=[('Estágio III', 'Estágio III'), ('Estágio IV', 'Estágio IV'), ('Outro', 'Outro')], max_length=15)), ('atend_outro', models.CharField(blank=True, max_length=20, null=True)), ('procedimento', models.CharField(max_length=60)), ('encaminhamento', models.CharField(blank=True, max_length=60, null=True)), ('prescricoes', models.CharField(blank=True, max_length=60, null=True)), ('especialidade', models.CharField(choices=[('Endodontia', 'Endodontia'), ('Prótese', 'Prótese'), ('Periodontia', 'Periodontia'), ('DentÃ\xadstica', 'DentÃ\xadstica'), ('Cirurgia', 'Cirurgia'), ('Outro', 'Outro')], max_length=15)), ('especialidade_outro', models.CharField(blank=True, max_length=20, null=True)), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Odontograma', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pontos', models.TextField(blank=True)), ('atendimento', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Atendimento')), ], ), migrations.CreateModel( name='Paciente', fields=[ ('cpf', models.CharField(max_length=11, primary_key=True, serialize=False)), ('nome', models.CharField(max_length=200)), ('endereco', models.CharField(max_length=200)), ('bairro', models.CharField(max_length=200)), ('cidade', models.CharField(max_length=200)), ('estado', models.CharField(max_length=200)), ('cep', models.CharField(blank=True, max_length=9)), ('tel', models.CharField(blank=True, max_length=11)), ('cel', models.CharField(blank=True, max_length=11)), ('email', models.EmailField(blank=True, max_length=254, null=True)), ('estado_civil', models.CharField(max_length=200)), ('data_nasc', models.DateField()), ('idade', models.CharField(max_length=3)), ('cor', models.CharField(max_length=200)), ('sexo', models.CharField(choices=[('M', 'M'), ('F', 'F')], max_length=1)), ('rg', models.CharField(max_length=8)), ('naturalidade', models.CharField(max_length=200)), ('nacionalidade', models.CharField(max_length=200)), ('profissao_atual', models.CharField(blank=True, max_length=200, null=True)), ('profissao_anterior', models.CharField(blank=True, max_length=200, null=True)), ('endereco_profissional', models.CharField(blank=True, max_length=200, null=True)), ('bairro_profissional', models.CharField(blank=True, max_length=200, null=True)), ('cep_profissional', models.CharField(blank=True, max_length=9, null=True)), ], ), migrations.CreateModel( name='Professor', fields=[ ('nome', models.CharField(max_length=50)), ('codigo', models.CharField(max_length=15, primary_key=True, serialize=False)), ('login', models.CharField(max_length=20)), ('senha', models.CharField(max_length=20)), ], ), migrations.CreateModel( name='Tipo_Ficha', fields=[ ('codigo', models.PositiveIntegerField(primary_key=True, serialize=False)), ('nome', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='Turma', fields=[ ('codigo', models.CharField(max_length=13, primary_key=True, serialize=False)), ('nome', models.CharField(max_length=30)), ], ), migrations.CreateModel( name='Turma_Aluno', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('periodo', models.CharField(max_length=6)), ('aluno', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Aluno')), ('turma', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Turma')), ], ), migrations.AddField( model_name='turma', name='alunos', field=models.ManyToManyField(through='sistema_fichas.Turma_Aluno', to='sistema_fichas.Aluno'), ), migrations.AddField( model_name='tipo_ficha', name='turma', field=models.ManyToManyField(to='sistema_fichas.Turma'), ), migrations.AddField( model_name='professor', name='turmas', field=models.ManyToManyField(to='sistema_fichas.Turma'), ), migrations.AddField( model_name='paciente', name='turma_aluno', field=models.ManyToManyField(through='sistema_fichas.Atendimento', to='sistema_fichas.Turma_Aluno'), ), migrations.AddField( model_name='ficha_periodontia', name='odontograma', field=models.OneToOneField(on_delete=django.db.models.deletion.PROTECT, to='sistema_fichas.Odontograma'), ), migrations.AddField( model_name='ficha_ortodontia', name='odontograma', field=models.OneToOneField(on_delete=django.db.models.deletion.PROTECT, to='sistema_fichas.Odontograma'), ), migrations.AddField( model_name='ficha_diagnostico', name='odontograma', field=models.OneToOneField(null=True, on_delete=django.db.models.deletion.PROTECT, to='sistema_fichas.Odontograma'), ), migrations.AddField( model_name='dados_dentes', name='ficha_periodontia', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Ficha_Periodontia'), ), migrations.AddField( model_name='atendimento', name='paciente', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Paciente'), ), migrations.AddField( model_name='atendimento', name='tipo_ficha', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Tipo_Ficha'), ), migrations.AddField( model_name='atendimento', name='turma_aluno', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sistema_fichas.Turma_Aluno'), ), ]
77.494624
339
0.586212
fb7433f6d0e11b20f7798826091977669863151e
2,832
py
Python
gulpy/inputs/writer.py
learningmatter-mit/gulpy
a1894a40392fd9fa95cdee06b0253b340add8f49
[ "MIT" ]
1
2021-05-27T18:39:45.000Z
2021-05-27T18:39:45.000Z
gulpy/inputs/writer.py
learningmatter-mit/gulpy
a1894a40392fd9fa95cdee06b0253b340add8f49
[ "MIT" ]
null
null
null
gulpy/inputs/writer.py
learningmatter-mit/gulpy
a1894a40392fd9fa95cdee06b0253b340add8f49
[ "MIT" ]
1
2022-01-16T19:15:29.000Z
2022-01-16T19:15:29.000Z
class FileWriter: def __init__(self): pass def __repr__(self): return self.__str__() def __str__(self): return f"<FileWriter base class>" def write_file(self, filename): with open(filename, "w") as f: f.write(self.__str__()) class InputWriter(FileWriter): def __init__( self, keywords, options, structure, library, *args, title="", **kwargs ): self.keywords = keywords self.options = options self.structure = structure self.library = library self.title = title def __repr__(self): return "<{} with keywords: {}>".format( self.__class__.__name__, " ".join(self.keywords) ) def _render_keywords(self): return " ".join(self.keywords) def _render_title(self): return """title\n {}\nend\n""".format(self.title) def _render_options(self): options_str = [] for opt, val in self.options.items(): if type(val) == list: options_str += ["\n".join([opt, *val])] else: options_str += ["{} {}".format(opt, val)] return "\n".join(options_str) def _render_lattice(self): lattice = self.structure.get_lattice() if lattice is not None: vectors = "\n".join( ["{:>12.7f} {:>12.7f} {:>12.7f}".format(*row) for row in lattice] ) return """\nvectors\n{} \n""".format(vectors) return "\n" def _render_coords(self): def format_coords(label, cs, xyz): return "{:>5} {:>5} {:>10.5f} {:>10.5f} {:>10.5f}".format( label, cs, xyz[0], xyz[1], xyz[2] ) labels, core_shell, coords = self.structure.get_labels_shells_coords() coord_lines = "\n".join( [ format_coords(label, cs, xyz) for label, cs, xyz in zip(labels, core_shell, coords) ] ) return """cartesian\n{}\n""".format(coord_lines) def _render_library(self): species = set(self.structure.get_labels()) return "\n".join(self.library.get_library(species)) def _render_extras(self): return "" def _render_bonds(self): def format_bonds(tup): return "connect %d %d %s" % tup return "\n".join([format_bonds(tup) for tup in self.structure.get_bonds()]) def __str__(self): return "\n".join( [ self._render_keywords(), self._render_title(), self._render_options(), self._render_lattice(), self._render_coords(), self._render_bonds(), self._render_extras(), self._render_library(), ] )
28.606061
83
0.52613
505c493684d15d1bc58e108f11dc57fbf2ce8583
7,813
py
Python
board/views.py
bluebamus/django_function_based_web_site
5d3b453334110b6d49e5dbe09607df839bc5b649
[ "MIT" ]
null
null
null
board/views.py
bluebamus/django_function_based_web_site
5d3b453334110b6d49e5dbe09607df839bc5b649
[ "MIT" ]
null
null
null
board/views.py
bluebamus/django_function_based_web_site
5d3b453334110b6d49e5dbe09607df839bc5b649
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect, get_object_or_404 from django.urls import reverse from django.views.decorators.http import require_POST from django.core.paginator import Paginator from django.http import Http404 from user.models import Usert from tag.models import Tag from .models import Board, Comment from .forms import BoardForm, BoardUpdateForm from user.decorators import * # Create your views here. def board_detail(request, pk): try: board = Board.objects.get(pk=pk) comments = Comment.objects.filter(board=pk, is_deleted=False) except Board.DoesNotExist: raise Http404("게시글을 찾을 수 없습니다") return render(request, "board_detail.html", {"board": board, "comments": comments}) @login_required def board_update(request, pk): try: # board = Board.objects.get(pk=pk) board = get_object_or_404(Board, pk=pk) except Board.DoesNotExist: raise Http404("게시글을 찾을 수 없습니다") user_id = request.session.get("user") usert = Usert.objects.get(pk=user_id) if usert != board.writer: err_msg = "글을 작성한 본인만 수정할 수 있습니다." return render(request, "board_detail.html", {"board": board, "err_msg": err_msg}) if request.method == "POST": form = BoardUpdateForm(request.POST or None, request.FILES or None, instance=board) if form.is_valid(): user_id = request.session.get("user") usert = Usert.objects.get(pk=user_id) tags = form.cleaned_data["tags"].split(",") board.title = form.cleaned_data["title"] board.contents = form.cleaned_data["contents"] board.writer = usert if form.cleaned_data["photo"] == None: board.photo = "default/no_img_lg.png" elif form.cleaned_data["photo"] != board.photo: board.photo = form.cleaned_data["photo"] else: pass board.save() # 보드 생성 이후 pk가 만들어지고 나서 만들어야 에러 발생이 안됨 for tag in tags: if not tag: continue # _tag, created = Tag.objects.get_or_create(name=tag) _tag, _data = Tag.objects.get_or_create(name=tag.strip()) # '_XXXX'는 protected를 의미함 # '_'는 사용하지 않는 변수를 의미함 # Tag.objects.get_or_create(name=tag)는 가지고 있으면 가져오고 없으면 생성함 # 이름과 작성자가 모두 똑같은 사람이 하고 싶다면 Tag.objects.get_or_create(name=tag, writer=writer) # 이름과 작성자가 다르면 새로 만듬 # 이름만 확인하고 작성자가 없으면 기본값으로 생성 # Tag.objects.get_or_create(name=tag, defaults={'wr'}) board.tags.add(_tag) return redirect("board_detail", pk=pk) else: print(form.errors) form = BoardUpdateForm(instance=board) # ModelForm에서는 initial이 아닌 instance로 객체를 전달해야한다. """form = BoardUpdateForm( initial={ "title": board.title, "contents": board.contents, "tags": [tag.name for tag in board.tags.all()], "photo": board.photo, } )""" return render(request, "board_update.html", {"form": form, "board": board}) @login_required def board_delete(request, pk): try: board = Board.objects.get(pk=pk) except Board.DoesNotExist: raise Http404("게시글을 찾을 수 없습니다") if not request.session.get("user"): err_msg = "로그인을 한 사용자만 글을 삭제할 수 있습니다." return render(request, "board_detail.html", {"board": board, "err_msg": err_msg}) user_id = request.session.get("user") usert = Usert.objects.get(pk=user_id) if usert == board.writer: Board.objects.get(pk=pk).delete() else: err_msg = "글을 작성한 본인만 삭제할 수 있습니다." return render(request, "board_detail.html", {"board": board, "err_msg": err_msg}) return redirect("/board/list/") @login_required def board_write(request): if not request.session.get("user"): return redirect("/login/") if request.method == "POST": form = BoardForm(request.POST, request.FILES or None) if form.is_valid(): user_id = request.session.get("user") usert = Usert.objects.get(pk=user_id) tags = form.cleaned_data["tags"].split(",") board = Board() board.title = form.cleaned_data["title"] board.contents = form.cleaned_data["contents"] board.writer = usert board.photo = form.cleaned_data["photo"] if board.photo == None: board.photo = "default/no_img_lg.png" board.save() # 보드 생성 이후 pk가 만들어지고 나서 만들어야 에러 발생이 안됨 for tag in tags: if not tag: continue # _tag, created = Tag.objects.get_or_create(name=tag) _tag, _ = Tag.objects.get_or_create(name=tag.strip()) # '_XXXX'는 protected를 의미함 # '_'는 사용하지 않는 변수를 의미함 # Tag.objects.get_or_create(name=tag)는 가지고 있으면 가져오고 없으면 생성함 # 이름과 작성자가 모두 똑같은 사람이 하고 싶다면 Tag.objects.get_or_create(name=tag, writer=writer) # 이름과 작성자가 다르면 새로 만듬 # 이름만 확인하고 작성자가 없으면 기본값으로 생성 # Tag.objects.get_or_create(name=tag, defaults={'wr'}) board.tags.add(_tag) return redirect("/board/list/") else: form = BoardForm() return render(request, "board_write.html", {"form": form}) def board_list(request): all_boards = Board.objects.all().order_by("-id") # -id 역순, 최신순으로 가져오겠다는 옵션 page = int(request.GET.get("p", 1)) paginator = Paginator(all_boards, 3) boards = paginator.get_page(page) return render(request, "board_list.html", {"boards": boards}) @login_required def likes(request, pk): try: like_blog = get_object_or_404(Board, pk=pk) except Board.DoesNotExist: raise Http404("게시글을 찾을 수 없습니다") user_id = request.session.get("user") # item = like_blog.like.values_list("id") if like_blog.like.filter(id=user_id): like_blog.like.remove(user_id) like_blog.like_count -= 1 like_blog.save() else: like_blog.like.add(user_id) like_blog.like_count += 1 like_blog.save() return redirect("board_detail", pk=pk) @login_required def comment_write(request): errors = [] if request.method == "POST": post_id = request.POST.get("post_id", "").strip() content = request.POST.get("content", "").strip() if not content: errors.append("댓글을 입력해주세요.") if not errors: comment = Comment.objects.create( board=Board.objects.get(pk=post_id), user=Usert.objects.get(pk=request.session.get("user")), content=content, parent_comment=None, ) return redirect(reverse("board_detail", kwargs={"pk": post_id})) return render(request, "blogs/post_detail.html", {"user": request.user, "cmt_errors": errors}) # return render(request, "board_detail.html", {"board": board, "err_msg": err_msg}) @login_required def comment_delete(request, pk): errors = [] try: comment = Comment.objects.get(pk=pk) except Board.DoesNotExist: raise Http404("게시 댓글을 찾을 수 없습니다") user_id = request.session.get("user") user = Usert.objects.get(pk=user_id) if user == comment.user: # Comment.objects.get(pk=pk).delete() comment.delete() else: errors.append("글을 작성한 본인만 삭제할 수 있습니다.") comments = Comment.objects.filter(board=comment.board.id, is_deleted=False) return render( request, "board_detail.html", {"board": comment.board, "comments": comments, "err_msg": errors}, )
33.388889
98
0.596826
075544f1815e04d3655877f2aaf0575a72b009c2
9,283
py
Python
OpenCLGA/shuffler_chromosome.py
czarnobylu/OpenCLGA
c002b5177104db5bcdbb0192db25fbbb45516f27
[ "MIT" ]
112
2017-04-07T06:02:10.000Z
2022-02-18T11:49:11.000Z
OpenCLGA/shuffler_chromosome.py
czarnobylu/OpenCLGA
c002b5177104db5bcdbb0192db25fbbb45516f27
[ "MIT" ]
25
2016-11-22T08:22:53.000Z
2017-03-01T14:46:33.000Z
OpenCLGA/shuffler_chromosome.py
czarnobylu/OpenCLGA
c002b5177104db5bcdbb0192db25fbbb45516f27
[ "MIT" ]
34
2017-05-22T02:56:08.000Z
2022-02-06T05:20:56.000Z
#!/usr/bin/python3 import numpy import pyopencl as cl from .simple_gene import SimpleGene class ShufflerChromosome: # ShufflerChromosome - a chromosome contains a list of Genes. # __genes - an ordered list of Genes # __name - name of the chromosome # __improving_func - function name in kernel to gurantee a better mutation result. # dna - an listed of Gene's dna # dna_total_length - sum of the lenght of all genes's dna def __init__(self, genes, name = ''): assert all(isinstance(gene, SimpleGene) for gene in genes) assert type(genes) == list self.__genes = genes self.__name = name self.__improving_func = None @property def num_of_genes(self): return len(self.__genes) @property def name(self): return self.__name @property def dna_total_length(self): return self.num_of_genes @property def dna(self): return [gene.dna for gene in self.__genes] @dna.setter def dna(self, dna): assert self.num_of_genes == len(dna) for i, gene in enumerate(self.__genes): gene.dna = dna[i] @property def genes(self): return self.__genes @property def gene_elements(self): return [] if len(self.__genes) == 0 else self.__genes[0].elements @property def gene_elements_in_kernel(self): return [] if len(self.__genes) == 0 else self.__genes[0].elements_in_kernel @property def kernel_file(self): return 'shuffler_chromosome.cl' @property def struct_name(self): return '__ShufflerChromosome'; @property def chromosome_size_define(self): return 'SHUFFLER_CHROMOSOME_GENE_SIZE' def early_terminated(self, best, worst): return False def from_kernel_value(self, data): assert len(data) == self.num_of_genes genes = [self.__genes[idx].from_kernel_value(v) for idx, v in enumerate(data)] return ShufflerChromosome(genes, self.__name) def use_improving_only_mutation(self, helper_func_name): self.__improving_func = helper_func_name def kernelize(self): improving_func = self.__improving_func if self.__improving_func is not None\ else 'shuffler_chromosome_dummy_improving_func' candidates = '#define SIMPLE_GENE_ELEMENTS ' + self.__genes[0].elements_in_kernel_str defines = '#define SHUFFLER_CHROMOSOME_GENE_SIZE ' + str(self.num_of_genes) + '\n' +\ '#define IMPROVED_FITNESS_FUNC ' + improving_func + '\n' improving_func_header = 'int ' + improving_func + '(global int* c,' +\ 'int idx,' +\ 'int chromosome_size FITNESS_ARGS);' return candidates + defines + improving_func_header def save(self, data, ctx, queue, population): total_dna_size = population * self.dna_total_length # prepare memory other_chromosomes = numpy.zeros(total_dna_size, dtype=numpy.int32) cross_map = numpy.zeros(total_dna_size, dtype=numpy.int32) ratios = numpy.zeros(population, dtype=numpy.float32) # read data from cl cl.enqueue_read_buffer(queue, self.__dev_ratios, ratios) cl.enqueue_read_buffer(queue, self.__dev_other_chromosomes, other_chromosomes) cl.enqueue_read_buffer(queue, self.__dev_cross_map, cross_map).wait() # save all of them data['other_chromosomes'] = other_chromosomes data['cross_map'] = cross_map data['ratios'] = ratios def restore(self, data, ctx, queue, population): other_chromosomes = data['other_chromosomes'] cross_map = data['cross_map'] ratios = data['ratios'] # build CL memory from restored memory mf = cl.mem_flags self.__dev_ratios = cl.Buffer(ctx, mf.WRITE_ONLY, ratios.nbytes) self.__dev_other_chromosomes = cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=other_chromosomes) self.__dev_cross_map = cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=cross_map) def preexecute_kernels(self, ctx, queue, population): ## initialize global variables for kernel execution total_dna_size = population * self.dna_total_length other_chromosomes = numpy.zeros(total_dna_size, dtype=numpy.int32) cross_map = numpy.zeros(total_dna_size, dtype=numpy.int32) ratios = numpy.zeros(population, dtype=numpy.float32) mf = cl.mem_flags self.__dev_ratios = cl.Buffer(ctx, mf.WRITE_ONLY, ratios.nbytes) self.__dev_other_chromosomes = cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=other_chromosomes) self.__dev_cross_map = cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=cross_map) def get_populate_kernel_names(self): return ['shuffler_chromosome_populate'] def get_crossover_kernel_names(self): return ['shuffler_chromosome_calc_ratio',\ 'shuffler_chromosome_pick_chromosomes',\ 'shuffler_chromosome_do_crossover'] def get_mutation_kernel_names(self): return ['shuffler_chromosome_single_gene_mutate'] def execute_populate(self, prg, queue, population, dev_chromosomes, dev_rnum): prg.shuffler_chromosome_populate(queue, (population,), (1,), dev_chromosomes, dev_rnum).wait() def selection_preparation(self, prg, queue, dev_fitnesses): prg.shuffler_chromosome_calc_ratio(queue, (1,), (1,), dev_fitnesses, self.__dev_ratios).wait() def execute_get_current_elites(self, prg, queue, top, dev_chromosomes, dev_current_elites, dev_best_indices): prg.shuffler_chromosome_get_the_elites(queue, (1,), (1,), dev_best_indices, dev_chromosomes, dev_current_elites, numpy.int32(top)).wait() def execute_update_current_elites(self, prg, queue, top, dev_worst_indices, dev_chromosomes, dev_updated_elites, dev_fitnesses, dev_updated_elite_fitness): prg.shuffler_chromosome_update_the_elites(queue, (1,), (1,), numpy.int32(top), dev_worst_indices, dev_chromosomes, dev_updated_elites, dev_fitnesses, dev_updated_elite_fitness).wait() def execute_crossover(self, prg, queue, population, generation_idx, prob_crossover, dev_chromosomes, dev_fitnesses, dev_rnum, best_fitness): prg.shuffler_chromosome_pick_chromosomes(queue, (population,), (1,), dev_chromosomes, dev_fitnesses, self.__dev_other_chromosomes, self.__dev_ratios, dev_rnum).wait() prg.shuffler_chromosome_do_crossover(queue, (population,), (1,), dev_chromosomes, dev_fitnesses, self.__dev_other_chromosomes, self.__dev_cross_map, dev_rnum, numpy.float32(best_fitness), numpy.float32(prob_crossover)).wait() def execute_mutation(self, prg, queue, population, generation_idx, prob_mutate, dev_chromosomes, dev_fitnesses, dev_rnum, extra_list): args = [dev_chromosomes, dev_rnum, numpy.float32(prob_mutate), numpy.int32(self.__improving_func is not None)] args = args + extra_list prg.shuffler_chromosome_single_gene_mutate(queue, (population,), (1,), *args).wait()
43.787736
94
0.537434
cc404a9b8472cd20e5a44ee64a650b35ba7bd0af
2,297
py
Python
datalad_neuroimaging/tests/test_aggregation.py
mih/datalad-neuroimaging
f83ba994a6b208c297501be3f18aeabb3da51e8b
[ "MIT" ]
null
null
null
datalad_neuroimaging/tests/test_aggregation.py
mih/datalad-neuroimaging
f83ba994a6b208c297501be3f18aeabb3da51e8b
[ "MIT" ]
null
null
null
datalad_neuroimaging/tests/test_aggregation.py
mih/datalad-neuroimaging
f83ba994a6b208c297501be3f18aeabb3da51e8b
[ "MIT" ]
null
null
null
# emacs: -*- mode: python-mode; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # -*- coding: utf-8 -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test metadata aggregation""" from datalad.distribution.dataset import Dataset from datalad.tests.utils import with_tree from datalad.tests.utils import assert_equal from datalad.tests.utils import assert_not_in from ..extractors.tests.test_bids import bids_template @with_tree(tree=bids_template) def test_nested_metadata(path): ds = Dataset(path).create(force=True) ds.add('.') ds.aggregate_metadata() # BIDS returns participant info as a nested dict for each file in the # content metadata. On the dataset-level this should automatically # yield a sequence of participant info dicts, without any further action # or BIDS-specific configuration meta = ds.metadata('.', reporton='datasets', return_type='item-or-list')['metadata'] assert_equal( meta['datalad_unique_content_properties']['bids']['participant'], [ { "age(years)": "20-25", "id": "03", "gender": "female", "handedness": "r", "hearing_problems_current": "n", "language": "english" }, { "age(years)": "30-35", "id": "01", "gender": "male", "handedness": "r", "hearing_problems_current": "n", "language": u"русский" }, ]) # we can turn off this kind of auto-summary ds.config.add('datalad.metadata.generate-unique-bids', 'false', where='dataset') ds.aggregate_metadata() meta = ds.metadata('.', reporton='datasets', return_type='item-or-list')['metadata'] # protect next test a little, in case we enhance our core extractor in the future # to provide more info if 'datalad_unique_content_properties' in meta: assert_not_in('bids', meta['datalad_unique_content_properties'])
38.932203
92
0.578581
fbae392cd679790bb480391e764f8dc74bcd1c3d
14,909
py
Python
DataExtractor.py
godfatherlmh/LoLAnalyzer
0b265b33230316ab1a1459a9767ef7527a4a4f89
[ "MIT" ]
null
null
null
DataExtractor.py
godfatherlmh/LoLAnalyzer
0b265b33230316ab1a1459a9767ef7527a4a4f89
[ "MIT" ]
null
null
null
DataExtractor.py
godfatherlmh/LoLAnalyzer
0b265b33230316ab1a1459a9767ef7527a4a4f89
[ "MIT" ]
null
null
null
# Extract the useful data from game files (json) # Append the useful data to a csv file import pickle import os import queue import sys from collections import OrderedDict import multiprocessing from multiprocessing.managers import BaseManager, NamespaceProxy import time import Modes import pandas as pd from collections import Counter CHUNK_SIZE = 100 def extracted_writer(extracted_file, q, stop): with open(extracted_file, 'a+') as f: while not stop.is_set(): try: game_path = q.get(timeout=1) except queue.Empty: continue f.write(game_path) f.write('\n') print('Closing writer', file=sys.stderr) class Extractor: def __init__(self, mode, extracted_files, current_index, rot_length, writing_q): self.mode = mode self.rot_length = rot_length self.writing_q = writing_q self.current_index = current_index if len(extracted_files) >= self.current_index > 0: # the file already exist self.csv_file = os.path.join(mode.EXTRACTED_DIR, extracted_files[self.current_index - 1]) self.csv_index = len(pd.read_csv(self.csv_file, skiprows=1)) print(self.csv_file, 'lines', self.csv_index, file=sys.stderr) else: self.csv_file = None self.csv_index = mode.DATA_LINES class ExManager(BaseManager): pass class ExProxy(NamespaceProxy): _exposed_ = ('__getattribute__', '__setattr__', '__delattr__', 'b') ExManager.register('Extractor', Extractor, ExProxy) def run(mode, cpu): extracted_file = mode.EXTRACTED_FILE if os.path.isfile(extracted_file): with open(extracted_file, 'r') as f: extracted_list = [x.strip() for x in f.readlines()] else: extracted_list = [] gamePaths = [] for patch in mode.learning_patches: for region in mode.REGIONS: if os.path.isdir(os.path.join(mode.DATABASE, 'patches', patch, region)): gamePaths.extend( [os.path.join(mode.DATABASE, 'patches', patch, region, f) for f in os.listdir(os.path.join(mode.DATABASE, 'patches', patch, region))]) print('%d game files found' % len(gamePaths), file=sys.stderr) gamePaths = list(set(gamePaths) - set(extracted_list)) print('%d new games to extract' % len(gamePaths), file=sys.stderr) if not os.path.isdir(mode.EXTRACTED_DIR): os.makedirs(mode.EXTRACTED_DIR) extracted_files = [f for f in os.listdir(mode.EXTRACTED_DIR)] l = list(map(lambda x: int(x.replace('data_', '').replace('.csv', '')), extracted_files)) l = sorted(range(len(l)), key=lambda k: l[k]) extracted_files = [extracted_files[k] for k in l] # multiprocessing manager = multiprocessing.Manager() writing_q = manager.Queue() stop = manager.Event() writer = multiprocessing.Process(target=extracted_writer, args=(extracted_file, writing_q, stop)) writer.start() ex_manager = ExManager() ex_manager.start() available_extractors = [] running_extractors = [] for i in range(cpu): current_index = len(extracted_files) - i # noinspection PyUnresolvedReferences available_extractors.append(ex_manager.Extractor(mode, extracted_files, current_index, cpu, writing_q)) while gamePaths: # we work with chunks in order to save time (no need to hand over the extractor for every single game chunk = gamePaths[:CHUNK_SIZE] gamePaths = gamePaths[CHUNK_SIZE:] print(len(gamePaths), 'left', file=sys.stderr) while not available_extractors: # wait until an extractor is available for p, ex in running_extractors: if p.is_alive(): continue available_extractors.append(ex) running_extractors.remove((p, ex)) if not available_extractors: # wait a bit time.sleep(0.001) # start a new job ex = available_extractors.pop() p = multiprocessing.Process(target=analyze_game, args=(ex, chunk,)) running_extractors.append((p, ex)) p.start() for p, ex in running_extractors: p.join() stop.set() writer.join() print('-- Extraction complete --') def analyze_game(ex, gamePaths): for gamePath in gamePaths: raw_data = OrderedDict([('s_' + champ, []) for champ in ex.mode.CHAMPIONS_LABEL] + [('p_' + champ, []) for champ in ex.mode.CHAMPIONS_LABEL]) raw_data['patch'] = [] raw_data['win'] = [] raw_data['file'] = [] print(ex.csv_file, gamePath) game = pickle.load(open(gamePath, 'rb')) bans = [] game_patch = '_'.join(game['gameVersion'].split('.')[:2]) if game['gameDuration'] < 300: print(gamePath, 'FF afk', game['gameDuration'], file=sys.stderr) ex.writing_q.put(gamePath) continue blueTeam = None redTeam = None for team in game['teams']: if team['teamId'] == 100: blueTeam = team elif team['teamId'] == 200: redTeam = team else: print(gamePath, 'Unrecognized team %d' % team['teamId'], file=sys.stderr) break for ban in team['bans']: championId = ban['championId'] if championId not in bans: bans.append(championId) if not blueTeam or not redTeam: print(gamePath, 'Teams are not recognized', file=sys.stderr) ex.writing_q.put(gamePath) continue # not sure what is written for voided games, so it's safer to check both # if we get something else than true/false or false/true we just ignore the file blueWin = blueTeam['win'] == 'Win' redWin = redTeam['win'] == 'Win' if not blueWin ^ redWin: print(gamePath, 'No winner found', blueWin, redWin, file=sys.stderr) ex.writing_q.put(gamePath) continue participants = game['participants'] # Blank, everything is available state = OrderedDict() state['win'] = int(blueWin) state['patch'] = game_patch state['file'] = os.path.basename(gamePath) state.update([('s_' + champ_name, 'A') for champ_name in ex.mode.CHAMPIONS_LABEL]) # Status state.update([('p_' + champ_name, 'N') for champ_name in ex.mode.CHAMPIONS_LABEL]) # Position for key, value in state.items(): raw_data[key].append(value) # Bans state = OrderedDict(state) # don't forget to create a clean copy for championId in bans: for champ_name, champ_id in ex.mode.CHAMPIONS_ID.items(): if champ_id == championId: state['s_' + champ_name] = 'N' # None break for key, value in state.items(): raw_data[key].append(value) # Smart lane-role # The Api doesn't precisely give players role, so we have to deduce it b_roles = OrderedDict() r_roles = OrderedDict() for i in range(0, 10): p = participants[i] lane = p['timeline']['lane'] if i < 5: if lane == 'TOP': b_roles[i] = 'T' elif lane == 'JUNGLE': b_roles[i] = 'J' elif lane == 'MIDDLE': b_roles[i] = 'M' elif lane == 'BOTTOM': b_roles[i] = 'C' elif lane == 'NONE': b_roles[i] = '?' # Fill missing lane if possible else: raise Exception(p, lane) else: if lane == 'TOP': r_roles[i] = 'T' elif lane == 'JUNGLE': r_roles[i] = 'J' elif lane == 'MIDDLE': r_roles[i] = 'M' elif lane == 'BOTTOM': r_roles[i] = 'C' elif lane == 'NONE': r_roles[i] = '?' # Fill missing lane if possible else: raise Exception(p, lane) # Fill missing role '?' # target at this point is something like 'T', 'J', 'M', 'C', 'C' b_toFillCount = Counter(b_roles.values())['?'] if b_toFillCount > 1: print(gamePath, 'fucked up roles', b_roles, file=sys.stderr) ex.writing_q.put(gamePath) continue elif b_toFillCount == 1: fill_index = list(b_roles.keys())[list(b_roles.values()).index('?')] possible_roles = ['T', 'J', 'M', 'C'] missing_roles = list(set(possible_roles)-set(b_roles.values())) if len(missing_roles) == 1: # non-bot role b_roles[fill_index] = missing_roles[0] elif len(missing_roles) == 0: # bot, whether it is support will be determined later b_roles[fill_index] = 'C' else: print(gamePath, 'fucked up roles', b_roles, file=sys.stderr) ex.writing_q.put(gamePath) continue r_toFillCount = Counter(r_roles.values())['?'] if r_toFillCount > 1: print(gamePath, 'fucked up roles', r_roles, file=sys.stderr) ex.writing_q.put(gamePath) continue elif r_toFillCount == 1: fill_index = list(r_roles.keys())[list(r_roles.values()).index('?')] possible_roles = ['T', 'J', 'M', 'C'] missing_roles = list(set(possible_roles)-set(r_roles.values())) if len(missing_roles) == 1: # non-bot role r_roles[fill_index] = missing_roles[0] elif len(missing_roles) == 0: # bot, whether it is support will be determined later r_roles[fill_index] = 'C' else: print(gamePath, 'fucked up roles', r_roles, file=sys.stderr) ex.writing_q.put(gamePath) continue # need to find the support in both team # a lane will appear twice, most likely 'C' # the support will either be tagged as 'SUPPORT' or have a low cs count b_doubleRole = Counter(b_roles.values()).most_common(1)[0][0] b_doublei = [i for i, r in b_roles.items() if r == b_doubleRole] if len(b_doublei) > 2: print(gamePath, 'fucked up roles', b_roles, file=sys.stderr) ex.writing_q.put(gamePath) continue if 'SUPPORT' in participants[b_doublei[0]]['timeline']['role']: b_roles[b_doublei[0]] = 'S' elif 'SUPPORT' in participants[b_doublei[1]]['timeline']['role']: b_roles[b_doublei[1]] = 'S' else: # Last resort -> check cs if 'creepsPerMinDeltas' in participants[b_doublei[0]]['timeline']: if participants[b_doublei[0]]['timeline']['creepsPerMinDeltas']['0-10'] < \ participants[b_doublei[1]]['timeline']['creepsPerMinDeltas']['0-10']: b_roles[b_doublei[0]] = 'S' else: b_roles[b_doublei[1]] = 'S' else: if participants[b_doublei[0]]['stats']['totalMinionsKilled'] < participants[b_doublei[1]]['stats']['totalMinionsKilled']: b_roles[b_doublei[0]] = 'S' else: b_roles[b_doublei[1]] = 'S' r_doubleRole = Counter(r_roles.values()).most_common(1)[0][0] r_doublei = [i for i, r in r_roles.items() if r == r_doubleRole] if len(r_doublei) > 2: print(gamePath, 'fucked up roles', r_roles, file=sys.stderr) ex.writing_q.put(gamePath) continue if 'SUPPORT' in participants[r_doublei[0]]['timeline']['role']: r_roles[r_doublei[0]] = 'S' elif 'SUPPORT' in participants[r_doublei[1]]['timeline']['role']: r_roles[r_doublei[1]] = 'S' else: # Last resort -> check cs if 'creepsPerMinDeltas' in participants[r_doublei[0]]['timeline']: if participants[r_doublei[0]]['timeline']['creepsPerMinDeltas']['0-10'] < \ participants[r_doublei[1]]['timeline']['creepsPerMinDeltas']['0-10']: r_roles[r_doublei[0]] = 'S' else: r_roles[r_doublei[1]] = 'S' else: if participants[r_doublei[0]]['stats']['totalMinionsKilled'] < participants[r_doublei[1]]['stats']['totalMinionsKilled']: r_roles[r_doublei[0]] = 'S' else: r_roles[r_doublei[1]] = 'S' roles = OrderedDict() roles.update(b_roles) roles.update(r_roles) # Draft DRAFT_ORDER = [0, 5, 6, 1, 2, 7, 8, 3, 4, 9] # This is not exact. This order is not pick order but end-draft order: if some players # trade, this order is wrong. Unfortunatelly there is no way to know the real pick order. So we just assume people don't trade often and # that trading does not have a huge impact anyway. for i in DRAFT_ORDER: state = OrderedDict(state) bluePick = i < 5 p = participants[i] championId = p['championId'] for champ_name, champ_id in ex.mode.CHAMPIONS_ID.items(): if champ_id == championId: state['s_' + champ_name] = 'B' if bluePick else 'R' state['p_' + champ_name] = roles[i] break for key, value in state.items(): raw_data[key].append(value) df = pd.DataFrame(raw_data, columns=ex.mode.COLUMNS) if ex.csv_index + len(df) < ex.mode.DATA_LINES: df.to_csv(ex.csv_file, mode='a', header=False, index=False) ex.csv_index += len(df) else: # split the data in two: finish prev file and start another to_current = df.iloc[:ex.mode.DATA_LINES - ex.csv_index] to_next = df.iloc[ex.mode.DATA_LINES - ex.csv_index:] to_current.to_csv(ex.csv_file, mode='a', header=False, index=False) # preparing new file ex.current_index += ex.rot_length current_file = 'data_' + str(ex.current_index) + '.csv' ex.csv_file = os.path.join(ex.mode.EXTRACTED_DIR, current_file) ex.csv_index = 0 to_next.to_csv(ex.csv_file, mode='a', header=True, index=False) ex.csv_index += len(to_next) # File fully explored ex.writing_q.put(gamePath) if __name__ == '__main__': m = Modes.ABR_TJMCS_Mode(['7.16', '7.17']) run(m, max(multiprocessing.cpu_count() - 1, 1))
40.958791
149
0.563284
1dd5dfdbaa47fa3805caac66e75ff94a042ded92
26,812
py
Python
pennylane/fourier/visualize.py
MoritzWillmann/pennylane
2b07d22cfcc6406ba28e5c647062340b240a4ee5
[ "Apache-2.0" ]
539
2018-11-13T08:45:42.000Z
2020-07-27T18:17:16.000Z
pennylane/fourier/visualize.py
MoritzWillmann/pennylane
2b07d22cfcc6406ba28e5c647062340b240a4ee5
[ "Apache-2.0" ]
588
2018-11-14T10:21:47.000Z
2020-07-28T06:27:14.000Z
pennylane/fourier/visualize.py
MoritzWillmann/pennylane
2b07d22cfcc6406ba28e5c647062340b240a4ee5
[ "Apache-2.0" ]
165
2018-11-13T18:58:56.000Z
2020-07-27T17:18:17.000Z
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains visualization functions for Fourier series and coefficients.""" from itertools import product import numpy as np # pylint:disable=too-many-arguments,blacklisted-name # Matplotlib is not a hard requirement for PennyLane in general, but it *is* # a hard requirement for everything in this module. try: from matplotlib.colors import to_rgb except (ModuleNotFoundError, ImportError) as e: # pragma: no cover raise ImportError( "Module matplotlib is required for visualization in the Fourier module. " "You can install matplolib via \n\n pip install matplotlib" ) from e from .utils import to_dict, format_nvec def _validate_coefficients(coeffs, n_inputs, can_be_list=True): """Helper function to validate input coefficients of plotting functions. Args: coeffs (array[complex]): A set (or list of sets) of Fourier coefficients of a n_inputs-dimensional function. n_inputs (int): The number of inputs (dimension) of the function the coefficients are for. can_be_list (bool): Whether or not the plotting function accepts a list of coefficients, or only a single set. Raises: TypeError: If the coefficients are not a list or array. ValueError: if the coefficients are not a suitable type for the plotting function. """ # Make sure we have a list or numpy array if not isinstance(coeffs, list) and not isinstance(coeffs, np.ndarray): raise TypeError( "Input to coefficient plotting functions must be a list of numerical " f"Fourier coefficients. Received input of type {type(coeffs)}" ) # In case we have a list, turn it into a numpy array if isinstance(coeffs, list): coeffs = np.array(coeffs) # Check if the user provided a single set of coefficients to a function that is # meant to accept multiple samples; add an extra dimension around it if needed if len(coeffs.shape) == n_inputs and can_be_list: coeffs = np.array([coeffs]) # Check now that we have the right number of axes for the type of function required_shape_size = n_inputs + 1 if can_be_list else n_inputs if len(coeffs.shape) != required_shape_size: raise ValueError( f"Plotting function expected a list of {n_inputs}-dimensional inputs. " f"Received coefficients of {len(coeffs.shape)}-dimensional function." ) # Shape in all dimensions of a single set of coefficients must be the same shape_set = set(coeffs.shape[1:]) if can_be_list else set(coeffs.shape) if len(shape_set) != 1: raise ValueError( "All dimensions of coefficient array must be the same. " f"Received array with dimensions {coeffs.shape}" ) # Size of each sample dimension must be 2d + 1 where d is the degree shape_dim = coeffs.shape[1] if can_be_list else coeffs.shape[0] if (shape_dim - 1) % 2 != 0: raise ValueError( "Shape of input coefficients must be 2d + 1, where d is the largest frequency. " f"Coefficient array with shape {coeffs.shape} is invalid." ) # Return the coefficients; we may have switched to a numpy array or added a needed extra dimension return coeffs def _extract_data_and_labels(coeffs): """Helper function for creating frequency labels and partitioning data. Args: coeffs (array[complex]): A list of sets of Fourier coefficients. Returns: (list(str), dict[str, array[complex]): The set of frequency labels, and a data dictionary split into real and imaginary parts. """ # extract the x ticks nvecs = list(to_dict(coeffs[0]).keys()) nvecs_formatted = [format_nvec(nvec) for nvec in nvecs] # make data data = {} data["real"] = np.array([[c[nvec].real for nvec in nvecs] for c in coeffs]) data["imag"] = np.array([[c[nvec].imag for nvec in nvecs] for c in coeffs]) return nvecs_formatted, data def _adjust_spine_placement(ax): """Helper function to set some common axis properties when plotting.""" ax.xaxis.grid() ax.spines["top"].set_visible(False) ax.spines["bottom"].set_position("zero") ax.spines["right"].set_visible(False) ax.set_axisbelow(True) def violin(coeffs, n_inputs, ax, colour_dict=None, show_freqs=True): """Plots a list of sets of Fourier coefficients as a violin plot. Args: coeffs (list[array[complex]]): A list of sets of Fourier coefficients. The shape of the coefficient arrays should resemble that of the output of NumPy/SciPy's ``fftn`` function, or :func:`~.pennylane.fourier.coefficients`. n_inputs (int): The number of input variables in the function. ax (array[matplotlib.axes.Axes]): Axis on which to plot. Must be a pair of axes from a subplot where ``sharex="row"`` and ``sharey="col"``. colour_dict (dict[str, str]): A dictionary of the form ``{"real" : colour_string, "imag" : other_colour_string}`` indicating which colours should be used in the plot. show_freqs (bool): Whether or not to print the frequency labels on the plot axis. Returns: array[matplotlib.axes.Axes]: The axes on which the data is plotted. **Example** Suppose we have the following quantum function: .. code-block:: python dev = qml.device('default.qubit', wires=2) @qml.qnode(dev) def circuit_with_weights(w, x): qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) qml.Rot(*w[0], wires=0) qml.Rot(*w[1], wires=1) qml.CNOT(wires=[1, 0]) qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) return qml.expval(qml.PauliZ(0)) We would like to compute and plot the distribution of Fourier coefficients for many random values of the weights ``w``. First, we generate all the coefficients: .. code-block:: python from functools import partial coeffs = [] n_inputs = 2 degree = 2 for _ in range(100): weights = np.random.normal(0, 1, size=(2, 3)) c = coefficients(partial(circuit_with_weights, weights), n_inputs, degree) coeffs.append(c) We can now plot by setting up a pair of ``matplotlib`` axes and passing them to the plotting function: >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(2, 1, sharey=True, figsize=(15, 4)) >>> violinplt(coeffs, n_inputs, ax, show_freqs=True) .. image:: ../../_static/fourier_vis_violin.png :align: center :width: 800px :target: javascript:void(0); """ coeffs = _validate_coefficients(coeffs, n_inputs, True) # Check axis shape if ax.size != 2: raise ValueError("Matplotlib axis should consist of two subplots.") if colour_dict is None: colour_dict = {"real": "purple", "imag": "green"} # Get the labels and data nvecs_formatted, data = _extract_data_and_labels(coeffs) for (data_type, axis) in zip(["real", "imag"], ax): violinplt = axis.violinplot(data[data_type], showextrema=False) for bd in violinplt["bodies"]: bd.set_color(colour_dict[data_type]) bd.set_alpha(0.7) axis.set_ylabel(data_type) axis.xaxis.set_ticks(np.arange(1, len(data[data_type][0]) + 1)) _adjust_spine_placement(axis) # Format axes ax[0].tick_params(axis="x", colors="white") # hack to get rid of ticks but keep grid if show_freqs: ax[1].tick_params(axis="x", which="both", length=0) # remove ticks without removing labels ax[1].xaxis.set_ticklabels(nvecs_formatted, fontsize=10, color="grey") ax[1].xaxis.set_ticks_position("top") else: ax[1].tick_params(axis="x", colors="white") # hack to get rid of ticks but keep grid return ax def box(coeffs, n_inputs, ax, colour_dict=None, show_freqs=True, show_fliers=True): """Plot a list of sets of Fourier coefficients as a box plot. Args: coeffs (list[array[complex]]): A list of sets of Fourier coefficients. The shape of the coefficient arrays should resemble that of the output of numpy/scipy's ``fftn`` function, or :func:`~.pennylane.fourier.coefficients`. n_inputs (int): The number of input variables in the function. ax (array[matplotlib.axes.Axes]): Axis on which to plot. Must be a pair of axes from a subplot where ``sharex="row"`` and ``sharey="col"``. colour_dict (dict[str, str]): A dictionary of the form {"real" : colour_string, "imag" : other_colour_string} indicating which colours should be used in the plot. show_freqs (bool): Whether or not to print the frequency labels on the plot axis. show_fliers (bool): Whether to display the box plot outliers. Returns: array[matplotlib.axes.Axes]: The axes after plotting is complete. **Example** Suppose we have the following quantum function: .. code-block:: python dev = qml.device('default.qubit', wires=2) @qml.qnode(dev) def circuit_with_weights(w, x): qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) qml.Rot(*w[0], wires=0) qml.Rot(*w[1], wires=1) qml.CNOT(wires=[1, 0]) qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) return qml.expval(qml.PauliZ(0)) We would like to compute and plot the distribution of Fourier coefficients for many random values of the weights ``w``. First, we generate all the coefficients: .. code-block:: python from functools import partial coeffs = [] n_inputs = 2 degree = 2 for _ in range(100): weights = np.random.normal(0, 1, size=(2, 3)) c = coefficients(partial(circuit_with_weights, weights), n_inputs, degree) coeffs.append(c) We can now plot by setting up a pair of ``matplotlib`` axes and passing them to the plotting function: >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(2, 1, sharey=True, figsize=(15, 4)) >>> box(coeffs, n_inputs, ax, show_freqs=True) .. image:: ../../_static/fourier_vis_box.png :align: center :width: 800px :target: javascript:void(0); """ coeffs = _validate_coefficients(coeffs, n_inputs, True) # Check axis shape if ax.size != 2: raise ValueError("Matplotlib axis should consist of two subplots.") # The axis received must be a pair of axes in a subplot. if colour_dict is None: colour_dict = {"real": "purple", "imag": "green"} # Get the labels and data nvecs_formatted, data = _extract_data_and_labels(coeffs) for (data_type, axis) in zip(["real", "imag"], ax): data_colour = colour_dict[data_type] axis.boxplot( data[data_type], boxprops=dict( facecolor=to_rgb(data_colour) + (0.4,), color=data_colour, edgecolor=data_colour ), medianprops=dict(color=data_colour, linewidth=1.5), flierprops=dict(markeredgecolor=data_colour), whiskerprops=dict(color=data_colour), capprops=dict(color=data_colour), patch_artist=True, showfliers=show_fliers, ) _adjust_spine_placement(axis) axis.set_ylabel(data_type) axis.xaxis.set_ticks(np.arange(1, len(nvecs_formatted) + 1)) ax[0].tick_params(axis="x", colors="white") # hack to get rid of ticks but keep grid if show_freqs: ax[1].tick_params(axis="x", which="both", length=0) # remove ticks without removing labels ax[1].xaxis.set_ticklabels(nvecs_formatted, fontsize=10, color="grey") ax[1].xaxis.set_ticks_position("top") else: ax[1].tick_params(axis="x", colors="white") # hack to get rid of ticks but keep grid return ax def bar(coeffs, n_inputs, ax, colour_dict=None, show_freqs=True): """Plot a set of Fourier coefficients as a bar plot. Args: coeffs (array[complex]): A single set of Fourier coefficients. The dimensions of the coefficient array should be ``(2d + 1, ) * n_inputs`` where ``d`` is the largest frequency. n_inputs (int): The number of input variables in the function. ax (list[matplotlib.axes.Axes]): Axis on which to plot. Must be a pair of axes from a subplot where ``sharex="row"`` and ``sharey="col"``. colour_dict (dict[str, str]): A dictionary of the form ``{"real" : colour_string, "imag" : other_colour_string}`` indicating which colours should be used in the plot. show_freqs (bool): Whether or not to print the frequency labels on the plot axis. Returns: array[matplotlib.axes.Axes]: The axes after plotting is complete. **Example** Suppose we have the following quantum function: .. code-block:: python dev = qml.device('default.qubit', wires=2) @qml.qnode(dev) def circuit_with_weights(w, x): qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) qml.Rot(*w[0], wires=0) qml.Rot(*w[1], wires=1) qml.CNOT(wires=[1, 0]) qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) return qml.expval(qml.PauliZ(0)) We would like to compute and plot a single set of Fourier coefficients. We will choose some values for ``w`` at random: .. code-block:: python from functools import partial n_inputs = 2 degree = 2 weights = np.random.normal(0, 1, size=(2, 3)) coeffs = coefficients(partial(circuit_with_weights, weights), n_inputs, degree) We can now plot by setting up a pair of ``matplotlib`` axes and passing them to the plotting function: >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(2, 1, sharey=True, figsize=(15, 4)) >>> bar(coeffs, n_inputs, ax, colour_dict={"real" : "red", "imag" : "blue"}) .. image:: ../../_static/fourier_vis_bar_plot_2.png :align: center :width: 800px :target: javascript:void(0); """ coeffs = _validate_coefficients(coeffs, n_inputs, False) # Check axis shape if ax.size != 2: raise ValueError("Matplotlib axis should consist of two subplots.") # The axis received must be a pair of axes in a subplot. if colour_dict is None: colour_dict = {"real": "purple", "imag": "green"} # Get the labels and data nvecs_formatted, data = _extract_data_and_labels(np.array([coeffs])) data_len = len(data["real"][0]) for (data_type, axis) in zip(["real", "imag"], ax): axis.bar(np.arange(data_len), data[data_type][0], color=colour_dict[data_type], alpha=0.7) axis.set_ylabel(data_type) axis.xaxis.set_ticks(np.arange(data_len)) _adjust_spine_placement(axis) ax[0].tick_params(axis="x", colors="white") # hack to get rid of ticklabels but keep grid if show_freqs: ax[1].tick_params(axis="x", which="both", length=0) # remove ticks without removing labels ax[1].xaxis.set_ticklabels(nvecs_formatted, fontsize=10, color="grey") ax[1].xaxis.set_ticks_position("top") else: ax[1].tick_params(axis="x", colors="white") # hack to get rid of ticklabels but keep grid return ax def panel(coeffs, n_inputs, ax, colour=None): """Plot a list of sets of coefficients in the complex plane for a 1- or 2-dimensional function. Args: coeffs (list[array[complex]]): A list of sets of Fourier coefficients. The shape of the coefficient arrays must all be either 1- or 2-dimensional, i.e., each array should have shape ``(2d + 1,)`` for the 1-dimensional case, or ``(2d + 1, 2d + 1)`` where ``d`` is the degree, i.e., the maximum frequency of present in the coefficients. Such an array may be the output of the numpy/scipy ``fft``/``fft2`` functions, or :func:`~.pennylane.fourier.coefficients`. n_inputs (int): The number of variables in the function. ax (array[matplotlib.axes._subplots.AxesSubplot]): Axis on which to plot. For 1-dimensional data, length must be the number of frequencies. For 2-dimensional data, must be a grid that matches the dimensions of a single set of coefficients. colour (str): The outline colour of the points on the plot. Returns: array[matplotlib.axes.Axes]: The axes after plotting is complete. **Example** Suppose we have the following quantum function: .. code-block:: python dev = qml.device('default.qubit', wires=2) @qml.qnode(dev) def circuit_with_weights(w, x): qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) qml.Rot(*w[0], wires=0) qml.Rot(*w[1], wires=1) qml.CNOT(wires=[1, 0]) qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) return qml.expval(qml.PauliZ(0)) We would like to compute and plot the distribution of Fourier coefficients for many random values of the weights ``w``. First, we generate all the coefficients: .. code-block:: python from functools import partial coeffs = [] n_inputs = 2 degree = 2 for _ in range(100): weights = np.random.normal(0, 1, size=(2, 3)) c = coefficients(partial(circuit_with_weights, weights), n_inputs, degree) coeffs.append(c) We can now plot by setting up a pair of ``matplotlib`` axes and passing them to the plotting function. The of axes must be large enough to represent all the available coefficients (in this case, since we have 2 variables and use degree 2, we need a 5x5 grid. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(5, 5, figsize=(12, 10), sharex=True, sharey=True) >>> panel(coeffs, n_inputs, ax) .. image:: ../../_static/fourier_vis_panel.png :align: center :width: 800px :target: javascript:void(0); """ if n_inputs in [1, 2]: coeffs = _validate_coefficients(coeffs, n_inputs, True) else: raise ValueError( "Panel plot function accepts input coefficients for only 1- or 2-dimensional functions." ) if ax.shape != coeffs[0].shape: raise ValueError("Shape of subplot axes must match the shape of the coefficient data.") if colour is None: colour = "tab:blue" # This could probably be more efficient. # Plot 1D case if n_inputs == 1: # Range is (0, ..., degree) for rfft, (0, ... degree, -degree, ..., -1) for fft n_freqs = coeffs.shape[1] // 2 + (coeffs.shape[1] % 2) frequency_range = list(range(n_freqs)) + list(range(-n_freqs + 1, 0)) for coeff in range(coeffs.shape[1]): ax[coeff].scatter( coeffs[:, coeff].real, coeffs[:, coeff].imag, facecolor="white", edgecolor=colour ) ax[coeff].set_title(f"{frequency_range[coeff]}", fontsize=14) ax[coeff].grid(True) ax[coeff].set_aspect("equal") # Plot 2D case else: n_freqs = coeffs.shape[1] // 2 + (coeffs.shape[1] % 2) frequency_range = list(range(n_freqs)) + list(range(-n_freqs + 1, 0)) for coeff_1, coeff_2 in product(list(range(coeffs.shape[1])), list(range(coeffs.shape[2]))): ax[coeff_1, coeff_2].scatter( coeffs[:, coeff_1, coeff_2].real, coeffs[:, coeff_1, coeff_2].imag, facecolor="white", edgecolor=colour, ) ax[coeff_1, coeff_2].set_title( f"{frequency_range[coeff_1]}, {frequency_range[coeff_2]}", fontsize=14 ) ax[coeff_1, coeff_2].grid(True) ax[coeff_1, coeff_2].set_aspect("equal") return ax def radial_box(coeffs, n_inputs, ax, show_freqs=True, colour_dict=None, show_fliers=True): """Plot a list of sets of Fourier coefficients on a radial plot as box plots. Produces a 2-panel plot in which the left panel represents the real parts of Fourier coefficients. This method accepts multiple sets of coefficients, and plots the distribution of each coefficient as a boxplot. Args: coeffs (list[array[complex]]): A list of sets of Fourier coefficients. The shape of the coefficient arrays should resemble that of the output of numpy/scipy's ``fftn`` function, or :func:`~.pennylane.fourier.coefficients`. n_inputs (int): Dimension of the transformed function. ax (array[matplotlib.axes.Axes]): Axes to plot on. For this function, subplots must specify ``subplot_kw=dict(polar=True)`` upon construction. show_freqs (bool): Whether or not to label the frequencies on the radial axis. Turn off for large plots. colour_dict (dict[str, str]): Specify a colour mapping for positive and negative real/imaginary components. If none specified, will default to: ``{"real" : "red", "imag" : "black"}`` showfliers (bool): Whether or not to plot outlying "fliers" on the boxplots. merge_plots (bool): Whether to plot real/complex values on the same panel, or on separate panels. Default is to plot real/complex values on separate panels. Returns: array[matplotlib.axes.Axes]: The axes after plotting is complete. **Example** Suppose we have the following quantum function: .. code-block:: python dev = qml.device('default.qubit', wires=2) @qml.qnode(dev) def circuit_with_weights(w, x): qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) qml.Rot(*w[0], wires=0) qml.Rot(*w[1], wires=1) qml.CNOT(wires=[1, 0]) qml.RX(x[0], wires=0) qml.RY(x[1], wires=1) qml.CNOT(wires=[1, 0]) return qml.expval(qml.PauliZ(0)) We would like to compute and plot the distribution of Fourier coefficients for many random values of the weights ``w``. First, we generate all the coefficients: .. code-block:: python from functools import partial coeffs = [] n_inputs = 2 degree = 2 for _ in range(100): weights = np.random.normal(0, 1, size=(2, 3)) c = coefficients(partial(circuit_with_weights, weights), n_inputs, degree) coeffs.append(c) We can now plot by setting up a pair of ``matplotlib`` axes and passing them to the plotting function. Note that the axes passed must use polar coordinates. .. code-block:: python import matplotlib.pyplot as plt fig, ax = plt.subplots( 1, 2, sharex=True, sharey=True, subplot_kw=dict(polar=True), figsize=(15, 8) ) radial_box(coeffs, 2, ax, show_freqs=True, show_fliers=False) .. image:: ../../_static/fourier_vis_radial_box.png :align: center :width: 800px :target: javascript:void(0); """ coeffs = _validate_coefficients(coeffs, n_inputs, True) # Check axis shape if ax.size != 2: raise ValueError("Matplotlib axis should consist of two subplots.") if ax[0].name != "polar" or ax[1].name != "polar": raise ValueError("Matplotlib axes for radial_box must be polar.") if colour_dict is None: colour_dict = {"real": "red", "imag": "black"} # Number, width, and placement of pie slices N = coeffs[0].size angles = np.linspace(0, 2 * np.pi, N, endpoint=False) angles = np.concatenate((angles[-N // 2 + 1 :], angles[: -N // 2 + 1]))[::-1] width = (angles[1] - angles[0]) / 2 # Get the labels and data nvecs_formatted, data = _extract_data_and_labels(coeffs) # Set up the violin plots for data_type, a in zip(["real", "imag"], ax): data_colour = colour_dict[data_type] a.boxplot( data[data_type], positions=angles, widths=width, boxprops=dict( facecolor=to_rgb(data_colour) + (0.4,), color=data_colour, edgecolor=data_colour ), medianprops=dict(color=data_colour, linewidth=1.5), flierprops=dict(markeredgecolor=data_colour), whiskerprops=dict(color=data_colour), capprops=dict(color=data_colour), patch_artist=True, showfliers=show_fliers, ) # Rotate so that the 0 frequency is at the to a.set_thetagrids((180 / np.pi) * angles, labels=nvecs_formatted) a.set_theta_zero_location("N") a.set_rlabel_position(0) # Set and rotate the tickmarks; taken from SO # https://stackoverflow.com/questions/46719340/how-to-rotate-tick-labels-in-polar-matplotlib-plot for a in ax: if show_freqs: for label, angle in zip(a.get_xticklabels(), angles): x, y = label.get_position() lab = a.text( x, y, label.get_text(), transform=label.get_transform(), ha=label.get_ha(), va=label.get_va(), fontsize=14, color="grey", ) if angle > np.pi: lab.set_rotation((180 / np.pi) * angle + 90) else: lab.set_rotation((180 / np.pi) * angle + 270) a.tick_params(pad=7 * n_inputs) a.set_xticklabels([]) return ax
37.033149
104
0.622184
380cf98e5945843fdfa2aa354b3f06c71f8a2460
7,028
py
Python
model/evaluator.py
nikhilrayaprolu/LM-IT-DIL-CNN-CRF
22f3e4d1b766447d1992ccb479dd17ec9e28811d
[ "Apache-2.0" ]
1
2019-10-03T05:59:08.000Z
2019-10-03T05:59:08.000Z
model/evaluator.py
nikhilrayaprolu/LM-IT-DIL-CNN-CRF
22f3e4d1b766447d1992ccb479dd17ec9e28811d
[ "Apache-2.0" ]
null
null
null
model/evaluator.py
nikhilrayaprolu/LM-IT-DIL-CNN-CRF
22f3e4d1b766447d1992ccb479dd17ec9e28811d
[ "Apache-2.0" ]
null
null
null
""" .. module:: evaluator :synopsis: evaluation method (f1 score and accuracy) .. moduleauthor:: Liyuan Liu, Frank Xu """ import torch import numpy as np import itertools import model.utils as utils from torch.autograd import Variable from model.crf import CRFDecode_vb class eval_batch: """Base class for evaluation, provide method to calculate f1 score and accuracy args: packer: provide method to convert target into original space [TODO: need to improve] l_map: dictionary for labels """ def __init__(self, packer, l_map): self.packer = packer self.l_map = l_map self.r_l_map = utils.revlut(l_map) def reset(self): """ re-set all states """ self.correct_labels = 0 self.total_labels = 0 self.gold_count = 0 self.guess_count = 0 self.overlap_count = 0 def calc_f1_batch(self, decoded_data, target_data): """ update statics for f1 score args: decoded_data (batch_size, seq_len): prediction sequence target_data (batch_size, seq_len): ground-truth """ batch_decoded = torch.unbind(decoded_data, 1) batch_targets = torch.unbind(target_data, 0) for decoded, target in zip(batch_decoded, batch_targets): gold = self.packer.convert_for_eval(target) # remove padding length = utils.find_length_from_labels(gold, self.l_map) gold = gold[:length] best_path = decoded[:length] correct_labels_i, total_labels_i, gold_count_i, guess_count_i, overlap_count_i = self.eval_instance(best_path.numpy(), gold.numpy()) self.correct_labels += correct_labels_i self.total_labels += total_labels_i self.gold_count += gold_count_i self.guess_count += guess_count_i self.overlap_count += overlap_count_i def calc_acc_batch(self, decoded_data, target_data): """ update statics for accuracy args: decoded_data (batch_size, seq_len): prediction sequence target_data (batch_size, seq_len): ground-truth """ batch_decoded = torch.unbind(decoded_data, 1) batch_targets = torch.unbind(target_data, 0) for decoded, target in zip(batch_decoded, batch_targets): gold = self.packer.convert_for_eval(target) # remove padding length = utils.find_length_from_labels(gold, self.l_map) gold = gold[:length].numpy() best_path = decoded[:length].numpy() self.total_labels += length self.correct_labels += np.sum(np.equal(best_path, gold)) def f1_score(self): """ calculate f1 score based on statics """ if self.guess_count == 0: return 0.0, 0.0, 0.0, 0.0 precision = self.overlap_count / float(self.guess_count) recall = self.overlap_count / float(self.gold_count) if precision == 0.0 or recall == 0.0: return 0.0, 0.0, 0.0, 0.0 f = 2 * (precision * recall) / (precision + recall) accuracy = float(self.correct_labels) / self.total_labels return f, precision, recall, accuracy def acc_score(self): """ calculate accuracy score based on statics """ if 0 == self.total_labels: return 0.0 accuracy = float(self.correct_labels) / self.total_labels return accuracy def eval_instance(self, best_path, gold): """ update statics for one instance args: best_path (seq_len): predicted gold (seq_len): ground-truth """ total_labels = len(best_path) correct_labels = np.sum(np.equal(best_path, gold)) gold_chunks = utils.iobes_to_spans(gold, self.r_l_map) gold_count = len(gold_chunks) guess_chunks = utils.iobes_to_spans(best_path, self.r_l_map) guess_count = len(guess_chunks) overlap_chunks = gold_chunks & guess_chunks overlap_count = len(overlap_chunks) return correct_labels, total_labels, gold_count, guess_count, overlap_count class eval_w(eval_batch): """evaluation class for word level model (LSTM-CRF) args: packer: provide method to convert target into original space [TODO: need to improve] l_map: dictionary for labels score_type: use f1score with using 'f' """ def __init__(self, packer, l_map, score_type): eval_batch.__init__(self, packer, l_map) self.decoder = CRFDecode_vb(len(l_map), l_map['<start>'], l_map['<pad>']) if 'f' in score_type: self.eval_b = self.calc_f1_batch self.calc_s = self.f1_score else: self.eval_b = self.calc_acc_batch self.calc_s = self.acc_score def calc_score(self, ner_model, dataset_loader): """ calculate score for pre-selected metrics args: ner_model: LSTM-CRF model dataset_loader: loader class for test set """ ner_model.eval() self.reset() for feature, tg, mask in itertools.chain.from_iterable(dataset_loader): fea_v, _, mask_v = self.packer.repack_vb(feature, tg, mask) scores, _ = ner_model(fea_v) decoded = self.decoder.decode(scores.data, mask_v.data) self.eval_b(decoded, tg) return self.calc_s() class eval_wc(eval_batch): """evaluation class for LM-LSTM-CRF args: packer: provide method to convert target into original space [TODO: need to improve] l_map: dictionary for labels score_type: use f1score with using 'f' """ def __init__(self, packer, l_map, score_type): eval_batch.__init__(self, packer, l_map) self.decoder = CRFDecode_vb(len(l_map), l_map['<start>'], l_map['<pad>']) if 'f' in score_type: self.eval_b = self.calc_f1_batch self.calc_s = self.f1_score else: self.eval_b = self.calc_acc_batch self.calc_s = self.acc_score def calc_score(self, ner_model, dataset_loader): """ calculate score for pre-selected metrics args: ner_model: LM-LSTM-CRF model dataset_loader: loader class for test set """ ner_model.eval() self.reset() for f_f, f_p, b_f, b_p, w_f, tg, mask_v, len_v in itertools.chain.from_iterable(dataset_loader): f_f, f_p, b_f, b_p, w_f, _, mask_v = self.packer.repack_vb(f_f, f_p, b_f, b_p, w_f, tg, mask_v, len_v) scores = ner_model(f_f, f_p, b_f, b_p, w_f) score = scores[-1] #print(score.data.size(), mask_v.data.size()) decoded = self.decoder.decode(score.data, mask_v.data) self.eval_b(decoded, tg) return self.calc_s()
32.688372
144
0.609704
79040c03d6dad6d08291960465ba46fab0ba9ac7
1,634
py
Python
venv/lib/python3.8/site-packages/vsts/build/v4_1/models/source_provider_attributes.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/vsts/build/v4_1/models/source_provider_attributes.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/vsts/build/v4_1/models/source_provider_attributes.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class SourceProviderAttributes(Model): """SourceProviderAttributes. :param name: The name of the source provider. :type name: str :param supported_capabilities: The capabilities supported by this source provider. :type supported_capabilities: dict :param supported_triggers: The types of triggers supported by this source provider. :type supported_triggers: list of :class:`SupportedTrigger <build.v4_1.models.SupportedTrigger>` """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'supported_capabilities': {'key': 'supportedCapabilities', 'type': '{bool}'}, 'supported_triggers': {'key': 'supportedTriggers', 'type': '[SupportedTrigger]'} } def __init__(self, name=None, supported_capabilities=None, supported_triggers=None): super(SourceProviderAttributes, self).__init__() self.name = name self.supported_capabilities = supported_capabilities self.supported_triggers = supported_triggers
48.058824
101
0.585679
40d0ce524357f045f6a05a4e8be18aa8d31a632f
3,566
py
Python
rl_algorithms/per/ddpg_agent.py
MrSyee/rl_algorithms
5b5276982032f8a8a614b9466849b7b3ef245b3e
[ "MIT" ]
1
2020-05-18T04:53:07.000Z
2020-05-18T04:53:07.000Z
rl_algorithms/per/ddpg_agent.py
minseop4898/rl_algorithms
d56ea25a294e850f433b1120faebea3a0bfe0c54
[ "MIT" ]
2
2020-03-25T08:22:17.000Z
2020-03-26T06:02:05.000Z
rl_algorithms/per/ddpg_agent.py
MrSyee/rl_algorithms
5b5276982032f8a8a614b9466849b7b3ef245b3e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """DDPG agent with PER for episodic tasks in OpenAI Gym. - Author: Kh Kim - Contact: kh.kim@medipixel.io - Paper: https://arxiv.org/pdf/1509.02971.pdf https://arxiv.org/pdf/1511.05952.pdf """ from typing import Tuple import torch import torch.nn as nn from rl_algorithms.common.buffer.priortized_replay_buffer import PrioritizedReplayBuffer import rl_algorithms.common.helper_functions as common_utils from rl_algorithms.ddpg.agent import DDPGAgent from rl_algorithms.registry import AGENTS device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") @AGENTS.register_module class PERDDPGAgent(DDPGAgent): """ActorCritic interacting with environment. Attributes: memory (PrioritizedReplayBuffer): replay memory per_beta (float): beta parameter for prioritized replay buffer """ # pylint: disable=attribute-defined-outside-init def _initialize(self): """Initialize non-common things.""" self.per_beta = self.hyper_params.per_beta if not self.args.test: # replay memory self.memory = PrioritizedReplayBuffer( self.hyper_params.buffer_size, self.hyper_params.batch_size, alpha=self.hyper_params.per_alpha, ) def update_model(self) -> Tuple[torch.Tensor, ...]: """Train the model after each episode.""" experiences = self.memory.sample(self.per_beta) states, actions, rewards, next_states, dones, weights, indices, _ = experiences # G_t = r + gamma * v(s_{t+1}) if state != Terminal # = r otherwise masks = 1 - dones next_actions = self.actor_target(next_states) next_values = self.critic_target(torch.cat((next_states, next_actions), dim=-1)) curr_returns = rewards + self.hyper_params.gamma * next_values * masks curr_returns = curr_returns.to(device).detach() # train critic gradient_clip_ac = self.hyper_params.gradient_clip_ac gradient_clip_cr = self.hyper_params.gradient_clip_cr values = self.critic(torch.cat((states, actions), dim=-1)) critic_loss_element_wise = (values - curr_returns).pow(2) critic_loss = torch.mean(critic_loss_element_wise * weights) self.critic_optim.zero_grad() critic_loss.backward() nn.utils.clip_grad_norm_(self.critic.parameters(), gradient_clip_cr) self.critic_optim.step() # train actor actions = self.actor(states) actor_loss_element_wise = -self.critic(torch.cat((states, actions), dim=-1)) actor_loss = torch.mean(actor_loss_element_wise * weights) self.actor_optim.zero_grad() actor_loss.backward() nn.utils.clip_grad_norm_(self.actor.parameters(), gradient_clip_ac) self.actor_optim.step() # update target networks common_utils.soft_update(self.actor, self.actor_target, self.hyper_params.tau) common_utils.soft_update(self.critic, self.critic_target, self.hyper_params.tau) # update priorities in PER new_priorities = critic_loss_element_wise new_priorities = new_priorities.data.cpu().numpy() + self.hyper_params.per_eps self.memory.update_priorities(indices, new_priorities) # increase beta fraction = min(float(self.i_episode) / self.args.episode_num, 1.0) self.per_beta = self.per_beta + fraction * (1.0 - self.per_beta) return actor_loss.item(), critic_loss.item()
37.93617
88
0.678351
2930ecbeb8b33c7c9df98a1314c28955891daff2
1,035
py
Python
TextMessage.py
Vaishnavy080/Email-and-Text-Messages-Scheduler
98fa0a50a34c2bed1fa3b84112e9a2bf668ade82
[ "Apache-2.0" ]
null
null
null
TextMessage.py
Vaishnavy080/Email-and-Text-Messages-Scheduler
98fa0a50a34c2bed1fa3b84112e9a2bf668ade82
[ "Apache-2.0" ]
null
null
null
TextMessage.py
Vaishnavy080/Email-and-Text-Messages-Scheduler
98fa0a50a34c2bed1fa3b84112e9a2bf668ade82
[ "Apache-2.0" ]
null
null
null
import requests import json API_ENDPOINT = "https://api.sms-magic.com/v1/sms/send" msg_delivery_status_url = 'https://api.sms-magic.com/v1/sms/status' API_KEY = "54b197ee146649517b9e5b47172cd1ee" # data to be sent to api def send_sms_get(number,msg): headers = {'apiKey': API_KEY} send_sms_data = {'mobile_number': number, 'sms_text': msg, 'sender_id': 'testSenderIDSMSMagic'} response_get = requests.request("GET", API_ENDPOINT, headers=headers, params=send_sms_data) return response_get def send_sms_post(number,body): payload = {'mobile_number': number, 'sms_text' : body, 'sender_id' : 'testSenderIDSMSMagic'} headers3 = {'apiKey': API_KEY, 'content-type': "application/x-www-form-urlencoded", } response_post = requests.request("POST", API_ENDPOINT, data=payload, headers=headers3) res = json.loads(response_post.text) get_id = res["id"] return get_id
34.5
96
0.635749
0da6f7177a88e40f44a66a3573c87d916a3a75de
5,500
py
Python
configs/shareresnet/faster_rcnn_r50_fpn_1x_shareresnet_7s.py
ziming-liu/ObjectDet
6e25fa784114b9773b052d9d5465aa6fed93468a
[ "Apache-2.0" ]
null
null
null
configs/shareresnet/faster_rcnn_r50_fpn_1x_shareresnet_7s.py
ziming-liu/ObjectDet
6e25fa784114b9773b052d9d5465aa6fed93468a
[ "Apache-2.0" ]
null
null
null
configs/shareresnet/faster_rcnn_r50_fpn_1x_shareresnet_7s.py
ziming-liu/ObjectDet
6e25fa784114b9773b052d9d5465aa6fed93468a
[ "Apache-2.0" ]
null
null
null
# model settings model = dict( type='FasterRCNN', pretrained='modelzoo://resnet50', backbone=dict( type='shareResNet', depth=50, num_stages=7, num_branch = 4, strides=(1, 2, 2, 2,2 ,2,2), dilations=(1, 1, 1, 1,1,1,1), out_indices=(0, 1, 2, 3,4,5,6), stage_with_dcn=(False, False, False, False,False, False, False), gcb=None, stage_with_gcb=(False, False, False, False,False, False, False), gen_attention=None, stage_with_gen_attention=((), (), (), (),(), (), ()), frozen_stages=1, style='pytorch', with_cp=True), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048, 2048, 2048, 2048], out_channels=256, keep=0, num_outs=7), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.5, 1.0, 2.0], anchor_strides=[4, 8, 16, 32, 64,128,256], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32,]), bbox_head=dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=81, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0), #loss_adv=dict(type='AdversarialLoss', ), with_adv=True, )) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05) ) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) data = dict( imgs_per_gpu=4, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32*4, flip_ratio=0.5, with_mask=False, with_crowd=True, with_label=True), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32*4, flip_ratio=0, with_mask=False, with_crowd=True, with_label=True), test=dict( type=dataset_type, ann_file=data_root + 'annotations/image_info_test-dev2017.json', img_prefix=data_root + 'test2017/', img_scale=(1333, 800), img_norm_cfg=img_norm_cfg, size_divisor=32*4, flip_ratio=0, with_mask=False, with_label=False, test_mode=True)) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[7,11]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=10, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/faster_rcnn_r50_fpn_1x_shareresnet_7s' load_from = None resume_from = None #'./work_dirs/faster_rcnn_r50_fpn_1x_shareresnet/epoch_5.pth' workflow = [('train', 1)]
30.726257
80
0.588727
5397677a22ba9fcc95ec2af2332d48402ca329d1
7,231
py
Python
vision/object_detection/core/batcher_test.py
TeamAutonomousCarOffenburg/TACO_2018
ebb63e466578fc3911269d4a714ebff0a516dbf6
[ "BSD-3-Clause" ]
1
2019-09-11T23:06:25.000Z
2019-09-11T23:06:25.000Z
vision/object_detection/core/batcher_test.py
TeamAutonomousCarOffenburg/TACO_2018
ebb63e466578fc3911269d4a714ebff0a516dbf6
[ "BSD-3-Clause" ]
null
null
null
vision/object_detection/core/batcher_test.py
TeamAutonomousCarOffenburg/TACO_2018
ebb63e466578fc3911269d4a714ebff0a516dbf6
[ "BSD-3-Clause" ]
1
2019-04-08T09:52:24.000Z
2019-04-08T09:52:24.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.core.batcher.""" import numpy as np import tensorflow as tf from object_detection.core import batcher slim = tf.contrib.slim class BatcherTest(tf.test.TestCase): def test_batch_and_unpad_2d_tensors_of_different_sizes_in_1st_dimension( self): with self.test_session() as sess: batch_size = 3 num_batches = 2 examples = tf.Variable(tf.constant(2, dtype=tf.int32)) counter = examples.count_up_to(num_batches * batch_size + 2) boxes = tf.tile( tf.reshape(tf.range(4), [1, 4]), tf.stack([counter, tf.constant(1)])) batch_queue = batcher.BatchQueue( tensor_dict={'boxes': boxes}, batch_size=batch_size, batch_queue_capacity=100, num_batch_queue_threads=1, prefetch_queue_capacity=100) batch = batch_queue.dequeue() for tensor_dict in batch: for tensor in tensor_dict.values(): self.assertAllEqual([None, 4], tensor.get_shape().as_list()) tf.initialize_all_variables().run() with slim.queues.QueueRunners(sess): i = 2 for _ in range(num_batches): batch_np = sess.run(batch) for tensor_dict in batch_np: for tensor in tensor_dict.values(): self.assertAllEqual(tensor, np.tile(np.arange(4), (i, 1))) i += 1 with self.assertRaises(tf.errors.OutOfRangeError): sess.run(batch) def test_batch_and_unpad_2d_tensors_of_different_sizes_in_all_dimensions( self): with self.test_session() as sess: batch_size = 3 num_batches = 2 examples = tf.Variable(tf.constant(2, dtype=tf.int32)) counter = examples.count_up_to(num_batches * batch_size + 2) image = tf.reshape( tf.range(counter * counter), tf.stack([counter, counter])) batch_queue = batcher.BatchQueue( tensor_dict={'image': image}, batch_size=batch_size, batch_queue_capacity=100, num_batch_queue_threads=1, prefetch_queue_capacity=100) batch = batch_queue.dequeue() for tensor_dict in batch: for tensor in tensor_dict.values(): self.assertAllEqual([None, None], tensor.get_shape().as_list()) tf.initialize_all_variables().run() with slim.queues.QueueRunners(sess): i = 2 for _ in range(num_batches): batch_np = sess.run(batch) for tensor_dict in batch_np: for tensor in tensor_dict.values(): self.assertAllEqual(tensor, np.arange(i * i).reshape((i, i))) i += 1 with self.assertRaises(tf.errors.OutOfRangeError): sess.run(batch) def test_batch_and_unpad_2d_tensors_of_same_size_in_all_dimensions(self): with self.test_session() as sess: batch_size = 3 num_batches = 2 examples = tf.Variable(tf.constant(1, dtype=tf.int32)) counter = examples.count_up_to(num_batches * batch_size + 1) image = tf.reshape(tf.range(1, 13), [4, 3]) * counter batch_queue = batcher.BatchQueue( tensor_dict={'image': image}, batch_size=batch_size, batch_queue_capacity=100, num_batch_queue_threads=1, prefetch_queue_capacity=100) batch = batch_queue.dequeue() for tensor_dict in batch: for tensor in tensor_dict.values(): self.assertAllEqual([4, 3], tensor.get_shape().as_list()) tf.initialize_all_variables().run() with slim.queues.QueueRunners(sess): i = 1 for _ in range(num_batches): batch_np = sess.run(batch) for tensor_dict in batch_np: for tensor in tensor_dict.values(): self.assertAllEqual(tensor, np.arange(1, 13).reshape( (4, 3)) * i) i += 1 with self.assertRaises(tf.errors.OutOfRangeError): sess.run(batch) def test_batcher_when_batch_size_is_one(self): with self.test_session() as sess: batch_size = 1 num_batches = 2 examples = tf.Variable(tf.constant(2, dtype=tf.int32)) counter = examples.count_up_to(num_batches * batch_size + 2) image = tf.reshape( tf.range(counter * counter), tf.stack([counter, counter])) batch_queue = batcher.BatchQueue( tensor_dict={'image': image}, batch_size=batch_size, batch_queue_capacity=100, num_batch_queue_threads=1, prefetch_queue_capacity=100) batch = batch_queue.dequeue() for tensor_dict in batch: for tensor in tensor_dict.values(): self.assertAllEqual([None, None], tensor.get_shape().as_list()) tf.initialize_all_variables().run() with slim.queues.QueueRunners(sess): i = 2 for _ in range(num_batches): batch_np = sess.run(batch) for tensor_dict in batch_np: for tensor in tensor_dict.values(): self.assertAllEqual(tensor, np.arange(i * i).reshape((i, i))) i += 1 with self.assertRaises(tf.errors.OutOfRangeError): sess.run(batch) if __name__ == '__main__': tf.test.main()
42.786982
80
0.514313
d651685d324465ead219c6ddfb3033bdc8f60b00
8,159
py
Python
{{cookiecutter.project_name}}/manager/cli.py
pratik-shivarkar/fastapi-boilerplate
5885e538b391ff8e4b5d53d966f5cfa16acb39fc
[ "MIT" ]
1
2021-09-21T17:54:17.000Z
2021-09-21T17:54:17.000Z
{{cookiecutter.project_name}}/manager/cli.py
pratik-shivarkar/fastapi-cookiecutter
5885e538b391ff8e4b5d53d966f5cfa16acb39fc
[ "MIT" ]
null
null
null
{{cookiecutter.project_name}}/manager/cli.py
pratik-shivarkar/fastapi-cookiecutter
5885e538b391ff8e4b5d53d966f5cfa16acb39fc
[ "MIT" ]
null
null
null
import os import sys import click from datetime import date from urllib.parse import urlparse from sqlalchemy.orm import Session from hypercorn.asyncio import serve from hypercorn.config import Config from sqlalchemy import create_engine, sql from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) from app.config import logger from models import UserBase from models.user import User, Role, Permission, Resource, Policy # Platform specific imports try: import uvloop except ImportError: import asyncio else: import asyncio # TODO: Change commit code to "commit as you go" style. # Ref: https://docs.sqlalchemy.org/en/14/tutorial/dbapi_transactions.html#committing-changes class RootOptions(object): def __init__(self, production: bool): self.production: bool = production @click.group() @click.option("--production/--no-production", default=False) @click.pass_context def cli(ctx, production): click.echo("Production mode is %s" % ('on' if production else 'off')) if production: os.environ["PRODUCTION"] = "1" else: os.environ["PRODUCTION"] = "0" if not os.getenv("AUTH_MODE") or os.getenv("AUTH_MODE") != "native": click.secho("WARNING! SERVER RUNNING WITHOUT NATIVE SECURITY, ENSURE PRIVATE DEPLOYMENT BEHIND API GATEWAY", fg="yellow") ctx.obj = RootOptions(production) @cli.command() @click.argument("connection_uri", envvar="MASTER_DB_URI") @click.argument("db_password", envvar="DB_PASSWORD") @click.pass_obj def init(options, connection_uri, db_password): click.echo("Initializing database ...") try: engine = create_engine(connection_uri, future=True) conn = engine.connect() conn.execute(sql.text("commit")) conn.execute(sql.text("CREATE DATABASE {{cookiecutter.project_name}}")) conn.close() except Exception as e: click.secho("Failed to create database ...", fg="red") click.echo(e) else: click.secho("Database created successfully ...", fg="green") try: engine = create_engine(connection_uri, future=True) conn = engine.connect() conn.execute(sql.text("commit")) create_user_query = sql.text( "CREATE USER {{cookiecutter.project_name}} WITH PASSWORD :password;" ) conn.execute(create_user_query, {"password": db_password}) conn.close() except Exception as e: click.secho("Failed to create user ...", fg="red") click.echo(e) else: click.secho("User '{{cookiecutter.project_name}}' created successfully ...", fg="green") try: parsed_uri = urlparse(connection_uri) parsed_uri = parsed_uri._replace(path="/{{cookiecutter.project_name}}").geturl() engine = create_engine(parsed_uri, future=True) conn = engine.connect() conn.execute(sql.text("commit")) conn.execute(sql.text("GRANT CONNECT ON DATABASE {{cookiecutter.project_name}} TO {{cookiecutter.project_name}};")) conn.execute(sql.text("GRANT USAGE ON SCHEMA public TO {{cookiecutter.project_name}};")) conn.execute(sql.text(""" GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO {{cookiecutter.project_name}}; GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA public TO {{cookiecutter.project_name}}; """)) conn.execute(sql.text(""" ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT ALL ON TABLES TO {{cookiecutter.project_name}}; ALTER DEFAULT PRIVILEGES IN SCHEMA public GRANT ALL ON SEQUENCES TO {{cookiecutter.project_name}}; """)) conn.close() except Exception as e: click.secho("Failed to assign db privileges ...", fg="red") click.echo(e) else: click.secho("User '{{cookiecutter.project_name}}' given priviledges successfully ...", fg="green") try: parsed_uri = urlparse(connection_uri) parsed_uri = parsed_uri._replace(path="/{{cookiecutter.project_name}}").geturl() engine = create_engine(parsed_uri, future=True) UserBase.metadata.create_all(engine) except Exception as e: click.secho("Failed to implement database models ...", fg="red") click.echo(e) else: click.secho("Database models initialized successfully ...", fg="green") if not options.production: try: parsed_uri = urlparse(connection_uri) parsed_uri = parsed_uri._replace(path="/{{cookiecutter.project_name}}").geturl() engine = create_engine(parsed_uri, future=True) session = Session(engine) admin_role = Role(title='Admin') session.add(admin_role) session.commit() session.refresh(admin_role) resource_all = Resource(name='*') session.add(resource_all) session.commit() session.refresh(resource_all) admin_permission = Permission(action='*', resource_id=resource_all.id) session.add(admin_permission) session.commit() session.refresh(admin_permission) admin_policy = Policy(name='Admin', permission_id=admin_permission.id, role_id=admin_role.id) session.add(admin_policy) session.commit() session.refresh(admin_policy) admin_user = User( first_name='Pratik', last_name='Shivarkar', username='pratik.shivarkar', phone_number='+19999999998', email='pratik@shivarkar.org', role_id=admin_role.id, dob=date(1989, 1, 1) ) admin_user.set_password("reset123") session.add(admin_user) session.commit() session.refresh(admin_user) except Exception as e: click.secho("Failed to insert development data ...", fg="red") click.echo(e) else: click.secho("Development data added ...", fg="green") @cli.command() @click.pass_obj def test(options): click.echo("Running tests ...") @cli.command() @click.argument("connection_uri", envvar="DB_URI") @click.pass_obj def run(options, connection_uri): from app.main import app click.secho("Checking configuration ...", fg="yellow") try: urlparse(connection_uri)._replace(path="/{{cookiecutter.project_name}}").geturl() assert (hasattr(options, 'production')) except Exception as e: click.echo(e) click.secho("Failed to validate database URI and password", fg="red") click.secho("Starting server ...", fg="yellow") config = Config() config.bind = ["0.0.0.0:8080"] config.errorlog = logger config.accesslog = logger if options.production: config.loglevel = "DEBUG" else: config.loglevel = "INFO" if 'uvloop' in sys.modules: asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete(serve(app, config)) else: asyncio.run(serve(app, config)) @cli.command() @click.argument("connection_uri", envvar="MASTER_DB_URI") @click.pass_obj def clean(options, connection_uri): click.secho("CLEAR ALL DATA AND DATABASES ...", fg="red") if click.confirm("Do you want to continue?"): click.echo("This will clear all data") try: engine = create_engine(connection_uri, future=True) conn = engine.connect() conn.execute(sql.text("commit")) conn.execute(sql.text("DROP DATABASE IF EXISTS {{cookiecutter.project_name}}")) conn.execute(sql.text("DROP USER IF EXISTS {{cookiecutter.project_name}}")) conn.close() except Exception as e: click.secho("Failed to clean all data ...", fg="red") click.echo(e) else: click.secho("All data and databases are removed ...", fg="green") click.echo("Run `{{cookiecutter.project_name}} init` to initialize database again.")
35.942731
123
0.638926
5f3a12799004ca1cd8f29cf251fbd12ac6f307fa
50,519
py
Python
rmgpy/test_data/testing_database/kinetics/libraries/GRI-Mech3.0/reactions.py
keceli/RMG-Py
17c7870195a4feb6e8bf8974292f9bcdca1a1d9d
[ "MIT" ]
7
2017-10-04T16:04:14.000Z
2021-03-27T21:54:41.000Z
rmgpy/test_data/testing_database/kinetics/libraries/GRI-Mech3.0/reactions.py
speth/RMG-Py
1d2c2b684580396e984459d9347628a5ceb80e2e
[ "MIT" ]
72
2016-06-06T18:18:49.000Z
2019-11-17T03:21:10.000Z
rmgpy/test_data/testing_database/kinetics/libraries/GRI-Mech3.0/reactions.py
speth/RMG-Py
1d2c2b684580396e984459d9347628a5ceb80e2e
[ "MIT" ]
6
2017-10-04T15:37:05.000Z
2021-12-29T06:50:16.000Z
#!/usr/bin/env python # encoding: utf-8 name = "GRI-Mech3.0" shortDesc = u"Natural Gas Combustion Mechanism (without NOx chemistry)" longDesc = u""" The thermodynamic and kinetic parameters in the GRI-Mech 3.0 mechanism have been collectively estimated from literature search and then optimized to a set of representative experimental targets. For this reason you should generally use GRI-Mech in its entirety, and generally should not tweak any of its parameter values. GRI-Mech is the result of collaborative research of the Gas Research Institute and carried out at The University of California at Berkeley, Stanford University, The University of Texas at Austin, and SRI International. http://combustion.berkeley.edu/gri-mech/ """ entry( index = 1, label = "O + H2 <=> H + OH", degeneracy = 1, kinetics = Arrhenius(A=(38700, 'cm^3/(mol*s)'), n=2.7, Ea=(6260, 'cal/mol'), T0=(1, 'K')), ) entry( index = 2, label = "O + HO2 <=> OH + O2", degeneracy = 1, kinetics = Arrhenius(A=(2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 3, label = "O + H2O2 <=> OH + HO2", degeneracy = 1, kinetics = Arrhenius(A=(9.63e+06, 'cm^3/(mol*s)'), n=2, Ea=(4000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 4, label = "O + CH <=> H + CO", degeneracy = 1, kinetics = Arrhenius(A=(5.7e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 5, label = "O + CH2 <=> H + HCO", degeneracy = 1, kinetics = Arrhenius(A=(8e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 6, label = "O + CH2(S) <=> H2 + CO", degeneracy = 1, kinetics = Arrhenius(A=(1.5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 7, label = "O + CH2(S) <=> H + HCO", degeneracy = 1, kinetics = Arrhenius(A=(1.5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 8, label = "O + CH3 <=> H + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(5.06e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 9, label = "O + CH4 <=> OH + CH3", degeneracy = 1, kinetics = Arrhenius( A = (1.02e+09, 'cm^3/(mol*s)'), n = 1.5, Ea = (8600, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 10, label = "O + HCO <=> OH + CO", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 11, label = "O + HCO <=> H + CO2", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 12, label = "O + CH2O <=> OH + HCO", degeneracy = 1, kinetics = Arrhenius(A=(3.9e+13, 'cm^3/(mol*s)'), n=0, Ea=(3540, 'cal/mol'), T0=(1, 'K')), ) entry( index = 13, label = "O + CH2OH <=> OH + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(1e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 14, label = "O + CH3O <=> OH + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(1e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 15, label = "O + CH3OH <=> OH + CH2OH", degeneracy = 1, kinetics = Arrhenius(A=(388000, 'cm^3/(mol*s)'), n=2.5, Ea=(3100, 'cal/mol'), T0=(1, 'K')), ) entry( index = 16, label = "O + CH3OH <=> OH + CH3O", degeneracy = 1, kinetics = Arrhenius(A=(130000, 'cm^3/(mol*s)'), n=2.5, Ea=(5000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 17, label = "O + C2H <=> CH + CO", degeneracy = 1, kinetics = Arrhenius(A=(5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 18, label = "O + C2H2 <=> H + HCCO", degeneracy = 1, kinetics = Arrhenius(A=(1.35e+07, 'cm^3/(mol*s)'), n=2, Ea=(1900, 'cal/mol'), T0=(1, 'K')), ) entry( index = 19, label = "O + C2H2 <=> OH + C2H", degeneracy = 1, kinetics = Arrhenius( A = (4.6e+19, 'cm^3/(mol*s)'), n = -1.41, Ea = (28950, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 20, label = "O + C2H2 <=> CO + CH2", degeneracy = 1, kinetics = Arrhenius(A=(6.94e+06, 'cm^3/(mol*s)'), n=2, Ea=(1900, 'cal/mol'), T0=(1, 'K')), ) entry( index = 21, label = "O + C2H3 <=> H + CH2CO", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 22, label = "O + C2H4 <=> CH3 + HCO", degeneracy = 1, kinetics = Arrhenius( A = (1.25e+07, 'cm^3/(mol*s)'), n = 1.83, Ea = (220, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 23, label = "O + C2H5 <=> CH3 + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(2.24e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 24, label = "O + C2H6 <=> OH + C2H5", degeneracy = 1, kinetics = Arrhenius( A = (8.98e+07, 'cm^3/(mol*s)'), n = 1.92, Ea = (5690, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 25, label = "O + HCCO <=> H + CO + CO", degeneracy = 1, kinetics = Arrhenius(A=(1e+14, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 26, label = "O + CH2CO <=> OH + HCCO", degeneracy = 1, kinetics = Arrhenius(A=(1e+13, 'cm^3/(mol*s)'), n=0, Ea=(8000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 27, label = "O + CH2CO <=> CH2 + CO2", degeneracy = 1, kinetics = Arrhenius(A=(1.75e+12, 'cm^3/(mol*s)'), n=0, Ea=(1350, 'cal/mol'), T0=(1, 'K')), ) entry( index = 28, label = "O2 + CO <=> O + CO2", degeneracy = 1, kinetics = Arrhenius(A=(2.5e+12, 'cm^3/(mol*s)'), n=0, Ea=(47800, 'cal/mol'), T0=(1, 'K')), ) entry( index = 29, label = "O2 + CH2O <=> HO2 + HCO", degeneracy = 1, kinetics = Arrhenius(A=(1e+14, 'cm^3/(mol*s)'), n=0, Ea=(40000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 30, label = "H + O2 + O2 <=> HO2 + O2", degeneracy = 1, kinetics = Arrhenius( A = (2.08e+19, 'cm^6/(mol^2*s)'), n = -1.24, Ea = (0, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 31, label = "H + O2 + H2O <=> HO2 + H2O", degeneracy = 1, kinetics = Arrhenius( A = (1.126e+19, 'cm^6/(mol^2*s)'), n = -0.76, Ea = (0, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 32, label = "H + O2 <=> O + OH", degeneracy = 1, kinetics = Arrhenius( A = (2.65e+16, 'cm^3/(mol*s)'), n = -0.6707, Ea = (17041, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 33, label = "H + H + H2 <=> H2 + H2", degeneracy = 1, kinetics = Arrhenius(A=(9e+16, 'cm^6/(mol^2*s)'), n=-0.6, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 34, label = "H + H + H2O <=> H2 + H2O", degeneracy = 1, kinetics = Arrhenius(A=(6e+19, 'cm^6/(mol^2*s)'), n=-1.25, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 35, label = "H + H + CO2 <=> H2 + CO2", degeneracy = 1, kinetics = Arrhenius(A=(5.5e+20, 'cm^6/(mol^2*s)'), n=-2, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 36, label = "H + HO2 <=> O + H2O", degeneracy = 1, kinetics = Arrhenius(A=(3.97e+12, 'cm^3/(mol*s)'), n=0, Ea=(671, 'cal/mol'), T0=(1, 'K')), ) entry( index = 37, label = "H + HO2 <=> O2 + H2", degeneracy = 1, kinetics = Arrhenius(A=(4.48e+13, 'cm^3/(mol*s)'), n=0, Ea=(1068, 'cal/mol'), T0=(1, 'K')), ) entry( index = 38, label = "H + HO2 <=> OH + OH", degeneracy = 1, kinetics = Arrhenius(A=(8.4e+13, 'cm^3/(mol*s)'), n=0, Ea=(635, 'cal/mol'), T0=(1, 'K')), ) entry( index = 39, label = "H + H2O2 <=> HO2 + H2", degeneracy = 1, kinetics = Arrhenius(A=(1.21e+07, 'cm^3/(mol*s)'), n=2, Ea=(5200, 'cal/mol'), T0=(1, 'K')), ) entry( index = 40, label = "H + H2O2 <=> OH + H2O", degeneracy = 1, kinetics = Arrhenius(A=(1e+13, 'cm^3/(mol*s)'), n=0, Ea=(3600, 'cal/mol'), T0=(1, 'K')), ) entry( index = 41, label = "H + CH <=> C + H2", degeneracy = 1, kinetics = Arrhenius(A=(1.65e+14, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 42, label = "H + CH2(S) <=> CH + H2", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 43, label = "H + CH4 <=> CH3 + H2", degeneracy = 1, kinetics = Arrhenius( A = (6.6e+08, 'cm^3/(mol*s)'), n = 1.62, Ea = (10840, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 44, label = "H + HCO <=> H2 + CO", degeneracy = 1, kinetics = Arrhenius(A=(7.34e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 45, label = "H + CH2O <=> HCO + H2", degeneracy = 1, kinetics = Arrhenius( A = (5.74e+07, 'cm^3/(mol*s)'), n = 1.9, Ea = (2742, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 46, label = "H + CH2OH <=> H2 + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 47, label = "H + CH2OH <=> OH + CH3", degeneracy = 1, kinetics = Arrhenius( A = (1.65e+11, 'cm^3/(mol*s)'), n = 0.65, Ea = (-284, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 48, label = "H + CH2OH <=> CH2(S) + H2O", degeneracy = 1, kinetics = Arrhenius( A = (3.28e+13, 'cm^3/(mol*s)'), n = -0.09, Ea = (610, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 49, label = "H + CH3O <=> H + CH2OH", degeneracy = 1, kinetics = Arrhenius( A = (4.15e+07, 'cm^3/(mol*s)'), n = 1.63, Ea = (1924, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 50, label = "H + CH3O <=> H2 + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 51, label = "H + CH3O <=> OH + CH3", degeneracy = 1, kinetics = Arrhenius(A=(1.5e+12, 'cm^3/(mol*s)'), n=0.5, Ea=(-110, 'cal/mol'), T0=(1, 'K')), ) entry( index = 52, label = "H + CH3O <=> CH2(S) + H2O", degeneracy = 1, kinetics = Arrhenius( A = (2.62e+14, 'cm^3/(mol*s)'), n = -0.23, Ea = (1070, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 53, label = "H + CH3OH <=> CH2OH + H2", degeneracy = 1, kinetics = Arrhenius(A=(1.7e+07, 'cm^3/(mol*s)'), n=2.1, Ea=(4870, 'cal/mol'), T0=(1, 'K')), ) entry( index = 54, label = "H + CH3OH <=> CH3O + H2", degeneracy = 1, kinetics = Arrhenius(A=(4.2e+06, 'cm^3/(mol*s)'), n=2.1, Ea=(4870, 'cal/mol'), T0=(1, 'K')), ) entry( index = 55, label = "H + C2H3 <=> H2 + C2H2", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 56, label = "H + C2H4 <=> C2H3 + H2", degeneracy = 1, kinetics = Arrhenius( A = (1.325e+06, 'cm^3/(mol*s)'), n = 2.53, Ea = (12240, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 57, label = "H + C2H5 <=> H2 + C2H4", degeneracy = 1, kinetics = Arrhenius(A=(2e+12, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 58, label = "H + C2H6 <=> C2H5 + H2", degeneracy = 1, kinetics = Arrhenius( A = (1.15e+08, 'cm^3/(mol*s)'), n = 1.9, Ea = (7530, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 59, label = "H + HCCO <=> CH2(S) + CO", degeneracy = 1, kinetics = Arrhenius(A=(1e+14, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 60, label = "H + CH2CO <=> HCCO + H2", degeneracy = 1, kinetics = Arrhenius(A=(5e+13, 'cm^3/(mol*s)'), n=0, Ea=(8000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 61, label = "H + CH2CO <=> CH3 + CO", degeneracy = 1, kinetics = Arrhenius(A=(1.13e+13, 'cm^3/(mol*s)'), n=0, Ea=(3428, 'cal/mol'), T0=(1, 'K')), ) entry( index = 62, label = "H + HCCOH <=> H + CH2CO", degeneracy = 1, kinetics = Arrhenius(A=(1e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 63, label = "OH + H2 <=> H + H2O", degeneracy = 1, kinetics = Arrhenius( A = (2.16e+08, 'cm^3/(mol*s)'), n = 1.51, Ea = (3430, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 64, label = "OH + OH <=> O + H2O", degeneracy = 1, kinetics = Arrhenius(A=(35700, 'cm^3/(mol*s)'), n=2.4, Ea=(-2110, 'cal/mol'), T0=(1, 'K')), ) entry( index = 65, label = "OH + HO2 <=> O2 + H2O", degeneracy = 1, duplicate = True, kinetics = MultiArrhenius( arrhenius = [ Arrhenius(A=(1.45e+13, 'cm^3/(mol*s)'), n=0, Ea=(-500, 'cal/mol'), T0=(1, 'K')), Arrhenius(A=(5e+15, 'cm^3/(mol*s)'), n=0, Ea=(17330, 'cal/mol'), T0=(1, 'K')), ], ), ) entry( index = 66, label = "OH + H2O2 <=> HO2 + H2O", degeneracy = 1, duplicate = True, kinetics = MultiArrhenius( arrhenius = [ Arrhenius(A=(2e+12, 'cm^3/(mol*s)'), n=0, Ea=(427, 'cal/mol'), T0=(1, 'K')), Arrhenius(A=(1.7e+18, 'cm^3/(mol*s)'), n=0, Ea=(29410, 'cal/mol'), T0=(1, 'K')), ], ), ) entry( index = 68, label = "OH + C <=> H + CO", degeneracy = 1, kinetics = Arrhenius(A=(5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 69, label = "OH + CH <=> H + HCO", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 70, label = "OH + CH2 <=> H + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 71, label = "OH + CH2 <=> CH + H2O", degeneracy = 1, kinetics = Arrhenius(A=(1.13e+07, 'cm^3/(mol*s)'), n=2, Ea=(3000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 72, label = "OH + CH2(S) <=> H + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 73, label = "OH + CH3 <=> CH2 + H2O", degeneracy = 1, kinetics = Arrhenius(A=(5.6e+07, 'cm^3/(mol*s)'), n=1.6, Ea=(5420, 'cal/mol'), T0=(1, 'K')), ) entry( index = 74, label = "OH + CH3 <=> CH2(S) + H2O", degeneracy = 1, kinetics = Arrhenius( A = (6.44e+17, 'cm^3/(mol*s)'), n = -1.34, Ea = (1417, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 75, label = "OH + CH4 <=> CH3 + H2O", degeneracy = 1, kinetics = Arrhenius(A=(1e+08, 'cm^3/(mol*s)'), n=1.6, Ea=(3120, 'cal/mol'), T0=(1, 'K')), ) entry( index = 76, label = "OH + CO <=> H + CO2", degeneracy = 1, kinetics = Arrhenius( A = (4.76e+07, 'cm^3/(mol*s)'), n = 1.228, Ea = (70, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 77, label = "OH + HCO <=> H2O + CO", degeneracy = 1, kinetics = Arrhenius(A=(5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 78, label = "OH + CH2O <=> HCO + H2O", degeneracy = 1, kinetics = Arrhenius( A = (3.43e+09, 'cm^3/(mol*s)'), n = 1.18, Ea = (-447, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 79, label = "OH + CH2OH <=> H2O + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(5e+12, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 80, label = "OH + CH3O <=> H2O + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(5e+12, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 81, label = "OH + CH3OH <=> CH2OH + H2O", degeneracy = 1, kinetics = Arrhenius(A=(1.44e+06, 'cm^3/(mol*s)'), n=2, Ea=(-840, 'cal/mol'), T0=(1, 'K')), ) entry( index = 82, label = "OH + CH3OH <=> CH3O + H2O", degeneracy = 1, kinetics = Arrhenius(A=(6.3e+06, 'cm^3/(mol*s)'), n=2, Ea=(1500, 'cal/mol'), T0=(1, 'K')), ) entry( index = 83, label = "OH + C2H <=> H + HCCO", degeneracy = 1, kinetics = Arrhenius(A=(2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 84, label = "OH + C2H2 <=> H + CH2CO", degeneracy = 1, kinetics = Arrhenius( A = (0.000218, 'cm^3/(mol*s)'), n = 4.5, Ea = (-1000, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 85, label = "OH + C2H2 <=> H + HCCOH", degeneracy = 1, kinetics = Arrhenius(A=(504000, 'cm^3/(mol*s)'), n=2.3, Ea=(13500, 'cal/mol'), T0=(1, 'K')), ) entry( index = 86, label = "OH + C2H2 <=> C2H + H2O", degeneracy = 1, kinetics = Arrhenius(A=(3.37e+07, 'cm^3/(mol*s)'), n=2, Ea=(14000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 87, label = "OH + C2H2 <=> CH3 + CO", degeneracy = 1, kinetics = Arrhenius(A=(0.000483, 'cm^3/(mol*s)'), n=4, Ea=(-2000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 88, label = "OH + C2H3 <=> H2O + C2H2", degeneracy = 1, kinetics = Arrhenius(A=(5e+12, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 89, label = "OH + C2H4 <=> C2H3 + H2O", degeneracy = 1, kinetics = Arrhenius(A=(3.6e+06, 'cm^3/(mol*s)'), n=2, Ea=(2500, 'cal/mol'), T0=(1, 'K')), ) entry( index = 90, label = "OH + C2H6 <=> C2H5 + H2O", degeneracy = 1, kinetics = Arrhenius( A = (3.54e+06, 'cm^3/(mol*s)'), n = 2.12, Ea = (870, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 91, label = "OH + CH2CO <=> HCCO + H2O", degeneracy = 1, kinetics = Arrhenius(A=(7.5e+12, 'cm^3/(mol*s)'), n=0, Ea=(2000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 92, label = "HO2 + HO2 <=> O2 + H2O2", degeneracy = 1, duplicate = True, kinetics = MultiArrhenius( arrhenius = [ Arrhenius(A=(1.3e+11, 'cm^3/(mol*s)'), n=0, Ea=(-1630, 'cal/mol'), T0=(1, 'K')), Arrhenius(A=(4.2e+14, 'cm^3/(mol*s)'), n=0, Ea=(12000, 'cal/mol'), T0=(1, 'K')), ], ), ) entry( index = 94, label = "HO2 + CH2 <=> OH + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 95, label = "HO2 + CH3 <=> O2 + CH4", degeneracy = 1, kinetics = Arrhenius(A=(1e+12, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 96, label = "HO2 + CH3 <=> OH + CH3O", degeneracy = 1, kinetics = Arrhenius(A=(3.78e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 97, label = "HO2 + CO <=> OH + CO2", degeneracy = 1, kinetics = Arrhenius(A=(1.5e+14, 'cm^3/(mol*s)'), n=0, Ea=(23600, 'cal/mol'), T0=(1, 'K')), ) entry( index = 98, label = "HO2 + CH2O <=> HCO + H2O2", degeneracy = 1, kinetics = Arrhenius(A=(5.6e+06, 'cm^3/(mol*s)'), n=2, Ea=(12000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 99, label = "C + O2 <=> O + CO", degeneracy = 1, kinetics = Arrhenius(A=(5.8e+13, 'cm^3/(mol*s)'), n=0, Ea=(576, 'cal/mol'), T0=(1, 'K')), ) entry( index = 100, label = "C + CH2 <=> H + C2H", degeneracy = 1, kinetics = Arrhenius(A=(5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 101, label = "C + CH3 <=> H + C2H2", degeneracy = 1, kinetics = Arrhenius(A=(5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 102, label = "CH + O2 <=> O + HCO", degeneracy = 1, kinetics = Arrhenius(A=(6.71e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 103, label = "CH + H2 <=> H + CH2", degeneracy = 1, kinetics = Arrhenius(A=(1.08e+14, 'cm^3/(mol*s)'), n=0, Ea=(3110, 'cal/mol'), T0=(1, 'K')), ) entry( index = 104, label = "CH + H2O <=> H + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(5.71e+12, 'cm^3/(mol*s)'), n=0, Ea=(-755, 'cal/mol'), T0=(1, 'K')), ) entry( index = 105, label = "CH + CH2 <=> H + C2H2", degeneracy = 1, kinetics = Arrhenius(A=(4e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 106, label = "CH + CH3 <=> H + C2H3", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 107, label = "CH + CH4 <=> H + C2H4", degeneracy = 1, kinetics = Arrhenius(A=(6e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 108, label = "CH + CO2 <=> HCO + CO", degeneracy = 1, kinetics = Arrhenius(A=(1.9e+14, 'cm^3/(mol*s)'), n=0, Ea=(15792, 'cal/mol'), T0=(1, 'K')), ) entry( index = 109, label = "CH + CH2O <=> H + CH2CO", degeneracy = 1, kinetics = Arrhenius(A=(9.46e+13, 'cm^3/(mol*s)'), n=0, Ea=(-515, 'cal/mol'), T0=(1, 'K')), ) entry( index = 110, label = "CH + HCCO <=> CO + C2H2", degeneracy = 1, kinetics = Arrhenius(A=(5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 111, label = "CH2 + O2 => OH + H + CO", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(5e+12, 'cm^3/(mol*s)'), n=0, Ea=(1500, 'cal/mol'), T0=(1, 'K')), ) entry( index = 112, label = "CH2 + H2 <=> H + CH3", degeneracy = 1, kinetics = Arrhenius(A=(500000, 'cm^3/(mol*s)'), n=2, Ea=(7230, 'cal/mol'), T0=(1, 'K')), ) entry( index = 113, label = "CH2 + CH2 <=> H2 + C2H2", degeneracy = 1, kinetics = Arrhenius(A=(1.6e+15, 'cm^3/(mol*s)'), n=0, Ea=(11944, 'cal/mol'), T0=(1, 'K')), ) entry( index = 114, label = "CH2 + CH3 <=> H + C2H4", degeneracy = 1, kinetics = Arrhenius(A=(4e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 115, label = "CH2 + CH4 <=> CH3 + CH3", degeneracy = 1, kinetics = Arrhenius(A=(2.46e+06, 'cm^3/(mol*s)'), n=2, Ea=(8270, 'cal/mol'), T0=(1, 'K')), ) entry( index = 116, label = "CH2 + HCCO <=> C2H3 + CO", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 117, label = "CH2(S) + O2 <=> H + OH + CO", degeneracy = 1, kinetics = Arrhenius(A=(2.8e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 118, label = "CH2(S) + O2 <=> CO + H2O", degeneracy = 1, kinetics = Arrhenius(A=(1.2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 119, label = "CH2(S) + H2 <=> CH3 + H", degeneracy = 1, kinetics = Arrhenius(A=(7e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 120, label = "CH2(S) + H2O <=> CH2 + H2O", degeneracy = 1, kinetics = Arrhenius(A=(3e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 121, label = "CH2(S) + CH3 <=> H + C2H4", degeneracy = 1, kinetics = Arrhenius(A=(1.2e+13, 'cm^3/(mol*s)'), n=0, Ea=(-570, 'cal/mol'), T0=(1, 'K')), ) entry( index = 122, label = "CH2(S) + CH4 <=> CH3 + CH3", degeneracy = 1, kinetics = Arrhenius(A=(1.6e+13, 'cm^3/(mol*s)'), n=0, Ea=(-570, 'cal/mol'), T0=(1, 'K')), ) entry( index = 123, label = "CH2(S) + CO <=> CH2 + CO", degeneracy = 1, kinetics = Arrhenius(A=(9e+12, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 124, label = "CH2(S) + CO2 <=> CH2 + CO2", degeneracy = 1, kinetics = Arrhenius(A=(7e+12, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 125, label = "CH2(S) + CO2 <=> CO + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(1.4e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 126, label = "CH2(S) + C2H6 <=> CH3 + C2H5", degeneracy = 1, kinetics = Arrhenius(A=(4e+13, 'cm^3/(mol*s)'), n=0, Ea=(-550, 'cal/mol'), T0=(1, 'K')), ) entry( index = 127, label = "CH3 + O2 <=> O + CH3O", degeneracy = 1, kinetics = Arrhenius(A=(3.56e+13, 'cm^3/(mol*s)'), n=0, Ea=(30480, 'cal/mol'), T0=(1, 'K')), ) entry( index = 128, label = "CH3 + O2 <=> OH + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(2.31e+12, 'cm^3/(mol*s)'), n=0, Ea=(20315, 'cal/mol'), T0=(1, 'K')), ) entry( index = 129, label = "CH3 + H2O2 <=> HO2 + CH4", degeneracy = 1, kinetics = Arrhenius(A=(24500, 'cm^3/(mol*s)'), n=2.47, Ea=(5180, 'cal/mol'), T0=(1, 'K')), ) entry( index = 130, label = "CH3 + CH3 <=> H + C2H5", degeneracy = 1, kinetics = Arrhenius( A = (6.84e+12, 'cm^3/(mol*s)'), n = 0.1, Ea = (10600, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 131, label = "CH3 + HCO <=> CH4 + CO", degeneracy = 1, kinetics = Arrhenius(A=(2.648e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 132, label = "CH3 + CH2O <=> HCO + CH4", degeneracy = 1, kinetics = Arrhenius(A=(3320, 'cm^3/(mol*s)'), n=2.81, Ea=(5860, 'cal/mol'), T0=(1, 'K')), ) entry( index = 133, label = "CH3 + CH3OH <=> CH2OH + CH4", degeneracy = 1, kinetics = Arrhenius(A=(3e+07, 'cm^3/(mol*s)'), n=1.5, Ea=(9940, 'cal/mol'), T0=(1, 'K')), ) entry( index = 134, label = "CH3 + CH3OH <=> CH3O + CH4", degeneracy = 1, kinetics = Arrhenius(A=(1e+07, 'cm^3/(mol*s)'), n=1.5, Ea=(9940, 'cal/mol'), T0=(1, 'K')), ) entry( index = 135, label = "CH3 + C2H4 <=> C2H3 + CH4", degeneracy = 1, kinetics = Arrhenius(A=(227000, 'cm^3/(mol*s)'), n=2, Ea=(9200, 'cal/mol'), T0=(1, 'K')), ) entry( index = 136, label = "CH3 + C2H6 <=> C2H5 + CH4", degeneracy = 1, kinetics = Arrhenius( A = (6.14e+06, 'cm^3/(mol*s)'), n = 1.74, Ea = (10450, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 137, label = "HCO + H2O <=> H + CO + H2O", degeneracy = 1, kinetics = Arrhenius(A=(1.5e+18, 'cm^3/(mol*s)'), n=-1, Ea=(17000, 'cal/mol'), T0=(1, 'K')), ) entry( index = 138, label = "HCO + O2 <=> HO2 + CO", degeneracy = 1, kinetics = Arrhenius(A=(1.345e+13, 'cm^3/(mol*s)'), n=0, Ea=(400, 'cal/mol'), T0=(1, 'K')), ) entry( index = 139, label = "CH2OH + O2 <=> HO2 + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(1.8e+13, 'cm^3/(mol*s)'), n=0, Ea=(900, 'cal/mol'), T0=(1, 'K')), ) entry( index = 140, label = "CH3O + O2 <=> HO2 + CH2O", degeneracy = 1, kinetics = Arrhenius( A = (4.28e-13, 'cm^3/(mol*s)'), n = 7.6, Ea = (-3530, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 141, label = "C2H + O2 <=> HCO + CO", degeneracy = 1, kinetics = Arrhenius(A=(1e+13, 'cm^3/(mol*s)'), n=0, Ea=(-755, 'cal/mol'), T0=(1, 'K')), ) entry( index = 142, label = "C2H + H2 <=> H + C2H2", degeneracy = 1, kinetics = Arrhenius( A = (5.68e+10, 'cm^3/(mol*s)'), n = 0.9, Ea = (1993, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 143, label = "C2H3 + O2 <=> HCO + CH2O", degeneracy = 1, kinetics = Arrhenius( A = (4.58e+16, 'cm^3/(mol*s)'), n = -1.39, Ea = (1015, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 144, label = "C2H5 + O2 <=> HO2 + C2H4", degeneracy = 1, kinetics = Arrhenius(A=(8.4e+11, 'cm^3/(mol*s)'), n=0, Ea=(3875, 'cal/mol'), T0=(1, 'K')), ) entry( index = 145, label = "HCCO + O2 <=> OH + CO + CO", degeneracy = 1, kinetics = Arrhenius(A=(3.2e+12, 'cm^3/(mol*s)'), n=0, Ea=(854, 'cal/mol'), T0=(1, 'K')), ) entry( index = 146, label = "HCCO + HCCO <=> CO + CO + C2H2", degeneracy = 1, kinetics = Arrhenius(A=(1e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 147, label = "O + CH3 => H + H2 + CO", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(3.37e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 148, label = "O + C2H4 <=> H + CH2CHO", degeneracy = 1, kinetics = Arrhenius(A=(6.7e+06, 'cm^3/(mol*s)'), n=1.83, Ea=(220, 'cal/mol'), T0=(1, 'K')), ) entry( index = 149, label = "O + C2H5 <=> H + CH3CHO", degeneracy = 1, kinetics = Arrhenius(A=(1.096e+14, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 151, label = "OH + CH3 => H2 + CH2O", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(8e+09, 'cm^3/(mol*s)'), n=0.5, Ea=(-1755, 'cal/mol'), T0=(1, 'K')), ) entry( index = 152, label = "CH2 + O2 => H + H + CO2", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(5.8e+12, 'cm^3/(mol*s)'), n=0, Ea=(1500, 'cal/mol'), T0=(1, 'K')), ) entry( index = 153, label = "CH2 + O2 <=> O + CH2O", degeneracy = 1, kinetics = Arrhenius(A=(2.4e+12, 'cm^3/(mol*s)'), n=0, Ea=(1500, 'cal/mol'), T0=(1, 'K')), ) entry( index = 154, label = "CH2 + CH2 => H + H + C2H2", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(2e+14, 'cm^3/(mol*s)'), n=0, Ea=(10989, 'cal/mol'), T0=(1, 'K')), ) entry( index = 155, label = "CH2(S) + H2O => H2 + CH2O", degeneracy = 1, reversible = False, kinetics = Arrhenius( A = (6.82e+10, 'cm^3/(mol*s)'), n = 0.25, Ea = (-935, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 156, label = "C2H3 + O2 <=> O + CH2CHO", degeneracy = 1, kinetics = Arrhenius(A=(3.03e+11, 'cm^3/(mol*s)'), n=0.29, Ea=(11, 'cal/mol'), T0=(1, 'K')), ) entry( index = 157, label = "C2H3 + O2 <=> HO2 + C2H2", degeneracy = 1, kinetics = Arrhenius( A = (1.337e+06, 'cm^3/(mol*s)'), n = 1.61, Ea = (-384, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 158, label = "O + CH3CHO <=> OH + CH2CHO", degeneracy = 1, kinetics = Arrhenius(A=(2.92e+12, 'cm^3/(mol*s)'), n=0, Ea=(1808, 'cal/mol'), T0=(1, 'K')), ) entry( index = 159, label = "O + CH3CHO => OH + CH3 + CO", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(2.92e+12, 'cm^3/(mol*s)'), n=0, Ea=(1808, 'cal/mol'), T0=(1, 'K')), ) entry( index = 160, label = "O2 + CH3CHO => HO2 + CH3 + CO", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(3.01e+13, 'cm^3/(mol*s)'), n=0, Ea=(39150, 'cal/mol'), T0=(1, 'K')), ) entry( index = 161, label = "H + CH3CHO <=> CH2CHO + H2", degeneracy = 1, kinetics = Arrhenius( A = (2.05e+09, 'cm^3/(mol*s)'), n = 1.16, Ea = (2405, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 162, label = "H + CH3CHO => CH3 + H2 + CO", degeneracy = 1, reversible = False, kinetics = Arrhenius( A = (2.05e+09, 'cm^3/(mol*s)'), n = 1.16, Ea = (2405, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 163, label = "OH + CH3CHO => CH3 + H2O + CO", degeneracy = 1, reversible = False, kinetics = Arrhenius( A = (2.343e+10, 'cm^3/(mol*s)'), n = 0.73, Ea = (-1113, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 164, label = "HO2 + CH3CHO => CH3 + H2O2 + CO", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(3.01e+12, 'cm^3/(mol*s)'), n=0, Ea=(11923, 'cal/mol'), T0=(1, 'K')), ) entry( index = 165, label = "CH3 + CH3CHO => CH3 + CH4 + CO", degeneracy = 1, reversible = False, kinetics = Arrhenius( A = (2.72e+06, 'cm^3/(mol*s)'), n = 1.77, Ea = (5920, 'cal/mol'), T0 = (1, 'K'), ), ) entry( index = 166, label = "O + CH2CHO => H + CH2 + CO2", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(1.5e+14, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 167, label = "O2 + CH2CHO => OH + CO + CH2O", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(1.81e+10, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 168, label = "O2 + CH2CHO => OH + HCO + HCO", degeneracy = 1, reversible = False, kinetics = Arrhenius(A=(2.35e+10, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 169, label = "H + CH2CHO <=> CH3 + HCO", degeneracy = 1, kinetics = Arrhenius(A=(2.2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 170, label = "H + CH2CHO <=> CH2CO + H2", degeneracy = 1, kinetics = Arrhenius(A=(1.1e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 171, label = "OH + CH2CHO <=> H2O + CH2CO", degeneracy = 1, kinetics = Arrhenius(A=(1.2e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 172, label = "OH + CH2CHO <=> HCO + CH2OH", degeneracy = 1, kinetics = Arrhenius(A=(3.01e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), ) entry( index = 173, label = "O + O <=> O2", degeneracy = 1, kinetics = ThirdBody( arrheniusLow = Arrhenius(A=(1.2e+17, 'cm^6/(mol^2*s)'), n=-1, Ea=(0, 'cal/mol'), T0=(1, 'K')), efficiencies = {'C': 2, 'O=C=O': 3.6, 'CC': 3, 'O': 15.4, '[H][H]': 2.4, '[C]=O': 1.75, '[Ar]': 0.83}, ), ) entry( index = 174, label = "O + H <=> OH", degeneracy = 1, kinetics = ThirdBody( arrheniusLow = Arrhenius(A=(5e+17, 'cm^6/(mol^2*s)'), n=-1, Ea=(0, 'cal/mol'), T0=(1, 'K')), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 175, label = "H + O2 <=> HO2", degeneracy = 1, kinetics = ThirdBody( arrheniusLow = Arrhenius( A = (2.8e+18, 'cm^6/(mol^2*s)'), n = -0.86, Ea = (0, 'cal/mol'), T0 = (1, 'K'), ), efficiencies = {'O=C=O': 1.5, 'CC': 1.5, 'O': 0, '[O][O]': 0, 'N#N': 0, '[C]=O': 0.75, '[Ar]': 0}, ), ) entry( index = 176, label = "H + H <=> H2", degeneracy = 1, kinetics = ThirdBody( arrheniusLow = Arrhenius(A=(1e+18, 'cm^6/(mol^2*s)'), n=-1, Ea=(0, 'cal/mol'), T0=(1, 'K')), efficiencies = {'C': 2, 'O=C=O': 0, 'CC': 3, 'O': 0, '[H][H]': 0, '[Ar]': 0.63}, ), ) entry( index = 177, label = "H + OH <=> H2O", degeneracy = 1, kinetics = ThirdBody( arrheniusLow = Arrhenius(A=(2.2e+22, 'cm^6/(mol^2*s)'), n=-2, Ea=(0, 'cal/mol'), T0=(1, 'K')), efficiencies = {'CC': 3, 'C': 2, '[H][H]': 0.73, 'O': 3.65, '[Ar]': 0.38}, ), ) entry( index = 178, label = "HCO <=> H + CO", degeneracy = 1, kinetics = ThirdBody( arrheniusLow = Arrhenius( A = (1.87e+17, 'cm^3/(mol*s)'), n = -1, Ea = (17000, 'cal/mol'), T0 = (1, 'K'), ), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 0, '[H][H]': 2, '[C]=O': 1.5}, ), ) entry( index = 179, label = "O + CO <=> CO2", degeneracy = 1, kinetics = Lindemann( arrheniusHigh = Arrhenius(A=(1.8e+10, 'cm^3/(mol*s)'), n=0, Ea=(2385, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (6.02e+14, 'cm^6/(mol^2*s)'), n = 0, Ea = (3000, 'cal/mol'), T0 = (1, 'K'), ), efficiencies = {'C': 2, 'O=C=O': 3.5, 'CC': 3, 'O': 6, '[H][H]': 2, '[O][O]': 6, '[C]=O': 1.5, '[Ar]': 0.5}, ), ) entry( index = 180, label = "H + CH2 <=> CH3", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(6e+14, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (1.04e+26, 'cm^6/(mol^2*s)'), n = -2.76, Ea = (1600, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.562, T3 = (91, 'K'), T1 = (5836, 'K'), T2 = (8552, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 181, label = "H + CH3 <=> CH4", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (1.39e+16, 'cm^3/(mol*s)'), n = -0.534, Ea = (536, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (2.62e+33, 'cm^6/(mol^2*s)'), n = -4.76, Ea = (2440, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.783, T3 = (74, 'K'), T1 = (2941, 'K'), T2 = (6964, 'K'), efficiencies = {'C': 3, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 182, label = "H + HCO <=> CH2O", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (1.09e+12, 'cm^3/(mol*s)'), n = 0.48, Ea = (-260, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (2.47e+24, 'cm^6/(mol^2*s)'), n = -2.57, Ea = (425, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.7824, T3 = (271, 'K'), T1 = (2755, 'K'), T2 = (6570, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 183, label = "H + CH2O <=> CH2OH", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (5.4e+11, 'cm^3/(mol*s)'), n = 0.454, Ea = (3600, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (1.27e+32, 'cm^6/(mol^2*s)'), n = -4.82, Ea = (6530, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.7187, T3 = (103, 'K'), T1 = (1291, 'K'), T2 = (4160, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5}, ), ) entry( index = 184, label = "H + CH2O <=> CH3O", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (5.4e+11, 'cm^3/(mol*s)'), n = 0.454, Ea = (2600, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (2.2e+30, 'cm^6/(mol^2*s)'), n = -4.8, Ea = (5560, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.758, T3 = (94, 'K'), T1 = (1555, 'K'), T2 = (4200, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5}, ), ) entry( index = 185, label = "H + CH2OH <=> CH3OH", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(1.055e+12, 'cm^3/(mol*s)'), n=0.5, Ea=(86, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (4.36e+31, 'cm^6/(mol^2*s)'), n = -4.65, Ea = (5080, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.6, T3 = (100, 'K'), T1 = (90000, 'K'), T2 = (10000, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5}, ), ) entry( index = 186, label = "H + CH3O <=> CH3OH", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (2.43e+12, 'cm^3/(mol*s)'), n = 0.515, Ea = (50, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (4.66e+41, 'cm^6/(mol^2*s)'), n = -7.44, Ea = (14080, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.7, T3 = (100, 'K'), T1 = (90000, 'K'), T2 = (10000, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5}, ), ) entry( index = 187, label = "H + C2H <=> C2H2", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(1e+17, 'cm^3/(mol*s)'), n=-1, Ea=(0, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (3.75e+33, 'cm^6/(mol^2*s)'), n = -4.8, Ea = (1900, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.6464, T3 = (132, 'K'), T1 = (1315, 'K'), T2 = (5566, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 188, label = "H + C2H2 <=> C2H3", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(5.6e+12, 'cm^3/(mol*s)'), n=0, Ea=(2400, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (3.8e+40, 'cm^6/(mol^2*s)'), n = -7.27, Ea = (7220, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.7507, T3 = (98.5, 'K'), T1 = (1302, 'K'), T2 = (4167, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 189, label = "H + C2H3 <=> C2H4", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (6.08e+12, 'cm^3/(mol*s)'), n = 0.27, Ea = (280, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (1.4e+30, 'cm^6/(mol^2*s)'), n = -3.86, Ea = (3320, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.782, T3 = (207.5, 'K'), T1 = (2663, 'K'), T2 = (6095, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 190, label = "H + C2H4 <=> C2H5", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (5.4e+11, 'cm^3/(mol*s)'), n = 0.454, Ea = (1820, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (6e+41, 'cm^6/(mol^2*s)'), n = -7.62, Ea = (6970, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.9753, T3 = (210, 'K'), T1 = (984, 'K'), T2 = (4374, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 191, label = "H + C2H5 <=> C2H6", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (5.21e+17, 'cm^3/(mol*s)'), n = -0.99, Ea = (1580, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (1.99e+41, 'cm^6/(mol^2*s)'), n = -7.08, Ea = (6685, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.8422, T3 = (125, 'K'), T1 = (2219, 'K'), T2 = (6882, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 192, label = "H2 + CO <=> CH2O", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (4.3e+07, 'cm^3/(mol*s)'), n = 1.5, Ea = (79600, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (5.07e+27, 'cm^6/(mol^2*s)'), n = -3.42, Ea = (84350, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.932, T3 = (197, 'K'), T1 = (1540, 'K'), T2 = (10300, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 193, label = "OH + OH <=> H2O2", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(7.4e+13, 'cm^3/(mol*s)'), n=-0.37, Ea=(0, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (2.3e+18, 'cm^6/(mol^2*s)'), n = -0.9, Ea = (-1700, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.7346, T3 = (94, 'K'), T1 = (1756, 'K'), T2 = (5182, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 194, label = "OH + CH3 <=> CH3OH", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (2.79e+18, 'cm^3/(mol*s)'), n = -1.43, Ea = (1330, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (4e+36, 'cm^6/(mol^2*s)'), n = -5.92, Ea = (3140, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.412, T3 = (195, 'K'), T1 = (5900, 'K'), T2 = (6394, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5}, ), ) entry( index = 195, label = "CH + CO <=> HCCO", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(5e+13, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (2.69e+28, 'cm^6/(mol^2*s)'), n = -3.74, Ea = (1936, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.5757, T3 = (237, 'K'), T1 = (1652, 'K'), T2 = (5069, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 196, label = "CH2 + CO <=> CH2CO", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(8.1e+11, 'cm^3/(mol*s)'), n=0.5, Ea=(4510, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (2.69e+33, 'cm^6/(mol^2*s)'), n = -5.11, Ea = (7095, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.5907, T3 = (275, 'K'), T1 = (1226, 'K'), T2 = (5185, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 197, label = "CH2(S) + H2O <=> CH3OH", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (4.82e+17, 'cm^3/(mol*s)'), n = -1.16, Ea = (1145, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (1.88e+38, 'cm^6/(mol^2*s)'), n = -6.36, Ea = (5040, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.6027, T3 = (208, 'K'), T1 = (3922, 'K'), T2 = (10180, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5}, ), ) entry( index = 198, label = "CH3 + CH3 <=> C2H6", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (6.77e+16, 'cm^3/(mol*s)'), n = -1.18, Ea = (654, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (3.4e+41, 'cm^6/(mol^2*s)'), n = -7.03, Ea = (2762, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.619, T3 = (73.2, 'K'), T1 = (1180, 'K'), T2 = (9999, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 199, label = "C2H4 <=> H2 + C2H2", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(8e+12, 's^-1'), n=0.44, Ea=(86770, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (1.58e+51, 'cm^3/(mol*s)'), n = -9.3, Ea = (97800, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.7345, T3 = (180, 'K'), T1 = (1035, 'K'), T2 = (5417, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 200, label = "CH + H2 <=> CH3", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (1.97e+12, 'cm^3/(mol*s)'), n = 0.43, Ea = (-370, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (4.82e+25, 'cm^6/(mol^2*s)'), n = -2.8, Ea = (590, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.578, T3 = (122, 'K'), T1 = (2535, 'K'), T2 = (9365, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 201, label = "H + CH2CO <=> CH2CHO", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius( A = (4.865e+11, 'cm^3/(mol*s)'), n = 0.422, Ea = (-1755, 'cal/mol'), T0 = (1, 'K'), ), arrheniusLow = Arrhenius( A = (1.012e+42, 'cm^6/(mol^2*s)'), n = -7.63, Ea = (3854, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.465, T3 = (201, 'K'), T1 = (1773, 'K'), T2 = (5333, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), ) entry( index = 202, label = "CH3 + C2H5 <=> C3H8", degeneracy = 1, kinetics = Troe( arrheniusHigh = Arrhenius(A=(9.43e+12, 'cm^3/(mol*s)'), n=0, Ea=(0, 'cal/mol'), T0=(1, 'K')), arrheniusLow = Arrhenius( A = (2.71e+74, 'cm^6/(mol^2*s)'), n = -16.82, Ea = (13065, 'cal/mol'), T0 = (1, 'K'), ), alpha = 0.1527, T3 = (291, 'K'), T1 = (2742, 'K'), T2 = (7748, 'K'), efficiencies = {'C': 2, 'O=C=O': 2, 'CC': 3, 'O': 6, '[H][H]': 2, '[C]=O': 1.5, '[Ar]': 0.7}, ), )
25.096374
116
0.433045
0dc80f833349f7bba5975586cdf2be2820142c90
21,049
py
Python
storage/fase2/team15/storage/isam/InterfazBD.py
Josue-Zea/tytus
f9e4be9a8c03eb698fade7a748972e4f52d46685
[ "MIT" ]
35
2020-12-07T03:11:43.000Z
2021-04-15T17:38:16.000Z
storage/fase2/team15/storage/isam/InterfazBD.py
Josue-Zea/tytus
f9e4be9a8c03eb698fade7a748972e4f52d46685
[ "MIT" ]
47
2020-12-09T01:29:09.000Z
2021-01-13T05:37:50.000Z
storage/fase2/team15/storage/isam/InterfazBD.py
Josue-Zea/tytus
f9e4be9a8c03eb698fade7a748972e4f52d46685
[ "MIT" ]
556
2020-12-07T03:13:31.000Z
2021-06-17T17:41:10.000Z
from tkinter import * from tkinter import messagebox from tkinter import simpledialog from tkinter import ttk import json from . import Table from tkinter import filedialog from . import ISAMMode as Storage from .DataBase import DataBase from .Table import Table import os import pickle #--------------------------------------------------opciones de las bases de datos------------------------------------------------- class PantallaBD(): def __init__(self,vectorBases): self.ventana = Tk() self.vectorBases=vectorBases self.ventana.title("Opciones Bases de Datos") self.contenedor = Frame(self.ventana, width=500, height=400) self.contenedor.pack(fill="both", expand=True) self.titulo=Label(self.contenedor, text="Bases de Datos", font=("Comic Sans MS", 18)).place(x=150, y=20) # botones crear eliminar y editar bases de datos self.BtnCrearBase = Button(self.contenedor, text="Crear Base de Datos", command=self.crear, width=20).place(x=300, y=100) self.BtnEliminarBase = Button(self.contenedor, text="Eliminar Base de Datos", command=self.EliminarBase, width=20).place(x=300, y=160) self.BtnEditarBase = Button(self.contenedor, text="Editar Nombre de BD", command=self.EditarBase, width=20).place(x=300, y=220) self.BtnTablas = Button(self.contenedor, text="Ver Tablas", command=self.Tablas,width=20).place(x=300, y=280) self.BtnGraficar = Button(self.contenedor, text="Graficar Tablas", command=self.graficar, width=20).place(x=300, y=340) self.listboxBases = Listbox(self.contenedor, width=40, height=18) self.CargarBases() self.listboxBases.place(x=35, y=80) self.ventana.mainloop() #eliminar elemento del listbox y de el arreglo de bases de datos def EliminarBase(self): if len(self.listboxBases.curselection()) != 0: elemento=self.listboxBases.get(self.listboxBases.curselection()[0]) a=messagebox.askquestion("Eliminar","Quieres eliminar La base de datos \n\t"+elemento) if a=="yes": self.listboxBases.delete(self.listboxBases.curselection()) indice=0 for i in range(0,len(self.vectorBases)): if self.vectorBases[i]==elemento: indice=i print(Storage.dropDatabase(elemento)) #cambiar nombre de la base de datos def EditarBase(self): if len(self.listboxBases.curselection()) != 0: elemento=self.listboxBases.get(self.listboxBases.curselection()[0]) self.ventana.destroy() PantallaEditarBD(elemento) #cargar los elementos del arreglo de bases de datos def CargarBases(self): for i in range(0,len(self.vectorBases)): self.listboxBases.insert(i,self.vectorBases[i]) #llamando crear def crear(self): self.ventana.destroy() PantallaCrearBD() #para visualizar las tablas def Tablas(self): if len(self.listboxBases.curselection()) != 0: nombreBD = self.listboxBases.get(self.listboxBases.curselection()[0]) self.ventana.destroy() #hay que mandar el vector de tablas PantallaTablas(nombreBD) def graficar(self): if len(self.listboxBases.curselection()) != 0: nombreBD = self.listboxBases.get(self.listboxBases.curselection()[0]) self.ventana.destroy() PantallaGraficoTablas(nombreBD) class PantallaCrearBD: def __init__(self): self.ventana = Tk() self.val = StringVar() self.ventana.geometry('300x130') self.ventana.title('Crear BD') self.titulo = Label(self.ventana, text="Ingrese el nombre de la BD", font=("Comic Sans MS", 15)).place(x=20, y=5) self.Entrada = Entry(self.ventana, textvariable=self.val, width=40).place(x=20, y=40) self.Boton = Button(self.ventana, text='CREAR', command=self.llamar(), width=15).place(x=80, y=70) self.ventana.mainloop() def llamar(self): return lambda: self._llamar() def _llamar(self): # para crear la base de datos valv es el nombre valv = str(self.val.get()) print(Storage.createDatabase(valv)) self.ventana.destroy() PantallaBD(Storage.showDatabases()) class PantallaEditarBD: def __init__(self, nombreViejo): self.nombreViejo=nombreViejo self.ventana = Tk() self.val = StringVar() self.ventana.geometry('300x130') self.ventana.title('Editar BD') self.titulo = Label(self.ventana, text="Ingrese el nuevo nombre de la BD", font=("Comic Sans MS", 15)).place(x=15, y=5) self.Entrada = Entry(self.ventana, textvariable=self.val, width=40).place(x=20, y=40) self.Boton = Button(self.ventana, text='EDITAR', command=self.llamar(), width=15).place(x=80, y=70) self.ventana.mainloop() def llamar(self): return lambda: self._llamar() def _llamar(self): nombreNuevo = str(self.val.get()) print(Storage.alterDatabase(self.nombreViejo,nombreNuevo)) self.ventana.destroy() PantallaBD(Storage.showDatabases()) # ------------------------------------------------------graficas de tablas-------------------------------- class PantallaGraficoTablas: def __init__(self, nombreBD): self.ventana = Tk() self.nombreBD = nombreBD # obteniendo grafico de la tabla indicada Storage.checkDirs() Storage.chartList(Storage.showTables(self.nombreBD)) self.ventana.title("BD "+self.nombreBD) self.ventana.geometry("450x300") self.contenedor = Frame(self.ventana) self.contenedor.pack(fill="both", expand=True) self.canvas = Canvas(self.contenedor) self.canvas.pack(side=LEFT, fill=BOTH, expand=1) self.scroll = ttk.Scrollbar(self.contenedor, orient=VERTICAL, command=self.canvas.yview) self.scroll.pack(side=RIGHT, fill=Y) self.canvas.configure(yscrollcommand=self.scroll.set) self.canvas.bind('<Configure>', lambda e: self.canvas.configure(scrollregion=self.canvas.bbox("all"))) self.segundocontenedor = Frame(self.canvas, width=300, height=300) self.canvas.create_window((0, 0), window=self.segundocontenedor, anchor="nw") imagen = PhotoImage(file="list.png") labelimagen = Label(self.segundocontenedor, image=imagen).pack() Button(self.segundocontenedor, text="Salir", command=self.salir, width=20).pack() self.ventana.mainloop() def salir(self): self.ventana.destroy() PantallaBD(Storage.showDatabases()) #--------------------------------------------------------opciones de las tablas----------------------------------------------- class PantallaTablas: def __init__(self, nombreBD): self.ventana = Tk() self.nombreBD=nombreBD self.ventana.title("Opciones de las tablas") self.contenedor = Frame(self.ventana, width=500, height=400) self.contenedor.pack(fill="both", expand=True) self.titulo = Label(self.contenedor, text="Tablas de la BD: "+nombreBD, font=("Comic Sans MS", 18)).place(x=110, y=20) # boton crear tabla Button(self.contenedor, text="Crear Tabla de Datos", command=self.crear, width=20).place(x=300, y=80) Button(self.contenedor, text="Borrar Tabla", command=self.borrar, width=20).place(x=300, y=110) Button(self.contenedor, text="Cambiar nombre", command=self.renombrar, width=20).place(x=300,y=140) Button(self.contenedor, text="Agregar Columna", command=self.agregarC, width=20).place(x=300, y=170) Button(self.contenedor, text="Eliminar Columna", command=self.borrarC, width=20).place(x=300, y=200) Button(self.contenedor, text="Agregar PK", command=self.agregarPK, width=20).place(x=300, y=230) Button(self.contenedor, text="Eliminar PK", command=self.eliminarPK, width=20).place(x=300, y=260) Button(self.contenedor, text="Ver Tabla", command=self.extraerTabla, width=20).place(x=300, y=290) Button(self.contenedor, text="Graficar", command=self.graficar, width=20).place(x=300, y=320) Button(self.contenedor, text="Regresar", command=self.salir, width=20).place(x=300, y=350) self.listboxTablas= Listbox(self.contenedor, width=40, height=18) self.Cargartablas() self.listboxTablas.place(x=35, y=80) self.ventana.mainloop() # cargar los elementos del arreglo de tablas def Cargartablas(self): for i in range(0, len(Storage.showTables(self.nombreBD))): self.listboxTablas.insert(i, Storage.showTables(self.nombreBD)[i]) def crear(self): try: nombretabla=simpledialog.askstring('Crear Tabla Datos','ingrese el nombre de la tabla') cantcolumnas=simpledialog.askinteger('Crear Tabla Datos', 'ingrese el numero de columnas que desea') print(Storage.createTable(self.nombreBD,nombretabla,cantcolumnas)) self.listboxTablas.delete(0, END) self.Cargartablas() except: "" def borrar(self): try: if len(self.listboxTablas.curselection()) != 0: elemento = self.listboxTablas.get(self.listboxTablas.curselection()[0]) a = messagebox.askquestion("Eliminar", "Quieres eliminar La tabla \n\t" + elemento) if a == "yes": print(Storage.dropTable(self.nombreBD, elemento)) self.listboxTablas.delete(0, END) self.Cargartablas() except: "" def renombrar(self): try: if len(self.listboxTablas.curselection()) != 0: nombreviejo = self.listboxTablas.get(self.listboxTablas.curselection()[0]) nombrenuevo=simpledialog.askstring('Editar Tabla','ingrese el nombre nuevo de la tabla') a = messagebox.askquestion("Editar", "Quieres Cambiar el nombre La tabla " + nombreviejo+"\npor "+nombrenuevo) if a == "yes": print(Storage.alterTable(self.nombreBD,nombreviejo,nombrenuevo)) self.listboxTablas.delete(0, END) self.Cargartablas() except: "" def agregarC(self): try: if len(self.listboxTablas.curselection()) != 0: nombretabla = self.listboxTablas.get(self.listboxTablas.curselection()[0]) valor = simpledialog.askstring('Agregar Columna', 'ingrese el valor por default') print(Storage.alterAddColumn(self.nombreBD,nombretabla,valor)) except: "" def borrarC(self): try: if len(self.listboxTablas.curselection()) != 0: nombretabla = self.listboxTablas.get(self.listboxTablas.curselection()[0]) columna = simpledialog.askinteger('Borrar Columna', 'ingrese el numero de columna') print(Storage.alterDropColumn(self.nombreBD,nombretabla,columna)) except: "" def extraerTabla(self): if len(self.listboxTablas.curselection()) != 0: nombretabla = self.listboxTablas.get(self.listboxTablas.curselection()[0]) self.ventana.destroy() PantallaTuplas(self.nombreBD,nombretabla,Storage.extractTable(self.nombreBD, nombretabla)) def agregarPK(self): try: if len(self.listboxTablas.curselection()) != 0: nombretabla = self.listboxTablas.get(self.listboxTablas.curselection()[0]) entrada = simpledialog.askstring('Listado de # de columnas', 'ingrese el listado separado por , sin espacios') lista=entrada.split(",") listafinal = [] for i in lista: listafinal.append(int(i)) print(Storage.alterAddPK(self.nombreBD,nombretabla,listafinal)) except: "" def eliminarPK(self): if len(self.listboxTablas.curselection()) != 0: nombretabla = self.listboxTablas.get(self.listboxTablas.curselection()[0]) print(Storage.alterDropPK(self.nombreBD,nombretabla)) def graficar(self): if len(self.listboxTablas.curselection()) != 0: nombretabla = self.listboxTablas.get(self.listboxTablas.curselection()[0]) self.ventana.destroy() PantallaGrafico(self.nombreBD,nombretabla) def salir(self): self.ventana.destroy() PantallaBD(Storage.showDatabases()) #------------------------------------------------------graficas de arboles-------------------------------- class PantallaGrafico: def __init__(self,nombreBD, nombreTabla): self.ventana = Tk() self.nombreBD=nombreBD self.nombreTabla=nombreTabla #obteniendo grafico de la tabla indicada Storage.checkDirs() tab=Storage.rollback('tables/' + nombreBD + nombreTabla) tab.chart() self.ventana.title("Tabla "+self.nombreTabla) self.ventana.geometry("450x300") self.contenedor = Frame(self.ventana) self.contenedor.pack(fill="both", expand=True) #self.titulo = Label(self.contenedor, text="Tuplas de la tabla: " + self.nombreTabla, font=("Comic Sans MS", 18)).place(x=150, y=5) self.canvas=Canvas(self.contenedor) self.canvas.pack(side=LEFT,fill=BOTH,expand=1) self.scroll=ttk.Scrollbar(self.contenedor, orient=VERTICAL,command=self.canvas.yview) self.scroll.pack(side=RIGHT,fill=Y) self.canvas.configure(yscrollcommand=self.scroll.set) self.canvas.bind('<Configure>',lambda e:self.canvas.configure(scrollregion=self.canvas.bbox("all"))) self.segundocontenedor=Frame(self.canvas,width=300, height=300) self.canvas.create_window((0,0),window=self.segundocontenedor,anchor="nw") imagen=PhotoImage(file="isam.png") labelimagen=Label(self.segundocontenedor,image=imagen).pack() Button(self.segundocontenedor, text="Salir", command=self.salir, width=20).pack() self.ventana.mainloop() def salir(self): self.ventana.destroy() PantallaTablas(self.nombreBD) #----------------------------------------------------tuplas extract------------------------------------------------------------------- class PantallaTuplas: def __init__(self, nombreBD, nombreTabla, listaTuplas): self.ventana = Tk() self.nombreBD = nombreBD self.nombreTabla=nombreTabla self.listaTuplas=listaTuplas self.ventana.title("Opciones de las Tuplas") self.contenedor = Frame(self.ventana, width=500, height=380) self.contenedor.pack(fill="both", expand=True) self.titulo = Label(self.contenedor, text="Tuplas de la tabla: " + self.nombreTabla, font=("Comic Sans MS", 18)).place(x=110, y=10) self.titulo = Label(self.contenedor, text="Posee "+str(Storage.rollback('tables/' + self.nombreBD + self.nombreTabla).numberColumns)+" Columnas",font=("Comic Sans MS", 14)).place(x=150, y=40) # boton crear tabla Button(self.contenedor, text="Extraer Tabla Completa", command=self.extraertabla, width=20).place(x=300, y=80) Button(self.contenedor, text="Extraer Por Rangos", command=self.extraerrango, width=20).place(x=300, y=110) Button(self.contenedor, text="Extraer Row (tupla)", command=self.extraertupla, width=20).place(x=300, y=140) Button(self.contenedor, text="Insertar Registro", command=self.insertar, width=20).place(x=300, y=170) Button(self.contenedor, text="Actualizar Registro", command=self.actualizar, width=20).place(x=300, y=200) Button(self.contenedor, text="Eliminar Registro", command=self.eliminar, width=20).place(x=300, y=230) Button(self.contenedor, text="Eliminar Todo", command=self.eliminartodo, width=20).place(x=300, y=260) Button(self.contenedor, text="Cargar CSV", command=self.cargarCSV, width=20).place(x=300, y=290) Button(self.contenedor, text="Regresar", command=self.salir, width=20).place(x=300, y=320) self.listboxTuplas = Listbox(self.contenedor, width=40, height=16) self.Cargartuplas() self.listboxTuplas.place(x=35, y=80) self.ventana.mainloop() def Cargartuplas(self): for i in range(0, len(self.listaTuplas)): self.listboxTuplas.insert(i, self.listaTuplas[i]) def extraertabla(self): self.listboxTuplas.delete(0, END) self.listaTuplas=Storage.extractTable(self.nombreBD, self.nombreTabla) self.Cargartuplas() def extraerrango(self): try: columna = simpledialog.askinteger('Rango', 'ingrese el numero de indice de la columna') inicio = simpledialog.askstring('Rango', 'ingrese el valor de inicio') final = simpledialog.askstring('Rango', 'ingrese el valor del final') self.listboxTuplas.delete(0, END) self.listaTuplas=Storage.extractRangeTable(self.nombreBD,self.nombreTabla,columna,inicio,final) self.Cargartuplas() except: "" def extraertupla(self): try: lista = simpledialog.askstring('Extraer Registro', 'ingrese el id del registro que desea extraer\n' 'si tiene llave compuesta separela por ,') listafinal=lista.split(",") Tupla = Storage.extractRow(self.nombreBD,self.nombreTabla,listafinal) self.listboxTuplas.delete(0, END) self.listboxTuplas.insert(0, Tupla) except: "" def insertar(self): try: entrada = simpledialog.askstring('Insertar tuplas', 'ingrese el listado separado por , sin espacios') lista=entrada.split(",") Storage.insert(self.nombreBD, self.nombreTabla, lista) self.listboxTuplas.delete(0, END) self.listaTuplas=Storage.extractTable(self.nombreBD, self.nombreTabla) self.Cargartuplas() except: "" def actualizar(self): try: entrada = simpledialog.askstring('Actualizar Registro por un diccionario', 'Ingrese los datos separados por : y ,\n' 'por ejemplo id:valor,id2:valor2\n' 'sin espacios') llave= simpledialog.askstring('Ingrese la llave primaria', 'si la llave es compuesta ingresela separada por ,' 'sin espacios') entrada2=entrada.split(",") entrada3=[] for i in entrada2: aux=i.split(":") for j in aux: try: k=int(j) esnumero=True except: esnumero=False if esnumero: entrada3.append(k) else: entrada3.append(j) diccionario={} for i in range(0,len(entrada3),2): diccionario[entrada3[i]]=entrada3[i+1] pk=llave.split(",") print(Storage.update(self.nombreBD,self.nombreTabla,diccionario,pk)) self.listboxTuplas.delete(0, END) self.listaTuplas = Storage.extractTable(self.nombreBD, self.nombreTabla) self.Cargartuplas() except: "" def eliminar(self): try: entrada = simpledialog.askstring('Eliminar tuplas', 'ingrese las pk separado por , sin espacios') lista = entrada.split(",") print(Storage.delete(self.nombreBD,self.nombreTabla,lista)) self.listboxTuplas.delete(0, END) self.listaTuplas = Storage.extractTable(self.nombreBD, self.nombreTabla) self.Cargartuplas() except: "" def eliminartodo(self): try: a = messagebox.askquestion("Eliminar", "Quieres eliminar todos los registros de la tabla \n\t" + self.nombreTabla) if a == "yes": print(Storage.truncate(self.nombreBD,self.nombreTabla)) self.listboxTuplas.delete(0, END) self.listaTuplas = Storage.extractTable(self.nombreBD, self.nombreTabla) self.Cargartuplas() except: "" def cargarCSV(self): try: archivo=filedialog.askopenfilename(title="Cargar") Storage.loadCSV(archivo,self.nombreBD,self.nombreTabla) self.listboxTuplas.delete(0, END) self.listaTuplas = Storage.extractTable(self.nombreBD, self.nombreTabla) self.Cargartuplas() except: "" def salir(self): self.ventana.destroy() PantallaTablas(self.nombreBD)
46.67184
199
0.612286
4c18f6c8e916e7975cb39cfccff154bbab143fb4
12,396
py
Python
impacket/dcerpc/v5/even.py
iamjmat/impacket
61da73fcc793259e6d1487fff9835e638487fe04
[ "Apache-1.1" ]
61
2020-07-23T14:07:59.000Z
2021-11-24T14:15:57.000Z
impacket/dcerpc/v5/even.py
3ozir/impacket
d1ced941eb2235ed365b13f661b1d5b4bc2683f3
[ "Apache-1.1" ]
null
null
null
impacket/dcerpc/v5/even.py
3ozir/impacket
d1ced941eb2235ed365b13f661b1d5b4bc2683f3
[ "Apache-1.1" ]
21
2021-06-29T23:14:54.000Z
2022-03-24T13:13:58.000Z
# SECUREAUTH LABS. Copyright 2018 SecureAuth Corporation. All rights reserved. # # This software is provided under under a slightly modified version # of the Apache Software License. See the accompanying LICENSE file # for more information. # # Author: Alberto Solino (@agsolino) # Itamar Mizrahi (@MrAnde7son) # # Description: # [MS-EVEN] Interface implementation # # Best way to learn how to use these calls is to grab the protocol standard # so you understand what the call does, and then read the test case located # at https://github.com/SecureAuthCorp/impacket/tree/master/tests/SMB_RPC # # Some calls have helper functions, which makes it even easier to use. # They are located at the end of this file. # Helper functions start with "h"<name of the call>. # There are test cases for them too. # from __future__ import division from __future__ import print_function from impacket.dcerpc.v5.ndr import NDRCALL, NDRSTRUCT, NDR, NDRPOINTERNULL, NDRUniConformantArray from impacket.dcerpc.v5.dtypes import ULONG, LPWSTR, RPC_UNICODE_STRING, LPSTR, NTSTATUS, NULL, PRPC_UNICODE_STRING, PULONG, USHORT, PRPC_SID, LPBYTE from impacket.dcerpc.v5.lsad import PRPC_UNICODE_STRING_ARRAY from impacket.structure import Structure from impacket import nt_errors from impacket.uuid import uuidtup_to_bin from impacket.dcerpc.v5.rpcrt import DCERPCException MSRPC_UUID_EVEN = uuidtup_to_bin(('82273FDC-E32A-18C3-3F78-827929DC23EA','0.0')) class DCERPCSessionError(DCERPCException): def __init__(self, error_string=None, error_code=None, packet=None): DCERPCException.__init__(self, error_string, error_code, packet) def __str__( self ): key = self.error_code if key in nt_errors.ERROR_MESSAGES: error_msg_short = nt_errors.ERROR_MESSAGES[key][0] error_msg_verbose = nt_errors.ERROR_MESSAGES[key][1] return 'EVEN SessionError: code: 0x%x - %s - %s' % (self.error_code, error_msg_short, error_msg_verbose) else: return 'EVEN SessionError: unknown error code: 0x%x' % self.error_code ################################################################################ # CONSTANTS ################################################################################ # 2.2.2 EventType EVENTLOG_SUCCESS = 0x0000 EVENTLOG_ERROR_TYPE = 0x0001 EVENTLOG_WARNING_TYPE = 0x0002 EVENTLOG_INFORMATION_TYPE = 0x0004 EVENTLOG_AUDIT_SUCCESS = 0x0008 EVENTLOG_AUDIT_FAILURE = 0x0010 # 2.2.7 EVENTLOG_HANDLE_A and EVENTLOG_HANDLE_W #EVENTLOG_HANDLE_A EVENTLOG_HANDLE_W = LPWSTR # 2.2.9 Constants Used in Method Definitions MAX_STRINGS = 0x00000100 MAX_SINGLE_EVENT = 0x0003FFFF MAX_BATCH_BUFF = 0x0007FFFF # 3.1.4.7 ElfrReadELW (Opnum 10) EVENTLOG_SEQUENTIAL_READ = 0x00000001 EVENTLOG_SEEK_READ = 0x00000002 EVENTLOG_FORWARDS_READ = 0x00000004 EVENTLOG_BACKWARDS_READ = 0x00000008 ################################################################################ # STRUCTURES ################################################################################ class IELF_HANDLE(NDRSTRUCT): structure = ( ('Data','20s=""'), ) def getAlignment(self): return 1 # 2.2.3 EVENTLOGRECORD class EVENTLOGRECORD(Structure): structure = ( ('Length','<L=0'), ('Reserved','<L=0'), ('RecordNumber','<L=0'), ('TimeGenerated','<L=0'), ('TimeWritten','<L=0'), ('EventID','<L=0'), ('EventType','<H=0'), ('NumStrings','<H=0'), ('EventCategory','<H=0'), ('ReservedFlags','<H=0'), ('ClosingRecordNumber','<L=0'), ('StringOffset','<L=0'), ('UserSidLength','<L=0'), ('UserSidOffset','<L=0'), ('DataLength','<L=0'), ('DataOffset','<L=0'), ('SourceName','z'), ('Computername','z'), ('UserSidPadding',':'), ('_UserSid','_-UserSid', 'self["UserSidLength"]'), ('UserSid',':'), ('Strings',':'), ('_Data','_-Data', 'self["DataLength"]'), ('Data',':'), ('Padding',':'), ('Length2','<L=0'), ) # 2.2.4 EVENTLOG_FULL_INFORMATION class EVENTLOG_FULL_INFORMATION(NDRSTRUCT): structure = ( ('dwFull', ULONG), ) # 2.2.8 RPC_CLIENT_ID class RPC_CLIENT_ID(NDRSTRUCT): structure = ( ('UniqueProcess', ULONG), ('UniqueThread', ULONG), ) # 2.2.12 RPC_STRING class RPC_STRING(NDRSTRUCT): structure = ( ('Length','<H=0'), ('MaximumLength','<H=0'), ('Data',LPSTR), ) def __setitem__(self, key, value): if key == 'Data' and isinstance(value, NDR) is False: self['Length'] = len(value) self['MaximumLength'] = len(value) return NDRSTRUCT.__setitem__(self, key, value) def dump(self, msg = None, indent = 0): if msg is None: msg = self.__class__.__name__ if msg != '': print("%s" % msg, end=' ') if isinstance(self.fields['Data'] , NDRPOINTERNULL): print(" NULL", end=' ') elif self.fields['Data']['ReferentID'] == 0: print(" NULL", end=' ') else: return self.fields['Data'].dump('',indent) ################################################################################ # RPC CALLS ################################################################################ # 3.1.4.9 ElfrClearELFW (Opnum 0) class ElfrClearELFW(NDRCALL): opnum = 0 structure = ( ('LogHandle', IELF_HANDLE), ('BackupFileName', PRPC_UNICODE_STRING), ) class ElfrClearELFWResponse(NDRCALL): structure = ( ('ErrorCode', NTSTATUS), ) # 3.1.4.11 ElfrBackupELFW (Opnum 1) class ElfrBackupELFW(NDRCALL): opnum = 1 structure = ( ('LogHandle', IELF_HANDLE), ('BackupFileName', RPC_UNICODE_STRING), ) class ElfrBackupELFWResponse(NDRCALL): structure = ( ('ErrorCode', NTSTATUS), ) # 3.1.4.21 ElfrCloseEL (Opnum 2) class ElfrCloseEL(NDRCALL): opnum = 2 structure = ( ('LogHandle', IELF_HANDLE), ) class ElfrCloseELResponse(NDRCALL): structure = ( ('LogHandle', IELF_HANDLE), ('ErrorCode', NTSTATUS), ) # 3.1.4.18 ElfrNumberOfRecords (Opnum 4) class ElfrNumberOfRecords(NDRCALL): opnum = 4 structure = ( ('LogHandle', IELF_HANDLE), ) class ElfrNumberOfRecordsResponse(NDRCALL): structure = ( ('NumberOfRecords', ULONG), ('ErrorCode', NTSTATUS), ) # 3.1.4.19 ElfrOldestRecord (Opnum 5) class ElfrOldestRecord(NDRCALL): opnum = 5 structure = ( ('LogHandle', IELF_HANDLE), ) class ElfrOldestRecordResponse(NDRCALL): structure = ( ('OldestRecordNumber', ULONG), ('ErrorCode', NTSTATUS), ) # 3.1.4.3 ElfrOpenELW (Opnum 7) class ElfrOpenELW(NDRCALL): opnum = 7 structure = ( ('UNCServerName', EVENTLOG_HANDLE_W), ('ModuleName', RPC_UNICODE_STRING), ('RegModuleName', RPC_UNICODE_STRING), ('MajorVersion', ULONG), ('MinorVersion', ULONG), ) class ElfrOpenELWResponse(NDRCALL): structure = ( ('LogHandle', IELF_HANDLE), ('ErrorCode', NTSTATUS), ) # 3.1.4.5 ElfrRegisterEventSourceW (Opnum 8) class ElfrRegisterEventSourceW(NDRCALL): opnum = 8 structure = ( ('UNCServerName', EVENTLOG_HANDLE_W), ('ModuleName', RPC_UNICODE_STRING), ('RegModuleName', RPC_UNICODE_STRING), ('MajorVersion', ULONG), ('MinorVersion', ULONG), ) class ElfrRegisterEventSourceWResponse(NDRCALL): structure = ( ('LogHandle', IELF_HANDLE), ('ErrorCode', NTSTATUS), ) # 3.1.4.1 ElfrOpenBELW (Opnum 9) class ElfrOpenBELW(NDRCALL): opnum = 9 structure = ( ('UNCServerName', EVENTLOG_HANDLE_W), ('BackupFileName', RPC_UNICODE_STRING), ('MajorVersion', ULONG), ('MinorVersion', ULONG), ) class ElfrOpenBELWResponse(NDRCALL): structure = ( ('LogHandle', IELF_HANDLE), ('ErrorCode', NTSTATUS), ) # 3.1.4.7 ElfrReadELW (Opnum 10) class ElfrReadELW(NDRCALL): opnum = 10 structure = ( ('LogHandle', IELF_HANDLE), ('ReadFlags', ULONG), ('RecordOffset', ULONG), ('NumberOfBytesToRead', ULONG), ) class ElfrReadELWResponse(NDRCALL): structure = ( ('Buffer', NDRUniConformantArray), ('NumberOfBytesRead', ULONG), ('MinNumberOfBytesNeeded', ULONG), ('ErrorCode', NTSTATUS), ) # 3.1.4.13 ElfrReportEventW (Opnum 11) class ElfrReportEventW(NDRCALL): opnum = 11 structure = ( ('LogHandle', IELF_HANDLE), ('Time', ULONG), ('EventType', USHORT), ('EventCategory', USHORT), ('EventID', ULONG), ('NumStrings', USHORT), ('DataSize', ULONG), ('ComputerName', RPC_UNICODE_STRING), ('UserSID', PRPC_SID), ('Strings', PRPC_UNICODE_STRING_ARRAY), ('Data', LPBYTE), ('Flags', USHORT), ('RecordNumber', PULONG), ('TimeWritten', PULONG), ) class ElfrReportEventWResponse(NDRCALL): structure = ( ('RecordNumber', PULONG), ('TimeWritten', PULONG), ('ErrorCode', NTSTATUS), ) ################################################################################ # OPNUMs and their corresponding structures ################################################################################ OPNUMS = { 0 : (ElfrClearELFW, ElfrClearELFWResponse), 1 : (ElfrBackupELFW, ElfrBackupELFWResponse), 2 : (ElfrCloseEL, ElfrCloseELResponse), 4 : (ElfrNumberOfRecords, ElfrNumberOfRecordsResponse), 5 : (ElfrOldestRecord, ElfrOldestRecordResponse), 7 : (ElfrOpenELW, ElfrOpenELWResponse), 8 : (ElfrRegisterEventSourceW, ElfrRegisterEventSourceWResponse), 9 : (ElfrOpenBELW, ElfrOpenBELWResponse), 10 : (ElfrReadELW, ElfrReadELWResponse), 11 : (ElfrReportEventW, ElfrReportEventWResponse), } ################################################################################ # HELPER FUNCTIONS ################################################################################ def hElfrOpenBELW(dce, backupFileName = NULL): request = ElfrOpenBELW() request['UNCServerName'] = NULL request['BackupFileName'] = backupFileName request['MajorVersion'] = 1 request['MinorVersion'] = 1 return dce.request(request) def hElfrOpenELW(dce, moduleName = NULL, regModuleName = NULL): request = ElfrOpenELW() request['UNCServerName'] = NULL request['ModuleName'] = moduleName request['RegModuleName'] = regModuleName request['MajorVersion'] = 1 request['MinorVersion'] = 1 return dce.request(request) def hElfrCloseEL(dce, logHandle): request = ElfrCloseEL() request['LogHandle'] = logHandle resp = dce.request(request) return resp def hElfrRegisterEventSourceW(dce, moduleName = NULL, regModuleName = NULL): request = ElfrRegisterEventSourceW() request['UNCServerName'] = NULL request['ModuleName'] = moduleName request['RegModuleName'] = regModuleName request['MajorVersion'] = 1 request['MinorVersion'] = 1 return dce.request(request) def hElfrReadELW(dce, logHandle = '', readFlags = EVENTLOG_SEEK_READ|EVENTLOG_FORWARDS_READ, recordOffset = 0, numberOfBytesToRead = MAX_BATCH_BUFF): request = ElfrReadELW() request['LogHandle'] = logHandle request['ReadFlags'] = readFlags request['RecordOffset'] = recordOffset request['NumberOfBytesToRead'] = numberOfBytesToRead return dce.request(request) def hElfrClearELFW(dce, logHandle = '', backupFileName = NULL): request = ElfrClearELFW() request['LogHandle'] = logHandle request['BackupFileName'] = backupFileName return dce.request(request) def hElfrBackupELFW(dce, logHandle = '', backupFileName = NULL): request = ElfrBackupELFW() request['LogHandle'] = logHandle request['BackupFileName'] = backupFileName return dce.request(request) def hElfrNumberOfRecords(dce, logHandle): request = ElfrNumberOfRecords() request['LogHandle'] = logHandle resp = dce.request(request) return resp def hElfrOldestRecordNumber(dce, logHandle): request = ElfrOldestRecord() request['LogHandle'] = logHandle resp = dce.request(request) return resp
30.912718
149
0.605679
dec616c19128d689d72a89eab2cc6c3dd0a8b163
4,133
py
Python
src/common/admin.py
danpercic86/e-notary
ba15a9a80e2091593fb088feacfaf9574c816d6e
[ "Apache-2.0" ]
null
null
null
src/common/admin.py
danpercic86/e-notary
ba15a9a80e2091593fb088feacfaf9574c816d6e
[ "Apache-2.0" ]
null
null
null
src/common/admin.py
danpercic86/e-notary
ba15a9a80e2091593fb088feacfaf9574c816d6e
[ "Apache-2.0" ]
null
null
null
import os.path from typing import Tuple, Dict import pandas from django.conf import settings from django.contrib.admin import ModelAdmin, register from django.forms import ModelForm, FileField, FileInput from django.shortcuts import redirect from faker import Faker from common.models import Example, Client, IdUpload, Template from common.ocr import ocr class BaseModelAdmin(ModelAdmin): list_filter: Tuple = ("created", "modified") readonly_fields: Tuple = ("created", "modified") class SlugableModelAdmin(ModelAdmin): prepopulated_fields: Dict[str, Tuple] = {"slug": ("name",)} CREATED_MODIFIED = ( "Created / Modified", { "fields": ("created", "modified"), "description": "Info about the time this entry was added here or updated", }, ) @register(Example) class ExampleAdmin(BaseModelAdmin): fieldsets = ( (None, {"fields": ("name", "status", "status_changed", "published_at")}), CREATED_MODIFIED, ) list_display = ("name", "status", "status_changed", "published_at") list_editable = ("status",) readonly_fields = BaseModelAdmin.readonly_fields + ( "status_changed", "published_at", ) @register(Client) class ClientsAdmin(BaseModelAdmin): fieldsets = ( ( "Date client", { "fields": ( "first_name", "last_name", "cnp", "residence", "birthday", "id_series", "id_number", "id_emitted_by", "id_emitted_at", "registration_number", "face", "back", "template", "generated_doc", ) }, ), ( "Chitanță", { "fields": ( "cost", "tax", "receipt_series", "receipt_number", "receipt", ) }, ), CREATED_MODIFIED, ) readonly_fields = ("generated_doc", "receipt") + BaseModelAdmin.readonly_fields list_display = ("__str__", "template", "generated_doc", "receipt") @register(IdUpload) class IdUploadAdmin(ModelAdmin): def has_change_permission(self, request, obj=None) -> bool: return False def has_view_permission(self, request, obj=None) -> bool: return False def save_model(self, request, obj: IdUpload, form, change: bool) -> None: client = Client() fake = Faker() result = ocr( os.path.join(settings.MEDIA_ROOT, obj.face.name), os.path.join(settings.BASE_DIR, "templates", "template.jpeg"), ) client.first_name = result["first_name"] client.last_name = result["last_name"] client.birthday = pandas.to_datetime(result["birthday"]).date() client.id_emitted_at = pandas.to_datetime(result["id_emitted_at"]).date() client.id_emitted_by = result["id_emitted_by"] client.id_series = result["id_series"][:1] client.id_number = result["id_series"][1:] client.cnp = fake.unique.random_int(min=1000000000000, max=6999999999999) client.residence = fake.address() client.cost = obj.cost client.tax = obj.tax client.registration_number = obj.registration_number client.face = obj.face client.back = obj.back client.template = obj.template client.save() obj.client = client def response_add(self, request, obj, post_url_continue=None): return redirect(to=obj.client) class TemplatesForm(ModelForm): file = FileField( widget=FileInput(attrs={"accept": "application/docx"}), error_messages={"invalid": "Incarcă numai fișiere Microsoft Word (.docx)"}, ) class Meta: model = Template fields = "__all__" @register(Template) class TemplatesAdmin(BaseModelAdmin): pass # form = TemplatesForm
29.312057
83
0.574401
d32eadff7a7392d9e1a74357342aab26728337e0
2,994
py
Python
ext/djangojinja2.py
captainmalloc/jinja
540b260198285f0ed41fbe80c0b1b6f13be579c1
[ "BSD-3-Clause" ]
1
2020-07-06T05:53:18.000Z
2020-07-06T05:53:18.000Z
ext/djangojinja2.py
captainmalloc/jinja
540b260198285f0ed41fbe80c0b1b6f13be579c1
[ "BSD-3-Clause" ]
null
null
null
ext/djangojinja2.py
captainmalloc/jinja
540b260198285f0ed41fbe80c0b1b6f13be579c1
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ djangojinja2 ~~~~~~~~~~~~ Adds support for Jinja to Django. Configuration variables: ======================= ============================================= Key Description ======================= ============================================= `JINJA2_TEMPLATE_DIRS` List of template folders `JINJA2_EXTENSIONS` List of Jinja extensions to use `JINJA2_CACHE_SIZE` The size of the Jinja template cache. ======================= ============================================= :copyright: (c) 2009 by the Jinja Team. :license: BSD. """ from itertools import chain from django.conf import settings from django.http import HttpResponse from django.core.exceptions import ImproperlyConfigured from django.template.context import get_standard_processors from django.template import TemplateDoesNotExist from jinja2 import Environment, FileSystemLoader, TemplateNotFound from jinja2.defaults import DEFAULT_NAMESPACE # the environment is unconfigured until the first template is loaded. _jinja_env = None def get_env(): """Get the Jinja env and initialize it if necessary.""" global _jinja_env if _jinja_env is None: _jinja_env = create_env() return _jinja_env def create_env(): """Create a new Jinja environment.""" searchpath = list(settings.JINJA2_TEMPLATE_DIRS) return Environment(loader=FileSystemLoader(searchpath), auto_reload=settings.TEMPLATE_DEBUG, cache_size=getattr(settings, 'JINJA2_CACHE_SIZE', 400), extensions=getattr(settings, 'JINJA2_EXTENSIONS', ())) def get_template(template_name, globals=None): """Load a template.""" try: return get_env().get_template(template_name, globals=globals) except TemplateNotFound as e: raise TemplateDoesNotExist(str(e)) def select_template(templates, globals=None): """Try to load one of the given templates.""" env = get_env() for template in templates: try: return env.get_template(template, globals=globals) except TemplateNotFound: continue raise TemplateDoesNotExist(', '.join(templates)) def render_to_string(template_name, context=None, request=None, processors=None): """Render a template into a string.""" context = dict(context or {}) if request is not None: context['request'] = request for processor in chain(get_standard_processors(), processors or ()): context.update(processor(request)) return get_template(template_name).render(context) def render_to_response(template_name, context=None, request=None, processors=None, mimetype=None): """Render a template into a response object.""" return HttpResponse(render_to_string(template_name, context, request, processors), mimetype=mimetype)
34.413793
78
0.629927
11c195e99e0b5759ef285fcfa2c5eb571b586b6e
10,796
py
Python
google/ads/google_ads/v3/services/conversion_adjustment_upload_service_client.py
jphanwebstaurant/google-ads-python
600812b2afcc4d57f00b47dfe436620ce50bfe9b
[ "Apache-2.0" ]
1
2019-11-30T23:42:39.000Z
2019-11-30T23:42:39.000Z
google/ads/google_ads/v3/services/conversion_adjustment_upload_service_client.py
jphanwebstaurant/google-ads-python
600812b2afcc4d57f00b47dfe436620ce50bfe9b
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v3/services/conversion_adjustment_upload_service_client.py
jphanwebstaurant/google-ads-python
600812b2afcc4d57f00b47dfe436620ce50bfe9b
[ "Apache-2.0" ]
1
2020-09-30T17:04:06.000Z
2020-09-30T17:04:06.000Z
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accesses the google.ads.googleads.v3.services ConversionAdjustmentUploadService API.""" import pkg_resources import warnings from google.oauth2 import service_account import google.api_core.gapic_v1.client_info import google.api_core.gapic_v1.config import google.api_core.gapic_v1.method import google.api_core.gapic_v1.routing_header import google.api_core.grpc_helpers from google.ads.google_ads.v3.services import conversion_adjustment_upload_service_client_config from google.ads.google_ads.v3.services.transports import conversion_adjustment_upload_service_grpc_transport from google.ads.google_ads.v3.proto.services import conversion_adjustment_upload_service_pb2 _GAPIC_LIBRARY_VERSION = pkg_resources.get_distribution( 'google-ads', ).version class ConversionAdjustmentUploadServiceClient(object): """Service to upload conversion adjustments.""" SERVICE_ADDRESS = 'googleads.googleapis.com:443' """The default address of the service.""" # The name of the interface for this client. This is the key used to # find the method configuration in the client_config dictionary. _INTERFACE_NAME = 'google.ads.googleads.v3.services.ConversionAdjustmentUploadService' @classmethod def from_service_account_file(cls, filename, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ConversionAdjustmentUploadServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename) kwargs['credentials'] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file def __init__(self, transport=None, channel=None, credentials=None, client_config=None, client_info=None): """Constructor. Args: transport (Union[~.ConversionAdjustmentUploadServiceGrpcTransport, Callable[[~.Credentials, type], ~.ConversionAdjustmentUploadServiceGrpcTransport]): A transport instance, responsible for actually making the API calls. The default transport uses the gRPC protocol. This argument may also be a callable which returns a transport instance. Callables will be sent the credentials as the first argument and the default transport class as the second argument. channel (grpc.Channel): DEPRECATED. A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to ``transport``; doing so will raise an exception. client_config (dict): DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Raise deprecation warnings for things we want to go away. if client_config is not None: warnings.warn('The `client_config` argument is deprecated.', PendingDeprecationWarning, stacklevel=2) else: client_config = conversion_adjustment_upload_service_client_config.config if channel: warnings.warn('The `channel` argument is deprecated; use ' '`transport` instead.', PendingDeprecationWarning, stacklevel=2) # Instantiate the transport. # The transport is responsible for handling serialization and # deserialization and actually sending data to the service. if transport: if callable(transport): self.transport = transport( credentials=credentials, default_class=conversion_adjustment_upload_service_grpc_transport.ConversionAdjustmentUploadServiceGrpcTransport, ) else: if credentials: raise ValueError( 'Received both a transport instance and ' 'credentials; these are mutually exclusive.' ) self.transport = transport else: self.transport = conversion_adjustment_upload_service_grpc_transport.ConversionAdjustmentUploadServiceGrpcTransport( address=self.SERVICE_ADDRESS, channel=channel, credentials=credentials, ) if client_info is None: client_info = google.api_core.gapic_v1.client_info.ClientInfo( gapic_version=_GAPIC_LIBRARY_VERSION, ) else: client_info.gapic_version = _GAPIC_LIBRARY_VERSION self._client_info = client_info # Parse out the default settings for retry and timeout for each RPC # from the client configuration. # (Ordinarily, these are the defaults specified in the `*_config.py` # file next to this one.) self._method_configs = google.api_core.gapic_v1.config.parse_method_configs( client_config['interfaces'][self._INTERFACE_NAME], ) # Save a dictionary of cached API call functions. # These are the actual callables which invoke the proper # transport methods, wrapped with `wrap_method` to add retry, # timeout, and the like. self._inner_api_calls = {} # Service calls def upload_conversion_adjustments( self, customer_id, conversion_adjustments, partial_failure=None, validate_only=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Processes the given conversion adjustments. Args: customer_id (str): Required. The ID of the customer performing the upload. conversion_adjustments (list[Union[dict, ~google.ads.googleads_v3.types.ConversionAdjustment]]): Required. The conversion adjustments that are being uploaded. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.ads.googleads_v3.types.ConversionAdjustment` partial_failure (bool): Required. If true, successful operations will be carried out and invalid operations will return errors. If false, all operations will be carried out in one transaction if and only if they are all valid. This should always be set to true. validate_only (bool): If true, the request is validated but not executed. Only errors are returned, not results. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.ads.googleads_v3.types.UploadConversionAdjustmentsResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'upload_conversion_adjustments' not in self._inner_api_calls: self._inner_api_calls['upload_conversion_adjustments'] = google.api_core.gapic_v1.method.wrap_method( self.transport.upload_conversion_adjustments, default_retry=self._method_configs['UploadConversionAdjustments'].retry, default_timeout=self._method_configs['UploadConversionAdjustments'].timeout, client_info=self._client_info, ) request = conversion_adjustment_upload_service_pb2.UploadConversionAdjustmentsRequest( customer_id=customer_id, conversion_adjustments=conversion_adjustments, partial_failure=partial_failure, validate_only=validate_only, ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [('customer_id', customer_id)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata(routing_header) metadata.append(routing_metadata) return self._inner_api_calls['upload_conversion_adjustments'](request, retry=retry, timeout=timeout, metadata=metadata)
46.534483
170
0.663486
d39414a749071ddb7629db9ae8294506088e15f0
31,536
py
Python
test/selenium/src/lib/constants/locator.py
Smotko/ggrc-core
b3abb58b24e7559960d71a94ba79c75539e7fe29
[ "Apache-2.0" ]
null
null
null
test/selenium/src/lib/constants/locator.py
Smotko/ggrc-core
b3abb58b24e7559960d71a94ba79c75539e7fe29
[ "Apache-2.0" ]
12
2015-01-08T14:50:19.000Z
2017-11-29T19:37:53.000Z
test/selenium/src/lib/constants/locator.py
Smotko/ggrc-core
b3abb58b24e7559960d71a94ba79c75539e7fe29
[ "Apache-2.0" ]
1
2015-01-08T13:25:09.000Z
2015-01-08T13:25:09.000Z
# Copyright (C) 2015 Google Inc., authors, and contributors <see AUTHORS file> # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> # Created By: jernej@reciprocitylabs.com # Maintained By: jernej@reciprocitylabs.com """Locators for all the elements""" # pylint: disable=too-few-public-methods from selenium.webdriver.common.by import By # pylint: disable=import-error from lib.constants import objects from lib.constants import attribute class Login(object): """All locators for the login page""" BUTTON_LOGIN = (By.CSS_SELECTOR, "a.btn.btn-large.btn-info") class PageHeader(object): """All locators for the dashboard header (has the same name as the elemnt""" TOGGLE_LHN = (By.CSS_SELECTOR, ".lhn-trigger") BUTTON_DASHBOARD = (By.CSS_SELECTOR, '.header-content .to-my-work[' 'href="/dashboard"]') BUTTON_SEARCH = (By.CSS_SELECTOR, '.header-content [' 'data-toggle="unified-search"]') BUTTON_MY_TASKS = (By.CSS_SELECTOR, '.header-content [' 'href="/dashboard#task_widget"]') BUTTON_ALL_OBJECTS = (By.CSS_SELECTOR, '.header-content [' 'href="/objectBrowser"]') TOGGLE_USER_DROPDOWN = ( By.CSS_SELECTOR, '.header-content .dropdown-toggle') BUTTON_HELP = (By.CSS_SELECTOR, '.header-content [id="#page-help"]') # dropdown toggle BUTTON_ADMIN_DASHBOARD = ( By.CSS_SELECTOR, '.dropdown-menu [href="/admin#people_list_widget"]') BUTTON_MY_WORK = (By.CSS_SELECTOR, '.dropdown-menu [href="/dashboard"]') BUTTON_DATA_IMPORT = (By.CSS_SELECTOR, '.dropdown-menu [href="/import"]') BUTTON_DATA_EXPORT = (By.CSS_SELECTOR, '.dropdown-menu [href="/export"]') BUTTON_LOGOUT = (By.CSS_SELECTOR, '.dropdown-menu [href="/logout"]') NOTIFICATIONS = (By.CSS_SELECTOR, '.menu .user-dropdown .notify-wrap') CHECKBOX_DAILY_DIGEST = (By.CSS_SELECTOR, '.menu .user-dropdown input') CHECKBOX_DISABLED = (By.CSS_SELECTOR, '.menu .user-dropdown input.disabled') class Dashboard(object): """Locators for the dashbord page""" BUTTON_START_NEW_PROGRAM = ( By.CSS_SELECTOR, '.quick-list [data-object-singular="Program"]') BUTTON_START_NEW_AUDIT = ( By.CSS_SELECTOR, '.quick-list [data-object-singular="Audit"]') BUTTON_START_NEW_WORKFLOW = ( By.CSS_SELECTOR, '.quick-list [data-object-singular="Workflow"]') BUTTON_CREATE_NEW_OBJECT = ( By.CSS_SELECTOR, '.quick-list [href="#"]') BUTTON_ALL_OBJECTS = (By.CSS_SELECTOR, '.quick-list ' '[href="/objectBrowser"]') class LhnMenu(object): """Locators for the menu in header""" class _Locator(object): @staticmethod def get_accordion_button(label): return (By.CSS_SELECTOR, '[data-model-name="{}"]>a'.format(label)) @staticmethod def get_create_new_button(label): return ( By.CSS_SELECTOR, '[data-model-name="{}"] [data-test-id="button_lhn_create_new_program' '_522c563f"]'.format(label)) @staticmethod def get_accordion_count(label): return (By.CSS_SELECTOR, '[data-model-name="{}"] .item-count'.format( label)) @staticmethod def get_accordion_members(object_name): return ( By.CSS_SELECTOR, '[data-model-name="{}"]>.content>.sub-level>li'.format(object_name)) @staticmethod def get_spinny(object_name): return (By.CSS_SELECTOR, '[data-model-name="{}"] .spinny'.format( object_name)) class __metaclass__(type): def __init__(self, *args): for object_singular, object_plural in zip(objects.ALL_SINGULAR, objects.ALL_PLURAL): capitalized_name = object_singular.title() # handle underscore in object names if "_" in capitalized_name: capitalized_name = capitalized_name.title().replace("_", "") # set lhn items setattr(self, attribute.TOGGLE + object_plural, self._Locator.get_accordion_button(capitalized_name)) setattr(self, attribute.BUTTON_CREATE_NEW + object_plural, self._Locator.get_create_new_button(capitalized_name)) setattr(self, attribute.COUNT + object_plural, self._Locator.get_accordion_count(capitalized_name)) setattr(self, attribute.SPINNY + object_plural, self._Locator.get_spinny(capitalized_name)) setattr(self, attribute.ACCORDION_MEMBERS + object_plural, self._Locator.get_accordion_members(capitalized_name)) LHN_MENU = (By.ID, "lhn") MODAL = (By.CSS_SELECTOR, '[id="ajax-lhn_modal-javascript:--"]') EXTENDED_INFO = (By.CSS_SELECTOR, '.extended-info.in') FILTER = (By.CSS_SELECTOR, '.lhs-search') FILTER_TEXT_BOX = (By.CSS_SELECTOR, '.lhs-search>.widgetsearch') FILTER_SUBMIT_BUTTON = ( By.CSS_SELECTOR, '.lhs-search>.widgetsearch-submit') FILTER_CLEAR_BUTTON = ( By.CSS_SELECTOR, '.lhs-search [data-title="Clear filters"]') LHS_ITEM = (By.CSS_SELECTOR, '[test-data-id="lhs-item_3ad27b8b"]') ALL_OBJECTS = (By.CSS_SELECTOR, '[data-test-id="all_objects_e0345ec4"]') MY_OBJECTS = (By.CSS_SELECTOR, '[data-test-id="my_objects_6fa95ae1"]') PIN = (By.CSS_SELECTOR, '.lhn-pin') # lhn items DIRECTIVES = (By.CSS_SELECTOR, '[data-test-id="directives_66116337"]') TOGGLE_CONTROLS_OR_OBJECTIVES = ( By.CSS_SELECTOR, '[data-test-id="controls/objectives_66116337"]') TOGGLE_PEOPLE_OR_GROUPS = ( By.CSS_SELECTOR, '[data-test-id="people/groups_66116337"]') TOGGLE_ASSETS_OR_BUSINESS = ( By.CSS_SELECTOR, '[data-test-id="assets/business_66116337"]') TOGGLE_RISK_OR_THREATS = ( By.CSS_SELECTOR, '[data-test-id="risk/threats_66116337"]') # workflows labels BUTTON_WORKFLOWS_ACTIVE = ( By.CSS_SELECTOR, '[data-for="Workflow"]>[data-value="Active"]') BUTTON_WORKFLOWS_DRAFT = ( By.CSS_SELECTOR, '[data-for="Workflow"]>[data-value="Draft"]') BUTTON_WORKFLOWS_INACTIVE = ( By.CSS_SELECTOR, '[data-for="Workflow"]>[data-value="Inactive"]') class ExtendedInfo(object): """Locators for the extended info tooltip in LHN after hovering over a member object""" BUTTON_MAP_TO = (By.CSS_SELECTOR, '.extended-info.in .map-to-page-object') ALREADY_MAPPED = ( By.CSS_SELECTOR, '.extended-info.in .links .primary:not(.map-to-page-object)') class BaseModalCreateNew(object): """Locators shared with create new object modals""" # labels MODAL_TITLE = (By.CSS_SELECTOR, '[id="ajax-modal-javascript:--"]>div>h2') TITLE = (By.CSS_SELECTOR, '.modal-body form>div:nth-child(2) .span6>label') # user input elements UI_TITLE = ( By.CSS_SELECTOR, '.modal-body form>div:nth-child(2) .span6>input') class ModalCreateNewProgram(BaseModalCreateNew): """Locators for the program modal visible when creating a new modal from LHN""" UI_TITLE = (By.CSS_SELECTOR, '[data-test-id="new_program_field_title_a63ed79d"]') UI_DESCRIPTION = (By.CSS_SELECTOR, '[data-test-id="new_program_field_description_1fb8bc06"]' '>iframe.wysihtml5-sandbox') UI_NOTES = (By.CSS_SELECTOR, '[data-test-id="new_program_field_notes_75b8bc05"]' '>iframe.wysihtml5-sandbox') UI_CODE = (By.CSS_SELECTOR, '[data-test-id="new_program_field_code_334276e2"]') UI_STATE = (By.CSS_SELECTOR, '[data-test-id="new_program_dropdown_state_036a1fa6"]') BUTTON_HIDE_OPTIONAL_FIELDS = (By.ID, "formHide") BUTTON_SHOW_ALL_OPTIONAL_FIELDS = (By.ID, "formHide") UI_PRIMARY_CONTACT = (By.CSS_SELECTOR, '[data-test-id=' '"new_program_field_primary_contact_' '86160053"]') DROPDOWN_CONTACT = (By.CSS_SELECTOR, '.ui-menu-item') UI_SECONDARY_CONTACT = (By.CSS_SELECTOR, '[data-test-id=' '"new_program_field_secondary_' 'contact_' '86160053"]') UI_PROGRAM_URL = (By.CSS_SELECTOR, '[data-test-id=' '"new_program_field_program_url_' '86160053"]') UI_REFERENCE_URL = (By.CSS_SELECTOR, '[data-test-id=' '"new_program_field_reference_url_' '86160053"]') UI_EFFECTIVE_DATE = (By.CSS_SELECTOR, '[data-test-id=' '"new_program_field_effective_date_' 'f2783a28"]') UI_STOP_DATE = (By.CSS_SELECTOR, '[data-test-id=' '"new_program_field_stop_date_f2783a28"]') DATE_PICKER = (By.CSS_SELECTOR, '.ui-datepicker-calendar [' 'data-handler="selectDay"]') TITLE = (By.CSS_SELECTOR, '[data-test-id="label_title_2c925d94"]') DESCRIPTION = (By.CSS_SELECTOR, '[data-test-id="label_description_2c925d94"]') PRIVACY = (By.CSS_SELECTOR, '[data-test-id="label_privacy_2c925d94"]') PROGRAM_URL = (By.CSS_SELECTOR, '[data-test-id="label_program_url_2c925d94"]') class ModalCreateNewOrgGroup(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" class ModalCreateNewRisk(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" UI_DESCRIPTION = ( By.CSS_SELECTOR, '.modal-body form>div:nth-child(3) iframe') class ModalCreateRequest(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" class ModalCreateNewDataAsset(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" class ModalCreateNewProcess(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" class ModalCreateNewProject(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" class ModalCreateNewSystem(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" class ModalCreateNewProduct(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" class ModalCreateNewControl(BaseModalCreateNew): """Locators for the control modal visible when creating a new modal from LHN""" class _Locator(object): @staticmethod def get_asessor_row(first_id, second_id): return ( By.CSS_SELECTOR, '.modal-body div>form>div>div:nth-child({})>div:nth-child({}) ' 'label'.format(first_id, second_id)) @staticmethod def get_dropdown_item(first_id, second_id): return ( By.CSS_SELECTOR, '.modal-body div>form>div>div:nth-child({})>div:nth-child({}) ' 'select'.format(first_id, second_id)) # labels DESCRIPTION = ( By.CSS_SELECTOR, '.modal-body form>div:nth-child(3) .span6>label') TEST_PLAN = (By.CSS_SELECTOR, '[data-id="test_plan_hidden"] label') NOTES = (By.CSS_SELECTOR, '[data-id="note_hidden"] label') CODE = (By.CSS_SELECTOR, '[data-id="code_hidden"] label') KIND_OR_NATURE = ( By.CSS_SELECTOR, '.modal-body div:nth-child(6) div:nth-child(2) div:nth-child(1) label') FRAUD_RELATED = ( By.CSS_SELECTOR, '.modal-body div:nth-child(6) div:nth-child(2) div:nth-child(2) label') EFFECTIVE_DATE = _Locator.get_asessor_row(3, 1) FREQUENCY = _Locator.get_asessor_row(4, 1) ASSERTIONS = _Locator.get_asessor_row(4, 2) PRINCIPAL_ASSESSOR = _Locator.get_asessor_row(5, 1) SECONDARY_ASSESSOR = _Locator.get_asessor_row(5, 2) OWNER = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>form>div:nth-child(3) div:nth-child(2) ' 'label') PRIMARY_CONTACT = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>form>div:nth-child(4) div:nth-child(2)>' 'div:nth-child(1)>div>label') SECONDARY_CONTACT = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>form>div:nth-child(4) div:nth-child(2)>' 'div:nth-child(2)>div>label') CONTROL_URL = ( By.CSS_SELECTOR, '.modal-body form>div:nth-child(5) div:nth-child(2)>div:nth-child(1)>div' '>label') REFERENCE_URL = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>form>div:nth-child(5) div:nth-child(2)>' 'div:nth-child(2)>div>label') SIGNIFICANCE = ( By.CSS_SELECTOR, '.modal-body div:nth-child(6) div:nth-child(2) div:nth-child(3) label') TYPE_OR_MEANS = ( By.CSS_SELECTOR, '.modal-body div:nth-child(6) div:nth-child(2) div:nth-child(4) label') STOP_DATE = ( By.CSS_SELECTOR, '.modal-body div:nth-child(6) div:nth-child(3) div:nth-child(2) label') CATEGORIES = ( By.CSS_SELECTOR, '.modal-body div>form>div>div:nth-child(4)>div:nth-child(3) label') STATE = ( By.CSS_SELECTOR, '.modal-body div>form>div>div:nth-child(5)>div:nth-child(3) label') # user input elements UI_DESCRIPTION = ( By.CSS_SELECTOR, '.modal-body form>div:nth-child(3) iframe') UI_TEST_PLAN = (By.CSS_SELECTOR, '[data-id="test_plan_hidden"] iframe') UI_NOTES = (By.CSS_SELECTOR, '[data-id="note_hidden"] iframe') UI_CODE = (By.CSS_SELECTOR, '[data-id="code_hidden"] input') UI_PRIMARY_CONTACT = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>form>div:nth-child(4) div:nth-child(2)>' 'div:nth-child(1)>div>input') UI_SECONDARY_CONTACT = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>form>div:nth-child(4) div:nth-child(2)>' 'div:nth-child(2)>div>input') UI_CONTROL_URL = ( By.CSS_SELECTOR, '.modal-body form>div:nth-child(5) div:nth-child(2)>div:nth-child(1)>div' '>input') UI_REFERENCE_URL = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>form>div:nth-child(5) div:nth-child(2)>' 'div:nth-child(2)>div>input') DATEPICKER_EFFECTIVE_DATE = ( By.CSS_SELECTOR, '.modal-body div>form>div>div:nth-child(3)>div:nth-child(1) input') DATEPICKER_STOP_DATE = ( By.CSS_SELECTOR, '.modal-body div>form>div>div:nth-child(3)>div:nth-child(2) input') # dorpdowns DROPDOWN_KIND_OR_NATURE = _Locator.get_dropdown_item(2, 1) DROPDOWN_FRAUD_RELATED = _Locator.get_dropdown_item(2, 2) DROPDOWN_SIGNIFICANCE = _Locator.get_dropdown_item(2, 3) DROPDOWN_TYPE_OR_MEANS = _Locator.get_dropdown_item(2, 4) DROPDOWN_FREQUENCY = _Locator.get_dropdown_item(4, 1) DROPDOWN_STATE = _Locator.get_dropdown_item(5, 3) SELECTABLE_ASSERTIONS = _Locator.get_dropdown_item(4, 2) SELECTABLE_CATEGORIES = _Locator.get_dropdown_item(4, 3) # buttons BUTTON_ADD_OWNER = (By.CSS_SELECTOR, 'isolate-form .btn') BUTTON_HIDE_ALL_OPTIONAL_FIELDS = (By.CSS_SELECTOR, '#formHide') class ModalCreateNewIssue(BaseModalCreateNew): """Locators for the issue modal visible when creating a new modal from LHN""" class ModalCreateNewRequest(BaseModalCreateNew): """Locators for the request modal visible when creating a new modal from LHN""" class ModalEditObject(BaseModalCreateNew): """Locators for a generic edit object modal""" BUTTON_DELETE = ( By.CSS_SELECTOR, '.deny-buttons [data-toggle="modal-ajax-deleteform"]') class ModalCreateNewObject(BaseModalCreateNew): """Locators for a generic new object modal""" UI_TITLE = (By.CSS_SELECTOR, '[data-id="title_txtbx"]') BUTTON_SAVE_AND_CLOSE = ( By.CSS_SELECTOR, '.modal-footer .confirm-buttons [data-toggle="modal-submit"]') BUTTON_SAVE_AND_ADD_ANOTHER = ( By.CSS_SELECTOR, '.confirm-buttons [data-toggle="modal-submit-addmore"]') class ModalCustomAttribute(object): """Locators for a generic custom attributes modal in admin dashboard""" MODAL_TITLE = (By.CSS_SELECTOR, '.modal-header h2') ATTRIBUTE_TITLE = (By.CSS_SELECTOR, '.modal-body div:nth-child(1)>label') INLINE_HELP = (By.CSS_SELECTOR, '.modal-body div:nth-child(2)>label') ATTRIBUTE_TYPE = (By.CSS_SELECTOR, '.modal-header h2') PLACEHOLDER = (By.CSS_SELECTOR, '.modal-header h2') MANDATORY = (By.CSS_SELECTOR, '.modal-header h2') UI_ATTRIBUTE_TITLE = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>input[tabindex="1"]') UI_INLINE_HELP = ( By.CSS_SELECTOR, '.modal-body div:nth-child(1)>input[tabindex="4"]') UI_PLACEHOLDER = (By.CSS_SELECTOR, '.modal-body div:nth-child(2)>input') CHECKBOX_MANDATORY = (By.CSS_SELECTOR, '.modal-body [type="checkbox"]') BUTTON_ADD_ANOTHER = ( By.CSS_SELECTOR, '.confirm-buttons [data-toggle="modal-submit-addmore"]') BUTTON_SAVE_AND_CLOSE = ( By.CSS_SELECTOR, '.modal-footer .confirm-buttons [data-toggle="modal-submit"]') class WidgetBar(object): """Locators for the bar containing the widgets/tabs""" class _Locator(object): @staticmethod def get_widget(object_name): return (By.CSS_SELECTOR, '[href="#{}_widget"]'.format(object_name)) class __metaclass__(type): def __init__(self, *args): for object_singular, object_plural in zip(objects.ALL_SINGULAR, objects.ALL_PLURAL): name = object_singular.lower() setattr(self, object_plural, self._Locator.get_widget(name)) BUTTON_ADD = (By.CSS_SELECTOR, '[data-test-id="button_widget_add_2c925d94"]') TAB_WIDGET = (By.CSS_SELECTOR, ".object-nav .active") ADMIN_PEOPLE = _Locator.get_widget("people_list") ADMIN_ROLES = _Locator.get_widget("roles_list") ADMIN_EVENTS = _Locator.get_widget("events_list") ADMIN_CUSTOM_ATTRIBUTE = _Locator.get_widget("custom_attribute") INFO = _Locator.get_widget("info") CUSTOM_ATTRIBUTES = _Locator.get_widget("custom_attribute") EVENTS = _Locator.get_widget("events_list") ROLES = _Locator.get_widget("roles_list") RISK_ASSESSMENTS = _Locator.get_widget("risk_assessment") TASKS = _Locator.get_widget("task") class WidgetBarButtonAddDropdown(object): """Locators for the button/dropdown "add widget" in widget bar""" class _Locator(object): @staticmethod def get_dropdown_item(object_name): return (By.CSS_SELECTOR, '[data-test-id="button_widget_add_2c925d94"] ' '[href="#{}_widget"]'.format(object_name)) class __metaclass__(type): def __init__(self, *args): for object_ in objects.ALL_PLURAL: name = object_.lower() setattr(self, object_, self._Locator.get_dropdown_item(name)) THREAD_ACTORS = _Locator.get_dropdown_item("threat_actor") WORKFLOW_TASKS = _Locator.get_dropdown_item("workflow_task") class ObjectWidget(object): """Locators for a generic widget""" CONTROL_COLUMN_TITLE = ( By.CSS_SELECTOR, '.header .span4 .title-heading .widget-col-title') CONTROL_OWNER = ( By.CSS_SELECTOR, '.header .span4 [data-field="contact.name|email"]') COTNROL_STATE = ( By.CSS_SELECTOR, '.header .span4 [data-field="status"]') MEMBERS_TITLE_LIST = ( By.CSS_SELECTOR, '.object-area .tree-structure .select .span4:nth-child(1)') INFO_PANE = (By.CSS_SELECTOR, '.sticky-info-panel') class ModalDeleteObject(object): MODAL_TITLE = (By.CSS_SELECTOR, '.modal-header>h2') CONFIRMATION_TEXT = (By.CSS_SELECTOR, '.modal-body>div>p') OBJECT_TITLE = (By.CSS_SELECTOR, '.modal-body>div>p>span') BUTTON_DELETE = ( By.CSS_SELECTOR, '.modal-footer .confirm-buttons>[data-toggle="delete"]') class BaseInfoWidget(object): """Locators that are common to all info widgets""" BUTTON_SETTINGS = (By.CSS_SELECTOR, '.info-pane-utility') TITLE = (By.CSS_SELECTOR, '[data-test-id="title_0ad9fbaf"] h6') TITLE_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_0ad9fbaf"] h3') class WidgetInfoProgram(BaseInfoWidget): """Locators for the info program widget""" PERMALINK_ALERT = (By.CSS_SELECTOR, '.content>.flash>.alert-success') ALERT_LINK_COPIED = (By.CSS_SELECTOR, '.alert.alert-success') MODAL_DELETE = (By.ID, '[id="ajax-lhn_modal-javascript:--"]') MODAL_DELETE_CLOSE = (By.CSS_SELECTOR, '.lhn_modal .grcicon-x-grey') OBJECT_REVIEW = (By.CSS_SELECTOR, '[data-test-id="title_review_0ad9fbaf"] h6') SUBMIT_FOR_REVIEW = (By.CSS_SELECTOR, '[data-test-id="title_review_0ad9fbaf"] ' '[href="javascript://"]') DESCRIPTION = (By.CSS_SELECTOR, '[data-test-id="title_description_7a906d2e"] h6') DESCRIPTION_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_description_' 'content_7a906d2e"]') NOTES = (By.CSS_SELECTOR, '[data-test-id="title_notes_ef5bc3a71e88"] ' 'h6') NOTES_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_notes_ef5bc3a71e88"]>div') MANAGER = (By.CSS_SELECTOR, '[data-test-id="title_manager_7a906d2e"] ' 'h6') MANAGER_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_manager_7a906d2e"] ' '[data-test-id="text_manager_7a906d2e"]') PROGRAM_URL = (By.CSS_SELECTOR, '[data-test-id="title_program_url_aa7d1a65"] h6') PROGRAM_URL_ENTERED = (By.CSS_SELECTOR, '[data-test-id="text_program_url_aa7d1a65"]') REFERENCE_URL = (By.CSS_SELECTOR, '[data-test-id="title_reference_url_aa7d1a65"]') REFERENCE_URL_ENTERED = (By.CSS_SELECTOR, '[data-test-id="text_reference_url_aa7d1a65"]') TOGGLE_SHOW_ADVANCED = (By.CSS_SELECTOR, '[data-test-id="button_advanced_cf47bc01"]') TOGGLE_SHOW_ADVANCED_ACTIVATED = ( By.CSS_SELECTOR, '[data-test-id="button_advanced_cf47bc01"].active') CODE = (By.CSS_SELECTOR, '[data-test-id="title_code_cf47bc01"] h6') CODE_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_code_cf47bc01"] p') EFFECTIVE_DATE = (By.CSS_SELECTOR, '[data-test-id="title_effective_date_cf47bc01"] h6') EFFECTIVE_DATE_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_effective_date_' 'cf47bc01"] p') STOP_DATE = (By.CSS_SELECTOR, '[data-test-id="title_stop_date_cf47bc01"] h6') STOP_DATE_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_stop_date_cf47bc01"] p') STATE = (By.CSS_SELECTOR, '[dadata-test-id="new_program_button_save_and_new_86160053"' ' ta-test-id="title_state_0ad9fbaf"] h6') STATE_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_state_value_0ad9fbaf"]') PRIMARY_CONTACT = (By.CSS_SELECTOR, '[data-test-id="title_primary_' 'contact_696de7244b84"] h6') PRIMARY_CONTACT_ENTERED = ( By.CSS_SELECTOR, '[data-test-id="text_primary_contact_' '696de7244b84"] [data-test-id="text_' 'manager_7a906d2e"]') SECONDARY_CONTACT = ( By.CSS_SELECTOR, '[data-test-id="title_contacts_696de7244b84"] ' 'h6:nth-child(2)') SECONDARY_CONTACT_ENTERED = ( By.CSS_SELECTOR, '[data-test-id="text_secondary_contact_' '696de7244b84"] [data-test-id="text_manager_' '7a906d2e"]') PRIVATE_PROGRAM = (By.CSS_SELECTOR, '[data-test-id="title_private_ec758af9"] h6') ICON_LOCK = (By.CSS_SELECTOR, '[data-test-id="icon_private_ec758af9"]') class WidgetInfoRequest(BaseInfoWidget): """Locators for the request info widget""" class WidgetInfoRisk(BaseInfoWidget): """Locators for the risk info widget""" class WidgetInfoOrgGroup(BaseInfoWidget): """Locators for the org group info widget""" class WidgetInfoIssue(BaseInfoWidget): """Locators for the org group info widget""" class WidgetInfoRegulations(BaseInfoWidget): """Locators for the regulation info widget""" class WidgetInfoWorkflow(BaseInfoWidget): """Locators for the workflow info widget""" class WidgetInfoAudit(BaseInfoWidget): """Locators for the audit info widget""" class WidgetInfoAssessment(BaseInfoWidget): """Locators for the assessment info widget""" class WidgetInfoPolicy(BaseInfoWidget): """Locators for the regulation info widget""" class WidgetInfoStandard(BaseInfoWidget): """Locators for the standard info widget""" class WidgetInfoContract(BaseInfoWidget): """Locators for the contract info widget""" class WidgetInfoClause(BaseInfoWidget): """Locators for the clause info widget""" class WidgetInfoSection(BaseInfoWidget): """Locators for the section info widget""" class WidgetInfoControl(BaseInfoWidget): """Locators for the control info widget""" class WidgetInfoObjective(BaseInfoWidget): """Locators for the objective info widget""" class WidgetInfoPeople(BaseInfoWidget): """Locators for the people info widget""" class WidgetInfoVendor(BaseInfoWidget): """Locators for the vendor info widget""" class WidgetInfoAccessGroup(BaseInfoWidget): """Locators for the access group info widget""" class WidgetInfoSystem(BaseInfoWidget): """Locators for the system info widget""" class WidgetInfoProcess(BaseInfoWidget): """Locators for the process info widget""" class WidgetInfoProduct(BaseInfoWidget): """Locators for the product info widget""" class WidgetInfoFacility(BaseInfoWidget): """Locators for the facility info widget""" class WidgetInfoProject(BaseInfoWidget): """Locators for the project info widget""" class WidgetInfoMarket(BaseInfoWidget): """Locators for the market info widget""" class WidgetInfoDataAsset(BaseInfoWidget): """Locators for the data asset info widget""" class WidgetInfoThreat(BaseInfoWidget): """Locators for the data asset info widget""" class WidgetAdminRoles(object): """Locators for the roles widget on the admin dashboard""" class _Locator(object): @staticmethod def get_role(child_id): return (By.CSS_SELECTOR, '[id="roles_list_widget"] li:nth-child({}) .span8>div' .format(child_id)) @staticmethod def get_scope(child_id): return (By.CSS_SELECTOR, '[id="roles_list_widget"] li:nth-child({}) .span4 ' '.scope'.format(child_id)) class __metaclass__(type): def __init__(self, *args): items = ( "EDITOR", "GRC_ADMIN", "PROGRAM_EDITOR", "PROGRAM_OWNER", "PROGRAM_READER", "READER", "WORKFLOW_MEMBER", "WORKFLOW_OWNER") for id_, name in enumerate(items, start=2): setattr(self, attribute.ROLE + name, self._Locator.get_role(id_)) setattr(self, attribute.SCOPE + name, self._Locator.get_scope(id_)) class WidgetInfoSettingsButton(object): """Locators for the control info widget""" class _Locator(object): @staticmethod def get_dropdown_item(child_id): return (By.CSS_SELECTOR, '.info-pane-utility .dropdown-menu li:nth-child({})' .format(child_id)) TITLE_ENTERED = (By.CSS_SELECTOR, '[data-test-id="title_0ad9fbaf"]>h3') DROPDOWN_SETTINGS_EDIT = _Locator.get_dropdown_item(1) DROPDOWN_SETTINGS_PERMALINK = _Locator.get_dropdown_item(2) DROPDOWN_SETTINGS_DELETE = _Locator.get_dropdown_item(3) class BaseWidgetGeneric(object): """Locators shared amongst non info&admin widgets""" _object_name = None class __metaclass__(type): """For sharing parametrized class attributes we simply define how a class should look like. Note that the same functionality can be implemented using properties though with more code.""" def __init__(self, *args): self.TITLE = ( By.CSS_SELECTOR, '#{}_widget .sticky-filter .filter-title h6' .format(self._object_name)) self.TEXTFIELD = ( By.CSS_SELECTOR, '#{}_widget .sticky-filter .filter-input'.format(self._object_name)) self.BUTTON_SUBMIT = ( By.CSS_SELECTOR, '#{}_widget .sticky-filter .filter-button [type="submit"]' .format(self._object_name)) self.BUTTON_RESET = ( By.CSS_SELECTOR, '#{}_widget .sticky-filter .filter-button [type="reset"]' .format(self._object_name)) self.BUTTON_HELP = ( By.CSS_SELECTOR, '#{}_widget .sticky-filter .filter-button #page-help' .format(self._object_name)) class WidgetControls(BaseWidgetGeneric): """Locators for control widget""" _object_name = "control" class WidgetProducts(BaseWidgetGeneric): """Locators for product widget""" _object_name = "product" class WidgetProjects(BaseWidgetGeneric): """Locators for project widget""" _object_name = "project" class WidgetSystems(BaseWidgetGeneric): """Locators for system widget""" _object_name = "system" class WidgetDataAssets(BaseWidgetGeneric): """Locators for system widget""" _object_name = "data_asset" class WidgetProcesses(BaseWidgetGeneric): """Locators for system widget""" _object_name = "process" class WidgetIssues(BaseWidgetGeneric): """Locators for system widget""" _object_name = "issue" class AdminCustomAttributes(object): """Locators for the widget custom attributes in admin dashboard""" class _Locator(object): @staticmethod def get_toggle(child_id): return (By.CSS_SELECTOR, '.tree-structure li:nth-child({}) div ' '.openclose'.format(child_id)) @staticmethod def get_programs_label(child_id): return ( By.CSS_SELECTOR, '.tree-structure li:nth-child(5) div thead>tr>th:nth-child({})' .format(child_id)) class __metaclass__(type): def __init__(self, *args): items = ( objects.WORKFLOWS, "RISK_ASSESSMENTS", objects.THREATS, objects.RISKS, objects.PROGRAMS, objects.AUDITS, objects.OBJECTIVES, objects.SECTIONS, objects.CONTROLS, objects.ISSUES, objects.ASSESSMENTS, objects.STANDARDS, objects.REGULATIONS, objects.POLICIES, objects.CONTRACTS, objects.CLAUSES, objects.REQUESTS, objects.VENDORS, objects.PEOPLE, objects.ACCESS_GROUPS, objects.ORG_GROUPS, objects.PRODUCTS, objects.MARKETS, objects.PROCESSES, objects.FACILITIES, objects.PROJECTS, objects.DATA_ASSETS, objects.SYSTEMS) for id_, name in enumerate(items, start=1): setattr(self, attribute.TOGGLE + name.upper(), self._Locator.get_toggle(id_)) FILTER_INPUT_FIELD = (By.CLASS_NAME, 'filter-input') FILTER_BUTTON_SUBMIT = (By.CSS_SELECTOR, '.filter-button>[type="submit"]') FILTER_BUTTON_RESET = (By.CSS_SELECTOR, '.filter-button>[type="reset"]') # programs dropdown BUTTON_ADD_CUSTOM_PROGRAM_ATTR = ( By.CSS_SELECTOR, '.tree-structure li:nth-child(5)' ' [data-toggle="modal-ajax-form"]') PROGRAMS_LABEL_ATTRIBUTE_NAME = _Locator.get_programs_label(1) PROGRAMS_LABEL_ATTRIBUTE_TYPE = _Locator.get_programs_label(2) PROGRAMS_LABEL_MANDATORY = _Locator.get_programs_label(3) PROGRAMS_LABEL_EDIT = _Locator.get_programs_label(4) LISTED_MEMBERS = ( By.CSS_SELECTOR, '.tree-structure li:nth-child(5) div tbody>tr') BUTTON_LISTED_MEMBERS_EDIT = ( By.CSS_SELECTOR, '.tree-structure li:nth-child(5) div tbody>tr>td>ul .fa-pencil-square-o')
37.101176
79
0.668411
120801f0b5021e3d0b3926ac63f4f25c736a7caa
341
py
Python
biobb_dna/utils/transform.py
bioexcel/biobb_dna
7b61937d1683629949ffd7e1abb55831dcd25060
[ "Apache-2.0" ]
null
null
null
biobb_dna/utils/transform.py
bioexcel/biobb_dna
7b61937d1683629949ffd7e1abb55831dcd25060
[ "Apache-2.0" ]
1
2021-10-30T07:25:54.000Z
2021-10-30T07:25:54.000Z
biobb_dna/utils/transform.py
bioexcel/biobb_dna
7b61937d1683629949ffd7e1abb55831dcd25060
[ "Apache-2.0" ]
null
null
null
def inverse_complement(sequence, dna=True): """compute inverse complement sequence.""" if dna: A_complement = "T" else: A_complement = "U" complement = { "A": A_complement, A_complement: "A", "G": "C", "C": "G" } return "".join([complement[b] for b in sequence])[::-1]
24.357143
59
0.524927
5b29ed2d28e0d9be6e72da847eac5332061bd8c9
11,006
py
Python
main.py
yunsujeon/BMT
a1598c589fa5cdb5a6cb257cda1da1593d05f8d7
[ "MIT" ]
null
null
null
main.py
yunsujeon/BMT
a1598c589fa5cdb5a6cb257cda1da1593d05f8d7
[ "MIT" ]
null
null
null
main.py
yunsujeon/BMT
a1598c589fa5cdb5a6cb257cda1da1593d05f8d7
[ "MIT" ]
null
null
null
import argparse from pprint import pprint from utilities.config_constructor import Config from scripts.train_captioning_module import train_cap from scripts.train_proposal_generator import train_prop from scripts.eval_on_learned_props import eval_on_learned_props def main(cfg): if cfg.procedure == 'train_cap': train_cap(cfg) elif cfg.procedure == 'train_prop': train_prop(cfg) elif cfg.procedure == 'evaluate': eval_on_learned_props(cfg) else: raise NotImplementedError if __name__ == "__main__": ''' Note, that the arguments are shared for both train_cap and train_prop that leads to the situation in which an argument is defined but unused (--word_emb_caps for train_prop case). ''' parser = argparse.ArgumentParser(description='Run experiment') ## DATA # paths to the precalculated train meta files parser.add_argument('--train_meta_path', type=str, default='./data/train.csv') parser.add_argument('--val_1_meta_path', type=str, default='./data/val_1.csv') parser.add_argument('--val_2_meta_path', type=str, default='./data/val_2.csv') parser.add_argument('--modality', type=str, default='audio_video', choices=['audio', 'video', 'audio_video'], help='modality to use. if audio_video both audio and video are used') parser.add_argument('--video_feature_name', type=str, default='i3d') parser.add_argument('--audio_feature_name', type=str, default='vggish') parser.add_argument('--video_features_path', type=str, default='./data/i3d_25fps_stack64step64_2stream_npy/') parser.add_argument('--audio_features_path', type=str, default='./data/vggish_npy/') parser.add_argument('--d_vid', type=int, default=1024, help='raw feature dimension') parser.add_argument('--d_aud', type=int, default=128, help='raw feature dimension') parser.add_argument('--word_emb_caps', default='glove.840B.300d', type=str, help='Embedding code name from torchtext.vocab.Vocab') parser.add_argument('--unfreeze_word_emb', dest='unfreeze_word_emb', action='store_true', default=False, help='Whether to finetune the pre-trained text embeddings') parser.add_argument('--feature_timespan_in_fps', type=int, default=36,#default : 64 help='how many fps the input features will temporally cover') parser.add_argument('--fps_at_extraction', type=int, default=15,# default : 25 help='how many fps were used at feature extraction') parser.add_argument('--audio_feature_timespan', type=float, default=0.96, help='audio feature timespan') parser.add_argument('--train_json_path', type=str, default='./data/train.json') ## TRAINING parser.add_argument('--procedure', type=str, required=True, choices=['train_cap', 'train_prop', 'evaluate']) parser.add_argument('--device_ids', type=int, nargs='+', default=[0], help='separated by a whitespace') parser.add_argument('--start_token', type=str, default='<s>', help='starting token') parser.add_argument('--end_token', type=str, default='</s>', help='ending token') parser.add_argument('--pad_token', type=str, default='<blank>', help='padding token') parser.add_argument('--max_len', type=int, default=30, help='maximum size of 1by1 prediction') parser.add_argument('--min_freq_caps', type=int, default=1, help='a word should appear min_freq times in train dataset to be in the vocab') parser.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'sgd']) parser.add_argument('--betas', type=float, nargs=2, default=[0.9, 0.999], help='betas in adam') parser.add_argument('--eps', type=float, default=1e-8, help='eps in adam') parser.add_argument('--momentum', type=float, default=0.0) parser.add_argument('--scheduler', type=str, default='constant', choices=['constant', 'reduce_on_plateau'], help='lr scheduler') parser.add_argument('--lr', type=float, default=5e-5, help='lr (if scheduler is constant)') parser.add_argument('--weight_decay', type=float, default=0) parser.add_argument('--lr_patience', type=int, help='ReduceLROnPlateau arguments') parser.add_argument('--lr_reduce_factor', type=float, help='ReduceLROnPlateau arguments, (use 0.2 for 1/5)') parser.add_argument('--B', type=int, default=32, help='batch size per device') parser.add_argument('--inf_B_coeff', type=int, default=2, help='The batch size on inference will be inf_B_coeff times B arg') parser.add_argument('--epoch_num', type=int, default=20, help='number of epochs to train') # default = 100 parser.add_argument('--one_by_one_starts_at', type=int, default=1, help='# of epochs to skip before starting 1-by-1 validation (saves time)') parser.add_argument('--early_stop_after', type=int, default=20, # default = 30 help='number of epochs to wait for best metric to change before stopping') parser.add_argument( '--smoothing', type=float, default=0.7, help='smoothing coeff (= 0 cross ent loss, more -- stronger smoothing) must be in [0, 1]' ) parser.add_argument('--grad_clip', type=float, help='max grad norm for gradients') parser.add_argument('--pretrained_prop_model_path', type=str, help='path to pre-trained cap model .pt') parser.add_argument('--finetune_prop_encoder', dest='finetune_prop_encoder', action='store_true', default=False) parser.add_argument('--pretrained_cap_model_path', type=str, help='path to pre-trained cap model .pt') parser.add_argument('--finetune_cap_encoder', dest='finetune_cap_encoder', action='store_true', default=False) parser.add_argument('--obj_coeff', type=float, default=1, help='objectness coeff in loss') parser.add_argument('--noobj_coeff', type=float, default=100, help='noobjectness coeff in loss') parser.add_argument('--pad_audio_feats_up_to', type=int, default=800, #default=800 help='max feature length to pad other features to') parser.add_argument('--pad_video_feats_up_to', type=int, default=300, #default=300 help='max feature length to pad other features to') parser.add_argument('--nms_tiou_thresh', type=float, help='non-max suppression objectness thr') parser.add_argument('--log_dir', type=str, default='./log/') ## EVALUATION parser.add_argument('--prop_pred_path', type=str, help='path to a .json file with prop preds') parser.add_argument('--avail_mp4_path', type=str, default='./data/available_mp4.txt', help='list of available videos') parser.add_argument('--reference_paths', type=str, nargs='+', default=['./data/val_1_no_missings.json', './data/val_2_no_missings.json'], help='reference paths for 1-by-1 validation') parser.add_argument('--tIoUs', type=float, default=[0.3, 0.5, 0.7, 0.9], nargs='+', help='thresholds for tIoU to be used for 1-by-1 validation') parser.add_argument( '--max_prop_per_vid', type=int, default=100, help='max number of proposals to take into considetation in 1-by-1 validation' ) parser.add_argument('--val_prop_meta_path', type=str, help='Only used in eval_on_learnd_props') ## MODEL parser.add_argument('--model', type=str, default='av_transformer', choices=['transformer', 'av_transformer'], help='caption model type') parser.add_argument('--dout_p', type=float, default=0.1, help='dropout probability: in [0, 1]') parser.add_argument('--N', type=int, default=2, help='number of layers in a model') parser.add_argument( '--d_model', type=int, default=1024, help='the internal space in the mullti-headed attention (when input dims of Q, K, V differ)') parser.add_argument( '--d_model_video', type=int, help='If use_linear_embedder is true, this is going to be the d_model size for video model' ) parser.add_argument( '--d_model_audio', type=int, help='If use_linear_embedder is true, this is going to be the d_model size for audio model' ) parser.add_argument( '--d_model_caps', type=int, default=300, help='hidden size of the crossmodal decoder (caption tokens are mapped into this dim)' ) parser.add_argument( '--use_linear_embedder', dest='use_linear_embedder', action='store_true', default=False, help='Whether to include a dense layer between the raw features and input to the model' ) parser.add_argument('--H', type=int, default=4, help='number of heads in multiheaded attention') parser.add_argument( '--d_ff_video', type=int, help='size of the internal layer of PositionwiseFeedForward') parser.add_argument( '--d_ff_audio', type=int, help='size of the internal layer of PositionwiseFeedForward') parser.add_argument( '--d_ff_caps', type=int, help='size of the internal layer of PositionwiseFeedForward') parser.add_argument('--anchors_num_video', type=int, default=128) parser.add_argument('--anchors_num_audio', type=int, default=48) parser.add_argument('--kernel_sizes_audio', type=int, nargs='+', default=[5, 13, 23, 35, 51, 69, 91, 121, 161, 211]) parser.add_argument('--kernel_sizes_video', type=int, nargs='+', default=[1, 5, 9, 13, 19, 25, 35, 45, 61, 79]) parser.add_argument('--conv_layers_audio', type=int, nargs='*', default=[512, 512], help='intermediate layer dims in proposal gen heads') parser.add_argument('--conv_layers_video', type=int, nargs='*', default=[512, 512], help='intermediate layer dims in proposal gen heads') parser.add_argument('--layer_norm', dest='layer_norm', action='store_true', default=False, help='whether to use layer norm in proposal generation heads') ## DEBUGGING parser.add_argument('--debug', dest='debug', action='store_true', default=False, help='runs test() instead of main()') parser.add_argument('--dont_log', dest='to_log', action='store_false', help='Prevent logging in the experiment.') parser.set_defaults(to_log=True) args = parser.parse_args() pprint(vars(args)) cfg = Config(args) if args.debug: # load your test to debug something using the same config as main() would # from tests import test_features_max_length # test_features_max_length(cfg) pass else: main(cfg)
59.815217
110
0.658822
07a91a657f319617dcf963e3ca7a752037049897
3,038
py
Python
Exec/hydro_tests/Sod_stellar/testsuite_analysis/test3-helm.py
MargotF/Castro
5cdb549af422ef44c9b1822d0fefe043b3533c57
[ "BSD-3-Clause-LBNL" ]
178
2017-05-03T18:07:03.000Z
2022-03-31T22:34:53.000Z
Exec/hydro_tests/Sod_stellar/testsuite_analysis/test3-helm.py
MargotF/Castro
5cdb549af422ef44c9b1822d0fefe043b3533c57
[ "BSD-3-Clause-LBNL" ]
1,334
2017-05-04T14:23:24.000Z
2022-03-28T00:12:06.000Z
Exec/hydro_tests/Sod_stellar/testsuite_analysis/test3-helm.py
MargotF/Castro
5cdb549af422ef44c9b1822d0fefe043b3533c57
[ "BSD-3-Clause-LBNL" ]
86
2017-06-12T15:27:51.000Z
2022-03-09T22:21:44.000Z
#!/usr/bin/env python3 # run as: ./test3-helm.py castro_exec_dir plotfle # note: this relies on fextract.XXXX.ex being in your path somewhere import sys import os import shutil import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt def process(castro_exec_dir, plotfile): run_dir = os.getcwd() # 1. find the fextract tool by looking through the User's path path = os.environ["PATH"].split(":") for d in path: full_dir = os.path.expanduser(d) if not os.path.isdir(full_dir): continue for f in os.listdir(full_dir): if (os.path.isfile(full_dir+"/"+f) and f.startswith("fextract") and f.endswith(".ex")): analysis_routine = full_dir+"/"+f break print("analysis_routine = ", analysis_routine) shutil.copy(analysis_routine, run_dir) # 2. analyze the data # output the average profile os.system("./{} -s {} {}".format(os.path.basename(analysis_routine), "test3-helm.out", plotfile)) analytic = castro_exec_dir + "Exec/hydro_tests/Sod_stellar/Verification/test3.exact.128.out" analytic_data = np.loadtxt(analytic) # need to be more flexible with the data from the simulations, as the # columns shift depending on the dimensionality. This gets the column # names from the header data = np.genfromtxt("test3-helm.out", skip_header=2, names=True) # 3. make the plot plt.subplot(411) plt.plot(analytic_data[:,1], analytic_data[:,2]) plt.scatter(data["x"], data["density"], marker="+", color="r") plt.xlabel("x") plt.ylabel("density") plt.xlim(0,2.e5) plt.subplot(412) # figure out which dimensions are present d = 1 for n in data.dtype.names: if n == "ymom" or n == "zmom": d += 1 dim = "xmom" if d >= 2 and data["ymom"].ptp() > data["xmom"].ptp(): dim = "ymom" if d == 3 and data["zmom"].ptp() > data[dim].ptp(): dim = "zmom" plt.plot(analytic_data[:,1], analytic_data[:,3]) plt.scatter(data["x"], data[dim]/data["density"], marker="+", color="r") plt.xlabel("x") plt.ylabel("velocity") plt.xlim(0,2.e5) plt.subplot(413) plt.plot(analytic_data[:,1], analytic_data[:,4]) plt.scatter(data["x"], data["pressure"], marker="+", color="r") plt.xlabel("x") plt.ylabel("pressure") plt.xlim(0,2.e5) plt.subplot(414) plt.plot(analytic_data[:,1], analytic_data[:,5]) plt.scatter(data["x"], data["Temp"], marker="+", color="r") plt.xlabel("x") plt.ylabel("temperature") plt.xlim(0,2.e5) ax = plt.gca() ax.set_yscale("log") f = plt.gcf() f.set_size_inches(6.0, 9.0) plt.tight_layout() index = plotfile.rfind("_plt") if (index > 0): plt.savefig(plotfile[:index] + ".png") else: plt.savefig("test3-helm.png") if __name__ == "__main__": castro_exec_dir = str(sys.argv[1]) plotfile = str(sys.argv[2]) process(castro_exec_dir, plotfile)
24.304
101
0.615866
d5a34e835cb6a9d40750be9723412e496de5ddc6
559
py
Python
setup.py
axju/pyclean
16ad3f44ee6ce3f2b0b12eaae220633c897580b1
[ "MIT" ]
1
2018-11-23T22:45:07.000Z
2018-11-23T22:45:07.000Z
setup.py
axju/pyclean
16ad3f44ee6ce3f2b0b12eaae220633c897580b1
[ "MIT" ]
2
2018-11-23T23:00:05.000Z
2019-10-10T07:39:11.000Z
setup.py
axju/pyclean
16ad3f44ee6ce3f2b0b12eaae220633c897580b1
[ "MIT" ]
1
2019-09-23T06:43:29.000Z
2019-09-23T06:43:29.000Z
from setuptools import setup def readme(): with open('README.md') as f: return f.read() setup(name='pycleanup', version='0.0.1', description='Clean up your working directory.', long_description=readme(), keywords='Clean up', url='https://github.com/axju/pyclean', author='Axel Juraske', author_email='axel.juraske@short-report.de', license='MIT', packages=['pycleanup'], entry_points = { 'console_scripts': ['pycleanup=pycleanup.__main__:main'], }, zip_safe=False)
26.619048
65
0.617174
f581a6178138afd921d7ace13828e898e68ee137
4,408
py
Python
rivalcfg/handlers/buttons/layout_qwerty.py
Clueninja/rivalcfg
f7e2a3480c5f0b9a0b992ba5af7ff2025b2af346
[ "WTFPL" ]
604
2016-03-31T12:22:26.000Z
2022-03-31T18:51:50.000Z
rivalcfg/handlers/buttons/layout_qwerty.py
Clueninja/rivalcfg
f7e2a3480c5f0b9a0b992ba5af7ff2025b2af346
[ "WTFPL" ]
162
2016-04-17T10:58:08.000Z
2022-03-11T18:59:18.000Z
rivalcfg/handlers/buttons/layout_qwerty.py
Clueninja/rivalcfg
f7e2a3480c5f0b9a0b992ba5af7ff2025b2af346
[ "WTFPL" ]
89
2016-04-10T08:56:58.000Z
2022-03-18T21:04:10.000Z
""" This file contains the layout for QWERTY (en_US) keyboards. """ # fmt: off #: The layout layout = { # Alphanumeric "A": 0x04, "B": 0x05, "C": 0x06, "D": 0x07, "E": 0x08, "F": 0x09, "G": 0x0A, "H": 0x0B, "I": 0x0C, "J": 0x0D, "K": 0x0E, "L": 0x0F, "M": 0x10, "N": 0x11, "O": 0x12, "P": 0x13, "Q": 0x14, "R": 0x15, "S": 0x16, "T": 0x17, "U": 0x18, "V": 0x19, "W": 0x1A, "X": 0x1B, "Y": 0x1C, "Z": 0x1D, "1": 0x1E, "2": 0x1F, "3": 0x20, "4": 0x21, "5": 0x22, "6": 0x23, "7": 0x24, "8": 0x25, "9": 0x26, "0": 0x27, # Editing "Enter": 0x28, "Escape": 0x29, "BackSpace": 0x2A, "Tab": 0x2B, "Space": 0x2C, "Delete": 0x4C, # Symbols "-": 0x2D, "=": 0x2E, "[": 0x2F, "]": 0x30, "\\": 0x31, "#": 0x32, # International!? ";": 0x33, "'": 0x34, "`": 0x35, ",": 0x36, ".": 0x37, "/": 0x38, "\\(inter)": 0x64, # International!? # Typing Mode "CapsLock": 0x39, "ScrollLock": 0x47, "Insert": 0x49, "NumLock": 0x53, # Functions "F1": 0x3A, "F2": 0x3B, "F3": 0x3C, "F4": 0x3D, "F5": 0x3E, "F6": 0x3F, "F7": 0x40, "F8": 0x41, "F9": 0x42, "F10": 0x43, "F11": 0x44, "F12": 0x45, "F13": 0x68, "F14": 0x69, "F15": 0x6A, "F16": 0x6B, "F17": 0x6C, "F18": 0x6D, "F19": 0x6E, "F20": 0x6F, "F21": 0x70, "F22": 0x71, "F23": 0x72, "F24": 0x73, # Commands "PrintScreen": 0x46, "PauseBreak": 0x48, "ContextMenu": 0x65, # Navigation "Home": 0x4A, "PageUp": 0x4B, "End": 0x4D, "PageDown": 0x4E, # Arrows "Right": 0x4F, "Left": 0x50, "Down": 0x51, "Up": 0x52, # Numpad "Keypad/": 0x54, "Keypad*": 0x55, "Keypad-": 0x56, "Keypad+": 0x57, "KeypadEnter": 0x58, "Keypad1": 0x59, "Keypad2": 0x5A, "Keypad3": 0x5B, "Keypad4": 0x5C, "Keypad5": 0x5D, "Keypad6": 0x5E, "Keypad7": 0x5F, "Keypad8": 0x60, "Keypad9": 0x61, "Keypad0": 0x62, "Keypad.": 0x63, "Keypad,": 0x85, # ?? "Keypad=": 0x86, # ?? # Modifiers "LeftCtrl": 0xE0, "LeftShift": 0xE1, "LeftAlt": 0xE2, "LeftSuper": 0xE3, # Command / Win logo "RightCtrl": 0xE4, "RightShift": 0xE5, "RightAlt": 0xE6, "RightSuper": 0xE7, # Command / Win logo } #: Alias for some keys of the layout aliases = { "esc": "Escape", "bksp": "BackSpace", "bkspace": "BackSpace", "del": "Delete", "dash": "-", "minus": "-", "equal": "=", "eq": "=", "leftbracket": "[", "rightbracket": "]", "backslash": "\\", "hash": "#", "semicolon": ";", "semi": ";", "quote": "'", "backtick": "`", "backquote": "`", "comma": ",", "dot": ".", "point": ".", "slash": "/", "capslck": "CapsLock", "capslk": "CapsLock", "cpslck": "CapsLock", "cpslk": "CapsLock", "scrolllck": "ScrollLock", "scrolllk": "ScrollLock", "scrllck": "ScrollLock", "scrllk": "ScrollLock", "scrlck": "ScrollLock", "scrlk": "ScrollLock", "ins": "Insert", "num": "NumLock", "numlck": "NumLock", "numlk": "NumLock", "prntscr": "PrintScreen", "prtscr": "PrintScreen", "prtsc": "PrintScreen", "psbrk": "PauseBreak", "psbr": "PauseBreak", "ctx": "ContextMenu", "menu": "ContextMenu", "ctxmenu": "ContextMenu", "ctxmn": "ContextMenu", "pgup": "PageUp", "pgdown": "PageDown", "pgdwn": "PageDown", "pgdn": "PageDown", "lctrl": "LeftCtrl", "lshift": "LeftShift", "lalt": "LeftAlt", "alt": "LeftAlt", "super": "LeftSuper", "lsuper": "LeftSuper", "windows": "LeftSuper", "leftwindows": "LeftSuper", "win": "LeftSuper", "lwin": "LeftSuper", "command": "LeftSuper", "leftcommand": "LeftSuper", "cmd": "LeftSuper", "lcmd": "LeftSuper", "rctrl": "RightCtrl", "rshift": "RightShift", "ralt": "RightAlt", "altgr": "RightAlt", "rsuper": "RightSuper", "rightwindows": "RightSuper", "rwin": "RightSuper", "rightcommand": "RightSuper", "rcmd": "RightSuper", } # fmt: on
18.065574
59
0.463702
5d463d168910c2c4ac777c6202405f3ef6c834dd
6,518
py
Python
traffic_control/admin/road_marking.py
City-of-Helsinki/city-infrastructure-platform
c14513a9e54405412085f1047f91ec58b263eac0
[ "CC0-1.0" ]
2
2020-11-23T22:08:58.000Z
2022-03-02T13:13:20.000Z
traffic_control/admin/road_marking.py
City-of-Helsinki/city-infrastructure-platform
c14513a9e54405412085f1047f91ec58b263eac0
[ "CC0-1.0" ]
170
2019-12-31T13:37:04.000Z
2022-03-12T14:03:35.000Z
traffic_control/admin/road_marking.py
City-of-Helsinki/city-infrastructure-platform
c14513a9e54405412085f1047f91ec58b263eac0
[ "CC0-1.0" ]
3
2020-05-08T05:58:02.000Z
2022-03-15T16:07:25.000Z
from django.contrib.gis import admin from django.db import models from django.utils.translation import gettext_lazy as _ from ..constants import HELSINKI_LATITUDE, HELSINKI_LONGITUDE from ..forms import AdminFileWidget from ..mixins import ( EnumChoiceValueDisplayAdminMixin, SoftDeleteAdminMixin, UserStampedAdminMixin, UserStampedInlineAdminMixin, ) from ..models import ( RoadMarkingPlan, RoadMarkingPlanFile, RoadMarkingReal, RoadMarkingRealFile, ) from .audit_log import AuditLogHistoryAdmin from .common import TrafficControlOperationInlineBase __all__ = ( "RoadMarkingPlanAdmin", "RoadMarkingPlanFileInline", "RoadMarkingRealAdmin", "RoadMarkingRealFileInline", ) from ..models.road_marking import RoadMarkingRealOperation class RoadMarkingPlanFileInline(admin.TabularInline): formfield_overrides = { models.FileField: {"widget": AdminFileWidget}, } model = RoadMarkingPlanFile @admin.register(RoadMarkingPlan) class RoadMarkingPlanAdmin( EnumChoiceValueDisplayAdminMixin, SoftDeleteAdminMixin, UserStampedAdminMixin, admin.OSMGeoAdmin, AuditLogHistoryAdmin, ): default_lon = HELSINKI_LONGITUDE default_lat = HELSINKI_LATITUDE default_zoom = 12 fieldsets = ( ( _("General information"), { "fields": ( "owner", "device_type", "type_specifier", "value", "symbol", "amount", "additional_info", "source_id", "source_name", ) }, ), ( _("Location information"), { "fields": ( "location", "road_name", "lane_number", "lane_type", "location_specifier", ) }, ), ( _("Physical properties"), { "fields": ( "arrow_direction", "line_direction", "size", "length", "width", "is_raised", "is_grinded", "material", "color", ) }, ), (_("Related models"), {"fields": ("plan", "traffic_sign_plan")}), ( _("Validity"), { "fields": ( ("validity_period_start", "validity_period_end"), ("seasonal_validity_period_start", "seasonal_validity_period_end"), "lifecycle", ) }, ), ( _("Metadata"), {"fields": ("created_at", "updated_at", "created_by", "updated_by")}, ), ) list_display = ( "id", "device_type", "lifecycle", "location", ) list_filter = SoftDeleteAdminMixin.list_filter + ["owner"] readonly_fields = ( "created_at", "updated_at", "created_by", "updated_by", "source_name", "source_id", ) raw_id_fields = ("plan", "traffic_sign_plan") ordering = ("-created_at",) inlines = (RoadMarkingPlanFileInline,) class RoadMarkingRealFileInline(admin.TabularInline): formfield_overrides = { models.FileField: {"widget": AdminFileWidget}, } model = RoadMarkingRealFile class RoadMarkingRealOperationInline(TrafficControlOperationInlineBase): model = RoadMarkingRealOperation @admin.register(RoadMarkingReal) class RoadMarkingRealAdmin( EnumChoiceValueDisplayAdminMixin, SoftDeleteAdminMixin, UserStampedAdminMixin, UserStampedInlineAdminMixin, admin.OSMGeoAdmin, AuditLogHistoryAdmin, ): default_lon = HELSINKI_LONGITUDE default_lat = HELSINKI_LATITUDE default_zoom = 12 fieldsets = ( ( _("General information"), { "fields": ( "owner", "device_type", "type_specifier", "value", "symbol", "amount", "additional_info", "missing_traffic_sign_real_txt", "source_id", "source_name", ) }, ), ( _("Location information"), { "fields": ( "location", "road_name", "lane_number", "lane_type", "location_specifier", ) }, ), ( _("Physical properties"), { "fields": ( "arrow_direction", "line_direction", "size", "length", "width", "is_raised", "is_grinded", "material", "color", "condition", ) }, ), (_("Related models"), {"fields": ("road_marking_plan", "traffic_sign_real")}), ( _("Installation information"), {"fields": ("installation_date", "installation_status")}, ), ( _("Validity"), { "fields": ( ("validity_period_start", "validity_period_end"), ("seasonal_validity_period_start", "seasonal_validity_period_end"), "lifecycle", ) }, ), ( _("Metadata"), {"fields": ("created_at", "updated_at", "created_by", "updated_by")}, ), ) list_display = ( "id", "device_type", "lifecycle", "location", "installation_date", ) list_filter = SoftDeleteAdminMixin.list_filter + ["owner"] readonly_fields = ( "created_at", "updated_at", "created_by", "updated_by", "source_name", "source_id", ) raw_id_fields = ("road_marking_plan", "traffic_sign_real") ordering = ("-created_at",) inlines = (RoadMarkingRealFileInline, RoadMarkingRealOperationInline)
27.158333
87
0.486652
80ab6b07fe31868e61bf742c8915572f28ddceb3
2,409
py
Python
test/test-tools/Archive/mathv1.py
LeastAuthority/Benchmark-Pendle-Smart-Contracts
5116f44cb0828d74b77ebfb14f394d61103112bb
[ "MIT" ]
null
null
null
test/test-tools/Archive/mathv1.py
LeastAuthority/Benchmark-Pendle-Smart-Contracts
5116f44cb0828d74b77ebfb14f394d61103112bb
[ "MIT" ]
null
null
null
test/test-tools/Archive/mathv1.py
LeastAuthority/Benchmark-Pendle-Smart-Contracts
5116f44cb0828d74b77ebfb14f394d61103112bb
[ "MIT" ]
null
null
null
''' Python version of Pendle's V1 Math Lib ''' import helper PRECISION_BITS = 40 ONE = 1 << PRECISION_BITS PRECISION_POW = 100 def rmul(x, y): return ((ONE // 2 + (x) * (y)) >> PRECISION_BITS) def rdiv(x, y): return (y // 2 + x * ONE) // (y) def countLeadingZeros(_p, _q): denomator = (1 << 255) cnt = 0 for i in range(255, -1, -1): if (_p // (_q * denomator) > 0): assert(i == countv2(_p, _q)) return i cnt += 1 denomator = denomator // 2 return -1 def log2ForSmallNumber(_x): res = 0 one = ONE two = 2 * one addition = one for i in range(PRECISION_BITS, 0, -1): _x = (_x * _x) // one addition = addition // 2 if (_x >= two): _x = _x // 2 res += addition return res def logBase2(_p, _q): n = 0 if (_p > _q): n = countLeadingZeros(_p, _q) y = (_p * ONE) // (_q * (1 << n)) log2Small = log2ForSmallNumber(y) return n * ONE + log2Small def ln(p, q=ONE): ln2Numerator = 6931471805599453094172 ln2Denomerator = 10000000000000000000000 log2x = logBase2(p, q) return (ln2Numerator * log2x) // ln2Denomerator def rpowi(_x, _n): z = ONE if (_n % 2 != 0): z = _x _n //= 2 while(_n != 0): _x = rmul(_x, _x) if (_n % 2 != 0): z = rmul(z, _x) _n //= 2 return z def rfloor(x): return rtoi(x) * ONE def rtoi(x): return x // ONE def rpow(_base, _exp): whole = rfloor(_exp) remain = _exp - whole wholePow = rpowi(_base, rtoi(whole)) if (remain == 0): return wholePow partialResult = rpowApprox(_base, remain) return rmul(wholePow, partialResult) def rpowApprox(_base, _exp): a = _exp (x, xneg) = helper.rsignSub(_base, ONE) term = ONE sum = term negative = False i = 0 while(term >= PRECISION_POW): i = i + 1 bigK = i * ONE (c, cneg) = helper.rsignSub(a, bigK - ONE) term = rmul(term, rmul(c, x)) term = rdiv(term, bigK) if (term == 0): break if (xneg): negative = ~negative if (cneg): negative = ~negative if (negative): assert(sum >= term) sum = sum - term else: sum = sum + term print("converge:", i) return sum
19.272
53
0.50851
4446a09b60cf868c2d2ee54975500925ea0b5493
9,956
py
Python
pypicloud/storage/s3.py
pepastach/pypicloud
42ad82a52bc4b7f1da79179f089ee2b094c76865
[ "MIT" ]
1
2021-04-10T04:18:36.000Z
2021-04-10T04:18:36.000Z
pypicloud/storage/s3.py
jweede/pypicloud
3015160ed6fd7f8ffc3a3e4513e7fb91dd340921
[ "MIT" ]
null
null
null
pypicloud/storage/s3.py
jweede/pypicloud
3015160ed6fd7f8ffc3a3e4513e7fb91dd340921
[ "MIT" ]
null
null
null
""" Store packages in S3 """ import logging import posixpath from datetime import datetime, timedelta from urllib.parse import quote, urlparse import boto3 from botocore.config import Config from botocore.exceptions import ClientError from botocore.signers import CloudFrontSigner from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import padding from pyramid.settings import asbool, falsey from pyramid_duh.settings import asdict from pypicloud.models import Package from pypicloud.util import get_settings, normalize_metadata, parse_filename from .object_store import ObjectStoreStorage LOG = logging.getLogger(__name__) class S3Storage(ObjectStoreStorage): """ Storage backend that uses S3 """ test = False def __init__(self, request=None, bucket=None, **kwargs): super(S3Storage, self).__init__(request=request, **kwargs) self.bucket = bucket @classmethod def _subclass_specific_config(cls, settings, common_config): sse = settings.get("storage.server_side_encryption") if sse not in [None, "AES256", "aws:kms"]: LOG.warning( "Unrecognized value %r for 'storage.sse'. See " "https://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Object.put " "for more details", sse, ) bucket_name = settings.get("storage.bucket") if bucket_name is None: raise ValueError("You must specify the 'storage.bucket'") return {"sse": sse, "bucket": cls.get_bucket(bucket_name, settings)} @classmethod def get_bucket(cls, bucket_name, settings): config_settings = get_settings( settings, "storage.", region_name=str, signature_version=str, user_agent=str, user_agent_extra=str, connect_timeout=int, read_timeout=int, parameter_validation=asbool, max_pool_connections=int, proxies=asdict, ) config_settings["s3"] = get_settings( settings, "storage.", use_accelerate_endpoint=asbool, payload_signing_enabled=asbool, addressing_style=str, signature_version=str, ) config = Config(**config_settings) def verify_value(val): """ Verify can be a boolean (False) or a string """ s = str(val).strip().lower() if s in falsey: return False else: return str(val) s3conn = boto3.resource( "s3", config=config, **get_settings( settings, "storage.", region_name=str, api_version=str, use_ssl=asbool, verify=verify_value, endpoint_url=str, aws_access_key_id=str, aws_secret_access_key=str, aws_session_token=str, ) ) bucket = s3conn.Bucket(bucket_name) try: head = s3conn.meta.client.head_bucket(Bucket=bucket_name) except ClientError as e: if e.response["Error"]["Code"] == "404": LOG.info("Creating S3 bucket %s", bucket_name) if config.region_name: location = {"LocationConstraint": config.region_name} bucket.create(CreateBucketConfiguration=location) else: bucket.create() bucket.wait_until_exists() else: if e.response["Error"]["Code"] == "301": LOG.error( "Bucket found in different region. Check that " "the S3 bucket specified in 'storage.bucket' is " "in 'storage.region_name'" ) raise return bucket @classmethod def package_from_object(cls, obj, factory): """ Create a package from a S3 object """ filename = posixpath.basename(obj.key) name = obj.metadata.get("name") version = obj.metadata.get("version") metadata = Package.read_metadata(obj.metadata) # We used to not store metadata. This is for backwards # compatibility if name is None or version is None: try: name, version = parse_filename(filename) except ValueError: LOG.warning("S3 file %s has no package name", obj.key) return None return factory( name, version, filename, obj.last_modified, path=obj.key, **metadata ) def list(self, factory=Package): keys = self.bucket.objects.filter(Prefix=self.bucket_prefix) for summary in keys: # ObjectSummary has no metadata, so we have to fetch it. obj = summary.Object() pkg = self.package_from_object(obj, factory) if pkg is not None: yield pkg def _generate_url(self, package): """ Generate a signed url to the S3 file """ if self.public_url: if self.region_name: return "https://s3.{0}.amazonaws.com/{1}/{2}".format( self.region_name, self.bucket.name, self.get_path(package) ) else: if "." in self.bucket.name: self._log_region_warning() return "https://{0}.s3.amazonaws.com/{1}".format( self.bucket.name, self.get_path(package) ) url = self.bucket.meta.client.generate_presigned_url( "get_object", Params={"Bucket": self.bucket.name, "Key": self.get_path(package)}, ExpiresIn=self.expire_after, ) # There is a special case if your bucket has a '.' in the name. The # generated URL will return a 301 and the pip downloads will fail. # If you provide a region_name, boto should correctly generate a url in # the form of `s3.<region>.amazonaws.com` # See https://github.com/stevearc/pypicloud/issues/145 if "." in self.bucket.name: pieces = urlparse(url) if pieces.netloc == "s3.amazonaws.com" and self.region_name is None: self._log_region_warning() return url def _log_region_warning(self): """ Spit out a warning about including region_name """ LOG.warning( "Your signed S3 urls may not work! " "Try adding the bucket region to the config with " "'storage.region_name = <region>' or using a bucket " "without any dots ('.') in the name." ) def upload(self, package, datastream): key = self.bucket.Object(self.get_path(package)) kwargs = {} if self.sse is not None: kwargs["ServerSideEncryption"] = self.sse if self.object_acl: kwargs["ACL"] = self.object_acl if self.storage_class is not None: kwargs["StorageClass"] = self.storage_class metadata = package.get_metadata() metadata["name"] = package.name metadata["version"] = package.version metadata = normalize_metadata(metadata) key.put(Metadata=metadata, Body=datastream, **kwargs) def delete(self, package): self.bucket.delete_objects( Delete={"Objects": [{"Key": self.get_path(package)}]} ) def check_health(self): try: self.bucket.meta.client.head_bucket(Bucket=self.bucket.name) except ClientError as e: return False, str(e) else: return True, "" class CloudFrontS3Storage(S3Storage): """ Storage backend that uses S3 and CloudFront """ def __init__( self, request=None, domain=None, crypto_pk=None, key_id=None, **kwargs ): super(CloudFrontS3Storage, self).__init__(request, **kwargs) self.domain = domain self.crypto_pk = crypto_pk self.key_id = key_id self.cf_signer = None if key_id is not None: self.cf_signer = CloudFrontSigner(self.key_id, self._rsa_signer) self.client = boto3.client("cloudfront") @classmethod def configure(cls, settings): kwargs = super(CloudFrontS3Storage, cls).configure(settings) kwargs["domain"] = settings["storage.cloud_front_domain"] kwargs["key_id"] = settings.get("storage.cloud_front_key_id") private_key = settings.get("storage.cloud_front_key_string") if private_key is None: key_file = settings.get("storage.cloud_front_key_file") if key_file: with open(key_file, "rb") as ifile: private_key = ifile.read() else: private_key = private_key.encode("utf-8") crypto_pk = serialization.load_pem_private_key( private_key, password=None, backend=default_backend() ) kwargs["crypto_pk"] = crypto_pk return kwargs def _rsa_signer(self, message): """ Generate a RSA signature for a message """ return self.crypto_pk.sign(message, padding.PKCS1v15(), hashes.SHA1()) def _generate_url(self, package): """ Get the fully-qualified CloudFront path for a package """ path = self.get_path(package) url = self.domain + "/" + quote(path) # No key id, no signer, so we don't have to sign the URL if self.cf_signer is None: return url # To sign with a canned policy: expires = datetime.utcnow() + timedelta(seconds=self.expire_after) return self.cf_signer.generate_presigned_url(url, date_less_than=expires)
36.072464
98
0.590398
2e3542f9c3cb701d805b00055da3dbc97e3fb13f
22,072
py
Python
inter_MSA.py
he-h/Covid-Mobility-Network-Analysis
8464b0a25db03585219c1fc6d8e257a9ed826628
[ "MIT" ]
1
2021-01-07T19:57:46.000Z
2021-01-07T19:57:46.000Z
inter_MSA.py
hhe-bot/Covid-Mobility-Network-Analysis
8464b0a25db03585219c1fc6d8e257a9ed826628
[ "MIT" ]
1
2020-09-23T06:10:29.000Z
2020-09-25T15:41:33.000Z
inter_MSA.py
haoyu0831/Covid-Mobility-Network-Analysis
8464b0a25db03585219c1fc6d8e257a9ed826628
[ "MIT" ]
null
null
null
from model import * from plot import * import powerlaw from statistics import median from matplotlib.lines import Line2D from read_file import * import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap as Basemap import json import csv import os from haversine import haversine # NY NJ PA 5602 # LA 4472 # Chicago 1602 # Dallas 1922 # Houston 3362 with open('data/pos.json', 'r') as o: pos = json.load(o) def largest_size_qc(g, device_count): thresholds, num_g, num_sg, num_r, dev_g, dev_sg, edge_size = calc_g_sg(g, 10, 2.5, device_count) index_qc, index_qcb = l_sl_value(num_sg) if len(num_g) == 0: return 0, 0 gc_node_size = num_g[index_qc] qc = thresholds[index_qc] return gc_node_size, qc class InterMsaG: def __init__(self, date, dest, device):#, qc): print(date) self.date = date self.device_count = device self.g = generate_network(dest) # self.msa_qc = qc self.setup() def setup(self): self.flux = total_flux(self.g) self.sum_device = sum(self.device_count.values()) # calculate qc and following features self.thresholds, self.num_g, self.num_sg, self.num_r, self.dev_g, self.dev_sg, self.edge_size = calc_g_sg(self.g, 10, 2.5, self.device_count) index_qc, index_qcb = l_sl_value(self.num_sg) interval = self.thresholds[1] - self.thresholds[0] self.gc_node_size = self.num_g[index_qc] self.qc = self.thresholds[index_qc] self.qcb = self.thresholds[index_qcb] self.qca = self.thresholds[[i for i, j in enumerate(self.num_r) if j == max(self.num_r)][0]] self.qcf = self.thresholds[-1] g_perco = generate_network_threshold(self.g, self.qc) # self.g_perco_1 = generate_network_threshold(self.g, self.qcb) # self.bottleneck = calc_bottleneck_c(self.g, self.thresholds, self.qc) # self.bottleneck1 = calc_bottleneck_c(self.g, self.thresholds, self.qcb) self.bottleneck = calc_bn_set_diff(generate_network_threshold(self.g, self.qc-interval), generate_network_threshold(self.g, self.qc)) self.bottleneck1 = calc_bn_set_diff(generate_network_threshold(self.g, self.qcb-interval), generate_network_threshold(self.g, self.qcb)) # self.plot_map(g_perco) self.indegree = [] for i in self.g.nodes(): self.indegree.append(self.g.degree(i)) self.indegree_median = median(self.indegree) self.indegree_25 = np.percentile(self.indegree, 25) self.indegree_75 = np.percentile(self.indegree, 75) self.edge_w = np.zeros(len(self.g.edges())) for j,i in enumerate(self.g.edges()): self.edge_w[j] = self.g.edges[i]['weight'] self.edge_w_median = median(self.edge_w) self.edge_w_25 = np.percentile(self.edge_w, 25) self.edge_w_75 = np.percentile(self.edge_w, 75) self.edge_w_ave = self.flux / self.g.number_of_nodes() self.distances = [] for i, j in self.g.edges: dis = haversine(pos[i], pos[j]) self.distances += [dis]*int(self.g.edges[i,j]['weight']) self.distances = np.array(self.distances) dc = np.array(list(self.device_count.values())) self.device_median = median(dc) self.device_25 = np.percentile(dc, 25) self.device_75 = np.percentile(dc, 75) self.qc_setup() # self.plot_map(self.g_perco, 1) # self.plot_map(self.g_perco_1, 0) def qc_setup(self): self.qc_m = dict() self.qca_m = dict() self.qcf_m = dict() df = pd.read_csv(qc_str(self.date)) for i in df.index: self.qc_m[df['msa'][i]] = df['qc'][i] self.qca_m[df['msa'][i]] = df['qca'][i] self.qcf_m[df['msa'][i]] = df['qcf'][i] def result_dir(self): return 'results/interMSA/'+aug_str(self.date.month)+'/'+aug_str(self.date.day) + '/' def plot_g_sg(self): plt.clf() figure, axis_1 = plt.subplots() axis_1.axvline(self.qc, linestyle='-.', color='red', label=r'$q_c$') axis_1.axvline(self.qcb, linestyle='-.', color='orange', label=r'$q_{c2}$') axis_1.set_ylabel('GC Component size', color='dodgerblue') axis_1.plot(self.thresholds, self.num_g, color='dodgerblue', label='GC') axis_1.set_xlabel('thresholds') axis_2 = axis_1.twinx() axis_2.plot(self.thresholds, self.num_sg, color='grey', label='SGC') axis_2.set_ylabel('SGC Component size', color='grey') lines_1, labels_1 = axis_1.get_legend_handles_labels() lines_2, labels_2 = axis_2.get_legend_handles_labels() lines = lines_1 + lines_2 labels = labels_1 + labels_2 axis_1.legend(lines, labels, loc=0) plt.title('Inter MSA ' + self.date.strftime('%m/%d') + ' percolation component size') plt.savefig(self.result_dir() + self.date.strftime('%m_%d') + '_g_sg_size.jpg') return def plot_g_sg_log(self): plt.clf() figure, axis_1 = plt.subplots() axis_1.axvline(self.qc, linestyle='-.', color='red', label=r'$q_c$') axis_1.axvline(self.qcb, linestyle='-.', color='orange', label=r'$q_{c2}$') # axis_1.set_ylabel('GC Component size', color='dodgerblue') axis_1.plot(self.thresholds, self.num_g, color='dodgerblue', label=r'$1_{st} CC$') # axis_1.set_xlabel('thresholds', fontsize=18) axis_1.tick_params(axis='y', colors='dodgerblue') axis_2 = axis_1.twinx() axis_2.plot(self.thresholds, self.num_sg, color='grey', label=r'$2_{nd} CC$') # axis_2.set_ylabel('SGC Component size', color='grey') lines_1, labels_1 = axis_1.get_legend_handles_labels() lines_2, labels_2 = axis_2.get_legend_handles_labels() lines = lines_1 + lines_2 labels = labels_1 + labels_2 if self.date == dt.date(2020,2,1): axis_1.legend(lines, labels, loc=0, prop={'size':17}) plt.title('Inter MSA percolation', fontsize=22) else: axis_1.set_xlabel('thresholds', fontsize=18) plt.xscale('log') # plt.title('Inter MSA percolation', fontsize=22) plt.savefig(self.result_dir() + self.date.strftime('%m_%d') + '_g_sg_log_size.jpg') return def plot_g_sg_c(self): plt.clf() figure, axis_1 = plt.subplots() axis_1.axvline(self.qca, linestyle='-.', color='red', label=r'$q_c$') axis_1.axvline(self.thresholds[-1], linestyle='-.', color='orange', label=r'$q_{c2}$') # axis_1.set_ylabel('GC Component size', color='dodgerblue') axis_1.plot(self.thresholds, self.num_g, color='dodgerblue', label='GC') # axis_1.set_xlabel('thresholds') axis_2 = axis_1.twinx() axis_2.plot(self.thresholds, self.num_r, color='grey', label='RGC') # axis_2.set_ylabel('Average rest Component size', color='grey') lines_1, labels_1 = axis_1.get_legend_handles_labels() lines_2, labels_2 = axis_2.get_legend_handles_labels() lines = lines_1 + lines_2 labels = labels_1 + labels_2 axis_1.legend(lines, labels, loc=0) plt.title('Inter MSA ' + self.date.strftime('%m/%d') + ' continuous component size') plt.savefig(self.result_dir() + self.date.strftime('%m_%d') + '_g_rg_size.jpg') return def plot_hist(self): plt.clf() powerlaw.plot_ccdf(self.edge_w, linestyle='-', color='#2b8cbe', label='CCDF') plt.ylabel('CCDF') plt.xlabel(r'$W_{ij}$') plt.title('Inter MSA ' + self.date.strftime('%m/%d') + ' CCDF') plt.savefig(self.result_dir() + self.date.strftime('%m_%d') + '_hist.jpg') return def plot_g_sg_device(self): plt.clf() figure, axis_1 = plt.subplots() axis_1.axvline(self.qc, linestyle='-.', color='red', label=r'$q_c$') axis_1.set_ylabel('GC device count', color='dodgerblue') axis_1.plot(self.thresholds, self.dev_g, color='dodgerblue', label='GC') axis_1.axvline(self.qcb, linestyle='-.', color='orange', label=r'$q_{c2}$') axis_1.set_xlabel('thresholds') axis_1.set_ylabel('SGC device count', color='grey') axis_2 = axis_1.twinx() axis_2.plot(self.thresholds, self.dev_sg, color='grey', label='SGC') axis_2.set_ylabel('SGC device count', color='grey') lines_1, labels_1 = axis_1.get_legend_handles_labels() lines_2, labels_2 = axis_2.get_legend_handles_labels() lines = lines_1 + lines_2 labels = labels_1 + labels_2 axis_1.legend(lines, labels, loc=0) plt.title('Inter MSA ' + self.date.strftime('%m/%d') + ' percolation device count') plt.savefig(self.result_dir() + self.date.strftime('%m_%d') + '_g_sg_device.jpg') return def plot_msa_qc(self): plt.clf() th = np.arange(1, 50, .5) remain_msa = [] for i in th: tmp = 0 for j in self.qc_m.keys(): if i < self.qc_m[j]: tmp += self.device_count[j] remain_msa.append(tmp) plt.plot(th, remain_msa, color='royalblue') plt.grid(True) plt.xlabel('Thresholds') plt.ylabel('device count') plt.title('Sum of remaining MSAs device count ' + self.date.strftime('%m/%d')) plt.savefig(self.result_dir() + self.date.strftime('%m_%d') + '_MSAs_device.jpg') return def plot_qc_map(self): plt.clf() ax = plt.gca() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) m = Basemap( projection='merc', llcrnrlon=-130, llcrnrlat=25, urcrnrlon=-60, urcrnrlat=50, lat_ts=0, resolution='i', suppress_ticks=True) m.readshapefile('tl_2017_us_state/tl_2017_us_state', 'states', drawbounds=True) x, y = [], [] for i in pos.keys(): x.append(pos[i][0]) y.append(pos[i][1]) mx, my = m(x, y) pos1 = dict() for i, j in enumerate(pos.keys()): pos1[j] = (mx[i], my[i]) msas = {0:[], 3:[], 6:[], 9:[], 12:[]} for i in self.qc_m.keys(): j = str(i) if self.qc_m[i] > 12: msas[12].append(j) elif self.qc_m[i] > 9: msas[9].append(j) elif self.qc_m[i] > 6: msas[6].append(j) elif self.qc_m[i] > 3: msas[3].append(j) else: msas[0].append(j) colors = ['#fef0d9', '#fdcc8a', '#fc8d59', '#e34a33', '#b30000'] iter=0 for i in msas.keys(): tmp = nx.Graph() tmp.add_nodes_from(msas[i]) nx.draw_networkx_nodes(G=tmp, pos=pos1, nodelist=tmp.nodes(), node_color=colors[iter], label=r"$q_c$>"+str(i), node_size=[(self.device_count[i]/250)**(1/2) for i in tmp.nodes()]) iter += 1 plt.legend() plt.title('MSA qc map ' + self.date.strftime('%m/%d')) plt.savefig(self.result_dir() + self.date.strftime('%m_%d') + '_MSAs_qc_map.jpg') return def plot_map(self, g): plt.clf() m = Basemap( projection='merc', llcrnrlon=-130, llcrnrlat=25, urcrnrlon=-60, urcrnrlat=50, lat_ts=0, resolution='i', suppress_ticks=True) # m.drawcountries(linewidth=3) # m.drawstates(linewidth=0.2) # m.drawcoastlines(linewidth=1) # m.fillcontinents(alpha=0.3) # m.drawcounties(linewidth=0.1) m.readshapefile('tl_2017_us_state/tl_2017_us_state', 'states', drawbounds=True) with open(self.date.strftime('edge_list/interMSA%m_%d.csv'), 'w') as e: csvwriter = csv.writer(e) csvwriter.writerow(['from', 'to', 'edge', 'weight']) x, y = [], [] for i in pos.keys(): x.append(pos[i][0]) y.append(pos[i][1]) mx, my = m(x, y) pos1 = dict() for i, j in enumerate(pos.keys()): pos1[j] = (mx[i], my[i]) cc = list(nx.connected_components(g)) cc.sort(key=len, reverse=True) ax = plt.gca() g0 = g.subgraph(cc[0]) nx.draw_networkx_nodes(G=g0, node_color='cornflowerblue', nodelist=g0.nodes(), pos=pos1, alpha=1, node_size=[(self.device_count[i]/250)**(1/2) for i in g0.nodes()]) for i, j in g0.edges(): csvwriter.writerow([i, j, 'gc', self.g.edges[i, j]['weight']]) ax.annotate("", xy=pos1[i], xycoords='data', xytext=pos1[j], textcoords='data', arrowprops=dict(arrowstyle="-", color='cornflowerblue', shrinkA=5, shrinkB=5, patchA=None, patchB=None, connectionstyle="arc3,rad=0.3", ), ) g1 = g.subgraph(cc[1]) nx.draw_networkx_nodes(G=g1, node_color='lightgreen', nodelist=g1.nodes(), pos=pos1, alpha=1, node_size=[(self.device_count[i]/250)**(1/2) for i in g1.nodes()]) for i, j in g1.edges(): csvwriter.writerow([i, j, 'sgc', self.g.edges[i, j]['weight']]) ax.annotate("", xy=pos1[i], xycoords='data', xytext=pos1[j], textcoords='data', arrowprops=dict(arrowstyle="-", color='lightgreen', shrinkA=5, shrinkB=5, patchA=None, patchB=None, connectionstyle="arc3,rad=0.3", ), ) g2 = g.subgraph(cc[2]) nx.draw_networkx_nodes(G=g2, node_color='peachpuff', nodelist=g2.nodes(), pos=pos1, alpha=1, node_size=[(self.device_count[i] / 250) ** (1 / 2) for i in g2.nodes()]) for i, j in g2.edges(): csvwriter.writerow([i, j, 'tgc', self.g.edges[i, j]['weight']]) ax.annotate("", xy=pos1[i], xycoords='data', xytext=pos1[j], textcoords='data', arrowprops=dict(arrowstyle="-", color='peachpuff', shrinkA=5, shrinkB=5, patchA=None, patchB=None, connectionstyle="arc3,rad=0.3", ), ) tmp = set() for i in cc[3:]: if len(i) > 1: tmp |= i g3 = g.subgraph(tmp) nx.draw_networkx_nodes(G=g3, node_color='silver', nodelist=g3.nodes(), pos=pos1, alpha=1, node_size=[(self.device_count[i]/250) ** (1 / 2) for i in g3.nodes()]) for i, j in g3.edges(): csvwriter.writerow([i, j, 'rest', self.g.edges[i, j]['weight']]) ax.annotate("", xy=pos1[i], xycoords='data', xytext=pos1[j], textcoords='data', arrowprops=dict(arrowstyle="-", color='silver', shrinkA=5, shrinkB=5, patchA=None, patchB=None, connectionstyle="arc3,rad=0.3", ), ) bn1 = nx.Graph() bn1.add_edges_from(self.bottleneck1) nx.draw_networkx_nodes(G=bn1, node_color='gold', nodelist=bn1.nodes(), pos=pos1, alpha=1, node_size=[(self.device_count[i] / 250) ** (1 / 2) for i in bn1.nodes()]) for i, j in bn1.edges(): csvwriter.writerow([i, j, 'bn', self.g.edges[i, j]['weight']]) ax.annotate("", xy=pos1[i], xycoords='data', xytext=pos1[j], textcoords='data', arrowprops=dict(arrowstyle="-", color='gold', shrinkA=5, shrinkB=5, patchA=None, patchB=None, connectionstyle="arc3,rad=0.3", ), ) bn = nx.Graph() bn.add_edges_from(self.bottleneck) nx.draw_networkx_nodes(G=bn, node_color='r', nodelist=bn.nodes(), pos=pos1, alpha=1, node_size=[(self.device_count[i]/250) ** (1 / 2) for i in bn.nodes()]) for i, j in bn.edges(): csvwriter.writerow([i, j, 'sbn', self.g.edges[i, j]['weight']]) ax.annotate("", xy=pos1[i], xycoords='data', xytext=pos1[j], textcoords='data', arrowprops=dict(arrowstyle="-", color='r', shrinkA=5, shrinkB=5, patchA=None, patchB=None, connectionstyle="arc3,rad=0.3", ), ) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) labels = ['GC', 'SGC', 'TGC', 'Bottleneck(GC)', 'Bottleneck(non GC)', 'Rest'] colors = ['cornflowerblue', 'lightgreen', 'peachpuff', 'r', 'gold', 'silver'] lines = [Line2D([0], [0], color=c, linewidth=2, alpha=0.85) for c in colors] plt.tight_layout() plt.legend(lines, labels, fontsize=7, loc=4) plt.title('Inter MSA ' + self.date.strftime('%m/%d') + ' map') plt.savefig(self.result_dir() + self.date.strftime('%m_%d') + '_map.jpg') return def plot_w_qc_perco(self): colors = ['#fef0d9', '#fdcc8a', '#fc8d59', '#e34a33', '#b30000'] num = [0, 25, 50, 75, 100] color_c = {} for i in self.qc_m.keys(): j = str(i) if self.qc_m[i] > 12: color_c[j] = '#b30000' elif self.qc_m[i] > 9: color_c[j] = '#e34a33' elif self.qc_m[i] > 6: color_c[j] = '#fc8d59' elif self.qc_m[i] > 3: color_c[j] = '#fdcc8a' else: color_c[j] = '#fef0d9' tmp = [] for i in range(0, 18, 5): tmp_nodes = select(self.qc_m, i) qc_g = self.g.subgraph(tmp_nodes) for j in num: if i == j == 0: continue tmp_g = generate_network_threshold(qc_g, j) if j == 0: tmp.append((i, *largest_size_qc(tmp_g, self.device_count))) plot_qc_map(tmp_g, 'qc', color_c, self.device_count, pos, i, j, self.date, self.g) if not os.path.exists('perco_diff_level/'+ self.date.strftime('%m_%d')+'.csv'): a='x' else: a='w' with open('perco_diff_level/'+ self.date.strftime('%m_%d')+'.csv', mode=a) as edges: csvwriter = csv.writer(edges) csvwriter.writerow(['inner_qc_perco', 'qc', 'gc_size']) csvwriter.writerow([0, self.qc, self.gc_node_size]) for i in tmp: csvwriter.writerow(i) # color_c = {} # for i in self.qca_m.keys(): # j = str(i) # if self.qca_m[i] > 12: # color_c[j] = 'red' # elif self.qca_m[i] > 9: # color_c[j] = 'darkorange' # elif self.qca_m[i] > 6: # color_c[j] = 'orange' # elif self.qca_m[i] > 3: # color_c[j] = 'gold' # else: # color_c[j] = 'wheat' # # for i in range(0, 18, 5): # tmp_nodes = select(self.qca_m, i) # qc_g = self.g.subgraph(tmp_nodes) # for j in num: # if i == j == 0: # continue # tmp_g = generate_network_threshold(qc_g, j) # plot_qc_map(tmp_g, 'qca', color_c, self.device_count, pos, i, j, self.date) # # color_c = {} # for i in self.qcf_m.keys(): # j = str(i) # if self.qcf_m[i] > 60: # color_c[j] = 'red' # elif self.qcf_m[i] > 45: # color_c[j] = 'darkorange' # elif self.qcf_m[i] > 30: # color_c[j] = 'orange' # elif self.qcf_m[i] > 15: # color_c[j] = 'gold' # else: # color_c[j] = 'wheat' # # for i in range(0, 75, 30): # tmp_nodes = select(self.qcf_m, i) # qc_g = self.g.subgraph(tmp_nodes) # for j in num: # if i == j == 0: # continue # tmp_g = generate_network_threshold(qc_g, j) # plot_qc_map(tmp_g, 'qcf', color_c, self.device_count, pos, i, j, self.date) return
38.790861
149
0.509197
3509989fa9e5f811b55a930f69c060902c3edcc6
1,296
py
Python
ddns/config.py
dongbum/DDNS-Route53
936b2ebe433a2f90f020b88bce13a236de3b5fbc
[ "MIT" ]
11
2019-08-26T12:44:21.000Z
2022-01-25T08:54:11.000Z
ddns/config.py
dongbum/DDNS-Route53
936b2ebe433a2f90f020b88bce13a236de3b5fbc
[ "MIT" ]
2
2019-10-01T01:22:56.000Z
2019-10-02T01:34:35.000Z
ddns/config.py
dongbum/DDNS-Route53
936b2ebe433a2f90f020b88bce13a236de3b5fbc
[ "MIT" ]
1
2021-04-23T18:15:58.000Z
2021-04-23T18:15:58.000Z
# -*- coding: utf-8 -*- import os, configparser from ddns.customerror import ConfigParserError class Config: def __init__(self): try: if os.path.exists('config.ini'): config = configparser.ConfigParser() config.read('config.ini') self.domain = config['DEFAULT']['DOMAIN'] self.aws_hosted_zone_id = config['DEFAULT']['AWS_HOSTED_ZONE_ID'] self.aws_access_key_id = config['DEFAULT']['AWS_ACCESS_KEY_ID'] self.aws_secret_access_key = config['DEFAULT']['AWS_ACCESS_SECRET_KEY'] self.get_ip = config['DEFAULT']['GET_IP'] self.check_url = config['DEFAULT']['CHECK_URL'] self.log = config['DEFAULT']['LOG'] else: self.domain = os.environ['DOMAIN'] self.aws_hosted_zone_id = os.environ['AWS_HOSTED_ZONE_ID'] self.aws_access_key_id = os.environ['AWS_ACCESS_KEY_ID'] self.aws_secret_access_key = os.environ['AWS_ACCESS_SECRET_KEY'] self.get_ip = os.environ['GET_IP'] self.check_url = os.environ['CHECK_URL'] self.log = os.environ['LOG'] except: raise ConfigParserError('Load config failed.')
44.689655
87
0.579475
e3a0dca60469edc07da75854bb783a292ee5ff1f
7,839
py
Python
videoanalyst/data/target/target_impl/utils/make_densebox_target_v1.py
TragedyN/SiamFCpp
65d80a66eb40d81ca09fa2dbf32636fbc414ec0d
[ "MIT" ]
737
2019-12-24T13:34:43.000Z
2022-03-28T11:38:24.000Z
videoanalyst/data/target/target_impl/utils/make_densebox_target_v1.py
ShiAngWang/video_analyst
de4f86363cc408695428b423e8d6e346aa35149b
[ "MIT" ]
129
2020-02-13T04:08:28.000Z
2022-03-17T04:13:09.000Z
videoanalyst/data/target/target_impl/utils/make_densebox_target_v1.py
ShiAngWang/video_analyst
de4f86363cc408695428b423e8d6e346aa35149b
[ "MIT" ]
179
2019-12-31T04:53:12.000Z
2022-03-25T06:32:20.000Z
# encoding: utf-8 # [Version 1] this is a archived version of densebox target maker # current version is under _make_densebox_target.py_ (i.e. without "_v1" suffix) import os from typing import Dict, Tuple import numpy as np DUMP_FLAG = False # dump intermediate results for debugging DUMP_DIR = "dump" DUMP_SUFFIX = "v1" if not os.path.exists(DUMP_DIR): os.makedirs(DUMP_DIR) def make_densebox_target(gt_boxes: np.array, config: Dict) -> Tuple: """ v1 Model training target generation function for densebox Arguments --------- gt_boxes : np.array ground truth bounding boxes with class, shape=(N, 5), order=(x0, y0, x1, y1, class) config: configuration of target making (old format) Keys ---- x_size : int search image size score_size : int score feature map size total_stride : int total stride of backbone score_offset : int offset between the edge of score map and the border of the search image Returns ------- Tuple cls_res_final : np.array class shape=(N, 1) ctr_res_final : np.array shape=(N, 1) gt_boxes_res_final : np.array shape=(N, 4) # previous format # shape=(N, 6), order=(class, center-ness, left_offset, top_offset, right_offset, bottom_offset) """ x_size = config["x_size"] score_size = config["score_size"] total_stride = config["total_stride"] score_offset = config["score_offset"] eps = 1e-5 raw_height, raw_width = x_size, x_size # append class dimension to gt_boxes if ignored if gt_boxes.shape[1] == 4: gt_boxes = np.concatenate( [gt_boxes, np.ones( (gt_boxes.shape[0], 1))], axis=1) # boxes_cnt x 5 # l, t, r, b gt_boxes = np.concatenate([np.zeros((1, 5)), gt_boxes]) # (boxes_cnt, 5) gt_boxes_area = (np.abs( (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] - gt_boxes[:, 1]))) gt_boxes = gt_boxes[np.argsort( gt_boxes_area)] # sort gt_boxes by area, ascending order boxes_cnt = len(gt_boxes) # number of gt_boxes shift_x = np.arange(0, raw_width).reshape(-1, 1) shift_y = np.arange(0, raw_height).reshape(-1, 1) shift_x, shift_y = np.meshgrid(shift_x, shift_y) # (H, W) # (H, W, #boxes, 1d-offset(l/t/r/b) ) off_l = (shift_x[:, :, np.newaxis, np.newaxis] - gt_boxes[np.newaxis, np.newaxis, :, 0, np.newaxis]) off_t = (shift_y[:, :, np.newaxis, np.newaxis] - gt_boxes[np.newaxis, np.newaxis, :, 1, np.newaxis]) off_r = -(shift_x[:, :, np.newaxis, np.newaxis] - gt_boxes[np.newaxis, np.newaxis, :, 2, np.newaxis]) off_b = -(shift_y[:, :, np.newaxis, np.newaxis] - gt_boxes[np.newaxis, np.newaxis, :, 3, np.newaxis]) if DUMP_FLAG: off_l.dump("{}/off_l_{}.npz".format(DUMP_DIR, DUMP_SUFFIX)) off_t.dump("{}/off_t_{}.npz".format(DUMP_DIR, DUMP_SUFFIX)) off_r.dump("{}/off_r_{}.npz".format(DUMP_DIR, DUMP_SUFFIX)) off_b.dump("{}/off_b_{}.npz".format(DUMP_DIR, DUMP_SUFFIX)) # centerness center = ((np.minimum(off_l, off_r) * np.minimum(off_t, off_b)) / (np.maximum(off_l, off_r) * np.maximum(off_t, off_b) + eps)) if DUMP_FLAG: center.dump("{}/center_{}.npz".format(DUMP_DIR, DUMP_SUFFIX)) center = np.squeeze(np.sqrt(np.abs(center))) center[:, :, 0] = 0 offset = np.concatenate([off_l, off_t, off_r, off_b], axis=3) # h x w x boxes_cnt * 4 if DUMP_FLAG: offset.dump("{}/offset_{}.npz".format(DUMP_DIR, DUMP_SUFFIX)) cls = gt_boxes[:, 4] cls_res_list = [] ctr_res_list = [] gt_boxes_res_list = [] fm_height, fm_width = score_size, score_size fm_size_list = [] fm_strides = [total_stride] fm_offsets = [score_offset] for fm_i in range(len(fm_strides)): fm_size_list.append([fm_height, fm_width]) fm_height = int(np.ceil(fm_height / 2)) fm_width = int(np.ceil(fm_width / 2)) fm_size_list = fm_size_list[::-1] for fm_i, (stride, fm_offset) in enumerate(zip(fm_strides, fm_offsets)): fm_height = fm_size_list[fm_i][0] fm_width = fm_size_list[fm_i][1] shift_x = np.arange(0, fm_width) shift_y = np.arange(0, fm_height) shift_x, shift_y = np.meshgrid(shift_x, shift_y) xy = np.vstack( (shift_y.ravel(), shift_x.ravel())).transpose() # (hxw) x 2 # floor(stride / 2) + x * stride? off_xy = offset[fm_offset + xy[:, 0] * stride, fm_offset + xy[:, 1] * stride] # will reduce dim by 1 # off_max_xy = off_xy.max(axis=2) # max of l,t,r,b off_valid = np.zeros((fm_height, fm_width, boxes_cnt)) is_in_boxes = (off_xy > 0).all(axis=2) # is_in_layer = (off_max_xy <= # config.sep_win[fm_i]) & (off_max_xy >= config.sep_win[fm_i + 1]) off_valid[ xy[:, 0], xy[:, 1], :] = is_in_boxes #& is_in_layer # xy[:, 0], xy[:, 1] reduce dim by 1 to match is_in_boxes.shape & is_in_layer.shape off_valid[:, :, 0] = 0 # h x w x boxes_cnt hit_gt_ind = np.argmax(off_valid, axis=2) # h x w # gt_boxes gt_boxes_res = np.zeros((fm_height, fm_width, 4)) gt_boxes_res[xy[:, 0], xy[:, 1]] = gt_boxes[hit_gt_ind[xy[:, 0], xy[:, 1]], :4] gt_boxes_res_list.append(gt_boxes_res.reshape(-1, 4)) # cls cls_res = np.zeros((fm_height, fm_width)) cls_res[xy[:, 0], xy[:, 1]] = cls[hit_gt_ind[xy[:, 0], xy[:, 1]]] cls_res_list.append(cls_res.reshape(-1)) # center center_res = np.zeros((fm_height, fm_width)) center_res[xy[:, 0], xy[:, 1]] = center[fm_offset + xy[:, 0] * stride, fm_offset + xy[:, 1] * stride, hit_gt_ind[xy[:, 0], xy[:, 1]]] ctr_res_list.append(center_res.reshape(-1)) # from IPython import embed;embed() cls_res_final = np.concatenate(cls_res_list, axis=0)[:, np.newaxis].astype(np.float32) ctr_res_final = np.concatenate(ctr_res_list, axis=0)[:, np.newaxis].astype(np.float32) gt_boxes_res_final = np.concatenate(gt_boxes_res_list, axis=0).astype(np.float32) # choose pos and neg point # labels = np.empty((len(cls_res_final),), dtype=np.float32) # labels.fill(-1) # # pos_index= np.where(cls_res_final > 0) # neg_index = np.where(cls_res_final == 0) # if len(pos_index[0]) > config.rpn_pos_samples: # np.random.shuffle(pos_index[0]) # selected_pos = pos_index[0][:config.rpn_pos_samples] # else: # selected_pos = pos_index[0] # # neg_num = config.rpn_total_samples - len(selected_pos) # np.random.shuffle(neg_index[0]) # selected_neg = neg_index[0][:neg_num] # # labels[selected_pos] = 1 # labels[selected_neg] = 0 # labels = labels[:, np.newaxis] # return np.concatenate([cls_res_final, ctr_res_final, gt_boxes_res_final], axis=1) return cls_res_final, ctr_res_final, gt_boxes_res_final if __name__ == '__main__': # gt_boxes gt_boxes = np.asarray([[13, 25, 100, 140, 1]]) config_dict = dict( x_size=303, score_size=17, total_stride=8, score_offset=(303 - 1 - (17 - 1) * 8) // 2, ) target = make_densebox_target(gt_boxes, config_dict) for v in target: print("{}".format(v.shape)) from IPython import embed embed()
37.328571
136
0.579028
80d539219eb1f2429b8f8f63bf623bb6e856a614
539
py
Python
sandbox/length-dist.py
ctSkennerton/khmer
f5428c5bdfe009ce39b125fa6e18077c534dc747
[ "BSD-3-Clause" ]
null
null
null
sandbox/length-dist.py
ctSkennerton/khmer
f5428c5bdfe009ce39b125fa6e18077c534dc747
[ "BSD-3-Clause" ]
null
null
null
sandbox/length-dist.py
ctSkennerton/khmer
f5428c5bdfe009ce39b125fa6e18077c534dc747
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python # # This file is part of khmer, http://github.com/ged-lab/khmer/, and is # Copyright (C) Michigan State University, 2009-2013. It is licensed under # the three-clause BSD license; see doc/LICENSE.txt. # Contact: khmer-project@idyll.org # import sys import screed from screed import fasta filein = sys.argv[1] fp = open(filein) lengths = [0] * 100 for n, record in enumerate(fasta.fasta_iter(fp)): length = len(record['sequence']) - 32 lengths[length] += 1 for n, i in enumerate(lengths): print n, i
22.458333
74
0.697588
4d8ae1edbbe0b0f29458d56894d484cc2f3dc5fb
2,006
py
Python
src/bookmarklet_result/show.py
artilf/bookmarks-lambda
f1d0c9d94f5793240e844e4d99e30fa2e5a331cf
[ "MIT" ]
null
null
null
src/bookmarklet_result/show.py
artilf/bookmarks-lambda
f1d0c9d94f5793240e844e4d99e30fa2e5a331cf
[ "MIT" ]
null
null
null
src/bookmarklet_result/show.py
artilf/bookmarks-lambda
f1d0c9d94f5793240e844e4d99e30fa2e5a331cf
[ "MIT" ]
null
null
null
from pathlib import Path from typing import Optional from jinja2 import Template from logger.my_logger import MyLogger from models.article import Article from tools.base64 import urlsafe_decode from tools.bookmarklet_tools import ( get_raw_encoded_article, get_raw_encoded_message, is_success, ) logger = MyLogger(__name__) SECOND = 5 def main(event): article = get_article(event) if is_success(event): page = create_success_page(article) return create_response(page) else: message = get_message(event) page = create_error_page(message, article) return create_response(page) def create_response(page: str): return {"statusCode": 200, "headers": {"Content-Type": "text/html"}, "body": page} def get_article(event) -> Optional[Article]: raw_encoded_article = get_raw_encoded_article(event) if raw_encoded_article is None: return None try: text = urlsafe_decode(raw_encoded_article).decode() return Article.loads(text) except Exception as e: logger.warning(f"Exception occurred: {e}") return None def get_message(event) -> str: raw_encoded_message = get_raw_encoded_message(event) if raw_encoded_message is None: return str(None) return urlsafe_decode(raw_encoded_message).decode() def get_failed_template(): rel_path = "templates/failed.html.j2" path = Path(__file__).parent.joinpath(rel_path).resolve() return open(str(path)).read() def get_success_template(): rel_path = "templates/success.html.j2" path = Path(__file__).parent.joinpath(rel_path).resolve() return open(str(path)).read() def create_error_page(message: str, article: Optional[Article]) -> str: template = Template(get_failed_template()) return template.render(message=message, article=article) def create_success_page(article: Optional[Article]) -> str: template = Template(get_success_template()) return template.render(article=article)
27.479452
86
0.721336
9513a05700830089ee0d3201247913353cd3e934
1,400
py
Python
airbyte-integrations/bases/base-normalization/normalization/destination_type.py
rajatariya21/airbyte
11e70a7a96e2682b479afbe6f709b9a5fe9c4a8d
[ "MIT" ]
null
null
null
airbyte-integrations/bases/base-normalization/normalization/destination_type.py
rajatariya21/airbyte
11e70a7a96e2682b479afbe6f709b9a5fe9c4a8d
[ "MIT" ]
4
2021-04-30T08:10:26.000Z
2021-04-30T13:53:34.000Z
airbyte-integrations/bases/base-normalization/normalization/destination_type.py
rajatariya21/airbyte
11e70a7a96e2682b479afbe6f709b9a5fe9c4a8d
[ "MIT" ]
null
null
null
# MIT License # # Copyright (c) 2020 Airbyte # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from enum import Enum class DestinationType(Enum): BIGQUERY = "bigquery" POSTGRES = "postgres" REDSHIFT = "redshift" SNOWFLAKE = "snowflake" @classmethod def from_string(cls, string_value: str) -> "DestinationType": return DestinationType[string_value.upper()]
38.888889
80
0.757857
fc5c2cb55b6b215970099f86c6bdfbcda89c8934
8,087
py
Python
Result.py
UmeedChandel/FaceGrab
9d7e226c790bcd9f5b3c4297765b6d403a7a7838
[ "MIT" ]
1
2021-06-07T16:22:53.000Z
2021-06-07T16:22:53.000Z
Result.py
Tulikajain1210/FaceGrab
b1453dc1ccd077fdd67c4683dcb0098fb37f4068
[ "MIT" ]
1
2021-06-07T16:33:14.000Z
2021-06-07T16:33:14.000Z
Result.py
Tulikajain1210/FaceGrab
b1453dc1ccd077fdd67c4683dcb0098fb37f4068
[ "MIT" ]
2
2021-06-07T03:04:32.000Z
2021-06-07T16:21:51.000Z
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import QPixmap class Ui_ResultPage(object): def openWindow(self): from Search import Ui_SearchPage self.window = QtWidgets.QDialog() self.ui = Ui_SearchPage() self.ui.setupUi(self.window) self.window.show() def setupUi(self, Dialog,name,date,time,loc,cam_id,id): Dialog.setObjectName("Dialog") Dialog.resize(700, 700) Dialog.setWindowFlags(QtCore.Qt.FramelessWindowHint) self.label_bg = QtWidgets.QLabel(Dialog) self.label_bg.setGeometry(QtCore.QRect(0, 0, 700, 700)) self.label_bg.setStyleSheet("background-image: url(:/newPrefix/BG-FB1.jpg);") self.label_bg.setText("") self.label_bg.setObjectName("label_bg") self.label_5 = QtWidgets.QLabel(Dialog) self.label_5.setGeometry(QtCore.QRect(60, 470, 121, 31)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.label_5.setFont(font) self.label_5.setStyleSheet("color: rgb(47, 67, 195);\n" "color: rgb(0, 0, 0);") self.label_5.setObjectName("label_5") self.label_1 = QtWidgets.QLabel(Dialog) self.label_1.setGeometry(QtCore.QRect(130, 110, 81, 31)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(17) font.setBold(False) font.setWeight(50) self.label_1.setFont(font) self.label_1.setStyleSheet("color: rgb(9, 13, 84);") self.label_1.setObjectName("label_1") self.label_6 = QtWidgets.QLabel(Dialog) self.label_6.setGeometry(QtCore.QRect(400, 480, 55, 21)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.label_6.setFont(font) self.label_6.setStyleSheet("color: rgb(47, 67, 195);\n" "color: rgb(0, 0, 0);") self.label_6.setObjectName("label_6") self.result_name = QtWidgets.QLabel(Dialog) self.result_name.setGeometry(QtCore.QRect(230, 200, 201, 16)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.result_name.setFont(font) self.result_name.setObjectName("result_name") self.result_name.setText(name) self.label_8 = QtWidgets.QLabel(Dialog) self.label_8.setGeometry(QtCore.QRect(400, 520, 55, 16)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.label_8.setFont(font) self.label_8.setStyleSheet("color: rgb(47, 67, 195);\n" "color: rgb(0, 0, 0);") self.label_8.setObjectName("label_8") self.label_2 = QtWidgets.QLabel(Dialog) self.label_2.setGeometry(QtCore.QRect(210, 90, 181, 51)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(35) self.label_2.setFont(font) self.label_2.setStyleSheet("color: rgb(9, 13, 84);") self.label_2.setObjectName("label_2") self.back = QtWidgets.QPushButton(Dialog) self.back.setGeometry(QtCore.QRect(440, 600, 93, 28)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.back.setFont(font) self.back.setCursor(QtGui.QCursor(QtCore.Qt.OpenHandCursor)) self.back.setStyleSheet("border-radius : 10;\n" "background-color: rgb(0,0,0);\n" "color:rgb(255,255,255);") self.back.setObjectName("back") self.back.clicked.connect(Dialog.close) self.result_cam_id = QtWidgets.QLabel(Dialog) self.result_cam_id.setGeometry(QtCore.QRect(190, 480, 161, 16)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.result_cam_id.setFont(font) self.result_cam_id.setObjectName("result_cam_id") self.result_cam_id.setText(cam_id) self.label_3 = QtWidgets.QLabel(Dialog) self.label_3.setGeometry(QtCore.QRect(390, 100, 181, 41)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(17) self.label_3.setFont(font) self.label_3.setStyleSheet("color: rgb(9, 13, 84);") self.label_3.setObjectName("label_3") self.result_date = QtWidgets.QLabel(Dialog) self.result_date.setGeometry(QtCore.QRect(480, 520, 161, 16)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.result_date.setFont(font) self.result_date.setObjectName("result_date") self.result_date.setText(date) self.result_time = QtWidgets.QLabel(Dialog) self.result_time.setGeometry(QtCore.QRect(480, 480, 161, 16)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.result_time.setFont(font) self.result_time.setObjectName("result_time") self.result_time.setText(time) self.result_photo = QtWidgets.QLabel(Dialog) self.result_photo.setGeometry(QtCore.QRect(230, 250, 200, 200)) self.result_photo.setStyleSheet("border: 0.5px solid rgb(9, 13, 84);\n") self.result_photo.setText("") img = "ImageSourceDirectory/" + id + ".jpg" self.result_photo.setPixmap(QtGui.QPixmap(img)) self.result_photo.setScaledContents(True) self.result_photo.setObjectName("result_photo") self.result_loc = QtWidgets.QLabel(Dialog) self.result_loc.setGeometry(QtCore.QRect(190, 520, 161, 16)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.result_loc.setFont(font) self.result_loc.setObjectName("result_loc") self.result_loc.setText(loc) self.label_4 = QtWidgets.QLabel(Dialog) self.label_4.setGeometry(QtCore.QRect(100, 200, 71, 21)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.label_4.setFont(font) self.label_4.setStyleSheet("color: rgb(47, 67, 195);\n" "color: rgb(0, 0, 0);") self.label_4.setObjectName("label_4") self.label_7 = QtWidgets.QLabel(Dialog) self.label_7.setGeometry(QtCore.QRect(80, 520, 91, 21)) font = QtGui.QFont() font.setFamily("Arial Rounded MT Bold") font.setPointSize(12) self.label_7.setFont(font) self.label_7.setStyleSheet("color: rgb(47, 67, 195);\n" "color: rgb(0, 0, 0);") self.label_7.setObjectName("label_7") self.result_name.setStyleSheet("color: rgb(255,0,0);\n""") self.result_cam_id.setStyleSheet("color: rgb(255,0,0);\n""") self.result_time.setStyleSheet("color: rgb(255,0,0);\n""") self.result_date.setStyleSheet("color: rgb(255,0,0);\n""") self.result_loc.setStyleSheet("color: rgb(255,0,0);\n""") self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Dialog")) self.label_5.setText(_translate("Dialog", "Camera Id:")) self.label_1.setText(_translate("Dialog", "FACE")) self.label_6.setText(_translate("Dialog", "Time:")) self.label_8.setText(_translate("Dialog", "Date:")) self.label_2.setText(_translate("Dialog", "GRAB")) self.label_3.setText(_translate("Dialog", "RESULTS")) self.back.setText(_translate("Dialog", "BACK")) self.label_4.setText(_translate("Dialog", "Name:")) self.label_7.setText(_translate("Dialog", "Location:")) import img_result_rc if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Dialog = QtWidgets.QDialog() ui = Ui_ResultPage() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
42.119792
85
0.645975
dabf65e6165ab5872b2e42ca21ab0572435cd718
3,149
py
Python
data/process_data.py
kschuessler/udacity_disaster_response_pipeline
68ed6c79d50ce131a975a20eef1a860de6162a58
[ "FTL", "CNRI-Python", "blessing" ]
null
null
null
data/process_data.py
kschuessler/udacity_disaster_response_pipeline
68ed6c79d50ce131a975a20eef1a860de6162a58
[ "FTL", "CNRI-Python", "blessing" ]
null
null
null
data/process_data.py
kschuessler/udacity_disaster_response_pipeline
68ed6c79d50ce131a975a20eef1a860de6162a58
[ "FTL", "CNRI-Python", "blessing" ]
null
null
null
import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """ INPUT: messages_filepath - path to the csv file holding messages data categories_filepath - path to the csv file holding categories data OUTPUT: df - a dataframe including all columns from the messages and categories files """ # load messages dataset messages = pd.read_csv(messages_filepath) # load categories dataset categories = pd.read_csv(categories_filepath) # merge datasets df = messages.merge(categories, how='outer', on=['id']) return df def clean_data(df): """ INPUT: df - a dataframe including all columns from the messages and categories files OUTPUT: df - a dataframe with separate columns for all response categories without duplicates """ # create a dataframe of the 36 individual category columns categories = df['categories'].str.split(';', expand=True) # extract new column names using the first row of the categories dataframe row = categories[:1].values.flatten().tolist() category_colnames = [x[:-2] for x in row] # rename the columns of `categories` categories.columns = category_colnames for column in categories: # set each value to be the last character of the string categories[column] = [x.strip()[-1] for x in categories[column]] # convert column from string to numeric categories[column] = categories[column].astype(int) # drop the original categories column from `df` df = df.drop(columns=['categories']) # concatenate the original dataframe with the new `categories` dataframe df = pd.concat([df, categories], axis=1) # drop duplicates df = df[-df.duplicated()] return df def save_data(df, database_filename): """ INPUT: df - cleaned dataframe database_filename - name of the database OUTPUT: n/a """ engine = create_engine(f'sqlite:///{database_filename}') df.to_sql('messages', engine, index=False) def main(): if len(sys.argv) == 4: messages_filepath, categories_filepath, database_filepath = sys.argv[1:] print('Loading data...\n MESSAGES: {}\n CATEGORIES: {}' .format(messages_filepath, categories_filepath)) df = load_data(messages_filepath, categories_filepath) print('Cleaning data...') df = clean_data(df) print('Saving data...\n DATABASE: {}'.format(database_filepath)) save_data(df, database_filepath) print('Cleaned data saved to database!') else: print('Please provide the filepaths of the messages and categories '\ 'datasets as the first and second argument respectively, as '\ 'well as the filepath of the database to save the cleaned data '\ 'to as the third argument. \n\nExample: python process_data.py '\ 'disaster_messages.csv disaster_categories.csv '\ 'DisasterResponse.db') if __name__ == '__main__': main()
32.802083
93
0.656716
8d3ede7cac8abe7314143e211b13847bed4f0e15
812
py
Python
source_files/example_1/example_1_plot_beam_vibration_data.py
ARTS-Laboratory/Introducton-to-Python-for-engineers
e852b3b35a48afea7839fca5043708caf2f84b03
[ "MIT" ]
null
null
null
source_files/example_1/example_1_plot_beam_vibration_data.py
ARTS-Laboratory/Introducton-to-Python-for-engineers
e852b3b35a48afea7839fca5043708caf2f84b03
[ "MIT" ]
null
null
null
source_files/example_1/example_1_plot_beam_vibration_data.py
ARTS-Laboratory/Introducton-to-Python-for-engineers
e852b3b35a48afea7839fca5043708caf2f84b03
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 15 16:05:28 2019 @author: austin """ import IPython as IP IP.get_ipython().magic('reset -sf') import numpy as np import scipy as sp import matplotlib as mpl import matplotlib.pyplot as plt plt.close('all') #%% Load and plot data D = np.loadtxt('vibration_data/Vibration_measurement.txt',skiprows=23) tt = D[:,0] ac = D[:,1] plt.figure(figsize=(6.5,3)) plt.plot(tt,ac,'-',label='test 1') plt.plot(tt+0.1,ac,'--',label='test 1') plt.plot(tt+0.2,ac,':',label='test 1') plt.plot(tt+0.3,ac,'-.',label='test 1') plt.grid(True) plt.xlabel('time (s)') plt.ylabel('acceleration (m/s$^2$)') plt.legend(loc=2) plt.tight_layout() plt.savefig('example_1_150.png',dpi=150) plt.savefig('example_1_300.png',dpi=300) plt.savefig('example_1_pdf.pdf')
20.3
70
0.681034
02913434d5db4e3c09f6aa02eb890cf3c26c0d78
2,059
py
Python
setup.py
heylouiz/spidermon
3ae2c46d1cf5b46efb578798b881264be3e68394
[ "BSD-3-Clause" ]
null
null
null
setup.py
heylouiz/spidermon
3ae2c46d1cf5b46efb578798b881264be3e68394
[ "BSD-3-Clause" ]
null
null
null
setup.py
heylouiz/spidermon
3ae2c46d1cf5b46efb578798b881264be3e68394
[ "BSD-3-Clause" ]
null
null
null
from setuptools import setup, find_packages test_requirements = [ "pytest>=2.7.0", "pytest-cov", "pytest-mock", "jinja2", "lxml", "scrapy", "slackclient>=1.3.0,<2.0.0", "twisted>=19.7.0", ] setup( name="spidermon", version="1.11.0", url="https://github.com/scrapinghub/spidermon", author="Scrapinghub", author_email="info@scrapinghub.com", description=("Spidermon is a framework to build monitors for Scrapy spiders."), long_description=("Spidermon is a framework to build monitors for Scrapy spiders."), license="BSD", packages=find_packages(), package_data={"spidermon": ["VERSION"]}, zip_safe=False, include_package_data=True, install_requires=["jsonschema[format]", "python-slugify", "six>=1.11.0"], tests_require=test_requirements, extras_require={ # Specific monitors and tools to support notifications and reports "monitoring": [ "scrapy", "Jinja2", "slackclient>=1.3.0,<2.0.0", "boto", "premailer", "sentry-sdk", ], # Data validation "validation": ["schematics"], # Tools to run the tests "tests": test_requirements, "pep8": ["black"], # Tools to build and publish the documentation "docs": ["sphinx", "sphinx-rtd-theme", "s3cmd"], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Framework :: Scrapy", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Internet :: WWW/HTTP", "Topic :: System :: Monitoring", ], )
32.171875
88
0.581836
2e87e8e8e61abe9afb627a3a71c1f408cc48dffb
7,903
py
Python
tests/units/consensus/change_candidate_test.py
iconloop/LFT2
3862d63aaf148f99240c6d4a54408dc2520b94c6
[ "Apache-2.0" ]
23
2020-02-10T10:08:20.000Z
2021-11-17T02:02:06.000Z
tests/units/consensus/change_candidate_test.py
iconloop/LFT2
3862d63aaf148f99240c6d4a54408dc2520b94c6
[ "Apache-2.0" ]
3
2020-03-05T07:18:16.000Z
2020-06-01T09:03:11.000Z
tests/units/consensus/change_candidate_test.py
iconloop/LFT2
3862d63aaf148f99240c6d4a54408dc2520b94c6
[ "Apache-2.0" ]
6
2020-02-21T02:02:40.000Z
2021-12-01T23:35:07.000Z
import os import pytest from typing import Tuple from mock import MagicMock from lft.app.data import DefaultDataFactory, DefaultData from lft.app.vote import DefaultVoteFactory from lft.app.epoch import RotateEpoch from lft.consensus.messages.vote import Vote from lft.event import EventSystem from lft.consensus import Consensus from lft.consensus.messages.data import Data from lft.consensus.events import RoundEndEvent @pytest.mark.asyncio async def test_candidate_change_by_vote(): event_system, consensus, genesis_data = await setup_consensus() # Genesis(E0R0) -> Data10(E1R0) data10 = await new_and_receive_data(consensus=consensus, candidate=genesis_data, new_epoch_num=1, new_round_num=0) event_system.simulator.raise_event.assert_not_called() await new_and_receive_votes(consensus=consensus, data=data10) event_system.simulator.raise_event.assert_called_once() round_end_event = event_system.simulator.raise_event.call_args_list[0][0][0] verify_round_end_event(round_end_event, data10) event_system.simulator.raise_event.reset_mock() # Genesis(E0R0) -> Data11(E1R1) data11 = await new_and_receive_data(consensus=consensus, candidate=genesis_data, new_epoch_num=1, new_round_num=1) event_system.simulator.raise_event.assert_not_called() await new_and_receive_votes(consensus=consensus, data=data11) event_system.simulator.raise_event.assert_called_once() round_end_event = event_system.simulator.raise_event.call_args_list[0][0][0] verify_round_end_event(round_end_event, data11) @pytest.mark.asyncio async def test_candidate_change_by_data(): event_system, consensus, genesis_data = await setup_consensus() # Genesis(E0R0) -> Data10(E1R0) data10 = await new_and_receive_data(consensus=consensus, candidate=genesis_data, new_epoch_num=1, new_round_num=0) event_system.simulator.raise_event.assert_not_called() await new_and_receive_votes(consensus=consensus, data=data10) event_system.simulator.raise_event.assert_called_once() round_end_event = event_system.simulator.raise_event.call_args_list[0][0][0] verify_round_end_event(round_end_event, data10) event_system.simulator.raise_event.reset_mock() # Genesis(E0R0) -> Data11(E1R1) data11 = await new_and_receive_data(consensus=consensus, candidate=genesis_data, new_epoch_num=1, new_round_num=1) event_system.simulator.raise_event.assert_not_called() # Candidate11(E1R1) -> Data12(E1R2) data12 = await new_and_receive_data(consensus=consensus, candidate=data11, new_epoch_num=1, new_round_num=2) round_end_event = event_system.simulator.raise_event.call_args_list[0][0][0] verify_round_end_event(round_end_event, data11) event_system.simulator.raise_event.reset_mock() @pytest.mark.asyncio async def test_candidate_change_recursively(): event_system, consensus, genesis_data = await setup_consensus() data10 = await new_data(consensus=consensus, candidate=genesis_data, new_epoch_num=1, new_round_num=0) data11 = await new_data(consensus=consensus, candidate=data10, new_epoch_num=1, new_round_num=1) data12 = await new_data(consensus=consensus, candidate=data11, new_epoch_num=1, new_round_num=2) data13 = await new_data(consensus=consensus, candidate=data12, new_epoch_num=1, new_round_num=3) data14 = await new_data(consensus=consensus, candidate=data13, new_epoch_num=1, new_round_num=4) await receive_data(consensus, data10) await receive_data(consensus, data12) await receive_data(consensus, data14) votes12 = await new_votes(consensus, data12) await receive_votes(consensus, votes12) event_system.simulator.raise_event.assert_not_called() await receive_data(consensus, data11) assert len(event_system.simulator.raise_event.call_args_list) == 3 round_end_event10 = event_system.simulator.raise_event.call_args_list[0][0][0] verify_round_end_event(round_end_event10, data10) round_end_event11 = event_system.simulator.raise_event.call_args_list[1][0][0] verify_round_end_event(round_end_event11, data11) round_end_event12 = event_system.simulator.raise_event.call_args_list[2][0][0] verify_round_end_event(round_end_event12, data12) async def new_data(consensus: Consensus, candidate: Data, new_epoch_num: int, new_round_num: int): epoch = consensus._epoch_pool.get_epoch(new_epoch_num) proposer = epoch.get_proposer_id(new_round_num) data_factory = DefaultDataFactory(proposer) prev_votes = await new_votes(consensus, candidate) return await data_factory.create_data(candidate.number + 1, candidate.id, epoch.num, new_round_num, prev_votes) async def new_and_receive_data(consensus: Consensus, candidate: Data, new_epoch_num: int, new_round_num: int): data = await new_data(consensus, candidate, new_epoch_num, new_round_num) await receive_data(consensus, data) return data async def receive_data(consensus: Consensus, data: Data): await consensus.receive_data(data) async def new_votes(consensus: Consensus, data: Data): epoch = consensus._epoch_pool.get_epoch(data.epoch_num) vote_factories = [ DefaultVoteFactory(voter) for voter in epoch.voters ] return tuple([ await vote_factory.create_vote(data.id, data.prev_id, data.epoch_num, data.round_num) for vote_factory in vote_factories ]) async def receive_votes(consensus: Consensus, votes: Tuple[Vote, ...]): for vote in votes: await consensus.receive_vote(vote) async def new_and_receive_votes(consensus: Consensus, data: Data): votes = await new_votes(consensus, data) await receive_votes(consensus, votes) return votes def verify_round_end_event(round_end_event: RoundEndEvent, candidate_data: Data): assert isinstance(round_end_event, RoundEndEvent) assert round_end_event.epoch_num == candidate_data.epoch_num assert round_end_event.round_num == candidate_data.round_num assert round_end_event.candidate_id == candidate_data.id assert round_end_event.commit_id == candidate_data.prev_id async def setup_consensus(): node_id = b'x' event_system = MagicMock(EventSystem()) data_factory = DefaultDataFactory(node_id) vote_factory = DefaultVoteFactory(node_id) consensus = Consensus(event_system, node_id=node_id, data_factory=data_factory, vote_factory=vote_factory) voters = [os.urandom(16)] epochs = [RotateEpoch(0, []), RotateEpoch(1, voters)] datums = [DefaultData(id_=b'genesis', prev_id=b'', proposer_id=b'', number=0, epoch_num=0, round_num=0, prev_votes=())] votes = [] await consensus.initialize(datums[0].prev_id, epochs, datums, votes) event_system.simulator.raise_event.reset_mock() return event_system, consensus, datums[0]
40.116751
123
0.670884
d8aec1f758f0d86a2f97b97b75372a3fadd57d40
358
py
Python
servicectl/exceptions.py
TheEdgeOfRage/servicectl
c3a52bc00caaa8272dcda96e5f63e43b84bffd56
[ "BSD-3-Clause" ]
null
null
null
servicectl/exceptions.py
TheEdgeOfRage/servicectl
c3a52bc00caaa8272dcda96e5f63e43b84bffd56
[ "BSD-3-Clause" ]
null
null
null
servicectl/exceptions.py
TheEdgeOfRage/servicectl
c3a52bc00caaa8272dcda96e5f63e43b84bffd56
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2019 Pavle Portic <pavle.portic@tilda.center> # # Distributed under terms of the BSD-3-Clause license. class ServiceUpdateError(Exception): pass class StackRevertFailed(Exception): pass class ImageNotFound(Exception): pass class InternalDockerError(Exception): pass
14.916667
59
0.73743
8083dab912703045d1ed97107132acfe420e7433
2,171
py
Python
src/cc_catalog_airflow/dags/provider_api_scripts/common/requester.py
ayushbansal07/cccatalog
27d1ae2b8b65d2bebf1e32d4541346a92382ba4a
[ "MIT" ]
1
2020-02-07T22:47:47.000Z
2020-02-07T22:47:47.000Z
src/cc_catalog_airflow/dags/provider_api_scripts/common/requester.py
ayushbansal07/cccatalog
27d1ae2b8b65d2bebf1e32d4541346a92382ba4a
[ "MIT" ]
null
null
null
src/cc_catalog_airflow/dags/provider_api_scripts/common/requester.py
ayushbansal07/cccatalog
27d1ae2b8b65d2bebf1e32d4541346a92382ba4a
[ "MIT" ]
null
null
null
import logging import requests import time logger = logging.getLogger(__name__) class DelayedRequester: """ Provides a method `get` that is a wrapper around `get` from the `requests` module (i.e., it simply passes along whatever arguments it receives). The difference is that when this class is initialized with a non-zero `delay` parameter, it waits for at least that number of seconds between consecutive requests. This is to avoid hitting rate limits of APIs. Optional Arguments: delay: an integer giving the minimum number of seconds to wait between consecutive requests via the `get` method. """ def __init__(self, delay=0): self._DELAY = delay self._last_request = 0 def get(self, url, params=None, **kwargs): """ Make a get request, and return the response json if it exists. Required Arguments: url: URL to make the request as a string. params: Dictionary of query string params **kwargs: Optional arguments that will be passed to `requests.get` """ logger.info(f'Processing request for url: {url}') logger.info(f'Using query parameters {params}') logger.info(f'Using headers {kwargs.get("headers")}') self._delay_processing() response = requests.get(url, params, **kwargs) self._last_request = time.time() try: response = requests.get(url, params=params, **kwargs) if response.status_code == requests.codes.ok: return response else: logger.warning( f'Unable to request URL: {url}. ' f'Status code: {response.status_code}' ) return response except Exception as e: logger.error('There was an error with the request.') logger.info(f'{type(e).__name__}: {e}') return None def _delay_processing(self): wait = self._DELAY - (time.time() - self._last_request) if wait >= 0: logging.debug(f'Waiting {wait} second(s)') time.sleep(wait)
35.590164
74
0.607554
d3d93d4929b4fc5c6f03e4506ebd5da375be4b7d
4,583
py
Python
src/t/scripts/update.py
danpalmer/t
0f8f9eb90c754d477a19200b31c3b3c7cc142d8d
[ "MIT" ]
1
2022-01-11T11:17:14.000Z
2022-01-11T11:17:14.000Z
src/t/scripts/update.py
danpalmer/t
0f8f9eb90c754d477a19200b31c3b3c7cc142d8d
[ "MIT" ]
null
null
null
src/t/scripts/update.py
danpalmer/t
0f8f9eb90c754d477a19200b31c3b3c7cc142d8d
[ "MIT" ]
null
null
null
import pathlib import platform import stat import sys import tarfile import tempfile from typing import Any, List, Tuple import click import httpx from t import cli from t.__version__ import VERSION from t.settings import UPDATE_REPO from t.utils import github, output @cli.command(help=f"Check {'/'.join(UPDATE_REPO)} for updates") @click.option( "--repo", type=(str, str), metavar=" ".join(UPDATE_REPO), default=UPDATE_REPO, ) def check_for_update(repo: Tuple[str, str]) -> None: releases = get_available_releases(repo) if not releases: output.fatal("No releases found") update = get_update(releases) if not update: output.default("No update available", exit_with_code=0) try: asset = get_asset(update) except UnsupportedPlatform as e: output.fatal(str(e)) output.success("New version found") output.default(f" {VERSION} => {update.tag_name} {asset.browser_download_url}") output.default(" Update with `t self-update` or download manually") @cli.command(help=f"Update to the latest release from {'/'.join(UPDATE_REPO)}") @click.option( "--path", type=pathlib.Path, default=pathlib.Path(sys.executable), help="Override install path", ) @click.option( "--repo", type=(str, str), metavar=" ".join(UPDATE_REPO), default=UPDATE_REPO, ) @click.option( "--force", is_flag=True, help="Update to latest regardless of version", ) def self_update(path: pathlib.Path, repo: Tuple[str, str], force: bool) -> None: if "python" in path.name: output.fatal("Aborting update! (Looks like your in dev mode)") output.default(f"Updating {path} from {'/'.join(repo)}") if not click.confirm("Continue?"): output.fatal("Aborting update") releases = get_available_releases(repo) if not releases: output.fatal("No releases found") update = get_update(releases, force=force) if not update: output.default("No update available", exit_with_code=0) try: asset = get_asset(update) except UnsupportedPlatform as e: output.fatal(str(e)) github_client = github.get_authenticated_client() with tempfile.TemporaryDirectory() as tempdir: temp_asset_path = pathlib.Path(tempdir) / asset.name with temp_asset_path.open("wb") as f: with httpx.stream( "GET", asset.url, headers={ **github_client.headers, "User-Agent": "t", "Accept": "application/octet-stream", }, ) as response: response.raise_for_status() with click.progressbar(response.iter_bytes()) as bar: for chunk in bar: f.write(chunk) tar = tarfile.open(temp_asset_path) tar_members = tar.getmembers() if not tar_members: output.fatal("No items in release archive") binary_contents = tar.extractfile(tar_members[0].name) if binary_contents is None: output.fatal("Could not extract 't' from release archive") path.write_bytes(binary_contents.read()) path.chmod(stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) def get_available_releases(repo: Tuple[str, str]) -> List[Any]: gh = github.get_authenticated_client() try: return gh.repos.list_releases(*repo) except Exception: output.fatal("Failed to get releases, have you run `config github-login`?") def get_update(releases: List[Any], force=False) -> Any: latest_release = releases[0] if force: return latest_release new_version = int(latest_release.tag_name[1:]) if VERSION == "dev": current_version = -1 else: current_version = int(VERSION[1:]) if new_version <= current_version: return None return latest_release def get_asset(release: Any) -> Any: platform = get_platform_name() try: return next(x for x in release.assets if x.name.startswith(platform)) except StopIteration: raise UnsupportedPlatform( f"No compatible asset found on release '{release.name}' " f"for platform {platform}", ) def get_platform_name() -> str: if sys.platform.startswith("darwin"): if platform.machine() == "arm64": return "macos-arm64" return "macos-x86_64" if sys.platform.startswith("linux"): return "linux-x86_64" class UnsupportedPlatform(ValueError): pass
27.608434
84
0.634737
9ddbdf80e1894186454f2f6193d9774c47cff3c8
612
py
Python
hackerrank/Python/HTML Parser - Part 2/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
4
2020-07-24T01:59:50.000Z
2021-07-24T15:14:08.000Z
hackerrank/Python/HTML Parser - Part 2/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
hackerrank/Python/HTML Parser - Part 2/solution.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
from abc import ABC from html.parser import HTMLParser class MyHTMLParser(HTMLParser, ABC): def handle_comment(self, comment): if '\n' in comment: print('>>> Multi-line Comment') else: print('>>> Single-line Comment') print(comment) def handle_data(self, data): if data == '\n': return print('>>> Data') print(data) if __name__ == '__main__': html = '' for i in range(int(input())): html += input().rstrip() html += '\n' parser = MyHTMLParser() parser.feed(html) parser.close()
21.103448
44
0.542484
b3c08db3749a720d96f023204a519ecca5181f8b
124
py
Python
mypython/forloop1.py
priyalbhatewara123/Python-programs
90b84310101b76c14b89f256ee9206711908a4ae
[ "bzip2-1.0.6" ]
null
null
null
mypython/forloop1.py
priyalbhatewara123/Python-programs
90b84310101b76c14b89f256ee9206711908a4ae
[ "bzip2-1.0.6" ]
null
null
null
mypython/forloop1.py
priyalbhatewara123/Python-programs
90b84310101b76c14b89f256ee9206711908a4ae
[ "bzip2-1.0.6" ]
null
null
null
num = [11,89,7,48,100] for nums in num: if nums % 5 == 0: print(nums) break else: print("not found")
17.714286
22
0.516129
59156d9f3d98665c18144e626347dd2c3632106d
5,716
py
Python
opencga-client/src/main/python/pyopencga/rest_clients/user_client.py
opencb/opencga
b598b0adbda424c98bf6aa8b862cbb6d2992419b
[ "Apache-2.0" ]
146
2015-03-05T19:14:22.000Z
2022-03-30T03:46:48.000Z
opencga-client/src/main/python/pyopencga/rest_clients/user_client.py
opencb/opencga
b598b0adbda424c98bf6aa8b862cbb6d2992419b
[ "Apache-2.0" ]
1,623
2015-01-27T00:30:36.000Z
2022-03-31T14:42:33.000Z
opencga-client/src/main/python/pyopencga/rest_clients/user_client.py
opencb/opencga
b598b0adbda424c98bf6aa8b862cbb6d2992419b
[ "Apache-2.0" ]
93
2015-01-28T17:13:01.000Z
2022-03-09T20:46:47.000Z
""" WARNING: AUTOGENERATED CODE This code was generated by a tool. Autogenerated on: 2021-05-21 14:06:25 Manual changes to this file may cause unexpected behavior in your application. Manual changes to this file will be overwritten if the code is regenerated. """ from pyopencga.rest_clients._parent_rest_clients import _ParentRestClient class User(_ParentRestClient): """ This class contains methods for the 'Users' webservices Client version: 2.0.3 PATH: /{apiVersion}/users """ def __init__(self, configuration, token=None, login_handler=None, *args, **kwargs): super(User, self).__init__(configuration, token, login_handler, *args, **kwargs) def create(self, data=None, **options): """ Create a new user. PATH: /{apiVersion}/users/create :param dict data: JSON containing the parameters. (REQUIRED) """ return self._post(category='users', resource='create', data=data, **options) def login(self, data=None, **options): """ Get identified and gain access to the system. PATH: /{apiVersion}/users/login :param dict data: JSON containing the authentication parameters. """ return self._post(category='users', resource='login', data=data, **options) def password(self, data=None, **options): """ Change the password of a user. PATH: /{apiVersion}/users/password :param dict data: JSON containing the change of password parameters. (REQUIRED) """ return self._post(category='users', resource='password', data=data, **options) def configs(self, user, **options): """ Fetch a user configuration. PATH: /{apiVersion}/users/{user}/configs :param str user: User ID. (REQUIRED) :param str name: Unique name (typically the name of the application). """ return self._get(category='users', resource='configs', query_id=user, **options) def update_configs(self, user, data=None, **options): """ Add or remove a custom user configuration. PATH: /{apiVersion}/users/{user}/configs/update :param dict data: JSON containing anything useful for the application such as user or default preferences. When removing, only the id will be necessary. (REQUIRED) :param str user: User ID. (REQUIRED) :param str action: Action to be performed: ADD or REMOVE a group. Allowed values: ['ADD', 'REMOVE'] """ return self._post(category='users', resource='update', query_id=user, subcategory='configs', data=data, **options) def filters(self, user, **options): """ Fetch user filters. PATH: /{apiVersion}/users/{user}/filters :param str user: User ID. (REQUIRED) :param str id: Filter id. If provided, it will only fetch the specified filter. """ return self._get(category='users', resource='filters', query_id=user, **options) def update_filters(self, user, data=None, **options): """ Add or remove a custom user filter. PATH: /{apiVersion}/users/{user}/filters/update :param dict data: Filter parameters. When removing, only the 'name' of the filter will be necessary. (REQUIRED) :param str user: User ID. (REQUIRED) :param str action: Action to be performed: ADD or REMOVE a group. Allowed values: ['ADD', 'REMOVE'] """ return self._post(category='users', resource='update', query_id=user, subcategory='filters', data=data, **options) def update_filter(self, user, filter_id, data=None, **options): """ Update a custom filter. PATH: /{apiVersion}/users/{user}/filters/{filterId}/update :param dict data: Filter parameters. (REQUIRED) :param str filter_id: Filter id. (REQUIRED) :param str user: User ID. (REQUIRED) """ return self._post(category='users', resource='update', query_id=user, subcategory='filters', second_query_id=filter_id, data=data, **options) def info(self, user, **options): """ Return the user information including its projects and studies. PATH: /{apiVersion}/users/{user}/info :param str user: User ID. (REQUIRED) :param str include: Fields included in the response, whole JSON path must be provided. :param str exclude: Fields excluded in the response, whole JSON path must be provided. """ return self._get(category='users', resource='info', query_id=user, **options) def projects(self, user, **options): """ Retrieve the projects of the user. PATH: /{apiVersion}/users/{user}/projects :param str user: User ID. (REQUIRED) :param str include: Fields included in the response, whole JSON path must be provided. :param str exclude: Fields excluded in the response, whole JSON path must be provided. :param int limit: Number of results to be returned. :param int skip: Number of results to skip. """ return self._get(category='users', resource='projects', query_id=user, **options) def update(self, user, data=None, **options): """ Update some user attributes. PATH: /{apiVersion}/users/{user}/update :param dict data: JSON containing the params to be updated. (REQUIRED) :param str user: User ID. (REQUIRED) """ return self._post(category='users', resource='update', query_id=user, data=data, **options)
35.725
149
0.627362
54d853097daa028f63b78cec5ea564979a0dca55
5,763
py
Python
bin/input_module_pagerduty_api_incidents.py
daianmartinho/TA-PagerDuty
d15e3709a80ffc8c3425b6dee2a6c2ebb22a9987
[ "MIT" ]
3
2017-10-18T19:25:59.000Z
2021-06-28T19:18:00.000Z
bin/input_module_pagerduty_api_incidents.py
daianmartinho/TA-PagerDuty
d15e3709a80ffc8c3425b6dee2a6c2ebb22a9987
[ "MIT" ]
2
2018-01-02T15:21:54.000Z
2018-01-23T16:11:44.000Z
bin/input_module_pagerduty_api_incidents.py
daianmartinho/TA-PagerDuty
d15e3709a80ffc8c3425b6dee2a6c2ebb22a9987
[ "MIT" ]
2
2017-10-18T19:15:45.000Z
2018-03-28T16:55:17.000Z
# encoding = utf-8 import os import sys import time import base64 import urlparse import json from datetime import datetime, timedelta def validate_input(helper, definition): pd_api_token = definition.parameters.get('api_token', None) pd_pagesize = definition.parameters.get('api_limit', None) pd_daysago = definition.parameters.get('days_ago', None) pass def collect_events(helper, ew): # Retrieve runtime variables api_key = helper.get_arg('api_token', None) pd_pagesize = helper.get_arg('api_limit') or 100 #Page size of results pd_daysago = helper.get_arg('days_ago') or 365 #Max days ago since commit inputname = helper.get_input_stanza_names() inputsource = helper.get_input_type() + ":" + inputname helper.log_info("input_type=pagerduty_api_incidents input={0:s} message='Collecting events.'".format(inputname)) # Create initial time to query for commits initial_status = (datetime.utcnow() - timedelta(int(pd_daysago))).strftime("%Y-%m-%d") now = datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ") # Create checkpoint key opt_checkpoint = "pagerduty_api_incidents-{0:s}".format(inputname) updated = now #Add meta value for troubleshooting #Check for last query execution data in kvstore & generate if not present try: last_status = helper.get_check_point(opt_checkpoint) or initial_status helper.log_debug("input_type=pagerduty_api_incidents input={0:s} message='Last successful checkpoint time.' last_status={1:s}".format(inputname,json.dumps(last_status))) except Exception as e: helper.log_error("input_type=pagerduty_api_incidents input={0:s} message='Unable to retrieve last execution checkpoint!'".format(inputname)) raise e # Create API request parameters header = { 'Authorization': 'Token token={0}'.format(api_key), 'Content-type': 'application/json', 'Accept': 'application/vnd.pagerduty+json;version=2' } url = "https://api.pagerduty.com/incidents" method = "GET" def get_incidents(since, until, offset): params = { 'status': "acknowledged,triggered,resolved", 'since': since, 'until': until, 'offset': offset, 'limit': pd_pagesize } r = helper.send_http_request(url, method, parameters=params, payload=None, headers=header, cookies=None, verify=True, cert=None, timeout=None, use_proxy=True) helper.log_info("input_type=pagerduty_api_incidents input={0:s} message='Requesting incident data from Pagerduty API.' url='{1:s}' parameters='{2:s}'".format(inputname,url,json.dumps(params))) # Return API response code r_status = r.status_code # Return API request status_code if r_status is 429: helper.log_info("input_type=pagerduty_api_incidents input={0:s} message='Too many requests, API throttled. Will retry in 10 seconds.' status_code={1:d}".format(inputname,r_status)) time.sleep(10) r = helper.send_http_request(url, method, parameters=params, payload=None, headers=header, cookies=None, verify=True, cert=None, timeout=None, use_proxy=True) elif r_status is not 200: helper.log_error("input_type=pagerduty_api_incidents input={0:s} message='API request unsuccessful.' status_code={1:d}".format(inputname,r_status)) r.raise_for_status() return r.json() try: has_results = True offset = 0 #iterator for records returned from Pagerduty i = 0 #iterator for indexed records processed while has_results: pd_incidents = get_incidents(last_status, None, offset) # Get log_entries via Pagerduty API as JSON incidents = pd_incidents['incidents'] has_results = pd_incidents['more'] if len(incidents) == 0: helper.log_info("input_type=pagerduty_api_incidents input={0:s} message='No records retrieved from Pagerduty API.' offset={1:d}".format(inputname,offset)) has_results = False continue for incident in incidents: # Write event to index ew.write_event(helper.new_event(source=inputsource, index=helper.get_output_index(), sourcetype=helper.get_sourcetype(), data=json.dumps(incident))) i += 1 helper.log_debug("input_type=pagerduty_api_incidents input={0:s} processed={1:d} entry_id={2:s}".format(inputname,i,incident['id'])) if pd_incidents['more']: offset += pd_incidents['limit'] #helper.log_debug("input_type=pagerduty_api_incidents input={0:s} message='Getting next page.' link_next='{1:s}' offset='{2:s}'".format(inputname,url,offset)) #get_entries(since, until, offset) else: helper.log_debug("input_type=pagerduty_api_incidents input={0:s} message='No additional pages.'".format(inputname)) helper.log_debug("input_type=pagerduty_api_incidents input={0:s} processed={1:d}".format(inputname,i)) #Update last completed execution time helper.save_check_point(opt_checkpoint,updated) helper.log_info("input_type=pagerduty_api_incidents input={0:s} message='Collection complete.' indexed={1:d}".format(inputname,i)) helper.log_debug("input_type=pagerduty_api_incidents input={0:s} message='Storing checkpoint.' updated={1:s}".format(inputname,updated)) except Exception as error: helper.log_error("input_type=pagerduty_api_incidents input={0:s} message='An unknown error occurred!'".format(inputname)) raise error
50.113043
200
0.671352
adc6f2e65df87623032490f50567d440e1a8c9a0
5,143
py
Python
nevergrad/instrumentation/test_variables.py
enthought/nevergrad
2a0f778aa316264e785d0e6305a897679b3b97f7
[ "MIT" ]
null
null
null
nevergrad/instrumentation/test_variables.py
enthought/nevergrad
2a0f778aa316264e785d0e6305a897679b3b97f7
[ "MIT" ]
null
null
null
nevergrad/instrumentation/test_variables.py
enthought/nevergrad
2a0f778aa316264e785d0e6305a897679b3b97f7
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import pytest import numpy as np from nevergrad.parametrization import parameter as p from nevergrad.parametrization.test_parameter import check_parameter_features from . import variables from .variables import wrap_arg def test_softmax_categorical_deterministic() -> None: token = p.Instrumentation(variables.SoftmaxCategorical(["blu", "blublu", "blublublu"], deterministic=True)) assert token.data_to_arguments([1, 1, 1.01], deterministic=False) == wrap_arg("blublublu") def test_softmax_categorical() -> None: np.random.seed(12) token = p.Instrumentation(variables.SoftmaxCategorical(["blu", "blublu", "blublublu"])) assert token.data_to_arguments([0.5, 1.0, 1.5]) == wrap_arg("blublu") assert token.data_to_arguments(token.arguments_to_data("blu"), deterministic=True) == wrap_arg("blu") def test_ordered_discrete() -> None: token = p.Instrumentation(variables.OrderedDiscrete(["blu", "blublu", "blublublu"])) assert token.data_to_arguments([5]) == wrap_arg("blublublu") assert token.data_to_arguments([0]) == wrap_arg("blublu") assert token.data_to_arguments(token.arguments_to_data("blu"), deterministic=True) == wrap_arg("blu") def test_gaussian() -> None: token = variables.Gaussian(1, 3) assert token.data_to_arguments([.5]) == wrap_arg(2.5) data = token.arguments_to_data(12) print(data) assert token.data_to_arguments(data) == wrap_arg(12) def test_scalar() -> None: token = variables.Scalar(int) assert token.data_to_arguments([.7]) == wrap_arg(1) assert token.arguments_to_data(1).tolist() == [1.] def test_array_as_ascalar() -> None: var = variables.Array(1).exponentiated(10, -1).asscalar() data = np.array([2]) output = var.data_to_arguments(data) assert output == wrap_arg(0.01) np.testing.assert_almost_equal(var.arguments_to_data(*output[0], **output[1]), data) # int var = variables.Array(1).asscalar(int) assert var.data_to_arguments(np.array([.4])) == wrap_arg(0) assert var.data_to_arguments(np.array([-.4])) == wrap_arg(0) output = var.data_to_arguments(np.array([.6])) assert output == wrap_arg(1) assert type(output[0][0]) == int # pylint: disable=unidiomatic-typecheck # errors with pytest.raises(RuntimeError): variables.Array(1).asscalar(int).asscalar(float) with pytest.raises(RuntimeError): variables.Array(2).asscalar(int) with pytest.raises(ValueError): variables.Array(1).asscalar(np.int64) # type: ignore def test_array() -> None: var = variables.Array(2, 2).affined(1000000).bounded(3, 5, transform="arctan") data = np.array([-10, 10, 0, 0]) output = var.data_to_arguments(data) np.testing.assert_almost_equal(output[0][0], [[3., 5], [4, 4]]) np.testing.assert_almost_equal(var.arguments_to_data(*output[0], **output[1]), data) @pytest.mark.parametrize("value,expected", [(0, 0.01), (10, 0.1), (-10, 0.001), (20, 0.1), (9, 0.07943)]) # type: ignore def test_log(value: float, expected: float) -> None: var = variables.Log(0.001, 0.1) out = var.data_to_arguments(np.array([value])) np.testing.assert_approx_equal(out[0][0], expected, significant=4) repr(var) def test_log_int() -> None: var = variables.Log(300, 10000, dtype=int) out = var.data_to_arguments(np.array([0])) assert out[0][0] == 1732 # note: 0.9/0.9482=0.9482/0.999 @pytest.mark.parametrize("value,expected", [(0, 0.9482), (-11, 0.9), (10, 0.999)]) # type: ignore def test_log_9(value: float, expected: float) -> None: var = variables.Log(0.9, 0.999) out = var.data_to_arguments(np.array([value])) np.testing.assert_approx_equal(out[0][0], expected, significant=4) @pytest.mark.parametrize( # type: ignore "var,data,expected", [ (variables.Log(0.9, 0.999), [0], 0.9482), (variables.Array(2).affined(10, 100), [0, 3], [100, 130]), (variables.Scalar().affined(10, 100).bounded(-200, 200), [0], 198.7269), (variables.Scalar(int).affined(10, 100).bounded(-200, 200), [0], 199), (variables.Scalar().exponentiated(10, -1), [1], 0.1), (variables.Scalar().exponentiated(2, 3), [4], 4096), (variables.Scalar().affined(10, 100).bounded(-200, 200), [-10], 0), (variables.Scalar().affined(10, 100).bounded(-200, 200, transform="clipping"), [1], 110), (variables.Gaussian(3, 5, shape=(2,)), [-2, 1], [-7, 8]), (variables.Gaussian(3, 5), [-2], -7), (p.Instrumentation(variables.OrderedDiscrete(list(range(100)))), [1.4], 91), ] ) def test_expected_value(var: variables.Variable, data: tp.List[float], expected: tp.Any) -> None: check_parameter_features(var) out = var.data_to_arguments(np.array(data))[0][0] if isinstance(out, np.ndarray): np.testing.assert_array_almost_equal(out, expected) else: np.testing.assert_approx_equal(out, expected, significant=4)
41.813008
121
0.674315
5358ad5539dd7b5b7e57aa46663bdb40adc56f57
4,681
bzl
Python
third_party/polymer.bzl
hakanhp/chanel
6825b60e86c46daabb18f40f1e45d3de2ff8e983
[ "Apache-2.0" ]
null
null
null
third_party/polymer.bzl
hakanhp/chanel
6825b60e86c46daabb18f40f1e45d3de2ff8e983
[ "Apache-2.0" ]
null
null
null
third_party/polymer.bzl
hakanhp/chanel
6825b60e86c46daabb18f40f1e45d3de2ff8e983
[ "Apache-2.0" ]
null
null
null
"""TensorFlow Model Analysis Polymer Dependencies""" load("@io_bazel_rules_closure//closure:defs.bzl", "web_library_external") def tensorflow_model_analysis_polymer_workspace(): """Download TensorFlow Model Analysis polymer dependencies.""" web_library_external( name = "org_googlewebcomponents_google_apis", licenses = ["notice"], # BSD-3-Clause sha256 = "1e0a83f1af1978875789620edd837e6a06c1316f3bf6c2ed14d8450a7d4d3251", urls = [ "https://mirror.bazel.build/github.com/GoogleWebComponents/google-apis/archive/v1.1.7.tar.gz", "https://github.com/GoogleWebComponents/google-apis/archive/v1.1.7.tar.gz", ], strip_prefix = "google-apis-1.1.7", path = "/google-apis", srcs = [ "google-apis.html", "google-client-loader.html", "google-js-api.html", "google-legacy-loader.html", "google-maps-api.html", "google-plusone-api.html", "google-realtime-api.html", "google-youtube-api.html", ], deps = [ "@org_polymer", "@org_polymerelements_iron_jsonp_library", ], ) web_library_external( name = "org_googlewebcomponents_google_chart", licenses = ["notice"], # BSD-3-Clause sha256 = "e4a959deb8ad9660ea4ee5552e87e1e064f4b76008bf0fe37b4f4ce51817d480", urls = [ "https://mirror.bazel.build/github.com/GoogleWebComponents/google-charts/archive/v1.1.1.tar.gz", "https://github.com/GoogleWebComponents/google-chart/archive/v1.1.1.tar.gz", ], strip_prefix = "google-chart-1.1.1", path = "/google-chart", srcs = [ "charts-loader.html", "google-chart.css", "google-chart.html", "google-chart-loader.html", ], deps = [ "@org_googlewebcomponents_google_apis", "@org_polymer", "@org_polymerelements_iron_ajax", "@org_polymerlabs_promise_polyfill", ], ) web_library_external( name = "org_polymer_iron_pages", licenses = ["notice"], # BSD-3-Clause sha256 = "9a1b8e6b2d1dd11f94d7aa674c811a1e6b7dd766678e3650228deb109520612a", urls = [ "https://mirror.bazel.build/github.com/PolymerElements/iron-pages/archive/v1.0.9.tar.gz", "https://github.com/PolymerElements/iron-pages/archive/v1.0.9.tar.gz", ], strip_prefix = "iron-pages-1.0.9", path = "/iron-pages", srcs = ["iron-pages.html"], deps = [ "@org_polymer", "@org_polymer_iron_resizable_behavior", "@org_polymer_iron_selector", ], ) web_library_external( name = "org_polymerelements_iron_ajax", licenses = ["notice"], # BSD-3-Clause sha256 = "4979d6e5601deeede65f35ec4c89416ea2fbebc78c113ff9305c6687acd9ddcc", urls = [ "https://mirror.bazel.build/github.com/PolymerElements/iron-ajax/archive/v1.4.1.tar.gz", "https://github.com/PolymerElements/iron-ajax/archive/v1.4.1.tar.gz", ], strip_prefix = "iron-ajax-1.4.1", path = "/iron-ajax", srcs = [ "iron-ajax.html", "iron-request.html", ], deps = [ "@org_polymer", "@org_polymerlabs_promise_polyfill", ], ) web_library_external( name = "org_polymerelements_iron_jsonp_library", licenses = ["notice"], # BSD-3-Clause sha256 = "15667734d1be5c1ec108e9753b6c66a0c44ee32da312ff1b483856eb0bd861a4", urls = [ "https://mirror.bazel.build/github.com/PolymerElements/iron-jsonp-library/archive/v1.0.5.tar.gz", "https://github.com/PolymerElements/iron-jsonp-library/archive/v1.0.5.tar.gz", ], strip_prefix = "iron-jsonp-library-1.0.5", path = "/iron-jsonp-library", srcs = [ "iron-jsonp-library.html", ], deps = [ "@org_polymer", ], ) web_library_external( name = "org_polymerlabs_promise_polyfill", licenses = ["notice"], # BSD-3-Clause sha256 = "d83edb667c393efb3e7b40a2c22d439e1d84056be5d36174be6507a45f709daa", urls = [ "https://mirror.bazel.build/github.com/PolymerLabs/promise-polyfill/archive/v1.0.1.tar.gz", "https://github.com/PolymerLabs/promise-polyfill/archive/v1.0.1.tar.gz", ], strip_prefix = "promise-polyfill-1.0.1", path = "/promise-polyfill", srcs = [ "Gruntfile.js", "Promise-Statics.js", "Promise.js", "Promise.min.js", "promise-polyfill-lite.html", "promise-polyfill.html", ], deps = [ "@org_polymer", ], )
34.419118
107
0.611835
845aaef83eeff048910fab30bbc15230f8a93062
10,072
py
Python
examples/pytorch/graphsage/train_sampling.py
ydwu4/dgl-hack
b0fee8b9723c71f45bcf00301653fc71bfa82bc1
[ "Apache-2.0" ]
null
null
null
examples/pytorch/graphsage/train_sampling.py
ydwu4/dgl-hack
b0fee8b9723c71f45bcf00301653fc71bfa82bc1
[ "Apache-2.0" ]
null
null
null
examples/pytorch/graphsage/train_sampling.py
ydwu4/dgl-hack
b0fee8b9723c71f45bcf00301653fc71bfa82bc1
[ "Apache-2.0" ]
null
null
null
import dgl import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.multiprocessing as mp from torch.utils.data import DataLoader import dgl.function as fn import dgl.nn.pytorch as dglnn import time import argparse from _thread import start_new_thread from functools import wraps from dgl.data import RedditDataset import tqdm import traceback #### Neighbor sampler class NeighborSampler(object): def __init__(self, g, fanouts): self.g = g self.fanouts = fanouts def sample_blocks(self, seeds): seeds = th.LongTensor(np.asarray(seeds)) blocks = [] for fanout in self.fanouts: # For each seed node, sample ``fanout`` neighbors. frontier = dgl.sampling.sample_neighbors(self.g, seeds, fanout, replace=True) # Then we compact the frontier into a bipartite graph for message passing. block = dgl.to_block(frontier, seeds) # Obtain the seed nodes for next layer. seeds = block.srcdata[dgl.NID] blocks.insert(0, block) return blocks class SAGE(nn.Module): def __init__(self, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super().__init__() self.n_layers = n_layers self.n_hidden = n_hidden self.n_classes = n_classes self.layers = nn.ModuleList() self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean')) for i in range(1, n_layers - 1): self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean')) self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean')) self.dropout = nn.Dropout(dropout) self.activation = activation def forward(self, blocks, x): h = x for l, (layer, block) in enumerate(zip(self.layers, blocks)): # We need to first copy the representation of nodes on the RHS from the # appropriate nodes on the LHS. # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst # would be (num_nodes_RHS, D) h_dst = h[:block.number_of_dst_nodes()] # Then we compute the updated representation on the RHS. # The shape of h now becomes (num_nodes_RHS, D) h = layer(block, (h, h_dst)) if l != len(self.layers) - 1: h = self.activation(h) h = self.dropout(h) return h def inference(self, g, x, batch_size, device): """ Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling). g : the entire graph. x : the input of entire node set. The inference code is written in a fashion that it could handle any number of nodes and layers. """ # During inference with sampling, multi-layer blocks are very inefficient because # lots of computations in the first few layers are repeated. # Therefore, we compute the representation of all nodes layer by layer. The nodes # on each layer are of course splitted in batches. # TODO: can we standardize this? nodes = th.arange(g.number_of_nodes()) for l, layer in enumerate(self.layers): y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes) for start in tqdm.trange(0, len(nodes), batch_size): end = start + batch_size batch_nodes = nodes[start:end] block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes) input_nodes = block.srcdata[dgl.NID] h = x[input_nodes].to(device) h_dst = h[:block.number_of_dst_nodes()] h = layer(block, (h, h_dst)) if l != len(self.layers) - 1: h = self.activation(h) h = self.dropout(h) y[start:end] = h.cpu() x = y return y def prepare_mp(g): """ Explicitly materialize the CSR, CSC and COO representation of the given graph so that they could be shared via copy-on-write to sampler workers and GPU trainers. This is a workaround before full shared memory support on heterogeneous graphs. """ g.in_degree(0) g.out_degree(0) g.find_edges([0]) def compute_acc(pred, labels): """ Compute the accuracy of prediction given the labels. """ return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred) def evaluate(model, g, inputs, labels, val_mask, batch_size, device): """ Evaluate the model on the validation set specified by ``val_mask``. g : The entire graph. inputs : The features of all the nodes. labels : The labels of all the nodes. val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for. batch_size : Number of nodes to compute at the same time. device : The GPU device to evaluate on. """ model.eval() with th.no_grad(): pred = model.inference(g, inputs, batch_size, device) model.train() return compute_acc(pred[val_mask], labels[val_mask]) def load_subtensor(g, labels, seeds, input_nodes, device): """ Copys features and labels of a set of nodes onto GPU. """ batch_inputs = g.ndata['features'][input_nodes].to(device) batch_labels = labels[seeds].to(device) return batch_inputs, batch_labels #### Entry point def run(args, device, data): # Unpack data train_mask, val_mask, in_feats, labels, n_classes, g = data train_nid = th.LongTensor(np.nonzero(train_mask)[0]) val_nid = th.LongTensor(np.nonzero(val_mask)[0]) train_mask = th.BoolTensor(train_mask) val_mask = th.BoolTensor(val_mask) # Create sampler sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')]) # Create PyTorch DataLoader for constructing blocks dataloader = DataLoader( dataset=train_nid.numpy(), batch_size=args.batch_size, collate_fn=sampler.sample_blocks, shuffle=True, drop_last=False, num_workers=args.num_workers) # Define model and optimizer model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout) model = model.to(device) loss_fcn = nn.CrossEntropyLoss() loss_fcn = loss_fcn.to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) # Training loop avg = 0 iter_tput = [] for epoch in range(args.num_epochs): tic = time.time() # Loop over the dataloader to sample the computation dependency graph as a list of # blocks. for step, blocks in enumerate(dataloader): tic_step = time.time() # The nodes for input lies at the LHS side of the first block. # The nodes for output lies at the RHS side of the last block. input_nodes = blocks[0].srcdata[dgl.NID] seeds = blocks[-1].dstdata[dgl.NID] # Load the input features as well as output labels batch_inputs, batch_labels = load_subtensor(g, labels, seeds, input_nodes, device) # Compute loss and prediction batch_pred = model(blocks, batch_inputs) loss = loss_fcn(batch_pred, batch_labels) optimizer.zero_grad() loss.backward() optimizer.step() iter_tput.append(len(seeds) / (time.time() - tic_step)) if step % args.log_every == 0: acc = compute_acc(batch_pred, batch_labels) gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0 print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB'.format( epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc)) toc = time.time() print('Epoch Time(s): {:.4f}'.format(toc - tic)) if epoch >= 5: avg += toc - tic if epoch % args.eval_every == 0 and epoch != 0: eval_acc = evaluate(model, g, g.ndata['features'], labels, val_mask, args.batch_size, device) print('Eval Acc {:.4f}'.format(eval_acc)) print('Avg epoch time: {}'.format(avg / (epoch - 4))) if __name__ == '__main__': argparser = argparse.ArgumentParser("multi-gpu training") argparser.add_argument('--gpu', type=int, default=0, help="GPU device ID. Use -1 for CPU training") argparser.add_argument('--num-epochs', type=int, default=20) argparser.add_argument('--num-hidden', type=int, default=16) argparser.add_argument('--num-layers', type=int, default=2) argparser.add_argument('--fan-out', type=str, default='10,25') argparser.add_argument('--batch-size', type=int, default=1000) argparser.add_argument('--log-every', type=int, default=20) argparser.add_argument('--eval-every', type=int, default=5) argparser.add_argument('--lr', type=float, default=0.003) argparser.add_argument('--dropout', type=float, default=0.5) argparser.add_argument('--num-workers', type=int, default=0, help="Number of sampling processes. Use 0 for no extra process.") args = argparser.parse_args() if args.gpu >= 0: device = th.device('cuda:%d' % args.gpu) else: device = th.device('cpu') # load reddit data data = RedditDataset(self_loop=True) train_mask = data.train_mask val_mask = data.val_mask features = th.Tensor(data.features) in_feats = features.shape[1] labels = th.LongTensor(data.labels) n_classes = data.num_labels # Construct graph g = dgl.graph(data.graph.all_edges()) g.ndata['features'] = features prepare_mp(g) # Pack data data = train_mask, val_mask, in_feats, labels, n_classes, g run(args, device, data)
38.296578
137
0.625794
c9a219a85a16125a0525474708fcdaf322a59e18
2,070
py
Python
pythononwheels/start/handlers/powhandlermixin.py
fakegit/pow_devel
4288d9c48261ec54414f295b25d444eee523a85f
[ "MIT" ]
24
2015-08-06T07:32:00.000Z
2022-03-24T22:05:01.000Z
pythononwheels/start/handlers/powhandlermixin.py
fakegit/pow_devel
4288d9c48261ec54414f295b25d444eee523a85f
[ "MIT" ]
37
2017-04-14T19:16:40.000Z
2021-08-17T21:05:51.000Z
pythononwheels/start/handlers/powhandlermixin.py
fakegit/pow_devel
4288d9c48261ec54414f295b25d444eee523a85f
[ "MIT" ]
2
2016-05-25T08:29:32.000Z
2020-11-21T10:44:31.000Z
import tornado.web import werkzeug.security from {{appname}}.conf.config import myapp class PowHandlerMixin(): """ The Base Pow Handler Mixin Handler This is Place to put common stuff for all your Standard AND WebSocket handlers which will remain unaffected by any PoW Changes. Purely and only User or Extension controlled. """ show_list=[] hide_list=[] def get_current_user(self): """ very simple implementation. change to you own needs here or in your own subclassed base handler. """ if myapp["enable_auth"]: # try to find the user # user_id = self.get_secure_cookie("user_id") # if not user_id: return None # u=User() # u=u.find_one(User.id==user_id) # return u raise NotImplementedError("User Authentication not implemented, yet") else: # if authentication is disabled return a dummy guest user return True def check_password_hash(self, pwhash, password ): """ uses werkzeug.security.check_password_hash see: http://werkzeug.pocoo.org/docs/0.14/utils/#module-werkzeug.security get the password from for example a login form (make sure you use https) get the hash from the user model table (see generate_password_hash below) """ return werkzeug.security.check_password_hash(pwhash, password) def generate_password_hash(self, password ): """ uses werkzeug.security.generate_password_hash see: http://werkzeug.pocoo.org/docs/0.14/utils/#module-werkzeug.security store this returned hash in the user models table as password when the user is first registered or changed his password. Use https to secure the plaintext POSTed pwd. """ method = myapp["pwhash_method"] return werkzeug.security.generate_password_hash(password, method=method, salt_length=8)
39.807692
95
0.632367
6288a32f68b30120ff5325bbcfa68243cf41f37d
13,248
py
Python
.history/src/Simulador_20200710221308.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
.history/src/Simulador_20200710221308.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
.history/src/Simulador_20200710221308.py
eduardodut/Trabalho_final_estatistica_cd
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from Matriz_esferica import Matriz_esferica from Individuo import Individuo, Fabrica_individuo import random from itertools import permutations import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from scipy.sparse import csr_matrix, lil_matrix class Simulador(): def __init__( self, tamanho_matriz, #numero de linhas e colunas da matriz esférica percentual_inicial_tipo1, #percentual inicial da população que será infectada tipo 1 percentual_inicial_tipo2, #percentual inicial da população que será infectada tipo 2 chance_infeccao, #chance que um infectado tipo 2 tem de infectar um indivíduo saudável chance_infeccao_tipo2, #chance de um indivíduo infectado se tornar contagioso chance_morte, #chance de um indivíduo tipo 2 morrer ao fim de uma atualização atualizacoes_cura): #número de atualizações necessárias para a cura de um indivíduo tipo 1 ou 2 self.num_atualizacoes = 0 self.lista_infectados_tipo_2 = [] self.lista_infectados_tipo_1 = [] self.num_curados = 0 self.num_mortos = 0 self.chance_infeccao = chance_infeccao self.chance_infeccao_tipo2 = chance_infeccao_tipo2 self.chance_morte = chance_morte self.populacao_inicial = int(tamanho_matriz**2) self.num_inicial_tipo2 = int(self.populacao_inicial * percentual_inicial_tipo2) self.num_inicial_tipo1 = 1 + int(self.populacao_inicial * percentual_inicial_tipo1) self.num_inicial_sadios = self.populacao_inicial - (self.num_inicial_tipo2 + self.num_inicial_tipo1) self.fabrica_individuo = Fabrica_individuo(atualizacoes_cura) self.df_individuos = pd.DataFrame(index= range(tamanho_matriz), columns=range(tamanho_matriz)) self.matriz_status = lil_matrix((tamanho_matriz, tamanho_matriz),dtype= np.uint8) self.popular(tamanho_matriz) self.lista_matrizes_posicionamento = [] #objeto que é responsável por validar a movimentação no grid n x n self.matriz_esferica = Matriz_esferica(tamanho_matriz) dict = { 'num_sadios':self.num_inicial_sadios, 'num_infect_t1':self.num_inicial_tipo1, 'num_infect_t2':self.num_inicial_tipo2, 'num_curados':0, 'num_mortos':0} #dataframe que guardará os resultados de cada atualização self.dataframe = pd.DataFrame(dict,index = [0]) self.salvar_posicionamento() def salvar_posicionamento(self): self.lista_matrizes_posicionamento.append(self.matriz_status) def verificar_infeccao(self, lista_infectantes): lista_novos_infectados_tipo1 = [] lista_novos_infectados_tipo2 = [] #itera sobre sobre a lista de individuos que infectam e cada um realiza a tividade de infectar for X,Y in lista_infectantes: #busca os vizinhos do infectante atual lista_vizinhos = self.matriz_esferica.get_vizinhos(X, Y) #Para cada vizinho, se ele for sadio, é gerado um número aleatório para verificar se foi infectado for x,y in lista_vizinhos: #verificação de SADIO if self.matriz_status[x,y] == Individuo.SADIO: #verificação do novo status novo_status = self.infectar(chance_infeccao, chance_infeccao_tipo2) #se for um infectado tipo 1 if novo_status == Individuo.INFECTADO_TIPO_1: #adiciona na lista de novos tipo 1 lista_novos_infectados_tipo1.append((x,y)) #modifica o status na matriz de status self.df_individuos.loc[x,y] = self.fabrica_individuo.criar_individuo(Individuo.INFECTADO_TIPO_1,(x,y)) self.matriz_status[x,y] = Individuo.INFECTADO_TIPO_1 if novo_status == Individuo.INFECTADO_TIPO_2: #adiciona na lista de novos tipo 2 lista_novos_infectados_tipo2.append((x,y)) #modifica o status na matriz de status self.df_individuos.loc[x,y] = self.fabrica_individuo.criar_individuo(Individuo.INFECTADO_TIPO_2,(x,y)) self.matriz_status[x,y] = Individuo.INFECTADO_TIPO_2 return lista_novos_infectados_tipo1, lista_novos_infectados_tipo2 def verificar_morte(self, lista_infectantes_tipo2): lista_curados = [] lista_mortos = [] for x,y in lista_infectantes_tipo2: novo_status = self.df_individuos.loc[x,y].checagem_morte(self.chance_morte) if novo_status == Individuo.MORTO: self.matriz_status[x,y] = Individuo.MORTO lista_mortos.append((x,y)) if novo_status == Individuo.CURADO: self.matriz_status[x,y] = Individuo.CURADO lista_curados.append((x,y)) return lista_mortos, lista_curados def verificar_cura(self, lista_infectantes): lista_curados = [] for x,y in lista_infectantes: novo_status = self.df_individuos.loc[x,y].checagem_cura() if novo_status == Individuo.CURADO: self.matriz_status[x,y] = Individuo.CURADO lista_curados.append((x,y)) return lista_curados def iterar(self): #Verifica os novos infectados a partir dos atuais infectantes na matriz lista_novos_infectados_tipo1, lista_novos_infectados_tipo2 = self.verificar_infeccao(self.lista_infectados_tipo_1 + self.lista_infectados_tipo_2) #Verifica morte dos tipo 2 lista_mortos_atualizacao, lista_curados_t2_atualizacao = self.verificar_morte(self.lista_infectados_tipo_2) self.lista_infectados_tipo_2 = [indice for indice in self.lista_infectados_tipo_2 if indice not in lista_mortos_atualizacao and indice not in lista_curados_t2_atualizacao] #atualiza o novo número de mortos self.num_mortos += len(lista_mortos_atualizacao) #Verificar cura lista_curados_t1_atualizacao = self.verificar_cura(self.lista_infectados_tipo_1) self.lista_infectados_tipo_1 = [indice for indice in self.lista_infectados_tipo_1 if indice not in lista_curados_t1_atualizacao ] #adiciona os novos curados na lista geral de curados self.num_curados = self.num_curados + len(lista_curados_t1_atualizacao) + len(lista_curados_t2_atualizacao) # self. #movimentar infectantes: for x,y in self.lista_infectados_tipo_1: self.mover_infectante((x,y)) for x,y in self.lista_infectados_tipo_2: self.mover_infectante((x,y)) #adicionar os novos infectados tipo 1 e 2 para as respectivas listas self.lista_infectados_tipo_2 = self.lista_infectados_tipo_2 + lista_novos_infectados_tipo2 self.lista_infectados_tipo_1 = self.lista_infectados_tipo_1 + lista_novos_infectados_tipo1 dict = { 'num_sadios':self.populacao_inicial - self.num_mortos - self.num_curados - len(self.lista_infectados_tipo_1) - len(self.lista_infectados_tipo_2) , 'num_infect_t1':len(self.lista_infectados_tipo_1), 'num_infect_t2':len(self.lista_infectados_tipo_2), 'num_curados':self.num_curados, 'num_mortos':self.num_mortos} self.dataframe = self.dataframe.append(dict, ignore_index=True) print("num t1: ", len(self.lista_infectados_tipo_1)) print("num t2: ", len(self.lista_infectados_tipo_2)) print("num curados: ", self.num_curados) print("num mortos: ", self.num_mortos) print("---------") #salva a nova matriz de status self.salvar_posicionamento() #adiciona 1 ao número de atualizações realizadas na matriz self.num_atualizacoes +=1 def infectar(self, chance_infeccao, chance_infeccao_tipo2): saida = Individuo.SADIO #número aleatório para chance de infectar o vizinho rng_infeccao = random.random() if rng_infeccao <= chance_infeccao: #número aleatório para chance de infecção tipo 1 ou 2 rng_infeccao_tipo2 = random.random() if rng_infeccao_tipo2 <= chance_infeccao_tipo2: saida = Individuo.INFECTADO_TIPO_2 else: saida = Individuo.INFECTADO_TIPO_1 return saida def popular(self, tamanho_matriz): # for index, row in self.df_individuos.iterrows(): # for item in row: # item = self.fabrica_individuo.criar_individuo(Individuo.SADIO,(0,0)) self.df_individuos.iloc[:,:] = self.fabrica_individuo.criar_individuo(Individuo.SADIO,(0,0)) #lista de possíveis combinações de índices da matriz de dados permutacoes = permutations(list(range(tamanho_matriz)),2) #conversão para lista de tuplas(x,y) lista_indices = list(permutacoes) #embaralhamento dos índices random.shuffle(lista_indices) #cria o primeiro tipo1: indice = lista_indices.pop() ind_x = indice[0] ind_y = indice[1] self.lista_infectados_tipo_1.append((ind_x,ind_y)) #print(indice) self.df_individuos.loc[ind_x,ind_y] = self.fabrica_individuo.criar_individuo(Individuo.INFECTADO_TIPO_1,(ind_x,ind_y)) #print(self.df_individuos) self.matriz_status[ind_x,ind_y] = Individuo.INFECTADO_TIPO_1 #cria o restante dos tipos 1 for i in range(1,self.num_inicial_tipo1): indice = lista_indices.pop() ind_x = indice[0] ind_y = indice[1] self.lista_infectados_tipo_1.append((ind_x,ind_y)) self.df_individuos.loc[ind_x,ind_y] = self.fabrica_individuo.criar_individuo(Individuo.INFECTADO_TIPO_1,(ind_x,ind_y)) self.matriz_status[ind_x,ind_y] = Individuo.INFECTADO_TIPO_1 #cria o restante dos tipo 2: for indice in range(self.num_inicial_tipo2): indice = lista_indices.pop() ind_x = indice[0] ind_y = indice[1] self.lista_infectados_tipo_2.append((ind_x,ind_y)) self.df_individuos.loc[ind_x,ind_y] = self.fabrica_individuo.criar_individuo(Individuo.INFECTADO_TIPO_2,(ind_x,ind_y)) self.matriz_status[ind_x,ind_y] = Individuo.INFECTADO_TIPO_2 def trocar_status_localizacao(self,ponto_ini,ponto_final): x_ini = ponto_ini[0] y_ini = ponto_ini[1] x_fin = ponto_final[0] y_fin = ponto_final[1] aux1 = self.matriz_status[x_fin,y_fin] self.matriz_status[x_fin,y_fin] = self.matriz_status[x_ini,y_ini] self.matriz_status[x_ini,y_ini] = aux1 aux2 = self.df_individuos.loc[x_fin,y_fin] self.df_individuos.loc[x_fin,y_fin] = self.df_individuos.loc[x_ini,y_ini] self.df_individuos.loc[x_ini,y_ini] = aux2 def mover_infectante(self, posicao_inicial): pos_x, pos_y = posicao_inicial[0], posicao_inicial[1] rng_posicao = random.random() if rng_posicao <=0.25: #move pra cima pos_x -= 1 elif rng_posicao <=0.5: #move pra baixo pos_x += 1 elif rng_posicao <=0.75: #move para esquerda pos_y -= 1 else: #move para direita pos_y += 1 novo_x, novo_y = self.matriz_esferica.valida_ponto_matriz(pos_x, pos_y) #descobre qual individuo ocupa atualmente a posição para atribuí-lo a posição de quem o está substituindo status = self.matriz_status[novo_x, novo_y] self.trocar_status_localizacao(posicao_inicial,(novo_x, novo_y)) chance_infeccao = 0.3 chance_infeccao_tipo2 = 0.2 chance_morte = 0.1 atualizacoes_cura = 10 percentual_inicial_tipo1 = 0.0 percentual_inicial_tipo2 = 0.00 sim = Simulador( 5, percentual_inicial_tipo1, percentual_inicial_tipo2, chance_infeccao, chance_infeccao_tipo2, chance_morte,atualizacoes_cura) #print(sim.lista_matrizes_posicionamento[0]) #print(sim.lista_infectados_tipo_2) #print(sim.lista_infectados_tipo_1) cmap = ListedColormap(['w', 'y', 'r', 'blue', 'black']) print(sim.dataframe[-1:]['num_infect_t1']) while sim.dataframe.tail(1)['num_infect_t1'][1]+sim.dataframe.tail(1)['num_infect_t2'][1] > 0: plt.matshow(sim.lista_matrizes_posicionamento[i].toarray(), cmap = cmap, vmin= 0, vmax = 4) #plt.show() sim.iterar() print(sim.dataframe)
40.024169
179
0.642059
4f4678572e89a7b6f4e1e5faf00d0b4385a87cc4
1,944
py
Python
connectfour/test/test_negamax.py
amwhalen/connectfour
4f01bc4a94a04ae729c66c0498fe64b1ce8585f6
[ "MIT" ]
1
2017-10-12T05:20:02.000Z
2017-10-12T05:20:02.000Z
connectfour/test/test_negamax.py
amwhalen/connectfour
4f01bc4a94a04ae729c66c0498fe64b1ce8585f6
[ "MIT" ]
null
null
null
connectfour/test/test_negamax.py
amwhalen/connectfour
4f01bc4a94a04ae729c66c0498fe64b1ce8585f6
[ "MIT" ]
null
null
null
import unittest import connectfour.board import connectfour.board_factory from connectfour.players.negamax import NegamaxPlayer from copy import deepcopy class TestBoard(unittest.TestCase): def setUp(self): pass def test_negamax(self): n = NegamaxPlayer(4) self.assertEquals(n.getName(), "Negamax(4)") self.assertFalse(n.isHuman()) # 0 1 2 3 4 5 6 # . . . . . . . # . . . . . . . # . . . . . . . # 1 . . . . . . # 1 . . . . . . # 1 . 2 2 . . . # # should result in player 2 (negamax) moving to column zero to block # bf = connectfour.board_factory.BoardFactory() b = bf.generatePlayerOneNextMoveWinsColZero() self.assertEquals(n.getMove(b, 2), 0) # 0 1 2 3 4 5 6 # . . . . . . . # . . . . . . . # . . . . . . . # . . . . . . 1 # . . . . . . 1 # . . 2 2 . . 1 # # should result in player 2 (negamax) moving to column six to block # bf = connectfour.board_factory.BoardFactory() b = bf.generatePlayerOneNextMoveWinsCol6() self.assertEquals(n.getMove(b, 2), 6) # 0 1 2 3 4 5 6 # . . . . . . . # . . . . . . . # . . . . . . . # . . . . . . . # 1 . . . . . . # 1 . 2 2 . . . # # should result in player 2 (negamax) moving to column zero # bf = connectfour.board_factory.BoardFactory() b = bf.generatePlayerOneHasTwoInColZero() self.assertEquals(n.getMove(b, 2), 0) # 0 1 2 3 4 5 6 # . . . . . . . # . . . . . . . # . . . . . . . # . . . . . . . # . . . . . . 1 # . . 2 2 . . 1 # # should result in player 2 (negamax) moving to column six # bf = connectfour.board_factory.BoardFactory() b = bf.generatePlayerOneHasTwoInCol6() self.assertEquals(n.getMove(b, 2), 6) if __name__ == '__main__': unittest.main()
26.27027
70
0.486111