hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
e0473dcab1e2b2649982bf87416c4fae41e639fb
9,579
py
Python
tests/users/test_views.py
amanbansal2709/ctfd
941335a5e205ca818ce1758076858b628e4fa05b
[ "Apache-2.0" ]
null
null
null
tests/users/test_views.py
amanbansal2709/ctfd
941335a5e205ca818ce1758076858b628e4fa05b
[ "Apache-2.0" ]
null
null
null
tests/users/test_views.py
amanbansal2709/ctfd
941335a5e205ca818ce1758076858b628e4fa05b
[ "Apache-2.0" ]
1
2021-12-23T14:11:15.000Z
2021-12-23T14:11:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from flask import url_for from tests.helpers import create_ctfd, destroy_ctfd, register_user, \ login_as_user, gen_challenge, gen_file, gen_page from CTFd.utils import set_config from CTFd.utils.encoding import hexencode from freezegun import freeze_time def test_index(): """Does the index page return a 200 by default""" app = create_ctfd() with app.app_context(): with app.test_client() as client: r = client.get('/') assert r.status_code == 200 destroy_ctfd(app) def test_page(): """Test that users can access pages that are created in the database""" app = create_ctfd() with app.app_context(): gen_page(app.db, title="Title", route="this-is-a-route", content="This is some HTML") with app.test_client() as client: r = client.get('/this-is-a-route') assert r.status_code == 200 destroy_ctfd(app) def test_draft_pages(): """Test that draft pages can't be seen""" app = create_ctfd() with app.app_context(): gen_page(app.db, title="Title", route="this-is-a-route", content="This is some HTML", draft=True) with app.test_client() as client: r = client.get('/this-is-a-route') assert r.status_code == 404 register_user(app) client = login_as_user(app) r = client.get('/this-is-a-route') assert r.status_code == 404 destroy_ctfd(app) def test_page_requiring_auth(): """Test that pages properly require authentication""" app = create_ctfd() with app.app_context(): gen_page(app.db, title="Title", route="this-is-a-route", content="This is some HTML", auth_required=True) with app.test_client() as client: r = client.get('/this-is-a-route') assert r.status_code == 302 assert r.location == 'http://localhost/login?next=%2Fthis-is-a-route%3F' register_user(app) client = login_as_user(app) r = client.get('/this-is-a-route') assert r.status_code == 200 destroy_ctfd(app) def test_not_found(): """Should return a 404 for pages that are not found""" app = create_ctfd() with app.app_context(): with app.test_client() as client: r = client.get('/this-should-404') assert r.status_code == 404 r = client.post('/this-should-404') assert r.status_code == 404 destroy_ctfd(app) def test_themes_handler(): """Test that the themes handler is working properly""" app = create_ctfd() with app.app_context(): with app.test_client() as client: r = client.get('/themes/core/static/css/style.css') assert r.status_code == 200 r = client.get('/themes/core/static/css/404_NOT_FOUND') assert r.status_code == 404 r = client.get('/themes/core/static/%2e%2e/%2e%2e/%2e%2e/utils.py') assert r.status_code == 404 r = client.get('/themes/core/static/%2e%2e%2f%2e%2e%2f%2e%2e%2futils.py') assert r.status_code == 404 r = client.get('/themes/core/static/..%2f..%2f..%2futils.py') assert r.status_code == 404 r = client.get('/themes/core/static/../../../utils.py') assert r.status_code == 404 destroy_ctfd(app) def test_pages_routing_and_rendering(): """Test that pages are routing and rendering""" app = create_ctfd() with app.app_context(): html = '''##The quick brown fox jumped over the lazy dog''' route = 'test' title = 'Test' gen_page(app.db, title, route, html) with app.test_client() as client: r = client.get('/test') output = r.get_data(as_text=True) assert "<h2>The quick brown fox jumped over the lazy dog</h2>" in output destroy_ctfd(app) def test_user_get_profile(): """Can a registered user load their private profile (/profile)""" app = create_ctfd() with app.app_context(): register_user(app) client = login_as_user(app) r = client.get('/profile') assert r.status_code == 200 destroy_ctfd(app) def test_user_can_access_files(): app = create_ctfd() with app.app_context(): from CTFd.utils.uploads import rmdir chal = gen_challenge(app.db) chal_id = chal.id path = app.config.get('UPLOAD_FOLDER') location = os.path.join(path, 'test_file_path', 'test.txt') directory = os.path.dirname(location) model_path = os.path.join('test_file_path', 'test.txt') try: os.makedirs(directory) with open(location, 'wb') as obj: obj.write('testing file load'.encode()) gen_file(app.db, location=model_path, challenge_id=chal_id) url = url_for('views.files', path=model_path) # Unauthed user should be able to see challenges if challenges are public set_config('challenge_visibility', 'public') with app.test_client() as client: r = client.get(url) assert r.status_code == 200 assert r.get_data(as_text=True) == 'testing file load' # Unauthed user should not be able to see challenges if challenges are private set_config('challenge_visibility', 'private') with app.test_client() as client: r = client.get(url) assert r.status_code == 403 assert r.get_data(as_text=True) != 'testing file load' # Authed user should be able to see files if challenges are private register_user(app) client = login_as_user(app) r = client.get(url) assert r.status_code == 200 assert r.get_data(as_text=True) == 'testing file load' with freeze_time("2017-10-7"): set_config('end', '1507262400') # Friday, October 6, 2017 12:00:00 AM GMT-04:00 DST for v in ('public', 'private'): set_config('challenge_visibility', v) # Unauthed users shouldn't be able to see files if the CTF hasn't started client = app.test_client() r = client.get(url) assert r.status_code == 403 assert r.get_data(as_text=True) != 'testing file load' # Authed users shouldn't be able to see files if the CTF hasn't started client = login_as_user(app) r = client.get(url) assert r.status_code == 403 assert r.get_data(as_text=True) != 'testing file load' # Admins should be able to see files if the CTF hasn't started admin = login_as_user(app, "admin") r = admin.get(url) assert r.status_code == 200 assert r.get_data(as_text=True) == 'testing file load' finally: rmdir(directory) destroy_ctfd(app) def test_user_can_access_files_with_auth_token(): app = create_ctfd() with app.app_context(): from CTFd.utils.uploads import rmdir chal = gen_challenge(app.db) chal_id = chal.id path = app.config.get('UPLOAD_FOLDER') md5hash = hexencode(os.urandom(16)).decode('utf-8') location = os.path.join(path, md5hash, 'test.txt') directory = os.path.dirname(location) model_path = os.path.join(md5hash, 'test.txt') try: os.makedirs(directory) with open(location, 'wb') as obj: obj.write('testing file load'.encode()) gen_file(app.db, location=model_path, challenge_id=chal_id) url = url_for('views.files', path=model_path) register_user(app) with login_as_user(app) as client: req = client.get('/api/v1/challenges/1') data = req.get_json() file_url = data['data']['files'][0] with app.test_client() as client: r = client.get(url) assert r.status_code == 403 assert r.get_data(as_text=True) != 'testing file load' r = client.get(url_for('views.files', path=model_path, token="random_token_that_shouldnt_work")) assert r.status_code == 403 assert r.get_data(as_text=True) != 'testing file load' r = client.get(file_url) assert r.status_code == 200 assert r.get_data(as_text=True) == 'testing file load' # Unauthed users shouldn't be able to see files if the CTF is admins only set_config('challenge_visibility', 'admins') r = client.get(file_url) assert r.status_code == 403 assert r.get_data(as_text=True) != 'testing file load' set_config('challenge_visibility', 'private') with freeze_time("2017-10-7"): set_config('end', '1507262400') # Friday, October 6, 2017 12:00:00 AM GMT-04:00 DST # Unauthed users shouldn't be able to see files if the CTF hasn't started r = client.get(file_url) assert r.status_code == 403 assert r.get_data(as_text=True) != 'testing file load' finally: rmdir(directory) destroy_ctfd(app)
37.417969
113
0.581794
be012a87690c24c6d9b7808790393e1aa6d01211
60,229
py
Python
vendor/github.com/tensorflow/tensorflow/tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column_v2_test.py
owennewo/kfserving
89f73c87525b8e06ea799f69f2979c4ad272fcb3
[ "Apache-2.0" ]
5
2019-01-13T16:15:25.000Z
2019-07-07T16:17:32.000Z
vendor/github.com/tensorflow/tensorflow/tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column_v2_test.py
owennewo/kfserving
89f73c87525b8e06ea799f69f2979c4ad272fcb3
[ "Apache-2.0" ]
13
2020-11-13T18:53:29.000Z
2022-03-12T00:33:00.000Z
vendor/github.com/tensorflow/tensorflow/tensorflow/contrib/feature_column/python/feature_column/sequence_feature_column_v2_test.py
owennewo/kfserving
89f73c87525b8e06ea799f69f2979c4ad272fcb3
[ "Apache-2.0" ]
2
2020-10-06T09:24:31.000Z
2020-12-20T15:10:56.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for sequential_feature_column.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl.testing import parameterized import numpy as np from tensorflow.contrib.feature_column.python.feature_column import sequence_feature_column as sfc_old from tensorflow.contrib.feature_column.python.feature_column import sequence_feature_column_v2 as sfc from tensorflow.python.feature_column import feature_column as fc_old from tensorflow.python.feature_column import feature_column_lib as fc from tensorflow.python.feature_column.feature_column_v2_test import _TestStateManager from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.platform import test from tensorflow.python.training import monitored_session class SequenceInputLayerTest(test.TestCase, parameterized.TestCase): @parameterized.named_parameters( {'testcase_name': '2D', 'sparse_input_args_a': { # example 0, ids [2] # example 1, ids [0, 1] 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (2, 0, 1), 'dense_shape': (2, 2)}, 'sparse_input_args_b': { # example 0, ids [1] # example 1, ids [2, 0] 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (1, 2, 0), 'dense_shape': (2, 2)}, 'expected_input_layer': [ # example 0, ids_a [2], ids_b [1] [[5., 6., 14., 15., 16.], [0., 0., 0., 0., 0.]], # example 1, ids_a [0, 1], ids_b [2, 0] [[1., 2., 17., 18., 19.], [3., 4., 11., 12., 13.]],], 'expected_sequence_length': [1, 2]}, {'testcase_name': '3D', 'sparse_input_args_a': { # feature 0, ids [[2], [0, 1]] # feature 1, ids [[0, 0], [1]] 'indices': ( (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)), 'values': (2, 0, 1, 0, 0, 1), 'dense_shape': (2, 2, 2)}, 'sparse_input_args_b': { # feature 0, ids [[1, 1], [1]] # feature 1, ids [[2], [0]] 'indices': ((0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)), 'values': (1, 1, 1, 2, 0), 'dense_shape': (2, 2, 2)}, 'expected_input_layer': [ # feature 0, [a: 2, -, b: 1, 1], [a: 0, 1, b: 1, -] [[5., 6., 14., 15., 16.], [2., 3., 14., 15., 16.]], # feature 1, [a: 0, 0, b: 2, -], [a: 1, -, b: 0, -] [[1., 2., 17., 18., 19.], [3., 4., 11., 12., 13.]]], 'expected_sequence_length': [2, 2]}, ) def test_embedding_column( self, sparse_input_args_a, sparse_input_args_b, expected_input_layer, expected_sequence_length): sparse_input_a = sparse_tensor.SparseTensorValue(**sparse_input_args_a) sparse_input_b = sparse_tensor.SparseTensorValue(**sparse_input_args_b) vocabulary_size = 3 embedding_dimension_a = 2 embedding_values_a = ( (1., 2.), # id 0 (3., 4.), # id 1 (5., 6.) # id 2 ) embedding_dimension_b = 3 embedding_values_b = ( (11., 12., 13.), # id 0 (14., 15., 16.), # id 1 (17., 18., 19.) # id 2 ) def _get_initializer(embedding_dimension, embedding_values): def _initializer(shape, dtype, partition_info): self.assertAllEqual((vocabulary_size, embedding_dimension), shape) self.assertEqual(dtypes.float32, dtype) self.assertIsNone(partition_info) return embedding_values return _initializer categorical_column_a = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) embedding_column_a = fc_old._embedding_column( categorical_column_a, dimension=embedding_dimension_a, initializer=_get_initializer(embedding_dimension_a, embedding_values_a)) categorical_column_b = sfc.sequence_categorical_column_with_identity( key='bbb', num_buckets=vocabulary_size) embedding_column_b = fc_old._embedding_column( categorical_column_b, dimension=embedding_dimension_b, initializer=_get_initializer(embedding_dimension_b, embedding_values_b)) input_layer, sequence_length = sfc.sequence_input_layer( features={ 'aaa': sparse_input_a, 'bbb': sparse_input_b, }, # Test that columns are reordered alphabetically. feature_columns=[embedding_column_b, embedding_column_a]) global_vars = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) self.assertCountEqual( ('sequence_input_layer/aaa_embedding/embedding_weights:0', 'sequence_input_layer/bbb_embedding/embedding_weights:0'), tuple([v.name for v in global_vars])) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(embedding_values_a, global_vars[0].eval(session=sess)) self.assertAllEqual(embedding_values_b, global_vars[1].eval(session=sess)) self.assertAllEqual(expected_input_layer, input_layer.eval(session=sess)) self.assertAllEqual( expected_sequence_length, sequence_length.eval(session=sess)) def test_embedding_column_with_non_sequence_categorical(self): """Tests that error is raised for non-sequence embedding column.""" vocabulary_size = 3 sparse_input = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2)) categorical_column_a = fc_old._categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) embedding_column_a = fc_old._embedding_column( categorical_column_a, dimension=2) with self.assertRaisesRegexp( ValueError, r'In embedding_column: aaa_embedding\. categorical_column must be of ' r'type _SequenceCategoricalColumn to use sequence_input_layer\.'): _, _ = sfc.sequence_input_layer( features={'aaa': sparse_input}, feature_columns=[embedding_column_a]) def test_shared_embedding_column(self): vocabulary_size = 3 sparse_input_a = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2)) sparse_input_b = sparse_tensor.SparseTensorValue( # example 0, ids [1] # example 1, ids [2, 0] indices=((0, 0), (1, 0), (1, 1)), values=(1, 2, 0), dense_shape=(2, 2)) embedding_dimension = 2 embedding_values = ( (1., 2.), # id 0 (3., 4.), # id 1 (5., 6.) # id 2 ) def _get_initializer(embedding_dimension, embedding_values): def _initializer(shape, dtype, partition_info): self.assertAllEqual((vocabulary_size, embedding_dimension), shape) self.assertEqual(dtypes.float32, dtype) self.assertIsNone(partition_info) return embedding_values return _initializer expected_input_layer = [ # example 0, ids_a [2], ids_b [1] [[5., 6., 3., 4.], [0., 0., 0., 0.]], # example 1, ids_a [0, 1], ids_b [2, 0] [[1., 2., 5., 6.], [3., 4., 1., 2.]], ] expected_sequence_length = [1, 2] categorical_column_a = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) categorical_column_b = sfc.sequence_categorical_column_with_identity( key='bbb', num_buckets=vocabulary_size) # Test that columns are reordered alphabetically. shared_embedding_columns = fc.shared_embedding_columns( [categorical_column_b, categorical_column_a], dimension=embedding_dimension, initializer=_get_initializer(embedding_dimension, embedding_values)) input_layer, sequence_length = sfc.sequence_input_layer( features={ 'aaa': sparse_input_a, 'bbb': sparse_input_b, }, feature_columns=shared_embedding_columns) global_vars = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) self.assertCountEqual( ('sequence_input_layer/aaa_bbb_shared_embedding/embedding_weights:0',), tuple([v.name for v in global_vars])) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(embedding_values, global_vars[0].eval(session=sess)) self.assertAllEqual(expected_input_layer, input_layer.eval(session=sess)) self.assertAllEqual( expected_sequence_length, sequence_length.eval(session=sess)) def test_shared_embedding_column_with_non_sequence_categorical(self): """Tests that error is raised for non-sequence shared embedding column.""" vocabulary_size = 3 sparse_input_a = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2)) sparse_input_b = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2)) categorical_column_a = fc_old._categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) categorical_column_b = fc_old._categorical_column_with_identity( key='bbb', num_buckets=vocabulary_size) shared_embedding_columns = fc.shared_embedding_columns( [categorical_column_a, categorical_column_b], dimension=2) with self.assertRaisesRegexp( ValueError, r'In embedding_column: aaa_shared_embedding\. categorical_column must ' r'be of type _SequenceCategoricalColumn to use sequence_input_layer\.'): _, _ = sfc.sequence_input_layer( features={ 'aaa': sparse_input_a, 'bbb': sparse_input_b }, feature_columns=shared_embedding_columns) @parameterized.named_parameters( {'testcase_name': '2D', 'sparse_input_args_a': { # example 0, ids [2] # example 1, ids [0, 1] 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (2, 0, 1), 'dense_shape': (2, 2)}, 'sparse_input_args_b': { # example 0, ids [1] # example 1, ids [1, 0] 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (1, 1, 0), 'dense_shape': (2, 2)}, 'expected_input_layer': [ # example 0, ids_a [2], ids_b [1] [[0., 0., 1., 0., 1.], [0., 0., 0., 0., 0.]], # example 1, ids_a [0, 1], ids_b [1, 0] [[1., 0., 0., 0., 1.], [0., 1., 0., 1., 0.]]], 'expected_sequence_length': [1, 2]}, {'testcase_name': '3D', 'sparse_input_args_a': { # feature 0, ids [[2], [0, 1]] # feature 1, ids [[0, 0], [1]] 'indices': ( (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)), 'values': (2, 0, 1, 0, 0, 1), 'dense_shape': (2, 2, 2)}, 'sparse_input_args_b': { # feature 0, ids [[1, 1], [1]] # feature 1, ids [[1], [0]] 'indices': ((0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)), 'values': (1, 1, 1, 1, 0), 'dense_shape': (2, 2, 2)}, 'expected_input_layer': [ # feature 0, [a: 2, -, b: 1, 1], [a: 0, 1, b: 1, -] [[0., 0., 1., 0., 2.], [1., 1., 0., 0., 1.]], # feature 1, [a: 0, 0, b: 1, -], [a: 1, -, b: 0, -] [[2., 0., 0., 0., 1.], [0., 1., 0., 1., 0.]]], 'expected_sequence_length': [2, 2]}, ) def test_indicator_column( self, sparse_input_args_a, sparse_input_args_b, expected_input_layer, expected_sequence_length): sparse_input_a = sparse_tensor.SparseTensorValue(**sparse_input_args_a) sparse_input_b = sparse_tensor.SparseTensorValue(**sparse_input_args_b) vocabulary_size_a = 3 vocabulary_size_b = 2 categorical_column_a = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size_a) indicator_column_a = fc_old._indicator_column(categorical_column_a) categorical_column_b = sfc.sequence_categorical_column_with_identity( key='bbb', num_buckets=vocabulary_size_b) indicator_column_b = fc_old._indicator_column(categorical_column_b) input_layer, sequence_length = sfc.sequence_input_layer( features={ 'aaa': sparse_input_a, 'bbb': sparse_input_b, }, # Test that columns are reordered alphabetically. feature_columns=[indicator_column_b, indicator_column_a]) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(expected_input_layer, input_layer.eval(session=sess)) self.assertAllEqual( expected_sequence_length, sequence_length.eval(session=sess)) def test_indicator_column_with_non_sequence_categorical(self): """Tests that error is raised for non-sequence categorical column.""" vocabulary_size = 3 sparse_input = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2)) categorical_column_a = fc_old._categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) indicator_column_a = fc_old._indicator_column(categorical_column_a) with self.assertRaisesRegexp( ValueError, r'In indicator_column: aaa_indicator\. categorical_column must be of ' r'type _SequenceCategoricalColumn to use sequence_input_layer\.'): _, _ = sfc.sequence_input_layer( features={'aaa': sparse_input}, feature_columns=[indicator_column_a]) @parameterized.named_parameters( {'testcase_name': '2D', 'sparse_input_args': { # example 0, values [0., 1] # example 1, [10.] 'indices': ((0, 0), (0, 1), (1, 0)), 'values': (0., 1., 10.), 'dense_shape': (2, 2)}, 'expected_input_layer': [ [[0.], [1.]], [[10.], [0.]]], 'expected_sequence_length': [2, 1]}, {'testcase_name': '3D', 'sparse_input_args': { # feature 0, ids [[20, 3], [5]] # feature 1, ids [[3], [8]] 'indices': ((0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)), 'values': (20, 3, 5., 3., 8.), 'dense_shape': (2, 2, 2)}, 'expected_input_layer': [ [[20.], [3.], [5.], [0.]], [[3.], [0.], [8.], [0.]]], 'expected_sequence_length': [2, 2]}, ) def test_numeric_column( self, sparse_input_args, expected_input_layer, expected_sequence_length): sparse_input = sparse_tensor.SparseTensorValue(**sparse_input_args) numeric_column = sfc_old.sequence_numeric_column('aaa') input_layer, sequence_length = sfc.sequence_input_layer( features={'aaa': sparse_input}, feature_columns=[numeric_column]) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(expected_input_layer, input_layer.eval(session=sess)) self.assertAllEqual( expected_sequence_length, sequence_length.eval(session=sess)) @parameterized.named_parameters( {'testcase_name': '2D', 'sparse_input_args': { # example 0, values [0., 1., 2., 3., 4., 5., 6., 7.] # example 1, [10., 11., 12., 13.] 'indices': ((0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 0), (1, 1), (1, 2), (1, 3)), 'values': (0., 1., 2., 3., 4., 5., 6., 7., 10., 11., 12., 13.), 'dense_shape': (2, 8)}, 'expected_input_layer': [ # The output of numeric_column._get_dense_tensor should be flattened. [[0., 1., 2., 3.], [4., 5., 6., 7.]], [[10., 11., 12., 13.], [0., 0., 0., 0.]]], 'expected_sequence_length': [2, 1]}, {'testcase_name': '3D', 'sparse_input_args': { # example 0, values [[0., 1., 2., 3.]], [[4., 5., 6., 7.]] # example 1, [[10., 11., 12., 13.], []] 'indices': ((0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 0, 3)), 'values': (0., 1., 2., 3., 4., 5., 6., 7., 10., 11., 12., 13.), 'dense_shape': (2, 2, 4)}, 'expected_input_layer': [ # The output of numeric_column._get_dense_tensor should be flattened. [[0., 1., 2., 3.], [4., 5., 6., 7.]], [[10., 11., 12., 13.], [0., 0., 0., 0.]]], 'expected_sequence_length': [2, 1]}, ) def test_numeric_column_multi_dim( self, sparse_input_args, expected_input_layer, expected_sequence_length): """Tests sequence_input_layer for multi-dimensional numeric_column.""" sparse_input = sparse_tensor.SparseTensorValue(**sparse_input_args) numeric_column = sfc_old.sequence_numeric_column('aaa', shape=(2, 2)) input_layer, sequence_length = sfc.sequence_input_layer( features={'aaa': sparse_input}, feature_columns=[numeric_column]) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(expected_input_layer, input_layer.eval(session=sess)) self.assertAllEqual( expected_sequence_length, sequence_length.eval(session=sess)) def test_sequence_length_not_equal(self): """Tests that an error is raised when sequence lengths are not equal.""" # Input a with sequence_length = [2, 1] sparse_input_a = sparse_tensor.SparseTensorValue( indices=((0, 0), (0, 1), (1, 0)), values=(0., 1., 10.), dense_shape=(2, 2)) # Input b with sequence_length = [1, 1] sparse_input_b = sparse_tensor.SparseTensorValue( indices=((0, 0), (1, 0)), values=(1., 10.), dense_shape=(2, 2)) numeric_column_a = sfc_old.sequence_numeric_column('aaa') numeric_column_b = sfc_old.sequence_numeric_column('bbb') _, sequence_length = sfc.sequence_input_layer( features={ 'aaa': sparse_input_a, 'bbb': sparse_input_b, }, feature_columns=[numeric_column_a, numeric_column_b]) with monitored_session.MonitoredSession() as sess: with self.assertRaisesRegexp( errors.InvalidArgumentError, r'\[Condition x == y did not hold element-wise:\] ' r'\[x \(sequence_input_layer/aaa/sequence_length:0\) = \] \[2 1\] ' r'\[y \(sequence_input_layer/bbb/sequence_length:0\) = \] \[1 1\]'): sess.run(sequence_length) @parameterized.named_parameters( {'testcase_name': '2D', 'sparse_input_args': { # example 0, values [[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]] # example 1, [[[10., 11.], [12., 13.]]] 'indices': ((0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 0), (1, 1), (1, 2), (1, 3)), 'values': (0., 1., 2., 3., 4., 5., 6., 7., 10., 11., 12., 13.), 'dense_shape': (2, 8)}, 'expected_shape': [2, 2, 4]}, {'testcase_name': '3D', 'sparse_input_args': { # example 0, values [[0., 1., 2., 3.]], [[4., 5., 6., 7.]] # example 1, [[10., 11., 12., 13.], []] 'indices': ((0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 1, 2), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 0, 3)), 'values': (0., 1., 2., 3., 4., 5., 6., 7., 10., 11., 12., 13.), 'dense_shape': (2, 2, 4)}, 'expected_shape': [2, 2, 4]}, ) def test_static_shape_from_tensors_numeric( self, sparse_input_args, expected_shape): """Tests that we return a known static shape when we have one.""" sparse_input = sparse_tensor.SparseTensorValue(**sparse_input_args) numeric_column = sfc_old.sequence_numeric_column('aaa', shape=(2, 2)) input_layer, _ = sfc.sequence_input_layer( features={'aaa': sparse_input}, feature_columns=[numeric_column]) shape = input_layer.get_shape() self.assertEqual(shape, expected_shape) @parameterized.named_parameters( {'testcase_name': '2D', 'sparse_input_args': { # example 0, ids [2] # example 1, ids [0, 1] # example 2, ids [] # example 3, ids [1] 'indices': ((0, 0), (1, 0), (1, 1), (3, 0)), 'values': (2, 0, 1, 1), 'dense_shape': (4, 2)}, 'expected_shape': [4, 2, 3]}, {'testcase_name': '3D', 'sparse_input_args': { # example 0, ids [[2]] # example 1, ids [[0, 1], [2]] # example 2, ids [] # example 3, ids [[1], [0, 2]] 'indices': ((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (3, 0, 0), (3, 1, 0), (3, 1, 1)), 'values': (2, 0, 1, 2, 1, 0, 2), 'dense_shape': (4, 2, 2)}, 'expected_shape': [4, 2, 3]} ) def test_static_shape_from_tensors_indicator( self, sparse_input_args, expected_shape): """Tests that we return a known static shape when we have one.""" sparse_input = sparse_tensor.SparseTensorValue(**sparse_input_args) categorical_column = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=3) indicator_column = fc_old._indicator_column(categorical_column) input_layer, _ = sfc.sequence_input_layer( features={'aaa': sparse_input}, feature_columns=[indicator_column]) shape = input_layer.get_shape() self.assertEqual(shape, expected_shape) class ConcatenateContextInputTest(test.TestCase, parameterized.TestCase): """Tests the utility fn concatenate_context_input.""" def test_concatenate_context_input(self): seq_input = ops.convert_to_tensor(np.arange(12).reshape(2, 3, 2)) context_input = ops.convert_to_tensor(np.arange(10).reshape(2, 5)) seq_input = math_ops.cast(seq_input, dtype=dtypes.float32) context_input = math_ops.cast(context_input, dtype=dtypes.float32) input_layer = sfc.concatenate_context_input(context_input, seq_input) expected = np.array([ [[0, 1, 0, 1, 2, 3, 4], [2, 3, 0, 1, 2, 3, 4], [4, 5, 0, 1, 2, 3, 4]], [[6, 7, 5, 6, 7, 8, 9], [8, 9, 5, 6, 7, 8, 9], [10, 11, 5, 6, 7, 8, 9]] ], dtype=np.float32) with monitored_session.MonitoredSession() as sess: output = sess.run(input_layer) self.assertAllEqual(expected, output) @parameterized.named_parameters( {'testcase_name': 'rank_lt_3', 'seq_input_arg': np.arange(100).reshape(10, 10)}, {'testcase_name': 'rank_gt_3', 'seq_input_arg': np.arange(100).reshape(5, 5, 2, 2)} ) def test_sequence_input_throws_error(self, seq_input_arg): seq_input = ops.convert_to_tensor(seq_input_arg) context_input = ops.convert_to_tensor(np.arange(100).reshape(10, 10)) seq_input = math_ops.cast(seq_input, dtype=dtypes.float32) context_input = math_ops.cast(context_input, dtype=dtypes.float32) with self.assertRaisesRegexp(ValueError, 'sequence_input must have rank 3'): sfc.concatenate_context_input(context_input, seq_input) @parameterized.named_parameters( {'testcase_name': 'rank_lt_2', 'context_input_arg': np.arange(100)}, {'testcase_name': 'rank_gt_2', 'context_input_arg': np.arange(100).reshape(5, 5, 4)} ) def test_context_input_throws_error(self, context_input_arg): context_input = ops.convert_to_tensor(context_input_arg) seq_input = ops.convert_to_tensor(np.arange(100).reshape(5, 5, 4)) seq_input = math_ops.cast(seq_input, dtype=dtypes.float32) context_input = math_ops.cast(context_input, dtype=dtypes.float32) with self.assertRaisesRegexp(ValueError, 'context_input must have rank 2'): sfc.concatenate_context_input(context_input, seq_input) def test_integer_seq_input_throws_error(self): seq_input = ops.convert_to_tensor(np.arange(100).reshape(5, 5, 4)) context_input = ops.convert_to_tensor(np.arange(100).reshape(10, 10)) context_input = math_ops.cast(context_input, dtype=dtypes.float32) with self.assertRaisesRegexp( TypeError, 'sequence_input must have dtype float32'): sfc.concatenate_context_input(context_input, seq_input) def test_integer_context_input_throws_error(self): seq_input = ops.convert_to_tensor(np.arange(100).reshape(5, 5, 4)) context_input = ops.convert_to_tensor(np.arange(100).reshape(10, 10)) seq_input = math_ops.cast(seq_input, dtype=dtypes.float32) with self.assertRaisesRegexp( TypeError, 'context_input must have dtype float32'): sfc.concatenate_context_input(context_input, seq_input) class InputLayerTest(test.TestCase): """Tests input_layer with sequence feature columns.""" def test_embedding_column(self): """Tests that error is raised for sequence embedding column.""" vocabulary_size = 3 sparse_input = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2)) categorical_column_a = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) embedding_column_a = fc_old._embedding_column( categorical_column_a, dimension=2) with self.assertRaisesRegexp( ValueError, r'In embedding_column: aaa_embedding\. categorical_column must not be ' r'of type _SequenceCategoricalColumn\.'): _ = fc_old.input_layer( features={'aaa': sparse_input}, feature_columns=[embedding_column_a]) def test_indicator_column(self): """Tests that error is raised for sequence indicator column.""" vocabulary_size = 3 sparse_input = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2)) categorical_column_a = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) indicator_column_a = fc_old._indicator_column(categorical_column_a) with self.assertRaisesRegexp( ValueError, r'In indicator_column: aaa_indicator\. categorical_column must not be ' r'of type _SequenceCategoricalColumn\.'): _ = fc_old.input_layer( features={'aaa': sparse_input}, feature_columns=[indicator_column_a]) def _assert_sparse_tensor_value(test_case, expected, actual): _assert_sparse_tensor_indices_shape(test_case, expected, actual) test_case.assertEqual( np.array(expected.values).dtype, np.array(actual.values).dtype) test_case.assertAllEqual(expected.values, actual.values) def _assert_sparse_tensor_indices_shape(test_case, expected, actual): test_case.assertEqual(np.int64, np.array(actual.indices).dtype) test_case.assertAllEqual(expected.indices, actual.indices) test_case.assertEqual(np.int64, np.array(actual.dense_shape).dtype) test_case.assertAllEqual(expected.dense_shape, actual.dense_shape) def _get_sequence_dense_tensor(column, features): return column.get_sequence_dense_tensor( fc.FeatureTransformationCache(features), None) def _get_sequence_dense_tensor_state(column, features): state_manager = _TestStateManager() column.create_state(state_manager) return column.get_sequence_dense_tensor( fc.FeatureTransformationCache(features), state_manager) def _get_sparse_tensors(column, features): return column.get_sparse_tensors( fc.FeatureTransformationCache(features), None) class SequenceCategoricalColumnWithIdentityTest( test.TestCase, parameterized.TestCase): @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (1, 2, 0), 'dense_shape': (2, 2)}, 'expected_args': { 'indices': ((0, 0, 0), (1, 0, 0), (1, 1, 0)), 'values': np.array((1, 2, 0), dtype=np.int64), 'dense_shape': (2, 2, 1)}}, {'testcase_name': '3D', 'inputs_args': { 'indices': ((0, 0, 2), (1, 0, 0), (1, 2, 0)), 'values': (6, 7, 8), 'dense_shape': (2, 2, 2)}, 'expected_args': { 'indices': ((0, 0, 2), (1, 0, 0), (1, 2, 0)), 'values': (6, 7, 8), 'dense_shape': (2, 2, 2)}} ) def test_get_sparse_tensors(self, inputs_args, expected_args): inputs = sparse_tensor.SparseTensorValue(**inputs_args) expected = sparse_tensor.SparseTensorValue(**expected_args) column = sfc.sequence_categorical_column_with_identity('aaa', num_buckets=9) id_weight_pair = _get_sparse_tensors(column, {'aaa': inputs}) self.assertIsNone(id_weight_pair.weight_tensor) with monitored_session.MonitoredSession() as sess: _assert_sparse_tensor_value( self, expected, id_weight_pair.id_tensor.eval(session=sess)) class SequenceCategoricalColumnWithHashBucketTest( test.TestCase, parameterized.TestCase): @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { 'indices': ((0, 0), (1, 0), (1, 1)), 'values': ('omar', 'stringer', 'marlo'), 'dense_shape': (2, 2)}, 'expected_args': { 'indices': ((0, 0, 0), (1, 0, 0), (1, 1, 0)), # Ignored to avoid hash dependence in test. 'values': np.array((0, 0, 0), dtype=np.int64), 'dense_shape': (2, 2, 1)}}, {'testcase_name': '3D', 'inputs_args': { 'indices': ((0, 0, 2), (1, 0, 0), (1, 2, 0)), 'values': ('omar', 'stringer', 'marlo'), 'dense_shape': (2, 2, 2)}, 'expected_args': { 'indices': ((0, 0, 2), (1, 0, 0), (1, 2, 0)), # Ignored to avoid hash dependence in test. 'values': np.array((0, 0, 0), dtype=np.int64), 'dense_shape': (2, 2, 2)}} ) def test_get_sparse_tensors(self, inputs_args, expected_args): inputs = sparse_tensor.SparseTensorValue(**inputs_args) expected = sparse_tensor.SparseTensorValue(**expected_args) column = sfc.sequence_categorical_column_with_hash_bucket( 'aaa', hash_bucket_size=10) id_weight_pair = _get_sparse_tensors(column, {'aaa': inputs}) self.assertIsNone(id_weight_pair.weight_tensor) with monitored_session.MonitoredSession() as sess: _assert_sparse_tensor_indices_shape( self, expected, id_weight_pair.id_tensor.eval(session=sess)) class SequenceCategoricalColumnWithVocabularyFileTest( test.TestCase, parameterized.TestCase): def _write_vocab(self, vocab_strings, file_name): vocab_file = os.path.join(self.get_temp_dir(), file_name) with open(vocab_file, 'w') as f: f.write('\n'.join(vocab_strings)) return vocab_file def setUp(self): super(SequenceCategoricalColumnWithVocabularyFileTest, self).setUp() vocab_strings = ['omar', 'stringer', 'marlo'] self._wire_vocabulary_file_name = self._write_vocab(vocab_strings, 'wire_vocabulary.txt') self._wire_vocabulary_size = 3 @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { 'indices': ((0, 0), (1, 0), (1, 1)), 'values': ('marlo', 'skywalker', 'omar'), 'dense_shape': (2, 2)}, 'expected_args': { 'indices': ((0, 0, 0), (1, 0, 0), (1, 1, 0)), 'values': np.array((2, -1, 0), dtype=np.int64), 'dense_shape': (2, 2, 1)}}, {'testcase_name': '3D', 'inputs_args': { 'indices': ((0, 0, 2), (1, 0, 0), (1, 2, 0)), 'values': ('omar', 'skywalker', 'marlo'), 'dense_shape': (2, 2, 2)}, 'expected_args': { 'indices': ((0, 0, 2), (1, 0, 0), (1, 2, 0)), 'values': np.array((0, -1, 2), dtype=np.int64), 'dense_shape': (2, 2, 2)}} ) def test_get_sparse_tensors(self, inputs_args, expected_args): inputs = sparse_tensor.SparseTensorValue(**inputs_args) expected = sparse_tensor.SparseTensorValue(**expected_args) column = sfc.sequence_categorical_column_with_vocabulary_file( key='aaa', vocabulary_file=self._wire_vocabulary_file_name, vocabulary_size=self._wire_vocabulary_size) id_weight_pair = _get_sparse_tensors(column, {'aaa': inputs}) self.assertIsNone(id_weight_pair.weight_tensor) with monitored_session.MonitoredSession() as sess: _assert_sparse_tensor_value( self, expected, id_weight_pair.id_tensor.eval(session=sess)) def test_get_sparse_tensors_dynamic_zero_length(self): """Tests _get_sparse_tensors with a dynamic sequence length.""" inputs = sparse_tensor.SparseTensorValue( indices=np.zeros((0, 2)), values=[], dense_shape=(2, 0)) expected = sparse_tensor.SparseTensorValue( indices=np.zeros((0, 3)), values=np.array((), dtype=np.int64), dense_shape=(2, 0, 1)) column = sfc.sequence_categorical_column_with_vocabulary_file( key='aaa', vocabulary_file=self._wire_vocabulary_file_name, vocabulary_size=self._wire_vocabulary_size) input_placeholder_shape = list(inputs.dense_shape) # Make second dimension (sequence length) dynamic. input_placeholder_shape[1] = None input_placeholder = array_ops.sparse_placeholder( dtypes.string, shape=input_placeholder_shape) id_weight_pair = _get_sparse_tensors(column, {'aaa': input_placeholder}) self.assertIsNone(id_weight_pair.weight_tensor) with monitored_session.MonitoredSession() as sess: result = id_weight_pair.id_tensor.eval( session=sess, feed_dict={input_placeholder: inputs}) _assert_sparse_tensor_value( self, expected, result) class SequenceCategoricalColumnWithVocabularyListTest( test.TestCase, parameterized.TestCase): @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { 'indices': ((0, 0), (1, 0), (1, 1)), 'values': ('marlo', 'skywalker', 'omar'), 'dense_shape': (2, 2)}, 'expected_args': { 'indices': ((0, 0, 0), (1, 0, 0), (1, 1, 0)), 'values': np.array((2, -1, 0), dtype=np.int64), 'dense_shape': (2, 2, 1)}}, {'testcase_name': '3D', 'inputs_args': { 'indices': ((0, 0, 2), (1, 0, 0), (1, 2, 0)), 'values': ('omar', 'skywalker', 'marlo'), 'dense_shape': (2, 2, 2)}, 'expected_args': { 'indices': ((0, 0, 2), (1, 0, 0), (1, 2, 0)), 'values': np.array((0, -1, 2), dtype=np.int64), 'dense_shape': (2, 2, 2)}} ) def test_get_sparse_tensors(self, inputs_args, expected_args): inputs = sparse_tensor.SparseTensorValue(**inputs_args) expected = sparse_tensor.SparseTensorValue(**expected_args) column = sfc.sequence_categorical_column_with_vocabulary_list( key='aaa', vocabulary_list=('omar', 'stringer', 'marlo')) id_weight_pair = _get_sparse_tensors(column, {'aaa': inputs}) self.assertIsNone(id_weight_pair.weight_tensor) with monitored_session.MonitoredSession() as sess: _assert_sparse_tensor_value( self, expected, id_weight_pair.id_tensor.eval(session=sess)) class SequenceEmbeddingColumnTest( test.TestCase, parameterized.TestCase): @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { # example 0, ids [2] # example 1, ids [0, 1] # example 2, ids [] # example 3, ids [1] 'indices': ((0, 0), (1, 0), (1, 1), (3, 0)), 'values': (2, 0, 1, 1), 'dense_shape': (4, 2)}, 'expected': [ # example 0, ids [2] [[7., 11.], [0., 0.]], # example 1, ids [0, 1] [[1., 2.], [3., 5.]], # example 2, ids [] [[0., 0.], [0., 0.]], # example 3, ids [1] [[3., 5.], [0., 0.]]]}, {'testcase_name': '3D', 'inputs_args': { # example 0, ids [[2]] # example 1, ids [[0, 1], [2]] # example 2, ids [] # example 3, ids [[1], [0, 2]] 'indices': ((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (3, 0, 0), (3, 1, 0), (3, 1, 1)), 'values': (2, 0, 1, 2, 1, 0, 2), 'dense_shape': (4, 2, 2)}, 'expected': [ # example 0, ids [[2]] [[7., 11.], [0., 0.]], # example 1, ids [[0, 1], [2]] [[2, 3.5], [7., 11.]], # example 2, ids [] [[0., 0.], [0., 0.]], # example 3, ids [[1], [0, 2]] [[3., 5.], [4., 6.5]]]} ) def test_get_sequence_dense_tensor(self, inputs_args, expected): inputs = sparse_tensor.SparseTensorValue(**inputs_args) vocabulary_size = 3 embedding_dimension = 2 embedding_values = ( (1., 2.), # id 0 (3., 5.), # id 1 (7., 11.) # id 2 ) def _initializer(shape, dtype, partition_info): self.assertAllEqual((vocabulary_size, embedding_dimension), shape) self.assertEqual(dtypes.float32, dtype) self.assertIsNone(partition_info) return embedding_values categorical_column = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) embedding_column = fc.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_initializer) embedding_lookup, _ = _get_sequence_dense_tensor_state( embedding_column, {'aaa': inputs}) global_vars = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) self.assertItemsEqual( ('embedding_weights:0',), tuple([v.name for v in global_vars])) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(embedding_values, global_vars[0].eval(session=sess)) self.assertAllEqual(expected, embedding_lookup.eval(session=sess)) @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { # example 0, ids [2] # example 1, ids [0, 1] 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (2, 0, 1), 'dense_shape': (2, 2)}, 'expected_sequence_length': [1, 2]}, {'testcase_name': '3D', 'inputs_args': { # example 0, ids [[2]] # example 1, ids [[0, 1], [2]] 'indices': ((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)), 'values': (2, 0, 1, 2), 'dense_shape': (2, 2, 2)}, 'expected_sequence_length': [1, 2]} ) def test_sequence_length(self, inputs_args, expected_sequence_length): inputs = sparse_tensor.SparseTensorValue(**inputs_args) vocabulary_size = 3 categorical_column = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) embedding_column = fc.embedding_column( categorical_column, dimension=2) _, sequence_length = _get_sequence_dense_tensor_state( embedding_column, {'aaa': inputs}) with monitored_session.MonitoredSession() as sess: sequence_length = sess.run(sequence_length) self.assertAllEqual(expected_sequence_length, sequence_length) self.assertEqual(np.int64, sequence_length.dtype) def test_sequence_length_with_empty_rows(self): """Tests _sequence_length when some examples do not have ids.""" vocabulary_size = 3 sparse_input = sparse_tensor.SparseTensorValue( # example 0, ids [] # example 1, ids [2] # example 2, ids [0, 1] # example 3, ids [] # example 4, ids [1] # example 5, ids [] indices=((1, 0), (2, 0), (2, 1), (4, 0)), values=(2, 0, 1, 1), dense_shape=(6, 2)) expected_sequence_length = [0, 1, 2, 0, 1, 0] categorical_column = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) embedding_column = fc.embedding_column( categorical_column, dimension=2) _, sequence_length = _get_sequence_dense_tensor_state( embedding_column, {'aaa': sparse_input}) with monitored_session.MonitoredSession() as sess: self.assertAllEqual( expected_sequence_length, sequence_length.eval(session=sess)) class SequenceSharedEmbeddingColumnTest(test.TestCase): def test_get_sequence_dense_tensor(self): vocabulary_size = 3 embedding_dimension = 2 embedding_values = ( (1., 2.), # id 0 (3., 5.), # id 1 (7., 11.) # id 2 ) def _initializer(shape, dtype, partition_info): self.assertAllEqual((vocabulary_size, embedding_dimension), shape) self.assertEqual(dtypes.float32, dtype) self.assertIsNone(partition_info) return embedding_values sparse_input_a = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] # example 2, ids [] # example 3, ids [1] indices=((0, 0), (1, 0), (1, 1), (3, 0)), values=(2, 0, 1, 1), dense_shape=(4, 2)) sparse_input_b = sparse_tensor.SparseTensorValue( # example 0, ids [1] # example 1, ids [0, 2] # example 2, ids [0] # example 3, ids [] indices=((0, 0), (1, 0), (1, 1), (2, 0)), values=(1, 0, 2, 0), dense_shape=(4, 2)) expected_lookups_a = [ # example 0, ids [2] [[7., 11.], [0., 0.]], # example 1, ids [0, 1] [[1., 2.], [3., 5.]], # example 2, ids [] [[0., 0.], [0., 0.]], # example 3, ids [1] [[3., 5.], [0., 0.]], ] expected_lookups_b = [ # example 0, ids [1] [[3., 5.], [0., 0.]], # example 1, ids [0, 2] [[1., 2.], [7., 11.]], # example 2, ids [0] [[1., 2.], [0., 0.]], # example 3, ids [] [[0., 0.], [0., 0.]], ] categorical_column_a = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) categorical_column_b = sfc.sequence_categorical_column_with_identity( key='bbb', num_buckets=vocabulary_size) shared_embedding_columns = fc.shared_embedding_columns_v2( [categorical_column_a, categorical_column_b], dimension=embedding_dimension, initializer=_initializer) embedding_lookup_a = _get_sequence_dense_tensor( shared_embedding_columns[0], {'aaa': sparse_input_a})[0] embedding_lookup_b = _get_sequence_dense_tensor( shared_embedding_columns[1], {'bbb': sparse_input_b})[0] global_vars = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) self.assertItemsEqual(('aaa_bbb_shared_embedding:0',), tuple([v.name for v in global_vars])) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(embedding_values, global_vars[0].eval(session=sess)) self.assertAllEqual( expected_lookups_a, embedding_lookup_a.eval(session=sess)) self.assertAllEqual( expected_lookups_b, embedding_lookup_b.eval(session=sess)) def test_sequence_length(self): vocabulary_size = 3 sparse_input_a = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2)) expected_sequence_length_a = [1, 2] categorical_column_a = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) sparse_input_b = sparse_tensor.SparseTensorValue( # example 0, ids [0, 2] # example 1, ids [1] indices=((0, 0), (0, 1), (1, 0)), values=(0, 2, 1), dense_shape=(2, 2)) expected_sequence_length_b = [2, 1] categorical_column_b = sfc.sequence_categorical_column_with_identity( key='bbb', num_buckets=vocabulary_size) shared_embedding_columns = fc.shared_embedding_columns_v2( [categorical_column_a, categorical_column_b], dimension=2) sequence_length_a = _get_sequence_dense_tensor( shared_embedding_columns[0], {'aaa': sparse_input_a})[1] sequence_length_b = _get_sequence_dense_tensor( shared_embedding_columns[1], {'bbb': sparse_input_b})[1] with monitored_session.MonitoredSession() as sess: sequence_length_a = sess.run(sequence_length_a) self.assertAllEqual(expected_sequence_length_a, sequence_length_a) self.assertEqual(np.int64, sequence_length_a.dtype) sequence_length_b = sess.run(sequence_length_b) self.assertAllEqual(expected_sequence_length_b, sequence_length_b) self.assertEqual(np.int64, sequence_length_b.dtype) def test_sequence_length_with_empty_rows(self): """Tests _sequence_length when some examples do not have ids.""" vocabulary_size = 3 sparse_input_a = sparse_tensor.SparseTensorValue( # example 0, ids [] # example 1, ids [2] # example 2, ids [0, 1] # example 3, ids [] # example 4, ids [1] # example 5, ids [] indices=((1, 0), (2, 0), (2, 1), (4, 0)), values=(2, 0, 1, 1), dense_shape=(6, 2)) expected_sequence_length_a = [0, 1, 2, 0, 1, 0] categorical_column_a = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) sparse_input_b = sparse_tensor.SparseTensorValue( # example 0, ids [2] # example 1, ids [] # example 2, ids [] # example 3, ids [] # example 4, ids [1] # example 5, ids [0, 1] indices=((0, 0), (4, 0), (5, 0), (5, 1)), values=(2, 1, 0, 1), dense_shape=(6, 2)) expected_sequence_length_b = [1, 0, 0, 0, 1, 2] categorical_column_b = sfc.sequence_categorical_column_with_identity( key='bbb', num_buckets=vocabulary_size) shared_embedding_columns = fc.shared_embedding_columns_v2( [categorical_column_a, categorical_column_b], dimension=2) sequence_length_a = _get_sequence_dense_tensor( shared_embedding_columns[0], {'aaa': sparse_input_a})[1] sequence_length_b = _get_sequence_dense_tensor( shared_embedding_columns[1], {'bbb': sparse_input_b})[1] with monitored_session.MonitoredSession() as sess: self.assertAllEqual( expected_sequence_length_a, sequence_length_a.eval(session=sess)) self.assertAllEqual( expected_sequence_length_b, sequence_length_b.eval(session=sess)) class SequenceIndicatorColumnTest(test.TestCase, parameterized.TestCase): @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { # example 0, ids [2] # example 1, ids [0, 1] # example 2, ids [] # example 3, ids [1] 'indices': ((0, 0), (1, 0), (1, 1), (3, 0)), 'values': (2, 0, 1, 1), 'dense_shape': (4, 2)}, 'expected': [ # example 0, ids [2] [[0., 0., 1.], [0., 0., 0.]], # example 1, ids [0, 1] [[1., 0., 0.], [0., 1., 0.]], # example 2, ids [] [[0., 0., 0.], [0., 0., 0.]], # example 3, ids [1] [[0., 1., 0.], [0., 0., 0.]]]}, {'testcase_name': '3D', 'inputs_args': { # example 0, ids [[2]] # example 1, ids [[0, 1], [2]] # example 2, ids [] # example 3, ids [[1], [2, 2]] 'indices': ((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (3, 0, 0), (3, 1, 0), (3, 1, 1)), 'values': (2, 0, 1, 2, 1, 2, 2), 'dense_shape': (4, 2, 2)}, 'expected': [ # example 0, ids [[2]] [[0., 0., 1.], [0., 0., 0.]], # example 1, ids [[0, 1], [2]] [[1., 1., 0.], [0., 0., 1.]], # example 2, ids [] [[0., 0., 0.], [0., 0., 0.]], # example 3, ids [[1], [2, 2]] [[0., 1., 0.], [0., 0., 2.]]]} ) def test_get_sequence_dense_tensor(self, inputs_args, expected): inputs = sparse_tensor.SparseTensorValue(**inputs_args) vocabulary_size = 3 categorical_column = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) indicator_column = fc.indicator_column(categorical_column) indicator_tensor, _ = _get_sequence_dense_tensor( indicator_column, {'aaa': inputs}) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(expected, indicator_tensor.eval(session=sess)) @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { # example 0, ids [2] # example 1, ids [0, 1] 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (2, 0, 1), 'dense_shape': (2, 2)}, 'expected_sequence_length': [1, 2]}, {'testcase_name': '3D', 'inputs_args': { # example 0, ids [[2]] # example 1, ids [[0, 1], [2]] 'indices': ((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)), 'values': (2, 0, 1, 2), 'dense_shape': (2, 2, 2)}, 'expected_sequence_length': [1, 2]} ) def test_sequence_length(self, inputs_args, expected_sequence_length): inputs = sparse_tensor.SparseTensorValue(**inputs_args) vocabulary_size = 3 categorical_column = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) indicator_column = fc.indicator_column(categorical_column) _, sequence_length = _get_sequence_dense_tensor( indicator_column, {'aaa': inputs}) with monitored_session.MonitoredSession() as sess: sequence_length = sess.run(sequence_length) self.assertAllEqual(expected_sequence_length, sequence_length) self.assertEqual(np.int64, sequence_length.dtype) def test_sequence_length_with_empty_rows(self): """Tests _sequence_length when some examples do not have ids.""" vocabulary_size = 3 sparse_input = sparse_tensor.SparseTensorValue( # example 0, ids [] # example 1, ids [2] # example 2, ids [0, 1] # example 3, ids [] # example 4, ids [1] # example 5, ids [] indices=((1, 0), (2, 0), (2, 1), (4, 0)), values=(2, 0, 1, 1), dense_shape=(6, 2)) expected_sequence_length = [0, 1, 2, 0, 1, 0] categorical_column = sfc.sequence_categorical_column_with_identity( key='aaa', num_buckets=vocabulary_size) indicator_column = fc.indicator_column(categorical_column) _, sequence_length = _get_sequence_dense_tensor( indicator_column, {'aaa': sparse_input}) with monitored_session.MonitoredSession() as sess: self.assertAllEqual( expected_sequence_length, sequence_length.eval(session=sess)) class SequenceNumericColumnTest(test.TestCase, parameterized.TestCase): def test_defaults(self): a = sfc.sequence_numeric_column('aaa') self.assertEqual('aaa', a.key) self.assertEqual('aaa', a.name) self.assertEqual((1,), a.shape) self.assertEqual(0., a.default_value) self.assertEqual(dtypes.float32, a.dtype) self.assertIsNone(a.normalizer_fn) def test_shape_saved_as_tuple(self): a = sfc.sequence_numeric_column('aaa', shape=[1, 2]) self.assertEqual((1, 2), a.shape) def test_shape_must_be_positive_integer(self): with self.assertRaisesRegexp(TypeError, 'shape dimensions must be integer'): sfc.sequence_numeric_column('aaa', shape=[1.0]) with self.assertRaisesRegexp( ValueError, 'shape dimensions must be greater than 0'): sfc.sequence_numeric_column('aaa', shape=[0]) def test_dtype_is_convertible_to_float(self): with self.assertRaisesRegexp( ValueError, 'dtype must be convertible to float'): sfc.sequence_numeric_column('aaa', dtype=dtypes.string) def test_normalizer_fn_must_be_callable(self): with self.assertRaisesRegexp(TypeError, 'must be a callable'): sfc.sequence_numeric_column('aaa', normalizer_fn='NotACallable') @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { # example 0, values [0., 1] # example 1, [10.] 'indices': ((0, 0), (0, 1), (1, 0)), 'values': (0., 1., 10.), 'dense_shape': (2, 2)}, 'expected': [ [[0.], [1.]], [[10.], [0.]]]}, {'testcase_name': '3D', 'inputs_args': { # feature 0, ids [[20, 3], [5]] # feature 1, ids [[3], [8]] 'indices': ((0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)), 'values': (20, 3, 5., 3., 8.), 'dense_shape': (2, 2, 2)}, 'expected': [ [[20.], [3.], [5.], [0.]], [[3.], [0.], [8.], [0.]]]}, ) def test_get_sequence_dense_tensor(self, inputs_args, expected): inputs = sparse_tensor.SparseTensorValue(**inputs_args) numeric_column = sfc.sequence_numeric_column('aaa') dense_tensor, _ = _get_sequence_dense_tensor( numeric_column, {'aaa': inputs}) with monitored_session.MonitoredSession() as sess: self.assertAllEqual(expected, dense_tensor.eval(session=sess)) def test_get_sequence_dense_tensor_with_normalizer_fn(self): def _increment_two(input_sparse_tensor): return sparse_ops.sparse_add( input_sparse_tensor, sparse_tensor.SparseTensor(((0, 0), (1, 1)), (2.0, 2.0), (2, 2)) ) sparse_input = sparse_tensor.SparseTensorValue( # example 0, values [[0.], [1]] # example 1, [[10.]] indices=((0, 0), (0, 1), (1, 0)), values=(0., 1., 10.), dense_shape=(2, 2)) # Before _increment_two: # [[0.], [1.]], # [[10.], [0.]], # After _increment_two: # [[2.], [1.]], # [[10.], [2.]], expected_dense_tensor = [ [[2.], [1.]], [[10.], [2.]], ] numeric_column = sfc.sequence_numeric_column( 'aaa', normalizer_fn=_increment_two) dense_tensor, _ = _get_sequence_dense_tensor( numeric_column, {'aaa': sparse_input}) with monitored_session.MonitoredSession() as sess: self.assertAllEqual( expected_dense_tensor, dense_tensor.eval(session=sess)) @parameterized.named_parameters( {'testcase_name': '2D', 'sparse_input_args': { # example 0, values [[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]] # example 1, [[[10., 11.], [12., 13.]]] 'indices': ((0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 0), (1, 1), (1, 2), (1, 3)), 'values': (0., 1., 2., 3., 4., 5., 6., 7., 10., 11., 12., 13.), 'dense_shape': (2, 8)}, 'expected_dense_tensor': [ [[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]], [[[10., 11.], [12., 13.]], [[0., 0.], [0., 0.]]]]}, {'testcase_name': '3D', 'sparse_input_args': { 'indices': ((0, 0, 0), (0, 0, 2), (0, 0, 4), (0, 0, 6), (0, 1, 0), (0, 1, 2), (0, 1, 4), (0, 1, 6), (1, 0, 0), (1, 0, 2), (1, 0, 4), (1, 0, 6)), 'values': (0., 1., 2., 3., 4., 5., 6., 7., 10., 11., 12., 13.), 'dense_shape': (2, 2, 8)}, 'expected_dense_tensor': [ [[[0., 0.], [1., 0.]], [[2., 0.], [3., 0.]], [[4., 0.], [5., 0.]], [[6., 0.], [7., 0.]]], [[[10., 0.], [11., 0.]], [[12., 0.], [13., 0.]], [[0., 0.], [0., 0.]], [[0., 0.], [0., 0.]]]]}, ) def test_get_dense_tensor_multi_dim( self, sparse_input_args, expected_dense_tensor): """Tests get_sequence_dense_tensor for multi-dim numeric_column.""" sparse_input = sparse_tensor.SparseTensorValue(**sparse_input_args) numeric_column = sfc.sequence_numeric_column('aaa', shape=(2, 2)) dense_tensor, _ = _get_sequence_dense_tensor( numeric_column, {'aaa': sparse_input}) with monitored_session.MonitoredSession() as sess: self.assertAllEqual( expected_dense_tensor, dense_tensor.eval(session=sess)) @parameterized.named_parameters( {'testcase_name': '2D', 'inputs_args': { # example 0, ids [2] # example 1, ids [0, 1] 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (2., 0., 1.), 'dense_shape': (2, 2)}, 'expected_sequence_length': [1, 2], 'shape': (1,)}, {'testcase_name': '3D', 'inputs_args': { # example 0, ids [[2]] # example 1, ids [[0, 1], [2]] 'indices': ((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)), 'values': (2., 0., 1., 2.), 'dense_shape': (2, 2, 2)}, 'expected_sequence_length': [1, 2], 'shape': (1,)}, {'testcase_name': '2D_with_shape', 'inputs_args': { # example 0, ids [2] # example 1, ids [0, 1] 'indices': ((0, 0), (1, 0), (1, 1)), 'values': (2., 0., 1.), 'dense_shape': (2, 2)}, 'expected_sequence_length': [1, 1], 'shape': (2,)}, {'testcase_name': '3D_with_shape', 'inputs_args': { # example 0, ids [[2]] # example 1, ids [[0, 1], [2]] 'indices': ((0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)), 'values': (2., 0., 1., 2.), 'dense_shape': (2, 2, 2)}, 'expected_sequence_length': [1, 2], 'shape': (2,)}, ) def test_sequence_length(self, inputs_args, expected_sequence_length, shape): inputs = sparse_tensor.SparseTensorValue(**inputs_args) numeric_column = sfc.sequence_numeric_column('aaa', shape=shape) _, sequence_length = _get_sequence_dense_tensor( numeric_column, {'aaa': inputs}) with monitored_session.MonitoredSession() as sess: sequence_length = sess.run(sequence_length) self.assertAllEqual(expected_sequence_length, sequence_length) self.assertEqual(np.int64, sequence_length.dtype) def test_sequence_length_with_empty_rows(self): """Tests _sequence_length when some examples do not have ids.""" sparse_input = sparse_tensor.SparseTensorValue( # example 0, values [] # example 1, values [[0.], [1.]] # example 2, [[2.]] # example 3, values [] # example 4, [[3.]] # example 5, values [] indices=((1, 0), (1, 1), (2, 0), (4, 0)), values=(0., 1., 2., 3.), dense_shape=(6, 2)) expected_sequence_length = [0, 2, 1, 0, 1, 0] numeric_column = sfc.sequence_numeric_column('aaa') _, sequence_length = _get_sequence_dense_tensor( numeric_column, {'aaa': sparse_input}) with monitored_session.MonitoredSession() as sess: self.assertAllEqual( expected_sequence_length, sequence_length.eval(session=sess)) if __name__ == '__main__': test.main()
39.913188
102
0.59639
0e4607bd23d501288e254267b2c14a8c9e6a9c13
2,375
py
Python
menu.py
wangzqzero/calculator
94bf0c454672b88262ed87d090908a5ed1518fd3
[ "MIT" ]
null
null
null
menu.py
wangzqzero/calculator
94bf0c454672b88262ed87d090908a5ed1518fd3
[ "MIT" ]
null
null
null
menu.py
wangzqzero/calculator
94bf0c454672b88262ed87d090908a5ed1518fd3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'menu.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets from equation import Ui_Form from linequ import Ui_LinEquation try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtWidgets.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtWidgets.QApplication.translate(context, text, disambig) class Ui_Menu(object): def openWindow(self): self.window = QtWidgets.QMainWindow() self.ui = Ui_Form() self.ui.setupUi(self.window) self.window.show() def openWindowl(self): self.window = QtWidgets.QMainWindow() self.ui = Ui_LinEquation() self.ui.setupUi(self.window) self.window.show() def setupUi(self, Menu): Menu.setObjectName("Menu") Menu.resize(436, 532) self.label = QtWidgets.QLabel(Menu) self.label.setGeometry(QtCore.QRect(110, 70, 181, 41)) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName("label") self.linequ = QtWidgets.QPushButton(Menu) self.linequ.setGeometry(QtCore.QRect(60, 180, 311, 61)) self.linequ.setObjectName("linequ") self.quadequ = QtWidgets.QPushButton(Menu) self.quadequ.setGeometry(QtCore.QRect(60, 290, 311, 61)) self.quadequ.setObjectName("quadequ") self.linequ.clicked.connect(self.openWindowl) self.quadequ.clicked.connect(self.openWindow) self.retranslateUi(Menu) QtCore.QMetaObject.connectSlotsByName(Menu) def retranslateUi(self, Menu): _translate = QtCore.QCoreApplication.translate Menu.setWindowTitle(_translate("Menu", "Form")) self.label.setText(_translate("Menu", "Equation Menu")) self.linequ.setText(_translate("Menu", "Solve liner equation in two variable")) self.quadequ.setText(_translate("Menu", "Solve quadratic equation"))
37.109375
87
0.689263
efa935820302bf6dbf6104fcf32831a207e1a725
84
py
Python
server/admin/blueprints/user/__init__.py
Soopro/totoro
6be1af50496340ded9879a6450c8208ac9f97e72
[ "MIT" ]
null
null
null
server/admin/blueprints/user/__init__.py
Soopro/totoro
6be1af50496340ded9879a6450c8208ac9f97e72
[ "MIT" ]
null
null
null
server/admin/blueprints/user/__init__.py
Soopro/totoro
6be1af50496340ded9879a6450c8208ac9f97e72
[ "MIT" ]
1
2019-10-31T06:11:41.000Z
2019-10-31T06:11:41.000Z
# coding=utf-8 from __future__ import absolute_import from .views import blueprint
16.8
38
0.821429
59140081b11212c6be482c72a78ac9c17012d685
429
py
Python
examples/get-guild-data.py
FoxNerdSaysMoo/HypixelIO
aca8fd6535c0afb2bb733172db2dcbd68590118d
[ "MIT" ]
16
2020-10-28T01:49:31.000Z
2022-03-13T23:19:31.000Z
examples/get-guild-data.py
FoxNerdSaysMoo/HypixelIO
aca8fd6535c0afb2bb733172db2dcbd68590118d
[ "MIT" ]
20
2021-03-17T07:32:14.000Z
2022-03-07T02:48:00.000Z
examples/get-guild-data.py
FoxNerdSaysMoo/HypixelIO
aca8fd6535c0afb2bb733172db2dcbd68590118d
[ "MIT" ]
5
2020-10-21T13:53:27.000Z
2021-09-02T15:47:45.000Z
import os from textwrap import dedent import hypixelio as hp # Init the Client client = hp.Client(api_key=os.environ["HYPIXEL_KEY"]) # Get the guild object guild = client.get_guild(name="2k") # Get the essential data name, ranking, achievements = guild.NAME, guild.LEGACY_RANKING, guild.ACHIEVEMENTS # Print the data print( dedent(f""" Name: {name} ranking: {ranking} achievements: {achievements} """) )
18.652174
82
0.710956
13e92b5fe7535220488956da90722a2209116546
7,344
py
Python
xonsh/parsers/fstring_adaptor.py
wendellwt/xonsh
300dfc87170002e900c2878aaf3d67c3f8a765d7
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xonsh/parsers/fstring_adaptor.py
wendellwt/xonsh
300dfc87170002e900c2878aaf3d67c3f8a765d7
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xonsh/parsers/fstring_adaptor.py
wendellwt/xonsh
300dfc87170002e900c2878aaf3d67c3f8a765d7
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
# -*- coding: utf-8 -*- """Implements helper class for parsing Xonsh syntax within f-strings.""" import re from ast import parse as pyparse from xonsh import ast from xonsh.lazyasd import lazyobject from xonsh.platform import PYTHON_VERSION_INFO @lazyobject def RE_FSTR_FIELD_WRAPPER(): if PYTHON_VERSION_INFO > (3, 8): return re.compile(r"(__xonsh__\.eval_fstring_field\((\d+)\))\s*[^=]") else: return re.compile(r"(__xonsh__\.eval_fstring_field\((\d+)\))") if PYTHON_VERSION_INFO > (3, 8): @lazyobject def RE_FSTR_SELF_DOC_FIELD_WRAPPER(): return re.compile(r"(__xonsh__\.eval_fstring_field\((\d+)\)\s*)=") class FStringAdaptor: """Helper for parsing Xonsh syntax within f-strings.""" def __init__(self, fstring, prefix, filename=None): """Parses an f-string containing special Xonsh syntax and returns ast.JoinedStr AST node instance representing the input string. Parameters ---------- fstring : str The input f-string. prefix : str Prefix of the f-string (e.g. "fr"). filename : str, optional File from which the code was read or any string describing origin of the code. """ self.fstring = fstring self.prefix = prefix self.filename = filename self.fields = {} self.repl = "" self.res = None def _patch_special_syntax(self): """Takes an fstring (and its prefix, ie "f") that may contain xonsh expressions as its field values and substitues them for a call to __xonsh__.eval_fstring_field as needed. """ prelen = len(self.prefix) quote = self.fstring[prelen] if self.fstring[prelen + 1] == quote: quote *= 3 template = self.fstring[prelen + len(quote) : -len(quote)] while True: repl = self.prefix + quote + template + quote try: res = pyparse(repl) break except SyntaxError as e: # The e.text attribute is expected to contain the failing # expression, e.g. "($HOME)" for f"{$HOME}" string. if e.text is None or e.text[0] != "(": raise error_expr = e.text[1:-1] epos = template.find(error_expr) if epos < 0: raise # We can olny get here in the case of handled SyntaxError. # Patch the last error and start over. xonsh_field = (error_expr, self.filename if self.filename else None) field_id = id(xonsh_field) self.fields[field_id] = xonsh_field eval_field = f"__xonsh__.eval_fstring_field({field_id})" template = template[:epos] + eval_field + template[epos + len(error_expr) :] self.repl = repl self.res = res.body[0].value def _unpatch_strings(self): """Reverts false-positive field matches within strings.""" reparse = False for node in ast.walk(self.res): if isinstance(node, ast.Constant) and isinstance(node.value, str): value = node.value elif isinstance(node, ast.Str): value = node.s else: continue match = RE_FSTR_FIELD_WRAPPER.search(value) if match is None: continue field = self.fields.pop(int(match.group(2)), None) if field is None: continue self.repl = self.repl.replace(match.group(1), field[0], 1) reparse = True if reparse: self.res = pyparse(self.repl).body[0].value def _unpatch_selfdoc_strings(self): """Reverts false-positive matches within Python 3.8 sef-documenting f-string expressions.""" for node in ast.walk(self.res): if isinstance(node, ast.Constant) and isinstance(node.value, str): value = node.value elif isinstance(node, ast.Str): value = node.s else: continue match = RE_FSTR_SELF_DOC_FIELD_WRAPPER.search(value) if match is None: continue field = self.fields.get(int(match.group(2)), None) if field is None: continue value = value.replace(match.group(1), field[0], 1) if isinstance(node, ast.Str): node.s = value else: node.value = value def _fix_eval_field_params(self): """Replace f-string field ID placeholders with the actual field expressions.""" for node in ast.walk(self.res): if not ( isinstance(node, ast.Call) and node.func.value.id == "__xonsh__" and node.func.attr == "eval_fstring_field" and len(node.args) > 0 ): continue if PYTHON_VERSION_INFO > (3, 8): if isinstance(node.args[0], ast.Constant) and isinstance( node.args[0].value, int ): field = self.fields.pop(node.args[0].value, None) if field is None: continue lineno = node.args[0].lineno col_offset = node.args[0].col_offset field_node = ast.Tuple( elts=[ ast.Constant( value=field[0], lineno=lineno, col_offset=col_offset ), ast.Constant( value=field[1], lineno=lineno, col_offset=col_offset ), ], ctx=ast.Load(), lineno=lineno, col_offset=col_offset, ) node.args[0] = field_node elif isinstance(node.args[0], ast.Num): field = self.fields.pop(node.args[0].n, None) if field is None: continue lineno = node.args[0].lineno col_offset = node.args[0].col_offset elts = [ast.Str(s=field[0], lineno=lineno, col_offset=col_offset)] if field[1] is not None: elts.append( ast.Str(s=field[1], lineno=lineno, col_offset=col_offset) ) else: elts.append( ast.NameConstant( value=None, lineno=lineno, col_offset=col_offset ) ) field_node = ast.Tuple( elts=elts, ctx=ast.Load(), lineno=lineno, col_offset=col_offset, ) node.args[0] = field_node def run(self): """Runs the parser. Returns ast.JoinedStr instance.""" self._patch_special_syntax() self._unpatch_strings() if PYTHON_VERSION_INFO > (3, 8): self._unpatch_selfdoc_strings() self._fix_eval_field_params() assert len(self.fields) == 0 return self.res
37.279188
88
0.519199
10f7ead58248484a0f768c418ea56836bc8b5fe4
6,245
py
Python
ddtrace/contrib/botocore/patch.py
KDWSS/dd-trace-py
6d859bec403347f7c1e7efd039210908b562741e
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
ddtrace/contrib/botocore/patch.py
KDWSS/dd-trace-py
6d859bec403347f7c1e7efd039210908b562741e
[ "Apache-2.0", "BSD-3-Clause" ]
6
2021-06-29T14:58:43.000Z
2021-12-15T14:14:36.000Z
ddtrace/contrib/botocore/patch.py
KDWSS/dd-trace-py
6d859bec403347f7c1e7efd039210908b562741e
[ "Apache-2.0", "BSD-3-Clause" ]
1
2020-09-28T06:20:53.000Z
2020-09-28T06:20:53.000Z
""" Trace queries to aws api done via botocore client """ # 3p import base64 import json import botocore.client from ddtrace import config from ddtrace.vendor import wrapt # project from ...constants import ANALYTICS_SAMPLE_RATE_KEY from ...constants import SPAN_MEASURED_KEY from ...ext import SpanTypes from ...ext import aws from ...ext import http from ...internal.logger import get_logger from ...pin import Pin from ...propagation.http import HTTPPropagator from ...utils import get_argument_value from ...utils.formats import deep_getattr from ...utils.formats import get_env from ...utils.wrappers import unwrap # Original botocore client class _Botocore_client = botocore.client.BaseClient ARGS_NAME = ("action", "params", "path", "verb") TRACED_ARGS = {"params", "path", "verb"} log = get_logger(__name__) # Botocore default settings config._add( "botocore", { "distributed_tracing": get_env("botocore", "distributed_tracing", default=True), "invoke_with_legacy_context": get_env("botocore", "invoke_with_legacy_context", default=False), }, ) def inject_trace_data_to_message_attributes(trace_data, entry): if "MessageAttributes" not in entry: entry["MessageAttributes"] = {} # An Amazon SQS message can contain up to 10 metadata attributes. if len(entry["MessageAttributes"]) < 10: entry["MessageAttributes"]["_datadog"] = {"DataType": "String", "StringValue": json.dumps(trace_data)} else: log.debug("skipping trace injection, max number (10) of MessageAttributes exceeded") def inject_trace_to_sqs_batch_message(args, span): trace_data = {} HTTPPropagator.inject(span.context, trace_data) params = args[1] for entry in params["Entries"]: inject_trace_data_to_message_attributes(trace_data, entry) def inject_trace_to_sqs_message(args, span): trace_data = {} HTTPPropagator.inject(span.context, trace_data) params = args[1] inject_trace_data_to_message_attributes(trace_data, params) def modify_client_context(client_context_object, trace_headers): if config.botocore["invoke_with_legacy_context"]: trace_headers = {"_datadog": trace_headers} if "custom" in client_context_object: client_context_object["custom"].update(trace_headers) else: client_context_object["custom"] = trace_headers def inject_trace_to_client_context(args, span): trace_headers = {} HTTPPropagator.inject(span.context, trace_headers) client_context_object = {} params = args[1] if "ClientContext" in params: try: client_context_json = base64.b64decode(params["ClientContext"]).decode("utf-8") client_context_object = json.loads(client_context_json) except Exception: log.warning("malformed client_context=%s", params["ClientContext"], exc_info=True) return modify_client_context(client_context_object, trace_headers) try: json_context = json.dumps(client_context_object).encode("utf-8") except Exception: log.warning("unable to encode modified client context as json: %s", client_context_object, exc_info=True) return params["ClientContext"] = base64.b64encode(json_context).decode("utf-8") def patch(): if getattr(botocore.client, "_datadog_patch", False): return setattr(botocore.client, "_datadog_patch", True) wrapt.wrap_function_wrapper("botocore.client", "BaseClient._make_api_call", patched_api_call) Pin(service="aws", app="aws").onto(botocore.client.BaseClient) def unpatch(): if getattr(botocore.client, "_datadog_patch", False): setattr(botocore.client, "_datadog_patch", False) unwrap(botocore.client.BaseClient, "_make_api_call") def patched_api_call(original_func, instance, args, kwargs): pin = Pin.get_from(instance) if not pin or not pin.enabled(): return original_func(*args, **kwargs) endpoint_name = deep_getattr(instance, "_endpoint._endpoint_prefix") with pin.tracer.trace( "{}.command".format(endpoint_name), service="{}.{}".format(pin.service, endpoint_name), span_type=SpanTypes.HTTP ) as span: span.set_tag(SPAN_MEASURED_KEY) operation = None if args: operation = get_argument_value(args, kwargs, 0, "operation_name") # DEV: join is the fastest way of concatenating strings that is compatible # across Python versions (see # https://stackoverflow.com/questions/1316887/what-is-the-most-efficient-string-concatenation-method-in-python) span.resource = ".".join((endpoint_name, operation.lower())) if config.botocore["distributed_tracing"]: if endpoint_name == "lambda" and operation == "Invoke": inject_trace_to_client_context(args, span) if endpoint_name == "sqs" and operation == "SendMessage": inject_trace_to_sqs_message(args, span) if endpoint_name == "sqs" and operation == "SendMessageBatch": inject_trace_to_sqs_batch_message(args, span) else: span.resource = endpoint_name aws.add_span_arg_tags(span, endpoint_name, args, ARGS_NAME, TRACED_ARGS) region_name = deep_getattr(instance, "meta.region_name") span._set_str_tag("aws.agent", "botocore") if operation is not None: span._set_str_tag("aws.operation", operation) if region_name is not None: span._set_str_tag("aws.region", region_name) result = original_func(*args, **kwargs) response_meta = result.get("ResponseMetadata") if response_meta: if "HTTPStatusCode" in response_meta: span.set_tag(http.STATUS_CODE, response_meta["HTTPStatusCode"]) if "RetryAttempts" in response_meta: span.set_tag("retry_attempts", response_meta["RetryAttempts"]) if "RequestId" in response_meta: span.set_tag("aws.requestid", response_meta["RequestId"]) # set analytics sample rate span.set_tag(ANALYTICS_SAMPLE_RATE_KEY, config.botocore.get_analytics_sample_rate()) return result
35.282486
123
0.692074
aad1f0fbeb3828656409050b9b897c1a3ff5e384
4,211
py
Python
foolbox/models/mxnet_gluon.py
mkyybx/foolbox
00b2dcc5ed30b12f28431e9dabe4d2bbc214d444
[ "MIT" ]
4
2021-11-12T04:06:32.000Z
2022-01-27T09:01:41.000Z
foolbox/models/mxnet_gluon.py
pige2nd/foolbox
2daabba8355afce9dfbec3de8d71dadadcfbd10b
[ "MIT" ]
1
2022-02-22T14:00:59.000Z
2022-02-25T08:57:29.000Z
foolbox/models/mxnet_gluon.py
pige2nd/foolbox
2daabba8355afce9dfbec3de8d71dadadcfbd10b
[ "MIT" ]
2
2020-11-27T00:03:48.000Z
2020-11-27T00:08:04.000Z
from __future__ import absolute_import from .base import DifferentiableModel import numpy as np class MXNetGluonModel(DifferentiableModel): """Creates a :class:`Model` instance from an existing `MXNet Gluon` Block. Parameters ---------- block : `mxnet.gluon.Block` The Gluon Block representing the model to be run. ctx : `mxnet.context.Context` The device, e.g. mxnet.cpu() or mxnet.gpu(). num_classes : int The number of classes. bounds : tuple Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255). channel_axis : int The index of the axis that represents color channels. preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of input; we first subtract the first element of preprocessing from the input and then divide the input by the second element. """ def __init__( self, block, bounds, num_classes, ctx=None, channel_axis=1, preprocessing=(0, 1)): import mxnet as mx self._num_classes = num_classes if ctx is None: ctx = mx.cpu() super(MXNetGluonModel, self).__init__( bounds=bounds, channel_axis=channel_axis, preprocessing=preprocessing) self._device = ctx self._block = block def num_classes(self): return self._num_classes def forward(self, inputs): import mxnet as mx inputs, _ = self._process_input(inputs) data_array = mx.nd.array(inputs, ctx=self._device) data_array.attach_grad() with mx.autograd.record(train_mode=False): L = self._block(data_array) return L.asnumpy() def forward_and_gradient_one(self, x, label): import mxnet as mx x, dpdx = self._process_input(x) label = mx.nd.array([label], ctx=self._device) data_array = mx.nd.array(x[np.newaxis], ctx=self._device) data_array.attach_grad() with mx.autograd.record(train_mode=False): logits = self._block(data_array) loss = mx.nd.softmax_cross_entropy(logits, label) loss.backward(train_mode=False) predictions = np.squeeze(logits.asnumpy(), axis=0) gradient = np.squeeze(data_array.grad.asnumpy(), axis=0) gradient = self._process_gradient(dpdx, gradient) return predictions, gradient def gradient(self, inputs, labels): import mxnet as mx inputs, dpdx = self._process_input(inputs) inputs = mx.nd.array(inputs, ctx=self._device) labels = mx.nd.array(labels, ctx=self._device) inputs.attach_grad() with mx.autograd.record(train_mode=False): logits = self._block(inputs) loss = mx.nd.softmax_cross_entropy(logits, labels) loss.backward(train_mode=False) gradient = inputs.grad.asnumpy() gradient = self._process_gradient(dpdx, gradient) return gradient def _loss_fn(self, x, label): import mxnet as mx x, _ = self._process_input(x) label = mx.nd.array([label], ctx=self._device) data_array = mx.nd.array(x[np.newaxis], ctx=self._device) data_array.attach_grad() with mx.autograd.record(train_mode=False): logits = self._block(data_array) loss = mx.nd.softmax_cross_entropy(logits, label) loss.backward(train_mode=False) return loss.asnumpy() def backward(self, gradient, inputs): # lazy import import mxnet as mx assert gradient.ndim == 2 inputs, dpdx = self._process_input(inputs) inputs = mx.nd.array(inputs, ctx=self._device) gradient = mx.nd.array(gradient, ctx=self._device) inputs.attach_grad() with mx.autograd.record(train_mode=False): logits = self._block(inputs) assert gradient.shape == logits.shape logits.backward(gradient, train_mode=False) gradient = inputs.grad.asnumpy() gradient = self._process_gradient(dpdx, gradient) return gradient
34.516393
78
0.627642
8b0e5a1f263db58638424bb478a4a8134c61a03c
952
py
Python
dummy_settings.py
AnselmC/connection-tester
9a53b11e54be982d883c2db69613376a4b15aa7a
[ "MIT" ]
null
null
null
dummy_settings.py
AnselmC/connection-tester
9a53b11e54be982d883c2db69613376a4b15aa7a
[ "MIT" ]
null
null
null
dummy_settings.py
AnselmC/connection-tester
9a53b11e54be982d883c2db69613376a4b15aa7a
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- sender = 'your.adress@host.com' # Your address password = '#s0oPerSTr0nGpä$$\\/\\/ord' # Your password server_name = 'mail.host.com' # Your mail server address server_port = 587 # Your mail server port ISP = 'customer_service@isp.com' # Your ISP customer service address contract_no = '1234' # The ID of your contract subject = 'Notification concerning low bandwidth' body = 'Dear customer support,\n' + \ 'This is an automated message informing you about ' + \ 'underperforming bandwidth.\n My advertised up- and ' + \ 'download speeds for contract {contract_no} are {up} Mbps and ' +\ '{down} Mbps, respectively.\n' + \ 'However, {runs} speed tests conducted between {start} and {end} ' + \ 'showed average speeds of {avg_up} Mbps and {avg_down} Mbps, ' + \ 'respectively. Attached you can find a time sequence.\n' + \ 'Please resolve this issue in a timely matter.'
52.888889
74
0.683824
825806276de0276aaa7cf46bb0f739e225fa3f54
26,056
py
Python
osx/devkit/plug-ins/scripted/swissArmyManip.py
leegoonz/Maya-devkit
b81fe799b58e854e4ef16435426d60446e975871
[ "ADSL" ]
10
2018-03-30T16:09:02.000Z
2021-12-07T07:29:19.000Z
osx/devkit/plug-ins/scripted/swissArmyManip.py
leegoonz/Maya-devkit
b81fe799b58e854e4ef16435426d60446e975871
[ "ADSL" ]
null
null
null
osx/devkit/plug-ins/scripted/swissArmyManip.py
leegoonz/Maya-devkit
b81fe799b58e854e4ef16435426d60446e975871
[ "ADSL" ]
9
2018-06-02T09:18:49.000Z
2021-12-20T09:24:35.000Z
#- # ========================================================================== # Copyright (C) 1995 - 2006 Autodesk, Inc. and/or its licensors. All # rights reserved. # # The coded instructions, statements, computer programs, and/or related # material (collectively the "Data") in these files contain unpublished # information proprietary to Autodesk, Inc. ("Autodesk") and/or its # licensors, which is protected by U.S. and Canadian federal copyright # law and by international treaties. # # The Data is provided for use exclusively by You. You have the right # to use, modify, and incorporate this Data into other products for # purposes authorized by the Autodesk software license agreement, # without fee. # # The copyright notices in the Software and this entire statement, # including the above license grant, this restriction and the # following disclaimer, must be included in all copies of the # Software, in whole or in part, and all derivative works of # the Software, unless such copies or derivative works are solely # in the form of machine-executable object code generated by a # source language processor. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND. # AUTODESK DOES NOT MAKE AND HEREBY DISCLAIMS ANY EXPRESS OR IMPLIED # WARRANTIES INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF # NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR # PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE, OR # TRADE PRACTICE. IN NO EVENT WILL AUTODESK AND/OR ITS LICENSORS # BE LIABLE FOR ANY LOST REVENUES, DATA, OR PROFITS, OR SPECIAL, # DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES, EVEN IF AUTODESK # AND/OR ITS LICENSORS HAS BEEN ADVISED OF THE POSSIBILITY # OR PROBABILITY OF SUCH DAMAGES. # # ========================================================================== #+ # # Autodesk Script File # MODIFY THIS AT YOUR OWN RISK # # Creation Date: 27 September 2006 # # swissArmyManip.py # # This plug-in is an example of a user-defined manipulator, # which is comprised of a variety of the base manipulators: # - MFnCircleSweepManip # - MFnDirectionManip # - MFnDiscManip # - MFnDistanceManip # - MFnFreePointTriadManip # - MFnStateManip # - MFnToggleManip # - MFnRotateManip # - MFnScaleManip # # To use this plug-in: # # import maya.cmds as cmds # cmds.createNode("spSwissArmyLocator") # # click on the showManipTool # import maya.OpenMaya as OpenMaya import maya.OpenMayaUI as OpenMayaUI import maya.OpenMayaRender as OpenMayaRender import maya.OpenMayaMPx as OpenMayaMPx import math,sys glRenderer = OpenMayaRender.MHardwareRenderer.theRenderer() glFT = glRenderer.glFunctionTable() kSwissArmyLocatorName = "spSwissArmyLocator" kSwissArmyLocatorId = OpenMaya.MTypeId(0x87006) kSwissArmyLocatorManipName = "spSwissArmyLocatorManip" kSwissArmyLocatorManipId = OpenMaya.MTypeId(0x87007) delta1 = 0.01 delta2 = 0.02 delta3 = 0.03 delta4 = 0.04 # Locator Data centre = [ [ 0.10, 0.0, 0.10 ], [ 0.10, 0.0, -0.10 ], [ -0.10, 0.0, -0.10 ], [ -0.10, 0.0, 0.10 ], [ 0.10, 0.0, 0.10 ] ] state1 = [ [ 1.00, 0.0, 1.00 ], [ 1.00, 0.0, 0.50 ], [ 0.50, 0.0, 0.50 ], [ 0.50, 0.0, 1.00 ], [ 1.00, 0.0, 1.00 ] ] state2 = [ [ 1.00, 0.0, -1.00 ], [ 1.00, 0.0, -0.50 ], [ 0.50, 0.0, -0.50 ], [ 0.50, 0.0, -1.00 ], [ 1.00, 0.0, -1.00 ] ] state3 = [ [ -1.00, 0.0, -1.00 ], [ -1.00, 0.0, -0.50 ], [ -0.50, 0.0, -0.50 ], [ -0.50, 0.0, -1.00 ], [ -1.00, 0.0, -1.00 ] ] state4 = [ [ -1.00, 0.0, 1.00 ], [ -1.00, 0.0, 0.50 ], [ -0.50, 0.0, 0.50 ], [ -0.50, 0.0, 1.00 ], [ -1.00, 0.0, 1.00 ] ] arrow1 = [ [ 0.00, 0.0, 1.00 ], [ 0.10, 0.0, 0.20 ], [ -0.10, 0.0, 0.20 ], [ 0.00, 0.0, 1.00 ] ] arrow2 = [ [ 1.00, 0.0, 0.00 ], [ 0.20, 0.0, 0.10 ], [ 0.20, 0.0, -0.10 ], [ 1.00, 0.0, 0.00 ] ] arrow3 = [ [ 0.00, 0.0, -1.00 ], [ 0.10, 0.0, -0.20 ], [ -0.10, 0.0, -0.20 ], [ 0.00, 0.0, -1.00 ] ] arrow4 = [ [ -1.00, 0.0, 0.00 ], [ -0.20, 0.0, 0.10 ], [ -0.20, 0.0, -0.10 ], [ -1.00, 0.0, 0.00 ] ] perimeter=[ [ 1.10, 0.0, 1.10 ], [ 1.10, 0.0, -1.10 ], [ -1.10, 0.0, -1.10 ], [ -1.10, 0.0, 1.10 ], [ 1.10, 0.0, 1.10 ] ] kCentreCount = 5 kState1Count = 5 kState2Count = 5 kState3Count = 5 kState4Count = 5 kArrow1Count = 4 kArrow2Count = 4 kArrow3Count = 4 kArrow4Count = 4 kPerimeterCount = 5 ######################################################################## ######################################################################## class swissArmyLocatorManip(OpenMayaMPx.MPxManipContainer): def __init__(self): OpenMayaMPx.MPxManipContainer.__init__(self) self.fCircleSweepManip = OpenMaya.MDagPath() self.fDirectionManip = OpenMaya.MDagPath() self.fDiscManip = OpenMaya.MDagPath() self.fDistanceManip = OpenMaya.MDagPath() self.fFreePointTriadManip = OpenMaya.MDagPath() self.fStateManip = OpenMaya.MDagPath() self.fToggleManip = OpenMaya.MDagPath() self.fRotateManip = OpenMaya.MDagPath() self.fScaleManip = OpenMaya.MDagPath() self.fNodePath = OpenMaya.MDagPath() def createChildren(self): # FreePointTriadManip self.fFreePointTriadManip = self.addFreePointTriadManip("freePointTriadManip", "point") freePointTriadManipFn = OpenMayaUI.MFnFreePointTriadManip(self.fFreePointTriadManip) # DirectionManip self.fDirectionManip = self.addDirectionManip("directionManip", "direction") directionManipFn = OpenMayaUI.MFnDirectionManip(self.fDirectionManip) # ToggleManip self.fToggleManip = self.addToggleManip("toggleManip", "toggle") toggleManipFn = OpenMayaUI.MFnToggleManip(self.fToggleManip) # StateManip self.fStateManip = self.addStateManip("stateManip", "state") stateManipFn = OpenMayaUI.MFnStateManip(self.fStateManip) # DiscManip self.fDiscManip = self.addDiscManip("discManip", "angle") discManipFn = OpenMayaUI.MFnDiscManip(self.fDiscManip) # CircleSweepManip self.fCircleSweepManip = self.addCircleSweepManip("circleSweepManip", "angle") circleSweepManipFn = OpenMayaUI.MFnCircleSweepManip(self.fCircleSweepManip) circleSweepManipFn.setCenterPoint(OpenMaya.MPoint(0, 0, 0)) circleSweepManipFn.setNormal(OpenMaya.MVector(0, 1, 0)) circleSweepManipFn.setRadius(2.0) circleSweepManipFn.setDrawAsArc(True) # DistanceManip self.fDistanceManip = self.addDistanceManip("distanceManip", "distance") distanceManipFn = OpenMayaUI.MFnDistanceManip(self.fDistanceManip) distanceManipFn.setStartPoint(OpenMaya.MPoint(0, 0, 0)) distanceManipFn.setDirection(OpenMaya.MVector(0, 1, 0)) # RotateManip self.fRotateManip = self.addRotateManip("RotateManip", "rotation") rotateManipFn = OpenMayaUI.MFnRotateManip(self.fRotateManip) # ScaleManip self.fScaleManip = self.addScaleManip("scaleManip", "scale") scaleManipFn = OpenMayaUI.MFnScaleManip(self.fScaleManip) def connectToDependNode(self, node): # Get the DAG path dagNodeFn = OpenMaya.MFnDagNode(node) dagNodeFn.getPath(self.fNodePath) parentNode = dagNodeFn.parent(0) parentNodeFn = OpenMaya.MFnDagNode(parentNode) # Connect the plugs nodeFn = OpenMaya.MFnDependencyNode() nodeFn.setObject(node) # FreePointTriadManip freePointTriadManipFn = OpenMayaUI.MFnFreePointTriadManip(self.fFreePointTriadManip) try: translationPlug = parentNodeFn.findPlug("t") freePointTriadManipFn.connectToPointPlug(translationPlug) except: pass # DirectionManip directionManipFn = OpenMayaUI.MFnDirectionManip() directionManipFn.setObject(self.fDirectionManip) try: directionPlug = nodeFn.findPlug("arrow2Direction") directionManipFn.connectToDirectionPlug(directionPlug) startPointIndex = directionManipFn.startPointIndex() self.addPlugToManipConversion(startPointIndex) except: pass # DistanceManip distanceManipFn = OpenMayaUI.MFnDistanceManip() distanceManipFn.setObject(self.fDistanceManip) try: sizePlug = nodeFn.findPlug("size") distanceManipFn.connectToDistancePlug(sizePlug) startPointIndex = distanceManipFn.startPointIndex() self.addPlugToManipConversion(startPointIndex) except: pass # CircleSweepManip circleSweepManipFn = OpenMayaUI.MFnCircleSweepManip(self.fCircleSweepManip) try: arrow1AnglePlug = nodeFn.findPlug("arrow1Angle") circleSweepManipFn.connectToAnglePlug(arrow1AnglePlug) centerIndex = circleSweepManipFn.centerIndex() self.addPlugToManipConversion(centerIndex) except: pass # DiscManip discManipFn = OpenMayaUI.MFnDiscManip(self.fDiscManip) try: arrow3AnglePlug = nodeFn.findPlug("arrow3Angle") discManipFn.connectToAnglePlug(arrow3AnglePlug) centerIndex = discManipFn.centerIndex() self.addPlugToManipConversion(centerIndex) except: pass # StateManip stateManipFn = OpenMayaUI.MFnStateManip(self.fStateManip) try: statePlug = nodeFn.findPlug("state") stateManipFn.connectToStatePlug(statePlug) positionIndex = stateManipFn.positionIndex() self.addPlugToManipConversion(positionIndex) except: pass # ToggleManip toggleManipFn = OpenMayaUI.MFnToggleManip(self.fToggleManip) try: togglePlug = nodeFn.findPlug("toggle") toggleManipFn.connectToTogglePlug(togglePlug) startPointIndex = toggleManipFn.startPointIndex() self.addPlugToManipConversion(startPointIndex) except: pass # Determine the transform node for the locator transformPath = OpenMaya.MDagPath(self.fNodePath) transformPath.pop() transformNode = OpenMaya.MFnTransform(transformPath) # RotateManip rotateManipFn = OpenMayaUI.MFnRotateManip(self.fRotateManip) try: rotatePlug = transformNode.findPlug("rotate") rotateManipFn.connectToRotationPlug(rotatePlug) rotateManipFn.displayWithNode(node) except: pass # ScaleManip scaleManipFn = OpenMayaUI.MFnScaleManip(self.fScaleManip) try: scalePlug = transformNode.findPlug("scale") scaleManipFn.connectToScalePlug(scalePlug) scaleManipFn.displayWithNode(node) except: pass self.finishAddingManips() OpenMayaMPx.MPxManipContainer.connectToDependNode(self, node) def draw(self, view, path, style, status): OpenMayaMPx.MPxManipContainer.draw(self, view, path, style, status) view.beginGL() textPos = OpenMaya.MPoint(self.nodeTranslation()) view.drawText("Swiss Army Manipulator", textPos, OpenMayaUI.M3dView.kLeft) view.endGL() def plugToManipConversion(self, theIndex): numData = OpenMaya.MFnNumericData() numDataObj = numData.create(OpenMaya.MFnNumericData.k3Float) vec = self.nodeTranslation() numData.setData3Float(vec.x, vec.y, vec.z) manipData = OpenMayaUI.MManipData(numDataObj) return manipData def nodeTranslation(self): dagFn = OpenMaya.MFnDagNode(self.fNodePath) path = OpenMaya.MDagPath() dagFn.getPath(path) path.pop() # pop from the shape to the transform transformFn = OpenMaya.MFnTransform(path) return transformFn.getTranslation(OpenMaya.MSpace.kWorld) ######################################################################## ######################################################################## class swissArmyLocator(OpenMayaMPx.MPxLocatorNode): aSize = OpenMaya.MObject() # The size of the locator aPoint = OpenMaya.MObject() aPointX = OpenMaya.MObject() aPointY = OpenMaya.MObject() aPointZ = OpenMaya.MObject() aArrow1Angle = OpenMaya.MObject() aArrow2Direction = OpenMaya.MObject() aArrow2DirectionX = OpenMaya.MObject() aArrow2DirectionY = OpenMaya.MObject() aArrow2DirectionZ = OpenMaya.MObject() aArrow3Angle = OpenMaya.MObject() aArrow4Distance = OpenMaya.MObject() aState = OpenMaya.MObject() aToggle = OpenMaya.MObject() def __init__(self): OpenMayaMPx.MPxLocatorNode.__init__(self) def compute(self, plug, data): return OpenMaya.kUnknownParameter def draw(self, view, path, style, status): # Get the size thisNode = self.thisMObject() plug = OpenMaya.MPlug(thisNode, swissArmyLocator.aSize) sizeVal = plug.asMDistance() arrow1AnglePlug = OpenMaya.MPlug(thisNode, swissArmyLocator.aArrow1Angle) arrow1Angle = arrow1AnglePlug.asMAngle() angle1 = -arrow1Angle.asRadians() - 3.1415927/2.0 arrow3AnglePlug = OpenMaya.MPlug(thisNode, swissArmyLocator.aArrow3Angle) arrow3Angle = arrow3AnglePlug.asMAngle() angle3 = arrow3Angle.asRadians() statePlug = OpenMaya.MPlug(thisNode, swissArmyLocator.aState) state = statePlug.asInt() togglePlug = OpenMaya.MPlug(thisNode, swissArmyLocator.aToggle) toggle = togglePlug.asBool() directionXPlug = OpenMaya.MPlug(thisNode, swissArmyLocator.aArrow2DirectionX) directionYPlug = OpenMaya.MPlug(thisNode, swissArmyLocator.aArrow2DirectionY) directionZPlug = OpenMaya.MPlug(thisNode, swissArmyLocator.aArrow2DirectionZ) dirX = directionXPlug.asDouble() dirY = directionYPlug.asDouble() dirZ = directionZPlug.asDouble() angle2 = math.atan2(dirZ, dirX) angle2 += 3.1415927 multiplier = sizeVal.asCentimeters() view.beginGL() if ((style == OpenMayaUI.M3dView.kFlatShaded) or (style == OpenMayaUI.M3dView.kGouraudShaded)): # Push the color settings glFT.glPushAttrib(OpenMayaRender.MGL_CURRENT_BIT) if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(13, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(13, OpenMayaUI.M3dView.kDormantColors) if (toggle): if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(15, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(15, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kCentreCount - 1 for i in range(last): glFT.glVertex3f(centre[i][0] * multiplier, centre[i][1] * multiplier, centre[i][2] * multiplier) glFT.glEnd() if (state == 0): if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(19, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(19, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kState1Count - 1 for i in range(last): glFT.glVertex3f(state1[i][0] * multiplier, state1[i][1] * multiplier, state1[i][2] * multiplier) glFT.glEnd() if (state == 1): if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(21, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(21, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kState2Count - 1 for i in range(last): glFT.glVertex3f(state2[i][0] * multiplier, state2[i][1] * multiplier, state2[i][2] * multiplier) glFT.glEnd() if (state == 2): if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(18, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(18, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kState3Count - 1 for i in range(last): glFT.glVertex3f(state3[i][0] * multiplier, state3[i][1] * multiplier, state3[i][2] * multiplier) glFT.glEnd() if (state == 3): if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(17, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(17, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kState4Count - 1 for i in range(last): glFT.glVertex3f(state4[i][0] * multiplier, state4[i][1] * multiplier, state4[i][2] * multiplier) glFT.glEnd() if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(12, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(12, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kArrow1Count - 1 for i in range(last): glFT.glVertex3f((-arrow1[i][0] * multiplier * math.cos(angle1) - arrow1[i][2] * multiplier * math.sin(angle1)), (arrow1[i][1] * multiplier + delta1), (arrow1[i][2] * multiplier * math.cos(angle1) - arrow1[i][0] * multiplier * math.sin(angle1))) glFT.glEnd() if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(16, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(16, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kArrow2Count - 1 for i in range(last): glFT.glVertex3f((-arrow2[i][0] * multiplier * math.cos(angle2) - arrow2[i][2] * multiplier * math.sin(angle2)), (arrow2[i][1] * multiplier + delta2), (arrow2[i][2] * multiplier * math.cos(angle2) - arrow2[i][0] * multiplier * math.sin(angle2))) glFT.glEnd() if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(13, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(13, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kArrow3Count - 1 for i in range(last): glFT.glVertex3f((-arrow3[i][0] * multiplier * math.cos(angle3) - arrow3[i][2] * multiplier * math.sin(angle3)), (arrow3[i][1] * multiplier + delta3), (arrow3[i][2] * multiplier * math.cos(angle3) - arrow3[i][0] * multiplier * math.sin(angle3))) glFT.glEnd() if (status == OpenMayaUI.M3dView.kActive): view.setDrawColor(5, OpenMayaUI.M3dView.kActiveColors) else: view.setDrawColor(5, OpenMayaUI.M3dView.kDormantColors) glFT.glBegin(OpenMayaRender.MGL_TRIANGLE_FAN) last = kArrow4Count - 1 for i in range(last): glFT.glVertex3f((arrow4[i][0] * multiplier), (arrow4[i][1] * multiplier + delta4), (arrow4[i][2] * multiplier)) glFT.glEnd() glFT.glPopAttrib() # Draw the outline of the locator glFT.glBegin(OpenMayaRender.MGL_LINES) if toggle: last = kCentreCount - 1 for i in range(last): glFT.glVertex3f(centre[i][0] * multiplier, centre[i][1] * multiplier, centre[i][2] * multiplier) glFT.glVertex3f(centre[i+1][0] * multiplier, centre[i+1][1] * multiplier, centre[i+1][2] * multiplier) if (state == 0): last = kState1Count - 1 for i in range(last): glFT.glVertex3f(state1[i][0] * multiplier, state1[i][1] * multiplier, state1[i][2] * multiplier) glFT.glVertex3f(state1[i+1][0] * multiplier, state1[i+1][1] * multiplier, state1[i+1][2] * multiplier) if (state == 1): last = kState2Count - 1 for i in range(last): glFT.glVertex3f(state2[i][0] * multiplier, state2[i][1] * multiplier, state2[i][2] * multiplier) glFT.glVertex3f(state2[i+1][0] * multiplier, state2[i+1][1] * multiplier, state2[i+1][2] * multiplier) if (state == 2): last = kState3Count - 1 for i in range(last): glFT.glVertex3f(state3[i][0] * multiplier, state3[i][1] * multiplier, state3[i][2] * multiplier) glFT.glVertex3f(state3[i+1][0] * multiplier, state3[i+1][1] * multiplier, state3[i+1][2] * multiplier) if (state == 3): last = kState4Count - 1 for i in range(last): glFT.glVertex3f(state4[i][0] * multiplier, state4[i][1] * multiplier, state4[i][2] * multiplier) glFT.glVertex3f(state4[i+1][0] * multiplier, state4[i+1][1] * multiplier, state4[i+1][2] * multiplier) last = kArrow1Count - 1 for i in range(last): glFT.glVertex3f((-arrow1[i][0] * multiplier * math.cos(angle1) - arrow1[i][2] * multiplier * math.sin(angle1)), (arrow1[i][1] * multiplier + delta1), (arrow1[i][2] * multiplier * math.cos(angle1) - arrow1[i][0] * multiplier * math.sin(angle1))) glFT.glVertex3f((-arrow1[i+1][0] * multiplier * math.cos(angle1) - arrow1[i+1][2] * multiplier * math.sin(angle1)), (arrow1[i+1][1] * multiplier + delta1), (arrow1[i+1][2] * multiplier * math.cos(angle1) - arrow1[i+1][0] * multiplier * math.sin(angle1))) last = kArrow2Count - 1 for i in range(last): glFT.glVertex3f((-arrow2[i][0] * multiplier * math.cos(angle2) - arrow2[i][2] * multiplier * math.sin(angle2)), (arrow2[i][1] * multiplier + delta2), (arrow2[i][2] * multiplier * math.cos(angle2) - arrow2[i][0] * multiplier * math.sin(angle2))) glFT.glVertex3f((-arrow2[i+1][0] * multiplier * math.cos(angle2) - arrow2[i+1][2] * multiplier * math.sin(angle2)), (arrow2[i+1][1] * multiplier + delta2), (arrow2[i+1][2] * multiplier * math.cos(angle2) - arrow2[i+1][0] * multiplier * math.sin(angle2))) last = kArrow3Count - 1 for i in range(last): glFT.glVertex3f((-arrow3[i][0] * multiplier * math.cos(angle3) - arrow3[i][2] * multiplier * math.sin(angle3)), (arrow3[i][1] * multiplier + delta3), (arrow3[i][2] * multiplier * math.cos(angle3) - arrow3[i][0] * multiplier * math.sin(angle3))) glFT.glVertex3f((-arrow3[i+1][0] * multiplier * math.cos(angle3) - arrow3[i+1][2] * multiplier * math.sin(angle3)), (arrow3[i+1][1] * multiplier + delta3), (arrow3[i+1][2] * multiplier * math.cos(angle3) - arrow3[i+1][0] * multiplier * math.sin(angle3))) last = kArrow4Count - 1 for i in range(last): glFT.glVertex3f((arrow4[i][0] * multiplier), (arrow4[i][1] * multiplier + delta4), (arrow4[i][2] * multiplier)) glFT.glVertex3f((arrow4[i+1][0] * multiplier), (arrow4[i+1][1] * multiplier + delta4), (arrow4[i+1][2] * multiplier)) last = kPerimeterCount - 1 for i in range(last): glFT.glVertex3f(perimeter[i][0] * multiplier, perimeter[i][1] * multiplier, perimeter[i][2] * multiplier) glFT.glVertex3f(perimeter[i+1][0] * multiplier, perimeter[i+1][1] * multiplier, perimeter[i+1][2] * multiplier) glFT.glEnd() view.endGL() def isBounded(self): return True def boundingBox(self): thisNode = self.thisMObject() plug = OpenMaya.MPlug(thisNode, swissArmyLocator.aSize) sizeVal = plug.asMDistance() multiplier = sizeVal.asCentimeters() corner1 = OpenMaya.MPoint(-1.1, 0.0, -1.1) corner2 = OpenMaya.MPoint(1.1, 0.0, 1.1) corner1 = corner1 * multiplier corner2 = corner2 * multiplier return OpenMaya.MBoundingBox(corner1, corner2) ######################################################################## ######################################################################## def locatorCreator(): return OpenMayaMPx.asMPxPtr(swissArmyLocator()) def locatorInit(): unitFn = OpenMaya.MFnUnitAttribute() numericFn = OpenMaya.MFnNumericAttribute() # aSize swissArmyLocator.aSize = unitFn.create("size", "sz", OpenMaya.MFnUnitAttribute.kDistance, 10.0) unitFn.setStorable(True) unitFn.setWritable(True) # aPoint swissArmyLocator.aPointX = numericFn.create("pointX", "ptx", OpenMaya.MFnNumericData.kDouble, 0.0) swissArmyLocator.aPointY = numericFn.create("pointY", "pty", OpenMaya.MFnNumericData.kDouble, 0.0) swissArmyLocator.aPointZ = numericFn.create("pointZ", "ptz", OpenMaya.MFnNumericData.kDouble, 0.0) swissArmyLocator.aPoint = numericFn.create("point", "pt", swissArmyLocator.aPointX, swissArmyLocator.aPointY, swissArmyLocator.aPointZ) # aArrow1Angle swissArmyLocator.aArrow1Angle = unitFn.create("arrow1Angle", "a1a", OpenMaya.MFnUnitAttribute.kAngle, 0.0) # aArrow2Direction swissArmyLocator.aArrow2DirectionX = numericFn.create("arrow2DirectionX", "a2x", OpenMaya.MFnNumericData.kDouble, 1.0) swissArmyLocator.aArrow2DirectionY = numericFn.create("arrow2DirectionY", "a2y", OpenMaya.MFnNumericData.kDouble, 0.0) swissArmyLocator.aArrow2DirectionZ = numericFn.create("arrow2DirectionZ", "a2z", OpenMaya.MFnNumericData.kDouble, 0.0) swissArmyLocator.aArrow2Direction = numericFn.create("arrow2Direction", "dir", swissArmyLocator.aArrow2DirectionX, swissArmyLocator.aArrow2DirectionY, swissArmyLocator.aArrow2DirectionZ) # aArrow3Angle swissArmyLocator.aArrow3Angle = unitFn.create("arrow3Angle", "a3a", OpenMaya.MFnUnitAttribute.kAngle, 0.0) # aArrow4Distance swissArmyLocator.aArrow4Distance = unitFn.create("arrow2Distance", "dis", OpenMaya.MFnUnitAttribute.kDistance, 0.0) # aState swissArmyLocator.aState = numericFn.create("state", "s", OpenMaya.MFnNumericData.kLong, 0) # aToggle swissArmyLocator.aToggle = numericFn.create("toggle", "t", OpenMaya.MFnNumericData.kBoolean, False) swissArmyLocator.addAttribute(swissArmyLocator.aPoint) swissArmyLocator.addAttribute(swissArmyLocator.aArrow1Angle) swissArmyLocator.addAttribute(swissArmyLocator.aArrow2Direction) swissArmyLocator.addAttribute(swissArmyLocator.aArrow3Angle) swissArmyLocator.addAttribute(swissArmyLocator.aArrow4Distance) swissArmyLocator.addAttribute(swissArmyLocator.aState) swissArmyLocator.addAttribute(swissArmyLocator.aToggle) swissArmyLocator.addAttribute(swissArmyLocator.aSize) OpenMayaMPx.MPxManipContainer.addToManipConnectTable(kSwissArmyLocatorId) def locatorManipCreator(): return OpenMayaMPx.asMPxPtr(swissArmyLocatorManip()) def locatorManipInit(): OpenMayaMPx.MPxManipContainer.initialize() # initialize the script plug-in def initializePlugin(mobject): mplugin = OpenMayaMPx.MFnPlugin(mobject, "Autodesk", "1.0", "Any") try: mplugin.registerNode(kSwissArmyLocatorName, kSwissArmyLocatorId, locatorCreator, locatorInit, OpenMayaMPx.MPxNode.kLocatorNode) except: print "Failed to register context command: %s" % kSwissArmyLocatorName raise try: mplugin.registerNode(kSwissArmyLocatorManipName, kSwissArmyLocatorManipId, locatorManipCreator, locatorManipInit, OpenMayaMPx.MPxNode.kManipContainer) except: print "Failed to register node: %s" % kSwissArmyLocatorManipName raise # uninitialize the script plug-in def uninitializePlugin(mobject): mplugin = OpenMayaMPx.MFnPlugin(mobject) try: mplugin.deregisterNode(kSwissArmyLocatorId) except: print "Failed to deregister context command: %s" % kSwissArmyLocatorName raise try: mplugin.deregisterNode(kSwissArmyLocatorManipId) except: print "Failed to deregister node: %s" % kSwissArmyLocatorManipName raise
34.194226
187
0.691971
3e83a9952365e9e3d2e29c25c0ebf78b14e2c8f7
3,004
py
Python
examples/gym_test.py
tawnkramer/donkey_gym
4ea670491eaef66178a1ffe3d672c7d4344c51bf
[ "MIT" ]
31
2018-10-20T22:00:53.000Z
2019-08-07T12:24:28.000Z
examples/gym_test.py
tawnkramer/donkey_gym
4ea670491eaef66178a1ffe3d672c7d4344c51bf
[ "MIT" ]
4
2018-12-18T23:09:51.000Z
2019-08-08T20:40:05.000Z
examples/gym_test.py
tawnkramer/donkey_gym
4ea670491eaef66178a1ffe3d672c7d4344c51bf
[ "MIT" ]
17
2018-11-04T20:36:02.000Z
2019-08-07T15:25:00.000Z
""" file: gym_test.py author: Tawn Kramer date: 20 October 2018 notes: This will do a basic test of gym_donkeycar environment by submitting random input for 3 episodes. """ import argparse import gym import gym_donkeycar # noqa: F401 NUM_EPISODES = 3 MAX_TIME_STEPS = 1000 def test_track(env_name, conf): env = gym.make(env_name, conf=conf) # make sure you have no track loaded exit_scene(env) simulate(env) # exit the scene and close the env exit_scene(env) env.close() def select_action(env): return env.action_space.sample() # taking random action from the action_space def simulate(env): for _ in range(NUM_EPISODES): # Reset the environment obv = env.reset() for _ in range(MAX_TIME_STEPS): # Select an action action = select_action(env) # execute the action obv, reward, done, info = env.step(action) if done: print("done w episode.", info) break def exit_scene(env): env.viewer.exit_scene() if __name__ == "__main__": # Initialize the donkey environment # where env_name one of: env_list = [ "donkey-warehouse-v0", "donkey-generated-roads-v0", "donkey-avc-sparkfun-v0", "donkey-generated-track-v0", "donkey-roboracingleague-track-v0", "donkey-waveshare-v0", "donkey-minimonaco-track-v0", "donkey-warren-track-v0", "donkey-thunderhill-track-v0", "donkey-circuit-launch-track-v0", ] parser = argparse.ArgumentParser(description="gym_test") parser.add_argument( "--sim", type=str, default="sim_path", help="path to unity simulator. maybe be left at default if you would like to start the sim on your own.", ) parser.add_argument("--host", type=str, default="127.0.0.1", help="host to use for tcp") parser.add_argument("--port", type=int, default=9091, help="port to use for tcp") parser.add_argument( "--env_name", type=str, default="all", help="name of donkey sim environment", choices=env_list + ["all"] ) args = parser.parse_args() conf = { "exe_path": args.sim, "host": args.host, "port": args.port, "body_style": "donkey", "body_rgb": (128, 128, 128), "car_name": "me", "font_size": 100, "start_delay": 1, "max_cte": 5, "lidar_config": { "deg_per_sweep_inc": 2.0, "deg_ang_down": 0.0, "deg_ang_delta": -1.0, "num_sweeps_levels": 1, "max_range": 50.0, "noise": 0.4, "offset_x": 0.0, "offset_y": 0.5, "offset_z": 0.5, "rot_x": 0.0, }, } if args.env_name == "all": for env_name in env_list: test_track(env_name, conf) else: test_track(args.env_name, conf) print("test finished")
24.422764
113
0.579228
8fed8a29a6f33975bada7e22c9c246ed7976923f
4,292
py
Python
bquadform_utils.py
coinstudent2048/BQuadForm
d09b55b4f4d5004eaac41c5b19219c89f7ca441c
[ "MIT" ]
null
null
null
bquadform_utils.py
coinstudent2048/BQuadForm
d09b55b4f4d5004eaac41c5b19219c89f7ca441c
[ "MIT" ]
null
null
null
bquadform_utils.py
coinstudent2048/BQuadForm
d09b55b4f4d5004eaac41c5b19219c89f7ca441c
[ "MIT" ]
null
null
null
# Miscellaneous utilities for bquadform.py # # Use this code only for prototyping # integer square root (floor) # source: https://stackoverflow.com/a/53983683 def isqrt(n): if not isinstance(n, int): raise TypeError("input is not integer") if n > 0: x = 1 << (n.bit_length() + 1 >> 1) while True: y = (x + n // x) >> 1 if y >= x: return x x = y elif n == 0: return 0 else: raise ValueError("input is negative") # # integer square root (ceiling) # def isqrt_ceil(n): # if n == 0: # return 0 # else: # return 1 + isqrt(n - 1) # Euclidean division: always ensures that # 0 <= r < |b| regardless of sign of divisor def divmod_euclid(a, b): q, r = divmod(a, b) # divmod uses floor division if r < 0: q += 1 r -= b return (q, r) # extended Euclidean algorithm (assumes a >= 0 & b >= 0) # reference: Algorithm 1.3.6 (p.16) of Cohen - # "A Course in Computational Algebraic Number theory" (GTM 138) def ext_euclid(a, b, u = 1, v1 = 0): # [Initialize] d = a # v to be computed in ext_euclid_front() if b == 0: return (u, d) v3 = b # [Finished?] while v3 != 0: # [Euclidean step] q, t3 = divmod(d, v3) t1 = u - q * v1 u = v1 d = v3 v1 = t1 v3 = t3 # [Finished?] cont. moved to ext_euclid_front() return (u, d) # extended partial Euclidean algorithm # reference: Sub-algorithm PARTEUCL(a, b) (p. 248) of Cohen - # "A Course in Computational Algebraic Number theory" (GTM 138) def part_euclid(d, v3, v, v2, L): # [Initialize] z = 0 # [Finished?] while abs(v3) > L: # [Euclidean step] q, t3 = divmod_euclid(d, v3) t2 = v - q * v2 v = v2 d = v3 v2 = t2 v3 = t3 z += 1 # [Finished?] cont. moved to main functions return (v, d, v2, v3, z) # most significant digit of a, and the value of b in same place # in base M (assumes a >= b, a >= 0, and b >= 0) def same_msd(a, b, M): while a >= M: a //= M b //= M return a, b # Lehmer extended (assumes a >= b, a >= 0, and b >= 0) # reference: Algorithm 1.3.7 (p. 17) of Cohen - # "A Course in Computational Algebraic Number theory" (GTM 138) # my comment: for some reason, this is slower?! def lehmer(a, b, M): # [Initialize] u = 1 v1 = 0 # [Finished?] while abs(b) >= M: a_hat, b_hat = same_msd(a, b, M) A = 1 B = 0 C = 0 D = 1 # [Test quotient] while not (b_hat + C == 0 or b_hat + D == 0): q = (a_hat + A) // (b_hat + C) if q != ((a_hat + B) // (b_hat + D)): break # [Euclidean step] T = A - q * C A = C C = T T = B - q * D B = D D = T T = a_hat - q * b_hat a_hat = b_hat b_hat = T # [Multi-precision step] if B == 0: q, t = divmod(a, b) a = b b = t t = u - q * v1 u = v1 v1 = t else: t = A * a + B * b r = C * a + D * b a = t b = r t = A * u + B * v1 r = C * u + D * v1 u = t v1 = r return a, b, u, v1 # "frontend" for extended Euclidean algorithm def ext_euclid_front(a, b, use_lehmer = True, M = 1 << 32): # init: the algorithms assume that a >= 0 & b >= 0 orig_a = a orig_b = b if orig_a < 0: a = -a if orig_b < 0: b = -b # execute algorithms if use_lehmer and a < b: at = a bt = b b, a, u, v1 = lehmer(b, a, M) u, d = ext_euclid(b, a, u, v1) v = u u = (d - bt * v) // at elif use_lehmer: at = a bt = b a, b, u, v1 = lehmer(a, b, M) u, d = ext_euclid(a, b, u, v1) v = (d - at * u) // bt else: u, d = ext_euclid(a, b) v = (d - a * u) // b # final: check sign of orig a & b if orig_a < 0: a = -a u = -u if b < 0: b = -b v = -v return (u, v, d)
25.39645
63
0.45247
53f8d098ce583370597b4e7ca96c05dc04ffcf03
117
py
Python
tests/unit/core/test_urls.py
etienne86/oc_p13_team_spirit
fd3d45618d349ecd0a03e63c4a7e9c1044eeffaa
[ "MIT" ]
null
null
null
tests/unit/core/test_urls.py
etienne86/oc_p13_team_spirit
fd3d45618d349ecd0a03e63c4a7e9c1044eeffaa
[ "MIT" ]
null
null
null
tests/unit/core/test_urls.py
etienne86/oc_p13_team_spirit
fd3d45618d349ecd0a03e63c4a7e9c1044eeffaa
[ "MIT" ]
null
null
null
""" This module contains the unit tests related to the urls in app ``core``. """ # from django.test import TestCase
16.714286
46
0.709402
ad14326992bd79ed996bbca8c3a7ca903cdaffc8
27,594
py
Python
databroker/headersource/core.py
danielballan/databroker
6eeafd63d1ecf691a06acd8d15a2ea27d381b8db
[ "BSD-3-Clause" ]
null
null
null
databroker/headersource/core.py
danielballan/databroker
6eeafd63d1ecf691a06acd8d15a2ea27d381b8db
[ "BSD-3-Clause" ]
8
2016-11-08T18:19:15.000Z
2017-04-06T13:13:55.000Z
databroker/headersource/core.py
stuartcampbell/databroker
b8cefd1a982a697bb679d8a2c1743751a42007d8
[ "BSD-3-Clause" ]
null
null
null
from __future__ import (absolute_import, division, print_function, unicode_literals) import copy import six import warnings import logging import numpy as np from ..utils import (apply_to_dict_recursively, sanitize_np, format_time as _format_time) logger = logging.getLogger(__name__) # singletons defined as they are defined in pymongo ASCENDING = 1 DESCENDING = -1 def _format_regex(d): for k, v in six.iteritems(d): if k == '$regex': # format regex for monoquery d[k] = '/{0}/'.format(v) else: # recurse if v is a dict if hasattr(v, 'items'): _format_regex(v) class NoRunStop(Exception): pass class NoRunStart(Exception): pass class NoEventDescriptors(Exception): pass def doc_or_uid_to_uid(doc_or_uid): """Given Document or uid return the uid Parameters ---------- doc_or_uid : dict or str If str, then assume uid and pass through, if not, return the 'uid' field Returns ------- uid : str A string version of the uid of the given document """ if not isinstance(doc_or_uid, six.string_types): doc_or_uid = doc_or_uid['uid'] return doc_or_uid def _cache_run_start(run_start, run_start_cache): """Cache a RunStart document Parameters ---------- run_start : dict raw pymongo dictionary. This is expected to have an entry `_id` with the ObjectId used by mongo. run_start_cache : dict Dict[str, Document] Returns ------- run_start : dict Document instance for this RunStart document. The ObjectId has been stripped. """ run_start = dict(run_start) # TODO actually do this de-reference for documents that have it # There is no known actually usage of this document and it is not being # created going forward run_start.pop('beamline_config_id', None) # get the mongo ObjectID oid = run_start.pop('_id', None) run_start_cache[run_start['uid']] = run_start run_start_cache[oid] = run_start return run_start def _cache_run_stop(run_stop, run_stop_cache): """Cache a RunStop document Parameters ---------- run_stop : dict raw pymongo dictionary. This is expected to have an entry `_id` with the ObjectId used by mongo. run_stop_cache : dict Dict[str, Document] Returns ------- run_stop : dict Document instance for this RunStop document. The ObjectId (if it exists) has been stripped. """ run_stop = dict(run_stop) # pop off the ObjectId of this document oid = run_stop.pop('_id', None) try: run_stop['run_start'] except KeyError: run_stop['run_start'] = run_stop.pop('run_start_id') run_stop_cache[run_stop['uid']] = run_stop # this is if oid is not None: run_stop_cache[oid] = run_stop return run_stop def _cache_descriptor(descriptor, descritor_cache): """De-reference and cache a RunStop document The de-referenced Document is cached against the ObjectId and the uid -> ObjectID mapping is stored. Parameters ---------- descriptor : dict raw pymongo dictionary. This is expected to have an entry `_id` with the ObjectId used by mongo. Returns ------- descriptor : dict Document instance for this EventDescriptor document. The ObjectId has been stripped. """ descriptor = dict(descriptor) # pop the ObjectID oid = descriptor.pop('_id', None) try: descriptor['run_start'] except KeyError: descriptor['run_start'] = descriptor.pop('run_start_id') descritor_cache[descriptor['uid']] = descriptor if oid is not None: descritor_cache[oid] = descriptor return descriptor def run_start_given_uid(uid, run_start_col, run_start_cache): """Given a uid, return the RunStart document Parameters ---------- uid : str The uid run_start_col : pymongo.Collection The collection to search for documents run_start_cache : MutableMapping Mutable mapping to serve as a local cache Returns ------- run_start : dict The RunStart document. """ try: return run_start_cache[uid] except KeyError: pass run_start = run_start_col.find_one({'uid': uid}) if run_start is None: raise NoRunStart("No runstart with uid {!r}".format(uid)) return _cache_run_start(run_start, run_start_cache) def run_stop_given_uid(uid, run_stop_col, run_stop_cache): """Given a uid, return the RunStop document Parameters ---------- uid : str The uid run_stop_col : pymongo.Collection The collection to search for documents run_stop_cache : MutableMapping Mutable mapping to serve as a local cache Returns ------- run_stop : dict The RunStop document fully de-referenced """ try: return run_stop_cache[uid] except KeyError: pass # get the raw run_stop run_stop = run_stop_col.find_one({'uid': uid}) return _cache_run_stop(run_stop, run_stop_cache) def descriptor_given_uid(uid, descriptor_col, descriptor_cache): """Given a uid, return the EventDescriptor document Parameters ---------- uid : str The uid descriptor_col : pymongo.Collection The collection to search for documents descriptor_cache : MutableMapping Mutable mapping to serve as a local cache Returns ------- descriptor : dict The EventDescriptor document fully de-referenced """ try: return descriptor_cache[uid] except KeyError: pass descriptor = descriptor_col.find_one({'uid': uid}) return _cache_descriptor(descriptor, descriptor_cache) def stop_by_start(run_start, run_stop_col, run_stop_cache): """Given a RunStart return it's RunStop Raises if no RunStop exists. Parameters ---------- run_start : dict or str The RunStart to get the RunStop for. Can be either a Document/dict with a 'uid' key or a uid string Returns ------- run_stop : dict The RunStop document Raises ------ NoRunStop If no RunStop document exists for the given RunStart """ run_start_uid = doc_or_uid_to_uid(run_start) run_stop = run_stop_col.find_one({'run_start': run_start_uid}) if run_stop is None: raise NoRunStop("No run stop exists for {!r}".format(run_start)) return _cache_run_stop(run_stop, run_stop_cache) def descriptors_by_start(run_start, descriptor_col, descriptor_cache): """Given a RunStart return a list of it's descriptors Raises if no EventDescriptors exist. Parameters ---------- run_start : dict or str The RunStart to get the EventDescriptors for. Can be either a Document/dict with a 'uid' key or a uid string descriptor_col A collection we can search against descriptor_cache : dict Dict[str, Document] Returns ------- event_descriptors : list A list of EventDescriptor documents Raises ------ NoEventDescriptors If no EventDescriptor documents exist for the given RunStart """ # normalize the input and get the run_start oid run_start_uid = doc_or_uid_to_uid(run_start) # query the database for any event descriptors which # refer to the given run_start descriptors = descriptor_col.find({'run_start': run_start_uid}) # loop over the found documents, cache, and dereference rets = [_cache_descriptor(descriptor, descriptor_cache) for descriptor in descriptors] # if nothing found, raise if not rets: raise NoEventDescriptors("No EventDescriptors exists " "for {!r}".format(run_start)) # return the list of event descriptors return rets def get_events_generator(descriptor, event_col, descriptor_col, descriptor_cache, run_start_col, run_start_cache, convert_arrays=True): """A generator which yields all events from the event stream Parameters ---------- descriptor : dict or str The EventDescriptor to get the Events for. Can be either a Document/dict with a 'uid' key or a uid string event_col Collection we can search for events given descriptor in. descriptor_col Collection we can search for descriptors given a uid descriptor_cache : dict Dict[str, Document] convert_arrays: boolean, optional convert 'array' type to numpy.ndarray; True by default Yields ------ event : dict All events for the given EventDescriptor from oldest to newest """ descriptor_uid = doc_or_uid_to_uid(descriptor) descriptor = descriptor_given_uid(descriptor_uid, descriptor_col, descriptor_cache) col = event_col ev_cur = col.find({'descriptor': descriptor_uid}, sort=[('time', ASCENDING)]) data_keys = descriptor['data_keys'] external_keys = [k for k in data_keys if 'external' in data_keys[k]] for ev in ev_cur: # ditch the ObjectID ev.pop('_id', None) ev['descriptor'] = descriptor_uid for k, v in ev['data'].items(): _dk = data_keys[k] # convert any arrays stored directly in mds into ndarray if convert_arrays: if _dk['dtype'] == 'array' and not _dk.get('external', False): ev['data'][k] = np.asarray(ev['data'][k]) # note which keys refer to dereferences (external) data ev['filled'] = {k: False for k in external_keys} yield ev def _transpose(in_data, keys, field): """Turn a list of dicts into dict of lists Parameters ---------- in_data : list A list of dicts which contain at least one dict. All of the inner dicts must have at least the keys in `keys` keys : list The list of keys to extract field : str The field in the outer dict to use Returns ------- transpose : dict The transpose of the data """ out = {k: [None] * len(in_data) for k in keys} for j, ev in enumerate(in_data): dd = ev[field] for k in keys: out[k][j] = dd[k] return out def get_events_table(descriptor, event_col, descriptor_col, descriptor_cache, run_start_col, run_start_cache): """All event data as tables Parameters ---------- descriptor : dict or str The EventDescriptor to get the Events for. Can be either a Document/dict with a 'uid' key or a uid string event_col Collection we can search for events given descriptor in. descriptor_col Collection we can search for descriptors given a uid descriptor_cache : dict Dict[str, Document] convert_arrays: boolean, optional convert 'array' type to numpy.ndarray; True by default Returns ------- descriptor : dict EventDescriptor document data_table : dict dict of lists of the transposed data seq_nums : list The sequence number of each event. times : list The time of each event. uids : list The uid of each event. timestamps_table : dict The timestamps of each of the measurements as dict of lists. Same keys as `data_table`. """ desc_uid = doc_or_uid_to_uid(descriptor) descriptor = descriptor_given_uid(desc_uid, descriptor_col, descriptor_cache) # this will get more complicated once transpose caching layer is in place all_events = list(get_events_generator(desc_uid, event_col, descriptor_col, descriptor_cache, run_start_col, run_start_cache)) # get event sequence numbers seq_nums = [ev['seq_num'] for ev in all_events] # get event times times = [ev['time'] for ev in all_events] # get uids uids = [ev['uid'] for ev in all_events] keys = list(descriptor['data_keys']) # get data values data_table = _transpose(all_events, keys, 'data') # get timestamps timestamps_table = _transpose(all_events, keys, 'timestamps') # return the whole lot return descriptor, data_table, seq_nums, times, uids, timestamps_table # database INSERTION ################################################### def insert_run_start(run_start_col, run_start_cache, time, uid, **kwargs): """Insert a RunStart document into the database. Parameters ---------- run_start_col Collection to insert the start document into run_start_cache : dict Dict[str, Document] time : float The date/time as found at the client side when the run is started uid : str Globally unique id string provided to metadatastore **kwargs additional optional or custom fields Returns ------- run_start : str uid of the inserted document. Use `run_start_given_uid` to get the full document. """ if 'custom' in kwargs: warnings.warn("custom kwarg is deprecated") custom = kwargs.pop('custom') if any(k in kwargs for k in custom): raise TypeError("duplicate keys in kwargs and custom") kwargs.update(custom) col = run_start_col run_start = dict(time=time, uid=uid, **copy.deepcopy(kwargs)) apply_to_dict_recursively(run_start, sanitize_np) col.insert_one(run_start) _cache_run_start(run_start, run_start_cache) logger.debug('Inserted RunStart with uid %s', run_start['uid']) return uid def insert_run_stop(run_stop_col, run_stop_cache, run_start, time, uid, exit_status, reason=None, **kwargs): """Insert RunStop document into database Parameters ---------- run_stop_col Collection to insert the start document into run_stop_cache : dict Dict[str, Document] run_start : dict or str The RunStart to insert the RunStop for. Can be either a Document/dict with a 'uid' key or a uid string time : float The date/time as found at the client side uid : str Globally unique id string provided to metadatastore exit_status : {'success', 'abort', 'fail'}, optional indicating reason run stopped, 'success' by default reason : str, optional more detailed exit status (stack trace, user remark, etc.) Returns ------- run_stop : str uid of inserted Document Raises ------ RuntimeError Only one RunStop per RunStart, raises if you try to insert a second """ if 'custom' in kwargs: warnings.warn("custom kwarg is deprecated") custom = kwargs.pop('custom') if any(k in kwargs for k in custom): raise TypeError("duplicate keys in kwargs and custom") kwargs.update(custom) run_start_uid = doc_or_uid_to_uid(run_start) try: stop_by_start(run_start_uid, run_stop_col, run_stop_cache) except NoRunStop: pass else: raise RuntimeError("Runstop already exits for {!r}".format(run_start)) col = run_stop_col run_stop = dict(run_start=run_start_uid, time=time, uid=uid, exit_status=exit_status, **copy.deepcopy(kwargs)) apply_to_dict_recursively(run_stop, sanitize_np) if reason is not None and reason != '': run_stop['reason'] = reason col.insert_one(run_stop) _cache_run_stop(run_stop, run_stop_cache) logger.debug("Inserted RunStop with uid %s referencing RunStart " " with uid %s", run_stop['uid'], run_start_uid) return uid def insert_descriptor(descriptor_col, descriptor_cache, run_start, data_keys, time, uid, **kwargs): """Insert an EventDescriptor document in to database. Parameters ---------- descriptor_col Collection to insert the start document into descriptor_cache : dict Dict[str, Document] run_start : dict or str The RunStart to insert a Descriptor for. Can be either a Document/dict with a 'uid' key or a uid string data_keys : dict Provides information about keys of the data dictionary in an event will contain. No key name may include '.'. See `DataKey` odm template for schema. time : float The date/time as found at the client side when an event descriptor is created. uid : str Globally unique id string provided to metadatastore Returns ------- descriptor : str uid of inserted Document """ if 'custom' in kwargs: warnings.warn("custom kwarg is deprecated") custom = kwargs.pop('custom') if any(k in kwargs for k in custom): raise TypeError("duplicate keys in kwargs and custom") kwargs.update(custom) for k in data_keys: if '.' in k: raise ValueError("Key names can not contain '.' (period).") data_keys = {k: dict(v) for k, v in data_keys.items()} run_start_uid = doc_or_uid_to_uid(run_start) col = descriptor_col descriptor = dict(run_start=run_start_uid, data_keys=data_keys, time=time, uid=uid, **copy.deepcopy(kwargs)) apply_to_dict_recursively(descriptor, sanitize_np) # TODO validation col.insert_one(descriptor) descriptor = _cache_descriptor(descriptor, descriptor_cache) logger.debug("Inserted EventDescriptor with uid %s referencing " "RunStart with uid %s", descriptor['uid'], run_start_uid) return uid insert_event_descriptor = insert_descriptor def insert_event(event_col, descriptor, time, seq_num, data, timestamps, uid, validate, filled): """Create an event in metadatastore database backend .. warning This does not validate that the keys in `data` and `timestamps` match the data keys in `descriptor`. Parameters ---------- event_col Collection to insert the Event into. descriptor : dict or str The Descriptor to insert event for. Can be either a Document/dict with a 'uid' key or a uid string time : float The date/time as found at the client side when an event is created. seq_num : int Unique sequence number for the event. Provides order of an event in the group of events data : dict Dictionary of measured values (or external references) timestamps : dict Dictionary of measured timestamps for each values, having the same keys as `data` above uid : str Globally unique id string provided to metadatastore validate : boolean Check that data and timestamps have the same keys. filled : dict Dictionary of `False` or datum_ids. Keys are a subset of the keys in `data` and `timestamps` above. """ if validate: raise NotImplementedError("insert event validation not written yet") # convert data to storage format # make sure we really have a uid descriptor_uid = doc_or_uid_to_uid(descriptor) col = event_col data = dict(data) apply_to_dict_recursively(data, sanitize_np) timestamps = dict(timestamps) apply_to_dict_recursively(timestamps, sanitize_np) # Replace any filled data with the datum_id stashed in 'filled'. for k, v in six.iteritems(filled): if v: data[k] = v event = dict(descriptor=descriptor_uid, uid=uid, data=data, timestamps=timestamps, time=time, seq_num=int(seq_num)) col.insert_one(event) logger.debug("Inserted Event with uid %s referencing " "EventDescriptor with uid %s", event['uid'], descriptor_uid) return uid BAD_KEYS_FMT = """Event documents are malformed, the keys on 'data' and 'timestamps do not match:\n data: {}\ntimestamps:{}""" def bulk_insert_events(event_col, descriptor, events, validate): """Bulk insert many events Parameters ---------- event_col The collection to insert the Events into descriptor : dict or str The Descriptor to insert event for. Can be either a Document/dict with a 'uid' key or a uid string events : iterable iterable of dicts matching the bs.Event schema validate : bool If it should be checked that each pair of data/timestamps dicts has identical keys Returns ------- ret : dict dictionary of details about the insertion """ descriptor_uid = str(doc_or_uid_to_uid(descriptor)) def event_factory(): for ev in events: # check keys, this could be expensive if validate: if ev['data'].keys() != ev['timestamps'].keys(): raise ValueError( BAD_KEYS_FMT.format(ev['data'].keys(), ev['timestamps'].keys())) data = dict(ev['data']) # Replace any filled data with the datum_id stashed in 'filled'. for k, v in six.iteritems(ev.get('filled', {})): if v: data[k] = v apply_to_dict_recursively(data, sanitize_np) ts = dict(ev['timestamps']) apply_to_dict_recursively(ts, sanitize_np) # Replace any filled data with the datum_id stashed in 'filled'. for k, v in six.iteritems(ev.get('filled', {})): if v: data[k] = v ev_out = dict(descriptor=descriptor_uid, uid=str(ev['uid']), data=data, timestamps=ts, time=ev['time'], seq_num=int(ev['seq_num'])) yield ev_out return event_col.insert(event_factory()) # DATABASE RETRIEVAL ########################################################## def find_run_starts(run_start_col, run_start_cache, tz, **kwargs): """Given search criteria, locate RunStart Documents. Parameters ---------- start_time : time-like, optional time-like representation of the earliest time that a RunStart was created. Valid options are: - timestamps --> time.time() - '2015' - '2015-01' - '2015-01-30' - '2015-03-30 03:00:00' - datetime.datetime.now() stop_time : time-like, optional timestamp of the latest time that a RunStart was created. See docs for `start_time` for examples. beamline_id : str, optional String identifier for a specific beamline project : str, optional Project name owner : str, optional The username of the logged-in user when the scan was performed scan_id : int, optional Integer scan identifier Returns ------- rs_objects : iterable of dicts Examples -------- >>> find_run_starts(scan_id=123) >>> find_run_starts(owner='arkilic') >>> find_run_starts(start_time=1421176750.514707, stop_time=time.time()}) >>> find_run_starts(start_time=1421176750.514707, stop_time=time.time()) >>> find_run_starts(owner='arkilic', start_time=1421176750.514707, ... stop_time=time.time()) """ # now try rest of formatting _format_time(kwargs, tz) _format_regex(kwargs) rs_objects = run_start_col.find(kwargs, sort=[('time', DESCENDING)]) for rs in rs_objects: yield _cache_run_start(rs, run_start_cache) def find_run_stops(stop_col, stop_cache, tz, run_start=None, **kwargs): """Given search criteria, locate RunStop Documents. Parameters ---------- run_start : dict or str, optional The RunStart document or uid to get the corresponding run end for start_time : time-like, optional time-like representation of the earliest time that a RunStop was created. Valid options are: - timestamps --> time.time() - '2015' - '2015-01' - '2015-01-30' - '2015-03-30 03:00:00' - datetime.datetime.now() stop_time : time-like, optional timestamp of the latest time that a RunStop was created. See docs for `start_time` for examples. exit_status : {'success', 'fail', 'abort'}, optional provides information regarding the run success. reason : str, optional Long-form description of why the run was terminated. uid : str, optional Globally unique id string provided to metadatastore Yields ------ run_stop : dict The requested RunStop documents """ # if trying to find by run_start, there can be only one # normalize the input and get the run_start oid if run_start: run_start_uid = doc_or_uid_to_uid(run_start) kwargs['run_start'] = run_start_uid _format_time(kwargs, tz) col = stop_col run_stop = col.find(kwargs, sort=[('time', ASCENDING)]) for rs in run_stop: yield _cache_run_stop(rs, stop_cache) def find_descriptors(descriptor_col, descriptor_cache, tz, run_start=None, **kwargs): """Given search criteria, locate EventDescriptor Documents. Parameters ---------- run_start : dict or str, optional The RunStart document or uid to get the corresponding run end for start_time : time-like, optional time-like representation of the earliest time that an EventDescriptor was created. Valid options are: - timestamps --> time.time() - '2015' - '2015-01' - '2015-01-30' - '2015-03-30 03:00:00' - datetime.datetime.now() stop_time : time-like, optional timestamp of the latest time that an EventDescriptor was created. See docs for `start_time` for examples. uid : str, optional Globally unique id string provided to metadatastore Yields ------- descriptor : dict The requested EventDescriptor """ if run_start: run_start_uid = doc_or_uid_to_uid(run_start) kwargs['run_start'] = run_start_uid _format_time(kwargs, tz) col = descriptor_col event_descriptor_objects = col.find(kwargs, sort=[('time', ASCENDING)]) for event_descriptor in event_descriptor_objects: yield _cache_descriptor(event_descriptor, descriptor_cache) def find_last(start_col, start_cache, num): """Locate the last `num` RunStart Documents Parameters ---------- num : integer, optional number of RunStart documents to return, default 1 Yields ------ run_start : dict The requested RunStart documents """ col = start_col gen = col.find({}, sort=[('time', DESCENDING)]) for _ in range(num): yield _cache_run_start(next(gen), start_cache)
29.41791
79
0.623179
3690a4ffe0d0e575e1a53c2715a7137520191697
25,475
py
Python
venv/lib/python3.7/site-packages/cvxpy/tests/test_dgp2dcp.py
JWThacker/Airbnb_project
f804495512f0f924d3048f788ed33ab230b4e02a
[ "MIT" ]
3,285
2015-01-03T04:02:29.000Z
2021-04-19T14:51:29.000Z
venv/lib/python3.7/site-packages/cvxpy/tests/test_dgp2dcp.py
JWThacker/Airbnb_project
f804495512f0f924d3048f788ed33ab230b4e02a
[ "MIT" ]
1,138
2015-01-01T19:40:14.000Z
2021-04-18T23:37:31.000Z
cvxpy/tests/test_dgp2dcp.py
phschiele/cvxpy
a43aed7447b87f6d0fbc6f71ae5c7b84183f3369
[ "ECL-2.0", "Apache-2.0" ]
765
2015-01-02T19:29:39.000Z
2021-04-20T00:50:43.000Z
import numpy as np import cvxpy import cvxpy.error as error import cvxpy.reductions.dgp2dcp.atom_canonicalizers as dgp_atom_canon from cvxpy.atoms.affine.add_expr import AddExpression from cvxpy.reductions import solution from cvxpy.settings import SOLVER_ERROR from cvxpy.tests.base_test import BaseTest SOLVER = cvxpy.ECOS class TestDgp2Dcp(BaseTest): def test_unconstrained_monomial(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) prod = x * y dgp = cvxpy.Problem(cvxpy.Minimize(prod), []) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() self.assertIsInstance(dcp.objective.expr, AddExpression) self.assertEqual(len(dcp.objective.expr.args), 2) self.assertIsInstance(dcp.objective.expr.args[0], cvxpy.Variable) self.assertIsInstance(dcp.objective.expr.args[1], cvxpy.Variable) opt = dcp.solve(SOLVER) # dcp is solved in log-space, so it is unbounded below # (since the OPT for dgp is 0 + epsilon). self.assertEqual(opt, -float("inf")) self.assertEqual(dcp.status, "unbounded") dgp.unpack(dgp2dcp.retrieve(dcp.solution)) self.assertAlmostEqual(dgp.value, 0.0) self.assertEqual(dgp.status, "unbounded") dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, 0.0) self.assertEqual(dgp.status, "unbounded") dgp = cvxpy.Problem(cvxpy.Maximize(prod), []) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() self.assertEqual(dcp.solve(SOLVER), float("inf")) self.assertEqual(dcp.status, "unbounded") dgp.unpack(dgp2dcp.retrieve(dcp.solution)) self.assertEqual(dgp.value, float("inf")) self.assertEqual(dgp.status, "unbounded") dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, float("inf")) self.assertEqual(dgp.status, "unbounded") def test_basic_equality_constraint(self) -> None: x = cvxpy.Variable(pos=True) dgp = cvxpy.Problem(cvxpy.Minimize(x), [x == 1.0]) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() self.assertIsInstance(dcp.objective.expr, cvxpy.Variable) opt = dcp.solve(SOLVER) self.assertAlmostEqual(opt, 0.0) self.assertAlmostEqual(dcp.variables()[0].value, 0.0) dgp.unpack(dgp2dcp.retrieve(dcp.solution)) self.assertAlmostEqual(dgp.value, 1.0) self.assertAlmostEqual(x.value, 1.0) dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, 1.0) self.assertAlmostEqual(x.value, 1.0) def test_basic_gp(self) -> None: x, y, z = cvxpy.Variable((3,), pos=True) constraints = [2*x*y + 2*x*z + 2*y*z <= 1.0, x >= 2*y] problem = cvxpy.Problem(cvxpy.Minimize(1/(x*y*z)), constraints) problem.solve(SOLVER, gp=True) self.assertAlmostEqual(15.59, problem.value, places=2) def test_maximum(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) prod1 = x * y**0.5 prod2 = 3.0 * x * y**0.5 obj = cvxpy.Minimize(cvxpy.maximum(prod1, prod2)) constr = [x == 1.0, y == 4.0] dgp = cvxpy.Problem(obj, constr) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() dcp.solve(SOLVER) dgp.unpack(dgp2dcp.retrieve(dcp.solution)) self.assertAlmostEqual(dgp.value, 6.0) self.assertAlmostEqual(x.value, 1.0) self.assertAlmostEqual(y.value, 4.0) dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, 6.0, places=4) self.assertAlmostEqual(x.value, 1.0) def test_prod(self) -> None: X = np.arange(12).reshape((4, 3)) np.testing.assert_almost_equal(np.prod(X), cvxpy.prod(X).value) np.testing.assert_almost_equal( np.prod(X, axis=0), cvxpy.prod(X, axis=0).value) np.testing.assert_almost_equal( np.prod(X, axis=1), cvxpy.prod(X, axis=1).value) np.testing.assert_almost_equal( np.prod(X, axis=0, keepdims=True), cvxpy.prod(X, axis=0, keepdims=True).value) np.testing.assert_almost_equal( np.prod(X, axis=1, keepdims=True), cvxpy.prod(X, axis=1, keepdims=True).value) prod = cvxpy.prod(X) X_canon, _ = dgp_atom_canon.prod_canon(prod, prod.args) np.testing.assert_almost_equal(np.sum(X), X_canon.value) prod = cvxpy.prod(X, axis=0) X_canon, _ = dgp_atom_canon.prod_canon(prod, prod.args) np.testing.assert_almost_equal(np.sum(X, axis=0), X_canon.value) prod = cvxpy.prod(X, axis=1) X_canon, _ = dgp_atom_canon.prod_canon(prod, prod.args) np.testing.assert_almost_equal(np.sum(X, axis=1), X_canon.value) prod = cvxpy.prod(X, axis=0, keepdims=True) X_canon, _ = dgp_atom_canon.prod_canon(prod, prod.args) np.testing.assert_almost_equal( np.sum(X, axis=0, keepdims=True), X_canon.value) prod = cvxpy.prod(X, axis=1, keepdims=True) X_canon, _ = dgp_atom_canon.prod_canon(prod, prod.args) np.testing.assert_almost_equal( np.sum(X, axis=1, keepdims=True), X_canon.value) X = np.arange(12) np.testing.assert_almost_equal(np.prod(X), cvxpy.prod(X).value) np.testing.assert_almost_equal(np.prod(X, keepdims=True), cvxpy.prod(X, keepdims=True).value) prod = cvxpy.prod(X) X_canon, _ = dgp_atom_canon.prod_canon(prod, prod.args) np.testing.assert_almost_equal(np.sum(X), X_canon.value) x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) posy1 = x * y**0.5 + 3.0 * x * y**0.5 posy2 = x * y**0.5 + 3.0 * x ** 2 * y**0.5 self.assertTrue(cvxpy.prod([posy1, posy2]).is_log_log_convex()) self.assertFalse(cvxpy.prod([posy1, posy2]).is_log_log_concave()) self.assertFalse(cvxpy.prod([posy1, 1/posy1]).is_dgp()) m = x * y**0.5 self.assertTrue(cvxpy.prod([m, m]).is_log_log_affine()) self.assertTrue(cvxpy.prod([m, 1/posy1]).is_log_log_concave()) self.assertFalse(cvxpy.prod([m, 1/posy1]).is_log_log_convex()) def test_max(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) prod1 = x * y**0.5 prod2 = 3.0 * x * y**0.5 obj = cvxpy.Minimize(cvxpy.max(cvxpy.hstack([prod1, prod2]))) constr = [x == 1.0, y == 4.0] dgp = cvxpy.Problem(obj, constr) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() dcp.solve(SOLVER) dgp.unpack(dgp2dcp.retrieve(dcp.solution)) self.assertAlmostEqual(dgp.value, 6.0) self.assertAlmostEqual(x.value, 1.0) self.assertAlmostEqual(y.value, 4.0) dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, 6.0, places=4) self.assertAlmostEqual(x.value, 1.0) def test_minimum(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) prod1 = x * y**0.5 prod2 = 3.0 * x * y**0.5 posy = prod1 + prod2 obj = cvxpy.Maximize(cvxpy.minimum(prod1, prod2, 1/posy)) constr = [x == 1.0, y == 4.0] dgp = cvxpy.Problem(obj, constr) dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, 1.0 / (2.0 + 6.0)) self.assertAlmostEqual(x.value, 1.0) self.assertAlmostEqual(y.value, 4.0) def test_min(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) prod1 = x * y**0.5 prod2 = 3.0 * x * y**0.5 posy = prod1 + prod2 obj = cvxpy.Maximize(cvxpy.min(cvxpy.hstack([prod1, prod2, 1/posy]))) constr = [x == 1.0, y == 4.0] dgp = cvxpy.Problem(obj, constr) dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, 1.0 / (2.0 + 6.0), places=4) self.assertAlmostEqual(x.value, 1.0) self.assertAlmostEqual(y.value, 4.0) def test_sum_largest(self) -> None: self.skipTest("Enable test once sum_largest is implemented.") x = cvxpy.Variable((4,), pos=True) obj = cvxpy.Minimize(cvxpy.sum_largest(x, 3)) constr = [x[0] * x[1] * x[2] * x[3] >= 16] dgp = cvxpy.Problem(obj, constr) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() dcp.solve(SOLVER) dgp.unpack(dgp2dcp.retrieve(dcp.solution)) opt = 6.0 self.assertAlmostEqual(dgp.value, opt) self.assertAlmostEqual((x[0] * x[1] * x[2] * x[3]).value, 16, places=2) dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, opt) self.assertAlmostEqual((x[0] * x[1] * x[2] * x[3]).value, 16, places=2) # An unbounded problem. x = cvxpy.Variable((4,), pos=True) y = cvxpy.Variable(pos=True) obj = cvxpy.Minimize(cvxpy.sum_largest(x, 3) * y) constr = [x[0] * x[1] * x[2] * x[3] >= 16] dgp = cvxpy.Problem(obj, constr) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() opt = dcp.solve(SOLVER) self.assertEqual(dcp.value, -float("inf")) dgp.unpack(dgp2dcp.retrieve(dcp.solution)) self.assertAlmostEqual(dgp.value, 0.0) self.assertAlmostEqual(dgp.status, "unbounded") dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, 0.0) self.assertAlmostEqual(dgp.status, "unbounded") # Another unbounded problem. x = cvxpy.Variable(2, pos=True) obj = cvxpy.Minimize(cvxpy.sum_largest(x, 1)) dgp = cvxpy.Problem(obj, []) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() opt = dcp.solve(SOLVER) self.assertEqual(dcp.value, -float("inf")) dgp.unpack(dgp2dcp.retrieve(dcp.solution)) self.assertAlmostEqual(dgp.value, 0.0) self.assertAlmostEqual(dgp.status, "unbounded") dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, 0.0) self.assertAlmostEqual(dgp.status, "unbounded") # Composition with posynomials. x = cvxpy.Variable((4,), pos=True) obj = cvxpy.Minimize(cvxpy.sum_largest( cvxpy.hstack([3 * x[0]**0.5 * x[1]**0.5, x[0] * x[1] + 0.5 * x[1] * x[3]**3, x[2]]), 2)) constr = [x[0] * x[1] >= 16] dgp = cvxpy.Problem(obj, constr) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() dcp.solve(SOLVER) dgp.unpack(dgp2dcp.retrieve(dcp.solution)) # opt = 3 * sqrt(4) * sqrt(4) + (4 * 4 + 0.5 * 4 * epsilon) = 28 opt = 28.0 self.assertAlmostEqual(dgp.value, opt, places=2) self.assertAlmostEqual((x[0] * x[1]).value, 16.0, places=2) self.assertAlmostEqual(x[3].value, 0.0, places=2) dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertAlmostEqual(dgp.value, opt, places=2) self.assertAlmostEqual((x[0] * x[1]).value, 16.0, places=2) self.assertAlmostEqual(x[3].value, 0.0, places=2) def test_div(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) p = cvxpy.Problem(cvxpy.Minimize(x * y), [y/3 <= x, y >= 1]) self.assertAlmostEqual(p.solve(SOLVER, gp=True), 1.0 / 3.0) self.assertAlmostEqual(y.value, 1.0) self.assertAlmostEqual(x.value, 1.0 / 3.0) def test_geo_mean(self) -> None: x = cvxpy.Variable(3, pos=True) p = [1, 2, 0.5] geo_mean = cvxpy.geo_mean(x, p) dgp = cvxpy.Problem(cvxpy.Minimize(geo_mean), []) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() dcp.solve(SOLVER) self.assertEqual(dcp.value, -float("inf")) dgp.unpack(dgp2dcp.retrieve(dcp.solution)) self.assertEqual(dgp.value, 0.0) self.assertEqual(dgp.status, "unbounded") dgp._clear_solution() dgp.solve(SOLVER, gp=True) self.assertEqual(dgp.value, 0.0) self.assertEqual(dgp.status, "unbounded") def test_solving_non_dgp_problem_raises_error(self) -> None: problem = cvxpy.Problem(cvxpy.Minimize(-1.0 * cvxpy.Variable()), []) with self.assertRaisesRegex(error.DGPError, r"Problem does not follow DGP " "rules(?s)*.*However, the problem does follow DCP rules.*"): problem.solve(SOLVER, gp=True) problem.solve(SOLVER) self.assertEqual(problem.status, "unbounded") self.assertEqual(problem.value, -float("inf")) def test_solving_non_dcp_problem_raises_error(self) -> None: problem = cvxpy.Problem( cvxpy.Minimize(cvxpy.Variable(pos=True) * cvxpy.Variable(pos=True)), ) with self.assertRaisesRegex(error.DCPError, r"Problem does not follow DCP " "rules(?s)*.*However, the problem does follow DGP rules.*"): problem.solve(SOLVER) problem.solve(SOLVER, gp=True) self.assertEqual(problem.status, "unbounded") self.assertAlmostEqual(problem.value, 0.0) def test_solving_non_dcp_problems_raises_detailed_error(self) -> None: x = cvxpy.Variable(3) problem = cvxpy.Problem(cvxpy.Minimize(cvxpy.sum(x) - cvxpy.sum_squares(x))) with self.assertRaisesRegex(error.DCPError, r"The objective is not DCP"): problem.solve(SOLVER) x = cvxpy.Variable(name='x') problem = cvxpy.Problem(cvxpy.Minimize(x), [x * x <= 5]) with self.assertRaisesRegex(error.DCPError, r"The following constraints are not DCP"): problem.solve(SOLVER) def test_add_canon(self) -> None: X = cvxpy.Constant(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])) Y = cvxpy.Constant(np.array([[2.0, 3.0, 4.0], [5.0, 6.0, 7.0]])) Z = X + Y canon_matrix, constraints = dgp_atom_canon.add_canon(Z, Z.args) self.assertEqual(len(constraints), 0) self.assertEqual(canon_matrix.shape, Z.shape) expected = np.log(np.exp(X.value) + np.exp(Y.value)) np.testing.assert_almost_equal(expected, canon_matrix.value) # Test promotion X = cvxpy.Constant(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])) y = cvxpy.Constant(2.0) Z = X + y canon_matrix, constraints = dgp_atom_canon.add_canon(Z, Z.args) self.assertEqual(len(constraints), 0) self.assertEqual(canon_matrix.shape, Z.shape) expected = np.log(np.exp(X.value) + np.exp(y.value)) np.testing.assert_almost_equal(expected, canon_matrix.value) def test_matmul_canon(self) -> None: X = cvxpy.Constant(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])) Y = cvxpy.Constant(np.array([[1.0], [2.0], [3.0]])) Z = cvxpy.matmul(X, Y) canon_matrix, constraints = dgp_atom_canon.mulexpression_canon( Z, Z.args) self.assertEqual(len(constraints), 0) self.assertEqual(canon_matrix.shape, (2, 1)) first_entry = np.log(np.exp(2.0) + np.exp(4.0) + np.exp(6.0)) second_entry = np.log(np.exp(5.0) + np.exp(7.0) + np.exp(9.0)) self.assertAlmostEqual(first_entry, canon_matrix[0, 0].value) self.assertAlmostEqual(second_entry, canon_matrix[1, 0].value) def test_trace_canon(self) -> None: X = cvxpy.Constant(np.array([[1.0, 5.0], [9.0, 14.0]])) Y = cvxpy.trace(X) canon, constraints = dgp_atom_canon.trace_canon(Y, Y.args) self.assertEqual(len(constraints), 0) self.assertTrue(canon.is_scalar()) expected = np.log(np.exp(1.0) + np.exp(14.0)) self.assertAlmostEqual(expected, canon.value) def test_one_minus_pos(self) -> None: x = cvxpy.Variable(pos=True) obj = cvxpy.Maximize(x) constr = [cvxpy.one_minus_pos(x) >= 0.4] problem = cvxpy.Problem(obj, constr) problem.solve(SOLVER, gp=True) self.assertAlmostEqual(problem.value, 0.6) self.assertAlmostEqual(x.value, 0.6) def test_qp_solver_not_allowed(self) -> None: x = cvxpy.Variable(pos=True) problem = cvxpy.Problem(cvxpy.Minimize(x)) error_msg = ("When `gp=True`, `solver` must be a conic solver " "(received 'OSQP'); try calling `solve()` with " "`solver=cvxpy.ECOS`.") with self.assertRaises(error.SolverError) as err: problem.solve(solver="OSQP", gp=True) self.assertEqual(error_msg, str(err)) def test_paper_example_sum_largest(self) -> None: self.skipTest("Enable test once sum_largest is implemented.") x = cvxpy.Variable((4,), pos=True) x0, x1, x2, x3 = (x[0], x[1], x[2], x[3]) obj = cvxpy.Minimize(cvxpy.sum_largest( cvxpy.hstack([ 3 * x0**0.5 * x1**0.5, x0 * x1 + 0.5 * x1 * x3**3, x2]), 2)) constr = [x0 * x1 * x2 >= 16] p = cvxpy.Problem(obj, constr) # smoke test. p.solve(SOLVER, gp=True) def test_paper_example_one_minus_pos(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) obj = cvxpy.Minimize(x * y) constr = [(y * cvxpy.one_minus_pos(x / y)) ** 2 >= 1, x >= y/3] problem = cvxpy.Problem(obj, constr) # smoke test. problem.solve(SOLVER, gp=True) def test_paper_example_eye_minus_inv(self) -> None: X = cvxpy.Variable((2, 2), pos=True) obj = cvxpy.Minimize(cvxpy.trace(cvxpy.eye_minus_inv(X))) constr = [cvxpy.geo_mean(cvxpy.diag(X)) == 0.1, cvxpy.geo_mean(cvxpy.hstack([X[0, 1], X[1, 0]])) == 0.1] problem = cvxpy.Problem(obj, constr) problem.solve(gp=True, solver="ECOS") np.testing.assert_almost_equal(X.value, 0.1*np.ones((2, 2)), decimal=3) self.assertAlmostEqual(problem.value, 2.25) def test_simpler_eye_minus_inv(self) -> None: X = cvxpy.Variable((2, 2), pos=True) obj = cvxpy.Minimize(cvxpy.trace(cvxpy.eye_minus_inv(X))) constr = [cvxpy.diag(X) == 0.1, cvxpy.hstack([X[0, 1], X[1, 0]]) == 0.1] problem = cvxpy.Problem(obj, constr) problem.solve(gp=True, solver="ECOS") np.testing.assert_almost_equal(X.value, 0.1*np.ones((2, 2)), decimal=3) self.assertAlmostEqual(problem.value, 2.25) def test_paper_example_exp_log(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) obj = cvxpy.Minimize(x * y) constr = [cvxpy.exp(y/x) <= cvxpy.log(y)] problem = cvxpy.Problem(obj, constr) # smoke test. problem.solve(SOLVER, gp=True) def test_pf_matrix_completion(self) -> None: X = cvxpy.Variable((3, 3), pos=True) obj = cvxpy.Minimize(cvxpy.pf_eigenvalue(X)) known_indices = tuple(zip(*[[0, 0], [0, 2], [1, 1], [2, 0], [2, 1]])) constr = [ X[known_indices] == [1.0, 1.9, 0.8, 3.2, 5.9], X[0, 1] * X[1, 0] * X[1, 2] * X[2, 2] == 1.0, ] problem = cvxpy.Problem(obj, constr) # smoke test. problem.solve(SOLVER, gp=True) def test_rank_one_nmf(self) -> None: X = cvxpy.Variable((3, 3), pos=True) x = cvxpy.Variable((3,), pos=True) y = cvxpy.Variable((3,), pos=True) xy = cvxpy.vstack([x[0] * y, x[1] * y, x[2] * y]) R = cvxpy.maximum( cvxpy.multiply(X, (xy) ** (-1.0)), cvxpy.multiply(X ** (-1.0), xy)) objective = cvxpy.sum(R) constraints = [ X[0, 0] == 1.0, X[0, 2] == 1.9, X[1, 1] == 0.8, X[2, 0] == 3.2, X[2, 1] == 5.9, x[0] * x[1] * x[2] == 1.0, ] # smoke test. prob = cvxpy.Problem(cvxpy.Minimize(objective), constraints) prob.solve(SOLVER, gp=True) def test_documentation_prob(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) z = cvxpy.Variable(pos=True) objective_fn = x * y * z constraints = [ 4 * x * y * z + 2 * x * z <= 10, x <= 2*y, y <= 2*x, z >= 1] problem = cvxpy.Problem(cvxpy.Maximize(objective_fn), constraints) # Smoke test. problem.solve(SOLVER, gp=True) def test_solver_error(self) -> None: x = cvxpy.Variable(pos=True) y = cvxpy.Variable(pos=True) prod = x * y dgp = cvxpy.Problem(cvxpy.Minimize(prod), []) dgp2dcp = cvxpy.reductions.Dgp2Dcp() _, inverse_data = dgp2dcp.apply(dgp) soln = solution.Solution(SOLVER_ERROR, None, {}, {}, {}) dgp_soln = dgp2dcp.invert(soln, inverse_data) self.assertEqual(dgp_soln.status, SOLVER_ERROR) def test_sum_scalar(self) -> None: w = cvxpy.Variable(pos=True) h = cvxpy.Variable(pos=True) problem = cvxpy.Problem(cvxpy.Minimize(h), [w*h >= 10, cvxpy.sum(w) <= 5]) problem.solve(SOLVER, gp=True) np.testing.assert_almost_equal(problem.value, 2) np.testing.assert_almost_equal(h.value, 2) np.testing.assert_almost_equal(w.value, 5) def test_sum_vector(self) -> None: w = cvxpy.Variable(2, pos=True) h = cvxpy.Variable(2, pos=True) problem = cvxpy.Problem(cvxpy.Minimize(cvxpy.sum(h)), [cvxpy.multiply(w, h) >= 10, cvxpy.sum(w) <= 10]) problem.solve(SOLVER, gp=True) np.testing.assert_almost_equal(problem.value, 4) np.testing.assert_almost_equal(h.value, np.array([2, 2])) np.testing.assert_almost_equal(w.value, np.array([5, 5])) def test_sum_squares_vector(self) -> None: w = cvxpy.Variable(2, pos=True) h = cvxpy.Variable(2, pos=True) problem = cvxpy.Problem(cvxpy.Minimize(cvxpy.sum_squares(h)), [cvxpy.multiply(w, h) >= 10, cvxpy.sum(w) <= 10]) problem.solve(SOLVER, gp=True) np.testing.assert_almost_equal(problem.value, 8) np.testing.assert_almost_equal(h.value, np.array([2, 2])) np.testing.assert_almost_equal(w.value, np.array([5, 5])) def test_sum_matrix(self) -> None: w = cvxpy.Variable((2, 2), pos=True) h = cvxpy.Variable((2, 2), pos=True) problem = cvxpy.Problem(cvxpy.Minimize(cvxpy.sum(h)), [cvxpy.multiply(w, h) >= 10, cvxpy.sum(w) <= 20]) problem.solve(SOLVER, gp=True) np.testing.assert_almost_equal(problem.value, 8) np.testing.assert_almost_equal(h.value, np.array([[2, 2], [2, 2]])) np.testing.assert_almost_equal(w.value, np.array([[5, 5], [5, 5]])) def test_trace(self) -> None: w = cvxpy.Variable((1, 1), pos=True) h = cvxpy.Variable(pos=True) problem = cvxpy.Problem(cvxpy.Minimize(h), [w*h >= 10, cvxpy.trace(w) <= 5]) problem.solve(SOLVER, gp=True) np.testing.assert_almost_equal(problem.value, 2) np.testing.assert_almost_equal(h.value, 2) np.testing.assert_almost_equal(w.value, np.array([[5]])) def test_parameter(self) -> None: param = cvxpy.Parameter(pos=True) param.value = 1.0 dgp = cvxpy.Problem(cvxpy.Minimize(param), []) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() self.assertAlmostEqual(dcp.parameters()[0].value, np.log(param.value)) x = cvxpy.Variable(pos=True) problem = cvxpy.Problem(cvxpy.Minimize(x), [x == param]) problem.solve(SOLVER, gp=True) self.assertAlmostEqual(problem.value, 1.0) param.value = 2.0 problem.solve(SOLVER, gp=True) self.assertAlmostEqual(problem.value, 2.0) def test_parameter_name(self) -> None: param = cvxpy.Parameter(pos=True, name='alpha') param.value = 1.0 dgp = cvxpy.Problem(cvxpy.Minimize(param), []) dgp2dcp = cvxpy.reductions.Dgp2Dcp(dgp) dcp = dgp2dcp.reduce() self.assertAlmostEqual(dcp.parameters()[0].name(), 'alpha') def test_gmatmul(self) -> None: x = cvxpy.Variable(2, pos=True) A = np.array([[-5., 2.], [1., -3.]]) b = np.array([3, 2]) expr = cvxpy.gmatmul(A, x) x.value = b self.assertItemsAlmostEqual(expr.value, [3**-5*2**2, 3./8]) A_par = cvxpy.Parameter((2, 2), value=A) self.assertItemsAlmostEqual(cvxpy.gmatmul(A_par, x).value, [3**-5*2**2, 3./8]) x.value = None prob = cvxpy.Problem(cvxpy.Minimize(1.0), [expr == b]) prob.solve(solver=SOLVER, gp=True) sltn = np.exp(np.linalg.solve(A, np.log(b))) self.assertItemsAlmostEqual(x.value, sltn)
41.557912
96
0.585162
8e8ee4d7cfe615c10af3b26de2069b96a6dd30a9
255
py
Python
2_intermediate/chapter11/practice/product.py
code4tomorrow/Python
035b6f5d8fd635a16caaff78bcd3f582663dadc3
[ "MIT" ]
4
2021-03-01T00:32:45.000Z
2021-05-21T22:01:52.000Z
2_intermediate/chapter11/practice/product.py
code4tomorrow/Python
035b6f5d8fd635a16caaff78bcd3f582663dadc3
[ "MIT" ]
29
2020-09-12T22:56:04.000Z
2021-09-25T17:08:42.000Z
2_intermediate/chapter11/practice/product.py
code4tomorrow/Python
035b6f5d8fd635a16caaff78bcd3f582663dadc3
[ "MIT" ]
7
2021-02-25T01:50:55.000Z
2022-02-28T00:00:42.000Z
""" Product Write a function that takes a list of numbers as input and returns the product of all the numbers in the list. Use it to print the products of the following sets of numbers: -1, 5, 3, 2, 8 2.5, 3, 0 4, 3, 7, 10 """ # Insert your code here.
15
35
0.694118
6ee0540c30a8ab28e31bdbd93a4001cd443d508e
4,084
py
Python
Experiments/Tensorflow/Math/linear_algebra.py
merang/Deep-Learning-Experiments
c53b7ded52631996e560b33cdf30ce915b18d079
[ "MIT" ]
994
2017-01-17T11:56:51.000Z
2022-03-22T11:51:40.000Z
Experiments/Tensorflow/Math/linear_algebra.py
akiljames83/Deep-Learning-Experiments
8048b91f382667e9b43078460fb792b369f8af49
[ "MIT" ]
20
2017-06-01T01:30:16.000Z
2021-06-11T17:27:51.000Z
Experiments/Tensorflow/Math/linear_algebra.py
akiljames83/Deep-Learning-Experiments
8048b91f382667e9b43078460fb792b369f8af49
[ "MIT" ]
789
2017-02-16T08:53:14.000Z
2022-03-27T14:33:39.000Z
''' Linear Algebra on TensorFlow Author: Rowel Atienza Project: https://github.com/roatienza/Deep-Learning-Experiments ''' # On command line: python linear_algebra.py # Prerequisite: tensorflow (see tensorflow.org) from __future__ import print_function import tensorflow as tf import numpy as np # Square matrix A of rank 2 A = tf.constant([ [1.,2.], [3.,4.] ]) # 2x2 Square, Diagonal, Symmetric matrix B B = tf.diag([5.,6.]) # 2x2 Square matrix C = tf.constant([ [1.,2.], [2.,4.] ]) # 2x1 vector will all elements equal to 1 x = tf.ones([2,1]) # 2x1 vector will all elements equal to 2.0 b = tf.fill([2,1], 2.) # 2x1 vector y = tf.constant([ [-1.], [1.] ]) # run within a session and print with tf.Session() as session: print("Tensorflow version: " + tf.__version__) tf.global_variables_initializer().run() print("A = ") print(A.eval()) print("B = ") print(B.eval()) print("C = ") print(C.eval()) print("x = ") print(x.eval()) print("b = ") print(b.eval()) print("y = ") print(y.eval()) # Tensor multiplication print("Ax = ") print(tf.matmul(A, x).eval()) # Tensor addition print("A + B =") print(tf.add(A, B).eval()) print("A + b =") print(tf.add(A, b).eval()) # Rank of A and B; Number of indices to identify each element print("tensorRank(A) = ") print(tf.rank(A).eval()) print("tensorRank(C) = ") print(tf.rank(C).eval()) # Matrix rank print("rank(A) = ") print(np.linalg.matrix_rank(A.eval())) print("rank(C) = ") print(np.linalg.matrix_rank(C.eval())) # Transpose print("tran(A) = ") print(tf.matrix_transpose(A).eval()) print("tran(B) = ") print(tf.matrix_transpose(B).eval()) # Inverse print("inv(A) = ") print(tf.matrix_inverse(A).eval()) # Inverse of diagonal matrix has diag elements of the reciprocal of diag elements B print("inv(B) = ") print(tf.matrix_inverse(B).eval()) print("inv(C) = ") # since C has rank 1, this will cause error try: print(tf.matrix_inverse(C).eval()) except: print("C is not invertible") # Product of a matrix and its inverse is an identity (non-singular) print("A*inv(A) = Eye(2)") print( tf.matmul(A,tf.matrix_inverse(A)).eval() ) # Element-wise multiplication print("elem(A)*elem(B) = ") print(tf.multiply(A,B).eval()) # Element-wise addition print("elem(A)+elem(B) = ") print(tf.add(A,B).eval()) # Dot product print("x dot b") print(tf.matmul(x,b,transpose_a=True).eval()) # Identity matrix of same shape as A print("eye(A) = ") I = tf.eye(A.get_shape().as_list()[0],A.get_shape().as_list()[1]) print(I.eval()) # Multiply eye(A) and A = A print("eye(A)*A = A = ") print(tf.matmul(I,A).eval()) print("A * eye(A) = A = ") print(tf.matmul(A, I).eval()) # l1, l2, Frobenius norm print("l1(x) = ") print(tf.reduce_sum(tf.abs(x)).eval()) print("l2(x) = ") print(tf.sqrt(tf.reduce_sum(tf.square(x))).eval()) print("Frobenius(A) = ") print(tf.sqrt(tf.reduce_sum(tf.square(A))).eval()) print("Numpy l2(x) =") print(np.linalg.norm(x.eval(session=tf.Session()))) print("Numpy Forbenius(A) =") print(np.linalg.norm(A.eval(session=tf.Session()))) # Can you write the L(inf) ? # Orthogonal vectors; How do you make x and y orthonormal? print("x dot y") print(tf.matmul(x,y,transpose_a=True).eval()) # Eigenvalues and eigenvectors print("Numpy Eigenvalues of (A)=") e, v = np.linalg.eig(A.eval()) print(e) print("Numpy Eigenvectors of (A)=") print(v) # Frobenius norm is equal to the trace of A*tran(A) print("Frobenius(A) = Tr(A*tran(A) = ") print(tf.sqrt(tf.trace(tf.matmul(A,tf.transpose(A)))).eval()) # Determinant of A is the product of its eigenvalues print("det(A)=") print(tf.matrix_determinant(A).eval()) # Determinant from eigenvalues print("det(A) as product of eigenvalues") print(tf.reduce_prod(e).eval())
26.012739
87
0.602106
9c80fb41f32cf725238d88b1d24fb246edb8d6dd
3,037
py
Python
src/site_main/settings.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
2
2021-01-05T02:55:57.000Z
2021-04-16T15:49:08.000Z
src/site_main/settings.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
null
null
null
src/site_main/settings.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
1
2021-01-05T08:12:38.000Z
2021-01-05T08:12:38.000Z
""" Django settings for site_main project. Generated by 'django-admin startproject' using Django 3.0.3. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os from config import paths # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.join(paths.SRC, "query_main") # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'upzey=x#dgt5yzq*wz&30h)j2=^j%djo79&xu4pn5@(7^!c%c+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*"] SECURE_SSL_REDIRECT = False # Application definition INSTALLED_APPS = ['query_main.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles',] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'site_main.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'site_main.wsgi.application' # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
28.92381
91
0.709582
786882e0f5b985cbeffca0b595f3f54275f0d144
5,286
py
Python
fiware_api_blueprint_renderer/src/drafter_postprocessing/data_structures.py
Lenijas/test-travisci
e83fafe9d46319c9eaf9938e00c49b52454b66df
[ "BSD-3-Clause" ]
1
2016-11-10T01:04:52.000Z
2016-11-10T01:04:52.000Z
fiware_api_blueprint_renderer/src/drafter_postprocessing/data_structures.py
Lenijas/test-travisci
e83fafe9d46319c9eaf9938e00c49b52454b66df
[ "BSD-3-Clause" ]
null
null
null
fiware_api_blueprint_renderer/src/drafter_postprocessing/data_structures.py
Lenijas/test-travisci
e83fafe9d46319c9eaf9938e00c49b52454b66df
[ "BSD-3-Clause" ]
null
null
null
from collections import deque from ..apib_extra_parse_utils import parse_property_member_declaration from ..apib_extra_parse_utils import get_indentation def parser_json_data_structures(json_content): """Retrieves data structures definition from JSON file and writes them in an easier to access format""" if len(json_content['content']) > 0: json_content['data_structures'] = parse_defined_data_structures(json_content['content'][0]) else: json_content['data_structures'] = {} # Add resource level defined data structures structures_from_resources = get_data_structures_from_resources(json_content) json_content['data_structures'].update(structures_from_resources) def get_data_structures_from_resources(json_content): """Retrieve data structures defined in named resources. Arguments: json_content -- JSON object where resources will be analysed """ data_structures = {} for resource_group in json_content["resourceGroups"]: for resource in resource_group["resources"]: if resource["name"] == "": continue for content in resource["content"]: if content["element"] == "dataStructure": attributes = get_data_structure_properties_from_json(content["sections"]) data_structures[resource["name"]] = {"attributes": attributes, "is_common_payload": False} return data_structures def get_data_structure_properties_from_json(data_structure_content): """Extract simpler representation of properties from drafter JSON representation. Arguments: data_structure_content -- JSON content section of "dataStructures" element or nested property """ attributes = [] for membertype in data_structure_content: if "content" not in membertype: return attributes for property_ in membertype["content"]: attribute = {} attribute['name'] = property_['content']['name']['literal'] attribute['required'] = 'required' in property_['content']['valueDefinition']['typeDefinition']['attributes'] attribute['type'] = \ property_['content']['valueDefinition']['typeDefinition']['typeSpecification']['name'] attribute['description'] = property_['content']['description'] try: values_string = property_['content']['valueDefinition']['values'][0]['literal'] attribute['values'] = [e.strip(" ") for e in values_string.split(',')] except IndexError as error: attribute['values'] = [] attribute['subproperties'] = get_data_structure_properties_from_json(property_['content']["sections"]) attributes.append(attribute) return attributes def parse_defined_data_structures(data): """Retrieves data structures definition from JSON fragment and gives them back as Python dict""" data_structure_dict = {} try: if data["content"][0]["sections"][0]["class"] != u'blockDescription': raise ValueError('Unexpected section received.') except: return data_structure_dict for content in data["content"]: data_structure = {} data_structure_definition = [] if content["sections"]!=[]: data_structure_content = content["sections"][0]["content"] parse_defined_data_structure_properties(data_structure_definition, deque(data_structure_content.split('\n'))) data_structure_name = content["name"]["literal"] data_structure["attributes"] = data_structure_definition data_structure["is_common_payload"] = True data_structure_dict[data_structure_name] = data_structure return data_structure_dict def parse_defined_data_structure_properties(properties_list, remaining_property_lines): """Parses the properties definitions of a given data structure given its body Arguments: properties_list - List where we'll insert new properties to remaining_property_lines - Property definition lines pending to be processed """ last_member_indentation = -1 while len(remaining_property_lines) > 0: property_member_declaration = remaining_property_lines[0] if property_member_declaration != '': # Retrieve the indentation of the current property definition. current_member_indentation = get_indentation(property_member_declaration) if last_member_indentation == -1: last_member_indentation = current_member_indentation # Process the new property as a child, parent or uncle of the last # one processed according to their relative line indentations. if current_member_indentation == last_member_indentation: parsed_attribute_definition = parse_property_member_declaration(property_member_declaration) remaining_property_lines.popleft() properties_list.append(parsed_attribute_definition) elif current_member_indentation > last_member_indentation: parse_defined_data_structure_properties(parsed_attribute_definition['subproperties'], remaining_property_lines) else: return else: remaining_property_lines.popleft()
40.976744
127
0.699962
40046f19043d30c1480b948c5c578edff30a2386
15,444
py
Python
src/evaluation_metrics/segmentation_metrics.py
LucasFidon/fetal-brain-segmentation-partial-supervision-miccai21
69506cbed21c7d04946020e0d09246610c8da6d4
[ "BSD-3-Clause" ]
1
2021-12-17T06:25:26.000Z
2021-12-17T06:25:26.000Z
src/evaluation_metrics/segmentation_metrics.py
LucasFidon/fetal-brain-segmentation-partial-supervision-miccai21
69506cbed21c7d04946020e0d09246610c8da6d4
[ "BSD-3-Clause" ]
null
null
null
src/evaluation_metrics/segmentation_metrics.py
LucasFidon/fetal-brain-segmentation-partial-supervision-miccai21
69506cbed21c7d04946020e0d09246610c8da6d4
[ "BSD-3-Clause" ]
null
null
null
""" @brief Evaluation metrics for segmentation applications. @author Lucas Fidon (lucas.fidon@kcl.ac.uk) @date 30 Oct 2019. """ import numpy as np from scipy import ndimage from evaluation_metrics import lookup_tables def _binarize(seg, fg_class=1): """ Binarize a segmentation with label 1 for pixels/voxels the foreground class and label 0 for pixels/voxels the other classes. :param seg: int numpy array. :param fg_class: int; class in seg corresponding to the foreground. :return: binary segmentation corresponding to seg for the foreground class fg_class. """ bin_seg = np.zeros_like(seg, dtype=bool) bin_seg[seg == fg_class] = True return bin_seg # Basic metrics def true_positives(seg_pred, seg_gt): """ Number of True Positives for the predicted segmentation seg_pred and the ground-truth segmentation seg_gt. :param seg_pred: numpy bool array. :param seg_gt: numpy bool array. :return: int; number of true positives. """ assert seg_pred.dtype == np.bool, "seg_1 should be of type bool, " \ "found %s instead." % seg_pred.dtype assert seg_gt.dtype == np.bool, "seg_2 should be of type bool, " \ "found %s instead." % seg_gt.dtype num_tp = np.sum(seg_pred * seg_gt) return num_tp def false_positives(seg_pred, seg_gt): """ Number of False Positives for the predicted segmentation seg_pred and the ground-truth segmentation seg_gt. :param seg_pred: numpy bool array. :param seg_gt: numpy bool array. :return: int; number of false positives. """ assert seg_pred.dtype == np.bool, "seg_1 should be of type bool, " \ "found %s instead." % seg_pred.dtype assert seg_gt.dtype == np.bool, "seg_2 should be of type bool, " \ "found %s instead." % seg_gt.dtype num_fp = np.sum(seg_pred * (1 - seg_gt)) return num_fp def false_negatives(seg_pred, seg_gt): """ Number of False Negatives for the predicted segmentation seg_pred and the ground-truth segmentation seg_gt. :param seg_pred: numpy bool array. :param seg_gt: numpy bool array. :return: int; number of false negatives. """ assert seg_pred.dtype == np.bool, "seg_1 should be of type bool, " \ "found %s instead." % seg_pred.dtype assert seg_gt.dtype == np.bool, "seg_2 should be of type bool, " \ "found %s instead." % seg_gt.dtype num_fn = np.sum((1 - seg_pred) * seg_gt) return num_fn def true_negatives(seg_pred, seg_gt): """ Number of True Negatives for the predicted segmentation seg_pred and the ground-truth segmentation seg_gt. :param seg_pred: numpy bool array. :param seg_gt: numpy bool array. :return: int; number of true negatives. """ assert seg_pred.dtype == np.bool, "seg_1 should be of type bool, " \ "found %s instead." % seg_pred.dtype assert seg_gt.dtype == np.bool, "seg_2 should be of type bool, " \ "found %s instead." % seg_gt.dtype num_tn = np.sum((1 - seg_pred) * (1 - seg_gt)) return num_tn # Dice scores and variants def dice_score(seg_1, seg_2, fg_class=1): """ Compute the Dice score for class fg_class between the segmentations seg_1 and seg_2. For explanation about the formula used to compute the Dice score coefficient, see for example: "Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks", L. Fidon et al, BrainLes 2017. :param seg_1: numpy int array. :param seg_2: numpy int array. :param fg_class: int. :return: float; Dice score value. """ assert seg_1.shape == seg_2.shape, "seg_1 and seg_2 must have the same shape " \ "to compute their dice score." # binarize the segmentations bin_seg_1 = _binarize(seg_1, fg_class=fg_class) bin_seg_2 = _binarize(seg_2, fg_class=fg_class) # compute the Dice score value tp = true_positives(bin_seg_1, bin_seg_2) fp = false_positives(bin_seg_1, bin_seg_2) fn = false_negatives(bin_seg_1, bin_seg_2) if tp + fp + fn == 0: # empty foreground for seg_1 and seg_2 dice_val = 1. else: dice_val = 2. * tp / (2. * tp + fp + fn) return dice_val def mean_dice_score(seg_1, seg_2, labels_list=[0, 1]): """ Compute the mean of the Dice scores for the labels in labels_list between the segmentations seg_1 and seg_2. :param seg_1: numpy int array. :param seg_2: numpy int array. :param labels_list: int list. :return: """ assert len(labels_list) > 0, "the list of labels to consider for the mean dice score" \ "must contain at least one label" dice_values = [] for l in labels_list: dice = dice_score(seg_1, seg_2, fg_class=l) dice_values.append(dice) mean_dice = np.mean(dice_values) return mean_dice # Jaccard index and variants def jaccard(seg_1, seg_2, fg_class=1): """ Compute the Jaccard for class fg_class between the segmentations seg_1 and seg_2. :param seg_1: numpy int array. :param seg_2: numpy int array. :param fg_class: int. :return: float; Jaccard value. """ assert seg_1.shape == seg_2.shape, "seg_1 and seg_2 must have the same shape " \ "to compute their dice score" # binarize the segmentations bin_seg_1 = _binarize(seg_1, fg_class=fg_class) bin_seg_2 = _binarize(seg_2, fg_class=fg_class) # compute the Jaccard index value tp = true_positives(bin_seg_1, bin_seg_2) fp = false_positives(bin_seg_1, bin_seg_2) fn = false_negatives(bin_seg_1, bin_seg_2) if tp + fp + fn == 0: # empty foreground for seg_1 and seg_2 jaccard = 1. else: jaccard = tp / (tp + fp + fn) return jaccard # Surface distances def haussdorff_distance(mask_gt, mask_pred, fg_class, percentile=100, spacing_mm=[0.8, 0.8, 0.8]): bin_mask_gt = np.squeeze(_binarize(mask_gt, fg_class=fg_class)) bin_mask_pred = np.squeeze(_binarize(mask_pred, fg_class=fg_class)) surface_distances = compute_surface_distances( bin_mask_gt, bin_mask_pred, spacing_mm) haussdorff_dist_value = compute_robust_hausdorff(surface_distances, percentile) return haussdorff_dist_value def compute_surface_distances(mask_gt, mask_pred, spacing_mm): """ Compute closest distances from all surface points to the other surface. Finds all surface elements "surfels" in the ground truth mask `mask_gt` and the predicted mask `mask_pred`, computes their area in mm^2 and the distance to the closest point on the other surface. It returns two sorted lists of distances together with the corresponding surfel areas. If one of the masks is empty, the corresponding lists are empty and all distances in the other list are `inf`. :param mask_gt: 3-dim Numpy array of type bool. The ground truth mask. :param mask_pred: 3-dim Numpy array of type bool. The predicted mask. :param spacing_mm: 3-element list-like structure. Voxel spacing in x0, x1 and x2 direction. :return: A dict with: "distances_gt_to_pred": 1-dim numpy array of type float. The distances in mm from all ground truth surface elements to the predicted surface, sorted from smallest to largest. "distances_pred_to_gt": 1-dim numpy array of type float. The distances in mm from all predicted surface elements to the ground truth surface, sorted from smallest to largest. "surfel_areas_gt": 1-dim numpy array of type float. The area in mm^2 of the ground truth surface elements in the same order as distances_gt_to_pred "surfel_areas_pred": 1-dim numpy array of type float. The area in mm^2 of the predicted surface elements in the same order as distances_pred_to_gt """ # compute the area for all 256 possible surface elements # (given a 2x2x2 neighbourhood) according to the spacing_mm neighbour_code_to_surface_area = np.zeros([256]) for code in range(256): normals = np.array(lookup_tables.neighbour_code_to_normals[code]) sum_area = 0 for normal_idx in range(normals.shape[0]): # normal vector n = np.zeros([3]) n[0] = normals[normal_idx, 0] * spacing_mm[1] * spacing_mm[2] n[1] = normals[normal_idx, 1] * spacing_mm[0] * spacing_mm[2] n[2] = normals[normal_idx, 2] * spacing_mm[0] * spacing_mm[1] area = np.linalg.norm(n) sum_area += area neighbour_code_to_surface_area[code] = sum_area # compute the bounding box of the masks to trim # the volume to the smallest possible processing subvolume mask_all = mask_gt | mask_pred bbox_min = np.zeros(3, np.int64) bbox_max = np.zeros(3, np.int64) # max projection to the x0-axis proj_0 = np.max(np.max(mask_all, axis=2), axis=1) idx_nonzero_0 = np.nonzero(proj_0)[0] if len(idx_nonzero_0) == 0: # pylint: disable=g-explicit-length-test return {"distances_gt_to_pred": np.array([]), "distances_pred_to_gt": np.array([]), "surfel_areas_gt": np.array([]), "surfel_areas_pred": np.array([])} bbox_min[0] = np.min(idx_nonzero_0) bbox_max[0] = np.max(idx_nonzero_0) # max projection to the x1-axis proj_1 = np.max(np.max(mask_all, axis=2), axis=0) idx_nonzero_1 = np.nonzero(proj_1)[0] bbox_min[1] = np.min(idx_nonzero_1) bbox_max[1] = np.max(idx_nonzero_1) # max projection to the x2-axis proj_2 = np.max(np.max(mask_all, axis=1), axis=0) idx_nonzero_2 = np.nonzero(proj_2)[0] bbox_min[2] = np.min(idx_nonzero_2) bbox_max[2] = np.max(idx_nonzero_2) # crop the processing subvolume. # we need to zeropad the cropped region with 1 voxel at the lower, # the right and the back side. This is required to obtain the "full" # convolution result with the 2x2x2 kernel cropmask_gt = np.zeros((bbox_max - bbox_min)+2, np.uint8) cropmask_pred = np.zeros((bbox_max - bbox_min)+2, np.uint8) cropmask_gt[0:-1, 0:-1, 0:-1] = mask_gt[bbox_min[0]:bbox_max[0]+1, bbox_min[1]:bbox_max[1]+1, bbox_min[2]:bbox_max[2]+1] cropmask_pred[0:-1, 0:-1, 0:-1] = mask_pred[bbox_min[0]:bbox_max[0]+1, bbox_min[1]:bbox_max[1]+1, bbox_min[2]:bbox_max[2]+1] # compute the neighbour code (local binary pattern) for each voxel # the resulting arrays are spacially shifted by minus half a voxel in each # axis. # i.e. the points are located at the corners of the original voxels kernel = np.array([[[128, 64], [32, 16]], [[8, 4], [2, 1]]]) neighbour_code_map_gt = ndimage.filters.correlate( cropmask_gt.astype(np.uint8), kernel, mode="constant", cval=0) neighbour_code_map_pred = ndimage.filters.correlate( cropmask_pred.astype(np.uint8), kernel, mode="constant", cval=0) # create masks with the surface voxels borders_gt = ((neighbour_code_map_gt != 0) & (neighbour_code_map_gt != 255)) borders_pred = ((neighbour_code_map_pred != 0) & (neighbour_code_map_pred != 255)) # compute the distance transform (closest distance of each voxel to the # surface voxels) if borders_gt.any(): distmap_gt = ndimage.morphology.distance_transform_edt( ~borders_gt, sampling=spacing_mm) else: distmap_gt = np.Inf * np.ones(borders_gt.shape) if borders_pred.any(): distmap_pred = ndimage.morphology.distance_transform_edt( ~borders_pred, sampling=spacing_mm) else: distmap_pred = np.Inf * np.ones(borders_pred.shape) # compute the area of each surface element surface_area_map_gt = neighbour_code_to_surface_area[neighbour_code_map_gt] surface_area_map_pred = neighbour_code_to_surface_area[ neighbour_code_map_pred] # create a list of all surface elements with distance and area distances_gt_to_pred = distmap_pred[borders_gt] distances_pred_to_gt = distmap_gt[borders_pred] surfel_areas_gt = surface_area_map_gt[borders_gt] surfel_areas_pred = surface_area_map_pred[borders_pred] # sort them by distance if distances_gt_to_pred.shape != (0,): sorted_surfels_gt = np.array( sorted(zip(distances_gt_to_pred, surfel_areas_gt))) distances_gt_to_pred = sorted_surfels_gt[:, 0] surfel_areas_gt = sorted_surfels_gt[:, 1] if distances_pred_to_gt.shape != (0,): sorted_surfels_pred = np.array( sorted(zip(distances_pred_to_gt, surfel_areas_pred))) distances_pred_to_gt = sorted_surfels_pred[:, 0] surfel_areas_pred = sorted_surfels_pred[:, 1] return {"distances_gt_to_pred": distances_gt_to_pred, "distances_pred_to_gt": distances_pred_to_gt, "surfel_areas_gt": surfel_areas_gt, "surfel_areas_pred": surfel_areas_pred} def compute_robust_hausdorff(surface_distances, percent): """ Computes the robust Hausdorff distance. Computes the robust Hausdorff distance. "Robust", because it uses the `percent` percentile of the distances instead of the maximum distance. The percentage is computed by correctly taking the area of each surface element into account. Based on https://github.com/deepmind/surface-distance/blob/master/surface_distance/metrics.py :param surface_distances: dict with "distances_gt_to_pred", "distances_pred_to_gt" "surfel_areas_gt", "surfel_areas_pred" created by compute_surface_distances() :param percent: a float value between 0 and 100. :return: a float value. The robust Hausdorff distance in mm. """ distances_gt_to_pred = surface_distances["distances_gt_to_pred"] distances_pred_to_gt = surface_distances["distances_pred_to_gt"] surfel_areas_gt = surface_distances["surfel_areas_gt"] surfel_areas_pred = surface_distances["surfel_areas_pred"] if len(distances_gt_to_pred) > 0: # pylint: disable=g-explicit-length-test surfel_areas_cum_gt = np.cumsum(surfel_areas_gt) / np.sum(surfel_areas_gt) idx = np.searchsorted(surfel_areas_cum_gt, percent/100.0) perc_distance_gt_to_pred = distances_gt_to_pred[ min(idx, len(distances_gt_to_pred)-1)] else: perc_distance_gt_to_pred = np.Inf if len(distances_pred_to_gt) > 0: # pylint: disable=g-explicit-length-test surfel_areas_cum_pred = (np.cumsum(surfel_areas_pred) / np.sum(surfel_areas_pred)) idx = np.searchsorted(surfel_areas_cum_pred, percent/100.0) perc_distance_pred_to_gt = distances_pred_to_gt[ min(idx, len(distances_pred_to_gt)-1)] else: perc_distance_pred_to_gt = np.Inf return max(perc_distance_gt_to_pred, perc_distance_pred_to_gt)
41.516129
91
0.662652
04e7758438803fbd94e3bf7cf14273a9330f086d
1,382
py
Python
model-optimizer/extensions/front/caffe/ctcgreedydecoder_ext.py
calvinfeng/openvino
11f591c16852637506b1b40d083b450e56d0c8ac
[ "Apache-2.0" ]
null
null
null
model-optimizer/extensions/front/caffe/ctcgreedydecoder_ext.py
calvinfeng/openvino
11f591c16852637506b1b40d083b450e56d0c8ac
[ "Apache-2.0" ]
19
2021-03-26T08:11:00.000Z
2022-02-21T13:06:26.000Z
model-optimizer/extensions/front/caffe/ctcgreedydecoder_ext.py
calvinfeng/openvino
11f591c16852637506b1b40d083b450e56d0c8ac
[ "Apache-2.0" ]
1
2021-07-28T17:30:46.000Z
2021-07-28T17:30:46.000Z
""" Copyright (C) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from extensions.ops.ctc_greedy_decoder import CTCGreedyDecoderOp from mo.front.caffe.collect_attributes import merge_attrs from mo.front.common.extractors.utils import layout_attrs from mo.front.extractor import FrontExtractorOp class CTCGreedyDecoderFrontExtractor(FrontExtractorOp): op = 'CTCGreedyDecoder' enabled = True @classmethod def extract(cls, node): proto_layer = node.pb param = proto_layer.ctc_decoder_param update_attrs = { 'ctc_merge_repeated': (int)(param.ctc_merge_repeated) } mapping_rule = merge_attrs(param, update_attrs) mapping_rule.update(layout_attrs()) # update the attributes of the node CTCGreedyDecoderOp.update_node_stat(node, mapping_rule) return cls.enabled
32.904762
73
0.745297
3ed4ff79ff4a85080a6fb8aa70c12b087955073f
666
py
Python
carflux/src/agent.py
Deepak-r2dl/carflux
53e14a32897b9615a0b0d07bb99e5ebc9ce069f8
[ "MIT" ]
null
null
null
carflux/src/agent.py
Deepak-r2dl/carflux
53e14a32897b9615a0b0d07bb99e5ebc9ce069f8
[ "MIT" ]
null
null
null
carflux/src/agent.py
Deepak-r2dl/carflux
53e14a32897b9615a0b0d07bb99e5ebc9ce069f8
[ "MIT" ]
null
null
null
""" The agent class for Pacman """ from abc import ABC, abstractmethod class Agent(ABC): # Probably a bit risque. def __init__(self,**kwargs): for k, v in kwargs.items(): setattr(self,k,v) super().__init__() @abstractmethod # Observe world. Encode neighbourhood filter if needbe def perceive(self): pass @abstractmethod # update internal states, optional def update_state(self): pass @abstractmethod # react to world settings def react(self): pass @abstractmethod # communicate observable state, def communicate(self): pass
20.181818
58
0.605105
6396492d3df51ca8c247a8b5a93f435c1bceef25
7,646
py
Python
thermo/database.py
RoryKurek/thermo
985279467faa028234ab422a19b69385e5100149
[ "MIT" ]
380
2016-07-04T09:45:20.000Z
2022-03-20T18:09:45.000Z
thermo/database.py
RoryKurek/thermo
985279467faa028234ab422a19b69385e5100149
[ "MIT" ]
104
2016-07-10T20:47:12.000Z
2022-03-22T20:43:39.000Z
thermo/database.py
RoryKurek/thermo
985279467faa028234ab422a19b69385e5100149
[ "MIT" ]
96
2016-07-05T20:54:05.000Z
2022-02-23T03:06:02.000Z
# -*- coding: utf-8 -*- '''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2018, 2019 Caleb Bell <Caleb.Andrew.Bell@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' from __future__ import division __all__ = [''] import os import marshal from chemicals.utils import log, exp from chemicals.utils import mixing_simple, none_and_length_check, Vm_to_rho from fluids.constants import N_A, k from thermo.utils import TDependentProperty, MixtureProperty from thermo.chemical import ChemicalConstants folder = os.path.join(os.path.dirname(__file__), 'Misc') def loadChemicalConstants(data, rows=True): '''Accepts either a marshal-style list-of-lists with fixed indexes, or takes in the json-style dict-of-dicts-of-dicts. Returns a dictionary of ChemicalConstants indexed by their CASs. ''' loaded_chemicals = {} # Question: What if every database is a per-datasource one # And I fit all methods to apolynom to within their range? # Then we have one additional database which holds the best data source. # That way, all coefficients are precisely sourced. def add_chemical(kwargs): # TODO: remove to skip a function call constants = ChemicalConstants(**kwargs) loaded_chemicals[constants.CAS] = constants if rows: for row in data: kwargs = dict(CAS=row[0], Tc=row[1], Pc=row[2], Vc=row[3], omega=row[4], Tb=row[5], Tm=row[6], Tt=row[7], Pt=row[8], Hfus=row[9], Hsub=row[10], Hf=row[11], dipole=row[12], HeatCapacityGas=row[13], HeatCapacityLiquid=row[14], HeatCapacitySolid=row[15], ThermalConductivityLiquid=row[16], ThermalConductivityGas=row[17], ViscosityLiquid=row[18], ViscosityGas=row[19], EnthalpyVaporization=row[20], VaporPressure=row[21], VolumeLiquid=row[22], SublimationPressure=row[23], EnthalpySublimation=row[24], VolumeSolid=row[25], VolumeSupercriticalLiquid=row[26]) add_chemical(kwargs) else: for CAS, item in data.items(): kwargs= dict(CAS=CAS, Tc=item['Tc']['value'], Pc=item['Pc']['value'], Vc=item['Vc']['value'], omega=item['omega']['value'], Tb=item['Tb']['value'], Tm=item['Tm']['value'], Tt=item['Tt']['value'], Pt=item['Pt']['value'], Hfus=item['Hfus']['value'], Hsub=item['Hsub']['value'], Hf=item['Hf']['value'], dipole=item['dipole']['value']) for prop_key, store in marshal_properties: try: prop_data = item[prop_key] Tmin, Tmax = prop_data['Tmin'], prop_data['Tmax'] coefficients = prop_data['coefficients'] if 'Tc' in prop_data: kwargs[prop_key] = (Tmin, Tmax, prop_data['Tc'], coefficients) else: kwargs[prop_key] = (Tmin, Tmax, coefficients) except KeyError: pass # Tmin, Tmax, coefficients = None, None, None # kwargs[prop_key] = (Tmin, Tmax, coefficients) add_chemical(kwargs) return loaded_chemicals def load_json_data(json_path): f = open(json_path, 'r') import json full_data = json.load(f) f.close() return full_data def marshal_json_data(full_data, path): marshal_rows = [] for CAS, data in full_data.items(): row = [CAS] row.append(data['Tc']['value']) row.append(data['Pc']['value']) row.append(data['Vc']['value']) row.append(data['omega']['value']) row.append(data['Tb']['value']) row.append(data['Tm']['value']) row.append(data['Tt']['value']) row.append(data['Pt']['value']) row.append(data['Hfus']['value']) row.append(data['Hsub']['value']) row.append(data['Hf']['value']) row.append(data['dipole']['value']) for prop_key, store in marshal_properties: try: prop_data = data[prop_key] Tmin, Tmax = prop_data['Tmin'], prop_data['Tmax'] coefficients = prop_data['coefficients'] if 'Tc' in prop_data: Tc = prop_data['Tc'] row = (Tmin, Tmax, Tc, coefficients) else: row = (Tmin, Tmax, coefficients) except KeyError: row = (None, None, None) row.append(row) marshal_rows.append(row) f = open(path, 'wb') marshal.dump(marshal_rows, f, 2) f.close() return marshal_rows marshal_properties = [('HeatCapacityGas', True), ('HeatCapacityLiquid', True), ('HeatCapacitySolid', True), ('ThermalConductivityLiquid', True), ('ThermalConductivityGas', True), ('ViscosityLiquid', True), ('ViscosityGas', True), ('EnthalpyVaporization', True), ('VaporPressure', True), ('VolumeLiquid', True), ('SublimationPressure', True), ('EnthalpySublimation', True), ('VolumeSolid', True), ('VolumeSupercriticalLiquid', True), ] json_path = os.path.join(folder, 'constants dump.json') binary_path = os.path.join(folder, 'binary dump.marshal') skip = not os.path.exists(json_path) loaded_chemicals = {} if not skip: from_json = True if os.path.exists(binary_path): # get the changed dates for each file and only load from binary if # the binary file is newer json_mtime = os.path.getmtime(json_path) binary_mtime = os.path.getmtime(binary_path) if binary_mtime > json_mtime and os.path.getsize(binary_path) > 10000: from_json = False full_data = {} marshal_rows = [] if from_json: full_data = load_json_data(json_path) loaded_chemicals = loadChemicalConstants(full_data, rows=False) marshal_data = from_json if marshal_data: try: marshal_rows = marshal_json_data(full_data, binary_path) except: pass if not from_json: marshal_rows = marshal.load(open(binary_path, 'rb')) loaded_chemicals = loadChemicalConstants(marshal_rows, rows=True)
36.583732
99
0.598483
f344ff84a369fd623b708fe522a11d03759e7d3c
4,390
py
Python
hood/settings.py
NIelsen-Mudaki/neighbourhood
12e7a38188e00c1cbc7810745eda4d9d205ae0e1
[ "Unlicense" ]
null
null
null
hood/settings.py
NIelsen-Mudaki/neighbourhood
12e7a38188e00c1cbc7810745eda4d9d205ae0e1
[ "Unlicense" ]
null
null
null
hood/settings.py
NIelsen-Mudaki/neighbourhood
12e7a38188e00c1cbc7810745eda4d9d205ae0e1
[ "Unlicense" ]
null
null
null
""" Django settings for hood project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import django_heroku import dj_database_url from decouple import config,Csv MODE=config("MODE", default="dev") SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) # development if config('MODE')=="dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '_c0!0zu8k^y^k29@&6g_ert02sube2f33^xjfm6dlizvx^)e#k' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'neighbourhood', 'bootstrap3', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'hood.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'hood.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'hood', 'USER': 'moringa', 'PASSWORD':'Sereniel', } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') django_heroku.settings(locals())
26.287425
91
0.682916
0862370125d1625c58336c2d62a4a57deb52bbe0
1,234
py
Python
examples/blogprj/apps/blog/models.py
pimentech/django-mongoforms
6220e91e05d73a26e495460f98667e23dc16c5f6
[ "BSD-3-Clause" ]
1
2017-07-27T05:44:47.000Z
2017-07-27T05:44:47.000Z
examples/blogprj/apps/blog/models.py
pimentech/django-mongoforms
6220e91e05d73a26e495460f98667e23dc16c5f6
[ "BSD-3-Clause" ]
null
null
null
examples/blogprj/apps/blog/models.py
pimentech/django-mongoforms
6220e91e05d73a26e495460f98667e23dc16c5f6
[ "BSD-3-Clause" ]
null
null
null
import datetime from django.template.defaultfilters import slugify from django.core.urlresolvers import reverse from mongoengine import * class BlogPost(Document): published = BooleanField(default=False) author = StringField(required=True) title = StringField(required=True) slug = StringField() content = StringField(required=True) datetime_added = DateTimeField(default=datetime.datetime.now) def save(self): if self.slug is None: slug = slugify(self.title) new_slug = slug c = 1 while True: try: BlogPost.objects.get(slug=new_slug) except BlogPost.DoesNotExist: break else: c += 1 new_slug = '%s-%s' % (slug, c) self.slug = new_slug return super(BlogPost, self).save() def get_absolute_url(self): #return u'%s/' % self.slug return reverse('apps.blog.views.show', kwargs={'slug': self.slug}) @queryset_manager def published_posts(doc_cls, queryset): return queryset(published=True) meta = { 'ordering': ['-datetime_added'] }
28.697674
74
0.579417
a35cf75d191f9eddfc81c4eb7b7eeedcabc1ef3e
13,034
py
Python
tools/tools/env/tools/Python27/Lib/site-packages/serial/urlhandler/protocol_socket.py
John-J-smith/myRTT
7b206d3984f3b70f825a0b9ec87750c153c2c0f1
[ "Apache-2.0" ]
1
2020-11-25T20:09:59.000Z
2020-11-25T20:09:59.000Z
serial/urlhandler/protocol_socket.py
gregkoul/pyserial
1ef8648ff3c4b4aeaeb3962ea8d1076a1e90ae74
[ "BSD-3-Clause" ]
null
null
null
serial/urlhandler/protocol_socket.py
gregkoul/pyserial
1ef8648ff3c4b4aeaeb3962ea8d1076a1e90ae74
[ "BSD-3-Clause" ]
2
2019-02-14T08:13:33.000Z
2019-04-23T21:47:48.000Z
#! python # # This module implements a simple socket based client. # It does not support changing any port parameters and will silently ignore any # requests to do so. # # The purpose of this module is that applications using pySerial can connect to # TCP/IP to serial port converters that do not support RFC 2217. # # This file is part of pySerial. https://github.com/pyserial/pyserial # (C) 2001-2015 Chris Liechti <cliechti@gmx.net> # # SPDX-License-Identifier: BSD-3-Clause # # URL format: socket://<host>:<port>[/option[/option...]] # options: # - "debug" print diagnostic messages import errno import logging import select import socket import time try: import urlparse except ImportError: import urllib.parse as urlparse from serial.serialutil import SerialBase, SerialException, to_bytes, \ portNotOpenError, writeTimeoutError, Timeout # map log level names to constants. used in from_url() LOGGER_LEVELS = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, } POLL_TIMEOUT = 5 class Serial(SerialBase): """Serial port implementation for plain sockets.""" BAUDRATES = (50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200) def open(self): """\ Open port with current settings. This may throw a SerialException if the port cannot be opened. """ self.logger = None if self._port is None: raise SerialException("Port must be configured before it can be used.") if self.is_open: raise SerialException("Port is already open.") try: # timeout is used for write timeout support :/ and to get an initial connection timeout self._socket = socket.create_connection(self.from_url(self.portstr), timeout=POLL_TIMEOUT) except Exception as msg: self._socket = None raise SerialException("Could not open port {}: {}".format(self.portstr, msg)) # after connecting, switch to non-blocking, we're using select self._socket.setblocking(False) # not that there is anything to configure... self._reconfigure_port() # all things set up get, now a clean start self.is_open = True if not self._dsrdtr: self._update_dtr_state() if not self._rtscts: self._update_rts_state() self.reset_input_buffer() self.reset_output_buffer() def _reconfigure_port(self): """\ Set communication parameters on opened port. For the socket:// protocol all settings are ignored! """ if self._socket is None: raise SerialException("Can only operate on open ports") if self.logger: self.logger.info('ignored port configuration change') def close(self): """Close port""" if self.is_open: if self._socket: try: self._socket.shutdown(socket.SHUT_RDWR) self._socket.close() except: # ignore errors. pass self._socket = None self.is_open = False # in case of quick reconnects, give the server some time time.sleep(0.3) def from_url(self, url): """extract host and port from an URL string""" parts = urlparse.urlsplit(url) if parts.scheme != "socket": raise SerialException( 'expected a string in the form ' '"socket://<host>:<port>[?logging={debug|info|warning|error}]": ' 'not starting with socket:// ({!r})'.format(parts.scheme)) try: # process options now, directly altering self for option, values in urlparse.parse_qs(parts.query, True).items(): if option == 'logging': logging.basicConfig() # XXX is that good to call it here? self.logger = logging.getLogger('pySerial.socket') self.logger.setLevel(LOGGER_LEVELS[values[0]]) self.logger.debug('enabled logging') else: raise ValueError('unknown option: {!r}'.format(option)) if not 0 <= parts.port < 65536: raise ValueError("port not in range 0...65535") except ValueError as e: raise SerialException( 'expected a string in the form ' '"socket://<host>:<port>[?logging={debug|info|warning|error}]": {}'.format(e)) return (parts.hostname, parts.port) # - - - - - - - - - - - - - - - - - - - - - - - - @property def in_waiting(self): """Return the number of bytes currently in the input buffer.""" if not self.is_open: raise portNotOpenError # Poll the socket to see if it is ready for reading. # If ready, at least one byte will be to read. lr, lw, lx = select.select([self._socket], [], [], 0) return len(lr) # select based implementation, similar to posix, but only using socket API # to be portable, additionally handle socket timeout which is used to # emulate write timeouts def read(self, size=1): """\ Read size bytes from the serial port. If a timeout is set it may return less characters as requested. With no timeout it will block until the requested number of bytes is read. """ if not self.is_open: raise portNotOpenError read = bytearray() timeout = Timeout(self._timeout) while len(read) < size: try: ready, _, _ = select.select([self._socket], [], [], timeout.time_left()) # If select was used with a timeout, and the timeout occurs, it # returns with empty lists -> thus abort read operation. # For timeout == 0 (non-blocking operation) also abort when # there is nothing to read. if not ready: break # timeout buf = self._socket.recv(size - len(read)) # read should always return some data as select reported it was # ready to read when we get to this point, unless it is EOF if not buf: raise SerialException('socket disconnected') read.extend(buf) except OSError as e: # this is for Python 3.x where select.error is a subclass of # OSError ignore EAGAIN errors. all other errors are shown if e.errno != errno.EAGAIN: raise SerialException('read failed: {}'.format(e)) except (select.error, socket.error) as e: # this is for Python 2.x # ignore EAGAIN errors. all other errors are shown # see also http://www.python.org/dev/peps/pep-3151/#select if e[0] != errno.EAGAIN: raise SerialException('read failed: {}'.format(e)) if timeout.expired(): break return bytes(read) def write(self, data): """\ Output the given byte string over the serial port. Can block if the connection is blocked. May raise SerialException if the connection is closed. """ if not self.is_open: raise portNotOpenError d = to_bytes(data) tx_len = length = len(d) timeout = Timeout(self._write_timeout) while tx_len > 0: try: n = self._socket.send(d) if timeout.is_non_blocking: # Zero timeout indicates non-blocking - simply return the # number of bytes of data actually written return n elif not timeout.is_infinite: # when timeout is set, use select to wait for being ready # with the time left as timeout if timeout.expired(): raise writeTimeoutError _, ready, _ = select.select([], [self._socket], [], timeout.time_left()) if not ready: raise writeTimeoutError else: assert timeout.time_left() is None # wait for write operation _, ready, _ = select.select([], [self._socket], [], None) if not ready: raise SerialException('write failed (select)') d = d[n:] tx_len -= n except SerialException: raise except OSError as v: if v.errno != errno.EAGAIN: raise SerialException('write failed: {}'.format(v)) # still calculate and check timeout if timeout.expired(): raise writeTimeoutError return length - len(d) def reset_input_buffer(self): """Clear input buffer, discarding all that is in the buffer.""" if not self.is_open: raise portNotOpenError # just use recv to remove input, while there is some ready = True while ready: ready, _, _ = select.select([self._socket], [], [], 0) try: self._socket.recv(4096) except OSError as e: # this is for Python 3.x where select.error is a subclass of # OSError ignore EAGAIN errors. all other errors are shown if e.errno != errno.EAGAIN: raise SerialException('reset_input_buffer failed: {}'.format(e)) except (select.error, socket.error) as e: # this is for Python 2.x # ignore EAGAIN errors. all other errors are shown # see also http://www.python.org/dev/peps/pep-3151/#select if e[0] != errno.EAGAIN: raise SerialException('reset_input_buffer failed: {}'.format(e)) def reset_output_buffer(self): """\ Clear output buffer, aborting the current output and discarding all that is in the buffer. """ if not self.is_open: raise portNotOpenError if self.logger: self.logger.info('ignored reset_output_buffer') def send_break(self, duration=0.25): """\ Send break condition. Timed, returns to idle state after given duration. """ if not self.is_open: raise portNotOpenError if self.logger: self.logger.info('ignored send_break({!r})'.format(duration)) def _update_break_state(self): """Set break: Controls TXD. When active, to transmitting is possible.""" if self.logger: self.logger.info('ignored _update_break_state({!r})'.format(self._break_state)) def _update_rts_state(self): """Set terminal status line: Request To Send""" if self.logger: self.logger.info('ignored _update_rts_state({!r})'.format(self._rts_state)) def _update_dtr_state(self): """Set terminal status line: Data Terminal Ready""" if self.logger: self.logger.info('ignored _update_dtr_state({!r})'.format(self._dtr_state)) @property def cts(self): """Read terminal status line: Clear To Send""" if not self.is_open: raise portNotOpenError if self.logger: self.logger.info('returning dummy for cts') return True @property def dsr(self): """Read terminal status line: Data Set Ready""" if not self.is_open: raise portNotOpenError if self.logger: self.logger.info('returning dummy for dsr') return True @property def ri(self): """Read terminal status line: Ring Indicator""" if not self.is_open: raise portNotOpenError if self.logger: self.logger.info('returning dummy for ri') return False @property def cd(self): """Read terminal status line: Carrier Detect""" if not self.is_open: raise portNotOpenError if self.logger: self.logger.info('returning dummy for cd)') return True # - - - platform specific - - - # works on Linux and probably all the other POSIX systems def fileno(self): """Get the file handle of the underlying socket for use with select""" return self._socket.fileno() # # simple client test if __name__ == '__main__': import sys s = Serial('socket://localhost:7000') sys.stdout.write('{}\n'.format(s)) sys.stdout.write("write...\n") s.write(b"hello\n") s.flush() sys.stdout.write("read: {}\n".format(s.read(5))) s.close()
37.56196
102
0.569204
414027c6232843f2d07aa824dbc600b01a1be8f9
1,190
py
Python
00_PythonPrimer/pythonprimer.py
caspar/PhysicsLab
1b4d45d9e915a84ecb80a39498850463bbc2d3be
[ "MIT" ]
1
2016-05-08T19:42:20.000Z
2016-05-08T19:42:20.000Z
00_PythonPrimer/pythonprimer.py
caspar/PhysicsLab
1b4d45d9e915a84ecb80a39498850463bbc2d3be
[ "MIT" ]
null
null
null
00_PythonPrimer/pythonprimer.py
caspar/PhysicsLab
1b4d45d9e915a84ecb80a39498850463bbc2d3be
[ "MIT" ]
null
null
null
#Lab 0 #coding=utf-8 #Author Caspar Lant import numpy as np; import matplotlib.pyplot as plt; # load csv DATA = "SampleData-1.csv"; measurement, temperature, pressure, uncertainty, error = np.loadtxt(DATA, skiprows=5, unpack=True, delimiter=','); # plot data # plt.xlabel("Temperature ($^\circ$C)"); # plt.ylabel("Pressure (lb/in$ ^2$)"); # with error bars plt.errorbar(temperature, pressure, error, linestyle = 'None', marker='d', mfc='yellow', mec='r', ms=20, mew=1, ecolor = "k"); plt.show(); ##################### # coupled pendulums # ##################### A = 0.1 w1 = 2 * np.pi * 5 w2 = 2 * np.pi * 5.2 theta_a1 = [] theta_b1 = [] theta_a2 = [] theta_b2 = [] times = []; for t in range (0,400): theta_a1.append(A * np.cos(w1 * t / 200) + A * np.cos(w2 * t / 200)); theta_b1.append(A * np.cos(w1 * t / 200) - A * np.cos(w2 * t / 200)); theta_a2.append(2 * A * np.cos((w2 - w1) / 2 * t / 200) * np.cos((w2 + w1) / 2 * t / 200)); theta_b2.append(2 * A * np.sin((w2 - w1) / 2 * t / 200) * np.sin((w2 + w1) / 2 * t / 200)); times.append(t) plt.plot(times, theta_a1); plt.plot(times, theta_b1); plt.plot(times, theta_a2); plt.plot(times, theta_b2); plt.show();
26.444444
126
0.582353
8619a4378c2a4f736f26de61a365992dfca06c8f
15,414
py
Python
Apps/phthreatminer/threatminer.py
mattsayar-splunk/phantom-apps
b719b78ded609ae3cbd62d7d2cc317db1a613d3b
[ "Apache-2.0" ]
74
2019-10-22T02:00:53.000Z
2022-03-15T12:56:13.000Z
Apps/phthreatminer/threatminer.py
mattsayar-splunk/phantom-apps
b719b78ded609ae3cbd62d7d2cc317db1a613d3b
[ "Apache-2.0" ]
375
2019-10-22T20:53:50.000Z
2021-11-09T21:28:43.000Z
Apps/phthreatminer/threatminer.py
mattsayar-splunk/phantom-apps
b719b78ded609ae3cbd62d7d2cc317db1a613d3b
[ "Apache-2.0" ]
175
2019-10-23T15:30:42.000Z
2021-11-05T21:33:31.000Z
# Copyright (c) 2019 Splunk Inc. # # Licensed under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) # # Threat Miner Class import requests import logging import json import time # Establish Logging. logging.basicConfig() logger = logging.getLogger('ThreatMiner') class threatMiner(): def __init__( self, # Replace the base url to the url that you need base_url='https://api.threatminer.org/v2/', prettyPrint=False ): """ Threat Miner Python Wrapper. Available Functions - test_connect Provides a method to test connectivity - get_domain This function performs lookups against domains depending on the function - get_ip This function performs lookups against IPs depending on the function - get_sample This function performs lookups against hashes depending on the functions - get_imphash This function performs lookups against imphashes depending on the functions - get_ssdeep This function performs lookups against ssdeep depending on the functions - get_ssl This function performs lookups against ssl depending on the functions - get_email This function performs lookups against email depending on the functions - get_av This function performs lookups against AV depending on the functions Usage: # Should match your class name. Delete this line s = threatMiner() s.function_name(valid_variables) """ # Create Requests Session self.session = requests.session() # Create Base URL variable to allow for updates in the future self.base_url = base_url # Create Pretty Print variable self.prettyPrint = prettyPrint # Create endpoint endpoint = '{}domain.php?q=vwrm.com&rt=1'.format(self.base_url) # Initiate Ping to Threat Miner Endpoint self.ping = self.session.get(endpoint) # Request failed returning false and logging an error if self.ping.status_code != 200: logger.error( "Error connecting to Threat Miner, error message: {}".format( self.ping.text)) def logger_out(self, level, function_name, format_var): if level == "warning": message = ("{}: Error with query to threatMiner," "error message: {}".format(function_name, format_var)) return logger.warning(message) def parse_output(self, input): # If prettyPrint set to False if self.prettyPrint is False: return json.dumps(input) # If prettyPrint set to True elif self.prettyPrint is True: print json.dumps(input, indent=4) def test_connect(self): """ Function: Test ping to Threat Miner API Usage: s = threatMiner() s.test_connect() """ endpoint = '{}domain.php?q=vwrm.com&rt=1'.format(self.base_url) # Make connection to the ping endpoint r = self.session.get(endpoint) # If the request is successful if r.status_code == 200: # Specify Output as JSON return True # Request failed returning false and logging an error else: self.logger_out("warning", "test_connect", r.text) return False def get_domain(self, domain, function): """ Function: This function performs lookups against domains depending on the function :param function: Required - These are the functions that threat miner provide for domain lookups Functions 1 - WHOIS 2 - Passive DNS 3 - Example Query URI 4 - Related Samples (hash only) 5 - Subdomains 6 - Report tagging Usage: s = threatMiner() s.get_domain("vwrm.com", 1) """ # URL that we are querying endpoint = '{}/domain.php?q={}&rt={}'.format( self.base_url, domain, function) # Create a request r = self.session.get(endpoint) # Sleep to ensure throttling time.sleep(7) # If the request is successful if r.status_code == 200: if int(r.json()['status_code']) == 200: output = r.json() return self.parse_output(output) else: status_message = r.json()['status_message'] self.logger_out("warning", "get_domain", status_message) return False # Request failed returning false and logging an error else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_domain", status_message) return False def get_ip(self, ip, function): """ Function: This function performs lookups against IPs depending on the function :param function: Required - These are the functions that threat miner provide for ip lookups Functions 1 - WHOIS 2 - Passive DNS 3 - URIs 4 - Related Samples (hash only) 5 - SSL Certificates (hash only) 6 - Report tagging Usage: s = threatMiner() s.get_ip("216.58.213.110", 1) """ # URL that we are querying endpoint = '{}/host.php?q={}&rt={}'.format(self.base_url, ip, function) # Create a request r = self.session.get(endpoint) # Sleep to ensure throttling time.sleep(7) # If the request is successful if r.status_code == 200: if int(r.json()['status_code']) == 200: output = r.json() return self.parse_output(output) else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_ip", status_message) return False # Request failed returning false and logging an error else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_ip", status_message) return False def get_sample(self, sample, function): """ Function: This function performs lookups against hashes depending on the functions :param function: Required - These are the functions that threat miner provide for hash lookups Functions 1 - Metadata 2 - HTTP Traffic 3 - Hosts (domains and IPs) 4 - Mutants 5 - Registry Keys 6 - AV Detections 7 - Report tagging Usage: s = threatMiner() s.get_sample("e6ff1bf0821f00384cdd25efb9b1cc09", 1) """ # URL that we are querying endpoint = '{}/sample.php?q={}&rt={}'.format( self.base_url, sample, function) # Create a request r = self.session.get(endpoint) # Sleep to ensure throttling time.sleep(7) # If the request is successful if r.status_code == 200: if int(r.json()['status_code']) == 200: output = r.json() return self.parse_output(output) else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_sample", status_message) return False # Request failed returning false and logging an error else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_sample", status_message) return False def get_imphash(self, imphash, function): """ Function: This function performs lookups against imphashes depending on the functions :param function: Required - These are the functions that threat miner provide for imphashes lookups Functions 1 - Samples 2 - Report tagging Usage: s = threatMiner() s.get_imphash("1f4f257947c1b713ca7f9bc25f914039", 1) """ # URL that we are querying endpoint = '{}/imphash.php?q={}&rt={}'.format( self.base_url, imphash, function) # Create a request r = self.session.get(endpoint) # Sleep to ensure throttling time.sleep(7) # If the request is successful # If the request is successful if r.status_code == 200: if int(r.json()['status_code']) == 200: output = r.json() return self.parse_output(output) else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_imphash", status_message) return False else: status_message = r.json()['status_message'] self.logger_out("warning", "get_imphash", status_message) return False def get_ssdeep(self, ssdeep, function): """ Function: This function performs lookups against ssdeep depending on the functions :param function: Required - These are the functions that threat miner provide for ssdeep lookups Functions 1 - Samples 2 - Report tagging Usage: s = threatMiner() s.get_ssdeep(" 1536:TJsNrChuG2K6IVOTjWko8a9P6W3OEHBQc4w4:TJs0oG2KSTj3o8a9PFeEHn4l", 1) """ # URL that we are querying endpoint = '{}/ssdeep.php?q={}&rt={}'.format( self.base_url, ssdeep, function) # Create a request r = self.session.get(endpoint) # Sleep to ensure throttling time.sleep(7) # If the request is successful if r.status_code == 200: if int(r.json()['status_code']) == 200: output = r.json() return self.parse_output(output) else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_ssdeep", status_message) return False else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_ssdeep", status_message) return False def get_ssl(self, ssl, function): """ Function: This function performs lookups against ssl depending on the functions :param function: Required - These are the functions that threat miner provide for ssl lookups Functions 1 - Hosts 2 - Report tagging Usage: s = threatMiner() s.get_ssl("42a8d5b3a867a59a79f44ffadd61460780fe58f2", 1) """ # URL that we are querying endpoint = '{}/ssl.php?q={}&rt={}'.format(self.base_url, ssl, function) # Create a request r = self.session.get(endpoint) # Sleep to ensure throttling time.sleep(7) # If the request is successful if r.status_code == 200: if int(r.json()['status_code']) == 200: output = r.json() return self.parse_output(output) else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_ssl", status_message) return False else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_ssl", status_message) return False def get_email(self, email, function): """ Function: This function performs lookups against email depending on the functions :param function: Required - These are the functions that threat miner provide for email lookups Functions 1 - Domains Usage: s = threatMiner() s.get_email("7bf5721bfa009479c33f3c3cf4ea5392200f030e", 1) """ # URL that we are querying endpoint = '{}/email.php?q={}&rt={}'.format( self.base_url, email, function) # Create a request r = self.session.get(endpoint) # Sleep to ensure throttling time.sleep(7) # If the request is successful if r.status_code == 200: if int(r.json()['status_code']) == 200: output = r.json() return self.parse_output(output) else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_email", status_message) return False else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_email", status_message) return False def get_av(self, av, function): """ Function: This function performs lookups against AV depending on the functions :param function: Required - These are the functions that threat miner provide for AV lookups Functions 1 - Samples 2 - Report tagging Usage: s = threatMiner() s.get_av("Trojan.Enfal", 1) """ # URL that we are querying endpoint = '{}/av.php?q={}&rt={}'.format(self.base_url, av, function) # Create a request r = self.session.get(endpoint) # Sleep to ensure throttling time.sleep(7) # If the request is successful if r.status_code == 200: if int(r.json()['status_code']) == 200: output = r.json() return self.parse_output(output) else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_av", status_message) return False else: # Write a warning to the console status_message = r.json()['status_message'] self.logger_out("warning", "get_av", status_message) return False
35.846512
79
0.542494
d273febec5691a9757874476ddec831c480f3597
16,511
py
Python
yolo3/model.py
tantao258/keras-yolo3
cf5222e419903fc6b9e2388a6fff65bc3e001e07
[ "MIT" ]
null
null
null
yolo3/model.py
tantao258/keras-yolo3
cf5222e419903fc6b9e2388a6fff65bc3e001e07
[ "MIT" ]
null
null
null
yolo3/model.py
tantao258/keras-yolo3
cf5222e419903fc6b9e2388a6fff65bc3e001e07
[ "MIT" ]
null
null
null
"""YOLO_v3 Model Defined in Keras.""" from functools import wraps import numpy as np import tensorflow as tf from keras import backend as K from keras.layers import Conv2D, Add, ZeroPadding2D, UpSampling2D, Concatenate, MaxPooling2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.regularizers import l2 from yolo3.utils import compose @wraps(Conv2D) def DarknetConv2D(*args, **kwargs): """Wrapper to set Darknet parameters for Convolution2D.""" darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)} darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2,2) else 'same' darknet_conv_kwargs.update(kwargs) return Conv2D(*args, **darknet_conv_kwargs) def DarknetConv2D_BN_Leaky(*args, **kwargs): """Darknet Convolution2D followed by BatchNormalization and LeakyReLU.""" no_bias_kwargs = {'use_bias': False} no_bias_kwargs.update(kwargs) return compose( DarknetConv2D(*args, **no_bias_kwargs), BatchNormalization(), LeakyReLU(alpha=0.1)) def resblock_body(x, num_filters, num_blocks): '''A series of resblocks starting with a downsampling Convolution2D''' # Darknet uses left and top padding instead of 'same' mode x = ZeroPadding2D(((1,0),(1,0)))(x) x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x) for i in range(num_blocks): y = compose( DarknetConv2D_BN_Leaky(num_filters//2, (1,1)), DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x) x = Add()([x,y]) return x def darknet_body(x): """ Darknent body having 52 Convolution2D layers """ x = DarknetConv2D_BN_Leaky(32, (3,3))(x) x = resblock_body(x, 64, 1) x = resblock_body(x, 128, 2) x = resblock_body(x, 256, 8) x = resblock_body(x, 512, 8) x = resblock_body(x, 1024, 4) return x def make_last_layers(x, num_filters, out_filters): '''6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer''' x = compose( DarknetConv2D_BN_Leaky(num_filters, (1,1)), DarknetConv2D_BN_Leaky(num_filters*2, (3,3)), DarknetConv2D_BN_Leaky(num_filters, (1,1)), DarknetConv2D_BN_Leaky(num_filters*2, (3,3)), DarknetConv2D_BN_Leaky(num_filters, (1,1)))(x) y = compose( DarknetConv2D_BN_Leaky(num_filters*2, (3,3)), DarknetConv2D(out_filters, (1,1)))(x) return x, y def yolo_body(inputs, num_anchors, num_classes): """ Create YOLO_V3 model CNN body in Keras. """ darknet = Model(inputs, darknet_body(inputs)) x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5)) x = compose( DarknetConv2D_BN_Leaky(256, (1,1)), UpSampling2D(2))(x) x = Concatenate()([x,darknet.layers[152].output]) x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5)) x = compose( DarknetConv2D_BN_Leaky(128, (1,1)), UpSampling2D(2))(x) x = Concatenate()([x,darknet.layers[92].output]) x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5)) return Model(inputs, [y1,y2,y3]) def tiny_yolo_body(inputs, num_anchors, num_classes): '''Create Tiny YOLO_v3 model CNN body in keras.''' x1 = compose( DarknetConv2D_BN_Leaky(16, (3,3)), MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'), DarknetConv2D_BN_Leaky(32, (3,3)), MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'), DarknetConv2D_BN_Leaky(64, (3,3)), MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'), DarknetConv2D_BN_Leaky(128, (3,3)), MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'), DarknetConv2D_BN_Leaky(256, (3,3)))(inputs) x2 = compose( MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'), DarknetConv2D_BN_Leaky(512, (3,3)), MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='same'), DarknetConv2D_BN_Leaky(1024, (3,3)), DarknetConv2D_BN_Leaky(256, (1,1)))(x1) y1 = compose( DarknetConv2D_BN_Leaky(512, (3,3)), DarknetConv2D(num_anchors*(num_classes+5), (1,1)))(x2) x2 = compose( DarknetConv2D_BN_Leaky(128, (1,1)), UpSampling2D(2))(x2) y2 = compose( Concatenate(), DarknetConv2D_BN_Leaky(256, (3,3)), DarknetConv2D(num_anchors*(num_classes+5), (1,1)))([x2,x1]) return Model(inputs, [y1,y2]) def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False): """Convert final layer features to bounding box parameters.""" num_anchors = len(anchors) # Reshape to batch, height, width, num_anchors, box_params. anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) grid_shape = K.shape(feats)[1:3] # height, width grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], 1, 1]) grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, 1, 1]) grid = K.concatenate([grid_x, grid_y]) grid = K.cast(grid, K.dtype(feats)) feats = K.reshape( feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) # Adjust preditions to each spatial grid point and anchor size. box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats)) box_confidence = K.sigmoid(feats[..., 4:5]) box_class_probs = K.sigmoid(feats[..., 5:]) if calc_loss == True: return grid, feats, box_xy, box_wh return box_xy, box_wh, box_confidence, box_class_probs def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape): '''Get corrected boxes''' box_yx = box_xy[..., ::-1] box_hw = box_wh[..., ::-1] input_shape = K.cast(input_shape, K.dtype(box_yx)) image_shape = K.cast(image_shape, K.dtype(box_yx)) new_shape = K.round(image_shape * K.min(input_shape/image_shape)) offset = (input_shape-new_shape)/2./input_shape scale = input_shape/new_shape box_yx = (box_yx - offset) * scale box_hw *= scale box_mins = box_yx - (box_hw / 2.) box_maxes = box_yx + (box_hw / 2.) boxes = K.concatenate([ box_mins[..., 0:1], # y_min box_mins[..., 1:2], # x_min box_maxes[..., 0:1], # y_max box_maxes[..., 1:2] # x_max ]) # Scale boxes back to original image shape. boxes *= K.concatenate([image_shape, image_shape]) return boxes def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape): '''Process Conv layer output''' box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats, anchors, num_classes, input_shape) boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape) boxes = K.reshape(boxes, [-1, 4]) box_scores = box_confidence * box_class_probs box_scores = K.reshape(box_scores, [-1, num_classes]) return boxes, box_scores def yolo_eval(yolo_outputs, anchors, num_classes, image_shape, max_boxes=20, score_threshold=.6, iou_threshold=.5): """Evaluate YOLO model on given input and return filtered boxes.""" num_layers = len(yolo_outputs) anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] # default setting input_shape = K.shape(yolo_outputs[0])[1:3] * 32 boxes = [] box_scores = [] for l in range(num_layers): _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l], anchors[anchor_mask[l]], num_classes, input_shape, image_shape) boxes.append(_boxes) box_scores.append(_box_scores) boxes = K.concatenate(boxes, axis=0) box_scores = K.concatenate(box_scores, axis=0) mask = box_scores >= score_threshold max_boxes_tensor = K.constant(max_boxes, dtype='int32') boxes_ = [] scores_ = [] classes_ = [] for c in range(num_classes): # TODO: use keras backend instead of tf. class_boxes = tf.boolean_mask(boxes, mask[:, c]) class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c]) nms_index = tf.image.non_max_suppression( class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold) class_boxes = K.gather(class_boxes, nms_index) class_box_scores = K.gather(class_box_scores, nms_index) classes = K.ones_like(class_box_scores, 'int32') * c boxes_.append(class_boxes) scores_.append(class_box_scores) classes_.append(classes) boxes_ = K.concatenate(boxes_, axis=0) scores_ = K.concatenate(scores_, axis=0) classes_ = K.concatenate(classes_, axis=0) return boxes_, scores_, classes_ def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes): '''Preprocess true boxes to training input format Parameters ---------- true_boxes: array, shape=(m, T, 5) Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape. input_shape: array-like, hw, multiples of 32 anchors: array, shape=(N, 2), wh num_classes: integer Returns ------- y_true: list of array, shape like yolo_outputs, xywh are reletive value ''' assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes' num_layers = len(anchors)//3 # default setting anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] true_boxes = np.array(true_boxes, dtype='float32') input_shape = np.array(input_shape, dtype='int32') boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2 boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2] true_boxes[..., 0:2] = boxes_xy/input_shape[::-1] true_boxes[..., 2:4] = boxes_wh/input_shape[::-1] m = true_boxes.shape[0] grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)] y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes), dtype='float32') for l in range(num_layers)] # Expand dim to apply broadcasting. anchors = np.expand_dims(anchors, 0) anchor_maxes = anchors / 2. anchor_mins = -anchor_maxes valid_mask = boxes_wh[..., 0]>0 for b in range(m): # Discard zero rows. wh = boxes_wh[b, valid_mask[b]] if len(wh)==0: continue # Expand dim to apply broadcasting. wh = np.expand_dims(wh, -2) box_maxes = wh / 2. box_mins = -box_maxes intersect_mins = np.maximum(box_mins, anchor_mins) intersect_maxes = np.minimum(box_maxes, anchor_maxes) intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] box_area = wh[..., 0] * wh[..., 1] anchor_area = anchors[..., 0] * anchors[..., 1] iou = intersect_area / (box_area + anchor_area - intersect_area) # Find best anchor for each true box best_anchor = np.argmax(iou, axis=-1) for t, n in enumerate(best_anchor): for l in range(num_layers): if n in anchor_mask[l]: i = np.floor(true_boxes[b,t,0]*grid_shapes[l][1]).astype('int32') j = np.floor(true_boxes[b,t,1]*grid_shapes[l][0]).astype('int32') k = anchor_mask[l].index(n) c = true_boxes[b,t, 4].astype('int32') y_true[l][b, j, i, k, 0:4] = true_boxes[b,t, 0:4] y_true[l][b, j, i, k, 4] = 1 y_true[l][b, j, i, k, 5+c] = 1 return y_true def box_iou(b1, b2): '''Return iou tensor Parameters ---------- b1: tensor, shape=(i1,...,iN, 4), xywh b2: tensor, shape=(j, 4), xywh Returns ------- iou: tensor, shape=(i1,...,iN, j) ''' # Expand dim to apply broadcasting. b1 = K.expand_dims(b1, -2) b1_xy = b1[..., :2] b1_wh = b1[..., 2:4] b1_wh_half = b1_wh/2. b1_mins = b1_xy - b1_wh_half b1_maxes = b1_xy + b1_wh_half # Expand dim to apply broadcasting. b2 = K.expand_dims(b2, 0) b2_xy = b2[..., :2] b2_wh = b2[..., 2:4] b2_wh_half = b2_wh/2. b2_mins = b2_xy - b2_wh_half b2_maxes = b2_xy + b2_wh_half intersect_mins = K.maximum(b1_mins, b2_mins) intersect_maxes = K.minimum(b1_maxes, b2_maxes) intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.) intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] b1_area = b1_wh[..., 0] * b1_wh[..., 1] b2_area = b2_wh[..., 0] * b2_wh[..., 1] iou = intersect_area / (b1_area + b2_area - intersect_area) return iou def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False): '''Return yolo_loss tensor Parameters ---------- yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body y_true: list of array, the output of preprocess_true_boxes anchors: array, shape=(N, 2), wh num_classes: integer ignore_thresh: float, the iou threshold whether to ignore object confidence loss Returns ------- loss: tensor, shape=(1,) ''' num_layers = len(anchors)//3 # default setting yolo_outputs = args[:num_layers] y_true = args[num_layers:] anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0])) grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)] loss = 0 m = K.shape(yolo_outputs[0])[0] # batch size, tensor mf = K.cast(m, K.dtype(yolo_outputs[0])) for l in range(num_layers): object_mask = y_true[l][..., 4:5] true_class_probs = y_true[l][..., 5:] grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l], anchors[anchor_mask[l]], num_classes, input_shape, calc_loss=True) pred_box = K.concatenate([pred_xy, pred_wh]) # Darknet raw box to calculate loss. raw_true_xy = y_true[l][..., :2]*grid_shapes[l][::-1] - grid raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1]) raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh)) # avoid log(0)=-inf box_loss_scale = 2 - y_true[l][...,2:3]*y_true[l][...,3:4] # Find ignore mask, iterate over each of batch. ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True) object_mask_bool = K.cast(object_mask, 'bool') def loop_body(b, ignore_mask): true_box = tf.boolean_mask(y_true[l][b,...,0:4], object_mask_bool[b,...,0]) iou = box_iou(pred_box[b], true_box) best_iou = K.max(iou, axis=-1) ignore_mask = ignore_mask.write(b, K.cast(best_iou<ignore_thresh, K.dtype(true_box))) return b+1, ignore_mask _, ignore_mask = K.control_flow_ops.while_loop(lambda b,*args: b<m, loop_body, [0, ignore_mask]) ignore_mask = ignore_mask.stack() ignore_mask = K.expand_dims(ignore_mask, -1) # K.binary_crossentropy is helpful to avoid exp overflow. xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[...,0:2], from_logits=True) wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh-raw_pred[...,2:4]) confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ \ (1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_mask class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[...,5:], from_logits=True) xy_loss = K.sum(xy_loss) / mf wh_loss = K.sum(wh_loss) / mf confidence_loss = K.sum(confidence_loss) / mf class_loss = K.sum(class_loss) / mf loss += xy_loss + wh_loss + confidence_loss + class_loss if print_loss: loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ') return loss
39.594724
126
0.627582
da8931fcedd8fcaeee4024f2d348487d0795b706
17,380
py
Python
geoprisma/migrations/0001_initial.py
groupe-conseil-nutshimit-nippour/django-geoprisma
4732fdb8a0684eb4d7fd50aa43e11b454ee71d08
[ "BSD-3-Clause" ]
null
null
null
geoprisma/migrations/0001_initial.py
groupe-conseil-nutshimit-nippour/django-geoprisma
4732fdb8a0684eb4d7fd50aa43e11b454ee71d08
[ "BSD-3-Clause" ]
5
2020-02-12T00:23:17.000Z
2021-12-13T19:46:33.000Z
geoprisma/migrations/0001_initial.py
groupe-conseil-nutshimit-nippour/django-geoprisma
4732fdb8a0684eb4d7fd50aa43e11b454ee71d08
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.contrib.gis.db.models.fields class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='AccessFilter', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('commentaire', models.TextField(null=True, blank=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='AccessFilterOption', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('value', models.TextField(null=True, blank=True)), ('accessfilter', models.ForeignKey(to='geoprisma.AccessFilter')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Application', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('template', models.CharField(default=b'', max_length=255)), ('commentaire', models.TextField(null=True, blank=True)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='ApplicationType', fields=[ ('id', models.IntegerField(unique=True, serialize=False, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('activated', models.BooleanField(default=True)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='ApplicationWidget', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('order', models.IntegerField(null=True, blank=True)), ('application', models.ForeignKey(to='geoprisma.Application')), ], options={ 'ordering': ('order',), }, bases=(models.Model,), ), migrations.CreateModel( name='Datastore', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('layers', models.CharField(max_length=255, null=True)), ('commentaire', models.TextField(null=True, blank=True)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='DatastoreOption', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('value', models.TextField(null=True, blank=True)), ('datastore', models.ForeignKey(to='geoprisma.Datastore')), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='DefaultLayerOption', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('value', models.TextField(null=True, blank=True)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='Field', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('title', models.CharField(max_length=255, blank=True)), ('key', models.CharField(max_length=255, null=True, blank=True)), ('domain', models.CharField(max_length=255, null=True, blank=True)), ('commentaire', models.TextField(null=True, blank=True)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='FieldOption', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('value', models.TextField(null=True, blank=True)), ('field', models.ForeignKey(to='geoprisma.Field')), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='InitialView', fields=[ ('id_initial_view', models.AutoField(serialize=False, primary_key=True)), ('name', models.CharField(max_length=100)), ('description', models.CharField(max_length=100)), ('geom', django.contrib.gis.db.models.fields.GeometryField(srid=32187)), ('sort_index', models.IntegerField()), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='MapContext', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('commentaire', models.TextField(null=True, blank=True)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='MapContextOption', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('value', models.TextField(null=True, blank=True)), ('mapContext', models.ForeignKey(to='geoprisma.MapContext', db_column=b'mapcontext_id')), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='MapContextResource', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('order', models.IntegerField(null=True, blank=True)), ('mapContext', models.ForeignKey(to='geoprisma.MapContext', db_column=b'mapcontext_id')), ], options={ 'ordering': ('order',), }, bases=(models.Model,), ), migrations.CreateModel( name='Resource', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('acl_name', models.CharField(max_length=255, null=True, db_column=b'acl_name', blank=True)), ('key', models.CharField(max_length=255, null=True, blank=True)), ('domain', models.CharField(max_length=255, null=True, blank=True)), ('slug', models.SlugField(max_length=255, unique=True, null=True)), ('display_name', models.CharField(max_length=255, null=True, blank=True)), ('display_name_fr', models.CharField(max_length=255, null=True, blank=True)), ('commentaire', models.TextField()), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='ResourceAccessfilter', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('accessfilter', models.ForeignKey(to='geoprisma.AccessFilter')), ('resource', models.ForeignKey(to='geoprisma.Resource')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='ResourceField', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('order', models.IntegerField(null=True, blank=True)), ('field', models.ForeignKey(to='geoprisma.Field')), ('resource', models.ForeignKey(to='geoprisma.Resource')), ], options={ 'ordering': ('order',), }, bases=(models.Model,), ), migrations.CreateModel( name='ResourceOption', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('value', models.TextField(null=True, blank=True)), ('key', models.CharField(max_length=255, null=True, blank=True)), ('domain', models.CharField(max_length=255, null=True, blank=True)), ('resource', models.ForeignKey(to='geoprisma.Resource')), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='Service', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('source', models.CharField(max_length=1024)), ('slug', models.SlugField(max_length=255, unique=True, null=True)), ('commentaire', models.TextField(null=True, blank=True)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='ServiceOption', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('value', models.TextField(null=True, blank=True)), ('service', models.ForeignKey(to='geoprisma.Service')), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='ServiceType', fields=[ ('id', models.IntegerField(unique=True, serialize=False, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('activated', models.BooleanField(default=True)), ('priority', models.IntegerField(null=True, blank=True)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='Session', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('commentaire', models.TextField(null=True, blank=True)), ('application', models.ForeignKey(to='geoprisma.Application')), ('mapContext', models.ForeignKey(to='geoprisma.MapContext', db_column=b'mapcontext_id')), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='Widget', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('commentaire', models.TextField()), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.CreateModel( name='WidgetOption', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('value', models.TextField(null=True, blank=True)), ('order', models.IntegerField(null=True, blank=True)), ('widget', models.ForeignKey(to='geoprisma.Widget')), ], options={ 'ordering': ('order',), }, bases=(models.Model,), ), migrations.CreateModel( name='WidgetType', fields=[ ('id', models.IntegerField(unique=True, serialize=False, primary_key=True)), ('name', models.CharField(unique=True, max_length=255)), ('activated', models.BooleanField(default=True)), ('classname', models.CharField(default=b'geoprisma.core.widgets.widgetbase.WidgetBase', max_length=255)), ('action', models.CharField(default=b'read', max_length=255)), ], options={ 'ordering': ('name',), }, bases=(models.Model,), ), migrations.AddField( model_name='widget', name='type', field=models.ForeignKey(to='geoprisma.WidgetType'), preserve_default=True, ), migrations.AddField( model_name='service', name='type', field=models.ForeignKey(to='geoprisma.ServiceType'), preserve_default=True, ), migrations.AddField( model_name='resource', name='accessfilters', field=models.ManyToManyField(to='geoprisma.AccessFilter', null=True, through='geoprisma.ResourceAccessfilter', blank=True), preserve_default=True, ), migrations.AddField( model_name='resource', name='datastores', field=models.ManyToManyField(to='geoprisma.Datastore', db_table=b'geoprisma_resourcedatastore'), preserve_default=True, ), migrations.AddField( model_name='resource', name='fields', field=models.ManyToManyField(to='geoprisma.Field', through='geoprisma.ResourceField'), preserve_default=True, ), migrations.AddField( model_name='mapcontextresource', name='resource', field=models.ForeignKey(to='geoprisma.Resource'), preserve_default=True, ), migrations.AddField( model_name='mapcontext', name='resources', field=models.ManyToManyField(to='geoprisma.Resource', through='geoprisma.MapContextResource'), preserve_default=True, ), migrations.AddField( model_name='initialview', name='id_session', field=models.ForeignKey(to='geoprisma.Session'), preserve_default=True, ), migrations.AddField( model_name='defaultlayeroption', name='servicetype', field=models.ForeignKey(to='geoprisma.ServiceType'), preserve_default=True, ), migrations.AddField( model_name='datastore', name='service', field=models.ForeignKey(to='geoprisma.Service'), preserve_default=True, ), migrations.AddField( model_name='applicationwidget', name='widget', field=models.ForeignKey(to='geoprisma.Widget'), preserve_default=True, ), migrations.AddField( model_name='application', name='type', field=models.ForeignKey(to='geoprisma.ApplicationType'), preserve_default=True, ), migrations.AddField( model_name='application', name='widgets', field=models.ManyToManyField(to='geoprisma.Widget', through='geoprisma.ApplicationWidget'), preserve_default=True, ), ]
41.380952
135
0.521979
e1d66504ed6e3cf6f58939c3bb4e5af129e6eafc
5,561
py
Python
technix/de.py
dr-bigfatnoob/quirk
f5025d7139adaf06380c429b436ccbf1e7611a16
[ "Unlicense" ]
1
2021-03-05T07:44:05.000Z
2021-03-05T07:44:05.000Z
technix/de.py
dr-bigfatnoob/quirk
f5025d7139adaf06380c429b436ccbf1e7611a16
[ "Unlicense" ]
3
2017-06-04T03:01:31.000Z
2017-08-04T04:04:37.000Z
technix/de.py
dr-bigfatnoob/quirk
f5025d7139adaf06380c429b436ccbf1e7611a16
[ "Unlicense" ]
null
null
null
from __future__ import print_function, division import os import sys sys.path.append(os.path.abspath(".")) sys.dont_write_bytecode = True __author__ = "bigfatnoob" from utils.lib import O from utils.stats import Statistics import time from technix.tech_utils import Point, seed from utils import plotter from technix import info def default(): """ Default settings. :return: """ return O( gens=50, candidates=20, f=0.75, cr=0.3, seed=1, binary=True, dominates="bdom", # bdom or cdom cdom_delta=0.01, mutate="binary", # binary or random early_termination=True, verbose=True ) class DE(O): def __init__(self, model, mutator, **settings): """ Initialize a DE optimizer :param model: Model to be optimized :param settings: Settings for the optimizer """ O.__init__(self) self.model = model if self.model.get_max_size() < 50: raise Exception("Cannot run DE since # possible decisions less than 50") self.settings = default().update(**settings) self.settings.candidates = int(min(self.settings.candidates, 0.5 * self.model.get_max_size() / self.settings.gens)) self.mutator = mutator(self.model, cr=self.settings.cr, f=self.settings.f) seed(self.settings.seed) if self.settings.dominates == "bdom": self.dominates = self.bdom else: # TODO: Insert cdom self.dominates = self.bdom self.global_set = set() self.max_size = None def bdom(self, obj1, obj2): """ Binary Domination :param obj1: Objective 1 :param obj2: Objective 2 :return: Check objective 1 dominates objective 2 """ at_least = False for i in self.model.objectives.keys(): a, b = obj1[i], obj2[i] if self.model.objectives[i].direction.better(a, b): at_least = True elif a == b: continue else: return False return at_least def populate(self, size): self.max_size = self.model.get_max_size() if self.max_size is None else self.max_size if size > self.max_size: size = self.max_size population = set() while len(population) < size: point = Point(self.model.generate()) if point not in population: population.add(point) self.global_set.add(point) return list(population) def mutate(self, point, population): """ Mutate point against the population :param point: Point to be mutated :param population: Population to refer :return: Mutated point """ # TODO: Implement DE binary mutation if self.settings.mutate == "random": return self.mutator.mutate_random(point, population) elif self.settings.mutate == "binary": return self.mutator.mutate_binary(point, population) else: raise Exception("Invalid mutation setting %s" % self.settings.mutate) def run(self): """ DE runner :return: """ # settings = self.settings self.print("Optimizing using DE ... ") stat = Statistics() start = time.time() self.model.initialize() population = self.populate(self.settings.candidates) [point.evaluate(self.model) for point in population] stat.insert(population) for i in range(self.settings.gens): self.print("Generation : %d ... " % (i + 1)) clones = set(population[:]) for point in population: original_obj = point.evaluate(self.model) mutant = self.mutate(point, population) mutated_obj = mutant.evaluate(self.model) if self.dominates(mutated_obj, original_obj) and (mutant not in self.global_set): clones.remove(point) clones.add(mutant) self.global_set.add(mutant) population = list(clones) stat.insert(population) stat.runtime = time.time() - start return stat def print(self, message): if self.settings.verbose: print(message) def _pareto_quirk_test(model_name, **settings): print("# %s" % model_name) from language.parser import Parser from language.mutator import Mutator mdl = Parser.from_file("models/quirk/%s.str" % model_name) obj_ids = mdl.objectives.keys() de = DE(mdl, Mutator, **settings) stat = de.run() gens_obj_start = stat.get_objectives(0, obj_ids) gens_obj_end = stat.get_objectives(-1, obj_ids) plotter.plot_pareto([gens_obj_start, gens_obj_end], ['red', 'green'], ['x', 'o'], ['first', 'last'], obj_ids[0], obj_ids[1], 'Pareto Front', 'results/pareto/%s_pareto.png' % model_name) evtpi_index = 0 direction = mdl.objectives[obj_ids[evtpi_index]].direction samples = stat.get_objective_samples(-1, obj_ids[evtpi_index]) info.save_info(samples, mdl.get_parameters(), direction, "results/models/%s/info_%s.md" % (model_name, mdl.objectives[obj_ids[evtpi_index]].name)) def _pareto_xomo_test(): from models.xomo.xomo import Model from models.xomo.mutator import Mutator mdl = Model() obj_ids = mdl.objectives.keys() de = DE(mdl, Mutator) stat = de.run() gens_obj_start = stat.get_objectives(0, obj_ids) gens_obj_end = stat.get_objectives(-1, obj_ids) plotter.plot_pareto([gens_obj_start, gens_obj_end], ['red', 'green'], ['x', 'o'], ['first', 'last'], obj_ids[0], obj_ids[1], 'Pareto Front', 'results/pareto/%s_pareto.png' % mdl.name) if __name__ == "__main__": # _pareto_xomo_test() # _pareto_quirk_test("SAS", candidates=10, gens=50) # _pareto_quirk_test("AOWS") _pareto_quirk_test("ECS")
30.723757
119
0.655458
538eba307a72a7b359bf008d7e76bf9ff168a42f
296
py
Python
Exe10_valores_listas_intercalados.py
lucaslk122/Exercicios-com-lista
3e614a865f93afa2ff6a32f8da04abb0c0716cdc
[ "MIT" ]
null
null
null
Exe10_valores_listas_intercalados.py
lucaslk122/Exercicios-com-lista
3e614a865f93afa2ff6a32f8da04abb0c0716cdc
[ "MIT" ]
null
null
null
Exe10_valores_listas_intercalados.py
lucaslk122/Exercicios-com-lista
3e614a865f93afa2ff6a32f8da04abb0c0716cdc
[ "MIT" ]
null
null
null
lista1 =[] lista2 =[] lista = [] for i in range(10): lista1.append(int(input("Digite um valor para a primeira lista: "))) lista2.append(int(input("Digite um valor para a segunda lista: "))) lista.append(lista1[i]) lista.append(lista2[i]) print(lista1) print(lista2) print(lista)
22.769231
72
0.672297
ace1d0808da54be32089b17b4052b53fb8f1572f
32,295
py
Python
plugins/modules/oci_mysql_db_system_facts.py
hanielburton/oci-ansible-collection
dfdffde637f746d346ba35569be8c3a3407022f2
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_mysql_db_system_facts.py
hanielburton/oci-ansible-collection
dfdffde637f746d346ba35569be8c3a3407022f2
[ "Apache-2.0" ]
null
null
null
plugins/modules/oci_mysql_db_system_facts.py
hanielburton/oci-ansible-collection
dfdffde637f746d346ba35569be8c3a3407022f2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2017, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_mysql_db_system_facts short_description: Fetches details about one or multiple DbSystem resources in Oracle Cloud Infrastructure description: - Fetches details about one or multiple DbSystem resources in Oracle Cloud Infrastructure - Get a list of DB Systems in the specified compartment. The default sort order is by timeUpdated, descending. - If I(db_system_id) is specified, the details of a single DbSystem will be returned. version_added: "2.9" author: Oracle (@oracle) options: db_system_id: description: - The DB System L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm). - Required to get a specific db_system. type: str aliases: ["id"] compartment_id: description: - The compartment L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm). - Required to list multiple db_systems. type: str is_analytics_cluster_attached: description: - If true, return only DB Systems with an Analytics Cluster attached, if false return only DB Systems with no Analytics Cluster attached. If not present, return all DB Systems. type: bool display_name: description: - A filter to return only the resource matching the given display name exactly. type: str aliases: ["name"] lifecycle_state: description: - DbSystem Lifecycle State type: str choices: - "CREATING" - "ACTIVE" - "INACTIVE" - "UPDATING" - "DELETING" - "DELETED" - "FAILED" configuration_id: description: - The requested Configuration instance. type: str is_up_to_date: description: - Filter instances if they are using the latest revision of the Configuration they are associated with. type: bool sort_by: description: - The field to sort by. Only one sort order may be provided. Time fields are default ordered as descending. Display name is default ordered as ascending. type: str choices: - "displayName" - "timeCreated" sort_order: description: - The sort order to use (ASC or DESC). type: str choices: - "ASC" - "DESC" extends_documentation_fragment: [ oracle.oci.oracle ] """ EXAMPLES = """ - name: List db_systems oci_mysql_db_system_facts: compartment_id: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx - name: Get a specific db_system oci_mysql_db_system_facts: db_system_id: ocid1.dbsystem.oc1..xxxxxxEXAMPLExxxxxx """ RETURN = """ db_systems: description: - List of DbSystem resources returned: on success type: complex contains: id: description: - The OCID of the DB System. returned: on success type: string sample: ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx display_name: description: - The user-friendly name for the DB System. It does not have to be unique. returned: on success type: string sample: display_name_example description: description: - User-provided data about the DB System. returned: on success type: string sample: description_example compartment_id: description: - The OCID of the compartment the DB System belongs in. returned: on success type: string sample: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx subnet_id: description: - The OCID of the subnet the DB System is associated with. returned: on success type: string sample: ocid1.subnet.oc1..xxxxxxEXAMPLExxxxxx is_analytics_cluster_attached: description: - If the DB System has an Analytics Cluster attached. returned: on success type: bool sample: true analytics_cluster: description: - "" returned: on success type: complex contains: shape_name: description: - "The shape determines resources to allocate to the Analytics Cluster nodes - CPU cores, memory." returned: on success type: string sample: shape_name_example cluster_size: description: - The number of analytics-processing compute instances, of the specified shape, in the Analytics Cluster. returned: on success type: int sample: 56 lifecycle_state: description: - The current state of the MySQL Analytics Cluster. returned: on success type: string sample: lifecycle_state_example time_created: description: - The date and time the Analytics Cluster was created, as described by L(RFC 3339,https://tools.ietf.org/rfc/rfc3339). returned: on success type: string sample: 2013-10-20T19:20:30+01:00 time_updated: description: - The time the Analytics Cluster was last updated, as described by L(RFC 3339,https://tools.ietf.org/rfc/rfc3339). returned: on success type: string sample: 2013-10-20T19:20:30+01:00 availability_domain: description: - The Availability Domain where the primary DB System should be located. returned: on success type: string sample: Uocm:PHX-AD-1 fault_domain: description: - The name of the Fault Domain the DB System is located in. returned: on success type: string sample: fault_domain_example shape_name: description: - "The shape of the primary instances of the DB System. The shape determines resources allocated to a DB System - CPU cores and memory for VM shapes; CPU cores, memory and storage for non-VM (or bare metal) shapes. To get a list of shapes, use (the L(ListShapes,https://docs.cloud.oracle.com/en-us/iaas/api/#/en/mysql/20181021/ShapeSummary/ListShapes) operation." returned: on success type: string sample: shape_name_example mysql_version: description: - Name of the MySQL Version in use for the DB System. returned: on success type: string sample: mysql_version_example backup_policy: description: - "" returned: on success type: complex contains: is_enabled: description: - If automated backups are enabled or disabled. returned: on success type: bool sample: true window_start_time: description: - The start of a 30-minute window of time in which daily, automated backups occur. - "This should be in the format of the \\"Time\\" portion of an RFC3339-formatted timestamp. Any second or sub-second time data will be truncated to zero." - At some point in the window, the system may incur a brief service disruption as the backup is performed. - "If not defined, a window is selected from the following Region-based time-spans: - eu-frankfurt-1: 20:00 - 04:00 UTC - us-ashburn-1: 03:00 - 11:00 UTC - uk-london-1: 06:00 - 14:00 UTC - ap-tokyo-1: 13:00 - 21:00 - us-phoenix-1: 06:00 - 14:00" returned: on success type: string sample: window_start_time_example retention_in_days: description: - The number of days automated backups are retained. returned: on success type: int sample: 56 freeform_tags: description: - Simple key-value pair applied without any predefined name, type or scope. Exists for cross-compatibility only. - Tags defined here will be copied verbatim as tags on the Backup resource created by this BackupPolicy. - "Example: `{\\"bar-key\\": \\"value\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} defined_tags: description: - Usage of predefined tag keys. These predefined keys are scoped to namespaces. - Tags defined here will be copied verbatim as tags on the Backup resource created by this BackupPolicy. - "Example: `{\\"foo-namespace\\": {\\"bar-key\\": \\"value\\"}}`" returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} source: description: - "" returned: on success type: complex contains: source_type: description: - The specific source identifier. returned: on success type: string sample: NONE backup_id: description: - The OCID of the backup to be used as the source for the new DB System. returned: on success type: string sample: ocid1.backup.oc1..xxxxxxEXAMPLExxxxxx configuration_id: description: - The OCID of the Configuration to be used for Instances in this DB System. returned: on success type: string sample: ocid1.configuration.oc1..xxxxxxEXAMPLExxxxxx data_storage_size_in_gbs: description: - Initial size of the data volume in GiBs that will be created and attached. returned: on success type: int sample: 56 hostname_label: description: - "The hostname for the primary endpoint of the DB System. Used for DNS. The value is the hostname portion of the primary private IP's fully qualified domain name (FQDN) (for example, \\"dbsystem-1\\" in FQDN \\"dbsystem-1.subnet123.vcn1.oraclevcn.com\\"). Must be unique across all VNICs in the subnet and comply with RFC 952 and RFC 1123." returned: on success type: string sample: hostname_label_example ip_address: description: - "The IP address the DB System is configured to listen on. A private IP address of the primary endpoint of the DB System. Must be an available IP address within the subnet's CIDR. This will be a \\"dotted-quad\\" style IPv4 address." returned: on success type: string sample: ip_address_example port: description: - The port for primary endpoint of the DB System to listen on. returned: on success type: int sample: 56 port_x: description: - The network port on which X Plugin listens for TCP/IP connections. This is the X Plugin equivalent of port. returned: on success type: int sample: 56 endpoints: description: - The network endpoints available for this DB System. returned: on success type: complex contains: hostname: description: - The network address of the DB System. returned: on success type: string sample: hostname_example ip_address: description: - The IP address the DB System is configured to listen on. returned: on success type: string sample: ip_address_example port: description: - The port the MySQL instance listens on. returned: on success type: int sample: 56 port_x: description: - The network port where to connect to use this endpoint using the X protocol. returned: on success type: int sample: 56 modes: description: - The access modes from the client that this endpoint supports. returned: on success type: list sample: [] status: description: - The state of the endpoints, as far as it can seen from the DB System. There may be some inconsistency with the actual state of the MySQL service. returned: on success type: string sample: ACTIVE status_details: description: - Additional information about the current endpoint status. returned: on success type: string sample: status_details_example channels: description: - A list with a summary of all the Channels attached to the DB System. returned: on success type: complex contains: id: description: - The OCID of the Channel. returned: on success type: string sample: ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx compartment_id: description: - The OCID of the compartment. returned: on success type: string sample: ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx is_enabled: description: - Whether the Channel has been enabled by the user. returned: on success type: bool sample: true source: description: - "" returned: on success type: complex contains: source_type: description: - The specific source identifier. returned: on success type: string sample: MYSQL hostname: description: - The network address of the MySQL instance. returned: on success type: string sample: hostname_example port: description: - The port the source MySQL instance listens on. returned: on success type: int sample: 56 username: description: - The name of the replication user on the source MySQL instance. The username has a maximum length of 96 characters. For more information, please see the L(MySQL documentation,https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html) returned: on success type: string sample: username_example ssl_mode: description: - The SSL mode of the Channel. returned: on success type: string sample: VERIFY_IDENTITY ssl_ca_certificate: description: - "" returned: on success type: complex contains: certificate_type: description: - The type of CA certificate. returned: on success type: string sample: PEM contents: description: - The string containing the CA certificate in PEM format. returned: on success type: string sample: contents_example target: description: - "" returned: on success type: complex contains: target_type: description: - The specific target identifier. returned: on success type: string sample: DBSYSTEM db_system_id: description: - The OCID of the source DB System. returned: on success type: string sample: ocid1.dbsystem.oc1..xxxxxxEXAMPLExxxxxx channel_name: description: - The case-insensitive name that identifies the replication channel. Channel names must follow the rules defined for L(MySQL identifiers,https://dev.mysql.com/doc/refman/8.0/en/identifiers.html). The names of non-Deleted Channels must be unique for each DB System. returned: on success type: string sample: channel_name_example applier_username: description: - The username for the replication applier of the target MySQL DB System. returned: on success type: string sample: applier_username_example lifecycle_state: description: - The state of the Channel. returned: on success type: string sample: lifecycle_state_example lifecycle_details: description: - A message describing the state of the Channel. returned: on success type: string sample: lifecycle_details_example display_name: description: - The user-friendly name for the Channel. It does not have to be unique. returned: on success type: string sample: display_name_example time_created: description: - The date and time the Channel was created, as described by L(RFC 3339,https://tools.ietf.org/rfc/rfc3339). returned: on success type: string sample: 2013-10-20T19:20:30+01:00 time_updated: description: - The time the Channel was last updated, as described by L(RFC 3339,https://tools.ietf.org/rfc/rfc3339). returned: on success type: string sample: 2013-10-20T19:20:30+01:00 freeform_tags: description: - "Simple key-value pair applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: `{\\"bar-key\\": \\"value\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} defined_tags: description: - "Usage of predefined tag keys. These predefined keys are scoped to namespaces. Example: `{\\"foo-namespace\\": {\\"bar-key\\": \\"value\\"}}`" returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} lifecycle_state: description: - The current state of the DB System. returned: on success type: string sample: CREATING lifecycle_details: description: - Additional information about the current lifecycleState. returned: on success type: string sample: lifecycle_details_example maintenance: description: - "" returned: on success type: complex contains: window_start_time: description: - The start time of the maintenance window. - "This string is of the format: \\"{day-of-week} {time-of-day}\\"." - "\\"{day-of-week}\\" is a case-insensitive string like \\"mon\\", \\"tue\\", &c." - "\\"{time-of-day}\\" is the \\"Time\\" portion of an RFC3339-formatted timestamp. Any second or sub-second time data will be truncated to zero." returned: on success type: string sample: window_start_time_example time_created: description: - The date and time the DB System was created. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 time_updated: description: - The time the DB System was last updated. returned: on success type: string sample: 2013-10-20T19:20:30+01:00 freeform_tags: description: - "Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. Example: `{\\"bar-key\\": \\"value\\"}`" returned: on success type: dict sample: {'Department': 'Finance'} defined_tags: description: - "Defined tags for this resource. Each key is predefined and scoped to a namespace. Example: `{\\"foo-namespace\\": {\\"bar-key\\": \\"value\\"}}`" returned: on success type: dict sample: {'Operations': {'CostCenter': 'US'}} sample: [{ "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "display_name": "display_name_example", "description": "description_example", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "subnet_id": "ocid1.subnet.oc1..xxxxxxEXAMPLExxxxxx", "is_analytics_cluster_attached": true, "analytics_cluster": { "shape_name": "shape_name_example", "cluster_size": 56, "lifecycle_state": "lifecycle_state_example", "time_created": "2013-10-20T19:20:30+01:00", "time_updated": "2013-10-20T19:20:30+01:00" }, "availability_domain": "Uocm:PHX-AD-1", "fault_domain": "fault_domain_example", "shape_name": "shape_name_example", "mysql_version": "mysql_version_example", "backup_policy": { "is_enabled": true, "window_start_time": "window_start_time_example", "retention_in_days": 56, "freeform_tags": {'Department': 'Finance'}, "defined_tags": {'Operations': {'CostCenter': 'US'}} }, "source": { "source_type": "NONE", "backup_id": "ocid1.backup.oc1..xxxxxxEXAMPLExxxxxx" }, "configuration_id": "ocid1.configuration.oc1..xxxxxxEXAMPLExxxxxx", "data_storage_size_in_gbs": 56, "hostname_label": "hostname_label_example", "ip_address": "ip_address_example", "port": 56, "port_x": 56, "endpoints": [{ "hostname": "hostname_example", "ip_address": "ip_address_example", "port": 56, "port_x": 56, "modes": [], "status": "ACTIVE", "status_details": "status_details_example" }], "channels": [{ "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "is_enabled": true, "source": { "source_type": "MYSQL", "hostname": "hostname_example", "port": 56, "username": "username_example", "ssl_mode": "VERIFY_IDENTITY", "ssl_ca_certificate": { "certificate_type": "PEM", "contents": "contents_example" } }, "target": { "target_type": "DBSYSTEM", "db_system_id": "ocid1.dbsystem.oc1..xxxxxxEXAMPLExxxxxx", "channel_name": "channel_name_example", "applier_username": "applier_username_example" }, "lifecycle_state": "lifecycle_state_example", "lifecycle_details": "lifecycle_details_example", "display_name": "display_name_example", "time_created": "2013-10-20T19:20:30+01:00", "time_updated": "2013-10-20T19:20:30+01:00", "freeform_tags": {'Department': 'Finance'}, "defined_tags": {'Operations': {'CostCenter': 'US'}} }], "lifecycle_state": "CREATING", "lifecycle_details": "lifecycle_details_example", "maintenance": { "window_start_time": "window_start_time_example" }, "time_created": "2013-10-20T19:20:30+01:00", "time_updated": "2013-10-20T19:20:30+01:00", "freeform_tags": {'Department': 'Finance'}, "defined_tags": {'Operations': {'CostCenter': 'US'}} }] """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceFactsHelperBase, get_custom_class, ) try: from oci.mysql import DbSystemClient HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class MysqlDbSystemFactsHelperGen(OCIResourceFactsHelperBase): """Supported operations: get, list""" def get_required_params_for_get(self): return [ "db_system_id", ] def get_required_params_for_list(self): return [ "compartment_id", ] def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_db_system, db_system_id=self.module.params.get("db_system_id"), ) def list_resources(self): optional_list_method_params = [ "is_analytics_cluster_attached", "db_system_id", "display_name", "lifecycle_state", "configuration_id", "is_up_to_date", "sort_by", "sort_order", ] optional_kwargs = dict( (param, self.module.params[param]) for param in optional_list_method_params if self.module.params.get(param) is not None ) return oci_common_utils.list_all_resources( self.client.list_db_systems, compartment_id=self.module.params.get("compartment_id"), **optional_kwargs ) MysqlDbSystemFactsHelperCustom = get_custom_class("MysqlDbSystemFactsHelperCustom") class ResourceFactsHelper(MysqlDbSystemFactsHelperCustom, MysqlDbSystemFactsHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec() module_args.update( dict( db_system_id=dict(aliases=["id"], type="str"), compartment_id=dict(type="str"), is_analytics_cluster_attached=dict(type="bool"), display_name=dict(aliases=["name"], type="str"), lifecycle_state=dict( type="str", choices=[ "CREATING", "ACTIVE", "INACTIVE", "UPDATING", "DELETING", "DELETED", "FAILED", ], ), configuration_id=dict(type="str"), is_up_to_date=dict(type="bool"), sort_by=dict(type="str", choices=["displayName", "timeCreated"]), sort_order=dict(type="str", choices=["ASC", "DESC"]), ) ) module = AnsibleModule(argument_spec=module_args) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_facts_helper = ResourceFactsHelper( module=module, resource_type="db_system", service_client_class=DbSystemClient, namespace="mysql", ) result = [] if resource_facts_helper.is_get(): result = [resource_facts_helper.get()] elif resource_facts_helper.is_list(): result = resource_facts_helper.list() else: resource_facts_helper.fail() module.exit_json(db_systems=result) if __name__ == "__main__": main()
41.245211
160
0.507168
ca4996994e1f60cce2245ca1aa2bdda3a183044b
738
py
Python
tools/distrib/python/grpcio_tools/grpc_version.py
wjbbupt/grpc
75f71aa4177f65de34b5d2674d83552f28bc0a07
[ "Apache-2.0" ]
1
2021-03-20T03:21:57.000Z
2021-03-20T03:21:57.000Z
tools/distrib/python/grpcio_tools/grpc_version.py
wjbbupt/grpc
75f71aa4177f65de34b5d2674d83552f28bc0a07
[ "Apache-2.0" ]
null
null
null
tools/distrib/python/grpcio_tools/grpc_version.py
wjbbupt/grpc
75f71aa4177f65de34b5d2674d83552f28bc0a07
[ "Apache-2.0" ]
1
2021-05-21T14:51:45.000Z
2021-05-21T14:51:45.000Z
# Copyright 2015 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # AUTO-GENERATED FROM `$REPO_ROOT/templates/tools/distrib/python/grpcio_tools/grpc_version.py.template`!!! VERSION = '1.37.0.dev0' PROTOBUF_VERSION = '3.15.2'
38.842105
106
0.761518
665ec765dace39dd418d89982c5453e67dc6398f
4,044
py
Python
printing/src/printing_manager/console.py
hivesolutions/colony_plugins
cfd8fb2ac58037e01002966704b8a642feb37895
[ "Apache-1.1" ]
1
2016-10-30T09:51:06.000Z
2016-10-30T09:51:06.000Z
printing/src/printing_manager/console.py
hivesolutions/colony_plugins
cfd8fb2ac58037e01002966704b8a642feb37895
[ "Apache-1.1" ]
1
2015-12-29T18:51:07.000Z
2015-12-29T18:51:07.000Z
printing/src/printing_manager/console.py
hivesolutions/colony_plugins
cfd8fb2ac58037e01002966704b8a642feb37895
[ "Apache-1.1" ]
1
2018-01-26T12:54:13.000Z
2018-01-26T12:54:13.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # Hive Colony Framework # Copyright (c) 2008-2020 Hive Solutions Lda. # # This file is part of Hive Colony Framework. # # Hive Colony Framework is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by the Apache # Foundation, either version 2.0 of the License, or (at your option) any # later version. # # Hive Colony Framework is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License along with # Hive Colony Framework. If not, see <http://www.apache.org/licenses/>. __author__ = "João Magalhães <joamag@hive.pt>" """ The author(s) of the module """ __version__ = "1.0.0" """ The version of the module """ __revision__ = "$LastChangedRevision$" """ The revision number of the module """ __date__ = "$LastChangedDate$" """ The last change date of the module """ __copyright__ = "Copyright (c) 2008-2020 Hive Solutions Lda." """ The copyright for the module """ __license__ = "Apache License, Version 2.0" """ The license for the module """ import colony CONSOLE_EXTENSION_NAME = "printing" """ The console extension name """ class ConsolePrintingManager(colony.System): """ The console printing manager class, responsible for the handling of the printing commands. """ def __init__(self, plugin): colony.System.__init__(self, plugin) self.commands_map = self.__generate_commands_map() def get_console_extension_name(self): return CONSOLE_EXTENSION_NAME def get_commands_map(self): return self.commands_map def process_print_test( self, arguments, arguments_map, output_method, console_context ): printing_manager = self.plugin.system printing_manager.print_test() def process_print_test_image( self, arguments, arguments_map, output_method, console_context ): printing_manager = self.plugin.system printing_manager.print_test_image() def process_print_printing_language( self, arguments, arguments_map, output_method, console_context, file_path ): # retrieves the provided file path value and reads it's contents # then closes the file, these contents are the ones that are going # to be used for the printing process of the file file_path = arguments_map.get("file_path", None) file = open(file_path, "r") try: contents = file.read() finally: file.close() # retrieves the reference to the printing manager instance # and runs the printing process for the provided contents printing_manager = self.plugin.system printing_manager.print_printing_language(contents) def __generate_commands_map(self): return { "print_test" : { "handler" : self.process_print_test, "description" : "prints a test page" }, "print_image" : { "handler" : self.process_print_test_image, "description" : "prints a test page with an image" }, "print_language" : { "handler" : self.process_print_test_image, "description" : "prints the page described in the file of the given file path", "arguments" : [ { "name" : "file_path", "description" : "path to the file name to be printed", "values" : str, "mandatory" : False } ] } }
32.352
96
0.607072
2835ebc0d4fcde493b00e4b7706c9269f8f1b8a6
2,162
py
Python
Login/app.py
alexis51151/FlaskEntrance
d0942467fffecf02e9da3cd49679a16545f24587
[ "Apache-2.0" ]
null
null
null
Login/app.py
alexis51151/FlaskEntrance
d0942467fffecf02e9da3cd49679a16545f24587
[ "Apache-2.0" ]
null
null
null
Login/app.py
alexis51151/FlaskEntrance
d0942467fffecf02e9da3cd49679a16545f24587
[ "Apache-2.0" ]
null
null
null
from flask import Flask, render_template, flash, redirect, url_for from flask_login import LoginManager, login_required, login_user # authentication from forms import LoginForm, RegistrationForm # secure login form from flask_debugtoolbar import DebugToolbarExtension # for debug # Imports from project files from models import User, db login_manager = LoginManager() toolbar = DebugToolbarExtension() def create_app(): # create a Flask app app = Flask(__name__) app.config['SECRET_KEY'] = 'amazing-secret-key' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db.sqlite3' app.config['SQLALCHEMY_ECHO'] = True app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False # init user authentication system login_manager.init_app(app) login_manager.login_view = 'login' # init debug toolbar toolbar.init_app(app) # init the database db.init_app(app) with app.app_context(): db.create_all() return app app = create_app() @login_manager.user_loader def user_loader(user_id): return User.query.get(user_id) """All the routes are listed below.""" """Login page""" @app.route('/', methods=['GET', 'POST']) @app.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user and user.check_password(form.password.data): user.authenticated = True login_user(user) flash('Logged in successfully.') return redirect("google.com") return render_template('login.html', form=form) """Registration page""" @app.route('/register', methods=['GET', 'POST']) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User(email=form.email.data) user.set_password(form.password.data) print(user) db.session.add(user) db.session.commit() flash('Congratulations, you are now a registered user!') return redirect(url_for('login')) return render_template('register.html', form=form) if __name__ == '__main__': app.run()
26.365854
82
0.679926
574f420acc03054be825f5636ecfea911c2ea9df
190
py
Python
pkg/formatters/simple.py
zhutao100/markdown_articles_tool
9e7476567ac7b5c5cdf2dfd235f0663260d96aca
[ "MIT" ]
41
2020-09-22T12:21:24.000Z
2022-03-27T06:54:45.000Z
pkg/formatters/simple.py
zhutao100/markdown_articles_tool
9e7476567ac7b5c5cdf2dfd235f0663260d96aca
[ "MIT" ]
11
2020-11-10T02:40:08.000Z
2022-03-24T16:20:31.000Z
pkg/formatters/simple.py
zhutao100/markdown_articles_tool
9e7476567ac7b5c5cdf2dfd235f0663260d96aca
[ "MIT" ]
9
2021-02-20T00:23:06.000Z
2022-03-21T11:39:08.000Z
""" Simple formatter. """ class SimpleFormatter: """ Writes lines, "as is". """ format = 'md' @staticmethod def write(lines): return lines.encode('utf8')
11.875
35
0.547368
f05c5ea6f7b37e1748e5d6c249a13e1427557056
876
py
Python
doc/ioman/server.py
nandun/gxp
8dd9d396102e254cb4712fe572b64e398a5f069b
[ "BSD-3-Clause" ]
2
2020-03-16T11:37:13.000Z
2020-05-15T10:10:56.000Z
doc/ioman/server.py
nandun/gxp
8dd9d396102e254cb4712fe572b64e398a5f069b
[ "BSD-3-Clause" ]
null
null
null
doc/ioman/server.py
nandun/gxp
8dd9d396102e254cb4712fe572b64e398a5f069b
[ "BSD-3-Clause" ]
1
2017-05-12T02:42:35.000Z
2017-05-12T02:42:35.000Z
import socket,sys sys.path.append("../..") import ioman m = ioman.ioman() ch_sock = m.make_server_sock(socket.AF_INET, socket.SOCK_STREAM, ("",0), 1) ip,port = ch_sock.getsockname() print "server listening on %s, please connect to it (perhaps by 'nc localhost %d')" % (port, port) # wait for connection to come connected = 0 disconnected = 0 while connected == 0 or disconnected < connected: print "process_an_event" ch,ev = m.process_an_event() print ch,ev if isinstance(ev, ioman.aevent): print "got connection. add to watch list" rch,wch = m.add_sock(ev.new_so) rch.set_expected(["\n"]) connected += 1 elif isinstance(ev, ioman.revent): print "got from client (kind=%d) [%s]" % (ev.kind, ev.data) if ev.kind == ioman.ch_event.EOF: disconnected += 1 else: assert 0,ev
27.375
98
0.631279
68f6ea239fb4d1dada881ddefe09ea892649d1f5
3,886
py
Python
echo360/course.py
RenWal/echo360
076368f130a7458373d8ec15bff4a0bca8897449
[ "MIT" ]
null
null
null
echo360/course.py
RenWal/echo360
076368f130a7458373d8ec15bff4a0bca8897449
[ "MIT" ]
null
null
null
echo360/course.py
RenWal/echo360
076368f130a7458373d8ec15bff4a0bca8897449
[ "MIT" ]
null
null
null
import json import sys import selenium import logging from echo360.videos import EchoVideos _LOGGER = logging.getLogger(__name__) class EchoCourse(object): def __init__(self, uuid, hostname=None): self._course_id = "" self._course_name = "" self._uuid = uuid self._videos = None self._driver = None if hostname is None: self._hostname = "https://view.streaming.sydney.edu.au:8443" else: self._hostname = hostname def get_videos(self): if self._driver is None: self._blow_up("webdriver not set yet!!!", "") if not self._videos: try: course_data_json = self._get_course_data() videos_json = course_data_json["section"]["presentations"]["pageContents"] self._videos = EchoVideos(videos_json, self._driver) except KeyError as e: self._blow_up("Unable to parse course videos from JSON (course_data)", e) except selenium.common.exceptions.NoSuchElementException as e: self._blow_up("selenium cannot find given elements", e) return self._videos @property def uuid(self): return self._uuid @property def hostname(self): return self._hostname @property def url(self): return "{}/ess/portal/section/{}".format(self._hostname, self._uuid) @property def video_url(self): return "{}/ess/client/api/sections/{}/section-data.json?pageSize=100".format(self._hostname, self._uuid) @property def course_id(self): if self._course_id == "": try: # driver = webdriver.PhantomJS() #TODO Redo this. Maybe use a singleton factory to request the lecho360 driver?s self.driver.get(self.url) # Initialize to establish the 'anon' cookie that Echo360 sends. self.driver.get(self.video_url) course_data_json = self._get_course_data() self._course_id = course_data_json["section"]["course"]["identifier"] self._course_name = course_data_json["section"]["course"]["name"] except KeyError as e: self._blow_up("Unable to parse course id (e.g. CS473) from JSON (course_data)", e) if type(self._course_id) != str: # it's type unicode for python2 return self._course_id.encode('utf-8') return self._course_id @property def course_name(self): if self._course_name == "": # trigger getting course_id to get course name as well self.course_id if type(self._course_name) != str: # it's type unicode for python2 return self._course_name.encode('utf-8') return self._course_name @property def driver(self): if self._driver is None: self._blow_up("webdriver not set yet!!!", "") return self._driver def _get_course_data(self): try: self.driver.get(self.video_url) _LOGGER.debug("Dumping course page at %s: %s", self.video_url, self._driver.page_source) # self.driver.get_screenshot_as_file('./2.png') # print(dir(self.driver)) # print('ha') # print(self.driver.page_source) json_str = self.driver.find_element_by_tag_name("pre").text print(json_str) return json.loads(json_str) except ValueError as e: self._blow_up("Unable to retrieve JSON (course_data) from url", e) def set_driver(self, driver): self._driver = driver def _blow_up(self, msg, e): print(msg) print("Exception: {}".format(str(e))) sys.exit(1)
34.087719
128
0.585178
494b83673231db880457d034807faecfa24ccdaf
1,006
py
Python
project/manage.py
ardikabs/dnsmanager
4d2f302ea9f54fd4d5416328dc46a1c47b573e5b
[ "MIT" ]
1
2019-01-15T10:33:10.000Z
2019-01-15T10:33:10.000Z
project/manage.py
ardikabs/dnsmanager
4d2f302ea9f54fd4d5416328dc46a1c47b573e5b
[ "MIT" ]
null
null
null
project/manage.py
ardikabs/dnsmanager
4d2f302ea9f54fd4d5416328dc46a1c47b573e5b
[ "MIT" ]
null
null
null
import os import unittest from server import make_server from server.app import db from server.main.models import * from flask_script import Manager, Shell from flask_migrate import Migrate, MigrateCommand app = make_server("default") manager = Manager(app) migrate = Migrate(app, db) def make_shell_context(): return dict(app=app, db=db) manager.add_command("shell", Shell(make_context=make_shell_context)) manager.add_command("db", MigrateCommand) @manager.command def recreatedb(): db.drop_all() db.create_all() db.session.commit() @manager.command def test(): """Runs the unit tests.""" tests = unittest.TestLoader().discover('server/tests', pattern='test*.py') result = unittest.TextTestRunner(verbosity=2).run(tests) if result.wasSuccessful(): return 0 return 1 @manager.command def seeding(): RecordTypeModel.seeding() @manager.command def run(): app.run(debug=True, host="0.0.0.0", port=5000) if __name__ == "__main__": manager.run()
22.863636
78
0.72167
7462fb7bf64a8f4181ced6c4fb74cdd978a6d338
4,052
py
Python
alipay/aop/api/request/AlipayPcreditHuabeiEnterpriseReimburseSyncRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/AlipayPcreditHuabeiEnterpriseReimburseSyncRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/AlipayPcreditHuabeiEnterpriseReimburseSyncRequest.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayPcreditHuabeiEnterpriseReimburseSyncModel import AlipayPcreditHuabeiEnterpriseReimburseSyncModel class AlipayPcreditHuabeiEnterpriseReimburseSyncRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayPcreditHuabeiEnterpriseReimburseSyncModel): self._biz_content = value else: self._biz_content = AlipayPcreditHuabeiEnterpriseReimburseSyncModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.pcredit.huabei.enterprise.reimburse.sync' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.944828
148
0.65153
e07435d96097faedd51d0c9c7ebd3d328e0c66fc
2,080
py
Python
lib/surface/ai_platform/versions/describe.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
lib/surface/ai_platform/versions/describe.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
null
null
null
lib/surface/ai_platform/versions/describe.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
1
2020-07-25T01:40:19.000Z
2020-07-25T01:40:19.000Z
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ai-platform versions describe command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.ml_engine import versions_api from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.ml_engine import endpoint_util from googlecloudsdk.command_lib.ml_engine import flags from googlecloudsdk.command_lib.ml_engine import region_util from googlecloudsdk.command_lib.ml_engine import versions_util def _AddDescribeArgs(parser): flags.GetModelName(positional=False, required=True).AddToParser(parser) flags.GetRegionArg(include_global=True).AddToParser(parser) flags.VERSION_NAME.AddToParser(parser) def _Run(args): region = region_util.GetRegion(args) with endpoint_util.MlEndpointOverrides(region=region): client = versions_api.VersionsClient() return versions_util.Describe(client, args.version, model=args.model) @base.ReleaseTracks(base.ReleaseTrack.GA) class Describe(base.DescribeCommand): """Describe an existing AI Platform version.""" @staticmethod def Args(parser): _AddDescribeArgs(parser) def Run(self, args): return _Run(args) @base.ReleaseTracks(base.ReleaseTrack.BETA, base.ReleaseTrack.ALPHA) class DescribeBeta(base.DescribeCommand): """Describe an existing AI Platform version.""" @staticmethod def Args(parser): _AddDescribeArgs(parser) def Run(self, args): return _Run(args)
32
74
0.786058
7a72997c3007231b0069cfaf8c558174c8bb46a9
396
py
Python
day5/day5a.py
lehoczkics/aoc2020
43e640694d05ffbb47568254aeba6d2b2a89ab04
[ "Unlicense" ]
null
null
null
day5/day5a.py
lehoczkics/aoc2020
43e640694d05ffbb47568254aeba6d2b2a89ab04
[ "Unlicense" ]
null
null
null
day5/day5a.py
lehoczkics/aoc2020
43e640694d05ffbb47568254aeba6d2b2a89ab04
[ "Unlicense" ]
null
null
null
#!/usr/bin/ebv pyhton3 import os mymax = 0 def btd(n): return int(n,2) with open("input1") as f: for line in f: # print(line) rowstr = line[0:7] colstr = line[7:11] # print(rowstr, "-", colstr) # print(btd(rowstr), "-", btd(colstr)) seatid = 8*btd(rowstr) + btd(colstr) if seatid > mymax : mymax = seatid print(mymax)
18
45
0.525253
20412dabe1d517197e3583ddb6069196a7f4fdf1
3,537
py
Python
ntpclient.py
rsmith-nl/scripts
4ad489bc637f20f2865c249025b24cb8aad887ca
[ "MIT" ]
25
2016-02-24T22:55:30.000Z
2022-01-18T08:39:09.000Z
ntpclient.py
rsmith-nl/scripts
4ad489bc637f20f2865c249025b24cb8aad887ca
[ "MIT" ]
4
2019-10-10T17:59:31.000Z
2020-09-04T08:31:15.000Z
ntpclient.py
rsmith-nl/scripts
4ad489bc637f20f2865c249025b24cb8aad887ca
[ "MIT" ]
11
2016-01-09T18:59:21.000Z
2020-10-27T07:00:10.000Z
#!/usr/bin/env python # file: ntpclient.py # vim:fileencoding=utf-8:fdm=marker:ft=python # # Copyright © 2018 R.F. Smith <rsmith@xs4all.nl>. # SPDX-License-Identifier: MIT # Created: 2017-11-16 19:33:50 +0100 # Last modified: 2020-04-01T20:30:30+0200 """ Simple NTP query program. This program does not strive for high accuracy. Use this only as a client, never for a time server! """ from datetime import datetime from socket import socket, AF_INET, SOCK_DGRAM import argparse import os import struct import sys import time __version__ = "2020.04.01" def main(): """ Entry point for ntpclient.py. """ args = setup() t1 = time.clock_gettime(time.CLOCK_REALTIME) ntptime = get_ntp_time(args.server) t4 = time.clock_gettime(time.CLOCK_REALTIME) # It is not guaranteed that the NTP time is *exactly* in the middle of both # local times. But it is a reasonable simplification. roundtrip = round(t4 - t1, 4) localtime = (t1 + t4) / 2 diff = localtime - ntptime res = None if os.geteuid() == 0: time.clock_settime(time.CLOCK_REALTIME, ntptime) res = "Time set to NTP time." localtime = datetime.fromtimestamp(localtime) ntptime = datetime.fromtimestamp(ntptime) if not args.quiet: print(f"Using server {args.server}.") print(f"NTP call took approximately {roundtrip} s.") print("Local time value:", localtime.strftime("%a %b %d %H:%M:%S.%f %Y.")) print( "NTP time value:", ntptime.strftime("%a %b %d %H:%M:%S.%f %Y."), "±", roundtrip / 2, "s.", ) print(f"Local time - ntp time: {diff:.6f} s.") if res: print(res) def setup(): """Process command-line arguments.""" if "NTPSERVER" in os.environ: defaultserver = os.environ["NTPSERVER"] else: defaultserver = "pool.ntp.org" parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("-v", "--version", action="version", version=__version__) parser.add_argument( "-q", "--quiet", action="store_true", default=False, help="Suppress output (default: no)", ) parser.add_argument( "-s", "--server", type=str, default=defaultserver, help=f"NTP server to use (default: “{defaultserver}”)", ) args = parser.parse_args(sys.argv[1:]) return args # See e.g. # https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-58/154-ntp.html # From left to right: # * No leap second adjustment = 0 (2 bits) # * protocol version 3 (3 bits) # * client packet = 3 (3 bits) # In [1]: hex((0 & 0b11) << 6 | (3 & 0b111) << 3 | (3 & 0b111)) # Out[1]: '0x1b' _query = b"\x1b" + 47 * b"\0" def get_ntp_time(host="pool.ntp.org", port=123): fmt = "!12I" with socket(AF_INET, SOCK_DGRAM) as s: s.sendto(_query, (host, port)) msg, address = s.recvfrom(1024) unpacked = struct.unpack(fmt, msg[0 : struct.calcsize(fmt)]) # Return the average of receive and transmit timestamps. # Note that 2208988800 is the difference in seconds between the # UNIX epoch 1970-1-1 and the NTP epoch 1900-1-1. # See: (datetime.datetime(1970,1,1) - datetime.datetime(1900,1,1)).total_seconds() t2 = unpacked[8] + float(unpacked[9]) / 2 ** 32 - 2208988800 t3 = unpacked[10] + float(unpacked[11]) / 2 ** 32 - 2208988800 return (t2 + t3) / 2 if __name__ == "__main__": main()
31.300885
123
0.620865
9a9ec65f26b15acbb68a9c5ce12df007438f5ae1
1,276
py
Python
Leetcode/src/Linked List/Palindrome_LinkedList.py
QuDong/Algorithm4
c15c27653d860a1cd90a42cf97f7586ced12b48f
[ "MIT" ]
6
2017-07-07T08:10:42.000Z
2019-12-25T21:42:40.000Z
Leetcode/src/Linked List/Palindrome_LinkedList.py
QuDong/Algorithm4
c15c27653d860a1cd90a42cf97f7586ced12b48f
[ "MIT" ]
null
null
null
Leetcode/src/Linked List/Palindrome_LinkedList.py
QuDong/Algorithm4
c15c27653d860a1cd90a42cf97f7586ced12b48f
[ "MIT" ]
1
2021-08-22T06:43:47.000Z
2021-08-22T06:43:47.000Z
# -*- coding: utf-8 -*- """ Created on Wed Dec 21 10:20:24 2016 @author: dong.qu """ class ListNode(object): def __init__(self, x): self.val = x self.next = None head = ListNode(1) head.next = ListNode(2) head.next.next = ListNode(2) head.next.next.next = ListNode(1) #head.next.next.next.next = ListNode(1) def printList(head): temp = head while temp: print(temp.val, end=', ') temp = temp.next print() printList(head) headr = ListNode(1) headr.next = ListNode(2) headr.next.next = ListNode(3) def reverseLinkedList(head): pre = None while head: cur = head head = head.next cur.next = pre pre = cur return pre def isPalindrome(head): l = 0 temp = head while temp: temp=temp.next l+=1 if l%2==0: halfl = l//2 else: halfl = l//2+1 pre=None node = head for i in range(halfl): node = node.next while node: # reverse the 2nd half list cur = node node = node.next cur.next = pre pre = cur while pre and head: if pre.val != head.val: return False pre= pre.next head=head.next return True print(isPalindrome(head))
19.044776
43
0.55094
d4294788fdda66c3d99a1e08534ae99be0caf812
5,632
py
Python
homeassistant/components/satel_integra/alarm_control_panel.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
23
2017-11-15T21:03:53.000Z
2021-03-29T21:33:48.000Z
homeassistant/components/satel_integra/alarm_control_panel.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
9
2022-01-27T06:32:10.000Z
2022-03-31T07:07:51.000Z
homeassistant/components/satel_integra/alarm_control_panel.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
10
2018-01-01T00:12:51.000Z
2021-12-21T23:08:05.000Z
"""Support for Satel Integra alarm, using ETHM module.""" import asyncio from collections import OrderedDict import logging from satel_integra.satel_integra import AlarmState import homeassistant.components.alarm_control_panel as alarm from homeassistant.components.alarm_control_panel.const import ( SUPPORT_ALARM_ARM_AWAY, SUPPORT_ALARM_ARM_HOME, ) from homeassistant.const import ( STATE_ALARM_ARMED_AWAY, STATE_ALARM_ARMED_HOME, STATE_ALARM_DISARMED, STATE_ALARM_PENDING, STATE_ALARM_TRIGGERED, ) from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from . import ( CONF_ARM_HOME_MODE, CONF_DEVICE_PARTITIONS, CONF_ZONE_NAME, DATA_SATEL, SIGNAL_PANEL_MESSAGE, ) _LOGGER = logging.getLogger(__name__) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up for Satel Integra alarm panels.""" if not discovery_info: return configured_partitions = discovery_info[CONF_DEVICE_PARTITIONS] controller = hass.data[DATA_SATEL] devices = [] for partition_num, device_config_data in configured_partitions.items(): zone_name = device_config_data[CONF_ZONE_NAME] arm_home_mode = device_config_data.get(CONF_ARM_HOME_MODE) device = SatelIntegraAlarmPanel( controller, zone_name, arm_home_mode, partition_num ) devices.append(device) async_add_entities(devices) class SatelIntegraAlarmPanel(alarm.AlarmControlPanel): """Representation of an AlarmDecoder-based alarm panel.""" def __init__(self, controller, name, arm_home_mode, partition_id): """Initialize the alarm panel.""" self._name = name self._state = None self._arm_home_mode = arm_home_mode self._partition_id = partition_id self._satel = controller async def async_added_to_hass(self): """Update alarm status and register callbacks for future updates.""" _LOGGER.debug("Starts listening for panel messages") self._update_alarm_status() async_dispatcher_connect( self.hass, SIGNAL_PANEL_MESSAGE, self._update_alarm_status ) @callback def _update_alarm_status(self): """Handle alarm status update.""" state = self._read_alarm_state() _LOGGER.debug("Got status update, current status: %s", state) if state != self._state: self._state = state self.async_schedule_update_ha_state() else: _LOGGER.debug("Ignoring alarm status message, same state") def _read_alarm_state(self): """Read current status of the alarm and translate it into HA status.""" # Default - disarmed: hass_alarm_status = STATE_ALARM_DISARMED if not self._satel.connected: return None state_map = OrderedDict( [ (AlarmState.TRIGGERED, STATE_ALARM_TRIGGERED), (AlarmState.TRIGGERED_FIRE, STATE_ALARM_TRIGGERED), (AlarmState.ENTRY_TIME, STATE_ALARM_PENDING), (AlarmState.ARMED_MODE3, STATE_ALARM_ARMED_HOME), (AlarmState.ARMED_MODE2, STATE_ALARM_ARMED_HOME), (AlarmState.ARMED_MODE1, STATE_ALARM_ARMED_HOME), (AlarmState.ARMED_MODE0, STATE_ALARM_ARMED_AWAY), (AlarmState.EXIT_COUNTDOWN_OVER_10, STATE_ALARM_PENDING), (AlarmState.EXIT_COUNTDOWN_UNDER_10, STATE_ALARM_PENDING), ] ) _LOGGER.debug("State map of Satel: %s", self._satel.partition_states) for satel_state, ha_state in state_map.items(): if ( satel_state in self._satel.partition_states and self._partition_id in self._satel.partition_states[satel_state] ): hass_alarm_status = ha_state break return hass_alarm_status @property def name(self): """Return the name of the device.""" return self._name @property def should_poll(self): """Return the polling state.""" return False @property def code_format(self): """Return the regex for code format or None if no code is required.""" return alarm.FORMAT_NUMBER @property def state(self): """Return the state of the device.""" return self._state @property def supported_features(self) -> int: """Return the list of supported features.""" return SUPPORT_ALARM_ARM_HOME | SUPPORT_ALARM_ARM_AWAY async def async_alarm_disarm(self, code=None): """Send disarm command.""" if not code: _LOGGER.debug("Code was empty or None") return clear_alarm_necessary = self._state == STATE_ALARM_TRIGGERED _LOGGER.debug("Disarming, self._state: %s", self._state) await self._satel.disarm(code, [self._partition_id]) if clear_alarm_necessary: # Wait 1s before clearing the alarm await asyncio.sleep(1) await self._satel.clear_alarm(code, [self._partition_id]) async def async_alarm_arm_away(self, code=None): """Send arm away command.""" _LOGGER.debug("Arming away") if code: await self._satel.arm(code, [self._partition_id]) async def async_alarm_arm_home(self, code=None): """Send arm home command.""" _LOGGER.debug("Arming home") if code: await self._satel.arm(code, [self._partition_id], self._arm_home_mode)
32.367816
86
0.665305
387dd2f5f55960e8757d847c6e921a5678e17113
2,457
py
Python
tools/deploy/caffe_export.py
UU-tracktech/fast-reid
8e367315fc3b95d326fc37a9bde7b83f90eaf825
[ "Apache-2.0" ]
null
null
null
tools/deploy/caffe_export.py
UU-tracktech/fast-reid
8e367315fc3b95d326fc37a9bde7b83f90eaf825
[ "Apache-2.0" ]
null
null
null
tools/deploy/caffe_export.py
UU-tracktech/fast-reid
8e367315fc3b95d326fc37a9bde7b83f90eaf825
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import argparse import logging import sys import torch sys.path.append('.') import pytorch_to_caffe from processor.pipeline.reidentification.fastreid.fastreid.config import get_cfg from processor.pipeline.reidentification.fastreid.fastreid.modeling.meta_arch import build_model from processor.pipeline.reidentification.fastreid.fastreid.utils.file_io import PathManager from processor.pipeline.reidentification.fastreid.fastreid.utils.checkpoint import Checkpointer from processor.pipeline.reidentification.fastreid.fastreid.utils.logger import setup_logger # import some modules added in project like this below # sys.path.append("projects/PartialReID") # from partialreid import * setup_logger(name='fastreid') logger = logging.getLogger("fastreid.caffe_export") def setup_cfg(args): cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() return cfg def get_parser(): parser = argparse.ArgumentParser(description="Convert Pytorch to Caffe model") parser.add_argument( "--config-file", metavar="FILE", help="path to config file", ) parser.add_argument( "--name", default="baseline", help="name for converted model" ) parser.add_argument( "--output", default='caffe_model', help='path to save converted caffe model' ) parser.add_argument( "--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER, ) return parser if __name__ == '__main__': args = get_parser().parse_args() cfg = setup_cfg(args) cfg.defrost() cfg.MODEL.BACKBONE.PRETRAIN = False cfg.MODEL.HEADS.POOL_LAYER = "Identity" cfg.MODEL.BACKBONE.WITH_NL = False model = build_model(cfg) Checkpointer(model).load(cfg.MODEL.WEIGHTS) model.eval() logger.info(model) inputs = torch.randn(1, 3, cfg.INPUT.SIZE_TEST[0], cfg.INPUT.SIZE_TEST[1]).to(torch.device(cfg.MODEL.DEVICE)) PathManager.mkdirs(args.output) pytorch_to_caffe.trans_net(model, inputs, args.name) pytorch_to_caffe.save_prototxt(f"{args.output}/{args.name}.prototxt") pytorch_to_caffe.save_caffemodel(f"{args.output}/{args.name}.caffemodel") logger.info(f"Export caffe model in {args.output} sucessfully!")
28.569767
113
0.715914
353ae9f0ccfd6fb47bd14f6304a4a3ff1c2ea0a4
4,849
py
Python
marketdata/history.py
Haynie-Research-and-Development/stock-data
7bcef34cbee73d66fd222bfd3d562ef0409108c9
[ "Apache-2.0" ]
9
2020-12-09T08:31:16.000Z
2021-11-28T08:47:49.000Z
marketdata/history.py
Haynie-Research-and-Development/stock-data
7bcef34cbee73d66fd222bfd3d562ef0409108c9
[ "Apache-2.0" ]
1
2021-01-21T22:10:17.000Z
2021-01-21T22:10:17.000Z
marketdata/history.py
Haynie-Research-and-Development/stock-data
7bcef34cbee73d66fd222bfd3d562ef0409108c9
[ "Apache-2.0" ]
1
2020-08-20T20:35:33.000Z
2020-08-20T20:35:33.000Z
#********************************************************** #* CATEGORY SOFTWARE #* GROUP MARKET DATA #* AUTHOR LANCE HAYNIE <LANCE@HAYNIEMAIL.COM> #* FILE HISTORY.PY #********************************************************** #ETL Stock Market Data #Copyright 2020 Haynie IPHC, LLC #Developed by Haynie Research & Development, LLC #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License.# #You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import sys import urllib.request as urlreq import json import pandas as pd import logging import requests from .settings import settings_data from .database import db,dw from .functions import numtest logging.basicConfig(format='%(levelname)s - %(message)s', level=settings_data['global']['loglevel']) api_base = settings_data['datasources']['IEX']['url'] api_key = settings_data['datasources']['IEX']['key'] session = requests.Session() def history(uuid,symbol,api_date,sql_date): logging.debug("Processing historical data for: " + symbol + ".") cursor = db.cursor() try: api = f"{api_base}/stock/{symbol}/chart/date/{api_date}?chartByDay=true&token={api_key}" #response_data = json.loads(urlreq.urlopen(api).read().decode()) response_data = session.get(api).json() open = numtest(response_data[0]['open']) high = numtest(response_data[0]['high']) low = numtest(response_data[0]['low']) close = numtest(response_data[0]['close']) volume = numtest(response_data[0]['volume']) uOpen = numtest(response_data[0]['uOpen']) uHigh = numtest(response_data[0]['uHigh']) uLow = numtest(response_data[0]['uLow']) uClose = numtest(response_data[0]['uClose']) uVolume = numtest(response_data[0]['uVolume']) fOpen = numtest(response_data[0]['fOpen']) fHigh = numtest(response_data[0]['fHigh']) fLow = numtest(response_data[0]['fLow']) fClose = numtest(response_data[0]['fClose']) fVolume = numtest(response_data[0]['fVolume']) change = numtest(response_data[0]['change']) changePercent = numtest(response_data[0]['changePercent']) try: sql = f""" INSERT INTO daily( security_id, date, open, high, low, close, volume, uOpen, uHigh, uLow, uClose, uVolume, fOpen, fHigh, fLow, fClose, fVolume, `change`, changePercent) values( {uuid}, '{sql_date}', {open}, {high}, {low}, {close}, {volume}, {uOpen}, {uHigh}, {uLow}, {uClose}, {uVolume}, {fOpen}, {fHigh}, {fLow}, {fClose}, {fVolume}, {change}, {changePercent}); """ try: cursor.execute(sql) db.commit() except Exception as e: error = format(str(e)) if error.find("Duplicate entry") != -1: logging.debug("Data already exists for " + symbol + " on date " + data_date + ".") else: logging.error(format(str(e))) except Exception as e: logging.error(format(str(e))) except Exception as e: logging.error(format(str(e))) def update(date): api_date = date.replace('-', '') sql_date = date + " 00:00:00" dw_cursor = dw.cursor() try: dw_cursor.execute(f"SELECT uuid, symbol FROM security WHERE uuid NOT IN (select security_id from daily where date = '{sql_date}')") results = dw_cursor.fetchall() for row in results: uuid = row[0] symbol = row[1] history(uuid, symbol, api_date, sql_date) except Exception as e: logging.error(format(str(e))) sys.exit(1) dw.close()
34.147887
139
0.518251
6a6fcc84ce162db3eebc3425bdd0b25fda9ace54
2,760
py
Python
kolibri/core/deviceadmin/management/commands/dbrestore.py
jonboiser/kolibri
8ea2febc1739ac772007aae4084f0226dfb4ed40
[ "MIT" ]
1
2021-03-26T03:44:24.000Z
2021-03-26T03:44:24.000Z
kolibri/core/deviceadmin/management/commands/dbrestore.py
jonboiser/kolibri
8ea2febc1739ac772007aae4084f0226dfb4ed40
[ "MIT" ]
5
2016-01-22T18:43:44.000Z
2019-07-25T20:34:16.000Z
kolibri/core/deviceadmin/management/commands/dbrestore.py
jonboiser/kolibri
8ea2febc1739ac772007aae4084f0226dfb4ed40
[ "MIT" ]
1
2019-11-12T14:00:30.000Z
2019-11-12T14:00:30.000Z
from __future__ import absolute_import, print_function, unicode_literals import logging import os import kolibri from django.core.management.base import BaseCommand, CommandError from kolibri.utils import server from ...utils import dbrestore, default_backup_folder, search_latest logger = logging.getLogger(__name__) class Command(BaseCommand): output_transaction = True # @ReservedAssignment help = ( "Restores a database backup of Kolibri. This is not intended for " "replication across different devices, but *only* for restoring a " "single device from a local backup of the database." ) def add_arguments(self, parser): parser.add_argument( 'dump_file', nargs='?', type=str, help="Specifies the exact dump file to restore from" ) parser.add_argument( '--latest', '-l', action='store_true', dest='latest', help=( "Automatically detect and restore from latest backup matching " "the major and minor version (X.Y) of current installation." ) ) def handle(self, *args, **options): try: server.get_status() self.stderr.write(self.style.ERROR( "Cannot restore while Kolibri is running, please run:\n" "\n" " kolibri stop\n" )) raise SystemExit() except server.NotRunning: # Great, it's not running! pass latest = options['latest'] use_backup = options.get("dump_file", None) if latest == bool(use_backup): raise CommandError("Either specify a backup file or use --latest") logger.info("Beginning database restore") if latest: search_root = default_backup_folder() use_backup = None # Ultimately, we are okay about a backup from a minor release fallback_version = ".".join(map(str, kolibri.VERSION[:2])) if os.path.exists(search_root): use_backup = search_latest(search_root, fallback_version) if not use_backup: raise RuntimeError( "Could not find a database backup for version: {}".format( fallback_version ) ) logger.info("Using backup file: {}".format(use_backup)) if not os.path.isfile(use_backup): raise CommandError("Couldn't find: {}".format(use_backup)) dbrestore(use_backup) self.stdout.write(self.style.SUCCESS( "Restored database from: {path}".format(path=use_backup) ))
31.011236
79
0.582971
3e20e973929d9ccbe1ad0adee5301fc494dc6635
819
py
Python
profiles_project/urls.py
sachmesachi/profiles-rest-api
1717488d9accd358bc1521857472046a52368ca8
[ "MIT" ]
null
null
null
profiles_project/urls.py
sachmesachi/profiles-rest-api
1717488d9accd358bc1521857472046a52368ca8
[ "MIT" ]
null
null
null
profiles_project/urls.py
sachmesachi/profiles-rest-api
1717488d9accd358bc1521857472046a52368ca8
[ "MIT" ]
null
null
null
"""profiles_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include ... urlpatterns = [ path('admin/', admin.site.urls), path('api/', include('profiles_api.urls')) ]
32.76
77
0.704518
21900d4ac92a6dbb8b05635203d2d1925e3a37a1
1,355
py
Python
book_init.py
Alwaysproblem/COMP9900-proj
34f10ca8c18c8e8f26b9ce5b7be39c1e05781597
[ "MIT" ]
3
2019-01-22T00:41:20.000Z
2022-03-03T15:23:09.000Z
book_init.py
Alwaysproblem/COMP9900-proj
34f10ca8c18c8e8f26b9ce5b7be39c1e05781597
[ "MIT" ]
null
null
null
book_init.py
Alwaysproblem/COMP9900-proj
34f10ca8c18c8e8f26b9ce5b7be39c1e05781597
[ "MIT" ]
null
null
null
import os, re, sqlite3, uuid conn = sqlite3.connect('book.db',detect_types=sqlite3.PARSE_DECLTYPES,check_same_thread=False) def create_table(): conn.execute("drop table if exists booking") conn.execute('''create table booking ( ID primary key not null, HouseID char(50), Img char(50), Address char(50), Roomtype char(50), Price char(50), userid char(50), start_time char(50), end_time char(50)); ''') # if __name__ == '__main__': # create_table() cur = conn.cursor() house_id = house_img = house_address = house_roomtype = house_price = current_user = start_date = end_date = None # sql = 'select * from booking' key = '"ID", "HouseID", "Img", "Address", "Roomtype", "Price", "userid", "start_time", "end_time"' sql = "insert into booking (" + key + ") values ('{}','{}','{}','{}','{}','{}','{}','{}','{}')".format \ (uuid.uuid4(), house_id, house_img, house_address, house_roomtype, house_price, current_user, start_date, end_date) print(sql) cur.execute(sql) # cur.close() conn.commit() sql = 'select * from booking' cur.execute(sql) t_list = [] for h_tuple in cur.fetchall(): t_list.append(h_tuple) print('tlist', t_list)
30.795455
113
0.573432
bb30f75fb05170045d8b43de9ca6df17649a432c
9,649
py
Python
docs/html/conf.py
grimreaper/pip
7420629800b10d117d3af3b668dbe99b475fcbc0
[ "MIT" ]
1
2019-12-20T05:27:25.000Z
2019-12-20T05:27:25.000Z
docs/html/conf.py
grimreaper/pip
7420629800b10d117d3af3b668dbe99b475fcbc0
[ "MIT" ]
7
2019-12-27T07:56:50.000Z
2022-01-25T03:41:39.000Z
docs/html/conf.py
grimreaper/pip
7420629800b10d117d3af3b668dbe99b475fcbc0
[ "MIT" ]
1
2020-02-14T16:53:19.000Z
2020-02-14T16:53:19.000Z
# -*- coding: utf-8 -*- # # pip documentation build configuration file, created by # sphinx-quickstart on Tue Apr 22 22:08:49 2008 # # This file is execfile()d with the current directory set to its containing dir # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import glob import os import re import sys on_rtd = os.environ.get('READTHEDOCS', None) == 'True' docs_dir = os.path.dirname(os.path.dirname(__file__)) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, docs_dir) # sys.path.append(os.path.join(os.path.dirname(__file__), '../')) # -- General configuration ---------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. # extensions = ['sphinx.ext.autodoc'] extensions = ['sphinx.ext.extlinks', 'pip_sphinxext', 'sphinx.ext.intersphinx'] # intersphinx intersphinx_cache_limit = 0 intersphinx_mapping = { 'pypug': ('https://packaging.python.org/', None), 'pypa': ('https://www.pypa.io/en/latest/', None), } # Add any paths that contain templates here, relative to this directory. templates_path = [] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = 'pip' copyright = '2008-2017, PyPA' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = release = 'dev' # Readthedocs seems to install pip as an egg (via setup.py install) which # is somehow resulting in "import pip" picking up an older copy of pip. # Rather than trying to force RTD to install pip properly, we'll simply # read the version direct from the __init__.py file. (Yes, this is # fragile, but it works...) pip_init = os.path.join(docs_dir, '..', 'src', 'pip', '__init__.py') with open(pip_init) as f: for line in f: m = re.match(r'__version__ = "(.*)"', line) if m: __version__ = m.group(1) # The short X.Y version. version = '.'.join(__version__.split('.')[:2]) # The full version, including alpha/beta/rc tags. release = __version__ break # We have this here because readthedocs plays tricks sometimes and there seems # to be a heisenbug, related to the version of pip discovered. This is here to # help debug that if someone decides to do that in the future. print(version) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. # unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_patterns = ['build/'] # The reST default role (used for this markup: `text`) to use for all documents # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] extlinks = { 'issue': ('https://github.com/pypa/pip/issues/%s', '#'), 'pull': ('https://github.com/pypa/pip/pull/%s', 'PR #'), 'pypi': ('https://pypi.org/project/%s/', ''), } # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = "pypa_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'collapsiblesidebar': True, 'externalrefs': True, 'navigation_depth': 3, 'issues_url': 'https://github.com/pypa/pip/issues' } # Add any paths that contain custom themes here, relative to this directory. # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = '_static/piplogo.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = 'favicon.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, the Docutils Smart Quotes transform (originally based on # SmartyPants) will be used to convert characters like quotes and dashes # to typographically correct entities. The default is True. smartquotes = True # This string, for use with Docutils 0.14 or later, customizes the # SmartQuotes transform. The default of "qDe" converts normal quote # characters ('"' and "'"), en and em dashes ("--" and "---"), and # ellipses "...". # For now, we disable the conversion of dashes so that long options # like "--find-links" won't render as "-find-links" if included in the # text in places where monospaced type can't be used. For example, backticks # can't be used inside roles like :ref:`--no-index <--no-index>` because # of nesting. smartquotes_action = "qe" # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': ['localtoc.html', 'relations.html'], 'index': ['localtoc.html'] } # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. html_use_modindex = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'pipdocs' # -- Options for LaTeX output ------------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]) latex_documents = [ ( 'index', 'pip.tex', u'pip Documentation', u'pip developers', 'manual', ), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_use_modindex = True # -- Options for Manual Pages ------------------------------------------------- # List of manual pages generated man_pages = [ ( 'index', 'pip', u'package manager for Python packages', u'pip developers', 1 ) ] # Here, we crawl the entire man/commands/ directory and list every file with # appropriate name and details man_dir = os.path.join(docs_dir, 'man/') raw_subcommands = glob.glob(os.path.join(man_dir, 'commands/*.rst')) if not raw_subcommands: raise FileNotFoundError( 'The individual subcommand manpages could not be found!' ) for fname in raw_subcommands: fname_base = fname[len(man_dir):-4] outname = 'pip-' + fname_base[9:] description = u'description of {} command'.format( outname.replace('-', ' ') ) man_pages.append((fname_base, outname, description, u'pip developers', 1))
33.044521
79
0.693025
6ee0f1a3a900846a7ac90bf878536619733799a9
284
py
Python
basic/MultipleElifs.py
tonper19/PythonDemos
633a40e282049e511fd965c0afe104e775a2f526
[ "MIT" ]
null
null
null
basic/MultipleElifs.py
tonper19/PythonDemos
633a40e282049e511fd965c0afe104e775a2f526
[ "MIT" ]
null
null
null
basic/MultipleElifs.py
tonper19/PythonDemos
633a40e282049e511fd965c0afe104e775a2f526
[ "MIT" ]
null
null
null
color = input("What's your favorite color?") if color == 'purple': print('excelent choice!') elif color == 'teal': print('not bad!') elif color == 'seafoam': print('mediocre') elif color == 'pure darkness': print('i like how you think') else: print('YOU MONSTER!')
25.818182
44
0.626761
8283758e7b4b37af5b61603eddfff0bb9fbd3020
754
py
Python
examples/bme280.py
kungpfui/python-i2cmod
57d9cc8de372aa38526c3503ceec0d8924665c04
[ "MIT" ]
null
null
null
examples/bme280.py
kungpfui/python-i2cmod
57d9cc8de372aa38526c3503ceec0d8924665c04
[ "MIT" ]
null
null
null
examples/bme280.py
kungpfui/python-i2cmod
57d9cc8de372aa38526c3503ceec0d8924665c04
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Bosch Sensortec BME280 pressure, temperature and humidity sensor. `BME280 Datasheet <https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-12.pdf>` """ from i2cmod import BME280 def example(): """ Output data to screen """ with BME280(altitude=414.0) as sensor: print("Chip ID: {:02X}".format(sensor.id)) sensor.update() print("Pressure: {:.2f} hPa ".format(sensor.pressure)) print("Pressure NN: {:.2f} hPa ".format(sensor.pressure_sea_level)) print("Temperature: {:.2f} C".format(sensor.centigrade)) print("Humidity: {:.2f} %".format(sensor.humidity)) if __name__ == '__main__': example()
29
107
0.632626
122cc54134b401e83f297392b3b4722358f181c9
11,203
py
Python
kolibri/core/content/models.py
reubenjacob/kolibri
028bb2ad63e438c832ff657d37f7b05c3400f2da
[ "MIT" ]
null
null
null
kolibri/core/content/models.py
reubenjacob/kolibri
028bb2ad63e438c832ff657d37f7b05c3400f2da
[ "MIT" ]
3
2016-09-13T15:15:03.000Z
2018-10-06T15:54:44.000Z
kolibri/core/content/models.py
indirectlylit/kolibri
d00f070040fec63003c8e7f124ea89bc710a83c4
[ "MIT" ]
null
null
null
""" These models are used in the databases of content that get imported from Studio. Any fields added here (and not in base_models.py) are assumed to be locally calculated cached fields. If a field is intended to be imported from a content database generated by Studio, it should be added in base_models.py. *DEVELOPER WARNING regarding updates to these models* If you modify the schema here, it has implications for the content import pipeline because we will need to calculate these values during content import (as we they will not be present in the content databases distributed by Studio). In the case where new fields are added that do not need to be added to an export schema the generate_schema command should be run like this: `kolibri manage generate_schema current` This will just regenerate the current schema for SQLAlchemy, so that we can use SQLAlchemy to calculate these fields if needed (this can frequently be more efficient than using the Django ORM for these calculations). """ from __future__ import print_function import os from gettext import gettext as _ from django.db import connection from django.db import models from django.db.models import Min from django.db.models import Q from django.db.models import QuerySet from django.utils.encoding import python_2_unicode_compatible from le_utils.constants import content_kinds from le_utils.constants import format_presets from mptt.managers import TreeManager from mptt.querysets import TreeQuerySet from .utils import paths from kolibri.core.content import base_models from kolibri.core.content.errors import InvalidStorageFilenameError from kolibri.core.device.models import ContentCacheKey from kolibri.core.mixins import FilterByUUIDQuerysetMixin PRESET_LOOKUP = dict(format_presets.choices) @python_2_unicode_compatible class ContentTag(base_models.ContentTag): def __str__(self): return self.tag_name class ContentNodeQueryset(TreeQuerySet, FilterByUUIDQuerysetMixin): def dedupe_by_content_id(self, use_distinct=True): # Cannot use distinct if queryset is also going to use annotate, # so optional use_distinct flag can be used to fallback to a subquery # remove duplicate content nodes based on content_id if connection.vendor == "sqlite" or not use_distinct: if connection.vendor == "postgresql": # Create a subquery of all contentnodes deduped by content_id # to avoid calling distinct on an annotated queryset. deduped_ids = self.model.objects.order_by("content_id").distinct( "content_id" ) else: # adapted from https://code.djangoproject.com/ticket/22696 deduped_ids = ( self.values("content_id") .annotate(node_id=Min("id")) .values_list("node_id", flat=True) ) return self.filter_by_uuids(deduped_ids) # when using postgres, we can call distinct on a specific column elif connection.vendor == "postgresql": return self.order_by("content_id").distinct("content_id") def filter_by_content_ids(self, content_ids, validate=True): return self._by_uuids(content_ids, validate, "content_id", True) def exclude_by_content_ids(self, content_ids, validate=True): return self._by_uuids(content_ids, validate, "content_id", False) class ContentNodeManager( models.Manager.from_queryset(ContentNodeQueryset), TreeManager ): def get_queryset(self, *args, **kwargs): """ Ensures that this manager always returns nodes in tree order. """ return ( super(TreeManager, self) .get_queryset(*args, **kwargs) .order_by(self.tree_id_attr, self.left_attr) ) def build_tree_nodes(self, data, target=None, position="last-child"): """ vendored from: https://github.com/django-mptt/django-mptt/blob/fe2b9cc8cfd8f4b764d294747dba2758147712eb/mptt/managers.py#L614 """ opts = self.model._mptt_meta if target: tree_id = target.tree_id if position in ("left", "right"): level = getattr(target, opts.level_attr) if position == "left": cursor = getattr(target, opts.left_attr) else: cursor = getattr(target, opts.right_attr) + 1 else: level = getattr(target, opts.level_attr) + 1 if position == "first-child": cursor = getattr(target, opts.left_attr) + 1 else: cursor = getattr(target, opts.right_attr) else: tree_id = self._get_next_tree_id() cursor = 1 level = 0 stack = [] def treeify(data, cursor=1, level=0): data = dict(data) children = data.pop("children", []) node = self.model(**data) stack.append(node) setattr(node, opts.tree_id_attr, tree_id) setattr(node, opts.level_attr, level) setattr(node, opts.left_attr, cursor) for child in children: cursor = treeify(child, cursor=cursor + 1, level=level + 1) cursor += 1 setattr(node, opts.right_attr, cursor) return cursor treeify(data, cursor=cursor, level=level) if target: self._create_space(2 * len(stack), cursor - 1, tree_id) return stack @python_2_unicode_compatible class ContentNode(base_models.ContentNode): """ The primary object type in a content database. Defines the properties that are shared across all content types. It represents videos, exercises, audio, documents, and other 'content items' that exist as nodes in content channels. """ # Fields used only on Kolibri and not imported from a content database # Total number of coach only resources for this node num_coach_contents = models.IntegerField(default=0, null=True, blank=True) # Total number of available resources on the device under this topic - if this is not a topic # then it is 1 or 0 depending on availability on_device_resources = models.IntegerField(default=0, null=True, blank=True) objects = ContentNodeManager() class Meta: ordering = ("lft",) index_together = [ ["level", "channel_id", "kind"], ["level", "channel_id", "available"], ] def __str__(self): return self.title def get_descendant_content_ids(self): """ Retrieve a queryset of content_ids for non-topic content nodes that are descendants of this node. """ return ( ContentNode.objects.filter(lft__gte=self.lft, lft__lte=self.rght) .exclude(kind=content_kinds.TOPIC) .values_list("content_id", flat=True) ) @python_2_unicode_compatible class Language(base_models.Language): def __str__(self): return self.lang_name or "" class File(base_models.File): """ The second to bottom layer of the contentDB schema, defines the basic building brick for content. Things it can represent are, for example, mp4, avi, mov, html, css, jpeg, pdf, mp3... """ class Meta: ordering = ["priority"] class Admin: pass def get_extension(self): return self.local_file.extension def get_file_size(self): return self.local_file.file_size def get_storage_url(self): return self.local_file.get_storage_url() def get_preset(self): """ Return the preset. """ return PRESET_LOOKUP.get(self.preset, _("Unknown format")) class LocalFileQueryset(models.QuerySet, FilterByUUIDQuerysetMixin): def delete_unused_files(self): for file in self.get_unused_files(): try: os.remove(paths.get_content_storage_file_path(file.get_filename())) yield True, file except (IOError, OSError, InvalidStorageFilenameError): yield False, file self.get_unused_files().update(available=False) def get_orphan_files(self): return self.filter(files__isnull=True) def delete_orphan_file_objects(self): return self.filter(files__isnull=True).delete() def get_unused_files(self): return self.filter( ~Q(files__contentnode__available=True) | Q(files__isnull=True) ).filter(available=True) @python_2_unicode_compatible class LocalFile(base_models.LocalFile): """ The bottom layer of the contentDB schema, defines the local state of files on the device storage. """ objects = LocalFileQueryset.as_manager() class Admin: pass def __str__(self): return paths.get_content_file_name(self) def get_filename(self): return self.__str__() def get_storage_url(self): """ Return a url for the client side to retrieve the content file. The same url will also be exposed by the file serializer. """ return paths.get_local_content_storage_file_url(self) def delete_stored_file(self): """ Delete the stored file from disk. """ deleted = False try: os.remove(paths.get_content_storage_file_path(self.get_filename())) deleted = True except (IOError, OSError, InvalidStorageFilenameError): deleted = False self.available = False self.save() return deleted class AssessmentMetaData(base_models.AssessmentMetaData): """ A model to describe additional metadata that characterizes assessment behaviour in Kolibri. This model contains additional fields that are only revelant to content nodes that probe a user's state of knowledge and allow them to practice to Mastery. ContentNodes with this metadata may also be able to be used within quizzes and exams. """ pass class ChannelMetadataQueryset(QuerySet, FilterByUUIDQuerysetMixin): pass @python_2_unicode_compatible class ChannelMetadata(base_models.ChannelMetadata): """ Holds metadata about all existing content databases that exist locally. """ # precalculated fields during annotation/migration published_size = models.BigIntegerField(default=0, null=True, blank=True) total_resource_count = models.IntegerField(default=0, null=True, blank=True) included_languages = models.ManyToManyField( "Language", related_name="channels", verbose_name="languages", blank=True ) order = models.PositiveIntegerField(default=0, null=True, blank=True) public = models.NullBooleanField() objects = ChannelMetadataQueryset.as_manager() class Admin: pass class Meta: ordering = ["order"] def __str__(self): return self.name def delete_content_tree_and_files(self): # Use Django ORM to ensure cascading delete: self.root.delete() ContentCacheKey.update_cache_key()
33.845921
118
0.668392
319971e2b715159eadf6f48530ee23b336f2194e
5,648
py
Python
webwhatsapi/objects/message.py
uae0786/WhatsApp-Auto-Reply
f55c0e376663282cab78f81d01ab24b3cdb4e59d
[ "MIT" ]
3
2018-04-11T03:02:30.000Z
2018-05-19T13:26:31.000Z
webwhatsapi/objects/message.py
uae0786/WhatsApp-Auto-Reply
f55c0e376663282cab78f81d01ab24b3cdb4e59d
[ "MIT" ]
null
null
null
webwhatsapi/objects/message.py
uae0786/WhatsApp-Auto-Reply
f55c0e376663282cab78f81d01ab24b3cdb4e59d
[ "MIT" ]
7
2018-04-11T09:00:38.000Z
2021-01-23T08:58:46.000Z
from datetime import datetime import mimetypes import os import pprint from webwhatsapi.helper import safe_str pprint = pprint.PrettyPrinter(indent=4).pprint from webwhatsapi.objects.whatsapp_object import WhatsappObjectWithoutID, driver_needed from webwhatsapi.objects.contact import Contact class MessageMetaClass(type): """ Message type factory """ def __call__(cls, js_obj, driver=None): """ Responsible for returning correct Message subtype :param js_obj: Raw message JS :return: Instance of appropriate message type :rtype: MediaMessage | Message | MMSMessage | VCardMessage """ if js_obj["isMedia"]: return type.__call__(MediaMessage, js_obj, driver) if js_obj["isNotification"]: return type.__call__(NotificationMessage, js_obj, driver) if js_obj["isMMS"]: return type.__call__(MMSMessage, js_obj, driver) if js_obj["type"] in ["vcard", "multi_vcard"]: return type.__call__(VCardMessage, js_obj, driver) return type.__call__(Message, js_obj, driver) class Message(WhatsappObjectWithoutID): __metaclass__ = MessageMetaClass def __init__(self, js_obj, driver=None): """ Constructor :param js_obj: Raw JS message obj :type js_obj: dict """ super(Message, self).__init__(js_obj, driver) self.sender = False if js_obj["sender"] == False else Contact(js_obj["sender"], driver) self.timestamp = datetime.fromtimestamp(js_obj["timestamp"]) if js_obj["content"]: self.content = js_obj["content"] self.safe_content = safe_str(self.content[0:25]) + '...' self.js_obj = js_obj def __repr__(self): return "<Message - from {sender} at {timestamp}: {content}>".format( sender=safe_str(self.sender.get_safe_name()), timestamp=self.timestamp, content=self.safe_content) class MediaMessage(Message): def __init__(self, js_obj, driver=None): super(MediaMessage, self).__init__(js_obj, driver) self.type = self.js_obj["type"] self.size = self.js_obj["size"] self.mime = self.js_obj["mime"] def save_media(self, path): extension = mimetypes.guess_extension(self.mime) filename = "{0}{1}".format(self["__x_filehash"], extension) with file(os.path.join(path, filename), "wb") as output: output.write(self.content.decode("base64")) def __repr__(self): return "<MediaMessage - {type} from {sender} at {timestamp}>".format( type=self.type, sender=safe_str(self.sender.get_safe_name()), timestamp=self.timestamp ) class MMSMessage(MediaMessage): """ Represents MMS messages Example of an MMS message: "ptt" (push to talk), voice memo """ def __init__(self, js_obj, driver=None): super(MMSMessage, self).__init__(js_obj, driver) def __repr__(self): return "<MMSMessage - {type} from {sender} at {timestamp}>".format( type=self.type, sender=safe_str(self.sender.get_safe_name()), timestamp=self.timestamp ) class VCardMessage(Message): def __init__(self, js_obj, driver=None): super(VCardMessage, self).__init__(js_obj, driver) self.type = js_obj["type"] self.contacts = js_obj["content"].encode("ascii", "ignore") def __repr__(self): return "<VCardMessage - {type} from {sender} at {timestamp} ({contacts})>".format( type=self.type, sender=safe_str(self.sender.get_safe_name()), timestamp=self.timestamp, contacts=self.contacts ) class NotificationMessage(Message): def __init__(self, js_obj, driver=None): super(NotificationMessage, self).__init__(js_obj, driver) self.type = js_obj["type"] self.subtype = js_obj["subtype"].encode("ascii", "ignore") if js_obj["recipients"]: self.recipients = [self.driver.get_contact_from_id(x) for x in js_obj["recipients"]] def __repr__(self): readable = { 'call_log':{ 'miss': "Missed Call", }, 'e2e_notification':{ 'encrypt': "Messages now Encrypted" }, 'gp2':{ 'create': "Created group", 'add': "Added to group", 'remove': "Removed from group", 'leave': "Left the group" } } sender = "" if not self.sender else ("from " + str(safe_str(self.sender.get_safe_name()))) return "<NotificationMessage - {type} {recip} {sender} at {timestamp}>".format( type=readable[self.type][self.subtype], sender = sender, timestamp=self.timestamp, recip="" if not hasattr(self, 'recipients') else "".join([safe_str(x.get_safe_name()) for x in self.recipients]), ) class MessageGroup(object): def __init__(self, chat, messages): """ Constructor :param chat: Chat that contains messages :type chat: chat.Chat :param messages: List of messages :type messages: list[Message] """ self.chat = chat self.messages = messages def __repr__(self): safe_chat_name = safe_str(self.chat.name) return "<MessageGroup - {num} {messages} in {chat}>".format( num=len(self.messages), messages="message" if len(self.messages) == 1 else "messages", chat=safe_chat_name)
32.837209
125
0.607649
bcc313d30a411be3bcf49632c6a04032b3428f6d
4,719
py
Python
landlab/components/stream_power/examples/perturb_sed_flux_dep.py
awickert/landlab
496de56717a5877db96f354a1b1285bfabe8b56f
[ "MIT" ]
1
2015-08-17T19:29:50.000Z
2015-08-17T19:29:50.000Z
landlab/components/stream_power/examples/perturb_sed_flux_dep.py
awickert/landlab
496de56717a5877db96f354a1b1285bfabe8b56f
[ "MIT" ]
1
2018-04-07T08:24:56.000Z
2018-04-07T13:52:03.000Z
landlab/components/stream_power/examples/perturb_sed_flux_dep.py
awickert/landlab
496de56717a5877db96f354a1b1285bfabe8b56f
[ "MIT" ]
2
2017-07-03T20:21:13.000Z
2018-09-06T23:58:19.000Z
# -*- coding: utf-8 -*- from __future__ import print_function from six.moves import range from landlab.components.flow_routing import FlowRouter from landlab.components.stream_power import SedDepEroder from landlab import ModelParameterDictionary from landlab.plot import imshow from landlab.plot.video_out import VideoPlotter from landlab.plot import channel_profile as prf from landlab.plot.imshow import imshow_node_grid from pylab import colorbar, show, plot, loglog, figure, savefig, close, ylim from landlab import RasterModelGrid import numpy as np import pylab from copy import copy, deepcopy from time import time #get the needed properties to build the grid: input_file = './sed_dep_NMGparams2.txt' #####remember to change the fixed y-axis dimension in the plots!! y_max = 200 make_output_plots=True out_interval=15 #was 15 inputs = ModelParameterDictionary(input_file) nrows = inputs.read_int('nrows') ncols = inputs.read_int('ncols') dx = inputs.read_float('dx') uplift_rate = inputs.read_float('uplift_rate') runtime = inputs.read_float('total_time') dt = inputs.read_float('dt') nt = int(runtime//dt) uplift_per_step = uplift_rate * dt print('uplift per step: ', uplift_per_step) #check we have a plaubible grid #mg = RasterModelGrid(nrows,ncols,dx) assert mg.number_of_nodes == nrows*ncols assert mg.node_spacing == dx # Display a message print('Running ...') # instantiate the components: fr = FlowRouter(mg) sde = SedDepEroder(mg, input_file) # don't allow overwriting of these, just in case try: x_profiles except NameError: x_profiles = [] z_profiles = [] S_profiles = [] A_profiles = [] # plot init conds if make_output_plots: mg = fr.route_flow(grid=mg) pylab.figure('long_profile_anim') ylim([0, y_max]) prf.analyze_channel_network_and_plot(mg) savefig('0profile_anim_init.png') close('long_profile_anim') (profile_IDs, dists_upstr) = prf.analyze_channel_network_and_plot(mg) start_node = [profile_IDs[0]] time_on = time() #perform the loops: for i in range(nt): #print 'loop ', i mg.at_node['topographic__elevation'][mg.core_nodes] += uplift_per_step mg = fr.route_flow() #mg.calc_grad_across_cell_faces(mg.at_node['topographic__elevation']) #neighbor_slopes = mg.calc_grad_along_node_links(mg.at_node['topographic__elevation']) #mean_slope = np.mean(np.fabs(neighbor_slopes),axis=1) #max_slope = np.max(np.fabs(neighbor_slopes),axis=1) #mg,_,capacity_out = tl.erode(mg,dt,slopes_at_nodes='topographic__steepest_slope') #mg,_,capacity_out = tl.erode(mg,dt,slopes_at_nodes=max_slope) mg_copy = deepcopy(mg) mg,_ = sde.erode(mg,dt) #print sde.iterations_in_dt #print 'capacity ', np.amax(capacity_out[mg.core_nodes]) #print 'rel sed ', np.nanmax(sed_in[mg.core_nodes]/capacity_out[mg.core_nodes]) if i%out_interval == 0: print('loop ', i) print('max_slope', np.amax(mg.at_node['topographic__steepest_slope'][mg.core_nodes])) pylab.figure("long_profiles") profile_IDs = prf.channel_nodes(mg, mg.at_node['topographic__steepest_slope'], mg.at_node['drainage_area'], mg.at_node['flow__receiver_node']) dists_upstr = prf.get_distances_upstream(mg, len(mg.at_node['topographic__steepest_slope']), profile_IDs, mg.at_node['flow__link_to_receiver_node']) prf.plot_profiles(dists_upstr, profile_IDs, mg.at_node['topographic__elevation']) if i%out_interval == 0: x_profiles.append(dists_upstr) z_profiles.append(mg.at_node['topographic__elevation'][profile_IDs]) S_profiles.append(mg.at_node['topographic__steepest_slope'][profile_IDs]) A_profiles.append(mg.at_node['drainage_area'][profile_IDs]) if make_output_plots: pylab.figure('long_profile_anim') #prf.plot_profiles(dists_upstr, profile_IDs, mg.at_node['topographic_elevation']) plot(dists_upstr,mg.at_node['topographic_elevation'][profile_IDs]) ylim([0,y_max]) if i==0: savefig('profile_anim_000'+str(i)+'.png') elif i<100: savefig('profile_anim_00'+str(i)+'.png') elif i<1000: savefig('profile_anim_0'+str(i)+'.png') else: savefig('profile_anim_'+str(i)+'.png') close('long_profile_anim') #vid.add_frame(mg, 'topographic__elevation') print('Completed the simulation. Plotting...') time_off = time() #Finalize and plot elev = mg['node']['topographic__elevation'] #imshow.imshow_node_grid(mg, elev) print('Done.') print('Time: ', time_off-time_on) #pylab.show() #vid.produce_video()
34.698529
103
0.706718
b38b02334bf41174bbfd8ff4ac807e8430936f4f
2,574
py
Python
pyActionRec/action_caffe.py
zhoutianyi1/caffe_feature
88405029404cb9b075f3057ce2f8ef2610a623a9
[ "BSD-2-Clause" ]
null
null
null
pyActionRec/action_caffe.py
zhoutianyi1/caffe_feature
88405029404cb9b075f3057ce2f8ef2610a623a9
[ "BSD-2-Clause" ]
null
null
null
pyActionRec/action_caffe.py
zhoutianyi1/caffe_feature
88405029404cb9b075f3057ce2f8ef2610a623a9
[ "BSD-2-Clause" ]
null
null
null
from .config import ANET_CFG import sys sys.path.append(ANET_CFG.CAFFE_ROOT+'/python') import caffe from caffe.io import oversample import numpy as np from utils.io import flow_stack_oversample import cv2 class CaffeNet(object): def __init__(self, net_proto, net_weights, device_id, input_size=None): caffe.set_mode_gpu() caffe.set_device(device_id) self._net = caffe.Net(net_proto, net_weights, caffe.TEST) input_shape = self._net.blobs['data'].data.shape if input_size is not None: input_shape = input_shape[:2] + input_size transformer = caffe.io.Transformer({'data': input_shape}) if self._net.blobs['data'].data.shape[1] == 3: transformer.set_transpose('data', (2, 0, 1)) # move image channels to outermost dimension transformer.set_mean('data', np.array([104, 117, 123])) # subtract the dataset-mean value in each channel else: pass # non RGB data need not use transformer self._transformer = transformer self._sample_shape = self._net.blobs['data'].data.shape def predict_single_frame(self, frame, score_name, over_sample=True, multiscale=None, frame_size=None): if frame_size is not None: frame = [cv2.resize(x, frame_size) for x in frame] if over_sample: if multiscale is None: os_frame = oversample(frame, (self._sample_shape[2], self._sample_shape[3])) else: os_frame = [] for scale in multiscale: resized_frame = [cv2.resize(x, (0,0), fx=1.0/scale, fy=1.0/scale) for x in frame] os_frame.extend(oversample(resized_frame, (self._sample_shape[2], self._sample_shape[3]))) else: os_frame = np.array(frame) data = np.array([self._transformer.preprocess('data', x) for x in os_frame]) self._net.blobs['data'].reshape(*data.shape) self._net.reshape() out = self._net.forward(blobs=[score_name,], data=data) return out[score_name].copy() def predict_single_flow_stack(self, frame, score_name, over_sample=True): if over_sample: os_frame = flow_stack_oversample(frame, (self._sample_shape[2], self._sample_shape[3])) else: os_frame = np.array([frame,]) data = os_frame - 128 self._net.blobs['data'].reshape(*data.shape) self._net.reshape() out = self._net.forward(blobs=[score_name,], data=data) return out[score_name].copy()
34.32
118
0.634421
b2e21a56382ee21307579eadd5fe8bcd77723a99
350
py
Python
assignment3/myapp/migrations/0012_alter_winsmodel_options.py
spencerleff/Spence-Tac-Toe
f85c29d37b4441055a1c93e729dffab0499a7626
[ "MIT" ]
null
null
null
assignment3/myapp/migrations/0012_alter_winsmodel_options.py
spencerleff/Spence-Tac-Toe
f85c29d37b4441055a1c93e729dffab0499a7626
[ "MIT" ]
null
null
null
assignment3/myapp/migrations/0012_alter_winsmodel_options.py
spencerleff/Spence-Tac-Toe
f85c29d37b4441055a1c93e729dffab0499a7626
[ "MIT" ]
null
null
null
# Generated by Django 4.0 on 2021-12-09 01:27 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('myapp', '0011_alter_winsmodel_options'), ] operations = [ migrations.AlterModelOptions( name='winsmodel', options={'ordering': ['-wins']}, ), ]
19.444444
50
0.594286
f92bda7131e208a4f706610c79d6080eb6f7d565
543
py
Python
manage.py
ChenSunMac/EZonlineEdu
bae3dc82a357e7bc0e60dab1f2f1105343aa752e
[ "MIT" ]
null
null
null
manage.py
ChenSunMac/EZonlineEdu
bae3dc82a357e7bc0e60dab1f2f1105343aa752e
[ "MIT" ]
null
null
null
manage.py
ChenSunMac/EZonlineEdu
bae3dc82a357e7bc0e60dab1f2f1105343aa752e
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "EZonlineEdu.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
33.9375
75
0.688766
ea3735ed21cda47b20366ab9a2887e4217d15dc4
516
py
Python
osf/migrations/0191_abstractnode_external_registered_date.py
gaybro8777/osf.io
30408511510a40bc393565817b343ef5fd76ab14
[ "Apache-2.0" ]
628
2015-01-15T04:33:22.000Z
2022-03-30T06:40:10.000Z
osf/migrations/0191_abstractnode_external_registered_date.py
gaybro8777/osf.io
30408511510a40bc393565817b343ef5fd76ab14
[ "Apache-2.0" ]
4,712
2015-01-02T01:41:53.000Z
2022-03-30T14:18:40.000Z
osf/migrations/0191_abstractnode_external_registered_date.py
Johnetordoff/osf.io
de10bf249c46cede04c78f7e6f7e352c69e6e6b5
[ "Apache-2.0" ]
371
2015-01-12T16:14:08.000Z
2022-03-31T18:58:29.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2019-10-21 18:50 from __future__ import unicode_literals from django.db import migrations import osf.utils.fields class Migration(migrations.Migration): dependencies = [ ('osf', '0189_deleted_field_data'), ] operations = [ migrations.AddField( model_name='abstractnode', name='external_registered_date', field=osf.utils.fields.NonNaiveDateTimeField(blank=True, null=True), ), ]
23.454545
80
0.651163
7c4466dbfc48531f1e2bf47d8d750fd61050323d
783
py
Python
semantic_seg/tools/imports.py
Megvii-BaseDetection/DisAlign
a2fc3500a108cb83e3942293a5675c97ab3a2c6e
[ "Apache-2.0" ]
91
2021-03-29T08:58:00.000Z
2022-03-30T02:42:29.000Z
semantic_seg/tools/imports.py
Megvii-BaseDetection/DisAlign
a2fc3500a108cb83e3942293a5675c97ab3a2c6e
[ "Apache-2.0" ]
22
2021-04-07T02:40:52.000Z
2022-03-03T07:53:21.000Z
semantic_seg/tools/imports.py
Megvii-BaseDetection/DisAlign
a2fc3500a108cb83e3942293a5675c97ab3a2c6e
[ "Apache-2.0" ]
8
2021-08-02T03:43:32.000Z
2022-02-24T09:04:46.000Z
# Borrowed from cvpods: https://github.com/Megvii-BaseDetection/cvpods/blob/master/cvpods/utils/imports.py import importlib import os.path as osp def dynamic_import(config_path): """ Dynamic import a project. Args: config_name (str): module name config_path (str): the dir that contains the .py with this module. Examples:: >>> root = "/path/to/your/retinanet/" >>> project = root + "retinanet.res50.fpn.coco.800size.1x.mrcnn_sigmoid" >>> cfg = dynamic_import("config", project).config >>> net = dynamic_import("net", project) """ spec = importlib.util.spec_from_file_location("", osp.join(config_path)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module
35.590909
106
0.678161
669bbd49b5ec36c8450e8d23d12d8926e0f08d2c
268
py
Python
EJERCICIOS/Ejercicio_4.py
DiegoC386/Taller-de-Estrucuras-de-Control-Repeticion
874fb29c5a50398290db631b6ad307c9ec228b1e
[ "MIT" ]
null
null
null
EJERCICIOS/Ejercicio_4.py
DiegoC386/Taller-de-Estrucuras-de-Control-Repeticion
874fb29c5a50398290db631b6ad307c9ec228b1e
[ "MIT" ]
null
null
null
EJERCICIOS/Ejercicio_4.py
DiegoC386/Taller-de-Estrucuras-de-Control-Repeticion
874fb29c5a50398290db631b6ad307c9ec228b1e
[ "MIT" ]
null
null
null
""" Calcular el término doceavo y la suma de los doce primeros términos de la sucesión: 6, 11, 16, 21. Respuesta: a12=61, suma=402. """ a1=int(input("Ingrese primer termino: ")) a12=int(input("Ingrese ultimo termino: ")) NumTer=12 Suma=((a1+a12)*NumTer)/2 print(Suma)
24.363636
58
0.708955
8e010105b490b29a6cf81ceaedaad83237dafa3e
828
py
Python
xonotic_radio/util.py
z/xonotic-radio-service
90ca68acbc12739bb634c4d66a2862326c7195d8
[ "MIT" ]
1
2021-02-17T20:20:28.000Z
2021-02-17T20:20:28.000Z
xonotic_radio/util.py
z/xonotic-radio-service
90ca68acbc12739bb634c4d66a2862326c7195d8
[ "MIT" ]
null
null
null
xonotic_radio/util.py
z/xonotic-radio-service
90ca68acbc12739bb634c4d66a2862326c7195d8
[ "MIT" ]
1
2016-05-05T13:12:30.000Z
2016-05-05T13:12:30.000Z
import configparser import time import sys import os def reporthook(count, block_size, total_size): global start_time if count == 0: start_time = time.time() return duration = time.time() - start_time progress_size = int(count * block_size) speed = int(progress_size / (1024 * duration)) percent = int(count * block_size * 100 / total_size) sys.stdout.write("\r...%d%%, %d MB, %d KB/s, %d seconds passed. " % (percent, progress_size / (1024 * 1024), speed, duration)) sys.stdout.flush() def read_config(config_file): if not os.path.isfile(config_file): raise SystemExit(config_file + ' not found, please create one.') config = configparser.ConfigParser() config.read(config_file) return config['default'], config['endpoints']
25.090909
78
0.649758
130acbc4b3963e9a1c661c33e08469a5f9448b7c
2,393
py
Python
parse.py
jbbrokaw/table-of-authorities
758d4808403c88c909c24ff308c24be305242ebd
[ "MIT" ]
null
null
null
parse.py
jbbrokaw/table-of-authorities
758d4808403c88c909c24ff308c24be305242ebd
[ "MIT" ]
null
null
null
parse.py
jbbrokaw/table-of-authorities
758d4808403c88c909c24ff308c24be305242ebd
[ "MIT" ]
null
null
null
#!/usr/bin/env python from __future__ import unicode_literals import re ALLOWED_SYMBOLS = {'&'} ABBREVIATIONS = {'Co.', 'U.S.', 'Corp.', 'Inc.', 'Dist.'} LOWERCASE_WORDS = {'the', 'a', 'an', 'and', 'of'} CLAUSE_ENDERS = {'.', ';'} def title_word(word): if word[0].isupper() and (word[-1] not in CLAUSE_ENDERS): return True if word in ALLOWED_SYMBOLS: return True if word in LOWERCASE_WORDS: return True if word in ABBREVIATIONS: return True return False def find_v_cites(text): words = text.split() date_re = re.compile('\d{4}\)') while 'v.' in words: v_index = words.index('v.') begin_index = v_index - 1 while (begin_index >= 0) and title_word(words[begin_index]): begin_index -= 1 begin_index = min(v_index - 1, begin_index + 1) end_index = v_index + 1 while (end_index < len(words)) and \ (date_re.search(words[end_index]) is None): end_index += 1 cite_string = " ".join(words[begin_index:end_index + 1]) if date_re.search(cite_string): print cite_string words = words[v_index + 1:] def find_in_re_cites(text): words = text.split() date_re = re.compile('\d{4}\)') while 're' in words: re_index = words.index('re') if (re_index < 1) or (words[re_index - 1] != 'In'): words = words[re_index + 1:] continue end_index = re_index + 1 while (end_index < len(words)) and \ (date_re.search(words[end_index]) is None): end_index += 1 cite_string = " ".join(words[re_index - 1:end_index + 1]) if date_re.search(cite_string): print cite_string words = words[re_index + 1:] def main(): from sys import argv from docx import Document if len(argv) < 2: print "Usage: python parse.py [file.docx]" return filename = argv[1] file_name_parts = filename.split('.') if (len(file_name_parts) < 2) or (file_name_parts[1] != 'docx'): print "Only .docx files supported currently" doc = Document(filename) for paragraph in doc.paragraphs: find_v_cites(paragraph.text) find_in_re_cites(paragraph.text) if __name__ == '__main__': main()
27.825581
68
0.568742
f02e332b3488e9c5bfee9e240621b56afa30e873
6,241
py
Python
msvd/train_model.py
WingsBrokenAngel/general-professional-learning-model
c4b892033b814b99c36f1f33b36df787f715ff14
[ "MIT" ]
39
2020-01-03T09:46:53.000Z
2022-01-26T14:00:31.000Z
msvd/train_model.py
WingsBrokenAngel/general-professional-learning-model
c4b892033b814b99c36f1f33b36df787f715ff14
[ "MIT" ]
7
2020-02-21T09:21:56.000Z
2020-10-13T05:59:15.000Z
msvd/train_model.py
WingsBrokenAngel/general-professional-learning-model
c4b892033b814b99c36f1f33b36df787f715ff14
[ "MIT" ]
13
2020-01-21T07:54:17.000Z
2021-11-27T10:02:34.000Z
# -*- coding: utf-8 -*- # Author: Haoran Chen # Date: 2019-09-17 import tensorflow as tf import pickle import numpy as np import sys from pprint import pprint from collections import defaultdict import time sys.path.append('..') from utils import * np.random.seed(42) data_dict = None model = None options = None METRICS = {'Bleu_4': 0., 'CIDEr': 0., 'METEOR': 0., 'ROUGE_L': 0.} # METRICS = {'ROUGE_L': 0.} MAX = {key: 0. for key in METRICS} min_xe = 1000. def cal_metrics(sess, phase): sent_dict, sent_list = defaultdict(list), [] loss_list = [] logits_dict = {'xe': [], 'all': []} if phase == "train": ref = data_dict["ref"][0] idx2cap = {idx: elem for idx, elem in enumerate(ref)} idx_start, idx_end = 0, 1200 elif phase == "val": ref = data_dict['ref'][1] idx2cap = {idx+1200: elem for idx, elem in enumerate(ref)} idx_start, idx_end = 1200, 1300 elif phase == "test": ref = data_dict['ref'][2] idx2cap = {idx+1300: elem for idx, elem in enumerate(ref)} idx_start, idx_end = 1300, 1970 else: raise ValueError("The phase should be val or test") tag_feat = data_dict['tag_feat'] eco_res_feat = data_dict['eco_res_feat'] idx2gts = data_dict['idx2gts'] for idx in range(idx_start, idx_end): tag, ervid = tag_feat[idx], eco_res_feat[idx] tag, ervid = np.expand_dims(tag, 0), np.expand_dims(ervid, 0) gts = idx2gts[idx] maxlen = max([len(gt) for gt in gts]) gts_mat = np.zeros((maxlen, len(gts)), dtype=np.int32) for idx2, gt in enumerate(gts): gts_mat[:len(gt), idx2] = gt # print('tag shape:', tag.shape, 'evid:', evid.shape, 'rvid:', rvid.shape) wanted_ops = { 'generated_words': model.generated_words, 'test_loss': model.test_loss, 'xe_logits': model.xe_logits, 'all_logits': model.all_logits} feed_dict = { model.word_idx: gts_mat, model.vid_inputs: ervid, model.se_inputs: tag} # sel_word_idx shape: (batch_size, beam_width, n_steps) res = sess.run(wanted_ops, feed_dict) generated_words = res['generated_words'] loss_list.append(res['test_loss']) logits_dict['xe'].append(res['xe_logits']) logits_dict['all'].append(res['all_logits']) for x in np.squeeze(generated_words): if x == 0: break sent_dict[idx].append(data_dict['idx2word'][x]) sent_dict[idx] = [' '.join(sent_dict[idx])] sent_list.append(sent_dict[idx][0]) scores = score(idx2cap, sent_dict) print(phase) pprint(scores) mean_loss = np.mean(loss_list) print('average loss:', mean_loss, flush=True) with open(flags.name+'_%s_output.log'%phase, 'w') as fo: for sent in sent_list: fo.write(sent+'\n') with open(flags.name+'_%s_logits.pkl'%phase, 'wb') as fo: pickle.dump([logits_dict['xe'], logits_dict['all']], fo, -1) return scores, mean_loss def main(): global data_dict, model, options data_dict = get_data(flags) options = get_options(data_dict) model = get_model(options) # model = get_gru(options) best_score, save_path = 0., None with model.graph.as_default(): global_step = tf.train.get_or_create_global_step() train_op = get_train_op(model, options, global_step) saver = tf.train.Saver() config = get_config() sess = tf.Session(config=config, graph=model.graph) if flags.test is None: sess.run(tf.global_variables_initializer()) train_idx1 = np.arange(options.train_size, dtype=np.int32) train_idx2 = np.arange(options.train_size2, dtype=np.int32) for idx in range(options.epoch): start_time = time.perf_counter() train_loss = [] if idx < options.threshold: np.random.shuffle(train_idx1) train_part1(train_idx1, train_op, train_loss, sess, options, data_dict, model) else: np.random.shuffle(train_idx2) train_part2(train_idx2, train_op, train_loss, sess, idx, options, data_dict, model) mean_train_loss = np.mean(train_loss) print('epoch %d: loss %f.' % (idx, mean_train_loss)) scores, mean_val_loss = cal_metrics(sess, 'val') # update maximum metrics values global METRICS, MAX, min_xe METRICS = {key: max(METRICS[key], scores[key]) for key in METRICS} overall_score1 = np.mean([scores[key] / METRICS[key] for key in METRICS]) overall_score2 = np.mean([MAX[key] / METRICS[key] for key in METRICS]) if overall_score1 > overall_score2: MAX = scores save_path = saver.save(sess, './saves/%s-best.ckpt'%flags.name) print('Epoch %d: the best model has been saved as %s.' % (idx, save_path), flush=True) end_time = time.perf_counter() print('%d epoch: %.2fs.' % (idx, end_time - start_time)) saver.restore(sess, save_path) cal_metrics(sess, "train") cal_metrics(sess, 'test') else: saver.restore(sess, flags.test) cal_metrics(sess, 'train') cal_metrics(sess, 'val') cal_metrics(sess, 'test') sess.close() if __name__ == "__main__": tf.app.flags.DEFINE_string('name', '1', 'name of model') tf.app.flags.DEFINE_string('corpus', None, 'Path to corpus file') tf.app.flags.DEFINE_string('ecores', None, 'Path to ECO-RES feature files') tf.app.flags.DEFINE_string('tag', None, 'Path to Tag feature files') tf.app.flags.DEFINE_string('ref', None, 'Path to reference files') tf.app.flags.DEFINE_string('test', None, 'Path to the saved parameters') flags = tf.app.flags.FLAGS start_time = time.perf_counter() main() end_time = time.perf_counter() print('Total time: %.2fs' % (end_time - start_time))
39.251572
89
0.591412
457e20cb169349326f042d6e1bc0cb7e823985d2
496
py
Python
qupang/images/migrations/0004_auto_20190222_0010.py
kibinlee/qupang
3d9529c5079e0fd1b2c02dd5b237d2e784065ee3
[ "MIT" ]
null
null
null
qupang/images/migrations/0004_auto_20190222_0010.py
kibinlee/qupang
3d9529c5079e0fd1b2c02dd5b237d2e784065ee3
[ "MIT" ]
null
null
null
qupang/images/migrations/0004_auto_20190222_0010.py
kibinlee/qupang
3d9529c5079e0fd1b2c02dd5b237d2e784065ee3
[ "MIT" ]
null
null
null
# Generated by Django 2.0.13 on 2019-02-21 15:10 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('images', '0003_auto_20190221_2330'), ] operations = [ migrations.RenameField( model_name='comment', old_name='Image', new_name='image', ), migrations.RenameField( model_name='like', old_name='Image', new_name='image', ), ]
20.666667
48
0.548387
f585af08941d1d1545220bda4887eda90f9f1745
4,523
py
Python
libs/yolo_io.py
yangjjie94/labelSeries
620372b7d21e410efb009500fdd6cdc668e92106
[ "MIT" ]
11
2018-10-17T08:57:27.000Z
2020-08-07T02:43:31.000Z
libs/yolo_io.py
yangjjie94/labelSeries
620372b7d21e410efb009500fdd6cdc668e92106
[ "MIT" ]
null
null
null
libs/yolo_io.py
yangjjie94/labelSeries
620372b7d21e410efb009500fdd6cdc668e92106
[ "MIT" ]
7
2018-08-13T01:51:02.000Z
2019-11-27T13:36:53.000Z
#!/usr/bin/env python # -*- coding: utf8 -*- import sys import os from xml.etree import ElementTree from xml.etree.ElementTree import Element, SubElement from lxml import etree import codecs TXT_EXT = '.txt' ENCODE_METHOD = 'utf-8' class YOLOWriter: def __init__(self, foldername, filename, imgSize, databaseSrc='Unknown', localImgPath=None): self.foldername = foldername self.filename = filename self.databaseSrc = databaseSrc self.imgSize = imgSize self.boxlist = [] self.localImgPath = localImgPath self.verified = False def addBndBox(self, xmin, ymin, xmax, ymax, name, difficult): bndbox = {'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax} bndbox['name'] = name bndbox['difficult'] = difficult self.boxlist.append(bndbox) def BndBox2YoloLine(self, box, classList=[]): xmin = box['xmin'] xmax = box['xmax'] ymin = box['ymin'] ymax = box['ymax'] xcen = (xmin + xmax) / 2 / self.imgSize[1] ycen = (ymin + ymax) / 2 / self.imgSize[0] w = (xmax - xmin) / self.imgSize[1] h = (ymax - ymin) / self.imgSize[0] classIndex = classList.index(box['name']) return classIndex, xcen, ycen, w, h def save(self, classList=[], targetFile=None): out_file = None #Update yolo .txt out_class_file = None #Update class list .txt if targetFile is None: out_file = open( self.filename + TXT_EXT, 'w', encoding=ENCODE_METHOD) classesFile = os.path.join(os.path.dirname(os.path.abspath(self.filename)), "classes.txt") out_class_file = open(classesFile, 'w') else: out_file = codecs.open(targetFile, 'w', encoding=ENCODE_METHOD) classesFile = os.path.join(os.path.dirname(os.path.abspath(targetFile)), "classes.txt") out_class_file = open(classesFile, 'w') for box in self.boxlist: classIndex, xcen, ycen, w, h = self.BndBox2YoloLine(box, classList) print (classIndex, xcen, ycen, w, h) out_file.write("%d %.6f %.6f %.6f %.6f\n" % (classIndex, xcen, ycen, w, h)) print (classList) print (out_class_file) for c in classList: out_class_file.write(c+'\n') out_class_file.close() out_file.close() class YoloReader: def __init__(self, filepath, image, classListPath=None): # shapes type: # [labbel, [(x1,y1), (x2,y2), (x3,y3), (x4,y4)], color, color, difficult] self.shapes = [] self.filepath = filepath if classListPath is None: dir_path = os.path.dirname(os.path.realpath(self.filepath)) self.classListPath = os.path.join(dir_path, "classes.txt") else: self.classListPath = classListPath print (filepath, self.classListPath) classesFile = open(self.classListPath, 'r') self.classes = classesFile.read().strip('\n').split('\n') print (self.classes) imgSize = [image.height(), image.width(), 1 if image.isGrayscale() else 3] self.imgSize = imgSize self.verified = False # try: self.parseYoloFormat() # except: # pass def getShapes(self): return self.shapes def addShape(self, label, xmin, ymin, xmax, ymax, difficult): points = [(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax)] self.shapes.append((label, points, None, None, difficult)) def yoloLine2Shape(self, classIndex, xcen, ycen, w, h): label = self.classes[int(classIndex)] xmin = max(float(xcen) - float(w) / 2, 0) xmax = min(float(xcen) + float(w) / 2, 1) ymin = max(float(ycen) - float(h) / 2, 0) ymax = min(float(ycen) + float(h) / 2, 1) xmin = int(self.imgSize[1] * xmin) xmax = int(self.imgSize[1] * xmax) ymin = int(self.imgSize[0] * ymin) ymax = int(self.imgSize[0] * ymax) return label, xmin, ymin, xmax, ymax def parseYoloFormat(self): bndBoxFile = open(self.filepath, 'r') for bndBox in bndBoxFile: classIndex, xcen, ycen, w, h = bndBox.split(' ') label, xmin, ymin, xmax, ymax = self.yoloLine2Shape(classIndex, xcen, ycen, w, h) # Caveat: difficult flag is discarded when saved as yolo format. self.addShape(label, xmin, ymin, xmax, ymax, False)
32.078014
102
0.586115
cf295c7634d1e5d3f5fcad4c1172d59b932de150
2,136
py
Python
src/sco/code_gen/gen_operations_code.py
HARPLab/trajopt
40e2260d8f1e4d0a6a7a8997927bd65e5f36c3a4
[ "BSD-2-Clause" ]
250
2015-01-13T04:38:59.000Z
2022-03-09T15:52:54.000Z
src/sco/code_gen/gen_operations_code.py
HARPLab/trajopt
40e2260d8f1e4d0a6a7a8997927bd65e5f36c3a4
[ "BSD-2-Clause" ]
31
2015-08-19T13:14:56.000Z
2022-03-22T08:08:26.000Z
src/sco/code_gen/gen_operations_code.py
HARPLab/trajopt
40e2260d8f1e4d0a6a7a8997927bd65e5f36c3a4
[ "BSD-2-Clause" ]
118
2015-01-08T16:06:50.000Z
2022-03-19T11:44:00.000Z
addition_overloads = """ inline AffExpr operator+(const Var& x, double y) { return exprAdd(AffExpr(x), y); } inline AffExpr operator+(const AffExpr& x, double y) { return exprAdd(x, y); } inline QuadExpr operator+(const QuadExpr& x, double y) { return exprAdd(x, y); } inline AffExpr operator+(const Var& x, const Var& y) { return exprAdd(AffExpr(x), y); } inline AffExpr operator+(const AffExpr& x, const Var& y) { return exprAdd(x, y); } inline QuadExpr operator+(const QuadExpr& x, const Var& y) { return exprAdd(x, y); } inline AffExpr operator+(const Var& x, const AffExpr& y) { return exprAdd(AffExpr(x), y); } inline AffExpr operator+(const AffExpr& x, const AffExpr& y) { return exprAdd(x, y); } inline QuadExpr operator+(const QuadExpr& x, const AffExpr& y) { return exprAdd(x, y); } inline QuadExpr operator+(const Var& x, const QuadExpr& y) { return exprAdd(QuadExpr(x), y); } inline QuadExpr operator+(const AffExpr& x, const QuadExpr& y) { return exprAdd(QuadExpr(x), y); } inline QuadExpr operator+(const QuadExpr& x, const QuadExpr& y) { return exprAdd(x, y); } """ subtraction_overloads = addition_overloads.replace("operator+", "operator-").replace("exprAdd","exprSub") def print_overloads(): print addition_overloads print subtraction_overloads addition_funcs = """ inline AffExpr exprAdd(AffExpr a, double b) { exprInc(a, b); return a; } inline AffExpr exprAdd(AffExpr a, const Var& b) { exprInc(a, b); return a; } inline AffExpr exprAdd(AffExpr a, const AffExpr& b) { exprInc(a, b); return a; } inline QuadExpr exprAdd(QuadExpr a, double b) { exprInc(a, b); return a; } inline QuadExpr exprAdd(QuadExpr a, const Var& b) { exprInc(a, b); return a; } inline QuadExpr exprAdd(QuadExpr a, const AffExpr& b) { exprInc(a, b); return a; } inline QuadExpr exprAdd(QuadExpr a, const QuadExpr& b) { exprInc(a, b); return a; } """ subtraction_funcs = addition_funcs.replace("Add", "Sub").replace("Inc","Dec") def print_funcs(): print addition_funcs print subtraction_funcs print_overloads() print "///////////////" print_funcs()
22.967742
105
0.683989
1b7acf468bb0b56d3a499d5c9591f90799cfd99a
9,077
py
Python
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortimanager/plugins/modules/fmgr_dvmdb_folder.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortimanager/plugins/modules/fmgr_dvmdb_folder.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortimanager/plugins/modules/fmgr_dvmdb_folder.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
#!/usr/bin/python from __future__ import absolute_import, division, print_function # Copyright 2019-2021 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fmgr_dvmdb_folder short_description: no description description: - This module is able to configure a FortiManager device. - Examples include all parameters and values which need to be adjusted to data sources before usage. version_added: "2.10" author: - Link Zheng (@chillancezen) - Jie Xue (@JieX19) - Frank Shen (@fshen01) - Hongbin Lu (@fgtdev-hblu) notes: - Running in workspace locking mode is supported in this FortiManager module, the top level parameters workspace_locking_adom and workspace_locking_timeout help do the work. - To create or update an object, use state present directive. - To delete an object, use state absent directive. - Normally, running one module can fail when a non-zero rc is returned. you can also override the conditions to fail or succeed with parameters rc_failed and rc_succeeded options: enable_log: description: Enable/Disable logging for task required: false type: bool default: false proposed_method: description: The overridden method for the underlying Json RPC request required: false type: str choices: - update - set - add bypass_validation: description: only set to True when module schema diffs with FortiManager API structure, module continues to execute without validating parameters required: false type: bool default: false workspace_locking_adom: description: the adom to lock for FortiManager running in workspace mode, the value can be global and others including root required: false type: str workspace_locking_timeout: description: the maximum time in seconds to wait for other user to release the workspace lock required: false type: int default: 300 state: description: the directive to create, update or delete an object type: str required: true choices: - present - absent rc_succeeded: description: the rc codes list with which the conditions to succeed will be overriden type: list required: false rc_failed: description: the rc codes list with which the conditions to fail will be overriden type: list required: false adom: description: the parameter (adom) in requested url type: str required: true dvmdb_folder: description: the top level parameters set required: false type: dict suboptions: desc: type: str description: 'Desc.' name: type: str description: 'Name.' parent: type: int description: 'Parent.' ''' EXAMPLES = ''' - hosts: fortimanager-inventory collections: - fortinet.fortimanager connection: httpapi vars: ansible_httpapi_use_ssl: True ansible_httpapi_validate_certs: False ansible_httpapi_port: 443 tasks: - name: no description fmgr_dvmdb_folder: bypass_validation: False workspace_locking_adom: <value in [global, custom adom including root]> workspace_locking_timeout: 300 rc_succeeded: [0, -2, -3, ...] rc_failed: [-2, -3, ...] adom: <your own value> state: <value in [present, absent]> dvmdb_folder: desc: <value of string> name: <value of string> parent: <value of integer> ''' RETURN = ''' request_url: description: The full url requested returned: always type: str sample: /sys/login/user response_code: description: The status of api request returned: always type: int sample: 0 response_message: description: The descriptive message of the api response type: str returned: always sample: OK. ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible_collections.fortinet.fortimanager.plugins.module_utils.napi import NAPIManager from ansible_collections.fortinet.fortimanager.plugins.module_utils.napi import check_galaxy_version from ansible_collections.fortinet.fortimanager.plugins.module_utils.napi import check_parameter_bypass def main(): jrpc_urls = [ '/dvmdb/folder', '/dvmdb/adom/{adom}/folder' ] perobject_jrpc_urls = [ '/dvmdb/folder/{folder}', '/dvmdb/adom/{adom}/folder/{folder}' ] url_params = ['adom'] module_primary_key = 'name' module_arg_spec = { 'enable_log': { 'type': 'bool', 'required': False, 'default': False }, 'forticloud_access_token': { 'type': 'str', 'required': False, 'no_log': True }, 'proposed_method': { 'type': 'str', 'required': False, 'choices': [ 'set', 'update', 'add' ] }, 'bypass_validation': { 'type': 'bool', 'required': False, 'default': False }, 'workspace_locking_adom': { 'type': 'str', 'required': False }, 'workspace_locking_timeout': { 'type': 'int', 'required': False, 'default': 300 }, 'rc_succeeded': { 'required': False, 'type': 'list' }, 'rc_failed': { 'required': False, 'type': 'list' }, 'state': { 'type': 'str', 'required': True, 'choices': [ 'present', 'absent' ] }, 'adom': { 'required': True, 'type': 'str' }, 'dvmdb_folder': { 'required': False, 'type': 'dict', 'revision': { '6.4.2': True, '6.4.5': True, '7.0.0': True }, 'options': { 'desc': { 'required': False, 'revision': { '6.4.2': True, '6.4.5': True, '7.0.0': True }, 'type': 'str' }, 'name': { 'required': True, 'revision': { '6.4.2': True, '6.4.5': True, '7.0.0': True }, 'type': 'str' }, 'parent': { 'required': False, 'revision': { '6.4.2': True, '6.4.5': True, '7.0.0': True }, 'type': 'int' } } } } params_validation_blob = [] check_galaxy_version(module_arg_spec) module = AnsibleModule(argument_spec=check_parameter_bypass(module_arg_spec, 'dvmdb_folder'), supports_check_mode=False) fmgr = None if module._socket_path: connection = Connection(module._socket_path) connection.set_option('enable_log', module.params['enable_log'] if 'enable_log' in module.params else False) connection.set_option('forticloud_access_token', module.params['forticloud_access_token'] if 'forticloud_access_token' in module.params else None) fmgr = NAPIManager(jrpc_urls, perobject_jrpc_urls, module_primary_key, url_params, module, connection, top_level_schema_name='data') fmgr.validate_parameters(params_validation_blob) fmgr.process_curd(argument_specs=module_arg_spec) else: module.fail_json(msg='MUST RUN IN HTTPAPI MODE') module.exit_json(meta=module.params) if __name__ == '__main__': main()
31.3
153
0.565936
6b85754033a054d088d7c35f4c4f0fa91ee23d2e
13,195
py
Python
v2.5.7/toontown/estate/BankGUI.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-01T15:46:43.000Z
2021-07-23T16:26:48.000Z
v2.5.7/toontown/estate/BankGUI.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
1
2019-06-29T03:40:05.000Z
2021-06-13T01:15:16.000Z
v2.5.7/toontown/estate/BankGUI.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-28T21:18:46.000Z
2021-02-25T06:37:25.000Z
from direct.gui.DirectGui import * from panda3d.core import * from direct.directnotify import DirectNotifyGlobal from toontown.toonbase import ToontownGlobals from toontown.toonbase import TTLocalizer from direct.task.Task import Task class BankGui(DirectFrame): notify = DirectNotifyGlobal.directNotify.newCategory('BankGui') def __init__(self, doneEvent, allowWithdraw=1): DirectFrame.__init__(self, relief=None, geom=DGG.getDefaultDialogGeom(), geom_color=ToontownGlobals.GlobalDialogColor, geom_scale=(1.33, 1, 1.1), pos=(0, 0, 0)) self.initialiseoptions(BankGui) self.doneEvent = doneEvent self.__transactionAmount = 0 buttons = loader.loadModel('phase_3/models/gui/dialog_box_buttons_gui') jarGui = loader.loadModel('phase_3.5/models/gui/jar_gui') arrowGui = loader.loadModel('phase_3/models/gui/create_a_toon_gui') bankModel = loader.loadModel('phase_5.5/models/estate/jellybeanBank') bankModel.setDepthWrite(1) bankModel.setDepthTest(1) bankModel.find('**/jellybeans').setDepthWrite(0) bankModel.find('**/jellybeans').setDepthTest(0) okImageList = (buttons.find('**/ChtBx_OKBtn_UP'), buttons.find('**/ChtBx_OKBtn_DN'), buttons.find('**/ChtBx_OKBtn_Rllvr')) cancelImageList = (buttons.find('**/CloseBtn_UP'), buttons.find('**/CloseBtn_DN'), buttons.find('**/CloseBtn_Rllvr')) arrowImageList = (arrowGui.find('**/CrtATn_R_Arrow_UP'), arrowGui.find('**/CrtATn_R_Arrow_DN'), arrowGui.find('**/CrtATn_R_Arrow_RLVR'), arrowGui.find('**/CrtATn_R_Arrow_UP')) self.cancelButton = DirectButton(parent=self, relief=None, image=cancelImageList, pos=(-0.2, 0, -0.4), text=TTLocalizer.BankGuiCancel, text_scale=0.06, text_pos=(0, -0.1), command=self.__cancel) self.okButton = DirectButton(parent=self, relief=None, image=okImageList, pos=(0.2, 0, -0.4), text=TTLocalizer.BankGuiOk, text_scale=0.06, text_pos=(0, -0.1), command=self.__requestTransaction) self.jarDisplay = DirectLabel(parent=self, relief=None, pos=(-0.4, 0, 0), scale=0.7, text=str(base.localAvatar.getMoney()), text_scale=0.2, text_fg=(0.95, 0.95, 0, 1), text_shadow=(0, 0, 0, 1), text_pos=(0, -0.1, 0), image=jarGui.find('**/Jar'), text_font=ToontownGlobals.getSignFont()) self.bankDisplay = DirectLabel(parent=self, relief=None, pos=(0.4, 0, 0), scale=0.9, text=str(base.localAvatar.getBankMoney()), text_scale=0.2, text_fg=(0.95, 0.95, 0, 1), text_shadow=(0, 0, 0, 1), text_pos=(0, -0.1, 0), geom=bankModel, geom_scale=0.08, geom_pos=(0, 10, -0.26), geom_hpr=(0, 0, 0), text_font=ToontownGlobals.getSignFont()) self.depositArrow = DirectButton(parent=self, relief=None, image=arrowImageList, image_scale=(1, 1, 1), image3_color=Vec4(0.6, 0.6, 0.6, 0.25), pos=(0.01, 0, 0.15)) self.withdrawArrow = DirectButton(parent=self, relief=None, image=arrowImageList, image_scale=(-1, 1, 1), image3_color=Vec4(0.6, 0.6, 0.6, 0.25), pos=(-0.01, 0, -0.15)) self.depositArrow.bind(DGG.B1PRESS, self.__depositButtonDown) self.depositArrow.bind(DGG.B1RELEASE, self.__depositButtonUp) self.withdrawArrow.bind(DGG.B1PRESS, self.__withdrawButtonDown) self.withdrawArrow.bind(DGG.B1RELEASE, self.__withdrawButtonUp) self.accept('bankAsleep', self.__cancel) self.accept(localAvatar.uniqueName('moneyChange'), self.__moneyChange) self.accept(localAvatar.uniqueName('bankMoneyChange'), self.__bankMoneyChange) if allowWithdraw: self.depositArrow.setPos(0.01, 0, 0.15) self.withdrawArrow.setPos(-0.01, 0, -0.15) else: self.depositArrow.setPos(0, 0, 0) self.withdrawArrow.hide() buttons.removeNode() jarGui.removeNode() arrowGui.removeNode() self.__updateTransaction(0) return def destroy(self): taskMgr.remove(self.taskName('runCounter')) self.ignore(localAvatar.uniqueName('moneyChange')) self.ignore(localAvatar.uniqueName('bankMoneyChange')) DirectFrame.destroy(self) def __cancel(self): messenger.send(self.doneEvent, [0]) def __requestTransaction(self): messenger.send(self.doneEvent, [self.__transactionAmount]) def __updateTransaction(self, amount): hitLimit = 0 self.__transactionAmount += amount jarMoney = base.localAvatar.getMoney() maxJarMoney = base.localAvatar.getMaxMoney() bankMoney = base.localAvatar.getBankMoney() maxBankMoney = base.localAvatar.getMaxBankMoney() self.__transactionAmount = min(self.__transactionAmount, jarMoney) self.__transactionAmount = min(self.__transactionAmount, maxBankMoney - bankMoney) self.__transactionAmount = -min(-self.__transactionAmount, maxJarMoney - jarMoney) self.__transactionAmount = -min(-self.__transactionAmount, bankMoney) newJarMoney = jarMoney - self.__transactionAmount newBankMoney = bankMoney + self.__transactionAmount if newJarMoney <= 0 or newBankMoney >= maxBankMoney: self.depositArrow['state'] = DGG.DISABLED hitLimit = 1 else: self.depositArrow['state'] = DGG.NORMAL if newBankMoney <= 0 or newJarMoney >= maxJarMoney: self.withdrawArrow['state'] = DGG.DISABLED hitLimit = 1 else: self.withdrawArrow['state'] = DGG.NORMAL self.jarDisplay['text'] = str(newJarMoney) self.bankDisplay['text'] = str(newBankMoney) return ( hitLimit, newJarMoney, newBankMoney, self.__transactionAmount) def __runCounter(self, task): if task.time - task.prevTime < task.delayTime: return Task.cont task.delayTime = max(0.05, task.delayTime * 0.75) task.prevTime = task.time hitLimit, jar, bank, trans = self.__updateTransaction(task.delta) if hitLimit: return Task.done return Task.cont def __depositButtonUp(self, event): messenger.send('wakeup') taskMgr.remove(self.taskName('runCounter')) def __depositButtonDown(self, event): messenger.send('wakeup') task = Task(self.__runCounter) task.delayTime = 0.4 task.prevTime = 0.0 task.delta = 1 hitLimit, jar, bank, trans = self.__updateTransaction(task.delta) if not hitLimit: taskMgr.add(task, self.taskName('runCounter')) def __withdrawButtonUp(self, event): messenger.send('wakeup') taskMgr.remove(self.taskName('runCounter')) def __withdrawButtonDown(self, event): messenger.send('wakeup') task = Task(self.__runCounter) task.delayTime = 0.4 task.prevTime = 0.0 task.delta = -1 hitLimit, jar, bank, trans = self.__updateTransaction(task.delta) if not hitLimit: taskMgr.add(task, self.taskName('runCounter')) def __moneyChange(self, money): self.__updateTransaction(0) def __bankMoneyChange(self, bankMoney): self.__updateTransaction(0)
74.129213
301
0.363698
f21502b44f2b67fb195d72cdb7238766c635f7e7
793
py
Python
kentik_synth_client/synth_tests/ip.py
kentik/synth_tools
6551e9caf049e4592da4c28e23341d99fac08d58
[ "Apache-2.0" ]
2
2021-10-20T01:01:21.000Z
2022-02-21T22:02:26.000Z
kentik_synth_client/synth_tests/ip.py
kentik/synth_tools
6551e9caf049e4592da4c28e23341d99fac08d58
[ "Apache-2.0" ]
null
null
null
kentik_synth_client/synth_tests/ip.py
kentik/synth_tools
6551e9caf049e4592da4c28e23341d99fac08d58
[ "Apache-2.0" ]
1
2021-11-02T01:46:41.000Z
2021-11-02T01:46:41.000Z
from dataclasses import dataclass, field from typing import List, Type, TypeVar from kentik_synth_client.types import * from .base import PingTraceTest, PingTraceTestSettings, sort_ip_address_list @dataclass class IPTestSettings(PingTraceTestSettings): ip: dict = field(default_factory=dict) IPTestType = TypeVar("IPTestType", bound="IPTest") @dataclass class IPTest(PingTraceTest): type: TestType = field(init=False, default=TestType.ip) settings: IPTestSettings = field(default_factory=IPTestSettings) @classmethod def create(cls: Type[IPTestType], name: str, targets: List[str], agent_ids: List[str]) -> IPTestType: return cls( name=name, settings=IPTestSettings(agentIds=agent_ids, ip=dict(targets=sort_ip_address_list(targets))) )
29.37037
114
0.752837
2528468d38953b37d009f0420915c8593a40d39e
11,271
py
Python
Bio/SeqIO/XdnaIO.py
gtsueng/biopython
4b2adc9f52ae1eda123744a8f4af7c2150505de1
[ "BSD-3-Clause" ]
1
2020-11-27T15:46:03.000Z
2020-11-27T15:46:03.000Z
Bio/SeqIO/XdnaIO.py
gtsueng/biopython
4b2adc9f52ae1eda123744a8f4af7c2150505de1
[ "BSD-3-Clause" ]
null
null
null
Bio/SeqIO/XdnaIO.py
gtsueng/biopython
4b2adc9f52ae1eda123744a8f4af7c2150505de1
[ "BSD-3-Clause" ]
1
2021-01-07T07:55:09.000Z
2021-01-07T07:55:09.000Z
# Copyright 2017-2019 Damien Goutte-Gattat. All rights reserved. # # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Bio.SeqIO support for the "xdna" file format. The Xdna binary format is generated by Christian Marck's DNA Strider program and also used by Serial Cloner. """ from re import match from struct import pack, unpack import warnings from Bio import Alphabet, BiopythonWarning from Bio.Seq import Seq from Bio.SeqIO.Interfaces import SequenceWriter from Bio.SeqFeature import SeqFeature, FeatureLocation, ExactPosition from Bio.SeqRecord import SeqRecord _seq_types = { 0: Alphabet.generic_alphabet, 1: Alphabet.generic_dna, 2: Alphabet.generic_dna, 3: Alphabet.generic_rna, 4: Alphabet.generic_protein } _seq_topologies = { 0: 'linear', 1: 'circular' } def _read(handle, length): """Read the specified number of bytes from the given handle.""" data = handle.read(length) if len(data) < length: raise ValueError("Cannot read %d bytes from handle" % length) return data def _read_pstring(handle): """Read a Pascal string. A Pascal string comprises a single byte giving the length of the string followed by as many bytes. """ length = unpack('>B', _read(handle, 1))[0] return unpack('%ds' % length, _read(handle, length))[0].decode('ASCII') def _read_pstring_as_integer(handle): return int(_read_pstring(handle)) def _read_overhang(handle): """Read an overhang specification. An overhang is represented in a XDNA file as: - a Pascal string containing the text representation of the overhang length, which also indicates the nature of the overhang: - a length of zero means no overhang, - a negative length means a 3' overhang, - a positive length means a 5' overhang; - the actual overhang sequence. Examples: - 0x01 0x30: no overhang ("0", as a P-string) - 0x01 0x32 0x41 0x41: 5' AA overhang (P-string "2", then "AA") - 0x02 0x2D 0x31 0x43: 3' C overhang (P-string "-1", then "C") Returns a tuple (length, sequence). """ length = _read_pstring_as_integer(handle) if length != 0: overhang = _read(handle, abs(length)) return (length, overhang) else: return (None, None) def _parse_feature_description(desc, qualifiers): """Parse the description field of a Xdna feature. The 'description' field of a feature sometimes contains several GenBank-like qualifiers, separated by carriage returns (CR, 0x0D). """ # Split the field's value in CR-separated lines, skipping empty lines for line in [x for x in desc.split('\x0D') if len(x) > 0]: # Is it a qualifier="value" line? m = match('^([^=]+)="([^"]+)"?$', line) if m: # Store the qualifier as provided qual, value = m.groups() qualifiers[qual] = [value] elif '"' not in line: # Reject ill-formed qualifiers # Store the entire line as a generic note qualifier qualifiers['note'] = [line] def _read_feature(handle, record): """Read a single sequence feature.""" name = _read_pstring(handle) desc = _read_pstring(handle) type = _read_pstring(handle) or 'misc_feature' start = _read_pstring_as_integer(handle) end = _read_pstring_as_integer(handle) # Feature flags (4 bytes): # byte 1 is the strand (0: reverse strand, 1: forward strand); # byte 2 tells whether to display the feature; # byte 4 tells whether to draw an arrow when displaying the feature; # meaning of byte 3 is unknown. (forward, display, arrow) = unpack('>BBxB', _read(handle, 4)) if forward: strand = 1 else: strand = -1 start, end = end, start # The last field is a Pascal string usually containing a # comma-separated triplet of numbers ranging from 0 to 255. # I suspect this represents the RGB color to use when displaying # the feature. Skip it as we have no need for it. _read_pstring(handle) # Assemble the feature # Shift start by -1 as XDNA feature coordinates are 1-based # while Biopython uses 0-based couting. location = FeatureLocation(start - 1, end, strand=strand) qualifiers = {} if name: qualifiers['label'] = [name] _parse_feature_description(desc, qualifiers) feature = SeqFeature(location, type=type, qualifiers=qualifiers) record.features.append(feature) def XdnaIterator(handle): """Parse a Xdna file and return a SeqRecord object. Note that this is an "iterator" in name only since a Xdna file always contain a single sequence. """ # Parse fixed-size header and do some rudimentary checks # # The "neg_length" value is the length of the part of the sequence # before the nucleotide considered as the "origin" (nucleotide number 1, # which in DNA Strider is not always the first nucleotide). # Biopython's SeqRecord has no such concept of a sequence origin as far # as I know, so we ignore that value. SerialCloner has no such concept # either and always generates files with a neg_length of zero. header = _read(handle, 112) (version, type, topology, length, neg_length, com_length) = unpack('>BBB25xII60xI12x', header) if version != 0: raise ValueError("Unsupported XDNA version") if type not in _seq_types: raise ValueError("Unknown sequence type") # Read actual sequence and comment found in all XDNA files sequence = _read(handle, length).decode('ASCII') comment = _read(handle, com_length).decode('ASCII') # Try to derive a name from the first "word" of the comment name = comment.split(' ')[0] # Create record object record = SeqRecord(Seq(sequence, _seq_types[type]), description=comment, name=name, id=name) if topology in _seq_topologies: record.annotations['topology'] = _seq_topologies[topology] if len(handle.read(1)) == 1: # This is an XDNA file with an optional annotation section. # Skip the overhangs as I don't know how to represent # them in the SeqRecord model. _read_overhang(handle) # right-side overhang _read_overhang(handle) # left-side overhang # Read the features num_features = unpack('>B', _read(handle, 1))[0] while num_features > 0: _read_feature(handle, record) num_features -= 1 yield record class XdnaWriter(SequenceWriter): """Write files in the Xdna format.""" def write_file(self, records): """Write the specified record to a Xdna file. Note that the function expects a list of records as per the SequenceWriter interface, but the list should contain only one record as the Xdna format is a mono-record format. """ if not records: raise ValueError("Must have one sequence") if len(records) > 1: raise ValueError("More than one sequence found") record = records[0] self._has_truncated_strings = False alptype = Alphabet._get_base_alphabet(record.seq.alphabet) if isinstance(alptype, Alphabet.DNAAlphabet): seqtype = 1 elif isinstance(alptype, Alphabet.RNAAlphabet): seqtype = 3 elif isinstance(alptype, Alphabet.ProteinAlphabet): seqtype = 4 else: seqtype = 0 if record.annotations.get('topology', 'linear') == 'circular': topology = 1 else: topology = 0 # We store the record's id and description in the comment field. # Make sure to avoid duplicating the id if it is already # contained in the description. if record.description.startswith(record.id): comment = record.description else: comment = '{} {}'.format(record.id, record.description) # Write header self.handle.write(pack('>BBB25xII60xI11xB', 0, # version seqtype, topology, len(record), 0, # negative length len(comment), 255 # end of header )) # Actual sequence and comment self.handle.write(str(record.seq).encode('ASCII')) self.handle.write(comment.encode('ASCII')) self.handle.write(pack('>B', 0)) # Annotation section marker self._write_pstring('0') # right-side overhang self._write_pstring('0') # left-side overhand # Write features # We must skip features with fuzzy locations as they cannot be # represented in the Xdna format features = [f for f in record.features if type(f.location.start) == ExactPosition and type(f.location.end) == ExactPosition] drop = len(record.features) - len(features) if drop > 0: warnings.warn("Dropping {} features with fuzzy locations".format(drop), BiopythonWarning) # We also cannot store more than 255 features as the number of # features is stored on a single byte... if len(features) > 255: drop = len(features) - 255 warnings.warn("Too many features, dropping the last {}".format(drop), BiopythonWarning) features = features[:255] self.handle.write(pack('>B', len(features))) for feature in features: self._write_pstring(feature.qualifiers.get('label', [''])[0]) description = '' for qname in feature.qualifiers: if qname in ('label', 'translation'): continue for val in feature.qualifiers[qname]: if len(description) > 0: description = description + '\x0D' description = description + '%s="%s"' % (qname, val) self._write_pstring(description) self._write_pstring(feature.type) start = feature.location.start.position + 1 # 1-based coordinates end = feature.location.end.position strand = 1 if feature.location.strand == -1: start, end = end, start strand = 0 self._write_pstring(str(start)) self._write_pstring(str(end)) self.handle.write(pack('>BBBB', strand, 1, 0, 1)) self._write_pstring('127,127,127') if self._has_truncated_strings: warnings.warn("Some annotations were truncated to 255 characters", BiopythonWarning) return 1 def _write_pstring(self, s): """Write the given string as a Pascal string.""" if len(s) > 255: self._has_truncated_strings = True s = s[:255] self.handle.write(pack('>B', len(s))) self.handle.write(s.encode('ASCII'))
36.009585
132
0.62541
747cae9b64eb3032e71498dd3dad7880cdc010c4
760
bzl
Python
third_party/tf_runtime/workspace.bzl
zebrajr/tensorflow
d1f3ce8b2bc17e7c885266058dd9a4b74dc8e5e5
[ "Apache-2.0" ]
null
null
null
third_party/tf_runtime/workspace.bzl
zebrajr/tensorflow
d1f3ce8b2bc17e7c885266058dd9a4b74dc8e5e5
[ "Apache-2.0" ]
null
null
null
third_party/tf_runtime/workspace.bzl
zebrajr/tensorflow
d1f3ce8b2bc17e7c885266058dd9a4b74dc8e5e5
[ "Apache-2.0" ]
null
null
null
"""Provides the repository macro to import TFRT.""" load("//third_party:repo.bzl", "tf_http_archive") def repo(): """Imports TFRT.""" # Attention: tools parse and update these lines. TFRT_COMMIT = "0f09e1bfa72855b9f00c28dd95a95f848c42170c" TFRT_SHA256 = "21923a998212b9b1f3b05b4cf00f18c5e5c866b54fc603ffa2758834df9039b7" tf_http_archive( name = "tf_runtime", sha256 = TFRT_SHA256, strip_prefix = "runtime-{commit}".format(commit = TFRT_COMMIT), urls = [ "http://mirror.tensorflow.org/github.com/tensorflow/runtime/archive/{commit}.tar.gz".format(commit = TFRT_COMMIT), "https://github.com/tensorflow/runtime/archive/{commit}.tar.gz".format(commit = TFRT_COMMIT), ], )
36.190476
126
0.680263
bb4cd6e251487ed0805a7f28bfb750bc1f2d0f4a
1,488
py
Python
back/disorders/migrations/0003_auto_20200721_2328.py
EDario333/idia
21cab7057f924c58ec098c27effcee1a8f0dc94e
[ "BSD-3-Clause" ]
null
null
null
back/disorders/migrations/0003_auto_20200721_2328.py
EDario333/idia
21cab7057f924c58ec098c27effcee1a8f0dc94e
[ "BSD-3-Clause" ]
5
2021-03-11T05:33:41.000Z
2022-02-27T10:21:50.000Z
back/disorders/migrations/0003_auto_20200721_2328.py
EDario333/idia
21cab7057f924c58ec098c27effcee1a8f0dc94e
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.2.13 on 2020-07-21 23:28 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('axis', '0003_auto_20200721_2328'), ('disorders', '0002_auto_20200618_2224'), ] operations = [ migrations.AddField( model_name='disorder', name='axis', field=models.OneToOneField(default=None, on_delete=django.db.models.deletion.PROTECT, to='axis.Axis', verbose_name='Axis'), ), migrations.AddField( model_name='disorder', name='parent', field=models.OneToOneField(blank=True, default=None, null=True, on_delete=django.db.models.deletion.CASCADE, to='disorders.Disorder', verbose_name='Parent'), ), migrations.AlterField( model_name='disorder', name='created_at', field=models.TimeField(default=datetime.datetime(2020, 7, 21, 23, 28, 4, 145955), editable=False), ), migrations.AlterField( model_name='disorder', name='created_when', field=models.DateField(default=datetime.datetime(2020, 7, 21, 23, 28, 4, 146001), editable=False), ), migrations.AlterField( model_name='disorder', name='symptons', field=models.ManyToManyField(default=None, to='symptons.Sympton', verbose_name='Symptons'), ), ]
35.428571
169
0.617608
cda70354a39e1bd9a4dba44f74dd4f6d531d4f18
8,578
py
Python
src/dialognlu/models/base_joint_trans.py
hyydrra/dialog-nlu
1a2b8cd18fcdcc3ed6374b83ec23ebd9a1a6d25e
[ "Apache-2.0" ]
null
null
null
src/dialognlu/models/base_joint_trans.py
hyydrra/dialog-nlu
1a2b8cd18fcdcc3ed6374b83ec23ebd9a1a6d25e
[ "Apache-2.0" ]
null
null
null
src/dialognlu/models/base_joint_trans.py
hyydrra/dialog-nlu
1a2b8cd18fcdcc3ed6374b83ec23ebd9a1a6d25e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ @author: mwahdan """ from .nlu_model import NLUModel from .callbacks import F1Metrics import tensorflow as tf import numpy as np import os import json class BaseJointTransformerModel(NLUModel): def __init__(self, config, trans_model=None, is_load=False): self.slots_num = config.get('slots_num') self.intents_num = config.get('intents_num') self.pretrained_model_name_or_path = config.get('pretrained_model_name_or_path') self.cache_dir = config.get('cache_dir', None) self.from_pt = config.get('from_pt', False) self.num_bert_fine_tune_layers = config.get('num_bert_fine_tune_layers', 10) self.intent_loss_weight = config.get('intent_loss_weight', 1.0) self.slots_loss_weight = config.get('slots_loss_weight', 3.0) self.max_length = config.get('max_length') self.model_params = config if not is_load: self.trans_model = trans_model self.build_model() self.compile_model() def compile_model(self): # Instead of `using categorical_crossentropy`, # we use `sparse_categorical_crossentropy`, which does expect integer targets. optimizer = tf.keras.optimizers.Adam(lr=5e-5)#0.001) losses = { 'slots_tagger': 'sparse_categorical_crossentropy', 'intent_classifier': 'sparse_categorical_crossentropy', } loss_weights = {'slots_tagger': self.slots_loss_weight, 'intent_classifier': self.intent_loss_weight} metrics = {'intent_classifier': 'acc'} self.model.compile(optimizer=optimizer, loss=losses, loss_weights=loss_weights, metrics=metrics) self.model.summary() def build_model(self): raise NotImplementedError() def save(self, model_path): raise NotImplementedError() @staticmethod def load(load_folder_path): raise NotImplementedError() def fit(self, X, Y, validation_data=None, epochs=5, batch_size=32, id2label=None): X["valid_positions"] = self.prepare_valid_positions(X["valid_positions"]) if validation_data is not None: X_val, Y_val = validation_data X_val["valid_positions"] = self.prepare_valid_positions(X_val["valid_positions"]) validation_data = (X_val, Y_val) callbacks = [F1Metrics(id2label, validation_data=validation_data)] history = self.model.fit(X, Y, validation_data=validation_data, epochs=epochs, batch_size=batch_size, callbacks=callbacks) self.visualize_metric(history.history, 'slots_tagger_loss') self.visualize_metric(history.history, 'intent_classifier_loss') self.visualize_metric(history.history, 'loss') self.visualize_metric(history.history, 'intent_classifier_acc') def prepare_valid_positions(self, in_valid_positions): in_valid_positions = np.expand_dims(in_valid_positions, axis=2) in_valid_positions = np.tile(in_valid_positions, (1, 1, self.slots_num)) return in_valid_positions def predict_slots_intent(self, x, slots_vectorizer, intent_vectorizer, remove_start_end=True, include_intent_prob=False): # print("/models/base_joint_trans.py") valid_positions = x["valid_positions"] x["valid_positions"] = self.prepare_valid_positions(valid_positions) y_slots, y_intent = self.predict(x) slots = slots_vectorizer.inverse_transform(y_slots, valid_positions) if remove_start_end: slots = [x[1:-1] for x in slots] if not include_intent_prob: intents = np.array([intent_vectorizer.inverse_transform([np.argmax(i)])[0] for i in y_intent]) else: intents = np.array([(intent_vectorizer.inverse_transform([np.argmax(i)])[0], round(float(np.max(i)), 4)) for i in y_intent]) return slots, intents def predict_intent1(self, x, slots_vectorizer, intent_vectorizer, num_intents): valid_positions = x["valid_positions"] x["valid_positions"] = self.prepare_valid_positions(valid_positions) y_slots, y_intent = self.predict(x) top_intents_indexes = (-y_intent[0]).argsort()[:num_intents] intents = [] for index in top_intents_indexes: intents.append([intent_vectorizer.inverse_transform([np.int64(index)])[0], round(float(y_intent[0][index]), 4)]) return intents, intents def save_to_path(self, model_path, trans_model_name): self.model_params["class"] = self.__class__.__name__ with open(os.path.join(model_path, 'params.json'), 'w') as json_file: json.dump(self.model_params, json_file) self.model.save(os.path.join(model_path, trans_model_name)) @staticmethod def load_model_by_class(klazz, load_folder_path, trans_model_name): with open(os.path.join(load_folder_path, 'params.json'), 'r') as json_file: model_params = json.load(json_file) new_model = klazz(model_params, trans_model=None, is_load=True) new_model.model = tf.keras.models.load_model(os.path.join(load_folder_path, trans_model_name)) new_model.compile_model() return new_model class TfliteBaseJointTransformerModel: def __init__(self, config): self.config = config self.slots_num = config['slots_num'] self.interpreter = None def predict_slots_intent(self, x, slots_vectorizer, intent_vectorizer, remove_start_end=True, include_intent_prob=False): # x = {k:v[0] for k,v in x.items()} valid_positions = x["valid_positions"] x["valid_positions"] = self.prepare_valid_positions(valid_positions) y_slots, y_intent = self.predict(x) slots = slots_vectorizer.inverse_transform(y_slots, valid_positions) if remove_start_end: slots = [x[1:-1] for x in slots] if not include_intent_prob: intents = np.array([intent_vectorizer.inverse_transform([np.argmax(i)])[0] for i in y_intent]) else: intents = np.array([(intent_vectorizer.inverse_transform([np.argmax(i)])[0], round(float(np.max(i)), 4)) for i in y_intent]) return slots[0], intents[0] def prepare_valid_positions(self, in_valid_positions): in_valid_positions = np.expand_dims(in_valid_positions, axis=2) in_valid_positions = np.tile(in_valid_positions, (1, 1, self.slots_num)) return in_valid_positions def predict(self, inputs): raise NotImplementedError() @staticmethod def load_model_by_class(clazz, path): with open(os.path.join(path, 'params.json'), 'r') as json_file: model_params = json.load(json_file) new_model = clazz(model_params) quant_model_file = os.path.join(path, 'model.tflite') new_model.interpreter = tf.lite.Interpreter(model_path=str(quant_model_file), num_threads=1) new_model.interpreter.allocate_tensors() return new_model class TfliteBaseJointTransformer4inputsModel(TfliteBaseJointTransformerModel): def __init__(self, config): super(TfliteBaseJointTransformer4inputsModel, self).__init__(config) def predict(self, inputs): self.interpreter.set_tensor(self.interpreter.get_input_details()[0]["index"], inputs.get("input_word_ids").astype(np.int32)) self.interpreter.set_tensor(self.interpreter.get_input_details()[1]["index"], inputs.get("input_mask").astype(np.int32)) self.interpreter.set_tensor(self.interpreter.get_input_details()[2]["index"], inputs.get("input_type_ids").astype(np.int32)) self.interpreter.set_tensor(self.interpreter.get_input_details()[3]["index"], inputs.get("valid_positions").astype(np.float32)) output_index_0 = self.interpreter.get_output_details()[0]["index"] output_index_1 = self.interpreter.get_output_details()[1]["index"] self.interpreter.invoke() intent = self.interpreter.get_tensor(output_index_0) slots = self.interpreter.get_tensor(output_index_1) return slots, intent
45.147368
137
0.653183
b58767a1e21b363730493436c759a12504261ef2
6,986
py
Python
selfdrive/car/car_helpers.py
kss1930/1111
bb095b9b6055888acd14840b191f5332effdae40
[ "MIT" ]
null
null
null
selfdrive/car/car_helpers.py
kss1930/1111
bb095b9b6055888acd14840b191f5332effdae40
[ "MIT" ]
null
null
null
selfdrive/car/car_helpers.py
kss1930/1111
bb095b9b6055888acd14840b191f5332effdae40
[ "MIT" ]
null
null
null
import os from common.params import Params from common.basedir import BASEDIR from selfdrive.version import comma_remote, tested_branch from selfdrive.car.fingerprints import eliminate_incompatible_cars, all_known_cars from selfdrive.car.vin import get_vin, VIN_UNKNOWN from selfdrive.car.fw_versions import get_fw_versions, match_fw_to_car from selfdrive.swaglog import cloudlog import cereal.messaging as messaging from selfdrive.car import gen_empty_fingerprint from cereal import car EventName = car.CarEvent.EventName def get_startup_event(car_recognized, controller_available, fuzzy_fingerprint): #if comma_remote and tested_branch: # event = EventName.startup #else: # event = EventName.startupMaster event = EventName.startup if not car_recognized: event = EventName.startupNoCar elif car_recognized and not controller_available: event = EventName.startupNoControl elif car_recognized and fuzzy_fingerprint: event = EventName.startupFuzzyFingerprint return event def get_one_can(logcan): while True: can = messaging.recv_one_retry(logcan) if len(can.can) > 0: return can def load_interfaces(brand_names): ret = {} for brand_name in brand_names: path = ('selfdrive.car.%s' % brand_name) CarInterface = __import__(path + '.interface', fromlist=['CarInterface']).CarInterface if os.path.exists(BASEDIR + '/' + path.replace('.', '/') + '/carstate.py'): CarState = __import__(path + '.carstate', fromlist=['CarState']).CarState else: CarState = None if os.path.exists(BASEDIR + '/' + path.replace('.', '/') + '/carcontroller.py'): CarController = __import__(path + '.carcontroller', fromlist=['CarController']).CarController else: CarController = None for model_name in brand_names[brand_name]: ret[model_name] = (CarInterface, CarController, CarState) return ret def _get_interface_names(): # read all the folders in selfdrive/car and return a dict where: # - keys are all the car names that which we have an interface for # - values are lists of spefic car models for a given car brand_names = {} for car_folder in [x[0] for x in os.walk(BASEDIR + '/selfdrive/car')]: try: brand_name = car_folder.split('/')[-1] model_names = __import__('selfdrive.car.%s.values' % brand_name, fromlist=['CAR']).CAR model_names = [getattr(model_names, c) for c in model_names.__dict__.keys() if not c.startswith("__")] brand_names[brand_name] = model_names except (ImportError, IOError): pass return brand_names # imports from directory selfdrive/car/<name>/ interface_names = _get_interface_names() interfaces = load_interfaces(interface_names) def only_toyota_left(candidate_cars): return all(("TOYOTA" in c or "LEXUS" in c) for c in candidate_cars) and len(candidate_cars) > 0 # **** for use live only **** def fingerprint(logcan, sendcan): fixed_fingerprint = os.environ.get('FINGERPRINT', "") skip_fw_query = os.environ.get('SKIP_FW_QUERY', False) if not fixed_fingerprint and not skip_fw_query: # Vin query only reliably works thorugh OBDII bus = 1 cached_params = Params().get("CarParamsCache") if cached_params is not None: cached_params = car.CarParams.from_bytes(cached_params) if cached_params.carName == "mock": cached_params = None if cached_params is not None and len(cached_params.carFw) > 0 and cached_params.carVin is not VIN_UNKNOWN: cloudlog.warning("Using cached CarParams") vin = cached_params.carVin car_fw = list(cached_params.carFw) else: cloudlog.warning("Getting VIN & FW versions") _, vin = get_vin(logcan, sendcan, bus) car_fw = get_fw_versions(logcan, sendcan, bus) exact_fw_match, fw_candidates = match_fw_to_car(car_fw) else: vin = VIN_UNKNOWN exact_fw_match, fw_candidates, car_fw = True, set(), [] cloudlog.warning("VIN %s", vin) Params().put("CarVin", vin) finger = gen_empty_fingerprint() candidate_cars = {i: all_known_cars() for i in [0, 1]} # attempt fingerprint on both bus 0 and 1 frame = 0 frame_fingerprint = 10 # 0.1s car_fingerprint = None done = False while not done: a = get_one_can(logcan) for can in a.can: # need to independently try to fingerprint both bus 0 and 1 to work # for the combo black_panda and honda_bosch. Ignore extended messages # and VIN query response. # Include bus 2 for toyotas to disambiguate cars using camera messages # (ideally should be done for all cars but we can't for Honda Bosch) if can.src in range(0, 4): finger[can.src][can.address] = len(can.dat) for b in candidate_cars: if (can.src == b or (only_toyota_left(candidate_cars[b]) and can.src == 2)) and \ can.address < 0x800 and can.address not in [0x7df, 0x7e0, 0x7e8]: candidate_cars[b] = eliminate_incompatible_cars(can, candidate_cars[b]) # if we only have one car choice and the time since we got our first # message has elapsed, exit for b in candidate_cars: # Toyota needs higher time to fingerprint, since DSU does not broadcast immediately if only_toyota_left(candidate_cars[b]): frame_fingerprint = 100 # 1s if len(candidate_cars[b]) == 1 and frame > frame_fingerprint: # fingerprint done car_fingerprint = candidate_cars[b][0] # bail if no cars left or we've been waiting for more than 2s failed = (all(len(cc) == 0 for cc in candidate_cars.values()) and frame > frame_fingerprint) or frame > 200 succeeded = car_fingerprint is not None done = failed or succeeded frame += 1 exact_match = True source = car.CarParams.FingerprintSource.can # If FW query returns exactly 1 candidate, use it if len(fw_candidates) == 1: car_fingerprint = list(fw_candidates)[0] source = car.CarParams.FingerprintSource.fw exact_match = exact_fw_match if fixed_fingerprint: car_fingerprint = fixed_fingerprint source = car.CarParams.FingerprintSource.fixed cloudlog.warning("fingerprinted %s", car_fingerprint) return car_fingerprint, finger, vin, car_fw, source, exact_match def get_car(logcan, sendcan): candidate, fingerprints, vin, car_fw, source, exact_match = fingerprint(logcan, sendcan) if candidate is None: cloudlog.warning("car doesn't match any fingerprints: %r", fingerprints) candidate = "mock" if Params().get("CarModel", encoding="utf8") is not None: car_name = Params().get("CarModel", encoding="utf8") car_name = car_name.rstrip('\n') candidate = car_name CarInterface, CarController, CarState = interfaces[candidate] car_params = CarInterface.get_params(candidate, fingerprints, car_fw) car_params.carVin = vin car_params.carFw = car_fw car_params.fingerprintSource = source car_params.fuzzyFingerprint = not exact_match return CarInterface(car_params, CarController, CarState), car_params
35.825641
111
0.716576
0c723e7839651229b2059f11b1a698c979645367
457
py
Python
Python/ex035.py
MarcosRibas/Projeto100Exercicios
15c16eb0d9c4182d93e4bb83e11acad0728f5ec9
[ "MIT" ]
null
null
null
Python/ex035.py
MarcosRibas/Projeto100Exercicios
15c16eb0d9c4182d93e4bb83e11acad0728f5ec9
[ "MIT" ]
null
null
null
Python/ex035.py
MarcosRibas/Projeto100Exercicios
15c16eb0d9c4182d93e4bb83e11acad0728f5ec9
[ "MIT" ]
null
null
null
"""Ex035 Desenvolva um programa que leia o comprimento de três retas e diga ao usuário se elas podem ou não formar um triangulo.""" print('Analisador de Triângulos') r1 = float(input('Primeiro segmento: ')) r2 = float(input('Segundo segmento: ')) r3 = float(input('Terceiro segmento: ')) if r1 < r2 + r3 and r2 < r1 + r3 and r3 < r1 + r2: print('Os segmentos acima podem formar triangulo') else: print('Os segmentos acima não pode formar triângulo')
45.7
117
0.713348
6573ae2cf643e1877809b1368bfddb221773239c
189
py
Python
test_funcs/torch2pytorch.py
ahmedshingaly/sketch2shape
128f83d760d215ec7fae35aeb1430512552f2b92
[ "MIT" ]
3
2020-04-07T06:54:47.000Z
2021-06-30T14:14:36.000Z
test_funcs/torch2pytorch.py
ahmedshingaly/sketch2shape
128f83d760d215ec7fae35aeb1430512552f2b92
[ "MIT" ]
1
2020-09-18T01:58:15.000Z
2020-09-18T01:58:15.000Z
test_funcs/torch2pytorch.py
ahmedshingaly/sketch2shape
128f83d760d215ec7fae35aeb1430512552f2b92
[ "MIT" ]
1
2020-09-18T01:58:47.000Z
2020-09-18T01:58:47.000Z
import torch from torch.utils.serialization import load_lua model_path = r"./models_cpu/" model_file = "car_G_cpu.pth.t7" full_path = model_path + model_file model = load_lua(model_file)
21
46
0.78836
a3d81a92715e62dedc56fa54ec582fa484b702e1
894
py
Python
tests/processor/unit/test_scale.py
yubessy/prepkit
5d2732c05288cd2e76d5d3f539210a91b01f5804
[ "MIT" ]
3
2018-01-21T07:21:27.000Z
2018-01-21T11:22:08.000Z
tests/processor/unit/test_scale.py
yubessy/prepkit
5d2732c05288cd2e76d5d3f539210a91b01f5804
[ "MIT" ]
null
null
null
tests/processor/unit/test_scale.py
yubessy/prepkit
5d2732c05288cd2e76d5d3f539210a91b01f5804
[ "MIT" ]
null
null
null
from pandas import Series from pandas.util.testing import assert_series_equal from prepkit.processor.unit.scale import Scale from ..._helper import array_float def test_process(): processor = Scale(minlim=-1, maxlim=1) target = Series([-2.0, -1.0, 0.0, 1.0, 2.0]) result = processor.process(target) expected = Series(array_float([-1.0, -1.0, 0.0, 1.0, 1.0])) assert_series_equal(result, expected) def test_process_normalize(): processor = Scale(normalize=True) target = Series([1, 2, 3]) result = processor.process(target) expected = Series(array_float([0.0, 0.5, 1.0])) assert_series_equal(result, expected) def test_process_standardize(): processor = Scale(standardize=True) target = Series([0, 1, 2]) result = processor.process(target) expected = Series(array_float([-1.0, 0.0, 1.0])) assert_series_equal(result, expected)
28.83871
63
0.692394
0b4c46064eaf3b0a3d4c6a81dd52354c1c6d6973
8,038
py
Python
miprometheus/problems/seq_to_seq/vqa/cog/cog_utils/json_to_img.py
vincentalbouy/mi-prometheus
99a0c94b0d0f3476fa021213b3246fda0db8b2db
[ "Apache-2.0" ]
null
null
null
miprometheus/problems/seq_to_seq/vqa/cog/cog_utils/json_to_img.py
vincentalbouy/mi-prometheus
99a0c94b0d0f3476fa021213b3246fda0db8b2db
[ "Apache-2.0" ]
null
null
null
miprometheus/problems/seq_to_seq/vqa/cog/cog_utils/json_to_img.py
vincentalbouy/mi-prometheus
99a0c94b0d0f3476fa021213b3246fda0db8b2db
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training utility functions.""" from six import string_types import re import numpy as np from miprometheus.problems.seq_to_seq.vqa.cog.cog_utils import stim_generator as sg from miprometheus.problems.seq_to_seq.vqa.cog.cog_utils import constants as const _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 def convert_to_grid(xy_coord, prefs): """Given a x-y coordinate, return the target activity for a grid of neurons. Args: xy_coord : numpy 2-D array (batch_size, 2) prefs: numpy 2-D array (n_out_pnt, 2). x and y preferences. Returns: activity: numpy array (batch_size, GRID_SIZE**2) """ sigma2 = 0.02 # 2*sigma-squared activity = np.exp(-((xy_coord[:, 0:1] - prefs[:, 0])**2 + (xy_coord[:, 1:2] - prefs[:, 1])**2) / sigma2) activity = (activity.T / np.sum(activity, axis=1)).T return activity def tasks_to_rules(tasks): """Generate in_rule and seq_length arrays. Args: tasks: a list of tg.Task instances or string rules, length is batch_size. """ batch_size = len(tasks) in_rule = np.zeros((const.MAXSEQLENGTH, batch_size), dtype=np.int64) seq_length = np.zeros((batch_size,), dtype=np.int64) for i_task, task in enumerate(tasks): word_list = re.findall(r"[\w']+|[.,!?;]", str(task)) seq_length[i_task] = len(word_list) for i_word, word in enumerate(word_list): in_rule[i_word, i_task] = const.INPUTVOCABULARY.index(word) return in_rule, seq_length def set_outputs_from_tasks(n_epoch, tasks, objsets, out_pnt_xy, out_word, mask_pnt, mask_word): j = 0 for epoch_now in range(n_epoch): for task, objset in zip(tasks, objsets): target = task(objset, epoch_now) if target == const.INVALID: # For invalid target, no loss is used. Everything remains zero. pass elif isinstance(target, sg.Loc): # minimize point loss out_pnt_xy[j, :] = target.value mask_pnt[j] = 1. elif isinstance(target, bool) or isinstance(target, sg.Attribute): if isinstance(target, bool): target = 'true' if target else 'false' else: target = target.value # For boolean target, only minimize word loss out_word[j] = const.OUTPUTVOCABULARY.index(target) mask_word[j] = 1. else: raise TypeError('Unknown target type.') j += 1 def set_outputs_from_targets(n_epoch, objsets, out_pnt_xy, out_word, mask_pnt, mask_word): j = 0 for epoch_now in range(n_epoch): for objset in objsets: target = objset.targets[epoch_now] if target == 'invalid': # For invalid target, no loss is used. Everything remains zero. pass elif isinstance(target, (list, tuple)): assert len(target) == 2, "Expected 2-D target. Got " + str(target) # minimize point loss out_pnt_xy[j, :] = target mask_pnt[j] = 1. elif isinstance(target, string_types): out_word[j] = const.OUTPUTVOCABULARY.index(target) mask_word[j] = 1. else: raise TypeError('Unknown target type: %s %s' % (type(target), target)) j += 1 def generate_batch(tasks, n_epoch=30, img_size=224, objsets=None, n_distractor=1, average_memory_span=2): """Generate a batch of trials. Return numpy arrays to feed the tensorflow placeholders. Args: tasks: a list of tg.Task instances, length is batch_size. n_epoch: int, number of epochs img_size: int, image size objsets: None or list of ObjectSet/StaticObjectSet instances n_distractor: int, number of distractors to add average_memory_span: int, the average number of epochs by which an object need to be held in working memory, if needed at all Returns: All variables are numpy array of float32 in_imgs: (n_epoch*batch_size, img_size, img_size, 3) in_rule: (max_seq_length, batch_size) the rule language input, type int32 seq_length: (batch_size,) the length of each task instruction out_pnt: (n_epoch*batch_size, n_out_pnt) out_pnt_xy: (n_epoch*batch_size, 2) out_word: (n_epoch*batch_size, n_out_word) mask_pnt: (n_epoch*batch_size) mask_word: (n_epoch*batch_size) Raises: TypeError: when target type is incorrect. """ batch_size = len(tasks) if objsets is None: objsets = list() for task in tasks: objsets.append( task.generate_objset(n_epoch, n_distractor=n_distractor, average_memory_span=average_memory_span)) max_objset_epoch = max([objset.n_epoch for objset in objsets]) assert max_objset_epoch == n_epoch, '%d != %d' % (max_objset_epoch, n_epoch) in_imgs = sg.render(objsets, img_size) # The rendered images are batch major in_imgs = np.reshape(in_imgs, [batch_size, n_epoch, img_size, img_size, 3]) # Swap to time major in_imgs = np.swapaxes(in_imgs, 0, 1) # Outputs and masks out_pnt_xy = np.zeros((n_epoch * batch_size, 2), dtype=np.float32) out_word = np.zeros((n_epoch * batch_size), dtype=np.int64) mask_pnt = np.zeros((n_epoch * batch_size), dtype=np.float32) mask_word = np.zeros((n_epoch * batch_size), dtype=np.float32) if isinstance(objsets[0], sg.StaticObjectSet): set_outputs_from_targets(n_epoch, objsets, out_pnt_xy, out_word, mask_pnt, mask_word) else: set_outputs_from_tasks(n_epoch, tasks, objsets, out_pnt_xy, out_word, mask_pnt, mask_word) # Process outputs out_pnt = convert_to_grid(out_pnt_xy, const.PREFS) # Generate rule inputs, padded to maximum number of words in a sentence in_rule, seq_length = tasks_to_rules(tasks) return (in_imgs, in_rule, seq_length, out_pnt, out_pnt_xy, out_word, mask_pnt, mask_word) def static_objsets_from_examples(examples): """Returns a list of StaticObjectSet objects. Args: examples: an iterable of dictionaries decoded from json examples. """ static_objsets = [] for e in examples: static_objs = [o for multi_epoch_obj in e['objects'] for o in sg.static_objects_from_dict(multi_epoch_obj)] static_objset = sg.StaticObjectSet(n_epoch=e['epochs'], static_objects=static_objs, targets=e['answers']) static_objsets.append(static_objset) return static_objsets def json_to_feeds(json_examples): if isinstance(json_examples, string_types): json_examples = [json_examples] examples = [] families = [] rules = [] for entry in json_examples: rules.append(entry['question']) examples.append(entry) families.append(entry['family']) epochs = examples[0]['epochs'] static_objsets = static_objsets_from_examples(examples) values = generate_batch(rules, n_epoch=epochs, img_size=112, objsets=static_objsets, # not used when objsets are given n_distractor=0, # not used when objsets are given average_memory_span=0) values = values + (families,) return values
34.497854
83
0.643941
ecf1c92f5cb87f2bd7fab685a58a363c73a32613
241
py
Python
Intermediate/map_function.py
BjornChrisnach/Python_6hour_course
0949387c2e423ed0ba7914db7c58af2f913bda1c
[ "MIT" ]
null
null
null
Intermediate/map_function.py
BjornChrisnach/Python_6hour_course
0949387c2e423ed0ba7914db7c58af2f913bda1c
[ "MIT" ]
null
null
null
Intermediate/map_function.py
BjornChrisnach/Python_6hour_course
0949387c2e423ed0ba7914db7c58af2f913bda1c
[ "MIT" ]
null
null
null
# map function nr3 li = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] def func(x): return x**x # newList = [] # for x in li: # newList.append(func(x)) # print(newList) # print(list(map(func, li))) print([func(x) for x in li if x % 2 == 0])
13.388889
42
0.53527
a57fcea3109f3848bde2b219f47aab5c16c848d0
90
py
Python
src/fermulerpy/__init__.py
Deepthi2001/fermulerpy
5721e2d027598063cb4f2fd3cb5cc79ffd22890b
[ "MIT" ]
null
null
null
src/fermulerpy/__init__.py
Deepthi2001/fermulerpy
5721e2d027598063cb4f2fd3cb5cc79ffd22890b
[ "MIT" ]
null
null
null
src/fermulerpy/__init__.py
Deepthi2001/fermulerpy
5721e2d027598063cb4f2fd3cb5cc79ffd22890b
[ "MIT" ]
null
null
null
""" ========== fermulerpy ========== Python for Number Theory """ __version__ = "0.1.v3"
10
24
0.511111
280ccef1a3f87d042a4365f6e7cc00c4c7d7f03a
539
py
Python
build.py
appimage-conan-community/conan-libappimage
8a616c55f921c3c512139c500fd1f20b763584ea
[ "MIT" ]
null
null
null
build.py
appimage-conan-community/conan-libappimage
8a616c55f921c3c512139c500fd1f20b763584ea
[ "MIT" ]
null
null
null
build.py
appimage-conan-community/conan-libappimage
8a616c55f921c3c512139c500fd1f20b763584ea
[ "MIT" ]
null
null
null
from cpt.packager import ConanMultiPackager if __name__ == "__main__": remotes = [("https://api.bintray.com/conan/bincrafters/public-conan", "yes", "bincrafters"), ("https://api.bintray.com/conan/conan-community/conan", "yes", "conan-community"), ("https://api.bintray.com/conan/appimage-conan-community/public-conan", "yes", "appimage")] builder = ConanMultiPackager(build_policy="missing", remotes=remotes) builder.add_common_builds(shared_option_name="libappimage:shared") builder.run()
44.916667
106
0.697588
abfb66b1df32bf1a267c99876d5493ed834d4b3a
2,069
py
Python
profiles_api/models.py
jacob-crider/profiles-rest-api
b153dd72fd8c40008967a9c72d0bccc6892d905d
[ "MIT" ]
null
null
null
profiles_api/models.py
jacob-crider/profiles-rest-api
b153dd72fd8c40008967a9c72d0bccc6892d905d
[ "MIT" ]
null
null
null
profiles_api/models.py
jacob-crider/profiles-rest-api
b153dd72fd8c40008967a9c72d0bccc6892d905d
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth.models import BaseUserManager from django.conf import settings class UserProfileManager(BaseUserManager): """Manager for user profiles""" def create_user(self, email, name, password=None): """Create a new user profile""" if not email: raise ValueError('User must have an email address') email = self.normalize_email(email) user = self.model(email=email, name=name) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, name, password): """Create and save a new superuser with given details""" user = self.create_user(email, name, password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser, PermissionsMixin): """Database model for users in the system""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name'] def get_full_name(self): """Retrieve full name of user""" return self.name def get_short_name(self): """Retrieve short name of user""" return self.name def __str__(self): """Return string representation of our user""" return self.email class ProfileFeedItem(models.Model): """Profile status update""" user_profile = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) status_text = models.CharField(max_length=255) created_on = models.DateTimeField(auto_now_add=True) def __str__(self): """Return the model as a string""" return self.status_text
28.342466
64
0.679072
e13cc0e78dbe71b6276f8f38ebdf62bf15454240
6,203
py
Python
nara_wpe/ntt_wpe.py
oucxlw/nara_wpe
a537e080bc419e5a01e7f83b81e5d8ae058c363c
[ "MIT" ]
344
2018-05-03T00:27:46.000Z
2022-03-28T02:13:54.000Z
nara_wpe/ntt_wpe.py
oucxlw/nara_wpe
a537e080bc419e5a01e7f83b81e5d8ae058c363c
[ "MIT" ]
47
2018-06-27T07:22:53.000Z
2022-02-12T01:18:39.000Z
nara_wpe/ntt_wpe.py
oucxlw/nara_wpe
a537e080bc419e5a01e7f83b81e5d8ae058c363c
[ "MIT" ]
135
2018-05-24T09:14:58.000Z
2022-03-25T02:55:17.000Z
from pathlib import Path from cached_property import cached_property import tempfile import numpy as np import soundfile as sf import click from pymatbridge import Matlab from nara_wpe import project_root def ntt_wrapper( y, taps=10, delay=3, iterations=3, sampling_rate=16000, path_to_package=project_root / 'cache' / 'wpe_v1.33', stft_size=512, stft_shift=128 ): wpe = NTTWrapper(path_to_package) return wpe( y=y, taps=taps, delay=delay, iterations=iterations, sampling_rate=sampling_rate, stft_size=stft_size, stft_shift=stft_shift ) class NTTWrapper: """ The WPE package has to be downloaded from http://www.kecl.ntt.co.jp/icl/signal/wpe/download.html. It is recommended to store it in the cache directory of Nara-WPE. """ def __init__(self, path_to_pkg): self.path_to_pkg = Path(path_to_pkg) if not self.path_to_pkg.exists(): raise OSError( 'NTT WPE package does not exist. It has to be downloaded' 'from http://www.kecl.ntt.co.jp/icl/signal/wpe/download.html' 'and stored in the cache directory of Nara-WPE, preferably.' ) @cached_property def process(self): mlab = Matlab() mlab.start() return mlab def cfg(self, channels, sampling_rate, iterations, taps, stft_size, stft_shift ): """ Check settings and set local.m accordingly """ cfg = self.path_to_pkg / 'settings' / 'local.m' lines = [] with cfg.open() as infile: for line in infile: if 'num_mic = ' in line and 'num_out' not in line: if not str(channels) in line: line = 'num_mic = ' + str(channels) + ";\n" elif 'fs' in line: if not str(sampling_rate) in line: line = 'fs =' + str(sampling_rate) + ";\n" elif 'channel_setup' in line and 'ssd_param' not in line: if not str(taps) in line and '%' not in line: line = "channel_setup = [" + str(taps) + "; ..." + "\n" elif 'ssd_conf' in line: if not str(iterations) in line: line = "ssd_conf = struct('max_iter',"\ + str(iterations) + ", ...\n" elif 'analym_param' in line: if not str(stft_size) in line: line = "analy_param = struct('win_size',"\ + str(stft_size) + ", ..." elif 'shift_size' in line: if not str(stft_shift) in line: line = " 'shift_size',"\ + str(stft_shift) + ", ..." elif 'hanning' in line: if not str(stft_size) in line: line = " 'win' , hanning("\ + str(stft_size) + "));" lines.append(line) return lines def __call__( self, y, taps=10, delay=3, iterations=3, sampling_rate=16000, stft_size=512, stft_shift=128 ): """ Args: y: observation (channels. samples) delay: iterations: taps: stft_opts: dict contains size, shift Returns: dereverberated observation (channels, samples) """ y = y.transpose(1, 0) channels = y.shape[1] cfg_lines = self.cfg( channels, sampling_rate, iterations, taps, stft_size, stft_shift ) with tempfile.TemporaryDirectory() as tempdir: with (Path(tempdir) / 'local.m').open('w') as cfg_file: for line in cfg_lines: cfg_file.write(line) self.process.set_variable("y", y) self.process.set_variable("cfg", cfg_file.name) self.process.run_code("addpath('" + str(cfg_file.name) + "');") self.process.run_code("addpath('" + str(self.path_to_pkg) + "');") msg = self.process.run_code("y = wpe(y, cfg);") assert msg['success'] is True, \ f'WPE has failed. {msg["content"]["stdout"]}' y = self.process.get_variable("y") return y.transpose(1, 0) @click.command() @click.argument( 'files', nargs=-1, type=click.Path(exists=True), ) @click.option( '--path_to_pkg', default=str(project_root / 'cache' / 'wpe_v1.33'), help='It is recommended to save the ' 'NTT-WPE package in the cache directory.' ) @click.option( '--output_dir', default=str(project_root / 'data' / 'dereverberation_ntt'), help='Output path.' ) @click.option( '--iterations', default=5, help='Iterations of WPE' ) @click.option( '--taps', default=10, help='Number of filter taps of WPE' ) def main(path_to_pkg, files, output_dir, taps=10, delay=3, iterations=5): """ A small command line wrapper around the NTT-WPE matlab file. http://www.kecl.ntt.co.jp/icl/signal/wpe/ """ if len(files) > 1: signal_list = [ sf.read(str(file))[0] for file in files ] y = np.stack(signal_list, axis=0) sampling_rate = sf.read(str(files[0]))[1] else: y, sampling_rate = sf.read(files) wrapper = NTTWrapper(path_to_pkg) x = wrapper(y, delay, iterations, taps, sampling_rate, stft_size=512, stft_shift=128 ) if len(files) > 1: for i, file in enumerate(files): sf.write( str(Path(output_dir) / Path(file).name), x[i], samplerate=sampling_rate ) else: sf.write( str(Path(output_dir) / Path(files).name), x, samplerate=sampling_rate ) if __name__ == '__main__': main()
29.679426
79
0.516041
b218e09ffae6ab9785c80d4788f224506b18aa03
1,222
py
Python
meiduo_mall/apps/contents/utils.py
MarioKarting/Django_meiduo_project
ef06e70b1ddb6709983ebb644452c980afc29000
[ "MIT" ]
null
null
null
meiduo_mall/apps/contents/utils.py
MarioKarting/Django_meiduo_project
ef06e70b1ddb6709983ebb644452c980afc29000
[ "MIT" ]
null
null
null
meiduo_mall/apps/contents/utils.py
MarioKarting/Django_meiduo_project
ef06e70b1ddb6709983ebb644452c980afc29000
[ "MIT" ]
null
null
null
# !/usr/bin/env python # _*_ coding:utf-8 _*_ from collections import OrderedDict # 封装 商品三级分类查询的数据 函数 def get_categories(): # 1.1 获取频道表的数据 37个频道 goodschannel from apps.goods.models import GoodsChannel # channels = GoodsChannel.objects.order_by('group_id', 'sequence') channels = GoodsChannel.objects.all() # 1.2 遍历37个频道 categories = OrderedDict() # 有序的字典 for channel in channels: # 1.3 通过频道 获取 组id 11个 group_id = channel.group_id # 1.4 判断 当前组id 在不在 字典里面,如果不在:塞进去 if group_id not in categories: categories[group_id] = {'channels': [], 'sub_cats': []} # 1.5 通过外键属性category--获取一级分类 cat1 = channel.category # 1.6 拼接 channels 里面的字典数据 categories[group_id]['channels'].append({ 'id': cat1, 'name': cat1.name, 'url': channel.url, }) # 1.7 根据一级分类找2 .subs, --3 subs级分类 构建前端需要的数据 for cat2 in cat1.subs.all(): cat2.sub_cats = [] # 二级找3级 for cat3 in cat2.subs.all(): cat2.sub_cats.append(cat3) # 将拼接完毕的ca2 添加到大字典的key里面 categories[group_id]['sub_cats'].append(cat2) return categories
29.095238
70
0.587561
59382594e5677e91521c794a01f57618296bb724
19,227
py
Python
src/sagemaker/fw_utils.py
billdoors/sagemaker-python-sdk
2df8fb616cc3e28032aae5dccdc93a0c340b6d8b
[ "Apache-2.0" ]
null
null
null
src/sagemaker/fw_utils.py
billdoors/sagemaker-python-sdk
2df8fb616cc3e28032aae5dccdc93a0c340b6d8b
[ "Apache-2.0" ]
null
null
null
src/sagemaker/fw_utils.py
billdoors/sagemaker-python-sdk
2df8fb616cc3e28032aae5dccdc93a0c340b6d8b
[ "Apache-2.0" ]
null
null
null
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Utility methods used by framework classes""" from __future__ import absolute_import import os import re import shutil import tempfile from collections import namedtuple import sagemaker.utils from sagemaker import s3 from sagemaker.utils import get_ecr_image_uri_prefix, ECR_URI_PATTERN _TAR_SOURCE_FILENAME = "source.tar.gz" UploadedCode = namedtuple("UserCode", ["s3_prefix", "script_name"]) """sagemaker.fw_utils.UserCode: An object containing the S3 prefix and script name. This is for the source code used for the entry point with an ``Estimator``. It can be instantiated with positional or keyword arguments. """ EMPTY_FRAMEWORK_VERSION_WARNING = "No framework_version specified, defaulting to version {}." LATER_FRAMEWORK_VERSION_WARNING = ( "This is not the latest supported version. " "If you would like to use version {latest}, " "please add framework_version={latest} to your constructor." ) PYTHON_2_DEPRECATION_WARNING = ( "The Python 2 {framework} images will be soon deprecated and may not be " "supported for newer upcoming versions of the {framework} images.\n" "Please set the argument \"py_version='py3'\" to use the Python 3 {framework} image." ) EMPTY_FRAMEWORK_VERSION_ERROR = ( "framework_version is required for script mode estimator. " "Please add framework_version={} to your constructor to avoid this error." ) UNSUPPORTED_FRAMEWORK_VERSION_ERROR = ( "{} framework does not support version {}. Please use one of the following: {}." ) VALID_PY_VERSIONS = ["py2", "py3"] VALID_EIA_FRAMEWORKS = ["tensorflow", "tensorflow-serving", "mxnet", "mxnet-serving"] VALID_ACCOUNTS_BY_REGION = {"us-gov-west-1": "246785580436", "us-iso-east-1": "744548109606"} ASIMOV_VALID_ACCOUNTS_BY_REGION = {"us-iso-east-1": "886529160074"} OPT_IN_ACCOUNTS_BY_REGION = {"ap-east-1": "057415533634", "me-south-1": "724002660598"} ASIMOV_OPT_IN_ACCOUNTS_BY_REGION = {"ap-east-1": "871362719292", "me-south-1": "217643126080"} DEFAULT_ACCOUNT = "520713654638" ASIMOV_PROD_ACCOUNT = "763104351884" ASIMOV_DEFAULT_ACCOUNT = ASIMOV_PROD_ACCOUNT MERGED_FRAMEWORKS_REPO_MAP = { "tensorflow-scriptmode": "tensorflow-training", "tensorflow-serving": "tensorflow-inference", "tensorflow-serving-eia": "tensorflow-inference-eia", "mxnet": "mxnet-training", "mxnet-serving": "mxnet-inference", "mxnet-serving-eia": "mxnet-inference-eia", "pytorch": "pytorch-training", "pytorch-serving": "pytorch-inference", } MERGED_FRAMEWORKS_LOWEST_VERSIONS = { "tensorflow-scriptmode": {"py3": [1, 13, 1], "py2": [1, 14, 0]}, "tensorflow-serving": [1, 13, 0], "tensorflow-serving-eia": [1, 14, 0], "mxnet": {"py3": [1, 4, 1], "py2": [1, 6, 0]}, "mxnet-serving": {"py3": [1, 4, 1], "py2": [1, 6, 0]}, "mxnet-serving-eia": [1, 4, 1], "pytorch": [1, 2, 0], "pytorch-serving": [1, 2, 0], } def is_version_equal_or_higher(lowest_version, framework_version): """Determine whether the ``framework_version`` is equal to or higher than ``lowest_version`` Args: lowest_version (List[int]): lowest version represented in an integer list framework_version (str): framework version string Returns: bool: Whether or not ``framework_version`` is equal to or higher than ``lowest_version`` """ version_list = [int(s) for s in framework_version.split(".")] return version_list >= lowest_version[0 : len(version_list)] def _is_dlc_version(framework, framework_version, py_version): """Return if the framework's version uses the corresponding DLC image. Args: framework (str): The framework name, e.g. "tensorflow-scriptmode" framework_version (str): The framework version py_version (str): The Python version, e.g. "py3" Returns: bool: Whether or not the framework's version uses the DLC image. """ lowest_version_list = MERGED_FRAMEWORKS_LOWEST_VERSIONS.get(framework) if isinstance(lowest_version_list, dict): lowest_version_list = lowest_version_list[py_version] if lowest_version_list: return is_version_equal_or_higher(lowest_version_list, framework_version) return False def _use_dlc_image(region, framework, py_version, framework_version): """Return if the DLC image should be used for the given framework, framework version, Python version, and region. Args: region (str): The AWS region. framework (str): The framework name, e.g. "tensorflow-scriptmode". py_version (str): The Python version, e.g. "py3". framework_version (str): The framework version. Returns: bool: Whether or not to use the corresponding DLC image. """ is_gov_region = region in VALID_ACCOUNTS_BY_REGION is_dlc_version = _is_dlc_version(framework, framework_version, py_version) return ((not is_gov_region) or region in ASIMOV_VALID_ACCOUNTS_BY_REGION) and is_dlc_version def _registry_id(region, framework, py_version, account, framework_version): """Return the Amazon ECR registry number (or AWS account ID) for the given framework, framework version, Python version, and region. Args: region (str): The AWS region. framework (str): The framework name, e.g. "tensorflow-scriptmode". py_version (str): The Python version, e.g. "py3". account (str): The AWS account ID to use as a default. framework_version (str): The framework version. Returns: str: The appropriate Amazon ECR registry number. If there is no specific one for the framework, framework version, Python version, and region, then ``account`` is returned. """ if _use_dlc_image(region, framework, py_version, framework_version): if region in ASIMOV_OPT_IN_ACCOUNTS_BY_REGION: return ASIMOV_OPT_IN_ACCOUNTS_BY_REGION.get(region) if region in ASIMOV_VALID_ACCOUNTS_BY_REGION: return ASIMOV_VALID_ACCOUNTS_BY_REGION.get(region) return ASIMOV_DEFAULT_ACCOUNT if region in OPT_IN_ACCOUNTS_BY_REGION: return OPT_IN_ACCOUNTS_BY_REGION.get(region) return VALID_ACCOUNTS_BY_REGION.get(region, account) def create_image_uri( region, framework, instance_type, framework_version, py_version=None, account=None, accelerator_type=None, optimized_families=None, ): """Return the ECR URI of an image. Args: region (str): AWS region where the image is uploaded. framework (str): framework used by the image. instance_type (str): SageMaker instance type. Used to determine device type (cpu/gpu/family-specific optimized). framework_version (str): The version of the framework. py_version (str): Optional. Python version. If specified, should be one of 'py2' or 'py3'. If not specified, image uri will not include a python component. account (str): AWS account that contains the image. (default: '520713654638') accelerator_type (str): SageMaker Elastic Inference accelerator type. optimized_families (str): Instance families for which there exist specific optimized images. Returns: str: The appropriate image URI based on the given parameters. """ optimized_families = optimized_families or [] if py_version and py_version not in VALID_PY_VERSIONS: raise ValueError("invalid py_version argument: {}".format(py_version)) if _accelerator_type_valid_for_framework( framework=framework, accelerator_type=accelerator_type, optimized_families=optimized_families, ): framework += "-eia" # Handle account number for specific cases (e.g. GovCloud, opt-in regions, DLC images etc.) if account is None: account = _registry_id( region=region, framework=framework, py_version=py_version, account=DEFAULT_ACCOUNT, framework_version=framework_version, ) # Handle Local Mode if instance_type.startswith("local"): device_type = "cpu" if instance_type == "local" else "gpu" elif not instance_type.startswith("ml."): raise ValueError( "{} is not a valid SageMaker instance type. See: " "https://aws.amazon.com/sagemaker/pricing/instance-types/".format(instance_type) ) else: family = instance_type.split(".")[1] # For some frameworks, we have optimized images for specific families, e.g c5 or p3. # In those cases, we use the family name in the image tag. In other cases, we use # 'cpu' or 'gpu'. if family in optimized_families: device_type = family elif family[0] in ["g", "p"]: device_type = "gpu" else: device_type = "cpu" use_dlc_image = _use_dlc_image(region, framework, py_version, framework_version) if not py_version or (use_dlc_image and framework == "tensorflow-serving-eia"): tag = "{}-{}".format(framework_version, device_type) else: tag = "{}-{}-{}".format(framework_version, device_type, py_version) if use_dlc_image: ecr_repo = MERGED_FRAMEWORKS_REPO_MAP[framework] else: ecr_repo = "sagemaker-{}".format(framework) return "{}/{}:{}".format(get_ecr_image_uri_prefix(account, region), ecr_repo, tag) def _accelerator_type_valid_for_framework( framework, accelerator_type=None, optimized_families=None ): """ Args: framework: accelerator_type: optimized_families: """ if accelerator_type is None: return False if framework not in VALID_EIA_FRAMEWORKS: raise ValueError( "{} is not supported with Amazon Elastic Inference. Currently only " "Python-based TensorFlow and MXNet are supported.".format(framework) ) if optimized_families: raise ValueError("Neo does not support Amazon Elastic Inference.") if ( not accelerator_type.startswith("ml.eia") and not accelerator_type == "local_sagemaker_notebook" ): raise ValueError( "{} is not a valid SageMaker Elastic Inference accelerator type. " "See: https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html".format(accelerator_type) ) return True def validate_source_dir(script, directory): """Validate that the source directory exists and it contains the user script Args: script (str): Script filename. directory (str): Directory containing the source file. Raises: ValueError: If ``directory`` does not exist, is not a directory, or does not contain ``script``. """ if directory: if not os.path.isfile(os.path.join(directory, script)): raise ValueError( 'No file named "{}" was found in directory "{}".'.format(script, directory) ) return True def tar_and_upload_dir( session, bucket, s3_key_prefix, script, directory=None, dependencies=None, kms_key=None ): """Package source files and upload a compress tar file to S3. The S3 location will be ``s3://<bucket>/s3_key_prefix/sourcedir.tar.gz``. If directory is an S3 URI, an UploadedCode object will be returned, but nothing will be uploaded to S3 (this allow reuse of code already in S3). If directory is None, the script will be added to the archive at ``./<basename of script>``. If directory is not None, the (recursive) contents of the directory will be added to the archive. directory is treated as the base path of the archive, and the script name is assumed to be a filename or relative path inside the directory. Args: session (boto3.Session): Boto session used to access S3. bucket (str): S3 bucket to which the compressed file is uploaded. s3_key_prefix (str): Prefix for the S3 key. script (str): Script filename or path. directory (str): Optional. Directory containing the source file. If it starts with "s3://", no action is taken. dependencies (List[str]): Optional. A list of paths to directories (absolute or relative) containing additional libraries that will be copied into /opt/ml/lib kms_key (str): Optional. KMS key ID used to upload objects to the bucket (default: None). Returns: sagemaker.fw_utils.UserCode: An object with the S3 bucket and key (S3 prefix) and script name. """ if directory and directory.lower().startswith("s3://"): return UploadedCode(s3_prefix=directory, script_name=os.path.basename(script)) script_name = script if directory else os.path.basename(script) dependencies = dependencies or [] key = "%s/sourcedir.tar.gz" % s3_key_prefix tmp = tempfile.mkdtemp() try: source_files = _list_files_to_compress(script, directory) + dependencies tar_file = sagemaker.utils.create_tar_file( source_files, os.path.join(tmp, _TAR_SOURCE_FILENAME) ) if kms_key: extra_args = {"ServerSideEncryption": "aws:kms", "SSEKMSKeyId": kms_key} else: extra_args = None session.resource("s3").Object(bucket, key).upload_file(tar_file, ExtraArgs=extra_args) finally: shutil.rmtree(tmp) return UploadedCode(s3_prefix="s3://%s/%s" % (bucket, key), script_name=script_name) def _list_files_to_compress(script, directory): """ Args: script: directory: """ if directory is None: return [script] basedir = directory if directory else os.path.dirname(script) return [os.path.join(basedir, name) for name in os.listdir(basedir)] def framework_name_from_image(image_name): # noinspection LongLine """Extract the framework and Python version from the image name. Args: image_name (str): Image URI, which should be one of the following forms: legacy: '<account>.dkr.ecr.<region>.amazonaws.com/sagemaker-<fw>-<py_ver>-<device>:<container_version>' legacy: '<account>.dkr.ecr.<region>.amazonaws.com/sagemaker-<fw>-<py_ver>-<device>:<fw_version>-<device>-<py_ver>' current: '<account>.dkr.ecr.<region>.amazonaws.com/sagemaker-<fw>:<fw_version>-<device>-<py_ver>' current: '<account>.dkr.ecr.<region>.amazonaws.com/sagemaker-rl-<fw>:<rl_toolkit><rl_version>-<device>-<py_ver>' Returns: tuple: A tuple containing: str: The framework name str: The Python version str: The image tag str: If the image is script mode """ sagemaker_pattern = re.compile(ECR_URI_PATTERN) sagemaker_match = sagemaker_pattern.match(image_name) if sagemaker_match is None: return None, None, None, None # extract framework, python version and image tag # We must support both the legacy and current image name format. name_pattern = re.compile( r"^(?:sagemaker(?:-rl)?-)?(tensorflow|mxnet|chainer|pytorch|scikit-learn|xgboost)(?:-)?(scriptmode|training)?:(.*)-(.*?)-(py2|py3)$" # noqa: E501 # pylint: disable=line-too-long ) legacy_name_pattern = re.compile(r"^sagemaker-(tensorflow|mxnet)-(py2|py3)-(cpu|gpu):(.*)$") name_match = name_pattern.match(sagemaker_match.group(9)) legacy_match = legacy_name_pattern.match(sagemaker_match.group(9)) if name_match is not None: fw, scriptmode, ver, device, py = ( name_match.group(1), name_match.group(2), name_match.group(3), name_match.group(4), name_match.group(5), ) return fw, py, "{}-{}-{}".format(ver, device, py), scriptmode if legacy_match is not None: return (legacy_match.group(1), legacy_match.group(2), legacy_match.group(4), None) return None, None, None, None def framework_version_from_tag(image_tag): """Extract the framework version from the image tag. Args: image_tag (str): Image tag, which should take the form '<framework_version>-<device>-<py_version>' Returns: str: The framework version. """ tag_pattern = re.compile("^(.*)-(cpu|gpu)-(py2|py3)$") tag_match = tag_pattern.match(image_tag) return None if tag_match is None else tag_match.group(1) def parse_s3_url(url): """Calls the method with the same name in the s3 module. :func:~sagemaker.s3.parse_s3_url Args: url: A URL, expected with an s3 scheme. Returns: The return value of s3.parse_s3_url, which is a tuple containing: str: S3 bucket name str: S3 key """ return s3.parse_s3_url(url) def model_code_key_prefix(code_location_key_prefix, model_name, image): """Returns the s3 key prefix for uploading code during model deployment The location returned is a potential concatenation of 2 parts 1. code_location_key_prefix if it exists 2. model_name or a name derived from the image Args: code_location_key_prefix (str): the s3 key prefix from code_location model_name (str): the name of the model image (str): the image from which a default name can be extracted Returns: str: the key prefix to be used in uploading code """ training_job_name = sagemaker.utils.name_from_image(image) return "/".join(filter(None, [code_location_key_prefix, model_name or training_job_name])) def empty_framework_version_warning(default_version, latest_version): """ Args: default_version: latest_version: """ msgs = [EMPTY_FRAMEWORK_VERSION_WARNING.format(default_version)] if default_version != latest_version: msgs.append(LATER_FRAMEWORK_VERSION_WARNING.format(latest=latest_version)) return " ".join(msgs) def get_unsupported_framework_version_error( framework_name, unsupported_version, supported_versions ): """Return error message for unsupported framework version. This should also return the supported versions for customers. :param framework_name: :param unsupported_version: :param supported_versions: :return: """ return UNSUPPORTED_FRAMEWORK_VERSION_ERROR.format( framework_name, unsupported_version, ", ".join('"{}"'.format(version) for version in supported_versions), ) def python_deprecation_warning(framework): """ Args: framework: """ return PYTHON_2_DEPRECATION_WARNING.format(framework=framework)
38.14881
186
0.680449
8523ebc612d1396c62ebce87cce9c107133cd6ed
3,883
py
Python
projects/steganography/dct.py
rossi2018/python-mini-projects
a85c140b990ec9d0fd491da5508fe188278032b0
[ "MIT" ]
2
2022-01-08T16:59:55.000Z
2022-01-08T17:34:28.000Z
projects/steganography/dct.py
rossi2018/python-mini-projects
a85c140b990ec9d0fd491da5508fe188278032b0
[ "MIT" ]
14
2022-02-13T10:28:48.000Z
2022-03-15T21:11:46.000Z
projects/steganography/dct.py
rossi2018/python-mini-projects
a85c140b990ec9d0fd491da5508fe188278032b0
[ "MIT" ]
2
2022-03-09T11:11:57.000Z
2022-03-09T16:23:32.000Z
#!/usr/bin/env python3 # # Copyright(C) 2021 wuyaoping # # DCT algorithm has great a robust but lower capacity. import numpy as np import os.path as osp import cv2 FLAG = '%' # Select a part location from the middle frequency LOC_MAX = (4, 1) LOC_MIN = (3, 2) # The difference between MAX and MIN, # bigger to improve robust but make picture low quality. ALPHA = 1 # Quantizer table TABLE = np.array([ [16, 11, 10, 16, 24, 40, 51, 61], [12, 12, 14, 19, 26, 58, 60, 55], [14, 13, 16, 24, 40, 57, 69, 56], [14, 17, 22, 29, 51, 87, 80, 62], [18, 22, 37, 56, 68, 109, 103, 77], [24, 35, 55, 64, 81, 104, 113, 92], [49, 64, 78, 87, 103, 121, 120, 101], [72, 92, 95, 98, 112, 100, 103, 99] ]) def insert(path, txt): img = cv2.imread(path, cv2.IMREAD_ANYCOLOR) txt = "{}{}{}".format(len(txt), FLAG, txt) row, col = img.shape[:2] max_bytes = (row // 8) * (col // 8) // 8 assert max_bytes >= len( txt), "Message overflow the capacity:{}".format(max_bytes) img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV) # Just use the Y plane to store message, you can use all plane y, u, v = cv2.split(img) y = y.astype(np.float32) blocks = [] # Quantize blocks for r_idx in range(0, 8 * (row // 8), 8): for c_idx in range(0, 8 * (col // 8), 8): quantized = cv2.dct(y[r_idx: r_idx+8, c_idx: c_idx+8]) / TABLE blocks.append(quantized) for idx in range(len(txt)): encode(blocks[idx*8: (idx+1)*8], txt[idx]) idx = 0 # Restore Y plane for r_idx in range(0, 8 * (row // 8), 8): for c_idx in range(0, 8 * (col // 8), 8): y[r_idx: r_idx+8, c_idx: c_idx+8] = cv2.idct(blocks[idx] * TABLE) idx += 1 y = y.astype(np.uint8) img = cv2.cvtColor(cv2.merge((y, u, v)), cv2.COLOR_YUV2BGR) filename, _ = osp.splitext(path) # DCT algorithm can save message even if jpg filename += '_dct_embeded' + '.jpg' cv2.imwrite(filename, img) return filename # Encode a char into the blocks def encode(blocks, data): data = ord(data) for idx in range(len(blocks)): bit_val = (data >> idx) & 1 max_val = max(blocks[idx][LOC_MAX], blocks[idx][LOC_MIN]) min_val = min(blocks[idx][LOC_MAX], blocks[idx][LOC_MIN]) if max_val - min_val <= ALPHA: max_val = min_val + ALPHA + 1e-3 if bit_val == 1: blocks[idx][LOC_MAX] = max_val blocks[idx][LOC_MIN] = min_val else: blocks[idx][LOC_MAX] = min_val blocks[idx][LOC_MIN] = max_val # Decode a char from the blocks def decode(blocks): val = 0 for idx in range(len(blocks)): if blocks[idx][LOC_MAX] > blocks[idx][LOC_MIN]: val |= 1 << idx return chr(val) def extract(path): img = cv2.imread(path, cv2.IMREAD_ANYCOLOR) row, col = img.shape[:2] max_bytes = (row // 8) * (col // 8) // 8 img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV) y, u, v = cv2.split(img) y = y.astype(np.float32) blocks = [] for r_idx in range(0, 8 * (row // 8), 8): for c_idx in range(0, 8 * (col // 8), 8): quantized = cv2.dct(y[r_idx: r_idx+8, c_idx: c_idx+8]) / TABLE blocks.append(quantized) res = '' idx = 0 # Extract the length of the message while idx < max_bytes: ch = decode(blocks[idx*8: (idx+1)*8]) idx += 1 if ch == FLAG: break res += ch end = int(res) + idx assert end <= max_bytes, "Input image isn't correct." res = '' while idx < end: res += decode(blocks[idx*8: (idx+1)*8]) idx += 1 return res if __name__ == '__main__': data = 'A collection of simple python mini projects to enhance your Python skills.' res_path = insert('./example.png', data) res = extract(res_path) print(res)
30.335938
87
0.567345
b0410c053cc907d954e523544f4d6943395d6ad6
1,008
py
Python
acq4/analysis/scripts/beamProfiler.py
aleonlein/acq4
4b1fcb9ad2c5e8d4595a2b9cf99d50ece0c0f555
[ "MIT" ]
1
2020-06-04T17:04:53.000Z
2020-06-04T17:04:53.000Z
acq4/analysis/scripts/beamProfiler.py
aleonlein/acq4
4b1fcb9ad2c5e8d4595a2b9cf99d50ece0c0f555
[ "MIT" ]
24
2016-09-27T17:25:24.000Z
2017-03-02T21:00:11.000Z
acq4/analysis/scripts/beamProfiler.py
sensapex/acq4
9561ba73caff42c609bd02270527858433862ad8
[ "MIT" ]
4
2016-10-19T06:39:36.000Z
2019-09-30T21:06:45.000Z
from __future__ import print_function from acq4.util import Qt import acq4.Manager import acq4.util.imageAnalysis as imageAnalysis run = True man = acq4.Manager.getManager() cam = man.getDevice('Camera') frames = [] def collect(frame): global frames frames.append(frame) cam.sigNewFrame.connect(collect) def measure(): if len(frames) == 0: Qt.QTimer.singleShot(100, measure) return global run if run: global frames frame = frames[-1] frames = [] img = frame.data() w,h = img.shape img = img[2*w/5:3*w/5, 2*h/5:3*h/5] w,h = img.shape fit = imageAnalysis.fitGaussian2D(img, [100, w/2., h/2., w/4., 0]) # convert sigma to full width at 1/e fit[0][3] *= 2 * 2**0.5 print("WIDTH:", fit[0][3] * frame.info()['pixelSize'][0] * 1e6, "um") print(" fit:", fit) else: global frames frames = [] Qt.QTimer.singleShot(2000, measure) measure()
23.44186
77
0.574405
706c91fda1a1bbe5f4734eda54106940cbb307dd
1,027
py
Python
aceapi/events/__init__.py
krayzpipes/ACE-1
138bf2aecad949f0b72b66519c32893df033de39
[ "Apache-2.0" ]
28
2018-08-08T11:57:31.000Z
2022-01-12T23:06:18.000Z
aceapi/events/__init__.py
krayzpipes/ACE-1
138bf2aecad949f0b72b66519c32893df033de39
[ "Apache-2.0" ]
108
2018-08-08T12:35:06.000Z
2019-07-19T22:57:19.000Z
aceapi/events/__init__.py
krayzpipes/ACE-1
138bf2aecad949f0b72b66519c32893df033de39
[ "Apache-2.0" ]
16
2018-08-03T18:48:00.000Z
2021-11-09T00:35:35.000Z
# vim: sw=4:ts=4:et # # ACE API event routines from .. import db, json_result from flask import Blueprint, request, abort, Response from saq.database import Event events_bp = Blueprint('events', __name__, url_prefix='/events') @events_bp.route('/open', methods=['GET']) def get_open_events(): open_events = db.session.query(Event).filter_by(status='OPEN') return json_result([event.json for event in open_events]) @events_bp.route('/<int:event_id>/status', methods=['PUT']) def update_event_status(event_id): event = db.session.query(Event).get(event_id) if not event: abort(Response("Event ID not found", 404)) status = request.values.get('status', None) if status: if status in Event.status.property.columns[0].type.enums: event.status = status db.session.commit() return json_result(event.json) else: abort(Response("Invalid event status: {}".format(status), 400)) abort(Response("Must specify event status", 400))
29.342857
75
0.673807
5138ef622f4ef1e4d2efc241a66b5c6dcaddb8ac
1,288
py
Python
dymos/utils/indexing.py
kaushikponnapalli/dymos
3fba91d0fc2c0e8460717b1bec80774676287739
[ "Apache-2.0" ]
1
2021-07-19T17:03:49.000Z
2021-07-19T17:03:49.000Z
dymos/utils/indexing.py
kaushikponnapalli/dymos
3fba91d0fc2c0e8460717b1bec80774676287739
[ "Apache-2.0" ]
null
null
null
dymos/utils/indexing.py
kaushikponnapalli/dymos
3fba91d0fc2c0e8460717b1bec80774676287739
[ "Apache-2.0" ]
null
null
null
import numpy as np def get_src_indices_by_row(row_idxs, shape, flat=True): """ Provide the src_indices when connecting a vectorized variable from an output to an input. Indices are selected by choosing the first indices to be passed, corresponding to node index in Dymos. Parameters ---------- row_idxs : array_like The rows/node indices to be connected from the source to the target. shape : tuple The shape of the variable at each node (ignores the first dimension). flat : bool If True, return the source indices in flat source indices form. Returns ------- array_like If flat, a numpy array of shape `(row_idxs,) + shape` where each element is the index of the source of that element in the source array, in C-order. """ if not flat: raise NotImplementedError('Currently get_src_indices_by_row only returns ' 'flat source indices.') num_src_rows = np.max(row_idxs) + 1 src_shape = (num_src_rows,) + shape other_idxs = [np.arange(n, dtype=int) for n in shape] ixgrid = np.ix_(row_idxs, *other_idxs) a = np.reshape(np.arange(np.prod(src_shape), dtype=int), newshape=src_shape) src_idxs = a[ixgrid] return src_idxs
34.810811
93
0.662267
b77939c6e2d24241c10370aabfa623112e5d908e
1,614
py
Python
kolibri/core/content/migrations/0014_auto_20181218_1132.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
545
2016-01-19T19:26:55.000Z
2022-03-20T00:13:04.000Z
kolibri/core/content/migrations/0014_auto_20181218_1132.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
8,329
2016-01-19T19:32:02.000Z
2022-03-31T21:23:12.000Z
kolibri/core/content/migrations/0014_auto_20181218_1132.py
MBKayro/kolibri
0a38a5fb665503cf8f848b2f65938e73bfaa5989
[ "MIT" ]
493
2016-01-19T19:26:48.000Z
2022-03-28T14:35:05.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2018-12-18 19:32 from __future__ import unicode_literals from django.db import migrations from django.db import models class Migration(migrations.Migration): dependencies = [("content", "0013_auto_20180919_1142")] operations = [ migrations.AlterField( model_name="file", name="preset", field=models.CharField( blank=True, choices=[ ("high_res_video", "High Resolution"), ("low_res_video", "Low Resolution"), ("video_thumbnail", "Thumbnail"), ("video_subtitle", "Subtitle"), ("video_dependency", "Video (dependency)"), ("audio", "Audio"), ("audio_thumbnail", "Thumbnail"), ("document", "Document"), ("epub", "ePub Document"), ("document_thumbnail", "Thumbnail"), ("exercise", "Exercise"), ("exercise_thumbnail", "Thumbnail"), ("exercise_image", "Exercise Image"), ("exercise_graphie", "Exercise Graphie"), ("channel_thumbnail", "Channel Thumbnail"), ("topic_thumbnail", "Thumbnail"), ("html5_zip", "HTML5 Zip"), ("html5_dependency", "HTML5 Dependency (Zip format)"), ("html5_thumbnail", "HTML5 Thumbnail"), ], max_length=150, ), ) ]
36.681818
74
0.483271
7bf731b74d5704e848485eac41fc8f1f6c565b37
12,044
py
Python
we-word-embeddings-huth/SemanticModel.py
bastivkl/nh2020-curriculum
245a72af3f325495448cbf6c0c6baa2499d43d94
[ "CC-BY-4.0" ]
94
2020-06-27T19:04:11.000Z
2022-03-28T00:44:44.000Z
we-word-embeddings-huth/SemanticModel.py
bastivkl/nh2020-curriculum
245a72af3f325495448cbf6c0c6baa2499d43d94
[ "CC-BY-4.0" ]
13
2020-07-23T02:11:40.000Z
2020-09-09T21:28:36.000Z
we-word-embeddings-huth/SemanticModel.py
bastivkl/nh2020-curriculum
245a72af3f325495448cbf6c0c6baa2499d43d94
[ "CC-BY-4.0" ]
50
2020-07-15T03:37:49.000Z
2022-02-27T23:07:14.000Z
import tables import pickle import numpy as np import logging logger = logging.getLogger("SemanticModel") class SemanticModel(object): """This class defines a semantic vector-space model based on HAL or LSA with some prescribed preprocessing pipeline. It contains two important variables: vocab and data. vocab is a 1D list (or array) of words. data is a 2D array (features by words) of word-feature values. """ def __init__(self, data, vocab): """Initializes a SemanticModel with the given [data] and [vocab]. """ self.data = data self.vocab = vocab def get_ndim(self): """Returns the number of dimensions in this model. """ return self.data.shape[0] ndim = property(get_ndim) def get_vindex(self): """Return {vocab: index} dictionary. """ if "_vindex" not in dir(self): self._vindex = dict([(v,i) for (i,v) in enumerate(self.vocab)]) return self._vindex vindex = property(get_vindex) def __getitem__(self, word): """Returns the vector corresponding to the given [word]. """ return self.data[:,self.vindex[word]] def load_root(self, rootfile, vocab): """Load the SVD-generated semantic vector space from [rootfile], assumed to be an HDF5 file. """ roothf = tables.open_file(rootfile) self.data = roothf.get_node("/R").read() self.vocab = vocab roothf.close() def load_ascii_root(self, rootfile, vocab): """Loads the SVD-generated semantic vector space from [rootfile], assumed to be an ASCII dense matrix output from SDVLIBC. """ vtfile = open(rootfile) nrows, ncols = map(int, vtfile.readline().split()) Vt = np.zeros((nrows,ncols)) nrows_done = 0 for row in vtfile: Vt[nrows_done,:] = map(float, row.split()) nrows_done += 1 self.data = Vt self.vocab = vocab def restrict_by_occurrence(self, min_rank=60, max_rank=60000): """Restricts the data to words that have an occurrence rank lower than [min_rank] and higher than [max_rank]. """ logger.debug("Restricting words by occurrence..") nwords = self.data.shape[1] wordranks = np.argsort(np.argsort(self.data[0,:])) goodwords = np.nonzero(np.logical_and((nwords-wordranks)>min_rank, (nwords-wordranks)<max_rank))[0] self.data = self.data[:,goodwords] self.vocab = [self.vocab[i] for i in goodwords] logger.debug("Done restricting words..") def pca_reduce(self, ndims): """Reduces the dimensionality of the vector-space using PCA. """ logger.debug("Reducing with PCA to %d dimensions"%ndims) U,S,Vh = np.linalg.svd(self.data, full_matrices=False) self.data = np.dot(Vh[:ndims].T, np.diag(S[:ndims])).T logger.debug("Done with PCA..") def pca_reduce_multi(self, ndimlist): """Reduces the dimensionality of the vector-space using PCA for many different numbers of dimensions. More efficient than running pca_reduce many times. Instead of modifying this object, this function returns a list of new SemanticModels with the specified numbers of dimensions. """ logger.debug("Reducing with PCA to fewer dimensions..") U,S,Vh = np.linalg.svd(self.data, full_matrices=False) newmodels = [] for nd in ndimlist: newmodel = SemanticModel() newmodel.vocab = list(self.vocab) newmodel.data = np.dot(Vh[:nd].T, np.diag(S[:nd])).T newmodels.append(newmodel) return newmodels def save(self, filename): """Saves this semantic model at the given filename. """ logger.debug("Saving file: %s"%filename) shf = tables.open_file(filename, mode="w", title="SemanticModel") shf.create_array("/", "data", self.data) shf.create_array("/", "vocab", self.vocab) shf.close() logger.debug("Done saving file..") @classmethod def load(cls, filename): """Loads a semantic model from the given filename. """ logger.debug("Loading file: %s"%filename) shf = tables.open_file(filename) newsm = cls(None, None) newsm.data = shf.get_node("/data").read() newsm.vocab = [s.decode('utf-8') for s in shf.get_node("/vocab").read()] shf.close() logger.debug("Done loading file..") return newsm def copy(self): """Returns a copy of this model. """ logger.debug("Copying model..") cp = SemanticModel(self.data.copy(), list(self.vocab)) logger.debug("Done copying model..") return cp def project_stims(self, stimwords): """Projects the stimuli given in [stimwords], which should be a list of lists of words, into this feature space. Returns the average feature vector across all the words in each stimulus. """ logger.debug("Projecting stimuli..") stimlen = len(stimwords) ndim = self.data.shape[0] pstim = np.zeros((stimlen, ndim)) vset = set(self.vocab) for t in range(stimlen): dropped = 0 for w in stimwords[t]: dropped = 0 if w in vset: pstim[t] += self[w] else: dropped += 1 pstim[t] /= (len(stimwords[t])-dropped) return pstim def uniformize(self): """Uniformizes each feature. """ logger.debug("Uniformizing features..") R = np.zeros_like(self.data).astype(np.uint32) for ri in range(self.data.shape[0]): R[ri] = np.argsort(np.argsort(self.data[ri])) self.data = R.astype(np.float64) logger.debug("Done uniformizing...") def gaussianize(self): """Gaussianizes each feature. """ logger.debug("Gaussianizing features..") self.data = gaussianize_mat(self.data.T).T logger.debug("Done gaussianizing..") def zscore(self, axis=0): """Z-scores either each feature (if axis is 0) or each word (if axis is 1). If axis is None nothing will be Z-scored. """ if axis is None: logger.debug("Not Z-scoring..") return logger.debug("Z-scoring on axis %d"%axis) if axis==1: self.data = zscore(self.data.T).T elif axis==0: self.data = zscore(self.data) def rectify(self): """Rectifies the features. """ self.data = np.vstack([-np.clip(self.data, -np.inf, 0), np.clip(self.data, 0, np.inf)]) def clip(self, sds): """Clips feature values more than [sds] standard deviations away from the mean to that value. Another method for dealing with outliers. """ logger.debug("Truncating features to %d SDs.."%sds) fsds = self.data.std(1) fms = self.data.mean(1) newdata = np.zeros(self.data.shape) for fi in range(self.data.shape[0]): newdata[fi] = np.clip(self.data[fi], fms[fi]-sds*fsds[fi], fms[fi]+sds*fsds[fi]) self.data = newdata logger.debug("Done truncating..") def find_words_like_word(self, word, n=10): """Finds the [n] words most like the given [word]. """ return self.find_words_like_vec(self.data[:,self.vocab.index(word)], n) def find_words_like_vec(self, vec, n=10, corr=True): """Finds the [n] words most like the given [vector]. """ nwords = len(self.vocab) if corr: corrs = np.nan_to_num([np.corrcoef(vec, self.data[:,wi])[1,0] for wi in range(nwords)]) scorrs = np.argsort(corrs) words = list(reversed([(corrs[i], self.vocab[i]) for i in scorrs[-n:]])) else: proj = np.nan_to_num(np.dot(vec, self.data)) sproj = np.argsort(proj) words = list(reversed([(proj[i], self.vocab[i]) for i in sproj[-n:]])) return words def find_words_like_vecs(self, vecs, n=10, corr=True, distance_cull=None): """Find the `n` words most like each vector in `vecs`. """ if corr: from text.npp import xcorr vproj = xcorr(vecs, self.data.T) else: vproj = np.dot(vecs, self.data) return np.vstack([self._get_best_words(vp, n, distance_cull) for vp in vproj]) def _get_best_words(self, proj, n=10, distance_cull=None): """Find the `n` words corresponding to the highest values in the vector `proj`. If `distance_cull` is an int, greedily find words with the following algorithm: 1. Initialize the possible set of words with all words. 2. Add the best possible word, w*. Remove w* from the possible set. 3. Remove the `distance_cull` closest neighbors of w* from the possible set. 4. Goto 2. """ vocarr = np.array(self.vocab) if distance_cull is None: return vocarr[np.argsort(proj)[-n:][::-1]] elif not isinstance(distance_cull, int): raise TypeError("distance_cull should be an integer value, not %s" % str(distance_cull)) poss_set = set(self.vocab) poss_set = np.arange(len(self.vocab)) best_words = [] while len(best_words) < n: # Find best word in poss_set best_poss = poss_set[proj[poss_set].argmax()] # Add word to best_words best_words.append(self.vocab[best_poss]) # Remove nearby words (by L2-norm..?) bwdists = ((self.data.T - self.data[:,best_poss])**2).sum(1) nearest_inds = np.argsort(bwdists)[:distance_cull+1] poss_set = np.setdiff1d(poss_set, nearest_inds) return np.array(best_words) def similarity(self, word1, word2): """Returns the correlation between the vectors for [word1] and [word2]. """ return np.corrcoef(self.data[:,self.vocab.index(word1)], self.data[:,self.vocab.index(word2)])[0,1] def print_best_worst(self, ii, n=10): vector = self.data[ii] sv = np.argsort(self.data[ii]) print ("Best:") print ("-------------") for ni in range(1,n+1): print ("%s: %0.08f"%(np.array(self.vocab)[sv[-ni]], vector[sv[-ni]])) print ("\nWorst:") print ("-------------") for ni in range(n): print ("%s: %0.08f"%(np.array(self.vocab)[sv[ni]], vector[sv[ni]])) print ("\n") def gaussianize(vec): """Uses a look-up table to force the values in [vec] to be gaussian.""" import scipy.stats ranks = np.argsort(np.argsort(vec)) cranks = (ranks+1).astype(float)/(ranks.max()+2) vals = scipy.stats.norm.isf(1-cranks) zvals = vals/vals.std() return zvals def gaussianize_mat(mat): """Gaussianizes each column of [mat].""" gmat = np.empty(mat.shape) for ri in range(mat.shape[1]): gmat[:,ri] = gaussianize(mat[:,ri]) return gmat def zscore(mat, return_unzvals=False): """Z-scores the rows of [mat] by subtracting off the mean and dividing by the standard deviation. If [return_unzvals] is True, a matrix will be returned that can be used to return the z-scored values to their original state. """ zmat = np.empty(mat.shape) unzvals = np.zeros((zmat.shape[0], 2)) for ri in range(mat.shape[0]): unzvals[ri,0] = np.std(mat[ri,:]) unzvals[ri,1] = np.mean(mat[ri,:]) zmat[ri,:] = (mat[ri,:]-unzvals[ri,1]) / (1e-10+unzvals[ri,0]) if return_unzvals: return zmat, unzvals return zmat
36.831804
107
0.578877
15ef45d6140a90270fa9569c605952a740c7de37
73
py
Python
virtual/lib/python3.6/site-packages/grappelli/__init__.py
silver230/Instachat
a0fce33648855c167259341adc06412c4fa3e9c5
[ "Unlicense" ]
null
null
null
virtual/lib/python3.6/site-packages/grappelli/__init__.py
silver230/Instachat
a0fce33648855c167259341adc06412c4fa3e9c5
[ "Unlicense" ]
null
null
null
virtual/lib/python3.6/site-packages/grappelli/__init__.py
silver230/Instachat
a0fce33648855c167259341adc06412c4fa3e9c5
[ "Unlicense" ]
null
null
null
VERSION = '2.12.1' default_app_config = 'grappelli.apps.GrappelliConfig'
24.333333
53
0.780822
2cdd59c1aef0d4f06004df7716ac1837eddef054
1,269
py
Python
dataset_scripts/dataset_selector_line.py
shpotes/self-driving-car
7329e6213c483a7695ab4e97cf16c93ce6d0b25f
[ "MIT" ]
1
2019-06-02T22:27:31.000Z
2019-06-02T22:27:31.000Z
dataset_scripts/dataset_selector_line.py
shpotes/self-driving-car
7329e6213c483a7695ab4e97cf16c93ce6d0b25f
[ "MIT" ]
null
null
null
dataset_scripts/dataset_selector_line.py
shpotes/self-driving-car
7329e6213c483a7695ab4e97cf16c93ce6d0b25f
[ "MIT" ]
null
null
null
import sys from os import listdir from os.path import isfile, isdir import numpy as np import cv2 video = sys.argv[1] cap = cv2.VideoCapture(video) kernel = np.ones((10,10),np.uint8) kernel_black = np.ones((10,10),np.uint8) sensitivity = 0 lower_white = np.array([0,0,0]) upper_white = np.array([180,255,120]) while(True): # Capture frame-by-frame ret, img = cap.read() height, width, channels = img.shape img2 = img#[int(height*0):int(height*0.7), int(width*0.2):int(width*0.8)] hsv = cv2.cvtColor(img2, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, lower_white, upper_white) res = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel_black) res = cv2.morphologyEx(res, cv2.MORPH_CLOSE, kernel) cv2.imshow('mask',mask) #cv2.imshow('res',res) cv2.imshow('image',img) k = cv2.waitKey(0) print(k) if k==82: print("forward") #cv2.imwrite('./sem/'+carpeta[2:-1]+ar,img) if k==81: print("left") #cv2.imwrite('./left_arrow/'+carpeta[2:-1]+ar,img) if k==83: print("right") #cv2.imwrite('./right_arrow/'+carpeta[2:-1]+ar,img) if k==32: continue; if k==113: break; cv2.destroyAllWindows() # When everything done, release the capture cap.release()
28.840909
77
0.631994
a59cc33e1be8318ebf85dde5c97df8d9674551ae
4,337
py
Python
libraries/mosek/9.3/tools/examples/python/qcqo1.py
TimDSF/SBSOS_ShapeSegmentation
e30495dcf71dc63d1d54f3b73132fcfa75d7647e
[ "MIT" ]
null
null
null
libraries/mosek/9.3/tools/examples/python/qcqo1.py
TimDSF/SBSOS_ShapeSegmentation
e30495dcf71dc63d1d54f3b73132fcfa75d7647e
[ "MIT" ]
null
null
null
libraries/mosek/9.3/tools/examples/python/qcqo1.py
TimDSF/SBSOS_ShapeSegmentation
e30495dcf71dc63d1d54f3b73132fcfa75d7647e
[ "MIT" ]
1
2022-02-24T02:51:35.000Z
2022-02-24T02:51:35.000Z
## # Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved. # # File : qcqo1.py # # Purpose : Demonstrates how to solve small linear # optimization problem using the MOSEK Python API. ## import sys import mosek # Since the actual value of Infinity is ignores, we define it solely # for symbolic purposes: inf = 0.0 # Define a stream printer to grab output from MOSEK def streamprinter(text): sys.stdout.write(text) sys.stdout.flush() def main(): # Make a MOSEK environment with mosek.Env() as env: # Attach a printer to the environment env.set_Stream(mosek.streamtype.log, streamprinter) # Create a task with env.Task(0, 0) as task: # Attach a printer to the task task.set_Stream(mosek.streamtype.log, streamprinter) # Set up and input bounds and linear coefficients bkc = [mosek.boundkey.lo] blc = [1.0] buc = [inf] bkx = [mosek.boundkey.lo, mosek.boundkey.lo, mosek.boundkey.lo] blx = [0.0, 0.0, 0.0] bux = [inf, inf, inf] c = [0.0, -1.0, 0.0] asub = [[0], [0], [0]] aval = [[1.0], [1.0], [1.0]] numvar = len(bkx) numcon = len(bkc) NUMANZ = 3 # Append 'numcon' empty constraints. # The constraints will initially have no bounds. task.appendcons(numcon) #Append 'numvar' variables. # The variables will initially be fixed at zero (x=0). task.appendvars(numvar) #Optionally add a constant term to the objective. task.putcfix(0.0) for j in range(numvar): # Set the linear term c_j in the objective. task.putcj(j, c[j]) # Set the bounds on variable j # blx[j] <= x_j <= bux[j] task.putvarbound(j, bkx[j], blx[j], bux[j]) # Input column j of A task.putacol(j, # Variable (column) index. # Row index of non-zeros in column j. asub[j], aval[j]) # Non-zero Values of column j. for i in range(numcon): task.putconbound(i, bkc[i], blc[i], buc[i]) # Set up and input quadratic objective qsubi = [0, 1, 2, 2] qsubj = [0, 1, 0, 2] qval = [2.0, 0.2, -1.0, 2.0] task.putqobj(qsubi, qsubj, qval) # The lower triangular part of the Q^0 # matrix in the first constraint is specified. # This corresponds to adding the term # - x0^2 - x1^2 - 0.1 x2^2 + 0.2 x0 x2 qsubi = [0, 1, 2, 2] qsubj = [0, 1, 2, 0] qval = [-2.0, -2.0, -0.2, 0.2] # put Q^0 in constraint with index 0. task.putqconk(0, qsubi, qsubj, qval) # Input the objective sense (minimize/maximize) task.putobjsense(mosek.objsense.minimize) # Optimize the task task.optimize() # Print a summary containing information # about the solution for debugging purposes task.solutionsummary(mosek.streamtype.msg) prosta = task.getprosta(mosek.soltype.itr) solsta = task.getsolsta(mosek.soltype.itr) # Output a solution xx = [0.] * numvar task.getxx(mosek.soltype.itr, xx) if solsta == mosek.solsta.optimal: print("Optimal solution: %s" % xx) elif solsta == mosek.solsta.dual_infeas_cer: print("Primal or dual infeasibility.\n") elif solsta == mosek.solsta.prim_infeas_cer: print("Primal or dual infeasibility.\n") elif mosek.solsta.unknown: print("Unknown solution status") else: print("Other solution status") # call the main function try: main() except mosek.MosekException as e: print("ERROR: %s" % str(e.errno)) print("\t%s" % e.msg) sys.exit(1) except: import traceback traceback.print_exc() sys.exit(1)
31.427536
79
0.5181
a60efbeeacac9571a49618bc4c07a0676fd8261b
345
py
Python
stubs/micropython-esp8266-1_11/websocket_helper.py
RonaldHiemstra/micropython-stubs
d97f879b01f6687baaebef1c7e26a80909c3cff3
[ "MIT" ]
38
2020-10-18T21:59:44.000Z
2022-03-17T03:03:28.000Z
stubs/micropython-esp8266-1_11/websocket_helper.py
RonaldHiemstra/micropython-stubs
d97f879b01f6687baaebef1c7e26a80909c3cff3
[ "MIT" ]
176
2020-10-18T14:31:03.000Z
2022-03-30T23:22:39.000Z
stubs/micropython-esp8266-1_11/websocket_helper.py
RonaldHiemstra/micropython-stubs
d97f879b01f6687baaebef1c7e26a80909c3cff3
[ "MIT" ]
6
2020-12-28T21:11:12.000Z
2022-02-06T04:07:50.000Z
""" Module: 'websocket_helper' on esp8266 v1.11 """ # MCU: (sysname='esp8266', nodename='esp8266', release='2.2.0-dev(9422289)', version='v1.11-8-g48dcbbe60 on 2019-05-29', machine='ESP module with ESP8266') # Stubber: 1.1.0 DEBUG = 0 binascii = None def client_handshake(): pass hashlib = None def server_handshake(): pass sys = None
21.5625
155
0.689855
b2b8ee14a17a822ebb1f3dcae4b4a77efd7d590b
12,637
py
Python
discord/ui/select.py
brotherelric/deezcord.py
f7419bf2c67c2006702cccc4850cd9332bce00c6
[ "MIT" ]
null
null
null
discord/ui/select.py
brotherelric/deezcord.py
f7419bf2c67c2006702cccc4850cd9332bce00c6
[ "MIT" ]
null
null
null
discord/ui/select.py
brotherelric/deezcord.py
f7419bf2c67c2006702cccc4850cd9332bce00c6
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Copyright (c) 2021-present 404kuso Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import List, Optional, TYPE_CHECKING, Tuple, TypeVar, Type, Callable, Union import inspect import os from .item import Item, ItemCallbackType from ..enums import ComponentType from ..partial_emoji import PartialEmoji from ..emoji import Emoji from ..interactions import Interaction from ..utils import MISSING from ..components import ( SelectOption, SelectMenu, ) __all__ = ( 'Select', 'select', ) if TYPE_CHECKING: from .view import View from ..types.components import SelectMenu as SelectMenuPayload from ..types.interactions import ( ComponentInteractionData, ) S = TypeVar('S', bound='Select') V = TypeVar('V', bound='View', covariant=True) class Select(Item[V]): """Represents a UI select menu. This is usually represented as a drop down menu. In order to get the selected items that the user has chosen, use :attr:`Select.values`. .. versionadded:: 2.0 Parameters ------------ custom_id: :class:`str` The ID of the select menu that gets received during an interaction. If not given then one is generated for you. placeholder: Optional[:class:`str`] The placeholder text that is shown if nothing is selected, if any. min_values: :class:`int` The minimum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. max_values: :class:`int` The maximum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. options: List[:class:`discord.SelectOption`] A list of options that can be selected in this menu. disabled: :class:`bool` Whether the select is disabled or not. row: Optional[:class:`int`] The relative row this select menu belongs to. A Discord component can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). """ __item_repr_attributes__: Tuple[str, ...] = ( 'placeholder', 'min_values', 'max_values', 'options', 'disabled', ) def __init__( self, *, custom_id: str = MISSING, placeholder: Optional[str] = None, min_values: int = 1, max_values: int = 1, options: List[SelectOption] = MISSING, disabled: bool = False, row: Optional[int] = None, ) -> None: super().__init__() self._selected_values: List[str] = [] self._provided_custom_id = custom_id is not MISSING custom_id = os.urandom(16).hex() if custom_id is MISSING else custom_id options = [] if options is MISSING else options self._underlying = SelectMenu._raw_construct( custom_id=custom_id, type=ComponentType.select, placeholder=placeholder, min_values=min_values, max_values=max_values, options=options, disabled=disabled, ) self.row = row @property def custom_id(self) -> str: """:class:`str`: The ID of the select menu that gets received during an interaction.""" return self._underlying.custom_id @custom_id.setter def custom_id(self, value: str): if not isinstance(value, str): raise TypeError('custom_id must be None or str') self._underlying.custom_id = value @property def placeholder(self) -> Optional[str]: """Optional[:class:`str`]: The placeholder text that is shown if nothing is selected, if any.""" return self._underlying.placeholder @placeholder.setter def placeholder(self, value: Optional[str]): if value is not None and not isinstance(value, str): raise TypeError('placeholder must be None or str') self._underlying.placeholder = value @property def min_values(self) -> int: """:class:`int`: The minimum number of items that must be chosen for this select menu.""" return self._underlying.min_values @min_values.setter def min_values(self, value: int): self._underlying.min_values = int(value) @property def max_values(self) -> int: """:class:`int`: The maximum number of items that must be chosen for this select menu.""" return self._underlying.max_values @max_values.setter def max_values(self, value: int): self._underlying.max_values = int(value) @property def options(self) -> List[SelectOption]: """List[:class:`discord.SelectOption`]: A list of options that can be selected in this menu.""" return self._underlying.options @options.setter def options(self, value: List[SelectOption]): if not isinstance(value, list): raise TypeError('options must be a list of SelectOption') if not all(isinstance(obj, SelectOption) for obj in value): raise TypeError('all list items must subclass SelectOption') self._underlying.options = value def add_option( self, *, label: str, value: str = MISSING, description: Optional[str] = None, emoji: Optional[Union[str, Emoji, PartialEmoji]] = None, default: bool = False, ): """Adds an option to the select menu. To append a pre-existing :class:`discord.SelectOption` use the :meth:`append_option` method instead. Parameters ----------- label: :class:`str` The label of the option. This is displayed to users. Can only be up to 100 characters. value: :class:`str` The value of the option. This is not displayed to users. If not given, defaults to the label. Can only be up to 100 characters. description: Optional[:class:`str`] An additional description of the option, if any. Can only be up to 100 characters. emoji: Optional[Union[:class:`str`, :class:`.Emoji`, :class:`.PartialEmoji`]] The emoji of the option, if available. This can either be a string representing the custom or unicode emoji or an instance of :class:`.PartialEmoji` or :class:`.Emoji`. default: :class:`bool` Whether this option is selected by default. Raises ------- ValueError The number of options exceeds 25. """ option = SelectOption( label=label, value=value, description=description, emoji=emoji, default=default, ) self.append_option(option) def append_option(self, option: SelectOption): """Appends an option to the select menu. Parameters ----------- option: :class:`discord.SelectOption` The option to append to the select menu. Raises ------- ValueError The number of options exceeds 25. """ if len(self._underlying.options) > 25: raise ValueError('maximum number of options already provided') self._underlying.options.append(option) @property def disabled(self) -> bool: """:class:`bool`: Whether the select is disabled or not.""" return self._underlying.disabled @disabled.setter def disabled(self, value: bool): self._underlying.disabled = bool(value) @property def values(self) -> List[str]: """List[:class:`str`]: A list of values that have been selected by the user.""" return self._selected_values @property def width(self) -> int: return 5 def to_component_dict(self) -> SelectMenuPayload: return self._underlying.to_dict() def refresh_component(self, component: SelectMenu) -> None: self._underlying = component def refresh_state(self, interaction: Interaction) -> None: data: ComponentInteractionData = interaction.data # type: ignore self._selected_values = data.get('values', []) @classmethod def from_component(cls: Type[S], component: SelectMenu) -> S: return cls( custom_id=component.custom_id, placeholder=component.placeholder, min_values=component.min_values, max_values=component.max_values, options=component.options, disabled=component.disabled, row=None, ) @property def type(self) -> ComponentType: return self._underlying.type def is_dispatchable(self) -> bool: return True def select( *, placeholder: Optional[str] = None, custom_id: str = MISSING, min_values: int = 1, max_values: int = 1, options: List[SelectOption] = MISSING, disabled: bool = False, row: Optional[int] = None, ) -> Callable[[ItemCallbackType], ItemCallbackType]: """A decorator that attaches a select menu to a component. The function being decorated should have three parameters, ``self`` representing the :class:`discord.ui.View`, the :class:`discord.ui.Select` being pressed and the :class:`discord.Interaction` you receive. In order to get the selected items that the user has chosen within the callback use :attr:`Select.values`. Parameters ------------ placeholder: Optional[:class:`str`] The placeholder text that is shown if nothing is selected, if any. custom_id: :class:`str` The ID of the select menu that gets received during an interaction. It is recommended not to set this parameter to prevent conflicts. row: Optional[:class:`int`] The relative row this select menu belongs to. A Discord component can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). min_values: :class:`int` The minimum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. max_values: :class:`int` The maximum number of items that must be chosen for this select menu. Defaults to 1 and must be between 1 and 25. options: List[:class:`discord.SelectOption`] A list of options that can be selected in this menu. disabled: :class:`bool` Whether the select is disabled or not. Defaults to ``False``. """ def decorator(func: ItemCallbackType) -> ItemCallbackType: if not inspect.iscoroutinefunction(func): raise TypeError('select function must be a coroutine function') func.__discord_ui_model_type__ = Select func.__discord_ui_model_kwargs__ = { 'placeholder': placeholder, 'custom_id': custom_id, 'row': row, 'min_values': min_values, 'max_values': max_values, 'options': options, 'disabled': disabled, } return func return decorator
35.200557
104
0.64968
d313ccef5a2797bd5e255a4ccfc3c31a6defe85b
4,355
py
Python
.circleci/regenerate.py
fabibo3/pytorch3d
36b7656753ae759aed2eb7ffb432b6eca4d42fe2
[ "BSD-3-Clause" ]
null
null
null
.circleci/regenerate.py
fabibo3/pytorch3d
36b7656753ae759aed2eb7ffb432b6eca4d42fe2
[ "BSD-3-Clause" ]
null
null
null
.circleci/regenerate.py
fabibo3/pytorch3d
36b7656753ae759aed2eb7ffb432b6eca4d42fe2
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ This script is adapted from the torchvision one. """ import os.path import jinja2 import yaml # The CUDA versions which have pytorch conda packages available for linux for each # version of pytorch. # Pytorch 1.4 also supports cuda 10.0 but we no longer build for cuda 10.0 at all. CONDA_CUDA_VERSIONS = { "1.4": ["cu92", "cu101"], "1.5.0": ["cu92", "cu101", "cu102"], "1.5.1": ["cu92", "cu101", "cu102"], "1.6.0": ["cu92", "cu101", "cu102"], "1.7.0": ["cu101", "cu102", "cu110"], "1.7.1": ["cu101", "cu102", "cu110"], "1.8.0": ["cu101", "cu102", "cu111"], "1.8.1": ["cu101", "cu102", "cu111"], "1.9.0": ["cu102", "cu111"], } def pytorch_versions_for_python(python_version): if python_version in ["3.6", "3.7", "3.8"]: return list(CONDA_CUDA_VERSIONS) pytorch_without_py39 = ["1.4", "1.5.0", "1.5.1", "1.6.0", "1.7.0"] return [i for i in CONDA_CUDA_VERSIONS if i not in pytorch_without_py39] def workflows(prefix="", filter_branch=None, upload=False, indentation=6): w = [] for btype in ["conda"]: for python_version in ["3.6", "3.7", "3.8", "3.9"]: for pytorch_version in pytorch_versions_for_python(python_version): for cu_version in CONDA_CUDA_VERSIONS[pytorch_version]: w += workflow_pair( btype=btype, python_version=python_version, pytorch_version=pytorch_version, cu_version=cu_version, prefix=prefix, upload=upload, filter_branch=filter_branch, ) return indent(indentation, w) def workflow_pair( *, btype, python_version, pytorch_version, cu_version, prefix="", upload=False, filter_branch, ): w = [] py = python_version.replace(".", "") pyt = pytorch_version.replace(".", "") base_workflow_name = f"{prefix}linux_{btype}_py{py}_{cu_version}_pyt{pyt}" w.append( generate_base_workflow( base_workflow_name=base_workflow_name, python_version=python_version, pytorch_version=pytorch_version, cu_version=cu_version, btype=btype, filter_branch=filter_branch, ) ) if upload: w.append( generate_upload_workflow( base_workflow_name=base_workflow_name, btype=btype, cu_version=cu_version, filter_branch=filter_branch, ) ) return w def generate_base_workflow( *, base_workflow_name, python_version, cu_version, pytorch_version, btype, filter_branch=None, ): d = { "name": base_workflow_name, "python_version": python_version, "cu_version": cu_version, "pytorch_version": pytorch_version, "context": "DOCKERHUB_TOKEN", } if filter_branch is not None: d["filters"] = {"branches": {"only": filter_branch}} return {f"binary_linux_{btype}": d} def generate_upload_workflow(*, base_workflow_name, btype, cu_version, filter_branch): d = { "name": f"{base_workflow_name}_upload", "context": "org-member", "requires": [base_workflow_name], } if btype == "wheel": d["subfolder"] = cu_version + "/" if filter_branch is not None: d["filters"] = {"branches": {"only": filter_branch}} return {f"binary_{btype}_upload": d} def indent(indentation, data_list): if len(data_list) == 0: return "" return ("\n" + " " * indentation).join( yaml.dump(data_list, default_flow_style=False).splitlines() ) if __name__ == "__main__": d = os.path.dirname(__file__) env = jinja2.Environment( loader=jinja2.FileSystemLoader(d), lstrip_blocks=True, autoescape=False, keep_trailing_newline=True, ) with open(os.path.join(d, "config.yml"), "w") as f: f.write(env.get_template("config.in.yml").render(workflows=workflows))
27.389937
86
0.591963