hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
8142469152248a85d9c74dde7399667a9998d711
15,301
py
Python
zerver/openapi/markdown_extension.py
bhargavgajera10/zulip
165decee849c5437742094776ce43ccfdcf05764
[ "Apache-2.0" ]
1
2020-10-02T07:39:04.000Z
2020-10-02T07:39:04.000Z
zerver/openapi/markdown_extension.py
bhargavgajera10/zulip
165decee849c5437742094776ce43ccfdcf05764
[ "Apache-2.0" ]
null
null
null
zerver/openapi/markdown_extension.py
bhargavgajera10/zulip
165decee849c5437742094776ce43ccfdcf05764
[ "Apache-2.0" ]
null
null
null
import re import json import inspect from django.conf import settings from markdown.extensions import Extension from markdown.preprocessors import Preprocessor from typing import Any, Dict, Optional, List, Tuple, Pattern import markdown import zerver.openapi.python_examples from zerver.openapi.openapi import get_openapi_fixture, openapi_spec, get_openapi_description MACRO_REGEXP = re.compile( r'\{generate_code_example(\(\s*(.+?)\s*\))*\|\s*(.+?)\s*\|\s*(.+?)\s*(\(\s*(.+)\s*\))?\}') PYTHON_EXAMPLE_REGEX = re.compile(r'\# \{code_example\|\s*(.+?)\s*\}') MACRO_REGEXP_DESC = re.compile(r'\{generate_api_description(\(\s*(.+?)\s*\))}') PYTHON_CLIENT_CONFIG = """ #!/usr/bin/env python3 import zulip # Pass the path to your zuliprc file here. client = zulip.Client(config_file="~/zuliprc") """ PYTHON_CLIENT_ADMIN_CONFIG = """ #!/usr/bin/env python import zulip # The user for this zuliprc file must be an organization administrator client = zulip.Client(config_file="~/zuliprc-admin") """ DEFAULT_AUTH_EMAIL = "BOT_EMAIL_ADDRESS" DEFAULT_AUTH_API_KEY = "BOT_API_KEY" DEFAULT_EXAMPLE = { "integer": 1, "string": "demo", "boolean": False, } def parse_language_and_options(input_str: Optional[str]) -> Tuple[str, Dict[str, Any]]: if not input_str: return ("", {}) language_and_options = re.match(r"(?P<language>\w+)(,\s*(?P<options>[\"\'\w\d\[\],= ]+))?", input_str) assert(language_and_options is not None) kwargs_pattern = re.compile(r"(?P<key>\w+)\s*=\s*(?P<value>[\'\"\w\d]+|\[[\'\",\w\d ]+\])") language = language_and_options.group("language") assert(language is not None) if language_and_options.group("options"): _options = kwargs_pattern.finditer(language_and_options.group("options")) options = {} for m in _options: options[m.group("key")] = json.loads(m.group("value").replace("'", '"')) return (language, options) return (language, {}) def extract_code_example(source: List[str], snippet: List[str], example_regex: Pattern[str]) -> List[str]: start = -1 end = -1 for line in source: match = example_regex.search(line) if match: if match.group(1) == 'start': start = source.index(line) elif match.group(1) == 'end': end = source.index(line) break if (start == -1 and end == -1): return snippet snippet.extend(source[start + 1: end]) source = source[end + 1:] return extract_code_example(source, snippet, example_regex) def render_python_code_example(function: str, admin_config: Optional[bool]=False, **kwargs: Any) -> List[str]: method = zerver.openapi.python_examples.TEST_FUNCTIONS[function] function_source_lines = inspect.getsourcelines(method)[0] if admin_config: config = PYTHON_CLIENT_ADMIN_CONFIG.splitlines() else: config = PYTHON_CLIENT_CONFIG.splitlines() snippet = extract_code_example(function_source_lines, [], PYTHON_EXAMPLE_REGEX) code_example = [] code_example.append('```python') code_example.extend(config) for line in snippet: # Remove one level of indentation and strip newlines code_example.append(line[4:].rstrip()) code_example.append('print(result)') code_example.append('\n') code_example.append('```') return code_example def curl_method_arguments(endpoint: str, method: str, api_url: str) -> List[str]: # We also include the -sS verbosity arguments here. method = method.upper() url = "{}/v1{}".format(api_url, endpoint) valid_methods = ["GET", "POST", "DELETE", "PUT", "PATCH", "OPTIONS"] if method == "GET": # Then we need to make sure that each -d option translates to becoming # a GET parameter (in the URL) and not a POST parameter (in the body). # TODO: remove the -X part by updating the linting rule. It's redundant. return ["-sSX", "GET", "-G", url] elif method in valid_methods: return ["-sSX", method, url] else: msg = "The request method {} is not one of {}".format(method, valid_methods) raise ValueError(msg) def get_openapi_param_example_value_as_string(endpoint: str, method: str, param: Dict[str, Any], curl_argument: bool=False) -> str: if "type" in param["schema"]: param_type = param["schema"]["type"] else: # Hack: Ideally, we'd extract a common function for handling # oneOf values in types and do something with the resulting # union type. But for this logic's purpose, it's good enough # to just check the first parameter. param_type = param["schema"]["oneOf"][0]["type"] param_name = param["name"] if param_type in ["object", "array"]: example_value = param.get("example", None) if not example_value: msg = """All array and object type request parameters must have concrete examples. The openAPI documentation for {}/{} is missing an example value for the {} parameter. Without this we cannot automatically generate a cURL example.""".format(endpoint, method, param_name) raise ValueError(msg) ordered_ex_val_str = json.dumps(example_value, sort_keys=True) if curl_argument: return " --data-urlencode {}='{}'".format(param_name, ordered_ex_val_str) return ordered_ex_val_str # nocoverage else: example_value = param.get("example", DEFAULT_EXAMPLE[param_type]) if isinstance(example_value, bool): example_value = str(example_value).lower() if param["schema"].get("format", "") == "json": example_value = json.dumps(example_value) if curl_argument: return " -d '{}={}'".format(param_name, example_value) return example_value def generate_curl_example(endpoint: str, method: str, api_url: str, auth_email: str=DEFAULT_AUTH_EMAIL, auth_api_key: str=DEFAULT_AUTH_API_KEY, exclude: Optional[List[str]]=None, include: Optional[List[str]]=None) -> List[str]: if exclude is not None and include is not None: raise AssertionError("exclude and include cannot be set at the same time.") lines = ["```curl"] operation = endpoint + ":" + method.lower() operation_entry = openapi_spec.spec()['paths'][endpoint][method.lower()] global_security = openapi_spec.spec()['security'] operation_params = operation_entry.get("parameters", []) operation_request_body = operation_entry.get("requestBody", None) operation_security = operation_entry.get("security", None) if settings.RUNNING_OPENAPI_CURL_TEST: # nocoverage from zerver.openapi.curl_param_value_generators import patch_openapi_example_values operation_params, operation_request_body = patch_openapi_example_values(operation, operation_params, operation_request_body) format_dict = {} for param in operation_params: if param["in"] != "path": continue example_value = get_openapi_param_example_value_as_string(endpoint, method, param) format_dict[param["name"]] = example_value example_endpoint = endpoint.format_map(format_dict) curl_first_line_parts = ["curl"] + curl_method_arguments(example_endpoint, method, api_url) lines.append(" ".join(curl_first_line_parts)) insecure_operations = ['/dev_fetch_api_key:post'] if operation_security is None: if global_security == [{'basicAuth': []}]: authentication_required = True else: raise AssertionError("Unhandled global securityScheme." + " Please update the code to handle this scheme.") elif operation_security == []: if operation in insecure_operations: authentication_required = False else: raise AssertionError("Unknown operation without a securityScheme. " + "Please update insecure_operations.") else: raise AssertionError("Unhandled securityScheme. Please update the code to handle this scheme.") if authentication_required: lines.append(" -u %s:%s" % (auth_email, auth_api_key)) for param in operation_params: if param["in"] == "path": continue param_name = param["name"] if include is not None and param_name not in include: continue if exclude is not None and param_name in exclude: continue example_value = get_openapi_param_example_value_as_string(endpoint, method, param, curl_argument=True) lines.append(example_value) if "requestBody" in operation_entry: properties = operation_entry["requestBody"]["content"]["multipart/form-data"]["schema"]["properties"] for key, property in properties.items(): lines.append(' -F "{}=@{}"'.format(key, property["example"])) for i in range(1, len(lines)-1): lines[i] = lines[i] + " \\" lines.append("```") return lines def render_curl_example(function: str, api_url: str, exclude: Optional[List[str]]=None, include: Optional[List[str]]=None) -> List[str]: """ A simple wrapper around generate_curl_example. """ parts = function.split(":") endpoint = parts[0] method = parts[1] kwargs: Dict[str, Any] = dict() if len(parts) > 2: kwargs["auth_email"] = parts[2] if len(parts) > 3: kwargs["auth_api_key"] = parts[3] kwargs["api_url"] = api_url kwargs["exclude"] = exclude kwargs["include"] = include return generate_curl_example(endpoint, method, **kwargs) SUPPORTED_LANGUAGES: Dict[str, Any] = { 'python': { 'client_config': PYTHON_CLIENT_CONFIG, 'admin_config': PYTHON_CLIENT_ADMIN_CONFIG, 'render': render_python_code_example, }, 'curl': { 'render': render_curl_example } } class APIMarkdownExtension(Extension): def __init__(self, api_url: Optional[str]) -> None: self.config = { 'api_url': [ api_url, 'API URL to use when rendering curl examples' ] } def extendMarkdown(self, md: markdown.Markdown, md_globals: Dict[str, Any]) -> None: md.preprocessors.add( 'generate_code_example', APICodeExamplesPreprocessor(md, self.getConfigs()), '_begin' ) md.preprocessors.add( 'generate_api_description', APIDescriptionPreprocessor(md, self.getConfigs()), '_begin' ) class APICodeExamplesPreprocessor(Preprocessor): def __init__(self, md: markdown.Markdown, config: Dict[str, Any]) -> None: super().__init__(md) self.api_url = config['api_url'] def run(self, lines: List[str]) -> List[str]: done = False while not done: for line in lines: loc = lines.index(line) match = MACRO_REGEXP.search(line) if match: language, options = parse_language_and_options(match.group(2)) function = match.group(3) key = match.group(4) argument = match.group(6) if self.api_url is None: raise AssertionError("Cannot render curl API examples without API URL set.") options['api_url'] = self.api_url if key == 'fixture': if argument: text = self.render_fixture(function, name=argument) elif key == 'example': if argument == 'admin_config=True': text = SUPPORTED_LANGUAGES[language]['render'](function, admin_config=True) else: text = SUPPORTED_LANGUAGES[language]['render'](function, **options) # The line that contains the directive to include the macro # may be preceded or followed by text or tags, in that case # we need to make sure that any preceding or following text # stays the same. line_split = MACRO_REGEXP.split(line, maxsplit=0) preceding = line_split[0] following = line_split[-1] text = [preceding] + text + [following] lines = lines[:loc] + text + lines[loc+1:] break else: done = True return lines def render_fixture(self, function: str, name: Optional[str]=None) -> List[str]: fixture = [] path, method = function.rsplit(':', 1) fixture_dict = get_openapi_fixture(path, method, name) fixture_json = json.dumps(fixture_dict, indent=4, sort_keys=True, separators=(',', ': ')) fixture.append('``` json') fixture.extend(fixture_json.splitlines()) fixture.append('```') return fixture class APIDescriptionPreprocessor(Preprocessor): def __init__(self, md: markdown.Markdown, config: Dict[str, Any]) -> None: super().__init__(md) self.api_url = config['api_url'] def run(self, lines: List[str]) -> List[str]: done = False while not done: for line in lines: loc = lines.index(line) match = MACRO_REGEXP_DESC.search(line) if match: function = match.group(2) text = self.render_description(function) # The line that contains the directive to include the macro # may be preceded or followed by text or tags, in that case # we need to make sure that any preceding or following text # stays the same. line_split = MACRO_REGEXP_DESC.split(line, maxsplit=0) preceding = line_split[0] following = line_split[-1] text = [preceding] + text + [following] lines = lines[:loc] + text + lines[loc+1:] break else: done = True return lines def render_description(self, function: str) -> List[str]: description: List[str] = [] path, method = function.rsplit(':', 1) description_dict = get_openapi_description(path, method) description_dict = description_dict.replace('{{api_url}}', self.api_url) description.extend(description_dict.splitlines()) return description def makeExtension(*args: Any, **kwargs: str) -> APIMarkdownExtension: return APIMarkdownExtension(*args, **kwargs)
39.846354
109
0.595974
711806672e45024b8ec0958f9ddd554fa1193b0f
2,451
py
Python
vega/metrics/pytorch/r2score.py
jie311/vega
1bba6100ead802697e691403b951e6652a99ccae
[ "MIT" ]
724
2020-06-22T12:05:30.000Z
2022-03-31T07:10:54.000Z
vega/metrics/pytorch/r2score.py
jie311/vega
1bba6100ead802697e691403b951e6652a99ccae
[ "MIT" ]
147
2020-06-30T13:34:46.000Z
2022-03-29T11:30:17.000Z
vega/metrics/pytorch/r2score.py
jie311/vega
1bba6100ead802697e691403b951e6652a99ccae
[ "MIT" ]
160
2020-06-29T18:27:58.000Z
2022-03-23T08:42:21.000Z
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Metric of Regression task.""" import numpy as np from scipy import stats import torch from torch.nn import functional as F from vega.metrics.pytorch.metrics import MetricBase from vega.common import ClassFactory, ClassType @ClassFactory.register(ClassType.METRIC, alias='r2score') class R2Score(MetricBase): """Calculate R2 Score between output and target.""" __metric_name__ = 'r2score' def __init__(self): """Init R2 Score metric.""" self.ess = 0 self.tss = 0 self.sum = 0 self.num = 0 self.pfm = 0 self.targets = None self.outputs = None def __call__(self, output, target, *args, **kwargs): """Forward and calculate r2 score.""" output, target = torch.squeeze(output), torch.squeeze(target) temp_mean = torch.sum(target) / target.size(0) temp_ess = F.mse_loss(target, output, reduction='sum').cpu().item() temp_tss = F.mse_loss(target, temp_mean.repeat(target.size(0)), reduction='sum').cpu().item() temp_r2_score = 1 - temp_ess / temp_tss self.sum += torch.sum(target) self.num += target.size(0) mean = self.sum / self.num self.ess += temp_ess if self.targets is not None: self.targets = torch.cat((self.targets, target), dim=0) else: self.targets = target self.tss = F.mse_loss(self.targets, mean.repeat(self.num), reduction='sum').cpu().item() self.pfm = 1 - self.ess / self.tss return temp_r2_score @property def objective(self): """Define reward mode, default is max.""" return 'MAX' def reset(self): """Reset states for new evaluation after each epoch.""" self.ess = 0 self.tss = 0 self.sum = 0 self.num = 0 self.pfm = 0 self.targets = None self.outputs = None def summary(self): """Summary all cached records, here is the last pfm record.""" return self.pfm
33.575342
101
0.631987
8ff1ea505080691bf556ef93bdd8302cde815e94
270
py
Python
minecraft_learns/__init__.py
Nathan-Nesbitt/Minecraft_Learns
089dd51c9514fa94b24630a034c257306722f64b
[ "MIT" ]
null
null
null
minecraft_learns/__init__.py
Nathan-Nesbitt/Minecraft_Learns
089dd51c9514fa94b24630a034c257306722f64b
[ "MIT" ]
1
2021-04-22T01:02:50.000Z
2021-04-22T01:02:50.000Z
minecraft_learns/__init__.py
Nathan-Nesbitt/Minecraft_Learns
089dd51c9514fa94b24630a034c257306722f64b
[ "MIT" ]
null
null
null
""" Init file for the PIP package config. Written By: Nathan Nesbitt Date: 2021-01-15 """ from minecraft_learns.common import * from minecraft_learns.data import Data from minecraft_learns.errors import * from minecraft_learns.graphing import *
22.5
42
0.725926
a3e475c559318500b7dc6651e374a8bbc09396d9
1,442
py
Python
roster_own.py
nocibambi/ds-practice
9b6c4414f4700fb0bd017101b5a61c9d824a9b98
[ "MIT" ]
null
null
null
roster_own.py
nocibambi/ds-practice
9b6c4414f4700fb0bd017101b5a61c9d824a9b98
[ "MIT" ]
null
null
null
roster_own.py
nocibambi/ds-practice
9b6c4414f4700fb0bd017101b5a61c9d824a9b98
[ "MIT" ]
null
null
null
import json import sqlite3 conn = sqlite3.connect('rosterdb.sqlite') cur = conn.cursor() cur.executescript(''' DROP TABLE IF EXISTS User; DROP TABLE IF EXISTS Member; DROP TABLE IF EXISTS Course; CREATE TABLE User ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, name TEXT UNIQUE ); CREATE TABLE Course ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, title TEXT UNIQUE ); CREATE TABLE Member ( user_id INTEGER, course_id INTEGER, role INTEGER, -- This is a composite primary key -- There can be multiple instances of the same foreign keys -- but their combinations need to be unique PRIMARY KEY (user_id, course_id) ) ''') fname = input("File to load:") if not fname: fname = ("roster_data.json") json_text = open(fname).read() json_data = json.loads(json_text) for item in json_data: user_name = item[0] course_code = item[1] role = item[2] cur.execute('INSERT OR IGNORE INTO User (name) VALUES (?)', (user_name,)) cur.execute('SELECT id FROM User WHERE name = ?', (user_name,)) user_id = cur.fetchone()[0] cur.execute('INSERT OR IGNORE INTO Course (title) VALUES (?)', (course_code,)) cur.execute('SELECT id FROM Course WHERE title = ?', (course_code,)) course_id = cur.fetchone()[0] cur.execute('INSERT OR REPLACE INTO Member (user_id, course_id, role) VALUES (?, ?, ?)', (user_id, course_id, role)) conn.commit() conn.close()
25.298246
120
0.685853
e85d1c4a596eddac093a85c83d259b88dc47884b
2,215
py
Python
nets/TSP_edge_classification/gcn_net.py
SauravMaheshkar/benchmarking-gnns
4665316322527634c23307556b63291c69dac4b0
[ "MIT" ]
null
null
null
nets/TSP_edge_classification/gcn_net.py
SauravMaheshkar/benchmarking-gnns
4665316322527634c23307556b63291c69dac4b0
[ "MIT" ]
6
2022-01-06T21:27:06.000Z
2022-01-19T06:28:56.000Z
nets/TSP_edge_classification/gcn_net.py
SauravMaheshkar/benchmarking-gnns
4665316322527634c23307556b63291c69dac4b0
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F """ GCN: Graph Convolutional Networks Thomas N. Kipf, Max Welling, Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017) http://arxiv.org/abs/1609.02907 """ from layers.gcn_layer import GCNLayer from layers.mlp_readout_layer import MLPReadout class GCNNet(nn.Module): def __init__(self, net_params): super().__init__() in_dim = net_params["in_dim"] hidden_dim = net_params["hidden_dim"] out_dim = net_params["out_dim"] n_classes = net_params["n_classes"] in_feat_dropout = net_params["in_feat_dropout"] dropout = net_params["dropout"] n_layers = net_params["L"] self.readout = net_params["readout"] self.batch_norm = net_params["batch_norm"] self.residual = net_params["residual"] self.n_classes = n_classes self.device = net_params["device"] self.embedding_h = nn.Linear(in_dim, hidden_dim) self.in_feat_dropout = nn.Dropout(in_feat_dropout) self.layers = nn.ModuleList( [ GCNLayer( hidden_dim, hidden_dim, F.relu, dropout, self.batch_norm, self.residual, ) for _ in range(n_layers - 1) ] ) self.layers.append( GCNLayer( hidden_dim, out_dim, F.relu, dropout, self.batch_norm, self.residual ) ) self.MLP_layer = MLPReadout(2 * out_dim, n_classes) def forward(self, g, h, e): h = self.embedding_h(h.float()) h = self.in_feat_dropout(h) for conv in self.layers: h = conv(g, h) g.ndata["h"] = h def _edge_feat(edges): e = torch.cat([edges.src["h"], edges.dst["h"]], dim=1) e = self.MLP_layer(e) return {"e": e} g.apply_edges(_edge_feat) return g.edata["e"] def loss(self, pred, label): criterion = nn.CrossEntropyLoss(weight=None) loss = criterion(pred, label) return loss
29.932432
109
0.565688
c29ed961b8e78f2e37551abe2ae2d0b836436ea7
1,102
py
Python
game/game/middleware.py
ClaytonTurner/pylti1.3-django-example
2ee32aa531f526144a523f92fcf88442396060fe
[ "MIT" ]
10
2020-04-11T13:43:42.000Z
2021-12-30T18:46:31.000Z
game/game/middleware.py
ClaytonTurner/pylti1.3-django-example
2ee32aa531f526144a523f92fcf88442396060fe
[ "MIT" ]
12
2020-05-06T01:49:32.000Z
2022-01-31T17:20:08.000Z
game/game/middleware.py
ClaytonTurner/pylti1.3-django-example
2ee32aa531f526144a523f92fcf88442396060fe
[ "MIT" ]
13
2020-04-01T15:15:35.000Z
2022-03-29T02:48:52.000Z
import django from django.conf import settings from django.utils.deprecation import MiddlewareMixin class SameSiteMiddleware(MiddlewareMixin): def process_response(self, request, response): django_support_samesite_none = django.VERSION[0] > 3 \ or (django.VERSION[0] == 3 and django.VERSION[1] >= 1) if request.is_secure() and not django_support_samesite_none: session_cookie_samesite = getattr(settings, 'SESSION_COOKIE_SAMESITE', None) csrf_cookie_samesite = getattr(settings, 'CSRF_COOKIE_SAMESITE', None) session_cookie_name = getattr(settings, 'SESSION_COOKIE_NAME', None) csrf_cookie_name = getattr(settings, 'CSRF_COOKIE_NAME', None) if session_cookie_samesite is None and session_cookie_name in response.cookies: response.cookies[session_cookie_name]['samesite'] = 'None' if csrf_cookie_samesite is None and csrf_cookie_name in response.cookies: response.cookies[csrf_cookie_name]['samesite'] = 'None' return response
47.913043
93
0.69147
668202189074a94e7243f7bc079586a21f4c2753
87
py
Python
plugins/digitalocean/komand_digitalocean/actions/retrieve_existing_floating_ip/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
46
2019-06-05T20:47:58.000Z
2022-03-29T10:18:01.000Z
plugins/digitalocean/komand_digitalocean/actions/retrieve_existing_floating_ip/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
386
2019-06-07T20:20:39.000Z
2022-03-30T17:35:01.000Z
plugins/digitalocean/komand_digitalocean/actions/retrieve_existing_floating_ip/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
43
2019-07-09T14:13:58.000Z
2022-03-28T12:04:46.000Z
# GENERATED BY KOMAND SDK - DO NOT EDIT from .action import RetrieveExistingFloatingIp
29
46
0.816092
9b586a30d8d76e1420241fd5f90cdd0687ce4f9d
2,110
py
Python
setup.py
andrewrfreed/flask-oidc-ext
ae2715ca037ebffabc01449c8c78ce78cdf39209
[ "BSD-2-Clause" ]
null
null
null
setup.py
andrewrfreed/flask-oidc-ext
ae2715ca037ebffabc01449c8c78ce78cdf39209
[ "BSD-2-Clause" ]
null
null
null
setup.py
andrewrfreed/flask-oidc-ext
ae2715ca037ebffabc01449c8c78ce78cdf39209
[ "BSD-2-Clause" ]
null
null
null
import os.path import io import sys from setuptools import setup # This check is to make sure we checkout docs/_themes before running sdist if not os.path.exists("./docs/_themes/README"): print("Please make sure you have docs/_themes checked out while running setup.py!") if os.path.exists(".git"): print( "You seem to be using a git checkout, please execute the following commands to get the docs/_themes directory:" ) print(" - git submodule init") print(" - git submodule update") else: print( "You seem to be using a release. Please use the release tarball from PyPI instead of the archive from GitHub" ) sys.exit(1) here = os.path.abspath(os.path.dirname(__file__)) with io.open(os.path.join(here, "README.rst")) as f: readme = f.read() setup( name="flask-oidc-ext", description="OpenID Connect extension for Flask", long_description=readme, url="https://github.com/svintit/flask-oidc-ext", author="Erica Ehrhardt, Patrick Uiterwijk, Traian Svinti", author_email="traian.svinti@gmail.com", version="1.4.2", packages=["flask_oidc_ext"], install_requires=["Flask", "itsdangerous", "oauth2client", "six",], tests_require=["nose", "mock"], entry_points={ "console_scripts": ["oidc-register=flask_oidc_ext.registration_util:main"], }, zip_safe=False, classifiers=[ "Environment :: Web Environment", "Framework :: Flask", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Topic :: Internet :: WWW/HTTP :: Dynamic Content", "Topic :: Software Development :: Libraries :: Python Modules", ], )
35.762712
123
0.636019
f4e38dba3b74174aef831001c5060cda0b66c9db
476
py
Python
hackerearth/Algorithms/Equalize strings (1)/test.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
4
2020-07-24T01:59:50.000Z
2021-07-24T15:14:08.000Z
hackerearth/Algorithms/Equalize strings (1)/test.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
hackerearth/Algorithms/Equalize strings (1)/test.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
import io import unittest from contextlib import redirect_stdout from unittest.mock import patch class TestQ(unittest.TestCase): @patch('builtins.input', side_effect=[ '4', '1101', '0011', ]) def test_case_0(self, input_mock=None): text_trap = io.StringIO() with redirect_stdout(text_trap): import solution self.assertEqual(text_trap.getvalue(), '2\n') if __name__ == '__main__': unittest.main()
21.636364
53
0.640756
f35ccc749791230b2303bfb2ab807b1ea680cbeb
1,756
py
Python
src/plugins/dfplayer/Platform.py
andreaswatch/piTomation
140bff77ad0b84ad17898106c7be7dc48a2d0783
[ "MIT" ]
null
null
null
src/plugins/dfplayer/Platform.py
andreaswatch/piTomation
140bff77ad0b84ad17898106c7be7dc48a2d0783
[ "MIT" ]
null
null
null
src/plugins/dfplayer/Platform.py
andreaswatch/piTomation
140bff77ad0b84ad17898106c7be7dc48a2d0783
[ "MIT" ]
null
null
null
from modules.base.Configuration import * from modules.base.Instances import * @configuration class DFPlayerPlatformConfiguration(PlatformConfiguration): '''Configuration settings for the DFPlayer''' @validator('platform') def check_platform(cls, v): if "plugins.dfplayer" not in v: raise ValueError("wrong platform: plugins.dfplayer, is: " + v) return v tx_pin: str = "GPIO5" '''GPIO pin for TX communication to the DFPlayer Mini''' baud_rate: Optional[int] = 9600 '''Baudrate for the serial interface, 9600 by default''' class Platform(BasePlatform, Logging): '''This platform opens a serial console through the tx_pin to the DFPlayer. Use the Action to invoke commands like 'play'. ''' def __init__(self, parent: Stackable, config: DFPlayerPlatformConfiguration) -> None: super().__init__(parent, config) self.configuration = config tx_pin = int(str(self.configuration.tx_pin).replace("GPIO", "")) try: import pigpio except Exception as e: self.log_error("pigpio library not installed, DFPlayer Mini not initialized") try: import sys, os #find actual path realpath = os.path.realpath(__file__) dirname = os.path.dirname(realpath) #add modules & plugins app_path = os.path.join(dirname, "SimpleDFPlayerMini_for_RaspberryPi") sys.path.append(app_path) from dfplayer import SimpleDFPlayerMini #type: ignore self.player = SimpleDFPlayerMini(tx_pin, self.configuration.baud_rate) except Exception as e: self.log_error(e) self.player = None
32.518519
89
0.64123
62185d630b2e4affddab33d145ea543861f963d8
7,179
py
Python
examples/angular_spec_doa.py
hwp/apkit
35fea20e4cb5b175c43c9a29aade167e886c8368
[ "MIT" ]
3
2021-04-09T09:33:09.000Z
2021-12-23T02:34:20.000Z
examples/angular_spec_doa.py
hwp/apkit
35fea20e4cb5b175c43c9a29aade167e886c8368
[ "MIT" ]
null
null
null
examples/angular_spec_doa.py
hwp/apkit
35fea20e4cb5b175c43c9a29aade167e886c8368
[ "MIT" ]
2
2018-11-06T00:44:11.000Z
2020-12-14T16:11:23.000Z
#!/usr/bin/env python """ angular_spec_doa.py Written by Weipeng He <heweipeng@gmail.com> """ import time # debug import sys # debug import math import argparse import numpy as np import apkit # Microphone 3D coordinates (unit is meter) _MICROPHONE_COORDINATES = np.array([[-0.0267, 0.0343, 0.2066], [-0.0267, -0.0343, 0.2066], [0.0313, 0.0343, 0.2066], [0.0313, -0.0343, 0.2066]]) # Use signal up to 8 kHz for prediction _MAX_FREQ = 8000 def load_ncov(path, win_size, hop_size): fs, sig = apkit.load_wav(path) nfbin = _MAX_FREQ * win_size // fs # 0-8kHz tf = apkit.stft(sig, apkit.cola_hamming, win_size, hop_size) tf = tf[:, :, :nfbin] return apkit.cov_matrix(tf) def main(infile, outdir, afunc, win_size, hop_size, block_size, block_hop, min_sc): stime = time.time() # load candidate DOAs pts = apkit.load_pts_on_sphere() pts = pts[pts[:, 2] > -0.05] # use upper half of the sphere # NOTE: alternatively use only points on the horizontal plane # pts = apkit.load_pts_horizontal(360) print('%.3fs: load points (%d)' % (time.time() - stime, len(pts)), file=sys.stderr) # compute neighbors (for peak finding) nlist = apkit.neighbor_list(pts, math.pi / 180.0 * 8.0) print('%.3fs: neighbor list' % (time.time() - stime), file=sys.stderr) # load signal fs, sig = apkit.load_wav(infile) print('%.3fs: load signal' % (time.time() - stime), file=sys.stderr) # compute delays (delay for each candidate DOA and each microphone) delays = apkit.compute_delay(_MICROPHONE_COORDINATES, pts, fs=fs) print('%.3fs: compute delays' % (time.time() - stime), file=sys.stderr) # compute empirical covariance matrix tf = apkit.stft(sig, apkit.cola_hamming, win_size, hop_size) max_fbin = _MAX_FREQ * win_size // fs # int assert max_fbin <= win_size // 2 tf = tf[:, :, :max_fbin] # 0-8kHz fbins = np.arange(max_fbin, dtype=float) / win_size if block_size is None: ecov = apkit.empirical_cov_mat(tf) else: ecov = apkit.empirical_cov_mat_by_block(tf, block_size, block_hop) nch, _, nblock, nfbin = ecov.shape print('%.3fs: empirical cov matrix (nfbin=%d)' % (time.time() - stime, nfbin), file=sys.stderr) # local angular spectrum function phi = afunc(ecov, delays, fbins) print('%.3fs: compute phi' % (time.time() - stime), file=sys.stderr) # find local maxima lmax = apkit.local_maxima(phi, nlist, th_phi=min_sc) print('%.3fs: find local maxima' % (time.time() - stime), file=sys.stderr) # merge predictions that have similar azimuth predicitons # NOTE: skip this step if the candinate DOAs are on the horizontal plane lmax = apkit.merge_lm_on_azimuth(phi, lmax, pts, math.pi / 180.0 * 5.0) print('%.3fs: refine local maxima' % (time.time() - stime), file=sys.stderr) # save results # each file contains the predicted angular spectrum for each frame/block # each line has five tokens: # (1) x coordinate of the candidate DOA # (2) y coordinate of the candidate DOA # (3) z coordinate of the candidate DOA # (4) angular spectrum value # (5) 1 if this is a local maximum, otherwise 0 for t in range(nblock): with open(f'{outdir}/{t:06d}', 'w') as f: for i in range(len(pts)): print('%g %g %g %g %d' % (pts[i, 0], pts[i, 1], pts[i, 2], phi[i, t], 1 if i in lmax[t] else 0), file=f) print('%.3fs: save results' % (time.time() - stime), file=sys.stderr) _FUNCTIONS = { 'mvdr': apkit.phi_mvdr, 'mvdr-snr': apkit.phi_mvdr_snr, 'srp-phat': apkit.phi_srp_phat, 'srp-nonlin': apkit.phi_srp_phat_nonlin, 'sevd-music': apkit.sevd_music } _FUNCS_WITH_NCOV = { 'mvdr-ncov': apkit.MVDR_NCOV, 'mvdr-ncov-snr': apkit.MVDR_NCOV_SNR, 'mvdr-ncov-sig': apkit.MVDR_NCOV_SIG, 'music': apkit.MUSIC, 'gsvd-music': apkit.GSVD_MUSIC } if __name__ == '__main__': parser = argparse.ArgumentParser( description='DOA estimation using angular spectrum methods') parser.add_argument('infile', metavar='INPUT_FILE', type=argparse.FileType('rb'), help='input wav file') parser.add_argument('outdir', metavar='OUTPUT_DIR', type=str, help='output directory') parser.add_argument('-w', '--window-size', metavar='WIN_SIZE', type=int, default=2048, help='(default 2048) analysis window size') parser.add_argument('-o', '--hop-size', metavar='HOP_SIZE', type=int, default=1024, help='(default 1024) hop size, ' 'number of samples between windows') parser.add_argument('--block-size', metavar='BLOCK_SIZE', type=int, default=7, help='(default 7) if not None, compute ' 'spatial covariance matrix in blocks, each include ' 'block_size frames.') parser.add_argument('--block-hop', metavar='BLOCK_HOP', type=int, default=4, help='(default 4) used with block_size, ' 'number of frames between consecutive blocks.') parser.add_argument('-f', '--function', metavar='FUNC', choices=list(_FUNCTIONS.keys()) + list(_FUNCS_WITH_NCOV.keys()), required=True, help='local angular spectrum function') parser.add_argument('-n', '--noise', metavar='NOISE_FILE', type=argparse.FileType('rb'), default=None, help='(default None) sample background noise file') parser.add_argument('--min-score', metavar='SCORE', type=float, default=0.0, help='(default 0.0) minimun score for peaks') args = parser.parse_args() if args.function in _FUNCTIONS: func = _FUNCTIONS[args.function] elif args.function in _FUNCS_WITH_NCOV: ncov = load_ncov(args.noise, args.window_size, args.hop_size) func = _FUNCS_WITH_NCOV[args.function](ncov) args.noise.close() else: raise KeyError main(args.infile, args.outdir, func, args.window_size, args.hop_size, args.block_size, args.block_hop, args.min_score) args.infile.close() # -*- Mode: Python -*- # vi:si:et:sw=4:sts=4:ts=4
37.586387
79
0.551887
7103f51c3cb2aebf4df9a2e6e9acc6343f26e93f
4,143
py
Python
zippyshare_downloader/network.py
TheKrakenss/zippyshare-downloader
94a03628319bbaf3815a82665614375fe9d221e8
[ "MIT" ]
null
null
null
zippyshare_downloader/network.py
TheKrakenss/zippyshare-downloader
94a03628319bbaf3815a82665614375fe9d221e8
[ "MIT" ]
null
null
null
zippyshare_downloader/network.py
TheKrakenss/zippyshare-downloader
94a03628319bbaf3815a82665614375fe9d221e8
[ "MIT" ]
null
null
null
import requests import aiohttp import asyncio __all__ = ( 'Net', 'NetworkObject', 'set_proxy', 'clear_proxy' ) # Modified requests session class with __del__ handler # so the session will be closed properly class requestsProxiedSession(requests.Session): def __init__(self, trust_env=True) -> None: super().__init__() self.trust_env = trust_env def __del__(self): self.close() # Because aiohttp doesn't support proxy from session # we need to subclass it to proxy each requests without # add "proxy" parameter to each requests class aiohttpProxiedSession(aiohttp.ClientSession): def __init__(self, proxy, *args, **kwargs): super().__init__(*args, **kwargs) self.proxy = proxy def set_proxy(self, proxy): self.proxy = proxy def remove_proxy(self): self.proxy = None async def _request(self, *args, **kwargs): kwargs.update(proxy=self.proxy) return await super()._request(*args, **kwargs) class NetworkObject: def __init__(self, proxy=None, trust_env=False) -> None: self._proxy = proxy self._aiohttp = None # type: aiohttpProxiedSession self._trust_env = trust_env # This will be disable proxy from environtments self._requests = requestsProxiedSession(trust_env=self._trust_env) @property def proxy(self): """Return HTTP/SOCKS proxy, return ``None`` if not configured""" return self._proxy @proxy.setter def proxy(self, proxy): self.set_proxy(proxy) @property def trust_env(self): """Return ``True`` if http/socks proxy are grabbed from env""" return self._trust_env @trust_env.setter def trust_env(self, yes): self._trust_env = yes if self.aiohttp: self.aiohttp._trust_env = yes self._requests.trust_env = yes def is_proxied(self): """Return ``True`` if requests/aiohttp from :class:`NetworkObject` are configured using proxy. """ return self.proxy is not None def set_proxy(self, proxy): """Setup HTTP/SOCKS proxy for aiohttp/requests""" if proxy is None: self.clear_proxy() self._proxy = proxy pr = { 'http': proxy, 'https': proxy } self._requests.proxies.update(pr) if self.aiohttp: self.aiohttp.set_proxy(proxy) def clear_proxy(self): """Remove all proxy from aiohttp/requests""" self._proxy = None self._requests.proxies.clear() if self.aiohttp: self.aiohttp.remove_proxy() @property def aiohttp(self): """Return proxied aiohttp (if configured)""" self._create_aiohttp() return self._aiohttp @property def requests(self): """Return proxied requests (if configured)""" return self._requests def _create_aiohttp(self): # Check if current asyncio loop is running # if running create aiohttp session # if not don't create it loop = asyncio.get_event_loop() # Raise error if using in another thread if self._aiohttp and self._aiohttp._loop != loop: raise RuntimeError('created aiohttp session cannot be used in different thread') if self._aiohttp is None: self._aiohttp = aiohttpProxiedSession(self.proxy) def close(self): """Close requests session only""" self._requests.close() self._requests = requestsProxiedSession(self._trust_env) async def close_async(self): """Close aiohttp & requests session""" self.close() if not self._aiohttp.closed: await self._aiohttp.close() self._aiohttp = None Net = NetworkObject() def set_proxy(proxy): """Setup HTTP/SOCKS proxy for aiohttp/requests This is shortcut for :meth:`NetworkObject.set_proxy`. """ Net.set_proxy(proxy) def clear_proxy(): """Remove all proxy from aiohttp/requests This is shortcut for :meth:`NetworkObject.clear_proxy`. """ Net.clear_proxy()
28.770833
92
0.632875
60e28139e2f3a78e288527dd757b4a6a10686f9f
2,012
py
Python
tutorials/data_augmentation.py
pmeier/kornia
57f5aeb605d0c69de88a0a1aa1563cee52d4bfaf
[ "ECL-2.0", "Apache-2.0" ]
5
2021-04-15T01:20:01.000Z
2022-01-12T14:12:54.000Z
tutorials/data_augmentation.py
pmeier/kornia
57f5aeb605d0c69de88a0a1aa1563cee52d4bfaf
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
tutorials/data_augmentation.py
pmeier/kornia
57f5aeb605d0c69de88a0a1aa1563cee52d4bfaf
[ "ECL-2.0", "Apache-2.0" ]
1
2020-10-20T06:57:07.000Z
2020-10-20T06:57:07.000Z
""" Data augmentation on the GPU ============================ In this data you learn how to use `kornia` modules in order to perform the data augmentatio on the GPU in batch mode. """ ################################ # 1. Create a dummy data loader import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader # from: https://gist.github.com/edgarriba/a781de516c508826f79568d08598efdb class DummyDataset(Dataset): def __init__(self, data_root=None): self.data_root = data_root self.data_index = self.build_index(self.data_root) def build_index(self, data_root): return range(10) def __len__(self): return len(self.data_index) def __getitem__(self, idx): # get data sample sample = self.data_index[idx] # load data, NOTE: modify by cv2.imread(...) image = torch.rand(3, 240, 320) label = torch.rand(1, 240, 320) return dict(images=image, labels=label) ################################ # 2. Define the data augmentation operations # Thanks to the `kornia` design all the operators can be placed inside inside a `nn.Sequential`. import kornia transform = nn.Sequential( kornia.enhance.AdjustBrightness(0.5), kornia.enhance.AdjustGamma(gamma=2.), kornia.enhance.AdjustContrast(0.7), ) ################################ # 3. Run the dataset and perform the data augmentation # NOTE: change device to 'cuda' device = torch.device('cpu') print(f"Running with device: {device}") # create the dataloader dataset = DummyDataset() dataloader = DataLoader(dataset, batch_size=4, shuffle=True) # get samples and perform the data augmentation for i_batch, sample_batched in enumerate(dataloader): images = sample_batched['images'].to(device) labels = sample_batched['labels'].to(device) # perform the transforms images = transform(images) labels = transform(labels) print(f"Iteration: {i_batch} Image shape: {images.shape}")
27.944444
117
0.66501
fa084c04bf22c29c12e71a9eb5bcc3af5b78b976
916
py
Python
samples/client/petstore/python/test/test_outer_composite.py
wwadge/swagger-codegen
777619d4d106b7b387f8ee8469f4ec43f3cdfdc7
[ "Apache-2.0" ]
3
2017-05-24T11:22:36.000Z
2021-02-09T15:26:41.000Z
samples/client/petstore/python/test/test_outer_composite.py
wwadge/swagger-codegen
777619d4d106b7b387f8ee8469f4ec43f3cdfdc7
[ "Apache-2.0" ]
5
2019-03-06T07:41:25.000Z
2020-01-20T12:21:53.000Z
samples/client/petstore/python/test/test_outer_composite.py
wwadge/swagger-codegen
777619d4d106b7b387f8ee8469f4ec43f3cdfdc7
[ "Apache-2.0" ]
11
2017-07-07T18:07:15.000Z
2021-11-10T02:12:04.000Z
# coding: utf-8 """ Swagger Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ OpenAPI spec version: 1.0.0 Contact: apiteam@swagger.io Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import petstore_api from petstore_api.rest import ApiException from petstore_api.models.outer_composite import OuterComposite class TestOuterComposite(unittest.TestCase): """ OuterComposite unit test stubs """ def setUp(self): pass def tearDown(self): pass def testOuterComposite(self): """ Test OuterComposite """ model = petstore_api.models.outer_composite.OuterComposite() if __name__ == '__main__': unittest.main()
21.302326
160
0.708515
f978b44c67f56e47239226e06943d3d8441c95a1
1,091
py
Python
lambdata/style_example.py
B-Meister/ds18_lambdata
8b5983219513a25357d81a1c4403a6d643b7b6d5
[ "MIT" ]
null
null
null
lambdata/style_example.py
B-Meister/ds18_lambdata
8b5983219513a25357d81a1c4403a6d643b7b6d5
[ "MIT" ]
null
null
null
lambdata/style_example.py
B-Meister/ds18_lambdata
8b5983219513a25357d81a1c4403a6d643b7b6d5
[ "MIT" ]
null
null
null
""" This file was to practice PEP8 style""" import math import sys def example1(): # This is a long comment. This should be wrapped to fit within 72 # characters. some_tuple = (1, 2, 3, 'a') some_variable = { 'long': 'Long code lines should be wrapped within 79 characters.', 'other': [math.pi, 100, 200, 300, 9876543210, 'This is a long string that goes on'], 'more': { 'inner': 'This whole logical line should be wrapped.', some_tuple: [1, 20, 300, 40000, 500000000, 60000000000000000]}} return (some_tuple, some_variable) def example2(): return {'has_key() is deprecated': True}.has_key({'f': 2}.has_key('')) # TODO - fix this! # class Example3(object): # def __init__ ( self, bar ): # # Comments should have a space after the hash. # if bar : bar += 1; # return bar # else: # bar = bar * bar; # return (sys.path, some_string) some_string = """ Indentation in multiline strings should not be touched. Only actual code should be reindented. """
28.710526
75
0.604033
76cf07c2e0e759dfcd4fe24ebdaeabd0936e3647
1,048
py
Python
setup.py
marujore/stmetrics
16beeb262bde7942d0c9bb49772a409e0e2e2f1f
[ "MIT" ]
12
2020-04-15T14:19:59.000Z
2022-03-01T09:25:19.000Z
setup.py
andersonreisoares/time-metrics
dd988d406fa090738a4d50461e9a46492d2f078e
[ "MIT" ]
6
2020-07-04T12:57:22.000Z
2021-06-10T02:28:51.000Z
setup.py
andersonreisoares/time-metrics
dd988d406fa090738a4d50461e9a46492d2f078e
[ "MIT" ]
4
2020-03-17T14:52:00.000Z
2021-05-14T11:29:34.000Z
import setuptools with open("README.rst", "r") as fh: long_description = fh.read() setuptools.setup( name="stmetrics", version="0.1.7", author="Brazil Data Cube Team", author_email="brazildatacube@dpi.inpe.br", description="A package to compute features from Satellite Image Time Series (SITS).", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/brazil-data-cube/stmetrics/", packages=['stmetrics'], install_requires=[ 'scipy', 'sklearn', 'pandas', 'numpy', 'matplotlib', 'shapely', 'descartes', 'nolds', 'dtaidistance', 'rasterio', 'geopandas', 'pointpats', 'fastremap', 'connected-components-3d', 'rasterstats', 'xarray', 'affine', 'numba', 'tqdm' ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Development Status :: 4 - Beta" ], )
23.818182
89
0.610687
d23c74c48bd63a487c69cc10088dfba3386fa662
581
py
Python
main.py
OleHenFo/hyttemon
8cacd61c395b330736287db0b8489dd27f72cabc
[ "MIT" ]
null
null
null
main.py
OleHenFo/hyttemon
8cacd61c395b330736287db0b8489dd27f72cabc
[ "MIT" ]
null
null
null
main.py
OleHenFo/hyttemon
8cacd61c395b330736287db0b8489dd27f72cabc
[ "MIT" ]
null
null
null
import time,random,os from PIL import Image,ImageDraw,ImageFont fontTemp = ImageFont.truetype("font/Roboto-Medium.ttf", 136) textColor = (200,200,200,150) tempUte = 14 tempInne = 23 while(True): im = Image.open("img/bg.png") draw = ImageDraw.Draw(im) tempUte = 14 + random.randint(0,1)-1 tempInne = 23 + random.randint(0,1)-1 draw.text((50, 100),str(tempUte)+"°",textColor,font=fontTemp) draw.text((560, 290),str(tempInne)+"°",textColor,font=fontTemp) im.save("img/image.png") os.system("sudo fbi --autozoom --noverbose --vt 1 img/image.png") time.sleep(2)
27.666667
67
0.69191
876c9d812d6289519cca4791c9c09fed7ae12d24
13,419
py
Python
gpvdm_gui/gui/scan_io.py
roderickmackenzie/gpvdm
914fd2ee93e7202339853acaec1d61d59b789987
[ "BSD-3-Clause" ]
12
2016-09-13T08:58:13.000Z
2022-01-17T07:04:52.000Z
gpvdm_gui/gui/scan_io.py
roderickmackenzie/gpvdm
914fd2ee93e7202339853acaec1d61d59b789987
[ "BSD-3-Clause" ]
3
2017-11-11T12:33:02.000Z
2019-03-08T00:48:08.000Z
gpvdm_gui/gui/scan_io.py
roderickmackenzie/gpvdm
914fd2ee93e7202339853acaec1d61d59b789987
[ "BSD-3-Clause" ]
6
2019-01-03T06:17:12.000Z
2022-01-01T15:59:00.000Z
# # General-purpose Photovoltaic Device Model - a drift diffusion base/Shockley-Read-Hall # model for 1st, 2nd and 3rd generation solar cells. # Copyright (C) 2008-2022 Roderick C. I. MacKenzie r.c.i.mackenzie at googlemail.com # # https://www.gpvdm.com # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License v2.0, as published by # the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # ## @package scan_io # IO functions for the scanning simulation parameters. # import sys import os import shutil import gc from inp import inp_get_token_value from scan_tree import tree_load_flat_list from scan_tree import tree_gen_flat_list from scan_tree import tree_gen from scan_tree import tree_save_flat_list from server_io import server_find_simulations_to_run from server import server_break from numpy import std from error_dlg import error_dlg from scan_tree import scan_tree_leaf from process_events import process_events import i18n _ = i18n.language.gettext import zipfile from util_zip import archive_add_dir from inp import inp from scan_program_line import scan_program_line from clean_sim import ask_to_delete from progress_class import progress_class def scan_next_archive(sim_dir): i=0 while(1): name="archive"+str(i)+".zip" full_name=os.path.join(sim_dir,name) if os.path.isfile(full_name)==False: return name i=i+1 def scan_archive(sim_dir,progress_window=None): own_progress_window=False if progress_window==None: progress_window=progress_class() progress_window.show() progress_window.start() own_progress_window=True archive_path=os.path.join(sim_dir,"build_archive.zip") if os.path.isfile(archive_path)==True: os.remove(archive_path) zf = zipfile.ZipFile(archive_path, 'a',zipfile.ZIP_DEFLATED) l=os.listdir(sim_dir) for i in range(0,len(l)): dir_to_zip=os.path.join(sim_dir,l[i]) if os.path.isdir(dir_to_zip)==True: archive_add_dir(archive_path,dir_to_zip,sim_dir,zf=zf,remove_src_dir=True,exclude=["gmon.out"]) progress_window.set_fraction(float(i)/float(len(l))) progress_window.set_text(_("Adding: ")+l[i]) #if server_break()==True: # break process_events() zf.close() os.rename(archive_path, os.path.join(sim_dir,scan_next_archive(sim_dir))) if own_progress_window==True: progress_window.stop() def scan_list_simulations(dir_to_search): found_dirs=[] for root, dirs, files in os.walk(dir_to_search): for name in files: # full_name=os.path.join(root, name) if name=="sim.gpvdm": found_dirs.append(root) return found_dirs def scan_plot_fits(dir_to_search): files=os.listdir(dir_to_search) for i in range(0,len(files)): if files[i].endswith(".jpg"): os.remove(os.path.join(dir_to_search,files[i])) #print("remove",os.path.join(dir_to_search,files[i])) sim_dirs=tree_load_flat_list(dir_to_search) for i in range(0,len(sim_dirs)): os.chdir(sim_dirs[i]) name=sim_dirs[i].replace("/","_") os.system("gnuplot fit.plot >plot.eps") os.system("gs -dNOPAUSE -r600 -dEPSCrop -sDEVICE=jpeg -sOutputFile="+os.path.join(dir_to_search,name+".jpg")+" plot.eps -c quit") os.chdir(dir_to_search) def scan_get_converged_status(fit_log_path): error=False if os.path.isfile(fit_log_path): f = open(fit_log_path, "r") lines = f.readlines() f.close() for l in range(0, len(lines)): lines[l]=lines[l].rstrip() if len(lines)>4: error=float(lines[len(lines)-2].split()[1]) return error def scan_list_unconverged_simulations(dir_to_search): found_dirs=[] sim_dirs=tree_load_flat_list(dir_to_search) for i in range(0,len(sim_dirs)): add=False fit_log=os.path.join(sim_dirs[i],'fitlog.dat') error=scan_get_converged_status(fit_log) if error==False: add=True elif error>0.1: add=True if add==True: found_dirs.append(sim_dirs[i]) return found_dirs class report_token(): def __init__(self,file_name,token): self.file_name=file_name self.token=token self.values=[] def scan_gen_report(path): tokens=[] tokens.append(report_token("dos0.inp","#Etrape")) tokens.append(report_token("dos0.inp","#mueffe")) tokens.append(report_token("dos0.inp","#Ntrape")) tokens.append(report_token("dos0.inp","#srhsigman_e")) tokens.append(report_token("dos0.inp","#srhsigmap_e")) tokens.append(report_token("dos0.inp","#srhsigman_h")) tokens.append(report_token("dos0.inp","#srhsigmap_h")) tokens.append(report_token("sim/thick_light/sim_info.dat","#jv_pmax_tau")) tokens.append(report_token("sim/thick_light/sim_info.dat","#jv_pmax_mue")) tokens.append(report_token("sim/thick_light/sim_info.dat","#jv_pmax_muh")) tokens.append(report_token("jv1.inp","#jv_Rcontact")) tokens.append(report_token("jv1.inp","#jv_Rshunt")) simulation_dirs=tree_load_flat_list(path) errors=[] for i in range(0,len(simulation_dirs)): print(simulation_dirs[i]) error=scan_get_converged_status(os.path.join(simulation_dirs[i],"fitlog.dat")) print("error",error) errors.append(error) for ii in range(0,len(tokens)): value=inp_get_token_value(os.path.join(simulation_dirs[i],tokens[ii].file_name), tokens[ii].token) #print(os.path.join(simulation_dirs[i],tokens[ii].file_name), tokens[ii].token,value) if value!=None: print(tokens[ii].token,str(value)) tokens[ii].values.append(float(value)) print("Errors:",errors) for ii in range(0,len(tokens)): print(tokens[ii].token,tokens[ii].values,sum(tokens[ii].values)/len(tokens[ii].values),std(tokens[ii].values)) for ii in range(0,len(tokens)): print(tokens[ii].token,sum(tokens[ii].values)/len(tokens[ii].values),std(tokens[ii].values)) def scan_build_nested_simulation(root_simulation,nest_simulation): if os.path.isdir(nest_simulation)==False: print("Path ",nest_simulation,"does not exist") sys.exit(0) progress_window=progress_class() progress_window.show() progress_window.start() process_events() nest_simulation_name=os.path.basename(nest_simulation) program_list=tree_load_program(nest_simulation) files = os.listdir(root_simulation) simulations=[] for i in range(0,len(files)): if os.path.isfile(os.path.join(root_simulation,files[i],"sim.gpvdm"))==True: simulations.append(files[i]) flat_simulation_list=[] path=os.getcwd() for i in range(0,len(simulations)): dest_name=os.path.join(root_simulation,simulations[i],nest_simulation_name) base_dir=os.path.join(root_simulation,simulations[i]) #print(">>>",dest_name,base_dir,"<<",nest_simulation_name) tree_gen(dest_name,flat_simulation_list,program_list,base_dir) progress_window.set_fraction(float(i)/float(len(simulations))) progress_window.set_text(simulations[i]) process_events() progress_window.stop() os.chdir(path) flat_simulation_list=tree_gen_flat_list(root_simulation,level=1) #print(flat_simulation_list) tree_save_flat_list(root_simulation,flat_simulation_list) return def scan_clean_nested_simulation(root_simulation,nest_simulation): files = os.listdir(root_simulation) simulations=[] for i in range(0,len(files)): if os.path.isfile(os.path.join(root_simulation,files[i],"sim.gpvdm"))==True: simulations.append(files[i]) for i in range(0,len(simulations)): dest_name=os.path.join(root_simulation,simulations[i]) files = os.listdir(dest_name) for file in files: if file.endswith(".inp") or file.endswith(".gpvdm") or file.endswith(".dat") : os.remove(os.path.join(dest_name,file)) return def scan_clean_unconverged(parent,dir_to_clean): dirs_to_del=[] dirs_to_del=scan_list_unconverged_simulations(dir_to_clean) ask_to_delete(parent,dirs_to_del) def scan_push_to_hpc(base_dir,only_unconverged): config_file=os.path.join(os.getcwd(),"server.inp") #print(config_file) hpc_path=inp_get_token_value(config_file, "#hpc_dir") hpc_path=os.path.abspath(hpc_path) if os.path.isdir(hpc_path)==True: hpc_files=[] hpc_files=scan_list_simulations(hpc_path) #print("hpc files=",hpc_files) delete_files(hpc_files) files=[] if only_unconverged==True: files=scan_list_unconverged_simulations(base_dir) else: files=scan_list_simulations(base_dir) #print("copy files=",files) for i in range(0,len(files)): dest_path=os.path.join(hpc_path,files[i][len(base_dir)+1:]) #print(dest_path) shutil.copytree(files[i], dest_path,symlinks=True) else: print("HPC dir not found",hpc_path) def scan_import_from_hpc(base_dir): config_file=os.path.join(os.getcwd(),"server.inp") hpc_path=inp_get_token_value(config_file, "#hpc_dir") hpc_path=os.path.abspath(hpc_path) if os.path.isdir(hpc_path)==True: hpc_files=scan_list_simulations(hpc_path) for i in range(0,len(hpc_files)): if hpc_files[i].endswith("orig")==False: src_path=hpc_files[i] dest_path=os.path.join(base_dir,hpc_files[i][len(hpc_path)+1:]) if os.path.isdir(dest_path): shutil.rmtree(dest_path) shutil.copytree(src_path, dest_path, symlinks=False, ignore=None) #print(src_path,dest_path) else: print("HPC dir not found",hpc_path) class scan_io: def __init__(self): self.parent_window=None self.interactive=True self.scan_dir=None self.base_dir=None self.human_name=None self.config_file=None self.program_list=[] self.myserver=None def load(self,file_name): self.program_list=[] self.config_file=file_name f=inp() f.load(self.config_file) self.human_name=f.get_token("#scan_name") self.scan_dir=os.path.join(os.path.dirname(self.config_file),self.human_name) pos=2 mylen=int(f.lines[pos]) pos=pos+1 for i in range(0, mylen): item=scan_program_line() #item.file=f.lines[pos] #item.token=f.lines[pos+1] item.human_name=f.lines[pos+2] item.values=f.lines[pos+3] item.opp=f.lines[pos+4] self.program_list.append(item) pos=pos+6 #print(f.lines) def save(self): f=inp() f.lines=[] f.lines.append("#scan_name") f.lines.append(self.human_name) #print(self.tab.rowCount()) f.lines.append(str(len(self.program_list))) for item in self.program_list: #print(i) f.lines.append("notused") f.lines.append("notused") f.lines.append(item.human_name) f.lines.append(item.values) f.lines.append(item.opp) f.lines.append("notused") f.save_as(self.config_file) if os.path.isfile(os.path.join(self.scan_dir,"scan_config.inp"))==False: a = open(os.path.join(self.scan_dir,"scan_config.inp"), "w") a.write("#scan_config_args\n") a.write("\n") a.write("#scan_config_compress\n") a.write("false\n") a.write("#end\n") a.close() def set_path(self,scan_dir): self.scan_dir=scan_dir def set_base_dir(self,base_dir): self.base_dir=base_dir def clean_dir(self): dirs_to_del=[] listing=os.listdir(self.scan_dir) for i in range(0,len(listing)): full_path=os.path.join(self.scan_dir,listing[i]) if os.path.isdir(full_path)==True: dirs_to_del.append(full_path) ask_to_delete(self.parent_window,dirs_to_del,interactive=self.interactive) def apply_constants_to_dir(self,folder): leaf=scan_tree_leaf() leaf.json_load(os.path.join(folder,"sim.json")) leaf.directory=folder leaf.program_list=self.program_list leaf.apply_constants() leaf.apply_python_scripts() leaf.json_save() def run(self,run_simulation=True,generate_simulations=True,args=""): f=inp() f.load(os.path.join(self.scan_dir,"scan_config.inp")) args=f.get_token("#scan_config_args") if args==False: args="" args=args+" --mindbustx" if self.scan_dir=="": error_dlg(self.parent_window,_("No sim dir name")) return self.make_dir() if generate_simulations==True: self.build_scan() if run_simulation==True: commands=tree_load_flat_list(self.scan_dir) if commands==False: error_dlg(self.parent_window,_("I can't load flat_list.inp. This usually means there is a problem with how you have set up your scan.")) return for i in range(0, len(commands)): self.myserver.add_job(commands[i],args) #print("Adding job"+commands[i]) self.myserver.start() gc.collect() def build_scan(self): self.clean_dir() flat_simulation_list=[] path=os.getcwd() #print(self.scan_dir,flat_simulation_list,self.program_list,self.base_dir) if tree_gen(self.scan_dir,flat_simulation_list,self.program_list,self.base_dir)==False: error_dlg(self.parent_window,_("Problem generating tree.")) return False os.chdir(path) tree_save_flat_list(self.scan_dir,flat_simulation_list) def make_dir(self): if os.path.isdir(self.scan_dir)==False: os.makedirs(self.scan_dir) def rename(self,new_name): new_path=os.path.join(os.path.dirname(self.scan_dir),new_name) f=inp() f.load(self.config_file) f.set_token("#scan_name",new_name) f.save() self.human_name=new_name shutil.move(self.scan_dir, new_path) self.scan_dir=new_path def clone(self,new_human,new_config_file): self.scan_dir=os.path.join(os.path.dirname(self.scan_dir),new_name) print(self.config_file)
27.441718
141
0.743274
c4260d4f1439eba4b39cd2a41b38b213237c83b7
19,696
py
Python
gtm.py
hkaneko1985/structure_generator_based_on_r_group
56fa945d9caf0f342b4457a9293d33af1a152bf8
[ "MIT" ]
5
2019-05-19T19:45:14.000Z
2020-10-30T09:01:44.000Z
gtm.py
hkaneko1985/structure_generator_based_on_r_group
56fa945d9caf0f342b4457a9293d33af1a152bf8
[ "MIT" ]
null
null
null
gtm.py
hkaneko1985/structure_generator_based_on_r_group
56fa945d9caf0f342b4457a9293d33af1a152bf8
[ "MIT" ]
4
2019-08-25T06:09:44.000Z
2022-02-01T01:19:14.000Z
# -*- coding: utf-8 -*- # %reset -f """ @author: Hiromasa Kaneko """ # GTM (generative topographic mapping) class import math import numpy as np import numpy.matlib from scipy.spatial.distance import cdist from scipy.stats import norm, multivariate_normal from sklearn.decomposition import PCA class GTM: def __init__(self, shape_of_map=[30, 30], shape_of_rbf_centers=[10, 10], variance_of_rbfs=4, lambda_in_em_algorithm=0.001, number_of_iterations=200, display_flag=1, sparse_flag=False): self.shape_of_map = shape_of_map self.shape_of_rbf_centers = shape_of_rbf_centers self.variance_of_rbfs = variance_of_rbfs self.lambda_in_em_algorithm = lambda_in_em_algorithm self.number_of_iterations = number_of_iterations self.display_flag = display_flag self.sparse_flag = sparse_flag def calculate_grids(self, num_x, num_y): """ Calculate grid coordinates on the GTM map Parameters ---------- num_x : int number_of_x_grids num_y : int number_of_y_grids """ grids_x, grids_y = np.meshgrid(np.arange(0.0, num_x), np.arange(0.0, num_y)) grids = np.c_[np.ndarray.flatten(grids_x)[:, np.newaxis], np.ndarray.flatten(grids_y)[:, np.newaxis]] max_grids = grids.max(axis=0) grids[:, 0] = 2 * (grids[:, 0] - max_grids[0] / 2) / max_grids[0] grids[:, 1] = 2 * (grids[:, 1] - max_grids[1] / 2) / max_grids[1] return grids def fit(self, input_dataset): """ Train the GTM map Parameters ---------- input_dataset : numpy.array or pandas.DataFrame Training dataset for GTM. input_dataset must be autoscaled. """ input_dataset = np.array(input_dataset) self.success_flag = True self.shape_of_map = [int(self.shape_of_map[0]), int(self.shape_of_map[1])] self.shape_of_rbf_centers = [int(self.shape_of_rbf_centers[0]), int(self.shape_of_rbf_centers[1])] # make rbf grids self.rbf_grids = self.calculate_grids(self.shape_of_rbf_centers[0], self.shape_of_rbf_centers[1]) # make map grids self.map_grids = self.calculate_grids(self.shape_of_map[0], self.shape_of_map[1]) # calculate phi of map_grids and rbf_grids distance_between_map_and_rbf_grids = cdist(self.map_grids, self.rbf_grids, 'sqeuclidean') self.phi_of_map_rbf_grids = np.exp(-distance_between_map_and_rbf_grids / 2.0 / self.variance_of_rbfs) # PCA for initializing W and beta pca_model = PCA(n_components=3) pca_model.fit_transform(input_dataset) if np.linalg.matrix_rank(self.phi_of_map_rbf_grids) < min(self.phi_of_map_rbf_grids.shape): self.success_flag = False return self.W = np.linalg.pinv(self.phi_of_map_rbf_grids).dot( self.map_grids.dot(pca_model.components_[0:2, :])) self.beta = min(pca_model.explained_variance_[2], 1 / ( ( cdist(self.phi_of_map_rbf_grids.dot(self.W), self.phi_of_map_rbf_grids.dot(self.W)) + np.diag(np.ones(np.prod(self.shape_of_map)) * 10 ** 100) ).min(axis=0).mean() / 2)) self.bias = input_dataset.mean(axis=0) self.mixing_coefficients = np.ones(np.prod(self.shape_of_map)) / np.prod(self.shape_of_map) # EM algorithm phi_of_map_rbf_grids_with_one = np.c_[self.phi_of_map_rbf_grids, np.ones((np.prod(self.shape_of_map), 1))] for iteration in range(self.number_of_iterations): responsibilities = self.responsibility(input_dataset) phi_t_G_phi_etc = phi_of_map_rbf_grids_with_one.T.dot( np.diag(responsibilities.sum(axis=0)).dot(phi_of_map_rbf_grids_with_one) ) + self.lambda_in_em_algorithm / self.beta * np.identity( phi_of_map_rbf_grids_with_one.shape[1]) if 1 / np.linalg.cond(phi_t_G_phi_etc) < 10 ** -15: self.success_flag = False break self.W_with_one = np.linalg.inv(phi_t_G_phi_etc).dot( phi_of_map_rbf_grids_with_one.T.dot(responsibilities.T.dot(input_dataset))) self.beta = input_dataset.size / (responsibilities * cdist(input_dataset, phi_of_map_rbf_grids_with_one.dot(self.W_with_one)) ** 2).sum() self.W = self.W_with_one[:-1, :] self.bias = self.W_with_one[-1, :] if self.sparse_flag == True: self.mixing_coefficients = sum(responsibilities) / input_dataset.shape[0] if self.display_flag: print("{0}/{1} ... likelihood: {2}".format(iteration + 1, self.number_of_iterations, self.likelihood_value)) def calculate_distance_between_phi_w_and_input_distances(self, input_dataset): """ Calculate distance between phi*W Parameters ---------- input_dataset : numpy.array Training dataset for GTM. Returns ------- distance : distance between phi*W """ distance = cdist( input_dataset, self.phi_of_map_rbf_grids.dot(self.W) + np.ones((np.prod(self.shape_of_map), 1)).dot( np.reshape(self.bias, (1, len(self.bias))) ), 'sqeuclidean') return distance def responsibility(self, input_dataset): """ Get responsibilities and likelihood. Parameters ---------- input_dataset : numpy.array or pandas.DataFrame Training dataset for GTM. input_dataset must be autoscaled. Returns ------- reponsibilities : numpy.array Responsibilities of input_dataset for each grid point. likelihood_value : float likelihood of input_dataset. """ input_dataset = np.array(input_dataset) distance = self.calculate_distance_between_phi_w_and_input_distances(input_dataset) rbf_for_responsibility = np.exp(-self.beta / 2.0 * distance) * self.mixing_coefficients sum_of_rbf_for_responsibility = rbf_for_responsibility.sum(axis=1) zero_sample_index = np.where(sum_of_rbf_for_responsibility == 0)[0] if len(zero_sample_index): sum_of_rbf_for_responsibility[zero_sample_index] = 1 rbf_for_responsibility[zero_sample_index, :] = 1 / rbf_for_responsibility.shape[1] reponsibilities = rbf_for_responsibility / np.reshape(sum_of_rbf_for_responsibility, (rbf_for_responsibility.shape[0], 1)) self.likelihood_value = (np.log((self.beta / 2.0 / np.pi) ** (input_dataset.shape[1] / 2.0) / np.prod(self.shape_of_map) * rbf_for_responsibility.sum(axis=1))).sum() return reponsibilities def likelihood(self, input_dataset): """ Get likelihood. Parameters ---------- input_dataset : numpy.array or pandas.DataFrame Training dataset for GTM. input_dataset must be autoscaled. Returns ------- likelihood : scalar likelihood of input_dataset. """ input_dataset = np.array(input_dataset) distance = self.calculate_distance_between_phi_w_and_input_distances(input_dataset) return (np.log((self.beta / 2.0 / np.pi) ** (input_dataset.shape[1] / 2.0) * (np.exp(-self.beta / 2.0 * distance) * self.mixing_coefficients).sum(axis=1))).sum() def mlr(self, X, y): """ Train the MLR model Parameters ---------- X, y : numpy.array or pandas.DataFrame Both X and y must NOT be autoscaled. """ X = np.array(X) y = np.array(y) y = np.reshape(y, (len(y), 1)) # autoscaling self.Xmean = X.mean(axis=0) self.Xstd = X.std(axis=0, ddof=1) autoscaled_X = (X - self.Xmean) / self.Xstd self.y_mean = y.mean(axis=0) self.ystd = y.std(axis=0, ddof=1) autoscaled_y = (y - self.y_mean) / self.ystd self.regression_coefficients = np.linalg.inv( np.dot(autoscaled_X.T, autoscaled_X) ).dot(autoscaled_X.T.dot(autoscaled_y)) calculated_y = (autoscaled_X.dot(self.regression_coefficients) * self.ystd + self.y_mean) self.sigma = sum((y - calculated_y) ** 2) / len(y) def mlr_predict(self, X): """ Predict y-values from X-values using the MLR model Parameters ---------- X : numpy.array or pandas.DataFrame X must NOT be autoscaled. """ autoscaled_X = (X - self.Xmean) / self.Xstd return (autoscaled_X.dot(self.regression_coefficients) * self.ystd + self.y_mean) def inverse_gtm_mlr(self, target_y_value): """ Predict X-values from a y-value using the MLR model Parameters ---------- target_v_alue : a target y-value scaler Returns ------- responsibilities_inverse can be used to discussed assigned grids on the GTM map. """ # target_y_values = np.ndarray.flatten(np.array(target_y_values)) myu_i = self.phi_of_map_rbf_grids.dot(self.W) + np.ones( (np.prod(self.shape_of_map), 1)).dot(np.reshape(self.bias, (1, len(self.bias)))) sigma_i = np.diag(np.ones(len(self.regression_coefficients))) / self.beta inverse_sigma_i = np.diag(np.ones(len(self.regression_coefficients))) * self.beta delta_i = np.linalg.inv(inverse_sigma_i + self.regression_coefficients.dot(self.regression_coefficients.T) / self.sigma) # for target_y_value in target_y_values: pxy_means = np.empty(myu_i.shape) for i in range(pxy_means.shape[0]): pxy_means[i, :] = np.ndarray.flatten( delta_i.dot( self.regression_coefficients / self.sigma * target_y_value + inverse_sigma_i.dot(np.reshape(myu_i[i, :], [myu_i.shape[1], 1])) )) pyz_means = myu_i.dot(self.regression_coefficients) pyz_var = self.sigma + self.regression_coefficients.T.dot( sigma_i.dot(self.regression_coefficients)) pyzs = np.empty(len(pyz_means)) for i in range(len(pyz_means)): pyzs[i] = norm.pdf(target_y_value, pyz_means[i], pyz_var ** (1 / 2)) responsibilities_inverse = pyzs / pyzs.sum() estimated_x_mean = responsibilities_inverse.dot(pxy_means) estimated_x_mode = pxy_means[np.argmax(responsibilities_inverse), :] # pyzs : vector of probability of y given zi, which can be used to # discuss applicability domains return estimated_x_mean, estimated_x_mode, responsibilities_inverse def gtmr_predict(self, input_variables, numbers_of_input_variables, numbers_of_output_variables): """ Predict values of variables for forward analysis (regression) and inverse analysis Parameters ---------- input_variables: numpy.array or pandas.DataFrame (autoscaled) m x n matrix of input variables of training data or test data, m is the number of sammples and n is the number of input variables When this is X-variables, it is forward analysis (regression) and when this is Y-variables, it is inverse analysis numbers_of_input_variables: list or numpy.array vector of numbers of input variables When this is numbers of X-variables, it is forward analysis (regression) and when this is numbers of Y-variables, it is inverse analysis numbers_of_output_variables: list or numpy.array vector of numbers of output variables When this is numbers of Y-variables, it is forward analysis (regression) and when this is numbers of X-variables, it is inverse analysis Returns ------- mode_of_estimated_mean : numpy.array (autoscaled) m x k matrix of output variables estimated using mode of weights, k is the number of output variables weighted_estimated_mean : numpy.array (autoscaled) m x k matrix of output variables estimated using weighted mean, estimated_mean_for_all_components : numpy.array (autoscaled) l x m x k matrix of output variables estimated for all components, weights : numpy.array m x l matrix of weights, """ input_variables = np.array(input_variables) if input_variables.ndim == 0: input_variables = np.reshape(input_variables, (1, 1)) elif input_variables.ndim == 1: input_variables = np.reshape(input_variables, (1, input_variables.shape[0])) if self.success_flag: means = self.phi_of_map_rbf_grids.dot(self.W) + np.ones( (np.prod(self.shape_of_map), 1) ).dot(np.reshape(self.bias, (1, len(self.bias)))) input_means = means[:, numbers_of_input_variables] output_means = means[:, numbers_of_output_variables] input_covariances = np.diag(np.ones(len(numbers_of_input_variables))) / self.beta px = np.empty([input_variables.shape[0], input_means.shape[0]]) for sample_number in range(input_means.shape[0]): px[:, sample_number] = multivariate_normal.pdf(input_variables, input_means[sample_number, :], input_covariances) responsibilities = px.T / px.T.sum(axis=0) responsibilities = responsibilities.T estimated_y_mean = responsibilities.dot(output_means) estimated_y_mode = output_means[np.argmax(responsibilities, axis=1), :] else: estimated_y_mean = np.zeros(input_variables.shape[0]) estimated_y_mode = np.zeros(input_variables.shape[0]) px = np.empty([input_variables.shape[0], np.prod(self.shape_of_map)]) responsibilities = np.empty([input_variables.shape[0], np.prod(self.shape_of_map)]) return estimated_y_mean, estimated_y_mode, responsibilities, px def gtmr_cv_opt(self, dataset, numbers_of_output_variables, candidates_of_shape_of_map, candidates_of_shape_of_rbf_centers, candidates_of_variance_of_rbfs, candidates_of_lambda_in_em_algorithm, fold_number, number_of_iterations): self.display_flag = 0 self.number_of_iterations = number_of_iterations dataset = np.array(dataset) numbers_of_output_variables = np.array(numbers_of_output_variables) numbers_of_input_variables = np.arange(dataset.shape[1]) numbers_of_input_variables = np.delete(numbers_of_input_variables, numbers_of_output_variables) min_number = math.floor(dataset.shape[0] / fold_number) mod_number = dataset.shape[0] - min_number * fold_number index = np.matlib.repmat(np.arange(1, fold_number + 1, 1), 1, min_number).ravel() if mod_number != 0: index = np.r_[index, np.arange(1, mod_number + 1, 1)] # np.random.seed(999) fold_index_in_cv = np.random.permutation(index) np.random.seed() # grid search y = np.ravel(dataset[:, numbers_of_output_variables]) parameters_and_r2_cv = [] all_calculation_numbers = len(candidates_of_shape_of_map) * len(candidates_of_shape_of_rbf_centers) * len( candidates_of_variance_of_rbfs) * len(candidates_of_lambda_in_em_algorithm) calculation_number = 0 for shape_of_map_grid in candidates_of_shape_of_map: for shape_of_rbf_centers_grid in candidates_of_shape_of_rbf_centers: for variance_of_rbfs_grid in candidates_of_variance_of_rbfs: for lambda_in_em_algorithm_grid in candidates_of_lambda_in_em_algorithm: calculation_number += 1 estimated_y_in_cv = np.zeros([dataset.shape[0], len(numbers_of_output_variables)]) success_flag_cv = True for fold_number_in_cv in np.arange(1, fold_number + 1, 1): dataset_train_in_cv = dataset[fold_index_in_cv != fold_number_in_cv, :] dataset_test_in_cv = dataset[fold_index_in_cv == fold_number_in_cv, :] self.shape_of_map = [shape_of_map_grid, shape_of_map_grid] self.shape_of_rbf_centers = [shape_of_rbf_centers_grid, shape_of_rbf_centers_grid] self.variance_of_rbfs = variance_of_rbfs_grid self.lambda_in_em_algorithm = lambda_in_em_algorithm_grid self.fit(dataset_train_in_cv) if self.success_flag: estimated_y_mean, estimated_y_mode, responsibilities, px = self.gtmr_predict( dataset_test_in_cv[:, numbers_of_input_variables], numbers_of_input_variables, numbers_of_output_variables) estimated_y_in_cv[fold_index_in_cv == fold_number_in_cv, :] = estimated_y_mode else: success_flag_cv = False break if success_flag_cv: y_pred = np.ravel(estimated_y_in_cv) r2_cv = float(1 - sum((y - y_pred) ** 2) / sum((y - y.mean()) ** 2)) else: r2_cv = -10 ** 10 parameters_and_r2_cv.append( [shape_of_map_grid, shape_of_rbf_centers_grid, variance_of_rbfs_grid, lambda_in_em_algorithm_grid, r2_cv]) print([calculation_number, all_calculation_numbers, r2_cv]) # optimized GTMR parameters_and_r2_cv = np.array(parameters_and_r2_cv) optimized_hyperparameter_number = \ np.where(parameters_and_r2_cv[:, 4] == np.max(parameters_and_r2_cv[:, 4]))[0][0] self.shape_of_map = [int(parameters_and_r2_cv[optimized_hyperparameter_number, 0]), int(parameters_and_r2_cv[optimized_hyperparameter_number, 0])] self.shape_of_rbf_centers = [int(parameters_and_r2_cv[optimized_hyperparameter_number, 1]), int(parameters_and_r2_cv[optimized_hyperparameter_number, 1])] self.variance_of_rbfs = parameters_and_r2_cv[optimized_hyperparameter_number, 2] self.lambda_in_em_algorithm = parameters_and_r2_cv[optimized_hyperparameter_number, 3]
46.895238
117
0.600579
f13a803e440d714d719cbe16ae982eb996d79408
1,563
py
Python
tools/tiny-test-fw/CIAssignExampleTest.py
Mixerito/esp-idf
20a662936483f44ee9c8d16f3251a5a1191ca6e5
[ "Apache-2.0" ]
14
2018-04-23T20:34:38.000Z
2022-02-03T05:06:57.000Z
tools/tiny-test-fw/CIAssignExampleTest.py
Mixerito/esp-idf
20a662936483f44ee9c8d16f3251a5a1191ca6e5
[ "Apache-2.0" ]
null
null
null
tools/tiny-test-fw/CIAssignExampleTest.py
Mixerito/esp-idf
20a662936483f44ee9c8d16f3251a5a1191ca6e5
[ "Apache-2.0" ]
3
2018-11-25T06:51:59.000Z
2019-07-14T15:47:48.000Z
# Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Command line tool to assign example tests to CI test jobs. """ # TODO: Need to handle running examples on different chips import os import sys import re import argparse test_fw_path = os.getenv("TEST_FW_PATH") if test_fw_path: sys.path.insert(0, test_fw_path) from Utility.CIAssignTest import AssignTest class CIExampleAssignTest(AssignTest): CI_TEST_JOB_PATTERN = re.compile(r"^example_test_.+") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("test_case", help="test case folder or file") parser.add_argument("ci_config_file", help="gitlab ci config file") parser.add_argument("output_path", help="output path of config files") args = parser.parse_args() assign_test = CIExampleAssignTest(args.test_case, args.ci_config_file) assign_test.assign_cases() assign_test.output_configs(args.output_path)
31.897959
74
0.725528
d6ddd88faba42caf19ab392483d9cec0fa476884
391
py
Python
test_mo/asgi.py
Qmanes/test_mo
f175f3d623d499473d88d2357769a3259b9b7484
[ "MIT" ]
null
null
null
test_mo/asgi.py
Qmanes/test_mo
f175f3d623d499473d88d2357769a3259b9b7484
[ "MIT" ]
null
null
null
test_mo/asgi.py
Qmanes/test_mo
f175f3d623d499473d88d2357769a3259b9b7484
[ "MIT" ]
null
null
null
""" ASGI config for test_mo project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'test_mo.settings') application = get_asgi_application()
23
78
0.785166
ebcaf9aa7dbc00bc9ed32c8b5cf12ff21cc8fe5e
1,982
py
Python
robotframework-ls/src/robotframework_ls/__init__.py
JohanMabille/robotframework-lsp
610f0257fdcd79b8c38107a0ecf600f60160bc1f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
robotframework-ls/src/robotframework_ls/__init__.py
JohanMabille/robotframework-lsp
610f0257fdcd79b8c38107a0ecf600f60160bc1f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
robotframework-ls/src/robotframework_ls/__init__.py
JohanMabille/robotframework-lsp
610f0257fdcd79b8c38107a0ecf600f60160bc1f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
__version__ = "0.6.0" version_info = [int(x) for x in __version__.split(".")] import os.path import sys __file__ = os.path.abspath(__file__) if __file__.endswith((".pyc", ".pyo")): __file__ = __file__[:-1] def import_robocorp_ls_core(): """ Helper function to make sure that robocorp_ls_core is imported properly (either in dev or in release mode). """ try: import robocorp_ls_core except ImportError: log_contents = [] use_folder = None try: src_folder = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) log_contents.append("Source folder: %s" % (src_folder,)) src_core_folder = os.path.abspath( os.path.join(src_folder, "..", "..", "robocorp-python-ls-core", "src") ) if os.path.isdir(src_core_folder): log_contents.append("Dev mode detected. Found: %s" % (src_core_folder,)) use_folder = src_core_folder else: vendored_folder = os.path.join( src_folder, "robotframework_ls", "vendored" ) log_contents.append( "Using vendored mode. Found: %s" % (vendored_folder,) ) use_folder = vendored_folder assert os.path.isdir( use_folder ), "Expected: %s to exist and be a directory." % (use_folder,) sys.path.append(use_folder) import robocorp_ls_core except: try: if use_folder: log_contents.append( "%s contents:\n%s" % (use_folder, os.listdir(use_folder)) ) except: log_contents.append("Error in os.listdir('%s')." % (use_folder,)) raise ImportError( "Error importing robocorp_ls_core. Log: %s" % "\n".join(log_contents) )
33.59322
88
0.534309
0ed6c9352b89cb95c37f903654e23611852b093a
25,197
py
Python
src/persistence/response_cache.py
nostalgebraist/nostalgebraist-autoresponder
622349c4cad2a7aec1017837416c58a678151aae
[ "MIT" ]
39
2020-06-19T05:38:11.000Z
2022-03-28T04:35:31.000Z
src/persistence/response_cache.py
nostalgebraist/nostalgebraist-autoresponder
622349c4cad2a7aec1017837416c58a678151aae
[ "MIT" ]
null
null
null
src/persistence/response_cache.py
nostalgebraist/nostalgebraist-autoresponder
622349c4cad2a7aec1017837416c58a678151aae
[ "MIT" ]
2
2021-04-13T18:12:03.000Z
2021-12-16T23:20:12.000Z
""" Originally for caching tumblr API responses to help w/ ratelimiting. Scope creep has caused this to be more of a general cache for lots of stuff, so it now holds a lot of stuff needed for persistent-over-time elements of bot operation, like the mood feature. """ import subprocess from collections import namedtuple, defaultdict from enum import Enum from datetime import datetime, timedelta import pytumblr import time import os import pickle from util.times import now_pst from util.cloudsave import resilient_pickle_load, resilient_pickle_save, CLOUDSAVE_BUCKET import config.bot_config_singleton bot_specific_constants = config.bot_config_singleton.bot_specific_constants NO_REBLOG_IDS = bot_specific_constants.NO_REBLOG_IDS blogName = bot_specific_constants.blogName PostIdentifier = namedtuple("PostIdentifier", "blog_name id_") ReplyIdentifier = namedtuple("ReplyIdentifier", "blog_name id_ timestamp") CachedResponseType = Enum("CachedResponseType", "POSTS NOTES") UserInputType = Enum("UserInputType", "ASK REBLOG REPLY") UserInputIdentifier = namedtuple( "UserInputIdentifier", "input_type blog_name id_ timestamp" ) class ResponseCache: def __init__( self, client: pytumblr.TumblrRestClient, path: str, backup_path: str, cache: dict = None ): self.client = client self.path = path self.backup_path = backup_path self.cache = cache if self.cache is None: self.cache = {rtype: {} for rtype in CachedResponseType} self.cache["reblogs_handled"] = set() if "reblogs_handled" not in self.cache: self.cache["reblogs_handled"] = set() if "replies_handled" not in self.cache: self.cache["replies_handled"] = set() if "user_input_sentiments" not in self.cache: self.cache["user_input_sentiments"] = {} if "blocked_by_users" not in self.cache: self.cache["blocked_by_users"] = set() if "last_accessed_time" not in self.cache: self.cache["last_accessed_time"] = {} if "dash_post_judgments" not in self.cache: self.cache["dash_post_judgments"] = {} if "last_seen_ts" not in self.cache: self.cache["last_seen_ts"] = defaultdict(int) if "following_names" not in self.cache: self.cache["following_names"] = set() @staticmethod def load(client=None, path=f"data/response_cache.pkl.gz", backup_path="data/cloudsave_backups/response_cache.pkl.gz", verbose=True): cache = resilient_pickle_load(path=path) if verbose: lengths = {k: len(cache[k]) for k in cache.keys()} print(f"loaded response cache with lengths {lengths}") loaded = ResponseCache(client, path, backup_path, cache) loaded.remove_oldest() return loaded def save(self, verbose=True): self.remove_oldest() t1 = time.time() resilient_pickle_save(obj=self.cache, path=self.path, backup_path=self.backup_path) _tsave = time.time() print(f"response_cache save 1: {_tsave-t1:.3f}s sec") if verbose: lengths = {k: len(self.cache[k]) for k in CachedResponseType} print(f"saved response cache with lengths {lengths}") def decomposed_save(self, directory: str): # for tracking sizes of individual parts os.makedirs(directory, exist_ok=True) for k, v in self.cache.items(): path = os.path.join(directory, f"{repr(k)}.pkl.gz") with open(path, "wb") as f: pickle.dump({k: self.cache[k]}, f) print(f"wrote {repr(k)} to {path}") def remove_oldest(self, max_hours=18, dryrun=False): lat = self.cache["last_accessed_time"] existing_p = self.cache[CachedResponseType.POSTS] existing_n = self.cache[CachedResponseType.NOTES] existing_dpj = self.cache["dash_post_judgments"] last_allowed_time = now_pst() - timedelta(hours=max_hours) allowed_p = {pi for pi, t in lat.items() if t >= last_allowed_time} new_p = {pi: existing_p[pi] for pi in existing_p if pi in allowed_p} new_n = {pi: existing_n[pi] for pi in existing_n if pi in allowed_p} new_lat = {pi: lat[pi] for pi in lat if pi in allowed_p} new_dpj = {pi: existing_dpj[pi] for pi in existing_dpj if pi in allowed_p} before_len_p = len(existing_p) before_len_n = len(existing_n) before_len_lat = len(lat) before_len_dpj = len(existing_dpj) delta_len_p = before_len_p - len(new_p) delta_len_n = before_len_n - len(new_n) delta_len_lat = before_len_lat - len(new_lat) delta_len_dpj = before_len_dpj - len(new_dpj) if dryrun: print(f"remove_oldest: would drop {delta_len_p} of {before_len_p} POSTS") print(f"remove_oldest: would drop {delta_len_n} of {before_len_n} NOTES") print(f"remove_oldest: would drop {delta_len_lat} of {before_len_lat} last_accessed_time") print(f"remove_oldest: would drop {delta_len_dpj} of {before_len_dpj} dash_post_judgments") else: print(f"remove_oldest: dropping {delta_len_p} of {before_len_p} POSTS") print(f"remove_oldest: dropping {delta_len_n} of {before_len_n} NOTES") print(f"remove_oldest: dropping {delta_len_lat} of {before_len_lat} last_accessed_time") print(f"remove_oldest: dropping {delta_len_dpj} of {before_len_dpj} dash_post_judgments") self.cache[CachedResponseType.POSTS] = new_p self.cache[CachedResponseType.NOTES] = new_n self.cache["last_accessed_time"] = new_lat self.cache["dash_post_judgments"] = new_dpj def record_response_to_cache( self, response: dict, care_about_notes=True, care_about_likes=False ): if response.get("response") == "You do not have permission to view this blog": # TODO: make this work properly user = response.get("blog", {}).get("name", None) if user is not None: self.mark_blocked_by_user(user) return response if "posts" not in response: print(f"weirdness: {response}") return response for response_core in response["posts"]: identifier = PostIdentifier(response_core["blog_name"], response_core["id"]) post_payload = {k: v for k, v in response_core.items() if k != "notes"} notes = self.normalized_lookup(CachedResponseType.NOTES, identifier) if notes is None: notes = [] timestamps = {n["timestamp"] for n in notes} payload_notes = response_core.get("notes", []) new_notes = [n for n in payload_notes if n["timestamp"] not in timestamps] if care_about_notes and len(payload_notes) > 0: compare_on_conversational = ( len(self.conversational_notes(payload_notes)) > 0 ) if compare_on_conversational: latest_obtained_ts = self.latest_stored_conversational_note_ts( identifier ) else: latest_obtained_ts = self.latest_stored_note_ts(identifier) reference_note_ts = self.earliest_conversational_note_ts(payload_notes) notes.extend(new_notes) if care_about_notes and len(payload_notes) > 0: expected_notes = response_core["note_count"] + 1 cache_up_to_date = ( False if len(timestamps) == 0 else (reference_note_ts < latest_obtained_ts) ) if not cache_up_to_date and response_core["id"] not in NO_REBLOG_IDS: done_calling_notes_endpt = False # need this to get the links time.sleep(0.33) print(f"\thave {len(notes)} notes of {expected_notes}") note_response = self.client.notes( identifier.blog_name, id=identifier.id_, mode="conversation" ) payload_notes = note_response["notes"] new_notes = [ n for n in payload_notes if n["timestamp"] not in timestamps ] notes.extend(new_notes) done_calling_notes_endpt = ( False if len(timestamps) == 0 else ( self.earliest_conversational_note_ts(payload_notes) < latest_obtained_ts ) ) while (not done_calling_notes_endpt) and ( "_links" in note_response ): time.sleep(0.33) note_response = self.client.notes( identifier.blog_name, id=identifier.id_, mode="conversation", before_timestamp=note_response["_links"]["next"][ "query_params" ]["before_timestamp"], ) payload_notes = note_response["notes"] new_notes = [ n for n in payload_notes if n["timestamp"] not in timestamps ] notes.extend(new_notes) print(f"\thave {len(notes)} notes of {expected_notes}") done_calling_notes_endpt = ( False if len(timestamps) == 0 else ( self.earliest_conversational_note_ts(payload_notes) < latest_obtained_ts ) ) self.cache[CachedResponseType.NOTES][identifier] = sorted( notes, key=lambda n: n["timestamp"], reverse=True ) self.cache[CachedResponseType.POSTS][identifier] = post_payload return response def _cached_note_count(self, rtype, identifier, use_overrides=True): if ((identifier, "note_count_override") in self.cache[rtype]) and use_overrides: return self.cache[rtype][(identifier, "note_count_override")] return max(0, len(self.cache[rtype][identifier])) def _note_cache_uptodate( self, identifier: PostIdentifier, expected_notes: int, reference_note_ts: dict, compare_on_conversational=True, ): if expected_notes is None and reference_note_ts is None: print(f"matchers not provided, pulling fresh notes for {identifier}") return False normalized_ident = self.get_normalized_ident( CachedResponseType.NOTES, identifier ) if normalized_ident is None: print(f"note cache unavailable for {identifier}") return False if reference_note_ts is not None: if compare_on_conversational: latest_stored_ts = self.latest_stored_conversational_note_ts( normalized_ident ) else: latest_stored_ts = self.latest_stored_note_ts(normalized_ident) if latest_stored_ts < reference_note_ts: print(f"_note_cache_uptodate: NOT up to date") print( f"_note_cache_uptodate: got latest_stored_ts={latest_stored_ts} vs reference_note_ts={reference_note_ts}" ) print(f"_note_cache_uptodate: {latest_stored_ts >= reference_note_ts}") return latest_stored_ts >= reference_note_ts cached_notes = self._cached_note_count( CachedResponseType.NOTES, normalized_ident ) cache_uptodate = expected_notes <= cached_notes if not cache_uptodate: print( f"note cache stale for {normalized_ident}: expected {expected_notes} notes but have {cached_notes} in cache" ) return cache_uptodate def _api_call_for_rtype( self, rtype: CachedResponseType, identifier: PostIdentifier, care_about_notes=True, care_about_likes=False, notes_field=None, # TODO: use this properly ): time.sleep(0.33) response = self.client.posts( identifier.blog_name, id=identifier.id_, notes_info=True ) self.record_response_to_cache( response, care_about_notes=care_about_notes, care_about_likes=care_about_likes, ) def _can_use_cached( self, rtype: CachedResponseType, identifier: PostIdentifier, expected_notes: int = None, notes_field: list = None, ): is_in_cache = self.get_normalized_ident(rtype, identifier) is not None cache_uptodate = True if rtype == CachedResponseType.NOTES and is_in_cache: reference_note_ts = self.earliest_conversational_note_ts(notes_field) if reference_note_ts is None: cache_uptodate = True else: compare_on_conversational = ( True if notes_field is None else len(self.conversational_notes(notes_field)) > 0 ) cache_uptodate = self._note_cache_uptodate( identifier, expected_notes, reference_note_ts, compare_on_conversational=compare_on_conversational, ) return is_in_cache and cache_uptodate def _record_unexpected_note_counts(self, rtype, identifier, expected_notes): cached_notes = self._cached_note_count(rtype, identifier, use_overrides=False) if cached_notes != expected_notes: print( f"cache note count {cached_notes} still != expected {expected_notes} for {identifier}, marking {expected_notes} as override" ) self.cache[rtype][(identifier, "note_count_override")] = expected_notes if (cached_notes == expected_notes) and ( (identifier, "note_count_override") in self.cache[rtype] ): print( f"cache note count {cached_notes} = expected {expected_notes} for {identifier}, unsetting override" ) del self.cache[rtype][(identifier, "note_count_override")] def get_normalized_ident(self, rtype, identifier): identifier_int = PostIdentifier(identifier.blog_name, int(identifier.id_)) identifier_str = PostIdentifier(identifier.blog_name, str(identifier.id_)) if identifier_int in self.cache[rtype]: self.cache["last_accessed_time"][identifier_int] = now_pst() return identifier_int if identifier_str in self.cache[rtype]: self.cache["last_accessed_time"][identifier_str] = now_pst() return identifier_str return None def normalized_lookup(self, rtype, identifier, expect_in_cache=False): normalized_ident = self.get_normalized_ident(rtype, identifier) if normalized_ident is None: if expect_in_cache: print(f"{identifier} should be in {rtype} cache but isn't") return None return self.cache[rtype][normalized_ident] def query( self, rtype: CachedResponseType, identifier: PostIdentifier, expected_notes: int = None, notes_field: list = None, care_about_notes=True, care_about_likes=False, ): if care_about_likes: notes_field = None if not self._can_use_cached(rtype, identifier, expected_notes, notes_field): self._api_call_for_rtype( rtype, identifier, care_about_notes=care_about_notes, care_about_likes=care_about_likes, notes_field=notes_field, ) return self.normalized_lookup(rtype, identifier, expect_in_cache=True) def mark_handled(self, identifier: PostIdentifier): identifier_normalized = PostIdentifier( blog_name=identifier.blog_name, id_=str(identifier.id_) ) tip = self.cached_trail_tip(identifier_normalized) if tip is not None: if tip != identifier and tip.blog_name != blogName: print( f"mark_handled: for {identifier}, also marking tip {tip} as handled" ) self.cache["reblogs_handled"].add(tip) else: print(f"mark_handled: for {identifier}, found no tip {tip} to mark") self.cache["reblogs_handled"].add(identifier_normalized) def mark_unhandled(self, identifier: PostIdentifier): tip = self.cached_trail_tip(identifier) if tip is not None and tip in self.cache["reblogs_handled"]: if tip != identifier: print( f"mark_unhandled: for {identifier}, also marking tip {tip} as unhandled" ) self.cache["reblogs_handled"].remove(tip) if identifier in self.cache["reblogs_handled"]: self.cache["reblogs_handled"].remove(identifier) @staticmethod def trail_tip(trail: list): if trail is None: return None ordered_trail = sorted(trail, key=lambda x: x.get("post", {}).get("id", "-1")) if len(ordered_trail) > 0: tip = ordered_trail[-1] tip_ident = PostIdentifier( tip.get("blog", {}).get("name", ""), str(tip.get("post", {}).get("id", "-1")), ) return tip_ident def cached_trail_tip(self, identifier: PostIdentifier): cached_post = self.normalized_lookup(CachedResponseType.POSTS, identifier) if cached_post is not None: tip = ResponseCache.trail_tip(cached_post.get("trail")) return tip def is_handled(self, identifier: PostIdentifier, check_tip=True): identifier_normalized = PostIdentifier( blog_name=identifier.blog_name, id_=str(identifier.id_) ) handled_at_ident = identifier_normalized in self.cache["reblogs_handled"] handled_at_tip = None tip = self.cached_trail_tip(identifier_normalized) if check_tip else None if tip is not None: handled_at_tip = self.is_handled(tip, check_tip=False) if handled_at_tip is not None: # print(f"identifier: handled_at_ident={handled_at_ident}") # print(f"identifier: handled_at_tip={handled_at_tip}") handled = handled_at_tip or handled_at_ident else: handled = handled_at_ident return handled def mark_reply_handled(self, identifier: ReplyIdentifier): identifier_normalized = ReplyIdentifier( blog_name=identifier.blog_name, id_=str(identifier.id_), timestamp=identifier.timestamp, ) self.cache["replies_handled"].add(identifier_normalized) def is_reply_handled(self, identifier: ReplyIdentifier): identifier_normalized = ReplyIdentifier( blog_name=identifier.blog_name, id_=str(identifier.id_), timestamp=identifier.timestamp, ) return identifier_normalized in self.cache["replies_handled"] def mark_user_input_sentiment( self, identifier: UserInputIdentifier, sentiment: dict ): identifier_normalized = UserInputIdentifier( input_type=identifier.input_type, blog_name=identifier.blog_name, id_=str(identifier.id_) if identifier.id_ is not None else None, timestamp=identifier.timestamp, ) self.cache["user_input_sentiments"][identifier_normalized] = sentiment def get_cached_user_input_sentiment(self, identifier: UserInputIdentifier): identifier_normalized = UserInputIdentifier( input_type=identifier.input_type, blog_name=identifier.blog_name, id_=str(identifier.id_) if identifier.id_ is not None else None, timestamp=identifier.timestamp, ) return self.cache["user_input_sentiments"].get(identifier_normalized) def mark_dash_post_judgments( self, identifier: PostIdentifier, judgments: dict ): identifier_normalized = PostIdentifier( blog_name=identifier.blog_name, id_=str(identifier.id_) ) self.cache["dash_post_judgments"][identifier_normalized] = judgments def get_cached_dash_post_judgments( self, identifier: PostIdentifier ): return self.normalized_lookup('dash_post_judgments', identifier) def mark_blocked_by_user(self, blog_name: str): self.cache["blocked_by_users"].add(blog_name) @staticmethod def conversational_notes(notes_field: list): # return [n for n in notes_field if n.get('type') != "like"] added_text_fields = ["added_text", "reply_text"] return [ n for n in notes_field if any([field in n for field in added_text_fields]) or n.get("type") == "posted" ] @staticmethod def conversational_notes_with_fallback(notes_field: list, direction="earliest"): conv_notes = ResponseCache.conversational_notes(notes_field) if len(conv_notes) > 0: return conv_notes # fallback if direction == "earliest": return sorted(notes_field, key=lambda n: n.get("timestamp", -1))[:1] else: return sorted(notes_field, key=lambda n: n.get("timestamp", -1))[-1:] @staticmethod def conversational_notes_ts_with_fallback( notes_field: list, direction="earliest", debug=False ): conv_notes = ResponseCache.conversational_notes_with_fallback( notes_field, direction=direction ) notes_ts = [n.get("timestamp") for n in conv_notes if "timestamp" in n] if debug: print( f"\nnotes_ts={notes_ts}\n\tgot notes_field={notes_field}\n\tgot conv_notes={conv_notes}\n" ) return notes_ts @staticmethod def earliest_conversational_note_ts(notes_field: list): if notes_field is None: return None return min( ResponseCache.conversational_notes_ts_with_fallback( notes_field, direction="earliest" ) ) @staticmethod def latest_conversational_note_ts(notes_field: list): if notes_field is None: return None return max( ResponseCache.conversational_notes_ts_with_fallback( notes_field, direction="latest" ) ) def latest_stored_conversational_note_ts(self, identifier: PostIdentifier): notes = self.normalized_lookup(CachedResponseType.NOTES, identifier) if notes is not None: return self.latest_conversational_note_ts(notes) return None def latest_stored_note_ts(self, identifier: PostIdentifier): notes = self.normalized_lookup(CachedResponseType.NOTES, identifier) if notes is not None: notes_ts = [n.get("timestamp") for n in notes if "timestamp" in n] return -1 if len(notes_ts) == 0 else max(notes_ts) return -1 def get_last_seen_ts(self, key): return self.cache['last_seen_ts'][key] def update_last_seen_ts(self, key, ts): prev = self.get_last_seen_ts(key) print( f"updating {key}: {prev} --> {ts} (+{ts-prev})" ) self.cache['last_seen_ts'][key] = ts def set_following_names(self, following_names): self.cache["following_names"] = following_names def follow(self, name, dashboard_client): self.cache["following_names"].add(name) dashboard_client.follow(name) def unfollow(self, name, dashboard_client): self.cache["following_names"].remove(name) dashboard_client.unfollow(name) @property def reblogs_handled(self): return self.cache["reblogs_handled"] @property def replies_handled(self): return self.cache["replies_handled"] @property def text_selector_probs(self): return self.cache["text_selector_probs"] @property def text_sentiments(self): return self.cache["text_sentiments"] @property def user_input_sentiments(self): return self.cache["user_input_sentiments"] @property def blocked_by_users(self): return self.cache["blocked_by_users"] @property def following_names(self): return self.cache["following_names"]
39.49373
140
0.613168
ed3bbae33cd01724c5151b3ac4c16ed8a05d72bf
125
py
Python
sourcehold/maps/sections/section1021.py
J-T-de/sourcehold-maps
330ab1b3426dbd93b5de3b0c031419e54f6a1618
[ "MIT" ]
null
null
null
sourcehold/maps/sections/section1021.py
J-T-de/sourcehold-maps
330ab1b3426dbd93b5de3b0c031419e54f6a1618
[ "MIT" ]
null
null
null
sourcehold/maps/sections/section1021.py
J-T-de/sourcehold-maps
330ab1b3426dbd93b5de3b0c031419e54f6a1618
[ "MIT" ]
null
null
null
from .types import TileCompressedMapSection class Section1021(TileCompressedMapSection): _TYPE_ = "H" _CLASS_ = int
20.833333
44
0.768
eb21c84cf904c163f20c464c1db0f9d3948b53f3
7,464
py
Python
sort.py
qadeer7194/-Dyanmic-Traffic-Light-Management-System
4b34fdf74b07967b49c2d03807bb6a5ef310208e
[ "MIT" ]
null
null
null
sort.py
qadeer7194/-Dyanmic-Traffic-Light-Management-System
4b34fdf74b07967b49c2d03807bb6a5ef310208e
[ "MIT" ]
null
null
null
sort.py
qadeer7194/-Dyanmic-Traffic-Light-Management-System
4b34fdf74b07967b49c2d03807bb6a5ef310208e
[ "MIT" ]
null
null
null
""" SORT: A Simple, Online and Realtime Tracker Copyright (C) 2016 Alex Bewley alex@dynamicdetection.com This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ from __future__ import print_function from numba import jit import numpy as np from sklearn.utils.linear_assignment_ import linear_assignment from filterpy.kalman import KalmanFilter @jit def iou(bb_test,bb_gt): """ Computes IUO between two bboxes in the form [x1,y1,x2,y2] """ xx1 = np.maximum(bb_test[0], bb_gt[0]) yy1 = np.maximum(bb_test[1], bb_gt[1]) xx2 = np.minimum(bb_test[2], bb_gt[2]) yy2 = np.minimum(bb_test[3], bb_gt[3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) wh = w * h o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1]) + (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh) return(o) def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2]-bbox[0] h = bbox[3]-bbox[1] x = bbox[0]+w/2. y = bbox[1]+h/2. s = w*h #scale is just area r = w/float(h) return np.array([x,y,s,r]).reshape((4,1)) def convert_x_to_bbox(x,score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2]*x[3]) h = x[2]/w if(score==None): return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) else: return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) class KalmanBoxTracker(object): """ This class represents the internel state of individual tracked objects observed as bbox. """ count = 0 def __init__(self,bbox): """ Initialises a tracker using initial bounding box. """ #define constant velocity model self.kf = KalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) self.kf.R[2:,2:] *= 10. self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities self.kf.P *= 10. self.kf.Q[-1,-1] *= 0.01 self.kf.Q[4:,4:] *= 0.01 self.kf.x[:4] = convert_bbox_to_z(bbox) self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 def update(self,bbox): """ Updates the state vector with observed bbox. """ self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if((self.kf.x[6]+self.kf.x[2])<=0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if(self.time_since_update>0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x)) return self.history[-1] def get_state(self): """ Returns the current bounding box estimate. """ return convert_x_to_bbox(self.kf.x) def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): """ Assigns detections to tracked object (both represented as bounding boxes) Returns 3 lists of matches, unmatched_detections and unmatched_trackers """ if(len(trackers)==0) or (len(detections)==0): return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32) for d,det in enumerate(detections): for t,trk in enumerate(trackers): iou_matrix[d,t] = iou(det,trk) matched_indices = linear_assignment(-iou_matrix) unmatched_detections = [] for d,det in enumerate(detections): if(d not in matched_indices[:,0]): unmatched_detections.append(d) unmatched_trackers = [] for t,trk in enumerate(trackers): if(t not in matched_indices[:,1]): unmatched_trackers.append(t) #filter out matched with low IOU matches = [] for m in matched_indices: if(iou_matrix[m[0],m[1]]<iou_threshold): unmatched_detections.append(m[0]) unmatched_trackers.append(m[1]) else: matches.append(m.reshape(1,2)) if(len(matches)==0): matches = np.empty((0,2),dtype=int) else: matches = np.concatenate(matches,axis=0) return matches, np.array(unmatched_detections), np.array(unmatched_trackers) class Sort(object): def __init__(self,max_age=1,min_hits=3): """ Sets key parameters for SORT """ self.max_age = max_age self.min_hits = min_hits self.trackers = [] self.frame_count = 0 def update(self,dets): """ Params: dets - a numpy array of detections in the format [[x,y,w,h,score],[x,y,w,h,score],...] Requires: this method must be called once for each frame even with empty detections. Returns the a similar array, where the last column is the object ID. NOTE: The number of objects returned may differ from the number of detections provided. """ if len(dets)==0: return np.empty((0)) self.frame_count += 1 #get predicted locations from existing trackers. trks = np.zeros((len(self.trackers),5)) to_del = [] ret = [] for t,trk in enumerate(trks): pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if(np.any(np.isnan(pos))): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) for t in reversed(to_del): self.trackers.pop(t) matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks) #update matched trackers with assigned detections for t,trk in enumerate(self.trackers): if(t not in unmatched_trks): d = matched[np.where(matched[:,1]==t)[0],0] trk.update(dets[d,:][0]) #create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i,:]) self.trackers.append(trk) i = len(self.trackers) for trk in reversed(self.trackers): d = trk.get_state()[0] if((trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits)): ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive i -= 1 #remove dead tracklet if(trk.time_since_update > self.max_age): self.trackers.pop(i) if(len(ret)>0): return np.concatenate(ret) return np.empty((0,5))
33.470852
141
0.649652
74d2597968e3350550b601757925a3fa106e4c36
63,112
py
Python
geoalchemy2/_functions.py
jimfulton/geoalchemy2
0ed84a38cc5a224c6d3f9dc6281800bd0f158f9b
[ "MIT" ]
388
2015-01-05T05:18:04.000Z
2022-03-04T23:24:08.000Z
geoalchemy2/_functions.py
jimfulton/geoalchemy2
0ed84a38cc5a224c6d3f9dc6281800bd0f158f9b
[ "MIT" ]
233
2015-01-01T20:16:10.000Z
2022-03-23T14:05:46.000Z
geoalchemy2/_functions.py
jimfulton/geoalchemy2
0ed84a38cc5a224c6d3f9dc6281800bd0f158f9b
[ "MIT" ]
81
2015-05-04T15:45:33.000Z
2022-03-02T13:51:27.000Z
# -*- coding: utf-8 -*- # flake8: noqa from . import types _FUNCTIONS = [ ('AddGeometryColumn', None, '''Adds a geometry column to an existing table.'''), ('DropGeometryColumn', None, '''Removes a geometry column from a spatial table.'''), ('DropGeometryTable', None, '''Drops a table and all its references in geometry_columns.'''), ('Find_SRID', None, '''Returns the SRID defined for a geometry column.'''), ('Populate_Geometry_Columns', None, '''Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.'''), ('UpdateGeometrySRID', None, '''Updates the SRID of all features in a geometry column, and the table metadata.'''), ('ST_Collect', types.Geometry, '''Creates a GeometryCollection or Multi* geometry from a set of geometries.'''), ('ST_LineFromMultiPoint', types.Geometry, '''Creates a LineString from a MultiPoint geometry.'''), ('ST_MakeEnvelope', types.Geometry, '''Creates a rectangular Polygon from minimum and maximum coordinates.'''), ('ST_MakeLine', types.Geometry, '''Creates a Linestring from Point, MultiPoint, or LineString geometries.'''), ('ST_MakePoint', types.Geometry, '''Creates a 2D, 3DZ or 4D Point.'''), ('ST_MakePointM', types.Geometry, '''Creates a Point from X, Y and M values.'''), ('ST_MakePolygon', types.Geometry, '''Creates a Polygon from a shell and optional list of holes.'''), ('ST_Point', types.Geometry, '''Creates a Point with the given coordinate values. Alias for ST_MakePoint.'''), ('ST_Polygon', types.Geometry, '''[geometry] Creates a Polygon from a LineString with a specified SRID.\nOR\n[raster] Returns a multipolygon geometry formed by the union of pixels that have a pixel value that is not no data value. If no band number is specified, band num defaults to 1.'''), ('ST_TileEnvelope', types.Geometry, '''Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.'''), ('GeometryType', None, '''Returns the type of a geometry as text.'''), ('ST_Boundary', types.Geometry, '''Returns the boundary of a geometry.'''), ('ST_CoordDim', None, '''Return the coordinate dimension of a geometry.'''), ('ST_Dimension', None, '''Returns the topological dimension of a geometry.'''), ('ST_Dump', types.GeometryDump, '''Returns a set of geometry_dump rows for the components of a geometry.'''), ('ST_DumpPoints', types.GeometryDump, '''Returns a set of geometry_dump rows for the points in a geometry.'''), ('ST_DumpRings', types.GeometryDump, '''Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.'''), ('ST_EndPoint', types.Geometry, '''Returns the last point of a LineString or CircularLineString.'''), ('ST_Envelope', types.Geometry, '''[geometry] Returns a geometry representing the bounding box of a geometry.\nOR\n[raster] Returns the polygon representation of the extent of the raster.'''), ('ST_BoundingDiagonal', types.Geometry, '''Returns the diagonal of a geometry's bounding box.'''), ('ST_ExteriorRing', types.Geometry, '''Returns a LineString representing the exterior ring of a Polygon.'''), ('ST_GeometryN', types.Geometry, '''Return the Nth geometry element of a geometry collection.'''), ('ST_GeometryType', None, '''Returns the SQL-MM type of a geometry as text.'''), ('ST_HasArc', None, '''Tests if a geometry contains a circular arc'''), ('ST_InteriorRingN', types.Geometry, '''Returns the Nth interior ring (hole) of a Polygon.'''), ('ST_IsPolygonCCW', None, '''Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.'''), ('ST_IsPolygonCW', None, '''Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.'''), ('ST_IsClosed', None, '''Tests if a LineStrings's start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).'''), ('ST_IsCollection', None, '''Tests if a geometry is a geometry collection type.'''), ('ST_IsEmpty', None, '''[geometry] Tests if a geometry is empty.\nOR\n[raster] Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.'''), ('ST_IsRing', None, '''Tests if a LineString is closed and simple.'''), ('ST_IsSimple', None, '''Tests if a geometry has no points of self-intersection or self-tangency.'''), ('ST_M', None, '''Returns the M coordinate of a Point.'''), ('ST_MemSize', None, '''[geometry] Returns the amount of memory space a geometry takes.\nOR\n[raster] Returns the amount of space (in bytes) the raster takes.'''), ('ST_NDims', None, '''Returns the coordinate dimension of a geometry.'''), ('ST_NPoints', None, '''Returns the number of points (vertices) in a geometry.'''), ('ST_NRings', None, '''Returns the number of rings in a polygonal geometry.'''), ('ST_NumGeometries', None, '''Returns the number of elements in a geometry collection.'''), ('ST_NumInteriorRings', None, '''Returns the number of interior rings (holes) of a Polygon.'''), ('ST_NumInteriorRing', None, '''Returns the number of interior rings (holes) of a Polygon. Aias for ST_NumInteriorRings'''), ('ST_NumPatches', None, '''Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.'''), ('ST_NumPoints', None, '''Returns the number of points in a LineString or CircularString.'''), ('ST_PatchN', types.Geometry, '''Returns the Nth geometry (face) of a PolyhedralSurface.'''), ('ST_PointN', types.Geometry, '''Returns the Nth point in the first LineString or circular LineString in a geometry.'''), ('ST_Points', types.Geometry, '''Returns a MultiPoint containing all the coordinates of a geometry.'''), ('ST_StartPoint', types.Geometry, '''Returns the first point of a LineString.'''), ('ST_Summary', None, '''[geometry] Returns a text summary of the contents of a geometry.\nOR\n[raster] Returns a text summary of the contents of the raster.'''), ('ST_X', None, '''Returns the X coordinate of a Point.'''), ('ST_Y', None, '''Returns the Y coordinate of a Point.'''), ('ST_Z', None, '''Returns the Z coordinate of a Point.'''), ('ST_Zmflag', None, '''Returns a code indicating the ZM coordinate dimension of a geometry.'''), ('ST_AddPoint', types.Geometry, '''Add a point to a LineString.'''), ('ST_CollectionExtract', types.Geometry, '''Given a (multi)geometry, return a (multi)geometry consisting only of elements of the specified type.'''), ('ST_CollectionHomogenize', types.Geometry, '''Given a geometry collection, return the \"simplest\" representation of the contents.'''), ('ST_Force2D', types.Geometry, '''Force the geometries into a \"2-dimensional mode\".'''), ('ST_Force3D', types.Geometry, ('''Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.''', 'ST_Force_3D')), ('ST_Force3DZ', types.Geometry, ('''Force the geometries into XYZ mode.''', 'ST_Force_3DZ')), ('ST_Force3DM', types.Geometry, ('''Force the geometries into XYM mode.''', 'ST_Force_3DZ')), ('ST_Force4D', types.Geometry, ('''Force the geometries into XYZM mode.''', 'ST_Force_4D')), ('ST_ForcePolygonCCW', types.Geometry, '''Orients all exterior rings counter-clockwise and all interior rings clockwise.'''), ('ST_ForceCollection', types.Geometry, ('''Convert the geometry into a GEOMETRYCOLLECTION.''', 'ST_Force_Collection')), ('ST_ForcePolygonCW', types.Geometry, '''Orients all exterior rings clockwise and all interior rings counter-clockwise.'''), ('ST_ForceSFS', types.Geometry, '''Force the geometries to use SFS 1.1 geometry types only.'''), ('ST_ForceRHR', types.Geometry, '''Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.'''), ('ST_ForceCurve', types.Geometry, '''Upcast a geometry into its curved type, if applicable.'''), ('ST_LineMerge', types.Geometry, '''Return a (set of) LineString(s) formed by sewing together a MULTILINESTRING.'''), ('ST_Multi', types.Geometry, '''Return the geometry as a MULTI* geometry.'''), ('ST_Normalize', types.Geometry, '''Return the geometry in its canonical form.'''), ('ST_QuantizeCoordinates', types.Geometry, '''Sets least significant bits of coordinates to zero'''), ('ST_RemovePoint', types.Geometry, '''Remove point from a linestring.'''), ('ST_Reverse', types.Geometry, '''Return the geometry with vertex order reversed.'''), ('ST_Segmentize', types.Geometry, '''Return a modified geometry/geography having no segment longer than the given distance.'''), ('ST_SetPoint', types.Geometry, '''Replace point of a linestring with a given point.'''), ('ST_SnapToGrid', types.Geometry, '''[geometry] Snap all points of the input geometry to a regular grid.\nOR\n[raster] Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.'''), ('ST_Snap', types.Geometry, '''Snap segments and vertices of input geometry to vertices of a reference geometry.'''), ('ST_SwapOrdinates', types.Geometry, '''Returns a version of the given geometry with given ordinate values swapped.'''), ('ST_IsValid', None, '''Tests if a geometry is well-formed in 2D.'''), ('ST_IsValidDetail', None, '''Returns a valid_detail row stating if a geometry is valid, and if not a reason why and a location.'''), ('ST_IsValidReason', None, '''Returns text stating if a geometry is valid, or a reason for invalidity.'''), ('ST_SetSRID', types.Geometry, '''[geometry] Set the SRID on a geometry to a particular integer value.\nOR\n[raster] Sets the SRID of a raster to a particular integer srid defined in the spatial_ref_sys table.'''), ('ST_SRID', None, '''[geometry] Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.\nOR\n[raster] Returns the spatial reference identifier of the raster as defined in spatial_ref_sys table.'''), ('ST_Transform', types.Geometry, '''[geometry] Return a new geometry with its coordinates transformed to a different spatial reference system.\nOR\n[raster] Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.'''), ('ST_BdPolyFromText', types.Geometry, '''Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known text representation.'''), ('ST_BdMPolyFromText', types.Geometry, '''Construct a MultiPolygon given an arbitrary collection of closed linestrings as a MultiLineString text representation Well-Known text representation.'''), ('ST_GeogFromText', types.Geography, '''Return a specified geography value from Well-Known Text representation or extended (WKT).'''), ('ST_GeographyFromText', types.Geography, '''Return a specified geography value from Well-Known Text representation or extended (WKT).'''), ('ST_GeomCollFromText', types.Geometry, '''Makes a collection Geometry from collection WKT with the given SRID. If SRID is not given, it defaults to 0.'''), ('ST_GeomFromEWKT', types.Geometry, '''Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).'''), ('ST_GeometryFromText', types.Geometry, '''Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText'''), ('ST_GeomFromText', types.Geometry, '''Return a specified ST_Geometry value from Well-Known Text representation (WKT).'''), ('ST_LineFromText', types.Geometry, '''Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to 0.'''), ('ST_MLineFromText', types.Geometry, '''Return a specified ST_MultiLineString value from WKT representation.'''), ('ST_MPointFromText', types.Geometry, '''Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.'''), ('ST_MPolyFromText', types.Geometry, '''Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.'''), ('ST_PointFromText', types.Geometry, '''Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.'''), ('ST_PolygonFromText', types.Geometry, '''Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.'''), ('ST_WKTToSQL', types.Geometry, '''Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText'''), ('ST_GeogFromWKB', types.Geography, '''Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).'''), ('ST_GeomFromEWKB', types.Geometry, '''Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).'''), ('ST_GeomFromWKB', types.Geometry, '''Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID.'''), ('ST_LineFromWKB', types.Geometry, '''Makes a LINESTRING from WKB with the given SRID'''), ('ST_LinestringFromWKB', types.Geometry, '''Makes a geometry from WKB with the given SRID.'''), ('ST_PointFromWKB', types.Geometry, '''Makes a geometry from WKB with the given SRID'''), ('ST_WKBToSQL', types.Geometry, '''Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias name for ST_GeomFromWKB that takes no srid'''), ('ST_Box2dFromGeoHash', types.Geometry, '''Return a BOX2D from a GeoHash string.'''), ('ST_GeomFromGeoHash', types.Geometry, '''Return a geometry from a GeoHash string.'''), ('ST_GeomFromGML', types.Geometry, '''Takes as input GML representation of geometry and outputs a PostGIS geometry object'''), ('ST_GeomFromGeoJSON', types.Geometry, '''Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object'''), ('ST_GeomFromKML', types.Geometry, '''Takes as input KML representation of geometry and outputs a PostGIS geometry object'''), ('ST_GeomFromTWKB', types.Geometry, '''Creates a geometry instance from a TWKB (\"Tiny Well-Known Binary\") geometry representation.'''), ('ST_GMLToSQL', types.Geometry, '''Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML'''), ('ST_LineFromEncodedPolyline', types.Geometry, '''Creates a LineString from an Encoded Polyline.'''), ('ST_PointFromGeoHash', types.Geometry, '''Return a point from a GeoHash string.'''), ('ST_AsEWKT', None, '''Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.'''), ('ST_AsText', None, '''Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.'''), ('ST_AsBinary', None, '''Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.'''), ('ST_AsEWKB', None, '''Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.'''), ('ST_AsHEXEWKB', None, '''Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.'''), ('ST_AsEncodedPolyline', None, '''Returns an Encoded Polyline from a LineString geometry.'''), ('ST_AsGeobuf', None, '''Return a Geobuf representation of a set of rows.'''), ('ST_AsGML', None, '''Return the geometry as a GML version 2 or 3 element.'''), ('ST_AsKML', None, '''Return the geometry as a KML element. Several variants. Default version=2, default maxdecimaldigits=15'''), ('ST_AsLatLonText', None, '''Return the Degrees, Minutes, Seconds representation of the given point.'''), ('ST_AsMVTGeom', types.Geometry, '''Transform a geometry into the coordinate space of a Mapbox Vector Tile.'''), ('ST_AsMVT', None, '''Aggregate function returning a Mapbox Vector Tile representation of a set of rows.'''), ('ST_AsSVG', None, '''Returns SVG path data for a geometry.'''), ('ST_AsTWKB', None, '''Returns the geometry as TWKB, aka \"Tiny Well-Known Binary\"'''), ('ST_AsX3D', None, '''Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML'''), ('ST_GeoHash', None, '''Return a GeoHash representation of the geometry.'''), ('ST_3DIntersects', None, '''Returns TRUE if the Geometries \"spatially intersect\" in 3D - only for points, linestrings, polygons, polyhedral surface (area).'''), ('ST_Contains', None, '''[geometry] Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.\nOR\n[raster] Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.'''), ('ST_ContainsProperly', None, '''[geometry] Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself.\nOR\n[raster] Return true if rastB intersects the interior of rastA but not the boundary or exterior of rastA.'''), ('ST_Covers', None, '''[geometry] Returns 1 (TRUE) if no point in Geometry B is outside Geometry A\nOR\n[raster] Return true if no points of raster rastB lie outside raster rastA.'''), ('ST_CoveredBy', None, '''[geometry] Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B\nOR\n[raster] Return true if no points of raster rastA lie outside raster rastB.'''), ('ST_Crosses', None, '''Returns TRUE if the supplied geometries have some, but not all, interior points in common.'''), ('ST_LineCrossingDirection', None, '''Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing.'''), ('ST_Disjoint', None, '''[geometry] Returns TRUE if the Geometries do not \"spatially intersect\" - if they do not share any space together.\nOR\n[raster] Return true if raster rastA does not spatially intersect rastB.'''), ('ST_Equals', None, '''Returns true if the given geometries represent the same geometry. Directionality is ignored.'''), ('ST_Intersects', None, '''[geometry] Returns TRUE if the Geometries/Geography \"spatially intersect in 2D\" - (share any portion of space) and FALSE if they don't (they are Disjoint). For geography tolerance is 0.00001 meters (so any points that close are considered to intersect)\nOR\n[raster] Return true if raster rastA spatially intersects raster rastB.'''), ('ST_OrderingEquals', None, '''Returns true if the given geometries represent the same geometry and points are in the same directional order.'''), ('ST_Overlaps', None, '''[geometry] Returns TRUE if the Geometries share space, are of the same dimension, but are not completely contained by each other.\nOR\n[raster] Return true if raster rastA and rastB intersect but one does not completely contain the other.'''), ('ST_PointInsideCircle', None, '''Is the point geometry inside the circle defined by center_x, center_y, radius'''), ('ST_Relate', None, '''Returns true if this Geometry is spatially related to anotherGeometry, by testing for intersections between the Interior, Boundary and Exterior of the two geometries as specified by the values in the intersectionMatrixPattern. If no intersectionMatrixPattern is passed in, then returns the maximum intersectionMatrixPattern that relates the 2 geometries.'''), ('ST_RelateMatch', None, '''Returns true if intersectionMattrixPattern1 implies intersectionMatrixPattern2'''), ('ST_Touches', None, '''[geometry] Returns TRUE if the geometries have at least one point in common, but their interiors do not intersect.\nOR\n[raster] Return true if raster rastA and rastB have at least one point in common but their interiors do not intersect.'''), ('ST_Within', None, '''[geometry] Returns true if the geometry A is completely inside geometry B\nOR\n[raster] Return true if no points of raster rastA lie in the exterior of raster rastB and at least one point of the interior of rastA lies in the interior of rastB.'''), ('ST_3DDWithin', None, '''For 3d (z) geometry type Returns true if two geometries 3d distance is within number of units.'''), ('ST_3DDFullyWithin', None, '''Returns true if all of the 3D geometries are within the specified distance of one another.'''), ('ST_DFullyWithin', None, '''[geometry] Returns true if all of the geometries are within the specified distance of one another\nOR\n[raster] Return true if rasters rastA and rastB are fully within the specified distance of each other.'''), ('ST_DWithin', None, '''[geometry] Returns true if the geometries are within the specified distance of one another. For geometry units are in those of spatial reference and for geography units are in meters and measurement is defaulted to use_spheroid=true (measure around spheroid), for faster check, use_spheroid=false to measure along sphere.\nOR\n[raster] Return true if rasters rastA and rastB are within the specified distance of each other.'''), ('ST_Area', None, '''Returns the area of a polygonal geometry.'''), ('ST_Azimuth', None, '''Returns the north-based azimuth as the angle in radians measured clockwise from the vertical on pointA to pointB.'''), ('ST_Angle', None, '''Returns the angle between 3 points, or between 2 vectors (4 points or 2 lines).'''), ('ST_ClosestPoint', types.Geometry, '''Returns the 2D point on g1 that is closest to g2. This is the first point of the shortest line.'''), ('ST_3DClosestPoint', types.Geometry, '''Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.'''), ('ST_Distance', None, '''Returns the distance between two geometry or geography values.'''), ('ST_3DDistance', None, '''Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.'''), ('ST_DistanceSphere', None, '''Returns minimum distance in meters between two lon/lat geometries using a spherical earth model.'''), ('ST_DistanceSpheroid', None, '''Returns the minimum distance between two lon/lat geometries using a spheroidal earth model.'''), ('ST_FrechetDistance', None, '''Returns the Fréchet distance between two geometries.'''), ('ST_HausdorffDistance', None, '''Returns the Hausdorff distance between two geometries.'''), ('ST_Length', None, '''Returns the 2D length of a linear geometry.'''), ('ST_Length2D', None, '''Returns the 2D length of a linear geometry. Alias for ST_Length'''), ('ST_3DLength', None, '''Returns the 3D length of a linear geometry.'''), ('ST_LengthSpheroid', None, '''Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.'''), ('ST_LongestLine', types.Geometry, '''Returns the 2D longest line between two geometries.'''), ('ST_3DLongestLine', types.Geometry, '''Returns the 3D longest line between two geometries'''), ('ST_MaxDistance', None, '''Returns the 2D largest distance between two geometries in projected units.'''), ('ST_3DMaxDistance', None, '''Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.'''), ('ST_MinimumClearance', None, '''Returns the minimum clearance of a geometry, a measure of a geometry's robustness.'''), ('ST_MinimumClearanceLine', types.Geometry, '''Returns the two-point LineString spanning a geometry's minimum clearance.'''), ('ST_Perimeter', None, '''Returns the length of the boundary of a polygonal geometry or geography.'''), ('ST_Perimeter2D', None, '''Returns the 2D perimeter of a polygonal geometry. Alias for ST_Perimeter.'''), ('ST_3DPerimeter', None, '''Returns the 3D perimeter of a polygonal geometry.'''), ('ST_Project', types.Geography, '''Returns a point projected from a start point by a distance and bearing (azimuth).'''), ('ST_ShortestLine', types.Geometry, '''Returns the 2D shortest line between two geometries'''), ('ST_3DShortestLine', types.Geometry, '''Returns the 3D shortest line between two geometries'''), ('ST_Buffer', types.Geometry, '''(T) Returns a geometry covering all points within a given distance from the input geometry.'''), ('ST_BuildArea', types.Geometry, '''Creates an areal geometry formed by the constituent linework of given geometry'''), ('ST_Centroid', types.Geometry, '''Returns the geometric center of a geometry.'''), ('ST_ClipByBox2D', types.Geometry, '''Returns the portion of a geometry falling within a rectangle.'''), ('ST_ConcaveHull', types.Geometry, '''The concave hull of a geometry represents a possibly concave geometry that encloses all geometries within the set. You can think of it as shrink wrapping.'''), ('ST_ConvexHull', types.Geometry, '''[geometry] Computes the convex hull of a geometry.\nOR\n[raster] Return the convex hull geometry of the raster including pixel values equal to BandNoDataValue. For regular shaped and non-skewed rasters, this gives the same result as ST_Envelope so only useful for irregularly shaped or skewed rasters.'''), ('ST_CurveToLine', types.Geometry, '''Converts a CIRCULARSTRING/CURVEPOLYGON/MULTISURFACE to a LINESTRING/POLYGON/MULTIPOLYGON'''), ('ST_DelaunayTriangles', types.Geometry, '''Return a Delaunay triangulation around the given input points.'''), ('ST_Difference', types.Geometry, '''Returns a geometry that represents that part of geometry A that does not intersect with geometry B.'''), ('ST_FlipCoordinates', types.Geometry, '''Returns a version of the given geometry with X and Y axis flipped. Useful for people who have built latitude/longitude features and need to fix them.'''), ('ST_GeneratePoints', types.Geometry, '''Converts a polygon or multi-polygon into a multi-point composed of randomly location points within the original areas.'''), ('ST_GeometricMedian', types.Geometry, '''Returns the geometric median of a MultiPoint.'''), ('ST_Intersection', types.Geometry, '''[geometry] (T) Returns a geometry that represents the shared portion of geomA and geomB.\nOR\n[raster] Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.'''), ('ST_LineToCurve', types.Geometry, '''Converts a LINESTRING/POLYGON to a CIRCULARSTRING, CURVEPOLYGON'''), ('ST_MakeValid', types.Geometry, '''Attempts to make an invalid geometry valid without losing vertices.'''), ('ST_MemUnion', types.Geometry, '''Same as ST_Union, only memory-friendly (uses less memory and more processor time).'''), ('ST_MinimumBoundingCircle', types.Geometry, '''Returns the smallest circle polygon that can fully contain a geometry. Default uses 48 segments per quarter circle.'''), ('ST_MinimumBoundingRadius', None, '''Returns the center point and radius of the smallest circle that can fully contain a geometry.'''), ('ST_OrientedEnvelope', types.Geometry, '''Returns a minimum rotated rectangle enclosing a geometry.'''), ('ST_Polygonize', types.Geometry, '''Aggregate. Creates a GeometryCollection containing possible polygons formed from the constituent linework of a set of geometries.'''), ('ST_Node', types.Geometry, '''Node a set of linestrings.'''), ('ST_OffsetCurve', types.Geometry, '''Return an offset line at a given distance and side from an input line. Useful for computing parallel lines about a center line'''), ('ST_PointOnSurface', types.Geometry, '''Returns a POINT guaranteed to lie on the surface.'''), ('ST_RemoveRepeatedPoints', types.Geometry, '''Returns a version of the given geometry with duplicated points removed.'''), ('ST_SharedPaths', types.Geometry, '''Returns a collection containing paths shared by the two input linestrings/multilinestrings.'''), ('ST_ShiftLongitude', types.Geometry, ('''Toggle geometry coordinates between -180..180 and 0..360 ranges.''', 'ST_Shift_Longitude')), ('ST_WrapX', types.Geometry, '''Wrap a geometry around an X value.'''), ('ST_Simplify', types.Geometry, '''Returns a \"simplified\" version of the given geometry using the Douglas-Peucker algorithm.'''), ('ST_SimplifyPreserveTopology', types.Geometry, '''Returns a \"simplified\" version of the given geometry using the Douglas-Peucker algorithm. Will avoid creating derived geometries (polygons in particular) that are invalid.'''), ('ST_SimplifyVW', types.Geometry, '''Returns a \"simplified\" version of the given geometry using the Visvalingam-Whyatt algorithm'''), ('ST_ChaikinSmoothing', types.Geometry, '''Returns a \"smoothed\" version of the given geometry using the Chaikin algorithm'''), ('ST_FilterByM', types.Geometry, '''Filters vertex points based on their m-value'''), ('ST_SetEffectiveArea', types.Geometry, '''Sets the effective area for each vertex, storing the value in the M ordinate. A simplified geometry can then be generated by filtering on the M ordinate.'''), ('ST_Split', types.Geometry, '''Returns a collection of geometries resulting by splitting a geometry.'''), ('ST_SymDifference', types.Geometry, '''Returns a geometry that represents the portions of A and B that do not intersect. It is called a symmetric difference because ST_SymDifference(A,B) = ST_SymDifference(B,A).'''), ('ST_Subdivide', types.Geometry, '''Returns a set of geometry where no geometry in the set has more than the specified number of vertices.'''), ('ST_Union', types.Geometry, '''[geometry] Returns a geometry that represents the point set union of the Geometries.\nOR\n[raster] Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.'''), ('ST_UnaryUnion', types.Geometry, '''Like ST_Union, but working at the geometry component level.'''), ('ST_VoronoiLines', types.Geometry, '''Returns the boundaries between the cells of the Voronoi diagram constructed from the vertices of a geometry.'''), ('ST_VoronoiPolygons', types.Geometry, '''Returns the cells of the Voronoi diagram constructed from the vertices of a geometry.'''), ('ST_Affine', types.Geometry, '''Apply a 3D affine transformation to a geometry.'''), ('ST_Rotate', types.Geometry, '''Rotates a geometry about an origin point.'''), ('ST_RotateX', types.Geometry, '''Rotates a geometry about the X axis.'''), ('ST_RotateY', types.Geometry, '''Rotates a geometry about the Y axis.'''), ('ST_RotateZ', types.Geometry, '''Rotates a geometry about the Z axis.'''), ('ST_Scale', types.Geometry, '''Scales a geometry by given factors.'''), ('ST_Translate', types.Geometry, '''Translates a geometry by given offsets.'''), ('ST_TransScale', types.Geometry, '''Translates and scales a geometry by given offsets and factors.'''), ('ST_ClusterDBSCAN', None, '''Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.'''), ('ST_ClusterIntersecting', types.Geometry, '''Aggregate function that clusters the input geometries into connected sets.'''), ('ST_ClusterKMeans', None, '''Window function that returns a cluster id for each input geometry using the K-means algorithm.'''), ('ST_ClusterWithin', types.Geometry, '''Aggregate function that clusters the input geometries by separation distance.'''), ('Box2D', types.Geometry, ('''Returns a BOX2D representing the 2D extent of the geometry.''', 'Box2D_type')), ('Box3D', types.Geometry, ('''[geometry] Returns a BOX3D representing the 3D extent of the geometry.\nOR\n[raster] Returns the box 3d representation of the enclosing box of the raster.''', 'Box3D_type')), ('ST_EstimatedExtent', types.Geometry, '''Return the 'estimated' extent of a spatial table.'''), ('ST_Expand', types.Geometry, '''Returns a bounding box expanded from another bounding box or a geometry.'''), ('ST_Extent', types.Geometry, '''an aggregate function that returns the bounding box that bounds rows of geometries.'''), ('ST_3DExtent', types.Geometry, '''an aggregate function that returns the 3D bounding box that bounds rows of geometries.'''), ('ST_MakeBox2D', types.Geometry, '''Creates a BOX2D defined by two 2D point geometries.'''), ('ST_3DMakeBox', types.Geometry, '''Creates a BOX3D defined by two 3D point geometries.'''), ('ST_XMax', None, '''Returns the X maxima of a 2D or 3D bounding box or a geometry.'''), ('ST_XMin', None, '''Returns the X minima of a 2D or 3D bounding box or a geometry.'''), ('ST_YMax', None, '''Returns the Y maxima of a 2D or 3D bounding box or a geometry.'''), ('ST_YMin', None, '''Returns the Y minima of a 2D or 3D bounding box or a geometry.'''), ('ST_ZMax', None, '''Returns the Z maxima of a 2D or 3D bounding box or a geometry.'''), ('ST_ZMin', None, '''Returns the Z minima of a 2D or 3D bounding box or a geometry.'''), ('ST_LineInterpolatePoint', types.Geometry, '''Returns a point interpolated along a line. Second argument is a float8 between 0 and 1 representing fraction of total length of linestring the point has to be located.'''), ('ST_3DLineInterpolatePoint', types.Geometry, '''Returns a point interpolated along a line in 3D. Second argument is a float8 between 0 and 1 representing fraction of total length of linestring the point has to be located.'''), ('ST_LineInterpolatePoints', types.Geometry, '''Returns one or more points interpolated along a line.'''), ('ST_LineLocatePoint', None, '''Returns a float between 0 and 1 representing the location of the closest point on LineString to the given Point, as a fraction of total 2d line length.'''), ('ST_LineSubstring', types.Geometry, '''Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and third arguments are float8 values between 0 and 1.'''), ('ST_LocateAlong', types.Geometry, '''Return a derived geometry collection value with elements that match the specified measure. Polygonal elements are not supported.'''), ('ST_LocateBetween', types.Geometry, '''Return a derived geometry collection value with elements that match the specified range of measures inclusively.'''), ('ST_LocateBetweenElevations', types.Geometry, '''Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively.'''), ('ST_InterpolatePoint', None, '''Return the value of the measure dimension of a geometry at the point closed to the provided point.'''), ('ST_AddMeasure', types.Geometry, '''Return a derived geometry with measure elements linearly interpolated between the start and end points.'''), ('ST_IsValidTrajectory', None, '''Returns true if the geometry is a valid trajectory.'''), ('ST_ClosestPointOfApproach', None, '''Returns the measure at which points interpolated along two trajectories are closest.'''), ('ST_DistanceCPA', None, '''Returns the distance between the closest point of approach of two trajectories.'''), ('ST_CPAWithin', None, '''Returns true if the closest point of approach of two trajectories is within the specified distance.'''), ('postgis_sfcgal_version', None, '''Returns the version of SFCGAL in use'''), ('ST_Extrude', types.Geometry, '''Extrude a surface to a related volume'''), ('ST_StraightSkeleton', types.Geometry, '''Compute a straight skeleton from a geometry'''), ('ST_ApproximateMedialAxis', types.Geometry, '''Compute the approximate medial axis of an areal geometry.'''), ('ST_IsPlanar', None, '''Check if a surface is or not planar'''), ('ST_Orientation', None, '''Determine surface orientation'''), ('ST_ForceLHR', types.Geometry, '''Force LHR orientation'''), ('ST_MinkowskiSum', types.Geometry, '''Performs Minkowski sum'''), ('ST_ConstrainedDelaunayTriangles', types.Geometry, '''Return a constrained Delaunay triangulation around the given input geometry.'''), ('ST_3DIntersection', types.Geometry, '''Perform 3D intersection'''), ('ST_3DDifference', types.Geometry, '''Perform 3D difference'''), ('ST_3DUnion', types.Geometry, '''Perform 3D union'''), ('ST_3DArea', None, '''Computes area of 3D surface geometries. Will return 0 for solids.'''), ('ST_Tesselate', types.Geometry, '''Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS'''), ('ST_Volume', None, '''Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.'''), ('ST_MakeSolid', types.Geometry, '''Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.'''), ('ST_IsSolid', None, '''Test if the geometry is a solid. No validity check is performed.'''), ('AddAuth', None, '''Adds an authorization token to be used in the current transaction.'''), ('CheckAuth', None, '''Creates a trigger on a table to prevent/allow updates and deletes of rows based on authorization token.'''), ('DisableLongTransactions', None, '''Disables long transaction support.'''), ('EnableLongTransactions', None, '''Enables long transaction support.'''), ('LockRow', None, '''Sets lock/authorization for a row in a table.'''), ('UnlockRows', None, '''Removes all locks held by an authorization token.'''), ('PostGIS_Extensions_Upgrade', None, '''Packages and upgrades postgis extensions (e.g. postgis_raster, postgis_topology, postgis_sfcgal) to latest available version.'''), ('PostGIS_Full_Version', None, '''Reports full postgis version and build configuration infos.'''), ('PostGIS_GEOS_Version', None, '''Returns the version number of the GEOS library.'''), ('PostGIS_Liblwgeom_Version', None, '''Returns the version number of the liblwgeom library. This should match the version of PostGIS.'''), ('PostGIS_LibXML_Version', None, '''Returns the version number of the libxml2 library.'''), ('PostGIS_Lib_Build_Date', None, '''Returns build date of the PostGIS library.'''), ('PostGIS_Lib_Version', None, '''Returns the version number of the PostGIS library.'''), ('PostGIS_PROJ_Version', None, '''Returns the version number of the PROJ4 library.'''), ('PostGIS_Wagyu_Version', None, '''Returns the version number of the internal Wagyu library.'''), ('PostGIS_Scripts_Build_Date', None, '''Returns build date of the PostGIS scripts.'''), ('PostGIS_Scripts_Installed', None, '''Returns version of the postgis scripts installed in this database.'''), ('PostGIS_Scripts_Released', None, '''Returns the version number of the postgis.sql script released with the installed postgis lib.'''), ('PostGIS_Version', None, '''Returns PostGIS version number and compile-time options.'''), ('postgis.backend', None, ('''The backend to service a function where GEOS and SFCGAL overlap. Options: geos or sfcgal. Defaults to geos.''', 'postgis_backend')), ('postgis.gdal_datapath', None, ('''A configuration option to assign the value of GDAL's GDAL_DATA option. If not set, the environmentally set GDAL_DATA variable is used.''', 'postgis_gdal_datapath')), ('postgis.gdal_enabled_drivers', None, ('''A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP.''', 'postgis_gdal_enabled_drivers')), ('postgis.enable_outdb_rasters', None, ('''A boolean configuration option to enable access to out-db raster bands.''', 'postgis_enable_outdb_rasters')), ('PostGIS_AddBBox', types.Geometry, '''Add bounding box to the geometry.'''), ('PostGIS_DropBBox', types.Geometry, '''Drop the bounding box cache from the geometry.'''), ('PostGIS_HasBBox', None, '''Returns TRUE if the bbox of this geometry is cached, FALSE otherwise.'''), ('ST_AddBand', types.Raster, ('''Returns a raster with the new band(s) of given type added with given initial value in the given index location. If no index is specified, the band is added to the end.''', 'RT_ST_AddBand')), ('ST_AsRaster', types.Raster, ('''Converts a PostGIS geometry to a PostGIS raster.''', 'RT_ST_AsRaster')), ('ST_Band', types.Raster, ('''Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters.''', 'RT_ST_Band')), ('ST_MakeEmptyCoverage', types.Raster, ('''Cover georeferenced area with a grid of empty raster tiles.''', 'RT_ST_MakeEmptyCoverage')), ('ST_MakeEmptyRaster', types.Raster, ('''Returns an empty raster (having no bands) of given dimensions (width & height), upperleft X and Y, pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid). If a raster is passed in, returns a new raster with the same size, alignment and SRID. If srid is left out, the spatial ref is set to unknown (0).''', 'RT_ST_MakeEmptyRaster')), ('ST_Tile', types.Raster, ('''Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.''', 'RT_ST_Tile')), ('ST_Retile', types.Raster, ('''Return a set of configured tiles from an arbitrarily tiled raster coverage.''', 'RT_ST_Retile')), ('ST_FromGDALRaster', types.Raster, ('''Returns a raster from a supported GDAL raster file.''', 'RT_ST_FromGDALRaster')), ('ST_GeoReference', None, ('''Returns the georeference meta data in GDAL or ESRI format as commonly seen in a world file. Default is GDAL.''', 'RT_ST_GeoReference')), ('ST_Height', None, ('''Returns the height of the raster in pixels.''', 'RT_ST_Height')), ('ST_MetaData', None, ('''Returns basic meta data about a raster object such as pixel size, rotation (skew), upper, lower left, etc.''', 'RT_ST_MetaData')), ('ST_NumBands', None, ('''Returns the number of bands in the raster object.''', 'RT_ST_NumBands')), ('ST_PixelHeight', None, ('''Returns the pixel height in geometric units of the spatial reference system.''', 'RT_ST_PixelHeight')), ('ST_PixelWidth', None, ('''Returns the pixel width in geometric units of the spatial reference system.''', 'RT_ST_PixelWidth')), ('ST_ScaleX', None, ('''Returns the X component of the pixel width in units of coordinate reference system.''', 'RT_ST_ScaleX')), ('ST_ScaleY', None, ('''Returns the Y component of the pixel height in units of coordinate reference system.''', 'RT_ST_ScaleY')), ('ST_RasterToWorldCoord', None, ('''Returns the raster's upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.''', 'RT_ST_RasterToWorldCoord')), ('ST_RasterToWorldCoordX', None, ('''Returns the geometric X coordinate upper left of a raster, column and row. Numbering of columns and rows starts at 1.''', 'RT_ST_RasterToWorldCoordX')), ('ST_RasterToWorldCoordY', None, ('''Returns the geometric Y coordinate upper left corner of a raster, column and row. Numbering of columns and rows starts at 1.''', 'RT_ST_RasterToWorldCoordY')), ('ST_Rotation', None, ('''Returns the rotation of the raster in radian.''', 'RT_ST_Rotation')), ('ST_SkewX', None, ('''Returns the georeference X skew (or rotation parameter).''', 'RT_ST_SkewX')), ('ST_SkewY', None, ('''Returns the georeference Y skew (or rotation parameter).''', 'RT_ST_SkewY')), ('ST_UpperLeftX', None, ('''Returns the upper left X coordinate of raster in projected spatial ref.''', 'RT_ST_UpperLeftX')), ('ST_UpperLeftY', None, ('''Returns the upper left Y coordinate of raster in projected spatial ref.''', 'RT_ST_UpperLeftY')), ('ST_Width', None, ('''Returns the width of the raster in pixels.''', 'RT_ST_Width')), ('ST_WorldToRasterCoord', None, ('''Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.''', 'RT_ST_WorldToRasterCoord')), ('ST_WorldToRasterCoordX', None, ('''Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented in world spatial reference system of raster.''', 'RT_ST_WorldToRasterCoordX')), ('ST_WorldToRasterCoordY', None, ('''Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented in world spatial reference system of raster.''', 'RT_ST_WorldToRasterCoordY')), ('ST_BandMetaData', None, ('''Returns basic meta data for a specific raster band. band num 1 is assumed if none-specified.''', 'RT_ST_BandMetaData')), ('ST_BandNoDataValue', None, ('''Returns the value in a given band that represents no data. If no band num 1 is assumed.''', 'RT_ST_BandNoDataValue')), ('ST_BandIsNoData', None, ('''Returns true if the band is filled with only nodata values.''', 'RT_ST_BandIsNoData')), ('ST_BandPath', None, ('''Returns system file path to a band stored in file system. If no bandnum specified, 1 is assumed.''', 'RT_ST_BandPath')), ('ST_BandFileSize', None, ('''Returns the file size of a band stored in file system. If no bandnum specified, 1 is assumed.''', 'RT_ST_BandFileSize')), ('ST_BandFileTimestamp', None, ('''Returns the file timestamp of a band stored in file system. If no bandnum specified, 1 is assumed.''', 'RT_ST_BandFileTimestamp')), ('ST_BandPixelType', None, ('''Returns the type of pixel for given band. If no bandnum specified, 1 is assumed.''', 'RT_ST_BandPixelType')), ('ST_MinPossibleValue', None, '''Returns the minimum value this pixeltype can store.'''), ('ST_HasNoBand', None, ('''Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.''', 'RT_ST_HasNoBand')), ('ST_PixelAsPolygon', types.Geometry, ('''Returns the polygon geometry that bounds the pixel for a particular row and column.''', 'RT_ST_PixelAsPolygon')), ('ST_PixelAsPolygons', None, ('''Returns the polygon geometry that bounds every pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel.''', 'RT_ST_PixelAsPolygons')), ('ST_PixelAsPoint', types.Geometry, ('''Returns a point geometry of the pixel's upper-left corner.''', 'RT_ST_PixelAsPoint')), ('ST_PixelAsPoints', None, ('''Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel's upper-left corner.''', 'RT_ST_PixelAsPoints')), ('ST_PixelAsCentroid', types.Geometry, ('''Returns the centroid (point geometry) of the area represented by a pixel.''', 'RT_ST_PixelAsCentroid')), ('ST_PixelAsCentroids', None, ('''Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.''', 'RT_ST_PixelAsCentroids')), ('ST_Value', None, ('''Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.''', 'RT_ST_Value')), ('ST_NearestValue', None, ('''Returns the nearest non-NODATA value of a given band's pixel specified by a columnx and rowy or a geometric point expressed in the same spatial reference coordinate system as the raster.''', 'RT_ST_NearestValue')), ('ST_Neighborhood', None, ('''Returns a 2-D double precision array of the non-NODATA values around a given band's pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.''', 'RT_ST_Neighborhood')), ('ST_SetValue', types.Raster, ('''Returns modified raster resulting from setting the value of a given band in a given columnx, rowy pixel or the pixels that intersect a particular geometry. Band numbers start at 1 and assumed to be 1 if not specified.''', 'RT_ST_SetValue')), ('ST_SetValues', types.Raster, ('''Returns modified raster resulting from setting the values of a given band.''', 'RT_ST_SetValues')), ('ST_DumpValues', None, ('''Get the values of the specified band as a 2-dimension array.''', 'RT_ST_DumpValues')), ('ST_PixelOfValue', None, ('''Get the columnx, rowy coordinates of the pixel whose value equals the search value.''', 'RT_ST_PixelOfValue')), ('ST_SetGeoReference', types.Raster, ('''Set Georeference 6 georeference parameters in a single call. Numbers should be separated by white space. Accepts inputs in GDAL or ESRI format. Default is GDAL.''', 'RT_ST_SetGeoReference')), ('ST_SetRotation', types.Raster, ('''Set the rotation of the raster in radian.''', 'RT_ST_SetRotation')), ('ST_SetScale', types.Raster, ('''Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height.''', 'RT_ST_SetScale')), ('ST_SetSkew', types.Raster, ('''Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value.''', 'RT_ST_SetSkew')), ('ST_SetUpperLeft', types.Raster, ('''Sets the value of the upper left corner of the pixel of the raster to projected X and Y coordinates.''', 'RT_ST_SetUpperLeft')), ('ST_Resample', types.Raster, ('''Resample a raster using a specified resampling algorithm, new dimensions, an arbitrary grid corner and a set of raster georeferencing attributes defined or borrowed from another raster.''', 'RT_ST_Resample')), ('ST_Rescale', types.Raster, ('''Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.''', 'RT_ST_Rescale')), ('ST_Reskew', types.Raster, ('''Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.''', 'RT_ST_Reskew')), ('ST_Resize', types.Raster, ('''Resize a raster to a new width/height''', 'RT_ST_Resize')), ('ST_SetBandNoDataValue', types.Raster, ('''Sets the value for the given band that represents no data. Band 1 is assumed if no band is specified. To mark a band as having no nodata value, set the nodata value = NULL.''', 'RT_ST_SetBandNoDataValue')), ('ST_SetBandIsNoData', types.Raster, ('''Sets the isnodata flag of the band to TRUE.''', 'RT_ST_SetBandIsNoData')), ('ST_SetBandPath', types.Raster, ('''Update the external path and band number of an out-db band''', 'RT_ST_SetBandPath')), ('ST_SetBandIndex', types.Raster, ('''Update the external band number of an out-db band''', 'RT_ST_SetBandIndex')), ('ST_Count', None, ('''Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.''', 'RT_ST_Count')), ('ST_CountAgg', None, ('''Aggregate. Returns the number of pixels in a given band of a set of rasters. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the NODATA value.''', 'RT_ST_CountAgg')), ('ST_Histogram', None, ('''Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.''', 'RT_ST_Histogram')), ('ST_Quantile', None, ('''Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster's 25%, 50%, 75% percentile.''', 'RT_ST_Quantile')), ('ST_SummaryStats', None, ('''Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.''', 'RT_ST_SummaryStats')), ('ST_SummaryStatsAgg', None, ('''Aggregate. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a set of raster. Band 1 is assumed is no band is specified.''', 'RT_ST_SummaryStatsAgg')), ('ST_ValueCount', None, ('''Returns a set of records containing a pixel band value and count of the number of pixels in a given band of a raster (or a raster coverage) that have a given set of values. If no band is specified defaults to band 1. By default nodata value pixels are not counted. and all other values in the pixel are output and pixel band values are rounded to the nearest integer.''', 'RT_ST_ValueCount')), ('ST_RastFromWKB', types.Raster, ('''Return a raster value from a Well-Known Binary (WKB) raster.''', 'RT_ST_RastFromWKB')), ('ST_RastFromHexWKB', types.Raster, ('''Return a raster value from a Hex representation of Well-Known Binary (WKB) raster.''', 'RT_ST_RastFromHexWKB')), ('ST_AsBinary/ST_AsWKB', None, ('''Return the Well-Known Binary (WKB) representation of the raster.''', 'RT_ST_AsBinary')), ('ST_AsHexWKB', None, ('''Return the Well-Known Binary (WKB) in Hex representation of the raster.''', 'RT_ST_AsHexWKB')), ('ST_AsGDALRaster', None, ('''Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use ST_GDALDrivers() to get a list of formats supported by your library.''', 'RT_ST_AsGDALRaster')), ('ST_AsJPEG', None, ('''Return the raster tile selected bands as a single Joint Photographic Exports Group (JPEG) image (byte array). If no band is specified and 1 or more than 3 bands, then only the first band is used. If only 3 bands then all 3 bands are used and mapped to RGB.''', 'RT_ST_AsJPEG')), ('ST_AsPNG', None, ('''Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.''', 'RT_ST_AsPNG')), ('ST_AsTIFF', None, ('''Return the raster selected bands as a single TIFF image (byte array). If no band is specified or any of specified bands does not exist in the raster, then will try to use all bands.''', 'RT_ST_AsTIFF')), ('ST_Clip', types.Raster, ('''Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If crop is not specified or TRUE, the output raster is cropped.''', 'RT_ST_Clip')), ('ST_ColorMap', types.Raster, ('''Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.''', 'RT_ST_ColorMap')), ('ST_Grayscale', types.Raster, ('''Creates a new one-8BUI band raster from the source raster and specified bands representing Red, Green and Blue''', 'RT_ST_Grayscale')), ('ST_MapAlgebra', None, ('''[raster] Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.\nOR\n[raster] Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.''', 'RT_ST_MapAlgebra')), ('ST_MapAlgebraExpr', types.Raster, ('''[raster] 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.\nOR\n[raster] 2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the \"extenttype\" parameter. Values for \"extenttype\" can be: INTERSECTION, UNION, FIRST, SECOND.''', 'RT_ST_MapAlgebraExpr')), ('ST_MapAlgebraFct', types.Raster, ('''[raster] 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype prodived. Band 1 is assumed if no band is specified.\nOR\n[raster] 2 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the 2 input raster bands and of pixeltype prodived. Band 1 is assumed if no band is specified. Extent type defaults to INTERSECTION if not specified.''', 'RT_ST_MapAlgebraFct')), ('ST_MapAlgebraFctNgb', types.Raster, ('''1-band version: Map Algebra Nearest Neighbor using user-defined PostgreSQL function. Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band.''', 'RT_ST_MapAlgebraFctNgb')), ('ST_Reclass', types.Raster, ('''Creates a new raster composed of band types reclassified from original. The nband is the band to be changed. If nband is not specified assumed to be 1. All other bands are returned unchanged. Use case: convert a 16BUI band to a 8BUI and so forth for simpler rendering as viewable formats.''', 'RT_ST_Reclass')), ('ST_Distinct4ma', None, ('''Raster processing function that calculates the number of unique pixel values in a neighborhood.''', 'RT_ST_Distinct4ma')), ('ST_InvDistWeight4ma', None, ('''Raster processing function that interpolates a pixel's value from the pixel's neighborhood.''', 'RT_ST_InvDistWeight4ma')), ('ST_Max4ma', None, ('''Raster processing function that calculates the maximum pixel value in a neighborhood.''', 'RT_ST_Max4ma')), ('ST_Mean4ma', None, ('''Raster processing function that calculates the mean pixel value in a neighborhood.''', 'RT_ST_Mean4ma')), ('ST_Min4ma', None, ('''Raster processing function that calculates the minimum pixel value in a neighborhood.''', 'RT_ST_Min4ma')), ('ST_MinDist4ma', None, ('''Raster processing function that returns the minimum distance (in number of pixels) between the pixel of interest and a neighboring pixel with value.''', 'RT_ST_MinDist4ma')), ('ST_Range4ma', None, ('''Raster processing function that calculates the range of pixel values in a neighborhood.''', 'RT_ST_Range4ma')), ('ST_StdDev4ma', None, ('''Raster processing function that calculates the standard deviation of pixel values in a neighborhood.''', 'RT_ST_StdDev4ma')), ('ST_Sum4ma', None, ('''Raster processing function that calculates the sum of all pixel values in a neighborhood.''', 'RT_ST_Sum4ma')), ('ST_Aspect', types.Raster, ('''Returns the aspect (in degrees by default) of an elevation raster band. Useful for analyzing terrain.''', 'RT_ST_Aspect')), ('ST_HillShade', types.Raster, ('''Returns the hypothetical illumination of an elevation raster band using provided azimuth, altitude, brightness and scale inputs.''', 'RT_ST_HillShade')), ('ST_Roughness', types.Raster, ('''Returns a raster with the calculated \"roughness\" of a DEM.''', 'RT_ST_Roughness')), ('ST_Slope', types.Raster, ('''Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.''', 'RT_ST_Slope')), ('ST_TPI', types.Raster, ('''Returns a raster with the calculated Topographic Position Index.''', 'RT_ST_TPI')), ('ST_TRI', types.Raster, ('''Returns a raster with the calculated Terrain Ruggedness Index.''', 'RT_ST_TRI')), ('ST_DumpAsPolygons', None, ('''Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.''', 'RT_ST_DumpAsPolygons')), ('ST_MinConvexHull', types.Geometry, ('''Return the convex hull geometry of the raster excluding NODATA pixels.''', 'RT_ST_MinConvexHull')), ('ST_SameAlignment', None, ('''Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don't with notice detailing issue.''', 'RT_ST_SameAlignment')), ('ST_NotSameAlignmentReason', None, ('''Returns text stating if rasters are aligned and if not aligned, a reason why.''', 'RT_ST_NotSameAlignmentReason')), ('ST_Distance_Sphere', None, '''Returns minimum distance in meters between two lon/lat geometries. Uses a spherical earth and radius of 6370986 meters. Faster than ``ST_Distance_Spheroid``, but less accurate. PostGIS versions prior to 1.5 only implemented for points.'''), ]
75.855769
742
0.704034
344208f3709486556112f73b94798978c0424768
3,925
py
Python
polyjit/experiments/sequences/test_genetic2.py
PolyJIT/polyjit.experiments
4ac51473a20f86d4b07b598ac4c9b09df0c8fcb6
[ "MIT" ]
null
null
null
polyjit/experiments/sequences/test_genetic2.py
PolyJIT/polyjit.experiments
4ac51473a20f86d4b07b598ac4c9b09df0c8fcb6
[ "MIT" ]
3
2017-02-02T15:54:52.000Z
2017-06-08T03:52:45.000Z
polyjit/experiments/sequences/test_genetic2.py
PolyJIT/polyjit.experiments
4ac51473a20f86d4b07b598ac4c9b09df0c8fcb6
[ "MIT" ]
1
2017-04-01T15:30:16.000Z
2017-04-01T15:30:16.000Z
"""This module provides unit tests for the module genetic2.py.""" import unittest import genetic2 class ChromosomeTestCase(unittest.TestCase): def setUp(self): self.gene_sequences = [['a', 'a', 'a'], ['b', 'b', 'b'], ['c', 'c', 'c']] self.seq_to_fitness = {"['a', 'a', 'a']": 1, "['b', 'b', 'b']": 2, "['c', 'c', 'c']": 3} def test_chromosome_fitness_calculation(self): for genes in self.gene_sequences: chromosome = genetic2.Chromosome(genes, 'test') chromosome.calculate_fitness_value(self.seq_to_fitness) key = str(genes) self.assertTrue( chromosome.fitness_value == self.seq_to_fitness[key]) def test_chromosome_equals_method(self): a = genetic2.Chromosome(self.gene_sequences[0], 'test') b = genetic2.Chromosome(self.gene_sequences[0], 'test') c = genetic2.Chromosome(self.gene_sequences[0], 'not_test') d = genetic2.Chromosome(self.gene_sequences[1], 'test') e = genetic2.Chromosome(self.gene_sequences[1], 'not_test') self.assertTrue(a == b) self.assertFalse(a == c) self.assertFalse(a == d) self.assertFalse(a == e) class PopulationTestCase(unittest.TestCase): def setUp(self): self.gene_pool = ['a'] self.population = genetic2.Population('test', size=4, gene_pool=self.gene_pool, chromosome_size=2) def test_population_creation(self): size1 = 4 chromosome_size1 = -1 gene_pool1 = [] population1 = genetic2.Population('test', size1, gene_pool1, chromosome_size1) self.assertTrue(population1.size == genetic2.MIN_POPULATION_SIZE) self.assertTrue(population1.gene_pool == genetic2.DEFAULT_GENE_POOL) self.assertTrue(population1.chromosome_size == 0) for chromosome in population1.chromosomes: self.assertTrue(len(chromosome.genes) == 0) size2 = 11 chromosome_size2 = 4 gene_pool2 = ['a', 'b'] population2 = genetic2.Population('test', size2, gene_pool2, chromosome_size2) self.assertTrue(population2.size == size2) self.assertFalse(population2.gene_pool == genetic2.DEFAULT_GENE_POOL) self.assertTrue(population2.chromosome_size == chromosome_size2) for chromosome in population2.chromosomes: self.assertTrue(len(chromosome.genes) == chromosome_size2) def test_simulate_generation(self): env = 'test' size = 10 gene_pool = ['a', 'b'] chromosome_size = 2 seq_to_fitness = {"['a', 'a']": 4, "['a', 'b']": 3, "['b', 'a']": 2, "['b', 'b']": 1} population = genetic2.Population(env, size, gene_pool, chromosome_size) chromosomes = [genetic2.Chromosome(['a', 'a'], env), genetic2.Chromosome(['a', 'b'], env), genetic2.Chromosome(['a', 'b'], env), genetic2.Chromosome(['b', 'a'], env), genetic2.Chromosome(['b', 'a'], env), genetic2.Chromosome(['b', 'a'], env), genetic2.Chromosome(['b', 'b'], env), genetic2.Chromosome(['b', 'b'], env), genetic2.Chromosome(['b', 'b'], env), genetic2.Chromosome(['b', 'b'], env)] population.chromosomes = chromosomes population.simulate_generation(seq_to_fitness) self.assertTrue( population.fittest_chromosome == genetic2.Chromosome(['b', 'b'], env)) if __name__ == '__main__': unittest.main()
42.663043
79
0.543439
11a16ed140dd2bf6043005f43276774013688714
12,411
py
Python
scripts/credit_poisoning.py
bogdan-kulynych/pots
908e8fe00f0bb53765eff61462f50c43f339b17f
[ "MIT" ]
7
2018-12-09T15:44:49.000Z
2020-07-10T19:15:41.000Z
scripts/credit_poisoning.py
spring-epfl/pots
908e8fe00f0bb53765eff61462f50c43f339b17f
[ "MIT" ]
null
null
null
scripts/credit_poisoning.py
spring-epfl/pots
908e8fe00f0bb53765eff61462f50c43f339b17f
[ "MIT" ]
null
null
null
import sys import pickle import argparse import functools import pandas as pd import numpy as np import xxhash from sklearn.svm import SVC from tqdm import tqdm, trange import src.credit_utils as cred from src.influence import influence_func _cached_transformations = {} class ExpContext: """Experimental context: datasets, target model. Args: df: Full dataset as DataFrame df_train: Full training dataset as DataFrame df_test: Full test dataset as DataFrame df_X: Full dataset as DataFrame without labels df_y: Dataset labels as a Series raw_datasets: Datasets as numpy, see :py:`credit_utils.Datasets` clf: Target classifier model_params: Model parameters """ def __init__(self, seed=1): """Prepare data, train the target model.""" self.df, self.df_X, self.df_y = cred.load_dataframes( "data/german_credit_data.csv" ) self.raw_datasets = cred.to_numpy_data(self.df_X, self.df_y, seed=seed) self.df_train = pd.DataFrame( np.hstack( [ self.raw_datasets.X_train, np.expand_dims(self.raw_datasets.y_train, 1), ] ), columns=list(self.df_X.columns) + ["Risk_good"], ) self.df_test = pd.DataFrame( np.hstack( [self.raw_datasets.X_test, np.expand_dims(self.raw_datasets.y_test, 1)] ), columns=list(self.df_X.columns) + ["Risk_good"], ) self.clf, self.model_params = cred.train_model( self.raw_datasets.X_train, self.raw_datasets.y_train, self.raw_datasets.X_test, self.raw_datasets.y_test, ) def select_candidates( exp_context, target_group_idxs, num_best_samples=10, seed=1, use_influence_func=False, ): clf = exp_context.clf X, y = exp_context.raw_datasets.X, exp_context.raw_datasets.y X_train = exp_context.raw_datasets.X_train y_train = exp_context.raw_datasets.y_train candidate_idxs = [ i for i in range(len(X)) if i not in target_group_idxs and y[i] ] X_train_curr = np.array(X_train) y_train_curr = np.array(y_train) # Weight examples by their average similarity to the target group. transformation_wrapper = cred.make_transformation_wrapper(exp_context.df_X.columns) static_cols = exp_context.df_X.columns[: transformation_wrapper.amount_start_idx] # sims = [example_similarity(exp_context, target_group_idxs, static_cols, i) # for i in candidate_idxs] # weights = softmax(sims) # sims = [influence(exp_context, target_group_idxs, X[i]) for i in candidate_idxs] # weights = softmax(sims / np.sum(sims)) # np.random.seed(seed) # sampled_idxs = np.random.choice( # candidate_idxs, size=len(candidate_idxs), # replace=False, p=weights) sampled_idxs = sorted( candidate_idxs, key=lambda i: -cred.example_similarity( exp_context, target_group_idxs, static_cols, i ), ) # sampled_idxs = sorted(candidate_idxs, key=lambda i: -influence( # exp_context, target_group_idxs, X[i])) if num_best_samples is not None: sampled_idxs = sampled_idxs[:num_best_samples] scored_examples = [] influence_data = pd.DataFrame(columns=["influence", "score", "acc"]) index_progbar = tqdm(sampled_idxs) for i in index_progbar: x = X[i] if i in _cached_transformations: transformations = _cached_transformations[i] else: transformations = cred.generate_all_transformations( x, exp_context.df_X.columns, transformation_kwargs=dict( decrease_amount=True, decrease_duration=True)) _cached_transformations[i] = list(transformations) # Pick the transformation with the highest influence. best_inf_val = 0 best_example = None for t in transformations: # Check if this transformation would be accepted. if clf.predict([t]) != [1]: break if use_influence_func: inf_val = influence_func(exp_context, target_group_idxs, t) if inf_val > best_inf_val: best_inf_val = inf_val best_example = t else: X_train_adv = np.vstack([X_train_curr, t]) y_train_adv = np.concatenate([y_train_curr, [1]]) new_clf, _ = cred.train_model(X_train_adv, y_train_adv, exp_context.raw_datasets.X_test, exp_context.raw_datasets.y_test, verbose=False) inf_val = cred.score_group(exp_context, target_group_idxs, custom_clf=new_clf) if inf_val > best_inf_val: best_inf_val = inf_val best_example = t # Retrain a classifier with the poisoned example-candidate. score = -1 if best_example is not None: X_train_adv = np.vstack([X_train_curr, best_example]) y_train_adv = np.concatenate([y_train_curr, [1]]) new_clf, _ = cred.train_model(X_train_adv, y_train_adv, exp_context.raw_datasets.X_test, exp_context.raw_datasets.y_test, verbose=False) score = cred.score_group(exp_context, target_group_idxs, custom_clf=new_clf) scored_examples.append((score, best_example)) acc = new_clf.score( exp_context.raw_datasets.X[candidate_idxs], exp_context.raw_datasets.y[candidate_idxs] ) influence_data = influence_data.append( dict(influence=best_inf_val, score=score, acc=acc), ignore_index=True, ) index_progbar.set_description("Score: %2.4f, Infl: %3.2f" % ( score, best_inf_val)) influence_data.to_csv("influence_data_retrained.csv") with open("scored_examples.pkl", "wb") as f: pickle.dump(scored_examples, f) return scored_examples def find_poisoning_group( exp_context, target_group_idxs, num_best_samples=10, score_goal=None, noise_set_size=50, seed=1, max_group_size=10, load_candidates_from_cache=True, ): """Find a poisoning group G_pot.""" if score_goal is None: score_goal = np.inf clf = exp_context.clf X, y = exp_context.raw_datasets.X, exp_context.raw_datasets.y X_train = exp_context.raw_datasets.X_train y_train = exp_context.raw_datasets.y_train X_train_curr = np.array(X_train) y_train_curr = np.array(y_train) # Add random people to the training data. np.random.seed(seed) candidate_idxs = [ i for i in np.arange(len(X)) if i not in target_group_idxs and y[i] ] noise_idxs = np.random.choice( [i for i in exp_context.raw_datasets.test_ind if i not in candidate_idxs], noise_set_size, replace=False, ) X_noise = exp_context.raw_datasets.X[noise_idxs] y_noise = exp_context.raw_datasets.y[noise_idxs] X_train_noisy = np.vstack([X_train_curr, X_noise]) y_train_noisy = np.concatenate([y_train_curr, y_noise]) X_train_noisy_adv = X_train_noisy y_train_noisy_adv = y_train_noisy print("Size of possible noise additions: %i" % len([ i for i in exp_context.raw_datasets.test_ind if i in candidate_idxs])) print("Size of the noise additions: %i" % len(noise_idxs)) if load_candidates_from_cache: with open("scored_examples.pkl", "rb") as f: scored_examples = pickle.load(f) else: scored_examples = select_candidates( exp_context, target_group_idxs, num_best_samples=num_best_samples, seed=seed, ) score = 0 group_counter = 0 score_baseline = 0 # Compute initial score and datasets. group_datasets = [(X_train_noisy, y_train_noisy)] sorted_examples = sorted(scored_examples, key=lambda t: t[0]) with tqdm(total=max_group_size) as progbar: while sorted_examples and score < score_goal and group_counter < max_group_size: score, best_example = sorted_examples.pop() # Add the example to the clean poisoned dataset. X_train_adv = np.vstack([X_train_curr, best_example]) y_train_adv = np.concatenate([y_train_curr, [1]]) X_train_curr, y_train_curr = X_train_adv, y_train_adv # Add the example to the noisy poisoned dataset. X_train_noisy_adv = np.vstack([X_train_noisy_adv, best_example]) y_train_noisy_adv = np.concatenate([y_train_noisy_adv, [1]]) new_clf, _ = cred.train_model( X_train_adv, y_train_adv, exp_context.raw_datasets.X_test, exp_context.raw_datasets.y_test, verbose=False, ) score = cred.score_group(exp_context, target_group_idxs, custom_clf=new_clf) new_clf, _ = cred.train_model( X_train_noisy_adv, y_train_noisy_adv, exp_context.raw_datasets.X_test, exp_context.raw_datasets.y_test, verbose=False, ) noisy_score = cred.score_group( exp_context, target_group_idxs, custom_clf=new_clf ) if score > score_baseline: score_baseline = score group_datasets.append((X_train_noisy_adv, y_train_noisy_adv)) group_counter += 1 progbar.set_description( "Accepted. Score: %2.4f. Group size: %i" % (score, group_counter) ) else: progbar.set_description( "Rejected. Score: %2.4f (%2.4f). Group size: %i" % (score, score_baseline, group_counter) ) progbar.update() print("Final score: %2.4f" % noisy_score) print("Poisoned size: %i" % group_counter) return group_datasets if __name__ == "__main__": parser = argparse.ArgumentParser( description="Run a poisoning attack on credit scoring." ) parser.add_argument("--seed", default=1, type=int, help="Random seed") parser.add_argument( "--num_best_samples", default=None, type=int, help="Number of samples to consider", ) parser.add_argument( "--noise_set_size", default=0, type=int, help="Number of noise samples to add" ) parser.add_argument( "--num_simulations", default=1, type=int, help="Number of simulations" ) parser.add_argument( "--max_group_size", default=10, type=int, help="Max poisoning group size" ) parser.add_argument( "--load_scores_from_cache", default=False, type=bool, help="Load candidate scores from cache" ) args = parser.parse_args() exp_context = ExpContext(seed=args.seed) # Pick a target group to benefit from poisoning. df = exp_context.df target_group_sel = ( (df["Checking account_little"] == 1) & (df["Saving accounts_little"] == 1) & (df["Risk_good"] == 1) & (exp_context.clf.predict(exp_context.raw_datasets.X) == 0).astype(bool) ) print("Target group size:", sum(target_group_sel)) target_group = exp_context.raw_datasets.X[target_group_sel] target_group_idxs = np.where(target_group_sel)[0] print( "Acceptance rate for the target group: %2.6f" % cred.score_group(exp_context, target_group_idxs, trade_off=0.) ) for i in range(args.num_simulations): group_datasets = find_poisoning_group( exp_context, target_group_idxs, seed=args.seed + i, max_group_size=args.max_group_size, noise_set_size=args.noise_set_size, num_best_samples=args.num_best_samples, load_candidates_from_cache=args.load_scores_from_cache, ) out_path = "out/group_poisoning_influence_seed_%d_noise_%d_sim_%d" % (args.seed, args.noise_set_size, i) with open(out_path, "wb") as f: pickle.dump(group_datasets, f)
35.059322
112
0.624768
879b9c191eb0eb80e3c9af4157515e845dde9f42
1,293
py
Python
examples/data_augmentation/classifier.py
BehaviorPredictionTestingPlatform/VerifAI
db05f3573c2e7d98c03029c1b4efca93e6b08edb
[ "BSD-3-Clause" ]
109
2019-04-29T03:30:42.000Z
2022-03-31T03:06:26.000Z
examples/data_augmentation/classifier.py
BehaviorPredictionTestingPlatform/VerifAI
db05f3573c2e7d98c03029c1b4efca93e6b08edb
[ "BSD-3-Clause" ]
25
2019-03-25T00:27:39.000Z
2022-03-27T20:29:23.000Z
examples/data_augmentation/classifier.py
BehaviorPredictionTestingPlatform/VerifAI
db05f3573c2e7d98c03029c1b4efca93e6b08edb
[ "BSD-3-Clause" ]
35
2019-02-12T20:50:32.000Z
2022-01-05T11:25:06.000Z
import numpy as np from dotmap import DotMap from verifai.client import Client try: import tensorflow as tf except ModuleNotFoundError: import sys sys.exit('This functionality requires tensorflow to be installed') from renderer.kittiLib import getLib from renderer.generator import genImage from model.model import Model class Classifier(Client): def __init__(self, classifier_data): port = classifier_data.port bufsize = classifier_data.bufsize super().__init__(port, bufsize) self.sess = tf.Session() self.nn = Model() self.nn.init(classifier_data.graph_path, classifier_data.checkpoint_path, self.sess) self.lib = getLib() def simulate(self, sample): img, _ = genImage(self.lib, sample) yTrue = len(sample.cars) yPred = np.argmax(self.nn.predict(np.array(img))[0]) + 1 res = {} res['yTrue'] = yTrue res['yPred'] = yPred return res PORT = 8888 BUFSIZE = 4096 classifier_data = DotMap() classifier_data.port = PORT classifier_data.bufsize = BUFSIZE classifier_data.graph_path = './data/car_detector/checkpoint/car-detector-model.meta' classifier_data.checkpoint_path = './data/car_detector/checkpoint/' client_task = Classifier(classifier_data) while True: if not client_task.run_client(): print("End of all classifier calls") break
24.396226
86
0.753287
1ef64256b8caf749726f1e07c7bb8ecd9f635fee
7,335
py
Python
main_nolsm_onlyvid.py
nviable/deepfake-blips
93f57d5e6b8f5b3ac7bdcae4c81a4b2028f1253b
[ "Apache-2.0" ]
5
2019-05-22T02:30:43.000Z
2020-02-18T12:23:08.000Z
main_nolsm_onlyvid.py
nviable/deepfake-blips
93f57d5e6b8f5b3ac7bdcae4c81a4b2028f1253b
[ "Apache-2.0" ]
null
null
null
main_nolsm_onlyvid.py
nviable/deepfake-blips
93f57d5e6b8f5b3ac7bdcae4c81a4b2028f1253b
[ "Apache-2.0" ]
1
2020-02-28T06:15:07.000Z
2020-02-28T06:15:07.000Z
#%% from datetime import datetime import os,cv2 #from cv2 import getRotationMatrix2D, warpAffine,getAffineTransform,resize,imread,BORDER_REFLECT import numpy as np #KERAS IMPORTS from keras.applications.vgg16 import VGG16 from keras.callbacks import ProgbarLogger, EarlyStopping, ModelCheckpoint, TensorBoard from keras.models import Model, Sequential from keras.layers import Input, Convolution2D, MaxPooling2D, Conv2DTranspose, Conv2D, concatenate, Dense, Conv1D, TimeDistributed, LSTM, Flatten, Bidirectional, BatchNormalization from keras.layers.core import Reshape, Activation, Dropout from keras.preprocessing.image import * from keras.optimizers import SGD from dataloader import BlipDatasetLoader from keras.backend import expand_dims, shape from keras.utils import plot_model import matplotlib.pyplot as plt #%% time_window = 2 video_w = 512 video_h = 384 video_c = 3 audio_l = 1024 audio_c = 2 n_epochs = 5 G = BlipDatasetLoader(16, frames=time_window, only_vid=True) train_generator = G.gen(no_timesteps=True) test_generator = G.gen(False, no_timesteps=True) validation_generator = G.gen(False, True, no_timesteps=True) #%% ''' Model Architecture using Keras functional API ''' # first input model input_rgb = Input(shape=(384, 512, 3)) input_rgb_norm = BatchNormalization(axis=-1)(input_rgb) conv11a = Conv2D(32, kernel_size=5, padding='same', name="conv11a")(input_rgb) conv11a = Activation('relu')(conv11a) conv11b = Conv2D(32, kernel_size=5, padding='same', strides=(2,2), name="conv11b")(conv11a) conv11b_b = BatchNormalization()(conv11b) conv11b_a = Activation('relu')(conv11b_b) conv11b_d = Dropout(0.2)(conv11b_a) pool11 = MaxPooling2D(pool_size=(3, 3), name="pool11")(conv11b_d) conv12a = Conv2D(64, kernel_size=3, padding='same', name="conv12a")(pool11) conv12a = Activation('relu')(conv12a) conv12b = Conv2D(64, kernel_size=3, padding='same', strides=(2,2), name="conv12b")(conv12a) conv12b_b = BatchNormalization()(conv12b) conv12b_a = Activation('relu')(conv12b_b) conv12b_d = Dropout(0.2)(conv12b_a) pool12 = MaxPooling2D(pool_size=(2, 2), name="pool12")(conv12b_d) conv13a = Conv2D(128, kernel_size=3, padding='same', name="conv13a")(pool12) conv13a = Activation('relu')(conv13a) conv13b = Conv2D(128, kernel_size=3, padding='same', strides=(2,2), name="conv13b")(conv13a) conv13b_b = BatchNormalization()(conv13b) conv13b_a = Activation('relu')(conv13b_b) conv13b_d = Dropout(0.2)(conv13b_a) pool13 = MaxPooling2D(pool_size=(2, 2), name="pool13")(conv12b_d) conv14a = Conv2D(256, kernel_size=3, padding='same', name="conv14a")(pool13) conv14a = Activation('relu')(conv14a) conv14b = Conv2D(256, kernel_size=3, padding='same', strides=(2,2), name="conv14b")(conv14a) conv14b_b = BatchNormalization()(conv14b) conv14b_a = Activation('relu')(conv14b_b) conv14b_d = Dropout(0.2)(conv14b_a) pool14 = MaxPooling2D(pool_size=(2, 2), name="pool14")(conv12b_d) conv15a = Conv2D(256, kernel_size=3, padding='same', name="conv15a")(pool14) conv15a = Activation('relu')(conv15a) conv15b = Conv2D(256, kernel_size=3, padding='same', strides=(2,2), name="conv15b")(conv15a) conv15b_b = BatchNormalization()(conv15b) conv15b_a = Activation('relu')(conv15b_b) conv15b_d = Dropout(0.2)(conv15b_a) pool15 = MaxPooling2D(pool_size=(2, 2), name="pool15")(conv12b_d) conv16a = Conv2D(256, kernel_size=3, padding='same', name="conv16a")(pool15) conv16a = Activation('relu')(conv16a) conv16b = Conv2D(256, kernel_size=3, padding='same', strides=(2,2), name="conv16b")(conv16a) conv16b = Activation('relu')(conv16b) pool16 = MaxPooling2D(pool_size=(2, 2), name="pool16")(conv12b) conv17a = Conv2D(256, kernel_size=3, padding='same', name="conv17a")(pool16) conv17a = Activation('relu')(conv17a) conv17b = Conv2D(256, kernel_size=3, padding='same', strides=(2,2), name="conv17b")(conv17a) conv17b = Activation('relu')(conv17b) pool17 = MaxPooling2D(pool_size=(2, 2), name="pool17")(conv12b) flat1 = Flatten()(pool17) # conv11 = Conv2D(16, kernel_size=4, padding='valid', activation='relu', name="conv11" ) (input_rgb) # pool11 = MaxPooling2D(pool_size=(2, 2), name="pool11" ) (conv11) # conv12 = Conv2D(32, kernel_size=4, padding='valid', activation='relu', name="conv12" ) (pool11) # pool12 = MaxPooling2D(pool_size=(2, 2), name="pool12" ) (conv12) # flat1 = Flatten( name="flat1" ) (pool12) # second input model # input_stft = Input(shape=(25, 41, 2)) ''' conv21a = Conv2D(16, kernel_size=3, padding='same', name="conv21a")(input_stft) conv21a = Activation('relu')(conv21a) conv21b = Conv2D(16, kernel_size=3, padding='same', name="conv21b")(conv21a) conv21b_b = BatchNormalization()(conv21b) conv21b_a = Activation('relu')(conv21b_b) conv21b_d = Dropout(0.2)(conv21b_a) pool21 = MaxPooling2D(pool_size=(2, 2), name="pool21")(conv21b_d) conv22a = Conv2D(32, kernel_size=3, padding='same', name="conv22a")(pool21) conv22a = Activation('relu')(conv22a) conv22b = Conv2D(32, kernel_size=3, padding='same', name="conv22b")(conv22a) conv22b_b = BatchNormalization()(conv22b) conv22b_a = Activation('relu')(conv22b_b) conv22b_d = Dropout(0.2)(conv22b_a) pool22 = MaxPooling2D(pool_size=(2, 2), name="pool22")(conv22b_d) conv23a = Conv2D(32, kernel_size=3, padding='same', name="conv23a")(pool22) conv23a = Activation('relu')(conv23a) conv23b = Conv2D(32, kernel_size=3, padding='same', name="conv23b")(conv23a) conv23b_b = BatchNormalization()(conv23b) conv23b_a = Activation('relu')(conv23b_b) conv23b_d = Dropout(0.2)(conv23b_a) pool23 = MaxPooling2D(pool_size=(2, 2), name="pool23")(conv23b_d) ''' # conv21 = Conv2D(16, kernel_size=4, activation='relu', name="conv21" )(input_stft) # pool21 = MaxPooling2D(pool_size=(2, 2), name="pool21" )(conv21) # conv22 = Conv2D(32, kernel_size=4, activation='relu', name="conv22" )(pool21) # pool22 = MaxPooling2D(pool_size=(2, 2), name="pool22" )(conv22) # flat2 = Flatten( name="flat2" )(pool22) # merge input models # merge = concatenate([flat1, flat2]) # lstm1 = LSTM(32, return_sequences=True)(merge) # flatten_lstm = Flatten() (lstm1) hidden1 = Dense(16, activation='relu') (flat1) hidden2 = Dense(16, activation='relu') (hidden1) output = Dense(2, activation='softmax') (hidden2) model = Model(inputs=input_rgb, outputs=output) # summarize layers print(model.summary()) # exit() model.compile(optimizer=SGD(lr=0.008, decay=1e-6, momentum=0.9, nesterov=True), loss='mean_squared_error', metrics=['accuracy']) history = model.fit_generator(train_generator, steps_per_epoch=100, verbose=1, epochs=n_epochs, validation_data=validation_generator, validation_steps=10, use_multiprocessing=True) print(model.evaluate_generator(test_generator, steps=100)) plot_model(model, to_file='model.png') # Plot training & validation accuracy values plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.savefig("accuracy_nolstm_onlyvid.png") # Plot training & validation loss values plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.savefig("loss_nolstm_onlyvid.png") # model.save('final_model')
42.155172
180
0.734015
e8c56316ff5d87b0ef64cdc25db0c731179823b1
171
py
Python
api/tests/ver2/test_data/office_test_data.py
pcf26536/politico-api
1c9b8755ddad2baf0bfdeab4aa0674e4197a0d7c
[ "MIT" ]
1
2019-02-22T19:34:32.000Z
2019-02-22T19:34:32.000Z
api/tests/ver2/test_data/office_test_data.py
pcf26536/politico-api
1c9b8755ddad2baf0bfdeab4aa0674e4197a0d7c
[ "MIT" ]
null
null
null
api/tests/ver2/test_data/office_test_data.py
pcf26536/politico-api
1c9b8755ddad2baf0bfdeab4aa0674e4197a0d7c
[ "MIT" ]
1
2019-02-07T22:12:25.000Z
2019-02-07T22:12:25.000Z
from api.strings import name_key, type_key from api.ver1.offices.strings import fed_type correct_office = { name_key: "Women Representative", type_key: fed_type }
24.428571
45
0.77193
9eddc9b44c8e9bb9b2c1b2e233e11af6583e50b9
2,380
py
Python
tests/unit/raptiformica/actions/agent/test_agent_already_running.py
vdloo/raptiformica
e2807e5e913312034161efcbd74525a4b15b37e7
[ "MIT" ]
21
2016-09-04T11:27:31.000Z
2019-10-30T08:23:14.000Z
tests/unit/raptiformica/actions/agent/test_agent_already_running.py
vdloo/raptiformica
e2807e5e913312034161efcbd74525a4b15b37e7
[ "MIT" ]
5
2017-09-17T15:59:37.000Z
2018-02-03T14:53:32.000Z
tests/unit/raptiformica/actions/agent/test_agent_already_running.py
vdloo/raptiformica
e2807e5e913312034161efcbd74525a4b15b37e7
[ "MIT" ]
2
2017-11-21T18:14:51.000Z
2017-11-22T01:20:45.000Z
from raptiformica.actions.agent import agent_already_running from tests.testcase import TestCase class TestAgentAlreadyRunning(TestCase): def setUp(self): self.check_nonzero_exit = self.set_up_patch( 'raptiformica.actions.agent.check_nonzero_exit' ) self.check_nonzero_exit.return_value = True self._get_program_name = self.set_up_patch( 'raptiformica.actions.agent._get_program_name' ) self._get_program_name.return_value = 'raptiformica.actions.spawn' def test_agent_already_running_checks_if_there_is_another_agent_already_running(self): agent_already_running() expected_command = "ps aux | grep 'bin/[r]aptiformica_agent.py' | " \ "grep -v screen -i | grep python3 | grep -v 'sh -c' | " \ "awk '{print $2}' | xargs --no-run-if-empty -I {} " \ "sh -c \"grep -q docker /proc/{}/cgroup 2> /dev/null " \ "&& ! grep -q name=systemd:/docker /proc/1/cgroup || echo {}\" | " \ "wc -l | { read li; test $li -gt 0; }" self.check_nonzero_exit.assert_called_once_with( expected_command ) def test_agent_already_running_allows_2_agents_to_run_if_check_runs_inside_agent(self): self._get_program_name.return_value = 'raptiformica.actions.agent' agent_already_running() expected_command = "ps aux | grep 'bin/[r]aptiformica_agent.py' | " \ "grep -v screen -i | grep python3 | grep -v 'sh -c' | " \ "awk '{print $2}' | xargs --no-run-if-empty -I {} " \ "sh -c \"grep -q docker /proc/{}/cgroup 2> /dev/null " \ "&& ! grep -q name=systemd:/docker /proc/1/cgroup || echo {}\" | " \ "wc -l | { read li; test $li -gt 1; }" self.check_nonzero_exit.assert_called_once_with( expected_command ) def tests_agent_already_running_returns_true_if_check_exits_zero(self): ret = agent_already_running() self.assertTrue(ret) def tests_agent_already_running_returns_false_if_check_exits_nonzero(self): self.check_nonzero_exit.return_value = False ret = agent_already_running() self.assertFalse(ret)
43.272727
95
0.596218
040ca3941248932b69f6e566bea6389eea026ab6
347
py
Python
tests/test_models.py
solocompt/plugs-status
1177d3426e8e62801fc435df082ad3ffc2dea0b6
[ "MIT" ]
null
null
null
tests/test_models.py
solocompt/plugs-status
1177d3426e8e62801fc435df082ad3ffc2dea0b6
[ "MIT" ]
null
null
null
tests/test_models.py
solocompt/plugs-status
1177d3426e8e62801fc435df082ad3ffc2dea0b6
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_plugs-status ------------ Tests for `plugs-status` models module. """ from django.test import TestCase from plugs_status import models class TestPlugs_status(TestCase): def setUp(self): pass def test_something(self): pass def tearDown(self): pass
13.346154
39
0.62536
f5b1c89503dc67b5dfca05d692d61cdec555d3cc
5,689
py
Python
IMLearn/learners/gaussian_estimators.py
ereldebel/IML.HUJI
1c3d7042071a74ed60f92c013ef6051e2341304c
[ "MIT" ]
null
null
null
IMLearn/learners/gaussian_estimators.py
ereldebel/IML.HUJI
1c3d7042071a74ed60f92c013ef6051e2341304c
[ "MIT" ]
null
null
null
IMLearn/learners/gaussian_estimators.py
ereldebel/IML.HUJI
1c3d7042071a74ed60f92c013ef6051e2341304c
[ "MIT" ]
null
null
null
from __future__ import annotations import numpy as np from numpy.linalg import inv, det, slogdet class UnivariateGaussian: """ Class for univariate Gaussian Distribution Estimator """ def __init__(self, biased_var: bool = False) -> None: """ Estimator for univariate Gaussian mean and variance parameters Parameters ---------- biased_var : bool, default=False Should fitted estimator of variance be a biased or unbiased estimator Attributes ---------- fitted_ : bool Initialized as false indicating current estimator instance has not been fitted. To be set as True in `UnivariateGaussian.fit` function. mu_: float Estimated expectation initialized as None. To be set in `UnivariateGaussian.fit` function. var_: float Estimated variance initialized as None. To be set in `UnivariateGaussian.fit` function. """ self.biased_ = biased_var self.fitted_, self.mu_, self.var_ = False, None, None def fit(self, X: np.ndarray) -> UnivariateGaussian: """ Estimate Gaussian expectation and variance from given samples Parameters ---------- X: ndarray of shape (n_samples, ) Training data Returns ------- self : returns an instance of self. Notes ----- Sets `self.mu_`, `self.var_` attributes according to calculated estimation (where estimator is either biased or unbiased). Then sets `self.fitted_` attribute to `True` """ self.mu_ = X.mean() if self.biased_: self.var_ = X.var() # == np.mean(np.square(X - self.mu_)) else: self.var_ = X.var(ddof=1) # == np.sum(np.square(X - self.mu_)) / (X.size - 1) self.fitted_ = True return self def pdf(self, X: np.ndarray) -> np.ndarray: """ Calculate PDF of observations under Gaussian model with fitted estimators Parameters ---------- X: ndarray of shape (n_samples, ) Samples to calculate PDF for Returns ------- pdfs: ndarray of shape (n_samples, ) Calculated values of given samples for PDF function of N(mu_, var_) Raises ------ ValueError: In case function was called prior fitting the model """ if not self.fitted_: raise ValueError( "Estimator must first be fitted before calling `pdf` function") return np.exp(-(X - self.mu_) ** 2 / (2 * self.var_)) / np.sqrt( 2 * np.pi * self.var_) @staticmethod def log_likelihood(mu: float, sigma: float, X: np.ndarray) -> float: """ Calculate the log-likelihood of the data under a specified Gaussian model Parameters ---------- mu : float Expectation of Gaussian sigma : float Variance of Gaussian X : ndarray of shape (n_samples, ) Samples to calculate log-likelihood with Returns ------- log_likelihood: float log-likelihood calculated """ return -np.log(2 * np.pi * sigma) * X.size / 2 \ - np.sum(np.power(X - mu, 2)) / (2 * sigma) class MultivariateGaussian: """ Class for multivariate Gaussian Distribution Estimator """ def __init__(self): """ Initialize an instance of multivariate Gaussian estimator Attributes ---------- fitted_ : bool Initialized as false indicating current estimator instance has not been fitted. To be set as True in `MultivariateGaussian.fit` function. mu_: ndarray of shape (n_features,) Estimated expectation initialized as None. To be set in `MultivariateGaussian.fit` function. cov_: ndarray of shape (n_features, n_features) Estimated covariance initialized as None. To be set in `MultivariateGaussian.fit` function. """ self.mu_, self.cov_ = None, None self.fitted_ = False def fit(self, X: np.ndarray) -> MultivariateGaussian: """ Estimate Gaussian expectation and covariance from given samples Parameters ---------- X: ndarray of shape (n_samples, n_features) Training data Returns ------- self : returns an instance of self Notes ----- Sets `self.mu_`, `self.cov_` attributes according to calculated estimation. Then sets `self.fitted_` attribute to `True` """ self.mu_ = X.mean(axis=0) self.cov_ = np.cov(X.transpose(), bias=False) self.fitted_ = True return self def pdf(self, X: np.ndarray): """ Calculate PDF of observations under Gaussian model with fitted estimators Parameters ---------- X: ndarray of shape (m_samples, n_features) Samples to calculate PDF for Returns ------- pdfs: ndarray of shape (m_samples, ) Calculated values of given samples for PDF function of N(mu_, cov_) Raises ------ ValueError: In case function was called prior fitting the model """ if not self.fitted_: raise ValueError( "Estimator must first be fitted before calling `pdf` function") x_minus_mu = X - self.mu_ cov_inv = inv(self.cov_) def sample_pdf(x): return np.exp(-np.sum(x @ cov_inv @ x.T, axis=0) / 2) / np.sqrt( np.power(2 * np.pi, X.shape[1]) * det(self.cov_)) return np.apply_along_axis(sample_pdf, 1, x_minus_mu) @staticmethod def log_likelihood(mu: np.ndarray, cov: np.ndarray, X: np.ndarray) -> float: """ Calculate the log-likelihood of the data under a specified Gaussian model Parameters ---------- mu : ndarray of shape (n_features,) Expectation of Gaussian cov : ndarray of shape (n_features, n_features) covariance matrix of Gaussian X : ndarray of shape (n_samples, n_features) Samples to calculate log-likelihood with Returns ------- log_likelihood: float log-likelihood calculated over all input data and under given parameters of Gaussian """ m = X.shape[0] d = X.shape[1] x_minus_mu = X - mu cov_inv = inv(cov) return -m * d / 2 * np.log(2 * np.pi) \ - m / 2 * slogdet(cov)[1] \ - np.sum(x_minus_mu @ cov_inv * x_minus_mu) / 2
25.977169
87
0.679557
8a0188795536e668bab21c1eaba05c76a768f22d
4,272
py
Python
src/lossfunctions.py
Darshan-Ramesh/EmpRecognition
c85775659bcbb79f62de29a7a764cc72f1de0674
[ "MIT" ]
null
null
null
src/lossfunctions.py
Darshan-Ramesh/EmpRecognition
c85775659bcbb79f62de29a7a764cc72f1de0674
[ "MIT" ]
null
null
null
src/lossfunctions.py
Darshan-Ramesh/EmpRecognition
c85775659bcbb79f62de29a7a764cc72f1de0674
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F import config as cfg from torch.autograd import Variable import numpy as np class CBFocalLoss(nn.Module): # from https://github.com/vandit15/Class-balanced-loss-pytorch/blob/master/class_balanced_loss.py # paper https://arxiv.org/abs/1901.05555 def __init__(self,weights,gamma): super(CBFocalLoss,self).__init__() self.alpha = weights #weights per class for Class Balanced Loss or alpha=1 bare FocalLoss self.gamma = gamma def forward(self,logits,labels): labels = F.one_hot(labels,cfg.CLASSES).float() BCLoss = F.binary_cross_entropy_with_logits(logits,labels,weight=None,reduction='none') if self.gamma == 0.0: modulator = 1.0 else: modulator = torch.exp(-self.gamma * labels * logits - self.gamma * torch.log(1+torch.exp(-1.0 * logits))) loss = modulator * BCLoss weighted_loss = self.alpha * loss focal_loss = torch.sum(weighted_loss) focal_loss /= torch.sum(labels) return focal_loss class FocalLoss(nn.Module): def __init__(self,alpha= 1,gamma= 1,reduce= True,cls_weights=None): super(FocalLoss,self).__init__() self.alpha = alpha self.gamma = gamma self.reduce = reduce self.cls_weights = cls_weights def forward(self,logits,labels): CE_loss = F.cross_entropy(logits,labels,weight=self.cls_weights,reduction = "none") pt = torch.exp(-CE_loss) F_loss = self.alpha * (1-pt)**self.gamma * CE_loss if self.reduce: return torch.mean(F_loss) else: return F_loss def LossFunctions(loss_fn_name,alpha,gamma,cls_weights=None): #Gamma value chosen from the paper https://arxiv.org/abs/1901.05555 if not loss_fn_name: print(f'[INFO] Using default loss function - CrossEntropy Loss') loss_fn_name = 'ce' if loss_fn_name == 'cb_focal': loss = CBFocalLoss(weights = cls_weights, gamma = gamma) return loss if loss_fn_name == 'focal': print(f'[INFO] Using {loss_fn_name} as loss..') loss = FocalLoss(alpha,gamma,True,cls_weights) return loss if loss_fn_name == 'ce': loss = torch.nn.CrossEntropyLoss(cls_weights) return loss # ------------------------------------------------------------------------------------------------------ # class CustomSigmoid(nn.Module): # def __init__(self,weights=None): # super(CustomSigmoid,self).__init__() # self.cls_weights = weights # def forward(self,logits,labels): # labels = F.one_hot(labels,cfg.CLASSES).float() # loss = F.binary_cross_entropy_with_logits(input=logits,target=labels,weight=self.cls_weights) # loss = torch.mean(loss) # return loss # ---------------------------------------------------------------------------------------------------- # # testing # torch.manual_seed(0) # batch_size, n_classes = 8, 31 # x = torch.randn(batch_size, n_classes) # batch_target = torch.randint(n_classes, size=(batch_size,), dtype=torch.long) # fn = ['focal'] # for fn_name in fn: # loss_fn = LossFunctions(fn_name) # print(f'[INFO] Function - {fn_name}, Loss - {loss_fn(x,batch_target)}') # no_of_classes = 5 # logits = torch.rand(10,no_of_classes).float() # labels = torch.randint(0,no_of_classes, size = (10,)) # beta = 0.9999 # gamma = 2.0 # samples_per_cls = [2,3,1,2,2] # labels_one_hot = F.one_hot(labels, no_of_classes).float() # effective_num = 1.0 - np.power(beta, samples_per_cls) # weights = (1.0 - beta) / np.array(effective_num) # weights = weights / np.sum(weights) * no_of_classes # weights = torch.tensor(weights).float() # weights = weights.unsqueeze(0) # weights = weights.repeat(labels_one_hot.shape[0],1) * labels_one_hot # weights = weights.sum(1) # weights = weights.unsqueeze(1) # weights = weights.repeat(1,no_of_classes) # print(weights.shape) # print(logits.shape) # print(labels_one_hot.shape) # cb_loss = CBFocalLoss(weights = weights, gamma = gamma) # loss = cb_loss(logits,labels_one_hot) # print(loss)
34.731707
117
0.619382
0712bbc0f673317187af8e1ab3b26543e2e7e0de
443
py
Python
balanced_delimiters.py
roopsmall/hackerrank-questions
f38d710be7a46491e5dc435155d953ae821d2055
[ "MIT" ]
null
null
null
balanced_delimiters.py
roopsmall/hackerrank-questions
f38d710be7a46491e5dc435155d953ae821d2055
[ "MIT" ]
null
null
null
balanced_delimiters.py
roopsmall/hackerrank-questions
f38d710be7a46491e5dc435155d953ae821d2055
[ "MIT" ]
null
null
null
brackets = raw_input() pairs = {'{':'}', '[':']', '(':')'} index = -1 indicator = [] for i, bracket in enumerate(brackets): if index == -1 and bracket not in pairs.keys(): index = 1 break elif bracket in pairs.keys() or indicator[index] not in pairs.keys() or bracket != pairs[indicator[index]]: indicator.append(bracket) index += 1 else: # bracket == indicator[index]: del indicator[index] index -= 1 print index == -1
20.136364
108
0.625282
42e42c29ee2f51520678161f21d7e6feade1c79f
5,775
py
Python
tests/test_livechat_2.py
pedrohbtp/pytchat
5b18536972a4cdfbe68aa0beb023c136d41fca16
[ "MIT" ]
null
null
null
tests/test_livechat_2.py
pedrohbtp/pytchat
5b18536972a4cdfbe68aa0beb023c136d41fca16
[ "MIT" ]
null
null
null
tests/test_livechat_2.py
pedrohbtp/pytchat
5b18536972a4cdfbe68aa0beb023c136d41fca16
[ "MIT" ]
null
null
null
import asyncio import re from aioresponses import aioresponses from concurrent.futures import CancelledError from pytchat.core_multithread.livechat import LiveChat from pytchat.core_async.livechat import LiveChatAsync from pytchat.processors.dummy_processor import DummyProcessor def _open_file(path): with open(path, mode='r', encoding='utf-8') as f: return f.read() @aioresponses() def test_async_live_stream(*mock): async def test_loop(*mock): pattern = re.compile( r'^https://www.youtube.com/live_chat/get_live_chat\?continuation=.*$') _text = _open_file('tests/testdata/test_stream.json') mock[0].get(pattern, status=200, body=_text) chat = LiveChatAsync(video_id='__test_id__', processor=DummyProcessor()) chats = await chat.get() rawdata = chats[0]["chatdata"] # assert fetching livachat data assert list(rawdata[0]["addChatItemAction"]["item"].keys())[ 0] == "liveChatTextMessageRenderer" assert list(rawdata[1]["addChatItemAction"]["item"].keys())[ 0] == "liveChatTextMessageRenderer" assert list(rawdata[2]["addChatItemAction"]["item"].keys())[ 0] == "liveChatPlaceholderItemRenderer" assert list(rawdata[3]["addLiveChatTickerItemAction"]["item"].keys())[ 0] == "liveChatTickerPaidMessageItemRenderer" assert list(rawdata[4]["addChatItemAction"]["item"].keys())[ 0] == "liveChatPaidMessageRenderer" assert list(rawdata[5]["addChatItemAction"]["item"].keys())[ 0] == "liveChatPaidStickerRenderer" assert list(rawdata[6]["addLiveChatTickerItemAction"]["item"].keys())[ 0] == "liveChatTickerSponsorItemRenderer" loop = asyncio.get_event_loop() try: loop.run_until_complete(test_loop(*mock)) except CancelledError: assert True @aioresponses() def test_async_replay_stream(*mock): async def test_loop(*mock): pattern_live = re.compile( r'^https://www.youtube.com/live_chat/get_live_chat\?continuation=.*$') pattern_replay = re.compile( r'^https://www.youtube.com/live_chat_replay/get_live_chat_replay\?continuation=.*$') # empty livechat -> switch to fetch replaychat _text_live = _open_file('tests/testdata/finished_live.json') _text_replay = _open_file('tests/testdata/chatreplay.json') mock[0].get(pattern_live, status=200, body=_text_live) mock[0].get(pattern_replay, status=200, body=_text_replay) chat = LiveChatAsync(video_id='__test_id__', processor=DummyProcessor()) chats = await chat.get() rawdata = chats[0]["chatdata"] # assert fetching replaychat data assert list(rawdata[0]["addChatItemAction"]["item"].keys())[ 0] == "liveChatTextMessageRenderer" assert list(rawdata[14]["addChatItemAction"]["item"].keys())[ 0] == "liveChatPaidMessageRenderer" loop = asyncio.get_event_loop() try: loop.run_until_complete(test_loop(*mock)) except CancelledError: assert True @aioresponses() def test_async_force_replay(*mock): async def test_loop(*mock): pattern_live = re.compile( r'^https://www.youtube.com/live_chat/get_live_chat\?continuation=.*$') pattern_replay = re.compile( r'^https://www.youtube.com/live_chat_replay/get_live_chat_replay\?continuation=.*$') # valid live data, but force_replay = True _text_live = _open_file('tests/testdata/test_stream.json') # valid replay data _text_replay = _open_file('tests/testdata/chatreplay.json') mock[0].get(pattern_live, status=200, body=_text_live) mock[0].get(pattern_replay, status=200, body=_text_replay) # force replay chat = LiveChatAsync( video_id='__test_id__', processor=DummyProcessor(), force_replay=True) chats = await chat.get() rawdata = chats[0]["chatdata"] # assert fetching replaychat data assert list(rawdata[14]["addChatItemAction"]["item"].keys())[ 0] == "liveChatPaidMessageRenderer" # assert not mix livechat data assert list(rawdata[2]["addChatItemAction"]["item"].keys())[ 0] != "liveChatPlaceholderItemRenderer" loop = asyncio.get_event_loop() try: loop.run_until_complete(test_loop(*mock)) except CancelledError: assert True def test_multithread_live_stream(mocker): _text = _open_file('tests/testdata/test_stream.json') responseMock = mocker.Mock() responseMock.status_code = 200 responseMock.text = _text mocker.patch( 'requests.Session.get').return_value.__enter__.return_value = responseMock chat = LiveChat(video_id='__test_id__', processor=DummyProcessor()) chats = chat.get() rawdata = chats[0]["chatdata"] # assert fetching livachat data assert list(rawdata[0]["addChatItemAction"]["item"].keys())[ 0] == "liveChatTextMessageRenderer" assert list(rawdata[1]["addChatItemAction"]["item"].keys())[ 0] == "liveChatTextMessageRenderer" assert list(rawdata[2]["addChatItemAction"]["item"].keys())[ 0] == "liveChatPlaceholderItemRenderer" assert list(rawdata[3]["addLiveChatTickerItemAction"]["item"].keys())[ 0] == "liveChatTickerPaidMessageItemRenderer" assert list(rawdata[4]["addChatItemAction"]["item"].keys())[ 0] == "liveChatPaidMessageRenderer" assert list(rawdata[5]["addChatItemAction"]["item"].keys())[ 0] == "liveChatPaidStickerRenderer" assert list(rawdata[6]["addLiveChatTickerItemAction"]["item"].keys())[ 0] == "liveChatTickerSponsorItemRenderer" chat.terminate()
40.957447
96
0.665974
94cfea49754e85af29da3a247feda3bf7dc1e1e4
955
py
Python
Section_3/Exercise_15.py
Szymon-Budziak/WDI_exercises_solutions
51ffc9ec8b3cd6809bd55e98ecb8aed759c2d460
[ "MIT" ]
null
null
null
Section_3/Exercise_15.py
Szymon-Budziak/WDI_exercises_solutions
51ffc9ec8b3cd6809bd55e98ecb8aed759c2d460
[ "MIT" ]
null
null
null
Section_3/Exercise_15.py
Szymon-Budziak/WDI_exercises_solutions
51ffc9ec8b3cd6809bd55e98ecb8aed759c2d460
[ "MIT" ]
1
2021-11-21T09:38:33.000Z
2021-11-21T09:38:33.000Z
""" Dana jest duża tablica t. Proszę napisać funkcję, która zwraca informację czy w tablicy zachodzi następujący warunek: „wszystkie elementy, których indeks jest elementem ciągu Fibonacciego są liczbami złożonymi, a wśród pozostałych przynajmniej jedna jest liczbą pierwszą”. """ from random import randint def fibonacci_index(t): len_t = len(t) a = 0 b = 1 for i in range(0, len_t): result_a = 0 result_b = 0 try: a_str = str(t[a]) b_str = str(t[b]) for x in range(len(a_str)): result_a += 1 for y in range(len(b_str)): result_b += 1 if result_a > 1 and result_b > 1: a += b b += a continue else: return False except IndexError: continue return True t = [randint(1, 100) for _ in range(10)] print(fibonacci_index(t))
26.527778
96
0.55288
75b99654dbf8921e515d99738725ab16c49c99da
22,714
py
Python
pandas/io/tests/parser/c_parser_only.py
onesandzeroes/pandas
22d982a8afdef3c438c9c93dfe5299cc5ca07de2
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
null
null
null
pandas/io/tests/parser/c_parser_only.py
onesandzeroes/pandas
22d982a8afdef3c438c9c93dfe5299cc5ca07de2
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
null
null
null
pandas/io/tests/parser/c_parser_only.py
onesandzeroes/pandas
22d982a8afdef3c438c9c93dfe5299cc5ca07de2
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Tests that apply specifically to the CParser. Unless specifically stated as a CParser-specific issue, the goal is to eventually move as many of these tests out of this module as soon as the Python parser can accept further arguments when parsing. """ import nose import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex, Categorical from pandas import compat from pandas.compat import StringIO, range, lrange from pandas.types.dtypes import CategoricalDtype class CParserTests(object): def test_buffer_overflow(self): # see gh-9205: test certain malformed input files that cause # buffer overflows in tokenizer.c malfw = "1\r1\r1\r 1\r 1\r" # buffer overflow in words pointer malfs = "1\r1\r1\r 1\r 1\r11\r" # buffer overflow in stream pointer malfl = "1\r1\r1\r 1\r 1\r11\r1\r" # buffer overflow in lines pointer cperr = 'Buffer overflow caught - possible malformed input file.' for malf in (malfw, malfs, malfl): try: self.read_table(StringIO(malf)) except Exception as err: self.assertIn(cperr, str(err)) def test_buffer_rd_bytes(self): # see gh-12098: src->buffer in the C parser can be freed twice leading # to a segfault if a corrupt gzip file is read with 'read_csv' and the # buffer is filled more than once before gzip throws an exception data = '\x1F\x8B\x08\x00\x00\x00\x00\x00\x00\x03\xED\xC3\x41\x09' \ '\x00\x00\x08\x00\xB1\xB7\xB6\xBA\xFE\xA5\xCC\x21\x6C\xB0' \ '\xA6\x4D' + '\x55' * 267 + \ '\x7D\xF7\x00\x91\xE0\x47\x97\x14\x38\x04\x00' \ '\x1f\x8b\x08\x00VT\x97V\x00\x03\xed]\xefO' for i in range(100): try: self.read_csv(StringIO(data), compression='gzip', delim_whitespace=True) except Exception: pass def test_delim_whitespace_custom_terminator(self): # See gh-12912 data = """a b c~1 2 3~4 5 6~7 8 9""" df = self.read_csv(StringIO(data), lineterminator='~', delim_whitespace=True) expected = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, expected) def test_dtype_and_names_error(self): # see gh-8833: passing both dtype and names # resulting in an error reporting issue data = """ 1.0 1 2.0 2 3.0 3 """ # base cases result = self.read_csv(StringIO(data), sep=r'\s+', header=None) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]]) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), sep=r'\s+', header=None, names=['a', 'b']) expected = DataFrame( [[1.0, 1], [2.0, 2], [3.0, 3]], columns=['a', 'b']) tm.assert_frame_equal(result, expected) # fallback casting result = self.read_csv(StringIO( data), sep=r'\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) expected = DataFrame([[1, 1], [2, 2], [3, 3]], columns=['a', 'b']) expected['a'] = expected['a'].astype(np.int32) tm.assert_frame_equal(result, expected) data = """ 1.0 1 nan 2 3.0 3 """ # fallback casting, but not castable with tm.assertRaisesRegexp(ValueError, 'cannot safely convert'): self.read_csv(StringIO(data), sep=r'\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) def test_passing_dtype(self): # see gh-6607 df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # see gh-3795: passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to # convert to test for equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) # valid but unsupported - fixed width unicode string self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'U8'}, index_col=0) # see gh-12048: empty frame actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_precise_conversion(self): # see gh-8002 tm._skip_if_32bit() from decimal import Decimal normal_errors = [] precise_errors = [] # test numbers between 1 and 2 for num in np.linspace(1., 2., num=500): # 25 decimal digits of precision text = 'a\n{0:.25}'.format(num) normal_val = float(self.read_csv(StringIO(text))['a'][0]) precise_val = float(self.read_csv( StringIO(text), float_precision='high')['a'][0]) roundtrip_val = float(self.read_csv( StringIO(text), float_precision='round_trip')['a'][0]) actual_val = Decimal(text[2:]) def error(val): return abs(Decimal('{0:.100}'.format(val)) - actual_val) normal_errors.append(error(normal_val)) precise_errors.append(error(precise_val)) # round-trip should match float() self.assertEqual(roundtrip_val, float(text[2:])) self.assertTrue(sum(precise_errors) <= sum(normal_errors)) self.assertTrue(max(precise_errors) <= max(normal_errors)) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'object') def test_categorical_dtype(self): # GH 10153 data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['a', 'a', 'b']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype=CategoricalDtype()) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={'a': 'category', 'b': 'category', 'c': CategoricalDtype()}) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={'b': 'category'}) expected = pd.DataFrame({'a': [1, 1, 2], 'b': Categorical(['a', 'a', 'b']), 'c': [3.4, 3.4, 4.5]}) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={1: 'category'}) tm.assert_frame_equal(actual, expected) # unsorted data = """a,b,c 1,b,3.4 1,b,3.4 2,a,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['b', 'b', 'a']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) # missing data = """a,b,c 1,b,3.4 1,nan,3.4 2,a,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['b', np.nan, 'a']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) def test_categorical_dtype_encoding(self): # GH 10153 pth = tm.get_data_path('unicode_series.csv') encoding = 'latin-1' expected = self.read_csv(pth, header=None, encoding=encoding) expected[1] = Categorical(expected[1]) actual = self.read_csv(pth, header=None, encoding=encoding, dtype={1: 'category'}) tm.assert_frame_equal(actual, expected) pth = tm.get_data_path('utf16_ex.txt') encoding = 'utf-16' expected = self.read_table(pth, encoding=encoding) expected = expected.apply(Categorical) actual = self.read_table(pth, encoding=encoding, dtype='category') tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize(self): # GH 10153 data = """a,b 1,a 1,b 1,b 2,c""" expecteds = [pd.DataFrame({'a': [1, 1], 'b': Categorical(['a', 'b'])}), pd.DataFrame({'a': [1, 2], 'b': Categorical(['b', 'c'])}, index=[2, 3])] actuals = self.read_csv(StringIO(data), dtype={'b': 'category'}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) def test_pass_dtype_as_recarray(self): if compat.is_platform_windows() and self.low_memory: raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO(data), dtype={ 'one': 'u1', 1: 'S1'}, as_recarray=True) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'S1') def test_empty_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), dtype={'one': 'u1'}) expected = DataFrame({'one': np.empty(0, dtype='u1'), 'two': np.empty(0, dtype=np.object)}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_index_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), index_col=['one'], dtype={'one': 'u1', 1: 'f'}) expected = DataFrame({'two': np.empty(0, dtype='f')}, index=Index([], dtype='u1', name='one')) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_multiindex_pass_dtype(self): data = 'one,two,three' result = self.read_csv(StringIO(data), index_col=['one', 'two'], dtype={'one': 'u1', 1: 'f8'}) exp_idx = MultiIndex.from_arrays([np.empty(0, dtype='u1'), np.empty(0, dtype='O')], names=['one', 'two']) expected = DataFrame( {'three': np.empty(0, dtype=np.object)}, index=exp_idx) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_names(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={ 'one': 'u1', 'one.1': 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_indexes(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={0: 'u1', 1: 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_dup_column_pass_dtype_by_indexes(self): # see gh-9424 expected = pd.concat([Series([], name='one', dtype='u1'), Series([], name='one.1', dtype='f')], axis=1) data = 'one,one' result = self.read_csv(StringIO(data), dtype={0: 'u1', 1: 'f'}) tm.assert_frame_equal(result, expected, check_index_type=False) data = '' result = self.read_csv(StringIO(data), names=['one', 'one'], dtype={0: 'u1', 1: 'f'}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_usecols_dtypes(self): data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(0, 1, 2), names=('a', 'b', 'c'), header=None, converters={'a': str}, dtype={'b': int, 'c': float}, ) result2 = self.read_csv(StringIO(data), usecols=(0, 2), names=('a', 'b', 'c'), header=None, converters={'a': str}, dtype={'b': int, 'c': float}, ) self.assertTrue((result.dtypes == [object, np.int, np.float]).all()) self.assertTrue((result2.dtypes == [object, np.float]).all()) def test_disable_bool_parsing(self): # #2090 data = """A,B,C Yes,No,Yes No,Yes,Yes Yes,,Yes No,No,No""" result = self.read_csv(StringIO(data), dtype=object) self.assertTrue((result.dtypes == object).all()) result = self.read_csv(StringIO(data), dtype=object, na_filter=False) self.assertEqual(result['B'][2], '') def test_custom_lineterminator(self): data = 'a,b,c~1,2,3~4,5,6' result = self.read_csv(StringIO(data), lineterminator='~') expected = self.read_csv(StringIO(data.replace('~', '\n'))) tm.assert_frame_equal(result, expected) def test_raise_on_passed_int_dtype_with_nas(self): # see gh-2631 data = """YEAR, DOY, a 2001,106380451,10 2001,,11 2001,106380451,67""" self.assertRaises(ValueError, self.read_csv, StringIO(data), sep=",", skipinitialspace=True, dtype={'DOY': np.int64}) def test_parse_ragged_csv(self): data = """1,2,3 1,2,3,4 1,2,3,4,5 1,2 1,2,3,4""" nice_data = """1,2,3,, 1,2,3,4, 1,2,3,4,5 1,2,,, 1,2,3,4,""" result = self.read_csv(StringIO(data), header=None, names=['a', 'b', 'c', 'd', 'e']) expected = self.read_csv(StringIO(nice_data), header=None, names=['a', 'b', 'c', 'd', 'e']) tm.assert_frame_equal(result, expected) # too many columns, cause segfault if not careful data = "1,2\n3,4,5" result = self.read_csv(StringIO(data), header=None, names=lrange(50)) expected = self.read_csv(StringIO(data), header=None, names=lrange(3)).reindex(columns=lrange(50)) tm.assert_frame_equal(result, expected) def test_tokenize_CR_with_quoting(self): # see gh-3453 data = ' a,b,c\r"a,b","e,d","f,f"' result = self.read_csv(StringIO(data), header=None) expected = self.read_csv(StringIO(data.replace('\r', '\n')), header=None) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data)) expected = self.read_csv(StringIO(data.replace('\r', '\n'))) tm.assert_frame_equal(result, expected) def test_grow_boundary_at_cap(self): # See gh-12494 # # Cause of error was that the C parser # was not increasing the buffer size when # the desired space would fill the buffer # to capacity, which would later cause a # buffer overflow error when checking the # EOF terminator of the CSV stream def test_empty_header_read(count): s = StringIO(',' * count) expected = DataFrame(columns=[ 'Unnamed: {i}'.format(i=i) for i in range(count + 1)]) df = self.read_csv(s) tm.assert_frame_equal(df, expected) for count in range(1, 101): test_empty_header_read(count) def test_parse_trim_buffers(self): # This test is part of a bugfix for issue #13703. It attmepts to # to stress the system memory allocator, to cause it to move the # stream buffer and either let the OS reclaim the region, or let # other memory requests of parser otherwise modify the contents # of memory space, where it was formely located. # This test is designed to cause a `segfault` with unpatched # `tokenizer.c`. Sometimes the test fails on `segfault`, other # times it fails due to memory corruption, which causes the # loaded DataFrame to differ from the expected one. # Generate a large mixed-type CSV file on-the-fly (one record is # approx 1.5KiB). record_ = \ """9999-9,99:99,,,,ZZ,ZZ,,,ZZZ-ZZZZ,.Z-ZZZZ,-9.99,,,9.99,Z""" \ """ZZZZ,,-99,9,ZZZ-ZZZZ,ZZ-ZZZZ,,9.99,ZZZ-ZZZZZ,ZZZ-ZZZZZ,""" \ """ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,9""" \ """99,ZZZ-ZZZZ,,ZZ-ZZZZ,,,,,ZZZZ,ZZZ-ZZZZZ,ZZZ-ZZZZ,,,9,9,""" \ """9,9,99,99,999,999,ZZZZZ,ZZZ-ZZZZZ,ZZZ-ZZZZ,9,ZZ-ZZZZ,9.""" \ """99,ZZ-ZZZZ,ZZ-ZZZZ,,,,ZZZZ,,,ZZ,ZZ,,,,,,,,,,,,,9,,,999.""" \ """99,999.99,,,ZZZZZ,,,Z9,,,,,,,ZZZ,ZZZ,,,,,,,,,,,ZZZZZ,ZZ""" \ """ZZZ,ZZZ-ZZZZZZ,ZZZ-ZZZZZZ,ZZ-ZZZZ,ZZ-ZZZZ,ZZ-ZZZZ,ZZ-ZZ""" \ """ZZ,,,999999,999999,ZZZ,ZZZ,,,ZZZ,ZZZ,999.99,999.99,,,,Z""" \ """ZZ-ZZZ,ZZZ-ZZZ,-9.99,-9.99,9,9,,99,,9.99,9.99,9,9,9.99,""" \ """9.99,,,,9.99,9.99,,99,,99,9.99,9.99,,,ZZZ,ZZZ,,999.99,,""" \ """999.99,ZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,,,ZZZZZ,ZZZZZ,ZZZ,ZZZ,9,9,""" \ """,,,,,ZZZ-ZZZZ,ZZZ999Z,,,999.99,,999.99,ZZZ-ZZZZ,,,9.999""" \ """,9.999,9.999,9.999,-9.999,-9.999,-9.999,-9.999,9.999,9.""" \ """999,9.999,9.999,9.999,9.999,9.999,9.999,99999,ZZZ-ZZZZ,""" \ """,9.99,ZZZ,,,,,,,,ZZZ,,,,,9,,,,9,,,,,,,,,,ZZZ-ZZZZ,ZZZ-Z""" \ """ZZZ,,ZZZZZ,ZZZZZ,ZZZZZ,ZZZZZ,,,9.99,,ZZ-ZZZZ,ZZ-ZZZZ,ZZ""" \ """,999,,,,ZZ-ZZZZ,ZZZ,ZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,,,99.99,99.99""" \ """,,,9.99,9.99,9.99,9.99,ZZZ-ZZZZ,,,ZZZ-ZZZZZ,,,,,-9.99,-""" \ """9.99,-9.99,-9.99,,,,,,,,,ZZZ-ZZZZ,,9,9.99,9.99,99ZZ,,-9""" \ """.99,-9.99,ZZZ-ZZZZ,,,,,,,ZZZ-ZZZZ,9.99,9.99,9999,,,,,,,""" \ """,,,-9.9,Z/Z-ZZZZ,999.99,9.99,,999.99,ZZ-ZZZZ,ZZ-ZZZZ,9.""" \ """99,9.99,9.99,9.99,9.99,9.99,,ZZZ-ZZZZZ,ZZZ-ZZZZZ,ZZZ-ZZ""" \ """ZZZ,ZZZ-ZZZZZ,ZZZ-ZZZZZ,ZZZ,ZZZ,ZZZ,ZZZ,9.99,,,-9.99,ZZ""" \ """-ZZZZ,-999.99,,-9999,,999.99,,,,999.99,99.99,,,ZZ-ZZZZZ""" \ """ZZZ,ZZ-ZZZZ-ZZZZZZZ,,,,ZZ-ZZ-ZZZZZZZZ,ZZZZZZZZ,ZZZ-ZZZZ""" \ """,9999,999.99,ZZZ-ZZZZ,-9.99,-9.99,ZZZ-ZZZZ,99:99:99,,99""" \ """,99,,9.99,,-99.99,,,,,,9.99,ZZZ-ZZZZ,-9.99,-9.99,9.99,9""" \ """.99,,ZZZ,,,,,,,ZZZ,ZZZ,,,,,""" # Set the number of lines so that a call to `parser_trim_buffers` # is triggered: after a couple of full chunks are consumed a # relatively small 'residual' chunk would cause reallocation # within the parser. chunksize, n_lines = 128, 2 * 128 + 15 csv_data = "\n".join([record_] * n_lines) + "\n" # We will use StringIO to load the CSV from this text buffer. # pd.read_csv() will iterate over the file in chunks and will # finally read a residual chunk of really small size. # Generate the expected output: manually create the dataframe # by splitting by comma and repeating the `n_lines` times. row = tuple(val_ if val_ else float("nan") for val_ in record_.split(",")) expected = pd.DataFrame([row for _ in range(n_lines)], dtype=object, columns=None, index=None) # Iterate over the CSV file in chunks of `chunksize` lines chunks_ = self.read_csv(StringIO(csv_data), header=None, dtype=object, chunksize=chunksize) result = pd.concat(chunks_, axis=0, ignore_index=True) # Check for data corruption if there was no segfault tm.assert_frame_equal(result, expected) def test_internal_null_byte(self): # see gh-14012 # # The null byte ('\x00') should not be used as a # true line terminator, escape character, or comment # character, only as a placeholder to indicate that # none was specified. # # This test should be moved to common.py ONLY when # Python's csv class supports parsing '\x00'. names = ['a', 'b', 'c'] data = "1,2,3\n4,\x00,6\n7,8,9" expected = pd.DataFrame([[1, 2.0, 3], [4, np.nan, 6], [7, 8, 9]], columns=names) result = self.read_csv(StringIO(data), names=names) tm.assert_frame_equal(result, expected)
40.27305
79
0.535881
713a97a6d275cb10e46211239c5979143e7c1048
2,275
py
Python
tasks/functions/brook.py
Aurora-Admin-Panel/backend
14caa79773fd505eebcd9c1d578c2994a0f56a8a
[ "MIT" ]
15
2020-11-27T04:03:34.000Z
2022-03-04T11:00:07.000Z
tasks/functions/brook.py
Aurora-Admin-Panel/backend
14caa79773fd505eebcd9c1d578c2994a0f56a8a
[ "MIT" ]
18
2021-06-03T06:03:02.000Z
2022-02-21T08:58:09.000Z
tasks/functions/brook.py
Aurora-Admin-Panel/backend
14caa79773fd505eebcd9c1d578c2994a0f56a8a
[ "MIT" ]
26
2020-11-26T09:00:03.000Z
2022-02-16T04:20:53.000Z
from sqlalchemy.orm import Session from app.db.models.port import Port from app.db.models.port_forward import MethodEnum from app.utils.dns import dns_query from app.utils.ip import is_ip from tasks.functions.base import AppConfig class BrookConfig(AppConfig): method = MethodEnum.BROOK def __init__(self): super().__init__() self.app_name = "brook" self.app_sync_role_name = "brook_sync" def apply(self, db: Session, port: Port): self.local_port = port.num self.app_command = self.get_app_command(db, port) self.update_app = not port.server.config.get("brook") self.applied = True return self def get_app_command(self, db: Session, port: Port): command = port.forward_rule.config.get("command") if port.forward_rule.config.get("remote_address"): if not is_ip(port.forward_rule.config.get("remote_address")): remote_ip = dns_query(port.forward_rule.config.get("remote_address")) else: remote_ip = port.forward_rule.config.get("remote_address") port.forward_rule.config['remote_ip'] = remote_ip db.add(port.forward_rule) db.commit() if command == "relay": args = ( f"-f :{port.num} " f"-t {remote_ip}:{port.forward_rule.config.get('remote_port')}" ) elif command in ("server", "wsserver"): args = f"-l :{port.num} -p {port.forward_rule.config.get('password')}" elif command in ("client"): args = ( f"--socks5 0.0.0.0:{port.num} " f"-s {remote_ip}:{port.forward_rule.config.get('remote_port')} " f"-p {port.forward_rule.config.get('password')}" ) elif command in ("wsclient"): args = ( f"--socks5 0.0.0.0:{port.num} " f"--wsserver ws://{remote_ip}:{port.forward_rule.config.get('remote_port')} " f"-p {port.forward_rule.config.get('password')}" ) else: args = port.forward_rule.config.get("args") return f"/usr/local/bin/brook {command} {args}" @property def playbook(self): return "app.yml"
36.111111
93
0.584615
ce6e43de40a5631238c29381068669ffeeee0f80
9,309
py
Python
documentation/building-with-duim/source/conf.py
promovicz/opendylan
93a21dbf7fa2096de505bc641c24e63f4de9831f
[ "MIT" ]
null
null
null
documentation/building-with-duim/source/conf.py
promovicz/opendylan
93a21dbf7fa2096de505bc641c24e63f4de9831f
[ "MIT" ]
null
null
null
documentation/building-with-duim/source/conf.py
promovicz/opendylan
93a21dbf7fa2096de505bc641c24e63f4de9831f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Building Applications With DUIM documentation build configuration file, created by # sphinx-quickstart on Sun Nov 6 22:59:06 2011. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../../sphinx-extensions')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['dylandomain.dylandomain'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Building Applications With DUIM' copyright = u'2011, Dylan Hackers' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.0' # The full version, including alpha/beta/rc tags. release = '1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # The primary domain. primary_domain = 'dylan' # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'opendylan-docs' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['../../_themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = 'Building Applications With DUIM' # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'BuildingApplicationsWithDUIM' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'BuildingApplicationsWithDUIM.tex', u'Building Applications With DUIM', u'Dylan Hackers', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'buildingapplicationswithduim', u'Building Applications With DUIM', [u'Dylan Hackers'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'BuildingApplicationsWithDUIM', u'Building Applications With DUIM', u'Dylan Hackers', 'BuildingApplicationsWithDUIM', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'Building Applications With DUIM' epub_author = u'Dylan Hackers' epub_publisher = u'Dylan Hackers' epub_copyright = u'2011, Dylan Hackers' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True
32.211073
88
0.719089
fc5807d9de5dafda2e96ace80792136280cf2938
1,360
py
Python
main.py
rVnPower/TheShell
43016f6569369830aa36d3fd6978824ad5fcf2e9
[ "MIT" ]
null
null
null
main.py
rVnPower/TheShell
43016f6569369830aa36d3fd6978824ad5fcf2e9
[ "MIT" ]
null
null
null
main.py
rVnPower/TheShell
43016f6569369830aa36d3fd6978824ad5fcf2e9
[ "MIT" ]
null
null
null
class Character: def __init__(self, name, health, strength): self.name = name self.health = health self.strength = strength self.xp = 0 def attack(self, target): if (self.health > 0): damage = self.strength print( f'{self.name} attacks {target.name} and causes {damage} damage points' ) target.health -= damagea if (target.health > 0) : print(f'{target.name} has {target.health} health points left') else: target.health = 0 bonusXP = 10 print( f'{self.name} eliminated {target.name} and wins {bonusXP} experience points' ) self.xp += bonusXP else: print(f'{self.name} can\'t attack (they\'ve been eliminated)') def describe(self): return f'{self.name} has {self.health} health points, {self.strength} as strength and {self.xp} XP points' aurora = Character("Aurora", 150, 25) glacius = Character("Glacius", 130, 30) print("Welcome to the adventure! Here are our heroes:") print(aurora.describe()) print(glacius.describe()) monster = Character("Spike", 40, 20) print("A wild monster has appeared: it's named " + monster.name) monster.attack(aurora) monster.attack(glacius) aurora.attack(monster) glacius.attack(monster) glacius.attack(monster) print(aurora.describe()) print(glacius.describe())
27.2
110
0.647059
efdb57da34f026ac3b5db34706bb8650acc74842
23,843
py
Python
klvdata/misbEG0104.py
stharding/klvdata
e34529c4eba7c8cd00fe56834b623d8e5770f47a
[ "MIT" ]
6
2016-10-21T00:49:27.000Z
2017-08-31T04:36:38.000Z
klvdata/misbEG0104.py
stharding/klvdata
e34529c4eba7c8cd00fe56834b623d8e5770f47a
[ "MIT" ]
null
null
null
klvdata/misbEG0104.py
stharding/klvdata
e34529c4eba7c8cd00fe56834b623d8e5770f47a
[ "MIT" ]
2
2017-05-26T10:44:34.000Z
2017-06-23T22:05:55.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # The MIT License (MIT) # # Copyright (c) 2017 Matthew Pare (paretech@gmail.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from klvdata.common import hexstr_to_bytes from klvdata.element import UnknownElement from klvdata.elementparser import BytesElementParser from klvdata.elementparser import DateTimeElementParser from klvdata.elementparser import StringElementParser from klvdata.elementparser import IEEE754ElementParser from klvdata.setparser import SetParser from klvdata.streamparser import StreamParser class UnknownElement(UnknownElement): pass @StreamParser.add_parser class UAVBasicUniversalMetadataSet(SetParser): """MISB EG0104.4 Predator UAV Basic Universal Metadata Set http://www.gwg.nga.mil/misb/docs/eg/EG0104.4.pdf """ #key = hexstr_to_bytes('06 0E 2B 34 - 01 01 01 01 – 02 01 03 00 - 00 00 00 00') key = hexstr_to_bytes('06 0E 2B 34 - 02 01 01 01 – 0E 01 01 02 - 01 01 00 00') name = 'UAV Basic Universal Metadata Set' key_length = 16 parsers = {} _unknown_element = UnknownElement @UAVBasicUniversalMetadataSet.add_parser class PrecisionTimeStamp(DateTimeElementParser): """Precision Timestamp represented in microseconds. Precision Timestamp represented in the number of microseconds elapsed since midnight (00:00:00), January 1, 1970 not including leap seconds. See MISB ST 0601.11 for additional details. """ key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 02 01 01 01 05 00 00") TAG = 2 UDSKey = "06 0E 2B 34 01 01 01 03 07 02 01 01 01 05 00 00" LDSName = "Precision Time Stamp" ESDName = "" UDSName = "User Defined Time Stamp" @UAVBasicUniversalMetadataSet.add_parser class MissionID(StringElementParser): """Mission ID is the descriptive mission identifier. Mission ID value field free text with maximum of 127 characters describing the event. """ key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 01 05 05 00 00 00 00 00") TAG = 3 UDSKey = "06 0E 2B 34 01 01 01 01 01 05 05 00 00 00 00 00" LDSName = "Mission ID" ESDName = "Mission Number" UDSName = "Episode Number" min_length, max_length = 0, 127 @UAVBasicUniversalMetadataSet.add_parser class PlatformHeadingAngle(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 07 07 01 10 01 06 00 00 00") TAG = 5 UDSKey = "06 0E 2B 34 01 01 01 07 07 01 10 01 06 00 00 00" LDSName = "Platform Heading Angle" ESDName = "UAV Heading (INS)" UDSName = "Platform Heading Angle" _domain = (0, 2**16-1) _range = (0, 360) @UAVBasicUniversalMetadataSet.add_parser class PlatformPitchAngle(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 07 07 01 10 01 05 00 00 00") TAG = 6 UDSKey = "06 0E 2B 34 01 01 01 07 07 01 10 01 05 00 00 00" LDSName = "Platform Pitch Angle" ESDName = "UAV Pitch (INS)" UDSName = "Platform Pitch Angle" _domain = (-(2**15-1), 2**15-1) _range = (-20, 20) @UAVBasicUniversalMetadataSet.add_parser class PlatformRollAngle(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 07 07 01 10 01 04 00 00 00") TAG = 7 UDSKey = "06 0E 2B 34 01 01 01 07 07 01 10 01 04 00 00 00" LDSName = "Platform Roll Angle" ESDName = "UAV Roll (INS)" UDSName = "Platform Roll Angle" _domain = (-(2**15-1), 2**15-1) _range = (-50, 50) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class PlatformDesignation(StringElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 01 01 20 01 00 00 00 00") TAG = 10 UDSKey = "06 0E 2B 34 01 01 01 01 01 01 20 01 00 00 00 00" LDSName = "Platform Designation" ESDName = "Project ID Code" UDSName = "Device Designation" min_length, max_length = 0, 127 @UAVBasicUniversalMetadataSet.add_parser class ImageSourceSensor(StringElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 04 20 01 02 01 01 00 00") TAG = 11 UDSKey = "06 0E 2B 34 01 01 01 01 04 20 01 02 01 01 00 00" LDSName = "Image Source Sensor" ESDName = "Sensor Name" UDSName = "Image Source Device" min_length, max_length = 0, 127 @UAVBasicUniversalMetadataSet.add_parser class ImageCoordinateSystem(StringElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 01 01 00 00 00 00") TAG = 12 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 01 01 00 00 00 00" LDSName = "Image Coordinate System" ESDName = "Image Coordinate System" UDSName = "Image Coordinate System" min_length, max_length = 0, 127 @UAVBasicUniversalMetadataSet.add_parser class SensorLatitude(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 02 01 02 04 00 00") TAG = 13 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 02 01 02 04 00 00" LDSName = "Sensor Latitude" ESDName = "Sensor Latitude" UDSName = "Device Latitude" _domain = (-(2**31-1), 2**31-1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class SensorLatitude1(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 02 01 02 04 02 00") TAG = 13 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 02 01 02 04 02 00" LDSName = "Sensor Latitude" ESDName = "Sensor Latitude" UDSName = "Device Latitude" _domain = (-(2**63-1), 2**63-1) _range = (-90, 90) units = 'degrees' #the key is wrong, comes from 1.klv @UAVBasicUniversalMetadataSet.add_parser class SensorLatitude2(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 01 01 01 03 07 01 02 01 02 04 02 00") TAG = 13 UDSKey = "06 0E 01 01 01 03 07 01 02 01 02 04 02 00" LDSName = "Sensor Latitude" ESDName = "Sensor Latitude" UDSName = "Device Latitude" _domain = (-(2**63-1), 2**63-1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class SensorLongitude(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 02 01 02 06 00 00") TAG = 14 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 02 01 02 06 00 00" LDSName = "Sensor Longitude" ESDName = "Sensor Longitude" UDSName = "Device Longitude" _domain = (-(2**63-1), 2**63-1) _range = (-180, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class SensorLongitude1(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 02 01 02 06 02 00") TAG = 14 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 02 01 02 06 02 00" LDSName = "Sensor Longitude" ESDName = "Sensor Longitude" UDSName = "Device Longitude" _domain = (-(2**63-1), 2**63-1) _range = (-180, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class SensorTrueAltitude(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 02 01 02 02 00 00") TAG = 15 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 02 01 02 02 00 00" LDSName = "Sensor True Altitude" ESDName = "Sensor Altitude" UDSName = "Device Altitude" _domain = (0, 2**16-1) _range = (-99999, 99999) units = 'meters' @UAVBasicUniversalMetadataSet.add_parser class SensorHorizontalFieldOfView(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 02 04 20 02 01 01 08 00 00") TAG = 16 UDSKey = "06 0E 2B 34 01 01 01 02 04 20 02 01 01 08 00 00" LDSName = "Sensor Horizontal Field of View" ESDName = "Field of View" UDSName = "Field of View (FOVHorizontal)" _domain = (0, 2**16-1) _range = (0, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class SensorVerticalFieldOfView(IEEE754ElementParser): key = hexstr_to_bytes("06 0e 2b 34 01 01 01 07 04 20 02 01 01 0a 01 00") TAG = 17 UDSKey = "06 0e 2b 34 01 01 01 07 04 20 02 01 01 0a 01 00" LDSName = "Sensor Vertical Field of View" ESDName = "Vertical Field of View" UDSName = "" _domain = (0, 2 ** 16 - 1) _range = (0, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class SensorRelativeAzimuthAngle(IEEE754ElementParser): key = hexstr_to_bytes("06 0e 2b 34 01 01 01 01 07 01 10 01 02 00 00 00") TAG = 18 UDSKey = "06 0e 2b 34 01 01 01 01 07 01 10 01 02 00 00 00" LDSName = "Sensor Relative Azimuth Angle" ESDName = "Sensor Relative Azimuth Angle" UDSName = "" _domain = (0, 2 ** 32 - 1) _range = (0, 360) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class SensorRelativeElevationAngle(IEEE754ElementParser): key = hexstr_to_bytes("06 0e 2b 34 01 01 01 01 07 01 10 01 03 00 00 00") TAG = 19 UDSKey = "06 0e 2b 34 01 01 01 01 07 01 10 01 03 00 00 00" LDSName = "Sensor Relative Elevation Angle" ESDName = "Sensor Relative Elevation Angle" UDSName = "" _domain = (-(2 ** 31 - 1), 2 ** 31 - 1) _range = (-180, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class SlantRange(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 08 01 01 00 00 00") TAG = 21 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 08 01 01 00 00 00" LDSName = "Slant Range" ESDName = "Slant Range" UDSName = "Slant Range" _domain = (0, 2**32-1) _range = (0, +5e6) units = 'meters' @UAVBasicUniversalMetadataSet.add_parser class TargetWidth(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 09 02 01 00 00 00") TAG = 22 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 09 02 01 00 00 00" LDSName = "Target Width" ESDName = "Target Width" UDSName = "Target Width" _domain = (0, 2**16-1) _range = (0, +10e3) units = 'meters' @UAVBasicUniversalMetadataSet.add_parser class FrameCenterLatitude(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 02 01 03 02 00 00") TAG = 23 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 02 01 03 02 00 00" LDSName = "Frame Center Latitude" ESDName = "Target Latitude" UDSName = "Frame Center Latitude" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class FrameCenterLongitude(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 02 01 03 04 00 00") TAG = 24 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 02 01 03 04 00 00" LDSName = "Frame Center Longitude" ESDName = "Target Longitude" UDSName = "Frame Center Longitude" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-180, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class OffsetCornerLatitudePoint1(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 07 01 00") TAG = 26 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 07 01 00" LDSName = "Offset Corner Latitude Point 1" ESDName = "SAR Latitude 4" UDSName = "Corner Latitude Point 1" _domain = (-(2**15 - 1), 2**15 - 1) _range = (-0.075, +0.075) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class OffsetCornerLongitudePoint1(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0B 01 00") TAG = 27 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0B 01 00" LDSName = "Offset Corner Longitude Point 1" ESDName = "SAR Longitude 4" UDSName = "Corner Longitude Point 1" _domain = (-(2**15 - 1), 2**15 - 1) _range = (-0.075, 0.075) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class OffsetCornerLatitudePoint2(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 08 01 00") TAG = 28 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 08 01 00" LDSName = "Offset Corner Latitude Point 2" ESDName = "SAR Latitude 1" UDSName = "Corner Latitude Point 2" _domain = (-(2**15 - 1), 2**15 - 1) _range = (-0.075, 0.075) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class OffsetCornerLongitudePoint2(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0C 01 00") TAG = 29 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0C 01 00" LDSName = "Offset Corner Longitude Point 2" ESDName = "SAR Longitude 1" UDSName = "Corner Longitude Point 2" _domain = (-(2**15 - 1), 2**15 - 1) _range = (-0.075, 0.075) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class OffsetCornerLatitudePoint3(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 09 01 00") TAG = 30 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 09 01 00" LDSName = "Offset Corner Latitude Point 3" ESDName = "SAR Latitude 2" UDSName = "Corner Latitude Point 3" _domain = (-(2**15 - 1), 2**15 - 1) _range = (-0.075, 0.075) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class OffsetCornerLongitudePoint3(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0D 01 00") TAG = 31 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0D 01 00" LDSName = "Offset Corner Longitude Point 3" ESDName = "SAR Longitude 2" UDSName = "Corner Longitude Point 3" _domain = (-(2**15 - 1), 2**15 - 1) _range = (-0.075, 0.075) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class OffsetCornerLatitudePoint4(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0A 01 00") TAG = 32 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0A 01 00" LDSName = "Offset Corner Latitude Point 4" ESDName = "SAR Latitude 3" UDSName = "Corner Latitude Point 4" _domain = (-(2**15 - 1), 2**15 - 1) _range = (-0.075, 0.075) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class OffsetCornerLongitudePoint4(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0E 01 00") TAG = 33 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0E 01 00" LDSName = "Offset Corner Longitude Point 4" ESDName = "SAR Longitude 3" UDSName = "Corner Longitude Point 4" _domain = (-(2**15 - 1), 2**15 - 1) _range = (-0.075, 0.075) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class StartDateTime(StringElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 02 01 02 01 01 00 00") TAG = 72 UDSKey = "06 0E 2B 34 01 01 01 01 07 02 01 02 01 01 00 00" LDSName = "Start Date Time - UTC" UDSName = "Start Date Time - UTC" min_length, max_length = 0, 127 @UAVBasicUniversalMetadataSet.add_parser class EventStartTime(DateTimeElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 02 01 02 07 01 00 00") TAG = 72 UDSKey = "06 0E 2B 34 01 01 01 01 07 02 01 02 07 01 00 00" LDSName = "Event Start Time - UTC" ESDName = "Mission Start Time, Date, and Date of Collection" UDSName = "Event Start Date Time - UTC" @UAVBasicUniversalMetadataSet.add_parser class RVTLocalSet(StringElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 02 01 02 07 01 00 00") TAG = 73 UDSKey = "06 0E 2B 34 01 01 01 01 07 02 01 02 07 01 00 00" LDSName = "RVT Local Data Set" ESDName = "" UDSName = "Remote Video Terminal Local Set" @UAVBasicUniversalMetadataSet.add_parser class VMTILocalSet(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 02 0B 01 01 0E 01 03 03 06 00 00 00") TAG = 74 UDSKey = "06 0E 2B 34 02 0B 01 01 0E 01 03 03 06 00 00 00" LDSName = "VMTI Local Set" ESDName = "" UDSName = "Video Moving Target Indicator Local Set" @UAVBasicUniversalMetadataSet.add_parser class CornerLatitudePoint1Full(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 07 01 00") TAG = 82 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 07 01 00" LDSName = "Corner Latitude Point 1 (Full)" ESDName = "SAR Latitude 4" UDSName = "Corner Latitude Point 1 (Decimal Degrees)" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class CornerLongitudePoint1Full(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0B 01 00") TAG = 83 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0B 01 00" LDSName = "Corner Longitude Point 1 (Full)" ESDName = "SAR Longitude 4" UDSName = "Corner Longitude Point 1 (Decimal Degrees)" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-180, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class CornerLatitudePoint2Full(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 08 01 00") TAG = 84 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 08 01 00" LDSName = "Corner Latitude Point 2 (Full)" ESDName = "SAR Latitude 1" UDSName = "Corner Latitude Point 2 (Decimal Degrees)" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class CornerLongitudePoint2Full(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0C 01 00") TAG = 85 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0C 01 00" LDSName = "Corner Longitude Point 2 (Full)" ESDName = "SAR Longitude 1" UDSName = "Corner Longitude Point 2 (Decimal Degrees)" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-180, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class CornerLatitudePoint3Full(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 09 01 00") TAG = 86 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 09 01 00" LDSName = "Corner Latitude Point 3 (Full)" ESDName = "SAR Latitude 2" UDSName = "Corner Latitude Point 3 (Decimal Degrees)" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class CornerLongitudePoint3Full(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0D 01 00") TAG = 87 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0D 01 00" LDSName = "Corner Longitude Point 3 (Full)" ESDName = "SAR Longitude 2" UDSName = "Corner Longitude Point 3 (Decimal Degrees)" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-180, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class CornerLatitudePoint4Full(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0A 01 00") TAG = 88 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0A 01 00" LDSName = "Corner Latitude Point 4 (Full)" ESDName = "SAR Latitude 3" UDSName = "Corner Latitude Point 4 (Decimal Degrees)" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class CornerLongitudePoint4Full(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 03 07 01 02 01 03 0E 01 00") TAG = 89 UDSKey = "06 0E 2B 34 01 01 01 03 07 01 02 01 03 0E 01 00" LDSName = "Corner Longitude Point 4 (Full)" ESDName = "SAR Longitude 3" UDSName = "Corner Longitude Point 4 (Decimal Degrees)" _domain = (-(2**31 - 1), 2**31 - 1) _range = (-180, 180) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class PlatformPitchAngleFull(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 07 07 01 10 01 05 00 00 00") TAG = 90 UDSKey = "06 0E 2B 34 01 01 01 07 07 01 10 01 05 00 00 00" LDSName = "Platform Pitch Angle (Full)" ESDName = "UAV Pitch (INS)" UDSName = "Platform Pitch Angle" _domain = (-(2**31-1), 2**31-1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class PlatformRollAngleFull(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 07 07 01 10 01 04 00 00 00") TAG = 91 UDSKey = "06 0E 2B 34 01 01 01 07 07 01 10 01 04 00 00 00" LDSName = "Platform Roll Angle (Full)" ESDName = "UAV Roll (INS)" UDSName = "Platform Roll Angle" _domain = (-(2**31-1), 2**31-1) _range = (-90, 90) units = 'degrees' @UAVBasicUniversalMetadataSet.add_parser class MIISCoreIdentifier(StringElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 0E 01 04 05 03 00 00 00") TAG = 94 UDSKey = "06 0E 2B 34 01 01 01 01 0E 01 04 05 03 00 00 00" LDSName = "MIIS Core Identifier" ESDName = "" UDSName = "Motion Imagery Identification System Core" @UAVBasicUniversalMetadataSet.add_parser class SARMotionImageryLocalSet(StringElementParser): key = hexstr_to_bytes("06 0E 2B 34 02 0B 01 01 0E 01 03 03 0D 00 00 00") TAG = 95 UDSKey = "06 0E 2B 34 02 0B 01 01 0E 01 03 03 0D 00 00 00" LDSName = "SAR Motion Imagery Local Set" ESDName = "" UDSName = "SAR Motion Imagery Local Set" @UAVBasicUniversalMetadataSet.add_parser class TargetWidthExtended(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 07 01 09 02 01 00 00 00") TAG = 96 UDSKey = "06 0E 2B 34 01 01 01 01 07 01 09 02 01 00 00 00" LDSName = "Target Width Extended" ESDName = "Target Width" UDSName = "Target Width" _domain = (0, 2**8-1) _range = (0, 2**8-1) units = 'meters' @UAVBasicUniversalMetadataSet.add_parser class DensityAltitudeExtended(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 0E 01 01 01 10 00 00 00") TAG = 103 UDSKey = "06 0E 2B 34 01 01 01 01 0E 01 01 01 10 00 00 00" LDSName = "Density Altitude Extended" ESDName = "Density Altitude" UDSName = "" _domain = (0, 2**16-1) _range = (-900, 40000) units = 'meters' @UAVBasicUniversalMetadataSet.add_parser class SensorEllipsoidHeightExtended(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 0E 01 02 01 82 47 00 00") TAG = 104 UDSKey = "06 0E 2B 34 01 01 01 01 0E 01 02 01 82 47 00 00" LDSName = "Sensor Ellipsoid Height Extended" ESDName = "" UDSName = "" _domain = (0, 2**16-1) _range = (-900, 40000) units = 'meters' @UAVBasicUniversalMetadataSet.add_parser class AlternatePlatformEllipsoidHeightExtended(IEEE754ElementParser): key = hexstr_to_bytes("06 0E 2B 34 01 01 01 01 0E 01 02 01 82 48 00 00") TAG = 105 UDSKey = "06 0E 2B 34 01 01 01 01 0E 01 02 01 82 48 00 00" LDSName = " Alternate Platform Ellipsoid Height Extended" ESDName = "" UDSName = "" _domain = (0, 2**16-1) _range = (-900, 40000) units = 'meters'
35.375371
83
0.671644
0de6fea6c576b09c0bb5be8fa6b4e4713bf0a512
2,843
py
Python
labs/lab-07/plot_words4.py
LingCheng3273/OSS-Lab
e4ba3755aac3c30649180fdeb6f1da740b8eeb1c
[ "MIT" ]
null
null
null
labs/lab-07/plot_words4.py
LingCheng3273/OSS-Lab
e4ba3755aac3c30649180fdeb6f1da740b8eeb1c
[ "MIT" ]
null
null
null
labs/lab-07/plot_words4.py
LingCheng3273/OSS-Lab
e4ba3755aac3c30649180fdeb6f1da740b8eeb1c
[ "MIT" ]
null
null
null
""" ===== Words ===== Words/Ladder Graph ------------------ Generate an undirected graph over the 5757 5-letter words in the datafile `words_dat.txt.gz`. Two words are connected by an edge if they differ in one letter, resulting in 14,135 edges. This example is described in Section 1.1 in Knuth's book (see [1]_ and [2]_). References ---------- .. [1] Donald E. Knuth, "The Stanford GraphBase: A Platform for Combinatorial Computing", ACM Press, New York, 1993. .. [2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html """ # Authors: Aric Hagberg (hagberg@lanl.gov), # Brendt Wohlberg, # hughdbrown@yahoo.com # Copyright (C) 2004-2019 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. import gzip from string import ascii_lowercase as lowercase import networkx as nx #------------------------------------------------------------------- # The Words/Ladder graph of Section 1.1 #------------------------------------------------------------------- def generate_graph(words): G = nx.Graph(name="words") lookup = dict((c, lowercase.index(c)) for c in lowercase) def edit_distance_one(word): for i in range(len(word)): left, c, right = word[0:i], word[i], word[i + 1:] j = lookup[c] # lowercase.index(c) for cc in lowercase[j + 1:]: yield left + cc + right candgen = ((word, cand) for word in sorted(words) for cand in edit_distance_one(word) if cand in words) G.add_nodes_from(words) for word, cand in candgen: G.add_edge(word, cand) return G def words_graph(): # Modified the words file to words_dat.txt.gz to plot 4 letter words fh = gzip.open('words4_dat.txt.gz', 'r') words = set() for line in fh.readlines(): line = line.decode() if line.startswith('*'): continue w = str(line[0:4]) words.add(w) return generate_graph(words) if __name__ == '__main__': G = words_graph() print("Loaded words_dat.txt containing 5757 five-letter English words.") print("Two words are connected if they differ in one letter.") print("Graph has %d nodes with %d edges" % (nx.number_of_nodes(G), nx.number_of_edges(G))) print("%d connected components" % nx.number_connected_components(G)) for (source, target) in [('cold', 'warm'), ('love', 'hate'), ('good', 'evil'), ('pear', 'beef'), ('make', 'take')]: print("Shortest path between %s and %s is" % (source, target)) try: sp = nx.shortest_path(G, source, target) for n in sp: print(n) except nx.NetworkXNoPath: print("None")
31.94382
76
0.57369
ccdb0b58ce162e194092b2f7e77453d2f2336ad0
13,970
py
Python
app/extensions/api/namespace.py
IsmaelJS/test-github-actions
97223df261e9736c46875f590c9593dbac0d417b
[ "MIT" ]
1,420
2015-11-20T01:25:14.000Z
2022-03-22T03:51:33.000Z
app/extensions/api/namespace.py
IsmaelJS/test-github-actions
97223df261e9736c46875f590c9593dbac0d417b
[ "MIT" ]
151
2016-01-07T09:11:42.000Z
2020-11-17T08:37:07.000Z
app/extensions/api/namespace.py
IsmaelJS/test-github-actions
97223df261e9736c46875f590c9593dbac0d417b
[ "MIT" ]
389
2015-11-23T01:14:31.000Z
2022-02-07T08:23:11.000Z
# encoding: utf-8 """ Extended Api Namespace implementation with an application-specific helpers -------------------------------------------------------------------------- """ from contextlib import contextmanager from functools import wraps import logging import flask_marshmallow import sqlalchemy from flask_restplus_patched.namespace import Namespace as BaseNamespace from flask_restplus._http import HTTPStatus from . import http_exceptions from .webargs_parser import CustomWebargsParser log = logging.getLogger(__name__) class Namespace(BaseNamespace): """ Having app-specific handlers here. """ WEBARGS_PARSER = CustomWebargsParser() def resolve_object_by_model(self, model, object_arg_name, identity_arg_names=None): """ A helper decorator to resolve DB record instance by id. Arguments: model (type) - a Flask-SQLAlchemy model class with ``query.get_or_404`` method object_arg_name (str) - argument name for a resolved object identity_arg_names (tuple) - a list of argument names holding an object identity, by default it will be auto-generated as ``%(object_arg_name)s_id``. Example: >>> @namespace.resolve_object_by_model(User, 'user') ... def get_user_by_id(user): ... return user >>> get_user_by_id(user_id=3) <User(id=3, ...)> >>> @namespace.resolve_object_by_model(MyModel, 'my_model', ('user_id', 'model_name')) ... def get_object_by_two_primary_keys(my_model): ... return my_model >>> get_object_by_two_primary_keys(user_id=3, model_name="test") <MyModel(user_id=3, name="test", ...)> """ if identity_arg_names is None: identity_arg_names = ('%s_id' % object_arg_name, ) elif not isinstance(identity_arg_names, (list, tuple)): identity_arg_names = (identity_arg_names, ) return self.resolve_object( object_arg_name, resolver=lambda kwargs: model.query.get_or_404( [kwargs.pop(identity_arg_name) for identity_arg_name in identity_arg_names] ) ) def model(self, name=None, model=None, **kwargs): # pylint: disable=arguments-differ """ A decorator which registers a model (aka schema / definition). This extended implementation auto-generates a name for ``Flask-Marshmallow.Schema``-based instances by using a class name with stripped off `Schema` prefix. """ if isinstance(model, flask_marshmallow.Schema) and not name: name = model.__class__.__name__ if name.endswith('Schema'): name = name[:-len('Schema')] return super(Namespace, self).model(name=name, model=model, **kwargs) def login_required(self, oauth_scopes, locations=('headers',)): """ A decorator which restricts access for authorized users only. This decorator automatically applies the following features: * ``OAuth2.require_oauth`` decorator requires authentication; * ``permissions.ActiveUserRolePermission`` decorator ensures minimal authorization level; * All of the above requirements are put into OpenAPI Specification with relevant options and in a text description. Arguments: oauth_scopes (list): a list of required OAuth2 Scopes (strings) locations (list): a list of locations (``headers``, ``form``) where the access token should be looked up. Example: >>> class Users(Resource): ... @namespace.login_required(oauth_scopes=['users:read']) ... def get(self): ... return [] ... >>> @namespace.login_required(oauth_scopes=['users:read']) ... class Users(Resource): ... def get(self): ... return [] ... ... @namespace.login_required(oauth_scopes=['users:write']) ... def post(self): ... return User() ... >>> @namespace.login_required(oauth_scopes=[]) ... class Users(Resource): ... @namespace.login_required(oauth_scopes=['users:read']) ... def get(self): ... return [] ... ... @namespace.login_required(oauth_scopes=['users:write']) ... def post(self): ... return User() """ def decorator(func_or_class): """ A helper wrapper. """ if isinstance(func_or_class, type): # Handle Resource classes decoration # pylint: disable=protected-access func_or_class._apply_decorator_to_methods(decorator) return func_or_class func = func_or_class # Avoid circilar dependency from app.extensions import oauth2 from app.modules.users import permissions # Automatically apply `permissions.ActiveUserRolePermisson` # guard if none is yet applied. if getattr(func, '_role_permission_applied', False): protected_func = func else: protected_func = self.permission_required( permissions.ActiveUserRolePermission() )(func) # Ignore the current OAuth2 scopes if another @login_required # decorator was applied and just copy the already applied scopes. if hasattr(protected_func, '__apidoc__') \ and 'security' in protected_func.__apidoc__ \ and '__oauth__' in protected_func.__apidoc__['security']: _oauth_scopes = protected_func.__apidoc__['security']['__oauth__']['scopes'] else: _oauth_scopes = oauth_scopes oauth_protection_decorator = oauth2.require_oauth(*_oauth_scopes, locations=locations) self._register_access_restriction_decorator(protected_func, oauth_protection_decorator) oauth_protected_func = oauth_protection_decorator(protected_func) if 'form' in locations: oauth_protected_func = self.param( name='access_token', description=( "This is an alternative way of passing the access_token, useful for " "making authenticated requests from the browser native forms." ), _in='formData', type='string', required=False )(oauth_protected_func) return self.doc( security={ # This is a temporary (namespace) configuration which gets # overriden on a namespace registration (in `Api.add_namespace`). '__oauth__': { 'type': 'oauth', 'scopes': _oauth_scopes, } } )( self.response( code=HTTPStatus.UNAUTHORIZED.value, description=( "Authentication is required" if not oauth_scopes else "Authentication with %s OAuth scope(s) is required" % ( ', '.join(oauth_scopes) ) ), )(oauth_protected_func) ) return decorator def permission_required(self, permission, kwargs_on_request=None): """ A decorator which restricts access for users with a specific permissions only. This decorator puts together permissions restriction code with OpenAPI Specification documentation. Arguments: permission (Permission) - it can be a class or an instance of :class:``Permission``, which will be applied to a decorated function, and docstrings of which will be used in OpenAPI Specification. kwargs_on_request (func) - a function which should accept only one ``dict`` argument (all kwargs passed to the function), and must return a ``dict`` of arguments which will be passed to the ``permission`` object. Example: >>> @namespace.permission_required( ... OwnerRolePermission, ... kwargs_on_request=lambda kwargs: {'obj': kwargs['team']} ... ) ... def get_team(team): ... # This line will be reached only if OwnerRolePermission check ... # is passed! ... return team """ def decorator(func): """ A helper wrapper. """ # Avoid circilar dependency from app.modules.users import permissions if getattr(permission, '_partial', False): # We don't apply partial permissions, we only use them for # documentation purposes. protected_func = func else: if not kwargs_on_request: _permission_decorator = permission else: def _permission_decorator(func): @wraps(func) def wrapper(*args, **kwargs): with permission(**kwargs_on_request(kwargs)): return func(*args, **kwargs) return wrapper protected_func = _permission_decorator(func) self._register_access_restriction_decorator(protected_func, _permission_decorator) # Apply `_role_permission_applied` marker for Role Permissions, # so don't apply unnecessary permissions in `login_required` # decorator. # # TODO: Change this behaviour when implement advanced OPTIONS # method support if ( isinstance(permission, permissions.RolePermission) or ( isinstance(permission, type) and issubclass(permission, permissions.RolePermission) ) ): protected_func._role_permission_applied = True # pylint: disable=protected-access permission_description = permission.__doc__.strip() return self.doc( description="**PERMISSIONS: %s**\n\n" % permission_description )( self.response( code=HTTPStatus.FORBIDDEN.value, description=permission_description, )(protected_func) ) return decorator def _register_access_restriction_decorator(self, func, decorator_to_register): # pylint: disable=invalid-name """ Helper function to register decorator to function to perform checks in options method """ if not hasattr(func, '_access_restriction_decorators'): func._access_restriction_decorators = [] # pylint: disable=protected-access func._access_restriction_decorators.append(decorator_to_register) # pylint: disable=protected-access def paginate(self, parameters=None, locations=None): """ Endpoint parameters registration decorator special for pagination. If ``parameters`` is not provided default PaginationParameters will be used. Also, any custom Parameters can be used, but it needs to have ``limit`` and ``offset`` fields. """ if not parameters: # Use default parameters if None specified from app.extensions.api.parameters import PaginationParameters parameters = PaginationParameters() if not all( mandatory in parameters.declared_fields for mandatory in ('limit', 'offset') ): raise AttributeError( '`limit` and `offset` fields must be in Parameter passed to `paginate()`' ) def decorator(func): @wraps(func) def wrapper(self_, parameters_args, *args, **kwargs): queryset = func(self_, parameters_args, *args, **kwargs) total_count = queryset.count() return ( queryset .offset(parameters_args['offset']) .limit(parameters_args['limit']), HTTPStatus.OK, {'X-Total-Count': total_count} ) return self.parameters(parameters, locations)(wrapper) return decorator @contextmanager def commit_or_abort(self, session, default_error_message="The operation failed to complete"): """ Context manager to simplify a workflow in resources Args: session: db.session instance default_error_message: Custom error message Exampple: >>> with api.commit_or_abort(db.session): ... team = Team(**args) ... db.session.add(team) ... return team """ try: with session.begin(): yield except ValueError as exception: log.info("Database transaction was rolled back due to: %r", exception) http_exceptions.abort(code=HTTPStatus.CONFLICT, message=str(exception)) except sqlalchemy.exc.IntegrityError as exception: log.info("Database transaction was rolled back due to: %r", exception) http_exceptions.abort( code=HTTPStatus.CONFLICT, message=default_error_message )
39.6875
109
0.567788
a4cce7a07f3a273ec79d081e724abcf6b5e8b117
3,336
py
Python
prepare_data.py
dajor/keras
17b4df003c0445ed022401923d99495d8f1bb5fe
[ "MIT" ]
null
null
null
prepare_data.py
dajor/keras
17b4df003c0445ed022401923d99495d8f1bb5fe
[ "MIT" ]
null
null
null
prepare_data.py
dajor/keras
17b4df003c0445ed022401923d99495d8f1bb5fe
[ "MIT" ]
null
null
null
import os import glob import argparse import pdf2image import simplejson from tqdm import tqdm from invoicenet import FIELDS, FIELD_TYPES from invoicenet.common import util def main(): ap = argparse.ArgumentParser() ap.add_argument("--data_dir", type=str, required=True, help="path to directory containing invoice document images") ap.add_argument("--out_dir", type=str, default='processed_data/', help="path to save prepared data") ap.add_argument("--val_size", type=float, default=0.2, help="validation split ration") args = ap.parse_args() os.makedirs(os.path.join(args.out_dir, 'train'), exist_ok=True) os.makedirs(os.path.join(args.out_dir, 'val'), exist_ok=True) filenames = [os.path.abspath(f) for f in glob.glob(args.data_dir + "**/*.pdf", recursive=True)] idx = int(len(filenames) * args.val_size) train_files = filenames[idx:] val_files = filenames[:idx] print("Total: {}".format(len(filenames))) print("Training: {}".format(len(train_files))) print("Validation: {}".format(len(val_files))) for phase, filenames in [('train', train_files), ('val', val_files)]: print("Preparing {} data...".format(phase)) for filename in tqdm(filenames): try: page = pdf2image.convert_from_path(filename)[0] page.save(os.path.join(args.out_dir, phase, os.path.basename(filename)[:-3] + 'png')) height = page.size[1] width = page.size[0] ngrams = util.create_ngrams(page) for ngram in ngrams: if "amount" in ngram["parses"]: ngram["parses"]["amount"] = util.normalize(ngram["parses"]["amount"], key="amount") if "date" in ngram["parses"]: ngram["parses"]["date"] = util.normalize(ngram["parses"]["date"], key="date") with open(filename[:-3] + 'json', 'r') as fp: labels = simplejson.loads(fp.read()) fields = {} for field in FIELDS: if field in labels: if FIELDS[field] == FIELD_TYPES["amount"]: fields[field] = util.normalize(labels[field], key="amount") elif FIELDS[field] == FIELD_TYPES["date"]: fields[field] = util.normalize(labels[field], key="date") else: fields[field] = labels[field] else: fields[field] = '' data = { "fields": fields, "nGrams": ngrams, "height": height, "width": width, "filename": os.path.abspath( os.path.join(args.out_dir, phase, os.path.basename(filename)[:-3] + 'png')) } with open(os.path.join(args.out_dir, phase, os.path.basename(filename)[:-3] + 'json'), 'w') as fp: fp.write(simplejson.dumps(data, indent=2)) except Exception as exp: print("Skipping {} : {}".format(filename, exp)) continue if __name__ == '__main__': main()
36.659341
114
0.525779
98fb620b005388dc7d024319f2748b4e85ad011b
350
py
Python
nequip/utils/tp_utils.py
schiotz/nequip
c343ce25ecfeb64f6df92e96022e673a7714e3a6
[ "MIT" ]
153
2021-06-20T20:12:01.000Z
2022-03-31T13:57:45.000Z
nequip/utils/tp_utils.py
schiotz/nequip
c343ce25ecfeb64f6df92e96022e673a7714e3a6
[ "MIT" ]
25
2021-06-17T16:00:16.000Z
2022-03-29T07:04:00.000Z
nequip/utils/tp_utils.py
schiotz/nequip
c343ce25ecfeb64f6df92e96022e673a7714e3a6
[ "MIT" ]
25
2021-06-21T22:25:22.000Z
2022-03-30T04:39:46.000Z
from e3nn import o3 def tp_path_exists(irreps_in1, irreps_in2, ir_out): irreps_in1 = o3.Irreps(irreps_in1).simplify() irreps_in2 = o3.Irreps(irreps_in2).simplify() ir_out = o3.Irrep(ir_out) for _, ir1 in irreps_in1: for _, ir2 in irreps_in2: if ir_out in ir1 * ir2: return True return False
25
51
0.642857
a75f653a20f7585f1ef5fc7ccc21a3541a64f2f1
2,489
py
Python
athanor_faction/models.py
volundmush/athanor_faction
4f2e886d9587222b157ff6ede1b30900555ce7df
[ "BSD-3-Clause" ]
null
null
null
athanor_faction/models.py
volundmush/athanor_faction
4f2e886d9587222b157ff6ede1b30900555ce7df
[ "BSD-3-Clause" ]
null
null
null
athanor_faction/models.py
volundmush/athanor_faction
4f2e886d9587222b157ff6ede1b30900555ce7df
[ "BSD-3-Clause" ]
null
null
null
from django.db import models from evennia.typeclasses.models import SharedMemoryModel class AllianceBridge(SharedMemoryModel): db_object = models.OneToOneField('objects.ObjectDB', related_name='alliance_bridge', primary_key=True, on_delete=models.CASCADE) db_name = models.CharField(max_length=255, null=False, blank=False) db_iname = models.CharField(max_length=255, null=False, blank=False, unique=True) db_cname = models.CharField(max_length=255, null=False, blank=False) db_abbreviation = models.CharField(max_length=20, null=True, blank=False) db_iabbreviation = models.CharField(max_length=20, null=True, blank=False, unique=True) db_system_identifier = models.CharField(max_length=255, null=True, blank=False, unique=True) class FactionBridge(SharedMemoryModel): db_object = models.OneToOneField('objects.ObjectDB', related_name='faction_bridge', primary_key=True, on_delete=models.CASCADE) db_alliance = models.ForeignKey(AllianceBridge, related_name='factions', on_delete=models.PROTECT, null=True) db_name = models.CharField(max_length=255, null=False, blank=False) db_iname = models.CharField(max_length=255, null=False, blank=False, unique=True) db_cname = models.CharField(max_length=255, null=False, blank=False) db_abbreviation = models.CharField(max_length=20, null=True, blank=False) db_iabbreviation = models.CharField(max_length=20, null=True, blank=False, unique=True) db_system_identifier = models.CharField(max_length=255, null=True, blank=False, unique=True) class Meta: verbose_name = 'Faction' verbose_name_plural = 'Factions' class DivisionBridge(SharedMemoryModel): db_object = models.OneToOneField('objects.ObjectDB', related_name='division_bridge', primary_key=True, on_delete=models.CASCADE) db_faction = models.ForeignKey(FactionBridge, related_name='divisions', on_delete=models.PROTECT) db_name = models.CharField(max_length=255, null=False, blank=False) db_iname = models.CharField(max_length=255, null=False, blank=False) db_cname = models.CharField(max_length=255, null=False, blank=False) db_system_identifier = models.CharField(max_length=255, null=True, blank=False, unique=True) class Meta: unique_together = (('db_faction', 'db_iname'),) verbose_name = 'Division' verbose_name_plural = 'Divisions'
56.568182
113
0.732021
a117ceff7ebc0f5f7a0c5a8f796d2775125f5b67
650
py
Python
init_model.py
positivedefinite/SAMMY
46c9f6712262db95d3d0b56103f36537b99b4b9e
[ "MIT" ]
1
2018-03-04T14:41:26.000Z
2018-03-04T14:41:26.000Z
init_model.py
positivedefinite/SAMMY
46c9f6712262db95d3d0b56103f36537b99b4b9e
[ "MIT" ]
null
null
null
init_model.py
positivedefinite/SAMMY
46c9f6712262db95d3d0b56103f36537b99b4b9e
[ "MIT" ]
null
null
null
from keras.models import model_from_json def init(json_path,h5_path): json_file = open(json_path,'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) #load woeights into new model loaded_model.load_weights(h5_path) print("Loaded Model from disk") #compile and evaluate loaded model # loaded_model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) # return loaded_model #loss,accuracy = model.evaluate(X_test,y_test) #print('loss:', loss) #print('accuracy:', accuracy) #graph = tf.get_default_graph() #return loaded_model,graph return loaded_model
30.952381
93
0.78
65d1fc31a73f889613000bfd08b63c6d7cb3c272
10,812
py
Python
PathPlanning/BidirectionalAStar/bidirectional_a_star.py
ll7/PythonRobotics
86a67adde743e85974a42e47c95f083284cfd492
[ "MIT" ]
14
2021-09-26T06:37:01.000Z
2022-03-31T12:30:58.000Z
PathPlanning/BidirectionalAStar/bidirectional_a_star.py
taka-robo/PythonRobotics
3607d72b60cd500806e0f026ac8beb82850a01f9
[ "MIT" ]
null
null
null
PathPlanning/BidirectionalAStar/bidirectional_a_star.py
taka-robo/PythonRobotics
3607d72b60cd500806e0f026ac8beb82850a01f9
[ "MIT" ]
7
2020-11-18T02:15:30.000Z
2022-03-13T06:47:00.000Z
""" Bidirectional A* grid planning author: Erwin Lejeune (@spida_rwin) See Wikipedia article (https://en.wikipedia.org/wiki/Bidirectional_search) """ import math import matplotlib.pyplot as plt show_animation = True class BidirectionalAStarPlanner: def __init__(self, ox, oy, reso, rr): """ Initialize grid map for a star planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] reso: grid resolution [m] rr: robot radius[m] """ self.reso = reso self.rr = rr self.calc_obstacle_map(ox, oy) self.motion = self.get_motion_model() class Node: def __init__(self, x, y, cost, pind): self.x = x # index of grid self.y = y # index of grid self.cost = cost self.pind = pind def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.pind) def planning(self, sx, sy, gx, gy): """ Bidirectional A star path search input: sx: start x position [m] sy: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ nstart = self.Node(self.calc_xyindex(sx, self.minx), self.calc_xyindex(sy, self.miny), 0.0, -1) ngoal = self.Node(self.calc_xyindex(gx, self.minx), self.calc_xyindex(gy, self.miny), 0.0, -1) open_set_A, closed_set_A = dict(), dict() open_set_B, closed_set_B = dict(), dict() open_set_A[self.calc_grid_index(nstart)] = nstart open_set_B[self.calc_grid_index(ngoal)] = ngoal current_A = nstart current_B = ngoal while 1: if len(open_set_A) == 0: print("Open set A is empty..") break if len(open_set_B) == 0: print("Open set B is empty..") break c_id_A = min( open_set_A, key=lambda o: self.find_total_cost(open_set_A, o, current_B)) current_A = open_set_A[c_id_A] c_id_B = min( open_set_B, key=lambda o: self.find_total_cost(open_set_B, o, current_A)) current_B = open_set_B[c_id_B] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current_A.x, self.minx), self.calc_grid_position(current_A.y, self.miny), "xc") plt.plot(self.calc_grid_position(current_B.x, self.minx), self.calc_grid_position(current_B.y, self.miny), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) if len(closed_set_A.keys()) % 10 == 0: plt.pause(0.001) if current_A.x == current_B.x and current_A.y == current_B.y: print("Found goal") meetpointA = current_A meetpointB = current_B break # Remove the item from the open set del open_set_A[c_id_A] del open_set_B[c_id_B] # Add it to the closed set closed_set_A[c_id_A] = current_A closed_set_B[c_id_B] = current_B # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): c_nodes = [self.Node(current_A.x + self.motion[i][0], current_A.y + self.motion[i][1], current_A.cost + self.motion[i][2], c_id_A), self.Node(current_B.x + self.motion[i][0], current_B.y + self.motion[i][1], current_B.cost + self.motion[i][2], c_id_B)] n_ids = [self.calc_grid_index(c_nodes[0]), self.calc_grid_index(c_nodes[1])] # If the node is not safe, do nothing continue_ = self.check_nodes_and_sets(c_nodes, closed_set_A, closed_set_B, n_ids) if not continue_[0]: if n_ids[0] not in open_set_A: # discovered a new node open_set_A[n_ids[0]] = c_nodes[0] else: if open_set_A[n_ids[0]].cost > c_nodes[0].cost: # This path is the best until now. record it open_set_A[n_ids[0]] = c_nodes[0] if not continue_[1]: if n_ids[1] not in open_set_B: # discovered a new node open_set_B[n_ids[1]] = c_nodes[1] else: if open_set_B[n_ids[1]].cost > c_nodes[1].cost: # This path is the best until now. record it open_set_B[n_ids[1]] = c_nodes[1] rx, ry = self.calc_final_bidirectional_path( meetpointA, meetpointB, closed_set_A, closed_set_B) return rx, ry # takes two sets and two meeting nodes and return the optimal path def calc_final_bidirectional_path(self, n1, n2, setA, setB): rx_A, ry_A = self.calc_final_path(n1, setA) rx_B, ry_B = self.calc_final_path(n2, setB) rx_A.reverse() ry_A.reverse() rx = rx_A + rx_B ry = ry_A + ry_B return rx, ry def calc_final_path(self, ngoal, closedset): # generate final course rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [ self.calc_grid_position(ngoal.y, self.miny)] pind = ngoal.pind while pind != -1: n = closedset[pind] rx.append(self.calc_grid_position(n.x, self.minx)) ry.append(self.calc_grid_position(n.y, self.miny)) pind = n.pind return rx, ry def check_nodes_and_sets(self, c_nodes, closedSet_A, closedSet_B, n_ids): continue_ = [False, False] if not self.verify_node(c_nodes[0]) or n_ids[0] in closedSet_A: continue_[0] = True if not self.verify_node(c_nodes[1]) or n_ids[1] in closedSet_B: continue_[1] = True return continue_ @staticmethod def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) return d def find_total_cost(self, open_set, lambda_, n1): g_cost = open_set[lambda_].cost h_cost = self.calc_heuristic(n1, open_set[lambda_]) f_cost = g_cost + h_cost return f_cost def calc_grid_position(self, index, minp): """ calc grid position :param index: :param minp: :return: """ pos = index * self.reso + minp return pos def calc_xyindex(self, position, min_pos): return round((position - min_pos) / self.reso) def calc_grid_index(self, node): return (node.y - self.miny) * self.xwidth + (node.x - self.minx) def verify_node(self, node): px = self.calc_grid_position(node.x, self.minx) py = self.calc_grid_position(node.y, self.miny) if px < self.minx: return False elif py < self.miny: return False elif px >= self.maxx: return False elif py >= self.maxy: return False # collision check if self.obmap[node.x][node.y]: return False return True def calc_obstacle_map(self, ox, oy): self.minx = round(min(ox)) self.miny = round(min(oy)) self.maxx = round(max(ox)) self.maxy = round(max(oy)) print("minx:", self.minx) print("miny:", self.miny) print("maxx:", self.maxx) print("maxy:", self.maxy) self.xwidth = round((self.maxx - self.minx) / self.reso) self.ywidth = round((self.maxy - self.miny) / self.reso) print("xwidth:", self.xwidth) print("ywidth:", self.ywidth) # obstacle map generation self.obmap = [[False for _ in range(self.ywidth)] for _ in range(self.xwidth)] for ix in range(self.xwidth): x = self.calc_grid_position(ix, self.minx) for iy in range(self.ywidth): y = self.calc_grid_position(iy, self.miny) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obmap[ix][iy] = True break @staticmethod def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "ob") plt.grid(True) plt.axis("equal") bidir_a_star = BidirectionalAStarPlanner(ox, oy, grid_size, robot_radius) rx, ry = bidir_a_star.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(.0001) plt.show() if __name__ == '__main__': main()
31.521866
79
0.503607
4fc7c16f71239cf74629b8028742a25ffda46386
1,145
py
Python
2017/midterm/problem4_closestPower.py
codxse/mitx-600.1
c1cfa51d5ffe426cb1e84b9c1f2d133213b83962
[ "MIT" ]
null
null
null
2017/midterm/problem4_closestPower.py
codxse/mitx-600.1
c1cfa51d5ffe426cb1e84b9c1f2d133213b83962
[ "MIT" ]
null
null
null
2017/midterm/problem4_closestPower.py
codxse/mitx-600.1
c1cfa51d5ffe426cb1e84b9c1f2d133213b83962
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Feb 12 12:26:38 2017 @author: Nadiar """ def closest_power(base, num): ''' base: base of the exponential, integer > 1 num: number you want to be closest to, integer > 0 Find the integer exponent such that base**exponent is closest to num. Note that the base**exponent may be either greater or smaller than num. In case of a tie, return the smaller value. Returns the exponent. ''' exp = 0 while True: if num - base**exp < 0: temp = exp exp -= 1 mmap = {} mmap[abs(num-base**exp)] = exp mmap[abs(num-base**temp)] = temp flor = min(mmap.keys()) if len(mmap) == 1: return mmap[flor] - 1 else: return mmap[flor] elif num - base**exp == 0: return exp else: exp += 1 print(closest_power(3,12)) #2 print(closest_power(4,12)) #2 print(closest_power(4,1)) #0 print(closest_power(2, 192)) #7 print(closest_power(5, 375.0)) #3 print(closest_power(10, 550.0)) #2
27.261905
75
0.551092
81a2cd2cc844c3dfe496f2e2c1b1f8df8ca7ea00
1,110
py
Python
benchmarks/misc/baseline_reduction.py
liberix/taichi
bbd4ba13e021b32dbf9a52507f637aff0851fe39
[ "MIT" ]
null
null
null
benchmarks/misc/baseline_reduction.py
liberix/taichi
bbd4ba13e021b32dbf9a52507f637aff0851fe39
[ "MIT" ]
null
null
null
benchmarks/misc/baseline_reduction.py
liberix/taichi
bbd4ba13e021b32dbf9a52507f637aff0851fe39
[ "MIT" ]
null
null
null
from utils import dtype_size, scale_repeat import taichi as ti def reduction(arch, dtype, dsize, repeat=10): repeat = scale_repeat(arch, dsize, repeat) n = dsize // dtype_size[dtype] ## fill x x = ti.field(dtype, shape=n) if dtype in [ti.f32, ti.f64]: @ti.kernel def fill_const(n: ti.i32): for i in range(n): x[i] = 0.1 else: @ti.kernel def fill_const(n: ti.i32): for i in range(n): x[i] = 1 # compile the kernel first fill_const(n) ## reduce y = ti.field(dtype, shape=()) if dtype in [ti.f32, ti.f64]: y[None] = 0.0 else: y[None] = 0 @ti.kernel def reduction(n: ti.i32): for i in range(n): y[None] += ti.atomic_add(y[None], x[i]) # compile the kernel first reduction(n) ti.clear_kernel_profile_info() for i in range(repeat): reduction(n) kernelname = reduction.__name__ suffix = "_c" quering_result = ti.query_kernel_profile_info(kernelname + suffix) return quering_result.min
21.764706
70
0.564865
4af6e5802c67db6349d95644164290c003945905
1,423
py
Python
uer/encoders/gpt_encoder.py
nju-websoft/TSQA
d0b3f0c3a5e55a46fc5d281cae09597aa7f76e2e
[ "Apache-2.0" ]
12
2020-12-19T05:26:49.000Z
2022-03-30T13:20:46.000Z
uer/encoders/gpt_encoder.py
nju-websoft/TSQA
d0b3f0c3a5e55a46fc5d281cae09597aa7f76e2e
[ "Apache-2.0" ]
null
null
null
uer/encoders/gpt_encoder.py
nju-websoft/TSQA
d0b3f0c3a5e55a46fc5d281cae09597aa7f76e2e
[ "Apache-2.0" ]
null
null
null
# -*- encoding:utf-8 -*- import torch import torch.nn as nn from uer.layers.layer_norm import LayerNorm from uer.layers.position_ffn import PositionwiseFeedForward from uer.layers.multi_headed_attn import MultiHeadedAttention from uer.layers.transformer import TransformerLayer class GptEncoder(nn.Module): """ BERT encoder exploits 12 or 24 transformer layers to extract features. """ def __init__(self, args): super(GptEncoder, self).__init__() self.layers_num = args.layers_num self.transformer = nn.ModuleList([ TransformerLayer(args) for _ in range(self.layers_num) ]) def forward(self, emb, seg): """ Args: emb: [batch_size x seq_length x emb_size] seg: [batch_size x seq_length] Returns: hidden: [batch_size x seq_length x hidden_size] """ batch_size, seq_length, _ = emb.size() # Generate mask according to segment indicators. # mask: [batch_size x 1 x seq_length x seq_length] mask = torch.ones(seq_length, seq_length, device=emb.device) mask = torch.tril(mask) mask = (1.0 - mask) * -10000 mask = mask.repeat(batch_size, 1, 1, 1) hidden = emb for i in range(self.layers_num): hidden = self.transformer[i](hidden, mask) return hidden
33.093023
75
0.618412
d9d3b6767e109b83b4417637015bb4185b5efc85
3,979
py
Python
frontend/myapp/views.py
TanmayHiremath/Traffic-Man
2c44780b336fd99fc6d4a4914a1c0a9716b19d3f
[ "MIT" ]
null
null
null
frontend/myapp/views.py
TanmayHiremath/Traffic-Man
2c44780b336fd99fc6d4a4914a1c0a9716b19d3f
[ "MIT" ]
null
null
null
frontend/myapp/views.py
TanmayHiremath/Traffic-Man
2c44780b336fd99fc6d4a4914a1c0a9716b19d3f
[ "MIT" ]
1
2020-06-27T14:15:55.000Z
2020-06-27T14:15:55.000Z
# from django.shortcuts import render # # Create your views here. # from myapp.models import * # from .serializers import * # from django.db.models import Q # from rest_framework import viewsets # from rest_framework.response import Response # from rest_framework.views import APIView # import numpy as np # import requests # from django.views.decorators.csrf import csrf_exempt # from rest_framework import status from sys import path from os import getcwd path.append(getcwd()+'/Traffic Program') print(path) from classes import Traffic_Light print(Traffic_Light) context={'a':'b'} class ImageViewSet(viewsets.ModelViewSet): queryset = Image.objects.all() serializer_class = ImageSerializer class CurrentImagesViewSet(viewsets.ModelViewSet): queryset = CurrentImages.objects.all() serializer_class = CurrentImagesSerializer def startedProgram(): pass def get_images(): img0=Image.objects.get(sn=1) img1=Image.objects.get(sn=2) img2=Image.objects.get(sn=3) img3=Image.objects.get(sn=4) global context context = {'img0': img0,'img1': img1,'img2': img2,'img3': img3} def my_view(request): get_images() return render(request,'index.html',context) class getCurrentImage(APIView): permission_classes = () authentication_classes = () def get(self, request, pk, format=None): currentimage = CurrentImages.objects.get(pk=pk) serializer = CurrentImagesSerializer(currentimage) return Response(serializer.data) def put(self, request, pk, format=None): currentimage = CurrentImages.objects.get(pk=pk) if currentimage is not None: serializer = CurrentImagesSerializer(currentimage, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) else: serializer = CurrentImagesSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) else: print(serializer.errors) class getTrafficLight(APIView): permission_classes = () authentication_classes = () def get(self, request, sn, format=None): trafficlight = TrafficLight.objects.get(sn=sn) serializer = TrafficLightSerializer(trafficlight) return Response(serializer.data) def put(self, request, sn, format=None): trafficlight = TrafficLight.objects.get(sn=sn) if trafficlight is not None: serializer = TrafficLightSerializer(trafficlight, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) else: serializer = TrafficLightSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) else: print(serializer.errors) # class getImage(APIView): # def get_object(self, pk): # try: # return Image.objects.get(pk=pk) # except Image.DoepkotExist: # return None # def get(self, request, pk, format=None): # Image = self.get_object(pk) # serializer = ImageSerializer(Image) # return Response(serializer.data) # @register.filter(name='update_filter') # def update_variable(variable): # get_images() # if(variable=='img0'): # print('0') # elif(variable=='img1'): # print('1') # elif(variable=='img2'): # print('2') # elif(variable=='img3'): # print('3') # return 'hello'
29.474074
81
0.614727
86884156f9b808b026a7183f029318de4c0a4046
8,037
py
Python
cfgov/v1/tests/test_signals.py
Colin-Seifer/consumerfinance.gov
a1a943f7170b498707d642d6be97b9a97a2b52e3
[ "CC0-1.0" ]
156
2015-01-16T15:16:46.000Z
2020-08-04T04:48:01.000Z
cfgov/v1/tests/test_signals.py
Colin-Seifer/consumerfinance.gov
a1a943f7170b498707d642d6be97b9a97a2b52e3
[ "CC0-1.0" ]
3,604
2015-01-05T22:09:12.000Z
2020-08-14T17:09:19.000Z
cfgov/v1/tests/test_signals.py
Colin-Seifer/consumerfinance.gov
a1a943f7170b498707d642d6be97b9a97a2b52e3
[ "CC0-1.0" ]
102
2015-01-28T14:51:18.000Z
2020-08-10T00:00:39.000Z
from unittest import TestCase, mock from django.contrib.auth.models import User from django.test import TestCase as DjangoTestCase from django.utils import timezone from wagtail.core.models import Site from model_bakery import baker from teachers_digital_platform.models import ActivityPage, ActivitySetUp from v1.models import ( BlogPage, CFGOVPageCategory, LearnPage, NewsroomLandingPage, NewsroomPage, SublandingFilterablePage, ) from v1.signals import invalidate_filterable_list_caches class UserSaveTestCase(TestCase): def make_user(self, password, is_superuser=False): user = baker.prepare(User, is_superuser=is_superuser) user.set_password(password) user.save() return user def test_user_save_new_password_makes_history_item(self): user = self.make_user(password="foo") first_phi = user.passwordhistoryitem_set.latest() user.set_password("bar") user.save() new_phi = user.passwordhistoryitem_set.latest() self.assertNotEqual(first_phi, new_phi) self.assertEqual(user.password, new_phi.encrypted_password) def test_user_save_new_password_not_expired(self): user = self.make_user(password="foo") user.set_password("bar") user.save() new_phi = user.passwordhistoryitem_set.latest() self.assertGreater(new_phi.expires_at, timezone.now()) def test_user_save_new_password_locks_password(self): user = self.make_user(password="foo") user.set_password("bar") user.save() new_phi = user.passwordhistoryitem_set.latest() self.assertGreater(new_phi.locked_until, timezone.now()) def test_user_save_same_password_no_history_item(self): user = self.make_user(password="foo") first_phi = user.passwordhistoryitem_set.latest() user.save() new_phi = user.passwordhistoryitem_set.latest() self.assertEqual(first_phi, new_phi) self.assertEqual(user.password, new_phi.encrypted_password) def test_user_created_expires_password(self): user = self.make_user(password="foo") first_phi = user.passwordhistoryitem_set.latest() self.assertLess(first_phi.expires_at, timezone.now()) def test_user_created_unlocks_password(self): user = self.make_user(password="foo") first_phi = user.passwordhistoryitem_set.latest() self.assertLess(first_phi.locked_until, timezone.now()) def test_superuser_created_does_not_expire_password(self): user = self.make_user(password="foo", is_superuser=True) first_phi = user.passwordhistoryitem_set.latest() self.assertGreater(first_phi.expires_at, timezone.now()) def test_superuser_created_unlocks_password(self): user = self.make_user(password="foo", is_superuser=True) first_phi = user.passwordhistoryitem_set.latest() self.assertLess(first_phi.locked_until, timezone.now()) class FilterableListInvalidationTestCase(TestCase): def setUp(self): self.root_page = Site.objects.first().root_page self.filterable_list_page = SublandingFilterablePage(title="Blog") self.root_page.add_child(instance=self.filterable_list_page) self.filterable_list_page.save() self.category_filterable_list_page = NewsroomLandingPage(title="News") self.root_page.add_child(instance=self.category_filterable_list_page) self.category_filterable_list_page.save() self.newsroom_page = NewsroomPage(title="News event") self.category_filterable_list_page.add_child( instance=self.newsroom_page ) self.newsroom_page.save() self.blog_page = BlogPage(title="test blog") self.filterable_list_page.add_child(instance=self.blog_page) self.blog_page.categories.add(CFGOVPageCategory(name="op-ed")) self.blog_page.save() self.non_filterable_page = LearnPage(title="Page") self.root_page.add_child(instance=self.non_filterable_page) self.non_filterable_page.save() @mock.patch("v1.signals.AkamaiBackend.purge_by_tags") @mock.patch("v1.signals.cache") def test_invalidate_filterable_list_caches( self, mock_cache, mock_purge, ): invalidate_filterable_list_caches(None, instance=self.blog_page) for cache_key_prefix in ( self.filterable_list_page.get_cache_key_prefix(), self.category_filterable_list_page.get_cache_key_prefix(), ): mock_cache.delete.assert_any_call( f"{cache_key_prefix}-all_filterable_results" ) mock_cache.delete.assert_any_call(f"{cache_key_prefix}-page_ids") mock_cache.delete.assert_any_call(f"{cache_key_prefix}-topics") mock_cache.delete.assert_any_call(f"{cache_key_prefix}-authors") mock_purge.assert_called_once() self.assertIn( self.filterable_list_page.slug, mock_purge.mock_calls[0].args[0] ) @mock.patch("v1.signals.AkamaiBackend.purge_by_tags") @mock.patch("django.core.cache.cache") def test_invalidate_filterable_list_caches_does_nothing( self, mock_cache, mock_purge ): invalidate_filterable_list_caches( None, instance=self.non_filterable_page ) mock_cache.delete.assert_not_called() mock_purge.assert_not_called() class RefreshActivitiesTestCase(DjangoTestCase): fixtures = ["tdp_minimal_data"] def setUp(self): self.root_page = Site.objects.first().root_page self.activity_page = ActivityPage( title="activity 1", live=False, summary="Summary", big_idea="Big Idea", essential_questions="Essential Questions", objectives="Objectives", what_students_will_do="What students will do", activity_duration_id=1, activity_file_id=8335, ) self.root_page.add_child(instance=self.activity_page) self.activity_page.save() self.activity_page2 = ActivityPage( title="activity 2", live=False, summary="Summary 2", big_idea="Big Idea", essential_questions="Essential Questions", objectives="Objectives", what_students_will_do="What students will do", activity_duration_id=1, activity_file_id=8335, ) self.root_page.add_child(instance=self.activity_page2) self.activity_page2.save() def test_setup_object_missing(self): self.assertFalse(ActivitySetUp.objects.exists()) def test_publishing_creates_setup_object_with_reference(self): self.activity_page.save_revision().publish() self.assertTrue(ActivitySetUp.objects.exists()) self.assertIn( str(self.activity_page.pk), ActivitySetUp.objects.first().card_setup, ) self.assertEqual(len(ActivitySetUp.objects.first().card_setup), 1) def test_publish(self): self.activity_page.save_revision().publish() self.activity_page2.save_revision().publish() self.assertEqual(len(ActivitySetUp.objects.first().card_setup), 2) for page in [self.activity_page, self.activity_page2]: self.assertIn( str(page.pk), ActivitySetUp.objects.first().card_setup ) def test_upublish(self): self.activity_page.save_revision().publish() self.activity_page2.save_revision().publish() self.activity_page2.refresh_from_db() self.assertTrue(self.activity_page2.live) self.activity_page2.unpublish() self.activity_page2.refresh_from_db() self.assertFalse(self.activity_page2.live) setup = ActivitySetUp.objects.first() self.assertNotIn(str(self.activity_page2.pk), setup.card_setup) self.assertEqual(len(ActivitySetUp.objects.first().card_setup), 1)
37.208333
78
0.690929
603e57613bd9d3d31e54f9ca35e2542eb7da5236
662
py
Python
bagdiscovery/models.py
RockefellerArchiveCenter/ursa_major
44bc4a23a37ec749553ecfcc4914357ab621d4f3
[ "MIT" ]
null
null
null
bagdiscovery/models.py
RockefellerArchiveCenter/ursa_major
44bc4a23a37ec749553ecfcc4914357ab621d4f3
[ "MIT" ]
99
2018-09-26T17:06:36.000Z
2022-03-28T15:53:46.000Z
bagdiscovery/models.py
RockefellerArchiveCenter/ursa_major
44bc4a23a37ec749553ecfcc4914357ab621d4f3
[ "MIT" ]
null
null
null
from asterism.models import BasePackage from django.db import models class Accession(models.Model): data = models.JSONField(null=True, blank=True) created = models.DateTimeField(auto_now=True) last_modified = models.DateTimeField(auto_now_add=True) class Bag(BasePackage): CREATED = 1 DISCOVERED = 2 DELIVERED = 3 PROCESS_STATUS_CHOICES = ( (CREATED, "Created"), (DISCOVERED, "Discovered"), (DELIVERED, "Delivered") ) accession = models.ForeignKey(Accession, on_delete=models.CASCADE, null=True, blank=True) process_status = models.IntegerField(choices=PROCESS_STATUS_CHOICES, default=CREATED)
30.090909
93
0.719033
d7303df29c2aaa039b1532df9e3acd9c65407786
126,962
py
Python
mrcnn/model.py
ejcv/Mask_RCNN
7f2ebb55c4fb8b8b0e06ce5cb796d9958fbd8d5b
[ "MIT" ]
null
null
null
mrcnn/model.py
ejcv/Mask_RCNN
7f2ebb55c4fb8b8b0e06ce5cb796d9958fbd8d5b
[ "MIT" ]
null
null
null
mrcnn/model.py
ejcv/Mask_RCNN
7f2ebb55c4fb8b8b0e06ce5cb796d9958fbd8d5b
[ "MIT" ]
null
null
null
""" Mask R-CNN The main Mask R-CNN model implementation. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import os import random import datetime import re import math import logging from collections import OrderedDict import multiprocessing import numpy as np import tensorflow as tf import keras import keras.backend as K import keras.layers as KL import keras.engine as KE import keras.models as KM from mrcnn import utils # Requires TensorFlow 1.3+ and Keras 2.0.8+. from distutils.version import LooseVersion assert LooseVersion(tf.__version__) >= LooseVersion("1.3") assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8') ############################################################ # Utility Functions ############################################################ def log(text, array=None): """Prints a text message. And, optionally, if a Numpy array is provided it prints it's shape, min, and max values. """ if array is not None: text = text.ljust(25) text += ("shape: {:20} ".format(str(array.shape))) if array.size: text += ("min: {:10.5f} max: {:10.5f}".format(array.min(),array.max())) else: text += ("min: {:10} max: {:10}".format("","")) text += " {}".format(array.dtype) print(text) class BatchNorm(KL.BatchNormalization): """Extends the Keras BatchNormalization class to allow a central place to make changes if needed. Batch normalization has a negative effect on training if batches are small so this layer is often frozen (via setting in Config class) and functions as linear layer. """ def call(self, inputs, training=None): """ Note about training values: None: Train BN layers. This is the normal mode False: Freeze BN layers. Good when batch size is small True: (don't use). Set layer in training mode even when making inferences """ return super(self.__class__, self).call(inputs, training=training) def compute_backbone_shapes(config, image_shape): """Computes the width and height of each stage of the backbone network. Returns: [N, (height, width)]. Where N is the number of stages """ if callable(config.BACKBONE): return config.COMPUTE_BACKBONE_SHAPE(image_shape) # Currently supports ResNet only assert config.BACKBONE in ["resnet50", "resnet101"] return np.array( [[int(math.ceil(image_shape[0] / stride)), int(math.ceil(image_shape[1] / stride))] for stride in config.BACKBONE_STRIDES]) ############################################################ # Resnet Graph ############################################################ # Code adopted from: # https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py def identity_block(input_tensor, kernel_size, filters, stage, block, use_bias=True, train_bn=True): """The identity_block is the block that has no conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names use_bias: Boolean. To use or not use a bias in conv layers. train_bn: Boolean. Train or freeze Batch Norm layers """ nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', name=conv_name_base + '2b', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) x = KL.Add()([x, input_tensor]) x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2), use_bias=True, train_bn=True): """conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names use_bias: Boolean. To use or not use a bias in conv layers. train_bn: Boolean. Train or freeze Batch Norm layers Note that from stage 3, the first conv layer at main path is with subsample=(2,2) And the shortcut should have subsample=(2,2) as well """ nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = KL.Conv2D(nb_filter1, (1, 1), strides=strides, name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', name=conv_name_base + '2b', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x) x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn) shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides, name=conv_name_base + '1', use_bias=use_bias)(input_tensor) shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn) x = KL.Add()([x, shortcut]) x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) return x def resnet_graph(input_image, architecture, stage5=False, train_bn=True): """Build a ResNet graph. architecture: Can be resnet50 or resnet101 stage5: Boolean. If False, stage5 of the network is not created train_bn: Boolean. Train or freeze Batch Norm layers """ assert architecture in ["resnet50", "resnet101"] # Stage 1 x = KL.ZeroPadding2D((3, 3))(input_image) x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x) x = BatchNorm(name='bn_conv1')(x, training=train_bn) x = KL.Activation('relu')(x) C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) # Stage 2 x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn) C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn) # Stage 3 x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn) x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn) x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn) C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn) # Stage 4 x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn) block_count = {"resnet50": 5, "resnet101": 22}[architecture] for i in range(block_count): x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn) C4 = x # Stage 5 if stage5: x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn) x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn) C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn) else: C5 = None return [C1, C2, C3, C4, C5] ############################################################ # Proposal Layer ############################################################ def apply_box_deltas_graph(boxes, deltas): """Applies the given deltas to the given boxes. boxes: [N, (y1, x1, y2, x2)] boxes to update deltas: [N, (dy, dx, log(dh), log(dw))] refinements to apply """ # Convert to y, x, h, w height = boxes[:, 2] - boxes[:, 0] width = boxes[:, 3] - boxes[:, 1] center_y = boxes[:, 0] + 0.5 * height center_x = boxes[:, 1] + 0.5 * width # Apply deltas center_y += deltas[:, 0] * height center_x += deltas[:, 1] * width height *= tf.exp(deltas[:, 2]) width *= tf.exp(deltas[:, 3]) # Convert back to y1, x1, y2, x2 y1 = center_y - 0.5 * height x1 = center_x - 0.5 * width y2 = y1 + height x2 = x1 + width result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out") return result def clip_boxes_graph(boxes, window): """ boxes: [N, (y1, x1, y2, x2)] window: [4] in the form y1, x1, y2, x2 """ # Split wy1, wx1, wy2, wx2 = tf.split(window, 4) y1, x1, y2, x2 = tf.split(boxes, 4, axis=1) # Clip y1 = tf.maximum(tf.minimum(y1, wy2), wy1) x1 = tf.maximum(tf.minimum(x1, wx2), wx1) y2 = tf.maximum(tf.minimum(y2, wy2), wy1) x2 = tf.maximum(tf.minimum(x2, wx2), wx1) clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes") clipped.set_shape((clipped.shape[0], 4)) return clipped class ProposalLayer(KE.Layer): """Receives anchor scores and selects a subset to pass as proposals to the second stage. Filtering is done based on anchor scores and non-max suppression to remove overlaps. It also applies bounding box refinement deltas to anchors. Inputs: rpn_probs: [batch, num_anchors, (bg prob, fg prob)] rpn_bbox: [batch, num_anchors, (dy, dx, log(dh), log(dw))] anchors: [batch, num_anchors, (y1, x1, y2, x2)] anchors in normalized coordinates Returns: Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)] """ def __init__(self, proposal_count, nms_threshold, config=None, **kwargs): super(ProposalLayer, self).__init__(**kwargs) self.config = config self.proposal_count = proposal_count self.nms_threshold = nms_threshold def call(self, inputs): # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1] scores = inputs[0][:, :, 1] # Box deltas [batch, num_rois, 4] deltas = inputs[1] deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4]) # Anchors anchors = inputs[2] # Improve performance by trimming to top anchors by score # and doing the rest on the smaller subset. pre_nms_limit = tf.minimum(self.config.PRE_NMS_LIMIT, tf.shape(anchors)[1]) ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True, name="top_anchors").indices scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU) deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU) pre_nms_anchors = utils.batch_slice([anchors, ix], lambda a, x: tf.gather(a, x), self.config.IMAGES_PER_GPU, names=["pre_nms_anchors"]) # Apply deltas to anchors to get refined anchors. # [batch, N, (y1, x1, y2, x2)] boxes = utils.batch_slice([pre_nms_anchors, deltas], lambda x, y: apply_box_deltas_graph(x, y), self.config.IMAGES_PER_GPU, names=["refined_anchors"]) # Clip to image boundaries. Since we're in normalized coordinates, # clip to 0..1 range. [batch, N, (y1, x1, y2, x2)] window = np.array([0, 0, 1, 1], dtype=np.float32) boxes = utils.batch_slice(boxes, lambda x: clip_boxes_graph(x, window), self.config.IMAGES_PER_GPU, names=["refined_anchors_clipped"]) # Filter out small boxes # According to Xinlei Chen's paper, this reduces detection accuracy # for small objects, so we're skipping it. # Non-max suppression def nms(boxes, scores): indices = tf.image.non_max_suppression( boxes, scores, self.proposal_count, self.nms_threshold, name="rpn_non_max_suppression") proposals = tf.gather(boxes, indices) # Pad if needed padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0) proposals = tf.pad(proposals, [(0, padding), (0, 0)]) return proposals proposals = utils.batch_slice([boxes, scores], nms, self.config.IMAGES_PER_GPU) return proposals def compute_output_shape(self, input_shape): return (None, self.proposal_count, 4) ############################################################ # ROIAlign Layer ############################################################ def log2_graph(x): """Implementation of Log2. TF doesn't have a native implementation.""" return tf.log(x) / tf.log(2.0) class PyramidROIAlign(KE.Layer): """Implements ROI Pooling on multiple levels of the feature pyramid. Params: - pool_shape: [pool_height, pool_width] of the output pooled regions. Usually [7, 7] Inputs: - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized coordinates. Possibly padded with zeros if not enough boxes to fill the array. - image_meta: [batch, (meta data)] Image details. See compose_image_meta() - feature_maps: List of feature maps from different levels of the pyramid. Each is [batch, height, width, channels] Output: Pooled regions in the shape: [batch, num_boxes, pool_height, pool_width, channels]. The width and height are those specific in the pool_shape in the layer constructor. """ def __init__(self, pool_shape, **kwargs): super(PyramidROIAlign, self).__init__(**kwargs) self.pool_shape = tuple(pool_shape) def call(self, inputs): # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords boxes = inputs[0] # Image meta # Holds details about the image. See compose_image_meta() image_meta = inputs[1] # Feature Maps. List of feature maps from different level of the # feature pyramid. Each is [batch, height, width, channels] feature_maps = inputs[2:] # Assign each ROI to a level in the pyramid based on the ROI area. y1, x1, y2, x2 = tf.split(boxes, 4, axis=2) h = y2 - y1 w = x2 - x1 # Use shape of first image. Images in a batch must have the same size. image_shape = parse_image_meta_graph(image_meta)['image_shape'][0] # Equation 1 in the Feature Pyramid Networks paper. Account for # the fact that our coordinates are normalized here. # e.g. a 224x224 ROI (in pixels) maps to P4 image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32) roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area))) roi_level = tf.minimum(5, tf.maximum( 2, 4 + tf.cast(tf.round(roi_level), tf.int32))) roi_level = tf.squeeze(roi_level, 2) # Loop through levels and apply ROI pooling to each. P2 to P5. pooled = [] box_to_level = [] for i, level in enumerate(range(2, 6)): ix = tf.where(tf.equal(roi_level, level)) level_boxes = tf.gather_nd(boxes, ix) # Box indices for crop_and_resize. box_indices = tf.cast(ix[:, 0], tf.int32) # Keep track of which box is mapped to which level box_to_level.append(ix) # Stop gradient propogation to ROI proposals level_boxes = tf.stop_gradient(level_boxes) box_indices = tf.stop_gradient(box_indices) # Crop and Resize # From Mask R-CNN paper: "We sample four regular locations, so # that we can evaluate either max or average pooling. In fact, # interpolating only a single value at each bin center (without # pooling) is nearly as effective." # # Here we use the simplified approach of a single value per bin, # which is how it's done in tf.crop_and_resize() # Result: [batch * num_boxes, pool_height, pool_width, channels] pooled.append(tf.image.crop_and_resize( feature_maps[i], level_boxes, box_indices, self.pool_shape, method="bilinear")) # Pack pooled features into one tensor pooled = tf.concat(pooled, axis=0) # Pack box_to_level mapping into one array and add another # column representing the order of pooled boxes box_to_level = tf.concat(box_to_level, axis=0) box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1) box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range], axis=1) # Rearrange pooled features to match the order of the original boxes # Sort box_to_level by batch then box index # TF doesn't have a way to sort by two columns, so merge them and sort. sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1] ix = tf.nn.top_k(sorting_tensor, k=tf.shape( box_to_level)[0]).indices[::-1] ix = tf.gather(box_to_level[:, 2], ix) pooled = tf.gather(pooled, ix) # Re-add the batch dimension shape = tf.concat([tf.shape(boxes)[:2], tf.shape(pooled)[1:]], axis=0) pooled = tf.reshape(pooled, shape) return pooled def compute_output_shape(self, input_shape): return input_shape[0][:2] + self.pool_shape + (input_shape[2][-1], ) ############################################################ # Detection Target Layer ############################################################ def overlaps_graph(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: [N, (y1, x1, y2, x2)]. """ # 1. Tile boxes2 and repeat boxes1. This allows us to compare # every boxes1 against every boxes2 without loops. # TF doesn't have an equivalent to np.repeat() so simulate it # using tf.tile() and tf.reshape. b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1), [1, 1, tf.shape(boxes2)[0]]), [-1, 4]) b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1]) # 2. Compute intersections b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1) b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1) y1 = tf.maximum(b1_y1, b2_y1) x1 = tf.maximum(b1_x1, b2_x1) y2 = tf.minimum(b1_y2, b2_y2) x2 = tf.minimum(b1_x2, b2_x2) intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0) # 3. Compute unions b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1) b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1) union = b1_area + b2_area - intersection # 4. Compute IoU and reshape to [boxes1, boxes2] iou = intersection / union overlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]]) return overlaps def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config): """Generates detection targets for one image. Subsamples proposals and generates target class IDs, bounding box deltas, and masks for each. Inputs: proposals: [POST_NMS_ROIS_TRAINING, (y1, x1, y2, x2)] in normalized coordinates. Might be zero padded if there are not enough proposals. gt_class_ids: [MAX_GT_INSTANCES] int class IDs gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type. Returns: Target ROIs and corresponding class IDs, bounding box shifts, and masks. rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded. deltas: [TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw))] masks: [TRAIN_ROIS_PER_IMAGE, height, width]. Masks cropped to bbox boundaries and resized to neural network output size. Note: Returned arrays might be zero padded if not enough target ROIs. """ # Assertions asserts = [ tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals], name="roi_assertion"), ] with tf.control_dependencies(asserts): proposals = tf.identity(proposals) # Remove zero padding proposals, _ = trim_zeros_graph(proposals, name="trim_proposals") gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes") gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros, name="trim_gt_class_ids") gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2, name="trim_gt_masks") # Handle COCO crowds # A crowd box in COCO is a bounding box around several instances. Exclude # them from training. A crowd box is given a negative class ID. crowd_ix = tf.where(gt_class_ids < 0)[:, 0] non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0] crowd_boxes = tf.gather(gt_boxes, crowd_ix) gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix) gt_boxes = tf.gather(gt_boxes, non_crowd_ix) gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2) # Compute overlaps matrix [proposals, gt_boxes] overlaps = overlaps_graph(proposals, gt_boxes) # Compute overlaps with crowd boxes [proposals, crowd_boxes] crowd_overlaps = overlaps_graph(proposals, crowd_boxes) crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1) no_crowd_bool = (crowd_iou_max < 0.001) # Determine positive and negative ROIs roi_iou_max = tf.reduce_max(overlaps, axis=1) # 1. Positive ROIs are those with >= 0.5 IoU with a GT box positive_roi_bool = (roi_iou_max >= 0.5) positive_indices = tf.where(positive_roi_bool)[:, 0] # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds. negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0] # Subsample ROIs. Aim for 33% positive # Positive ROIs positive_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) positive_indices = tf.random_shuffle(positive_indices)[:positive_count] positive_count = tf.shape(positive_indices)[0] # Negative ROIs. Add enough to maintain positive:negative ratio. r = 1.0 / config.ROI_POSITIVE_RATIO negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count negative_indices = tf.random_shuffle(negative_indices)[:negative_count] # Gather selected ROIs positive_rois = tf.gather(proposals, positive_indices) negative_rois = tf.gather(proposals, negative_indices) # Assign positive ROIs to GT boxes. positive_overlaps = tf.gather(overlaps, positive_indices) roi_gt_box_assignment = tf.cond( tf.greater(tf.shape(positive_overlaps)[1], 0), true_fn = lambda: tf.argmax(positive_overlaps, axis=1), false_fn = lambda: tf.cast(tf.constant([]),tf.int64) ) roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment) roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment) # Compute bbox refinement for positive ROIs deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes) deltas /= config.BBOX_STD_DEV # Assign positive ROIs to GT masks # Permute masks to [N, height, width, 1] transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1) # Pick the right mask for each ROI roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment) # Compute mask targets boxes = positive_rois if config.USE_MINI_MASK: # Transform ROI coordinates from normalized image space # to normalized mini-mask space. y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1) gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1) gt_h = gt_y2 - gt_y1 gt_w = gt_x2 - gt_x1 y1 = (y1 - gt_y1) / gt_h x1 = (x1 - gt_x1) / gt_w y2 = (y2 - gt_y1) / gt_h x2 = (x2 - gt_x1) / gt_w boxes = tf.concat([y1, x1, y2, x2], 1) box_ids = tf.range(0, tf.shape(roi_masks)[0]) masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes, box_ids, config.MASK_SHAPE) # Remove the extra dimension from masks. masks = tf.squeeze(masks, axis=3) # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with # binary cross entropy loss. masks = tf.round(masks) # Append negative ROIs and pad bbox deltas and masks that # are not used for negative ROIs with zeros. rois = tf.concat([positive_rois, negative_rois], axis=0) N = tf.shape(negative_rois)[0] P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0) rois = tf.pad(rois, [(0, P), (0, 0)]) roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)]) roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)]) deltas = tf.pad(deltas, [(0, N + P), (0, 0)]) masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)]) return rois, roi_gt_class_ids, deltas, masks class DetectionTargetLayer(KE.Layer): """Subsamples proposals and generates target box refinement, class_ids, and masks for each. Inputs: proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might be zero padded if there are not enough proposals. gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs. gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type Returns: Target ROIs and corresponding class IDs, bounding box shifts, and masks. rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs. target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw)] target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width] Masks cropped to bbox boundaries and resized to neural network output size. Note: Returned arrays might be zero padded if not enough target ROIs. """ def __init__(self, config, **kwargs): super(DetectionTargetLayer, self).__init__(**kwargs) self.config = config def call(self, inputs): proposals = inputs[0] gt_class_ids = inputs[1] gt_boxes = inputs[2] gt_masks = inputs[3] # Slice the batch and run a graph for each slice # TODO: Rename target_bbox to target_deltas for clarity names = ["rois", "target_class_ids", "target_bbox", "target_mask"] outputs = utils.batch_slice( [proposals, gt_class_ids, gt_boxes, gt_masks], lambda w, x, y, z: detection_targets_graph( w, x, y, z, self.config), self.config.IMAGES_PER_GPU, names=names) return outputs def compute_output_shape(self, input_shape): return [ (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # rois (None, self.config.TRAIN_ROIS_PER_IMAGE), # class_ids (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # deltas (None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0], self.config.MASK_SHAPE[1]) # masks ] def compute_mask(self, inputs, mask=None): return [None, None, None, None] ############################################################ # Detection Layer ############################################################ def refine_detections_graph(rois, probs, deltas, window, config): """Refine classified proposals and filter overlaps and return final detections. Inputs: rois: [N, (y1, x1, y2, x2)] in normalized coordinates probs: [N, num_classes]. Class probabilities. deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific bounding box deltas. window: (y1, x1, y2, x2) in normalized coordinates. The part of the image that contains the image excluding the padding. Returns detections shaped: [num_detections, (y1, x1, y2, x2, class_id, score)] where coordinates are normalized. """ # Class IDs per ROI class_ids = tf.argmax(probs, axis=1, output_type=tf.int32) # Class probability of the top class of each ROI indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1) class_scores = tf.gather_nd(probs, indices) # Class-specific bounding box deltas deltas_specific = tf.gather_nd(deltas, indices) # Apply bounding box deltas # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates refined_rois = apply_box_deltas_graph( rois, deltas_specific * config.BBOX_STD_DEV) # Clip boxes to image window refined_rois = clip_boxes_graph(refined_rois, window) # TODO: Filter out boxes with zero area # Filter out background boxes keep = tf.where(class_ids > 0)[:, 0] # Filter out low confidence boxes if config.DETECTION_MIN_CONFIDENCE: conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0] keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), tf.expand_dims(conf_keep, 0)) keep = tf.sparse_tensor_to_dense(keep)[0] # Apply per-class NMS # 1. Prepare variables pre_nms_class_ids = tf.gather(class_ids, keep) pre_nms_scores = tf.gather(class_scores, keep) pre_nms_rois = tf.gather(refined_rois, keep) unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0] def nms_keep_map(class_id): """Apply Non-Maximum Suppression on ROIs of the given class.""" # Indices of ROIs of the given class ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0] # Apply NMS class_keep = tf.image.non_max_suppression( tf.gather(pre_nms_rois, ixs), tf.gather(pre_nms_scores, ixs), max_output_size=config.DETECTION_MAX_INSTANCES, iou_threshold=config.DETECTION_NMS_THRESHOLD) # Map indices class_keep = tf.gather(keep, tf.gather(ixs, class_keep)) # Pad with -1 so returned tensors have the same shape gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0] class_keep = tf.pad(class_keep, [(0, gap)], mode='CONSTANT', constant_values=-1) # Set shape so map_fn() can infer result shape class_keep.set_shape([config.DETECTION_MAX_INSTANCES]) return class_keep # 2. Map over class IDs nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids, dtype=tf.int64) # 3. Merge results into one list, and remove -1 padding nms_keep = tf.reshape(nms_keep, [-1]) nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0]) # 4. Compute intersection between keep and nms_keep keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), tf.expand_dims(nms_keep, 0)) keep = tf.sparse_tensor_to_dense(keep)[0] # Keep top detections roi_count = config.DETECTION_MAX_INSTANCES class_scores_keep = tf.gather(class_scores, keep) num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count) top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1] keep = tf.gather(keep, top_ids) # Arrange output as [N, (y1, x1, y2, x2, class_id, score)] # Coordinates are normalized. detections = tf.concat([ tf.gather(refined_rois, keep), tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis], tf.gather(class_scores, keep)[..., tf.newaxis] ], axis=1) # Pad with zeros if detections < DETECTION_MAX_INSTANCES gap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0] detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT") return detections class DetectionLayer(KE.Layer): """Takes classified proposal boxes and their bounding box deltas and returns the final detection boxes. Returns: [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] where coordinates are normalized. """ def __init__(self, config=None, **kwargs): super(DetectionLayer, self).__init__(**kwargs) self.config = config def call(self, inputs): rois = inputs[0] mrcnn_class = inputs[1] mrcnn_bbox = inputs[2] image_meta = inputs[3] # Get windows of images in normalized coordinates. Windows are the area # in the image that excludes the padding. # Use the shape of the first image in the batch to normalize the window # because we know that all images get resized to the same size. m = parse_image_meta_graph(image_meta) image_shape = m['image_shape'][0] window = norm_boxes_graph(m['window'], image_shape[:2]) # Run detection refinement graph on each item in the batch detections_batch = utils.batch_slice( [rois, mrcnn_class, mrcnn_bbox, window], lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config), self.config.IMAGES_PER_GPU) # Reshape output # [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] in # normalized coordinates return tf.reshape( detections_batch, [self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6]) def compute_output_shape(self, input_shape): return (None, self.config.DETECTION_MAX_INSTANCES, 6) ############################################################ # Region Proposal Network (RPN) ############################################################ def rpn_graph(feature_map, anchors_per_location, anchor_stride): """Builds the computation graph of Region Proposal Network. feature_map: backbone features [batch, height, width, depth] anchors_per_location: number of anchors per pixel in the feature map anchor_stride: Controls the density of anchors. Typically 1 (anchors for every pixel in the feature map), or 2 (every other pixel). Returns: rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax) rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities. rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be applied to anchors. """ # TODO: check if stride of 2 causes alignment issues if the feature map # is not even. # Shared convolutional base of the RPN shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu', strides=anchor_stride, name='rpn_conv_shared')(feature_map) # Anchor Score. [batch, height, width, anchors per location * 2]. x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid', activation='linear', name='rpn_class_raw')(shared) # Reshape to [batch, anchors, 2] rpn_class_logits = KL.Lambda( lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x) # Softmax on last dimension of BG/FG. rpn_probs = KL.Activation( "softmax", name="rpn_class_xxx")(rpn_class_logits) # Bounding box refinement. [batch, H, W, anchors per location * depth] # where depth is [x, y, log(w), log(h)] x = KL.Conv2D(anchors_per_location * 4, (1, 1), padding="valid", activation='linear', name='rpn_bbox_pred')(shared) # Reshape to [batch, anchors, 4] rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x) return [rpn_class_logits, rpn_probs, rpn_bbox] def build_rpn_model(anchor_stride, anchors_per_location, depth): """Builds a Keras model of the Region Proposal Network. It wraps the RPN graph so it can be used multiple times with shared weights. anchors_per_location: number of anchors per pixel in the feature map anchor_stride: Controls the density of anchors. Typically 1 (anchors for every pixel in the feature map), or 2 (every other pixel). depth: Depth of the backbone feature map. Returns a Keras Model object. The model outputs, when called, are: rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax) rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities. rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be applied to anchors. """ input_feature_map = KL.Input(shape=[None, None, depth], name="input_rpn_feature_map") outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride) return KM.Model([input_feature_map], outputs, name="rpn_model") ############################################################ # Feature Pyramid Network Heads ############################################################ def fpn_classifier_graph(rois, feature_maps, image_meta, pool_size, num_classes, train_bn=True, fc_layers_size=1024): """Builds the computation graph of the feature pyramid network classifier and regressor heads. rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized coordinates. feature_maps: List of feature maps from different layers of the pyramid, [P2, P3, P4, P5]. Each has a different resolution. image_meta: [batch, (meta data)] Image details. See compose_image_meta() pool_size: The width of the square feature map generated from ROI Pooling. num_classes: number of classes, which determines the depth of the results train_bn: Boolean. Train or freeze Batch Norm layers fc_layers_size: Size of the 2 FC layers Returns: logits: [batch, num_rois, NUM_CLASSES] classifier logits (before softmax) probs: [batch, num_rois, NUM_CLASSES] classifier probabilities bbox_deltas: [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))] Deltas to apply to proposal boxes """ # ROI Pooling # Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels] x = PyramidROIAlign([pool_size, pool_size], name="roi_align_classifier")([rois, image_meta] + feature_maps) # Two 1024 FC layers (implemented with Conv2D for consistency) x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (pool_size, pool_size), padding="valid"), name="mrcnn_class_conv1")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn1')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (1, 1)), name="mrcnn_class_conv2")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn2')(x, training=train_bn) x = KL.Activation('relu')(x) shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2), name="pool_squeeze")(x) # Classifier head mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes), name='mrcnn_class_logits')(shared) mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"), name="mrcnn_class")(mrcnn_class_logits) # BBox head # [batch, num_rois, NUM_CLASSES * (dy, dx, log(dh), log(dw))] x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'), name='mrcnn_bbox_fc')(shared) # Reshape to [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))] s = K.int_shape(x) mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x) return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox def build_fpn_mask_graph(rois, feature_maps, image_meta, pool_size, num_classes, train_bn=True): """Builds the computation graph of the mask head of Feature Pyramid Network. rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized coordinates. feature_maps: List of feature maps from different layers of the pyramid, [P2, P3, P4, P5]. Each has a different resolution. image_meta: [batch, (meta data)] Image details. See compose_image_meta() pool_size: The width of the square feature map generated from ROI Pooling. num_classes: number of classes, which determines the depth of the results train_bn: Boolean. Train or freeze Batch Norm layers Returns: Masks [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, NUM_CLASSES] """ # ROI Pooling # Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels] x = PyramidROIAlign([pool_size, pool_size], name="roi_align_mask")([rois, image_meta] + feature_maps) # Conv layers x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv1")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_mask_bn1')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv2")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_mask_bn2')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv3")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_mask_bn3')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv4")(x) x = KL.TimeDistributed(BatchNorm(), name='mrcnn_mask_bn4')(x, training=train_bn) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"), name="mrcnn_mask_deconv")(x) x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"), name="mrcnn_mask")(x) return x ############################################################ # Loss Functions ############################################################ def smooth_l1_loss(y_true, y_pred): """Implements Smooth-L1 loss. y_true and y_pred are typically: [N, 4], but could be any shape. """ diff = K.abs(y_true - y_pred) less_than_one = K.cast(K.less(diff, 1.0), "float32") loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) return loss def rpn_class_loss_graph(rpn_match, rpn_class_logits): """RPN anchor classifier loss. rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, -1=negative, 0=neutral anchor. rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for BG/FG. """ # Squeeze last dim to simplify rpn_match = tf.squeeze(rpn_match, -1) # Get anchor classes. Convert the -1/+1 match to 0/1 values. anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32) # Positive and Negative anchors contribute to the loss, # but neutral anchors (match value = 0) don't. indices = tf.where(K.not_equal(rpn_match, 0)) # Pick rows that contribute to the loss and filter out the rest. rpn_class_logits = tf.gather_nd(rpn_class_logits, indices) anchor_class = tf.gather_nd(anchor_class, indices) # Cross entropy loss loss = K.sparse_categorical_crossentropy(target=anchor_class, output=rpn_class_logits, from_logits=True) loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) return loss def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox): """Return the RPN bounding box loss graph. config: the model config object. target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))]. Uses 0 padding to fill in unsed bbox deltas. rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, -1=negative, 0=neutral anchor. rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] """ # Positive anchors contribute to the loss, but negative and # neutral anchors (match value of 0 or -1) don't. rpn_match = K.squeeze(rpn_match, -1) indices = tf.where(K.equal(rpn_match, 1)) # Pick bbox deltas that contribute to the loss rpn_bbox = tf.gather_nd(rpn_bbox, indices) # Trim target bounding box deltas to the same length as rpn_bbox. batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1) target_bbox = batch_pack_graph(target_bbox, batch_counts, config.IMAGES_PER_GPU) loss = smooth_l1_loss(target_bbox, rpn_bbox) loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) return loss def mrcnn_class_loss_graph(target_class_ids, pred_class_logits, active_class_ids): """Loss for the classifier head of Mask RCNN. target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero padding to fill in the array. pred_class_logits: [batch, num_rois, num_classes] active_class_ids: [batch, num_classes]. Has a value of 1 for classes that are in the dataset of the image, and 0 for classes that are not in the dataset. """ # During model building, Keras calls this function with # target_class_ids of type float32. Unclear why. Cast it # to int to get around it. target_class_ids = tf.cast(target_class_ids, 'int64') # Find predictions of classes that are not in the dataset. pred_class_ids = tf.argmax(pred_class_logits, axis=2) # TODO: Update this line to work with batch > 1. Right now it assumes all # images in a batch have the same active_class_ids pred_active = tf.gather(active_class_ids[0], pred_class_ids) # Loss loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=target_class_ids, logits=pred_class_logits) # Erase losses of predictions of classes that are not in the active # classes of the image. loss = loss * pred_active # Computer loss mean. Use only predictions that contribute # to the loss to get a correct mean. loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active) return loss def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox): """Loss for Mask R-CNN bounding box refinement. target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))] target_class_ids: [batch, num_rois]. Integer class IDs. pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))] """ # Reshape to merge batch and roi dimensions for simplicity. target_class_ids = K.reshape(target_class_ids, (-1,)) target_bbox = K.reshape(target_bbox, (-1, 4)) pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4)) # Only positive ROIs contribute to the loss. And only # the right class_id of each ROI. Get their indices. positive_roi_ix = tf.where(target_class_ids > 0)[:, 0] positive_roi_class_ids = tf.cast( tf.gather(target_class_ids, positive_roi_ix), tf.int64) indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1) # Gather the deltas (predicted and true) that contribute to loss target_bbox = tf.gather(target_bbox, positive_roi_ix) pred_bbox = tf.gather_nd(pred_bbox, indices) # Smooth-L1 Loss loss = K.switch(tf.size(target_bbox) > 0, smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox), tf.constant(0.0)) loss = K.mean(loss) return loss def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks): """Mask binary cross-entropy loss for the masks head. target_masks: [batch, num_rois, height, width]. A float32 tensor of values 0 or 1. Uses zero padding to fill array. target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded. pred_masks: [batch, proposals, height, width, num_classes] float32 tensor with values from 0 to 1. """ # Reshape for simplicity. Merge first two dimensions into one. target_class_ids = K.reshape(target_class_ids, (-1,)) mask_shape = tf.shape(target_masks) target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3])) pred_shape = tf.shape(pred_masks) pred_masks = K.reshape(pred_masks, (-1, pred_shape[2], pred_shape[3], pred_shape[4])) # Permute predicted masks to [N, num_classes, height, width] pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2]) # Only positive ROIs contribute to the loss. And only # the class specific mask of each ROI. positive_ix = tf.where(target_class_ids > 0)[:, 0] positive_class_ids = tf.cast( tf.gather(target_class_ids, positive_ix), tf.int64) indices = tf.stack([positive_ix, positive_class_ids], axis=1) # Gather the masks (predicted and true) that contribute to loss y_true = tf.gather(target_masks, positive_ix) y_pred = tf.gather_nd(pred_masks, indices) # Compute binary cross entropy. If no positive ROIs, then return 0. # shape: [batch, roi, num_classes] loss = K.switch(tf.size(y_true) > 0, K.binary_crossentropy(target=y_true, output=y_pred), tf.constant(0.0)) loss = K.mean(loss) return loss ############################################################ # Data Generator ############################################################ def load_image_gt(dataset, config, image_id, augment=False, augmentation=None, use_mini_mask=False): """Load and return ground truth data for an image (image, mask, bounding boxes). augment: (deprecated. Use augmentation instead). If true, apply random image augmentation. Currently, only horizontal flipping is offered. augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. For example, passing imgaug.augmenters.Fliplr(0.5) flips images right/left 50% of the time. use_mini_mask: If False, returns full-size masks that are the same height and width as the original image. These can be big, for example 1024x1024x100 (for 100 instances). Mini masks are smaller, typically, 224x224 and are generated by extracting the bounding box of the object and resizing it to MINI_MASK_SHAPE. Returns: image: [height, width, 3] shape: the original shape of the image before resizing and cropping. class_ids: [instance_count] Integer class IDs bbox: [instance_count, (y1, x1, y2, x2)] mask: [height, width, instance_count]. The height and width are those of the image unless use_mini_mask is True, in which case they are defined in MINI_MASK_SHAPE. """ # Load image and mask image = dataset.load_image(image_id) mask, class_ids = dataset.load_mask(image_id) original_shape = image.shape image, window, scale, padding, crop = utils.resize_image( image, min_dim=config.IMAGE_MIN_DIM, min_scale=config.IMAGE_MIN_SCALE, max_dim=config.IMAGE_MAX_DIM, mode=config.IMAGE_RESIZE_MODE) mask = utils.resize_mask(mask, scale, padding, crop) # Random horizontal flips. # TODO: will be removed in a future update in favor of augmentation if augment: logging.warning("'augment' is deprecated. Use 'augmentation' instead.") if random.randint(0, 1): image = np.fliplr(image) mask = np.fliplr(mask) # Augmentation # This requires the imgaug lib (https://github.com/aleju/imgaug) if augmentation: import imgaug # Augmenters that are safe to apply to masks # Some, such as Affine, have settings that make them unsafe, so always # test your augmentation on masks MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes", "Fliplr", "Flipud", "CropAndPad", "Affine", "PiecewiseAffine"] def hook(images, augmenter, parents, default): """Determines which augmenters to apply to masks.""" return augmenter.__class__.__name__ in MASK_AUGMENTERS # Store shapes before augmentation to compare image_shape = image.shape mask_shape = mask.shape # Make augmenters deterministic to apply similarly to images and masks det = augmentation.to_deterministic() image = det.augment_image(image) # Change mask to np.uint8 because imgaug doesn't support np.bool mask = det.augment_image(mask.astype(np.uint8), hooks=imgaug.HooksImages(activator=hook)) # Verify that shapes didn't change assert image.shape == image_shape, "Augmentation shouldn't change image size" assert mask.shape == mask_shape, "Augmentation shouldn't change mask size" # Change mask back to bool mask = mask.astype(np.bool) # Note that some boxes might be all zeros if the corresponding mask got cropped out. # and here is to filter them out _idx = np.sum(mask, axis=(0, 1)) > 0 mask = mask[:, :, _idx] class_ids = class_ids[_idx] # Bounding boxes. Note that some boxes might be all zeros # if the corresponding mask got cropped out. # bbox: [num_instances, (y1, x1, y2, x2)] bbox = utils.extract_bboxes(mask) # Active classes # Different datasets have different classes, so track the # classes supported in the dataset of this image. active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32) source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]] active_class_ids[source_class_ids] = 1 # Resize masks to smaller size to reduce memory usage if use_mini_mask: mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE) # Image meta data image_meta = compose_image_meta(image_id, original_shape, image.shape, window, scale, active_class_ids) return image, image_meta, class_ids, bbox, mask def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config): """Generate targets for training Stage 2 classifier and mask heads. This is not used in normal training. It's useful for debugging or to train the Mask RCNN heads without using the RPN head. Inputs: rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes. gt_class_ids: [instance count] Integer class IDs gt_boxes: [instance count, (y1, x1, y2, x2)] gt_masks: [height, width, instance count] Ground truth masks. Can be full size or mini-masks. Returns: rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. bboxes: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (y, x, log(h), log(w))]. Class-specific bbox refinements. masks: [TRAIN_ROIS_PER_IMAGE, height, width, NUM_CLASSES). Class specific masks cropped to bbox boundaries and resized to neural network output size. """ assert rpn_rois.shape[0] > 0 assert gt_class_ids.dtype == np.int32, "Expected int but got {}".format( gt_class_ids.dtype) assert gt_boxes.dtype == np.int32, "Expected int but got {}".format( gt_boxes.dtype) assert gt_masks.dtype == np.bool_, "Expected bool but got {}".format( gt_masks.dtype) # It's common to add GT Boxes to ROIs but we don't do that here because # according to XinLei Chen's paper, it doesn't help. # Trim empty padding in gt_boxes and gt_masks parts instance_ids = np.where(gt_class_ids > 0)[0] assert instance_ids.shape[0] > 0, "Image must contain instances." gt_class_ids = gt_class_ids[instance_ids] gt_boxes = gt_boxes[instance_ids] gt_masks = gt_masks[:, :, instance_ids] # Compute areas of ROIs and ground truth boxes. rpn_roi_area = (rpn_rois[:, 2] - rpn_rois[:, 0]) * \ (rpn_rois[:, 3] - rpn_rois[:, 1]) gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * \ (gt_boxes[:, 3] - gt_boxes[:, 1]) # Compute overlaps [rpn_rois, gt_boxes] overlaps = np.zeros((rpn_rois.shape[0], gt_boxes.shape[0])) for i in range(overlaps.shape[1]): gt = gt_boxes[i] overlaps[:, i] = utils.compute_iou( gt, rpn_rois, gt_box_area[i], rpn_roi_area) # Assign ROIs to GT boxes rpn_roi_iou_argmax = np.argmax(overlaps, axis=1) rpn_roi_iou_max = overlaps[np.arange( overlaps.shape[0]), rpn_roi_iou_argmax] # GT box assigned to each ROI rpn_roi_gt_boxes = gt_boxes[rpn_roi_iou_argmax] rpn_roi_gt_class_ids = gt_class_ids[rpn_roi_iou_argmax] # Positive ROIs are those with >= 0.5 IoU with a GT box. fg_ids = np.where(rpn_roi_iou_max > 0.5)[0] # Negative ROIs are those with max IoU 0.1-0.5 (hard example mining) # TODO: To hard example mine or not to hard example mine, that's the question # bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0] bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] # Subsample ROIs. Aim for 33% foreground. # FG fg_roi_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) if fg_ids.shape[0] > fg_roi_count: keep_fg_ids = np.random.choice(fg_ids, fg_roi_count, replace=False) else: keep_fg_ids = fg_ids # BG remaining = config.TRAIN_ROIS_PER_IMAGE - keep_fg_ids.shape[0] if bg_ids.shape[0] > remaining: keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) else: keep_bg_ids = bg_ids # Combine indices of ROIs to keep keep = np.concatenate([keep_fg_ids, keep_bg_ids]) # Need more? remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0] if remaining > 0: # Looks like we don't have enough samples to maintain the desired # balance. Reduce requirements and fill in the rest. This is # likely different from the Mask RCNN paper. # There is a small chance we have neither fg nor bg samples. if keep.shape[0] == 0: # Pick bg regions with easier IoU threshold bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] assert bg_ids.shape[0] >= remaining keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) assert keep_bg_ids.shape[0] == remaining keep = np.concatenate([keep, keep_bg_ids]) else: # Fill the rest with repeated bg rois. keep_extra_ids = np.random.choice( keep_bg_ids, remaining, replace=True) keep = np.concatenate([keep, keep_extra_ids]) assert keep.shape[0] == config.TRAIN_ROIS_PER_IMAGE, \ "keep doesn't match ROI batch size {}, {}".format( keep.shape[0], config.TRAIN_ROIS_PER_IMAGE) # Reset the gt boxes assigned to BG ROIs. rpn_roi_gt_boxes[keep_bg_ids, :] = 0 rpn_roi_gt_class_ids[keep_bg_ids] = 0 # For each kept ROI, assign a class_id, and for FG ROIs also add bbox refinement. rois = rpn_rois[keep] roi_gt_boxes = rpn_roi_gt_boxes[keep] roi_gt_class_ids = rpn_roi_gt_class_ids[keep] roi_gt_assignment = rpn_roi_iou_argmax[keep] # Class-aware bbox deltas. [y, x, log(h), log(w)] bboxes = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.NUM_CLASSES, 4), dtype=np.float32) pos_ids = np.where(roi_gt_class_ids > 0)[0] bboxes[pos_ids, roi_gt_class_ids[pos_ids]] = utils.box_refinement( rois[pos_ids], roi_gt_boxes[pos_ids, :4]) # Normalize bbox refinements bboxes /= config.BBOX_STD_DEV # Generate class-specific target masks masks = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.MASK_SHAPE[0], config.MASK_SHAPE[1], config.NUM_CLASSES), dtype=np.float32) for i in pos_ids: class_id = roi_gt_class_ids[i] assert class_id > 0, "class id must be greater than 0" gt_id = roi_gt_assignment[i] class_mask = gt_masks[:, :, gt_id] if config.USE_MINI_MASK: # Create a mask placeholder, the size of the image placeholder = np.zeros(config.IMAGE_SHAPE[:2], dtype=bool) # GT box gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[gt_id] gt_w = gt_x2 - gt_x1 gt_h = gt_y2 - gt_y1 # Resize mini mask to size of GT box placeholder[gt_y1:gt_y2, gt_x1:gt_x2] = \ np.round(utils.resize(class_mask, (gt_h, gt_w))).astype(bool) # Place the mini batch in the placeholder class_mask = placeholder # Pick part of the mask and resize it y1, x1, y2, x2 = rois[i].astype(np.int32) m = class_mask[y1:y2, x1:x2] mask = utils.resize(m, config.MASK_SHAPE) masks[i, :, :, class_id] = mask return rois, roi_gt_class_ids, bboxes, masks def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config): """Given the anchors and GT boxes, compute overlaps and identify positive anchors and deltas to refine them to match their corresponding GT boxes. anchors: [num_anchors, (y1, x1, y2, x2)] gt_class_ids: [num_gt_boxes] Integer class IDs. gt_boxes: [num_gt_boxes, (y1, x1, y2, x2)] Returns: rpn_match: [N] (int32) matches between anchors and GT boxes. 1 = positive anchor, -1 = negative anchor, 0 = neutral rpn_bbox: [N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. """ # RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32) # RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))] rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4)) # Handle COCO crowds # A crowd box in COCO is a bounding box around several instances. Exclude # them from training. A crowd box is given a negative class ID. crowd_ix = np.where(gt_class_ids < 0)[0] if crowd_ix.shape[0] > 0: # Filter out crowds from ground truth class IDs and boxes non_crowd_ix = np.where(gt_class_ids > 0)[0] crowd_boxes = gt_boxes[crowd_ix] gt_class_ids = gt_class_ids[non_crowd_ix] gt_boxes = gt_boxes[non_crowd_ix] # Compute overlaps with crowd boxes [anchors, crowds] crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes) crowd_iou_max = np.amax(crowd_overlaps, axis=1) no_crowd_bool = (crowd_iou_max < 0.001) else: # All anchors don't intersect a crowd no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool) # Compute overlaps [num_anchors, num_gt_boxes] overlaps = utils.compute_overlaps(anchors, gt_boxes) # Match anchors to GT Boxes # If an anchor overlaps a GT box with IoU >= 0.7 then it's positive. # If an anchor overlaps a GT box with IoU < 0.3 then it's negative. # Neutral anchors are those that don't match the conditions above, # and they don't influence the loss function. # However, don't keep any GT box unmatched (rare, but happens). Instead, # match it to the closest anchor (even if its max IoU is < 0.3). # # 1. Set negative anchors first. They get overwritten below if a GT box is # matched to them. Skip boxes in crowd areas. anchor_iou_argmax = np.argmax(overlaps, axis=1) anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax] rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1 # 2. Set an anchor for each GT box (regardless of IoU value). # If multiple anchors have the same IoU match all of them gt_iou_argmax = np.argwhere(overlaps == np.max(overlaps, axis=0))[:,0] rpn_match[gt_iou_argmax] = 1 # 3. Set anchors with high overlap as positive. rpn_match[anchor_iou_max >= 0.7] = 1 # Subsample to balance positive and negative anchors # Don't let positives be more than half the anchors ids = np.where(rpn_match == 1)[0] extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2) if extra > 0: # Reset the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) rpn_match[ids] = 0 # Same for negative proposals ids = np.where(rpn_match == -1)[0] extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE - np.sum(rpn_match == 1)) if extra > 0: # Rest the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) rpn_match[ids] = 0 # For positive anchors, compute shift and scale needed to transform them # to match the corresponding GT boxes. ids = np.where(rpn_match == 1)[0] ix = 0 # index into rpn_bbox # TODO: use box_refinement() rather than duplicating the code here for i, a in zip(ids, anchors[ids]): # Closest gt box (it might have IoU < 0.7) gt = gt_boxes[anchor_iou_argmax[i]] # Convert coordinates to center plus width/height. # GT Box gt_h = gt[2] - gt[0] gt_w = gt[3] - gt[1] gt_center_y = gt[0] + 0.5 * gt_h gt_center_x = gt[1] + 0.5 * gt_w # Anchor a_h = a[2] - a[0] a_w = a[3] - a[1] a_center_y = a[0] + 0.5 * a_h a_center_x = a[1] + 0.5 * a_w # Compute the bbox refinement that the RPN should predict. rpn_bbox[ix] = [ (gt_center_y - a_center_y) / a_h, (gt_center_x - a_center_x) / a_w, np.log(gt_h / a_h), np.log(gt_w / a_w), ] # Normalize rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV ix += 1 return rpn_match, rpn_bbox def generate_random_rois(image_shape, count, gt_class_ids, gt_boxes): """Generates ROI proposals similar to what a region proposal network would generate. image_shape: [Height, Width, Depth] count: Number of ROIs to generate gt_class_ids: [N] Integer ground truth class IDs gt_boxes: [N, (y1, x1, y2, x2)] Ground truth boxes in pixels. Returns: [count, (y1, x1, y2, x2)] ROI boxes in pixels. """ # placeholder rois = np.zeros((count, 4), dtype=np.int32) # Generate random ROIs around GT boxes (90% of count) rois_per_box = int(0.9 * count / gt_boxes.shape[0]) for i in range(gt_boxes.shape[0]): gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[i] h = gt_y2 - gt_y1 w = gt_x2 - gt_x1 # random boundaries r_y1 = max(gt_y1 - h, 0) r_y2 = min(gt_y2 + h, image_shape[0]) r_x1 = max(gt_x1 - w, 0) r_x2 = min(gt_x2 + w, image_shape[1]) # To avoid generating boxes with zero area, we generate double what # we need and filter out the extra. If we get fewer valid boxes # than we need, we loop and try again. while True: y1y2 = np.random.randint(r_y1, r_y2, (rois_per_box * 2, 2)) x1x2 = np.random.randint(r_x1, r_x2, (rois_per_box * 2, 2)) # Filter out zero area boxes threshold = 1 y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= threshold][:rois_per_box] x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= threshold][:rois_per_box] if y1y2.shape[0] == rois_per_box and x1x2.shape[0] == rois_per_box: break # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape # into x1, y1, x2, y2 order x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) box_rois = np.hstack([y1, x1, y2, x2]) rois[rois_per_box * i:rois_per_box * (i + 1)] = box_rois # Generate random ROIs anywhere in the image (10% of count) remaining_count = count - (rois_per_box * gt_boxes.shape[0]) # To avoid generating boxes with zero area, we generate double what # we need and filter out the extra. If we get fewer valid boxes # than we need, we loop and try again. while True: y1y2 = np.random.randint(0, image_shape[0], (remaining_count * 2, 2)) x1x2 = np.random.randint(0, image_shape[1], (remaining_count * 2, 2)) # Filter out zero area boxes threshold = 1 y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= threshold][:remaining_count] x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= threshold][:remaining_count] if y1y2.shape[0] == remaining_count and x1x2.shape[0] == remaining_count: break # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape # into x1, y1, x2, y2 order x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) global_rois = np.hstack([y1, x1, y2, x2]) rois[-remaining_count:] = global_rois return rois def data_generator(dataset, config, shuffle=True, augment=False, augmentation=None, random_rois=0, batch_size=1, detection_targets=False, no_augmentation_sources=None): """A generator that returns images and corresponding target class ids, bounding box deltas, and masks. dataset: The Dataset object to pick data from config: The model config object shuffle: If True, shuffles the samples before every epoch augment: (deprecated. Use augmentation instead). If true, apply random image augmentation. Currently, only horizontal flipping is offered. augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. For example, passing imgaug.augmenters.Fliplr(0.5) flips images right/left 50% of the time. random_rois: If > 0 then generate proposals to be used to train the network classifier and mask heads. Useful if training the Mask RCNN part without the RPN. batch_size: How many images to return in each call detection_targets: If True, generate detection targets (class IDs, bbox deltas, and masks). Typically for debugging or visualizations because in trainig detection targets are generated by DetectionTargetLayer. no_augmentation_sources: Optional. List of sources to exclude for augmentation. A source is string that identifies a dataset and is defined in the Dataset class. Returns a Python generator. Upon calling next() on it, the generator returns two lists, inputs and outputs. The contents of the lists differs depending on the received arguments: inputs list: - images: [batch, H, W, C] - image_meta: [batch, (meta data)] Image details. See compose_image_meta() - rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral) - rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. - gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs - gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] - gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width are those of the image unless use_mini_mask is True, in which case they are defined in MINI_MASK_SHAPE. outputs list: Usually empty in regular training. But if detection_targets is True then the outputs list contains target class_ids, bbox deltas, and masks. """ b = 0 # batch item index image_index = -1 image_ids = np.copy(dataset.image_ids) error_count = 0 no_augmentation_sources = no_augmentation_sources or [] # Anchors # [anchor_count, (y1, x1, y2, x2)] backbone_shapes = compute_backbone_shapes(config, config.IMAGE_SHAPE) anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, config.RPN_ANCHOR_RATIOS, backbone_shapes, config.BACKBONE_STRIDES, config.RPN_ANCHOR_STRIDE) # Keras requires a generator to run indefinitely. while True: try: # Increment index to pick next image. Shuffle if at the start of an epoch. image_index = (image_index + 1) % len(image_ids) if shuffle and image_index == 0: np.random.shuffle(image_ids) # Get GT bounding boxes and masks for image. image_id = image_ids[image_index] # If the image source is not to be augmented pass None as augmentation if dataset.image_info[image_id]['source'] in no_augmentation_sources: image, image_meta, gt_class_ids, gt_boxes, gt_masks = \ load_image_gt(dataset, config, image_id, augment=augment, augmentation=None, use_mini_mask=config.USE_MINI_MASK) else: image, image_meta, gt_class_ids, gt_boxes, gt_masks = \ load_image_gt(dataset, config, image_id, augment=augment, augmentation=augmentation, use_mini_mask=config.USE_MINI_MASK) # Skip images that have no instances. This can happen in cases # where we train on a subset of classes and the image doesn't # have any of the classes we care about. if not np.any(gt_class_ids > 0): continue # RPN Targets rpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors, gt_class_ids, gt_boxes, config) # Mask R-CNN Targets if random_rois: rpn_rois = generate_random_rois( image.shape, random_rois, gt_class_ids, gt_boxes) if detection_targets: rois, mrcnn_class_ids, mrcnn_bbox, mrcnn_mask =\ build_detection_targets( rpn_rois, gt_class_ids, gt_boxes, gt_masks, config) # Init batch arrays if b == 0: batch_image_meta = np.zeros( (batch_size,) + image_meta.shape, dtype=image_meta.dtype) batch_rpn_match = np.zeros( [batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype) batch_rpn_bbox = np.zeros( [batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype) batch_images = np.zeros( (batch_size,) + image.shape, dtype=np.float32) batch_gt_class_ids = np.zeros( (batch_size, config.MAX_GT_INSTANCES), dtype=np.int32) batch_gt_boxes = np.zeros( (batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32) batch_gt_masks = np.zeros( (batch_size, gt_masks.shape[0], gt_masks.shape[1], config.MAX_GT_INSTANCES), dtype=gt_masks.dtype) if random_rois: batch_rpn_rois = np.zeros( (batch_size, rpn_rois.shape[0], 4), dtype=rpn_rois.dtype) if detection_targets: batch_rois = np.zeros( (batch_size,) + rois.shape, dtype=rois.dtype) batch_mrcnn_class_ids = np.zeros( (batch_size,) + mrcnn_class_ids.shape, dtype=mrcnn_class_ids.dtype) batch_mrcnn_bbox = np.zeros( (batch_size,) + mrcnn_bbox.shape, dtype=mrcnn_bbox.dtype) batch_mrcnn_mask = np.zeros( (batch_size,) + mrcnn_mask.shape, dtype=mrcnn_mask.dtype) # If more instances than fits in the array, sub-sample from them. if gt_boxes.shape[0] > config.MAX_GT_INSTANCES: ids = np.random.choice( np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False) gt_class_ids = gt_class_ids[ids] gt_boxes = gt_boxes[ids] gt_masks = gt_masks[:, :, ids] # Add to batch batch_image_meta[b] = image_meta batch_rpn_match[b] = rpn_match[:, np.newaxis] batch_rpn_bbox[b] = rpn_bbox batch_images[b] = mold_image(image.astype(np.float32), config) batch_gt_class_ids[b, :gt_class_ids.shape[0]] = gt_class_ids batch_gt_boxes[b, :gt_boxes.shape[0]] = gt_boxes batch_gt_masks[b, :, :, :gt_masks.shape[-1]] = gt_masks if random_rois: batch_rpn_rois[b] = rpn_rois if detection_targets: batch_rois[b] = rois batch_mrcnn_class_ids[b] = mrcnn_class_ids batch_mrcnn_bbox[b] = mrcnn_bbox batch_mrcnn_mask[b] = mrcnn_mask b += 1 # Batch full? if b >= batch_size: inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox, batch_gt_class_ids, batch_gt_boxes, batch_gt_masks] outputs = [] if random_rois: inputs.extend([batch_rpn_rois]) if detection_targets: inputs.extend([batch_rois]) # Keras requires that output and targets have the same number of dimensions batch_mrcnn_class_ids = np.expand_dims( batch_mrcnn_class_ids, -1) outputs.extend( [batch_mrcnn_class_ids, batch_mrcnn_bbox, batch_mrcnn_mask]) yield inputs, outputs # start a new batch b = 0 except (GeneratorExit, KeyboardInterrupt): raise except: # Log it and skip the image logging.exception("Error processing image {}".format( dataset.image_info[image_id])) error_count += 1 if error_count > 5: raise ############################################################ # MaskRCNN Class ############################################################ class MaskRCNN(): """Encapsulates the Mask RCNN model functionality. The actual Keras model is in the keras_model property. """ def __init__(self, mode, config, model_dir): """ mode: Either "training" or "inference" config: A Sub-class of the Config class model_dir: Directory to save training logs and trained weights """ assert mode in ['training', 'inference'] self.mode = mode self.config = config self.model_dir = model_dir self.set_log_dir() self.keras_model = self.build(mode=mode, config=config) def build(self, mode, config): """Build Mask R-CNN architecture. input_shape: The shape of the input image. mode: Either "training" or "inference". The inputs and outputs of the model differ accordingly. """ assert mode in ['training', 'inference'] # Image size must be dividable by 2 multiple times h, w = config.IMAGE_SHAPE[:2] if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6): raise Exception("Image size must be dividable by 2 at least 6 times " "to avoid fractions when downscaling and upscaling." "For example, use 256, 320, 384, 448, 512, ... etc. ") # Inputs input_image = KL.Input( shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image") input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE], name="input_image_meta") if mode == "training": # RPN GT input_rpn_match = KL.Input( shape=[None, 1], name="input_rpn_match", dtype=tf.int32) input_rpn_bbox = KL.Input( shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32) # Detection GT (class IDs, bounding boxes, and masks) # 1. GT Class IDs (zero padded) input_gt_class_ids = KL.Input( shape=[None], name="input_gt_class_ids", dtype=tf.int32) # 2. GT Boxes in pixels (zero padded) # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates input_gt_boxes = KL.Input( shape=[None, 4], name="input_gt_boxes", dtype=tf.float32) # Normalize coordinates gt_boxes = KL.Lambda(lambda x: norm_boxes_graph( x, K.shape(input_image)[1:3]))(input_gt_boxes) # 3. GT Masks (zero padded) # [batch, height, width, MAX_GT_INSTANCES] if config.USE_MINI_MASK: input_gt_masks = KL.Input( shape=[config.MINI_MASK_SHAPE[0], config.MINI_MASK_SHAPE[1], None], name="input_gt_masks", dtype=bool) else: input_gt_masks = KL.Input( shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None], name="input_gt_masks", dtype=bool) elif mode == "inference": # Anchors in normalized coordinates input_anchors = KL.Input(shape=[None, 4], name="input_anchors") # Build the shared convolutional layers. # Bottom-up Layers # Returns a list of the last layers of each stage, 5 in total. # Don't create the thead (stage 5), so we pick the 4th item in the list. if callable(config.BACKBONE): _, C2, C3, C4, C5 = config.BACKBONE(input_image, stage5=True, train_bn=config.TRAIN_BN) else: _, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE, stage5=True, train_bn=config.TRAIN_BN) # Top-down Layers # TODO: add assert to verify feature map sizes match what's in config P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5) P4 = KL.Add(name="fpn_p4add")([ KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5), KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)]) P3 = KL.Add(name="fpn_p3addmodel")([ KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4), KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)]) P2 = KL.Add(name="fpn_p2add")([ KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3), KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)]) # Attach 3x3 conv to all P layers to get the final feature maps. P2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2) P3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3) P4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4) P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5) # P6 is used for the 5th anchor scale in RPN. Generated by # subsampling from P5 with stride of 2. P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5) # Note that P6 is used in RPN, but not in the classifier heads. rpn_feature_maps = [P2, P3, P4, P5, P6] mrcnn_feature_maps = [P2, P3, P4, P5] # Anchors if mode == "training": anchors = self.get_anchors(config.IMAGE_SHAPE) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape) # A hack to get around Keras's bad support for constants anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image) else: anchors = input_anchors # RPN Model rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE, len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE) # Loop through pyramid layers layer_outputs = [] # list of lists for p in rpn_feature_maps: layer_outputs.append(rpn([p])) # Concatenate layer outputs # Convert from list of lists of level outputs to list of lists # of outputs across levels. # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]] output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"] outputs = list(zip(*layer_outputs)) outputs = [KL.Concatenate(axis=1, name=n)(list(o)) for o, n in zip(outputs, output_names)] rpn_class_logits, rpn_class, rpn_bbox = outputs # Generate proposals # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates # and zero padded. proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\ else config.POST_NMS_ROIS_INFERENCE rpn_rois = ProposalLayer( proposal_count=proposal_count, nms_threshold=config.RPN_NMS_THRESHOLD, name="ROI", config=config)([rpn_class, rpn_bbox, anchors]) if mode == "training": # Class ID mask to mark class IDs supported by the dataset the image # came from. active_class_ids = KL.Lambda( lambda x: parse_image_meta_graph(x)["active_class_ids"] )(input_image_meta) if not config.USE_RPN_ROIS: # Ignore predicted ROIs and use ROIs provided as an input. input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4], name="input_roi", dtype=np.int32) # Normalize coordinates target_rois = KL.Lambda(lambda x: norm_boxes_graph( x, K.shape(input_image)[1:3]))(input_rois) else: target_rois = rpn_rois # Generate detection targets # Subsamples proposals and generates target outputs for training # Note that proposal class IDs, gt_boxes, and gt_masks are zero # padded. Equally, returned rois and targets are zero padded. rois, target_class_ids, target_bbox, target_mask =\ DetectionTargetLayer(config, name="proposal_targets")([ target_rois, input_gt_class_ids, gt_boxes, input_gt_masks]) # Network Heads # TODO: verify that this handles zero padded ROIs mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta, config.POOL_SIZE, config.NUM_CLASSES, train_bn=config.TRAIN_BN, fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE) mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps, input_image_meta, config.MASK_POOL_SIZE, config.NUM_CLASSES, train_bn=config.TRAIN_BN) # TODO: clean up (use tf.identify if necessary) output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois) # Losses rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")( [input_rpn_match, rpn_class_logits]) rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")( [input_rpn_bbox, input_rpn_match, rpn_bbox]) class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")( [target_class_ids, mrcnn_class_logits, active_class_ids]) bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")( [target_bbox, target_class_ids, mrcnn_bbox]) mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")( [target_mask, target_class_ids, mrcnn_mask]) # Model inputs = [input_image, input_image_meta, input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks] if not config.USE_RPN_ROIS: inputs.append(input_rois) outputs = [rpn_class_logits, rpn_class, rpn_bbox, mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask, rpn_rois, output_rois, rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss] model = KM.Model(inputs, outputs, name='mask_rcnn') else: # Network Heads # Proposal classifier and BBox regressor heads mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta, config.POOL_SIZE, config.NUM_CLASSES, train_bn=config.TRAIN_BN, fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE) # Detections # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in # normalized coordinates detections = DetectionLayer(config, name="mrcnn_detection")( [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta]) # Create masks for detections detection_boxes = KL.Lambda(lambda x: x[..., :4])(detections) mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps, input_image_meta, config.MASK_POOL_SIZE, config.NUM_CLASSES, train_bn=config.TRAIN_BN) model = KM.Model([input_image, input_image_meta, input_anchors], [detections, mrcnn_class, mrcnn_bbox, mrcnn_mask, rpn_rois, rpn_class, rpn_bbox], name='mask_rcnn') # Add multi-GPU support. if config.GPU_COUNT > 1: from mrcnn.parallel_model import ParallelModel model = ParallelModel(model, config.GPU_COUNT) return model def find_last(self): """Finds the last checkpoint file of the last trained model in the model directory. Returns: The path of the last checkpoint file """ # Get directory names. Each directory corresponds to a model dir_names = next(os.walk(self.model_dir))[1] key = self.config.NAME.lower() dir_names = filter(lambda f: f.startswith(key), dir_names) dir_names = sorted(dir_names) if not dir_names: import errno raise FileNotFoundError( errno.ENOENT, "Could not find model directory under {}".format(self.model_dir)) # Pick last directory dir_name = os.path.join(self.model_dir, dir_names[-1]) # Find the last checkpoint checkpoints = next(os.walk(dir_name))[2] checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints) checkpoints = sorted(checkpoints) if not checkpoints: import errno raise FileNotFoundError( errno.ENOENT, "Could not find weight files in {}".format(dir_name)) checkpoint = os.path.join(dir_name, checkpoints[-1]) return checkpoint def load_weights(self, filepath, by_name=False, exclude=None): """Modified version of the corresponding Keras function with the addition of multi-GPU support and the ability to exclude some layers from loading. exclude: list of layer names to exclude """ import h5py # Conditional import to support versions of Keras before 2.2 # TODO: remove in about 6 months (end of 2018) try: from keras.engine import saving except ImportError: # Keras before 2.2 used the 'topology' namespace. from keras.engine import topology as saving if exclude: by_name = True if h5py is None: raise ImportError('`load_weights` requires h5py.') f = h5py.File(filepath, mode='r') if 'layer_names' not in f.attrs and 'model_weights' in f: f = f['model_weights'] # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. keras_model = self.keras_model layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ else keras_model.layers # Exclude some layers if exclude: layers = filter(lambda l: l.name not in exclude, layers) if by_name: saving.load_weights_from_hdf5_group_by_name(f, layers) else: saving.load_weights_from_hdf5_group(f, layers) if hasattr(f, 'close'): f.close() # Update the log directory self.set_log_dir(filepath) def get_imagenet_weights(self): """Downloads ImageNet trained weights from Keras. Returns path to weights file. """ from keras.utils.data_utils import get_file TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\ 'releases/download/v0.2/'\ 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models', md5_hash='a268eb855778b3df3c7506639542a6af') return weights_path def compile(self, learning_rate, momentum): """Gets the model ready for training. Adds losses, regularization, and metrics. Then calls the Keras compile() function. """ # Optimizer object optimizer = keras.optimizers.SGD( lr=learning_rate, momentum=momentum, clipnorm=self.config.GRADIENT_CLIP_NORM) # Add Losses # First, clear previously set losses to avoid duplication self.keras_model._losses = [] self.keras_model._per_input_losses = {} loss_names = [ "rpn_class_loss", "rpn_bbox_loss", "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"] for name in loss_names: layer = self.keras_model.get_layer(name) if layer.output in self.keras_model.losses: continue loss = ( tf.reduce_mean(layer.output, keepdims=True) * self.config.LOSS_WEIGHTS.get(name, 1.)) self.keras_model.add_loss(loss) # Add L2 Regularization # Skip gamma and beta weights of batch normalization layers. reg_losses = [ keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32) for w in self.keras_model.trainable_weights if 'gamma' not in w.name and 'beta' not in w.name] self.keras_model.add_loss(tf.add_n(reg_losses)) # Compile self.keras_model.compile( optimizer=optimizer, loss=[None] * len(self.keras_model.outputs)) # Add metrics for losses for name in loss_names: if name in self.keras_model.metrics_names: continue layer = self.keras_model.get_layer(name) self.keras_model.metrics_names.append(name) loss = ( tf.reduce_mean(layer.output, keepdims=True) * self.config.LOSS_WEIGHTS.get(name, 1.)) self.keras_model.metrics_tensors.append(loss) def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1): """Sets model layers as trainable if their names match the given regular expression. """ # Print message on the first call (but not on recursive calls) if verbose > 0 and keras_model is None: log("Selecting layers to train") keras_model = keras_model or self.keras_model # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ else keras_model.layers for layer in layers: # Is the layer a model? if layer.__class__.__name__ == 'Model': print("In model: ", layer.name) self.set_trainable( layer_regex, keras_model=layer, indent=indent + 4) continue if not layer.weights: continue # Is it trainable? trainable = bool(re.fullmatch(layer_regex, layer.name)) # Update layer. If layer is a container, update inner layer. if layer.__class__.__name__ == 'TimeDistributed': layer.layer.trainable = trainable else: layer.trainable = trainable # Print trainable layer names if trainable and verbose > 0: log("{}{:20} ({})".format(" " * indent, layer.name, layer.__class__.__name__)) def set_log_dir(self, model_path=None): """Sets the model log directory and epoch counter. model_path: If None, or a format different from what this code uses then set a new log directory and start epochs from 0. Otherwise, extract the log directory and the epoch counter from the file name. """ # Set date and epoch counter as if starting a new model self.epoch = 0 now = datetime.datetime.now() # If we have a model path with date and epochs use them if model_path: # Continue from we left of. Get epoch and date from the file name # A sample model path might look like: # \path\to\logs\coco20171029T2315\mask_rcnn_coco_0001.h5 (Windows) # /path/to/logs/coco20171029T2315/mask_rcnn_coco_0001.h5 (Linux) regex = r".*[/\\][\w-]+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})[/\\]mask\_rcnn\_[\w-]+(\d{4})\.h5" m = re.match(regex, model_path) if m: now = datetime.datetime(int(m.group(1)), int(m.group(2)), int(m.group(3)), int(m.group(4)), int(m.group(5))) # Epoch number in file is 1-based, and in Keras code it's 0-based. # So, adjust for that then increment by one to start from the next epoch self.epoch = int(m.group(6)) - 1 + 1 print('Re-starting from epoch %d' % self.epoch) # Directory for training logs self.log_dir = os.path.join(self.model_dir, "{}{:%Y%m%dT%H%M}".format( self.config.NAME.lower(), now)) # Path to save after each epoch. Include placeholders that get filled by Keras. self.checkpoint_path = os.path.join(self.log_dir, "mask_rcnn_{}_*epoch*.h5".format( self.config.NAME.lower())) self.checkpoint_path = self.checkpoint_path.replace( "*epoch*", "{epoch:04d}") def train(self, train_dataset, val_dataset, learning_rate, epochs, layers, augmentation=None, custom_callbacks=None, no_augmentation_sources=None): """Train the model. train_dataset, val_dataset: Training and validation Dataset objects. learning_rate: The learning rate to train with epochs: Number of training epochs. Note that previous training epochs are considered to be done alreay, so this actually determines the epochs to train in total rather than in this particaular call. layers: Allows selecting wich layers to train. It can be: - A regular expression to match layer names to train - One of these predefined values: heads: The RPN, classifier and mask heads of the network all: All the layers 3+: Train Resnet stage 3 and up 4+: Train Resnet stage 4 and up 5+: Train Resnet stage 5 and up augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. For example, passing imgaug.augmenters.Fliplr(0.5) flips images right/left 50% of the time. You can pass complex augmentations as well. This augmentation applies 50% of the time, and when it does it flips images right/left half the time and adds a Gaussian blur with a random sigma in range 0 to 5. augmentation = imgaug.augmenters.Sometimes(0.5, [ imgaug.augmenters.Fliplr(0.5), imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0)) ]) custom_callbacks: Optional. Add custom callbacks to be called with the keras fit_generator method. Must be list of type keras.callbacks. no_augmentation_sources: Optional. List of sources to exclude for augmentation. A source is string that identifies a dataset and is defined in the Dataset class. """ assert self.mode == "training", "Create model in training mode." # Pre-defined layer regular expressions layer_regex = { # all layers but the backbone "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", # From a specific Resnet stage and up "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", # All layers "all": ".*", } if layers in layer_regex.keys(): layers = layer_regex[layers] # Data generators train_generator = data_generator(train_dataset, self.config, shuffle=True, augmentation=augmentation, batch_size=self.config.BATCH_SIZE, no_augmentation_sources=no_augmentation_sources) val_generator = data_generator(val_dataset, self.config, shuffle=True, batch_size=self.config.BATCH_SIZE) # Create log_dir if it does not exist if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) # Callbacks callbacks = [ keras.callbacks.TensorBoard(log_dir=self.log_dir, histogram_freq=0, write_graph=True, write_images=False), keras.callbacks.ModelCheckpoint(self.checkpoint_path, verbose=0, save_weights_only=True), ] # Add custom callbacks to the list if custom_callbacks: callbacks += custom_callbacks # Train log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate)) log("Checkpoint Path: {}".format(self.checkpoint_path)) self.set_trainable(layers) self.compile(learning_rate, self.config.LEARNING_MOMENTUM) # Work-around for Windows: Keras fails on Windows when using # multiprocessing workers. See discussion here: # https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009 if os.name is 'nt': workers = 0 else: workers = multiprocessing.cpu_count() self.keras_model.fit_generator( train_generator, initial_epoch=self.epoch, epochs=epochs, steps_per_epoch=self.config.STEPS_PER_EPOCH, callbacks=callbacks, validation_data=val_generator, validation_steps=self.config.VALIDATION_STEPS, max_queue_size=100, workers=workers, use_multiprocessing=True, ) self.epoch = max(self.epoch, epochs) def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matrices [height,width,depth]. Images can have different sizes. Returns 3 Numpy matrices: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image # TODO: move resizing to mold_image() molded_image, window, scale, padding, crop = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, min_scale=self.config.IMAGE_MIN_SCALE, max_dim=self.config.IMAGE_MAX_DIM, mode=self.config.IMAGE_RESIZE_MODE) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, molded_image.shape, window, scale, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows def unmold_detections(self, detections, mrcnn_mask, original_image_shape, image_shape, window): """Reformats the detections of one image from the format of the neural network output to a format suitable for use in the rest of the application. detections: [N, (y1, x1, y2, x2, class_id, score)] in normalized coordinates mrcnn_mask: [N, height, width, num_classes] original_image_shape: [H, W, C] Original image shape before resizing image_shape: [H, W, C] Shape of the image after resizing and padding window: [y1, x1, y2, x2] Pixel coordinates of box in the image where the real image is excluding the padding. Returns: boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels class_ids: [N] Integer class IDs for each bounding box scores: [N] Float probability scores of the class_id masks: [height, width, num_instances] Instance masks """ # How many detections do we have? # Detections array is padded with zeros. Find the first class_id == 0. zero_ix = np.where(detections[:, 4] == 0)[0] N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0] # Extract boxes, class_ids, scores, and class-specific masks boxes = detections[:N, :4] class_ids = detections[:N, 4].astype(np.int32) scores = detections[:N, 5] masks = mrcnn_mask[np.arange(N), :, :, class_ids] # Translate normalized coordinates in the resized image to pixel # coordinates in the original image before resizing window = utils.norm_boxes(window, image_shape[:2]) wy1, wx1, wy2, wx2 = window shift = np.array([wy1, wx1, wy1, wx1]) wh = wy2 - wy1 # window height ww = wx2 - wx1 # window width scale = np.array([wh, ww, wh, ww]) # Convert boxes to normalized coordinates on the window boxes = np.divide(boxes - shift, scale) # Convert boxes to pixel coordinates on the original image boxes = utils.denorm_boxes(boxes, original_image_shape[:2]) # Filter out detections with zero area. Happens in early training when # network weights are still random exclude_ix = np.where( (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0] if exclude_ix.shape[0] > 0: boxes = np.delete(boxes, exclude_ix, axis=0) class_ids = np.delete(class_ids, exclude_ix, axis=0) scores = np.delete(scores, exclude_ix, axis=0) masks = np.delete(masks, exclude_ix, axis=0) N = class_ids.shape[0] # Resize masks to original image size and set boundary threshold. full_masks = [] for i in range(N): # Convert neural network mask to full size mask full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape) full_masks.append(full_mask) full_masks = np.stack(full_masks, axis=-1)\ if full_masks else np.empty(original_image_shape[:2] + (0,)) return boxes, class_ids, scores, full_masks def detect(self, images, verbose=0): """Runs the detection pipeline. images: List of images, potentially of different sizes. Returns a list of dicts, one dict per image. The dict contains: rois: [N, (y1, x1, y2, x2)] detection bounding boxes class_ids: [N] int class IDs scores: [N] float probability scores for the class IDs masks: [H, W, N] instance binary masks """ assert self.mode == "inference", "Create model in inference mode." assert len( images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE" if verbose: log("Processing {} images".format(len(images))) for image in images: log("image", image) # Mold inputs to format expected by the neural network molded_images, image_metas, windows = self.mold_inputs(images) # Validate image sizes # All images in a batch MUST be of the same size image_shape = molded_images[0].shape for g in molded_images[1:]: assert g.shape == image_shape,\ "After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes." # Anchors anchors = self.get_anchors(image_shape) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) if verbose: log("molded_images", molded_images) log("image_metas", image_metas) log("anchors", anchors) # Run object detection detections, _, _, mrcnn_mask, _, _, _ =\ self.keras_model.predict([molded_images, image_metas, anchors], verbose=0) # Process detections results = [] for i, image in enumerate(images): final_rois, final_class_ids, final_scores, final_masks =\ self.unmold_detections(detections[i], mrcnn_mask[i], image.shape, molded_images[i].shape, windows[i]) results.append({ "rois": final_rois, "class_ids": final_class_ids, "scores": final_scores, "masks": final_masks, }) return results def detect_molded(self, molded_images, image_metas, verbose=0): """Runs the detection pipeline, but expect inputs that are molded already. Used mostly for debugging and inspecting the model. molded_images: List of images loaded using load_image_gt() image_metas: image meta data, also returned by load_image_gt() Returns a list of dicts, one dict per image. The dict contains: rois: [N, (y1, x1, y2, x2)] detection bounding boxes class_ids: [N] int class IDs scores: [N] float probability scores for the class IDs masks: [H, W, N] instance binary masks """ assert self.mode == "inference", "Create model in inference mode." assert len(molded_images) == self.config.BATCH_SIZE,\ "Number of images must be equal to BATCH_SIZE" if verbose: log("Processing {} images".format(len(molded_images))) for image in molded_images: log("image", image) # Validate image sizes # All images in a batch MUST be of the same size image_shape = molded_images[0].shape for g in molded_images[1:]: assert g.shape == image_shape, "Images must have the same size" # Anchors anchors = self.get_anchors(image_shape) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) if verbose: log("molded_images", molded_images) log("image_metas", image_metas) log("anchors", anchors) # Run object detection detections, _, _, mrcnn_mask, _, _, _ =\ self.keras_model.predict([molded_images, image_metas, anchors], verbose=0) # Process detections results = [] for i, image in enumerate(molded_images): window = [0, 0, image.shape[0], image.shape[1]] final_rois, final_class_ids, final_scores, final_masks =\ self.unmold_detections(detections[i], mrcnn_mask[i], image.shape, molded_images[i].shape, window) results.append({ "rois": final_rois, "class_ids": final_class_ids, "scores": final_scores, "masks": final_masks, }) return results def get_anchors(self, image_shape): """Returns anchor pyramid for the given image size.""" backbone_shapes = compute_backbone_shapes(self.config, image_shape) # Cache anchors and reuse if image shape is the same if not hasattr(self, "_anchor_cache"): self._anchor_cache = {} if not tuple(image_shape) in self._anchor_cache: # Generate Anchors a = utils.generate_pyramid_anchors( self.config.RPN_ANCHOR_SCALES, self.config.RPN_ANCHOR_RATIOS, backbone_shapes, self.config.BACKBONE_STRIDES, self.config.RPN_ANCHOR_STRIDE) # Keep a copy of the latest anchors in pixel coordinates because # it's used in inspect_model notebooks. # TODO: Remove this after the notebook are refactored to not use it self.anchors = a # Normalize coordinates self._anchor_cache[tuple(image_shape)] = utils.norm_boxes(a, image_shape[:2]) return self._anchor_cache[tuple(image_shape)] def ancestor(self, tensor, name, checked=None): """Finds the ancestor of a TF tensor in the computation graph. tensor: TensorFlow symbolic tensor. name: Name of ancestor tensor to find checked: For internal use. A list of tensors that were already searched to avoid loops in traversing the graph. """ checked = checked if checked is not None else [] # Put a limit on how deep we go to avoid very long loops if len(checked) > 500: return None # Convert name to a regex and allow matching a number prefix # because Keras adds them automatically if isinstance(name, str): name = re.compile(name.replace("/", r"(\_\d+)*/")) parents = tensor.op.inputs for p in parents: if p in checked: continue if bool(re.fullmatch(name, p.name)): return p checked.append(p) a = self.ancestor(p, name, checked) if a is not None: return a return None def find_trainable_layer(self, layer): """If a layer is encapsulated by another layer, this function digs through the encapsulation and returns the layer that holds the weights. """ if layer.__class__.__name__ == 'TimeDistributed': return self.find_trainable_layer(layer.layer) return layer def get_trainable_layers(self): """Returns a list of layers that have weights.""" layers = [] # Loop through all layers for l in self.keras_model.layers: # If layer is a wrapper, find inner trainable layer l = self.find_trainable_layer(l) # Include layer if it has weights if l.get_weights(): layers.append(l) return layers def run_graph(self, images, outputs, image_metas=None): """Runs a sub-set of the computation graph that computes the given outputs. image_metas: If provided, the images are assumed to be already molded (i.e. resized, padded, and normalized) outputs: List of tuples (name, tensor) to compute. The tensors are symbolic TensorFlow tensors and the names are for easy tracking. Returns an ordered dict of results. Keys are the names received in the input and values are Numpy arrays. """ model = self.keras_model # Organize desired outputs into an ordered dict outputs = OrderedDict(outputs) for o in outputs.values(): assert o is not None # Build a Keras function to run parts of the computation graph inputs = model.inputs if model.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs += [K.learning_phase()] kf = K.function(model.inputs, list(outputs.values())) # Prepare inputs if image_metas is None: molded_images, image_metas, _ = self.mold_inputs(images) else: molded_images = images image_shape = molded_images[0].shape # Anchors anchors = self.get_anchors(image_shape) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) model_in = [molded_images, image_metas, anchors] # Run inference if model.uses_learning_phase and not isinstance(K.learning_phase(), int): model_in.append(0.) outputs_np = kf(model_in) # Pack the generated Numpy arrays into a a dict and log the results. outputs_np = OrderedDict([(k, v) for k, v in zip(outputs.keys(), outputs_np)]) for k, v in outputs_np.items(): log(k, v) return outputs_np ############################################################ # Data Formatting ############################################################ def compose_image_meta(image_id, original_image_shape, image_shape, window, scale, active_class_ids): """Takes attributes of an image and puts them in one 1D array. image_id: An int ID of the image. Useful for debugging. original_image_shape: [H, W, C] before resizing or padding. image_shape: [H, W, C] after resizing and padding window: (y1, x1, y2, x2) in pixels. The area of the image where the real image is (excluding the padding) scale: The scaling factor applied to the original image (float32) active_class_ids: List of class_ids available in the dataset from which the image came. Useful if training on images from multiple datasets where not all classes are present in all datasets. """ meta = np.array( [image_id] + # size=1 list(original_image_shape) + # size=3 list(image_shape) + # size=3 list(window) + # size=4 (y1, x1, y2, x2) in image cooredinates [scale] + # size=1 list(active_class_ids) # size=num_classes ) return meta def parse_image_meta(meta): """Parses an array that contains image attributes to its components. See compose_image_meta() for more details. meta: [batch, meta length] where meta length depends on NUM_CLASSES Returns a dict of the parsed values. """ image_id = meta[:, 0] original_image_shape = meta[:, 1:4] image_shape = meta[:, 4:7] window = meta[:, 7:11] # (y1, x1, y2, x2) window of image in in pixels scale = meta[:, 11] active_class_ids = meta[:, 12:] return { "image_id": image_id.astype(np.int32), "original_image_shape": original_image_shape.astype(np.int32), "image_shape": image_shape.astype(np.int32), "window": window.astype(np.int32), "scale": scale.astype(np.float32), "active_class_ids": active_class_ids.astype(np.int32), } def parse_image_meta_graph(meta): """Parses a tensor that contains image attributes to its components. See compose_image_meta() for more details. meta: [batch, meta length] where meta length depends on NUM_CLASSES Returns a dict of the parsed tensors. """ image_id = meta[:, 0] original_image_shape = meta[:, 1:4] image_shape = meta[:, 4:7] window = meta[:, 7:11] # (y1, x1, y2, x2) window of image in in pixels scale = meta[:, 11] active_class_ids = meta[:, 12:] return { "image_id": image_id, "original_image_shape": original_image_shape, "image_shape": image_shape, "window": window, "scale": scale, "active_class_ids": active_class_ids, } def mold_image(images, config): """Expects an RGB image (or array of images) and subtracts the mean pixel and converts it to float. Expects image colors in RGB order. """ return images.astype(np.float32) - config.MEAN_PIXEL def unmold_image(normalized_images, config): """Takes a image normalized with mold() and returns the original.""" return (normalized_images + config.MEAN_PIXEL).astype(np.uint8) ############################################################ # Miscellenous Graph Functions ############################################################ def trim_zeros_graph(boxes, name='trim_zeros'): """Often boxes are represented with matrices of shape [N, 4] and are padded with zeros. This removes zero boxes. boxes: [N, 4] matrix of boxes. non_zeros: [N] a 1D boolean mask identifying the rows to keep """ non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool) boxes = tf.boolean_mask(boxes, non_zeros, name=name) return boxes, non_zeros def batch_pack_graph(x, counts, num_rows): """Picks different number of values from each row in x depending on the values in counts. """ outputs = [] for i in range(num_rows): outputs.append(x[i, :counts[i]]) return tf.concat(outputs, axis=0) def norm_boxes_graph(boxes, shape): """Converts boxes from pixel coordinates to normalized coordinates. boxes: [..., (y1, x1, y2, x2)] in pixel coordinates shape: [..., (height, width)] in pixels Note: In pixel coordinates (y2, x2) is outside the box. But in normalized coordinates it's inside the box. Returns: [..., (y1, x1, y2, x2)] in normalized coordinates """ h, w = tf.split(tf.cast(shape, tf.float32), 2) scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0) shift = tf.constant([0., 0., 1., 1.]) return tf.divide(boxes - shift, scale) def denorm_boxes_graph(boxes, shape): """Converts boxes from normalized coordinates to pixel coordinates. boxes: [..., (y1, x1, y2, x2)] in normalized coordinates shape: [..., (height, width)] in pixels Note: In pixel coordinates (y2, x2) is outside the box. But in normalized coordinates it's inside the box. Returns: [..., (y1, x1, y2, x2)] in pixel coordinates """ h, w = tf.split(tf.cast(shape, tf.float32), 2) scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0) shift = tf.constant([0., 0., 1., 1.]) return tf.cast(tf.round(tf.multiply(boxes, scale) + shift), tf.int32)
44.26848
115
0.612089
2c10f60b509ebcc65d4bdf4f50fc06e734bf6d15
70
py
Python
dummyfile.py
LonnonjamesD/EconomyBot
17db1398f19b9d9dba0d47b498ddf6b63de49c64
[ "MIT" ]
1
2020-01-03T21:12:58.000Z
2020-01-03T21:12:58.000Z
dummyfile.py
LonnonjamesD/EconomyBot
17db1398f19b9d9dba0d47b498ddf6b63de49c64
[ "MIT" ]
null
null
null
dummyfile.py
LonnonjamesD/EconomyBot
17db1398f19b9d9dba0d47b498ddf6b63de49c64
[ "MIT" ]
null
null
null
5993818^83748378783748372873874837482302490340298393283748357940238038
70
70
0.985714
7666e95ccdc8587f4c1bb57443acf22a87065147
45,256
py
Python
Lib/test/test_dict.py
philippeitis/RustPython
4e057271ecae2c923eb671b0456f2c06a8449b60
[ "MIT" ]
null
null
null
Lib/test/test_dict.py
philippeitis/RustPython
4e057271ecae2c923eb671b0456f2c06a8449b60
[ "MIT" ]
null
null
null
Lib/test/test_dict.py
philippeitis/RustPython
4e057271ecae2c923eb671b0456f2c06a8449b60
[ "MIT" ]
null
null
null
import collections import collections.abc # import gc // XXX RustPython import pickle import random import string import sys import unittest import weakref from test import support class DictTest(unittest.TestCase): @unittest.skip("TODO: RUSTPYTHON") def test_invalid_keyword_arguments(self): class Custom(dict): pass for invalid in {1 : 2}, Custom({1 : 2}): with self.assertRaises(TypeError): dict(**invalid) with self.assertRaises(TypeError): {}.update(**invalid) def test_constructor(self): # calling built-in types without argument must return empty self.assertEqual(dict(), {}) self.assertIsNot(dict(), {}) @unittest.skip("TODO: RUSTPYTHON") def test_literal_constructor(self): # check literal constructor for different sized dicts # (to exercise the BUILD_MAP oparg). for n in (0, 1, 6, 256, 400): items = [(''.join(random.sample(string.ascii_letters, 8)), i) for i in range(n)] random.shuffle(items) formatted_items = ('{!r}: {:d}'.format(k, v) for k, v in items) dictliteral = '{' + ', '.join(formatted_items) + '}' self.assertEqual(eval(dictliteral), dict(items)) def test_bool(self): self.assertIs(not {}, True) self.assertTrue({1: 2}) self.assertIs(bool({}), False) self.assertIs(bool({1: 2}), True) def test_keys(self): d = {} self.assertEqual(set(d.keys()), set()) d = {'a': 1, 'b': 2} k = d.keys() self.assertEqual(set(k), {'a', 'b'}) self.assertIn('a', k) self.assertIn('b', k) self.assertIn('a', d) self.assertIn('b', d) self.assertRaises(TypeError, d.keys, None) self.assertEqual(repr(dict(a=1).keys()), "dict_keys(['a'])") def test_values(self): d = {} self.assertEqual(set(d.values()), set()) d = {1:2} self.assertEqual(set(d.values()), {2}) self.assertRaises(TypeError, d.values, None) self.assertEqual(repr(dict(a=1).values()), "dict_values([1])") def test_items(self): d = {} self.assertEqual(set(d.items()), set()) d = {1:2} self.assertEqual(set(d.items()), {(1, 2)}) self.assertRaises(TypeError, d.items, None) self.assertEqual(repr(dict(a=1).items()), "dict_items([('a', 1)])") def test_contains(self): d = {} self.assertNotIn('a', d) self.assertFalse('a' in d) self.assertTrue('a' not in d) d = {'a': 1, 'b': 2} self.assertIn('a', d) self.assertIn('b', d) self.assertNotIn('c', d) self.assertRaises(TypeError, d.__contains__) def test_len(self): d = {} self.assertEqual(len(d), 0) d = {'a': 1, 'b': 2} self.assertEqual(len(d), 2) def test_getitem(self): d = {'a': 1, 'b': 2} self.assertEqual(d['a'], 1) self.assertEqual(d['b'], 2) d['c'] = 3 d['a'] = 4 self.assertEqual(d['c'], 3) self.assertEqual(d['a'], 4) del d['b'] self.assertEqual(d, {'a': 4, 'c': 3}) self.assertRaises(TypeError, d.__getitem__) class BadEq(object): def __eq__(self, other): raise Exc() def __hash__(self): return 24 d = {} d[BadEq()] = 42 self.assertRaises(KeyError, d.__getitem__, 23) class Exc(Exception): pass class BadHash(object): fail = False def __hash__(self): if self.fail: raise Exc() else: return 42 x = BadHash() d[x] = 42 x.fail = True self.assertRaises(Exc, d.__getitem__, x) def test_clear(self): d = {1:1, 2:2, 3:3} d.clear() self.assertEqual(d, {}) self.assertRaises(TypeError, d.clear, None) @unittest.skip("TODO: RUSTPYTHON") def test_update(self): d = {} d.update({1:100}) d.update({2:20}) d.update({1:1, 2:2, 3:3}) self.assertEqual(d, {1:1, 2:2, 3:3}) d.update() self.assertEqual(d, {1:1, 2:2, 3:3}) self.assertRaises((TypeError, AttributeError), d.update, None) class SimpleUserDict: def __init__(self): self.d = {1:1, 2:2, 3:3} def keys(self): return self.d.keys() def __getitem__(self, i): return self.d[i] d.clear() d.update(SimpleUserDict()) self.assertEqual(d, {1:1, 2:2, 3:3}) class Exc(Exception): pass d.clear() class FailingUserDict: def keys(self): raise Exc self.assertRaises(Exc, d.update, FailingUserDict()) class FailingUserDict: def keys(self): class BogonIter: def __init__(self): self.i = 1 def __iter__(self): return self def __next__(self): if self.i: self.i = 0 return 'a' raise Exc return BogonIter() def __getitem__(self, key): return key self.assertRaises(Exc, d.update, FailingUserDict()) class FailingUserDict: def keys(self): class BogonIter: def __init__(self): self.i = ord('a') def __iter__(self): return self def __next__(self): if self.i <= ord('z'): rtn = chr(self.i) self.i += 1 return rtn raise StopIteration return BogonIter() def __getitem__(self, key): raise Exc self.assertRaises(Exc, d.update, FailingUserDict()) class badseq(object): def __iter__(self): return self def __next__(self): raise Exc() self.assertRaises(Exc, {}.update, badseq()) self.assertRaises(ValueError, {}.update, [(1, 2, 3)]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_fromkeys(self): self.assertEqual(dict.fromkeys('abc'), {'a':None, 'b':None, 'c':None}) d = {} self.assertIsNot(d.fromkeys('abc'), d) self.assertEqual(d.fromkeys('abc'), {'a':None, 'b':None, 'c':None}) self.assertEqual(d.fromkeys((4,5),0), {4:0, 5:0}) self.assertEqual(d.fromkeys([]), {}) def g(): yield 1 self.assertEqual(d.fromkeys(g()), {1:None}) self.assertRaises(TypeError, {}.fromkeys, 3) class dictlike(dict): pass self.assertEqual(dictlike.fromkeys('a'), {'a':None}) self.assertEqual(dictlike().fromkeys('a'), {'a':None}) self.assertIsInstance(dictlike.fromkeys('a'), dictlike) self.assertIsInstance(dictlike().fromkeys('a'), dictlike) class mydict(dict): def __new__(cls): return collections.UserDict() ud = mydict.fromkeys('ab') self.assertEqual(ud, {'a':None, 'b':None}) self.assertIsInstance(ud, collections.UserDict) self.assertRaises(TypeError, dict.fromkeys) class Exc(Exception): pass class baddict1(dict): def __init__(self): raise Exc() self.assertRaises(Exc, baddict1.fromkeys, [1]) class BadSeq(object): def __iter__(self): return self def __next__(self): raise Exc() self.assertRaises(Exc, dict.fromkeys, BadSeq()) class baddict2(dict): def __setitem__(self, key, value): raise Exc() self.assertRaises(Exc, baddict2.fromkeys, [1]) # test fast path for dictionary inputs d = dict(zip(range(6), range(6))) self.assertEqual(dict.fromkeys(d, 0), dict(zip(range(6), [0]*6))) class baddict3(dict): def __new__(cls): return d d = {i : i for i in range(10)} res = d.copy() res.update(a=None, b=None, c=None) self.assertEqual(baddict3.fromkeys({"a", "b", "c"}), res) def test_copy(self): d = {1: 1, 2: 2, 3: 3} self.assertIsNot(d.copy(), d) self.assertEqual(d.copy(), d) self.assertEqual(d.copy(), {1: 1, 2: 2, 3: 3}) copy = d.copy() d[4] = 4 self.assertNotEqual(copy, d) self.assertEqual({}.copy(), {}) self.assertRaises(TypeError, d.copy, None) @unittest.skip("TODO: RUSTPYTHON") def test_copy_fuzz(self): for dict_size in [10, 100, 1000, 10000, 100000]: dict_size = random.randrange( dict_size // 2, dict_size + dict_size // 2) with self.subTest(dict_size=dict_size): d = {} for i in range(dict_size): d[i] = i d2 = d.copy() self.assertIsNot(d2, d) self.assertEqual(d, d2) d2['key'] = 'value' self.assertNotEqual(d, d2) self.assertEqual(len(d2), len(d) + 1) @unittest.skip("TODO: RUSTPYTHON") def test_copy_maintains_tracking(self): class A: pass key = A() for d in ({}, {'a': 1}, {key: 'val'}): d2 = d.copy() self.assertEqual(gc.is_tracked(d), gc.is_tracked(d2)) def test_copy_noncompact(self): # Dicts don't compact themselves on del/pop operations. # Copy will use a slow merging strategy that produces # a compacted copy when roughly 33% of dict is a non-used # keys-space (to optimize memory footprint). # In this test we want to hit the slow/compacting # branch of dict.copy() and make sure it works OK. d = {k: k for k in range(1000)} for k in range(950): del d[k] d2 = d.copy() self.assertEqual(d2, d) def test_get(self): d = {} self.assertIs(d.get('c'), None) self.assertEqual(d.get('c', 3), 3) d = {'a': 1, 'b': 2} self.assertIs(d.get('c'), None) self.assertEqual(d.get('c', 3), 3) self.assertEqual(d.get('a'), 1) self.assertEqual(d.get('a', 3), 1) self.assertRaises(TypeError, d.get) self.assertRaises(TypeError, d.get, None, None, None) def test_setdefault(self): # dict.setdefault() d = {} self.assertIs(d.setdefault('key0'), None) d.setdefault('key0', []) self.assertIs(d.setdefault('key0'), None) d.setdefault('key', []).append(3) self.assertEqual(d['key'][0], 3) d.setdefault('key', []).append(4) self.assertEqual(len(d['key']), 2) self.assertRaises(TypeError, d.setdefault) class Exc(Exception): pass class BadHash(object): fail = False def __hash__(self): if self.fail: raise Exc() else: return 42 x = BadHash() d[x] = 42 x.fail = True self.assertRaises(Exc, d.setdefault, x, []) # TODO: RUSTPYTHON @unittest.expectedFailure def test_setdefault_atomic(self): # Issue #13521: setdefault() calls __hash__ and __eq__ only once. class Hashed(object): def __init__(self): self.hash_count = 0 self.eq_count = 0 def __hash__(self): self.hash_count += 1 return 42 def __eq__(self, other): self.eq_count += 1 return id(self) == id(other) hashed1 = Hashed() y = {hashed1: 5} hashed2 = Hashed() y.setdefault(hashed2, []) self.assertEqual(hashed1.hash_count, 1) self.assertEqual(hashed2.hash_count, 1) self.assertEqual(hashed1.eq_count + hashed2.eq_count, 1) def test_setitem_atomic_at_resize(self): class Hashed(object): def __init__(self): self.hash_count = 0 self.eq_count = 0 def __hash__(self): self.hash_count += 1 return 42 def __eq__(self, other): self.eq_count += 1 return id(self) == id(other) hashed1 = Hashed() # 5 items y = {hashed1: 5, 0: 0, 1: 1, 2: 2, 3: 3} hashed2 = Hashed() # 6th item forces a resize y[hashed2] = [] self.assertEqual(hashed1.hash_count, 1) self.assertEqual(hashed2.hash_count, 1) self.assertEqual(hashed1.eq_count + hashed2.eq_count, 1) def test_popitem(self): # dict.popitem() for copymode in -1, +1: # -1: b has same structure as a # +1: b is a.copy() for log2size in range(12): size = 2**log2size a = {} b = {} for i in range(size): a[repr(i)] = i if copymode < 0: b[repr(i)] = i if copymode > 0: b = a.copy() for i in range(size): ka, va = ta = a.popitem() self.assertEqual(va, int(ka)) kb, vb = tb = b.popitem() self.assertEqual(vb, int(kb)) self.assertFalse(copymode < 0 and ta != tb) self.assertFalse(a) self.assertFalse(b) d = {} self.assertRaises(KeyError, d.popitem) def test_pop(self): # Tests for pop with specified key d = {} k, v = 'abc', 'def' d[k] = v self.assertRaises(KeyError, d.pop, 'ghi') self.assertEqual(d.pop(k), v) self.assertEqual(len(d), 0) self.assertRaises(KeyError, d.pop, k) self.assertEqual(d.pop(k, v), v) d[k] = v self.assertEqual(d.pop(k, 1), v) self.assertRaises(TypeError, d.pop) class Exc(Exception): pass class BadHash(object): fail = False def __hash__(self): if self.fail: raise Exc() else: return 42 x = BadHash() d[x] = 42 x.fail = True self.assertRaises(Exc, d.pop, x) def test_mutating_iteration(self): # changing dict size during iteration d = {} d[1] = 1 with self.assertRaises(RuntimeError): for i in d: d[i+1] = 1 # TODO: RUSTPYTHON @unittest.expectedFailure def test_mutating_iteration_delete(self): # change dict content during iteration d = {} d[0] = 0 with self.assertRaises(RuntimeError): for i in d: del d[0] d[0] = 0 # TODO: RUSTPYTHON @unittest.expectedFailure def test_mutating_iteration_delete_over_values(self): # change dict content during iteration d = {} d[0] = 0 with self.assertRaises(RuntimeError): for i in d.values(): del d[0] d[0] = 0 # TODO: RUSTPYTHON @unittest.expectedFailure def test_mutating_iteration_delete_over_items(self): # change dict content during iteration d = {} d[0] = 0 with self.assertRaises(RuntimeError): for i in d.items(): del d[0] d[0] = 0 @unittest.skip("TODO: RUSTPYTHON") def test_mutating_lookup(self): # changing dict during a lookup (issue #14417) class NastyKey: mutate_dict = None def __init__(self, value): self.value = value def __hash__(self): # hash collision! return 1 def __eq__(self, other): if NastyKey.mutate_dict: mydict, key = NastyKey.mutate_dict NastyKey.mutate_dict = None del mydict[key] return self.value == other.value key1 = NastyKey(1) key2 = NastyKey(2) d = {key1: 1} NastyKey.mutate_dict = (d, key1) d[key2] = 2 self.assertEqual(d, {key2: 2}) def test_repr(self): d = {} self.assertEqual(repr(d), '{}') d[1] = 2 self.assertEqual(repr(d), '{1: 2}') d = {} d[1] = d self.assertEqual(repr(d), '{1: {...}}') class Exc(Exception): pass class BadRepr(object): def __repr__(self): raise Exc() d = {1: BadRepr()} self.assertRaises(Exc, repr, d) # TODO: RUSTPYTHON @unittest.expectedFailure def test_repr_deep(self): d = {} for i in range(sys.getrecursionlimit() + 100): d = {1: d} self.assertRaises(RecursionError, repr, d) def test_eq(self): self.assertEqual({}, {}) self.assertEqual({1: 2}, {1: 2}) class Exc(Exception): pass class BadCmp(object): def __eq__(self, other): raise Exc() def __hash__(self): return 1 d1 = {BadCmp(): 1} d2 = {1: 1} with self.assertRaises(Exc): d1 == d2 @unittest.skip("TODO: RUSTPYTHON") def test_keys_contained(self): self.helper_keys_contained(lambda x: x.keys()) self.helper_keys_contained(lambda x: x.items()) def helper_keys_contained(self, fn): # Test rich comparisons against dict key views, which should behave the # same as sets. empty = fn(dict()) empty2 = fn(dict()) smaller = fn({1:1, 2:2}) larger = fn({1:1, 2:2, 3:3}) larger2 = fn({1:1, 2:2, 3:3}) larger3 = fn({4:1, 2:2, 3:3}) self.assertTrue(smaller < larger) self.assertTrue(smaller <= larger) self.assertTrue(larger > smaller) self.assertTrue(larger >= smaller) self.assertFalse(smaller >= larger) self.assertFalse(smaller > larger) self.assertFalse(larger <= smaller) self.assertFalse(larger < smaller) self.assertFalse(smaller < larger3) self.assertFalse(smaller <= larger3) self.assertFalse(larger3 > smaller) self.assertFalse(larger3 >= smaller) # Inequality strictness self.assertTrue(larger2 >= larger) self.assertTrue(larger2 <= larger) self.assertFalse(larger2 > larger) self.assertFalse(larger2 < larger) self.assertTrue(larger == larger2) self.assertTrue(smaller != larger) # There is an optimization on the zero-element case. self.assertTrue(empty == empty2) self.assertFalse(empty != empty2) self.assertFalse(empty == smaller) self.assertTrue(empty != smaller) # With the same size, an elementwise compare happens self.assertTrue(larger != larger3) self.assertFalse(larger == larger3) # TODO: RUSTPYTHON @unittest.expectedFailure def test_errors_in_view_containment_check(self): class C: def __eq__(self, other): raise RuntimeError d1 = {1: C()} d2 = {1: C()} with self.assertRaises(RuntimeError): d1.items() == d2.items() with self.assertRaises(RuntimeError): d1.items() != d2.items() with self.assertRaises(RuntimeError): d1.items() <= d2.items() with self.assertRaises(RuntimeError): d1.items() >= d2.items() d3 = {1: C(), 2: C()} with self.assertRaises(RuntimeError): d2.items() < d3.items() with self.assertRaises(RuntimeError): d3.items() > d2.items() @unittest.skip("TODO: RUSTPYTHON") def test_dictview_set_operations_on_keys(self): k1 = {1:1, 2:2}.keys() k2 = {1:1, 2:2, 3:3}.keys() k3 = {4:4}.keys() self.assertEqual(k1 - k2, set()) self.assertEqual(k1 - k3, {1,2}) self.assertEqual(k2 - k1, {3}) self.assertEqual(k3 - k1, {4}) self.assertEqual(k1 & k2, {1,2}) self.assertEqual(k1 & k3, set()) self.assertEqual(k1 | k2, {1,2,3}) self.assertEqual(k1 ^ k2, {3}) self.assertEqual(k1 ^ k3, {1,2,4}) @unittest.skip("TODO: RUSTPYTHON") def test_dictview_set_operations_on_items(self): k1 = {1:1, 2:2}.items() k2 = {1:1, 2:2, 3:3}.items() k3 = {4:4}.items() self.assertEqual(k1 - k2, set()) self.assertEqual(k1 - k3, {(1,1), (2,2)}) self.assertEqual(k2 - k1, {(3,3)}) self.assertEqual(k3 - k1, {(4,4)}) self.assertEqual(k1 & k2, {(1,1), (2,2)}) self.assertEqual(k1 & k3, set()) self.assertEqual(k1 | k2, {(1,1), (2,2), (3,3)}) self.assertEqual(k1 ^ k2, {(3,3)}) self.assertEqual(k1 ^ k3, {(1,1), (2,2), (4,4)}) # TODO: RUSTPYTHON @unittest.expectedFailure def test_dictview_mixed_set_operations(self): # Just a few for .keys() self.assertTrue({1:1}.keys() == {1}) self.assertTrue({1} == {1:1}.keys()) self.assertEqual({1:1}.keys() | {2}, {1, 2}) self.assertEqual({2} | {1:1}.keys(), {1, 2}) # And a few for .items() self.assertTrue({1:1}.items() == {(1,1)}) self.assertTrue({(1,1)} == {1:1}.items()) self.assertEqual({1:1}.items() | {2}, {(1,1), 2}) self.assertEqual({2} | {1:1}.items(), {(1,1), 2}) def test_missing(self): # Make sure dict doesn't have a __missing__ method self.assertFalse(hasattr(dict, "__missing__")) self.assertFalse(hasattr({}, "__missing__")) # Test several cases: # (D) subclass defines __missing__ method returning a value # (E) subclass defines __missing__ method raising RuntimeError # (F) subclass sets __missing__ instance variable (no effect) # (G) subclass doesn't define __missing__ at all class D(dict): def __missing__(self, key): return 42 d = D({1: 2, 3: 4}) self.assertEqual(d[1], 2) self.assertEqual(d[3], 4) self.assertNotIn(2, d) self.assertNotIn(2, d.keys()) self.assertEqual(d[2], 42) class E(dict): def __missing__(self, key): raise RuntimeError(key) e = E() with self.assertRaises(RuntimeError) as c: e[42] self.assertEqual(c.exception.args, (42,)) class F(dict): def __init__(self): # An instance variable __missing__ should have no effect self.__missing__ = lambda key: None f = F() with self.assertRaises(KeyError) as c: f[42] self.assertEqual(c.exception.args, (42,)) class G(dict): pass g = G() with self.assertRaises(KeyError) as c: g[42] self.assertEqual(c.exception.args, (42,)) def test_tuple_keyerror(self): # SF #1576657 d = {} with self.assertRaises(KeyError) as c: d[(1,)] self.assertEqual(c.exception.args, ((1,),)) def test_bad_key(self): # Dictionary lookups should fail if __eq__() raises an exception. class CustomException(Exception): pass class BadDictKey: def __hash__(self): return hash(self.__class__) def __eq__(self, other): if isinstance(other, self.__class__): raise CustomException return other d = {} x1 = BadDictKey() x2 = BadDictKey() d[x1] = 1 for stmt in ['d[x2] = 2', 'z = d[x2]', 'x2 in d', 'd.get(x2)', 'd.setdefault(x2, 42)', 'd.pop(x2)', 'd.update({x2: 2})']: with self.assertRaises(CustomException): exec(stmt, locals()) def test_resize1(self): # Dict resizing bug, found by Jack Jansen in 2.2 CVS development. # This version got an assert failure in debug build, infinite loop in # release build. Unfortunately, provoking this kind of stuff requires # a mix of inserts and deletes hitting exactly the right hash codes in # exactly the right order, and I can't think of a randomized approach # that would be *likely* to hit a failing case in reasonable time. d = {} for i in range(5): d[i] = i for i in range(5): del d[i] for i in range(5, 9): # i==8 was the problem d[i] = i def test_resize2(self): # Another dict resizing bug (SF bug #1456209). # This caused Segmentation faults or Illegal instructions. class X(object): def __hash__(self): return 5 def __eq__(self, other): if resizing: d.clear() return False d = {} resizing = False d[X()] = 1 d[X()] = 2 d[X()] = 3 d[X()] = 4 d[X()] = 5 # now trigger a resize resizing = True d[9] = 6 def test_empty_presized_dict_in_freelist(self): # Bug #3537: if an empty but presized dict with a size larger # than 7 was in the freelist, it triggered an assertion failure with self.assertRaises(ZeroDivisionError): d = {'a': 1 // 0, 'b': None, 'c': None, 'd': None, 'e': None, 'f': None, 'g': None, 'h': None} d = {} @unittest.skip("TODO: RUSTPYTHON") def test_container_iterator(self): # Bug #3680: tp_traverse was not implemented for dictiter and # dictview objects. class C(object): pass views = (dict.items, dict.values, dict.keys) for v in views: obj = C() ref = weakref.ref(obj) container = {obj: 1} obj.v = v(container) obj.x = iter(obj.v) del obj, container gc.collect() self.assertIs(ref(), None, "Cycle was not collected") def _not_tracked(self, t): # Nested containers can take several collections to untrack gc.collect() gc.collect() self.assertFalse(gc.is_tracked(t), t) def _tracked(self, t): self.assertTrue(gc.is_tracked(t), t) gc.collect() gc.collect() self.assertTrue(gc.is_tracked(t), t) @support.cpython_only def test_track_literals(self): # Test GC-optimization of dict literals x, y, z, w = 1.5, "a", (1, None), [] self._not_tracked({}) self._not_tracked({x:(), y:x, z:1}) self._not_tracked({1: "a", "b": 2}) self._not_tracked({1: 2, (None, True, False, ()): int}) self._not_tracked({1: object()}) # Dicts with mutable elements are always tracked, even if those # elements are not tracked right now. self._tracked({1: []}) self._tracked({1: ([],)}) self._tracked({1: {}}) self._tracked({1: set()}) @support.cpython_only def test_track_dynamic(self): # Test GC-optimization of dynamically-created dicts class MyObject(object): pass x, y, z, w, o = 1.5, "a", (1, object()), [], MyObject() d = dict() self._not_tracked(d) d[1] = "a" self._not_tracked(d) d[y] = 2 self._not_tracked(d) d[z] = 3 self._not_tracked(d) self._not_tracked(d.copy()) d[4] = w self._tracked(d) self._tracked(d.copy()) d[4] = None self._not_tracked(d) self._not_tracked(d.copy()) # dd isn't tracked right now, but it may mutate and therefore d # which contains it must be tracked. d = dict() dd = dict() d[1] = dd self._not_tracked(dd) self._tracked(d) dd[1] = d self._tracked(dd) d = dict.fromkeys([x, y, z]) self._not_tracked(d) dd = dict() dd.update(d) self._not_tracked(dd) d = dict.fromkeys([x, y, z, o]) self._tracked(d) dd = dict() dd.update(d) self._tracked(dd) d = dict(x=x, y=y, z=z) self._not_tracked(d) d = dict(x=x, y=y, z=z, w=w) self._tracked(d) d = dict() d.update(x=x, y=y, z=z) self._not_tracked(d) d.update(w=w) self._tracked(d) d = dict([(x, y), (z, 1)]) self._not_tracked(d) d = dict([(x, y), (z, w)]) self._tracked(d) d = dict() d.update([(x, y), (z, 1)]) self._not_tracked(d) d.update([(x, y), (z, w)]) self._tracked(d) @support.cpython_only def test_track_subtypes(self): # Dict subtypes are always tracked class MyDict(dict): pass self._tracked(MyDict()) def make_shared_key_dict(self, n): class C: pass dicts = [] for i in range(n): a = C() a.x, a.y, a.z = 1, 2, 3 dicts.append(a.__dict__) return dicts @support.cpython_only def test_splittable_setdefault(self): """split table must be combined when setdefault() breaks insertion order""" a, b = self.make_shared_key_dict(2) a['a'] = 1 size_a = sys.getsizeof(a) a['b'] = 2 b.setdefault('b', 2) size_b = sys.getsizeof(b) b['a'] = 1 self.assertGreater(size_b, size_a) self.assertEqual(list(a), ['x', 'y', 'z', 'a', 'b']) self.assertEqual(list(b), ['x', 'y', 'z', 'b', 'a']) @support.cpython_only def test_splittable_del(self): """split table must be combined when del d[k]""" a, b = self.make_shared_key_dict(2) orig_size = sys.getsizeof(a) del a['y'] # split table is combined with self.assertRaises(KeyError): del a['y'] self.assertGreater(sys.getsizeof(a), orig_size) self.assertEqual(list(a), ['x', 'z']) self.assertEqual(list(b), ['x', 'y', 'z']) # Two dicts have different insertion order. a['y'] = 42 self.assertEqual(list(a), ['x', 'z', 'y']) self.assertEqual(list(b), ['x', 'y', 'z']) @support.cpython_only def test_splittable_pop(self): """split table must be combined when d.pop(k)""" a, b = self.make_shared_key_dict(2) orig_size = sys.getsizeof(a) a.pop('y') # split table is combined with self.assertRaises(KeyError): a.pop('y') self.assertGreater(sys.getsizeof(a), orig_size) self.assertEqual(list(a), ['x', 'z']) self.assertEqual(list(b), ['x', 'y', 'z']) # Two dicts have different insertion order. a['y'] = 42 self.assertEqual(list(a), ['x', 'z', 'y']) self.assertEqual(list(b), ['x', 'y', 'z']) @support.cpython_only def test_splittable_pop_pending(self): """pop a pending key in a splitted table should not crash""" a, b = self.make_shared_key_dict(2) a['a'] = 4 with self.assertRaises(KeyError): b.pop('a') @support.cpython_only def test_splittable_popitem(self): """split table must be combined when d.popitem()""" a, b = self.make_shared_key_dict(2) orig_size = sys.getsizeof(a) item = a.popitem() # split table is combined self.assertEqual(item, ('z', 3)) with self.assertRaises(KeyError): del a['z'] self.assertGreater(sys.getsizeof(a), orig_size) self.assertEqual(list(a), ['x', 'y']) self.assertEqual(list(b), ['x', 'y', 'z']) @support.cpython_only def test_splittable_setattr_after_pop(self): """setattr() must not convert combined table into split table.""" # Issue 28147 import _testcapi class C: pass a = C() a.a = 1 self.assertTrue(_testcapi.dict_hassplittable(a.__dict__)) # dict.pop() convert it to combined table a.__dict__.pop('a') self.assertFalse(_testcapi.dict_hassplittable(a.__dict__)) # But C should not convert a.__dict__ to split table again. a.a = 1 self.assertFalse(_testcapi.dict_hassplittable(a.__dict__)) # Same for popitem() a = C() a.a = 2 self.assertTrue(_testcapi.dict_hassplittable(a.__dict__)) a.__dict__.popitem() self.assertFalse(_testcapi.dict_hassplittable(a.__dict__)) a.a = 3 self.assertFalse(_testcapi.dict_hassplittable(a.__dict__)) @unittest.skip("TODO: RUSTPYTHON") def test_iterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): data = {1:"a", 2:"b", 3:"c"} it = iter(data) d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(list(it), list(data)) it = pickle.loads(d) try: drop = next(it) except StopIteration: continue d = pickle.dumps(it, proto) it = pickle.loads(d) del data[drop] self.assertEqual(list(it), list(data)) @unittest.skip("TODO: RUSTPYTHON") def test_itemiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): data = {1:"a", 2:"b", 3:"c"} # dictviews aren't picklable, only their iterators itorg = iter(data.items()) d = pickle.dumps(itorg, proto) it = pickle.loads(d) # note that the type of the unpickled iterator # is not necessarily the same as the original. It is # merely an object supporting the iterator protocol, yielding # the same objects as the original one. # self.assertEqual(type(itorg), type(it)) self.assertIsInstance(it, collections.abc.Iterator) self.assertEqual(dict(it), data) it = pickle.loads(d) drop = next(it) d = pickle.dumps(it, proto) it = pickle.loads(d) del data[drop[0]] self.assertEqual(dict(it), data) @unittest.skip("TODO: RUSTPYTHON") def test_valuesiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): data = {1:"a", 2:"b", 3:"c"} # data.values() isn't picklable, only its iterator it = iter(data.values()) d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(list(it), list(data.values())) it = pickle.loads(d) drop = next(it) d = pickle.dumps(it, proto) it = pickle.loads(d) values = list(it) + [drop] self.assertEqual(sorted(values), sorted(list(data.values()))) @unittest.skip("TODO: RUSTPYTHON") def test_reverseiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): data = {1:"a", 2:"b", 3:"c"} it = reversed(data) d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(list(it), list(reversed(data))) it = pickle.loads(d) try: drop = next(it) except StopIteration: continue d = pickle.dumps(it, proto) it = pickle.loads(d) del data[drop] self.assertEqual(list(it), list(reversed(data))) @unittest.skip("TODO: RUSTPYTHON") def test_reverseitemiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): data = {1:"a", 2:"b", 3:"c"} # dictviews aren't picklable, only their iterators itorg = reversed(data.items()) d = pickle.dumps(itorg, proto) it = pickle.loads(d) # note that the type of the unpickled iterator # is not necessarily the same as the original. It is # merely an object supporting the iterator protocol, yielding # the same objects as the original one. # self.assertEqual(type(itorg), type(it)) self.assertIsInstance(it, collections.abc.Iterator) self.assertEqual(dict(it), data) it = pickle.loads(d) drop = next(it) d = pickle.dumps(it, proto) it = pickle.loads(d) del data[drop[0]] self.assertEqual(dict(it), data) @unittest.skip("TODO: RUSTPYTHON") def test_reversevaluesiterator_pickling(self): for proto in range(pickle.HIGHEST_PROTOCOL + 1): data = {1:"a", 2:"b", 3:"c"} # data.values() isn't picklable, only its iterator it = reversed(data.values()) d = pickle.dumps(it, proto) it = pickle.loads(d) self.assertEqual(list(it), list(reversed(data.values()))) it = pickle.loads(d) drop = next(it) d = pickle.dumps(it, proto) it = pickle.loads(d) values = list(it) + [drop] self.assertEqual(sorted(values), sorted(data.values())) def test_instance_dict_getattr_str_subclass(self): class Foo: def __init__(self, msg): self.msg = msg f = Foo('123') class _str(str): pass self.assertEqual(f.msg, getattr(f, _str('msg'))) self.assertEqual(f.msg, f.__dict__[_str('msg')]) def test_object_set_item_single_instance_non_str_key(self): class Foo: pass f = Foo() f.__dict__[1] = 1 f.a = 'a' self.assertEqual(f.__dict__, {1:1, 'a':'a'}) def check_reentrant_insertion(self, mutate): # This object will trigger mutation of the dict when replaced # by another value. Note this relies on refcounting: the test # won't achieve its purpose on fully-GCed Python implementations. class Mutating: def __del__(self): mutate(d) d = {k: Mutating() for k in 'abcdefghijklmnopqr'} for k in list(d): d[k] = k def test_reentrant_insertion(self): # Reentrant insertion shouldn't crash (see issue #22653) def mutate(d): d['b'] = 5 self.check_reentrant_insertion(mutate) def mutate(d): d.update(self.__dict__) d.clear() self.check_reentrant_insertion(mutate) def mutate(d): while d: d.popitem() self.check_reentrant_insertion(mutate) @unittest.skip("TODO: RUSTPYTHON") def test_merge_and_mutate(self): class X: def __hash__(self): return 0 def __eq__(self, o): other.clear() return False l = [(i,0) for i in range(1, 1337)] other = dict(l) other[X()] = 0 d = {X(): 0, 1: 1} self.assertRaises(RuntimeError, d.update, other) @unittest.skip("TODO: RUSTPYTHON") def test_free_after_iterating(self): support.check_free_after_iterating(self, iter, dict) support.check_free_after_iterating(self, lambda d: iter(d.keys()), dict) support.check_free_after_iterating(self, lambda d: iter(d.values()), dict) support.check_free_after_iterating(self, lambda d: iter(d.items()), dict) @unittest.skip("TODO: RUSTPYTHON") def test_equal_operator_modifying_operand(self): # test fix for seg fault reported in issue 27945 part 3. class X(): def __del__(self): dict_b.clear() def __eq__(self, other): dict_a.clear() return True def __hash__(self): return 13 dict_a = {X(): 0} dict_b = {X(): X()} self.assertTrue(dict_a == dict_b) def test_fromkeys_operator_modifying_dict_operand(self): # test fix for seg fault reported in issue 27945 part 4a. class X(int): def __hash__(self): return 13 def __eq__(self, other): if len(d) > 1: d.clear() return False d = {} # this is required to exist so that d can be constructed! d = {X(1): 1, X(2): 2} try: dict.fromkeys(d) # shouldn't crash except RuntimeError: # implementation defined pass def test_fromkeys_operator_modifying_set_operand(self): # test fix for seg fault reported in issue 27945 part 4b. class X(int): def __hash__(self): return 13 def __eq__(self, other): if len(d) > 1: d.clear() return False d = {} # this is required to exist so that d can be constructed! d = {X(1), X(2)} try: dict.fromkeys(d) # shouldn't crash except RuntimeError: # implementation defined pass @unittest.skip("TODO: RUSTPYTHON") def test_dictitems_contains_use_after_free(self): class X: def __eq__(self, other): d.clear() return NotImplemented d = {0: set()} (0, X()) in d.items() def test_init_use_after_free(self): class X: def __hash__(self): pair[:] = [] return 13 pair = [X(), 123] dict([pair]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_oob_indexing_dictiter_iternextitem(self): class X(int): def __del__(self): d.clear() d = {i: X(i) for i in range(8)} def iter_and_mutate(): for result in d.items(): if result[0] == 2: d[2] = None # free d[2] --> X(2).__del__ was called self.assertRaises(RuntimeError, iter_and_mutate) @unittest.skip("TODO: RUSTPYTHON") def test_reversed(self): d = {"a": 1, "b": 2, "foo": 0, "c": 3, "d": 4} del d["foo"] r = reversed(d) self.assertEqual(list(r), list('dcba')) self.assertRaises(StopIteration, next, r) @unittest.skip("TODO: RUSTPYTHON") def test_dict_copy_order(self): # bpo-34320 od = collections.OrderedDict([('a', 1), ('b', 2)]) od.move_to_end('a') expected = list(od.items()) copy = dict(od) self.assertEqual(list(copy.items()), expected) # dict subclass doesn't override __iter__ class CustomDict(dict): pass pairs = [('a', 1), ('b', 2), ('c', 3)] d = CustomDict(pairs) self.assertEqual(pairs, list(dict(d).items())) class CustomReversedDict(dict): def keys(self): return reversed(list(dict.keys(self))) __iter__ = keys def items(self): return reversed(dict.items(self)) d = CustomReversedDict(pairs) self.assertEqual(pairs[::-1], list(dict(d).items())) class CAPITest(unittest.TestCase): # Test _PyDict_GetItem_KnownHash() @support.cpython_only def test_getitem_knownhash(self): from _testcapi import dict_getitem_knownhash d = {'x': 1, 'y': 2, 'z': 3} self.assertEqual(dict_getitem_knownhash(d, 'x', hash('x')), 1) self.assertEqual(dict_getitem_knownhash(d, 'y', hash('y')), 2) self.assertEqual(dict_getitem_knownhash(d, 'z', hash('z')), 3) # not a dict self.assertRaises(SystemError, dict_getitem_knownhash, [], 1, hash(1)) # key does not exist self.assertRaises(KeyError, dict_getitem_knownhash, {}, 1, hash(1)) class Exc(Exception): pass class BadEq: def __eq__(self, other): raise Exc def __hash__(self): return 7 k1, k2 = BadEq(), BadEq() d = {k1: 1} self.assertEqual(dict_getitem_knownhash(d, k1, hash(k1)), 1) self.assertRaises(Exc, dict_getitem_knownhash, d, k2, hash(k2)) from test import mapping_tests class GeneralMappingTests(mapping_tests.BasicTestMappingProtocol): type2test = dict class Dict(dict): pass class SubclassMappingTests(mapping_tests.BasicTestMappingProtocol): type2test = Dict if __name__ == "__main__": unittest.main()
31.647552
82
0.525676
6838be9a56714803a88bf9125df40f7e565a157e
1,025
py
Python
gspread/exceptions.py
MilindGaharwar/gspread
bf4f2606f210ac03bda1946810597dd83ab5ed80
[ "MIT" ]
3
2021-06-15T15:05:33.000Z
2022-01-31T22:56:19.000Z
gspread/exceptions.py
merbroussard/gspread
d0a69c5e9fa0cd1ae807f29c933e93b7bbb58a1b
[ "MIT" ]
15
2015-01-06T13:41:52.000Z
2022-03-30T10:37:25.000Z
gspread/exceptions.py
merbroussard/gspread
d0a69c5e9fa0cd1ae807f29c933e93b7bbb58a1b
[ "MIT" ]
1
2018-01-27T20:13:16.000Z
2018-01-27T20:13:16.000Z
# -*- coding: utf-8 -*- """ gspread.exceptions ~~~~~~~~~~~~~~~~~~ Exceptions used in gspread. """ class GSpreadException(Exception): """A base class for gspread's exceptions.""" class AuthenticationError(GSpreadException): """An error during authentication process.""" class SpreadsheetNotFound(GSpreadException): """Trying to open non-existent or inaccessible spreadsheet.""" class WorksheetNotFound(GSpreadException): """Trying to open non-existent or inaccessible worksheet.""" class CellNotFound(GSpreadException): """Cell lookup exception.""" class NoValidUrlKeyFound(GSpreadException): """No valid key found in URL.""" class UnsupportedFeedTypeError(GSpreadException): pass class UrlParameterMissing(GSpreadException): pass class IncorrectCellLabel(GSpreadException): """The cell label is incorrect.""" class UpdateCellError(GSpreadException): """Error while setting cell's value.""" class RequestError(GSpreadException): """Error while sending API request."""
23.837209
66
0.727805
94c59e29177a0d9b2658393bf810adf431801b45
6,525
py
Python
web/servicecalls/salesreports.py
vacoj/mbodjango
e9a6df563862c587e4cc2c2713ed7f8ea0a6e4e3
[ "MIT" ]
8
2015-10-27T12:38:54.000Z
2018-02-23T03:03:24.000Z
web/servicecalls/salesreports.py
vacoj/mbodjango
e9a6df563862c587e4cc2c2713ed7f8ea0a6e4e3
[ "MIT" ]
3
2015-10-28T22:23:58.000Z
2016-01-13T04:05:04.000Z
web/servicecalls/salesreports.py
vacoj/mbodjango
e9a6df563862c587e4cc2c2713ed7f8ea0a6e4e3
[ "MIT" ]
9
2015-09-28T17:32:17.000Z
2018-02-01T00:01:04.000Z
import operator import datetime from ..models import ReportsCacheModel import ast from ..servicecalls.saleservice_gets import GetSales class SalesReport: def __init__(self, sales=None, current=True): self.SudsResult = sales self.SaleTotalsByDate = None self.current = current self.TodayDate = datetime.datetime.today() def GetSudsResults(self): if not self.current: self.SudsResult = GetSales(timedelta=1).Sales.Sale else: self.SudsResult = GetSales(timedelta=2).Sales.Sale def print_sales(self): for sale in self.SudsResult: print(sale) def get_totals_by_dow(self): name = 'total_dow' if not self.current: name += '_nc' sales = {} try: sorted_by_dow = ReportsCacheModel.objects.filter( datapull_datestamp=self.TodayDate, chart_name=name)[0] return eval(sorted_by_dow.data_string) except (IndexError, ReportsCacheModel.DoesNotExist): if self.SudsResult == None: self.GetSudsResults() for sale in self.SudsResult: sale_total = 0.0 payments = sale.Payments saleday = str(sale.SaleDate.weekday()) for payment in payments: sale_total += payment[1][0].Amount if saleday not in sales: sales[saleday] = sale_total else: sales[saleday] += sale_total sale_totals_by_dow = sales sorted_by_dow = sorted(sale_totals_by_dow.items(), key=operator.itemgetter(0)) report = ReportsCacheModel() report.chart_name = name report.data_string = str(sorted_by_dow) report.save() return sorted_by_dow def sale_totals_by_date(self): name = 'total_date' if not self.current: name += '_nc' sales = {} try: sorted_by_payment_type = ReportsCacheModel.objects.filter( datapull_datestamp=self.TodayDate, chart_name=name)[0] return eval(sorted_by_payment_type.data_string) except (IndexError, ReportsCacheModel.DoesNotExist): if self.SudsResult == None: self.GetSudsResults() for sale in self.SudsResult: sale_total = 0.0 payments = sale.Payments saledate = str(sale.SaleDate).split(' ')[0] for payment in payments: sale_total += payment[1][0].Amount if saledate not in sales: sales[saledate] = sale_total else: sales[saledate] += sale_total sale_totals_by_date = sales sorted_by_date = sorted(sale_totals_by_date.items(), key=operator.itemgetter(0)) report = ReportsCacheModel() report.chart_name = name report.data_string = str(sorted_by_date) report.save() return sorted_by_date def get_totals_by_hour(self): name = 'total_hour' if not self.current: name += '_nc' sales = {} try: sale_by_hour = ReportsCacheModel.objects.filter( datapull_datestamp=self.TodayDate, chart_name=name)[0] return eval(sale_by_hour.data_string) except (IndexError, ReportsCacheModel.DoesNotExist): if self.SudsResult == None: self.GetSudsResults() for sale in self.SudsResult: sale_total = 0.0 payments = sale.Payments salehour = str(sale.SaleDateTime.hour) if len(salehour) == 1: salehour = '0' + str(salehour) else: salehour = str(salehour) for payment in payments: sale_total += payment[1][0].Amount if salehour not in sales: sales[salehour] = sale_total else: sales[salehour] += sale_total sale_totals_by_hour = sales sale_by_hour = sorted(sale_totals_by_hour.items(), key=operator.itemgetter(0)) report = ReportsCacheModel() report.chart_name = name report.data_string = str(sale_by_hour) report.save() return sale_by_hour def get_totals_by_payment_type(self): name = 'total_paymenttype' if not self.current: name += '_nc' sales = {} try: sorted_by_payment_type = ReportsCacheModel.objects.filter( datapull_datestamp=self.TodayDate, chart_name=name)[0] return ast.literal_eval(sorted_by_payment_type.data_string) except (IndexError, ReportsCacheModel.DoesNotExist): if self.SudsResult == None: self.GetSudsResults() for sale in self.SudsResult: sale_total = 0.0 payments = sale.Payments paytype = "" for payment in payments: paytype = str(payment[1][0].Type) sale_total = payment[1][0].Amount if paytype not in sales: sales[paytype] = sale_total else: sales[paytype] += sale_total sale_totals_by_payment_type = sales sorted_by_payment_type = sorted( sale_totals_by_payment_type.items(), key=operator.itemgetter(1)) report = ReportsCacheModel() report.chart_name = name report.data_string = '\"' + str(sale_totals_by_payment_type) + '\"' report.save() return sale_totals_by_payment_type.items def report_normalizer(report1, report2): report1 = sorted(eval(report1).items(), key=operator.itemgetter(1)) report2 = sorted(eval(report2).items(), key=operator.itemgetter(1)) for i in report1: exists = False for k in report2: if i[0] == k[0]: exists = True if not exists: report2.insert(report1.index(i), (i[0], 0)) for i in report2: exists = False for k in report1: if i[0] == k[0]: exists = True if not exists: report1.insert(report2.index(i), (i[0], 0)) return report1, report2
33.80829
92
0.555096
daea370b5705056386b2c5c2a8bf0ced86144b8e
4,298
py
Python
src/sshark.py
mfs-git/sshark
291d050d0b6fd9f863f48e9cfa86284cd35d575d
[ "MIT" ]
null
null
null
src/sshark.py
mfs-git/sshark
291d050d0b6fd9f863f48e9cfa86284cd35d575d
[ "MIT" ]
null
null
null
src/sshark.py
mfs-git/sshark
291d050d0b6fd9f863f48e9cfa86284cd35d575d
[ "MIT" ]
null
null
null
#!/usr/bin/python """ This tool used to capture packets (pcap file) by tshark and insert them into a sqlite file """ import argparse import subprocess import shlex import sys import signal import sqlite3 import xml.etree.cElementTree as ET __main_author__ = 'M. Fatemipour' __email__ = 'm.fatemipour@gmail.com' __date__ = '2016-Apr-2' __last_modified_date__ = '2016-Apr-2' __version__ = '1.0.0' class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' profiles = {} def handler(signum, frame): print 'interupt' proc.terminate() def add_profile(prof): col = [] filed = [] type = [] for f in prof: filed.append(f.attrib['filed']) col.append(f.attrib['column']) type.append(f.attrib['type']) display_fields = '' create_table_query = 'CREATE TABLE packets (' for i in range(0, len(col)): display_fields += '-e ' + filed[i] + ' ' if i > 0: create_table_query += ', ' create_table_query += col[i] + ' ' + type[i] create_table_query += ')' p = {'captureFilter': prof.attrib['captureFilter'], 'displayFilter': prof.attrib['displayFilter'], 'sqliteName': prof.attrib['sqliteName'], 'pcapName': prof.attrib['pcapName'], 'display_fields': display_fields, 'create_table_query': create_table_query} profiles[prof.attrib['Name']] = p def parse_config(config_file): tree = ET.parse(config_file) root = tree.getroot() if root.tag != 'sshark_profiles': raise Exception('root of profiles xml must be sshark_profiles') for profile in root: add_profile(profile) if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-c', '--config', type=argparse.FileType('r'), default='/usr/local/config/sshark_config.xml', help="config file, if not mentioned /usr/local/sshark_config.xml will be used") parser.add_argument('-p', '--profile', type=str, default='TCP', help="profile name, if not mentioned TCP will be used") parser.add_argument('-r', '--input', type=argparse.FileType('r'), default=None, help="read packets from input file instead of network") args = parser.parse_args() print args.config.name parse_config(args.config.name) p = args.profile print 'Using profile ' + p conn = sqlite3.connect(profiles[p]['sqliteName']) c = conn.cursor() c.execute('DROP TABLE IF EXISTS packets') capture_filter = profiles[p]['captureFilter'] display_fields_str = profiles[p]['display_fields'] c.execute(profiles[p]['create_table_query']) tshark_command = 'tshark -T fields ' + display_fields_str if args.input == None and len(profiles[p]['displayFilter']) == 0: tshark_command += ' -F pcap -w ' + profiles[p]['pcapName'] if args.input == None: tshark_command += ' -f "' + profiles[p]['captureFilter'] + '"' if args.input != None: tshark_command += ' -r ' + args.input.name if len(profiles[p]['displayFilter']) > 0: print bcolors.WARNING + 'When displayFilter has value saving captured file (pcap) is disabled.' +\ bcolors.ENDC tshark_command += ' -Y "' + profiles[p]['displayFilter'] + '"' print 'tshark command: ' + bcolors.OKBLUE + tshark_command + bcolors.ENDC proc = subprocess.Popen(shlex.split(tshark_command), stdout=subprocess.PIPE, stderr=sys.stderr) signal.signal(signal.SIGINT, handler) values_to_be_added = '' i = 0 while True: line = proc.stdout.readline() if line != '': i += 1 if len(values_to_be_added) > 0: values_to_be_added += ',' values_to_be_added += '("' + line.replace('\t', '","').strip() + '")\n' if i % 100 == 0: conn.execute('INSERT INTO packets VALUES ' + values_to_be_added) conn.commit() values_to_be_added = '' else: break if len(values_to_be_added) > 0: conn.execute('INSERT INTO packets VALUES ' + values_to_be_added) conn.commit() proc.wait() print 'Done.'
32.315789
117
0.620754
73c34348eabdb5d3ac95175b08536dd288346942
79
py
Python
ioplin/__init__.py
DearCaat/ioplin
e4eae4a60d461d08f9aaf886bea2915282872245
[ "Apache-2.0" ]
4
2021-06-24T06:04:05.000Z
2022-03-19T08:49:32.000Z
ioplin/__init__.py
DearCaat/ioplin
e4eae4a60d461d08f9aaf886bea2915282872245
[ "Apache-2.0" ]
null
null
null
ioplin/__init__.py
DearCaat/ioplin
e4eae4a60d461d08f9aaf886bea2915282872245
[ "Apache-2.0" ]
1
2021-07-04T07:56:40.000Z
2021-07-04T07:56:40.000Z
from .train import * from .predict import * from keras.models import load_model
26.333333
35
0.797468
e88459ba2c09f7e054f60aee44fc2dc3052165fa
9,926
py
Python
openhgnn/trainerflow/dist_mult.py
zsy0828/OpenHGNN
7fe0917008c9f50269bbd308e411a1d8199d667d
[ "Apache-2.0" ]
null
null
null
openhgnn/trainerflow/dist_mult.py
zsy0828/OpenHGNN
7fe0917008c9f50269bbd308e411a1d8199d667d
[ "Apache-2.0" ]
null
null
null
openhgnn/trainerflow/dist_mult.py
zsy0828/OpenHGNN
7fe0917008c9f50269bbd308e411a1d8199d667d
[ "Apache-2.0" ]
null
null
null
import copy import dgl import numpy as np import torch as th from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F from . import BaseFlow, register_flow from ..tasks import build_task from ..utils import extract_embed from collections.abc import Mapping class NegativeSampler(object): def __init__(self, g, k): # caches the probability distribution self.weights = { etype: g.in_degrees(etype=etype).float() ** 0.75 for etype in g.canonical_etypes } self.k = k def __call__(self, g, eids_dict): result_dict = {} for etype, eids in eids_dict.items(): src, _ = g.find_edges(eids, etype=etype) src = src.repeat_interleave(self.k) dst = self.weights[etype].multinomial(len(src), replacement=True) result_dict[etype] = (src, dst) return result_dict @register_flow("distmult") class DistMult(BaseFlow): """Node classification flows.""" def __init__(self, args): super(DistMult, self).__init__(args) self.args = args self.model_name = args.model self.device = args.device self.task = build_task(args) self.hg = self.task.get_graph().to(self.device) self.loss_fn = self.task.get_loss_fn() self.model = build_model(self.model_name).build_model_from_args(self.args, self.hg) self.model = self.model.to(self.device) self.evaluator = self.task.get_evaluator('mrr') self.num_rels = self.task.dataset.num_rels if hasattr(self.model, 'r_embedding'): para = self.model.parameters() self.r_embedding = self.model.r_embedding[:self.num_rels] else: self.r_embedding = nn.Parameter(th.Tensor(self.num_rels, self.args.out_dim).to(self.device)) nn.init.uniform_(self.r_embedding,a=-1,b=1) para = [{'params': self.model.parameters()}, {'params': self.r_embedding}] self.optimizer = ( th.optim.Adam(para, lr=args.lr, weight_decay=args.weight_decay) ) self.patience = args.patience self.max_epoch = args.max_epoch if self.args.mini_batch_flag: self.hg = self.hg.to('cpu') train_eid_dict = { etype: self.hg.edges(etype=etype, form='eid') for etype in self.hg.canonical_etypes} sampler = dgl.dataloading.MultiLayerFullNeighborSampler(self.args.n_layers) self.dataloader = dgl.dataloading.EdgeDataLoader( self.hg, train_eid_dict, sampler, device=self.device, negative_sampler=NegativeSampler(self.hg, 1), batch_size=100, shuffle=True, drop_last=False, num_workers=0 ) else: self.train_eid_dict = { etype: self.hg.edges(etype=etype, form='eid') for etype in self.hg.canonical_etypes} self.negative_sampler = NegativeSampler(self.hg, 10) def preprocess(self): self.test_dataset = self.task.dataset.get_triples('test_mask').to(self.device) self.val_dataset = self.task.dataset.get_triples('val_mask').to(self.device) self.train_dataset = self.task.dataset.get_triples('train_mask').to(self.device) return def train(self): self.preprocess() epoch_iter = tqdm(range(self.max_epoch)) patience = 0 best_score = 0 best_model = copy.deepcopy(self.model) for epoch in tqdm(range(self.max_epoch), ncols=80): if self.args.mini_batch_flag: loss = self._mini_train_step() else: loss = self._full_train_setp() if epoch % 2 == 0: metric= self._test_step(split='train') epoch_iter.set_description( f"Epoch: {epoch:03d}, Val-mrr: {metric:.4f}, Loss:{loss:.4f}" ) if metric >= best_score: best_score = metric best_model = copy.deepcopy(self.model) patience = 0 else: patience += 1 if patience == self.patience: epoch_iter.close() break print(f"Valid mrr = {best_score: .4f}") self.model = best_model test_mrr = self._test_step(split="test") val_mrr = self._test_step(split="val") print(f"Test mrr = {test_mrr:.4f}") return dict(Test_mrr=test_mrr, ValMrr=val_mrr) def _mini_train_step(self,): self.model.train() all_loss = 0 for input_nodes, positive_graph, negative_graph, blocks in self.dataloader: blocks = [b.to(self.device) for b in blocks] positive_graph = positive_graph.to(self.device) negative_graph = negative_graph.to(self.device) if type(input_nodes) == th.Tensor: input_nodes = {self.category: input_nodes} input_features = extract_embed(self.model.embed_layer(), input_nodes) logits = self.model(blocks, input_features)[self.category] loss = self.loss_calculation(positive_graph, negative_graph, logits) all_loss += loss.item() self.optimizer.zero_grad() loss.backward() self.optimizer.step() return all_loss def loss_calculation(self, positive_graph, negative_graph, logits): p_score = self.ScorePredictor(positive_graph, logits) p_label = th.ones(len(p_score), device=self.device) n_score = self.ScorePredictor(negative_graph, logits) n_label = th.zeros(len(n_score), device=self.device) loss = F.binary_cross_entropy_with_logits(th.cat((p_score, n_score)), th.cat((p_label, n_label))) return loss def ScorePredictor(self, edge_subgraph, x): score_list = [] with edge_subgraph.local_scope(): edge_subgraph.ndata['x'] = x for etype in edge_subgraph.canonical_etypes: e = self.r_embedding[int(etype[1])] n = edge_subgraph.num_edges(etype) edge_subgraph.edata['e'] = {etype: e.expand(n, -1)} edge_subgraph.apply_edges( dgl.function.u_mul_e('x', 'e', 's'), etype=etype) edge_subgraph.apply_edges( dgl.function.e_mul_v('s', 'x', 'score'), etype=etype) score = th.sum(edge_subgraph.edata['score'].pop(etype), dim=1) #score = th.sum(th.mul(edge_subgraph.edata['score'].pop(etype), e), dim=1) score_list.append(score) return th.cat(score_list) def ScorePredictor_(self, edge_subgraph, x): score_list = [] with edge_subgraph.local_scope(): edge_subgraph.ndata['x'] = x for etype in edge_subgraph.canonical_etypes: e = self.r_embedding[int(etype[1])] n = edge_subgraph.num_edges(etype) edge_subgraph.edata['e'] = {etype: e.expand(n, -1)} edge_subgraph.apply_edges( dgl.function.u_add_e('x', 'e', 's'), etype=etype) edge_subgraph.apply_edges( dgl.function.e_sub_v('s', 'x', 'score'), etype=etype) score = -th.norm(edge_subgraph.edata['score'].pop(etype), p=1, dim=1) #score = th.sum(th.mul(edge_subgraph.edata['score'].pop(etype), e), dim=1) score_list.append(score) return th.cat(score_list) def regularization_loss(self, embedding): return th.mean(embedding.pow(2)) + th.mean(self.r_embedding.pow(2)) def construct_negative_graph(self,): neg_srcdst = self.negative_sampler(self.hg, self.train_eid_dict) if not isinstance(neg_srcdst, Mapping): assert len(self.hg.etypes) == 1, \ 'graph has multiple or no edge types; '\ 'please return a dict in negative sampler.' neg_srcdst = {self.hg.canonical_etypes[0]: neg_srcdst} # Get dtype from a tuple of tensors #dtype = F.dtype(list(neg_srcdst.values())[0][0]) neg_edges = { etype: neg_srcdst.get(etype, (th.tensor([]), th.tensor([]))) for etype in self.hg.canonical_etypes} neg_pair_graph = dgl.heterograph( neg_edges, {ntype: self.hg.number_of_nodes(ntype) for ntype in self.hg.ntypes}) return neg_pair_graph def _full_train_setp(self): self.model.train() negative_graph = self.construct_negative_graph() #for _ in range(2000): logits = self.model(self.hg)[self.category] #reg_loss = self.regularization_loss(logits) loss = self.loss_calculation(self.hg, negative_graph, logits) self.optimizer.zero_grad() loss.backward() #th.nn.utils.clip_grad_norm_(list(self.model.parameters()) + [self.r_embedding], 1.0) th.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0) self.optimizer.step() print(loss.item()) return loss.item() def _test_step(self, split=None, logits=None): self.model.eval() with th.no_grad(): logits = logits if logits else self.model(self.hg)[self.category] metric = self.evaluator(logits, self.r_embedding, self.train_dataset, self.val_dataset, self.train_dataset, hits=[1], eval_p='raw') # if split == 'val': # metric = self.evaluator(logits, self.r_embedding, self.val_dataset, hits=[1, 3, 10], eval_p='raw') # elif split == 'test': # metric = self.evaluator(logits, self.r_embedding, self.test_dataset, hits=[1, 3, 10], eval_p='raw') # elif split == 'train': # metric = self.evaluator(logits, self.r_embedding, self.train_dataset, hits=[1], eval_p='raw') return metric
43.535088
143
0.599839
8c547c276425fb4693184383542a946b66b821f9
593
py
Python
kalaida_schvyschkov/server/sv_packages/__init__.py
maxkalayda/stud_projects
e56a9647ca23694ef8c6983cb3b813dadda40d15
[ "MIT" ]
null
null
null
kalaida_schvyschkov/server/sv_packages/__init__.py
maxkalayda/stud_projects
e56a9647ca23694ef8c6983cb3b813dadda40d15
[ "MIT" ]
null
null
null
kalaida_schvyschkov/server/sv_packages/__init__.py
maxkalayda/stud_projects
e56a9647ca23694ef8c6983cb3b813dadda40d15
[ "MIT" ]
null
null
null
from flask import Flask from flask_login import LoginManager from flask_sqlalchemy import SQLAlchemy from os import path basedir = path.abspath(path.join(path.dirname(__file__), '..', 'sv_packages/templates')) app = Flask(__name__) app.secret_key = 'my supersecret key of all apps' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///database/login_params.db' app.config['SQLALCHEMY_BINDS'] = { 'main': 'sqlite:///database/sqlite.db' } app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) manager = LoginManager(app) from sv_packages import routes db.create_all()
26.954545
88
0.767285
88d38be15ae470fc5fbf66e20a289b89cb4fec43
278
py
Python
web/src/blueprints/__init__.py
jphacks/A_2001
b8f0dce49dc32041d06272593a467242636539a6
[ "MIT" ]
null
null
null
web/src/blueprints/__init__.py
jphacks/A_2001
b8f0dce49dc32041d06272593a467242636539a6
[ "MIT" ]
7
2020-10-31T09:10:47.000Z
2020-11-06T17:42:58.000Z
web/src/blueprints/__init__.py
jphacks/A_2001
b8f0dce49dc32041d06272593a467242636539a6
[ "MIT" ]
null
null
null
from .api import api from .tasks import tasks from .auth import auth from .quests import quests from .quests_shared import quests_shared from .subtasks import subtasks from .users import users __all__ = ["api", "auth", "quests", "quests_shared", "tasks", "subtasks", "users"]
25.272727
82
0.751799
43d8704474f78915a3e4a1975cfea3815e6c948c
923
py
Python
2020/day10.py
hrushikeshrv/aoc
00b3315cb7119acfe5536ae2dd5a3a78a76b0502
[ "MIT" ]
1
2020-12-05T03:59:02.000Z
2020-12-05T03:59:02.000Z
2020/day10.py
hrushikeshrv/aoc
00b3315cb7119acfe5536ae2dd5a3a78a76b0502
[ "MIT" ]
null
null
null
2020/day10.py
hrushikeshrv/aoc
00b3315cb7119acfe5536ae2dd5a3a78a76b0502
[ "MIT" ]
null
null
null
""" #TODO - Add solution to part 2 Problem 10 - https://adventofcode.com/2020/day/10 Part 1 - Given a set of numbers, find the product of the number of pairs of numbers which differ by 1 and the number of pairs of numbers which differ by 3 Part 1 - Given the same set of numbers, find the number of ways to arrange them in ascending order such that two consecutive numbers differ by at most 3 """ # Set up the input with open('input-10122020.txt', 'r') as file: j = file.readlines() j.append('0\n') jolts = [int(x[:-1]) for x in j] jolts.append(max(jolts) + 3) jolts = sorted(jolts) # Solution to part 1 def solve_1(jolts): diff = {1: 0, 2: 0, 3: 0} for i in range(1, len(jolts)): d = jolts[i] - jolts[i - 1] diff[d] += 1 return diff[1] * diff[3] ans_1 = solve_1(jolts) print(ans_1) # Answer was 1820 # Solution to part 2 def solve_2(jolts): raise NotImplementedError
23.075
149
0.661972
396d3e47ace5edb0e735045e1705adc468f7681d
886
py
Python
autoresolution/src/__init__.py
Haehnchen/enigma2-plugins
23007eb0b78665cd3a2faf98d1d6145b4f0ada3f
[ "OLDAP-2.3" ]
1
2020-01-27T22:53:56.000Z
2020-01-27T22:53:56.000Z
autoresolution/src/__init__.py
Haehnchen/enigma2-plugins
23007eb0b78665cd3a2faf98d1d6145b4f0ada3f
[ "OLDAP-2.3" ]
null
null
null
autoresolution/src/__init__.py
Haehnchen/enigma2-plugins
23007eb0b78665cd3a2faf98d1d6145b4f0ada3f
[ "OLDAP-2.3" ]
null
null
null
# -*- coding: utf-8 -*- from Components.Language import language from Tools.Directories import resolveFilename, SCOPE_PLUGINS, SCOPE_LANGUAGE import os,gettext PluginLanguageDomain = "AutoResolution" PluginLanguagePath = "SystemPlugins/AutoResolution/locale" def localeInit(): lang = language.getLanguage()[:2] # getLanguage returns e.g. "fi_FI" for "language_country" os.environ["LANGUAGE"] = lang # Enigma doesn't set this (or LC_ALL, LC_MESSAGES, LANG). gettext needs it! #print "[%s] set language to " %(PluginLanguageDomain), lang gettext.bindtextdomain(PluginLanguageDomain, resolveFilename(SCOPE_PLUGINS, PluginLanguagePath)) def _(txt): t = gettext.dgettext(PluginLanguageDomain, txt) if t == txt: #print "[%s] fallback to default translation for %s" %(PluginLanguageDomain, txt) t = gettext.gettext(txt) return t localeInit() language.addCallback(localeInit)
35.44
106
0.766366
a64d6b7148b862426e291c518b3eae98ceadb0aa
859
py
Python
tcpproxy.py
benjaminbrewerton/dlepard
f1279ed798c04df80b501a0a6689f047037196ff
[ "MIT" ]
null
null
null
tcpproxy.py
benjaminbrewerton/dlepard
f1279ed798c04df80b501a0a6689f047037196ff
[ "MIT" ]
null
null
null
tcpproxy.py
benjaminbrewerton/dlepard
f1279ed798c04df80b501a0a6689f047037196ff
[ "MIT" ]
null
null
null
import asyncio class TCPProxy(asyncio.Protocol): def __init__(self, ipv4adr, port, interface, receive_handler, loop=None): if loop is None: self.loop = asyncio.get_event_loop() else: self.loop = loop self.running = False self.ip_addr = ipv4adr self.port = port self.interface = interface self.transport = None # type: asyncio.Transport self.receive_handler = receive_handler def connection_made(self, transport): self.transport = transport def data_received(self, data: bytes): self.receive_handler(data) def send_msg(self, message): self.transport.write(message) async def start(self): coro = self.loop.create_connection(lambda: self, host=self.ip_addr, port=self.port) await asyncio.wait_for(coro, 5)
28.633333
91
0.6461
ef3f19540130364218e18488536191df6983d0a8
4,016
py
Python
torchnlp/datasets/wmt.py
XingxingZhang/PyTorch-NLP
b998dbbd943f7a00f67fd94aacbe5e865577da33
[ "BSD-3-Clause" ]
3
2018-06-27T13:43:47.000Z
2022-03-11T05:11:13.000Z
torchnlp/datasets/wmt.py
XingxingZhang/PyTorch-NLP
b998dbbd943f7a00f67fd94aacbe5e865577da33
[ "BSD-3-Clause" ]
null
null
null
torchnlp/datasets/wmt.py
XingxingZhang/PyTorch-NLP
b998dbbd943f7a00f67fd94aacbe5e865577da33
[ "BSD-3-Clause" ]
null
null
null
import os from torchnlp.utils import download_compressed_directory from torchnlp.datasets.dataset import Dataset def wmt_dataset(directory='data/wmt16_en_de', train=False, dev=False, test=False, train_filename='train.tok.clean.bpe.32000', dev_filename='newstest2013.tok.bpe.32000', test_filename='newstest2014.tok.bpe.32000', check_file='train.tok.clean.bpe.32000.en', url='https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8'): """ The Workshop on Machine Translation (WMT) 2014 English-German dataset. Initially this dataset was preprocessed by Google Brain. Though this download contains test sets from 2015 and 2016, the train set differs slightly from WMT 2015 and 2016 and significantly from WMT 2017. The provided data is mainly taken from version 7 of the Europarl corpus, which is freely available. Note that this the same data as last year, since Europarl is not anymore translted across all 23 official European languages. Additional training data is taken from the new News Commentary corpus. There are about 50 million words of training data per language from the Europarl corpus and 3 million words from the News Commentary corpus. A new data resource from 2013 is the Common Crawl corpus which was collected from web sources. Each parallel corpus comes with a annotation file that gives the source of each sentence pair. References: * https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/translate_ende.py # noqa: E501 * http://www.statmt.org/wmt14/translation-task.html Args: directory (str, optional): Directory to cache the dataset. train (bool, optional): If to load the training split of the dataset. dev (bool, optional): If to load the dev split of the dataset. test (bool, optional): If to load the test split of the dataset. train_filename (str, optional): The filename of the training split. dev_filename (str, optional): The filename of the dev split. test_filename (str, optional): The filename of the test split. check_file (str, optional): Check this file exists if download was successful. url (str, optional): URL of the dataset `tar.gz` file. Returns: :class:`tuple` of :class:`torchnlp.datasets.Dataset`: Tuple with the training tokens, dev tokens and test tokens in order if their respective boolean argument is true. Example: >>> from torchnlp.datasets import wmt_dataset >>> train = wmt_dataset(train=True) >>> train[:2] [{ 'en': 'Res@@ um@@ ption of the session', 'de': 'Wiederaufnahme der Sitzungsperiode' }, { 'en': 'I declare resumed the session of the European Parliament ad@@ jour@@ ned on...' 'de': 'Ich erklär@@ e die am Freitag , dem 17. Dezember unterbro@@ ch@@ ene...' }] """ download_compressed_directory( file_url=url, directory=directory, check_file=check_file, filename='wmt16_en_de.tar.gz') ret = [] splits = [(train, train_filename), (dev, dev_filename), (test, test_filename)] splits = [f for (requested, f) in splits if requested] for filename in splits: examples = [] en_path = os.path.join(directory, filename + '.en') de_path = os.path.join(directory, filename + '.de') en_file = [l.strip() for l in open(en_path, 'r', encoding='utf-8')] de_file = [l.strip() for l in open(de_path, 'r', encoding='utf-8')] assert len(en_file) == len(de_file) for i in range(len(en_file)): if en_file[i] != '' and de_file[i] != '': examples.append({'en': en_file[i], 'de': de_file[i]}) ret.append(Dataset(examples)) if len(ret) == 1: return ret[0] else: return tuple(ret)
45.636364
126
0.65762
1d964101cb10bea0a1424a5c53e294517d3b77bc
155
py
Python
parser/fase2/team12/src/ENTORNO/Simbolo.py
Josue-Zea/tytus
f9e4be9a8c03eb698fade7a748972e4f52d46685
[ "MIT" ]
35
2020-12-07T03:11:43.000Z
2021-04-15T17:38:16.000Z
parser/fase2/team12/src/ENTORNO/Simbolo.py
Josue-Zea/tytus
f9e4be9a8c03eb698fade7a748972e4f52d46685
[ "MIT" ]
47
2020-12-09T01:29:09.000Z
2021-01-13T05:37:50.000Z
parser/fase2/team12/src/ENTORNO/Simbolo.py
Josue-Zea/tytus
f9e4be9a8c03eb698fade7a748972e4f52d46685
[ "MIT" ]
556
2020-12-07T03:13:31.000Z
2021-06-17T17:41:10.000Z
class Symbol(): def __init__(self, id, data_type, valor): self.id = id self.data_type = data_type self.valor = valor
19.375
45
0.554839
6aa38d7c7506a6a74034a099a7fff6b3a11a5c15
14,846
py
Python
microsoft/testsuites/performance/common.py
srveniga/lisa
0b5bcf028ed4211d79ff90b9f915981c426baab4
[ "MIT" ]
null
null
null
microsoft/testsuites/performance/common.py
srveniga/lisa
0b5bcf028ed4211d79ff90b9f915981c426baab4
[ "MIT" ]
null
null
null
microsoft/testsuites/performance/common.py
srveniga/lisa
0b5bcf028ed4211d79ff90b9f915981c426baab4
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import inspect import pathlib from typing import Any, Dict, List, Optional, Union, cast from lisa import Node, RemoteNode, notifier, run_in_parallel from lisa.environment import Environment from lisa.messages import ( DiskPerformanceMessage, DiskSetupType, DiskType, NetworkLatencyPerformanceMessage, NetworkTCPPerformanceMessage, NetworkUDPPerformanceMessage, ) from lisa.schema import NetworkDataPath from lisa.tools import ( FIOMODES, Fdisk, Fio, FIOResult, Iperf3, Kill, Lagscope, Lscpu, Mdadm, Netperf, Ntttcp, Sar, Ssh, ) from lisa.tools.ntttcp import NTTTCP_TCP_CONCURRENCY, NTTTCP_UDP_CONCURRENCY from lisa.util.process import ExecutableResult, Process def perf_disk( node: Node, start_iodepth: int, max_iodepth: int, filename: str, core_count: int, disk_count: int, disk_setup_type: DiskSetupType, disk_type: DiskType, environment: Environment, test_name: str = "", num_jobs: Optional[List[int]] = None, block_size: int = 4, time: int = 120, size_gb: int = 0, numjob: int = 0, overwrite: bool = False, cwd: Optional[pathlib.PurePath] = None, ) -> None: fio_result_list: List[FIOResult] = [] fio = node.tools[Fio] numjobiterator = 0 for mode in FIOMODES: iodepth = start_iodepth numjobindex = 0 while iodepth <= max_iodepth: if num_jobs: numjob = num_jobs[numjobindex] fio_result = fio.launch( name=f"iteration{numjobiterator}", filename=filename, mode=mode.name, time=time, size_gb=size_gb, block_size=f"{block_size}K", iodepth=iodepth, overwrite=overwrite, numjob=numjob, cwd=cwd, ) fio_result_list.append(fio_result) iodepth = iodepth * 2 numjobindex += 1 numjobiterator += 1 other_fields: Dict[str, Any] = {} other_fields["core_count"] = core_count other_fields["disk_count"] = disk_count other_fields["block_size"] = block_size other_fields["disk_setup_type"] = disk_setup_type other_fields["disk_type"] = disk_type if not test_name: test_name = inspect.stack()[1][3] fio_messages: List[DiskPerformanceMessage] = fio.create_performance_messages( fio_result_list, test_name=test_name, environment=environment, other_fields=other_fields, ) for fio_message in fio_messages: notifier.notify(fio_message) def get_nic_datapath(node: Node) -> str: data_path: str = "" assert ( node.capability.network_interface and node.capability.network_interface.data_path ) if isinstance(node.capability.network_interface.data_path, NetworkDataPath): data_path = node.capability.network_interface.data_path.value return data_path def cleanup_process(environment: Environment, process_name: str) -> None: for node in environment.nodes.list(): kill = node.tools[Kill] kill.by_name(process_name) def reset_partitions( node: Node, disk_names: List[str], ) -> List[str]: fdisk = node.tools[Fdisk] partition_disks: List[str] = [] for data_disk in disk_names: fdisk.delete_partitions(data_disk) partition_disks.append(fdisk.make_partition(data_disk, format=False)) return partition_disks def stop_raid(node: Node) -> None: mdadm = node.tools[Mdadm] mdadm.stop_raid() def reset_raid(node: Node, disk_list: List[str]) -> None: stop_raid(node) mdadm = node.tools[Mdadm] mdadm.create_raid(disk_list) def perf_tcp_latency( environment: Environment, ) -> List[NetworkLatencyPerformanceMessage]: client = cast(RemoteNode, environment.nodes[0]) server = cast(RemoteNode, environment.nodes[1]) client_lagscope = client.tools[Lagscope] server_lagscope = server.tools[Lagscope] try: for lagscope in [client_lagscope, server_lagscope]: lagscope.set_busy_poll() server_lagscope.run_as_server(ip=server.internal_address) latency_perf_messages = client_lagscope.create_latency_peformance_messages( client_lagscope.run_as_client(server_ip=server.internal_address), environment, inspect.stack()[1][3], ) finally: for lagscope in [client_lagscope, server_lagscope]: lagscope.restore_busy_poll() return latency_perf_messages def perf_tcp_pps(environment: Environment, test_type: str) -> None: client = cast(RemoteNode, environment.nodes[0]) server = cast(RemoteNode, environment.nodes[1]) client_netperf = client.tools[Netperf] server_netperf = server.tools[Netperf] cpu = client.tools[Lscpu] core_count = cpu.get_core_count() if "maxpps" == test_type: ssh = client.tools[Ssh] ssh.set_max_session() client.close() ports = range(30000, 30032) else: ports = range(30000, 30001) for port in ports: server_netperf.run_as_server(port) for port in ports: client_netperf.run_as_client_async(server.internal_address, core_count, port) client_sar = client.tools[Sar] server_sar = server.tools[Sar] server_sar.get_statistics_async() result = client_sar.get_statistics() pps_message = client_sar.create_pps_peformance_messages( result, inspect.stack()[1][3], environment, test_type ) notifier.notify(pps_message) def perf_ntttcp( environment: Environment, udp_mode: bool = False, connections: Optional[List[int]] = None, test_case_name: str = "", ) -> List[Union[NetworkTCPPerformanceMessage, NetworkUDPPerformanceMessage]]: client = cast(RemoteNode, environment.nodes[0]) server = cast(RemoteNode, environment.nodes[1]) if not test_case_name: # if it's not filled, assume it's called by case directly. test_case_name = inspect.stack()[1][3] if connections is None: if udp_mode: connections = NTTTCP_UDP_CONCURRENCY else: connections = NTTTCP_TCP_CONCURRENCY client_ntttcp, server_ntttcp = run_in_parallel( [lambda: client.tools[Ntttcp], lambda: server.tools[Ntttcp]] ) try: client_lagscope, server_lagscope = run_in_parallel( [lambda: client.tools[Lagscope], lambda: server.tools[Lagscope]] ) for ntttcp in [client_ntttcp, server_ntttcp]: ntttcp.setup_system(udp_mode) for lagscope in [client_lagscope, server_lagscope]: lagscope.set_busy_poll() data_path = get_nic_datapath(client) server_nic_name = server.nics.default_nic client_nic_name = client.nics.default_nic dev_differentiator = "Hypervisor callback interrupts" if NetworkDataPath.Sriov.value == data_path: server_nic_name = server.nics.get_lower_nics()[0] client_nic_name = client.nics.get_lower_nics()[0] dev_differentiator = "mlx" server_lagscope.run_as_server(ip=server.internal_address) max_server_threads = 64 perf_ntttcp_message_list: List[ Union[NetworkTCPPerformanceMessage, NetworkUDPPerformanceMessage] ] = [] for test_thread in connections: if test_thread < max_server_threads: num_threads_p = test_thread num_threads_n = 1 else: num_threads_p = max_server_threads num_threads_n = int(test_thread / num_threads_p) if 1 == num_threads_n and 1 == num_threads_p: buffer_size = int(1048576 / 1024) else: buffer_size = int(65536 / 1024) if udp_mode: buffer_size = int(1024 / 1024) server_result = server_ntttcp.run_as_server_async( server_nic_name, ports_count=num_threads_p, buffer_size=buffer_size, dev_differentiator=dev_differentiator, udp_mode=udp_mode, ) client_lagscope_process = client_lagscope.run_as_client_async( server_ip=server.internal_address, ping_count=0, run_time_seconds=10, print_histogram=False, print_percentile=False, histogram_1st_interval_start_value=0, length_of_histogram_intervals=0, count_of_histogram_intervals=0, dump_csv=False, ) client_ntttcp_result = client_ntttcp.run_as_client( client_nic_name, server.internal_address, buffer_size=buffer_size, threads_count=num_threads_n, ports_count=num_threads_p, dev_differentiator=dev_differentiator, udp_mode=udp_mode, ) server_ntttcp_result = server_result.wait_result() server_result_temp = server_ntttcp.create_ntttcp_result( server_ntttcp_result ) client_result_temp = client_ntttcp.create_ntttcp_result( client_ntttcp_result, role="client" ) client_sar_result = client_lagscope_process.wait_result() client_average_latency = client_lagscope.get_average(client_sar_result) if udp_mode: ntttcp_message: Union[ NetworkTCPPerformanceMessage, NetworkUDPPerformanceMessage ] = client_ntttcp.create_ntttcp_udp_performance_message( server_result_temp, client_result_temp, str(test_thread), buffer_size, environment, test_case_name, ) else: ntttcp_message = client_ntttcp.create_ntttcp_tcp_performance_message( server_result_temp, client_result_temp, client_average_latency, str(test_thread), buffer_size, environment, test_case_name, ) notifier.notify(ntttcp_message) perf_ntttcp_message_list.append(ntttcp_message) finally: for ntttcp in [client_ntttcp, server_ntttcp]: ntttcp.restore_system(udp_mode) for lagscope in [client_lagscope, server_lagscope]: lagscope.restore_busy_poll() return perf_ntttcp_message_list def perf_iperf( environment: Environment, connections: List[int], buffer_length_list: List[int], udp_mode: bool = False, ) -> None: client = cast(RemoteNode, environment.nodes[0]) server = cast(RemoteNode, environment.nodes[1]) client_iperf3 = client.tools[Iperf3] server_iperf3 = server.tools[Iperf3] test_case_name = inspect.stack()[1][3] iperf3_messages_list: List[Any] = [] if udp_mode: for node in [client, server]: ssh = node.tools[Ssh] ssh.set_max_session() node.close() for buffer_length in buffer_length_list: for connection in connections: server_iperf3_process_list: List[Process] = [] client_iperf3_process_list: List[Process] = [] client_result_list: List[ExecutableResult] = [] server_result_list: List[ExecutableResult] = [] if connection < 64: num_threads_p = connection num_threads_n = 1 else: num_threads_p = 64 num_threads_n = int(connection / 64) server_start_port = 750 current_server_port = server_start_port current_server_iperf_instances = 0 while current_server_iperf_instances < num_threads_n: current_server_iperf_instances += 1 server_iperf3_process_list.append( server_iperf3.run_as_server_async( current_server_port, "g", 10, True, True, False ) ) current_server_port += 1 client_start_port = 750 current_client_port = client_start_port current_client_iperf_instances = 0 while current_client_iperf_instances < num_threads_n: current_client_iperf_instances += 1 client_iperf3_process_list.append( client_iperf3.run_as_client_async( server.internal_address, output_json=True, report_periodic=1, report_unit="g", port=current_client_port, buffer_length=buffer_length, run_time_seconds=10, parallel_number=num_threads_p, ip_version="4", udp_mode=udp_mode, ) ) current_client_port += 1 for client_iperf3_process in client_iperf3_process_list: client_result_list.append(client_iperf3_process.wait_result()) for server_iperf3_process in server_iperf3_process_list: server_result_list.append(server_iperf3_process.wait_result()) if udp_mode: iperf3_messages_list.append( client_iperf3.create_iperf_udp_performance_message( server_result_list, client_result_list, buffer_length, connection, environment, test_case_name, ) ) else: iperf3_messages_list.append( client_iperf3.create_iperf_tcp_performance_message( server_result_list[0].stdout, client_result_list[0].stdout, buffer_length, environment, test_case_name, ) ) for iperf3_message in iperf3_messages_list: notifier.notify(iperf3_message) def calculate_middle_average(values: List[Union[float, int]]) -> float: """ This method is used to calculate an average indicator. It discard the max and min value, and then take the average. """ total = sum(x for x in values) - min(values) - max(values) # calculate average return total / (len(values) - 2)
36.121655
85
0.611815
10b30fb70ea1bd12e8539b813f96c10d3195f6d6
3,244
py
Python
tf-docker/django/webapp/translation_web/settings.py
xinmang/TensorFlow-test
5eafe60c2d6a5166583c6384473fe2560f6bdeea
[ "Apache-2.0" ]
1
2018-06-29T07:16:55.000Z
2018-06-29T07:16:55.000Z
tf-docker/django/webapp/translation_web/settings.py
nciefeiniu/TensorFlow-test
e61db477899b36fdf22248db1968d016b9a9a421
[ "Apache-2.0" ]
null
null
null
tf-docker/django/webapp/translation_web/settings.py
nciefeiniu/TensorFlow-test
e61db477899b36fdf22248db1968d016b9a9a421
[ "Apache-2.0" ]
null
null
null
""" Django settings for translation_web project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'r#^1d(*6r2*gr*-0-pvtboof6=c@1r@op61ld&ohqfkto5w4ov' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*',] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'tranweb', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'translation_web.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'translation_web.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, "static/")
26.16129
91
0.694205
2577d8bfce8a3225c50699252016a2b415f9a954
869
py
Python
setup.py
ngazagna/safe_grid_search
bb06740a7b3473578b474b118694de2e24150246
[ "BSD-3-Clause" ]
null
null
null
setup.py
ngazagna/safe_grid_search
bb06740a7b3473578b474b118694de2e24150246
[ "BSD-3-Clause" ]
null
null
null
setup.py
ngazagna/safe_grid_search
bb06740a7b3473578b474b118694de2e24150246
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from distutils.core import setup from Cython.Build import cythonize DISTNAME = 'safegridoptim' DESCRIPTION = 'Coordinate descent solver for elastic net and l1 logistic' LONG_DESCRIPTION = open('README.md').read() MAINTAINER = 'Eugene Ndiaye' MAINTAINER_EMAIL = 'ndiayeeugene@gmail.com' LICENSE = 'BSD (3-clause)' DOWNLOAD_URL = 'https://github.com/EugeneNdiaye/safe_grid_search' URL = 'https://github.com/EugeneNdiaye/safe_grid_search' VERSION = None setup(name='safegridoptim', version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, license=LICENSE, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, url=URL, download_url=DOWNLOAD_URL, packages=['safegridoptim'], ext_modules=cythonize("safegridoptim/*.pyx"), include_dirs=[np.get_include()] )
29.965517
73
0.735328
6d51b85a91f8ba204c604eb1ad5333fa51eb0fa8
235
py
Python
pacman-arch/test/pacman/tests/sync104.py
Maxython/pacman-for-termux
3b208eb9274cbfc7a27fca673ea8a58f09ebad47
[ "MIT" ]
23
2021-05-21T19:11:06.000Z
2022-03-31T18:14:20.000Z
source/pacman-6.0.1/test/pacman/tests/sync104.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
11
2021-05-21T12:08:44.000Z
2021-12-21T08:30:08.000Z
source/pacman-6.0.1/test/pacman/tests/sync104.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
1
2021-09-26T08:44:40.000Z
2021-09-26T08:44:40.000Z
self.description = "-Suu" sp = pmpkg("dummy", "0.9-1") lp = pmpkg("dummy", "1.0-1") self.addpkg2db("sync", sp) self.addpkg2db("local", lp) self.args = "-Suu" self.addrule("PACMAN_RETCODE=0") self.addrule("PKG_VERSION=dummy|0.9-1")
18.076923
39
0.655319
2832e76a75b14d65485b551b477ee8fec1daeb5c
1,807
py
Python
tests/test.py
ChristofDubs/DoubleBallBalancer
6869220ed9f8c5234b00fc653bf05bb7e0bf6737
[ "Apache-2.0" ]
3
2018-04-08T13:32:26.000Z
2018-06-29T16:15:50.000Z
tests/test.py
ChristofDubs/DoubleBallBalancer
6869220ed9f8c5234b00fc653bf05bb7e0bf6737
[ "Apache-2.0" ]
null
null
null
tests/test.py
ChristofDubs/DoubleBallBalancer
6869220ed9f8c5234b00fc653bf05bb7e0bf6737
[ "Apache-2.0" ]
1
2020-07-18T03:47:41.000Z
2020-07-18T03:47:41.000Z
import unittest import numpy as np import context from model_2d.controller_2 import Controller as Controller2 from model_2d.dynamics_2 import StateIndex as StateIndex2 from model_2d.controller_3 import Controller as Controller3 from model_2d.dynamics_3 import StateIndex as StateIndex3 from model_2d.param import getDefaultParam delta = 1e-6 class TestController(unittest.TestCase): controller = Controller2(getDefaultParam(2)) K = np.array([0.447213596e+00, 1.03556079e+01, -4.73012271e+01, 3.683281576e+00, 6.05877477e-01, -3.53469304e+01]) def test_gains(self): # state gain for i in range(StateIndex2.NUM_STATES): x0 = np.zeros(StateIndex2.NUM_STATES) x0[i] = delta u = self.controller.compute_ctrl_input(x0, 0) self.assertAlmostEqual(u / delta, -self.K[i]) # input gain x0 = np.zeros(StateIndex2.NUM_STATES) u = self.controller.compute_ctrl_input(x0, delta) self.assertAlmostEqual(u / delta, self.K[0]) class TestController3(unittest.TestCase): controller = Controller3(getDefaultParam(3)) K = np.array([-0.447213596, 26.62771567, -199.45731763, -327.80147739, - 1.6832815768, 9.73717718, -133.08516459, -137.62380736]) def test_gains(self): # state gain for i in range(StateIndex3.NUM_STATES): x0 = np.zeros(StateIndex3.NUM_STATES) x0[i] = delta u = self.controller.compute_ctrl_input(x0, 0) self.assertAlmostEqual(u / delta, -self.K[i]) # input gain x0 = np.zeros(StateIndex3.NUM_STATES) u = self.controller.compute_ctrl_input(x0, delta) self.assertAlmostEqual(u / delta, self.K[0]) if __name__ == '__main__': unittest.main()
30.116667
76
0.663531
048c97aa6e972722ee96c6f677210e8f09287695
35,675
py
Python
pyqt_app/taskwidgetui.py
fffoobibi/pyqt_novel
08141735ce7937f817f99686bfc239259604558c
[ "MIT" ]
null
null
null
pyqt_app/taskwidgetui.py
fffoobibi/pyqt_novel
08141735ce7937f817f99686bfc239259604558c
[ "MIT" ]
null
null
null
pyqt_app/taskwidgetui.py
fffoobibi/pyqt_novel
08141735ce7937f817f99686bfc239259604558c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file '.\task_widget.ui' # # Created by: PyQt5 UI code generator 5.15.1 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(760, 519) self.horizontalLayout = QtWidgets.QHBoxLayout(Form) self.horizontalLayout.setContentsMargins(0, 0, 0, 0) self.horizontalLayout.setObjectName("horizontalLayout") self.stackedWidget = QtWidgets.QStackedWidget(Form) self.stackedWidget.setObjectName("stackedWidget") self.page = QtWidgets.QWidget() self.page.setObjectName("page") self.verticalLayout = QtWidgets.QVBoxLayout(self.page) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.frame_6 = QtWidgets.QFrame(self.page) self.frame_6.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_6.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_6.setObjectName("frame_6") self.horizontalLayout_4 = QtWidgets.QHBoxLayout(self.frame_6) self.horizontalLayout_4.setContentsMargins(5, 0, 0, 0) self.horizontalLayout_4.setSpacing(2) self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.pushButton = HoverButton(self.frame_6) self.pushButton.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.pushButton.setStyleSheet("QPushButton{image:url(:/ico/close_512px_1175341_easyicon.net.png);border:none;width:23px;height:23px}\n" "QPushButton:hover{image: url(:/ico/close_128px_1175741_easyicon.net.ico);width:23px;height:23px}\n" "") self.pushButton.setText("") self.pushButton.setIconSize(QtCore.QSize(22, 22)) self.pushButton.setObjectName("pushButton") self.horizontalLayout_4.addWidget(self.pushButton) self.info_title = QtWidgets.QLabel(self.frame_6) self.info_title.setStyleSheet("QLabel{font: bold 14pt}") self.info_title.setAlignment(QtCore.Qt.AlignCenter) self.info_title.setObjectName("info_title") self.horizontalLayout_4.addWidget(self.info_title) spacerItem = QtWidgets.QSpacerItem(5000, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem) self.checkBox = QtWidgets.QCheckBox(self.frame_6) self.checkBox.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.checkBox.setStyleSheet("QCheckBox{\n" " spacing: 2px;\n" "}\n" "\n" "/*QCheckBox::indicator{\n" " width: 15px;\n" " height:15px;\n" "}\n" "\n" "QCheckBox::indicator:unchecked{\n" " image:url(:/ico/unchecked_checkbox_64px_1170301_easyicon.net.png);\n" "}\n" "\n" "QCheckBox::indicator:checked{\n" " image:url(:/ico/checked_checkbox_64px_1101338_easyicon.net.png);\n" "}*/\n" "\n" "") self.checkBox.setText("") self.checkBox.setTristate(False) self.checkBox.setObjectName("checkBox") self.horizontalLayout_4.addWidget(self.checkBox) self.sub_button = QtWidgets.QPushButton(self.frame_6) self.sub_button.setStyleSheet("QPushButton{border:none}\n" "QPushButton:hover{border:1px solid lightgray;border-radius:3px;background:lightgray}") icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(":/ico/check_128px_1138992_easyicon.net.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) icon.addPixmap(QtGui.QPixmap(":/ico/close_128px_1138994_easyicon.net.ico"), QtGui.QIcon.Normal, QtGui.QIcon.On) self.sub_button.setIcon(icon) self.sub_button.setIconSize(QtCore.QSize(23, 27)) self.sub_button.setCheckable(True) self.sub_button.setChecked(False) self.sub_button.setObjectName("sub_button") self.horizontalLayout_4.addWidget(self.sub_button) self.frame_2 = QtWidgets.QFrame(self.frame_6) self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_2.setObjectName("frame_2") self.horizontalLayout_5 = QtWidgets.QHBoxLayout(self.frame_2) self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.pushButton_2 = QtWidgets.QPushButton(self.frame_2) self.pushButton_2.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.pushButton_2.setStyleSheet("QPushButton{border:none}\n" "QPushButton:hover{border:1px solid lightgray;border-radius:3px;background:lightgray}") self.pushButton_2.setText("") icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(":/ico/angle-left.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_2.setIcon(icon1) self.pushButton_2.setIconSize(QtCore.QSize(23, 27)) self.pushButton_2.setObjectName("pushButton_2") self.horizontalLayout_5.addWidget(self.pushButton_2) self.pushButton_3 = QtWidgets.QPushButton(self.frame_2) self.pushButton_3.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.pushButton_3.setStyleSheet("QPushButton{border:none}\n" "QPushButton:hover{border:1px solid lightgray;border-radius:3px;background:lightgray}") self.pushButton_3.setText("") icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(":/ico/angle-right.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_3.setIcon(icon2) self.pushButton_3.setIconSize(QtCore.QSize(23, 27)) self.pushButton_3.setObjectName("pushButton_3") self.horizontalLayout_5.addWidget(self.pushButton_3) self.horizontalLayout_4.addWidget(self.frame_2) self.horizontalLayout_4.setStretch(1, 10) self.verticalLayout.addWidget(self.frame_6) self.frame_4 = QtWidgets.QFrame(self.page) self.frame_4.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_4.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_4.setObjectName("frame_4") self.horizontalLayout_9 = QtWidgets.QHBoxLayout(self.frame_4) self.horizontalLayout_9.setObjectName("horizontalLayout_9") self.frame_13 = QtWidgets.QFrame(self.frame_4) self.frame_13.setFrameShape(QtWidgets.QFrame.NoFrame) self.frame_13.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_13.setObjectName("frame_13") self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.frame_13) self.verticalLayout_5.setContentsMargins(0, 0, 0, 0) self.verticalLayout_5.setObjectName("verticalLayout_5") self.info_img = TaskWidgetSubmitLabel(self.frame_13) self.info_img.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop) self.info_img.setObjectName("info_img") self.verticalLayout_5.addWidget(self.info_img) spacerItem1 = QtWidgets.QSpacerItem(20, 129, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout_5.addItem(spacerItem1) self.horizontalLayout_9.addWidget(self.frame_13) self.info_introduced = QtWidgets.QTextEdit(self.frame_4) font = QtGui.QFont() font.setFamily("微软雅黑 Light") font.setPointSize(11) self.info_introduced.setFont(font) self.info_introduced.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.info_introduced.setStyleSheet("background-color:rgba(0,0,0,0)") self.info_introduced.setLocale(QtCore.QLocale(QtCore.QLocale.Chinese, QtCore.QLocale.China)) self.info_introduced.setFrameShape(QtWidgets.QFrame.NoFrame) self.info_introduced.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.info_introduced.setTextInteractionFlags(QtCore.Qt.TextSelectableByMouse) self.info_introduced.setObjectName("info_introduced") self.horizontalLayout_9.addWidget(self.info_introduced) self.verticalLayout.addWidget(self.frame_4) self.line_2 = QtWidgets.QFrame(self.page) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setObjectName("line_2") self.verticalLayout.addWidget(self.line_2) self.frame_5 = QtWidgets.QFrame(self.page) self.frame_5.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_5.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_5.setObjectName("frame_5") self.horizontalLayout_6 = QtWidgets.QHBoxLayout(self.frame_5) self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.frame_8 = QtWidgets.QFrame(self.frame_5) self.frame_8.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_8.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_8.setObjectName("frame_8") self.horizontalLayout_7 = QtWidgets.QHBoxLayout(self.frame_8) self.horizontalLayout_7.setContentsMargins(0, -1, 0, -1) self.horizontalLayout_7.setSpacing(0) self.horizontalLayout_7.setObjectName("horizontalLayout_7") self.pushButton_6 = QtWidgets.QPushButton(self.frame_8) self.pushButton_6.setStyleSheet("font: 11.5pt;\n" "text-decoration: underline;\n" "border:none;\n" "font-weight:bold") self.pushButton_6.setObjectName("pushButton_6") self.horizontalLayout_7.addWidget(self.pushButton_6) spacerItem2 = QtWidgets.QSpacerItem(20, 20, QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_7.addItem(spacerItem2) self.frame_3 = QtWidgets.QFrame(self.frame_8) self.frame_3.setFrameShape(QtWidgets.QFrame.NoFrame) self.frame_3.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_3.setObjectName("frame_3") self.horizontalLayout_3 = QtWidgets.QHBoxLayout(self.frame_3) self.horizontalLayout_3.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.pushButton_5 = QtWidgets.QPushButton(self.frame_3) self.pushButton_5.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.pushButton_5.setStyleSheet("QPushButton{font: 11.5pt;\n" "text-decoration: underline;\n" "font-weight:bold;\n" "border:none}\n" "QPushButton:hover{\n" "color: rgb(200, 105, 255)}") self.pushButton_5.setObjectName("pushButton_5") self.horizontalLayout_3.addWidget(self.pushButton_5) self.label_2 = QtWidgets.QLabel(self.frame_3) font = QtGui.QFont() font.setFamily("微软雅黑") self.label_2.setFont(font) self.label_2.setObjectName("label_2") self.horizontalLayout_3.addWidget(self.label_2) spacerItem3 = QtWidgets.QSpacerItem(20, 20, QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem3) self.horizontalLayout_7.addWidget(self.frame_3) self.horizontalLayout_6.addWidget(self.frame_8) self.fresh_button = GifButton(self.frame_5) font = QtGui.QFont() font.setFamily("黑体") font.setPointSize(9) font.setStyleStrategy(QtGui.QFont.PreferAntialias) self.fresh_button.setFont(font) self.fresh_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.fresh_button.setStyleSheet("QPushButton{border:none}\n" "QPushButton:checked{border:1px solid lightgray;\n" "border-radius:2px;background-color: gray}\n" "QPushButton:hover{border:1px solid lightgray;border-radius:2px;background-color:lightgray}") icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(":/ico/refresh_173px_1188146_easyicon.net.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.fresh_button.setIcon(icon3) self.fresh_button.setObjectName("fresh_button") self.horizontalLayout_6.addWidget(self.fresh_button) self.read_button = QtWidgets.QPushButton(self.frame_5) font = QtGui.QFont() font.setFamily("黑体") font.setStyleStrategy(QtGui.QFont.PreferAntialias) self.read_button.setFont(font) self.read_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.read_button.setStyleSheet("QPushButton{border:none}\n" "QPushButton:hover{border:1px solid lightgray;border-radius:2px;background-color:lightgray}") icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap(":/ico/Metro_Text_Document_128px_1097814_easyicon.net.ico"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.read_button.setIcon(icon4) self.read_button.setIconSize(QtCore.QSize(23, 23)) self.read_button.setObjectName("read_button") self.horizontalLayout_6.addWidget(self.read_button) spacerItem4 = QtWidgets.QSpacerItem(50, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_6.addItem(spacerItem4) self.msg_button = QtWidgets.QPushButton(self.frame_5) self.msg_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.msg_button.setStyleSheet("QPushButton{border:none}\n" "") self.msg_button.setText("") icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap(":/ico/EditDocument_1194764_easyicon.net.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.msg_button.setIcon(icon5) self.msg_button.setIconSize(QtCore.QSize(28, 28)) self.msg_button.setObjectName("msg_button") self.horizontalLayout_6.addWidget(self.msg_button) self.info_down = GifButton(self.frame_5) self.info_down.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.info_down.setStyleSheet("QPushButton{border:none}\n" "QPushButton:hover{border:1px solid lightgray;border-radius:3px;background:lightgray}") self.info_down.setText("") icon6 = QtGui.QIcon() icon6.addPixmap(QtGui.QPixmap(":/ico/download_1229240_easyicon.net.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.info_down.setIcon(icon6) self.info_down.setIconSize(QtCore.QSize(28, 28)) self.info_down.setObjectName("info_down") self.horizontalLayout_6.addWidget(self.info_down) self.pushButton_4 = QtWidgets.QPushButton(self.frame_5) self.pushButton_4.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.pushButton_4.setStyleSheet("QPushButton{border:none}\n" "QPushButton:hover{border:1px solid lightgray;border-radius:3px;background:lightgray}") self.pushButton_4.setText("") icon7 = QtGui.QIcon() icon7.addPixmap(QtGui.QPixmap(":/ico/refresh_1233084_easyicon.net.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_4.setIcon(icon7) self.pushButton_4.setIconSize(QtCore.QSize(28, 28)) self.pushButton_4.setObjectName("pushButton_4") self.horizontalLayout_6.addWidget(self.pushButton_4) self.verticalLayout.addWidget(self.frame_5) self.line = QtWidgets.QFrame(self.page) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.verticalLayout.addWidget(self.line) self.frame_7 = QtWidgets.QFrame(self.page) self.frame_7.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_7.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_7.setObjectName("frame_7") self.horizontalLayout_8 = QtWidgets.QHBoxLayout(self.frame_7) self.horizontalLayout_8.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_8.setObjectName("horizontalLayout_8") self.frame_9 = QtWidgets.QFrame(self.frame_7) self.frame_9.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_9.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_9.setObjectName("frame_9") self.gridLayout = QtWidgets.QGridLayout(self.frame_9) self.gridLayout.setVerticalSpacing(10) self.gridLayout.setObjectName("gridLayout") self.label_5 = QtWidgets.QLabel(self.frame_9) font = QtGui.QFont() font.setFamily("SimSun-ExtB") self.label_5.setFont(font) self.label_5.setStyleSheet("") self.label_5.setObjectName("label_5") self.gridLayout.addWidget(self.label_5, 0, 0, 1, 1) self.label_13 = TaskInfoLabel(self.frame_9) self.label_13.setStyleSheet("color: black;\n" "font-weight:bold;\n" "") self.label_13.setOpenExternalLinks(False) self.label_13.setTextInteractionFlags(QtCore.Qt.TextSelectableByMouse) self.label_13.setObjectName("label_13") self.gridLayout.addWidget(self.label_13, 0, 1, 1, 1) self.label_6 = QtWidgets.QLabel(self.frame_9) self.label_6.setStyleSheet("") self.label_6.setObjectName("label_6") self.gridLayout.addWidget(self.label_6, 1, 0, 1, 1) self.label_14 = TaskInfoLabel(self.frame_9) self.label_14.setStyleSheet("QLabel{color: gray;font-weight:bold}\n" "QLabel:hover{color: blue; font-weight:bold}") self.label_14.setTextInteractionFlags(QtCore.Qt.TextSelectableByMouse) self.label_14.setObjectName("label_14") self.gridLayout.addWidget(self.label_14, 1, 1, 1, 1) self.label_7 = QtWidgets.QLabel(self.frame_9) self.label_7.setStyleSheet("") self.label_7.setObjectName("label_7") self.gridLayout.addWidget(self.label_7, 2, 0, 1, 1) self.label_15 = TaskInfoLabel(self.frame_9) self.label_15.setStyleSheet("font-family:宋体") self.label_15.setOpenExternalLinks(False) self.label_15.setTextInteractionFlags(QtCore.Qt.TextSelectableByMouse) self.label_15.setObjectName("label_15") self.gridLayout.addWidget(self.label_15, 2, 1, 1, 1) self.label_12 = QtWidgets.QLabel(self.frame_9) self.label_12.setStyleSheet("") self.label_12.setObjectName("label_12") self.gridLayout.addWidget(self.label_12, 3, 0, 1, 1) self.label_16 = QtWidgets.QLabel(self.frame_9) self.label_16.setObjectName("label_16") self.gridLayout.addWidget(self.label_16, 3, 1, 1, 1) self.gridLayout.setColumnStretch(1, 20) self.horizontalLayout_8.addWidget(self.frame_9) self.frame_10 = QtWidgets.QFrame(self.frame_7) self.frame_10.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_10.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_10.setObjectName("frame_10") self.gridLayout_2 = QtWidgets.QGridLayout(self.frame_10) self.gridLayout_2.setVerticalSpacing(10) self.gridLayout_2.setObjectName("gridLayout_2") self.label_8 = QtWidgets.QLabel(self.frame_10) self.label_8.setStyleSheet("") self.label_8.setObjectName("label_8") self.gridLayout_2.addWidget(self.label_8, 0, 0, 1, 1) self.label_17 = QtWidgets.QLabel(self.frame_10) self.label_17.setStyleSheet("") self.label_17.setTextInteractionFlags(QtCore.Qt.NoTextInteraction) self.label_17.setObjectName("label_17") self.gridLayout_2.addWidget(self.label_17, 0, 1, 1, 1) self.label_9 = QtWidgets.QLabel(self.frame_10) self.label_9.setStyleSheet("") self.label_9.setObjectName("label_9") self.gridLayout_2.addWidget(self.label_9, 1, 0, 1, 1) self.label_18 = QtWidgets.QLabel(self.frame_10) self.label_18.setStyleSheet("") self.label_18.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.label_18.setObjectName("label_18") self.gridLayout_2.addWidget(self.label_18, 1, 1, 1, 1) self.label_10 = QtWidgets.QLabel(self.frame_10) self.label_10.setStyleSheet("") self.label_10.setObjectName("label_10") self.gridLayout_2.addWidget(self.label_10, 2, 0, 1, 1) self.label_19 = QtWidgets.QLabel(self.frame_10) self.label_19.setStyleSheet("") self.label_19.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.label_19.setObjectName("label_19") self.gridLayout_2.addWidget(self.label_19, 2, 1, 1, 1) self.label_11 = QtWidgets.QLabel(self.frame_10) self.label_11.setStyleSheet("") self.label_11.setObjectName("label_11") self.gridLayout_2.addWidget(self.label_11, 3, 0, 1, 1) self.label_20 = QtWidgets.QLabel(self.frame_10) self.label_20.setStyleSheet("") self.label_20.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.label_20.setObjectName("label_20") self.gridLayout_2.addWidget(self.label_20, 3, 1, 1, 1) self.gridLayout_2.setColumnStretch(1, 20) self.horizontalLayout_8.addWidget(self.frame_10) self.verticalLayout.addWidget(self.frame_7) self.frame = QtWidgets.QFrame(self.page) self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.frame) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.progressBar = QtWidgets.QProgressBar(self.frame) self.progressBar.setStyleSheet("QProgressBar {\n" " text-align: center; /*进度值居中*/;\n" " color: rgb(0, 0, 0);\n" " border:1px solid gray;\n" " border-radius:5px;\n" " font-family:华文细黑;\n" "}\n" "QProgressBar::chunk {\n" " background-color: rgb(6, 168, 255);\n" " width:10px;\n" "}\n" "") self.progressBar.setProperty("value", 0) self.progressBar.setOrientation(QtCore.Qt.Horizontal) self.progressBar.setInvertedAppearance(False) self.progressBar.setTextDirection(QtWidgets.QProgressBar.TopToBottom) self.progressBar.setObjectName("progressBar") self.horizontalLayout_2.addWidget(self.progressBar) self.label = QtWidgets.QLabel(self.frame) self.label.setMinimumSize(QtCore.QSize(50, 0)) self.label.setStyleSheet("font-family:华文细黑;") self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName("label") self.horizontalLayout_2.addWidget(self.label) self.horizontalLayout_2.setStretch(0, 40) self.horizontalLayout_2.setStretch(1, 1) self.verticalLayout.addWidget(self.frame) self.stackedWidget.addWidget(self.page) self.page_2 = QtWidgets.QWidget() self.page_2.setStyleSheet("") self.page_2.setObjectName("page_2") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.page_2) self.verticalLayout_2.setContentsMargins(0, 0, 0, 0) self.verticalLayout_2.setSpacing(0) self.verticalLayout_2.setObjectName("verticalLayout_2") self.frame_12 = QtWidgets.QFrame(self.page_2) self.frame_12.setStyleSheet("") self.frame_12.setFrameShape(QtWidgets.QFrame.NoFrame) self.frame_12.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_12.setObjectName("frame_12") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.frame_12) self.verticalLayout_3.setContentsMargins(0, 0, 0, 0) self.verticalLayout_3.setSpacing(0) self.verticalLayout_3.setObjectName("verticalLayout_3") self.readbar_widget = ReadBar(self.frame_12) self.readbar_widget.setStyleSheet("") self.readbar_widget.setObjectName("readbar_widget") self.verticalLayout_3.addWidget(self.readbar_widget) self.stackedWidget_2 = QtWidgets.QStackedWidget(self.frame_12) self.stackedWidget_2.setObjectName("stackedWidget_2") self.page_3 = QtWidgets.QWidget() self.page_3.setObjectName("page_3") self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.page_3) self.verticalLayout_4.setContentsMargins(0, 0, 0, 0) self.verticalLayout_4.setSpacing(0) self.verticalLayout_4.setObjectName("verticalLayout_4") self.stackedWidget_3 = QtWidgets.QStackedWidget(self.page_3) self.stackedWidget_3.setObjectName("stackedWidget_3") self.page_5 = QtWidgets.QWidget() self.page_5.setObjectName("page_5") self.verticalLayout_7 = QtWidgets.QVBoxLayout(self.page_5) self.verticalLayout_7.setContentsMargins(0, 0, 0, 0) self.verticalLayout_7.setSpacing(0) self.verticalLayout_7.setObjectName("verticalLayout_7") self.textBrowser = TaskReadBrowser(self.page_5) self.textBrowser.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.textBrowser.setStyleSheet("") self.textBrowser.setFrameShape(QtWidgets.QFrame.NoFrame) self.textBrowser.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAsNeeded) self.textBrowser.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.textBrowser.setObjectName("textBrowser") self.verticalLayout_7.addWidget(self.textBrowser) self.stackedWidget_3.addWidget(self.page_5) self.page_6 = QtWidgets.QWidget() self.page_6.setObjectName("page_6") self.verticalLayout_6 = QtWidgets.QVBoxLayout(self.page_6) self.verticalLayout_6.setContentsMargins(0, 0, 0, 0) self.verticalLayout_6.setSpacing(0) self.verticalLayout_6.setObjectName("verticalLayout_6") self.auto_split = AutoSplitContentTaskReadWidget(self.page_6) self.auto_split.setObjectName("auto_split") self.verticalLayout_6.addWidget(self.auto_split) self.stackedWidget_3.addWidget(self.page_6) self.verticalLayout_4.addWidget(self.stackedWidget_3) self.frame_11 = QtWidgets.QFrame(self.page_3) font = QtGui.QFont() font.setFamily("等线") font.setPointSize(12) self.frame_11.setFont(font) self.frame_11.setStyleSheet("") self.frame_11.setFrameShape(QtWidgets.QFrame.NoFrame) self.frame_11.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_11.setObjectName("frame_11") self.horizontalLayout_10 = QtWidgets.QHBoxLayout(self.frame_11) self.horizontalLayout_10.setContentsMargins(5, 5, 5, 5) self.horizontalLayout_10.setObjectName("horizontalLayout_10") self.chapter_label = QtWidgets.QLabel(self.frame_11) self.chapter_label.setObjectName("chapter_label") self.horizontalLayout_10.addWidget(self.chapter_label) spacerItem5 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_10.addItem(spacerItem5) self.prev_button = ColorButton(self.frame_11) font = QtGui.QFont() font.setFamily("等线") font.setPointSize(10) self.prev_button.setFont(font) self.prev_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.prev_button.setText("") self.prev_button.setCheckable(True) self.prev_button.setObjectName("prev_button") self.horizontalLayout_10.addWidget(self.prev_button) self.next_button = ColorButton(self.frame_11) font = QtGui.QFont() font.setFamily("等线") font.setPointSize(10) font.setBold(False) font.setItalic(False) font.setWeight(50) self.next_button.setFont(font) self.next_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.next_button.setText("") self.next_button.setCheckable(True) self.next_button.setObjectName("next_button") self.horizontalLayout_10.addWidget(self.next_button) self.exit_button = ColorButton(self.frame_11) font = QtGui.QFont() font.setFamily("等线") font.setPointSize(10) self.exit_button.setFont(font) self.exit_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.exit_button.setText("") self.exit_button.setCheckable(True) self.exit_button.setObjectName("exit_button") self.horizontalLayout_10.addWidget(self.exit_button) self.sizedown_button = QtWidgets.QPushButton(self.frame_11) self.sizedown_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.sizedown_button.setText("") icon8 = QtGui.QIcon() icon8.addPixmap(QtGui.QPixmap(":/ico/font_size_down_1170460_easyicon.net.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.sizedown_button.setIcon(icon8) self.sizedown_button.setCheckable(True) self.sizedown_button.setObjectName("sizedown_button") self.horizontalLayout_10.addWidget(self.sizedown_button) self.sizeup_button = QtWidgets.QPushButton(self.frame_11) self.sizeup_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.sizeup_button.setText("") icon9 = QtGui.QIcon() icon9.addPixmap(QtGui.QPixmap(":/ico/font_size_up_1170461_easyicon.net.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.sizeup_button.setIcon(icon9) self.sizeup_button.setCheckable(True) self.sizeup_button.setObjectName("sizeup_button") self.horizontalLayout_10.addWidget(self.sizeup_button) self.other_button = ColorButton(self.frame_11) self.other_button.setText("") icon10 = QtGui.QIcon() icon10.addPixmap(QtGui.QPixmap(":/hl/其他.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.other_button.setIcon(icon10) self.other_button.setObjectName("other_button") self.horizontalLayout_10.addWidget(self.other_button) self.markup_button = ColorButton(self.frame_11) self.markup_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.markup_button.setText("") icon11 = QtGui.QIcon() icon11.addPixmap(QtGui.QPixmap(":/hl/bookmark_1223025_easyicon.net.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.markup_button.setIcon(icon11) self.markup_button.setCheckable(True) self.markup_button.setObjectName("markup_button") self.horizontalLayout_10.addWidget(self.markup_button) self.skin_button = ColorButton(self.frame_11) self.skin_button.setText("") self.skin_button.setObjectName("skin_button") self.horizontalLayout_10.addWidget(self.skin_button) self.chapters_button_2 = ColorButton(self.frame_11) self.chapters_button_2.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.chapters_button_2.setText("") self.chapters_button_2.setCheckable(True) self.chapters_button_2.setObjectName("chapters_button_2") self.horizontalLayout_10.addWidget(self.chapters_button_2) self.more_button = ColorButton(self.frame_11) self.more_button.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.more_button.setText("") self.more_button.setCheckable(True) self.more_button.setObjectName("more_button") self.horizontalLayout_10.addWidget(self.more_button) self.verticalLayout_4.addWidget(self.frame_11) self.verticalLayout_4.setStretch(0, 20) self.stackedWidget_2.addWidget(self.page_3) self.verticalLayout_3.addWidget(self.stackedWidget_2) self.verticalLayout_2.addWidget(self.frame_12) self.stackedWidget.addWidget(self.page_2) self.horizontalLayout.addWidget(self.stackedWidget) self.retranslateUi(Form) self.stackedWidget.setCurrentIndex(0) self.stackedWidget_2.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) self.info_title.setText(_translate("Form", "小说名")) self.sub_button.setText(_translate("Form", "已订阅")) self.pushButton_2.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-size:10pt; font-weight:600;\">上一个(Z)</span></p></body></html>")) self.pushButton_3.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-size:10pt; font-weight:600;\">下一个(C)</span></p></body></html>")) self.info_img.setText(_translate("Form", "照片")) self.pushButton_6.setText(_translate("Form", "任务详情")) self.pushButton_5.setText(_translate("Form", "按章节下载")) self.label_2.setText(_translate("Form", "几把")) self.fresh_button.setText(_translate("Form", "获取最新章节")) self.read_button.setText(_translate("Form", "阅读")) self.msg_button.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-weight:600;\">下载日志</span></p></body></html>")) self.info_down.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-weight:600;\">开始下载</span></p></body></html>")) self.pushButton_4.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-weight:600;\">重新下载</span></p></body></html>")) self.label_5.setText(_translate("Form", "文件名称")) self.label_13.setText(_translate("Form", "TextLabel")) self.label_6.setText(_translate("Form", "存储目录")) self.label_14.setText(_translate("Form", "TextLabel")) self.label_7.setText(_translate("Form", "下载地址")) self.label_15.setText(_translate("Form", "https://www.baidu.com")) self.label_12.setText(_translate("Form", "平均速度")) self.label_16.setText(_translate("Form", "TextLabel")) self.label_8.setText(_translate("Form", "任务状态")) self.label_17.setText(_translate("Form", "TextLabel")) self.label_9.setText(_translate("Form", "文件大小")) self.label_18.setText(_translate("Form", "2012")) self.label_10.setText(_translate("Form", "创建时间")) self.label_19.setText(_translate("Form", "TextLabel")) self.label_11.setText(_translate("Form", "完成时间")) self.label_20.setText(_translate("Form", "TextLabel")) self.progressBar.setFormat(_translate("Form", "%p%")) self.label.setText(_translate("Form", "21.34k/s ")) self.chapter_label.setText(_translate("Form", "TextLabel")) self.prev_button.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-weight:600;\">上一章 (快捷键: 1)</span></p></body></html>")) self.prev_button.setShortcut(_translate("Form", "1")) self.next_button.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-weight:600;\">下一章 (快捷键: 2)</span></p></body></html>")) self.next_button.setShortcut(_translate("Form", "2")) self.exit_button.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-weight:600;\">退出阅读 (快捷键: Esc)</span></p></body></html>")) self.exit_button.setShortcut(_translate("Form", "Esc")) self.other_button.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-size:10pt; font-weight:600;\">翻页方式</span></p></body></html>")) self.markup_button.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-size:10pt; font-weight:600;\">添加书签</span></p></body></html>")) self.skin_button.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-size:10pt; font-weight:600;\">阅读主题</span></p></body></html>")) self.chapters_button_2.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-size:10pt; font-weight:600;\">信息</span></p></body></html>")) self.more_button.setToolTip(_translate("Form", "<html><head/><body><p><span style=\" font-size:10pt; font-weight:600;\">设置</span></p></body></html>")) from .customwidgets import AutoSplitContentTaskReadWidget, ColorButton, GifButton, HoverButton, ReadBar, TaskInfoLabel, TaskReadBrowser, TaskWidgetSubmitLabel
56.269716
164
0.70918
19d30a0e8303dd7f558a8039eef41a64b8affc5a
7,342
py
Python
catkin_tools/jobs/commands/cmake.py
iwanders/catkin_tools
76bfe96cc18cdf4b4e88a1f764f73260f77843b5
[ "Apache-2.0" ]
null
null
null
catkin_tools/jobs/commands/cmake.py
iwanders/catkin_tools
76bfe96cc18cdf4b4e88a1f764f73260f77843b5
[ "Apache-2.0" ]
null
null
null
catkin_tools/jobs/commands/cmake.py
iwanders/catkin_tools
76bfe96cc18cdf4b4e88a1f764f73260f77843b5
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import re from catkin_tools.execution.io import IOBufferProtocol from catkin_tools.execution.events import ExecutionEvent from catkin_tools.terminal_color import fmt from catkin_tools.terminal_color import sanitize from catkin_tools.utils import which CMAKE_EXEC = which('cmake') def split_to_last_line_break(data): """This splits a byte buffer into (head, tail) where head contains the beginning of the buffer to the last line break (inclusive) and the tail contains all bytes after that.""" last_break_index = 1 + data.rfind(b'\n') return data[:last_break_index], data[last_break_index:] class CMakeIOBufferProtocol(IOBufferProtocol): """An asyncio protocol that collects stdout and stderr. This class also generates `stdout` and `stderr` events. Since the underlying asyncio API constructs the actual protocols, this class provides a factory method to inject the job and stage information into the created protocol. """ def __init__(self, label, job_id, stage_label, event_queue, log_path, source_path, *args, **kwargs): super(CMakeIOBufferProtocol, self).__init__(label, job_id, stage_label, event_queue, log_path, *args, **kwargs) self.source_path = source_path # These are buffers for incomplete lines that we want to wait to parse # until we have received them completely self.stdout_tail = b'' self.stderr_tail = b'' def on_stdout_received(self, data): data_head, self.stdout_tail = split_to_last_line_break(self.stdout_tail + data) colored = self.color_lines(data_head) super(CMakeIOBufferProtocol, self).on_stdout_received(colored) def on_stderr_received(self, data): data_head, self.stderr_tail = split_to_last_line_break(self.stderr_tail + data) colored = self.color_lines(data_head) super(CMakeIOBufferProtocol, self).on_stderr_received(colored) def close(self): # Make sure tail buffers are flushed self.flush_tails() super(CMakeIOBufferProtocol, self).close() def flush_tails(self): """Write out any unprocessed tail buffers.""" colored = self.color_lines(self.stdout_tail) super(CMakeIOBufferProtocol, self).on_stdout_received(colored) self.stdout_tail = b'' colored = self.color_lines(self.stderr_tail) super(CMakeIOBufferProtocol, self).on_stderr_received(colored) self.stderr_tail = b'' def color_lines(self, data): """Apply colorization rules to each line in data""" decoded_data = self._decode(data) # TODO: This will only work if all lines are received at once. Instead # of direclty splitting lines, we should buffer the data lines until # the last character is a line break lines = decoded_data.splitlines(True) # Keep line breaks colored_lines = [self.colorize_cmake(l) for l in lines] colored_data = ''.join(colored_lines) encoded_data = self._encode(colored_data) return encoded_data @classmethod def factory_factory(cls, source_path): """Factory factory for constructing protocols that know the source path for this CMake package.""" def factory(label, job_id, stage_label, event_queue, log_path): # factory is called by caktin_tools executor def init_proxy(*args, **kwargs): # init_proxy is called by asyncio return cls(label, job_id, stage_label, event_queue, log_path, source_path, *args, **kwargs) return init_proxy return factory def colorize_cmake(self, line): """Colorizes output from CMake This also prepends the source path to the locations of warnings and errors. :param line: one, new line terminated, line from `cmake` which needs coloring. :type line: str """ # return line cline = sanitize(line) if len(cline.strip()) == 0: return cline if line.startswith('-- '): cline = '@{cf}--@| ' + cline[len('-- '):] if ':' in cline: split_cline = cline.split(':', 1) if len(split_cline[1].strip()) > 0: cline = split_cline[0] + (':@{yf}%s@|' % split_cline[1]) elif line.lower().startswith('warning'): # WARNING cline = fmt('@{yf}', reset=False) + cline elif line.startswith('CMake Warning at '): # CMake Warning at... cline = cline.replace('CMake Warning at ', '@{yf}@!CMake Warning@| at ' + self.source_path + os.path.sep) elif line.startswith('CMake Warning (dev) at '): # CMake Warning at... cline = cline.replace( 'CMake Warning (dev) at ', '@{yf}@!CMake Warning (dev)@| at ' + self.source_path + os.path.sep) elif line.startswith('CMake Warning'): # CMake Warning... cline = cline.replace('CMake Warning', '@{yf}@!CMake Warning@|') elif line.startswith('ERROR:'): # ERROR: cline = cline.replace('ERROR:', '@!@{rf}ERROR:@|') elif line.startswith('CMake Error at '): # CMake Error... cline = cline.replace('CMake Error at ', '@{rf}@!CMake Error@| at ' + self.source_path + os.path.sep) elif line.startswith('CMake Error'): # CMake Error... cline = cline.replace('CMake Error', '@{rf}@!CMake Error@|') elif line.startswith('Call Stack (most recent call first):'): # CMake Call Stack cline = cline.replace('Call Stack (most recent call first):', '@{cf}@_Call Stack (most recent call first):@|') return fmt(cline, reset=False) class CMakeMakeIOBufferProtocol(IOBufferProtocol): """An IOBufferProtocol which parses CMake's progree prefixes and emits corresponding STAGE_PROGRESS events.""" def __init__(self, label, job_id, stage_label, event_queue, log_path, *args, **kwargs): super(CMakeMakeIOBufferProtocol, self).__init__( label, job_id, stage_label, event_queue, log_path, *args, **kwargs) def on_stdout_received(self, data): super(CMakeMakeIOBufferProtocol, self).on_stdout_received(data) # Parse CMake Make completion progress progress_matches = re.match('\[\s*([0-9]+)%\]', self._decode(data)) if progress_matches is not None: self.event_queue.put(ExecutionEvent( 'STAGE_PROGRESS', job_id=self.job_id, stage_label=self.stage_label, percent=str(progress_matches.groups()[0])))
41.480226
119
0.652411
a7b32b1c0e08ff923d00c75837198cf6fe90e147
14,074
py
Python
datalad/support/tests/test_fileinfo.py
mslw/datalad
5adfde7818a9582cd12c2d25fe6f008132de1b2f
[ "MIT" ]
298
2015-01-25T17:36:29.000Z
2022-03-20T03:38:47.000Z
datalad/support/tests/test_fileinfo.py
adswa/datalad
c86643fe2e974da8d7403e9799997efcfee97384
[ "MIT" ]
6,387
2015-01-02T18:15:01.000Z
2022-03-31T20:58:58.000Z
datalad/support/tests/test_fileinfo.py
adswa/datalad
c86643fe2e974da8d7403e9799997efcfee97384
[ "MIT" ]
109
2015-01-25T17:49:40.000Z
2022-03-06T06:54:54.000Z
# ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test file info getters""" import os.path as op from pathlib import Path import datalad.utils as ut from datalad.tests.utils import ( assert_dict_equal, assert_equal, assert_false, assert_in, assert_not_in, assert_raises, known_failure_githubci_win, slow, with_tempfile, with_tree, ) from datalad.distribution.dataset import Dataset from datalad.support.exceptions import NoSuchPathError from datalad.support.gitrepo import GitRepo from datalad.tests.utils import ( assert_repo_status, get_convoluted_situation, ) @slow # 10sec on travis @known_failure_githubci_win @with_tempfile def test_get_content_info(path): repo = GitRepo(path) assert_equal(repo.get_content_info(), {}) # an invalid reference causes an exception assert_raises(ValueError, repo.get_content_info, ref='HEAD') ds = get_convoluted_situation(path) repopath = ds.repo.pathobj assert_equal(ds.repo.pathobj, repopath) assert_equal(ds.pathobj, ut.Path(path)) # verify general rules on fused info records that are incrementally # assembled: for git content info, amended with annex info on 'HEAD' # (to get the last committed stage and with it possibly vanished # content), and lastly annex info wrt to the present worktree, to # also get info on added/staged content # this fuses the info reported from # - git ls-files # - git annex findref HEAD # - git annex find --include '*' for f, r in ds.repo.annexstatus().items(): if f.match('*_untracked'): assert(r.get('gitshasum', None) is None) if f.match('*_deleted'): assert(not f.exists() and not f.is_symlink() is None) if f.match('subds_*'): assert(r['type'] == 'dataset' if r.get('gitshasum', None) else 'directory') if f.match('file_*'): # which one exactly depends on many things assert_in(r['type'], ('file', 'symlink')) if f.match('file_ingit*'): assert(r['type'] == 'file') elif '.datalad' not in f.parts and not f.match('.git*') and \ r.get('gitshasum', None) and not f.match('subds*'): # this should be known to annex, one way or another # regardless of whether things add deleted or staged # or anything in between assert_in('key', r, f) assert_in('keyname', r, f) assert_in('backend', r, f) assert_in('bytesize', r, f) # no duplication with path assert_not_in('file', r, f) # query full untracked report res = ds.repo.get_content_info() assert_in(repopath.joinpath('dir_untracked', 'file_untracked'), res) assert_not_in(repopath.joinpath('dir_untracked'), res) # query for compact untracked report res = ds.repo.get_content_info(untracked='normal') assert_not_in(repopath.joinpath('dir_untracked', 'file_untracked'), res) assert_in(repopath.joinpath('dir_untracked'), res) # query no untracked report res = ds.repo.get_content_info(untracked='no') assert_not_in(repopath.joinpath('dir_untracked', 'file_untracked'), res) assert_not_in(repopath.joinpath('dir_untracked'), res) # git status integrity status = ds.repo.status() for t in ('subds', 'file'): for s in ('untracked', 'added', 'deleted', 'clean', 'ingit_clean', 'dropped_clean', 'modified', 'ingit_modified'): for l in ('', ut.PurePosixPath('subdir', '')): if t == 'subds' and 'ingit' in s or 'dropped' in s: # invalid combination continue if t == 'subds' and s == 'deleted': # same as subds_unavailable -> clean continue p = repopath.joinpath(l, '{}_{}'.format(t, s)) assert p.match('*_{}'.format(status[p]['state'])), p if t == 'subds': assert_in(status[p]['type'], ('dataset', 'directory'), p) else: assert_in(status[p]['type'], ('file', 'symlink'), p) # git annex status integrity annexstatus = ds.repo.annexstatus() for t in ('file',): for s in ('untracked', 'added', 'deleted', 'clean', 'ingit_clean', 'dropped_clean', 'modified', 'ingit_modified'): for l in ('', ut.PurePosixPath('subdir', '')): p = repopath.joinpath(l, '{}_{}'.format(t, s)) if s in ('untracked', 'ingit_clean', 'ingit_modified'): # annex knows nothing about these things assert_not_in('key', annexstatus[p]) continue assert_in('key', annexstatus[p]) # dear future, # if the next one fails, git-annex might have changed the # nature of the path that are being reported by # `annex find --json` # when this was written `hashir*` was a native path, but # `file` was a POSIX path assert_equal(annexstatus[p]['has_content'], 'dropped' not in s) # check the different subds evaluation modes someds = Dataset(ds.pathobj / 'subds_modified' / 'someds') dirtyds_path = someds.pathobj / 'dirtyds' assert_not_in( 'state', someds.repo.status(eval_submodule_state='no')[dirtyds_path] ) assert_equal( 'clean', someds.repo.status(eval_submodule_state='commit')[dirtyds_path]['state'] ) assert_equal( 'modified', someds.repo.status(eval_submodule_state='full')[dirtyds_path]['state'] ) @with_tempfile def test_compare_content_info(path): # TODO remove when `create` is RF to return the new Dataset ds = Dataset(path).create() assert_repo_status(path) # for a clean repo HEAD and worktree query should yield identical results # minus a 'bytesize' report that is readily available for HEAD, but would # not a stat call per file for the worktree, and is not done ATM wt = ds.repo.get_content_info(ref=None) assert_dict_equal( wt, {f: {k: v for k, v in p.items() if k != 'bytesize'} for f, p in ds.repo.get_content_info(ref='HEAD').items()} ) @with_tempfile def test_subds_path(path): # a dataset with a subdataset with a file, all neatly tracked ds = Dataset(path).create() subds = ds.create('sub') assert_repo_status(path) with (subds.pathobj / 'some.txt').open('w') as f: f.write(u'test') ds.save(recursive=True) assert_repo_status(path) # querying the toplevel dataset repo for a subdspath should # report the subdataset record in the dataset # (unlike `git status`, which is silent for subdataset paths), # but definitely not report the subdataset as deleted # https://github.com/datalad/datalad-revolution/issues/17 stat = ds.repo.status(paths=[op.join('sub', 'some.txt')]) assert_equal(list(stat.keys()), [subds.repo.pathobj]) assert_equal(stat[subds.repo.pathobj]['state'], 'clean') @with_tempfile def test_report_absent_keys(path): ds = Dataset(path).create() # create an annexed file testfile = ds.pathobj / 'dummy' testfile.write_text(u'nothing') ds.save() # present in a full report and in a partial report # based on worktree of HEAD ref for ai in ( ds.repo.get_content_annexinfo(eval_availability=True), ds.repo.get_content_annexinfo( paths=['dummy'], eval_availability=True), ds.repo.get_content_annexinfo( ref='HEAD', eval_availability=True), ds.repo.get_content_annexinfo( ref='HEAD', paths=['dummy'], eval_availability=True)): assert_in(testfile, ai) assert_equal(ai[testfile]['has_content'], True) # drop the key, not available anywhere else ds.drop('dummy', check=False) # does not change a thing, except the key is gone for ai in ( ds.repo.get_content_annexinfo(eval_availability=True), ds.repo.get_content_annexinfo( paths=['dummy'], eval_availability=True), ds.repo.get_content_annexinfo( ref='HEAD', eval_availability=True), ds.repo.get_content_annexinfo( ref='HEAD', paths=['dummy'], eval_availability=True)): assert_in(testfile, ai) assert_equal(ai[testfile]['has_content'], False) @with_tempfile def test_annexinfo_init(path): ds = Dataset(path).create() foo = ds.pathobj / "foo" foo_cont = b"foo content" foo.write_bytes(foo_cont) bar = ds.pathobj / "bar" bar.write_text(u"bar content") ds.save() # Custom init limits report, with original dict getting updated. cinfo_custom_init = ds.repo.get_content_annexinfo( init={foo: {"bytesize": 0, "this-is-surely-only-here": "right?"}}) assert_not_in(bar, cinfo_custom_init) assert_in(foo, cinfo_custom_init) assert_equal(cinfo_custom_init[foo]["bytesize"], len(foo_cont)) assert_equal(cinfo_custom_init[foo]["this-is-surely-only-here"], "right?") # "git" injects get_content_info() values. cinfo_init_git = ds.repo.get_content_annexinfo(init="git") assert_in("gitshasum", cinfo_init_git[foo]) # init=None, on the other hand, does not. cinfo_init_none = ds.repo.get_content_annexinfo(init=None) assert_in(foo, cinfo_init_none) assert_in(bar, cinfo_init_none) assert_not_in("gitshasum", cinfo_init_none[foo]) @with_tempfile def test_info_path_inside_submodule(path): ds = Dataset(path).create() subds = ds.create("submod") foo = (subds.pathobj / "foo") foo.write_text("foo") ds.save(recursive=True) cinfo = ds.repo.get_content_info( ref="HEAD", paths=[foo.relative_to(ds.pathobj)]) assert_in("gitshasum", cinfo[subds.pathobj]) @with_tempfile def test_get_content_info_dotgit(path): ds = Dataset(path).create() # Files in .git/ won't be reported, though this takes a kludge on our side # before Git 2.25. assert_false(ds.repo.get_content_info(paths=[op.join(".git", "config")])) @with_tempfile def test_get_content_info_paths_empty_list(path): ds = Dataset(path).create() # Unlike None, passing any empty list as paths to get_content_info() does # not report on all content. assert_false(ds.repo.get_content_info(paths=[])) assert_false(ds.repo.get_content_info(paths=[], ref="HEAD")) # Add annex content to make sure its not reported. (ds.pathobj / "foo").write_text("foo") ds.save() # Same for get_content_annexinfo()... assert_false(ds.repo.get_content_annexinfo(paths=[])) assert_false(ds.repo.get_content_annexinfo(paths=[], init=None)) assert_false(ds.repo.get_content_annexinfo(paths=[], ref="HEAD")) assert_false( ds.repo.get_content_annexinfo(paths=[], ref="HEAD", init=None)) # ... where whatever was passed for init will be returned as is. assert_equal( ds.repo.get_content_annexinfo( paths=[], ref="HEAD", init={"random": {"entry": "a"}}), {"random": {"entry": "a"}}) @with_tempfile def test_status_paths_empty_list(path): ds = Dataset(path).create() assert_equal(ds.repo.status(paths=[]), {}) @with_tree(tree=(('ingit.txt', 'ingit'), ('inannex.txt', 'inannex'), ('dir1', {'dropped': 'dropped'}), ('dir2', {'d21': 'd21', 'd22': 'd22'}))) def test_get_file_annexinfo(path): ds = Dataset(path).create(force=True) ds.save('ingit.txt', to_git=True) ds.save() # have some content-less component for testing ds.drop(ds.pathobj / 'dir1', check=False) repo = ds.repo # only handles a single file at a time assert_raises(ValueError, repo.get_file_annexinfo, repo.pathobj / 'dir2') # however, it only functionally matters that there is only a single file to # report on not that the exact query path matches, the matching path is in # the report assert_equal( repo.pathobj / 'dir1' / 'dropped', repo.get_file_annexinfo(repo.pathobj / 'dir1')['path']) # does not raise on a non-annex file, instead it returns no properties assert_equal(repo.get_file_annexinfo('ingit.txt'), {}) # but does raise on path that doesn exist assert_raises(NoSuchPathError, repo.get_file_annexinfo, 'nothere') # check return properties for utility props = repo.get_file_annexinfo('inannex.txt') # to replace get_file_backend() assert_equal(props['backend'], 'MD5E') # to replace get_file_key() assert_equal(props['key'], 'MD5E-s7--3b158c5b0a18c247ebad28c09fc3e180.txt') # for size reporting assert_equal(props['bytesize'], 7) # all records have a pathobj assert_equal(props['path'], repo.pathobj / 'inannex.txt') # test if `eval_availability` has desired effect assert_not_in('has_content', props) # extended set of properties, after more expensive availability check props = repo.get_file_annexinfo('inannex.txt', eval_availability=True) # to replace file_has_content() assert_equal(props['has_content'], True) # to replace get_contentlocation() assert_equal( Path(props['objloc']).read_text(), 'inannex') # make sure has_content is not always True props = repo.get_file_annexinfo( ds.pathobj / 'dir1' / 'dropped', eval_availability=True) assert_equal(props['has_content'], False) assert_not_in('objloc', props)
37.631016
87
0.62619
694af4168970c99ad8aea7a0af5a3636e2ee04fe
1,565
py
Python
book/book/pipelines.py
qingtianfei/Dangdangspider
bdfc5c83fbda4ba0f5afef31265d17b9dc8f1f5c
[ "MIT" ]
null
null
null
book/book/pipelines.py
qingtianfei/Dangdangspider
bdfc5c83fbda4ba0f5afef31265d17b9dc8f1f5c
[ "MIT" ]
null
null
null
book/book/pipelines.py
qingtianfei/Dangdangspider
bdfc5c83fbda4ba0f5afef31265d17b9dc8f1f5c
[ "MIT" ]
1
2019-11-16T12:11:24.000Z
2019-11-16T12:11:24.000Z
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html import requests import os import pymysql db = pymysql.connect(host = "localhost",port = 3306, user = "root",password = "", db = "bookstore",charset='utf8') class BookPipeline(object): def process_item(self, item, spider): print("+"*10) print("hello, pipline") try: os.mkdir("D:\PictureList") except: print("创建文件失败") for i in range(1, min(len(item['title']), len(item['pic']), len(item['price']), len(item['author']), len(item['time']), len(item['publish']))): title = item['title'][i] price = item['price'][i] pic = item['pic'][i-1] author = item['author'][i] publish = item['publish'][i] time = item['time'][i] cursor = db.cursor() name = "D:/PictureList/" + pic[-18:] cursor = db.cursor() sql = """ insert into booklist (title, price, pic, author, publish, time, picpath) values(%s, %s, %s, %s, %s, %s, %s)""" cursor.execute(sql, (title, price, pic, author, publish, time, name)) db.commit() picT = requests.get(pic).content name = "D:/PictureList/" + pic[-18:] with open(name , 'wb') as f: f.write(picT) return item
30.096154
151
0.514377
125b79dd286390a2c4eb5d9b9401b2b8216a6a7d
40,843
py
Python
residue/crud/orm.py
magfest/residue
d8621d8a9c43c19b67f0ee532655aaeaaae4ca62
[ "BSD-3-Clause" ]
1
2018-02-26T19:03:19.000Z
2018-02-26T19:03:19.000Z
residue/crud/orm.py
magfest/residue
d8621d8a9c43c19b67f0ee532655aaeaaae4ca62
[ "BSD-3-Clause" ]
null
null
null
residue/crud/orm.py
magfest/residue
d8621d8a9c43c19b67f0ee532655aaeaaae4ca62
[ "BSD-3-Clause" ]
2
2018-02-05T19:49:30.000Z
2018-02-24T18:10:30.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2017 the Residue team, see AUTHORS. # Licensed under the BSD License, see LICENSE for details. """CRUD support for SQLAlchemy orm objects.""" from __future__ import absolute_import import collections import inspect import re import uuid from collections import defaultdict, Mapping from copy import deepcopy from itertools import chain from datetime import date, datetime, time import six from pockets import cached_classproperty, cached_property, classproperty, collect_superclass_attr_names, \ is_data, is_listy, mappify from pockets.autolog import log from sqlalchemy import orm from sqlalchemy.ext.associationproxy import AssociationProxy from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm.attributes import InstrumentedAttribute from sqlalchemy.orm.exc import NoResultFound, MultipleResultsFound from sqlalchemy.orm.properties import ColumnProperty, RelationshipProperty from sqlalchemy.schema import UniqueConstraint from sqlalchemy.sql import ClauseElement from sqlalchemy.types import Boolean, DateTime, Integer, String, Text, UnicodeText try: from functools import lru_cache except ImportError: from backports.functools_lru_cache import lru_cache # noqa: F401 __all__ = [ 'get_model_by_table', 'get_primary_key_column_names', 'get_unique_constraint_column_names', 'get_one_to_many_foreign_key_column_name', 'CrudModelMixin', 'crudable', 'crud_validation', 'text_length_validation', 'regex_validation'] @lru_cache() def get_model_by_table(base, table): """ Returns declarative class associated with given table. Arguments: base (sqlalchemy.ext.declarative.api.Base): Declarative model base or a subclass of the declarative model base. table (sqlalchemy.sql.schema.Table): SQLAlchemy Table object. Returns: class: Declarative class or None if not found. """ for cls in base._decl_class_registry.values(): if hasattr(cls, '__table__') and cls.__table__ is table: return cls return None @lru_cache() def get_one_to_many_foreign_key_column_name(model, name): """ Returns the constituent column names for the foreign key on the remote table of the one-to-many relationship specified by name. Args: model (class or object): The given model class or model instance. name (string): The name of the attribute on `model` which is a one-to-many relationship. Return: list: One-to-many foreign key column names as a list of strings. """ if not inspect.isclass(model): return get_one_to_many_foreign_key_column_name(model.__class__, name) attr = getattr(model, name, None) if not attr: # Unknown attribute. return [] remote_columns = getattr(attr.property, 'remote_side', None) if not remote_columns: # This is not a one-to-many relationship. return [] remote_tables = set(c.table.name for c in remote_columns) if len(remote_tables) > 1: # This is a many-to-many relationship with a cross reference table. return [] foreign_key_column_names = [] for remote_column in remote_columns: if getattr(remote_column, 'foreign_keys', False): foreign_key_column_names.append(remote_column.name) else: remote_model = get_model_by_table(model, remote_column.table) if remote_model: # Quasi foreign keys don't actually have foreign_keys set, # but they need to be treated as though they did. foreign_keys = getattr(remote_model, 'quasi_foreign_keys', []) if remote_column.name in foreign_keys: foreign_key_column_names.append(remote_column.name) return foreign_key_column_names @lru_cache() def get_primary_key_column_names(model): """ Returns the constituent column names for the primary key of the given model. Args: model (class or object): The given model class or model instance. Return: list: Primary key column names as a list of strings. """ return [column.name for column in model.__table__.primary_key.columns] @lru_cache() def get_unique_constraint_column_names(model): """ Returns the constituent column names for each unique constraint on the given model. Args: model (class or object): The given model class or model instance. Return: list: Unique constraint column names as a list of lists of strings. """ return [[column.name for column in constraint.columns] for constraint in model.__table__.constraints if isinstance(constraint, UniqueConstraint)] class CrudModelMixin(object): extra_defaults = [] type_casts = {uuid.UUID: str} type_map = {} type_map_defaults = { int: 'int', six.binary_type: 'string', six.text_type: 'string', float: 'float', datetime: 'date', date: 'date', time: 'date', bool: 'boolean', uuid.UUID: 'string', String: 'string', UnicodeText: 'string', Text: 'string', DateTime: 'date', Integer: 'int', Boolean: 'boolean', } # Override what attributes will show in the repr. Defaults to primary keys # and unique constraints. _repr_attr_names = () # In addition to any default attributes, also show these in the repr. _extra_repr_attr_names = () @classmethod def _create_or_fetch(cls, session, value, **backref_mapping): """ Fetch an existing or create a new instance of this class. Fetching uses the values from the value positional argument (the id if available, or if any keys that correspond to unique constraints are present). In both cases the instance will still need to be updated using whatever new values you want. Args: cls (class): The class object we're going to fetch or create session (Session): the session object value (any): the dictionary value to fetch with **backref_mapping: the backref key name and value of the "parent" object of the object you're fetching or about to create. If the backref value of a fetched instance is not the same as the value of what's passed in, we will instead create a new instance. This is because we want to prevent "stealing" an existing object in a one-to-one relationship unless an id is explicitly passed. Returns: A previously existing or newly created (and added to the session) model instance. """ assert len(backref_mapping) <= 1, 'only one backref key is allowed at this time: {}'.format(backref_mapping) if backref_mapping: backref_name = list(backref_mapping.keys())[0] parent_id = backref_mapping[backref_name] else: backref_name, parent_id = None, None id = None if isinstance(value, Mapping): id = value.get('id', None) elif isinstance(value, six.string_types): id = value instance = None if id is not None: try: instance = session.query(cls).filter(cls.id == id).first() except Exception: log.error('Unable to fetch instance based on id value {!r}', value, exc_info=True) raise TypeError('Invalid instance ID type for relation: {0.__name__} (value: {1})'.format(cls, value)) elif isinstance(value, Mapping): # if there's no id, check to see if we're provided a dictionary # that includes all of the columns associated with a UniqueConstraint. for column_names in cls.unique_constraint_column_names: if all((name in value and value[name]) for name in column_names): # all those column names are provided, # use that to query by chaining together all the necessary # filters to construct that query q = session.query(cls) filter_kwargs = {name: value[name] for name in column_names} try: instance = q.filter_by(**filter_kwargs).one() except NoResultFound: continue except MultipleResultsFound: log.error('multiple results found for {} unique constraint: {}', cls.__name__, column_names) raise else: break else: log.debug('unable to search using unique constraints: {} with {}', column_names, value) if instance and id is None and backref_mapping and getattr(instance, backref_name, None) != parent_id: log.warning( 'Attempting to change the owner of {} without an explicitly passed id; ' 'a new {} instance will be used instead', instance, cls.__name__) instance = None if not instance: log.debug('creating new: {} with id {}', cls.__name__, id) if id is None: instance = cls() else: instance = cls(id=id) session.add(instance) return instance @cached_property def _type_casts_for_to_dict(self): type_casts = CrudModelMixin.type_casts.copy() type_casts.update(self.type_casts) return defaultdict(lambda: lambda x: x, type_casts) @cached_classproperty def to_dict_default_attrs(cls): attr_names = [] super_attr_names = collect_superclass_attr_names(cls, terminal_class=cls.BaseClass) for name in super_attr_names: if not name.startswith('_') or name in cls.extra_defaults: attr = getattr(cls, name) class_attr = getattr(cls, '__dict__', {}).get(name) is_column_prop = isinstance(attr, InstrumentedAttribute) \ and isinstance(attr.property, ColumnProperty) is_hybrid_prop = isinstance(getattr(attr, 'descriptor', None), hybrid_property) is_prop = isinstance(attr, (property, InstrumentedAttribute, ClauseElement, AssociationProxy)) is_class_prop = isinstance(class_attr, (classproperty, cached_classproperty)) is_callable = callable(attr) if is_column_prop or not (is_hybrid_prop or is_prop or is_class_prop or is_callable): attr_names.append(name) return attr_names def to_dict(self, attrs=None, validator=lambda self, name: True): obj = {} if attrs is not None: try: attrs = mappify(attrs) except TypeError: attrs = None # It's still possible for the client to blacklist this, but by default # we're going to include them. if attrs is None or attrs.get('_model', True): obj['_model'] = self.__class__.__name__ if attrs is None or attrs.get('id', True): obj['id'] = self.id def cast_type(value): # Ensure that certain types are cast appropriately for daily usage # e.g. we want the result of HashedPasswords to be the string # representation instead of the object. return self._type_casts_for_to_dict[value.__class__](value) if attrs is None: for name in self.to_dict_default_attrs: if validator(self, name): obj[name] = cast_type(getattr(self, name)) else: for name in self.extra_defaults + list(attrs.keys()): # If we're not supposed to get the attribute according to the # validator, OR the client intentionally blacklisted it, then # skip this value. if not validator(self, name) or not attrs.get(name, True): continue attr = getattr(self, name, None) if isinstance(attr, self.BaseClass): obj[name] = attr.to_dict(attrs[name], validator) elif isinstance(attr, (list, set, tuple, frozenset)): obj[name] = [] for item in attr: if isinstance(item, self.BaseClass): obj[name].append(item.to_dict(attrs[name], validator)) else: obj[name].append(item) elif callable(attr): obj[name] = cast_type(attr()) else: obj[name] = cast_type(attr) return obj def from_dict(self, attrs, validator=lambda self, name, val: True): relations = [] # merge_relations modifies the dictionaries that are passed to it in # order to support updates in deeply-nested object graphs. To ensure # that we don't have dirty state between applying updates to different # model objects, we need a fresh copy attrs = deepcopy(attrs) for name, value in attrs.items(): if not name.startswith('_') and validator(self, name, value): attr = getattr(self.__class__, name) if isinstance(attr, InstrumentedAttribute) and isinstance(attr.property, RelationshipProperty): relations.append((name, value)) else: setattr(self, name, value) def required(kv): cols = list(getattr(self.__class__, kv[0]).property.local_columns) return len(cols) != 1 or cols[0].primary_key or cols[0].nullable relations.sort(key=required) for name, value in relations: self._merge_relations(name, value, validator) return self @classproperty def primary_key_column_names(cls): return get_primary_key_column_names(cls) @classproperty def unique_constraint_column_names(cls): return get_unique_constraint_column_names(cls) @classmethod def one_to_many_foreign_key_column_name(cls, name): column_names = get_one_to_many_foreign_key_column_name(cls, name) return column_names[0] if column_names else None def _merge_relations(self, name, value, validator=lambda self, name, val: True): attr = getattr(self.__class__, name) if (not isinstance(attr, InstrumentedAttribute) or not isinstance(attr.property, RelationshipProperty)): return session = orm.Session.object_session(self) assert session, "cannot call _merge_relations on objects not attached to a session" property = attr.property relation_cls = property.mapper.class_ # e.g., if this a Team with many Players, and we're handling the attribute name # "players," we want to set the team_id on all dictionary representations of those players. backref_id_name = self.one_to_many_foreign_key_column_name(name) original_value = getattr(self, name) if is_listy(original_value): new_insts = [] if value is None: value = [] if isinstance(value, six.string_types): value = [value] for i in value: if backref_id_name is not None and isinstance(i, dict) and not i.get(backref_id_name): i[backref_id_name] = self.id relation_inst = relation_cls._create_or_fetch( session, i, **{backref_id_name: self.id} if backref_id_name else {}) if isinstance(i, dict): if relation_inst._sa_instance_state.identity: validator = _crud_write_validator else: validator = _crud_create_validator relation_inst.from_dict(i, validator) new_insts.append(relation_inst) relation = original_value remove_insts = [stale_inst for stale_inst in relation if stale_inst not in new_insts] for stale_inst in remove_insts: relation.remove(stale_inst) if property.cascade.delete_orphan: session.delete(stale_inst) for new_inst in new_insts: if new_inst.id is None or new_inst not in relation: relation.append(new_inst) elif isinstance(value, (collections.Mapping, six.string_types)): if backref_id_name is not None and not value.get(backref_id_name): # if this is a dictionary, it's possible we're going to be # creating a new thing, if so, we'll add a backref to the # "parent" if one isn't already set value[backref_id_name] = self.id relation_inst = relation_cls._create_or_fetch(session, value) stale_inst = original_value if stale_inst is None or stale_inst.id != relation_inst.id: if stale_inst is not None and property.cascade.delete_orphan: session.delete(stale_inst) if isinstance(value, collections.Mapping): relation_inst.from_dict(value, validator) session.flush([relation_inst]) # we want this this to be queryable for other things setattr(self, name, relation_inst) elif value is None: # the first branch handles the case of setting a many-to-one value # to None. So this is for the one-to-one-mapping case # Setting a relation to None is nullifying the relationship, which # has potential side effects in the case of cascades, etc. setattr(self, name, value) stale_inst = original_value if stale_inst is not None and property.cascade.delete_orphan: session.delete(stale_inst) else: raise TypeError('merging relations on {1} not support for values ' 'of type: {0.__class__.__name__} ' '(value: {0})'.format(value, name)) def __setattr__(self, name, value): if name in getattr(self, '_validators', {}): for val_dict in self._validators[name]: if not val_dict['model_validator'](self, value): raise ValueError('validation failed for {.__class__.__name__}' '.{} with value {!r}: {}'.format(self, name, value, val_dict.get('validator_message'))) object.__setattr__(self, name, value) def crud_read(self, attrs=None): return self.to_dict(attrs, validator=_crud_read_validator) def crud_create(self, **kwargs): return self.from_dict(kwargs, validator=_crud_create_validator) def crud_update(self, **kwargs): return self.from_dict(kwargs, validator=_crud_write_validator) def __repr__(self): """ Useful string representation for logging. Note: __repr__ does NOT return unicode on Python 2, since python decodes it using the default encoding: http://bugs.python.org/issue5876. """ # If no repr attr names have been set, default to the set of all # unique constraints. This is unordered normally, so we'll order and # use it here. if not self._repr_attr_names: # this flattens the unique constraint list _unique_attrs = chain.from_iterable(self.unique_constraint_column_names) _primary_keys = self.primary_key_column_names attr_names = tuple(sorted(set(chain(_unique_attrs, _primary_keys, self._extra_repr_attr_names)))) else: attr_names = self._repr_attr_names if not attr_names and hasattr(self, 'id'): # there should be SOMETHING, so use id as a fallback attr_names = ('id',) if attr_names: _kwarg_list = ' '.join('%s=%s' % (name, repr(getattr(self, name, 'undefined'))) for name in attr_names) kwargs_output = ' %s' % _kwarg_list else: kwargs_output = '' # specifically using the string interpolation operator and the repr of # getattr so as to avoid any "hilarious" encode errors for non-ascii # characters u = '<%s%s>' % (self.__class__.__name__, kwargs_output) return u if six.PY3 else u.encode('utf-8') def _crud_read_validator(self, name): _crud_perms = getattr(self, '_crud_perms', None) if _crud_perms is not None and not _crud_perms.get('read', True): raise ValueError('Attempt to read non-readable model {}'.format(self.__class__.__name__)) elif name in self.extra_defaults: return True elif _crud_perms is None: return not name.startswith('_') else: return name in _crud_perms.get('read', {}) def _crud_write_validator(self, name, value=None): _crud_perms = getattr(self, '_crud_perms', None) if getattr(self, name, None) == value: return True elif not _crud_perms or not _crud_perms.get('update', False): raise ValueError('Attempt to update non-updateable model {}'.format(self.__class__.__name__)) elif name not in _crud_perms.get('update', {}): raise ValueError('Attempt to update non-updateable attribute {}.{}'.format(self.__class__.__name__, name)) else: return name in _crud_perms.get("update", {}) def _crud_create_validator(self, name, value=None): _crud_perms = getattr(self, '_crud_perms', {}) if not _crud_perms or not _crud_perms.get('can_create', False): raise ValueError('Attempt to create non-createable model {}'.format(self.__class__.__name__)) else: return name in _crud_perms.get("create", {}) class crudable(object): """ Decorator that specifies which model attributes are part of the CRUD API. Intended to be used on SQLAlchemy model classes, for example:: @crudable( create=True, read=['__something'], no_read=['password'], update=[], no_update=[], delete=True, data_spec={ attr={ read=True, update=True, desc='description' defaultValue=<some default> validators={<validator_name>, <validator value>} } } ) class MyModelObject(Base): # ... The resulting object will have a class attribute named "crud_spec" which is a dictionary like:: { create: True/False, read: {<attribute name>, <attribute name>}, update: {<attribute name>, <attribute name>}, delete: True/False, data_spec: { manually_specified_attr: { desc: 'description', type: '<type>' read: True/False # only needed if attribute is unspecified update": True/False } attr_with_manual_description: { desc: 'description', type: '<type>' } } } Attributes: never_read (tuple): Names of attributes that default to being not readable. never_update (tuple): Names of attribute that default to being not updatable. always_create (tuple): Names of attributes that default to being always creatable. default_labels (dict): Attribute name and label pairs, to simplify setting the same label for each and every instance of an attribute name. """ never_read = ('metadata',) never_update = ('id',) always_create = ('id',) default_labels = {'addr': 'Address'} # TODO: This should be user-definable def __init__(self, can_create=True, create=None, no_create=None, read=None, no_read=None, update=None, no_update=None, can_delete=True, data_spec=None): """ Args: can_create (bool): If True (default), the decorated class can be created. create (collections.Iterable): If provided, interpreted as the attribute names that can be specified when the object is created in addition to the items are updateable. If not provided (default) all attributes that can be updated plus the primary key are allowed to be passed to the create method. no_create (collections.Iterable): If provided, interpreted as the attribute names that will not be allowed to be passed to create, taking precedence over anything specified in the create parameter. If not provided (default) everything allowed by the create parameter will be acceptable. read (collections.Iterable): If provided, interpreted as the attribute names that can be read, and ONLY these names can be read. If not provided (default) all attributes not starting with an underscore (e.g. __str__, or _hidden) will be readable, no_read (collections.Iterable): if provided, interpreted as the attribute names that can't be read, taking precedence over anything specified in the read parameter. If not provided (default) everything allowed by the read parameter will be readable. update (collections.Iterable): If provided, interpreted as the attribute names that can be updated, in addition to the list of items are readable. If None (default) default to the list of readable attributes. Pass an empty iterable to use the default behavior listed under the read docstring if there were attributes passed to read that you don't want update to default to. no_update (collections.Iterable): if provided, interpreted as the attribute names that can't be updated, taking precedence over anything specified in the update parameter. If None (default) default to the list of non-readable attributes. Pass an empty iterable to use the default behavior listed under the no_read docstring if there were attributes passed to no_read that you don't want no_update to default to. can_delete (bool): If True (default), the decorated class can be deleted. data_spec (dict): Any additional information that should be added to the `model.get_crud_definition`. See that function for complete documentation, but the key items are: "desc" - Human-readable description, will default to docstrings if available, else not be present in the final spec. "label" - a Human-readable short label to help remember the purpose of a particular field, without going into detail. If not specifically provided, it will not be present in the spec. "type" - the human-readable "type" for an attribute meaning that a conversion to this type will be performed on the server. If possible this will be determined automatically using isinstance(), otherwise "auto" will be set: auto (default) - no type conversion string - `str` boolean - `bool` int - `int` float - `float` "defaultValue" - the value that is considered the default, either because a model instance will use this default value if unspecified, or a client should present this option as the default for a user "validators" - a `dict` mapping a validator name (e.g. "max") and the value to be used in validation (e.g. 1000, for a max value of 1000). This is intended to support client side validation. """ self.can_create = can_create self.can_delete = can_delete if no_update is not None and create is None: create = deepcopy(no_update) self.read = read or [] self.no_read = no_read or [] self.update = update or [] self.no_update = no_update or [x for x in self.no_read if x not in self.update] self.create = create or [] self.no_create = no_create or [x for x in self.no_update if x not in self.create] self.no_read.extend(self.never_read) self.no_update.extend(self.never_update) self.data_spec = data_spec or {} def __call__(self, cls): def _get_crud_perms(cls): if getattr(cls, '_cached_crud_perms', False): return cls._cached_crud_perms crud_perms = { 'can_create': self.can_create, 'can_delete': self.can_delete, 'read': [], 'update': [], 'create': [] } read = self.read for name in collect_superclass_attr_names(cls): if not name.startswith('_'): attr = getattr(cls, name) properties = (InstrumentedAttribute, property, ClauseElement) primitives = (int, float, bool, datetime, date, time, six.binary_type, six.text_type, uuid.UUID) if isinstance(attr, properties) or isinstance(attr, primitives): read.append(name) read = list(set(read)) for name in read: if not self.no_read or name not in self.no_read: crud_perms['read'].append(name) update = self.update + deepcopy(crud_perms['read']) update = list(set(update)) for name in update: if not self.no_update or name not in self.no_update: if name in cls.__table__.columns: crud_perms['update'].append(name) else: attr = getattr(cls, name) if isinstance(attr, property) and getattr(attr, 'fset', False): crud_perms['update'].append(name) elif (isinstance(attr, InstrumentedAttribute) and isinstance(attr.property, RelationshipProperty) and attr.property.viewonly != True): # noqa: E712 crud_perms['update'].append(name) create = self.create + deepcopy(crud_perms['update']) for name in self.always_create: create.append(name) if name in self.no_create: self.no_create.remove(name) create = list(set(create)) for name in create: if not self.no_create or name not in self.no_create: crud_perms['create'].append(name) cls._cached_crud_perms = crud_perms return cls._cached_crud_perms def _get_crud_spec(cls): if getattr(cls, '_cached_crud_spec', False): return cls._cached_crud_spec crud_perms = cls._crud_perms field_names = list(set(crud_perms['read']) | set(crud_perms['update']) | set(crud_perms['create']) | set(self.data_spec.keys())) fields = {} for name in field_names: # json is implicitly unicode, and since this will eventually # be serialized as json, it's convenient to have it in that # form early # if using different validation decorators or in the data spec # causes multiple spec # kwargs to be specified, we're going to error here for # duplicate keys in dictionaries. Since we don't want to allow # two different expected values for maxLength being sent in a # crud spec for example field_validator_kwargs = { spec_key_name: spec_value # collect each spec_kwarg for all validators of an attribute for crud_validator_dict in getattr(cls, '_validators', {}).get(name, []) for spec_key_name, spec_value in crud_validator_dict.get('spec_kwargs', {}).items() } if field_validator_kwargs: self.data_spec.setdefault(name, {}) # manually specified crud validator keyword arguments # overwrite the decorator-supplied keyword arguments field_validator_kwargs.update(self.data_spec[name].get('validators', {})) self.data_spec[name]['validators'] = field_validator_kwargs name = six.text_type(name) field = deepcopy(self.data_spec.get(name, {})) field['name'] = name try: attr = getattr(cls, name) except AttributeError: # if the object doesn't have the attribute, AND it's in the field # list, that means we're assuming it was manually specified in the # data_spec argument fields[name] = field continue field['read'] = name in crud_perms['read'] field['update'] = name in crud_perms['update'] field['create'] = name in crud_perms['create'] if field['read'] or field['update'] or field['create']: fields[name] = field elif name in fields: del fields[name] continue if 'desc' not in field and not is_data(attr): # no des specified, and there's a relevant docstring, so use it # if there's 2 consecutive newlines, assume that there's a # separator in the docstring and that the top part only # is the description, if there's not, use the whole thing. # Either way, replace newlines with spaces since docstrings often # break the same sentence over new lines due to space doc = inspect.getdoc(attr) if doc: doc = doc.partition('\n\n')[0].replace('\n', ' ').strip() field['desc'] = doc if 'type' not in field: if isinstance(attr, InstrumentedAttribute) and isinstance(attr.property, ColumnProperty): field['type'] = cls._type_map.get(type(attr.property.columns[0].type), 'auto') field_default = getattr(attr.property.columns[0], 'default', None) # only put the default here if it exists, and it's not an automatic thing like "time.utcnow()" if field_default is not None and field['type'] != 'auto' \ and not isinstance(field_default.arg, (collections.Callable, property)): field['defaultValue'] = field_default.arg elif hasattr(attr, "default"): field['defaultValue'] = attr.default else: field['type'] = cls._type_map.get(type(attr), 'auto') # only set a default if this isn't a property or some other kind of "constructed attribute" if field['type'] != 'auto' and not isinstance(attr, (collections.Callable, property)): field['defaultValue'] = attr if isinstance(attr, InstrumentedAttribute) and isinstance(attr.property, RelationshipProperty): field['_model'] = attr.property.mapper.class_.__name__ crud_spec = {'fields': fields} cls._cached_crud_spec = crud_spec return cls._cached_crud_spec def _type_map(cls): return dict(cls.type_map_defaults, **cls.type_map) cls._type_map = cached_classproperty(_type_map) cls._crud_spec = cached_classproperty(_get_crud_spec) cls._crud_perms = cached_classproperty(_get_crud_perms) return cls class crud_validation(object): """ Base class for adding validators to a model. Supports adding to the crud spec, or to the save action. """ def __init__(self, attribute_name, model_validator, validator_message, **spec_kwargs): """ Args: attribute_name (str): The attribute to which this validator applies. model_validator (callable): A callable that accepts the attribute value and returns False or None if invalid, or True if the value is valid. validator_message (str): Failure message if the validation fails. **spec_kwargs: The key/value pairs that should be added to the the crud spec for this attribute name. This generally supports making the same sorts of validations in a client (e.g. javascript). """ self.attribute_name = attribute_name self.model_validator = model_validator self.validator_message = validator_message self.spec_kwargs = spec_kwargs def __call__(self, cls): if not hasattr(cls, '_validators'): cls._validators = {} else: # in case we subclass something with a _validators attribute cls._validators = deepcopy(cls._validators) cls._validators.setdefault(self.attribute_name, []).append({ 'model_validator': self.model_validator, 'validator_message': self.validator_message, 'spec_kwargs': self.spec_kwargs }) return cls class text_length_validation(crud_validation): def __init__(self, attribute_name, min_length=None, max_length=None, min_text='The minimum length of this field is {0}.', max_text='The maximum length of this field is {0}.', allow_none=True): def model_validator(instance, text): if text is None: return allow_none text_length = len(six.text_type(text)) return all([min_length is None or text_length >= min_length, max_length is None or text_length <= max_length]) kwargs = {} if min_length is not None: kwargs['minLength'] = min_length if max_text is not None: kwargs['minLengthText'] = min_text if max_length is not None: kwargs['maxLength'] = max_length if max_text is not None: kwargs['maxLengthText'] = max_text message = 'Length of value should be between {} and {} (inclusive; None means no min/max).'.format( min_length, max_length) crud_validation.__init__(self, attribute_name, model_validator, message, **kwargs) class regex_validation(crud_validation): def __init__(self, attribute_name, regex, message): def regex_validator(instance, text): # if the field isn't nullable, that will trigger an error later at the sqla level, # but since None can't be passed to a re.search we want to pass this validation check if text is None: return True # we don't want to actually send across the match object if it did match, # so leverage the fact that failing searches or matches return None types return re.search(regex, text) is not None crud_validation.__init__(self, attribute_name, regex_validator, message, regexText=message, regexString=regex)
43.729122
118
0.594251
8296c4d4712c50f06a43899ea8df455a1baee006
821
py
Python
src/test_workflow/perf_test/perf_test_runner.py
naveenpajjuri/opensearch-build
855f0296b36ba32b18cf4fc40b096659b5b3f1f0
[ "Apache-2.0" ]
null
null
null
src/test_workflow/perf_test/perf_test_runner.py
naveenpajjuri/opensearch-build
855f0296b36ba32b18cf4fc40b096659b5b3f1f0
[ "Apache-2.0" ]
null
null
null
src/test_workflow/perf_test/perf_test_runner.py
naveenpajjuri/opensearch-build
855f0296b36ba32b18cf4fc40b096659b5b3f1f0
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 # # The OpenSearch Contributors require contributions made to # this file be licensed under the Apache-2.0 license or a # compatible open source license. import abc import os from manifests.bundle_manifest import BundleManifest from test_workflow.perf_test.perf_args import PerfArgs class PerfTestRunner(abc.ABC): def __init__(self, args: PerfArgs, test_manifest: BundleManifest): self.args = args self.test_manifest = test_manifest self.security = "security" in self.test_manifest.components and not self.args.insecure self.tests_dir = os.path.join(os.getcwd(), "test-results", "perf-test", f"{'with' if self.security else 'without'}-security") os.makedirs(self.tests_dir, exist_ok=True) def run(self): self.run_tests()
32.84
133
0.73447
c7fd094ba0bfa565e25600a10ee0e3e77a78e98f
16,830
py
Python
c2cgeoportal/scaffolds/update/CONST_alembic/main/versions/415746eb9f6_changes_for_v2.py
craxxkid/c2cgeoportal
60ca7d5d014d69b0a938f858271c911a30da77c3
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
c2cgeoportal/scaffolds/update/CONST_alembic/main/versions/415746eb9f6_changes_for_v2.py
craxxkid/c2cgeoportal
60ca7d5d014d69b0a938f858271c911a30da77c3
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
c2cgeoportal/scaffolds/update/CONST_alembic/main/versions/415746eb9f6_changes_for_v2.py
craxxkid/c2cgeoportal
60ca7d5d014d69b0a938f858271c911a30da77c3
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2014-2016, Camptocamp SA # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # The views and conclusions contained in the software and documentation are those # of the authors and should not be interpreted as representing official policies, # either expressed or implied, of the FreeBSD Project. """Changes to start the implementation of the version 2 Revision ID: 415746eb9f6 Revises: None Create Date: 2014-10-23 16:00:47.940216 """ from alembic import op, context from sqlalchemy import Column, ForeignKey, Table, MetaData from sqlalchemy.types import Integer, Boolean, Unicode, Float # revision identifiers, used by Alembic. revision = '415746eb9f6' down_revision = '166ff2dcc48d' def upgrade(): schema = context.get_context().config.get_main_option('schema') engine = op.get_bind().engine if type(engine).__name__ != 'MockConnection' and \ op.get_context().dialect.has_table( engine, 'interface', schema=schema): # pragma: no cover return op.drop_table('user_functionality', schema=schema) op.create_table( 'interface', Column( 'id', Integer, primary_key=True ), Column('name', Unicode), Column('description', Unicode), schema=schema, ) op.create_table( 'interface_layer', Column( 'interface_id', Integer, ForeignKey(schema + '.interface.id'), primary_key=True ), Column( 'layer_id', Integer, ForeignKey(schema + '.layer.id'), primary_key=True ), schema=schema, ) op.create_table( 'interface_theme', Column( 'interface_id', Integer, ForeignKey(schema + '.interface.id'), primary_key=True ), Column( 'theme_id', Integer, ForeignKey(schema + '.theme.id'), primary_key=True ), schema=schema, ) op.create_table( 'layerv1', Column( 'id', Integer, ForeignKey(schema + '.layer.id'), primary_key=True ), Column('is_checked', Boolean, default=True), Column('icon', Unicode), Column('layer_type', Unicode(12)), Column('url', Unicode), Column('image_type', Unicode(10)), Column('style', Unicode), Column('dimensions', Unicode), Column('matrix_set', Unicode), Column('wms_url', Unicode), Column('wms_layers', Unicode), Column('query_layers', Unicode), Column('kml', Unicode), Column('is_single_tile', Boolean), Column('legend', Boolean, default=True), Column('legend_image', Unicode), Column('legend_rule', Unicode), Column('is_legend_expanded', Boolean, default=False), Column('min_resolution', Float), Column('max_resolution', Float), Column('disclaimer', Unicode), Column('identifier_attribute_field', Unicode), Column('exclude_properties', Unicode), Column('time_mode', Unicode(8)), schema=schema, ) op.execute( "UPDATE ONLY %(schema)s.treeitem SET type = 'layerv1' " "WHERE type='layer'" % {'schema': schema} ) op.execute( 'INSERT INTO %(schema)s.layerv1 (' 'id, is_checked, icon, layer_type, url, image_type, style, dimensions, matrix_set, ' 'wms_url, wms_layers, query_layers, kml, is_single_tile, legend, ' 'legend_image, legend_rule, is_legend_expanded, min_resolution, max_resolution, ' 'disclaimer, identifier_attribute_field, exclude_properties, time_mode) ' '(SELECT ' 'id, "isChecked" AS is_checked, icon, "layerType" AS layer_type, url, ' '"imageType" AS image_type, style, dimensions, "matrixSet" AS matrix_set, ' '"wmsUrl" AS wms_url, "wmsLayers" AS wms_layers, "queryLayers" AS query_layers, kml, ' '"isSingleTile" AS is_single_tile, legend, "legendImage" AS legend_image, ' '"legendRule" AS legend_rule, "isLegendExpanded" AS is_legend_expanded, ' '"minResolution" AS min_resolution, "maxResolution" AS max_resolution, disclaimer, ' '"identifierAttributeField" AS identifier_attribute_field, ' '"excludeProperties" AS exclude_properties, "timeMode" AS time_mode ' 'FROM %(schema)s.layer)' % {'schema': schema} ) op.drop_column('layer', 'isChecked', schema=schema) op.drop_column('layer', 'icon', schema=schema) op.drop_column('layer', 'layerType', schema=schema) op.drop_column('layer', 'url', schema=schema) op.drop_column('layer', 'imageType', schema=schema) op.drop_column('layer', 'style', schema=schema) op.drop_column('layer', 'dimensions', schema=schema) op.drop_column('layer', 'matrixSet', schema=schema) op.drop_column('layer', 'wmsUrl', schema=schema) op.drop_column('layer', 'wmsLayers', schema=schema) op.drop_column('layer', 'queryLayers', schema=schema) op.drop_column('layer', 'kml', schema=schema) op.drop_column('layer', 'isSingleTile', schema=schema) op.drop_column('layer', 'legend', schema=schema) op.drop_column('layer', 'legendImage', schema=schema) op.drop_column('layer', 'legendRule', schema=schema) op.drop_column('layer', 'isLegendExpanded', schema=schema) op.drop_column('layer', 'minResolution', schema=schema) op.drop_column('layer', 'maxResolution', schema=schema) op.drop_column('layer', 'disclaimer', schema=schema) op.drop_column('layer', 'identifierAttributeField', schema=schema) op.drop_column('layer', 'excludeProperties', schema=schema) op.drop_column('layer', 'timeMode', schema=schema) interface = Table( 'interface', MetaData(), Column('name', Unicode), schema=schema, ) op.bulk_insert(interface, [ {'name': 'main'}, {'name': 'mobile'}, {'name': 'edit'}, {'name': 'routing'}, ]) op.execute( 'INSERT INTO %(schema)s.interface_layer (layer_id, interface_id) ' '(SELECT l.id AS layer_id, i.id AS interface_id ' 'FROM %(schema)s.layer AS l, %(schema)s.interface AS i ' 'WHERE i.name in (\'main\', \'edit\', \'routing\') AND l."inDesktopViewer")' % { 'schema': schema } ) op.execute( 'INSERT INTO %(schema)s.interface_layer (layer_id, interface_id) ' '(SELECT l.id AS layer_id, i.id AS interface_id ' 'FROM %(schema)s.layer AS l, %(schema)s.interface AS i ' 'WHERE i.name = \'mobile\' AND l."inMobileViewer")' % {'schema': schema} ) op.execute( 'INSERT INTO %(schema)s.interface_theme (theme_id, interface_id) ' '(SELECT l.id AS theme_id, i.id AS interface_id ' 'FROM %(schema)s.theme AS l, %(schema)s.interface AS i ' 'WHERE i.name in (\'main\', \'edit\', \'routing\') AND l."inDesktopViewer")' % { 'schema': schema } ) op.execute( 'INSERT INTO %(schema)s.interface_theme (theme_id, interface_id) ' '(SELECT l.id AS theme_id, i.id AS interface_id ' 'FROM %(schema)s.theme AS l, %(schema)s.interface AS i ' 'WHERE i.name = \'mobile\' AND l."inMobileViewer")' % {'schema': schema} ) op.drop_column('layer', 'inMobileViewer', schema=schema) op.drop_column('layer', 'inDesktopViewer', schema=schema) op.alter_column('layer', 'geoTable', new_column_name='geo_table', schema=schema) op.drop_column('theme', 'inMobileViewer', schema=schema) op.drop_column('theme', 'inDesktopViewer', schema=schema) op.alter_column('treeitem', 'metadataURL', new_column_name='metadata_url', schema=schema) op.alter_column('layergroup', 'isExpanded', new_column_name='is_expanded', schema=schema) op.alter_column('layergroup', 'isInternalWMS', new_column_name='is_internal_wms', schema=schema) op.alter_column('layergroup', 'isBaseLayer', new_column_name='is_base_layer', schema=schema) op.create_table( 'layer_internal_wms', Column( 'id', Integer, ForeignKey(schema + '.layer.id'), primary_key=True ), Column('layer', Unicode), Column('image_type', Unicode(10)), Column('style', Unicode), Column('time_mode', Unicode(8)), schema=schema, ) op.create_table( 'layer_external_wms', Column( 'id', Integer, ForeignKey(schema + '.layer.id'), primary_key=True ), Column('url', Unicode), Column('layer', Unicode), Column('image_type', Unicode(10)), Column('style', Unicode), Column('is_single_tile', Boolean), Column('time_mode', Unicode(8)), schema=schema, ) op.create_table( 'layer_wmts', Column( 'id', Integer, ForeignKey(schema + '.layer.id'), primary_key=True, ), Column('url', Unicode), Column('layer', Unicode), Column('style', Unicode), Column('matrix_set', Unicode), schema=schema, ) op.create_table( 'ui_metadata', Column( 'id', Integer, primary_key=True ), Column('name', Unicode), Column('value', Unicode), Column('description', Unicode), Column('item_id', Integer, ForeignKey(schema + '.treeitem.id'), nullable=False), schema=schema, ) op.create_table( 'wmts_dimension', Column( 'id', Integer, primary_key=True ), Column('name', Unicode), Column('value', Unicode), Column('description', Unicode), Column('layer_id', Integer, ForeignKey(schema + '.layer_wmts.id'), nullable=False), schema=schema, ) def downgrade(): schema = context.get_context().config.get_main_option('schema') op.drop_table('wmts_dimension', schema=schema) op.drop_table('ui_metadata', schema=schema) op.drop_table('layer_wmts', schema=schema) op.drop_table('layer_external_wms', schema=schema) op.drop_table('layer_internal_wms', schema=schema) op.add_column('layer', Column('inMobileViewer', Boolean, default=False), schema=schema) op.add_column('layer', Column('inDesktopViewer', Boolean, default=True), schema=schema) op.alter_column('layer', 'geo_table', new_column_name='geoTable', schema=schema) op.add_column('theme', Column('inMobileViewer', Boolean, default=False), schema=schema) op.add_column('theme', Column('inDesktopViewer', Boolean, default=True), schema=schema) op.alter_column('treeitem', 'metadata_url', new_column_name='metadataURL', schema=schema) op.alter_column('layergroup', 'is_expanded', new_column_name='isExpanded', schema=schema) op.alter_column('layergroup', 'is_internal_wms', new_column_name='isInternalWMS', schema=schema) op.alter_column('layergroup', 'is_base_layer', new_column_name='isBaseLayer', schema=schema) op.execute( 'UPDATE ONLY %(schema)s.theme AS t ' 'SET "inDesktopViewer" = FALSE' % {'schema': schema} ) op.execute( 'UPDATE ONLY %(schema)s.layer AS t ' 'SET "inDesktopViewer" = FALSE' % {'schema': schema} ) op.execute( 'UPDATE ONLY %(schema)s.theme AS t ' 'SET "inMobileViewer" = TRUE ' 'FROM %(schema)s.interface AS i, %(schema)s.interface_theme AS it ' 'WHERE i.name = \'mobile\' AND i.id = it.interface_id AND it.theme_id = t.id' % { 'schema': schema } ) op.execute( 'UPDATE ONLY %(schema)s.theme AS t ' 'SET "inDesktopViewer" = TRUE ' 'FROM %(schema)s.interface AS i, %(schema)s.interface_theme AS it ' 'WHERE i.name = \'main\' AND i.id = it.interface_id AND it.theme_id = t.id' % { 'schema': schema } ) op.execute( 'UPDATE ONLY %(schema)s.layer AS l ' 'SET "inMobileViewer" = TRUE ' 'FROM %(schema)s.interface AS i, %(schema)s.interface_layer AS il ' 'WHERE i.name = \'mobile\' AND i.id = il.interface_id AND il.layer_id = l.id' % { 'schema': schema } ) op.execute( 'UPDATE ONLY %(schema)s.layer AS l ' 'SET "inDesktopViewer" = TRUE ' 'FROM %(schema)s.interface AS i, %(schema)s.interface_layer AS il ' 'WHERE i.name = \'main\' AND i.id = il.interface_id AND il.layer_id = l.id' % { 'schema': schema } ) op.add_column('layer', Column('timeMode', Unicode(8)), schema=schema) op.add_column('layer', Column('excludeProperties', Unicode), schema=schema) op.add_column('layer', Column('identifierAttributeField', Unicode), schema=schema) op.add_column('layer', Column('disclaimer', Unicode), schema=schema) op.add_column('layer', Column('maxResolution', Float), schema=schema) op.add_column('layer', Column('minResolution', Float), schema=schema) op.add_column('layer', Column('isLegendExpanded', Boolean, default=False), schema=schema) op.add_column('layer', Column('legendRule', Unicode), schema=schema) op.add_column('layer', Column('legendImage', Unicode), schema=schema) op.add_column('layer', Column('legend', Boolean, default=True), schema=schema) op.add_column('layer', Column('isSingleTile', Boolean, default=False), schema=schema) op.add_column('layer', Column('kml', Unicode), schema=schema) op.add_column('layer', Column('queryLayers', Unicode), schema=schema) op.add_column('layer', Column('wmsLayers', Unicode), schema=schema) op.add_column('layer', Column('wmsUrl', Unicode), schema=schema) op.add_column('layer', Column('matrixSet', Unicode), schema=schema) op.add_column('layer', Column('dimensions', Unicode), schema=schema) op.add_column('layer', Column('style', Unicode), schema=schema) op.add_column('layer', Column('imageType', Unicode(10)), schema=schema) op.add_column('layer', Column('url', Unicode), schema=schema) op.add_column('layer', Column('layerType', Unicode(12)), schema=schema) op.add_column('layer', Column('icon', Unicode), schema=schema) op.add_column('layer', Column('isChecked', Boolean, default=True), schema=schema) op.execute( 'UPDATE %(schema)s.layer AS l SET (' 'id, "isChecked", icon, "layerType", url, "imageType", style, dimensions, "matrixSet", ' '"wmsUrl", "wmsLayers", "queryLayers", kml, "isSingleTile", legend, "legendImage", ' '"legendRule", "isLegendExpanded", "minResolution", "maxResolution", disclaimer, ' '"identifierAttributeField", "excludeProperties", "timeMode"' ') = (' 'o.id, o.is_checked, o.icon, o.layer_type, o.url, o.image_type, o.style, o.dimensions, ' 'o.matrix_set, o.wms_url, o.wms_layers, o.query_layers, o.kml, o.is_single_tile, ' 'o.legend, o.legend_image, o.legend_rule, o.is_legend_expanded, o.min_resolution, ' 'o.max_resolution, o.disclaimer, o.identifier_attribute_field, o.exclude_properties, ' 'o.time_mode ' ') FROM %(schema)s.layerv1 AS o WHERE o.id = l.id' % {'schema': schema} ) op.drop_table('layerv1', schema=schema) op.drop_table('interface_theme', schema=schema) op.drop_table('interface_layer', schema=schema) op.drop_table('interface', schema=schema) op.create_table( 'user_functionality', Column( 'user_id', Integer, ForeignKey(schema + '.user.id'), primary_key=True ), Column( 'functionality_id', Integer, ForeignKey(schema + '.functionality.id'), primary_key=True ), schema=schema, )
41.555556
100
0.644742
e486effd351757fcc0884067943b4129ba26f878
1,694
py
Python
scripts/export-dos-opportunities.py
alphagov-mirror/digitalmarketplace-scripts
8a7ef9b2b5f5fffea6e012bd676b095a27d35101
[ "MIT" ]
1
2020-06-23T01:55:31.000Z
2020-06-23T01:55:31.000Z
scripts/export-dos-opportunities.py
alphagov-mirror/digitalmarketplace-scripts
8a7ef9b2b5f5fffea6e012bd676b095a27d35101
[ "MIT" ]
267
2015-10-12T12:43:52.000Z
2021-08-19T10:38:55.000Z
scripts/export-dos-opportunities.py
alphagov-mirror/digitalmarketplace-scripts
8a7ef9b2b5f5fffea6e012bd676b095a27d35101
[ "MIT" ]
7
2015-11-11T16:47:41.000Z
2021-04-10T18:03:04.000Z
#!/usr/bin/env python3 """Generate DOS opportunity data export CSV Loads data from the Brief and BriefResponse API models, filters for closed/awarded briefs and stores the output in the CSV. This script generates two CSVs, one with buyer user details and one without. The CSV without buyer user details is made publically available by uploading to the communications bucket, the CSV with buyer user details should be available to admins only so it is uploaded to the reports bucket. Usage: scripts/export-dos-opportunities.py [options] <stage> Options: -h --help Show this screen. -v --verbose Print apiclient INFO messages. --dry-run Generate the file but do not upload to S3 --output-dir=<output_dir> Directory to write csv files to [default: data] """ import sys sys.path.insert(0, '.') from docopt import docopt from dmapiclient import DataAPIClient from dmscripts.helpers.auth_helpers import get_auth_token from dmscripts.helpers.logging_helpers import logging, configure_logger from dmscripts.export_dos_opportunities import export_dos_opportunities from dmutils.env_helpers import get_api_endpoint_from_stage if __name__ == '__main__': arguments = docopt(__doc__) STAGE = arguments['<stage>'] OUTPUT_DIR = arguments['--output-dir'] DRY_RUN = arguments['--dry-run'] logging_config = { 'dmapiclient': logging.INFO} if bool(arguments.get('--verbose')) \ else {'dmapiclient': logging.WARNING} logger = configure_logger(logging_config) client = DataAPIClient(get_api_endpoint_from_stage(STAGE), get_auth_token('api', STAGE)) export_dos_opportunities(client, logger, STAGE, OUTPUT_DIR, DRY_RUN)
33.88
92
0.753837
3832ea4c713b1d009149a89fe5add279d5d6762a
363
py
Python
src/rst2text/__main__.py
1oglop1/rst2text
730b1bf5b9f7d9c223e0252837f37ce6e51b751e
[ "MIT" ]
null
null
null
src/rst2text/__main__.py
1oglop1/rst2text
730b1bf5b9f7d9c223e0252837f37ce6e51b751e
[ "MIT" ]
null
null
null
src/rst2text/__main__.py
1oglop1/rst2text
730b1bf5b9f7d9c223e0252837f37ce6e51b751e
[ "MIT" ]
null
null
null
""" Entrypoint module, in case you use `python -mrst2text`. Why does this file exist, and why __main__? For more info, read: - https://www.python.org/dev/peps/pep-0338/ - https://docs.python.org/2/using/cmdline.html#cmdoption-m - https://docs.python.org/3/using/cmdline.html#cmdoption-m """ from rst2text.cli import main if __name__ == "__main__": main()
24.2
64
0.716253
d2b64f99c6695fed163a22dce173932f01aed20e
4,737
py
Python
axelrod/tests/integration/test_filtering.py
nandhinianandj/Axelrod
379b907d64c51816a50abfd8480240276c893953
[ "MIT" ]
596
2015-03-30T17:34:14.000Z
2022-03-21T19:32:38.000Z
axelrod/tests/integration/test_filtering.py
nandhinianandj/Axelrod
379b907d64c51816a50abfd8480240276c893953
[ "MIT" ]
1,018
2015-03-30T14:57:33.000Z
2022-03-14T14:57:48.000Z
axelrod/tests/integration/test_filtering.py
nandhinianandj/Axelrod
379b907d64c51816a50abfd8480240276c893953
[ "MIT" ]
263
2015-03-31T10:26:28.000Z
2022-03-29T09:26:02.000Z
import unittest import warnings import axelrod as axl from axelrod.tests.property import strategy_lists from hypothesis import example, given, settings from hypothesis.strategies import integers, lists, sampled_from def classifiers_lists(min_size=1, max_size=5): """ A function to return a list of classifiers Parameters ---------- min_size : integer The minimum number of classifiers to include max_size : integer The maximum number of classifiers to include """ classifier_list = [ "stochastic", "long_run_time", "manipulates_state", "manipulates_source", "inspects_source", ] classifiers = lists( sampled_from(classifier_list), min_size=min_size, max_size=max_size ) return classifiers class TestFiltersAgainstComprehensions(unittest.TestCase): """ Test that the results of filtering strategies via a filterset dict match the results from using a list comprehension. """ def setUp(self) -> None: # Ignore warnings about classifiers running on instances warnings.simplefilter("ignore", category=UserWarning) def tearDown(self) -> None: warnings.simplefilter("default", category=UserWarning) @settings(deadline=None) @given( strategies=strategy_lists(min_size=20, max_size=20), classifiers=classifiers_lists(), ) @example( strategies=[axl.DBS, axl.Cooperator], classifiers=["long_run_time"] ) def test_boolean_filtering(self, strategies, classifiers): comprehension, filterset = strategies, {} for classifier in classifiers: comprehension = set(filter(axl.Classifiers[classifier], strategies)) filterset = {classifier: True} filtered = set( axl.filtered_strategies(filterset, strategies=strategies) ) self.assertEqual(comprehension, filtered) @given( min_memory_depth=integers(min_value=1, max_value=10), max_memory_depth=integers(min_value=1, max_value=10), memory_depth=integers(min_value=1, max_value=10), strategies=strategy_lists(min_size=20, max_size=20), ) @example( min_memory_depth=float("inf"), max_memory_depth=float("inf"), memory_depth=float("inf"), strategies=axl.short_run_time_strategies, ) @settings(max_examples=5, deadline=None) def test_memory_depth_filtering( self, min_memory_depth, max_memory_depth, memory_depth, strategies ): min_comprehension = set( [ s for s in strategies if axl.Classifiers["memory_depth"](s) >= min_memory_depth ] ) min_filterset = {"min_memory_depth": min_memory_depth} min_filtered = set( axl.filtered_strategies(min_filterset, strategies=strategies) ) self.assertEqual(min_comprehension, min_filtered) max_comprehension = set( [ s for s in strategies if axl.Classifiers["memory_depth"](s) <= max_memory_depth ] ) max_filterset = {"max_memory_depth": max_memory_depth} max_filtered = set( axl.filtered_strategies(max_filterset, strategies=strategies) ) self.assertEqual(max_comprehension, max_filtered) comprehension = set( [ s for s in strategies if axl.Classifiers["memory_depth"](s) == memory_depth ] ) filterset = {"memory_depth": memory_depth} filtered = set( axl.filtered_strategies(filterset, strategies=strategies) ) self.assertEqual(comprehension, filtered) @given(strategies=strategy_lists(min_size=20, max_size=20)) @settings(max_examples=5, deadline=None) def test_makes_use_of_filtering(self, strategies): """ Test equivalent filtering using two approaches. """ classifiers = [["game"], ["length"], ["game", "length"]] for classifier in classifiers: comprehension = set( [ s for s in strategies if set(classifier).issubset( set(axl.Classifiers["makes_use_of"](s)) ) ] ) filterset = {"makes_use_of": classifier} filtered = set( axl.filtered_strategies(filterset, strategies=strategies) ) self.assertEqual( comprehension, filtered, msg="classifier: {}".format(classifier) )
31.58
80
0.610091
9c34799279023f2497ddaff2cf479492b85d1fce
2,983
py
Python
tests/unit/algorithms/TransientAdvectionDiffusionTest.py
Jimmy-INL/OpenPNM
1546fa1ac2204443bde916f2037fac383c5069ae
[ "MIT" ]
1
2020-06-08T19:48:00.000Z
2020-06-08T19:48:00.000Z
tests/unit/algorithms/TransientAdvectionDiffusionTest.py
Jimmy-INL/OpenPNM
1546fa1ac2204443bde916f2037fac383c5069ae
[ "MIT" ]
null
null
null
tests/unit/algorithms/TransientAdvectionDiffusionTest.py
Jimmy-INL/OpenPNM
1546fa1ac2204443bde916f2037fac383c5069ae
[ "MIT" ]
null
null
null
import numpy as np import scipy as sp import openpnm as op class TransientAdvectionDiffusionTest: def setup_class(self): np.random.seed(0) self.net = op.network.Cubic(shape=[4, 3, 1], spacing=1.0) self.geo = op.geometry.GenericGeometry(network=self.net, pores=self.net.Ps, throats=self.net.Ts) self.phase = op.phases.GenericPhase(network=self.net) self.phys = op.physics.GenericPhysics(network=self.net, phase=self.phase, geometry=self.geo) self.phys['throat.diffusive_conductance'] = 1e-15 self.phys['throat.hydraulic_conductance'] = 1e-15 self.geo['pore.volume'] = 1e-27 self.geo['throat.conduit_lengths.pore1'] = 0.1 self.geo['throat.conduit_lengths.throat'] = 0.6 self.geo['throat.conduit_lengths.pore2'] = 0.1 def test_transient_advection_diffusion(self): sf = op.algorithms.StokesFlow(network=self.net, phase=self.phase) sf.setup(quantity='pore.pressure', conductance='throat.hydraulic_conductance') sf.set_value_BC(pores=self.net.pores('back'), values=1) sf.set_value_BC(pores=self.net.pores('front'), values=0) sf.run() self.phase[sf.settings['quantity']] = sf[sf.settings['quantity']] mod = op.models.physics.ad_dif_conductance.ad_dif self.phys.add_model(propname='throat.ad_dif_conductance', model=mod, s_scheme='powerlaw') self.phys.regenerate_models() ad = op.algorithms.TransientAdvectionDiffusion(network=self.net, phase=self.phase) ad.setup(phase=self.phase, quantity='pore.concentration', conductance='throat.ad_dif_conductance', diffusive_conductance='throat.diffusive_conductance', hydraulic_conductance='throat.hydraulic_conductance', pressure='pore.pressure', t_initial=0, t_final=100, t_step=1, t_output=50, t_tolerance=1e-20, t_precision=12, s_scheme='implicit') ad.set_IC(0) ad.set_value_BC(pores=self.net.pores('back'), values=2) ad.set_value_BC(pores=self.net.pores('front'), values=0) ad.run() x = [0., 0., 0., 0.89653, 0.89653, 0.89653, 1.53924, 1.53924, 1.53924, 2., 2., 2.] y = np.around(ad[ad.settings['quantity']], decimals=5) assert np.all(x == y) def teardown_class(self): ws = op.Workspace() ws.clear() if __name__ == '__main__': t = TransientAdvectionDiffusionTest() t.setup_class() for item in t.__dir__(): if item.startswith('test'): print('running test: '+item) t.__getattribute__(item)() self = t
39.773333
78
0.573584
8c60aa0cc192fe4fb0f1695abf7f5f15c83739b4
3,144
py
Python
CIM16/IEC61970/Informative/InfLocations/LocationGrant.py
MaximeBaudette/PyCIM
d68ee5ccfc1d32d44c5cd09fb173142fb5ff4f14
[ "MIT" ]
null
null
null
CIM16/IEC61970/Informative/InfLocations/LocationGrant.py
MaximeBaudette/PyCIM
d68ee5ccfc1d32d44c5cd09fb173142fb5ff4f14
[ "MIT" ]
null
null
null
CIM16/IEC61970/Informative/InfLocations/LocationGrant.py
MaximeBaudette/PyCIM
d68ee5ccfc1d32d44c5cd09fb173142fb5ff4f14
[ "MIT" ]
1
2021-04-02T18:04:49.000Z
2021-04-02T18:04:49.000Z
# Copyright (C) 2010-2011 Richard Lincoln # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from CIM16.IEC61968.Common.Agreement import Agreement class LocationGrant(Agreement): """A grant provides a right, as defined by type, for a parcel of land. Note that the association to Location, Asset, Organisation, etc. for the Grant is inherited from Agreement, a type of Document.A grant provides a right, as defined by type, for a parcel of land. Note that the association to Location, Asset, Organisation, etc. for the Grant is inherited from Agreement, a type of Document. """ def __init__(self, propertyData='', LandProperty=None, *args, **kw_args): """Initialises a new 'LocationGrant' instance. @param propertyData: Property related information that describes the Grant's land parcel. For example, it may be a deed book number, deed book page number, and parcel number. @param LandProperty: Land property this location grant applies to. """ #: Property related information that describes the Grant's land parcel. For example, it may be a deed book number, deed book page number, and parcel number. self.propertyData = propertyData self._LandProperty = None self.LandProperty = LandProperty super(LocationGrant, self).__init__(*args, **kw_args) _attrs = ["propertyData"] _attr_types = {"propertyData": str} _defaults = {"propertyData": ''} _enums = {} _refs = ["LandProperty"] _many_refs = [] def getLandProperty(self): """Land property this location grant applies to. """ return self._LandProperty def setLandProperty(self, value): if self._LandProperty is not None: filtered = [x for x in self.LandProperty.LocationGrants if x != self] self._LandProperty._LocationGrants = filtered self._LandProperty = value if self._LandProperty is not None: if self not in self._LandProperty._LocationGrants: self._LandProperty._LocationGrants.append(self) LandProperty = property(getLandProperty, setLandProperty)
48.369231
397
0.724237
a1b43197d4ca5dd3de486f2766065c87fb56e7b4
5,487
py
Python
tests/integration_tests/test_integration.py
JimmyBoyle/FeatureToggles
7e6ec7619764ee93882fb9c07f7076e076023eb9
[ "MIT" ]
null
null
null
tests/integration_tests/test_integration.py
JimmyBoyle/FeatureToggles
7e6ec7619764ee93882fb9c07f7076e076023eb9
[ "MIT" ]
1
2018-11-02T22:00:08.000Z
2018-11-02T22:00:08.000Z
tests/integration_tests/test_integration.py
JimmyBoyle/FeatureToggles
7e6ec7619764ee93882fb9c07f7076e076023eb9
[ "MIT" ]
null
null
null
import boto3 import json import lambda_functions import sys lambda_client = boto3.client('lambda') def test_basic_load(): updates = { "operator_id": "tester", "updates": [ { "action": "SET", "toggle_name": "feature1", "dimension": "dimension1", "value": True }, { "action": "SET", "toggle_name": "feature1", "dimension": "dimension2", "value": False }, { "action": "SET", "toggle_name": "feature2", "dimension": "dimension3", "value": True } ] } expected = { 'feature_toggles': { 'feature1': { 'dimension1': True, 'dimension2': False }, 'feature2': { 'dimension3': True } } } _update_toggles(updates) assert _load_toggles() == expected _clear_toggles(expected) def test_clear_one(): before = { "operator_id": "tester", "updates": [ { "action": "SET", "toggle_name": "feature1", "dimension": "dimension1", "value": True }, { "action": "SET", "toggle_name": "feature1", "dimension": "dimension2", "value": False }, { "action": "SET", "toggle_name": "feature2", "dimension": "dimension3", "value": True } ] } _update_toggles(before) updates = { "operator_id": "tester", "updates": [ { "action": "CLEAR", "toggle_name": "feature1", "dimension": "dimension1" } ] } expected = { 'feature_toggles': { 'feature1': { 'dimension2': False }, 'feature2': { 'dimension3': True } } } _update_toggles(updates) assert _load_toggles() == expected _clear_toggles(expected) def test_clear_all(): before = { "operator_id": "tester", "updates": [ { "action": "SET", "toggle_name": "feature1", "dimension": "dimension1", "value": True }, { "action": "SET", "toggle_name": "feature1", "dimension": "dimension2", "value": False }, { "action": "SET", "toggle_name": "feature2", "dimension": "dimension3", "value": True } ] } _update_toggles(before) updates = { "operator_id": "tester", "updates": [ { "action": "CLEAR_ALL", "toggle_name": "feature1" } ] } expected = { 'feature_toggles': { 'feature2': { 'dimension3': True } } } _update_toggles(updates) assert _load_toggles() == expected _clear_toggles(expected) def test_bad_action(): updates = { "operator_id": "tester", "updates": [ { "action": "SETS", "toggle_name": "feature1", "dimension": "dimension1", "value": True } ] } result = _update_toggles(updates) assert 'errorMessage' in result assert 'ValidationError' == result['errorType'] def test_missing_dimension(): updates = { "operator_id": "tester", "updates": [ { 'action': 'SET', 'toggle_name': 't1', 'value': True, } ] } result = _update_toggles(updates) assert 'errorMessage' in result assert 'ValidationError' == result['errorType'] def test_missing_action(): updates = { "operator_id": "tester", "updates": [ { 'toggle_name': 't1', 'value': True, } ] } result = _update_toggles(updates) assert 'errorMessage' in result assert 'ValidationError' == result['errorType'] def _load_toggles(): res = lambda_client.invoke( FunctionName=lambda_functions.load_function, InvocationType='RequestResponse' ) return json.loads(res['Payload'].read().decode("utf-8")) def _update_toggles(updates): print(lambda_functions.update_function) res = lambda_client.invoke( FunctionName=lambda_functions.update_function, InvocationType='RequestResponse', Payload=json.dumps(updates) ) return json.loads(res['Payload'].read().decode("utf-8")) def _clear_toggles(current_toggles): updates = { "operator_id": "tester", "updates": [] } for toggle_name in current_toggles['feature_toggles']: updates['updates'].append( { "action": "CLEAR_ALL", "toggle_name": toggle_name } ) _update_toggles(updates) assert _load_toggles() == {'feature_toggles': {}}
24.278761
60
0.446692
9f28a123848cd59592f4ab2a4ba4e8be20ca9391
1,829
py
Python
apiV1/routes/driver.py
DerKip/Ride-My-Way
30600349b4225272c4b6e78851c1dce96e586d31
[ "MIT" ]
1
2021-04-06T07:18:06.000Z
2021-04-06T07:18:06.000Z
apiV1/routes/driver.py
DerKip/Ride-My-Way
30600349b4225272c4b6e78851c1dce96e586d31
[ "MIT" ]
13
2018-06-13T05:09:35.000Z
2019-10-21T16:15:50.000Z
apiV1/routes/driver.py
DerKip/Ride-My-Way
30600349b4225272c4b6e78851c1dce96e586d31
[ "MIT" ]
1
2019-05-08T14:40:51.000Z
2019-05-08T14:40:51.000Z
from flask import Blueprint, jsonify, request, Response from ..app.controllers import registration_controller, rides_controller from ..models.rides import all_ride_offers from utils import JSON_MIME_TYPE, json_response driver_route = Blueprint("route_driver",__name__) @driver_route.route('/register', methods=['POST']) def register_driver(): """Driver registration endpoint""" if request.content_type != JSON_MIME_TYPE: error = jsonify({'error': 'Invalid Content Type'}) return json_response(error, 400) return registration_controller.register_new_driver() @driver_route.route('/logout', methods=['DELETE']) def logout_driver(): """Driver logout endpoint""" return jsonify({"message":"Successfully logged out"}),200 @driver_route.route('/create_ride', methods=['POST']) def create_ride(): """Create ride offer endpoint""" if request.content_type != JSON_MIME_TYPE: error = jsonify({'error': 'Invalid Content Type'}) return json_response(error, 400) return rides_controller.create_new_ride_offer() @driver_route.route('/rides', methods=['GET']) def get_all_ride_offers(): """GET all ride offers endpoint""" rides = jsonify(all_ride_offers) return json_response(rides,200) @driver_route.route('/rides/<int:id>', methods=['GET']) def get_single_ride_offer(id): """GET single ride offer endpoint""" single_ride_offer = [offer for offer in all_ride_offers if offer['id'] == id] return jsonify({"Your Ride Offer:":single_ride_offer}),200 @driver_route.route('/rides/<string:driver>', methods=['GET']) def get_all_my_ride_offers(driver): """GET all my ride offers endpoint""" my_rides =[rides for rides in all_ride_offers if rides["created_by"] == driver] return jsonify({(("{} ride offers").format(driver)):my_rides})
35.862745
83
0.718972
b230d891805bd7cec875dae1d28fff1ec4770671
2,201
py
Python
ITP2/ITP2_10_D.py
yu8ikmnbgt6y/MyAOJ
474b21a2a0c25e1c1f3d6d66d2a2ea52aecaa39b
[ "Unlicense" ]
1
2020-01-08T16:33:46.000Z
2020-01-08T16:33:46.000Z
ITP2/ITP2_10_D.py
yu8ikmnbgt6y/MyAOJ
474b21a2a0c25e1c1f3d6d66d2a2ea52aecaa39b
[ "Unlicense" ]
null
null
null
ITP2/ITP2_10_D.py
yu8ikmnbgt6y/MyAOJ
474b21a2a0c25e1c1f3d6d66d2a2ea52aecaa39b
[ "Unlicense" ]
null
null
null
import sys import io import time import pprint input_txt = """ 3 3 0 1 3 1 3 3 0 1 2 8 1 0 2 1 3 1 4 2 5 2 6 2 7 2 8 2 """ sys.stdin = io.StringIO(input_txt);input() #sys.stdin = open('in.test') start = time.time() # copy the below part and paste to the submission form. # ---------function------------ import sys class BitFlag: #ALL_ON = 0xffffffffffffffff ALL_OFF = 0x0000000000000000 def __init__(self, mask_digits): self.FLAGS = self.ALL_OFF self.MaskFor1bit = [1 << i for i in range(64)] self.Masks = [self.make_mask(digits) for digits in mask_digits] @staticmethod def make_mask(digits): ret = 0 for digit in digits: ret += 1 << digit return ret def _test(self, i): return self.FLAGS & self.MaskFor1bit[i] != self.ALL_OFF def _set(self, m): self.FLAGS |= self.Masks[m] def _clear(self, m): self.FLAGS &= ~self.Masks[m] def _flip(self, m): self.FLAGS ^= self.Masks[m] def _all(self, m): return self.FLAGS & self.Masks[m] == self.Masks[m] def _any(self, m): return self.FLAGS & self.Masks[m] != self.ALL_OFF def _none(self, m): return self.FLAGS & self.Masks[m] == self.ALL_OFF def _count(self, m): return bin(self.FLAGS & self.Masks[m]).count('1') def _val(self, m): return self.FLAGS & self.Masks[m] nm = int(input()) digits = [] for i in range(nm): k, *arg = map(int, input().split()) digits.append(arg) bf = BitFlag(digits) commands = {'0': bf._test, '1': bf._set, '2': bf._clear, '3': bf._flip, '4': bf._all, '5': bf._any, '6': bf._none, '7': bf._count, '8': bf._val } qn = int(input()) lines = sys.stdin.readlines() ans = [None] * qn for i in range(qn): q, arg = lines[i].split() ans[i] = commands[q](int(arg)) [print(int(x)) for x in ans if x is not None] # ----------------------------- print("elapsed:", time.time() - start) sys.stdin = sys.__stdin__
21.163462
72
0.524307
862fc353c28cda53807147358ed0f087f58f4ca4
1,197
py
Python
profiles_api/serializers.py
khangnguyen211195/profiles-rest-api
b74577159874e100b06e682814b465ef175d7d2f
[ "MIT" ]
null
null
null
profiles_api/serializers.py
khangnguyen211195/profiles-rest-api
b74577159874e100b06e682814b465ef175d7d2f
[ "MIT" ]
null
null
null
profiles_api/serializers.py
khangnguyen211195/profiles-rest-api
b74577159874e100b06e682814b465ef175d7d2f
[ "MIT" ]
null
null
null
from rest_framework import serializers from profiles_api import models class HelloSerializer(serializers.Serializer): """Serializes a name field for testing our APIView""" name = serializers.CharField(max_length = 10) class UserProfileSerializer(serializers.ModelSerializer): """Serializes a user profile object""" class Meta: model = models.UserProfile fields = ('id', 'email', 'name', 'password') extra_kwargs = { 'password' : { 'write_only': True, 'style': {'input_type' : 'password'} } } def create(self, validated_data): """Create and return a new user""" user = models.UserProfile.objects.create_user( email = validated_data['email'], name = validated_data['name'], password = validated_data['password'] ) return user class ProfileFeedItemSerializer(serializers.ModelSerializer): """Serializers profile feed items""" class Meta: model = models.ProfileFeedItem fields = ('id', 'user_profile', 'status_text', 'created_on') extra_kwargs = {'user_profile' : {'read_only':True}}
29.925
68
0.621554
5f5bad289bafe45d52b9a87b7dd7279ef0ae305c
5,948
py
Python
jello/cli.py
roehling/jello
1073355e2bbfcd4f92af2584c9e539ce34859fc0
[ "MIT" ]
null
null
null
jello/cli.py
roehling/jello
1073355e2bbfcd4f92af2584c9e539ce34859fc0
[ "MIT" ]
null
null
null
jello/cli.py
roehling/jello
1073355e2bbfcd4f92af2584c9e539ce34859fc0
[ "MIT" ]
null
null
null
"""jello - query JSON at the command line with python syntax""" import os import sys import textwrap import signal import jello from jello.lib import opts, load_json, pyquery, Schema, Json def ctrlc(signum, frame): """exit with error on SIGINT""" sys.exit(1) def get_stdin(): """return STDIN data""" if sys.stdin.isatty(): return None else: return sys.stdin.read() def print_help(): print(textwrap.dedent('''\ jello: query JSON at the command line with python syntax Usage: cat data.json | jello [OPTIONS] [QUERY] -c compact JSON output -i initialize environment with .jelloconf.py in ~ (linux) or %appdata% (Windows) -l output as lines suitable for assignment to a bash array -m monochrome output -n print selected null values -r raw string output (no quotes) -s print the JSON schema in grep-able format -t print type annotations in schema view -v version info -h help Use '_' as the input data and use python dict and list bracket syntax or dot notation. Examples: cat data.json | jello _.foo cat data.json | jello '_["foo"]' variable=($(cat data.json | jello -l _.foo)) ''')) sys.exit() def print_error(message): """print error messages to STDERR and quit with error code""" print(message, file=sys.stderr) sys.exit(1) def print_exception(e=None, list_dict_data='', query='', response='', ex_type='Runtime'): list_dict_data = str(list_dict_data).replace('\n', '\\n') query = str(query).replace('\n', '\\n') response = str(response).replace('\n', '\\n') e_text = '' if hasattr(e, 'text'): e_text = e.text.replace('\n', '') if len(list_dict_data) > 70: list_dict_data = list_dict_data[:34] + ' ... ' + list_dict_data[-34:] if len(query) > 70: query = query[:34] + ' ... ' + query[-34:] if len(response) > 70: response = response[:34] + ' ... ' + response[-34:] exception_message = f'jello: {ex_type} Exception: {e.__class__.__name__}\n' ex_map = { 'query': query, 'data': list_dict_data, 'response': response } exception_message += f' {e}\n' if e_text: exception_message += f' {e_text}\n' for item_name, item in ex_map.items(): if item: exception_message += f' {item_name}: {item}\n' print(exception_message, file=sys.stderr) sys.exit(1) def main(data=None, query='_'): # break on ctrl-c keyboard interrupt signal.signal(signal.SIGINT, ctrlc) # break on pipe error. need try/except for windows compatibility try: signal.signal(signal.SIGPIPE, signal.SIG_DFL) except AttributeError: pass # enable colors for Windows cmd.exe terminal if sys.platform.startswith('win32'): os.system('') if data is None: data = get_stdin() options = [] long_options = {} for arg in sys.argv[1:]: if arg.startswith('-') and not arg.startswith('--'): options.extend(arg[1:]) elif arg.startswith('--'): try: k, v = arg[2:].split('=') long_options[k] = int(v) except Exception: print_help() else: query = arg opts.compact = opts.compact or 'c' in options opts.initialize = opts.initialize or 'i' in options opts.lines = opts.lines or 'l' in options opts.mono = opts.mono or 'm' in options opts.nulls = opts.nulls or 'n' in options opts.raw = opts.raw or 'r' in options opts.schema = opts.schema or 's' in options opts.types = opts.types or 't' in options opts.version_info = opts.version_info or 'v' in options opts.helpme = opts.helpme or 'h' in options if opts.helpme: print_help() if opts.version_info: print(textwrap.dedent(f'''\ jello: Version: {jello.__version__} Author: {jello.AUTHOR} Website: {jello.WEBSITE} Copyright: {jello.COPYRIGHT} License: {jello.LICENSE} ''')) sys.exit() if data is None: print_error('jello: missing piped JSON or JSON Lines data\n') # only process if there is data if data and not data.isspace(): # load the JSON or JSON Lines list_dict_data = None try: list_dict_data = load_json(data) except Exception as e: msg = f'''JSON Load Exception: Cannot parse the data (Not valid JSON or JSON Lines) {e} ''' print_error(f'jello: {msg}') # Read .jelloconf.py (if it exists) and run the query response = '' try: response = pyquery(list_dict_data, query) except Exception as e: print_exception(e, list_dict_data, query, ex_type='Query') # Create and print schema or JSON/JSON-Lines/Lines output = '' try: if opts.schema: schema = Schema() output = schema.create_schema(response) if not opts.mono and sys.stdout.isatty(): schema.set_colors() output = schema.color_output(output) else: json_out = Json() output = json_out.create_json(response) if not opts.mono and not opts.raw and sys.stdout.isatty(): json_out.set_colors() output = json_out.color_output(output) print(output) except Exception as e: print_exception(e, list_dict_data, query, response, ex_type='Formatting') if __name__ == '__main__': main()
29.156863
98
0.561533
a9b08e21bf2138a7f53246cef7d893882f651385
7,818
py
Python
tests/test_patches_chains.py
IzeBerg/python-wgus
c457af6ea57c40c7a2552fb69db1dd74bc6c9740
[ "MIT" ]
null
null
null
tests/test_patches_chains.py
IzeBerg/python-wgus
c457af6ea57c40c7a2552fb69db1dd74bc6c9740
[ "MIT" ]
null
null
null
tests/test_patches_chains.py
IzeBerg/python-wgus
c457af6ea57c40c7a2552fb69db1dd74bc6c9740
[ "MIT" ]
null
null
null
import pytest from wgus import PatchesChains, get_patches_chains def test_parse(): data = """ <protocol name="patches_chain" version="1.9" wgc_publisher_id="wargaming,steam"> <patches_chain type="install"> <patch> <files> <file> <name>wot_1.14.1.3252_ru_vtlj1d/wot_1.14.1.1663850_locale_ru.wgpkg</name> <size>25326691</size> <unpacked_size>31281758</unpacked_size> </file> </files> <torrent> <hash>245ffc7538bf793894491b17090d69e646b70825ba1de074679046da71283be8</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3252_ru_vtlj1d/wot_1.14.1.3252_ru.torrent</url> </urls> </torrent> <part>locale</part> <version_to>1.14.1.1663850</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.21618_client.wgpkg.001</name> <size>4194304000</size> <unpacked_size>12957669925</unpacked_size> </file> <file> <name>wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.21618_client.wgpkg.002</name> <size>4184272193</size> <unpacked_size>0</unpacked_size> </file> </files> <torrent> <hash>105b3d87dd8f08bc012800906ba1a467c5fef4ebaffa04902473677ef3d0c155</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.3186_ru.torrent</url> </urls> </torrent> <part>client</part> <version_to>1.14.1.21618</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3193_ru_la952m/wot_1.14.1.21624_1.14.1.21618_client.wgpkg</name> <size>55703224</size> <unpacked_size>131328708</unpacked_size> <diffs_size>7941114817</diffs_size> </file> </files> <torrent> <hash>1ccb7ac1facfbf22b60989bb4a0376c1d0f7ea9fe35a6b9d63ea4b7ca4de87aa</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3193_ru_la952m/wot_1.14.1.3193_ru.torrent</url> </urls> </torrent> <part>client</part> <version_to>1.14.1.21624</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3239_ru_ib3c5x/wot_1.14.1.21637_1.14.1.21624_client.wgpkg</name> <size>15395960</size> <unpacked_size>20030646</unpacked_size> <diffs_size>3766081307</diffs_size> </file> </files> <torrent> <hash>cf0bf16818a1e902fc94af4107664334616dca234df1d8960b7ca69fb7fdee4b</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3239_ru_ib3c5x/wot_1.14.1.3239_ru.torrent</url> </urls> </torrent> <part>client</part> <version_to>1.14.1.21637</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3247_ru_qd0mnp/wot_1.14.1.21661_1.14.1.21637_client.wgpkg</name> <size>594078157</size> <unpacked_size>796205967</unpacked_size> <diffs_size>9090130583</diffs_size> </file> </files> <torrent> <hash>eb758887e3497b911691fc69c25cf586927f0fe786cf32b66a55823c003a8702</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3247_ru_qd0mnp/wot_1.14.1.3247_ru.torrent</url> </urls> </torrent> <part>client</part> <version_to>1.14.1.21661</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3266_ru_xb0636/wot_1.14.1.21675_1.14.1.21661_client.wgpkg</name> <size>48174</size> <unpacked_size>75218</unpacked_size> <diffs_size>125343471</diffs_size> </file> </files> <torrent> <hash>b353aa48e8b46ed7502b25dbb4fc51dcfa380f676c450e0cd579e4e4bb116e73</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3266_ru_xb0636/wot_1.14.1.3266_ru.torrent</url> </urls> </torrent> <part>client</part> <version_to>1.14.1.21675</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.21618_sdcontent.wgpkg.001</name> <size>4194304000</size> <unpacked_size>26552838287</unpacked_size> </file> <file> <name>wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.21618_sdcontent.wgpkg.002</name> <size>4194304000</size> <unpacked_size>0</unpacked_size> </file> <file> <name>wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.21618_sdcontent.wgpkg.003</name> <size>1943655010</size> <unpacked_size>0</unpacked_size> </file> </files> <torrent> <hash>105b3d87dd8f08bc012800906ba1a467c5fef4ebaffa04902473677ef3d0c155</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.3186_ru.torrent</url> </urls> </torrent> <part>sdcontent</part> <version_to>1.14.1.21618</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3193_ru_la952m/wot_1.14.1.21624_1.14.1.21618_sdcontent.wgpkg</name> <size>135449</size> <unpacked_size>188905</unpacked_size> <diffs_size>1366361750</diffs_size> </file> </files> <torrent> <hash>1ccb7ac1facfbf22b60989bb4a0376c1d0f7ea9fe35a6b9d63ea4b7ca4de87aa</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3193_ru_la952m/wot_1.14.1.3193_ru.torrent</url> </urls> </torrent> <part>sdcontent</part> <version_to>1.14.1.21624</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3247_ru_qd0mnp/wot_1.14.1.21661_1.14.1.21624_sdcontent.wgpkg</name> <size>306984314</size> <unpacked_size>786453093</unpacked_size> <diffs_size>14466667087</diffs_size> </file> </files> <torrent> <hash>eb758887e3497b911691fc69c25cf586927f0fe786cf32b66a55823c003a8702</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3247_ru_qd0mnp/wot_1.14.1.3247_ru.torrent</url> </urls> </torrent> <part>sdcontent</part> <version_to>1.14.1.21661</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.21618_hdcontent.wgpkg.001</name> <size>4194304000</size> <unpacked_size>19862853844</unpacked_size> </file> <file> <name>wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.21618_hdcontent.wgpkg.002</name> <size>4194304000</size> <unpacked_size>0</unpacked_size> </file> <file> <name>wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.21618_hdcontent.wgpkg.003</name> <size>3005599718</size> <unpacked_size>0</unpacked_size> </file> </files> <torrent> <hash>105b3d87dd8f08bc012800906ba1a467c5fef4ebaffa04902473677ef3d0c155</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3186_ru_aa0jt9/wot_1.14.1.3186_ru.torrent</url> </urls> </torrent> <part>hdcontent</part> <version_to>1.14.1.21618</version_to> </patch> <patch> <files> <file> <name>wot_1.14.1.3247_ru_qd0mnp/wot_1.14.1.21661_1.14.1.21618_hdcontent.wgpkg</name> <size>369097545</size> <unpacked_size>656771030</unpacked_size> <diffs_size>13160407318</diffs_size> </file> </files> <torrent> <hash>eb758887e3497b911691fc69c25cf586927f0fe786cf32b66a55823c003a8702</hash> <urls> <url>https://dl-wot-gc.wargaming.net/ru/patches/wot_1.14.1.3247_ru_qd0mnp/wot_1.14.1.3247_ru.torrent</url> </urls> </torrent> <part>hdcontent</part> <version_to>1.14.1.21661</version_to> </patch> <web_seeds> <url threads="3" name="G-Core">http://dl-wot-gc.wargaming.net/ru/patches/</url> <url threads="1" name="Cedexis">http://dl-wot-cdx.wargaming.net/ru/patches/</url> </web_seeds> <meta_need_update>False</meta_need_update> <version_name>1.14.1.3252</version_name> </patches_chain> </protocol>""" chains = PatchesChains.parse(data) assert chains @pytest.mark.asyncio async def test_get_patches_chains(): await get_patches_chains("wgus-wotru.wargaming.net", "WOT.RU.PRODUCTION")
32.040984
110
0.680353
1d8e9b0c45344da5cc18e06555c10b334404499b
3,970
py
Python
tests/test_builder.py
georgeyk/simple-model
95eaacb0da70364c1ee3aaf5e0d205f8e3255dfe
[ "MIT" ]
null
null
null
tests/test_builder.py
georgeyk/simple-model
95eaacb0da70364c1ee3aaf5e0d205f8e3255dfe
[ "MIT" ]
null
null
null
tests/test_builder.py
georgeyk/simple-model
95eaacb0da70364c1ee3aaf5e0d205f8e3255dfe
[ "MIT" ]
null
null
null
import typing import pytest from simple_model.builder import model_builder, model_class_builder, model_many_builder from simple_model import Model, to_dict def test_model_class_builder(): Birl = model_class_builder('Birl', {'f': 'foo', 'b': 'bar'}) birl = Birl() assert isinstance(birl, Model) keys = ('f', 'b') assert len(Birl._meta.fields) == len(keys) assert set(Birl._meta.fields) == set(keys) assert birl.validate(raise_exception=False) is True assert to_dict(birl) == {'f': None, 'b': None} def test_model_class_builder_empty_data(): Birl = model_class_builder('Birl', {}) birl = Birl() assert isinstance(birl, Model) def test_model_builder(): data = { 'foo': 'foo', 'bar': 'bar', } birl = model_builder(data, recurse=False) assert birl.foo == 'foo' assert birl.bar == 'bar' assert type(birl).__name__ == 'MyModel' def test_model_builder_class_name(): data = { 'foo': 'foo', 'bar': 'bar', } birl = model_builder(data, class_name='Birl', recurse=False) assert birl.foo == 'foo' assert birl.bar == 'bar' assert type(birl).__name__ == 'Birl' def test_model_builder_recurse_false(): my_model = {'baz': 'baz', 'qux': 'qux'} data = { 'foo': 'foo', 'bar': 'bar', 'my_model': my_model, } birl = model_builder(data, recurse=False) assert birl.foo == 'foo' assert birl.bar == 'bar' assert birl.my_model == my_model def test_model_builder_recurse(): my_model = {'baz': 'baz', 'qux': 'qux'} data = { 'foo': 'foo', 'bar': 'bar', 'my_model': my_model, } birl = model_builder(data) assert birl.foo == 'foo' assert birl.bar == 'bar' assert birl.my_model.baz == 'baz' assert birl.my_model.qux == 'qux' assert type(birl.my_model).__name__ == 'MyModel' assert type(birl.my_model) not in (Model, type(birl)) @pytest.mark.parametrize('iterable_class', (tuple, list)) def test_model_builder_recurse_iterable(iterable_class): models = iterable_class([{'baz': 'baz', 'qux': 'qux'}, 1, 2]) data = { 'foo': 'foo', 'bar': 'bar', 'models': models, } birl = model_builder(data) assert birl.foo == 'foo' assert birl.bar == 'bar' assert birl.models[0].baz == 'baz' assert birl.models[0].qux == 'qux' assert birl.models[1] == 1 assert birl.models[2] == 2 assert isinstance(birl.models[0], Model) assert type(birl.models[0]).__name__ == 'NamelessModel' def test_model_builder_data_keys_with_special_characters(): data = { 'foo*bar': 'foobar', 'baz/qux': 'bazqux', } birl = model_builder(data) assert birl.foo_bar == 'foobar' assert birl.baz_qux == 'bazqux' def test_model_builder_custom_class(): data = { 'foo*bar': 'foobar', 'baz/qux': 'bazqux', } cls = model_class_builder('Model', data) birl = model_builder(data, cls=cls) assert isinstance(birl, cls) def test_model_many_builder(): element = { 'foo*bar': 'foobar', 'baz/qux': 'bazqux', } model_count = 3 data = [element] * model_count models = model_many_builder(data) assert isinstance(models, typing.Generator) models = list(models) assert len(models) == model_count first = models[0] for model in models[1:]: assert isinstance(model, type(first)) @pytest.mark.parametrize('iterable', ([], ())) def test_model_many_builder_empty_iterable(iterable): models = model_many_builder(iterable) assert isinstance(models, typing.Generator) assert len(list(models)) == 0 def test_model_many_builder_custom_cls(): class Foo(Model): bar: str def baz(self): return True data = [{'bar': 1}] * 3 models = list(model_many_builder(data, cls=Foo)) assert len(models) == 3 assert all(foo.baz() for foo in models)
24.658385
87
0.615113
272f65947e07bdacc5832ed3acdce26b0e3b04d2
3,533
py
Python
vprof/profiler.py
ltetrel/vprof
4cab77f345be71b8f2841e0af7f32979e17b9b44
[ "BSD-2-Clause" ]
4,222
2015-07-19T06:16:39.000Z
2022-03-31T13:04:35.000Z
vprof/profiler.py
ltetrel/vprof
4cab77f345be71b8f2841e0af7f32979e17b9b44
[ "BSD-2-Clause" ]
105
2015-12-18T10:33:08.000Z
2022-01-03T21:15:51.000Z
vprof/profiler.py
ltetrel/vprof
4cab77f345be71b8f2841e0af7f32979e17b9b44
[ "BSD-2-Clause" ]
224
2015-12-22T20:54:53.000Z
2022-01-05T20:27:25.000Z
"""Profiler wrapper module.""" import cProfile import operator import pstats import runpy import time from vprof import base_profiler class Profiler(base_profiler.BaseProfiler): """Python profiler wrapper. Runs cProfile on specified program and returns collected stats. """ @staticmethod def _transform_stats(prof): """Processes collected stats for UI.""" records = [] for info, params in prof.stats.items(): filename, lineno, funcname = info cum_calls, num_calls, time_per_call, cum_time, _ = params if prof.total_tt == 0: percentage = 0 else: percentage = round(100 * (cum_time / prof.total_tt), 4) cum_time = round(cum_time, 4) func_name = '%s @ %s' % (funcname, filename) color_hash = base_profiler.hash_name(func_name) records.append( (filename, lineno, funcname, cum_time, percentage, num_calls, cum_calls, time_per_call, filename, color_hash)) return sorted(records, key=operator.itemgetter(4), reverse=True) def _profile_package(self): """Runs cProfile on a package.""" prof = cProfile.Profile() prof.enable() try: runpy.run_path(self._run_object, run_name='__main__') except SystemExit: pass prof.disable() prof_stats = pstats.Stats(prof) prof_stats.calc_callees() return { 'objectName': self._object_name, 'callStats': self._transform_stats(prof_stats), 'totalTime': prof_stats.total_tt, 'primitiveCalls': prof_stats.prim_calls, 'totalCalls': prof_stats.total_calls, 'timestamp': int(time.time()) } def profile_package(self): """Runs package profiler in a separate process.""" return base_profiler.run_in_separate_process(self._profile_package) def _profile_module(self): """Runs cProfile on a module.""" prof = cProfile.Profile() try: with open(self._run_object, 'rb') as srcfile: code = compile(srcfile.read(), self._run_object, 'exec') prof.runctx(code, self._globs, None) except SystemExit: pass prof_stats = pstats.Stats(prof) prof_stats.calc_callees() return { 'objectName': self._object_name, 'callStats': self._transform_stats(prof_stats), 'totalTime': prof_stats.total_tt, 'primitiveCalls': prof_stats.prim_calls, 'totalCalls': prof_stats.total_calls, 'timestamp': int(time.time()) } def profile_module(self): """Runs module profiler in a separate process.""" return base_profiler.run_in_separate_process(self._profile_module) def profile_function(self): """Runs cProfile on a function.""" prof = cProfile.Profile() prof.enable() result = self._run_object(*self._run_args, **self._run_kwargs) prof.disable() prof_stats = pstats.Stats(prof) prof_stats.calc_callees() return { 'objectName': self._object_name, 'callStats': self._transform_stats(prof_stats), 'totalTime': prof_stats.total_tt, 'primitiveCalls': prof_stats.prim_calls, 'totalCalls': prof_stats.total_calls, 'result': result, 'timestamp': int(time.time()) }
34.980198
77
0.600906
23d7b7136e43be77be11baa7da44e767ad821cb9
2,935
py
Python
src/tests/crazy_mesh_test.py
Idate96/Mimetic-Fem
75ad3b982ef7ed7c6198f526d19dc460dec28f4d
[ "MIT" ]
null
null
null
src/tests/crazy_mesh_test.py
Idate96/Mimetic-Fem
75ad3b982ef7ed7c6198f526d19dc460dec28f4d
[ "MIT" ]
null
null
null
src/tests/crazy_mesh_test.py
Idate96/Mimetic-Fem
75ad3b982ef7ed7c6198f526d19dc460dec28f4d
[ "MIT" ]
null
null
null
"""Module to test mapping of compuational domain into an arbitrary one.""" import path_magic import unittest import os import mesh import numpy as np import matplotlib.pyplot as plt import numpy.testing as npt # os.chdir(os.getcwd() + '/tests') class TestMappingMesh22(unittest.TestCase): def setUp(self): n = 10 self.nx, self.ny = 2, 2 self.crazy_mesh = mesh.CrazyMesh( 2, (self.nx, self.ny), ((-1, 1), (-1, 1)), curvature=0.1) self.xi = self.eta = np.linspace(-1, 1, n) self.xi, self.eta = np.meshgrid(self.xi, self.eta) self.dir = os.getcwd() + '/src/tests/' def test_deformed_grid_mapping(self): for i in range(self.nx * self.ny): x_ref = np.loadtxt(self.dir + 'test_mapping/x_reference_domain_cc1_el' + str(i) + '.dat', delimiter=',') y_ref = np.loadtxt(self.dir + 'test_mapping/y_reference_domain_cc1_el' + str(i) + '.dat', delimiter=',') x, y = self.crazy_mesh.mapping(self.xi, self.eta, i) npt.assert_array_almost_equal(x, x_ref, decimal=4) npt.assert_array_almost_equal(y, y_ref, decimal=4) def test_dx_dxi(self): for i in range(self.nx * self.ny): dx_dxi_ref = np.loadtxt(self.dir + 'test_dx_dxi/dxdxi_ref_domain_cc1_el' + str(i) + '.dat', delimiter=',') dx_dxi_crazy = self.crazy_mesh.dx_dxi(self.xi, self.eta, i) # print('element : ', i) # print(dx_dxi_crazy, dx_dxi_ref) npt.assert_array_almost_equal(dx_dxi_ref, dx_dxi_crazy, decimal=4) def test_dx_deta(self): for i in range(self.nx * self.ny): dx_dxi_ref = np.loadtxt(self.dir + 'test_dx_deta/dxdeta_ref_domain_cc1_el' + str(i) + '.dat', delimiter=',') dx_dxi_crazy = self.crazy_mesh.dx_deta(self.xi, self.eta, i) # print('element : ', i) # print(dx_dxi_crazy, dx_dxi_ref) npt.assert_array_almost_equal(dx_dxi_ref, dx_dxi_crazy, decimal=4) def test_dy_dxi(self): for i in range(self.nx * self.ny): dx_dxi_ref = np.loadtxt(self.dir + 'test_dy_dxi/dydxi_ref_domain_cc1_el' + str(i) + '.dat', delimiter=',') dx_dxi_crazy = self.crazy_mesh.dy_dxi(self.xi, self.eta, i) npt.assert_array_almost_equal(dx_dxi_ref, dx_dxi_crazy, decimal=4) def test_dy_deta(self): for i in range(self.nx * self.ny): dx_dxi_ref = np.loadtxt(self.dir + 'test_dy_deta/dydeta_ref_domain_cc1_el' + str(i) + '.dat', delimiter=',') dx_dxi_crazy = self.crazy_mesh.dy_deta(self.xi, self.eta, i) npt.assert_array_almost_equal(dx_dxi_ref, dx_dxi_crazy, decimal=4) if __name__ == '__main__': unittest.main()
41.928571
101
0.587394
ec6ba2fdddb957f8f47695187781177ac2dbd234
66
py
Python
npbench/benchmarks/polybench/bicg/bicg_cupy.py
frahlg/npbench
1bc4d9e2e22f3ca67fa2bc7f40e2e751a9c8dd26
[ "BSD-3-Clause" ]
27
2021-05-10T11:49:13.000Z
2022-03-22T18:07:19.000Z
npbench/benchmarks/polybench/bicg/bicg_cupy.py
frahlg/npbench
1bc4d9e2e22f3ca67fa2bc7f40e2e751a9c8dd26
[ "BSD-3-Clause" ]
3
2021-12-01T13:03:17.000Z
2022-03-17T10:53:00.000Z
npbench/benchmarks/polybench/bicg/bicg_cupy.py
frahlg/npbench
1bc4d9e2e22f3ca67fa2bc7f40e2e751a9c8dd26
[ "BSD-3-Clause" ]
7
2021-06-24T03:40:25.000Z
2022-01-26T09:04:33.000Z
import cupy as np def kernel(A, p, r): return r @ A, A @ p
9.428571
23
0.545455
a212c64c25f9aba5d25f36332b608ab569738d40
4,045
py
Python
soln_obamacon.py
GirlswhocodeKS2017/obamacon-photo
3508f20163dc4a4ec1dfd5b3ddb8ae223944f4c9
[ "MIT" ]
null
null
null
soln_obamacon.py
GirlswhocodeKS2017/obamacon-photo
3508f20163dc4a4ec1dfd5b3ddb8ae223944f4c9
[ "MIT" ]
null
null
null
soln_obamacon.py
GirlswhocodeKS2017/obamacon-photo
3508f20163dc4a4ec1dfd5b3ddb8ae223944f4c9
[ "MIT" ]
null
null
null
from PIL import Image def change_pixel_colors(my_image,obamacon_colors): """ Your image is coverted to pixels with a certain color (rgb value). pixel_data_list is a list of tuples. It is a list of pixels, but every pixel has 3 rgb values. (1) Print the pixel_data_list. What do you see? Does it make sense? (2) How many pixels does your image have? (3) Pixel intensity is defined as the sum of its rgb values. So if the pixel's rgb values are (0,51,100) the intensity is 151. Your assignment is to calculate the intensity of each pixel. Based on intensity make a new list of rgb pixel values with the correct obamacon_color: darkBlue if intensity < 182 red if intensity between 182 and 364 lightBlue if intensity between 364 and 546 yellow if intensity > 546 return the new pixel list """ pixel_data = my_image.getdata() #What happens if you print this? pixel_data_list = list(pixel_data) #converting image data to a list new_pixel_data = [] #create new empty list ### YOUR CODE GOES HERE ### for pixel in pixel_data_list: intensity = sum(pixel) # Built in function that does the sum if intensity < 182: new_pixel_data.append(obamacon_colors['darkBlue']) elif intensity >= 182 and intensity < 364: new_pixel_data.append(obamacon_colors['red']) elif intensity >= 364 and intensity <= 546: new_pixel_data.append(obamacon_colors['lightBlue']) elif intensity > 546: new_pixel_data.append(obamacon_colors['yellow']) return new_pixel_data def go_crazy(my_image,obamacon_colors): """ What if you only changed half the pixels? or made your new image look like a checkerboard? Can you do that? How are the pixels laid out, i.e. how is the program reading in the pixels? Like we read a book (starting at upper left corner and ending at bottom right)? Try to implement. """ crazy_pixels = [] pixel_data = my_image.getdata() pixel_data_list = list(pixel_data) ### YOUR CODE GOES HERE ### """ soln for 1/2 obamacon""" for i in range(len(pixel_data_list)): if i < len(pixel_data_list)/2: crazy_pixels.append(pixel_data_list[i]) else: intensity = sum(pixel_data_list[i]) if intensity < 182: crazy_pixels.append(obamacon_colors['darkBlue']) elif intensity >= 182 and intensity < 364: crazy_pixels.append(obamacon_colors['red']) elif intensity >= 364 and intensity <= 546: crazy_pixels.append(obamacon_colors['lightBlue']) elif intensity > 546: crazy_pixels.append(obamacon_colors['yellow']) return crazy_pixels def main(): """ dictionary of color values. Set rgb values for the standard Obamacon photo color = (red_value,green_value,blue_value) i.e. rgb values """ obamacon_colors = {} #create dictionary of colors: dictionary_name[key] = value obamacon_colors['darkBlue'] = (0, 51, 76) obamacon_colors['red'] = (217, 26, 33) obamacon_colors['lightBlue'] = (112, 150, 158) obamacon_colors['yellow'] = (252, 227, 166) """ Open image file. Replace IMAGENAME with the name of your pic. If the pic is not in the same directory(folder) as this program, make sure you include the path to the image. You can see the path by typing (in bash): $ pwd """ my_image = Image.open("MrFuzzyPants.jpeg") """Call the function that changes the pixels""" new_pixels = change_pixel_colors(my_image,obamacon_colors) #crazy_pixels = go_crazy(my_image,obamacon_colors) """Functions that create a new image based on your new pixels""" new_image = Image.new("RGB", my_image.size) new_image.putdata(new_pixels) new_image.show() new_image.save("newMrFuzzypants.jpg", "jpeg") ### Change NEW-IMAGENAME return """Call to main()""" if __name__ == "__main__": main()
36.772727
83
0.663782
456430e72bf8eec0aaab4f8256291c238aef71aa
526
py
Python
Egzersiz/ali/NoSQLEgzersiz.py.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
Egzersiz/ali/NoSQLEgzersiz.py.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
Egzersiz/ali/NoSQLEgzersiz.py.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
import pymongo cli = pymongo.MongoClient("mongodb+srv://dbuser:dbUser123@cluster0.6iawp.mongodb.net/myFirstDatabase?retryWrites=true&w=majority") # print(*cli.list_database_names(),sep="\n") db = cli["patika"] print(*db.list_collection_names(),sep="\n") col = db["153_yemeksepeti"] # yukarıdaki kod bloğunu kullanarak row={"adi":"Ali","soyadi":"Mansur","adres":"Akıncılar","whoAdded":"AliMansur"} #fieldları koleksiyona ekleyiniz, ek olarak bir field daha ekleyelim. sonuc = col.insert_one(row) # print(sonuc.inserted_id)
47.818182
149
0.754753