hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
0d26c0d88b76cd2a5fc195797cedcbaa0026ed13
16,171
py
Python
reports/models.py
nprapps/carebot
fc9b87869137144c11ef021e9889b3d55c837ae3
[ "FSFAP" ]
16
2015-06-26T13:07:04.000Z
2016-06-09T08:01:25.000Z
reports/models.py
nprapps/carebot
fc9b87869137144c11ef021e9889b3d55c837ae3
[ "FSFAP" ]
56
2015-01-02T06:05:09.000Z
2015-07-08T19:16:15.000Z
reports/models.py
nprapps/carebot
fc9b87869137144c11ef021e9889b3d55c837ae3
[ "FSFAP" ]
4
2016-02-11T18:46:12.000Z
2021-02-23T11:06:50.000Z
#!/usr/bin/env python from collections import OrderedDict from copy import copy from datetime import date, datetime, timedelta from itertools import izip import json import subprocess from clan import utils as clan_utils from django.core.urlresolvers import reverse from django.db import models from django.dispatch import receiver from django.utils import timezone import requests import yaml import app_config import utils FIELD_DEFINITIONS = clan_utils.load_field_definitions() class Query(models.Model): """ A clan query. """ slug = models.SlugField(max_length=128, primary_key=True) name = models.CharField(max_length=128) description = models.CharField(max_length=256, default='', blank=True) is_comparable = models.BooleanField(default=True, help_text='Should this query be available for cross-project comparison.') clan_yaml = models.TextField() class Meta: ordering = ('name',) verbose_name_plural = 'queries' def __unicode__(self): return self.name @property def config(self): data = yaml.load(self.clan_yaml) data['name'] = self.name data['description'] = self.description return data class Tag(models.Model): """ A tag describing a project. """ slug = models.CharField(max_length=32, primary_key=True) class Meta: ordering = ('slug',) def __unicode__(self): return self.slug class Project(models.Model): """ A project (app/site). """ slug = models.SlugField(max_length=128, primary_key=True) title = models.CharField(max_length=128) property_id = models.CharField(max_length=10, default='53470309') domain = models.CharField(max_length=128, default='apps.npr.org', blank=True) prefix = models.CharField(max_length=128, blank=True) start_date = models.DateField() queries = models.ManyToManyField(Query, through='ProjectQuery') tags = models.ManyToManyField(Tag) class Meta: ordering = ('-start_date',) def __unicode__(self): return self.title def get_absolute_url(self): return reverse('reports.views.project', args=[self.slug]) def tag_list(self): return ','.join([tag.slug for tag in self.tags.all()]) @property def all_time_report(self): return self.reports.get(ndays__isnull=True) def run_reports(self, overwrite=False): """ Runs all reports, optionally overwriting existing results. """ print 'Running reports for %s' % self.title updated_reports = [] for report in self.reports.all(): if overwrite or not report.last_run or not report.ndays: updated = report.run() if updated and report.ndays: updated_reports.append(report) else: print 'Skipping %s report for %s (already run).' % (report.timespan, self.title) return updated_reports def get_clan_config(self): return { 'title': self.title, 'property-id': self.property_id, 'domain': self.domain or None, 'prefix': self.prefix or None, 'start-date': datetime.strftime(self.start_date, '%Y-%m-%d') } @receiver(models.signals.post_save, sender=Project) def on_project_post_save(sender, instance, created, *args, **kwargs): """ Create default reports for a new project. """ if created: default_queries = copy(app_config.DEFAULT_QUERIES) if instance.start_date > date(2014, 6, 1): default_queries.extend(app_config.DEFAULT_EVENT_QUERIES) for i, query_slug in enumerate(default_queries): ProjectQuery.objects.create( project=instance, query=Query.objects.get(slug=query_slug), order=i ) Report.objects.create( project=instance, ndays=None ) for ndays in app_config.DEFAULT_REPORT_NDAYS: Report.objects.create( project=instance, ndays=ndays ) Social.objects.create(project=instance) class ProjectQuery(models.Model): """ M2M relationship between Projects and Queries. """ project = models.ForeignKey(Project, related_name='project_queries') query = models.ForeignKey(Query, related_name='project_queries') order = models.PositiveIntegerField() class Meta: ordering = ('order',) class Report(models.Model): """ A report for a given project over some number of days. """ project = models.ForeignKey(Project, related_name='reports') ndays = models.PositiveIntegerField(null=True) results_json = models.TextField() last_run = models.DateTimeField(null=True) pageviews = models.PositiveIntegerField(null=True) unique_pageviews = models.PositiveIntegerField(null=True) users = models.PositiveIntegerField(null=True) sessions = models.PositiveIntegerField(null=True) class Meta: ordering = ('project__start_date', 'ndays',) def __unicode__(self): return '%s (%s)' % (self.project.title, self.timespan) def get_absolute_url(self): return reverse( 'reports.views.report', args=[ self.project.slug, self.ndays or 'all-time' ] ) @property def timespan(self): if self.ndays: return '%i-day%s' % (self.ndays, 's' if self.ndays > 1 else '') return 'all-time' def is_timely(self): """ Checks if it has been long enough to have data for this report. """ if not self.ndays: return True return date.today() >= self.project.start_date + timedelta(days=self.ndays) def build_clan_yaml(self): """ Build YAML configuration for this report. """ data = self.project.get_clan_config() if self.ndays: data['ndays'] = self.ndays data['queries'] = [] for project_query in ProjectQuery.objects.filter(project=self.project): data['queries'].append(project_query.query.config) return yaml.safe_dump(data, encoding='utf-8', allow_unicode=True) def run(self): """ Run this report, stash it's results and render it out to S3. """ if not self.is_timely(): print 'Skipping %s report for %s (not timely).' % (self.timespan, self.project.title) return False print 'Running %s report for %s' % (self.timespan, self.project.title) with open('/tmp/clan.yaml', 'w') as f: y = self.build_clan_yaml() f.write(y) subprocess.call(['clan', 'report', '/tmp/clan.yaml', '/tmp/clan.json']) with open('/tmp/clan.json') as f: self.results_json = f.read() self.last_run = timezone.now() # Delete existing results self.query_results.all().delete() data = json.loads(self.results_json, object_pairs_hook=OrderedDict) i = 0 # Query results for project_query, result in izip(self.project.project_queries.all(), data['queries']): project_title = self.project.title query = project_query.query query_name = query.name metrics = result['config']['metrics'] data_types = result['data_types'] qr = QueryResult( report=self, query=query, order=i, sampled=result['sampled'], project_title=project_title, report_ndays=self.ndays, query_name=query_name ) if result['sampled']: qr.sample_size = result['sampleSize'] qr.sample_space = result['sampleSpace'] qr.sample_percent = float(result['sampleSize']) / result['sampleSpace'] * 100 qr.save() j = 0 # Metrics for metric_name in metrics: self._make_metric( qr, metric_name, j, data_types[metric_name], result['data'][metric_name] ) j += 1 i += 1 qr = self.query_results.get(query__slug='totals') for metric in qr.metrics.all(): if metric.name == 'ga:pageviews': self.pageviews = metric.total_dimension.value elif metric.name == 'ga:uniquePageviews': self.unique_pageviews = metric.total_dimension.value elif metric.name == 'ga:users': self.users = metric.total_dimension.value elif metric.name == 'ga:sessions': self.sessions = metric.total_dimension.value self.save() return True def _make_metric(self, query_result, metric_name, order, data_type, dimensions): """ Create a Metric and related Dimensions. """ total_value = dimensions['total'] metric = MetricResult( query_result=query_result, order=order, name=metric_name, data_type=data_type, project_title=query_result.project_title, report_ndays=query_result.report_ndays, query_name=query_result.query_name ) metric.save() i = 0 # Dimensions for dimension_name, value in dimensions.items(): self._make_dimension( metric, dimension_name, i, data_type, value, total_value ) i += 1 def _make_dimension(self, metric, dimension_name, order, data_type, value, total_value): """ Create a new Dimension. """ dimension = DimensionResult( order=order, name=dimension_name, _value=value, project_title=metric.project_title, report_ndays=metric.report_ndays, query_name=metric.query_name, metric_name=metric.name, metric_data_type=metric.data_type ) if dimension_name != 'total': if data_type in 'INTEGER' and total_value != 0: dimension.percent_of_total = float(value) / int(total_value) * 100 dimension.metric = metric dimension.save() return dimension class QueryResult(models.Model): """ The results of a query for a certain report. """ report = models.ForeignKey(Report, related_name='query_results') query = models.ForeignKey(Query, related_name='query_results') order = models.PositiveIntegerField() sampled = models.BooleanField(default=False) sample_size = models.PositiveIntegerField(default=0) sample_space = models.PositiveIntegerField(default=0) sample_percent = models.FloatField(default=100) # Denormalized fields project_title = models.CharField(max_length=128) report_ndays = models.PositiveIntegerField(null=True) query_name = models.CharField(max_length=128) class Meta: ordering = ('report', 'order') class MetricResult(models.Model): """ The results for a specific metric. """ query_result = models.ForeignKey(QueryResult, related_name='metrics') order = models.PositiveIntegerField() name = models.CharField(max_length=128) data_type = models.CharField(max_length=30) # Denormalized fields project_title = models.CharField(max_length=128) report_ndays = models.PositiveIntegerField(null=True) query_name = models.CharField(max_length=128) class Meta: ordering = ('query_result', 'order') def __unicode__(self): return self.name @property def display_name(self): return FIELD_DEFINITIONS[self.name]['uiName'] @property def total_dimension(self): return self.dimensions.get(name='total') class DimensionResult(models.Model): """ Results for one dimension of a metric. """ metric = models.ForeignKey(MetricResult, related_name='dimensions', null=True) order = models.PositiveIntegerField() name = models.CharField(max_length=256) _value = models.CharField(max_length=128) percent_of_total = models.FloatField(null=True) # Denormalized fields project_title = models.CharField(max_length=128) report_ndays = models.PositiveIntegerField(null=True) query_name = models.CharField(max_length=128) metric_name = models.CharField(max_length=128) metric_data_type = models.CharField(max_length=30) class Meta: ordering = ('metric', 'order') @property def value(self): if self.metric_data_type == 'INTEGER': return int(self._value) elif self.metric_data_type == 'STRING': return self._value elif self.metric_data_type in ['FLOAT', 'PERCENT', 'TIME', 'CURRENCY']: return float(self._value) return None @property def value_formatted(self): if self.metric_data_type == 'INTEGER': return utils.format_comma(int(self._value)) elif self.metric_data_type == 'STRING': return self._value elif self.metric_data_type in ['FLOAT', 'PERCENT', 'CURRENCY']: return '%.1f' % float(self._value) elif self.metric_data_type == 'TIME': return clan_utils.format_duration(float(self._value)) return None @property def per_1000_sessions(self): if self.metric_data_type != 'INTEGER': return None try: return float(self.value) / (self.metric.query_result.report.sessions / 1000) except ZeroDivisionError: return 'undefined' class Social(models.Model): """ Social count data for a project. NOT timeboxed. """ project = models.OneToOneField(Project, primary_key=True) facebook_likes = models.PositiveIntegerField(default=0) facebook_shares = models.PositiveIntegerField(default=0) facebook_comments = models.PositiveIntegerField(default=0) twitter = models.PositiveIntegerField(default=0) google = models.PositiveIntegerField(default=0) pinterest = models.PositiveIntegerField(default=0) linkedin = models.PositiveIntegerField(default=0) stumbleupon = models.PositiveIntegerField(default=0) last_update = models.DateTimeField(null=True) class Meta: ordering = ('-project__start_date',) verbose_name = 'social count' verbose_name_plural = 'social counts' def __unicode__(self): return 'Social counts for %s' % self.project.title def total(self): return sum([ self.facebook_shares, self.twitter, self.google, self.pinterest, self.linkedin, self.stumbleupon ]) def refresh(self): secrets = app_config.get_secrets() if not self.project.domain: return url = 'http://%s%s' % (self.project.domain, self.project.prefix) response = requests.get('https://free.sharedcount.com/url?apikey=%s&url=%s' % (secrets['SHAREDCOUNT_API_KEY'], url)) if response.status_code != 200: print 'Failed to refresh social data from SharedCount: %i.' % response.status_code return print 'Updating social counts from SharedCount' data = response.json() self.facebook_likes = data['Facebook']['like_count'] or 0 self.facebook_shares = data['Facebook']['share_count'] or 0 self.facebook_comments = data['Facebook']['comment_count'] or 0 self.twitter = data['Twitter'] or 0 self.google = data['GooglePlusOne'] or 0 self.pinterest = data['Pinterest'] or 0 self.linkedin = data['LinkedIn'] or 0 self.stumbleupon = data['StumbleUpon'] or 0 self.last_update = timezone.now() self.save()
30.396617
124
0.615917
d8646e96253976a9d96d8570eedb6e41a72b19a3
6,028
py
Python
nltk/corpus/reader/lin.py
SamuraiT/nltk3-alpha
18a1a0ff8697eaeeb5d3c0bc6dad251d5b8fe931
[ "Apache-2.0" ]
3
2019-04-09T22:59:33.000Z
2019-06-14T09:23:24.000Z
nltk/corpus/reader/lin.py
guker/nltk
085399ea9d53318ae6e8568909fa55f0d905ad5a
[ "Apache-2.0" ]
null
null
null
nltk/corpus/reader/lin.py
guker/nltk
085399ea9d53318ae6e8568909fa55f0d905ad5a
[ "Apache-2.0" ]
2
2019-10-28T01:33:22.000Z
2019-10-30T06:43:43.000Z
# Natural Language Toolkit: Lin's Thesaurus # # Copyright (C) 2001-2014 NLTK Project # Author: Dan Blanchard <dblanchard@ets.org> # URL: <http://nltk.org/> # For license information, see LICENSE.txt from __future__ import print_function import re from collections import defaultdict from functools import reduce from nltk.corpus.reader import CorpusReader class LinThesaurusCorpusReader(CorpusReader): """ Wrapper for the LISP-formatted thesauruses distributed by Dekang Lin. """ # Compiled regular expression for extracting the key from the first line of each # thesaurus entry _key_re = re.compile(r'\("?([^"]+)"? \(desc [0-9.]+\).+') @staticmethod def __defaultdict_factory(): ''' Factory for creating defaultdict of defaultdict(dict)s ''' return defaultdict(dict) def __init__(self, root, badscore=0.0): ''' Initialize the thesaurus. :param root: root directory containing thesaurus LISP files :type root: C{string} :param badscore: the score to give to words which do not appear in each other's sets of synonyms :type badscore: C{float} ''' super(LinThesaurusCorpusReader, self).__init__(root, r'sim[A-Z]\.lsp') self._thesaurus = defaultdict(LinThesaurusCorpusReader.__defaultdict_factory) self._badscore = badscore for path, encoding, fileid in self.abspaths(include_encoding=True, include_fileid=True): with open(path) as lin_file: first = True for line in lin_file: line = line.strip() # Start of entry if first: key = LinThesaurusCorpusReader._key_re.sub(r'\1', line) first = False # End of entry elif line == '))': first = True # Lines with pairs of ngrams and scores else: split_line = line.split('\t') if len(split_line) == 2: ngram, score = split_line self._thesaurus[fileid][key][ngram.strip('"')] = float(score) def similarity(self, ngram1, ngram2, fileid=None): ''' Returns the similarity score for two ngrams. :param ngram1: first ngram to compare :type ngram1: C{string} :param ngram2: second ngram to compare :type ngram2: C{string} :param fileid: thesaurus fileid to search in. If None, search all fileids. :type fileid: C{string} :return: If fileid is specified, just the score for the two ngrams; otherwise, list of tuples of fileids and scores. ''' # Entries don't contain themselves, so make sure similarity between item and itself is 1.0 if ngram1 == ngram2: if fileid: return 1.0 else: return [(fid, 1.0) for fid in self._fileids] else: if fileid: return self._thesaurus[fileid][ngram1][ngram2] if ngram2 in self._thesaurus[fileid][ngram1] else self._badscore else: return [(fid, (self._thesaurus[fid][ngram1][ngram2] if ngram2 in self._thesaurus[fid][ngram1] else self._badscore)) for fid in self._fileids] def scored_synonyms(self, ngram, fileid=None): ''' Returns a list of scored synonyms (tuples of synonyms and scores) for the current ngram :param ngram: ngram to lookup :type ngram: C{string} :param fileid: thesaurus fileid to search in. If None, search all fileids. :type fileid: C{string} :return: If fileid is specified, list of tuples of scores and synonyms; otherwise, list of tuples of fileids and lists, where inner lists consist of tuples of scores and synonyms. ''' if fileid: return self._thesaurus[fileid][ngram].items() else: return [(fileid, self._thesaurus[fileid][ngram].items()) for fileid in self._fileids] def synonyms(self, ngram, fileid=None): ''' Returns a list of synonyms for the current ngram. :param ngram: ngram to lookup :type ngram: C{string} :param fileid: thesaurus fileid to search in. If None, search all fileids. :type fileid: C{string} :return: If fileid is specified, list of synonyms; otherwise, list of tuples of fileids and lists, where inner lists contain synonyms. ''' if fileid: return self._thesaurus[fileid][ngram].keys() else: return [(fileid, self._thesaurus[fileid][ngram].keys()) for fileid in self._fileids] def __contains__(self, ngram): ''' Determines whether or not the given ngram is in the thesaurus. :param ngram: ngram to lookup :type ngram: C{string} :return: whether the given ngram is in the thesaurus. ''' return reduce(lambda accum, fileid: accum or (ngram in self._thesaurus[fileid]), self._fileids, False) ###################################################################### # Demo ###################################################################### def demo(): from nltk.corpus import lin_thesaurus as thes word1 = "business" word2 = "enterprise" print("Getting synonyms for " + word1) print(thes.synonyms(word1)) print("Getting scored synonyms for " + word1) print(thes.synonyms(word1)) print("Getting synonyms from simN.lsp (noun subsection) for " + word1) print(thes.synonyms(word1, fileid="simN.lsp")) print("Getting synonyms from simN.lsp (noun subsection) for " + word1) print(thes.synonyms(word1, fileid="simN.lsp")) print("Similarity score for %s and %s:" % (word1, word2)) print(thes.similarity(word1, word2)) if __name__ == '__main__': demo()
38.394904
127
0.591573
2e1b51b158c7df234a4e37a7cf709a8e017b6979
1,206
py
Python
hall_of_fame/10_46_59/parameters.py
Magssch/IT3105-mcts-hex
10e6c1e4a61561a0ddcb241e2dba4ac000fe4d8e
[ "MIT" ]
null
null
null
hall_of_fame/10_46_59/parameters.py
Magssch/IT3105-mcts-hex
10e6c1e4a61561a0ddcb241e2dba4ac000fe4d8e
[ "MIT" ]
null
null
null
hall_of_fame/10_46_59/parameters.py
Magssch/IT3105-mcts-hex
10e6c1e4a61561a0ddcb241e2dba4ac000fe4d8e
[ "MIT" ]
1
2022-03-28T11:14:07.000Z
2022-03-28T11:14:07.000Z
from keras.activations import linear, relu, sigmoid, tanh # noqa from keras.losses import kl_divergence # noqa from keras.optimizers import SGD, Adagrad, Adam, RMSprop # noqa from game import Game VISUALIZE_GAMES = False FRAME_DELAY = 0.5 RUN_TRAINING = True # RL parameters EPISODES = 300 REPLAY_BUFFER_SIZE = 1024 # MCTS parameters SIMULATION_TIME_OUT = 0.5 # s UCT_C = 1 # "theoretically 1" # Simulated World GAME_TYPE = Game.Hex LEDGE_BOARD = (0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 1, 1) # (0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1) SIZE = 6 if GAME_TYPE == Game.Hex else len(LEDGE_BOARD) # 3 <= k <= 10 STATE_SIZE = 1 + (SIZE ** 2 if GAME_TYPE == Game.Hex else SIZE) NUMBER_OF_ACTIONS = SIZE ** 2 if GAME_TYPE == Game.Hex else int((SIZE ** 2 - SIZE) / 2) + 1 # ANET ANET_EPSILON = 0 ANET_EPSILON_DECAY = 1 ANET_LEARNING_RATE = 0.005 ANET_LOSS_FUNCTION = kl_divergence # deepnet_cross_entropy, kl_divergence ANET_ACTIVATION_FUNCTION = sigmoid # linear, relu, sigmoid, or tanh ANET_OPTIMIZER = SGD # SGD, Adagrad, Adam, or RMSprop ANET_DIMENSIONS = (STATE_SIZE, 10, 10, NUMBER_OF_ACTIONS) ANET_BATCH_SIZE = 64 # TOPP parameters ANETS_TO_BE_CACHED = 11 NUMBER_OF_GAMES = 10
30.923077
117
0.710614
0f117053ccca04c3ec1b573ec7dd249295df4964
1,967
py
Python
analyzers/unique_ssh_grandparent/main.py
insanitybit/grapl-analyzers
9c49d784539ff7a2dd1381442fbd83141e92b632
[ "Apache-2.0" ]
8
2019-11-15T01:09:05.000Z
2020-04-21T19:41:13.000Z
analyzers/unique_ssh_grandparent/main.py
grapl-security/grapl-analyzers
9c49d784539ff7a2dd1381442fbd83141e92b632
[ "Apache-2.0" ]
null
null
null
analyzers/unique_ssh_grandparent/main.py
grapl-security/grapl-analyzers
9c49d784539ff7a2dd1381442fbd83141e92b632
[ "Apache-2.0" ]
2
2020-01-31T03:20:33.000Z
2020-03-28T23:22:00.000Z
import os import redis from grapl_analyzerlib.analyzer import Analyzer, OneOrMany, A from grapl_analyzerlib.counters import GrandParentGrandChildCounter from grapl_analyzerlib.prelude import ProcessQuery, ProcessView from grapl_analyzerlib.execution import ExecutionHit COUNTCACHE_ADDR = os.environ['COUNTCACHE_ADDR'] COUNTCACHE_PORT = os.environ['COUNTCACHE_PORT'] r = redis.Redis(host=COUNTCACHE_ADDR, port=int(COUNTCACHE_PORT), db=0, decode_responses=True) from typing import Any, Type from pydgraph import DgraphClient class RareGrandParentOfSsh(Analyzer): def __init__(self, dgraph_client: DgraphClient, counter: GrandParentGrandChildCounter): super(RareGrandParentOfSsh, self).__init__(dgraph_client) self.counter = counter @classmethod def build(cls: Type[A], dgraph_client: DgraphClient) -> A: counter = GrandParentGrandChildCounter(dgraph_client, cache=r) return RareGrandParentOfSsh(dgraph_client, counter) def get_queries(self) -> OneOrMany[ProcessQuery]: return ( ProcessQuery() .with_process_name(eq="ssh") .with_parent( ProcessQuery().with_parent( ProcessQuery() .with_process_name() ) ) ) def on_response(self, response: ProcessView, output: Any): asset_id = response.get_asset().get_hostname() count = self.counter.get_count_for( grand_parent_process_name=response.get_parent().get_parent().get_process_name(), grand_child_process_name=response.get_process_name(), ) print(f'Counted {count} for parent -> ssh') if count <= 3: output.send( ExecutionHit( analyzer_name="Rare GrandParent of SSH", node_view=response, risk_score=5, lenses=asset_id, ) )
32.245902
93
0.651246
f190f7d803401df29522a9445176036ec74af38e
1,528
py
Python
aliyun-python-sdk-emr/aliyunsdkemr/request/v20160408/DescribeETLJobStageOutputSchemaRequest.py
sdk-team/aliyun-openapi-python-sdk
384730d707e6720d1676ccb8f552e6a7b330ec86
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-emr/aliyunsdkemr/request/v20160408/DescribeETLJobStageOutputSchemaRequest.py
sdk-team/aliyun-openapi-python-sdk
384730d707e6720d1676ccb8f552e6a7b330ec86
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-emr/aliyunsdkemr/request/v20160408/DescribeETLJobStageOutputSchemaRequest.py
sdk-team/aliyun-openapi-python-sdk
384730d707e6720d1676ccb8f552e6a7b330ec86
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class DescribeETLJobStageOutputSchemaRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Emr', '2016-04-08', 'DescribeETLJobStageOutputSchema') def get_StageName(self): return self.get_query_params().get('StageName') def set_StageName(self,StageName): self.add_query_param('StageName',StageName) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_EtlJobId(self): return self.get_query_params().get('EtlJobId') def set_EtlJobId(self,EtlJobId): self.add_query_param('EtlJobId',EtlJobId)
36.380952
84
0.772906
513961b9a7528a7d0e5007319786882fea5ca950
143
py
Python
py/cidoc_crm_types/properties/p69i_is_associated_with.py
minorg/cidoc-crm-types
9018bdbf0658e4d28a87bc94543e467be45d8aa5
[ "Apache-2.0" ]
null
null
null
py/cidoc_crm_types/properties/p69i_is_associated_with.py
minorg/cidoc-crm-types
9018bdbf0658e4d28a87bc94543e467be45d8aa5
[ "Apache-2.0" ]
null
null
null
py/cidoc_crm_types/properties/p69i_is_associated_with.py
minorg/cidoc-crm-types
9018bdbf0658e4d28a87bc94543e467be45d8aa5
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass @dataclass class P69iIsAssociatedWith: URI = "http://erlangen-crm.org/current/P69i_is_associated_with"
20.428571
67
0.804196
85ab5e0c7a8bf87e7dd0bfdef3367e6d0d62ff3e
2,195
py
Python
Python/StandardLibrary/spec.py
jessicaleete/numerical_computing
cc71f51f35ca74d00e617af3d1a0223e19fb9a68
[ "CC-BY-3.0" ]
null
null
null
Python/StandardLibrary/spec.py
jessicaleete/numerical_computing
cc71f51f35ca74d00e617af3d1a0223e19fb9a68
[ "CC-BY-3.0" ]
null
null
null
Python/StandardLibrary/spec.py
jessicaleete/numerical_computing
cc71f51f35ca74d00e617af3d1a0223e19fb9a68
[ "CC-BY-3.0" ]
null
null
null
# name this file 'solutions.py' """Volume II Lab 1: The Standard Library <Name> <Class> <Date> """ # Add import statements here. # In future labs, do not modify any PROVIDED import statements. # You may always add others as needed. # Problem 1: Implement this function. def prob1(l): """Accept a list 'l' of numbers as input and return a new list with the minimum, maximum, and average of the contents of 'l'. """ pass # Problem 2: Implement this function. def prob2(): """Determine which Python objects are mutable and which are immutable. Test numbers, strings, lists, tuples, and dictionaries. Print your results to the terminal using the print() function. """ pass # Problem 3: Create a 'calculator' module and use it to implement this function. def prob3(a,b): """Calculate and return the length of the hypotenuse of a right triangle. Do not use any methods other than those that are imported from the 'calculator' module. Parameters: a (float): the length one of the sides of the triangle. b (float): the length the other nonhypotenuse side of the triangle. Returns: The length of the triangle's hypotenuse. """ pass # Problem 4: Utilize the 'matrix_multiply' module and 'matrices.npz' file to # implement this function. def prob4(): """If no command line argument is given, print "No Input." If anything other than "matrices.npz is given, print "Incorrect Input." If "matrices.npz" is given as a command line argument, use functions from the provided 'matrix_multiply' module to load two matrices, then time how long each method takes to multiply the two matrices together. Print your results to the terminal. """ pass # Everything under this 'if' statement is executed when this file is run from # the terminal. In this case, if we enter 'python solutions.py word' into # the terminal, then sys.argv is ['solutions.py', 'word'], and prob4() is # executed. Note that the arguments are parsed as strings. Do not modify. if __name__ == "__main__": prob4() # ============================== END OF FILE ================================ #
32.761194
80
0.676082
12d768b796469fc421af99677be7547aea2caf01
154
py
Python
python_docs/05Functions/05FunctionsAsArguments.py
Matheus-IT/lang-python-related
dd2e5d9b9f16d3838ba1670fdfcba1fa3fe305e9
[ "MIT" ]
null
null
null
python_docs/05Functions/05FunctionsAsArguments.py
Matheus-IT/lang-python-related
dd2e5d9b9f16d3838ba1670fdfcba1fa3fe305e9
[ "MIT" ]
null
null
null
python_docs/05Functions/05FunctionsAsArguments.py
Matheus-IT/lang-python-related
dd2e5d9b9f16d3838ba1670fdfcba1fa3fe305e9
[ "MIT" ]
null
null
null
def add(x, y): return x + y def times(func, x, y): return func(x, y) a = 2 b = 4 r = times(add, a, b) print(' - Resultado = ', r)
11.846154
28
0.467532
c4dae4dda319795d45d68582a332ccf50d882145
1,586
py
Python
sport24/sport24/urls.py
sebix354/Portal-Sportowy
96c63e7e34e1770b071f3f99301aa0624852a091
[ "MIT" ]
null
null
null
sport24/sport24/urls.py
sebix354/Portal-Sportowy
96c63e7e34e1770b071f3f99301aa0624852a091
[ "MIT" ]
null
null
null
sport24/sport24/urls.py
sebix354/Portal-Sportowy
96c63e7e34e1770b071f3f99301aa0624852a091
[ "MIT" ]
null
null
null
"""sport24 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include,re_path from django.conf import settings from django.conf.urls.static import static from django.conf.urls import url, include from django.views.generic import TemplateView from rest_framework_simplejwt.views import ( TokenObtainPairView, TokenRefreshView, ) from users.views import MyTokenObtainPairView urlpatterns = [ #path('social_auth/', include('drf_social_oauth2.urls', namespace='drf')), path('admin/', admin.site.urls), url(r'^api/', include('sport24app.urls')), path('api/user/', include('users.urls', namespace='users')), path('api-auth/', include('rest_framework.urls', namespace='rest_framework')), path('api/token/', MyTokenObtainPairView.as_view(), name='token_obtain_pair'), path('api/token/refresh/', TokenRefreshView.as_view(), name='token_refresh'), ] urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
40.666667
82
0.735183
1fe36a661aa5e5840b4daddeb910af8a03f4fa60
6,602
py
Python
scripts/bacnet/proxy_grab_bacnet_config.py
gnmerritt/volttron
ebfbf62bab77d46fd3e8d6aaca1fc4f33932ccf3
[ "Apache-2.0" ]
1
2020-05-26T01:29:50.000Z
2020-05-26T01:29:50.000Z
scripts/bacnet/proxy_grab_bacnet_config.py
gnmerritt/volttron
ebfbf62bab77d46fd3e8d6aaca1fc4f33932ccf3
[ "Apache-2.0" ]
null
null
null
scripts/bacnet/proxy_grab_bacnet_config.py
gnmerritt/volttron
ebfbf62bab77d46fd3e8d6aaca1fc4f33932ccf3
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright 2019, Battelle Memorial Institute. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This material was prepared as an account of work sponsored by an agency of # the United States Government. Neither the United States Government nor the # United States Department of Energy, nor Battelle, nor any of their # employees, nor any jurisdiction or organization that has cooperated in the # development of these materials, makes any warranty, express or # implied, or assumes any legal liability or responsibility for the accuracy, # completeness, or usefulness or any information, apparatus, product, # software, or process disclosed, or represents that its use would not infringe # privately owned rights. Reference herein to any specific commercial product, # process, or service by trade name, trademark, manufacturer, or otherwise # does not necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors expressed # herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY operated by # BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import sys from csv import DictWriter import logging import argparse import gevent from gevent.event import AsyncResult from volttron.platform import get_address, get_home from volttron.platform.agent import utils from volttron.platform.agent.bacnet_proxy_reader import BACnetReader from volttron.platform.keystore import KeyStore from volttron.platform.vip.agent import errors from volttron.platform.vip.agent.utils import build_agent config_writer = None utils.setup_logging() _log = logging.getLogger(__name__) def bacnet_response(context, results): """ Response function used as a callback. This function is used during the retrieval of bacnet responses. :param context: :param results: :return: """ global config_writer _log.debug("Handling bacnet responses: RESULTS: {}".format(results)) message = dict(results=results) if context is not None: message.update(context) # Handle the last return value of the bacnet_reader which signals the # end of the batch by forgetting it because there will be no results # for any of the cells. We just check the 'Reference Point Name' here # however. if message['results'].get('Reference Point Name', None): config_writer.writerow(message['results']) def main(): global agent global config_writer # parse the command line arguments arg_parser = argparse.ArgumentParser(description=__doc__) arg_parser.add_argument("device_id", type=int, help="Device ID of the target device") arg_parser.add_argument("--address", help="Address of target device, may be needed to help route initial request to device.") arg_parser.add_argument("--registry-out-file", type=argparse.FileType('w'), help="Output registry to CSV file", default=sys.stdout) arg_parser.add_argument("--driver-out-file", type=argparse.FileType('w'), help="Output driver configuration to JSON file.", default=sys.stdout) arg_parser.add_argument("--max-range-report", nargs='?', type=float, help='Affects how very large numbers are reported in the "Unit Details" column of the ' 'output. Does not affect driver behavior.', default=1.0e+20) arg_parser.add_argument("--proxy-id", help="VIP IDENTITY of the BACnet proxy agent.", default="platform.bacnet_proxy") args = arg_parser.parse_args() _log.debug("initialization") _log.debug(" - args: %r", args) key_store = KeyStore() config_writer = DictWriter(args.registry_out_file, ('Reference Point Name', 'Volttron Point Name', 'Units', 'Unit Details', 'BACnet Object Type', 'Property', 'Writable', 'Index', 'Write Priority', 'Notes')) config_writer.writeheader() agent = build_agent(address=get_address(), volttron_home=get_home(), publickey=key_store.public, secretkey=key_store.secret, enable_store=False) bn = BACnetReader(agent.vip, args.proxy_id, bacnet_response) async_result = AsyncResult() try: bn.get_iam(args.device_id, async_result.set, args.address) except errors.Unreachable as ure: _log.error(ure) _log.error("No BACnet proxy Agent running on the platform with the VIP IDENTITY {}".format(args.proxy_id)) sys.exit(1) try: results = async_result.get(timeout=5.0) except gevent.Timeout: _log.error("No response from device id {}".format(args.device_id)) sys.exit(1) if args.address and args.address != results["address"]: msg = "Inconsistent results from passed address ({}) and device address ({}) using results.".format( args.address, results["address"]) _log.warning(msg) args.address = results["address"] elif results["address"]: args.address = results["address"] bn.read_device_properties(target_address=args.address, device_id=args.device_id) agent.core.stop() try: main() except Exception as e: _log.exception("an error has occurred: %s", e) finally: _log.debug("finally")
37.511364
116
0.654802
415904a6809529391400d50eb640bd3caf9659e1
1,095
py
Python
layered.py
ground0state/ConvLSTM_PyTorch
5465aabe8f3192d022201b9e17a3f43071a823bd
[ "MIT" ]
1
2021-12-11T15:27:41.000Z
2021-12-11T15:27:41.000Z
layered.py
TripleEss/ConvLSTM_PyTorch
5465aabe8f3192d022201b9e17a3f43071a823bd
[ "MIT" ]
null
null
null
layered.py
TripleEss/ConvLSTM_PyTorch
5465aabe8f3192d022201b9e17a3f43071a823bd
[ "MIT" ]
1
2021-12-10T22:33:49.000Z
2021-12-10T22:33:49.000Z
import torch import torch.nn as nn from conv_lstm import ConvLSTM class ConvLSTMLayered(nn.Module): def __init__(self, image_size): """Multi layeres ConvLSTM. Parameters ---------- image_size: (int, int) Shape of image. """ super().__init__() self.conv_lstm_1 = ConvLSTM( in_channels=1, hidden_channels=32, kernel_size=3, stride=1, image_size=image_size) self.conv_lstm_2 = ConvLSTM( in_channels=32, hidden_channels=32, kernel_size=3, stride=1, image_size=image_size) self.conv_lstm_3 = ConvLSTM( in_channels=32, hidden_channels=32, kernel_size=3, stride=1, image_size=image_size) self.conv2d = nn.Conv2d(32, 1, 1) def forward(self, x): x, _ = self.conv_lstm_1(x) x, _ = self.conv_lstm_2(x) x, _ = self.conv_lstm_3(x) seq_output = [] for t in range(x.shape[1]): tmp = self.conv2d(x[:, t, :, :, :]) seq_output.append(tmp) output = torch.stack(seq_output, 1) return output
28.815789
95
0.589954
2973f78237c9edbc6ef569091af209c60cb7eb59
1,138
py
Python
main-figures/OH-comparison.py
tommibergman/gmdd-tm5-soa
20168c86caeb14aed72af72b14c3b8185700ddd8
[ "MIT" ]
null
null
null
main-figures/OH-comparison.py
tommibergman/gmdd-tm5-soa
20168c86caeb14aed72af72b14c3b8185700ddd8
[ "MIT" ]
null
null
null
main-figures/OH-comparison.py
tommibergman/gmdd-tm5-soa
20168c86caeb14aed72af72b14c3b8185700ddd8
[ "MIT" ]
null
null
null
from scipy.special import erf from settings import * import matplotlib.pyplot as plt import datetime import glob import netCDF4 as nc import re from mpl_toolkits.basemap import Basemap from general_toolbox import get_gridboxarea,lonlat,write_netcdf_file,NMB import os from scipy.stats import pearsonr import numpy as np import logging import matplotlib as mpl from mass_budget import mapit_boundary OH_sim={} for i in EXPs: OH_sim[i]=nc.Dataset(rawoutput+i+'/general_TM5_'+i+'_2010.mm.nc')['GAS_OH'][:] tdata=(OH_sim[EXPs[0]].mean(axis=0)-OH_sim[EXPs[1]].mean(axis=0))/OH_sim[EXPs[1]].mean(axis=0) print tdata.shape gbarea=get_gridboxarea('TM53x2') for i in range(0,34): print i,(tdata[i,:,:]*gbarea[:,:]).sum()/gbarea[:,:].sum() data=tdata[i,:,:].squeeze() #print data[20:40,20:40],OH_sim[EXPs[0]].mean(axis=0)[0,20:40,20:40] diverging=True clevs=[0.9,0.95,0.97,0.975,0.98,0.985,0.99,0.995,1.00,1.005,1.01,1.015,1.02,1.025,1.03,1.05,1.1] clevs=[-0.1,-0.05,-0.03,-0.025,-0.02,-0.015,-0.01,-0.005,0.00,0.005,0.01,0.015,0.02,0.025,0.03,0.05,0.1] f,ax=plt.subplots(1) mapit_boundary(data,clevs,ax,diverging=diverging) plt.show()
33.470588
105
0.723199
d18dab35222ecb6564a408891eb6ad7fe46a6f01
14,408
py
Python
tests/test_scvi.py
adamgayoso/scVI
e79fccbfdc9dc9c4d790a8fb686f21b2b2889c50
[ "MIT" ]
null
null
null
tests/test_scvi.py
adamgayoso/scVI
e79fccbfdc9dc9c4d790a8fb686f21b2b2889c50
[ "MIT" ]
null
null
null
tests/test_scvi.py
adamgayoso/scVI
e79fccbfdc9dc9c4d790a8fb686f21b2b2889c50
[ "MIT" ]
null
null
null
import numpy as np from scvi.dataset import CortexDataset, SyntheticDataset, GeneExpressionDataset from scvi.inference import ( JointSemiSupervisedTrainer, AlternateSemiSupervisedTrainer, ClassifierTrainer, UnsupervisedTrainer, AdapterTrainer, TotalTrainer, ) from scvi.inference.posterior import unsupervised_clustering_accuracy from scvi.inference.annotation import compute_accuracy_rf, compute_accuracy_svc from scvi.models import VAE, SCANVI, VAEC, LDVAE, TOTALVI, AutoZIVAE from scvi.models.classifier import Classifier from scvi import set_seed set_seed(0) use_cuda = True def test_cortex(save_path): cortex_dataset = CortexDataset(save_path=save_path) vae = VAE(cortex_dataset.nb_genes, cortex_dataset.n_batches) trainer_cortex_vae = UnsupervisedTrainer( vae, cortex_dataset, train_size=0.5, use_cuda=use_cuda ) trainer_cortex_vae.train(n_epochs=1) trainer_cortex_vae.train_set.reconstruction_error() trainer_cortex_vae.train_set.differential_expression_stats() trainer_cortex_vae.train_set.imputation(n_samples=1) trainer_cortex_vae.test_set.imputation(n_samples=5) trainer_cortex_vae.corrupt_posteriors(corruption="binomial") trainer_cortex_vae.corrupt_posteriors() trainer_cortex_vae.train(n_epochs=1) trainer_cortex_vae.uncorrupt_posteriors() trainer_cortex_vae.train_set.imputation_benchmark( n_samples=1, show_plot=False, title_plot="imputation", save_path=save_path ) full = trainer_cortex_vae.create_posterior( vae, cortex_dataset, indices=np.arange(len(cortex_dataset)) ) x_new, x_old = full.generate(n_samples=10) assert x_new.shape == (cortex_dataset.nb_cells, cortex_dataset.nb_genes, 10) assert x_old.shape == (cortex_dataset.nb_cells, cortex_dataset.nb_genes) trainer_cortex_vae.train_set.imputation_benchmark( n_samples=1, show_plot=False, title_plot="imputation", save_path=save_path ) svaec = SCANVI( cortex_dataset.nb_genes, cortex_dataset.n_batches, cortex_dataset.n_labels ) trainer_cortex_svaec = JointSemiSupervisedTrainer( svaec, cortex_dataset, n_labelled_samples_per_class=3, use_cuda=use_cuda ) trainer_cortex_svaec.train(n_epochs=1) trainer_cortex_svaec.labelled_set.accuracy() trainer_cortex_svaec.full_dataset.reconstruction_error() svaec = SCANVI( cortex_dataset.nb_genes, cortex_dataset.n_batches, cortex_dataset.n_labels ) trainer_cortex_svaec = AlternateSemiSupervisedTrainer( svaec, cortex_dataset, n_labelled_samples_per_class=3, use_cuda=use_cuda ) trainer_cortex_svaec.train(n_epochs=1, lr=1e-2) trainer_cortex_svaec.unlabelled_set.accuracy() data_train, labels_train = trainer_cortex_svaec.labelled_set.raw_data() data_test, labels_test = trainer_cortex_svaec.unlabelled_set.raw_data() compute_accuracy_svc( data_train, labels_train, data_test, labels_test, param_grid=[{"C": [1], "kernel": ["linear"]}], ) compute_accuracy_rf( data_train, labels_train, data_test, labels_test, param_grid=[{"max_depth": [3], "n_estimators": [10]}], ) cls = Classifier(cortex_dataset.nb_genes, n_labels=cortex_dataset.n_labels) cls_trainer = ClassifierTrainer(cls, cortex_dataset) cls_trainer.train(n_epochs=1) cls_trainer.train_set.accuracy() def test_synthetic_1(): synthetic_dataset = SyntheticDataset() synthetic_dataset.cell_types = np.array(["A", "B", "C"]) svaec = SCANVI( synthetic_dataset.nb_genes, synthetic_dataset.n_batches, synthetic_dataset.n_labels, ) trainer_synthetic_svaec = JointSemiSupervisedTrainer( svaec, synthetic_dataset, use_cuda=use_cuda ) trainer_synthetic_svaec.train(n_epochs=1) trainer_synthetic_svaec.labelled_set.entropy_batch_mixing() trainer_synthetic_svaec.full_dataset.knn_purity() trainer_synthetic_svaec.labelled_set.show_t_sne(n_samples=5) trainer_synthetic_svaec.unlabelled_set.show_t_sne(n_samples=5, color_by="labels") trainer_synthetic_svaec.labelled_set.show_t_sne( n_samples=5, color_by="batches and labels" ) trainer_synthetic_svaec.labelled_set.clustering_scores() trainer_synthetic_svaec.labelled_set.clustering_scores(prediction_algorithm="gmm") trainer_synthetic_svaec.unlabelled_set.unsupervised_classification_accuracy() trainer_synthetic_svaec.unlabelled_set.differential_expression_score( synthetic_dataset.labels.ravel() == 1, synthetic_dataset.labels.ravel() == 2, n_samples=2, M_permutation=10, ) trainer_synthetic_svaec.unlabelled_set.one_vs_all_degenes( n_samples=2, M_permutation=10 ) def test_synthetic_2(): synthetic_dataset = SyntheticDataset() vaec = VAEC( synthetic_dataset.nb_genes, synthetic_dataset.n_batches, synthetic_dataset.n_labels, ) trainer_synthetic_vaec = JointSemiSupervisedTrainer( vaec, synthetic_dataset, use_cuda=use_cuda, frequency=1, early_stopping_kwargs={ "early_stopping_metric": "reconstruction_error", "on": "labelled_set", "save_best_state_metric": "reconstruction_error", }, ) trainer_synthetic_vaec.train(n_epochs=2) def base_benchmark(gene_dataset): vae = VAE(gene_dataset.nb_genes, gene_dataset.n_batches, gene_dataset.n_labels) trainer = UnsupervisedTrainer(vae, gene_dataset, train_size=0.5, use_cuda=use_cuda) trainer.train(n_epochs=1) return trainer def ldvae_benchmark(dataset, n_epochs, use_cuda=True): ldvae = LDVAE( dataset.nb_genes, n_batch=dataset.n_batches, latent_distribution="normal" ) trainer = UnsupervisedTrainer(ldvae, dataset, use_cuda=use_cuda) trainer.train(n_epochs=n_epochs) trainer.test_set.reconstruction_error() trainer.test_set.marginal_ll() ldvae = LDVAE(dataset.nb_genes, n_batch=dataset.n_batches, latent_distribution="ln") trainer = UnsupervisedTrainer(ldvae, dataset, use_cuda=use_cuda) trainer.train(n_epochs=n_epochs) trainer.test_set.reconstruction_error() ldvae.get_loadings() return trainer def totalvi_benchmark(dataset, n_epochs, use_cuda=True): totalvae = TOTALVI( dataset.nb_genes, len(dataset.protein_names), n_batch=dataset.n_batches ) trainer = TotalTrainer(totalvae, dataset, train_size=0.5, use_cuda=use_cuda) trainer.train(n_epochs=n_epochs) trainer.test_set.reconstruction_error() trainer.test_set.marginal_ll() trainer.test_set.get_protein_background_mean() trainer.test_set.get_latent() trainer.test_set.generate() trainer.test_set.get_sample_dropout() trainer.test_set.get_normalized_denoised_expression() trainer.test_set.imputation() return trainer def test_synthetic_3(): gene_dataset = SyntheticDataset() trainer = base_benchmark(gene_dataset) adapter_trainer = AdapterTrainer( trainer.model, gene_dataset, trainer.train_set, frequency=1 ) adapter_trainer.train(n_path=1, n_epochs=1) def test_nb_not_zinb(): synthetic_dataset = SyntheticDataset() svaec = SCANVI( synthetic_dataset.nb_genes, synthetic_dataset.n_batches, synthetic_dataset.n_labels, labels_groups=[0, 0, 1], reconstruction_loss="nb", ) trainer_synthetic_svaec = JointSemiSupervisedTrainer( svaec, synthetic_dataset, use_cuda=use_cuda ) trainer_synthetic_svaec.train(n_epochs=1) def test_poisson_not_zinb(): synthetic_dataset = SyntheticDataset() svaec = SCANVI( synthetic_dataset.nb_genes, synthetic_dataset.n_batches, synthetic_dataset.n_labels, labels_groups=[0, 0, 1], reconstruction_loss="poisson", ) trainer_synthetic_svaec = JointSemiSupervisedTrainer( svaec, synthetic_dataset, use_cuda=use_cuda ) trainer_synthetic_svaec.train(n_epochs=1) def test_classifier_accuracy(save_path): cortex_dataset = CortexDataset(save_path=save_path) cls = Classifier(cortex_dataset.nb_genes, n_labels=cortex_dataset.n_labels) cls_trainer = ClassifierTrainer( cls, cortex_dataset, metrics_to_monitor=["accuracy"], frequency=1, early_stopping_kwargs={ "early_stopping_metric": "accuracy", "save_best_state_metric": "accuracy", }, ) cls_trainer.train(n_epochs=2) cls_trainer.train_set.accuracy() def test_LDVAE(save_path): synthetic_datset_one_batch = SyntheticDataset(n_batches=1) ldvae_benchmark(synthetic_datset_one_batch, n_epochs=1, use_cuda=False) synthetic_datset_two_batches = SyntheticDataset(n_batches=2) ldvae_benchmark(synthetic_datset_two_batches, n_epochs=1, use_cuda=False) def test_sampling_zl(save_path): cortex_dataset = CortexDataset(save_path=save_path) cortex_vae = VAE(cortex_dataset.nb_genes, cortex_dataset.n_batches) trainer_cortex_vae = UnsupervisedTrainer( cortex_vae, cortex_dataset, train_size=0.5, use_cuda=use_cuda ) trainer_cortex_vae.train(n_epochs=2) cortex_cls = Classifier((cortex_vae.n_latent + 1), n_labels=cortex_dataset.n_labels) trainer_cortex_cls = ClassifierTrainer( cortex_cls, cortex_dataset, sampling_model=cortex_vae, sampling_zl=True ) trainer_cortex_cls.train(n_epochs=2) trainer_cortex_cls.test_set.accuracy() def test_annealing_procedures(save_path): cortex_dataset = CortexDataset(save_path=save_path) cortex_vae = VAE(cortex_dataset.nb_genes, cortex_dataset.n_batches) trainer_cortex_vae = UnsupervisedTrainer( cortex_vae, cortex_dataset, train_size=0.5, use_cuda=use_cuda, n_epochs_kl_warmup=1, ) trainer_cortex_vae.train(n_epochs=2) assert trainer_cortex_vae.kl_weight >= 0.99, "Annealing should be over" trainer_cortex_vae = UnsupervisedTrainer( cortex_vae, cortex_dataset, train_size=0.5, use_cuda=use_cuda, n_epochs_kl_warmup=5, ) trainer_cortex_vae.train(n_epochs=2) assert trainer_cortex_vae.kl_weight <= 0.99, "Annealing should be proceeding" # iter trainer_cortex_vae = UnsupervisedTrainer( cortex_vae, cortex_dataset, train_size=0.5, use_cuda=use_cuda, n_iter_kl_warmup=1, n_epochs_kl_warmup=None, ) trainer_cortex_vae.train(n_epochs=2) assert trainer_cortex_vae.kl_weight >= 0.99, "Annealing should be over" def test_differential_expression(save_path): dataset = CortexDataset(save_path=save_path) n_cells = len(dataset) all_indices = np.arange(n_cells) vae = VAE(dataset.nb_genes, dataset.n_batches) trainer = UnsupervisedTrainer(vae, dataset, train_size=0.5, use_cuda=use_cuda) trainer.train(n_epochs=2) post = trainer.create_posterior(vae, dataset, shuffle=False, indices=all_indices) # Sample scale example px_scales = post.scale_sampler( n_samples_per_cell=4, n_samples=None, selection=all_indices )["scale"] assert ( px_scales.shape[1] == dataset.nb_genes ), "posterior scales should have shape (n_samples, n_genes)" # Differential expression different models idx_1 = [1, 2, 3] idx_2 = [4, 5, 6, 7] de_dataframe = post.differential_expression_score( idx1=idx_1, idx2=idx_2, n_samples=10, mode="vanilla", use_permutation=True, M_permutation=100, ) de_dataframe = post.differential_expression_score( idx1=idx_1, idx2=idx_2, n_samples=10, mode="change", use_permutation=True, M_permutation=100, ) print(de_dataframe.keys()) assert ( de_dataframe["confidence_interval_0.5_min"] <= de_dataframe["confidence_interval_0.5_max"] ).all() assert ( de_dataframe["confidence_interval_0.95_min"] <= de_dataframe["confidence_interval_0.95_max"] ).all() # DE estimation example de_probabilities = de_dataframe.loc[:, "proba_de"] assert ((0.0 <= de_probabilities) & (de_probabilities <= 1.0)).all() def test_totalvi(save_path): synthetic_dataset_one_batch = SyntheticDataset(n_batches=1) totalvi_benchmark(synthetic_dataset_one_batch, n_epochs=1, use_cuda=use_cuda) synthetic_dataset_two_batches = SyntheticDataset(n_batches=2) totalvi_benchmark(synthetic_dataset_two_batches, n_epochs=1, use_cuda=use_cuda) def test_autozi(save_path): data = SyntheticDataset(n_batches=1) for disp_zi in ["gene", "gene-label"]: autozivae = AutoZIVAE( n_input=data.nb_genes, dispersion=disp_zi, zero_inflation=disp_zi, n_labels=data.n_labels, ) trainer_autozivae = UnsupervisedTrainer( model=autozivae, gene_dataset=data, train_size=0.5 ) trainer_autozivae.train(n_epochs=2, lr=1e-2) trainer_autozivae.test_set.elbo() trainer_autozivae.test_set.reconstruction_error() trainer_autozivae.test_set.marginal_ll() def test_multibatches_features(): data = [ np.random.randint(1, 5, size=(20, 10)), np.random.randint(1, 10, size=(20, 10)), np.random.randint(1, 10, size=(20, 10)), np.random.randint(1, 10, size=(30, 10)), ] dataset = GeneExpressionDataset() dataset.populate_from_per_batch_list(data) vae = VAE(dataset.nb_genes, dataset.n_batches) trainer = UnsupervisedTrainer(vae, dataset, train_size=0.5, use_cuda=use_cuda) trainer.train(n_epochs=2) trainer.test_set.imputation(n_samples=2, transform_batch=0) trainer.train_set.imputation(n_samples=2, transform_batch=[0, 1, 2]) def test_deprecated_munkres(): y = np.array([0, 1, 0, 1, 0, 1, 1, 1]) y_pred = np.array([0, 0, 0, 0, 1, 1, 1, 1]) reward, assignment = unsupervised_clustering_accuracy(y, y_pred) assert reward == 0.625 assert (assignment == np.array([[0, 0], [1, 1]])).all() y = np.array([1, 1, 2, 2, 0, 0, 3, 3]) y_pred = np.array([1, 1, 2, 2, 3, 3, 0, 0]) reward, assignment = unsupervised_clustering_accuracy(y, y_pred) assert reward == 1.0 assert (assignment == np.array([[0, 3], [1, 1], [2, 2], [3, 0]])).all()
34.718072
88
0.71731
b5569a8efddf40e28a45fbdd20707b80e06c956e
3,474
py
Python
knapsack_benchmark/knapsack.py
vladium/study_julia_with_me
8c7a0b614098091ef284ebee1250c69f222fa126
[ "MIT" ]
2
2019-10-16T00:46:15.000Z
2021-07-02T17:08:46.000Z
knapsack_benchmark/knapsack.py
vladium/study_julia_with_me
8c7a0b614098091ef284ebee1250c69f222fa126
[ "MIT" ]
null
null
null
knapsack_benchmark/knapsack.py
vladium/study_julia_with_me
8c7a0b614098091ef284ebee1250c69f222fa126
[ "MIT" ]
null
null
null
import sys if sys.hexversion < 0x3000000: raise RuntimeError("expecting python v3+ instead of %x" % sys.hexversion) import array import numpy as np import time # ---------------------------------------------------------------------------- ''' this is an almost one-for-one translation of the Julia version, see knapsack.jl for more comments. running this benchmark from command line: >python3 -O ...knapsack.py ''' class item(object): def __init__(self, value, weight): self.value = value self.weight = weight def __repr__(self): return "(" + str(self.value) + ", " + str(self.weight) + ")" # ............................................................................ def opt_value(W, items): n = len(items) V = [0 for i in range(W)] V_prev = [0 for i in range(W)] # use the next 2 lines to use python "native" arrays instead: # (for me, this choice is slower 2x than plain python lists) # V = array.array('q', [0 for i in range(W)]) # V_prev = array.array('q', [0 for i in range(W)]) # use the next 2 lines to use numpy arrays instead: # (for me, this choice is nearly 2x slower) # V = np.array([0 for i in range(W)], dtype="i8") # V_prev = np.array([0 for i in range(W)], dtype="i8") for w in range(items[0].weight, W + 1): V[w - 1] = items[0].value; for j in range(1, n): V, V_prev = V_prev, V item_j = items[j] for w in range(1, W + 1): V_without_item_j = V_prev[w - 1] V_allow_item_j = (V_without_item_j if w < item_j.weight else (item_j.value + (V_prev[w - 1 - item_j.weight] if w != item_j.weight else 0))) V[w - 1] = max(V_allow_item_j, V_without_item_j) return V[W - 1] # ............................................................................ # some contortions are needed in python to ensure uint64_t arithmetic: _13 = np.uint64(13) _7 = np.uint64(7) _17 = np.uint64(17) def xorshift_rand(seed): assert seed != 0 x = np.uint64(seed) def _next(): nonlocal x x ^= (x << _13); x ^= (x >> _7); x ^= (x << _17); return int(x); return _next def make_random_data(W, seed): assert W > 1000 n = W // 100 rng = xorshift_rand(seed) items = [] for i in range(n): v = rng() % 1000 w = 1 + rng() % (2 * W) items.append(item(v, w)) return W, items # ............................................................................ def run(repeats = 5): times = [0.0 for i in range(repeats)] seed = 12345 for W in [5000, 10000, 20000, 40000, 80000]: for repeat in range(repeats): seed += 1 W, items = make_random_data(W, seed) start = time.time_ns () V = opt_value(W, items) stop = time.time_ns() times[repeat] = (stop - start) / 1e9 # print("V = %d, time = %f" % (V, times[repeat])) times.sort() print("python, %d, %f" % (W, times[repeats // 2])) # ............................................................................ if __name__ == '__main__': run () # ----------------------------------------------------------------------------
27.792
104
0.451641
3fe24f969858f73982f24586d89154e611426fe5
6,793
py
Python
train/login/Login.py
1131041715/12306lmqc
e2049fd5393bacb08401737fa314ef5e7ab962e6
[ "MIT" ]
1
2020-10-22T03:36:46.000Z
2020-10-22T03:36:46.000Z
train/login/Login.py
Any1131041715/12306lmqc
e2049fd5393bacb08401737fa314ef5e7ab962e6
[ "MIT" ]
5
2021-03-31T19:41:44.000Z
2021-12-13T20:39:28.000Z
train/login/Login.py
1131041715/12306lmqc
e2049fd5393bacb08401737fa314ef5e7ab962e6
[ "MIT" ]
null
null
null
import sys sys.path.append("./") import copy import json import time from collections import OrderedDict import requests from conf.urls_conf import loginUrls from conf.constant import CAPTCHA_CHECK_METHOD_HAND, CAPTCHA_CHECK_METHOD_THREE from train.login.Capthca import Captcha from utils import Utils from utils.Log import Log from train.cookie.getCookie import get12306Cookie # from net.NetUtils import EasyHttp from net.TestNet import EasyHttp def loginLogic(func): def wrapper(*args, **kw): reslut = False msg = '' for count in range(20): Log.v('第%s次尝试获取验证图片' % str(count + 1)) reslut, msg = func(*args, **kw) if reslut: break Log.w(msg) return reslut, msg return wrapper class Login(object): __LOGIN_SUCCESS_RESULT_CODE = 0 def _passportRedirect(self): params = { 'redirect': '/otn/login/userLogin', } EasyHttp.send(self._urlInfo['userLoginRedirect']) def _userLogin(self): params = { '_json_att': '', } EasyHttp.send(self._urlInfo['userLogin']) def _uamtk(self): jsonRet = EasyHttp.send(self._urlInfo['uamtk'], data={'appid': 'otn'}) def isSuccess(response): return response['result_code'] == 0 if response and 'result_code' in response else False return isSuccess(jsonRet), \ jsonRet['result_message'] if jsonRet and 'result_message' in jsonRet else 'no result_message', \ jsonRet['newapptk'] if jsonRet and 'newapptk' in jsonRet else 'no newapptk' def _uamtk_static(self): EasyHttp.send(self._urlInfo['conf']) jsonRet = EasyHttp.send(self._urlInfo['uamtk-static'], data={'appid': 'otn'}) def isSuccess(response): return response['result_code'] == 0 if response and 'result_code' in response else False return isSuccess(jsonRet), \ jsonRet['result_message'] if jsonRet and 'result_message' in jsonRet else 'no result_message', \ jsonRet['newapptk'] if jsonRet and 'newapptk' in jsonRet else 'no newapptk' def _uamauthclient(self, apptk): jsonRet = EasyHttp.send(self._urlInfo['uamauthclient'], data={'tk': apptk}) # print(jsonRet) def isSuccess(response): return response['result_code'] == 0 if response and 'result_code' in response else False return isSuccess(jsonRet), '%s:%s' % (jsonRet['username'], jsonRet['result_message']) if jsonRet \ else 'uamauthclient failed' def login(self, userName, userPwd, autoCheck=1): self._urlInfo = loginUrls['normal'] status, msg = self._login_init() if not status: return status, msg self._uamtk_static() result, msg = self._login(userName, userPwd, autoCheck) if Utils.check(result, msg): return result, msg return False, '登录失败' @loginLogic def _login(self, userName, userPwd, autoCheck=1): return self._loginNormal(userName, userPwd,autoCheck) def _loginNormal(self, userName, userPwd, autoCheck=1): if autoCheck == CAPTCHA_CHECK_METHOD_THREE: results, verify = Captcha().verifyCodeAuto() elif autoCheck == CAPTCHA_CHECK_METHOD_HAND: results, verify = Captcha().verifyCaptchaByHand() else: results, verify = Captcha().verifyCodeAutoByMyself() if not verify: return False, '验证码识别错误!' Log.v('验证码识别成功') payload = OrderedDict() payload['username'] = userName payload['password'] = userPwd payload['appid'] = 'otn' payload['answer'] = results response = EasyHttp.post_custom(self._urlInfo['login'], data=payload) def isLoginSuccess(responseJson): return 0 == responseJson['result_code'] if responseJson and 'result_code' in responseJson else False, \ responseJson[ 'result_message'] if responseJson and 'result_message' in responseJson else '登录失败' if response.status_code != requests.codes.ok: return False, "登录请求被强制重定向,准备重试..." result, msg = isLoginSuccess(response.json()) if not result : return False, msg self._userLogin() self._passportRedirect() result, msg, apptk = self._uamtk() if not Utils.check(result, msg): return False, 'uamtk failed' return self._uamauthclient(apptk) def loginOut(self): EasyHttp.send(self._urlInfo['loginOut']) self._init() return self._uamtk() def _init(self): EasyHttp.send(self._urlInfo['init']) def _login_init(self): return self._handle_device_code_manual() def _handle_device_code_auto(self): status, cookie = get12306Cookie() if not status: return False, cookie EasyHttp.setCookies(RAIL_DEVICEID=cookie['RAIL_DEVICEID'], RAIL_EXPIRATION=cookie['RAIL_EXPIRATION']) return True, '获取设备指纹成功' def _handle_device_code_manual(self): #死方法来手动每次更新deviceid url url_info = copy.deepcopy(self._urlInfo["getDevicesId"]) url_info['url'] = self._urlInfo["getDevicesId"]['url'] + str(int(time.time()*1000)) devices_id_rsp = EasyHttp.get_custom(url_info) # params = {"algID": request_alg_id(self._urlInfo['getJS']), "timestamp": int(time.time() * 1000)} # params = dict(params, **get_hash_code_params()) # devices_id_rsp = EasyHttp.send(self._urlInfo["getDevicesId"],params=params) if devices_id_rsp: callback = devices_id_rsp.text[18:-2] # callback = devices_id_rsp.replace("callbackFunction('", '').replace("')", '') try: text = json.loads(callback) devices_id = text.get('dfp') exp = text.get('exp') except Exception as e: return False,'获取设备指纹失败' EasyHttp.setCookies(RAIL_DEVICEID=devices_id, RAIL_EXPIRATION=exp) # Log.d('设备Id:%s'%devices_id) Log.v('获取设备指纹成功') return True, '获取设备指纹成功' EasyHttp.send(self._urlInfo['index']) EasyHttp.send(self._urlInfo['loginInit']) return False,'获取设备指纹失败' if __name__ == '__main__': # login = Login() # login.login(USER_NAME, USER_PWD) # time.sleep(3) # print(login.loginOut()) devicesIdUrl = copy.deepcopy(loginUrls['normal']["getDevicesId"]) devices_id_rsp = EasyHttp.get_custom(devicesIdUrl) print(devices_id_rsp.text) text = devices_id_rsp.text.replace("callbackFunction('",'').replace("')",'') print(text) j = json.loads(text) print(j['exp']) pass
34.658163
115
0.624466
41bc793e2e4ff657f9ad1b30cb9a832a5a1e23f3
74
py
Python
sparts/gen/sparts_examples/__init__.py
facebook/sparts
c03df928677444ad638d10fa96f4144ca4d644e1
[ "BSD-3-Clause" ]
220
2015-01-04T07:17:31.000Z
2018-10-10T09:06:45.000Z
sparts/gen/sparts_examples/__init__.py
martina6hall/sparts
c03df928677444ad638d10fa96f4144ca4d644e1
[ "BSD-3-Clause" ]
49
2015-02-02T22:25:08.000Z
2017-07-26T05:46:10.000Z
sparts/gen/sparts_examples/__init__.py
martina6hall/sparts
c03df928677444ad638d10fa96f4144ca4d644e1
[ "BSD-3-Clause" ]
39
2015-03-11T03:12:41.000Z
2018-10-10T09:07:11.000Z
__all__ = ['ttypes', 'constants', 'SpartsFooService', 'SpartsBarService']
37
73
0.72973
5767c1e00965127197d5a4f539824ca26d261e64
260
py
Python
Python/projecteuler/10.py
caa06d9c/Python-examples
9d90b9a9adfc343f9fdfab814cfc2b05219d6920
[ "MIT" ]
5
2019-10-28T09:56:26.000Z
2021-09-03T04:51:18.000Z
Python/projecteuler/10.py
caa06d9c/Python-examples
9d90b9a9adfc343f9fdfab814cfc2b05219d6920
[ "MIT" ]
null
null
null
Python/projecteuler/10.py
caa06d9c/Python-examples
9d90b9a9adfc343f9fdfab814cfc2b05219d6920
[ "MIT" ]
4
2019-10-28T09:56:30.000Z
2021-09-03T04:51:23.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # https://projecteuler.info/problem=10 # 142913828922 from lib import get_primes if __name__ == '__main__': primes = get_primes(2000000) res = 0 for el in primes: res += el print(res)
15.294118
38
0.623077
a12efed5a2649f29868abdcbe0ce89ffea8ef4ac
1,395
py
Python
setup.py
sikattin/py_mysql_backup
6324d3e467d2265c6cba6c1fdc54f2d15cf3a687
[ "BSD-2-Clause" ]
null
null
null
setup.py
sikattin/py_mysql_backup
6324d3e467d2265c6cba6c1fdc54f2d15cf3a687
[ "BSD-2-Clause" ]
null
null
null
setup.py
sikattin/py_mysql_backup
6324d3e467d2265c6cba6c1fdc54f2d15cf3a687
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import os requirement = ['py_mysql', 'datetime_skt', 'osfile', 'mylogger', 'iomod', 'connection', 'datatransfer', 's3_transfer'] description = 'MySQL Backup Script.\n' \ '================================================' \ 'This script is connecting to MySQL server, ' \ 'executes mysqldump and saves dumpfile to specified directory.\n' \ 'then, transfer dumpfiles to specified remote host.\n' \ 'config file path is ' \ '<python3 lib directory>/site|dist-packages/daily_backup/config/backup.json\n' \ 'run following command to executes this scripts!(must be privileged user)\n' \ 'python3 <python3 lib directory>/dist-packages/daily_backup/local_backup.py' with open('README.rst') as f: readme = f.read() with open('LICENSE') as f: license = f.read() setup( name='mysql_backup', version='1.6', description=description, long_description=readme, author='Takeki Shikano', author_email='', require=requirement, url=None, license='MIT', packages=find_packages(exclude=('tests', 'docs')), package_data={'daily_backup': ['config/backup.json', 'README']} )
30.326087
94
0.565591
eef8f2a82605f04b477a726305e09e5a74007b53
4,016
py
Python
tests/test_units.py
florczakraf/pytest-logger
c69c1f8252493661a5f89867a8b35eb6e3b20bb1
[ "MIT" ]
null
null
null
tests/test_units.py
florczakraf/pytest-logger
c69c1f8252493661a5f89867a8b35eb6e3b20bb1
[ "MIT" ]
null
null
null
tests/test_units.py
florczakraf/pytest-logger
c69c1f8252493661a5f89867a8b35eb6e3b20bb1
[ "MIT" ]
null
null
null
import logging import argparse import pytest import pytest_logger.plugin as plugin def test_sanitize_nodeid(): assert plugin._sanitize_nodeid('test_p.py::test_echo') == 'test_p.py/test_echo' assert plugin._sanitize_nodeid('classtests/test_y.py::TestClass::()::test_class') == \ 'classtests/test_y.py/TestClass.test_class' assert plugin._sanitize_nodeid('parametrictests/test_z.py::test_param[2-abc]') == \ 'parametrictests/test_z.py/test_param-2-abc' assert plugin._sanitize_nodeid('parametrictests/test_z.py::test_param[4.127-de]') == \ 'parametrictests/test_z.py/test_param-4.127-de' def test_sanitize_level(): assert plugin._sanitize_level(logging.INFO) == logging.INFO assert plugin._sanitize_level('15') == 15 assert plugin._sanitize_level('warn') == logging.WARN assert plugin._sanitize_level('FATAL') == logging.FATAL with pytest.raises(TypeError): plugin._sanitize_level('WARN ') with pytest.raises(TypeError): plugin._sanitize_level('unknown') with pytest.raises(TypeError): plugin._sanitize_level(1.0) assert plugin._sanitize_level('WARN ', raises=False) is None def test_log_option_parser(): loggers = [ (['a', 'b', 'c'], 20, 10), (['d'], 30, 15), (['e', 'f.g.h'], 31, 16), ] assert plugin._log_option_parser([])('') == [] assert plugin._log_option_parser(loggers)('') == [] assert plugin._log_option_parser(loggers)('a') == [('a', 20)] assert plugin._log_option_parser(loggers)('a.info') == [('a', logging.INFO)] assert plugin._log_option_parser(loggers)('a.19') == [('a', 19)] assert plugin._log_option_parser(loggers)('f.g.h') == [('f.g.h', 31)] assert plugin._log_option_parser(loggers)('f.g.h.INFO') == [('f.g.h', logging.INFO)] assert plugin._log_option_parser(loggers)('a,b') == [('a', 20), ('b', 20)] assert plugin._log_option_parser(loggers)('a,d.19,e.info') == [('a', 20), ('d', 19), ('e', logging.INFO)] with pytest.raises(argparse.ArgumentTypeError) as e: plugin._log_option_parser(loggers)('a.unknown') assert str(e.value) == 'wrong level, expected (INFO, warn, 15, ...), got "unknown"' with pytest.raises(argparse.ArgumentTypeError) as e: plugin._log_option_parser(loggers)('alien.info') assert str(e.value) == 'wrong logger, expected (a, b, c, d, e, f.g.h), got "alien"' with pytest.raises(argparse.ArgumentTypeError) as e: plugin._log_option_parser(loggers)('alien.unknown') assert str(e.value) == 'wrong logger, expected (a, b, c, d, e, f.g.h), got "alien.unknown"' def test_set_formatter_class(): logcfg = plugin.LoggerConfig() logcfg.set_formatter_class(logging.Formatter) logcfg.set_formatter_class(plugin.DefaultFormatter) with pytest.raises(ValueError) as e: logcfg.set_formatter_class(plugin.DefaultFormatter()) assert str(e.value) == 'Got a formatter instance instead of its class !' with pytest.raises(ValueError) as e: logcfg.set_formatter_class(plugin.LoggerState) assert str(e.value) == 'Formatter should be a class inheriting from logging.Formatter' with pytest.raises(TypeError) as e: logcfg.set_formatter_class(10) assert str(e.value) == 'issubclass() arg 1 must be a class' def test_loggers_from_logcfg_empty(): logcfg = plugin.LoggerConfig() loggers = plugin._loggers_from_logcfg(logcfg, []) assert loggers.stdout == [] assert loggers.file == [] assert not loggers def test_loggers_from_logcfg(): logcfg = plugin.LoggerConfig() logcfg.add_loggers(['a', 'b', 'c'], stdout_level=logging.ERROR, file_level='warn') logcfg.add_loggers(['d'], stdout_level='10') log_option = [('b', logging.FATAL), 'd'] loggers = plugin._loggers_from_logcfg(logcfg, log_option) assert loggers.stdout == [('b', logging.FATAL), ('d', 10)] assert loggers.file == [('a', logging.WARN), ('b', logging.WARN), ('c', logging.WARN), ('d', 0)] assert loggers
40.565657
109
0.673556
3a5ff9f188951e25bf56486884a1d2d73d8684df
37,257
py
Python
.history/src/_fighter_20190422092829.py
vidalmatheus/MK-Project
6646020c59367ba0424d73a5861e13bbc0daac1f
[ "MIT" ]
1
2019-12-25T10:25:30.000Z
2019-12-25T10:25:30.000Z
.history/src/_fighter_20190422092829.py
vidalmatheus/MK-Project
6646020c59367ba0424d73a5861e13bbc0daac1f
[ "MIT" ]
1
2019-12-25T10:27:15.000Z
2019-12-25T10:27:15.000Z
.history/src/_fighter_20190422092829.py
vidalmatheus/MK-Project
6646020c59367ba0424d73a5861e13bbc0daac1f
[ "MIT" ]
1
2019-12-25T10:50:05.000Z
2019-12-25T10:50:05.000Z
from pygame_functions import * import fightScene import engine import menu class Fighter: fighterNames = ["Sub-Zero", "Scorpion"] fightMoves = [["w", "s", "a", "d"], ["up", "down", "left", "right"]] combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] danceLimit = 7 walkLimit = 9 jumpLimit = 3 crouchLimit = 3 punchLimit = [3, 11, 3, 5, 3] kickLimit = [7, 9, 7, 6, 3] hitLimit = [3, 3, 6, 2, 3, 14, 11, 10] blockLimit = 3 specialLimit = [4,7] victoryLimit = 3 fatalityLimit = 20 dizzyLimit = 7 # indexação # moves dance = 0 walk = 1 jump = 2 crouch = 3 # punches Apunch = 4 # soco fraco Bpunch = 5 # soco forte Cpunch = 6 # soco agachado fraco Dpunch = 7 # soco agachado forte: gancho # kicks Akick = 8 # chute fraco Bkick = 9 # chute forte Ckick = 10 # chute agachado fraco Dkick = 11 # chute agachado forte: banda # hits Ahit = 12 # soco fraco Bhit = 13 # chute fraco Chit = 14 # soco forte Dhit = 15 # chute agrachado fraco Ehit = 16 # soco agachado fraco Fhit = 17 # chute forte e soco forte agachado (gancho) Ghit = 18 # chute agachado forte: banda #Hhit = 19 # specialMove #fatalityHit = 20 # fatality hit # block Ablock = 19 #Bblock = 13 # special move special = 20 # fatality fatality = 24 def __init__(self, id, scenario): self.fighterId = id self.name = self.fighterNames[id] self.move = self.fightMoves[id] self.combat = self.combatMoves[id] # Position self.x = 150+id*500 if scenario == 1: self.y = 350 elif scenario == 2: self.y = 370 elif scenario == 3: self.y = 400 elif scenario == 4: self.y = 370 elif scenario == 5: self.y = 380 elif scenario == 6: self.y = 380 elif scenario == 7: self.y = 360 elif scenario == 8: self.y = 395 # Loading sprites self.spriteList = [] # moves self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/dance.png', self.danceLimit)) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/walk.png', self.walkLimit)) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/jump.png', self.jumpLimit)) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/crouch.png', self.crouchLimit)) # Punch sprites self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Apunch.png', self.punchLimit[0])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Bpunch.png', self.punchLimit[1])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Cpunch.png', self.punchLimit[2])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Dpunch.png', self.punchLimit[3])) # Kick sprites self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Akick.png', self.kickLimit[0])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Bkick.png', self.kickLimit[1])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ckick.png', self.kickLimit[2])) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Dkick.png', self.kickLimit[3])) # Hit sprites self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ahit.png', self.hitLimit[0])) # soco fraco self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Bhit.png', self.hitLimit[1])) # chute fraco self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Chit.png', self.hitLimit[2])) # soco forte self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Dhit.png', self.hitLimit[3])) # chute agrachado fraco self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ehit.png', self.hitLimit[4])) # soco agachado fraco self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Fhit.png', self.hitLimit[5])) # chute forte e soco forte agachado (gancho) self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ghit.png', self.hitLimit[6])) # chute agachado forte: banda #self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Hhit.png', self.hitLimit[7])) # specialMove # blocking sprites self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Ablock.png', self.blockLimit)) # defesa em pé #self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Bblock.png', self.blockLimit)) # defesa agachado # special sprite ---------------------------------- self.spriteList.append(makeSprite('../res/Char/'+str(self.name)+'/Special.png', self.specialLimit[self.fighterId])) # Especial self.act() def act(self): # Combat control combat = False block = False alive = False fatality = False dizzyCounter = 1 dizzyCounterAux = 1 fatalityCounter = 8 fatalityCounterAux = 1 # Control reflection var reflection = False # Dance vars self.dancing = True self.frame_dance = 0 self.dance_step = 1 # Walk vars self.frame_walk = 0 self.walking = False # Variável de status # Jump vars self.jumpHeight = 10 # Altura do pulo self.jumpCounter = 1 # Contador correspodente à subida e descida do pulo self.jumping = False # Variável de status self.frame_jumping = 0 self.jump_step = 1 self.end_jump = True # Crouch vars self.crouching = False # Variável de status self.frame_crouching = 0 self.crouch_step = 1 # Punch vars self.Apunching = False self.frame_Apunching = 0 self.Apunch_step = 1 self.end_Apunch = True self.Bpunching = False self.frame_Bpunching = 0 self.Bpunch_step = 1 self.end_Bpunch = True self.Cpunching = False self.frame_Cpunching = 0 self.Cpunch_step = 1 self.end_Cpunch = True self.Dpunching = False self.frame_Dpunching = 0 self.Dpunch_step = 1 self.end_Dpunch = True # Kick vars self.Akicking = False self.frame_Akicking = 0 self.Akick_step = 1 self.end_Akick = True self.Bkicking = False self.frame_Bkicking = 0 self.Bkick_step = 1 self.end_Bkick = True self.Ckicking = False self.frame_Ckicking = 0 self.Ckick_step = 1 self.end_Ckick = True self.Dkicking = False self.frame_Dkicking = 0 self.Dkick_step = 1 self.end_Dkick = True # Blocking vars self.Ablocking = False self.frame_Ablocking = 0 self.Ablock_step = 1 self.Bblocking = False # Special vars self.specialMove = False self.end_special = True self.frame_special = 0 self.special_step = 1 # Hit vars self.hit = False self.hitName = "" self.Ahitting = False self.Bhitting = False self.Chitting = False self.Dhitting = False self.Ehitting = False self.Fhitting = False self.Ghitting = False self.Hhitting = False self.frame_Ahit = 0 self.frame_Bhit = 0 self.frame_Chit = 0 self.frame_Dhit = 0 self.frame_Ehit = 0 self.frame_Fhit = 0 self.frame_Ghit = 0 self.frame_Hhit = 0 self.hit_step = 1 # Life Vars X_inicio = 37 X_atual = X_inicio X_fim = X_inicio + 327 self.posFighter() def fight(self, time, nextFrame): frame_step = 60 if not self.jumping: # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> jump if keyPressed(self.move[0]) and not self.hit: self.jumping = True self.end_jump = False self.curr_sprite = self.spriteList[self.jump] # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> right elif keyPressed(self.move[3]) and not self.hit: self.curr_sprite = self.spriteList[self.walk] self.walking = self.setState() self.setEndState() self.x += 4 moveSprite(self.spriteList[self.walk], self.x, self.y, True) self.setSprite(self.spriteList[self.walk]) changeSpriteImage(self.spriteList[self.walk], self.frame_walk) if time > nextFrame: # There are 9 frames of animation in each direction self.frame_walk = (self.frame_walk+1) % self.walkLimit # so the modulus 9 allows it to loop nextFrame += frame_step # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> left elif keyPressed(self.move[2]) and not self.hit:# SEGUNDA MUDANÇA and not self.jumping: self.curr_sprite = self.spriteList[self.walk] self.walking = self.setState() self.setEndState() self.x -= 4 moveSprite(self.spriteList[self.walk], self.x, self.y, True) self.setSprite(self.spriteList[self.walk]) changeSpriteImage(self.spriteList[self.walk], self.walkLimit-1-self.frame_walk) if time > nextFrame: # There are 9 frames of animation in each direction self.frame_walk = (self.frame_walk+1) % self.walkLimit nextFrame += frame_step # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> crouch elif keyPressed(self.move[1]) and not self.hit: if self.end_Cpunch and self.end_Dpunch and self.end_Ckick and self.end_Dkick and not self.hit: self.curr_sprite = self.spriteList[self.crouch] self.crouching = self.setState() self.setEndState() if time > nextFrame: if self.end_Cpunch and self.end_Dpunch and self.end_Ckick and self.end_Dkick and not self.hit: moveSprite(self.spriteList[self.crouch], self.x, self.y, True) self.setSprite(self.spriteList[self.crouch]) changeSpriteImage(self.spriteList[self.crouch], self.frame_crouching) self.frame_crouching = (self.frame_crouching+self.crouch_step) % self.crouchLimit if self.frame_crouching == self.crouchLimit - 2: self.crouch_step = 0 # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> crouch # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> jab if ( (keyPressed(self.combat[0]) and self.end_Cpunch) or (not keyPressed(self.combat[0]) and not self.end_Cpunch) ) and (not self.hit): self.curr_sprite = self.spriteList[self.Cpunch] self.Cpunching = self.setState() self.setEndState() self.end_Cpunch = False if time > nextFrame: moveSprite(self.spriteList[self.Cpunch], self.x, self.y, True) self.setSprite(self.spriteList[self.Cpunch]) changeSpriteImage(self.spriteList[self.Cpunch], self.frame_Cpunching) self.frame_Cpunching = (self.frame_Cpunching+self.Cpunch_step) % (self.punchLimit[2]+1) if (self.frame_Cpunching == self.punchLimit[2]-1): self.Cpunch_step = -1 if (self.frame_Cpunching == self.punchLimit[2]): self.frame_Cpunching = 0 self.Cpunch_step = 1 self.end_Cpunch = True # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> crouch # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> strong punch elif ( (keyPressed(self.combat[1]) and self.end_Dpunch) or (not keyPressed(self.combat[1]) and not self.end_Dpunch) ) and (not self.hit): self.curr_sprite = self.spriteList[self.Dpunch] self.Dpunching = self.setState() self.setEndState() self.end_Dpunch = False if time > nextFrame: moveSprite(self.spriteList[self.Dpunch], self.x, self.y, True) self.setSprite(self.spriteList[self.Dpunch]) changeSpriteImage(self.spriteList[self.Dpunch], self.frame_Dpunching) self.frame_Dpunching = (self.frame_Dpunching+self.Dpunch_step) % (self.punchLimit[3]+1) if (self.frame_Dpunching == self.punchLimit[3]-1): self.Dpunch_step = -1 if (self.frame_Dpunching == self.punchLimit[3]): self.frame_Dpunching = 0 self.Dpunch_step = 1 self.end_Dpunch = True # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> crouch # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> kick elif ( (keyPressed(self.combat[2]) and self.end_Ckick) or (not keyPressed(self.combat[2]) and not self.end_Ckick) ) and (not self.hit): self.curr_sprite = self.spriteList[self.Ckick] self.Ckicking = self.setState() self.end_Ckick = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Ckick], self.x, self.y, True) self.setSprite(self.spriteList[self.Ckick]) changeSpriteImage(self.spriteList[self.Ckick], self.frame_Ckicking) self.frame_Ckicking = (self.frame_Ckicking+self.Ckick_step) % (self.kickLimit[2]+1) if (self.frame_Ckicking == self.kickLimit[2]-1): self.Ckick_step = -1 if (self.frame_Ckicking == self.kickLimit[2]): self.frame_Ckicking = 0 self.Ckick_step = 1 self.end_Ckick = True # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> crouch # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> strong kick elif ( (keyPressed(self.combat[3]) and self.end_Dkick) or (not keyPressed(self.combat[3]) and not self.end_Dkick) ) and (not self.hit): self.curr_sprite = self.spriteList[self.Dkick] self.Dkicking = self.setState() self.end_Dkick = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Dkick], self.x, self.y, True) self.setSprite(self.spriteList[self.Dkick]) changeSpriteImage(self.spriteList[self.Dkick], self.frame_Dkicking) self.frame_Dkicking = (self.frame_Dkicking+self.Dkick_step) % self.kickLimit[3] if (self.frame_Dkicking == 0): self.end_Dkick = True #--------------Hit em agachado-------------------- #Ehit = 16 # chute agachado fraco #Hhit = 19 # specialMove #BblockHit = 21 hit agachado #Ehit = 16 # chute agachado fraco elif self.hit and self.hitName == "Ehit": self.curr_sprite = self.spriteList[self.Ehit] self.Ehitting = self.setState() moveSprite(self.spriteList[self.Ehit], self.x, self.y, True) self.setSprite(self.spriteList[self.Ehit]) changeSpriteImage(self.spriteList[self.Ehit], self.frame_Ehit) if time > nextFrame: self.frame_Ehit = (self.frame_Ehit+self.hit_step) % self.hitLimit[4] if (self.frame_Ehit == self.hitLimit[4] - 1): self.hit_step = -1 if (self.frame_Ehit == 0): self.hit_step = 1 self.hit = False nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> jab elif ((keyPressed(self.combat[0]) and self.end_Apunch) or ( not keyPressed(self.combat[0]) and not self.end_Apunch) ) and (not self.hit) : print("flag!") self.curr_sprite = self.spriteList[self.Apunch] self.Apunching = self.setState() self.setEndState() self.end_Apunch = False if clock() > 0.01*nextFrame: moveSprite(self.spriteList[self.Apunch], self.x, self.y, True) self.setSprite(self.spriteList[self.Apunch]) changeSpriteImage(self.spriteList[self.Apunch], self.frame_Apunching) self.frame_Apunching = (self.frame_Apunching+self.Apunch_step) % (self.punchLimit[0]+1) if (self.frame_Apunching == self.punchLimit[0]-1): self.Apunch_step = -1 if (self.frame_Apunching == self.punchLimit[0]): self.frame_Apunching = 0 self.Apunch_step = 1 self.end_Apunch = True nextFrame += 1*frame_step print("frame_apunching =", self.frame_Apunching) print("end_Apunch =", self.end_Apunch) # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> strong punch elif ( (keyPressed(self.combat[1]) and self.end_Bpunch) or (not keyPressed(self.combat[1]) and not self.end_Bpunch) ) and (not self.hit) : self.curr_sprite = self.spriteList[self.Bpunch] self.Bpunching = self.setState() self.end_Bpunch = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Bpunch], self.x, self.y, True) self.setSprite(self.spriteList[self.Bpunch]) changeSpriteImage(self.spriteList[self.Bpunch], self.frame_Bpunching) self.frame_Bpunching = (self.frame_Bpunching+self.Bpunch_step) % self.punchLimit[1] if (self.frame_Bpunching == 0): self.end_Bpunch = True nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> kick elif ( (keyPressed(self.combat[2]) and self.end_Akick) or (not keyPressed(self.combat[2]) and not self.end_Akick) ) and (not self.hit): self.curr_sprite = self.spriteList[self.Akick] self.Akicking = self.setState() self.end_Akick = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Akick], self.x, self.y, True) self.setSprite(self.spriteList[self.Akick]) changeSpriteImage(self.spriteList[self.Akick], self.frame_Akicking) self.frame_Akicking = (self.frame_Akicking+self.Akick_step) % (self.kickLimit[0]+1) if (self.frame_Akicking == self.kickLimit[0]-1): self.Akick_step = -1 if (self.frame_Akicking == self.kickLimit[0]): self.frame_Akicking = 0 self.Akick_step = 1 self.end_Akick = True nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> strong kick elif ( (keyPressed(self.combat[3]) and self.end_Bkick) or (not keyPressed(self.combat[3]) and not self.end_Bkick) ) and (not self.hit): self.curr_sprite = self.spriteList[self.Bkick] self.Bkicking = self.setState() self.end_Bkick = self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Bkick], self.x, self.y, True) self.setSprite(self.spriteList[self.Bkick]) changeSpriteImage(self.spriteList[self.Bkick], self.frame_Bkicking) self.frame_Bkicking = (self.frame_Bkicking+self.Bkick_step) % self.kickLimit[1] if (self.frame_Bkicking == 0): self.end_Bkick = True nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> defesa em pé elif keyPressed(self.combat[5]) and not self.hit: self.curr_sprite = self.spriteList[self.Ablock] self.Ablocking = self.setState() self.setEndState() if time > nextFrame: moveSprite(self.spriteList[self.Ablock], self.x, self.y, True) self.setSprite(self.spriteList[self.Ablock]) changeSpriteImage(self.spriteList[self.Ablock], self.frame_Ablocking) self.frame_Ablocking = (self.frame_Ablocking+self.Ablock_step) % self.blockLimit if self.frame_Ablocking == self.blockLimit - 2: self.Ablock_step = 0 nextFrame += 1*frame_step # combatMoves = [["j","n","k","m","l","u","f"],["1","4","2","5","3","0","6"]] -> special move elif ((keyPressed(self.combat[4]) and self.end_special) or (not keyPressed(self.combat[4]) and not self.end_special) ) and (not self.hit): print("SpecialMove") self.curr_sprite = self.spriteList[self.special] self.specialMove = self.setState() self.setEndState() self.end_special = False if time > nextFrame: moveSprite(self.spriteList[self.special], self.x, self.y, True) self.setSprite(self.spriteList[self.special]) changeSpriteImage(self.spriteList[self.special], self.frame_special) self.frame_special = (self.frame_special+self.special_step) % (self.specialLimit[self.fighterId]+1) if (self.frame_special == self.specialLimit[self.fighterId]-1): self.special_step = -1 if (self.frame_special == self.specialLimit[self.fighterId]): self.frame_special = 0 self.special_step = 1 self.end_special = True nextFrame += 1*frame_step # just dance :) elif not self.hit: # reset block (hold type) self.frame_Ablocking = 0 self.Ablock_step = 1 # reset down (hold type) self.frame_crouching = 0 self.crouch_step = 1 # reset other movement self.frame_walk = self.frame_jumping = 0 # reset combat frames self.frame_Apunching = self.frame_Bpunching = self.frame_Cpunching = self.frame_Dpunching = self.frame_Akicking = self.frame_Bkicking = self.frame_Ckicking = self.frame_Dkicking = 0 self.setEndState() # start to dance self.curr_sprite = self.spriteList[self.dance] self.dancing = self.setState() if time > nextFrame: moveSprite(self.spriteList[self.dance], self.x, self.y, True) self.setSprite(self.spriteList[self.dance]) changeSpriteImage(self.spriteList[self.dance], self.frame_dance) self.frame_dance = (self.frame_dance+self.dance_step) % self.danceLimit if (self.frame_dance == self.danceLimit-1): self.dance_step = -1 if (self.frame_dance == 0): self.dance_step = 1 nextFrame += frame_step #--------------Hit em pé-------------------- #Ehit = 16 # chute agachado fraco #Hhit = 19 # specialMove #BblockHit = 21 hit agachado # Ouch! Punch on a face (Ahit = 12 # soco fraco) elif self.hit and self.hitName == "Apunching": self.curr_sprite = self.spriteList[self.Ahit] self.Ahitting = self.setState() moveSprite(self.spriteList[self.Ahit], self.x, self.y, True) self.setSprite(self.spriteList[self.Ahit]) changeSpriteImage(self.spriteList[self.Ahit], self.frame_Ahit) if time > nextFrame: self.frame_Ahit = (self.frame_Ahit+self.hit_step) % self.hitLimit[0] if (self.frame_Ahit == self.hitLimit[0] - 1): self.hit_step = -1 if (self.frame_Ahit == 0): self.hit_step = 1 self.hit = False nextFrame += 1.2*frame_step # Ouch! kick on a face (Bhit = 13 # chute fraco) elif self.hit and self.hitName == "Akicking": self.curr_sprite = self.spriteList[self.Bhit] self.Bhitting = self.setState() if self.fighterId == 0: self.x -=0.8 else: self.x +=0.8 moveSprite(self.spriteList[self.Bhit], self.x, self.y, True) self.setSprite(self.spriteList[self.Bhit]) changeSpriteImage(self.spriteList[self.Bhit], self.frame_Bhit) if time > nextFrame: # There are 8 frames of animation in each direction self.frame_Bhit = (self.frame_Bhit+self.hit_step) % self.hitLimit[1] if (self.frame_Bhit == self.hitLimit[1] - 1): self.hit_step = -1 if (self.frame_Bhit == 0): self.hit_step = 1 self.hit = False nextFrame += 1.2*frame_step # Ouch! combo punch (Chit = 14 # soco forte) elif self.hit and self.hitName == "Bpunching": self.curr_sprite = self.spriteList[self.Chit] self.Chitting = self.setState() if self.fighterId == 0: self.x -=0.5 else: self.x +=0.5 moveSprite(self.spriteList[self.Chit], self.x, self.y, True) self.setSprite(self.spriteList[self.Chit]) changeSpriteImage(self.spriteList[self.Chit], self.frame_Chit) if time > nextFrame: self.frame_Chit = (self.frame_Chit+self.hit_step) % self.hitLimit[2] if (self.frame_Chit == self.hitLimit[2] - 1): self.hit_step = -1 if (self.frame_Chit == 0): self.hit_step = 1 self.hit = False nextFrame += 1.2*frame_step #Dhit = 15 # soco agrachado fraco elif self.hit and self.hitName == "Cpunching": self.curr_sprite = self.spriteList[self.Dhit] self.Dhitting = self.setState() moveSprite(self.spriteList[self.Dhit], self.x, self.y, True) self.setSprite(self.spriteList[self.Dhit]) changeSpriteImage(self.spriteList[self.Dhit], self.frame_Dhit) if time > nextFrame: self.frame_Dhit = (self.frame_Dhit+self.hit_step) % self.hitLimit[3] if (self.frame_Dhit == self.hitLimit[3] - 1): self.hit_step = -1 if (self.frame_Dhit == 0): self.hit_step = 1 self.hit = False nextFrame += 1.2*frame_step #Fhit = 17 # chute forte e soco forte agachado (gancho) elif self.hit and self.hitName == "Bkicking": self.curr_sprite = self.spriteList[self.Fhit] self.Fhitting = self.setState() if self.frame_Fhit <= 6: if self.fighterId == 0: self.x -=3 else: self.x +=3 moveSprite(self.spriteList[self.Fhit], self.x, self.y, True) self.setSprite(self.spriteList[self.Fhit]) changeSpriteImage(self.spriteList[self.Fhit], self.frame_Fhit) if time > nextFrame: self.frame_Fhit = (self.frame_Fhit+self.hit_step) % self.hitLimit[5] if (self.frame_Fhit == self.hitLimit[5] - 1): self.hit = False nextFrame += 1.2*frame_step #Ghit = 18 # chute agachado forte: banda elif self.hit and self.hitName == "Dkicking": self.curr_sprite = self.spriteList[self.Ghit] self.Ghitting = self.setState() moveSprite(self.spriteList[self.Ghit], self.x, self.y, True) self.setSprite(self.spriteList[self.Ghit]) changeSpriteImage(self.spriteList[self.Ghit], self.frame_Ghit) if time > nextFrame: self.frame_Ghit = (self.frame_Ghit+self.hit_step) % self.hitLimit[6] if (self.frame_Ghit == self.hitLimit[6] - 1): self.hit = False nextFrame += 1.2*frame_step #blockHit! Defesa em pé. elif self.hit and self.hitName == "Ablocking": self.curr_sprite = self.spriteList[self.Ablock] self.Ablocking = self.setState() if time > nextFrame: moveSprite(self.spriteList[self.Ablock], self.x, self.y, True) self.setSprite(self.spriteList[self.Ablock]) changeSpriteImage(self.spriteList[self.Ablock], self.frame_Ablocking) self.frame_Ablocking = (self.frame_Ablocking+self.hit_step) % self.blockLimit if self.frame_Ablocking == self.blockLimit - 1: self.hit_step = -1 if self.frame_Ablocking == 1: self.hit_step = 1 self.hit = False nextFrame += 1*frame_step else: # fightMoves = [ ["w", "s", "a", "d"], ["up", "down", "left", "right"] ] -> jump if time > nextFrame: if keyPressed(self.move[2]): self.x -= 15 if keyPressed(self.move[3]): self.x += 15 moveSprite(self.spriteList[self.jump], self.x, self.y, True) self.setSprite(self.spriteList[self.jump]) self.y -= (self.jumpHeight-self.jumpCounter)*7 changeSpriteImage(self.spriteList[self.jump], self.frame_jumping) if (self.jumpCounter < self.jumpHeight -1 or self.jumpCounter > self.jumpHeight +1): # subindo ou descendo self.frame_jumping = 1 if (self.jumpHeight - 1 <= self.jumpCounter <= self.jumpHeight + 1): # quase parado self.frame_jumping = 2 if (self.jumpCounter == 2*self.jumpHeight-1): self.frame_jumping = 0 self.jumpCounter = -1 if clock() > nextFrame: self.setSprite(self.spriteList[self.jump]) changeSpriteImage(self.spriteList[self.jump], self.frame_jumping) moveSprite(self.spriteList[self.jump], self.x, self.y, True) self.end_jump = self.setState()# MUDANÇA self.jumping = self.setEndState() #MUDANÇA self.jumpCounter += 2 nextFrame += 1*frame_step for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() tick(120) return nextFrame def getX(self): return self.x def getY(self): return self.y def setX(self,X): self.x = X moveSprite(self.curr_sprite,self.x,self.y,True) def setY(self,Y): self.y = Y moveSprite(self.curr_sprite,self.x,self.y,True) def isWalking(self): return self.walking def isCrouching(self): return self.crouching def isDancing(self): return self.dancing def isApunching(self): return self.Apunching def isBpunching(self): return self.Bpunching def isCpunching(self): return self.Cpunching def isDpunching(self): return self.Dpunching def isAkicking(self): return self.Akicking def isBkicking(self): return self.Bkicking def isCkicking(self): return self.Ckicking def isDkicking(self): return self.Dkicking def isAblocking(self): return self.Ablocking def isHit(self): return self.hit def killPlayer(self): for i in range(0,len(self.spriteList)): killSprite(self.spriteList[i]) def currentSprite(self): return self.curr_sprite def takeHit(self,by): self.hit = True self.hitName = by def stopHit(self): self.hit = False self.hitName = "" def setState(self): # moves self.walking = False self.dancing = False self.jumping = False self.crouching = False # punches self.Apunching = False self.Bpunching = False self.Cpunching = False self.Dpunching = False # kicks self.Akicking = False self.Bkicking = False self.Ckicking = False self.Dkicking = False # punch hits self.Ahitting = False self.Bhitting = False self.Chitting = False self.Dhitting = False self.Ehitting = False self.Fhitting = False self.Ghitting = False self.Hhitting = False # blocks self.Ablocking = False self.Bblocking = False # special move self.specialMove = False # fatality self.fatality = False # actual states return True def setEndState(self): self.end_jump = True self.end_Apunch = True self.end_Bpunch = True self.end_Cpunch = True self.end_Dpunch = True self.end_Akick = True self.end_Bkick = True self.end_Ckick = True self.end_Dkick = True self.end_special = True return False def setSprite(self,sprite): for i in range(0,len(self.spriteList)): if (not sprite == self.spriteList[i]): hideSprite(self.spriteList[i]) showSprite(sprite) def posFighter(self): for i in range(0,len(self.spriteList)): moveSprite(self.spriteList[i], self.x, self.y, True)
46.923174
197
0.513461
8bd9055b193ece6499cc3b6dd2810792a2afb781
42,621
py
Python
grr/worker/worker_test.py
nickamon/grr
ad1936c74728de00db90f6fafa47892b54cfc92d
[ "Apache-2.0" ]
null
null
null
grr/worker/worker_test.py
nickamon/grr
ad1936c74728de00db90f6fafa47892b54cfc92d
[ "Apache-2.0" ]
1
2018-05-08T21:15:51.000Z
2018-05-08T21:15:51.000Z
grr/worker/worker_test.py
nickamon/grr
ad1936c74728de00db90f6fafa47892b54cfc92d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Tests for the worker.""" import threading import time import mock from grr import config from grr.lib import flags from grr.lib import queues from grr.lib import rdfvalue from grr.lib import utils from grr.lib.rdfvalues import client as rdf_client from grr.lib.rdfvalues import flows as rdf_flows from grr.lib.rdfvalues import protodict as rdf_protodict from grr.server import aff4 from grr.server import data_store from grr.server import flow from grr.server import flow_runner from grr.server import front_end from grr.server import queue_manager from grr.server import worker from grr.server.flows.general import administrative from grr.server.hunts import implementation from grr.server.hunts import standard from grr.test_lib import action_mocks from grr.test_lib import client_test_lib from grr.test_lib import flow_test_lib from grr.test_lib import test_lib # A global collector for test results RESULTS = [] class WorkerSendingTestFlow(flow.GRRFlow): """Tests that sent messages are correctly collected.""" @flow.StateHandler() def Start(self): for i in range(10): self.CallClient( client_test_lib.Test, rdf_protodict.DataBlob(string="test%s" % i), data=str(i), next_state="Incoming") @flow.StateHandler(auth_required=False) def Incoming(self, responses): # We push the result into a global array so we can examine it # better. for response in responses: RESULTS.append(response.string) class WorkerSendingTestFlow2(WorkerSendingTestFlow): """Only send a single request.""" @flow.StateHandler() def Start(self): i = 1 self.CallClient( client_test_lib.Test, rdf_protodict.DataBlob(string="test%s" % i), data=str(i), next_state="Incoming") class WorkerSendingWKTestFlow(flow.WellKnownFlow): well_known_session_id = rdfvalue.SessionID( flow_name="WorkerSendingWKTestFlow") def ProcessMessage(self, message): RESULTS.append(message) class RaisingTestFlow(WorkerSendingTestFlow): @flow.StateHandler(auth_required=False) def Incoming(self, responses): raise AttributeError("Some Error.") class WorkerStuckableHunt(implementation.GRRHunt): # Semaphore used by test code to wait until the hunt is being processed. WAIT_FOR_HUNT_SEMAPHORE = threading.Semaphore(0) # Semaphore used by the hunt to wait until the external test code does its # thing. WAIT_FOR_TEST_SEMAPHORE = threading.Semaphore(0) @classmethod def Reset(cls): cls.WAIT_FOR_HUNT_SEMAPHORE = threading.Semaphore(0) cls.WAIT_FOR_TEST_SEMAPHORE = threading.Semaphore(0) @classmethod def WaitUntilWorkerStartsProcessing(cls): cls.WAIT_FOR_HUNT_SEMAPHORE.acquire() @classmethod def LetWorkerFinishProcessing(cls): cls.WAIT_FOR_TEST_SEMAPHORE.release() @flow.StateHandler() def RunClient(self, responses): cls = WorkerStuckableHunt # After starting this hunt, the test should call # WaitUntilWorkerStartsProcessing() which will block until # WAIT_FOR_HUNT_SEMAPHORE is released. This way the test # knows exactly when the hunt has actually started being # executed. cls.WAIT_FOR_HUNT_SEMAPHORE.release() # We block here until WAIT_FOR_TEST_SEMAPHORE is released. It's released # when the test calls LetWorkerFinishProcessing(). This way the test # can control precisely when flow finishes. cls.WAIT_FOR_TEST_SEMAPHORE.acquire() class WorkerStuckableTestFlow(flow.GRRFlow): """Flow that can be paused with sempahores when processed by the worker.""" # Semaphore used by test code to wait until the flow is being processed. WAIT_FOR_FLOW_SEMAPHORE = threading.Semaphore(0) # Semaphore used by the flow to wait until the external test code does its # thing. WAIT_FOR_TEST_SEMAPHORE = threading.Semaphore(0) # Semaphore used by the flow to wait until it has to heartbeat. WAIT_FOR_TEST_PERMISSION_TO_HEARTBEAT_SEMAPHORE = threading.Semaphore(0) # Semaphore used by the test to wait until the flow heartbeats. WAIT_FOR_FLOW_HEARTBEAT_SEMAPHORE = threading.Semaphore(0) HEARTBEAT = False @classmethod def Reset(cls, heartbeat=False): cls.WAIT_FOR_FLOW_SEMAPHORE = threading.Semaphore(0) cls.WAIT_FOR_TEST_SEMAPHORE = threading.Semaphore(0) cls.HEARTBEAT = heartbeat @classmethod def WaitUntilWorkerStartsProcessing(cls): cls.WAIT_FOR_FLOW_SEMAPHORE.acquire() @classmethod def LetFlowHeartBeat(cls): if not cls.HEARTBEAT: raise RuntimeError("LetFlowHeartBeat called, but heartbeat " "not enabled.") cls.WAIT_FOR_TEST_PERMISSION_TO_HEARTBEAT_SEMAPHORE.release() @classmethod def WaitForFlowHeartBeat(cls, last_heartbeat=False): """Called by the test to wait until the flow heartbeats. Args: last_heartbeat: If True, the flow won't heartbeat anymore. Consequently, the test won't be supposed to call LetFlowHeartBeat and WaitForFlowHeartBeat methods. Raises: RuntimeError: if heartbeat is not enabled. Heartbeat can be enabled via Reset() method. """ if not cls.HEARTBEAT: raise RuntimeError("WaitForFlowHeartBeat called, but heartbeat " "not enabled.") if last_heartbeat: cls.HEARTBEAT = False cls.WAIT_FOR_FLOW_HEARTBEAT_SEMAPHORE.acquire() @classmethod def LetWorkerFinishProcessing(cls): cls.WAIT_FOR_TEST_SEMAPHORE.release() @flow.StateHandler() def Start(self): cls = WorkerStuckableTestFlow # After starting this flow, the test should call # WaitUntilWorkerStartsProcessing() which will block until # WAIT_FOR_FLOW_SEMAPHORE is released. This way the test # knows exactly when the flow has actually started being # executed. cls.WAIT_FOR_FLOW_SEMAPHORE.release() while cls.HEARTBEAT: # The test is expected to call LetFlowHeartBeat(). We block here # until it's called. This way the test can control # the way the flow heartbeats. For example, it can mock time.time() # differently for every call. cls.WAIT_FOR_TEST_PERMISSION_TO_HEARTBEAT_SEMAPHORE.acquire() self.HeartBeat() # The test is expected to call WaitForFlowHeartBeat() and block # until we release WAIT_FOR_FLOW_HEARTBEAT_SEMAPHORE. This way # the test knows exactly when the heartbeat was done. cls.WAIT_FOR_FLOW_HEARTBEAT_SEMAPHORE.release() # We block here until WAIT_FOR_TEST_SEMAPHORE is released. It's released # when the test calls LetWorkerFinishProcessing(). This way the test # can control precisely when flow finishes. cls.WAIT_FOR_TEST_SEMAPHORE.acquire() class ShardedQueueManager(queue_manager.QueueManager): """Operate on all shards at once. These tests call the worker's RunOnce and expect to see all notifications. This doesn't work when shards are enabled, since each worker is only looking at its own shard. This class gives the worker visibility across all shards. """ def GetNotificationsByPriority(self, queue): return self.GetNotificationsByPriorityForAllShards(queue) def GetNotifications(self, queue): return self.GetNotificationsForAllShards(queue) class GrrWorkerTest(flow_test_lib.FlowTestsBaseclass): """Tests the GRR Worker.""" def setUp(self): super(GrrWorkerTest, self).setUp() self.client_id = test_lib.TEST_CLIENT_ID WorkerStuckableTestFlow.Reset() self.patch_get_notifications = mock.patch.object( queue_manager, "QueueManager", ShardedQueueManager) self.patch_get_notifications.start() # Clear the results global del RESULTS[:] def tearDown(self): super(GrrWorkerTest, self).tearDown() self.patch_get_notifications.stop() def SendResponse(self, session_id, data, client_id=None, well_known=False, request_id=None): if not isinstance(data, rdfvalue.RDFValue): data = rdf_protodict.DataBlob(string=data) if well_known: request_id, response_id = 0, 12345 else: request_id, response_id = request_id or 1, 1 with queue_manager.QueueManager(token=self.token) as flow_manager: flow_manager.QueueResponse( rdf_flows.GrrMessage( source=client_id, session_id=session_id, payload=data, request_id=request_id, response_id=response_id)) if not well_known: # For normal flows we have to send a status as well. flow_manager.QueueResponse( rdf_flows.GrrMessage( source=client_id, session_id=session_id, payload=rdf_flows.GrrStatus( status=rdf_flows.GrrStatus.ReturnedStatus.OK), request_id=request_id, response_id=response_id + 1, type=rdf_flows.GrrMessage.Type.STATUS)) flow_manager.QueueNotification( session_id=session_id, last_status=request_id) timestamp = flow_manager.frozen_timestamp return timestamp def testProcessMessages(self): """Test processing of several inbound messages.""" # Create a couple of flows flow_obj = self.FlowSetup("WorkerSendingTestFlow") session_id_1 = flow_obj.session_id flow_obj.Close() flow_obj = self.FlowSetup("WorkerSendingTestFlow2") session_id_2 = flow_obj.session_id flow_obj.Close() manager = queue_manager.QueueManager(token=self.token) # Check that client queue has messages tasks_on_client_queue = manager.Query(self.client_id.Queue(), 100) # should have 10 requests from WorkerSendingTestFlow and 1 from # SendingTestFlow2 self.assertEqual(len(tasks_on_client_queue), 11) # Send each of the flows a repeated message self.SendResponse(session_id_1, "Hello1") self.SendResponse(session_id_2, "Hello2") self.SendResponse(session_id_1, "Hello1") self.SendResponse(session_id_2, "Hello2") worker_obj = worker.GRRWorker(token=self.token) # Process all messages worker_obj.RunOnce() worker_obj.thread_pool.Join() # Ensure both requests ran exactly once RESULTS.sort() self.assertEqual(2, len(RESULTS)) self.assertEqual("Hello1", RESULTS[0]) self.assertEqual("Hello2", RESULTS[1]) # Check that client queue is cleared - should have 2 less messages (since # two were completed). tasks_on_client_queue = manager.Query(self.client_id.Queue(), 100) self.assertEqual(len(tasks_on_client_queue), 9) # Ensure that processed requests are removed from state subject outstanding_requests = list( data_store.DB.ReadRequestsAndResponses(session_id_1)) self.assertEqual(len(outstanding_requests), 9) for request, _ in outstanding_requests: self.assertNotEqual(request.request.request_id, 0) # This flow is still in state Incoming. flow_obj = aff4.FACTORY.Open(session_id_1, token=self.token) self.assertTrue( flow_obj.context.state != rdf_flows.FlowContext.State.TERMINATED) self.assertEqual(flow_obj.context.current_state, "Incoming") # This flow should be done. flow_obj = aff4.FACTORY.Open(session_id_2, token=self.token) self.assertTrue( flow_obj.context.state == rdf_flows.FlowContext.State.TERMINATED) self.assertEqual(flow_obj.context.current_state, "End") def testNoNotificationRescheduling(self): """Test that no notifications are rescheduled when a flow raises.""" with test_lib.FakeTime(10000): flow_obj = self.FlowSetup("RaisingTestFlow") session_id = flow_obj.session_id flow_obj.Close() # Send the flow some messages. self.SendResponse(session_id, "Hello1", request_id=1) self.SendResponse(session_id, "Hello2", request_id=2) self.SendResponse(session_id, "Hello3", request_id=3) worker_obj = worker.GRRWorker(token=self.token) # Process all messages. worker_obj.RunOnce() worker_obj.thread_pool.Join() delay = flow_runner.FlowRunner.notification_retry_interval with test_lib.FakeTime(10000 + 100 + delay): manager = queue_manager.QueueManager(token=self.token) self.assertFalse(manager.GetNotificationsForAllShards(session_id.Queue())) def testNotificationReschedulingTTL(self): """Test that notifications are not rescheduled forever.""" with test_lib.FakeTime(10000): worker_obj = worker.GRRWorker(token=self.token) flow_obj = self.FlowSetup("RaisingTestFlow") session_id = flow_obj.session_id flow_obj.Close() with queue_manager.QueueManager(token=self.token) as manager: notification = rdf_flows.GrrNotification( session_id=session_id, timestamp=time.time(), last_status=1) with data_store.DB.GetMutationPool() as pool: manager.NotifyQueue(notification, mutation_pool=pool) notifications = manager.GetNotifications(queues.FLOWS) # Check the notification is there. notifications = [n for n in notifications if n.session_id == session_id] self.assertEqual(len(notifications), 1) delay = flow_runner.FlowRunner.notification_retry_interval ttl = notification.ttl for i in xrange(ttl - 1): with test_lib.FakeTime(10000 + 100 + delay * (i + 1)): # Process all messages. worker_obj.RunOnce() worker_obj.thread_pool.Join() notifications = manager.GetNotifications(queues.FLOWS) # Check the notification is for the correct session_id. notifications = [n for n in notifications if n.session_id == session_id] self.assertEqual(len(notifications), 1) with test_lib.FakeTime(10000 + 100 + delay * ttl): # Process all messages. worker_obj.RunOnce() worker_obj.thread_pool.Join() notifications = manager.GetNotifications(queues.FLOWS) self.assertEqual(len(notifications), 0) def testNoKillNotificationsScheduledForHunts(self): worker_obj = worker.GRRWorker(token=self.token) initial_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(100) try: with test_lib.FakeTime(initial_time.AsSecondsFromEpoch()): with implementation.GRRHunt.StartHunt( hunt_name=WorkerStuckableHunt.__name__, client_rate=0, token=self.token) as hunt: hunt.GetRunner().Start() implementation.GRRHunt.StartClients(hunt.session_id, [self.client_id]) # Process all messages while worker_obj.RunOnce(): pass # Wait until worker thread starts processing the flow. WorkerStuckableHunt.WaitUntilWorkerStartsProcessing() # Assert that there are no stuck notifications in the worker's queue. with queue_manager.QueueManager(token=self.token) as manager: for queue in worker_obj.queues: notifications = manager.GetNotificationsByPriority(queue) self.assertFalse(manager.STUCK_PRIORITY in notifications) finally: # Release the semaphore so that worker thread unblocks and finishes # processing the flow. WorkerStuckableHunt.LetWorkerFinishProcessing() worker_obj.thread_pool.Join() def testKillNotificationsScheduledForFlows(self): worker_obj = worker.GRRWorker(token=self.token) initial_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(100) try: with test_lib.FakeTime(initial_time.AsSecondsFromEpoch()): flow.GRRFlow.StartFlow( flow_name=WorkerStuckableTestFlow.__name__, client_id=self.client_id, token=self.token, sync=False) # Process all messages worker_obj.RunOnce() # Wait until worker thread starts processing the flow. WorkerStuckableTestFlow.WaitUntilWorkerStartsProcessing() # Assert that there are no stuck notifications in the worker's # queue. with queue_manager.QueueManager(token=self.token) as manager: for queue in worker_obj.queues: notifications = manager.GetNotificationsByPriority(queue) self.assertFalse(manager.STUCK_PRIORITY in notifications) finally: # Release the semaphore so that worker thread unblocks and finishes # processing the flow. WorkerStuckableTestFlow.LetWorkerFinishProcessing() worker_obj.thread_pool.Join() def testStuckFlowGetsTerminated(self): worker_obj = worker.GRRWorker(token=self.token) initial_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(100) try: with test_lib.FakeTime(initial_time.AsSecondsFromEpoch()): session_id = flow.GRRFlow.StartFlow( flow_name=WorkerStuckableTestFlow.__name__, client_id=self.client_id, token=self.token, sync=False) # Process all messages while worker_obj.RunOnce(): pass # Wait until worker thread starts processing the flow. WorkerStuckableTestFlow.WaitUntilWorkerStartsProcessing() # Set the time to max worker flow duration + 1 minute. The flow is # currently blocked because of the way semaphores are set up. # Worker should consider the flow to be stuck and terminate it. stuck_flows_timeout = flow_runner.FlowRunner.stuck_flows_timeout future_time = ( initial_time + rdfvalue.Duration("1m") + stuck_flows_timeout) with test_lib.FakeTime(future_time.AsSecondsFromEpoch()): worker_obj.RunOnce() finally: # Release the semaphore so that worker thread unblocks and finishes # processing the flow. WorkerStuckableTestFlow.LetWorkerFinishProcessing() worker_obj.thread_pool.Join() killed_flow = aff4.FACTORY.Open(session_id, token=self.token) self.assertEqual(killed_flow.context.state, rdf_flows.FlowContext.State.ERROR) self.assertEqual(killed_flow.context.status, "Terminated by user test. Reason: Stuck in the worker") def testStuckNotificationGetsDeletedAfterTheFlowIsTerminated(self): worker_obj = worker.GRRWorker(token=self.token) initial_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(100) stuck_flows_timeout = flow_runner.FlowRunner.stuck_flows_timeout try: with test_lib.FakeTime(initial_time.AsSecondsFromEpoch()): session_id = flow.GRRFlow.StartFlow( flow_name=WorkerStuckableTestFlow.__name__, client_id=self.client_id, token=self.token, sync=False) # Process all messages worker_obj.RunOnce() # Wait until worker thread starts processing the flow. WorkerStuckableTestFlow.WaitUntilWorkerStartsProcessing() # Set the time to max worker flow duration + 1 minute. The flow is # currently blocked because of the way how semaphores are set up. # Worker should consider the flow to be stuck and terminate it. future_time = ( initial_time + rdfvalue.Duration("1m") + stuck_flows_timeout) with test_lib.FakeTime(future_time.AsSecondsFromEpoch()): worker_obj.RunOnce() killed_flow = aff4.FACTORY.Open(session_id, token=self.token) self.assertEqual(killed_flow.context.state, rdf_flows.FlowContext.State.ERROR) self.assertEqual(killed_flow.context.status, "Terminated by user test. Reason: Stuck in the worker") # Check that stuck notification has been removed. qm = queue_manager.QueueManager(token=self.token) notifications_by_priority = qm.GetNotificationsByPriority(queues.FLOWS) self.assertTrue(qm.STUCK_PRIORITY not in notifications_by_priority) finally: # Release the semaphore so that worker thread unblocks and finishes # processing the flow. WorkerStuckableTestFlow.LetWorkerFinishProcessing() worker_obj.thread_pool.Join() def testHeartBeatingFlowIsNotTreatedAsStuck(self): worker_obj = worker.GRRWorker(token=self.token) initial_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(100) stuck_flows_timeout = flow_runner.FlowRunner.stuck_flows_timeout lease_timeout = rdfvalue.Duration(worker.GRRWorker.flow_lease_time) WorkerStuckableTestFlow.Reset(heartbeat=True) try: with test_lib.FakeTime(initial_time.AsSecondsFromEpoch()): session_id = flow.GRRFlow.StartFlow( flow_name=WorkerStuckableTestFlow.__name__, client_id=self.client_id, token=self.token, sync=False) # Process all messages worker_obj.RunOnce() # Wait until worker thread starts processing the flow. WorkerStuckableTestFlow.WaitUntilWorkerStartsProcessing() # Increase the time in steps, using LetFlowHeartBeat/WaitForFlowHeartBeat # to control the flow execution that happens in the parallel thread. current_time = rdfvalue.RDFDatetime(initial_time) future_time = initial_time + stuck_flows_timeout + rdfvalue.Duration("1m") while current_time <= future_time: current_time += lease_timeout - rdfvalue.Duration("1s") with test_lib.FakeTime(current_time.AsSecondsFromEpoch()): checked_flow = aff4.FACTORY.Open(session_id, token=self.token) WorkerStuckableTestFlow.LetFlowHeartBeat() WorkerStuckableTestFlow.WaitForFlowHeartBeat( last_heartbeat=current_time > future_time) # Now current_time is > future_time, where future_time is the time # when stuck flow should have been killed. Calling RunOnce() here, # because if the flow is going to be killed, it will be killed # during worker.RunOnce() call. with test_lib.FakeTime(current_time.AsSecondsFromEpoch()): worker_obj.RunOnce() # Check that the flow wasn't killed forecfully. checked_flow = aff4.FACTORY.Open(session_id, token=self.token) self.assertEqual(checked_flow.context.state, rdf_flows.FlowContext.State.RUNNING) finally: # Release the semaphore so that worker thread unblocks and finishes # processing the flow. with test_lib.FakeTime(current_time.AsSecondsFromEpoch()): WorkerStuckableTestFlow.LetWorkerFinishProcessing() worker_obj.thread_pool.Join() # Check that the flow has finished normally. checked_flow = aff4.FACTORY.Open(session_id, token=self.token) self.assertEqual(checked_flow.context.state, rdf_flows.FlowContext.State.TERMINATED) def testNonStuckFlowDoesNotGetTerminated(self): worker_obj = worker.GRRWorker(token=self.token) initial_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(100) stuck_flows_timeout = flow_runner.FlowRunner.stuck_flows_timeout with test_lib.FakeTime(initial_time.AsSecondsFromEpoch()): session_id = flow.GRRFlow.StartFlow( flow_name="WorkerSendingTestFlow", client_id=self.client_id, token=self.token, sync=False) # Process all messages worker_obj.RunOnce() worker_obj.thread_pool.Join() flow_obj = aff4.FACTORY.Open(session_id, token=self.token) self.assertEqual(flow_obj.context.state, rdf_flows.FlowContext.State.RUNNING) # Set the time to max worker flow duration + 1 minute. If the 'kill' # notification isn't deleted we should get it now. future_time = initial_time + rdfvalue.Duration("1m") + stuck_flows_timeout with test_lib.FakeTime(future_time.AsSecondsFromEpoch()): worker_obj.RunOnce() worker_obj.thread_pool.Join() flow_obj = aff4.FACTORY.Open(session_id, token=self.token) # Check that flow didn't get terminated due to a logic bug. self.assertEqual(flow_obj.context.state, rdf_flows.FlowContext.State.RUNNING) def testProcessMessagesWellKnown(self): worker_obj = worker.GRRWorker(token=self.token) # Send a message to a WellKnownFlow - ClientStatsAuto. session_id = administrative.GetClientStatsAuto.well_known_session_id client_id = rdf_client.ClientURN("C.1100110011001100") self.SendResponse( session_id, data=rdf_client.ClientStats(RSS_size=1234), client_id=client_id, well_known=True) # Process all messages worker_obj.RunOnce() worker_obj.thread_pool.Join() client = aff4.FACTORY.Open(client_id.Add("stats"), token=self.token) stats = client.Get(client.Schema.STATS) self.assertEqual(stats.RSS_size, 1234) # Make sure no notifications have been sent. user = aff4.FACTORY.Open( "aff4:/users/%s" % self.token.username, token=self.token) notifications = user.Get(user.Schema.PENDING_NOTIFICATIONS) self.assertIsNone(notifications) def testWellKnownFlowResponsesAreProcessedOnlyOnce(self): worker_obj = worker.GRRWorker(token=self.token) # Send a message to a WellKnownFlow - ClientStatsAuto. client_id = rdf_client.ClientURN("C.1100110011001100") self.SendResponse( rdfvalue.SessionID(queue=queues.STATS, flow_name="Stats"), data=rdf_client.ClientStats(RSS_size=1234), client_id=client_id, well_known=True) # Process all messages worker_obj.RunOnce() worker_obj.thread_pool.Join() client = aff4.FACTORY.Open(client_id.Add("stats"), token=self.token) stats = client.Get(client.Schema.STATS) self.assertEqual(stats.RSS_size, 1234) aff4.FACTORY.Delete(client_id.Add("stats"), token=self.token) # Process all messages once again - there should be no actual processing # done, as all the responses were processed last time. worker_obj.RunOnce() worker_obj.thread_pool.Join() # Check that stats haven't changed as no new responses were processed. client = aff4.FACTORY.Open(client_id.Add("stats"), token=self.token) self.assertIsNone(client.Get(client.Schema.STATS)) def CheckNotificationsDisappear(self, session_id): worker_obj = worker.GRRWorker(token=self.token) manager = queue_manager.QueueManager(token=self.token) notification = rdf_flows.GrrNotification(session_id=session_id) with data_store.DB.GetMutationPool() as pool: manager.NotifyQueue(notification, mutation_pool=pool) notifications = manager.GetNotificationsByPriority(queues.FLOWS).get( notification.priority, []) # Check the notification is there. With multiple worker queue shards we can # get other notifications such as for audit event listeners, so we need to # filter out ours. notifications = [x for x in notifications if x.session_id == session_id] self.assertEqual(len(notifications), 1) # Process all messages worker_obj.RunOnce() worker_obj.thread_pool.Join() notifications = manager.GetNotificationsByPriority(queues.FLOWS).get( notification.priority, []) notifications = [x for x in notifications if x.session_id == session_id] # Check the notification is now gone. self.assertEqual(len(notifications), 0) def testWorkerDeletesNotificationsForBrokenObjects(self): # Test notifications for objects that don't exist. session_id = rdfvalue.SessionID(queue=queues.FLOWS, flow_name="123456") self.CheckNotificationsDisappear(session_id) # Now check objects that are actually broken. # Start a new flow. session_id = flow.GRRFlow.StartFlow( flow_name="WorkerSendingTestFlow", client_id=self.client_id, token=self.token) # Overwrite the type of the object such that opening it will now fail. data_store.DB.Set(session_id, "aff4:type", "DeprecatedClass") # Starting a new flow schedules notifications for the worker already but # this test actually checks that there are none. Thus, we have to delete # them or the test fails. data_store.DB.DeleteSubject(queues.FLOWS) # Check it really does. with self.assertRaises(aff4.InstantiationError): aff4.FACTORY.Open(session_id, token=self.token) self.CheckNotificationsDisappear(session_id) def testNotificationRacesAreResolved(self): # We need a random flow object for this test. session_id = flow.GRRFlow.StartFlow( client_id=self.client_id, flow_name="WorkerSendingTestFlow", token=self.token) worker_obj = worker.GRRWorker(token=self.token) manager = queue_manager.QueueManager(token=self.token) manager.DeleteNotification(session_id) manager.Flush() # We simulate a race condition here - the notification for request #1 is # there but the actual request #1 is not. The worker should pick up the # notification, notice that the request #1 is not there yet and reschedule # the notification. notification = rdf_flows.GrrNotification( session_id=session_id, last_status=1) with data_store.DB.GetMutationPool() as pool: manager.NotifyQueue(notification, mutation_pool=pool) notifications = manager.GetNotifications(queues.FLOWS) # Check the notification is there. notifications = [n for n in notifications if n.session_id == session_id] self.assertEqual(len(notifications), 1) # Process all messages worker_obj.RunOnce() worker_obj.thread_pool.Join() delay = flow_runner.FlowRunner.notification_retry_interval with test_lib.FakeTime(time.time() + 10 + delay): requeued_notifications = manager.GetNotifications(queues.FLOWS) # Check that there is a new notification. notifications = [n for n in notifications if n.session_id == session_id] self.assertEqual(len(requeued_notifications), 1) self.assertEqual(requeued_notifications[0].first_queued, notifications[0].first_queued) self.assertNotEqual(requeued_notifications[0].timestamp, notifications[0].timestamp) def testNoValidStatusRaceIsResolved(self): # This tests for the regression of a long standing race condition we saw # where notifications would trigger the reading of another request that # arrives later but wasn't completely written to the database yet. # Timestamp based notification handling should eliminate this bug. # We need a random flow object for this test. session_id = flow.GRRFlow.StartFlow( client_id=self.client_id, flow_name="WorkerSendingTestFlow", token=self.token) worker_obj = worker.GRRWorker(token=self.token) manager = queue_manager.QueueManager(token=self.token) manager.DeleteNotification(session_id) manager.Flush() # We have a first request that is complete (request_id 1, response_id 1). self.SendResponse(session_id, "Response 1") # However, we also have request #2 already coming in. The race is that # the queue manager might write the status notification to # session_id/state as "status:00000002" but not the status response # itself yet under session_id/state/request:00000002 request_id = 2 response_id = 1 flow_manager = queue_manager.QueueManager(token=self.token) flow_manager.FreezeTimestamp() flow_manager.QueueResponse( rdf_flows.GrrMessage( source=self.client_id, session_id=session_id, payload=rdf_protodict.DataBlob(string="Response 2"), request_id=request_id, response_id=response_id)) status = rdf_flows.GrrMessage( source=self.client_id, session_id=session_id, payload=rdf_flows.GrrStatus( status=rdf_flows.GrrStatus.ReturnedStatus.OK), request_id=request_id, response_id=response_id + 1, type=rdf_flows.GrrMessage.Type.STATUS) # Now we write half the status information. data_store.DB.StoreRequestsAndResponses(new_responses=[(status, None)]) # We make the race even a bit harder by saying the new notification gets # written right before the old one gets deleted. If we are not careful here, # we delete the new notification as well and the flow becomes stuck. def WriteNotification(self, arg_session_id, start=None, end=None): if arg_session_id == session_id: flow_manager.QueueNotification(session_id=arg_session_id) flow_manager.Flush() self.DeleteNotification.old_target( self, arg_session_id, start=start, end=end) with utils.Stubber(queue_manager.QueueManager, "DeleteNotification", WriteNotification): # This should process request 1 but not touch request 2. worker_obj.RunOnce() worker_obj.thread_pool.Join() flow_obj = aff4.FACTORY.Open(session_id, token=self.token) self.assertFalse(flow_obj.context.backtrace) self.assertNotEqual(flow_obj.context.state, rdf_flows.FlowContext.State.ERROR) request_data = data_store.DB.ReadResponsesForRequestId(session_id, 2) request_data.sort(key=lambda msg: msg.response_id) self.assertEqual(len(request_data), 2) # Make sure the status and the original request are still there. self.assertEqual(request_data[0].args_rdf_name, "DataBlob") self.assertEqual(request_data[1].args_rdf_name, "GrrStatus") # But there is nothing for request 1. request_data = data_store.DB.ReadResponsesForRequestId(session_id, 1) self.assertEqual(request_data, []) # The notification for request 2 should have survived. with queue_manager.QueueManager(token=self.token) as manager: notifications = manager.GetNotifications(queues.FLOWS) self.assertEqual(len(notifications), 1) notification = notifications[0] self.assertEqual(notification.session_id, session_id) self.assertEqual(notification.timestamp, flow_manager.frozen_timestamp) self.assertEqual(RESULTS, ["Response 1"]) # The last missing piece of request 2 is the actual status message. flow_manager.QueueResponse(status) flow_manager.Flush() # Now make sure request 2 runs as expected. worker_obj.RunOnce() worker_obj.thread_pool.Join() self.assertEqual(RESULTS, ["Response 1", "Response 2"]) def testUniformTimestamps(self): session_id = flow.GRRFlow.StartFlow( client_id=self.client_id, flow_name="WorkerSendingTestFlow", token=self.token) # Convert to int to make test output nicer in case of failure. frozen_timestamp = int(self.SendResponse(session_id, "Hey")) request_id = 1 messages = data_store.DB.ReadResponsesForRequestId(session_id, request_id) self.assertEqual(len(messages), 2) self.assertItemsEqual([m.args_rdf_name for m in messages], ["DataBlob", "GrrStatus"]) for m in messages: self.assertEqual(m.timestamp, frozen_timestamp) def testEqualTimestampNotifications(self): frontend_server = front_end.FrontEndServer( certificate=config.CONFIG["Frontend.certificate"], private_key=config.CONFIG["PrivateKeys.server_key"], message_expiry_time=100, threadpool_prefix="notification-test") # This schedules 10 requests. session_id = flow.GRRFlow.StartFlow( client_id=self.client_id, flow_name="WorkerSendingTestFlow", token=self.token) # We pretend that the client processed all the 10 requests at once and # sends the replies in a single http poll. messages = [ rdf_flows.GrrMessage( request_id=i, response_id=1, session_id=session_id, payload=rdf_protodict.DataBlob(string="test%s" % i), generate_task_id=True) for i in range(1, 11) ] status = rdf_flows.GrrStatus(status=rdf_flows.GrrStatus.ReturnedStatus.OK) statuses = [ rdf_flows.GrrMessage( request_id=i, response_id=2, session_id=session_id, payload=status, type=rdf_flows.GrrMessage.Type.STATUS, generate_task_id=True) for i in range(1, 11) ] frontend_server.ReceiveMessages(self.client_id, messages + statuses) with queue_manager.QueueManager(token=self.token) as q: all_notifications = q.GetNotificationsByPriorityForAllShards( rdfvalue.RDFURN("aff4:/F")) medium_priority = rdf_flows.GrrNotification.Priority.MEDIUM_PRIORITY medium_notifications = all_notifications[medium_priority] my_notifications = [ n for n in medium_notifications if n.session_id == session_id ] # There must not be more than one notification. self.assertEqual(len(my_notifications), 1) notification = my_notifications[0] self.assertEqual(notification.first_queued, notification.timestamp) self.assertEqual(notification.last_status, 10) def testCPULimitForFlows(self): """This tests that the client actions are limited properly.""" result = {} client_mock = action_mocks.CPULimitClientMock(result) client_mock = flow_test_lib.MockClient( self.client_id, client_mock, token=self.token) client_mock.EnableResourceUsage( user_cpu_usage=[10], system_cpu_usage=[10], network_usage=[1000]) worker_obj = worker.GRRWorker(token=self.token) flow.GRRFlow.StartFlow( client_id=self.client_id, flow_name=flow_test_lib.CPULimitFlow.__name__, cpu_limit=1000, network_bytes_limit=10000, token=self.token) self._Process([client_mock], worker_obj) self.assertEqual(result["cpulimit"], [1000, 980, 960]) self.assertEqual(result["networklimit"], [10000, 9000, 8000]) return result def _Process(self, client_mocks, worker_obj): while True: client_msgs_processed = 0 for client_mock in client_mocks: client_msgs_processed += client_mock.Next() worker_msgs_processed = worker_obj.RunOnce() worker_obj.thread_pool.Join() if not client_msgs_processed and not worker_msgs_processed: break def testCPULimitForHunts(self): worker_obj = worker.GRRWorker(token=self.token) client_ids = ["C.%016X" % i for i in xrange(10, 20)] result = {} client_mocks = [] for client_id in client_ids: client_mock = action_mocks.CPULimitClientMock(result) client_mock = flow_test_lib.MockClient( rdf_client.ClientURN(client_id), client_mock, token=self.token) client_mock.EnableResourceUsage( user_cpu_usage=[10], system_cpu_usage=[10], network_usage=[1000]) client_mocks.append(client_mock) flow_runner_args = rdf_flows.FlowRunnerArgs( flow_name=flow_test_lib.CPULimitFlow.__name__) with implementation.GRRHunt.StartHunt( hunt_name=standard.GenericHunt.__name__, flow_runner_args=flow_runner_args, cpu_limit=5000, per_client_cpu_limit=10000, network_bytes_limit=1000000, client_rate=0, token=self.token) as hunt: hunt.GetRunner().Start() implementation.GRRHunt.StartClients(hunt.session_id, client_ids[:1]) self._Process(client_mocks, worker_obj) implementation.GRRHunt.StartClients(hunt.session_id, client_ids[1:2]) self._Process(client_mocks, worker_obj) implementation.GRRHunt.StartClients(hunt.session_id, client_ids[2:3]) self._Process(client_mocks, worker_obj) # The limiting factor here is the overall hunt limit of 5000 cpu # seconds. Clients that finish should decrease the remaining quota # and the following clients should get the reduced quota. self.assertEqual(result["cpulimit"], [ 5000.0, 4980.0, 4960.0, 4940.0, 4920.0, 4900.0, 4880.0, 4860.0, 4840.0 ]) self.assertEqual(result["networklimit"], [ 1000000L, 999000L, 998000L, 997000L, 996000L, 995000L, 994000L, 993000L, 992000L ]) result.clear() with implementation.GRRHunt.StartHunt( hunt_name=standard.GenericHunt.__name__, flow_runner_args=flow_runner_args, per_client_cpu_limit=3000, per_client_network_limit_bytes=3000000, client_rate=0, token=self.token) as hunt: hunt.GetRunner().Start() implementation.GRRHunt.StartClients(hunt.session_id, client_ids[:1]) self._Process(client_mocks, worker_obj) implementation.GRRHunt.StartClients(hunt.session_id, client_ids[1:2]) self._Process(client_mocks, worker_obj) implementation.GRRHunt.StartClients(hunt.session_id, client_ids[2:3]) self._Process(client_mocks, worker_obj) # This time, the per client limit is 3000s / 3000000 bytes. Every # client should get the same limit. self.assertEqual(result["cpulimit"], [ 3000.0, 2980.0, 2960.0, 3000.0, 2980.0, 2960.0, 3000.0, 2980.0, 2960.0 ]) self.assertEqual(result["networklimit"], [ 3000000, 2999000, 2998000, 3000000, 2999000, 2998000, 3000000, 2999000, 2998000 ]) result.clear() for client_mock in client_mocks: client_mock.EnableResourceUsage( user_cpu_usage=[500], system_cpu_usage=[500], network_usage=[1000000]) with implementation.GRRHunt.StartHunt( hunt_name=standard.GenericHunt.__name__, flow_runner_args=flow_runner_args, per_client_cpu_limit=3000, cpu_limit=5000, per_client_network_limit_bytes=3000000, network_bytes_limit=5000000, client_rate=0, token=self.token) as hunt: hunt.GetRunner().Start() implementation.GRRHunt.StartClients(hunt.session_id, client_ids[:1]) self._Process(client_mocks, worker_obj) implementation.GRRHunt.StartClients(hunt.session_id, client_ids[1:2]) self._Process(client_mocks, worker_obj) implementation.GRRHunt.StartClients(hunt.session_id, client_ids[2:3]) self._Process(client_mocks, worker_obj) # The first client gets the full per client limit of 3000s, and # uses all of it. The hunt has a limit of just 5000 total so the # second client gets started with a limit of 2000. It can only run # two of three states, the last client will not be started at all # due to out of quota. self.assertEqual(result["cpulimit"], [3000.0, 2000.0, 1000.0, 2000.0, 1000.0]) self.assertEqual(result["networklimit"], [3000000, 2000000, 1000000, 2000000, 1000000]) errors = list(hunt.GetClientsErrors()) self.assertEqual(len(errors), 2) # Client side out of cpu. self.assertIn("CPU limit exceeded", errors[0].log_message) # Server side out of cpu. self.assertIn("Out of CPU quota", errors[1].backtrace) def main(argv): test_lib.main(argv) if __name__ == "__main__": flags.StartMain(main)
37.952805
80
0.711762
b056e659b103013658d1ef0ca4f62337b523b920
84,754
py
Python
AC_tools/obsolete/plotting_REDUNDANT.py
LukeFakes/AC_tools
31eb4786f1266d4b932eef238b249044e2e5d419
[ "MIT" ]
null
null
null
AC_tools/obsolete/plotting_REDUNDANT.py
LukeFakes/AC_tools
31eb4786f1266d4b932eef238b249044e2e5d419
[ "MIT" ]
null
null
null
AC_tools/obsolete/plotting_REDUNDANT.py
LukeFakes/AC_tools
31eb4786f1266d4b932eef238b249044e2e5d419
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- """ Redundant plotting functions to be removed from AC_tools Notes ------- - These functions are a mixture fo those made redundant by shift from matplotlib's basemap to cartopy and those that are now longer in use/years old/not useful/not pythonic """ import sys # - Required modules: if sys.version_info.major < 3: try: from mpl_toolkits.basemap import Basemap except ModuleNotFoundError: print('WARNING: Module not found error raised for: mpl_toolkits.basemap') import matplotlib.pyplot as plt import matplotlib as mpl from pylab import setp import functools import matplotlib import cartopy.crs as ccrs import cartopy.feature as cfeature # Time import time import calendar import datetime as datetime from datetime import datetime as datetime_ # I/O/Admin... import gc # The below imports need to be updated, # imports should be specific and in individual functions # import tms modules with shared functions from .. variables import * from .. generic import * from .. AC_time import * from .. planeflight import * from .. GEOSChem_nc import * from .. GEOSChem_bpch import * # math from math import log10, floor import numpy as np import scipy # colormaps - Additional maps from Eric Sofen #from option_c import test_cm as cmc #from option_d import test_cm as cmd # -------------- Redundant Functions # NOTE(s): # (1) These are retained even though they are redundant for back compatibility # (2) It is not advised to use these. def plot_lons_lats_spatial_on_map(lons=None, lats=None, p_size=50, color='red', title=None, f_size=15, dpi=320, fig=None, ax=None, label=None, return_axis=False, marker='o', alpha=1, ylabel=True, xlabel=True, window=False, axis_titles=True, split_title_if_too_long=False, resolution='c'): """ Plot a list of lons and lats spatially on a map using basemap Parameters ------- p_size (int): size of plot location point (lon, lat) lons, lats (list): list of locations (in decimal londitude and latitude ) color (str): color of points on map for locations title (str): title for plot f_size (float): fontsize dpi (int): resolution of figure (dots per sq inch) return_axis (boaol): return the basemap axis instance marker (str): marker style Notes ----- - matplotlib's basemap is now redundant! use cartopy """ import matplotlib.pyplot as plt # --- Setup plot if isinstance(fig, type(None)): fig = plt.figure(dpi=dpi, facecolor='w', edgecolor='k') if isinstance(ax, type(None)): ax = fig.add_subplot(111) # Plot up white background (on a blank basemap plot) arr = np.zeros((72, 46)) plt, m = map_plot(arr.T, return_m=True, cmap=plt.cm.binary, f_size=f_size, window=window, fixcb=[0, 0], ax=ax, no_cb=True, resolution=resolution, ylabel=ylabel, xlabel=xlabel, title=title, axis_titles=axis_titles, split_title_if_too_long=split_title_if_too_long) # Plot up all sites as a scatter plot of points on basmap m.scatter(lons, lats, edgecolors=color, c=color, marker=marker, s=p_size, alpha=alpha, label=label) # Return axis? if return_axis: return m def plot_map(arr, return_m=False, grid=False, centre=False, cmap=None, no_cb=False, cb=None, rotatecbunits='horizontal', fixcb=None, nticks=10, mask_invalids=False, format='%.2f', adjust_window=0, f_size=20, alpha=1, log=False, set_window=False, res=None, ax=None, case='default', units=None, drawcountries=True, set_cb_ticks=True, title=None, lvls=None, interval=15, resolution='c', shrink=0.4, window=False, everyother=1, extend='neither', degrade_resolution=False, discrete_cmap=False, lon_0=None, lon_1=None, lat_0=None, lat_1=None, norm=None, cb_sigfig=2, fixcb_buffered=None, ylabel=True, xlabel=True, wd=None, verbose=True, debug=False, tight_layout=False, **Kwargs): """ Make a global/regional 2D (lon, lat) spatial plot WARNING - This is an updated version of map_plot (incomplement/develop), use map_plot instead! Parameters ---------- adjust_window (int): amount of array entries to remove the edges of array alhpa (float): transparency of plotter data arr (np.array): input (2D) array case (str or int): case for type of plot (vestigle: use log=True of False (default)) cmap (str): force colormap selection by providing name centre (bool): use centre points of lon/lat grid points for mapping data surface drawcountries (bool): add countries to basemap? debug (bool): legacy debug option, replaced by python logging degrade_resolution (bool): reduce resolution of underlay map detail discrete_cmap (bool): use a discrete instead of conitunous colorbar map everyother (int): use "everyother" axis tick (e.g. 3=use every 3rd) f_size (float): fontsise fixcb (np.array): minimium and maximum to fix colourbar fixcb_buffered (array): minimium and maximum to fix colourbar, with buffer space format (str): format string for colorbar formating grid (bool): apply a grid over surface plot? extend (str): colorbar format settings ( 'both', 'min', 'both' ... ) interval (int): x/y tick interval in degrees lat/lon (default=15) lvls (list): manually provide levels for colorbar log (bool): use a log scale for the plot and colorbar no_cb (bool): include a coloubar? norm (norm object): normalisation to use for colourbar and array nticks (int): number of ticks on colorbar mask_invalids (bool): mask invalid numbers (to allow saving to PDF) res (str): GEOS-Chem output configuration resolution ( '4x5' etc... ) resolution (str): basemasp resolution settings ( 'c' = coarse, 'f' = fine ... ) rotatecbunits (str): orientation of colourbar units shrink (bool): colorbar size settings ( fractional shrink ) set_window (bool): set the limits of the plotted data (lon_0, lon_1, lat_0, lat_1) (for nested boundary conditions ) cb_sigfig (int): significant figure rounding to use for colourbar set_cb_ticks (bool): mannually set colorbar ticks? (vestigle) title (str): plot title (deafult is ==None, therefore no title) tight_layout (bool): use use tight lyaout for figure ylabel, xlabel (bool): label x/y axis? units (str): units of given data for plot title verbose (bool): legacy debug option, replaced by python logging wd (str): Specify the wd to get the results from a run. window (bool): use window plot settings (fewer axis labels/resolution of map) Returns ------- optionally returns basemap (return_m==True) and colorbar (no_cb!=True) object Notes ----- - Takes a numpy array and the resolution of the output. The plot extent is then set by this output. """ if isinstance(arr, type(None)): logging.error("No data given to map_plot!") raise AssertionError("No data given to map_plot") elif not len(arr.shape) == 2: logging.error("Input array should be 2D. Got shape {shape}" .format(shape=arr.shape)) logging.info("map_plot called") # Find out what resolution we are using if not specified if isinstance(res, type(None)): try: # Attempt to extract resolution from wd logging.debug("No resolution specified, getting from wd") res = get_gc_res(wd) except TypeError: # Assume 4x5 resolution # Assume 4x5 resolution logging.warning('No resolution specified or found. Assuming 4x5') logging.warning( 'Try specifying the wd or manualy specifying the res') res = '4x5' # ---------------- Cases for arrays ---------------- # Keep the names for easier reading #################################################################################################### # Old # if ( not isinstance( case, int ) ): # case = { # 'linear':3, 'default':3, 'IO': 1,'limit_to_1_2': 2, 'log': 4, # }[case] #################################################################################################### # New if (isinstance(case, int)): case = { 1: 'IO', 2: 'limit_to_1_2', 3: 'default', 4: 'log', }[case] if case == "IO": IO = True elif case == "limit_to_1_2": limit_to_1_2 = True elif case == "default": default = True elif case == "log": log = True else: raise ValueError("Unknown case of {case}".format(case=case)) #################################################################################################### # Make sure the input data is usable and try to fix it if not. (res_lat, res_lon) = get_dims4res(res, just2D=True) expected_shape = (res_lon, res_lat) if arr.shape == expected_shape: pass elif arr.shape == expected_shape: arr = arr.T logging.warning("Array was wrong shape and has been transposed!") else: logging.error("Array is the wrong shape. Should be {}. Got {}" .format(str(expected_shape), arr.shape)) raise AssertionError("Incorrect array shape.") # Add a invalid warning! # Mask for percent arrays containing invalid values ( to allow PDF save ) if mask_invalids: arr = np.ma.masked_invalid(arr) # --- Window plot settings if window: interval = 30 # double interval size degrade_resolution = True if res == '0.5x0.666': interval, adjust_window, resolution, shrink = 0.5, 3, 'f', 0.6 if degrade_resolution: resolution = 'l' nested_res = ['0.25x0.3125', '0.25x0.3125_CH', '0.25x0.3125_WA'] if res in nested_res: centre = False adjust_window = 6 # Get lons and lats lon, lat, NIU = get_latlonalt4res(res, centre=centre, wd=wd) if set_window: # Convert lats and lons to GC lats and restrict lats, lons, and arr if not isinstance(lat_0, type(None)): gclat_0, gclat_1 = [get_gc_lat(i, res=res) for i in (lat_0, lat_1)] lat = lat[gclat_0:gclat_1] if not isinstance(lon_0, type(None)): gclon_0, gclon_1 = [get_gc_lon(i, res=res) for i in (lon_0, lon_1)] lon = lon[gclon_0:gclon_1] # ---------------- Basemap setup ---------------- # Grid/Mesh values x, y = np.meshgrid(lon, lat) # Set existing axis to current if axis provided if not isinstance(ax, type(None)): plt.sca(ax) # ---- Setup map ("m") using Basemap m = get_basemap(lat=lat, lon=lon, resolution=resolution, res=res, everyother=everyother, interval=interval, f_size=f_size, ylabel=ylabel, xlabel=xlabel, drawcountries=drawcountries) # Process data to grid x, y = np.meshgrid(*m(lon, lat)) # reduce plotted region for nested grids/subregion plots if set_window: plt.xlim(lon_0, lon_1) plt.ylim(lat_0, lat_1) else: plt.xlim(lon[0+adjust_window], lon[-1-adjust_window]) plt.ylim(lat[0+adjust_window], lat[-1-adjust_window]) #################################################################################################### # -------- colorbar variables... # Set cmap range I to limit poly, if not given cmap ) fixcb_ = fixcb # New approach if isinstance(fixcb_, type(None)) or isinstance(cmap, type(None)): fixcb_ = np.array([(i.min(), i.max()) for i in [arr]][0]) if isinstance(cmap, type(None)): # Set readable levels for cb, then use these to dictate cmap if isinstance(lvls, type(None)): lvls = get_human_readable_gradations(vmax=fixcb_[1], vmin=fixcb_[0], nticks=nticks, cb_sigfig=cb_sigfig) # Setup Colormap cmap, fixcb_buffered = get_colormap(np.array(fixcb_), nticks=nticks, fixcb=fixcb_, buffer_cmap_upper=True) # Update colormap with buffer cmap = get_colormap(arr=np.array( [fixcb_buffered[0], fixcb_buffered[1]])) # Allow function to operate without fixcb_buffered provided if isinstance(fixcb_buffered, type(None)): fixcb_buffered = fixcb_ fixcb_ = fixcb_buffered logging.info('colorbar variables: ' + str([fixcb_buffered, fixcb, fixcb_, lvls, cmap, lvls])) # Use a discrete colour map? # if discrete_cmap: # if isinstance( fixcb, type(None) ): # cmap, norm = mk_discrete_cmap( vmin=arr.min(), vmax=arr.max(), \ # nticks=nticks, cmap=cmap ) # else: # cmap, norm = mk_discrete_cmap( vmin=fixcb[0], vmax=fixcb[1], \ # nticks=nticks, cmap=cmap ) NEW_VERSION = False if not NEW_VERSION: #################################################################################################### # Old version is here #################################################################################################### # -------------- Linear plots ------------------------------- # standard plot linear_cases = ["default", 9] if case == 9 or default: debug_list = [fixcb_, arr.shape, [len(i) for i in (lon, lat)], ] debug_list += [norm, cmap] if debug: print(debug_list) poly = m.pcolor(lon, lat, arr, cmap=cmap, norm=norm, alpha=alpha, vmin=fixcb_[0], vmax=fixcb_[1]) # ----------------- Log plots -------------------------------- if log: # l poly = m.pcolor(lon, lat, arr, norm=LogNorm(vmin=fixcb_[0], vmax=fixcb_[1]), cmap=cmap) if no_cb: pass else: # Get logarithmically spaced integers lvls = np.logspace( np.log10(fixcb[0]), np.log10(fixcb[1]), num=nticks) # Normalise to Log space norm = mpl.colors.LogNorm(vmin=fixcb_[0], vmax=fixcb_[1]) # Create colourbar instance cb = plt.colorbar(poly, ax=m.ax, ticks=lvls, format=format, shrink=shrink, alpha=alpha, norm=norm, extend='min') logging.debug(np.ma.min(np.ma.log(arr)), np.ma.max(np.ma.log(arr)), lvls) # ---------------- Colorbars ---------------- if not no_cb: if isinstance(cb, type(None)): # if linear plot without fixcb set, then define here ax = plt.gca() # Create colourbar instance cb = plt.colorbar(poly, ax=ax, shrink=shrink, alpha=alpha, extend=extend) # set ylabel tick properties for t in cb.ax.get_yticklabels(): t.set_fontsize(f_size) if not isinstance(units, type(None)): cb.ax.set_ylabel( units, rotation=rotatecbunits, labelpad=f_size) # Special treatment for log colorbars if log: def round_to_n(x, n): return round( x, -int(floor(log10(x))) + (n - 1)) tick_locs = [float('{:.2g}'.format(t)) for t in lvls] # for asectics, round colorbar labels to sig figs given for n, lvl in enumerate(lvls): try: lvls[n] = round_to_n(lvl, cb_sigfig) except: lvls[n] = lvl else: tick_locs = np.array(lvls).copy() # Turn tick locations into floats tick_locs = [float(_tick) for _tick in tick_locs] cb.set_ticks(np.array(tick_locs)) # the format is not correctly being set... - do this manually instead if not isinstance(format, type(None)): lvls = [format % (i) for i in lvls] cb.set_ticklabels(lvls) # , format=format ) #################################################################################################### if NEW_VERSION: if case == 9 or default: vmin = fixcb_[0] vmax = fixcb_[1] if log: norm = LogNorm(vmin=fixcb_[0], vmax=fixcb_[1], cmap=cmap) lvls = np.logspace( np.log10(fixcb[0]), np.log10(fixcb[1]), num=nticks) # Normalise to Log space norm = mpl.colors.LogNorm(vmin=fixcb_[0], vmax=fixcb_[1]) extend = 'min' ticks = lvls ax = m.ax def rount_to_n(x, n): return round( x, -int(floor(log10(x))) + (n-1)) tick_locs = [float('{:.2g}'.format(t)) for t in lvls] # for asectics, round colorbar labels to sig figs given for n, lvl in enumerate(lvls): try: lvls[n] = round_to_n(lvl, cb_sigfig) except: lvls[n] = lvl else: tick_locs = np.array(lvls).copy() # Turn tick locations into floats. tick_locs = [float(_tick) for _tick in tick_locs] # Create the colormap poly = m.pcolor(lon, lat, arr, norm=norm, vmax=vmax, vmin=vmin, cmap=cmap, alpha=alpha) # Add the colorbar if needed. if not no_cb: # if linear plot without fixcb set, then define here if isinstance(cb, type(None)): ax = plt.gca() cb = plt.colorbar(poly, ax=ax, ticks=lvls, format=format, shrink=shrink, alpha=alpha, norm=norm, extend=extend) # Set ylabel tick properties cb.ax.tick_params(labelsize=f_size) # Set ylabel units: if not isinstance(units, type(None)): cb.ax.set_ylabel( units, rotation=rotatecbunits, labelpad=f_size) cb.set_ticks(np.array(tick_locs)) cb.set_ticklabels(lvls) # logging.info(tick_locs, lvls, [ type(i) for i in tick_locs, lvls ]) #logging.info(cb.get_clim(), title, format) # Set number of ticks # FIX NEEDED - this currently doesn't doesn't work for log plots # if (not default) and (not no_cb) and ( not log ): # if set_cb_ticks: # tick_locator = ticker.MaxNLocator( nticks=nticks ) # cb.locator = tick_locator # cb.update_ticks() # Add grid lines to the plot? plt.grid(grid) # Add title to plot? max_title_len = 30 if tight_layout == True: plt.tight_layout() if not isinstance(title, type(None)): # Check if the title is too long and if not split it over lines if len(title) > max_title_len: print("tile takes up multiple lines. Splitting over lines now.") import textwrap title = "\n".join(textwrap.wrap(title, max_title_len)) print(title) # Adjust the top of the plot by 0.05 for every line the title takes # plt.subplots_adjust(top=1-0.05*(len(title)%max_title_len)) plt.title(title, fontsize=f_size*1.5) # Setup list of return variables return_l = [plt] if not no_cb: return_l += [cb] if return_m: return_l += [m] return return_l def sonde_plot(fig, ax, arr, n=0, title=None, subtitle=None, f_size=10, color=None, err_bar=False, obs=True, legend=False, units='nmol mol$^{-1}$', stddev=True, c_l=['k', 'red', 'green', 'blue', 'purple'], xlimit=None, loc='upper left', c_off=37, label=None, ancillary=True, plt_txt_x=0.5, plt_txt_y=0.94, ylabel=True, xlabel=True, hPa_labels=True, debug=False, # redundant arguments? rasterized=True, tropics=False, ): """ Create plot of vertical data for sonde observations/model Parameters ------- hPa_labels (bool): include labels for hPa on axis? plt_txt_x, plt_txt_y (float): ordinal locations for alt text ancillary (bool): add ancillary labels etc. to plot label (str): label to use for line / legend. c_off (int): index to plot model levels too (e.g. 37 for trop. ) xlimit (float): value to limit x axis to (e.g. 100 ppbv) c_l (list):colors to use (index by n ) uints (str): units to use for axis labels obs (bool): overide plot settings with those for observations. err_bar (bool): apply bar to show quartile range of plots stddev (bool): as above (see err_bar) color (str/color instance): color for plotted line f_size (float): fontsise tropics (bool): mask for tropics? title (str): title for plot subtitle (str): subtitle for plot (e.g. location) n (int): number of plot within window plot figure fig (figure instance): fig. to use ax (axis instance): axis to use ylabel, xlabel (bool): include axis labels for plot? Returns ------- Notes ----- - should be re-written (age >3 years) to work with updated AC_tools """ # Get overall vars alt, press = [gchemgrid(i) for i in ('c_km_geos5_r', 'c_hPa_geos5_r')] # Cut off at Tropopause? if obs: arr = arr[:c_off, :] else: arr = arr[:c_off] alt, press = [i[:c_off] for i in (alt, press)] # if color not set, get color if isinstance(color, type(None)): color = c_l[n] if obs: # print [len(i) for i in arr[:,0], alt ] ax.plot(arr[:, 0], alt, color=color, label=label) # limit cb to top of troposphere min, max = [(np.ma.min(i), np.ma.max(i)) for i in [arr[:, 0]]][0] else: ax.plot(arr, alt, label=label, color=color) # limit cb to top of troposphere min, max = [(np.ma.min(i), np.ma.max(i)) for i in [arr]][0] # Add legend if legend: plt.legend(loc=loc, fontsize=f_size*.75) # Sonde data = mean, 1st and 3rd Q if err_bar: if stddev: ax.errorbar(arr[:, 0], alt, xerr=arr[:, 3], fmt='o', color=color, elinewidth=0.75, markersize=2, alpha=0.75) else: ax.errorbar(arr[:, 0], alt, xerr=[arr[:, 1], arr[:, 2]], fmt='o', color=color, elinewidth=.75, markersize=5, alpha=0.75) # Beautify plot ( e.g. add hPa, units, etc... ) if ancillary: if not isinstance(title, type(None)): plt.title(title, fontsize=f_size, y=1.0) if not isinstance(subtitle, type(None)): plt.text(plt_txt_x, plt_txt_y, subtitle, ha='center', va='center', transform=ax.transAxes, fontsize=f_size*.65) if ylabel: plt.ylabel('Altitude (km)', fontsize=f_size*.75) else: plt.tick_params(axis='y', which='both', labelleft='off') if xlabel: plt.xlabel(units, fontsize=f_size*.75) else: plt.tick_params(axis='x', which='both', labelbottom='off') if xlimit == None: # plt.xlim( min-(min*0.02), max+(max*0.02) ) plt.xlim(0.1, max+(max*0.50)) else: plt.xlim(0.1, xlimit) if hPa_labels: ax2 = ax.twinx() press = [myround(i, 100) for i in press][::-1] ax2.set_yticks(press[::10]) ax2.set_yticklabels(press[::10]) majorFormatter = mpl.ticker.FormatStrFormatter('%d') ax2.yaxis.set_minor_formatter(majorFormatter) ax2.set_ylabel('Press. (hPa)', fontsize=f_size*.75) ax2.invert_yaxis() if ylabel: pass else: ax.tick_params(axis='y', which='both', labelleft='off') ax2.tick_params(axis='y', which='both', labelleft='off') def monthly_plot(ax, data, f_size=20, pos=0, posn=1, lw=1, ls='-', color=None, title=None, subtitle=None, legend=False, xrotation=90, window=False, label=None, ylabel=None, xlabel=True, title_loc_y=1.09, plt_txt_x=0.5, plt_txt_y=1.05, plot_Q1_Q3=False, low=None, high=None, loc='upper right'): """ Plot up seaonal (monthly) data. Parameters ---------- ax (axis object): matplotlib axis object to plot onto data (nd.array): numpy array of data to plot pos (int): position number of subplot posn (int): number of subplots being plotted title (str): title string for plot subtitle (str): subtitle string for plot (insert in plot) ls (str): linestyle to use color (str): colour for line xrotation (float): rotation of x axis ticks ylabel (bool): label y axis xlabel (bool): label x axis label (str): label for line title_loc_y (int): y axis position for title str plt_txt_x (float): x axis position for subtitle str plt_txt_y (float): y axis position for subtitle str plot_Q1_Q3 (bool): plot quartiles on for data? low (np.array): array of low extents to plot as shaded region high (np.array): array of high extents to plot as shaded region Returns ------- (colormap) Notes ----- """ # setup color list if not provided if isinstance(color, type(None)): color = color_list(posn)[pos] # if this is a window plot, then reduce text size if window: f_size = int(f_size/2) # Plot up provide monthly data plt.plot(np.arange(1, len(data)+1), data, color=color, lw=lw, ls=ls, label=label) # Also add 5th and 95th %ile (or what was provided as "low" and "high") if plot_Q1_Q3: # Plot quartiles as shaded area? ax.fill_between(np.arange(1, len(data)+1), low, high, alpha=0.2, color=color) # Beautify ax.set_xticklabels([i.strftime("%b") for i in [datetime.datetime(2009, int(i), 0o1) for i in np.arange(1, 13)]]) plt.xticks(list(range(1, 13)), fontsize=f_size) plt.xticks(rotation=xrotation) if not xlabel: plt.tick_params(axis='x', which='both', bottom='on', top='off', labelbottom='off') plt.xlim(0.5, 12.5) if ylabel != None: plt.ylabel(ylabel, fontsize=f_size) plt.yticks(fontsize=f_size) print((pos, posn-1)) if not isinstance(title, type(None)): t = plt.title(title, fontsize=f_size) t.set_y(title_loc_y) if not isinstance(subtitle, type(None)): plt.text(plt_txt_x, plt_txt_y, subtitle, ha='center', va='center', transform=ax.transAxes, fontsize=f_size*.65) if legend: plt.legend(loc=loc, fontsize=int(f_size/1.5)) def timeseries_seasonal_plot(ax, dates, data, f_size=20, pos=0, posn=1, title=None, legend=False, everyother=24, x_nticks=12, window=False, label=None, ylabel=None, loc='upper left', lw=1, ls='-', color=None, showmeans=False, boxplot=True, plt_median=False, plot_Q1_Q3=False, pcent1=25, pcent2=75, ylim=None, xtickrotation=45, alt_text=None, alt_text_x=.5, alt_text_y=.5, xlabel=None, rm_yticks=False, log=False, debug=False): """ Plot up timeseries of seasonal data. Parameters ---------- ax (axis object): axis to plot onto dates (np.array): array of dates (as datetime.datetime objects) data (np.array): 1D array of data plot_Q1_Q3 (bool): plot up quartiles on timeseries plot Returns ------- (None) """ # Process data - reduce resolution to daily, and get std df = DataFrame(data, index=dates) # Force use of a standard year months = list(range(1, 13)) datetime_months = [datetime.datetime(2009, int(i), 1) for i in months] labels = [i.strftime("%b") for i in datetime_months] if debug: print(labels) # Get Data by month monthly = [df[df.index.month == i] for i in months] if debug: print([i.shape for i in monthly]) if boxplot: bp = ax.boxplot(monthly, months, showmeans=showmeans) else: # remove nans to allow for percentile calc. data_nan = [np.ma.array(i).filled(np.nan) for i in monthly] data_nan = [i.flatten() for i in data_nan] if plt_median: plt.plot(months, [np.nanpercentile(i, 50, axis=0) for i in data_nan], color=color, lw=lw, ls=ls, label=label) if plot_Q1_Q3: # Plot quartiles as shaded area? low = [np.nanpercentile(i, pcent1, axis=0) for i in data_nan] high = [np.nanpercentile(i, pcent2, axis=0) for i in data_nan] ax.fill_between(months, low, high, alpha=0.2, color=color) else: plt.plot(months, [i.mean() for i in monthly], color=color, lw=lw, ls=ls, label=label) # Beatify plot ax.set_xticks(months) if xlabel: ax.set_xticklabels(labels, rotation=xtickrotation) else: ax.tick_params(axis='x', which='both', labelbottom='off') if not isinstance(ylim, type(None)): ax.set_ylim(ylim) if debug: print(('!'*50, alt_text, alt_text_x, alt_text_y)) if not isinstance(alt_text, type(None)): if debug: print(('!'*50, alt_text, alt_text_x, alt_text_y, f_size)) plt.text(alt_text_x, alt_text_y, alt_text, ha='center', va='center', transform=ax.transAxes, fontsize=f_size*.5) if legend: if debug: print(('>'*500, 'Adding legend', '<'*50, loc)) plt.legend(fontsize=f_size*.75, loc=loc) if not isinstance(title, type(None)): plt.title(title) if not isinstance(ylabel, type(None)): plt.ylabel(ylabel, fontsize=f_size*0.75) # Why is this x0.75? else: if rm_yticks: ax.tick_params(axis='y', which='both', labelleft='off') # Log scale? if log: ax.set_yscale('log') else: ax.set_yscale('linear') def timeseries_daily_plot(fig, ax, dates, data, pos=1, posn=1, bin_size=1/24., widths=0.01, rotatexlabel='vertical', white_fill=True, alpha=0.1, linewidth=0.5, xlabel=True, title=None, alt_text=None, f_size=7.5, units='ppbv', showmeans=False, plt_median=False, boxplot=True, ylabel=True, color='blue', label=None, plot_Q1_Q3=True, pcent1=25, pcent2=75, debug=False): """ Plot up daily timeseries of values. Requires data, and dates in numpy array form. Dates must be as datetime.datetime objects. Notes: - Boxplot is the default presentation of data - Otherwise a meidan is used """ # get_day_fraction(i) dates = np.array([get_day_fraction(i) for i in dates]) # bin data b_all, bins_used = bin_data(data, dates, bin_size, debug=debug) # Plot if boxplot: bp = ax.boxplot(b_all, positions=bins_used, widths=widths, showmeans=showmeans, patch_artist=True) else: # remove nans to allow for percentile calc. # print b_all data_nan = [np.ma.array(i).filled(np.nan) for i in b_all] data_nan = [i.flatten() for i in data_nan] # Plot average if plt_median: ln = plt.plot(bins_used, [np.nanpercentile(i, 50, axis=0) for i in data_nan], color=color, label=None) else: ln = plt.plot(bins_used, [i.mean() for i in data_nan], color=color) # Plot quartiles as shaded area? if plot_Q1_Q3: low = [np.nanpercentile(i, pcent1, axis=0) for i in data_nan] high = [np.nanpercentile(i, pcent2, axis=0) for i in data_nan] ax.fill_between(bins_used, low, high, alpha=0.2, color=color) # Beautify if not isinstance(title, type(None)): plt.title(title, fontsize=f_size) if not isinstance(alt_text, type(None)): # ax.text(x=0.85,y=0.85, s=alt_text, fontsize=f_size*1.5 ) ax.annotate(xytext=alt_text, xy=(0.85, 0.85), textcoords='axes fraction') ax.set_xticklabels(np.arange(0, 24, 1)) plt.xticks(np.arange(0, 1, 1/24.), fontsize=f_size*.75, rotation=rotatexlabel) # plt.xlim(-0.05, 23/24.) plt.xlim(-0.05, 1.0) if xlabel: ax.set_xlabel('Hour of day', labelpad=f_size) else: ax.tick_params(axis='x', which='both', labelbottom='off') # Setup y axis if ylabel: ax.set_ylabel('{}'.format(units), labelpad=f_size) else: ax.tick_params(axis='y', which='both', labelleft='off') # --- Highlight bins bs = np.arange(0, 24, bin_size) # [ bs[0] - bin_size ] + bs [plt.axvline(x=i, color='k', linewidth=linewidth, alpha=alpha, linestyle='dashed') for i in bs] def timeseries_month_plot(ax, dates, data, f_size=20, pos=0, posn=1, title=None, legend=False, everyother=7*24, x_nticks=12, window=False, label=None, ylabel=None, loc='upper left', lw=1, ls='-', color=None, start_month=7, end_month=7, boxplot=True, showmeans=False, alt_text=None, r_plt=False, unitrotation=45, color_by_z=False, fig=None, xlabel=True, second_title='', add_dates2title=True, positive=None, debug=False): """ Plot up month timeseries of values. Requires data, and dates in numpy array form. Dates must be as datetime.datetime objects. NOTE(s): - This just plot up timeseries, why is the name "timeseries_*month*_plot"? - Update this! """ # Process data - reduce resolution to daily, and get std df = DataFrame(data, index=dates) # remove dates outside of range (start_month > t < end_month ) def get_month(x): return x.month df['month'] = df.index.map(get_month) df = df[df['month'] <= end_month] df = df[df['month'] >= start_month] # remove 'month' column df = df.drop('month', 1) # label once per week days = [i.to_datetime() for i in df.index] labels = [i.strftime("%-d %b") for i in days][::everyother] # Color in line another provided variables if color_by_z: if debug: print('Coloring line by normalised z values') if debug: print((df.columns)) x = df.index y, z = [df[df.columns[i]] for i in range(2)] cmap = get_colormap(z.copy(), positive=positive) if debug: print([(i.min(), i.max()) for i in (x, y, z)]) colorline(x, y, z, cmap=cmap, linewidth=lw, ax=ax, norm=plt.Normalize(0, 360), fig=fig) else: plt.plot(days, df.values, label=label, color=color, ls=ls, lw=lw) # set xticks if xlabel: plt.xticks(days[::everyother], labels, rotation=unitrotation) else: plt.tick_params(axis='x', which='both', labelbottom='off') # Beatify plot if not isinstance(title, type(None)): if add_dates2title: title += ' for {}-{} {}'.format(num2month(start_month), num2month(end_month), second_title) plt.title(title) if not isinstance(alt_text, type(None)): plt.figtext(x=0.05, y=0.85, s=alt_text, fontsize=f_size*.75) if not isinstance(ylabel, type(None)): plt.ylabel(ylabel, fontsize=f_size*.75) if legend: plt.legend(fontsize=f_size*.75, loc=loc) def north_pole_surface_plot(arr, return_m=False, grid=True, centre=False, cmap=None, format='%.2f', m=None, fixcb=False, nbins=25, res='4x5', ax=None, alpha=1, nticks=10, everyother=1, drawcountries=True, set_cb_ticks=True, title=None, \ # rotatecbunits='horizontal', extend='neither', interval=1, resolution='l', shrink=0.4, window=False, \ lon_0=0, boundinglat=40, degrade_resolution=False, \ no_cb=False, cb=None, units=None, f_size=20, \ debug=False, **Kwargs): """ Plot up data at north pole as a 2D slice. NOTES: - Requires data (arr) as numpy array. Arr should be full global size (lon, lat) for given resolution """ # ---- Grid/Mesh values for Lat, lon, & alt + cb if isinstance(cmap, type(None)): cmap = get_colormap(arr.copy()) err_list = [[i.min(), i.max(), i.mean(), type(i)] for i in [arr]] if debug: print(('>'*5, err_list)) lon, lat, NIU = get_latlonalt4res(res, centre=centre) # restrict lat to projection lat = lat[get_gc_lat(boundinglat, res=res):] lon, lat = np.meshgrid(lon, lat) # ---------------- Basemap setup ---------------- if isinstance(m, type(None)): m = Basemap(projection='npstere', boundinglat=boundinglat, lon_0=lon_0, resolution=resolution, round=True) # Beautify basemap plot m.drawcoastlines() m.drawcountries() parallels = np.arange(-90, 91, 20*interval) # meridians = np.arange(-180,181,20*interval) meridians = np.arange(-180, 180, 20*interval) m.drawparallels(parallels, labels=[False, False, False, False], fontsize=f_size*.25) m.drawmeridians(meridians, labels=[True, False, True, True], fontsize=f_size*.25) # set x and y x, y = m(lon, lat) if debug: print((1, len(x), len(y))) # Printing for debuggin? debug_ptr = [len(i) for i in (x, y, lat, lon)] debug_ptr += [[i.min(), i.mean(), i.max(), i.shape] for i in (arr, arr[:, get_gc_lat(boundinglat, res=res):])] if debug: print((2, 'len:', debug_ptr)) # -------- colorbar variables... # set cb label sizes if not no_cb: # if fixcb: if not isinstance(fixcb, type(None)): tickmin, tickmax = fixcb[0], fixcb[1] else: tickmin, tickmax = arr.min(), arr.max() # ----------------------- Linear plots ------------------------------- # plt.contourf( x, y, arr[:,get_gc_lat(boundinglat,res=res):].T, alpha=alpha) # if fixcb: polar_arr = arr[:, get_gc_lat(boundinglat, res=res):].T if debug: print([(i.min(), i.max(), i.mean()) for i in [polar_arr]]) if not isinstance(fixcb, type(None)): poly = m.pcolor(x, y, polar_arr, cmap=cmap, alpha=alpha, vmin=fixcb[0], vmax=fixcb[1]) else: poly = m.pcolor(x, y, polar_arr, cmap=cmap, alpha=alpha) # -------------- Log plots --------------------------------------------- # ---------------- Colorbars ---------------- if not no_cb: if isinstance(cb, type(None)): cb = plt.colorbar(poly, ax=m.ax, shrink=shrink, alpha=alpha, format=format, ticks=np.linspace(tickmin, tickmax, nticks)) for t in cb.ax.get_yticklabels(): t.set_fontsize(f_size) if units != None: cb.ax.set_ylabel(units, rotation=rotatecbunits, labelpad=f_size) # Set number of ticks if set_cb_ticks: tick_locator = mpl.ticker.MaxNLocator(nticks=nticks) cb.locator = tick_locator cb.update_ticks() if not isinstance(title, type(None)): plt.title(title, fontsize=f_size*1.5) return_list = [poly] if not no_cb: return_list += [cb] if (return_m): return_list += [m] return return_list # -------- # X.XX - South Pole surface plot # -------- def south_pole_surface_plot(arr, return_m=False, grid=True, centre=False, cmap=None, format='%.2f', res='4x5', ax=None, alpha=1, title=None, fixcb=False, nbins=25, nticks=10, drawcountries=True, set_cb_ticks=True, # rotatecbunits='horizontal', extend='neither', interval=1, resolution='l', shrink=0.4, window=False, everyother=1, lon_0=0, boundinglat=-40, degrade_resolution=False, no_cb=False, cb=None, units=None, f_size=20, debug=False, **Kwargs): """ Plot up data at south pole 2D slice. NOTES: - Requires data (arr) as numpy array. Arr should be full global size (lon, lat) for given resolution """ # ---- Grid/Mesh values for Lat, lon, & alt + cb if isinstance(cmap, type(None)): cmap = get_colormap(arr.copy()) debug_ptr = [[i.min(), i.max(), i.mean(), type(i)] for i in [arr]] if debug: print(('>'*5, debug_ptr)) lon, lat, NIU = get_latlonalt4res(res, centre=centre) # restrict lat to projection lat = lat[:get_gc_lat(boundinglat, res=res) + 2] lon, lat = np.meshgrid(lon, lat) # ---------------- Basemap setup ---------------- m = Basemap(projection='spstere', boundinglat=boundinglat, lon_0=lon_0, resolution=resolution, round=True) # set x and y x, y = m(lon, lat) if debug: print((1, len(x), len(y))) # Beautify plot m.drawcoastlines() m.drawcountries() parallels = np.arange(-90, 91, 20*interval) # meridians = np.arange(-180,181,20*interval) meridians = np.arange(-180, 180, 20*interval) m.drawparallels(parallels, labels=[False, False, False, False], fontsize=f_size*.25) m.drawmeridians(meridians, labels=[True, False, True, True], fontsize=f_size*.25) # printing if debugging... debug_ptr = [len(i) for i in (x, y, lat, lon)] debug_ptr += [[i.min(), i.mean(), i.max()] for i in [arr]] if debug: print((2, 'len:', debug_ptr)) # -------- colorbar variables... # set cb label sizes # if fixcb: if not isinstance(fixcb, type(None)): tickmin, tickmax = fixcb[0], fixcb[1] else: tickmin, tickmax = arr.min(), arr.max() # -------------------- Linear plots ------------------------------- # plt.contourf( x, y, arr[:,get_gc_lat(boundinglat,res=res):].T, alpha=alpha) # if fixcb: polar_arr = arr[:, :get_gc_lat(boundinglat, res=res)+2].T if debug: print([(i.min(), i.max(), i.mean()) for i in [polar_arr]]) if not isinstance(fixcb, type(None)): poly = m.pcolor(x, y, polar_arr, cmap=cmap, alpha=alpha, vmin=fixcb[0], vmax=fixcb[1]) else: poly = m.pcolor(x, y, polar_arr, cmap=cmap, alpha=alpha) # ----------- Log plots --------------------------------------------- # ---------------- Colorbars ---------------- if not no_cb: if isinstance(cb, type(None)): cb = plt.colorbar(poly, ax=m.ax, shrink=shrink, alpha=alpha, format=format, ticks=np.linspace(tickmin, tickmax, nticks)) for t in cb.ax.get_yticklabels(): t.set_fontsize(f_size) if units != None: cb.ax.set_ylabel(units, rotation=rotatecbunits, labelpad=f_size) # Set number of ticks if (not no_cb): if set_cb_ticks: tick_locator = mpl.ticker.MaxNLocator(nticks=nticks) cb.locator = tick_locator cb.update_ticks() if not isinstance(title, type(None)): plt.title(title, fontsize=f_size*1.5) if (return_m): return plt, cb, m elif no_cb: return plt else: return plt, cb def plot_specs_surface_change_monthly2pdf(arr, res='4x5', dpi=160, no_dstr=True, f_size=20, pcent=True, specs=None, dlist=None, savetitle='', diff=False, extend='neither', column=False, scale=1, units=None, set_window=False, lat_0=None, lat_1=None, mask_invalids=False, debug=False): """ Create multipage PDF with each page containing a 2D (lon,lat) slice plot for given species in list of "specs" Takes 5D array ( species ,lon , lat, alt, time) """ logging.info('plot_specs_surface_change_monthly2pdf called') # setup pdfs + titles if column: savetitle = 'Column_by_spec'+savetitle else: savetitle = 'Surface_by_spec'+savetitle pdff = plot2pdfmulti(title=savetitle, open=True, dpi=dpi, no_dstr=no_dstr) left = 0.05 right = 0.9 bottom = 0.05 top = 0.875 hspace = 0.315 wspace = 0.1 # Loop species for n, spec in enumerate(specs): if debug: print((n, spec)) # Get units/scale for species + setup fig (allow of if isinstance(units, type(None)): if column and (not pcent): units, scale = 'DU', 1 elif pcent: units, scale = '%', 1 else: units, scale = tra_unit(spec, scale=True, global_unit=True) # setup masking... cbarr = arr[n, :, :, 0, :].copy() * scale if pcent: mask_invalids = True # mask for changes greater than 500% if len(cbarr[cbarr > 500]) > 0: cbarr = np.ma.masked_where(cbarr > 500, cbarr) extend = 'max' elif len(cbarr[cbarr < -500]) > 0: cbarr = np.ma.masked_where(cbarr < -500, cbarr) if extend == 'max': extend = 'both' else: extend = 'min' else: extend = 'neither' else: extend = 'neither' cbarr = cbarr # Set the correct title ptitle = '{}'.format(latex_spec_name(spec)) if column: ptitle += ' column' else: ptitle += ' surface' if diff: ptitle += ' $\Delta$ concentration' else: ptitle += ' concentration' ptitle += ' ({})'.format(units) fig = plt.figure(figsize=(22, 14), dpi=dpi, facecolor='w', edgecolor='w') # set cb ranges for whiole data period fixcb = [(i.min(), i.max()) for i in [cbarr]][0] # Kludge, force max cap at .2 # if units == 'ratio': # fixcb = [ fixcb[0], 0.2 ] # extend = 'max' if (units == 'pmol mol$^{-1}$ m$^{-3}$') and (spec == 'AERI'): fixcb = [fixcb[0], 500] extend = 'max' cmap = get_colormap(fixcb) # Loop thorugh months for m, month in enumerate(dlist): fig.add_subplot(4, 3, m+1) # plot up spatial surface change map_plot(arr[n, :, :, 0, m].T*scale, cmap=cmap, case=9, res=res, no_cb=True, f_size=f_size, fixcb=fixcb, window=True, set_window=set_window, lat_0=lat_0, lat_1=lat_1, mask_invalids=mask_invalids, clevs=clevs, debug=debug) plt.title(month.strftime("%b"), fontsize=f_size*2) # Add single colorbar mk_cb(fig, units=units, left=0.9, cmap=cmap, vmin=fixcb[0], vmax=fixcb[1], f_size=f_size, extend=extend) # sort out ascetics - adjust plots and add title fig.subplots_adjust(bottom=bottom, top=top, left=left, right=right, hspace=hspace, wspace=wspace) fig.suptitle(ptitle, fontsize=f_size*2, x=.55, y=.95) # save out figure plot2pdfmulti(pdff, savetitle, dpi=dpi, no_dstr=no_dstr) # close fig plt.clf() plt.close() del fig # save entire pdf plot2pdfmulti(pdff, savetitle, close=True, dpi=dpi, no_dstr=no_dstr) def plot_specs_zonal_change_monthly2pdf(Vars, res='4x5', dpi=160, no_dstr=True, f_size=20, pcent=False, specs=None, dlist=None, t_ps=None, savetitle='', diff=False, extend='neither', set_window=False, lat_0=None, lat_1=None, mask_invalids=False, set_lon=None, units=None, debug=False): """ Create multipage PDF with each page containing a zonalplot for given species in list of "specs" NOTES: - Takes 5D array ( species ,lon , lat, alt, time) - Needs descriptions update. """ savetitle = 'Zonal_by_spec'+savetitle pdff = plot2pdfmulti(title=savetitle, open=True, dpi=dpi, no_dstr=no_dstr) left = 0.05 right = 0.9 bottom = 0.05 top = 0.875 hspace = 0.315 wspace = 0.2 # Loop species for n, spec in enumerate(specs): if debug: print((n, spec, Vars.shape)) # Get units/scale for species + setup fig scale = 1 if isinstance(units, type(None)): units, scale = tra_unit(spec, scale=True, global_unit=True) if pcent: units, scale = '%', 1 mask_invalids = True # Set the correct title ptitle = '{}'.format(latex_spec_name(spec)) if diff: ptitle += ' zonal $\Delta$ concentration' else: ptitle += ' zonal concentration' ptitle += ' ({})'.format(units) fig = plt.figure(figsize=(22, 14), dpi=dpi, facecolor='w', edgecolor='w') cbVars = Vars[n, :, :, :, :].copy()*scale # set ranges for whiole data period if pcent: if len(cbVars[cbVars > 500]) > 0: cbVars = np.ma.masked_where(cbVars > 500, cbVars) extend = 'max' elif len(cbVars[cbVars < -500]) > 0: cbVars = np.ma.masked_where(cbVars < -500, cbVars) if extend == 'max': extend = 'both' else: extend = 'min' else: extend = 'neither' else: extend = 'neither' if set_lon: set_lon = get_gc_lon(set_lon, res=res) fixcb = [(i.min(), i.max()) for i in [cbVars[set_lon, ...]]][0] print(('SETTING LON to GC index: ', set_lon)) else: cbVars = cbVars.mean(axis=0) if set_window: gclat_0, gclat_1 = [get_gc_lat(i, res=res) for i in (lat_0, lat_1)] cbVars = cbVars[..., gclat_0:gclat_1, :] fixcb = [(i.min(), i.max()) for i in [cbVars]][0] # Kludge, force max cap at .2 if units == 'ratio': fixcb = [fixcb[0], 0.2] extend = 'max' cmap = get_colormap(fixcb) # Loop thorugh months for m, month in enumerate(dlist): axn = [3, 4, m+1] ax = fig.add_subplot(*axn) # if pcent: # print [ (np.min(i), np.max(i)) \ # for i in [ Vars[n,:,:,:,m].mean(axis=0)*scale ] ] # print [ (np.min(i), np.max(i)) \ # for i in [ Vars[n,:,:,:,m].median(axis=0)*scale ] ] if set_lon: arr = Vars[n, set_lon, :, :, m]*scale else: arr = Vars[n, :, :, :, m].mean(axis=0)*scale if set_window: arr = arr[..., get_gc_lat( lat_0, res=res): get_gc_lat(lat_1, res=res), :] # plot up spatial surface change zonal_plot(fig, ax, arr, title=month.strftime("%b"), debug=debug, tropics=False, units=units, f_size=f_size, c_off=37, no_cb=True, lat_0=lat_0, lat_1=lat_1, set_window=set_window, fixcb=fixcb, extend=extend, window=True, lower_limited=True, res=res, mask_invalids=mask_invalids, cmap=cmap) # only show troposphere greyoutstrat(fig, t_ps.mean(axis=0)[:, :, m], axn=axn, res=res) # Add single colorbar mk_cb(fig, units=units, left=0.915, cmap=cmap, vmin=fixcb[0], vmax=fixcb[1], f_size=f_size, extend=extend) # sort out ascetics - adjust plots and add title fig.subplots_adjust(bottom=bottom, top=top, left=left, right=right, hspace=hspace, wspace=wspace) fig.suptitle(ptitle, fontsize=f_size*2, x=.55, y=.95) # save out figure plot2pdfmulti(pdff, savetitle, dpi=dpi, no_dstr=no_dstr) # close fig plt.clf() plt.close() del fig # save entire pdf plot2pdfmulti(pdff, savetitle, close=True, dpi=dpi, no_dstr=no_dstr) def plot_specs_poles_change_monthly2pdf(specs=None, arr=None, res='4x5', dpi=160, no_dstr=True, f_size=20, pcent=False, diff=False, dlist=None, savetitle='', units=None, perspective='north', format=None, extend='neither', boundinglat=50, verbose=True, debug=False): """ Takes a 5D np.array ( species, lon, lat, alt, time ) and plots up the output by species by month, and saves this as a mulitpage pdf Parameters ------- arr (array): 5D np.array ( species, lon, lat, alt, time ) res (str): the resolution if wd not given (e.g. '4x5' ) dpi (int): dots per inch of saved output PDF... boundinglat (int): format (str): formayt of axis labels dlist (list): list of dates (datetimes) no_dstr (bool): date string in output filename ("no date string") f_size (float): fontsise savetitle (str): string to add to filename of PDF units (str): units label for colorbar pcent (bool): setup the plot as if the input values were % diff (bool): setup the plot as if the input values were a difference boundinglat (int): latitude to show poles until. perspective (str): looking at north or south pole? extend (str): colorbar format settings ( 'both', 'min', 'both' ... ) Returns ------- (None) Notes ----- - Takes 5D array ( species ,lon , lat, alt, time) - needs update to description/acsetics """ debug_ptr = (arr, no_dstr, f_size, pcent, res, dpi, specs, dlist, savetitle) if debug: print(debug_ptr) # Setup PDF filename for saving file if perspective == 'north': savetitle = 'North_'+savetitle if perspective == 'south': savetitle = 'South_'+savetitle # Initialise PDF pdff = plot2pdfmulti(title=savetitle, open=True, dpi=dpi, no_dstr=no_dstr) # Set ascetics left = 0.01 right = 0.925 bottom = 0.025 top = 0.95 hspace = 0.15 wspace = -0.1 # Loop species for n, spec in enumerate(specs): # Debug print statement? if verbose: print((n, spec, arr.shape, units, perspective, '<')) # Get units/scale for species + setup fig scale = 1 if pcent: # and (not units == 'DU') : units = '%' if isinstance(units, type(None)): units, scale = tra_unit(spec, scale=True, global_unit=True) parr = arr[n, :, :, 0, :]*scale debug_ptr = [parr.shape, n, spec, units, scale] debug_ptr += [(i.min(), i.max(), i.mean()) for i in [parr, arr]] if debug: print(debug_ptr) # Set the correct title ptitle = '{}'.format(latex_spec_name(spec)) # Create new figure fig = plt.figure(figsize=(22, 14), dpi=dpi, facecolor='w', edgecolor='w') # Select north or south polar areas specified to define cb if perspective == 'north': cbarr = parr[:, get_gc_lat(boundinglat, res=res):, :].copy() if perspective == 'south': cbarr = parr[:, :get_gc_lat(-boundinglat, res=res), :].copy() # Mask above and below 500/-500 % if values in array if pcent: if len(cbarr[cbarr > 500]) > 0: cbarr = np.ma.masked_where(cbarr > 500, cbarr) extend = 'max' elif len(cbarr[cbarr < -500]) > 0: cbarr = np.ma.masked_where(cbarr < -500, cbarr) if extend == 'max': extend = 'both' else: extend = 'min' else: extend = 'neither' else: extend = 'neither' # Setup colormap fixcb = np.array([(i.min(), i.max()) for i in [cbarr]][0]) if verbose: print(('fixcb testing ', fixcb, parr.shape)) # Kludge, force max cap at .2 # if units == 'ratio': # fixcb = [ fixcb[0], 0.2 ] # extend = 'max' cmap = get_colormap(fixcb) # Loop thorugh months for m, month in enumerate(dlist): ax = fig.add_subplot(3, 4, m+1) # Plot up spatial surface change if perspective == 'north': north_pole_surface_plot(parr[:, :, m], no_cb=True, fixcb=fixcb, diff=diff, pcent=pcent, res=res, f_size=f_size*2, cmap=cmap, boundinglat=boundinglat) if perspective == 'south': south_pole_surface_plot(parr[:, :, m], no_cb=True, fixcb=fixcb, diff=diff, pcent=pcent, res=res, f_size=f_size*2, cmap=cmap, boundinglat=-boundinglat) plt.text(1.1, -0.01, month.strftime("%b"), fontsize=f_size*2, transform=ax.transAxes, ha='right', va='bottom') # Add single colorbar mk_cb(fig, units=units, left=0.915, cmap=cmap, vmin=fixcb[0], vmax=fixcb[1], f_size=f_size*.75, extend=extend, format=format) # Sort out ascetics - adjust plots and add title fig.subplots_adjust(bottom=bottom, top=top, left=left, right=right, hspace=hspace, wspace=wspace) fig.suptitle(ptitle, fontsize=f_size*2, x=.475, y=.975) # Save out figure plot2pdfmulti(pdff, savetitle, dpi=dpi, no_dstr=no_dstr) # Close fig plt.clf() plt.close() del parr # Save entire pdf plot2pdfmulti(pdff, savetitle, close=True, dpi=dpi, no_dstr=no_dstr) def X_Y_scatter(x, y, z=None, fig=None, ax=None, vmin=None, vmax=None, left=0.1, width=0.60, bottom=0.1, height=0.60, widthII=0.2, lim2std=10, trendline=True, f_size=20, lw=10, title=None, line121=True, X_title=None, Y_title=None): """ Plot up a X Y scatter plot of x vs. y """ # rect_scatter = [left, bottom, width, height] if isinstance(fig, type(None)): fig = plt.figure(1, figsize=(8, 8)) if isinstance(ax, type(None)): ax = plt.axes() # rect_scatter) # Plot up - normalising colors against z if given if isinstance(z, type(None)): plt.scatter(x, y) else: # Scale colors. if isinstance(vmin, type(None)): vmin = float(np.ma.min(z)) if isinstance(vmax, type(None)): vmin = float(np.ma.max(z)) s_z = [cmap((float(i) - vmin) / (np.array([vmin, vmax])).ptp()) for i in z] pts = axScatter.scatter(x, y, c=z) if lim2std != False: stds = [np.std(i) for i in (x, y)] means = [np.mean(i) for i in (x, y)] print((stds, means)) mins = [means[0]-(stds[0]*lim2std), means[1]-(stds[1]*lim2std)] maxs = [means[0]+(stds[0]*lim2std), means[1]+(stds[1]*lim2std)] # do not let miniums be less than zero. ind = [n for n, i in enumerate(mins) if (i < 0)] if len(ind) > 0: for n in ind: mins[n] = 0 plt.xlim(mins[0], maxs[0]) plt.ylim(mins[1], maxs[1]) else: min_, max_ = [[i.min(), i.max()] for i in [np.array([x, y])]][0] plt.xlim(min_, max_) plt.ylim(min_, max_) if line121: xmin, xmax = np.min(x), np.max(x) line121 = np.arange(xmin/2, xmax*2) plt.plot(line121, line121, color='red', ls='--', lw=lw) # add trendline if trendline: Trendline(ax, x, y, order=1, intervals=700, f_size=f_size, lw=lw, color='green') if not isinstance(X_title, type(None)): plt.xlabel(X_title, fontsize=f_size) if not isinstance(Y_title, type(None)): plt.ylabel(Y_title, fontsize=f_size) if not isinstance(title, type(None)): plt.title(title, fontsize=f_size) plt.xticks(fontsize=f_size) plt.yticks(fontsize=f_size) def timeseries_plot(ax, dates, data, f_size=20, pos=0, posn=1, title=None, legend=False, everyother=7*24, x_nticks=12, window=False, label=None, ylabel=None, loc='upper left', lw=1, ls='-', color=None, start_date=None, end_date=None, boxplot=True, showmeans=False, alt_text=None, r_plt=False, unitrotation=45, color_by_z=False, fig=None, xlabel=True, positive=None, plt_median=False, add_Q1_Q3=False, pcent1=25, pcent2=75, debug=False): """ Plot up timeseries of values. NOTES: - Requires data, and dates in numpy array form. - Dates must be as datetime.datetime objects. """ # Process data - reduce resolution to daily, and get std df = DataFrame(data, index=dates) # Take start and end dates from "dates" if not set in arguments. if isinstance(start_date, type(None)): start_date = dates[0] if isinstance(end_date, type(None)): end_date = dates[-1] df = df[start_date:end_date] # label once per week ( set by "everyother" ) days = [i.to_datetime() for i in df.index] labels = [i.strftime("%-d %b") for i in days][::everyother] # Color in line another provided variables if color_by_z: if debug: print('Coloring line by normalised z values') if debug: print((df.columns)) x = df.index y, z = [df[df.columns[i]] for i in range(2)] cmap = get_colormap(z.copy(), positive=positive) print([(i.min(), i.max()) for i in (x, y, z)]) colorline(x, y, z, cmap=cmap, linewidth=lw, ax=ax, norm=plt.Normalize(0, 360), fig=fig) # np.min(z), 1500)) # colorline(x, y, linewidth=lw, ax=ax) else: if plt_median: # Plot average pass # ln = plt.plot( days, np.nanpercentile( df.values, 50, ), # color=color, ls=ls, lw=lw, label=None ) else: # Plot all plt.plot(days, df.values, label=label, color=color, ls=ls, lw=lw) # Plot quartiles as shaded area? if plot_Q1_Q3: pass # low =np.nanpercentile( df.values, pcent1, ) # high = np.nanpercentile( df.values, pcent2, ) # ax.fill_between( bins_used, low, high, alpha=0.2, color=color ) # Setup X axis if xlabel: plt.xticks(days[::everyother], labels, rotation=unitrotation, fontsize=f_size) else: plt.tick_params(axis='x', which='both', labelbottom='off') # Beautify plot if not isinstance(title, type(None)): plt.title(title + ' for {}-{}'.format(start_date.strftime( '%d/%m/%y'), end_date.strftime('%d/%m/%y')), fontsize=f_size) # Alt text annotate as fig text? if not isinstance(alt_text, type(None)): plt.figtext(x=0.05, y=0.85, s=alt_text, fontsize=f_size*.75) # Setup y axis plt.yticks(fontsize=f_size) if not isinstance(ylabel, type(None)): plt.ylabel(ylabel, fontsize=f_size) # Legend? if legend: plt.legend(fontsize=f_size*.75, loc=loc) def plt_4Darray_surface_by_month(arr, res='4x5', dpi=160, no_dstr=True, f_size=10, dlist=None, fixcb=None, format=None, savetitle='', extend='neither', wd=None, ax=None, fig=None, cb_sigfig=3, nticks=7, discrete_cmap=False, units=None, set_window=False, lat_0=None, lat_1=None, return_m=False, log=False, window=True, interval=3, ylabel=True, norm=None, fig_title=False, pdftitle='', pdf=False, show=False, verbose=False, debug=False): """ Create a window plot of surface amp plots from a 4D array """ # Setup local variables + figure # left=0.015; right=0.9; bottom=0.05; top=0.95; hspace=0.225; wspace=-0.01 left = 0.015 right = 0.87 bottom = 0.05 top = 0.95 hspace = 0.225 wspace = -0.01 fig = plt.figure(figsize=(14, 10), dpi=dpi, facecolor='w', edgecolor='w') # Get datetime if isinstance(dlist, type(None)): dlist = get_gc_datetime(wd=wd) # set cb ranges for whole data period if isinstance(fixcb, type(None)): fixcb = [(i.min(), i.max()) for i in [arr]][0] # Create figure if not provided if isinstance(fig, type(None)): fig = plt.figure(figsize=(15, 10), dpi=dpi, facecolor='w', edgecolor='w') # Set readable levels for cb, then use these to dictate cmap lvls = get_human_readable_gradations(vmax=fixcb[1], vmin=fixcb[0], nticks=nticks, cb_sigfig=cb_sigfig) # Setup Colormap cmap, fixcb_buffered = get_colormap(np.array(fixcb), nticks=nticks, fixcb=fixcb, buffer_cmap_upper=True) if discrete_cmap: cmap, norm = mk_discrete_cmap(nticks=nticks, vmin=fixcb[0], vmax=fixcb[1], cmap=cmap) debug_list = [(i.min(), i.max(), i.mean()) for i in [arr.mean(axis=0)]] if debug: print(debug_list) # Loop thorugh months for m, month in enumerate(dlist): # add axis axn = [4, 3, m+1] ax = fig.add_subplot(*axn) if verbose: print((arr[..., m].mean(axis=0).shape, arr.shape)) # Only show x/y axis on edge plots ylabel = False xlabel = False num_cols = 3 num_rows = 4 if (m in range(len(dlist))[-num_cols:]): xlabel = True if any([axn[-1] == i for i in range(1, len(dlist)+1)[::num_cols]]): ylabel = True # Plot up map_plot(arr[..., 0, m].T, format=format, cmap=cmap, ax=ax, fixcb=fixcb, return_m=return_m, log=log, window=window, no_cb=True, norm=norm, f_size=f_size*.75, res=res, fixcb_buffered=fixcb_buffered, interval=interval, ylabel=ylabel, xlabel=xlabel, verbose=verbose, debug=debug) # add month plt.title(month.strftime("%b"), fontsize=f_size*1.5) # Add single colorbar # mk_cb(fig, units=units, left=0.9, cmap=cmap, vmin=fixcb[0], format=format,\ mk_cb(fig, units=units, left=0.87, cmap=cmap, vmin=fixcb[0], format=format, vmax=fixcb[1], nticks=nticks, f_size=f_size, extend=extend) if verbose: print((nticks, fixcb, lvls)) # Sort out ascetics - adjust plots and add title if fig_title: fig.suptitle('{}'.format(latex_spec_name(spec)), fontsize=f_size*2, x=.55, y=.95) top = 0.9 # allow space for figure title fig.subplots_adjust(bottom=bottom, top=top, left=left, right=right, hspace=hspace, wspace=wspace) # save as pdf ? if pdf: plot2pdf(title=pdftitle) if show: plt.show() def plt_4Darray_zonal_by_month(arr, res='4x5', dpi=160, no_dstr=True, f_size=15, dlist=None, fixcb=None, savetitle='', extend='neither', wd=None, ax=None, fig=None, cb_sigfig=3, nticks=7, discrete_cmap=False, units=None, set_window=False, lat_0=None, lat_1=None, return_m=False, log=False, window=True, interval=3, ylabel=True, norm=None, fig_title=False, pdftitle='', t_ps=None, xlabel=True, format=None, orientation='vertical', trop_limit=True, region='All', pdf=False, show=False, verbose=False, debug=False): """ Create a window plot of zonal plots from a 4D array """ # Average over lon arr = arr.mean(axis=0) # Setup local variables + figure left = 0.075 right = 0.875 bottom = 0.085 top = 0.955 hspace = 0.325 wspace = 0.1 fig = plt.figure(figsize=(7, 7), dpi=dpi, facecolor='w', edgecolor='w') # Get datetime if isinstance(dlist, type(None)): dlist = get_gc_datetime(wd=wd) # set cb ranges for whole data period if isinstance(fixcb, type(None)): fixcb = [(i.min(), i.max()) for i in [arr]][0] # Create figure if not provided if isinstance(fig, type(None)): fig = plt.figure(figsize=(15, 10), dpi=dpi, facecolor='w', edgecolor='w') # Set readable levels for cb, then use these to dictate cmap lvls = get_human_readable_gradations(vmax=fixcb[1], vmin=fixcb[0], nticks=nticks, cb_sigfig=cb_sigfig) # Setup Colormap cmap, fixcb_buffered = get_colormap(np.array(fixcb), nticks=nticks, fixcb=fixcb, buffer_cmap_upper=True) if discrete_cmap: cmap, norm = mk_discrete_cmap(nticks=nticks, vmin=fixcb[0], vmax=fixcb[1], cmap=cmap) if debug: print([(i.min(), i.max(), i.mean()) for i in [arr]]) # Get time in the troposphere diagnostic if not provide as agrument if isinstance(t_ps, type(None)): t_ps = get_GC_output(wd, vars=['TIME_TPS__TIMETROP'], trop_limit=True) # Loop thorugh months for m, month in enumerate(dlist): # add axis axn = [4, 3, m+1] ax = fig.add_subplot(*axn) # set when to use y and x labels xlabel = False if m in range(12)[-3:]: xlabel = True ylabel = False if m in range(12)[::3]: ylabel = True # Plot zonally zonal_plot(arr[..., m], fig, ax=ax, set_window=set_window, log=log, format=format, cmap=cmap, lat_0=lat_0, lat_1=lat_1, fixcb=fixcb, f_size=f_size*.75, res=res, norm=norm, fixcb_buffered=fixcb_buffered, no_cb=True, trop_limit=True, window=window, interval=interval, xlabel=xlabel, ylabel=ylabel, verbose=verbose, debug=debug) # Only show troposphere greyoutstrat(fig, t_ps.mean(axis=0).mean(axis=-1), axn=axn, res=res) # add month plt.title(month.strftime("%b"), fontsize=f_size*1.5) # Add single colorbar mk_cb(fig, units=units, left=0.895, cmap=cmap, vmin=fixcb[0], vmax=fixcb[1], nticks=nticks, f_size=f_size*1.25, extend=extend, width=0.015*1.5, height=.95, bottom=0.11) if debug: print((nticks, fixcb, lvls)) # sort out ascetics - adjust plots and add title fig.subplots_adjust(bottom=bottom, top=top, left=left, right=right, hspace=hspace, wspace=wspace) if fig_title: fig.suptitle('{}'.format(latex_spec_name(spec)), fontsize=f_size*2, x=.55, y=.95) # save as pdf ? if pdf: plot2pdf(title=pdftitle) if show: plt.show() def get_seasonal_plot(arr, fixcb=None, fig=None, f_size=15, case='linear', format=None, extend='neither', units=None, right=0.9, left=0.05, bottom=0.05, top=0.85, hspace=0.1, wspace=0.1, log=False, title=None, dpi=80, debug=False): """ Takes any 4D array and plot a 4 subplot window plot by season """ # Split by quater (DJF, MAM, JJA, SON) ars, seasons = split_4D_array_into_seasons(arr, annual_plus_seasons=False) # create figure if isinstance(fig, type(None)): fig = plt.figure(figsize=(22, 14), dpi=dpi, facecolor='w', edgecolor='w') # fix color mapping if isinstance(fixcb, type(None)): fixcb = [(i.min(), i.max()) for i in [arr]][0] cmap = get_colormap(fixcb) # loop seasons for n, arr in enumerate(ars): # Plot up on new axis ax = fig.add_subplot(2, 2, n+1) map_plot(arr.T, title=seasons[n], units=None, window=True, case=case, f_size=f_size, rotatecbunits='vertical', no_cb=True, cmap=cmap, fixcb=fixcb, fig=fig) # make color bar mk_cb(fig, units=units, left=0.925, cmap=cmap, vmin=fixcb[0], vmax=fixcb[1], log=log, f_size=f_size*.5, extend=extend, format=format, debug=debug) # add title if provided if not isinstance(title, type(None)): fig.suptitle(title, fontsize=f_size*2, x=.55, y=.95) # Adjust figure fig.subplots_adjust(bottom=bottom, top=top, left=left, right=right, hspace=hspace, wspace=wspace) def plot_specs_surface_change_annual2pdf(arr, res='4x5', dpi=160, no_dstr=True, f_size=20, pcent=True, specs=None, dlist=None, savetitle='', diff=False, extend='neither', column=False, scale=1, units=None, set_window=False, lat_0=None, lat_1=None, mask_invalids=False, debug=False): """ Create multipage PDF with each page containing a 2D (lon,lat) slice plot for given species in list of "specs" Takes 5D array ( species ,lon , lat, alt, time) """ logging.info('plot_specs_surface_change_monthly2pdf called') # setup pdfs + titles if column: savetitle = 'Column_by_spec'+savetitle else: savetitle = 'Surface_by_spec'+savetitle pdff = plot2pdfmulti(title=savetitle, open=True, dpi=dpi, no_dstr=no_dstr) left = 0.05 right = 0.9 bottom = 0.05 top = 0.875 hspace = 0.315 wspace = 0.1 # Loop species for n, spec in enumerate(specs): if debug: print((n, spec)) # Get units/scale for species + setup fig (allow of if isinstance(units, type(None)): if column and (not pcent): units, scale = 'DU', 1 elif pcent: units, scale = '%', 1 else: units, scale = tra_unit(spec, scale=True, global_unit=True) # setup masking... cbarr = arr[n, :, :, 0, :].mean(axis=-1).copy() * scale if pcent: mask_invalids = True # mask for changes greater than 500% if len(cbarr[cbarr > 500]) > 0: cbarr = np.ma.masked_where(cbarr > 500, cbarr) extend = 'max' elif len(cbarr[cbarr < -500]) > 0: cbarr = np.ma.masked_where(cbarr < -500, cbarr) if extend == 'max': extend = 'both' else: extend = 'min' else: extend = 'neither' else: extend = 'neither' cbarr = cbarr # Set the correct title ptitle = 'Annual Avg. {}'.format(latex_spec_name(spec)) if column: ptitle += ' column' else: ptitle += ' surface' if diff: ptitle += ' $\Delta$ concentration' else: ptitle += ' concentration' ptitle += ' ({})'.format(units) fig = plt.figure(figsize=(22, 14), dpi=dpi, facecolor='w', edgecolor='w') # set cb ranges for whiole data period fixcb = [(i.min(), i.max()) for i in [cbarr]][0] # Kludge, force max cap at .2 # if units == 'ratio': # fixcb = [ fixcb[0], 0.2 ] # extend = 'max' if (units == 'pmol mol$^{-1}$ m$^{-3}$') and (spec == 'AERI'): fixcb = [fixcb[0], 500] extend = 'max' cmap = get_colormap(fixcb) # Loop thorugh months # for m, month in enumerate(dlist): fig.add_subplot(111) # plot up spatial surface change map_plot(arr[n, :, :, 0, :].mean(axis=-1).T*scale, cmap=cmap, case=9, res=res, no_cb=True, f_size=f_size, fixcb=fixcb, window=True, set_window=set_window, lat_0=lat_0, lat_1=lat_1, mask_invalids=mask_invalids, debug=debug) # Add single colorbar mk_cb(fig, units=units, left=0.905, cmap=cmap, vmin=fixcb[0], vmax=fixcb[1], f_size=f_size, extend=extend) # sort out ascetics - adjust plots and add title fig.suptitle(ptitle, fontsize=f_size*2, x=.55, y=.95) # save out figure plot2pdfmulti(pdff, savetitle, dpi=dpi, no_dstr=no_dstr) # close fig plt.clf() plt.close() del fig # save entire pdf plot2pdfmulti(pdff, savetitle, close=True, dpi=dpi, no_dstr=no_dstr) def plot_specs_zonal_change_annual2pdf(Vars, res='4x5', dpi=160, no_dstr=True, f_size=20, pcent=False, specs=None, dlist=None, t_ps=None, savetitle='', diff=False, extend='neither', set_window=False, lat_0=None, lat_1=None, mask_invalids=False, set_lon=None, units=None, debug=False): """ Create multipage PDF with each page containing a zonal plot for given species in list of "specs" NOTES: - Takes 5D array ( species ,lon , lat, alt, time) """ savetitle = 'Annual_Zonal_by_spec'+savetitle pdff = plot2pdfmulti(title=savetitle, open=True, dpi=dpi, no_dstr=no_dstr) left = 0.05 right = 0.9 bottom = 0.05 top = 0.875 hspace = 0.315 wspace = 0.2 # Loop species for n, spec in enumerate(specs): if debug: print((n, spec, Vars.shape)) # Get units/scale for species + setup fig # scale=1 if isinstance(units, type(None)): units, scale = tra_unit(spec, scale=True, global_unit=True) if pcent: units, scale = '%', 1 mask_invalids = True # Set the correct title ptitle = 'Annual avg. {}'.format(latex_spec_name(spec)) if diff: ptitle += ' zonal $\Delta$ concentration' else: ptitle += ' zonal concentration' ptitle += ' ({})'.format(units) fig = plt.figure(figsize=(22, 14), dpi=dpi, facecolor='w', edgecolor='w') cbVars = Vars[n, :, :, :, :].mean(axis=-1).copy()*scale # set ranges for whiole data period if pcent: if len(cbVars[cbVars > 500]) > 0: cbVars = np.ma.masked_where(cbVars > 500, cbVars) extend = 'max' elif len(cbVars[cbVars < -500]) > 0: cbVars = np.ma.masked_where(cbVars < -500, cbVars) if extend == 'max': extend = 'both' else: extend = 'min' else: extend = 'neither' else: extend = 'neither' if set_lon: set_lon = get_gc_lon(set_lon, res=res) fixcb = [(i.min(), i.max()) for i in [cbVars[set_lon, ...]]][0] print(('SETTING LON to GC index: ', set_lon)) else: cbVars = cbVars.mean(axis=0) if set_window: gclat_0, gclat_1 = [get_gc_lat(i, res=res) for i in (lat_0, lat_1)] cbVars = cbVars[..., gclat_0:gclat_1, :] fixcb = [(i.min(), i.max()) for i in [cbVars]][0] # Kludge, force max cap at .2 if units == 'ratio': fixcb = [fixcb[0], 0.2] extend = 'max' cmap = get_colormap(fixcb) axn = [111] ax = fig.add_subplot(*axn) # if pcent: # print [ (np.min(i), np.max(i)) \ # for i in [ Vars[n,:,:,:,m].mean(axis=0)*scale ] ] # print [ (np.min(i), np.max(i)) \ # for i in [ Vars[n,:,:,:,m].median(axis=0)*scale ] ] if set_lon: arr = Vars[n, set_lon, ...].mean(axis=-1)*scale else: arr = Vars[n, ...].mean(axis=0).mean(axis=-1)*scale if set_window: arr = arr[..., get_gc_lat(lat_0, res=res): get_gc_lat(lat_1, res=res), :] # plot up spatial surface change zonal_plot(arr, fig, ax=ax, title=None, debug=debug, tropics=False, units=units, f_size=f_size, c_off=37, no_cb=True, lat_0=lat_0, lat_1=lat_1, set_window=set_window, fixcb=fixcb, extend=extend, window=True, lower_limited=True, res=res, mask_invalids=mask_invalids, cmap=cmap) # only show troposphere greyoutstrat(fig, t_ps.mean(axis=0).mean(axis=-1), axn=axn, res=res) # Add single colorbar mk_cb(fig, units=units, left=0.915, cmap=cmap, vmin=fixcb[0], vmax=fixcb[1], f_size=f_size, extend=extend) # sort out ascetics - adjust plots and add title # fig.subplots_adjust( bottom=bottom, top=top, left=left, \ # right=right,hspace=hspace, wspace=wspace) fig.suptitle(ptitle, fontsize=f_size*2, x=.55, y=.95) # save out figure plot2pdfmulti(pdff, savetitle, dpi=dpi, no_dstr=no_dstr) # close fig plt.clf() plt.close() del fig # save entire pdf plot2pdfmulti(pdff, savetitle, close=True, dpi=dpi, no_dstr=no_dstr)
37.584922
173
0.538759
c1f044e55f4aea100484fb50028a17cd82ff80e2
4,720
py
Python
lib/config/default.py
jie311/YOLOP
75a281c86f6f24a82f15c4aa6a8c27219e924848
[ "MIT" ]
811
2021-08-25T07:38:30.000Z
2022-03-31T10:30:26.000Z
lib/config/default.py
jie311/YOLOP
75a281c86f6f24a82f15c4aa6a8c27219e924848
[ "MIT" ]
99
2021-08-28T05:57:12.000Z
2022-03-31T09:27:06.000Z
lib/config/default.py
jie311/YOLOP
75a281c86f6f24a82f15c4aa6a8c27219e924848
[ "MIT" ]
189
2021-08-28T01:15:44.000Z
2022-03-30T17:40:13.000Z
import os from yacs.config import CfgNode as CN _C = CN() _C.LOG_DIR = 'runs/' _C.GPUS = (0,1) _C.WORKERS = 8 _C.PIN_MEMORY = False _C.PRINT_FREQ = 20 _C.AUTO_RESUME =False # Resume from the last training interrupt _C.NEED_AUTOANCHOR = False # Re-select the prior anchor(k-means) When training from scratch (epoch=0), set it to be ture! _C.DEBUG = False _C.num_seg_class = 2 # Cudnn related params _C.CUDNN = CN() _C.CUDNN.BENCHMARK = True _C.CUDNN.DETERMINISTIC = False _C.CUDNN.ENABLED = True # common params for NETWORK _C.MODEL = CN(new_allowed=True) _C.MODEL.NAME = '' _C.MODEL.STRU_WITHSHARE = False #add share_block to segbranch _C.MODEL.HEADS_NAME = [''] _C.MODEL.PRETRAINED = "" _C.MODEL.PRETRAINED_DET = "" _C.MODEL.IMAGE_SIZE = [640, 640] # width * height, ex: 192 * 256 _C.MODEL.EXTRA = CN(new_allowed=True) # loss params _C.LOSS = CN(new_allowed=True) _C.LOSS.LOSS_NAME = '' _C.LOSS.MULTI_HEAD_LAMBDA = None _C.LOSS.FL_GAMMA = 0.0 # focal loss gamma _C.LOSS.CLS_POS_WEIGHT = 1.0 # classification loss positive weights _C.LOSS.OBJ_POS_WEIGHT = 1.0 # object loss positive weights _C.LOSS.SEG_POS_WEIGHT = 1.0 # segmentation loss positive weights _C.LOSS.BOX_GAIN = 0.05 # box loss gain _C.LOSS.CLS_GAIN = 0.5 # classification loss gain _C.LOSS.OBJ_GAIN = 1.0 # object loss gain _C.LOSS.DA_SEG_GAIN = 0.2 # driving area segmentation loss gain _C.LOSS.LL_SEG_GAIN = 0.2 # lane line segmentation loss gain _C.LOSS.LL_IOU_GAIN = 0.2 # lane line iou loss gain # DATASET related params _C.DATASET = CN(new_allowed=True) _C.DATASET.DATAROOT = '/home/zwt/bdd/bdd100k/images/100k' # the path of images folder _C.DATASET.LABELROOT = '/home/zwt/bdd/bdd100k/labels/100k' # the path of det_annotations folder _C.DATASET.MASKROOT = '/home/zwt/bdd/bdd_seg_gt' # the path of da_seg_annotations folder _C.DATASET.LANEROOT = '/home/zwt/bdd/bdd_lane_gt' # the path of ll_seg_annotations folder _C.DATASET.DATASET = 'BddDataset' _C.DATASET.TRAIN_SET = 'train' _C.DATASET.TEST_SET = 'val' _C.DATASET.DATA_FORMAT = 'jpg' _C.DATASET.SELECT_DATA = False _C.DATASET.ORG_IMG_SIZE = [720, 1280] # training data augmentation _C.DATASET.FLIP = True _C.DATASET.SCALE_FACTOR = 0.25 _C.DATASET.ROT_FACTOR = 10 _C.DATASET.TRANSLATE = 0.1 _C.DATASET.SHEAR = 0.0 _C.DATASET.COLOR_RGB = False _C.DATASET.HSV_H = 0.015 # image HSV-Hue augmentation (fraction) _C.DATASET.HSV_S = 0.7 # image HSV-Saturation augmentation (fraction) _C.DATASET.HSV_V = 0.4 # image HSV-Value augmentation (fraction) # TODO: more augmet params to add # train _C.TRAIN = CN(new_allowed=True) _C.TRAIN.LR0 = 0.001 # initial learning rate (SGD=1E-2, Adam=1E-3) _C.TRAIN.LRF = 0.2 # final OneCycleLR learning rate (lr0 * lrf) _C.TRAIN.WARMUP_EPOCHS = 3.0 _C.TRAIN.WARMUP_BIASE_LR = 0.1 _C.TRAIN.WARMUP_MOMENTUM = 0.8 _C.TRAIN.OPTIMIZER = 'adam' _C.TRAIN.MOMENTUM = 0.937 _C.TRAIN.WD = 0.0005 _C.TRAIN.NESTEROV = True _C.TRAIN.GAMMA1 = 0.99 _C.TRAIN.GAMMA2 = 0.0 _C.TRAIN.BEGIN_EPOCH = 0 _C.TRAIN.END_EPOCH = 240 _C.TRAIN.VAL_FREQ = 1 _C.TRAIN.BATCH_SIZE_PER_GPU =24 _C.TRAIN.SHUFFLE = True _C.TRAIN.IOU_THRESHOLD = 0.2 _C.TRAIN.ANCHOR_THRESHOLD = 4.0 # if training 3 tasks end-to-end, set all parameters as True # Alternating optimization _C.TRAIN.SEG_ONLY = False # Only train two segmentation branchs _C.TRAIN.DET_ONLY = False # Only train detection branch _C.TRAIN.ENC_SEG_ONLY = False # Only train encoder and two segmentation branchs _C.TRAIN.ENC_DET_ONLY = False # Only train encoder and detection branch # Single task _C.TRAIN.DRIVABLE_ONLY = False # Only train da_segmentation task _C.TRAIN.LANE_ONLY = False # Only train ll_segmentation task _C.TRAIN.DET_ONLY = False # Only train detection task _C.TRAIN.PLOT = True # # testing _C.TEST = CN(new_allowed=True) _C.TEST.BATCH_SIZE_PER_GPU = 24 _C.TEST.MODEL_FILE = '' _C.TEST.SAVE_JSON = False _C.TEST.SAVE_TXT = False _C.TEST.PLOTS = True _C.TEST.NMS_CONF_THRESHOLD = 0.001 _C.TEST.NMS_IOU_THRESHOLD = 0.6 def update_config(cfg, args): cfg.defrost() # cfg.merge_from_file(args.cfg) if args.modelDir: cfg.OUTPUT_DIR = args.modelDir if args.logDir: cfg.LOG_DIR = args.logDir # if args.conf_thres: # cfg.TEST.NMS_CONF_THRESHOLD = args.conf_thres # if args.iou_thres: # cfg.TEST.NMS_IOU_THRESHOLD = args.iou_thres # cfg.MODEL.PRETRAINED = os.path.join( # cfg.DATA_DIR, cfg.MODEL.PRETRAINED # ) # # if cfg.TEST.MODEL_FILE: # cfg.TEST.MODEL_FILE = os.path.join( # cfg.DATA_DIR, cfg.TEST.MODEL_FILE # ) cfg.freeze()
29.873418
129
0.70678
d78d57336c4aee2ab077bfa01971cb295374c891
6,986
py
Python
backend/db.py
VrtanoskiAndrej/quack-hacks2020
235e402e8c43d8f04e0b3b116c6b0e924c843f69
[ "Apache-2.0" ]
null
null
null
backend/db.py
VrtanoskiAndrej/quack-hacks2020
235e402e8c43d8f04e0b3b116c6b0e924c843f69
[ "Apache-2.0" ]
null
null
null
backend/db.py
VrtanoskiAndrej/quack-hacks2020
235e402e8c43d8f04e0b3b116c6b0e924c843f69
[ "Apache-2.0" ]
null
null
null
from flask import Flask, abort, jsonify, request from flask_sqlalchemy import SQLAlchemy import numpy as np app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.db' app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False db = SQLAlchemy(app) courses = db.Table( 'courses', db.Column('course_id', db.Integer, db.ForeignKey('course.course_id'), primary_key=True), db.Column('user_id', db.Integer, db.ForeignKey('user.user_id', primary_key = True)) ) interests = db.Table( 'interests', db.Column('interest_id',db.Integer, db.ForeignKey('interest.interest_id', primary_key=True)), db.Column('weight', db.Integer), db.Column('user_id', db.Integer, db.ForeignKey('user.user_id', primary_key=True)) ) class User(db.Model): user_id = db.Column(db.Integer, primary_key = True, autoincrement=True) firstName = db.Column(db.String(100)) lastName = db.Column(db.String(100)) username = db.Column(db.String(100)) email = db.Column(db.String(100)) phoneNumber = db.Column(db.Integer) courses = db.relationship('Course', secondary=courses, lazy='subquery',backref=db.backref('users',lazy='dynamic')) interests = db.relationship('Interest', secondary=interests, lazy='subquery', backref=db.backref('users',lazy='dynamic')) def __init__(self,firstName, lastName, username, email, phoneNumber): self.firstName = firstName self.lastName = lastName self.username = username self.email = email self.phoneNumber = phoneNumber self.email = email class Course(db.Model): course_id = db.Column(db.Integer, primary_key = True, autoincrement=True) course_name = db.Column(db.String(100)) # _users = db.relationship('User', secondary=courses, backref=db.backref('courses_backref',lazy='dynamic')) def __init__(self,course_name): self.course_name = course_name class Interest(db.Model): interest_id = db.Column(db.Integer, primary_key = True, autoincrement=True) interest = db.Column(db.String(100)) def __init__(self,interest): self.interest = interest all_Courses = [ 'CS 1101','CS 1301', 'CS 1331', 'ENGL 1101', 'ENGL 1102', 'APPH 1040', 'APPH 1050', 'PSYCH 1101', 'MATH 1551', 'MATH 1552', 'MATH 1553', 'COE 201', 'HIST 2111'] for c in all_Courses: course = Course(c) db.session.add(course) db.session.commit() all_Interests = [ 'Reading', 'Gaming', 'Rocket Building', 'Watching TV', 'Family Time', 'Movies', 'Fishing', 'Computer', 'Gardening', 'Renting Movies'] for i in all_Interests: interest = Interest(i) db.session.add(interest) db.session.commit() # usr = User("hailey", "nho38") # db.session.add(usr) # # User.query.filter_by(username='hailey').delete() # cs1371 = Course("CS1371") # db.session.commit() # cs1371.users.append(usr) # db.session.commit() def courseDB(): query = db.session.query(Course,User).join(Course.users).all() rows, cols = len(db.session.query(Course).all()), len(db.session.query(User).all()) courseDB = np.zeros((rows,cols)) for i in range (rows): c = query[i][0].course_id - 1 r = query[i][1].user_id - 1 courseDB[r][c] = 1 return courseDB def interestDB(): query = db.session.query(Interest,User).join(Interest.users).all() rows, cols = len(db.session.query(Interest).all()), len(db.session.query(User).all()) interestDB = np.zeros((rows,cols)) for i in range (rows): c = query[i][0].interest_id r = query[i][1].user_id interestDB[r][c] = 1 return interestDB def findMaxIndex(array): maximum = array[0] maxIndex = 0 for index in range(0, len(array)): if(array[index] > maximum): maximum = array[index] maxIndex = index return maxIndex # -------------------------------------- # register user @app.route('/app/api/create', methods = ['POST']) def create_user(): #Check for the data if not request.json: #can add other conditions later to make sure it has certain data with: or not 'data' in request.json. Will need to check formats too abort(400) firstName = request.form.get('firstName') lastName = request.form.get('lastName') username = request.form.get('username') email = request.form.get('email') phoneNumber = request.form.get('phoneNumber') usr = User(firstName, lastName, username, email, phoneNumber) db.session.add(usr) db.session.commit() courses = request.form.get('courses') interests = request.form.get('hobbies') course_idx = [course["id"] for course in courses] interest_idx = [interest["id"] for interest in interests] for c in course_idx: course = Course.query.filter(course_id=c).all() course[0].users.append(usr) db.session.commit() for i in interest_idx: interest = Interest.query.filter(interest_id=i).all() interest[0].users.append(usr) db.session.commit() return jsonify({'created': True}), 201 # matching @app.route('/app/api/recommend/<int:userid>', methods = ['GET']) def recommend_matches(userid): user = [{}] #get the user's information and store it in a list #abort if this user has no information --- not sure if this is totally Needed if len(user) == 0: abort(404) #define matrices containing the other user's course and interests as well as single row matrices representing the user's courseDB = np.array(courseDB()) interestDB = np.array(interestDB()) user_course = np.array(courseDB[userid - 1]) user_interest = np.array(interestDB[userid - 1]) #use masking to multiply correspondng matrices together to get user scores for each category courseScores = np.matmul(courseDB, user_course) interestScores = np.matmul(interestDB, user_interest) finalScores = np.add(courseScores, interestScores) maxScore = np.amax(finalScores) maxID = findMaxIndex(finalScores) match_User = User.query.filter(user_id=maxID + 1).all() firstName = match_User[0].firstName lastName = match_User[0].lastName email = match_User[0].email phoneNumber = match_User[0].phoneNumber return jsonify({'firstName' : firstName,'lastName' : lastName, 'email': email, 'phoneNumber' : phoneNumber}) # @app.teardown_appcontext # def shutdown_session(exception=None): # db.session.remove() if __name__ == "__main__": db.create_all() app.run() # result = [r for r in Course.query.filter(Course.users.any(id=0)).all()] # result = [r for r in db.session.query(User).all()] # result = db.session.query(Course).join(Course.users).filter(User.user_id==1).all() # result = db.session.query(Course,User).join(Course.users).filter(User.user_id==1).all() # result = [r for r in Course.query.join(Course.users).filter_by(user_id=1).all()] # courseDB = courseDB() # print(courseDB) # from pdb import set_trace; set_trace()
33.912621
160
0.667764
798ad9f2710dcb47a192414e8ff15e3afeff3f2f
811
py
Python
haminfo/db/alembic_helpers.py
hemna/haminfo
86db93536075999afa086fda84f10c1911af0375
[ "Apache-2.0" ]
null
null
null
haminfo/db/alembic_helpers.py
hemna/haminfo
86db93536075999afa086fda84f10c1911af0375
[ "Apache-2.0" ]
null
null
null
haminfo/db/alembic_helpers.py
hemna/haminfo
86db93536075999afa086fda84f10c1911af0375
[ "Apache-2.0" ]
null
null
null
from alembic import op from sqlalchemy import engine_from_config from sqlalchemy.engine import reflection def table_does_not_exist(table, schema=None): config = op.get_context().config engine = engine_from_config( config.get_section(config.config_ini_section), prefix='sqlalchemy.') insp = reflection.Inspector.from_engine(engine) return insp.has_table(table, schema) is False def table_has_column(table, column): config = op.get_context().config engine = engine_from_config( config.get_section(config.config_ini_section), prefix='sqlalchemy.') insp = reflection.Inspector.from_engine(engine) has_column = False for col in insp.get_columns(table): if column not in col['name']: continue has_column = True return has_column
32.44
76
0.72873
a7cc9908ff406b9b31fb55c690cc626ef19d69b5
32,283
py
Python
test/functional/fundrawtransaction.py
peraktechnology/perakcoin
502fb07b9d11ff1528577c7d2afe0943f5f20be0
[ "MIT" ]
3
2018-09-27T04:01:02.000Z
2021-04-20T07:51:37.000Z
test/functional/fundrawtransaction.py
peraktechnology/perakcoin
502fb07b9d11ff1528577c7d2afe0943f5f20be0
[ "MIT" ]
null
null
null
test/functional/fundrawtransaction.py
peraktechnology/perakcoin
502fb07b9d11ff1528577c7d2afe0943f5f20be0
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the fundrawtransaction RPC.""" from test_framework.test_framework import BitcoinTestFramework, BITCOIND_PROC_WAIT_TIMEOUT from test_framework.util import * def get_unspent(listunspent, amount): for utx in listunspent: if utx['amount'] == amount: return utx raise AssertionError('Could not find unspent with amount={}'.format(amount)) class RawTransactionsTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 4 def setup_network(self, split=False): self.setup_nodes() connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 1, 2) connect_nodes_bi(self.nodes, 0, 2) connect_nodes_bi(self.nodes, 0, 3) def run_test(self): min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee/1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() # ensure that setting changePosition in fundraw with an exact match is handled properly rawmatch = self.nodes[2].createrawtransaction([], {self.nodes[2].getnewaddress():50}) rawmatch = self.nodes[2].fundrawtransaction(rawmatch, {"changePosition":1, "subtractFeeFromOutputs":[0]}) assert_equal(rawmatch["changepos"], -1) watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].validateaddress(watchonly_address)["pubkey"] watchonly_amount = Decimal(200) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test that we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.2 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6, self.nodes[1].getnewaddress() : 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(5.0) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee #################################################### # test a fundrawtransaction with an invalid option # #################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_jsonrpc(-3, "Unexpected key foo", self.nodes[2].fundrawtransaction, rawtx, {'foo':'bar'}) ############################################################ # test a fundrawtransaction with an invalid change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_jsonrpc(-5, "changeAddress must be a valid perakcoin address", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress':'foobar'}) ############################################################ # test a fundrawtransaction with a provided change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) change = self.nodes[2].getnewaddress() assert_raises_jsonrpc(-8, "changePosition out of bounds", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress':change, 'changePosition':2}) rawtxfund = self.nodes[2].fundrawtransaction(rawtx, {'changeAddress': change, 'changePosition': 0}) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) out = dec_tx['vout'][0] assert_equal(change, out['scriptPubKey']['addresses'][0]) ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0, self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_raises_jsonrpc(-4, "Insufficient funds", self.nodes[2].fundrawtransaction, rawtx) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():1.1,self.nodes[1].getnewaddress():1.2,self.nodes[1].getnewaddress():0.1,self.nodes[1].getnewaddress():1.3,self.nodes[1].getnewaddress():0.2,self.nodes[1].getnewaddress():0.3} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) addr3Obj = self.nodes[1].validateaddress(addr3) addr4Obj = self.nodes[1].validateaddress(addr4) addr5Obj = self.nodes[1].validateaddress(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # send 1.2 BTC to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawtx) signedTx = self.nodes[2].signrawtransaction(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('1.10000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.stop_node(0) self.stop_node(2) self.stop_node(3) self.nodes[1].encryptwallet("test") self.bitcoind_processes[1].wait(timeout=BITCOIND_PROC_WAIT_TIMEOUT) self.nodes = self.start_nodes(self.num_nodes, self.options.tmpdir) # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.sync_all() # drain the keypool self.nodes[1].getnewaddress() self.nodes[1].getrawchangeaddress() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked assert_raises_jsonrpc(-4, "Keypool ran out, please call keypoolrefill first", self.nodes[1].fundrawtransaction, rawtx) #refill the keypool self.nodes[1].walletpassphrase("test", 100) self.nodes[1].keypoolrefill(8) #need to refill the keypool to get an internal change address self.nodes[1].walletlock() assert_raises_jsonrpc(-13, "walletpassphrase", self.nodes[1].sendtoaddress, self.nodes[0].getnewaddress(), 1.2) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #now we need to unlock self.nodes[1].walletpassphrase("test", 600) signedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('51.10000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) fundedAndSignedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('50.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, {'includeWatching': True }) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert("fee" in result.keys()) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) # Backward compatibility test (2nd param is includeWatching) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransaction(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransaction(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) self.sync_all() ####################### # Test feeRate option # ####################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[3].getnewaddress() : 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx) # uses min_relay_tx_fee (set by settxfee) result2 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}) result3 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 10*min_relay_tx_fee}) result_fee_rate = result['fee'] * 1000 / count_bytes(result['hex']) assert_fee_amount(result2['fee'], count_bytes(result2['hex']), 2 * result_fee_rate) assert_fee_amount(result3['fee'], count_bytes(result3['hex']), 10 * result_fee_rate) ################################ # Test no address reuse occurs # ################################ result3 = self.nodes[3].fundrawtransaction(rawtx) res_dec = self.nodes[0].decoderawtransaction(result3["hex"]) changeaddress = "" for out in res_dec['vout']: if out['value'] > 1.0: changeaddress += out['scriptPubKey']['addresses'][0] assert(changeaddress != "") nextaddr = self.nodes[3].getnewaddress() # Now the change address key should be removed from the keypool assert(changeaddress != nextaddr) ###################################### # Test subtractFeeFromOutputs option # ###################################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[2].getnewaddress(): 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawtx), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": []}), # empty subtraction list self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": [0]}), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}), self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee, "subtractFeeFromOutputs": [0]})] dec_tx = [self.nodes[3].decoderawtransaction(tx['hex']) for tx in result] output = [d['vout'][1 - r['changepos']]['value'] for d, r in zip(dec_tx, result)] change = [d['vout'][r['changepos']]['value'] for d, r in zip(dec_tx, result)] assert_equal(result[0]['fee'], result[1]['fee'], result[2]['fee']) assert_equal(result[3]['fee'], result[4]['fee']) assert_equal(change[0], change[1]) assert_equal(output[0], output[1]) assert_equal(output[0], output[2] + result[2]['fee']) assert_equal(change[0] + result[0]['fee'], change[2]) assert_equal(output[3], output[4] + result[4]['fee']) assert_equal(change[3] + result[3]['fee'], change[4]) inputs = [] outputs = {self.nodes[2].getnewaddress(): value for value in (1.0, 1.1, 1.2, 1.3)} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawtx), # split the fee between outputs 0, 2, and 3, but not output 1 self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": [0, 2, 3]})] dec_tx = [self.nodes[3].decoderawtransaction(result[0]['hex']), self.nodes[3].decoderawtransaction(result[1]['hex'])] # Nested list of non-change output amounts for each transaction output = [[out['value'] for i, out in enumerate(d['vout']) if i != r['changepos']] for d, r in zip(dec_tx, result)] # List of differences in output amounts between normal and subtractFee transactions share = [o0 - o1 for o0, o1 in zip(output[0], output[1])] # output 1 is the same in both transactions assert_equal(share[1], 0) # the other 3 outputs are smaller as a result of subtractFeeFromOutputs assert_greater_than(share[0], 0) assert_greater_than(share[2], 0) assert_greater_than(share[3], 0) # outputs 2 and 3 take the same share of the fee assert_equal(share[2], share[3]) # output 0 takes at least as much share of the fee, and no more than 2 satoshis more, than outputs 2 and 3 assert_greater_than_or_equal(share[0], share[2]) assert_greater_than_or_equal(share[2] + Decimal(2e-8), share[0]) # the fee is the same in both transactions assert_equal(result[0]['fee'], result[1]['fee']) # the total subtracted from the outputs is equal to the fee assert_equal(share[0] + share[2] + share[3], result[0]['fee']) if __name__ == '__main__': RawTransactionsTest().main()
44.528276
223
0.570424
f6a8ae663e3df289f236496e09e3ee18acf8a078
6,758
py
Python
terra_notebook_utils/workflows.py
mitchac/terra-notebook-utils
4d3bd83f589b2219d028ce2b16027dd8da1b8749
[ "MIT" ]
null
null
null
terra_notebook_utils/workflows.py
mitchac/terra-notebook-utils
4d3bd83f589b2219d028ce2b16027dd8da1b8749
[ "MIT" ]
null
null
null
terra_notebook_utils/workflows.py
mitchac/terra-notebook-utils
4d3bd83f589b2219d028ce2b16027dd8da1b8749
[ "MIT" ]
null
null
null
""" Workflow information """ import json import logging from datetime import datetime from functools import lru_cache from typing import Dict, Generator, Optional, Tuple from firecloud import fiss from terra_notebook_utils import WORKSPACE_NAME, WORKSPACE_GOOGLE_PROJECT, costs from terra_notebook_utils.utils import concurrent_recursion, js_get logger = logging.getLogger(__name__) date_format = "%Y-%m-%dT%H:%M:%S.%fZ" class TNUCostException(Exception): pass def list_submissions(workspace_name: Optional[str]=WORKSPACE_NAME, workspace_namespace: Optional[str]=WORKSPACE_GOOGLE_PROJECT) -> Generator[dict, None, None]: resp = fiss.fapi.list_submissions(workspace_namespace, workspace_name) resp.raise_for_status() for s in resp.json(): yield s @lru_cache() def get_submission(submission_id: str, workspace_name: Optional[str]=WORKSPACE_NAME, workspace_namespace: Optional[str]=WORKSPACE_GOOGLE_PROJECT) -> dict: """ Get information about a submission, including member workflows """ resp = fiss.fapi.get_submission(workspace_namespace, workspace_name, submission_id) resp.raise_for_status() return resp.json() @lru_cache() def get_workflow(submission_id: str, workflow_id: str, workspace_name: Optional[str]=WORKSPACE_NAME, workspace_namespace: Optional[str]=WORKSPACE_GOOGLE_PROJECT) -> dict: """ Get information about a workflow """ resp = fiss.fapi.get_workflow_metadata(workspace_namespace, workspace_name, submission_id, workflow_id) resp.raise_for_status() return resp.json() def get_all_workflows(submission_id: str, workspace: Optional[str]=WORKSPACE_NAME, workspace_namespace: Optional[str]=WORKSPACE_GOOGLE_PROJECT) -> Dict[str, dict]: """ Retrieve all workflows, and workflow metadata, for `submission_id`, including sub-workflows. """ workflows_metadata = dict() def get_metadata_and_subworkflows(workflow_id: str): wf_medadata = get_workflow(submission_id, workflow_id, workspace, workspace_namespace) workflows_metadata[workflow_id] = wf_medadata subworkflows = {call_metadata['subWorkflowId'] for call_metadata_list in wf_medadata['calls'].values() for call_metadata in call_metadata_list if "subWorkflowId" in call_metadata} return subworkflows submission = get_submission(submission_id, workspace, workspace_namespace) initial_workflow_ids = {wf['workflowId'] for wf in submission['workflows']} concurrent_recursion(get_metadata_and_subworkflows, initial_workflow_ids) return workflows_metadata def estimate_workflow_cost(workflow_id: str, workflow_metadata: dict) -> Generator[dict, None, None]: for call_name, call_metadata_list in workflow_metadata['calls'].items(): for call_metadata in call_metadata_list: if "subWorkflowId" in call_metadata: # subworkflows need to be looked up and estimated separately continue try: task_name = call_name.split(".")[1] call_cached = bool(int(js_get("callCaching.hit", call_metadata, default=0))) if call_cached: cost, cpus, memory_gb, runtime, disk_size_gb = 0.0, 0, 0.0, 0.0, 0.0 else: cpus, memory_gb = _parse_machine_type(js_get("jes.machineType", call_metadata)) # Assume that Google Lifesciences Pipelines API uses N1 custome machine type completed = js_get("executionStatus", call_metadata) if completed == "Done": instance_start = datetime.strptime(js_get("executionEvents[?contains(description,'assigned')].startTime | [0]", call_metadata), date_format) instance_end = datetime.strptime(js_get("executionEvents[?description == 'Worker released'].endTime | [0]", call_metadata), date_format) runtime = (instance_end - instance_start).total_seconds() elif completed == "RetryableFailure" or completed == "Failed": instance_start = datetime.strptime(js_get("executionEvents[?description == 'RunningJob'].startTime | [0]", call_metadata), date_format) instance_end = datetime.strptime(js_get("executionEvents[?description == 'RunningJob'].endTime | [0]", call_metadata), date_format) runtime = (instance_end - instance_start).total_seconds() else: instance_start = 0 instance_end = 0 runtime = 0 preemptible = bool(int(js_get("runtimeAttributes.preemptible", call_metadata))) disk_description = js_get("runtimeAttributes.disks", call_metadata, default="") if disk_description.startswith("local-disk"): _, size_gb, _ = disk_description.split() disk_size_gb = float(size_gb) else: disk_size_gb = 1.0 # Guess 1GB when disk information is unavailable cost = (costs.GCPCustomN1Cost.estimate(cpus, memory_gb, runtime, preemptible) + costs.PersistentDisk.estimate(disk_size_gb, runtime)) yield dict(task_name=task_name, cost=cost, number_of_cpus=cpus, memory=memory_gb, disk=disk_size_gb, completed=completed, instance_start=instance_start, instance_end=instance_end, duration=runtime, call_cached=call_cached) except (KeyError, TNUCostException) as exc: logger.warning(f"Unable to estimate costs for workflow {workflow_id}: " f"{exc.args[0]}") def _parse_machine_type(machine_type: str) -> Tuple[int, float]: parts = machine_type.split("-", 2) if 3 != len(parts) or "custom" != parts[0]: raise TNUCostException(f"Cannot estimate costs for machine type '{machine_type}'" "Please contact terra-notebook-utils maintainers to add support") try: cpus, memory_gb = int(parts[1]), float(parts[2]) / 1024 return cpus, memory_gb except ValueError as exc: raise TNUCostException(f"Cannot parse cpus and memory from '{machine_type}'") from exc
49.691176
164
0.627701
ca0a5f94547bcf5fdce72fa4c967c2175b862d8c
2,898
py
Python
tests/test_repeat_plugin.py
jeroen-dhollander/python-paginator
8c60ae6dd64a7440feda4561440117d9bebc3ae7
[ "CC0-1.0" ]
3
2018-09-26T20:07:51.000Z
2021-07-10T11:59:44.000Z
tests/test_repeat_plugin.py
jeroen-dhollander/python-paginator
8c60ae6dd64a7440feda4561440117d9bebc3ae7
[ "CC0-1.0" ]
1
2020-02-19T10:15:38.000Z
2020-03-14T21:48:55.000Z
tests/test_repeat_plugin.py
jeroen-dhollander/python-more-or-less
8c60ae6dd64a7440feda4561440117d9bebc3ae7
[ "CC0-1.0" ]
null
null
null
from more_or_less import more_plugins from more_or_less.input import Input from more_or_less.more_plugin import MorePlugin from more_or_less.output import Output from more_or_less.page import Page from more_or_less.search_plugin import SearchPage from tests.test_more_page_builder import TestUtil from unittest.mock import Mock, call _UNREPEATABLE_PAGE_KEY = 'U' class TestRepeatPlugin(TestUtil): def setUp(self): self.input = Mock(Input) self.output = Mock(Output) plugins = more_plugins.get() + [UnrepeatablePagePlugin()] self.builder = self.get_more_page_builder( input=self.input, output=self.output, plugins=plugins) def fill_page(self, page): while not page.is_full(): page.add_line('line \n') def test_can_repeat_enter(self): self.input.get_character.side_effect = ['5', '\n'] page = self.builder.build_next_page() self.fill_page(page) self.input.get_character.side_effect = ['.'] repeated_page = self.builder.build_next_page() self.assertIsPageOfHeight(repeated_page, 5) self.assertFalse(repeated_page.is_full()) def test_can_repeat_space(self): self.input.get_character.side_effect = [' '] page = self.builder.build_next_page() self.fill_page(page) self.input.get_character.side_effect = ['.'] repeated_page = self.builder.build_next_page() self.assertIsPageOfHeight(repeated_page, page.height) def test_can_repeat_search(self): self.input.get_character.side_effect = ['5', '/'] self.input.prompt.return_value = 'the pattern' self.builder.build_next_page() self.input.get_character.side_effect = ['.'] repeated_page = self.builder.build_next_page() self.assertIsPageOfType(repeated_page, SearchPage) self.assertEqual('the pattern', repeated_page.pattern) self.assertEqual(5, repeated_page.required_match_count) def test_prints_warning_on_unrepeatable_command(self): self.input.get_character.side_effect = [_UNREPEATABLE_PAGE_KEY] self.builder.build_next_page() self.input.get_character.side_effect = ['.', ' ', ' '] self.builder.build_next_page() self.input.assert_has_calls([ call.get_character('--More--'), call.get_character('--Previous command can not be repeated--'), ]) class UnrepeatablePage(Page): def is_full(self): return False def add_line(self, line): pass class UnrepeatablePagePlugin(MorePlugin): ''' Plugin that returns a page of type 'DefaultPage' ''' def get_keys(self): return [_UNREPEATABLE_PAGE_KEY] def build_page(self, page_builder, key_pressed, arguments): return UnrepeatablePage() def get_help(self): pass
28.98
75
0.676329
33ab4f42fe0fc6aab55c05e4e991f56fbbc9753c
3,574
py
Python
JavaExtractor/extract.py
jjhenkel/code2seq
dd80fff02aa8cd9d05f6781a8309f8397e69f669
[ "MIT" ]
null
null
null
JavaExtractor/extract.py
jjhenkel/code2seq
dd80fff02aa8cd9d05f6781a8309f8397e69f669
[ "MIT" ]
null
null
null
JavaExtractor/extract.py
jjhenkel/code2seq
dd80fff02aa8cd9d05f6781a8309f8397e69f669
[ "MIT" ]
null
null
null
#!/usr/bin/python import itertools import multiprocessing import os import shutil import subprocess import sys from argparse import ArgumentParser from threading import Timer def get_immediate_subdirectories(a_dir): return [(os.path.join(a_dir, name)) for name in os.listdir(a_dir) if os.path.isdir(os.path.join(a_dir, name))] TMP_DIR = "" def ParallelExtractDir(args, dir): ExtractFeaturesForDir(args, dir, "") def ExtractFeaturesForDir(args, dir, prefix): command = ['java', '-Xmx100g', '-Xss500M', '-XX:MaxNewSize=60g', '-cp', args.jar, 'JavaExtractor.App', '--max_path_length', str(args.max_path_length), '--max_path_width', str(args.max_path_width), '--dir', dir, '--num_threads', str(args.num_threads)] # print command # os.system(command) kill = lambda process: process.kill() outputFileName = TMP_DIR + prefix + dir.split('/')[-1] failed = False with open(outputFileName, 'a') as outputFile: sleeper = subprocess.Popen(command, stdout=outputFile, stderr=subprocess.PIPE) timer = Timer(60 * 60 * 600, kill, [sleeper]) try: timer.start() stdout, stderr = sleeper.communicate() finally: timer.cancel() if sleeper.poll() == 0: if len(stderr) > 0: print(stderr.decode(), file=sys.stderr) else: print('dir: ' + str(dir) + ' was not completed in time', file=sys.stderr) if len(stderr) > 0: print(stderr.decode(), file=sys.stderr) failed = True subdirs = get_immediate_subdirectories(dir) for subdir in subdirs: ExtractFeaturesForDir(args, subdir, prefix + dir.split('/')[-1] + '_') if failed: if os.path.exists(outputFileName): os.remove(outputFileName) def ExtractFeaturesForDirsList(args, dirs): global TMP_DIR TMP_DIR = "./tmp/feature_extractor%d/" % (os.getpid()) if os.path.exists(TMP_DIR): shutil.rmtree(TMP_DIR, ignore_errors=True) os.makedirs(TMP_DIR) try: p = multiprocessing.Pool(6) p.starmap(ParallelExtractDir, zip(itertools.repeat(args), dirs)) # for dir in dirs: # ExtractFeaturesForDir(args, dir, '') output_files = os.listdir(TMP_DIR) for f in output_files: os.system("cat %s/%s" % (TMP_DIR, f)) finally: shutil.rmtree(TMP_DIR, ignore_errors=True) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("-maxlen", "--max_path_length", dest="max_path_length", required=False, default=8) parser.add_argument("-maxwidth", "--max_path_width", dest="max_path_width", required=False, default=2) parser.add_argument("-threads", "--num_threads", dest="num_threads", required=False, default=64) parser.add_argument("-j", "--jar", dest="jar", required=True) parser.add_argument("-dir", "--dir", dest="dir", required=False) parser.add_argument("-file", "--file", dest="file", required=False) args = parser.parse_args() if args.file is not None: command = 'java -cp ' + args.jar + ' JavaExtractor.App --max_path_length ' + \ str(args.max_path_length) + ' --max_path_width ' + str(args.max_path_width) + ' --file ' + args.file os.system(command) elif args.dir is not None: # subdirs = get_immediate_subdirectories(args.dir) # if len(subdirs) == 0: # subdirs = [args.dir] ExtractFeaturesForDirsList(args, [args.dir])
36.469388
118
0.62563
d0a4ad5c765853b97ec6d3f2739414919a4f3aa7
5,819
py
Python
bayes_opt/bayesian_optimization.py
heartfelt-tech/BayesianOptimization
fb94a0239090e4d8de34c04d445b151ed9cb5dd4
[ "MIT" ]
null
null
null
bayes_opt/bayesian_optimization.py
heartfelt-tech/BayesianOptimization
fb94a0239090e4d8de34c04d445b151ed9cb5dd4
[ "MIT" ]
null
null
null
bayes_opt/bayesian_optimization.py
heartfelt-tech/BayesianOptimization
fb94a0239090e4d8de34c04d445b151ed9cb5dd4
[ "MIT" ]
null
null
null
import warnings import numpy as np from .target_space import TargetSpace from .event import Events, DEFAULT_EVENTS from .logger import _get_default_logger from .util import UtilityFunction, acq_max, ensure_rng from sklearn.gaussian_process.kernels import Matern from sklearn.gaussian_process import GaussianProcessRegressor class Queue: def __init__(self): self._queue = [] @property def empty(self): return len(self) == 0 def __len__(self): return len(self._queue) def __next__(self): if self.empty: raise StopIteration("Queue is empty, no more objects to retrieve.") obj = self._queue[0] self._queue = self._queue[1:] return obj def next(self): return self.__next__() def add(self, obj): """Add object to end of queue.""" self._queue.append(obj) class Observable(object): """ Inspired/Taken from https://www.protechtraining.com/blog/post/879#simple-observer """ def __init__(self, events): # maps event names to subscribers # str -> dict self._events = {event: dict() for event in events} def get_subscribers(self, event): return self._events[event] def subscribe(self, event, subscriber, callback=None): if callback == None: callback = getattr(subscriber, 'update') self.get_subscribers(event)[subscriber] = callback def unsubscribe(self, event, subscriber): del self.get_subscribers(event)[subscriber] def dispatch(self, event): for _, callback in self.get_subscribers(event).items(): callback(event, self) class BayesianOptimization(Observable): def __init__(self, f, pbounds, ptypes=None, random_state=None, verbose=2): """""" self._random_state = ensure_rng(random_state) # Data structure containing the function to be optimized, the bounds of # its domain, and a record of the evaluations we have done so far self._space = TargetSpace(f, pbounds, ptypes, random_state) # queue self._queue = Queue() # Internal GP regressor self._gp = GaussianProcessRegressor( kernel=Matern(nu=2.5), alpha=1e-6, normalize_y=True, n_restarts_optimizer=25, random_state=self._random_state, ) self._verbose = verbose super(BayesianOptimization, self).__init__(events=DEFAULT_EVENTS) @property def space(self): return self._space @property def max(self): return self._space.max() @property def res(self): return self._space.res() def register(self, params, target): """Expect observation with known target""" self._space.register(params, target) self.dispatch(Events.OPTMIZATION_STEP) def probe(self, params, lazy=True): """Probe target of x""" if lazy: self._queue.add(params) else: self._space.probe(params) self.dispatch(Events.OPTMIZATION_STEP) def suggest(self, utility_function): """Most promissing point to probe next""" if len(self._space) == 0: return self._space.array_to_params(self._space.random_sample()) # Sklearn's GP throws a large number of warnings at times, but # we don't really need to see them here. with warnings.catch_warnings(): warnings.simplefilter("ignore") self._gp.fit(self._space.params, self._space.target) # Finding argmax of the acquisition function. suggestion = acq_max( ac=utility_function.utility, gp=self._gp, y_max=self._space.target.max(), bounds=self._space.bounds, btypes=self._space.btypes, random_state=self._random_state ) return self._space.array_to_params(suggestion) def _prime_queue(self, init_points): """Make sure there's something in the queue at the very beginning.""" if self._queue.empty and self._space.empty: init_points = max(init_points, 1) for _ in range(init_points): self._queue.add(self._space.random_sample()) def _prime_subscriptions(self): if not any([len(subs) for subs in self._events.values()]): _logger = _get_default_logger(self._verbose) self.subscribe(Events.OPTMIZATION_START, _logger) self.subscribe(Events.OPTMIZATION_STEP, _logger) self.subscribe(Events.OPTMIZATION_END, _logger) def maximize(self, init_points=5, n_iter=25, acq='ucb', kappa=2.576, xi=0.0, **gp_params): """Mazimize your function""" self._prime_subscriptions() self.dispatch(Events.OPTMIZATION_START) self._prime_queue(init_points) self.set_gp_params(**gp_params) util = UtilityFunction(kind=acq, kappa=kappa, xi=xi) iteration = 0 while not self._queue.empty or iteration < n_iter: try: x_probe = next(self._queue) except StopIteration: x_probe = self.suggest(util) iteration += 1 self.probe(x_probe, lazy=False) self.dispatch(Events.OPTMIZATION_END) def set_bounds(self, new_bounds): """ A method that allows changing the lower and upper searching bounds Parameters ---------- new_bounds : dict A dictionary with the parameter name and its new bounds """ self._space.set_bounds(new_bounds) def set_gp_params(self, **params): self._gp.set_params(**params)
30.307292
79
0.616085
fc2de1737f3c4598d0df7a96e2a609a95442911f
10,078
py
Python
other_experiments/spatial_sne_all_with_skip_connections(Copy over effect)/few_shot_segmentor_sne_position_all_type_spatial_skipconn_conditioner_baseline.py
a-parida12/few-shot-segmentation
0f678845cec598e635b41ec6d8c2db1585c6ea55
[ "MIT" ]
1
2021-12-29T07:30:21.000Z
2021-12-29T07:30:21.000Z
other_experiments/spatial_sne_all_with_skip_connections(Copy over effect)/few_shot_segmentor_sne_position_all_type_spatial_skipconn_conditioner_baseline.py
a-parida12/few-shot-segmentation
0f678845cec598e635b41ec6d8c2db1585c6ea55
[ "MIT" ]
null
null
null
other_experiments/spatial_sne_all_with_skip_connections(Copy over effect)/few_shot_segmentor_sne_position_all_type_spatial_skipconn_conditioner_baseline.py
a-parida12/few-shot-segmentation
0f678845cec598e635b41ec6d8c2db1585c6ea55
[ "MIT" ]
null
null
null
"""Few-Shot_learning Segmentation""" import numpy as np import torch import torch.nn as nn from nn_common_modules import modules as sm from data_utils import split_batch # import torch.nn.functional as F from squeeze_and_excitation import squeeze_and_excitation as se class SDnetConditioner(nn.Module): """ A conditional branch of few shot learning regressing the parameters for the segmentor """ def __init__(self, params): super(SDnetConditioner, self).__init__() se_block_type = se.SELayer.SSE params['num_channels'] = 2 params['num_filters'] = 16 self.encode1 = sm.SDnetEncoderBlock(params) self.squeeze_conv_e1 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = 16 self.encode2 = sm.SDnetEncoderBlock(params) self.squeeze_conv_e2 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.encode3 = sm.SDnetEncoderBlock(params) self.squeeze_conv_e3 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.encode4 = sm.SDnetEncoderBlock(params) self.squeeze_conv_e4 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.bottleneck = sm.GenericBlock(params) self.squeeze_conv_bn = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = 16+16 self.decode1 = sm.SDnetDecoderBlock(params) self.squeeze_conv_d1 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.decode2 = sm.SDnetDecoderBlock(params) self.squeeze_conv_d2 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.decode3 = sm.SDnetDecoderBlock(params) self.squeeze_conv_d3 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) self.decode4 = sm.SDnetDecoderBlock(params) self.squeeze_conv_d4 = nn.Conv2d(in_channels=params['num_filters'], out_channels=1, kernel_size=(1, 1), padding=(0, 0), stride=1) params['num_channels'] = 16 self.classifier = sm.ClassifierBlock(params) self.sigmoid = nn.Sigmoid() def forward(self, input): e1, out1, ind1 = self.encode1(input) e_w1 = self.sigmoid(self.squeeze_conv_e1(e1)) e2, out2, ind2 = self.encode2(e1) e_w2 = self.sigmoid(self.squeeze_conv_e2(e2)) e3, out3, ind3 = self.encode3(e2) e_w3 = self.sigmoid(self.squeeze_conv_e3(e3)) e4, out4, ind4 = self.encode3(e3) e_w4 = self.sigmoid(self.squeeze_conv_e4(e4)) bn = self.bottleneck(e4) bn_w4 = self.sigmoid(self.squeeze_conv_bn(bn)) d4 = self.decode4(bn, out4, ind4) d_w4 = self.sigmoid(self.squeeze_conv_d4(d4)) d3 = self.decode3(d4, out3, ind3) d_w3 = self.sigmoid(self.squeeze_conv_d3(d3)) d2 = self.decode2(d3, out2, ind2) d_w2 = self.sigmoid(self.squeeze_conv_d2(d2)) d1 = self.decode1(d2, out1, ind1) d_w1 = self.sigmoid(self.squeeze_conv_d1(d1)) space_weights = (e_w1, e_w2, e_w3, e_w4, bn_w4, d_w4, d_w3, d_w2, d_w1, None) channel_weights = (None, None, None, None) return space_weights, channel_weights class SDnetSegmentor(nn.Module): """ Segmentor Code param ={ 'num_channels':1, 'num_filters':64, 'kernel_h':5, 'kernel_w':5, 'stride_conv':1, 'pool':2, 'stride_pool':2, 'num_classes':1 'se_block': True, 'drop_out':0 } """ def __init__(self, params): super(SDnetSegmentor, self).__init__() se_block_type = se.SELayer.SSE params['num_channels'] = 1 params['num_filters'] = 64 self.encode1 = sm.SDnetEncoderBlock(params) params['num_channels'] = 64 self.encode2 = sm.SDnetEncoderBlock(params) self.encode3 = sm.SDnetEncoderBlock(params) self.encode4 = sm.SDnetEncoderBlock(params) self.bottleneck = sm.GenericBlock(params) params['num_channels'] = 64 self.decode1 = sm.SDnetDecoderBlock(params) self.decode2 = sm.SDnetDecoderBlock(params) self.decode3 = sm.SDnetDecoderBlock(params) self.decode4 = sm.SDnetDecoderBlock(params) params['num_channels'] = 64 self.classifier = sm.ClassifierBlock(params) self.soft_max = nn.Softmax2d() # self.sigmoid = nn.Sigmoid() def forward(self, inpt, weights=None): space_weights, channel_weights = weights # e_w1, e_w2, e_w3, bn_w, d_w3, d_w2, d_w1, cls_w = weights if weights is not None else ( # None, None, None, None, None, None, None, None) e_w1, e_w2, e_w3, e_w4, bn_w, d_w4, d_w3, d_w2, d_w1, cls_w = space_weights if space_weights is not None else ( None, None, None, None, None, None, None, None, None, None) e_c1, e_c2, d_c1, d_c2 = channel_weights # if weights is not None: # bn_w, d_w4, d_w3, d_w2, d_w1, cls_w = bn_w * 50, d_w4 * 50, d_w3 * 50, d_w2 * 50, d_w1 * 50, cls_w * 50 e1, _, ind1 = self.encode1(inpt) if e_w1 is not None: e1 = torch.mul(e1, e_w1) e2, _, ind2 = self.encode2(e1) if e_w2 is not None: e2 = torch.mul(e2, e_w2) e3, _, ind3 = self.encode3(e2) if e_w3 is not None: e3 = torch.mul(e3, e_w3) e4, _, ind4 = self.encode4(e3) if e_w4 is not None: e4 = torch.mul(e4, e_w4) bn = self.bottleneck(e4) if bn_w is not None: bn = torch.mul(bn, bn_w) d4 = self.decode4(bn, None, ind4) if d_w4 is not None: d4 = torch.mul(d4, d_w4) d3 = self.decode3(d4, None, ind3) if d_w3 is not None: d3 = torch.mul(d3, d_w3) d2 = self.decode2(d3, None, ind2) if d_w2 is not None: d2 = torch.mul(d2, d_w2) d1 = self.decode1(d2, None, ind1) if d_w1 is not None: d1 = torch.mul(d1, d_w1) # d1_1 = torch.cat((d1, inpt), dim=1) logit = self.classifier.forward(d1) if cls_w is not None: logit = torch.mul(logit, cls_w) logit = self.soft_max(logit) return logit class FewShotSegmentorDoubleSDnet(nn.Module): ''' Class Combining Conditioner and Segmentor for few shot learning ''' def __init__(self, params): super(FewShotSegmentorDoubleSDnet, self).__init__() self.conditioner = SDnetConditioner(params) self.segmentor = SDnetSegmentor(params) def forward(self, input1, input2): weights = self.conditioner(input1) segment = self.segmentor(input2, weights) return segment def enable_test_dropout(self): attr_dict = self.__dict__['_modules'] for i in range(1, 5): encode_block, decode_block = attr_dict['encode' + str(i)], attr_dict['decode' + str(i)] encode_block.drop_out = encode_block.drop_out.apply(nn.Module.train) decode_block.drop_out = decode_block.drop_out.apply(nn.Module.train) @property def is_cuda(self): """ Check if model parameters are allocated on the GPU. """ return next(self.parameters()).is_cuda def save(self, path): """ Save model with its parameters to the given path. Conventionally the path should end with "*.model". Inputs: - path: path string """ print('Saving model... %s' % path) torch.save(self, path) def predict(self, X, y, query_label, device=0, enable_dropout=False): """ Predicts the outout after the model is trained. Inputs: - X: Volume to be predicted """ self.eval() input1, input2, y2 = split_batch(X, y, query_label) input1, input2, y2 = to_cuda(input1, device), to_cuda(input2, device), to_cuda(y2, device) if enable_dropout: self.enable_test_dropout() with torch.no_grad(): out = self.forward(input1, input2) # max_val, idx = torch.max(out, 1) idx = out > 0.5 idx = idx.data.cpu().numpy() prediction = np.squeeze(idx) del X, out, idx return prediction def to_cuda(X, device): if type(X) is np.ndarray: X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor).cuda(device, non_blocking=True) elif type(X) is torch.Tensor and not X.is_cuda: X = X.type(torch.FloatTensor).cuda(device, non_blocking=True) return X
37.604478
119
0.552788
c9bd9725db7eb31d548677647e4e1f137c6cfdfe
6,031
py
Python
venv/Lib/site-packages/pygments/style.py
star10919/drf
77c005794087484d72ffc0d76612a6ac9845821e
[ "BSD-3-Clause" ]
9
2019-05-29T23:50:28.000Z
2021-01-29T20:51:05.000Z
venv/Lib/site-packages/pygments/style.py
star10919/drf
77c005794087484d72ffc0d76612a6ac9845821e
[ "BSD-3-Clause" ]
5
2021-02-27T21:31:47.000Z
2021-04-05T21:49:38.000Z
marlinkpy/venv/Lib/site-packages/pygments/style.py
amilinovic/Test
4cfdc12a0efeebd636c4982ef90dad65a63b842b
[ "MIT" ]
3
2020-05-25T02:38:08.000Z
2021-01-20T06:23:06.000Z
# -*- coding: utf-8 -*- """ pygments.style ~~~~~~~~~~~~~~ Basic style object. :copyright: Copyright 2006-2021 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.token import Token, STANDARD_TYPES # Default mapping of ansixxx to RGB colors. _ansimap = { # dark 'ansiblack': '000000', 'ansired': '7f0000', 'ansigreen': '007f00', 'ansiyellow': '7f7fe0', 'ansiblue': '00007f', 'ansimagenta': '7f007f', 'ansicyan': '007f7f', 'ansigray': 'e5e5e5', # normal 'ansibrightblack': '555555', 'ansibrightred': 'ff0000', 'ansibrightgreen': '00ff00', 'ansibrightyellow': 'ffff00', 'ansibrightblue': '0000ff', 'ansibrightmagenta': 'ff00ff', 'ansibrightcyan': '00ffff', 'ansiwhite': 'ffffff', } # mapping of deprecated #ansixxx colors to new color names _deprecated_ansicolors = { # dark '#ansiblack': 'ansiblack', '#ansidarkred': 'ansired', '#ansidarkgreen': 'ansigreen', '#ansibrown': 'ansiyellow', '#ansidarkblue': 'ansiblue', '#ansipurple': 'ansimagenta', '#ansiteal': 'ansicyan', '#ansilightgray': 'ansigray', # normal '#ansidarkgray': 'ansibrightblack', '#ansired': 'ansibrightred', '#ansigreen': 'ansibrightgreen', '#ansiyellow': 'ansibrightyellow', '#ansiblue': 'ansibrightblue', '#ansifuchsia': 'ansibrightmagenta', '#ansiturquoise': 'ansibrightcyan', '#ansiwhite': 'ansiwhite', } ansicolors = set(_ansimap) class StyleMeta(type): def __new__(mcs, name, bases, dct): obj = type.__new__(mcs, name, bases, dct) for token in STANDARD_TYPES: if token not in obj.styles: obj.styles[token] = '' def colorformat(text): if text in ansicolors: return text if text[0:1] == '#': col = text[1:] if len(col) == 6: return col elif len(col) == 3: return col[0] * 2 + col[1] * 2 + col[2] * 2 elif text == '': return '' elif text.startswith('var') or text.startswith('calc'): return text assert False, "wrong color format %r" % text _styles = obj._styles = {} for ttype in obj.styles: for token in ttype.split(): if token in _styles: continue ndef = _styles.get(token.parent, None) styledefs = obj.styles.get(token, '').split() if not ndef or token is None: ndef = ['', 0, 0, 0, '', '', 0, 0, 0] elif 'noinherit' in styledefs and token is not Token: ndef = _styles[Token][:] else: ndef = ndef[:] _styles[token] = ndef for styledef in obj.styles.get(token, '').split(): if styledef == 'noinherit': pass elif styledef == 'bold': ndef[1] = 1 elif styledef == 'nobold': ndef[1] = 0 elif styledef == 'italic': ndef[2] = 1 elif styledef == 'noitalic': ndef[2] = 0 elif styledef == 'underline': ndef[3] = 1 elif styledef == 'nounderline': ndef[3] = 0 elif styledef[:3] == 'bg:': ndef[4] = colorformat(styledef[3:]) elif styledef[:7] == 'border:': ndef[5] = colorformat(styledef[7:]) elif styledef == 'roman': ndef[6] = 1 elif styledef == 'sans': ndef[7] = 1 elif styledef == 'mono': ndef[8] = 1 else: ndef[0] = colorformat(styledef) return obj def style_for_token(cls, token): t = cls._styles[token] ansicolor = bgansicolor = None color = t[0] if color in _deprecated_ansicolors: color = _deprecated_ansicolors[color] if color in ansicolors: ansicolor = color color = _ansimap[color] bgcolor = t[4] if bgcolor in _deprecated_ansicolors: bgcolor = _deprecated_ansicolors[color] if bgcolor in ansicolors: bgansicolor = bgcolor bgcolor = _ansimap[bgcolor] return { 'color': color or None, 'bold': bool(t[1]), 'italic': bool(t[2]), 'underline': bool(t[3]), 'bgcolor': bgcolor or None, 'border': t[5] or None, 'roman': bool(t[6]) or None, 'sans': bool(t[7]) or None, 'mono': bool(t[8]) or None, 'ansicolor': ansicolor, 'bgansicolor': bgansicolor, } def list_styles(cls): return list(cls) def styles_token(cls, ttype): return ttype in cls._styles def __iter__(cls): for token in cls._styles: yield token, cls.style_for_token(token) def __len__(cls): return len(cls._styles) class Style(metaclass=StyleMeta): #: overall background color (``None`` means transparent) background_color = '#ffffff' #: highlight background color highlight_color = '#ffffcc' #: line number font color line_number_color = '#000000' #: line number background color line_number_background_color = '#f0f0f0' #: special line number font color line_number_special_color = '#000000' #: special line number background color line_number_special_background_color = '#ffffc0' #: Style definitions for individual token types. styles = {}
31.248705
70
0.502902
715ce7b6160505789022f038fc0e9bb813ab5218
1,434
py
Python
test/test_pacman.py
yuan-feng/pygmsh
74671ed9f1dbf1762397504aae33fa27fdebe9e7
[ "MIT" ]
1
2022-03-13T04:39:03.000Z
2022-03-13T04:39:03.000Z
test/test_pacman.py
kurtsansom/pygmsh
9c2cfe1c6c7f80943f61f3e695a453e343544619
[ "MIT" ]
null
null
null
test/test_pacman.py
kurtsansom/pygmsh
9c2cfe1c6c7f80943f61f3e695a453e343544619
[ "MIT" ]
null
null
null
from numpy import cos, pi, sin import pygmsh from helpers import compute_volume def test(lcar=0.3): geom = pygmsh.built_in.Geometry() r = 1.25 * 3.4 p1 = geom.add_point([0.0, 0.0, 0.0], lcar) # p2 = geom.add_point([+r, 0.0, 0.0], lcar) p3 = geom.add_point([-r, 0.0, 0.0], lcar) p4 = geom.add_point([0.0, +r, 0.0], lcar) p5 = geom.add_point([0.0, -r, 0.0], lcar) p6 = geom.add_point([r * cos(+pi / 12.0), r * sin(+pi / 12.0), 0.0], lcar) p7 = geom.add_point([r * cos(-pi / 12.0), r * sin(-pi / 12.0), 0.0], lcar) p8 = geom.add_point([0.5 * r, 0.0, 0.0], lcar) c0 = geom.add_circle_arc(p6, p1, p4) c1 = geom.add_circle_arc(p4, p1, p3) c2 = geom.add_circle_arc(p3, p1, p5) c3 = geom.add_circle_arc(p5, p1, p7) l1 = geom.add_line(p7, p8) l2 = geom.add_line(p8, p6) ll = geom.add_line_loop([c0, c1, c2, c3, l1, l2]) # test adding raw code geom.add_raw_code("// dummy") geom.add_raw_code(["// dummy"]) pacman = geom.add_plane_surface(ll) # test setting physical groups geom.add_physical(p1, label="c") geom.add_physical(c0, label="arc") geom.add_physical(pacman) geom.add_physical(pacman, label=77) ref = 54.312974717523744 mesh = pygmsh.generate_mesh(geom) assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref return mesh if __name__ == "__main__": import meshio meshio.write("pacman.vtu", test())
28.68
78
0.605997
83f2b2b7d475e946942413ccf5da8dad416f868e
4,969
py
Python
cnn_architectures/mixup/resnet_cifar/eval_model_c100_leila.py
leilayasmeen/MSc_Thesis
ee5e1782ab4a1d86c5dc0f5dc4111b4432ae204d
[ "MIT" ]
2
2019-10-29T03:26:20.000Z
2021-03-07T10:02:39.000Z
cnn_architectures/mixup/resnet_cifar/eval_model_c100_leila.py
leilayasmeen/MSc_Thesis
ee5e1782ab4a1d86c5dc0f5dc4111b4432ae204d
[ "MIT" ]
null
null
null
cnn_architectures/mixup/resnet_cifar/eval_model_c100_leila.py
leilayasmeen/MSc_Thesis
ee5e1782ab4a1d86c5dc0f5dc4111b4432ae204d
[ "MIT" ]
null
null
null
# Load in model weights and evaluate its goodness (ECE, MCE, error) also saves logits. # ResNet model from https://github.com/BIGBALLON/cifar-10-cnn/blob/master/4_Residual_Network/ResNet_keras.py import keras import numpy as np from keras.datasets import cifar10, cifar100 from keras.preprocessing.image import ImageDataGenerator from keras.layers.normalization import BatchNormalization from keras.layers import Conv2D, Dense, Input, add, Activation, GlobalAveragePooling2D from keras.callbacks import LearningRateScheduler, TensorBoard, ModelCheckpoint from keras.models import Model from keras import optimizers, regularizers from sklearn.model_selection import train_test_split import pickle # Imports to get "utility" package import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath("utility") ) ) ) from utility.evaluation import evaluate_model stack_n = 18 num_classes10 = 10 num_classes100 = 100 img_rows, img_cols = 32, 32 img_channels = 3 batch_size = 128 epochs = 200 iterations = 45000 // batch_size weight_decay = 0.0001 seed = 333 weights_file_100 = "resnet_110_45k_c100.h5" def scheduler(epoch): if epoch < 80: return 0.1 if epoch < 150: return 0.01 return 0.001 def residual_network(img_input,classes_num=10,stack_n=5): def residual_block(intput,out_channel,increase=False): if increase: stride = (2,2) else: stride = (1,1) pre_bn = BatchNormalization()(intput) pre_relu = Activation('relu')(pre_bn) conv_1 = Conv2D(out_channel,kernel_size=(3,3),strides=stride,padding='same', kernel_initializer="he_normal", kernel_regularizer=regularizers.l2(weight_decay))(pre_relu) bn_1 = BatchNormalization()(conv_1) relu1 = Activation('relu')(bn_1) conv_2 = Conv2D(out_channel,kernel_size=(3,3),strides=(1,1),padding='same', kernel_initializer="he_normal", kernel_regularizer=regularizers.l2(weight_decay))(relu1) if increase: projection = Conv2D(out_channel, kernel_size=(1,1), strides=(2,2), padding='same', kernel_initializer="he_normal", kernel_regularizer=regularizers.l2(weight_decay))(intput) block = add([conv_2, projection]) else: block = add([intput,conv_2]) return block # build model # total layers = stack_n * 3 * 2 + 2 # stack_n = 5 by default, total layers = 32 # input: 32x32x3 output: 32x32x16 x = Conv2D(filters=16,kernel_size=(3,3),strides=(1,1),padding='same', kernel_initializer="he_normal", kernel_regularizer=regularizers.l2(weight_decay))(img_input) # input: 32x32x16 output: 32x32x16 for _ in range(stack_n): x = residual_block(x,16,False) # input: 32x32x16 output: 16x16x32 x = residual_block(x,32,True) for _ in range(1,stack_n): x = residual_block(x,32,False) # input: 16x16x32 output: 8x8x64 x = residual_block(x,64,True) for _ in range(1,stack_n): x = residual_block(x,64,False) x = BatchNormalization()(x) x = Activation('relu')(x) x = GlobalAveragePooling2D()(x) # input: 64 output: 10 x = Dense(classes_num,activation='softmax', kernel_initializer="he_normal", kernel_regularizer=regularizers.l2(weight_decay))(x) return x def color_preprocessing(x_train,x_test): x_train = x_train.astype('float32') x_test = x_test.astype('float32') for i in range(3): x_train[:,:,:,i] = (x_train[:,:,:,i] - mean[i]) / std[i] x_test[:,:,:,i] = (x_test[:,:,:,i] - mean[i]) / std[i] return x_train, x_test if __name__ == '__main__': # CIFAR-100 =========== evaluation print("Cifar-100 evaluation") (x_train, y_train), (x_test, y_test) = cifar100.load_data() y_test = keras.utils.to_categorical(y_test, num_classes100) x_train45, x_val, y_train45, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=seed) # random_state = seed img_mean = x_train45.mean(axis=0) # per-pixel mean img_std = x_train45.std(axis=0) x_train45 = (x_train45-img_mean)/img_std x_val = (x_val-img_mean)/img_std x_test = (x_test-img_mean)/img_std # build network and evaluate img_input = Input(shape=(img_rows,img_cols,img_channels)) output = residual_network(img_input,num_classes100,stack_n) model2 = Model(img_input, output) evaluate_model(model2, weights_file_100, x_test, y_test, bins = 15, verbose = True, pickle_file = "probs_resnet110_c100", x_val = x_val, y_val = y_val)
37.08209
132
0.638559
ccdce40462ccc1ff361031bf2de2f1263dbc3916
322
py
Python
setup.py
garrett-m-smith/sosp_simple
15b9f7db089009566f7b571c7a4cf8d56ad7ce97
[ "MIT" ]
null
null
null
setup.py
garrett-m-smith/sosp_simple
15b9f7db089009566f7b571c7a4cf8d56ad7ce97
[ "MIT" ]
null
null
null
setup.py
garrett-m-smith/sosp_simple
15b9f7db089009566f7b571c7a4cf8d56ad7ce97
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup(name='sosp_simple', version='1.1', description='A package for simple SOSP models', url='https://github.com/garrett-m-smith/sosp', author='Garrett Smith', author_email='garrett.smith@uconn.edu', license='MIT', packages=find_packages(), zip_safe=False)
32.2
50
0.723602
295f9fe4dde33915a9b8147bce525639c4f01596
1,443
py
Python
source/timeseries/multi_step/dense.py
supercoder3000/py_tensorflow_experiments
01aebf681df25286cf4503661148203a03309b04
[ "MIT" ]
null
null
null
source/timeseries/multi_step/dense.py
supercoder3000/py_tensorflow_experiments
01aebf681df25286cf4503661148203a03309b04
[ "MIT" ]
null
null
null
source/timeseries/multi_step/dense.py
supercoder3000/py_tensorflow_experiments
01aebf681df25286cf4503661148203a03309b04
[ "MIT" ]
null
null
null
import tensorflow as tf from data_types.training_result import TrainingResult from data_types.training_set import TrainingSet from timeseries.build import compile_and_fit from timeseries.constants import CONV_WIDTH from timeseries.window_generator import WindowGenerator def evaluate_multi_step_dense( training_set: TrainingSet ) -> TrainingResult: conv_window = WindowGenerator( input_width=CONV_WIDTH, label_width=1, shift=1, label_columns=['T (degC)'], training_set=training_set ) multi_step_dense = tf.keras.Sequential([ # Shape: (time, features) => (time*features) tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=32, activation='relu'), tf.keras.layers.Dense(units=32, activation='relu'), tf.keras.layers.Dense(units=1), # Add back the time dimension. # Shape: (outputs) => (1, outputs) tf.keras.layers.Reshape([1, -1]), ]) print('Input shape:', conv_window.example[0].shape) print('Output shape:', multi_step_dense(conv_window.example[0]).shape) compile_and_fit(multi_step_dense, conv_window) metric_index = multi_step_dense.metrics_names.index('mean_absolute_error') return TrainingResult( validation_performance=multi_step_dense.evaluate(conv_window.val)[metric_index], performance=multi_step_dense.evaluate(conv_window.test, verbose=0)[metric_index] )
34.357143
88
0.711712
dee86b8ff68a8aa9642bf5930ec16467e51f55c7
775
py
Python
standardsettings/environments/local.py
divio/django-standardsettings
26f20b069c053692671e344e975e1e8b71e48692
[ "BSD-3-Clause" ]
null
null
null
standardsettings/environments/local.py
divio/django-standardsettings
26f20b069c053692671e344e975e1e8b71e48692
[ "BSD-3-Clause" ]
null
null
null
standardsettings/environments/local.py
divio/django-standardsettings
26f20b069c053692671e344e975e1e8b71e48692
[ "BSD-3-Clause" ]
1
2018-11-18T01:19:18.000Z
2018-11-18T01:19:18.000Z
# -*- coding: utf-8 -*- from getenv import env import os def apply_settings(settings): s = settings s.DATA_ROOT = os.path.abspath(env("DATA_ROOT", os.path.join(s.PROJECT_ROOT, 'tmp'))) s.MEDIA_ROOT = env("MEDIA_ROOT", os.path.join(s.DATA_ROOT, 'media')) s.STATIC_ROOT = env("STATIC_ROOT", os.path.join(s.DATA_ROOT, 'static_collected')) s.LOG_ROOT = env("LOG_ROOT", os.path.join(s.DATA_ROOT, 'logs')) s.SOCKET_ROOT = env("SOCKET_ROOT", s.DATA_ROOT) s.REDIS_SOCKET = env("REDIS_SOCKET", os.path.join(s.SOCKET_ROOT, 'redis.sock')) s.ALLOWED_HOSTS = env("ALLOWED_HOSTS", ['127.0.0.1', 'localhost',]) import dj_database_url s.DATABASES = {'default': dj_database_url.config(default='sqlite:///%s' % os.path.join(s.DATA_ROOT, 'db.sqlite3'))}
51.666667
119
0.682581
feb8cfc278b63aaedd753bed42a5574a80aa1782
27,042
py
Python
dask_cudf/core.py
shwina/dask-cudf
c0991ce0b0e0a7154c7d80f70eb20790779e9e66
[ "Apache-2.0" ]
95
2018-11-09T13:01:30.000Z
2021-08-23T09:09:54.000Z
dask_cudf/core.py
shwina/dask-cudf
c0991ce0b0e0a7154c7d80f70eb20790779e9e66
[ "Apache-2.0" ]
217
2018-11-07T00:14:03.000Z
2019-07-11T21:36:15.000Z
dask_cudf/core.py
shwina/dask-cudf
c0991ce0b0e0a7154c7d80f70eb20790779e9e66
[ "Apache-2.0" ]
38
2018-11-28T08:44:59.000Z
2021-11-25T08:47:41.000Z
# Copyright (c) 2018, NVIDIA CORPORATION. import warnings from collections import OrderedDict import pandas as pd import dask import dask.dataframe as dd import numpy as np from dask import compute from dask.base import normalize_token, tokenize from dask.compatibility import apply from dask.context import _globals from dask.core import flatten from dask.dataframe import from_delayed from dask.dataframe.core import Scalar, handle_out, map_partitions from dask.dataframe.utils import raise_on_meta_error from dask.delayed import delayed from dask.optimization import cull, fuse from dask.utils import M, OperatorMethodMixin, funcname, derived_from from toolz import partition_all import cudf import cudf.bindings.reduce as cpp_reduce from dask_cudf import batcher_sortnet, join_impl from dask_cudf.accessor import CachedAccessor, CategoricalAccessor, DatetimeAccessor def optimize(dsk, keys, **kwargs): flatkeys = list(flatten(keys)) if isinstance(keys, list) else [keys] dsk, dependencies = cull(dsk, flatkeys) dsk, dependencies = fuse( dsk, keys, dependencies=dependencies, ave_width=_globals.get("fuse_ave_width", 1), ) dsk, _ = cull(dsk, keys) return dsk def finalize(results): return cudf.concat(results) class _Frame(dd.core._Frame, OperatorMethodMixin): """ Superclass for DataFrame and Series Parameters ---------- dsk : dict The dask graph to compute this DataFrame name : str The key prefix that specifies which keys in the dask comprise this particular DataFrame / Series meta : cudf.DataFrame, cudf.Series, or cudf.Index An empty cudf object with names, dtypes, and indices matching the expected output. divisions : tuple of index values Values along which we partition our blocks on the index """ __dask_scheduler__ = staticmethod(dask.get) __dask_optimize__ = staticmethod(optimize) def __dask_postcompute__(self): return finalize, () def __dask_postpersist__(self): return type(self), (self._name, self._meta, self.divisions) def __init__(self, dsk, name, meta, divisions): self.dask = dsk self._name = name meta = dd.core.make_meta(meta) if not isinstance(meta, self._partition_type): raise TypeError( "Expected meta to specify type {0}, got type " "{1}".format(self._partition_type.__name__, type(meta).__name__) ) self._meta = dd.core.make_meta(meta) self.divisions = tuple(divisions) def __getstate__(self): return (self.dask, self._name, self._meta, self.divisions) def __setstate__(self, state): self.dask, self._name, self._meta, self.divisions = state def __repr__(self): s = "<dask_cudf.%s | %d tasks | %d npartitions>" return s % (type(self).__name__, len(self.dask), self.npartitions) def to_dask_dataframe(self): """Create a dask.dataframe object from a dask_cudf object""" return self.map_partitions(M.to_pandas) concat = dd.concat normalize_token.register(_Frame, lambda a: a._name) class DataFrame(_Frame, dd.core.DataFrame): _partition_type = cudf.DataFrame def _assign_column(self, k, v): def assigner(df, k, v): out = df.copy() out[k] = v return out meta = assigner(self._meta, k, dd.core.make_meta(v)) return self.map_partitions(assigner, k, v, meta=meta) def apply_rows(self, func, incols, outcols, kwargs={}, cache_key=None): import uuid if cache_key is None: cache_key = uuid.uuid4() def do_apply_rows(df, func, incols, outcols, kwargs): return df.apply_rows(func, incols, outcols, kwargs, cache_key=cache_key) meta = do_apply_rows(self._meta, func, incols, outcols, kwargs) return self.map_partitions( do_apply_rows, func, incols, outcols, kwargs, meta=meta ) def merge( self, other, on=None, how="left", left_index=False, right_index=False, suffixes=("_x", "_y"), ): """Merging two dataframes on the column(s) indicated in *on*. """ if ( left_index or right_index or not dask.is_dask_collection(other) or self.npartitions == 1 and how in ("inner", "right") or other.npartitions == 1 and how in ("inner", "left") ): return dd.merge( self, other, how=how, suffixes=suffixes, left_index=left_index, right_index=right_index, ) if not on and not left_index and not right_index: on = [c for c in self.columns if c in other.columns] if not on: left_index = right_index = True return join_impl.join_frames( left=self, right=other, on=on, how=how, lsuffix=suffixes[0], rsuffix=suffixes[1], ) def join(self, other, how="left", lsuffix="", rsuffix=""): """Join two datatframes *on* is not supported. """ if how == "right": return other.join(other=self, how="left", lsuffix=rsuffix, rsuffix=lsuffix) same_names = set(self.columns) & set(other.columns) if same_names and not (lsuffix or rsuffix): raise ValueError( "there are overlapping columns but " "lsuffix and rsuffix are not defined" ) left, leftuniques = self._align_divisions() right, rightuniques = other._align_to_indices(leftuniques) leftparts = left.to_delayed() rightparts = right.to_delayed() @delayed def part_join(left, right, how): return left.join( right, how=how, sort=True, lsuffix=lsuffix, rsuffix=rsuffix ) def inner_selector(): pivot = 0 for i in range(len(leftparts)): for j in range(pivot, len(rightparts)): if leftuniques[i] & rightuniques[j]: yield leftparts[i], rightparts[j] pivot = j + 1 break def left_selector(): pivot = 0 for i in range(len(leftparts)): for j in range(pivot, len(rightparts)): if leftuniques[i] & rightuniques[j]: yield leftparts[i], rightparts[j] pivot = j + 1 break else: yield leftparts[i], None selector = {"left": left_selector, "inner": inner_selector}[how] rhs_dtypes = [(k, other._meta.dtypes[k]) for k in other._meta.columns] @delayed def fix_column(lhs): df = cudf.DataFrame() for k in lhs.columns: df[k + lsuffix] = lhs[k] for k, dtype in rhs_dtypes: data = np.zeros(len(lhs), dtype=dtype) mask_size = cudf.utils.utils.calc_chunk_size( data.size, cudf.utils.utils.mask_bitsize ) mask = np.zeros(mask_size, dtype=cudf.utils.utils.mask_dtype) sr = cudf.Series.from_masked_array( data=data, mask=mask, null_count=data.size ) df[k + rsuffix] = sr.set_index(df.index) return df joinedparts = [ (part_join(lhs, rhs, how=how) if rhs is not None else fix_column(lhs)) for lhs, rhs in selector() ] meta = self._meta.join(other._meta, how=how, lsuffix=lsuffix, rsuffix=rsuffix) return from_delayed(joinedparts, meta=meta) def _align_divisions(self): """Align so that the values do not split across partitions """ parts = self.to_delayed() uniques = self._get_unique_indices(parts=parts) originals = list(map(frozenset, uniques)) changed = True while changed: changed = False for i in range(len(uniques))[:-1]: intersect = uniques[i] & uniques[i + 1] if intersect: smaller = min(uniques[i], uniques[i + 1], key=len) bigger = max(uniques[i], uniques[i + 1], key=len) smaller |= intersect bigger -= intersect changed = True # Fix empty partitions uniques = list(filter(bool, uniques)) return self._align_to_indices(uniques, originals=originals, parts=parts) def _get_unique_indices(self, parts=None): if parts is None: parts = self.to_delayed() @delayed def unique(x): return set(x.index.as_column().unique().to_array()) parts = self.to_delayed() return compute(*map(unique, parts)) def _align_to_indices(self, uniques, originals=None, parts=None): uniques = list(map(set, uniques)) if parts is None: parts = self.to_delayed() if originals is None: originals = self._get_unique_indices(parts=parts) allindices = set() for x in originals: allindices |= x for us in uniques: us &= allindices uniques = list(filter(bool, uniques)) extras = originals[-1] - uniques[-1] extras = {x for x in extras if x > max(uniques[-1])} if extras: uniques.append(extras) remap = OrderedDict() for idxset in uniques: remap[tuple(sorted(idxset))] = bins = [] for i, orig in enumerate(originals): if idxset & orig: bins.append(parts[i]) @delayed def take(indices, depends): first = min(indices) last = max(indices) others = [] for d in depends: # TODO: this can be replaced with searchsorted # Normalize to index data in range before selection. firstindex = d.index[0] lastindex = d.index[-1] s = max(first, firstindex) e = min(last, lastindex) others.append(d.loc[s:e]) return cudf.concat(others) newparts = [] for idx, depends in remap.items(): newparts.append(take(idx, depends)) divisions = list(map(min, uniques)) divisions.append(max(uniques[-1])) newdd = from_delayed(newparts, meta=self._meta) return newdd, uniques def _compute_divisions(self): if self.known_divisions: return self @delayed def first_index(df): return df.index[0] @delayed def last_index(df): return df.index[-1] parts = self.to_delayed() divs = [first_index(p) for p in parts] + [last_index(parts[-1])] divisions = compute(*divs) return type(self)(self.dask, self._name, self._meta, divisions) def set_index(self, index, drop=True, sorted=False): """Set new index. Parameters ---------- index : str or Series If a ``str`` is provided, it is used as the name of the column to be made into the index. If a ``Series`` is provided, it is used as the new index drop : bool Whether the first original index column is dropped. sorted : bool Whether the new index column is already sorted. """ if not drop: raise NotImplementedError("drop=False not supported yet") if isinstance(index, str): tmpdf = self.sort_values(index) return tmpdf._set_column_as_sorted_index(index, drop=drop) elif isinstance(index, Series): indexname = "__dask_cudf.index" df = self.assign(**{indexname: index}) return df.set_index(indexname, drop=drop, sorted=sorted) else: raise TypeError("cannot set_index from {}".format(type(index))) def _set_column_as_sorted_index(self, colname, drop): def select_index(df, col): return df.set_index(col) return self.map_partitions( select_index, col=colname, meta=self._meta.set_index(colname) ) def _argsort(self, col, sorted=False): """ Returns ------- shufidx : Series Positional indices to be used with .take() to put the dataframe in order w.r.t ``col``. """ # Get subset with just the index and positional value subset = self[col].to_dask_dataframe() subset = subset.reset_index(drop=False) ordered = subset.set_index(0, sorted=sorted) shufidx = from_dask_dataframe(ordered)["index"] return shufidx def _set_index_raw(self, indexname, drop, sorted): shufidx = self._argsort(indexname, sorted=sorted) # Shuffle the GPU data shuffled = self.take(shufidx, npartitions=self.npartitions) out = shuffled.map_partitions(lambda df: df.set_index(indexname)) return out def reset_index(self, force=False, drop=False): """Reset index to range based """ if force: dfs = self.to_delayed() sizes = np.asarray(compute(*map(delayed(len), dfs))) prefixes = np.zeros_like(sizes) prefixes[1:] = np.cumsum(sizes[:-1]) @delayed def fix_index(df, startpos): stoppos = startpos + len(df) return df.set_index( cudf.dataframe.RangeIndex(start=startpos, stop=stoppos) ) outdfs = [fix_index(df, startpos) for df, startpos in zip(dfs, prefixes)] return from_delayed(outdfs, meta=self._meta.reset_index(drop=True)) else: return self.map_partitions(M.reset_index, drop=drop) def sort_values(self, by, ignore_index=False): """Sort by the given column Parameter --------- by : str """ parts = self.to_delayed() sorted_parts = batcher_sortnet.sort_delayed_frame(parts, by) return from_delayed(sorted_parts, meta=self._meta).reset_index( force=not ignore_index ) def sort_values_binned(self, by): """Sorty by the given column and ensure that the same key doesn't spread across multiple partitions. """ # Get sorted partitions parts = self.sort_values(by=by).to_delayed() # Get unique keys in each partition @delayed def get_unique(p): return set(p[by].unique()) uniques = list(compute(*map(get_unique, parts))) joiner = {} for i in range(len(uniques)): joiner[i] = to_join = {} for j in range(i + 1, len(uniques)): intersect = uniques[i] & uniques[j] # If the keys intersect if intersect: # Remove keys uniques[j] -= intersect to_join[j] = frozenset(intersect) else: break @delayed def join(df, other, keys): others = [other.query("{by}==@k".format(by=by)) for k in sorted(keys)] return cudf.concat([df] + others) @delayed def drop(df, keep_keys): locvars = locals() for i, k in enumerate(keep_keys): locvars["k{}".format(i)] = k conds = ["{by}==@k{i}".format(by=by, i=i) for i in range(len(keep_keys))] expr = " or ".join(conds) return df.query(expr) for i in range(len(parts)): if uniques[i]: parts[i] = drop(parts[i], uniques[i]) for joinee, intersect in joiner[i].items(): parts[i] = join(parts[i], parts[joinee], intersect) results = [p for i, p in enumerate(parts) if uniques[i]] return from_delayed(results, meta=self._meta).reset_index() def _shuffle_sort_values(self, by): """Slow shuffle based sort by the given column Parameter --------- by : str """ shufidx = self._argsort(by) return self.take(shufidx) @derived_from(pd.DataFrame) def var(self, axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None): axis = self._validate_axis(axis) meta = self._meta_nonempty.var(axis=axis, skipna=skipna) if axis == 1: result = map_partitions(M.var, self, meta=meta, token=self._token_prefix + 'var', axis=axis, skipna=skipna, ddof=ddof) return handle_out(out, result) else: num = self._get_numeric_data() x = 1.0 * num.sum(skipna=skipna, split_every=split_every) x2 = 1.0 * (num ** 2).sum(skipna=skipna, split_every=split_every) n = num.count(split_every=split_every) name = self._token_prefix + 'var' result = map_partitions(var_aggregate, x2, x, n, token=name, meta=meta, ddof=ddof) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return handle_out(out, result) def sum_of_squares(x): x = x.astype("f8")._column outcol = cpp_reduce.apply_reduce("sum_of_squares", x) return cudf.Series(outcol) def var_aggregate(x2, x, n, ddof): try: with warnings.catch_warnings(record=True): warnings.simplefilter('always') result = (x2 / n) - (x / n)**2 if ddof != 0: result = result * n / (n - ddof) return result except ZeroDivisionError: return np.float64(np.nan) def nlargest_agg(x, **kwargs): return cudf.concat(x).nlargest(**kwargs) def nsmallest_agg(x, **kwargs): return cudf.concat(x).nsmallest(**kwargs) def unique_k_agg(x, **kwargs): return cudf.concat(x).unique_k(**kwargs) class Series(_Frame, dd.core.Series): _partition_type = cudf.Series def count(self, split_every=False): return reduction( self, chunk=M.count, aggregate=np.sum, split_every=split_every, meta="i8" ) def mean(self, split_every=False): sum = self.sum(split_every=split_every) n = self.count(split_every=split_every) return sum / n def unique_k(self, k, split_every=None): return reduction( self, chunk=M.unique_k, aggregate=unique_k_agg, meta=self._meta, token="unique-k", split_every=split_every, k=k, ) @derived_from(pd.DataFrame) def var(self, axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None): axis = self._validate_axis(axis) meta = self._meta_nonempty.var(axis=axis, skipna=skipna) if axis == 1: result = map_partitions(M.var, self, meta=meta, token=self._token_prefix + 'var', axis=axis, skipna=skipna, ddof=ddof) return handle_out(out, result) else: num = self._get_numeric_data() x = 1.0 * num.sum(skipna=skipna, split_every=split_every) x2 = 1.0 * (num ** 2).sum(skipna=skipna, split_every=split_every) n = num.count(split_every=split_every) name = self._token_prefix + 'var' result = map_partitions(var_aggregate, x2, x, n, token=name, meta=meta, ddof=ddof) if isinstance(self, DataFrame): result.divisions = (min(self.columns), max(self.columns)) return handle_out(out, result) # ---------------------------------------------------------------------- # Accessor Methods # ---------------------------------------------------------------------- dt = CachedAccessor("dt", DatetimeAccessor) cat = CachedAccessor("cat", CategoricalAccessor) class Index(Series, dd.core.Index): _partition_type = cudf.dataframe.index.Index def splits_divisions_sorted_cudf(df, chunksize): segments = list(df.index.find_segments().to_array()) segments.append(len(df) - 1) splits = [0] last = current_size = 0 for s in segments: size = s - last last = s current_size += size if current_size >= chunksize: splits.append(s) current_size = 0 # Ensure end is included if splits[-1] != segments[-1]: splits.append(segments[-1]) divisions = tuple(df.index.take(np.array(splits)).values) splits[-1] += 1 # Offset to extract to end return splits, divisions def _extract_meta(x): """ Extract internal cache data (``_meta``) from dask_cudf objects """ if isinstance(x, (Scalar, _Frame)): return x._meta elif isinstance(x, list): return [_extract_meta(_x) for _x in x] elif isinstance(x, tuple): return tuple([_extract_meta(_x) for _x in x]) elif isinstance(x, dict): return {k: _extract_meta(v) for k, v in x.items()} return x def _emulate(func, *args, **kwargs): """ Apply a function using args / kwargs. If arguments contain dd.DataFrame / dd.Series, using internal cache (``_meta``) for calculation """ with raise_on_meta_error(funcname(func)): return func(*_extract_meta(args), **_extract_meta(kwargs)) def align_partitions(args): """Align partitions between dask_cudf objects. Note that if all divisions are unknown, but have equal npartitions, then they will be passed through unchanged.""" dfs = [df for df in args if isinstance(df, _Frame)] if not dfs: return args divisions = dfs[0].divisions if not all(df.divisions == divisions for df in dfs): raise NotImplementedError("Aligning mismatched partitions") return args def reduction( args, chunk=None, aggregate=None, combine=None, meta=None, token=None, chunk_kwargs=None, aggregate_kwargs=None, combine_kwargs=None, split_every=None, **kwargs ): """Generic tree reduction operation. Parameters ---------- args : Positional arguments for the `chunk` function. All `dask.dataframe` objects should be partitioned and indexed equivalently. chunk : function [block-per-arg] -> block Function to operate on each block of data aggregate : function list-of-blocks -> block Function to operate on the list of results of chunk combine : function list-of-blocks -> block, optional Function to operate on intermediate lists of results of chunk in a tree-reduction. If not provided, defaults to aggregate. $META token : str, optional The name to use for the output keys. chunk_kwargs : dict, optional Keywords for the chunk function only. aggregate_kwargs : dict, optional Keywords for the aggregate function only. combine_kwargs : dict, optional Keywords for the combine function only. split_every : int, optional Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used, and all intermediates will be concatenated and passed to ``aggregate``. Default is 8. kwargs : All remaining keywords will be passed to ``chunk``, ``aggregate``, and ``combine``. """ if chunk_kwargs is None: chunk_kwargs = dict() if aggregate_kwargs is None: aggregate_kwargs = dict() chunk_kwargs.update(kwargs) aggregate_kwargs.update(kwargs) if combine is None: if combine_kwargs: raise ValueError("`combine_kwargs` provided with no `combine`") combine = aggregate combine_kwargs = aggregate_kwargs else: if combine_kwargs is None: combine_kwargs = dict() combine_kwargs.update(kwargs) if not isinstance(args, (tuple, list)): args = [args] npartitions = set(arg.npartitions for arg in args if isinstance(arg, _Frame)) if len(npartitions) > 1: raise ValueError("All arguments must have same number of partitions") npartitions = npartitions.pop() if split_every is None: split_every = 8 elif split_every is False: split_every = npartitions elif split_every < 2 or not isinstance(split_every, int): raise ValueError("split_every must be an integer >= 2") token_key = tokenize( token or (chunk, aggregate), meta, args, chunk_kwargs, aggregate_kwargs, combine_kwargs, split_every, ) # Chunk a = "{0}-chunk-{1}".format(token or funcname(chunk), token_key) if len(args) == 1 and isinstance(args[0], _Frame) and not chunk_kwargs: dsk = {(a, 0, i): (chunk, key) for i, key in enumerate(args[0].__dask_keys__())} else: dsk = { (a, 0, i): ( apply, chunk, [(x._name, i) if isinstance(x, _Frame) else x for x in args], chunk_kwargs, ) for i in range(args[0].npartitions) } # Combine b = "{0}-combine-{1}".format(token or funcname(combine), token_key) k = npartitions depth = 0 while k > split_every: for part_i, inds in enumerate(partition_all(split_every, range(k))): conc = (list, [(a, depth, i) for i in inds]) dsk[(b, depth + 1, part_i)] = ( (apply, combine, [conc], combine_kwargs) if combine_kwargs else (combine, conc) ) k = part_i + 1 a = b depth += 1 # Aggregate b = "{0}-agg-{1}".format(token or funcname(aggregate), token_key) conc = (list, [(a, depth, i) for i in range(k)]) if aggregate_kwargs: dsk[(b, 0)] = (apply, aggregate, [conc], aggregate_kwargs) else: dsk[(b, 0)] = (aggregate, conc) if meta is None: meta_chunk = _emulate(apply, chunk, args, chunk_kwargs) meta = _emulate(apply, aggregate, [[meta_chunk]], aggregate_kwargs) meta = dd.core.make_meta(meta) for arg in args: if isinstance(arg, _Frame): dsk.update(arg.dask) return dd.core.new_dd_object(dsk, b, meta, (None, None)) from_cudf = dd.from_pandas def from_dask_dataframe(df): return df.map_partitions(cudf.from_pandas)
32.738499
91
0.577805
58d44bdb35e0f517d5f2e37d7a97b500fdc1c9ec
2,331
py
Python
tests/test_mail.py
h4ck3rm1k3/scrapy
59dcdbe84769c9d204f552a2b545b1e096a2d42c
[ "BSD-3-Clause" ]
26
2015-02-07T17:35:26.000Z
2020-04-27T21:11:00.000Z
tests/test_mail.py
h4ck3rm1k3/scrapy
59dcdbe84769c9d204f552a2b545b1e096a2d42c
[ "BSD-3-Clause" ]
2
2021-09-20T19:54:29.000Z
2022-03-22T21:47:39.000Z
tests/test_mail.py
h4ck3rm1k3/scrapy
59dcdbe84769c9d204f552a2b545b1e096a2d42c
[ "BSD-3-Clause" ]
9
2015-09-21T08:17:20.000Z
2021-02-07T02:31:36.000Z
import unittest from io import BytesIO from scrapy.mail import MailSender class MailSenderTest(unittest.TestCase): def test_send(self): mailsender = MailSender(debug=True) mailsender.send(to=['test@scrapy.org'], subject='subject', body='body', _callback=self._catch_mail_sent) assert self.catched_msg self.assertEqual(self.catched_msg['to'], ['test@scrapy.org']) self.assertEqual(self.catched_msg['subject'], 'subject') self.assertEqual(self.catched_msg['body'], 'body') msg = self.catched_msg['msg'] self.assertEqual(msg['to'], 'test@scrapy.org') self.assertEqual(msg['subject'], 'subject') self.assertEqual(msg.get_payload(), 'body') self.assertEqual(msg.get('Content-Type'), 'text/plain') def test_send_html(self): mailsender = MailSender(debug=True) mailsender.send(to=['test@scrapy.org'], subject='subject', body='<p>body</p>', mimetype='text/html', _callback=self._catch_mail_sent) msg = self.catched_msg['msg'] self.assertEqual(msg.get_payload(), '<p>body</p>') self.assertEqual(msg.get('Content-Type'), 'text/html') def test_send_attach(self): attach = BytesIO() attach.write(b'content') attach.seek(0) attachs = [('attachment', 'text/plain', attach)] mailsender = MailSender(debug=True) mailsender.send(to=['test@scrapy.org'], subject='subject', body='body', attachs=attachs, _callback=self._catch_mail_sent) assert self.catched_msg self.assertEqual(self.catched_msg['to'], ['test@scrapy.org']) self.assertEqual(self.catched_msg['subject'], 'subject') self.assertEqual(self.catched_msg['body'], 'body') msg = self.catched_msg['msg'] self.assertEqual(msg['to'], 'test@scrapy.org') self.assertEqual(msg['subject'], 'subject') payload = msg.get_payload() assert isinstance(payload, list) self.assertEqual(len(payload), 2) text, attach = payload self.assertEqual(text.get_payload(decode=True), 'body') self.assertEqual(attach.get_payload(decode=True), 'content') def _catch_mail_sent(self, **kwargs): self.catched_msg = dict(**kwargs) if __name__ == "__main__": unittest.main()
35.861538
141
0.642643
19ac70210983b3fc4810a8cecffadd0e0b77ad80
2,189
py
Python
examples/naive_bayes_spmd.py
agorshk/daal4py
58a9b2301c47cd2d5144a403a59c210e10b75f8f
[ "Apache-2.0" ]
null
null
null
examples/naive_bayes_spmd.py
agorshk/daal4py
58a9b2301c47cd2d5144a403a59c210e10b75f8f
[ "Apache-2.0" ]
null
null
null
examples/naive_bayes_spmd.py
agorshk/daal4py
58a9b2301c47cd2d5144a403a59c210e10b75f8f
[ "Apache-2.0" ]
null
null
null
#******************************************************************************* # Copyright 2014-2020 Intel Corporation # All Rights Reserved. # # This software is licensed under the Apache License, Version 2.0 (the # "License"), the following terms apply: # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. #******************************************************************************* # daal4py Naive Bayes Classification example for distributed memory systems; SPMD mode # run like this: # mpirun -n 4 python ./naive_bayes_spmd.py import daal4py as d4p from numpy import loadtxt, allclose if __name__ == "__main__": # Initialize SPMD mode d4p.daalinit() # Each process gets its own data infile = "./data/batch/naivebayes_train_dense.csv" # Configure a training object (20 classes) talgo = d4p.multinomial_naive_bayes_training(20, distributed=True) # Read data. Let's use 20 features per observation data = loadtxt(infile, delimiter=',', usecols=range(20)) labels = loadtxt(infile, delimiter=',', usecols=range(20,21)) labels.shape = (labels.size, 1) # must be a 2d array tresult = talgo.compute(data, labels) # Now let's do some prediction # It runs only on a single node if d4p.my_procid() == 0: palgo = d4p.multinomial_naive_bayes_prediction(20) # read test data (with same #features) pdata = loadtxt("./data/batch/naivebayes_test_dense.csv", delimiter=',', usecols=range(20)) # now predict using the model from the training above presult = palgo.compute(pdata, tresult.model) # Prediction result provides prediction assert(presult.prediction.shape == (pdata.shape[0], 1)) print('All looks good!') d4p.daalfini()
37.741379
99
0.656921
fe677d5af4fc41f2107ead5333669c9ef5605c6a
442
py
Python
linepy/__init__.py
Kaneki711/line-py
e8a008d800b041952846b0055f8a67c981e99256
[ "BSD-3-Clause" ]
null
null
null
linepy/__init__.py
Kaneki711/line-py
e8a008d800b041952846b0055f8a67c981e99256
[ "BSD-3-Clause" ]
null
null
null
linepy/__init__.py
Kaneki711/line-py
e8a008d800b041952846b0055f8a67c981e99256
[ "BSD-3-Clause" ]
null
null
null
from .client import LINE from .channel import Channel from .oepoll import OEPoll from akad.ttypes import OpType __copyright__ = 'Copyright 2018 by Fadhiil Rachman' __version__ = '3.0.6' __license__ = 'BSD-3-Clause' __author__ = 'Fadhiil Rachman' __author_email__ = 'fadhiilrachman@gmail.com' __url__ = 'http://github.com/fadhiilrachman/line-py' __all__ = ['LINE', 'Channel', 'OEPoll', 'OpType']
34
64
0.680995
9e81ab194c61be14cb52b0a28e7f4925ef090dec
2,560
py
Python
app/tests/integration/test_create_roa.py
18F/aocourt-api
0fd8aab0c993b6e704e1e57fe696bf120c68af3d
[ "CC0-1.0" ]
null
null
null
app/tests/integration/test_create_roa.py
18F/aocourt-api
0fd8aab0c993b6e704e1e57fe696bf120c68af3d
[ "CC0-1.0" ]
5
2021-07-23T00:20:40.000Z
2021-08-03T21:11:15.000Z
app/tests/integration/test_create_roa.py
18F/aocourts-api
0fd8aab0c993b6e704e1e57fe696bf120c68af3d
[ "CC0-1.0" ]
null
null
null
import json from fastapi.testclient import TestClient from sqlalchemy.orm import Session headers = {"Content-Type": "application/json"} def test_create_roa_mutation(client: TestClient, db_session: Session, simple_case) -> None: '''It should return a createRecordOnAppeal object with only the requested fields''' query = { "query": "mutation{createRecordOnAppeal(caseId: %d) {title, originalCaseId}}" % simple_case.id } r = client.post("/graphql/", data=json.dumps(query), headers=headers) assert r.status_code == 200 resp = r.json() assert resp['data']['createRecordOnAppeal']['originalCaseId'] == simple_case.id assert resp['data']['createRecordOnAppeal']['title'] == simple_case.title def test_create_roa_mutation_persists(client: TestClient, db_session: Session, simple_case) -> None: '''It should add a record of appeal to the sysyem''' mutation = { "query": "mutation{createRecordOnAppeal(caseId: %d) {id, title, originalCaseId}}" % simple_case.id } r = client.post("/graphql/", data=json.dumps(mutation), headers=headers) resp = r.json() roa_id = resp['data']['createRecordOnAppeal']['id'] query = { "query": "{recordOnAppeal(id: %s) {id, title, originalCaseId}}" % roa_id } r = client.post("/graphql/", data=json.dumps(query), headers=headers) assert r.status_code == 200 resp = r.json() assert resp['data'] == { 'recordOnAppeal': { 'id': roa_id, 'title': simple_case.title, 'originalCaseId': simple_case.id } } def test_send_roa_persists(client: TestClient, db_session: Session, simple_case) -> None: '''It should add a record of appeal to the sysyem''' create_mutation = { "query": "mutation{createRecordOnAppeal(caseId: %d) {id, title, originalCaseId}}" % simple_case.id } r = client.post("/graphql/", data=json.dumps(create_mutation), headers=headers) resp = r.json() roa_id = resp['data']['createRecordOnAppeal']['id'] send_mutation = { "query": ''' mutation{sendRecordOnAppeal(recordOnAppealId: %s, receivingCourtId: "ca9") { id, receivingCourt{ id } }}''' % roa_id } r = client.post("/graphql/", data=json.dumps(send_mutation), headers=headers) assert r.status_code == 200 resp = r.json() assert resp['data'] == { 'sendRecordOnAppeal': { 'id': roa_id, 'receivingCourt': {'id': 'ca9'} } }
36.056338
106
0.624609
be3bb3e3fc193179f58315c0cc22ca9f3f1be25d
1,096
py
Python
dongers/dongers.py
WreckRox/FlapJack-Cogs
e2950f5dc7916127c3b9519ba8bfea1f71fead40
[ "MIT" ]
42
2017-04-15T17:29:40.000Z
2022-02-16T18:15:52.000Z
dongers/dongers.py
WreckRox/FlapJack-Cogs
e2950f5dc7916127c3b9519ba8bfea1f71fead40
[ "MIT" ]
89
2017-03-22T03:21:42.000Z
2022-03-15T18:14:49.000Z
dongers/dongers.py
WreckRox/FlapJack-Cogs
e2950f5dc7916127c3b9519ba8bfea1f71fead40
[ "MIT" ]
72
2017-03-23T01:03:29.000Z
2022-01-25T22:47:15.000Z
import random import aiohttp from redbot.core import commands from bs4 import BeautifulSoup class Dongers(commands.Cog): """Cog that does dongers""" def __init__(self, bot): self.bot = bot self.donger_pages = 40 self.session = aiohttp.ClientSession() async def red_delete_data_for_user(self, **kwargs): """Nothing to delete.""" return @commands.command() async def donger(self, ctx): """Print a random donger in chat""" # Access random donger page url = "http://dongerlist.com/page/" + str(random.randint(1, self.donger_pages)) async with self.session.get(url) as response: soup = BeautifulSoup(await response.text(), "html.parser") try: donger_list = soup.find_all("textarea", "donger") await ctx.send(random.choice(donger_list).get_text()) except: await ctx.send("I couldn't find any dongers. ¯\_(ツ)_/¯") def cog_unload(self): self.bot.loop.create_task(self.session.close())
27.4
88
0.60219
adc31560449b9a4552c03d7cca78ab9a93fc071e
1,498
py
Python
deployment/tfserving/demo.py
jundeli/Scaled-YOLOv4-tensorflow2
dd2ce523258f9a5b851bd6f391a6c07a4999662e
[ "Apache-2.0" ]
30
2021-01-29T13:57:47.000Z
2022-02-09T13:17:57.000Z
deployment/tfserving/demo.py
jundeli/Scaled-YOLOv4-tensorflow2
dd2ce523258f9a5b851bd6f391a6c07a4999662e
[ "Apache-2.0" ]
13
2021-04-16T06:30:27.000Z
2022-03-16T18:42:23.000Z
deployment/tfserving/demo.py
jundeli/Scaled-YOLOv4-tensorflow2
dd2ce523258f9a5b851bd6f391a6c07a4999662e
[ "Apache-2.0" ]
16
2021-04-28T06:51:58.000Z
2022-03-23T23:47:52.000Z
import os import argparse import sys import cv2 import numpy as np import time from tfservingclient.client import Client def parse_args(args): parser = argparse.ArgumentParser("test model") parser.add_argument('--pic-dir',default="../../images/pothole_pictures") parser.add_argument('--class-names',default="../../dataset/pothole.names") return parser.parse_args(args) def main(args): if not os.path.exists(args.pic_dir): raise ValueError("{} don't exist!".format(args.pic_dir)) if not os.path.exists(args.class_names): raise ValueError("{} don't exist!".format(args.class_names)) with open(args.class_names) as f1: class_names = f1.read().splitlines() client = Client() client.init(host='127.0.0.1',port=8500) while True: for img_name in os.listdir(args.pic_dir): img = cv2.imread(os.path.join(args.pic_dir,img_name)) img = np.expand_dims(img, axis=0) img = client.preprocess(img,(416,416)) boxes, scores, classes, valid_detections = client.predict(img,score_thr=0.1) for index, num_det in enumerate(valid_detections): show_img = client.draw_result(img[index], boxes[index][0:num_det], scores[index][0:num_det], classes[index][0:num_det],class_names) cv2.imshow('dd', show_img) cv2.waitKey(0) if __name__=='__main__': args = parse_args(sys.argv[1:]) main(args)
39.421053
108
0.638852
90285c597141c7a1d2dce871659ee8c9303ddcd3
2,960
py
Python
setup.py
tomchop/google-api-python-client
2d076b87cff4029a243357dad19564767bbf8751
[ "Apache-2.0" ]
null
null
null
setup.py
tomchop/google-api-python-client
2d076b87cff4029a243357dad19564767bbf8751
[ "Apache-2.0" ]
null
null
null
setup.py
tomchop/google-api-python-client
2d076b87cff4029a243357dad19564767bbf8751
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup script for Google API Python client. Also installs included versions of third party libraries, if those libraries are not already installed. """ from __future__ import print_function import sys if sys.version_info < (2, 7): print("google-api-python-client requires python version >= 2.7.", file=sys.stderr) sys.exit(1) if (3, 1) <= sys.version_info < (3, 4): print("google-api-python-client requires python3 version >= 3.4.", file=sys.stderr) sys.exit(1) import io import os from setuptools import setup packages = ["apiclient", "googleapiclient", "googleapiclient/discovery_cache"] install_requires = [ # NOTE: Apache Beam tests depend on this library and cannot # currently upgrade their httplib2 version. # Please see https://github.com/googleapis/google-api-python-client/pull/841 "httplib2>=0.9.2,<1dev", "google-auth>=1.16.0", "google-auth-httplib2>=0.0.3", "google-api-core>=1.21.0,<2dev", "six>=1.13.0,<2dev", "uritemplate>=3.0.0,<4dev", ] package_root = os.path.abspath(os.path.dirname(__file__)) readme_filename = os.path.join(package_root, "README.md") with io.open(readme_filename, encoding="utf-8") as readme_file: readme = readme_file.read() version = "1.12.2" setup( name="google-api-python-client", version=version, description="Google API Client Library for Python", long_description=readme, long_description_content_type='text/markdown', author="Google LLC", author_email="googleapis-packages@google.com", url="https://github.com/googleapis/google-api-python-client/", install_requires=install_requires, python_requires=">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*", packages=packages, package_data={}, license="Apache 2.0", keywords="google api client", classifiers=[ "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Topic :: Internet :: WWW/HTTP", ], )
34.418605
87
0.685473
d8c30324f94663660b991f00a69032d120d22798
46,514
py
Python
google/cloud/forseti/services/inventory/storage.py
BrunoReboul/forseti-security
9d4a61b3e5a5d22a4330d15ddf61063fc9079071
[ "Apache-2.0" ]
null
null
null
google/cloud/forseti/services/inventory/storage.py
BrunoReboul/forseti-security
9d4a61b3e5a5d22a4330d15ddf61063fc9079071
[ "Apache-2.0" ]
null
null
null
google/cloud/forseti/services/inventory/storage.py
BrunoReboul/forseti-security
9d4a61b3e5a5d22a4330d15ddf61063fc9079071
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inventory storage implementation.""" # pylint: disable=too-many-lines import json import enum from sqlalchemy import and_ from sqlalchemy import BigInteger from sqlalchemy import case from sqlalchemy import Column from sqlalchemy import DateTime from sqlalchemy import Enum from sqlalchemy import exists from sqlalchemy import func from sqlalchemy import Index from sqlalchemy import Integer from sqlalchemy import LargeBinary from sqlalchemy import or_ from sqlalchemy import PrimaryKeyConstraint from sqlalchemy import String from sqlalchemy import Table from sqlalchemy import Text from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import aliased from sqlalchemy.orm import mapper from google.cloud.asset_v1beta1.proto import assets_pb2 from google.protobuf import json_format from google.cloud.forseti.common.util import date_time from google.cloud.forseti.common.util import logger from google.cloud.forseti.common.util.index_state import IndexState # pylint: disable=line-too-long from google.cloud.forseti.services.inventory.base.storage import Storage as BaseStorage # pylint: enable=line-too-long LOGGER = logger.get_logger(__name__) BASE = declarative_base() CURRENT_SCHEMA = 1 PER_YIELD = 1024 MAX_ALLOWED_PACKET = 32 * 1024 * 1024 # 32 Mb default mysql max packet size class Categories(enum.Enum): """Inventory Categories.""" resource = 1 iam_policy = 2 gcs_policy = 3 dataset_policy = 4 billing_info = 5 enabled_apis = 6 kubernetes_service_config = 7 class ContentTypes(enum.Enum): """Cloud Asset Inventory Content Types.""" resource = 1 iam_policy = 2 SUPPORTED_CATEGORIES = frozenset(item.name for item in list(Categories)) SUPPORTED_CONTENT_TYPES = frozenset(item.name for item in list(ContentTypes)) class InventoryIndex(BASE): """Represents a GCP inventory.""" __tablename__ = 'inventory_index' id = Column(BigInteger, primary_key=True) created_at_datetime = Column(DateTime) completed_at_datetime = Column(DateTime) inventory_status = Column(Text) schema_version = Column(Integer) progress = Column(Text) counter = Column(Integer) inventory_index_warnings = Column(Text(16777215)) inventory_index_errors = Column(Text(16777215)) message = Column(Text(16777215)) def __repr__(self): """Object string representation. Returns: str: String representation of the object. """ return """<{}(id='{}', version='{}', timestamp='{}')>""".format( self.__class__.__name__, self.id, self.schema_version, self.created_at_datetime) @classmethod def create(cls): """Create a new inventory index row. Returns: object: InventoryIndex row object. """ utc_now = date_time.get_utc_now_datetime() micro_timestamp = date_time.get_utc_now_microtimestamp(utc_now) return InventoryIndex( id=micro_timestamp, created_at_datetime=utc_now, completed_at_datetime=None, inventory_status=IndexState.CREATED, schema_version=CURRENT_SCHEMA, counter=0) def complete(self, status=IndexState.SUCCESS): """Mark the inventory as completed with a final inventory_status. Args: status (str): Final inventory_status. """ self.completed_at_datetime = date_time.get_utc_now_datetime() self.inventory_status = status def add_warning(self, session, warning): """Add a warning to the inventory. Args: session (object): session object to work on. warning (str): Warning message """ warning_message = '{}\n'.format(warning) if not self.inventory_index_warnings: self.inventory_index_warnings = warning_message else: self.inventory_index_warnings += warning_message session.add(self) session.flush() def set_error(self, session, message): """Indicate a broken import. Args: session (object): session object to work on. message (str): Error message to set. """ self.inventory_index_errors = message session.add(self) session.flush() def get_lifecycle_state_details(self, session, resource_type_input): """Count of lifecycle states of the specified resources. Generate/return the count of lifecycle states (ACTIVE, DELETE_PENDING) of the specific resource type input (project, folder) for this inventory index. Args: session (object) : session object to work on. resource_type_input (str) : resource type to get lifecycle states. Returns: dict: a (lifecycle state -> count) dictionary """ resource_data = Inventory.resource_data details = dict( session.query(func.json_extract(resource_data, '$.lifecycleState'), func.count()) .filter(Inventory.inventory_index_id == self.id) .filter(Inventory.category == 'resource') .filter(Inventory.resource_type == resource_type_input) .group_by(func.json_extract(resource_data, '$.lifecycleState')) .all()) for key in details.keys(): new_key = key.replace('\"', '').replace('_', ' ') new_key = ' - '.join([resource_type_input, new_key]) details[new_key] = details.pop(key) if len(details) == 1: if 'ACTIVE' in details.keys()[0]: added_key_str = 'DELETE PENDING' elif 'DELETE PENDING' in details.keys()[0]: added_key_str = 'ACTIVE' added_key = ' - '.join([resource_type_input, added_key_str]) details[added_key] = 0 return details def get_hidden_resource_details(self, session, resource_type): """Count of the hidden and shown specified resources. Generate/return the count of hidden resources (e.g. dataset) for this inventory index. Args: session (object) : session object to work on. resource_type (str) : resource type to find details for. Returns: dict: a (hidden_resource -> count) dictionary """ details = {} resource_id = Inventory.resource_id field_label_hidden = resource_type + ' - HIDDEN' field_label_shown = resource_type + ' - SHOWN' hidden_label = ( func.count(case([(resource_id.contains('%:~_%', escape='~'), 1)]))) shown_label = ( func.count(case([(~resource_id.contains('%:~_%', escape='~'), 1)]))) details_query = ( session.query(hidden_label, shown_label) .filter(Inventory.inventory_index_id == self.id) .filter(Inventory.category == 'resource') .filter(Inventory.resource_type == resource_type).one()) details[field_label_hidden] = details_query[0] details[field_label_shown] = details_query[1] return details def get_summary(self, session): """Generate/return an inventory summary for this inventory index. Args: session (object): session object to work on. Returns: dict: a (resource type -> count) dictionary """ resource_type = Inventory.resource_type summary = dict( session.query(resource_type, func.count(resource_type)) .filter(Inventory.inventory_index_id == self.id) .filter(Inventory.category == 'resource') .group_by(resource_type).all()) return summary def get_details(self, session): """Generate/return inventory details for this inventory index. Includes delete pending/active resource types and hidden/shown datasets. Args: session (object): session object to work on. Returns: dict: a (resource type -> count) dictionary """ resource_types_with_lifecycle = ['folder', 'organization', 'project'] resource_types_hidden = ['dataset'] resource_types_with_details = {'lifecycle': resource_types_with_lifecycle, 'hidden': resource_types_hidden} details = {} for key, value in resource_types_with_details.items(): if key == 'lifecycle': details_function = self.get_lifecycle_state_details elif key == 'hidden': details_function = self.get_hidden_resource_details for resource in value: resource_details = details_function(session, resource) details.update(resource_details) return details class Inventory(BASE): """Resource inventory table.""" __tablename__ = 'gcp_inventory' id = Column(Integer, primary_key=True, autoincrement=True) inventory_index_id = Column(BigInteger) category = Column(Enum(Categories)) resource_type = Column(String(255)) resource_id = Column(Text) resource_data = Column(Text(16777215)) parent_id = Column(Integer) other = Column(Text) inventory_errors = Column(Text) __table_args__ = ( Index('idx_resource_category', 'inventory_index_id', 'resource_type', 'category'), Index('idx_parent_id', 'parent_id')) @classmethod def from_resource(cls, index, resource): """Creates a database row object from a crawled resource. Args: index (object): InventoryIndex to associate. resource (object): Crawled resource. Returns: object: database row object. """ parent = resource.parent() iam_policy = resource.get_iam_policy() gcs_policy = resource.get_gcs_policy() dataset_policy = resource.get_dataset_policy() billing_info = resource.get_billing_info() enabled_apis = resource.get_enabled_apis() service_config = resource.get_kubernetes_service_config() other = json.dumps({'timestamp': resource.get_timestamp()}) rows = [Inventory( inventory_index_id=index.id, category=Categories.resource, resource_id=resource.key(), resource_type=resource.type(), resource_data=json.dumps(resource.data(), sort_keys=True), parent_id=None if not parent else parent.inventory_key(), other=other, inventory_errors=resource.get_warning())] if iam_policy: rows.append( Inventory( inventory_index_id=index.id, category=Categories.iam_policy, resource_id=resource.key(), resource_type=resource.type(), resource_data=json.dumps(iam_policy, sort_keys=True), other=other, inventory_errors=None)) if gcs_policy: rows.append( Inventory( inventory_index_id=index.id, category=Categories.gcs_policy, resource_id=resource.key(), resource_type=resource.type(), resource_data=json.dumps(gcs_policy, sort_keys=True), other=other, inventory_errors=None)) if dataset_policy: rows.append( Inventory( inventory_index_id=index.id, category=Categories.dataset_policy, resource_id=resource.key(), resource_type=resource.type(), resource_data=json.dumps(dataset_policy, sort_keys=True), other=other, inventory_errors=None)) if billing_info: rows.append( Inventory( inventory_index_id=index.id, category=Categories.billing_info, resource_id=resource.key(), resource_type=resource.type(), resource_data=json.dumps(billing_info, sort_keys=True), other=other, inventory_errors=None)) if enabled_apis: rows.append( Inventory( inventory_index_id=index.id, category=Categories.enabled_apis, resource_id=resource.key(), resource_type=resource.type(), resource_data=json.dumps(enabled_apis, sort_keys=True), other=other, inventory_errors=None)) if service_config: rows.append( Inventory( inventory_index_id=index.id, category=Categories.kubernetes_service_config, resource_id=resource.key(), resource_type=resource.type(), resource_data=json.dumps(service_config, sort_keys=True), other=other, inventory_errors=None)) return rows def copy_inplace(self, new_row): """Update a database row object from a resource. Args: new_row (Inventory): the Inventory row of the new resource """ self.category = new_row.category self.resource_id = new_row.resource_id self.resource_type = new_row.resource_type self.resource_data = new_row.resource_data self.other = new_row.other self.inventory_errors = new_row.inventory_errors def __repr__(self): """String representation of the database row object. Returns: str: A description of inventory_index """ return ('<{}(inventory_index_id=\'{}\', resource_id=\'{}\',' ' resource_type=\'{}\')>').format( self.__class__.__name__, self.inventory_index_id, self.resource_id, self.resource_type) def get_resource_id(self): """Get the row's resource id. Returns: str: resource id. """ return self.resource_id def get_resource_type(self): """Get the row's resource type. Returns: str: resource type. """ return self.resource_type def get_category(self): """Get the row's data category. Returns: str: data category. """ return self.category.name def get_parent_id(self): """Get the row's parent id. Returns: int: parent id. """ return self.parent_id def get_resource_data(self): """Get the row's metadata. Returns: dict: row's metadata. """ return json.loads(self.resource_data) def get_resource_data_raw(self): """Get the row's data json string. Returns: str: row's raw data. """ return self.resource_data def get_other(self): """Get the row's other data. Returns: dict: row's other data. """ return json.loads(self.other) def get_inventory_errors(self): """Get the row's error data. Returns: str: row's error data. """ return self.inventory_errors class CaiTemporaryStore(object): """CAI temporary inventory table.""" __tablename__ = 'cai_temporary_store' # Class members created in initialize() by mapper() name = None parent_name = None content_type = None asset_type = None asset_data = None def __init__(self, name, parent_name, content_type, asset_type, asset_data): """Initialize database column. Manually defined so that the collation value can be overriden at run time for this database table. Args: name (str): The asset name. parent_name (str): The asset name of the parent resource. content_type (ContentTypes): The asset data content type. asset_type (str): The asset data type. asset_data (str): The asset data as a serialized binary blob. """ self.name = name self.parent_name = parent_name self.content_type = content_type self.asset_type = asset_type self.asset_data = asset_data @classmethod def initialize(cls, metadata, collation='utf8_bin'): """Create the table schema based on run time arguments. Used to fix the column collation value for non-MySQL database engines. Args: metadata (object): The sqlalchemy MetaData to associate the table with. collation (str): The collation value to use. """ if 'cai_temporary_store' not in metadata.tables: my_table = Table('cai_temporary_store', metadata, Column('name', String(512, collation=collation), nullable=False), Column('parent_name', String(255), nullable=True), Column('content_type', Enum(ContentTypes), nullable=False), Column('asset_type', String(255), nullable=False), Column('asset_data', LargeBinary(length=(2**32) - 1), nullable=False), Index('idx_parent_name', 'parent_name'), PrimaryKeyConstraint('content_type', 'asset_type', 'name', name='cai_temp_store_pk')) mapper(cls, my_table) def extract_asset_data(self, content_type): """Extracts the data from the asset protobuf based on the content type. Args: content_type (ContentTypes): The content type data to extract. Returns: dict: The dict representation of the asset data. """ # The no-member is a false positive for the dynamic protobuf class. # pylint: disable=no-member asset_pb = assets_pb2.Asset.FromString(self.asset_data) # pylint: enable=no-member if content_type == ContentTypes.resource: return json_format.MessageToDict(asset_pb.resource.data) elif content_type == ContentTypes.iam_policy: return json_format.MessageToDict(asset_pb.iam_policy) return json_format.MessageToDict(asset_pb) @classmethod def from_json(cls, asset_json): """Creates a database row object from the json data in a dump file. Args: asset_json (str): The json representation of an Asset. Returns: object: database row object or None if there is no data. """ asset_pb = json_format.Parse(asset_json, assets_pb2.Asset()) if len(asset_pb.name) > 512: LOGGER.warn('Skipping insert of asset %s, name too long.', asset_pb.name) return None if asset_pb.HasField('resource'): content_type = ContentTypes.resource parent_name = cls._get_parent_name(asset_pb) elif asset_pb.HasField('iam_policy'): content_type = ContentTypes.iam_policy parent_name = asset_pb.name else: return None return cls( name=asset_pb.name, parent_name=parent_name, content_type=content_type, asset_type=asset_pb.asset_type, asset_data=asset_pb.SerializeToString() ) @classmethod def delete_all(cls, session): """Deletes all rows from this table. Args: session (object): db session Returns: int: The number of rows deleted. Raises: Exception: Reraises any exception. """ try: num_rows = session.query(cls).delete() session.commit() return num_rows except Exception as e: LOGGER.exception(e) session.rollback() raise @staticmethod def _get_parent_name(asset_pb): """Determines the parent name from the resource data. Args: asset_pb (assets_pb2.Asset): An Asset protobuf object. Returns: str: The parent name for the resource. """ if asset_pb.resource.parent: return asset_pb.resource.parent if asset_pb.asset_type == 'google.cloud.kms.KeyRing': # KMS KeyRings are parented by a location under a project, but # the location is not directly discoverable without iterating all # locations, so instead this creates an artificial parent at the # project level, which acts as an aggregated list of all keyrings # in all locations to fix this broken behavior. # # Strip locations/{LOCATION}/keyRings/{RING} off name to get the # parent project. return '/'.join(asset_pb.name.split('/')[:-4]) elif (asset_pb.asset_type.startswith('google.appengine') or asset_pb.asset_type.startswith('google.bigquery') or asset_pb.asset_type.startswith('google.spanner') or asset_pb.asset_type.startswith('google.cloud.kms')): # Strip off the last two segments of the name to get the parent return '/'.join(asset_pb.name.split('/')[:-2]) LOGGER.debug('Could not determine parent name for %s', asset_pb) return '' class BufferedDbWriter(object): """Buffered db writing.""" def __init__(self, session, max_size=1024, max_packet_size=MAX_ALLOWED_PACKET * .75, commit_on_flush=False): """Initialize Args: session (object): db session max_size (int): max size of buffer max_packet_size (int): max size of a packet to send to SQL commit_on_flush (bool): If true, the session is committed to the database when the data is flushed. """ self.session = session self.buffer = [] self.estimated_packet_size = 0 self.max_size = max_size self.max_packet_size = max_packet_size self.commit_on_flush = commit_on_flush def add(self, obj, estimated_length=0): """Add an object to the buffer to write to db. Args: obj (object): Object to write to db. estimated_length (int): The estimated length of this object. """ self.buffer.append(obj) self.estimated_packet_size += estimated_length if (self.estimated_packet_size > self.max_packet_size or len(self.buffer) >= self.max_size): self.flush() def flush(self): """Flush all pending objects to the database.""" self.session.bulk_save_objects(self.buffer) self.session.flush() if self.commit_on_flush: self.session.commit() self.estimated_packet_size = 0 self.buffer = [] class CaiDataAccess(object): """Access to the CAI temporary store table.""" @staticmethod def clear_cai_data(session): """Deletes all temporary CAI data from the cai temporary table. Args: session (object): Database session. Returns: int: The number of rows deleted. """ num_rows = 0 try: num_rows = CaiTemporaryStore.delete_all(session) except SQLAlchemyError as e: LOGGER.exception('Attempt to delete data from CAI temporary store ' 'failed, disabling the use of CAI: %s', e) return num_rows @staticmethod def populate_cai_data(data, session): """Add assets from cai data dump into cai temporary table. Args: data (file): A file like object, line delimeted text dump of json data representing assets from Cloud Asset Inventory exportAssets API. session (object): Database session. Returns: int: The number of rows inserted """ # CAI data can be large, so limit the number of rows written at one # time to 512. commit_buffer = BufferedDbWriter(session, max_size=512, commit_on_flush=True) num_rows = 0 try: for line in data: if not line: continue try: row = CaiTemporaryStore.from_json(line.strip()) except json_format.ParseError as e: # If the public protobuf definition differs from the # internal representation of the resource content in CAI # then the json_format module will throw a ParseError. The # crawler automatically falls back to using the live API # when this happens, so no content is lost. resource = json.loads(line) if 'iam_policy' in resource: content_type = 'iam_policy' elif 'resource' in resource: content_type = 'resource' else: content_type = 'none' LOGGER.info('Protobuf parsing error %s, falling back to ' 'live API for resource %s, asset type %s, ' 'content type %s', e, resource.get('name', ''), resource.get('asset_type', ''), content_type) continue if row: # Overestimate the packet length to ensure max size is never # exceeded. The actual length is closer to len(line) * 1.5. commit_buffer.add(row, estimated_length=len(line) * 2) num_rows += 1 commit_buffer.flush() except SQLAlchemyError as e: LOGGER.exception('Error populating CAI data: %s', e) session.rollback() return num_rows @staticmethod def iter_cai_assets(content_type, asset_type, parent_name, session): """Iterate the objects in the cai temporary table. Args: content_type (ContentTypes): The content type to return. asset_type (str): The asset type to return. parent_name (str): The parent resource to iter children under. session (object): Database session. Yields: object: The content_type data for each resource. """ filters = [ CaiTemporaryStore.content_type == content_type, CaiTemporaryStore.asset_type == asset_type, CaiTemporaryStore.parent_name == parent_name, ] base_query = session.query(CaiTemporaryStore) for qry_filter in filters: base_query = base_query.filter(qry_filter) base_query = base_query.order_by(CaiTemporaryStore.name.asc()) for row in base_query.yield_per(PER_YIELD): yield row.extract_asset_data(content_type) @staticmethod def fetch_cai_asset(content_type, asset_type, name, session): """Returns a single resource from the cai temporary store. Args: content_type (ContentTypes): The content type to return. asset_type (str): The asset type to return. name (str): The resource to return. session (object): Database session. Returns: dict: The content data for the specified resource. """ filters = [ CaiTemporaryStore.content_type == content_type, CaiTemporaryStore.asset_type == asset_type, CaiTemporaryStore.name == name, ] base_query = session.query(CaiTemporaryStore) for qry_filter in filters: base_query = base_query.filter(qry_filter) row = base_query.one_or_none() if row: return row.extract_asset_data(content_type) return {} class DataAccess(object): """Access to inventory for services.""" @classmethod def delete(cls, session, inventory_index_id): """Delete an inventory index entry by id. Args: session (object): Database session. inventory_index_id (str): Id specifying which inventory to delete. Returns: InventoryIndex: An expunged entry corresponding the inventory_index_id. Raises: Exception: Reraises any exception. """ try: result = cls.get(session, inventory_index_id) session.query(Inventory).filter( Inventory.inventory_index_id == inventory_index_id).delete() session.query(InventoryIndex).filter( InventoryIndex.id == inventory_index_id).delete() session.commit() return result except Exception as e: LOGGER.exception(e) session.rollback() raise @classmethod def list(cls, session): """List all inventory index entries. Args: session (object): Database session Yields: InventoryIndex: Generates each row """ for row in session.query(InventoryIndex).yield_per(PER_YIELD): session.expunge(row) yield row @classmethod def get(cls, session, inventory_index_id): """Get an inventory index entry by id. Args: session (object): Database session inventory_index_id (str): Inventory id Returns: InventoryIndex: Entry corresponding the id """ result = ( session.query(InventoryIndex).filter( InventoryIndex.id == inventory_index_id).one() ) session.expunge(result) return result @classmethod def get_latest_inventory_index_id(cls, session): """List all inventory index entries. Args: session (object): Database session Returns: int64: inventory index id """ inventory_index = ( session.query(InventoryIndex).filter( or_(InventoryIndex.inventory_status == 'SUCCESS', InventoryIndex.inventory_status == 'PARTIAL_SUCCESS') ).order_by(InventoryIndex.id.desc()).first()) session.expunge(inventory_index) LOGGER.info( 'Latest success/partial_success inventory index id is: %s', inventory_index.id) return inventory_index.id @classmethod def get_inventory_indexes_older_than_cutoff( # pylint: disable=invalid-name cls, session, cutoff_datetime): """Get all inventory index entries older than the cutoff. Args: session (object): Database session cutoff_datetime (datetime): The cutoff point to find any older inventory index entries. Returns: list: InventoryIndex """ inventory_indexes = session.query(InventoryIndex).filter( InventoryIndex.created_at_datetime < cutoff_datetime).all() session.expunge_all() return inventory_indexes def initialize(engine): """Create all tables in the database if not existing. Args: engine (object): Database engine to operate on. """ dialect = engine.dialect.name if dialect == 'sqlite': collation = 'binary' else: collation = 'utf8_bin' CaiTemporaryStore.initialize(BASE.metadata, collation) BASE.metadata.create_all(engine) class Storage(BaseStorage): """Inventory storage used during creation.""" def __init__(self, session, existing_id=0, readonly=False): """Initialize Args: session (object): db session. existing_id (int64): The inventory id if wants to open an existing inventory. readonly (bool): whether to keep the inventory read-only. """ self.session = session self.opened = False self.inventory_index = None self.buffer = BufferedDbWriter(self.session) self._existing_id = existing_id self.session_completed = False self.readonly = readonly def _require_opened(self): """Make sure the storage is in 'open' state. Raises: Exception: If storage is not opened. """ if not self.opened: raise Exception('Storage is not opened') def _create(self): """Create a new inventory. Returns: int: Index number of the created inventory. Raises: Exception: Reraises any exception. """ try: index = InventoryIndex.create() self.session.add(index) except Exception as e: LOGGER.exception(e) self.session.rollback() raise else: return index def _open(self, inventory_index_id): """Open an existing inventory. Args: inventory_index_id (str): the id of the inventory to open. Returns: object: The inventory index db row. """ return ( self.session.query(InventoryIndex).filter( InventoryIndex.id == inventory_index_id).filter( InventoryIndex.inventory_status.in_( [IndexState.SUCCESS, IndexState.PARTIAL_SUCCESS])) .one()) def _get_resource_rows(self, key, resource_type): """ Get the rows in the database for a certain resource Args: key (str): The key of the resource resource_type (str): The type of the resource Returns: object: The inventory db rows of the resource, IAM policy and GCS policy. Raises: Exception: if there is no such row or more than one. """ rows = self.session.query(Inventory).filter( and_( Inventory.inventory_index_id == self.inventory_index.id, Inventory.resource_id == key, Inventory.resource_type == resource_type )).all() if not rows: raise Exception('Resource {} not found in the table'.format(key)) else: return rows def _get_resource_id(self, resource): """Checks if a resource exists already in the inventory. Args: resource (object): Resource object to check against the db. Returns: int: The resource id of the existing resource, else 0. """ row = self.session.query(Inventory.id).filter( and_( Inventory.inventory_index_id == self.inventory_index.id, Inventory.category == Categories.resource, Inventory.resource_type == resource.type(), Inventory.resource_id == resource.key(), )).one_or_none() if row: return row.id return 0 def open(self, handle=None): """Open the storage, potentially create a new index. Args: handle (str): If None, create a new index instead of opening an existing one. Returns: str: Index id of the opened or created inventory. Raises: Exception: if open was called more than once """ existing_id = handle if self.opened: raise Exception('open called before') # existing_id in open overrides potential constructor given id existing_id = existing_id if existing_id else self._existing_id # Should we create a new entry or are we opening an existing one? if existing_id: self.inventory_index = self._open(existing_id) else: self.inventory_index = self._create() self.session.commit() # commit only on create. self.opened = True if not self.readonly: self.session.begin_nested() return self.inventory_index.id def rollback(self): """Roll back the stored inventory, but keep the index entry.""" try: self.buffer.flush() self.session.rollback() self.inventory_index.complete(status=IndexState.FAILURE) self.session.commit() finally: self.session_completed = True def commit(self): """Commit the stored inventory.""" try: self.buffer.flush() self.session.commit() self.inventory_index.complete() self.session.commit() finally: self.session_completed = True def close(self): """Close the storage. Raises: Exception: If the storage was not opened before or if the storage is writeable but neither rollback nor commit has been called. """ if not self.opened: raise Exception('not open') if not self.readonly and not self.session_completed: raise Exception('Need to perform commit or rollback before close') self.opened = False def write(self, resource): """Write a resource to the storage and updates its row Args: resource (object): Resource object to store in db. Raises: Exception: If storage was opened readonly. """ if self.readonly: raise Exception('Opened storage readonly') previous_id = self._get_resource_id(resource) if previous_id: resource.set_inventory_key(previous_id) self.update(resource) return rows = Inventory.from_resource(self.inventory_index, resource) for row in rows: if row.category == Categories.resource: # Force flush to insert the resource row in order to get the # inventory id value. This is used to tie child resources # and related data back to the parent resource row and to # check for duplicate resources. self.session.add(row) self.session.flush() resource.set_inventory_key(row.id) else: row.parent_id = resource.inventory_key() self.buffer.add(row) self.inventory_index.counter += len(rows) def update(self, resource): """Update a resource in the storage. Args: resource (object): Resource object to store in db. Raises: Exception: If storage was opened readonly. """ if self.readonly: raise Exception('Opened storage readonly') self.buffer.flush() try: new_rows = Inventory.from_resource(self.inventory_index, resource) old_rows = self._get_resource_rows( resource.key(), resource.type()) new_dict = {row.category.name: row for row in new_rows} old_dict = {row.category.name: row for row in old_rows} for category in SUPPORTED_CATEGORIES: if category in new_dict: if category in old_dict: old_dict[category].copy_inplace( new_dict[category]) else: new_dict[category].parent_id = resource.inventory_key() self.session.add(new_dict[category]) self.session.commit() except Exception as e: LOGGER.exception(e) raise Exception('Resource Update Unsuccessful: {}'.format(e)) def error(self, message): """Store a fatal error in storage. This will help debug problems. Args: message (str): Error message describing the problem. Raises: Exception: If the storage was opened readonly. """ if self.readonly: raise Exception('Opened storage readonly') self.inventory_index.set_error(self.session, message) def warning(self, message): """Store a Warning message in storage. This will help debug problems. Args: message (str): Warning message describing the problem. Raises: Exception: If the storage was opened readonly. """ if self.readonly: raise Exception('Opened storage readonly') self.inventory_index.add_warning(self.session, message) def iter(self, type_list=None, fetch_iam_policy=False, fetch_gcs_policy=False, fetch_dataset_policy=False, fetch_billing_info=False, fetch_enabled_apis=False, fetch_service_config=False, with_parent=False): """Iterate the objects in the storage. Args: type_list (list): List of types to iterate over, or [] for all. fetch_iam_policy (bool): Yield iam policies. fetch_gcs_policy (bool): Yield gcs policies. fetch_dataset_policy (bool): Yield dataset policies. fetch_billing_info (bool): Yield project billing info. fetch_enabled_apis (bool): Yield project enabled APIs info. fetch_service_config (bool): Yield container service config info. with_parent (bool): Join parent with results, yield tuples. Yields: object: Single row object or child/parent if 'with_parent' is set. """ filters = [Inventory.inventory_index_id == self.inventory_index.id] if fetch_iam_policy: filters.append( Inventory.category == Categories.iam_policy) elif fetch_gcs_policy: filters.append( Inventory.category == Categories.gcs_policy) elif fetch_dataset_policy: filters.append( Inventory.category == Categories.dataset_policy) elif fetch_billing_info: filters.append( Inventory.category == Categories.billing_info) elif fetch_enabled_apis: filters.append( Inventory.category == Categories.enabled_apis) elif fetch_service_config: filters.append( Inventory.category == Categories.kubernetes_service_config) else: filters.append( Inventory.category == Categories.resource) if type_list: filters.append(Inventory.resource_type.in_(type_list)) if with_parent: parent_inventory = aliased(Inventory) p_id = parent_inventory.id base_query = ( self.session.query(Inventory, parent_inventory) .filter(Inventory.parent_id == p_id)) else: base_query = self.session.query(Inventory) for qry_filter in filters: base_query = base_query.filter(qry_filter) base_query = base_query.order_by(Inventory.id.asc()) for row in base_query.yield_per(PER_YIELD): yield row def get_root(self): """get the resource root from the inventory Returns: object: A row in gcp_inventory of the root """ # Comparison to None needed to compare to Null in SQL. # pylint: disable=singleton-comparison root = self.session.query(Inventory).filter( and_( Inventory.inventory_index_id == self.inventory_index.id, Inventory.parent_id == None, Inventory.category == Categories.resource, Inventory.resource_type.in_(['organization', 'folder', 'project']) )).first() # pylint: enable=singleton-comparison LOGGER.debug('Root resource: %s', root) return root def type_exists(self, type_list=None): """Check if certain types of resources exists in the inventory Args: type_list (list): List of types to check Returns: bool: If these types of resources exists """ return self.session.query(exists().where(and_( Inventory.inventory_index_id == self.inventory_index.id, Inventory.category == Categories.resource, Inventory.resource_type.in_(type_list) ))).scalar() def __enter__(self): """To support with statement for auto closing. Returns: Storage: The inventory storage object """ self.open() return self def __exit__(self, type_p, value, traceback): """To support with statement for auto closing. Args: type_p (object): Unused. value (object): Unused. traceback (object): Unused. """ self.close()
33.200571
87
0.586598
c94a586a0a1a5c22feaba4d7725ba86d6a419a28
53
py
Python
Python/print_without_newline.py
PushpneetSingh/Hello-world
def0f44737e02fb40063cd347e93e456658e2532
[ "MIT" ]
1,428
2018-10-03T15:15:17.000Z
2019-03-31T18:38:36.000Z
Python/print_without_newline.py
PushpneetSingh/Hello-world
def0f44737e02fb40063cd347e93e456658e2532
[ "MIT" ]
1,162
2018-10-03T15:05:49.000Z
2018-10-18T14:17:52.000Z
Python/print_without_newline.py
PushpneetSingh/Hello-world
def0f44737e02fb40063cd347e93e456658e2532
[ "MIT" ]
3,909
2018-10-03T15:07:19.000Z
2019-03-31T18:39:08.000Z
mylist = ['10','12','14'] print(*mylist,sep='\n')
17.666667
28
0.509434
4c11c44a75a6de80933c21f81d2d335cf1051714
1,415
py
Python
env/ant/ant.py
clvrai/coordination
2b1bc8a6817b477f49c0cf6bdacd9c2f2e56f692
[ "MIT" ]
33
2020-02-15T07:52:05.000Z
2021-12-27T04:19:45.000Z
env/ant/ant.py
clvrai/coordination
2b1bc8a6817b477f49c0cf6bdacd9c2f2e56f692
[ "MIT" ]
null
null
null
env/ant/ant.py
clvrai/coordination
2b1bc8a6817b477f49c0cf6bdacd9c2f2e56f692
[ "MIT" ]
6
2020-10-12T01:37:02.000Z
2022-02-21T12:49:49.000Z
from collections import OrderedDict import numpy as np from env.base import BaseEnv class AntEnv(BaseEnv): def __init__(self, xml_path, **kwargs): super().__init__(xml_path, **kwargs) self._env_config.update({ "init_randomness": 0.1, "init_random_rot": 0, }) # Env info self.reward_type = ["ctrl_reward"] self.ob_shape = OrderedDict([("shared_pos", 17), ("lower_body", 24), ("upper_body", 9), ("box_pos", 3)]) self.action_space.decompose(OrderedDict([("lower_body", 8), ("upper_body", 3)])) def _get_box_pos(self): return self._get_pos('box') def _render_callback(self): body_id = self.sim.model.body_name2id('torso') lookat = self.sim.data.body_xpos[body_id] lookat[2] += 0.3 cam_pos = lookat + np.array([0, -10, 3]) cam_id = self._camera_id self._set_camera_position(cam_id, cam_pos) self._set_camera_rotation(cam_id, lookat) self.sim.forward() def _viewer_reset(self): body_id = self.sim.model.body_name2id('torso') lookat = self.sim.data.body_xpos[body_id] for idx, value in enumerate(lookat): self._viewer.cam.lookat[idx] = value self._viewer.cam.lookat[2] += 0.35 self._viewer.cam.distance = 7 #self._viewer.cam.azimuth = 180. self._viewer.cam.elevation = -25.
30.106383
112
0.614134
b7b48cb30c7efd52d267169b386ac41ec7749012
11,860
py
Python
hiplot/fetchers_demo.py
mathematicalmichael/hiplot
84980f63d2ac7b34995d8f2ed144a1e786c02b38
[ "MIT" ]
null
null
null
hiplot/fetchers_demo.py
mathematicalmichael/hiplot
84980f63d2ac7b34995d8f2ed144a1e786c02b38
[ "MIT" ]
null
null
null
hiplot/fetchers_demo.py
mathematicalmichael/hiplot
84980f63d2ac7b34995d8f2ed144a1e786c02b38
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import uuid import random import math import time import typing as t from . import experiment as hip # Demos from the README. If one of those is modified, please modify the readme as well def demo_change_column_properties() -> hip.Experiment: data = [{"param": 1, "loss": 10, "hidden_field": "value1", "c": "red"}, {"param": 2, "loss": 5, "hidden_field": "value2", "c": "black"}] exp = hip.Experiment.from_iterable(data) exp.parameters_definition["c"].colors = {"red": "rgb(255, 0, 0)", "black": "rgb(0, 0, 0)"} exp.parameters_definition["loss"].type = hip.ValueType.NUMERIC_LOG exp.display_data(hip.Displays.PARALLEL_PLOT).update({ 'hide': ['hidden_field'], # This column won't appear in the parallel plot 'order': ['c'] # Column `c` will be displayed first the in parallel plot }) return exp def demo_basic_usage() -> hip.Experiment: data = [{'dropout': 0.1, 'lr': 0.001, 'loss': 10.0, 'optimizer': 'SGD'}, {'dropout': 0.15, 'lr': 0.01, 'loss': 3.5, 'optimizer': 'Adam'}, {'dropout': 0.3, 'lr': 0.1, 'loss': 4.5, 'optimizer': 'Adam'}] return hip.Experiment.from_iterable(data) def demo_line_xy() -> hip.Experiment: # DEMO_LINE_XY_BEGIN exp = hip.Experiment() exp.display_data(hip.Displays.XY).update({ 'axis_x': 'generation', 'axis_y': 'loss', }) for i in range(200): dp = hip.Datapoint( uid=str(i), values={ 'generation': i, 'param': 10 ** random.uniform(-1, 1), 'loss': random.uniform(-5, 5), }) if i > 10: from_parent = random.choice(exp.datapoints[-10:]) dp.from_uid = from_parent.uid # <-- Connect the parent to the child dp.values['loss'] += from_parent.values['loss'] # type: ignore dp.values['param'] *= from_parent.values['param'] # type: ignore exp.datapoints.append(dp) # DEMO_LINE_XY_END return exp def demo_bug_uid() -> hip.Experiment: return hip.Experiment.from_iterable([{'a': 1, 'b': 2, 'uid': 50.0}, {'a': 2, 'b': 3, 'uid': 49.33}]) def demo(n: int = 100) -> hip.Experiment: xp = hip.Experiment() xp.display_data(hip.Displays.XY).update({ 'axis_x': 'time', 'axis_y': 'exp_metric', }) # Some fake PBT-ish data def fake_params() -> t.Dict[str, hip.DisplayableType]: r = random.random() p: t.Dict[str, hip.DisplayableType] = { "lr": 10 ** random.uniform(-5, 0), "seed": random.uniform(0, 10), "name": uuid.uuid4().hex[:6], "optimizer": random.choice(["sgd", "adam", "adamw"]), "r": r, "c": random.choice(["red", "green", "black"]), } if r < 0.1: del p['optimizer'] if r > 0.3: p["optionA"] = random.uniform(1, 5) else: p["optionB"] = random.uniform(1, 5) if r < 0.2: p["pctile"] = -1.0 elif r < 0.5: p["pctile"] = random.uniform(-1.0, 10.0) elif r < 0.8: p["pctile"] = 10 ** random.uniform(1, 2) else: p["pctile"] = random.uniform(100, 101) if random.random() > 0.3: p["special_values"] = random.uniform(1, 5) else: p["special_values"] = random.choice([math.inf, -math.inf, math.nan]) return p def fake_metrics(tm: float) -> t.Dict[str, hip.DisplayableType]: return { "exp_metric": 10 ** random.uniform(-5, 0), "pct_success": random.uniform(10, 90), "chkpt": uuid.uuid4().hex[:6], "time": tm + random.uniform(-0.2, 0.2), "force_numericlog": random.uniform(1, 100), 'timestamp': int(time.time() + (task_idx * 2000)), } current_pop: t.List[t.Dict[str, t.Any]] = [dict(uid=f"init{i}", params=fake_params(), last_ckpt_uid=None) for i in range(10)] continue_num = 0 for task_idx in range(n): # All drop checkpoints for p in current_pop: ckpt_uid = f"{p['uid']}_{uuid.uuid4().hex[:6]}" xp.datapoints.append(hip.Datapoint(uid=ckpt_uid, from_uid=p['last_ckpt_uid'], values={**p['params'], **fake_metrics(task_idx)})) p['last_ckpt_uid'] = ckpt_uid # Randomly drop some current_pop = [p for p in current_pop if random.random() > 0.3] # Respawn as needed for _ in range(10 - len(current_pop)): continue_num += 1 parent = random.choice(xp.datapoints[-10:]) current_pop.append(dict(uid=f"continue{continue_num}", params=fake_params(), last_ckpt_uid=parent.uid)) xp.parameters_definition["c"].colors = {"red": "rgb(255, 0, 0)", "green": "rgb(0, 255, 0)", "black": "rgb(0, 0, 0)"} xp.parameters_definition["force_numericlog"].type = hip.ValueType.NUMERIC_LOG xp.parameters_definition["pctile"].type = hip.ValueType.NUMERIC_PERCENTILE xp.parameters_definition["timestamp"].type = hip.ValueType.TIMESTAMP return xp def demo_customize() -> hip.Experiment: exp = demo() # EXPERIMENT_SETTINGS_SNIPPET2_BEGIN # Provide configuration for the parallel plot exp.display_data(hip.Displays.PARALLEL_PLOT).update({ # Hide some columns in the parallel plot 'hide': ['optionB'], # Specify the order for others 'order': ['time'], # Put column time first on the left }) # Provide configuration for the table with all the rows exp.display_data(hip.Displays.TABLE).update({ # Don't display `uid` and `from_uid` columns to the user 'hide': ['uid', 'from_uid'], # In the table, order rows by default 'order_by': [['pct_success', 'desc']], # Specify the order for columns 'order': ['time'], # Put column time first on the left }) # Provide configuration for the XY graph exp.display_data(hip.Displays.XY).update({ # Default X axis for the XY plot 'axis_x': 'time', # Default Y axis 'axis_y': 'lr', # Configure lines 'lines_thickness': 1.0, 'lines_opacity': 0.1, # Configure dots 'dots_thickness': 2.0, 'dots_opacity': 0.3, }) # EXPERIMENT_SETTINGS_SNIPPET2_END return exp def demo_force_scale() -> hip.Experiment: xp = hip.Experiment() for _ in range(100): values = [abs(random.gauss(0.0, 1.0)) for _ in range(4)] xp.datapoints.append(hip.Datapoint({ f"value{i}": v / sum(values) for i, v in enumerate(values) })) for i in range(4): xp.parameters_definition[f"value{i}"].force_range(0.0, 1.0) return xp def demo_distribution(**kwargs: t.Any) -> hip.Experiment: xp = hip.Experiment.from_iterable([{ 'cat': random.choice(["a", "b", "c", "d", "e", "f", "g", "h"]), 'numeric': random.uniform(0.0, 1.0), } for i in range(1000)]) xp.display_data(hip.Displays.DISTRIBUTION).update(kwargs) return xp def demo_bool() -> hip.Experiment: return hip.Experiment.from_iterable([ {"bool": True}, {"bool": False} ]) def demo_color_interpolate() -> hip.Experiment: exp = demo() exp.parameters_definition["exp_metric"].colormap = "interpolateSinebow" return exp def demo_color_scheme_ylrd() -> hip.Experiment: exp = demo() exp.parameters_definition["exp_metric"].colormap = "schemeYlOrRd" return exp def demo_color_scheme_accent() -> hip.Experiment: exp = demo() exp.parameters_definition["exp_metric"].colormap = "schemeAccent" return exp def demo_color_interpolate_inverse() -> hip.Experiment: exp = demo_color_interpolate() assert exp.parameters_definition["exp_metric"].colormap is not None exp.parameters_definition["exp_metric"].colormap += "#inverse" return exp def demo_axis_style() -> hip.Experiment: data: t.List[t.Dict[str, t.Any]] = [] for _ in range(100): data.append({ **{ f'param{i}': random.uniform(0, 1) for i in range(6) }, 'loss': random.uniform(0, 100), 'metric': 10 ** random.uniform(0, 10) }) xp = hip.Experiment.from_iterable(data) for i in range(6): xp.parameters_definition[f"param{i}"].label_css = "badge badge-pill badge-secondary" xp.parameters_definition["loss"].label_css = "badge badge-pill badge-primary" xp.parameters_definition["metric"].label_css = "badge badge-pill badge-info" return xp def demo_categorical() -> hip.Experiment: data: t.List[t.Dict[str, t.Any]] = [] for _ in range(100): data.append({ 'cat_num_05': random.randint(0, 5), 'cat_num_15': random.randint(0, 10), 'cat_num_25': random.randint(0, 25), 'cat_str_05': f's{random.randint(0, 5)}', 'cat_str_15': f's{random.randint(0, 15)}', 'cat_str_25': f's{random.randint(0, 25)}', }) xp = hip.Experiment.from_iterable(data) for param in ["cat_num_05", "cat_num_15", "cat_num_25"]: xp.parameters_definition[param].type = hip.ValueType.CATEGORICAL xp.colorby = 'cat_num_25' return xp def demo_long_names() -> hip.Experiment: return hip.Experiment.from_iterable([ { 'some very very long name for a field': random.randint(0, 5), 'this one is also very long': random.randint(0, 10), 'another.long.one.but.with.dots': random.randint(0, 25), } for _ in range(100) ]) def demo_force_constant_pplot() -> hip.Experiment: exp = hip.Experiment.from_iterable([ {'uid': 123, 'a': 1, 'b': 3}, {'uid': 345, 'a': 2, 'b': 3} ]) exp.parameters_definition["b"].force_range(0, 100) return exp def demo_first_value_nan() -> hip.Experiment: return hip.Experiment.from_iterable([ {}, {'a': None}, {'a': 2}, {'a': 2.1}, {'a': 2.2}, {'a': 5.5}, {'a': math.nan}, ]) def demo_weighted_rows() -> hip.Experiment: experiment = hip.Experiment.from_iterable([ {'w': 1.0, 'a': 1, 'b': 1}, {'w': 2.0, 'a': 2, 'b': 1}, {'w': -2.0, 'a': 2, 'b': 1}, {'w': math.inf, 'a': 2, 'b': 2}, {'w': 'not_a_number', 'a': 2, 'b': 3}, {'w': None, 'a': 3, 'b': 3}, {'a': 4, 'b': 3}, ]) experiment.weightcolumn = "w" return experiment README_DEMOS: t.Dict[str, t.Callable[[], hip.Experiment]] = { "demo": demo, "demo_big": lambda: demo(1000), "demo_change_column_properties": demo_change_column_properties, "demo_basic_usage": demo_basic_usage, "demo_line_xy": demo_line_xy, "demo_bug_uid": demo_bug_uid, "demo_force_scale": demo_force_scale, "demo_distribution_cat": lambda: demo_distribution(axis="cat"), "demo_distribution_num": lambda: demo_distribution(axis="numeric"), "demo_distribution_num_100bins": lambda: demo_distribution(axis="numeric", nbins=100), "demo_bool": demo_bool, "demo_color_interpolate": demo_color_interpolate, "demo_color_scheme_ylrd": demo_color_scheme_ylrd, "demo_color_scheme_accent": demo_color_scheme_accent, "demo_axis_style": demo_axis_style, "demo_categorical": demo_categorical, "demo_customize": demo_customize, "demo_long_names": demo_long_names, "demo_force_constant_pplot": demo_force_constant_pplot, "demo_color_interpolate_inverse": demo_color_interpolate_inverse, "demo_first_value_nan": demo_first_value_nan, "demo_weighted_rows": demo_weighted_rows, }
35.192878
140
0.593676
e721f0901f2d08071e776319958b6968acbec51b
438
py
Python
configs/Experiment.py
jbr-ai-labs/mamba
bd05023bd0d66f89ffbe42c315c4c4a6612b8fb4
[ "MIT" ]
3
2022-02-08T20:23:18.000Z
2022-02-11T13:49:14.000Z
configs/Experiment.py
jbr-ai-labs/mamba
bd05023bd0d66f89ffbe42c315c4c4a6612b8fb4
[ "MIT" ]
null
null
null
configs/Experiment.py
jbr-ai-labs/mamba
bd05023bd0d66f89ffbe42c315c4c4a6612b8fb4
[ "MIT" ]
null
null
null
from configs.Config import Config class Experiment(Config): def __init__(self, steps, episodes, random_seed, env_config, controller_config, learner_config): super(Experiment, self).__init__() self.steps = steps self.episodes = episodes self.random_seed = random_seed self.env_config = env_config self.controller_config = controller_config self.learner_config = learner_config
33.692308
100
0.710046
caaebb54ba031a14523c8f92eb4ce87041befdd3
219
py
Python
src/lesson_data_persistence_and_exchange/shelve_readonly.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
3
2018-08-14T09:33:52.000Z
2022-03-21T12:31:58.000Z
src/lesson_data_persistence_and_exchange/shelve_readonly.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
null
null
null
src/lesson_data_persistence_and_exchange/shelve_readonly.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
null
null
null
import dbm import shelve with shelve.open('test_shelf.db', flag='r') as s: print('Existing:', s['key1']) try: s['key1'] = 'new value' except dbm.error as err: print('ERROR: {}'.format(err))
21.9
49
0.579909
4f8fbd2aab2c179ca8104cf2deb16d40fa8cc8bf
921
py
Python
python/edl/tests/unittests/del_from_etcd.py
WEARE0/edl
f065ec02bb27a67c80466103e298bd6f37494048
[ "Apache-2.0" ]
90
2020-04-21T01:46:10.000Z
2022-02-10T09:09:34.000Z
python/edl/tests/unittests/del_from_etcd.py
WEARE0/edl
f065ec02bb27a67c80466103e298bd6f37494048
[ "Apache-2.0" ]
37
2018-03-02T22:41:15.000Z
2020-04-22T16:48:36.000Z
python/edl/tests/unittests/del_from_etcd.py
WEARE0/edl
f065ec02bb27a67c80466103e298bd6f37494048
[ "Apache-2.0" ]
34
2018-03-02T23:28:25.000Z
2020-03-25T08:50:29.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from edl.utils import constants from edl.discovery import etcd_client g_etcd_endpoints = "127.0.0.1:2379" job_id = os.environ["PADDLE_JOB_ID"] etcd_endpoints = os.environ["PADDLE_ETCD_ENDPOINTS"] etcd = etcd_client.EtcdClient([g_etcd_endpoints], root=job_id) etcd.init() constants.clean_etcd(etcd)
35.423077
74
0.775244
e5dab578f1b0eba8f062481661ab78fee39694fb
12,221
py
Python
DQM/Integration/python/clients/beampixel_dqm_sourceclient-live_cfg.py
malbouis/cmssw
16173a30d3f0c9ecc5419c474bb4d272c58b65c8
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
DQM/Integration/python/clients/beampixel_dqm_sourceclient-live_cfg.py
malbouis/cmssw
16173a30d3f0c9ecc5419c474bb4d272c58b65c8
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
DQM/Integration/python/clients/beampixel_dqm_sourceclient-live_cfg.py
malbouis/cmssw
16173a30d3f0c9ecc5419c474bb4d272c58b65c8
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
from __future__ import print_function import FWCore.ParameterSet.Config as cms import sys from Configuration.Eras.Era_Run2_2018_cff import Run2_2018 process = cms.Process("BeamPixel", Run2_2018) unitTest = False if 'unitTest=True' in sys.argv: unitTest = True #---------------------------- # Common for PP and HI running #---------------------------- if unitTest == True: process.load("DQM.Integration.config.unittestinputsource_cfi") from DQM.Integration.config.unittestinputsource_cfi import options else: process.load("DQM.Integration.config.inputsource_cfi") from DQM.Integration.config.inputsource_cfi import options # Use this to run locally (for testing purposes) #process.load("DQM.Integration.config.fileinputsource_cfi") #from DQM.Integration.config.fileinputsource_cfi import options #---------------------------- # HLT Filter #---------------------------- # 0=random, 1=physics, 2=calibration, 3=technical process.hltTriggerTypeFilter = cms.EDFilter("HLTTriggerTypeFilter", SelectedTriggerType = cms.int32(1)) #---------------------------- # DQM Environment #---------------------------- process.load("DQM.Integration.config.environment_cfi") process.dqmEnv.subSystemFolder = "BeamPixel" process.dqmSaver.tag = "BeamPixel" process.dqmSaver.runNumber = options.runNumber process.dqmSaverPB.tag = 'BeamPixel' process.dqmSaverPB.runNumber = options.runNumber #---------------------------- # Conditions #---------------------------- # Use this to run locally (for testing purposes), choose the right GT #process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") #from Configuration.AlCa.GlobalTag import GlobalTag #process.GlobalTag = GlobalTag(process.GlobalTag, "auto:run2_data", "") # Otherwise use this process.load("DQM.Integration.config.FrontierCondition_GT_cfi") #---------------------------- # Sub-system Configuration #---------------------------- process.load("Configuration.StandardSequences.GeometryRecoDB_cff") process.load("Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff") process.load("Configuration.StandardSequences.RawToDigi_Data_cff") #---------------------------- # Define Sequences #---------------------------- process.dqmModules = cms.Sequence(process.dqmEnv + process.dqmSaver + process.dqmSaverPB) process.physTrigger = cms.Sequence(process.hltTriggerTypeFilter) #---------------------------- # Process Customizations #---------------------------- from DQM.Integration.config.online_customizations_cfi import * process = customise(process) from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer #---------------------------- # Tracking General Configuration #---------------------------- process.load("RecoVertex.BeamSpotProducer.BeamSpot_cfi") process.load("RecoLocalTracker.Configuration.RecoLocalTracker_cff") process.load("TrackingTools.TransientTrack.TransientTrackBuilder_cfi") #---------------------------- # Pixel-Tracks&Vertices Config #---------------------------- from RecoPixelVertexing.PixelLowPtUtilities.siPixelClusterShapeCache_cfi import * process.siPixelClusterShapeCachePreSplitting = siPixelClusterShapeCache.clone(src = 'siPixelClustersPreSplitting') process.load("RecoLocalTracker.SiPixelRecHits.PixelCPEGeneric_cfi") process.load("RecoPixelVertexing.Configuration.RecoPixelVertexing_cff") from RecoVertex.PrimaryVertexProducer.OfflinePixel3DPrimaryVertices_cfi import * process.pixelVertices = pixelVertices.clone( TkFilterParameters = dict( minPt = process.pixelTracksTrackingRegions.RegionPSet.ptMin) ) process.pixelTracksTrackingRegions.RegionPSet.originRadius = 0.4 process.pixelTracksTrackingRegions.RegionPSet.originHalfLength = 15. process.pixelTracksTrackingRegions.RegionPSet.originXPos = 0.08 process.pixelTracksTrackingRegions.RegionPSet.originYPos = -0.03 process.pixelTracksTrackingRegions.RegionPSet.originZPos = 0. #---------------------------- # Proton-Proton Specific Section #---------------------------- if (process.runType.getRunType() == process.runType.pp_run or process.runType.getRunType() == process.runType.pp_run_stage1 or process.runType.getRunType() == process.runType.cosmic_run or process.runType.getRunType() == process.runType.cosmic_run_stage1 or process.runType.getRunType() == process.runType.hpu_run): print("[beampixel_dqm_sourceclient-live_cfg]::running pp") #---------------------------- # Tracking Configuration #---------------------------- process.castorDigis.InputLabel = "rawDataCollector" process.csctfDigis.producer = "rawDataCollector" process.dttfDigis.DTTF_FED_Source = "rawDataCollector" process.ecalDigis.cpu.InputLabel = "rawDataCollector" process.ecalPreshowerDigis.sourceTag = "rawDataCollector" process.gctDigis.inputLabel = "rawDataCollector" process.gtDigis.DaqGtInputTag = "rawDataCollector" process.hcalDigis.InputLabel = "rawDataCollector" process.muonCSCDigis.InputObjects = "rawDataCollector" process.muonDTDigis.inputLabel = "rawDataCollector" process.muonRPCDigis.InputLabel = "rawDataCollector" process.scalersRawToDigi.scalersInputTag = "rawDataCollector" process.siPixelDigis.cpu.InputLabel = "rawDataCollector" process.siStripDigis.ProductLabel = "rawDataCollector" #---------------------------- # pixelVertexDQM Config #---------------------------- process.pixelVertexDQM = DQMEDAnalyzer('Vx3DHLTAnalyzer', vertexCollection = cms.untracked.InputTag("pixelVertices"), pixelHitCollection = cms.untracked.InputTag("siPixelRecHitsPreSplitting"), debugMode = cms.bool(True), nLumiFit = cms.uint32(2), maxLumiIntegration = cms.uint32(15), nLumiXaxisRange = cms.uint32(5000), dataFromFit = cms.bool(True), minNentries = cms.uint32(20), # If the histogram has at least "minNentries" then extract Mean and RMS, # or, if we are performing the fit, the number of vertices must be greater # than minNentries otherwise it waits for other nLumiFit xRange = cms.double(0.8), xStep = cms.double(0.001), yRange = cms.double(0.8), yStep = cms.double(0.001), zRange = cms.double(30.0), zStep = cms.double(0.04), VxErrCorr = cms.double(1.2), # Keep checking this with later release minVxDoF = cms.double(10.0), minVxWgt = cms.double(0.5), fileName = cms.string("/nfshome0/dqmdev/BeamMonitorDQM/BeamPixelResults.txt")) #---------------------------- # Heavy Ion Specific Section #---------------------------- if (process.runType.getRunType() == process.runType.hi_run): print("[beampixel_dqm_sourceclient-live_cfg]::running HI") #---------------------------- # Tracking Configuration #---------------------------- process.castorDigis.InputLabel = "rawDataRepacker" process.csctfDigis.producer = "rawDataRepacker" process.dttfDigis.DTTF_FED_Source = "rawDataRepacker" process.ecalDigis.cpu.InputLabel = "rawDataRepacker" process.ecalPreshowerDigis.sourceTag = "rawDataRepacker" process.gctDigis.inputLabel = "rawDataRepacker" process.gtDigis.DaqGtInputTag = "rawDataRepacker" process.hcalDigis.InputLabel = "rawDataRepacker" process.muonCSCDigis.InputObjects = "rawDataRepacker" process.muonDTDigis.inputLabel = "rawDataRepacker" process.muonRPCDigis.InputLabel = "rawDataRepacker" process.scalersRawToDigi.scalersInputTag = "rawDataRepacker" process.siPixelDigis.cpu.InputLabel = "rawDataRepacker" process.siStripDigis.ProductLabel = "rawDataRepacker" #---------------------------- # pixelVertexDQM Config #---------------------------- process.pixelVertexDQM = DQMEDAnalyzer('Vx3DHLTAnalyzer', vertexCollection = cms.untracked.InputTag("pixelVertices"), pixelHitCollection = cms.untracked.InputTag("siPixelRecHitsPreSplitting"), debugMode = cms.bool(True), nLumiFit = cms.uint32(5), maxLumiIntegration = cms.uint32(15), nLumiXaxisRange = cms.uint32(5000), dataFromFit = cms.bool(True), minNentries = cms.uint32(20), # If the histogram has at least "minNentries" then extract Mean and RMS, # or, if we are performing the fit, the number of vertices must be greater # than minNentries otherwise it waits for other nLumiFit xRange = cms.double(0.8), xStep = cms.double(0.001), yRange = cms.double(0.8), yStep = cms.double(0.001), zRange = cms.double(30.0), zStep = cms.double(0.04), VxErrCorr = cms.double(1.2), # Keep checking this with later release minVxDoF = cms.double(10.0), minVxWgt = cms.double(0.5), fileName = cms.string("/nfshome0/dqmdev/BeamMonitorDQM/BeamPixelResults.txt")) #---------------------------- # File to save beamspot info #---------------------------- if process.dqmRunConfig.type.value() == "production": process.pixelVertexDQM.fileName = "/nfshome0/dqmpro/BeamMonitorDQM/BeamPixelResults.txt" else: process.pixelVertexDQM.fileName = "/nfshome0/dqmdev/BeamMonitorDQM/BeamPixelResults.txt" print("[beampixel_dqm_sourceclient-live_cfg]::saving DIP file into " + str(process.pixelVertexDQM.fileName)) #---------------------------- # Pixel-Tracks&Vertices Reco #---------------------------- process.reconstructionStep = cms.Sequence(process.siPixelDigis* process.siStripDigis* process.striptrackerlocalreco* process.offlineBeamSpot* process.siPixelClustersPreSplitting* process.siPixelRecHitsPreSplitting* process.siPixelClusterShapeCachePreSplitting* process.recopixelvertexing) #---------------------------- # Define Path #---------------------------- process.p = cms.Path(process.scalersRawToDigi*process.physTrigger*process.reconstructionStep*process.pixelVertexDQM*process.dqmModules)
50.920833
135
0.551346
3abe9fc362d8b6fc53737508881bd5adfce968b5
18,774
py
Python
Tests/scripts/validate_files.py
vibhuabharadwaj/content
30d639dbea0015536a3040ec18f93e50322bded0
[ "MIT" ]
null
null
null
Tests/scripts/validate_files.py
vibhuabharadwaj/content
30d639dbea0015536a3040ec18f93e50322bded0
[ "MIT" ]
null
null
null
Tests/scripts/validate_files.py
vibhuabharadwaj/content
30d639dbea0015536a3040ec18f93e50322bded0
[ "MIT" ]
null
null
null
""" This script is used to validate the files in Content repository. Specifically for each file: 1) Proper prefix 2) Proper suffix 3) Valid yml/json schema 4) Having ReleaseNotes if applicable. It can be run to check only committed changes (if the first argument is 'true') or all the files in the repo. Note - if it is run for all the files in the repo it won't check releaseNotes, use `release_notes.py` for that task. """ import os import re import sys import glob import logging import argparse import subprocess from Tests.scripts.constants import * from Tests.scripts.hook_validations.id import IDSetValidator from Tests.scripts.hook_validations.secrets import get_secrets from Tests.scripts.hook_validations.image import ImageValidator from Tests.scripts.hook_validations.description import DescriptionValidator from Tests.scripts.update_id_set import get_script_package_data from Tests.scripts.hook_validations.script import ScriptValidator from Tests.scripts.hook_validations.conf_json import ConfJsonValidator from Tests.scripts.hook_validations.structure import StructureValidator from Tests.scripts.hook_validations.integration import IntegrationValidator from Tests.test_utils import checked_type, run_command, print_error, collect_ids, print_color, str2bool, LOG_COLORS, \ get_yaml, filter_packagify_changes class FilesValidator(object): """FilesValidator is a class that's designed to validate all the changed files on your branch, and all files in case you are on master, this class will be used on your local env as the validation hook(pre-commit), and on CircleCi to make sure you did not bypass the hooks as a safety precaution. Attributes: _is_valid (bool): saves the status of the whole validation(instead of mingling it between all the functions). is_circle (bool): whether we are running on circle or local env. conf_json_validator (ConfJsonValidator): object for validating the conf.json file. id_set_validator (IDSetValidator): object for validating the id_set.json file(Created in Circle only). """ def __init__(self, is_circle=False): self._is_valid = True self.is_circle = is_circle self.conf_json_validator = ConfJsonValidator() self.id_set_validator = IDSetValidator(is_circle) @staticmethod def is_py_script_or_integration(file_path): file_yml = get_yaml(file_path) if re.match(INTEGRATION_REGEX, file_path, re.IGNORECASE): if file_yml.get('script', {}).get('type', 'javascript') != 'python': return False return True elif re.match(SCRIPT_REGEX, file_path, re.IGNORECASE): if file_yml.get('type', 'javascript') != 'python': return False return True return False @staticmethod def get_modified_files(files_string): """Get lists of the modified files in your branch according to the files string. Args: files_string (string): String that was calculated by git using `git diff` command. Returns: (modified_files_list, added_files_list, deleted_files). Tuple of sets. """ all_files = files_string.split('\n') deleted_files = set([]) added_files_list = set([]) modified_files_list = set([]) old_format_files = set([]) for f in all_files: file_data = f.split() if not file_data: continue file_status = file_data[0] file_path = file_data[1] if file_status.lower().startswith('r'): file_status = 'r' file_path = file_data[2] if checked_type(file_path, CODE_FILES_REGEX) and file_status.lower() != 'd' \ and not file_path.endswith('_test.py'): # naming convention - code file and yml file in packages must have same name. file_path = os.path.splitext(file_path)[0] + '.yml' elif file_path.endswith('.js') or file_path.endswith('.py'): continue if file_status.lower() in ['m', 'a', 'r'] and checked_type(file_path, OLD_YML_FORMAT_FILE) and \ FilesValidator.is_py_script_or_integration(file_path): old_format_files.add(file_path) elif file_status.lower() == 'm' and checked_type(file_path) and not file_path.startswith('.'): modified_files_list.add(file_path) elif file_status.lower() == 'a' and checked_type(file_path) and not file_path.startswith('.'): added_files_list.add(file_path) elif file_status.lower() == 'd' and checked_type(file_path) and not file_path.startswith('.'): deleted_files.add(file_path) elif file_status.lower().startswith('r') and checked_type(file_path): modified_files_list.add((file_data[1], file_data[2])) elif file_status.lower() not in KNOWN_FILE_STATUSES: print_error(file_path + " file status is an unknown known one, " "please check. File status was: " + file_status) modified_files_list, added_files_list, deleted_files = filter_packagify_changes( modified_files_list, added_files_list, deleted_files, 'master') return modified_files_list, added_files_list, deleted_files, old_format_files def get_modified_and_added_files(self, branch_name, is_circle): """Get lists of the modified and added files in your branch according to the git diff output. Args: branch_name (string): The name of the branch we are working on. is_circle (bool): Whether we are running on circle or local env. Returns: (modified_files, added_files). Tuple of sets. """ all_changed_files_string = run_command("git diff --name-status origin/master...{}".format(branch_name)) modified_files, added_files, _, old_format_files = self.get_modified_files(all_changed_files_string) if not is_circle: files_string = run_command("git diff --name-status --no-merges HEAD") non_committed_modified_files, non_committed_added_files, non_committed_deleted_files, \ non_committed_old_format_files = self.get_modified_files(files_string) all_changed_files_string = run_command("git diff --name-status origin/master") modified_files_from_master, added_files_from_master, _, _ = \ self.get_modified_files(all_changed_files_string) old_format_files = old_format_files.union(non_committed_old_format_files) for mod_file in modified_files_from_master: if mod_file in non_committed_modified_files: modified_files.add(mod_file) for add_file in added_files_from_master: if add_file in non_committed_added_files: added_files.add(add_file) modified_files = modified_files - set(non_committed_deleted_files) added_files = added_files - set(non_committed_modified_files) - set(non_committed_deleted_files) # new_added_files = set([]) # for added_file in added_files: # if added_file in non_committed_added_files: # new_added_files.add(added_file) # added_files = new_added_files return modified_files, added_files, old_format_files def validate_modified_files(self, modified_files, is_backward_check=True): """Validate the modified files from your branch. In case we encounter an invalid file we set the self._is_valid param to False. Args: modified_files (set): A set of the modified files in the current branch. """ for file_path in modified_files: old_file_path = None if isinstance(file_path, tuple): old_file_path, file_path = file_path print("Validating {}".format(file_path)) structure_validator = StructureValidator(file_path, is_added_file=not(False or is_backward_check), is_renamed=True if old_file_path else False) if not structure_validator.is_file_valid(): self._is_valid = False if not self.id_set_validator.is_file_valid_in_set(file_path): self._is_valid = False elif re.match(INTEGRATION_REGEX, file_path, re.IGNORECASE) or \ re.match(INTEGRATION_YML_REGEX, file_path, re.IGNORECASE): image_validator = ImageValidator(file_path) if not image_validator.is_valid(): self._is_valid = False description_validator = DescriptionValidator(file_path) if not description_validator.is_valid(): self._is_valid = False integration_validator = IntegrationValidator(file_path, old_file_path=old_file_path) if is_backward_check and not integration_validator.is_backward_compatible(): self._is_valid = False elif re.match(SCRIPT_REGEX, file_path, re.IGNORECASE): script_validator = ScriptValidator(file_path) if is_backward_check and not script_validator.is_backward_compatible(): self._is_valid = False elif re.match(SCRIPT_YML_REGEX, file_path, re.IGNORECASE) or \ re.match(SCRIPT_PY_REGEX, file_path, re.IGNORECASE) or \ re.match(SCRIPT_JS_REGEX, file_path, re.IGNORECASE): yml_path, _ = get_script_package_data(os.path.dirname(file_path)) script_validator = ScriptValidator(yml_path) if is_backward_check and not script_validator.is_backward_compatible(): self._is_valid = False elif re.match(IMAGE_REGEX, file_path, re.IGNORECASE): image_validator = ImageValidator(file_path) if not image_validator.is_valid(): self._is_valid = False def validate_added_files(self, added_files): """Validate the added files from your branch. In case we encounter an invalid file we set the self._is_valid param to False. Args: added_files (set): A set of the modified files in the current branch. """ for file_path in added_files: print("Validating {}".format(file_path)) structure_validator = StructureValidator(file_path, is_added_file=True) if not structure_validator.is_file_valid(): self._is_valid = False if not self.id_set_validator.is_file_valid_in_set(file_path): self._is_valid = False if self.id_set_validator.is_file_has_used_id(file_path): self._is_valid = False if re.match(TEST_PLAYBOOK_REGEX, file_path, re.IGNORECASE): if not self.conf_json_validator.is_test_in_conf_json(collect_ids(file_path)): self._is_valid = False elif re.match(INTEGRATION_REGEX, file_path, re.IGNORECASE) or \ re.match(INTEGRATION_YML_REGEX, file_path, re.IGNORECASE) or \ re.match(IMAGE_REGEX, file_path, re.IGNORECASE): image_validator = ImageValidator(file_path) if not image_validator.is_valid(): self._is_valid = False description_validator = DescriptionValidator(file_path) if not description_validator.is_valid(): self._is_valid = False elif re.match(IMAGE_REGEX, file_path, re.IGNORECASE): image_validator = ImageValidator(file_path) if not image_validator.is_valid(): self._is_valid = False def validate_no_secrets_found(self, branch_name): """Check if any secrets are found in your change set. Args: branch_name (string): The name of the branch you are working on. """ secrets_found = get_secrets(branch_name, self.is_circle) if secrets_found: self._is_valid = False def validate_no_old_format(self, old_format_files): """ Validate there are no files in the old format(unified yml file for the code and configuration). Args: old_format_files(set): file names which are in the old format. """ invalid_files = [] for f in old_format_files: yaml_data = get_yaml(f) if 'toversion' not in yaml_data: # we only fail on old format if no toversion (meaning it is latest) invalid_files.append(f) if invalid_files: print_error("You must update the following files to the new package format. The files are:\n{}".format( '\n'.join(list(invalid_files)))) self._is_valid = False def validate_committed_files(self, branch_name, is_backward_check=True): """Validate that all the committed files in your branch are valid Args: branch_name (string): The name of the branch you are working on. """ modified_files, added_files, old_format_files = self.get_modified_and_added_files(branch_name, self.is_circle) self.validate_no_secrets_found(branch_name) self.validate_modified_files(modified_files, is_backward_check) self.validate_added_files(added_files) self.validate_no_old_format(old_format_files) def validate_all_files(self): """Validate all files in the repo are in the right format.""" for regex in CHECKED_TYPES_REGEXES: splitted_regex = regex.split(".*") directory = splitted_regex[0] for root, dirs, files in os.walk(directory): if root not in DIR_LIST: # Skipping in case we entered a package continue print_color("Validating {} directory:".format(directory), LOG_COLORS.GREEN) for file_name in files: file_path = os.path.join(root, file_name) # skipping hidden files if file_name.startswith('.'): continue print("Validating " + file_name) structure_validator = StructureValidator(file_path) if not structure_validator.is_valid_scheme(): self._is_valid = False if root in PACKAGE_SUPPORTING_DIRECTORIES: for inner_dir in dirs: file_path = glob.glob(os.path.join(root, inner_dir, '*.yml'))[0] print("Validating " + file_path) structure_validator = StructureValidator(file_path) if not structure_validator.is_valid_scheme(): self._is_valid = False def is_valid_structure(self, branch_name, is_backward_check=True): """Check if the structure is valid for the case we are in, master - all files, branch - changed files. Args: branch_name (string): The name of the branch we are working on. Returns: (bool). Whether the structure is valid or not. """ if not self.conf_json_validator.is_valid_conf_json(): self._is_valid = False if branch_name != 'master' and not branch_name.startswith('19.') and not branch_name.startswith('20.'): # validates only committed files self.validate_committed_files(branch_name, is_backward_check=is_backward_check) else: # validates all of Content repo directories according to their schemas self.validate_all_files() return self._is_valid def main(): """Execute FilesValidator checks on the modified changes in your branch, or all files in case of master. This script runs both in a local and a remote environment. In a local environment we don't have any logger assigned, and then pykwalify raises an error, since it is logging the validation results. Therefore, if we are in a local env, we set up a logger. Also, we set the logger's level to critical so the user won't be disturbed by non critical loggings """ branches = run_command("git branch") branch_name_reg = re.search("\* (.*)", branches) branch_name = branch_name_reg.group(1) parser = argparse.ArgumentParser(description='Utility CircleCI usage') parser.add_argument('-c', '--circle', type=str2bool, default=False, help='Is CircleCi or not') parser.add_argument('-b', '--backwardComp', type=str2bool, default=True, help='To check backward compatibility.') parser.add_argument('-t', '--test-filter', type=str2bool, default=False, help='Check that tests are valid.') options = parser.parse_args() is_circle = options.circle is_backward_check = options.backwardComp logging.basicConfig(level=logging.CRITICAL) print_color("Starting validating files structure", LOG_COLORS.GREEN) files_validator = FilesValidator(is_circle) if not files_validator.is_valid_structure(branch_name, is_backward_check=is_backward_check): sys.exit(1) if options.test_filter: try: print_color("Updating idset. Be patient if this is the first time...", LOG_COLORS.YELLOW) subprocess.check_output(["./Tests/scripts/update_id_set.py"]) print_color("Checking that we have tests for all content...", LOG_COLORS.YELLOW) try: tests_out = subprocess.check_output(["./Tests/scripts/configure_tests.py", "-s", "true"], stderr=subprocess.STDOUT) print(tests_out) except Exception: print_color("Recreating idset to be sure that configure tests failure is accurate." " Be patient this can take 15-20 seconds ...", LOG_COLORS.YELLOW) subprocess.check_output(["./Tests/scripts/update_id_set.py", "-r"]) print_color("Checking that we have tests for all content again...", LOG_COLORS.YELLOW) subprocess.check_call(["./Tests/scripts/configure_tests.py", "-s", "true"]) except Exception as ex: print_color("Failed validating tests: {}".format(ex), LOG_COLORS.RED) sys.exit(1) print_color("Finished validating files structure", LOG_COLORS.GREEN) sys.exit(0) if __name__ == "__main__": main()
46.127764
120
0.647651
aae65772c998f1e05e3bdd213168429b2fd08415
2,512
py
Python
resilient/resilient/resilient_rest_mock.py
carlosotgz/resilient-python-api
647a629c296602e8541b72155eab26d7fdc6b67f
[ "MIT" ]
28
2017-12-22T00:26:59.000Z
2022-01-22T14:51:33.000Z
resilient/resilient/resilient_rest_mock.py
carlosotgz/resilient-python-api
647a629c296602e8541b72155eab26d7fdc6b67f
[ "MIT" ]
18
2018-03-06T19:04:20.000Z
2022-03-21T15:06:30.000Z
resilient/resilient/resilient_rest_mock.py
carlosotgz/resilient-python-api
647a629c296602e8541b72155eab26d7fdc6b67f
[ "MIT" ]
28
2018-05-01T17:53:22.000Z
2022-03-28T09:56:59.000Z
# (c) Copyright IBM Corp. 2010, 2017. All Rights Reserved. """ Requests mock for Resilient REST API """ import logging from collections import namedtuple import json import re import requests_mock from six import add_metaclass LOG = logging.getLogger(__name__) LOG.addHandler(logging.StreamHandler()) LOG.setLevel(logging.DEBUG) def resilient_endpoint(request_type, uri): def mark(func): func.uri = uri func.request_type = request_type return func return mark class ResilientMockType(type): def __new__(mcl, name, bases, nmspc): Endpoint = namedtuple("Endpoint", "type uri") try: endpoints = bases[0].registered_endpoints except: endpoints = {} for obj in nmspc.values(): if hasattr(obj, 'uri'): endpoints[Endpoint(type=obj.request_type, uri=obj.uri)] = obj nmspc['registered_endpoints'] = endpoints return super(ResilientMockType, mcl).__new__(mcl, name, bases, nmspc) @add_metaclass(ResilientMockType) class ResilientMock(object): """ Base class for creating Resilient Rest API Mock definitions """ def __init__(self, org_name=None, email=None): self.email = email or "api@example.com" self.org_name = org_name or "Test Org" LOG.info("Initialize ResilientMock %s %s", self.email, self.org_name) self.adapter = requests_mock.Adapter() for endpoint, handler in self.registered_endpoints.items(): # Register with regex since some endpoints embed the org_id in the path LOG.info("Registering %s %s to %s", endpoint.type, endpoint.uri, str(handler)) self.adapter.add_matcher(lambda request, method=endpoint.type, callback=handler, uri=endpoint.uri: self._custom_matcher(method, uri, lambda request: callback(self, request), request)) @staticmethod def _custom_matcher(request_type, uri, response_callback, request): """ matcher function for passing to adapter.add_matcher() """ if request.method == request_type and re.search(uri, request.url): return response_callback(request) else: return None
38.646154
107
0.589968
e12d5ae4a744195027e13bbe5be2de2f8ea925ac
382
py
Python
packages/optitype/optitype.1.0.0/files/hook-numpy.py
solvuu/opam-repo-bio
0f33dad92113195693d876b5a04182eea08eeea8
[ "CC0-1.0" ]
7
2015-10-12T20:23:43.000Z
2016-05-11T21:07:43.000Z
packages/optitype/optitype.1.0.0/files/hook-numpy.py
solvuu/opam-repo-bio
0f33dad92113195693d876b5a04182eea08eeea8
[ "CC0-1.0" ]
20
2015-12-31T20:31:23.000Z
2016-05-16T20:37:06.000Z
packages/optitype/optitype.1.0.0/files/hook-numpy.py
solvuu/opam-repo-bio
0f33dad92113195693d876b5a04182eea08eeea8
[ "CC0-1.0" ]
3
2016-01-21T23:52:14.000Z
2016-05-11T21:07:47.000Z
from PyInstaller import log as logging from PyInstaller import compat from os import listdir libdir = compat.base_prefix + "/lib" mkllib = filter(lambda x : x.startswith('libmkl_'), listdir(libdir)) if mkllib <> []: logger = logging.getLogger(__name__) logger.info("MKL installed as part of numpy, importing that!") binaries = map(lambda l: (libdir + "/" + l, ''), mkllib)
34.727273
68
0.712042
7cbe9302c95e473a1947b80183ee75182bf66b23
5,139
py
Python
proj/fpga/zcu106/Vitis-AI-DPU_TRD-for-ZCU106/zcu106_dpu/Vitis-AI/VART/samples/inception_v1_mt_py/inception_v1.py
timebe00/Mercenary
7762bad28e4f49b2ad84fb8abbd8056bd01f61d4
[ "MIT" ]
3
2020-10-29T15:00:30.000Z
2021-10-21T08:09:34.000Z
proj/fpga/zcu106/Vitis-AI-DPU_TRD-for-ZCU106/zcu106_dpu/Vitis-AI/VART/samples/inception_v1_mt_py/inception_v1.py
timebe00/Mercenary
7762bad28e4f49b2ad84fb8abbd8056bd01f61d4
[ "MIT" ]
20
2020-10-31T03:19:03.000Z
2020-11-02T18:59:49.000Z
proj/fpga/zcu106/Vitis-AI-DPU_TRD-for-ZCU106/zcu106_dpu/Vitis-AI/VART/samples/inception_v1_mt_py/inception_v1.py
timebe00/Mercenary
7762bad28e4f49b2ad84fb8abbd8056bd01f61d4
[ "MIT" ]
9
2020-10-14T02:04:10.000Z
2020-12-01T08:23:02.000Z
''' Copyright 2019 Xilinx Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from ctypes import * import cv2 import numpy as np import runner import os import input_fn import math import threading import time import sys ''' Calculate softmax data: data to be calculated size: data size return: softamx result ''' def CPUCalcSoftmax(data,size): sum=0.0 result = [0 for i in range(size)] for i in range(size): result[i] = math.exp(data[i]) sum +=result[i] for i in range(size): result[i] /=sum return result def get_script_directory(): path = os.getcwd() return path ''' Get topk results according to its probability datain: data result of softmax filePath: filePath in witch that records the infotmation of kinds ''' def TopK(datain,size,filePath): cnt=[i for i in range(size) ] pair=zip(datain,cnt) pair=sorted(pair,reverse=True) softmax_new,cnt_new=zip(*pair) fp=open(filePath, "r") data1=fp.readlines() fp.close() for i in range(5): flag=0 for line in data1: if flag==cnt_new[i]: print("Top[%d] %f %s" %(i, (softmax_new[i]),(line.strip)("\n"))) flag=flag+1 l = threading.Lock() SCRIPT_DIR = get_script_directory() calib_image_dir = SCRIPT_DIR + "/../images/" IMAGE_WIDTH = 224 IMAGE_HEIGHT = 224 global threadnum threadnum = 0 global runTotall runRotal = 0 ''' run inception_v1 with batch dpu: dpu runner img: imagelist to be run cnt: threadnum ''' def runInceptionV1(dpu,img,cnt): """get tensor""" inputTensors = dpu.get_input_tensors() outputTensors = dpu.get_output_tensors() tensorformat = dpu.get_tensor_format() if tensorformat == dpu.TensorFormat.NCHW: outputHeight = outputTensors[0].dims[2] outputWidth = outputTensors[0].dims[3] outputChannel = outputTensors[0].dims[1] elif tensorformat == dpu.TensorFormat.NHWC: outputHeight = outputTensors[0].dims[1] outputWidth = outputTensors[0].dims[2] outputChannel = outputTensors[0].dims[3] else: exit("Format error") outputSize = outputHeight*outputWidth*outputChannel softmax = np.empty(outputSize) global runTotall count = cnt batchSize = inputTensors[0].dims[1] while count < runTotall: l.acquire() if (runTotall < (count+batchSize)): runSize = runTotall - count else: runSize = batchSize l.release() shapeIn = (runSize,) + tuple([inputTensors[0].dims[i] for i in range(inputTensors[0].ndims)][1:]) """prepare batch input/output """ outputData = [] inputData = [] outputData.append(np.empty((runSize,outputHeight,outputWidth,outputChannel), dtype = np.float32, order = 'C')) inputData.append(np.empty((shapeIn), dtype = np.float32, order = 'C')) """init input image to input buffer """ for j in range(runSize): imageRun = inputData[0] imageRun[j,...] = img[count+j].reshape(inputTensors[0].dims[1],inputTensors[0].dims[2],inputTensors[0].dims[3]) """run with batch """ job_id = dpu.execute_async(inputData,outputData) dpu.wait(job_id) for j in range(len(outputData)): outputData[j] = outputData[j].reshape(runSize, outputSize) """softmax calculate with batch """ for j in range(runSize): softmax = CPUCalcSoftmax(outputData[0][j], outputSize) l.acquire() count = count + threadnum*runSize l.release() def main(argv): global threadnum """create runner """ dpu = runner.Runner(argv[2])[0] listimage=os.listdir(calib_image_dir) threadAll = [] threadnum = int(argv[1]) i = 0 global runTotall runTotall = len(listimage) """image list to be run """ img = [] for i in range(runTotall): path = os.path.join(calib_image_dir,listimage[i]) image = cv2.imread(path) img.append(input_fn.preprocess_fn(image)) batchSize = dpu.get_input_tensors()[0].dims[0]; """run with batch """ time1 = time.time() for i in range(int(threadnum)): t1 = threading.Thread(target=runInceptionV1, args=(dpu, img, i*batchSize)) threadAll.append(t1) for x in threadAll: x.start() for x in threadAll: x.join() time2 = time.time() timetotal = time2 - time1 fps = float(runTotall / timetotal) print("%.2f FPS" %fps) del dpu if __name__ == "__main__": if len(sys.argv) != 3: print("please input thread number and json file path.") else : main(sys.argv)
27.778378
123
0.643316
0b80a5ad054a041ff8f08e3bacd69f57fd4f25ba
585
py
Python
tools/mime-type-check.py
aydinnemati/web-server
a3b60e93bf9fd1bd30f58eb2caeaf948ffd31311
[ "MIT" ]
null
null
null
tools/mime-type-check.py
aydinnemati/web-server
a3b60e93bf9fd1bd30f58eb2caeaf948ffd31311
[ "MIT" ]
null
null
null
tools/mime-type-check.py
aydinnemati/web-server
a3b60e93bf9fd1bd30f58eb2caeaf948ffd31311
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import re, json found_extensions = {} with open("./config/defaults/mime.types") as file_in: lines = [] for line in file_in: m = re.search('([^\s]+)[\s]+([^"]+);', line) if m: mimetype = m.group(1) extensions = m.group(2).split(' ') for extension in extensions: if extension not in found_extensions: found_extensions[extension] = mimetype else: print(extension) raise Exception('Duplicate extension') print(json.dumps(found_extensions, indent=2, sort_keys=True))
26.590909
61
0.591453
6b04a8c43037d1b4d37e93b29b7ce7bc95bd563c
673
py
Python
publishconf.py
julianespinel/website
a16394cf878fdfd8e1fa86ed23779d31ec4f1316
[ "MIT" ]
null
null
null
publishconf.py
julianespinel/website
a16394cf878fdfd8e1fa86ed23779d31ec4f1316
[ "MIT" ]
9
2020-08-30T19:52:19.000Z
2021-10-03T16:55:45.000Z
publishconf.py
julianespinel/website
a16394cf878fdfd8e1fa86ed23779d31ec4f1316
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This file is only used if you use `make publish` or # explicitly specify it as your config file. import toml import os import sys sys.path.append(os.curdir) from pelicanconf import * # Load non-secrets from file public = toml.load('public.toml') # If your site is available via HTTPS, make sure SITEURL begins with https:// SITEURL = public['website']['url'] WEBSITE_VERSION = public['website']['version'] RELATIVE_URLS = True FEED_ALL_ATOM = 'feeds/all.atom.xml' DELETE_OUTPUT_DIRECTORY = True # Load secrets from file secrets = toml.load('secrets.toml') GOOGLE_ANALYTICS = secrets['website']['google_analytics']
22.433333
77
0.734027
ab9e8d26d372c26c715b75a9d8e7c5feabee12ad
2,980
py
Python
src/ska_mid_cbf_mcs/vcc/vcc_band_3.py
jamesjiang52/mid-cbf-mcs
072f8fdb91d77010e875f441e536fab842bf8319
[ "BSD-3-Clause" ]
null
null
null
src/ska_mid_cbf_mcs/vcc/vcc_band_3.py
jamesjiang52/mid-cbf-mcs
072f8fdb91d77010e875f441e536fab842bf8319
[ "BSD-3-Clause" ]
4
2021-05-20T05:19:23.000Z
2021-05-20T05:19:26.000Z
src/ska_mid_cbf_mcs/vcc/vcc_band_3.py
ska-telescope/mid-cbf-mcs
072f8fdb91d77010e875f441e536fab842bf8319
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is part of the Vcc project # # # # Distributed under the terms of the GPL license. # See LICENSE.txt for more info. # """ # Author: James Jiang James.Jiang@nrc-cnrc.gc.ca, # Herzberg Astronomy and Astrophysics, National Research Council of Canada # Copyright (c) 2019 National Research Council of Canada # """ # """ # VccBand3 TANGO device class for the prototype # """ import os import sys import json # tango imports import tango from tango import DebugIt from tango.server import run from tango.server import Device from tango.server import attribute, command from tango.server import device_property from tango import AttrQuality, DispLevel, DevState from tango import AttrWriteType, PipeWriteType # SKA import file_path = os.path.dirname(os.path.abspath(__file__)) from ska_tango_base.control_model import HealthState, AdminMode from ska_tango_base import SKACapability from ska_tango_base.commands import ResultCode __all__ = ["VccBand3", "main"] class VccBand3(SKACapability): """ VccBand3 TANGO device class for the prototype """ # PROTECTED REGION ID(VccBand3.class_variable) ENABLED START # # PROTECTED REGION END # // VccBand3.class_variable # ----------------- # Device Properties # ----------------- # ---------- # Attributes # ---------- # --------------- # General methods # --------------- class InitCommand(SKACapability.InitCommand): def do(self): """ Stateless hook for device initialisation. :return: A tuple containing a return code and a string message indicating status. The message is for information purpose only. :rtype: (ResultCode, str) """ self.logger.debug("Entering InitCommand()") super().do() device = self.target #self.logger.warn("State() = {}".format(device.get_state())) message = "VccBand3 Init command completed OK" self.logger.info(message) return (ResultCode.OK, message) def always_executed_hook(self): # PROTECTED REGION ID(VccBand3.always_executed_hook) ENABLED START # """hook to be executed before commands""" pass # PROTECTED REGION END # // VccBand3.always_executed_hook def delete_device(self): # PROTECTED REGION ID(VccBand3.delete_device) ENABLED START # """hook to delete device""" pass # PROTECTED REGION END # // VccBand3.delete_device # ------------------ # Attributes methods # ------------------ # -------- # Commands # -------- # None # ---------- # Run server # ---------- def main(args=None, **kwargs): # PROTECTED REGION ID(VccBand3.main) ENABLED START # return run((VccBand3,), args=args, **kwargs) # PROTECTED REGION END # // VccBand3.main if __name__ == '__main__': main()
24.833333
76
0.615101
b38ce6d293709fe5117a12a3f76334da7bc331c7
208
py
Python
apluslms_roman/schemas/__init__.py
ppessi/roman
19aafde41f307c2b51163f36e4ed71d28f95ee50
[ "MIT" ]
null
null
null
apluslms_roman/schemas/__init__.py
ppessi/roman
19aafde41f307c2b51163f36e4ed71d28f95ee50
[ "MIT" ]
14
2018-02-17T04:04:16.000Z
2020-01-13T18:40:57.000Z
apluslms_roman/schemas/__init__.py
ppessi/roman
19aafde41f307c2b51163f36e4ed71d28f95ee50
[ "MIT" ]
6
2018-06-12T06:48:50.000Z
2021-05-18T16:36:04.000Z
from os.path import join from apluslms_yamlidator.schemas import schema_registry from .. import CACHE_DIR schema_registry.register_module(__name__) schema_registry.register_cache(join(CACHE_DIR, 'schemas'))
29.714286
58
0.850962
3bd82199aee0c758e2afeedb214d39152011b185
5,206
py
Python
kws_streaming/layers/lstm_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
kws_streaming/layers/lstm_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
kws_streaming/layers/lstm_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for kws_streaming.layers.lstm.""" from absl.testing import parameterized import numpy as np from kws_streaming.layers import lstm from kws_streaming.layers import modes from kws_streaming.layers import test_utils from kws_streaming.layers.compat import tf from kws_streaming.layers.compat import tf1 tf1.disable_eager_execution() class LSTMTest(tf.test.TestCase, parameterized.TestCase): def _set_params(self, use_peepholes): test_utils.set_seed(123) # generate input signal self.inference_batch_size = 1 self.data_size = 32 self.feature_size = 4 self.signal = np.random.rand(self.inference_batch_size, self.data_size, self.feature_size) # create non streamable model inputs = tf.keras.layers.Input( shape=(self.data_size, self.feature_size), batch_size=self.inference_batch_size, dtype=tf.float32) self.units = 3 self.num_proj = 4 outputs = lstm.LSTM( units=self.units, return_sequences=True, use_peepholes=use_peepholes, num_proj=self.num_proj)( inputs) self.model_non_streamable = tf.keras.Model(inputs, outputs) self.output_lstm = self.model_non_streamable.predict(self.signal) @parameterized.named_parameters([ dict(testcase_name='with peephole', use_peepholes=True), dict(testcase_name='without peephole', use_peepholes=False) ]) def test_streaming_inference_internal_state(self, use_peepholes): # create streaming inference model with internal state self._set_params(use_peepholes) mode = modes.Modes.STREAM_INTERNAL_STATE_INFERENCE inputs = tf.keras.layers.Input( shape=(1, self.feature_size), batch_size=self.inference_batch_size, dtype=tf.float32) outputs = lstm.LSTM( units=self.units, mode=mode, use_peepholes=use_peepholes, num_proj=self.num_proj)( inputs) model_stream = tf.keras.Model(inputs, outputs) # set weights + states if use_peepholes: weights_states = self.model_non_streamable.get_weights() + [ np.zeros((self.inference_batch_size, self.units)) ] + [np.zeros((self.inference_batch_size, self.num_proj))] else: weights_states = self.model_non_streamable.get_weights() + [ np.zeros((self.inference_batch_size, self.units)) ] + [np.zeros((self.inference_batch_size, self.units))] model_stream.set_weights(weights_states) # compare streamable (with internal state) vs non streamable models for i in range(self.data_size): # loop over time samples input_stream = self.signal[:, i, :] input_stream = np.expand_dims(input_stream, 1) output_stream = model_stream.predict(input_stream) self.assertAllClose(output_stream[0][0], self.output_lstm[0][i]) @parameterized.named_parameters([ dict(testcase_name='with peephole', use_peepholes=True), dict(testcase_name='without peephole', use_peepholes=False) ]) def test_streaming_inference_external_state(self, use_peepholes): # create streaming inference model with external state self._set_params(use_peepholes) mode = modes.Modes.STREAM_EXTERNAL_STATE_INFERENCE inputs = tf.keras.layers.Input( shape=(1, self.feature_size), batch_size=self.inference_batch_size, dtype=tf.float32) lstm_layer = lstm.LSTM( units=self.units, mode=mode, use_peepholes=use_peepholes, num_proj=self.num_proj) outputs = lstm_layer(inputs) model_stream = tf.keras.Model([inputs] + lstm_layer.get_input_state(), [outputs] + lstm_layer.get_output_state()) # set weights only model_stream.set_weights(self.model_non_streamable.get_weights()) # input states input_state1 = np.zeros((self.inference_batch_size, self.units)) if use_peepholes: input_state2 = np.zeros((self.inference_batch_size, self.num_proj)) else: input_state2 = np.zeros((self.inference_batch_size, self.units)) # compare streamable vs non streamable models for i in range(self.data_size): # loop over time samples input_stream = self.signal[:, i, :] input_stream = np.expand_dims(input_stream, 1) output_streams = model_stream.predict( [input_stream, input_state1, input_state2]) # update input states input_state1 = output_streams[1] input_state2 = output_streams[2] self.assertAllClose(output_streams[0][0][0], self.output_lstm[0][i]) if __name__ == '__main__': tf.test.main()
37.453237
76
0.708029
7106b9be18f8718f4df730e3b3881117558040ca
3,587
py
Python
girder/cli/build.py
manthey/girder
1ae1068b02b3dc775df957f3a3c79a6aa9798043
[ "Apache-2.0" ]
null
null
null
girder/cli/build.py
manthey/girder
1ae1068b02b3dc775df957f3a3c79a6aa9798043
[ "Apache-2.0" ]
null
null
null
girder/cli/build.py
manthey/girder
1ae1068b02b3dc775df957f3a3c79a6aa9798043
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import json import os from pkg_resources import resource_filename from subprocess import check_call import sys import click from girder.constants import STATIC_ROOT_DIR from girder.plugin import allPlugins, getPlugin _GIRDER_BUILD_ASSETS_PATH = resource_filename('girder', 'web_client') @click.command(name='build', help='Build web client static assets.') @click.option('--dev/--no-dev', default=False, help='Build girder client for development.') @click.option('--watch', default=False, is_flag=True, help='Build girder library bundle in watch mode (implies --dev --no-reinstall).') @click.option('--watch-plugin', help='Build a girder plugin bundle in watch mode (implies --dev --no-reinstall).') @click.option('--reinstall/--no-reinstall', default=True, help='Force regenerate node_modules.') def main(dev, watch, watch_plugin, reinstall): if watch and watch_plugin: raise click.UsageError('--watch and --watch-plugins cannot be used together') if watch or watch_plugin: dev = True reinstall = False staging = _GIRDER_BUILD_ASSETS_PATH _generatePackageJSON(staging, os.path.join(_GIRDER_BUILD_ASSETS_PATH, 'package.json.template')) if not os.path.isdir(os.path.join(staging, 'node_modules')) or reinstall: # The autogeneration of package.json breaks how package-lock.json is # intended to work. If we don't delete it first, you will frequently # get "file doesn't exist" errors. npmLockFile = os.path.join(staging, 'package-lock.json') if os.path.exists(npmLockFile): os.unlink(npmLockFile) check_call(['npm', 'install'], cwd=staging) quiet = '--no-progress=false' if sys.stdout.isatty() else '--no-progress=true' buildCommand = [ 'npx', 'grunt', '--static-path=%s' % STATIC_ROOT_DIR, quiet] if watch: buildCommand.append('--watch') if watch_plugin: buildCommand.extend([ '--watch', 'webpack:plugin_%s' % watch_plugin ]) if dev: buildCommand.append('--env=dev') else: buildCommand.append('--env=prod') check_call(buildCommand, cwd=staging) def _collectPluginDependencies(): packages = {} for pluginName in allPlugins(): plugin = getPlugin(pluginName) packages.update(plugin.npmPackages()) return packages def _generatePackageJSON(staging, source): with open(source, 'r') as f: sourceJSON = json.load(f) deps = sourceJSON['dependencies'] plugins = _collectPluginDependencies() deps.update(plugins) sourceJSON['girder'] = { 'plugins': list(plugins.keys()) } with open(os.path.join(staging, 'package.json'), 'w') as f: json.dump(sourceJSON, f)
36.232323
99
0.647895
cbe2f3d79c5534a10e59fae092f7ddd707bcd2cc
9,799
py
Python
tr/session_test.py
DentonGentry/gfiber-catawampus
b01e4444f3c7f12b1af7837203b37060fd443bb7
[ "Apache-2.0" ]
2
2017-10-03T16:06:29.000Z
2020-09-08T13:03:13.000Z
tr/session_test.py
DentonGentry/gfiber-catawampus
b01e4444f3c7f12b1af7837203b37060fd443bb7
[ "Apache-2.0" ]
null
null
null
tr/session_test.py
DentonGentry/gfiber-catawampus
b01e4444f3c7f12b1af7837203b37060fd443bb7
[ "Apache-2.0" ]
1
2017-05-07T17:39:02.000Z
2017-05-07T17:39:02.000Z
#!/usr/bin/python # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # unittest requires method names starting in 'test' # pylint: disable=invalid-name """Unit tests for session.py.""" __author__ = 'dgentry@google.com (Denton Gentry)' import time import google3 import session from wvtest import unittest class CwmpSessionTest(unittest.TestCase): """tests for CwmpSession.""" def testStateConnect(self): cs = session.CwmpSession('') self.assertTrue(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) # should be no change cs.state_update(on_hold=True) self.assertTrue(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) cs.state_update(cpe_to_acs_empty=True) self.assertTrue(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) cs.state_update(acs_to_cpe_empty=True) self.assertTrue(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) # transition to ACTIVE cs.state_update(sent_inform=True) self.assertFalse(cs.inform_required()) self.assertTrue(cs.request_allowed()) self.assertTrue(cs.response_allowed()) def testActive(self): cs = session.CwmpSession('') cs.state_update(sent_inform=True) self.assertFalse(cs.inform_required()) self.assertTrue(cs.request_allowed()) self.assertTrue(cs.response_allowed()) # should be no change cs.state_update(sent_inform=True) self.assertFalse(cs.inform_required()) self.assertTrue(cs.request_allowed()) self.assertTrue(cs.response_allowed()) cs.state_update(acs_to_cpe_empty=True) self.assertFalse(cs.inform_required()) self.assertTrue(cs.request_allowed()) self.assertTrue(cs.response_allowed()) # transition to ONHOLD cs.state_update(on_hold=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) # transition back to ACTIVE cs.state_update(on_hold=False) self.assertFalse(cs.inform_required()) self.assertTrue(cs.request_allowed()) self.assertTrue(cs.response_allowed()) # transition to NOMORE cs.state_update(cpe_to_acs_empty=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) def testOnHold(self): cs = session.CwmpSession('') cs.state_update(sent_inform=True) cs.state_update(on_hold=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) # No change cs.state_update(on_hold=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) cs.state_update(sent_inform=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) cs.state_update(cpe_to_acs_empty=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) cs.state_update(acs_to_cpe_empty=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) # back to ACTIVE cs.state_update(on_hold=False) self.assertFalse(cs.inform_required()) self.assertTrue(cs.request_allowed()) self.assertTrue(cs.response_allowed()) def testNoMore(self): cs = session.CwmpSession('') # transition to NOMORE cs.state_update(sent_inform=True) cs.state_update(cpe_to_acs_empty=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) # should be no change cs.state_update(sent_inform=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) cs.state_update(on_hold=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertTrue(cs.response_allowed()) # transition to DONE cs.state_update(acs_to_cpe_empty=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) def testDone(self): cs = session.CwmpSession('') cs.state_update(sent_inform=True) cs.state_update(cpe_to_acs_empty=True) cs.state_update(acs_to_cpe_empty=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) cs.state_update(sent_inform=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) cs.state_update(cpe_to_acs_empty=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) cs.state_update(acs_to_cpe_empty=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) cs.state_update(sent_inform=True) self.assertFalse(cs.inform_required()) self.assertFalse(cs.request_allowed()) self.assertFalse(cs.response_allowed()) class SimpleCacheObject(object): def __init__(self): self.cache_this_function_n = 0 self.cache_this_function_args_n = 0 @session.cache def cache_this_function(self): self.cache_this_function_n += 1 @session.cache def cache_function_with_args( self, arg1, arg2, x=0, y=0): # pylint: disable=unused-argument self.cache_this_function_args_n += 1 + x + y @session.cache def SimpleCacheFunction(): return time.time() cache_iter_start = 1 def _CacheIterFunction(): global cache_iter_start yield cache_iter_start cache_iter_start += 1 yield cache_iter_start cache_iter_start += 1 @session.cache def CacheIterFunction(): return _CacheIterFunction() @session.cache def CacheListFunction(): return list(_CacheIterFunction()) @session.cache_as_list def CacheAsListFunction(): return _CacheIterFunction() class SessionCacheTest(unittest.TestCase): """tests for SessionCache.""" def testCacheObject(self): t1 = SimpleCacheObject() t2 = SimpleCacheObject() t3 = SimpleCacheObject() for _ in range(1001): t1.cache_this_function() t2.cache_this_function() t3.cache_this_function() self.assertEqual(t1.cache_this_function_n, 1) self.assertEqual(t2.cache_this_function_n, 1) self.assertEqual(t3.cache_this_function_n, 1) session.cache.flush() for _ in range(101): t1.cache_this_function() t2.cache_this_function() self.assertEqual(t1.cache_this_function_n, 2) self.assertEqual(t2.cache_this_function_n, 2) self.assertEqual(t3.cache_this_function_n, 1) def testCacheFunction(self): t = SimpleCacheFunction() for _ in range(1000): self.assertEqual(t, SimpleCacheFunction()) session.cache.flush() self.assertNotEqual(t, SimpleCacheFunction()) def testCacheFunctionArgs(self): t = SimpleCacheObject() for i in range(100): t.cache_function_with_args(i, 0) self.assertEqual(t.cache_this_function_args_n, 100) def testCacheFunctionComplicatedArgs(self): t = SimpleCacheObject() arg = [1, 2, [3, 4], [5, 6, [7, 8, [9, 10]]], 11, 12] for i in range(10): t.cache_function_with_args(i, arg, x=5, y=7) self.assertEqual(t.cache_this_function_args_n, 10 * (1 + 5 + 7)) for i in range(10): t.cache_function_with_args(i, arg, x=5, y=7) t.cache_function_with_args(99, arg) t.cache_function_with_args(99, arg, y=9) self.assertEqual(t.cache_this_function_args_n, 10 * (1 + 5 + 7) + 1 + (1 + 9)) def testCacheIterFunction(self): self.assertRaises(TypeError, CacheIterFunction) self.assertEqual(CacheListFunction(), CacheListFunction()) self.assertEqual(list(CacheListFunction()), CacheListFunction()) self.assertEqual(len(CacheListFunction()), 2) self.assertEqual(CacheAsListFunction(), CacheAsListFunction()) self.assertEqual(list(CacheAsListFunction()), CacheAsListFunction()) self.assertEqual(len(CacheAsListFunction()), 2) self.assertEqual(CacheListFunction(), [1, 2]) self.assertEqual(CacheAsListFunction(), [3, 4]) RunAtEndTestResults = {} def setBarAtEnd(val): RunAtEndTestResults['bar'] = val class RunAtEndTest(unittest.TestCase): def setUp(self): RunAtEndTestResults.clear() def setFooAtEnd(self, val): RunAtEndTestResults['foo'] = val def testRunAtEnd(self): session.RunAtEnd(lambda: self.setFooAtEnd(1)) session.RunAtEnd(lambda: setBarAtEnd(2)) self.assertEqual(len(RunAtEndTestResults), 0) session._RunEndCallbacks() self.assertEqual(len(RunAtEndTestResults), 2) self.assertEqual(RunAtEndTestResults['foo'], 1) self.assertEqual(RunAtEndTestResults['bar'], 2) if __name__ == '__main__': unittest.main()
30.058282
74
0.72589
4a937665b8a485320fffe37f4e7ab50f855f6e58
451
py
Python
forms/urls.py
ditttu/gymkhana-Nominations
2a0e993c1b8362c456a9369b0b549d1c809a21df
[ "MIT" ]
3
2018-02-27T13:48:28.000Z
2018-03-03T21:57:50.000Z
forms/urls.py
ditttu/gymkhana-Nominations
2a0e993c1b8362c456a9369b0b549d1c809a21df
[ "MIT" ]
6
2020-02-12T00:07:46.000Z
2022-03-11T23:25:59.000Z
forms/urls.py
ditttu/gymkhana-Nominations
2a0e993c1b8362c456a9369b0b549d1c809a21df
[ "MIT" ]
1
2019-03-26T20:19:57.000Z
2019-03-26T20:19:57.000Z
from django.conf.urls import url from . import views app_name = 'forms' urlpatterns = [ #forms/creator/12 ----in great use url(r'^creator/(?P<pk>\d+)/$', views.creator_form, name='creator_form'), # forms/create/ques/2 ---in use url(r'^create/ques/(?P<pk>\d+)/$', views.add_ques, name='add_ques'), # forms/update/ques/12/34 ---in use url(r'^update/ques/(?P<pk>\d+)/(?P<qk>\d+)/$',views.edit_ques,name='ques_update'), ]
22.55
86
0.614191
0ebbb888a38a477da3c319627eb6276b2e54df5e
1,785
py
Python
main.py
alexander24032003/Flask-Repo
547d4f99766b411aa757580c7dbbd485ef0888ec
[ "MIT" ]
null
null
null
main.py
alexander24032003/Flask-Repo
547d4f99766b411aa757580c7dbbd485ef0888ec
[ "MIT" ]
null
null
null
main.py
alexander24032003/Flask-Repo
547d4f99766b411aa757580c7dbbd485ef0888ec
[ "MIT" ]
null
null
null
from flask import Flask from flask import render_template, request, redirect, url_for from post import Post from comment import Comment app = Flask(__name__) @app.route('/') def hello_world(): return redirect(url_for('list_posts')) @app.route('/posts') def list_posts(): return render_template('posts.html', posts=Post.all()) @app.route('/posts/<int:post_id>') def show_post(post_id): post = Post.find(post_id) return render_template('post.html', post=post) @app.route('/posts/<int:post_id>/edit', methods=['GET', 'POST']) def edit_post(post_id): post = Post.find(post_id) if request.method == 'GET': return render_template('edit_post.html', post=post) elif request.method == 'POST': post.name = request.form['name'] post.author = request.form['author'] post.content = request.form['content'] post.save() return redirect(url_for('show_post', post_id=post.post_id)) @app.route('/posts/<int:post_id>/delete', methods=['POST']) def delete_post(post_id): post = Post.find(post_id) post.delete() return redirect(url_for('list_posts')) @app.route('/posts/new', methods=['GET', 'POST']) def new_post(): if request.method == 'GET': return render_template('new_post.html') elif request.method == 'POST': values = (None, request.form['name'], request.form['author'], request.form['content']) Post(*values).create() return redirect(url_for('list_posts')) @app.route('/comments/new', methods=['POST']) def new_comment(): if request.method == 'POST': post = Post.find(request.form['post_id']) values = (None, post, request.form['message']) Comment(*values).create() return redirect(url_for('show_post', id=post.id))
27.461538
94
0.653782
b079c810fffe883cdb584df215590859d5197d33
2,908
py
Python
bin/create_students.py
phdfbk/phdfbk.github.io
a111369d358e473bebc158e088d6af9adf04ae82
[ "Apache-2.0" ]
null
null
null
bin/create_students.py
phdfbk/phdfbk.github.io
a111369d358e473bebc158e088d6af9adf04ae82
[ "Apache-2.0" ]
36
2016-08-13T11:30:34.000Z
2019-01-28T16:03:41.000Z
bin/create_students.py
phdfbk/phdfbk.github.io
a111369d358e473bebc158e088d6af9adf04ae82
[ "Apache-2.0" ]
1
2019-05-23T13:41:52.000Z
2019-05-23T13:41:52.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import unicodecsv import requests import cgi from cStringIO import StringIO from datetime import datetime url_students ="https://docs.google.com/spreadsheets/d/1UJ8eHwcBsdKRjwc6uu2KVhNIn_FSEpLMh6xqMNQ5sUY/pub?gid=191666891&single=true&output=csv" r = requests.get(url_students) f = StringIO(r.text.encode('iso-8859-1')) reader = unicodecsv.reader(f, encoding='iso-8859-1') k = 0 for row in reader: if k > 0: yearmonthday = datetime.today().strftime('%Y-%m-%d') yearmonthday = "2016-08-23" daymonthyear = datetime.today().strftime('%d/%m/%Y') daymonthyear = "23/08/2016" surname = str(row[0].encode('iso-8859-1')).replace("\n","") filename = yearmonthday filename += "-" + str(row[0].encode('iso-8859-1')).lower().replace(" ","_") + ".md" new_yaml = open(filename, 'w') yaml_text = "" yaml_text += "---\n" yaml_text += "layout: default \n" name = str(row[1].encode('iso-8859-1')) yaml_text += "id: " + yearmonthday + "-" + surname + "-" + name.replace(" ","_") + "\n" yaml_text += "surname: " + surname + "\n" yaml_text += "name: " + name + "\n" yaml_text += "university: " + str(row[2].encode('iso-8859-1')) + "\n" yaml_text += "date: " + daymonthyear + "\n" yaml_text += "aboutme: " + cgi.escape(str(row[3].encode('iso-8859-1'))).replace("\n","<br/>").replace(":", "&#58;") + "\n" yaml_text += "from: " + cgi.escape(str(row[4].encode('iso-8859-1'))) + "\n" yaml_text += "research_topic: " + cgi.escape(str(row[5].encode('iso-8859-1')). replace(":", "&#58;")) + "\n" yaml_text += "abstract: " + str(row[6].encode('iso-8859-1')).replace("\n","<br/>").replace(":", "&#58;") + "\n" yaml_text += "advisor: " + str(row[7].encode('iso-8859-1')) + "\n" yaml_text += "keywords: " + str(row[8].encode('iso-8859-1')) + "\n" website = "" try: website = str(row[9].encode('iso-8859-1')).replace(":", "&#58;") except: pass if website.lower().find('url') == "-1": website = "http://" + website yaml_text += "website: " + website + "\n" img = "" try: img = str(row[10].encode('iso-8859-1')) except: pass if img == "": img = "no_picture.jpg" email = "" try: email = str(row[11].encode('iso-8859-1')) except: pass email = email.replace('@', '<i class="fa fa-at" aria-hidden="true"></i>') yaml_text += "img: " + img + "\n" yaml_text += 'email: ' + email + '\n' yaml_text += "alt: " + name + " " + surname + "\n" yaml_text += "modal-id: stud" + str(k) + "\n" new_yaml.write(yaml_text + "---\n") new_yaml.close() k += 1
44.060606
140
0.516162
b9deb3b3b8b578f4176a40753e4de1a49f6e2fc9
752
py
Python
tests/http/test_tls.py
PyCN/pulsar
fee44e871954aa6ca36d00bb5a3739abfdb89b26
[ "BSD-3-Clause" ]
1,410
2015-01-02T14:55:07.000Z
2022-03-28T17:22:06.000Z
tests/http/test_tls.py
PyCN/pulsar
fee44e871954aa6ca36d00bb5a3739abfdb89b26
[ "BSD-3-Clause" ]
194
2015-01-22T06:18:24.000Z
2020-10-20T21:21:58.000Z
tests/http/test_tls.py
PyCN/pulsar
fee44e871954aa6ca36d00bb5a3739abfdb89b26
[ "BSD-3-Clause" ]
168
2015-01-31T10:29:55.000Z
2022-03-14T10:22:24.000Z
import os from pulsar.apps.http import SSLError, HttpClient from pulsar.utils.system import platform from tests.http import base crt = os.path.join(os.path.dirname(__file__), 'ca_bundle') if platform.type != 'win': class TestTlsHttpClient(base.TestHttpClient): with_tls = True async def test_verify(self): c = HttpClient() with self.assertRaises(SSLError): await c.get(self.httpbin()) response = await c.get(self.httpbin(), verify=False) self.assertEqual(response.status_code, 200) response = await c.get(self.httpbin(), verify=crt) self.assertEqual(response.status_code, 200) self.assertEqual(response.request.verify, crt)
28.923077
64
0.652926
0248f2599780b5c0b6cdafc74d877f83dc796a55
25,383
py
Python
Python/Product/Miniconda/Miniconda3-x64/Lib/site-packages/conda/activate.py
mikiec84/PTVS
6cbeadd70a4438d6e6ea4d22a465d678eacf5eb2
[ "Apache-2.0" ]
null
null
null
Python/Product/Miniconda/Miniconda3-x64/Lib/site-packages/conda/activate.py
mikiec84/PTVS
6cbeadd70a4438d6e6ea4d22a465d678eacf5eb2
[ "Apache-2.0" ]
1
2019-04-02T23:35:13.000Z
2019-04-02T23:35:13.000Z
Python/Product/Miniconda/Miniconda3-x64/Lib/site-packages/conda/activate.py
mikiec84/PTVS
6cbeadd70a4438d6e6ea4d22a465d678eacf5eb2
[ "Apache-2.0" ]
2
2018-03-02T19:55:14.000Z
2019-02-14T22:37:28.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from errno import ENOENT from glob import glob import os from os.path import (abspath, basename, dirname, expanduser, expandvars, isdir, join, normcase, normpath) import re import sys from tempfile import NamedTemporaryFile from .base.context import ROOT_ENV_NAME, context, locate_prefix_by_name context.__init__() # oOn import, context does not include SEARCH_PATH. This line fixes that. try: from cytoolz.itertoolz import concatv, drop except ImportError: # pragma: no cover from ._vendor.toolz.itertoolz import concatv, drop # NOQA class Activator(object): # Activate and deactivate have three tasks # 1. Set and unset environment variables # 2. Execute/source activate.d/deactivate.d scripts # 3. Update the command prompt # # Shells should also use 'reactivate' following conda's install, update, and # remove/uninstall commands. # # All core logic is in build_activate() or build_deactivate(), and is independent of # shell type. Each returns a map containing the keys: # export_vars # unset_var # activate_scripts # deactivate_scripts # # The value of the CONDA_PROMPT_MODIFIER environment variable holds conda's contribution # to the command prompt. # # To implement support for a new shell, ideally one would only need to add shell-specific # information to the __init__ method of this class. def __init__(self, shell, arguments=None): self.shell = shell self._raw_arguments = arguments if PY2: self.environ = {ensure_fs_path_encoding(k): ensure_fs_path_encoding(v) for k, v in iteritems(os.environ)} else: self.environ = os.environ.copy() if shell == 'posix': self.pathsep_join = ':'.join self.sep = '/' self.path_conversion = native_path_to_unix self.script_extension = '.sh' self.tempfile_extension = None # write instructions to stdout rather than a temp file self.shift_args = 0 self.command_join = '\n' self.unset_var_tmpl = '\\unset %s' self.export_var_tmpl = "\\export %s='%s'" self.set_var_tmpl = "%s='%s'" self.run_script_tmpl = '\\. "%s"' elif shell == 'csh': self.pathsep_join = ':'.join self.sep = '/' self.path_conversion = native_path_to_unix self.script_extension = '.csh' self.tempfile_extension = None # write instructions to stdout rather than a temp file self.shift_args = 0 self.command_join = ';\n' self.unset_var_tmpl = 'unsetenv %s' self.export_var_tmpl = 'setenv %s "%s"' self.set_var_tmpl = "set %s='%s'" self.run_script_tmpl = 'source "%s"' elif shell == 'xonsh': self.pathsep_join = ':'.join self.sep = '/' self.path_conversion = native_path_to_unix self.script_extension = '.xsh' self.tempfile_extension = '.xsh' self.shift_args = 0 self.command_join = '\n' self.unset_var_tmpl = 'del $%s' self.export_var_tmpl = "$%s = '%s'" self.run_script_tmpl = 'source "%s"' elif shell == 'cmd.exe': self.pathsep_join = ';'.join self.sep = '\\' self.path_conversion = path_identity self.script_extension = '.bat' self.tempfile_extension = '.bat' self.shift_args = 1 self.command_join = '\r\n' if on_win else '\n' self.unset_var_tmpl = '@SET %s=' self.export_var_tmpl = '@SET "%s=%s"' self.run_script_tmpl = '@CALL "%s"' elif shell == 'fish': self.pathsep_join = '" "'.join self.sep = '/' self.path_conversion = native_path_to_unix self.script_extension = '.fish' self.tempfile_extension = None # write instructions to stdout rather than a temp file self.shift_args = 0 self.command_join = ';\n' self.unset_var_tmpl = 'set -e %s' self.export_var_tmpl = 'set -gx %s "%s"' self.run_script_tmpl = 'source "%s"' elif shell == 'powershell': self.pathsep_join = ';'.join self.sep = '\\' self.path_conversion = path_identity self.script_extension = '.ps1' self.tempfile_extension = None # write instructions to stdout rather than a temp file self.shift_args = 0 self.command_join = '\n' self.unset_var_tmpl = 'Remove-Variable %s' self.export_var_tmpl = '$env:%s = "%s"' self.run_script_tmpl = '. "%s"' else: raise NotImplementedError() def _finalize(self, commands, ext): commands = concatv(commands, ('',)) # add terminating newline if ext is None: return self.command_join.join(commands) elif ext: with NamedTemporaryFile('w+b', suffix=ext, delete=False) as tf: # the default mode is 'w+b', and universal new lines don't work in that mode # command_join should account for that tf.write(ensure_binary(self.command_join.join(commands))) return tf.name else: raise NotImplementedError() def activate(self): return self._finalize(self._yield_commands(self.build_activate(self.env_name_or_prefix)), self.tempfile_extension) def deactivate(self): return self._finalize(self._yield_commands(self.build_deactivate()), self.tempfile_extension) def reactivate(self): return self._finalize(self._yield_commands(self.build_reactivate()), self.tempfile_extension) def execute(self): # return value meant to be written to stdout self._parse_and_set_args(self._raw_arguments) return getattr(self, self.command)() def _parse_and_set_args(self, arguments): # the first index of arguments MUST be either activate, deactivate, or reactivate if arguments is None: from .exceptions import ArgumentError raise ArgumentError("'activate', 'deactivate', or 'reactivate' command must be given") command = arguments[0] arguments = tuple(drop(self.shift_args + 1, arguments)) help_flags = ('-h', '--help', '/?') non_help_args = tuple(arg for arg in arguments if arg not in help_flags) help_requested = len(arguments) != len(non_help_args) remainder_args = tuple(arg for arg in non_help_args if arg and arg != command) if not command: from .exceptions import ArgumentError raise ArgumentError("'activate', 'deactivate', or 'reactivate' command must be given") elif help_requested: from . import CondaError class Help(CondaError): # NOQA pass raise Help("help requested for %s" % command) elif command not in ('activate', 'deactivate', 'reactivate'): from .exceptions import ArgumentError raise ArgumentError("invalid command '%s'" % command) elif command == 'activate' and len(remainder_args) > 1: from .exceptions import ArgumentError raise ArgumentError('activate does not accept more than one argument:\n' + str(remainder_args) + '\n') elif command != 'activate' and remainder_args: from .exceptions import ArgumentError raise ArgumentError('%s does not accept arguments\nremainder_args: %s\n' % (command, remainder_args)) if command == 'activate': self.env_name_or_prefix = remainder_args and remainder_args[0] or 'root' self.command = command def _yield_commands(self, cmds_dict): for script in cmds_dict.get('deactivate_scripts', ()): yield self.run_script_tmpl % script for key in sorted(cmds_dict.get('unset_vars', ())): yield self.unset_var_tmpl % key for key, value in sorted(iteritems(cmds_dict.get('set_vars', {}))): yield self.set_var_tmpl % (key, value) for key, value in sorted(iteritems(cmds_dict.get('export_vars', {}))): yield self.export_var_tmpl % (key, value) for script in cmds_dict.get('activate_scripts', ()): yield self.run_script_tmpl % script def build_activate(self, env_name_or_prefix): if re.search(r'\\|/', env_name_or_prefix): prefix = expand(env_name_or_prefix) if not isdir(join(prefix, 'conda-meta')): from .exceptions import EnvironmentLocationNotFound raise EnvironmentLocationNotFound(prefix) elif env_name_or_prefix in (ROOT_ENV_NAME, 'root'): prefix = context.root_prefix else: prefix = locate_prefix_by_name(env_name_or_prefix) prefix = normpath(prefix) # query environment old_conda_shlvl = int(self.environ.get('CONDA_SHLVL', 0)) old_conda_prefix = self.environ.get('CONDA_PREFIX') max_shlvl = context.max_shlvl if old_conda_prefix == prefix and old_conda_shlvl > 0: return self.build_reactivate() if self.environ.get('CONDA_PREFIX_%s' % (old_conda_shlvl-1)) == prefix: # in this case, user is attempting to activate the previous environment, # i.e. step back down return self.build_deactivate() activate_scripts = self._get_activate_scripts(prefix) conda_default_env = self._default_env(prefix) conda_prompt_modifier = self._prompt_modifier(conda_default_env) assert 0 <= old_conda_shlvl <= max_shlvl set_vars = {} if old_conda_shlvl == 0: new_path = self.pathsep_join(self._add_prefix_to_path(prefix)) export_vars = { 'CONDA_PYTHON_EXE': self.path_conversion(sys.executable), 'CONDA_EXE': self.path_conversion(context.conda_exe), 'PATH': new_path, 'CONDA_PREFIX': prefix, 'CONDA_SHLVL': old_conda_shlvl + 1, 'CONDA_DEFAULT_ENV': conda_default_env, 'CONDA_PROMPT_MODIFIER': conda_prompt_modifier, } deactivate_scripts = () elif old_conda_shlvl == max_shlvl: new_path = self.pathsep_join(self._replace_prefix_in_path(old_conda_prefix, prefix)) export_vars = { 'PATH': new_path, 'CONDA_PREFIX': prefix, 'CONDA_DEFAULT_ENV': conda_default_env, 'CONDA_PROMPT_MODIFIER': conda_prompt_modifier, } deactivate_scripts = self._get_deactivate_scripts(old_conda_prefix) else: new_path = self.pathsep_join(self._add_prefix_to_path(prefix)) export_vars = { 'PATH': new_path, 'CONDA_PREFIX': prefix, 'CONDA_PREFIX_%d' % old_conda_shlvl: old_conda_prefix, 'CONDA_SHLVL': old_conda_shlvl + 1, 'CONDA_DEFAULT_ENV': conda_default_env, 'CONDA_PROMPT_MODIFIER': conda_prompt_modifier, } deactivate_scripts = () self._update_prompt(set_vars, conda_prompt_modifier) if on_win and self.shell == 'cmd.exe': import ctypes export_vars.update({ "PYTHONIOENCODING": ctypes.cdll.kernel32.GetACP(), }) return { 'unset_vars': (), 'set_vars': set_vars, 'export_vars': export_vars, 'deactivate_scripts': deactivate_scripts, 'activate_scripts': activate_scripts, } def build_deactivate(self): # query environment old_conda_prefix = self.environ.get('CONDA_PREFIX') old_conda_shlvl = int(self.environ.get('CONDA_SHLVL', 0)) if not old_conda_prefix or old_conda_shlvl < 1: # no active environment, so cannot deactivate; do nothing return { 'unset_vars': (), 'set_vars': {}, 'export_vars': {}, 'deactivate_scripts': (), 'activate_scripts': (), } deactivate_scripts = self._get_deactivate_scripts(old_conda_prefix) new_conda_shlvl = old_conda_shlvl - 1 new_path = self.pathsep_join(self._remove_prefix_from_path(old_conda_prefix)) set_vars = {} if old_conda_shlvl == 1: # TODO: warn conda floor conda_prompt_modifier = '' unset_vars = ( 'CONDA_PREFIX', 'CONDA_DEFAULT_ENV', 'CONDA_PYTHON_EXE', 'CONDA_EXE', 'CONDA_PROMPT_MODIFIER', ) export_vars = { 'PATH': new_path, 'CONDA_SHLVL': new_conda_shlvl, } activate_scripts = () else: new_prefix = self.environ.get('CONDA_PREFIX_%d' % new_conda_shlvl) conda_default_env = self._default_env(new_prefix) conda_prompt_modifier = self._prompt_modifier(conda_default_env) unset_vars = ( 'CONDA_PREFIX_%d' % new_conda_shlvl, ) export_vars = { 'PATH': new_path, 'CONDA_SHLVL': new_conda_shlvl, 'CONDA_PREFIX': new_prefix, 'CONDA_DEFAULT_ENV': conda_default_env, 'CONDA_PROMPT_MODIFIER': conda_prompt_modifier, } activate_scripts = self._get_activate_scripts(new_prefix) self._update_prompt(set_vars, conda_prompt_modifier) return { 'unset_vars': unset_vars, 'set_vars': set_vars, 'export_vars': export_vars, 'deactivate_scripts': deactivate_scripts, 'activate_scripts': activate_scripts, } def build_reactivate(self): conda_prefix = self.environ.get('CONDA_PREFIX') conda_shlvl = int(self.environ.get('CONDA_SHLVL', 0)) if not conda_prefix or conda_shlvl < 1: # no active environment, so cannot reactivate; do nothing return { 'unset_vars': (), 'set_vars': {}, 'export_vars': {}, 'deactivate_scripts': (), 'activate_scripts': (), } conda_default_env = self.environ.get('CONDA_DEFAULT_ENV', self._default_env(conda_prefix)) new_path = self.pathsep_join(self._replace_prefix_in_path(conda_prefix, conda_prefix)) set_vars = {} conda_prompt_modifier = self._prompt_modifier(conda_default_env) self._update_prompt(set_vars, conda_prompt_modifier) # environment variables are set only to aid transition from conda 4.3 to conda 4.4 return { 'unset_vars': (), 'set_vars': set_vars, 'export_vars': { 'PATH': new_path, 'CONDA_SHLVL': conda_shlvl, 'CONDA_PROMPT_MODIFIER': self._prompt_modifier(conda_default_env), }, 'deactivate_scripts': self._get_deactivate_scripts(conda_prefix), 'activate_scripts': self._get_activate_scripts(conda_prefix), } def _get_starting_path_list(self): path = self.environ.get('PATH', '') if on_win: # On Windows, the Anaconda Python interpreter prepends sys.prefix\Library\bin on # startup. It's a hack that allows users to avoid using the correct activation # procedure; a hack that needs to go away because it doesn't add all the paths. # See: https://github.com/AnacondaRecipes/python-feedstock/blob/master/recipe/0005-Win32-Ensure-Library-bin-is-in-os.environ-PATH.patch # NOQA # But, we now detect if that has happened because: # 1. In future we would like to remove this hack and require real activation. # 2. We should not assume that the Anaconda Python interpreter is being used. path_split = path.split(os.pathsep) library_bin = r"%s\Library\bin" % (sys.prefix) # ^^^ deliberately the same as: https://github.com/AnacondaRecipes/python-feedstock/blob/8e8aee4e2f4141ecfab082776a00b374c62bb6d6/recipe/0005-Win32-Ensure-Library-bin-is-in-os.environ-PATH.patch#L20 # NOQA if paths_equal(path_split[0], library_bin): return path_split[1:] else: return path_split else: return path.split(os.pathsep) @staticmethod def _get_path_dirs(prefix): if on_win: # pragma: unix no cover yield prefix.rstrip("\\") yield join(prefix, 'Library', 'mingw-w64', 'bin') yield join(prefix, 'Library', 'usr', 'bin') yield join(prefix, 'Library', 'bin') yield join(prefix, 'Scripts') yield join(prefix, 'bin') else: yield join(prefix, 'bin') def _get_path_dirs2(self, prefix): if on_win: # pragma: unix no cover yield prefix yield self.sep.join((prefix, 'Library', 'mingw-w64', 'bin')) yield self.sep.join((prefix, 'Library', 'usr', 'bin')) yield self.sep.join((prefix, 'Library', 'bin')) yield self.sep.join((prefix, 'Scripts')) yield self.sep.join((prefix, 'bin')) else: yield self.sep.join((prefix, 'bin')) def _add_prefix_to_path(self, prefix, starting_path_dirs=None): prefix = self.path_conversion(prefix) if starting_path_dirs is None: path_list = list(self.path_conversion(self._get_starting_path_list())) else: path_list = list(self.path_conversion(starting_path_dirs)) path_list[0:0] = list(self._get_path_dirs2(prefix)) return tuple(path_list) def _remove_prefix_from_path(self, prefix, starting_path_dirs=None): return self._replace_prefix_in_path(prefix, None, starting_path_dirs) def _replace_prefix_in_path(self, old_prefix, new_prefix, starting_path_dirs=None): old_prefix = self.path_conversion(old_prefix) new_prefix = self.path_conversion(new_prefix) if starting_path_dirs is None: path_list = list(self.path_conversion(self._get_starting_path_list())) else: path_list = list(self.path_conversion(starting_path_dirs)) def index_of_path(paths, test_path): for q, path in enumerate(paths): if paths_equal(path, test_path): return q return None if old_prefix is not None: prefix_dirs = tuple(self._get_path_dirs2(old_prefix)) first_idx = index_of_path(path_list, prefix_dirs[0]) if first_idx is None: first_idx = 0 else: last_idx = index_of_path(path_list, prefix_dirs[-1]) assert last_idx is not None del path_list[first_idx:last_idx + 1] else: first_idx = 0 if new_prefix is not None: path_list[first_idx:first_idx] = list(self._get_path_dirs2(new_prefix)) return tuple(path_list) def _update_prompt(self, set_vars, conda_prompt_modifier): if not context.changeps1: return if self.shell == 'posix': ps1 = self.environ.get('PS1', '') current_prompt_modifier = self.environ.get('CONDA_PROMPT_MODIFIER') if current_prompt_modifier: ps1 = re.sub(re.escape(current_prompt_modifier), r'', ps1) # Because we're using single-quotes to set shell variables, we need to handle the # proper escaping of single quotes that are already part of the string. # Best solution appears to be https://stackoverflow.com/a/1250279 ps1 = ps1.replace("'", "'\"'\"'") set_vars.update({ 'PS1': conda_prompt_modifier + ps1, }) elif self.shell == 'csh': prompt = self.environ.get('prompt', '') current_prompt_modifier = self.environ.get('CONDA_PROMPT_MODIFIER') if current_prompt_modifier: prompt = re.sub(re.escape(current_prompt_modifier), r'', prompt) set_vars.update({ 'prompt': conda_prompt_modifier + prompt, }) def _default_env(self, prefix): if prefix == context.root_prefix: return 'base' return basename(prefix) if basename(dirname(prefix)) == 'envs' else prefix def _prompt_modifier(self, conda_default_env): return "(%s) " % conda_default_env if context.changeps1 else "" def _get_activate_scripts(self, prefix): return self.path_conversion(sorted(glob(join( prefix, 'etc', 'conda', 'activate.d', '*' + self.script_extension )))) def _get_deactivate_scripts(self, prefix): return self.path_conversion(sorted(glob(join( prefix, 'etc', 'conda', 'deactivate.d', '*' + self.script_extension )), reverse=True)) def expand(path): return abspath(expanduser(expandvars(path))) def ensure_binary(value): try: return value.encode('utf-8') except AttributeError: # pragma: no cover # AttributeError: '<>' object has no attribute 'encode' # In this case assume already binary type and do nothing return value def ensure_fs_path_encoding(value): try: return value.decode(FILESYSTEM_ENCODING) except AttributeError: return value def native_path_to_unix(paths): # pragma: unix no cover # on windows, uses cygpath to convert windows native paths to posix paths if not on_win: return path_identity(paths) if paths is None: return None from subprocess import CalledProcessError, PIPE, Popen from shlex import split command = 'cygpath --path -f -' single_path = isinstance(paths, string_types) joined = paths if single_path else ("%s" % os.pathsep).join(paths) if hasattr(joined, 'encode'): joined = joined.encode('utf-8') try: p = Popen(split(command), stdin=PIPE, stdout=PIPE, stderr=PIPE) except EnvironmentError as e: if e.errno != ENOENT: raise # This code path should (hopefully) never be hit be real conda installs. It's here # as a backup for tests run under cmd.exe with cygpath not available. def _translation(found_path): # NOQA found = found_path.group(1).replace("\\", "/").replace(":", "").replace("//", "/") return "/" + found.rstrip("/") joined = ensure_fs_path_encoding(joined) stdout = re.sub( r'([a-zA-Z]:[\/\\\\]+(?:[^:*?\"<>|;]+[\/\\\\]*)*)', _translation, joined ).replace(";/", ":/").rstrip(";") else: stdout, stderr = p.communicate(input=joined) rc = p.returncode if rc != 0 or stderr: message = "\n stdout: %s\n stderr: %s\n rc: %s\n" % (stdout, stderr, rc) print(message, file=sys.stderr) raise CalledProcessError(rc, command, message) if hasattr(stdout, 'decode'): stdout = stdout.decode('utf-8') stdout = stdout.strip() final = stdout and stdout.split(':') or () return final[0] if single_path else tuple(final) def path_identity(paths): if isinstance(paths, string_types): return paths elif paths is None: return None else: return tuple(paths) def paths_equal(path1, path2): if on_win: return normcase(abspath(path1)) == normcase(abspath(path2)) else: return abspath(path1) == abspath(path2) on_win = bool(sys.platform == "win32") PY2 = sys.version_info[0] == 2 FILESYSTEM_ENCODING = sys.getfilesystemencoding() if PY2: # pragma: py3 no cover string_types = basestring, # NOQA text_type = unicode # NOQA def iteritems(d, **kw): return d.iteritems(**kw) else: # pragma: py2 no cover string_types = str, text_type = str def iteritems(d, **kw): return iter(d.items(**kw)) def main(argv=None): from .common.compat import init_std_stream_encoding init_std_stream_encoding() argv = argv or sys.argv assert len(argv) >= 3 assert argv[1].startswith('shell.') shell = argv[1].replace('shell.', '', 1) activator_args = argv[2:] activator = Activator(shell, activator_args) try: print(activator.execute(), end='') return 0 except Exception as e: from . import CondaError if isinstance(e, CondaError): print(text_type(e), file=sys.stderr) return e.return_code else: raise if __name__ == '__main__': sys.exit(main())
39.353488
218
0.599653
dbf0db4db74b463c78ff2a7f2fe17f3d69fa44c2
6,737
py
Python
src/ProcessingT.py
94CD94/FaciesClassification
23d56378a8d68d036fee4cc945a8f03b18a07043
[ "MIT" ]
null
null
null
src/ProcessingT.py
94CD94/FaciesClassification
23d56378a8d68d036fee4cc945a8f03b18a07043
[ "MIT" ]
null
null
null
src/ProcessingT.py
94CD94/FaciesClassification
23d56378a8d68d036fee4cc945a8f03b18a07043
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC import seaborn as sns from ROC import multiclass_ROC from Learning_curve import plot_learning_curve from sklearn.utils.testing import ignore_warnings from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import Pipeline from PLOT import Plots from sklearn.svm import LinearSVC from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import SGDClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix from sklearn.model_selection import ShuffleSplit from Grids import Grid from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import cross_val_score from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from ROC import multiclass_ROC from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split import plotly.plotly as py import plotly.graph_objs as go from sklearn.svm import LinearSVC from Transform import Transform from sklearn.utils import check_random_state from sklearn.preprocessing import KBinsDiscretizer from imblearn.over_sampling import SMOTE from imblearn.pipeline import Pipeline as imbPipeline from sklearn.model_selection import validation_curve from sklearn.decomposition import PCA import graphviz from sklearn.model_selection import cross_validate from sklearn import tree from sklearn.tree import DecisionTreeClassifier from SPLIT import get_safe_balanced_split #dot_data = tree.export_graphviz(d, out_file=None) #graph = graphviz.Source(dot_data) #graph.render("iris") #IMPORT DATA cols=['VP','VS','RHO','Y'] X=pd.read_csv('LOGS2.csv', sep=';') X=X[cols] Log=X.loc[X.VP < 1900 ].copy() X.drop(Log.loc[Log.Y==1].index,axis=0,inplace=True) X.VP=X.VP+np.random.normal(0,X.VP.std(),X.shape[0]) X.VS=X.VS+np.random.normal(0,X.VS.std(),X.shape[0]) X.RHO=X.RHO+np.random.normal(0,X.RHO.std(),X.shape[0]) Xt=pd.read_csv('AVAIMP.txt',sep=';') Xt=Xt[cols] #Log=Xt.loc[Xt.VP < 1900 ].copy() #Xt.drop(Log.loc[Log.Y==1].index,axis=0,inplace=True) Xt=Test X=X.sample(frac=1) y=X.Y yt=Xt.Y T=Transform() T.transform(X) T.transform(Xt) columns=['RHO','VP','VS','K','Zp','Zs','u','Lame'] X=X[columns] Xt=Xt[columns] #Xt=pd.read_csv('NUOVOTEST.txt', sep=';') #cols2=['Z','RHO','VP','VS','PIGE','SW','SH','Y'] #Xt.columns=cols2 #Xt=Xt[cols2] #colors = ["pale red", "denim blue", "medium green"] # #Xt2=pd.read_csv('Avares.txt', sep=';') #Xt2.columns=cols #Xt2.RHO=Xt2.RHO/1000 #X=X.sample(random_state=1,frac=1).reset_index(drop=True) # #a=pd.read_csv('Test.txt', sep=';') #a.columns=['1','2','3'] #Test=pd.DataFrame() #for i in a['1']: # Test=Test.append(X.loc[(np.abs(np.round(X.VP,2) - i)).argmin()].transpose()) # X.drop((np.abs(np.round(X.VP,2) - i)).argmin(),inplace=True) #Xt=Test # #Log=Xt.loc[Xt.VP < 1900 ].copy() #Xt.drop(Log.loc[Log.Y==1].index,axis=0,inplace=True) # #random_state=1 #random_state=check_random_state(random_state) #y=X.Y #yt=Xt.Y ##yt2=Xt2.Y #pl=Plots() #T=Transform() #T.transform(X) #T.transform(Xt) #scale=StandardScaler() #grids=Grid() #columns=['VP','VS','RHO','K','Zp','Zs','u','Lame'] # #X=X[columns] #Xt=Xt[columns] #Xt2=Xt2[columns] # #cv = StratifiedKFold(n_splits=5, random_state=random_state) ## #estimators = [ ('scale',scale),('sm',sm),('clf',RandomForestClassifier(random_state=random_state))] # # #pipe = imbPipeline(estimators1) # #param_grid = dict(sm__k_neighbors=range(2,4) ,sm__sampling_strategy=smotgrid ,clf__n_neighbors=Grid.KNN()['n_neighbors'],clf__p=Grid.KNN()['p'],clf__weights=Grid.KNN()['weights']) #param_grid1 = dict(clf__n_neighbors=Grid.KNN()['n_neighbors'],clf__p=Grid.KNN()['p'],clf__weights=Grid.KNN()['weights']) # ##title = "Learning Curves" ##plot_learning_curve(pipe,title, X, y , ylim=None, cv=cv, ## n_jobs=-1, train_sizes=np.linspace(.1, 1.0, 5)) ##plt.show() # #rid_search = GridSearchCV(pipe, param_grid=param_grid1,cv=cv,n_jobs=-1,verbose=1,scoring='f1_micro') ##rid_search.fit(X,y) # #yp=rid_search.best_estimator_.predict(Xt) # #with open("Final_report.txt", "w") as text_file: # print(f"rep: {rep}", file=text_file) # # #rep=classification_report(yt,yp,digits=5 ,target_names=['Shale','BrineSand','GasSand']) # #cvr=rid_search.cv_results_ # #confusion_1 = confusion_matrix(yt, yp) # # #f, ax = plt.subplots() #hm = sns.heatmap(confusion_1, annot=True, cmap="coolwarm",fmt='.2f', # linewidths=.05) #plt.show() # #yp=np.asarray(yp) #yp.shape=[yp.size,1] #yy=np.concatenate([yp,yp,yp],axis=1) #plt.imshow(yy, extent=[0,200,0,1400],aspect=1) #plt.axis('scaled') # ##if hasattr(rid_search.best_estimator_, "predict_proba"): ## yp=rid_search.best_estimator_.predict_proba(Xt) ##else: ## yp=rid_search.best_estimator_.decision_function(Xt) ## ##multiclass_ROC(Xt,yt,yp) #ylim=[(0.6,1)] #title = "Learning Curves " #plot_learning_curve(pipe2, title,X, y, ylim=ylim, cv=cv, # n_jobs=-1, train_sizes=np.linspace(.1, 1.0, 5)) #plt.show() #yp2=rid_search.best_estimator_.predict(Xt2) rep2=classification_report(yt,yp,digits=5 ,target_names=['Shale','BrineSand','GasSand']) yp2=np.asarray(yt) yp2.shape=[yp2.size,1] yy=np.concatenate([yp2,yp2,yp2],axis=1) plt.imshow(yy, extent=[0,200,0,1400],aspect=1) plt.axis('scaled') plt.savefig('Well_pred') # # x=np.linspace(0,1,40) plt.plot(x,-np.log(1-x),label='y=0') plt.plot(x,-np.log(x),label='y=1') plt.xlabel('P1') plt.legend(loc=9) a=pd.DataFrame(X.VP.loc[X.Y==1]) a.columns=['Shale'] b=pd.DataFrame(X.VP.loc[ X.Y==2]) b.columns=['Brine Sand'] c=pd.DataFrame(X.VP.loc[X.Y==3]) c.reset_index(inplace=True,drop=True) c.columns=['Gas Sand'] x=X[columns] x=scale.fit_transform(x) x=pd.DataFrame(x,columns=columns) x=pd.concat([x,X.Y],axis=1) fig = plt.figure() fig.suptitle('VS Density estimation') ax = fig.add_subplot(111) sns.kdeplot(X['VS'].loc[X.Y==1],kernel='gau',color='r',shade=True,legend=False) sns.kdeplot(X['VS'].loc[X.Y==2],kernel='gau',color='b',shade=True,legend=False) sns.kdeplot(X['VS'].loc[X.Y==3],kernel='gau',color='g',shade=True,legend=False)
32.23445
181
0.703132
e0eb0c4b0a6718d7ee33fbe61a933be37dd4f0bd
1,177
py
Python
gcloud/storage/demo/demo.py
rakyll/gcloud-python
ad1f0f735963dbc138d6d8e20ed0dbf5e6fea0d3
[ "Apache-2.0" ]
1
2019-04-16T11:09:50.000Z
2019-04-16T11:09:50.000Z
gcloud/storage/demo/demo.py
rakyll/gcloud-python
ad1f0f735963dbc138d6d8e20ed0dbf5e6fea0d3
[ "Apache-2.0" ]
null
null
null
gcloud/storage/demo/demo.py
rakyll/gcloud-python
ad1f0f735963dbc138d6d8e20ed0dbf5e6fea0d3
[ "Apache-2.0" ]
null
null
null
# Welcome to the gCloud Storage Demo! (hit enter) # We're going to walk through some of the basics..., # Don't worry though. You don't need to do anything, just keep hitting enter... # Let's start by importing the demo module and getting a connection: from gcloud.storage import demo connection = demo.get_connection() # OK, now let's look at all of the buckets... print connection.get_all_buckets() # This might take a second... # Now let's create a new bucket... import time bucket_name = ("bucket-%s" % time.time()).replace(".", "") # Get rid of dots... print bucket_name bucket = connection.create_bucket(bucket_name) print bucket # Let's look at all of the buckets again... print connection.get_all_buckets() # How about we create a new key inside this bucket. key = bucket.new_key("my-new-file.txt") # Now let's put some data in there. key.set_contents_from_string("this is some data!") # ... and we can read that data back again. print key.get_contents_as_string() # Now let's delete that key. print key.delete() # And now that we're done, let's delete that bucket... print bucket.delete() # Alright! That's all! # Here's an interactive prompt for you now...
29.425
79
0.726423
917a4daa5f3085ab6cce9aa0b5885667705dd1de
336
py
Python
app/rest_api/admin.py
21vcloud/Controller
63169d220f412330a22e3a2fe9964c73893d4e0f
[ "Apache-2.0" ]
null
null
null
app/rest_api/admin.py
21vcloud/Controller
63169d220f412330a22e3a2fe9964c73893d4e0f
[ "Apache-2.0" ]
null
null
null
app/rest_api/admin.py
21vcloud/Controller
63169d220f412330a22e3a2fe9964c73893d4e0f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from rest_api.models import AccessKey class AccessKeyForm(admin.ModelAdmin): list_display = ('id', 'access_key', 'secret_key') search_fields = ('id', 'access_key', 'secret_key') # admin.site.register(AccessKey, AccessKeyForm)
24
54
0.738095
09c90f4e546ee2eda6e635deb3857b53383d2701
974
py
Python
logic/utilities.py
rdelacrz/connect-four
7123d6e649aadcb76f429c61dde405527211c5b2
[ "MIT" ]
null
null
null
logic/utilities.py
rdelacrz/connect-four
7123d6e649aadcb76f429c61dde405527211c5b2
[ "MIT" ]
null
null
null
logic/utilities.py
rdelacrz/connect-four
7123d6e649aadcb76f429c61dde405527211c5b2
[ "MIT" ]
null
null
null
""" Defines utility functions used by both the AI and the core logic. """ # Third-party modules from cefpython3 import cefpython as cef def js_callback(func): """ Takes the return value of the function being wrapped and passes it through the callback function (if any). It is meant for JavaScript callback purposes, which cannot return a value because inter-process messaging is asynchronous. """ def wrapper(*args): # Grabs callback function from positional arguments (if one is provided) callback_fn = None func_args = args if type(args[-1]) is cef.JavascriptCallback: callback_fn = args[-1] func_args = args[:-1] # Passes return value from function accordingly (depending on whether a callback function is passed or not) ret = func(*func_args) if callback_fn is not None: callback_fn.Call(ret) else: return ret return wrapper
32.466667
115
0.663244
520eae1acab1968bb364674a4c3f24ccffa5012d
6,884
py
Python
praw/models/util.py
Theonefoster/praw
3d79b43a5193387974455f3d3ccdfff644714d09
[ "BSD-2-Clause" ]
4
2018-09-28T01:47:53.000Z
2021-02-13T20:21:14.000Z
praw/models/util.py
Theonefoster/praw
3d79b43a5193387974455f3d3ccdfff644714d09
[ "BSD-2-Clause" ]
4
2018-09-19T06:27:24.000Z
2018-09-22T00:44:41.000Z
praw/models/util.py
Theonefoster/praw
3d79b43a5193387974455f3d3ccdfff644714d09
[ "BSD-2-Clause" ]
null
null
null
"""Provide helper classes used by other models.""" import random import time class BoundedSet(object): """A set with a maximum size that evicts the oldest items when necessary. This class does not implement the complete set interface. """ def __init__(self, max_items): """Construct an instance of the BoundedSet.""" self.max_items = max_items self._fifo = [] self._set = set() def __contains__(self, item): """Test if the BoundedSet contains item.""" return item in self._set def add(self, item): """Add an item to the set discarding the oldest item if necessary.""" if len(self._set) == self.max_items: self._set.remove(self._fifo.pop(0)) self._fifo.append(item) self._set.add(item) class ExponentialCounter(object): """A class to provide an exponential counter with jitter.""" def __init__(self, max_counter): """Initialize an instance of ExponentialCounter. :param max_counter: The maximum base value. Note that the computed value may be 3.125% higher due to jitter. """ self._base = 1 self._max = max_counter def counter(self): """Increment the counter and return the current value with jitter.""" max_jitter = self._base / 16. value = self._base + random.random() * max_jitter - max_jitter / 2 self._base = min(self._base * 2, self._max) return value def reset(self): """Reset the counter to 1.""" self._base = 1 def permissions_string(permissions, known_permissions): """Return a comma separated string of permission changes. :param permissions: A list of strings, or ``None``. These strings can exclusively contain ``+`` or ``-`` prefixes, or contain no prefixes at all. When prefixed, the resulting string will simply be the joining of these inputs. When not prefixed, all permissions are considered to be additions, and all permissions in the ``known_permissions`` set that aren't provided are considered to be removals. When None, the result is ``+all``. :param known_permissions: A set of strings representing the available permissions. """ to_set = [] if permissions is None: to_set = ['+all'] else: to_set = ['-all'] omitted = sorted(known_permissions - set(permissions)) to_set.extend('-{}'.format(x) for x in omitted) to_set.extend('+{}'.format(x) for x in permissions) return ','.join(to_set) def stream_generator(function, pause_after=None, skip_existing=False): """Yield new items from ListingGenerators and ``None`` when paused. :param function: A callable that returns a ListingGenerator, e.g. ``subreddit.comments`` or ``subreddit.new``. :param pause_after: An integer representing the number of requests that result in no new items before this function yields ``None``, effectively introducing a pause into the stream. A negative value yields ``None`` after items from a single response have been yielded, regardless of number of new items obtained in that response. A value of ``0`` yields ``None`` after every response resulting in no new items, and a value of ``None`` never introduces a pause (default: None). :param skip_existing: When True does not yield any results from the first request thereby skipping any items that existed in the stream prior to starting the stream (default: False). .. note:: This function internally uses an exponential delay with jitter between subsequent responses that contain no new results, up to a maximum delay of just over a 16 seconds. In practice that means that the time before pause for ``pause_after=N+1`` is approximately twice the time before pause for ``pause_after=N``. For example, to create a stream of comment replies, try: .. code:: python reply_function = reddit.inbox.comment_replies for reply in praw.models.util.stream_generator(reply_function): print(reply) To pause a comment stream after six responses with no new comments, try: .. code:: python subreddit = reddit.subreddit('redditdev') for comment in subreddit.stream.comments(pause_after=6): if comment is None: break print(comment) To resume fetching comments after a pause, try: .. code:: python subreddit = reddit.subreddit('help') comment_stream = subreddit.stream.comments(pause_after=5) for comment in comment_stream: if comment is None: break print(comment) # Do any other processing, then try to fetch more data for comment in comment_stream: if comment is None: break print(comment) To bypass the internal exponential backoff, try the following. This approach is useful if you are monitoring a subreddit with infrequent activity, and you want the to consistently learn about new items from the stream as soon as possible, rather than up to a delay of just over sixteen seconds. .. code:: python subreddit = reddit.subreddit('help') for comment in subreddit.stream.comments(pause_after=0): if comment is None: continue print(comment) """ before_fullname = None exponential_counter = ExponentialCounter(max_counter=16) seen_fullnames = BoundedSet(301) without_before_counter = 0 responses_without_new = 0 valid_pause_after = pause_after is not None while True: found = False newest_fullname = None limit = 100 if before_fullname is None: limit -= without_before_counter without_before_counter = (without_before_counter + 1) % 30 for item in reversed(list(function( limit=limit, params={'before': before_fullname}))): if item.fullname in seen_fullnames: continue found = True seen_fullnames.add(item.fullname) newest_fullname = item.fullname if not skip_existing: yield item before_fullname = newest_fullname skip_existing = False if valid_pause_after and pause_after < 0: yield None elif found: exponential_counter.reset() responses_without_new = 0 else: responses_without_new += 1 if valid_pause_after and responses_without_new > pause_after: exponential_counter.reset() responses_without_new = 0 yield None else: time.sleep(exponential_counter.counter())
36.041885
79
0.644102
a68e8a9dc72fa2189832f09062e8996dd4d65a98
6,754
py
Python
storm_control/hal4000/miscControl/zStage.py
shiwei23/STORM6
669067503ebd164b575ce529fcc4a9a3f576b3d7
[ "MIT" ]
47
2015-02-11T16:05:54.000Z
2022-03-26T14:13:12.000Z
storm_control/hal4000/miscControl/zStage.py
shiwei23/STORM6
669067503ebd164b575ce529fcc4a9a3f576b3d7
[ "MIT" ]
110
2015-01-30T03:53:41.000Z
2021-11-03T15:58:44.000Z
storm_control/hal4000/miscControl/zStage.py
shiwei23/STORM6
669067503ebd164b575ce529fcc4a9a3f576b3d7
[ "MIT" ]
61
2015-01-09T18:31:27.000Z
2021-12-21T13:07:51.000Z
#!/usr/bin/env python """ The z stage UI. Hazen Babcock 05/18 """ import os from PyQt5 import QtCore, QtGui, QtWidgets import storm_control.sc_library.parameters as params import storm_control.hal4000.halLib.halDialog as halDialog import storm_control.hal4000.halLib.halMessage as halMessage import storm_control.hal4000.halLib.halModule as halModule import storm_control.hal4000.qtdesigner.z_stage_ui as zStageUi class ZStageView(halDialog.HalDialog): """ Manages the z stage GUI. """ def __init__(self, configuration = None, **kwds): super().__init__(**kwds) self.parameters = params.StormXMLObject() self.retracted_z = configuration.get("retracted_z") self.z_stage_fn = None # Load UI self.ui = zStageUi.Ui_Dialog() self.ui.setupUi(self) icon_path = os.path.join(os.path.dirname(__file__),"../icons/") self.ui.upLButton.setIcon(QtGui.QIcon(os.path.join(icon_path, "2uparrow-128.png"))) self.ui.upLButton.clicked.connect(self.handleUpLButton) self.ui.upSButton.setIcon(QtGui.QIcon(os.path.join(icon_path, "1uparrow-128.png"))) self.ui.upSButton.clicked.connect(self.handleUpSButton) self.ui.downSButton.setIcon(QtGui.QIcon(os.path.join(icon_path, "1downarrow-128.png"))) self.ui.downSButton.clicked.connect(self.handleDownSButton) self.ui.downLButton.setIcon(QtGui.QIcon(os.path.join(icon_path, "2downarrow-128.png"))) self.ui.downLButton.clicked.connect(self.handleDownLButton) self.ui.homeButton.clicked.connect(self.handleHomeButton) self.ui.retractButton.clicked.connect(self.handleRetractButton) self.ui.zeroButton.clicked.connect(self.handleZeroButton) self.ui.goButton.clicked.connect(self.handleGoButton) # Set to minimum size & fix. self.adjustSize() self.setFixedSize(self.width(), self.height()) # Add parameters. self.parameters.add(params.ParameterRangeFloat(description ="Z Stage large step size", name = "z_large_step", value = configuration.get("large_step"), min_value = 0.001, max_value = 100.0)) self.parameters.add(params.ParameterRangeFloat(description ="Z Stage small step size", name = "z_small_step", value = configuration.get("small_step"), min_value = 0.001, max_value = 10.0)) self.setEnabled(False) def getParameters(self): return self.parameters def handleDownLButton(self, boolean): self.z_stage_fn.goRelative(-1.0*self.parameters.get("z_large_step")) def handleDownSButton(self, boolean): self.z_stage_fn.goRelative(-1.0*self.parameters.get("z_small_step")) def handleGoButton(self, boolean): self.z_stage_fn.goAbsolute(self.ui.goSpinBox.value()) def handleHomeButton(self, boolean): self.z_stage_fn.goAbsolute(0.0) def handleRetractButton(self, boolean): self.z_stage_fn.goAbsolute(self.retracted_z) def handleUpLButton(self, boolean): self.z_stage_fn.goRelative(self.parameters.get("z_large_step")) def handleUpSButton(self, boolean): self.z_stage_fn.goRelative(self.parameters.get("z_small_step")) def handleZeroButton(self, boolean): self.z_stage_fn.zero() def handleZStagePosition(self, z_value): self.ui.zPosLabel.setText("{0:.2f}".format(z_value)) # def handleZValueChanged(self, z_value): # self.z_stage_fn.goAbsolute(z_value) def newParameters(self, parameters): self.parameters.setv("z_large_step", parameters.get("z_large_step")) self.parameters.setv("z_small_step", parameters.get("z_small_step")) def setFunctionality(self, z_stage_fn): self.z_stage_fn = z_stage_fn self.z_stage_fn.zStagePosition.connect(self.handleZStagePosition) self.ui.goSpinBox.setMinimum(self.z_stage_fn.getMinimum()) self.ui.goSpinBox.setMaximum(self.z_stage_fn.getMaximum()) self.setEnabled(True) class ZStage(halModule.HalModule): def __init__(self, module_params = None, qt_settings = None, **kwds): super().__init__(**kwds) self.configuration = module_params.get("configuration") self.view = ZStageView(module_name = self.module_name, configuration = module_params.get("configuration")) self.view.halDialogInit(qt_settings, module_params.get("setup_name") + " z stage") def cleanUp(self, qt_settings): self.view.cleanUp(qt_settings) def handleResponse(self, message, response): if message.isType("get functionality"): self.view.setFunctionality(response.getData()["functionality"]) def processMessage(self, message): if message.isType("configure1"): self.sendMessage(halMessage.HalMessage(m_type = "add to menu", data = {"item name" : "Z Stage", "item data" : "z stage"})) self.sendMessage(halMessage.HalMessage(m_type = "get functionality", data = {"name" : self.configuration.get("z_stage_fn")})) self.sendMessage(halMessage.HalMessage(m_type = "initial parameters", data = {"parameters" : self.view.getParameters()})) elif message.isType("new parameters"): p = message.getData()["parameters"] message.addResponse(halMessage.HalMessageResponse(source = self.module_name, data = {"old parameters" : self.view.getParameters().copy()})) self.view.newParameters(p.get(self.module_name)) message.addResponse(halMessage.HalMessageResponse(source = self.module_name, data = {"new parameters" : self.view.getParameters()})) elif message.isType("show"): if (message.getData()["show"] == "z stage"): self.view.show() elif message.isType("start"): if message.getData()["show_gui"]: self.view.showIfVisible()
41.950311
124
0.599349
b35ff9d7da0da0d6f0e30738d48d3f73a591fa31
4,712
py
Python
getpricepaid.py
spencer84/Chester-Data-Analytics
f64fe2a131ce6dc39c017476812435ef2b874733
[ "MIT" ]
null
null
null
getpricepaid.py
spencer84/Chester-Data-Analytics
f64fe2a131ce6dc39c017476812435ef2b874733
[ "MIT" ]
null
null
null
getpricepaid.py
spencer84/Chester-Data-Analytics
f64fe2a131ce6dc39c017476812435ef2b874733
[ "MIT" ]
null
null
null
import requests import datetime import sqlite3 import queue def get_postcode_district(postcode): """ Returns the postcode district/area from a given postcode """ if ' ' in postcode: return postcode.split(' ')[0] elif len(postcode) == 6: return postcode[:3] else: return postcode[:4] class LandData: def __init__(self): self.url = 'https://landregistry.data.gov.uk/data/ppi/transaction-record.json?' self.properties = 'transactionId,transactionDate,pricePaid,propertyAddress.' \ 'paon,propertyAddress.street,propertyAddress.postcode' self.town = None self.page = 0 self.results_len = 0 self.params = {'_view': 'basic', '_properties': self.properties, '_pageSize': 200, 'propertyAddress.town': self.town, '_page': self.page} self.status = None self.conn = None self.cur = None self.results_to_add = queue.Queue() self.request_status_code = None self.unique_postcode_areas = [] def create_connection(self, db): self.conn = sqlite3.connect(db) print("Connected to " + db) def create_cursor(self): self.cur = self.conn.cursor() def close_connection(self): self.conn.commit() self.conn.close() print("Connection closed") def price_paid_query(self): """ Queries the Land Registry API and with the given 'town' attribute of the object. Updates the request_status_code and the results_len attributes """ self.params = {'_view': 'basic', '_properties': self.properties, '_pageSize': 200, 'propertyAddress.town': self.town, '_page': self.page} response = requests.get(self.url, params=self.params) self.request_status_code = response.status_code results = response.json()['result']['items'] self.results_len = len(results) # Need to write these results to the database curr_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') # Iterate through the results dataframe, adding each value to the DB for i in results: vals_to_insert = [self.town, None, None, None, None, i['transactionDate'] , i['pricePaid'], curr_time] property_details = i['propertyAddress'] # KeyError thrown if a given key isn't returned; Need to check before assigning value if 'postcode' in property_details: postcode_district = get_postcode_district(i['propertyAddress']['postcode']) vals_to_insert[1] = postcode_district # If the postcode district not otherwise added, then add to list # This assumes that a given town will cover unique postcode areas (i.e. not split # over multiple areas if postcode_district not in self.unique_postcode_areas: self.unique_postcode_areas.append(postcode_district) vals_to_insert[2] = i['propertyAddress']['postcode'] if 'paon' in property_details: vals_to_insert[3] = i['propertyAddress']['paon'] if 'street' in property_details: vals_to_insert[4] = i['propertyAddress']['street'] # Add each line of results to the queue of values to be added to the database self.results_to_add.put(vals_to_insert) def get_full_price_paid(self): end_of_results = False while not end_of_results: # Recursion until a page length less than max achieved self.price_paid_query() self.page += 1 if self.results_len < 200: end_of_results = True print(self.page) # Write results to database print("Writing results to db") self.data_to_db() def data_to_db(self): while not self.results_to_add.empty(): self.cur.execute("INSERT INTO land_reg VALUES(?,?,?,?,?,?,?,?)",tuple(self.results_to_add.get())) # Find all unique postcode areas curr_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') for area in self.unique_postcode_areas: self.cur.execute("INSERT INTO data_log VALUES(?,?,?)", (area, 'land_reg', curr_time)) self.conn.commit() self.conn.close() return # This is just for testing # land = LandData() # land.town = 'CHESTER' # land.create_connection('cda.db') # land.create_cursor() # land.get_full_price_paid()
40.273504
120
0.598684
af52d7bf0ab048723e44f33dd9014740f0b6092e
8,001
py
Python
tests/test_cli/test_remove/test_skill.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
null
null
null
tests/test_cli/test_remove/test_skill.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
null
null
null
tests/test_cli/test_remove/test_skill.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2021-2022 Valory AG # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This test module contains the tests for the `aea remove skill` sub-command.""" import os import shutil import tempfile import unittest.mock from pathlib import Path import yaml import aea import aea.configurations.base from aea.cli import cli from aea.configurations.base import AgentConfig, DEFAULT_AEA_CONFIG_FILE from packages.fetchai.skills.gym import PUBLIC_ID as GYM_SKILL_PUBLIC_ID from tests.conftest import AUTHOR, CLI_LOG_OPTION, CliRunner, ROOT_DIR class TestRemoveSkillWithPublicId: """Test that the command 'aea remove skill' works correctly when using the public id.""" @classmethod def setup_class(cls): """Set the test up.""" cls.runner = CliRunner() cls.agent_name = "myagent" cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() dir_path = Path("packages") tmp_dir = cls.t / dir_path src_dir = cls.cwd / Path(ROOT_DIR, dir_path) shutil.copytree(str(src_dir), str(tmp_dir)) cls.skill_id = str(GYM_SKILL_PUBLIC_ID) cls.skill_name = "gym" os.chdir(cls.t) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "init", "--local", "--author", AUTHOR], ) assert result.exit_code == 0 result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", "--local", cls.agent_name], standalone_mode=False, ) assert result.exit_code == 0 os.chdir(cls.agent_name) # change default registry path config = AgentConfig.from_json(yaml.safe_load(open(DEFAULT_AEA_CONFIG_FILE))) config.registry_path = os.path.join(ROOT_DIR, "packages") yaml.safe_dump(dict(config.json), open(DEFAULT_AEA_CONFIG_FILE, "w")) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "add", "--local", "skill", cls.skill_id], standalone_mode=False, ) assert result.exit_code == 0 cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "remove", "skill", cls.skill_id], standalone_mode=False, ) def test_exit_code_equal_to_zero(self): """Test that the exit code is equal to 1 (i.e. catchall for general errors).""" assert self.result.exit_code == 0 def test_directory_does_not_exist(self): """Test that the directory of the removed skill does not exist.""" assert not Path("skills", self.skill_name).exists() def test_skill_not_present_in_agent_config(self): """Test that the name of the removed skill is not present in the agent configuration file.""" agent_config = aea.configurations.base.AgentConfig.from_json( yaml.safe_load(open(DEFAULT_AEA_CONFIG_FILE)) ) assert self.skill_id not in agent_config.skills @classmethod def teardown_class(cls): """Tear the test down.""" os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass class TestRemoveSkillFailsWhenSkillIsNotSupported: """Test that the command 'aea remove skill' fails when the skill is not supported.""" @classmethod def setup_class(cls): """Set the test up.""" cls.runner = CliRunner() cls.agent_name = "myagent" cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() dir_path = Path("packages") tmp_dir = cls.t / dir_path src_dir = cls.cwd / Path(ROOT_DIR, dir_path) shutil.copytree(str(src_dir), str(tmp_dir)) cls.skill_id = str(GYM_SKILL_PUBLIC_ID) os.chdir(cls.t) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "init", "--local", "--author", AUTHOR], ) assert result.exit_code == 0 result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", "--local", cls.agent_name], standalone_mode=False, ) assert result.exit_code == 0 os.chdir(cls.agent_name) cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "remove", "skill", cls.skill_id], standalone_mode=False, ) def test_exit_code_equal_to_1(self): """Test that the exit code is equal to 1 (i.e. catchall for general errors).""" assert self.result.exit_code == 1 def test_error_message_skill_not_existing(self): """Test that the log error message is fixed. The expected message is: 'The skill '{skill_name}' is not supported.' """ s = "The skill '{}' is not supported.".format(self.skill_id) assert self.result.exception.message == s @classmethod def teardown_class(cls): """Tear the test down.""" os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass class TestRemoveSkillFailsWhenExceptionOccurs: """Test that the command 'aea remove skill' fails when an exception occurs while removing the directory.""" @classmethod def setup_class(cls): """Set the test up.""" cls.runner = CliRunner() cls.agent_name = "myagent" cls.cwd = os.getcwd() cls.t = tempfile.mkdtemp() dir_path = Path("packages") tmp_dir = cls.t / dir_path src_dir = cls.cwd / Path(ROOT_DIR, dir_path) shutil.copytree(str(src_dir), str(tmp_dir)) cls.skill_id = str(GYM_SKILL_PUBLIC_ID) cls.skill_name = "gym" os.chdir(cls.t) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "init", "--local", "--author", AUTHOR], ) assert result.exit_code == 0 result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "create", "--local", cls.agent_name], standalone_mode=False, ) assert result.exit_code == 0 os.chdir(cls.agent_name) # change default registry path config = AgentConfig.from_json(yaml.safe_load(open(DEFAULT_AEA_CONFIG_FILE))) config.registry_path = os.path.join(ROOT_DIR, "packages") yaml.safe_dump(dict(config.json), open(DEFAULT_AEA_CONFIG_FILE, "w")) result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "add", "--local", "skill", cls.skill_id], standalone_mode=False, ) assert result.exit_code == 0 cls.patch = unittest.mock.patch( "shutil.rmtree", side_effect=BaseException("an exception") ) cls.patch.start() cls.result = cls.runner.invoke( cli, [*CLI_LOG_OPTION, "remove", "skill", cls.skill_name], standalone_mode=False, ) def test_exit_code_equal_to_1(self): """Test that the exit code is equal to 1 (i.e. catchall for general errors).""" assert self.result.exit_code == 1 @classmethod def teardown_class(cls): """Tear the test down.""" cls.patch.stop() os.chdir(cls.cwd) try: shutil.rmtree(cls.t) except (OSError, IOError): pass
33.061983
111
0.599675
4c54f4c17a5c394a043e09dee3b224346ae284e7
12,508
py
Python
refitt/web/api/endpoint/facility.py
refitt/ref
3ccc398e7b95f77549ab77884b87f40abdd3effb
[ "Apache-2.0" ]
4
2020-09-11T01:15:11.000Z
2021-05-12T16:46:48.000Z
refitt/web/api/endpoint/facility.py
refitt/ref
3ccc398e7b95f77549ab77884b87f40abdd3effb
[ "Apache-2.0" ]
12
2021-03-20T03:24:53.000Z
2022-02-19T03:20:43.000Z
refitt/web/api/endpoint/facility.py
refitt/ref
3ccc398e7b95f77549ab77884b87f40abdd3effb
[ "Apache-2.0" ]
2
2021-02-01T23:49:39.000Z
2021-12-11T19:01:23.000Z
# SPDX-FileCopyrightText: 2019-2021 REFITT Team # SPDX-License-Identifier: Apache-2.0 """Facility profile endpoints.""" # type annotations from typing import Union # external libs from flask import request # internal libs from ....database.model import Client, Facility, IntegrityError, NotFound from ..app import application from ..auth import authenticated, authorization from ..response import endpoint, ConstraintViolation from ..tools import require_data, collect_parameters, disallow_parameters # public interface __all__ = [] info: dict = { 'Description': 'Request, add, update facility profiles', 'Endpoints': { '/facility': {}, '/facility/<facility_id>': {}, '/facility/<facility_id>/user': {}, '/facility/<facility_id>/user/<user_id>': {}, } } @application.route('/facility', methods=['POST']) @endpoint('application/json') @authenticated @authorization(level=1) def add_facility(admin: Client) -> dict: # noqa: unused client """Add new facility profile.""" disallow_parameters(request) profile = require_data(request, data_format='json', validate=(lambda data: Facility.from_dict(data))) try: facility_id = profile.pop('id', None) if not facility_id: facility_id = Facility.add(profile).id else: Facility.update(facility_id, **profile) except IntegrityError as error: raise ConstraintViolation(str(error.args[0])) from error return {'facility': {'id': facility_id}} info['Endpoints']['/facility']['POST'] = { 'Description': 'Add or overwrite facility profile', 'Permissions': 'Admin (level 0)', 'Requires': { 'Auth': 'Authorization Bearer Token', 'Payload': { 'Description': 'Facility profile data', 'Type': 'application/json', }, }, 'Responses': { 200: { 'Description': 'Success', 'Payload': { 'Description': 'New facility ID', 'Type': 'application/json' }, }, 400: {'Description': 'JSON payload missing, malformed, or invalid'}, 401: {'Description': 'Access level insufficient, revoked, or token expired'}, 403: {'Description': 'Token not found or invalid'}, } } @application.route('/facility/<id_or_name>', methods=['GET']) @endpoint('application/json') @authenticated @authorization(level=1) def get_facility(admin: Client, id_or_name: Union[int, str]) -> dict: # noqa: unused client """Query for existing facility profile.""" disallow_parameters(request) try: facility_id = int(id_or_name) return {'facility': Facility.from_id(facility_id).to_json()} except ValueError: facility_name = str(id_or_name) return {'facility': Facility.from_name(facility_name).to_json()} info['Endpoints']['/facility/<facility_id>']['GET'] = { 'Description': 'Request facility profile', 'Permissions': 'Admin (level 1)', 'Requires': { 'Auth': 'Authorization Bearer Token', 'Path': { 'facility_id': { 'Description': 'Unique ID for facility (or `name`)', 'Type': 'Integer', } }, }, 'Responses': { 200: { 'Description': 'Success', 'Payload': { 'Description': 'Facility profile', 'Type': 'application/json' }, }, 401: {'Description': 'Access level insufficient, revoked, or token expired'}, 403: {'Description': 'Token not found or invalid'}, 404: {'Description': 'Facility does not exist'}, } } @application.route('/facility/<int:facility_id>', methods=['PUT']) @endpoint('application/json') @authenticated @authorization(level=1) def update_facility(admin: Client, facility_id: int) -> dict: # noqa: unused client """Update facility profile attributes.""" try: profile = Facility.update(facility_id, **collect_parameters(request, allow_any=True)) except IntegrityError as error: raise ConstraintViolation(str(error.args[0])) from error return {'facility': profile.to_json()} info['Endpoints']['/facility/<facility_id>']['PUT'] = { 'Description': 'Update facility profile attributes', 'Permissions': 'Admin (level 1)', 'Requires': { 'Auth': 'Authorization Bearer Token', 'Path': { 'facility_id': { 'Description': 'Unique ID for facility', 'Type': 'Integer', } }, }, 'Optional': { 'Parameters': { 'name': { 'Description': 'Unique name for facility', 'Type': 'Float' }, 'latitude': { 'Description': 'Decimal latitude in degrees North', 'Type': 'Float' }, 'longitude': { 'Description': 'Decimal longitude in degrees West', 'Type': 'Float' }, 'elevation': { 'Description': 'Decimal elevation in meters above sea-level', 'Type': 'Float' }, 'limiting_magnitude': { 'Description': 'Decimal apparent magnitude', 'Type': 'Float' }, '*': { 'Description': 'Arbitrary field added to JSON `data`', 'Type': '*' } }, }, 'Responses': { 200: { 'Description': 'Success', 'Payload': { 'Description': 'Updated facility profile', 'Type': 'application/json' }, }, 401: {'Description': 'Access level insufficient, revoked, or token expired'}, 403: {'Description': 'Token not found or invalid'}, 404: {'Description': 'Facility does not exist'}, } } @application.route('/facility/<int:facility_id>', methods=['DELETE']) @endpoint('application/json') @authenticated @authorization(level=1) def delete_facility(admin: Client, facility_id: int) -> dict: # noqa: unused client """Delete a facility profile (assuming no existing relationships).""" disallow_parameters(request) try: Facility.delete(facility_id) except IntegrityError as error: raise ConstraintViolation(str(error.args[0])) from error return {'facility': {'id': facility_id}} info['Endpoints']['/facility/<facility_id>']['DELETE'] = { 'Description': 'Delete facility profile (assuming no existing relationships)', 'Permissions': 'Admin (level 1)', 'Requires': { 'Auth': 'Authorization Bearer Token', 'Path': { 'facility_id': { 'Description': 'Unique ID for facility', 'Type': 'Integer', } }, }, 'Responses': { 200: {'Description': 'Success'}, 401: {'Description': 'Access level insufficient, revoked, or token expired'}, 403: {'Description': 'Token not found or invalid'}, 404: {'Description': 'Facility does not exist'}, } } @application.route('/facility/<int:facility_id>/user', methods=['GET']) @endpoint('application/json') @authenticated @authorization(level=1) def get_all_facility_users(admin: Client, facility_id: int) -> dict: # noqa: unused client """Query for users related to the given facility.""" disallow_parameters(request) return { 'user': [ user.to_json() for user in Facility.from_id(facility_id).users() ] } info['Endpoints']['/facility/<facility_id>/user']['GET'] = { 'Description': 'Request user profiles associated with this facility', 'Permissions': 'Admin (level 1)', 'Requires': { 'Auth': 'Authorization Bearer Token', 'Path': { 'facility_id': { 'Description': 'Unique ID for facility', 'Type': 'Integer', } }, }, 'Responses': { 200: { 'Description': 'Success', 'Payload': { 'Description': 'List of user profiles', 'Type': 'application/json' }, }, 401: {'Description': 'Access level insufficient, revoked, or token expired'}, 403: {'Description': 'Token not found or invalid'}, 404: {'Description': 'Facility does not exist'}, } } @application.route('/facility/<int:facility_id>/user/<int:user_id>', methods=['GET']) @endpoint('application/json') @authenticated @authorization(level=1) def get_facility_user(admin: Client, facility_id: int, user_id: int) -> dict: # noqa: unused client """Query for a user related to the given facility.""" disallow_parameters(request) users = [user.to_json() for user in Facility.from_id(facility_id).users() if user.id == user_id] if not users: raise NotFound(f'User ({user_id}) not associated with facility ({facility_id})') else: return {'user': users[0]} info['Endpoints']['/facility/<facility_id>/user/<user_id>']['GET'] = { 'Description': 'Check user is associated with this facility', 'Permissions': 'Admin (level 1)', 'Requires': { 'Auth': 'Authorization Bearer Token', 'Path': { 'facility_id': { 'Description': 'Unique ID for facility', 'Type': 'Integer', }, 'user_id': { 'Description': 'Unique ID for user', 'Type': 'Integer', } }, }, 'Responses': { 200: { 'Description': 'Success', 'Payload': { 'Description': 'Associated user profile', 'Type': 'application/json' }, }, 401: {'Description': 'Access level insufficient, revoked, or token expired'}, 403: {'Description': 'Token not found or invalid'}, 404: {'Description': 'Facility does not exist or user not associated with this facility'}, } } @application.route('/facility/<int:facility_id>/user/<int:user_id>', methods=['PUT']) @endpoint('application/json') @authenticated @authorization(level=1) def add_facility_user_association(admin: Client, facility_id: int, user_id: int) -> dict: # noqa: unused client """Associate facility with the given user.""" disallow_parameters(request) Facility.from_id(facility_id).add_user(user_id) return {} info['Endpoints']['/facility/<facility_id>/user/<user_id>']['PUT'] = { 'Description': 'Associate user with facility', 'Permissions': 'Admin (level 1)', 'Requires': { 'Auth': 'Authorization Bearer Token', 'Path': { 'facility_id': { 'Description': 'Unique ID for facility', 'Type': 'Integer', }, 'user_id': { 'Description': 'Unique ID for user', 'Type': 'Integer', } }, }, 'Responses': { 200: {'Description': 'Success'}, 401: {'Description': 'Access level insufficient, revoked, or token expired'}, 403: {'Description': 'Token not found or invalid'}, 404: {'Description': 'Facility or user does not exist'}, } } @application.route('/facility/<int:facility_id>/user/<int:user_id>', methods=['DELETE']) @endpoint('application/json') @authenticated @authorization(level=1) def delete_facility_user_association(admin: Client, facility_id: int, user_id: int) -> dict: # noqa: unused client """Dissociate the facility for the given user.""" disallow_parameters(request) Facility.from_id(facility_id).delete_user(user_id) return {} info['Endpoints']['/facility/<facility_id>/user/<user_id>']['DELETE'] = { 'Description': 'Disassociate user with facility', 'Permissions': 'Admin (level 1)', 'Requires': { 'Auth': 'Authorization Bearer Token', 'Path': { 'facility_id': { 'Description': 'Unique ID for facility', 'Type': 'Integer', }, 'user_id': { 'Description': 'Unique ID for user', 'Type': 'Integer', } }, }, 'Responses': { 200: {'Description': 'Success'}, 401: {'Description': 'Access level insufficient, revoked, or token expired'}, 403: {'Description': 'Token not found or invalid'}, 404: {'Description': 'Facility or user does not exist'}, } }
32.829396
115
0.575951
f7de8378bc55ab8464334c04827021106729ea13
1,067
py
Python
pywebhooks/__init__.py
chadlung/pywebhooks
4b5f41be7c3c498a31cb0225cbde8e63c48ce999
[ "Apache-2.0" ]
94
2015-04-03T12:10:54.000Z
2021-08-30T13:50:48.000Z
pywebhooks/__init__.py
chadlung/pywebhooks
4b5f41be7c3c498a31cb0225cbde8e63c48ce999
[ "Apache-2.0" ]
10
2016-06-07T17:34:39.000Z
2019-11-23T00:00:09.000Z
pywebhooks/__init__.py
chadlung/pywebhooks
4b5f41be7c3c498a31cb0225cbde8e63c48ce999
[ "Apache-2.0" ]
10
2015-04-14T18:03:08.000Z
2021-08-30T13:50:49.000Z
DEFAULT_DB_NAME = 'pywebhooks' DEFAULT_ACCOUNTS_TABLE = 'accounts' DEFAULT_REGISTRATIONS_TABLE = 'registrations' DEFAULT_TRIGGERED_TABLE = 'triggered_webhooks' DEFAULT_SUBSCRIPTIONS_TABLE = 'subscriptions' DEFAULT_TABLE_NAMES = [ DEFAULT_ACCOUNTS_TABLE, DEFAULT_REGISTRATIONS_TABLE, DEFAULT_TRIGGERED_TABLE, DEFAULT_SUBSCRIPTIONS_TABLE ] # This is the timeout for the response time from the client's endpoint. This is # used when validating a new account or they attempt to change a secret or # api key and in sending out webhook events. This should be a low value and end # users should be aware of this time (in seconds) in which to respond. REQUEST_TIMEOUT = 5.0 # Retry a failed webhook notification to an endpoint in 2 minutes DEFAULT_RETRY = 120 DEFAULT_FINAL_RETRY = 3600 # On the final retry, try again in an hour # How many times a webhook post can fail to contact the endpoint before # its ignored MAX_FAILED_COUNT = 250 RETHINK_HOST = 'rethinkdb' CELERY_BROKER_URL = 'redis://redis:6379/0' RETHINK_PORT = 28015 RETHINK_AUTH_KEY = ''
32.333333
79
0.788191
4d9730f5aef0bd8d322583a08360223da84a5f3c
2,388
py
Python
tests/natural_bm/test_callbacks.py
alexhunterlang/natural_bm
b2a1cb15694f4f3a80a3a1cc6f8423892563806d
[ "MIT" ]
1
2018-06-07T00:54:17.000Z
2018-06-07T00:54:17.000Z
tests/natural_bm/test_callbacks.py
alexhunterlang/natural_bm
b2a1cb15694f4f3a80a3a1cc6f8423892563806d
[ "MIT" ]
null
null
null
tests/natural_bm/test_callbacks.py
alexhunterlang/natural_bm
b2a1cb15694f4f3a80a3a1cc6f8423892563806d
[ "MIT" ]
null
null
null
#%% import pytest import os from csv import Sniffer from natural_bm import callbacks from natural_bm import optimizers from natural_bm import training from natural_bm.models import Model from natural_bm.datasets import random from natural_bm.utils_testing import nnet_for_testing #%% @pytest.mark.parametrize('sep', [',', '\t'], ids=['csv', 'tsv']) def test_CSVLogger(sep): """ This test is a slight modification of test_CSVLogger from https://github.com/fchollet/keras/blob/master/tests/keras/test_callbacks.py """ nnet = nnet_for_testing('rbm') data = random.Random('probability') batch_size = 6 n_epoch = 1 if sep == '\t': filepath = 'log.tsv' elif sep == ',': filepath = 'log.csv' def make_model(dbm, data): optimizer = optimizers.SGD() trainer = training.CD(dbm) model = Model(dbm, optimizer, trainer) return model # case 1, create new file with defined separator model = make_model(nnet, data) cbks = [callbacks.CSVLogger(filepath, separator=sep)] history = model.fit(data.train.data, batch_size=batch_size, n_epoch=n_epoch, callbacks=cbks, validation_data=data.valid.data) assert os.path.exists(filepath) with open(filepath) as csvfile: dialect = Sniffer().sniff(csvfile.read()) assert dialect.delimiter == sep del model del cbks # case 2, append data to existing file, skip header model = make_model(nnet, data) cbks = [callbacks.CSVLogger(filepath, separator=sep, append=True)] history = model.fit(data.train.data, batch_size=batch_size, n_epoch=n_epoch, callbacks=cbks, validation_data=data.valid.data) # case 3, reuse of CSVLogger object history = model.fit(data.train.data, batch_size=batch_size, n_epoch=n_epoch, callbacks=cbks, validation_data=data.valid.data) import re with open(filepath) as csvfile: output = " ".join(csvfile.readlines()) assert len(re.findall('epoch', output)) == 1 os.remove(filepath) #%% Main if __name__ == '__main__': pytest.main([__file__])
27.767442
79
0.602178
3eccd9e4b7ade8d1a77e4b3af717b0fccf6cf790
997
py
Python
src/homework/d_repetition/main.py
acc-cosc-1336-spring-2022/acc-cosc-1336-spring-2022-marshall0603181
8660a72234f212833bf27b68f37b9e0cc7911769
[ "MIT" ]
null
null
null
src/homework/d_repetition/main.py
acc-cosc-1336-spring-2022/acc-cosc-1336-spring-2022-marshall0603181
8660a72234f212833bf27b68f37b9e0cc7911769
[ "MIT" ]
null
null
null
src/homework/d_repetition/main.py
acc-cosc-1336-spring-2022/acc-cosc-1336-spring-2022-marshall0603181
8660a72234f212833bf27b68f37b9e0cc7911769
[ "MIT" ]
null
null
null
import repetition # choice has to do with 'Homework 3 menu'. choice2 = 'y' while choice2 == 'y': print('Homework 3 Menu') choice = int(input('\n(1) Factorial \n(2) Sum odd numbers \n(3) Exit \n\n ')) if choice == 1: num = int(input('enter number greater than 0 and less than 10: ')) if num > 0 and num < 10: print(repetition.get_factorial(num)) while num <= 0 or num >= 10: print('Invalid entry') num = int(input('enter number greater than 0 and less than 10: ')) if num > 0 and num < 10: print(repetition.get_factorial(num)) elif choice == 2: num = int(input('enter a number: ')) print(repetition.sum_odd_numbers(num)) elif choice == 3: exit('Exiting...') else: print('Error') choice2 = str(input('Do you wish to continue? y or n: ')) # choice2 has to do with the question 'Do you want to exit? y or n: '. if choice2 == 'n': exit('Exiting...')
36.925926
81
0.570712
81e574e9b4f45083143bc61f715e8f59470368c8
6,473
py
Python
pylib/pc/PointHierarchy.py
schellmi42/tensorflow_graphics_point_clouds
c8e2dc2963c3eecfb27542449603f81d78494783
[ "Apache-2.0" ]
3
2020-07-10T12:07:02.000Z
2022-03-21T09:28:55.000Z
pylib/pc/PointHierarchy.py
schellmi42/tensorflow_graphics_point_clouds
c8e2dc2963c3eecfb27542449603f81d78494783
[ "Apache-2.0" ]
null
null
null
pylib/pc/PointHierarchy.py
schellmi42/tensorflow_graphics_point_clouds
c8e2dc2963c3eecfb27542449603f81d78494783
[ "Apache-2.0" ]
1
2021-10-11T08:27:44.000Z
2021-10-11T08:27:44.000Z
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class to represent a point cloud hierarchy.""" import numpy as np import tensorflow as tf from pylib.pc.utils import check_valid_point_hierarchy_input from pylib.pc import PointCloud from pylib.pc import Grid from pylib.pc import Neighborhood from pylib.pc import sample from pylib.pc.utils import cast_to_num_dims class PointHierarchy: """ A hierarchy of sampled point clouds. Args: point_cloud: A `PointCloud` instance.. cell_sizes: A list of `floats` or `float` `Tensors` of shape `[D]`, the cell sizes for the sampling. The length of the list defines the number of samplings. sample_mode: A `string`, either `'poisson'`or `'cell average'`. """ def __init__(self, point_cloud: PointCloud, cell_sizes, sample_mode='poisson', name=None): #Initialize the attributes. self._aabb = point_cloud.get_AABB() self._point_clouds = [point_cloud] self._cell_sizes = [] self._neighborhoods = [] self._dimension = point_cloud._dimension self._batch_shape = point_cloud._batch_shape #Create the different sampling operations. cur_point_cloud = point_cloud for sample_iter, cur_cell_sizes in enumerate(cell_sizes): cur_cell_sizes = tf.convert_to_tensor( value=cur_cell_sizes, dtype=tf.float32) # Check if the cell size is defined for all the dimensions. # If not, the last cell size value is tiled until all the dimensions # have a value. cur_num_dims = tf.gather(cur_cell_sizes.shape, 0) cur_cell_sizes = tf.cond( cur_num_dims < self._dimension, lambda: tf.concat((cur_cell_sizes, tf.tile(tf.gather(cur_cell_sizes, [tf.rank(cur_cell_sizes) - 1]), [self._dimension - cur_num_dims])), axis=0), lambda: cur_cell_sizes) tf.assert_greater( self._dimension + 1, cur_num_dims, f'Too many dimensions in cell sizes {cur_num_dims} ' + \ f'instead of max. {self._dimension}') # old version, does not run in graph mode # if cur_num_dims < self._dimension: # cur_cell_sizes = tf.concat((cur_cell_sizes, # tf.tile(tf.gather(cur_cell_sizes, # [tf.rank(cur_cell_sizes) - 1]), # [self._dimension - cur_num_dims])), # axis=0) # if cur_num_dims > self._dimension: # raise ValueError( # f'Too many dimensions in cell sizes {cur_num_dims} ' + \ # f'instead of max. {self._dimension}') self._cell_sizes.append(cur_cell_sizes) #Create the sampling operation. cur_grid = Grid(cur_point_cloud, cur_cell_sizes, self._aabb) cur_neighborhood = Neighborhood(cur_grid, cur_cell_sizes) cur_point_cloud, _ = sample(cur_neighborhood, sample_mode) self._neighborhoods.append(cur_neighborhood) cur_point_cloud.set_batch_shape(self._batch_shape) self._point_clouds.append(cur_point_cloud) def get_points(self, batch_id=None, max_num_points=None, name=None): """ Returns the points. Note: In the following, A1 to An are optional batch dimensions. If called withoud specifying 'id' returns the points in padded format `[A1, ..., An, V, D]`. Args: batch_id: An `int`, identifier of point cloud in the batch, if `None` returns all points. Return: A list of `float` `Tensors` of shape `[N_i, D]`, if 'batch_id' was given or `[A1, ..., An, V_i, D]`, if no 'batch_id' was given. """ points = [] for point_cloud in self._point_clouds: points.append(point_cloud.get_points(batch_id)) return points def get_sizes(self, name=None): """ Returns the sizes of the point clouds in the point hierarchy. Note: In the following, A1 to An are optional batch dimensions. Returns: A `list` of `Tensors` of shape '`[A1, .., An]`' """ sizes = [] for point_cloud in self._point_clouds: sizes.append(point_cloud.get_sizes()) return sizes def set_batch_shape(self, batch_shape, name=None): """ Function to change the batch shape. Use this to set a batch shape instead of using 'self._batch_shape' to also change dependent variables. Note: In the following, A1 to An are optional batch dimensions. Args: batch_shape: An 1D `int` `Tensor` `[A1, ..., An]`. Raises: ValueError: if shape does not sum up to batch size. """ for point_cloud in self._point_clouds: point_cloud.set_batch_shape(batch_shape) def get_neighborhood(self, i=None, transposed=False): """ Returns the neighborhood between level `i` and `i+1` of the hierarchy. If called without argument returns a list of all neighborhoods. Args: i: An `int`, can be negative but must be in range `[-num_levels, num_levels-1]`. transposed: A `bool`, if `True` returns the neighborhood between level `i+1` and `i`. Returs: A `Neighborhood` instance or a `list` of `Neighborhood` instances. """ if i is None: if transposed: return [nb.transposed() for nb in self._neighborhoods] else: return self._neighborhoods else: if transposed: return self._neighborhoods[i].transpose() else: return self._neighborhoods[i] def __getitem__(self, index): return self._point_clouds[index] def __len__(self): return len(self._point_clouds)
34.248677
79
0.626294
1e736673206162a194cdb6860dca00ee90a2d88c
165
py
Python
tests/model_control/detailed/transf_Fisher/model_control_one_enabled_Fisher_PolyTrend_Seasonal_DayOfMonth_LSTM.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
tests/model_control/detailed/transf_Fisher/model_control_one_enabled_Fisher_PolyTrend_Seasonal_DayOfMonth_LSTM.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
1
2019-11-30T23:39:38.000Z
2019-12-01T04:34:35.000Z
tests/model_control/detailed/transf_Fisher/model_control_one_enabled_Fisher_PolyTrend_Seasonal_DayOfMonth_LSTM.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Fisher'] , ['PolyTrend'] , ['Seasonal_DayOfMonth'] , ['LSTM'] );
41.25
87
0.757576
79c9cd94871bef0c6d46c1a7e6af0177dd5e4945
5,387
py
Python
homeassistant/components/ssdp/__init__.py
alindeman/home-assistant
b274b10f3874c196f0db8f9cfa5f47eb756d1f8e
[ "Apache-2.0" ]
4
2019-07-03T22:36:57.000Z
2019-08-10T15:33:25.000Z
homeassistant/components/ssdp/__init__.py
alindeman/home-assistant
b274b10f3874c196f0db8f9cfa5f47eb756d1f8e
[ "Apache-2.0" ]
7
2019-08-23T05:26:02.000Z
2022-03-11T23:57:18.000Z
homeassistant/components/ssdp/__init__.py
alindeman/home-assistant
b274b10f3874c196f0db8f9cfa5f47eb756d1f8e
[ "Apache-2.0" ]
2
2018-08-15T03:59:35.000Z
2018-10-18T12:20:05.000Z
"""The SSDP integration.""" import asyncio from datetime import timedelta import logging from urllib.parse import urlparse from xml.etree import ElementTree import aiohttp from netdisco import ssdp, util from homeassistant.helpers.event import async_track_time_interval from homeassistant.generated.ssdp import SSDP DOMAIN = 'ssdp' SCAN_INTERVAL = timedelta(seconds=60) ATTR_HOST = 'host' ATTR_PORT = 'port' ATTR_SSDP_DESCRIPTION = 'ssdp_description' ATTR_ST = 'ssdp_st' ATTR_NAME = 'name' ATTR_MODEL_NAME = 'model_name' ATTR_MODEL_NUMBER = 'model_number' ATTR_SERIAL = 'serial_number' ATTR_MANUFACTURER = 'manufacturer' ATTR_MANUFACTURERURL = 'manufacturerURL' ATTR_UDN = 'udn' ATTR_UPNP_DEVICE_TYPE = 'upnp_device_type' _LOGGER = logging.getLogger(__name__) async def async_setup(hass, config): """Set up the SSDP integration.""" async def initialize(): scanner = Scanner(hass) await scanner.async_scan(None) async_track_time_interval(hass, scanner.async_scan, SCAN_INTERVAL) hass.loop.create_task(initialize()) return True class Scanner: """Class to manage SSDP scanning.""" def __init__(self, hass): """Initialize class.""" self.hass = hass self.seen = set() self._description_cache = {} async def async_scan(self, _): """Scan for new entries.""" _LOGGER.debug("Scanning") # Run 3 times as packets can get lost for _ in range(3): entries = await self.hass.async_add_executor_job(ssdp.scan) await self._process_entries(entries) # We clear the cache after each run. We track discovered entries # so will never need a description twice. self._description_cache.clear() async def _process_entries(self, entries): """Process SSDP entries.""" tasks = [] for entry in entries: key = (entry.st, entry.location) if key in self.seen: continue self.seen.add(key) tasks.append(self._process_entry(entry)) if not tasks: return to_load = [result for result in await asyncio.gather(*tasks) if result is not None] if not to_load: return tasks = [] for entry, info, domains in to_load: for domain in domains: _LOGGER.debug("Discovered %s at %s", domain, entry.location) tasks.append(self.hass.config_entries.flow.async_init( domain, context={'source': DOMAIN}, data=info )) await asyncio.wait(tasks) async def _process_entry(self, entry): """Process a single entry.""" domains = set(SSDP["st"].get(entry.st, [])) xml_location = entry.location if not xml_location: if domains: return (entry, info_from_entry(entry, None), domains) return None # Multiple entries usally share same location. Make sure # we fetch it only once. info_req = self._description_cache.get(xml_location) if info_req is None: info_req = self._description_cache[xml_location] = \ self.hass.async_create_task( self._fetch_description(xml_location)) info = await info_req domains.update(SSDP["manufacturer"].get(info.get('manufacturer'), [])) domains.update(SSDP["device_type"].get(info.get('deviceType'), [])) if domains: return (entry, info_from_entry(entry, info), domains) return None async def _fetch_description(self, xml_location): """Fetch an XML description.""" session = self.hass.helpers.aiohttp_client.async_get_clientsession() try: resp = await session.get(xml_location, timeout=5) xml = await resp.text() # Samsung Smart TV sometimes returns an empty document the # first time. Retry once. if not xml: resp = await session.get(xml_location, timeout=5) xml = await resp.text() except (aiohttp.ClientError, asyncio.TimeoutError) as err: _LOGGER.debug("Error fetching %s: %s", xml_location, err) return {} try: tree = ElementTree.fromstring(xml) except ElementTree.ParseError as err: _LOGGER.debug("Error parsing %s: %s", xml_location, err) return {} return util.etree_to_dict(tree).get('root', {}).get('device', {}) def info_from_entry(entry, device_info): """Get most important info from an entry.""" url = urlparse(entry.location) info = { ATTR_HOST: url.hostname, ATTR_PORT: url.port, ATTR_SSDP_DESCRIPTION: entry.location, ATTR_ST: entry.st, } if device_info: info[ATTR_NAME] = device_info.get('friendlyName') info[ATTR_MODEL_NAME] = device_info.get('modelName') info[ATTR_MODEL_NUMBER] = device_info.get('modelNumber') info[ATTR_SERIAL] = device_info.get('serialNumber') info[ATTR_MANUFACTURER] = device_info.get('manufacturer') info[ATTR_MANUFACTURERURL] = device_info.get('manufacturerURL') info[ATTR_UDN] = device_info.get('UDN') info[ATTR_UPNP_DEVICE_TYPE] = device_info.get('deviceType') return info
30.607955
78
0.629107
12b806a28ed2197f6f296e7aa25dbf73bcc7d67c
131
py
Python
association/apps.py
bpprc/database
6e8302729793ddf840630840bd08c96ddd35a52e
[ "BSD-3-Clause" ]
1
2021-04-14T16:54:57.000Z
2021-04-14T16:54:57.000Z
association/apps.py
bpprc/database
6e8302729793ddf840630840bd08c96ddd35a52e
[ "BSD-3-Clause" ]
null
null
null
association/apps.py
bpprc/database
6e8302729793ddf840630840bd08c96ddd35a52e
[ "BSD-3-Clause" ]
null
null
null
from django.apps import AppConfig class AssociationConfig(AppConfig): name = "association" verbose_name = "Metadatabase"
18.714286
35
0.755725
1f195ec6962c01598d686ac5a5b75b95ebb06598
4,382
py
Python
DirToCatalog.py
mcfoi/arcpy-toolbox
348ef55c7235b7c1eeece06aa4a0a244674f893e
[ "Apache-2.0" ]
3
2015-04-24T15:36:33.000Z
2020-08-06T16:53:56.000Z
DirToCatalog.py
mcfoi/arcpy-toolbox
348ef55c7235b7c1eeece06aa4a0a244674f893e
[ "Apache-2.0" ]
null
null
null
DirToCatalog.py
mcfoi/arcpy-toolbox
348ef55c7235b7c1eeece06aa4a0a244674f893e
[ "Apache-2.0" ]
1
2020-07-21T00:11:51.000Z
2020-07-21T00:11:51.000Z
##""******************************************************************************************************************** ##TOOL NAME: DirToCatalog ##SOURCE NAME: DirToCatalog.py ##VERSION: ArcGIS 9.0 ##AUTHOR: Environmental Systems Research Institute Inc. ##REQUIRED ARGUMENTS: Input workspace ## Output location ## Output name ##OPTIONAL ARGUMENTS: Keyword ## : Managed/unmanaged ##TOOL DESCRIPTION: Load all rasters in the input workspace to the output raster catalog, the raster and geometry ## columns have the same spatial reference as the first raster dataset in the list ## ##DATE: 5/31/2004 ##UPDATED: 1/25/2005 for ArcGIS 9.2 ##Usage: DirToMosaic <Input_Directory> <Output_Location> <Output_Name><Keyword>{managed/unmanaged} ## ##NOTE ADDED AT ARCGIS 9.2: In ArcGIS 9.2, a new Geoprocessing tool WorkspaceToRasterCatalog is the quivalent to ## what this sample script does and it performs better. ## ##*********************************************************************************************************************""" ## #Importing ScriptUtils which imports required librarys and creates the geoprocssing object import ConversionUtils, os msgNonExist="Output locations does not exist: " msgSuccess="Successfully loaded: " msgFail="Failed to load: " msgNotGDB="Output location is not GDB type: " msgCreate="Successfully created: " msgExist="Output raster catalog exists: " try: #The input workspace workspace = ConversionUtils.gp.GetParameterAsText(0) #The output workspace out_location = ConversionUtils.gp.GetParameterAsText(1) #The output name out_name = ConversionUtils.gp.GetParameterAsText(2) #Check existence if not ConversionUtils.gp.Exists(workspace): raise Exception, msgNonExist + " %s" % (workspace) # Check if output workspace is GDB outWorkspace = ConversionUtils.gp.Describe(out_location) if (outWorkspace.WorkspaceType == "FileSystem"): raise Exception, msgNotGDB + " %s" % (out_location) keyword = ConversionUtils.gp.GetParameterAsText(3) manage = ConversionUtils.gp.GetParameterAsText(4) ConversionUtils.gp.workspace = workspace out_raster = ConversionUtils.gp.QualifyTableName(out_name, out_location) out_raster = out_location + os.sep + out_raster #Check existence if ConversionUtils.gp.Exists(out_raster): raise Exception, msgExist + " %s" % (out_raster) ConversionUtils.gp.SetParameterAsText(5,out_raster) #The raster datasets in the input workspace in_raster_datasets = ConversionUtils.gp.ListRasters() #The first raster dataset in the list #in_raster_dataset = in_raster_datasets.next() #Loop through all raster datasets in the list and load to raster catalog. #while in_raster_dataset <> None: icnt = 1 for in_raster_dataset in in_raster_datasets: if (icnt == 1) : dataset = ConversionUtils.gp.Describe(in_raster_dataset) #Get spatial reference of first raster dataset, if no spatial reference, set it to unknown. try: sr = dataset.SpatialReference except Exception, ErrorDesc: sr = '#' #Create raster catalog ConversionUtils.gp.CreateRasterCatalog(out_location, out_name, sr, sr, keyword, "#","#","#",manage) ConversionUtils.gp.AddMessage(msgCreate + " %s " % (out_raster)) icnt = 2 try: ConversionUtils.gp.CopyRaster_management(in_raster_dataset, out_raster) ConversionUtils.gp.AddMessage(msgSuccess + " %s " % (in_raster_dataset)) except Exception, ErrorDesc: # Except block for the loop. If the tool fails to convert one of the Rasters, it will come into this block # and add warnings to the messages, then proceed to attempt to convert the next input Raster. WarningMessage = (msgFail + " %s" %(in_raster_dataset)) ConversionUtils.gp.AddWarning(WarningMessage) #in_raster_dataset = in_raster_datasets.next() except Exception, ErrorDesc: # Except block if the tool could not run at all. # For example, not all parameters are provided, or if the output path doesn't exist. ConversionUtils.gp.AddError(str(ErrorDesc))
40.953271
122
0.651073
cdc9f0315718713e493e7853983f0c208dd0be2b
8,752
py
Python
test_code/grid_cluster_analysis.py
eufmike/storm_image_processing
076335519be0be3b66d289a180421d36770ab820
[ "CC-BY-4.0" ]
null
null
null
test_code/grid_cluster_analysis.py
eufmike/storm_image_processing
076335519be0be3b66d289a180421d36770ab820
[ "CC-BY-4.0" ]
null
null
null
test_code/grid_cluster_analysis.py
eufmike/storm_image_processing
076335519be0be3b66d289a180421d36770ab820
[ "CC-BY-4.0" ]
null
null
null
# %% import os, sys import re import cv2 import pandas as pd import numpy as np import matplotlib.pyplot as plt # %matplotlib inline from numpy import linspace, meshgrid from scipy.interpolate import griddata import matplotlib.image as mpimg import matplotlib.style import matplotlib as mpl mpl.style.use('default') from PIL import Image # Functions Section Begins ----------------------------------------------------- # def dircheck(targetpaths): """ dircheck checks the target folder and create the folder if it does not exist. targetdirlist: list of folderpath """ # print(type(targetpaths)) if isinstance(targetpaths, str): print(os.path.exists(targetpaths)) if not os.path.exists(targetpaths): os.makedirs(targetpaths) elif isinstance(targetpaths, list): for path in targetpaths: if not os.path.exists(path): os.makedirs(path) def listfiles(path, extension = None): filelist = [] fileabslist = [] for directory, dir_names, file_names in os.walk(path): # print(file_names) for file_name in file_names: if (not file_name.startswith('.')) & (file_name.endswith(extension)): filepath_tmp = os.path.join(directory, file_name) filelist.append(file_name) fileabslist.append(filepath_tmp) return {'filelist': filelist, 'fileabslist': fileabslist} # Functions Section Ends ----------------------------------------------------- # # %% nchannels = 2 dir_check = [] # %% # input folder path = '/Volumes/LaCie_DataStorage/xiaochao_wei_STORM imaging/STORM_imaging' analysis_dir = 'analysis_20190308' spacialtestdir = 'spacial_test' intcsv_dir = 'spacialdata_local_pad_grid' intcsv_path = os.path.join(path, analysis_dir, spacialtestdir, intcsv_dir) print(intcsv_path) # output folder nnd_dir = 'nnd' intcsv_histo_dir = 'int_grid_histo' intcsv_histo_summary_dir = 'int_grid_histo_summary' intcsv_bw = 'int_grid_bw' intcsv_histo_path = os.path.join(path, analysis_dir, spacialtestdir, nnd_dir, intcsv_histo_dir) intcsv_histo_summary_path = os.path.join(path, analysis_dir, spacialtestdir, nnd_dir, intcsv_histo_summary_dir) for c in range(nchannels): dir_check.append(os.path.join(intcsv_histo_path, str(c+1))) dir_check.append(os.path.join(intcsv_bw, str(c+1))) dir_check.append(intcsv_histo_summary_path) dircheck(dir_check) # %% # Grouped by the channels and treatment ------------------------------------------ # filelist = {} filenamelist = listfiles(os.path.join(intcsv_path, '1'), '.tif')['filelist'] filedir = ['ip_filename', 'ip_path', 'op_hist', 'op_bw'] treatment = ['wildtype', 'knockout'] channel = list(range(2)) print(channel) # group the data by the treatment for c in channel: filelist[str(c+1)] = {} for group in treatment: filelist[str(c+1)][group] = {} # create list filelist_temp = [] for l in filenamelist: if group == 'wildtype': x = re.search('(.*)_w{1}[0-9]{1}_(.*)', l) else: x = re.search('(.*)_k{1}[0-9]{1}_(.*)', l) try: found = x.group(0) filelist_temp.append(found) except AttributeError: found = '' ip_filepath = [] op_hist_filepath = [] op_th_filepath = [] for f in filelist_temp: filepath_tmp = os.path.join(intcsv_path, str(c+1), f) ip_filepath.append(filepath_tmp) filename_tmp_png = f.replace('.tif', '.png') op_hist_filepath_temp = os.path.join(intcsv_histo_path, str(c+1), filename_tmp_png) op_hist_filepath.append(op_hist_filepath_temp) # f_csv_tmp = os.path.join(csv_threshold_path, str(c+1), f) # op_th_filepath.append(f_csv_tmp) filelist[str(c+1)][group][filedir[0]] = filelist_temp filelist[str(c+1)][group][filedir[1]] = ip_filepath filelist[str(c+1)][group][filedir[2]] = op_hist_filepath print(filelist) # ----------------------------------------------------- # # %% data_list = [] for c in channel: for group in treatment: for i in range(len(filelist[str(c+1)][group][filedir[0]])): filepath = filelist[str(c+1)][group][filedir[1]][i] im = np.array(Image.open(filepath)) fig = plt.figure() plt.yscale('log') plt.hist(im.ravel(), bins=256, range=(0, 1000)) opfilename = filelist[str(c+1)][group][filedir[2]][i] fig.savefig(opfilename) plt.close() data_tmp = pd.DataFrame({'density':im.ravel()}) data_tmp['filename'] = filelist[str(c+1)][group][filedir[0]][i] data_tmp['group'] = group data_tmp['channel'] = str(c+1) data_list.append(data_tmp) data_total = pd.concat(data_list, axis = 0) # %% for c in channel: print(c) data_temp = data_total[data_total['channel'] == str(c+1)] #print(data_temp) max_value = max(data_temp['density']) print(max_value) binsize = 25 bin_max_value = max_value//binsize print(bin_max_value) bin_list = list(range(0, (int(bin_max_value) + 2) * binsize, binsize)) print(bin_list) fig, axes = plt.subplots() colors = ['red', 'blue'] for m in range(len(treatment)): for i in range(len(filelist[str(c+1)][treatment[m]][filedir[0]])): # for i in range(10): filename_tmp = filelist[str(c+1)][treatment[m]][filedir[0]][i] # print(filename_tmp) data_plot = data_temp[data_temp['filename'] == filename_tmp] # print(data_plot) plt.hist(data_plot['density'], bins= bin_list, histtype = 'step', color = colors[m], alpha = 0.2) plt.yscale('log') #plt.xscale('log') fig.savefig(os.path.join(intcsv_histo_summary_path, 'density' + '_c' + str(c+1) + '.png')) axes.set_xlim(0, max_value) plt.close() # %% # mergeed plot, grouped by channel and treatment, average and errorbar for c in channel: print('channel: {}'.format(c)) # load data data_temp = data_total[data_total['channel'] == str(c+1)] #print(data_temp) # prepare binning (bin_list) max_value = max(data_temp['density']) print('max_value: {}'.format(max_value)) binsize = 25 bin_max_value = max_value//binsize print('bin_max_value: {}'.format(bin_max_value)) bin_list = list(range(0, (int(bin_max_value) + 2) * binsize, binsize)) print(bin_list) # prepare binned data data_total_tmp = data_total data_total_tmp['bins'] = pd.cut(data_total['density'], bins = bin_list) # 1st group by bins data_total_tmp = data_total_tmp.groupby(by = ['channel', 'group', 'filename', 'bins']).size() # reset index data_total_tmp = data_total_tmp.reset_index() data_total_tmp = data_total_tmp.rename(index = int, columns={0: 'counts'}) # 2nd group by data_total_tmp_mean = data_total_tmp.groupby(by = ['channel', 'group', 'bins']).mean()['counts'] data_total_tmp_sem = data_total_tmp.groupby(by = ['channel', 'group', 'bins']).sem()['counts'] print('binned data, mean') display(data_total_tmp_mean) print('binned data, sem') display(data_total_tmp_sem) # plot mean dataset fig, axes = plt.subplots() fig.set_figheight(15) fig.set_figwidth(15) colors = ['red', 'blue'] for m in range(len(treatment)): # print(m) data_mean_temp_mean = data_total_tmp_mean.loc[str(c+1), treatment[m]] x = list(range(0, data_mean_temp_mean.shape[0]*binsize, binsize)) # print(x) # x = data_mean_temp_mean.reset_index()['bins'] # print(x) y = data_mean_temp_mean.reset_index()['counts'] # print(y) data_mean_temp_sem = data_total_tmp_sem.loc[str(c+1), treatment[m]] yerr = data_mean_temp_sem.reset_index()['counts'] # print(yerr) plt.yscale('log') #plt.xscale('log') # make plots plt.errorbar(x, y, yerr = yerr, color = colors[m], alpha = 0.2) plt.yscale('log') axes.set_xlim(0, max_value) oppath_temp = os.path.join(intcsv_histo_summary_path, 'density_mean' + '_c' + str(c+1) + '.png') print(oppath_temp) fig.savefig(oppath_temp) plt.close() # %% # create binary by thresholding for c in channel: print('channel: {}'.format(c)) for group in treatment: for i in range(len(filelist[str(c+1)][group][filedir[0]])): filepath = filelist[str(c+1)][group][filedir[1]][i] print(filepath) im = np.array(Image.open(filepath)) print(type(im)) cv2.imshow('image', im) break break break
33.40458
111
0.616659
8f3b1a7ecf4a768e0d41fd4ef0f7519710eee52f
5,465
py
Python
stRT/preprocess/cluster/utils/integration.py
Yao-14/stAnalysis
d08483ce581f5b03cfcad8be500aaa64b0293f74
[ "BSD-3-Clause" ]
null
null
null
stRT/preprocess/cluster/utils/integration.py
Yao-14/stAnalysis
d08483ce581f5b03cfcad8be500aaa64b0293f74
[ "BSD-3-Clause" ]
null
null
null
stRT/preprocess/cluster/utils/integration.py
Yao-14/stAnalysis
d08483ce581f5b03cfcad8be500aaa64b0293f74
[ "BSD-3-Clause" ]
null
null
null
from typing import List, Optional import numpy as np import pandas as pd from anndata import AnnData from pandas import DataFrame from scipy.sparse import csr_matrix, isspmatrix # Convert sparse matrix to dense matrix. to_dense_matrix = lambda X: np.array(X.todense()) if isspmatrix(X) else np.asarray(X) def integrate( adatas: List[AnnData], batch_key: str = "slices", ) -> AnnData: """ Concatenating all anndata objects. Args: adatas: AnnData matrices to concatenate with. batch_key: Add the batch annotation to :attr:`obs` using this key. Returns: integrated_adata: The concatenated AnnData, where adata.obs[batch_key] stores a categorical variable labeling the batch. """ def _other_annotation_merge(anno_datas): anno_dict = {} anno_keys = anno_datas[0].keys() n_anno_keys = len(anno_keys) if n_anno_keys > 0: for anno_key in anno_keys: kadtype = anno_datas[0][anno_key] if isspmatrix(kadtype) or isinstance(kadtype, np.ndarray): concat_array = np.concatenate( [ to_dense_matrix(anno_data[anno_key]) for anno_data in anno_datas ], axis=0, ) concat_array_shape = concat_array.shape if len(concat_array_shape) == 1: concat_array = concat_array.reshape(concat_array_shape[0], 1) anno_dict[anno_key] = concat_array elif isinstance(kadtype, DataFrame): concat_data = pd.concat( [anno_data[anno_key] for anno_data in anno_datas], axis=0 ) concat_data.fillna(value=0, inplace=True) anno_dict[anno_key] = concat_data return anno_dict else: return None # Merge the obsm data, varm data and layers of all anndata objcets separately. obsm_datas = [adata.obsm for adata in adatas] obsm_dict = _other_annotation_merge(anno_datas=obsm_datas) varm_datas = [adata.varm for adata in adatas] varm_dict = _other_annotation_merge(anno_datas=varm_datas) layers_datas = [adata.layers for adata in adatas] layers_dict = _other_annotation_merge(anno_datas=layers_datas) # Delete obsm and varm data. for adata in adatas: del adata.obsm, adata.varm, adata.layers # Concatenating obs and var data. batch_ca = [adata.obs[batch_key][0] for adata in adatas] integrated_adata = adatas[0].concatenate( *adatas[1:], batch_key=batch_key, batch_categories=batch_ca, join="outer", fill_value=0, uns_merge="unique" ) # Add Concatenated obsm data, varm data and layers data to integrated anndata object. if not (obsm_dict is None): for key, value in obsm_dict.items(): integrated_adata.obsm[key] = value if not (varm_dict is None): for key, value in varm_dict.items(): integrated_adata.varm[key] = value if not (layers_dict is None): for key, value in layers_dict.items(): integrated_adata.layers[key] = value return integrated_adata def harmony_debatch( adata: AnnData, batch_key: str, basis: str = "X_pca", adjusted_basis: str = "X_pca_harmony", max_iter_harmony: int = 10, copy: bool = False, ) -> Optional[AnnData]: """\ Use harmonypy [Korunsky19]_ to remove batch effects. This function should be run after performing PCA but before computing the neighbor graph. Original Code Repository: https://github.com/slowkow/harmonypy Interesting example: https://slowkow.com/notes/harmony-animation/ Args: adata: An Anndata object. batch_key: The name of the column in ``adata.obs`` that differentiates among experiments/batches. basis: The name of the field in ``adata.obsm`` where the PCA table is stored. adjusted_basis: The name of the field in ``adata.obsm`` where the adjusted PCA table will be stored after running this function. max_iter_harmony: Maximum number of rounds to run Harmony. One round of Harmony involves one clustering and one correction step. copy: Whether to copy `adata` or modify it inplace. Returns: Updates adata with the field ``adata.obsm[adjusted_basis]``, containing principal components adjusted by Harmony. """ try: import harmonypy except ImportError: raise ImportError( "\nYou need to install the package `harmonypy`." "\n\t\tInstall harmonypy via `pip install harmonypy`" ) adata = adata.copy() if copy else adata # Convert sparse matrix to dense matrix. raw_matrix = adata.X if basis == "X" else adata.obsm[basis] matrix = to_dense_matrix(raw_matrix) # Use Harmony to adjust the PCs. harmony_out = harmonypy.run_harmony( matrix, adata.obs, batch_key, max_iter_harmony=max_iter_harmony ) adjusted_matrix = harmony_out.Z_corr.T # Convert dense matrix to sparse matrix. adjusted_matrix = ( csr_matrix(adjusted_matrix) if isspmatrix(raw_matrix) else adjusted_matrix ) adata.obsm[adjusted_basis] = adjusted_matrix return adata if copy else None
36.925676
128
0.63989
7a1ca12e811d67b018eb6636c122ee3ceceb93a9
9,889
py
Python
service/core.py
lojoja/service
27295a25c514119cf9975c76c9c3b784243977f1
[ "MIT" ]
null
null
null
service/core.py
lojoja/service
27295a25c514119cf9975c76c9c3b784243977f1
[ "MIT" ]
null
null
null
service/core.py
lojoja/service
27295a25c514119cf9975c76c9c3b784243977f1
[ "MIT" ]
null
null
null
import logging import os import pathlib import platform import re import click from service import __version__, launchctl # noqa from service.log import change_logger_level, setup_logger __all__ = ['cli'] PROGRAM_NAME = 'service' MIN_MACOS_VERSION = 12.0 CONFIG_FILE = '{}.conf'.format(PROGRAM_NAME) logger = logging.getLogger(PROGRAM_NAME) setup_logger(logger) class Configuration(object): """ Program configuration and environment settings. """ def __init__(self, verbose): logger.debug('Gathering system and environment details') self.macos_version = self._get_macos_version() self.user = os.geteuid() self.sudo = self.user == 0 self.reverse_domains = None self.service = None self.verbose = verbose def _find_reverse_domains_config(self): """ Locate the reverse domain configuration file to use. """ logger.debug('Finding reverse domain config file') paths = ['/usr/local/etc', '/etc'] for p in paths: conf = pathlib.Path(p, CONFIG_FILE) logger.debug('Trying reverse domain config file "{}"'.format(conf)) if conf.is_file(): logger.debug('Reverse domain config file found; using "{}"'.format(conf)) return conf logger.debug('Reverse domain config file not found') return None def _get_macos_version(self): version = platform.mac_ver()[0] version = float('.'.join(version.split('.')[:2])) # format as e.g., '10.10' return version def load_reverse_domains(self): logger.debug('Loading reverse domains') conf = self._find_reverse_domains_config() data = [] if conf: lines = [] try: with conf.open(mode='r', encoding='utf-8') as f: lines = f.read().splitlines() except IOError: raise click.ClickException('Failed to read reverse domains file') for line in lines: line = re.split(r'#|\s', line.strip(), 1)[0] if line: logger.debug('Adding reverse domain "{}"'.format(line)) data.append(line) self.reverse_domains = data class Service(object): """ A service on the system. """ def __init__(self, name, config): logger.debug('Initializing service') self._domain = launchctl.DOMAIN_SYSTEM if config.sudo else '{}/{}'.format(launchctl.DOMAIN_GUI, config.user) self._search_paths = self._get_search_paths() self._file = self._find(name, config.reverse_domains) @property def domain(self): """ Service target domain (e.g., system). """ return self._domain @property def file(self): """ Full path to the service file, as a string. """ return str(self._file) @property def name(self): """ Service filename without extension, as a string. """ return self._file.stem @property def search_paths(self): return self._search_paths def _find(self, name, rev_domains): """ Find the service based on the information given. Uses the `name` argument as input on the CLI if it includes an absolute or relative path, adding the file extension if missing, otherwise constructs and tests all possible file paths in the current launchctl domain for a match. """ logger.debug('Finding service "{}"'.format(name)) _name = name # save the original name service_path = None if not name.endswith('.plist'): name += '.plist' path = pathlib.Path(name) if len(path.parts) > 1: logger.debug('Resolving path from CLI input') path = path.expanduser().absolute() logger.debug('Trying "{}"'.format(path)) if path.is_file(): service_path = path else: filenames = [path.name] if len(path.suffixes) > 1 else ['{}.{}'.format(rd, path.name) for rd in rev_domains] for search_path in self.search_paths: for filename in filenames: possible_file = search_path.joinpath(filename) logger.debug('Trying "{}"'.format(possible_file)) if possible_file.is_file(): service_path = possible_file break else: continue break if not service_path: raise click.ClickException('Service "{}" not found'.format(_name)) logger.debug('Service found, using "{}"'.format(service_path)) self._validate_domain(service_path) return service_path def _get_search_paths(self): """ Get the service search paths for system or user domains. """ logger.debug('Identifying search paths') common_paths = ['Library/LaunchAgents', 'Library/LaunchDaemons'] prefixes = ['/', '/System'] if self.domain == launchctl.DOMAIN_SYSTEM else [pathlib.Path.home()] search_paths = [] for prefix in prefixes: for common_path in common_paths: path = pathlib.Path(prefix, common_path) if path.is_dir(): search_paths.append(path) return search_paths def _validate_domain(self, service_path): """ Verify the service exists in the current domain and is not a macOS system service. """ logger.debug('Validating service domain') if self.domain == launchctl.DOMAIN_SYSTEM: if service_path.parts[1] == ('System'): raise click.ClickException('Service "{}" is a macOS system service'.format(service_path)) if service_path.parts[1] == ('Users'): raise click.ClickException('Service "{}" is not in the "{}" domain'.format(service_path, self.domain)) else: if not service_path.parts[1] == ('Users'): raise click.ClickException('Service "{}" is not in the "{}" domain'.format(service_path, self.domain)) class CLIGroup(click.Group): """ CLI Command group Collect common group subcommand arguments so they can be handled once at the group level. This provides a better cli interface without duplicating the code in each subcommand. Argument names must still be included in each command's function signature. """ def invoke(self, ctx): ctx.obj = tuple(ctx.args) super(CLIGroup, self).invoke(ctx) @click.group(cls=CLIGroup) @click.option('--verbose/--quiet', '-v/-q', is_flag=True, default=None, help='Specify verbosity level.') @click.version_option() @click.pass_context def cli(ctx, verbose): change_logger_level(logger, verbose) logger.debug('{} started'.format(PROGRAM_NAME)) config = Configuration(verbose) logger.debug('Checking macOS version') if config.macos_version < MIN_MACOS_VERSION: raise click.ClickException('{0} requires macOS {1} or higher'.format(PROGRAM_NAME, MIN_MACOS_VERSION)) else: logger.debug('macOS version is {}'.format(config.macos_version)) # Load reverse domains and initiate service only when a subcommand is given without the `--help` option if ctx.invoked_subcommand and '--help' not in ctx.obj: config.load_reverse_domains() logger.debug('Processing group command arguments') name = next((arg for arg in ctx.obj if not arg.startswith('-')), '') service = Service(name, config) config.service = service # Store config on context.obj for subcommands to access ctx.obj = config def service_name_argument(func): func = click.argument('name', default='')(func) return func @cli.command() @service_name_argument @click.pass_obj def disable(config, name): """ Disable a service. """ launchctl.disable(config.service, sudo=config.sudo) logger.info('"{}" disabled'.format(config.service.name)) @cli.command() @service_name_argument @click.pass_obj def enable(config, name): """ Enable a service. Only available for system domain services.""" launchctl.enable(config.service, sudo=config.sudo) logger.info('"{}" enabled'.format(config.service.name)) @cli.command() @service_name_argument @click.pass_obj def restart(config, name): """ Restart a service. Only available for system domain services. """ launchctl.restart(config.service, sudo=config.sudo) logger.info('"{}" restarted'.format(config.service.name)) @cli.command() @click.option( '--enable', '-e', is_flag=True, default=False, help='Enable sevice before starting. Only available for services in the system domain.', ) @service_name_argument @click.pass_obj def start(config, name, enable): """ Start a service, optionally enabling it first. """ if enable: launchctl.enable(config.service, sudo=config.sudo) logger.debug('"{}" enabled'.format(config.service.name)) launchctl.start(config.service, sudo=config.sudo) logger.info('"{}" started'.format(config.service.name)) @cli.command() @click.option( '--disable', '-d', is_flag=True, default=False, help='Disable service after stopping. Only available for services in the system domain.', ) @service_name_argument @click.pass_obj def stop(config, name, disable): """ Stop a service, optionally disabling it afterward. """ launchctl.stop(config.service, sudo=config.sudo) logger.info('"{}" stopped'.format(config.service.name)) if disable: launchctl.disable(config.service, sudo=config.sudo) logger.debug('"{}" disabled'.format(config.service.name)) def show_exception(self, file=None): logger.error(self.message) click.ClickException.show = show_exception click.UsageError.show = show_exception
32.963333
120
0.637274
2816cfdb94591f897dba7c94e443b5767495c94c
1,919
py
Python
claims_to_quality/analyzer/models/measures/measure_definition.py
CMSgov/qpp-claims-to-quality-public
1e2da9494faf9e316a17cbe899284db9e61d0902
[ "CC0-1.0" ]
13
2018-09-28T14:02:59.000Z
2021-12-07T21:31:54.000Z
claims_to_quality/analyzer/models/measures/measure_definition.py
CMSgov/qpp-claims-to-quality-public
1e2da9494faf9e316a17cbe899284db9e61d0902
[ "CC0-1.0" ]
1
2018-10-01T17:49:05.000Z
2018-10-09T01:10:56.000Z
claims_to_quality/analyzer/models/measures/measure_definition.py
CMSgov/qpp-claims-to-quality-public
1e2da9494faf9e316a17cbe899284db9e61d0902
[ "CC0-1.0" ]
1
2021-02-08T18:32:16.000Z
2021-02-08T18:32:16.000Z
"""Models for measure definition.""" from claims_to_quality.analyzer.models.measures.eligibility_option import EligibilityOption from claims_to_quality.analyzer.models.measures.performance_option import PerformanceOption from claims_to_quality.analyzer.models.measures.stratum import Stratum from claims_to_quality.lib.helpers import dict_utils from schematics.models import Model from schematics.types import BooleanType, StringType from schematics.types.compound import ListType, ModelType class MeasureDefinition(Model): """Top-level measure definition model.""" measure_number = StringType(serialized_name='measureId') # Formatted as e.g. '024' eligibility_options = ListType( ModelType(EligibilityOption), serialized_name='eligibilityOptions') performance_options = ListType( ModelType(PerformanceOption), serialized_name='performanceOptions') is_inverse = BooleanType(serialized_name='isInverse') strata = ListType(ModelType(Stratum), serialized_name='strata') def __init__(self, *args, **kwargs): """Initialize a MeasureDefinition object.""" super(MeasureDefinition, self).__init__(*args, **kwargs) self.procedure_code_map = dict_utils.merge_dictionaries_with_list_values( [option.procedure_code_map for option in self.eligibility_options] ) self.quality_code_map = dict_utils.merge_dictionaries_with_list_values( [option.quality_code_map for option in self.performance_options] ) def get_measure_quality_codes(self): """Get quality codes from the measure definition.""" return set([ quality_code.code for option in self.performance_options for quality_code in option.quality_codes ]) def __repr__(self): """Return a string representation of the measure.""" return 'MeasureDefinition({})'.format(self.to_native())
42.644444
91
0.745701
27978f83500214065097e0524dd4eaf65ad3f305
2,441
py
Python
lookup.py
raywong702/lookup
0950b8a8279606499d3a5a7280c29996f7da1a53
[ "BSD-3-Clause" ]
null
null
null
lookup.py
raywong702/lookup
0950b8a8279606499d3a5a7280c29996f7da1a53
[ "BSD-3-Clause" ]
null
null
null
lookup.py
raywong702/lookup
0950b8a8279606499d3a5a7280c29996f7da1a53
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import ipaddress import socket import asyncio import sys import os.path async def lookup(loop, addresses, max_length=None): ''' loop: asyncio event loop addresses: list of ip address or hostnames max_length: spacer width of first print column prints address and its corresponding ip or hostname ''' for address in addresses: address = address.strip() try: ipaddress.ip_address(address) lookup = await loop.getnameinfo((address, 80)) lookup = lookup[0] except ValueError: try: lookup = await loop.getaddrinfo( host=address, port=80, proto=socket.IPPROTO_TCP ) lookup = lookup[0][4][0] except (socket.gaierror, UnicodeError) as e: if hasattr(e, 'message'): lookup = f'EXCEPTION: {e.message}' else: lookup = f'EXCEPTION: {e}' print(f'{address:{max_length}} {lookup}') def lookup_loop(addresses, max_length=None): ''' addresses: list of ip addresses or hostnames max_length: spacer width of first print column async lookup wrapper ''' loop = asyncio.get_event_loop() try: loop.run_until_complete(lookup(loop, addresses, max_length)) finally: loop.close() def main(): ''' reads input passed in prints how to use if no args passed in if first input is a file, then run lookup on each line of file otherwise, run lookup on arguments prints a list of addresses and their corresponding ip address or hostname ''' if len(sys.argv) == 1: self = sys.argv[0] divider = '-' * 60 ARG_EXCEPTION = f''' {divider} Prints corresponding ip or hostname of input USAGE: {self} <file of ips or hostnames on each line> -- or -- {self} <list of ips or hostnames. space delimited> {divider} ''' print(ARG_EXCEPTION) elif os.path.isfile(sys.argv[1]): addresses = open(sys.argv[1]).readlines() max_length = len(max(open(sys.argv[1], 'r'), key=len)) lookup_loop(addresses, max_length=max_length) else: addresses = sys.argv[1:] max_length = len(max(addresses, key=len)) lookup_loop(addresses, max_length=max_length) if __name__ == '__main__': main()
28.057471
77
0.597296
db4a1579416d6847733669769a9d3482623bcd72
2,664
py
Python
jina/types/score/map.py
arijitdas123student/jina
54d916e362bde0391b0af0f12241d531b8453247
[ "Apache-2.0" ]
15,179
2020-04-28T10:23:56.000Z
2022-03-31T14:35:25.000Z
jina/types/score/map.py
manavshah123/jina
f18b04eb82d18a3c554e2892bbae4b95fc0cb13e
[ "Apache-2.0" ]
3,912
2020-04-28T13:01:29.000Z
2022-03-31T14:36:46.000Z
jina/types/score/map.py
manavshah123/jina
f18b04eb82d18a3c554e2892bbae4b95fc0cb13e
[ "Apache-2.0" ]
1,955
2020-04-28T10:50:49.000Z
2022-03-31T12:28:34.000Z
from collections.abc import MutableMapping from typing import Optional, Union import numpy as np from ..score import NamedScore from ...helper import typename from ...proto import jina_pb2 __all__ = ['NamedScoreMapping'] if False: from google.protobuf.pyext._message import MessageMapContainer class NamedScoreMapping(MutableMapping): """ :class:`NamedScoreMapping` is one of the **primitive data type** in Jina. It offers a Pythonic interface to allow users access and manipulate :class:`jina.jina_pb2.NamedScoreMappingProto` object without working with Protobuf itself. It offers an interface to access and update scores as `NamedScore` as values of a `dict` with a string key. To create a :class:`NamedScoreMappingProto` object, simply: .. highlight:: python .. code-block:: python from jina.types.score.map import NamedScoreMapping scores = NamedScoreMapping() scores['score'] = 50 :class:`NamedScoreMapping` can be built from ``jina_pb2.NamedScoreMappingProto`` (as a weak reference or a deep copy) :param scores: The scores to construct from, depending on the ``copy``, it builds a view or a copy from it. :type score: Optional[jina_pb2.NamedScoreMappingProto] :param copy: When ``scores`` is given as a :class:`NamedScoreMappingProto` object, build a view (i.e. weak reference) from it or a deep copy from it. :type copy: bool :param kwargs: Other parameters to be set """ def __init__( self, scores: 'MessageMapContainer', ): self._pb_body = scores def __setitem__( self, key: str, value: Union[jina_pb2.NamedScoreProto, NamedScore, float, np.generic], ): if isinstance(value, jina_pb2.NamedScoreProto): self._pb_body[key].CopyFrom(value) elif isinstance(value, NamedScore): self._pb_body[key].CopyFrom(value._pb_body) elif isinstance(value, (float, int)): self._pb_body[key].value = value elif isinstance(value, np.generic): self._pb_body[key].value = value.item() else: raise TypeError(f'score is in unsupported type {typename(value)}') def __getitem__( self, key: str, ): return NamedScore(self._pb_body[key]) def __delitem__( self, key: str, ): del self._pb_body[key] def __contains__(self, key: str): return key in self._pb_body def __iter__(self): for key in self._pb_body: yield key def __len__(self): return len(self._pb_body)
29.932584
121
0.653529
4468a838ea5916f8931adec6bd118bc4304fb038
13,334
py
Python
certbot-apache/tests/augeasnode_test.py
ravikumarmotukuri/certbot
f8c43aa9fe8c1917ad4bc2620134837db3cd7d70
[ "Apache-2.0" ]
null
null
null
certbot-apache/tests/augeasnode_test.py
ravikumarmotukuri/certbot
f8c43aa9fe8c1917ad4bc2620134837db3cd7d70
[ "Apache-2.0" ]
1
2020-04-03T12:57:27.000Z
2020-04-03T12:57:27.000Z
certbot-apache/tests/augeasnode_test.py
Tomoyuki-GH/certbot
41ee5be4b5e01f4a0616fe5e014a38f59a931f60
[ "Apache-2.0" ]
null
null
null
"""Tests for AugeasParserNode classes""" import mock import os import unittest import util from certbot import errors from certbot_apache._internal import assertions from certbot_apache._internal import augeasparser def _get_augeasnode_mock(filepath): """ Helper function for mocking out DualNode instance with an AugeasNode """ def augeasnode_mock(metadata): return augeasparser.AugeasBlockNode( name=assertions.PASS, ancestor=None, filepath=filepath, metadata=metadata) return augeasnode_mock class AugeasParserNodeTest(util.ApacheTest): # pylint: disable=too-many-public-methods """Test AugeasParserNode using available test configurations""" def setUp(self): # pylint: disable=arguments-differ super(AugeasParserNodeTest, self).setUp() with mock.patch("certbot_apache._internal.configurator.ApacheConfigurator.get_parsernode_root") as mock_parsernode: mock_parsernode.side_effect = _get_augeasnode_mock( os.path.join(self.config_path, "apache2.conf")) self.config = util.get_apache_configurator( self.config_path, self.vhost_path, self.config_dir, self.work_dir, use_parsernode=True) self.vh_truth = util.get_vh_truth( self.temp_dir, "debian_apache_2_4/multiple_vhosts") def test_save(self): with mock.patch('certbot_apache._internal.parser.ApacheParser.save') as mock_save: self.config.parser_root.save("A save message") self.assertTrue(mock_save.called) self.assertEqual(mock_save.call_args[0][0], "A save message") def test_unsaved_files(self): with mock.patch('certbot_apache._internal.parser.ApacheParser.unsaved_files') as mock_uf: mock_uf.return_value = ["first", "second"] files = self.config.parser_root.unsaved_files() self.assertEqual(files, ["first", "second"]) def test_get_block_node_name(self): from certbot_apache._internal.augeasparser import AugeasBlockNode block = AugeasBlockNode( name=assertions.PASS, ancestor=None, filepath=assertions.PASS, metadata={"augeasparser": mock.Mock(), "augeaspath": "/files/anything"} ) testcases = { "/some/path/FirstNode/SecondNode": "SecondNode", "/some/path/FirstNode/SecondNode/": "SecondNode", "OnlyPathItem": "OnlyPathItem", "/files/etc/apache2/apache2.conf/VirtualHost": "VirtualHost", "/Anything": "Anything", } for test in testcases: self.assertEqual(block._aug_get_name(test), testcases[test]) # pylint: disable=protected-access def test_find_blocks(self): blocks = self.config.parser_root.find_blocks("VirtualHost", exclude=False) self.assertEqual(len(blocks), 12) def test_find_blocks_case_insensitive(self): vhs = self.config.parser_root.find_blocks("VirtualHost") vhs2 = self.config.parser_root.find_blocks("viRtuAlHoST") self.assertEqual(len(vhs), len(vhs2)) def test_find_directive_found(self): directives = self.config.parser_root.find_directives("Listen") self.assertEqual(len(directives), 1) self.assertTrue(directives[0].filepath.endswith("/apache2/ports.conf")) self.assertEqual(directives[0].parameters, (u'80',)) def test_find_directive_notfound(self): directives = self.config.parser_root.find_directives("Nonexistent") self.assertEqual(len(directives), 0) def test_find_directive_from_block(self): blocks = self.config.parser_root.find_blocks("virtualhost") found = False for vh in blocks: if vh.filepath.endswith("sites-enabled/certbot.conf"): servername = vh.find_directives("servername") self.assertEqual(servername[0].parameters[0], "certbot.demo") found = True self.assertTrue(found) def test_find_comments(self): rootcomment = self.config.parser_root.find_comments( "This is the main Apache server configuration file. " ) self.assertEqual(len(rootcomment), 1) self.assertTrue(rootcomment[0].filepath.endswith( "debian_apache_2_4/multiple_vhosts/apache2/apache2.conf" )) def test_set_parameters(self): servernames = self.config.parser_root.find_directives("servername") names = [] # type: List[str] for servername in servernames: names += servername.parameters self.assertFalse("going_to_set_this" in names) servernames[0].set_parameters(["something", "going_to_set_this"]) servernames = self.config.parser_root.find_directives("servername") names = [] for servername in servernames: names += servername.parameters self.assertTrue("going_to_set_this" in names) def test_set_parameters_atinit(self): from certbot_apache._internal.augeasparser import AugeasDirectiveNode servernames = self.config.parser_root.find_directives("servername") setparam = "certbot_apache._internal.augeasparser.AugeasDirectiveNode.set_parameters" with mock.patch(setparam) as mock_set: AugeasDirectiveNode( name=servernames[0].name, parameters=["test", "setting", "these"], ancestor=assertions.PASS, metadata=servernames[0].metadata ) self.assertTrue(mock_set.called) self.assertEqual( mock_set.call_args_list[0][0][0], ["test", "setting", "these"] ) def test_set_parameters_delete(self): # Set params servername = self.config.parser_root.find_directives("servername")[0] servername.set_parameters(["thisshouldnotexistpreviously", "another", "third"]) # Delete params servernames = self.config.parser_root.find_directives("servername") found = False for servername in servernames: if "thisshouldnotexistpreviously" in servername.parameters: self.assertEqual(len(servername.parameters), 3) servername.set_parameters(["thisshouldnotexistpreviously"]) found = True self.assertTrue(found) # Verify params servernames = self.config.parser_root.find_directives("servername") found = False for servername in servernames: if "thisshouldnotexistpreviously" in servername.parameters: self.assertEqual(len(servername.parameters), 1) servername.set_parameters(["thisshouldnotexistpreviously"]) found = True self.assertTrue(found) def test_add_child_comment(self): newc = self.config.parser_root.add_child_comment("The content") comments = self.config.parser_root.find_comments("The content") self.assertEqual(len(comments), 1) self.assertEqual( newc.metadata["augeaspath"], comments[0].metadata["augeaspath"] ) self.assertEqual(newc.comment, comments[0].comment) def test_delete_child(self): listens = self.config.parser_root.find_directives("Listen") self.assertEqual(len(listens), 1) self.config.parser_root.delete_child(listens[0]) listens = self.config.parser_root.find_directives("Listen") self.assertEqual(len(listens), 0) def test_delete_child_not_found(self): listen = self.config.parser_root.find_directives("Listen")[0] listen.metadata["augeaspath"] = "/files/something/nonexistent" self.assertRaises( errors.PluginError, self.config.parser_root.delete_child, listen ) def test_add_child_block(self): nb = self.config.parser_root.add_child_block( "NewBlock", ["first", "second"] ) rpath, _, directive = nb.metadata["augeaspath"].rpartition("/") self.assertEqual( rpath, self.config.parser_root.metadata["augeaspath"] ) self.assertTrue(directive.startswith("NewBlock")) def test_add_child_block_beginning(self): self.config.parser_root.add_child_block( "Beginning", position=0 ) parser = self.config.parser_root.parser root_path = self.config.parser_root.metadata["augeaspath"] # Get first child first = parser.aug.match("{}/*[1]".format(root_path)) self.assertTrue(first[0].endswith("Beginning")) def test_add_child_block_append(self): self.config.parser_root.add_child_block( "VeryLast", ) parser = self.config.parser_root.parser root_path = self.config.parser_root.metadata["augeaspath"] # Get last child last = parser.aug.match("{}/*[last()]".format(root_path)) self.assertTrue(last[0].endswith("VeryLast")) def test_add_child_block_append_alt(self): self.config.parser_root.add_child_block( "VeryLastAlt", position=99999 ) parser = self.config.parser_root.parser root_path = self.config.parser_root.metadata["augeaspath"] # Get last child last = parser.aug.match("{}/*[last()]".format(root_path)) self.assertTrue(last[0].endswith("VeryLastAlt")) def test_add_child_block_middle(self): self.config.parser_root.add_child_block( "Middle", position=5 ) parser = self.config.parser_root.parser root_path = self.config.parser_root.metadata["augeaspath"] # Augeas indices start at 1 :( middle = parser.aug.match("{}/*[6]".format(root_path)) self.assertTrue(middle[0].endswith("Middle")) def test_add_child_block_existing_name(self): parser = self.config.parser_root.parser root_path = self.config.parser_root.metadata["augeaspath"] # There already exists a single VirtualHost in the base config new_block = parser.aug.match("{}/VirtualHost[2]".format(root_path)) self.assertEqual(len(new_block), 0) vh = self.config.parser_root.add_child_block( "VirtualHost", ) new_block = parser.aug.match("{}/VirtualHost[2]".format(root_path)) self.assertEqual(len(new_block), 1) self.assertTrue(vh.metadata["augeaspath"].endswith("VirtualHost[2]")) def test_node_init_error_bad_augeaspath(self): from certbot_apache._internal.augeasparser import AugeasBlockNode parameters = { "name": assertions.PASS, "ancestor": None, "filepath": assertions.PASS, "metadata": { "augeasparser": mock.Mock(), "augeaspath": "/files/path/endswith/slash/" } } self.assertRaises( errors.PluginError, AugeasBlockNode, **parameters ) def test_node_init_error_missing_augeaspath(self): from certbot_apache._internal.augeasparser import AugeasBlockNode parameters = { "name": assertions.PASS, "ancestor": None, "filepath": assertions.PASS, "metadata": { "augeasparser": mock.Mock(), } } self.assertRaises( errors.PluginError, AugeasBlockNode, **parameters ) def test_add_child_directive(self): self.config.parser_root.add_child_directive( "ThisWasAdded", ["with", "parameters"], position=0 ) dirs = self.config.parser_root.find_directives("ThisWasAdded") self.assertEqual(len(dirs), 1) self.assertEqual(dirs[0].parameters, ("with", "parameters")) # The new directive was added to the very first line of the config self.assertTrue(dirs[0].metadata["augeaspath"].endswith("[1]")) def test_add_child_directive_exception(self): self.assertRaises( errors.PluginError, self.config.parser_root.add_child_directive, "ThisRaisesErrorBecauseMissingParameters" ) def test_parsed_paths(self): paths = self.config.parser_root.parsed_paths() self.assertEqual(len(paths), 6) def test_find_ancestors(self): vhsblocks = self.config.parser_root.find_blocks("VirtualHost") macro_test = False nonmacro_test = False for vh in vhsblocks: if "/macro/" in vh.metadata["augeaspath"].lower(): ancs = vh.find_ancestors("Macro") self.assertEqual(len(ancs), 1) macro_test = True else: ancs = vh.find_ancestors("Macro") self.assertEqual(len(ancs), 0) nonmacro_test = True self.assertTrue(macro_test) self.assertTrue(nonmacro_test) def test_find_ancestors_bad_path(self): self.config.parser_root.metadata["augeaspath"] = "" ancs = self.config.parser_root.find_ancestors("Anything") self.assertEqual(len(ancs), 0)
39.922156
123
0.636118
9407b0965d5f640b88dae5eb1c60ad57ba44eb75
954
py
Python
python/httpclient/http1.py
erisky/my_practices
10af209a163fb3e527b9c22c946365f1f317c07b
[ "MIT" ]
null
null
null
python/httpclient/http1.py
erisky/my_practices
10af209a163fb3e527b9c22c946365f1f317c07b
[ "MIT" ]
null
null
null
python/httpclient/http1.py
erisky/my_practices
10af209a163fb3e527b9c22c946365f1f317c07b
[ "MIT" ]
null
null
null
#!/usr/bin/env python import httplib import sys import os def GetStockPriceFromYahoo(stockid): yahoo = httplib.HTTPConnection('tw.stock.yahoo.com') req = "/q/q?s=" + str(stockid) # print req yahoo.request("GET", req) resp1 = yahoo.getresponse() #print resp1.status, resp1.reason data1 = resp1.read() if str(resp1.status) == '200': idx = data1.find('13:') if idx < 0: idx = data1.find('14:') if idx < 0: return 0 tempstr1 = data1[idx:] idx = tempstr1.find('<b>') idx2 = tempstr1.find('</b>') tempstr2 = tempstr1[(idx+3):idx2] return float(tempstr2) print GetStockPriceFromYahoo(6189) print GetStockPriceFromYahoo(3211) print GetStockPriceFromYahoo(1717) print GetStockPriceFromYahoo(9904) print GetStockPriceFromYahoo(1718) print GetStockPriceFromYahoo(2605) print GetStockPriceFromYahoo(2345) print GetStockPriceFromYahoo(3027)
22.186047
56
0.658281
5d68ac42ee3f5fd17fc05cef3632173b9396681c
1,240
py
Python
tests/test_dataset/test_test_time_aug.py
yuexy/mmocr
82488024db159266e66ea6b0d6f84a5a18e87362
[ "Apache-2.0" ]
2,261
2021-04-08T03:45:41.000Z
2022-03-31T23:37:46.000Z
tests/test_dataset/test_test_time_aug.py
yuexy/mmocr
82488024db159266e66ea6b0d6f84a5a18e87362
[ "Apache-2.0" ]
789
2021-04-08T05:40:13.000Z
2022-03-31T09:42:39.000Z
tests/test_dataset/test_test_time_aug.py
yuexy/mmocr
82488024db159266e66ea6b0d6f84a5a18e87362
[ "Apache-2.0" ]
432
2021-04-08T03:56:16.000Z
2022-03-30T18:44:43.000Z
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest from mmocr.datasets.pipelines.test_time_aug import MultiRotateAugOCR def test_resize_ocr(): input_img1 = np.ones((64, 256, 3), dtype=np.uint8) input_img2 = np.ones((64, 32, 3), dtype=np.uint8) rci = MultiRotateAugOCR(transforms=[], rotate_degrees=[0, 90, 270]) # test invalid arguments with pytest.raises(AssertionError): MultiRotateAugOCR(transforms=[], rotate_degrees=[45]) with pytest.raises(AssertionError): MultiRotateAugOCR(transforms=[], rotate_degrees=[20.5]) # test call with input_img1 results = {'img_shape': input_img1.shape, 'img': input_img1} results = rci(results) assert np.allclose([64, 256, 3], results['img_shape']) assert len(results['img']) == 1 assert len(results['img_shape']) == 1 assert np.allclose([64, 256, 3], results['img_shape'][0]) # test call with input_img2 results = {'img_shape': input_img2.shape, 'img': input_img2} results = rci(results) assert np.allclose([64, 32, 3], results['img_shape']) assert len(results['img']) == 3 assert len(results['img_shape']) == 3 assert np.allclose([64, 32, 3], results['img_shape'][0])
35.428571
71
0.675
a317cb22f9e39dcd573ec56403f476a50335775d
1,652
py
Python
app/stopwatch/forms.py
zigellsn/JWConfStage
684060562a971b2dc33fe44b7f223babd4094786
[ "Apache-2.0" ]
null
null
null
app/stopwatch/forms.py
zigellsn/JWConfStage
684060562a971b2dc33fe44b7f223babd4094786
[ "Apache-2.0" ]
1
2019-02-20T21:15:08.000Z
2019-02-20T21:15:08.000Z
app/stopwatch/forms.py
zigellsn/JWConfStage
684060562a971b2dc33fe44b7f223babd4094786
[ "Apache-2.0" ]
null
null
null
# Copyright 2019-2022 Simon Zigelli # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django import forms from django.utils.translation import gettext_lazy as _ class StopwatchForm(forms.Form): template_name = "stopwatch/form.html" default_class = "dark:bg-gray-800 bg-white appearance-none outline-none ltr:mr-2 rtl:ml-2" talk_name = forms.CharField(label=_("Aufgabe"), required=False, initial="", widget=forms.TextInput(attrs={"class": default_class})) talk_index = forms.IntegerField(required=False, initial=0, widget=forms.HiddenInput()) talk_user = forms.BooleanField(required=False, widget=forms.HiddenInput()) hours = [] for i in range(5): hours.append((i, i)) minutes = [] for i in range(60): minutes.append((i, i)) h = forms.ChoiceField(label=_("H"), choices=hours, widget=forms.Select(attrs={"class": default_class})) m = forms.ChoiceField(label=_("M"), choices=minutes, widget=forms.Select(attrs={"class": default_class})) s = forms.ChoiceField(label=_("S"), choices=minutes, widget=forms.Select(attrs={"class": default_class}))
44.648649
109
0.706416
a992d8cf9bd02c6031be3cc54ffc939d1247e2f2
2,835
py
Python
sdk/appplatform/azure-mgmt-appplatform/setup.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
1
2021-06-02T08:01:35.000Z
2021-06-02T08:01:35.000Z
sdk/appplatform/azure-mgmt-appplatform/setup.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
null
null
null
sdk/appplatform/azure-mgmt-appplatform/setup.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
null
null
null
#!/usr/bin/env python #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import re import os.path from io import open from setuptools import find_packages, setup # Change the PACKAGE_NAME only to change folder and different name PACKAGE_NAME = "azure-mgmt-appplatform" PACKAGE_PPRINT_NAME = "MyService Management" # a-b-c => a/b/c package_folder_path = PACKAGE_NAME.replace('-', '/') # a-b-c => a.b.c namespace_name = PACKAGE_NAME.replace('-', '.') # azure v0.x is not compatible with this package # azure v0.x used to have a __version__ attribute (newer versions don't) try: import azure try: ver = azure.__version__ raise Exception( 'This package is incompatible with azure=={}. '.format(ver) + 'Uninstall it with "pip uninstall azure".' ) except AttributeError: pass except ImportError: pass # Version extraction inspired from 'requests' with open(os.path.join(package_folder_path, 'version.py'), 'r') as fd: version = re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') with open('README.rst', encoding='utf-8') as f: readme = f.read() with open('HISTORY.rst', encoding='utf-8') as f: history = f.read() setup( name=PACKAGE_NAME, version=version, description='Microsoft Azure {} Client Library for Python'.format(PACKAGE_PPRINT_NAME), long_description=readme + '\n\n' + history, long_description_content_type='text/x-rst', license='MIT License', author='Microsoft Corporation', author_email='azpysdkhelp@microsoft.com', url='https://github.com/Azure/azure-sdk-for-python', classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'License :: OSI Approved :: MIT License', ], zip_safe=False, packages=find_packages(exclude=[ 'tests', # Exclude packages that will be covered by PEP420 or nspkg 'azure', 'azure.mgmt', ]), install_requires=[ 'msrest>=0.5.0', 'msrestazure>=0.4.32,<2.0.0', 'azure-common~=1.1', ], extras_require={ ":python_version<'3.0'": ['azure-mgmt-nspkg'], } )
32.215909
91
0.603175
35b5e045a549908bda6489419c13c5906288f20b
8,332
py
Python
tests/python/pants_test/engine/legacy/test_address_mapper.py
copumpkin/pants
e8367cf62279eab98f4e9e4575b9a059eeb83d2f
[ "Apache-2.0" ]
1
2021-11-11T14:04:24.000Z
2021-11-11T14:04:24.000Z
tests/python/pants_test/engine/legacy/test_address_mapper.py
copumpkin/pants
e8367cf62279eab98f4e9e4575b9a059eeb83d2f
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/engine/legacy/test_address_mapper.py
copumpkin/pants
e8367cf62279eab98f4e9e4575b9a059eeb83d2f
[ "Apache-2.0" ]
1
2021-11-11T14:04:12.000Z
2021-11-11T14:04:12.000Z
# coding=utf-8 # Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import unittest import mock from pants.base.specs import SiblingAddresses, SingleAddress from pants.bin.engine_initializer import EngineInitializer from pants.build_graph.address import Address, BuildFileAddress from pants.build_graph.address_mapper import AddressMapper from pants.engine.legacy.address_mapper import LegacyAddressMapper from pants.engine.nodes import Throw from pants.engine.scheduler import ExecutionResult from pants.util.contextutil import temporary_dir from pants.util.dirutil import safe_file_dump, safe_mkdir from pants_test.engine.util import init_native class LegacyAddressMapperTest(unittest.TestCase): _native = init_native() def create_build_files(self, build_root): # Create BUILD files # build_root: # BUILD # BUILD.other # dir_a: # BUILD # BUILD.other # subdir: # BUILD # dir_b: # BUILD dir_a = os.path.join(build_root, 'dir_a') dir_b = os.path.join(build_root, 'dir_b') dir_a_subdir = os.path.join(dir_a, 'subdir') safe_mkdir(dir_a) safe_mkdir(dir_b) safe_mkdir(dir_a_subdir) safe_file_dump(os.path.join(build_root, 'BUILD'), 'target(name="a")\ntarget(name="b")') safe_file_dump(os.path.join(build_root, 'BUILD.other'), 'target(name="c")') safe_file_dump(os.path.join(dir_a, 'BUILD'), 'target(name="a")\ntarget(name="b")') safe_file_dump(os.path.join(dir_a, 'BUILD.other'), 'target(name="c")') safe_file_dump(os.path.join(dir_b, 'BUILD'), 'target(name="a")') safe_file_dump(os.path.join(dir_a_subdir, 'BUILD'), 'target(name="a")') def create_address_mapper(self, build_root): work_dir = os.path.join(build_root, '.pants.d') scheduler, _, _ = EngineInitializer.setup_legacy_graph( [], work_dir, build_root=build_root, native=self._native ) return LegacyAddressMapper(scheduler, build_root) def test_is_valid_single_address(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) self.assertFalse(mapper.is_valid_single_address(SingleAddress('dir_a', 'foo'))) self.assertTrue(mapper.is_valid_single_address(SingleAddress('dir_a', 'a'))) with self.assertRaises(TypeError): mapper.is_valid_single_address('foo') def test_scan_build_files(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) build_files = mapper.scan_build_files('') self.assertEqual(build_files, {'BUILD', 'BUILD.other', 'dir_a/BUILD', 'dir_a/BUILD.other', 'dir_b/BUILD', 'dir_a/subdir/BUILD'}) build_files = mapper.scan_build_files('dir_a/subdir') self.assertEqual(build_files, {'dir_a/subdir/BUILD'}) def test_scan_build_files_edge_cases(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) # A non-existent dir. build_files = mapper.scan_build_files('foo') self.assertEqual(build_files, set()) # A dir with no BUILD files. safe_mkdir(os.path.join(build_root, 'empty')) build_files = mapper.scan_build_files('empty') self.assertEqual(build_files, set()) def test_is_declaring_file(self): scheduler = mock.Mock() mapper = LegacyAddressMapper(scheduler, '') self.assertTrue(mapper.is_declaring_file(Address('path', 'name'), 'path/BUILD')) self.assertTrue(mapper.is_declaring_file(Address('path', 'name'), 'path/BUILD.suffix')) self.assertFalse(mapper.is_declaring_file(Address('path', 'name'), 'path/not_a_build_file')) self.assertFalse(mapper.is_declaring_file(Address('path', 'name'), 'differing-path/BUILD')) self.assertFalse(mapper.is_declaring_file( BuildFileAddress(target_name='name', rel_path='path/BUILD.new'), 'path/BUILD')) self.assertTrue(mapper.is_declaring_file( BuildFileAddress(target_name='name', rel_path='path/BUILD'), 'path/BUILD')) def test_addresses_in_spec_path(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) addresses = mapper.addresses_in_spec_path('dir_a') self.assertEqual(addresses, {Address('dir_a', 'a'), Address('dir_a', 'b'), Address('dir_a', 'c')}) def test_addresses_in_spec_path_no_dir(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) with self.assertRaises(AddressMapper.BuildFileScanError) as cm: mapper.addresses_in_spec_path('foo') self.assertIn('does not match any targets.', str(cm.exception)) def test_addresses_in_spec_path_no_build_files(self): with temporary_dir() as build_root: self.create_build_files(build_root) safe_mkdir(os.path.join(build_root, 'foo')) mapper = self.create_address_mapper(build_root) with self.assertRaises(AddressMapper.BuildFileScanError) as cm: mapper.addresses_in_spec_path('foo') self.assertIn('does not match any targets.', str(cm.exception)) def test_scan_specs(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) addresses = mapper.scan_specs([SingleAddress('dir_a', 'a'), SiblingAddresses('')]) self.assertEqual(addresses, {Address('', 'a'), Address('', 'b'), Address('', 'c'), Address('dir_a', 'a')}) def test_scan_specs_bad_spec(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) with self.assertRaises(AddressMapper.BuildFileScanError) as cm: mapper.scan_specs([SingleAddress('dir_a', 'd')]) self.assertIn('does not match any targets.', str(cm.exception)) def test_scan_addresses(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) addresses = mapper.scan_addresses() self.assertEqual(addresses, {Address('', 'a'), Address('', 'b'), Address('', 'c'), Address('dir_a', 'a'), Address('dir_a', 'b'), Address('dir_a', 'c'), Address('dir_b', 'a'), Address('dir_a/subdir', 'a')}) def test_scan_addresses_with_root_specified(self): with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) addresses = mapper.scan_addresses(os.path.join(build_root, 'dir_a')) self.assertEqual(addresses, {Address('dir_a', 'a'), Address('dir_a', 'b'), Address('dir_a', 'c'), Address('dir_a/subdir', 'a')}) def test_scan_addresses_bad_dir(self): # scan_addresses() should not raise an error. with temporary_dir() as build_root: self.create_build_files(build_root) mapper = self.create_address_mapper(build_root) addresses = mapper.scan_addresses(os.path.join(build_root, 'foo')) self.assertEqual(addresses, set()) def test_other_throw_is_fail(self): # scan_addresses() should raise an error if the scheduler returns an error it can't ignore. class ThrowReturningScheduler(object): def execution_request(self, *args): pass def execute(self, *args): return ExecutionResult(None, [(('some-thing', None), Throw(Exception('just an exception')))]) with temporary_dir() as build_root: mapper = LegacyAddressMapper(ThrowReturningScheduler(), build_root) with self.assertRaises(LegacyAddressMapper.BuildFileScanError) as cm: mapper.scan_addresses(os.path.join(build_root, 'foo')) self.assertIn('just an exception', str(cm.exception))
41.044335
101
0.695151
833ddf8678643f8debeff3ea82eac15166922863
416
py
Python
data/data.py
NonStopEagle137/image2latex
6e5ace9357a6a059a0fe9ac853a579c15fd808ff
[ "MIT" ]
null
null
null
data/data.py
NonStopEagle137/image2latex
6e5ace9357a6a059a0fe9ac853a579c15fd808ff
[ "MIT" ]
null
null
null
data/data.py
NonStopEagle137/image2latex
6e5ace9357a6a059a0fe9ac853a579c15fd808ff
[ "MIT" ]
null
null
null
import tarfile #simple function to extract the train data #tar_file : the path to the .tar file #path : the path where it will be extracted def extract(tar_file, path): opened_tar = tarfile.open(tar_file) if tarfile.is_tarfile(tar_file): opened_tar.extractall(path) else: print("The tar file you entered is not a tar file") extract('formula_images.tar.gz','D:\FSDL\im2latex\data')
29.714286
59
0.709135
2269531fac8e07d5951561bda4f9e7b862855817
2,081
py
Python
FNN_skills/scripts/generate_data.py
SMZCC/TF-deep-learn
7517685d8b4fb51f1823d4595165538305739fc7
[ "MIT" ]
null
null
null
FNN_skills/scripts/generate_data.py
SMZCC/TF-deep-learn
7517685d8b4fb51f1823d4595165538305739fc7
[ "MIT" ]
null
null
null
FNN_skills/scripts/generate_data.py
SMZCC/TF-deep-learn
7517685d8b4fb51f1823d4595165538305739fc7
[ "MIT" ]
null
null
null
# coding=utf-8 # date: 2019/1/14, 16:08 # name: smz import numpy as np from FNN_skills.utils.data import gen_data from FNN_skills.utils.data import gen_one_class_data def generate_data(): num_classes = 4 num_fields = 2 num_samples = 320 means = np.random.rand(num_fields) covs = np.eye(num_fields, num_fields) diffs = [[3.0, 0.], [3.0, 3.0], [0., 3.0]] X, Y = gen_data(num_classes, num_samples, means, covs, diffs, False) Y = Y % 2 np.save("../data/train_X.npy", X) np.save("../data/train_Y.npy", Y) def generate_four_classes(): num_fields = 2 means = np.random.rand(num_fields) covs = np.eye(num_fields, num_fields) num_samples_train = 10000 num_samples_test = 2500 classes = 4 for class_ in range(classes): if class_ == 0: X, Y = gen_one_class_data(num_samples_train, means, covs, class_, classes) test_X, test_Y = gen_one_class_data(num_samples_test, means, covs, class_, classes) elif class_ == 1: X, Y = gen_one_class_data(num_samples_train, means + [10., 0.], covs, class_, classes) test_X, test_Y = gen_one_class_data(num_samples_test, means + [10., 0.], covs, class_, classes) elif class_ == 2: X, Y = gen_one_class_data(num_samples_train, means + [10., 10.], covs, class_, classes) test_X, test_Y = gen_one_class_data(num_samples_test, means + [10., 10.], covs, class_, classes) elif class_ == 3: X, Y = gen_one_class_data(num_samples_train, means + [0., 10.], covs, class_, classes) test_X, test_Y = gen_one_class_data(num_samples_test, means + [0., 10.], covs, class_, classes) np.save("../data/means.npy", np.asarray(means)) np.save("../data/class_%s_train_X.npy"%(class_), X) np.save("../data/class_%s_train_Y.npy"%(class_), Y) np.save("../data/class_%s_test_X.npy"%(class_), test_X) np.save("../data/class_%s_test_Y.npy"%(class_), test_Y) if __name__ == "__main__": # generate_data() generate_four_classes()
34.114754
108
0.632869