hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
9dbded985b27cf9bd1bae65fff1f6bc608d3c595
98
py
Python
1 - Beginner/1155.py
andrematte/uri-submissions
796e7fee56650d9e882880318d6e7734038be2dc
[ "MIT" ]
1
2020-09-09T12:48:09.000Z
2020-09-09T12:48:09.000Z
1 - Beginner/1155.py
andrematte/uri-submissions
796e7fee56650d9e882880318d6e7734038be2dc
[ "MIT" ]
null
null
null
1 - Beginner/1155.py
andrematte/uri-submissions
796e7fee56650d9e882880318d6e7734038be2dc
[ "MIT" ]
null
null
null
# URI Online Judge 1155 S = 0 for i in range(1,101): S += 1/i print('{:.2f}'.format(S))
12.25
25
0.530612
41b5e124be3a3fba9be2cc187c010c3a3a87d5a9
2,672
py
Python
Hackerrank/Dijkstra/Dijkstra.py
rahil-1407/Data-Structure-and-Algorithms
ea3eb9849aeb2716ef5812a0b5621a28120b1880
[ "MIT" ]
51
2021-01-14T04:05:55.000Z
2022-01-25T11:25:37.000Z
Hackerrank/Dijkstra/Dijkstra.py
rahil-1407/Data-Structure-and-Algorithms
ea3eb9849aeb2716ef5812a0b5621a28120b1880
[ "MIT" ]
638
2020-12-27T18:49:53.000Z
2021-11-21T05:22:52.000Z
Hackerrank/Dijkstra/Dijkstra.py
rahil-1407/Data-Structure-and-Algorithms
ea3eb9849aeb2716ef5812a0b5621a28120b1880
[ "MIT" ]
124
2021-01-30T06:40:20.000Z
2021-11-21T15:14:40.000Z
# Program to find the shortest path using Dijktra's algorithm #this is implemented using queue import sys import queue class Vertex: def __init__(self): self.edges = {} def get_edges(self): return self.edges def add_edge(self, value, distance): if value not in self.edges or distance < self.edges[value]: self.edges[value] = distance class Graph: #Adding all Edges def __init__(self, N): self.vertices = {} while (N > 0): self.vertices[N] = Vertex() N -= 1 def get_vertices(self): return self.vertices def get_vertex(self, value): return self.vertices[value] def add_vertex(self, value, vertex): self.vertices[value] = vertex class Dijkstra: def __init__(self, graph): self.graph = graph def calculate(self, start): #for not visited neighbours ,update their distance if they could be reached with a shorter distance solved = {start: 0} adjacents = queue.PriorityQueue() self.update_adjacents(start, solved, adjacents) while not adjacents.empty(): (distance, value) = adjacents.get() if value in solved: continue solved[value] = distance self.update_adjacents(value, solved, adjacents) return solved def update_adjacents(self, parent, solved, adjacents): #if the distance was updating then they need to be pushed in priority queue with minimum distance edges = self.graph.get_vertex(parent).get_edges() for value, distance in edges.items(): adjacents.put((solved[parent] + distance, value)) def read_integers(): return [int(x) for x in sys.stdin.readline().split(" ")] def build_graph(N, M): #Initializing Graph graph = Graph(N) while (M > 0): (x, y, R) = read_integers() graph.get_vertex(x).add_edge(y, R) graph.get_vertex(y).add_edge(x, R) M -= 1 return graph def print_distances(distances, N, S): #Printing The Required Output for i in range(1, N + 1): if (i == S): continue distance = -1 if i not in distances else distances[i] print(distance, end=" ") print() def execute_test_case(): (N, M) = read_integers() graph = build_graph(N, M) dijkstra = Dijkstra(graph) S = int(sys.stdin.readline()) distances = dijkstra.calculate(S) print_distances(distances, N, S) def main(): T = int(sys.stdin.readline()) #Taking Input while (T > 0): execute_test_case() T -= 1 if __name__ == "__main__": main()
25.941748
107
0.609281
6a6b0e402a5efe8f4d0555c8ea4d2c3d48342465
44
py
Python
tests/__init__.py
other-juju/track-viz
5276324b5ee231b54cf575216c9cabacd590f30f
[ "MIT" ]
2
2021-12-10T11:58:22.000Z
2021-12-15T09:06:08.000Z
tests/__init__.py
other-juju/track-viz
5276324b5ee231b54cf575216c9cabacd590f30f
[ "MIT" ]
32
2021-12-08T13:39:54.000Z
2022-03-08T03:22:41.000Z
tests/__init__.py
other-juju/track-viz
5276324b5ee231b54cf575216c9cabacd590f30f
[ "MIT" ]
7
2021-12-14T21:08:41.000Z
2022-01-23T12:19:33.000Z
"""Test suite for the track_viz package."""
22
43
0.704545
93442eba39e0430e0bbd67a783e4b1f9410732f8
172
py
Python
mmseg/utils/__init__.py
albert-yue/TMANet
e19b25a318d1569ba58ccf47e03ae80385aef40b
[ "Apache-2.0" ]
null
null
null
mmseg/utils/__init__.py
albert-yue/TMANet
e19b25a318d1569ba58ccf47e03ae80385aef40b
[ "Apache-2.0" ]
null
null
null
mmseg/utils/__init__.py
albert-yue/TMANet
e19b25a318d1569ba58ccf47e03ae80385aef40b
[ "Apache-2.0" ]
null
null
null
from .collect_env import collect_env from .logger import get_root_logger from .dist_utils import get_dist_env __all__ = ['get_root_logger', 'collect_env', 'get_dist_env']
28.666667
60
0.813953
f7da5eed14d93faeb0a1a396b348f553343883e2
4,508
py
Python
week5-machine_learning/scripts/run_tune_example.py
Kaminyou/110-1-NTU-DBME5028
5aaef62cb5a3be4cbba28c2d252964a614183132
[ "MIT" ]
6
2021-10-06T03:13:59.000Z
2021-11-07T12:59:37.000Z
week5-machine_learning/scripts/run_tune_example.py
Kaminyou/110-1-NTU-DBME5028
5aaef62cb5a3be4cbba28c2d252964a614183132
[ "MIT" ]
null
null
null
week5-machine_learning/scripts/run_tune_example.py
Kaminyou/110-1-NTU-DBME5028
5aaef62cb5a3be4cbba28c2d252964a614183132
[ "MIT" ]
null
null
null
""" python ./scripts/run_tune_example.py # To see results from ray.tune import Analysis analysis = Analysis(PATH_TO_EXP_DIR) df = analysis.trial_dataframes """ import sys import os import numpy as np from random import shuffle from collections import deque from dataclasses import dataclass, asdict import torch import torch.nn as nn from torch import optim from ray import tune sys.path.append(".") from src.utils import load_and_process_digits from src.models import LogisticRegressionTorch def simple_loader(inputs, targets, batch_size=128, shuffle_per_iteration=20): index = 0 while True: indexes_get = np.arange(index * batch_size, (index + 1) * batch_size) % len(inputs) x_ = np.take(inputs, indexes_get, axis=0) y_ = np.take(targets, indexes_get, axis=0) index += 1 if index % shuffle_per_iteration == 0: full_index = np.arange(len(x_)) shuffle(full_index) inputs = np.take(inputs, full_index, axis=0) targets = np.take(targets, full_index, axis=0) yield x_, y_ def train_digits(config: dict): x_train, y_train, x_valid, y_valid, x_test, y_test = load_and_process_digits() train_loader = simple_loader(x_train, y_train, batch_size=config["batch_size"]) model = LogisticRegressionTorch(input_dim=x_train.shape[-1], output_dim=10) optimizer = optim.SGD(model.parameters(), lr=config["learning_rate"]) loss_fn = nn.CrossEntropyLoss() train_losses, valid_losses = [], [] bst_loss = 1e+4 patient_counter = 0 for i_epoch in range(config["num_epochs"]): loss_record = deque(maxlen=100) for _ in range(len(x_train) // config["batch_size"]): x, y = next(train_loader) logits = model(torch.from_numpy(x)) loss_train = loss_fn(logits, torch.from_numpy(y)) ### Do regularization if config["l1_alpha"] > 0: l1_term = torch.tensor(0.) for model_params in model.parameters(): reg = torch.abs(model_params).sum() l1_term += reg loss_train = loss_train + config["l1_alpha"] * l1_term if config["l2_alpha"] > 0: l2_term = torch.tensor(0.) for model_params in model.parameters(): reg = torch.norm(model_params) l2_term += reg loss_train = loss_train + config["l2_alpha"] * l2_term optimizer.zero_grad() loss_train.backward() optimizer.step() loss_record.append(loss_train.detach().cpu().numpy()) with torch.no_grad(): yp_logits = model(torch.from_numpy(x_valid)) loss_valid = loss_fn(yp_logits, torch.from_numpy(y_valid)) loss_valid = loss_valid.detach().cpu().numpy() print("Epoch: {}/{}, Training Loss: {:.3f}, Validation Loss: {:.3f}".format( str(i_epoch + 1).zfill(4), config["num_epochs"], np.mean(loss_record), loss_valid ), flush=True, end="\r") train_losses.append(np.mean(loss_record)) valid_losses.append(loss_valid) tune.report(validation_loss=loss_valid) # validation_loss can be keywords you want ### Do earlystopping if patient_counter >= config["n_earlystopping_rounds"]: return model, train_losses, valid_losses if loss_valid < bst_loss: bst_loss = loss_valid patient_counter = 0 else: patient_counter += 1 return model, train_losses, valid_losses @dataclass class TrainConfig: batch_size: int learning_rate: float num_epochs: int = 500 l1_alpha: float = 0. l2_alpha: float = 0. n_earlystopping_rounds: int = 1e+8 def to_dict(self): return asdict(self) if __name__ == "__main__": # Force use CPU os.environ["CUDA_VISIBLE_DEVICES"] = "" train_config = TrainConfig( batch_size=tune.choice([64, 128]), learning_rate=tune.grid_search([0.5, 1, 1.5]), num_epochs=1000, l1_alpha=tune.grid_search([0, 0.001, 0.01]), l2_alpha=tune.grid_search([0, 0.001, 0.01]), # n_earlystopping_rounds ) analysis = tune.run( train_digits, config=train_config.to_dict(), num_samples=3, progress_reporter=tune.CLIReporter(max_error_rows=20) ) # Total num_trials = num_samples**tunable_params
31.524476
91
0.623114
842747376cf920869ce057e6252604f973257173
358
py
Python
cogs/help.py
cat-central/bonbons
47fd1aa6ba16b0e705d2bfc716db60707def1d37
[ "MIT" ]
3
2022-02-21T11:48:22.000Z
2022-03-29T04:59:59.000Z
cogs/help.py
cat-central/bonbons
47fd1aa6ba16b0e705d2bfc716db60707def1d37
[ "MIT" ]
1
2022-02-27T16:57:58.000Z
2022-02-27T16:57:58.000Z
cogs/help.py
sifte/bonbons
ca2f367b445b0374aabbc17cb17be1b020879a3a
[ "MIT" ]
null
null
null
from discord.ext.commands import Cog from helpers.bot import Bonbons from helpers.help.help import CustomHelpCommand class Help(Cog): def __init__(self, bot: Bonbons) -> None: self.bot = bot self.bot.help_command = CustomHelpCommand() async def setup(bot: Bonbons) -> None: print("Loaded: Help") await bot.add_cog(Help(bot))
22.375
51
0.701117
cca5ad1db73624d5f51e7a1b02622662e51e4897
1,320
py
Python
examples/sorting/cluster_auto.py
espenhgn/SpikeSort
68dbc2180609e0e7430453229ab1f3a2b2d59bdc
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
examples/sorting/cluster_auto.py
espenhgn/SpikeSort
68dbc2180609e0e7430453229ab1f3a2b2d59bdc
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
examples/sorting/cluster_auto.py
espenhgn/SpikeSort
68dbc2180609e0e7430453229ab1f3a2b2d59bdc
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
#!/usr/bin/env python #coding=utf-8 """ Based on raw recordings detect spikes, calculate features and do automatic clustering with gaussian mixture models. """ import numpy as np import os, sys import spike_sort as sort from spike_sort.io.filters import PyTablesFilter, BakerlabFilter import spike_sort.ui.manual_sort import tables DATAPATH = os.environ['DATAPATH'] if __name__ == "__main__": h5_fname = os.path.join(DATAPATH, "tutorial.h5") h5filter = PyTablesFilter(h5_fname, 'a') dataset = "/SubjectA/session01/el1" sp_win = [-0.2, 0.8] sp = h5filter.read_sp(dataset) spt = sort.extract.detect_spikes(sp, contact=3, thresh='auto') spt = sort.extract.align_spikes(sp, spt, sp_win, type="max", resample=10) sp_waves = sort.extract.extract_spikes(sp, spt, sp_win) features = sort.features.combine( ( sort.features.fetP2P(sp_waves), sort.features.fetPCs(sp_waves)), norm=True ) clust_idx = sort.cluster.cluster("gmm",features,4) spike_sort.ui.plotting.plot_features(features, clust_idx) spike_sort.ui.plotting.figure() spike_sort.ui.plotting.plot_spikes(sp_waves, clust_idx,n_spikes=200) spike_sort.ui.plotting.show() h5filter.close()
26.4
77
0.668939
a63a23e0faefbb82bca7a77f3b7c85a8b25ecfb2
265
py
Python
src/cogs/Cog.py
akabinds/pincer-bot-template
aed9a708b4c96deb030b23e327d64474cc92dcea
[ "MIT" ]
2
2022-01-06T02:25:19.000Z
2022-01-06T02:28:05.000Z
src/cogs/Cog.py
akabinds/pincer-bot-template
aed9a708b4c96deb030b23e327d64474cc92dcea
[ "MIT" ]
null
null
null
src/cogs/Cog.py
akabinds/pincer-bot-template
aed9a708b4c96deb030b23e327d64474cc92dcea
[ "MIT" ]
null
null
null
from pincer import Client, command class Cog: def __init__(self, client: Client) -> None: self.client = client @command(guild="YOUR_TESTING_GUILD_ID", name='ping', description='Pong!') async def ping(self): return "pong" setup = Cog
20.384615
77
0.656604
12719b688cbedfc184310183141155e6ea88f7aa
1,490
py
Python
Aula 38/Back/Dao/dao_sgds.py
ohanamirella/TrabalhosPython
453a97848654b0391d0d717bf102f6c466f79b3d
[ "MIT" ]
1
2020-03-09T13:38:55.000Z
2020-03-09T13:38:55.000Z
Aula 38/Back/Dao/dao_sgds.py
ohanamirella/TrabalhosPython
453a97848654b0391d0d717bf102f6c466f79b3d
[ "MIT" ]
null
null
null
Aula 38/Back/Dao/dao_sgds.py
ohanamirella/TrabalhosPython
453a97848654b0391d0d717bf102f6c466f79b3d
[ "MIT" ]
null
null
null
import MySQLdb from Model.sgbds_model import SgbdsModel class SgbdsDao: conexao = MySQLdb.connect(host='mysql.padawans.dev', database='padawans', user='padawans', passwd='vm2019') cursor = conexao.cursor() def insert(self, sgbds:SgbdsModel): inserir = f""" INSERT INTO tb_sgbds ( id_sgbds, sgbd, desc_sgbd ) VALUES ( {sgbds.id_sgbds}, '{sgbds.sgbd}', '{sgbds.desc_sgbd}' ) """ self.cursor.execute(inserir) self.conexao.commit() id_sgbds_inserido = self.cursor.lastrowid return id_sgbds_inserido def read(self, id): ler = f""" SELECT * FROM tb_sgbds WHERE id_sgbds = {id} """ self.cursor.execute(ler) lido = self.cursor.fetchall() return lido def update(self, sgbds:SgbdsModel): atualizar = f""" UPDATE tb_sgbds SET id_sgbds = {sgbds.id_sgbds} sgbds = '{sgbds.sgbds}' desc_sgbds = '{sgbds.desc_sgbds}' WHERE id_sgbds = {sgbds.id_sgbds} """ self.cursor.execute(atualizar) self.conexao.commit() def delete(self, id): deletar = f""" DELETE FROM tb_sgbds WHERE id_sgbds = {id} """ self.cursor.execute(deletar) self.conexao.commit()
27.592593
111
0.512081
ea2bfdd39cf8fd80d4e2883fb02ed24e16b01ba4
2,987
py
Python
app/recipe/tests/test_ingredients_api.py
tsatsujnr139/recipe-app-api
08b26254de48277518a204328ae1bf753049354b
[ "MIT" ]
null
null
null
app/recipe/tests/test_ingredients_api.py
tsatsujnr139/recipe-app-api
08b26254de48277518a204328ae1bf753049354b
[ "MIT" ]
null
null
null
app/recipe/tests/test_ingredients_api.py
tsatsujnr139/recipe-app-api
08b26254de48277518a204328ae1bf753049354b
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Ingredient from recipe.serializers import IngredientSerializer INGREDIENTS_URL = reverse('recipe:ingredient-list') def sample_user(): return get_user_model().objects.create_user(email='user@company.com', password='password') class PublicIngredientsApiTests(TestCase): """test the public ingredients api's""" def setUp(self): self.client = APIClient() def test_login_required_to_retrieve_ingredient(self): """test that login is required to retrieve tags""" res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateIngredientApiTests(TestCase): """test the authorized user ingredient API's""" def setUp(self): self.user = sample_user() self.client = APIClient() self.client.force_authenticate(self.user) def test_retrieve_ingredients(self): """Test retrieving ingredients""" Ingredient.objects.create(user=self.user, name='salami') Ingredient.objects.create(user=self.user, name='onion') res = self.client.get(INGREDIENTS_URL) ingredient = Ingredient.objects.all().order_by('-name') serializer = IngredientSerializer(ingredient, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_ingredients_limited_to_authenticated_user(self): """Test that ingredients are for authenticated user""" user2 = get_user_model().objects.create_user(email='user2@company.com', password='password') Ingredient.objects.create(user=user2, name='bacon') ingredient = Ingredient.objects.create(user=self.user, name='nutmeg') res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['name'], ingredient.name) def test_create_ingredient_successfully(self): """test that new ingredient is created successfully""" payload = { 'name': 'test_ingredient' } self.client.post(INGREDIENTS_URL, payload) exists = Ingredient.objects.filter( user=self.user, name=payload['name'] ).exists self.assertTrue(exists) def test_create_ingredient_invalid_payload_fails(self): """test creating an ingredient with invalid payload returns valiation error""" payload = { 'name': '' } res = self.client.post(INGREDIENTS_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
33.561798
79
0.670238
095086de424b94ef436edd3bd0fcf917cc36dcf7
71,882
py
Python
wrappers/python/indy/anoncreds.py
evernym/indy-sdk
714d449353518f929d9787d3156af785e2a42ccb
[ "Apache-2.0" ]
5
2018-04-09T12:26:28.000Z
2019-06-12T01:45:30.000Z
wrappers/python/indy/anoncreds.py
evernym/indy-sdk
714d449353518f929d9787d3156af785e2a42ccb
[ "Apache-2.0" ]
9
2019-01-22T22:31:54.000Z
2019-04-11T21:45:09.000Z
wrappers/python/indy/anoncreds.py
evernym/indy-sdk
714d449353518f929d9787d3156af785e2a42ccb
[ "Apache-2.0" ]
19
2018-04-25T16:08:43.000Z
2022-01-11T10:18:38.000Z
from .libindy import do_call, create_cb from typing import Optional from ctypes import * import logging async def issuer_create_schema(issuer_did: str, name: str, version: str, attrs: str) -> (str, str): """ Create credential schema entity that describes credential attributes list and allows credentials interoperability. Schema is public and intended to be shared with all anoncreds workflow actors usually by publishing SCHEMA transaction to Indy distributed ledger. It is IMPORTANT for current version POST Schema in Ledger and after that GET it from Ledger with correct seq_no to save compatibility with Ledger. After that can call indy_issuer_create_and_store_credential_def to build corresponding Credential Definition. :param issuer_did: DID of schema issuer :param name: a name the schema :param version: a version of the schema :param attrs: a list of schema attributes descriptions (the number of attributes should be less or equal than 125) :return: schema_id: identifier of created schema schema_json: schema as json """ logger = logging.getLogger(__name__) logger.debug("issuer_create_schema: >>> issuer_did: %r, name: %r, version: %r, attrs: %r", issuer_did, name, version, attrs) if not hasattr(issuer_create_schema, "cb"): logger.debug("issuer_create_schema: Creating callback") issuer_create_schema.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p, c_char_p)) c_issuer_did = c_char_p(issuer_did.encode('utf-8')) c_name = c_char_p(name.encode('utf-8')) c_version = c_char_p(version.encode('utf-8')) c_attrs = c_char_p(attrs.encode('utf-8')) (schema_id, schema_json) = await do_call('indy_issuer_create_schema', c_issuer_did, c_name, c_version, c_attrs, issuer_create_schema.cb) res = (schema_id.decode(), schema_json.decode()) logger.debug("issuer_create_schema: <<< res: %r", res) return res async def issuer_create_and_store_credential_def(wallet_handle: int, issuer_did: str, schema_json: str, tag: str, signature_type: Optional[str], config_json: Optional[str]) -> (str, str): """ Create credential definition entity that encapsulates credentials issuer DID, credential schema, secrets used for signing credentials and secrets used for credentials revocation. Credential definition entity contains private and public parts. Private part will be stored in the wallet. Public part will be returned as json intended to be shared with all anoncreds workflow actors usually by publishing CRED_DEF transaction to Indy distributed ledger. It is IMPORTANT for current version GET Schema from Ledger with correct seq_no to save compatibility with Ledger. :param wallet_handle: wallet handle (created by open_wallet). :param issuer_did: a DID of the issuer signing cred_def transaction to the Ledger :param schema_json: credential schema as a json :param tag: allows to distinct between credential definitions for the same issuer and schema :param signature_type: credential definition type (optional, 'CL' by default) that defines credentials signature and revocation math. Supported types are: - 'CL': Camenisch-Lysyanskaya credential signature type :param config_json: (optional) type-specific configuration of credential definition as json: - 'CL': - support_revocation: whether to request non-revocation credential (optional, default false) :return: cred_def_id: identifier of created credential definition cred_def_json: public part of created credential definition """ logger = logging.getLogger(__name__) logger.debug("issuer_create_and_store_credential_def: >>> wallet_handle: %r, issuer_did: %r, schema_json: %r," " tag: %r, signature_type: %r, config_json: %r", wallet_handle, issuer_did, schema_json, tag, signature_type, config_json) if not hasattr(issuer_create_and_store_credential_def, "cb"): logger.debug("issuer_create_and_store_credential_def: Creating callback") issuer_create_and_store_credential_def.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_issuer_did = c_char_p(issuer_did.encode('utf-8')) c_schema_json = c_char_p(schema_json.encode('utf-8')) c_tag = c_char_p(tag.encode('utf-8')) c_signature_type = c_char_p(signature_type.encode('utf-8')) if signature_type is not None else None c_config_json = c_char_p(config_json.encode('utf-8')) if config_json is not None else None (credential_def_id, credential_def_json) = await do_call('indy_issuer_create_and_store_credential_def', c_wallet_handle, c_issuer_did, c_schema_json, c_tag, c_signature_type, c_config_json, issuer_create_and_store_credential_def.cb) res = (credential_def_id.decode(), credential_def_json.decode()) logger.debug("issuer_create_and_store_credential_def: <<< res: %r", res) return res async def issuer_create_and_store_revoc_reg(wallet_handle: int, issuer_did: str, revoc_def_type: Optional[str], tag: str, cred_def_id: str, config_json: str, tails_writer_handle: int) -> (str, str, str): """ Create a new revocation registry for the given credential definition as tuple of entities: - Revocation registry definition that encapsulates credentials definition reference, revocation type specific configuration and secrets used for credentials revocation - Revocation registry state that stores the information about revoked entities in a non-disclosing way. The state can be represented as ordered list of revocation registry entries were each entry represents the list of revocation or issuance operations. Revocation registry definition entity contains private and public parts. Private part will be stored in the wallet. Public part will be returned as json intended to be shared with all anoncreds workflow actors usually by publishing REVOC_REG_DEF transaction to Indy distributed ledger. Revocation registry state is stored on the wallet and also intended to be shared as the ordered list of REVOC_REG_ENTRY transactions. This call initializes the state in the wallet and returns the initial entry. Some revocation registry types (for example, 'CL_ACCUM') can require generation of binary blob called tails used to hide information about revoked credentials in public revocation registry and intended to be distributed out of leger (REVOC_REG_DEF transaction will still contain uri and hash of tails). This call requires access to pre-configured blob storage writer instance handle that will allow to write generated tails. :param wallet_handle: wallet handle (created by open_wallet). :param issuer_did: a DID of the issuer signing transaction to the Ledger :param revoc_def_type: revocation registry type (optional, default value depends on credential definition type). Supported types are: - 'CL_ACCUM': Type-3 pairing based accumulator. Default for 'CL' credential definition type :param tag: allows to distinct between revocation registries for the same issuer and credential definition :param cred_def_id: id of stored in ledger credential definition :param config_json: type-specific configuration of revocation registry as json: - 'CL_ACCUM': "issuance_type": (optional) type of issuance. Currently supported: 1) ISSUANCE_BY_DEFAULT: all indices are assumed to be issued and initial accumulator is calculated over all indices; Revocation Registry is updated only during revocation. 2) ISSUANCE_ON_DEMAND: nothing is issued initially accumulator is 1 (used by default); "max_cred_num": maximum number of credentials the new registry can process (optional, default 100000) } :param tails_writer_handle: :return: revoc_reg_id: identifier of created revocation registry definition revoc_reg_def_json: public part of revocation registry definition revoc_reg_entry_json: revocation registry entry that defines initial state of revocation registry """ logger = logging.getLogger(__name__) logger.debug("issuer_create_and_store_revoc_reg: >>> wallet_handle: %r, issuer_did: %r, revoc_def_type: %r," " tag: %r, cred_def_id: %r, config_json: %r, tails_writer_handle: %r", wallet_handle, issuer_did, revoc_def_type, tag, cred_def_id, config_json, tails_writer_handle) if not hasattr(issuer_create_and_store_revoc_reg, "cb"): logger.debug("issuer_create_and_store_revoc_reg: Creating callback") issuer_create_and_store_revoc_reg.cb = create_cb( CFUNCTYPE(None, c_int32, c_int32, c_char_p, c_char_p, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_issuer_did = c_char_p(issuer_did.encode('utf-8')) c_revoc_def_type = c_char_p(revoc_def_type.encode('utf-8')) if revoc_def_type is not None else None c_tag = c_char_p(tag.encode('utf-8')) c_cred_def_id = c_char_p(cred_def_id.encode('utf-8')) c_config_json = c_char_p(config_json.encode('utf-8')) c_tails_writer_handle = c_int32(tails_writer_handle) (rev_reg_id, rev_reg_def_json, rev_reg_entry_json) = await do_call('indy_issuer_create_and_store_revoc_reg', c_wallet_handle, c_issuer_did, c_revoc_def_type, c_tag, c_cred_def_id, c_config_json, c_tails_writer_handle, issuer_create_and_store_revoc_reg.cb) res = (rev_reg_id.decode(), rev_reg_def_json.decode(), rev_reg_entry_json.decode()) logger.debug("issuer_create_and_store_revoc_reg: <<< res: %r", res) return res async def issuer_create_credential_offer(wallet_handle: int, cred_def_id: str) -> str: """ Create credential offer that will be used by Prover for credential request creation. Offer includes nonce and key correctness proof for authentication between protocol steps and integrity checking. :param wallet_handle: wallet handle (created by open_wallet). :param cred_def_id: id of credential definition stored in the wallet :return:credential offer json: { "schema_id": string, "cred_def_id": string, // Fields below can depend on Cred Def type "nonce": string, "key_correctness_proof" : <key_correctness_proof> } """ logger = logging.getLogger(__name__) logger.debug("issuer_create_credential_offer: >>> wallet_handle: %r, cred_def_id: %r", wallet_handle, cred_def_id) if not hasattr(issuer_create_credential_offer, "cb"): logger.debug("issuer_create_credential_offer: Creating callback") issuer_create_credential_offer.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_cred_def_id = c_char_p(cred_def_id.encode('utf-8')) credential_offer_json = await do_call('indy_issuer_create_credential_offer', c_wallet_handle, c_cred_def_id, issuer_create_credential_offer.cb) res = credential_offer_json.decode() logger.debug("issuer_create_credential_offer: <<< res: %r", res) return res async def issuer_create_credential(wallet_handle: int, cred_offer_json: str, cred_req_json: str, cred_values_json: str, rev_reg_id: Optional[str], blob_storage_reader_handle: Optional[int]) -> (str, Optional[str], Optional[str]): """ Check Cred Request for the given Cred Offer and issue Credential for the given Cred Request. Cred Request must match Cred Offer. The credential definition and revocation registry definition referenced in Cred Offer and Cred Request must be already created and stored into the wallet. Information for this credential revocation will be store in the wallet as part of revocation registry under generated cred_revoc_id local for this wallet. This call returns revoc registry delta as json file intended to be shared as REVOC_REG_ENTRY transaction. Note that it is possible to accumulate deltas to reduce ledger load. :param wallet_handle: wallet handle (created by open_wallet). :param cred_offer_json: a cred offer created by issuer_create_credential_offer :param cred_req_json: a credential request created by prover_create_credential_req :param cred_values_json: a credential containing attribute values for each of requested attribute names. Example: { "attr1" : {"raw": "value1", "encoded": "value1_as_int" }, "attr2" : {"raw": "value1", "encoded": "value1_as_int" } } :param rev_reg_id: (Optional) id of revocation registry definition stored in the wallet :param blob_storage_reader_handle: pre-configured blob storage reader instance handle that will allow to read revocation tails :return: cred_json: Credential json containing signed credential values { "schema_id": string, "cred_def_id": string, "rev_reg_def_id", Optional<string>, "values": <see cred_values_json above>, // Fields below can depend on Cred Def type "signature": <signature>, "signature_correctness_proof": <signature_correctness_proof> } cred_revoc_id: local id for revocation info (Can be used for revocation of this cred) revoc_reg_delta_json: Revocation registry delta json with a newly issued credential """ logger = logging.getLogger(__name__) logger.debug("issuer_create_credential: >>> wallet_handle: %r, cred_offer_json: %r, cred_req_json: %r," " cred_values_json: %r, rev_reg_id: %r, blob_storage_reader_handle: %r", wallet_handle, cred_offer_json, cred_req_json, cred_values_json, rev_reg_id, blob_storage_reader_handle) if not hasattr(issuer_create_credential, "cb"): logger.debug("issuer_create_credential: Creating callback") issuer_create_credential.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p, c_char_p, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_cred_offer_json = c_char_p(cred_offer_json.encode('utf-8')) c_cred_req_json = c_char_p(cred_req_json.encode('utf-8')) c_cred_values_json = c_char_p(cred_values_json.encode('utf-8')) c_rev_reg_id = c_char_p(rev_reg_id.encode('utf-8')) if rev_reg_id is not None else None c_blob_storage_reader_handle = c_int32(blob_storage_reader_handle) if blob_storage_reader_handle else -1 (cred_json, cred_revoc_id, revoc_reg_delta_json) = await do_call('indy_issuer_create_credential', c_wallet_handle, c_cred_offer_json, c_cred_req_json, c_cred_values_json, c_rev_reg_id, c_blob_storage_reader_handle, issuer_create_credential.cb) cred_json = cred_json.decode() cred_revoc_id = cred_revoc_id.decode() if cred_revoc_id else None revoc_reg_delta_json = revoc_reg_delta_json.decode() if revoc_reg_delta_json else None res = (cred_json, cred_revoc_id, revoc_reg_delta_json) logger.debug("issuer_create_credential: <<< res: %r", res) return res async def issuer_revoke_credential(wallet_handle: int, blob_storage_reader_handle: int, rev_reg_id: str, cred_revoc_id: str) -> str: """ Revoke a credential identified by a cred_revoc_id (returned by issuer_create_credential). The corresponding credential definition and revocation registry must be already created an stored into the wallet. This call returns revoc registry delta as json file intended to be shared as REVOC_REG_ENTRY transaction. Note that it is possible to accumulate deltas to reduce ledger load. :param wallet_handle: wallet handle (created by open_wallet). :param blob_storage_reader_handle: pre-configured blob storage reader instance handle that will allow to read revocation tails :param rev_reg_id: id of revocation registry stored in wallet :param cred_revoc_id: local id for revocation info :return: Revocation registry delta json with a revoked credential. """ logger = logging.getLogger(__name__) logger.debug( "issuer_revoke_credential: >>> wallet_handle: %r, blob_storage_reader_handle: %r, rev_reg_id: %r, " "cred_revoc_id: %r", wallet_handle, blob_storage_reader_handle, rev_reg_id, cred_revoc_id) if not hasattr(issuer_revoke_credential, "cb"): logger.debug("issuer_revoke_credential: Creating callback") issuer_revoke_credential.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_blob_storage_reader_handle = c_int32(blob_storage_reader_handle) c_rev_reg_id = c_char_p(rev_reg_id.encode('utf-8')) c_cred_revoc_id = c_char_p(cred_revoc_id.encode('utf-8')) revoc_reg_delta_json = await do_call('indy_issuer_revoke_credential', c_wallet_handle, c_blob_storage_reader_handle, c_rev_reg_id, c_cred_revoc_id, issuer_revoke_credential.cb) res = revoc_reg_delta_json.decode() logger.debug("issuer_revoke_credential: <<< res: %r", res) return res # async def issuer_recover_credential(wallet_handle: int, # blob_storage_reader_handle: int, # rev_reg_id: str, # cred_revoc_id: str) -> str: # """ # Recover a credential identified by a cred_revoc_id (returned by indy_issuer_create_cred). # # The corresponding credential definition and revocation registry must be already # created an stored into the wallet. # # This call returns revoc registry delta as json file intended to be shared as REVOC_REG_ENTRY transaction. # Note that it is possible to accumulate deltas to reduce ledger load. # # :param wallet_handle: wallet handle (created by open_wallet). # :param blob_storage_reader_handle: pre-configured blob storage reader instance handle that will allow # to read revocation tails # :param rev_reg_id: id of revocation registry stored in wallet # :param cred_revoc_id: local id for revocation info # :return: Revocation registry update json with a revoked credential # """ # # logger = logging.getLogger(__name__) # logger.debug( # "issuer_recover_credential: >>> wallet_handle: %r, blob_storage_reader_handle: %r, rev_reg_id: %r, " # "cred_revoc_id: %r", # wallet_handle, # blob_storage_reader_handle, # rev_reg_id, # cred_revoc_id) # # if not hasattr(issuer_recover_credential, "cb"): # logger.debug("issuer_recover_credential: Creating callback") # issuer_recover_credential.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) # # c_wallet_handle = c_int32(wallet_handle) # c_blob_storage_reader_handle = c_int32(blob_storage_reader_handle) # c_rev_reg_id = c_char_p(rev_reg_id.encode('utf-8')) # c_cred_revoc_id = c_char_p(cred_revoc_id.encode('utf-8')) # # revoc_reg_delta_json = await do_call('indy_issuer_recover_credential', # c_wallet_handle, # c_blob_storage_reader_handle, # c_rev_reg_id, # c_cred_revoc_id, # issuer_recover_credential.cb) # res = revoc_reg_delta_json.decode() # logger.debug("issuer_recover_credential: <<< res: %r", res) # return res async def issuer_merge_revocation_registry_deltas(rev_reg_delta_json: str, other_rev_reg_delta_json: str) -> str: """ Merge two revocation registry deltas (returned by issuer_create_credential or issuer_revoke_credential) to accumulate common delta. Send common delta to ledger to reduce the load. :param rev_reg_delta_json: revocation registry delta json :param other_rev_reg_delta_json: revocation registry delta for which PrevAccum value is equal to current accum value of rev_reg_delta_json. :return: Merged revocation registry delta """ logger = logging.getLogger(__name__) logger.debug( "issuer_merge_revocation_registry_deltas: >>> rev_reg_delta_json: %r, other_rev_reg_delta_json: %r", rev_reg_delta_json, other_rev_reg_delta_json) if not hasattr(issuer_merge_revocation_registry_deltas, "cb"): logger.debug("issuer_merge_revocation_registry_deltas: Creating callback") issuer_merge_revocation_registry_deltas.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_rev_reg_delta_json = c_char_p(rev_reg_delta_json.encode('utf-8')) c_other_rev_reg_delta_json = c_char_p(other_rev_reg_delta_json.encode('utf-8')) merged_revoc_reg_delta_json = await do_call('indy_issuer_merge_revocation_registry_deltas', c_rev_reg_delta_json, c_other_rev_reg_delta_json, issuer_merge_revocation_registry_deltas.cb) res = merged_revoc_reg_delta_json.decode() logger.debug("issuer_merge_revocation_registry_deltas: <<< res: %r", res) return res async def prover_create_master_secret(wallet_handle: int, master_secret_name: Optional[str]) -> str: """ Creates a master secret with a given name and stores it in the wallet. The name must be unique. :param wallet_handle: wallet handle (created by open_wallet). :param master_secret_name: (optional, if not present random one will be generated) new master id :return: id of generated master secret. """ logger = logging.getLogger(__name__) logger.debug("prover_create_master_secret: >>> wallet_handle: %r, master_secret_name: %r", wallet_handle, master_secret_name) if not hasattr(prover_create_master_secret, "cb"): logger.debug("prover_create_master_secret: Creating callback") prover_create_master_secret.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_master_secret_name = c_char_p(master_secret_name.encode('utf-8')) if master_secret_name else None out_master_secret_id = await do_call('indy_prover_create_master_secret', c_wallet_handle, c_master_secret_name, prover_create_master_secret.cb) res = out_master_secret_id.decode() logger.debug("prover_create_master_secret: <<< res: %r", res) return res async def prover_create_credential_req(wallet_handle: int, prover_did: str, cred_offer_json: str, cred_def_json: str, master_secret_id: str) -> (str, str): """ Creates a clam request for the given credential offer. The method creates a blinded master secret for a master secret identified by a provided name. The master secret identified by the name must be already stored in the secure wallet (see prover_create_master_secret) The blinded master secret is a part of the credential request. :param wallet_handle: wallet handle (created by open_wallet). :param prover_did: a DID of the prover :param cred_offer_json: credential offer as a json containing information about the issuer and a credential :param cred_def_json: credential definition json related to <cred_def_id> in <cred_offer_json> :param master_secret_id: the id of the master secret stored in the wallet :return: cred_req_json: Credential request json for creation of credential by Issuer { "prover_did" : string, "cred_def_id" : string, // Fields below can depend on Cred Def type "blinded_ms" : <blinded_master_secret>, "blinded_ms_correctness_proof" : <blinded_ms_correctness_proof>, "nonce": string } cred_req_metadata_json: Credential request metadata json for processing of received form Issuer credential. Note: cred_req_metadata_json mustn't be shared with Issuer. """ logger = logging.getLogger(__name__) logger.debug("prover_create_credential_req: >>> wallet_handle: %r, prover_did: %r, cred_offer_json: %r," " cred_def_json: %r, master_secret_id: %r", wallet_handle, prover_did, cred_offer_json, cred_def_json, master_secret_id) if not hasattr(prover_create_credential_req, "cb"): logger.debug("prover_create_credential_req: Creating callback") prover_create_credential_req.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_prover_did = c_char_p(prover_did.encode('utf-8')) c_cred_offer_json = c_char_p(cred_offer_json.encode('utf-8')) c_cred_def_json = c_char_p(cred_def_json.encode('utf-8')) c_master_secret_id = c_char_p(master_secret_id.encode('utf-8')) (credential_req_json, credential_req_metadata_json) = await do_call('indy_prover_create_credential_req', c_wallet_handle, c_prover_did, c_cred_offer_json, c_cred_def_json, c_master_secret_id, prover_create_credential_req.cb) credential_req_json = credential_req_json.decode() credential_req_metadata_json = credential_req_metadata_json.decode() res = (credential_req_json, credential_req_metadata_json) logger.debug("prover_create_credential_req: <<< res: %r", res) return res async def prover_store_credential(wallet_handle: int, cred_id: Optional[str], cred_req_metadata_json: str, cred_json: str, cred_def_json: str, rev_reg_def_json: Optional[str]) -> str: """ Check credential provided by Issuer for the given credential request, updates the credential by a master secret and stores in a secure wallet. To support efficient search the following tags will be created for stored credential: { "schema_id": <credential schema id>, "schema_issuer_did": <credential schema issuer did>, "schema_name": <credential schema name>, "schema_version": <credential schema version>, "issuer_did": <credential issuer did>, "cred_def_id": <credential definition id>, "rev_reg_id": <credential revocation registry id>, # "None" as string if not present // for every attribute in <credential values> "attr::<attribute name>::marker": "1", "attr::<attribute name>::value": <attribute raw value>, } :param wallet_handle: wallet handle (created by open_wallet). :param cred_id: (optional, default is a random one) identifier by which credential will be stored in the wallet :param cred_req_metadata_json: a credential request metadata created by prover_create_credential_req :param cred_json: credential json received from issuer :param cred_def_json: credential definition json related to <cred_def_id> in <cred_json> :param rev_reg_def_json: revocation registry definition json related to <rev_reg_def_id> in <cred_json> :return: cred_id: identifier by which credential is stored in the wallet """ logger = logging.getLogger(__name__) logger.debug("prover_store_credential: >>> wallet_handle: %r, cred_id: %r, " "cred_req_metadata_json: %r, cred_json: %r, cred_def_json: %r, rev_reg_def_json: %r", wallet_handle, cred_id, cred_req_metadata_json, cred_json, cred_def_json, rev_reg_def_json) if not hasattr(prover_store_credential, "cb"): logger.debug("prover_store_credential: Creating callback") prover_store_credential.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_cred_id = c_char_p(cred_id.encode('utf-8')) if cred_id else None c_cred_req_metadata_json = c_char_p(cred_req_metadata_json.encode('utf-8')) c_cred_json = c_char_p(cred_json.encode('utf-8')) c_cred_def_json = c_char_p(cred_def_json.encode('utf-8')) c_rev_reg_def_json = c_char_p(rev_reg_def_json.encode('utf-8')) if rev_reg_def_json is not None else None cred_id = await do_call('indy_prover_store_credential', c_wallet_handle, c_cred_id, c_cred_req_metadata_json, c_cred_json, c_cred_def_json, c_rev_reg_def_json, prover_store_credential.cb) res = cred_id.decode() logger.debug("prover_store_credential: <<< res: %r", res) return res async def prover_get_credential(wallet_handle: int, cred_id: str) -> str: """ Gets human readable credential by the given id. :param wallet_handle: wallet handle (created by open_wallet). :param cred_id: Identifier by which requested credential is stored in the wallet :return: credential json { "referent": string, // cred_id in the wallet "attrs": {"key1":"raw_value1", "key2":"raw_value2"}, "schema_id": string, "cred_def_id": string, "rev_reg_id": Optional<string>, "cred_rev_id": Optional<string> } """ logger = logging.getLogger(__name__) logger.debug("prover_get_credential: >>> wallet_handle: %r, cred_id: %r", wallet_handle, cred_id) if not hasattr(prover_get_credential, "cb"): logger.debug("prover_get_credential: Creating callback") prover_get_credential.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_cred_id = c_char_p(cred_id.encode('utf-8')) credentials_json = await do_call('indy_prover_get_credential', c_wallet_handle, c_cred_id, prover_get_credential.cb) res = credentials_json.decode() logger.debug("prover_get_credential: <<< res: %r", res) return res async def prover_delete_credential(wallet_handle: int, cred_id: str) -> None: """ Delete identified credential from wallet. :param wallet_handle: wallet handle (created by open_wallet). :param cred_id: identifier by which wallet stores credential to delete """ logger = logging.getLogger(__name__) logger.debug("prover_delete_credential: >>> wallet_handle: %r, cred_id: %r", wallet_handle, cred_id) if not hasattr(prover_delete_credential, "cb"): logger.debug("prover_delete_credential: Creating callback") prover_delete_credential.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32)) c_wallet_handle = c_int32(wallet_handle) c_cred_id = c_char_p(cred_id.encode('utf-8')) await do_call('indy_prover_delete_credential', c_wallet_handle, c_cred_id, prover_delete_credential.cb) logger.debug("prover_delete_credential: <<<") async def prover_get_credentials(wallet_handle: int, filter_json: str) -> str: """ Gets human readable credentials according to the filter. If filter is NULL, then all credentials are returned. Credentials can be filtered by tags created during saving of credential. NOTE: This method is deprecated because immediately returns all fetched credentials. Use <prover_search_credentials> to fetch records by small batches. :param wallet_handle: wallet handle (created by open_wallet). :param filter_json: filter for credentials { "schema_id": string, (Optional) "schema_issuer_did": string, (Optional) "schema_name": string, (Optional) "schema_version": string, (Optional) "issuer_did": string, (Optional) "cred_def_id": string, (Optional) } :return: credentials json [{ "referent": string, // cred_id in the wallet "attrs": {"key1":"raw_value1", "key2":"raw_value2"}, "schema_id": string, "cred_def_id": string, "rev_reg_id": Optional<string>, "cred_rev_id": Optional<string> }] """ logger = logging.getLogger(__name__) logger.debug("prover_get_credentials: >>> wallet_handle: %r, filter_json: %r", wallet_handle, filter_json) if not hasattr(prover_get_credentials, "cb"): logger.debug("prover_get_credentials: Creating callback") prover_get_credentials.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_filter_json = c_char_p(filter_json.encode('utf-8')) credentials_json = await do_call('indy_prover_get_credentials', c_wallet_handle, c_filter_json, prover_get_credentials.cb) res = credentials_json.decode() logger.debug("prover_get_credentials: <<< res: %r", res) return res async def prover_search_credentials(wallet_handle: int, query_json: str) -> (int, int): """ Search for credentials stored in wallet. Credentials can be filtered by tags created during saving of credential. Instead of immediately returning of fetched credentials this call returns search_handle that can be used later to fetch records by small batches (with prover_credentials_search_fetch_records). :param wallet_handle: wallet handle (created by open_wallet). :param query_json: wql style filter for credentials searching based on tags. where wql query: indy-sdk/docs/design/011-wallet-query-language/README.md :return: search_handle: Search handle that can be used later to fetch records by small batches (with prover_credentials_search_fetch_records) total_count: Total count of records """ logger = logging.getLogger(__name__) logger.debug("prover_search_credentials: >>> wallet_handle: %r, query_json: %r", wallet_handle, query_json) if not hasattr(prover_search_credentials, "cb"): logger.debug("prover_search_credentials: Creating callback") prover_search_credentials.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_int32, c_uint)) c_wallet_handle = c_int32(wallet_handle) c_query_json = c_char_p(query_json.encode('utf-8')) res = await do_call('indy_prover_search_credentials', c_wallet_handle, c_query_json, prover_search_credentials.cb) logger.debug("prover_search_credentials: <<< res: %r", res) return res async def prover_fetch_credentials(search_handle: int, count: int) -> str: """ Fetch next credentials for search. :param search_handle: Search handle (created by prover_open_credentials_search) :param count: Count of records to fetch :return: credentials_json: List of credentials: [{ "referent": string, // cred_id in the wallet "attrs": {"key1":"raw_value1", "key2":"raw_value2"}, "schema_id": string, "cred_def_id": string, "rev_reg_id": Optional<string>, "cred_rev_id": Optional<string> }] NOTE: The list of length less than the requested count means credentials search iterator is completed. """ logger = logging.getLogger(__name__) logger.debug("prover_fetch_credentials: >>> search_handle: %r, count: %r", search_handle, count) if not hasattr(prover_fetch_credentials, "cb"): logger.debug("prover_fetch_credentials: Creating callback") prover_fetch_credentials.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_search_handle = c_int32(search_handle) c_count = c_uint(count) credentials_json = await do_call('indy_prover_fetch_credentials', c_search_handle, c_count, prover_fetch_credentials.cb) res = credentials_json.decode() logger.debug("prover_fetch_credentials: <<< res: %r", res) return res async def prover_close_credentials_search(search_handle: int) -> None: """ Close credentials search (make search handle invalid) :param search_handle: Search handle (created by prover_open_credentials_search) :return: None """ logger = logging.getLogger(__name__) logger.debug("prover_close_credentials_search: >>> search_handle: %r", search_handle) if not hasattr(prover_close_credentials_search, "cb"): logger.debug("prover_close_credentials_search: Creating callback") prover_close_credentials_search.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32)) c_search_handle = c_int32(search_handle) res = await do_call('indy_prover_close_credentials_search', c_search_handle, prover_close_credentials_search.cb) logger.debug("prover_close_credentials_search: <<< res: %r", res) return res async def prover_get_credentials_for_proof_req(wallet_handle: int, proof_request_json: str) -> str: """ Gets human readable credentials matching the given proof request. NOTE: This method is deprecated because immediately returns all fetched credentials. Use <prover_search_credentials_for_proof_req> to fetch records by small batches. :param wallet_handle: wallet handle (created by open_wallet). :param proof_request_json: proof request json { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } where: attr_referent: Proof-request local identifier of requested attribute attr_info: Describes requested attribute { "name": string, // attribute name, (case insensitive and ignore spaces) "restrictions": Optional<[<filter_json>]>, // see above // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } predicate_referent: Proof-request local identifier of requested attribute predicate predicate_info: Describes requested attribute predicate { "name": attribute name, (case insensitive and ignore spaces) "p_type": predicate type (Currently >= only) "p_value": predicate value "restrictions": Optional<[<filter_json>]>, // see above // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } non_revoc_interval: Defines non-revocation interval { "from": Optional<int>, // timestamp of interval beginning "to": Optional<int>, // timestamp of interval ending } :return: json with credentials for the given proof request. { "requested_attrs": { "<attr_referent>": [{ cred_info: <credential_info>, interval: Optional<non_revoc_interval> }], ..., }, "requested_predicates": { "requested_predicates": [{ cred_info: <credential_info>, timestamp: Optional<integer> }, { cred_info: <credential_2_info>, timestamp: Optional<integer> }], "requested_predicate_2_referent": [{ cred_info: <credential_2_info>, timestamp: Optional<integer> }] } }, where credential is { "referent": <string>, "attrs": [{"attr_name" : "attr_raw_value"}], "schema_id": string, "cred_def_id": string, "rev_reg_id": Optional<int>, "cred_rev_id": Optional<int>, } """ logger = logging.getLogger(__name__) logger.debug("prover_get_credentials_for_proof_req: >>> wallet_handle: %r, proof_request_json: %r", wallet_handle, proof_request_json) if not hasattr(prover_get_credentials_for_proof_req, "cb"): logger.debug("prover_get_credentials_for_proof_req: Creating callback") prover_get_credentials_for_proof_req.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_proof_request_json = c_char_p(proof_request_json.encode('utf-8')) credentials_json = await do_call('indy_prover_get_credentials_for_proof_req', c_wallet_handle, c_proof_request_json, prover_get_credentials_for_proof_req.cb) res = credentials_json.decode() logger.debug("prover_get_credentials_for_proof_req: <<< res: %r", res) return res async def prover_search_credentials_for_proof_req(wallet_handle: int, proof_request_json: str, extra_query_json: Optional[str]) -> int: """ Search for credentials matching the given proof request. Instead of immediately returning of fetched credentials this call returns search_handle that can be used later to fetch records by small batches (with prover_fetch_credentials_for_proof_req). :param wallet_handle: wallet handle (created by open_wallet). :param proof_request_json: proof request json { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } :param extra_query_json:(Optional) List of extra queries that will be applied to correspondent attribute/predicate: { "<attr_referent>": <wql query>, "<predicate_referent>": <wql query>, } where wql query: indy-sdk/docs/design/011-wallet-query-language/README.md :return: search_handle: Search handle that can be used later to fetch records by small batches (with prover_fetch_credentials_for_proof_req) """ logger = logging.getLogger(__name__) logger.debug("prover_search_credentials_for_proof_req: >>> wallet_handle: %r, proof_request_json: %r, " "extra_query_json: %r", wallet_handle, proof_request_json, extra_query_json) if not hasattr(prover_search_credentials_for_proof_req, "cb"): logger.debug("prover_search_credentials_for_proof_req: Creating callback") prover_search_credentials_for_proof_req.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_int32)) c_wallet_handle = c_int32(wallet_handle) c_proof_request_json = c_char_p(proof_request_json.encode('utf-8')) c_extra_query_json = c_char_p(extra_query_json.encode('utf-8')) if extra_query_json is not None else None res = await do_call('indy_prover_search_credentials_for_proof_req', c_wallet_handle, c_proof_request_json, c_extra_query_json, prover_search_credentials_for_proof_req.cb) logger.debug("prover_search_credentials_for_proof_req: <<< res: %r", res) return res async def prover_fetch_credentials_for_proof_req(search_handle: int, item_referent: str, count: int) -> str: """ Fetch next records for the requested item using proof request search handle (created by prover_search_credentials_for_proof_req). :param search_handle: Search handle (created by prover_search_credentials_for_proof_req) :param item_referent: Referent of attribute/predicate in the proof request :param count: Count of records to fetch :return: credentials_json: List of credentials for the given proof request. [{ cred_info: <credential_info>, interval: Optional<non_revoc_interval> }] where credential_info is { "referent": <string>, "attrs": [{"attr_name" : "attr_raw_value"}], "schema_id": string, "cred_def_id": string, "rev_reg_id": Optional<int>, "cred_rev_id": Optional<int>, } NOTE: The list of length less than the requested count means that search iterator correspondent to the requested <item_referent> is completed. """ logger = logging.getLogger(__name__) logger.debug("prover_fetch_credentials_for_proof_req: >>> search_handle: %r, item_referent: %r, count: %r", search_handle, item_referent, count) if not hasattr(prover_fetch_credentials_for_proof_req, "cb"): logger.debug("prover_fetch_credentials_for_proof_req: Creating callback") prover_fetch_credentials_for_proof_req.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_search_handle = c_int32(search_handle) c_item_referent = c_char_p(item_referent.encode('utf-8')) c_count = c_uint(count) credentials_json = await do_call('indy_prover_fetch_credentials_for_proof_req', c_search_handle, c_item_referent, c_count, prover_fetch_credentials_for_proof_req.cb) res = credentials_json.decode() logger.debug("prover_fetch_credentials_for_proof_req: <<< res: %r", res) return res async def prover_close_credentials_search_for_proof_req(search_handle: int) -> None: """ Close credentials search for proof request (make search handle invalid) :param search_handle: Search handle (created by prover_search_credentials_for_proof_req) :return: None """ logger = logging.getLogger(__name__) logger.debug("prover_close_credentials_search_for_proof_req: >>> search_handle: %r", search_handle) if not hasattr(prover_close_credentials_search_for_proof_req, "cb"): logger.debug("prover_close_credentials_search_for_proof_req: Creating callback") prover_close_credentials_search_for_proof_req.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32)) c_search_handle = c_int32(search_handle) res = await do_call('indy_prover_close_credentials_search_for_proof_req', c_search_handle, prover_close_credentials_search_for_proof_req.cb) logger.debug("prover_close_credentials_search_for_proof_req: <<< res: %r", res) return res async def prover_create_proof(wallet_handle: int, proof_req_json: str, requested_credentials_json: str, master_secret_name: str, schemas_json: str, credential_defs_json: str, rev_states_json: str) -> str: """ Creates a proof according to the given proof request Either a corresponding credential with optionally revealed attributes or self-attested attribute must be provided for each requested attribute (see indy_prover_get_credentials_for_pool_req). A proof request may request multiple credentials from different schemas and different issuers. All required schemas, public keys and revocation registries must be provided. The proof request also contains nonce. The proof contains either proof or self-attested attribute value for each requested attribute. :param wallet_handle: wallet handle (created by open_wallet). :param proof_req_json: proof request json { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } :param requested_credentials_json: either a credential or self-attested attribute for each requested attribute { "self_attested_attributes": { "self_attested_attribute_referent": string }, "requested_attributes": { "requested_attribute_referent_1": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }}, "requested_attribute_referent_2": {"cred_id": string, "timestamp": Optional<number>, revealed: <bool> }} }, "requested_predicates": { "requested_predicates_referent_1": {"cred_id": string, "timestamp": Optional<number> }}, } } :param master_secret_name: the id of the master secret stored in the wallet :param schemas_json: all schemas json participating in the proof request { <schema1_id>: <schema1_json>, <schema2_id>: <schema2_json>, <schema3_id>: <schema3_json>, } :param credential_defs_json: all credential definitions json participating in the proof request { "cred_def1_id": <credential_def1_json>, "cred_def2_id": <credential_def2_json>, "cred_def3_id": <credential_def3_json>, } :param rev_states_json: all revocation states json participating in the proof request { "rev_reg_def1_id": { "timestamp1": <rev_state1>, "timestamp2": <rev_state2>, }, "rev_reg_def2_id": { "timestamp3": <rev_state3> }, "rev_reg_def3_id": { "timestamp4": <rev_state4> }, } where wql query: indy-sdk/docs/design/011-wallet-query-language/README.md attr_referent: Proof-request local identifier of requested attribute attr_info: Describes requested attribute { "name": string, // attribute name, (case insensitive and ignore spaces) "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } predicate_referent: Proof-request local identifier of requested attribute predicate predicate_info: Describes requested attribute predicate { "name": attribute name, (case insensitive and ignore spaces) "p_type": predicate type (Currently >= only) "p_value": predicate value "restrictions": Optional<[<wql query>]>, // if specified, credential must satisfy to one of the given restriction. "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval this attribute // (overrides proof level interval) } non_revoc_interval: Defines non-revocation interval { "from": Optional<int>, // timestamp of interval beginning "to": Optional<int>, // timestamp of interval ending } :return: Proof json For each requested attribute either a proof (with optionally revealed attribute value) or self-attested attribute value is provided. Each proof is associated with a credential and corresponding schema_id, cred_def_id, rev_reg_id and timestamp. There is also aggregated proof part common for all credential proofs. { "requested_proof": { "revealed_attrs": { "requested_attr1_id": {sub_proof_index: number, raw: string, encoded: string}, "requested_attr4_id": {sub_proof_index: number: string, encoded: string}, }, "unrevealed_attrs": { "requested_attr3_id": {sub_proof_index: number} }, "self_attested_attrs": { "requested_attr2_id": self_attested_value, }, "requested_predicates": { "requested_predicate_1_referent": {sub_proof_index: int}, "requested_predicate_2_referent": {sub_proof_index: int}, } } "proof": { "proofs": [ <credential_proof>, <credential_proof>, <credential_proof> ], "aggregated_proof": <aggregated_proof> } "identifiers": [{schema_id, cred_def_id, Optional<rev_reg_id>, Optional<timestamp>}] } """ logger = logging.getLogger(__name__) logger.debug("prover_create_proof: >>> wallet_handle: %r, proof_req_json: %r, requested_credentials_json: %r, " "schemas_json: %r, master_secret_name: %r, credential_defs_json: %r, rev_infos_json: %r", wallet_handle, proof_req_json, requested_credentials_json, schemas_json, master_secret_name, credential_defs_json, rev_states_json) if not hasattr(prover_create_proof, "cb"): logger.debug("prover_create_proof: Creating callback") prover_create_proof.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_wallet_handle = c_int32(wallet_handle) c_proof_req_json = c_char_p(proof_req_json.encode('utf-8')) c_requested_credentials_json = c_char_p(requested_credentials_json.encode('utf-8')) c_schemas_json = c_char_p(schemas_json.encode('utf-8')) c_master_secret_name = c_char_p(master_secret_name.encode('utf-8')) c_credential_defs_json = c_char_p(credential_defs_json.encode('utf-8')) c_rev_infos_json = c_char_p(rev_states_json.encode('utf-8')) proof_json = await do_call('indy_prover_create_proof', c_wallet_handle, c_proof_req_json, c_requested_credentials_json, c_master_secret_name, c_schemas_json, c_credential_defs_json, c_rev_infos_json, prover_create_proof.cb) res = proof_json.decode() logger.debug("prover_create_proof: <<< res: %r", res) return res async def verifier_verify_proof(proof_request_json: str, proof_json: str, schemas_json: str, credential_defs_json: str, rev_reg_defs_json: str, rev_regs_json: str) -> bool: """ Verifies a proof (of multiple credential). All required schemas, public keys and revocation registries must be provided. :param proof_request_json: { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } :param proof_json: created for request proof json { "requested_proof": { "revealed_attrs": { "requested_attr1_id": {sub_proof_index: number, raw: string, encoded: string}, "requested_attr4_id": {sub_proof_index: number: string, encoded: string}, }, "unrevealed_attrs": { "requested_attr3_id": {sub_proof_index: number} }, "self_attested_attrs": { "requested_attr2_id": self_attested_value, }, "requested_predicates": { "requested_predicate_1_referent": {sub_proof_index: int}, "requested_predicate_2_referent": {sub_proof_index: int}, } } "proof": { "proofs": [ <credential_proof>, <credential_proof>, <credential_proof> ], "aggregated_proof": <aggregated_proof> } "identifiers": [{schema_id, cred_def_id, Optional<rev_reg_id>, Optional<timestamp>}] } :param schemas_json: all schema jsons participating in the proof { <schema1_id>: <schema1_json>, <schema2_id>: <schema2_json>, <schema3_id>: <schema3_json>, } :param credential_defs_json: all credential definitions json participating in the proof { "cred_def1_id": <credential_def1_json>, "cred_def2_id": <credential_def2_json>, "cred_def3_id": <credential_def3_json>, } :param rev_reg_defs_json: all revocation registry definitions json participating in the proof { "rev_reg_def1_id": <rev_reg_def1_json>, "rev_reg_def2_id": <rev_reg_def2_json>, "rev_reg_def3_id": <rev_reg_def3_json>, } :param rev_regs_json: all revocation registries json participating in the proof { "rev_reg_def1_id": { "timestamp1": <rev_reg1>, "timestamp2": <rev_reg2>, }, "rev_reg_def2_id": { "timestamp3": <rev_reg3> }, "rev_reg_def3_id": { "timestamp4": <rev_reg4> }, } :return: valid: true - if signature is valid, false - otherwise """ logger = logging.getLogger(__name__) logger.debug("verifier_verify_proof: >>> proof_request_json: %r, proof_json: %r, schemas_json: %r, " "credential_defs_jsons: %r, rev_reg_defs_json: %r, rev_regs_json: %r", proof_request_json, proof_json, schemas_json, credential_defs_json, rev_reg_defs_json, rev_regs_json) if not hasattr(verifier_verify_proof, "cb"): logger.debug("verifier_verify_proof: Creating callback") verifier_verify_proof.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_bool)) c_proof_request_json = c_char_p(proof_request_json.encode('utf-8')) c_proof_json = c_char_p(proof_json.encode('utf-8')) c_schemas_json = c_char_p(schemas_json.encode('utf-8')) c_credential_defs_json = c_char_p(credential_defs_json.encode('utf-8')) c_rev_reg_defs_json = c_char_p(rev_reg_defs_json.encode('utf-8')) c_rev_regs_json = c_char_p(rev_regs_json.encode('utf-8')) res = await do_call('indy_verifier_verify_proof', c_proof_request_json, c_proof_json, c_schemas_json, c_credential_defs_json, c_rev_reg_defs_json, c_rev_regs_json, verifier_verify_proof.cb) logger.debug("verifier_verify_proof: <<< res: %r", res) return res async def create_revocation_state(blob_storage_reader_handle: int, rev_reg_def_json: str, rev_reg_delta_json: str, timestamp: int, cred_rev_id: str) -> str: """ Create revocation state for a credential in the particular time moment. :param blob_storage_reader_handle: configuration of blob storage reader handle that will allow to read revocation tails :param rev_reg_def_json: revocation registry definition json :param rev_reg_delta_json: revocation registry definition delta json :param timestamp: time represented as a total number of seconds from Unix Epoch :param cred_rev_id: user credential revocation id in revocation registry :return: revocation state json { "rev_reg": <revocation registry>, "witness": <witness>, "timestamp" : integer } """ logger = logging.getLogger(__name__) logger.debug("create_revocation_info: >>> blob_storage_reader_handle: %r, rev_reg_def_json: %r," " rev_reg_delta_json: %r, timestamp: %r, cred_rev_id: %r", blob_storage_reader_handle, rev_reg_def_json, rev_reg_delta_json, timestamp, cred_rev_id) if not hasattr(create_revocation_state, "cb"): logger.debug("create_revocation_state: Creating callback") create_revocation_state.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_blob_storage_reader_handle = c_int32(blob_storage_reader_handle) c_rev_reg_def_json = c_char_p(rev_reg_def_json.encode('utf-8')) c_rev_reg_delta_json = c_char_p(rev_reg_delta_json.encode('utf-8')) c_timestamp = c_uint64(timestamp) c_cred_rev_id = c_char_p(cred_rev_id.encode('utf-8')) rev_state_json = await do_call('indy_create_revocation_state', c_blob_storage_reader_handle, c_rev_reg_def_json, c_rev_reg_delta_json, c_timestamp, c_cred_rev_id, create_revocation_state.cb) res = rev_state_json.decode() logger.debug("create_revocation_state: <<< res: %r", res) return res async def update_revocation_state(blob_storage_reader_handle: int, rev_state_json: str, rev_reg_def_json: str, rev_reg_delta_json: str, timestamp: int, cred_rev_id: str) -> str: """ Create new revocation state for a credential based on existed state at the particular time moment (to reduce calculation time). :param blob_storage_reader_handle: configuration of blob storage reader handle that will allow to read revocation tails :param rev_state_json: revocation registry state json :param rev_reg_def_json: revocation registry definition json :param rev_reg_delta_json: revocation registry definition delta json :param timestamp: time represented as a total number of seconds from Unix Epoch :param cred_rev_id: user credential revocation id in revocation registry :return: revocation state json { "rev_reg": <revocation registry>, "witness": <witness>, "timestamp" : integer } """ logger = logging.getLogger(__name__) logger.debug("update_revocation_state: >>> blob_storage_reader_handle: %r, rev_state_json: %r, " "rev_reg_def_json: %r, rev_reg_delta_json: %r, timestamp: %r, cred_rev_id: %r", blob_storage_reader_handle, rev_state_json, rev_reg_def_json, rev_reg_delta_json, timestamp, cred_rev_id) if not hasattr(update_revocation_state, "cb"): logger.debug("update_revocation_state: Creating callback") update_revocation_state.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_char_p)) c_blob_storage_reader_handle = c_int32(blob_storage_reader_handle) c_rev_state_json = c_char_p(rev_state_json.encode('utf-8')) c_rev_reg_def_json = c_char_p(rev_reg_def_json.encode('utf-8')) c_rev_reg_delta_json = c_char_p(rev_reg_delta_json.encode('utf-8')) c_timestamp = c_uint64(timestamp) c_cred_rev_id = c_char_p(cred_rev_id.encode('utf-8')) updated_rev_state_json = await do_call('indy_update_revocation_state', c_blob_storage_reader_handle, c_rev_state_json, c_rev_reg_def_json, c_rev_reg_delta_json, c_timestamp, c_cred_rev_id, update_revocation_state.cb) res = updated_rev_state_json.decode() logger.debug("update_revocation_state: <<< res: %r", res) return res
47.793883
176
0.613978
642721c1b07336bb142e6ecb3f0041755603ebf3
14,633
py
Python
mypy/test/testcheck.py
Zac-HD/mypy
d5b66a8411036d300e8477be6d1bd40bd28ada28
[ "PSF-2.0" ]
null
null
null
mypy/test/testcheck.py
Zac-HD/mypy
d5b66a8411036d300e8477be6d1bd40bd28ada28
[ "PSF-2.0" ]
1
2021-05-07T15:53:17.000Z
2021-05-07T18:43:12.000Z
mypy/test/testcheck.py
Zac-HD/mypy
d5b66a8411036d300e8477be6d1bd40bd28ada28
[ "PSF-2.0" ]
null
null
null
"""Type checker test cases""" import os import re import sys from typing import Dict, List, Set, Tuple from mypy import build from mypy.build import Graph from mypy.modulefinder import BuildSource, SearchPaths, FindModuleCache from mypy.test.config import test_temp_dir, test_data_prefix from mypy.test.data import ( DataDrivenTestCase, DataSuite, FileOperation, module_from_path ) from mypy.test.helpers import ( assert_string_arrays_equal, normalize_error_messages, assert_module_equivalence, update_testcase_output, parse_options, assert_target_equivalence, check_test_output_files, perform_file_operations, ) from mypy.errors import CompileError from mypy.semanal_main import core_modules # List of files that contain test case descriptions. typecheck_files = [ 'check-basic.test', 'check-union-or-syntax.test', 'check-callable.test', 'check-classes.test', 'check-statements.test', 'check-generics.test', 'check-dynamic-typing.test', 'check-inference.test', 'check-inference-context.test', 'check-kwargs.test', 'check-overloading.test', 'check-type-checks.test', 'check-abstract.test', 'check-multiple-inheritance.test', 'check-super.test', 'check-modules.test', 'check-typevar-values.test', 'check-unsupported.test', 'check-unreachable-code.test', 'check-unions.test', 'check-isinstance.test', 'check-lists.test', 'check-namedtuple.test', 'check-narrowing.test', 'check-typeddict.test', 'check-type-aliases.test', 'check-ignore.test', 'check-type-promotion.test', 'check-semanal-error.test', 'check-flags.test', 'check-incremental.test', 'check-serialize.test', 'check-bound.test', 'check-optional.test', 'check-fastparse.test', 'check-warnings.test', 'check-async-await.test', 'check-newtype.test', 'check-class-namedtuple.test', 'check-selftype.test', 'check-python2.test', 'check-columns.test', 'check-functions.test', 'check-tuples.test', 'check-expressions.test', 'check-generic-subtyping.test', 'check-varargs.test', 'check-newsyntax.test', 'check-protocols.test', 'check-underscores.test', 'check-classvar.test', 'check-enum.test', 'check-incomplete-fixture.test', 'check-custom-plugin.test', 'check-default-plugin.test', 'check-attr.test', 'check-ctypes.test', 'check-dataclasses.test', 'check-final.test', 'check-redefine.test', 'check-literal.test', 'check-newsemanal.test', 'check-inline-config.test', 'check-reports.test', 'check-errorcodes.test', 'check-annotated.test', 'check-parameter-specification.test', 'check-generic-alias.test', 'check-typeguard.test', 'check-functools.test', 'check-singledispatch.test', 'check-slots.test', 'check-formatting.test', ] # Tests that use Python 3.8-only AST features (like expression-scoped ignores): if sys.version_info >= (3, 8): typecheck_files.append('check-python38.test') if sys.version_info >= (3, 9): typecheck_files.append('check-python39.test') # Special tests for platforms with case-insensitive filesystems. if sys.platform in ('darwin', 'win32'): typecheck_files.extend(['check-modules-case.test']) class TypeCheckSuite(DataSuite): files = typecheck_files def run_case(self, testcase: DataDrivenTestCase) -> None: incremental = ('incremental' in testcase.name.lower() or 'incremental' in testcase.file or 'serialize' in testcase.file) if incremental: # Incremental tests are run once with a cold cache, once with a warm cache. # Expect success on first run, errors from testcase.output (if any) on second run. num_steps = max([2] + list(testcase.output2.keys())) # Check that there are no file changes beyond the last run (they would be ignored). for dn, dirs, files in os.walk(os.curdir): for file in files: m = re.search(r'\.([2-9])$', file) if m and int(m.group(1)) > num_steps: raise ValueError( 'Output file {} exists though test case only has {} runs'.format( file, num_steps)) steps = testcase.find_steps() for step in range(1, num_steps + 1): idx = step - 2 ops = steps[idx] if idx < len(steps) and idx >= 0 else [] self.run_case_once(testcase, ops, step) else: self.run_case_once(testcase) def run_case_once(self, testcase: DataDrivenTestCase, operations: List[FileOperation] = [], incremental_step: int = 0) -> None: original_program_text = '\n'.join(testcase.input) module_data = self.parse_module(original_program_text, incremental_step) # Unload already loaded plugins, they may be updated. for file, _ in testcase.files: module = module_from_path(file) if module.endswith('_plugin') and module in sys.modules: del sys.modules[module] if incremental_step == 0 or incremental_step == 1: # In run 1, copy program text to program file. for module_name, program_path, program_text in module_data: if module_name == '__main__': with open(program_path, 'w', encoding='utf8') as f: f.write(program_text) break elif incremental_step > 1: # In runs 2+, copy *.[num] files to * files. perform_file_operations(operations) # Parse options after moving files (in case mypy.ini is being moved). options = parse_options(original_program_text, testcase, incremental_step) options.use_builtins_fixtures = True options.show_traceback = True # Enable some options automatically based on test file name. if 'optional' in testcase.file: options.strict_optional = True if 'columns' in testcase.file: options.show_column_numbers = True if 'errorcodes' in testcase.file: options.show_error_codes = True if incremental_step and options.incremental: # Don't overwrite # flags: --no-incremental in incremental test cases options.incremental = True else: options.incremental = False # Don't waste time writing cache unless we are specifically looking for it if not testcase.writescache: options.cache_dir = os.devnull sources = [] for module_name, program_path, program_text in module_data: # Always set to none so we're forced to reread the module in incremental mode sources.append(BuildSource(program_path, module_name, None if incremental_step else program_text)) plugin_dir = os.path.join(test_data_prefix, 'plugins') sys.path.insert(0, plugin_dir) res = None try: res = build.build(sources=sources, options=options, alt_lib_path=test_temp_dir) a = res.errors except CompileError as e: a = e.messages finally: assert sys.path[0] == plugin_dir del sys.path[0] if testcase.normalize_output: a = normalize_error_messages(a) # Make sure error messages match if incremental_step == 0: # Not incremental msg = 'Unexpected type checker output ({}, line {})' output = testcase.output elif incremental_step == 1: msg = 'Unexpected type checker output in incremental, run 1 ({}, line {})' output = testcase.output elif incremental_step > 1: msg = ('Unexpected type checker output in incremental, run {}'.format( incremental_step) + ' ({}, line {})') output = testcase.output2.get(incremental_step, []) else: raise AssertionError() if output != a and testcase.config.getoption('--update-data', False): update_testcase_output(testcase, a) assert_string_arrays_equal(output, a, msg.format(testcase.file, testcase.line)) if res: if options.cache_dir != os.devnull: self.verify_cache(module_data, res.errors, res.manager, res.graph) name = 'targets' if incremental_step: name += str(incremental_step + 1) expected = testcase.expected_fine_grained_targets.get(incremental_step + 1) actual = res.manager.processed_targets # Skip the initial builtin cycle. actual = [t for t in actual if not any(t.startswith(mod) for mod in core_modules + ['mypy_extensions'])] if expected is not None: assert_target_equivalence(name, expected, actual) if incremental_step > 1: suffix = '' if incremental_step == 2 else str(incremental_step - 1) expected_rechecked = testcase.expected_rechecked_modules.get(incremental_step - 1) if expected_rechecked is not None: assert_module_equivalence( 'rechecked' + suffix, expected_rechecked, res.manager.rechecked_modules) expected_stale = testcase.expected_stale_modules.get(incremental_step - 1) if expected_stale is not None: assert_module_equivalence( 'stale' + suffix, expected_stale, res.manager.stale_modules) if testcase.output_files: check_test_output_files(testcase, incremental_step, strip_prefix='tmp/') def verify_cache(self, module_data: List[Tuple[str, str, str]], a: List[str], manager: build.BuildManager, graph: Graph) -> None: # There should be valid cache metadata for each module except # for those that had an error in themselves or one of their # dependencies. error_paths = self.find_error_message_paths(a) busted_paths = {m.path for id, m in manager.modules.items() if graph[id].transitive_error} modules = self.find_module_files(manager) modules.update({module_name: path for module_name, path, text in module_data}) missing_paths = self.find_missing_cache_files(modules, manager) # We would like to assert error_paths.issubset(busted_paths) # but this runs into trouble because while some 'notes' are # really errors that cause an error to be marked, many are # just notes attached to other errors. assert error_paths or not busted_paths, "Some modules reported error despite no errors" if not missing_paths == busted_paths: raise AssertionError("cache data discrepancy %s != %s" % (missing_paths, busted_paths)) assert os.path.isfile(os.path.join(manager.options.cache_dir, ".gitignore")) cachedir_tag = os.path.join(manager.options.cache_dir, "CACHEDIR.TAG") assert os.path.isfile(cachedir_tag) with open(cachedir_tag) as f: assert f.read().startswith("Signature: 8a477f597d28d172789f06886806bc55") def find_error_message_paths(self, a: List[str]) -> Set[str]: hits = set() for line in a: m = re.match(r'([^\s:]+):(\d+:)?(\d+:)? (error|warning|note):', line) if m: p = m.group(1) hits.add(p) return hits def find_module_files(self, manager: build.BuildManager) -> Dict[str, str]: modules = {} for id, module in manager.modules.items(): modules[id] = module.path return modules def find_missing_cache_files(self, modules: Dict[str, str], manager: build.BuildManager) -> Set[str]: ignore_errors = True missing = {} for id, path in modules.items(): meta = build.find_cache_meta(id, path, manager) if not build.validate_meta(meta, id, path, ignore_errors, manager): missing[id] = path return set(missing.values()) def parse_module(self, program_text: str, incremental_step: int = 0) -> List[Tuple[str, str, str]]: """Return the module and program names for a test case. Normally, the unit tests will parse the default ('__main__') module and follow all the imports listed there. You can override this behavior and instruct the tests to check multiple modules by using a comment like this in the test case input: # cmd: mypy -m foo.bar foo.baz You can also use `# cmdN:` to have a different cmd for incremental step N (2, 3, ...). Return a list of tuples (module name, file name, program text). """ m = re.search('# cmd: mypy -m ([a-zA-Z0-9_. ]+)$', program_text, flags=re.MULTILINE) if incremental_step > 1: alt_regex = '# cmd{}: mypy -m ([a-zA-Z0-9_. ]+)$'.format(incremental_step) alt_m = re.search(alt_regex, program_text, flags=re.MULTILINE) if alt_m is not None: # Optionally return a different command if in a later step # of incremental mode, otherwise default to reusing the # original cmd. m = alt_m if m: # The test case wants to use a non-default main # module. Look up the module and give it as the thing to # analyze. module_names = m.group(1) out = [] search_paths = SearchPaths((test_temp_dir,), (), (), ()) cache = FindModuleCache(search_paths, fscache=None, options=None) for module_name in module_names.split(' '): path = cache.find_module(module_name) assert isinstance(path, str), "Can't find ad hoc case file: %s" % module_name with open(path, encoding='utf8') as f: program_text = f.read() out.append((module_name, path, program_text)) return out else: return [('__main__', 'main', program_text)]
41.571023
98
0.607668
2ee1d06ebb42414858bd38780c187452087e6612
2,778
py
Python
airflow/plugins/operators/code_analyzer/utils/tests/test_evaluation.py
teiresias-personal-data-discovery/teiresias-system
50e9d08d6924480f120d2d4f9fbebdc6035a5c5b
[ "MIT" ]
2
2021-09-06T17:32:48.000Z
2022-02-24T19:58:41.000Z
airflow/plugins/operators/code_analyzer/utils/tests/test_evaluation.py
teiresias-personal-data-discovery/teiresias-system
50e9d08d6924480f120d2d4f9fbebdc6035a5c5b
[ "MIT" ]
null
null
null
airflow/plugins/operators/code_analyzer/utils/tests/test_evaluation.py
teiresias-personal-data-discovery/teiresias-system
50e9d08d6924480f120d2d4f9fbebdc6035a5c5b
[ "MIT" ]
null
null
null
import pytest from operators.code_analyzer.utils.analysis.evaluation import get_common_storage_environment, evaluate_traces, join_facts from operators.code_analyzer.utils.tests.mocks.intermediate_results import resolved @pytest.mark.parametrize("storage, tool, env, environment_occurrance", [ ('postgres', 'docker', { 'POSTGRES_USER': 'this--user', 'POSTGRES_PASSWORD': 'that--pw', 'POSTGRES_UNSURE': 'TRUE', }, { 'POSTGRES_PASSWORD': 'that--pw', 'POSTGRES_USER': 'this--user' }), ]) def test_get_common_storage_environment(storage, tool, env, environment_occurrance): assert get_common_storage_environment(storage, tool, env) == environment_occurrance @pytest.mark.parametrize( "traces, environment, storage, storage_modules, tool, joined_facts", [ ({ 'host': '127.0.0.1', 'login_user': 'admin', 'port': "9876" }, { 'POSTGRES_PASSWORD': 'secure' }, 'mongodb', ['mongodb_user'], 'ansible', { 'host': '127.0.0.1', 'port': '9876', 'user': 'admin' }), ]) def test_join_facts(traces, environment, storage, storage_modules, tool, joined_facts): assert join_facts(traces, environment, storage, storage_modules, tool) == joined_facts @pytest.mark.parametrize("resolved, environment, connection_items", [ (resolved, {}, { 'postgres-/thesis-analyzeMe.git_2021-05-16_15:38:48/docker-compose.yaml.postgres': { 'values': { 'port': '5432', 'user': 'admin', 'db': 'test' }, 'source': '/thesis-analyzeMe.git_2021-05-16_15:38:48/docker-compose.yaml', 'storage_type': 'postgres' }, 'reporting-db-/thesis-analyzeMe.git_2021-05-16_15:38:48/docker-compose.yaml.mongodb': { 'values': {}, 'source': '/thesis-analyzeMe.git_2021-05-16_15:38:48/docker-compose.yaml', 'storage_type': 'mongodb' }, 'webservers-/thesis-analyzeMe.git_2021-05-16_15:38:48/playbooks/4_pg.yml.postgres': { 'values': { 'port': '5432', 'user': 'django', 'db': 'myapp', 'password': 'mysupersecretpassword' }, 'source': '/thesis-analyzeMe.git_2021-05-16_15:38:48/playbooks/4_pg.yml', 'storage_type': 'postgres' } }), ]) def test_evaluate_traces(resolved, environment, connection_items): assert evaluate_traces(resolved, environment) == connection_items
35.615385
121
0.560115
cee6ea35cd28dd1783f2502385c2f5b3d0c09ff4
4,368
py
Python
ros2doctor/ros2doctor/api/platform.py
LoyVanBeek/ros2cli
93e717c042a06d21e267a89a7de7780335acb323
[ "Apache-2.0" ]
null
null
null
ros2doctor/ros2doctor/api/platform.py
LoyVanBeek/ros2cli
93e717c042a06d21e267a89a7de7780335acb323
[ "Apache-2.0" ]
null
null
null
ros2doctor/ros2doctor/api/platform.py
LoyVanBeek/ros2cli
93e717c042a06d21e267a89a7de7780335acb323
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import platform from typing import Tuple from ros2doctor.api import DoctorCheck from ros2doctor.api import DoctorReport from ros2doctor.api import Report from ros2doctor.api import Result from ros2doctor.api.format import doctor_warn import rosdistro def _check_platform_helper() -> Tuple[str, dict, dict]: """ Check ROS_DISTRO environment variables and distribution installed. :return: string of distro name, dict of distribution info, dict of release platforms info """ distro_name = os.environ.get('ROS_DISTRO') if not distro_name: doctor_warn('ROS_DISTRO is not set.') return else: distro_name = distro_name.lower() u = rosdistro.get_index_url() if not u: doctor_warn('Unable to access ROSDISTRO_INDEX_URL or DEFAULT_INDEX_URL.') return i = rosdistro.get_index(u) distro_info = i.distributions.get(distro_name) if not distro_info: doctor_warn("Distribution name '%s' is not found" % distro_name) return distro_data = rosdistro.get_distribution(i, distro_name).get_data() return distro_name, distro_info, distro_data class PlatformCheck(DoctorCheck): """Check system platform against ROSDistro.""" def category(self): return 'platform' def check(self): """Check system platform against ROS 2 Distro.""" result = Result() distros = _check_platform_helper() if not distros: result.add_error('ERROR: Missing rosdistro info. Unable to check platform.') return result distro_name, distro_info, _ = distros # check distro status if distro_info.get('distribution_status') == 'prerelease': result.add_warning('Distribution %s is not fully supported or tested. ' 'To get more consistent features, download a stable version at ' 'https://index.ros.org/doc/ros2/Installation/' % distro_name) elif distro_info.get('distribution_status') == 'end-of-life': result.add_warning('Distribution %s is no longer supported or deprecated. ' 'To get the latest features, download the new versions at ' 'https://index.ros.org/doc/ros2/Installation/' % distro_name) return result class PlatformReport(DoctorReport): """Output platform report.""" def category(self): return 'platform' def report(self): platform_name = platform.system() # platform info platform_report = Report('PLATFORM INFORMATION') platform_report.add_to_report('system', platform_name) platform_report.add_to_report('platform info', platform.platform()) if platform_name == 'Darwin': platform_report.add_to_report('mac OS version', platform.mac_ver()) platform_report.add_to_report('release', platform.release()) platform_report.add_to_report('processor', platform.processor()) return platform_report class RosdistroReport(DoctorReport): """Output ROSDistro report.""" def category(self): return 'platform' def report(self): distros = _check_platform_helper() if not distros: return distro_name, distro_info, distro_data = distros ros_report = Report('ROS 2 INFORMATION') ros_report.add_to_report('distribution name', distro_name) ros_report.add_to_report('distribution type', distro_info.get('distribution_type')) ros_report.add_to_report('distribution status', distro_info.get('distribution_status')) ros_report.add_to_report('release platforms', distro_data.get('release_platforms')) return ros_report
37.333333
95
0.684066
1dd1bd97ce77b0acbe5c07fb4da3c59dc6079fe9
10,244
py
Python
data/external/repositories_2to3/267667/kaggle-heart-master/configurations/j6_4ch_128mm_specialist.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories_2to3/267667/kaggle-heart-master/configurations/j6_4ch_128mm_specialist.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories_2to3/267667/kaggle-heart-master/configurations/j6_4ch_128mm_specialist.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
1
2019-12-04T08:23:33.000Z
2019-12-04T08:23:33.000Z
"""Single slice vgg with normalised scale. """ import functools import lasagne as nn import numpy as np import theano import theano.tensor as T import data_loader import deep_learning_layers import image_transform import layers import preprocess import postprocess import objectives import theano_printer import updates import utils # Random params rng = np.random take_a_dump = False # dump a lot of data in a pkl-dump file. (for debugging) dump_network_loaded_data = False # dump the outputs from the dataloader (for debugging) # Memory usage scheme caching = None # Save and validation frequency validate_every = 10 validate_train_set = True save_every = 10 restart_from_save = False # Training (schedule) parameters # - batch sizes batch_size = 32 sunny_batch_size = 4 batches_per_chunk = 16 AV_SLICE_PER_PAT = 1 num_epochs_train = 470 # - learning rate and method base_lr = .0001 learning_rate_schedule = { 0: base_lr, num_epochs_train*9/10: base_lr/10, } momentum = 0.9 build_updates = updates.build_adam_updates # Preprocessing stuff cleaning_processes = [ preprocess.set_upside_up,] cleaning_processes_post = [ functools.partial(preprocess.normalize_contrast_zmuv, z=2)] augmentation_params = { "rotation": (-180, 180), "shear": (0, 0), "translation": (-8, 8), "flip_vert": (0, 1), "roll_time": (0, 0), "flip_time": (0, 0), } def filter_samples(folders): # don't use patients who don't have 4ch import glob import os import pickle as pickle from paths import TEMP_FILES_PATH d = pickle.load(open(TEMP_FILES_PATH+"pkl_train_slice2roi.pkl")) d.update(pickle.load(open(TEMP_FILES_PATH+"pkl_validate_slice2roi.pkl"))) c = pickle.load(open(TEMP_FILES_PATH+"pkl_train_metadata.pkl")) c.update(pickle.load(open(TEMP_FILES_PATH+"pkl_validate_metadata.pkl"))) def has_4ch(f): ch_slices = glob.glob(f+"/4ch_*.pkl") if len(ch_slices) > 0: patient_id = str(data_loader._extract_id_from_path(ch_slices[0])) slice_name = os.path.basename(ch_slices[0]) heart_size = max(float(d[patient_id][slice_name]['roi_radii'][0]) / c[patient_id][slice_name]['PixelSpacing'][0], float(d[patient_id][slice_name]['roi_radii'][1]) / c[patient_id][slice_name]['PixelSpacing'][1]) return (heart_size>=32) else: return False return [folder for folder in folders if has_4ch(folder)] use_hough_roi = True # use roi to center patches preprocess_train = functools.partial( # normscale_resize_and_augment has a bug preprocess.preprocess_normscale, normscale_resize_and_augment_function=functools.partial( image_transform.normscale_resize_and_augment_2, normalised_patch_size=(256,256))) preprocess_validation = functools.partial(preprocess_train, augment=False) preprocess_test = preprocess_train sunny_preprocess_train = preprocess.sunny_preprocess_with_augmentation sunny_preprocess_validation = preprocess.sunny_preprocess_validation sunny_preprocess_test = preprocess.sunny_preprocess_validation # Data generators create_train_gen = data_loader.generate_train_batch create_eval_valid_gen = functools.partial(data_loader.generate_validation_batch, set="validation") create_eval_train_gen = functools.partial(data_loader.generate_validation_batch, set="train") create_test_gen = functools.partial(data_loader.generate_test_batch, set=["validation", "test"]) # Input sizes image_size = 64 data_sizes = { "sliced:data:singleslice:difference:middle": (batch_size, 29, image_size, image_size), # 30 time steps, 30 mri_slices, 100 px wide, 100 px high, "sliced:data:singleslice:difference": (batch_size, 29, image_size, image_size), # 30 time steps, 30 mri_slices, 100 px wide, 100 px high, "sliced:data:singleslice": (batch_size, 30, image_size, image_size), # 30 time steps, 30 mri_slices, 100 px wide, 100 px high, "sliced:data:singleslice:2ch": (batch_size, 30, image_size, image_size), # 30 time steps, 30 mri_slices, 100 px wide, 100 px high, "sliced:data:singleslice:4ch": (batch_size, 30, image_size, image_size), # 30 time steps, 30 mri_slices, 100 px wide, 100 px high, "sliced:data:ax": (batch_size, 30, 15, image_size, image_size), # 30 time steps, 30 mri_slices, 100 px wide, 100 px high, "sliced:data:shape": (batch_size, 2,), "sunny": (sunny_batch_size, 1, image_size, image_size) # TBC with the metadata } # Objective l2_weight = 0.000 l2_weight_out = 0.000 def build_objective(interface_layers): # l2 regu on certain layers l2_penalty = nn.regularization.regularize_layer_params_weighted( interface_layers["regularizable"], nn.regularization.l2) # build objective return objectives.KaggleObjective(interface_layers["outputs"], penalty=l2_penalty) # Testing postprocess = postprocess.postprocess test_time_augmentations = 1000 # More augmentations since a we only use single slices tta_average_method = lambda x: np.cumsum(utils.norm_geometric_average(utils.cdf_to_pdf(x))) # Architecture def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:singleslice:4ch"] l0 = nn.layers.InputLayer(input_size) l1a = nn.layers.dnn.Conv2DDNNLayer(l0, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1b = nn.layers.dnn.Conv2DDNNLayer(l1a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1b, pool_size=(2,2), stride=(2,2)) l2a = nn.layers.dnn.Conv2DDNNLayer(l1, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2b = nn.layers.dnn.Conv2DDNNLayer(l2a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2b, pool_size=(2,2), stride=(2,2)) l3a = nn.layers.dnn.Conv2DDNNLayer(l2, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3b = nn.layers.dnn.Conv2DDNNLayer(l3a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3c = nn.layers.dnn.Conv2DDNNLayer(l3b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=256, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3c, pool_size=(2,2), stride=(2,2)) l4a = nn.layers.dnn.Conv2DDNNLayer(l3, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4b = nn.layers.dnn.Conv2DDNNLayer(l4a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4c = nn.layers.dnn.Conv2DDNNLayer(l4b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4c, pool_size=(2,2), stride=(2,2)) l5a = nn.layers.dnn.Conv2DDNNLayer(l4, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5b = nn.layers.dnn.Conv2DDNNLayer(l5a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5c = nn.layers.dnn.Conv2DDNNLayer(l5b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=512, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5 = nn.layers.dnn.MaxPool2DDNNLayer(l5c, pool_size=(2,2), stride=(2,2)) # Systole Dense layers ldsys1 = nn.layers.DenseLayer(l5, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ldsys1drop = nn.layers.dropout(ldsys1, p=0.5) ldsys2 = nn.layers.DenseLayer(ldsys1drop, num_units=512, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ldsys2drop = nn.layers.dropout(ldsys2, p=0.5) ldsys3 = nn.layers.DenseLayer(ldsys2drop, num_units=600, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.softmax) ldsys3drop = nn.layers.dropout(ldsys3, p=0.5) # dropout at the output might encourage adjacent neurons to correllate ldsys3dropnorm = layers.NormalisationLayer(ldsys3drop) l_systole = layers.CumSumLayer(ldsys3dropnorm) # Diastole Dense layers lddia1 = nn.layers.DenseLayer(l5, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) lddia1drop = nn.layers.dropout(lddia1, p=0.5) lddia2 = nn.layers.DenseLayer(lddia1drop, num_units=512, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) lddia2drop = nn.layers.dropout(lddia2, p=0.5) lddia3 = nn.layers.DenseLayer(lddia2drop, num_units=600, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.softmax) lddia3drop = nn.layers.dropout(lddia3, p=0.5) # dropout at the output might encourage adjacent neurons to correllate lddia3dropnorm = layers.NormalisationLayer(lddia3drop) l_diastole = layers.CumSumLayer(lddia3dropnorm) return { "inputs":{ "sliced:data:singleslice:4ch": l0 }, "outputs": { "systole": l_systole, "diastole": l_diastole, }, "regularizable": { ldsys1: l2_weight, ldsys2: l2_weight, ldsys3: l2_weight_out, lddia1: l2_weight, lddia2: l2_weight, lddia3: l2_weight_out, }, }
46.352941
176
0.707341
b34c95bbc0de9b7f54878b51c96c51a1c6ad963b
3,141
py
Python
src/allconv.py
mayuanyang/doggy
dea7a0033a721636d423c7b7ed7344c88bf4fd6e
[ "MIT" ]
3
2017-11-19T04:56:51.000Z
2017-12-21T01:28:42.000Z
src/allconv.py
mayuanyang/doggy
dea7a0033a721636d423c7b7ed7344c88bf4fd6e
[ "MIT" ]
null
null
null
src/allconv.py
mayuanyang/doggy
dea7a0033a721636d423c7b7ed7344c88bf4fd6e
[ "MIT" ]
1
2017-12-10T00:40:40.000Z
2017-12-10T00:40:40.000Z
from __future__ import print_function from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import ( Input, Activation, Dense, Flatten, Dropout ) from keras.layers.convolutional import ( Conv2D, MaxPooling2D, AveragePooling2D ) from keras.utils import np_utils from keras.optimizers import SGD from keras import backend as K from keras.models import Model from keras.layers.core import Lambda from keras.callbacks import ReduceLROnPlateau, CSVLogger, EarlyStopping, ModelCheckpoint import numpy as np K.set_image_dim_ordering('tf') nb_train_samples = 299 nb_validation_samples = 32 batch_size = 32 nb_classes = 3 nb_epoch = 200 # data dir train_data_dir = 'family/train' validation_data_dir = 'family/test' rows, cols = 64, 64 channels = 3 model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), strides=(1, 1), activation='relu', input_shape=(rows, cols, channels))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(128, (3, 3), activation='relu')) # model.add(Conv2D(256, (3, 3), activation='relu')) # model.add(Conv2D(512, (3, 3), activation='relu')) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(Flatten()) model.add(Dense(nb_classes, activation='relu')) model.add(Dense(nb_classes, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) print (model.summary()) lr_reducer = ReduceLROnPlateau(monitor='val_loss', patience=4, cooldown=0, verbose=1) early_stopper = EarlyStopping(min_delta=0.001, patience=10) csv_logger = CSVLogger('doggy_result.csv') train_datagen = ImageDataGenerator( samplewise_center=True, samplewise_std_normalization=True, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, channel_shift_range=0.2, rotation_range=25, horizontal_flip=True, vertical_flip=True) # this is the augmentation configuration we will use for testing: # only rescaling # check this api for more into https://keras.io/preprocessing/image/ test_datagen = ImageDataGenerator( width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.1, channel_shift_range=0.1, rotation_range=25) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(rows, cols), batch_size=batch_size, class_mode='categorical') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(rows, cols), batch_size=batch_size, class_mode='categorical') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=nb_epoch, validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size, callbacks=[lr_reducer, csv_logger]) model.save('keras_allconv.h5')
29.083333
88
0.708055
e0d2b3b28bbee54bf1d47fbee06a818a885aa140
3,370
py
Python
nexinfosys/restful_service/mod_wsgi/monitor.py
MAGIC-nexus/nis-backend
dd425925321134f66884f60b202a59b38b7786a0
[ "BSD-3-Clause" ]
6
2019-05-31T23:02:30.000Z
2022-01-07T22:56:50.000Z
nexinfosys/restful_service/mod_wsgi/monitor.py
ENVIRO-Module/nis-backend
fd86cf30f79f53cdccddd2a5479507d32f914d4e
[ "BSD-3-Clause" ]
2
2021-12-03T18:22:42.000Z
2021-12-13T19:57:15.000Z
nexinfosys/restful_service/mod_wsgi/monitor.py
ENVIRO-Module/nis-backend
fd86cf30f79f53cdccddd2a5479507d32f914d4e
[ "BSD-3-Clause" ]
3
2019-04-05T16:45:09.000Z
2021-03-17T12:05:44.000Z
""" Monitor changes in files from the project, published into an Apache2, using "mod_wsgi" When a change is detected, the application is reloaded automatically, without requiring touching "nis_docker.wsgi" file From: http://blog.dscpl.com.au/2008/12/using-modwsgi-when-developing-django.html https://code.google.com/p/modwsgi/wiki/ReloadingSourceCode#Restarting_Daemon_Processes Converted to Python 3 using "2to3" """ import os import sys import signal import threading import atexit import queue _interval = 1.0 _times = {} _files = [] _running = False _queue = queue.Queue() _lock = threading.Lock() def _restart(path): _queue.put(True) prefix = 'monitor (pid=%d):' % os.getpid() print('%s Change detected to \'%s\'.' % (prefix, path), file=sys.stderr) print('%s Triggering process restart.' % prefix, file=sys.stderr) os.kill(os.getpid(), signal.SIGINT) def _modified(path): try: # If path doesn't denote a file and were previously # tracking it, then it has been removed or the file type # has changed so force a restart. If not previously # tracking the file then we can ignore it as probably # pseudo reference such as when file extracted from a # collection of modules contained in a zip file. if not os.path.isfile(path): return path in _times # Check for when file last modified. mtime = os.stat(path).st_mtime if path not in _times: _times[path] = mtime # Force restart when modification time has changed, even # if time now older, as that could indicate older file # has been restored. if mtime != _times[path]: return True except: # If any exception occured, likely that file has been # been removed just before stat(), so force a restart. return True return False def _monitor(): while 1: # Check modification times on all files in sys.modules. for module in list(sys.modules.values()): if not hasattr(module, '__file__'): continue path = getattr(module, '__file__') if not path: continue if os.path.splitext(path)[1] in ['.pyc', '.pyo', '.pyd']: path = path[:-1] if _modified(path): return _restart(path) # Check modification times on files which have # specifically been registered for monitoring. for path in _files: if _modified(path): return _restart(path) # Go to sleep for specified interval. try: return _queue.get(timeout=_interval) except: pass _thread = threading.Thread(target=_monitor) _thread.setDaemon(True) def _exiting(): try: _queue.put(True) except: pass _thread.join() atexit.register(_exiting) def track(path): if path not in _files: _files.append(path) def start(interval=1.0): global _interval if interval < _interval: _interval = interval global _running _lock.acquire() if not _running: prefix = 'monitor (pid=%d):' % os.getpid() print('%s Starting change monitor.' % prefix, file=sys.stderr) _running = True _thread.start() _lock.release()
25.725191
119
0.623145
a05166e5980c1ca5f2e10df37d8f8396bdb3eaea
13,888
py
Python
blazeface/utils/augment.py
ishaghodgaonkar/PyTorch_BlazeFace
e3898b763057b213c144ef3fb09ddd4e6eb10445
[ "Apache-2.0" ]
null
null
null
blazeface/utils/augment.py
ishaghodgaonkar/PyTorch_BlazeFace
e3898b763057b213c144ef3fb09ddd4e6eb10445
[ "Apache-2.0" ]
null
null
null
blazeface/utils/augment.py
ishaghodgaonkar/PyTorch_BlazeFace
e3898b763057b213c144ef3fb09ddd4e6eb10445
[ "Apache-2.0" ]
null
null
null
import torch from torchvision import transforms import cv2 import numpy as np import types from numpy import random def intersect(box_a, box_b): max_xy = np.minimum(box_a[:, 2:], box_b[2:]) min_xy = np.maximum(box_a[:, :2], box_b[:2]) inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf) return inter[:, 0] * inter[:, 1] def jaccard_numpy(box_a, box_b): """Compute the jaccard overlap of two sets of boxes. The jaccard overlap is simply the intersection over union of two boxes. E.g.: A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) Args: box_a: Multiple bounding boxes, Shape: [num_boxes,4] box_b: Single bounding box, Shape: [4] Return: jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]] """ inter = intersect(box_a, box_b) area_a = ((box_a[:, 2]-box_a[:, 0]) * (box_a[:, 3]-box_a[:, 1])) # [A,B] area_b = ((box_b[2]-box_b[0]) * (box_b[3]-box_b[1])) # [A,B] union = area_a + area_b - inter return inter / union # [A,B] class Compose(object): """Composes several augmentations together. Args: transforms (List[Transform]): list of transforms to compose. Example: >>> augmentations.Compose([ >>> transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> ]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img, boxes=None, labels=None): for t in self.transforms: img, boxes, labels = t(img, boxes, labels) return img, boxes, labels class Lambda(object): """Applies a lambda as a transform.""" def __init__(self, lambd): assert isinstance(lambd, types.LambdaType) self.lambd = lambd def __call__(self, img, boxes=None, labels=None): return self.lambd(img, boxes, labels) class ConvertFromInts(object): def __call__(self, image, boxes=None, labels=None): return image.astype(np.float32), boxes, labels class SubtractMeans(object): def __init__(self, mean): self.mean = np.array(mean, dtype=np.float32) def __call__(self, image, boxes=None, labels=None): image = image.astype(np.float32) image -= self.mean return image.astype(np.float32), boxes, labels class ToAbsoluteCoords(object): def __call__(self, image, boxes=None, labels=None): height, width, channels = image.shape boxes[:, 0] *= width boxes[:, 2] *= width boxes[:, 1] *= height boxes[:, 3] *= height return image, boxes, labels class ToPercentCoords(object): def __call__(self, image, boxes=None, labels=None): height, width, channels = image.shape boxes[:, 0] /= width boxes[:, 2] /= width boxes[:, 1] /= height boxes[:, 3] /= height return image, boxes, labels class Resize(object): def __init__(self, size=300): self.size = size def __call__(self, image, boxes=None, labels=None): image = cv2.resize(image, (self.size, self.size)) return image, boxes, labels class RandomSaturation(object): def __init__(self, lower=0.5, upper=1.5): self.lower = lower self.upper = upper assert self.upper >= self.lower, "contrast upper must be >= lower." assert self.lower >= 0, "contrast lower must be non-negative." def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 1] *= random.uniform(self.lower, self.upper) return image, boxes, labels class RandomHue(object): def __init__(self, delta=18.0): assert delta >= 0.0 and delta <= 360.0 self.delta = delta def __call__(self, image, boxes=None, labels=None): if random.randint(2): image[:, :, 0] += random.uniform(-self.delta, self.delta) image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0 image[:, :, 0][image[:, :, 0] < 0.0] += 360.0 return image, boxes, labels class RandomLightingNoise(object): def __init__(self): self.perms = ((0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)) def __call__(self, image, boxes=None, labels=None): if random.randint(2): swap = self.perms[random.randint(len(self.perms))] shuffle = SwapChannels(swap) # shuffle channels image = shuffle(image) return image, boxes, labels class ConvertColor(object): def __init__(self, current='BGR', transform='HSV'): self.transform = transform self.current = current def __call__(self, image, boxes=None, labels=None): if self.current == 'BGR' and self.transform == 'HSV': image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) elif self.current == 'HSV' and self.transform == 'BGR': image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) else: raise NotImplementedError return image, boxes, labels class RandomContrast(object): def __init__(self, lower=0.5, upper=1.5): self.lower = lower self.upper = upper assert self.upper >= self.lower, "contrast upper must be >= lower." assert self.lower >= 0, "contrast lower must be non-negative." # expects float image def __call__(self, image, boxes=None, labels=None): if random.randint(2): alpha = random.uniform(self.lower, self.upper) image *= alpha return image, boxes, labels class RandomBrightness(object): def __init__(self, delta=32): assert delta >= 0.0 assert delta <= 255.0 self.delta = delta def __call__(self, image, boxes=None, labels=None): if random.randint(2): delta = random.uniform(-self.delta, self.delta) image += delta return image, boxes, labels class ToCV2Image(object): def __call__(self, tensor, boxes=None, labels=None): return tensor.cpu().numpy().astype(np.float32).transpose((1, 2, 0)), boxes, labels class ToTensor(object): def __call__(self, cvimage, boxes=None, labels=None): return torch.from_numpy(cvimage.astype(np.float32)).permute(2, 0, 1), boxes, labels class RandomSampleCrop(object): """Crop Arguments: img (Image): the image being input during training boxes (Tensor): the original bounding boxes in pt form labels (Tensor): the class labels for each bbox mode (float tuple): the min and max jaccard overlaps Return: (img, boxes, classes) img (Image): the cropped image boxes (Tensor): the adjusted bounding boxes in pt form labels (Tensor): the class labels for each bbox """ def __init__(self): self.sample_options = ( # using entire original input image None, # sample a patch s.t. MIN jaccard w/ obj in .1,.3,.4,.7,.9 (0.1, None), (0.3, None), (0.7, None), (0.9, None), # randomly sample a patch (None, None), ) def __call__(self, image, boxes=None, labels=None): height, width, _ = image.shape while True: # randomly choose a mode mode = random.choice(self.sample_options) if mode is None: return image, boxes, labels min_iou, max_iou = mode if min_iou is None: min_iou = float('-inf') if max_iou is None: max_iou = float('inf') # max trails (50) for _ in range(50): current_image = image w = random.uniform(0.3 * width, width) h = random.uniform(0.3 * height, height) # aspect ratio constraint b/t .5 & 2 if h / w < 0.5 or h / w > 2: continue left = random.uniform(width - w) top = random.uniform(height - h) # convert to integer rect x1,y1,x2,y2 rect = np.array([int(left), int(top), int(left+w), int(top+h)]) # calculate IoU (jaccard overlap) b/t the cropped and gt boxes overlap = jaccard_numpy(boxes, rect) # is min and max overlap constraint satisfied? if not try again if overlap.min() < min_iou and max_iou < overlap.max(): continue # cut the crop from the image current_image = current_image[rect[1]:rect[3], rect[0]:rect[2], :] # keep overlap with gt box IF center in sampled patch centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0 # mask in all gt boxes that above and to the left of centers m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1]) # mask in all gt boxes that under and to the right of centers m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1]) # mask in that both m1 and m2 are true mask = m1 * m2 # have any valid boxes? try again if not if not mask.any(): continue # take only matching gt boxes current_boxes = boxes[mask, :].copy() # take only matching gt labels current_labels = labels[mask] # should we use the box left and top corner or the crop's current_boxes[:, :2] = np.maximum(current_boxes[:, :2], rect[:2]) # adjust to crop (by substracting crop's left,top) current_boxes[:, :2] -= rect[:2] current_boxes[:, 2:] = np.minimum(current_boxes[:, 2:], rect[2:]) # adjust to crop (by substracting crop's left,top) current_boxes[:, 2:] -= rect[:2] return current_image, current_boxes, current_labels class Expand(object): def __init__(self, mean): self.mean = mean def __call__(self, image, boxes, labels): if random.randint(2): return image, boxes, labels height, width, depth = image.shape ratio = random.uniform(1, 4) left = random.uniform(0, width*ratio - width) top = random.uniform(0, height*ratio - height) expand_image = np.zeros( (int(height*ratio), int(width*ratio), depth), dtype=image.dtype) expand_image[:, :, :] = self.mean expand_image[int(top):int(top + height), int(left):int(left + width)] = image image = expand_image boxes = boxes.copy() boxes[:, :2] += (int(left), int(top)) boxes[:, 2:] += (int(left), int(top)) return image, boxes, labels class RandomMirror(object): def __call__(self, image, boxes, classes): _, width, _ = image.shape if random.randint(2): image = image[:, ::-1] boxes = boxes.copy() boxes[:, 0::2] = width - boxes[:, 2::-2] return image, boxes, classes class SwapChannels(object): """Transforms a tensorized image by swapping the channels in the order specified in the swap tuple. Args: swaps (int triple): final order of channels eg: (2, 1, 0) """ def __init__(self, swaps): self.swaps = swaps def __call__(self, image): """ Args: image (Tensor): image tensor to be transformed Return: a tensor with channels swapped according to swap """ # if torch.is_tensor(image): # image = image.data.cpu().numpy() # else: # image = np.array(image) image = image[:, :, self.swaps] return image class PhotometricDistort(object): def __init__(self): self.pd = [ RandomContrast(), ConvertColor(transform='HSV'), RandomSaturation(), RandomHue(), ConvertColor(current='HSV', transform='BGR'), RandomContrast() ] self.rand_brightness = RandomBrightness() self.rand_light_noise = RandomLightingNoise() def __call__(self, image, boxes, labels): im = image.copy() im, boxes, labels = self.rand_brightness(im, boxes, labels) if random.randint(2): distort = Compose(self.pd[:-1]) else: distort = Compose(self.pd[1:]) im, boxes, labels = distort(im, boxes, labels) return self.rand_light_noise(im, boxes, labels) class SSDAugmentation(object): def __init__(self, size=300, mean=(104, 117, 123)): self.mean = mean self.size = size self.augment = Compose([ ConvertFromInts(), ToAbsoluteCoords(), PhotometricDistort(), Expand(self.mean), RandomSampleCrop(), RandomMirror(), ToPercentCoords(), Resize(self.size), SubtractMeans(self.mean) ]) def __call__(self, img, boxes, labels): return self.augment(img, boxes, labels)
32.988124
92
0.534202
eadce5479405a6eb0781abc49dc1078d556cc7f9
4,650
py
Python
Model/predictor_dl_model/predictor_dl_model/trainer/client_rest_tf.py
helenyu18/blue-marlin
668985fad1993a682808e271610c1cf2cec6a6f5
[ "Apache-2.0" ]
null
null
null
Model/predictor_dl_model/predictor_dl_model/trainer/client_rest_tf.py
helenyu18/blue-marlin
668985fad1993a682808e271610c1cf2cec6a6f5
[ "Apache-2.0" ]
null
null
null
Model/predictor_dl_model/predictor_dl_model/trainer/client_rest_tf.py
helenyu18/blue-marlin
668985fad1993a682808e271610c1cf2cec6a6f5
[ "Apache-2.0" ]
null
null
null
# Copyright 2019, Futurewei Technologies # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # * "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ A client that talks to tensorflow_serving loaded with kaggle model. The client read kaggle feature data set, queries the service with such feature data to get predictions, and calculates the inference error rate. Typical usage example: predictor_client.py --server=0.0.0.0:8500 """ from __future__ import print_function import sys import threading import os import pickle import tensorflow as tf from predictor_dl_model.trainer.feeder import VarFeeder from predictor_dl_model.trainer.input_pipe import ucdoc_features from predictor_dl_model.trainer.input_pipe import ModelMode from predictor_dl_model.trainer.input_pipe import InputPipe from enum import Enum from typing import List, Iterable import numpy as np import pandas as pd import json import requests tf.app.flags.DEFINE_integer( 'concurrency', 1, 'maximum number of concurrent inference requests') tf.app.flags.DEFINE_integer( 'batch_size', 1024, 'number of sample in each batch') tf.app.flags.DEFINE_integer('predict_window', 10, 'Number of days to predict') tf.app.flags.DEFINE_integer( 'train_window', 60, 'number of time spots in training') tf.app.flags.DEFINE_string('server', '', 'PredictionService host:port') tf.app.flags.DEFINE_string( 'result_dir', 'data/predict', 'directory to put prediction result.') tf.app.flags.DEFINE_boolean( 'verbose', False, 'verbose or not in creating input data') FLAGS = tf.app.flags.FLAGS BATCH_SIZE = 1 # Has to be 1 def main(_): # if not FLAGS.server: # print('please specify server host:port') # return with tf.variable_scope('input') as inp_scope: with tf.device("/cpu:0"): inp = VarFeeder.read_vars("data/vars") pipe = InputPipe(inp, ucdoc_features(inp), inp.hits.shape[0], mode=ModelMode.PREDICT, batch_size=BATCH_SIZE, n_epoch=1, verbose=False, train_completeness_threshold=0.01, predict_window=10, predict_completeness_threshold=0.0, train_window=60, back_offset=11) error = [] with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) as sess: pipe.load_vars(sess) pipe.init_iterator(sess) for i in range(100): truex, timex, normx, laggedx, truey, timey, normy, normmean, normstd, pgfeatures, pageix = sess.run([pipe.true_x, pipe.time_x, pipe.norm_x, pipe.lagged_x, pipe.true_y, pipe.time_y, pipe.norm_y, pipe.norm_mean, pipe.norm_std, pipe.ucdoc_features, pipe.page_ix]) # if pageix == b'cloudFolder,2,4G,g_f,2,pt,1002,icc,3,10': # print("hello") data = {"instances": [{"truex": truex.tolist()[0], "timex": timex.tolist()[0], "normx": normx.tolist()[0], "laggedx": laggedx.tolist()[0], "truey": truey.tolist()[0], "timey": timey.tolist()[0], "normy": normy.tolist()[0], "normmean": normmean.tolist()[0], "normstd": normstd.tolist()[0], "page_features": pgfeatures.tolist()[0], "pageix": [pageix.tolist()[0].decode('utf-8')]}]} URL = "http://10.193.217.108:8501/v1/models/faezeh1:predict" body = data r = requests.post(URL, data=json.dumps(body)) pred_y=np.round(np.expm1(r.json()['predictions'][0])) true_y = np.round(np.expm1(truey)) e = np.average(np.divide(np.abs(np.subtract(pred_y,true_y)),true_y)) error.append(e) print( data['instances'][0]['pageix'][0], e ) print(np.average(error)) if __name__ == '__main__': tf.app.run()
41.517857
192
0.654839
a5f2b83127acf907520597bf9fcb335514cfbf17
3,378
py
Python
sdk/python/pulumi_azure_nextgen/datashare/list_share_synchronizations.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/datashare/list_share_synchronizations.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/datashare/list_share_synchronizations.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs __all__ = [ 'ListShareSynchronizationsResult', 'AwaitableListShareSynchronizationsResult', 'list_share_synchronizations', ] @pulumi.output_type class ListShareSynchronizationsResult: """ List response for get ShareSynchronization. """ def __init__(__self__, next_link=None, value=None): if next_link and not isinstance(next_link, str): raise TypeError("Expected argument 'next_link' to be a str") pulumi.set(__self__, "next_link", next_link) if value and not isinstance(value, list): raise TypeError("Expected argument 'value' to be a list") pulumi.set(__self__, "value", value) @property @pulumi.getter(name="nextLink") def next_link(self) -> Optional[str]: """ The Url of next result page. """ return pulumi.get(self, "next_link") @property @pulumi.getter def value(self) -> Sequence['outputs.ShareSynchronizationResponseResult']: """ Collection of items of type DataTransferObjects. """ return pulumi.get(self, "value") class AwaitableListShareSynchronizationsResult(ListShareSynchronizationsResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListShareSynchronizationsResult( next_link=self.next_link, value=self.value) def list_share_synchronizations(account_name: Optional[str] = None, filter: Optional[str] = None, orderby: Optional[str] = None, resource_group_name: Optional[str] = None, share_name: Optional[str] = None, skip_token: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListShareSynchronizationsResult: """ List response for get ShareSynchronization. API Version: 2020-09-01. :param str account_name: The name of the share account. :param str filter: Filters the results using OData syntax. :param str orderby: Sorts the results using OData syntax. :param str resource_group_name: The resource group name. :param str share_name: The name of the share. :param str skip_token: Continuation token """ __args__ = dict() __args__['accountName'] = account_name __args__['filter'] = filter __args__['orderby'] = orderby __args__['resourceGroupName'] = resource_group_name __args__['shareName'] = share_name __args__['skipToken'] = skip_token if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:datashare:listShareSynchronizations', __args__, opts=opts, typ=ListShareSynchronizationsResult).value return AwaitableListShareSynchronizationsResult( next_link=__ret__.next_link, value=__ret__.value)
36.322581
152
0.660746
56c3ef02300406784cde28ee665565c3f54f7075
2,542
py
Python
setup.py
pallomabritoGN/gn-api-sdk-python
c9da015207d91abb0a3c0d7b6bcbb146a7e5b849
[ "MIT" ]
null
null
null
setup.py
pallomabritoGN/gn-api-sdk-python
c9da015207d91abb0a3c0d7b6bcbb146a7e5b849
[ "MIT" ]
null
null
null
setup.py
pallomabritoGN/gn-api-sdk-python
c9da015207d91abb0a3c0d7b6bcbb146a7e5b849
[ "MIT" ]
null
null
null
# Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() dependencies = [dependency.strip() for dependency in open("requirements.txt").readlines()] setup( name='gerencianet', version='1.1.0', description='Module for integration with Gerencianet API', long_description=long_description, # The project's main homepage. url='https://github.com/gerencianet/gn-api-sdk-python', # Author details author='Danniel Hugo, Cecilia Deveza, Francisco Thiene, Thomaz Feitoza, Talita Campos ', author_email='suportetecnico@gerencianet.com.br', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 5 - Production/Stable', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Software Development', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5' ], # What does your project relate to? keywords='payment Gerencianet', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(), # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require={ 'test': ['pytest-cov', 'pytest', 'responses'], }, package_data={ # If any package contains *.txt or *.rst files, include them: '': ['requirements.txt', '.md', 'LICENSE'] }, include_package_data=True, install_requires=dependencies, )
30.261905
92
0.656176
b69359771c76a537373c4a89925f71150e394ec6
70
py
Python
tests/data/__init__.py
chryssa-zrv/UA_COMET
527e7c86bd0a0d8ff90efda58e820108a5666b92
[ "Apache-2.0" ]
null
null
null
tests/data/__init__.py
chryssa-zrv/UA_COMET
527e7c86bd0a0d8ff90efda58e820108a5666b92
[ "Apache-2.0" ]
null
null
null
tests/data/__init__.py
chryssa-zrv/UA_COMET
527e7c86bd0a0d8ff90efda58e820108a5666b92
[ "Apache-2.0" ]
null
null
null
import os DATA_PATH = os.path.dirname(os.path.abspath(__file__))+"/"
17.5
58
0.728571
d1106da7bb331ebae5a66d6d7d7da2666b528b63
1,698
py
Python
benchmark/experimental_vocab.py
guyang3532/text
e2fc987ff6a002018040cffac5e0d61c3d0b06c6
[ "BSD-3-Clause" ]
null
null
null
benchmark/experimental_vocab.py
guyang3532/text
e2fc987ff6a002018040cffac5e0d61c3d0b06c6
[ "BSD-3-Clause" ]
null
null
null
benchmark/experimental_vocab.py
guyang3532/text
e2fc987ff6a002018040cffac5e0d61c3d0b06c6
[ "BSD-3-Clause" ]
null
null
null
from collections import (Counter, OrderedDict) import time import torch from torchtext.experimental.datasets import AG_NEWS from torchtext.experimental.vocab import Vocab as VocabExperimental from torchtext.vocab import Vocab def benchmark_experimental_vocab(): def _run_benchmark_lookup(tokens, vocab): t0 = time.monotonic() for token in tokens: vocab[token] print("Lookup time:", time.monotonic() - t0) train, = AG_NEWS(data_select='train') vocab = train.get_vocab() tokens = [] for (label, text) in train: for id in text.tolist(): tokens.append(vocab.itos[id]) counter = Counter(tokens) sorted_by_freq_tuples = sorted(counter.items(), key=lambda x: x[1], reverse=True) ordered_dict = OrderedDict(sorted_by_freq_tuples) # existing Vocab construction print("Vocab") t0 = time.monotonic() v_existing = Vocab(counter) print("Construction time:", time.monotonic() - t0) # experimental Vocab construction print("Vocab Experimental") t0 = time.monotonic() v_experimental = VocabExperimental(ordered_dict) print("Construction time:", time.monotonic() - t0) jit_v_experimental = torch.jit.script(v_experimental) # existing Vocab not jit lookup print("Vocab - Not Jit Mode") _run_benchmark_lookup(tokens, v_existing) # experimental Vocab not jit lookup print("Vocab Experimental - Not Jit Mode") _run_benchmark_lookup(tokens, v_experimental) # experimental Vocab jit lookup print("Vocab Experimental - Jit Mode") _run_benchmark_lookup(tokens, jit_v_experimental) if __name__ == "__main__": benchmark_experimental_vocab()
30.321429
85
0.706125
109650a7ccde98c3db4a46f0e4299db624498068
2,713
py
Python
minetext/clustering/distance.py
CaioMelo8/android-comments-miner
d564cc3f44bd4423e8d2621e30650d0d21436624
[ "MIT" ]
null
null
null
minetext/clustering/distance.py
CaioMelo8/android-comments-miner
d564cc3f44bd4423e8d2621e30650d0d21436624
[ "MIT" ]
null
null
null
minetext/clustering/distance.py
CaioMelo8/android-comments-miner
d564cc3f44bd4423e8d2621e30650d0d21436624
[ "MIT" ]
null
null
null
from datetime import datetime from math import sqrt, exp import numpy as np class LevenshteinCalculator(object): def calculate(self, source, target): if len(source) < len(target): return self.calculate(target, source) if len(target) == 0: return len(source) source = np.array(tuple(source)) target = np.array(tuple(target)) previous_row = np.arange(target.size + 1) for s in source: current_row = previous_row + 1 current_row[1:] = np.minimum(current_row[1:], np.add(previous_row[:-1], target != s)) current_row[1:] = np.minimum(current_row[1:], current_row[0:-1] + 1) previous_row = current_row return previous_row[-1] / len(source) class EuclideanCalculator(object): def calculate(self, source, target): x1 = float(source["latitude"]) x2 = float(target["latitude"]) y1 = float(source["longitude"]) y2 = float(target["longitude"]) return sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) class FadingCalculator(object): def calculate(self, source, target): FMT = "%H:%M:%S" if datetime.strptime(source["time"], FMT) > datetime.strptime(target["time"], FMT): tdelta = datetime.strptime(source["time"], FMT) - datetime.strptime(target["time"], FMT) else: tdelta = datetime.strptime(target["time"], FMT) - datetime.strptime(source["time"], FMT) timeDifference = tdelta.seconds / 60.0 / 60 words1 = set(source.split()) words2 = set(target.split()) duplicates = words1.intersection(words2) uniques = words1.union(words2.difference(words1)) try: simi = float(len(duplicates)) / (len(uniques) * exp(timeDifference)) return simi except: return 0.0 class JaccardCalculatorSimilarity(object): def calculate(self, source, target): words1 = set(source.split()) words2 = set(target.split()) duplicated = len(words1.intersection(words2)) uniques = len(words1.union(words2.difference(words1))) try: simi = float(duplicated) / uniques return simi except ZeroDivisionError: return 0.0 class JaccardCalculatorDistance(object): def calculate(self, source, target): words1 = set(source.split()) words2 = set(target.split()) duplicated = len(words1.intersection(words2)) uniques = len(words1.union(words2.difference(words1))) try: simi = float(duplicated) / uniques return 1 - simi except ZeroDivisionError: return 1
30.483146
100
0.597125
c776157e549a4f20884b74a074de4f709a0d38e4
4,211
py
Python
configs/railway/ssd_0422_all_merged.py
huminghe/mmdetection
37a3e5d1891a177f9cd16f3ed53195f2d8c2ef70
[ "Apache-2.0" ]
null
null
null
configs/railway/ssd_0422_all_merged.py
huminghe/mmdetection
37a3e5d1891a177f9cd16f3ed53195f2d8c2ef70
[ "Apache-2.0" ]
null
null
null
configs/railway/ssd_0422_all_merged.py
huminghe/mmdetection
37a3e5d1891a177f9cd16f3ed53195f2d8c2ef70
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings input_size = 300 model = dict( type='SingleStageDetector', backbone=dict( type='SSDVGG', input_size=input_size, depth=16, with_last_pool=False, ceil_mode=True, out_indices=(3, 4), out_feature_indices=(22, 34), l2_norm_scale=20), neck=None, bbox_head=dict( type='SSDHead', in_channels=(512, 1024, 512, 256, 256, 256), num_classes=10, anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.15, 0.9), strides=[8, 16, 32, 64, 100, 300], ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2])), train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False), test_cfg=dict( nms_pre=1000, nms=dict(type='nms', iou_threshold=0.45), min_bbox_size=0, score_thr=0.02, max_per_img=200)) # dataset settings dataset_type = 'CocoDataset' data_root = '/home/railway/workspace/hmh/data/data/doors/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) classes = ('door-opened', 'door-closed', 'window-side', 'window-front', 'people-whole-body', 'food container', 'chopsticks fork spoon', 'food', 'cigarette', 'mobile phone') train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(300, 300), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(300, 300), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, ann_file=data_root + 'railway_doors_all_merged_0422.json', img_prefix=data_root + 'Images/', classes=classes, pipeline=train_pipeline)), val=dict( type=dataset_type, ann_file=data_root + 'railway_doors_all_merged_0422.json', img_prefix=data_root + 'Images/', classes=classes, pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'railway_doors_all_merged_0422.json', img_prefix=data_root + 'Images/', classes=classes, pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(_delete_=True) checkpoint_config = dict(interval=2) evaluation = dict(interval=2, metric=['bbox']) load_from = '/home/railway/workspace/hmh/data/models/detection/ssd300_coco_20200307-a92d2092.pth'
32.392308
172
0.594396
8395082c87447aaa793ec71b99484128d713d9c1
1,595
py
Python
tests/test_scene_parser/test_dvd.py
seedzero/Caper
9aad10e22d7c94fd67fb164f37764c9eb5f9c75b
[ "Apache-2.0" ]
null
null
null
tests/test_scene_parser/test_dvd.py
seedzero/Caper
9aad10e22d7c94fd67fb164f37764c9eb5f9c75b
[ "Apache-2.0" ]
null
null
null
tests/test_scene_parser/test_dvd.py
seedzero/Caper
9aad10e22d7c94fd67fb164f37764c9eb5f9c75b
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 Dean Gardiner <gardiner91@gmail.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from helpers import setup_path setup_path() import logging from logr import Logr Logr.configure(logging.DEBUG) from caper import Caper from matchers import has_info from hamcrest import * caper = Caper() def test_dvd_region(): assert_that( caper.parse('Show Name (2011) S01 R1 NTSC'), has_info('dvd', {'region': '1'}) ) assert_that( caper.parse('Show Name (2011) S01 R4 PAL'), has_info('dvd', {'region': '4'}) ) def test_dvd_encoding(): assert_that( caper.parse('Show Name (2011) S01 R1 NTSC'), has_info('dvd', {'encoding': 'NTSC'}) ) assert_that( caper.parse('Show Name (2011) S01 R4 PAL'), has_info('dvd', {'encoding': 'PAL'}) ) def test_dvd_disc(): assert_that( caper.parse('Show Name (2011) S01 R1 NTSC DISC3'), has_info('dvd', {'disc': '3'}) ) assert_that( caper.parse('Show Name (2011) S01 R4 PAL D2'), has_info('dvd', {'disc': '2'}) )
25.31746
74
0.65768
b90be8f5d757d7321ea104fbebe8df80c5e73a6a
795
py
Python
xlsxwriter/test/comparison/test_image16.py
timgates42/XlsxWriter
129044ed821de67895b4562c6b71f90eba5be6b4
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/comparison/test_image16.py
timgates42/XlsxWriter
129044ed821de67895b4562c6b71f90eba5be6b4
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
xlsxwriter/test/comparison/test_image16.py
timgates42/XlsxWriter
129044ed821de67895b4562c6b71f90eba5be6b4
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2020, John McNamara, jmcnamara@cpan.org # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('image16.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file with image(s).""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.insert_image('C2', self.image_dir + 'issue32.png') workbook.close() self.assertExcelEqual()
23.382353
79
0.613836
ba4065a71acc2724153f63a37efa0aa257c4af42
2,035
py
Python
python/example/render_hex_mesh.py
brokencuph/diff_pd
2c30ecfa39762c5fc78dea9c7a226000e9fc5c15
[ "MIT" ]
4
2022-02-10T02:28:42.000Z
2022-02-10T07:28:35.000Z
python/example/render_hex_mesh.py
srl-ethz/diffPD_sim2real
e491668995a163b8ff7542d99f0b4e0c0f4ed2df
[ "MIT" ]
null
null
null
python/example/render_hex_mesh.py
srl-ethz/diffPD_sim2real
e491668995a163b8ff7542d99f0b4e0c0f4ed2df
[ "MIT" ]
2
2022-03-11T20:13:24.000Z
2022-03-12T03:38:46.000Z
import sys sys.path.append('../') import os from pathlib import Path import numpy as np from PIL import Image from contextlib import contextmanager, redirect_stderr, redirect_stdout from py_diff_pd.common.common import create_folder, ndarray from py_diff_pd.common.common import print_info, print_ok, print_error from py_diff_pd.common.display import render_hex_mesh from py_diff_pd.common.hex_mesh import generate_hex_mesh from py_diff_pd.core.py_diff_pd_core import HexMesh3d def image_to_numpy_array(img_name): img = Image.open(img_name).convert('RGB') img_data = ndarray(img.getdata()).reshape(img.size[0], img.size[1], 3) / 255 return img_data def compare_images(img_data1, img_data2, abs_tol, rel_tol): return all(np.abs(img_data1.ravel() - img_data2.ravel()) <= abs_tol + img_data1.ravel() * rel_tol) def test_render_hex_mesh(verbose): render_ok = True folder = Path('render_hex_mesh') voxels = np.ones((10, 10, 10)) bin_file_name = str(folder / 'cube.bin') generate_hex_mesh(voxels, 0.1, (0, 0, 0), bin_file_name) mesh = HexMesh3d() mesh.Initialize(bin_file_name) resolution = (400, 400) sample_num = 64 render_hex_mesh(mesh, folder / 'render_hex_mesh_1.png', resolution=resolution, sample=sample_num) if verbose: os.system('eog {}'.format(folder / 'render_hex_mesh_1.png')) # Demonstrate more advanced options. resolution = (600, 600) sample_num = 16 # Scale the cube by 0.5, rotate along the vertical axis by 30 degrees, and translate by (0.5, 0.5, 0). transforms = [('s', 0.5), ('r', (np.pi / 6, 0, 0, 1)), ('t', (0.5, 0.5, 0))] render_hex_mesh(mesh, folder / 'render_hex_mesh_2.png', resolution=resolution, sample=sample_num, transforms=transforms, render_voxel_edge=True) if verbose: os.system('eog {}'.format(folder / 'render_hex_mesh_2.png')) return True if __name__ == '__main__': # Use verbose = True by default in all example scripts. verbose = True test_render_hex_mesh(verbose)
37
124
0.713022
e4747d08e076bb3a14c0def8cd07c725a2d6f051
2,172
py
Python
embedding-calculator/srcext/insightface/src/data/dir2lst_ytf.py
drawdy/CompreFace
143b7955536f406a622248fad2d2108dfb5dd4f6
[ "Apache-2.0" ]
null
null
null
embedding-calculator/srcext/insightface/src/data/dir2lst_ytf.py
drawdy/CompreFace
143b7955536f406a622248fad2d2108dfb5dd4f6
[ "Apache-2.0" ]
null
null
null
embedding-calculator/srcext/insightface/src/data/dir2lst_ytf.py
drawdy/CompreFace
143b7955536f406a622248fad2d2108dfb5dd4f6
[ "Apache-2.0" ]
null
null
null
# Version: 2020.02.21 # # MIT License # # Copyright (c) 2018 Jiankang Deng and Jia Guo # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import os from easydict import EasyDict as edict input_dir = '/raid5data/dplearn/YTF/aligned_images_DB' ret = [] label = 0 person_names = [] for person_name in os.listdir(input_dir): person_names.append(person_name) person_names = sorted(person_names) for person_name in person_names: _subdir = os.path.join(input_dir, person_name) if not os.path.isdir(_subdir): continue for _subdir2 in os.listdir(_subdir): _subdir2 = os.path.join(_subdir, _subdir2) if not os.path.isdir(_subdir2): continue _ret = [] for img in os.listdir(_subdir2): fimage = edict() fimage.id = os.path.join(_subdir2, img) fimage.classname = str(label) fimage.image_path = os.path.join(_subdir2, img) fimage.bbox = None fimage.landmark = None _ret.append(fimage) ret += _ret label += 1 for item in ret: print("%d\t%s\t%d" % (1, item.image_path, int(item.classname)))
37.448276
81
0.699355
9a4b84f720a0fadebfc07b67c7cad4d084768d6b
2,237
py
Python
src/rezgui/dialogs/BrowsePackageDialog.py
alexey-pelykh/rez
ad12105d89d658e4d2ea9249e537b3de90391f0e
[ "Apache-2.0" ]
null
null
null
src/rezgui/dialogs/BrowsePackageDialog.py
alexey-pelykh/rez
ad12105d89d658e4d2ea9249e537b3de90391f0e
[ "Apache-2.0" ]
null
null
null
src/rezgui/dialogs/BrowsePackageDialog.py
alexey-pelykh/rez
ad12105d89d658e4d2ea9249e537b3de90391f0e
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 # Copyright Contributors to the Rez Project from Qt import QtWidgets from rezgui.util import create_pane from rezgui.mixins.StoreSizeMixin import StoreSizeMixin from rezgui.widgets.BrowsePackageWidget import BrowsePackageWidget from rezgui.objects.App import app class BrowsePackageDialog(QtWidgets.QDialog, StoreSizeMixin): def __init__(self, context_model, package_text=None, parent=None, close_only=False, lock_package=False, package_selectable_callback=None): config_key = "layout/window/browse_package" super(BrowsePackageDialog, self).__init__(parent) StoreSizeMixin.__init__(self, app.config, config_key) self.setWindowTitle("Find Package") self.package = None self.widget = BrowsePackageWidget( context_model, self, lock_package=lock_package, package_selectable_callback=package_selectable_callback) self.ok_btn = QtWidgets.QPushButton("Ok") buttons = [self.ok_btn] if close_only: close_btn = QtWidgets.QPushButton("Close") buttons.insert(0, close_btn) close_btn.clicked.connect(self.close) self.ok_btn.hide() else: cancel_btn = QtWidgets.QPushButton("Cancel") cancel_btn.clicked.connect(self.close) buttons.insert(0, cancel_btn) self.ok_btn.setEnabled(False) btn_pane = create_pane([None] + buttons, True) layout = QtWidgets.QVBoxLayout() layout.addWidget(self.widget) layout.addWidget(btn_pane) self.setLayout(layout) self.ok_btn.clicked.connect(self._ok) self.widget.packageSelected.connect(self._set_package) self.widget.set_package_text(package_text) def _set_package(self): package = self.widget.current_package() if package is None: self.setWindowTitle("Find Package") self.ok_btn.setEnabled(False) else: self.setWindowTitle("Find Package - %s" % package.qualified_name) self.ok_btn.setEnabled(True) def _ok(self): self.package = self.widget.current_package() self.close()
34.953125
77
0.671882
757b0d5537634c2c0e26dbd2c08a382f4c43fda7
8,205
py
Python
Lib/test/test_urllibnet.py
jimmyyu2004/jython
5b4dc2d54d01a6fda8c55d07b2608167e7a40769
[ "CNRI-Jython" ]
332
2015-08-22T12:43:56.000Z
2022-03-17T01:05:43.000Z
Lib/test/test_urllibnet.py
Pandinosaurus/jython3
def4f8ec47cb7a9c799ea4c745f12badf92c5769
[ "CNRI-Jython" ]
36
2015-05-30T08:39:19.000Z
2022-03-04T20:42:33.000Z
Lib/test/test_urllibnet.py
Pandinosaurus/jython3
def4f8ec47cb7a9c799ea4c745f12badf92c5769
[ "CNRI-Jython" ]
74
2015-05-29T17:18:53.000Z
2022-01-15T14:06:44.000Z
#!/usr/bin/env python import unittest from test import support import socket import urllib.request, urllib.parse, urllib.error import sys import os import time mimetools = support.import_module("mimetools", deprecated=True) def _open_with_retry(func, host, *args, **kwargs): # Connecting to remote hosts is flaky. Make it more robust # by retrying the connection several times. for i in range(3): try: return func(host, *args, **kwargs) except IOError as last_exc: continue except: raise raise last_exc class URLTimeoutTest(unittest.TestCase): TIMEOUT = 10.0 def setUp(self): socket.setdefaulttimeout(self.TIMEOUT) def tearDown(self): socket.setdefaulttimeout(None) def testURLread(self): f = _open_with_retry(urllib.request.urlopen, "http://www.python.org/") x = f.read() class urlopenNetworkTests(unittest.TestCase): """Tests urllib.urlopen using the network. These tests are not exhaustive. Assuming that testing using files does a good job overall of some of the basic interface features. There are no tests exercising the optional 'data' and 'proxies' arguments. No tests for transparent redirection have been written. setUp is not used for always constructing a connection to http://www.python.org/ since there a few tests that don't use that address and making a connection is expensive enough to warrant minimizing unneeded connections. """ def urlopen(self, *args): return _open_with_retry(urllib.request.urlopen, *args) def test_basic(self): # Simple test expected to pass. open_url = self.urlopen("http://www.python.org/") for attr in ("read", "readline", "readlines", "fileno", "close", "info", "geturl"): self.assertTrue(hasattr(open_url, attr), "object returned from " "urlopen lacks the %s attribute" % attr) try: self.assertTrue(open_url.read(), "calling 'read' failed") finally: open_url.close() def test_readlines(self): # Test both readline and readlines. open_url = self.urlopen("http://www.python.org/") try: self.assertIsInstance(open_url.readline(), str, "readline did not return a string") self.assertIsInstance(open_url.readlines(), list, "readlines did not return a list") finally: open_url.close() def test_info(self): # Test 'info'. open_url = self.urlopen("http://www.python.org/") try: info_obj = open_url.info() finally: open_url.close() self.assertIsInstance(info_obj, mimetools.Message, "object returned by 'info' is not an " "instance of mimetools.Message") self.assertEqual(info_obj.getsubtype(), "html") def test_geturl(self): # Make sure same URL as opened is returned by geturl. # # This test has been changed from what's currently in our # lib-python/2.7 for Jython due to recent updates at the # python.org to use https; other tests can take advantate of # URL redirection URL = "https://www.python.org/" open_url = self.urlopen(URL) try: gotten_url = open_url.geturl() finally: open_url.close() self.assertEqual(gotten_url, URL) def test_getcode(self): # test getcode() with the fancy opener to get 404 error codes URL = "http://www.python.org/XXXinvalidXXX" open_url = urllib.request.FancyURLopener().open(URL) try: code = open_url.getcode() finally: open_url.close() self.assertEqual(code, 404) @unittest.skipIf(support.is_jython, "Sockets cannot be used as file descriptors") def test_fileno(self): if (sys.platform in ('win32',) or not hasattr(os, 'fdopen')): # On Windows, socket handles are not file descriptors; this # test can't pass on Windows. return # Make sure fd returned by fileno is valid. open_url = self.urlopen("http://www.python.org/") fd = open_url.fileno() FILE = os.fdopen(fd) try: self.assertTrue(FILE.read(), "reading from file created using fd " "returned by fileno failed") finally: FILE.close() def test_bad_address(self): # Make sure proper exception is raised when connecting to a bogus # address. bogus_domain = "sadflkjsasf.i.nvali.d" try: socket.gethostbyname(bogus_domain) except socket.gaierror: pass else: # This happens with some overzealous DNS providers such as OpenDNS self.skipTest("%r should not resolve for test to work" % bogus_domain) self.assertRaises(IOError, # SF patch 809915: In Sep 2003, VeriSign started # highjacking invalid .com and .net addresses to # boost traffic to their own site. This test # started failing then. One hopes the .invalid # domain will be spared to serve its defined # purpose. # urllib.urlopen, "http://www.sadflkjsasadf.com/") urllib.request.urlopen, "http://sadflkjsasf.i.nvali.d/") class urlretrieveNetworkTests(unittest.TestCase): """Tests urllib.urlretrieve using the network.""" def urlretrieve(self, *args): return _open_with_retry(urllib.request.urlretrieve, *args) def test_basic(self): # Test basic functionality. file_location, info = self.urlretrieve("http://www.python.org/") self.assertTrue(os.path.exists(file_location), "file location returned by" " urlretrieve is not a valid path") FILE = file(file_location) try: self.assertTrue(FILE.read(), "reading from the file location returned" " by urlretrieve failed") finally: FILE.close() os.unlink(file_location) def test_specified_path(self): # Make sure that specifying the location of the file to write to works. file_location, info = self.urlretrieve("http://www.python.org/", support.TESTFN) self.assertEqual(file_location, support.TESTFN) self.assertTrue(os.path.exists(file_location)) FILE = file(file_location) try: self.assertTrue(FILE.read(), "reading from temporary file failed") finally: FILE.close() os.unlink(file_location) def test_header(self): # Make sure header returned as 2nd value from urlretrieve is good. file_location, header = self.urlretrieve("http://www.python.org/") os.unlink(file_location) self.assertIsInstance(header, mimetools.Message, "header is not an instance of mimetools.Message") def test_data_header(self): logo = "http://www.python.org/community/logos/python-logo-master-v3-TM.png" file_location, fileheaders = self.urlretrieve(logo) os.unlink(file_location) datevalue = fileheaders.getheader('Date') dateformat = '%a, %d %b %Y %H:%M:%S GMT' try: time.strptime(datevalue, dateformat) except ValueError: self.fail('Date value not in %r format', dateformat) def test_main(): support.requires('network') with support.check_py3k_warnings( ("urllib.urlopen.. has been removed", DeprecationWarning)): support.run_unittest(URLTimeoutTest, urlopenNetworkTests, urlretrieveNetworkTests) if __name__ == "__main__": test_main()
37.295455
85
0.5961
3911ab48338ce149950f4ef95a156f1540c3e514
3,325
py
Python
sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2016_08_01/_configuration.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2016_08_01/_configuration.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
4
2019-04-17T17:57:49.000Z
2020-04-24T21:11:22.000Z
sdk/appservice/azure-mgmt-web/azure/mgmt/web/v2016_08_01/_configuration.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential VERSION = "unknown" class WebSiteManagementClientConfiguration(Configuration): """Configuration for WebSiteManagementClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: Your Azure subscription ID. This is a GUID-formatted string (e.g. 00000000-0000-0000-0000-000000000000). :type subscription_id: str """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> None if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") super(WebSiteManagementClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.api_version = "2016-08-01" self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'mgmt-web/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.BearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
46.830986
132
0.686316
199744d0636d1f1180268da32663f1a92da92ab2
210
py
Python
steps/pytorch/architectures/utils.py
dineshsonachalam/data-science-bowl-2018
d791c007cc5bfe313df0f05d2c3970cd316a4ba2
[ "MIT" ]
11
2018-05-10T08:56:05.000Z
2018-06-23T05:00:36.000Z
steps/pytorch/architectures/utils.py
dineshsonachalam/data-science-bowl-2018
d791c007cc5bfe313df0f05d2c3970cd316a4ba2
[ "MIT" ]
29
2018-05-05T10:56:44.000Z
2018-06-17T17:14:30.000Z
steps/pytorch/architectures/utils.py
dineshsonachalam/data-science-bowl-2018
d791c007cc5bfe313df0f05d2c3970cd316a4ba2
[ "MIT" ]
8
2018-04-16T07:15:25.000Z
2019-06-25T12:42:53.000Z
import torch.nn as nn class Reshape(nn.Module): def __init__(self, *shape): super(Reshape, self).__init__() self.shape = shape def forward(self, x): return x.view(*self.shape)
21
39
0.619048
4ae3739692731e7e7fb097b37540fc955acb86bf
6,378
py
Python
EvernoteTest.py
Lee-Kevin/EvernoteApp
9a57c38787f41c37295b6ec753d528cbda1eb7a9
[ "MIT" ]
null
null
null
EvernoteTest.py
Lee-Kevin/EvernoteApp
9a57c38787f41c37295b6ec753d528cbda1eb7a9
[ "MIT" ]
null
null
null
EvernoteTest.py
Lee-Kevin/EvernoteApp
9a57c38787f41c37295b6ec753d528cbda1eb7a9
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging from evernote.api.client import EvernoteClient from HTMLParser import HTMLParser import talkey from weather import weatherReport import threading import time logging.basicConfig(level='INFO') # define a global threading lock Global_Lock = threading.Lock() class MyHTMLParser(HTMLParser): def __init__(self): HTMLParser.__init__(self) self.ToDo = [] self.Flag = None def handle_starttag(self, tag, attrs): logging.info("Encountered a start tag: %s, %s", tag,attrs) if tag == "en-todo": logging.info( "this is to do tag:") if len(attrs) == 0: # Here is the things that need to be done self.Flag = True logging.info("Here is need to be done") else: if (attrs[0][0] == "checked" and attrs[0][1] == "true"): logging.info("Here is already done") def handle_data(self, data): #print("Encountered some data :", data) if self.Flag == True: logging.info(data) self.Flag = False self.ToDo.append(data) else: pass def GetResult(self): result = self.ToDo self.ToDo = [] return result # 3bee4c0c-2caf-413c-9e49-d51da6fcdc8c dev_token = "S=s1:U=92b7b:E=15d39d06877:C=155e21f3928:P=1cd:A=en-devtoken:V=2:H=1304173954fbc76d7432cdf262f7b228" noteGuid = "1e77d88b-49e6-4410-aaf5-c85c3bb70a0d" tts = talkey.Talkey() tts.say("This is a test") # Sign in the Evernote client = None noteStore = None def SignInEvernote(): global client,noteStore result = False try: client = EvernoteClient(token=dev_token) userStore = client.get_user_store() user = userStore.getUser() # here will throw an error logging.info(user.username) noteStore = client.get_note_store() result = True except Exception, e: logging.warn(e) return result def GetNoteContent(noteGuid): global noteStore content = None try: content = noteStore.getNoteContent(noteGuid) except Exception,e: logging.warn(e) return content #parser = MyHTMLParser() #parser.feed(content) #This is the Time Out var. TimeOutIndex = 0 weatherSpeach = None def weatherInformation(): speach = None city = "shenzhen" weather = weatherReport(city) if weather.getWeather() == True: speach = ("The weather is %s. Temperature: %.1f. Humidity: %.1f%%. Wind speed: %.1f meters per second" % (weather.weather_desc,weather.temperature,weather.humidity,weather.wind_speed)) logging.info(speach) return speach # A new class that used to manage the thread class GetWeatherInfoThread(threading.Thread): def __init__(self,timeout = 1.0): threading.Thread.__init__(self) self.timeout = timeout self._running = True self.weatherSpeach = None self.subthread = None def terminate(self): self._running = False def runloop(self,TimeInterval): self._running = True def TargetFun(self, _TimeInterval): while self._running: speach = weatherInformation() if speach != None: global Global_Lock Global_Lock.acquire() self.weatherSpeach = speach Global_Lock.release() else: pass import time time.sleep(_TimeInterval) self.subthread = threading.Thread(target=TargetFun,args=(self, TimeInterval,)) self.subthread.start() def isRunning(self): if self.subthread.is_alive(): return True else: return False # A new class that used to manage the thread class GetEvernoteThread(threading.Thread): def __init__(self,timeout = 1.0): threading.Thread.__init__(self) self.timeout = timeout self._running = True self.content = None self.subthread = None def terminate(self): self._running = False def runloop(self,TimeInterval,noteGuid): self._running = True def TargetFun(self, _TimeInterval,_noteGuid): while self._running: content = GetNoteContent(_noteGuid) if content != None: global Global_Lock Global_Lock.acquire() self.content = content Global_Lock.release() else: pass import time time.sleep(_TimeInterval) self.subthread = threading.Thread(target=TargetFun,args=(self, TimeInterval,noteGuid)) self.subthread.start() def isRunning(self): if self.subthread.is_alive(): return True else: return False if __name__ == "__main__": Task1Weather = GetWeatherInfoThread() Task1Weather.runloop(5) # The Time Interval is 5 second SignResult = SignInEvernote() while SignResult == False: TimeOutIndex = TimeOutIndex + 1 if TimeOutIndex == 10: logging.warn("Can't Sign in the Evernote") TimeOutIndex = 0 break SignResult = SignInEvernote() Task2Evernote = GetEvernoteThread() Task2Evernote.runloop(10,noteGuid) parser = MyHTMLParser() logging.info("你好") while True: try: logging.info("This is in loop") time.sleep(6) logging.info(Task1Weather.weatherSpeach) if Task1Weather.weatherSpeach != None: tts.say(Task1Weather.weatherSpeach) else: pass if Task2Evernote.content != None: parser.feed(Task2Evernote.content) content = parser.GetResult() for result in content: logging.info("The result is :%s",result) tts.say(result) else : pass except KeyboardInterrupt: Task1Weather.terminate() Task2Evernote.terminate() exit() except Exception, e: logging.info(e)
30.084906
192
0.581373
a4c28b6344c59c341beabc1d04f64d66c3041052
1,346
py
Python
examples/py/fetch-ohlcv-cex.py
diwenshi61/ccxt
ebdda10e7c4ed8841d572f3bfe198b5f0e949cf6
[ "MIT" ]
24,910
2017-10-27T21:41:59.000Z
2022-03-31T23:08:57.000Z
examples/py/fetch-ohlcv-cex.py
diwenshi61/ccxt
ebdda10e7c4ed8841d572f3bfe198b5f0e949cf6
[ "MIT" ]
8,201
2017-10-28T10:19:28.000Z
2022-03-31T23:49:37.000Z
examples/py/fetch-ohlcv-cex.py
diwenshi61/ccxt
ebdda10e7c4ed8841d572f3bfe198b5f0e949cf6
[ "MIT" ]
6,632
2017-10-28T02:53:24.000Z
2022-03-31T23:20:14.000Z
# -*- coding: utf-8 -*- import os import sys import asciichart # ----------------------------------------------------------------------------- this_folder = os.path.dirname(os.path.abspath(__file__)) root_folder = os.path.dirname(os.path.dirname(this_folder)) sys.path.append(root_folder + '/python') sys.path.append(this_folder) # ----------------------------------------------------------------------------- import ccxt # noqa: E402 # ----------------------------------------------------------------------------- exchange = ccxt.cex() symbol = 'BTC/USD' # each ohlcv candle is a list of [ timestamp, open, high, low, close, volume ] index = 4 # use close price from each ohlcv candle length = 80 height = 15 def print_chart(exchange, symbol, timeframe): print("\n" + exchange.name + ' ' + symbol + ' ' + timeframe + ' chart:') # get a list of ohlcv candles ohlcv = exchange.fetch_ohlcv(symbol, timeframe) # get the ohlCv (closing price, index == 4) series = [x[index] for x in ohlcv] # print the chart print("\n" + asciichart.plot(series[-length:], {'height': height})) # print the chart last = ohlcv[len(ohlcv) - 1][index] # last closing price return last last = print_chart(exchange, symbol, '1m') print("\n" + exchange.name + " ₿ = $" + str(last) + "\n") # print last closing price
27.469388
90
0.541605
42965654392082e5f7efb172f922d2728802340e
7,611
py
Python
service/common/pip_installer.py
lcrh/falken
7545431c7bfa34a9b45c2243cae40dbb58adefaa
[ "Apache-2.0" ]
213
2021-06-11T01:15:16.000Z
2022-02-25T16:18:57.000Z
service/common/pip_installer.py
lcrh/falken
7545431c7bfa34a9b45c2243cae40dbb58adefaa
[ "Apache-2.0" ]
32
2021-06-17T17:58:54.000Z
2022-02-02T05:58:10.000Z
service/common/pip_installer.py
lcrh/falken
7545431c7bfa34a9b45c2243cae40dbb58adefaa
[ "Apache-2.0" ]
28
2021-06-17T17:34:21.000Z
2022-03-24T14:05:20.000Z
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Installs dependencies using pip.""" import importlib import importlib.util import logging import os import platform import subprocess import sys from typing import Dict, List, NamedTuple # A dictionary where the key is a platform name # returned by platform.system() and the value contains a list of supported # architectures for the package. If no constraints are found for the current # platform it is assumed the package is available for the platform. PlatformConstraints = Dict[str, List[str]] class ModuleInfo(NamedTuple): """PIP module installation information and constraints.""" # Name of the module to install. pip_module_name: str # Name of the optional module to import to determine whether the required # pip package is installed. pip_installer searches the module path for this # module to determine whether the PIP module pip_module_name is installed. # By setting this value pip_installer can avoid using `pip list`, which is # a very slow operation, to determine whether a module is installed. import_module_name: str = '' # An optional version constraint for the pip module. version_constraint: str = '' # Constraints that need to be satisfied for the host platform before trying # to install the module. platform_constraints: PlatformConstraints = {} # Modules required to execute service modules and tests. _REQUIRED_PYTHON_MODULES = [ ModuleInfo(pip_module_name='absl-py', import_module_name='absl'), ModuleInfo(pip_module_name='braceexpand', import_module_name='braceexpand'), ModuleInfo(pip_module_name='numpy', import_module_name='numpy'), ModuleInfo(pip_module_name='tensorflow', import_module_name='tensorflow', version_constraint='>=2.5.0', platform_constraints={'windows': ['64bit']}), ModuleInfo(pip_module_name='tf-agents', import_module_name='tf_agents', version_constraint='==0.8.0rc1'), ModuleInfo(pip_module_name='grpcio-tools', import_module_name='grpc.tools.protoc'), ModuleInfo(pip_module_name='googleapis-common-protos', import_module_name='google.rpc.status_pb2'), ModuleInfo(pip_module_name='flatbuffers', import_module_name='flatbuffers'), ModuleInfo(pip_module_name='flufl.lock', import_module_name='flufl.lock'), ] _PIP_INSTALL_ARGS = [sys.executable, '-m', 'pip', 'install', '--user'] # Cache of installed modules populated by _module_installed(). _INSTALLED_MODULE_LIST = [] class PlatformConstraintError(RuntimeError): """Raised if the current platform doesn't support a package.""" pass def _clear_installed_modules_cache(): """Flush cache of installed modules.""" global _INSTALLED_MODULE_LIST _INSTALLED_MODULE_LIST = [] importlib.invalidate_caches() def find_module_by_name(import_module_name: str, search_path: str = ''): """Determine whether a module can be imported. After calling this method if a module is subsequently installed or made available via sys.path, the caller must call importlib.invalidate_caches() before trying to import the newly available module. Args: import_module_name: Name of the module to import or check whether it's installed. search_path: Optional additional path to add to sys.path to search. Returns: True if the module can be imported, False otherwise. """ if search_path: original_sys_path = list(sys.path) sys.path.append(search_path) else: original_sys_path = sys.path try: if importlib.util.find_spec(import_module_name): return True except ModuleNotFoundError: pass finally: sys.path = original_sys_path return False def _module_installed(pip_module_name: str, import_module_name: str): """Determine whether a module is installed. Args: pip_module_name: Name of the Python module to query. import_module_name: Optional name of a module to import to check whether it's installed. Returns: True if installed, False otherwise. Raises: subprocess.CalledProcessError: If pip fails to list modules. """ if import_module_name and find_module_by_name(import_module_name): return True global _INSTALLED_MODULE_LIST if not _INSTALLED_MODULE_LIST and not getattr(sys, 'frozen', False): logging.debug('Listing installed pip packages') result = subprocess.run([sys.executable, '-m', 'pip', 'list'], stdout=subprocess.PIPE, check=True) # Each line consists of "module_name\w+version", extract the module name # from each line. _INSTALLED_MODULE_LIST = [ l.split()[0] for l in result.stdout.decode('utf-8').splitlines()] logging.debug('Found following installed packages: %s', _INSTALLED_MODULE_LIST) return pip_module_name in _INSTALLED_MODULE_LIST def _install_module(module: str, version: str): """Install a Python module if the application isn't frozen. Args: module: Name of the module to install. version: Version constraints for the module to install or an empty string to install the latest. Raises: subprocess.CalledProcessError: If module installation fails. """ if not getattr(sys, 'frozen', False): logging.info('Installing Python module %s...', module) subprocess.check_call(_PIP_INSTALL_ARGS + [f'{module}{version}']) def _check_platform_constraints(module: str, constraints: PlatformConstraints): """Check platform constraints for a module. Args: module: Name of the module. constraints: Platform constraints dictionary, where the key is a platform name returned by platform.system() and the value contains a list of supported architectures for the package. If no constraints are found for the current platform it is assumed the package is available for the platform. Raises: PlatformConstraintError: If the platform doesn't meet the specified constraints. """ system_name = platform.system().lower() architecture = platform.architecture() platform_constraints = constraints.get(system_name) supported = (not platform_constraints or any(a for a in architecture if a in platform_constraints)) if not supported: raise PlatformConstraintError( f'pip package {module} requires architecture {platform_constraints} ' f'on {system_name} but the current Python environment has ' f'architecture {architecture}. Try installing a different interpreter.') def install_dependencies(): """Install all Python module dependencies.""" modules_installed = False for info in _REQUIRED_PYTHON_MODULES: _check_platform_constraints(info.pip_module_name, info.platform_constraints) if not _module_installed(info.pip_module_name, info.import_module_name): _install_module(info.pip_module_name, info.version_constraint) modules_installed = True if modules_installed: _clear_installed_modules_cache() if int(os.environ.get('FALKEN_AUTO_INSTALL_DEPENDENCIES', 1)): install_dependencies()
37.126829
80
0.74169
00517c65c660395f56e52f44b6a78e74d0cbc830
57,820
py
Python
release/scripts/startup/bl_ui/properties_constraint.py
linluofeng/upbge
50bc9bc923a41411461d662c0fddd58d1f0b3ab3
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
release/scripts/startup/bl_ui/properties_constraint.py
linluofeng/upbge
50bc9bc923a41411461d662c0fddd58d1f0b3ab3
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
release/scripts/startup/bl_ui/properties_constraint.py
linluofeng/upbge
50bc9bc923a41411461d662c0fddd58d1f0b3ab3
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> from bpy.types import Panel class ObjectConstraintPanel(Panel): bl_context = "constraint" @classmethod def poll(cls, context): return (context.object) class BoneConstraintPanel(Panel): bl_context = "bone_constraint" @classmethod def poll(cls, context): return (context.pose_bone) class OBJECT_PT_constraints(ObjectConstraintPanel): bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_label = "Object Constraints" bl_options = {'HIDE_HEADER'} def draw(self, context): layout = self.layout layout.operator_menu_enum("object.constraint_add", "type", text="Add Object Constraint") layout.template_constraints(use_bone_constraints=False) class BONE_PT_constraints(BoneConstraintPanel): bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_label = "Bone Constraints" bl_options = {'HIDE_HEADER'} def draw(self, context): layout = self.layout layout.operator_menu_enum("pose.constraint_add", "type", text="Add Bone Constraint") layout.template_constraints(use_bone_constraints=True) # Parent class for constraint panels, with templates and drawing methods # shared between the bone and object constraint panels class ConstraintButtonsPanel(Panel): bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_label = "" bl_options = {'INSTANCED', 'HEADER_LAYOUT_EXPAND', 'DRAW_BOX'} @staticmethod def draw_influence(layout, con): layout.separator() if con.type in {'IK', 'SPLINE_IK'}: # constraint.disable_keep_transform doesn't work well # for these constraints. layout.prop(con, "influence") else: row = layout.row(align=True) row.prop(con, "influence") row.operator("constraint.disable_keep_transform", text="", icon='CANCEL') @staticmethod def space_template(layout, con, target=True, owner=True): if target or owner: layout.separator() if target: layout.prop(con, "target_space", text="Target") if owner: layout.prop(con, "owner_space", text="Owner") @staticmethod def target_template(layout, con, subtargets=True): col = layout.column() col.prop(con, "target") # XXX limiting settings for only 'curves' or some type of object if con.target and subtargets: if con.target.type == 'ARMATURE': col.prop_search(con, "subtarget", con.target.data, "bones", text="Bone") if con.subtarget and hasattr(con, "head_tail"): row = col.row(align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "head_tail") # XXX icon, and only when bone has segments? sub.prop(con, "use_bbone_shape", text="", icon='IPO_BEZIER') row.prop_decorator(con, "head_tail") elif con.target.type in {'MESH', 'LATTICE'}: col.prop_search(con, "subtarget", con.target, "vertex_groups", text="Vertex Group") def get_constraint(self, context): con = self.custom_data self.layout.context_pointer_set("constraint", con) return con def draw_header(self, context): layout = self.layout con = self.get_constraint(context) layout.template_constraint_header(con) # Drawing methods for specific constraints. (Shared by object and bone constraint panels) def draw_childof(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) row = layout.row(heading="Location") row.use_property_decorate = False row.prop(con, "use_location_x", text="X", toggle=True) row.prop(con, "use_location_y", text="Y", toggle=True) row.prop(con, "use_location_z", text="Z", toggle=True) row.label(icon='BLANK1') row = layout.row(heading="Rotation") row.use_property_decorate = False row.prop(con, "use_rotation_x", text="X", toggle=True) row.prop(con, "use_rotation_y", text="Y", toggle=True) row.prop(con, "use_rotation_z", text="Z", toggle=True) row.label(icon='BLANK1') row = layout.row(heading="Scale") row.use_property_decorate = False row.prop(con, "use_scale_x", text="X", toggle=True) row.prop(con, "use_scale_y", text="Y", toggle=True) row.prop(con, "use_scale_z", text="Z", toggle=True) row.label(icon='BLANK1') row = layout.row() row.operator("constraint.childof_set_inverse") row.operator("constraint.childof_clear_inverse") self.draw_influence(layout, con) def draw_trackto(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) layout.prop(con, "track_axis", expand=True) layout.prop(con, "up_axis", text="Up", expand=True) layout.prop(con, "use_target_z") self.space_template(layout, con) self.draw_influence(layout, con) def draw_follow_path(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) if con.use_fixed_location: layout.prop(con, "offset_factor", text="Offset Factor") else: layout.prop(con, "offset") layout.prop(con, "forward_axis", expand=True) layout.prop(con, "up_axis", expand=True) col = layout.column() col.prop(con, "use_fixed_location") col.prop(con, "use_curve_radius") col.prop(con, "use_curve_follow") layout.operator("constraint.followpath_path_animate", text="Animate Path", icon='ANIM_DATA') self.draw_influence(layout, con) def draw_rot_limit(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True # Decorators and property split are really buggy with these properties row = layout.row(heading="Limit X", align=True) row.use_property_decorate = False row.prop(con, "use_limit_x", text="") sub = row.column(align=True) sub.active = con.use_limit_x sub.prop(con, "min_x", text="Min") sub.prop(con, "max_x", text="Max") row.label(icon="BLANK1") row = layout.row(heading="Y", align=True) row.use_property_decorate = False row.prop(con, "use_limit_y", text="") sub = row.column(align=True) sub.active = con.use_limit_y sub.prop(con, "min_y", text="Min") sub.prop(con, "max_y", text="Max") row.label(icon="BLANK1") row = layout.row(heading="Z", align=True) row.use_property_decorate = False row.prop(con, "use_limit_z", text="") sub = row.column(align=True) sub.active = con.use_limit_z sub.prop(con, "min_z", text="Min") sub.prop(con, "max_z", text="Max") row.label(icon="BLANK1") layout.prop(con, "use_transform_limit") layout.prop(con, "owner_space") self.draw_influence(layout, con) def draw_loc_limit(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True col = layout.column() row = col.row(heading="Minimum X", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_min_x", text="") subsub = sub.row(align=True) subsub.active = con.use_min_x subsub.prop(con, "min_x", text="") row.prop_decorator(con, "min_x") row = col.row(heading="Y", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_min_y", text="") subsub = sub.row(align=True) subsub.active = con.use_min_y subsub.prop(con, "min_y", text="") row.prop_decorator(con, "min_y") row = col.row(heading="Z", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_min_z", text="") subsub = sub.row(align=True) subsub.active = con.use_min_z subsub.prop(con, "min_z", text="") row.prop_decorator(con, "min_z") col.separator() row = col.row(heading="Maximum X", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_max_x", text="") subsub = sub.row(align=True) subsub.active = con.use_max_x subsub.prop(con, "max_x", text="") row.prop_decorator(con, "max_x") row = col.row(heading="Y", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_max_y", text="") subsub = sub.row(align=True) subsub.active = con.use_max_y subsub.prop(con, "max_y", text="") row.prop_decorator(con, "max_y") row = col.row(heading="Z", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_max_z", text="") subsub = sub.row(align=True) subsub.active = con.use_max_z subsub.prop(con, "max_z", text="") row.prop_decorator(con, "max_z") layout.prop(con, "use_transform_limit") layout.prop(con, "owner_space") self.draw_influence(layout, con) def draw_size_limit(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True col = layout.column() row = col.row(heading="Minimum X", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_min_x", text="") subsub = sub.row(align=True) subsub.active = con.use_min_x subsub.prop(con, "min_x", text="") row.prop_decorator(con, "min_x") row = col.row(heading="Y", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_min_y", text="") subsub = sub.row(align=True) subsub.active = con.use_min_y subsub.prop(con, "min_y", text="") row.prop_decorator(con, "min_y") row = col.row(heading="Z", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_min_z", text="") subsub = sub.row(align=True) subsub.active = con.use_min_z subsub.prop(con, "min_z", text="") row.prop_decorator(con, "min_z") col.separator() row = col.row(heading="Maximum X", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_max_x", text="") subsub = sub.row(align=True) subsub.active = con.use_max_x subsub.prop(con, "max_x", text="") row.prop_decorator(con, "max_x") row = col.row(heading="Y", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_max_y", text="") subsub = sub.row(align=True) subsub.active = con.use_max_y subsub.prop(con, "max_y", text="") row.prop_decorator(con, "max_y") row = col.row(heading="Z", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_max_z", text="") subsub = sub.row(align=True) subsub.active = con.use_max_z subsub.prop(con, "max_z", text="") row.prop_decorator(con, "max_z") layout.prop(con, "use_transform_limit") layout.prop(con, "owner_space") self.draw_influence(layout, con) def draw_rotate_like(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) layout.prop(con, "euler_order", text="Order") row = layout.row(heading="Axis", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_x", text="X", toggle=True) sub.prop(con, "use_y", text="Y", toggle=True) sub.prop(con, "use_z", text="Z", toggle=True) row.label(icon='BLANK1') row = layout.row(heading="Invert", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "invert_x", text="X", toggle=True) sub.prop(con, "invert_y", text="Y", toggle=True) sub.prop(con, "invert_z", text="Z", toggle=True) row.label(icon='BLANK1') layout.prop(con, "mix_mode", text="Mix") self.space_template(layout, con) self.draw_influence(layout, con) def draw_locate_like(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) row = layout.row(heading="Axis", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_x", text="X", toggle=True) sub.prop(con, "use_y", text="Y", toggle=True) sub.prop(con, "use_z", text="Z", toggle=True) row.label(icon='BLANK1') row = layout.row(heading="Invert", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "invert_x", text="X", toggle=True) sub.prop(con, "invert_y", text="Y", toggle=True) sub.prop(con, "invert_z", text="Z", toggle=True) row.label(icon='BLANK1') layout.prop(con, "use_offset") self.space_template(layout, con) self.draw_influence(layout, con) def draw_size_like(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) row = layout.row(heading="Axis", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_x", text="X", toggle=True) sub.prop(con, "use_y", text="Y", toggle=True) sub.prop(con, "use_z", text="Z", toggle=True) row.label(icon='BLANK1') col = layout.column() col.prop(con, "power") col.prop(con, "use_make_uniform") col.prop(con, "use_offset") row = col.row() row.active = con.use_offset row.prop(con, "use_add") self.space_template(layout, con) self.draw_influence(layout, con) def draw_same_volume(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True layout.prop(con, "mode") row = layout.row(heading="Free Axis") row.prop(con, "free_axis", expand=True) layout.prop(con, "volume") layout.prop(con, "owner_space") self.draw_influence(layout, con) def draw_trans_like(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) layout.prop(con, "mix_mode", text="Mix") self.space_template(layout, con) self.draw_influence(layout, con) def draw_action(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True target_row = layout.row(align=True) target_row.active = not con.use_eval_time self.target_template(target_row, con) row = layout.row(align=True, heading="Evaluation Time") row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_eval_time", text="") subsub = sub.row(align=True) subsub.active = con.use_eval_time subsub.prop(con, "eval_time", text="") row.prop_decorator(con, "eval_time") layout.prop(con, "mix_mode", text="Mix") self.draw_influence(layout, con) def draw_lock_track(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) layout.prop(con, "track_axis", expand=True) layout.prop(con, "lock_axis", expand=True) self.draw_influence(layout, con) def draw_dist_limit(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) row = layout.row() row.prop(con, "distance") row.operator("constraint.limitdistance_reset", text="", icon="X") layout.prop(con, "limit_mode", text="Clamp Region") layout.prop(con, "use_transform_limit") self.space_template(layout, con) self.draw_influence(layout, con) def draw_stretch_to(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) row = layout.row() row.prop(con, "rest_length") row.operator("constraint.stretchto_reset", text="", icon="X") layout.separator() col = layout.column() col.prop(con, "bulge", text="Volume Variation") row = col.row(heading="Volume Min", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_bulge_min", text="") subsub = sub.row(align=True) subsub.active = con.use_bulge_min subsub.prop(con, "bulge_min", text="") row.prop_decorator(con, "bulge_min") row = col.row(heading="Max", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_bulge_max", text="") subsub = sub.row(align=True) subsub.active = con.use_bulge_max subsub.prop(con, "bulge_max", text="") row.prop_decorator(con, "bulge_max") row = col.row() row.active = con.use_bulge_min or con.use_bulge_max row.prop(con, "bulge_smooth", text="Smooth") layout.prop(con, "volume", expand=True) layout.prop(con, "keep_axis", text="Rotation", expand=True) self.draw_influence(layout, con) def draw_min_max(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) layout.prop(con, "offset") layout.prop(con, "floor_location", expand=True, text="Min/Max") layout.prop(con, "use_rotation") self.space_template(layout, con) self.draw_influence(layout, con) def draw_rigid_body_joint(self, context): layout = self.layout con = self.get_constraint(context) self.target_template(layout, con, subtargets=False) layout.prop(con, "pivot_type") layout.prop(con, "child") row = layout.row() row.prop(con, "use_linked_collision", text="Linked Collision") row.prop(con, "show_pivot", text="Display Pivot") row = layout.row() row.prop(con, "use_breaking") row = row.row() row.active = con.use_breaking row.prop(con, "breaking_threshold") split = layout.split() col = split.column(align=True) col.label(text="Pivot:") col.prop(con, "pivot_x", text="X") col.prop(con, "pivot_y", text="Y") col.prop(con, "pivot_z", text="Z") col = split.column(align=True) col.label(text="Axis:") col.prop(con, "axis_x", text="X") col.prop(con, "axis_y", text="Y") col.prop(con, "axis_z", text="Z") if con.pivot_type == 'CONE_TWIST': layout.label(text="Limits:") split = layout.split() col = split.column() col.prop(con, "use_angular_limit_x", text="Angle X") sub = col.column() sub.active = con.use_angular_limit_x sub.prop(con, "limit_angle_max_x", text="") col = split.column() col.prop(con, "use_angular_limit_y", text="Angle Y") sub = col.column() sub.active = con.use_angular_limit_y sub.prop(con, "limit_angle_max_y", text="") col = split.column() col.prop(con, "use_angular_limit_z", text="Angle Z") sub = col.column() sub.active = con.use_angular_limit_z sub.prop(con, "limit_angle_max_z", text="") elif con.pivot_type == 'GENERIC_6_DOF': layout.label(text="Limits:") split = layout.split() col = split.column(align=True) col.prop(con, "use_limit_x", text="X") sub = col.column(align=True) sub.active = con.use_limit_x sub.prop(con, "limit_min_x", text="Min") sub.prop(con, "limit_max_x", text="Max") col = split.column(align=True) col.prop(con, "use_limit_y", text="Y") sub = col.column(align=True) sub.active = con.use_limit_y sub.prop(con, "limit_min_y", text="Min") sub.prop(con, "limit_max_y", text="Max") col = split.column(align=True) col.prop(con, "use_limit_z", text="Z") sub = col.column(align=True) sub.active = con.use_limit_z sub.prop(con, "limit_min_z", text="Min") sub.prop(con, "limit_max_z", text="Max") split = layout.split() col = split.column(align=True) col.prop(con, "use_angular_limit_x", text="Angle X") sub = col.column(align=True) sub.active = con.use_angular_limit_x sub.prop(con, "limit_angle_min_x", text="Min") sub.prop(con, "limit_angle_max_x", text="Max") col = split.column(align=True) col.prop(con, "use_angular_limit_y", text="Angle Y") sub = col.column(align=True) sub.active = con.use_angular_limit_y sub.prop(con, "limit_angle_min_y", text="Min") sub.prop(con, "limit_angle_max_y", text="Max") col = split.column(align=True) col.prop(con, "use_angular_limit_z", text="Angle Z") sub = col.column(align=True) sub.active = con.use_angular_limit_z sub.prop(con, "limit_angle_min_z", text="Min") sub.prop(con, "limit_angle_max_z", text="Max") elif con.pivot_type == 'HINGE': layout.label(text="Limits:") split = layout.split() row = split.row(align=True) col = row.column() col.prop(con, "use_angular_limit_x", text="Angle X") col = row.column() col.active = con.use_angular_limit_x col.prop(con, "limit_angle_min_x", text="Min") col = row.column() col.active = con.use_angular_limit_x col.prop(con, "limit_angle_max_x", text="Max") def draw_clamp_to(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) layout.prop(con, "main_axis", expand=True) layout.prop(con, "use_cyclic") self.draw_influence(layout, con) def draw_transform(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) layout.prop(con, "use_motion_extrapolate", text="Extrapolate") self.space_template(layout, con) self.draw_influence(layout, con) def draw_shrinkwrap(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con, False) layout.prop(con, "distance") layout.prop(con, "shrinkwrap_type", text="Mode") layout.separator() if con.shrinkwrap_type == 'PROJECT': layout.prop(con, "project_axis", expand=True, text="Project Axis") layout.prop(con, "project_axis_space", text="Space") layout.prop(con, "project_limit", text="Distance") layout.prop(con, "use_project_opposite") layout.separator() col = layout.column() row = col.row() row.prop(con, "cull_face", expand=True) row = col.row() row.active = con.use_project_opposite and con.cull_face != 'OFF' row.prop(con, "use_invert_cull") layout.separator() if con.shrinkwrap_type in {'PROJECT', 'NEAREST_SURFACE', 'TARGET_PROJECT'}: layout.prop(con, "wrap_mode", text="Snap Mode") row = layout.row(heading="Align to Normal", align=True) row.use_property_decorate = False sub = row.row(align=True) sub.prop(con, "use_track_normal", text="") subsub = sub.row(align=True) subsub.active = con.use_track_normal subsub.prop(con, "track_axis", text="") row.prop_decorator(con, "track_axis") self.draw_influence(layout, con) def draw_damp_track(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) layout.prop(con, "track_axis", expand=True) self.draw_influence(layout, con) def draw_spline_ik(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) self.draw_influence(layout, con) def draw_pivot(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) if con.target: layout.prop(con, "offset", text="Pivot Offset") else: layout.prop(con, "use_relative_location") if con.use_relative_location: layout.prop(con, "offset", text="Pivot Point") else: layout.prop(con, "offset", text="Pivot Point") col = layout.column() col.prop(con, "rotation_range", text="Rotation Range") self.draw_influence(layout, con) def draw_follow_track(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True clip = None if con.use_active_clip: clip = context.scene.active_clip else: clip = con.clip layout.prop(con, "use_active_clip") layout.prop(con, "use_3d_position") row = layout.row() row.active = not con.use_3d_position row.prop(con, "use_undistorted_position") if not con.use_active_clip: layout.prop(con, "clip") layout.prop(con, "frame_method") if clip: tracking = clip.tracking layout.prop_search(con, "object", tracking, "objects", icon='OBJECT_DATA') tracking_object = tracking.objects.get(con.object, tracking.objects[0]) layout.prop_search(con, "track", tracking_object, "tracks", icon='ANIM_DATA') layout.prop(con, "camera") row = layout.row() row.active = not con.use_3d_position row.prop(con, "depth_object") layout.operator("clip.constraint_to_fcurve") self.draw_influence(layout, con) def draw_camera_solver(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True layout.prop(con, "use_active_clip") if not con.use_active_clip: layout.prop(con, "clip") layout.operator("clip.constraint_to_fcurve") self.draw_influence(layout, con) def draw_object_solver(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True clip = None if con.use_active_clip: clip = context.scene.active_clip else: clip = con.clip layout.prop(con, "use_active_clip") if not con.use_active_clip: layout.prop(con, "clip") if clip: layout.prop_search(con, "object", clip.tracking, "objects", icon='OBJECT_DATA') layout.prop(con, "camera") row = layout.row() row.operator("constraint.objectsolver_set_inverse") row.operator("constraint.objectsolver_clear_inverse") layout.operator("clip.constraint_to_fcurve") self.draw_influence(layout, con) def draw_transform_cache(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True layout.template_cache_file(con, "cache_file") cache_file = con.cache_file if cache_file is not None: layout.prop_search(con, "object_path", cache_file, "object_paths") self.draw_influence(layout, con) def draw_python_constraint(self, context): layout = self.layout layout.label(text="Blender 2.6 doesn't support python constraints yet") def draw_armature(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True col = layout.column() col.prop(con, "use_deform_preserve_volume") col.prop(con, "use_bone_envelopes") if context.pose_bone: col.prop(con, "use_current_location") layout.operator("constraint.add_target", text="Add Target Bone") layout.operator("constraint.normalize_target_weights") self.draw_influence(layout, con) if not con.targets: layout.label(text="No target bones added", icon='ERROR') def draw_kinematic(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True self.target_template(layout, con) if context.object.pose.ik_solver == 'ITASC': layout.prop(con, "ik_type") # This button gives itself too much padding, so put it in a column with the subtarget col = layout.column() col.prop(con, "pole_target") if con.pole_target and con.pole_target.type == 'ARMATURE': col.prop_search(con, "pole_subtarget", con.pole_target.data, "bones", text="Bone") col = layout.column() if con.pole_target: col.prop(con, "pole_angle") col.prop(con, "use_tail") col.prop(con, "use_stretch") col.prop(con, "chain_count") if con.ik_type == 'COPY_POSE': layout.prop(con, "reference_axis", expand=True) # Use separate rows and columns here to avoid an alignment issue with the lock buttons loc_col = layout.column() loc_col.prop(con, "use_location") row = loc_col.row() row.active = con.use_location row.prop(con, "weight", text="Weight", slider=True) row = loc_col.row(heading="Lock", align=True) row.use_property_decorate = False row.active = con.use_location sub = row.row(align=True) sub.prop(con, "lock_location_x", text="X", toggle=True) sub.prop(con, "lock_location_y", text="Y", toggle=True) sub.prop(con, "lock_location_z", text="Z", toggle=True) row.label(icon='BLANK1') rot_col = layout.column() rot_col.prop(con, "use_rotation") row = rot_col.row() row.active = con.use_rotation row.prop(con, "orient_weight", text="Weight", slider=True) row = rot_col.row(heading="Lock", align=True) row.use_property_decorate = False row.active = con.use_rotation sub = row.row(align=True) sub.prop(con, "lock_rotation_x", text="X", toggle=True) sub.prop(con, "lock_rotation_y", text="Y", toggle=True) sub.prop(con, "lock_rotation_z", text="Z", toggle=True) row.label(icon='BLANK1') elif con.ik_type == 'DISTANCE': layout.prop(con, "limit_mode") col = layout.column() col.prop(con, "weight", text="Weight", slider=True) col.prop(con, "distance", text="Distance", slider=True) else: # Standard IK constraint col = layout.column() col.prop(con, "pole_target") if con.pole_target and con.pole_target.type == 'ARMATURE': col.prop_search(con, "pole_subtarget", con.pole_target.data, "bones", text="Bone") col = layout.column() if con.pole_target: col.prop(con, "pole_angle") col.prop(con, "iterations") col.prop(con, "chain_count") col.prop(con, "use_tail") col.prop(con, "use_stretch") col = layout.column() row = col.row(align=True, heading="Weight Position") row.prop(con, "use_location", text="") sub = row.row(align=True) sub.active = con.use_location sub.prop(con, "weight", text="", slider=True) row = col.row(align=True, heading="Rotation") row.prop(con, "use_rotation", text="") sub = row.row(align=True) sub.active = con.use_rotation sub.prop(con, "orient_weight", text="", slider=True) self.draw_influence(layout, con) # Parent class for constraint subpanels class ConstraintButtonsSubPanel(Panel): bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_label = "" bl_options = {'DRAW_BOX'} def get_constraint(self, context): con = self.custom_data self.layout.context_pointer_set("constraint", con) return con def draw_transform_from(self, context): layout = self.layout con = self.get_constraint(context) layout.prop(con, "map_from", expand=True) layout.use_property_split = True layout.use_property_decorate = True from_axes = [con.map_to_x_from, con.map_to_y_from, con.map_to_z_from] if con.map_from == 'ROTATION': layout.prop(con, "from_rotation_mode", text="Mode") ext = "" if con.map_from == 'LOCATION' else "_rot" if con.map_from == 'ROTATION' else "_scale" col = layout.column(align=True) col.active = "X" in from_axes col.prop(con, "from_min_x" + ext, text="X Min") col.prop(con, "from_max_x" + ext, text="Max") col = layout.column(align=True) col.active = "Y" in from_axes col.prop(con, "from_min_y" + ext, text="Y Min") col.prop(con, "from_max_y" + ext, text="Max") col = layout.column(align=True) col.active = "Z" in from_axes col.prop(con, "from_min_z" + ext, text="Z Min") col.prop(con, "from_max_z" + ext, text="Max") def draw_transform_to(self, context): layout = self.layout con = self.get_constraint(context) layout.prop(con, "map_to", expand=True) layout.use_property_split = True layout.use_property_decorate = True if con.map_to == 'ROTATION': layout.prop(con, "to_euler_order", text="Order") ext = "" if con.map_to == 'LOCATION' else "_rot" if con.map_to == 'ROTATION' else "_scale" col = layout.column(align=True) col.prop(con, "map_to_x_from", expand=False, text="X Source Axis") col.prop(con, "to_min_x" + ext, text="Min") col.prop(con, "to_max_x" + ext, text="Max") col = layout.column(align=True) col.prop(con, "map_to_y_from", expand=False, text="Y Source Axis") col.prop(con, "to_min_y" + ext, text="Min") col.prop(con, "to_max_y" + ext, text="Max") col = layout.column(align=True) col.prop(con, "map_to_z_from", expand=False, text="Z Source Axis") col.prop(con, "to_min_z" + ext, text="Min") col.prop(con, "to_max_z" + ext, text="Max") layout.prop(con, "mix_mode" + ext, text="Mix") def draw_armature_bones(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True for i, tgt in enumerate(con.targets): has_target = tgt.target is not None box = layout.box() header = box.row() header.use_property_split = False split = header.split(factor=0.45, align=True) split.prop(tgt, "target", text="") row = split.row(align=True) row.active = has_target if has_target: row.prop_search(tgt, "subtarget", tgt.target.data, "bones", text="") else: row.prop(tgt, "subtarget", text="", icon='BONE_DATA') header.operator("constraint.remove_target", text="", icon='X').index = i row = box.row() row.active = has_target and tgt.subtarget != "" row.prop(tgt, "weight", slider=True, text="Weight") def draw_spline_ik_fitting(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True col = layout.column() col.prop(con, "chain_count") col.prop(con, "use_even_divisions") col.prop(con, "use_chain_offset") def draw_spline_ik_chain_scaling(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True layout.prop(con, "use_curve_radius") layout.prop(con, "y_scale_mode") layout.prop(con, "xz_scale_mode") if con.xz_scale_mode in {'INVERSE_PRESERVE', 'VOLUME_PRESERVE'}: layout.prop(con, "use_original_scale") if con.xz_scale_mode == 'VOLUME_PRESERVE': col = layout.column() col.prop(con, "bulge", text="Volume Variation") row = col.row(heading="Volume Min") row.prop(con, "use_bulge_min", text="") sub = row.row() sub.active = con.use_bulge_min sub.prop(con, "bulge_min", text="") row = col.row(heading="Max") row.prop(con, "use_bulge_max", text="") sub = row.row() sub.active = con.use_bulge_max sub.prop(con, "bulge_max", text="") row = layout.row() row.active = con.use_bulge_min or con.use_bulge_max row.prop(con, "bulge_smooth", text="Smooth") def draw_action_target(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True col = layout.column() col.active = not con.use_eval_time col.prop(con, "transform_channel", text="Channel") col.prop(con, "target_space") sub = col.column(align=True) sub.prop(con, "min", text="Range Min") sub.prop(con, "max", text="Max") def draw_action_action(self, context): layout = self.layout con = self.get_constraint(context) layout.use_property_split = True layout.use_property_decorate = True layout.prop(con, "action") layout.prop(con, "use_bone_object_action") col = layout.column(align=True) col.prop(con, "frame_start", text="Frame Start") col.prop(con, "frame_end", text="End") # Child Of Constraint class OBJECT_PT_bChildOfConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_childof(context) class BONE_PT_bChildOfConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_childof(context) # Track To Constraint class OBJECT_PT_bTrackToConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_trackto(context) class BONE_PT_bTrackToConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_trackto(context) # Follow Path Constraint class OBJECT_PT_bFollowPathConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_follow_path(context) class BONE_PT_bFollowPathConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_follow_path(context) # Rotation Limit Constraint class OBJECT_PT_bRotLimitConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_rot_limit(context) class BONE_PT_bRotLimitConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_rot_limit(context) # Location Limit Constraint class OBJECT_PT_bLocLimitConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_loc_limit(context) class BONE_PT_bLocLimitConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_loc_limit(context) # Size Limit Constraint class OBJECT_PT_bSizeLimitConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_size_limit(context) class BONE_PT_bSizeLimitConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_size_limit(context) # Rotate Like Constraint class OBJECT_PT_bRotateLikeConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_rotate_like(context) class BONE_PT_bRotateLikeConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_rotate_like(context) # Locate Like Constraint class OBJECT_PT_bLocateLikeConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_locate_like(context) class BONE_PT_bLocateLikeConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_locate_like(context) # Size Like Constraint class OBJECT_PT_bSizeLikeConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_size_like(context) class BONE_PT_bSizeLikeConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_size_like(context) # Same Volume Constraint class OBJECT_PT_bSameVolumeConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_same_volume(context) class BONE_PT_bSameVolumeConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_same_volume(context) # Trans Like Constraint class OBJECT_PT_bTransLikeConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_trans_like(context) class BONE_PT_bTransLikeConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_trans_like(context) # Action Constraint class OBJECT_PT_bActionConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_action(context) class BONE_PT_bActionConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_action(context) class OBJECT_PT_bActionConstraint_target(ObjectConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "OBJECT_PT_bActionConstraint" bl_label = "Target" def draw(self, context): self.draw_action_target(context) class BONE_PT_bActionConstraint_target(BoneConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "BONE_PT_bActionConstraint" bl_label = "Target" def draw(self, context): self.draw_action_target(context) class OBJECT_PT_bActionConstraint_action(ObjectConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "OBJECT_PT_bActionConstraint" bl_label = "Action" def draw(self, context): self.draw_action_action(context) class BONE_PT_bActionConstraint_action(BoneConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "BONE_PT_bActionConstraint" bl_label = "Action" def draw(self, context): self.draw_action_action(context) # Lock Track Constraint class OBJECT_PT_bLockTrackConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_lock_track(context) class BONE_PT_bLockTrackConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_lock_track(context) # Disance Limit Constraint class OBJECT_PT_bDistLimitConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_dist_limit(context) class BONE_PT_bDistLimitConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_dist_limit(context) # Stretch To Constraint class OBJECT_PT_bStretchToConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_stretch_to(context) class BONE_PT_bStretchToConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_stretch_to(context) # Min Max Constraint class OBJECT_PT_bMinMaxConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_min_max(context) class BONE_PT_bMinMaxConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_min_max(context) # Clamp To Constraint class OBJECT_PT_bClampToConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_clamp_to(context) class BONE_PT_bClampToConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_clamp_to(context) # Rigid Body Joint Constraint class OBJECT_PT_bRigidBodyJointConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_rigid_body_joint(context) # Transform Constraint class OBJECT_PT_bTransformConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_transform(context) class BONE_PT_bTransformConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_transform(context) class OBJECT_PT_bTransformConstraint_source(ObjectConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "OBJECT_PT_bTransformConstraint" bl_label = "Map From" def draw(self, context): self.draw_transform_from(context) class BONE_PT_bTransformConstraint_from(BoneConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "BONE_PT_bTransformConstraint" bl_label = "Map From" def draw(self, context): self.draw_transform_from(context) class OBJECT_PT_bTransformConstraint_destination(ObjectConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "OBJECT_PT_bTransformConstraint" bl_label = "Map To" def draw(self, context): self.draw_transform_to(context) class BONE_PT_bTransformConstraint_to(BoneConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "BONE_PT_bTransformConstraint" bl_label = "Map To" def draw(self, context): self.draw_transform_to(context) # Shrinkwrap Constraint class OBJECT_PT_bShrinkwrapConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_shrinkwrap(context) class BONE_PT_bShrinkwrapConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_shrinkwrap(context) # Damp Track Constraint class OBJECT_PT_bDampTrackConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_damp_track(context) class BONE_PT_bDampTrackConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_damp_track(context) # Spline IK Constraint class BONE_PT_bSplineIKConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_spline_ik(context) class BONE_PT_bSplineIKConstraint_fitting(BoneConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "BONE_PT_bSplineIKConstraint" bl_label = "Fitting" def draw(self, context): self.draw_spline_ik_fitting(context) class BONE_PT_bSplineIKConstraint_chain_scaling(BoneConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "BONE_PT_bSplineIKConstraint" bl_label = "Chain Scaling" def draw(self, context): self.draw_spline_ik_chain_scaling(context) # Pivot Constraint class OBJECT_PT_bPivotConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_pivot(context) class BONE_PT_bPivotConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_pivot(context) # Follow Track Constraint class OBJECT_PT_bFollowTrackConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_follow_track(context) class BONE_PT_bFollowTrackConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_follow_track(context) # Camera Solver Constraint class OBJECT_PT_bCameraSolverConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_camera_solver(context) class BONE_PT_bCameraSolverConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_camera_solver(context) # Object Solver Constraint class OBJECT_PT_bObjectSolverConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_object_solver(context) class BONE_PT_bObjectSolverConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_object_solver(context) # Transform Cache Constraint class OBJECT_PT_bTransformCacheConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_transform_cache(context) class BONE_PT_bTransformCacheConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_transform_cache(context) # Python Constraint class OBJECT_PT_bPythonConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_python_constraint(context) class BONE_PT_bPythonConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_python_constraint(context) # Armature Constraint class OBJECT_PT_bArmatureConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_armature(context) class BONE_PT_bArmatureConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_armature(context) class OBJECT_PT_bArmatureConstraint_bones(ObjectConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "OBJECT_PT_bArmatureConstraint" bl_label = "Bones" def draw(self, context): self.draw_armature_bones(context) class BONE_PT_bArmatureConstraint_bones(BoneConstraintPanel, ConstraintButtonsSubPanel): bl_parent_id = "BONE_PT_bArmatureConstraint" bl_label = "Bones" def draw(self, context): self.draw_armature_bones(context) # Inverse Kinematic Constraint class OBJECT_PT_bKinematicConstraint(ObjectConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_kinematic(context) class BONE_PT_bKinematicConstraint(BoneConstraintPanel, ConstraintButtonsPanel): def draw(self, context): self.draw_kinematic(context) classes = ( # Object Panels OBJECT_PT_constraints, BONE_PT_constraints, OBJECT_PT_bChildOfConstraint, OBJECT_PT_bTrackToConstraint, OBJECT_PT_bKinematicConstraint, OBJECT_PT_bFollowPathConstraint, OBJECT_PT_bRotLimitConstraint, OBJECT_PT_bLocLimitConstraint, OBJECT_PT_bSizeLimitConstraint, OBJECT_PT_bRotateLikeConstraint, OBJECT_PT_bLocateLikeConstraint, OBJECT_PT_bSizeLikeConstraint, OBJECT_PT_bSameVolumeConstraint, OBJECT_PT_bTransLikeConstraint, OBJECT_PT_bActionConstraint, OBJECT_PT_bActionConstraint_target, OBJECT_PT_bActionConstraint_action, OBJECT_PT_bLockTrackConstraint, OBJECT_PT_bDistLimitConstraint, OBJECT_PT_bStretchToConstraint, OBJECT_PT_bMinMaxConstraint, OBJECT_PT_bClampToConstraint, OBJECT_PT_bRigidBodyJointConstraint, OBJECT_PT_bTransformConstraint, OBJECT_PT_bTransformConstraint_source, OBJECT_PT_bTransformConstraint_destination, OBJECT_PT_bShrinkwrapConstraint, OBJECT_PT_bDampTrackConstraint, OBJECT_PT_bPivotConstraint, OBJECT_PT_bFollowTrackConstraint, OBJECT_PT_bCameraSolverConstraint, OBJECT_PT_bObjectSolverConstraint, OBJECT_PT_bTransformCacheConstraint, OBJECT_PT_bPythonConstraint, OBJECT_PT_bArmatureConstraint, OBJECT_PT_bArmatureConstraint_bones, # Bone panels BONE_PT_bChildOfConstraint, BONE_PT_bTrackToConstraint, BONE_PT_bKinematicConstraint, BONE_PT_bFollowPathConstraint, BONE_PT_bRotLimitConstraint, BONE_PT_bLocLimitConstraint, BONE_PT_bSizeLimitConstraint, BONE_PT_bRotateLikeConstraint, BONE_PT_bLocateLikeConstraint, BONE_PT_bSizeLikeConstraint, BONE_PT_bSameVolumeConstraint, BONE_PT_bTransLikeConstraint, BONE_PT_bActionConstraint, BONE_PT_bActionConstraint_target, BONE_PT_bActionConstraint_action, BONE_PT_bLockTrackConstraint, BONE_PT_bDistLimitConstraint, BONE_PT_bStretchToConstraint, BONE_PT_bMinMaxConstraint, BONE_PT_bClampToConstraint, BONE_PT_bTransformConstraint, BONE_PT_bTransformConstraint_from, BONE_PT_bTransformConstraint_to, BONE_PT_bShrinkwrapConstraint, BONE_PT_bDampTrackConstraint, BONE_PT_bSplineIKConstraint, BONE_PT_bSplineIKConstraint_fitting, BONE_PT_bSplineIKConstraint_chain_scaling, BONE_PT_bPivotConstraint, BONE_PT_bFollowTrackConstraint, BONE_PT_bCameraSolverConstraint, BONE_PT_bObjectSolverConstraint, BONE_PT_bTransformCacheConstraint, BONE_PT_bPythonConstraint, BONE_PT_bArmatureConstraint, BONE_PT_bArmatureConstraint_bones, ) if __name__ == "__main__": # only for live edit. from bpy.utils import register_class for cls in classes: register_class(cls)
32.392157
102
0.651678
88da40c3dd02cc2ead22517d3c3ca0e9d417e000
4,497
py
Python
mmdet/models/losses/solo_dice_loss.py
ruiningTang/mmdetection
100b0b5e0edddc45af0812b9f1474493c61671ef
[ "Apache-2.0" ]
null
null
null
mmdet/models/losses/solo_dice_loss.py
ruiningTang/mmdetection
100b0b5e0edddc45af0812b9f1474493c61671ef
[ "Apache-2.0" ]
null
null
null
mmdet/models/losses/solo_dice_loss.py
ruiningTang/mmdetection
100b0b5e0edddc45af0812b9f1474493c61671ef
[ "Apache-2.0" ]
null
null
null
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from ..builder import LOSSES from .utils import weight_reduce_loss def dice_loss(pred, target, weight=None, eps=1e-3, reduction='mean', avg_factor=None): """Calculate dice loss, which is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: pred (torch.Tensor): The prediction, has a shape (n, *) target (torch.Tensor): The learning label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. eps (float): Avoid dividing by zero. Default: 1e-3. reduction (str, optional): The method used to reduce the loss into a scalar. Defaults to 'mean'. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. """ input = pred.reshape(pred.size()[0], -1) target = target.reshape(target.size()[0], -1).float() a = torch.sum(input * target, 1) b = torch.sum(input * input, 1) + eps c = torch.sum(target * target, 1) + eps d = (2 * a) / (b + c) loss = 1 - d if weight is not None: assert weight.ndim == loss.ndim assert len(weight) == len(pred) loss = weight_reduce_loss(loss, weight, reduction, avg_factor) return loss @LOSSES.register_module() class SOLODiceLoss(nn.Module): def __init__(self, use_sigmoid=True, activate=True, reduction='mean', loss_weight=1.0, eps=1e-3): """`Dice Loss, which is proposed in `V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_. Args: use_sigmoid (bool, optional): Whether to the prediction is used for sigmoid or softmax. Defaults to True. activate (bool): Whether to activate the predictions inside, this will disable the inside sigmoid operation. Defaults to True. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Defaults to 'mean'. loss_weight (float, optional): Weight of loss. Defaults to 1.0. eps (float): Avoid dividing by zero. Defaults to 1e-3. """ super(SOLODiceLoss, self).__init__() self.use_sigmoid = use_sigmoid self.reduction = reduction self.loss_weight = loss_weight self.eps = eps self.activate = activate def forward(self, pred, target, weight=None, reduction_override=None, avg_factor=None): """Forward function. Args: pred (torch.Tensor): The prediction, has a shape (n, *). target (torch.Tensor): The label of the prediction, shape (n, *), same shape of pred. weight (torch.Tensor, optional): The weight of loss for each prediction, has a shape (n,). Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.activate: if self.use_sigmoid: pred = pred.sigmoid() else: raise NotImplementedError loss = self.loss_weight * dice_loss( pred, target, weight, eps=self.eps, reduction=reduction, avg_factor=avg_factor) return loss
37.789916
79
0.557038
ccbff00ca4b91b81de365b93c7664e1c77371147
407
py
Python
communeapp/settings/prod.py
jeff-eng/Commune
647674c7817068271e18b61276cbcdc58d8e0996
[ "MIT" ]
1
2022-03-21T13:46:33.000Z
2022-03-21T13:46:33.000Z
communeapp/settings/prod.py
jeff-eng/Commune
647674c7817068271e18b61276cbcdc58d8e0996
[ "MIT" ]
1
2022-03-31T00:38:09.000Z
2022-03-31T00:38:09.000Z
communeapp/settings/prod.py
jeff-eng/Commune
647674c7817068271e18b61276cbcdc58d8e0996
[ "MIT" ]
null
null
null
from .base import * from decouple import config SECRET_KEY = config('SECRET_KEY') DEBUG = False ALLOWED_HOSTS = [config('ALLOWED_HOSTS')] # SMTP Configuration EMAIL_BACKEND = config('EMAIL_BACKEND') EMAIL_HOST = config('EMAIL_HOST') EMAIL_PORT = config('EMAIL_PORT') EMAIL_USE_TLS = config('EMAIL_USE_TLS') EMAIL_HOST_USER = config('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD')
25.4375
51
0.783784
a29994e9cfdb143cd97bbc50e3efa04757a2aadd
8,358
py
Python
core/plugintools.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
core/plugintools.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
core/plugintools.py
aserdean/hotsos
a0f17a7ee2f08a4da0a269d478dec7ebb8f12493
[ "Apache-2.0" ]
null
null
null
import os import importlib import yaml from core import constants from core.log import log class HOTSOSDumper(yaml.Dumper): def increase_indent(self, flow=False, indentless=False): return super().increase_indent(flow, False) def represent_dict_preserve_order(self, data): return self.represent_dict(data.items()) def save_part(data, priority=0): """ Save part output yaml in temporary location. These are collected and aggregated at the end of the plugin run. """ HOTSOSDumper.add_representer( dict, HOTSOSDumper.represent_dict_preserve_order) out = yaml.dump(data, Dumper=HOTSOSDumper, default_flow_style=False).rstrip("\n") parts_index = os.path.join(constants.PLUGIN_TMP_DIR, "index.yaml") part_path = os.path.join(constants.PLUGIN_TMP_DIR, "{}.{}.part.yaml".format(constants.PLUGIN_NAME, constants.PART_NAME)) # don't clobber if os.path.exists(part_path): newpath = part_path i = 0 while os.path.exists(newpath): i += 1 newpath = "{}.{}".format(part_path, i) part_path = newpath with open(part_path, 'w') as fd: fd.write(out) index = get_parts_index() with open(parts_index, 'w') as fd: if priority in index: index[priority].append(part_path) else: index[priority] = [part_path] fd.write(yaml.dump(index)) def get_parts_index(): parts_index = os.path.join(constants.PLUGIN_TMP_DIR, "index.yaml") index = {} if os.path.exists(parts_index): with open(parts_index) as fd: index = yaml.safe_load(fd.read()) or {} return index def meld_part_output(data, existing): """ Don't allow root level keys to be clobbered, instead just update them. This assumes that part subkeys will be unique. """ remove_keys = [] for key in data: if key in existing: if type(existing[key]) == dict: existing[key].update(data[key]) remove_keys.append(key) if remove_keys: for key in remove_keys: del data[key] existing.update(data) def collect_all_parts(index): parts = {} for priority in sorted(index): for part in index[priority]: with open(part) as fd: part_yaml = yaml.safe_load(fd) # Don't allow root level keys to be clobbered, instead just # update them. This assumes that part subkeys will be unique. meld_part_output(part_yaml, parts) return parts def dump_all_parts(): index = get_parts_index() if not index: return parts = collect_all_parts(index) if not parts: return plugin_master = {constants.PLUGIN_NAME: parts} HOTSOSDumper.add_representer( dict, HOTSOSDumper.represent_dict_preserve_order) out = yaml.dump(plugin_master, Dumper=HOTSOSDumper, default_flow_style=False).rstrip("\n") print(out) def dump(data, stdout=True): HOTSOSDumper.add_representer( dict, HOTSOSDumper.represent_dict_preserve_order) out = yaml.dump(data, Dumper=HOTSOSDumper, default_flow_style=False).rstrip("\n") if stdout: print(out) else: return out class ApplicationBase(object): @property def bind_interfaces(self): """Implement this method to return a dict of network interfaces used by this application. """ raise NotImplementedError class PluginPartBase(ApplicationBase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._output = {} @property def plugin_runnable(self): """ Must be implemented by all plugins to define at runtime whether they should run. """ raise NotImplementedError @property def output(self): if self._output: return self._output def __call__(self): """ This must be implemented. The plugin runner will call this method by default unless specific methods are defined in the plugin definition (yaml). """ raise NotImplementedError class PluginRunner(object): def __call__(self): """ Fetch definition for current plugin and execute each of its parts. See definitions file at plugins.yaml for information on supported format. """ path = os.path.join(constants.HOTSOS_ROOT, "plugins.yaml") with open(path) as fd: yaml_defs = yaml.safe_load(fd.read()) if not yaml_defs: return failed_parts = [] plugins = yaml_defs.get("plugins", {}) plugin = plugins.get(constants.PLUGIN_NAME, {}) parts = plugin.get("parts", {}) if not parts: log.debug("plugin %s has no parts to run", constants.PLUGIN_NAME) # The following are executed as part of each plugin run (but not last). ALWAYS_RUN = {'auto_bug_check': {'core.ycheck.bugs': 'YBugChecker'}, 'auto_config_check': {'core.ycheck.configs': 'YConfigChecker'}, 'auto_scenario_check': {'core.ycheck.scenarios': 'YScenarioChecker'}} for part, always_parts in ALWAYS_RUN.items(): for obj, cls in always_parts.items(): # update current env to reflect actual part being run os.environ['PART_NAME'] = part part_obj = getattr(importlib.import_module(obj), cls) try: part_obj()() except Exception as exc: failed_parts.append(part) log.debug("part '%s' raised exception: %s", part, exc) if constants.DEBUG_MODE: raise # NOTE: we don't currently expect these parts to produce any # output. for part, obj_names in parts.items(): # update current env to reflect actual part being run os.environ['PART_NAME'] = part mod_string = ('plugins.{}.pyparts.{}'. format(constants.PLUGIN_NAME, part)) # load part mod = importlib.import_module(mod_string) # every part should have a yaml priority defined if hasattr(mod, "YAML_PRIORITY"): yaml_priority = getattr(mod, "YAML_PRIORITY") else: yaml_priority = 0 part_out = {} for entry in obj_names or []: part_obj = getattr(mod, entry)() # Only run plugin if it delares itself runnable. if not part_obj.plugin_runnable: log.debug("%s.%s.%s not runnable - skipping", constants.PLUGIN_NAME, part, entry) continue log.debug("running %s.%s.%s", constants.PLUGIN_NAME, part, entry) try: part_obj() # NOTE: since all parts are expected to be implementations # of PluginPartBase we expect them to always define an # output property. output = part_obj.output except Exception as exc: failed_parts.append(part) log.debug("part '%s' raised exception: %s", part, exc) output = None if constants.DEBUG_MODE: raise if output: meld_part_output(output, part_out) save_part(part_out, priority=yaml_priority) if failed_parts: save_part({'failed-parts': failed_parts}, priority=0) # The following are executed at the end of each plugin run (i.e. after # all other parts have run). FINAL_RUN = {'core.plugins.utils.known_bugs_and_issues': 'KnownBugsAndIssuesCollector'} for obj, cls in FINAL_RUN.items(): getattr(importlib.import_module(obj), cls)()()
31.779468
79
0.57083
81c78359cad44b8801c7aab1070a9e6c648d5a82
2,084
py
Python
grazyna_rpg/world_manager.py
firemark/grazyna-rpg
d4174f5ea8e20677d19d5daae4b208b88ccc1ed6
[ "MIT" ]
1
2015-07-07T23:11:03.000Z
2015-07-07T23:11:03.000Z
grazyna_rpg/world_manager.py
firemark/grazyna-rpg
d4174f5ea8e20677d19d5daae4b208b88ccc1ed6
[ "MIT" ]
null
null
null
grazyna_rpg/world_manager.py
firemark/grazyna-rpg
d4174f5ea8e20677d19d5daae4b208b88ccc1ed6
[ "MIT" ]
null
null
null
from .monster import Monster from .level import Level from .enums import DirectionEnum, LevelType from .abstract.map import AbstractMap class PathNotFound(Exception): pass class WorldManager(object): DIRECTIONS_TO_CONNECTIONS = { DirectionEnum.east: (1, 0), DirectionEnum.west: (-1, 0), DirectionEnum.north: (0, 1), DirectionEnum.south: (0, -1) } levels = None actual_level = None def __init__(self, map): if isinstance(map, dict): self.levels = self.generate_levels_from_raw_data(map) elif isinstance(map, AbstractMap): self.levels = map.generate() else: raise AttributeError( 'map object is not a dict ' 'and dont inheritance from AbstractMap' ) @staticmethod def generate_levels_from_raw_data(map): return { tuple(int(s) for s in key.split('-')): Level( type=data['tile_type'], name=data['name'], monster_types=[data['mon_type%d' % i] for i in range(1, 4)], ) for key, data in map.items() if data.get('tile_type') } def create_connections_with_levels(self): levels = self.levels def move_cord(cord_a, cord_b): return cord_a[0] + cord_b[0], cord_a[1] + cord_b[1] for actual_cord, level in levels.items(): level.directions.update({ direction: another_level for direction, another_level in ( (d, levels.get(move_cord(actual_cord, cord))) for d, cord in self.DIRECTIONS_TO_CONNECTIONS.items() ) if another_level is not None }) def seek_respawn(self): return next(( level for level in self.levels.values() if level.type is LevelType.respawn ), None) def move(self, direction): try: self.actual_level = self.actual_level.directions[direction] except: raise PathNotFound(direction)
31.104478
76
0.577735
15e67c870e5cd84e131b9fb7077305cbea69fcb7
3,717
py
Python
frappe-bench/env/lib/python2.7/site-packages/num2words/lang_HE.py
ibrahmm22/library-management
b88a2129a5a2e96ce1f945ec8ba99a0b63b8c506
[ "MIT" ]
null
null
null
frappe-bench/env/lib/python2.7/site-packages/num2words/lang_HE.py
ibrahmm22/library-management
b88a2129a5a2e96ce1f945ec8ba99a0b63b8c506
[ "MIT" ]
null
null
null
frappe-bench/env/lib/python2.7/site-packages/num2words/lang_HE.py
ibrahmm22/library-management
b88a2129a5a2e96ce1f945ec8ba99a0b63b8c506
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- # Copyright (c) 2003, Taro Ogawa. All Rights Reserved. # Copyright (c) 2013, Savoir-faire Linux inc. All Rights Reserved. # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301 USA from __future__ import unicode_literals, print_function ZERO = (u'אפס',) ONES = { 1: (u'אחד',), 2: (u'שנים',), 3: (u'שלש',), 4: (u'ארבע',), 5: (u'חמש',), 6: (u'שש',), 7: (u'שבע',), 8: (u'שמנה',), 9: (u'תשע',), } TENS = { 0: (u'עשר',), 1: (u'אחד עשרה',), 2: (u'שנים עשרה',), 3: (u'שלש עשרה',), 4: (u'ארבע עשרה',), 5: (u'חמש עשרה',), 6: (u'שש עשרה',), 7: (u'שבע עשרה',), 8: (u'שמנה עשרה',), 9: (u'תשע עשרה',), } TWENTIES = { 2: (u'עשרים',), 3: (u'שלשים',), 4: (u'ארבעים',), 5: (u'חמישים',), 6: (u'ששים',), 7: (u'שבעים',), 8: (u'שמנים',), 9: (u'תשעים',), } HUNDRED = { 1: (u'מאה',), 2: (u'מאתיים',), 3: (u'מאות',) } THOUSANDS = { 1: (u'אלף',), 2: (u'אלפיים',), } AND = u'ו' def splitby3(n): length = len(n) if length > 3: start = length % 3 if start > 0: yield int(n[:start]) for i in range(start, length, 3): yield int(n[i:i+3]) else: yield int(n) def get_digits(n): return [int(x) for x in reversed(list(('%03d' % n)[-3:]))] def pluralize(n, forms): # gettext implementation: # (n%10==1 && n%100!=11 ? 0 : n != 0 ? 1 : 2) form = 0 if (n % 10 == 1 and n % 100 != 11) else 1 if n != 0 else 2 return forms[form] def int2word(n): if n > 9999: #doesn't yet work for numbers this big raise NotImplementedError() if n == 0: return ZERO[0] words = [] chunks = list(splitby3(str(n))) i = len(chunks) for x in chunks: i -= 1 n1, n2, n3 = get_digits(x) # print str(n3) + str(n2) + str(n1) if n3 > 0: if n3 <= 2: words.append(HUNDRED[n3][0]) else: words.append(ONES[n3][0]) words.append(HUNDRED[3][0]) if n2 > 1: words.append(TWENTIES[n2][0]) if n2 == 1: words.append(TENS[n1][0]) elif n1 > 0 and not (i > 0 and x == 1): words.append(ONES[n1][0]) if i > 0: if i <= 2: words.append(THOUSANDS[i][0]) else: words.append(ONES[i][0]) words.append(THOUSANDS[1][0]) if len(words) > 1: words[-1] = AND + words[-1] return ' '.join(words) def n2w(n): return int2word(int(n)) def to_currency(n, currency='EUR', cents=True, seperator=','): raise NotImplementedError() class Num2Word_HE(object): def to_cardinal(self, number): return n2w(number) def to_ordinal(self, number): raise NotImplementedError() if __name__ == '__main__': yo = Num2Word_HE() nums = [1, 11, 21, 24, 99, 100, 101, 200, 211, 345, 1000, 1011] for num in nums: print(num, yo.to_cardinal(num))
22.803681
71
0.538337
423d05255006b623490e489e84312922780e691d
3,573
py
Python
snuba/migrations/snuba_migrations/events/0002_events_onpremise_compatibility.py
fpacifici/snuba
cf732b71383c948f9387fbe64e9404ca71f8e9c5
[ "Apache-2.0" ]
null
null
null
snuba/migrations/snuba_migrations/events/0002_events_onpremise_compatibility.py
fpacifici/snuba
cf732b71383c948f9387fbe64e9404ca71f8e9c5
[ "Apache-2.0" ]
null
null
null
snuba/migrations/snuba_migrations/events/0002_events_onpremise_compatibility.py
fpacifici/snuba
cf732b71383c948f9387fbe64e9404ca71f8e9c5
[ "Apache-2.0" ]
null
null
null
from typing import Sequence from snuba.clickhouse.columns import Array, Column, DateTime, Nested, String, UInt from snuba.clusters.storage_sets import StorageSetKey from snuba.migrations import migration, operations from snuba.migrations.columns import MigrationModifiers as Modifiers class Migration(migration.MultiStepMigration): """ This is a one-off migration to support on premise users who are upgrading from any older version of Snuba that used the old migration system. Since their sentry_local table might be previously created with slightly different columns, this migration should bring them back in sync by adding and removing the relevant columns that have changed over time. It should be a no-op if the table is already up to date. """ blocking = False def forwards_local(self) -> Sequence[operations.Operation]: return [ operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("group_id", UInt(64)), after="project_id", ), operations.DropColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column_name="device_model", ), operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("sdk_integrations", Array(String())), after="exception_frames", ), operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("modules.name", Nested([("name", String())])), after="sdk_integrations", ), operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("culprit", String(Modifiers(nullable=True))), after="sdk_integrations", ), operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("search_message", String(Modifiers(nullable=True))), after="received", ), operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("title", String(Modifiers(nullable=True))), after="search_message", ), operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("location", String(Modifiers(nullable=True))), after="title", ), operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("_tags_flattened", String()), after="tags", ), operations.AddColumn( storage_set=StorageSetKey.EVENTS, table_name="sentry_local", column=Column("message_timestamp", DateTime()), after="partition", ), ] def backwards_local(self) -> Sequence[operations.Operation]: return [] def forwards_dist(self) -> Sequence[operations.Operation]: return [] def backwards_dist(self) -> Sequence[operations.Operation]: return []
39.263736
91
0.584663
e0c55859fbc0b02b4fe0ab73651df4a5d1e42d82
825
py
Python
xfel/libtbx_refresh.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
155
2016-11-23T12:52:16.000Z
2022-03-31T15:35:44.000Z
xfel/libtbx_refresh.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
590
2016-12-10T11:31:18.000Z
2022-03-30T23:10:09.000Z
xfel/libtbx_refresh.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
115
2016-11-15T08:17:28.000Z
2022-02-09T15:30:14.000Z
from __future__ import absolute_import, division, print_function import libtbx.load_env, os cxi_user = libtbx.env.find_in_repositories( relative_path="cxi_user", test=os.path.isdir) if cxi_user is None or not os.path.exists(cxi_user): print(" Creating cxi_user directory") sources_root = libtbx.env.find_in_repositories( relative_path=".", test=os.path.isdir) cxi_user = os.path.join(sources_root, "cxi_user") os.mkdir(cxi_user) init = os.path.join(cxi_user, "__init__.py") if not os.path.exists(init): print(" Creating cxi_user/__init__.py") with open(init, "w") as f: f.write("from xfel.mono_simulation.mono_treatment import post_outlier_rejection\n") f.write("from xfel.mono_simulation.mono_treatment import pre_get_predictions\n")
35.869565
87
0.710303
82fb345adc800d4db3c56668ea63f197d6e8201a
1,119
py
Python
Validation/SiTrackerPhase2V/python/Phase2TrackerValidationFirstStep_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
Validation/SiTrackerPhase2V/python/Phase2TrackerValidationFirstStep_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
Validation/SiTrackerPhase2V/python/Phase2TrackerValidationFirstStep_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms from Validation.SiTrackerPhase2V.Phase2TrackerValidateDigi_cff import * from Validation.SiTrackerPhase2V.Phase2ITValidateRecHit_cff import * from Validation.SiTrackerPhase2V.Phase2ITValidateTrackingRecHit_cff import * from Validation.SiTrackerPhase2V.Phase2ITValidateCluster_cff import * from Validation.SiTrackerPhase2V.Phase2OTValidateCluster_cff import * from Validation.SiTrackerPhase2V.Phase2OTValidateTrackingRecHit_cff import * trackerphase2ValidationSource = cms.Sequence(pixDigiValid + otDigiValid + rechitValidIT + trackingRechitValidIT + clusterValidIT + clusterValidOT + trackingRechitValidOT ) from Configuration.ProcessModifiers.vectorHits_cff import vectorHits vectorHits.toReplaceWith(trackerphase2ValidationSource, trackerphase2ValidationSource.copyAndExclude([trackingRechitValidOT]))
55.95
126
0.672922
63fa2230d3d261353ff1f24782c8ad593b303171
10,489
py
Python
src/utils/data_augmentation.py
Sridhar53/Facial-Expression-Recognition-with-Convolution-Neural-Network
e48a60f2e4166ae999772fe82d24023a20f23ca3
[ "MIT" ]
null
null
null
src/utils/data_augmentation.py
Sridhar53/Facial-Expression-Recognition-with-Convolution-Neural-Network
e48a60f2e4166ae999772fe82d24023a20f23ca3
[ "MIT" ]
null
null
null
src/utils/data_augmentation.py
Sridhar53/Facial-Expression-Recognition-with-Convolution-Neural-Network
e48a60f2e4166ae999772fe82d24023a20f23ca3
[ "MIT" ]
1
2018-07-24T02:12:00.000Z
2018-07-24T02:12:00.000Z
import numpy as np from random import shuffle from .preprocessor import preprocess_input from .preprocessor import _imread as imread from .preprocessor import _imresize as imresize from .preprocessor import to_categorical import scipy.ndimage as ndi import cv2 class ImageGenerator(object): """ Image generator with saturation, brightness, lighting, contrast, horizontal flip and vertical flip transformations. It supports bounding boxes coordinates. TODO: - Finish support for not using bounding_boxes - Random crop - Test other transformations """ def __init__(self, ground_truth_data, batch_size, image_size, train_keys, validation_keys, ground_truth_transformer=None, path_prefix=None, saturation_var=0.5, brightness_var=0.5, contrast_var=0.5, lighting_std=0.5, horizontal_flip_probability=0.5, vertical_flip_probability=0.5, do_random_crop=False, grayscale=False, zoom_range=[0.75, 1.25], translation_factor=.3): self.ground_truth_data = ground_truth_data self.ground_truth_transformer = ground_truth_transformer self.batch_size = batch_size self.path_prefix = path_prefix self.train_keys = train_keys self.validation_keys = validation_keys self.image_size = image_size self.grayscale = grayscale self.color_jitter = [] if saturation_var: self.saturation_var = saturation_var self.color_jitter.append(self.saturation) if brightness_var: self.brightness_var = brightness_var self.color_jitter.append(self.brightness) if contrast_var: self.contrast_var = contrast_var self.color_jitter.append(self.contrast) self.lighting_std = lighting_std self.horizontal_flip_probability = horizontal_flip_probability self.vertical_flip_probability = vertical_flip_probability self.do_random_crop = do_random_crop self.zoom_range = zoom_range self.translation_factor = translation_factor def _do_random_crop(self, image_array): """IMPORTANT: random crop only works for classification since the current implementation does no transform bounding boxes""" height = image_array.shape[0] width = image_array.shape[1] x_offset = np.random.uniform(0, self.translation_factor * width) y_offset = np.random.uniform(0, self.translation_factor * height) offset = np.array([x_offset, y_offset]) scale_factor = np.random.uniform(self.zoom_range[0], self.zoom_range[1]) crop_matrix = np.array([[scale_factor, 0], [0, scale_factor]]) image_array = np.rollaxis(image_array, axis=-1, start=0) image_channel = [ndi.interpolation.affine_transform(image_channel, crop_matrix, offset=offset, order=0, mode='nearest', cval=0.0) for image_channel in image_array] image_array = np.stack(image_channel, axis=0) image_array = np.rollaxis(image_array, 0, 3) return image_array def do_random_rotation(self, image_array): """IMPORTANT: random rotation only works for classification since the current implementation does no transform bounding boxes""" height = image_array.shape[0] width = image_array.shape[1] x_offset = np.random.uniform(0, self.translation_factor * width) y_offset = np.random.uniform(0, self.translation_factor * height) offset = np.array([x_offset, y_offset]) scale_factor = np.random.uniform(self.zoom_range[0], self.zoom_range[1]) crop_matrix = np.array([[scale_factor, 0], [0, scale_factor]]) image_array = np.rollaxis(image_array, axis=-1, start=0) image_channel = [ndi.interpolation.affine_transform(image_channel, crop_matrix, offset=offset, order=0, mode='nearest', cval=0.0) for image_channel in image_array] image_array = np.stack(image_channel, axis=0) image_array = np.rollaxis(image_array, 0, 3) return image_array def _gray_scale(self, image_array): return image_array.dot([0.299, 0.587, 0.114]) def saturation(self, image_array): gray_scale = self._gray_scale(image_array) alpha = 2.0 * np.random.random() * self.brightness_var alpha = alpha + 1 - self.saturation_var image_array = alpha * image_array + (1 - alpha) * gray_scale[:, :, None] return np.clip(image_array, 0, 255) def brightness(self, image_array): alpha = 2 * np.random.random() * self.brightness_var alpha = alpha + 1 - self.saturation_var image_array = alpha * image_array return np.clip(image_array, 0, 255) def contrast(self, image_array): gray_scale = (self._gray_scale(image_array).mean() * np.ones_like(image_array)) alpha = 2 * np.random.random() * self.contrast_var alpha = alpha + 1 - self.contrast_var image_array = image_array * alpha + (1 - alpha) * gray_scale return np.clip(image_array, 0, 255) def lighting(self, image_array): covariance_matrix = np.cov(image_array.reshape(-1,3) / 255.0, rowvar=False) eigen_values, eigen_vectors = np.linalg.eigh(covariance_matrix) noise = np.random.randn(3) * self.lighting_std noise = eigen_vectors.dot(eigen_values * noise) * 255 image_array = image_array + noise return np.clip(image_array, 0 ,255) def horizontal_flip(self, image_array, box_corners=None): if np.random.random() < self.horizontal_flip_probability: image_array = image_array[:, ::-1] if box_corners != None: box_corners[:, [0, 2]] = 1 - box_corners[:, [2, 0]] return image_array, box_corners def vertical_flip(self, image_array, box_corners=None): if (np.random.random() < self.vertical_flip_probability): image_array = image_array[::-1] if box_corners != None: box_corners[:, [1, 3]] = 1 - box_corners[:, [3, 1]] return image_array, box_corners def transform(self, image_array, box_corners=None): shuffle(self.color_jitter) for jitter in self.color_jitter: image_array = jitter(image_array) if self.lighting_std: image_array = self.lighting(image_array) if self.horizontal_flip_probability > 0: image_array, box_corners = self.horizontal_flip(image_array, box_corners) if self.vertical_flip_probability > 0: image_array, box_corners = self.vertical_flip(image_array, box_corners) return image_array, box_corners def preprocess_images(self, image_array): return preprocess_input(image_array) def flow(self, mode='train'): while True: if mode =='train': shuffle(self.train_keys) keys = self.train_keys elif mode == 'val' or mode == 'demo': shuffle(self.validation_keys) keys = self.validation_keys else: raise Exception('invalid mode: %s' % mode) inputs = [] targets = [] for key in keys: image_path = self.path_prefix + key image_array = imread(image_path) image_array = imresize(image_array, self.image_size) num_image_channels = len(image_array.shape) if num_image_channels != 3: continue ground_truth = self.ground_truth_data[key] if self.do_random_crop: image_array = self._do_random_crop(image_array) image_array = image_array.astype('float32') if mode == 'train' or mode == 'demo': if self.ground_truth_transformer != None: image_array, ground_truth = self.transform( image_array, ground_truth) ground_truth = ( self.ground_truth_transformer.assign_boxes( ground_truth)) else: image_array = self.transform(image_array)[0] if self.grayscale: image_array = cv2.cvtColor(image_array.astype('uint8'), cv2.COLOR_RGB2GRAY).astype('float32') image_array = np.expand_dims(image_array, -1) inputs.append(image_array) targets.append(ground_truth) if len(targets) == self.batch_size: inputs = np.asarray(inputs) targets = np.asarray(targets) # this will not work for boxes targets = to_categorical(targets) if mode == 'train' or mode == 'val': inputs = self.preprocess_images(inputs) yield self._wrap_in_dictionary(inputs, targets) if mode == 'demo': yield self._wrap_in_dictionary(inputs, targets) inputs = [] targets = [] def _wrap_in_dictionary(self, image_array, targets): return [{'input_1':image_array}, {'predictions':targets}]
45.017167
81
0.558395
b99be21ef10553651cda3e804b6d2fd6574295cc
9,981
py
Python
Hardware/Networks/NiN/nin.py
gkrish19/SIAM
1e530d4c070054045fc2e8e7fe4ce82a54755132
[ "MIT" ]
4
2021-02-02T06:50:43.000Z
2022-01-29T12:25:32.000Z
Hardware/Networks/NiN/nin.py
gkrish19/SIAM
1e530d4c070054045fc2e8e7fe4ce82a54755132
[ "MIT" ]
null
null
null
Hardware/Networks/NiN/nin.py
gkrish19/SIAM
1e530d4c070054045fc2e8e7fe4ce82a54755132
[ "MIT" ]
2
2021-07-07T19:58:40.000Z
2022-01-27T22:51:20.000Z
# ===================================================================== # # File name: Network_in_Network.py # Author: BIGBALLON # Date update: 07/28/2017 # Python Version: 3.5.2 # Tensorflow Version: 1.2.1 # Description: # Implement Network in Network(only use tensorflow) # Paper Link: (Network In Network) https://arxiv.org/abs/1312.4400 # Trick Used: # Data augmentation parameters # Color normalization # Weight Decay # Weight initialization # Use Nesterov momentum # Dataset: Cifar-10 # Testing accuracy: 91.18% - 91.25% # ===================================================================== # import tensorflow as tf from data_utility import * import timeit from hardware_estimation import hardware_estimation _input_array = [] _weights = [] FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('log_save_path', './nin_logs', 'Directory where to save tensorboard log') tf.app.flags.DEFINE_string('model_save_path', './model/', 'Directory where to save model weights') tf.app.flags.DEFINE_integer('batch_size', 128, 'batch size') tf.app.flags.DEFINE_integer('iteration', 391, 'iteration') tf.app.flags.DEFINE_float('weight_decay', 0.0001, 'weight decay') tf.app.flags.DEFINE_float('dropout', 0.5, 'dropout') tf.app.flags.DEFINE_integer('epochs', 164, 'epochs') tf.app.flags.DEFINE_float('momentum', 0.9, 'momentum') tf.app.flags.DEFINE_bool('train', False, 'To train or not') tf.app.flags.DEFINE_bool('test', True, 'To test or not') # ========================================================== # # ├─ conv() # ├─ activation(x) # ├─ max_pool() # └─ global_avg_pool() # ========================================================== # def conv(x, shape, use_bias=True, std=0.05): random_initializer = tf.random_normal_initializer(stddev=std) W = tf.get_variable('weights', shape=shape, initializer=random_initializer) b = tf.get_variable('bias', shape=[shape[3]], initializer=tf.zeros_initializer) _input_array.append(tf.transpose(x, (0,3,1,2))) _weights.append(W) x = tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME') if use_bias: x = tf.nn.bias_add(x,b) return x def activation(x): return tf.nn.relu(x) def max_pool(input, k_size=3, stride=2): return tf.nn.max_pool(input, ksize=[1, k_size, k_size, 1], strides=[1, stride, stride, 1], padding='SAME') def global_avg_pool(input, k_size=1, stride=1): return tf.nn.avg_pool(input, ksize=[1,k_size,k_size,1], strides=[1,stride,stride,1], padding='VALID') def learning_rate_schedule(epoch_num): if epoch_num < 81: return 0.05 elif epoch_num < 121: return 0.01 else: return 0.001 def main(_): train_x, train_y, test_x, test_y = prepare_data() train_x, test_x = color_preprocessing(train_x, test_x) # define placeholder x, y_ , keep_prob, learning_rate with tf.name_scope('input'): x = tf.placeholder(tf.float32,[None, image_size, image_size, 3], name='input_x') y_ = tf.placeholder(tf.float32, [None, class_num], name='input_y') with tf.name_scope('keep_prob'): keep_prob = tf.placeholder(tf.float32) with tf.name_scope('learning_rate'): learning_rate = tf.placeholder(tf.float32) # build_network with tf.variable_scope('conv1'): print("Shape of Layer is", x.shape) output = conv(x,[5, 5, 3, 192],std=0.01) output = activation(output) with tf.variable_scope('mlp1-1'): print("Shape of Layer is", output.shape) output = conv(output,[1, 1, 192, 160]) output = activation(output) with tf.variable_scope('mlp1-2'): print("Shape of Layer is", output.shape) output = conv(output,[1, 1, 160, 96]) #print("Shape of Layer is", output.shape) output = activation(output) with tf.name_scope('max_pool-1'): output = max_pool(output, 3, 2) with tf.name_scope('dropout-1'): #print("Shape of Layer is", output.shape) output = tf.nn.dropout(output,keep_prob) #print("Shape of Layer is", output.shape) with tf.variable_scope('conv2'): print("Shape of Layer is", output.shape) output = conv(output,[5, 5, 96, 192]) #print("Shape of Layer is", output.shape) output = activation(output) with tf.variable_scope('mlp2-1'): print("Shape of Layer is", output.shape) output = conv(output,[1, 1, 192, 192]) output = activation(output) with tf.variable_scope('mlp2-2'): print("Shape of Layer is", output.shape) output = conv(output,[1, 1, 192, 192]) output = activation(output) with tf.name_scope('max_pool-2'): output = max_pool(output, 3, 2) with tf.name_scope('dropout-2'): output = tf.nn.dropout(output,keep_prob) with tf.variable_scope('conv3'): print("Shape of Layer is", output.shape) output = conv(output,[3, 3, 192, 192]) output = activation(output) with tf.variable_scope('mlp3-1'): print("Shape of Layer is", output.shape) output = conv(output,[1, 1, 192, 192]) output = activation(output) with tf.variable_scope('mlp3-2'): print("Shape of Layer is", output.shape) output = conv(output,[1, 1, 192, 10]) output = activation(output) with tf.name_scope('global_avg_pool'): #print("Shape of Layer is", output.shape) output = global_avg_pool(output, 8, 1) with tf.name_scope('moftmax'): output = tf.reshape(output,[-1,10]) # loss function: cross_entropy # weight decay: l2 * WEIGHT_DECAY # train_step: training operation with tf.name_scope('cross_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=output)) with tf.name_scope('l2_loss'): l2 = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()]) with tf.name_scope('train_step'): train_step = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum,use_nesterov=True).minimize(cross_entropy + l2 * FLAGS.weight_decay) with tf.name_scope('prediction'): correct_prediction = tf.equal(tf.argmax(output,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) # initial an saver to save model saver = tf.train.Saver() # for testing def run_testing(sess): acc = 0.0 loss = 0.0 pre_index = 0 add = 1000 for it in range(10): batch_x = test_x[pre_index:pre_index+add] batch_y = test_y[pre_index:pre_index+add] pre_index = pre_index + add loss_, acc_ = sess.run([cross_entropy,accuracy],feed_dict={x:batch_x, y_:batch_y, keep_prob: 1.0}) loss += loss_ / 10.0 acc += acc_ / 10.0 summary = tf.Summary(value=[tf.Summary.Value(tag="test_loss", simple_value=loss), tf.Summary.Value(tag="test_accuracy", simple_value=acc)]) return acc, loss, summary if(FLAGS.train): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter(FLAGS.log_save_path,sess.graph) # epoch = 164 # batch size = 128 # iteration = 391 # we should make sure [bath_size * iteration = data_set_number] for ep in range(1,FLAGS.epochs+1): lr = learning_rate_schedule(ep) pre_index = 0 train_acc = 0.0 train_loss = 0.0 start_time = time.time() print("\nepoch %d/%d:" %(ep,FLAGS.epochs)) for it in range(1,FLAGS.iteration+1): if pre_index+FLAGS.batch_size < 50000: batch_x = train_x[pre_index:pre_index+FLAGS.batch_size] batch_y = train_y[pre_index:pre_index+FLAGS.batch_size] else: batch_x = train_x[pre_index:] batch_y = train_y[pre_index:] batch_x = data_augmentation(batch_x) _, batch_loss = sess.run([train_step, cross_entropy],feed_dict={x:batch_x, y_:batch_y, keep_prob: FLAGS.dropout, learning_rate: lr}) batch_acc = accuracy.eval(feed_dict={x:batch_x, y_:batch_y, keep_prob: 1.0}) train_loss += batch_loss train_acc += batch_acc pre_index += FLAGS.batch_size if it == FLAGS.iteration: train_loss /= FLAGS.iteration train_acc /= FLAGS.iteration train_summary = tf.Summary(value=[tf.Summary.Value(tag="train_loss", simple_value=train_loss), tf.Summary.Value(tag="train_accuracy", simple_value=train_acc)]) val_acc, val_loss, test_summary = run_testing(sess) summary_writer.add_summary(train_summary, ep) summary_writer.add_summary(test_summary, ep) summary_writer.flush() print("iteration: %d/%d, cost_time: %ds, train_loss: %.4f, train_acc: %.4f, test_loss: %.4f, test_acc: %.4f" %(it, FLAGS.iteration, int(time.time()-start_time), train_loss, train_acc, val_loss, val_acc)) else: print("iteration: %d/%d, train_loss: %.4f, train_acc: %.4f" %(it, FLAGS.iteration, train_loss / it, train_acc / it) , end='\r') save_path = saver.save(sess, FLAGS.model_save_path) print("Model saved in file: %s" % save_path) elif (FLAGS.test): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter(FLAGS.log_save_path,sess.graph) # epoch = 164 # batch size = 128 # iteration = 391 # we should make sure [bath_size * iteration = data_set_number] #save_path = saver.save(sess, FLAGS.model_save_path) # saver.restore(sess, FLAGS.model_save_path) # print("Model Restored properly.") pre_index = 0 batch_x = train_x[pre_index:pre_index+FLAGS.batch_size] batch_y = train_y[pre_index:pre_index+FLAGS.batch_size] batch_x = data_augmentation(batch_x) feed_dict={x:batch_x, y_:batch_y, keep_prob: 1.0} H, W = sess.run([_input_array, _weights], feed_dict=feed_dict) start = timeit.default_timer() hardware_estimation(H,W,8,8) stop = timeit.default_timer() print("The sim time is:", stop-start) print("***********************Completed SIAM***********************") else: print("Need to choose one them") if __name__ == '__main__': tf.app.run()
34.65625
210
0.653542
af28f6b1c2a9cbdf0bce47c5ce829e74d86b7608
3,086
py
Python
src/test_pi/test_classifier.py
msei/insectcounter
1e9356e5639789b70c614da6c74307ec2b8c8304
[ "MIT" ]
null
null
null
src/test_pi/test_classifier.py
msei/insectcounter
1e9356e5639789b70c614da6c74307ec2b8c8304
[ "MIT" ]
null
null
null
src/test_pi/test_classifier.py
msei/insectcounter
1e9356e5639789b70c614da6c74307ec2b8c8304
[ "MIT" ]
2
2020-02-05T05:19:18.000Z
2020-02-05T15:04:32.000Z
import unittest import soundfile as sf import os from classifier import classifier import json import glob import re class TestClassifier(unittest.TestCase): @classmethod def setUpClass(cls): cls.cm = classifier.ClassifierModule("../savedfiles", "../model/", False) def testWrongPath(self): with self.assertRaises(SystemExit): self.cm = classifier.ClassifierModule("./IDontExist","../model/", True) def testWrongModelPath(self): with self.assertRaises(SystemExit): self.cm = classifier.ClassifierModule(".","./IDontExist", True) def testModelNotInPath(self): with self.assertRaises(SystemExit): self.cm = classifier.ClassifierModule(".","..", True) def testGetMaxLabelValid(self): validvec = [0.2,0.5,0.3] file_names = glob.glob(self.cm.modelpath + '/species*.json') match = re.match(r".*/species(\w+).json", file_names[0]) with open(file_names[0]) as json_file: species_dict = json.load(json_file) assert self.cm.get_max_label_with_score(validvec)[0] == species_dict["1"]["name"], "Returned wrong label for valid input" def testGetMaxLabelInvalid(self): invalidvec = [0.1, 0.1, 0.1, 0.1, 0.6] assert self.cm.get_max_label_with_score(invalidvec)[0] == "unknown", "Returned wrong label for invalid input, should be unknown" def testClassify(self): classification = self.cm.classify("testfile.wav") assert not classification == "unknown", "No classification returned for valid sample" def testRemoveFromDisk(self): testname = "../savedfiles/dummy" with open(testname+'.txt', "w") as f: f.write("dummy") with open(testname+'.json', "w") as f: f.write("dummy") self.cm.remove_from_disk(testname+".txt") assert not os.path.isfile(testname+".txt"), "File was not deleted" assert not os.path.isfile(testname+".json"), "Json corresponding to file was not deleted" def testRemoveFromDiskInvalidFile(self): self.cm.remove_from_disk("dummy") def testRemoveFromDiskInvalidFileNameType(self): with self.assertRaises(SystemExit): self.cm.remove_from_disk(42) def testGetAdditionalInfoNoFile(self): timestamp = "dummy" data = self.cm.get_additional_info(timestamp) assert len(data) == 1, "Returned data but no file." def testGetAdditionalInfo(self): timestamp = "dummy" dummydict = dict(otherinfo = "dummy") with open("../savedfiles/"+timestamp+".json", "w") as f: json.dump(dummydict,f) data = self.cm.get_additional_info(timestamp) os.remove("../savedfiles/"+timestamp+".json") assert data["otherinfo"] == "dummy", "CSV data (other info) not read properly" assert "model_id" in data, "CSV data (model id) not read properly" @classmethod def tearDownClass(cls): del cls.cm
34.288889
137
0.627997
1c02b0e7db7330dd50573d212dc9b26fc20c3bb1
5,593
py
Python
infer.py
LauJames/QuestionMatching
380e32ad4d884ecbf314fbb69b009f34a1f8f6a9
[ "Apache-2.0" ]
4
2019-02-22T00:30:44.000Z
2021-03-29T09:15:18.000Z
infer.py
LauJames/QuestionMatching
380e32ad4d884ecbf314fbb69b009f34a1f8f6a9
[ "Apache-2.0" ]
null
null
null
infer.py
LauJames/QuestionMatching
380e32ad4d884ecbf314fbb69b009f34a1f8f6a9
[ "Apache-2.0" ]
4
2019-03-03T06:39:41.000Z
2019-10-09T09:00:49.000Z
#! /user/bin/evn python # -*- coding:utf8 -*- """ @Author : Lau James @Contact : LauJames2017@whu.edu.cn @Project : MVLSTM @File : infer.py @Time : 18-11-27 下午9:52 @Software : PyCharm @Copyright: "Copyright (c) 2018 Lau James. All Rights Reserved" """ import os import sys import time import datetime import argparse import numpy as np import tensorflow as tf import tensorflow.contrib as tc import logging import jieba import pickle from models.MVLSTM import MVLSTM curdir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.dirname(curdir)) def parse_args(): parser = argparse.ArgumentParser('Question to Question matching for QA task') parser.add_argument('--gpu', type=str, default='0', help='specify gpu device') train_settings = parser.add_argument_group('train settings') train_settings.add_argument('--learning_rate', type=float, default=0.001, help='optimizer type') model_settings = parser.add_argument_group('model settings') model_settings.add_argument('--algo', choices=['MVLSTM'], default='MVLSTM', help='choose the algorithm to use') model_settings.add_argument('--embedding_dim', type=int, default=300, help='size of the embeddings') model_settings.add_argument('--hidden_size', type=int, default=128, help='size of LSTM hidden units') model_settings.add_argument('--max_q_len', type=int, default=18, help='max length of question') model_settings.add_argument('--num_classes', type=int, default=2, help='num of classes') path_settings = parser.add_argument_group('path settings') path_settings.add_argument('--tensorboard_dir', default='tensorboard_dir/MVLSTM', help='saving path of tensorboard') path_settings.add_argument('--save_dir', default='checkpoints/MVLSTM', help='save base dir') path_settings.add_argument('--log_path', help='path of the log file. If not set, logs are printed to console') misc_setting = parser.add_argument_group('misc settings') misc_setting.add_argument('--allow_soft_placement', type=bool, default=True, help='allow device soft device placement') misc_setting.add_argument('--log_device_placement', type=bool, default=False, help='log placement of ops on devices') return parser.parse_args() def get_time_dif(start_time): """获取已使用时间""" end_time = time.time() time_dif = end_time - start_time return datetime.timedelta(seconds=int(round(time_dif))) def chinese_tokenizer(documents): """ 中文文本转换为词序列(restore时还需要用到,必须包含) :param documents: :return: """ for document in documents: yield list(jieba.cut(document)) def prepare(): args = parse_args() start_time = time.time() # absolute path save_path = os.path.join(curdir, os.path.join(args.save_dir, 'best_validation')) vocab_path = os.path.join(curdir, os.path.join(args.save_dir, 'vocab')) vocab_processor = tc.learn.preprocessing.VocabularyProcessor.restore(vocab_path) model = MVLSTM( sequence_length=args.max_q_len, num_classes=args.num_classes, embedding_dim=args.embedding_dim, vocab_size=len(vocab_processor.vocabulary_), max_length=args.max_q_len, hidden_dim=args.hidden_size, learning_rate=args.learning_rate ) session = tf.Session() session.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(session, save_path=save_path) time_dif = get_time_dif(start_time) print('Time usage:', time_dif) return vocab_processor, model, session def inference(q1, q2, vocab_processor, model, session): # args = parse_args() # vocab_path = os.path.join(curdir, os.path.join(args.save_dir, 'vocab')) # vocab_processor = tc.learn.preprocessing.VocabularyProcessor.restore(vocab_path) q1_pad = np.array(list(vocab_processor.transform(q1))) q2_pad = np.array(list(vocab_processor.transform(q2))) prediction = session.run(model.y_pred, feed_dict={ model.input_q1: q1_pad, model.input_q2: q2_pad, model.dropout_keep_prob: 1.0 }) return prediction def infer_prob(q1, q2, vocab_processor, model, session): q1_pad = np.array(list(vocab_processor.transform(q1))) q2_pad = np.array(list(vocab_processor.transform(q2))) predict_prob, prediction = session.run([model.probs, model.y_pred], feed_dict={ model.input_q1: q1_pad, model.input_q2: q2_pad, model.dropout_keep_prob: 1.0 }) return predict_prob, prediction if __name__ == '__main__': q1 = ['如何买保险', '如何买保险', '如何买保险'] q2 = ['保险怎么买', '怎么买保险', '糖尿病能不能保'] vocab_processor, model, session = prepare() probs, predict = infer_prob(q1, q2, vocab_processor, model, session) print(probs) print(predict) # q1 = ['如何买保险'] # q2 = ['保险怎么买'] # vocab_process, model, session = prepare() # prediction = inference(q1, q2, vocab_process, model, session) # print(prediction)
35.852564
100
0.626855
d05ae1ae87b5fa4506c6410cdba6c8868679a953
1,023
py
Python
frontends/python/tests/analysis/lambda.py
aardwolf-sfl/aardwolf
33bfe3e0649a73aec7efa0fa80bff8077b550bd0
[ "MIT" ]
2
2020-08-15T08:55:39.000Z
2020-11-09T17:31:16.000Z
frontends/python/tests/analysis/lambda.py
aardwolf-sfl/aardwolf
33bfe3e0649a73aec7efa0fa80bff8077b550bd0
[ "MIT" ]
null
null
null
frontends/python/tests/analysis/lambda.py
aardwolf-sfl/aardwolf
33bfe3e0649a73aec7efa0fa80bff8077b550bd0
[ "MIT" ]
null
null
null
# AARD: function: foo # AARD: #1:1 -> #1:2 :: defs: %1 / uses: [@1 4:9-4:10] { arg } def foo(a): # AARD: #1:2 -> #1:3 :: defs: %2 / uses: [@1 6:5-6:27] test = lambda x: x > a # AARD: #1:3 -> #1:4 :: defs: %3 / uses: [@1 8:5-8:51] value = lambda n, m: (lambda x: n * x + m * x) # AARD: #1:4 -> :: defs: / uses: %2, %3 [@1 11:5-11:23] { ret } return test, value # AARD: function: foo::lambda:6:11 # AARD: #1:5 -> #1:6 :: defs: %4 / uses: [@1 6:19-6:20] { arg } # AARD: #1:6 -> :: defs: / uses: %1, %4 [@1 6:22-6:27] { ret } # AARD: function: foo::lambda:8:12 # AARD: #1:7 -> #1:8 :: defs: %5 / uses: [@1 8:20-8:21] { arg } # AARD: #1:8 -> #1:9 :: defs: %6 / uses: [@1 8:23-8:24] { arg } # AARD: #1:9 -> :: defs: / uses: [@1 8:27-8:50] { ret } # AARD: function: foo::lambda:8:12::lambda:8:26 # AARD: #1:10 -> #1:11 :: defs: %7 / uses: [@1 8:34-8:35] { arg } # AARD: #1:11 -> :: defs: / uses: %5, %6, %7 [@1 8:37-8:50] { ret } # AARD: @1 = lambda.py
37.888889
72
0.44477
cb8c28bb9fd6a04a43b840f315d6dbfed7227e0f
442
py
Python
module/loading.py
indmind/Jomblo-Story
cbe69be1d9f0d8e592dcf84e3f3764d1eae22b3c
[ "MIT" ]
null
null
null
module/loading.py
indmind/Jomblo-Story
cbe69be1d9f0d8e592dcf84e3f3764d1eae22b3c
[ "MIT" ]
1
2017-08-07T12:12:18.000Z
2017-08-08T04:45:41.000Z
module/loading.py
indmind/Jomblo-Story
cbe69be1d9f0d8e592dcf84e3f3764d1eae22b3c
[ "MIT" ]
null
null
null
import time import sys def createDots(length, delay): for i in range(length): print('.', end='') sys.stdout.flush() time.sleep(delay) def createHash(length, delay): for i in range(length): print('#', end='') sys.stdout.flush() time.sleep(delay) def createVrDots(length, delay): for i in range(length): print('.') time.sleep(delay) def deGa(): time.sleep(.3)
19.217391
32
0.570136
a09cf2e9fa4169aad6427b601bbb04bade0314a6
8,208
py
Python
scripts/tilestache-compose.py
shoeberto/TileStache
4526076e9326512a0542adaae86a946e08df8547
[ "BSD-3-Clause" ]
414
2015-01-05T19:29:22.000Z
2022-03-26T03:39:42.000Z
scripts/tilestache-compose.py
shoeberto/TileStache
4526076e9326512a0542adaae86a946e08df8547
[ "BSD-3-Clause" ]
134
2015-01-15T08:25:55.000Z
2021-09-02T16:06:00.000Z
scripts/tilestache-compose.py
shoeberto/TileStache
4526076e9326512a0542adaae86a946e08df8547
[ "BSD-3-Clause" ]
176
2015-01-09T14:43:25.000Z
2022-03-04T16:53:27.000Z
#!/usr/bin/env python from __future__ import print_function from sys import stderr, path from tempfile import mkstemp from os import close, write, unlink from optparse import OptionParser from os.path import abspath try: from _thread import allocate_lock except ImportError: from thread import allocate_lock import ModestMaps mmaps_version = tuple(map(int, getattr(ModestMaps, '__version__', '0.0.0').split('.'))) if mmaps_version < (1, 3, 0): raise ImportError('tilestache-compose.py requires ModestMaps 1.3.0 or newer.') # # More imports can be found below, after the --include-path option is known. # class Provider (ModestMaps.Providers.IMapProvider): """ Wrapper for TileStache Layer objects that makes them behave like ModestMaps Provider objects. Requires ModestMaps 1.3.0 or better to support "file://" URLs. """ def __init__(self, layer, verbose=False, ignore_cached=None): self.projection = layer.projection self.layer = layer self.files = [] self.verbose = bool(verbose) self.ignore_cached = bool(ignore_cached) self.lock = allocate_lock() # # It's possible that Mapnik is not thread-safe, best to be cautious. # self.threadsafe = self.layer.provider is not TileStache.Providers.Mapnik def tileWidth(self): return 256 def tileHeight(self): return 256 def getTileUrls(self, coord): """ Return tile URLs that start with file://, by first retrieving them. """ if self.threadsafe or self.lock.acquire(): mime_type, tile_data = TileStache.getTile(self.layer, coord, 'png', self.ignore_cached) handle, filename = mkstemp(prefix='tilestache-compose-', suffix='.png') write(handle, tile_data) close(handle) self.files.append(filename) if not self.threadsafe: # must be locked, right? self.lock.release() if self.verbose: size = len(tile_data) / 1024. printlocked(self.lock, self.layer.name() + '/%(zoom)d/%(column)d/%(row)d.png' % coord.__dict__, '(%dKB)' % size) return ('file://' + abspath(filename), ) def __del__(self): """ Delete any tile that was saved in self.getTileUrls(). """ for filename in self.files: unlink(filename) class BadComposure(Exception): pass def printlocked(lock, *stuff): """ """ if lock.acquire(): print(' '.join([str(thing) for thing in stuff])) lock.release() parser = OptionParser(usage="""tilestache-compose.py [options] file There are three ways to set a map coverage area. 1) Center, zoom, and dimensions: create a map of the specified size, centered on a given geographical point at a given zoom level: tilestache-compose.py -c config.json -l layer-name -d 800 800 -n 37.8 -122.3 -z 11 out.jpg 2) Extent and dimensions: create a map of the specified size that adequately covers the given geographical extent: tilestache-compose.py -c config.json -l layer-name -d 800 800 -e 36.9 -123.5 38.9 -121.2 out.png 3) Extent and zoom: create a map at the given zoom level that covers the precise geographical extent, at whatever pixel size is necessary: tilestache-compose.py -c config.json -l layer-name -e 36.9 -123.5 38.9 -121.2 -z 9 out.jpg""") defaults = dict(center=(37.8044, -122.2712), zoom=14, dimensions=(900, 600), verbose=True) parser.set_defaults(**defaults) parser.add_option('-c', '--config', dest='config', help='Path to configuration file.') parser.add_option('-l', '--layer', dest='layer', help='Layer name from configuration.') parser.add_option('-n', '--center', dest='center', nargs=2, help='Geographic center of map. Default %.4f, %.4f.' % defaults['center'], type='float', action='store') parser.add_option('-e', '--extent', dest='extent', nargs=4, help='Geographic extent of map. Two lat, lon pairs', type='float', action='store') parser.add_option('-z', '--zoom', dest='zoom', help='Zoom level. Default %(zoom)d.' % defaults, type='int', action='store') parser.add_option('-d', '--dimensions', dest='dimensions', nargs=2, help='Pixel width, height of output image. Default %d, %d.' % defaults['dimensions'], type='int', action='store') parser.add_option('-v', '--verbose', dest='verbose', help='Make a bunch of noise.', action='store_true') parser.add_option('-i', '--include-path', dest='include_paths', help="Add the following colon-separated list of paths to Python's include path (aka sys.path)") parser.add_option('-x', '--ignore-cached', action='store_true', dest='ignore_cached', help='Re-render every tile, whether it is in the cache already or not.') if __name__ == '__main__': (options, args) = parser.parse_args() if options.include_paths: for p in options.include_paths.split(':'): path.insert(0, p) import TileStache try: if options.config is None: raise TileStache.Core.KnownUnknown('Missing required configuration (--config) parameter.') if options.layer is None: raise TileStache.Core.KnownUnknown('Missing required layer (--layer) parameter.') config = TileStache.parseConfig(options.config) if options.layer not in config.layers: raise TileStache.Core.KnownUnknown('"%s" is not a layer I know about. Here are some that I do know about: %s.' % (options.layer, ', '.join(sorted(config.layers.keys())))) provider = Provider(config.layers[options.layer], options.verbose, options.ignore_cached) try: outfile = args[0] except IndexError: raise BadComposure('Error: Missing output file.') if options.center and options.extent: raise BadComposure("Error: bad map coverage, center and extent can't both be set.") elif options.extent and options.dimensions and options.zoom: raise BadComposure("Error: bad map coverage, dimensions and zoom can't be set together with extent.") elif options.center and options.zoom and options.dimensions: lat, lon = options.center[0], options.center[1] width, height = options.dimensions[0], options.dimensions[1] dimensions = ModestMaps.Core.Point(width, height) center = ModestMaps.Geo.Location(lat, lon) zoom = options.zoom map = ModestMaps.mapByCenterZoom(provider, center, zoom, dimensions) elif options.extent and options.dimensions: latA, lonA = options.extent[0], options.extent[1] latB, lonB = options.extent[2], options.extent[3] width, height = options.dimensions[0], options.dimensions[1] dimensions = ModestMaps.Core.Point(width, height) locationA = ModestMaps.Geo.Location(latA, lonA) locationB = ModestMaps.Geo.Location(latB, lonB) map = ModestMaps.mapByExtent(provider, locationA, locationB, dimensions) elif options.extent and options.zoom: latA, lonA = options.extent[0], options.extent[1] latB, lonB = options.extent[2], options.extent[3] locationA = ModestMaps.Geo.Location(latA, lonA) locationB = ModestMaps.Geo.Location(latB, lonB) zoom = options.zoom map = ModestMaps.mapByExtentZoom(provider, locationA, locationB, zoom) else: raise BadComposure("Error: not really sure what's going on.") except BadComposure as e: print(parser.usage, file=stderr) print('', file=stderr) print('%s --help for possible options.' % __file__, file=stderr) print('', file=stderr) print(e, file=stderr) exit(1) if options.verbose: print(map.coordinate, map.offset, '->', outfile, (map.dimensions.x, map.dimensions.y)) map.draw(False).save(outfile)
36.48
182
0.633163
a98340e346bcf639a11a6b9f8c69de55343f1a64
5,882
py
Python
deps/lib/python3.5/site-packages/Crypto/Cipher/CAST.py
jfarmer08/hassio
792a6071a97bb33857c14c9937946233c620035c
[ "MIT" ]
1
2018-10-30T07:19:27.000Z
2018-10-30T07:19:27.000Z
deps/lib/python3.5/site-packages/Crypto/Cipher/CAST.py
jfarmer08/hassio
792a6071a97bb33857c14c9937946233c620035c
[ "MIT" ]
1
2018-04-04T12:13:40.000Z
2018-05-03T07:57:52.000Z
deps/lib/python3.5/site-packages/Crypto/Cipher/CAST.py
jfarmer08/hassio
792a6071a97bb33857c14c9937946233c620035c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Cipher/CAST.py : CAST # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== """ Module's constants for the modes of operation supported with CAST: :var MODE_ECB: Electronic Code Book (ECB) :var MODE_CBC: Cipher-Block Chaining (CBC) :var MODE_CFB: Cipher FeedBack (CFB) :var MODE_OFB: Output FeedBack (OFB) :var MODE_CTR: CounTer Mode (CTR) :var MODE_OPENPGP: OpenPGP Mode :var MODE_EAX: EAX Mode """ import sys from Crypto.Cipher import _create_cipher from Crypto.Util.py3compat import byte_string from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer, SmartPointer, c_size_t, c_uint8_ptr) _raw_cast_lib = load_pycryptodome_raw_lib( "Crypto.Cipher._raw_cast", """ int CAST_start_operation(const uint8_t key[], size_t key_len, void **pResult); int CAST_encrypt(const void *state, const uint8_t *in, uint8_t *out, size_t data_len); int CAST_decrypt(const void *state, const uint8_t *in, uint8_t *out, size_t data_len); int CAST_stop_operation(void *state); """) def _create_base_cipher(dict_parameters): """This method instantiates and returns a handle to a low-level base cipher. It will absorb named parameters in the process.""" try: key = dict_parameters.pop("key") except KeyError: raise TypeError("Missing 'key' parameter") if len(key) not in key_size: raise ValueError("Incorrect CAST key length (%d bytes)" % len(key)) start_operation = _raw_cast_lib.CAST_start_operation stop_operation = _raw_cast_lib.CAST_stop_operation cipher = VoidPointer() result = start_operation(c_uint8_ptr(key), c_size_t(len(key)), cipher.address_of()) if result: raise ValueError("Error %X while instantiating the CAST cipher" % result) return SmartPointer(cipher.get(), stop_operation) def new(key, mode, *args, **kwargs): """Create a new CAST cipher :param key: The secret key to use in the symmetric cipher. Its length can vary from 5 to 16 bytes. :type key: byte string :param mode: The chaining mode to use for encryption or decryption. :type mode: One of the supported ``MODE_*`` constants :Keyword Arguments: * *iv* (``byte string``) -- (Only applicable for ``MODE_CBC``, ``MODE_CFB``, ``MODE_OFB``, and ``MODE_OPENPGP`` modes). The initialization vector to use for encryption or decryption. For ``MODE_CBC``, ``MODE_CFB``, and ``MODE_OFB`` it must be 8 bytes long. For ``MODE_OPENPGP`` mode only, it must be 8 bytes long for encryption and 10 bytes for decryption (in the latter case, it is actually the *encrypted* IV which was prefixed to the ciphertext). If not provided, a random byte string is generated (you must then read its value with the :attr:`iv` attribute). * *nonce* (``byte string``) -- (Only applicable for ``MODE_EAX`` and ``MODE_CTR``). A value that must never be reused for any other encryption done with this key. For ``MODE_EAX`` there are no restrictions on its length (recommended: **16** bytes). For ``MODE_CTR``, its length must be in the range **[0..7]**. If not provided for ``MODE_EAX``, a random byte string is generated (you can read it back via the ``nonce`` attribute). * *segment_size* (``integer``) -- (Only ``MODE_CFB``).The number of **bits** the plaintext and ciphertext are segmented in. It must be a multiple of 8. If not specified, it will be assumed to be 8. * *mac_len* : (``integer``) -- (Only ``MODE_EAX``) Length of the authentication tag, in bytes. It must be no longer than 8 (default). * *initial_value* : (``integer``) -- (Only ``MODE_CTR``). The initial value for the counter within the counter block. By default it is **0**. :Return: a CAST object, of the applicable mode. """ return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs) MODE_ECB = 1 MODE_CBC = 2 MODE_CFB = 3 MODE_OFB = 5 MODE_CTR = 6 MODE_OPENPGP = 7 MODE_EAX = 9 # Size of a data block (in bytes) block_size = 8 # Size of a key (in bytes) key_size = range(5, 16 + 1)
36.7625
85
0.585515
97c0e97eb8f6bd8fd578cad33b0f6d33801de8f1
541
py
Python
regexlib/2021-5-15/python_re2_test_file/regexlib_3226.py
yetingli/ReDoS-Benchmarks
f5b5094d835649e957bf3fec6b8bd4f6efdb35fc
[ "MIT" ]
1
2022-01-24T14:43:23.000Z
2022-01-24T14:43:23.000Z
regexlib/python_re2_test_file/regexlib_3226.py
yetingli/ReDoS-Benchmarks
f5b5094d835649e957bf3fec6b8bd4f6efdb35fc
[ "MIT" ]
null
null
null
regexlib/python_re2_test_file/regexlib_3226.py
yetingli/ReDoS-Benchmarks
f5b5094d835649e957bf3fec6b8bd4f6efdb35fc
[ "MIT" ]
null
null
null
# 3226 # ^([1-9]{1}[0-9]{0,7})+((,[1-9]{1}[0-9]{0,7}){0,1})+$ # EXPONENT # nums:5 # EXPONENT AttackString:""+"1"*32+"!1 __EOA(iii)" import re2 as re from time import perf_counter regex = """^([1-9]{1}[0-9]{0,7})+((,[1-9]{1}[0-9]{0,7}){0,1})+$""" REGEX = re.compile(regex) for i in range(0, 150000): ATTACK = "" + "1" * i * 1 + "!1 __EOA(iii)" LEN = len(ATTACK) BEGIN = perf_counter() m = REGEX.search(ATTACK) # m = REGEX.match(ATTACK) DURATION = perf_counter() - BEGIN print(f"{i *1}: took {DURATION} seconds!")
28.473684
66
0.547135
8f0603c87814b5f190fa1e688846aadb6a1a7ae5
568
py
Python
kryptobot/ta/pyti_volume_oscillator.py
eristoddle/Kryptobot
d0c3050a1c924125810946530670c19b2de72d3f
[ "Apache-2.0" ]
24
2018-05-29T13:44:36.000Z
2022-03-12T20:41:45.000Z
kryptobot/ta/pyti_volume_oscillator.py
eristoddle/Kryptobot
d0c3050a1c924125810946530670c19b2de72d3f
[ "Apache-2.0" ]
23
2018-07-08T02:31:18.000Z
2020-06-02T04:07:49.000Z
kryptobot/ta/pyti_volume_oscillator.py
eristoddle/Kryptobot
d0c3050a1c924125810946530670c19b2de72d3f
[ "Apache-2.0" ]
14
2018-08-10T15:44:27.000Z
2021-06-14T07:14:52.000Z
from .generic_indicator import GenericIndicator from pyti.volume_oscillator import volume_oscillator as indicator # params: period # https://github.com/kylejusticemagnuson/pyti/blob/master/pyti/average_true_range.py class PytiVolumeOscillator(GenericIndicator): def __init__(self, market, interval, periods, params=None): super().__init__(market, interval, periods, None, None, params) def next_calculation(self, candle): if self.get_datawindow() is not None: self.value = indicator(self.get_close(), self.params['period'])[-1]
37.866667
84
0.75
639faa18a307fe61c3e1afbad4ba856d51c7336b
6,349
py
Python
Simple Text classifiers/Text Classification on Yelp dataset/Y_classifier-Parallel str.py
tejasurya/Text_Classification_using_Neural_Networks
d4852780e6c86843aee768d306d19428c8cb9c7f
[ "MIT" ]
1
2020-04-30T16:15:42.000Z
2020-04-30T16:15:42.000Z
Simple Text classifiers/Yelp dataset based basic DNN Classifiers/Y_classifier-Parallel str.py
tejasurya/Text_Classification_using_Neural_Networks
d4852780e6c86843aee768d306d19428c8cb9c7f
[ "MIT" ]
null
null
null
Simple Text classifiers/Yelp dataset based basic DNN Classifiers/Y_classifier-Parallel str.py
tejasurya/Text_Classification_using_Neural_Networks
d4852780e6c86843aee768d306d19428c8cb9c7f
[ "MIT" ]
null
null
null
from numpy import asarray from numpy import zeros import pandas as pd import os from keras.datasets import reuters from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras import backend as K from keras.utils.generic_utils import get_custom_objects from keras.models import Sequential,Model from keras.layers import Dense from keras.layers import Flatten,Input from keras.layers import Dropout from keras.layers import GRU,CuDNNGRU,Reshape,maximum from keras.layers import Bidirectional,Concatenate from keras.layers import Conv1D from keras.layers.convolutional import Conv2D from keras.layers import MaxPooling1D from keras.layers import MaxPool2D from keras.layers import Embedding from keras.layers.merge import concatenate from collections import defaultdict from nltk.corpus import brown,stopwords import random import nltk import numpy as np from sklearn.datasets import fetch_20newsgroups #Custom Activation function from keras import backend as K from keras.utils.generic_utils import get_custom_objects import math as m # fix random seed for reproducibility np.random.seed(7) # load the dataset but only keep the top n words, zero the rest top_words = 10000 batch_size=30 embedding_size=128 nclass=5 # Convolution kernel_size = 5 filters1 = 64 filters2 =128 filters3=256 filters4=512 filters5=1024 pool_size = 4 sequence_length=500 filter_sizes = [3,4,5] # GRU gru_output_size = 64 #LSTM lstm_output_size = 70 def newacti( x,alpha=m.exp(-1) ): return K.elu(x,alpha) trim_len=200 sample_cnt=500 os.chdir("G:/NLP/Dataset/Yelp"); df=pd.read_csv('yelp_review.csv'); #input ip=df['text'].values.tolist() ip=ip[0:sample_cnt] for ty in range(len(ip)): ip[ty]=ip[ty][0:trim_len] len_finder=[] for dat in ip: len_finder.append(len(dat)) #output op=df['stars'].values.tolist() op=op[0:sample_cnt] labels=[] for zen in op: if zen not in labels: labels.append(zen) label_class=[] for ix in op: label_class.append(labels.index(ix)) #Splitting train and test input_train=[] input_test=[] input_valid=[] j=0; for zz in ip: j=j+1 if (j%5 is 0): input_test.append(zz) elif(j%5 is 1): input_valid.append(zz) else: input_train.append(zz) label_train=[] label_test=[] label_valid=[] j=0; for zz in label_class: j=j+1 if (j%5 is 0): label_test.append(zz) elif(j%5 is 1): label_valid.append(zz) else: label_train.append(zz) #one hot encoding i=0 y=np.zeros((len(label_class),max(label_class)+1)) for x in label_class: y[i][x]=1 i=i+1 i=0 y_train=np.zeros((len(label_train),max(label_train)+1)) for x in label_train: y_train[i][x]=1 i=i+1 i=0 y_test=np.zeros((len(label_test),max(label_test)+1)) for x in label_test: y_test[i][x]=1 i=i+1 i=0 y_valid=np.zeros((len(label_valid),max(label_valid)+1)) for x in label_valid: y_valid[i][x]=1 i=i+1 t = Tokenizer() t.fit_on_texts(input_train) vocab_size = len(t.word_index) + 1 # integer encode the documents encoded_docs = t.texts_to_sequences(input_train) #print(encoded_docs) # pad documents to a max length of 4 words max_length = max(len_finder) padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post') #print(padded_docs) # load the whole embedding into memory embeddings_index = dict() f = open("G:\\NLP\\Dataset\\GloVe\\glove.6B.100d.txt", encoding="utf8") for line in f: values = line.split() word = values[0] coefs = asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() #print('Loaded %s word vectors.' % len(embeddings_index)) # create a weight matrix for words in training docs embedding_matrix = zeros((vocab_size, 100)) for word, i in t.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector #Validating the model vt = Tokenizer() vt.fit_on_texts(input_valid) vvocab_size = len(vt.word_index) + 1 # integer encode the documents vencoded_docs = vt.texts_to_sequences(input_valid) #print(encoded_docs) # pad documents to a max length of 4 words vpadded_docs = pad_sequences(vencoded_docs, maxlen=max_length, padding='post') #print(padded_docs) #Testing the model tt = Tokenizer() tt.fit_on_texts(input_test) tvocab_size = len(tt.word_index) + 1 # integer encode the documents tencoded_docs = tt.texts_to_sequences(input_test) #print(encoded_docs) # pad documents to a max length of 4 words tpadded_docs = pad_sequences(tencoded_docs, maxlen=max_length, padding='post') #print(padded_docs) sequence_length=max_length # create the model embedding_vecor_length = 100 visible = Input(shape=(sequence_length,), dtype='int32') # first feature extractor embedding = Embedding(vocab_size,embedding_vecor_length, input_length=sequence_length, trainable=True)(visible) e=Reshape((sequence_length,embedding_vecor_length,1))(embedding) print(e.shape) conv_0 = Conv2D(filters1, kernel_size=(filter_sizes[0], 100), padding='valid', kernel_initializer='normal', activation=newacti)(e) maxpool_0 = MaxPool2D(pool_size=(sequence_length - filter_sizes[0] +1, 1), strides=(1,1), padding='valid')(conv_0) #conv_1 = Conv2D(filters1, kernel_size=(filter_sizes[0], 100), padding='valid', kernel_initializer='normal', activation=newacti)(maxpool_0) #maxpool_1 = MaxPool2D(pool_size=(sequence_length - filter_sizes[0] +1, 1), strides=(1,1), padding='valid')(conv_1) gru=Reshape((sequence_length,embedding_vecor_length))(e) gru=GRU(gru_output_size, return_sequences=True, dropout=0.2, recurrent_dropout=0.2)(gru) gru=GRU(gru_output_size)(gru) gru=Reshape((1,1,gru_output_size))(gru) merge = maximum([maxpool_0, gru]) flatten = Flatten()(merge) dropout = Dropout(0.5)(flatten) output = Dense(nclass, activation='softmax')(dropout) model = Model(inputs=visible, outputs=output) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) model.fit(padded_docs,y_train, epochs=1, verbose=0, nb_epoch=3, batch_size=64, validation_data=(vpadded_docs, y_valid)) print('Model built successfully...Please wait.....Evaluating......') # Final evaluation of the model scores = model.evaluate(tpadded_docs, y_test, verbose=0) print("Loss: %.2f%%" % (scores[0]*100)) print("Accuracy: %.2f%%" % (scores[1]*100))
26.676471
139
0.750669
05fb672ecb45eb00505d15bb6fdac468799f7e87
255
py
Python
leetcode.com/python/268_Missing_Number.py
XSoyOscar/Algorithms
6e1626d4b0f7804494f0a651698966ad6fd0fe18
[ "MIT" ]
80
2020-07-02T20:47:21.000Z
2022-03-22T06:52:59.000Z
leetcode.com/python/268_Missing_Number.py
XSoyOscar/Algorithms
6e1626d4b0f7804494f0a651698966ad6fd0fe18
[ "MIT" ]
1
2020-10-05T19:22:10.000Z
2020-10-05T19:22:10.000Z
leetcode.com/python/268_Missing_Number.py
XSoyOscar/Algorithms
6e1626d4b0f7804494f0a651698966ad6fd0fe18
[ "MIT" ]
73
2020-04-09T22:28:01.000Z
2022-02-26T19:22:25.000Z
class Solution(object): def missingNumber(self, nums): """ :type nums: List[int] :rtype: int """ missing = len(nums) for i, num in enumerate(nums): missing ^= i ^ num return missing
21.25
38
0.494118
d89db994ccdf9f7495628258d0329a67880cd0bb
78
py
Python
akebono/__init__.py
OTA2000/akebono
11f88f3605a66989ac5cf11cb6af7b93987bcf59
[ "MIT" ]
3
2018-09-28T01:35:41.000Z
2020-06-22T07:09:14.000Z
akebono/__init__.py
OTA2000/akebono
11f88f3605a66989ac5cf11cb6af7b93987bcf59
[ "MIT" ]
1
2020-01-06T08:15:10.000Z
2020-01-06T08:15:10.000Z
akebono/__init__.py
OTA2000/akebono
11f88f3605a66989ac5cf11cb6af7b93987bcf59
[ "MIT" ]
6
2018-08-10T03:04:28.000Z
2020-02-03T02:28:08.000Z
""" this is akebono package, and modified normally.""" __version__ = "0.0.1"
19.5
54
0.679487
9454ee141966f35ac24a4f8ad6d588a8103e6441
5,291
py
Python
scripts/emotion_module/objective/emocl/nn/modules.py
EnricaIMS/LostInBackTranslation
d6921e408197c60de6d4247f412ca1ae86f19b58
[ "MIT" ]
1
2021-04-23T08:54:24.000Z
2021-04-23T08:54:24.000Z
scripts/emotion_module/objective/emocl/nn/modules.py
EnricaIMS/LostInBackTranslation
d6921e408197c60de6d4247f412ca1ae86f19b58
[ "MIT" ]
null
null
null
scripts/emotion_module/objective/emocl/nn/modules.py
EnricaIMS/LostInBackTranslation
d6921e408197c60de6d4247f412ca1ae86f19b58
[ "MIT" ]
null
null
null
from torch import nn, torch from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from objective.emocl.nn.regularization import GaussianNoise class RNNEncoder(nn.Module): def __init__(self, input_size, rnn_size, num_layers, bidirectional, dropout): """ A simple RNN Encoder. Args: input_size (int): the size of the input features rnn_size (int): num_layers (int): bidirectional (bool): dropout (float): Returns: outputs, last_outputs - **outputs** of shape `(batch, seq_len, hidden_size)`: tensor containing the output features `(h_t)` from the last layer of the LSTM, for each t. - **last_outputs** of shape `(batch, hidden_size)`: tensor containing the last output features from the last layer of the LSTM, for each t=seq_len. """ super(RNNEncoder, self).__init__() self.rnn = nn.LSTM(input_size=input_size, hidden_size=rnn_size, num_layers=num_layers, bidirectional=bidirectional, dropout=dropout, batch_first=True) # the dropout "layer" for the output of the RNN self.drop_rnn = nn.Dropout(dropout) # define output feature size self.feature_size = rnn_size if bidirectional: self.feature_size *= 2 @staticmethod def last_by_index(outputs, lengths): # Index of the last output for each sequence. idx = (lengths - 1).view(-1, 1).expand(outputs.size(0), outputs.size(2)).unsqueeze(1) return outputs.gather(1, idx).squeeze(1) @staticmethod def split_directions(outputs): direction_size = int(outputs.size(-1) / 2) forward = outputs[:, :, :direction_size] backward = outputs[:, :, direction_size:] return forward, backward def last_timestep(self, outputs, lengths, bi=False): if bi: forward, backward = self.split_directions(outputs) last_forward = self.last_by_index(forward, lengths) last_backward = backward[:, 0, :] return torch.cat((last_forward, last_backward), dim=-1) else: return self.last_by_index(outputs, lengths) def forward(self, embs, lengths): """ This is the heart of the model. This function, defines how the data passes through the network. Args: embs (): word embeddings lengths (): the lengths of each sentence Returns: the logits for each class """ # pack the batch packed = pack_padded_sequence(embs, lengths, batch_first=True) out_packed, _ = self.rnn(packed) # unpack output - no need if we are going to use only the last outputs outputs, _ = pad_packed_sequence(out_packed, batch_first=True) # get the outputs from the last *non-masked* timestep for each sentence last_outputs = self.last_timestep(outputs, lengths, self.rnn.bidirectional) # apply dropout to the outputs of the RNN last_outputs = self.drop_rnn(last_outputs) return outputs, last_outputs class Embed(nn.Module): def __init__(self, num_embeddings, embedding_dim, embeddings=None, noise=.0, dropout=.0, trainable=False): """ Define the layer of the model and perform the initializations of the layers (wherever it is necessary) Args: embeddings (numpy.ndarray): the 2D ndarray with the word vectors noise (float): dropout (float): trainable (bool): """ super(Embed, self).__init__() # define the embedding layer, with the corresponding dimensions self.embedding = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim) if embeddings is not None: print("Initializing Embedding layer with pre-trained weights!") self.init_embeddings(embeddings, trainable) # the dropout "layer" for the word embeddings self.dropout = nn.Dropout(dropout) # the gaussian noise "layer" for the word embeddings self.noise = GaussianNoise(noise) def init_embeddings(self, weights, trainable): self.embedding.weight = nn.Parameter(weights, requires_grad=trainable) def forward(self, x): """ This is the heart of the model. This function, defines how the data passes through the network. Args: x (): the input data (the sentences) Returns: the logits for each class """ embeddings = self.embedding(x) if self.noise.stddev > 0: embeddings = self.noise(embeddings) if self.dropout.p > 0: embeddings = self.dropout(embeddings) return embeddings
33.27673
79
0.578341
12615e52a77a509fe066397aecdd07e7aabd340f
7,246
py
Python
sdk/python/kfp/components/_data_passing.py
kamalmemon/pipelines
7e68991a2a7bfa767f893facfe58190690ca89ed
[ "Apache-2.0" ]
1
2020-10-13T13:28:42.000Z
2020-10-13T13:28:42.000Z
sdk/python/kfp/components/_data_passing.py
kamalmemon/pipelines
7e68991a2a7bfa767f893facfe58190690ca89ed
[ "Apache-2.0" ]
4
2022-02-14T21:39:59.000Z
2022-03-08T23:38:00.000Z
sdk/python/kfp/components/_data_passing.py
kamalmemon/pipelines
7e68991a2a7bfa767f893facfe58190690ca89ed
[ "Apache-2.0" ]
2
2019-10-15T03:06:15.000Z
2019-10-15T03:10:39.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ 'get_canonical_type_struct_for_type', 'get_canonical_type_for_type_struct', 'get_deserializer_code_for_type', 'get_deserializer_code_for_type_struct', 'get_serializer_func_for_type_struct', ] import inspect from typing import Any, Callable, NamedTuple, Sequence import warnings Converter = NamedTuple('Converter', [ ('types', Sequence[str]), ('type_names', Sequence[str]), ('serializer', Callable[[Any], str]), ('deserializer_code', str), ('definitions', str), ]) def _serialize_str(str_value: str) -> str: if not isinstance(str_value, str): raise TypeError('Value "{}" has type "{}" instead of str.'.format(str(str_value), str(type(str_value)))) return str_value def _serialize_int(int_value: int) -> str: if isinstance(int_value, str): return int_value if not isinstance(int_value, int): raise TypeError('Value "{}" has type "{}" instead of int.'.format(str(int_value), str(type(int_value)))) return str(int_value) def _serialize_float(float_value: float) -> str: if isinstance(float_value, str): return float_value if not isinstance(float_value, (float, int)): raise TypeError('Value "{}" has type "{}" instead of float.'.format(str(float_value), str(type(float_value)))) return str(float_value) def _serialize_bool(bool_value: bool) -> str: if isinstance(bool_value, str): return bool_value if not isinstance(bool_value, bool): raise TypeError('Value "{}" has type "{}" instead of bool.'.format(str(bool_value), str(type(bool_value)))) return str(bool_value) def _deserialize_bool(s) -> bool: from distutils.util import strtobool return strtobool(s) == 1 _bool_deserializer_definitions = inspect.getsource(_deserialize_bool) _bool_deserializer_code = _deserialize_bool.__name__ def _serialize_json(obj) -> str: if isinstance(obj, str): return obj import json def default_serializer(obj): if hasattr(obj, 'to_struct'): return obj.to_struct() else: raise TypeError("Object of type '%s' is not JSON serializable and does not have .to_struct() method." % obj.__class__.__name__) return json.dumps(obj, default=default_serializer, sort_keys=True) def _serialize_base64_pickle(obj) -> str: if isinstance(obj, str): return obj import base64 import pickle return base64.b64encode(pickle.dumps(obj)).decode('ascii') def _deserialize_base64_pickle(s): import base64 import pickle return pickle.loads(base64.b64decode(s)) _deserialize_base64_pickle_definitions = inspect.getsource(_deserialize_base64_pickle) _deserialize_base64_pickle_code = _deserialize_base64_pickle.__name__ _converters = [ Converter([str], ['String', 'str'], _serialize_str, 'str', None), Converter([int], ['Integer', 'int'], _serialize_int, 'int', None), Converter([float], ['Float', 'float'], _serialize_float, 'float', None), Converter([bool], ['Boolean', 'bool'], _serialize_bool, _bool_deserializer_code, _bool_deserializer_definitions), Converter([list], ['JsonArray', 'List', 'list'], _serialize_json, 'json.loads', 'import json'), # ! JSON map keys are always strings. Python converts all keys to strings without warnings Converter([dict], ['JsonObject', 'Dictionary', 'Dict', 'dict'], _serialize_json, 'json.loads', 'import json'), # ! JSON map keys are always strings. Python converts all keys to strings without warnings Converter([], ['Json'], _serialize_json, 'json.loads', 'import json'), Converter([], ['Base64Pickle'], _serialize_base64_pickle, _deserialize_base64_pickle_code, _deserialize_base64_pickle_definitions), ] type_to_type_name = {typ: converter.type_names[0] for converter in _converters for typ in converter.types} type_name_to_type = {type_name: converter.types[0] for converter in _converters for type_name in converter.type_names if converter.types} type_to_deserializer = {typ: (converter.deserializer_code, converter.definitions) for converter in _converters for typ in converter.types} type_name_to_deserializer = {type_name: (converter.deserializer_code, converter.definitions) for converter in _converters for type_name in converter.type_names} type_name_to_serializer = {type_name: converter.serializer for converter in _converters for type_name in converter.type_names} def get_canonical_type_struct_for_type(typ) -> str: try: return type_to_type_name.get(typ, None) except: return None def get_canonical_type_for_type_struct(type_struct) -> str: try: return type_name_to_type.get(type_struct, None) except: return None def get_deserializer_code_for_type(typ) -> str: try: return type_name_to_deserializer.get(get_canonical_type_struct_for_type[typ], None) except: return None def get_deserializer_code_for_type_struct(type_struct) -> str: try: return type_name_to_deserializer.get(type_struct, None) except: return None def get_serializer_func_for_type_struct(type_struct) -> str: try: return type_name_to_serializer.get(type_struct, None) except: return None def serialize_value(value, type_name: str) -> str: '''serialize_value converts the passed value to string based on the serializer associated with the passed type_name''' if isinstance(value, str): return value # The value is supposedly already serialized if type_name is None: type_name = type_to_type_name.get(type(value), type(value).__name__) warnings.warn('Missing type name was inferred as "{}" based on the value "{}".'.format(type_name, str(value))) serializer = type_name_to_serializer.get(type_name, None) if serializer: try: serialized_value = serializer(value) if not isinstance(serialized_value, str): raise TypeError('Serializer {} returned result of type "{}" instead of string.'.format(serializer, type(serialized_value))) return serialized_value except Exception as e: raise ValueError('Failed to serialize the value "{}" of type "{}" to type "{}". Exception: {}'.format( str(value), str(type(value).__name__), str(type_name), str(e), )) serialized_value = str(value) warnings.warn('There are no registered serializers from type "{}" to type "{}", so the value will be serializers as string "{}".'.format( str(type(value).__name__), str(type_name), serialized_value), ) return serialized_value
37.739583
205
0.707839
dc592cbb4e72037820fc278d3c86b8c860691d67
2,827
py
Python
src/HABApp/openhab/definitions/values.py
DerOetzi/HABApp
a123fbfa9928ebb3cda9a84f6984dcba593c8236
[ "Apache-2.0" ]
44
2018-12-13T08:46:44.000Z
2022-03-07T03:23:21.000Z
src/HABApp/openhab/definitions/values.py
DerOetzi/HABApp
a123fbfa9928ebb3cda9a84f6984dcba593c8236
[ "Apache-2.0" ]
156
2019-03-02T20:53:31.000Z
2022-03-23T13:13:58.000Z
src/HABApp/openhab/definitions/values.py
DerOetzi/HABApp
a123fbfa9928ebb3cda9a84f6984dcba593c8236
[ "Apache-2.0" ]
18
2019-03-08T07:13:21.000Z
2022-03-22T19:52:31.000Z
import base64 import typing from HABApp.core.events import ComplexEventValue class OnOffValue(ComplexEventValue): ON = 'ON' OFF = 'OFF' def __init__(self, value): super().__init__(value) assert value == OnOffValue.ON or value == OnOffValue.OFF, f'{value} ({type(value)})' self.on = value == 'ON' def __str__(self): return self.value class PercentValue(ComplexEventValue): def __init__(self, value: str): percent = float(value) assert 0 <= percent <= 100, f'{percent} ({type(percent)})' super().__init__(percent) def __str__(self): return f'{self.value}%' class OpenClosedValue(ComplexEventValue): OPEN = 'OPEN' CLOSED = 'CLOSED' def __init__(self, value): super().__init__(value) assert value == OpenClosedValue.OPEN or value == OpenClosedValue.CLOSED, f'{value} ({type(value)})' self.open = value == OpenClosedValue.OPEN def __str__(self): return self.value class UpDownValue(ComplexEventValue): UP = 'UP' DOWN = 'DOWN' def __init__(self, value): super().__init__(value) assert value == UpDownValue.UP or value == UpDownValue.DOWN, f'{value} ({type(value)})' self.up = value == UpDownValue.UP def __str__(self): return self.value class HSBValue(ComplexEventValue): def __init__(self, value: str): super().__init__(tuple(float(k) for k in value.split(','))) def __str__(self): return f'{self.value[0]}°,{self.value[1]}%,{self.value[2]}%' class QuantityValue(ComplexEventValue): @staticmethod def split_unit(value: str) -> typing.Tuple[str, str]: p = value.rfind(' ') # dimensionless has no unit if p < 0: return value, '' val = value[0:p] unit = value[p + 1:] return val, unit def __init__(self, value: str): value, unit = QuantityValue.split_unit(value) try: val: typing.Union[int, float] = int(value) except ValueError: val = float(value) super().__init__(val) self.unit = unit def __str__(self): return f'{self.value} {self.unit}' class RawValue(ComplexEventValue): def __init__(self, value: str): # The data is in this format # .... # extract the contents from "data:" sep_type = value.find(';') self.type = value[5: sep_type] # this is our encoded payload sep_enc = value.find(',', sep_type) encoding = value[sep_type + 1: sep_enc] assert encoding == 'base64', f'"{encoding}"' # set the bytes as value super().__init__(base64.b64decode(value[sep_enc + 1:])) def __str__(self): return f'{self.type}'
26.175926
107
0.598868
963bbf8b04e804b11ab9fbb06973e73321ce11db
17,242
py
Python
gapic/generator/generator.py
googleapis/client-generator-python
db9ed9177e65aff07a0c1addf73c32da4dabcaf9
[ "Apache-2.0" ]
null
null
null
gapic/generator/generator.py
googleapis/client-generator-python
db9ed9177e65aff07a0c1addf73c32da4dabcaf9
[ "Apache-2.0" ]
null
null
null
gapic/generator/generator.py
googleapis/client-generator-python
db9ed9177e65aff07a0c1addf73c32da4dabcaf9
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import jinja2 import yaml import itertools import re import os import pathlib import typing from typing import Any, DefaultDict, Dict, Mapping, Tuple from hashlib import sha256 from collections import OrderedDict, defaultdict from gapic.samplegen_utils.utils import coerce_response_name, is_valid_sample_cfg, render_format_string from gapic.samplegen_utils.types import DuplicateSample from gapic.samplegen_utils import snippet_index, snippet_metadata_pb2 from gapic.samplegen import manifest, samplegen from gapic.generator import formatter from gapic.schema import api from gapic import utils from gapic.utils import Options from google.protobuf.compiler.plugin_pb2 import CodeGeneratorResponse class Generator: """A protoc code generator for client libraries. This class provides an interface for getting a :class:`~.plugin_pb2.CodeGeneratorResponse` for an :class:`~api.API` schema object (which it does through rendering templates). Args: opts (~.options.Options): An options instance. templates (str): Optional. Path to the templates to be rendered. If this is not provided, the templates included with this application are used. """ def __init__(self, opts: Options) -> None: # Create the jinja environment with which to render templates. self._env = jinja2.Environment( loader=jinja2.FileSystemLoader(searchpath=opts.templates), undefined=jinja2.StrictUndefined, extensions=["jinja2.ext.do"], trim_blocks=True, lstrip_blocks=True, ) # Add filters which templates require. self._env.filters["rst"] = utils.rst self._env.filters["snake_case"] = utils.to_snake_case self._env.filters["camel_case"] = utils.to_camel_case self._env.filters["sort_lines"] = utils.sort_lines self._env.filters["wrap"] = utils.wrap self._env.filters["coerce_response_name"] = coerce_response_name self._env.filters["render_format_string"] = render_format_string # Add tests to determine type of expressions stored in strings self._env.tests["str_field_pb"] = utils.is_str_field_pb self._env.tests["msg_field_pb"] = utils.is_msg_field_pb self._sample_configs = opts.sample_configs def get_response( self, api_schema: api.API, opts: Options ) -> CodeGeneratorResponse: """Return a :class:`~.CodeGeneratorResponse` for this library. This is a complete response to be written to (usually) stdout, and thus read by ``protoc``. Args: api_schema (~api.API): An API schema object. opts (~.options.Options): An options instance. Returns: ~.CodeGeneratorResponse: A response describing appropriate files and contents. See ``plugin.proto``. """ output_files: Dict[str, CodeGeneratorResponse.File] = OrderedDict() sample_templates, client_templates = utils.partition( lambda fname: os.path.basename( fname) == samplegen.DEFAULT_TEMPLATE_NAME, self._env.loader.list_templates(), # type: ignore ) # We generate code snippets *before* the library code so snippets # can be inserted into method docstrings. snippet_idx = snippet_index.SnippetIndex(api_schema) if sample_templates: sample_output, snippet_idx = self._generate_samples_and_manifest( api_schema, snippet_idx, self._env.get_template( sample_templates[0]), opts=opts, ) output_files.update(sample_output) # Iterate over each template and add the appropriate output files # based on that template. # Sample templates work differently: there's (usually) only one, # and instead of iterating over it/them, we iterate over samples # and plug those into the template. for template_name in client_templates: # Quick check: Skip "private" templates. filename = template_name.split("/")[-1] if filename.startswith("_") and filename != "__init__.py.j2": continue # Append to the output files dictionary. output_files.update( self._render_template( template_name, api_schema=api_schema, opts=opts, snippet_index=snippet_idx) ) # Return the CodeGeneratorResponse output. res = CodeGeneratorResponse( file=[i for i in output_files.values()]) # type: ignore res.supported_features |= CodeGeneratorResponse.Feature.FEATURE_PROTO3_OPTIONAL # type: ignore return res def _generate_samples_and_manifest( self, api_schema: api.API, index: snippet_index.SnippetIndex, sample_template: jinja2.Template, *, opts: Options) -> Tuple[Dict, snippet_index.SnippetIndex]: """Generate samples and samplegen manifest for the API. Arguments: api_schema (api.API): The schema for the API to which the samples belong. sample_template (jinja2.Template): The template to use to generate samples. opts (Options): Additional generator options. Returns: Tuple[Dict[str, CodeGeneratorResponse.File], snippet_index.SnippetIndex] : A dict mapping filepath to rendered file. """ # The two-layer data structure lets us do two things: # * detect duplicate samples, which is an error # * detect distinct samples with the same ID, which are disambiguated id_to_hash_to_spec: DefaultDict[str, Dict[str, Any]] = defaultdict(dict) # Autogenerated sample specs autogen_specs: typing.List[typing.Dict[str, Any]] = [] if opts.autogen_snippets: autogen_specs = list( samplegen.generate_sample_specs(api_schema, opts=opts)) # Also process any handwritten sample specs handwritten_specs = samplegen.parse_handwritten_specs( self._sample_configs) sample_specs = autogen_specs + list(handwritten_specs) for spec in sample_specs: # Every sample requires an ID. This may be provided # by a samplegen config author. # If no ID is provided, fall back to the region tag. # # Ideally the sample author should pick a descriptive, unique ID, # but this may be impractical and can be error-prone. spec_hash = sha256(str(spec).encode("utf8")).hexdigest()[:8] sample_id = spec.get("id") or spec.get("region_tag") or spec_hash spec["id"] = sample_id hash_to_spec = id_to_hash_to_spec[sample_id] if spec_hash in hash_to_spec: raise DuplicateSample( f"Duplicate samplegen spec found: {spec}") hash_to_spec[spec_hash] = spec out_dir = "samples/generated_samples" fpath_to_spec_and_rendered = {} for hash_to_spec in id_to_hash_to_spec.values(): for spec_hash, spec in hash_to_spec.items(): id_is_unique = len(hash_to_spec) == 1 # The ID is used to generate the file name. It must be globally unique. if not id_is_unique: spec["id"] += f"_{spec_hash}" sample, snippet_metadata = samplegen.generate_sample( spec, api_schema, sample_template,) fpath = utils.to_snake_case(spec["id"]) + ".py" fpath_to_spec_and_rendered[os.path.join(out_dir, fpath)] = ( spec, sample, ) snippet_metadata.file = fpath snippet_metadata.title = fpath index.add_snippet( snippet_index.Snippet(sample, snippet_metadata)) output_files = { fname: CodeGeneratorResponse.File( content=formatter.fix_whitespace(sample), name=fname ) for fname, (_, sample) in fpath_to_spec_and_rendered.items() } if index.metadata_index.snippets: # NOTE(busunkim): Not all fields are yet populated in the snippet metadata. # Expected filename: snippet_metadata_{apishortname}_{apiversion}.json snippet_metadata_path = str(pathlib.Path( out_dir) / f"snippet_metadata_{api_schema.naming.name}_{api_schema.naming.version}.json").lower() output_files[snippet_metadata_path] = CodeGeneratorResponse.File( content=formatter.fix_whitespace(index.get_metadata_json()), name=snippet_metadata_path) return output_files, index def _render_template( self, template_name: str, *, api_schema: api.API, opts: Options, snippet_index: snippet_index.SnippetIndex, ) -> Dict[str, CodeGeneratorResponse.File]: """Render the requested templates. Args: template_name (str): The template to be rendered. It is expected that these come from :class:`jinja2.FileSystemLoader`, and they should be able to be sent to the :meth:`jinja2.Environment.get_template` method. api_schema (~.api.API): An API schema object. Returns: Sequence[~.CodeGeneratorResponse.File]: A sequence of File objects for inclusion in the final response. """ answer: Dict[str, CodeGeneratorResponse.File] = OrderedDict() skip_subpackages = False # Very, very special case. This flag exists to gate this one file. if not opts.metadata and template_name.endswith("gapic_metadata.json.j2"): return answer # Quick check: Rendering per service and per proto would be a # combinatorial explosion and is almost certainly not what anyone # ever wants. Error colorfully on it. if "%service" in template_name and "%proto" in template_name: raise ValueError( "Template files may live under a %proto or " "%service directory, but not both." ) # If this template should be rendered for subpackages, process it # for all subpackages and set the strict flag (restricting what # services and protos we pull from for the remainder of the method). if "%sub" in template_name: for subpackage in api_schema.subpackages.values(): answer.update( self._render_template( template_name, api_schema=subpackage, opts=opts, snippet_index=snippet_index ) ) skip_subpackages = True # If this template should be rendered once per proto, iterate over # all protos to be rendered if "%proto" in template_name: for proto in api_schema.protos.values(): if ( skip_subpackages and proto.meta.address.subpackage != api_schema.subpackage_view ): continue answer.update( self._get_file( template_name, api_schema=api_schema, proto=proto, opts=opts, snippet_index=snippet_index ) ) return answer # If this template should be rendered once per service, iterate # over all services to be rendered. if "%service" in template_name: for service in api_schema.services.values(): if ( (skip_subpackages and service.meta.address.subpackage != api_schema.subpackage_view) or ('transport' in template_name and not self._is_desired_transport(template_name, opts)) or # TODO(yon-mg) - remove when rest async implementation resolved # temporarily stop async client gen while rest async is unkown ('async' in template_name and 'grpc' not in opts.transport) ): continue answer.update( self._get_file( template_name, api_schema=api_schema, service=service, opts=opts, snippet_index=snippet_index, ) ) return answer # This file is not iterating over anything else; return back # the one applicable file. answer.update(self._get_file( template_name, api_schema=api_schema, opts=opts, snippet_index=snippet_index)) return answer def _is_desired_transport(self, template_name: str, opts: Options) -> bool: """Returns true if template name contains a desired transport""" desired_transports = ['__init__', 'base'] + opts.transport return any(transport in template_name for transport in desired_transports) def _get_file( self, template_name: str, *, opts: Options, api_schema: api.API, **context, ): """Render a template to a protobuf plugin File object.""" # Determine the target filename. fn = self._get_filename( template_name, api_schema=api_schema, context=context,) # Render the file contents. cgr_file = CodeGeneratorResponse.File( content=formatter.fix_whitespace( self._env.get_template(template_name).render( api=api_schema, opts=opts, **context ), ), name=fn, ) # Quick check: Do not render empty files. if utils.empty(cgr_file.content) and not fn.endswith( ("py.typed", "__init__.py") ): return {} # Return the filename and content in a length-1 dictionary # (because we track output files overall in a dictionary). return {fn: cgr_file} def _get_filename( self, template_name: str, *, api_schema: api.API, context: dict = None, ) -> str: """Return the appropriate output filename for this template. This entails running the template name through a series of replacements to replace the "filename variables" (``%name``, ``%service``, etc.). Additionally, any of these variables may be substituted with an empty value, and we should do the right thing in this case. (The exception to this is ``%service``, which is guaranteed to be set if it is needed.) Args: template_name (str): The filename of the template, from the filesystem, relative to ``templates/``. api_schema (~.api.API): An API schema object. context (Mapping): Additional context being sent to the template. Returns: str: The appropriate output filename. """ filename = template_name[: -len(".j2")] # Replace the %namespace variable. filename = filename.replace( "%namespace", os.path.sep.join(i.lower() for i in api_schema.naming.namespace), ).lstrip(os.path.sep) # Replace the %name, %version, and %sub variables. filename = filename.replace( "%name_%version", api_schema.naming.versioned_module_name ) filename = filename.replace("%version", api_schema.naming.version) filename = filename.replace("%name", api_schema.naming.module_name) filename = filename.replace( "%sub", "/".join(api_schema.subpackage_view)) # Replace the %service variable if applicable. if context and "service" in context: filename = filename.replace( "%service", context["service"].module_name,) # Replace the %proto variable if appliable. # In the cases of protos, we also honor subpackages. if context and "proto" in context: filename = filename.replace( "%proto", context["proto"].module_name,) # Paths may have empty path segments if components are empty # (e.g. no %version); handle this. filename = re.sub(r"/+", "/", filename) # Done, return the filename. return filename __all__ = ("Generator",)
41.347722
169
0.616808
97f0c3d0888b1d505ef119f4ae78b66cbe88e4b9
517
py
Python
TEP/atcoder242/C.py
GuilhermeBraz/unb-workflow
37d680a675a87cea2ff936badf94d757393870c3
[ "MIT" ]
null
null
null
TEP/atcoder242/C.py
GuilhermeBraz/unb-workflow
37d680a675a87cea2ff936badf94d757393870c3
[ "MIT" ]
null
null
null
TEP/atcoder242/C.py
GuilhermeBraz/unb-workflow
37d680a675a87cea2ff936badf94d757393870c3
[ "MIT" ]
null
null
null
# Given an integer N, find the number of integers X that satisfy all of the following conditions, modulo 998244353. '''X is an N-digit positive integer. Let X1​,X2​,…,XN​ be the digits of X from top to bottom. They satisfy all of the following: 1≤Xi​≤9 for all integers 1≤i≤N; ∣Xi​−Xi+1​∣≤1 for all integers 1≤i≤N−1. ''' N = int(input()) #total numbers with N between 1 and 9 that Xi - Xi+1 <= 1 T = 3**(N-1) * 8 + 1 print(T% 998244353) 11 12 21 22 23 32 33 34 43 44 45 54 55 56 65 66 67 76 77 78 87 88 89 98 99
12.609756
115
0.673114
409850ad6655d89b72301f089399f55de7ce808f
19,378
py
Python
melodic/lib/python2.7/dist-packages/gazebo_msgs/srv/_GetModelProperties.py
Dieptranivsr/Ros_Diep
d790e75e6f5da916701b11a2fdf3e03b6a47086b
[ "MIT" ]
null
null
null
melodic/lib/python2.7/dist-packages/gazebo_msgs/srv/_GetModelProperties.py
Dieptranivsr/Ros_Diep
d790e75e6f5da916701b11a2fdf3e03b6a47086b
[ "MIT" ]
1
2021-07-08T10:26:06.000Z
2021-07-08T10:31:11.000Z
melodic/lib/python2.7/dist-packages/gazebo_msgs/srv/_GetModelProperties.py
Dieptranivsr/Ros_Diep
d790e75e6f5da916701b11a2fdf3e03b6a47086b
[ "MIT" ]
null
null
null
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from gazebo_msgs/GetModelPropertiesRequest.msg. Do not edit.""" import codecs import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class GetModelPropertiesRequest(genpy.Message): _md5sum = "ea31c8eab6fc401383cf528a7c0984ba" _type = "gazebo_msgs/GetModelPropertiesRequest" _has_header = False # flag to mark the presence of a Header object _full_text = """string model_name # name of Gazebo Model """ __slots__ = ['model_name'] _slot_types = ['string'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: model_name :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GetModelPropertiesRequest, self).__init__(*args, **kwds) # message fields cannot be None, assign default values for those that are if self.model_name is None: self.model_name = '' else: self.model_name = '' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self.model_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ codecs.lookup_error("rosmsg").msg_type = self._type try: end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.model_name = str[start:end].decode('utf-8', 'rosmsg') else: self.model_name = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self.model_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ codecs.lookup_error("rosmsg").msg_type = self._type try: end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.model_name = str[start:end].decode('utf-8', 'rosmsg') else: self.model_name = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I # This Python file uses the following encoding: utf-8 """autogenerated by genpy from gazebo_msgs/GetModelPropertiesResponse.msg. Do not edit.""" import codecs import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class GetModelPropertiesResponse(genpy.Message): _md5sum = "b7f370938ef77b464b95f1bab3ec5028" _type = "gazebo_msgs/GetModelPropertiesResponse" _has_header = False # flag to mark the presence of a Header object _full_text = """string parent_model_name # parent model string canonical_body_name # name of canonical body, body names are prefixed by model name, e.g. pr2::base_link string[] body_names # list of bodies, body names are prefixed by model name, e.g. pr2::base_link string[] geom_names # list of geoms string[] joint_names # list of joints attached to the model string[] child_model_names # list of child models bool is_static # returns true if model is static bool success # return true if get successful string status_message # comments if available """ __slots__ = ['parent_model_name','canonical_body_name','body_names','geom_names','joint_names','child_model_names','is_static','success','status_message'] _slot_types = ['string','string','string[]','string[]','string[]','string[]','bool','bool','string'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: parent_model_name,canonical_body_name,body_names,geom_names,joint_names,child_model_names,is_static,success,status_message :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GetModelPropertiesResponse, self).__init__(*args, **kwds) # message fields cannot be None, assign default values for those that are if self.parent_model_name is None: self.parent_model_name = '' if self.canonical_body_name is None: self.canonical_body_name = '' if self.body_names is None: self.body_names = [] if self.geom_names is None: self.geom_names = [] if self.joint_names is None: self.joint_names = [] if self.child_model_names is None: self.child_model_names = [] if self.is_static is None: self.is_static = False if self.success is None: self.success = False if self.status_message is None: self.status_message = '' else: self.parent_model_name = '' self.canonical_body_name = '' self.body_names = [] self.geom_names = [] self.joint_names = [] self.child_model_names = [] self.is_static = False self.success = False self.status_message = '' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self.parent_model_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self.canonical_body_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) length = len(self.body_names) buff.write(_struct_I.pack(length)) for val1 in self.body_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.Struct('<I%ss'%length).pack(length, val1)) length = len(self.geom_names) buff.write(_struct_I.pack(length)) for val1 in self.geom_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.Struct('<I%ss'%length).pack(length, val1)) length = len(self.joint_names) buff.write(_struct_I.pack(length)) for val1 in self.joint_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.Struct('<I%ss'%length).pack(length, val1)) length = len(self.child_model_names) buff.write(_struct_I.pack(length)) for val1 in self.child_model_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.Struct('<I%ss'%length).pack(length, val1)) _x = self buff.write(_get_struct_2B().pack(_x.is_static, _x.success)) _x = self.status_message length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ codecs.lookup_error("rosmsg").msg_type = self._type try: end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.parent_model_name = str[start:end].decode('utf-8', 'rosmsg') else: self.parent_model_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.canonical_body_name = str[start:end].decode('utf-8', 'rosmsg') else: self.canonical_body_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.body_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8', 'rosmsg') else: val1 = str[start:end] self.body_names.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.geom_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8', 'rosmsg') else: val1 = str[start:end] self.geom_names.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.joint_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8', 'rosmsg') else: val1 = str[start:end] self.joint_names.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.child_model_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8', 'rosmsg') else: val1 = str[start:end] self.child_model_names.append(val1) _x = self start = end end += 2 (_x.is_static, _x.success,) = _get_struct_2B().unpack(str[start:end]) self.is_static = bool(self.is_static) self.success = bool(self.success) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status_message = str[start:end].decode('utf-8', 'rosmsg') else: self.status_message = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self.parent_model_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self.canonical_body_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) length = len(self.body_names) buff.write(_struct_I.pack(length)) for val1 in self.body_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.Struct('<I%ss'%length).pack(length, val1)) length = len(self.geom_names) buff.write(_struct_I.pack(length)) for val1 in self.geom_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.Struct('<I%ss'%length).pack(length, val1)) length = len(self.joint_names) buff.write(_struct_I.pack(length)) for val1 in self.joint_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.Struct('<I%ss'%length).pack(length, val1)) length = len(self.child_model_names) buff.write(_struct_I.pack(length)) for val1 in self.child_model_names: length = len(val1) if python3 or type(val1) == unicode: val1 = val1.encode('utf-8') length = len(val1) buff.write(struct.Struct('<I%ss'%length).pack(length, val1)) _x = self buff.write(_get_struct_2B().pack(_x.is_static, _x.success)) _x = self.status_message length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ codecs.lookup_error("rosmsg").msg_type = self._type try: end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.parent_model_name = str[start:end].decode('utf-8', 'rosmsg') else: self.parent_model_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.canonical_body_name = str[start:end].decode('utf-8', 'rosmsg') else: self.canonical_body_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.body_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8', 'rosmsg') else: val1 = str[start:end] self.body_names.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.geom_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8', 'rosmsg') else: val1 = str[start:end] self.geom_names.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.joint_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8', 'rosmsg') else: val1 = str[start:end] self.joint_names.append(val1) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.child_model_names = [] for i in range(0, length): start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: val1 = str[start:end].decode('utf-8', 'rosmsg') else: val1 = str[start:end] self.child_model_names.append(val1) _x = self start = end end += 2 (_x.is_static, _x.success,) = _get_struct_2B().unpack(str[start:end]) self.is_static = bool(self.is_static) self.success = bool(self.success) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.status_message = str[start:end].decode('utf-8', 'rosmsg') else: self.status_message = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_2B = None def _get_struct_2B(): global _struct_2B if _struct_2B is None: _struct_2B = struct.Struct("<2B") return _struct_2B class GetModelProperties(object): _type = 'gazebo_msgs/GetModelProperties' _md5sum = '5717f7bd34ed990fa80e28b3015027a3' _request_class = GetModelPropertiesRequest _response_class = GetModelPropertiesResponse
34.915315
156
0.608628
775b1cc06b36f045711f7dc5db91e96e8e944bc7
2,869
py
Python
examples/plot_05_calculate_DNP_enhancements-i.py
DNPLab/DNPLab
78999a4e8320b6476a5aa55d9884c49d74149edc
[ "MIT" ]
4
2020-09-23T08:09:33.000Z
2022-02-10T22:02:11.000Z
examples/plot_05_calculate_DNP_enhancements-i.py
DNPLab/DNPLab
78999a4e8320b6476a5aa55d9884c49d74149edc
[ "MIT" ]
126
2020-09-16T22:25:59.000Z
2022-03-29T17:15:27.000Z
examples/plot_05_calculate_DNP_enhancements-i.py
DNPLab/DNPLab
78999a4e8320b6476a5aa55d9884c49d74149edc
[ "MIT" ]
5
2020-09-24T20:57:31.000Z
2021-08-19T01:52:16.000Z
# %% """ .. _05-calculate-dnp-enhancements-i: =================================== 05 - Calculate DNP Enhancements (I) =================================== This example demonstrates how to import DNP-NMR data from an hdf5 file, calculate the dnp enhancements and plot it. If you don't know how to create the workspace yet, please take a look at this tutorial first: :ref:`04-create-a-2d-dnpdata-object-from-individual-spectra`. """ # %% # Load NMR Spectra # ---------------- # In this example, we will calculate the enhancement for each DNP spectrum, and create a figure of the DNP enhancement versus the microwave power. We will import the 2D dnpdata object created in the previous sample. If you are not yet familiar with how to concatenate individual spectra into the 2D danpdata object, check out this tutorial: :ref:`04-create-a-2d-dnpdata-object-from-individual-spectra` # # First, load the 2D dnplab data object and assign it to a workspace (here ws). Once the data is loaded the workspace will have 2 dnpdata objects, the raw data ("raw") and the processed NMR spectra ("proc"). import dnplab as dnp file_name_path = "../data/h5/PowerBuildUp.h5" ws = dnp.dnpImport.load(file_name_path) # %% # Calculate DNP Enhancement Factors # --------------------------------- # DNPLab provides a convenient way to calculate the DNP enhancement factors by using the function ``calculate_enhancement``. Enhancement factors are calculated using integrals. Integrals can be calculated over the entire spectrum, multiple regions, or can be just a single point. However, without calculating integrals first, the ``calculate_enhancement`` function will return an error. dnp.dnpTools.integrate(ws) dnp.dnpNMR.calculate_enhancement(ws) # %% # In this case, the integral is calculated over the entire spectrum followed by calculating the enhancement factors. # %% # .. note:: # The default behavior of the ``calculate_enhancement`` function is to use the first spectrum as the Off signal. If this is the case, the argument ``off_spectrum`` is not necessary unless you want to specify the slice that contains the off spectrum. # The ``calculate_enhancement``` function can also calculate the enhancement for specific regions of the spectrum. THis behavior will be discussed in the next example (:ref:`07_align_nmr_spectra`). # %% # If needed, access your array of enhancements as: enhancements = ws["enhancements"].values # %% # Plot Enhancement Data # --------------------- # Finally, we can plot the enhancement data versus the microwave power. dnp.dnpResults.figure() dnp.dnpResults.plot(ws["enhancements"],linestyle = '-', marker = 'o', fillstyle = 'none') dnp.dnpResults.plt.xlabel("Microwave Power (dBm)") dnp.dnpResults.plt.ylabel("ODNP Enhancement Factor") dnp.dnpResults.plt.title("10 mM TEMPO in Toluene") dnp.dnpResults.plt.grid(True) dnp.dnpResults.show()
52.163636
401
0.729174
3264c0c1430bfec9e4577cfaea8dc1926b25630d
329
py
Python
custom/icds_reports/migrations/0070_aww_name_in_agg_ccs_view.py
dannyroberts/commcare-hq
4b0b8ecbe851e46307d3a0e635d6d5d6e31c3598
[ "BSD-3-Clause" ]
null
null
null
custom/icds_reports/migrations/0070_aww_name_in_agg_ccs_view.py
dannyroberts/commcare-hq
4b0b8ecbe851e46307d3a0e635d6d5d6e31c3598
[ "BSD-3-Clause" ]
null
null
null
custom/icds_reports/migrations/0070_aww_name_in_agg_ccs_view.py
dannyroberts/commcare-hq
4b0b8ecbe851e46307d3a0e635d6d5d6e31c3598
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-10-11 14:13 from __future__ import unicode_literals from __future__ import absolute_import from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('icds_reports', '0069_valid_visits'), ] operations = [ ]
19.352941
49
0.696049
6652514cfe20c3c629ee2aa5ffa5662a657be752
911
py
Python
librespot/core/ApResolver.py
JeffmeisterJ/librespot-python
0e0e1db65aa40262bd13479b97f81ae8c29ae049
[ "Apache-2.0" ]
1
2021-12-15T22:44:46.000Z
2021-12-15T22:44:46.000Z
librespot/core/ApResolver.py
JeffmeisterJ/librespot-python
0e0e1db65aa40262bd13479b97f81ae8c29ae049
[ "Apache-2.0" ]
12
2021-10-06T02:18:44.000Z
2022-02-07T02:16:47.000Z
librespot/core/ApResolver.py
JeffmeisterJ/librespot-python
0e0e1db65aa40262bd13479b97f81ae8c29ae049
[ "Apache-2.0" ]
null
null
null
import random import requests class ApResolver: base_url = "http://apresolve.spotify.com/" @staticmethod def request(service_type: str): response = requests.get("{}?type={}".format(ApResolver.base_url, service_type)) return response.json() @staticmethod def get_random_of(service_type: str): pool = ApResolver.request(service_type) urls = pool.get(service_type) if urls is None or len(urls) == 0: raise RuntimeError() return random.choice(urls) @staticmethod def get_random_dealer() -> str: return ApResolver.get_random_of("dealer") @staticmethod def get_random_spclient() -> str: return ApResolver.get_random_of("spclient") @staticmethod def get_random_accesspoint() -> str: return ApResolver.get_random_of("accesspoint")
26.794118
72
0.625686
e2d65d05940737de97567805b0a98f97c780edbc
340
py
Python
mindhome_alpha/erpnext/patches/v5_0/project_costing.py
Mindhome/field_service
3aea428815147903eb9af1d0c1b4b9fc7faed057
[ "MIT" ]
1
2021-04-29T14:55:29.000Z
2021-04-29T14:55:29.000Z
mindhome_alpha/erpnext/patches/v5_0/project_costing.py
Mindhome/field_service
3aea428815147903eb9af1d0c1b4b9fc7faed057
[ "MIT" ]
null
null
null
mindhome_alpha/erpnext/patches/v5_0/project_costing.py
Mindhome/field_service
3aea428815147903eb9af1d0c1b4b9fc7faed057
[ "MIT" ]
1
2021-04-29T14:39:01.000Z
2021-04-29T14:39:01.000Z
from __future__ import unicode_literals import frappe def execute(): frappe.reload_doctype("Project") frappe.db.sql("update `tabProject` set expected_start_date = project_start_date, \ expected_end_date = completion_date, actual_end_date = act_completion_date, \ estimated_costing = project_value, gross_margin = gross_margin_value")
42.5
83
0.817647
aa4de105e24cd4b14af02401e2969eb95c3c9664
8,870
py
Python
infer_detectron2_tridentnet_process.py
Ikomia-dev/infer_detectron2_tridentnet
7c167b12d6fcee9f5acc3dae57a4a05372ddff99
[ "Apache-2.0" ]
3
2021-02-16T08:36:43.000Z
2021-02-17T08:11:57.000Z
infer_detectron2_tridentnet_process.py
Ikomia-dev/Detectron2_TridentNet
7c167b12d6fcee9f5acc3dae57a4a05372ddff99
[ "Apache-2.0" ]
null
null
null
infer_detectron2_tridentnet_process.py
Ikomia-dev/Detectron2_TridentNet
7c167b12d6fcee9f5acc3dae57a4a05372ddff99
[ "Apache-2.0" ]
null
null
null
from infer_detectron2_tridentnet import update_path from ikomia import core, dataprocess import copy import os import random from detectron2.engine import DefaultPredictor from detectron2.data import MetadataCatalog from detectron2.config import get_cfg from infer_detectron2_tridentnet.TridentNet_git.tridentnet import add_tridentnet_config # -------------------- # - Class to handle the process parameters # - Inherits core.CProtocolTaskParam from Ikomia API # -------------------- class TridentnetParam(core.CWorkflowTaskParam): def __init__(self): core.CWorkflowTaskParam.__init__(self) self.cuda = True self.proba = 0.8 def setParamMap(self, param_map): self.cuda = int(param_map["cuda"]) self.proba = int(param_map["proba"]) def getParamMap(self): param_map = core.ParamMap() param_map["cuda"] = str(self.cuda) param_map["proba"] = str(self.proba) return param_map # -------------------- # - Class which implements the process # - Inherits core.CProtocolTask or derived from Ikomia API # -------------------- class Tridentnet(dataprocess.C2dImageTask): def __init__(self, name, param): dataprocess.C2dImageTask.__init__(self, name) if param is None: self.setParam(TridentnetParam()) else: self.setParam(copy.deepcopy(param)) # get and set config model self.folder = os.path.dirname(os.path.realpath(__file__)) self.MODEL_NAME_CONFIG = "tridentnet_fast_R_101_C4_3x" self.MODEL_NAME = "model_final_164568" self.cfg = get_cfg() add_tridentnet_config(self.cfg) self.cfg.merge_from_file(self.folder + "/TridentNet_git/configs/"+self.MODEL_NAME_CONFIG+".yaml") self.cfg.MODEL.WEIGHTS = self.folder + "/models/"+self.MODEL_NAME+".pkl" self.loaded = False self.deviceFrom = "" # add output self.addOutput(dataprocess.CGraphicsOutput()) def getProgressSteps(self, eltCount=1): # Function returning the number of progress steps for this process # This is handled by the main progress bar of Ikomia application return 2 def run(self): self.beginTaskRun() # we use seed to keep the same color for our masks + boxes + labels (same random each time) random.seed(30) # Get input : input = self.getInput(0) srcImage = input.getImage() # Get output : output_image = self.getOutput(0) output_graph = self.getOutput(1) output_graph.setNewLayer("TridentNet") # Get parameters : param = self.getParam() # predictor if not self.loaded: print("Chargement du modèle") if param.cuda == False: self.cfg.MODEL.DEVICE = "cpu" self.deviceFrom = "cpu" else: self.deviceFrom = "gpu" self.loaded = True self.predictor = DefaultPredictor(self.cfg) # reload model if CUDA check and load without CUDA elif self.deviceFrom == "cpu" and param.cuda == True: print("Chargement du modèle") self.cfg = get_cfg() add_tridentnet_config(self.cfg) self.cfg.merge_from_file(self.folder + "/TridentNet_git/configs/"+self.MODEL_NAME_CONFIG+".yaml") self.cfg.MODEL.WEIGHTS = self.folder + "/models/"+self.MODEL_NAME+".pkl" self.deviceFrom = "gpu" self.predictor = DefaultPredictor(self.cfg) # reload model if CUDA not check and load with CUDA elif self.deviceFrom == "gpu" and param.cuda == False: print("Chargement du modèle") self.cfg = get_cfg() self.cfg.MODEL.DEVICE = "cpu" add_tridentnet_config(self.cfg) self.cfg.merge_from_file(self.folder + "/TridentNet_git/configs/"+self.MODEL_NAME_CONFIG+".yaml") self.cfg.MODEL.WEIGHTS = self.folder + "/models/"+self.MODEL_NAME+".pkl" self.deviceFrom = "cpu" self.predictor = DefaultPredictor(self.cfg) outputs = self.predictor(srcImage) # get outputs instances output_image.setImage(srcImage) boxes = outputs["instances"].pred_boxes scores = outputs["instances"].scores classes = outputs["instances"].pred_classes # to numpy if param.cuda : boxes_np = boxes.tensor.cpu().numpy() scores_np = scores.cpu().numpy() classes_np = classes.cpu().numpy() else : boxes_np = boxes.tensor.numpy() scores_np = scores.numpy() classes_np = classes.numpy() self.emitStepProgress() # keep only the results with proba > threshold scores_np_tresh = list() for s in scores_np: if float(s) > param.proba: scores_np_tresh.append(s) self.emitStepProgress() if len(scores_np_tresh) > 0: # text label with score labels = None class_names = MetadataCatalog.get(self.cfg.DATASETS.TRAIN[0]).get("thing_classes") if classes is not None and class_names is not None and len(class_names) > 1: labels = [class_names[i] for i in classes] if scores_np_tresh is not None: if labels is None: labels = ["{:.0f}%".format(s * 100) for s in scores_np_tresh] else: labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores_np_tresh)] # Show Boxes + labels for i in range(len(scores_np_tresh)): color = [random.randint(0,255), random.randint(0,255), random.randint(0,255), 255] prop_text = core.GraphicsTextProperty() prop_text.color = color prop_text.font_size = 7 output_graph.addText(labels[i], float(boxes_np[i][0]), float(boxes_np[i][1]), prop_text) prop_rect = core.GraphicsRectProperty() prop_rect.pen_color = color prop_rect.category = labels[i] output_graph.addRectangle(float(boxes_np[i][0]), float(boxes_np[i][1]), float(boxes_np[i][2] - boxes_np[i][0]), float(boxes_np[i][3] - boxes_np[i][1]), prop_rect) # Step progress bar: self.emitStepProgress() # Call endTaskRun to finalize process self.endTaskRun() # -------------------- # - Factory class to build process object # - Inherits dataprocess.CProcessFactory from Ikomia API # -------------------- class TridentnetFactory(dataprocess.CTaskFactory): def __init__(self): dataprocess.CTaskFactory.__init__(self) # Set process information as string here self.info.name = "infer_detectron2_tridentnet" self.info.shortDescription = "TridentNet inference model of Detectron2 for object detection." self.info.description = "TridentNet inference model for object detection trained on COCO. " \ "Implementation from Detectron2 (Facebook Research). " \ "Trident Network (TridentNet) aims to generate scale-specific feature maps " \ "with a uniform representational power. We construct a parallel multi-branch " \ "architecture in which each branch shares the same transformation parameters " \ "but with different receptive fields. TridentNet-Fast is a fast approximation " \ "version of TridentNet that could achieve significant improvements without " \ "any additional parameters and computational cost." \ "This Ikomia plugin can make inference of pre-trained model " \ "with ResNet101 backbone + C4 head." self.info.authors = "Li, Yanghao and Chen, Yuntao and Wang, Naiyan and Zhang, Zhaoxiang" self.info.article = "Scale-Aware Trident Networks for Object Detection" self.info.journal = "IEEE International Conference on Computer Vision (ICCV)" self.info.year = 2019 self.info.license = "Apache-2.0 License" self.info.documentationLink = "https://detectron2.readthedocs.io/index.html" self.info.repo = "https://github.com/facebookresearch/detectron2/tree/master/projects/TridentNet" self.info.path = "Plugins/Python/Detectron2" self.info.iconPath = "icons/detectron2.png" self.info.version = "1.0.1" self.info.keywords = "object,facebook,detectron2,detection,multi,scale" def create(self, param=None): # Create process object return Tridentnet(self.info.name, param)
42.644231
178
0.608455
a03065bf397975ebb8fd54f2b817241f6c63d39d
28,823
py
Python
nova/tests/unit/network/test_api.py
bopopescu/nested_quota_final
7c3454883de9f5368fa943924540eebe157a319d
[ "Apache-2.0" ]
5
2017-06-23T07:37:39.000Z
2020-10-21T07:07:50.000Z
nova/tests/unit/network/test_api.py
bopopescu/nested_quota_final
7c3454883de9f5368fa943924540eebe157a319d
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/network/test_api.py
bopopescu/nested_quota_final
7c3454883de9f5368fa943924540eebe157a319d
[ "Apache-2.0" ]
4
2017-06-23T07:37:43.000Z
2020-12-28T09:57:22.000Z
# Copyright 2012 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for network API.""" import contextlib import itertools import uuid import mock from mox3 import mox from nova.compute import flavors from nova import context from nova import exception from nova import network from nova.network import api from nova.network import base_api from nova.network import floating_ips from nova.network import model as network_model from nova.network import rpcapi as network_rpcapi from nova import objects from nova.objects import fields from nova.openstack.common import policy as common_policy from nova import policy from nova import test from nova.tests.unit import fake_instance from nova.tests.unit.objects import test_fixed_ip from nova.tests.unit.objects import test_flavor from nova.tests.unit.objects import test_virtual_interface from nova import utils FAKE_UUID = 'a47ae74e-ab08-547f-9eee-ffd23fc46c16' class NetworkPolicyTestCase(test.TestCase): def setUp(self): super(NetworkPolicyTestCase, self).setUp() policy.reset() policy.init() self.context = context.get_admin_context() def tearDown(self): super(NetworkPolicyTestCase, self).tearDown() policy.reset() def test_check_policy(self): self.mox.StubOutWithMock(policy, 'enforce') target = { 'project_id': self.context.project_id, 'user_id': self.context.user_id, } policy.enforce(self.context, 'network:get_all', target) self.mox.ReplayAll() api.check_policy(self.context, 'get_all') def test_skip_policy(self): policy.reset() rules = {'network:get_all': common_policy.parse_rule('!')} policy.set_rules(common_policy.Rules(rules)) api = network.API() self.assertRaises(exception.PolicyNotAuthorized, api.get_all, self.context) api = network.API(skip_policy_check=True) api.get_all(self.context) class ApiTestCase(test.TestCase): def setUp(self): super(ApiTestCase, self).setUp() self.network_api = network.API() self.context = context.RequestContext('fake-user', 'fake-project') @mock.patch('nova.objects.NetworkList.get_all') def test_get_all(self, mock_get_all): mock_get_all.return_value = mock.sentinel.get_all self.assertEqual(mock.sentinel.get_all, self.network_api.get_all(self.context)) mock_get_all.assert_called_once_with(self.context, project_only=True) @mock.patch('nova.objects.NetworkList.get_all') def test_get_all_liberal(self, mock_get_all): self.flags(network_manager='nova.network.manager.FlatDHCPManaager') mock_get_all.return_value = mock.sentinel.get_all self.assertEqual(mock.sentinel.get_all, self.network_api.get_all(self.context)) mock_get_all.assert_called_once_with(self.context, project_only="allow_none") @mock.patch('nova.objects.NetworkList.get_all') def test_get_all_no_networks(self, mock_get_all): mock_get_all.side_effect = exception.NoNetworksFound self.assertEqual([], self.network_api.get_all(self.context)) mock_get_all.assert_called_once_with(self.context, project_only=True) @mock.patch('nova.objects.Network.get_by_uuid') def test_get(self, mock_get): mock_get.return_value = mock.sentinel.get_by_uuid with mock.patch.object(self.context, 'elevated') as elevated: elevated.return_value = mock.sentinel.elevated_context self.assertEqual(mock.sentinel.get_by_uuid, self.network_api.get(self.context, 'fake-uuid')) mock_get.assert_called_once_with(mock.sentinel.elevated_context, 'fake-uuid') @mock.patch('nova.objects.Network.get_by_id') @mock.patch('nova.db.virtual_interface_get_by_instance') def test_get_vifs_by_instance(self, mock_get_by_instance, mock_get_by_id): mock_get_by_instance.return_value = [ dict(test_virtual_interface.fake_vif, network_id=123)] mock_get_by_id.return_value = objects.Network() mock_get_by_id.return_value.uuid = mock.sentinel.network_uuid instance = objects.Instance(uuid=mock.sentinel.inst_uuid) vifs = self.network_api.get_vifs_by_instance(self.context, instance) self.assertEqual(1, len(vifs)) self.assertEqual(123, vifs[0].network_id) self.assertEqual(str(mock.sentinel.network_uuid), vifs[0].net_uuid) mock_get_by_instance.assert_called_once_with( self.context, str(mock.sentinel.inst_uuid), use_slave=False) mock_get_by_id.assert_called_once_with(self.context, 123, project_only='allow_none') @mock.patch('nova.objects.Network.get_by_id') @mock.patch('nova.db.virtual_interface_get_by_address') def test_get_vif_by_mac_address(self, mock_get_by_address, mock_get_by_id): mock_get_by_address.return_value = dict( test_virtual_interface.fake_vif, network_id=123) mock_get_by_id.return_value = objects.Network( uuid=mock.sentinel.network_uuid) vif = self.network_api.get_vif_by_mac_address(self.context, mock.sentinel.mac) self.assertEqual(123, vif.network_id) self.assertEqual(str(mock.sentinel.network_uuid), vif.net_uuid) mock_get_by_address.assert_called_once_with(self.context, mock.sentinel.mac) mock_get_by_id.assert_called_once_with(self.context, 123, project_only='allow_none') def test_allocate_for_instance_handles_macs_passed(self): # If a macs argument is supplied to the 'nova-network' API, it is just # ignored. This test checks that the call down to the rpcapi layer # doesn't pass macs down: nova-network doesn't support hypervisor # mac address limits (today anyhow). macs = set(['ab:cd:ef:01:23:34']) self.mox.StubOutWithMock( self.network_api.network_rpcapi, "allocate_for_instance") kwargs = dict(zip(['host', 'instance_id', 'project_id', 'requested_networks', 'rxtx_factor', 'vpn', 'macs', 'dhcp_options'], itertools.repeat(mox.IgnoreArg()))) self.network_api.network_rpcapi.allocate_for_instance( mox.IgnoreArg(), **kwargs).AndReturn([]) self.mox.ReplayAll() flavor = flavors.get_default_flavor() flavor['rxtx_factor'] = 0 sys_meta = flavors.save_flavor_info({}, flavor) instance = dict(id=1, uuid='uuid', project_id='project_id', host='host', system_metadata=utils.dict_to_metadata(sys_meta)) instance = fake_instance.fake_instance_obj( self.context, expected_attrs=['system_metadata'], **instance) self.network_api.allocate_for_instance( self.context, instance, 'vpn', 'requested_networks', macs=macs) def _do_test_associate_floating_ip(self, orig_instance_uuid): """Test post-association logic.""" new_instance = {'uuid': 'new-uuid'} def fake_associate(*args, **kwargs): return orig_instance_uuid self.stubs.Set(floating_ips.FloatingIP, 'associate_floating_ip', fake_associate) def fake_instance_get_by_uuid(context, instance_uuid, columns_to_join=None, use_slave=None): return fake_instance.fake_db_instance(uuid=instance_uuid) self.stubs.Set(self.network_api.db, 'instance_get_by_uuid', fake_instance_get_by_uuid) def fake_get_nw_info(ctxt, instance): class FakeNWInfo(object): def json(self): pass return FakeNWInfo() self.stubs.Set(self.network_api, '_get_instance_nw_info', fake_get_nw_info) if orig_instance_uuid: expected_updated_instances = [new_instance['uuid'], orig_instance_uuid] else: expected_updated_instances = [new_instance['uuid']] def fake_instance_info_cache_update(context, instance_uuid, cache): self.assertEqual(instance_uuid, expected_updated_instances.pop()) self.stubs.Set(self.network_api.db, 'instance_info_cache_update', fake_instance_info_cache_update) def fake_update_instance_cache_with_nw_info(api, context, instance, nw_info=None, update_cells=True): return self.stubs.Set(base_api, "update_instance_cache_with_nw_info", fake_update_instance_cache_with_nw_info) self.network_api.associate_floating_ip(self.context, new_instance, '172.24.4.225', '10.0.0.2') def test_associate_preassociated_floating_ip(self): self._do_test_associate_floating_ip('orig-uuid') def test_associate_unassociated_floating_ip(self): self._do_test_associate_floating_ip(None) def test_get_floating_ip_invalid_id(self): self.assertRaises(exception.InvalidID, self.network_api.get_floating_ip, self.context, '123zzz') @mock.patch('nova.objects.FloatingIP.get_by_id') def test_get_floating_ip(self, mock_get): floating = mock.sentinel.floating mock_get.return_value = floating self.assertEqual(floating, self.network_api.get_floating_ip(self.context, 123)) mock_get.assert_called_once_with(self.context, 123) @mock.patch('nova.objects.FloatingIP.get_pool_names') def test_get_floating_ip_pools(self, mock_get): pools = ['foo', 'bar'] mock_get.return_value = pools self.assertEqual(pools, self.network_api.get_floating_ip_pools( self.context)) @mock.patch('nova.objects.FloatingIP.get_by_address') def test_get_floating_ip_by_address(self, mock_get): floating = mock.sentinel.floating mock_get.return_value = floating self.assertEqual(floating, self.network_api.get_floating_ip_by_address( self.context, mock.sentinel.address)) mock_get.assert_called_once_with(self.context, mock.sentinel.address) @mock.patch('nova.objects.FloatingIPList.get_by_project') def test_get_floating_ips_by_project(self, mock_get): floatings = mock.sentinel.floating_ips mock_get.return_value = floatings self.assertEqual(floatings, self.network_api.get_floating_ips_by_project( self.context)) mock_get.assert_called_once_with(self.context, self.context.project_id) def _stub_migrate_instance_calls(self, method, multi_host, info): fake_flavor = flavors.get_default_flavor() fake_flavor['rxtx_factor'] = 1.21 sys_meta = flavors.save_flavor_info({}, fake_flavor) fake_instance = objects.Instance( uuid=uuid.uuid4().hex, project_id='fake_project_id', instance_type_id=fake_flavor['id'], system_metadata=sys_meta) fake_migration = {'source_compute': 'fake_compute_source', 'dest_compute': 'fake_compute_dest'} def fake_mig_inst_method(*args, **kwargs): info['kwargs'] = kwargs def fake_get_multi_addresses(*args, **kwargs): return multi_host, ['fake_float1', 'fake_float2'] self.stubs.Set(network_rpcapi.NetworkAPI, method, fake_mig_inst_method) self.stubs.Set(self.network_api, '_get_multi_addresses', fake_get_multi_addresses) expected = {'instance_uuid': fake_instance.uuid, 'source_compute': 'fake_compute_source', 'dest_compute': 'fake_compute_dest', 'rxtx_factor': 1.21, 'project_id': 'fake_project_id', 'floating_addresses': None} if multi_host: expected['floating_addresses'] = ['fake_float1', 'fake_float2'] return fake_instance, fake_migration, expected def test_migrate_instance_start_with_multhost(self): info = {'kwargs': {}} arg1, arg2, expected = self._stub_migrate_instance_calls( 'migrate_instance_start', True, info) expected['host'] = 'fake_compute_source' self.network_api.migrate_instance_start(self.context, arg1, arg2) self.assertEqual(info['kwargs'], expected) def test_migrate_instance_start_without_multhost(self): info = {'kwargs': {}} arg1, arg2, expected = self._stub_migrate_instance_calls( 'migrate_instance_start', False, info) self.network_api.migrate_instance_start(self.context, arg1, arg2) self.assertEqual(info['kwargs'], expected) def test_migrate_instance_finish_with_multhost(self): info = {'kwargs': {}} arg1, arg2, expected = self._stub_migrate_instance_calls( 'migrate_instance_finish', True, info) expected['host'] = 'fake_compute_dest' self.network_api.migrate_instance_finish(self.context, arg1, arg2) self.assertEqual(info['kwargs'], expected) def test_migrate_instance_finish_without_multhost(self): info = {'kwargs': {}} arg1, arg2, expected = self._stub_migrate_instance_calls( 'migrate_instance_finish', False, info) self.network_api.migrate_instance_finish(self.context, arg1, arg2) self.assertEqual(info['kwargs'], expected) def test_is_multi_host_instance_has_no_fixed_ip(self): def fake_fixed_ip_get_by_instance(ctxt, uuid): raise exception.FixedIpNotFoundForInstance(instance_uuid=uuid) self.stubs.Set(self.network_api.db, 'fixed_ip_get_by_instance', fake_fixed_ip_get_by_instance) instance = {'uuid': FAKE_UUID} result, floats = self.network_api._get_multi_addresses(self.context, instance) self.assertFalse(result) @mock.patch('nova.objects.fixed_ip.FixedIPList.get_by_instance_uuid') def _test_is_multi_host_network_has_no_project_id(self, is_multi_host, fip_get): network = objects.Network( id=123, project_id=None, multi_host=is_multi_host) fip_get.return_value = [ objects.FixedIP(instance_uuid=FAKE_UUID, network=network, floating_ips=objects.FloatingIPList())] instance = {'uuid': FAKE_UUID} result, floats = self.network_api._get_multi_addresses(self.context, instance) self.assertEqual(is_multi_host, result) def test_is_multi_host_network_has_no_project_id_multi(self): self._test_is_multi_host_network_has_no_project_id(True) def test_is_multi_host_network_has_no_project_id_non_multi(self): self._test_is_multi_host_network_has_no_project_id(False) @mock.patch('nova.objects.fixed_ip.FixedIPList.get_by_instance_uuid') def _test_is_multi_host_network_has_project_id(self, is_multi_host, fip_get): network = objects.Network( id=123, project_id=self.context.project_id, multi_host=is_multi_host) fip_get.return_value = [ objects.FixedIP(instance_uuid=FAKE_UUID, network=network, floating_ips=objects.FloatingIPList())] instance = {'uuid': FAKE_UUID} result, floats = self.network_api._get_multi_addresses(self.context, instance) self.assertEqual(is_multi_host, result) def test_is_multi_host_network_has_project_id_multi(self): self._test_is_multi_host_network_has_project_id(True) def test_is_multi_host_network_has_project_id_non_multi(self): self._test_is_multi_host_network_has_project_id(False) @mock.patch('nova.objects.Network.get_by_uuid') @mock.patch('nova.objects.Network.disassociate') def test_network_disassociate_project(self, mock_disassociate, mock_get): net_obj = objects.Network(context=self.context, id=1) mock_get.return_value = net_obj self.network_api.associate(self.context, FAKE_UUID, project=None) mock_disassociate.assert_called_once_with(self.context, net_obj.id, host=False, project=True) @mock.patch('nova.objects.Network.get_by_uuid') @mock.patch('nova.objects.Network.disassociate') def test_network_disassociate_host(self, mock_disassociate, mock_get): net_obj = objects.Network(context=self.context, id=1) mock_get.return_value = net_obj self.network_api.associate(self.context, FAKE_UUID, host=None) mock_disassociate.assert_called_once_with(self.context, net_obj.id, host=True, project=False) @mock.patch('nova.objects.Network.get_by_uuid') @mock.patch('nova.objects.Network.associate') def test_network_associate_project(self, mock_associate, mock_get): net_obj = objects.Network(context=self.context, id=1) mock_get.return_value = net_obj project = mock.sentinel.project self.network_api.associate(self.context, FAKE_UUID, project=project) mock_associate.assert_called_once_with(self.context, project, network_id=net_obj.id, force=True) @mock.patch('nova.objects.Network.get_by_uuid') @mock.patch('nova.objects.Network.save') def test_network_associate_host(self, mock_save, mock_get): net_obj = objects.Network(context=self.context, id=1) mock_get.return_value = net_obj host = str(mock.sentinel.host) self.network_api.associate(self.context, FAKE_UUID, host=host) mock_save.assert_called_once_with() self.assertEqual(host, net_obj.host) @mock.patch('nova.objects.Network.get_by_uuid') @mock.patch('nova.objects.Network.disassociate') def test_network_disassociate(self, mock_disassociate, mock_get): mock_get.return_value = objects.Network(context=self.context, id=123) self.network_api.disassociate(self.context, FAKE_UUID) mock_disassociate.assert_called_once_with(self.context, 123, project=True, host=True) def _test_refresh_cache(self, method, *args, **kwargs): # This test verifies that no call to get_instance_nw_info() is made # from the @refresh_cache decorator for the tested method. with contextlib.nested( mock.patch.object(self.network_api.network_rpcapi, method), mock.patch.object(self.network_api.network_rpcapi, 'get_instance_nw_info'), mock.patch.object(network_model.NetworkInfo, 'hydrate'), ) as ( method_mock, nwinfo_mock, hydrate_mock ): nw_info = network_model.NetworkInfo([]) method_mock.return_value = nw_info hydrate_mock.return_value = nw_info getattr(self.network_api, method)(*args, **kwargs) hydrate_mock.assert_called_once_with(nw_info) self.assertFalse(nwinfo_mock.called) def test_allocate_for_instance_refresh_cache(self): sys_meta = flavors.save_flavor_info({}, test_flavor.fake_flavor) instance = fake_instance.fake_instance_obj( self.context, expected_attrs=['system_metadata'], system_metadata=sys_meta) vpn = 'fake-vpn' requested_networks = 'fake-networks' self._test_refresh_cache('allocate_for_instance', self.context, instance, vpn, requested_networks) def test_add_fixed_ip_to_instance_refresh_cache(self): sys_meta = flavors.save_flavor_info({}, test_flavor.fake_flavor) instance = fake_instance.fake_instance_obj( self.context, expected_attrs=['system_metadata'], system_metadata=sys_meta) network_id = 'fake-network-id' self._test_refresh_cache('add_fixed_ip_to_instance', self.context, instance, network_id) def test_remove_fixed_ip_from_instance_refresh_cache(self): sys_meta = flavors.save_flavor_info({}, test_flavor.fake_flavor) instance = fake_instance.fake_instance_obj( self.context, expected_attrs=['system_metadata'], system_metadata=sys_meta) address = 'fake-address' self._test_refresh_cache('remove_fixed_ip_from_instance', self.context, instance, address) @mock.patch('nova.db.fixed_ip_get_by_address') def test_get_fixed_ip_by_address(self, fip_get): fip_get.return_value = test_fixed_ip.fake_fixed_ip fip = self.network_api.get_fixed_ip_by_address(self.context, 'fake-addr') self.assertIsInstance(fip, objects.FixedIP) @mock.patch('nova.objects.FixedIP.get_by_id') def test_get_fixed_ip(self, mock_get_by_id): mock_get_by_id.return_value = mock.sentinel.fixed_ip self.assertEqual(mock.sentinel.fixed_ip, self.network_api.get_fixed_ip(self.context, mock.sentinel.id)) mock_get_by_id.assert_called_once_with(self.context, mock.sentinel.id) @mock.patch('nova.objects.FixedIP.get_by_floating_address') def test_get_instance_by_floating_address(self, mock_get_by_floating): mock_get_by_floating.return_value = objects.FixedIP( instance_uuid = mock.sentinel.instance_uuid) self.assertEqual(str(mock.sentinel.instance_uuid), self.network_api.get_instance_id_by_floating_address( self.context, mock.sentinel.floating)) mock_get_by_floating.assert_called_once_with(self.context, mock.sentinel.floating) @mock.patch('nova.objects.FixedIP.get_by_floating_address') def test_get_instance_by_floating_address_none(self, mock_get_by_floating): mock_get_by_floating.return_value = None self.assertIsNone( self.network_api.get_instance_id_by_floating_address( self.context, mock.sentinel.floating)) mock_get_by_floating.assert_called_once_with(self.context, mock.sentinel.floating) @mock.patch('nova.network.api.API.migrate_instance_start') def test_cleanup_instance_network_on_host(self, fake_migrate_start): instance = fake_instance.fake_instance_obj(self.context) self.network_api.cleanup_instance_network_on_host( self.context, instance, 'fake_compute_source') fake_migrate_start.assert_called_once_with( self.context, instance, {'source_compute': 'fake_compute_source', 'dest_compute': None}) @mock.patch('nova.network.api.API.migrate_instance_finish') def test_setup_instance_network_on_host(self, fake_migrate_finish): instance = fake_instance.fake_instance_obj(self.context) self.network_api.setup_instance_network_on_host( self.context, instance, 'fake_compute_source') fake_migrate_finish.assert_called_once_with( self.context, instance, {'source_compute': None, 'dest_compute': 'fake_compute_source'}) @mock.patch('nova.network.api.API') @mock.patch('nova.db.instance_info_cache_update') class TestUpdateInstanceCache(test.TestCase): def setUp(self): super(TestUpdateInstanceCache, self).setUp() self.context = context.get_admin_context() self.instance = {'uuid': FAKE_UUID} vifs = [network_model.VIF(id='super_vif')] self.nw_info = network_model.NetworkInfo(vifs) self.nw_json = fields.NetworkModel.to_primitive(self, 'network_info', self.nw_info) def test_update_nw_info_none(self, db_mock, api_mock): api_mock._get_instance_nw_info.return_value = self.nw_info base_api.update_instance_cache_with_nw_info(api_mock, self.context, self.instance, None) api_mock._get_instance_nw_info.assert_called_once_with(self.context, self.instance) db_mock.assert_called_once_with(self.context, self.instance['uuid'], {'network_info': self.nw_json}) def test_update_nw_info_one_network(self, db_mock, api_mock): api_mock._get_instance_nw_info.return_value = self.nw_info base_api.update_instance_cache_with_nw_info(api_mock, self.context, self.instance, self.nw_info) self.assertFalse(api_mock._get_instance_nw_info.called) db_mock.assert_called_once_with(self.context, self.instance['uuid'], {'network_info': self.nw_json}) def test_update_nw_info_empty_list(self, db_mock, api_mock): api_mock._get_instance_nw_info.return_value = self.nw_info base_api.update_instance_cache_with_nw_info(api_mock, self.context, self.instance, network_model.NetworkInfo([])) self.assertFalse(api_mock._get_instance_nw_info.called) db_mock.assert_called_once_with(self.context, self.instance['uuid'], {'network_info': '[]'}) def test_decorator_return_object(self, db_mock, api_mock): @base_api.refresh_cache def func(self, context, instance): return network_model.NetworkInfo([]) func(api_mock, self.context, self.instance) self.assertFalse(api_mock._get_instance_nw_info.called) db_mock.assert_called_once_with(self.context, self.instance['uuid'], {'network_info': '[]'}) def test_decorator_return_none(self, db_mock, api_mock): @base_api.refresh_cache def func(self, context, instance): pass api_mock._get_instance_nw_info.return_value = self.nw_info func(api_mock, self.context, self.instance) api_mock._get_instance_nw_info.assert_called_once_with(self.context, self.instance) db_mock.assert_called_once_with(self.context, self.instance['uuid'], {'network_info': self.nw_json}) class NetworkHooksTestCase(test.BaseHookTestCase): def test_instance_network_info_hook(self): info_func = base_api.update_instance_cache_with_nw_info self.assert_has_hook('instance_network_info', info_func)
47.328407
79
0.641016
2b2bb0c71a0556da039769c2d26d23492c4e3b03
566
py
Python
shortner/views.py
omkumar01/Url-Shortner
e86ba3ed1bc5799ef0b38e567fb972209aa05e7c
[ "MIT" ]
null
null
null
shortner/views.py
omkumar01/Url-Shortner
e86ba3ed1bc5799ef0b38e567fb972209aa05e7c
[ "MIT" ]
null
null
null
shortner/views.py
omkumar01/Url-Shortner
e86ba3ed1bc5799ef0b38e567fb972209aa05e7c
[ "MIT" ]
3
2021-11-28T05:10:36.000Z
2021-11-28T05:11:17.000Z
from django.shortcuts import render, redirect from django.http import HttpResponse import uuid from .models import InputUrl # Create your views here. def index(request): return render(request, "index.html") def create(request): if request.method == "POST": link = request.POST['link'] uid = str(uuid.uuid4())[:5] new_url = InputUrl(link=link, uuid=uid) new_url.save() return HttpResponse(uid) def go(request, pk): url_details = InputUrl.objects.get(uuid=pk) return redirect(f"http://{url_details.link}")
23.583333
49
0.674912
87b30017b199ecbcbadbc20bd6c9da9f1304879f
1,397
py
Python
Courses/Udacity/CS101/Lesson_9_Problem_Set/04-Producing_a_WebCorpus/supplied/studentMain.py
leparrav/Playground
dcb90a2dd2bc1867511cfe621eb21248a60e357f
[ "Unlicense" ]
1
2019-02-13T12:02:26.000Z
2019-02-13T12:02:26.000Z
Courses/Udacity/CS101/Lesson_9_Problem_Set/04-Producing_a_WebCorpus/supplied/studentMain.py
leparrav/Playground
dcb90a2dd2bc1867511cfe621eb21248a60e357f
[ "Unlicense" ]
1
2018-08-13T15:58:33.000Z
2018-08-13T15:58:33.000Z
Courses/Udacity/CS101/Lesson_9_Problem_Set/04-Producing_a_WebCorpus/supplied/studentMain.py
leparrav/Playground
dcb90a2dd2bc1867511cfe621eb21248a60e357f
[ "Unlicense" ]
2
2017-08-10T20:01:29.000Z
2021-07-01T08:39:13.000Z
### Modify the crawler code to return a WebCorpus object. ### You will need to add an import and modify the crawl_web function. ### After your changes, the provided test code below should work. ### You should do your modifications to the crawler.py file from crawler import crawl_web, compute_ranks from search import lucky_search, ordered_search from webcorpus import WebCorpus def test_engine(): print "Testing..." kathleen = 'http://udacity.com/cs101x/urank/kathleen.html' nickel = 'http://udacity.com/cs101x/urank/nickel.html' arsenic = 'http://udacity.com/cs101x/urank/arsenic.html' hummus = 'http://udacity.com/cs101x/urank/hummus.html' indexurl = 'http://udacity.com/cs101x/urank/index.html' wcorpus = crawl_web('http://udacity.com/cs101x/urank/index.html') assert isinstance(wcorpus, WebCorpus) ranks = compute_ranks(wcorpus.graph) assert lucky_search(wcorpus.index, ranks, 'Hummus') == kathleen assert ordered_search(wcorpus.index, ranks, 'Hummus') == [kathleen, nickel, arsenic, hummus, indexurl] assert lucky_search(wcorpus.index, ranks, 'the') == nickel assert ordered_search(wcorpus.index, ranks, 'the') == [nickel, arsenic, hummus, indexurl] assert lucky_search(wcorpus.index, ranks, 'babaganoush') == None assert ordered_search(wcorpus.index, ranks, 'babaganoush') == None print "Finished tests." test_engine()
46.566667
107
0.730852
c1e6a4bffa2a1e0d2bfd14d4ef66b09028c450ea
1,097
py
Python
greeting/servidor.py
javalisson/Sockets
90068c0b5a4b2f21ca789177c3c445c671732a86
[ "MIT" ]
2
2017-04-26T11:17:56.000Z
2017-12-05T01:55:20.000Z
greeting/servidor.py
javalisson/Sockets
90068c0b5a4b2f21ca789177c3c445c671732a86
[ "MIT" ]
2
2017-02-22T12:35:13.000Z
2017-03-29T12:44:22.000Z
greeting/servidor.py
javalisson/Sockets
90068c0b5a4b2f21ca789177c3c445c671732a86
[ "MIT" ]
24
2017-02-22T12:26:04.000Z
2020-10-13T05:19:53.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # adaptado de https://wiki.python.org/moin/TcpCommunication import socket TCP_IP = '127.0.0.1' TCP_PORT = 5005 BUFFER_SIZE = 20 # Normally 1024, but we want fast response resposta = None print ("[SERVIDOR] Iniciando") print ("[SERVIDOR] Abrindo a porta " + str(TCP_PORT) + " e ouvindo") s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((TCP_IP, TCP_PORT)) s.listen(1) print ("[SERVIDOR] Aguardando conexao") conn, addr = s.accept() print ('[SERVIDOR] Conexao com o cliente realizada. Endereco da conexao:', addr) while 1: print ("[SERVIDOR] Aguardando dados do cliente") nome = conn.recv(BUFFER_SIZE) if not nome: break print ("[SERVIDOR] Dados recebidos do cliente com sucesso: \"" + nome.decode('utf-8') + "\"") resposta = "Ola, " + nome.decode('utf-8') print ("[SERVIDOR] Enviando resposta para o cliente") conn.send(resposta.encode()) # echo print ("[SERVIDOR] Resposta enviada: \"" + resposta + "\"") print ("[SERVIDOR] Fechando a porta " + str(TCP_PORT)) conn.close() print ("[SERVIDOR] Fim")
31.342857
97
0.675479
d231f43d7c614b5f512612e4f681b650f69190ce
371
py
Python
tests/libtest/test_pod_exec.py
phlogistonjohn/ocs-ci
38223e18ca2e1db7a24cc9bdb76e38d2ba4e6f12
[ "MIT" ]
null
null
null
tests/libtest/test_pod_exec.py
phlogistonjohn/ocs-ci
38223e18ca2e1db7a24cc9bdb76e38d2ba4e6f12
[ "MIT" ]
null
null
null
tests/libtest/test_pod_exec.py
phlogistonjohn/ocs-ci
38223e18ca2e1db7a24cc9bdb76e38d2ba4e6f12
[ "MIT" ]
1
2020-07-28T07:32:09.000Z
2020-07-28T07:32:09.000Z
import os os.sys.path.append(os.path.dirname(os.getcwd())) from ocs_ci.framework.testlib import libtest from ocs_ci.ocs.resources import pod @libtest def test_main(): tools_pod = pod.get_ceph_tools_pod() cmd = "ceph osd df" out, err, ret = tools_pod.exec_ceph_cmd(ceph_cmd=cmd) if out: print(out) if err: print(err) print(ret)
19.526316
57
0.67655
4fb9731576c55f30fdb45e190ee2a3a79a2b52c6
11,452
py
Python
jobs/transforms/skill_validation_test.py
sajalasati/oppia
b0c6ffb917663fb6482022d0f607377f7e1ee3d0
[ "Apache-2.0" ]
1
2021-08-30T06:53:15.000Z
2021-08-30T06:53:15.000Z
jobs/transforms/skill_validation_test.py
abhyareddy/oppia
4c07dd16e5503f6ee70f1774e9754b6db266aff4
[ "Apache-2.0" ]
11
2021-03-03T07:21:27.000Z
2022-03-12T01:03:44.000Z
jobs/transforms/skill_validation_test.py
sajalasati/oppia
b0c6ffb917663fb6482022d0f607377f7e1ee3d0
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2021 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for jobs.transforms.skill_validation.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules from core.platform import models from jobs import job_test_utils from jobs.transforms import skill_validation from jobs.types import base_validation_errors import apache_beam as beam MYPY = False if MYPY: # pragma: no cover from mypy_imports import base_models from mypy_imports import skill_models (base_models, skill_models) = models.Registry.import_models( [models.NAMES.base_model, models.NAMES.skill]) class ValidateSkillSnapshotMetadataModelTests(job_test_utils.PipelinedTestBase): def test_validate_change_domain_implemented(self) -> None: valid_commit_cmd_model = skill_models.SkillSnapshotMetadataModel( id='123', created_on=self.YEAR_AGO, last_updated=self.NOW, committer_id='committer-id', commit_type='delete', commit_cmds=[{ 'cmd': base_models.VersionedModel.CMD_DELETE_COMMIT}]) output = ( self.pipeline | beam.Create([valid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillSnapshotMetadataModel()) ) self.assert_pcoll_equal(output, []) def test_skill_change_object_with_missing_cmd(self) -> None: invalid_commit_cmd_model = skill_models.SkillSnapshotMetadataModel( id='123', created_on=self.YEAR_AGO, last_updated=self.NOW, committer_id='committer-id', commit_type='delete', commit_cmds=[{'invalid': 'data'}]) output = ( self.pipeline | beam.Create([invalid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillSnapshotMetadataModel()) ) self.assert_pcoll_equal( output, [ base_validation_errors.CommitCmdsValidateError( invalid_commit_cmd_model, {'invalid': 'data'}, 'Missing cmd key in change dict') ]) def test_skill_change_object_with_invalid_cmd(self) -> None: invalid_commit_cmd_model = skill_models.SkillSnapshotMetadataModel( id='123', created_on=self.YEAR_AGO, last_updated=self.NOW, committer_id='committer-id', commit_type='delete', commit_cmds=[{'cmd': 'invalid'}]) output = ( self.pipeline | beam.Create([invalid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillSnapshotMetadataModel()) ) self.assert_pcoll_equal( output, [ base_validation_errors.CommitCmdsValidateError( invalid_commit_cmd_model, {'cmd': 'invalid'}, 'Command invalid is not allowed') ]) def test_skill_change_object_with_missing_attribute_in_cmd(self) -> None: commit_dict = { 'cmd': 'update_skill_property', 'property_name': 'name', } invalid_commit_cmd_model = skill_models.SkillSnapshotMetadataModel( id='123', created_on=self.YEAR_AGO, last_updated=self.NOW, committer_id='committer-id', commit_type='edit', commit_cmds=[commit_dict]) output = ( self.pipeline | beam.Create([invalid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillSnapshotMetadataModel()) ) self.assert_pcoll_equal( output, [ base_validation_errors.CommitCmdsValidateError( invalid_commit_cmd_model, commit_dict, 'The following required attributes are missing: ' 'new_value, old_value') ]) def test_skill_change_object_with_extra_attribute_in_cmd(self) -> None: commit_dict = { 'cmd': 'add_skill_misconception', # Key new_misconception_dict stores a string because dict # keeps on rearranging themselves so tests are not passing. 'new_misconception_dict': '{u\'id\': 0, u\'notes\': ' 'u\'<p>notes</p>\', u\'feedback\': ' 'u\'<p>default_feedback</p>\', ' 'u\'name\': u\'name\'}', 'invalid': 'invalid' } invalid_commit_cmd_model = skill_models.SkillSnapshotMetadataModel( id='123', created_on=self.YEAR_AGO, last_updated=self.NOW, committer_id='committer-id', commit_type='create', commit_cmds=[commit_dict] ) output = ( self.pipeline | beam.Create([invalid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillSnapshotMetadataModel()) ) self.assert_pcoll_equal( output, [ base_validation_errors.CommitCmdsValidateError( invalid_commit_cmd_model, commit_dict, 'The following extra attributes are present: invalid') ]) def test_skill_change_object_with_invalid_skill_property(self) -> None: commit_dict = { 'cmd': 'update_skill_property', 'property_name': 'invalid', 'old_value': 'old_value', 'new_value': 'new_value', } invalid_commit_cmd_model = skill_models.SkillSnapshotMetadataModel( id='123', created_on=self.YEAR_AGO, last_updated=self.NOW, committer_id='committer-id', commit_type='edit', commit_cmds=[commit_dict]) output = ( self.pipeline | beam.Create([invalid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillSnapshotMetadataModel()) ) self.assert_pcoll_equal( output, [ base_validation_errors.CommitCmdsValidateError( invalid_commit_cmd_model, commit_dict, 'Value for property_name in cmd update_skill_property: ' 'invalid is not allowed') ]) def test_skill_change_object_with_invalid_skill_misconceptions( self ) -> None: commit_dict = { 'cmd': 'update_skill_misconceptions_property', 'misconception_id': 'id', 'property_name': 'invalid', 'old_value': 'old_value', 'new_value': 'new_value', } invalid_commit_cmd_model = skill_models.SkillSnapshotMetadataModel( id='123', created_on=self.YEAR_AGO, last_updated=self.NOW, committer_id='committer-id', commit_type='create', commit_cmds_user_ids=[ 'commit_cmds_user_1_id', 'commit_cmds_user_2_id'], content_user_ids=['content_user_1_id', 'content_user_2_id'], commit_cmds=[commit_dict]) output = ( self.pipeline | beam.Create([invalid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillSnapshotMetadataModel()) ) self.assert_pcoll_equal( output, [ base_validation_errors.CommitCmdsValidateError( invalid_commit_cmd_model, commit_dict, 'Value for property_name in cmd ' 'update_skill_misconceptions_property: invalid is not ' 'allowed') ]) def test_skill_change_object_with_invalid_skill_contents_property( self ) -> None: commit_dict = { 'cmd': 'update_skill_contents_property', 'property_name': 'invalid', 'old_value': 'old_value', 'new_value': 'new_value', } invalid_commit_cmd_model = skill_models.SkillSnapshotMetadataModel( id='123', created_on=self.YEAR_AGO, last_updated=self.NOW, committer_id='committer-id', commit_type='create', commit_cmds_user_ids=[ 'commit_cmds_user_1_id', 'commit_cmds_user_2_id'], content_user_ids=['content_user_1_id', 'content_user_2_id'], commit_cmds=[commit_dict]) output = ( self.pipeline | beam.Create([invalid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillSnapshotMetadataModel()) ) self.assert_pcoll_equal( output, [ base_validation_errors.CommitCmdsValidateError( invalid_commit_cmd_model, commit_dict, 'Value for property_name in cmd ' 'update_skill_contents_property: invalid is not allowed') ]) class ValidateSkillCommitLogEntryModelTests(job_test_utils.PipelinedTestBase): def test_validate_skill_model(self) -> None: valid_commit_cmd_model = skill_models.SkillCommitLogEntryModel( id='skill_id123', created_on=self.YEAR_AGO, last_updated=self.NOW, skill_id='skill-id', user_id='user-id', commit_type='test-type', post_commit_status='private', commit_cmds=[{'cmd': 'create_new'}]) output = ( self.pipeline | beam.Create([valid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillCommitLogEntryModel()) ) self.assert_pcoll_equal(output, []) def test_raises_commit_cmd_none_error(self) -> None: invalid_commit_cmd_model = skill_models.SkillCommitLogEntryModel( id='model_id123', created_on=self.YEAR_AGO, last_updated=self.NOW, skill_id='skill-id', user_id='user-id', commit_type='test-type', post_commit_status='private', commit_cmds=[{'cmd': 'create_new'}]) output = ( self.pipeline | beam.Create([invalid_commit_cmd_model]) | beam.ParDo( skill_validation.ValidateSkillCommitLogEntryModel()) ) self.assert_pcoll_equal( output, [ base_validation_errors.CommitCmdsNoneError( invalid_commit_cmd_model) ])
35.565217
80
0.585313
b7e29b3ba028b36db32acc4729bb7ae9701891f2
315
py
Python
Sqlite/dbmanager.py
Gambl3r08/ejercicios-Python
ddf13b40c611f892112ebbe7bc907f5765998ea0
[ "MIT" ]
null
null
null
Sqlite/dbmanager.py
Gambl3r08/ejercicios-Python
ddf13b40c611f892112ebbe7bc907f5765998ea0
[ "MIT" ]
null
null
null
Sqlite/dbmanager.py
Gambl3r08/ejercicios-Python
ddf13b40c611f892112ebbe7bc907f5765998ea0
[ "MIT" ]
null
null
null
import sqlite3 def createDB(name: str): try: db = sqlite3.connect(name) return db except: print("error al crear la base de datos: ", name) def createCursor(db: sqlite3): try: cursor = db.cursor() return cursor except: print("Error al crear cursor")
19.6875
56
0.584127
67e0b6df0ed7fc49ba0e561d404228b003fbd70e
8,576
py
Python
ballet/templating.py
HDI-Project/fhub_core
9667a47fbd8b4caf2e92118dc5357f34aae2098b
[ "MIT" ]
19
2021-04-06T18:56:39.000Z
2022-03-15T00:23:00.000Z
ballet/templating.py
HDI-Project/ballet
9667a47fbd8b4caf2e92118dc5357f34aae2098b
[ "MIT" ]
52
2018-09-27T01:11:58.000Z
2021-03-24T19:11:18.000Z
ballet/templating.py
HDI-Project/ballet
9667a47fbd8b4caf2e92118dc5357f34aae2098b
[ "MIT" ]
3
2019-12-07T17:55:34.000Z
2021-02-02T17:58:39.000Z
import pathlib import tempfile from typing import List, Optional, Tuple import funcy as fy from cookiecutter.main import cookiecutter as _cookiecutter from github import Github, GithubException import ballet.util.git from ballet.compat import PathLike from ballet.exc import BalletError, ConfigurationError from ballet.project import Project, detect_github_username from ballet.util.fs import pwalk, synctree from ballet.util.git import ( DEFAULT_BRANCH, push_branches_to_remote, switch_to_new_branch,) from ballet.util.log import logger from ballet.util.typing import Pathy from ballet.validation.project_structure.checks import ( FEATURE_MODULE_NAME_REGEX, SUBPACKAGE_NAME_REGEX,) TEMPLATES_PATH = pathlib.Path(__file__).resolve().parent.joinpath('templates') FEATURE_TEMPLATE_PATH = TEMPLATES_PATH.joinpath('feature_template') PROJECT_TEMPLATE_PATH = TEMPLATES_PATH.joinpath('project_template') def _stringify_path(obj) -> str: return str(obj) if isinstance(obj, PathLike) else obj @fy.wraps(_cookiecutter) def cookiecutter(*args, **kwargs) -> str: """Call cookiecutter.main.cookiecutter after stringifying paths Return: project directory path """ args = fy.walk(_stringify_path, args) kwargs = fy.walk_values(_stringify_path, kwargs) return _cookiecutter(*args, **kwargs) def render_project_template( project_template_path: Optional[Pathy] = None, create_github_repo: bool = False, github_token: Optional[str] = None, **cc_kwargs ) -> str: """Generate a ballet project according to the project template If creating the GitHub repo is requested and the process fails for any reason, quickstart will complete successfully and users are instructed to read the corresponding section of the Maintainer's Guide to continue manually. Args: project_template_path: path to specific project template create_github_repo: whether to act to create the desired repo on GitHub after rendering the project. The repo will be owned by either the user or an org that the user has relevant permissions for, depending on what is entered during the quickstart prompts. If True, then a valid github token must also be provided. github_token: valid github token with appropriate permissions **cc_kwargs: options for the cookiecutter template """ if project_template_path is None: project_template_path = PROJECT_TEMPLATE_PATH project_path = cookiecutter(project_template_path, **cc_kwargs) if create_github_repo: if github_token is None: raise ValueError('Need to provide github token') g = Github(github_token) # need to get params from new project config project = Project.from_path(project_path) owner = project.config.get('github.github_owner') name = project.config.get('project.project_slug') # create repo on github try: github_repo = ballet.util.git.create_github_repo(g, owner, name) logger.info(f'Created repo on GitHub at {github_repo.html_url}') except GithubException: logger.exception('Failed to create GitHub repo for this project') logger.warning( 'Failed to create GitHub repo for this project...\n' 'did you specify the intended repo owner, and do you have' ' permissions to create a repo under that owner?\n' 'Try manually creating the repo: https://ballet.github.io/ballet/maintainer_guide.html#manual-repository-creation' # noqa E501 ) return project_path # now push to remote # we don't need to set up the remote, as it has already been setup in # post_gen_hook.py local_repo = project.repo remote_name = project.config.get('github.remote') branches = [DEFAULT_BRANCH] try: push_branches_to_remote(local_repo, remote_name, branches) except BalletError: logger.exception('Failed to push branches to GitHub repo') logger.warning( 'Failed to push branches to GitHub repo...\n' 'Try manually pushing the branches: https://ballet.github.io/ballet/maintainer_guide.html#manual-repository-creation' # noqa E501 ) return project_path return project_path def render_feature_template(**cc_kwargs) -> str: """Create a stub for a new feature Args: **cc_kwargs: options for the cookiecutter template """ feature_template_path = FEATURE_TEMPLATE_PATH return cookiecutter(feature_template_path, **cc_kwargs) def _fail_if_feature_exists(dst: pathlib.Path) -> None: subpackage_name, feature_name = str(dst.parent), str(dst.name) if ( dst.is_file() and fy.re_test(SUBPACKAGE_NAME_REGEX, subpackage_name) and fy.re_test(FEATURE_MODULE_NAME_REGEX, feature_name) ): raise FileExistsError(f'The feature already exists here: {dst}') def start_new_feature( contrib_dir: Pathy = None, branching: bool = True, **cc_kwargs ) -> List[Tuple[pathlib.Path, str]]: """Start a new feature within a ballet project If run from default branch, by default will attempt to switch to a new branch for this feature, given by `<username>/feature-<featurename>`. By default, will prompt the user for input using cookiecutter's input interface. Renders the feature template into a temporary directory, then copies the feature files into the proper path within the contrib directory. Args: contrib_dir: directory under which to place contributed features branching: whether to attempt to manage branching **cc_kwargs: options for the cookiecutter template Raises: ballet.exc.BalletError: the new feature has the same name as an existing one """ if contrib_dir is not None: try: project = Project.from_path(contrib_dir, ascend=True) default_username = detect_github_username(project) except ConfigurationError: default_username = 'username' else: project = Project.from_cwd() contrib_dir = project.config.get('contrib.module_path') default_username = detect_github_username(project) # inject default username into context cc_kwargs.setdefault('extra_context', {}) cc_kwargs['extra_context'].update({'_default_username': default_username}) with tempfile.TemporaryDirectory() as tempdir: # render feature template output_dir = tempdir cc_kwargs['output_dir'] = output_dir rendered_dir = render_feature_template(**cc_kwargs) # clean pyc files from rendered dir for path in pwalk(rendered_dir, topdown=False): if path.suffix == '.pyc': path.unlink() if path.name == '__pycache__': with fy.suppress(OSError): path.rmdir() # copy into contrib dir src = rendered_dir dst = contrib_dir result = synctree(src, dst, onexist=_fail_if_feature_exists) target_branch = None if branching and project.on_master: # try to set the target branch name paths = [path for path, kind in result if kind == 'file'] for path in paths: parts = pathlib.Path(path).parts subpackage, module = parts[-2], parts[-1] user_match = fy.re_find(SUBPACKAGE_NAME_REGEX, subpackage) feature_match = fy.re_find(FEATURE_MODULE_NAME_REGEX, module) if feature_match: username = user_match['username'] featurename = feature_match['featurename'].replace('_', '-') target_branch = f'{username}/feature-{featurename}' if target_branch is not None: switch_to_new_branch(project.repo, target_branch) _log_start_new_feature_success(result) _log_switch_to_new_branch(target_branch) return result def _log_start_new_feature_success(result: List[Tuple[pathlib.Path, str]]): logger.info('Start new feature successful') for (name, kind) in result: if kind == 'file' and '__init__' not in str(name): relname = pathlib.Path(name).relative_to(pathlib.Path.cwd()) logger.info(f'Created {relname}') def _log_switch_to_new_branch(branch: Optional[str]): if branch is not None: logger.info(f'Switched to branch {branch}')
37.946903
146
0.684818
d95bcc0b165e225e7a53304a0a180fb1b4e9e179
1,239
py
Python
appengine/findit/model/flake/analysis/triggering_sources.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
2
2021-04-13T21:22:18.000Z
2021-09-07T02:11:57.000Z
appengine/findit/model/flake/analysis/triggering_sources.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
21
2020-09-06T02:41:05.000Z
2022-03-02T04:40:01.000Z
appengine/findit/model/flake/analysis/triggering_sources.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Sources for from where a flake analysis was triggered.""" # An analysis was triggered directly through Findit's UI. FINDIT_UI = 1 # An analysis was triggered using Findit's API. FINDIT_API = 2 # An analysis was triggered using Findit's normal analysis pipeline. FINDIT_PIPELINE = 3 SOURCES_TO_DESCRIPTIONS = { FINDIT_UI: 'Findit UI', FINDIT_API: 'Findit API', FINDIT_PIPELINE: 'Findit pipeline' } def GetDescriptionForTriggeringSource(triggering_source, manually_triggered): """Returns a human-readable description for where a request came from.""" template = 'The analysis was triggered %s through %s' def _GetTriggeringSourceDescription(triggering_source): return SOURCES_TO_DESCRIPTIONS.get(triggering_source, 'other/unknown source') def _GetTriggeringUserDescription(manually_triggered): return 'manually' if manually_triggered else 'automatically' return template % (_GetTriggeringUserDescription(manually_triggered), _GetTriggeringSourceDescription(triggering_source))
35.4
77
0.749798
76f04580b076f2d0fd5869e105c3271108e7afa5
1,642
py
Python
pytest-fixture-config/tests/unit/test_fixture_config.py
domdfcoding/pytest-plugins
01fc12644db92e83ad7646a2d3c0b4f4ac1bd5a1
[ "MIT" ]
null
null
null
pytest-fixture-config/tests/unit/test_fixture_config.py
domdfcoding/pytest-plugins
01fc12644db92e83ad7646a2d3c0b4f4ac1bd5a1
[ "MIT" ]
null
null
null
pytest-fixture-config/tests/unit/test_fixture_config.py
domdfcoding/pytest-plugins
01fc12644db92e83ad7646a2d3c0b4f4ac1bd5a1
[ "MIT" ]
null
null
null
import pytest from six.moves import reload_module # HACK: if the plugin is imported before the coverage plugin then all # the top-level code will be omitted from coverage, so force it to be # reloaded within this unit test under coverage import pytest_fixture_config reload_module(pytest_fixture_config) from pytest_fixture_config import Config, requires_config, yield_requires_config class DummyConfig(Config): __slots__ = ('foo', 'bar') def test_config_update(): cfg = DummyConfig(foo=1, bar=2 ) cfg.update({"foo": 10, "bar":20}) assert cfg.foo == 10 assert cfg.bar == 20 with pytest.raises(ValueError): cfg.update({"baz": 30}) CONFIG1 = DummyConfig(foo=None, bar=1) @pytest.fixture @requires_config(CONFIG1, ('foo', 'bar')) def a_fixture(request): raise ValueError('Should not run') def test_requires_config_skips(a_fixture): raise ValueError('Should not run') @pytest.fixture @requires_config(CONFIG1, ('bar',)) def another_fixture(request): return 'xxxx' def test_requires_config_doesnt_skip(another_fixture): assert another_fixture == 'xxxx' @pytest.fixture() @yield_requires_config(CONFIG1, ('foo', 'bar')) def yet_another_fixture(): raise ValueError('Should also not run') yield 'yyyy' def test_yield_requires_config_skips(yet_another_fixture): raise ValueError('Should also not run') @pytest.fixture() @yield_requires_config(CONFIG1, ('bar',)) def yet_some_other_fixture(): yield 'yyyy' def test_yield_requires_config_doesnt_skip(yet_some_other_fixture): assert yet_some_other_fixture == 'yyyy'
24.147059
80
0.722899
3b6e2cd9de0263e4713cd42294b19f8b26ff5128
5,413
py
Python
markovdwp/runtime/dwp.py
ivannz/MarkovDWP
f10ed7a331ddd9b7fc28c4cab3b05b2352a9ee2b
[ "MIT" ]
null
null
null
markovdwp/runtime/dwp.py
ivannz/MarkovDWP
f10ed7a331ddd9b7fc28c4cab3b05b2352a9ee2b
[ "MIT" ]
null
null
null
markovdwp/runtime/dwp.py
ivannz/MarkovDWP
f10ed7a331ddd9b7fc28c4cab3b05b2352a9ee2b
[ "MIT" ]
null
null
null
import os import torch from functools import partial from collections.abc import Hashable from torch.utils.data import DataLoader from .base import BaseRuntime from ..nn import named_penalties from ..priors import ImplicitSlicePrior from ..priors.implicit import ImplicitPrior from ..source import KernelDataset from ..utils.dicttools import propagate, add_prefix, resolve from ..utils.runtime import get_instance from ..utils.io import load def unpack(state): module = get_instance(**state['model']) module.load_state_dict(state['state']) return module def load_prior(path, kind='trainable'): assert kind in ('collapsed', 'fixed', 'trainable') snapshot = load(path) decoder = unpack(snapshot['decoder']).requires_grad_(False) encoder = unpack(snapshot['encoder']) encoder.requires_grad_(kind == 'trainable') if kind == 'collapsed': # assumes the encoder has `event_shape`, like vaes in model.dwp encoder = encoder.event_shape return ImplicitSlicePrior(decoder, encoder) def load_priors(**priors): lookup, loaded = {}, {} for name, prior in priors.items(): if isinstance(prior, dict): loaded[name] = load_prior(**prior) elif isinstance(prior, Hashable): lookup[name] = prior else: raise TypeError(f'Bad shared Prior reference `{prior}`.') lookup = resolve(lookup) # detect cyclical and resolve linear references missing = [ref for ref in lookup.values() if ref not in loaded] if missing: raise ValueError(f'Missing Priors detected `{missing}`.') return {name: loaded[lookup.get(name, name)] for name in priors} def from_source(module, root, source): """Draw kernels from the empirical distribution of source slices.""" weight = getattr(module, 'weight', None) assert isinstance(weight, torch.Tensor) assert os.path.isdir(root) info = KernelDataset.info(root) assert source in info # open the dataset dataset = KernelDataset(root, source, dim='mio', min_norm=0.1) # setup the dataloader c_out, c_in, *dontcare = weight.shape sample, *dontcare = next(iter(DataLoader(dataset, batch_size=c_in * c_out, shuffle=True, num_workers=8))) weight.data.copy_(sample.reshape_as(weight)) return module def from_prior(module, prior): weight = getattr(module, 'weight', None) assert isinstance(weight, torch.Tensor) assert isinstance(prior, ImplicitPrior) weight.data.copy_(prior.sample(weight.shape)) return module def init(module, priors, specs, prefix=''): for name, mod in module.named_modules(prefix=prefix): # silently assume missing inits use default and ignore them init = specs.get(name, 'default') if init == 'default': pass elif init == 'prior': # sample filter from the associated prior from_prior(mod, priors.get(name)) elif isinstance(init, dict): from_source(mod, **{'source': name, **init}) else: raise TypeError(f'Bad init spec `{init}`.') return module class BaseDWPRuntime(BaseRuntime): r"""ELBO for Bayesian NN with var. approx. `q`. $$ \mathcal{L}_{classic} = \mathbb{E}_{w \sim q} \log p(D \mid w) - \mathbb{E}_{w \sim q} \log \frac{q(w)}{\pi(w)} \,, $$ If $\pi(w) = \mathbb{E}_{h \sim \pi} p(w \mid h)$, i.e. an implicit prior, then for any $r(h\mid w)$ it computes the secondary lower bound: $$ \mathcal{L}_{implicit} = \mathbb{E}_{w \sim q} \log p(D \mid w) - \mathbb{E}_{w \sim q} \mathbb{E}_{h \sim r(h|w)} \log \frac{q(w) r(h \mid w)}{p(w \mid h) \pi(h)} \,, $$ """ def __init__(self, core, *, coef, lr, kind, priors, init): assert kind in ('classic', 'implicit') super().__init__(core, coef=coef, lr=lr) self.kind, self.init = kind, init self.priors = load_priors(**priors) # shadow list to register priors with `torch.nn.Module` self._priors = torch.nn.ModuleList(self.priors.values()) # disable grads if we use non-implicit priors (implit are likely # used just for init). if self.kind != 'implicit': self._priors.requires_grad_(False) def on_train_start(self): # we are on device, so re-init model here init(self.core, self.priors, self.init, prefix='') def training_penalty(self, outputs=None, prefix=''): """KL of parameter distrib from prior.""" tag = prefix + ('.' if prefix else '') + 'kl_div' penalties = {} if self.kind == 'implicit': # compile the penalties LUT using the current coeffs priors = add_prefix(self.priors, tag) coef = dict(propagate({'': 1.0, **self.coef}, priors)) penalties = { name: partial(prior.penalty, coef=coef[name], n_draws_q=1, n_draws_r=1) for name, prior in priors.items() } # Call penalties with interface from `cplxmodule.nn.relevance` # * if a layer has no overrider penalty, then its `built-in` is used return dict(named_penalties(self.core, penalties=penalties, prefix=tag, reduction='sum'))
31.109195
78
0.617403
b53aac137d1e36f0422b533f3cd1cf01eb82c122
1,271
py
Python
train_model.py
VarnithChordia/Multlingual_Punctuation_restoration
17c026e8935b9fecae01d446a756926c7733fcd1
[ "MIT" ]
8
2020-07-24T05:50:54.000Z
2022-02-17T00:16:07.000Z
train_model.py
VarnithChordia/Multlingual_Punctuation_restoration
17c026e8935b9fecae01d446a756926c7733fcd1
[ "MIT" ]
4
2021-04-22T12:27:22.000Z
2022-03-12T00:59:43.000Z
train_model.py
VarnithChordia/Multlingual_Punctuation_restoration
17c026e8935b9fecae01d446a756926c7733fcd1
[ "MIT" ]
null
null
null
import os os.environ['CUDA_DEVICE_ORDER'] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "" import sys import warnings from modules.models.bert_models import BERTBiLSTMNCRFJoint from modules.train.train import NerLearner from modules.data import bert_data_new warnings.filterwarnings("ignore") sys.path.insert(0, "../") data = bert_data_new.LearnData.create( train_df_path="/data/", ## Location of the train dataset valid_df_path="/data/", ## Location of the val dataset idx2labels_path="../idx2labels.txt", ## Location to store punctuation labels idx2cls_path= '../idx2cls.txt', ## Location to store language labels idx2mode_path='../idx2mode.txt', ## Location to store text mode labels is_cls = True, clear_cache=True, model_name='bert-base-multilingual-cased' ## Language model ) model = BERTBiLSTMNCRFJoint.create( len(data.train_ds.idx2label), model_name='bert-base-multilingual-cased', lstm_dropout=0., crf_dropout=0.3, intent_size=3, mode_size=2) num_epochs = 10 learner = NerLearner( model, data, "/data/models/LRL_multilingual-cased_mbert.cpt", ## Location to store the model t_total=num_epochs * len(data.train_dl)) model.get_n_trainable_params() learner.fit(epochs=num_epochs)
28.244444
96
0.736428
6964c05194e91acb5b9a4c136134e18dd8b24c95
3,629
py
Python
util/generateCoverage.py
enm10k/former2
0e116a910d3b4d591756817b5987358a81733e1b
[ "MIT" ]
null
null
null
util/generateCoverage.py
enm10k/former2
0e116a910d3b4d591756817b5987358a81733e1b
[ "MIT" ]
null
null
null
util/generateCoverage.py
enm10k/former2
0e116a910d3b4d591756817b5987358a81733e1b
[ "MIT" ]
null
null
null
import os import json import pprint import math import re services = None cfn_spec = None tf_resources = [] cfn_types = [] cfn_occurances = [] tf_occurances = [] cfn_exceptions = { 'AWS::CloudFormation::CustomResource': 'N/A', 'AWS::CloudFormation::Macro': 'N/A', 'AWS::CloudFormation::Stack': 'N/A', 'AWS::CloudFormation::WaitCondition': 'N/A', 'AWS::CloudFormation::WaitConditionHandle': 'N/A', 'AWS::EC2::SecurityGroupEgress': 'N/A', 'AWS::EC2::SecurityGroupIngress': 'N/A', 'AWS::RDS::DBSecurityGroupIngress': 'N/A', 'AWS::ElastiCache::SecurityGroupIngress': 'N/A', 'AWS::Redshift::ClusterSecurityGroupIngress': 'N/A', 'AWS::Route53::RecordSetGroup': 'N/A', 'AWS::SDB::Domain': 'N/A', 'AWS::IAM::UserToGroupAddition': 'N/A', 'Alexa::ASK::Skill': 'N/A', 'AWS::ServiceCatalog::PortfolioShare': 'N/A', 'AWS::SecretsManager::SecretTargetAttachment': 'N/A', 'AWS::ServiceCatalog::ResourceUpdateConstraint': 'N/A', 'AWS::ACMPCA::Certificate': 'N/A' } tf_exceptions = { 'aws_cloudformation_stack': 'N/A', 'aws_cloudformation_stack_set': 'N/A', 'aws_cloudformation_stack_set_instance': 'N/A', 'aws_dx_hosted_public_virtual_interface_accepter': 'N/A', 'aws_dx_hosted_private_virtual_interface_accepter': 'N/A', 'aws_simpledb_domain': 'N/A' } with open("util/cfnspec.json", "r") as f: cfn_spec = json.loads(f.read())['ResourceTypes'] with open("util/tf_resources.txt", "r") as f: lines = f.read().splitlines() for line in lines: tf_resources.append(line) for servicefilename in os.listdir("js/services"): with open("js/services/" + servicefilename, "r") as f: text = f.read() lines = text.splitlines() cfn_occurances += re.compile(r'(AWS\:\:[a-zA-Z0-9]+\:\:[a-zA-Z0-9]+)').findall(text) tf_occurances += re.compile(r'terraformType\'\:\ \'(aws(?:\_[a-zA-Z0-9]+)+)\'').findall(text) for cfntype, _ in cfn_spec.items(): cfn_types.append(cfntype) for cfn_occurance in cfn_occurances: if cfn_occurance not in cfn_types: print("Resource not in spec: " + cfn_occurance) cfn_types.append(cfn_occurance) cfn_types = set(cfn_types) total_services = 0 total_operations = 0 total_unique_occurances = 0 with open("RESOURCE_COVERAGE.md", "w") as f: f.write("## CloudFormation Resource Coverage\n\n") f.write("**%s/%s (%s%%)** Resources Covered\n" % ( len(set(cfn_occurances)) + len(cfn_exceptions), len(cfn_types), int(math.floor((len(set(cfn_occurances)) + len(cfn_exceptions)) * 100 / len(cfn_types))) )) f.write("\n| Type | Coverage |\n") f.write("| --- | --- |\n") for cfntype in sorted(cfn_types): coverage = "" if cfn_occurances.count(cfntype) > 0: coverage = ":thumbsup:" if cfntype in cfn_exceptions: coverage = cfn_exceptions[cfntype] f.write("| *%s* | %s |\n" % (cfntype, coverage)) f.write("\n## Terraform Coverage\n\n") f.write("**%s/%s (%s%%)** Resources Covered\n" % ( len(set(tf_occurances)) + len(tf_exceptions), len(tf_resources), int(math.floor((len(set(tf_occurances)) + len(tf_exceptions)) * 100 / len(tf_resources))) )) f.write("\n| Type | Coverage |\n") f.write("| --- | --- |\n") for tf_resource in sorted(tf_resources): coverage = "" if tf_occurances.count(tf_resource) > 0: coverage = ":thumbsup:" if tf_resource in tf_exceptions: coverage = tf_exceptions[tf_resource] f.write("| *%s* | %s |\n" % (tf_resource, coverage))
33.915888
101
0.625241
acab6dddff97749e9f5f617bfd3958ca98a7b61d
42,306
py
Python
UI/moxa.py
Subhadip-decode/ShittyBots
0b3563053a280f451b1d20165b2a8b41169c1d0d
[ "BSD-3-Clause" ]
null
null
null
UI/moxa.py
Subhadip-decode/ShittyBots
0b3563053a280f451b1d20165b2a8b41169c1d0d
[ "BSD-3-Clause" ]
null
null
null
UI/moxa.py
Subhadip-decode/ShittyBots
0b3563053a280f451b1d20165b2a8b41169c1d0d
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'Moxa.ui' # # Created by: PyQt5 UI code generator 5.15.1 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets import detect from subprocess import call from PyQt5.QtWidgets import * import sys # We need sys so that we can pass argv to QApplication import os sys.path.insert(1, '../Analytics') from menubar_utilities import * from graph_test import Ui_showGraph import webbrowser import subprocess, sys class Ui_MainWindow(object): def show_graphs(self): # self.window= QtWidgets.QMainWindow() # self.ui=Ui_showGraph() # self.ui.setupUi(self.window) # self.window.show() def moxa_window(self): print('moxa') def analytics_window(self): print('analytics') def detection_folder(self): #os.startfile('../darknet_detection/CAMS') /*for windows grabage shitt*/ opener ="open" if sys.platform == "darwin" else "xdg-open" subprocess.call([opener, '../darknet_detection/CAM/']) def graph_folder(self): #os.startfile('../Analytics/graph') /*for windows garbage shit*/ opener ="open" if sys.platform == "darwin" else "xdg-open" subprocess.call([opener, '../Analytics/graph']) def analytics_folder(self): #os.startfile('../Analytics') /*for windows garbage shit*/ opener ="open" if sys.platform == "darwin" else "xdg-open" subprocess.call([opener, '../Analytics']) def moxahelp(self): webbrowser.open('https://github.com/Hack-n-Chill/ShittyBots', new=2) # def exprt(self): # # create an exporter instance, as an argument give it # # the item you wish to export # self=Ui_showGraph() # exporter = pg.exporters.ImageExporter(self.graph) # exporter_2 = pg.exporters.ImageExporter(self.graph_2) # # set export parameters if needed # exporter.parameters()['width'] = 100 # (note this also affects height parameter) # exporter_2.parameters()['width'] = 100 # # save to file # exporter.export('Ratio vs Time.png') # exporter_2.export('Mask vs Nomask.png') def share(self): #calls detect.py passing three arguments text1=self.lineEdit.text() text2=self.lineEdit_2.text() text3=self.lineEdit_3.text() detect.detect_it(text1,text2,text3) def close_window(self): detect.close_window() def attribute_add(self): #calls detect.py passing the attributes ROI=self.lineEdit_4.text() rot_angle=self.lineEdit_5.text() stream_format=self.lineEdit_6.text() detect.attribute_detect_it(ROI,rot_angle,stream_format) def restart(self): self.lineEdit.setText("") self.lineEdit_2.setText("") self.lineEdit_3.setText("") self.lineEdit_4.setText("") self.lineEdit_5.setText("") self.lineEdit_6.setText("") def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(600, 600) MainWindow.setMinimumSize(QtCore.QSize(600, 600)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) MainWindow.setPalette(palette) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("moxa_main.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.horizontalLayout = QtWidgets.QHBoxLayout(self.centralwidget) self.horizontalLayout.setObjectName("horizontalLayout") self.scrollArea = QtWidgets.QScrollArea(self.centralwidget) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(120, 120, 120)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) self.scrollArea.setPalette(palette) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName("scrollArea") self.scrollAreaWidgetContents = QtWidgets.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 580, 538)) self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") self.verticalLayout = QtWidgets.QVBoxLayout(self.scrollAreaWidgetContents) self.verticalLayout.setContentsMargins(9, 3, -1, -1) self.verticalLayout.setObjectName("verticalLayout") self.label_6 = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label_6.setText("") self.label_6.setObjectName("label_6") self.verticalLayout.addWidget(self.label_6) self.frame_2 = QtWidgets.QFrame(self.scrollAreaWidgetContents) self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_2.setObjectName("frame_2") self.horizontalLayout_3 = QtWidgets.QHBoxLayout(self.frame_2) self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.label = QtWidgets.QLabel(self.frame_2) font = QtGui.QFont() font.setFamily("Stereofunk") font.setPointSize(36) self.label.setFont(font) self.label.setObjectName("label") self.horizontalLayout_3.addWidget(self.label) self.verticalLayout.addWidget(self.frame_2) self.groupBox_2 = QtWidgets.QGroupBox(self.scrollAreaWidgetContents) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) self.groupBox_2.setPalette(palette) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.groupBox_2.setFont(font) self.groupBox_2.setCheckable(False) self.groupBox_2.setObjectName("groupBox_2") self.formLayout = QtWidgets.QFormLayout(self.groupBox_2) self.formLayout.setContentsMargins(17, 17, 17, 17) self.formLayout.setHorizontalSpacing(27) self.formLayout.setVerticalSpacing(16) self.formLayout.setObjectName("formLayout") self.label_2 = QtWidgets.QLabel(self.groupBox_2) self.label_2.setObjectName("label_2") self.formLayout.setWidget(0, QtWidgets.QFormLayout.LabelRole, self.label_2) self.lineEdit = QtWidgets.QLineEdit(self.groupBox_2) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) self.lineEdit.setPalette(palette) self.lineEdit.setAlignment(QtCore.Qt.AlignCenter) self.lineEdit.setObjectName("lineEdit") self.formLayout.setWidget(0, QtWidgets.QFormLayout.FieldRole, self.lineEdit) self.label_3 = QtWidgets.QLabel(self.groupBox_2) self.label_3.setObjectName("label_3") self.formLayout.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label_3) self.lineEdit_2 = QtWidgets.QLineEdit(self.groupBox_2) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) self.lineEdit_2.setPalette(palette) self.lineEdit_2.setAlignment(QtCore.Qt.AlignCenter) self.lineEdit_2.setObjectName("lineEdit_2") self.formLayout.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.lineEdit_2) self.label_4 = QtWidgets.QLabel(self.groupBox_2) self.label_4.setObjectName("label_4") self.formLayout.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_4) self.lineEdit_3 = QtWidgets.QLineEdit(self.groupBox_2) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) self.lineEdit_3.setPalette(palette) self.lineEdit_3.setAlignment(QtCore.Qt.AlignCenter) self.lineEdit_3.setObjectName("lineEdit_3") self.formLayout.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.lineEdit_3) self.verticalLayout.addWidget(self.groupBox_2) self.frame = QtWidgets.QFrame(self.scrollAreaWidgetContents) self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.frame) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.pushButton_3 = QtWidgets.QPushButton(self.frame) self.pushButton_3.setObjectName("pushButton_3") self.pushButton_3.clicked.connect(self.restart) self.horizontalLayout_2.addWidget(self.pushButton_3) self.pushButton_4 = QtWidgets.QPushButton(self.frame) self.pushButton_4.setObjectName("pushButton_4") self.horizontalLayout_2.addWidget(self.pushButton_4) self.pushButton_4.clicked.connect(self.share) #calls share func to call detect.py self.pushButton_5 = QtWidgets.QPushButton(self.frame) self.pushButton_5.setObjectName("pushButton_5") self.horizontalLayout_2.addWidget(self.pushButton_5) self.pushButton_5.clicked.connect(self.close_window) self.pushButton_7 = QtWidgets.QPushButton(self.frame) self.pushButton_7.setObjectName("pushButton_7") self.horizontalLayout_2.addWidget(self.pushButton_7) self.pushButton_7.clicked.connect(self.detection_folder) self.verticalLayout.addWidget(self.frame) self.groupBox = QtWidgets.QGroupBox(self.scrollAreaWidgetContents) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) self.groupBox.setPalette(palette) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.groupBox.setFont(font) self.groupBox.setObjectName("groupBox") self.gridLayout_3 = QtWidgets.QGridLayout(self.groupBox) self.gridLayout_3.setObjectName("gridLayout_3") self.pushButton = QtWidgets.QPushButton(self.groupBox) self.pushButton.setObjectName("pushButton") self.pushButton.clicked.connect(self.show_graphs) self.gridLayout_3.addWidget(self.pushButton, 0, 0, 1, 1) self.pushButton_2 = QtWidgets.QPushButton(self.groupBox) self.pushButton_2.setObjectName("pushButton_2") self.pushButton_2.clicked.connect(self.analytics_folder) self.gridLayout_3.addWidget(self.pushButton_2, 0, 1, 1, 1) self.progressBar = QtWidgets.QProgressBar(self.groupBox) self.progressBar.setProperty("value", 24) self.progressBar.setObjectName("progressBar") self.gridLayout_3.addWidget(self.progressBar, 0, 2, 1, 1) self.verticalLayout.addWidget(self.groupBox) self.groupBox_3 = QtWidgets.QGroupBox(self.scrollAreaWidgetContents) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255, 128)) brush.setStyle(QtCore.Qt.NoBrush) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) self.groupBox_3.setPalette(palette) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.groupBox_3.setFont(font) self.groupBox_3.setObjectName("groupBox_3") self.gridLayout = QtWidgets.QGridLayout(self.groupBox_3) self.gridLayout.setObjectName("gridLayout") self.lineEdit_5 = QtWidgets.QLineEdit(self.groupBox_3) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) self.lineEdit_5.setPalette(palette) self.lineEdit_5.setAlignment(QtCore.Qt.AlignCenter) self.lineEdit_5.setObjectName("lineEdit_5") self.gridLayout.addWidget(self.lineEdit_5, 1, 1, 1, 1) self.label_9 = QtWidgets.QLabel(self.groupBox_3) self.label_9.setObjectName("label_9") self.gridLayout.addWidget(self.label_9, 2, 0, 1, 1) self.lineEdit_4 = QtWidgets.QLineEdit(self.groupBox_3) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) self.lineEdit_4.setPalette(palette) self.lineEdit_4.setAlignment(QtCore.Qt.AlignCenter) self.lineEdit_4.setObjectName("lineEdit_4") self.gridLayout.addWidget(self.lineEdit_4, 0, 1, 1, 1) self.label_7 = QtWidgets.QLabel(self.groupBox_3) self.label_7.setObjectName("label_7") self.gridLayout.addWidget(self.label_7, 0, 0, 1, 1) self.lineEdit_6 = QtWidgets.QLineEdit(self.groupBox_3) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(95, 105, 112)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(44, 47, 51)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) self.lineEdit_6.setPalette(palette) self.lineEdit_6.setAlignment(QtCore.Qt.AlignCenter) self.lineEdit_6.setObjectName("lineEdit_6") self.gridLayout.addWidget(self.lineEdit_6, 2, 1, 1, 1) self.label_8 = QtWidgets.QLabel(self.groupBox_3) self.label_8.setObjectName("label_8") self.gridLayout.addWidget(self.label_8, 1, 0, 1, 1) self.pushButton_6 = QtWidgets.QPushButton(self.groupBox_3) self.pushButton_6.setObjectName("pushButton_6") self.pushButton_6.clicked.connect(self.attribute_add) #to call the attribute addition function in moxa.py self.gridLayout.addWidget(self.pushButton_6, 3, 1, 1, 1) self.verticalLayout.addWidget(self.groupBox_3) self.label_5 = QtWidgets.QLabel(self.scrollAreaWidgetContents) self.label_5.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.label_5.setObjectName("label_5") self.verticalLayout.addWidget(self.label_5) self.scrollArea.setWidget(self.scrollAreaWidgetContents) self.horizontalLayout.addWidget(self.scrollArea) MainWindow.setCentralWidget(self.centralwidget) ##Menu Bar self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 600, 20)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) self.menubar.setPalette(palette) self.menubar.setObjectName("menubar") self.menuView = QtWidgets.QMenu(self.menubar) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(25, 8, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(43, 41, 40)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(21, 7, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(15, 5, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(3, 1, 0, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(25, 8, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(255, 85, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(43, 41, 40)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(21, 7, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(15, 5, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(3, 1, 0, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.PlaceholderText, brush) brush = QtGui.QBrush(QtGui.QColor(25, 8, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(25, 8, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Dark, brush) brush = QtGui.QBrush(QtGui.QColor(25, 8, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(25, 8, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ButtonText, brush) brush = QtGui.QBrush(QtGui.QColor(43, 41, 40)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(43, 41, 40)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(21, 7, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Shadow, brush) brush = QtGui.QBrush(QtGui.QColor(15, 5, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.ToolTipText, brush) brush = QtGui.QBrush(QtGui.QColor(3, 1, 0, 128)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.PlaceholderText, brush) self.menuView.setPalette(palette) self.menuView.setObjectName("menuView") self.menuEdit = QtWidgets.QMenu(self.menubar) self.menuEdit.setObjectName("menuEdit") self.menuHelp = QtWidgets.QMenu(self.menubar) self.menuHelp.setObjectName("menuHelp") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.actionMoxa_Help = QtWidgets.QAction(MainWindow) self.actionMoxa_Help.setObjectName("actionMoxa_Help") self.actionMoxa_Help.triggered.connect(self.moxahelp) self.actionmoxa = QtWidgets.QAction(MainWindow) self.actionmoxa.setObjectName("actionmoxa") self.actionmoxa.triggered.connect(self.moxa_window) self.actionanalytics = QtWidgets.QAction(MainWindow) self.actionanalytics.setObjectName("actionanalytics") self.actionanalytics.triggered.connect(self.analytics_window) self.actionDetecions_Folder = QtWidgets.QAction(MainWindow) self.actionDetecions_Folder.setObjectName("actionDetecions_Folder") self.actionDetecions_Folder.triggered.connect(self.detection_folder) self.actionGraphs = QtWidgets.QAction(MainWindow) self.actionGraphs.setObjectName("actionGraphs") self.actionGraphs.triggered.connect(self.graph_folder) self.menuView.addSeparator() self.menuView.addAction(self.actionmoxa) self.menuView.addAction(self.actionanalytics) self.menuEdit.addSeparator() self.menuEdit.addAction(self.actionDetecions_Folder) self.menuEdit.addAction(self.actionGraphs) self.menuHelp.addAction(self.actionMoxa_Help) self.menubar.addAction(self.menuView.menuAction()) self.menubar.addAction(self.menuEdit.menuAction()) self.menubar.addAction(self.menuHelp.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MOXA")) self.label.setText(_translate("MainWindow", "Moxa")) self.groupBox_2.setTitle(_translate("MainWindow", "Detector")) self.label_2.setText(_translate("MainWindow", "Camera ID")) self.label_3.setText(_translate("MainWindow", "Camera IP")) self.label_4.setText(_translate("MainWindow", "Port ID")) self.pushButton_3.setText(_translate("MainWindow", "New Session")) self.pushButton_4.setText(_translate("MainWindow", "Run")) self.pushButton_5.setText(_translate("MainWindow", "Stop")) self.pushButton_7.setText(_translate("MainWindow", "Open Saved")) self.groupBox.setTitle(_translate("MainWindow", "Analytics")) self.pushButton.setText(_translate("MainWindow", "Show Graphs")) self.pushButton_2.setText(_translate("MainWindow", "Open")) self.groupBox_3.setTitle(_translate("MainWindow", "Streams")) self.label_9.setText(_translate("MainWindow", "Stream Format")) self.label_7.setText(_translate("MainWindow", "ROI")) self.label_8.setText(_translate("MainWindow", "Rotation Angle")) self.pushButton_6.setText(_translate("MainWindow", "Apply")) self.label_5.setText(_translate("MainWindow", "v 4.2.0.69")) self.menuView.setTitle(_translate("MainWindow", "View")) self.menuEdit.setTitle(_translate("MainWindow", "Open")) self.menuHelp.setTitle(_translate("MainWindow", "Help")) self.actionMoxa_Help.setText(_translate("MainWindow", "Moxa Help")) self.actionmoxa.setText(_translate("MainWindow", "moxa")) self.actionanalytics.setText(_translate("MainWindow", "analytics")) self.actionDetecions_Folder.setText(_translate("MainWindow", "Detecions Folder")) self.actionGraphs.setText(_translate("MainWindow", "Graphs")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
54.518041
113
0.691439
4a9f5313ea768073ee4c311c37b3d5c21de706e9
1,444
py
Python
tests/testcases/clear_shadow_unredirected.py
rbreaves/picom
60eb00ce1b52aee46d343481d0530d5013ab850b
[ "MIT" ]
2,267
2019-10-25T06:05:55.000Z
2022-03-31T21:37:08.000Z
tests/testcases/clear_shadow_unredirected.py
rbreaves/picom
60eb00ce1b52aee46d343481d0530d5013ab850b
[ "MIT" ]
552
2019-10-24T11:52:53.000Z
2022-03-30T18:29:42.000Z
tests/testcases/clear_shadow_unredirected.py
rbreaves/picom
60eb00ce1b52aee46d343481d0530d5013ab850b
[ "MIT" ]
460
2019-11-04T20:17:17.000Z
2022-03-28T00:06:28.000Z
#!/usr/bin/env python import xcffib.xproto as xproto import xcffib import time from common import set_window_name conn = xcffib.connect() setup = conn.get_setup() root = setup.roots[0].root visual = setup.roots[0].root_visual depth = setup.roots[0].root_depth name = "_NET_WM_STATE" name_atom = conn.core.InternAtom(False, len(name), name).reply().atom atom = "ATOM" atom_atom = conn.core.InternAtom(False, len(atom), atom).reply().atom fs = "_NET_WM_STATE_FULLSCREEN" fs_atom = conn.core.InternAtom(False, len(fs), fs).reply().atom # making sure disabling shadow while screen is unredirected doesn't cause assertion failure wid = conn.generate_id() print("Window id is ", hex(wid)) # Create a window conn.core.CreateWindowChecked(depth, wid, root, 0, 0, 100, 100, 0, xproto.WindowClass.InputOutput, visual, 0, []).check() # Set Window name so it does get a shadow set_window_name(conn, wid, "YesShadow") # Map the window print("mapping") conn.core.MapWindowChecked(wid).check() time.sleep(0.5) # Set fullscreen property, causing screen to be unredirected conn.core.ChangePropertyChecked(xproto.PropMode.Replace, wid, name_atom, atom_atom, 32, 1, [fs_atom]).check() time.sleep(0.5) # Set the Window name so it loses its shadow print("set new name") set_window_name(conn, wid, "NoShadow") # Unmap the window conn.core.UnmapWindowChecked(wid).check() time.sleep(0.5) # Destroy the window conn.core.DestroyWindowChecked(wid).check()
27.245283
121
0.752078
bc029410ddede2a58edd1a63bfeb7ba1ddb45e6b
772
py
Python
src/surveys/migrations/0007_translate_interest.py
mrc-rius/computational_marketing_master_thesis
347cf9ef64fcee36cf7068d0d214ef1c9de11cb5
[ "MIT" ]
null
null
null
src/surveys/migrations/0007_translate_interest.py
mrc-rius/computational_marketing_master_thesis
347cf9ef64fcee36cf7068d0d214ef1c9de11cb5
[ "MIT" ]
null
null
null
src/surveys/migrations/0007_translate_interest.py
mrc-rius/computational_marketing_master_thesis
347cf9ef64fcee36cf7068d0d214ef1c9de11cb5
[ "MIT" ]
null
null
null
# Generated by Django 2.0.5 on 2018-08-04 15:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('surveys', '0006_translate_hired_power'), ] operations = [ migrations.CreateModel( name='Translate_Interest', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('interest_value', models.CharField(max_length=2)), ('min_interest', models.DecimalField(decimal_places=2, max_digits=2)), ('max_interest', models.DecimalField(decimal_places=2, max_digits=2)), ('deleted', models.IntegerField(default=0)), ], ), ]
32.166667
114
0.603627
4051600a137457a0b7b7a8676005c610fdc04a84
1,144
py
Python
capture.py
igor2269/terminal-webcam
f692abe5c93d8d9506e39f636f2e6611b724f158
[ "MIT" ]
78
2015-01-01T05:05:14.000Z
2021-02-12T23:14:20.000Z
capture.py
igor2269/terminal-webcam
f692abe5c93d8d9506e39f636f2e6611b724f158
[ "MIT" ]
3
2015-12-07T00:19:36.000Z
2018-04-20T13:58:31.000Z
capture.py
igor2269/terminal-webcam
f692abe5c93d8d9506e39f636f2e6611b724f158
[ "MIT" ]
13
2015-01-08T04:11:34.000Z
2021-02-25T14:25:12.000Z
import cv import os import sys import math import curses import signal def signal_handler(signal, frame): print 'You pressed Ctrl + C!' curses.endwin() sys.exit(0) signal.signal(signal.SIGINT, signal_handler) stdscr = curses.initscr() palette = [' ', '.', '.', '/', 'c', '(', '@', '#', '8'] capture = cv.CaptureFromCAM(0) # Get the width and height from the terminal (console) (rows, columns) = os.popen('stty size', 'r').read().split() rows = int(rows) columns = int(columns) while True: # Capture the image img = cv.QueryFrame(capture) thumbnail = cv.CreateImage( (columns, rows), img.depth, img.nChannels ) cv.Resize(img, thumbnail) img = thumbnail # Print the output for x in xrange(img.height): for y in xrange(img.width): b, g, r = img[x, y] value = b * 0.1145 + g * 0.5866 + r * 0.2989 index = int(math.floor(value / (256.0 / (len(palette))))) try: stdscr.move(x, y) stdscr.addch(palette[index]) except: pass stdscr.refresh()
22
69
0.556818
7e7553f2192704bada2abf0651f239a2c2324dbb
634
py
Python
Lib/site-packages/celerid/infrastructure/pyd/generators/iterate.py
raychorn/svn_Python-2.5.1
425005b1b489ba44ec0bb989e077297e8953d9be
[ "PSF-2.0" ]
null
null
null
Lib/site-packages/celerid/infrastructure/pyd/generators/iterate.py
raychorn/svn_Python-2.5.1
425005b1b489ba44ec0bb989e077297e8953d9be
[ "PSF-2.0" ]
null
null
null
Lib/site-packages/celerid/infrastructure/pyd/generators/iterate.py
raychorn/svn_Python-2.5.1
425005b1b489ba44ec0bb989e077297e8953d9be
[ "PSF-2.0" ]
null
null
null
import sys old_stdout = sys.stdout sys.stdout = file('iterate.txt', 'w') template = """\ } else static if (ARGS == %s) { foreach (%s; t) { temp = _make_pytuple(%s); if (temp is null) StackContext.throwYield(new DPyYield(null)); StackContext.throwYield(new DPyYield(temp)); }""" def args(i): return ['a%s' % i for i in range(0, i)] def pyargs(i): return ['_py(%s)' % p for p in args(i)] for i in range(2, 11): print template % (i, ', '.join(args(i)), ', '.join(pyargs(i))) print ' }' sys.stdout = old_stdout
26.416667
79
0.511041
5c5b264af1bb836d714c3303a5702b4a6de1f303
7,381
py
Python
mne/io/kit/coreg.py
rylaw/mne-python
aa526c8ed7049046734ca28493d99e841672b0eb
[ "BSD-3-Clause" ]
1
2021-03-18T01:35:17.000Z
2021-03-18T01:35:17.000Z
mne/io/kit/coreg.py
rylaw/mne-python
aa526c8ed7049046734ca28493d99e841672b0eb
[ "BSD-3-Clause" ]
2
2020-09-18T00:09:20.000Z
2020-11-10T17:47:10.000Z
mne/io/kit/coreg.py
rylaw/mne-python
aa526c8ed7049046734ca28493d99e841672b0eb
[ "BSD-3-Clause" ]
1
2021-04-01T15:56:39.000Z
2021-04-01T15:56:39.000Z
"""Coordinate Point Extractor for KIT system.""" # Author: Teon Brooks <teon.brooks@gmail.com> # # License: BSD (3-clause) from collections import OrderedDict from os import SEEK_CUR, path as op import pickle import re import numpy as np from .constants import KIT, FIFF from .._digitization import _make_dig_points from ...transforms import (Transform, apply_trans, get_ras_to_neuromag_trans, als_ras_trans) from ...utils import warn, _check_option INT32 = '<i4' FLOAT64 = '<f8' def read_mrk(fname): r"""Marker Point Extraction in MEG space directly from sqd. Parameters ---------- fname : str Absolute path to Marker file. File formats allowed: \*.sqd, \*.mrk, \*.txt, \*.pickled. Returns ------- mrk_points : ndarray, shape (n_points, 3) Marker points in MEG space [m]. """ from .kit import _read_dirs ext = op.splitext(fname)[-1] if ext in ('.sqd', '.mrk'): with open(fname, 'rb', buffering=0) as fid: dirs = _read_dirs(fid) fid.seek(dirs[KIT.DIR_INDEX_COREG]['offset']) # skips match_done, meg_to_mri and mri_to_meg fid.seek(KIT.INT + (2 * KIT.DOUBLE * 16), SEEK_CUR) mrk_count = np.fromfile(fid, INT32, 1)[0] pts = [] for _ in range(mrk_count): # mri_type, meg_type, mri_done, meg_done _, _, _, meg_done = np.fromfile(fid, INT32, 4) _, meg_pts = np.fromfile(fid, FLOAT64, 6).reshape(2, 3) if meg_done: pts.append(meg_pts) mrk_points = np.array(pts) elif ext == '.txt': mrk_points = _read_dig_kit(fname, unit='m') elif ext == '.pickled': with open(fname, 'rb') as fid: food = pickle.load(fid) try: mrk_points = food['mrk'] except Exception: err = ("%r does not contain marker points." % fname) raise ValueError(err) else: raise ValueError('KIT marker file must be *.sqd, *.mrk, *.txt or ' '*.pickled, *%s is not supported.' % ext) # check output mrk_points = np.asarray(mrk_points) if mrk_points.shape != (5, 3): err = ("%r is no marker file, shape is " "%s" % (fname, mrk_points.shape)) raise ValueError(err) return mrk_points def read_sns(fname): """Sensor coordinate extraction in MEG space. Parameters ---------- fname : str Absolute path to sensor definition file. Returns ------- locs : numpy.array, shape = (n_points, 3) Sensor coil location. """ p = re.compile(r'\d,[A-Za-z]*,([\.\-0-9]+),' + r'([\.\-0-9]+),([\.\-0-9]+),' + r'([\.\-0-9]+),([\.\-0-9]+)') with open(fname) as fid: locs = np.array(p.findall(fid.read()), dtype=float) return locs def _set_dig_kit(mrk, elp, hsp, eeg): """Add landmark points and head shape data to the KIT instance. Digitizer data (elp and hsp) are represented in [mm] in the Polhemus ALS coordinate system. This is converted to [m]. Parameters ---------- mrk : None | str | array_like, shape (5, 3) Marker points representing the location of the marker coils with respect to the MEG Sensors, or path to a marker file. elp : None | str | array_like, shape (8, 3) Digitizer points representing the location of the fiducials and the marker coils with respect to the digitized head shape, or path to a file containing these points. hsp : None | str | array, shape (n_points, 3) Digitizer head shape points, or path to head shape file. If more than 10`000 points are in the head shape, they are automatically decimated. eeg : dict Ordered dict of EEG dig points. Returns ------- dig_points : list List of digitizer points for info['dig']. dev_head_t : dict A dictionary describe the device-head transformation. hpi_results : list The hpi results. """ from ...coreg import fit_matched_points, _decimate_points if isinstance(hsp, str): hsp = _read_dig_kit(hsp) n_pts = len(hsp) if n_pts > KIT.DIG_POINTS: hsp = _decimate_points(hsp, res=0.005) n_new = len(hsp) warn("The selected head shape contained {n_in} points, which is " "more than recommended ({n_rec}), and was automatically " "downsampled to {n_new} points. The preferred way to " "downsample is using FastScan.".format( n_in=n_pts, n_rec=KIT.DIG_POINTS, n_new=n_new)) if isinstance(elp, str): elp_points = _read_dig_kit(elp) if len(elp_points) != 8: raise ValueError("File %r should contain 8 points; got shape " "%s." % (elp, elp_points.shape)) elp = elp_points elif len(elp) not in (6, 7, 8): raise ValueError("ELP should contain 6 ~ 8 points; got shape " "%s." % (elp.shape,)) if isinstance(mrk, str): mrk = read_mrk(mrk) mrk = apply_trans(als_ras_trans, mrk) nasion, lpa, rpa = elp[:3] nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa) elp = apply_trans(nmtrans, elp) hsp = apply_trans(nmtrans, hsp) eeg = OrderedDict((k, apply_trans(nmtrans, p)) for k, p in eeg.items()) # device head transform trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out='trans') nasion, lpa, rpa = elp[:3] elp = elp[3:] dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp, dig_ch_pos=eeg) dev_head_t = Transform('meg', 'head', trans) hpi_results = [dict(dig_points=[ dict(ident=ci, r=r, kind=FIFF.FIFFV_POINT_HPI, coord_frame=FIFF.FIFFV_COORD_UNKNOWN) for ci, r in enumerate(mrk)], coord_trans=dev_head_t)] return dig_points, dev_head_t, hpi_results def _read_dig_kit(fname, unit='auto'): # Read dig points from a file and return ndarray, using FastSCAN for .txt from ...channels.montage import ( read_polhemus_fastscan, read_dig_polhemus_isotrak, read_custom_montage, _check_dig_shape) assert unit in ('auto', 'm', 'mm') _, ext = op.splitext(fname) _check_option('file extension', ext[1:], ('hsp', 'elp', 'mat', 'txt')) if ext == '.txt': unit = 'mm' if unit == 'auto' else unit out = read_polhemus_fastscan(fname, unit=unit, on_header_missing='ignore') elif ext in ('.hsp', '.elp'): unit = 'm' if unit == 'auto' else unit mon = read_dig_polhemus_isotrak(fname, unit=unit) if fname.endswith('.hsp'): dig = [d['r'] for d in mon.dig if d['kind'] != FIFF.FIFFV_POINT_CARDINAL] else: dig = [d['r'] for d in mon.dig] if dig and \ mon.dig[0]['kind'] == FIFF.FIFFV_POINT_CARDINAL and \ mon.dig[0]['ident'] == FIFF.FIFFV_POINT_LPA: # LPA, Nasion, RPA -> NLR dig[:3] = [dig[1], dig[0], dig[2]] out = np.array(dig, float) else: assert ext == '.mat' out = np.array([d['r'] for d in read_custom_montage(fname).dig]) _check_dig_shape(out) return out
34.652582
79
0.581629
84ea7e37388a636a6a7384719cd0993a180c42e0
19,906
py
Python
push_new_pricing_to_statusdb.py
chuan-wang/standalone_scripts
66d0ee24cb77d2430a488a11043136f1c56f8e2b
[ "MIT" ]
3
2015-11-18T07:17:32.000Z
2018-06-18T15:21:53.000Z
push_new_pricing_to_statusdb.py
chuan-wang/standalone_scripts
66d0ee24cb77d2430a488a11043136f1c56f8e2b
[ "MIT" ]
43
2015-01-15T14:09:54.000Z
2022-03-30T04:49:18.000Z
push_new_pricing_to_statusdb.py
chuan-wang/standalone_scripts
66d0ee24cb77d2430a488a11043136f1c56f8e2b
[ "MIT" ]
22
2015-06-03T08:21:45.000Z
2019-09-16T06:38:45.000Z
#!/usr/bin/env python """ Reads the cost_calculator excel sheet and puts all that information into statusdb. """ import argparse from openpyxl import load_workbook import coloredlogs import logging import yaml from couchdb import Server import datetime from collections import OrderedDict import pprint FIRST_ROW = {'components': 9, 'products': 4} SHEET = {'components': 'Price list', 'products': 'Products'} # Skip columns which are calculated from the other fields SKIP = {'components': ['Price', 'Total', 'Per unit'], 'products': ['Internal', 'External']} # The name of the _id_ key and which variables that shouldn't be changed # while keeping the same _id_. If an update of any of these fields is needed, # a new id should be created. CONSERVED_KEY_SETS = {'products': ['Category', 'Type', 'Name'], 'components': ['Category', 'Type', 'Product name']} # The combination of these "columns" should be unique within the document, # a warning will be issued otherwise UNIQUE_KEY_SETS = {'products': ['Category', 'Type', 'Name'], 'components': ['Category', 'Type', 'Product name', 'Units']} NOT_NULL_KEYS = {'products': ['REF_ID', 'Category', 'Type', 'Name', 'Re-run fee'], 'components': ['REF_ID', 'Category', 'Type', 'Status', 'Product name', 'Units', 'Currency', 'List price', 'Discount']} MAX_NR_ROWS = 200 # Assuming the rows of products are sorted in the preferred order # Set up a logger with colored output logger = logging.getLogger('push_new_pricing_logger') logger.propagate = False # Otherwise the messages appeared twice coloredlogs.install(level='INFO', logger=logger, fmt='%(asctime)s %(levelname)s %(message)s') def check_unique(items, type): """Check whether all items within _items_ fulfill the uniqueness criteria according to the UNIQUE_KEY_SETS. Otherwise warn accordingly. """ key_val_set = set() for id, item in items.items(): keys = UNIQUE_KEY_SETS[type] t = tuple(item[key] for key in keys) # Check that it is not already added if t in key_val_set: logger.warning("Key combination {}:{} is included multiple " "times in the {} sheet. ".format(keys, t, type)) key_val_set.add(t) return True def check_conserved(new_items, current_items, type): """Ensures the keys in CONSERVED_KEY_SETS are conserved for each given id. Compares the new version against the currently active one. Params: new_items - A dict of the items that are to be added with ID attribute as the key. current_items - A dict of the items currently in the database with ID attribute as the key. type - Either "components" or "products" """ conserved_keys = CONSERVED_KEY_SETS[type] for id, new_item in new_items.items(): if str(id) in current_items: for conserved_key in conserved_keys: if conserved_key not in new_item: logger.warning("{} column not found in new {} row with " "id {}. This column should be kept " "conserved.".format(conserved_key, type, id)) if new_item[conserved_key] != current_items[str(id)][conserved_key]: logger.warning("{} should be conserved for {}. " "Violated for item with id {}. " "Found \"{}\" for new and \"{}\" for current. ".format( conserved_key, type, id, new_item[conserved_key], current_items[str(id)][conserved_key])) return True def check_not_null(items, type): """Make sure type specific columns (given by NOT_NULL_KEYS) are not null.""" not_null_keys = NOT_NULL_KEYS[type] for id, item in items.items(): for not_null_key in not_null_keys: if item[not_null_key] is None or item[not_null_key] == '': # Special case for discontinued components if 'Status' in item and item['Status'] == 'Discontinued': pass else: raise ValueError("{} cannot be empty for {}." " Violated for item with id {}.".\ format(not_null_key, type, id)) def check_discontinued(components, products): """Make sure no discontinued components are used for enabled products.""" for product_id, product in products.items(): component_ids = [] if product["Components"]: component_ids += list(product["Components"].keys()) if product["Alternative Components"]: component_ids += list(product["Alternative Components"].keys()) for component_id in component_ids: if product["Status"] == "Enabled": if components[component_id]["Status"] == "Discontinued": logger.warning(("Product {}:\"{}\" uses the discontinued component " "{}:\"{}\", changing product status to \"discontinued\"").\ format(product_id, products[product_id]["Name"], \ component_id, components[component_id]["Product name"])) product["Status"] = "Discontinued" def get_current_items(db, type): rows = db.view("entire_document/by_version", descending=True, limit=1).rows if len(rows) != 0: doc = rows[0].value return doc[type] return {} def is_empty_row(comp): for k, v in comp.items(): if v != '': return False return True def load_products(wb): ws = wb[SHEET['products']] row = FIRST_ROW['products'] header_row = row - 1 header_cells = ws[header_row] header = {} product_price_columns = {} for cell in header_cells: cell_val = cell.value if cell_val == 'ID': cell_val = 'REF_ID' # Don't want to confuse it with couchdb ids # Get cell column as string cell_column = cell.coordinate.replace(str(header_row), '') if cell_val not in SKIP['products']: header[cell_column] = cell_val else: # save a lookup to find column of prices product_price_columns[cell_val] = cell_column products = OrderedDict() # Unkown number of rows while row < MAX_NR_ROWS: new_product = {} fetch_prices = False # default behaviour for col, header_val in header.items(): val = ws["{}{}".format(col, row)].value if val is None: val = '' if header_val in ['Components', 'Alternative Components']: # Some cells might be interpreted as floats # e.g. "37,78" val = str(val) val = val.replace('.', ',') if val: val_list = [] for comp_id in val.split(','): try: int(comp_id) except ValueError: print("Product on row {} has component with " "invalid id {}: not an integer, " " aborting!".format(row, comp_id)) raise # Make a list with all individual components val_list.append(comp_id) val = {comp_ref_id: {'quantity': 1} for comp_ref_id in val_list} elif header_val == 'Components': # If no components are listed, price should be fetched as well, # unless the row is in fact empty. if not is_empty_row(new_product): fetch_prices = True # Comment column occurs after the price columns, so # checking for this ensures that the prices have been parsed if (header_val == 'Comment') and fetch_prices: # Fixed price is added when price does not # directly depend on the components new_product['fixed_price'] = {} int_cell = "{}{}".format( product_price_columns['Internal'], row ) ext_cell = "{}{}".format( product_price_columns['External'], row ) new_product['fixed_price']['price_in_sek'] = ws[int_cell].value new_product['fixed_price']['external_price_in_sek'] = ws[ext_cell].value new_product[header_val] = val if not is_empty_row(new_product): # The id seems to be stored as a string in the database # so might as well always have the ids as strings. product_id = str(new_product['REF_ID']) # Prepare for a status value on products if 'Status' not in new_product: new_product['Status'] = "Enabled" products[product_id] = new_product row += 1 return products def load_components(wb): ws = wb[SHEET['components']] # Unkown number of rows row = FIRST_ROW['components'] header_row = row - 1 header_cells = ws[header_row] header = {} for cell in header_cells: cell_val = cell.value if cell_val == 'ID': cell_val = 'REF_ID' # Don't want to confuse it with couchdb ids if cell_val not in SKIP['components']: # Get cell column as string cell_column = cell.coordinate.replace(str(header_row), '') header[cell_column] = cell_val components = {} while row < MAX_NR_ROWS: new_component = {} for col, header_val in header.items(): val = ws["{}{}".format(col, row)].value if val is None: val = '' elif header_val == 'REF_ID': # The id seems to be stored as a string in the database # so might as well always have the ids as strings. try: int(val) except ValueError: print("ID value {} for row {} is not an id, " "aborting.".format(val, row)) val = str(val) new_component[header_val] = val if new_component['REF_ID'] in components: # Violates the uniqueness of the ID raise ValueError("ID {} is included multiple " "times in the {} sheet. " "ABORTING.".format(new_component['REF_ID'], type)) if not is_empty_row(new_component): components[new_component['REF_ID']] = new_component row += 1 return components def get_current_version(db): view_result = db.view('entire_document/by_version', limit=1, descending=True) if view_result.rows: return int(view_result.rows[0].value['Version']) else: return 0 def compare_two_objects(obj1, obj2, ignore_updated_time=True): # Make copies in order to ignore fields obj1_copy = obj1.copy() obj2_copy = obj2.copy() if ignore_updated_time: if 'Last Updated' in obj1_copy: obj1_copy.pop('Last Updated') if 'Last Updated' in obj2_copy: obj2_copy.pop('Last Updated') return obj1_copy == obj2_copy def set_last_updated_field(new_objects, current_objects, object_type): # if object is not found or changed in current set last updated field now = datetime.datetime.now().isoformat() for id in list(new_objects.keys()): updated = False if id in current_objects: # Beware! This simple == comparison is quite brittle. Sensitive to # str vs int and such. the_same = compare_two_objects(new_objects[id], current_objects[id]) if not the_same: updated = True else: updated = True if updated: print("Updating {}: {}".format(object_type, id)) new_objects[id]['Last Updated'] = now else: new_objects[id]['Last Updated'] = current_objects[id]['Last Updated'] return new_objects def main_push(input_file, config, user, user_email, add_components=False, add_products=False, push=False): with open(config) as settings_file: server_settings = yaml.load(settings_file, Loader=yaml.SafeLoader) couch = Server(server_settings.get("couch_server", None)) wb = load_workbook(input_file, read_only=True, data_only=True) # setup a default doc that will be pushed doc = {} doc['Issued by user'] = user doc['Issued by user email'] = user_email doc['Issued at'] = datetime.datetime.now().isoformat() # A newly pushed document is always a draft doc['Draft'] = True # --- Components --- # comp_db = couch['pricing_components'] components = load_components(wb) check_unique(components, 'components') check_not_null(components, 'components') current_components = get_current_items(comp_db, 'components') if current_components: check_conserved(components, current_components, 'components') # Modify the `last updated`-field of each item components = set_last_updated_field(components, current_components, 'component') # Save it but push it only if products are also parsed correctly comp_doc = doc.copy() comp_doc['components'] = components current_version = get_current_version(comp_db) comp_doc['Version'] = current_version + 1 # --- Products --- # prod_db = couch['pricing_products'] products = load_products(wb) check_unique(products, 'products') check_not_null(products, 'products') current_products = get_current_items(prod_db, 'products') if current_products: check_conserved(products, current_products, 'products') # Modify the `last updated`-field of each item products = set_last_updated_field(products, current_products, 'product') prod_doc = doc.copy() prod_doc['products'] = products current_version = get_current_version(prod_db) prod_doc['Version'] = current_version + 1 # Verify no discontinued components are used for enabled products check_discontinued(components, products) # --- Push or Print --- # if push: comp_db = couch['pricing_components'] prod_db = couch['pricing_products'] curr_comp_rows = comp_db.view("entire_document/by_version", descending=True, limit=1).rows curr_prod_rows = prod_db.view("entire_document/by_version", descending=True, limit=1).rows # Check that the latest one is not a draft if (len(curr_comp_rows) == 0) or (len(curr_prod_rows) == 0): print("No current version found. This will be the first!") else: curr_comp_doc = curr_comp_rows[0].value curr_prod_doc = curr_prod_rows[0].value if curr_comp_doc['Draft'] or curr_prod_doc['Draft']: print("Most recent version is a draft. Please remove or " "publish this one before pushing a new draft. Aborting!") return logger.info( 'Pushing components document version {}'.format(comp_doc['Version']) ) comp_db.save(comp_doc) logger.info( 'Pushing products document version {}'.format(prod_doc['Version']) ) prod_db.save(prod_doc) else: # Prettyprint the json output pprint.pprint(comp_doc) pprint.pprint(prod_doc) def main_publish(config, user, user_email, dryrun=True): with open(config) as settings_file: server_settings = yaml.load(settings_file, Loader=yaml.SafeLoader) couch = Server(server_settings.get("couch_server", None)) comp_db = couch['pricing_components'] prod_db = couch['pricing_products'] comp_rows = comp_db.view("entire_document/by_version", descending=True, limit=1).rows prod_rows = prod_db.view("entire_document/by_version", descending=True, limit=1).rows if (len(comp_rows) == 0) or (len(prod_rows) == 0): print("No draft version found to publish. Aborting!") return comp_doc = comp_rows[0].value prod_doc = prod_rows[0].value if (not comp_doc['Draft']) or (not prod_doc['Draft']): print("Most recent version is not a draft. Aborting!") return now = datetime.datetime.now().isoformat() comp_doc['Draft'] = False comp_doc['Published'] = now prod_doc['Draft'] = False prod_doc['Published'] = now if not dryrun: logger.info( 'Pushing components document version {}'.format(comp_doc['Version']) ) comp_db.save(comp_doc) logger.info( 'Pushing products document version {}'.format(prod_doc['Version']) ) prod_db.save(prod_doc) else: print(prod_doc, comp_doc) if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) subparsers = parser.add_subparsers( title='actions', dest='subcommand_name', description="Either 'push' for uploading a draft " "pricing version or 'publish' to make " "the current draft the latest version" ) push_parser = subparsers.add_parser('push') push_parser.add_argument('pricing_excel_file', help="The excel file currently used for pricing") push_parser.add_argument('--statusdb_config', required=True, help='The genomics-status settings.yaml file.') push_parser.add_argument('--push', action='store_true', help='Use this tag to actually push to the databse,' ' otherwise it is just dryrun') push_parser.add_argument('--user', required=True, help='User that change the document') push_parser.add_argument('--user_email', required=True, help='Email for the user who changed the document') publish_parser = subparsers.add_parser('publish') publish_parser.add_argument('--statusdb_config', required=True, help='The genomics-status settings.yaml file.') publish_parser.add_argument('--user', required=True, help='User that change the document') publish_parser.add_argument('--user_email', required=True, help='Email for the user who changed the document') publish_parser.add_argument('--dryrun', action='store_true', help="Use this tag to only print what would " "have been done") args = parser.parse_args() if args.subcommand_name == 'push': main_push(args.pricing_excel_file, args.statusdb_config, args.user, args.user_email, push=args.push) elif args.subcommand_name == 'publish': main_publish(args.statusdb_config, args.user, args.user_email, dryrun=args.dryrun)
38.428571
99
0.576861
93a0a3f5c554f0ef23e5348c19406280eaa22dbe
4,133
py
Python
tensorflow_bring_your_own_california_housing_local_training_and_batch_transform/tensorflow_bring_your_own_california_housing_local_training_and_batch_transform.py
aws-samples/amazon-sagemaker-local-mode
f470d7b543f7895094816c3f58b9981e044764d8
[ "MIT-0" ]
111
2020-11-10T18:09:34.000Z
2022-03-28T12:55:37.000Z
tensorflow_bring_your_own_california_housing_local_training_and_batch_transform/tensorflow_bring_your_own_california_housing_local_training_and_batch_transform.py
aws-samples/amazon-sagemaker-local-mode
f470d7b543f7895094816c3f58b9981e044764d8
[ "MIT-0" ]
9
2020-11-18T10:43:29.000Z
2022-03-08T08:42:52.000Z
tensorflow_bring_your_own_california_housing_local_training_and_batch_transform/tensorflow_bring_your_own_california_housing_local_training_and_batch_transform.py
aws-samples/amazon-sagemaker-local-mode
f470d7b543f7895094816c3f58b9981e044764d8
[ "MIT-0" ]
20
2020-11-10T09:13:15.000Z
2022-03-02T14:20:42.000Z
# This is a sample Python program that trains a BYOC TensorFlow model, and then performs inference. # This implementation will work on your local computer. # # Prerequisites: # 1. Install required Python packages: # pip install boto3 sagemaker pandas scikit-learn # pip install 'sagemaker[local]' # 2. Docker Desktop has to be installed on your computer, and running. # 3. Open terminal and run the following commands: # docker build -t sagemaker-tensorflow2-batch-transform-local container/. ######################################################################################################################## import os import pandas as pd import sklearn.model_selection from sagemaker.estimator import Estimator from sklearn.datasets import * from sklearn.preprocessing import StandardScaler DUMMY_IAM_ROLE = 'arn:aws:iam::111111111111:role/service-role/AmazonSageMaker-ExecutionRole-20200101T000001' def download_training_and_eval_data(): if os.path.isfile('./data/train/x_train.csv') and \ os.path.isfile('./data/test/x_test.csv') and \ os.path.isfile('./data/train/y_train.csv') and \ os.path.isfile('./data/test/y_test.csv'): print('Training and evaluation datasets exist. Skipping Download') else: print('Downloading training and evaluation dataset') data_dir = os.path.join(os.getcwd(), 'data') os.makedirs(data_dir, exist_ok=True) train_dir = os.path.join(os.getcwd(), 'data/train') os.makedirs(train_dir, exist_ok=True) test_dir = os.path.join(os.getcwd(), 'data/test') os.makedirs(test_dir, exist_ok=True) input_dir = os.path.join(os.getcwd(), 'data/input') os.makedirs(input_dir, exist_ok=True) output_dir = os.path.join(os.getcwd(), 'data/output') os.makedirs(output_dir, exist_ok=True) data_set = fetch_california_housing() X = pd.DataFrame(data_set.data, columns=data_set.feature_names) Y = pd.DataFrame(data_set.target) # We partition the dataset into 2/3 training and 1/3 test set. x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(X, Y, test_size=0.33) scaler = StandardScaler() scaler.fit(x_train) x_train = scaler.transform(x_train) x_test = scaler.transform(x_test) pd.DataFrame(x_train).to_csv(os.path.join(train_dir, 'x_train.csv'), header=None, index=False) pd.DataFrame(x_test).to_csv(os.path.join(test_dir, 'x_test.csv'),header=None, index=False) pd.DataFrame(x_test).to_csv(os.path.join(input_dir, 'x_test.csv'),header=None, index=False) pd.DataFrame(y_train).to_csv(os.path.join(train_dir, 'y_train.csv'), header=None, index=False) pd.DataFrame(y_test).to_csv(os.path.join(test_dir, 'y_test.csv'), header=None, index=False) print('Downloading completed') def main(): download_training_and_eval_data() image = 'sagemaker-tensorflow2-batch-transform-local' print('Starting model training.') california_housing_estimator = Estimator( image, DUMMY_IAM_ROLE, hyperparameters={'epochs': 10, 'batch_size': 64, 'learning_rate': 0.1}, instance_count=1, instance_type="local") inputs = {'train': 'file://./data/train', 'test': 'file://./data/test'} california_housing_estimator.fit(inputs, logs=True) print('Completed model training') print('Running Batch Transform in local mode') tensorflow_serving_transformer = california_housing_estimator.transformer( instance_count=1, instance_type='local', output_path='file:./data/output', ) tensorflow_serving_transformer.transform('file://./data/input', split_type='Line', content_type='text/csv') print('Printing Batch Transform output file content') output_file = open('./data/output/x_test.csv.out', 'r').read() print(output_file) if __name__ == "__main__": main()
38.990566
120
0.646988
47a3c2e0e95006175cacd60fb6f18c129bfc15fb
7,723
py
Python
samples/python/tensorflow_object_detection_api/image_batcher.py
L-Net-1992/TensorRT
34b664d404001bd724cb56b52a6e0e05e1fd97f2
[ "Apache-2.0" ]
null
null
null
samples/python/tensorflow_object_detection_api/image_batcher.py
L-Net-1992/TensorRT
34b664d404001bd724cb56b52a6e0e05e1fd97f2
[ "Apache-2.0" ]
null
null
null
samples/python/tensorflow_object_detection_api/image_batcher.py
L-Net-1992/TensorRT
34b664d404001bd724cb56b52a6e0e05e1fd97f2
[ "Apache-2.0" ]
null
null
null
# # SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import numpy as np from PIL import Image class ImageBatcher: """ Creates batches of pre-processed images. """ def __init__(self, input, shape, dtype, max_num_images=None, exact_batches=False, preprocessor="fixed_shape_resizer"): """ :param input: The input directory to read images from. :param shape: The tensor shape of the batch to prepare, either in NCHW or NHWC format. :param dtype: The (numpy) datatype to cast the batched data to. :param max_num_images: The maximum number of images to read from the directory. :param exact_batches: This defines how to handle a number of images that is not an exact multiple of the batch size. If false, it will pad the final batch with zeros to reach the batch size. If true, it will *remove* the last few images in excess of a batch size multiple, to guarantee batches are exact (useful for calibration). :param preprocessor: Set the preprocessor to use, depending on which network is being used. """ # Find images in the given input path input = os.path.realpath(input) self.images = [] extensions = [".jpg", ".jpeg", ".png", ".bmp"] def is_image(path): return os.path.isfile(path) and os.path.splitext(path)[1].lower() in extensions if os.path.isdir(input): self.images = [os.path.join(input, f) for f in os.listdir(input) if is_image(os.path.join(input, f))] self.images.sort() elif os.path.isfile(input): if is_image(input): self.images.append(input) self.num_images = len(self.images) if self.num_images < 1: print("No valid {} images found in {}".format("/".join(extensions), input)) sys.exit(1) # Handle Tensor Shape self.dtype = dtype self.shape = shape assert len(self.shape) == 4 self.batch_size = shape[0] assert self.batch_size > 0 self.format = None self.width = -1 self.height = -1 if self.shape[1] == 3: self.format = "NCHW" self.height = self.shape[2] self.width = self.shape[3] elif self.shape[3] == 3: self.format = "NHWC" self.height = self.shape[1] self.width = self.shape[2] assert all([self.format, self.width > 0, self.height > 0]) # Adapt the number of images as needed if max_num_images and 0 < max_num_images < len(self.images): self.num_images = max_num_images if exact_batches: self.num_images = self.batch_size * (self.num_images // self.batch_size) if self.num_images < 1: print("Not enough images to create batches") sys.exit(1) self.images = self.images[0:self.num_images] # Subdivide the list of images into batches self.num_batches = 1 + int((self.num_images - 1) / self.batch_size) self.batches = [] for i in range(self.num_batches): start = i * self.batch_size end = min(start + self.batch_size, self.num_images) self.batches.append(self.images[start:end]) # Indices self.image_index = 0 self.batch_index = 0 self.preprocessor = preprocessor def preprocess_image(self, image_path): """ The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. This Image Batcher implements one algorithm for now: * Resizes and pads the image to fit the input size. :param image_path: The path to the image on disk to load. :return: Two values: A numpy array holding the image sample, ready to be contacatenated into the rest of the batch, and the resize scale used, if any. """ def resize_pad(image, pad_color=(0, 0, 0)): """ A subroutine to implement padding and resizing. This will resize the image to fit fully within the input size, and pads the remaining bottom-right portions with the value provided. :param image: The PIL image object :pad_color: The RGB values to use for the padded area. Default: Black/Zeros. :return: Two values: The PIL image object already padded and cropped, and the resize scale used. """ # Get characteristics. width, height = image.size width_scale = width / self.width height_scale = height / self.height # Depending on preprocessor, box scaling will be slightly different. if self.preprocessor == "fixed_shape_resizer": scale = [self.width / width, self.height / height] image = image.resize((self.width, self.height), resample=Image.BILINEAR) return image, scale elif self.preprocessor == "keep_aspect_ratio_resizer": scale = 1.0 / max(width_scale, height_scale) image = image.resize((round(width * scale), round(height * scale)), resample=Image.BILINEAR) pad = Image.new("RGB", (self.width, self.height)) pad.paste(pad_color, [0, 0, self.width, self.height]) pad.paste(image) return pad, scale scale = None image = Image.open(image_path) image = image.convert(mode='RGB') if self.preprocessor == "fixed_shape_resizer" or self.preprocessor == "keep_aspect_ratio_resizer": #Resize & Pad with ImageNet mean values and keep as [0,255] Normalization image, scale = resize_pad(image, (124, 116, 104)) image = np.asarray(image, dtype=self.dtype) else: print("Preprocessing method {} not supported".format(self.preprocessor)) sys.exit(1) if self.format == "NCHW": image = np.transpose(image, (2, 0, 1)) return image, scale def get_batch(self): """ Retrieve the batches. This is a generator object, so you can use it within a loop as: for batch, images in batcher.get_batch(): ... Or outside of a batch with the next() function. :return: A generator yielding three items per iteration: a numpy array holding a batch of images, the list of paths to the images loaded within this batch, and the list of resize scales for each image in the batch. """ for i, batch_images in enumerate(self.batches): batch_data = np.zeros(self.shape, dtype=self.dtype) batch_scales = [None] * len(batch_images) for i, image in enumerate(batch_images): self.image_index += 1 batch_data[i], batch_scales[i] = self.preprocess_image(image) self.batch_index += 1 yield batch_data, batch_images, batch_scales
44.641618
122
0.625793
7529855d393e5525459fe00af5b777073ea11714
7,645
py
Python
client/tests/interconnect/network_test.py
beehive-lab/DFLOW
9710e76bd957df3b9cd3cecad2967990ca1415f7
[ "Apache-2.0" ]
1
2021-04-17T00:48:35.000Z
2021-04-17T00:48:35.000Z
client/tests/interconnect/network_test.py
beehive-lab/DFLOW
9710e76bd957df3b9cd3cecad2967990ca1415f7
[ "Apache-2.0" ]
null
null
null
client/tests/interconnect/network_test.py
beehive-lab/DFLOW
9710e76bd957df3b9cd3cecad2967990ca1415f7
[ "Apache-2.0" ]
null
null
null
import socket import unittest from unittest.mock import ( patch, MagicMock, call ) from client.interconnect.network import NetworkLink class NetworkLinkTestCase(unittest.TestCase): """ A suite of tests surrounding the NetworkLink class. """ def setUp(self) -> None: self._test_host_name = 'test_host' self._test_port_num = 8080 self._test_data = b'some_test_binary_string' self._test_ca_cert = 'test_ca_cert' self._test_cert = 'test_cert' self._test_key = 'test_key' self._setup_mocks_and_patches() def _setup_mocks_and_patches(self): """ Set up all the patches and mocks needed for the tests in this suite. """ # Set up patches for socket.Socket() create_default_context() # along with and add cleanup. self._mock_socket_constructor = patch('socket.socket').start() self._mock_create_default_context = ( patch('ssl.create_default_context').start() ) self.addCleanup(patch.stopall) # Create a mock socket instance and make sure it is returned by the # mock socket constructor. self._mock_socket_instance = MagicMock() self._mock_socket_constructor.return_value = \ self._mock_socket_instance # Create a mock SSLContext instance and make sure it is returned by # the mock create_default_context method. self._mock_ssl_context = MagicMock() self._mock_create_default_context.return_value = \ self._mock_ssl_context # Create a mock ssl socket and return it from SSLContext.wrap_socket(). self._mock_ssl_socket = MagicMock() self._mock_ssl_context.wrap_socket.return_value = \ self._mock_ssl_socket def test_network_link_create(self): """ Test that network link is created correctly. """ # Create the network link. NetworkLink( self._test_host_name, self._test_port_num, self._test_ca_cert, self._test_cert, self._test_key ) # Make sure the ssl context was created with correct parameters. self._mock_create_default_context.assert_called_with( cafile=self._test_ca_cert ) # Make sure the certificate and private key were loaded correctly. self._mock_ssl_context.load_cert_chain.assert_called_with( certfile=self._test_cert, keyfile=self._test_key ) # Make sure the hostname checking is set correctly. self.assertFalse(self._mock_ssl_context.check_hostname) # Make sure the socket was created with correct parameters. self._mock_socket_constructor.assert_called_with( socket.AF_INET, socket.SOCK_STREAM ) # Make sure the ssl context was used to wrap the socket. self._mock_ssl_context.wrap_socket.assert_called_with( self._mock_socket_instance ) def test_network_link_connect(self): """ Test that network link connects correctly. """ # Create the network link and call connect(). network_link = NetworkLink( self._test_host_name, self._test_port_num, self._test_ca_cert, self._test_cert, self._test_key ) network_link.connect() # Make sure connect was called on the socket with correct # parameters. self._mock_ssl_socket.connect.assert_called_with( (self._test_host_name, self._test_port_num) ) def test_network_link_disconnect(self): """ Test that network link disconnects correctly. """ # Create the network link and call connect() then disconnect. network_link = NetworkLink( self._test_host_name, self._test_port_num, self._test_ca_cert, self._test_cert, self._test_key ) network_link.connect() network_link.disconnect() # Make sure disconnect was called on the socket. self._mock_ssl_socket.close.assert_called() def test_network_link_reconnect(self): """ Test that network link reconnects correctly. """ # Create a manager mock that we can use to verify the order of # calls is correct. mock_call_manager = MagicMock() mock_call_manager.attach_mock(self._mock_socket_constructor, 'create') mock_call_manager.attach_mock(self._mock_ssl_socket.connect, 'connect') mock_call_manager.attach_mock(self._mock_ssl_socket.close, 'close') # Create the network link and call connect() then reconnect. network_link = NetworkLink( self._test_host_name, self._test_port_num, self._test_ca_cert, self._test_cert, self._test_key ) network_link._connected = True network_link.reconnect() # Check that when reconnect is called the existing socket is first # closed before a new one is created. self.assertEqual( [ call.create(socket.AF_INET, socket.SOCK_STREAM), call.close(), call.create(socket.AF_INET, socket.SOCK_STREAM), call.connect((self._test_host_name, self._test_port_num)) ], mock_call_manager.mock_calls ) def test_network_link_send(self): """ Test that network link sends data correctly. """ # Create the network link. network_link = NetworkLink( self._test_host_name, self._test_port_num, self._test_ca_cert, self._test_cert, self._test_key ) network_link._connected = True # Create a byte string and attempt to send it through the network link. network_link.send(self._test_data) # Make sure the correct data was passed to the underlying socket. self._mock_ssl_socket.sendall.assert_called_with(self._test_data) def test_network_link_receive(self): """ Test that network link receives data correctly. """ # Create some messages that we expect to receive. expected_data_values = [ b'msg1', b'msg2', b'msg3', b'msg4', b'msg5', b'msg6', ] # Set the socket recv method to return the data in an unpredictable # manner such as may be seen when streaming bytes over the network. self._mock_ssl_socket.recv.side_effect = [ b'msg1\nmsg2\nmsg3\n', b'msg', b'4', b'\n', b'msg5\nmsg', b'6\n' ] # Create the network link. network_link = NetworkLink( self._test_host_name, self._test_port_num, self._test_ca_cert, self._test_cert, self._test_key ) network_link._connected = True # Repeatedly call the receive() method on the network link and verify # that the messages returned are correct. for expected_data in expected_data_values: actual_data = network_link.receive() # Make sure the recv() method of the underlying socket was called # and the data was returned as expected. self.assertEqual(expected_data, actual_data) if __name__ == '__main__': unittest.main()
32.121849
79
0.615958
efbdd1ba6842d85e82149346e9b4559527a1aacd
2,023
py
Python
tensorflow/python/profiler/profiler.py
tianyapiaozi/tensorflow
fb3ce0467766a8e91f1da0ad7ada7c24fde7a73a
[ "Apache-2.0" ]
71
2017-05-25T16:02:15.000Z
2021-06-09T16:08:08.000Z
tensorflow/python/profiler/profiler.py
shrikunjsarda/tensorflow
7e8927e7af0c51ac20a63bd4eab6ff83df1a39ae
[ "Apache-2.0" ]
133
2017-04-26T16:49:49.000Z
2019-10-15T11:39:26.000Z
tensorflow/python/profiler/profiler.py
shrikunjsarda/tensorflow
7e8927e7af0c51ac20a63bd4eab6ff83df1a39ae
[ "Apache-2.0" ]
31
2018-09-11T02:17:17.000Z
2021-12-15T10:33:35.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """profiler python module provides APIs to profile TensorFlow models. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.core.profiler.tfprof_log_pb2 import OpLogProto from tensorflow.core.profiler.tfprof_output_pb2 import AdviceProto from tensorflow.core.profiler.tfprof_output_pb2 import GraphNodeProto from tensorflow.core.profiler.tfprof_output_pb2 import MultiGraphNodeProto from tensorflow.python.profiler.model_analyzer import advise from tensorflow.python.profiler.model_analyzer import profile from tensorflow.python.profiler.model_analyzer import Profiler from tensorflow.python.profiler.option_builder import ProfileOptionBuilder from tensorflow.python.profiler.tfprof_logger import write_op_log from tensorflow.python.util.tf_export import tf_export _allowed_symbols = [ 'Profiler', 'profile', 'ProfileOptionBuilder', 'advise', 'write_op_log', ] _allowed_symbols.extend([ 'GraphNodeProto', 'MultiGraphNodeProto', 'AdviceProto', 'OpLogProto', ]) # Export protos tf_export('profiler.GraphNodeProto')(GraphNodeProto) tf_export('profiler.MultiGraphNodeProto')(MultiGraphNodeProto) tf_export('profiler.AdviceProto')(AdviceProto) tf_export('profiler.OpLogProto')(OpLogProto)
36.125
80
0.773604
b6ae07747fc7df309d15f33d337600f94a139bfe
432
py
Python
molo/core/migrations/0071_remove_old_image_hashes.py
Ishma59/molo
4fd31df9266bc251e09e9339a132d3ccd4143c69
[ "BSD-2-Clause" ]
25
2015-09-26T13:45:30.000Z
2018-09-13T14:12:20.000Z
molo/core/migrations/0071_remove_old_image_hashes.py
Ishma59/molo
4fd31df9266bc251e09e9339a132d3ccd4143c69
[ "BSD-2-Clause" ]
510
2015-05-29T09:30:44.000Z
2018-12-11T09:08:11.000Z
molo/core/migrations/0071_remove_old_image_hashes.py
Ishma59/molo
4fd31df9266bc251e09e9339a132d3ccd4143c69
[ "BSD-2-Clause" ]
5
2020-03-26T19:30:13.000Z
2020-09-04T16:35:59.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations def delete_imageinfo(apps, schema_editor): ImageInfo = apps.get_model('core.ImageInfo') ImageInfo.objects.all().delete() class Migration(migrations.Migration): dependencies = [ ('core', '0070_add_service_directory_api'), ] operations = [ migrations.RunPython(delete_imageinfo), ]
20.571429
51
0.694444
64afdd8337e1499dcd12e439c8d3a5081a86d0aa
10,323
py
Python
2- Programa/geopy-master/test/geocoders/base.py
federicopratto/Algoritmos-y-Programacion-1---TP-1
d9c1071f16171ad563ec02eb4b1d5ea6f657b2ac
[ "MIT" ]
null
null
null
2- Programa/geopy-master/test/geocoders/base.py
federicopratto/Algoritmos-y-Programacion-1---TP-1
d9c1071f16171ad563ec02eb4b1d5ea6f657b2ac
[ "MIT" ]
null
null
null
2- Programa/geopy-master/test/geocoders/base.py
federicopratto/Algoritmos-y-Programacion-1---TP-1
d9c1071f16171ad563ec02eb4b1d5ea6f657b2ac
[ "MIT" ]
null
null
null
import unittest from mock import patch, sentinel import warnings import geopy.compat import geopy.geocoders from geopy.exc import GeocoderNotFound, GeocoderQueryError from geopy.geocoders import GoogleV3, get_geocoder_for_service from geopy.geocoders.base import Geocoder from geopy.point import Point class GetGeocoderTestCase(unittest.TestCase): def test_get_geocoder_for_service(self): self.assertEqual(get_geocoder_for_service("google"), GoogleV3) self.assertEqual(get_geocoder_for_service("googlev3"), GoogleV3) def test_get_geocoder_for_service_raises_for_unknown(self): with self.assertRaises(GeocoderNotFound): get_geocoder_for_service("") class GeocoderTestCase(unittest.TestCase): @classmethod def setUpClass(cls): cls.geocoder = Geocoder() def test_init_with_args(self): format_string = '%s Los Angeles, CA USA' scheme = 'http' timeout = 942 proxies = {'https': '192.0.2.0'} user_agent = 'test app' ssl_context = sentinel.some_ssl_context geocoder = Geocoder( format_string=format_string, scheme=scheme, timeout=timeout, proxies=proxies, user_agent=user_agent, ssl_context=ssl_context, ) for attr in ('format_string', 'scheme', 'timeout', 'proxies', 'ssl_context'): self.assertEqual(locals()[attr], getattr(geocoder, attr)) self.assertEqual(user_agent, geocoder.headers['User-Agent']) def test_init_with_defaults(self): attr_to_option = { 'format_string': 'default_format_string', 'scheme': 'default_scheme', 'timeout': 'default_timeout', 'proxies': 'default_proxies', 'ssl_context': 'default_ssl_context', } geocoder = Geocoder() for geocoder_attr, options_attr in attr_to_option.items(): self.assertEqual(getattr(geopy.geocoders.options, options_attr), getattr(geocoder, geocoder_attr)) self.assertEqual(geopy.geocoders.options.default_user_agent, geocoder.headers['User-Agent']) @patch.object(geopy.geocoders.options, 'default_proxies', {'https': '192.0.2.0'}) @patch.object(geopy.geocoders.options, 'default_timeout', 10) @patch.object(geopy.geocoders.options, 'default_ssl_context', sentinel.some_ssl_context) def test_init_with_none_overrides_default(self): geocoder = Geocoder(proxies=None, timeout=None, ssl_context=None) self.assertIsNone(geocoder.proxies) self.assertIsNone(geocoder.timeout) self.assertIsNone(geocoder.ssl_context) @patch.object(geopy.geocoders.options, 'default_user_agent', 'mocked_user_agent/0.0.0') def test_user_agent_default(self): geocoder = Geocoder() self.assertEqual(geocoder.headers['User-Agent'], 'mocked_user_agent/0.0.0') def test_user_agent_custom(self): geocoder = Geocoder( user_agent='my_user_agent/1.0' ) self.assertEqual(geocoder.headers['User-Agent'], 'my_user_agent/1.0') @patch.object(geopy.geocoders.options, 'default_timeout', 12) def test_call_geocoder_timeout(self): url = 'spam://ham/eggs' g = Geocoder() self.assertEqual(g.timeout, 12) # Suppress another (unrelated) warning when running tests on an old Python. with patch('geopy.compat._URLLIB_SUPPORTS_SSL_CONTEXT', True), \ patch.object(g, 'urlopen') as mock_urlopen: g._call_geocoder(url, raw=True) args, kwargs = mock_urlopen.call_args self.assertEqual(kwargs['timeout'], 12) g._call_geocoder(url, timeout=7, raw=True) args, kwargs = mock_urlopen.call_args self.assertEqual(kwargs['timeout'], 7) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') g._call_geocoder(url, timeout=None, raw=True) args, kwargs = mock_urlopen.call_args self.assertEqual(kwargs['timeout'], 12) self.assertEqual(1, len(w)) def test_ssl_context_for_old_python(self): # Before (exclusive) 2.7.9 and 3.4.3. # Keep the reference, because `geopy.compat.HTTPSHandler` will be # mocked below. orig_HTTPSHandler = geopy.compat.HTTPSHandler class HTTPSHandlerStub(geopy.compat.HTTPSHandler): def __init__(self): # No `context` arg. orig_HTTPSHandler.__init__(self) if hasattr(geopy.compat, '__warningregistry__'): # If running tests on an old Python, the warning we are going # to test might have been already issued and recorded in # the registry. Clean it up, so we could receive the warning again. del geopy.compat.__warningregistry__ with patch('geopy.compat._URLLIB_SUPPORTS_SSL_CONTEXT', geopy.compat._is_urllib_context_supported(HTTPSHandlerStub)), \ patch('geopy.compat.HTTPSHandler', HTTPSHandlerStub), \ warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.assertFalse(geopy.compat._URLLIB_SUPPORTS_SSL_CONTEXT) self.assertEqual(0, len(w)) Geocoder() self.assertEqual(1, len(w)) def test_ssl_context_for_newer_python(self): # From (inclusive) 2.7.9 and 3.4.3. # Keep the reference, because `geopy.compat.HTTPSHandler` will be # mocked below. orig_HTTPSHandler = geopy.compat.HTTPSHandler class HTTPSHandlerStub(geopy.compat.HTTPSHandler): def __init__(self, context=None): orig_HTTPSHandler.__init__(self) if hasattr(geopy.compat, '__warningregistry__'): # If running tests on an old Python, the warning we are going # to test might have been already issued and recorded in # the registry. Clean it up, so we could receive the warning again. del geopy.compat.__warningregistry__ with patch('geopy.compat._URLLIB_SUPPORTS_SSL_CONTEXT', geopy.compat._is_urllib_context_supported(HTTPSHandlerStub)), \ patch('geopy.compat.HTTPSHandler', HTTPSHandlerStub), \ patch.object(HTTPSHandlerStub, '__init__', autospec=True, side_effect=HTTPSHandlerStub.__init__ ) as mock_https_handler_init, \ warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.assertTrue(geopy.compat._URLLIB_SUPPORTS_SSL_CONTEXT) for ssl_context in (None, sentinel.some_ssl_context): mock_https_handler_init.reset_mock() Geocoder(ssl_context=ssl_context) args, kwargs = mock_https_handler_init.call_args self.assertIs(kwargs['context'], ssl_context) self.assertEqual(0, len(w)) class GeocoderPointCoercionTestCase(unittest.TestCase): coordinates = (40.74113, -73.989656) coordinates_str = "40.74113,-73.989656" coordinates_address = "175 5th Avenue, NYC, USA" def setUp(self): self.method = Geocoder._coerce_point_to_string def test_point(self): latlon = self.method(Point(*self.coordinates)) self.assertEqual(latlon, self.coordinates_str) def test_tuple_of_floats(self): latlon = self.method(self.coordinates) self.assertEqual(latlon, self.coordinates_str) def test_string(self): latlon = self.method(self.coordinates_str) self.assertEqual(latlon, self.coordinates_str) def test_string_is_trimmed(self): coordinates_str_spaces = " %s , %s " % self.coordinates latlon = self.method(coordinates_str_spaces) self.assertEqual(latlon, self.coordinates_str) def test_output_format_is_respected(self): expected = " %s %s " % self.coordinates[::-1] lonlat = self.method(self.coordinates_str, " %(lon)s %(lat)s ") self.assertEqual(lonlat, expected) def test_address(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') latlon = self.method(self.coordinates_address) # 1 for latitude normalization (first string char being # treated as latitude). # 2 for the deprecated as-is input bypass. self.assertEqual(2, len(w)) self.assertEqual(latlon, self.coordinates_address) class GeocoderFormatBoundingBoxTestCase(unittest.TestCase): def setUp(self): self.method = Geocoder._format_bounding_box def test_string_raises(self): with self.assertRaises(GeocoderQueryError): self.method("5,5,5,5") def test_list_of_1_raises(self): with self.assertRaises(GeocoderQueryError): self.method([5]) # TODO maybe raise for `[5, 5]` too? def test_list_of_3_raises(self): with self.assertRaises(GeocoderQueryError): self.method([5, 5, 5]) def test_list_of_4_raises(self): with self.assertRaises(GeocoderQueryError): self.method([5, 5, 5, 5]) def test_list_of_5_raises(self): with self.assertRaises(GeocoderQueryError): self.method([5, 5, 5, 5, 5]) def test_points(self): bbox = self.method([Point(50, 160), Point(30, 170)]) self.assertEqual(bbox, "30.0,160.0,50.0,170.0") def test_lists(self): bbox = self.method([[50, 160], [30, 170]]) self.assertEqual(bbox, "30.0,160.0,50.0,170.0") bbox = self.method([["50", "160"], ["30", "170"]]) self.assertEqual(bbox, "30.0,160.0,50.0,170.0") def test_strings(self): bbox = self.method(["50, 160", "30,170"]) self.assertEqual(bbox, "30.0,160.0,50.0,170.0") def test_output_format(self): bbox = self.method([Point(50, 160), Point(30, 170)], " %(lon2)s|%(lat2)s -- %(lat1)s|%(lon1)s ") self.assertEqual(bbox, " 170.0|50.0 -- 30.0|160.0 ")
38.662921
85
0.637024
c763bdc7784e04b7c321ea78189bbc35d1fb4175
9,337
py
Python
fastai/tabular/data.py
feras-oughali/fastai
4052f7adb441ab8a00eaa807b444a4e583b6bcc7
[ "Apache-2.0" ]
11
2019-08-06T11:44:24.000Z
2022-03-12T20:04:56.000Z
fastai/tabular/data.py
feras-oughali/fastai
4052f7adb441ab8a00eaa807b444a4e583b6bcc7
[ "Apache-2.0" ]
3
2021-05-20T11:24:31.000Z
2022-02-26T06:04:21.000Z
fastai/tabular/data.py
feras-oughali/fastai
4052f7adb441ab8a00eaa807b444a4e583b6bcc7
[ "Apache-2.0" ]
9
2018-11-03T10:56:17.000Z
2020-10-19T20:44:33.000Z
"Data loading pipeline for structured data support. Loads from pandas DataFrame" from ..torch_core import * from .transform import * from ..basic_data import * from ..data_block import * from ..basic_train import * from .models import * from pandas.api.types import is_numeric_dtype, is_categorical_dtype __all__ = ['TabularDataBunch', 'TabularLine', 'TabularList', 'TabularProcessor', 'tabular_learner'] OptTabTfms = Optional[Collection[TabularProc]] #def emb_sz_rule(n_cat:int)->int: return min(50, (n_cat//2)+1) def emb_sz_rule(n_cat:int)->int: return min(600, round(1.6 * n_cat**0.56)) def def_emb_sz(classes, n, sz_dict=None): "Pick an embedding size for `n` depending on `classes` if not given in `sz_dict`." sz_dict = ifnone(sz_dict, {}) n_cat = len(classes[n]) sz = sz_dict.get(n, int(emb_sz_rule(n_cat))) # rule of thumb return n_cat,sz class TabularLine(ItemBase): "Basic item for tabular data." def __init__(self, cats, conts, classes, names): self.cats,self.conts,self.classes,self.names = cats,conts,classes,names self.data = [tensor(cats), tensor(conts)] def __str__(self): res = '' for c, n in zip(self.cats, self.names[:len(self.cats)]): res += f"{n} {(self.classes[n][c])}; " for c,n in zip(self.conts, self.names[len(self.cats):]): res += f'{n} {c:.4f}; ' return res class TabularProcessor(PreProcessor): "Regroup the `procs` in one `PreProcessor`." def __init__(self, ds:ItemBase=None, procs=None): procs = ifnone(procs, ds.procs if ds is not None else None) self.procs = listify(procs) def process_one(self, item): df = pd.DataFrame([item,item]) for proc in self.procs: proc(df, test=True) if len(self.cat_names) != 0: codes = np.stack([c.cat.codes.values for n,c in df[self.cat_names].items()], 1).astype(np.int64) + 1 else: codes = [[]] if len(self.cont_names) != 0: conts = np.stack([c.astype('float32').values for n,c in df[self.cont_names].items()], 1) else: conts = [[]] classes = None col_names = list(df[self.cat_names].columns.values) + list(df[self.cont_names].columns.values) return TabularLine(codes[0], conts[0], classes, col_names) def process(self, ds): if ds.inner_df is None: ds.classes,ds.cat_names,ds.cont_names = self.classes,self.cat_names,self.cont_names ds.col_names = self.cat_names + self.cont_names ds.preprocessed = True return for i,proc in enumerate(self.procs): if isinstance(proc, TabularProc): proc(ds.inner_df, test=True) else: #cat and cont names may have been changed by transform (like Fill_NA) proc = proc(ds.cat_names, ds.cont_names) proc(ds.inner_df) ds.cat_names,ds.cont_names = proc.cat_names,proc.cont_names self.procs[i] = proc self.cat_names,self.cont_names = ds.cat_names,ds.cont_names if len(ds.cat_names) != 0: ds.codes = np.stack([c.cat.codes.values for n,c in ds.inner_df[ds.cat_names].items()], 1).astype(np.int64) + 1 self.classes = ds.classes = OrderedDict({n:np.concatenate([['#na#'],c.cat.categories.values]) for n,c in ds.inner_df[ds.cat_names].items()}) cat_cols = list(ds.inner_df[ds.cat_names].columns.values) else: ds.codes,ds.classes,self.classes,cat_cols = None,None,None,[] if len(ds.cont_names) != 0: ds.conts = np.stack([c.astype('float32').values for n,c in ds.inner_df[ds.cont_names].items()], 1) cont_cols = list(ds.inner_df[ds.cont_names].columns.values) else: ds.conts,cont_cols = None,[] ds.col_names = cat_cols + cont_cols ds.preprocessed = True class TabularDataBunch(DataBunch): "Create a `DataBunch` suitable for tabular data." @classmethod def from_df(cls, path, df:DataFrame, dep_var:str, valid_idx:Collection[int], procs:OptTabTfms=None, cat_names:OptStrList=None, cont_names:OptStrList=None, classes:Collection=None, test_df=None, bs:int=64, val_bs:int=None, num_workers:int=defaults.cpus, dl_tfms:Optional[Collection[Callable]]=None, device:torch.device=None, collate_fn:Callable=data_collate, no_check:bool=False)->DataBunch: "Create a `DataBunch` from `df` and `valid_idx` with `dep_var`. `kwargs` are passed to `DataBunch.create`." cat_names = ifnone(cat_names, []).copy() cont_names = ifnone(cont_names, list(set(df)-set(cat_names)-{dep_var})) procs = listify(procs) src = (TabularList.from_df(df, path=path, cat_names=cat_names, cont_names=cont_names, procs=procs) .split_by_idx(valid_idx)) src = src.label_from_df(cols=dep_var) if classes is None else src.label_from_df(cols=dep_var, classes=classes) if test_df is not None: src.add_test(TabularList.from_df(test_df, cat_names=cat_names, cont_names=cont_names, processor = src.train.x.processor)) return src.databunch(path=path, bs=bs, val_bs=val_bs, num_workers=num_workers, device=device, collate_fn=collate_fn, no_check=no_check) class TabularList(ItemList): "Basic `ItemList` for tabular data." _item_cls=TabularLine _processor=TabularProcessor _bunch=TabularDataBunch def __init__(self, items:Iterator, cat_names:OptStrList=None, cont_names:OptStrList=None, procs=None, **kwargs)->'TabularList': super().__init__(range_of(items), **kwargs) #dataframe is in inner_df, items is just a range of index if cat_names is None: cat_names = [] if cont_names is None: cont_names = [] self.cat_names,self.cont_names,self.procs = cat_names,cont_names,procs self.copy_new += ['cat_names', 'cont_names', 'procs'] self.preprocessed = False @classmethod def from_df(cls, df:DataFrame, cat_names:OptStrList=None, cont_names:OptStrList=None, procs=None, **kwargs)->'ItemList': "Get the list of inputs in the `col` of `path/csv_name`." return cls(items=range(len(df)), cat_names=cat_names, cont_names=cont_names, procs=procs, inner_df=df.copy(), **kwargs) def get(self, o): if not self.preprocessed: return self.inner_df.iloc[o] if hasattr(self, 'inner_df') else self.items[o] codes = [] if self.codes is None else self.codes[o] conts = [] if self.conts is None else self.conts[o] return self._item_cls(codes, conts, self.classes, self.col_names) def get_emb_szs(self, sz_dict=None): "Return the default embedding sizes suitable for this data or takes the ones in `sz_dict`." return [def_emb_sz(self.classes, n, sz_dict) for n in self.cat_names] def reconstruct(self, t:Tensor): return self._item_cls(t[0], t[1], self.classes, self.col_names) def show_xys(self, xs, ys)->None: "Show the `xs` (inputs) and `ys` (targets)." from IPython.display import display, HTML items,names = [], xs[0].names + ['target'] for i, (x,y) in enumerate(zip(xs,ys)): res = [] cats = x.cats if len(x.cats.size()) > 0 else [] conts = x.conts if len(x.conts.size()) > 0 else [] for c, n in zip(cats, x.names[:len(cats)]): res.append(x.classes[n][c]) res += [f'{c:.4f}' for c in conts] + [y] items.append(res) items = np.array(items) df = pd.DataFrame({n:items[:,i] for i,n in enumerate(names)}, columns=names) with pd.option_context('display.max_colwidth', -1): display(HTML(df.to_html(index=False))) def show_xyzs(self, xs, ys, zs): "Show `xs` (inputs), `ys` (targets) and `zs` (predictions)." from IPython.display import display, HTML items,names = [], xs[0].names + ['target', 'prediction'] for i, (x,y,z) in enumerate(zip(xs,ys,zs)): res = [] cats = x.cats if len(x.cats.size()) > 0 else [] conts = x.conts if len(x.conts.size()) > 0 else [] for c, n in zip(cats, x.names[:len(cats)]): res.append(str(x.classes[n][c])) res += [f'{c:.4f}' for c in conts] + [y, z] items.append(res) items = np.array(items) df = pd.DataFrame({n:items[:,i] for i,n in enumerate(names)}, columns=names) with pd.option_context('display.max_colwidth', -1): display(HTML(df.to_html(index=False))) def tabular_learner(data:DataBunch, layers:Collection[int], emb_szs:Dict[str,int]=None, metrics=None, ps:Collection[float]=None, emb_drop:float=0., y_range:OptRange=None, use_bn:bool=True, **learn_kwargs): "Get a `Learner` using `data`, with `metrics`, including a `TabularModel` created using the remaining params." emb_szs = data.get_emb_szs(ifnone(emb_szs, {})) model = TabularModel(emb_szs, len(data.cont_names), out_sz=data.c, layers=layers, ps=ps, emb_drop=emb_drop, y_range=y_range, use_bn=use_bn) return Learner(data, model, metrics=metrics, **learn_kwargs)
52.162011
134
0.630395
9c134f51f7254102c61f7fa66304b0fa2e45a7d4
533
py
Python
marginTrading/tests/test_spam/test_usuarios.py
sambiase/pycrypto
7e3fa9a846edd0ee95c9b1584385c38fa9ae3ee2
[ "MIT" ]
3
2021-07-30T14:54:27.000Z
2022-01-19T19:57:12.000Z
marginTrading/tests/test_spam/test_usuarios.py
sambiase/pycrypto
7e3fa9a846edd0ee95c9b1584385c38fa9ae3ee2
[ "MIT" ]
5
2021-07-20T22:41:41.000Z
2021-09-07T19:47:18.000Z
marginTrading/tests/test_spam/test_usuarios.py
sambiase/pycrypto
7e3fa9a846edd0ee95c9b1584385c38fa9ae3ee2
[ "MIT" ]
null
null
null
from marginTrading.spam.modelos import Usuario def test_salvar_usuario(sessao): usuario = Usuario(nome='Andre',email='andreteste@gmail.com') sessao.salvar(usuario) assert isinstance(usuario.id,int) # certifica que o usuario possui um ID e que é instancia do tipo int def test_listar_usuario(sessao): usuarios = for usuario in usuarios: # salvar todos os usuarios na Lista sessao.salvar(usuario) assert usuarios == sessao.listar() # certifica que o usuario esta na lista de usuarios
33.3125
108
0.722326
db142bbd67aaca22d0cac45dcc53ce53030942e5
4,659
py
Python
tests/performance/compare_perfs.py
PrecisionMetrics/openjpeg
eb2ebe92f93970bf82ee3b69c32a6975900e91a0
[ "BSD-2-Clause" ]
823
2015-02-16T08:42:47.000Z
2022-03-28T08:37:57.000Z
tests/performance/compare_perfs.py
PrecisionMetrics/openjpeg
eb2ebe92f93970bf82ee3b69c32a6975900e91a0
[ "BSD-2-Clause" ]
832
2015-06-15T07:57:22.000Z
2022-03-31T12:41:46.000Z
tests/performance/compare_perfs.py
PrecisionMetrics/openjpeg
eb2ebe92f93970bf82ee3b69c32a6975900e91a0
[ "BSD-2-Clause" ]
522
2015-03-10T18:53:47.000Z
2022-03-25T21:05:27.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2017, IntoPIX SA # Contact: support@intopix.com # Author: Even Rouault # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import sys def Usage(): print('Usage: compare_perfs.py [-noise_threshold val_in_pct]') print(' [-warning_threshold val_in_pct]') print(' [-error_threshold val_in_pct]') print(' [-global_error_threshold val_in_pct]') print(' ref.csv new.csv') sys.exit(1) ref_filename = None new_filename = None noise_threshold = 2 warning_threshold = 4 error_threshold = 6 global_error_threshold = 2 i = 1 while i < len(sys.argv): if sys.argv[i] == '-noise_threshold' and i + 1 < len(sys.argv): i += 1 noise_threshold = int(sys.argv[i]) elif sys.argv[i] == '-warning_threshold' and i + 1 < len(sys.argv): i += 1 warning_threshold = int(sys.argv[i]) elif sys.argv[i] == '-error_threshold' and i + 1 < len(sys.argv): i += 1 error_threshold = int(sys.argv[i]) elif sys.argv[i] == '-global_error_threshold' and i + 1 < len(sys.argv): i += 1 global_error_threshold = int(sys.argv[i]) elif sys.argv[i][0] == '-': Usage() elif ref_filename is None: ref_filename = sys.argv[i] elif new_filename is None: new_filename = sys.argv[i] else: Usage() i += 1 if ref_filename is None or new_filename is None: Usage() assert noise_threshold < warning_threshold assert warning_threshold < error_threshold assert global_error_threshold >= noise_threshold assert global_error_threshold <= error_threshold ref_lines = open(ref_filename, 'rt').readlines()[1:] new_lines = open(new_filename, 'rt').readlines()[1:] if len(ref_lines) != len(new_lines): raise Exception('files are not comparable') ret_code = 0 for i in range(len(ref_lines)): line = ref_lines[i].replace('\n', '') filename_ref, num_iterations_ref, num_threads_ref, command_ref, \ _, time_ms_ref = line.split(',') line = new_lines[i].replace('\n', '') filename_new, num_iterations_new, num_threads_new, command_new, \ _, time_ms_new = line.split(',') assert filename_ref == filename_new assert num_iterations_ref == num_iterations_new assert num_threads_ref == num_threads_new assert command_ref == command_new time_ms_ref = int(time_ms_ref) time_ms_new = int(time_ms_new) if filename_ref == 'TOTAL': display = 'TOTAL' else: display = '%s, %s iterations, %s threads, %s' % \ (filename_ref, num_iterations_ref, num_threads_ref, command_ref) display += ': ref_time %d ms, new_time %d ms' % (time_ms_ref, time_ms_new) var_pct = 100.0 * (time_ms_new - time_ms_ref) / time_ms_ref if abs(var_pct) <= noise_threshold: display += ', (stable) %0.1f %%' % var_pct elif var_pct < 0: display += ', (improvement) %0.1f %%' % var_pct else: display += ', (regression) %0.1f %%' % var_pct if filename_ref == 'TOTAL' and var_pct > global_error_threshold: display += ', ERROR_THRESHOLD' ret_code = 1 elif var_pct > error_threshold: display += ', ERROR_THRESHOLD' ret_code = 1 elif var_pct > warning_threshold: display += ', WARNING_THRESHOLD' print(display) sys.exit(ret_code)
38.504132
78
0.672677
e9a9ffafc76c405d5cc240fff695782388d57a60
20,641
py
Python
sdk/metricsadvisor/azure-ai-metricsadvisor/tests/base_testcase_aad.py
a-santamaria/azure-sdk-for-python
9dec418ad621ac75f217e56e901f15b6624800b0
[ "MIT" ]
null
null
null
sdk/metricsadvisor/azure-ai-metricsadvisor/tests/base_testcase_aad.py
a-santamaria/azure-sdk-for-python
9dec418ad621ac75f217e56e901f15b6624800b0
[ "MIT" ]
null
null
null
sdk/metricsadvisor/azure-ai-metricsadvisor/tests/base_testcase_aad.py
a-santamaria/azure-sdk-for-python
9dec418ad621ac75f217e56e901f15b6624800b0
[ "MIT" ]
null
null
null
# coding=utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import datetime from devtools_testutils import AzureTestCase from azure_devtools.scenario_tests import ( ReplayableTest, create_random_name ) from azure.ai.metricsadvisor import ( MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient, MetricsAdvisorClient, ) from azure.ai.metricsadvisor.models import ( SQLServerDataFeed, DataFeedSchema, DataFeedMetric, DataFeedDimension, DataFeedGranularity, DataFeedIngestionSettings, DataFeedMissingDataPointFillSettings, DataFeedRollupSettings, DataFeedOptions, MetricAlertConfiguration, MetricAnomalyAlertScope, MetricAnomalyAlertConditions, MetricBoundaryCondition, TopNGroupScope, SeverityCondition, MetricDetectionCondition, MetricSeriesGroupDetectionCondition, MetricSingleSeriesDetectionCondition, SmartDetectionCondition, SuppressCondition, ChangeThresholdCondition, HardThresholdCondition, EmailNotificationHook, WebNotificationHook, ) from azure.identity import DefaultAzureCredential class MockCredential(): def get_token(self, *scopes, **kwargs): from azure.core.credentials import AccessToken return AccessToken("fake-token", 0) class TestMetricsAdvisorAdministrationClientBase(AzureTestCase): FILTER_HEADERS = ReplayableTest.FILTER_HEADERS + ['Ocp-Apim-Subscription-Key', 'x-api-key'] def __init__(self, method_name): super(TestMetricsAdvisorAdministrationClientBase, self).__init__(method_name) self.vcr.match_on = ["path", "method", "query"] if self.is_live: service_endpoint = self.get_settings_value("METRICS_ADVISOR_ENDPOINT") self.sql_server_connection_string = self.get_settings_value("METRICS_ADVISOR_SQL_SERVER_CONNECTION_STRING") self.azure_table_connection_string = self.get_settings_value("METRICS_ADVISOR_AZURE_TABLE_CONNECTION_STRING") self.azure_blob_connection_string = self.get_settings_value("METRICS_ADVISOR_AZURE_BLOB_CONNECTION_STRING") self.azure_cosmosdb_connection_string = self.get_settings_value("METRICS_ADVISOR_COSMOS_DB_CONNECTION_STRING") self.http_request_get_url = self.get_settings_value("METRICS_ADVISOR_HTTP_GET_URL") self.http_request_post_url = self.get_settings_value("METRICS_ADVISOR_HTTP_POST_URL") self.application_insights_api_key = self.get_settings_value("METRICS_ADVISOR_APPLICATION_INSIGHTS_API_KEY") self.azure_data_explorer_connection_string = self.get_settings_value("METRICS_ADVISOR_AZURE_DATA_EXPLORER_CONNECTION_STRING") self.influxdb_connection_string = self.get_settings_value("METRICS_ADVISOR_INFLUX_DB_CONNECTION_STRING") self.influxdb_password = self.get_settings_value("METRICS_ADVISOR_INFLUX_DB_PASSWORD") self.azure_datalake_account_key = self.get_settings_value("METRICS_ADVISOR_AZURE_DATALAKE_ACCOUNT_KEY") self.mongodb_connection_string = self.get_settings_value("METRICS_ADVISOR_AZURE_MONGO_DB_CONNECTION_STRING") self.mysql_connection_string = self.get_settings_value("METRICS_ADVISOR_MYSQL_CONNECTION_STRING") self.postgresql_connection_string = self.get_settings_value("METRICS_ADVISOR_POSTGRESQL_CONNECTION_STRING") self.elasticsearch_auth_header = self.get_settings_value("METRICS_ADVISOR_ELASTICSEARCH_AUTH_HEADER") self.anomaly_detection_configuration_id = self.get_settings_value("METRICS_ADVISOR_ANOMALY_DETECTION_CONFIGURATION_ID") self.data_feed_id = self.get_settings_value("METRICS_ADVISOR_DATA_FEED_ID") self.metric_id = self.get_settings_value("METRICS_ADVISOR_METRIC_ID") credential = DefaultAzureCredential() self.scrubber.register_name_pair( self.sql_server_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.azure_table_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.azure_blob_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.azure_cosmosdb_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.http_request_get_url, "connectionstring" ) self.scrubber.register_name_pair( self.http_request_post_url, "connectionstring" ) self.scrubber.register_name_pair( self.application_insights_api_key, "connectionstring" ) self.scrubber.register_name_pair( self.azure_data_explorer_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.influxdb_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.influxdb_password, "connectionstring" ) self.scrubber.register_name_pair( self.azure_datalake_account_key, "connectionstring" ) self.scrubber.register_name_pair( self.mongodb_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.mysql_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.postgresql_connection_string, "connectionstring" ) self.scrubber.register_name_pair( self.elasticsearch_auth_header, "connectionstring" ) self.scrubber.register_name_pair( self.metric_id, "metric_id" ) self.scrubber.register_name_pair( self.data_feed_id, "data_feed_id" ) self.scrubber.register_name_pair( self.anomaly_detection_configuration_id, "anomaly_detection_configuration_id" ) else: service_endpoint = "https://endpointname.cognitiveservices.azure.com" self.sql_server_connection_string = "SQL_SERVER_CONNECTION_STRING" self.azure_table_connection_string = "AZURE_TABLE_CONNECTION_STRING" self.azure_blob_connection_string = "AZURE_BLOB_CONNECTION_STRING" self.azure_cosmosdb_connection_string = "COSMOS_DB_CONNECTION_STRING" self.http_request_get_url = "METRICS_ADVISOR_HTTP_GET_URL" self.http_request_post_url = "METRICS_ADVISOR_HTTP_POST_URL" self.application_insights_api_key = "METRICS_ADVISOR_APPLICATION_INSIGHTS_API_KEY" self.azure_data_explorer_connection_string = "METRICS_ADVISOR_AZURE_DATA_EXPLORER_CONNECTION_STRING" self.influxdb_connection_string = "METRICS_ADVISOR_INFLUXDB_CONNECTION_STRING" self.influxdb_password = "METRICS_ADVISOR_INFLUXDB_PASSWORD" self.azure_datalake_account_key = "METRICS_ADVISOR_AZURE_DATALAKE_ACCOUNT_KEY" self.mongodb_connection_string = "METRICS_ADVISOR_AZURE_MONGODB_CONNECTION_STRING" self.mysql_connection_string = "METRICS_ADVISOR_MYSQL_CONNECTION_STRING" self.postgresql_connection_string = "METRICS_ADVISOR_POSTGRESQL_CONNECTION_STRING" self.elasticsearch_auth_header = "METRICS_ADVISOR_ELASTICSEARCH_AUTH" self.anomaly_detection_configuration_id = "anomaly_detection_configuration_id" self.metric_id = "metric_id" self.data_feed_id = "data_feed_id" credential = MockCredential() self.admin_client = MetricsAdvisorAdministrationClient(service_endpoint, credential) def _create_data_feed(self, name): name = create_random_name(name) return self.admin_client.create_data_feed( name=name, source=SQLServerDataFeed( connection_string=self.sql_server_connection_string, query="select * from adsample2 where Timestamp = @StartTime" ), granularity="Daily", schema=DataFeedSchema( metrics=[ DataFeedMetric(name="cost"), DataFeedMetric(name="revenue") ], dimensions=[ DataFeedDimension(name="category"), DataFeedDimension(name="city") ], ), ingestion_settings="2019-10-01T00:00:00Z", ) def _create_data_feed_and_detection_config(self, name): data_feed = self._create_data_feed(name) detection_config_name = create_random_name(name) detection_config = self.admin_client.create_detection_configuration( name=detection_config_name, metric_id=data_feed.metric_ids[0], description="testing", whole_series_detection_condition=MetricDetectionCondition( smart_detection_condition=SmartDetectionCondition( sensitivity=50, anomaly_detector_direction="Both", suppress_condition=SuppressCondition( min_number=50, min_ratio=50 ) ) ) ) return detection_config, data_feed def _create_data_feed_for_update(self, name): data_feed_name = create_random_name(name) return self.admin_client.create_data_feed( name=data_feed_name, source=SQLServerDataFeed( connection_string=self.sql_server_connection_string, query=u"select * from adsample2 where Timestamp = @StartTime" ), granularity=DataFeedGranularity( granularity_type="Daily", ), schema=DataFeedSchema( metrics=[ DataFeedMetric(name="cost", display_name="display cost", description="the cost"), DataFeedMetric(name="revenue", display_name="display revenue", description="the revenue") ], dimensions=[ DataFeedDimension(name="category", display_name="display category"), DataFeedDimension(name="city", display_name="display city") ], timestamp_column="Timestamp" ), ingestion_settings=DataFeedIngestionSettings( ingestion_begin_time=datetime.datetime(2019, 10, 1), data_source_request_concurrency=0, ingestion_retry_delay=-1, ingestion_start_offset=-1, stop_retry_after=-1, ), options=DataFeedOptions( admin_emails=["yournamehere@microsoft.com"], data_feed_description="my first data feed", missing_data_point_fill_settings=DataFeedMissingDataPointFillSettings( fill_type="SmartFilling" ), rollup_settings=DataFeedRollupSettings( rollup_type="NoRollup", rollup_method="None", ), viewer_emails=["viewers"], access_mode="Private", action_link_template="action link template" ) ) def _create_alert_config_for_update(self, name): detection_config, data_feed = self._create_data_feed_and_detection_config(name) alert_config_name = create_random_name(name) alert_config = self.admin_client.create_alert_configuration( name=alert_config_name, cross_metrics_operator="AND", metric_alert_configurations=[ MetricAlertConfiguration( detection_configuration_id=detection_config.id, alert_scope=MetricAnomalyAlertScope( scope_type="TopN", top_n_group_in_scope=TopNGroupScope( top=5, period=10, min_top_count=9 ) ), alert_conditions=MetricAnomalyAlertConditions( metric_boundary_condition=MetricBoundaryCondition( direction="Both", companion_metric_id=data_feed.metric_ids[0], lower=1.0, upper=5.0 ) ) ), MetricAlertConfiguration( detection_configuration_id=detection_config.id, alert_scope=MetricAnomalyAlertScope( scope_type="SeriesGroup", series_group_in_scope={'city': 'Shenzhen'} ), alert_conditions=MetricAnomalyAlertConditions( severity_condition=SeverityCondition( min_alert_severity="Low", max_alert_severity="High" ) ) ), MetricAlertConfiguration( detection_configuration_id=detection_config.id, alert_scope=MetricAnomalyAlertScope( scope_type="WholeSeries" ), alert_conditions=MetricAnomalyAlertConditions( severity_condition=SeverityCondition( min_alert_severity="Low", max_alert_severity="High" ) ) ) ], hook_ids=[] ) return alert_config, data_feed, detection_config def _create_detection_config_for_update(self, name): data_feed = self._create_data_feed(name) detection_config_name = create_random_name("testupdated") detection_config = self.admin_client.create_detection_configuration( name=detection_config_name, metric_id=data_feed.metric_ids[0], description="My test metric anomaly detection configuration", whole_series_detection_condition=MetricDetectionCondition( cross_conditions_operator="AND", smart_detection_condition=SmartDetectionCondition( sensitivity=50, anomaly_detector_direction="Both", suppress_condition=SuppressCondition( min_number=50, min_ratio=50 ) ), hard_threshold_condition=HardThresholdCondition( anomaly_detector_direction="Both", suppress_condition=SuppressCondition( min_number=5, min_ratio=5 ), lower_bound=0, upper_bound=100 ), change_threshold_condition=ChangeThresholdCondition( change_percentage=50, shift_point=30, within_range=True, anomaly_detector_direction="Both", suppress_condition=SuppressCondition( min_number=2, min_ratio=2 ) ) ), series_detection_conditions=[MetricSingleSeriesDetectionCondition( series_key={"city": "Shenzhen", "category": "Jewelry"}, smart_detection_condition=SmartDetectionCondition( anomaly_detector_direction="Both", sensitivity=63, suppress_condition=SuppressCondition( min_number=1, min_ratio=100 ) ) )], series_group_detection_conditions=[MetricSeriesGroupDetectionCondition( series_group_key={"city": "Sao Paulo"}, smart_detection_condition=SmartDetectionCondition( anomaly_detector_direction="Both", sensitivity=63, suppress_condition=SuppressCondition( min_number=1, min_ratio=100 ) ) )] ) return detection_config, data_feed def _create_email_hook_for_update(self, name): return self.admin_client.create_hook( hook=EmailNotificationHook( name=name, emails_to_alert=["yournamehere@microsoft.com"], description="my email hook", external_link="external link" ) ) def _create_web_hook_for_update(self, name): return self.admin_client.create_hook( hook=WebNotificationHook( name=name, endpoint="https://httpbin.org/post", description="my web hook", external_link="external link", username="krista", password="123" ) ) class TestMetricsAdvisorClientBase(AzureTestCase): FILTER_HEADERS = ReplayableTest.FILTER_HEADERS + ['Ocp-Apim-Subscription-Key', 'x-api-key'] def __init__(self, method_name): super(TestMetricsAdvisorClientBase, self).__init__(method_name) self.vcr.match_on = ["path", "method", "query"] if self.is_live: service_endpoint = self.get_settings_value("METRICS_ADVISOR_ENDPOINT") self.anomaly_detection_configuration_id = self.get_settings_value("METRICS_ADVISOR_ANOMALY_DETECTION_CONFIGURATION_ID") self.anomaly_alert_configuration_id = self.get_settings_value("METRICS_ADVISOR_ANOMALY_ALERT_CONFIGURATION_ID") self.metric_id = self.get_settings_value("METRICS_ADVISOR_METRIC_ID") self.incident_id = self.get_settings_value("METRICS_ADVISOR_INCIDENT_ID") self.dimension_name = self.get_settings_value("METRICS_ADVISOR_DIMENSION_NAME") self.feedback_id = self.get_settings_value("METRICS_ADVISOR_FEEDBACK_ID") self.alert_id = self.get_settings_value("METRICS_ADVISOR_ALERT_ID") credential = DefaultAzureCredential() self.scrubber.register_name_pair( self.anomaly_detection_configuration_id, "anomaly_detection_configuration_id" ) self.scrubber.register_name_pair( self.anomaly_alert_configuration_id, "anomaly_alert_configuration_id" ) self.scrubber.register_name_pair( self.metric_id, "metric_id" ) self.scrubber.register_name_pair( self.incident_id, "incident_id" ) self.scrubber.register_name_pair( self.dimension_name, "dimension_name" ) self.scrubber.register_name_pair( self.feedback_id, "feedback_id" ) self.scrubber.register_name_pair( self.alert_id, "alert_id" ) else: service_endpoint = "https://endpointname.cognitiveservices.azure.com" self.anomaly_detection_configuration_id = "anomaly_detection_configuration_id" self.anomaly_alert_configuration_id = "anomaly_alert_configuration_id" self.metric_id = "metric_id" self.incident_id = "incident_id" self.dimension_name = "dimension_name" self.feedback_id = "feedback_id" self.alert_id = "alert_id" credential = MockCredential() self.client = MetricsAdvisorClient(service_endpoint, credential)
44.677489
137
0.604283
e2eba7521e600ddada043006185707a7d1480f9c
12,562
bzl
Python
kotlin/kotlin.bzl
hsyed/rules_kotlin_old
7abdd03cf63dcbc629033aac82de7681d27eebe0
[ "Apache-2.0" ]
9
2018-02-08T04:07:22.000Z
2019-11-15T04:17:33.000Z
kotlin/kotlin.bzl
hsyed/rules_kotlin_old
7abdd03cf63dcbc629033aac82de7681d27eebe0
[ "Apache-2.0" ]
null
null
null
kotlin/kotlin.bzl
hsyed/rules_kotlin_old
7abdd03cf63dcbc629033aac82de7681d27eebe0
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Kotlin Rules ### Setup Add the following snippet to your `WORKSPACE` file: ```bzl git_repository( name = "io_bazel_rules_kotlin", remote = "https://github.com/bazelbuild/rules_kotlin.git", commit = "<COMMIT_HASH>", ) load("@io_bazel_rules_kotlin//kotlin:kotlin.bzl", "kotlin_repositories") kotlin_repositories(kotlin_release_version = "1.2.21") ``` To enable persistent worker support, add the following to the appropriate `bazelrc` file: ``` build --strategy=KotlinCompile=worker test --strategy=KotlinCompile=worker ``` ### Standard Libraries The Kotlin libraries that are bundled in a kotlin release should be used with the rules, the mandatory standard libraries are added implicetly. After enabling the repository the following Kotlin Libraries are also made available from the workspace `com_github_jetbrains_kotlin`: * `kotlin-test`, * `kotlin-reflect`. So if you needed to add reflect as a dep use the following label `@com_github_jetbrains_kotlin//:reflect`. ### Caveats * The compiler is currently not configurable [issue](https://github.com/hsyed/rules_kotlin/issues/3). * The compiler is hardwired to target jdk8 and language and api levels "1.2" [issue](https://github.com/hsyed/rules_kotlin/issues/3). """ # This file is the main import -- it shouldn't grow out of hand the reason it contains so much allready is due to the limitations of skydoc. ######################################################################################################################## # Common Definitions ######################################################################################################################## load("//kotlin/rules:defs.bzl", "KOTLIN_REPO_ROOT") # The files types that may be passed to the core Kotlin compile rule. _kt_compile_filetypes = FileType([ ".kt", ".java", ]) _jar_filetype = FileType([".jar"]) _srcjar_filetype = FileType([ ".jar", "-sources.jar", ]) ######################################################################################################################## # Rule Attributes ######################################################################################################################## _implicit_deps = { "_kotlin_compiler_classpath": attr.label_list( allow_files = True, default = [ Label("@" + KOTLIN_REPO_ROOT + "//:compiler"), Label("@" + KOTLIN_REPO_ROOT + "//:reflect"), Label("@" + KOTLIN_REPO_ROOT + "//:script-runtime"), ], ), "_kotlinw": attr.label( default = Label("//kotlin/workers:compiler_jvm"), executable = True, cfg = "host", ), # The kotlin runtime "_kotlin_runtime": attr.label( single_file = True, default = Label("@" + KOTLIN_REPO_ROOT + "//:runtime"), ), # The kotlin stdlib "_kotlin_std": attr.label_list(default = [ Label("@" + KOTLIN_REPO_ROOT + "//:stdlib"), Label("@" + KOTLIN_REPO_ROOT + "//:stdlib-jdk7"), Label("@" + KOTLIN_REPO_ROOT + "//:stdlib-jdk8"), ]), "_kotlin_reflect": attr.label( single_file = True, default = Label("@" + KOTLIN_REPO_ROOT + "//:reflect"), ), "_singlejar": attr.label( executable = True, cfg = "host", default = Label("@bazel_tools//tools/jdk:singlejar"), allow_files = True, ), "_zipper": attr.label( executable = True, cfg = "host", default = Label("@bazel_tools//tools/zip:zipper"), allow_files = True, ), "_java": attr.label( executable = True, cfg = "host", default = Label("@bazel_tools//tools/jdk:java"), allow_files = True, ), "_jdk": attr.label( default = Label("@bazel_tools//tools/jdk"), cfg = "host", allow_files = True, ), # "_langtools": attr.label( # default = Label("@bazel_tools//tools/jdk:langtools"), # cfg = "host", # allow_files = True # ), "_java_stub_template": attr.label(default = Label("@kt_java_stub_template//file")), } _common_attr = dict(_implicit_deps.items() + { "srcs": attr.label_list( default = [], allow_files = _kt_compile_filetypes, ), # only accept deps which are java providers. "deps": attr.label_list(), "runtime_deps": attr.label_list(default = []), # Add debugging info for any rules. # "verbose": attr.int(default = 0), # "opts": attr.string_dict(), # Advanced options # "x_opts": attr.string_list(), # Plugin options # "plugin_opts": attr.string_dict(), "resources": attr.label_list( default = [], allow_files = True, ), "resource_strip_prefix": attr.string(default = ""), "resource_jars": attr.label_list(default = []), # Other args for the compiler }.items()) _runnable_common_attr = dict(_common_attr.items() + { "data": attr.label_list( allow_files = True, cfg = "data", ), "jvm_flags": attr.string_list( default = [], ), }.items()) ######################################################################################################################## # Outputs: All the outputs produced by the various rules are modelled here. ######################################################################################################################## _common_outputs = dict( jar = "%{name}.jar", jdeps = "%{name}.jdeps", srcjar = "%{name}-sources.jar", ) _binary_outputs = dict(_common_outputs.items() + { # "wrapper": "%{name}_wrapper.sh", }.items()) ######################################################################################################################## # Repositories ######################################################################################################################## load( "//kotlin:kotlin_compiler_repositories.bzl", "KOTLIN_CURRENT_RELEASE", _kotlin_compiler_repository = "kotlin_compiler_repository", ) def kotlin_repositories( kotlin_release_version=KOTLIN_CURRENT_RELEASE ): """Call this in the WORKSPACE file to setup the Kotlin rules. Args: kotlin_release_version: The kotlin compiler release version. If this is not set the latest release version is chosen by default. """ _kotlin_compiler_repository(kotlin_release_version) ######################################################################################################################## # Simple Rules: ######################################################################################################################## load( "//kotlin/rules:rules.bzl", _kotlin_binary_impl = "kotlin_binary_impl", _kotlin_import_impl = "kotlin_import_impl", _kotlin_junit_test_impl = "kotlin_junit_test_impl", _kotlin_library_impl = "kotlin_library_impl", ) kotlin_library = rule( attrs = dict(_common_attr.items() + { "exports": attr.label_list(default = []), }.items()), outputs = _common_outputs, implementation = _kotlin_library_impl, ) """This rule compiles and links Kotlin and Java sources into a .jar file. Args: srcs: The list of source files that are processed to create the target, this can contain both Java and Kotlin files. Java analysis occurs first so Kotlin classes may depend on Java classes in the same compilation unit. exports: Exported libraries. Deps listed here will be made available to other rules, as if the parents explicitly depended on these deps. This is not true for regular (non-exported) deps. resources: A list of data files to include in a Java jar. resource_strip_prefix: The path prefix to strip from Java resources, files residing under common prefix such as `src/main/resources` or `src/test/resources` will have stripping applied by convention. resource_jars: Set of archives containing Java resources. If specified, the contents of these jars are merged into the output jar. runtime_deps: Libraries to make available to the final binary or test at runtime only. Like ordinary deps, these will appear on the runtime classpath, but unlike them, not on the compile-time classpath. data: The list of files needed by this rule at runtime. See general comments about `data` at [Attributes common to all build rules](https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes). deps: A list of dependencies of this rule.See general comments about `deps` at [Attributes common to all build rules](https://docs.bazel.build/versions/master/be/common-definitions.html#common-attributes). """ kotlin_binary = rule( attrs = dict(_runnable_common_attr.items() + {"main_class": attr.string(mandatory = True)}.items()), executable = True, outputs = _binary_outputs, implementation = _kotlin_binary_impl, ) """Builds a Java archive ("jar file"), plus a wrapper shell script with the same name as the rule. The wrapper shell script uses a classpath that includes, among other things, a jar file for each library on which the binary depends. **Note:** This rule does not have all of the features found in [`java_binary`](https://docs.bazel.build/versions/master/be/java.html#java_binary). It is appropriate for building workspace utilities. `java_binary` should be preferred for release artefacts. Args: main_class: Name of class with main() method to use as entry point. jvm_flags: A list of flags to embed in the wrapper script generated for running this binary. Note: does not yet support make variable substitution. """ kotlin_test = rule( attrs = dict(_runnable_common_attr.items() + { "_bazel_test_runner": attr.label( default = Label("@bazel_tools//tools/jdk:TestRunner_deploy.jar"), allow_files = True, ), "test_class": attr.string(), # "main_class": attr.string(), }.items()), executable = True, outputs = _binary_outputs, test = True, implementation = _kotlin_junit_test_impl, ) """Setup a simple kotlin_test. Args: test_class: The Java class to be loaded by the test runner. """ kotlin_import = rule( attrs = { "jars": attr.label_list( allow_files = True, mandatory = True, ), "srcjar": attr.label( allow_single_file = True, ), }, implementation = _kotlin_import_impl, ) # The pairing of src and class is used by intellij to attatch sources, this is picked up via the kt provider attribute. # # once current format and semantics are finalized add runtime_deps, exports, data, neverlink, testonly. # * runtime_deps should accept JavaInfo's (this includes KotlinInfo) and maven_jar filegroups. # * exports should only accept JavaInfo's (this include KotlinInfo) but not filegroup. The jars attribute takes care of importing the jars without generating # ijars. """(experimental) Import Kotlin jars. ## examples ```bzl # Import a collection of class jars and source jars from filegroup labels. kotlin_import( name = "kodein", jars = [ "@com_github_salomonbrys_kodein_kodein//jar:file", "@com_github_salomonbrys_kodein_kodein_core//jar:file" ] ) # Import a single kotlin jar. kotlin_import( name = "kotlin-runtime", jars = ["lib/kotlin-runtime.jar"], srcjar = "lib/kotlin-runtime-sources.jar" ) ``` Args: jars: The jars listed here are equavalent to an export attribute. The label should be either to a single class jar, or multiple filegroup labels. When the labels is a file_provider it should follow the conventions used in repositories generated by the maven_jar rule --i.e., the rule expects a file_provider with a single class jar and a single source jar. a source jar is recognized by the suffix `-sources.jar`. srcjar: The sources for the class jar. This should be set when importing a single class jar. """
38.415902
221
0.619408