hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
75f1dd73285bc1c583f36fa5211e973c274857a4
8,602
py
Python
savu/tomo_recon.py
malte-storm/Savu
16291e8a22464c50c511af01fbc648860c1236e6
[ "Apache-2.0" ]
1
2021-04-18T09:30:54.000Z
2021-04-18T09:30:54.000Z
savu/tomo_recon.py
malte-storm/Savu
16291e8a22464c50c511af01fbc648860c1236e6
[ "Apache-2.0" ]
null
null
null
savu/tomo_recon.py
malte-storm/Savu
16291e8a22464c50c511af01fbc648860c1236e6
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: tomo_recon :platform: Unix :synopsis: Runner for the Savu framework .. moduleauthor:: Mark Basham <scientificsoftware@diamond.ac.uk> """ import tempfile # this import is required for pyFAI - DO NOT REMOVE! import argparse import traceback import sys import os from mpi4py import MPI from savu.version import __version__ from savu.core.basic_plugin_runner import BasicPluginRunner from savu.core.plugin_runner import PluginRunner def __option_parser(): """ Option parser for command line arguments. """ version = "%(prog)s " + __version__ parser = argparse.ArgumentParser(prog='savu') hide = argparse.SUPPRESS parser.add_argument('in_file', help='Input data file.') process_str = 'Process list, created with the savu configurator.' parser.add_argument('process_list', help=process_str) parser.add_argument('out_folder', help='Output folder.') parser.add_argument('--version', action='version', version=version) parser.add_argument("-f", "--folder", help="Override output folder name") tmp_help = "Store intermediate files in a temp directory." parser.add_argument("-d", "--tmp", help=tmp_help) template_help = "Pass a template file of plugin input parameters." parser.add_argument("-t", "--template", help=template_help, default=None) log_help = "Store full log file in a separate location" parser.add_argument("-l", "--log", help=log_help) v_help = "Display all debug log messages" parser.add_argument("-v", "--verbose", help=v_help, action="store_true", default=False) parser.add_argument("-q", "--quiet", action="store_true", dest="quiet", help="Display only Errors and Info.", default=False) # temporary flag to fix lustre issue parser.add_argument("--lustre_workaround", action="store_true", dest="lustre", help="Avoid lustre segmentation fault", default=False) sys_params_help = "Override default path to Savu system parameters file." parser.add_argument("--system_params", help=sys_params_help, default=None) # Hidden arguments # process names parser.add_argument("-n", "--names", help=hide, default="CPU0") # transport mechanism parser.add_argument("--transport", help=hide, default="hdf5") # Set Savu mode parser.add_argument("-m", "--mode", help=hide, default="full", choices=['basic', 'full']) # Set logging to cluster mode parser.add_argument("-c", "--cluster", action="store_true", help=hide, default=False) # Send an email on completion parser.add_argument("-e", "--email", dest="email", help=hide, default=None) # Facility email for errors parser.add_argument("--facility_email", dest="femail", help=hide, default=None) # Set beamline log file (for online processing) parser.add_argument("--bllog", dest="bllog", help=hide, default=None) # Location of syslog server parser.add_argument("-s", "--syslog", dest="syslog", help=hide, default='localhost') # Port to connect to syslog server on parser.add_argument("-p", "--syslog_port", dest="syslog_port", help=hide, default=514, type=int) parser.add_argument("--test_state", dest="test_state", default='False', action='store_true', help=hide) # DosNa related parameters parser.add_argument("--dosna_backend", dest="dosna_backend", help=hide, default=None) parser.add_argument("--dosna_engine", dest="dosna_engine", help=hide, default=None) parser.add_argument("--dosna_connection", dest="dosna_connection", help=hide, default=None) parser.add_argument("--dosna_connection_options", dest="dosna_connection_options", help=hide, nargs='+', default=[]) check_help = "Continue Savu processing from a checkpoint." choices = ['plugin', 'subplugin'] parser.add_argument("--checkpoint", nargs="?", choices=choices, const='plugin', help=check_help, default=None) args = parser.parse_args() __check_conditions(parser, args) return args def __check_conditions(parser, args): if args.checkpoint and not args.folder: msg = "--checkpoint flag requires '-f folder_name', where folder_name"\ " contains the partially completed Savu job. The out_folder"\ " should be the path to this folder." parser.error(msg) def _set_options(args): """ Set run specific information in options dictionary. :params dict opt: input optional arguments (or defaults) :params args: input required arguments :returns options: optional and required arguments :rtype: dict """ options = {} options['data_file'] = args.in_file options['process_file'] = args.process_list options['mode'] = args.mode options['template'] = args.template options['transport'] = 'basic' if args.mode == 'basic' else args.transport options['process_names'] = args.names options['verbose'] = args.verbose options['quiet'] = args.quiet options['cluster'] = args.cluster options['syslog_server'] = args.syslog options['syslog_port'] = args.syslog_port options['test_state'] = args.test_state options['lustre'] = args.lustre options['bllog'] = args.bllog options['email'] = args.email options['femail'] = args.femail options['system_params'] = args.system_params out_folder_name = \ args.folder if args.folder else __get_folder_name(options['data_file']) out_folder_path = __create_output_folder(args.out_folder, out_folder_name) options['out_folder'] = out_folder_name options['out_path'] = out_folder_path basename = os.path.basename(args.in_file) options['datafile_name'] = os.path.splitext(basename)[0] if basename \ else args.in_file.split(os.sep)[-2] inter_folder_path = __create_output_folder(args.tmp, out_folder_name)\ if args.tmp else out_folder_path options['inter_path'] = inter_folder_path options['log_path'] = args.log if args.log else options['inter_path'] options['nProcesses'] = len(options["process_names"].split(',')) # DosNa related options options["dosna_backend"] = args.dosna_backend options["dosna_engine"] = args.dosna_engine options["dosna_connection"] = args.dosna_connection options["dosna_connection_options"] = args.dosna_connection_options options['checkpoint'] = args.checkpoint return options def __get_folder_name(in_file): import time MPI.COMM_WORLD.barrier() timestamp = time.strftime("%Y%m%d%H%M%S") MPI.COMM_WORLD.barrier() split = in_file.split('.') if len(split[-1].split(os.sep)) > 1: split = in_file.split(os.sep) name = split[-2] if split[-1] == '' else split[-1] # if the input is a file else: name = os.path.basename(split[-2]) return '_'.join([timestamp, name]) def __create_output_folder(path, folder_name): folder = os.path.join(path, folder_name) if MPI.COMM_WORLD.rank == 0: if not os.path.exists(folder): os.makedirs(folder) return folder def main(input_args=None): args = __option_parser() if input_args: args = input_args options = _set_options(args) pRunner = PluginRunner if options['mode'] == 'full' else BasicPluginRunner if options['nProcesses'] == 1: plugin_runner = pRunner(options) plugin_runner._run_plugin_list() else: try: plugin_runner = pRunner(options) plugin_runner._run_plugin_list() except Exception as error: print error.message traceback.print_exc(file=sys.stdout) MPI.COMM_WORLD.Abort(1) if __name__ == '__main__': main()
37.4
79
0.663567
5f36c331ee1d56db346a9f28e5fe53ef24a4600a
1,960
py
Python
tempest/api_schema/compute/v3/availability_zone.py
rcbops-qe/tempest
88960aa32c473b64072671541a136dbae41b1d4c
[ "Apache-2.0" ]
null
null
null
tempest/api_schema/compute/v3/availability_zone.py
rcbops-qe/tempest
88960aa32c473b64072671541a136dbae41b1d4c
[ "Apache-2.0" ]
null
null
null
tempest/api_schema/compute/v3/availability_zone.py
rcbops-qe/tempest
88960aa32c473b64072671541a136dbae41b1d4c
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from tempest.api_schema.compute import availability_zone as common base = { 'status_code': [200], 'response_body': { 'type': 'object', 'properties': { 'availability_zone_info': { 'type': 'array', 'items': { 'type': 'object', 'properties': { 'zone_name': {'type': 'string'}, 'zone_state': { 'type': 'object', 'properties': { 'available': {'type': 'boolean'} }, 'required': ['available'] }, # NOTE: Here is the difference between detail and # non-detail 'hosts': {'type': 'null'} }, 'required': ['zone_name', 'zone_state', 'hosts'] } } }, 'required': ['availability_zone_info'] } } get_availability_zone_list = copy.deepcopy(base) get_availability_zone_list_detail = copy.deepcopy(base) get_availability_zone_list_detail['response_body']['properties'][ 'availability_zone_info']['items']['properties']['hosts'] = common.detail
36.296296
78
0.533673
55bb629bbc3a53f25ab8581535fe1e74529f9312
14,343
py
Python
flopy/mf6/modflow/mfgwfwel.py
hansonmcoombs/flopy
49398983c36d381992621d5bf698ea7f78fc0014
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
flopy/mf6/modflow/mfgwfwel.py
hansonmcoombs/flopy
49398983c36d381992621d5bf698ea7f78fc0014
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
flopy/mf6/modflow/mfgwfwel.py
hansonmcoombs/flopy
49398983c36d381992621d5bf698ea7f78fc0014
[ "CC0-1.0", "BSD-3-Clause" ]
null
null
null
# DO NOT MODIFY THIS FILE DIRECTLY. THIS FILE MUST BE CREATED BY # mf6/utils/createpackages.py # FILE created on December 22, 2021 17:36:26 UTC from .. import mfpackage from ..data.mfdatautil import ListTemplateGenerator class ModflowGwfwel(mfpackage.MFPackage): """ ModflowGwfwel defines a wel package within a gwf6 model. Parameters ---------- model : MFModel Model that this package is a part of. Package is automatically added to model when it is initialized. loading_package : bool Do not set this parameter. It is intended for debugging and internal processing purposes only. auxiliary : [string] * auxiliary (string) defines an array of one or more auxiliary variable names. There is no limit on the number of auxiliary variables that can be provided on this line; however, lists of information provided in subsequent blocks must have a column of data for each auxiliary variable name defined here. The number of auxiliary variables detected on this line determines the value for naux. Comments cannot be provided anywhere on this line as they will be interpreted as auxiliary variable names. Auxiliary variables may not be used by the package, but they will be available for use by other parts of the program. The program will terminate with an error if auxiliary variables are specified on more than one line in the options block. auxmultname : string * auxmultname (string) name of auxiliary variable to be used as multiplier of well flow rate. boundnames : boolean * boundnames (boolean) keyword to indicate that boundary names may be provided with the list of well cells. print_input : boolean * print_input (boolean) keyword to indicate that the list of well information will be written to the listing file immediately after it is read. print_flows : boolean * print_flows (boolean) keyword to indicate that the list of well flow rates will be printed to the listing file for every stress period time step in which "BUDGET PRINT" is specified in Output Control. If there is no Output Control option and "PRINT_FLOWS" is specified, then flow rates are printed for the last time step of each stress period. save_flows : boolean * save_flows (boolean) keyword to indicate that well flow terms will be written to the file specified with "BUDGET FILEOUT" in Output Control. auto_flow_reduce : double * auto_flow_reduce (double) keyword and real value that defines the fraction of the cell thickness used as an interval for smoothly adjusting negative pumping rates to 0 in cells with head values less than or equal to the bottom of the cell. Negative pumping rates are adjusted to 0 or a smaller negative value when the head in the cell is equal to or less than the calculated interval above the cell bottom. AUTO_FLOW_REDUCE is set to 0.1 if the specified value is less than or equal to zero. By default, negative pumping rates are not reduced during a simulation. timeseries : {varname:data} or timeseries data * Contains data for the ts package. Data can be stored in a dictionary containing data for the ts package with variable names as keys and package data as values. Data just for the timeseries variable is also acceptable. See ts package documentation for more information. observations : {varname:data} or continuous data * Contains data for the obs package. Data can be stored in a dictionary containing data for the obs package with variable names as keys and package data as values. Data just for the observations variable is also acceptable. See obs package documentation for more information. mover : boolean * mover (boolean) keyword to indicate that this instance of the Well Package can be used with the Water Mover (MVR) Package. When the MOVER option is specified, additional memory is allocated within the package to store the available, provided, and received water. maxbound : integer * maxbound (integer) integer value specifying the maximum number of wells cells that will be specified for use during any stress period. stress_period_data : [cellid, q, aux, boundname] * cellid ((integer, ...)) is the cell identifier, and depends on the type of grid that is used for the simulation. For a structured grid that uses the DIS input file, CELLID is the layer, row, and column. For a grid that uses the DISV input file, CELLID is the layer and CELL2D number. If the model uses the unstructured discretization (DISU) input file, CELLID is the node number for the cell. This argument is an index variable, which means that it should be treated as zero-based when working with FloPy and Python. Flopy will automatically subtract one when loading index variables and add one when writing index variables. * q (double) is the volumetric well rate. A positive value indicates recharge (injection) and a negative value indicates discharge (extraction). If the Options block includes a TIMESERIESFILE entry (see the "Time-Variable Input" section), values can be obtained from a time series by entering the time-series name in place of a numeric value. * aux (double) represents the values of the auxiliary variables for each well. The values of auxiliary variables must be present for each well. The values must be specified in the order of the auxiliary variables specified in the OPTIONS block. If the package supports time series and the Options block includes a TIMESERIESFILE entry (see the "Time-Variable Input" section), values can be obtained from a time series by entering the time-series name in place of a numeric value. * boundname (string) name of the well cell. BOUNDNAME is an ASCII character variable that can contain as many as 40 characters. If BOUNDNAME contains spaces in it, then the entire name must be enclosed within single quotes. filename : String File name for this package. pname : String Package name for this package. parent_file : MFPackage Parent package file that references this package. Only needed for utility packages (mfutl*). For example, mfutllaktab package must have a mfgwflak package parent_file. """ auxiliary = ListTemplateGenerator(("gwf6", "wel", "options", "auxiliary")) ts_filerecord = ListTemplateGenerator( ("gwf6", "wel", "options", "ts_filerecord") ) obs_filerecord = ListTemplateGenerator( ("gwf6", "wel", "options", "obs_filerecord") ) stress_period_data = ListTemplateGenerator( ("gwf6", "wel", "period", "stress_period_data") ) package_abbr = "gwfwel" _package_type = "wel" dfn_file_name = "gwf-wel.dfn" dfn = [ [ "header", "multi-package", ], [ "block options", "name auxiliary", "type string", "shape (naux)", "reader urword", "optional true", ], [ "block options", "name auxmultname", "type string", "shape", "reader urword", "optional true", ], [ "block options", "name boundnames", "type keyword", "shape", "reader urword", "optional true", ], [ "block options", "name print_input", "type keyword", "reader urword", "optional true", ], [ "block options", "name print_flows", "type keyword", "reader urword", "optional true", ], [ "block options", "name save_flows", "type keyword", "reader urword", "optional true", ], [ "block options", "name auto_flow_reduce", "type double precision", "reader urword", "optional true", ], [ "block options", "name ts_filerecord", "type record ts6 filein ts6_filename", "shape", "reader urword", "tagged true", "optional true", "construct_package ts", "construct_data timeseries", "parameter_name timeseries", ], [ "block options", "name ts6", "type keyword", "shape", "in_record true", "reader urword", "tagged true", "optional false", ], [ "block options", "name filein", "type keyword", "shape", "in_record true", "reader urword", "tagged true", "optional false", ], [ "block options", "name ts6_filename", "type string", "preserve_case true", "in_record true", "reader urword", "optional false", "tagged false", ], [ "block options", "name obs_filerecord", "type record obs6 filein obs6_filename", "shape", "reader urword", "tagged true", "optional true", "construct_package obs", "construct_data continuous", "parameter_name observations", ], [ "block options", "name obs6", "type keyword", "shape", "in_record true", "reader urword", "tagged true", "optional false", ], [ "block options", "name obs6_filename", "type string", "preserve_case true", "in_record true", "tagged false", "reader urword", "optional false", ], [ "block options", "name mover", "type keyword", "tagged true", "reader urword", "optional true", ], [ "block dimensions", "name maxbound", "type integer", "reader urword", "optional false", ], [ "block period", "name iper", "type integer", "block_variable True", "in_record true", "tagged false", "shape", "valid", "reader urword", "optional false", ], [ "block period", "name stress_period_data", "type recarray cellid q aux boundname", "shape (maxbound)", "reader urword", ], [ "block period", "name cellid", "type integer", "shape (ncelldim)", "tagged false", "in_record true", "reader urword", ], [ "block period", "name q", "type double precision", "shape", "tagged false", "in_record true", "reader urword", "time_series true", ], [ "block period", "name aux", "type double precision", "in_record true", "tagged false", "shape (naux)", "reader urword", "optional true", "time_series true", ], [ "block period", "name boundname", "type string", "shape", "tagged false", "in_record true", "reader urword", "optional true", ], ] def __init__( self, model, loading_package=False, auxiliary=None, auxmultname=None, boundnames=None, print_input=None, print_flows=None, save_flows=None, auto_flow_reduce=None, timeseries=None, observations=None, mover=None, maxbound=None, stress_period_data=None, filename=None, pname=None, parent_file=None, ): super().__init__( model, "wel", filename, pname, loading_package, parent_file ) # set up variables self.auxiliary = self.build_mfdata("auxiliary", auxiliary) self.auxmultname = self.build_mfdata("auxmultname", auxmultname) self.boundnames = self.build_mfdata("boundnames", boundnames) self.print_input = self.build_mfdata("print_input", print_input) self.print_flows = self.build_mfdata("print_flows", print_flows) self.save_flows = self.build_mfdata("save_flows", save_flows) self.auto_flow_reduce = self.build_mfdata( "auto_flow_reduce", auto_flow_reduce ) self._ts_filerecord = self.build_mfdata("ts_filerecord", None) self._ts_package = self.build_child_package( "ts", timeseries, "timeseries", self._ts_filerecord ) self._obs_filerecord = self.build_mfdata("obs_filerecord", None) self._obs_package = self.build_child_package( "obs", observations, "continuous", self._obs_filerecord ) self.mover = self.build_mfdata("mover", mover) self.maxbound = self.build_mfdata("maxbound", maxbound) self.stress_period_data = self.build_mfdata( "stress_period_data", stress_period_data ) self._init_complete = True
36.776923
79
0.571429
8d9bb0b2df94b0ae2d6ce456be8967d71ad89c86
51
py
Python
torchtraining/functional/metrics/__init__.py
szymonmaszke/torchtraining
1ddf169325b7239d6d6686b20072a406b69a0180
[ "MIT" ]
3
2020-08-26T06:11:58.000Z
2020-08-27T08:11:15.000Z
torchtraining/metrics/__init__.py
klaudiapalasz/torchtraining
7ac54009eea2fd84aa635b6f3cbfe306f317d087
[ "MIT" ]
1
2020-08-25T19:19:43.000Z
2020-08-25T19:19:43.000Z
torchtraining/metrics/__init__.py
klaudiapalasz/torchtraining
7ac54009eea2fd84aa635b6f3cbfe306f317d087
[ "MIT" ]
1
2021-04-15T18:55:57.000Z
2021-04-15T18:55:57.000Z
from . import classification, distance, regression
25.5
50
0.823529
2d48d7cd829ea6d840d4f54a0c19c58b4e552344
18,058
py
Python
labs/lab10/editor/formatter.py
jjllzhang/CS61A
57b68c7c06999210d96499f6d84e4ec99085d396
[ "MIT" ]
8
2020-07-28T11:10:49.000Z
2021-05-29T15:27:17.000Z
34-Distributed Data(optional)/lab12/lab12/editor/formatter.py
ericchen12377/CS61A_LearningDoc
31f23962b0e2834795bf61eeb0f4884cc5da1809
[ "MIT" ]
59
2019-02-16T10:36:51.000Z
2019-04-02T21:50:29.000Z
34-Distributed Data(optional)/lab12/lab12/editor/formatter.py
ericchen12377/CS61A_LearningDoc
31f23962b0e2834795bf61eeb0f4884cc5da1809
[ "MIT" ]
1
2019-04-19T21:20:59.000Z
2019-04-19T21:20:59.000Z
from abc import ABC from functools import lru_cache from typing import List, Tuple, Type, Union import lexer as lexer from format_parser import FormatAtom, FormatComment, FormatList, Formatted, get_expression LINE_LENGTH = 50 MAX_EXPR_COUNT = 10 MAX_EXPR_LEN = 30 INDENT = 4 DEFINE_VALS = ["define", "define-macro"] DECLARE_VALS = ["lambda", "mu"] SHORTHAND = {"quote": "'", "quasiquote": "`", "unquote": ",", "unquote-splicing": ",@", "variadic": "."} MULTILINE_VALS = ["let", "cond", "if"] FREE_TOKENS = ["if", "define", "define-macro", "mu", "lambda"] OPEN_PARENS = ["(", "["] CLOSE_PARENS = [")", "]"] CACHE_SIZE = 2 ** 8 def prettify(strings: List[str], javastyle: bool = False) -> str: out = [] for i, string in enumerate(strings): if not string.strip(): continue out.extend(prettify_single(string, javastyle)) raw_out = [] for expr in out: if expr.startswith(";"): raw_out.append(expr) else: raw_out.append(expr) raw_out.append("\n") raw_out.append("\n") while raw_out and raw_out[-1] == "\n": raw_out.pop() return "".join(raw_out) @lru_cache(CACHE_SIZE) def prettify_single(string: str, javastyle: bool) -> List[str]: Formatter.set_javastyle(javastyle) out = [] buff = lexer.TokenBuffer([string], True) while not buff.done: expr = get_expression(buff) out.append(ExpressionFormatter.format(expr, LINE_LENGTH).stringify()) return out class OptimalFormattingReached(Exception): pass class MatchFailure(Exception): pass class WeakMatchFailure(MatchFailure): pass class StrongMatchFailure(MatchFailure): ... class FormatSeq: def __init__(self): self.left: FormatOp = None self.right: FormatOp = None self.active = True self.line_lengths = [0] self.max_line_len = 0 self.cost = 0 def __add__(self, other): if other is None: return self if isinstance(other, FormatSeq): return other.__radd__(self) return NotImplemented def __radd__(self, other: 'FormatSeq'): if other is None: return self if not other.active: raise Exception("Attempting to manipulate inactive seqs!") if not self.active: raise Exception("???") other.right.next = self.left other.active = False self.left = other.left self.line_lengths[0] += other.line_lengths.pop() self.line_lengths = other.line_lengths + self.line_lengths self.max_line_len = max(self.max_line_len, other.max_line_len, *self.line_lengths) if len(self.line_lengths) > 1: self.line_lengths = [self.line_lengths[0], self.line_lengths[-1]] return self def contains_newline(self): return len(self.line_lengths) > 1 def stringify(self): pos = self.left out = [] indent_level = 0 while pos is not None: if isinstance(pos, _Token): out.append(pos.value) if pos.value == "\n": out.append(" " * indent_level) elif isinstance(pos, _ChangeIndent): indent_level += pos.level else: raise NotImplementedError("unable to stringify " + str(type(pos))) pos = pos.next return "".join(out) class FormatOp: def __init__(self): self.next = None class _Token(FormatOp): def __init__(self, value): super().__init__() assert isinstance(value, str) self.value = value class Token(FormatSeq): def __init__(self, value): super().__init__() self.left = self.right = _Token(value) self.max_line_len = self.line_lengths[0] = len(value) class _ChangeIndent(FormatOp): def __init__(self, level): super().__init__() self.level = level class ChangeIndent(FormatSeq): def __init__(self, level): super().__init__() self.left = self.right = _ChangeIndent(level) class Newline(Token): def __init__(self): super().__init__("\n") self.max_line_len = self.line_lengths[0] = 0 self.line_lengths.append(0) class Space(Token): def __init__(self): super().__init__(" ") class Formatter(ABC): javastyle = False @staticmethod def format(expr: Formatted, remaining: int) -> FormatSeq: raise NotImplementedError() @staticmethod def set_javastyle(javastyle: bool): Formatter.javastyle = javastyle class SpecialFormFormatter(Formatter, ABC): @classmethod def assert_form(cls, expr: Formatted, form: Union[str, List[str]]): if isinstance(form, list): for elem in form: try: cls.assert_form(expr, elem) except WeakMatchFailure: continue else: return raise WeakMatchFailure if not isinstance(expr, FormatList): raise WeakMatchFailure("Special form must be list, not atom.") if not expr.contents: raise WeakMatchFailure("Special form must be list, not nil.") if not isinstance(expr.contents[0], FormatAtom): raise WeakMatchFailure("Special form must begin with a Symbol.") if not expr.contents[0].value == form: raise WeakMatchFailure("Call expression does not match desired special form.") # if expr.last: # raise StrongMatchFailure("Special form must not be dotted.") @classmethod def match_form(cls, expr: Formatted, form: Union[str, List[str]]): try: cls.assert_form(expr, form) except WeakMatchFailure: return False else: return True @classmethod def is_multiline(cls, expr: Formatted): return any(cls.match_form(expr, form) for form in MULTILINE_VALS) class AlignedCondFormatter(SpecialFormFormatter): class Clause(Formatter): @staticmethod def format(expr: Formatted, remaining: int, max_pred_len: int = 0) -> FormatSeq: if isinstance(expr, FormatComment): return CommentFormatter.format(expr) else: out = Token(expr.prefix) + Token(expr.open_paren) inlined_pred = InlineFormatter.format(expr.contents[0]) pred_len = len(expr.prefix) + inlined_pred.max_line_len out += inlined_pred out += Token(" " * (max_pred_len - pred_len)) + Space() out += InlineFormatter.format(expr.contents[1]) out += Token(expr.close_paren) return out @staticmethod def pred_len(expr: Formatted): if isinstance(expr, FormatAtom): raise WeakMatchFailure("Cond clause should not be FormatAtom") elif isinstance(expr, FormatComment): return 0 else: if len(expr.contents) != 2: raise WeakMatchFailure("Cannot auto-align expr") pred, val = expr.contents inlined_pred = InlineFormatter.format(pred) return inlined_pred.max_line_len @classmethod def format(cls, expr: Formatted, remaining) -> FormatSeq: cls.assert_form(expr, "cond") max_pred_len = 0 for clause in expr.contents[1:]: max_pred_len = max(max_pred_len, cls.Clause.pred_len(clause)) out = Token(expr.open_paren) + Token("cond") + Space() + ChangeIndent(2) + Newline() out += rest_format(expr.contents[1:], -1, max_pred_len, formatter=cls.Clause, indent_level=2, close_paren=expr.close_paren) return out class MultilineCondFormatter(SpecialFormFormatter): class Clause(Formatter): @staticmethod def format(expr: Formatted, remaining: int) -> FormatSeq: if isinstance(expr, FormatList): return NoHangingListFormatter.format(expr, remaining) else: return ExpressionFormatter.format(expr, remaining) @classmethod def format(cls, expr: Formatted, remaining) -> FormatSeq: cls.assert_form(expr, "cond") out = Token(expr.open_paren) + Token("cond") + Space() + ChangeIndent(2) + Newline() out += rest_format(expr.contents[1:], remaining - 2, formatter=cls.Clause, indent_level=2, close_paren=expr.close_paren) return out class LetFormatter(SpecialFormFormatter): class LetHandler(Formatter): def __init__(self): self.bindings_next = True def format(self, expr: Formatted, remaining: int) -> FormatSeq: if isinstance(expr, FormatList) and self.bindings_next: self.bindings_next = False out = NoHangingListFormatter.format(expr, remaining) out += ChangeIndent(-3) return out else: return ExpressionFormatter.format(expr, remaining) @classmethod def format(cls, expr: Formatted, remaining: int) -> FormatSeq: cls.assert_form(expr, "let") out = Token(expr.open_paren) + Token("let") + Space() + ChangeIndent(5) let_handler = cls.LetHandler() out += rest_format(expr.contents[1:], remaining - 6, formatter=let_handler, indent_level=2, close_paren=expr.close_paren) if let_handler.bindings_next: raise WeakMatchFailure("Let statement with too few arguments") return out class ProcedureFormatter(SpecialFormFormatter): class ProcedureHandler(Formatter): def __init__(self, indent_level): self.formals_next = True self.indent_level = indent_level def format(self, expr: Formatted, remaining: int) -> FormatSeq: out = ExpressionFormatter.format(expr, remaining) if isinstance(expr, FormatList) and self.formals_next: self.formals_next = False out += ChangeIndent(2 - self.indent_level) return out @classmethod def format(cls, expr: Formatted, remaining: int) -> FormatSeq: cls.assert_form(expr, DEFINE_VALS + DECLARE_VALS) indent_level = 2 + len(expr.contents[0].value) out = Token(expr.open_paren) + Token(expr.contents[0].value) + Space() + ChangeIndent(indent_level) procedure_handler = cls.ProcedureHandler(indent_level) out += rest_format(expr.contents[1:], remaining - indent_level, formatter=procedure_handler, indent_level=2, close_paren=expr.close_paren) if procedure_handler.formals_next: raise WeakMatchFailure("Formals not specified") return out class AtomFormatter(Formatter): @staticmethod def format(expr: Formatted, remaining: int = None) -> FormatSeq: if not isinstance(expr, FormatAtom): raise WeakMatchFailure("expr is not atomic") return Token(expr.prefix + expr.value) class InlineFormatter(Formatter): @staticmethod def format(expr: Formatted, remaining: int = None) -> FormatSeq: if isinstance(expr, FormatComment): raise WeakMatchFailure("Cannot inline-format a comment") if isinstance(expr, FormatAtom): return AtomFormatter.format(expr, remaining) if SpecialFormFormatter.is_multiline(expr): raise WeakMatchFailure("Cannot inline-format a multiline expr") formatted_exprs = [InlineFormatter.format(elem) for elem in expr.contents] out = Token(expr.prefix) + Token(expr.open_paren) for formatted_expr in formatted_exprs: out += formatted_expr if formatted_expr is not formatted_exprs[-1]: out += Space() out += Token(expr.close_paren) return out class ListFormatter(Formatter): @staticmethod def format(expr: Formatted, remaining: int) -> FormatSeq: if not isinstance(expr, FormatList): raise WeakMatchFailure("expr is not a list") return find_best(expr, [InlineFormatter, PrefixedListFormatter, CallExprFormatter, NoHangingListFormatter], remaining) class CallExprFormatter(Formatter): @staticmethod def format(expr: FormatList, remaining: int) -> FormatSeq: assert isinstance(expr, FormatList) if len(expr.contents) <= 1: raise WeakMatchFailure("Call expr must have at least 2 arguments, otherwise handle using DataListFormatter") if expr.prefix: raise WeakMatchFailure("Call expr cannot be prefixed") if not isinstance(expr.contents[0], FormatAtom): raise WeakMatchFailure("Unable to inline first two arguments, fallback to DataListFormatter") return find_best(expr, [ AlignedCondFormatter, MultilineCondFormatter, LetFormatter, ProcedureFormatter, DefaultCallExprFormatter], remaining) class PrefixedListFormatter(Formatter): @staticmethod def format(expr: FormatList, remaining: int): assert isinstance(expr, FormatList) if not expr.prefix: raise WeakMatchFailure("Expr is not prefixed") with expr.hold_prefix() as prefix: if prefix == "`": ret = ListFormatter.format(expr, remaining - 1) else: ret = DataFormatter.format(expr, remaining - 1) return Token(prefix) + ChangeIndent(1) + ret + ChangeIndent(-1) class DefaultCallExprFormatter(Formatter): @staticmethod def format(expr: FormatList, remaining: int) -> FormatSeq: operator = expr.contents[0] assert isinstance(operator, FormatAtom) indent_level = len(operator.value) + 2 out = Token(expr.open_paren) out += AtomFormatter.format(operator) out += ChangeIndent(indent_level) + Space() out += rest_format(expr.contents[1:], remaining - indent_level, indent_level=indent_level, close_paren=expr.close_paren) return out class DataFormatter(Formatter): @staticmethod def format(expr: Formatted, remaining: int) -> FormatSeq: if isinstance(expr, FormatComment): return CommentFormatter.format(expr) elif isinstance(expr, FormatAtom): return AtomFormatter.format(expr) else: return NoHangingListFormatter.format(expr, remaining, DataFormatter) class NoHangingListFormatter(Formatter): @staticmethod def format(expr: Formatted, remaining: int, callback: Type[Formatter] = None) -> FormatSeq: if callback is None: callback = ExpressionFormatter if expr.prefix: raise WeakMatchFailure("Cannot format prefixed datalist") out = Token(expr.open_paren) + ChangeIndent(1) out += rest_format(expr.contents, remaining - 1, formatter=callback, indent_level=1, close_paren=expr.close_paren) return out class CommentFormatter(Formatter): @staticmethod def format(expr: Formatted, remaining: int = None) -> FormatSeq: if not isinstance(expr, FormatComment): raise WeakMatchFailure("Expr is not a comment") leading_space = "" if expr.value.startswith(" ") else " " return Token(expr.prefix + ";" + leading_space + expr.value) class ExpressionFormatter(Formatter): @staticmethod def format(expr: Formatted, remaining: int) -> FormatSeq: candidates = [AtomFormatter, ListFormatter, CommentFormatter] return find_best(expr, candidates, remaining) class Best: def __init__(self, remaining): self.curr_best = None self.curr_cost = None self.remaining = remaining def heuristic(self, chain: FormatSeq) -> int: return max(0, chain.max_line_len - 50) + chain.cost def add(self, formatted: FormatSeq): cost = self.heuristic(formatted) if self.curr_cost is None or cost < self.curr_cost: self.curr_best = formatted self.curr_cost = cost if cost == 0: raise OptimalFormattingReached() def get_best(self) -> FormatSeq: assert self.curr_best is not None return self.curr_best def find_best(raw: Formatted, candidates: List[Type[Formatter]], remaining) -> FormatSeq: best = Best(remaining) for candidate in candidates: try: best.add(candidate.format(raw, remaining)) except WeakMatchFailure as e: continue except StrongMatchFailure: # TODO: Warn about potentially invalid special form continue except OptimalFormattingReached: return best.get_best() return best.get_best() def rest_format(exprs: List[Formatted], *args, formatter: Union[Formatter, Type[Formatter]] = ExpressionFormatter, indent_level: int, close_paren: str) -> Tuple[FormatSeq, bool]: out = None i = 0 while i != len(exprs): curr_expr = exprs[i] i += 1 formatted_expr = formatter.format(curr_expr, *args) if "not formatted_expr.contains_newline()" and i != len(exprs) \ and not isinstance(curr_expr, FormatComment) \ and isinstance(exprs[i], FormatComment) \ and exprs[i].allow_inline: inline_comment = exprs[i] formatted_expr += Space() + CommentFormatter.format(inline_comment) i += 1 out += formatted_expr if i == len(exprs) else formatted_expr + Newline() ends_with_comment = exprs and isinstance(exprs[-1], FormatComment) out += ChangeIndent(-indent_level) if ends_with_comment or Formatter.javastyle: out += Newline() out += Token(close_paren) return out
33.502783
120
0.622328
15672cf7391b56a02ae52c4b872faff8c5e2b1c1
4,741
py
Python
spec/test/stored_queries/test_ws.py
dakotablair/relation_engine
afd0a65fbf9e5da80a63264762111e8ee679795c
[ "MIT" ]
null
null
null
spec/test/stored_queries/test_ws.py
dakotablair/relation_engine
afd0a65fbf9e5da80a63264762111e8ee679795c
[ "MIT" ]
null
null
null
spec/test/stored_queries/test_ws.py
dakotablair/relation_engine
afd0a65fbf9e5da80a63264762111e8ee679795c
[ "MIT" ]
null
null
null
""" Tests for workspace stored queries under the ws* namespace These tests run within the re_api docker image, and require access to the ArangoDB, auth, and workspace images. """ import unittest import json import requests from spec.test.helpers import get_config, create_test_docs, check_spec_test_env _CONF = get_config() def _ws_obj(wsid, objid, ver, is_public=True): """Create data for a dummy test workspace obj""" return { '_key': ':'.join((str(n) for n in (wsid, objid, ver))), 'name': 'obj', 'workspace_id': wsid, 'object_id': objid, 'version': ver, 'hash': 'x', 'size': 0, 'epoch': 0, 'deleted': False, 'is_public': is_public, } class TestWs(unittest.TestCase): @classmethod def setUpClass(cls): """ Create all test data. """ check_spec_test_env() ws_object_version = [ _ws_obj(1, 1, 1), # root/origin object _ws_obj(1, 2, 1), # copy object _ws_obj(1, 3, 1), # provenance object _ws_obj(1, 4, 1), # reference object _ws_obj(1, 5, 1, is_public=False), # private copy obj _ws_obj(1, 6, 1, is_public=False), # private prov obj _ws_obj(1, 7, 1, is_public=False), # private ref obj ] create_test_docs('ws_object_version', ws_object_version) ws_type_version = [{'_key': 'Module.Type1-1.0'}] create_test_docs('ws_type_version', ws_type_version) ws_obj_instance_of_type = [ {'_from': 'ws_object_version/1:1:1', '_to': 'ws_type_version/Module.Type1-1.0'}, {'_from': 'ws_object_version/1:2:1', '_to': 'ws_type_version/Module.Type1-1.0'}, {'_from': 'ws_object_version/1:3:1', '_to': 'ws_type_version/Module.Type1-1.0'}, {'_from': 'ws_object_version/1:4:1', '_to': 'ws_type_version/Module.Type1-1.0'}, ] create_test_docs('ws_obj_instance_of_type', ws_obj_instance_of_type) ws_prov_descendant_of = [ {'_from': 'ws_object_version/1:1:1', '_to': 'ws_object_version/1:3:1'}, {'_from': 'ws_object_version/1:1:1', '_to': 'ws_object_version/1:6:1'}, ] create_test_docs('ws_prov_descendant_of', ws_prov_descendant_of) ws_refers_to = [ {'_from': 'ws_object_version/1:1:1', '_to': 'ws_object_version/1:4:1'}, {'_from': 'ws_object_version/1:1:1', '_to': 'ws_object_version/1:7:1'}, ] create_test_docs('ws_refers_to', ws_refers_to) ws_copied_from = [ {'_from': 'ws_object_version/1:1:1', '_to': 'ws_object_version/1:2:1'}, {'_from': 'ws_object_version/1:1:1', '_to': 'ws_object_version/1:5:1'}, ] create_test_docs('ws_copied_from', ws_copied_from) def test_fetch_related_data_valid(self): """ Test for the basic happy path. This also covers the case of private-scope object results, which will be hidden from results. """ resp = requests.post( _CONF['re_api_url'] + '/api/v1/query_results', params={'stored_query': 'ws_fetch_related_data', 'show_public': True}, data=json.dumps({'obj_key': '1:1:1'}) ).json() self.assertEqual(resp['count'], 1) self.assertEqual(resp['has_more'], False) res = resp['results'][0] # Check the root object results self.assertEqual(res['obj']['_key'], '1:1:1') self.assertEqual(res['obj_type']['_key'], 'Module.Type1-1.0') # Check the copy results self.assertEqual(res['copies']['count'], 1) self.assertEqual(len(res['copies']['data']), 1) self.assertEqual(res['copies']['data'][0]['data']['_id'], 'ws_object_version/1:2:1') self.assertEqual(res['copies']['data'][0]['hops'], 1) self.assertEqual(res['copies']['data'][0]['type']['_id'], 'ws_type_version/Module.Type1-1.0') # Check the provenance results self.assertEqual(res['prov']['count'], 1) self.assertEqual(len(res['prov']['data']), 1) self.assertEqual(res['prov']['data'][0]['data']['_id'], 'ws_object_version/1:3:1') self.assertEqual(res['prov']['data'][0]['hops'], 1) self.assertEqual(res['prov']['data'][0]['type']['_id'], 'ws_type_version/Module.Type1-1.0') # Check the ref results self.assertEqual(res['refs']['count'], 1) self.assertEqual(len(res['refs']['data']), 1) self.assertEqual(res['refs']['data'][0]['data']['_id'], 'ws_object_version/1:4:1') self.assertEqual(res['refs']['data'][0]['hops'], 1) self.assertEqual(res['refs']['data'][0]['type']['_id'], 'ws_type_version/Module.Type1-1.0')
43.1
111
0.593968
72d095e100b4fdc7bb5236094f57f1b329d633dc
176
py
Python
mall/apps/orders/urls.py
DanaLee1990/meiduo
a2342cfd35829b7ef40ef3c1f1731eb95658d3e8
[ "MIT" ]
null
null
null
mall/apps/orders/urls.py
DanaLee1990/meiduo
a2342cfd35829b7ef40ef3c1f1731eb95658d3e8
[ "MIT" ]
null
null
null
mall/apps/orders/urls.py
DanaLee1990/meiduo
a2342cfd35829b7ef40ef3c1f1731eb95658d3e8
[ "MIT" ]
null
null
null
from django.conf.urls import url from . import views urlpatterns = [ url(r'^places/$',views.OrderSettlementView.as_view()), url(r'^$', views.OrderView.as_view()), ]
17.6
58
0.676136
1d40362f2c426a0320ab9da41875c03522df29ca
1,486
py
Python
leetcode/0840_magic_squares_in_grid.py
chaosWsF/Python-Practice
ff617675b6bcd125933024bb4c246b63a272314d
[ "BSD-2-Clause" ]
null
null
null
leetcode/0840_magic_squares_in_grid.py
chaosWsF/Python-Practice
ff617675b6bcd125933024bb4c246b63a272314d
[ "BSD-2-Clause" ]
null
null
null
leetcode/0840_magic_squares_in_grid.py
chaosWsF/Python-Practice
ff617675b6bcd125933024bb4c246b63a272314d
[ "BSD-2-Clause" ]
null
null
null
""" A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum. Given an grid of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous). Example 1: Input: [[4,3,8,4], [9,5,1,9], [2,7,6,2]] Output: 1 Explanation: The following subgrid is a 3 x 3 magic square: 4 3 8 9 5 1 2 7 6 while this one is not: 3 8 4 5 1 9 7 6 2 In total, there is only one magic square inside the given grid. Note: 1. 1 <= grid.length <= 10 2. 1 <= grid[0].length <= 10 3. 0 <= grid[i][j] <= 15 """ class Solution: def numMagicSquaresInside(self, grid): def checker(a, b, c, d, e, f, g, h, i): """http://www.mathematische-basteleien.de/magsquare.htm""" return ( e == 5 and sorted([a, b, c, d, e, f, g, h, i]) == [1, 2, 3, 4, 5, 6, 7, 8, 9] and (a+b+c == d+e+f == g+h+i == a+d+g == b+e+h == c+f+i == a+e+i == c+e+g == 15) ) return sum( checker( grid[r][c], grid[r][c+1], grid[r][c+2], grid[r+1][c], grid[r+1][c+1], grid[r+1][c+2], grid[r+2][c], grid[r+2][c+1], grid[r+2][c+2] ) for c in range(len(grid[0]) - 2) for r in range(len(grid) - 2) )
32.304348
129
0.466353
ec449aae4e9d54b4ed82b7aab8e4cca5345aa412
23,418
py
Python
isilon_capacity_calc_py3.py
adamgweeks/Isilon-PowerScale-capacity-calculator
04df4604677e9f3faf409d27b2c55d40aec91b53
[ "MIT" ]
null
null
null
isilon_capacity_calc_py3.py
adamgweeks/Isilon-PowerScale-capacity-calculator
04df4604677e9f3faf409d27b2c55d40aec91b53
[ "MIT" ]
1
2020-11-10T13:12:23.000Z
2020-11-10T13:12:23.000Z
isilon_capacity_calc_py3.py
adamgweeks/Isilon-PowerScale-capacity-calculator
04df4604677e9f3faf409d27b2c55d40aec91b53
[ "MIT" ]
null
null
null
# Python script to calc Isilon file space usage # written by Adam.Weeks@dell.com # unofficial and NOT supported by Dell Technologies/EMC/Isilon! # example useage: python isilon_space_calc_py2.py /Users/user1/Documents/ -s 9 -p N+2 # see https://github.com/adamgweeks/Isilon-capacity-calculator # # for Python 2! from datetime import datetime # get script start time startTime = datetime.now() # script timed as this could take a while! import math #take in cmd line arguments import argparse parser = argparse.ArgumentParser() parser.add_argument("directory", help="source directory (will scan this dir and all subdirs from this point)") parser.add_argument("--node_pool_size","-s", help="the node pool size (number of nodes)",type=int,required=True) parser.add_argument("--protection","-p", help="data protection level, defaults to: N+2:1",default="N+2:1",required=True) parser.add_argument("--units","-u", help="output data units (KB,MB,TB,PB,H), default=H (H=human/auto sizing)",default="H") parser.add_argument("--verbose","-v", help="show individual file size comparisson",action="store_true") parser.add_argument("--metadata_stuffer_size","-mss", help="specify the estimated additional metadata overhead (ADS etc)",type=int,default=3584) parser.add_argument("--csv","-c", help="verbose output as CSV file",action="store_true") parser.add_argument("--gen6","-g6", help="GEN 6 mode",action="store_true") # human filesizing function def human_size(size_in_b): out_size=float() out_size=(size_in_b/(1024*1024*1024*1024*1024)) if out_size>=1: #units="PB" output=[out_size,'PB'] return(output) else: out_size=(size_in_b/(1024*1024*1024*1024)) if out_size>=1: #units="TB" output=[out_size,'TB'] return(output) #print "outsize is ",out_size,units else: out_size=(size_in_b/(1024*1024*1024)) if out_size>=1: output=[out_size,'GB'] return(output) else: out_size=(size_in_b/(1024*1024)) if out_size>=1: output=[out_size,'MB'] return(output) else: output=[size_in_b/1024,'KB'] return(output) #progress bar function def progress(end_val, bar_length,prog): percent = float(prog) / end_val hashes = '#' * int(round(percent * bar_length)) spaces = ' ' * (bar_length - len(hashes)) if(prog==end_val): sys.stdout.write("\rPercent: [{0}] Done!".format(hashes + spaces, int(round(percent * 100)))) sys.stdout.write("({} of {} files)".format(prog,end_val)) else: sys.stdout.write("\rPercent: [{0}] {1}%".format(hashes + spaces, int(round(percent * 100)))) sys.stdout.write("({} of {} files)".format(prog,end_val)) sys.stdout.flush() #setup the vars needed for calculations args = parser.parse_args() dirname=args.directory protection_string=args.protection node_pool_size=args.node_pool_size meta_stuffer=args.metadata_stuffer_size data_units=args.units verbose=args.verbose csv=args.csv gen6=args.gen6 total_empty_files=0 total_small_files=0 total_partial_files=0 total_perfect_files=0 total_large_files=0 block_size=0 total_filesize_small_isilon=0 total_filesize_partial_isilon=0 total_filesize_perfect_isilon=0 total_filesize_large_isilon=0 total_filesize_small_orig=0 total_filesize_partial_orig=0 total_filesize_perfect_orig=0 total_filesize_large_orig=0 mbig_files=0 msmall_files=0 if csv==True: verbose=True #translate output units into divisible number (from bytes to x units) data_units=data_units.upper() if data_units=="KB": odata_units="" data_divider=1024 elif data_units=="MB": odata_units="" data_divider=1024*1024 elif data_units=="GB": odata_units="" data_divider=1024*1024*1024 elif data_units=="TB": odata_units="" data_divider=1024*1024*1024*1024 elif data_units=="PB": odata_units="" data_divider=1024*1024*1024*1024*1024 elif data_units=="H": odata_units="H" data_divider=1 else : print("Data units size not recognised") exit() if gen6==True: #GEN 6 uses a smaller 10 node ideal disk pool size, so has a tendancy to restrict the stripe width more than previous generations #see http://isilon-additonal.info - Disk Pools for more info. #check for even number of nodes and that we have at least 4! if node_pool_size<4: print("Error! Minumum of 4 nodes required for GEN 6 clusters!") exit() if node_pool_size % 2 != 0: print("Error! Node pool must have an even number of nodes in GEN 6 clusters!") exit() if node_pool_size>20: pool_count=math.floor(node_pool_size/10)#how many disk pools will we have? rounded=node_pool_size-(pool_count*10)#is there a leftover from dividing into 10 node disk pools? node_pool_size=rounded+10 #print "disk pool size:", node_pool_size #translate requested protection string into meaning for script protection_string=protection_string.lower() if protection_string=="n+1": requested_protection=1 stripe_requested=True elif protection_string=="n+2": requested_protection=2 stripe_requested=True elif protection_string=="n+3": requested_protection=3 stripe_requested=True elif protection_string=="n+4": requested_protection=4 stripe_requested=True elif protection_string=="n+2:1": requested_protection=2 stripe_requested=True node_pool_size=(node_pool_size * 2) elif protection_string=="n+3:1": requested_protection=3 stripe_requested=True node_pool_size=(node_pool_size * 3) elif protection_string=="n+4:1": requested_protection=4 stripe_requested=True node_pool_size=(node_pool_size * 4) elif protection_string=="n+3:11": requested_protection=3 stripe_requested=True node_pool_size=(node_pool_size * 2) elif protection_string=="n+4:2": requested_protection=4 stripe_requested=True node_pool_size=(node_pool_size * 2) elif protection_string=="2x": requested_protection=2 stripe_requested=False elif protection_string=="n+1n": requested_protection=1 stripe_requested=True elif protection_string=="n+2n": requested_protection=2 stripe_requested=True elif protection_string=="n+3n": requested_protection=3 stripe_requested=True elif protection_string=="n+4n": requested_protection=4 stripe_requested=True elif protection_string=="n+2d:1n": requested_protection=2 stripe_requested=True node_pool_size=(node_pool_size * 2) elif protection_string=="n+3d:1n": requested_protection=3 stripe_requested=True node_pool_size=(node_pool_size * 3) elif protection_string=="n+4d:1n": requested_protection=4 stripe_requested=True node_pool_size=(node_pool_size * 4) elif protection_string=="n+3d:1d1n": requested_protection=3 stripe_requested=True node_pool_size=(node_pool_size * 2) elif protection_string=="n+4d:2n": requested_protection=4 stripe_requested=True node_pool_size=(node_pool_size * 2) elif protection_string=="2x": requested_protection=2 stripe_requested=False elif protection_string=="3x": requested_protection=3 stripe_requested=False elif protection_string=="4x": requested_protection=4 stripe_requested=False elif protection_string=="5x": requested_protection=5 stripe_requested=False elif protection_string=="6x": requested_protection=6 stripe_requested=False elif protection_string=="7x": requested_protection=7 stripe_requested=False elif protection_string=="8x": requested_protection=8 stripe_requested=False else: print("unrecognised protection type") exit() #setup vars used later in script total=0 filesizes=[] filenames=[] total_size=0 total_size=float(total_size) total_original_size=0 total_original_size=float(total_original_size) t_total=0 import os import sys #do some sanity checks on given arguments #check if DIR exists if os.path.isdir(dirname) is False: print("Error! directory:'",dirname,"' doesn't appear to exist.") exit() #check if directory is readable if os.access(dirname, os.R_OK): print("You are able to read the ",dirname," dir") else: print("Error! dir:",dirname," is not readable.") exit() #if the node pool size is greater than the max stripe size, limit it TO the maximum stripe size if (node_pool_size - requested_protection)>16: node_pool_size=(16 + requested_protection) #check striping will work with the node pool size given if stripe_requested==True: #valid_min_size=(requested_protection+1)+requested_protection #could have used easier logic (2 x RP + 1) but wanted to match more to the human logic used (Must be enough nodes for more DUs than FECs). valid_min_size=requested_protection*2 #Now the protection only needs to be equal DUs to FECs (in newer versions of OneFS, I believe it's 7.1 and higher) if node_pool_size<valid_min_size: print("Node pool is too small for requested protection to work!") exit() i=0 #ready for progress function polear=['/','|','\\','-'] #ready for showing the metadata read is still working! polepos=0 if csv==False: print("Reading metadata...") metaTime = datetime.now() #timing how long the metadata read took files_to_process=0# for progress indicator, so we know the total number of files later dirs_to_process=0 # for counting inodes (to indicate metadata size) for root, dirs, files in os.walk(dirname): #go and retrieve a list of all the files in the given DIR for dir in dirs: dirpath = os.path.join(root, dir) if os.path.isdir(dirpath): # check this is a DIR (to count the inodes) dirs_to_process=dirs_to_process+1 for filename in files: if csv==False: polepos=polepos+1 if (polepos>3): polepos=0 pole=polear[polepos] sys.stdout.write("\r{0}".format(pole)) sys.stdout.flush() filepath = os.path.join(root, filename) if os.path.isfile(filepath): # check this is a file (i.e. not a link) files_to_process=files_to_process+1 # used later for progress bar file_size=os.path.getsize(filepath) filesizes.append(file_size) # add to file size for this file to the list if(file_size>10485760): mbig_files=mbig_files+1 # if the file is over 10MB it will get an 8KB inode (rule of thumb from https://community.emc.com/thread/178281?start=15&tstart=0) else: msmall_files=msmall_files+1 #filesizes.append((os.stat(filepath).st_blocks * 512)) #new alternative sizing, to match disk blocks size on Isilon (and most disks/OS configs) if verbose==True: filenames.append(filename) sys.stdout.write("\r") # clear line used for the 'moving line' sys.stdout.flush() # change to numbers to process (dirs+1) files as is: dirmcount = dirs_to_process #filemcount = files_to_process if stripe_requested: dirmcount = dirmcount * (requested_protection + 2) # DIRs get an extra inode mirror by default mbig_files=mbig_files * (requested_protection + 1) # metadata is always mirrored, but we have to mirror again if it's striped (to match the striping protection level) msmall_files=msmall_files * (requested_protection + 1) # metadata is always mirrored, but we have to mirror again if it's striped (to match the striping protection level) else: dirmcount = dirmcount * (requested_protection + 1) mbig_files=mbig_files * requested_protection # if data is mirrored we simply mirror the metadata msmall_files=msmall_files * requested_protection # if data is mirrored we simply mirror the metadata metadata_size=(dirmcount * 8192)+(msmall_files * 512)+(mbig_files * 8192)+(meta_stuffer*(msmall_files+mbig_files+dirmcount)) #print "got msize:",metadata_size #exit() #metadata_size=(filemcount + dirmcount) * ibs_size total_size=total_size + metadata_size # tally up metadata size if odata_units=="H": output=human_size(metadata_size) metadata_size=output[0] data_units=output[1] else: metadata_size=metadata_size/data_divider metadata_size=round(metadata_size,4) # (rounded to 3 decimal places for ease of reading) print("Read metadata for ",dirs_to_process," DIRs and ",files_to_process," files in (H:M:S:ms):",datetime.now() - startTime) # show how long this took and how many files we have (really just for reference) output=human_size(meta_stuffer) mss_h_size=output[0] mss_h_units=output[1] i=0 #for progress bar print("") if csv==False: print("Calculating filesizes...") if verbose==True: if csv==False: print("") print("Filename | Original size (KB) | Isilon size (KB)") else: print("") print("") print("Isilon space calculator report for ",dirname,"with ", node_pool_size ," nodes using ",protection_string," protection") print("") print("") print("Filename,Original size (KB),Isilon size(KB)") calcTime = datetime.now() # for timing how long the processing takes # go through each file in the list and we'll work out how much protection detail Isilon would add (for given cluster size and protection setting used) for file_size in filesizes: file_type="" i=i+1 if verbose==False: progress(files_to_process,40,i)# show progress bar #file_size=file_size/1024 # convert KB first # round up to ceiling 8kb (Isilon uses an 8KB filesystem block size, so we need to round up) if (block_size==0): testfs=file_size try: block_size=os.statvfs(dirname).f_frsize #try to find the native FS block size using Unix stats command (will fail in Windows based OS) except AttributeError: # if above command fails, let's try finding the native FS block size using Windows native DLL instead import ctypes sectorsPerCluster = ctypes.c_ulonglong(0) bytesPerSector = ctypes.c_ulonglong(0) rootPathName = ctypes.c_wchar_p(dirname) ctypes.windll.kernel32.GetDiskFreeSpaceW(rootPathName, ctypes.pointer(sectorsPerCluster), ctypes.pointer(bytesPerSector), None, None, ) spc=sectorsPerCluster.value bps=bytesPerSector.value block_size = spc * bps #Round all the filesize calculations (for the original data size) to the blocksize of the native filesystem (of the system this script is running on) #block_size=8192 # just for testing (to match oneFS block size) testfs=file_size if (file_size>0): file_size=int(block_size * round(float(testfs)/block_size)) if(file_size<testfs): file_size=testfs + block_size #end of pre-rounding test total_original_size=file_size+total_original_size # totting up the total size of the original files osize=file_size # for verbose output if file_size==0: total_empty_files+=1 # increment the number of empty files else : remainder=0 # round up to ceiling 8kb (Isilon uses an 8KB filesystem block size, so we need to round up) rounded_file_size=int(8192 * round(float(file_size)/8192)) if(rounded_file_size<file_size): rounded_file_size=rounded_file_size + 8192 # if mirroring protection was requested we simply need to multiply the rounded size (no need for complex stripe calc if stripe_requested==False: file_size=rounded_file_size * requested_protection remainder_size=0 # if striping was requested we have to do a more complex calc else: #check if the file is 'small' (i.e. less than, or equal to 128KB), if it is small it will be mirrored if rounded_file_size<=131072: total_small_files += 1 #increment the counter for small files T_requested_protection = requested_protection + 1 file_size=rounded_file_size * T_requested_protection remainder_size=0 file_type="small" else: # as file is larger than 128KB (and we've already checked for a mirroring request), we'll have to stripe the data DU_count=float(rounded_file_size)/131072 # work out how many DUs (Data Units) will be needed #check if DU_count is integer (if not we have a partial DU) if (float(DU_count)).is_integer(): overspill=0 # overspill is how much we need to remove from the end of the LAST DU, if it divides perfectly there will be no overspill to remove else: #we have a partial DU DU_count=int(DU_count) overspill=131072-(rounded_file_size - (int(DU_count)*131072)) # our last DU will not really be complete, so how much do we remove? (the overspill value) actual_stripe_size=node_pool_size - requested_protection # get the stripe size (for DUs) available no_stripes=float(0) no_stripes=DU_count/float(actual_stripe_size)# how many stripes do we need (not necessarily an integer result) rounded_stripes=int(no_stripes) remainder_size=rounded_file_size - ((actual_stripe_size * rounded_stripes) * 131072)# data left over (from partial) #if (no_stripes<=1) and (no_stripes>0): #we don't have a full stripe here, so no need to calculate the full stripes size. if (no_stripes==1) and (remainder_size>0): # we have just over 1 stripe (one a bit at least!) total_large_files+= 1 # increment the counter for large files file_type="large" rounded_stripes=int(no_stripes) # round up the number of stripes by converting to an integer (we will handle the 'overspill' of writing a full stripe later)r rounded=False full_stripes_size=((actual_stripe_size * rounded_stripes) + (requested_protection * rounded_stripes)) * 131072 # how would the stripes be written (taking into account the node pool size and protection elif (no_stripes<1) and (no_stripes>0): # we have less than 1 complete stripe total_partial_files+=1 # increment the number of partial files file_type="partial" no_stripes=1 full_stripes_size=0 rounded=True elif (no_stripes==1) and (overspill==0) and (remainder_size==0): # we have a perfect stripe! total_perfect_files+=1 # increment the number of perfect stripe files file_type="perfect" rounded=False else: # we have more than 1 stripe total_large_files+= 1 #increment the counter for large files file_type="large" rounded_stripes=int(no_stripes) # round up the number of stripes by converting to an integer (we will handle the 'overspill' of writing a full stripe later) rounded=False full_stripes_size=((actual_stripe_size * rounded_stripes) + (requested_protection * rounded_stripes)) * 131072 # how would the stripes be written (taking into account the node pool size and protection) # check for overspill if(overspill>0): #remainder_size=0 if rounded==True: remainder_size=rounded_file_size else: remainder_size=rounded_file_size - ((actual_stripe_size * rounded_stripes) * 131072)# data left over (from partial) #calculate the 'remainder' stripe that needs to be written #do we need to mirror the remainder? if (remainder_size<=131072) and (remainder_size>0): T_requested_protection = requested_protection + 1 remainder_size=(remainder_size * T_requested_protection) file_size=remainder_size + full_stripes_size elif (remainder_size>131072) and (remainder_size>0): #remainder is big enough to form final stripe remainder_size=((remainder_size + (requested_protection * 131072))) file_size=remainder_size + full_stripes_size else : #we have a perfect stripe file_size=(actual_stripe_size + requested_protection) * 131072 if verbose==True: filename=filenames[(i-1)] osize_s=str(((osize/1024))) file_size_s=str((file_size/1024)) if csv==False: osize_s=osize_s.rjust(15) filename=filename.ljust(50) file_size_s=file_size_s.ljust(15) print(filename,":",osize_s," - ",file_size_s) else: print(filename,",",osize_s,",",file_size_s) t_total=total_size total_size=(t_total+file_size) t_total=total_size if file_type=="small" : total_filesize_small_orig=total_filesize_small_orig + osize total_filesize_small_isilon=total_filesize_small_isilon + file_size elif file_type=="partial" : total_filesize_partial_orig=total_filesize_partial_orig + osize total_filesize_partial_isilon=total_filesize_partial_isilon + file_size elif file_type=="perfect" : total_filesize_perfect_orig=total_filesize_perfect_orig + osize total_filesize_perfect_isilon=total_filesize_perfect_isilon + file_size elif file_type=="large" : total_filesize_large_orig=total_filesize_large_orig + osize total_filesize_large_isilon=total_filesize_large_isilon + file_size if i<=0: print("Error! Directory is empty, nothing to show!") exit() # calc percentage difference diff=((total_size / float(total_original_size))*100)-100 diff=round(diff,2) # (rounded to 2 decimal places for ease of reading) if odata_units=="H": output=human_size(total_original_size) totemp=output[0] data_units=output[1] else: totemp=total_original_size/data_divider totemp=round(totemp,2) #show the results of all this (timings are more for reference as this could take hours/days!) print("") print("") output=human_size(block_size) block_size=output[0] mdata_units=output[1] print("Original data size is: ",totemp,data_units," (given native block size of",block_size,mdata_units,").") if odata_units=="H": output=float() total_size=float(total_size) output=human_size(total_size) total_size=output[0] data_units=output[1] else: #total_size=float(total_size) total_size=total_size/data_divider #total_size=total_size+metadata_size total_size=round(total_size,2) print("Isilon size is : ", total_size,data_units) print("A protection overhead of ",diff,"% - percentage of additional protection data") print("") print("Calculation time (H:M:S:ms): ",datetime.now() - calcTime) print("") print("Data breakdown:") print("Metdata size for Isilon will be:",metadata_size,data_units,"(with a metadata stuffer size of ",mss_h_size,mss_h_units,"per file)") print("Empty files (0 bytes):",total_empty_files) output=human_size(total_filesize_small_isilon) total_size_isilon=round(float(output[0]),2) data_units_isilon=output[1] output=human_size(total_filesize_small_orig) total_size_orig=round(float(output[0]),2) data_units_orig=output[1] print("Small files (128KB or less): ",total_small_files,"size orig:",total_size_orig,data_units_orig,"Isilon size:",total_size_isilon,data_units_isilon) if total_perfect_files>0: output=human_size(total_filesize_perfect_isilon) total_size_isilon=round(float(output[0]),2) data_units_isilon=output[1] output=human_size(total_filesize_perfect_orig) total_size_orig=round(float(output[0]),2) data_units_orig=output[1] print("Perfect stripe (exactly 1 stripe) files:",total_perfect_files,"size orig:",total_size_orig,data_units_orig,"Isilon size:",total_size_isilon,data_units_isilon) output=human_size(total_filesize_partial_isilon) total_size_isilon=round(float(output[0]),2) data_units_isilon=output[1] output=human_size(total_filesize_partial_orig) total_size_orig=round(float(output[0]),2) data_units_orig=output[1] print("Partial files (less than one complete stripe): ",total_partial_files,"size orig:",total_size_orig,data_units_orig,"Isilon size:",total_size_isilon,data_units_isilon) output=human_size(total_filesize_large_isilon) total_size_isilon=round(float(output[0]),2) data_units_isilon=output[1] output=human_size(total_filesize_large_orig) total_size_orig=round(float(output[0]),2) data_units_orig=output[1] print("Large files (more than 1 full stripe): ",total_large_files,"size orig:",total_size_orig,data_units_orig,"Isilon size:",total_size_isilon,data_units_isilon) print("Total :",files_to_process," files") print("Total running time (H:M:S:ms):",datetime.now() - startTime)
38.264706
217
0.747246
23f6b00cb880239c782e34076625c18593e18c16
747
py
Python
tbx/core/migrations/0115_delete_tshirt_page.py
elviva404/wagtail-torchbox
718d9e2c4337073f010296932d369c726a01dbd3
[ "MIT" ]
103
2015-02-24T17:58:21.000Z
2022-03-23T08:08:58.000Z
tbx/core/migrations/0115_delete_tshirt_page.py
elviva404/wagtail-torchbox
718d9e2c4337073f010296932d369c726a01dbd3
[ "MIT" ]
145
2015-01-13T17:13:43.000Z
2022-03-29T12:56:20.000Z
tbx/core/migrations/0115_delete_tshirt_page.py
elviva404/wagtail-torchbox
718d9e2c4337073f010296932d369c726a01dbd3
[ "MIT" ]
57
2015-01-03T12:00:37.000Z
2022-02-09T13:11:30.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2019-01-21 13:53 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("wagtailredirects", "0006_redirect_increase_max_length"), ("wagtailforms", "0003_capitalizeverbose"), ("wagtailsearchpromotions", "0002_capitalizeverbose"), ("wagtailcore", "0040_page_draft_title"), ("torchbox", "0114_remove_standardpage_show_in_play_menu"), ] operations = [ migrations.RemoveField(model_name="tshirtpage", name="main_image",), migrations.RemoveField(model_name="tshirtpage", name="page_ptr",), migrations.DeleteModel(name="TshirtPage",), ]
32.478261
76
0.69344
bd36e2b5687d8d39b195e56b44653f4ec0abdb74
16,651
py
Python
ResearchPlanner/GUI.py
anderskm/Robotti-Research-Planner
7008f6e4b55bc065d80812d076084baa8a65cd82
[ "MIT" ]
1
2021-02-09T20:53:21.000Z
2021-02-09T20:53:21.000Z
ResearchPlanner/GUI.py
anderskm/Robotti-Research-Planner
7008f6e4b55bc065d80812d076084baa8a65cd82
[ "MIT" ]
null
null
null
ResearchPlanner/GUI.py
anderskm/Robotti-Research-Planner
7008f6e4b55bc065d80812d076084baa8a65cd82
[ "MIT" ]
null
null
null
#!/usr/bin/env python from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure from PyQt5 import QtGui from PyQt5.QtCore import Qt from PyQt5 import QtCore from PyQt5.QtWidgets import QMainWindow, QDialog, QApplication, QDialogButtonBox, QVBoxLayout, QFormLayout, QCheckBox, QSpinBox, QDoubleSpinBox, QFileDialog, QLabel, QAction, qApp, QWidget, QMenu import sys import Plan as ResearchPlan class GUI(): def __init__(self): self.app = QApplication([]) self.app.setApplicationName("Robotti Research Planner") self.app.setOrganizationName("Aarhus University") self.app.setOrganizationDomain("agro.au.dk") class ImportFileDialog(QFileDialog): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setFileMode(QFileDialog.ExistingFile) def get_file(self, folder=None, caption='Select file', filter='All files (*.*)'): file_tuple = self.getOpenFileName(caption=caption, filter=filter) if not file_tuple[0]: output=None raise UserWarning('"' + caption + '" cancelled by user.') else: output = file_tuple[0] return output class ExportFileDialog(QFileDialog): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setFileMode(QFileDialog.AnyFile) def get_file(self, folder=None, caption='Save file', filter='JSON (*.json);;All files (*.*)'): file_tuple = self.getSaveFileName(caption=caption, filter=filter) if not file_tuple[0]: output=None raise UserWarning('"' + caption + '" cancelled by user.') else: output = file_tuple[0] return output class PlotSettingsDialog(QDialog): def __init__(self, ID=None, ignore=False, force_direction=False, work=True, working_speed=1.0, hitch_height=0.6, pto_rpm=0.0, working_speed_min=1.0, working_speed_max=6.0, hitch_height_min=0.16, hitch_height_max=0.6, pto_rpm_min=0, pto_rpm_max=4000, *args, **kwargs): # super(PlotSettingsDialog, self).__init__(*args,**kwargs) super().__init__(*args,**kwargs) self.setWindowTitle('Plot settings') # Setup buttons self.buttonBox = QDialogButtonBox() self.buttonBox.addButton("Ok", QDialogButtonBox.AcceptRole) self.buttonBox.addButton("Cancel", QDialogButtonBox.RejectRole) self.buttonBox.accepted.connect(self.accept) self.buttonBox.rejected.connect(self.reject) self.ID_widget = QLabel() self.ID_widget.setText(str(ID)) self.ignore_widget = QCheckBox() if (ignore): self.ignore_widget.setCheckState(Qt.Checked) else: self.ignore_widget.setCheckState(Qt.Unchecked) ignore_label = QLabel() ignore_label.setText('Ignore:') ignore_label.setWhatsThis('Ignored plots will never be entered during route planning.') self.force_direction_widget = QCheckBox() if (force_direction): self.force_direction_widget.setCheckState(Qt.Checked) else: self.force_direction_widget.setCheckState(Qt.Unchecked) self.force_direction_widget.setEnabled(False) #NOTE: Disable since the feature in the Robotti planner is currently disabled/not implemented force_direction_label = QLabel() force_direction_label.setText('Force A->B:') force_direction_label.setWhatsThis('Force the route planner to always drive in the A->B direction through plots. NOTE: This is currently disabled in the route planner.') self.work_widget = QCheckBox() if (work): self.work_widget.setCheckState(Qt.Checked) else: self.work_widget.setCheckState(Qt.Unchecked) work_label = QLabel() work_label.setText('Work:') work_label.setWhatsThis('Non-work plots may be used for traversing by the route planner. To completely avoid entering a plot use the Ignore field.') self.working_speed_widget = QDoubleSpinBox() self.working_speed_widget.setMinimum(working_speed_min) self.working_speed_widget.setMaximum(working_speed_max) self.working_speed_widget.setValue(working_speed) self.working_speed_widget.setSingleStep(0.5) self.working_speed_widget.setSuffix(' km/h') self.working_speed_widget.setAlignment(Qt.AlignRight) self.hitch_height_widget = QDoubleSpinBox() self.hitch_height_widget.setMinimum(hitch_height_min) self.hitch_height_widget.setMaximum(hitch_height_max) self.hitch_height_widget.setValue(hitch_height) self.hitch_height_widget.setSingleStep(0.05) self.hitch_height_widget.setSuffix(' m') self.hitch_height_widget.setAlignment(Qt.AlignRight) self.pto_rpm_widget = QSpinBox() self.pto_rpm_widget.setMinimum(pto_rpm_min) self.pto_rpm_widget.setMaximum(pto_rpm_max) self.pto_rpm_widget.setValue(pto_rpm) self.pto_rpm_widget.setSingleStep(100) self.pto_rpm_widget.setSuffix(' rpm') self.pto_rpm_widget.setAlignment(Qt.AlignRight) layout = QFormLayout() layout.addRow('Plot ID:', self.ID_widget) layout.addRow(ignore_label, self.ignore_widget) layout.addRow(force_direction_label, self.force_direction_widget) layout.addRow(work_label, self.work_widget) layout.addRow('Working speed:', self.working_speed_widget) layout.addRow('Hitch height:', self.hitch_height_widget) layout.addRow('PTO:', self.pto_rpm_widget) # Add buttons layout.addWidget(self.buttonBox) self.setLayout(layout) def get_settings(self): settings_dict = {'ID': self.ID_widget.text(), 'ignore': bool(self.ignore_widget.checkState()), 'force_direction': bool(self.force_direction_widget.checkState()), 'work': bool(self.work_widget.checkState()), 'working_speed': self.working_speed_widget.value(), 'hitch_height': self.hitch_height_widget.value(), 'pto_rpm': self.pto_rpm_widget.value()} return settings_dict class ResearchPlannerGUI(QMainWindow): plan = None def __init__(self, app=None, plan=None, *args, **kwargs): super().__init__(*args,**kwargs) self.plan = ResearchPlan.Plan() self._init_gui() def _init_gui(self): self.statusBar().showMessage('Loading GUI') self.setGeometry(300, 300, 800, 600) self.setWindowTitle('Research Planner') ### Setup menus menubar = self.menuBar() ## "File" menu file_menu = menubar.addMenu('&File') exit_action = QAction('&Quit', self) exit_action.setShortcut('Ctrl+Q') exit_action.setStatusTip('Quit Research Planner') exit_action.triggered.connect(qApp.quit) import_plots_action = QAction('Import &Plots', self) import_plots_action.setShortcut('Ctrl+P') import_plots_action.setStatusTip('Import plots') import_plots_action.triggered.connect(self.import_plots) import_field_action = QAction('Import Field', self) import_field_action.setShortcut('Ctrl+F') import_field_action.setStatusTip('Import field') import_field_action.triggered.connect(self.import_field) export_plots_action = QAction('Export Plots', self) export_plots_action.setStatusTip('Export plots to Robotti compatible json-format') export_plots_action.triggered.connect(self.export_plots) export_field_action = QAction('Export Field', self) export_field_action.setStatusTip('Export field to Robotti compatible json-format') export_field_action.triggered.connect(self.export_field) file_menu.addAction(import_plots_action) file_menu.addAction(import_field_action) file_menu.addSeparator() file_menu.addAction(export_plots_action) file_menu.addAction(export_field_action) file_menu.addSeparator() file_menu.addAction(exit_action) ## "Edit" menu edit_menu = menubar.addMenu('&Edit') settings_all_plots_action = QAction('All Plots', self) settings_all_plots_action.setStatusTip('Edit the settings of all plots at once') settings_all_plots_action.triggered.connect(self.settings_all_plots) edit_menu.addAction(settings_all_plots_action) ## "View" menu view_menu = menubar.addMenu('&View') view_plot_action = QAction('Show plots', self, checkable=True) view_plot_action.setStatusTip('Toggle displaying plot outlines') view_plot_action.setChecked(True) view_plot_action.triggered.connect(self.toggle_view_plot) view_ab_line_action = QAction('Show AB-lines', self, checkable=True) view_ab_line_action.setStatusTip('Toggle displaying the AB-lines of plots') view_ab_line_action.setChecked(False) view_ab_line_action.triggered.connect(self.toggle_view_ab_line) view_end_points_action = QAction('Show end points', self, checkable=True) view_end_points_action.setStatusTip('Toggle displaying the end points of plots on the AB-line') view_end_points_action.setChecked(True) view_end_points_action.triggered.connect(self.toggle_view_end_points) view_field_action = QAction('Show field', self, checkable=True) view_field_action.setStatusTip('Toggle displaying field outlines') view_field_action.setChecked(True) view_field_action.triggered.connect(self.toggle_view_field) view_menu.addAction(view_plot_action) view_menu.addAction(view_ab_line_action) view_menu.addAction(view_end_points_action) view_menu.addSeparator() view_menu.addAction(view_field_action) self._reset_view() ### Setup main area window_widget = QWidget() ## Setup figure canvas self.figure = Figure() self.canvas = FigureCanvas(self.figure) self.ax = self.figure.add_subplot(111) self.canvas.mpl_connect('pick_event', self.on_pick_event) ## Setup layout of window widget layout = QVBoxLayout() layout.addWidget(self.canvas) window_widget.setLayout(layout) # Set window widget as central widget of main window self.setCentralWidget(window_widget) self.statusBar().showMessage('Ready') self.show() def on_pick_event(self, event): # print(event.artist) plot_id = event.artist.get_text() plot = None for idx, _plot in enumerate(self.plan.plots): if _plot.ID == plot_id: plot = _plot plot_idx = idx break if plot is not None: plotDlg = GUI.PlotSettingsDialog(ID=plot_id, ignore=plot.ignored, force_direction=plot.force_direction, work=plot.work, working_speed=plot.working_speed, hitch_height=plot.hitch_height, pto_rpm=plot.pto_rpm) if (plotDlg.exec_()): settings = plotDlg.get_settings() print(settings) plot.ignored = settings['ignore'] plot.force_direction = settings['force_direction'] plot.work = settings['work'] plot.working_speed = settings['working_speed'] plot.hitch_height = settings['hitch_height'] plot.pto_rpm = settings['pto_rpm'] self._update_canvas() def _reset_view(self): self._show_plots = True self._show_ab_lines = False self._show_end_points = True self._show_field = True def import_plots(self): self.statusBar().showMessage('Importing plots...') try: import_dlg = GUI.ImportFileDialog() filename_plots = import_dlg.get_file(caption='Import plots', filter='CSV (*.csv);;All files (*.*)') self.plan.read_plot_csv(filename_plots, is_utm=True) self._update_canvas() self.statusBar().showMessage('Plots imported: ' + filename_plots) except UserWarning as e: self.statusBar().showMessage(str(e)) def import_field(self): self.statusBar().showMessage('Importing field...') try: import_dlg = GUI.ImportFileDialog() filename_field = import_dlg.get_file(caption='Import field', filter='CSV (*.csv);;All files (*.*)') self.plan.read_field_csv(filename_field, is_utm=True) self._update_canvas() self.statusBar().showMessage('Field imported: ' + filename_field) except UserWarning as e: self.statusBar().showMessage(str(e)) def export_plots(self): self.statusBar().showMessage('Exporting plots...') try: export_dlg = GUI.ExportFileDialog() filename_out_plots = export_dlg.get_file(caption='Export plots') self.plan.export_plots(filename_out_plots) self.statusBar().showMessage('Plots exported: ' + filename_out_plots) except UserWarning as e: self.statusBar().showMessage(str(e)) def export_field(self): self.statusBar().showMessage('Exporting field...') try: export_dlg = GUI.ExportFileDialog() filename_out_field = export_dlg.get_file(caption='Export field') self.plan.export_field(filename_out_field) self.statusBar().showMessage('Field exported: ' + filename_out_field) except UserWarning as e: self.statusBar().showMessage(str(e)) def settings_all_plots(self): if (self.plan.plots is not None): plot = self.plan.plots[0] plotDlg = GUI.PlotSettingsDialog(ignore=plot.ignored, force_direction=plot.force_direction, work=plot.work, working_speed=plot.working_speed, hitch_height=plot.hitch_height, pto_rpm=plot.pto_rpm) if (plotDlg.exec_()): settings = plotDlg.get_settings() print('Settings:') print(settings) # Update all plots with settings for plot in self.plan.plots: plot.ignored = settings['ignore'] plot.force_direction = settings['force_direction'] plot.work = settings['work'] plot.working_speed = settings['working_speed'] plot.hitch_height = settings['hitch_height'] plot.pto_rpm = settings['pto_rpm'] self._update_canvas() def toggle_view_plot(self, state): if state: self._show_plots = True else: self._show_plots = False self._update_canvas() def toggle_view_field(self, state): if state: self._show_field = True else: self._show_field = False self._update_canvas() def toggle_view_ab_line(self, state): if state: self._show_ab_lines = True else: self._show_ab_lines = False self._update_canvas() def toggle_view_end_points(self, state): if state: self._show_end_points = True else: self._show_end_points = False self._update_canvas() def _update_canvas(self): self.statusBar().showMessage('Updating canvas...') self.ax.clear() self.plan.draw(ax=self.ax, show_field=self._show_field, show_plot=self._show_plots, show_AB_line=self._show_ab_lines, show_AB=self._show_ab_lines, show_end_points=self._show_end_points) ResearchPlan.plt.show() self.canvas.draw() self.statusBar().showMessage('Canvas updated') if __name__ == '__main__': app = QApplication(sys.argv) main = ResearchPlannerGUI() main.show() sys.exit(app.exec_())
40.711491
275
0.639902
29ade526c99b280f6298295415b97875ddfd14e0
5,838
py
Python
round1a/python/scoring_harness/challenge_config.py
allaway/IDG-DREAM-Drug-Kinase-Challenge
9f75cb27fa927880f61fccc46860e7e12f8da29e
[ "Apache-2.0" ]
null
null
null
round1a/python/scoring_harness/challenge_config.py
allaway/IDG-DREAM-Drug-Kinase-Challenge
9f75cb27fa927880f61fccc46860e7e12f8da29e
[ "Apache-2.0" ]
null
null
null
round1a/python/scoring_harness/challenge_config.py
allaway/IDG-DREAM-Drug-Kinase-Challenge
9f75cb27fa927880f61fccc46860e7e12f8da29e
[ "Apache-2.0" ]
null
null
null
""" config for drug target challenge. """ import pandas as pd import os import sys import evaluation_metrics_python2 as eval CHALLENGE_SYN_ID = "syn15667962" CHALLENGE_NAME = "IDG-DREAM Drug-Kinase Binding Prediction Challenge" ADMIN_USER_IDS = [3360851] REQUIRED_COLUMNS = [ "Compound_SMILES", "Compound_InchiKeys", "Compound_Name", "UniProt_Id", "Entrez_Gene_Symbol", "DiscoveRx_Gene_Symbol", "pKd_[M]_pred"] CONFIG_DIR = os.path.dirname(os.path.realpath(sys.argv[0])) def validate_func(submission, goldstandard_path): try: sub_df = pd.read_csv(submission.filePath) except Exception as e: error_string = "Error reading in submission file: " + str(e) raise AssertionError(error_string) gs_df = pd.read_csv(goldstandard_path) for col in REQUIRED_COLUMNS: assert col in sub_df.columns, ( "Submission file is missing column: " + col) assert sub_df.shape[0] == sub_df.shape[0], ( "Submission file has missing values.") sub_df["pKd_[M]_pred"] = pd.to_numeric(sub_df["pKd_[M]_pred"], errors='coerce') assert sub_df.shape[0] == sub_df.dropna().shape[0], ( "Submission file has missing values, after converting prediction " + "column to float values.") assert sub_df.shape[0] == gs_df.shape[0], ( "Submission file should have " + str(gs_df.shape[0]) + " predictions") try: combined_df = pd.merge(sub_df, gs_df, how='inner') except Exception as e: error_string = "Error combing submission and gold standard file" raise AssertionError(error_string) left_join_df = pd.merge(sub_df, gs_df, how='left') left_join_na_df = left_join_df[left_join_df.isnull().any(1)] na_row_indeces = left_join_na_df.index.tolist() na_row_numbers = ", ".join([str(i + 2) for i in na_row_indeces]) assert combined_df.shape[0] == gs_df.shape[0], ( "Merge failed due to inconsistent values between submission file and" + " validation file in one or more label columns at rows: " + na_row_numbers) assert combined_df["pKd_[M]_pred"].var() != 0, ( "After merging submission file and gold standard, prediction column" + " has variance of 0.") return(True, "Passed Validation") def score1(submission, goldstandard_path): sub_df = pd.read_csv(submission.filePath) gs_df = pd.read_csv(goldstandard_path) combined_df = pd.merge(sub_df, gs_df, how='inner') actual = combined_df["pKd_[M]"] predicted = combined_df["pKd_[M]_pred"] rmse = round(eval.rmse(actual, predicted), 4) pearson = round(eval.pearson(actual, predicted), 4) spearman = round(eval.spearman(actual, predicted), 4) ci = round(eval.ci(actual, predicted), 4) f1 = round(eval.f1(actual, predicted), 4) average_AUC = round(eval.average_AUC(actual, predicted), 4) return(rmse, pearson, spearman, ci, f1, average_AUC) evaluation_queues = [ { 'id': 9614078, 'scoring_func': score1, 'validation_func': validate_func, 'goldstandard_path': CONFIG_DIR + "/round_1_test_data.csv" }, { 'id': 9614079, 'scoring_func': score1, 'validation_func': validate_func, 'goldstandard_path': CONFIG_DIR + "/round_2_test_data.csv" } ] evaluation_queue_by_id = {q['id']:q for q in evaluation_queues} ## define the default set of columns that will make up the leaderboard LEADERBOARD_COLUMNS = [ dict(name='objectId', display_name='ID', columnType='STRING', maximumSize=20), dict(name='userId', display_name='User', columnType='STRING', maximumSize=20, renderer='userid'), dict(name='entityId', display_name='Entity', columnType='STRING', maximumSize=20, renderer='synapseid'), dict(name='versionNumber', display_name='Version', columnType='INTEGER'), dict(name='name', display_name='Name', columnType='STRING', maximumSize=240), dict(name='team', display_name='Team', columnType='STRING', maximumSize=240)] ## Here we're adding columns for the output of our scoring functions, score, ## rmse and auc to the basic leaderboard information. In general, different ## questions would typically have different scoring metrics. leaderboard_columns = {} for q in evaluation_queues: leaderboard_columns[q['id']] = LEADERBOARD_COLUMNS + [ dict(name='score', display_name='Score', columnType='DOUBLE'), dict(name='rmse', display_name='RMSE', columnType='DOUBLE'), dict(name='auc', display_name='AUC', columnType='DOUBLE')] ## map each evaluation queues to the synapse ID of a table object ## where the table holds a leaderboard for that question leaderboard_tables = {} def validate_submission(evaluation, submission): """ Find the right validation function and validate the submission. :returns: (True, message) if validated, (False, message) if validation fails or throws exception """ config = evaluation_queue_by_id[int(evaluation.id)] validated, validation_message = config['validation_func'](submission, config['goldstandard_path']) return True, validation_message def score_submission(evaluation, submission): """ Find the right scoring function and score the submission :returns: (score, message) where score is a dict of stats and message is text for display to user """ config = evaluation_queue_by_id[int(evaluation.id)] score = config['scoring_func'](submission, config['goldstandard_path']) return (dict( rmse=score[0], pearson=score[1], spearman=score[2], ci=score[3], f1=score[4], average_AUC=score[5]), "You did fine!")
36.949367
114
0.667866
24227590c10899a3b989346bf539625f5f5fdd89
840
py
Python
gitlist.py
cloudmesh/cloudmesh-notebook
106c489f8e0ec82b97dec935d2684d40e2e79452
[ "Apache-2.0" ]
null
null
null
gitlist.py
cloudmesh/cloudmesh-notebook
106c489f8e0ec82b97dec935d2684d40e2e79452
[ "Apache-2.0" ]
null
null
null
gitlist.py
cloudmesh/cloudmesh-notebook
106c489f8e0ec82b97dec935d2684d40e2e79452
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) import requests from pprint import pprint from cloudmesh.common.Printer import Printer order=["full_name", "description", "open_issues", "created_at", "updated_at"] def repos(organization): entries = [] page = 0 while True: path = f"https://api.github.com/orgs/{organization}/repos?page={page}&per_page=500" r = requests.get(path) d = r.json() if len(d) == 0: break else: entries.extend(d) page = page + 1 print(Printer.flatwrite(entries, order=order, output='table')) print() print ("Number of entries:", len(entries)) repos("cloudmesh-community") repos("cloudmesh") repos("bigdata-i523")
21
91
0.634524
0925068f4eb6201f3863521c17c647cfdac1d45d
1,537
py
Python
tests/model/generated/endpoint/test_draft_share_invite_bank.py
luisriverag/sdk_python
8cb9f77da5e1306110706518417e4ddc65c6207f
[ "MIT" ]
88
2017-08-01T18:39:46.000Z
2022-02-21T12:34:16.000Z
tests/model/generated/endpoint/test_draft_share_invite_bank.py
luisriverag/sdk_python
8cb9f77da5e1306110706518417e4ddc65c6207f
[ "MIT" ]
136
2017-08-02T13:54:41.000Z
2021-04-25T20:31:08.000Z
tests/model/generated/endpoint/test_draft_share_invite_bank.py
luisriverag/sdk_python
8cb9f77da5e1306110706518417e4ddc65c6207f
[ "MIT" ]
30
2017-08-15T09:35:42.000Z
2021-05-06T12:42:06.000Z
from datetime import datetime from datetime import timedelta from bunq.sdk.model.generated.endpoint import DraftShareInviteBank from bunq.sdk.model.generated.endpoint import DraftShareInviteBankQrCodeContent from bunq.sdk.model.generated.object_ import DraftShareInviteEntry from bunq.sdk.model.generated.object_ import ShareDetail from bunq.sdk.model.generated.object_ import ShareDetailReadOnly from tests.bunq_test import BunqSdkTestCase class TestDraftShareInvite(BunqSdkTestCase): """ Tests: DraftShareInviteBankEntry DraftShareInviteBankQrCodeContent """ _OUT_PUT_FILE_PATH = 'connectQr.png' _WRITE_BYTES = 'wb' _EXPIRATION_ADDED_TIME = 1 def test_draft_share_invite_bank(self): """ Tests the creation of a connect and retrieves the QR code bound to this connect. This test has no assertion as of its testing to see if the code runs without errors """ share_detail = ShareDetail(read_only=ShareDetailReadOnly(True, True, True)) share_settings = DraftShareInviteEntry(share_detail) draft_id = DraftShareInviteBank.create(self.expiration_date, share_settings).value connect_qr = DraftShareInviteBankQrCodeContent.list(draft_id).value with open(self._OUT_PUT_FILE_PATH, self._WRITE_BYTES) as f: f.write(connect_qr) @property def expiration_date(self) -> str: date = datetime.utcnow() + timedelta(hours=self._EXPIRATION_ADDED_TIME) return date.isoformat()
34.155556
91
0.743006
a98c287341e106c75909ab81631bdad6fcf09ae1
12,063
py
Python
tests/targets/test_android.py
fullbuffer/buildozer
459807465ade35fca1fdd71edfe49b157b3b1f42
[ "MIT" ]
null
null
null
tests/targets/test_android.py
fullbuffer/buildozer
459807465ade35fca1fdd71edfe49b157b3b1f42
[ "MIT" ]
null
null
null
tests/targets/test_android.py
fullbuffer/buildozer
459807465ade35fca1fdd71edfe49b157b3b1f42
[ "MIT" ]
null
null
null
import os import tempfile from unittest import mock import pytest from buildozer.targets.android import TargetAndroid from tests.targets.utils import ( init_buildozer, patch_buildozer, patch_buildozer_checkbin, patch_buildozer_cmd, patch_buildozer_file_exists, ) def patch_buildozer_cmd_expect(): return patch_buildozer("cmd_expect") def patch_buildozer_download(): return patch_buildozer("download") def patch_buildozer_file_extract(): return patch_buildozer("file_extract") def patch_os_isfile(): return mock.patch("os.path.isfile") def patch_target_android(method): return mock.patch( "buildozer.targets.android.TargetAndroid.{method}".format(method=method) ) def patch_platform(platform): return mock.patch("buildozer.targets.android.platform", platform) def init_target(temp_dir, options=None): buildozer = init_buildozer(temp_dir, "android", options) return TargetAndroid(buildozer) def call_build_package(target_android): """ Call the build_package() method of the tested TargetAndroid instance, patching the functions that would otherwise produce side-effects. Return the mocked execute_build_package() method of the TargetAndroid instance so that tests can easily check which command-line arguments would be passed on to python-for-android's toolchain. """ buildozer = target_android.buildozer expected_dist_dir = ( '{buildozer_dir}/android/platform/build-armeabi-v7a/dists/myapp__armeabi-v7a'.format( buildozer_dir=buildozer.buildozer_dir) ) with patch_target_android('_update_libraries_references') as m_update_libraries_references, \ patch_target_android('_generate_whitelist') as m_generate_whitelist, \ mock.patch('buildozer.targets.android.TargetAndroid.execute_build_package') as m_execute_build_package, \ mock.patch('buildozer.targets.android.copyfile') as m_copyfile, \ mock.patch('buildozer.targets.android.os.listdir') as m_listdir: m_listdir.return_value = ['30.0.0-rc2'] target_android.build_package() assert m_listdir.call_count == 1 assert m_update_libraries_references.call_args_list == [ mock.call(expected_dist_dir) ] assert m_generate_whitelist.call_args_list == [mock.call(expected_dist_dir)] assert m_copyfile.call_args_list == [ mock.call( '{expected_dist_dir}/bin/MyApplication-0.1-debug.apk'.format( expected_dist_dir=expected_dist_dir ), '{bin_dir}/myapp-0.1-armeabi-v7a-debug.apk'.format(bin_dir=buildozer.bin_dir), ) ] return m_execute_build_package class TestTargetAndroid: def setup_method(self): """ Create a temporary directory that will contain the spec file and will serve as the root_dir. """ self.temp_dir = tempfile.TemporaryDirectory() def tear_method(self): """ Remove the temporary directory created in self.setup_method. """ self.temp_dir.cleanup() def test_init(self): """Tests init defaults.""" target_android = init_target(self.temp_dir) buildozer = target_android.buildozer assert target_android._arch == "armeabi-v7a" assert target_android._build_dir.endswith( ".buildozer/android/platform/build-armeabi-v7a" ) assert target_android._p4a_bootstrap == "sdl2" assert target_android._p4a_cmd.endswith( "python -m pythonforandroid.toolchain " ) assert target_android.build_mode == "debug" assert ( target_android.extra_p4a_args == ( ' --color=always' ' --storage-dir="{buildozer_dir}/android/platform/build-armeabi-v7a" --ndk-api=21'.format( buildozer_dir=buildozer.buildozer_dir) ) ) assert target_android.p4a_apk_cmd == "apk --debug --bootstrap=sdl2" assert target_android.platform_update is False def test_init_positional_buildozer(self): """Positional `buildozer` argument is required.""" with pytest.raises(TypeError) as ex_info: TargetAndroid() assert ex_info.value.args == ( "__init__() missing 1 required positional argument: 'buildozer'", ) def test_sdkmanager(self): """Tests the _sdkmanager() method.""" target_android = init_target(self.temp_dir) kwargs = {} with patch_buildozer_cmd() as m_cmd, patch_buildozer_cmd_expect() as m_cmd_expect, patch_os_isfile() as m_isfile: m_isfile.return_value = True assert m_cmd.return_value == target_android._sdkmanager(**kwargs) assert m_cmd.call_count == 1 assert m_cmd_expect.call_count == 0 assert m_isfile.call_count == 1 kwargs = {"return_child": True} with patch_buildozer_cmd() as m_cmd, patch_buildozer_cmd_expect() as m_cmd_expect, patch_os_isfile() as m_isfile: m_isfile.return_value = True assert m_cmd_expect.return_value == target_android._sdkmanager( **kwargs ) assert m_cmd.call_count == 0 assert m_cmd_expect.call_count == 1 assert m_isfile.call_count == 1 def test_check_requirements(self): """Basic tests for the check_requirements() method.""" target_android = init_target(self.temp_dir) buildozer = target_android.buildozer assert not hasattr(target_android, "adb_cmd") assert not hasattr(target_android, "javac_cmd") assert "PATH" not in buildozer.environ with patch_buildozer_checkbin() as m_checkbin: target_android.check_requirements() assert m_checkbin.call_args_list == [ mock.call("Git (git)", "git"), mock.call("Cython (cython)", "cython"), mock.call("Java compiler (javac)", "javac"), mock.call("Java keytool (keytool)", "keytool"), ] assert target_android.adb_cmd.endswith( ".buildozer/android/platform/android-sdk/platform-tools/adb" ) assert target_android.javac_cmd == "javac" assert target_android.keytool_cmd == "keytool" assert "PATH" in buildozer.environ def test_check_configuration_tokens(self): """Basic tests for the check_configuration_tokens() method.""" target_android = init_target(self.temp_dir) with mock.patch( "buildozer.targets.android.Target.check_configuration_tokens" ) as m_check_configuration_tokens: target_android.check_configuration_tokens() assert m_check_configuration_tokens.call_args_list == [mock.call([])] @pytest.mark.parametrize("platform", ["linux", "darwin"]) def test_install_android_sdk(self, platform): """Basic tests for the _install_android_sdk() method.""" target_android = init_target(self.temp_dir) with patch_buildozer_file_exists() as m_file_exists, patch_buildozer_download() as m_download: m_file_exists.return_value = True sdk_dir = target_android._install_android_sdk() assert m_file_exists.call_args_list == [ mock.call(target_android.android_sdk_dir) ] assert m_download.call_args_list == [] assert sdk_dir.endswith(".buildozer/android/platform/android-sdk") with patch_buildozer_file_exists() as m_file_exists, \ patch_buildozer_download() as m_download, \ patch_buildozer_file_extract() as m_file_extract, \ patch_platform(platform): m_file_exists.return_value = False sdk_dir = target_android._install_android_sdk() assert m_file_exists.call_args_list == [ mock.call(target_android.android_sdk_dir) ] platform_map = {"linux": "linux", "darwin": "mac"} platform = platform_map[platform] archive = "commandlinetools-{platform}-6514223_latest.zip".format(platform=platform) assert m_download.call_args_list == [ mock.call( "https://dl.google.com/android/repository/", archive, cwd=mock.ANY, ) ] assert m_file_extract.call_args_list == [mock.call(archive, cwd=mock.ANY)] assert sdk_dir.endswith(".buildozer/android/platform/android-sdk") def test_build_package(self): """Basic tests for the build_package() method.""" target_android = init_target(self.temp_dir) buildozer = target_android.buildozer m_execute_build_package = call_build_package(target_android) assert m_execute_build_package.call_args_list == [ mock.call( [ ("--name", "'My Application'"), ("--version", "0.1"), ("--package", "org.test.myapp"), ("--minsdk", "21"), ("--ndk-api", "21"), ("--private", "{buildozer_dir}/android/app".format(buildozer_dir=buildozer.buildozer_dir)), ("--android-entrypoint", "org.kivy.android.PythonActivity"), ("--android-apptheme", "@android:style/Theme.NoTitleBar"), ("--orientation", "portrait"), ("--window",), ("debug",), ] ) ] def test_numeric_version(self): """The `android.numeric_version` config should be passed to `build_package()`.""" target_android = init_target(self.temp_dir, { "android.numeric_version": "1234" }) buildozer = target_android.buildozer m_execute_build_package = call_build_package(target_android) assert m_execute_build_package.call_args_list == [ mock.call( [ ("--name", "'My Application'"), ("--version", "0.1"), ("--package", "org.test.myapp"), ("--minsdk", "21"), ("--ndk-api", "21"), ("--private", "{buildozer_dir}/android/app".format(buildozer_dir=buildozer.buildozer_dir)), ("--android-entrypoint", "org.kivy.android.PythonActivity"), ("--android-apptheme", "@android:style/Theme.NoTitleBar"), ("--orientation", "portrait"), ("--window",), ("--numeric-version", "1234"), ("debug",), ] ) ] def test_build_package_intent_filters(self): """ The build_package() method should honour the manifest.intent_filters config option. """ filters_path = os.path.join(self.temp_dir.name, 'filters.xml') with open(filters_path, 'w') as f: f.write('<?xml version="1.0" encoding="utf-8"?>') target_android = init_target(self.temp_dir, { 'android.manifest.intent_filters': 'filters.xml' }) buildozer = target_android.buildozer m_execute_build_package = call_build_package(target_android) assert m_execute_build_package.call_args_list == [ mock.call( [ ('--name', "'My Application'"), ('--version', '0.1'), ('--package', 'org.test.myapp'), ('--minsdk', '21'), ('--ndk-api', '21'), ('--private', '{buildozer_dir}/android/app'.format(buildozer_dir=buildozer.buildozer_dir)), ('--android-entrypoint', 'org.kivy.android.PythonActivity'), ('--android-apptheme', '@android:style/Theme.NoTitleBar'), ('--orientation', 'portrait'), ('--window',), ('--intent-filters', os.path.realpath(filters_path)), ('debug',), ] ) ]
40.076412
121
0.615353
ca871205bd4316882721a6cb9e5c8296689ec886
6,921
py
Python
test/test_constraints.py
pyro-ppl/pyroed
c549bd9dc9511e2199ff55fb2c86f84226b9b1c2
[ "Apache-2.0" ]
12
2022-03-15T16:27:06.000Z
2022-03-25T09:14:45.000Z
test/test_constraints.py
broadinstitute/pyroed
c549bd9dc9511e2199ff55fb2c86f84226b9b1c2
[ "Apache-2.0" ]
2
2022-03-22T17:42:28.000Z
2022-03-22T17:43:30.000Z
test/test_constraints.py
pyro-ppl/pyroed
c549bd9dc9511e2199ff55fb2c86f84226b9b1c2
[ "Apache-2.0" ]
1
2022-03-17T17:02:40.000Z
2022-03-17T17:02:40.000Z
from collections import OrderedDict from typing import List, Optional from pyroed.api import encode_design from pyroed.constraints import ( AllDifferent, And, Function, Iff, IfThen, Not, Or, TakesValue, TakesValues, Xor, ) from pyroed.typing import Schema def stringify(bools: List[bool]) -> str: return "".join("1" if x else "0" for x in bools) def test_immune_sequence(): SCHEMA: Schema = OrderedDict() SCHEMA["Protein 1"] = ["Prot1", "Prot2", None] SCHEMA["Protein 2"] = ["Prot3", "HLA1", "HLA2", "HLA3", "HLA4", None] SCHEMA["Signalling Pep"] = ["Sig1", "Sig2", None] SCHEMA["EP"] = [f"Ep{i}" for i in range(1, 10 + 1)] SCHEMA["EP"].append(None) SCHEMA["Linker"] = ["Link1", None] SCHEMA["Internal"] = ["Int1", "Int2", "Int3", "Int3", None] SCHEMA["2A-1"] = ["twoa1", "twoa2", None] SCHEMA["2A-2"] = ["twoa3", "twoa4", None] SCHEMA["2A-3"] = [f"twoa{i}" for i in range(1, 7 + 1)] CONSTRAINTS = [ AllDifferent("2A-1", "2A-2", "2A-3"), Iff(TakesValue("Protein 1", None), TakesValue("2A-1", None)), Iff(TakesValue("Signalling Pep", None), TakesValue("EP", None)), Iff(TakesValue("EP", None), TakesValue("Linker", None)), IfThen(TakesValue("Protein 2", None), TakesValue("Internal", None)), Iff(TakesValue("Protein 2", "Prot3"), TakesValue("2A-2", None)), ] design: List[List[Optional[str]]] = [ ["Prot1", "Prot3", "Sig1", "Ep1", "Link1", "Int1", "twoa1", None, "twoa2"], ["Prot1", "Prot3", "Sig1", "Ep1", "Link1", "Int1", "twoa1", None, "twoa1"], [None, "Prot3", "Sig1", "Ep1", "Link1", "Int1", "twoa1", None, "twoa2"], ["Prot1", "Prot3", "Sig1", None, None, None, "twoa1", None, "twoa2"], ["Prot1", "Prot3", "Sig1", "Ep1", None, "Int1", "twoa1", None, "twoa2"], ["Prot1", None, "Sig1", "Ep1", "Link1", "Int1", "twoa1", "twoa4", "twoa2"], ["Prot1", "Prot3", "Sig1", "Ep1", "Link1", "Int1", "twoa1", "twoa4", "twoa2"], ] sequences = encode_design(SCHEMA, design) actual = [c(SCHEMA, sequences).tolist() for c in CONSTRAINTS] assert actual[0] == [True, False, True, True, True, True, True] assert actual[1] == [True, True, False, True, True, True, True] assert actual[2] == [True, True, True, False, True, True, True] assert actual[3] == [True, True, True, True, False, True, True] assert actual[4] == [True, True, True, True, True, False, True] assert actual[5] == [True, True, True, True, True, True, False] def test_function(): SCHEMA = OrderedDict() SCHEMA["foo"] = ["a", "b", "c", None] SCHEMA["bar"] = ["a", "b", None] CONSTRAINTS = [ Function(lambda x: x.sum(-1) <= 0), Function(lambda x: x.sum(-1) <= 1), Function(lambda x: x.sum(-1) <= 2), Function(lambda x: x.sum(-1) <= 3), Function(lambda x: x.sum(-1) <= 4), Function(lambda x: x.sum(-1) <= 5), ] design: List[List[Optional[str]]] = [ ["a", "a"], ["a", "b"], ["a", None], ["b", "a"], ["b", "b"], ["b", None], ["c", "a"], ["c", "b"], ["c", None], [None, "a"], [None, "b"], [None, None], ] sequences = encode_design(SCHEMA, design) actual = [c(SCHEMA, sequences).tolist() for c in CONSTRAINTS] assert stringify(actual[0]) == "100000000000" assert stringify(actual[1]) == "110100000000" assert stringify(actual[2]) == "111110100000" assert stringify(actual[3]) == "111111110100" assert stringify(actual[4]) == "111111111110" assert stringify(actual[5]) == "111111111111" def test_takes_value(): SCHEMA = OrderedDict() SCHEMA["foo"] = ["a", "b", "c", None] SCHEMA["bar"] = ["a", "b", None] CONSTRAINTS = [ TakesValue("foo", "a"), TakesValue("foo", "b"), TakesValue("foo", "c"), TakesValue("foo", None), TakesValue("bar", "a"), TakesValue("bar", "b"), TakesValue("bar", None), ] design: List[List[Optional[str]]] = [ ["a", "a"], ["a", "b"], ["a", None], ["b", "a"], ["b", "b"], ["b", None], ["c", "a"], ["c", "b"], ["c", None], [None, "a"], [None, "b"], [None, None], ] sequences = encode_design(SCHEMA, design) actual = [c(SCHEMA, sequences).tolist() for c in CONSTRAINTS] assert stringify(actual[0]) == "111000000000" assert stringify(actual[1]) == "000111000000" assert stringify(actual[2]) == "000000111000" assert stringify(actual[3]) == "000000000111" assert stringify(actual[4]) == "100100100100" assert stringify(actual[5]) == "010010010010" assert stringify(actual[6]) == "001001001001" def test_takes_values(): SCHEMA = OrderedDict() SCHEMA["foo"] = ["a", "b", "c", None] SCHEMA["bar"] = ["a", "b", None] CONSTRAINTS = [ TakesValues("foo", "a"), TakesValues("foo", "b", "c"), TakesValues("foo", "a", None), TakesValues("bar", "a", "b", None), TakesValues("bar", "b"), TakesValues("bar"), ] design: List[List[Optional[str]]] = [ ["a", "a"], ["a", "b"], ["a", None], ["b", "a"], ["b", "b"], ["b", None], ["c", "a"], ["c", "b"], ["c", None], [None, "a"], [None, "b"], [None, None], ] sequences = encode_design(SCHEMA, design) actual = [c(SCHEMA, sequences).tolist() for c in CONSTRAINTS] assert stringify(actual[0]) == "111000000000" assert stringify(actual[1]) == "000111111000" assert stringify(actual[2]) == "111000000111" assert stringify(actual[3]) == "111111111111" assert stringify(actual[4]) == "010010010010" assert stringify(actual[5]) == "000000000000" def test_logic(): SCHEMA = OrderedDict() SCHEMA["foo"] = ["a", None] SCHEMA["bar"] = ["a", None] foo = TakesValue("foo", "a") bar = TakesValue("bar", "a") CONSTRAINTS = [ foo, bar, Not(foo), Not(bar), And(foo, bar), Or(foo, bar), Xor(foo, bar), Iff(foo, bar), IfThen(foo, bar), ] design: List[List[Optional[str]]] = [ ["a", "a"], ["a", None], [None, "a"], [None, None], ] sequences = encode_design(SCHEMA, design) actual = [c(SCHEMA, sequences).tolist() for c in CONSTRAINTS] assert stringify(actual[0]) == "1100" assert stringify(actual[1]) == "1010" assert stringify(actual[2]) == "0011" assert stringify(actual[3]) == "0101" assert stringify(actual[4]) == "1000" assert stringify(actual[5]) == "1110" assert stringify(actual[6]) == "0110" assert stringify(actual[7]) == "1001" assert stringify(actual[8]) == "1011"
31.175676
86
0.527669
a54cc4f81911648f430ffce3330e19c1d8a1d872
1,283
py
Python
roulette.py
rivcah/shecodes_python
8d907833e5793e0362df1207a1515f590c9a0642
[ "Unlicense" ]
null
null
null
roulette.py
rivcah/shecodes_python
8d907833e5793e0362df1207a1515f590c9a0642
[ "Unlicense" ]
null
null
null
roulette.py
rivcah/shecodes_python
8d907833e5793e0362df1207a1515f590c9a0642
[ "Unlicense" ]
null
null
null
##This function was written as an exercise for the SheCodes' Python track. ##The first function works with Python's random library. def roulette(): import random as r ##I import the random library. ##I chose 'import ... as ...' because in Python you have to ##call the library before you call its specific function. ##Then, importing random as r makes the whole job easier. number = r.randint(0, 37) ##A random integer between 0 and 37 is chosen return(number) ##The function returns the number randomly chosen ##by the function. def choose(): number = roulette() ##It uses the previous function in order to choose ##a random integer chosen = int(input("Choose a number between 0 and 36:\n")) ##asks for the input of the user if chosen > number: ##compares the number given by the user to the random number. ##The user lost. print("You lost! The number you chose is greater than the number the computer chose.") elif chosen < number: ##The user lost. print("You lost. The number you chose is lesser than the number the computer chose.") else: ##The user wins. print("You won! The numbers are equal.") return(number)##That line is totally optional. ##You can choose not to show the random number.
34.675676
88
0.694466
6be08dcb64cd2360f381e3677b71d7ed1b039993
274
py
Python
draw.py
lemolatoon/CartPoleDQN
c5a2d0fb8e14cd45fb8c6f0267d9d16c7c475f14
[ "MIT" ]
null
null
null
draw.py
lemolatoon/CartPoleDQN
c5a2d0fb8e14cd45fb8c6f0267d9d16c7c475f14
[ "MIT" ]
null
null
null
draw.py
lemolatoon/CartPoleDQN
c5a2d0fb8e14cd45fb8c6f0267d9d16c7c475f14
[ "MIT" ]
null
null
null
import pandas as pd import matplotlib.pyplot as plt rewards = pd.read_pickle("rewards.pkl") plt.plot(range(len(rewards)), rewards) plt.plot([0, 400], [195, 195], "--", color="darkred") plt.xlabel("episodes") plt.ylabel("Total Reward") plt.savefig("rewards_fig.jpg")
30.444444
54
0.70073
b54d9a723933f527d4b5126722997be1cdff1e65
24,138
py
Python
CLSciSumm_2020_Evaluation/18-NLP-PINGAN-TECH/setup/run_sembert_top3/program/task1_eval.py
yolochai/scisumm-corpus
3aa7f89afbe051d7202575b46e8f7449f7a088b0
[ "CC-BY-4.0" ]
198
2015-05-03T06:35:05.000Z
2022-03-21T19:12:20.000Z
CLSciSumm_2020_Evaluation/18-NLP-PINGAN-TECH/setup/run_sembert_top3/program/task1_eval.py
yolochai/scisumm-corpus
3aa7f89afbe051d7202575b46e8f7449f7a088b0
[ "CC-BY-4.0" ]
24
2016-03-05T17:28:14.000Z
2021-07-28T08:14:57.000Z
CLSciSumm_2020_Evaluation/18-NLP-PINGAN-TECH/setup/run_sembert_top3/program/task1_eval.py
yolochai/scisumm-corpus
3aa7f89afbe051d7202575b46e8f7449f7a088b0
[ "CC-BY-4.0" ]
89
2015-04-01T14:19:19.000Z
2022-03-19T18:47:56.000Z
import os import sys import json, csv from bs4 import BeautifulSoup import xml.etree.ElementTree as ET from copy import copy def dictify(r,root=True): if root: return {r.tag : dictify(r, False)} d=copy(r.attrib) if r.text: d["_text"]=r.text for x in r.findall("./*"): if x.tag not in d: d[x.tag]=[] d[x.tag].append(dictify(x,False)) return d def parse(file): print("parsing: " + str(file)) parse_data = {} with open(file, "r") as f: data = f.read().strip().split("\n") for line in data: line = line.strip() if len(line) == 0: continue if line[-1] == "|": line = line[0:-1] # print("Old line: " + line) line = line.replace("a | s, ", "a PIPE s, ") # print("New line: " + line) items = line.split(" | ") line_data = {} for kvpair in items: if len(kvpair) == 0: continue # print kvpair key = kvpair.strip().split(":", 1)[0].strip() value = kvpair.strip().split(":", 1)[1].strip() # print key + ":" + value line_data[key] = value if "Discourse Facet" not in line_data: line_data["Discourse Facet"] = "None" line_data["Reference Article"] = line_data["Reference Article"].replace(".xml", "") line_data["Citing Article"] = line_data["Citing Article"].replace(".xml", "") print("original cit marker offset is " + line_data["Citation Marker Offset"]) if line_data["Citation Marker Offset"].startswith("["): line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][1:] if line_data["Citation Marker Offset"].endswith("]"): line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][:-1] if line_data["Citation Marker Offset"].startswith("\'"): line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][1:] if line_data["Citation Marker Offset"].endswith("\'"): line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][:-1] if line_data["Citation Offset"].startswith("["): line_data["Citation Offset"] = line_data["Citation Offset"][1:] if line_data["Citation Offset"].endswith("]"): line_data["Citation Offset"] = line_data["Citation Offset"][:-1] print("new cit marker offset is " + line_data["Citation Marker Offset"]) if line_data["Reference Article"] not in parse_data: parse_data[line_data["Reference Article"]] = {} if line_data["Citing Article"] not in parse_data[line_data["Reference Article"]]: parse_data[line_data["Reference Article"]][line_data["Citing Article"]] = {} if line_data["Citation Marker Offset"] not in parse_data[line_data["Reference Article"]][line_data["Citing Article"]]: parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]] = {"original": line_data, "comparable": False} ref_offset = line_data["Reference Offset"] if ref_offset.startswith("["): ref_offset = ref_offset[1:] if ref_offset.endswith("]"): ref_offset = ref_offset[:-1] parsed_ref_offset_tmp = [x.strip() for x in ref_offset.split(",")] print("\n\n") print(parsed_ref_offset_tmp) parsed_ref_offset = [] for ref in parsed_ref_offset_tmp: print(ref) if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_ref_offset.append(ref) print(parsed_ref_offset) # print("<root>" + line_data["Reference Text"] + "</root>") line = "<root>" + line_data["Reference Text"] + "</root>" # print("Line is:") # print(line) line = line.replace("&", "&amp;") line = str(BeautifulSoup(line, "xml")) # line = line.replace("<\s>", "</s>") # print("Line is:") # print(line) root = ET.fromstring(line) ref_text_dict = dictify(root) # print(ref_text_dict) ref_text_dict_clean = {} cnt = 0 for item in ref_text_dict["root"]["S"]: cnt += 1 ref_text_dict_clean[item.get("sid", cnt)] = item["_text"] parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Reference Text"] = ref_text_dict_clean parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Reference Offset"] = parsed_ref_offset ref_discourse_facet = line_data["Discourse Facet"] parsed_discourse_facet = [] if len(ref_discourse_facet) > 0: if ref_discourse_facet[0] == "[": parsed_discourse_facet_tmp = [x.strip().lower().replace(" ", "_") for x in ref_discourse_facet[1:-1].split(",")] parsed_discourse_facet = [] for ref in parsed_discourse_facet_tmp: if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_discourse_facet.append(ref) else: ref = ref_discourse_facet.lower().replace(" ", "_") if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_discourse_facet.append(ref) parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Discourse Facet"] = parsed_discourse_facet # print(json.dumps(parse_data, sort_keys=True, indent=4)) # print("###################################################################################################################") return parse_data def parse_csv(file): print("parsing: " + str(file)) parse_data = {} csv_obj = csv.reader(open(file,"r")) items_list = None for i, row in enumerate(csv_obj): if i==0: # first line items_list = row # Citance Number,Reference Article, ... continue line_data = {} if len(row) != len(items_list): print("Error: # of items mismatch") print(items_list) print(row) continue for key, value in zip(items_list, row): # print kvpair line_data[key] = value if line_data["Reference Text"] == "NA": continue # print items_list print(line_data["Reference Text"]) line_data["Reference Article"] = line_data["Reference Article"].replace(".xml", "") line_data["Citing Article"] = line_data["Citing Article"].replace(".xml", "") print("original cit marker offset is " + line_data["Citation Marker Offset"]) # if line_data["Citation Marker Offset"].startswith("["): # line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][1:] # if line_data["Citation Marker Offset"].endswith("]"): # line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][:-1] # if line_data["Citation Marker Offset"].startswith("\'"): # line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][1:] # if line_data["Citation Marker Offset"].endswith("\'"): # line_data["Citation Marker Offset"] = line_data["Citation Marker Offset"][:-1] # if line_data["Citation Offset"].startswith("["): # line_data["Citation Offset"] = line_data["Citation Offset"][1:] # if line_data["Citation Offset"].endswith("]"): # line_data["Citation Offset"] = line_data["Citation Offset"][:-1] line_data["Citation Marker Offset"] = '0' line_data["Citation Offset"] = '0' print("new cit marker offset is " + line_data["Citation Marker Offset"]) if line_data["Reference Article"] not in parse_data: parse_data[line_data["Reference Article"]] = {} if line_data["Citing Article"] not in parse_data[line_data["Reference Article"]]: parse_data[line_data["Reference Article"]][line_data["Citing Article"]] = {} if line_data["Citation Marker Offset"] not in parse_data[line_data["Reference Article"]][line_data["Citing Article"]]: parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]] = {"original": line_data, "comparable": False} ref_offset = line_data["Reference Offset"] if ref_offset.startswith("["): ref_offset = ref_offset[1:] if ref_offset.endswith("]"): ref_offset = ref_offset[:-1] parsed_ref_offset_tmp = [x.strip() for x in ref_offset.split(",")] print("\n\n") print(parsed_ref_offset_tmp) parsed_ref_offset = [] for ref in parsed_ref_offset_tmp: print(ref) if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_ref_offset.append(ref) print(parsed_ref_offset) # print("<root>" + line_data["Reference Text"] + "</root>") line = "<root>" + line_data["Reference Text"] + "</root>" # print("Line is:") # print(line) line = line.replace("&amp;", "&") line = line.replace("&", "&amp;") line = str(BeautifulSoup(line, "xml")) # line = line.replace("<\s>", "</s>") # print("Line is:") # print(line) root = ET.fromstring(line) ref_text_dict = dictify(root) # print(ref_text_dict) ref_text_dict_clean = {} cnt = 0 # if "S" not in ref_text_dict["root"]: # # print "Key Error at", file # continue try: for item in ref_text_dict["root"]["S"]: cnt += 1 ref_text_dict_clean[item.get("sid", cnt)] = item["_text"] parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Reference Text"] = ref_text_dict_clean # print "ref_text_dict_clean", ref_text_dict_clean parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Reference Offset"] = parsed_ref_offset except: print("Error in Reference Offset") continue try: ref_discourse_facet = line_data["Discourse Facet"] parsed_discourse_facet = [] if len(ref_discourse_facet) > 0: if ref_discourse_facet[0] == "[": parsed_discourse_facet_tmp = [x.strip().lower().replace(" ", "_") for x in ref_discourse_facet[1:-1].split(",")] parsed_discourse_facet = [] for ref in parsed_discourse_facet_tmp: if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_discourse_facet.append(ref) else: parsed_discourse_facet_tmp = [x.strip().lower().replace(" ", "_") for x in ref_discourse_facet.split(",")] parsed_discourse_facet = [] for ref in parsed_discourse_facet_tmp: if ref.startswith("\'") or ref.startswith("\""): ref = ref[1:] if ref.endswith("\'") or ref.endswith("\""): ref = ref[:-1] parsed_discourse_facet.append(ref) print("parsed_discourse_facet", parsed_discourse_facet) parse_data[line_data["Reference Article"]][line_data["Citing Article"]][line_data["Citation Marker Offset"]]["Discourse Facet"] = parsed_discourse_facet except: print("Error in Discourse Facet") continue # print(json.dumps(parse_data, sort_keys=True, indent=4)) # print("###################################################################################################################") return parse_data def calculate(gold_data, submit_data): # print(json.dumps(gold_data, indent=4, sort_keys=True)) # print(json.dumps(submit_data, indent=4, sort_keys=True)) [TP_ref, FN_ref, FP_ref, TP_facet, FN_facet, FP_facet] = [0, 0, 0, 0, 0, 0] for ref_article in gold_data: for cit_article in gold_data[ref_article]: for cit_marker_offset in gold_data[ref_article][cit_article]: old_TP_ref = TP_ref try: for ref_offset in gold_data[ref_article][cit_article][cit_marker_offset]["Reference Offset"]: try: ref_offset_list = submit_data[ref_article][cit_article][cit_marker_offset]["Reference Offset"] if ref_offset in ref_offset_list: TP_ref += 1 gold_data[ref_article][cit_article][cit_marker_offset]["comparable"] = True else: FN_ref += 1 except KeyError as e: print("IGNORE THIS: key error 1") FN_ref += 1 except: continue for ref_article in submit_data: for cit_article in submit_data[ref_article]: for cit_marker_offset in submit_data[ref_article][cit_article]: try: for ref_offset in submit_data[ref_article][cit_article][cit_marker_offset]["Reference Offset"]: try: ref_offset_list = gold_data[ref_article][cit_article][cit_marker_offset]["Reference Offset"] if ref_offset not in ref_offset_list: FP_ref += 1 except KeyError as e: print("IGNORE THIS: key error 2") FP_ref += 1 except: continue [precision_ref, recall_ref, f_ref] = [0.0, 0.0, 0.0] try: precision_ref = TP_ref / float(TP_ref + FP_ref) except ZeroDivisionError as e: precision_ref = 0 try: recall_ref = TP_ref / float(TP_ref + FN_ref) except ZeroDivisionError as e: recall_ref = 0 try: f_ref = 2.0 * precision_ref * recall_ref / float(precision_ref + recall_ref) except ZeroDivisionError as e: f_ref = 0 for ref_article in gold_data: for cit_article in gold_data[ref_article]: for cit_marker_offset in gold_data[ref_article][cit_article]: try: for facet in gold_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]: if gold_data[ref_article][cit_article][cit_marker_offset]["comparable"]: print("\n\n") print(ref_article) print(cit_article) print(cit_marker_offset) print(facet) print(submit_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]) try: if facet in submit_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]: TP_facet += 1 else: FN_facet += 1 except KeyError as e: print("IGNORE THIS: Key error 4") FN_facet += 1 else: FN_facet += 1 except: continue for ref_article in submit_data: for cit_article in submit_data[ref_article]: for cit_marker_offset in submit_data[ref_article][cit_article]: try: for facet in submit_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]: try: if gold_data[ref_article][cit_article][cit_marker_offset]["comparable"]: if facet not in gold_data[ref_article][cit_article][cit_marker_offset]["Discourse Facet"]: FP_facet += 1 except KeyError as e: print("IGNORE THIS: Key error 5") FP_facet += 1 except: continue [precision_facet, recall_facet, f_facet] = [0.0, 0.0, 0.0] try: precision_facet = TP_facet / float(TP_facet + FP_facet) except ZeroDivisionError as e: precision_facet = 0 try: recall_facet = TP_facet / float(TP_facet + FN_facet) except ZeroDivisionError as e: recall_facet = 0 try: f_facet = 2.0 * precision_facet * recall_facet / float(precision_facet + recall_facet) except ZeroDivisionError as e: f_facet = 0 return (precision_ref, recall_ref, f_ref, precision_facet, recall_facet, f_facet, TP_ref, FP_ref, FN_ref, TP_facet, FP_facet, FN_facet) def evaluate(gold_file, submit_file, score_file): # print(gold_file) # print(submit_file) gold_data = parse_csv(gold_file) submit_data = parse_csv(submit_file) (p_ref, r_ref, f_ref, p_facet, r_facet, f_facet, TP_ref, FP_ref, FN_ref, TP_facet, FP_facet, FN_facet) = calculate(gold_data, submit_data) with open(score_file, "a") as f: f.write(os.path.basename(gold_file) + "_task1a_precision: " + str(p_ref) + "\n") f.write(os.path.basename(gold_file) + "_task1a_recall: " + str(r_ref) + "\n") f.write(os.path.basename(gold_file) + "_task1a_f1: " + str(f_ref) + "\n") f.write(os.path.basename(gold_file) + "_task1b_precision: " + str(p_facet) + "\n") f.write(os.path.basename(gold_file) + "_task1b_recall: " + str(r_facet) + "\n") f.write(os.path.basename(gold_file) + "_task1b_f1: " + str(f_facet) + "\n") return (p_ref, r_ref, f_ref, p_facet, r_facet, f_facet, TP_ref, FP_ref, FN_ref, TP_facet, FP_facet, FN_facet) def main(input_dir, output_dir): if not os.path.exists(input_dir): print("%s not a valid director" % input_dir) if not os.path.exists(output_dir): print("%s not a valid director" % output_dir) truth_dir = os.path.join(input_dir, "ref", "Task1") if not os.path.exists(truth_dir): print("%s not a valid director" % truth_dir) submit_dir = os.path.join(input_dir, "res", "Task1") if not os.path.exists(submit_dir): print("%s not a valid director" % submit_dir) score_file = os.path.join(output_dir, "scores.txt") if os.path.exists(score_file): os.remove(score_file) P_ref_list = [] P_facet_list = [] R_ref_list = [] R_facet_list = [] F_ref_list = [] F_facet_list = [] TP_ref_list = [] FP_ref_list = [] FN_ref_list = [] TP_facet_list = [] FP_facet_list = [] FN_facet_list = [] for gold_file in os.listdir(truth_dir): print("gold file",gold_file) if gold_file.startswith('.'): continue paper_id = gold_file.split('_')[0] submit_file = os.path.join(submit_dir, paper_id +".annv3.csv") print("submit_file",submit_file) if not os.path.exists(submit_file): print("No submit file") continue (p_ref, r_ref, f_ref, p_facet, r_facet, f_facet, TP_ref, FP_ref, FN_ref, TP_facet, FP_facet, FN_facet) = evaluate(os.path.join(truth_dir, gold_file), submit_file, score_file) P_ref_list.append(p_ref) P_facet_list.append(p_facet) R_ref_list.append(r_ref) R_facet_list.append(r_facet) F_ref_list.append(f_ref) F_facet_list.append(f_facet) TP_ref_list.append(TP_ref) FP_ref_list.append(FP_ref) FN_ref_list.append(FN_ref) TP_facet_list.append(TP_facet) FP_facet_list.append(FP_facet) FN_facet_list.append(FN_facet) TP_ref_sum = sum(TP_ref_list) FP_ref_sum = sum(FP_ref_list) FN_ref_sum = sum(FN_ref_list) TP_facet_sum = sum(TP_facet_list) FP_facet_sum = sum(FP_facet_list) FN_facet_sum = sum(FN_facet_list) try: precision_ref_micro = TP_ref_sum / float(TP_ref_sum + FP_ref_sum) except ZeroDivisionError as e: precision_ref_micro = 0 try: recall_ref_micro = TP_ref_sum / float(TP_ref_sum + FN_ref_sum) except ZeroDivisionError as e: recall_ref_micro = 0 try: f_ref_micro = 2.0 * precision_ref_micro * recall_ref_micro / float(precision_ref_micro + recall_ref_micro) except ZeroDivisionError as e: f_ref_micro = 0 try: precision_ref_macro = sum(P_ref_list) / len(P_ref_list) except ZeroDivisionError as e: precision_ref_macro = 0 try: recall_ref_macro = sum(R_ref_list) / len(R_ref_list) except ZeroDivisionError as e: recall_ref_macro = 0 try: f_ref_macro = 2.0 * precision_ref_macro * recall_ref_macro / float(precision_ref_macro + recall_ref_macro) except ZeroDivisionError as e: f_ref_macro = 0 try: # precision_facet_micro = TP_ref_sum / float(TP_ref_sum + FP_ref_sum) precision_facet_micro = TP_facet_sum / float(TP_facet_sum + FP_facet_sum) except ZeroDivisionError as e: precision_facet_micro = 0 try: # recall_facet_micro = TP_ref_sum / float(TP_ref_sum + FN_ref_sum) recall_facet_micro = TP_facet_sum / float(TP_facet_sum + FN_facet_sum) except ZeroDivisionError as e: recall_facet_micro = 0 try: # f_facet_micro = 2.0 * precision_ref_micro * recall_ref_micro / float(precision_ref_micro + recall_ref_micro) f_facet_micro = 2.0 * precision_facet_micro * recall_facet_micro / float(precision_facet_micro + recall_facet_micro) except ZeroDivisionError as e: f_facet_micro = 0 try: precision_facet_macro = sum(P_facet_list) / len(P_facet_list) except ZeroDivisionError as e: precision_facet_macro = 0 try: recall_facet_macro = sum(R_facet_list) / len(R_facet_list) except ZeroDivisionError as e: recall_facet_macro = 0 try: f_facet_macro = 2.0 * precision_facet_macro * recall_facet_macro / float(precision_facet_macro + recall_facet_macro) except ZeroDivisionError as e: f_facet_macro = 0 with open(score_file, "a") as f: f.write("task1a_precision_micro_avg: " + str(precision_ref_micro) + "\n") f.write("task1a_precision_macro_avg: " + str(precision_ref_macro) + "\n") f.write("task1a_recall_micro_avg: " + str(recall_ref_micro) + "\n") f.write("task1a_recall_macro_avg: " + str(recall_ref_macro) + "\n") f.write("task1a_f1_micro_avg: " + str(f_ref_micro) + "\n") f.write("task1a_f1_macro_avg: " + str(f_ref_macro) + "\n") f.write("task1b_precision_micro_avg: " + str(precision_facet_micro) + "\n") f.write("task1b_precision_macro_avg: " + str(precision_facet_macro) + "\n") f.write("task1b_recall_micro_avg: " + str(recall_facet_micro) + "\n") f.write("task1b_recall_macro_avg: " + str(recall_facet_macro) + "\n") f.write("task1b_f1_micro_avg: " + str(f_facet_micro) + "\n") f.write("task1b_f1_macro_avg: " + str(f_facet_macro) + "\n") if __name__ == "__main__": input_dir = sys.argv[1] output_dir = sys.argv[2] main(input_dir, output_dir)
47.422397
182
0.579335
ddd91633678a6ec96de6416dad9a34b839e6b84a
10,086
py
Python
sdk/formrecognizer/azure-ai-formrecognizer/tests/test_content_from_url_async.py
winest/azure-sdk-for-python
5557136179aa3df49ab9c4abfd3b6d1a9a38975c
[ "MIT" ]
null
null
null
sdk/formrecognizer/azure-ai-formrecognizer/tests/test_content_from_url_async.py
winest/azure-sdk-for-python
5557136179aa3df49ab9c4abfd3b6d1a9a38975c
[ "MIT" ]
null
null
null
sdk/formrecognizer/azure-ai-formrecognizer/tests/test_content_from_url_async.py
winest/azure-sdk-for-python
5557136179aa3df49ab9c4abfd3b6d1a9a38975c
[ "MIT" ]
null
null
null
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import pytest import functools from azure.core.exceptions import HttpResponseError, ServiceRequestError, ClientAuthenticationError from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer._generated.v2_1.models import AnalyzeOperationResult from azure.ai.formrecognizer._response_handlers import prepare_content_result from azure.ai.formrecognizer.aio import FormRecognizerClient from azure.ai.formrecognizer import FormRecognizerApiVersion from preparers import FormRecognizerPreparer from asynctestcase import AsyncFormRecognizerTest from preparers import GlobalClientPreparer as _GlobalClientPreparer FormRecognizerClientPreparer = functools.partial(_GlobalClientPreparer, FormRecognizerClient) class TestContentFromUrlAsync(AsyncFormRecognizerTest): @FormRecognizerPreparer() async def test_content_url_auth_bad_key(self, formrecognizer_test_endpoint, formrecognizer_test_api_key): client = FormRecognizerClient(formrecognizer_test_endpoint, AzureKeyCredential("xxxx")) with self.assertRaises(ClientAuthenticationError): async with client: poller = await client.begin_recognize_content_from_url(self.invoice_url_pdf) result = await poller.result() @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_url_pass_stream(self, client): with open(self.receipt_jpg, "rb") as fd: receipt = fd.read(4) # makes the recording smaller with self.assertRaises(HttpResponseError): async with client: poller = await client.begin_recognize_content_from_url(receipt) result = await poller.result() @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_url_transform_pdf(self, client): responses = [] def callback(raw_response, _, headers): analyze_result = client._deserialize(AnalyzeOperationResult, raw_response) extracted_layout = prepare_content_result(analyze_result) responses.append(analyze_result) responses.append(extracted_layout) async with client: poller = await client.begin_recognize_content_from_url(self.invoice_url_pdf, cls=callback) result = await poller.result() raw_response = responses[0] layout = responses[1] page_results = raw_response.analyze_result.page_results read_results = raw_response.analyze_result.read_results # Check form pages self.assertFormPagesTransformCorrect(layout, read_results, page_results) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_url_pdf(self, client): async with client: poller = await client.begin_recognize_content_from_url(self.invoice_url_pdf) result = await poller.result() self.assertEqual(len(result), 1) layout = result[0] self.assertEqual(layout.page_number, 1) self.assertFormPagesHasValues(result) self.assertEqual(layout.tables[0].row_count, 3) self.assertEqual(layout.tables[0].column_count, 5) self.assertEqual(layout.tables[0].page_number, 1) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_multipage_url(self, client): async with client: poller = await client.begin_recognize_content_from_url(self.multipage_url_pdf) result = await poller.result() self.assertEqual(len(result), 3) self.assertFormPagesHasValues(result) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_multipage_transform_url(self, client): responses = [] def callback(raw_response, _, headers): analyze_result = client._deserialize(AnalyzeOperationResult, raw_response) extracted_layout = prepare_content_result(analyze_result) responses.append(analyze_result) responses.append(extracted_layout) async with client: poller = await client.begin_recognize_content_from_url(self.multipage_url_pdf, cls=callback) result = await poller.result() raw_response = responses[0] layout = responses[1] page_results = raw_response.analyze_result.page_results read_results = raw_response.analyze_result.read_results # Check form pages self.assertFormPagesTransformCorrect(layout, read_results, page_results) @pytest.mark.live_test_only @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_continuation_token(self, client): async with client: initial_poller = await client.begin_recognize_content_from_url(self.form_url_jpg) cont_token = initial_poller.continuation_token() poller = await client.begin_recognize_content_from_url(None, continuation_token=cont_token) result = await poller.result() self.assertIsNotNone(result) await initial_poller.wait() # necessary so azure-devtools doesn't throw assertion error @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_multipage_table_span_pdf(self, client): async with client: poller = await client.begin_recognize_content_from_url(self.multipage_table_url_pdf) result = await poller.result() self.assertEqual(len(result), 2) layout = result[0] self.assertEqual(layout.page_number, 1) self.assertEqual(len(layout.tables), 2) self.assertEqual(layout.tables[0].row_count, 29) self.assertEqual(layout.tables[0].column_count, 4) self.assertEqual(layout.tables[0].page_number, 1) self.assertEqual(layout.tables[1].row_count, 6) self.assertEqual(layout.tables[1].column_count, 5) self.assertEqual(layout.tables[1].page_number, 1) layout = result[1] self.assertEqual(len(layout.tables), 1) self.assertEqual(layout.page_number, 2) self.assertEqual(layout.tables[0].row_count, 23) self.assertEqual(layout.tables[0].column_count, 5) self.assertEqual(layout.tables[0].page_number, 2) self.assertFormPagesHasValues(result) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_selection_marks(self, client): async with client: poller = await client.begin_recognize_content_from_url(form_url=self.selection_mark_url_pdf) result = await poller.result() self.assertEqual(len(result), 1) layout = result[0] self.assertEqual(layout.page_number, 1) self.assertFormPagesHasValues(result) @FormRecognizerPreparer() @FormRecognizerClientPreparer(client_kwargs={"api_version": FormRecognizerApiVersion.V2_0}) async def test_content_selection_marks_v2(self, client): async with client: poller = await client.begin_recognize_content_from_url(form_url=self.selection_mark_url_pdf) result = await poller.result() self.assertEqual(len(result), 1) layout = result[0] self.assertEqual(layout.page_number, 1) self.assertFormPagesHasValues(result) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_specify_pages(self, client): async with client: poller = await client.begin_recognize_content_from_url(self.multipage_url_pdf, pages=["1"]) result = await poller.result() assert len(result) == 1 poller = await client.begin_recognize_content_from_url(self.multipage_url_pdf, pages=["1", "3"]) result = await poller.result() assert len(result) == 2 poller = await client.begin_recognize_content_from_url(self.multipage_url_pdf, pages=["1-2"]) result = await poller.result() assert len(result) == 2 poller = await client.begin_recognize_content_from_url(self.multipage_url_pdf, pages=["1-2", "3"]) result = await poller.result() assert len(result) == 3 @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_reading_order(self, client): async with client: poller = await client.begin_recognize_content_from_url(self.form_url_jpg, reading_order="natural") assert 'natural' == poller._polling_method._initial_response.http_response.request.query['readingOrder'] result = await poller.result() assert result @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_language_specified(self, client): async with client: poller = await client.begin_recognize_content_from_url(self.form_url_jpg, language="de") assert 'de' == poller._polling_method._initial_response.http_response.request.query['language'] result = await poller.result() assert result @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_content_language_error(self, client): async with client: with pytest.raises(HttpResponseError) as e: await client.begin_recognize_content_from_url(self.form_url_jpg, language="not a language") assert "NotSupportedLanguage" == e.value.error.code @FormRecognizerPreparer() @FormRecognizerClientPreparer(client_kwargs={"api_version": FormRecognizerApiVersion.V2_0}) async def test_content_language_v2(self, client): async with client: with pytest.raises(ValueError) as e: await client.begin_recognize_content_from_url(self.form_url_jpg, language="en") assert "'language' is only available for API version V2_1 and up" in str(e.value)
45.026786
116
0.705632
09250aa318544ad98c244eff2e3eb954ab131659
13,331
py
Python
stringlifier/modules/stringc2.py
atreyamaj/stringlifier
97bc8bd01cbb87ec910112809d2a65d73f57d2fc
[ "ECL-2.0", "Apache-2.0" ]
130
2020-08-20T17:57:43.000Z
2022-03-11T07:18:43.000Z
stringlifier/modules/stringc2.py
atreyamaj/stringlifier
97bc8bd01cbb87ec910112809d2a65d73f57d2fc
[ "ECL-2.0", "Apache-2.0" ]
14
2020-08-26T06:18:13.000Z
2021-08-03T01:52:59.000Z
stringlifier/modules/stringc2.py
atreyamaj/stringlifier
97bc8bd01cbb87ec910112809d2a65d73f57d2fc
[ "ECL-2.0", "Apache-2.0" ]
15
2020-08-24T17:43:24.000Z
2021-11-04T08:42:36.000Z
# # Copyright (c) 2020 Adobe Systems Incorporated. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import torch.nn as nn import optparse import sys import json import numpy as np import random import tqdm class Encodings: def __init__(self, filename=None): self._char2int = {'<PAD>': 0, '<UNK>': 1} self._label2int = {'<PAD>': 0} self._label_list = ['<PAD>'] if filename is not None: self.load(filename) def save(self, filename): json.dump({'char2int': self._char2int, 'label2int': self._label2int}, open(filename, 'w')) def load(self, file): if isinstance(file, str): stream = open(file, 'r') else: stream = file obj = json.load(stream) self._char2int = obj['char2int'] self._label2int = obj['label2int'] self._label_list = [None for _ in range(len(self._label2int))] for t in self._label2int: self._label_list[self._label2int[t]] = t def update_encodings(self, dataset, cutoff=2): char2count = {} for entry in tqdm.tqdm(dataset): text = entry[0] label = entry[1] for char in text: char = char.lower() if char in char2count: char2count[char] += 1 else: char2count[char] = 1 for ttype in label: if ttype not in self._label2int: self._label2int[ttype] = len(self._label2int) self._label_list.append(ttype) for char in char2count: if char not in self._char2int and char2count[char] > cutoff: self._char2int[char] = len(self._char2int) class CTaggerConfig: def __init__(self): self.char_emb_size = 100 self.rnn_layers = 2 self.rnn_size = 100 self.hidden = 500 def save(self, filename): json.dump({'char_emb_size': self.char_emb_size, 'rnn_layers': self.rnn_layers, 'rnn_size': self.rnn_size, 'hidden': self.hidden}, open(filename, 'w')) def load(self, file): if isinstance(file, str): stream = open(file, 'r') else: stream = file obj = json.load(stream) self.char_emb_size = obj['char_emb_size'] self.rnn_size = obj['rnn_size'] self.rnn_layers = obj['rnn_layers'] self.hidden = obj['hidden'] class CTagger(nn.Module): def __init__(self, config, encodings): super(CTagger, self).__init__() self._config = config self._encodings = encodings self._char_emb = nn.Embedding(len(encodings._char2int), config.char_emb_size, padding_idx=0) self._case_emb = nn.Embedding(4, 16, padding_idx=0) self._rnn = nn.LSTM(config.char_emb_size + 16, config.rnn_size, config.rnn_layers, batch_first=True, bidirectional=True) self._hidden = nn.Sequential(nn.Linear(config.rnn_size * 2, config.hidden), nn.Tanh(), nn.Dropout(0.5)) self._softmax_type = nn.Linear(config.hidden, len(encodings._label2int)) def _make_input(self, word_list): # we pad domain names and feed them in reversed character order to the LSTM max_seq_len = max([len(word) for word in word_list]) x_char = np.zeros((len(word_list), max_seq_len)) x_case = np.zeros((len(word_list), max_seq_len)) for iBatch in range(x_char.shape[0]): word = word_list[iBatch] for index in range(len(word)): char = word[index] case_idx = 0 if char.lower() == char.upper(): case_idx = 1 # symbol elif char.lower() != char: case_idx = 2 # uppercase else: case_idx = 3 # lowercase char = char.lower() if char in self._encodings._char2int: char_idx = self._encodings._char2int[char] else: char_idx = 1 # UNK x_char[iBatch, index] = char_idx x_case[iBatch, index] = case_idx return x_char, x_case def forward(self, string_list): x_char, x_case = self._make_input(string_list) x_char = torch.tensor(x_char, dtype=torch.long, device=self._get_device()) x_case = torch.tensor(x_case, dtype=torch.long, device=self._get_device()) hidden = torch.cat([self._char_emb(x_char), self._case_emb(x_case)], dim=-1) hidden = torch.dropout(hidden, 0.5, self.training) output, _ = self._rnn(hidden) hidden = self._hidden(output) return self._softmax_type(hidden) def save(self, path): torch.save(self.state_dict(), path) def load(self, path): self.load_state_dict(torch.load(path, map_location='cpu')) def _get_device(self): if self._char_emb.weight.device.type == 'cpu': return 'cpu' return '{0}:{1}'.format(self._char_emb.weight.device.type, str(self._char_emb.weight.device.index)) def _load_dataset(filename): lines = open(filename, encoding='utf-8').readlines() dataset = [] for ii in range(len(lines) // 2): string = lines[ii * 2][:-1] mask = lines[ii * 2 + 1][:-1] dataset.append((string, mask)) return dataset def _eval(model, dataset, encodings): model.eval() test_x, test_y = _make_batches(dataset, batch_size=128) total_t = 0 ok_t = 0 with torch.no_grad(): pgb = tqdm.tqdm(zip(test_x, test_y), total=len(test_x), ncols=80, desc='\t\t\t\t') for x, y in pgb: y_pred_t = model(x) y_tar_t = _get_targets(y, encodings).reshape(-1) y_pred_t = torch.argmax(y_pred_t, dim=-1).detach().cpu().numpy().reshape(-1) for y_t_t, y_p_t in zip(y_tar_t, y_pred_t): if y_t_t != 0: total_t += 1 if y_t_t == y_p_t: ok_t += 1 return ok_t / total_t def _make_batches(dataset, batch_size=32): batches_x = [] batches_y = [] batch_x = [] batch_y = [] for entry in dataset: domain = entry[0] t = entry[1] batch_x.append(domain) batch_y.append(t) if len(batch_x) == batch_size: batches_x.append(batch_x) batches_y.append(batch_y) batch_x = [] batch_y = [] if len(batch_x) != 0: batches_x.append(batch_x) batches_y.append(batch_y) return batches_x, batches_y def _get_targets(y, encodings): max_len = max([len(yy) for yy in y]) y_t = np.zeros((len(y), max_len), dtype=np.long) for i in range(len(y)): for j in range(max_len): if j < len(y[i]): y_t[i, j] = encodings._label2int[y[i][j]] return y_t def _generate_dataset(count): from training import generate_next_cmd dataset = [] for ii in range(count): cmd, mask = generate_next_cmd() dataset.append((cmd, mask)) return dataset def _start_train(params): eval_at = 5000 if params.resume: encodings = Encodings('{0}.encodings'.format(params.output_base)) else: sys.stdout.write('Generating new random data...') sys.stdout.flush() trainset = _generate_dataset(int(eval_at * 4 * params.batch_size)) sys.stdout.write('done\n') encodings = Encodings() encodings.update_encodings(trainset) print('chars={0}, types={1}'.format(len(encodings._char2int), len(encodings._label2int))) print(encodings._label2int) config = CTaggerConfig() if params.resume: config.load('{0}.conf'.format(params.output_base)) model = CTagger(config, encodings) model.to(params.device) if params.resume: model.load('{0}.last'.format(params.output_base)) optimizer = torch.optim.Adam(model.parameters()) criterion_t = torch.nn.CrossEntropyLoss(ignore_index=0) patience_left = params.patience best_type = 0 # _eval(model, devset, encodings) encodings.save('{0}.encodings'.format(params.output_base)) config.save('{0}.conf'.format(params.output_base)) model.save('{0}.last'.format(params.output_base)) print("Deveset evaluation acc={0}".format(best_type)) epoch = 0 eval_at = 5000 while patience_left > 0: sys.stdout.write('Generating new random data...') sys.stdout.flush() trainset = _generate_dataset(int(eval_at * params.batch_size)) devset = _generate_dataset(int(eval_at / 10 * params.batch_size)) sys.stdout.write('done\n') sys.stdout.flush() sys.stderr.flush() epoch += 1 random.shuffle(trainset) train_x, train_y = _make_batches(trainset, batch_size=params.batch_size) sys.stdout.write('Starting epoch {0}\n'.format(epoch)) pgb = tqdm.tqdm(zip(train_x, train_y), total=len(train_x), ncols=80, desc='\tloss=N/A') model.train() total_loss = 0 cnt = 0 for x, y in pgb: cnt += 1 if cnt % eval_at == 0: patience_left -= 1 sys.stderr.flush() sys.stderr.flush() sys.stderr.write('\n\tEvaluating...') sys.stderr.flush() acc_t = _eval(model, devset, encodings) sys.stderr.write(' acc={0}\n'.format(acc_t)) sys.stderr.flush() filename = '{0}.last'.format(params.output_base) sys.stderr.write('\t\tStoring {0}\n'.format(filename)) sys.stderr.flush() model.save(filename) if acc_t > best_type: patience_left = params.patience best_type = acc_t filename = '{0}.bestType'.format(params.output_base) sys.stderr.write('\t\tStoring {0}\n'.format(filename)) sys.stderr.flush() model.save(filename) sys.stderr.write('\n') sys.stderr.flush() model.train() if patience_left <= 0: print("Stopping with maximum patience reached") sys.exit(0) y_pred_t = model(x) y_tar_t = _get_targets(y, encodings) y_tar_t = torch.tensor(y_tar_t, dtype=torch.long, device=params.device) y_pred = y_pred_t.view(-1, y_pred_t.shape[-1]) y_target = y_tar_t.view(-1) if y_pred.shape[0] != y_target.shape[0]: from ipdb import set_trace set_trace() loss = criterion_t(y_pred, y_target) optimizer.zero_grad() total_loss += loss.item() pgb.set_description('\tloss={0:.4f}'.format(total_loss / cnt)) loss.backward() optimizer.step() sys.stdout.write('AVG train loss={0} \n'.format(total_loss / len(train_x))) def _start_interactive(params): encodings = Encodings('{0}.encodings'.format(params.output_base)) config = CTaggerConfig() config.load('{0}.conf'.format(params.output_base)) model = CTagger(config, encodings) model.load('{0}.bestType'.format(params.output_base)) model.to(params.device) model.eval() sys.stdout.write('>>> ') sys.stdout.flush() string = input() while string != '/exit': p_t = model([string]) p_d_t = torch.argmax(p_t, dim=-1).detach().cpu().numpy() print("Results for \n{0}".format(string)) for ii in range(p_d_t.shape[-1]): sys.stdout.write(encodings._label_list[p_d_t[0, ii]]) sys.stdout.write('\n') print("") sys.stdout.write('>>> ') sys.stdout.flush() string = input() if __name__ == '__main__': parser = optparse.OptionParser() parser.add_option('--interactive', action='store_true', dest='interactive') parser.add_option('--train', action='store_true', dest='train') parser.add_option('--resume', action='store_true', dest='resume') parser.add_option('--store', action='store', dest='output_base') parser.add_option('--patience', action='store', dest='patience', type='int', default=20, help='(default=20)') parser.add_option('--batch-size', action='store', dest='batch_size', default=32, type='int', help='(default=32)') parser.add_option('--device', action='store', dest='device', default='cpu') (params, _) = parser.parse_args(sys.argv) if params.train: _start_train(params) elif params.interactive: _start_interactive(params) else: parser.print_help()
34.716146
117
0.586378
547b053d3833ccfa4e0dd3740fa460f6665dcaa6
1,037
py
Python
attribute_filter/base.py
DragonDriver/ann-benchmarks
25be1cf05e7513b3a89c3bca11184629457e60bc
[ "MIT" ]
null
null
null
attribute_filter/base.py
DragonDriver/ann-benchmarks
25be1cf05e7513b3a89c3bca11184629457e60bc
[ "MIT" ]
null
null
null
attribute_filter/base.py
DragonDriver/ann-benchmarks
25be1cf05e7513b3a89c3bca11184629457e60bc
[ "MIT" ]
2
2020-08-15T08:51:26.000Z
2020-09-27T06:45:34.000Z
from __future__ import absolute_import import psutil class BaseANN(object): def done(self): pass def get_memory_usage(self): """Return the current memory usage of this algorithm instance (in kilobytes), or None if this information is not available.""" # return in kB for backwards compatibility return psutil.Process().memory_info().rss / 1024 def support_batch_fit(self): return False def already_fit(self, total_num): return False def batch_fit(self, X, total_num): pass def fit(self, X): pass def query(self, q, n): return [] # array of candidate indices def handle_query_list_result(self, query_list): return 0, query_list def batch_query(self, X, n): self.res = [] for q in X: self.res.append(self.query(q, n)) def get_batch_results(self): return self.res def get_additional(self): return {} def __str__(self): return self.name
21.604167
72
0.619094
ab09a251bcf209d7678219416f7b846df4ee6782
923
py
Python
test/views.py
seanchon/django-health-monitor
ac53757d29b161bdb4bc5ff7db0fe61323a27e94
[ "Apache-2.0" ]
6
2017-04-27T19:27:49.000Z
2020-06-04T05:46:53.000Z
test/views.py
seanchon/django-health-monitor
ac53757d29b161bdb4bc5ff7db0fe61323a27e94
[ "Apache-2.0" ]
6
2017-06-05T21:00:20.000Z
2020-06-30T03:49:00.000Z
test/views.py
seanchon/django-health-monitor
ac53757d29b161bdb4bc5ff7db0fe61323a27e94
[ "Apache-2.0" ]
3
2017-12-07T01:53:41.000Z
2019-12-04T03:43:02.000Z
""" Copyright 2017 Gracenote Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from health_monitor.views import HealthTestView, HealthAlarmView, HealthView from test.models import BodyHealth, BodyHealthAlarm class BodyHealthView(HealthView): health_model = BodyHealth class BodyHealthAlarmView(HealthAlarmView): health_alarm_model = BodyHealthAlarm class BodyHealthTestView(HealthTestView): pass
30.766667
76
0.774648
552255b693ceb03c9a00e98f5f5da8d8bacaca73
10,322
py
Python
discpy/ui/button.py
AryamanSrii/DiscPy
0ba89da9ca184f0dfaebeedd4e9b7bc3099a0353
[ "MIT" ]
null
null
null
discpy/ui/button.py
AryamanSrii/DiscPy
0ba89da9ca184f0dfaebeedd4e9b7bc3099a0353
[ "MIT" ]
null
null
null
discpy/ui/button.py
AryamanSrii/DiscPy
0ba89da9ca184f0dfaebeedd4e9b7bc3099a0353
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2021 The DiscPy Developers Copyright (c) 2015-2021 Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import Callable, Optional, TYPE_CHECKING, Tuple, Type, TypeVar, Union import inspect import os from .item import Item, ItemCallbackType from ..enums import ButtonStyle, ComponentType from ..partial_emoji import PartialEmoji, _EmojiTag from ..components import Button as ButtonComponent __all__ = ( "Button", "button", ) if TYPE_CHECKING: from .view import View from ..emoji import Emoji B = TypeVar("B", bound="Button") V = TypeVar("V", bound="View", covariant=True) class Button(Item[V]): """Represents a UI button. .. versionadded:: 2.0 Parameters ------------ style: :class:`discpy.ButtonStyle` The style of the button. custom_id: Optional[:class:`str`] The ID of the button that gets received during an interaction. If this button is for a URL, it does not have a custom ID. url: Optional[:class:`str`] The URL this button sends you to. disabled: :class:`bool` Whether the button is disabled or not. label: Optional[:class:`str`] The label of the button, if any. emoji: Optional[Union[:class:`.PartialEmoji`, :class:`.Emoji`, :class:`str`]] The emoji of the button, if available. row: Optional[:class:`int`] The relative row this button belongs to. A Discord component can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). """ __item_repr_attributes__: Tuple[str, ...] = ( "style", "url", "disabled", "label", "emoji", "row", ) def __init__( self, *, style: ButtonStyle = ButtonStyle.secondary, label: Optional[str] = None, disabled: bool = False, custom_id: Optional[str] = None, url: Optional[str] = None, emoji: Optional[Union[str, Emoji, PartialEmoji]] = None, row: Optional[int] = None, ): super().__init__() if custom_id is not None and url is not None: raise TypeError("cannot mix both url and custom_id with Button") self._provided_custom_id = custom_id is not None if url is None and custom_id is None: custom_id = os.urandom(16).hex() if url is not None: style = ButtonStyle.link if emoji is not None: if isinstance(emoji, str): emoji = PartialEmoji.from_str(emoji) elif isinstance(emoji, _EmojiTag): emoji = emoji._to_partial() else: raise TypeError( f"expected emoji to be str, Emoji, or PartialEmoji not {emoji.__class__}" ) self._underlying = ButtonComponent._raw_construct( type=ComponentType.button, custom_id=custom_id, url=url, disabled=disabled, label=label, style=style, emoji=emoji, ) self.row = row @property def style(self) -> ButtonStyle: """:class:`discpy.ButtonStyle`: The style of the button.""" return self._underlying.style @style.setter def style(self, value: ButtonStyle): self._underlying.style = value @property def custom_id(self) -> Optional[str]: """Optional[:class:`str`]: The ID of the button that gets received during an interaction. If this button is for a URL, it does not have a custom ID. """ return self._underlying.custom_id @custom_id.setter def custom_id(self, value: Optional[str]): if value is not None and not isinstance(value, str): raise TypeError("custom_id must be None or str") self._underlying.custom_id = value @property def url(self) -> Optional[str]: """Optional[:class:`str`]: The URL this button sends you to.""" return self._underlying.url @url.setter def url(self, value: Optional[str]): if value is not None and not isinstance(value, str): raise TypeError("url must be None or str") self._underlying.url = value @property def disabled(self) -> bool: """:class:`bool`: Whether the button is disabled or not.""" return self._underlying.disabled @disabled.setter def disabled(self, value: bool): self._underlying.disabled = bool(value) @property def label(self) -> Optional[str]: """Optional[:class:`str`]: The label of the button, if available.""" return self._underlying.label @label.setter def label(self, value: Optional[str]): self._underlying.label = str(value) if value is not None else value @property def emoji(self) -> Optional[PartialEmoji]: """Optional[:class:`.PartialEmoji`]: The emoji of the button, if available.""" return self._underlying.emoji @emoji.setter def emoji(self, value: Optional[Union[str, Emoji, PartialEmoji]]): # type: ignore if value is not None: if isinstance(value, str): self._underlying.emoji = PartialEmoji.from_str(value) elif isinstance(value, _EmojiTag): self._underlying.emoji = value._to_partial() else: raise TypeError( f"expected str, Emoji, or PartialEmoji, received {value.__class__} instead" ) else: self._underlying.emoji = None @classmethod def from_component(cls: Type[B], button: ButtonComponent) -> B: return cls( style=button.style, label=button.label, disabled=button.disabled, custom_id=button.custom_id, url=button.url, emoji=button.emoji, row=None, ) @property def type(self) -> ComponentType: return self._underlying.type def to_component_dict(self): return self._underlying.to_dict() def is_dispatchable(self) -> bool: return self.custom_id is not None def is_persistent(self) -> bool: if self.style is ButtonStyle.link: return self.url is not None return super().is_persistent() def refresh_component(self, button: ButtonComponent) -> None: self._underlying = button def button( *, label: Optional[str] = None, custom_id: Optional[str] = None, disabled: bool = False, style: ButtonStyle = ButtonStyle.secondary, emoji: Optional[Union[str, Emoji, PartialEmoji]] = None, row: Optional[int] = None, ) -> Callable[[ItemCallbackType], ItemCallbackType]: """A decorator that attaches a button to a component. The function being decorated should have three parameters, ``self`` representing the :class:`discpy.ui.View`, the :class:`discpy.ui.Button` being pressed and the :class:`discpy.Interaction` you receive. .. note:: Buttons with a URL cannot be created with this function. Consider creating a :class:`Button` manually instead. This is because buttons with a URL do not have a callback associated with them since Discord does not do any processing with it. Parameters ------------ label: Optional[:class:`str`] The label of the button, if any. custom_id: Optional[:class:`str`] The ID of the button that gets received during an interaction. It is recommended not to set this parameter to prevent conflicts. style: :class:`.ButtonStyle` The style of the button. Defaults to :attr:`.ButtonStyle.grey`. disabled: :class:`bool` Whether the button is disabled or not. Defaults to ``False``. emoji: Optional[Union[:class:`str`, :class:`.Emoji`, :class:`.PartialEmoji`]] The emoji of the button. This can be in string form or a :class:`.PartialEmoji` or a full :class:`.Emoji`. row: Optional[:class:`int`] The relative row this button belongs to. A Discord component can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). """ def decorator(func: ItemCallbackType) -> ItemCallbackType: if not inspect.iscoroutinefunction(func): raise TypeError("button function must be a coroutine function") func.__discpy_ui_model_type__ = Button func.__discpy_ui_model_kwargs__ = { "style": style, "custom_id": custom_id, "url": None, "disabled": disabled, "label": label, "emoji": emoji, "row": row, } return func return decorator
34.871622
97
0.63912
ff3b5c0cd6d7164031311a083b869861ccfa41d5
96
py
Python
ml_toolkit/webtools/__init__.py
TSPereira/support_toolkit
d9b0488d69dccc38b73cd67ea33f4f53983cf77f
[ "MIT" ]
4
2021-01-05T14:03:54.000Z
2021-01-29T14:48:09.000Z
ml_toolkit/webtools/__init__.py
TSPereira/support_toolkit
d9b0488d69dccc38b73cd67ea33f4f53983cf77f
[ "MIT" ]
null
null
null
ml_toolkit/webtools/__init__.py
TSPereira/support_toolkit
d9b0488d69dccc38b73cd67ea33f4f53983cf77f
[ "MIT" ]
null
null
null
from .url_parsers import LinkParser, parse_url_page __all__ = ['LinkParser', 'parse_url_page']
24
51
0.791667
ec660d0667b2243a875f9bb51f41e6a814730179
2,497
py
Python
portional-web/recipe/tests/conftest.py
davidhousedev/portional
b9a8efab0554d6b1c19aa8b510f3f5a45c91986f
[ "Apache-2.0" ]
null
null
null
portional-web/recipe/tests/conftest.py
davidhousedev/portional
b9a8efab0554d6b1c19aa8b510f3f5a45c91986f
[ "Apache-2.0" ]
5
2021-03-08T23:42:47.000Z
2022-02-26T08:29:09.000Z
portional-web/recipe/tests/conftest.py
davidhousedev/portional
b9a8efab0554d6b1c19aa8b510f3f5a45c91986f
[ "Apache-2.0" ]
1
2019-01-30T19:09:19.000Z
2019-01-30T19:09:19.000Z
import pytest from django.contrib.auth.models import User from django.conf import settings from ..models import ( Recipe, RecipeIngredient, Ingredient, Instruction ) BEEF_KEY = 'beef' BUN_KEY = 'bun' INGREDIENT_MAP = { BEEF_KEY: 'Beef', BUN_KEY: 'Bun', } @pytest.fixture def ingredients(db): ings = { ing_key: Ingredient(orig_name=ing_name) for ing_key, ing_name in INGREDIENT_MAP.items() } for ing in ings.values(): ing.save() return ings @pytest.fixture def recipe(db): user = User() user.save() rec = Recipe(name='Hamburger', imported_by=user) rec.save() return rec @pytest.fixture def recipe_ingredients(db, recipe, ingredients): beef_rec_ing = RecipeIngredient( ingredient=ingredients[BEEF_KEY], amount=0.5, scale='lbs', recipe=recipe) bun_rec_ing = RecipeIngredient( ingredient=ingredients[BUN_KEY], amount=1, recipe=recipe) beef_rec_ing.save() bun_rec_ing.save() return { BEEF_KEY: beef_rec_ing, BUN_KEY: bun_rec_ing } @pytest.fixture def instructions(db, recipe, recipe_ingredients): beef_db_id = f'{settings.DB_ID_PREFIX}{recipe_ingredients[BEEF_KEY].id}' bun_db_id = f'{settings.DB_ID_PREFIX}{recipe_ingredients[BUN_KEY].id}' inst_1 = Instruction( orig_text='Grill burger to taste.', db_id_text=f'Grill {{{beef_db_id}}} ' f'to taste.', order=1, recipe=recipe) inst_2 = Instruction( orig_text='Place burger within toasted bun.', db_id_text=f'Place {{{beef_db_id}}} ' f'within toasted ' f'{{{bun_db_id}}}.', order=2, recipe=recipe) inst_3 = Instruction( orig_text='Serve immediately with your choice of ' 'condiments.', db_id_text=f'Serve immediately with your choice of ' 'condiments.', order=3, recipe=recipe) insts = [inst_1, inst_2, inst_3] for inst in insts: inst.save() inst_1.ingredients = (recipe_ingredients[BEEF_KEY],) inst_2.ingredients = ( recipe_ingredients[BEEF_KEY], recipe_ingredients[BUN_KEY], ) for inst in insts: inst.save() return insts @pytest.fixture def hamburger_recipe(db, recipe, instructions): """Ensure that all db objects are created prior to beginning tests.""" return recipe
23.336449
76
0.619543
9769ba4e6bc1d11779ca221b5221a9bcced05722
1,491
py
Python
assignments/assignment1/metrics.py
iptkachev/dlcourse_ai
bf4d8c7639fa0597580130ae65e1dea0f26d1b4a
[ "MIT" ]
null
null
null
assignments/assignment1/metrics.py
iptkachev/dlcourse_ai
bf4d8c7639fa0597580130ae65e1dea0f26d1b4a
[ "MIT" ]
null
null
null
assignments/assignment1/metrics.py
iptkachev/dlcourse_ai
bf4d8c7639fa0597580130ae65e1dea0f26d1b4a
[ "MIT" ]
null
null
null
def binary_classification_metrics(prediction, ground_truth): ''' Computes metrics for binary classification Arguments: prediction, np array of bool (num_samples) - model predictions ground_truth, np array of bool (num_samples) - true labels Returns: precision, recall, f1, accuracy - classification metrics ''' precision = 0 recall = 0 accuracy = 0 f1 = 0 # TODO: implement metrics! # Some helpful links: # https://en.wikipedia.org/wiki/Precision_and_recall # https://en.wikipedia.org/wiki/F1_score count_objects = ground_truth.shape[0] tp = 0 for i in range(prediction.shape[0]): if prediction[i]: tp += (prediction[i] == ground_truth[i]) recall = tp / ground_truth.sum() precision = tp / prediction.sum() f1 = 2 * precision * recall / (precision + recall) accuracy = (prediction == ground_truth).sum() / count_objects return precision, recall, f1, accuracy def multiclass_accuracy(prediction, ground_truth): ''' Computes metrics for multiclass classification Arguments: prediction, np array of int (num_samples) - model predictions ground_truth, np array of int (num_samples) - true labels Returns: accuracy - ratio of accurate predictions to total samples ''' # TODO: Implement computing accuracy count_objects = ground_truth.shape[0] return (prediction == ground_truth).sum() / count_objects
29.235294
66
0.667337
0a7ae6d658a971121b0c2a3f11b5bbd220484bf8
467
py
Python
dictionary.py
joeysal/astr-119-hw-2
cb63f577370e5835c8ae027e624ad2459e71c3cb
[ "MIT" ]
null
null
null
dictionary.py
joeysal/astr-119-hw-2
cb63f577370e5835c8ae027e624ad2459e71c3cb
[ "MIT" ]
1
2020-10-11T23:17:55.000Z
2020-10-17T01:03:17.000Z
dictionary.py
joeysal/astr-119-hw-2
cb63f577370e5835c8ae027e624ad2459e71c3cb
[ "MIT" ]
null
null
null
#define a dictionary data structure #dictionaries have key:valyue pairs for the elements example_dict = { "class" : "ASTR 119", "prof" : "Brant", "awesomeness" : 10 } print ("The type of example_dict is ", type(example_dict)) #get value via key course = example_dict["class"] print(course) example_dict["awesomeness"] += 1 #print the dictionary print(example_dict) #print dictionary element by element for x in example_dict.key(): print(x, example_dict[x])
19.458333
58
0.732334
6788b9b0b7a2d97ad274650bae05a0610728d0c2
14,569
py
Python
kubernetes/test/test_infrastructure_cluster_xk8s_io_v1alpha4_api.py
mariusgheorghies/python
68ac7e168963d8b5a81dc493b1973d29e903a15b
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_infrastructure_cluster_xk8s_io_v1alpha4_api.py
mariusgheorghies/python
68ac7e168963d8b5a81dc493b1973d29e903a15b
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_infrastructure_cluster_xk8s_io_v1alpha4_api.py
mariusgheorghies/python
68ac7e168963d8b5a81dc493b1973d29e903a15b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.20.7 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes.client from kubernetes.client.api.infrastructure_cluster_xk8s_io_v1alpha4_api import InfrastructureClusterXK8sIoV1alpha4Api # noqa: E501 from kubernetes.client.rest import ApiException class TestInfrastructureClusterXK8sIoV1alpha4Api(unittest.TestCase): """InfrastructureClusterXK8sIoV1alpha4Api unit test stubs""" def setUp(self): self.api = kubernetes.client.api.infrastructure_cluster_xk8s_io_v1alpha4_api.InfrastructureClusterXK8sIoV1alpha4Api() # noqa: E501 def tearDown(self): pass def test_create_aws_cluster_controller_identity(self): """Test case for create_aws_cluster_controller_identity """ pass def test_create_aws_cluster_role_identity(self): """Test case for create_aws_cluster_role_identity """ pass def test_create_aws_cluster_static_identity(self): """Test case for create_aws_cluster_static_identity """ pass def test_create_namespaced_aws_cluster(self): """Test case for create_namespaced_aws_cluster """ pass def test_create_namespaced_aws_cluster_template(self): """Test case for create_namespaced_aws_cluster_template """ pass def test_create_namespaced_aws_fargate_profile(self): """Test case for create_namespaced_aws_fargate_profile """ pass def test_create_namespaced_aws_machine(self): """Test case for create_namespaced_aws_machine """ pass def test_create_namespaced_aws_machine_pool(self): """Test case for create_namespaced_aws_machine_pool """ pass def test_create_namespaced_aws_machine_template(self): """Test case for create_namespaced_aws_machine_template """ pass def test_create_namespaced_aws_managed_machine_pool(self): """Test case for create_namespaced_aws_managed_machine_pool """ pass def test_delete_aws_cluster_controller_identity(self): """Test case for delete_aws_cluster_controller_identity """ pass def test_delete_aws_cluster_role_identity(self): """Test case for delete_aws_cluster_role_identity """ pass def test_delete_aws_cluster_static_identity(self): """Test case for delete_aws_cluster_static_identity """ pass def test_delete_collection_aws_cluster_controller_identity(self): """Test case for delete_collection_aws_cluster_controller_identity """ pass def test_delete_collection_aws_cluster_role_identity(self): """Test case for delete_collection_aws_cluster_role_identity """ pass def test_delete_collection_aws_cluster_static_identity(self): """Test case for delete_collection_aws_cluster_static_identity """ pass def test_delete_collection_namespaced_aws_cluster(self): """Test case for delete_collection_namespaced_aws_cluster """ pass def test_delete_collection_namespaced_aws_cluster_template(self): """Test case for delete_collection_namespaced_aws_cluster_template """ pass def test_delete_collection_namespaced_aws_fargate_profile(self): """Test case for delete_collection_namespaced_aws_fargate_profile """ pass def test_delete_collection_namespaced_aws_machine(self): """Test case for delete_collection_namespaced_aws_machine """ pass def test_delete_collection_namespaced_aws_machine_pool(self): """Test case for delete_collection_namespaced_aws_machine_pool """ pass def test_delete_collection_namespaced_aws_machine_template(self): """Test case for delete_collection_namespaced_aws_machine_template """ pass def test_delete_collection_namespaced_aws_managed_machine_pool(self): """Test case for delete_collection_namespaced_aws_managed_machine_pool """ pass def test_delete_namespaced_aws_cluster(self): """Test case for delete_namespaced_aws_cluster """ pass def test_delete_namespaced_aws_cluster_template(self): """Test case for delete_namespaced_aws_cluster_template """ pass def test_delete_namespaced_aws_fargate_profile(self): """Test case for delete_namespaced_aws_fargate_profile """ pass def test_delete_namespaced_aws_machine(self): """Test case for delete_namespaced_aws_machine """ pass def test_delete_namespaced_aws_machine_pool(self): """Test case for delete_namespaced_aws_machine_pool """ pass def test_delete_namespaced_aws_machine_template(self): """Test case for delete_namespaced_aws_machine_template """ pass def test_delete_namespaced_aws_managed_machine_pool(self): """Test case for delete_namespaced_aws_managed_machine_pool """ pass def test_list_aws_cluster_controller_identity(self): """Test case for list_aws_cluster_controller_identity """ pass def test_list_aws_cluster_for_all_namespaces(self): """Test case for list_aws_cluster_for_all_namespaces """ pass def test_list_aws_cluster_role_identity(self): """Test case for list_aws_cluster_role_identity """ pass def test_list_aws_cluster_static_identity(self): """Test case for list_aws_cluster_static_identity """ pass def test_list_aws_cluster_template_for_all_namespaces(self): """Test case for list_aws_cluster_template_for_all_namespaces """ pass def test_list_aws_fargate_profile_for_all_namespaces(self): """Test case for list_aws_fargate_profile_for_all_namespaces """ pass def test_list_aws_machine_for_all_namespaces(self): """Test case for list_aws_machine_for_all_namespaces """ pass def test_list_aws_machine_pool_for_all_namespaces(self): """Test case for list_aws_machine_pool_for_all_namespaces """ pass def test_list_aws_machine_template_for_all_namespaces(self): """Test case for list_aws_machine_template_for_all_namespaces """ pass def test_list_aws_managed_machine_pool_for_all_namespaces(self): """Test case for list_aws_managed_machine_pool_for_all_namespaces """ pass def test_list_namespaced_aws_cluster(self): """Test case for list_namespaced_aws_cluster """ pass def test_list_namespaced_aws_cluster_template(self): """Test case for list_namespaced_aws_cluster_template """ pass def test_list_namespaced_aws_fargate_profile(self): """Test case for list_namespaced_aws_fargate_profile """ pass def test_list_namespaced_aws_machine(self): """Test case for list_namespaced_aws_machine """ pass def test_list_namespaced_aws_machine_pool(self): """Test case for list_namespaced_aws_machine_pool """ pass def test_list_namespaced_aws_machine_template(self): """Test case for list_namespaced_aws_machine_template """ pass def test_list_namespaced_aws_managed_machine_pool(self): """Test case for list_namespaced_aws_managed_machine_pool """ pass def test_patch_aws_cluster_controller_identity(self): """Test case for patch_aws_cluster_controller_identity """ pass def test_patch_aws_cluster_role_identity(self): """Test case for patch_aws_cluster_role_identity """ pass def test_patch_aws_cluster_static_identity(self): """Test case for patch_aws_cluster_static_identity """ pass def test_patch_namespaced_aws_cluster(self): """Test case for patch_namespaced_aws_cluster """ pass def test_patch_namespaced_aws_cluster_status(self): """Test case for patch_namespaced_aws_cluster_status """ pass def test_patch_namespaced_aws_cluster_template(self): """Test case for patch_namespaced_aws_cluster_template """ pass def test_patch_namespaced_aws_fargate_profile(self): """Test case for patch_namespaced_aws_fargate_profile """ pass def test_patch_namespaced_aws_fargate_profile_status(self): """Test case for patch_namespaced_aws_fargate_profile_status """ pass def test_patch_namespaced_aws_machine(self): """Test case for patch_namespaced_aws_machine """ pass def test_patch_namespaced_aws_machine_pool(self): """Test case for patch_namespaced_aws_machine_pool """ pass def test_patch_namespaced_aws_machine_pool_status(self): """Test case for patch_namespaced_aws_machine_pool_status """ pass def test_patch_namespaced_aws_machine_status(self): """Test case for patch_namespaced_aws_machine_status """ pass def test_patch_namespaced_aws_machine_template(self): """Test case for patch_namespaced_aws_machine_template """ pass def test_patch_namespaced_aws_managed_machine_pool(self): """Test case for patch_namespaced_aws_managed_machine_pool """ pass def test_patch_namespaced_aws_managed_machine_pool_status(self): """Test case for patch_namespaced_aws_managed_machine_pool_status """ pass def test_read_aws_cluster_controller_identity(self): """Test case for read_aws_cluster_controller_identity """ pass def test_read_aws_cluster_role_identity(self): """Test case for read_aws_cluster_role_identity """ pass def test_read_aws_cluster_static_identity(self): """Test case for read_aws_cluster_static_identity """ pass def test_read_namespaced_aws_cluster(self): """Test case for read_namespaced_aws_cluster """ pass def test_read_namespaced_aws_cluster_status(self): """Test case for read_namespaced_aws_cluster_status """ pass def test_read_namespaced_aws_cluster_template(self): """Test case for read_namespaced_aws_cluster_template """ pass def test_read_namespaced_aws_fargate_profile(self): """Test case for read_namespaced_aws_fargate_profile """ pass def test_read_namespaced_aws_fargate_profile_status(self): """Test case for read_namespaced_aws_fargate_profile_status """ pass def test_read_namespaced_aws_machine(self): """Test case for read_namespaced_aws_machine """ pass def test_read_namespaced_aws_machine_pool(self): """Test case for read_namespaced_aws_machine_pool """ pass def test_read_namespaced_aws_machine_pool_status(self): """Test case for read_namespaced_aws_machine_pool_status """ pass def test_read_namespaced_aws_machine_status(self): """Test case for read_namespaced_aws_machine_status """ pass def test_read_namespaced_aws_machine_template(self): """Test case for read_namespaced_aws_machine_template """ pass def test_read_namespaced_aws_managed_machine_pool(self): """Test case for read_namespaced_aws_managed_machine_pool """ pass def test_read_namespaced_aws_managed_machine_pool_status(self): """Test case for read_namespaced_aws_managed_machine_pool_status """ pass def test_replace_aws_cluster_controller_identity(self): """Test case for replace_aws_cluster_controller_identity """ pass def test_replace_aws_cluster_role_identity(self): """Test case for replace_aws_cluster_role_identity """ pass def test_replace_aws_cluster_static_identity(self): """Test case for replace_aws_cluster_static_identity """ pass def test_replace_namespaced_aws_cluster(self): """Test case for replace_namespaced_aws_cluster """ pass def test_replace_namespaced_aws_cluster_status(self): """Test case for replace_namespaced_aws_cluster_status """ pass def test_replace_namespaced_aws_cluster_template(self): """Test case for replace_namespaced_aws_cluster_template """ pass def test_replace_namespaced_aws_fargate_profile(self): """Test case for replace_namespaced_aws_fargate_profile """ pass def test_replace_namespaced_aws_fargate_profile_status(self): """Test case for replace_namespaced_aws_fargate_profile_status """ pass def test_replace_namespaced_aws_machine(self): """Test case for replace_namespaced_aws_machine """ pass def test_replace_namespaced_aws_machine_pool(self): """Test case for replace_namespaced_aws_machine_pool """ pass def test_replace_namespaced_aws_machine_pool_status(self): """Test case for replace_namespaced_aws_machine_pool_status """ pass def test_replace_namespaced_aws_machine_status(self): """Test case for replace_namespaced_aws_machine_status """ pass def test_replace_namespaced_aws_machine_template(self): """Test case for replace_namespaced_aws_machine_template """ pass def test_replace_namespaced_aws_managed_machine_pool(self): """Test case for replace_namespaced_aws_managed_machine_pool """ pass def test_replace_namespaced_aws_managed_machine_pool_status(self): """Test case for replace_namespaced_aws_managed_machine_pool_status """ pass if __name__ == '__main__': unittest.main()
24.861775
139
0.689272
58a43d7f61e046ec644507c3f9d06ebbaa574b13
8,964
py
Python
PwdGen.py
KrVignesh/PasswordGenerator
f6bfdff96f84a1007e1598bc0e2727e3b1d2aab1
[ "MIT" ]
null
null
null
PwdGen.py
KrVignesh/PasswordGenerator
f6bfdff96f84a1007e1598bc0e2727e3b1d2aab1
[ "MIT" ]
null
null
null
PwdGen.py
KrVignesh/PasswordGenerator
f6bfdff96f84a1007e1598bc0e2727e3b1d2aab1
[ "MIT" ]
null
null
null
from tkinter import * from tkinter import messagebox from pathlib import Path import random import webbrowser # -----FUNCTIONS def disptotal(): global charCount global gp global character global number global symbol gp = "" total = charCount.get() lett = ("0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~") character = charVar.get() number = digVar.get() symbol = symVar.get() #To check if entered value is integer try: total = int(total) except: pass if isinstance(total, int) != True: messagebox.showerror(title = "ERROR", message = "Enter an integer Value") elif total == 0: messagebox.showwarning(title = "Zero Not Zero", message = "All available infinite integers, yet you chose '0' \nNOTE : minimum recommended character is 10") elif (character & number & symbol == 1): for i in range(0,int(total)): gp += random.choice(lett) output.insert(END, gp) elif (character & number == 1) & (symbol == 0): for i in range(0,int(total)): gp += random.choice(lett[0:62]) output.insert(END, gp) elif (character & symbol == 1) & (number == 0): for i in range(0,int(total)): gp += random.choice(lett[10:94]) output.insert(END, gp) elif (character == 1) & (number & symbol == 0): for i in range(0,int(total)): gp += random.choice(lett[10:62]) output.insert(END, gp) elif (character == 0) & (number & symbol == 1): for i in range(0,int(total)): gp += random.choice(lett[0:10] + lett[62:94]) output.insert(END, gp) elif (character == 0) & (number == 1) & (symbol == 0): for i in range(0,int(total)): gp += random.choice(lett[0:10]) output.insert(END, gp) elif (character & number == 0) & (symbol == 1): for i in range(0,int(total)): gp += random.choice(lett[62:94]) output.insert(END, gp) else: messagebox.showerror("Error", "select at least one checkbox") # -----copy def cpy(): window.clipboard_clear() window.clipboard_append(gp) window.update() messagebox.showinfo(title = "Message", message = "Generated password is copied to the clipboard.\n\nNOTE : For security reason copied password will be removed after closing this app") # -----clear def clr(): output.delete(1.0, END) charCount.delete(0, END) charVar.set(0) digVar.set(0) symVar.set(0) # -----save def save(): global saveEntry global savewin savewin = Toplevel() savewin.config(background = bColor) saveLabel = Label(savewin, text = "Enter a unique name to identify this password", font=bodyFont, fg = fColor, bg = bColor) saveLabel.pack() saveEntry = Entry(savewin, bg = bColor, relief = "sunken") saveEntry.pack() saveSubmit = Button(savewin, text = "Save", cursor = "hand2", font = optionFont, command = write, relief = "solid", fg = fColor, bg = bColor, highlightthickness = 1, highlightbackground = "white") saveSubmit.pack() def write(): uDir = str(Path.home()) uName = saveEntry.get() file = open(uDir + "/Documents/password.txt", "a") file.write(str(uName) + " : ") file.write(str(gp)) file.write("\n-----End-----\n") file.close() messagebox.showinfo(title = "Success", message = "Password saved successfully in \n /user/Documents/password.txt") savewin.destroy() # -----links def ghlink(): webbrowser.open(r"https://github.com/KrVignesh") def twlink(): webbrowser.open(r"https://twitter.com/KrVigneshVictor") def maillink(): webbrowser.open("mailto:krvigneshchn17@gmail.com") # -----about def about(): abtwin = Toplevel() abtwin.config(background = bColor) abtwin.title("ABOUT - Password Generator") abtLabel = Label(abtwin, text = "This app Password Generator is created using Python.\n For more details, issues, suggestions \nvisit :", font = ("Courier 10 Pitch","12"), fg = fColor, bg = bColor) abtLabel.pack() abtgit = Button(abtwin, text = "Github", command = ghlink, fg = "white", bg = "black", cursor = "hand2", relief = "solid", font = optionFont, highlightthickness = 1, highlightbackground = "white") abtgit.pack(side = LEFT) abttwitter = Button(abtwin, text = "Twitter", command = twlink, fg = "white", bg = "#1DA1F2", cursor = "hand2", relief = "solid", font = optionFont, highlightthickness = 1, highlightbackground = "white") abttwitter.pack(side = LEFT, padx = 20) abtmail = Button(abtwin, text = "Email", command = maillink, fg = "white", bg = "#D54B3D", cursor = "hand2", relief = "solid", font = optionFont, highlightthickness = 1, highlightbackground = "white") abtmail.pack(side = LEFT) # -----help def hlp(): hlpwin = Toplevel() hlpwin.config(background = bColor) hlpwin.title("HELP - Password Generator") hlpLabel = Label(hlpwin, text = "Random English Letters includes : a-z, A-Z \n\nDigits includes : 0-9 \n\nSymbols include : !\"#$%&'()*+,-./:;<=>?@[\\]^_`|{}~ \n ", font = bodyFont, fg = fColor, bg = bColor) hlpLabel.pack() # -----Color & fonts bColor = "#ae00ff" fColor = "white" bodyFont = ("Courier 10 Pitch","14", "bold") optionFont = ("Courier 10 Pitch", "12", "italic") # -----GUI # -----create main window window = Tk() window.config(background = bColor) window.title("Password Generator") # -----heading title = Label(window, text = "PASSWORD GENERATOR", anchor = "center", font=("Free Mono","30", "bold"), fg = fColor, bg = bColor) title.grid(column = 0, row = 0, columnspan = 4, pady = 20) # -----get number of character in password charLabel = Label(window, text = "How many character do you need in Password\n(Enter integer numbers)", font=bodyFont, fg = fColor, bg = bColor) charLabel.grid(column = 0, row = 1, pady = 10, padx = 20, sticky = E) charCount = Entry(window, relief = "sunken", justify = "center", borderwidth = 4, bg = bColor) charCount.grid(column = 1, row = 1) # -----things to be included in password incLabel = Label(window, text = "Password should include", font=bodyFont, fg = fColor, bg = bColor) incLabel.grid(column = 0, row = 2, pady = 10, sticky = E) charVar = BooleanVar() incChar = Checkbutton(window, text = "Random English Letters", variable = charVar, font = optionFont, cursor = "hand2", bg = bColor, fg = fColor, highlightthickness = 0, selectcolor = bColor, activebackground = bColor) incChar.grid(column = 1, row = 2) digVar = BooleanVar() incDigits = Checkbutton(window, text = "Digits", variable = digVar, font = optionFont, cursor = "hand2", bg = bColor, fg = fColor, highlightthickness = 0, selectcolor = bColor, activebackground = bColor) incDigits.grid(column = 2, row = 2) symVar = BooleanVar() incSym = Checkbutton(window, text = "Symbols", variable = symVar, font = optionFont, cursor = "hand2", bg = bColor, fg = fColor, highlightthickness = 0, selectcolor = bColor, activebackground = bColor) incSym.grid(column = 3, row = 2) # -----Generate - button Submit = Button(window, text = "Generate", cursor = "hand2", font = optionFont, command = disptotal, relief = "solid", fg = fColor, bg = bColor, highlightthickness = 1, highlightbackground = "white") Submit.grid(column = 1, row = 4, pady = 10) # -----clear all - button clear = Button(window, text = "Clear All",command = clr, font = optionFont, cursor = "hand2", relief = "solid", fg = fColor, bg = bColor, highlightthickness = 1, highlightbackground = "white") clear.grid(column = 2, row = 4, pady = 10) #-----generated password pwdLabel = Label(window, text = "Generated Password", font= bodyFont, fg = fColor, bg = bColor) pwdLabel.grid(column = 0, row = 5, pady = 10, sticky = E) # -----output output = Text(window, width = 60, height = 5, borderwidth = 4, relief = "ridge", bg = bColor) output.grid(column = 1, row = 5, columnspan = 3, pady = 20, padx = 10) # -----Copy generated password to clipboard - button copy = Button(window, text = "Copy",command = cpy, font = optionFont, cursor = "hand2", relief = "solid", fg = fColor, bg = bColor, highlightthickness = 1, highlightbackground = "white") copy.grid(column = 1, row = 6, pady = 10, columnspan = 1) # -----save generated password to a file - button store = Button(window, text = "Save",command = save, font = optionFont, cursor = "hand2", relief = "solid", fg = fColor, bg = bColor, highlightthickness = 1, highlightbackground = "white") store.grid(column = 2, row = 6, pady = 10, columnspan = 1) # -----about - button abt = Button(window, text = "About",command = about, font = optionFont, cursor = "hand2", relief = "solid", fg = fColor, bg = bColor, highlightthickness = 1, highlightbackground = "white") abt.grid(column = 2, row = 7, pady = 5) # -----help - button more = Button(window, text = "Help",command = hlp, font = optionFont, cursor = "hand2", relief = "solid", fg = fColor, bg = bColor, highlightthickness = 1, highlightbackground = "white") more.grid(column = 3, row = 7) # -----quit - button exit = Button(window, text = "Quit",command = window.destroy, font = optionFont, cursor = "hand2", relief = "solid", fg = fColor, bg = bColor, highlightthickness = 1, highlightbackground = "white") exit.grid(column = 4, row = 7, padx = 5) window.mainloop()
41.88785
218
0.671575
61dae00b1191af31aa31bf7dd39913fb1d556cdd
1,363
py
Python
Lib/test/test_osx_env.py
sireliah/polish-python
605df4944c2d3bc25f8bf6964b274c0a0d297cc3
[ "PSF-2.0" ]
1
2018-06-21T18:21:24.000Z
2018-06-21T18:21:24.000Z
Lib/test/test_osx_env.py
sireliah/polish-python
605df4944c2d3bc25f8bf6964b274c0a0d297cc3
[ "PSF-2.0" ]
null
null
null
Lib/test/test_osx_env.py
sireliah/polish-python
605df4944c2d3bc25f8bf6964b274c0a0d297cc3
[ "PSF-2.0" ]
null
null
null
""" Test suite dla OS X interpreter environment variables. """ z test.support zaimportuj EnvironmentVarGuard zaimportuj subprocess zaimportuj sys zaimportuj sysconfig zaimportuj unittest @unittest.skipUnless(sys.platform == 'darwin' oraz sysconfig.get_config_var('WITH_NEXT_FRAMEWORK'), 'unnecessary on this platform') klasa OSXEnvironmentVariableTestCase(unittest.TestCase): def _check_sys(self, ev, cond, sv, val = sys.executable + 'dummy'): przy EnvironmentVarGuard() jako evg: subpc = [str(sys.executable), '-c', 'zaimportuj sys; sys.exit(2 jeżeli "%s" %s %s inaczej 3)' % (val, cond, sv)] # ensure environment variable does nie exist evg.unset(ev) # test that test on sys.xxx normally fails rc = subprocess.call(subpc) self.assertEqual(rc, 3, "expected %s nie %s %s" % (ev, cond, sv)) # set environ variable evg.set(ev, val) # test that sys.xxx has been influenced by the environ value rc = subprocess.call(subpc) self.assertEqual(rc, 2, "expected %s %s %s" % (ev, cond, sv)) def test_pythonexecutable_sets_sys_executable(self): self._check_sys('PYTHONEXECUTABLE', '==', 'sys.executable') jeżeli __name__ == "__main__": unittest.main()
38.942857
92
0.630961
9fac272ee6df9bc6681c02b6a0fa34ecb5889f55
4,358
py
Python
django/bossingest/test/int_test_ingest_manager.py
ArnaudGallardo/boss
c0d3bbca31575ac5442822b8d7f962def32d9072
[ "Apache-2.0" ]
20
2016-05-16T21:08:13.000Z
2021-11-16T11:50:19.000Z
django/bossingest/test/int_test_ingest_manager.py
ArnaudGallardo/boss
c0d3bbca31575ac5442822b8d7f962def32d9072
[ "Apache-2.0" ]
31
2016-10-28T17:51:11.000Z
2022-02-10T08:07:31.000Z
django/bossingest/test/int_test_ingest_manager.py
ArnaudGallardo/boss
c0d3bbca31575ac5442822b8d7f962def32d9072
[ "Apache-2.0" ]
12
2016-10-28T17:47:01.000Z
2021-05-18T23:47:06.000Z
# Copyright 2016 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os import unittest import json from django.contrib.auth.models import User from rest_framework.test import APITestCase from bossingest.ingest_manager import IngestManager from bossingest.test.setup import SetupTests from bosscore.test.setup_db import SetupTestDB from ndingest.ndqueue.ndqueue import NDQueue from ndingest.ndqueue.uploadqueue import UploadQueue from ndingest.ndqueue.ingestqueue import IngestQueue from ndingest.ndingestproj.bossingestproj import BossIngestProj class BossIntegrationIngestManagerTestMixin(object): def test_validate_ingest(self): """Method to test validation method""" # Validate schema and config file ingest_mgmr = IngestManager() response = ingest_mgmr.validate_config_file(self.example_config_data) assert (response is True) # Validate properties response = ingest_mgmr.validate_properties() assert (response is True) def test_validate_config_file(self): """Method to test validation of a config file""" ingest_mgmr = IngestManager() ingest_mgmr.validate_config_file(self.example_config_data) assert(ingest_mgmr.config is not None) assert (ingest_mgmr.config.config_data is not None) def test_validate_properties(self): """Methods to test validation of properties of the config data""" ingest_mgmr = IngestManager() ingest_mgmr.validate_config_file(self.example_config_data) ingest_mgmr.validate_properties() assert (ingest_mgmr.collection.name == 'my_col_1') assert (ingest_mgmr.experiment.name == 'my_exp_1') assert (ingest_mgmr.channel.name == 'my_ch_1') def test_create_ingest_job(self): """Method to test creation o a ingest job from a config_data dict""" ingest_mgmr = IngestManager() ingest_mgmr.validate_config_file(self.example_config_data) ingest_mgmr.validate_properties() ingest_mgmr.owner = self.user.id job = ingest_mgmr.create_ingest_job() assert (job.id is not None) def test_setup_ingest(self): """Method to test the setup_ingest method""" try: ingest_mgmr = IngestManager() ingest_job = ingest_mgmr.setup_ingest(self.user.id, self.example_config_data) assert (ingest_job is not None) # Check if the queue's exist proj_class = BossIngestProj.load() nd_proj = proj_class(ingest_job.collection, ingest_job.experiment, ingest_job.channel, ingest_job.resolution, ingest_job.id) ingest_mgmr.nd_proj = nd_proj upload_queue = UploadQueue(nd_proj, endpoint_url=None) assert(upload_queue is not None) ingest_queue = IngestQueue(nd_proj, endpoint_url=None) assert (ingest_queue is not None) ingest_mgmr.remove_ingest_credentials(ingest_job.id) except: raise finally: ingest_mgmr.delete_upload_queue() ingest_mgmr.delete_ingest_queue() class TestIntegrationBossIngestManager(BossIntegrationIngestManagerTestMixin, APITestCase): def setUp(self): # Randomize queue names. NDQueue.test_mode = True # Get the config_data self.user = User.objects.create_superuser(username='testuser1', email='test@test.com', password='testuser') config_data = SetupTests().get_ingest_config_data_dict() self.example_config_data = config_data dbsetup = SetupTestDB() dbsetup.set_user(self.user) dbsetup.insert_ingest_test_data() def tearDown(self): NDQueue.test_mode = False
38.22807
116
0.70927
cd4badd17a3a9b8f6d77ddf5c71744c1d16eda63
1,080
py
Python
athemesasl.py
PonyChat/docker-hosted-znc
a8e0e429fe5b4ce148914d748a3d1e394cc8c985
[ "CC0-1.0" ]
3
2016-06-30T04:15:25.000Z
2016-07-30T19:00:53.000Z
athemesasl.py
PonyChat/docker-hosted-znc
a8e0e429fe5b4ce148914d748a3d1e394cc8c985
[ "CC0-1.0" ]
null
null
null
athemesasl.py
PonyChat/docker-hosted-znc
a8e0e429fe5b4ce148914d748a3d1e394cc8c985
[ "CC0-1.0" ]
null
null
null
import base64 import os import znc class athemesasl(znc.Module): module_types = [znc.CModInfo.UserModule] def __init__(self): self.description = "Atheme SASL" def OnServerCapAvailable(self, scap): self.cookie = self.getCookie() self.username = self.GetUser().GetUserName() return scap == "sasl" def OnServerCapResult(self, scap, success): if scap == "sasl": if success: self.PutIRC("AUTHENTICATE AUTHCOOKIE") self.PutIRC("AUTHENTICATE " + self.makeSaslAuthString(self.username, self.cookie)) self.PutUser(":bnc.{} NOTICE * :*** Authenticated over Atheme XMLRPC".format(os.getenv("IRC_NETWORK_DOMAIN"))) def makeSaslAuthString(self, username, cookie): return (base64.b64encode(bytes("%s\0%s\0%s" % (username, username, cookie), "utf-8"))).decode("utf-8") def getCookie(self): with open("/tmp/znc-cookie-%s" % self.GetUser().GetUserName(), "r") as fin: return fin.readline()
32.727273
122
0.600926
198c30a663d3e236957b0b2f548d7e50f41bffc4
2,581
py
Python
python/convergdb/locking.py
ray-pan-bci/convergdb
d12730d801200a0a084038dc214c23c2d8adf69b
[ "MIT" ]
10
2018-04-19T16:09:11.000Z
2020-04-15T03:43:28.000Z
python/convergdb/locking.py
ray-pan-bci/convergdb
d12730d801200a0a084038dc214c23c2d8adf69b
[ "MIT" ]
13
2020-04-09T13:56:38.000Z
2020-04-15T03:27:02.000Z
python/convergdb/locking.py
ray-pan-bci/convergdb
d12730d801200a0a084038dc214c23c2d8adf69b
[ "MIT" ]
4
2018-08-31T09:15:27.000Z
2020-04-28T01:24:17.000Z
import boto3 import os import time import uuid from convergdb_logging import * from functools import wraps def dynamodb_client(): if os.environ.has_key('AWS_GLUE_REGION'): return boto3.client('dynamodb', region_name=os.environ['AWS_GLUE_REGION']) else: return boto3.client('dynamodb') lock_table = os.environ['LOCK_TABLE'] lock_id = os.environ['LOCK_ID'] def acquire_lock(owner_id): put_params = { 'TableName': lock_table, 'Item': { 'LockID': { 'S': lock_id }, 'OwnerID': { 'S': owner_id } }, 'ConditionExpression': 'attribute_not_exists(LockID)' } # Will raise an exception if the item already exists. # Otherwise, catches 'AccessDeniedException' and retry convergdb_log("Attempting conditional put: lock_id: [" + lock_id + "], owner_id: [" + owner_id + "]") dynamodb_client().put_item(**put_params) convergdb_log("Lock acquired: [" + lock_id + "]") def release_lock(owner_id): delete_params = { 'TableName': lock_table, 'ConditionExpression': 'OwnerID = :OwnerID', 'ExpressionAttributeValues': { ':OwnerID': { 'S': owner_id } }, 'Key': { 'LockID': { 'S': lock_id } } } # No exceptions raised if condition is not met. convergdb_log("Attempting conditional delete: lock_id: [" + lock_id + "], owner_id: [" + owner_id + "]") dynamodb_client().delete_item(**delete_params) convergdb_log("Lock released: [" + lock_id + "]") def lock(function): @wraps(function) def wrapper(*args, **kwargs): # Validate environment variables exist assert lock_table != None assert lock_id != None owner_id = str(uuid.uuid4()) response = {} err = None try: acquire_lock(owner_id) # LOCKED at this point. Single execution in progress here. # - Business logic should be resilient to partial or subsequent # execution (but not concurrent execution). response = function(*args, **kwargs) except Exception as e: # catch the exception err = e finally: # release the lock # if this fails.. it will raise an exception release_lock(owner_id) # raise previous exception if err: raise err return response return wrapper
27.752688
109
0.567222
d5c84effc8f324ca8040a7a285b73f25aa607fbf
696
py
Python
testing/cache/property_pickled.py
xapple/plumbing
47a0a85c5367a01385e8ff30ed658bc34cf0ce2a
[ "MIT" ]
null
null
null
testing/cache/property_pickled.py
xapple/plumbing
47a0a85c5367a01385e8ff30ed658bc34cf0ce2a
[ "MIT" ]
null
null
null
testing/cache/property_pickled.py
xapple/plumbing
47a0a85c5367a01385e8ff30ed658bc34cf0ce2a
[ "MIT" ]
1
2015-08-26T08:53:19.000Z
2015-08-26T08:53:19.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Script to test the functionality of the property_pickled decorator. Written by Lucas Sinclair. MIT Licensed. Call it like this: $ ipython3 -i ~/repos/plumbing/test/cache/property_pickled.py """ # Internal modules # from plumbing.cache import property_pickled ############################################################################### class Square: def __init__(self, size): self.size = size @property_pickled def area(self): print("Evaluating...") return self.size * self.size ############################################################################### shape = Square(5) print(shape.area)
24
79
0.525862
43e4392078e272cb35a45f16f67f418930d593c0
4,918
py
Python
src/models/nn/gate.py
dumpmemory/state-spaces
2a85503cb3e9e86cc05753950d4a249df9a0fffb
[ "Apache-2.0" ]
513
2021-11-03T23:08:23.000Z
2022-03-31T16:29:18.000Z
src/models/nn/gate.py
dumpmemory/state-spaces
2a85503cb3e9e86cc05753950d4a249df9a0fffb
[ "Apache-2.0" ]
18
2021-11-05T12:42:59.000Z
2022-03-27T19:49:55.000Z
src/models/nn/gate.py
MikeOwino/state-spaces
b6672bca994b6a36347f414faa59761e42b1e2b1
[ "Apache-2.0" ]
47
2021-11-04T01:32:54.000Z
2022-03-30T18:24:26.000Z
""" Defines flexible gating mechanisms based on ideas from LSSL paper and UR-LSTM paper https://arxiv.org/abs/1910.09890 """ import torch import torch.nn as nn class Gate(nn.Module): """ Implements gating mechanisms. TODO update this with more detailed description with reference to LSSL paper when it's on arxiv Mechanisms: N - No gate G - Standard sigmoid gate UR - Uniform refine gates R - Refine gate FS - Forward discretization, Sigmoid activation [equivalent to G] BE - Backward discretization, Exp activation [equivalent to G] BR - Backward discretization, Relu activation TE - Trapezoid discretization, Exp activation TR - Trapezoid discretization, Relu activation TS - Trapezoid discretization, Sigmoid activation (0 to 2) """ def __init__(self, size, preact_ctor, preact_args, mechanism='N'): super().__init__() self.size = size self.mechanism = mechanism if self.mechanism == 'N': pass elif self.mechanism in ['G', 'FS', 'BE', 'BR', 'TE', 'TR', 'TS', 'ZE', 'ZR', 'ZS']: self.W_g = preact_ctor(*preact_args) elif self.mechanism in ['U', 'UT']: self.W_g = preact_ctor(*preact_args) b_g_unif = torch.empty(size) torch.nn.init.uniform_(b_g_unif, 1./self.size, 1.-1./self.size) self.b_g = nn.Parameter(torch.log(1./b_g_unif-1.).detach(), requires_grad=False) elif self.mechanism == 'UR': self.W_g = preact_ctor(*preact_args) self.W_r = preact_ctor(*preact_args) b_g_unif = torch.empty(size) torch.nn.init.uniform_(b_g_unif, 1./self.size, 1.-1./self.size) self.b_g = nn.Parameter(torch.log(1./b_g_unif-1.).detach(), requires_grad=False) elif self.mechanism == 'R': self.W_g = preact_ctor(*preact_args) self.W_r = preact_ctor(*preact_args) elif self.mechanism in ['GT']: self.W_g = preact_ctor(*preact_args) else: assert False, f'Gating type {self.mechanism} is not supported.' def forward(self, *inputs): if self.mechanism == 'N': return 1.0 if self.mechanism == 'G': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) if self.mechanism == 'U': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) elif self.mechanism == 'UR': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) r = torch.sigmoid(self.W_r(*inputs)) g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'R': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) r = torch.sigmoid(self.W_r(*inputs)) g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'UT': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) r = g g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'GT': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) r = g g = (1-2*r)*g**2 + 2*r*g else: g_preact = self.W_g(*inputs) # if self.mechanism[1] == 'S': # g = torch.sigmoid(g_preact) # elif self.mechanism[1] == 'E': # g = torch.exp(g_preact) # elif self.mechanism[1] == 'R': # g = torch.relu(g_preact) if self.mechanism == 'FS': g = torch.sigmoid(g_preact) g = self.forward_diff(g) elif self.mechanism == 'BE': g = torch.exp(g_preact) g = self.backward_diff(g) elif self.mechanism == 'BR': g = torch.relu(g_preact) g = self.backward_diff(g) elif self.mechanism == 'TS': g = 2 * torch.sigmoid(g_preact) g = self.trapezoid(g) elif self.mechanism == 'TE': g = torch.exp(g_preact) g = self.trapezoid(g) elif self.mechanism == 'TR': g = torch.relu(g_preact) g = self.trapezoid(g) elif self.mechanism == 'ZE': g = torch.exp(g_preact) g = self.zoh(g) elif self.mechanism == 'ZR': g = torch.relu(g_preact) g = self.zoh(g) elif self.mechanism == 'ZS': g = torch.sigmoid(g_preact) g = self.zoh(g) return g def forward_diff(self, x): return x def backward_diff(self, x): return x / (1+x) # return 1 / (1+1/x) def trapezoid(self, x): return x / (1 + x/2) # return 1 / (.5 + 1/x) def zoh(self, x): return 1 - torch.exp(-x)
37.541985
133
0.524807
8ede58498aa9449244e7b3fddd85f7d06e44c1a7
1,136
py
Python
heart_disease/config/__init__.py
victor-iyi/heart-disease
06540b582e8752d2bb6a32366077872d32d7c0e4
[ "MIT" ]
1
2021-06-20T09:08:26.000Z
2021-06-20T09:08:26.000Z
heart_disease/config/__init__.py
victor-iyi/heart-disease
06540b582e8752d2bb6a32366077872d32d7c0e4
[ "MIT" ]
null
null
null
heart_disease/config/__init__.py
victor-iyi/heart-disease
06540b582e8752d2bb6a32366077872d32d7c0e4
[ "MIT" ]
null
null
null
# Copyright 2021 Victor I. Afolabi # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration module. Features: - File configuration - Logging configuration - Utility/Handy classes and functions for: - Downloading and extracting files and folders. - Loading configuration files .json, .csv, .cfg, .in, .yaml, etc... """ from heart_disease.config.config import Config from heart_disease.config.consts import FS, LOGGER, SETUP from heart_disease.config.util import Log __all__ = [ # Configuration utils. 'Config', # File system configurations. 'FS', 'SETUP', 'LOGGER', # Utility files. 'Log', ]
29.128205
74
0.732394
a4aa2d57a299c48c35117da629858819aa4eb7b6
3,368
py
Python
bokeh/sphinxext/bokeh_prop.py
timelyportfolio/bokeh
a976a85535cf137c6238ce9e90b41ab14ae8ce22
[ "BSD-3-Clause" ]
1
2015-07-17T13:57:01.000Z
2015-07-17T13:57:01.000Z
bokeh/sphinxext/bokeh_prop.py
evidation-health/bokeh
2c580d93419033b962d36e3c46d7606cc2f24606
[ "BSD-3-Clause" ]
null
null
null
bokeh/sphinxext/bokeh_prop.py
evidation-health/bokeh
2c580d93419033b962d36e3c46d7606cc2f24606
[ "BSD-3-Clause" ]
1
2021-08-01T08:38:53.000Z
2021-08-01T08:38:53.000Z
""" Thoroughly document Bokeh property attributes. The ``bokeh-prop`` directive generates useful type information for the property attribute, including cross links to the relevant property types. Additionally, any per-attribute docstrings are also displayed. Usage ----- This directive takes the path to an attribute on a Bokeh model class as an argument:: .. bokeh-prop:: bokeh.sphinxext.sample.Bar.thing Examples -------- For the following definition of ``bokeh.sphinxext.sample.Bar``:: class Bar(PlotObject): ''' This is a Bar model. ''' thing = List(Int, help="doc for thing") the above usage yields the output: ---- .. bokeh-prop:: bokeh.sphinxext.sample.Bar.thing """ from __future__ import absolute_import, print_function import importlib from docutils import nodes from docutils.statemachine import ViewList import textwrap import jinja2 from sphinx.util.compat import Directive from sphinx.util.nodes import nested_parse_with_titles from bokeh.plot_object import Viewable import bokeh.properties PROP_TEMPLATE = jinja2.Template(u""" .. attribute:: {{ name }} :module: {{ module }} *property type:* {{ type_info }} {% if doc %}{{ doc|indent(4) }}{% endif %} """) PROP_NAMES = [ name for name, cls in bokeh.properties.__dict__.items() if isinstance(cls, type) and issubclass(cls, bokeh.properties.Property) ] PROP_NAMES.sort(reverse=True, key=len) class BokehPropDirective(Directive): has_content = True required_arguments = 1 def run(self): prop_path = self.arguments[0] module_path, model_name, prop_name = prop_path.rsplit('.', 2) try: module = importlib.import_module(module_path) except ImportError: pass model = getattr(module, model_name, None) if model is None: pass if type(model) != Viewable: pass model_obj = model() prop = getattr(model_obj.__class__, prop_name) type_info = self._get_type_info(prop) rst_text = PROP_TEMPLATE.render( name=prop_name, module=module_path, type_info=type_info, doc="" if prop.__doc__ is None else textwrap.dedent(prop.__doc__), ) result = ViewList() for line in rst_text.split("\n"): result.append(line, "<bokeh-prop>") node = nodes.paragraph() node.document = self.state.document nested_parse_with_titles(self.state, result, node) return node.children def _get_type_info(self, prop): desc = str(prop) template = ":class:`~bokeh.properties.%s`\ " # some of the property names are substrings of other property names # so first go through greedily replacing the longest possible match # with a unique id (PROP_NAMES is reverse sorted by length) for i, name in enumerate(PROP_NAMES): desc = desc.replace(name, "__ID%d" % i) # now replace the unique id with the corresponding prop name. Go in # reverse to make sure replacements are greedy for i in range(len(PROP_NAMES)-1, 0, -1): name = PROP_NAMES[i] desc = desc.replace("__ID%d" % i, template % name) return desc def setup(app): app.add_directive_to_domain('py', 'bokeh-prop', BokehPropDirective)
26.730159
78
0.656176
5539ed8e2089c11e61964850537c439b5a5bdbd2
1,936
py
Python
lib/googlecloudsdk/api_lib/storage/patch_gcs_messages.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
lib/googlecloudsdk/api_lib/storage/patch_gcs_messages.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/api_lib/storage/patch_gcs_messages.py
google-cloud-sdk-unofficial/google-cloud-sdk
2a48a04df14be46c8745050f98768e30474a1aac
[ "Apache-2.0" ]
1
2020-07-25T01:40:19.000Z
2020-07-25T01:40:19.000Z
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Patches for pickling isssues in apitools. The storage surface needs to be able to serialize apitools messages to support multiprocessing; however, there are a number of bugs with pickling apitools messages that need to be patched, pending more permanent fixes. """ # TODO(b/171296237): Remove this file when fixes are submitted in apitools. from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from apitools.base.protorpclite import messages def _time_zone_offset_init_args(self): """Implements apitools.base.protorpclite.util.TimeZoneOffset.__getinitargs__. The apitools TimeZoneOffset class inherits from datetime.datetime, which implements custom picking behavior in __reduce__. This reduce method cannot handle the additional argument that TimeZoneOffset adds to __init__, which makes TimeZoneOffset unpicklable without implementing __getinitargs__ as we do here. Args: self (TimeZoneOffset): an instance of TimeZoneOffset. Returns: A tuple of arguments passed to TimeZoneOffset.__init__ when unpickling. """ # pylint: disable=protected-access return (self._TimeZoneOffset__offset,) # pylint: enable=protected-access def patch(): messages.util.TimeZoneOffset.__getinitargs__ = _time_zone_offset_init_args
36.528302
79
0.789256
b4ceb86771d48481b16daa755a9bf1d40b4c2b4b
5,442
py
Python
build/plugins/pyx.py
Kim2212/catboost
b9ad3b0dac6269c2638e8ee4e7bb85662677a921
[ "Apache-2.0" ]
null
null
null
build/plugins/pyx.py
Kim2212/catboost
b9ad3b0dac6269c2638e8ee4e7bb85662677a921
[ "Apache-2.0" ]
null
null
null
build/plugins/pyx.py
Kim2212/catboost
b9ad3b0dac6269c2638e8ee4e7bb85662677a921
[ "Apache-2.0" ]
null
null
null
import os import re import _common import _import_wrapper as iw INCLUDE_PATTERN = re.compile('(include *"([^"]+)")|(include *\'([^\']+)\')') CIMPORT_PATTERN = re.compile('cimport +([^#]+)') FROM_CIMPORT_PATTERN = re.compile('from +(\S+) +cimport +([^#]+)') INDUCED_PATTERN = re.compile('cdef +extern +from +["\']<?([^">]+)>?["\']') def find_init_files(files, unit): traversed = set() for include in files: path = os.path.dirname(include) while path and path not in traversed: traversed.add(path) init_file = _common.join_intl_paths(path, '__init__.py') path = os.path.dirname(path) if os.path.isfile(unit.resolve(_common.join_intl_paths('$S', init_file))): yield init_file class PyxParser(object): def __init__(self, path, unit): self._path = path self._includes = [] self._induced = [] retargeted = os.path.join(unit.path(), os.path.basename(path)) if path.endswith('.pyx'): pxd = path[:-4] + '.pxd' if os.path.exists(pxd): self._includes.append(unit.resolve_arc_path(pxd)) with open(path, 'rb') as f: includes, induced, susp_includes = self.parse_includes(f.readlines()) for susp_incl in susp_includes: incl_path = unit.resolve(os.path.join(unit.path(), susp_incl[0])) if not os.path.isdir(incl_path): includes.append(susp_incl[0] + '.pxd') else: for f in susp_incl[1]: if f != '*': includes.append(susp_incl[0] + '/' + f + '.pxd') if includes: self._includes += unit.resolve_include([retargeted] + includes + list(find_init_files(includes, unit))) if induced: self._induced += unit.resolve_include([retargeted] + induced + list(find_init_files(induced, unit))) @staticmethod def get_perm_includes(): where = 'contrib/tools/cython/Cython/Utility' includes = [ 'Buffer.c', 'Builtins.c', 'CMath.c', 'Capsule.c', 'CommonTypes.c', 'Complex.c', 'Coroutine.c', 'CythonFunction.c', 'Embed.c', 'Exceptions.c', 'ExtensionTypes.c', 'FunctionArguments.c', 'ImportExport.c', 'MemoryView_C.c', 'ModuleSetupCode.c', 'ObjectHandling.c', 'Optimize.c', 'Overflow.c', 'Printing.c', 'Profile.c', 'StringTools.c', 'TestUtilityLoader.c', 'TypeConversion.c', ] return [where + '/' + x for x in includes] @staticmethod def parse_includes(content, perm_includes=True, direct_includes_only=False): if perm_includes: includes = PyxParser.get_perm_includes() else: includes = [] induced = [] susp_includes = [] for line in content: line = line.lstrip() incl = INCLUDE_PATTERN.match(line) if incl: incl_value = incl.group(2) or incl.group(4) if incl_value: includes.append(incl_value) elif not direct_includes_only: ind = INDUCED_PATTERN.match(line) if ind and ind.group(1): induced.append(ind.group(1)) else: def filter_known_inner_paths(p): # XXX: cpython is here but need to be added in PEERDIRs|ADDINCLs of cython project and * supported somehow return p and p.split('.')[0] not in ('libc', 'libcpp', 'cython', 'cpython') cimport = CIMPORT_PATTERN.match(line) if cimport: cimport_files = cimport.group(1) cimport_files = [x.strip() for x in cimport_files.split(',')] cimport_files = [x.split(' ')[0] for x in cimport_files] for cimport_file in cimport_files: if filter_known_inner_paths(cimport_file): includes.append(cimport_file.replace('.', '/') + '.pxd') else: from_cimport = FROM_CIMPORT_PATTERN.match(line) if from_cimport: cimport_source = from_cimport.group(1) cimport_symbols = from_cimport.group(2) or '' cimport_symbols = [x.strip() for x in cimport_symbols.split(',')] cimport_symbols = [x.split(' ')[0] for x in cimport_symbols] if filter_known_inner_paths(cimport_source): susp_includes.append((cimport_source.replace('.', '/'), cimport_symbols)) return includes, induced, susp_includes def includes(self): return self._includes def induced_deps(self): return { 'cpp': ['$S/contrib/libs/python/Include/Python.h'] + self._induced } def init(): iw.addparser('pyx', PyxParser, pass_induced_includes=True) iw.addparser('pxd', PyxParser, pass_induced_includes=True) iw.addparser('pxi', PyxParser, pass_induced_includes=True)
37.531034
130
0.527563
42fd18b2747b21c8b7ba6990e90564fc2faf30ed
730
py
Python
ap_cli/main.py
monty5811/apostello-docker-cli
80bf49897b8bb5f27c94768c142c6b3fbd6d36bf
[ "MIT" ]
null
null
null
ap_cli/main.py
monty5811/apostello-docker-cli
80bf49897b8bb5f27c94768c142c6b3fbd6d36bf
[ "MIT" ]
null
null
null
ap_cli/main.py
monty5811/apostello-docker-cli
80bf49897b8bb5f27c94768c142c6b3fbd6d36bf
[ "MIT" ]
null
null
null
import os import subprocess from datetime import datetime import click from ap_cli import apostello from ap_cli import build from ap_cli import config from ap_cli import db from ap_cli import dev from ap_cli import init from ap_cli import upgrade @click.group() def cli(): """Setup, configure, and deploy an instance of apostello.""" pass cli.add_command(apostello.logs) cli.add_command(apostello.start) cli.add_command(apostello.stop) cli.add_command(config.config) cli.add_command(db.backup) cli.add_command(db.restore) cli.add_command(db.migrate) cli.add_command(init.init) cli.add_command(upgrade.upgrade) cli.add_command(build.build) # dev: cli.add_command(dev.start_dev) cli.add_command(dev.build_assets)
18.25
64
0.79589
7872ef9c750361ded12ce5059305f793d6795e34
2,108
py
Python
src/mds/api/contrib/smslib/clickatell.py
m-socha/sana.mds
4d3b71b7ba939c91570fee4f60444cf07035bd51
[ "BSD-3-Clause" ]
2
2016-05-19T02:32:13.000Z
2017-09-06T07:06:25.000Z
src/mds/api/contrib/smslib/clickatell.py
m-socha/sana.mds
4d3b71b7ba939c91570fee4f60444cf07035bd51
[ "BSD-3-Clause" ]
6
2015-07-19T17:40:49.000Z
2016-12-20T21:54:59.000Z
src/mds/api/contrib/smslib/clickatell.py
m-socha/sana.mds
4d3b71b7ba939c91570fee4f60444cf07035bd51
[ "BSD-3-Clause" ]
14
2015-10-30T09:50:21.000Z
2019-06-15T13:07:37.000Z
''' Created on Aug 11, 2012 :author: Sana Development Team :version: 2.0 ''' try: import json as simplejson except ImportError, e: import simplejson import logging import urllib from django.conf import settings def send_clickatell_notification(message_body, phoneId,formatter=None): return ClickatellOpener().open(message_body, phoneId,formatter=formatter) class ClickatellOpener: def __init__(self): pass def open(self, n, phoneId, formatter=None): """Sends an SMS message to Clickatell http interface See Clickatell API documentation for full details. Clickatell params user Clickatell account user name password Clickatell account password api_id see Clickatell documentation to Recipient telephone number text Message Body Clickatell url: http://api.clickatell.com/http/sendmsg?params Parameters: message_body Message body phoneId Recipient """ result = False try: messages = formatter(n) if formatter else n for message in messages: params = urllib.urlencode({ 'user': settings.CLICKATELL_USER, 'password': settings.CLICKATELL_PASSWORD, 'api_id': settings.CLICKATELL_API, 'to': phoneId, 'text': message }) logging.info("Sending clickatell notification %s to %s" % (message, phoneId)) response = urllib.urlopen(settings.CLICKATELL_URI % params).read() logging.info("Clickatell response: %s" % response) result = True except Exception, e: logging.error("Couldn't submit Clickatell notification for %s: %s" % (phoneId, e)) return result
29.277778
94
0.54222
8738ece7270371ecd161f339300520bfdd641234
1,930
py
Python
scons/scons-local-2.5.0/SCons/Tool/DCommon.py
emamanto/Soar
72d2bc095068dd87ac78dad4f48938f6edc0353a
[ "BSD-2-Clause" ]
72
2020-06-12T06:33:41.000Z
2021-03-22T03:15:56.000Z
scons/scons-local-2.5.0/SCons/Tool/DCommon.py
emamanto/Soar
72d2bc095068dd87ac78dad4f48938f6edc0353a
[ "BSD-2-Clause" ]
9
2020-07-02T09:36:49.000Z
2021-03-25T23:54:00.000Z
scons/scons-local-2.5.0/SCons/Tool/DCommon.py
emamanto/Soar
72d2bc095068dd87ac78dad4f48938f6edc0353a
[ "BSD-2-Clause" ]
14
2020-06-12T03:08:03.000Z
2021-02-03T11:43:09.000Z
"""SCons.Tool.DCommon Common code for the various D tools. Coded by Russel Winder (russel@winder.org.uk) 2012-09-06 """ # # Copyright (c) 2001 - 2016 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/DCommon.py rel_2.5.0:3543:937e55cd78f7 2016/04/09 11:29:54 bdbaddog" import os.path def isD(env, source): if not source: return 0 for s in source: if s.sources: ext = os.path.splitext(str(s.sources[0]))[1] if ext == '.d': return 1 return 0 def addDPATHToEnv(env, executable): dPath = env.WhereIs(executable) if dPath: phobosDir = dPath[:dPath.rindex(executable)] + '/../src/phobos' if os.path.isdir(phobosDir): env.Append(DPATH=[phobosDir]) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
33.859649
106
0.714508
1d01890ceb33c9a214d1b92cca57cad014bea51e
3,064
py
Python
src/waldur_core/structure/management/commands/dumpusers.py
geant-multicloud/MCMS-mastermind
81333180f5e56a0bc88d7dad448505448e01f24e
[ "MIT" ]
26
2017-10-18T13:49:58.000Z
2021-09-19T04:44:09.000Z
src/waldur_core/structure/management/commands/dumpusers.py
geant-multicloud/MCMS-mastermind
81333180f5e56a0bc88d7dad448505448e01f24e
[ "MIT" ]
14
2018-12-10T14:14:51.000Z
2021-06-07T10:33:39.000Z
src/waldur_core/structure/management/commands/dumpusers.py
geant-multicloud/MCMS-mastermind
81333180f5e56a0bc88d7dad448505448e01f24e
[ "MIT" ]
32
2017-09-24T03:10:45.000Z
2021-10-16T16:41:09.000Z
from collections import OrderedDict import prettytable from django.contrib.auth import get_user_model from django.core.management.base import BaseCommand from waldur_core.structure import models User = get_user_model() USER_COLUMNS = OrderedDict( [ # (Column name, User fields) ('Full name, Civil number', ('full_name', 'civil_number')), ('Email, Phone nr.', ('email', 'phone_number')), ('Job title', ('job_title',)), ('Staff, Support', ('is_staff', 'is_support',)), ] ) # in chars COLUMN_MAX_WIDTH = 25 def format_string_to_column_size(string): if len(string) <= COLUMN_MAX_WIDTH: return string formatted = '\n'.join( string[i : i + COLUMN_MAX_WIDTH] for i in range(0, len(string), COLUMN_MAX_WIDTH) ) if isinstance(formatted, str): formatted = str(formatted, errors='replace') return formatted def to_string(value): if isinstance(value, bool): return 'Yes' if value else 'No' elif isinstance(value, int): return str(value) elif isinstance(value, str): return format_string_to_column_size(value) elif isinstance(value, list): strings = [to_string(v) for v in value] result = ', '.join(strings) if len(result) > COLUMN_MAX_WIDTH: return '\n'.join(strings) return result return format_string_to_column_size(str(value)) class Command(BaseCommand): help = "Dumps information about users, their organizations and projects." def add_arguments(self, parser): parser.add_argument( '-o', '--output', dest='output', default=None, help='Specifies file to which the output is written. The output will be printed to stdout by default.', ) def handle(self, *args, **options): # fetch objects users = User.objects.all() project_roles = models.ProjectPermission.objects.filter(is_active=True) customer_roles = models.CustomerPermission.objects.filter(is_active=True) # build table columns = list(USER_COLUMNS.keys()) + ['Organizations', 'Projects'] table = prettytable.PrettyTable(columns, hrules=prettytable.ALL) for user in users: user_customers = to_string(list(customer_roles.filter(user=user))) user_projects = to_string(list(project_roles.filter(user=user))) row = [ to_string( [ getattr(user, f) for f in fields if getattr(user, f) not in ('', None) ] ) for fields in USER_COLUMNS.values() ] row += [user_customers, user_projects] table.add_row(row) # output if options['output'] is None: self.stdout.write(table.get_string()) return with open(options['output'], 'w') as output_file: output_file.write(table.get_string())
30.949495
115
0.598238
b7dd7ea6ea2c6f190b4c4795b2014cdf0ba59f84
3,393
py
Python
get_ttid.py
CCNU-internship-Dec2020/Scrape-IMDb-By-Searching-Name
4262727e68a0120c3ce6918acb74103e56ad977d
[ "MIT" ]
null
null
null
get_ttid.py
CCNU-internship-Dec2020/Scrape-IMDb-By-Searching-Name
4262727e68a0120c3ce6918acb74103e56ad977d
[ "MIT" ]
null
null
null
get_ttid.py
CCNU-internship-Dec2020/Scrape-IMDb-By-Searching-Name
4262727e68a0120c3ce6918acb74103e56ad977d
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding:utf-8 -*- # Copyright © 2021 - wwyqianqian <wwyqianqian@mails.ccnu.edu.com> from bs4 import BeautifulSoup import json import requests import re import os movieid = list() title = list() search_mov_url = list() genres = list() for line in open("movies.dat", encoding = "ISO-8859-1"): movieid.append(line.rstrip().split("::")[0]) title.append(line.rstrip().split("::")[1]) genres.append(line.rstrip().split("::")[2]) for i in title: line = str(i) search_name = line.replace(' ', '+') search_name = search_name.replace('(', '%28') search_name = search_name.replace(')', '%29') search_name = search_name.replace("'", '%27') search_name = search_name.replace('&', '%26') search_name = search_name.replace('!', '%21') search_name = search_name.replace(',', '%2C') search_name = search_name.replace(':', '%3A') search_name = search_name.replace('?', '%3F') search_name = search_name.replace('/', '%2F') # print(title[movie_count], search_name) // now the movie names are encoded # https://www.imdb.com/find?s=tt&q= encode_url = "https://www.imdb.com/find?s=tt&q=" + search_name search_mov_url.append(search_name) # mov_search_url_list = list() # def get_url_list(rootdir): # with open(rootdir, 'r') as file_to_read: # while True: # line = file_to_read.readline() # if not line: # break # line = line.strip('\n') # mov_search_url_list.append(line) # return mov_search_url_list def get_title_id(index, url): try: response = requests.get(url) soup = BeautifulSoup(response.text) # print(soup) except Exception as e: print("Get Movie URL failed!") with open('err_log.txt', 'a', encoding='utf-8') as f: x = index + 1 f.write(str(x) + ": "+ str(e) + '\n') try: web_table = soup.find("table", attrs={"class": "findList"}) # print(web_table.a) # <a href="/title/tt0208874/"><img src="https://m.media-amazon.com/images/M/MV5BYTIzYTA5MDEtY2I0OS00OGJhLTlmMDctZWRlMGRjYzAxZDQzXkEyXkFqcGdeQXVyMTQxNzMzNDI@._V1_UX32_CR0,0,32,44_AL_.jpg"/></a> title_id_a_str = str(web_table.a) title_id = title_id_a_str.split('/')[2] print(index) print(title_id) # tt0208874 with open('excess_log.txt', 'a+', encoding='utf-8') as f: f.write(movieid[index] + "::" + title[index] + "::" + genres[index] + "::" + search_mov_url[index] + "::" + "https://www.imdb.com/title/" + title_id + "/" +'\n') except Exception as e: print("Find title id failed!") with open('err_log.txt', 'a', encoding='utf-8') as f: x = index + 1 f.write(str(x) + ": "+ str(e) + '\n') def main(): # get_url_list("searchMovUrlList_byLine.txt") #get a list with 3883 items for i in range(len(search_mov_url)): get_title_id(i, "https://www.imdb.com/find?s=tt&q=" + search_mov_url[i]) main() # out put: # file: # - excess_log.txt (2::Jumanji (1995)::Adventure|Children's|Fantasy::Jumanji+%281995%29::https://www.imdb.com/title/tt0113497/) # - err_log.txt # log : # 0 # tt0114709 # 1 # tt0113497 # 2 # tt0113228 # 3 # tt0114885 # 4 # tt0113041
29.25
200
0.587681
e6d5bebff426aad31ae2f1f437150bffea7de45d
257
py
Python
homeassistant/components/sensibo/const.py
PiotrMachowski/core
b9d7d0cae2ccd2d88e90e49cc09e154a27ed809b
[ "Apache-2.0" ]
1
2018-08-01T02:37:08.000Z
2018-08-01T02:37:08.000Z
homeassistant/components/sensibo/const.py
PiotrMachowski/core
b9d7d0cae2ccd2d88e90e49cc09e154a27ed809b
[ "Apache-2.0" ]
18
2021-11-24T06:26:13.000Z
2022-03-31T06:25:15.000Z
homeassistant/components/sensibo/const.py
PiotrMachowski/core
b9d7d0cae2ccd2d88e90e49cc09e154a27ed809b
[ "Apache-2.0" ]
3
2021-11-14T13:29:33.000Z
2021-12-27T17:05:22.000Z
"""Constants for Sensibo.""" import logging from homeassistant.const import Platform LOGGER = logging.getLogger(__package__) DEFAULT_SCAN_INTERVAL = 60 DOMAIN = "sensibo" PLATFORMS = [Platform.CLIMATE] ALL = ["all"] DEFAULT_NAME = "Sensibo" TIMEOUT = 8
17.133333
40
0.754864
b6bb31f979b17496ca0d2c805dde9260f9a07552
4,536
py
Python
gui/kivy/uix/dialogs/fee_dialog.py
OleksandrBlack/electrum-safecoin
71a383635f9f2c3b50649376daabb6ba610431c2
[ "MIT" ]
null
null
null
gui/kivy/uix/dialogs/fee_dialog.py
OleksandrBlack/electrum-safecoin
71a383635f9f2c3b50649376daabb6ba610431c2
[ "MIT" ]
null
null
null
gui/kivy/uix/dialogs/fee_dialog.py
OleksandrBlack/electrum-safecoin
71a383635f9f2c3b50649376daabb6ba610431c2
[ "MIT" ]
1
2020-01-31T22:01:23.000Z
2020-01-31T22:01:23.000Z
from kivy.app import App from kivy.factory import Factory from kivy.properties import ObjectProperty from kivy.lang import Builder from electrum_safecoin_gui.kivy.i18n import _ Builder.load_string(''' <FeeDialog@Popup> id: popup title: _('Transaction Fees') size_hint: 0.8, 0.8 pos_hint: {'top':0.9} method: 0 BoxLayout: orientation: 'vertical' BoxLayout: orientation: 'horizontal' size_hint: 1, 0.5 Label: text: _('Method') + ':' Button: text: _('Mempool') if root.method == 2 else _('ETA') if root.method == 1 else _('Static') background_color: (0,0,0,0) bold: True on_release: root.method = (root.method + 1) % 2 root.update_slider() root.update_text() BoxLayout: orientation: 'horizontal' size_hint: 1, 0.5 Label: text: (_('Target') if root.method > 0 else _('Fee')) + ':' Label: id: fee_target text: '' Slider: id: slider range: 0, 4 step: 1 on_value: root.on_slider(self.value) Widget: size_hint: 1, 0.5 BoxLayout: orientation: 'horizontal' size_hint: 1, 0.5 TopLabel: id: fee_estimate text: '' font_size: '14dp' Widget: size_hint: 1, 0.5 BoxLayout: orientation: 'horizontal' size_hint: 1, 0.5 Button: text: 'Cancel' size_hint: 0.5, None height: '48dp' on_release: popup.dismiss() Button: text: 'OK' size_hint: 0.5, None height: '48dp' on_release: root.on_ok() root.dismiss() ''') class FeeDialog(Factory.Popup): def __init__(self, app, config, callback): Factory.Popup.__init__(self) self.app = app self.config = config self.callback = callback mempool = self.config.use_mempool_fees() dynfees = self.config.is_dynfee() self.method = (2 if mempool else 1) if dynfees else 0 self.update_slider() self.update_text() def update_text(self): pos = int(self.ids.slider.value) dynfees, mempool = self.get_method() if self.method == 2: fee_rate = self.config.depth_to_fee(pos) target, estimate = self.config.get_fee_text(pos, dynfees, mempool, fee_rate) msg = 'In the current network conditions, in order to be positioned %s, a transaction will require a fee of %s.' % (target, estimate) elif self.method == 1: fee_rate = self.config.eta_to_fee(pos) target, estimate = self.config.get_fee_text(pos, dynfees, mempool, fee_rate) msg = 'In the last few days, transactions that confirmed %s usually paid a fee of at least %s.' % (target.lower(), estimate) else: fee_rate = self.config.static_fee(pos) target, estimate = self.config.get_fee_text(pos, dynfees, True, fee_rate) msg = 'In the current network conditions, a transaction paying %s would be positioned %s.' % (target, estimate) self.ids.fee_target.text = target self.ids.fee_estimate.text = msg def get_method(self): dynfees = self.method > 0 mempool = self.method == 2 return dynfees, mempool def update_slider(self): slider = self.ids.slider dynfees, mempool = self.get_method() maxp, pos, fee_rate = self.config.get_fee_slider(dynfees, mempool) slider.range = (0, maxp) slider.step = 1 slider.value = pos def on_ok(self): value = int(self.ids.slider.value) dynfees, mempool = self.get_method() self.config.set_key('dynamic_fees', dynfees, False) self.config.set_key('mempool_fees', False, False) if dynfees: if mempool: self.config.set_key('depth_level', value, True) else: self.config.set_key('fee_level', value, True) else: self.config.set_key('fee_per_kb', self.config.static_fee(value), True) self.callback() def on_slider(self, value): self.update_text()
34.363636
145
0.544533
b0f125d80fb7ade450d606b59202f6efdb882560
256
py
Python
delete_table.py
1021ky/try_dynamodb
6d254c139a62f578761639dd7deab2c7c44ab6a9
[ "MIT" ]
2
2020-03-23T18:24:44.000Z
2020-03-25T21:25:52.000Z
delete_table.py
1021ky/try_dynamodb
6d254c139a62f578761639dd7deab2c7c44ab6a9
[ "MIT" ]
2
2021-08-05T11:44:53.000Z
2021-08-05T11:44:59.000Z
delete_table.py
1021ky/try_dynamodb
6d254c139a62f578761639dd7deab2c7c44ab6a9
[ "MIT" ]
1
2020-03-23T18:24:52.000Z
2020-03-23T18:24:52.000Z
import boto3 client = boto3.client('dynamodb', region_name='us-east-1') try: resp = client.delete_table( TableName="Books", ) print("Table deleted successfully!") except Exception as e: print("Error deleting table:") print(e)
19.692308
58
0.660156
1e2d6f4d5f1601dfb52b9e477027b27c35f26274
1,294
py
Python
polls/migrations/0001_initial.py
armonkahil/djangoPolls
e610b8e3c123d064020c592f1cdf29ccfec3fdc4
[ "MIT" ]
null
null
null
polls/migrations/0001_initial.py
armonkahil/djangoPolls
e610b8e3c123d064020c592f1cdf29ccfec3fdc4
[ "MIT" ]
null
null
null
polls/migrations/0001_initial.py
armonkahil/djangoPolls
e610b8e3c123d064020c592f1cdf29ccfec3fdc4
[ "MIT" ]
null
null
null
# Generated by Django 3.0.5 on 2020-05-03 11:26 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='date published')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=200)), ('votes', models.IntegerField(default=0)), ('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.Question')), ], ), ]
35.944444
118
0.613601
ebdcf5be8c31a69cd6cb0c1e20cada28056f92c1
5,405
py
Python
rl_memory/tests/test_dqn.py
Unique-Divine/test-repo
e7f82e8007df7cc210c35ffaf0f11855c8327c2f
[ "MIT" ]
null
null
null
rl_memory/tests/test_dqn.py
Unique-Divine/test-repo
e7f82e8007df7cc210c35ffaf0f11855c8327c2f
[ "MIT" ]
1
2021-11-12T01:20:30.000Z
2021-11-12T01:20:30.000Z
rl_memory/tests/test_dqn.py
Unique-Divine/test-repo
e7f82e8007df7cc210c35ffaf0f11855c8327c2f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Test module for all classes related to Deep Q-Learning, Deep Q-Network (DQN), and Double DQN. See module `rl_memory.rl_algos.dqn`. """ import os import sys import torch import random import pytest import warnings; warnings.filterwarnings("ignore") from rl_memory.rlm_env import environment from rl_memory.rl_algos import dqn_algo # TODO from rl_memory.experiments import dqn_experiments import numpy as np import rl_memory as rlm from typing import List, Tuple, Optional from torch import Tensor Array = np.ndarray class TestDQNInits: """Verifies that all of the abstract classes and concrete classes of the vanilla policy gradient instantiate correctly. """ @staticmethod def init_env() -> rlm.Env: env: rlm.Env = environment.Env( grid_shape=(15,15), n_goals=4, hole_pct = 0.3) env.reset() return env def default_experiment_setup(self) \ -> Tuple[rlm.Env, dqn_algo.DQN]: env: rlm.Env = self.init_env() obs: rlm.Observation = environment.Observation(env = env) obs_size = obs.size() network_h_params = dqn_algo.NNHyperParameters(lr = 1e-3) dqn = dqn_algo.DQN( obs_size = obs_size, action_dim = len(env.action_space), h_params = network_h_params) return env, dqn """ def test_placeholder(self): return 'yuh' raise NotImplementedError """ def test_init_NNHyperParameters(self): network_hparams = dqn_algo.NNHyperParameters(lr = 1e-3) assert network_hparams def test_init_DQNTransferLearning(self): transfer_mgmt = dqn_algo.DQNTransferLearning(transfer_freq = 2) assert transfer_mgmt def test_DQNAlgo(self): env, dqn = self.default_experiment_setup() rl_algo = dqn_algo.DQNAlgo( dqn=dqn, env_like = env,) rl_algo.run_algo(num_episodes = 5, max_num_scenes = 3) def test_DQNAlgo_w_transfer(self): env, dqn = self.default_experiment_setup() transfer_freqs: List[int] = [1, 2, 3] for transfer_freq in transfer_freqs: rl_algo = dqn_algo.DQNAlgo( dqn=dqn, env_like = env, transfer_mgmt = dqn_algo.DQNTransferLearning( transfer_freq = transfer_freq)) rl_algo.run_algo(num_episodes = 5, max_num_scenes = 3) class TestPretrainingExperiment: @staticmethod def init_env() -> rlm.Env: env: rlm.Env = environment.Env( grid_shape=(15,15), n_goals=4, hole_pct = 0.3) env.reset() return env def default_experiment_setup(self) \ -> Tuple[rlm.Env, dqn_algo.DQN]: env: rlm.Env = self.init_env() obs: rlm.Observation = environment.Observation( env = env) obs_size = obs.size() network_h_params = dqn_algo.NNHyperParameters(lr = 1e-3) dqn = dqn_algo.DQN( obs_size = obs_size, action_dim = len(env.action_space), h_params = network_h_params) return env, dqn def test_init_PretrainingExperiment(self): env, dqn = self.default_experiment_setup() experiment = dqn_experiments.PretrainingExperiment( env = env, num_episodes = 3, transfer_freq = 1 ) assert experiment def test_easy_env(self): env, dqn = self.default_experiment_setup() experiment = dqn_experiments.PretrainingExperiment( env = env, num_episodes = 3, transfer_freq = 1 ) easy_env: rlm.Env = experiment.easy_env() assert isinstance(easy_env, environment.Env) def test_pretrain_on_easy_env(self): env, dqn = self.default_experiment_setup() experiment = dqn_experiments.PretrainingExperiment( env = env, num_episodes = 3, transfer_freq = 1 ) experiment.pretrain_on_easy_env(dqn = dqn) def test_pretrain_to_threshold(self): env, dqn = self.default_experiment_setup() experiment = dqn_experiments.PretrainingExperiment( env = env, num_episodes = 100, transfer_freq = 1 ) dqn = experiment.pretrain_to_threshold( dqn = dqn) return dqn def test_experiment_vpg_transfer(self): return 'yuh' # TODO # Check both with default policy net # and with a custom one raise NotImplementedError class TestEvaluateDQN: def test_train(self): """Integration test on whether DQNAlgo runs for training.""" env = environment.Env() env.reset() experiment = dqn_experiments.DQNEvalExperiment() experiment.train(env = env, num_episodes = 2) def test_test(self): """Integration test on whether DQNAlgo runs for validation.""" env = environment.Env() env.reset() experiment = dqn_experiments.DQNEvalExperiment() train_algo: vpg.DQNAlgo = experiment.train(env = env, num_episodes = 1) experiment.test(rl_algo = train_algo, env = env, num_episodes = 1) def test_plot_results(self): env = environment.Env() env.reset() experiment = dqn_experiments.DQNEvalExperiment() experiment.main(n_episodes_train = 500, n_episodes_test = 20)
33.571429
80
0.633673
59c23900fa9d77270082f0a2e8b06ca5cc723500
13
py
Python
helloworld.py
rock304/pythonExamples
71635bfa402cf7092361d5f1dfed532ed4513e2d
[ "Apache-2.0" ]
3
2020-03-21T04:37:50.000Z
2021-08-14T07:31:13.000Z
helloworld.py
rock304/pythonExamples
71635bfa402cf7092361d5f1dfed532ed4513e2d
[ "Apache-2.0" ]
null
null
null
helloworld.py
rock304/pythonExamples
71635bfa402cf7092361d5f1dfed532ed4513e2d
[ "Apache-2.0" ]
3
2020-02-04T13:28:47.000Z
2020-06-10T01:34:19.000Z
print "hello"
13
13
0.769231
43d74a2993cea0d977a99bf0ec7f485be635dc9f
26,430
py
Python
yolov5/utils/general.py
brekkanegg/vinbigdata-cxr
e52658d250d973ef3385d8e55ae3c4f236052eca
[ "MIT" ]
null
null
null
yolov5/utils/general.py
brekkanegg/vinbigdata-cxr
e52658d250d973ef3385d8e55ae3c4f236052eca
[ "MIT" ]
null
null
null
yolov5/utils/general.py
brekkanegg/vinbigdata-cxr
e52658d250d973ef3385d8e55ae3c4f236052eca
[ "MIT" ]
null
null
null
# YOLOv5 general utils import glob import logging import math import os import platform import random import re import subprocess import time from pathlib import Path import cv2 import numpy as np import torch import torchvision import yaml from utils.google_utils import gsutil_getsize from utils.metrics import fitness from utils.torch_utils import init_torch_seeds # Settings torch.set_printoptions(linewidth=320, precision=5, profile="long") np.set_printoptions( linewidth=320, formatter={"float_kind": "{:11.5g}".format} ) # format short g, %precision=5 cv2.setNumThreads( 0 ) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) os.environ["NUMEXPR_MAX_THREADS"] = str(min(os.cpu_count(), 8)) # NumExpr max threads def set_logging(rank=-1): logging.basicConfig( format="%(message)s", level=logging.INFO if rank in [-1, 0] else logging.WARN ) def init_seeds(seed=0): # Initialize random number generator (RNG) seeds random.seed(seed) np.random.seed(seed) init_torch_seeds(seed) def get_latest_run(search_dir="."): # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) last_list = glob.glob(f"{search_dir}/**/last*.pt", recursive=True) return max(last_list, key=os.path.getctime) if last_list else "" def isdocker(): # Is environment a Docker container return Path("/workspace").exists() # or Path('/.dockerenv').exists() def emojis(str=""): # Return platform-dependent emoji-safe version of string return ( str.encode().decode("ascii", "ignore") if platform.system() == "Windows" else str ) def check_online(): # Check internet connectivity import socket try: socket.create_connection(("1.1.1.1", 443), 5) # check host accesability return True except OSError: return False def check_git_status(): # Recommend 'git pull' if code is out of date print(colorstr("github: "), end="") try: assert Path(".git").exists(), "skipping check (not a git repository)" assert not isdocker(), "skipping check (Docker image)" assert check_online(), "skipping check (offline)" cmd = "git fetch && git config --get remote.origin.url" url = ( subprocess.check_output(cmd, shell=True).decode().strip().rstrip(".git") ) # github repo url branch = ( subprocess.check_output("git rev-parse --abbrev-ref HEAD", shell=True) .decode() .strip() ) # checked out n = int( subprocess.check_output( f"git rev-list {branch}..origin/master --count", shell=True ) ) # commits behind if n > 0: s = ( f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " f"Use 'git pull' to update or 'git clone {url}' to download latest." ) else: s = f"up to date with {url} ✅" print(emojis(s)) # emoji-safe except Exception as e: print(e) def check_requirements(file="requirements.txt", exclude=()): # Check installed dependencies meet requirements import pkg_resources as pkg prefix = colorstr("red", "bold", "requirements:") file = Path(file) if not file.exists(): print(f"{prefix} {file.resolve()} not found, check failed.") return n = 0 # number of packages updates requirements = [ f"{x.name}{x.specifier}" for x in pkg.parse_requirements(file.open()) if x.name not in exclude ] for r in requirements: try: pkg.require(r) except Exception as e: # DistributionNotFound or VersionConflict if requirements not met n += 1 print( f"{prefix} {e.req} not found and is required by YOLOv5, attempting auto-update..." ) print( subprocess.check_output(f"pip install '{e.req}'", shell=True).decode() ) if n: # if packages updated s = ( f"{prefix} {n} package{'s' * (n > 1)} updated per {file.resolve()}\n" f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" ) print(emojis(s)) # emoji-safe def check_img_size(img_size, s=32): # Verify img_size is a multiple of stride s new_size = make_divisible(img_size, int(s)) # ceil gs-multiple if new_size != img_size: print( "WARNING: --img-size %g must be multiple of max stride %g, updating to %g" % (img_size, s, new_size) ) return new_size def check_imshow(): # Check if environment supports image displays try: assert not isdocker(), "cv2.imshow() is disabled in Docker environments" cv2.imshow("test", np.zeros((1, 1, 3))) cv2.waitKey(1) cv2.destroyAllWindows() cv2.waitKey(1) return True except Exception as e: print( f"WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}" ) return False def check_file(file): # Search for file if not found if os.path.isfile(file) or file == "": return file else: files = glob.glob("./**/" + file, recursive=True) # find file assert len(files), "File Not Found: %s" % file # assert file was found assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % ( file, files, ) # assert unique return files[0] # return file def check_dataset(dict): # Download dataset if not found locally val, s = dict.get("val"), dict.get("download") if val and len(val): val = [ Path(x).resolve() for x in (val if isinstance(val, list) else [val]) ] # val path if not all(x.exists() for x in val): print( "\nWARNING: Dataset not found, nonexistent paths: %s" % [str(x) for x in val if not x.exists()] ) if s and len(s): # download script print("Downloading %s ..." % s) if s.startswith("http") and s.endswith(".zip"): # URL f = Path(s).name # filename torch.hub.download_url_to_file(s, f) r = os.system("unzip -q %s -d ../ && rm %s" % (f, f)) # unzip else: # bash script r = os.system(s) print( "Dataset autodownload %s\n" % ("success" if r == 0 else "failure") ) # analyze return value else: raise Exception("Dataset not found.") def make_divisible(x, divisor): # Returns x evenly divisible by divisor return math.ceil(x / divisor) * divisor def clean_str(s): # Cleans a string by replacing special characters with underscore _ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) def one_cycle(y1=0.0, y2=1.0, steps=100): # lambda function for sinusoidal ramp from y1 to y2 return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 def colorstr(*input): # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') *args, string = ( input if len(input) > 1 else ("blue", "bold", input[0]) ) # color arguments, string colors = { "black": "\033[30m", # basic colors "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "magenta": "\033[35m", "cyan": "\033[36m", "white": "\033[37m", "bright_black": "\033[90m", # bright colors "bright_red": "\033[91m", "bright_green": "\033[92m", "bright_yellow": "\033[93m", "bright_blue": "\033[94m", "bright_magenta": "\033[95m", "bright_cyan": "\033[96m", "bright_white": "\033[97m", "end": "\033[0m", # misc "bold": "\033[1m", "underline": "\033[4m", } return "".join(colors[x] for x in args) + f"{string}" + colors["end"] def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels if labels[0] is None: # no labels loaded return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(np.int) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurrences per class # Prepend gridpoint count (for uCE training) # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start weights[weights == 0] = 1 # replace empty bins with 1 weights = 1 / weights # number of targets per class weights /= weights.sum() # normalize return torch.from_numpy(weights) def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class_weights and image contents class_counts = np.array( [np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels] ) image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample return image_weights def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet x = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, ] return x def xyxy2xywh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y return y def xyn2xy(x, w=640, h=640, padw=0, padh=0): # Convert normalized segments into pixel segments, shape (n,2) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = w * x[:, 0] + padw # top left x y[:, 1] = h * x[:, 1] + padh # top left y return y def segment2box(segment, width=640, height=640): # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) x, y = segment.T # segment xy inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) x, y, = ( x[inside], y[inside], ) return ( np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) ) # cls, xyxy def segments2boxes(segments): # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) boxes = [] for s in segments: x, y = s.T # segment xy boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy return xyxy2xywh(np.array(boxes)) # cls, xywh def resample_segments(segments, n=1000): # Up-sample an (n,2) segment for i, s in enumerate(segments): x = np.linspace(0, len(s) - 1, n) xp = np.arange(len(s)) segments[i] = ( np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]) .reshape(2, -1) .T ) # segment xy return segments def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min( img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1] ) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, ( img1_shape[0] - img0_shape[0] * gain ) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) return coords def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * ( torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1) ).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min( b1_x1, b2_x1 ) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ( (b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2 ) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU elif ( CIoU ): # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow( torch.atan(w2 / h2) - torch.atan(w1 / h1), 2 ) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU else: # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU else: return iou # IoU def box_iou(box1, box2): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(box1.T) area2 = box_area(box2.T) # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) inter = ( ( torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2]) ) .clamp(0) .prod(2) ) return inter / ( area1[:, None] + area2 - inter ) # iou = inter / (area1 + area2 - inter) def wh_iou(wh1, wh2): # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 wh1 = wh1[:, None] # [N,1,2] wh2 = wh2[None] # [1,M,2] inter = torch.min(wh1, wh2).prod(2) # [N,M] return inter / ( wh1.prod(2) + wh2.prod(2) - inter ) # iou = inter / (area1 + area2 - inter) def non_max_suppression( prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=True, labels=(), merge=False, ): """Runs Non-Maximum Suppression (NMS) on inference results Returns: list of detections, on (n,6) tensor per image [xyxy, conf, cls] """ nc = prediction.shape[2] - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_det = 300 # maximum number of detections per image max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) # merge = False # use merge-NMS t = time.time() output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # Cat apriori labels if autolabelling if labels and len(labels[xi]): l = labels[xi] v = torch.zeros((len(l), nc + 5), device=x.device) v[:, :4] = l[:, 1:5] # box v[:, 4] = 1.0 # conf v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls x = torch.cat((x, v), 0) # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] # Filter by class if classes is not None: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # Check shape n = x.shape[0] # number of boxes if not n: # no boxes continue elif n > max_nms: # excess boxes x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean) # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum( 1, keepdim=True ) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy output[xi] = x[i] if (time.time() - t) > time_limit: print(f"WARNING: NMS time limit {time_limit}s exceeded") break # time limit exceeded return output def strip_optimizer( f="best.pt", s="" ): # from utils.general import *; strip_optimizer() # Strip optimizer from 'f' to finalize training, optionally save as 's' x = torch.load(f, map_location=torch.device("cpu")) if x.get("ema"): x["model"] = x["ema"] # replace model with ema for k in "optimizer", "training_results", "wandb_id", "ema", "updates": # keys x[k] = None x["epoch"] = -1 x["model"].half() # to FP16 for p in x["model"].parameters(): p.requires_grad = False torch.save(x, s or f) mb = os.path.getsize(s or f) / 1e6 # filesize print( f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB" ) def print_mutation(hyp, results, yaml_file="hyp_evolved.yaml", bucket=""): # Print mutation results to evolve.txt (for use with train.py --evolve) a = "%10s" * len(hyp) % tuple(hyp.keys()) # hyperparam keys b = "%10.3g" * len(hyp) % tuple(hyp.values()) # hyperparam values c = ( "%10.4g" * len(results) % results ) # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) print("\n%s\n%s\nEvolved fitness: %s\n" % (a, b, c)) if bucket: url = "gs://%s/evolve.txt" % bucket if gsutil_getsize(url) > ( os.path.getsize("evolve.txt") if os.path.exists("evolve.txt") else 0 ): os.system( "gsutil cp %s ." % url ) # download evolve.txt if larger than local with open("evolve.txt", "a") as f: # append result f.write(c + b + "\n") x = np.unique(np.loadtxt("evolve.txt", ndmin=2), axis=0) # load unique rows x = x[np.argsort(-fitness(x))] # sort np.savetxt("evolve.txt", x, "%10.3g") # save sort by fitness # Save yaml for i, k in enumerate(hyp.keys()): hyp[k] = float(x[0, i + 7]) with open(yaml_file, "w") as f: results = tuple(x[0, :7]) c = ( "%10.4g" * len(results) % results ) # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3) f.write( "# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: " % len(x) + c + "\n\n" ) yaml.dump(hyp, f, sort_keys=False) if bucket: os.system("gsutil cp evolve.txt %s gs://%s" % (yaml_file, bucket)) # upload def apply_classifier(x, model, img, im0): # applies a second stage classifier to yolo outputs im0 = [im0] if isinstance(im0, np.ndarray) else im0 for i, d in enumerate(x): # per image if d is not None and len(d): d = d.clone() # Reshape and pad cutouts b = xyxy2xywh(d[:, :4]) # boxes b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad d[:, :4] = xywh2xyxy(b).long() # Rescale boxes from img_size to im0 size scale_coords(img.shape[2:], d[:, :4], im0[i].shape) # Classes pred_cls1 = d[:, 5].long() ims = [] for j, a in enumerate(d): # per item cutout = im0[i][int(a[1]) : int(a[3]), int(a[0]) : int(a[2])] im = cv2.resize(cutout, (224, 224)) # BGR # cv2.imwrite('test%i.jpg' % j, cutout) im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 ims.append(im) pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax( 1 ) # classifier prediction x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections return x def increment_path(path, exist_ok=True, sep=""): # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc. path = Path(path) # os-agnostic if (path.exists() and exist_ok) or (not path.exists()): return str(path) else: dirs = glob.glob(f"{path}{sep}*") # similar paths matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] i = [int(m.groups()[0]) for m in matches if m] # indices n = max(i) + 1 if i else 2 # increment number return f"{path}{sep}{n}" # update path
33.32913
118
0.536625
f3d3e6658a457335b640f8787eb39222e7b07a95
1,299
py
Python
src/test.py
candYgene/pbg-ld
7f502c44d21c4ecda3fed6d3b531d4c98fdedde6
[ "Apache-2.0" ]
1
2020-07-22T07:39:50.000Z
2020-07-22T07:39:50.000Z
src/test.py
candYgene/pbg-ld
7f502c44d21c4ecda3fed6d3b531d4c98fdedde6
[ "Apache-2.0" ]
45
2017-07-12T07:19:08.000Z
2019-09-02T12:44:38.000Z
src/test.py
candYgene/pbg-ld
7f502c44d21c4ecda3fed6d3b531d4c98fdedde6
[ "Apache-2.0" ]
4
2017-07-12T07:12:16.000Z
2019-07-09T09:34:29.000Z
from __future__ import print_function from SPARQLWrapper import SPARQLWrapper, JSON import sys infile = sys.argv[1] if len(sys.argv) > 1 else "graphs.txt" endpoint = sys.argv[2] if len(sys.argv) > 2 else "http://localhost:8890/sparql" graphs = dict() try: with open(infile, "r") as fin: for line in fin: graphs[line.strip()] = 0 except IOError as err: sys.exit(err) if len(graphs) == 0: sys.exit("No graph URIs found.") try: sparql = SPARQLWrapper(endpoint) sparql.setQuery(""" SELECT ?g COUNT(*) AS ?n WHERE { GRAPH ?g { ?s ?p ?o } } GROUP BY ?g """) sparql.setReturnFormat(JSON) res = sparql.query().convert() for r in res["results"]["bindings"]: g = r['g']['value'] n = int(r['n']['value']) if g in graphs: graphs[g] = n except: sys.exit("Failed to connect to the SPARQL endpoint '{0}'.".format(endpoint)) exit_code = 0 print("# graph_uri\tn_triples") for g,n in sorted(graphs.items(), key=lambda x: x[1], reverse=True): if n == 0: exit_code = 1 print("{0}\t{1}".format(g,n), file=sys.stdout) if exit_code != 0: print("\n*** ERROR: Ingested RDF graph(s) must not be empty. ***", file=sys.stderr) sys.exit(exit_code)
25.470588
87
0.585835
afffe5e3fac9ddff7a7c35ae0dd8c2b800b27d05
2,882
py
Python
populous/inlines/models.py
caiges/populous
d07094f9d6b2528d282ed99af0063002480bc00b
[ "BSD-3-Clause" ]
2
2016-05-09T01:17:08.000Z
2017-07-18T23:35:01.000Z
populous/inlines/models.py
caiges/populous
d07094f9d6b2528d282ed99af0063002480bc00b
[ "BSD-3-Clause" ]
null
null
null
populous/inlines/models.py
caiges/populous
d07094f9d6b2528d282ed99af0063002480bc00b
[ "BSD-3-Clause" ]
null
null
null
from django.db import models from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.template.defaultfilters import capfirst from populous.inlines.managers import RegisteredInlineManager, RegisteredInlineFieldManager from populous.inlines.utils import get_absolute_schema_path class RecurringInline(models.Model): title = models.CharField(max_length=200, unique=True) content = models.TextField(help_text='Raw HTML is allowed.') class Meta: ordering = ('title',) def __unicode__(self): return self.title class RegisteredInline(models.Model): name = models.CharField(max_length=500) description = models.TextField(blank=True) author = models.CharField(max_length=800, blank=True) app_label = models.CharField(max_length=500, editable=False) class_name = models.CharField(max_length=500, editable=False) inline_name = models.SlugField(max_length=500, editable=False) objects = RegisteredInlineManager() class Meta: verbose_name = 'inline' unique_together = (('app_label', 'class_name', 'inline_name'),) def __unicode__(self): return self.name @models.permalink def get_form_url(self): return ('inlines-admin-form', (), { 'app_label': self.app_label, 'inline_name': self.inline_name}) @property def inline_class(self): if not hasattr(self, '_inline_class'): app_name = models.get_app(self.app_label).__name__ mod_name = "%sinlines" % app_name.rstrip('models') mod = __import__(mod_name, fromlist=[mod_name]) setattr(self, '_inline_class', getattr(mod, self.class_name)) return getattr(self, '_inline_class') def get_form(self): return self.inline_class.form ## TODO: Currently field-level control doesn't work. class RegisteredInlineField(models.Model): app_label = models.CharField(max_length=500, editable=False) model_name = models.CharField(max_length=500, editable=False) field_name = models.CharField(max_length=500, editable=False) schema_path = models.CharField(max_length=800, editable=False) objects = RegisteredInlineFieldManager() class Meta: verbose_name = 'inline field' unique_together = (('app_label', 'model_name', 'field_name'),) def __unicode__(self): return u"%s.%s" % (capfirst(self.model_name), self.field_name) def get_absolute_schema_path(self): return get_absolute_schema_path(self.schema_path) class AllowedField(models.Model): inline = models.ForeignKey(RegisteredInline) field = models.ForeignKey(RegisteredInlineField) sites = models.ManyToManyField(Site) def __unicode__(self): return unicode(self.field)
34.309524
91
0.696044
5873a39b0334c765605e178044e052cf95dfcd91
3,452
py
Python
openstack_dashboard/contrib/trove/content/database_clusters/tabs.py
Tesora-Release/tesora-horizon
4b0f26d48551783c1fe3ae362d1f8d27570195a9
[ "Apache-2.0" ]
null
null
null
openstack_dashboard/contrib/trove/content/database_clusters/tabs.py
Tesora-Release/tesora-horizon
4b0f26d48551783c1fe3ae362d1f8d27570195a9
[ "Apache-2.0" ]
null
null
null
openstack_dashboard/contrib/trove/content/database_clusters/tabs.py
Tesora-Release/tesora-horizon
4b0f26d48551783c1fe3ae362d1f8d27570195a9
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2014 eBay Software Foundation # Copyright 2015 HP Software, LLC # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django import template from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import tabs from openstack_dashboard.contrib.trove import api from openstack_dashboard.contrib.trove.content.database_clusters import tables from openstack_dashboard.contrib.trove.content.databases import db_capability class OverviewTab(tabs.Tab): name = _("Overview") slug = "overview" def get_context_data(self, request): return {"cluster": self.tab_group.kwargs['cluster']} def get_template_name(self, request): cluster = self.tab_group.kwargs['cluster'] template_file = ('project/database_clusters/_detail_overview_%s.html' % self._get_template_type(cluster.datastore['type'])) try: template.loader.get_template(template_file) return template_file except template.TemplateDoesNotExist: # This datastore type does not have a template file # Just use the base template file return ('project/database_clusters/_detail_overview.html') def _get_template_type(self, datastore): if db_capability.is_datastax_enterprise(datastore): return 'cassandra' return datastore class InstancesTab(tabs.TableTab): table_classes = (tables.InstancesTable,) name = _("Instances") slug = "instances_tab" cluster = None template_name = "horizon/common/_detail_table.html" preload = True def get_instances_data(self): cluster = self.tab_group.kwargs['cluster'] data = [] try: instances = api.trove.cluster_get(self.request, cluster.id).instances for instance in instances: instance_info = api.trove.instance_get(self.request, instance['id']) flavor_id = instance_info.flavor['id'] instance_info.full_flavor = api.trove.flavor_get(self.request, flavor_id) if "type" in instance: instance_info.type = instance["type"] if "ip" in instance: instance_info.ip = instance["ip"] if "hostname" in instance: instance_info.hostname = instance["hostname"] data.append(instance_info) except Exception: msg = _('Unable to get instances data.') exceptions.handle(self.request, msg) data = [] return data class ClusterDetailTabs(tabs.TabGroup): slug = "cluster_details" tabs = (OverviewTab, InstancesTab) sticky = True
37.521739
78
0.635284
41c2dd92b49e317be5383432d364b5a8675bcc62
24
py
Python
IMP Units/08 ----.py
andrestelex/Impallari-Fontlab-Macros
ed9f57715dd376b513ce1a7ddb4d683e893a849b
[ "Apache-2.0" ]
10
2015-02-25T11:38:56.000Z
2020-11-19T22:47:08.000Z
IMP Units/08 ----.py
andrestelex/Impallari-Fontlab-Macros
ed9f57715dd376b513ce1a7ddb4d683e893a849b
[ "Apache-2.0" ]
3
2015-06-24T05:03:06.000Z
2016-07-28T00:37:31.000Z
IMP Units/08 ----.py
andrestelex/Impallari-Fontlab-Macros
ed9f57715dd376b513ce1a7ddb4d683e893a849b
[ "Apache-2.0" ]
5
2017-04-20T11:09:47.000Z
2021-05-19T22:17:53.000Z
#FLM: -------- pass
6
15
0.291667
eb7ab5f9055209ab40d8122acb7da5e53fcf587c
2,199
py
Python
guild/__init__.py
flamato/guildai
cd6ad6a6b45ea4ff7561318b222888aeb1a22942
[ "Apache-2.0" ]
1
2019-05-31T14:44:07.000Z
2019-05-31T14:44:07.000Z
guild/__init__.py
flamato/guildai
cd6ad6a6b45ea4ff7561318b222888aeb1a22942
[ "Apache-2.0" ]
null
null
null
guild/__init__.py
flamato/guildai
cd6ad6a6b45ea4ff7561318b222888aeb1a22942
[ "Apache-2.0" ]
null
null
null
# Copyright 2017-2019 TensorHub, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division import os import subprocess __version__ = "0.6.0" __requires__ = [ # (<required module>, <distutils package req>) ("pip", "pip"), ("yaml", "PyYAML"), ("setuptools", "setuptools"), ("six", "six"), ("tabview", "tabview"), ("twine", "twine"), ("werkzeug", "Werkzeug"), ("whoosh", "Whoosh"), ] __pkgdir__ = os.path.dirname(os.path.dirname(__file__)) def _try_init_git_attrs(): try: _init_git_commit() except (OSError, subprocess.CalledProcessError): pass else: try: _init_git_status() except (OSError, subprocess.CalledProcessError): pass def _init_git_commit(): commit = _git_cmd("git -C \"%(repo)s\" log -1 --oneline | cut -d' ' -f1") globals()["__git_commit__"] = commit def _init_git_status(): raw = _git_cmd("git -C \"%(repo)s\" status -s") globals()["__git_status__"] = raw.split("\n") if raw else [] def _git_cmd(cmd, **kw): repo = os.path.dirname(__file__) cmd = cmd % dict(repo=repo, **kw) null = open(os.devnull, "w") out = subprocess.check_output(cmd, stderr=null, shell=True) return out.decode("utf-8").strip() def version(): git_commit = globals().get("__git_commit__") if git_commit: git_status = globals().get("__git_status__", []) workspace_changed_marker = "*" if git_status else "" return "%s (dev %s%s)" % (__version__, git_commit, workspace_changed_marker) else: return __version__ _try_init_git_attrs()
29.716216
77
0.65075
6931f789025c3a2955a885ac200628a869cf89f2
6,414
py
Python
SoftLayer/CLI/core.py
briancline/softlayer-python
679fb62ba2db095f0177f9d9488ff4a80c3b7387
[ "MIT" ]
null
null
null
SoftLayer/CLI/core.py
briancline/softlayer-python
679fb62ba2db095f0177f9d9488ff4a80c3b7387
[ "MIT" ]
null
null
null
SoftLayer/CLI/core.py
briancline/softlayer-python
679fb62ba2db095f0177f9d9488ff4a80c3b7387
[ "MIT" ]
null
null
null
""" SoftLayer.CLI.core ~~~~~~~~~~~~~~~~~~ Core for the SoftLayer CLI :license: MIT, see LICENSE for more details. """ from __future__ import print_function import logging import sys import types import SoftLayer from SoftLayer.CLI import environment from SoftLayer.CLI import exceptions from SoftLayer.CLI import formatting import click # pylint: disable=too-many-public-methods, broad-except, unused-argument # pylint: disable=redefined-builtin, super-init-not-called DEBUG_LOGGING_MAP = { 0: logging.CRITICAL, 1: logging.WARNING, 2: logging.INFO, 3: logging.DEBUG } VALID_FORMATS = ['table', 'raw', 'json'] DEFAULT_FORMAT = 'raw' if sys.stdout.isatty(): DEFAULT_FORMAT = 'table' class CommandLoader(click.MultiCommand): """Loads module for click.""" def __init__(self, *path, **attrs): click.MultiCommand.__init__(self, **attrs) self.path = path def list_commands(self, ctx): """Get module for click.""" env = ctx.ensure_object(environment.Environment) env.load() return sorted(env.list_commands(*self.path)) def get_command(self, ctx, name): """Get command for click.""" env = ctx.ensure_object(environment.Environment) env.load() # Do alias lookup (only available for root commands) if len(self.path) == 0: name = env.resolve_alias(name) new_path = list(self.path) new_path.append(name) module = env.get_command(*new_path) if isinstance(module, types.ModuleType): return CommandLoader(*new_path, help=module.__doc__) else: return module @click.group(help="SoftLayer Command-line Client", epilog="""To use most commands your SoftLayer username and api_key need to be configured. The easiest way to do that is to use: 'slcli setup'""", cls=CommandLoader, context_settings={'help_option_names': ['-h', '--help'], 'auto_envvar_prefix': 'SLCLI'}) @click.option('--format', default=DEFAULT_FORMAT, help="Output format", type=click.Choice(VALID_FORMATS)) @click.option('--config', '-C', required=False, default=click.get_app_dir('softlayer', force_posix=True), help="Config file location", type=click.Path(resolve_path=True)) @click.option('--debug', required=False, default=None, help="Sets the debug noise level", type=click.Choice(sorted([str(key) for key in DEBUG_LOGGING_MAP.keys()]))) @click.option('--verbose', '-v', help="Sets the debug noise level", type=click.IntRange(0, 3, clamp=True), count=True) @click.option('--timings', required=False, is_flag=True, help="Time each API call and display after results") @click.option('--proxy', required=False, help="HTTP[S] proxy to be use to make API calls") @click.option('--really / --not-really', '-y', is_flag=True, required=False, help="Confirm all prompt actions") @click.option('--fixtures / --no-fixtures', envvar='SL_FIXTURES', is_flag=True, required=False, help="Use fixtures instead of actually making API calls") @click.version_option(prog_name="slcli (SoftLayer Command-line)") @environment.pass_env def cli(env, format='table', config=None, debug=0, verbose=0, proxy=None, really=False, fixtures=False, **kwargs): """Main click CLI entry-point.""" # Set logging level if debug is not None: verbose = int(debug) if verbose: logger = logging.getLogger() logger.addHandler(logging.StreamHandler()) logger.setLevel(DEBUG_LOGGING_MAP.get(verbose, logging.DEBUG)) # Populate environement with client and set it as the context object env.skip_confirmations = really env.config_file = config env.format = format if env.client is None: # Environment can be passed in explicitly. This is used for testing if fixtures: client = SoftLayer.BaseClient( transport=SoftLayer.FixtureTransport(), auth=None, ) else: # Create SL Client client = SoftLayer.create_client_from_env( proxy=proxy, config_file=config, ) env.client = client env.vars['timings'] = SoftLayer.TimingTransport(env.client.transport) env.client.transport = env.vars['timings'] @cli.resultcallback() @environment.pass_env def output_result(env, timings=False, *args, **kwargs): """Outputs the results returned by the CLI and also outputs timings.""" if timings and env.vars.get('timings'): timing_table = formatting.Table(['service', 'method', 'time']) calls = env.vars['timings'].get_last_calls() for call, _, duration in calls: timing_table.add_row([call.service, call.method, duration]) env.err(env.fmt(timing_table)) def main(reraise_exceptions=False, **kwargs): """Main program. Catches several common errors and displays them nicely.""" exit_status = 0 try: cli.main(**kwargs) except SoftLayer.SoftLayerAPIError as ex: if 'invalid api token' in ex.faultString.lower(): print("Authentication Failed: To update your credentials," " use 'slcli config setup'") exit_status = 1 else: print(str(ex)) exit_status = 1 except SoftLayer.SoftLayerError as ex: print(str(ex)) exit_status = 1 except exceptions.CLIAbort as ex: print(str(ex.message)) exit_status = ex.code except Exception: if reraise_exceptions: raise import traceback print("An unexpected error has occured:") print(str(traceback.format_exc())) print("Feel free to report this error as it is likely a bug:") print(" https://github.com/softlayer/softlayer-python/issues") exit_status = 1 sys.exit(exit_status) if __name__ == '__main__': main()
31.441176
79
0.605239
4e53f43c38ab2defe49bb29209da753dc1ae5733
811
py
Python
pesados_el_norte/core_app/urls.py
leohakim/new_pesados
624616b17c2d7ddaf71b67890a218213cab580f0
[ "MIT" ]
null
null
null
pesados_el_norte/core_app/urls.py
leohakim/new_pesados
624616b17c2d7ddaf71b67890a218213cab580f0
[ "MIT" ]
null
null
null
pesados_el_norte/core_app/urls.py
leohakim/new_pesados
624616b17c2d7ddaf71b67890a218213cab580f0
[ "MIT" ]
null
null
null
from django.urls import path from django.views.generic import TemplateView from django.contrib.auth.decorators import login_required from pesados_el_norte.core_app.views.caja import CajaListView # from pesados_el_norte.users.views import ( # user_detail_view, # user_redirect_view, # user_update_view, # ) app_name = "core" urlpatterns = [ path( "home/", login_required(TemplateView.as_view(template_name="core/home.html")), name="home", ), path( "caja/", view=CajaListView.as_view(template_name='core/caja.html'), name="caja", ), # path("~redirect/", view=user_redirect_view, name="redirect"), # path("~update/", view=user_update_view, name="update"), # path("<str:username>/", view=user_detail_view, name="detail"), ]
27.965517
77
0.675709
404c0d67cc6f7672d10ce3ae29e9770491c05282
631
py
Python
examples/sharepoint/files/download_file_from_url.py
rikeshtailor/Office365-REST-Python-Client
ca7bfa1b22212137bb4e984c0457632163e89a43
[ "MIT" ]
null
null
null
examples/sharepoint/files/download_file_from_url.py
rikeshtailor/Office365-REST-Python-Client
ca7bfa1b22212137bb4e984c0457632163e89a43
[ "MIT" ]
null
null
null
examples/sharepoint/files/download_file_from_url.py
rikeshtailor/Office365-REST-Python-Client
ca7bfa1b22212137bb4e984c0457632163e89a43
[ "MIT" ]
null
null
null
import os import tempfile from office365.sharepoint.files.file import File from tests import test_client_credentials, test_site_url abs_file_url = "{site_url}sites/team/Shared Documents/big_buck_bunny.mp4".format(site_url=test_site_url) with tempfile.TemporaryDirectory() as local_path: file_name = os.path.basename(abs_file_url) with open(os.path.join(local_path, file_name), 'wb') as local_file: file = File.from_url(abs_file_url).with_credentials(test_client_credentials).download(local_file).execute_query() print("'{0}' file has been downloaded into {1}".format(file.serverRelativeUrl, local_file.name))
48.538462
121
0.795563
2455c6c1aefd34aed0f73f88927404a14b076ca4
1,484
py
Python
py_grpc_profile/aio/server/interceptor.py
fossabot/py-grpc-profile
c68540891efb06b3bb8d6beb54238bd9e03c40c8
[ "Apache-2.0" ]
null
null
null
py_grpc_profile/aio/server/interceptor.py
fossabot/py-grpc-profile
c68540891efb06b3bb8d6beb54238bd9e03c40c8
[ "Apache-2.0" ]
2
2021-03-23T23:49:14.000Z
2022-02-11T03:38:44.000Z
py_grpc_profile/aio/server/interceptor.py
fossabot/py-grpc-profile
c68540891efb06b3bb8d6beb54238bd9e03c40c8
[ "Apache-2.0" ]
1
2021-03-23T23:47:17.000Z
2021-03-23T23:47:17.000Z
from typing import Awaitable, Callable, Optional import grpc from py_grpc_profile.adapter import Adapter, CProfileAdapter from py_grpc_profile.server.interceptor import get_rcp_handler, split_method_call class ProfileInterceptor(grpc.aio.ServerInterceptor): def __init__(self, profiler: Optional[Adapter] = None): if profiler is None: profiler = CProfileAdapter() self.profiler = profiler async def intercept_service( self, continuation: Callable[ [grpc.HandlerCallDetails], Awaitable[grpc.RpcMethodHandler] ], handler_call_details: grpc.HandlerCallDetails, ) -> grpc.RpcMethodHandler: handler = await continuation(handler_call_details) behavior, handler_factory = get_rcp_handler(handler) def _intercept(request_or_iterator, servicer_context): grpc_service_name, grpc_method_name = split_method_call( handler_call_details ) return self.profiler.run( behavior, request_or_iterator, servicer_context, { "grpc_service_name": grpc_service_name, "grpc_method_name": grpc_method_name, }, ) return handler_factory( behavior=_intercept, request_deserializer=handler.request_deserializer, response_serializer=handler.response_serializer, )
32.977778
81
0.644879
ccdba954e8bb6b6df62b2a814980b832b2610c22
3,604
py
Python
apps/hbase/src/hbase/management/commands/hbase_setup.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
apps/hbase/src/hbase/management/commands/hbase_setup.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
apps/hbase/src/hbase/management/commands/hbase_setup.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys from datetime import datetime, timedelta from django.core.management.base import BaseCommand from desktop.lib.paths import get_apps_root from useradmin.models import install_sample_user, User from hbased.ttypes import AlreadyExists from hbase.api import HbaseApi if sys.version_info[0] > 2: from django.utils.translation import gettext as _ else: from django.utils.translation import ugettext as _ LOG = logging.getLogger(__name__) class Command(BaseCommand): help = 'Create and fill some demo tables in the first configured cluster.' args = '<username>' def handle(self, *args, **options): if args: user = args[0] elif options and options['user']: user = options['user'] else: user = install_sample_user() api = HbaseApi(user=user) cluster_name = api.getClusters()[0]['name'] # Currently pick first configured cluster # Check connectivity api.connectCluster(cluster_name) self.create_analytics_table(api, cluster_name) self.load_analytics_table(api, cluster_name) self.create_binary_table(api, cluster_name) self.load_binary_table(api, cluster_name) def create_analytics_table(self, api, cluster_name): try: api.createTable(cluster_name, 'analytics_demo', [{'properties': {'name': 'hour'}}, {'properties': {'name': 'day'}}, {'properties': {'name': 'total'}}]) except AlreadyExists: pass def load_analytics_table(self, api, cluster_name): table_data = os.path.join(get_apps_root(), 'hbase', 'example', 'analytics', 'hbase-analytics.tsv') api.bulkUpload(cluster_name, 'analytics_demo', open(table_data)) def create_binary_table(self, api, cluster_name): try: api.createTable(cluster_name, 'document_demo', [{'properties': {'name': 'doc'}}]) except AlreadyExists: pass def load_binary_table(self, api, cluster_name): today = datetime.now().strftime('%Y%m%d') tomorrow = (datetime.now() + timedelta(days=1)).strftime('%Y%m%d') api.putRow(cluster_name, 'document_demo', today, {'doc:txt': 'Hue is awesome!'}) api.putRow(cluster_name, 'document_demo', today, {'doc:json': '{"user": "hue", "coolness": "extra"}'}) api.putRow(cluster_name, 'document_demo', tomorrow, {'doc:version': '<xml>I like HBase</xml>'}) api.putRow(cluster_name, 'document_demo', tomorrow, {'doc:version': '<xml>I LOVE HBase</xml>'}) root = os.path.join(get_apps_root(), 'hbase', 'example', 'documents') api.putRow(cluster_name, 'document_demo', today, {'doc:img': open(root + '/hue-logo.png', "rb").read()}) api.putRow(cluster_name, 'document_demo', today, {'doc:html': open(root + '/gethue.com.html', "rb").read()}) api.putRow(cluster_name, 'document_demo', today, {'doc:pdf': open(root + '/gethue.pdf', "rb").read()})
37.936842
157
0.711432
3343c7294d763f6a4adfdecfa2ee71a822372855
13,948
py
Python
tests/test_toast_load.py
nad-dch/sotodlib
1a88233ea1be1a5bdebe08df057574e4cfe95298
[ "MIT" ]
null
null
null
tests/test_toast_load.py
nad-dch/sotodlib
1a88233ea1be1a5bdebe08df057574e4cfe95298
[ "MIT" ]
null
null
null
tests/test_toast_load.py
nad-dch/sotodlib
1a88233ea1be1a5bdebe08df057574e4cfe95298
[ "MIT" ]
null
null
null
# Copyright (c) 2018-2020 Simons Observatory. # Full license can be found in the top level "LICENSE" file. """Test toast data loading. """ from glob import glob import sys import os import numpy as np from numpy.testing import ( assert_equal, assert_array_almost_equal, assert_array_equal, assert_allclose, ) from unittest import TestCase from ._helpers import create_outdir from sotodlib.sim_hardware import get_example from sotodlib.sim_hardware import sim_telescope_detectors # Import so3g first so that it can control the import and monkey-patching # of spt3g. Then our import of spt3g_core will use whatever has been imported # by so3g. import so3g from spt3g import core as core3g toast_available = None if toast_available is None: try: import toast from toast.mpi import MPI from toast.todmap import TODGround from toast.tod import AnalyticNoise from sotodlib.toast.export import ToastExport from sotodlib.toast.load import load_data toast_available = True except ImportError: toast_available = False class ToastLoadTest(TestCase): def setUp(self): fixture_name = os.path.splitext(os.path.basename(__file__))[0] if not toast_available: print("toast cannot be imported- skipping unit tests", flush=True) return self.outdir = None if MPI.COMM_WORLD.rank == 0: self.outdir = create_outdir(fixture_name) self.outdir = MPI.COMM_WORLD.bcast(self.outdir, root=0) toastcomm = toast.Comm() self.data = toast.Data(toastcomm) # Focalplane hwfull = get_example() dets = sim_telescope_detectors(hwfull, "SAT4") hwfull.data["detectors"] = dets hw = hwfull.select( match={"wafer_slot": "w42", "band": "f030", "pixel": "00[01]"}) # print(hw.data["detectors"], flush=True) detquats = {k: v["quat"] for k, v in hw.data["detectors"].items()} # File dump size in bytes (1MB) self.dumpsize = 2 ** 20 # Samples per observation self.totsamp = 10000 # Pixelization nside = 512 self.sim_nside = nside self.map_nside = nside # Scan properties self.site_lon = '-67:47:10' self.site_lat = '-22:57:30' self.site_alt = 5200. self.coord = 'C' self.azmin = 45 self.azmax = 55 self.el = 60 self.scanrate = 1.0 self.scan_accel = 0.1 self.CES_start = None # Noise properties self.rate = 100.0 self.NET = 1e-3 # 1 mK NET self.epsilon = 0.0 self.fmin = 1.0e-5 self.alpha = 1.0 self.fknee = 0.05 for ob in range(3): ftime = (self.totsamp / self.rate) * ob + 1564015655.88 tod = TODGround( self.data.comm.comm_group, detquats, self.totsamp, detranks=self.data.comm.group_size, firsttime=ftime, rate=self.rate, site_lon=self.site_lon, site_lat=self.site_lat, site_alt=self.site_alt, azmin=self.azmin, azmax=self.azmax, el=self.el, coord=self.coord, scanrate=self.scanrate, scan_accel=self.scan_accel, CES_start=self.CES_start) # Analytic noise model detnames = list(detquats.keys()) drate = {x: self.rate for x in detnames} dfmin = {x: self.fmin for x in detnames} dfknee = {x: self.fknee for x in detnames} dalpha = {x: self.alpha for x in detnames} dnet = {x: self.NET for x in detnames} nse = AnalyticNoise( rate=drate, fmin=dfmin, detectors=detnames, fknee=dfknee, alpha=dalpha, NET=dnet ) # Single observation obs = dict() obs["tod"] = tod obs["noise"] = nse obs["id"] = 12345 obs["intervals"] = tod.subscans obs["site"] = "SimonsObs" obs["telescope"] = "SAT4" obs["site_id"] = 1 obs["telescope_id"] = 4 obs["fpradius"] = 5.0 obs["start_time"] = ftime obs["altitude"] = self.site_alt obs["name"] = "test_{:02}".format(ob) # Add the observation to the dataset self.data.obs.append(obs) # Simulate some noise into multiple cache prefixes. This is used # to test the export of multiple timestream flavors. nse = toast.tod.OpSimNoise(out="signal", realization=0) nse.exec(self.data) nse = toast.tod.OpSimNoise(out="component1", realization=0) nse.exec(self.data) nse = toast.tod.OpSimNoise(out="component2", realization=0) nse.exec(self.data) return def test_load(self): if not toast_available: return tod = self.data.obs[0]["tod"] # Dump to disk prefix = "sat4" dumper = ToastExport( self.outdir, prefix=prefix, use_intervals=True, cache_name="signal", cache_copy=["component1", "component2"], mask_flag_common=tod.TURNAROUND, filesize=self.dumpsize, units=core3g.G3TimestreamUnits.Tcmb, verbose=False, ) dumper.exec(self.data) # Load the data back in checkdata = load_data(self.outdir, comm=self.data.comm, prefix=prefix) checkdata.info(sys.stdout) return def test_load_split(self): if not toast_available: return obs = self.data.obs[0] tod = obs["tod"] # Split the detectors into separate groups dets = sorted(tod.detectors) detgroups = {} for idet, det in enumerate(dets): detgroups["group{}".format(idet)] = [det] outdir = self.outdir + "_split" prefix = "sat3" # Dump to disk dumper = ToastExport( outdir, prefix=prefix, use_intervals=True, cache_name="signal", cache_copy=["component1", "component2"], mask_flag_common=tod.TURNAROUND, filesize=self.dumpsize, units=core3g.G3TimestreamUnits.Tcmb, detgroups=detgroups, verbose=False, ) dumper.exec(self.data) # Count the number of resulting files files = glob("{}/{}/sat3_group*_00000000.g3".format(outdir, obs['name'])) assert_equal(len(files), len(detgroups), "Exported files ({}) does not match the detector " "groups ({})".format(files, detgroups)) # Load the data back in checkdata = load_data(outdir, comm=self.data.comm, prefix="{}_{}".format(prefix, "group."), all_flavors=True) # Verify that input and output are equal checktod = checkdata.obs[0]["tod"] times = tod.local_times() checktimes = checktod.local_times() assert_allclose(checktimes, times, rtol=1e-6, err_msg="Timestamps do not agree") cflags = ((tod.local_common_flags() & tod.TURNAROUND) != 0).astype(np.uint8) checkcflags = checktod.local_common_flags() assert_array_equal(checkcflags, cflags, err_msg="Common flags do not agree") for det in dets: sig0 = tod.local_signal(det) sig1 = tod.local_signal(det, "component1") sig2 = tod.local_signal(det, "component2") checksig0 = checktod.local_signal(det) checksig1 = checktod.local_signal(det, "component1") checksig2 = checktod.local_signal(det, "component2") assert_allclose(checksig0, sig0, rtol=1e-6, err_msg="Signal0 does not agree") assert_allclose(checksig1, sig1, rtol=1e-6, err_msg="Signal1 does not agree") assert_allclose(checksig2, sig2, rtol=1e-6, err_msg="Signal2 does not agree") flg = tod.local_flags(det) checkflg = checktod.local_flags(det) assert_array_equal(checkflg, flg, err_msg="Flags do not agree") return def test_load_compressed(self): if not toast_available: return obs = self.data.obs[0] tod = obs["tod"] # We'll write the file with and without one detector # to measure the change in the TOD size dets = sorted(tod.detectors) detgroups = {'all_but_one' : []} for det in enumerate(dets[1:]): detgroups["all_but_one"].append(det) # uncompressed output outdir = self.outdir uncompressed_prefix = "sat3_uncompressed" dumper = ToastExport( outdir, prefix=uncompressed_prefix, use_intervals=True, mask_flag_common=tod.TURNAROUND, filesize=self.dumpsize * 100, units=core3g.G3TimestreamUnits.Tcmb, compress=False, verbose=False, ) dumper.exec(self.data) dumper = ToastExport( outdir, prefix=uncompressed_prefix, use_intervals=True, mask_flag_common=tod.TURNAROUND, filesize=self.dumpsize * 100, units=core3g.G3TimestreamUnits.Tcmb, compress=False, detgroups=detgroups, verbose=False, ) dumper.exec(self.data) # compressed output compressed_prefix = "sat3_compressed" dumper = ToastExport( outdir, prefix=compressed_prefix, use_intervals=True, mask_flag_common=tod.TURNAROUND, filesize=self.dumpsize * 100, units=core3g.G3TimestreamUnits.Tcmb, compress=True, verbose=False, ) dumper.exec(self.data) compressed_prefix = "sat3_compressed" dumper = ToastExport( outdir, prefix=compressed_prefix, use_intervals=True, mask_flag_common=tod.TURNAROUND, filesize=self.dumpsize * 100, units=core3g.G3TimestreamUnits.Tcmb, compress=True, detgroups=detgroups, verbose=False, ) dumper.exec(self.data) # Very high compression ratio very_compressed_prefix = "sat3_very_compressed" rmstarget = 2 ** 8 dumper = ToastExport( outdir, prefix=very_compressed_prefix, use_intervals=True, mask_flag_common=tod.TURNAROUND, filesize=self.dumpsize * 100, units=core3g.G3TimestreamUnits.Tcmb, compress={"rmstarget" : rmstarget}, verbose=False, ) dumper.exec(self.data) dumper = ToastExport( outdir, prefix=very_compressed_prefix, use_intervals=True, mask_flag_common=tod.TURNAROUND, filesize=self.dumpsize * 100, units=core3g.G3TimestreamUnits.Tcmb, compress={"rmstarget" : rmstarget}, detgroups=detgroups, verbose=False, ) dumper.exec(self.data) # Check that the timestreams do shrink in size sizes = {} for prefix in ["uncompressed", "uncompressed_all_but_one", "compressed", "compressed_all_but_one", "very_compressed", "very_compressed_all_but_one", ]: fnames = glob("{}/{}/sat3_{}_0*.g3" "".format(outdir, obs["name"], prefix)) sizes[prefix] = 0 for fname in fnames: size = os.path.getsize(fname) sizes[prefix] += size # These are the sizes of individual timestreams uncompressed_size = sizes["uncompressed"] - sizes["uncompressed_all_but_one"] compressed_size = sizes["compressed"] - sizes["compressed_all_but_one"] very_compressed_size = sizes["very_compressed"] - sizes["very_compressed_all_but_one"] ratio1 = compressed_size / uncompressed_size assert ratio1 < 1 ratio2 = very_compressed_size / uncompressed_size assert ratio2 < ratio1 # Load the data back in checkdata = load_data(outdir, comm=self.data.comm, prefix=compressed_prefix) # Verify that input and output are equal checktod = checkdata.obs[0]["tod"] times = tod.local_times() checktimes = checktod.local_times() assert_allclose(checktimes, times, rtol=1e-6, err_msg="Timestamps do not agree") cflags = ((tod.local_common_flags() & tod.TURNAROUND) != 0).astype(np.uint8) checkcflags = checktod.local_common_flags() assert_array_equal(checkcflags, cflags, err_msg="Common flags do not agree") print("\nCompression ratio1 is {:.4f} (default)\n" "".format(ratio1), flush=True) print("\nCompression ratio2 is {:.4f} (rmstarget={})\n" "".format(ratio2, rmstarget), flush=True) for det in tod.detectors: sig = tod.local_signal(det) checksig = checktod.local_signal(det) assert_allclose(checksig, sig, atol=1e-5, rtol=1e-3, err_msg="Compressed signal does not agree with the input") flg = tod.local_flags(det) checkflg = checktod.local_flags(det) assert_array_equal(checkflg, flg, err_msg="Flags do not agree") return
32.287037
94
0.567967
fe20d87c94a55c020e7e37619c4c270e35f43415
903
py
Python
web3/apps/sites/management/commands/import_web2.py
anonymoose2/director
c73c0e106372031ffe84bf044d8a88137518635c
[ "MIT" ]
10
2017-03-20T14:40:56.000Z
2020-04-07T17:03:42.000Z
web3/apps/sites/management/commands/import_web2.py
anonymoose2/director
c73c0e106372031ffe84bf044d8a88137518635c
[ "MIT" ]
50
2017-05-23T01:26:26.000Z
2020-06-05T17:13:25.000Z
web3/apps/sites/management/commands/import_web2.py
anonymoose2/director
c73c0e106372031ffe84bf044d8a88137518635c
[ "MIT" ]
9
2017-03-18T01:23:38.000Z
2020-08-17T20:50:07.000Z
# -*- coding: utf-8 -*- from django.core.management.base import BaseCommand from web3.apps.sites.models import Site from web3.apps.sites.helpers import create_site_users, make_site_dirs, create_config_files, reload_services import shutil import os class Command(BaseCommand): help = "Import websites from web2 (/web_old)" def handle(self, **options): mappings = { } for name in mappings: s = Site(name=name, domain="{}.sites.tjhsst.edu".format(name), category="php", purpose=mappings[name]) create_site_users(s) make_site_dirs(s) create_config_files(s) shutil.move("/web_old/{}/public/".format(s.name), "{}public".format(s.path)) os.system("chown -R {}:{} {}".format(s.user.username, s.group.name, s.path)) self.stdout.write("Created Site: {}".format(s)) reload_services()
33.444444
114
0.638981
b4d72d1d499a511bd353b8a3765a5240f33b5b34
3,702
py
Python
calliope/core/util/observed_dict.py
FraSanvit/calliope
9d588fa98ec8eb11065ebb43bcc90d07657b0d43
[ "Apache-2.0" ]
180
2015-02-04T20:03:58.000Z
2022-03-25T05:32:03.000Z
calliope/core/util/observed_dict.py
FraSanvit/calliope
9d588fa98ec8eb11065ebb43bcc90d07657b0d43
[ "Apache-2.0" ]
363
2015-11-23T16:36:05.000Z
2022-03-29T17:03:58.000Z
calliope/core/util/observed_dict.py
FraSanvit/calliope
9d588fa98ec8eb11065ebb43bcc90d07657b0d43
[ "Apache-2.0" ]
73
2016-06-07T09:34:07.000Z
2022-03-22T17:28:14.000Z
""" Copyright (C) since 2013 Calliope contributors listed in AUTHORS. Licensed under the Apache 2.0 License (see LICENSE file). """ from collections.abc import Mapping from calliope.core.attrdict import AttrDict class ObservedDict(dict): """ Dictionary subclass which updates UpdateObserverDict when there is a change in the values assigned to keys in the dictionary. """ def __init__(self, initial_dict, initial_yaml_string, on_changed=None, flat=False): if initial_yaml_string is not None: if flat: attr = "as_dict_flat" else: attr = "as_dict" initial_dict = getattr( AttrDict.from_yaml_string(initial_yaml_string), attr )() super().__init__(initial_dict) self.on_changed = on_changed for k, v in initial_dict.items(): if isinstance(v, dict): super().__setitem__(k, ObservedDict(v, None, on_changed=self.notify)) self.notify() def __setitem__(self, key, value): if isinstance(value, dict): value = ObservedDict(value, None, on_changed=self.notify) super().__setitem__(key, value) self.notify() def update(self, other=None, **kwargs): if other is not None: for k, v in other.items() if isinstance(other, Mapping) else other: self[k] = v for k, v in kwargs.items(): self[k] = v def notify(self, updated=None): if self.on_changed is not None: return self.on_changed(self) class UpdateObserverDict(ObservedDict): """ Dictionary subclass which observes a dictionary and updates an attribute of the model_data xarray dataset with a YAML string of that dictionary. This update takes place whenever a value is updated in the dictionary. Parameters ---------- name : str The model_data attribute key to update. observer : xarray Dataset (e.g. calliope model_data) The Dataset whose attribute dictionary will contain the key `name` and value = a YAML string of the initial_dict. initial_dict : dict, optional, default = None An initial dictionary to copy for observing. One of initial_dict or initial_yaml_string must be defined. initial_yaml_string : str, optional, default = None A YAML string of an initial dictionary to copy for observing. One of initial_dict or initial_yaml_string must be defined. Returns ------- Observed dictionary, which acts as a dictionary in every sense *except* that on changing or adding any key:value pairs in that dictionary, the YAML string stored at `observer.attrs[name]` will be updated to reflect the new Observed dicitonary. """ def __init__( self, name, observer, initial_dict=None, initial_yaml_string=None, *args, **kwargs, ): self.observer = observer self.name = name check_input_args = [i is None for i in [initial_dict, initial_yaml_string]] if all(check_input_args) or not any(check_input_args): raise ValueError( "must supply one, and only one, of initial_dict or initial_yaml_string" ) super().__init__(initial_dict, initial_yaml_string, *args, **kwargs) def notify(self, updated=None): temp_dict = { k: v for k, v in self.items() if (not isinstance(v, dict) and v is not None) or (isinstance(v, dict) and len(v.keys()) > 0) } self.observer.attrs[self.name] = AttrDict(temp_dict).to_yaml()
33.351351
87
0.632631
6bc6db85603b6a0d500d25a740dcea2150be6c9d
1,762
py
Python
salt/output/virt_query.py
dr4Ke/salt
8ffa4903c9ed10c81e1a6c7b967dc9532f320c0b
[ "Apache-2.0" ]
2
2017-09-17T21:10:35.000Z
2019-08-26T03:00:12.000Z
salt/output/virt_query.py
dr4Ke/salt
8ffa4903c9ed10c81e1a6c7b967dc9532f320c0b
[ "Apache-2.0" ]
null
null
null
salt/output/virt_query.py
dr4Ke/salt
8ffa4903c9ed10c81e1a6c7b967dc9532f320c0b
[ "Apache-2.0" ]
3
2021-02-23T08:12:48.000Z
2021-02-23T08:13:13.000Z
# -*- coding: utf-8 -*- ''' virt.query outputter ==================== Used to display the output from the :mod:`virt.query <salt.runners.virt.query>` runner. ''' def output(data): ''' Display output for the salt-run virt.query function ''' out = '' for id_ in data: out += '{0}\n'.format(id_) for vm_ in data[id_]['vm_info']: out += ' {0}\n'.format(vm_) vm_data = data[id_]['vm_info'][vm_] if 'cpu' in vm_data: out += ' CPU: {0}\n'.format(vm_data['cpu']) if 'mem' in vm_data: out += ' Memory: {0}\n'.format(vm_data['mem']) if 'state' in vm_data: out += ' State: {0}\n'.format(vm_data['state']) if 'graphics' in vm_data: if vm_data['graphics'].get('type', '') == 'vnc': out += ' Graphics: vnc - {0}:{1}\n'.format( id_, vm_data['graphics']['port']) if 'disks' in vm_data: for disk, d_data in vm_data['disks'].items(): out += ' Disk - {0}:\n'.format(disk) out += ' Size: {0}\n'.format(d_data['disk size']) out += ' File: {0}\n'.format(d_data['file']) out += ' File Format: {0}\n'.format(d_data['file format']) if 'nics' in vm_data: for mac in vm_data['nics']: out += ' Nic - {0}:\n'.format(mac) out += ' Source: {0}\n'.format(vm_data['nics'][mac]['source'][vm_data['nics'][mac]['source'].keys()[0]]) out += ' Type: {0}\n'.format(vm_data['nics'][mac]['type']) return out
40.045455
129
0.435301
c2cb76add1c5cacee5863d445a8086220b0771e4
19,169
py
Python
src/web/main.py
supernifty/NiftyWrite
8bca013675c16e3095e1a661bfa9eb23f70b8542
[ "BSD-3-Clause" ]
null
null
null
src/web/main.py
supernifty/NiftyWrite
8bca013675c16e3095e1a661bfa9eb23f70b8542
[ "BSD-3-Clause" ]
9
2019-01-22T06:51:14.000Z
2021-12-09T00:02:21.000Z
src/web/main.py
supernifty/NiftyWrite
8bca013675c16e3095e1a661bfa9eb23f70b8542
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python ''' main application defines available views ''' import base64 import datetime import flask import flask_mail import io import json import mimetypes import os import urllib.parse import zipfile from PIL import Image import sqlalchemy import flask_sqlalchemy import auth import config import model import proxy import query app = flask.Flask(__name__, template_folder='templates') app.wsgi_app = proxy.ReverseProxied(app.wsgi_app) app.config.from_pyfile('config.py') app.secret_key = 'ducks in space' mail = flask_mail.Mail(app) if config.AUTHENTICATE: authenticator = auth.GoogleAuth(app) else: authenticator = auth.NoAuth(app) # database _db_session = None class JSONEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, datetime.datetime): return o.isoformat() return json.JSONEncoder.default(self, o) def db(): global _db_session if _db_session is None: # first time engine = sqlalchemy.create_engine(app.config['SQLALCHEMY_DATABASE_URI']) # for debugging , echo=True) # get session session_maker = sqlalchemy.orm.scoped_session( sqlalchemy.orm.sessionmaker(autocommit=False, autoflush=False, bind=engine) ) model.Base.query = session_maker.query_property() # create and bind model.Base.metadata.create_all(bind = engine, checkfirst=True) #model.Base.metadata.bind = engine # remember _db_session = session_maker return _db_session @app.teardown_appcontext def shutdown_session(exception=None): db().remove() @app.before_request def make_session_permanent(): flask.session.permanent = True app.permanent_session_lifetime = datetime.timedelta(hours=24*30) # one month ### program logic # main summary page @app.route("/") def home(): if not authenticator.is_auth(flask.session): return flask.redirect(flask.url_for('login')) return flask.render_template('home.html') # getters @app.route("/get/<category>", methods=['GET']) def get_data(category): if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") try: # project level if category == 'projects': if 'message' in flask.session: message=flask.session['message'] del flask.session['message'] return flask.jsonify( message=message, username=authenticator.username(flask.session), projects=query.summary(query.projects(db(), authenticator.user_id(flask.session)).all()), shared=query.summary(query.shared_projects(db(), authenticator.user_id(flask.session))) ) else: return flask.jsonify( username=authenticator.username(flask.session), projects=query.summary(query.projects(db(), authenticator.user_id(flask.session)).all()), shared=query.summary(query.shared_projects(db(), authenticator.user_id(flask.session))) ) if category == 'documents': if flask.request.args.get('project_id') is None: raise query.QueryException("Required parameter project_id not provided") return flask.jsonify(username=authenticator.username(flask.session), documents=query.documents(db(), authenticator.user_id(flask.session), flask.request.args.get('project_id'))) if category == 'shares': if flask.request.args.get('project_id') is None: raise query.QueryException("Required parameter project_id not provided") return flask.jsonify(status="success", username=authenticator.username(flask.session), shares=query.detail(query.shares(db(), authenticator.user_id(flask.session), flask.request.args.get('project_id')))) # document level if category == 'document': if flask.request.args.get('project_id') is None: raise query.QueryException("Required parameter project_id not provided") if flask.request.args.get('document_id') is None: raise query.QueryException("Required parameter document_id not provided") document = query.document(db(), authenticator.user_id(flask.session), flask.request.args.get('project_id'), flask.request.args.get('document_id')) return flask.jsonify(username=authenticator.username(flask.session), document=document.detail()) if category == 'folder': if flask.request.args.get('project_id') is None: raise query.QueryException("Required parameter project_id not provided") if flask.request.args.get('document_id') is None: raise query.QueryException("Required parameter document_id not provided") folder = query.folder(db(), authenticator.user_id(flask.session), flask.request.args.get('project_id'), flask.request.args.get('document_id')) children = query.children(db(), folder) return flask.jsonify(username=authenticator.username(flask.session), document=folder.detail(), children=query.detail(children)) if category == 'attachment': if flask.request.args.get('project_id') is None: raise query.QueryException("Required parameter project_id not provided") if flask.request.args.get('id') is None: raise query.QueryException("Required parameter id not provided") result = query.attachment(db(), authenticator.user_id(flask.session), flask.request.args.get('project_id'), flask.request.args.get('id')) # post-processing if flask.request.args.get('resize') is not None: # image resize im = Image.open(result['filename']) f = float(flask.request.args.get('resize')) (width, height) = int(im.width * f), int(im.height * f) im = im.resize((width, height)) with io.BytesIO() as output: im.save(output, format=result['name'].split('.')[-1]) response = flask.make_response(output.getvalue()) else: response = flask.make_response(open(result['filename'], 'rb').read()) content_type = mimetypes.MimeTypes().guess_type(result['name'])[0] response.headers['Content-Type'] = content_type or 'application/octet-stream' response.headers['Content-Disposition'] = 'inline; filename="{}"'.format(result["name"].replace('"', '')) # TODO encode name return response except query.QueryException as ex: return flask.jsonify(status="error", message="Request failed: {}".format(ex.message)) # setters @app.route("/set/<category>", methods=['POST']) def set_data(category): if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") try: if category == 'project': # new project req = json.loads(flask.request.form['request']) # create project query.add_project(db(), authenticator.user_id(flask.session), req['record']['name'], req['record']['renderer']) return flask.jsonify(status="success") if category == 'project_d': # delete project project_id = flask.request.form['id'] query.delete_project(db(), authenticator.user_id(flask.session), project_id) return flask.jsonify(status="success") if category == 'share_revoke': # revoke access project_id = flask.request.form['project_id'] project_user_id = flask.request.form['id'] query.revoke_access(db(), authenticator.user_id(flask.session), project_id, project_user_id) shares = query.detail(query.shares(db(), authenticator.user_id(flask.session), project_id)) return flask.jsonify(status="success", shares=shares) if category == 'document': # add folder/document req = json.loads(flask.request.form['request']) document = query.add_document(db(), authenticator.user_id(flask.session), req['record']['project_id'], req['record']['document_type'], req['record']['name'], req['record']['parent_id'], req['record']['predecessor_id']) return flask.jsonify(status="success", parent_id=document.parent_id, document_id=document.id) if category == 'document_d': # delete document document_id = flask.request.form['id'] project_id = flask.request.form['project_id'] parent_id = query.delete_document(db(), authenticator.user_id(flask.session), project_id, document_id) return flask.jsonify(status="success", parent_id=parent_id) if category == 'document_s': # save document document_id = flask.request.form['id'] project_id = flask.request.form['project_id'] content = flask.request.form['content'] query.update_document(db(), authenticator.user_id(flask.session), project_id, document_id, content) return flask.jsonify(status="success") if category == 'document_u': # update document req = json.loads(flask.request.form['request']) query.update_document_properties(db(), authenticator.user_id(flask.session), req['record']['project_id'], req['record']['document_id'], req['record']['name'], req['record']['renderer']) return flask.jsonify(status="success") if category == 'document_r': # rate document document_id = flask.request.form['id'] project_id = flask.request.form['project_id'] rating = int(flask.request.form['rating']) query.update_document_rating(db(), authenticator.user_id(flask.session), project_id, document_id, rating) return flask.jsonify(status="success", rating=rating) if category == 'document_m': # move document document_id = flask.request.form['id'] project_id = flask.request.form['project_id'] target_id = flask.request.form['target_id'] parents = query.move_document(db(), authenticator.user_id(flask.session), project_id, document_id, target_id) return flask.jsonify(status="success", parent_id_from=parents[0], parent_id_to=parents[1]) if category == 'attachment': # add attachment req = json.loads(flask.request.form['request']) query.add_attachments(db(), authenticator.user_id(flask.session), req['record']['project_id'], req['record']['id'], req['record']['file']) return flask.jsonify(status="success") if category == 'attachment_d': # delete attachment attachment_id = flask.request.form['id'] project_id = flask.request.form['project_id'] query.delete_attachment(db(), authenticator.user_id(flask.session), project_id, attachment_id) return flask.jsonify(status="success") if category == 'bulk': # upload multiple documents req = json.loads(flask.request.form['request']) query.add_bulk(db(), authenticator.user_id(flask.session), req['record']['project_id'], req['record']['file']) return flask.jsonify(status="success") except query.AccessException as ex: return flask.jsonify(status="access", message=ex.message) except query.QueryException as ex: return flask.jsonify(status="error", message=ex.message) return flask.jsonify(status="error", message="Unrecognized command {}".format(category)) # export a project @app.route("/export/<project_id>/", methods=['GET']) def export_project(project_id): if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") zipped_data = io.BytesIO() zipped = zipfile.ZipFile(zipped_data, mode="w") db_data = json.dumps(query.export_project(db(), authenticator.user_id(flask.session), project_id), cls=JSONEncoder) zipped.writestr("db.json", db_data) for attachment in query.attachments(db(), authenticator.user_id(flask.session), project_id): zipped.write(attachment['filename'], attachment['id']) zipped.close() zipped_data.seek(0) return flask.send_file(zipped_data, attachment_filename='enwrite.zip', as_attachment=True, mimetype='application/zip') @app.route("/import", methods=['POST']) def import_project(): if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") req = json.loads(flask.request.form['request']) decoded = io.BytesIO(base64.b64decode(req['record']['file'][0]["content"])) zipped = zipfile.ZipFile(decoded) # TODO limit to 1 file db_data = json.loads(zipped.open('db.json').read()) query.import_project(db(), authenticator.user_id(flask.session), req['record']['name'], db_data, zipped) return flask.jsonify(status="success") # document sharing @app.route("/share_p", methods=['POST']) def share_p(): ''' generates a token that can be used to grant access to a project ''' if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") # request fields: target, access, project_id, document_id req = json.loads(flask.request.form['request']) try: # create a token for the given document and email the recipient if req['record']['project_id'] is None: raise query.QueryException("Required parameter project_id not provided") result = query.add_token(db(), authenticator.user_id(flask.session), req['record']['project_id'], req['record']['access'], document_id=None) # send email if config.EMAIL: # not yet implemented msg = flask_mail.Message("Hello", sender="robot@supernifty.org", recipients=[req['record']['target']]) mail.send(msg) return flask.jsonify(status="success", token=result) except query.QueryException as ex: return flask.jsonify(status="error", message=ex.message) @app.route("/access/<token>/", methods=['GET']) def access(token): ''' use a token to accept access to a document ''' if not authenticator.is_auth(flask.session): target = flask.url_for('access', token=token) login_target = flask.url_for('login', post=urllib.parse.quote_plus(target)) return flask.redirect(login_target) try: # apply token and redirect result = query.apply_token(db(), authenticator.user_id(flask.session), token) if result[0]: # token has been applied return flask.redirect(flask.url_for('home')) else: # token was not applied flask.session["message"] = result[1] return flask.redirect(flask.url_for('home')) except query.QueryException as ex: flask.session["message"] = ex.message return flask.redirect(flask.url_for('home')) # search @app.route("/search", methods=['POST']) def search(): if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") project_id = flask.request.form['project_id'] q = flask.request.form['q'] if flask.request.form['project_id'] is None: raise query.QueryException("Required parameter project_id not provided") return flask.jsonify(status="success", q=q, documents=query.summary(query.search(db(), authenticator.user_id(flask.session), project_id, q))) @app.route("/search_recent", methods=['POST']) def search_recent(): if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") project_id = flask.request.form['project_id'] if flask.request.form['project_id'] is None: raise query.QueryException("Required parameter project_id not provided") return flask.jsonify(status="success", q='Recently Updated', documents=query.summary(query.search_recent(db(), authenticator.user_id(flask.session), project_id))) @app.route("/search_rated", methods=['POST']) def search_rated(): if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") project_id = flask.request.form['project_id'] if flask.request.form['project_id'] is None: raise query.QueryException("Required parameter project_id not provided") return flask.jsonify(status="success", q='Top Rated', documents=query.summary(query.search_rated(db(), authenticator.user_id(flask.session), project_id))) @app.route("/render/latex", methods=['POST']) def render(): if not authenticator.is_auth(flask.session): return flask.jsonify(status="auth", message="User is not authenticated") content = flask.request.form['content'] # convert latex to html TODO queue? try: user_id = authenticator.user_id(flask.session) # ensure existence of user specific asset dir root = os.path.abspath(os.path.join(config.ASSETS, user_id)) if not os.path.exists(root): os.makedirs(root) # write tex open('{root}/_fragment.tex'.format(root=root, user_id=user_id), 'w').write(content) command = '{command} 1>"{root}/_fragment.out" 2>"{root}/_fragment.err"'.format(root=root, command=config.PANDOC.format(root=root, user_id=user_id)) return_code = os.system('{command} 1>"{root}/_fragment.out" 2>"{root}/_fragment.err"'.format(root=root, command=command)) if return_code == 0: result = open('{root}/_fragment.html'.format(user_id=user_id, root=root), 'r').read() else: result = open('{root}/_fragment.err'.format(user_id=user_id, root=root), 'r').read().replace('\n', '<br/>') return flask.jsonify(content=result) except Exception as ex: return flask.jsonify(status="error", message=ex) finally: os.system('/bin/rm {root}/_fragment.*'.format(user_id=user_id, root=root)) ### authentication logic ### @app.route('/login', defaults={'post': None}) @app.route('/login/<post>/') def login(post): return authenticator.authorize(flask.session, db(), post=post) @app.route('/logout') def logout(): authenticator.logout(flask.session) return flask.redirect(flask.url_for('about')) @app.route('/about') def about(): return flask.render_template('about.html') # end up here after authentication @app.route('/authorized') def authorized(): result = authenticator.authorized(flask.session, db()) if result is None: if flask.session.get('next') is None: return flask.redirect(flask.url_for('home')) else: unquoted = urllib.parse.unquote_plus(flask.session.get('next')) if auth.is_safe_url(unquoted): return flask.redirect(unquoted) else: return result # TODO: error page else: return result # TODO: error page @authenticator.google.tokengetter def get_google_oauth_token(): return authenticator.token(flask.session) if __name__ == '__main__': app.run(port=app.config['PORT'])
44.892272
230
0.668162
4128cb0701a1d2fb2d96b398323856ff47e4137b
923
py
Python
sidekick/models/__init__.py
cybera/netbox-sidekick
ec5e2080513d088e2604d8755f34b1d2592b95dd
[ "Apache-2.0" ]
3
2020-09-07T12:14:31.000Z
2021-11-11T11:46:43.000Z
sidekick/models/__init__.py
cybera/netbox-sidekick
ec5e2080513d088e2604d8755f34b1d2592b95dd
[ "Apache-2.0" ]
null
null
null
sidekick/models/__init__.py
cybera/netbox-sidekick
ec5e2080513d088e2604d8755f34b1d2592b95dd
[ "Apache-2.0" ]
null
null
null
from .accounting import AccountingSource # noqa: F401 from .accounting import AccountingSourceCounter # noqa: F401 from .accounting import AccountingProfile # noqa: F401 from .accounting import BandwidthProfile # noqa: F401 from .contact import ContactType, Contact, MemberContact # noqa: F401 from .networkservice import LogicalSystem, RoutingType # noqa: F401 from .networkservice import NetworkServiceType # noqa: F401 from .networkservice import NetworkService # noqa: F401 from .networkservice import NetworkServiceDevice # noqa: F401 from .networkservice import NetworkServiceL3 # noqa: F401 from .networkservice import NetworkServiceL2 # noqa: F401 from .networkservice import NetworkServiceGroup # noqa: F401 from .nic import NIC # noqa: F401
65.928571
70
0.666306
c57aaa287e955382c331c011fc04fd0864e20fd6
755
py
Python
medium/Q8_StringToInteger.py
Kaciras/leetcode
d203aecd1afe1af13a0384a9c657c8424aab322d
[ "MIT" ]
null
null
null
medium/Q8_StringToInteger.py
Kaciras/leetcode
d203aecd1afe1af13a0384a9c657c8424aab322d
[ "MIT" ]
null
null
null
medium/Q8_StringToInteger.py
Kaciras/leetcode
d203aecd1afe1af13a0384a9c657c8424aab322d
[ "MIT" ]
null
null
null
class Solution: def myAtoi(self, str): """ :type str: str :rtype: int """ str = str.lstrip() if len(str) == 0: return 0 i, r, signum = 0, 0, 1 if str[0] == "-": i, signum = 1, -1 elif str[0] == "+": i = 1 while i < len(str): v = ord(str[i]) - 48 # 48换为ord("0")更可读 if not 0 <= v < 10: break # 可以换用isdigit() r = r * 10 + v i += 1 r *= signum if r > 2 ** 31 - 1: return 2 ** 31 - 1 if r < -2 ** 31: return -2 ** 31 return r if __name__ == '__main__': print(Solution().myAtoi(" -0012a42")) print(Solution().myAtoi("+1")) print(Solution().myAtoi(" -42")) print(Solution().myAtoi("4193 with words")) print(Solution().myAtoi("words and 987")) print(Solution().myAtoi("-91283472332"))
19.358974
44
0.528477
f3eaff6cf0f8520ae0e47532990f9c0f59601d01
218
py
Python
moengage/exceptions.py
Deepanshu07/moengage
1beb08b89411d931391dee48ebdf59f872edc6e4
[ "MIT" ]
1
2022-01-01T17:11:37.000Z
2022-01-01T17:11:37.000Z
moengage/exceptions.py
Deepanshu07/moengage
1beb08b89411d931391dee48ebdf59f872edc6e4
[ "MIT" ]
null
null
null
moengage/exceptions.py
Deepanshu07/moengage
1beb08b89411d931391dee48ebdf59f872edc6e4
[ "MIT" ]
null
null
null
class MoengageAPIException(Exception): def __init__(self, message): super().__init__(message) class MoengageWrapperException(Exception): def __init__(self, message): super().__init__(message)
24.222222
42
0.715596
0a548711bb6f746ee91a29e0c54517079b57954d
1,386
py
Python
demosys/opengl/projection.py
Contraz/demosys-py
0479e0f3b0a3901f601bffd2d11e155f97b47555
[ "0BSD" ]
70
2017-03-31T12:01:41.000Z
2022-01-05T06:30:57.000Z
demosys/opengl/projection.py
Contraz/demosys-py
0479e0f3b0a3901f601bffd2d11e155f97b47555
[ "0BSD" ]
69
2017-06-18T22:37:46.000Z
2020-01-23T04:02:22.000Z
demosys/opengl/projection.py
Contraz/demosys-py
0479e0f3b0a3901f601bffd2d11e155f97b47555
[ "0BSD" ]
9
2017-05-13T21:13:02.000Z
2020-10-01T18:09:49.000Z
from pyrr import Matrix44 class Projection: """ Represent a projection matrix and its various properties including tools. """ def __init__(self, aspect_ratio=9 / 16, fov=75, near=1, far=100): self.aspect_ratio = aspect_ratio self.fov = fov self.near = near self.far = far self.matrix = None self.update() def update(self, aspect_ratio=None, fov=None, near=None, far=None): """ Update the internal projection matrix based on current values or values passed in if specified. :param aspect_ratio: New aspect ratio :param fov: New field of view :param near: New near value :param far: New far value """ self.aspect_ratio = aspect_ratio or self.aspect_ratio self.fov = fov or self.fov self.near = near or self.near self.far = far or self.far self.matrix = Matrix44.perspective_projection(self.fov, self.aspect_ratio, self.near, self.far) def tobytes(self): return self.matrix.astype('f4').tobytes() @property def projection_constants(self): """ Returns the (x, y) projection constants for the current projection. :return: x, y tuple projection constants """ return self.far / (self.far - self.near), (self.far * self.near) / (self.near - self.far)
31.5
103
0.621934
ec4d31aa60e95c47083cd76a6e493ca356411b63
597
py
Python
amundsenatlastypes/client.py
stswn/amundsen-atlas-types
99a650b4930ae0674636173fc3bec4b1e6880e42
[ "Apache-2.0" ]
19
2019-11-06T01:14:09.000Z
2021-07-26T12:06:49.000Z
amundsenatlastypes/client.py
stswn/amundsen-atlas-types
99a650b4930ae0674636173fc3bec4b1e6880e42
[ "Apache-2.0" ]
11
2019-11-05T11:37:47.000Z
2021-06-13T16:13:09.000Z
amundsenatlastypes/client.py
stswn/amundsen-atlas-types
99a650b4930ae0674636173fc3bec4b1e6880e42
[ "Apache-2.0" ]
13
2019-08-16T10:12:44.000Z
2021-09-22T06:12:55.000Z
import os from atlasclient.client import Atlas class AtlasClient: host = os.environ.get('ATLAS_HOST', 'localhost') port = os.environ.get('ATLAS_PORT', 21000) user = os.environ.get('ATLAS_USERNAME', 'admin') password = os.environ.get('ATLAS_PASSWORD', 'admin') timeout = os.environ.get('ATLAS_REQUEST_TIMEOUT', 60) def driver(self): return Atlas(host=self.host, port=self.port, username=self.user, password=self.password, timeout=self.timeout) driver = AtlasClient().driver()
27.136364
57
0.60804
11ec8705cc0f0824475d2fbdf4171fa509aa8738
409
py
Python
expenses_report/visualizations/i_visualization.py
kircher-sw/expenses-tracker
afd9550616a79f54dd119d91cec209c7748e9689
[ "BSD-3-Clause" ]
2
2019-07-24T16:01:12.000Z
2021-07-21T01:51:33.000Z
expenses_report/visualizations/i_visualization.py
kircher-sw/expenses-tracker
afd9550616a79f54dd119d91cec209c7748e9689
[ "BSD-3-Clause" ]
null
null
null
expenses_report/visualizations/i_visualization.py
kircher-sw/expenses-tracker
afd9550616a79f54dd119d91cec209c7748e9689
[ "BSD-3-Clause" ]
null
null
null
import plotly.graph_objects as go from expenses_report.preprocessing.data_provider import DataProvider class IVisualization: """""" def prepare_data(self, data: DataProvider): """""" pass def build_visualization(self) -> go.Figure: """""" pass def build(self, data: DataProvider): self.prepare_data(data) return self.build_visualization()
20.45
68
0.647922
29220550568510ab527ca675a6ceac4b61e88808
7,683
py
Python
python/http_client/v1/polyaxon_sdk/models/v1_grid_search.py
polyaxon/client
1beaf78b0aa9fabc37b42a253d5e29c0623d8b16
[ "Apache-2.0" ]
null
null
null
python/http_client/v1/polyaxon_sdk/models/v1_grid_search.py
polyaxon/client
1beaf78b0aa9fabc37b42a253d5e29c0623d8b16
[ "Apache-2.0" ]
null
null
null
python/http_client/v1/polyaxon_sdk/models/v1_grid_search.py
polyaxon/client
1beaf78b0aa9fabc37b42a253d5e29c0623d8b16
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # # Copyright 2018-2022 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Polyaxon SDKs and REST API specification. Polyaxon SDKs and REST API specification. # noqa: E501 The version of the OpenAPI document: 1.18.0 Contact: contact@polyaxon.com Generated by: https://openapi-generator.tech """ try: from inspect import getfullargspec except ImportError: from inspect import getargspec as getfullargspec import pprint import re # noqa: F401 import six from polyaxon_sdk.configuration import Configuration class V1GridSearch(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'kind': 'str', 'params': 'dict(str, object)', 'num_runs': 'int', 'seed': 'int', 'concurrency': 'int', 'early_stopping': 'list[object]' } attribute_map = { 'kind': 'kind', 'params': 'params', 'num_runs': 'numRuns', 'seed': 'seed', 'concurrency': 'concurrency', 'early_stopping': 'earlyStopping' } def __init__(self, kind='grid', params=None, num_runs=None, seed=None, concurrency=None, early_stopping=None, local_vars_configuration=None): # noqa: E501 """V1GridSearch - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration.get_default_copy() self.local_vars_configuration = local_vars_configuration self._kind = None self._params = None self._num_runs = None self._seed = None self._concurrency = None self._early_stopping = None self.discriminator = None if kind is not None: self.kind = kind if params is not None: self.params = params if num_runs is not None: self.num_runs = num_runs if seed is not None: self.seed = seed if concurrency is not None: self.concurrency = concurrency if early_stopping is not None: self.early_stopping = early_stopping @property def kind(self): """Gets the kind of this V1GridSearch. # noqa: E501 :return: The kind of this V1GridSearch. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this V1GridSearch. :param kind: The kind of this V1GridSearch. # noqa: E501 :type kind: str """ self._kind = kind @property def params(self): """Gets the params of this V1GridSearch. # noqa: E501 :return: The params of this V1GridSearch. # noqa: E501 :rtype: dict(str, object) """ return self._params @params.setter def params(self, params): """Sets the params of this V1GridSearch. :param params: The params of this V1GridSearch. # noqa: E501 :type params: dict(str, object) """ self._params = params @property def num_runs(self): """Gets the num_runs of this V1GridSearch. # noqa: E501 :return: The num_runs of this V1GridSearch. # noqa: E501 :rtype: int """ return self._num_runs @num_runs.setter def num_runs(self, num_runs): """Sets the num_runs of this V1GridSearch. :param num_runs: The num_runs of this V1GridSearch. # noqa: E501 :type num_runs: int """ self._num_runs = num_runs @property def seed(self): """Gets the seed of this V1GridSearch. # noqa: E501 :return: The seed of this V1GridSearch. # noqa: E501 :rtype: int """ return self._seed @seed.setter def seed(self, seed): """Sets the seed of this V1GridSearch. :param seed: The seed of this V1GridSearch. # noqa: E501 :type seed: int """ self._seed = seed @property def concurrency(self): """Gets the concurrency of this V1GridSearch. # noqa: E501 :return: The concurrency of this V1GridSearch. # noqa: E501 :rtype: int """ return self._concurrency @concurrency.setter def concurrency(self, concurrency): """Sets the concurrency of this V1GridSearch. :param concurrency: The concurrency of this V1GridSearch. # noqa: E501 :type concurrency: int """ self._concurrency = concurrency @property def early_stopping(self): """Gets the early_stopping of this V1GridSearch. # noqa: E501 :return: The early_stopping of this V1GridSearch. # noqa: E501 :rtype: list[object] """ return self._early_stopping @early_stopping.setter def early_stopping(self, early_stopping): """Sets the early_stopping of this V1GridSearch. :param early_stopping: The early_stopping of this V1GridSearch. # noqa: E501 :type early_stopping: list[object] """ self._early_stopping = early_stopping def to_dict(self, serialize=False): """Returns the model properties as a dict""" result = {} def convert(x): if hasattr(x, "to_dict"): args = getfullargspec(x.to_dict).args if len(args) == 1: return x.to_dict() else: return x.to_dict(serialize) else: return x for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) attr = self.attribute_map.get(attr, attr) if serialize else attr if isinstance(value, list): result[attr] = list(map( lambda x: convert(x), value )) elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], convert(item[1])), value.items() )) else: result[attr] = convert(value) return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1GridSearch): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1GridSearch): return True return self.to_dict() != other.to_dict()
27.537634
159
0.591566
14fcc7b7d83a9e95f73604f895712296ebcf1317
588
py
Python
tests/test_docs.py
koaning/icepickle
f6692e334ceebe8390d8b4960a56eb661236edd3
[ "MIT" ]
8
2022-02-14T20:20:30.000Z
2022-03-08T10:03:13.000Z
tests/test_docs.py
koaning/icepickle
f6692e334ceebe8390d8b4960a56eb661236edd3
[ "MIT" ]
1
2022-02-20T08:40:42.000Z
2022-02-20T15:02:58.000Z
tests/test_docs.py
koaning/icepickle
f6692e334ceebe8390d8b4960a56eb661236edd3
[ "MIT" ]
null
null
null
import pytest from mktestdocs import check_docstring, check_md_file from icepickle.pipeline import ( PartialPipeline, PartialFeatureUnion, make_partial_pipeline, make_partial_union, ) components = [ PartialPipeline, PartialFeatureUnion, make_partial_pipeline, make_partial_union, ] @pytest.mark.parametrize("obj", components, ids=lambda d: d.__qualname__) def test_member(obj): """The example snippets must run.""" check_docstring(obj) def test_readme_works(): """The code-blocks must run.""" check_md_file("README.md", memory=True)
20.275862
73
0.732993
9b409f1804c5fc1cb2ebf8681820456ccd4d543d
1,916
py
Python
CS224d_assignment1/q1_softmax.py
Darktex/CS224d
ea31492e4be8563189aed44cdde7bb66eb424a68
[ "MIT" ]
1
2017-05-01T10:07:02.000Z
2017-05-01T10:07:02.000Z
CS224d_assignment1/q1_softmax.py
Darktex/CS224d
ea31492e4be8563189aed44cdde7bb66eb424a68
[ "MIT" ]
null
null
null
CS224d_assignment1/q1_softmax.py
Darktex/CS224d
ea31492e4be8563189aed44cdde7bb66eb424a68
[ "MIT" ]
1
2018-09-29T10:12:00.000Z
2018-09-29T10:12:00.000Z
import numpy as np import random def softmax(x): """ Compute the softmax function for each row of the input x. It is crucial that this function is optimized for speed because it will be used frequently in later code. You might find numpy functions np.exp, np.sum, np.reshape, np.max, and numpy broadcasting useful for this task. (numpy broadcasting documentation: http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) You should also make sure that your code works for one dimensional inputs (treat the vector as a row), you might find it helpful for your later problems. You must implement the optimization in problem 1(a) of the written assignment! """ ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE return x def test_softmax_basic(): """ Some simple tests to get you started. Warning: these are not exhaustive. """ print "Running basic tests..." test1 = softmax(np.array([1,2])) print test1 assert np.amax(np.fabs(test1 - np.array( [0.26894142, 0.73105858]))) <= 1e-6 test2 = softmax(np.array([[1001,1002],[3,4]])) print test2 assert np.amax(np.fabs(test2 - np.array( [[0.26894142, 0.73105858], [0.26894142, 0.73105858]]))) <= 1e-6 test3 = softmax(np.array([[-1001,-1002]])) print test3 assert np.amax(np.fabs(test3 - np.array( [0.73105858, 0.26894142]))) <= 1e-6 print "You should verify these results!\n" def test_softmax(): """ Use this space to test your softmax implementation by running: python q1_softmax.py This function will not be called by the autograder, nor will your tests be graded. """ print "Running your tests..." ### YOUR CODE HERE raise NotImplementedError ### END YOUR CODE if __name__ == "__main__": test_softmax_basic() test_softmax()
29.030303
71
0.655532
e849e16d51847a346670d07af2621cc1070f5659
28,879
py
Python
Lib/distutils/msvc9compiler.py
deadsnakes/python3.1
88d77610a7873c5161bfc15cd69557fc7697b1a3
[ "PSF-2.0" ]
null
null
null
Lib/distutils/msvc9compiler.py
deadsnakes/python3.1
88d77610a7873c5161bfc15cd69557fc7697b1a3
[ "PSF-2.0" ]
null
null
null
Lib/distutils/msvc9compiler.py
deadsnakes/python3.1
88d77610a7873c5161bfc15cd69557fc7697b1a3
[ "PSF-2.0" ]
null
null
null
"""distutils.msvc9compiler Contains MSVCCompiler, an implementation of the abstract CCompiler class for the Microsoft Visual Studio 2008. The module is compatible with VS 2005 and VS 2008. You can find legacy support for older versions of VS in distutils.msvccompiler. """ # Written by Perry Stoll # hacked by Robin Becker and Thomas Heller to do a better job of # finding DevStudio (through the registry) # ported to VS2005 and VS 2008 by Christian Heimes __revision__ = "$Id$" import os import subprocess import sys import re from distutils.errors import DistutilsExecError, DistutilsPlatformError, \ CompileError, LibError, LinkError from distutils.ccompiler import CCompiler, gen_preprocess_options, \ gen_lib_options from distutils import log from distutils.util import get_platform import winreg RegOpenKeyEx = winreg.OpenKeyEx RegEnumKey = winreg.EnumKey RegEnumValue = winreg.EnumValue RegError = winreg.error HKEYS = (winreg.HKEY_USERS, winreg.HKEY_CURRENT_USER, winreg.HKEY_LOCAL_MACHINE, winreg.HKEY_CLASSES_ROOT) NATIVE_WIN64 = (sys.platform == 'win32' and sys.maxsize > 2**32) if NATIVE_WIN64: # Visual C++ is a 32-bit application, so we need to look in # the corresponding registry branch, if we're running a # 64-bit Python on Win64 VS_BASE = r"Software\Wow6432Node\Microsoft\VisualStudio\%0.1f" WINSDK_BASE = r"Software\Wow6432Node\Microsoft\Microsoft SDKs\Windows" NET_BASE = r"Software\Wow6432Node\Microsoft\.NETFramework" else: VS_BASE = r"Software\Microsoft\VisualStudio\%0.1f" WINSDK_BASE = r"Software\Microsoft\Microsoft SDKs\Windows" NET_BASE = r"Software\Microsoft\.NETFramework" # A map keyed by get_platform() return values to values accepted by # 'vcvarsall.bat'. Note a cross-compile may combine these (eg, 'x86_amd64' is # the param to cross-compile on x86 targetting amd64.) PLAT_TO_VCVARS = { 'win32' : 'x86', 'win-amd64' : 'amd64', 'win-ia64' : 'ia64', } class Reg: """Helper class to read values from the registry """ def get_value(cls, path, key): for base in HKEYS: d = cls.read_values(base, path) if d and key in d: return d[key] raise KeyError(key) get_value = classmethod(get_value) def read_keys(cls, base, key): """Return list of registry keys.""" try: handle = RegOpenKeyEx(base, key) except RegError: return None L = [] i = 0 while True: try: k = RegEnumKey(handle, i) except RegError: break L.append(k) i += 1 return L read_keys = classmethod(read_keys) def read_values(cls, base, key): """Return dict of registry keys and values. All names are converted to lowercase. """ try: handle = RegOpenKeyEx(base, key) except RegError: return None d = {} i = 0 while True: try: name, value, type = RegEnumValue(handle, i) except RegError: break name = name.lower() d[cls.convert_mbcs(name)] = cls.convert_mbcs(value) i += 1 return d read_values = classmethod(read_values) def convert_mbcs(s): dec = getattr(s, "decode", None) if dec is not None: try: s = dec("mbcs") except UnicodeError: pass return s convert_mbcs = staticmethod(convert_mbcs) class MacroExpander: def __init__(self, version): self.macros = {} self.vsbase = VS_BASE % version self.load_macros(version) def set_macro(self, macro, path, key): self.macros["$(%s)" % macro] = Reg.get_value(path, key) def load_macros(self, version): self.set_macro("VCInstallDir", self.vsbase + r"\Setup\VC", "productdir") self.set_macro("VSInstallDir", self.vsbase + r"\Setup\VS", "productdir") self.set_macro("FrameworkDir", NET_BASE, "installroot") try: if version >= 8.0: self.set_macro("FrameworkSDKDir", NET_BASE, "sdkinstallrootv2.0") else: raise KeyError("sdkinstallrootv2.0") except KeyError: raise DistutilsPlatformError( """Python was built with Visual Studio 2008; extensions must be built with a compiler than can generate compatible binaries. Visual Studio 2008 was not found on this system. If you have Cygwin installed, you can try compiling with MingW32, by passing "-c mingw32" to setup.py.""") if version >= 9.0: self.set_macro("FrameworkVersion", self.vsbase, "clr version") self.set_macro("WindowsSdkDir", WINSDK_BASE, "currentinstallfolder") else: p = r"Software\Microsoft\NET Framework Setup\Product" for base in HKEYS: try: h = RegOpenKeyEx(base, p) except RegError: continue key = RegEnumKey(h, 0) d = Reg.get_value(base, r"%s\%s" % (p, key)) self.macros["$(FrameworkVersion)"] = d["version"] def sub(self, s): for k, v in self.macros.items(): s = s.replace(k, v) return s def get_build_version(): """Return the version of MSVC that was used to build Python. For Python 2.3 and up, the version number is included in sys.version. For earlier versions, assume the compiler is MSVC 6. """ prefix = "MSC v." i = sys.version.find(prefix) if i == -1: return 6 i = i + len(prefix) s, rest = sys.version[i:].split(" ", 1) majorVersion = int(s[:-2]) - 6 minorVersion = int(s[2:3]) / 10.0 # I don't think paths are affected by minor version in version 6 if majorVersion == 6: minorVersion = 0 if majorVersion >= 6: return majorVersion + minorVersion # else we don't know what version of the compiler this is return None def normalize_and_reduce_paths(paths): """Return a list of normalized paths with duplicates removed. The current order of paths is maintained. """ # Paths are normalized so things like: /a and /a/ aren't both preserved. reduced_paths = [] for p in paths: np = os.path.normpath(p) # XXX(nnorwitz): O(n**2), if reduced_paths gets long perhaps use a set. if np not in reduced_paths: reduced_paths.append(np) return reduced_paths def removeDuplicates(variable): """Remove duplicate values of an environment variable. """ oldList = variable.split(os.pathsep) newList = [] for i in oldList: if i not in newList: newList.append(i) newVariable = os.pathsep.join(newList) return newVariable def find_vcvarsall(version): """Find the vcvarsall.bat file At first it tries to find the productdir of VS 2008 in the registry. If that fails it falls back to the VS90COMNTOOLS env var. """ vsbase = VS_BASE % version try: productdir = Reg.get_value(r"%s\Setup\VC" % vsbase, "productdir") except KeyError: log.debug("Unable to find productdir in registry") productdir = None if not productdir or not os.path.isdir(productdir): toolskey = "VS%0.f0COMNTOOLS" % version toolsdir = os.environ.get(toolskey, None) if toolsdir and os.path.isdir(toolsdir): productdir = os.path.join(toolsdir, os.pardir, os.pardir, "VC") productdir = os.path.abspath(productdir) if not os.path.isdir(productdir): log.debug("%s is not a valid directory" % productdir) return None else: log.debug("Env var %s is not set or invalid" % toolskey) if not productdir: log.debug("No productdir found") return None vcvarsall = os.path.join(productdir, "vcvarsall.bat") if os.path.isfile(vcvarsall): return vcvarsall log.debug("Unable to find vcvarsall.bat") return None def query_vcvarsall(version, arch="x86"): """Launch vcvarsall.bat and read the settings from its environment """ vcvarsall = find_vcvarsall(version) interesting = set(("include", "lib", "libpath", "path")) result = {} if vcvarsall is None: raise DistutilsPlatformError("Unable to find vcvarsall.bat") log.debug("Calling 'vcvarsall.bat %s' (version=%s)", arch, version) popen = subprocess.Popen('"%s" %s & set' % (vcvarsall, arch), stdout=subprocess.PIPE, stderr=subprocess.PIPE) try: stdout, stderr = popen.communicate() if popen.wait() != 0: raise DistutilsPlatformError(stderr.decode("mbcs")) stdout = stdout.decode("mbcs") for line in stdout.split("\n"): line = Reg.convert_mbcs(line) if '=' not in line: continue line = line.strip() key, value = line.split('=', 1) key = key.lower() if key in interesting: if value.endswith(os.pathsep): value = value[:-1] result[key] = removeDuplicates(value) finally: popen.stdout.close() popen.stderr.close() if len(result) != len(interesting): raise ValueError(str(list(result.keys()))) return result # More globals VERSION = get_build_version() if VERSION < 8.0: raise DistutilsPlatformError("VC %0.1f is not supported by this module" % VERSION) # MACROS = MacroExpander(VERSION) class MSVCCompiler(CCompiler) : """Concrete class that implements an interface to Microsoft Visual C++, as defined by the CCompiler abstract class.""" compiler_type = 'msvc' # Just set this so CCompiler's constructor doesn't barf. We currently # don't use the 'set_executables()' bureaucracy provided by CCompiler, # as it really isn't necessary for this sort of single-compiler class. # Would be nice to have a consistent interface with UnixCCompiler, # though, so it's worth thinking about. executables = {} # Private class data (need to distinguish C from C++ source for compiler) _c_extensions = ['.c'] _cpp_extensions = ['.cc', '.cpp', '.cxx'] _rc_extensions = ['.rc'] _mc_extensions = ['.mc'] # Needed for the filename generation methods provided by the # base class, CCompiler. src_extensions = (_c_extensions + _cpp_extensions + _rc_extensions + _mc_extensions) res_extension = '.res' obj_extension = '.obj' static_lib_extension = '.lib' shared_lib_extension = '.dll' static_lib_format = shared_lib_format = '%s%s' exe_extension = '.exe' def __init__(self, verbose=0, dry_run=0, force=0): CCompiler.__init__ (self, verbose, dry_run, force) self.__version = VERSION self.__root = r"Software\Microsoft\VisualStudio" # self.__macros = MACROS self.__paths = [] # target platform (.plat_name is consistent with 'bdist') self.plat_name = None self.__arch = None # deprecated name self.initialized = False def initialize(self, plat_name=None): # multi-init means we would need to check platform same each time... assert not self.initialized, "don't init multiple times" if plat_name is None: plat_name = get_platform() # sanity check for platforms to prevent obscure errors later. ok_plats = 'win32', 'win-amd64', 'win-ia64' if plat_name not in ok_plats: raise DistutilsPlatformError("--plat-name must be one of %s" % (ok_plats,)) if "DISTUTILS_USE_SDK" in os.environ and "MSSdk" in os.environ and self.find_exe("cl.exe"): # Assume that the SDK set up everything alright; don't try to be # smarter self.cc = "cl.exe" self.linker = "link.exe" self.lib = "lib.exe" self.rc = "rc.exe" self.mc = "mc.exe" else: # On x86, 'vcvars32.bat amd64' creates an env that doesn't work; # to cross compile, you use 'x86_amd64'. # On AMD64, 'vcvars32.bat amd64' is a native build env; to cross # compile use 'x86' (ie, it runs the x86 compiler directly) # No idea how itanium handles this, if at all. if plat_name == get_platform() or plat_name == 'win32': # native build or cross-compile to win32 plat_spec = PLAT_TO_VCVARS[plat_name] else: # cross compile from win32 -> some 64bit plat_spec = PLAT_TO_VCVARS[get_platform()] + '_' + \ PLAT_TO_VCVARS[plat_name] vc_env = query_vcvarsall(VERSION, plat_spec) self.__paths = vc_env['path'].split(os.pathsep) os.environ['lib'] = vc_env['lib'] os.environ['include'] = vc_env['include'] if len(self.__paths) == 0: raise DistutilsPlatformError("Python was built with %s, " "and extensions need to be built with the same " "version of the compiler, but it isn't installed." % self.__product) self.cc = self.find_exe("cl.exe") self.linker = self.find_exe("link.exe") self.lib = self.find_exe("lib.exe") self.rc = self.find_exe("rc.exe") # resource compiler self.mc = self.find_exe("mc.exe") # message compiler #self.set_path_env_var('lib') #self.set_path_env_var('include') # extend the MSVC path with the current path try: for p in os.environ['path'].split(';'): self.__paths.append(p) except KeyError: pass self.__paths = normalize_and_reduce_paths(self.__paths) os.environ['path'] = ";".join(self.__paths) self.preprocess_options = None if self.__arch == "x86": self.compile_options = [ '/nologo', '/Ox', '/MD', '/W3', '/DNDEBUG'] self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3', '/Z7', '/D_DEBUG'] else: # Win64 self.compile_options = [ '/nologo', '/Ox', '/MD', '/W3', '/GS-' , '/DNDEBUG'] self.compile_options_debug = ['/nologo', '/Od', '/MDd', '/W3', '/GS-', '/Z7', '/D_DEBUG'] self.ldflags_shared = ['/DLL', '/nologo', '/INCREMENTAL:NO'] if self.__version >= 7: self.ldflags_shared_debug = [ '/DLL', '/nologo', '/INCREMENTAL:no', '/DEBUG', '/pdb:None' ] self.ldflags_static = [ '/nologo'] self.initialized = True # -- Worker methods ------------------------------------------------ def object_filenames(self, source_filenames, strip_dir=0, output_dir=''): # Copied from ccompiler.py, extended to return .res as 'object'-file # for .rc input file if output_dir is None: output_dir = '' obj_names = [] for src_name in source_filenames: (base, ext) = os.path.splitext (src_name) base = os.path.splitdrive(base)[1] # Chop off the drive base = base[os.path.isabs(base):] # If abs, chop off leading / if ext not in self.src_extensions: # Better to raise an exception instead of silently continuing # and later complain about sources and targets having # different lengths raise CompileError ("Don't know how to compile %s" % src_name) if strip_dir: base = os.path.basename (base) if ext in self._rc_extensions: obj_names.append (os.path.join (output_dir, base + self.res_extension)) elif ext in self._mc_extensions: obj_names.append (os.path.join (output_dir, base + self.res_extension)) else: obj_names.append (os.path.join (output_dir, base + self.obj_extension)) return obj_names def compile(self, sources, output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, depends=None): if not self.initialized: self.initialize() compile_info = self._setup_compile(output_dir, macros, include_dirs, sources, depends, extra_postargs) macros, objects, extra_postargs, pp_opts, build = compile_info compile_opts = extra_preargs or [] compile_opts.append ('/c') if debug: compile_opts.extend(self.compile_options_debug) else: compile_opts.extend(self.compile_options) for obj in objects: try: src, ext = build[obj] except KeyError: continue if debug: # pass the full pathname to MSVC in debug mode, # this allows the debugger to find the source file # without asking the user to browse for it src = os.path.abspath(src) if ext in self._c_extensions: input_opt = "/Tc" + src elif ext in self._cpp_extensions: input_opt = "/Tp" + src elif ext in self._rc_extensions: # compile .RC to .RES file input_opt = src output_opt = "/fo" + obj try: self.spawn([self.rc] + pp_opts + [output_opt] + [input_opt]) except DistutilsExecError as msg: raise CompileError(msg) continue elif ext in self._mc_extensions: # Compile .MC to .RC file to .RES file. # * '-h dir' specifies the directory for the # generated include file # * '-r dir' specifies the target directory of the # generated RC file and the binary message resource # it includes # # For now (since there are no options to change this), # we use the source-directory for the include file and # the build directory for the RC file and message # resources. This works at least for win32all. h_dir = os.path.dirname(src) rc_dir = os.path.dirname(obj) try: # first compile .MC to .RC and .H file self.spawn([self.mc] + ['-h', h_dir, '-r', rc_dir] + [src]) base, _ = os.path.splitext (os.path.basename (src)) rc_file = os.path.join (rc_dir, base + '.rc') # then compile .RC to .RES file self.spawn([self.rc] + ["/fo" + obj] + [rc_file]) except DistutilsExecError as msg: raise CompileError(msg) continue else: # how to handle this file? raise CompileError("Don't know how to compile %s to %s" % (src, obj)) output_opt = "/Fo" + obj try: self.spawn([self.cc] + compile_opts + pp_opts + [input_opt, output_opt] + extra_postargs) except DistutilsExecError as msg: raise CompileError(msg) return objects def create_static_lib(self, objects, output_libname, output_dir=None, debug=0, target_lang=None): if not self.initialized: self.initialize() (objects, output_dir) = self._fix_object_args(objects, output_dir) output_filename = self.library_filename(output_libname, output_dir=output_dir) if self._need_link(objects, output_filename): lib_args = objects + ['/OUT:' + output_filename] if debug: pass # XXX what goes here? try: self.spawn([self.lib] + lib_args) except DistutilsExecError as msg: raise LibError(msg) else: log.debug("skipping %s (up-to-date)", output_filename) def link(self, target_desc, objects, output_filename, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None): if not self.initialized: self.initialize() (objects, output_dir) = self._fix_object_args(objects, output_dir) fixed_args = self._fix_lib_args(libraries, library_dirs, runtime_library_dirs) (libraries, library_dirs, runtime_library_dirs) = fixed_args if runtime_library_dirs: self.warn ("I don't know what to do with 'runtime_library_dirs': " + str (runtime_library_dirs)) lib_opts = gen_lib_options(self, library_dirs, runtime_library_dirs, libraries) if output_dir is not None: output_filename = os.path.join(output_dir, output_filename) if self._need_link(objects, output_filename): if target_desc == CCompiler.EXECUTABLE: if debug: ldflags = self.ldflags_shared_debug[1:] else: ldflags = self.ldflags_shared[1:] else: if debug: ldflags = self.ldflags_shared_debug else: ldflags = self.ldflags_shared export_opts = [] for sym in (export_symbols or []): export_opts.append("/EXPORT:" + sym) ld_args = (ldflags + lib_opts + export_opts + objects + ['/OUT:' + output_filename]) # The MSVC linker generates .lib and .exp files, which cannot be # suppressed by any linker switches. The .lib files may even be # needed! Make sure they are generated in the temporary build # directory. Since they have different names for debug and release # builds, they can go into the same directory. build_temp = os.path.dirname(objects[0]) if export_symbols is not None: (dll_name, dll_ext) = os.path.splitext( os.path.basename(output_filename)) implib_file = os.path.join( build_temp, self.library_filename(dll_name)) ld_args.append ('/IMPLIB:' + implib_file) # Embedded manifests are recommended - see MSDN article titled # "How to: Embed a Manifest Inside a C/C++ Application" # (currently at http://msdn2.microsoft.com/en-us/library/ms235591(VS.80).aspx) # Ask the linker to generate the manifest in the temp dir, so # we can embed it later. temp_manifest = os.path.join( build_temp, os.path.basename(output_filename) + ".manifest") ld_args.append('/MANIFESTFILE:' + temp_manifest) if extra_preargs: ld_args[:0] = extra_preargs if extra_postargs: ld_args.extend(extra_postargs) self.mkpath(os.path.dirname(output_filename)) try: self.spawn([self.linker] + ld_args) except DistutilsExecError as msg: raise LinkError(msg) # embed the manifest # XXX - this is somewhat fragile - if mt.exe fails, distutils # will still consider the DLL up-to-date, but it will not have a # manifest. Maybe we should link to a temp file? OTOH, that # implies a build environment error that shouldn't go undetected. if target_desc == CCompiler.EXECUTABLE: mfid = 1 else: mfid = 2 # Remove references to the Visual C runtime self._remove_visual_c_ref(temp_manifest) out_arg = '-outputresource:%s;%s' % (output_filename, mfid) try: self.spawn(['mt.exe', '-nologo', '-manifest', temp_manifest, out_arg]) except DistutilsExecError as msg: raise LinkError(msg) else: log.debug("skipping %s (up-to-date)", output_filename) def _remove_visual_c_ref(self, manifest_file): try: # Remove references to the Visual C runtime, so they will # fall through to the Visual C dependency of Python.exe. # This way, when installed for a restricted user (e.g. # runtimes are not in WinSxS folder, but in Python's own # folder), the runtimes do not need to be in every folder # with .pyd's. manifest_f = open(manifest_file) try: manifest_buf = manifest_f.read() finally: manifest_f.close() pattern = re.compile( r"""<assemblyIdentity.*?name=("|')Microsoft\."""\ r"""VC\d{2}\.CRT("|').*?(/>|</assemblyIdentity>)""", re.DOTALL) manifest_buf = re.sub(pattern, "", manifest_buf) pattern = "<dependentAssembly>\s*</dependentAssembly>" manifest_buf = re.sub(pattern, "", manifest_buf) manifest_f = open(manifest_file, 'w') try: manifest_f.write(manifest_buf) finally: manifest_f.close() except IOError: pass # -- Miscellaneous methods ----------------------------------------- # These are all used by the 'gen_lib_options() function, in # ccompiler.py. def library_dir_option(self, dir): return "/LIBPATH:" + dir def runtime_library_dir_option(self, dir): raise DistutilsPlatformError( "don't know how to set runtime library search path for MSVC++") def library_option(self, lib): return self.library_filename(lib) def find_library_file(self, dirs, lib, debug=0): # Prefer a debugging library if found (and requested), but deal # with it if we don't have one. if debug: try_names = [lib + "_d", lib] else: try_names = [lib] for dir in dirs: for name in try_names: libfile = os.path.join(dir, self.library_filename (name)) if os.path.exists(libfile): return libfile else: # Oops, didn't find it in *any* of 'dirs' return None # Helper methods for using the MSVC registry settings def find_exe(self, exe): """Return path to an MSVC executable program. Tries to find the program in several places: first, one of the MSVC program search paths from the registry; next, the directories in the PATH environment variable. If any of those work, return an absolute path that is known to exist. If none of them work, just return the original program name, 'exe'. """ for p in self.__paths: fn = os.path.join(os.path.abspath(p), exe) if os.path.isfile(fn): return fn # didn't find it; try existing path for p in os.environ['Path'].split(';'): fn = os.path.join(os.path.abspath(p),exe) if os.path.isfile(fn): return fn return exe
38.250331
99
0.55639
6ab637da8fc90bedf5a46481d9d6a270c4c01895
21,957
py
Python
qa/rpc-tests/replace-by-fee.py
infertux/bitcoinclassic
e744f27b6c6375749ce81aa395fb82445b40af49
[ "MIT" ]
null
null
null
qa/rpc-tests/replace-by-fee.py
infertux/bitcoinclassic
e744f27b6c6375749ce81aa395fb82445b40af49
[ "MIT" ]
null
null
null
qa/rpc-tests/replace-by-fee.py
infertux/bitcoinclassic
e744f27b6c6375749ce81aa395fb82445b40af49
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test replace by fee code # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.script import * from test_framework.mininode import * MAX_REPLACEMENT_LIMIT = 100 def txToHex(tx): return bytes_to_hex_str(tx.serialize()) def make_utxo(node, amount, confirmed=True, scriptPubKey=CScript([1])): """Create a txout with a given amount and scriptPubKey Mines coins as needed. confirmed - txouts created will be confirmed in the blockchain; unconfirmed otherwise. """ fee = 1*COIN while node.getbalance() < satoshi_round((amount + fee)/COIN): node.generate(100) #print (node.getbalance(), amount, fee) new_addr = node.getnewaddress() #print new_addr txid = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN)) tx1 = node.getrawtransaction(txid, 1) txid = int(txid, 16) i = None for i, txout in enumerate(tx1['vout']): #print i, txout['scriptPubKey']['addresses'] if txout['scriptPubKey']['addresses'] == [new_addr]: #print i break assert i is not None tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(txid, i))] tx2.vout = [CTxOut(amount, scriptPubKey)] tx2.rehash() signed_tx = node.signrawtransaction(txToHex(tx2)) txid = node.sendrawtransaction(signed_tx['hex'], True) # If requested, ensure txouts are confirmed. if confirmed: mempool_size = len(node.getrawmempool()) while mempool_size > 0: node.generate(1) new_size = len(node.getrawmempool()) # Error out if we have something stuck in the mempool, as this # would likely be a bug. assert(new_size < mempool_size) mempool_size = new_size return COutPoint(int(txid, 16), 0) class ReplaceByFeeTest(BitcoinTestFramework): def setup_network(self): self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-maxorphantx=1000", "-debug", "-relaypriority=0", "-whitelist=127.0.0.1", "-limitancestorcount=50", "-limitancestorsize=101", "-limitdescendantcount=200", "-limitdescendantsize=101", "-mempoolreplacement=1" ])) self.is_network_split = False def run_test(self): make_utxo(self.nodes[0], 1*COIN) print "Running test simple doublespend..." self.test_simple_doublespend() print "Running test doublespend chain..." self.test_doublespend_chain() print "Running test doublespend tree..." self.test_doublespend_tree() print "Running test replacement feeperkb..." self.test_replacement_feeperkb() print "Running test spends of conflicting outputs..." self.test_spends_of_conflicting_outputs() print "Running test new unconfirmed inputs..." self.test_new_unconfirmed_inputs() print "Running test too many replacements..." self.test_too_many_replacements() print "Running test opt-in..." self.test_opt_in() print "Running test prioritised transactions..." self.test_prioritised_transactions() print "Passed\n" def test_simple_doublespend(self): """Simple doublespend""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Should fail because we haven't changed the fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(1*COIN, CScript([b'b']))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # Extra 0.1 BTC fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx1b_hex = txToHex(tx1b) tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) mempool = self.nodes[0].getrawmempool() assert (tx1a_txid not in mempool) assert (tx1b_txid in mempool) assert_equal(tx1b_hex, self.nodes[0].getrawtransaction(tx1b_txid)) def test_doublespend_chain(self): """Doublespend of a long chain""" initial_nValue = 50*COIN tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) prevout = tx0_outpoint remaining_value = initial_nValue chain_txids = [] while remaining_value > 10*COIN: remaining_value -= 1*COIN tx = CTransaction() tx.vin = [CTxIn(prevout, nSequence=0)] tx.vout = [CTxOut(remaining_value, CScript([1]))] tx_hex = txToHex(tx) txid = self.nodes[0].sendrawtransaction(tx_hex, True) chain_txids.append(txid) prevout = COutPoint(int(txid, 16), 0) # Whether the double-spend is allowed is evaluated by including all # child fees - 40 BTC - so this attempt is rejected. dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - 30*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # transaction mistakenly accepted! # Accepted with sufficient fee dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(1*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, True) mempool = self.nodes[0].getrawmempool() for doublespent_txid in chain_txids: assert(doublespent_txid not in mempool) def test_doublespend_tree(self): """Doublespend of a big tree of transactions""" initial_nValue = 50*COIN tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) def branch(prevout, initial_value, max_txs, tree_width=5, fee=0.0001*COIN, _total_txs=None): if _total_txs is None: _total_txs = [0] if _total_txs[0] >= max_txs: return txout_value = (initial_value - fee) // tree_width if txout_value < fee: return vout = [CTxOut(txout_value, CScript([i+1])) for i in range(tree_width)] tx = CTransaction() tx.vin = [CTxIn(prevout, nSequence=0)] tx.vout = vout tx_hex = txToHex(tx) assert(len(tx.serialize()) < 100000) txid = self.nodes[0].sendrawtransaction(tx_hex, True) yield tx _total_txs[0] += 1 txid = int(txid, 16) for i, txout in enumerate(tx.vout): for x in branch(COutPoint(txid, i), txout_value, max_txs, tree_width=tree_width, fee=fee, _total_txs=_total_txs): yield x fee = int(0.0001*COIN) n = MAX_REPLACEMENT_LIMIT tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee)) assert_equal(len(tree_txs), n) # Attempt double-spend, will fail because too little fee paid dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - fee*n, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) # 1 BTC fee is enough dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - fee*n - 1*COIN, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, True) mempool = self.nodes[0].getrawmempool() for tx in tree_txs: tx.rehash() assert (tx.hash not in mempool) # Try again, but with more total transactions than the "max txs # double-spent at once" anti-DoS limit. for n in (MAX_REPLACEMENT_LIMIT+1, MAX_REPLACEMENT_LIMIT*2): fee = int(0.0001*COIN) tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee)) assert_equal(len(tree_txs), n) dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - 2*fee*n, CScript([1]))] dbl_tx_hex = txToHex(dbl_tx) try: self.nodes[0].sendrawtransaction(dbl_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) assert_equal("too many potential replacements" in exp.error['message'], True) else: assert(False) for tx in tree_txs: tx.rehash() self.nodes[0].getrawtransaction(tx.hash) def test_replacement_feeperkb(self): """Replacement requires fee-per-KB to be higher""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Higher fee, but the fee per KB is much lower, so the replacement is # rejected. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*999000]))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) # insufficient fee else: assert(False) def test_spends_of_conflicting_outputs(self): """Replacements that spend conflicting tx outputs are rejected""" utxo1 = make_utxo(self.nodes[0], int(1.2*COIN)) utxo2 = make_utxo(self.nodes[0], 3*COIN) tx1a = CTransaction() tx1a.vin = [CTxIn(utxo1, nSequence=0)] tx1a.vout = [CTxOut(int(1.1*COIN), CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) tx1a_txid = int(tx1a_txid, 16) # Direct spend an output of the transaction we're replacing. tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0)] tx2.vin.append(CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)) tx2.vout = tx1a.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Spend tx1a's output to test the indirect case. tx1b = CTransaction() tx1b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)] tx1b.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1b_hex = txToHex(tx1b) tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) tx1b_txid = int(tx1b_txid, 16) tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0), CTxIn(COutPoint(tx1b_txid, 0))] tx2.vout = tx1a.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) def test_new_unconfirmed_inputs(self): """Replacements that add new unconfirmed inputs are rejected""" confirmed_utxo = make_utxo(self.nodes[0], int(1.1*COIN)) unconfirmed_utxo = make_utxo(self.nodes[0], int(0.1*COIN), False) tx1 = CTransaction() tx1.vin = [CTxIn(confirmed_utxo)] tx1.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1_hex = txToHex(tx1) tx1_txid = self.nodes[0].sendrawtransaction(tx1_hex, True) tx2 = CTransaction() tx2.vin = [CTxIn(confirmed_utxo), CTxIn(unconfirmed_utxo)] tx2.vout = tx1.vout tx2_hex = txToHex(tx2) try: tx2_txid = self.nodes[0].sendrawtransaction(tx2_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) def test_too_many_replacements(self): """Replacements that evict too many transactions are rejected""" # Try directly replacing more than MAX_REPLACEMENT_LIMIT # transactions # Start by creating a single transaction with many outputs initial_nValue = 10*COIN utxo = make_utxo(self.nodes[0], initial_nValue) fee = int(0.0001*COIN) split_value = int((initial_nValue-fee)/(MAX_REPLACEMENT_LIMIT+1)) actual_fee = initial_nValue - split_value*(MAX_REPLACEMENT_LIMIT+1) outputs = [] for i in range(MAX_REPLACEMENT_LIMIT+1): outputs.append(CTxOut(split_value, CScript([1]))) splitting_tx = CTransaction() splitting_tx.vin = [CTxIn(utxo, nSequence=0)] splitting_tx.vout = outputs splitting_tx_hex = txToHex(splitting_tx) txid = self.nodes[0].sendrawtransaction(splitting_tx_hex, True) txid = int(txid, 16) # Now spend each of those outputs individually for i in range(MAX_REPLACEMENT_LIMIT+1): tx_i = CTransaction() tx_i.vin = [CTxIn(COutPoint(txid, i), nSequence=0)] tx_i.vout = [CTxOut(split_value-fee, CScript([b'a']))] tx_i_hex = txToHex(tx_i) self.nodes[0].sendrawtransaction(tx_i_hex, True) # Now create doublespend of the whole lot; should fail. # Need a big enough fee to cover all spending transactions and have # a higher fee rate double_spend_value = (split_value-100*fee)*(MAX_REPLACEMENT_LIMIT+1) inputs = [] for i in range(MAX_REPLACEMENT_LIMIT+1): inputs.append(CTxIn(COutPoint(txid, i), nSequence=0)) double_tx = CTransaction() double_tx.vin = inputs double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = txToHex(double_tx) try: self.nodes[0].sendrawtransaction(double_tx_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) assert_equal("too many potential replacements" in exp.error['message'], True) else: assert(False) # If we remove an input, it should pass double_tx = CTransaction() double_tx.vin = inputs[0:-1] double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = txToHex(double_tx) self.nodes[0].sendrawtransaction(double_tx_hex, True) def test_opt_in(self): """ Replacing should only work if orig tx opted in """ tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # Create a non-opting in transaction tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0xffffffff)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Shouldn't be able to double-spend tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx1b_hex = txToHex(tx1b) try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: print tx1b_txid assert(False) tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # Create a different non-opting in transaction tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0xfffffffe)] tx2a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx2a_hex = txToHex(tx2a) tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, True) # Still shouldn't be able to double-spend tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2b.vout = [CTxOut(int(0.9*COIN), CScript([b'b']))] tx2b_hex = txToHex(tx2b) try: tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Now create a new transaction that spends from tx1a and tx2a # opt-in on one of the inputs # Transaction should be replaceable on either input tx1a_txid = int(tx1a_txid, 16) tx2a_txid = int(tx2a_txid, 16) tx3a = CTransaction() tx3a.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0xffffffff), CTxIn(COutPoint(tx2a_txid, 0), nSequence=0xfffffffd)] tx3a.vout = [CTxOut(int(0.9*COIN), CScript([b'c'])), CTxOut(int(0.9*COIN), CScript([b'd']))] tx3a_hex = txToHex(tx3a) self.nodes[0].sendrawtransaction(tx3a_hex, True) tx3b = CTransaction() tx3b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)] tx3b.vout = [CTxOut(int(0.5*COIN), CScript([b'e']))] tx3b_hex = txToHex(tx3b) tx3c = CTransaction() tx3c.vin = [CTxIn(COutPoint(tx2a_txid, 0), nSequence=0)] tx3c.vout = [CTxOut(int(0.5*COIN), CScript([b'f']))] tx3c_hex = txToHex(tx3c) self.nodes[0].sendrawtransaction(tx3b_hex, True) # If tx3b was accepted, tx3c won't look like a replacement, # but make sure it is accepted anyway self.nodes[0].sendrawtransaction(tx3c_hex, True) def test_prioritised_transactions(self): # Ensure that fee deltas used via prioritisetransaction are # correctly used by replacement logic # 1. Check that feeperkb uses modified fees tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Higher fee, but the actual fee per KB is much lower. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*740000]))] tx1b_hex = txToHex(tx1b) # Verify tx1b cannot replace tx1a. try: tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Use prioritisetransaction to set tx1a's fee to 0. self.nodes[0].prioritisetransaction(tx1a_txid, 0, int(-0.1*COIN)) # Now tx1b should be able to replace tx1a tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) assert(tx1b_txid in self.nodes[0].getrawmempool()) # 2. Check that absolute fee checks use modified fee. tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2a.vout = [CTxOut(1*COIN, CScript([b'a']))] tx2a_hex = txToHex(tx2a) tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, True) # Lower fee, but we'll prioritise it tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2b.vout = [CTxOut(int(1.01*COIN), CScript([b'a']))] tx2b.rehash() tx2b_hex = txToHex(tx2b) # Verify tx2b cannot replace tx2a. try: tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) except JSONRPCException as exp: assert_equal(exp.error['code'], -26) else: assert(False) # Now prioritise tx2b to have a higher modified fee self.nodes[0].prioritisetransaction(tx2b.hash, 0, int(0.1*COIN)) # tx2b should now be accepted tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) assert(tx2b_txid in self.nodes[0].getrawmempool()) if __name__ == '__main__': ReplaceByFeeTest().main()
37.405451
105
0.5999
4ba4ada7a8c4e582c2de1d2c8a1305b8826c5d4a
32,422
py
Python
sdk/storage/azure-storage-blob/azure/storage/blob/_generated/aio/operations_async/_append_blob_operations_async.py
kushan2018/azure-sdk-for-python
08a9296207281f4e90e23cf7a30173863accc867
[ "MIT" ]
null
null
null
sdk/storage/azure-storage-blob/azure/storage/blob/_generated/aio/operations_async/_append_blob_operations_async.py
kushan2018/azure-sdk-for-python
08a9296207281f4e90e23cf7a30173863accc867
[ "MIT" ]
1
2020-03-06T05:57:16.000Z
2020-03-06T05:57:16.000Z
sdk/storage/azure-storage-blob/azure/storage/blob/_generated/aio/operations_async/_append_blob_operations_async.py
kushan2018/azure-sdk-for-python
08a9296207281f4e90e23cf7a30173863accc867
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from azure.core.exceptions import map_error from ... import models class AppendBlobOperations: """AppendBlobOperations async operations. You should not instantiate directly this class, but create a Client instance that will create it for you and attach it as attribute. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar x_ms_blob_type: Specifies the type of blob to create: block blob, page blob, or append blob. Constant value: "AppendBlob". :ivar comp: . Constant value: "appendblock". """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config self.x_ms_blob_type = "AppendBlob" self.comp = "appendblock" async def create(self, content_length, timeout=None, metadata=None, request_id=None, blob_http_headers=None, lease_access_conditions=None, cpk_info=None, modified_access_conditions=None, *, cls=None, **kwargs): """The Create Append Blob operation creates a new append blob. :param content_length: The length of the request. :type content_length: long :param timeout: The timeout parameter is expressed in seconds. For more information, see <a href="https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/setting-timeouts-for-blob-service-operations">Setting Timeouts for Blob Service Operations.</a> :type timeout: int :param metadata: Optional. Specifies a user-defined name-value pair associated with the blob. If no name-value pairs are specified, the operation will copy the metadata from the source blob or file to the destination blob. If one or more name-value pairs are specified, the destination blob is created with the specified metadata, and metadata is not copied from the source blob or file. Note that beginning with version 2009-09-19, metadata names must adhere to the naming rules for C# identifiers. See Naming and Referencing Containers, Blobs, and Metadata for more information. :type metadata: str :param request_id: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id: str :param blob_http_headers: Additional parameters for the operation :type blob_http_headers: ~azure.storage.blob.models.BlobHTTPHeaders :param lease_access_conditions: Additional parameters for the operation :type lease_access_conditions: ~azure.storage.blob.models.LeaseAccessConditions :param cpk_info: Additional parameters for the operation :type cpk_info: ~azure.storage.blob.models.CpkInfo :param modified_access_conditions: Additional parameters for the operation :type modified_access_conditions: ~azure.storage.blob.models.ModifiedAccessConditions :param callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises: :class:`StorageErrorException<azure.storage.blob.models.StorageErrorException>` """ error_map = kwargs.pop('error_map', None) blob_content_type = None if blob_http_headers is not None: blob_content_type = blob_http_headers.blob_content_type blob_content_encoding = None if blob_http_headers is not None: blob_content_encoding = blob_http_headers.blob_content_encoding blob_content_language = None if blob_http_headers is not None: blob_content_language = blob_http_headers.blob_content_language blob_content_md5 = None if blob_http_headers is not None: blob_content_md5 = blob_http_headers.blob_content_md5 blob_cache_control = None if blob_http_headers is not None: blob_cache_control = blob_http_headers.blob_cache_control blob_content_disposition = None if blob_http_headers is not None: blob_content_disposition = blob_http_headers.blob_content_disposition lease_id = None if lease_access_conditions is not None: lease_id = lease_access_conditions.lease_id encryption_key = None if cpk_info is not None: encryption_key = cpk_info.encryption_key encryption_key_sha256 = None if cpk_info is not None: encryption_key_sha256 = cpk_info.encryption_key_sha256 encryption_algorithm = None if cpk_info is not None: encryption_algorithm = cpk_info.encryption_algorithm if_modified_since = None if modified_access_conditions is not None: if_modified_since = modified_access_conditions.if_modified_since if_unmodified_since = None if modified_access_conditions is not None: if_unmodified_since = modified_access_conditions.if_unmodified_since if_match = None if modified_access_conditions is not None: if_match = modified_access_conditions.if_match if_none_match = None if modified_access_conditions is not None: if_none_match = modified_access_conditions.if_none_match # Construct URL url = self.create.metadata['url'] path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True) } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} header_parameters['Content-Length'] = self._serialize.header("content_length", content_length, 'long') if metadata is not None: header_parameters['x-ms-meta'] = self._serialize.header("metadata", metadata, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id", request_id, 'str') header_parameters['x-ms-blob-type'] = self._serialize.header("self.x_ms_blob_type", self.x_ms_blob_type, 'str') if blob_content_type is not None: header_parameters['x-ms-blob-content-type'] = self._serialize.header("blob_content_type", blob_content_type, 'str') if blob_content_encoding is not None: header_parameters['x-ms-blob-content-encoding'] = self._serialize.header("blob_content_encoding", blob_content_encoding, 'str') if blob_content_language is not None: header_parameters['x-ms-blob-content-language'] = self._serialize.header("blob_content_language", blob_content_language, 'str') if blob_content_md5 is not None: header_parameters['x-ms-blob-content-md5'] = self._serialize.header("blob_content_md5", blob_content_md5, 'bytearray') if blob_cache_control is not None: header_parameters['x-ms-blob-cache-control'] = self._serialize.header("blob_cache_control", blob_cache_control, 'str') if blob_content_disposition is not None: header_parameters['x-ms-blob-content-disposition'] = self._serialize.header("blob_content_disposition", blob_content_disposition, 'str') if lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", lease_id, 'str') if encryption_key is not None: header_parameters['x-ms-encryption-key'] = self._serialize.header("encryption_key", encryption_key, 'str') if encryption_key_sha256 is not None: header_parameters['x-ms-encryption-key-sha256'] = self._serialize.header("encryption_key_sha256", encryption_key_sha256, 'str') if encryption_algorithm is not None: header_parameters['x-ms-encryption-algorithm'] = self._serialize.header("encryption_algorithm", encryption_algorithm, 'EncryptionAlgorithmType') if if_modified_since is not None: header_parameters['If-Modified-Since'] = self._serialize.header("if_modified_since", if_modified_since, 'rfc-1123') if if_unmodified_since is not None: header_parameters['If-Unmodified-Since'] = self._serialize.header("if_unmodified_since", if_unmodified_since, 'rfc-1123') if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') if if_none_match is not None: header_parameters['If-None-Match'] = self._serialize.header("if_none_match", if_none_match, 'str') # Construct and send request request = self._client.put(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise models.StorageErrorException(response, self._deserialize) if cls: response_headers = { 'ETag': self._deserialize('str', response.headers.get('ETag')), 'Last-Modified': self._deserialize('rfc-1123', response.headers.get('Last-Modified')), 'Content-MD5': self._deserialize('bytearray', response.headers.get('Content-MD5')), 'x-ms-client-request-id': self._deserialize('str', response.headers.get('x-ms-client-request-id')), 'x-ms-request-id': self._deserialize('str', response.headers.get('x-ms-request-id')), 'x-ms-version': self._deserialize('str', response.headers.get('x-ms-version')), 'Date': self._deserialize('rfc-1123', response.headers.get('Date')), 'x-ms-request-server-encrypted': self._deserialize('bool', response.headers.get('x-ms-request-server-encrypted')), 'x-ms-encryption-key-sha256': self._deserialize('str', response.headers.get('x-ms-encryption-key-sha256')), 'x-ms-error-code': self._deserialize('str', response.headers.get('x-ms-error-code')), } return cls(response, None, response_headers) create.metadata = {'url': '/{containerName}/{blob}'} async def append_block(self, body, content_length, timeout=None, transactional_content_md5=None, transactional_content_crc64=None, request_id=None, lease_access_conditions=None, append_position_access_conditions=None, cpk_info=None, modified_access_conditions=None, *, cls=None, **kwargs): """The Append Block operation commits a new block of data to the end of an existing append blob. The Append Block operation is permitted only if the blob was created with x-ms-blob-type set to AppendBlob. Append Block is supported only on version 2015-02-21 version or later. :param body: Initial data :type body: Generator :param content_length: The length of the request. :type content_length: long :param timeout: The timeout parameter is expressed in seconds. For more information, see <a href="https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/setting-timeouts-for-blob-service-operations">Setting Timeouts for Blob Service Operations.</a> :type timeout: int :param transactional_content_md5: Specify the transactional md5 for the body, to be validated by the service. :type transactional_content_md5: bytearray :param transactional_content_crc64: Specify the transactional crc64 for the body, to be validated by the service. :type transactional_content_crc64: bytearray :param request_id: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id: str :param lease_access_conditions: Additional parameters for the operation :type lease_access_conditions: ~azure.storage.blob.models.LeaseAccessConditions :param append_position_access_conditions: Additional parameters for the operation :type append_position_access_conditions: ~azure.storage.blob.models.AppendPositionAccessConditions :param cpk_info: Additional parameters for the operation :type cpk_info: ~azure.storage.blob.models.CpkInfo :param modified_access_conditions: Additional parameters for the operation :type modified_access_conditions: ~azure.storage.blob.models.ModifiedAccessConditions :param callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises: :class:`StorageErrorException<azure.storage.blob.models.StorageErrorException>` """ error_map = kwargs.pop('error_map', None) lease_id = None if lease_access_conditions is not None: lease_id = lease_access_conditions.lease_id max_size = None if append_position_access_conditions is not None: max_size = append_position_access_conditions.max_size append_position = None if append_position_access_conditions is not None: append_position = append_position_access_conditions.append_position encryption_key = None if cpk_info is not None: encryption_key = cpk_info.encryption_key encryption_key_sha256 = None if cpk_info is not None: encryption_key_sha256 = cpk_info.encryption_key_sha256 encryption_algorithm = None if cpk_info is not None: encryption_algorithm = cpk_info.encryption_algorithm if_modified_since = None if modified_access_conditions is not None: if_modified_since = modified_access_conditions.if_modified_since if_unmodified_since = None if modified_access_conditions is not None: if_unmodified_since = modified_access_conditions.if_unmodified_since if_match = None if modified_access_conditions is not None: if_match = modified_access_conditions.if_match if_none_match = None if modified_access_conditions is not None: if_none_match = modified_access_conditions.if_none_match # Construct URL url = self.append_block.metadata['url'] path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True) } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) query_parameters['comp'] = self._serialize.query("self.comp", self.comp, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/octet-stream' header_parameters['Content-Length'] = self._serialize.header("content_length", content_length, 'long') if transactional_content_md5 is not None: header_parameters['Content-MD5'] = self._serialize.header("transactional_content_md5", transactional_content_md5, 'bytearray') if transactional_content_crc64 is not None: header_parameters['x-ms-content-crc64'] = self._serialize.header("transactional_content_crc64", transactional_content_crc64, 'bytearray') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id", request_id, 'str') if lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", lease_id, 'str') if max_size is not None: header_parameters['x-ms-blob-condition-maxsize'] = self._serialize.header("max_size", max_size, 'long') if append_position is not None: header_parameters['x-ms-blob-condition-appendpos'] = self._serialize.header("append_position", append_position, 'long') if encryption_key is not None: header_parameters['x-ms-encryption-key'] = self._serialize.header("encryption_key", encryption_key, 'str') if encryption_key_sha256 is not None: header_parameters['x-ms-encryption-key-sha256'] = self._serialize.header("encryption_key_sha256", encryption_key_sha256, 'str') if encryption_algorithm is not None: header_parameters['x-ms-encryption-algorithm'] = self._serialize.header("encryption_algorithm", encryption_algorithm, 'EncryptionAlgorithmType') if if_modified_since is not None: header_parameters['If-Modified-Since'] = self._serialize.header("if_modified_since", if_modified_since, 'rfc-1123') if if_unmodified_since is not None: header_parameters['If-Unmodified-Since'] = self._serialize.header("if_unmodified_since", if_unmodified_since, 'rfc-1123') if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') if if_none_match is not None: header_parameters['If-None-Match'] = self._serialize.header("if_none_match", if_none_match, 'str') # Construct body # Construct and send request request = self._client.put(url, query_parameters, header_parameters, stream_content=body) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise models.StorageErrorException(response, self._deserialize) if cls: response_headers = { 'ETag': self._deserialize('str', response.headers.get('ETag')), 'Last-Modified': self._deserialize('rfc-1123', response.headers.get('Last-Modified')), 'Content-MD5': self._deserialize('bytearray', response.headers.get('Content-MD5')), 'x-ms-content-crc64': self._deserialize('bytearray', response.headers.get('x-ms-content-crc64')), 'x-ms-client-request-id': self._deserialize('str', response.headers.get('x-ms-client-request-id')), 'x-ms-request-id': self._deserialize('str', response.headers.get('x-ms-request-id')), 'x-ms-version': self._deserialize('str', response.headers.get('x-ms-version')), 'Date': self._deserialize('rfc-1123', response.headers.get('Date')), 'x-ms-blob-append-offset': self._deserialize('str', response.headers.get('x-ms-blob-append-offset')), 'x-ms-blob-committed-block-count': self._deserialize('int', response.headers.get('x-ms-blob-committed-block-count')), 'x-ms-request-server-encrypted': self._deserialize('bool', response.headers.get('x-ms-request-server-encrypted')), 'x-ms-encryption-key-sha256': self._deserialize('str', response.headers.get('x-ms-encryption-key-sha256')), 'x-ms-error-code': self._deserialize('str', response.headers.get('x-ms-error-code')), } return cls(response, None, response_headers) append_block.metadata = {'url': '/{containerName}/{blob}'} async def append_block_from_url(self, source_url, content_length, source_range=None, source_content_md5=None, source_contentcrc64=None, timeout=None, transactional_content_md5=None, request_id=None, cpk_info=None, lease_access_conditions=None, append_position_access_conditions=None, modified_access_conditions=None, source_modified_access_conditions=None, *, cls=None, **kwargs): """The Append Block operation commits a new block of data to the end of an existing append blob where the contents are read from a source url. The Append Block operation is permitted only if the blob was created with x-ms-blob-type set to AppendBlob. Append Block is supported only on version 2015-02-21 version or later. :param source_url: Specify a URL to the copy source. :type source_url: str :param content_length: The length of the request. :type content_length: long :param source_range: Bytes of source data in the specified range. :type source_range: str :param source_content_md5: Specify the md5 calculated for the range of bytes that must be read from the copy source. :type source_content_md5: bytearray :param source_contentcrc64: Specify the crc64 calculated for the range of bytes that must be read from the copy source. :type source_contentcrc64: bytearray :param timeout: The timeout parameter is expressed in seconds. For more information, see <a href="https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/setting-timeouts-for-blob-service-operations">Setting Timeouts for Blob Service Operations.</a> :type timeout: int :param transactional_content_md5: Specify the transactional md5 for the body, to be validated by the service. :type transactional_content_md5: bytearray :param request_id: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id: str :param cpk_info: Additional parameters for the operation :type cpk_info: ~azure.storage.blob.models.CpkInfo :param lease_access_conditions: Additional parameters for the operation :type lease_access_conditions: ~azure.storage.blob.models.LeaseAccessConditions :param append_position_access_conditions: Additional parameters for the operation :type append_position_access_conditions: ~azure.storage.blob.models.AppendPositionAccessConditions :param modified_access_conditions: Additional parameters for the operation :type modified_access_conditions: ~azure.storage.blob.models.ModifiedAccessConditions :param source_modified_access_conditions: Additional parameters for the operation :type source_modified_access_conditions: ~azure.storage.blob.models.SourceModifiedAccessConditions :param callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises: :class:`StorageErrorException<azure.storage.blob.models.StorageErrorException>` """ error_map = kwargs.pop('error_map', None) encryption_key = None if cpk_info is not None: encryption_key = cpk_info.encryption_key encryption_key_sha256 = None if cpk_info is not None: encryption_key_sha256 = cpk_info.encryption_key_sha256 encryption_algorithm = None if cpk_info is not None: encryption_algorithm = cpk_info.encryption_algorithm lease_id = None if lease_access_conditions is not None: lease_id = lease_access_conditions.lease_id max_size = None if append_position_access_conditions is not None: max_size = append_position_access_conditions.max_size append_position = None if append_position_access_conditions is not None: append_position = append_position_access_conditions.append_position if_modified_since = None if modified_access_conditions is not None: if_modified_since = modified_access_conditions.if_modified_since if_unmodified_since = None if modified_access_conditions is not None: if_unmodified_since = modified_access_conditions.if_unmodified_since if_match = None if modified_access_conditions is not None: if_match = modified_access_conditions.if_match if_none_match = None if modified_access_conditions is not None: if_none_match = modified_access_conditions.if_none_match source_if_modified_since = None if source_modified_access_conditions is not None: source_if_modified_since = source_modified_access_conditions.source_if_modified_since source_if_unmodified_since = None if source_modified_access_conditions is not None: source_if_unmodified_since = source_modified_access_conditions.source_if_unmodified_since source_if_match = None if source_modified_access_conditions is not None: source_if_match = source_modified_access_conditions.source_if_match source_if_none_match = None if source_modified_access_conditions is not None: source_if_none_match = source_modified_access_conditions.source_if_none_match # Construct URL url = self.append_block_from_url.metadata['url'] path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True) } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) query_parameters['comp'] = self._serialize.query("self.comp", self.comp, 'str') # Construct headers header_parameters = {} header_parameters['x-ms-copy-source'] = self._serialize.header("source_url", source_url, 'str') if source_range is not None: header_parameters['x-ms-source-range'] = self._serialize.header("source_range", source_range, 'str') if source_content_md5 is not None: header_parameters['x-ms-source-content-md5'] = self._serialize.header("source_content_md5", source_content_md5, 'bytearray') if source_contentcrc64 is not None: header_parameters['x-ms-source-content-crc64'] = self._serialize.header("source_contentcrc64", source_contentcrc64, 'bytearray') header_parameters['Content-Length'] = self._serialize.header("content_length", content_length, 'long') if transactional_content_md5 is not None: header_parameters['Content-MD5'] = self._serialize.header("transactional_content_md5", transactional_content_md5, 'bytearray') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id", request_id, 'str') if encryption_key is not None: header_parameters['x-ms-encryption-key'] = self._serialize.header("encryption_key", encryption_key, 'str') if encryption_key_sha256 is not None: header_parameters['x-ms-encryption-key-sha256'] = self._serialize.header("encryption_key_sha256", encryption_key_sha256, 'str') if encryption_algorithm is not None: header_parameters['x-ms-encryption-algorithm'] = self._serialize.header("encryption_algorithm", encryption_algorithm, 'EncryptionAlgorithmType') if lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", lease_id, 'str') if max_size is not None: header_parameters['x-ms-blob-condition-maxsize'] = self._serialize.header("max_size", max_size, 'long') if append_position is not None: header_parameters['x-ms-blob-condition-appendpos'] = self._serialize.header("append_position", append_position, 'long') if if_modified_since is not None: header_parameters['If-Modified-Since'] = self._serialize.header("if_modified_since", if_modified_since, 'rfc-1123') if if_unmodified_since is not None: header_parameters['If-Unmodified-Since'] = self._serialize.header("if_unmodified_since", if_unmodified_since, 'rfc-1123') if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') if if_none_match is not None: header_parameters['If-None-Match'] = self._serialize.header("if_none_match", if_none_match, 'str') if source_if_modified_since is not None: header_parameters['x-ms-source-if-modified-since'] = self._serialize.header("source_if_modified_since", source_if_modified_since, 'rfc-1123') if source_if_unmodified_since is not None: header_parameters['x-ms-source-if-unmodified-since'] = self._serialize.header("source_if_unmodified_since", source_if_unmodified_since, 'rfc-1123') if source_if_match is not None: header_parameters['x-ms-source-if-match'] = self._serialize.header("source_if_match", source_if_match, 'str') if source_if_none_match is not None: header_parameters['x-ms-source-if-none-match'] = self._serialize.header("source_if_none_match", source_if_none_match, 'str') # Construct and send request request = self._client.put(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise models.StorageErrorException(response, self._deserialize) if cls: response_headers = { 'ETag': self._deserialize('str', response.headers.get('ETag')), 'Last-Modified': self._deserialize('rfc-1123', response.headers.get('Last-Modified')), 'Content-MD5': self._deserialize('bytearray', response.headers.get('Content-MD5')), 'x-ms-content-crc64': self._deserialize('bytearray', response.headers.get('x-ms-content-crc64')), 'x-ms-request-id': self._deserialize('str', response.headers.get('x-ms-request-id')), 'x-ms-version': self._deserialize('str', response.headers.get('x-ms-version')), 'Date': self._deserialize('rfc-1123', response.headers.get('Date')), 'x-ms-blob-append-offset': self._deserialize('str', response.headers.get('x-ms-blob-append-offset')), 'x-ms-blob-committed-block-count': self._deserialize('int', response.headers.get('x-ms-blob-committed-block-count')), 'x-ms-encryption-key-sha256': self._deserialize('str', response.headers.get('x-ms-encryption-key-sha256')), 'x-ms-error-code': self._deserialize('str', response.headers.get('x-ms-error-code')), } return cls(response, None, response_headers) append_block_from_url.metadata = {'url': '/{containerName}/{blob}'}
60.152134
384
0.690426
74c9a12db05d3ffa65f01dcef3dc71bc26e24d14
5,439
py
Python
sanaviron/src/3rd/pycha/tests/pie.py
StetHD/sanaviron
dcb5d3ac6725771942e669a29961ba3f811b7fd4
[ "Apache-2.0" ]
null
null
null
sanaviron/src/3rd/pycha/tests/pie.py
StetHD/sanaviron
dcb5d3ac6725771942e669a29961ba3f811b7fd4
[ "Apache-2.0" ]
null
null
null
sanaviron/src/3rd/pycha/tests/pie.py
StetHD/sanaviron
dcb5d3ac6725771942e669a29961ba3f811b7fd4
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2007-2008 by Lorenzo Gil Sanchez <lorenzo.gil.sanchez@gmail.com> # # This file is part of PyCha. # # PyCha is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PyCha is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with PyCha. If not, see <http://www.gnu.org/licenses/>. import math import unittest import cairo import pycha.pie class SliceTests(unittest.TestCase): def test_init(self): slice = pycha.pie.Slice('test', 3 / 5.0, 0, 4, 1 / 4.0) self.assertEqual(slice.name, 'test') self.assertEqual(slice.fraction, 3 / 5.0) self.assertEqual(slice.xval, 0) self.assertEqual(slice.yval, 4) self.assertEqual(slice.startAngle, math.pi / 2) self.assertEqual(slice.endAngle, 1.7 * math.pi) def test_isBigEnough(self): slice = pycha.pie.Slice('test 1', 3 / 5.0, 0, 4, 1 / 4.0) self.assertEqual(slice.isBigEnough(), True) slice = pycha.pie.Slice('test 2', 1 / 10000.0, 0, 4, 1 / 4.0) self.assertEqual(slice.isBigEnough(), False) def test_normalisedAngle(self): # First quadrant slice = pycha.pie.Slice('test 1', 1 / 6.0, 0, 4, 0) self.assertAlmostEqual(slice.getNormalisedAngle(), 1 / 6.0 * math.pi, 4) # Second quadrant slice = pycha.pie.Slice('test 1', 1 / 6.0, 0, 4, 1 / 4.0) self.assertAlmostEqual(slice.getNormalisedAngle(), 2 / 3.0 * math.pi, 4) # Third quadrant slice = pycha.pie.Slice('test 1', 1 / 6.0, 0, 4, 1 / 2.0) self.assertAlmostEqual(slice.getNormalisedAngle(), 7 / 6.0 * math.pi, 4) # Fouth quadrant slice = pycha.pie.Slice('test 1', 1 / 6.0, 0, 4, 3 / 4.0) self.assertAlmostEqual(slice.getNormalisedAngle(), 10 / 6.0 * math.pi, 4) # Bigger than a circle slice = pycha.pie.Slice('test 1', 2 / 3.0, 0, 4, 3 / 4.0) self.assertAlmostEqual(slice.getNormalisedAngle(), 1 / 6.0 * math.pi, 4) # Negative angle slice = pycha.pie.Slice('test 1', -1 / 6.0, 0, 4, 0) self.assertAlmostEqual(slice.getNormalisedAngle(), 11 / 6.0 * math.pi, 4) class PieTests(unittest.TestCase): def test_init(self): ch = pycha.pie.PieChart(None) self.assertEqual(ch.slices, []) self.assertEqual(ch.centerx, 0) self.assertEqual(ch.centery, 0) self.assertEqual(ch.radius, 0) def test_updateChart(self): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 500, 500) dataset = ( ('dataset1', ([0, 10],)), ('dataset2', ([0, 20],)), ('dataset3', ([0, 70],)), ) opt = {'padding': {'left': 0, 'right': 0, 'top': 0, 'bottom': 0}, 'pieRadius': 0.5} ch = pycha.pie.PieChart(surface, opt) ch.addDataset(dataset) ch._updateXY() ch._updateChart() self.assertEqual(ch.centerx, 250) self.assertEqual(ch.centery, 250) self.assertEqual(ch.radius, 250) slices = ( pycha.pie.Slice('dataset1', 0.1, 0, 10, 0), pycha.pie.Slice('dataset2', 0.2, 1, 20, 0.1), pycha.pie.Slice('dataset3', 0.7, 2, 70, 0.3), ) for i, slice in enumerate(slices): s1, s2 = ch.slices[i], slice self.assertEqual(s1.name, s2.name) self.assertAlmostEqual(s1.fraction, s2.fraction, 4) self.assertAlmostEqual(s1.startAngle, s2.startAngle, 4) self.assertAlmostEqual(s1.endAngle, s2.endAngle, 4) self.assertEqual(s1.xval, s2.xval) self.assertEqual(s1.yval, s2.yval) def test_updateTicks(self): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 500, 500) dataset = ( ('dataset1', ([0, 10],)), ('dataset2', ([0, 20],)), ('dataset3', ([0, 70],)), ) opt = {'padding': {'left': 0, 'right': 0, 'top': 0, 'bottom': 0}, 'pieRadius': 0.5} ch = pycha.pie.PieChart(surface, opt) ch.addDataset(dataset) ch._updateXY() ch._updateChart() ch._updateTicks() self.assertEqual(ch.xticks, [(0, 'dataset1 (10.0%)'), (1, 'dataset2 (20.0%)'), (2, 'dataset3 (70.0%)')]) ticks = [{'v': 0, 'label': 'First dataset'}, {'v': 1, 'label': 'Second dataset'}, {'v': 2, 'label': 'Third dataset'}] opt = {'axis': {'x': {'ticks': ticks}, }, } ch = pycha.pie.PieChart(surface, opt) ch.addDataset(dataset) ch._updateXY() ch._updateChart() ch._updateTicks() self.assertEqual(ch.xticks, [(0, 'First dataset (10.0%)'), (1, 'Second dataset (20.0%)'), (2, 'Third dataset (70.0%)')]) def test_suite(): return unittest.TestSuite(( unittest.makeSuite(SliceTests), unittest.makeSuite(PieTests), )) if __name__ == '__main__': unittest.main(defaultTest='test_suite')
36.75
81
0.578415
1d9d88b663109da891d5283e0a8aedbe27592fcb
4,333
py
Python
notebooks/src/combined_nn.py
arunparayatham/voxceleb_enrichment_age_gender
f13c06f852178dbd543caedd53a9909052a5fdbc
[ "MIT" ]
12
2021-04-06T13:45:40.000Z
2022-03-24T18:03:03.000Z
notebooks/src/combined_nn.py
arunparayatham/voxceleb_enrichment_age_gender
f13c06f852178dbd543caedd53a9909052a5fdbc
[ "MIT" ]
1
2021-10-05T10:18:22.000Z
2022-03-29T12:24:49.000Z
notebooks/src/combined_nn.py
arunparayatham/voxceleb_enrichment_age_gender
f13c06f852178dbd543caedd53a9909052a5fdbc
[ "MIT" ]
4
2021-04-02T06:20:00.000Z
2022-03-15T05:37:21.000Z
from tensorflow.keras.layers import Conv1D, Conv2D, MaxPooling1D, MaxPooling2D, Flatten, BatchNormalization, Dense, Dropout, Input, LSTM, GlobalAveragePooling1D, GlobalAveragePooling2D, AveragePooling1D from tensorflow.keras import Sequential from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.applications import DenseNet121,ResNet50, ResNet101V2 from tensorflow.keras.optimizers import SGD, Adam from tensorflow.keras.regularizers import l2, l1 from tensorflow.python.keras import backend as K import sys sys.path.insert(1, '.') from src.utils_models import compile_model from tensorflow import Tensor from tensorflow.keras.layers import Input, Conv2D, ReLU, BatchNormalization,\ Add, AveragePooling2D, Flatten, Dense, LeakyReLU, ELU from tensorflow.keras.models import Model import tensorflow def lstm_cnn(input_shape, config): model = Sequential() model.add(LSTM( config['lstm_cells'], return_sequences=True, input_shape=input_shape, kernel_initializer=config['kernel_initializer'] )) model.add(LSTM( config['lstm_cells'], return_sequences=True, kernel_initializer=config['kernel_initializer'] )) model.add(Conv1D(config['filter_n'], kernel_size=config['kernel_size'], activation='relu', padding='same', strides=config['strides'], kernel_initializer=config['kernel_initializer'], kernel_regularizer=l2(config['l_reg']) )) if config['batch_norm_everywhere']: model.add(BatchNormalization()) model.add(Conv1D(2 * config['filter_n'], kernel_size=config['kernel_size'], activation='relu', padding='same', strides=config['strides'], kernel_initializer=config['kernel_initializer'], kernel_regularizer=l2(config['l_reg']) )) if config['batch_norm_everywhere']: model.add(BatchNormalization()) model.add(MaxPooling1D(pool_size=(config['pool_size'][0]))) model.add(Flatten()) model.add(Dense( config['dense_n'], kernel_initializer=config['kernel_initializer'], activation="relu" )) model.add(Dense( 1, kernel_initializer=config['kernel_initializer'] )) compile_model(model, config) model.summary() return model def cnn_lstm(input_shape, config): model = Sequential() model.add(Conv1D(config['filter_n'], kernel_size=config['kernel_size'], activation='relu', padding='same', strides=config['strides'], kernel_initializer=config['kernel_initializer'], kernel_regularizer=l2(config['l_reg']), input_shape=input_shape )) if config['batch_norm_everywhere']: model.add(BatchNormalization()) model.add(Conv1D(2 * config['filter_n'], kernel_size=config['kernel_size'], activation='relu', padding='same', strides=config['strides'], kernel_initializer=config['kernel_initializer'], kernel_regularizer=l2(config['l_reg']) )) if config['batch_norm_everywhere']: model.add(BatchNormalization()) model.add(MaxPooling1D(pool_size=(config['pool_size'][0]))) model.add(LSTM( config['lstm_cells'], return_sequences=True, input_shape=input_shape, kernel_initializer=config['kernel_initializer'] )) model.add(LSTM( config['lstm_cells'], return_sequences=False, kernel_initializer=config['kernel_initializer'] )) model.add(Flatten()) model.add(Dense( config['dense_n'], kernel_initializer=config['kernel_initializer'], activation="relu" )) model.add(Dense( 1, kernel_initializer=config['kernel_initializer'] )) compile_model(model, config) model.summary() return model
36.108333
202
0.60697
3e62e8ab90995c63c9b6014302f136774284ce7a
600
py
Python
math/pascal.py
jcarreiro/jmc-python
979c67ca489d4e80e6be96d23f8bcecacabbee59
[ "MIT" ]
null
null
null
math/pascal.py
jcarreiro/jmc-python
979c67ca489d4e80e6be96d23f8bcecacabbee59
[ "MIT" ]
null
null
null
math/pascal.py
jcarreiro/jmc-python
979c67ca489d4e80e6be96d23f8bcecacabbee59
[ "MIT" ]
null
null
null
# Generates Pascal's Triangle # # 1 # 1 1 # 1 2 1 # 1 3 3 1 # # etc... from numeric import * # This is an iterative solution. def pascals_triangle(n): for r in range(0, n): for c in range(0, r+1): print n_choose_k(r, c), print # This is a tree recursive solution. # Each node t_r,c = t_r-1,c-1 + t_r-1,c. def t(r, c): if c == 0 or c == r: return 1 return t(r - 1, c - 1) + t(r - 1, c) def pascals_triangle_tree(n): for r in range(0, n): for c in range(0, r+1): print t(r, c), print
19.354839
40
0.5
1fd13242cf2b9251931fdaeaae321df99d3af874
1,274
py
Python
tasks/task5/5_3.py
eweilow/si1336-simulation-and-modeling
98a8f4e8067a82584e8d6e4aa3b8c7bee6b0dc2b
[ "MIT" ]
null
null
null
tasks/task5/5_3.py
eweilow/si1336-simulation-and-modeling
98a8f4e8067a82584e8d6e4aa3b8c7bee6b0dc2b
[ "MIT" ]
null
null
null
tasks/task5/5_3.py
eweilow/si1336-simulation-and-modeling
98a8f4e8067a82584e8d6e4aa3b8c7bee6b0dc2b
[ "MIT" ]
1
2020-11-05T08:07:06.000Z
2020-11-05T08:07:06.000Z
import matplotlib from matplotlib import patheffects import matplotlib.pyplot as plt import numpy as np import struct maxStepSizes = [] means = [] cVs = [] ratios = [] temperatures = [] averageDistances = [] structFormat = struct.Struct("dddddd") with open("./5_3/data.bin", "rb") as f: count, = struct.unpack("I", f.read(struct.calcsize("I"))) for i in range(count): maxStepSize, temperature, mean, cV, ratio, averageDistance, = structFormat.unpack_from( f.read(structFormat.size)) maxStepSizes.append(maxStepSize) temperatures.append(temperature) means.append(mean) cVs.append(cV) ratios.append(ratio) averageDistances.append(averageDistance) plt.xkcd() matplotlib.rcParams['path.effects'] = [ patheffects.withStroke(linewidth=0, foreground='w')] plt.figure() plt.semilogx(temperatures, averageDistances, linewidth=1) plt.xlabel("Temperature") plt.ylabel("Average particle distance") plt.savefig("./plots/5_3/acceptance.png", dpi=200, bbox_inches='tight') plt.figure() plt.plot(temperatures, averageDistances, linewidth=1) plt.xlim((0.2, 1.0)) plt.xlabel("Temperature") plt.ylabel("Average particle distance") plt.savefig("./plots/5_3/small_range.png", dpi=200, bbox_inches='tight')
27.106383
95
0.709576
7646dc35449c0e7099462a0fed2ca45427a5c577
940
py
Python
xsrc/nqbp/tests/workspace1/PkgA/scripts/example_preprocessing_base.py
johnttaylor/foxtail
86e4e1d19d5e8f9c1d1064cf0939f4bf62615400
[ "BSD-3-Clause" ]
null
null
null
xsrc/nqbp/tests/workspace1/PkgA/scripts/example_preprocessing_base.py
johnttaylor/foxtail
86e4e1d19d5e8f9c1d1064cf0939f4bf62615400
[ "BSD-3-Clause" ]
null
null
null
xsrc/nqbp/tests/workspace1/PkgA/scripts/example_preprocessing_base.py
johnttaylor/foxtail
86e4e1d19d5e8f9c1d1064cf0939f4bf62615400
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python3 #--------------------------------------------------------------------------- # This is example of the 'single instance' NQBP pre-processing script # where <arg7> <arg8> ... are project specific arguments passed to the # <preprocess-script.py> script when it is # executed. # Usage: # example_preprocessing_base <a1> <a2> <a3> <a4> <a5> <a6> <prjarg1> # # where: # <a1>: build|clean # <a2>: verbose|terse # <a3>: <workspace-dir> # <a4>: <package-dir> # <a5>: <project-dir> # <a6>: <current-dir> # <prjarg1>: <compiler> // mingw|mingw_64|vc12|etc. #--------------------------------------------------------------------------- # get definition of the Options structure import sys # Do stuff... print( "--> Example Pre-Processing Script" ) if (sys.argv[2] == 'verbose'): print( "= ECHO: " + ' '.join(sys.argv) )
34.814815
77
0.471277
d6c76e83d469c4705a5d79868b6a7b55ab6ce3dd
4,087
py
Python
driller/local_callback.py
xiaosatianyu/driller-y
cb83d8169de73b9ba05da416fc6076946c64e2d0
[ "BSD-2-Clause" ]
null
null
null
driller/local_callback.py
xiaosatianyu/driller-y
cb83d8169de73b9ba05da416fc6076946c64e2d0
[ "BSD-2-Clause" ]
null
null
null
driller/local_callback.py
xiaosatianyu/driller-y
cb83d8169de73b9ba05da416fc6076946c64e2d0
[ "BSD-2-Clause" ]
null
null
null
import os import sys import signal import logging import driller #pylint:disable=relative-import,unused-import import subprocess import multiprocessing l = logging.getLogger("local_callback") def _run_drill(drill, fuzz, _path_to_input_to_drill): _binary_path = fuzz.binary_path _fuzzer_out_dir = fuzz.out_dir _bitmap_path = os.path.join(_fuzzer_out_dir, 'fuzzer-master', "fuzz_bitmap") _timeout = drill._worker_timeout l.warning("starting drilling of %s, %s", os.path.basename(_binary_path), os.path.basename(_path_to_input_to_drill)) args = ( "timeout", "-k", str(_timeout+10), str(_timeout), sys.executable, os.path.abspath(__file__), _binary_path, _fuzzer_out_dir, _bitmap_path, _path_to_input_to_drill ) p = subprocess.Popen(args, stdout=subprocess.PIPE) print p.communicate() class LocalCallback(object): def __init__(self, num_workers=1, worker_timeout=10*60): self._already_drilled_inputs = set() self._num_workers = num_workers self._running_workers = [] self._worker_timeout = worker_timeout @staticmethod def _queue_files(fuzz, fuzzer='fuzzer-master'): ''' retrieve the current queue of inputs from a fuzzer :return: a list of strings which represent a fuzzer's queue ''' queue_path = os.path.join(fuzz.out_dir, fuzzer, 'queue') queue_files = filter(lambda x: x != ".state", os.listdir(queue_path)) queue_files = [os.path.join(queue_path, q) for q in queue_files] return queue_files def driller_callback(self, fuzz): l.warning("Driller stuck callback triggered!") # remove any workers that aren't running self._running_workers = [x for x in self._running_workers if x.is_alive()] # get the files in queue queue = self._queue_files(fuzz) #for i in range(1, fuzz.fuzz_id): # fname = "fuzzer-%d" % i # queue.extend(self.queue_files(fname)) # start drilling not_drilled = set(queue) - self._already_drilled_inputs if len(not_drilled) == 0: l.warning("no inputs left to drill") while len(self._running_workers) < self._num_workers and len(not_drilled) > 0: to_drill_path = list(not_drilled)[0] not_drilled.remove(to_drill_path) self._already_drilled_inputs.add(to_drill_path) proc = multiprocessing.Process(target=_run_drill, args=(self, fuzz, to_drill_path)) proc.start() self._running_workers.append(proc) __call__ = driller_callback def kill(self): for p in self._running_workers: try: p.terminate() os.kill(p.pid, signal.SIGKILL) except OSError: pass # this is for running with bash timeout if __name__ == "__main__": if len(sys.argv) != 5: l.error("INTERNAL USE ONLY -- expecting 5 arguments for driller runner, got %d", len(sys.argv)) binary_path, fuzzer_out_dir, bitmap_path, path_to_input_to_drill = sys.argv[1:5] fuzzer_bitmap = open(bitmap_path, "r").read() # create a folder driller_dir = os.path.join(fuzzer_out_dir, "driller") driller_queue_dir = os.path.join(driller_dir, "queue") try: os.mkdir(driller_dir) except OSError: pass try: os.mkdir(driller_queue_dir) except OSError: pass # get the input input_to_drill = open(path_to_input_to_drill, "r").read() d = driller.Driller(binary_path, input_to_drill, fuzzer_bitmap) count = 0 for new_input in d.drill_generator(): id_num = len(os.listdir(driller_queue_dir)) fuzzer_from = path_to_input_to_drill.split("sync/")[1].split("/")[0] + path_to_input_to_drill.split("id:")[1].split(",")[0] filepath = "id:" + ("%d" % id_num).rjust(6, "0") + ",from:" + fuzzer_from filepath = os.path.join(driller_queue_dir, filepath) with open(filepath, "wb") as f: f.write(new_input[1]) count += 1 l.warning("found %d new inputs", count)
36.168142
131
0.656472
6dc31a42a84d68378d38da0963f575d3fcc858ee
179,104
py
Python
tensorflow/python/keras/backend.py
khanhlvg/tensorflow
a59b74ccaafae59d616ecf08204d63023ff6f49c
[ "Apache-2.0" ]
2
2019-06-28T17:43:04.000Z
2019-06-28T17:43:07.000Z
tensorflow/python/keras/backend.py
khanhlvg/tensorflow
a59b74ccaafae59d616ecf08204d63023ff6f49c
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/backend.py
khanhlvg/tensorflow
a59b74ccaafae59d616ecf08204d63023ff6f49c
[ "Apache-2.0" ]
1
2021-02-27T07:40:01.000Z
2021-02-27T07:40:01.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access # pylint: disable=redefined-outer-name # pylint: disable=redefined-builtin """Keras backend API. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import itertools import json import os import sys import threading import weakref import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.python import tf2 from tensorflow.python.client import session as session_module from tensorflow.python.distribute import distribute_coordinator as dc from tensorflow.python.distribute import distribute_coordinator_context as dc_context from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.distribute import multi_worker_util from tensorflow.python.eager import context from tensorflow.python.eager import function as eager_function from tensorflow.python.eager import lift_to_graph from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import constant_op from tensorflow.python.framework import device as tfdev from tensorflow.python.framework import dtypes as dtypes_module from tensorflow.python.framework import func_graph from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.keras import backend_config from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import ctc_ops as ctc from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gradients as gradients_module from tensorflow.python.ops import image_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import map_fn as map_fn_lib from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import tensor_array_grad # pylint: disable=unused-import from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variables as variables_module from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest from tensorflow.python.util import tf_contextlib from tensorflow.python.util import tf_inspect from tensorflow.python.util.tf_export import keras_export py_all = all py_sum = sum py_any = any # INTERNAL UTILS # The internal graph maintained by Keras and used by the symbolic Keras APIs # while executing eagerly (such as the functional API for model-building). _GRAPH = None # A graph which is used for constructing functions in eager mode. _CURRENT_SCRATCH_GRAPH = None # This is a thread local object that will hold the default internal TF session # used by Keras. It can be set manually via `set_session(sess)`. _SESSION = threading.local() # This dictionary holds a mapping {graph: learning_phase}. # A learning phase is a bool tensor used to run Keras models in # either train mode (learning_phase == 1) or test mode (learning_phase == 0). _GRAPH_LEARNING_PHASES = weakref.WeakKeyDictionary() # This dictionary holds a mapping {graph: set_of_freezable_variables}. # Each set tracks objects created via `freezable_variable` in the graph. _FREEZABLE_VARS = weakref.WeakKeyDictionary() # _DUMMY_EAGER_GRAPH is used as a key in _GRAPH_LEARNING_PHASES. # We keep a separate reference to it to make sure it does not get removed from # _GRAPH_LEARNING_PHASES. _DUMMY_EAGER_GRAPH = threading.local() # This boolean flag can be set to True to leave variable initialization # up to the user. # Change its value via `manual_variable_initialization(value)`. _MANUAL_VAR_INIT = False # This list holds the available devices. # It is populated when `_get_available_gpus()` is called for the first time. # We assume our devices don't change henceforth. _LOCAL_DEVICES = None # This dictionary holds a mapping between a graph and variables to initialize # in the graph. _GRAPH_VARIABLES = weakref.WeakKeyDictionary() # This dictionary holds a mapping between a graph and TF optimizers created in # the graph. _GRAPH_TF_OPTIMIZERS = weakref.WeakKeyDictionary() # The below functions are kept accessible from backend for compatibility. epsilon = backend_config.epsilon floatx = backend_config.floatx image_data_format = backend_config.image_data_format set_epsilon = backend_config.set_epsilon set_floatx = backend_config.set_floatx set_image_data_format = backend_config.set_image_data_format @keras_export('keras.backend.backend') def backend(): """Publicly accessible method for determining the current backend. Only exists for API compatibility with multi-backend Keras. Returns: The string "tensorflow". """ return 'tensorflow' @keras_export('keras.backend.cast_to_floatx') def cast_to_floatx(x): """Cast a Numpy array to the default Keras float type. Arguments: x: Numpy array. Returns: The same Numpy array, cast to its new type. Example: ```python >>> from tensorflow.keras import backend as K >>> K.floatx() 'float32' >>> arr = numpy.array([1.0, 2.0], dtype='float64') >>> arr.dtype dtype('float64') >>> new_arr = K.cast_to_floatx(arr) >>> new_arr array([ 1., 2.], dtype=float32) >>> new_arr.dtype dtype('float32') ``` """ return np.asarray(x, dtype=floatx()) # A global dictionary mapping graph objects to an index of counters used # for various layer/optimizer names in each graph. # Allows to give unique autogenerated names to layers, in a graph-specific way. PER_GRAPH_OBJECT_NAME_UIDS = weakref.WeakKeyDictionary() @keras_export('keras.backend.get_uid') def get_uid(prefix=''): """Associates a string prefix with an integer counter in a TensorFlow graph. Arguments: prefix: String prefix to index. Returns: Unique integer ID. Example: ``` >>> get_uid('dense') 1 >>> get_uid('dense') 2 ``` """ graph = get_graph() if graph not in PER_GRAPH_OBJECT_NAME_UIDS: PER_GRAPH_OBJECT_NAME_UIDS[graph] = collections.defaultdict(int) layer_name_uids = PER_GRAPH_OBJECT_NAME_UIDS[graph] layer_name_uids[prefix] += 1 return layer_name_uids[prefix] @keras_export('keras.backend.reset_uids') def reset_uids(): """Resets graph identifiers. """ PER_GRAPH_OBJECT_NAME_UIDS.clear() @keras_export('keras.backend.clear_session') def clear_session(): """Destroys the current TF graph and creates a new one. Useful to avoid clutter from old models / layers. """ global _SESSION global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned global _GRAPH_VARIABLES # pylint: disable=global-variable-not-assigned global _GRAPH_TF_OPTIMIZERS # pylint: disable=global-variable-not-assigned global _GRAPH global _FREEZABLE_VARS _GRAPH = None ops.reset_default_graph() reset_uids() _SESSION.session = None graph = get_graph() with graph.as_default(): with name_scope(''): phase = array_ops.placeholder_with_default( False, shape=(), name='keras_learning_phase') _GRAPH_LEARNING_PHASES = {} _GRAPH_LEARNING_PHASES[graph] = phase _GRAPH_VARIABLES.pop(graph, None) _GRAPH_TF_OPTIMIZERS.pop(graph, None) _FREEZABLE_VARS.pop(graph, None) @keras_export('keras.backend.manual_variable_initialization') def manual_variable_initialization(value): """Sets the manual variable initialization flag. This boolean flag determines whether variables should be initialized as they are instantiated (default), or if the user should handle the initialization (e.g. via `tf.compat.v1.initialize_all_variables()`). Arguments: value: Python boolean. """ global _MANUAL_VAR_INIT _MANUAL_VAR_INIT = value @keras_export('keras.backend.learning_phase') def learning_phase(): """Returns the learning phase flag. The learning phase flag is a bool tensor (0 = test, 1 = train) to be passed as input to any Keras function that uses a different behavior at train time and test time. Returns: Learning phase (scalar integer tensor or Python integer). """ if ops.get_default_graph() is _GRAPH: # Don't enter an init_scope for the learning phase if eager execution # is enabled but we're inside the Keras workspace graph. return symbolic_learning_phase() with ops.init_scope(): # We always check & set the learning phase inside the init_scope, # otherwise the wrong default_graph will be used to look up the learning # phase inside of functions & defuns. # # This is because functions & defuns (both in graph & in eager mode) # will always execute non-eagerly using a function-specific default # subgraph. if context.executing_eagerly(): if _DUMMY_EAGER_GRAPH not in _GRAPH_LEARNING_PHASES: # Fallback to inference mode as default. return 0 return _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] return symbolic_learning_phase() def global_learning_phase_is_set(): return _DUMMY_EAGER_GRAPH in _GRAPH_LEARNING_PHASES def symbolic_learning_phase(): graph = get_graph() with graph.as_default(): if graph not in _GRAPH_LEARNING_PHASES: with name_scope(''): phase = array_ops.placeholder_with_default( False, shape=(), name='keras_learning_phase') _GRAPH_LEARNING_PHASES[graph] = phase return _GRAPH_LEARNING_PHASES[graph] @keras_export('keras.backend.set_learning_phase') def set_learning_phase(value): """Sets the learning phase to a fixed value. Arguments: value: Learning phase value, either 0 or 1 (integers). Raises: ValueError: if `value` is neither `0` nor `1`. """ global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned if value not in {0, 1}: raise ValueError('Expected learning phase to be 0 or 1.') with ops.init_scope(): if context.executing_eagerly(): # In an eager context, the learning phase values applies to both the eager # context and the internal Keras graph. _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = value _GRAPH_LEARNING_PHASES[get_graph()] = value @keras_export('keras.backend.learning_phase_scope') @tf_contextlib.contextmanager def learning_phase_scope(value): """Provides a scope within which the learning phase is equal to `value`. The learning phase gets restored to its original value upon exiting the scope. Arguments: value: Learning phase value, either 0 or 1 (integers). Yields: None. Raises: ValueError: if `value` is neither `0` nor `1`. """ global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned if value not in {0, 1}: raise ValueError('Expected learning phase to be 0 or 1.') with ops.init_scope(): if context.executing_eagerly(): previous_eager_value = _GRAPH_LEARNING_PHASES.get( _DUMMY_EAGER_GRAPH, None) previous_graph_value = _GRAPH_LEARNING_PHASES.get(get_graph(), None) try: set_learning_phase(value) yield finally: # Restore learning phase to initial value. with ops.init_scope(): if context.executing_eagerly(): if previous_eager_value is not None: _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = previous_eager_value elif _DUMMY_EAGER_GRAPH in _GRAPH_LEARNING_PHASES: del _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] graph = get_graph() if previous_graph_value is not None: _GRAPH_LEARNING_PHASES[graph] = previous_graph_value elif graph in _GRAPH_LEARNING_PHASES: del _GRAPH_LEARNING_PHASES[graph] @tf_contextlib.contextmanager def eager_learning_phase_scope(value): """Internal scope that sets the learning phase in eager / tf.function only. Arguments: value: Learning phase value, either 0 or 1 (integers). Yields: None. Raises: ValueError: if `value` is neither `0` nor `1`. """ global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned assert value in {0, 1} assert ops.executing_eagerly_outside_functions() global_learning_phase_was_set = global_learning_phase_is_set() if global_learning_phase_was_set: previous_value = learning_phase() try: _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = value yield finally: # Restore learning phase to initial value or unset. if global_learning_phase_was_set: _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] = previous_value else: del _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH] def _current_graph(op_input_list): """Return the graph members of `op_input_list`, or the current graph.""" return ops._get_graph_from_inputs(op_input_list) def _get_session(op_input_list=()): """Returns the session object for the current thread.""" global _SESSION default_session = ops.get_default_session() if default_session is not None: session = default_session else: if ops.inside_function(): raise RuntimeError('Cannot get session inside Tensorflow graph function.') # If we don't have a session, or that session does not match the current # graph, create and cache a new session. if (getattr(_SESSION, 'session', None) is None or _SESSION.session.graph is not _current_graph(op_input_list)): # If we are creating the Session inside a tf.distribute.Strategy scope, # we ask the strategy for the right session options to use. if distribution_strategy_context.has_strategy(): configure_and_create_distributed_session( distribution_strategy_context.get_strategy()) else: _SESSION.session = session_module.Session( config=get_default_session_config()) session = _SESSION.session return session @keras_export(v1=['keras.backend.get_session']) def get_session(op_input_list=()): """Returns the TF session to be used by the backend. If a default TensorFlow session is available, we will return it. Else, we will return the global Keras session assuming it matches the current graph. If no global Keras session exists at this point: we will create a new global session. Note that you can manually set the global session via `K.set_session(sess)`. Arguments: op_input_list: An option sequence of tensors or ops, which will be used to determine the current graph. Otherwise the default graph will be used. Returns: A TensorFlow session. """ session = _get_session(op_input_list) if not _MANUAL_VAR_INIT: with session.graph.as_default(): _initialize_variables(session) return session def get_graph(): if context.executing_eagerly(): global _GRAPH if _GRAPH is None: _GRAPH = func_graph.FuncGraph('keras_graph') return _GRAPH else: return ops.get_default_graph() @tf_contextlib.contextmanager def _scratch_graph(graph=None): """Retrieve a shared and temporary func graph. The eager execution path lifts a subgraph from the keras global graph into a scratch graph in order to create a function. DistributionStrategies, in turn, constructs multiple functions as well as a final combined function. In order for that logic to work correctly, all of the functions need to be created on the same scratch FuncGraph. Args: graph: A graph to be used as the current scratch graph. If not set then a scratch graph will either be retrieved or created: Yields: The current scratch graph. """ global _CURRENT_SCRATCH_GRAPH if (_CURRENT_SCRATCH_GRAPH is not None and graph is not None and _CURRENT_SCRATCH_GRAPH is not graph): raise ValueError('Multiple scratch graphs specified.') if _CURRENT_SCRATCH_GRAPH: yield _CURRENT_SCRATCH_GRAPH return graph = graph or func_graph.FuncGraph('keras_scratch_graph') try: _CURRENT_SCRATCH_GRAPH = graph yield graph finally: _CURRENT_SCRATCH_GRAPH = None @keras_export(v1=['keras.backend.set_session']) def set_session(session): """Sets the global TensorFlow session. Arguments: session: A TF Session. """ global _SESSION _SESSION.session = session def get_default_session_config(): if os.environ.get('OMP_NUM_THREADS'): logging.warning( 'OMP_NUM_THREADS is no longer used by the default Keras config. ' 'To configure the number of threads, use tf.config.threading APIs.') config = context.context().config config.allow_soft_placement = True return config def get_default_graph_uid_map(): graph = ops.get_default_graph() name_uid_map = PER_GRAPH_OBJECT_NAME_UIDS.get(graph, None) if name_uid_map is None: name_uid_map = collections.defaultdict(int) PER_GRAPH_OBJECT_NAME_UIDS[graph] = name_uid_map return name_uid_map # DEVICE MANIPULATION class _TfDeviceCaptureOp(object): """Class for capturing the TF device scope.""" def __init__(self): self.device = None def _set_device(self, device): """This method captures TF's explicit device scope setting.""" if tfdev.is_device_spec(device): device = device.to_string() self.device = device def _set_device_from_string(self, device_str): self.device = device_str def _get_current_tf_device(): """Return explicit device of current context, otherwise returns `None`. Returns: If the current device scope is explicitly set, it returns a string with the device (`CPU` or `GPU`). If the scope is not explicitly set, it will return `None`. """ graph = get_graph() op = _TfDeviceCaptureOp() graph._apply_device_functions(op) return tfdev.DeviceSpec.from_string(op.device) def _is_current_explicit_device(device_type): """Check if the current device is explicitly set on the device type specified. Arguments: device_type: A string containing `GPU` or `CPU` (case-insensitive). Returns: A boolean indicating if the current device scope is explicitly set on the device type. Raises: ValueError: If the `device_type` string indicates an unsupported device. """ device_type = device_type.upper() if device_type not in ['CPU', 'GPU']: raise ValueError('`device_type` should be either "CPU" or "GPU".') device = _get_current_tf_device() return device is not None and device.device_type == device_type.upper() def _get_available_gpus(): """Get a list of available gpu devices (formatted as strings). Returns: A list of available GPU devices. """ if ops.executing_eagerly_outside_functions(): # Returns names of devices directly. return [name for name in context.list_devices() if 'GPU' in name] global _LOCAL_DEVICES if _LOCAL_DEVICES is None: _LOCAL_DEVICES = get_session().list_devices() return [x.name for x in _LOCAL_DEVICES if x.device_type == 'GPU'] def _has_nchw_support(): """Check whether the current scope supports NCHW ops. TensorFlow does not support NCHW on CPU. Therefore we check if we are not explicitly put on CPU, and have GPUs available. In this case there will be soft-placing on the GPU device. Returns: bool: if the current scope device placement would support nchw """ explicitly_on_cpu = _is_current_explicit_device('CPU') gpus_available = bool(_get_available_gpus()) return not explicitly_on_cpu and gpus_available # VARIABLE MANIPULATION def _constant_to_tensor(x, dtype): """Convert the input `x` to a tensor of type `dtype`. This is slightly faster than the _to_tensor function, at the cost of handling fewer cases. Arguments: x: An object to be converted (numpy arrays, floats, ints and lists of them). dtype: The destination type. Returns: A tensor. """ return constant_op.constant(x, dtype=dtype) def _to_tensor(x, dtype): """Convert the input `x` to a tensor of type `dtype`. Arguments: x: An object to be converted (numpy array, list, tensors). dtype: The destination type. Returns: A tensor. """ return ops.convert_to_tensor(x, dtype=dtype) @keras_export('keras.backend.is_sparse') def is_sparse(tensor): """Returns whether a tensor is a sparse tensor. Arguments: tensor: A tensor instance. Returns: A boolean. Example: ```python >>> from keras import backend as K >>> a = K.placeholder((2, 2), sparse=False) >>> print(K.is_sparse(a)) False >>> b = K.placeholder((2, 2), sparse=True) >>> print(K.is_sparse(b)) True ``` """ return isinstance(tensor, sparse_tensor.SparseTensor) @keras_export('keras.backend.to_dense') def to_dense(tensor): """Converts a sparse tensor into a dense tensor and returns it. Arguments: tensor: A tensor instance (potentially sparse). Returns: A dense tensor. Examples: ```python >>> from keras import backend as K >>> b = K.placeholder((2, 2), sparse=True) >>> print(K.is_sparse(b)) True >>> c = K.to_dense(b) >>> print(K.is_sparse(c)) False ``` """ if is_sparse(tensor): return sparse_ops.sparse_tensor_to_dense(tensor) else: return tensor @keras_export('keras.backend.name_scope', v1=[]) def name_scope(name): """A context manager for use when defining a Python op. This context manager pushes a name scope, which will make the name of all operations added within it have a prefix. For example, to define a new Python op called `my_op`: ```python def my_op(a): with tf.name_scope("MyOp") as scope: a = tf.convert_to_tensor(a, name="a") # Define some computation that uses `a`. return foo_op(..., name=scope) ``` When executed, the Tensor `a` will have the name `MyOp/a`. Args: name: The prefix to use on all names created within the name scope. Returns: Name scope context manager. """ return ops.name_scope_v2(name) @keras_export('keras.backend.variable') def variable(value, dtype=None, name=None, constraint=None): """Instantiates a variable and returns it. Arguments: value: Numpy array, initial value of the tensor. dtype: Tensor type. name: Optional name string for the tensor. constraint: Optional projection function to be applied to the variable after an optimizer update. Returns: A variable instance (with Keras metadata included). Examples: ```python >>> import numpy as np >>> from keras import backend as K >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = K.variable(value=val, dtype='float64', name='example_var') >>> K.dtype(kvar) 'float64' >>> print(kvar) example_var >>> kvar.eval() array([[ 1., 2.], [ 3., 4.]]) ``` """ if dtype is None: dtype = floatx() if hasattr(value, 'tocoo'): sparse_coo = value.tocoo() indices = np.concatenate((np.expand_dims(sparse_coo.row, 1), np.expand_dims( sparse_coo.col, 1)), 1) v = sparse_tensor.SparseTensor( indices=indices, values=sparse_coo.data, dense_shape=sparse_coo.shape) v._keras_shape = sparse_coo.shape return v v = resource_variable_ops.ResourceVariable( value, dtype=dtypes_module.as_dtype(dtype), name=name, constraint=constraint) if isinstance(value, np.ndarray): v._keras_shape = value.shape elif hasattr(value, 'shape'): v._keras_shape = int_shape(value) track_variable(v) return v def track_tf_optimizer(tf_optimizer): """Tracks the given TF optimizer for initialization of its variables.""" if context.executing_eagerly(): return graph = get_graph() optimizers = _GRAPH_TF_OPTIMIZERS.setdefault(graph, weakref.WeakSet()) optimizers.add(tf_optimizer) def track_variable(v): """Tracks the given variable for initialization.""" if context.executing_eagerly(): return graph = v.graph if hasattr(v, 'graph') else get_graph() if graph not in _GRAPH_VARIABLES: _GRAPH_VARIABLES[graph] = weakref.WeakSet() _GRAPH_VARIABLES[graph].add(v) def unique_object_name(name, name_uid_map=None, avoid_names=None, namespace='', zero_based=False): """Makes a object name (or arbitrary string) unique within a TensorFlow graph. Arguments: name: String name to make unique. name_uid_map: An optional defaultdict(int) to use when creating unique names. If None (default), uses a per-Graph dictionary. avoid_names: An optional set or dict with names which should not be used. If None (default) does not avoid any names. namespace: Gets a name which is unique within the (graph, namespace). Layers which are not Networks use a blank namespace and so get graph-global names. zero_based: If True, name sequences start with no suffix (e.g. "dense", "dense_1"). If False, naming is one-based ("dense_1", "dense_2"). Returns: Unique string name. Example: ```python _unique_layer_name('dense') # dense_1 _unique_layer_name('dense') # dense_2 ``` """ if name_uid_map is None: name_uid_map = get_default_graph_uid_map() if avoid_names is None: avoid_names = set() proposed_name = None while proposed_name is None or proposed_name in avoid_names: name_key = (namespace, name) if zero_based: number = name_uid_map[name_key] if number: proposed_name = name + '_' + str(number) else: proposed_name = name name_uid_map[name_key] += 1 else: name_uid_map[name_key] += 1 proposed_name = name + '_' + str(name_uid_map[name_key]) return proposed_name def _get_variables(graph=None): """Returns variables corresponding to the given graph for initialization.""" assert not context.executing_eagerly() variables = _GRAPH_VARIABLES.setdefault(graph, weakref.WeakSet()) for opt in _GRAPH_TF_OPTIMIZERS.get(graph, set()): variables.update(opt.optimizer.variables()) return variables def _initialize_variables(session): """Utility to initialize uninitialized variables on the fly.""" variables = _get_variables(get_graph()) candidate_vars = [] for v in variables: if not getattr(v, '_keras_initialized', False): candidate_vars.append(v) if candidate_vars: # This step is expensive, so we only run it on variables not already # marked as initialized. is_initialized = session.run( [variables_module.is_variable_initialized(v) for v in candidate_vars]) uninitialized_vars = [] for flag, v in zip(is_initialized, candidate_vars): if not flag: uninitialized_vars.append(v) v._keras_initialized = True if uninitialized_vars: session.run(variables_module.variables_initializer(uninitialized_vars)) @keras_export('keras.backend.constant') def constant(value, dtype=None, shape=None, name=None): """Creates a constant tensor. Arguments: value: A constant value (or list) dtype: The type of the elements of the resulting tensor. shape: Optional dimensions of resulting tensor. name: Optional name for the tensor. Returns: A Constant Tensor. """ if dtype is None: dtype = floatx() return constant_op.constant(value, dtype=dtype, shape=shape, name=name) def is_keras_tensor(x): """Returns whether `x` is a Keras tensor. A "Keras tensor" is a tensor that was returned by a Keras layer, (`Layer` class) or by `Input`. Arguments: x: A candidate tensor. Returns: A boolean: Whether the argument is a Keras tensor. Raises: ValueError: In case `x` is not a symbolic tensor. Examples: ```python >>> import tensorflow as tf >>> import numpy >>> from keras import backend as K >>> from keras.layers import Input, Dense >>> np_var = numpy.array([1, 2]) >>> K.is_keras_tensor(np_var) # A numpy array is not a symbolic tensor. ValueError >>> k_var = tf.compat.v1.placeholder('float32', shape=(1,1)) >>> K.is_keras_tensor(k_var) # A variable indirectly created outside of keras is not a Keras tensor. False >>> keras_var = K.variable(np_var) >>> K.is_keras_tensor(keras_var) # A variable created with the keras backend is not a Keras tensor. False >>> keras_placeholder = K.placeholder(shape=(2, 4, 5)) >>> K.is_keras_tensor(keras_placeholder) # A placeholder is not a Keras tensor. False >>> keras_input = Input([10]) >>> K.is_keras_tensor(keras_input) # An Input is a Keras tensor. True >>> keras_layer_output = Dense(10)(keras_input) >>> K.is_keras_tensor(keras_layer_output) # Any Keras layer output is a Keras tensor. True ``` """ if not isinstance(x, (ops.Tensor, variables_module.Variable, sparse_tensor.SparseTensor)): raise ValueError('Unexpectedly found an instance of type `' + str(type(x)) + '`. Expected a symbolic tensor instance.') return hasattr(x, '_keras_history') @keras_export('keras.backend.placeholder') def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None, ragged=False): """Instantiates a placeholder tensor and returns it. Arguments: shape: Shape of the placeholder (integer tuple, may include `None` entries). ndim: Number of axes of the tensor. At least one of {`shape`, `ndim`} must be specified. If both are specified, `shape` is used. dtype: Placeholder type. sparse: Boolean, whether the placeholder should have a sparse type. name: Optional name string for the placeholder. ragged: Boolean, whether the placeholder should have a ragged type. In this case, values of 'None' in the 'shape' argument represent ragged dimensions. For more information about RaggedTensors, see this [guide](https://www.tensorflow.org/guide/ragged_tensors). Raises: ValueError: If called with eager execution ValueError: If called with sparse = True and ragged = True. Returns: Tensor instance (with Keras metadata included). Examples: ```python >>> from keras import backend as K >>> input_ph = K.placeholder(shape=(2, 4, 5)) >>> input_ph <tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32> ``` """ if sparse and ragged: raise ValueError( 'Cannot set both sparse and ragged to True when creating a placeholder.' ) if dtype is None: dtype = floatx() if not shape: if ndim: shape = tuple([None for _ in range(ndim)]) with get_graph().as_default(): if sparse: x = array_ops.sparse_placeholder(dtype, shape=shape, name=name) elif ragged: ragged_rank = 0 for i in range(1, len(shape)): if shape[i] is None: ragged_rank += 1 else: break value_shape = shape[(ragged_rank + 1):] x = ragged_factory_ops.placeholder( dtype=dtype, ragged_rank=ragged_rank, value_shape=value_shape, name=name) else: x = array_ops.placeholder(dtype, shape=shape, name=name) return x def is_placeholder(x): """Returns whether `x` is a placeholder. Arguments: x: A candidate placeholder. Returns: Boolean. """ try: if isinstance(x, composite_tensor.CompositeTensor): flat_components = nest.flatten(x, expand_composites=True) return py_any(is_placeholder(c) for c in flat_components) else: return x.op.type == 'Placeholder' except AttributeError: return False def freezable_variable(value, shape=None, name=None): """A tensor-like object whose value can be updated only up until execution. After creating the freezable variable, you can update its value by calling `var.update_value(new_value)` (similar to a regular variable). Unlike an actual variable, the value used during execution is the current value at the time the execution function (`backend.function()`) was created. This is an internal API, expected to be temporary. It is used to implement a mutable `trainable` property for `BatchNormalization` layers, with a frozen value after model compilation. We don't use a plain variable in this case because we need the value used in a specific model to be frozen after `compile` has been called (e.g. GAN use case). Arguments: value: The initial value for the tensor-like object. shape: The shape for the tensor-like object (cannot be changed). name: The name for the tensor-like object. Returns: A tensor-like object with a static value that can be updated via `x.update_value(new_value)`, up until creating an execution function (afterwards the value is fixed). """ graph = get_graph() with graph.as_default(): x = array_ops.placeholder_with_default( value, shape=shape, name=name) x._initial_value = value x._current_value = value def update_value(new_value): x._current_value = new_value def get_value(): return x._current_value x.update_value = update_value x.get_value = get_value global _FREEZABLE_VARS if graph not in _FREEZABLE_VARS: _FREEZABLE_VARS[graph] = weakref.WeakSet() _FREEZABLE_VARS[graph].add(x) return x @keras_export('keras.backend.shape') def shape(x): """Returns the symbolic shape of a tensor or variable. Arguments: x: A tensor or variable. Returns: A symbolic shape (which is itself a tensor). Examples: ```python # TensorFlow example >>> from keras import backend as K >>> tf_session = K.get_session() >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = K.variable(value=val) >>> input = keras.backend.placeholder(shape=(2, 4, 5)) >>> K.shape(kvar) <tf.Tensor 'Shape_8:0' shape=(2,) dtype=int32> >>> K.shape(input) <tf.Tensor 'Shape_9:0' shape=(3,) dtype=int32> # To get integer shape (Instead, you can use K.int_shape(x)) >>> K.shape(kvar).eval(session=tf_session) array([2, 2], dtype=int32) >>> K.shape(input).eval(session=tf_session) array([2, 4, 5], dtype=int32) ``` """ return array_ops.shape(x) @keras_export('keras.backend.int_shape') def int_shape(x): """Returns the shape of tensor or variable as a tuple of int or None entries. Arguments: x: Tensor or variable. Returns: A tuple of integers (or None entries). Examples: ```python >>> from keras import backend as K >>> input = K.placeholder(shape=(2, 4, 5)) >>> K.int_shape(input) (2, 4, 5) >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = K.variable(value=val) >>> K.int_shape(kvar) (2, 2) ``` """ try: shape = x.shape if not isinstance(shape, tuple): shape = tuple(shape.as_list()) return shape except ValueError: return None @keras_export('keras.backend.ndim') def ndim(x): """Returns the number of axes in a tensor, as an integer. Arguments: x: Tensor or variable. Returns: Integer (scalar), number of axes. Examples: ```python >>> from keras import backend as K >>> input = K.placeholder(shape=(2, 4, 5)) >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = K.variable(value=val) >>> K.ndim(input) 3 >>> K.ndim(kvar) 2 ``` """ dims = x.shape._dims if dims is not None: return len(dims) return None @keras_export('keras.backend.dtype') def dtype(x): """Returns the dtype of a Keras tensor or variable, as a string. Arguments: x: Tensor or variable. Returns: String, dtype of `x`. Examples: ```python >>> from keras import backend as K >>> K.dtype(K.placeholder(shape=(2,4,5))) 'float32' >>> K.dtype(K.placeholder(shape=(2,4,5), dtype='float32')) 'float32' >>> K.dtype(K.placeholder(shape=(2,4,5), dtype='float64')) 'float64' # Keras variable >>> kvar = K.variable(np.array([[1, 2], [3, 4]])) >>> K.dtype(kvar) 'float32' >>> kvar = K.variable(np.array([[1, 2], [3, 4]]), dtype='float32') >>> K.dtype(kvar) 'float32' ``` """ return x.dtype.base_dtype.name @keras_export('keras.backend.eval') def eval(x): """Evaluates the value of a variable. Arguments: x: A variable. Returns: A Numpy array. Examples: ```python >>> from keras import backend as K >>> kvar = K.variable(np.array([[1, 2], [3, 4]]), dtype='float32') >>> K.eval(kvar) array([[ 1., 2.], [ 3., 4.]], dtype=float32) ``` """ return get_value(to_dense(x)) @keras_export('keras.backend.zeros') def zeros(shape, dtype=None, name=None): """Instantiates an all-zeros variable and returns it. Arguments: shape: Tuple or list of integers, shape of returned Keras variable dtype: data type of returned Keras variable name: name of returned Keras variable Returns: A variable (including Keras metadata), filled with `0.0`. Note that if `shape` was symbolic, we cannot return a variable, and will return a dynamically-shaped tensor instead. Example: ```python from tensorflow.keras import backend as K kvar = K.zeros((3,4)) K.eval(kvar) # array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], # [ 0., 0., 0., 0.]], dtype=float32) A = tf.constant([1,2,3]) kvar2 = K.zeros(A.shape) # [0., 0., 0.] float32 by default kvar3 = K.zeros(A.shape,dtype=tf.int32) # [0, 0, 0] with int32 dtype kvar4 = K.zeros([2,3]) # [[0., 0., 0.], [0., 0., 0.]] ``` """ with ops.init_scope(): if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) v = array_ops.zeros(shape=shape, dtype=tf_dtype, name=name) if py_all(v.shape.as_list()): return variable(v, dtype=dtype, name=name) track_variable(v) return v @keras_export('keras.backend.ones') def ones(shape, dtype=None, name=None): """Instantiates an all-ones variable and returns it. Arguments: shape: Tuple of integers, shape of returned Keras variable. dtype: String, data type of returned Keras variable. name: String, name of returned Keras variable. Returns: A Keras variable, filled with `1.0`. Note that if `shape` was symbolic, we cannot return a variable, and will return a dynamically-shaped tensor instead. Example: ```python >>> from keras import backend as K >>> kvar = K.ones((3,4)) >>> K.eval(kvar) array([[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.]], dtype=float32) ``` """ with ops.init_scope(): if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) v = array_ops.ones(shape=shape, dtype=tf_dtype, name=name) if py_all(v.shape.as_list()): return variable(v, dtype=dtype, name=name) track_variable(v) return v @keras_export('keras.backend.eye') def eye(size, dtype=None, name=None): """Instantiate an identity matrix and returns it. Arguments: size: Integer, number of rows/columns. dtype: String, data type of returned Keras variable. name: String, name of returned Keras variable. Returns: A Keras variable, an identity matrix. Example: ```python >>> from keras import backend as K >>> kvar = K.eye(3) >>> K.eval(kvar) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]], dtype=float32) ``` """ if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) return variable(linalg_ops.eye(size, dtype=tf_dtype), dtype, name) @keras_export('keras.backend.zeros_like') def zeros_like(x, dtype=None, name=None): """Instantiates an all-zeros variable of the same shape as another tensor. Arguments: x: Keras variable or Keras tensor. dtype: dtype of returned Keras variable. `None` uses the dtype of `x`. name: name for the variable to create. Returns: A Keras variable with the shape of `x` filled with zeros. Example: ```python from tensorflow.keras import backend as K kvar = K.variable(np.random.random((2,3))) kvar_zeros = K.zeros_like(kvar) K.eval(kvar_zeros) # array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) ``` """ return array_ops.zeros_like(x, dtype=dtype, name=name) @keras_export('keras.backend.ones_like') def ones_like(x, dtype=None, name=None): """Instantiates an all-ones variable of the same shape as another tensor. Arguments: x: Keras variable or tensor. dtype: String, dtype of returned Keras variable. None uses the dtype of x. name: String, name for the variable to create. Returns: A Keras variable with the shape of x filled with ones. Example: ```python >>> from keras import backend as K >>> kvar = K.variable(np.random.random((2,3))) >>> kvar_ones = K.ones_like(kvar) >>> K.eval(kvar_ones) array([[ 1., 1., 1.], [ 1., 1., 1.]], dtype=float32) ``` """ return array_ops.ones_like(x, dtype=dtype, name=name) def identity(x, name=None): """Returns a tensor with the same content as the input tensor. Arguments: x: The input tensor. name: String, name for the variable to create. Returns: A tensor of the same shape, type and content. """ return array_ops.identity(x, name=name) @keras_export('keras.backend.random_uniform_variable') def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None): """Instantiates a variable with values drawn from a uniform distribution. Arguments: shape: Tuple of integers, shape of returned Keras variable. low: Float, lower boundary of the output interval. high: Float, upper boundary of the output interval. dtype: String, dtype of returned Keras variable. name: String, name of returned Keras variable. seed: Integer, random seed. Returns: A Keras variable, filled with drawn samples. Example: ```python # TensorFlow example >>> kvar = K.random_uniform_variable((2,3), 0, 1) >>> kvar <tensorflow.python.ops.variables.Variable object at 0x10ab40b10> >>> K.eval(kvar) array([[ 0.10940075, 0.10047495, 0.476143 ], [ 0.66137183, 0.00869417, 0.89220798]], dtype=float32) ``` """ if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) if seed is None: # ensure that randomness is conditioned by the Numpy RNG seed = np.random.randint(10e8) value = init_ops.random_uniform_initializer( low, high, dtype=tf_dtype, seed=seed)(shape) return variable(value, dtype=dtype, name=name) @keras_export('keras.backend.random_normal_variable') def random_normal_variable(shape, mean, scale, dtype=None, name=None, seed=None): """Instantiates a variable with values drawn from a normal distribution. Arguments: shape: Tuple of integers, shape of returned Keras variable. mean: Float, mean of the normal distribution. scale: Float, standard deviation of the normal distribution. dtype: String, dtype of returned Keras variable. name: String, name of returned Keras variable. seed: Integer, random seed. Returns: A Keras variable, filled with drawn samples. Example: ```python # TensorFlow example >>> kvar = K.random_normal_variable((2,3), 0, 1) >>> kvar <tensorflow.python.ops.variables.Variable object at 0x10ab12dd0> >>> K.eval(kvar) array([[ 1.19591331, 0.68685907, -0.63814116], [ 0.92629528, 0.28055015, 1.70484698]], dtype=float32) ``` """ if dtype is None: dtype = floatx() tf_dtype = dtypes_module.as_dtype(dtype) if seed is None: # ensure that randomness is conditioned by the Numpy RNG seed = np.random.randint(10e8) value = init_ops.random_normal_initializer( mean, scale, dtype=tf_dtype, seed=seed)(shape) return variable(value, dtype=dtype, name=name) @keras_export('keras.backend.count_params') def count_params(x): """Returns the static number of elements in a variable or tensor. Arguments: x: Variable or tensor. Returns: Integer, the number of scalars in `x`. Example: ```python >>> kvar = K.zeros((2,3)) >>> K.count_params(kvar) 6 >>> K.eval(kvar) array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32) ``` """ return np.prod(x.shape.as_list()) @keras_export('keras.backend.cast') def cast(x, dtype): """Casts a tensor to a different dtype and returns it. You can cast a Keras variable but it still returns a Keras tensor. Arguments: x: Keras tensor (or variable). dtype: String, either (`'float16'`, `'float32'`, or `'float64'`). Returns: Keras tensor with dtype `dtype`. Examples: Cast a float32 variable to a float64 tensor ```python >>> import tensorflow as tf >>> from tensorflow.keras import backend as K >>> input = K.ones(shape=(1,3)) >>> print(input) >>> cast_input = K.cast(input, dtype='float64') >>> print(cast_input) <tf.Variable 'Variable:0' shape=(1, 3) dtype=float32, numpy=array([[1., 1., 1.]], dtype=float32)> tf.Tensor([[1. 1. 1.]], shape=(1, 3), dtype=float64) ``` """ return math_ops.cast(x, dtype) # UPDATES OPS @keras_export('keras.backend.update') def update(x, new_x): return state_ops.assign(x, new_x) @keras_export('keras.backend.update_add') def update_add(x, increment): """Update the value of `x` by adding `increment`. Arguments: x: A Variable. increment: A tensor of same shape as `x`. Returns: The variable `x` updated. """ return state_ops.assign_add(x, increment) @keras_export('keras.backend.update_sub') def update_sub(x, decrement): """Update the value of `x` by subtracting `decrement`. Arguments: x: A Variable. decrement: A tensor of same shape as `x`. Returns: The variable `x` updated. """ return state_ops.assign_sub(x, decrement) @keras_export('keras.backend.moving_average_update') def moving_average_update(x, value, momentum): """Compute the moving average of a variable. Arguments: x: A Variable. value: A tensor with the same shape as `variable`. momentum: The moving average momentum. Returns: An Operation to update the variable. """ # `training` is higher-up than the Keras backend in the abstraction hierarchy. # In particular, `training` depends on layers, and thus on Keras. # moving_averages, being low-level ops, should not be part of the training # module. from tensorflow.python.training import moving_averages # pylint: disable=g-import-not-at-top zero_debias = not tf2.enabled() return moving_averages.assign_moving_average( x, value, momentum, zero_debias=zero_debias) # LINEAR ALGEBRA @keras_export('keras.backend.dot') def dot(x, y): """Multiplies 2 tensors (and/or variables) and returns a *tensor*. When attempting to multiply a nD tensor with a nD tensor, it reproduces the Theano behavior. (e.g. `(2, 3) * (4, 3, 5) -> (2, 4, 5)`) Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A tensor, dot product of `x` and `y`. Examples: ```python # dot product between tensors >>> x = K.placeholder(shape=(2, 3)) >>> y = K.placeholder(shape=(3, 4)) >>> xy = K.dot(x, y) >>> xy <tf.Tensor 'MatMul_9:0' shape=(2, 4) dtype=float32> ``` ```python # dot product between tensors >>> x = K.placeholder(shape=(32, 28, 3)) >>> y = K.placeholder(shape=(3, 4)) >>> xy = K.dot(x, y) >>> xy <tf.Tensor 'MatMul_9:0' shape=(32, 28, 4) dtype=float32> ``` ```python # Theano-like behavior example >>> x = K.random_uniform_variable(shape=(2, 3), low=0, high=1) >>> y = K.ones((4, 3, 5)) >>> xy = K.dot(x, y) >>> K.int_shape(xy) (2, 4, 5) ``` """ if ndim(x) is not None and (ndim(x) > 2 or ndim(y) > 2): x_shape = [] for i, s in zip(int_shape(x), array_ops.unstack(array_ops.shape(x))): if i is not None: x_shape.append(i) else: x_shape.append(s) x_shape = tuple(x_shape) y_shape = [] for i, s in zip(int_shape(y), array_ops.unstack(array_ops.shape(y))): if i is not None: y_shape.append(i) else: y_shape.append(s) y_shape = tuple(y_shape) y_permute_dim = list(range(ndim(y))) y_permute_dim = [y_permute_dim.pop(-2)] + y_permute_dim xt = array_ops.reshape(x, [-1, x_shape[-1]]) yt = array_ops.reshape( array_ops.transpose(y, perm=y_permute_dim), [y_shape[-2], -1]) return array_ops.reshape( math_ops.matmul(xt, yt), x_shape[:-1] + y_shape[:-2] + y_shape[-1:]) if is_sparse(x): out = sparse_ops.sparse_tensor_dense_matmul(x, y) else: out = math_ops.matmul(x, y) return out @keras_export('keras.backend.batch_dot') def batch_dot(x, y, axes=None): """Batchwise dot product. `batch_dot` is used to compute dot product of `x` and `y` when `x` and `y` are data in batch, i.e. in a shape of `(batch_size, :)`. `batch_dot` results in a tensor or variable with less dimensions than the input. If the number of dimensions is reduced to 1, we use `expand_dims` to make sure that ndim is at least 2. Arguments: x: Keras tensor or variable with `ndim >= 2`. y: Keras tensor or variable with `ndim >= 2`. axes: list of (or single) int with target dimensions. The lengths of `axes[0]` and `axes[1]` should be the same. Returns: A tensor with shape equal to the concatenation of `x`'s shape (less the dimension that was summed over) and `y`'s shape (less the batch dimension and the dimension that was summed over). If the final rank is 1, we reshape it to `(batch_size, 1)`. Examples: Assume `x = [[1, 2], [3, 4]]` and `y = [[5, 6], [7, 8]]` `batch_dot(x, y, axes=1) = [[17, 53]]` which is the main diagonal of `x.dot(y.T)`, although we never have to calculate the off-diagonal elements. Shape inference: Let `x`'s shape be `(100, 20)` and `y`'s shape be `(100, 30, 20)`. If `axes` is (1, 2), to find the output shape of resultant tensor, loop through each dimension in `x`'s shape and `y`'s shape: * `x.shape[0]` : 100 : append to output shape * `x.shape[1]` : 20 : do not append to output shape, dimension 1 of `x` has been summed over. (`dot_axes[0]` = 1) * `y.shape[0]` : 100 : do not append to output shape, always ignore first dimension of `y` * `y.shape[1]` : 30 : append to output shape * `y.shape[2]` : 20 : do not append to output shape, dimension 2 of `y` has been summed over. (`dot_axes[1]` = 2) `output_shape` = `(100, 30)` ```python >>> x_batch = K.ones(shape=(32, 20, 1)) >>> y_batch = K.ones(shape=(32, 30, 20)) >>> xy_batch_dot = K.batch_dot(x_batch, y_batch, axes=[1, 2]) >>> K.int_shape(xy_batch_dot) (32, 1, 30) ``` """ if isinstance(axes, int): axes = (axes, axes) x_ndim = ndim(x) y_ndim = ndim(y) if axes is None: # behaves like tf.batch_matmul as default axes = [x_ndim - 1, y_ndim - 2] if x_ndim > y_ndim: diff = x_ndim - y_ndim y = array_ops.reshape(y, array_ops.concat( [array_ops.shape(y), [1] * (diff)], axis=0)) elif y_ndim > x_ndim: diff = y_ndim - x_ndim x = array_ops.reshape(x, array_ops.concat( [array_ops.shape(x), [1] * (diff)], axis=0)) else: diff = 0 if ndim(x) == 2 and ndim(y) == 2: if axes[0] == axes[1]: out = math_ops.reduce_sum(math_ops.multiply(x, y), axes[0]) else: out = math_ops.reduce_sum( math_ops.multiply(array_ops.transpose(x, [1, 0]), y), axes[1]) else: adj_x = None if axes[0] == ndim(x) - 1 else True adj_y = True if axes[1] == ndim(y) - 1 else None out = math_ops.matmul(x, y, adjoint_a=adj_x, adjoint_b=adj_y) if diff: if x_ndim > y_ndim: idx = x_ndim + y_ndim - 3 else: idx = x_ndim - 1 out = array_ops.squeeze(out, list(range(idx, idx + diff))) if ndim(out) == 1: out = expand_dims(out, 1) return out @keras_export('keras.backend.transpose') def transpose(x): """Transposes a tensor and returns it. Arguments: x: Tensor or variable. Returns: A tensor. Examples: ```python >>> var = K.variable([[1, 2, 3], [4, 5, 6]]) >>> K.eval(var) array([[ 1., 2., 3.], [ 4., 5., 6.]], dtype=float32) >>> var_transposed = K.transpose(var) >>> K.eval(var_transposed) array([[ 1., 4.], [ 2., 5.], [ 3., 6.]], dtype=float32) ``` ```python >>> input = K.placeholder((2, 3)) >>> input <tf.Tensor 'Placeholder_11:0' shape=(2, 3) dtype=float32> >>> input_transposed = K.transpose(input) >>> input_transposed <tf.Tensor 'transpose_4:0' shape=(3, 2) dtype=float32> ``` """ return array_ops.transpose(x) @keras_export('keras.backend.gather') def gather(reference, indices): """Retrieves the elements of indices `indices` in the tensor `reference`. Arguments: reference: A tensor. indices: An integer tensor of indices. Returns: A tensor of same type as `reference`. """ return array_ops.gather(reference, indices) # ELEMENT-WISE OPERATIONS @keras_export('keras.backend.max') def max(x, axis=None, keepdims=False): """Maximum value in a tensor. Arguments: x: A tensor or variable. axis: An integer, the axis to find maximum values. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with maximum values of `x`. """ return math_ops.reduce_max(x, axis, keepdims) @keras_export('keras.backend.min') def min(x, axis=None, keepdims=False): """Minimum value in a tensor. Arguments: x: A tensor or variable. axis: An integer, the axis to find minimum values. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with minimum values of `x`. """ return math_ops.reduce_min(x, axis, keepdims) @keras_export('keras.backend.sum') def sum(x, axis=None, keepdims=False): """Sum of the values in a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to sum over. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with sum of `x`. """ return math_ops.reduce_sum(x, axis, keepdims) @keras_export('keras.backend.prod') def prod(x, axis=None, keepdims=False): """Multiplies the values in a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the product. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with the product of elements of `x`. """ return math_ops.reduce_prod(x, axis, keepdims) @keras_export('keras.backend.cumsum') def cumsum(x, axis=0): """Cumulative sum of the values in a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the sum. Returns: A tensor of the cumulative sum of values of `x` along `axis`. """ return math_ops.cumsum(x, axis=axis) @keras_export('keras.backend.cumprod') def cumprod(x, axis=0): """Cumulative product of the values in a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the product. Returns: A tensor of the cumulative product of values of `x` along `axis`. """ return math_ops.cumprod(x, axis=axis) @keras_export('keras.backend.var') def var(x, axis=None, keepdims=False): """Variance of a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the variance. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with the variance of elements of `x`. """ if x.dtype.base_dtype == dtypes_module.bool: x = math_ops.cast(x, floatx()) return math_ops.reduce_variance(x, axis=axis, keepdims=keepdims) @keras_export('keras.backend.std') def std(x, axis=None, keepdims=False): """Standard deviation of a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: An integer, the axis to compute the standard deviation. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with the standard deviation of elements of `x`. """ if x.dtype.base_dtype == dtypes_module.bool: x = math_ops.cast(x, floatx()) return math_ops.reduce_std(x, axis=axis, keepdims=keepdims) @keras_export('keras.backend.mean') def mean(x, axis=None, keepdims=False): """Mean of a tensor, alongside the specified axis. Arguments: x: A tensor or variable. axis: A list of integer. Axes to compute the mean. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keepdims` is `True`, the reduced dimensions are retained with length 1. Returns: A tensor with the mean of elements of `x`. """ if x.dtype.base_dtype == dtypes_module.bool: x = math_ops.cast(x, floatx()) return math_ops.reduce_mean(x, axis, keepdims) @keras_export('keras.backend.any') def any(x, axis=None, keepdims=False): """Bitwise reduction (logical OR). Arguments: x: Tensor or variable. axis: axis along which to perform the reduction. keepdims: whether the drop or broadcast the reduction axes. Returns: A uint8 tensor (0s and 1s). """ x = math_ops.cast(x, dtypes_module.bool) return math_ops.reduce_any(x, axis, keepdims) @keras_export('keras.backend.all') def all(x, axis=None, keepdims=False): """Bitwise reduction (logical AND). Arguments: x: Tensor or variable. axis: axis along which to perform the reduction. keepdims: whether the drop or broadcast the reduction axes. Returns: A uint8 tensor (0s and 1s). """ x = math_ops.cast(x, dtypes_module.bool) return math_ops.reduce_all(x, axis, keepdims) @keras_export('keras.backend.argmax') def argmax(x, axis=-1): """Returns the index of the maximum value along an axis. Arguments: x: Tensor or variable. axis: axis along which to perform the reduction. Returns: A tensor. """ return math_ops.argmax(x, axis) @keras_export('keras.backend.argmin') def argmin(x, axis=-1): """Returns the index of the minimum value along an axis. Arguments: x: Tensor or variable. axis: axis along which to perform the reduction. Returns: A tensor. """ return math_ops.argmin(x, axis) @keras_export('keras.backend.square') def square(x): """Element-wise square. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.square(x) @keras_export('keras.backend.abs') def abs(x): """Element-wise absolute value. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.abs(x) @keras_export('keras.backend.sqrt') def sqrt(x): """Element-wise square root. Arguments: x: Tensor or variable. Returns: A tensor. """ zero = _constant_to_tensor(0., x.dtype.base_dtype) inf = _constant_to_tensor(np.inf, x.dtype.base_dtype) x = clip_ops.clip_by_value(x, zero, inf) return math_ops.sqrt(x) @keras_export('keras.backend.exp') def exp(x): """Element-wise exponential. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.exp(x) @keras_export('keras.backend.log') def log(x): """Element-wise log. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.log(x) def logsumexp(x, axis=None, keepdims=False): """Computes log(sum(exp(elements across dimensions of a tensor))). This function is more numerically stable than log(sum(exp(x))). It avoids overflows caused by taking the exp of large inputs and underflows caused by taking the log of small inputs. Arguments: x: A tensor or variable. axis: An integer, the axis to reduce over. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: The reduced tensor. """ return math_ops.reduce_logsumexp(x, axis, keepdims) @keras_export('keras.backend.round') def round(x): """Element-wise rounding to the closest integer. In case of tie, the rounding mode used is "half to even". Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.round(x) @keras_export('keras.backend.sign') def sign(x): """Element-wise sign. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.sign(x) @keras_export('keras.backend.pow') def pow(x, a): """Element-wise exponentiation. Arguments: x: Tensor or variable. a: Python integer. Returns: A tensor. """ return math_ops.pow(x, a) @keras_export('keras.backend.clip') def clip(x, min_value, max_value): """Element-wise value clipping. Arguments: x: Tensor or variable. min_value: Python float or integer. max_value: Python float or integer. Returns: A tensor. """ if max_value is not None and max_value < min_value: max_value = min_value if max_value is None: max_value = np.inf min_value = _constant_to_tensor(min_value, x.dtype.base_dtype) max_value = _constant_to_tensor(max_value, x.dtype.base_dtype) return clip_ops.clip_by_value(x, min_value, max_value) @keras_export('keras.backend.equal') def equal(x, y): """Element-wise equality between two tensors. Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.equal(x, y) @keras_export('keras.backend.not_equal') def not_equal(x, y): """Element-wise inequality between two tensors. Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.not_equal(x, y) @keras_export('keras.backend.greater') def greater(x, y): """Element-wise truth value of (x > y). Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.greater(x, y) @keras_export('keras.backend.greater_equal') def greater_equal(x, y): """Element-wise truth value of (x >= y). Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.greater_equal(x, y) @keras_export('keras.backend.less') def less(x, y): """Element-wise truth value of (x < y). Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.less(x, y) @keras_export('keras.backend.less_equal') def less_equal(x, y): """Element-wise truth value of (x <= y). Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor. """ return math_ops.less_equal(x, y) @keras_export('keras.backend.maximum') def maximum(x, y): """Element-wise maximum of two tensors. Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A tensor. """ return math_ops.maximum(x, y) @keras_export('keras.backend.minimum') def minimum(x, y): """Element-wise minimum of two tensors. Arguments: x: Tensor or variable. y: Tensor or variable. Returns: A tensor. """ return math_ops.minimum(x, y) @keras_export('keras.backend.sin') def sin(x): """Computes sin of x element-wise. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.sin(x) @keras_export('keras.backend.cos') def cos(x): """Computes cos of x element-wise. Arguments: x: Tensor or variable. Returns: A tensor. """ return math_ops.cos(x) def _regular_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Non-fused version of `normalize_batch_in_training`. Arguments: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`. """ mean, var = nn.moments(x, reduction_axes, None, None, False) normed = nn.batch_normalization(x, mean, var, beta, gamma, epsilon) return normed, mean, var def _broadcast_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Non-fused, broadcast version of `normalize_batch_in_training`. Arguments: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`. """ mean, var = nn.moments(x, reduction_axes, None, None, False) target_shape = [] for axis in range(ndim(x)): if axis in reduction_axes: target_shape.append(1) else: target_shape.append(array_ops.shape(x)[axis]) target_shape = array_ops.stack(target_shape) broadcast_mean = array_ops.reshape(mean, target_shape) broadcast_var = array_ops.reshape(var, target_shape) if gamma is None: broadcast_gamma = None else: broadcast_gamma = array_ops.reshape(gamma, target_shape) if beta is None: broadcast_beta = None else: broadcast_beta = array_ops.reshape(beta, target_shape) normed = nn.batch_normalization(x, broadcast_mean, broadcast_var, broadcast_beta, broadcast_gamma, epsilon) return normed, mean, var def _fused_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Fused version of `normalize_batch_in_training`. Arguments: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`. """ if list(reduction_axes) == [0, 1, 2]: normalization_axis = 3 tf_data_format = 'NHWC' else: normalization_axis = 1 tf_data_format = 'NCHW' if gamma is None: gamma = constant_op.constant( 1.0, dtype=x.dtype, shape=[x.shape[normalization_axis]]) if beta is None: beta = constant_op.constant( 0.0, dtype=x.dtype, shape=[x.shape[normalization_axis]]) return nn.fused_batch_norm( x, gamma, beta, epsilon=epsilon, data_format=tf_data_format) @keras_export('keras.backend.normalize_batch_in_training') def normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Computes mean and std for batch then apply batch_normalization on batch. Arguments: x: Input tensor or variable. gamma: Tensor by which to scale the input. beta: Tensor with which to center the input. reduction_axes: iterable of integers, axes over which to normalize. epsilon: Fuzz factor. Returns: A tuple length of 3, `(normalized_tensor, mean, variance)`. """ if ndim(x) == 4 and list(reduction_axes) in [[0, 1, 2], [0, 2, 3]]: if not _has_nchw_support() and list(reduction_axes) == [0, 2, 3]: return _broadcast_normalize_batch_in_training( x, gamma, beta, reduction_axes, epsilon=epsilon) return _fused_normalize_batch_in_training( x, gamma, beta, reduction_axes, epsilon=epsilon) else: if sorted(reduction_axes) == list(range(ndim(x)))[:-1]: return _regular_normalize_batch_in_training( x, gamma, beta, reduction_axes, epsilon=epsilon) else: return _broadcast_normalize_batch_in_training( x, gamma, beta, reduction_axes, epsilon=epsilon) @keras_export('keras.backend.batch_normalization') def batch_normalization(x, mean, var, beta, gamma, axis=-1, epsilon=1e-3): """Applies batch normalization on x given mean, var, beta and gamma. I.e. returns: `output = (x - mean) / (sqrt(var) + epsilon) * gamma + beta` Arguments: x: Input tensor or variable. mean: Mean of batch. var: Variance of batch. beta: Tensor with which to center the input. gamma: Tensor by which to scale the input. axis: Integer, the axis that should be normalized. (typically the features axis). epsilon: Fuzz factor. Returns: A tensor. """ if ndim(x) == 4: # The CPU implementation of `fused_batch_norm` only supports NHWC if axis == 1 or axis == -3: tf_data_format = 'NCHW' elif axis == 3 or axis == -1: tf_data_format = 'NHWC' else: tf_data_format = None if (tf_data_format == 'NHWC' or tf_data_format == 'NCHW' and _has_nchw_support()): # The mean / var / beta / gamma tensors may be broadcasted # so they may have extra axes of size 1, which should be squeezed. if ndim(mean) > 1: mean = array_ops.reshape(mean, [-1]) if ndim(var) > 1: var = array_ops.reshape(var, [-1]) if beta is None: beta = zeros_like(mean) elif ndim(beta) > 1: beta = array_ops.reshape(beta, [-1]) if gamma is None: gamma = ones_like(mean) elif ndim(gamma) > 1: gamma = array_ops.reshape(gamma, [-1]) y, _, _ = nn.fused_batch_norm( x, gamma, beta, epsilon=epsilon, mean=mean, variance=var, data_format=tf_data_format, is_training=False ) return y return nn.batch_normalization(x, mean, var, beta, gamma, epsilon) # SHAPE OPERATIONS @keras_export('keras.backend.concatenate') def concatenate(tensors, axis=-1): """Concatenates a list of tensors alongside the specified axis. Arguments: tensors: list of tensors to concatenate. axis: concatenation axis. Returns: A tensor. """ if axis < 0: rank = ndim(tensors[0]) if rank: axis %= rank else: axis = 0 if py_all(is_sparse(x) for x in tensors): return sparse_ops.sparse_concat(axis, tensors) else: return array_ops.concat([to_dense(x) for x in tensors], axis) @keras_export('keras.backend.reshape') def reshape(x, shape): """Reshapes a tensor to the specified shape. Arguments: x: Tensor or variable. shape: Target shape tuple. Returns: A tensor. """ return array_ops.reshape(x, shape) @keras_export('keras.backend.permute_dimensions') def permute_dimensions(x, pattern): """Permutes axes in a tensor. Arguments: x: Tensor or variable. pattern: A tuple of dimension indices, e.g. `(0, 2, 1)`. Returns: A tensor. """ return array_ops.transpose(x, perm=pattern) @keras_export('keras.backend.resize_images') def resize_images(x, height_factor, width_factor, data_format, interpolation='nearest'): """Resizes the images contained in a 4D tensor. Arguments: x: Tensor or variable to resize. height_factor: Positive integer. width_factor: Positive integer. data_format: One of `"channels_first"`, `"channels_last"`. interpolation: A string, one of `nearest` or `bilinear`. Returns: A tensor. Raises: ValueError: in case of incorrect value for `data_format` or `interpolation`. """ if data_format == 'channels_first': rows, cols = 2, 3 elif data_format == 'channels_last': rows, cols = 1, 2 else: raise ValueError('Invalid `data_format` argument: %s' % (data_format,)) original_shape = int_shape(x) new_shape = array_ops.shape(x)[rows:cols + 1] new_shape *= constant_op.constant( np.array([height_factor, width_factor], dtype='int32')) if data_format == 'channels_first': x = permute_dimensions(x, [0, 2, 3, 1]) if interpolation == 'nearest': x = image_ops.resize_images_v2( x, new_shape, method=image_ops.ResizeMethod.NEAREST_NEIGHBOR) elif interpolation == 'bilinear': x = image_ops.resize_images_v2(x, new_shape, method=image_ops.ResizeMethod.BILINEAR) else: raise ValueError('interpolation should be one ' 'of "nearest" or "bilinear".') if data_format == 'channels_first': x = permute_dimensions(x, [0, 3, 1, 2]) if original_shape[rows] is None: new_height = None else: new_height = original_shape[rows] * height_factor if original_shape[cols] is None: new_width = None else: new_width = original_shape[cols] * width_factor if data_format == 'channels_first': output_shape = (None, None, new_height, new_width) else: output_shape = (None, new_height, new_width, None) x.set_shape(output_shape) return x @keras_export('keras.backend.resize_volumes') def resize_volumes(x, depth_factor, height_factor, width_factor, data_format): """Resizes the volume contained in a 5D tensor. Arguments: x: Tensor or variable to resize. depth_factor: Positive integer. height_factor: Positive integer. width_factor: Positive integer. data_format: One of `"channels_first"`, `"channels_last"`. Returns: A tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format == 'channels_first': output = repeat_elements(x, depth_factor, axis=2) output = repeat_elements(output, height_factor, axis=3) output = repeat_elements(output, width_factor, axis=4) return output elif data_format == 'channels_last': output = repeat_elements(x, depth_factor, axis=1) output = repeat_elements(output, height_factor, axis=2) output = repeat_elements(output, width_factor, axis=3) return output else: raise ValueError('Invalid data_format: ' + str(data_format)) @keras_export('keras.backend.repeat_elements') def repeat_elements(x, rep, axis): """Repeats the elements of a tensor along an axis, like `np.repeat`. If `x` has shape `(s1, s2, s3)` and `axis` is `1`, the output will have shape `(s1, s2 * rep, s3)`. Arguments: x: Tensor or variable. rep: Python integer, number of times to repeat. axis: Axis along which to repeat. Returns: A tensor. """ x_shape = x.shape.as_list() # For static axis if x_shape[axis] is not None: # slices along the repeat axis splits = array_ops.split(value=x, num_or_size_splits=x_shape[axis], axis=axis) # repeat each slice the given number of reps x_rep = [s for s in splits for _ in range(rep)] return concatenate(x_rep, axis) # Here we use tf.tile to mimic behavior of np.repeat so that # we can handle dynamic shapes (that include None). # To do that, we need an auxiliary axis to repeat elements along # it and then merge them along the desired axis. # Repeating auxiliary_axis = axis + 1 x_shape = array_ops.shape(x) x_rep = array_ops.expand_dims(x, axis=auxiliary_axis) reps = np.ones(len(x.shape) + 1) reps[auxiliary_axis] = rep x_rep = array_ops.tile(x_rep, reps) # Merging reps = np.delete(reps, auxiliary_axis) reps[axis] = rep reps = array_ops.constant(reps, dtype='int32') x_shape *= reps x_rep = array_ops.reshape(x_rep, x_shape) # Fix shape representation x_shape = x.shape.as_list() x_rep.set_shape(x_shape) x_rep._keras_shape = tuple(x_shape) return x_rep @keras_export('keras.backend.repeat') def repeat(x, n): """Repeats a 2D tensor. if `x` has shape (samples, dim) and `n` is `2`, the output will have shape `(samples, 2, dim)`. Arguments: x: Tensor or variable. n: Python integer, number of times to repeat. Returns: A tensor. """ assert ndim(x) == 2 x = array_ops.expand_dims(x, 1) pattern = array_ops.stack([1, n, 1]) return array_ops.tile(x, pattern) @keras_export('keras.backend.arange') def arange(start, stop=None, step=1, dtype='int32'): """Creates a 1D tensor containing a sequence of integers. The function arguments use the same convention as Theano's arange: if only one argument is provided, it is in fact the "stop" argument and "start" is 0. The default type of the returned tensor is `'int32'` to match TensorFlow's default. Arguments: start: Start value. stop: Stop value. step: Difference between two successive values. dtype: Integer dtype to use. Returns: An integer tensor. """ # Match the behavior of numpy and Theano by returning an empty sequence. if stop is None and start < 0: start = 0 result = math_ops.range(start, limit=stop, delta=step, name='arange') if dtype != 'int32': result = cast(result, dtype) return result @keras_export('keras.backend.tile') def tile(x, n): """Creates a tensor by tiling `x` by `n`. Arguments: x: A tensor or variable n: A list of integer. The length must be the same as the number of dimensions in `x`. Returns: A tiled tensor. """ if isinstance(n, int): n = [n] return array_ops.tile(x, n) @keras_export('keras.backend.flatten') def flatten(x): """Flatten a tensor. Arguments: x: A tensor or variable. Returns: A tensor, reshaped into 1-D """ return array_ops.reshape(x, [-1]) @keras_export('keras.backend.batch_flatten') def batch_flatten(x): """Turn a nD tensor into a 2D tensor with same 0th dimension. In other words, it flattens each data samples of a batch. Arguments: x: A tensor or variable. Returns: A tensor. Examples: Flattening a 3D tensor to 2D by collapsing the last dimension. ```python >>> from tensorflow.keras import backend as K >>> x_batch = K.ones(shape=(2, 3, 4, 5)) >>> x_batch_flatten = K.batch_flatten(x_batch) >>> K.int_shape(x_batch_flatten) (2, 60) ``` """ x = array_ops.reshape(x, array_ops.stack([-1, prod(shape(x)[1:])])) return x @keras_export('keras.backend.expand_dims') def expand_dims(x, axis=-1): """Adds a 1-sized dimension at index "axis". Arguments: x: A tensor or variable. axis: Position where to add a new axis. Returns: A tensor with expanded dimensions. """ return array_ops.expand_dims(x, axis) @keras_export('keras.backend.squeeze') def squeeze(x, axis): """Removes a 1-dimension from the tensor at index "axis". Arguments: x: A tensor or variable. axis: Axis to drop. Returns: A tensor with the same data as `x` but reduced dimensions. """ return array_ops.squeeze(x, [axis]) @keras_export('keras.backend.temporal_padding') def temporal_padding(x, padding=(1, 1)): """Pads the middle dimension of a 3D tensor. Arguments: x: Tensor or variable. padding: Tuple of 2 integers, how many zeros to add at the start and end of dim 1. Returns: A padded 3D tensor. """ assert len(padding) == 2 pattern = [[0, 0], [padding[0], padding[1]], [0, 0]] return array_ops.pad(x, pattern) @keras_export('keras.backend.spatial_2d_padding') def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None): """Pads the 2nd and 3rd dimensions of a 4D tensor. Arguments: x: Tensor or variable. padding: Tuple of 2 tuples, padding pattern. data_format: One of `channels_last` or `channels_first`. Returns: A padded 4D tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ assert len(padding) == 2 assert len(padding[0]) == 2 assert len(padding[1]) == 2 if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if data_format == 'channels_first': pattern = [[0, 0], [0, 0], list(padding[0]), list(padding[1])] else: pattern = [[0, 0], list(padding[0]), list(padding[1]), [0, 0]] return array_ops.pad(x, pattern) @keras_export('keras.backend.spatial_3d_padding') def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None): """Pads 5D tensor with zeros along the depth, height, width dimensions. Pads these dimensions with respectively "padding[0]", "padding[1]" and "padding[2]" zeros left and right. For 'channels_last' data_format, the 2nd, 3rd and 4th dimension will be padded. For 'channels_first' data_format, the 3rd, 4th and 5th dimension will be padded. Arguments: x: Tensor or variable. padding: Tuple of 3 tuples, padding pattern. data_format: One of `channels_last` or `channels_first`. Returns: A padded 5D tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ assert len(padding) == 3 assert len(padding[0]) == 2 assert len(padding[1]) == 2 assert len(padding[2]) == 2 if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if data_format == 'channels_first': pattern = [[0, 0], [0, 0], [padding[0][0], padding[0][1]], [padding[1][0], padding[1][1]], [padding[2][0], padding[2][1]]] else: pattern = [[0, 0], [padding[0][0], padding[0][1]], [padding[1][0], padding[1][1]], [padding[2][0], padding[2][1]], [0, 0]] return array_ops.pad(x, pattern) @keras_export('keras.backend.stack') def stack(x, axis=0): """Stacks a list of rank `R` tensors into a rank `R+1` tensor. Arguments: x: List of tensors. axis: Axis along which to perform stacking. Returns: A tensor. """ return array_ops.stack(x, axis=axis) @keras_export('keras.backend.one_hot') def one_hot(indices, num_classes): """Computes the one-hot representation of an integer tensor. Arguments: indices: nD integer tensor of shape `(batch_size, dim1, dim2, ... dim(n-1))` num_classes: Integer, number of classes to consider. Returns: (n + 1)D one hot representation of the input with shape `(batch_size, dim1, dim2, ... dim(n-1), num_classes)` Returns: The one-hot tensor. """ return array_ops.one_hot(indices, depth=num_classes, axis=-1) @keras_export('keras.backend.reverse') def reverse(x, axes): """Reverse a tensor along the specified axes. Arguments: x: Tensor to reverse. axes: Integer or iterable of integers. Axes to reverse. Returns: A tensor. """ if isinstance(axes, int): axes = [axes] return array_ops.reverse(x, axes) # VALUE MANIPULATION @keras_export('keras.backend.get_value') def get_value(x): """Returns the value of a variable. Arguments: x: input variable. Returns: A Numpy array. """ if not tensor_util.is_tensor(x): return x if context.executing_eagerly(): return x.numpy() if not getattr(x, '_in_graph_mode', True): # This is a variable which was created in an eager context, but is being # evaluated from a Graph. with context.eager_mode(): return x.numpy() if ops.executing_eagerly_outside_functions(): # This method of evaluating works inside the Keras FuncGraph. return function([], x)(x) return x.eval(session=get_session((x,))) @keras_export('keras.backend.batch_get_value') def batch_get_value(tensors): """Returns the value of more than one tensor variable. Arguments: tensors: list of ops to run. Returns: A list of Numpy arrays. Raises: RuntimeError: If this method is called inside defun. """ if context.executing_eagerly(): return [x.numpy() for x in tensors] elif ops.inside_function(): # pylint: disable=protected-access raise RuntimeError('Cannot get value inside Tensorflow graph function.') if tensors: return get_session(tensors).run(tensors) else: return [] @keras_export('keras.backend.set_value') def set_value(x, value): """Sets the value of a variable, from a Numpy array. Arguments: x: Tensor to set to a new value. value: Value to set the tensor to, as a Numpy array (of the same shape). """ value = np.asarray(value, dtype=dtype(x)) if ops.executing_eagerly_outside_functions(): with ops.init_scope(): x.assign(value) else: with get_graph().as_default(): tf_dtype = dtypes_module.as_dtype(x.dtype.name.split('_')[0]) if hasattr(x, '_assign_placeholder'): assign_placeholder = x._assign_placeholder assign_op = x._assign_op else: assign_placeholder = array_ops.placeholder(tf_dtype, shape=value.shape) assign_op = x.assign(assign_placeholder) x._assign_placeholder = assign_placeholder x._assign_op = assign_op get_session().run(assign_op, feed_dict={assign_placeholder: value}) @keras_export('keras.backend.batch_set_value') def batch_set_value(tuples): """Sets the values of many tensor variables at once. Arguments: tuples: a list of tuples `(tensor, value)`. `value` should be a Numpy array. """ if ops.executing_eagerly_outside_functions(): with ops.init_scope(): for x, value in tuples: x.assign(np.asarray(value, dtype=dtype(x))) else: with get_graph().as_default(): if tuples: assign_ops = [] feed_dict = {} for x, value in tuples: value = np.asarray(value, dtype=dtype(x)) tf_dtype = dtypes_module.as_dtype(x.dtype.name.split('_')[0]) if hasattr(x, '_assign_placeholder'): assign_placeholder = x._assign_placeholder assign_op = x._assign_op else: assign_placeholder = array_ops.placeholder(tf_dtype, shape=value.shape) assign_op = x.assign(assign_placeholder) x._assign_placeholder = assign_placeholder x._assign_op = assign_op assign_ops.append(assign_op) feed_dict[assign_placeholder] = value get_session().run(assign_ops, feed_dict=feed_dict) @keras_export('keras.backend.print_tensor') def print_tensor(x, message=''): """Prints `message` and the tensor value when evaluated. Note that `print_tensor` returns a new tensor identical to `x` which should be used in the following code. Otherwise the print operation is not taken into account during evaluation. Example: ```python >>> x = K.print_tensor(x, message="x is: ") ``` Arguments: x: Tensor to print. message: Message to print jointly with the tensor. Returns: The same tensor `x`, unchanged. """ if isinstance(x, ops.Tensor) and hasattr(x, 'graph'): with get_graph().as_default(): op = logging_ops.print_v2(message, x, output_stream=sys.stdout) with ops.control_dependencies([op]): return array_ops.identity(x) else: logging_ops.print_v2(message, x, output_stream=sys.stdout) return x # GRAPH MANIPULATION class GraphExecutionFunction(object): """Runs a computation graph. It's possible to pass arguments to `tf.Session.run()` via `session_kwargs`. In particular additional operations via `fetches` argument and additional tensor substitutions via `feed_dict` arguments. Note that given substitutions are merged with substitutions from `inputs`. Even though `feed_dict` is passed once in the constructor (called in `model.compile()`) we can modify the values in the dictionary. Through this feed_dict we can provide additional substitutions besides Keras inputs. Arguments: inputs: Feed placeholders to the computation graph. outputs: Output tensors to fetch. updates: Additional update ops to be run at function call. name: A name to help users identify what this function does. session_kwargs: Arguments to `tf.Session.run()`: `fetches`, `feed_dict`, `options`, `run_metadata`. """ def __init__(self, inputs, outputs, updates=None, name=None, **session_kwargs): updates = updates or [] if not isinstance(updates, (list, tuple)): raise TypeError('`updates` in a Keras backend function ' 'should be a list or tuple.') self._inputs_structure = inputs self.inputs = nest.flatten(inputs, expand_composites=True) self._outputs_structure = outputs self.outputs = cast_variables_to_tensor( nest.flatten(outputs, expand_composites=True)) # TODO(b/127668432): Consider using autograph to generate these # dependencies in call. # Index 0 = total loss or model output for `predict`. with ops.control_dependencies([self.outputs[0]]): updates_ops = [] for update in updates: if isinstance(update, tuple): p, new_p = update updates_ops.append(state_ops.assign(p, new_p)) else: # assumed already an op updates_ops.append(update) self.updates_op = control_flow_ops.group(*updates_ops) self.name = name # additional tensor substitutions self.feed_dict = session_kwargs.pop('feed_dict', None) # additional operations self.fetches = session_kwargs.pop('fetches', []) if not isinstance(self.fetches, list): self.fetches = [self.fetches] self.run_options = session_kwargs.pop('options', None) self.run_metadata = session_kwargs.pop('run_metadata', None) # The main use case of `fetches` being passed to a model is the ability # to run custom updates # This requires us to wrap fetches in `identity` ops. self.fetches = [array_ops.identity(x) for x in self.fetches] self.session_kwargs = session_kwargs # This mapping keeps track of the function that should receive the # output from a fetch in `fetches`: { fetch: function(fetch_output) } # A Callback can use this to register a function with access to the # output values for a fetch it added. self.fetch_callbacks = {} if session_kwargs: raise ValueError('Some keys in session_kwargs are not supported at this ' 'time: %s' % (session_kwargs.keys(),)) self._callable_fn = None self._feed_arrays = None self._feed_symbols = None self._symbol_vals = None self._fetches = None self._session = None def _make_callable(self, feed_arrays, feed_symbols, symbol_vals, session): """Generates a callable that runs the graph. Arguments: feed_arrays: List of input tensors to be fed Numpy arrays at runtime. feed_symbols: List of input tensors to be fed symbolic tensors at runtime. symbol_vals: List of symbolic tensors to be fed to `feed_symbols`. session: Session to use to generate the callable. Returns: Function that runs the graph according to the above options. """ # Prepare callable options. callable_opts = config_pb2.CallableOptions() # Handle external-data feed. for x in feed_arrays: callable_opts.feed.append(x.name) if self.feed_dict: for key in sorted(self.feed_dict.keys()): callable_opts.feed.append(key.name) # Handle symbolic feed. for x, y in zip(feed_symbols, symbol_vals): connection = callable_opts.tensor_connection.add() if x.dtype != y.dtype: y = math_ops.cast(y, dtype=x.dtype) from_tensor = ops._as_graph_element(y) if from_tensor is None: from_tensor = y connection.from_tensor = from_tensor.name # Data tensor connection.to_tensor = x.name # Placeholder # Handle fetches. for x in self.outputs + self.fetches: callable_opts.fetch.append(x.name) # Handle updates. callable_opts.target.append(self.updates_op.name) # Handle run_options. if self.run_options: callable_opts.run_options.CopyFrom(self.run_options) # Create callable. callable_fn = session._make_callable_from_options(callable_opts) # Cache parameters corresponding to the generated callable, so that # we can detect future mismatches and refresh the callable. self._callable_fn = callable_fn self._feed_arrays = feed_arrays self._feed_symbols = feed_symbols self._symbol_vals = symbol_vals self._fetches = list(self.fetches) self._session = session def _call_fetch_callbacks(self, fetches_output): for fetch, output in zip(self._fetches, fetches_output): if fetch in self.fetch_callbacks: self.fetch_callbacks[fetch](output) def _eval_if_composite(self, tensor): """Helper method which evaluates any CompositeTensors passed to it.""" # We need to evaluate any composite tensor objects that have been # reconstructed in 'pack_sequence_as', since otherwise they'll be output as # actual CompositeTensor objects instead of the value(s) contained in the # CompositeTensors. E.g., if output_structure contains a SparseTensor, then # this ensures that we return its value as a SparseTensorValue rather than # a SparseTensor. if isinstance(tensor, composite_tensor.CompositeTensor): return self._session.run(tensor) else: return tensor def __call__(self, inputs): inputs = nest.flatten(inputs, expand_composites=True) session = get_session(inputs) feed_arrays = [] array_vals = [] feed_symbols = [] symbol_vals = [] for tensor, value in zip(self.inputs, inputs): if value is None: continue if tensor_util.is_tensor(value): # Case: feeding symbolic tensor. feed_symbols.append(tensor) symbol_vals.append(value) else: # Case: feeding Numpy array. feed_arrays.append(tensor) # We need to do array conversion and type casting at this level, since # `callable_fn` only supports exact matches. tensor_type = dtypes_module.as_dtype(tensor.dtype) array_vals.append(np.asarray(value, dtype=tensor_type.as_numpy_dtype)) if self.feed_dict: for key in sorted(self.feed_dict.keys()): array_vals.append( np.asarray(self.feed_dict[key], dtype=key.dtype.base_dtype.name)) # Refresh callable if anything has changed. if (self._callable_fn is None or feed_arrays != self._feed_arrays or symbol_vals != self._symbol_vals or feed_symbols != self._feed_symbols or self.fetches != self._fetches or session != self._session): self._make_callable(feed_arrays, feed_symbols, symbol_vals, session) fetched = self._callable_fn(*array_vals, run_metadata=self.run_metadata) self._call_fetch_callbacks(fetched[-len(self._fetches):]) output_structure = nest.pack_sequence_as( self._outputs_structure, fetched[:len(self.outputs)], expand_composites=True) # We need to evaluate any composite tensor objects that have been # reconstructed in 'pack_sequence_as', since otherwise they'll be output as # actual CompositeTensor objects instead of the value(s) contained in the # CompositeTensors. E.g., if output_structure contains a SparseTensor, then # this ensures that we return its value as a SparseTensorValue rather than # a SparseTensor. return nest.map_structure(self._eval_if_composite, output_structure) class EagerExecutionFunction(object): """Helper class for constructing a TF graph function from the Keras graph. Arguments: inputs: Feed placeholders to the computation graph. outputs: Output tensors to fetch. updates: Additional update ops to be run at function call. name: A name to help users identify what this function does. session_kwargs: Unsupported. """ def __init__(self, inputs, outputs, updates=None, name=None): self.name = name self._inputs_structure = inputs inputs = nest.flatten(inputs, expand_composites=True) self._outputs_structure = outputs outputs = nest.flatten(outputs, expand_composites=True) updates = updates or [] if not isinstance(updates, (list, tuple)): raise TypeError('`updates` in a Keras backend function ' 'should be a list or tuple.') if updates and not outputs: # Edge case; never happens in practice raise ValueError('Cannot create a Keras backend function with updates' ' but no outputs during eager execution.') graphs = { i.graph for i in nest.flatten([inputs, outputs, updates]) if hasattr(i, 'graph') } if len(graphs) > 1: raise ValueError('Cannot create an execution function which is comprised ' 'of elements from multiple graphs.') source_graph = graphs.pop() global_graph = get_graph() updates_ops = [] legacy_update_ops = [] for update in updates: # For legacy reasons it is allowed to pass an update as a tuple # `(variable, new_value)` (this maps to an assign op). Otherwise it # is assumed to already be an op -- we cannot control its execution # order. if isinstance(update, tuple): legacy_update_ops.append(update) else: if hasattr(update, 'op'): update = update.op if update is not None: # `update.op` may have been None in certain cases. updates_ops.append(update) self._freezable_vars_to_feed = [] self._freezable_vars_values = [] freezable_vars_from_keras_graph = _FREEZABLE_VARS.get(global_graph, {}) with _scratch_graph() as exec_graph: global_graph = get_graph() if source_graph not in (exec_graph, global_graph): raise ValueError('Unknown graph. Aborting.') if source_graph is global_graph and exec_graph is not global_graph: init_tensors = ( outputs + updates_ops + [p for [p, _] in legacy_update_ops] + [p_new for [_, p_new] in legacy_update_ops if isinstance(p_new, ops.Tensor)]) lifted_map = lift_to_graph.lift_to_graph( init_tensors=init_tensors, graph=exec_graph, sources=inputs, add_sources=True, handle_captures=True, base_graph=source_graph) inputs = [lifted_map[i] for i in inputs] outputs = [lifted_map[i] for i in outputs] updates_ops = [lifted_map[i] for i in updates_ops] legacy_update_ops = [(lifted_map[p], lifted_map.get(p_new, p_new)) for p, p_new in legacy_update_ops] # Keep track of the value to feed to any "freezable variables" # created in this graph. for old_op, new_op in lifted_map.items(): if old_op in freezable_vars_from_keras_graph: frozen_var = old_op if frozen_var._initial_value != frozen_var._current_value: # We only feed a frozen_variable if its value has changed; # otherwise it can rely on the default value of the # underlying placeholder_with_default. self._freezable_vars_to_feed.append(new_op) self._freezable_vars_values.append(frozen_var._current_value) # Consolidate updates with exec_graph.as_default(): outputs = cast_variables_to_tensor(outputs) with ops.control_dependencies(outputs): for p, p_new in legacy_update_ops: updates_ops.append(state_ops.assign(p, p_new)) self.inputs, self.outputs = inputs, outputs self._input_references = self.inputs + self._freezable_vars_to_feed with ops.control_dependencies(updates_ops): self.outputs[0] = array_ops.identity(self.outputs[0]) exec_graph.inputs = self._input_references + list( exec_graph.captures.values()) exec_graph.outputs = self.outputs graph_fn = eager_function.ConcreteFunction(exec_graph) graph_fn._num_positional_args = len(self._input_references) graph_fn._arg_keywords = [] self._graph_fn = graph_fn # Handle placeholders with default # (treated as required placeholder by graph functions) self._placeholder_default_values = {} with exec_graph.as_default(): for x in self.inputs: if x.op.type == 'PlaceholderWithDefault': self._placeholder_default_values[x] = tensor_util.constant_value( x.op.inputs[0]) def __call__(self, inputs): input_values = nest.flatten(inputs, expand_composites=True) if self._freezable_vars_values: input_values = input_values + self._freezable_vars_values converted_inputs = [] for tensor, value in zip(self._input_references, input_values): if value is None: # Assume `value` is a placeholder with default value = self._placeholder_default_values.get(tensor, None) if value is None: raise ValueError( 'You must feed a value for placeholder %s' % (tensor,)) if not isinstance(value, ops.Tensor): value = ops.convert_to_tensor(value, dtype=tensor.dtype) if value.dtype != tensor.dtype: # Temporary workaround due to `convert_to_tensor` not casting floats. # See b/119637405 value = math_ops.cast(value, tensor.dtype) converted_inputs.append(value) outputs = self._graph_fn(*converted_inputs) # EagerTensor.numpy() will often make a copy to ensure memory safety. # However in this case `outputs` is not directly returned, so it is always # safe to reuse the underlying buffer without checking. In such a case the # private numpy conversion method is preferred to guarantee performance. We # also have to call `_cpu_nograd()` since the Tensor may not be on the CPU. # (otherwise it's just a no-op.) return nest.pack_sequence_as( self._outputs_structure, [x._cpu_nograd()._numpy() for x in outputs], # pylint: disable=protected-access expand_composites=True) @keras_export('keras.backend.function') def function(inputs, outputs, updates=None, name=None, **kwargs): """Instantiates a Keras function. Arguments: inputs: List of placeholder tensors. outputs: List of output tensors. updates: List of update ops. name: String, name of function. **kwargs: Passed to `tf.Session.run`. Returns: Output values as Numpy arrays. Raises: ValueError: if invalid kwargs are passed in or if in eager execution. """ if ops.executing_eagerly_outside_functions(): if kwargs: raise ValueError('Session keyword arguments are not support during ' 'eager execution. You passed: %s' % (kwargs,)) return EagerExecutionFunction(inputs, outputs, updates=updates, name=name) if kwargs: for key in kwargs: if (key not in tf_inspect.getfullargspec(session_module.Session.run)[0] and key not in ['inputs', 'outputs', 'updates', 'name']): msg = ('Invalid argument "%s" passed to K.function with TensorFlow ' 'backend') % key raise ValueError(msg) return GraphExecutionFunction(inputs, outputs, updates=updates, **kwargs) @keras_export('keras.backend.gradients') def gradients(loss, variables): """Returns the gradients of `loss` w.r.t. `variables`. Arguments: loss: Scalar tensor to minimize. variables: List of variables. Returns: A gradients tensor. """ return gradients_module.gradients( loss, variables, colocate_gradients_with_ops=True) @keras_export('keras.backend.stop_gradient') def stop_gradient(variables): """Returns `variables` but with zero gradient w.r.t. every other variable. Arguments: variables: Tensor or list of tensors to consider constant with respect to any other variable. Returns: A single tensor or a list of tensors (depending on the passed argument) that has no gradient with respect to any other variable. """ if isinstance(variables, (list, tuple)): return map(array_ops.stop_gradient, variables) return array_ops.stop_gradient(variables) # CONTROL FLOW @keras_export('keras.backend.rnn') def rnn(step_function, inputs, initial_states, go_backwards=False, mask=None, constants=None, unroll=False, input_length=None, time_major=False, zero_output_for_mask=False): """Iterates over the time dimension of a tensor. Arguments: step_function: RNN step function. Args; input; Tensor with shape `(samples, ...)` (no time dimension), representing input for the batch of samples at a certain time step. states; List of tensors. Returns; output; Tensor with shape `(samples, output_dim)` (no time dimension). new_states; List of tensors, same length and shapes as 'states'. The first state in the list must be the output tensor at the previous timestep. inputs: Tensor of temporal data of shape `(samples, time, ...)` (at least 3D), or nested tensors, and each of which has shape `(samples, time, ...)`. initial_states: Tensor with shape `(samples, state_size)` (no time dimension), containing the initial values for the states used in the step function. In the case that state_size is in a nested shape, the shape of initial_states will also follow the nested structure. go_backwards: Boolean. If True, do the iteration over the time dimension in reverse order and return the reversed sequence. mask: Binary tensor with shape `(samples, time, 1)`, with a zero for every element that is masked. constants: List of constant values passed at each step. unroll: Whether to unroll the RNN or to use a symbolic `while_loop`. input_length: If specified, assume time dimension is of this length. time_major: Boolean. If true, the inputs and outputs will be in shape `(timesteps, batch, ...)`, whereas in the False case, it will be `(batch, timesteps, ...)`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. zero_output_for_mask: Boolean. If True, the output for masked timestep will be zeros, whereas in the False case, output from previous timestep is returned. Returns: A tuple, `(last_output, outputs, new_states)`. last_output: the latest output of the rnn, of shape `(samples, ...)` outputs: tensor with shape `(samples, time, ...)` where each entry `outputs[s, t]` is the output of the step function at time `t` for sample `s`. new_states: list of tensors, latest states returned by the step function, of shape `(samples, ...)`. Raises: ValueError: if input dimension is less than 3. ValueError: if `unroll` is `True` but input timestep is not a fixed number. ValueError: if `mask` is provided (not `None`) but states is not provided (`len(states)` == 0). """ def swap_batch_timestep(input_t): # Swap the batch and timestep dim for the incoming tensor. axes = list(range(len(input_t.shape))) axes[0], axes[1] = 1, 0 return array_ops.transpose(input_t, axes) if not time_major: inputs = nest.map_structure(swap_batch_timestep, inputs) flatted_inputs = nest.flatten(inputs) time_steps = flatted_inputs[0].shape[0] batch = flatted_inputs[0].shape[1] time_steps_t = array_ops.shape(flatted_inputs[0])[0] for input_ in flatted_inputs: input_.shape.with_rank_at_least(3) if mask is not None: if mask.dtype != dtypes_module.bool: mask = math_ops.cast(mask, dtypes_module.bool) if len(mask.shape) == 2: mask = expand_dims(mask) if not time_major: mask = swap_batch_timestep(mask) if constants is None: constants = [] # tf.where needs its condition tensor to be the same shape as its two # result tensors, but in our case the condition (mask) tensor is # (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. # So we need to broadcast the mask to match the shape of inputs. # That's what the tile call does, it just repeats the mask along its # second dimension n times. def _expand_mask(mask_t, input_t, fixed_dim=1): assert not nest.is_sequence(mask_t) assert not nest.is_sequence(input_t) rank_diff = len(input_t.shape) - len(mask_t.shape) for _ in range(rank_diff): mask_t = array_ops.expand_dims(mask_t, -1) multiples = [1] * fixed_dim + input_t.shape.as_list()[fixed_dim:] return array_ops.tile(mask_t, multiples) if unroll: if not time_steps: raise ValueError('Unrolling requires a fixed number of timesteps.') states = tuple(initial_states) successive_states = [] successive_outputs = [] # Process the input tensors. The input tensor need to be split on the # time_step dim, and reverse if go_backwards is True. In the case of nested # input, the input is flattened and then transformed individually. # The result of this will be a tuple of lists, each of the item in tuple is # list of the tensor with shape (batch, feature) def _process_single_input_t(input_t): input_t = array_ops.unstack(input_t) # unstack for time_step dim if go_backwards: input_t.reverse() return input_t if nest.is_sequence(inputs): processed_input = nest.map_structure(_process_single_input_t, inputs) else: processed_input = (_process_single_input_t(inputs),) def _get_input_tensor(time): inp = [t_[time] for t_ in processed_input] return nest.pack_sequence_as(inputs, inp) if mask is not None: mask_list = array_ops.unstack(mask) if go_backwards: mask_list.reverse() for i in range(time_steps): inp = _get_input_tensor(i) mask_t = mask_list[i] output, new_states = step_function(inp, tuple(states) + tuple(constants)) tiled_mask_t = _expand_mask(mask_t, output) if not successive_outputs: prev_output = zeros_like(output) else: prev_output = successive_outputs[-1] output = array_ops.where(tiled_mask_t, output, prev_output) return_states = [] for state, new_state in zip(states, new_states): # (see earlier comment for tile explanation) tiled_mask_t = _expand_mask(mask_t, new_state) return_states.append(array_ops.where(tiled_mask_t, new_state, state)) states = return_states successive_outputs.append(output) successive_states.append(states) last_output = successive_outputs[-1] new_states = successive_states[-1] outputs = array_ops.stack(successive_outputs) if zero_output_for_mask: last_output = array_ops.where( _expand_mask(mask_list[-1], last_output), last_output, zeros_like(last_output)) outputs = array_ops.where( _expand_mask(mask, outputs, fixed_dim=2), outputs, zeros_like(outputs)) else: for i in range(time_steps): inp = _get_input_tensor(i) output, states = step_function(inp, tuple(states) + tuple(constants)) successive_outputs.append(output) successive_states.append(states) last_output = successive_outputs[-1] new_states = successive_states[-1] outputs = array_ops.stack(successive_outputs) else: states = tuple(initial_states) # Create input tensor array, if the inputs is nested tensors, then it will # be flattened first, and tensor array will be created one per flattened # tensor. input_ta = tuple( tensor_array_ops.TensorArray( dtype=inp.dtype, size=time_steps_t, tensor_array_name='input_ta_%s' % i) for i, inp in enumerate(flatted_inputs)) input_ta = tuple( ta.unstack(input_) if not go_backwards else ta .unstack(reverse(input_, 0)) for ta, input_ in zip(input_ta, flatted_inputs)) # Get the time(0) input and compute the output for that, the output will be # used to determine the dtype of output tensor array. Don't read from # input_ta due to TensorArray clear_after_read default to True. input_time_zero = nest.pack_sequence_as(inputs, [inp[0] for inp in flatted_inputs]) # output_time_zero is used to determine the cell output shape and its dtype. # the value is discarded. output_time_zero, _ = step_function( input_time_zero, tuple(initial_states) + tuple(constants)) output_ta = tuple( tensor_array_ops.TensorArray( dtype=out.dtype, size=time_steps_t, tensor_array_name='output_ta_%s' % i) for i, out in enumerate(nest.flatten(output_time_zero))) time = constant_op.constant(0, dtype='int32', name='time') while_loop_kwargs = { 'cond': lambda time, *_: time < time_steps_t, 'maximum_iterations': input_length, 'parallel_iterations': 32, 'swap_memory': True, } if mask is not None: if not states: raise ValueError('No initial states provided! ' 'When using masking in an RNN, you should ' 'provide initial states ' '(and your step function should return ' 'as its first state at time `t` ' 'the output at time `t-1`).') if go_backwards: mask = reverse(mask, 0) mask_ta = tensor_array_ops.TensorArray( dtype=dtypes_module.bool, size=time_steps_t, tensor_array_name='mask_ta') mask_ta = mask_ta.unstack(mask) # Mask for the T output will be base on the output of T - 1. In the case # T = 0, a zero filled tensor will be used. flat_zero_output = tuple(array_ops.zeros_like(o) for o in nest.flatten(output_time_zero)) def _step(time, output_ta_t, prev_output, *states): """RNN step function. Arguments: time: Current timestep value. output_ta_t: TensorArray. prev_output: tuple of outputs from time - 1. *states: List of states. Returns: Tuple: `(time + 1, output_ta_t, output) + tuple(new_states)` """ current_input = tuple(ta.read(time) for ta in input_ta) # maybe set shape. current_input = nest.pack_sequence_as(inputs, current_input) mask_t = mask_ta.read(time) output, new_states = step_function(current_input, tuple(states) + tuple(constants)) # mask output flat_output = nest.flatten(output) flat_mask_output = (flat_zero_output if zero_output_for_mask else nest.flatten(prev_output)) tiled_mask_t = tuple(_expand_mask(mask_t, o) for o in flat_output) flat_new_output = tuple( array_ops.where(m, o, zo) for m, o, zo in zip( tiled_mask_t, flat_output, flat_mask_output)) # mask states flat_state = nest.flatten(states) flat_new_state = nest.flatten(new_states) for state, new_state in zip(flat_state, flat_new_state): if isinstance(new_state, ops.Tensor): new_state.set_shape(state.shape) tiled_mask_t = tuple(_expand_mask(mask_t, s) for s in flat_state) flat_final_state = tuple( array_ops.where(m, s, ps) for m, s, ps in zip(tiled_mask_t, flat_new_state, flat_state)) new_states = nest.pack_sequence_as(new_states, flat_final_state) output_ta_t = tuple( ta.write(time, out) for ta, out in zip(output_ta_t, flat_new_output)) return (time + 1, output_ta_t, tuple(flat_new_output)) + tuple(new_states) final_outputs = control_flow_ops.while_loop( body=_step, loop_vars=(time, output_ta, flat_zero_output) + states, **while_loop_kwargs) # Skip final_outputs[2] which is the output for final timestep. new_states = final_outputs[3:] else: def _step(time, output_ta_t, *states): """RNN step function. Arguments: time: Current timestep value. output_ta_t: TensorArray. *states: List of states. Returns: Tuple: `(time + 1,output_ta_t) + tuple(new_states)` """ current_input = tuple(ta.read(time) for ta in input_ta) current_input = nest.pack_sequence_as(inputs, current_input) output, new_states = step_function(current_input, tuple(states) + tuple(constants)) flat_state = nest.flatten(states) flat_new_state = nest.flatten(new_states) for state, new_state in zip(flat_state, flat_new_state): if isinstance(new_state, ops.Tensor): new_state.set_shape(state.shape) flat_output = nest.flatten(output) output_ta_t = tuple( ta.write(time, out) for ta, out in zip(output_ta_t, flat_output)) new_states = nest.pack_sequence_as(initial_states, flat_new_state) return (time + 1, output_ta_t) + tuple(new_states) final_outputs = control_flow_ops.while_loop( body=_step, loop_vars=(time, output_ta) + states, **while_loop_kwargs) new_states = final_outputs[2:] output_ta = final_outputs[1] outputs = tuple(o.stack() for o in output_ta) last_output = tuple(o[-1] for o in outputs) outputs = nest.pack_sequence_as(output_time_zero, outputs) last_output = nest.pack_sequence_as(output_time_zero, last_output) # static shape inference def set_shape(output_): if isinstance(output_, ops.Tensor): shape = output_.shape.as_list() shape[0] = time_steps shape[1] = batch output_.set_shape(shape) return output_ outputs = nest.map_structure(set_shape, outputs) if not time_major: outputs = nest.map_structure(swap_batch_timestep, outputs) return last_output, outputs, new_states @keras_export('keras.backend.switch') def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value. Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. Arguments: condition: tensor (`int` or `bool`). then_expression: either a tensor, or a callable that returns a tensor. else_expression: either a tensor, or a callable that returns a tensor. Returns: The selected tensor. Raises: ValueError: If rank of `condition` is greater than rank of expressions. """ if condition.dtype != dtypes_module.bool: condition = math_ops.cast(condition, 'bool') cond_ndim = ndim(condition) if not cond_ndim: if not callable(then_expression): def then_expression_fn(): return then_expression else: then_expression_fn = then_expression if not callable(else_expression): def else_expression_fn(): return else_expression else: else_expression_fn = else_expression x = control_flow_ops.cond(condition, then_expression_fn, else_expression_fn) else: # tf.where needs its condition tensor # to be the same shape as its two # result tensors if callable(then_expression): then_expression = then_expression() if callable(else_expression): else_expression = else_expression() expr_ndim = ndim(then_expression) if cond_ndim > expr_ndim: raise ValueError('Rank of `condition` should be less than or' ' equal to rank of `then_expression` and ' '`else_expression`. ndim(condition)=' + str(cond_ndim) + ', ndim(then_expression)' '=' + str(expr_ndim)) if cond_ndim > 1: ndim_diff = expr_ndim - cond_ndim cond_shape = array_ops.concat( [array_ops.shape(condition), [1] * ndim_diff], axis=0) condition = array_ops.reshape(condition, cond_shape) expr_shape = array_ops.shape(then_expression) shape_diff = expr_shape - cond_shape tile_shape = array_ops.where(shape_diff > 0, expr_shape, array_ops.ones_like(expr_shape)) condition = array_ops.tile(condition, tile_shape) x = array_ops.where(condition, then_expression, else_expression) return x @keras_export('keras.backend.in_train_phase') def in_train_phase(x, alt, training=None): """Selects `x` in train phase, and `alt` otherwise. Note that `alt` should have the *same shape* as `x`. Arguments: x: What to return in train phase (tensor or callable that returns a tensor). alt: What to return otherwise (tensor or callable that returns a tensor). training: Optional scalar tensor (or Python boolean, or Python integer) specifying the learning phase. Returns: Either `x` or `alt` based on the `training` flag. the `training` flag defaults to `K.learning_phase()`. """ if training is None: training = learning_phase() if training == 1 or training is True: if callable(x): return x() else: return x elif training == 0 or training is False: if callable(alt): return alt() else: return alt # else: assume learning phase is a placeholder tensor. x = switch(training, x, alt) return x @keras_export('keras.backend.in_test_phase') def in_test_phase(x, alt, training=None): """Selects `x` in test phase, and `alt` otherwise. Note that `alt` should have the *same shape* as `x`. Arguments: x: What to return in test phase (tensor or callable that returns a tensor). alt: What to return otherwise (tensor or callable that returns a tensor). training: Optional scalar tensor (or Python boolean, or Python integer) specifying the learning phase. Returns: Either `x` or `alt` based on `K.learning_phase`. """ return in_train_phase(alt, x, training=training) # NN OPERATIONS @keras_export('keras.backend.relu') def relu(x, alpha=0., max_value=None, threshold=0): """Rectified linear unit. With default values, it returns element-wise `max(x, 0)`. Otherwise, it follows: `f(x) = max_value` for `x >= max_value`, `f(x) = x` for `threshold <= x < max_value`, `f(x) = alpha * (x - threshold)` otherwise. Arguments: x: A tensor or variable. alpha: A scalar, slope of negative section (default=`0.`). max_value: float. Saturation threshold. threshold: float. Threshold value for thresholded activation. Returns: A tensor. """ if alpha != 0.: if max_value is None and threshold == 0: return nn.leaky_relu(x, alpha=alpha) if threshold != 0: negative_part = nn.relu(-x + threshold) else: negative_part = nn.relu(-x) clip_max = max_value is not None if threshold != 0: # computes x for x > threshold else 0 x = x * math_ops.cast(math_ops.greater(x, threshold), floatx()) elif max_value == 6: # if no threshold, then can use nn.relu6 native TF op for performance x = nn.relu6(x) clip_max = False else: x = nn.relu(x) if clip_max: max_value = _constant_to_tensor(max_value, x.dtype.base_dtype) zero = _constant_to_tensor(0., x.dtype.base_dtype) x = clip_ops.clip_by_value(x, zero, max_value) if alpha != 0.: alpha = _to_tensor(alpha, x.dtype.base_dtype) x -= alpha * negative_part return x @keras_export('keras.backend.elu') def elu(x, alpha=1.): """Exponential linear unit. Arguments: x: A tensor or variable to compute the activation function for. alpha: A scalar, slope of negative section. Returns: A tensor. """ res = nn.elu(x) if alpha == 1: return res else: return array_ops.where(x > 0, res, alpha * res) @keras_export('keras.backend.softmax') def softmax(x, axis=-1): """Softmax of a tensor. Arguments: x: A tensor or variable. axis: The dimension softmax would be performed on. The default is -1 which indicates the last dimension. Returns: A tensor. """ return nn.softmax(x, axis=axis) @keras_export('keras.backend.softplus') def softplus(x): """Softplus of a tensor. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.softplus(x) @keras_export('keras.backend.softsign') def softsign(x): """Softsign of a tensor. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.softsign(x) @keras_export('keras.backend.categorical_crossentropy') def categorical_crossentropy(target, output, from_logits=False, axis=-1): """Categorical crossentropy between an output tensor and a target tensor. Arguments: target: A tensor of the same shape as `output`. output: A tensor resulting from a softmax (unless `from_logits` is True, in which case `output` is expected to be the logits). from_logits: Boolean, whether `output` is the result of a softmax, or is a tensor of logits. axis: Int specifying the channels axis. `axis=-1` corresponds to data format `channels_last', and `axis=1` corresponds to data format `channels_first`. Returns: Output tensor. Raises: ValueError: if `axis` is neither -1 nor one of the axes of `output`. Example: ```python: import tensorflow as tf from tensorflow.keras import backend as K a = tf.constant([1., 0., 0., 0., 1., 0., 0., 0., 1.], shape=[3,3]) print("a: ", a) b = tf.constant([.9, .05, .05, .5, .89, .6, .05, .01, .94], shape=[3,3]) print("b: ", b) loss = K.categorical_crossentropy(a, b) print('Loss: ', loss) #Loss: tf.Tensor([0.10536055 0.8046684 0.06187541], shape=(3,), dtype=float32) loss = K.categorical_crossentropy(a, a) print('Loss: ', loss) #Loss: tf.Tensor([1.1920929e-07 1.1920929e-07 1.1920929e-07], shape=(3,), dtype=float32) ``` """ if not from_logits: if (isinstance(output, (ops.EagerTensor, variables_module.Variable)) or output.op.type != 'Softmax'): # scale preds so that the class probas of each sample sum to 1 output = output / math_ops.reduce_sum(output, axis, True) # Compute cross entropy from probabilities. epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_) return -math_ops.reduce_sum(target * math_ops.log(output), axis) else: # When softmax activation function is used for output operation, we # use logits from the softmax function directly to compute loss in order # to prevent collapsing zero when training. # See b/117284466 assert len(output.op.inputs) == 1 output = output.op.inputs[0] return nn.softmax_cross_entropy_with_logits_v2( labels=target, logits=output, axis=axis) @keras_export('keras.backend.sparse_categorical_crossentropy') def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1): """Categorical crossentropy with integer targets. Arguments: target: An integer tensor. output: A tensor resulting from a softmax (unless `from_logits` is True, in which case `output` is expected to be the logits). from_logits: Boolean, whether `output` is the result of a softmax, or is a tensor of logits. axis: Int specifying the channels axis. `axis=-1` corresponds to data format `channels_last', and `axis=1` corresponds to data format `channels_first`. Returns: Output tensor. Raises: ValueError: if `axis` is neither -1 nor one of the axes of `output`. """ if not from_logits: if (isinstance(output, (ops.EagerTensor, variables_module.Variable)) or output.op.type != 'Softmax'): epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_) output = math_ops.log(output) else: # When softmax activation function is used for output operation, we # use logits from the softmax function directly to compute loss in order # to prevent collapsing zero when training. # See b/117284466 assert len(output.op.inputs) == 1 output = output.op.inputs[0] if isinstance(output.shape, (tuple, list)): output_rank = len(output.shape) else: output_rank = output.shape.ndims if output_rank is not None: axis %= output_rank if axis != output_rank - 1: permutation = list( itertools.chain(range(axis), range(axis + 1, output_rank), [axis])) output = array_ops.transpose(output, perm=permutation) elif axis != -1: raise ValueError( 'Cannot compute sparse categorical crossentropy with `axis={}` on an ' 'output tensor with unknown rank'.format(axis)) target = cast(target, 'int64') # Try to adjust the shape so that rank of labels = 1 - rank of logits. output_shape = array_ops.shape_v2(output) target_rank = target.shape.ndims update_shape = ( target_rank is not None and output_rank is not None and target_rank != output_rank - 1) if update_shape: target = flatten(target) output = array_ops.reshape(output, [-1, output_shape[-1]]) if py_any([_is_symbolic_tensor(v) for v in [target, output]]): with get_graph().as_default(): res = nn.sparse_softmax_cross_entropy_with_logits_v2( labels=target, logits=output) else: res = nn.sparse_softmax_cross_entropy_with_logits_v2( labels=target, logits=output) if update_shape and output_rank >= 3: # If our output includes timesteps or spatial dimensions we need to reshape return array_ops.reshape(res, output_shape[:-1]) else: return res @keras_export('keras.backend.binary_crossentropy') def binary_crossentropy(target, output, from_logits=False): """Binary crossentropy between an output tensor and a target tensor. Arguments: target: A tensor with the same shape as `output`. output: A tensor. from_logits: Whether `output` is expected to be a logits tensor. By default, we consider that `output` encodes a probability distribution. Returns: A tensor. """ if not from_logits: if (isinstance(output, (ops.EagerTensor, variables_module.Variable)) or output.op.type != 'Sigmoid'): epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_) # Compute cross entropy from probabilities. bce = target * math_ops.log(output + epsilon()) bce += (1 - target) * math_ops.log(1 - output + epsilon()) return -bce else: # When sigmoid activation function is used for output operation, we # use logits from the sigmoid function directly to compute loss in order # to prevent collapsing zero when training. assert len(output.op.inputs) == 1 output = output.op.inputs[0] return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output) @keras_export('keras.backend.sigmoid') def sigmoid(x): """Element-wise sigmoid. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.sigmoid(x) @keras_export('keras.backend.hard_sigmoid') def hard_sigmoid(x): """Segment-wise linear approximation of sigmoid. Faster than sigmoid. Returns `0.` if `x < -2.5`, `1.` if `x > 2.5`. In `-2.5 <= x <= 2.5`, returns `0.2 * x + 0.5`. Arguments: x: A tensor or variable. Returns: A tensor. """ point_two = _constant_to_tensor(0.2, x.dtype.base_dtype) point_five = _constant_to_tensor(0.5, x.dtype.base_dtype) x = math_ops.mul(x, point_two) x = math_ops.add(x, point_five) x = clip_ops.clip_by_value(x, 0., 1.) return x @keras_export('keras.backend.tanh') def tanh(x): """Element-wise tanh. Arguments: x: A tensor or variable. Returns: A tensor. """ return nn.tanh(x) @keras_export('keras.backend.dropout') def dropout(x, level, noise_shape=None, seed=None): """Sets entries in `x` to zero at random, while scaling the entire tensor. Arguments: x: tensor level: fraction of the entries in the tensor that will be set to 0. noise_shape: shape for randomly generated keep/drop flags, must be broadcastable to the shape of `x` seed: random seed to ensure determinism. Returns: A tensor. """ if seed is None: seed = np.random.randint(10e6) return nn.dropout_v2(x, rate=level, noise_shape=noise_shape, seed=seed) @keras_export('keras.backend.l2_normalize') def l2_normalize(x, axis=None): """Normalizes a tensor wrt the L2 norm alongside the specified axis. Arguments: x: Tensor or variable. axis: axis along which to perform normalization. Returns: A tensor. """ return nn.l2_normalize(x, axis=axis) @keras_export('keras.backend.in_top_k') def in_top_k(predictions, targets, k): """Returns whether the `targets` are in the top `k` `predictions`. Arguments: predictions: A tensor of shape `(batch_size, classes)` and type `float32`. targets: A 1D tensor of length `batch_size` and type `int32` or `int64`. k: An `int`, number of top elements to consider. Returns: A 1D tensor of length `batch_size` and type `bool`. `output[i]` is `True` if `predictions[i, targets[i]]` is within top-`k` values of `predictions[i]`. """ return nn.in_top_k(predictions, targets, k) # CONVOLUTIONS def _preprocess_conv1d_input(x, data_format): """Transpose and cast the input before the conv1d. Arguments: x: input tensor. data_format: string, `"channels_last"` or `"channels_first"`. Returns: A tensor. """ tf_data_format = 'NWC' # to pass TF Conv2dNative operations if data_format == 'channels_first': if not _has_nchw_support(): x = array_ops.transpose(x, (0, 2, 1)) # NCW -> NWC else: tf_data_format = 'NCW' return x, tf_data_format def _preprocess_conv2d_input(x, data_format, force_transpose=False): """Transpose and cast the input before the conv2d. Arguments: x: input tensor. data_format: string, `"channels_last"` or `"channels_first"`. force_transpose: Boolean. If True, the input will always be transposed from NCHW to NHWC if `data_format` is `"channels_first"`. If False, the transposition only occurs on CPU (GPU ops are assumed to support NCHW). Returns: A tensor. """ tf_data_format = 'NHWC' if data_format == 'channels_first': if not _has_nchw_support() or force_transpose: x = array_ops.transpose(x, (0, 2, 3, 1)) # NCHW -> NHWC else: tf_data_format = 'NCHW' return x, tf_data_format def _preprocess_conv3d_input(x, data_format): """Transpose and cast the input before the conv3d. Arguments: x: input tensor. data_format: string, `"channels_last"` or `"channels_first"`. Returns: A tensor. """ tf_data_format = 'NDHWC' if data_format == 'channels_first': if not _has_nchw_support(): x = array_ops.transpose(x, (0, 2, 3, 4, 1)) else: tf_data_format = 'NCDHW' return x, tf_data_format def _preprocess_padding(padding): """Convert keras' padding to TensorFlow's padding. Arguments: padding: string, one of 'same' , 'valid' Returns: a string, one of 'SAME', 'VALID'. Raises: ValueError: if invalid `padding'` """ if padding == 'same': padding = 'SAME' elif padding == 'valid': padding = 'VALID' else: raise ValueError('Invalid padding: ' + str(padding)) return padding @keras_export('keras.backend.conv1d') def conv1d(x, kernel, strides=1, padding='valid', data_format=None, dilation_rate=1): """1D convolution. Arguments: x: Tensor or variable. kernel: kernel tensor. strides: stride integer. padding: string, `"same"`, `"causal"` or `"valid"`. data_format: string, one of "channels_last", "channels_first". dilation_rate: integer dilate rate. Returns: A tensor, result of 1D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) kernel_shape = kernel.shape.as_list() if padding == 'causal': # causal (dilated) convolution: left_pad = dilation_rate * (kernel_shape[0] - 1) x = temporal_padding(x, (left_pad, 0)) padding = 'valid' padding = _preprocess_padding(padding) x, tf_data_format = _preprocess_conv1d_input(x, data_format) x = nn.convolution( input=x, filter=kernel, dilation_rate=dilation_rate, strides=strides, padding=padding, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NWC': x = array_ops.transpose(x, (0, 2, 1)) # NWC -> NCW return x @keras_export('keras.backend.conv2d') def conv2d(x, kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): """2D convolution. Arguments: x: Tensor or variable. kernel: kernel tensor. strides: strides tuple. padding: string, `"same"` or `"valid"`. data_format: `"channels_last"` or `"channels_first"`. dilation_rate: tuple of 2 integers. Returns: A tensor, result of 2D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) x, tf_data_format = _preprocess_conv2d_input(x, data_format) padding = _preprocess_padding(padding) x = nn.convolution( input=x, filter=kernel, dilation_rate=dilation_rate, strides=strides, padding=padding, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x @keras_export('keras.backend.conv2d_transpose') def conv2d_transpose(x, kernel, output_shape, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): """2D deconvolution (i.e. transposed convolution). Arguments: x: Tensor or variable. kernel: kernel tensor. output_shape: 1D int tensor for the output shape. strides: strides tuple. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: Tuple of 2 integers. Returns: A tensor, result of transposed 2D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) # `atrous_conv2d_transpose` only supports NHWC format, even on GPU. if data_format == 'channels_first' and dilation_rate != (1, 1): force_transpose = True else: force_transpose = False x, tf_data_format = _preprocess_conv2d_input(x, data_format, force_transpose) if data_format == 'channels_first' and tf_data_format == 'NHWC': output_shape = (output_shape[0], output_shape[2], output_shape[3], output_shape[1]) if output_shape[0] is None: output_shape = (shape(x)[0],) + tuple(output_shape[1:]) if isinstance(output_shape, (tuple, list)): output_shape = array_ops.stack(list(output_shape)) padding = _preprocess_padding(padding) if tf_data_format == 'NHWC': strides = (1,) + strides + (1,) else: strides = (1, 1) + strides if dilation_rate == (1, 1): x = nn.conv2d_transpose(x, kernel, output_shape, strides, padding=padding, data_format=tf_data_format) else: assert dilation_rate[0] == dilation_rate[1] x = nn.atrous_conv2d_transpose( x, kernel, output_shape, rate=dilation_rate[0], padding=padding) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x def separable_conv1d(x, depthwise_kernel, pointwise_kernel, strides=1, padding='valid', data_format=None, dilation_rate=1): """1D convolution with separable filters. Arguments: x: input tensor depthwise_kernel: convolution kernel for the depthwise convolution. pointwise_kernel: kernel for the 1x1 convolution. strides: stride integer. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: integer dilation rate. Returns: Output tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if isinstance(strides, int): strides = (strides,) if isinstance(dilation_rate, int): dilation_rate = (dilation_rate,) x, tf_data_format = _preprocess_conv1d_input(x, data_format) padding = _preprocess_padding(padding) if not isinstance(strides, tuple): strides = tuple(strides) if tf_data_format == 'NWC': spatial_start_dim = 1 strides = (1,) + strides * 2 + (1,) else: spatial_start_dim = 2 strides = (1, 1) + strides * 2 x = array_ops.expand_dims(x, spatial_start_dim) depthwise_kernel = array_ops.expand_dims(depthwise_kernel, 0) pointwise_kernel = array_ops.expand_dims(pointwise_kernel, 0) dilation_rate = (1,) + dilation_rate x = nn.separable_conv2d( x, depthwise_kernel, pointwise_kernel, strides=strides, padding=padding, rate=dilation_rate, data_format=tf_data_format) x = array_ops.squeeze(x, [spatial_start_dim]) if data_format == 'channels_first' and tf_data_format == 'NWC': x = array_ops.transpose(x, (0, 2, 1)) # NWC -> NCW return x @keras_export('keras.backend.separable_conv2d') def separable_conv2d(x, depthwise_kernel, pointwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): """2D convolution with separable filters. Arguments: x: input tensor depthwise_kernel: convolution kernel for the depthwise convolution. pointwise_kernel: kernel for the 1x1 convolution. strides: strides tuple (length 2). padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: tuple of integers, dilation rates for the separable convolution. Returns: Output tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. ValueError: if `strides` is not a tuple of 2 integers. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if len(strides) != 2: raise ValueError('`strides` must be a tuple of 2 integers.') x, tf_data_format = _preprocess_conv2d_input(x, data_format) padding = _preprocess_padding(padding) if not isinstance(strides, tuple): strides = tuple(strides) if tf_data_format == 'NHWC': strides = (1,) + strides + (1,) else: strides = (1, 1) + strides x = nn.separable_conv2d( x, depthwise_kernel, pointwise_kernel, strides=strides, padding=padding, rate=dilation_rate, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): """2D convolution with separable filters. Arguments: x: input tensor depthwise_kernel: convolution kernel for the depthwise convolution. strides: strides tuple (length 2). padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: tuple of integers, dilation rates for the separable convolution. Returns: Output tensor. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) x, tf_data_format = _preprocess_conv2d_input(x, data_format) padding = _preprocess_padding(padding) if tf_data_format == 'NHWC': strides = (1,) + strides + (1,) else: strides = (1, 1) + strides x = nn.depthwise_conv2d( x, depthwise_kernel, strides=strides, padding=padding, rate=dilation_rate, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x @keras_export('keras.backend.conv3d') def conv3d(x, kernel, strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1)): """3D convolution. Arguments: x: Tensor or variable. kernel: kernel tensor. strides: strides tuple. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: tuple of 3 integers. Returns: A tensor, result of 3D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) x, tf_data_format = _preprocess_conv3d_input(x, data_format) padding = _preprocess_padding(padding) x = nn.convolution( input=x, filter=kernel, dilation_rate=dilation_rate, strides=strides, padding=padding, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NDHWC': x = array_ops.transpose(x, (0, 4, 1, 2, 3)) return x def conv3d_transpose(x, kernel, output_shape, strides=(1, 1, 1), padding='valid', data_format=None): """3D deconvolution (i.e. transposed convolution). Arguments: x: input tensor. kernel: kernel tensor. output_shape: 1D int tensor for the output shape. strides: strides tuple. padding: string, "same" or "valid". data_format: string, `"channels_last"` or `"channels_first"`. Returns: A tensor, result of transposed 3D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if isinstance(output_shape, (tuple, list)): output_shape = array_ops.stack(output_shape) x, tf_data_format = _preprocess_conv3d_input(x, data_format) if data_format == 'channels_first' and tf_data_format == 'NDHWC': output_shape = (output_shape[0], output_shape[2], output_shape[3], output_shape[4], output_shape[1]) if output_shape[0] is None: output_shape = (array_ops.shape(x)[0],) + tuple(output_shape[1:]) output_shape = array_ops.stack(list(output_shape)) padding = _preprocess_padding(padding) if tf_data_format == 'NDHWC': strides = (1,) + strides + (1,) else: strides = (1, 1) + strides x = nn.conv3d_transpose( x, kernel, output_shape, strides, padding=padding, data_format=tf_data_format) if data_format == 'channels_first' and tf_data_format == 'NDHWC': x = array_ops.transpose(x, (0, 4, 1, 2, 3)) return x @keras_export('keras.backend.pool2d') def pool2d(x, pool_size, strides=(1, 1), padding='valid', data_format=None, pool_mode='max'): """2D Pooling. Arguments: x: Tensor or variable. pool_size: tuple of 2 integers. strides: tuple of 2 integers. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. pool_mode: string, `"max"` or `"avg"`. Returns: A tensor, result of 2D pooling. Raises: ValueError: if `data_format` is neither `"channels_last"` or `"channels_first"`. ValueError: if `pool_size` is not a tuple of 2 integers. ValueError: if `strides` is not a tuple of 2 integers. ValueError: if `pool_mode` is neither `"max"` or `"avg"`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) if len(pool_size) != 2: raise ValueError('`pool_size` must be a tuple of 2 integers.') if len(strides) != 2: raise ValueError('`strides` must be a tuple of 2 integers.') x, tf_data_format = _preprocess_conv2d_input(x, data_format) padding = _preprocess_padding(padding) if tf_data_format == 'NHWC': strides = (1,) + strides + (1,) pool_size = (1,) + pool_size + (1,) else: strides = (1, 1) + strides pool_size = (1, 1) + pool_size if pool_mode == 'max': x = nn.max_pool( x, pool_size, strides, padding=padding, data_format=tf_data_format) elif pool_mode == 'avg': x = nn.avg_pool( x, pool_size, strides, padding=padding, data_format=tf_data_format) else: raise ValueError('Invalid pooling mode: ' + str(pool_mode)) if data_format == 'channels_first' and tf_data_format == 'NHWC': x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW return x @keras_export('keras.backend.pool3d') def pool3d(x, pool_size, strides=(1, 1, 1), padding='valid', data_format=None, pool_mode='max'): """3D Pooling. Arguments: x: Tensor or variable. pool_size: tuple of 3 integers. strides: tuple of 3 integers. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. pool_mode: string, `"max"` or `"avg"`. Returns: A tensor, result of 3D pooling. Raises: ValueError: if `data_format` is neither `"channels_last"` or `"channels_first"`. ValueError: if `pool_mode` is neither `"max"` or `"avg"`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) x, tf_data_format = _preprocess_conv3d_input(x, data_format) padding = _preprocess_padding(padding) if tf_data_format == 'NDHWC': strides = (1,) + strides + (1,) pool_size = (1,) + pool_size + (1,) else: strides = (1, 1) + strides pool_size = (1, 1) + pool_size if pool_mode == 'max': x = nn.max_pool3d( x, pool_size, strides, padding=padding, data_format=tf_data_format) elif pool_mode == 'avg': x = nn.avg_pool3d( x, pool_size, strides, padding=padding, data_format=tf_data_format) else: raise ValueError('Invalid pooling mode: ' + str(pool_mode)) if data_format == 'channels_first' and tf_data_format == 'NDHWC': x = array_ops.transpose(x, (0, 4, 1, 2, 3)) return x def local_conv(inputs, kernel, kernel_size, strides, output_shape, data_format=None): """Apply N-D convolution with un-shared weights. Arguments: inputs: (N+2)-D tensor with shape (batch_size, channels_in, d_in1, ..., d_inN) if data_format='channels_first', or (batch_size, d_in1, ..., d_inN, channels_in) if data_format='channels_last'. kernel: the unshared weight for N-D convolution, with shape (output_items, feature_dim, channels_out), where feature_dim = np.prod(kernel_size) * channels_in, output_items = np.prod(output_shape). kernel_size: a tuple of N integers, specifying the spatial dimensions of the N-D convolution window. strides: a tuple of N integers, specifying the strides of the convolution along the spatial dimensions. output_shape: a tuple of (d_out1, ..., d_outN) specifying the spatial dimensionality of the output. data_format: string, "channels_first" or "channels_last". Returns: An (N+2)-D tensor with shape: (batch_size, channels_out) + output_shape if data_format='channels_first', or: (batch_size,) + output_shape + (channels_out,) if data_format='channels_last'. Raises: ValueError: if `data_format` is neither `channels_last` nor `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) kernel_shape = int_shape(kernel) feature_dim = kernel_shape[1] channels_out = kernel_shape[-1] ndims = len(output_shape) spatial_dimensions = list(range(ndims)) xs = [] output_axes_ticks = [range(axis_max) for axis_max in output_shape] for position in itertools.product(*output_axes_ticks): slices = [slice(None)] if data_format == 'channels_first': slices.append(slice(None)) slices.extend([slice(position[d] * strides[d], position[d] * strides[d] + kernel_size[d]) for d in spatial_dimensions]) if data_format == 'channels_last': slices.append(slice(None)) xs.append(reshape(inputs[slices], (1, -1, feature_dim))) x_aggregate = concatenate(xs, axis=0) output = batch_dot(x_aggregate, kernel) output = reshape(output, output_shape + (-1, channels_out)) if data_format == 'channels_first': permutation = [ndims, ndims + 1] + spatial_dimensions else: permutation = [ndims] + spatial_dimensions + [ndims + 1] return permute_dimensions(output, permutation) @keras_export('keras.backend.local_conv1d') def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None): """Apply 1D conv with un-shared weights. Arguments: inputs: 3D tensor with shape: (batch_size, steps, input_dim) if data_format is "channels_last" or (batch_size, input_dim, steps) if data_format is "channels_first". kernel: the unshared weight for convolution, with shape (output_length, feature_dim, filters). kernel_size: a tuple of a single integer, specifying the length of the 1D convolution window. strides: a tuple of a single integer, specifying the stride length of the convolution. data_format: the data format, channels_first or channels_last. Returns: A 3d tensor with shape: (batch_size, output_length, filters) if data_format='channels_first' or 3D tensor with shape: (batch_size, filters, output_length) if data_format='channels_last'. """ output_shape = (kernel.shape[0],) return local_conv(inputs, kernel, kernel_size, strides, output_shape, data_format) @keras_export('keras.backend.local_conv2d') def local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format=None): """Apply 2D conv with un-shared weights. Arguments: inputs: 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'. kernel: the unshared weight for convolution, with shape (output_items, feature_dim, filters). kernel_size: a tuple of 2 integers, specifying the width and height of the 2D convolution window. strides: a tuple of 2 integers, specifying the strides of the convolution along the width and height. output_shape: a tuple with (output_row, output_col). data_format: the data format, channels_first or channels_last. Returns: A 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'. """ return local_conv(inputs, kernel, kernel_size, strides, output_shape, data_format) @keras_export('keras.backend.bias_add') def bias_add(x, bias, data_format=None): """Adds a bias vector to a tensor. Arguments: x: Tensor or variable. bias: Bias tensor to add. data_format: string, `"channels_last"` or `"channels_first"`. Returns: Output tensor. Raises: ValueError: In one of the two cases below: 1. invalid `data_format` argument. 2. invalid bias shape. the bias should be either a vector or a tensor with ndim(x) - 1 dimension """ if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format: ' + str(data_format)) bias_shape = int_shape(bias) if len(bias_shape) != 1 and len(bias_shape) != ndim(x) - 1: raise ValueError( 'Unexpected bias dimensions %d, expect to be 1 or %d dimensions' % (len(bias_shape), ndim(x))) # pylint: disable=g-no-augmented-assignment if ndim(x) == 5: if data_format == 'channels_first': if len(bias_shape) == 1: x = x + reshape(bias, (1, bias_shape[0], 1, 1, 1)) else: x = x + reshape(bias, (1, bias_shape[3]) + bias_shape[:3]) elif data_format == 'channels_last': if len(bias_shape) == 1: x = x + reshape(bias, (1, 1, 1, bias_shape[0])) else: x = x + reshape(bias, (1,) + bias_shape) elif ndim(x) == 4: if data_format == 'channels_first': if len(bias_shape) == 1: if _has_nchw_support(): x = nn.bias_add(x, bias, data_format='NCHW') else: x = x + reshape(bias, (1, bias_shape[0], 1, 1)) else: x = x + reshape(bias, (1, bias_shape[2]) + bias_shape[:2]) elif data_format == 'channels_last': if len(bias_shape) == 1: x = nn.bias_add(x, bias, data_format='NHWC') else: x = x + reshape(bias, (1,) + bias_shape) elif ndim(x) == 3: if data_format == 'channels_first': if len(bias_shape) == 1: x = x + reshape(bias, (1, bias_shape[0], 1)) else: x = x + reshape(bias, (1, bias_shape[1], bias_shape[0])) elif data_format == 'channels_last': if len(bias_shape) == 1: x = x + reshape(bias, (1, 1, bias_shape[0])) else: x = x + reshape(bias, (1,) + bias_shape) else: x = nn.bias_add(x, bias) # pylint: enable=g-no-augmented-assignment return x # RANDOMNESS @keras_export('keras.backend.random_normal') def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): """Returns a tensor with normal distribution of values. Arguments: shape: A tuple of integers, the shape of tensor to create. mean: A float, mean of the normal distribution to draw samples. stddev: A float, standard deviation of the normal distribution to draw samples. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return random_ops.random_normal( shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed) @keras_export('keras.backend.random_uniform') def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None): """Returns a tensor with uniform distribution of values. Arguments: shape: A tuple of integers, the shape of tensor to create. minval: A float, lower boundary of the uniform distribution to draw samples. maxval: A float, upper boundary of the uniform distribution to draw samples. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return random_ops.random_uniform( shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed) @keras_export('keras.backend.random_binomial') def random_binomial(shape, p=0.0, dtype=None, seed=None): """Returns a tensor with random binomial distribution of values. The binomial distribution with parameters `n` and `p` is the probability distribution of the number of successful Bernoulli process. Only supports `n` = 1 for now. Arguments: shape: A tuple of integers, the shape of tensor to create. p: A float, `0. <= p <= 1`, probability of binomial distribution. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return array_ops.where( random_ops.random_uniform(shape, dtype=dtype, seed=seed) <= p, array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype)) @keras_export('keras.backend.truncated_normal') def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): """Returns a tensor with truncated random normal distribution of values. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than two standard deviations from the mean are dropped and re-picked. Arguments: shape: A tuple of integers, the shape of tensor to create. mean: Mean of the values. stddev: Standard deviation of the values. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return random_ops.truncated_normal( shape, mean, stddev, dtype=dtype, seed=seed) # CTC # TensorFlow has a native implementation, but it uses sparse tensors # and therefore requires a wrapper for Keras. The functions below convert # dense to sparse tensors and also wraps up the beam search code that is # in TensorFlow's CTC implementation @keras_export('keras.backend.ctc_label_dense_to_sparse') def ctc_label_dense_to_sparse(labels, label_lengths): """Converts CTC labels from dense to sparse. Arguments: labels: dense CTC labels. label_lengths: length of the labels. Returns: A sparse tensor representation of the labels. """ label_shape = array_ops.shape(labels) num_batches_tns = array_ops.stack([label_shape[0]]) max_num_labels_tns = array_ops.stack([label_shape[1]]) def range_less_than(_, current_input): return array_ops.expand_dims( math_ops.range(label_shape[1]), 0) < array_ops.fill( max_num_labels_tns, current_input) init = math_ops.cast( array_ops.fill([1, label_shape[1]], 0), dtypes_module.bool) dense_mask = functional_ops.scan( range_less_than, label_lengths, initializer=init, parallel_iterations=1) dense_mask = dense_mask[:, 0, :] label_array = array_ops.reshape( array_ops.tile(math_ops.range(0, label_shape[1]), num_batches_tns), label_shape) label_ind = array_ops.boolean_mask(label_array, dense_mask) batch_array = array_ops.transpose( array_ops.reshape( array_ops.tile(math_ops.range(0, label_shape[0]), max_num_labels_tns), reverse(label_shape, 0))) batch_ind = array_ops.boolean_mask(batch_array, dense_mask) indices = array_ops.transpose( array_ops.reshape(concatenate([batch_ind, label_ind], axis=0), [2, -1])) vals_sparse = array_ops.gather_nd(labels, indices) return sparse_tensor.SparseTensor( math_ops.cast(indices, dtypes_module.int64), vals_sparse, math_ops.cast(label_shape, dtypes_module.int64)) @keras_export('keras.backend.ctc_batch_cost') def ctc_batch_cost(y_true, y_pred, input_length, label_length): """Runs CTC loss algorithm on each batch element. Arguments: y_true: tensor `(samples, max_string_length)` containing the truth labels. y_pred: tensor `(samples, time_steps, num_categories)` containing the prediction, or output of the softmax. input_length: tensor `(samples, 1)` containing the sequence length for each batch item in `y_pred`. label_length: tensor `(samples, 1)` containing the sequence length for each batch item in `y_true`. Returns: Tensor with shape (samples,1) containing the CTC loss of each element. """ label_length = math_ops.cast( array_ops.squeeze(label_length, axis=-1), dtypes_module.int32) input_length = math_ops.cast( array_ops.squeeze(input_length, axis=-1), dtypes_module.int32) sparse_labels = math_ops.cast( ctc_label_dense_to_sparse(y_true, label_length), dtypes_module.int32) y_pred = math_ops.log(array_ops.transpose(y_pred, perm=[1, 0, 2]) + epsilon()) return array_ops.expand_dims( ctc.ctc_loss( inputs=y_pred, labels=sparse_labels, sequence_length=input_length), 1) @keras_export('keras.backend.ctc_decode') def ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1): """Decodes the output of a softmax. Can use either greedy search (also known as best path) or a constrained dictionary search. Arguments: y_pred: tensor `(samples, time_steps, num_categories)` containing the prediction, or output of the softmax. input_length: tensor `(samples, )` containing the sequence length for each batch item in `y_pred`. greedy: perform much faster best-path search if `true`. This does not use a dictionary. beam_width: if `greedy` is `false`: a beam search decoder will be used with a beam of this width. top_paths: if `greedy` is `false`, how many of the most probable paths will be returned. Returns: Tuple: List: if `greedy` is `true`, returns a list of one element that contains the decoded sequence. If `false`, returns the `top_paths` most probable decoded sequences. Important: blank labels are returned as `-1`. Tensor `(top_paths, )` that contains the log probability of each decoded sequence. """ y_pred = math_ops.log(array_ops.transpose(y_pred, perm=[1, 0, 2]) + epsilon()) input_length = math_ops.cast(input_length, dtypes_module.int32) if greedy: (decoded, log_prob) = ctc.ctc_greedy_decoder( inputs=y_pred, sequence_length=input_length) else: (decoded, log_prob) = ctc.ctc_beam_search_decoder( inputs=y_pred, sequence_length=input_length, beam_width=beam_width, top_paths=top_paths) decoded_dense = [ sparse_ops.sparse_to_dense( st.indices, st.dense_shape, st.values, default_value=-1) for st in decoded ] return (decoded_dense, log_prob) # HIGH ORDER FUNCTIONS @keras_export('keras.backend.map_fn') def map_fn(fn, elems, name=None, dtype=None): """Map the function fn over the elements elems and return the outputs. Arguments: fn: Callable that will be called upon each element in elems elems: tensor name: A string name for the map node in the graph dtype: Output data type. Returns: Tensor with dtype `dtype`. """ return map_fn_lib.map_fn(fn, elems, name=name, dtype=dtype) @keras_export('keras.backend.foldl') def foldl(fn, elems, initializer=None, name=None): """Reduce elems using fn to combine them from left to right. Arguments: fn: Callable that will be called upon each element in elems and an accumulator, for instance `lambda acc, x: acc + x` elems: tensor initializer: The first value used (`elems[0]` in case of None) name: A string name for the foldl node in the graph Returns: Tensor with same type and shape as `initializer`. """ return functional_ops.foldl(fn, elems, initializer=initializer, name=name) @keras_export('keras.backend.foldr') def foldr(fn, elems, initializer=None, name=None): """Reduce elems using fn to combine them from right to left. Arguments: fn: Callable that will be called upon each element in elems and an accumulator, for instance `lambda acc, x: acc + x` elems: tensor initializer: The first value used (`elems[-1]` in case of None) name: A string name for the foldr node in the graph Returns: Same type and shape as initializer """ return functional_ops.foldr(fn, elems, initializer=initializer, name=name) # Load Keras default configuration from config file if present. # Set Keras base dir path given KERAS_HOME env variable, if applicable. # Otherwise either ~/.keras or /tmp. if 'KERAS_HOME' in os.environ: _keras_dir = os.environ.get('KERAS_HOME') else: _keras_base_dir = os.path.expanduser('~') _keras_dir = os.path.join(_keras_base_dir, '.keras') _config_path = os.path.expanduser(os.path.join(_keras_dir, 'keras.json')) if os.path.exists(_config_path): try: _config = json.load(open(_config_path)) except ValueError: _config = {} _floatx = _config.get('floatx', floatx()) assert _floatx in {'float16', 'float32', 'float64'} _epsilon = _config.get('epsilon', epsilon()) assert isinstance(_epsilon, float) _image_data_format = _config.get('image_data_format', image_data_format()) assert _image_data_format in {'channels_last', 'channels_first'} set_floatx(_floatx) set_epsilon(_epsilon) set_image_data_format(_image_data_format) # Save config file. if not os.path.exists(_keras_dir): try: os.makedirs(_keras_dir) except OSError: # Except permission denied and potential race conditions # in multi-threaded environments. pass if not os.path.exists(_config_path): _config = { 'floatx': floatx(), 'epsilon': epsilon(), 'backend': 'tensorflow', 'image_data_format': image_data_format() } try: with open(_config_path, 'w') as f: f.write(json.dumps(_config, indent=4)) except IOError: # Except permission denied. pass def configure_and_create_distributed_session(distribution_strategy): """Configure session config and create a session with it.""" def _create_session(distribution_strategy): """Create the Distributed Strategy session.""" session_config = get_default_session_config() # If a session already exists, merge in its config; in the case there is a # conflict, take values of the existing config. global _SESSION if getattr(_SESSION, 'session', None) and _SESSION.session._config: session_config.MergeFrom(_SESSION.session._config) if is_tpu_strategy(distribution_strategy): # TODO(priyag, yuefengz): Remove this workaround when Distribute # Coordinator is integrated with keras and we can create a session from # there. distribution_strategy.configure(session_config) master = distribution_strategy.extended._tpu_cluster_resolver.master() # pylint: disable=protected-access session = session_module.Session(config=session_config, target=master) else: worker_context = dc_context.get_current_worker_context() if worker_context: dc_session_config = worker_context.session_config # Merge the default session config to the one from distribute # coordinator, which is fine for now since they don't have # conflicting configurations. dc_session_config.MergeFrom(session_config) session = session_module.Session( config=dc_session_config, target=worker_context.master_target) else: distribution_strategy.configure(session_config) session = session_module.Session(config=session_config) set_session(session) if multi_worker_util.in_multi_worker_mode(): dc.run_distribute_coordinator( _create_session, distribution_strategy, mode=dc.CoordinatorMode.INDEPENDENT_WORKER) else: _create_session(distribution_strategy) def is_tpu_strategy(strategy): """We're executing TPU Strategy.""" return (strategy is not None and strategy.__class__.__name__.startswith('TPUStrategy')) def cast_variables_to_tensor(tensors): def _cast_variables_to_tensor(tensor): if isinstance(tensor, variables_module.Variable): return array_ops.identity(tensor) return tensor return nest.map_structure(_cast_variables_to_tensor, tensors) def _is_symbolic_tensor(x): return tensor_util.is_tensor(x) and not isinstance(x, ops.EagerTensor)
31.44382
117
0.663949
e1056c0a037cd2805456217874f7a93ac3ac489f
1,877
py
Python
src/ebay_rest/api/buy_deal/__init__.py
gbm001/ebay_rest
077d3478423ccd80ff35e0361821d6a11180bc54
[ "MIT" ]
3
2021-12-12T04:28:03.000Z
2022-03-10T03:29:18.000Z
src/ebay_rest/api/buy_deal/__init__.py
jdavv/ebay_rest
20fc88c6aefdae9ab90f9c1330e79abddcd750cd
[ "MIT" ]
33
2021-06-16T20:44:36.000Z
2022-03-30T14:55:06.000Z
src/ebay_rest/api/buy_deal/__init__.py
jdavv/ebay_rest
20fc88c6aefdae9ab90f9c1330e79abddcd750cd
[ "MIT" ]
7
2021-06-03T09:30:23.000Z
2022-03-08T19:51:33.000Z
# coding: utf-8 # flake8: noqa """ Deal API <span class=\"tablenote\"><b>Note:</b> This is a <a href=\"https://developer.ebay.com/api-docs/static/versioning.html#limited\" target=\"_blank\"> <img src=\"/cms/img/docs/partners-api.svg\" class=\"legend-icon partners-icon\" title=\"Limited Release\" alt=\"Limited Release\" />(Limited Release)</a> API available only to select developers approved by business units.</span><br /><br />This API allows third-party developers to search for and retrieve details about eBay deals and events, as well as the items associated with those deals and events. # noqa: E501 OpenAPI spec version: v1.3.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import apis into sdk package from ..buy_deal.api.deal_item_api import DealItemApi from ..buy_deal.api.event_api import EventApi from ..buy_deal.api.event_item_api import EventItemApi # import ApiClient from ..buy_deal.api_client import ApiClient from ..buy_deal.configuration import Configuration # import models into sdk package from ..buy_deal.models.amount import Amount from ..buy_deal.models.coupon import Coupon from ..buy_deal.models.deal_item import DealItem from ..buy_deal.models.deal_item_search_response import DealItemSearchResponse from ..buy_deal.models.error import Error from ..buy_deal.models.error_parameter import ErrorParameter from ..buy_deal.models.event import Event from ..buy_deal.models.event_item import EventItem from ..buy_deal.models.event_item_search_response import EventItemSearchResponse from ..buy_deal.models.event_search_response import EventSearchResponse from ..buy_deal.models.image import Image from ..buy_deal.models.marketing_price import MarketingPrice from ..buy_deal.models.shipping_option import ShippingOption from ..buy_deal.models.terms import Terms
48.128205
569
0.793287
bad674d791a12a7c5d94db5634342e03ce304f62
2,312
py
Python
tests/test_matcher.py
davidz627/AmazonSyncForYNAB
57620a4664ac7a2df686c991f1e1b55198a240fb
[ "MIT" ]
14
2020-05-07T21:44:00.000Z
2021-07-31T19:15:10.000Z
tests/test_matcher.py
davidz627/AmazonSyncForYNAB
57620a4664ac7a2df686c991f1e1b55198a240fb
[ "MIT" ]
9
2020-05-07T07:48:09.000Z
2020-10-03T19:39:17.000Z
tests/test_matcher.py
davidz627/AmazonSyncForYNAB
57620a4664ac7a2df686c991f1e1b55198a240fb
[ "MIT" ]
2
2020-09-14T02:19:00.000Z
2020-09-27T19:26:08.000Z
from context import matcher from context import util import re # TODO: Fix up these tests. def testmatchAmazonTransactions(): tests = { "simple": { "items": [("a", 200), ("b", 600), ("c", 1253), ("d", 112), ("e", 325), ("f", 823)], "transactions": [112, 925, 2276], "expMatch": {925: ["e", "b"], 112: ["d"], 2276: ["a", "c", "f"]} }, "oneItemNoMatchCost": { "items": [("a", 200)], "transactions": [100], "expMatch": {100: ["a"]} }, "multipleItemsMatchSingleTransaction":{ "items": [("a", 200), ("b", 300)], "transactions": [150], "expMatch": {150: ["a", "b"]} } } for testName, tc in tests.items(): print (f"running test {testName}") gotMatch = matcher.matchAmazonTransactions(tc["items"], tc["transactions"]) assert util.equalsEnough(gotMatch, tc["expMatch"]) # TODO: following is an example of a failure #same = [("a", 5), ("b", 5)] #cc = [5, 5] #print(matchAmazonTransactions(same, cc)) def testMatchAmazonToYNAB(): tests = { "works": { "amazonT":[{503: ["blob"], 103: ["oboe"]}], "ynabT": [{"id": 123, "memo": "foo", "amount":-503},{"id": 321, "amount":-103}], "expPatch": [{"id": 321, "memo": "oboe"}, {"id": 123, "memo": "blob"}], }, "works multiple transactions": { "amazonT":[{503: ["blob"]}, {103: ["oboe"]}], "ynabT": [{"id": 123, "memo": "foo", "amount":-503},{"id": 321, "amount":-103}], "expPatch": [{"id": 321, "memo": "oboe"}, {"id": 123, "memo": "blob"}], }, "notAllInYNAB":{ "amazonT":[{503: ["blob"], 103: ["oboe"]}], "ynabT": [{"id": 321, "amount":-103}], "expPatch": [{"id": 321, "memo": "oboe"}], }, "notAllInAmazon": { "amazonT":[{503: ["blob"]}], "ynabT": [{"id": 123, "memo": "foo", "amount":-503},{"id": 321, "amount":-103}], "expPatch": [{"id": 123, "memo": "blob"}], }, } for testName, tc in tests.items(): patch = matcher.matchAmazonToYNAB(tc["amazonT"], tc["ynabT"]) assert util.equalsEnough(patch, tc["expPatch"]) == True
37.290323
95
0.462803
cc23e9c1c3390c89e468434ce5d793364cd568ed
6,235
py
Python
real_time_face_recognition.py
hazbiy97/SAC
4202fcf4e91264b755d46ef011b283bb2bf8e7f0
[ "MIT" ]
null
null
null
real_time_face_recognition.py
hazbiy97/SAC
4202fcf4e91264b755d46ef011b283bb2bf8e7f0
[ "MIT" ]
null
null
null
real_time_face_recognition.py
hazbiy97/SAC
4202fcf4e91264b755d46ef011b283bb2bf8e7f0
[ "MIT" ]
null
null
null
# ----------------------------------------------------------------------------------------- # Code taken from https://github.com/davidsandberg/facenet with modifications # ----------------------------------------------------------------------------------------- # coding=utf-8 """Performs face detection in realtime. Based on code from https://github.com/shanren7/real_time_face_recognition """ # MIT License # # Copyright (c) 2017 François Gervais # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import argparse import sys import time import mysql.connector as my import cv2 import packages.face as face ''' function write_db function for writing mysql database from python version 0.0 mydb = mysql database connection sql = query function multival: True = write multiple rows False = write single row val= query values: multival = True => val => Lists multival = False => val => Tuples ''' def write_db(mydb, sql, val, multival): mycursor = mydb.cursor() if not multival: mycursor.execute(sql, val) else: mycursor.executemany(sql, val) mydb.commit() ''' function read_db function for reading mysql database from python version 0.0 mydb = mysql database connection sql = query function val= query values: ''' def read_db(mydb, sql, val): mycursor = mydb.cursor() mycursor.execute(sql, val) return mycursor.fetchall() def add_overlays(frame, faces, frame_rate): if faces is not None: for face in faces: face_bb = face.bounding_box.astype(int) cv2.rectangle(frame, (face_bb[0], face_bb[1]), (face_bb[2], face_bb[3]), (0, 255, 0), 2) if face.name is not None: cv2.putText(frame, face.name, (face_bb[0], face_bb[3]), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2, lineType=2) cv2.putText(frame, str(frame_rate) + " fps", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2, lineType=2) def main(args): frame_interval = 3 # Number of frames after which to run face detection fps_display_interval = 5 # seconds frame_rate = 0 frame_count = 0 video_capture = cv2.VideoCapture(0) face_recognition = face.Recognition() start_date = time.strftime("%Y-%m-%d",time.localtime()) start_time = time.time() if args.debug: print("Debug enabled") face.debug = True # connect to class database mydb = my.connect( host="localhost", user="root", passwd="", database="sac" ) # add column for today's class sql = "select column_name from information_schema.columns where table_name = 'RPL_att' and column_name = %s" val = (start_date,) x = read_db(mydb, sql, val) if not x: sql = "alter table RPL_att add `" + start_date + "` time" val = () write_db(mydb, sql, val, False) # read class attendance sql = "select Name, `2018-12-27` from RPL_att" val = () read_att = read_db(mydb, sql, val) class_att = {} for i in range(len(read_att)): class_att[read_att[i][0]]=read_att[i][1] play = True while play: # Capture frame-by-frame ret, frame = video_capture.read() if (frame_count % frame_interval) == 0: faces = face_recognition.identify(frame, 0.5) # Check our current fps end_time = time.time() if (end_time - start_time) > fps_display_interval: frame_rate = int(frame_count / (end_time - start_time)) start_time = time.time() frame_count = 0 add_overlays(frame, faces, frame_rate) frame_count += 1 cv2.imshow('Attendance', frame) cv2.moveWindow('Attendance', 405, 180) # Update attendance for fc in faces: if fc.name is not "Unknown": class_att[fc.name] = time.strftime("%H:%M:%S",time.localtime()) ''' # realtime db update sql = "update RPL_att set `" + start_date + "` = %s where Name = %s" val = (time.strftime("%H:%M:%S",time.localtime()), fc.name) write_db(mydb, sql, val) ''' if cv2.waitKey(100) & 0xFF == ord('q'): break play = cv2.getWindowProperty('Attendance', 0) >= 0 # check if 'Attendance' window is closed # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows() # update database write_att = [] for key in class_att.keys(): write_att.append((class_att[key],key)) sql = "update RPL_att set `" + start_date + "` = %s where Name = %s" write_db(mydb, sql, write_att, True) def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('--debug', action='store_true', help='Enable some debug outputs.') return parser.parse_args(argv) if __name__ == '__main__': main(parse_arguments(sys.argv[1:]))
32.989418
112
0.60417
2f18f2bbba51eb959a7da022afe24a3dde1d905b
14,208
py
Python
src/tests/google/appengine/ext/datastore_admin/utils.py
cooljeanius/cauliflowervest
a9bc209b610a927083bf16274d8451c6c45227bf
[ "Apache-2.0" ]
1
2020-10-13T19:53:04.000Z
2020-10-13T19:53:04.000Z
src/tests/google/appengine/ext/datastore_admin/utils.py
cooljeanius/cauliflowervest
a9bc209b610a927083bf16274d8451c6c45227bf
[ "Apache-2.0" ]
null
null
null
src/tests/google/appengine/ext/datastore_admin/utils.py
cooljeanius/cauliflowervest
a9bc209b610a927083bf16274d8451c6c45227bf
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Used render templates for datastore admin.""" import base64 import datetime import logging import os import random from google.appengine.api import lib_config from google.appengine.api import memcache from google.appengine.api import users from google.appengine.datastore import datastore_rpc from google.appengine.ext import db from google.appengine.ext import webapp from google.appengine.ext.db import metadata from google.appengine.ext.mapreduce import context from google.appengine.ext.mapreduce import control from google.appengine.ext.mapreduce import input_readers from google.appengine.ext.mapreduce import model from google.appengine.ext.webapp import _template MEMCACHE_NAMESPACE = '_ah-datastore_admin' XSRF_VALIDITY_TIME = 600 KINDS_AND_SIZES_VAR = 'kinds_and_sizes' class ConfigDefaults(object): """Configurable constants. To override datastore_admin configuration values, define values like this in your appengine_config.py file (in the root of your app): datastore_admin_MAPREDUCE_PATH = /_ah/mapreduce """ BASE_PATH = '/_ah/datastore_admin' MAPREDUCE_PATH = '/_ah/mapreduce' CLEANUP_MAPREDUCE_STATE = True config = lib_config.register('datastore_admin', ConfigDefaults.__dict__) config.BASE_PATH def RenderToResponse(handler, template_file, template_params): """Render the given template_file using template_vals and write to response. Args: handler: the handler whose response we should render to template_file: the file name only of the template file we are using template_params: the parameters used to render the given template """ template_params = _GetDefaultParams(template_params) rendered = _template.render(_GetTemplatePath(template_file), template_params) handler.response.out.write(rendered) def _GetTemplatePath(template_file): """Return the expected path for the template to render. Args: template_file: simple file name of template to render. Returns: path of template to render. """ return os.path.join( os.path.dirname(__file__), 'templates', template_file) def _GetDefaultParams(template_params): """Update template_params to always contain necessary paths and never be None. """ if not template_params: template_params = {} template_params.update({ 'base_path': config.BASE_PATH, 'mapreduce_path': config.MAPREDUCE_PATH, }) return template_params def CreateXsrfToken(action): """Generate a token to be passed with a form for XSRF protection. Args: action: action to restrict token to Returns: suitably random token which is only valid for ten minutes and, if the user is authenticated, is only valid for the user that generated it. """ user_str = _MakeUserStr() token = base64.b64encode( ''.join([chr(int(random.random()*255)) for _ in range(0, 64)])) memcache.set(token, (user_str, action), time=XSRF_VALIDITY_TIME, namespace=MEMCACHE_NAMESPACE) return token def ValidateXsrfToken(token, action): """Validate a given XSRF token by retrieving it from memcache. If the token has not been evicted from memcache (past ten minutes) and the user strings are equal, then this is a valid token. Args: token: token to validate from memcache. action: action that token should correspond to Returns: True if the token exists in memcache and the user strings are equal, False otherwise. """ user_str = _MakeUserStr() token_obj = memcache.get(token, namespace=MEMCACHE_NAMESPACE) if not token_obj: return False token_str = token_obj[0] token_action = token_obj[1] if user_str != token_str or action != token_action: return False return True def CacheStats(formatted_results): """Cache last retrieved kind size values in memcache. Args: formatted_results: list of dictionaries of the form returnned by main._PresentableKindStats. """ kinds_and_sizes = {} for kind_dict in formatted_results: kinds_and_sizes[kind_dict['kind_name']] = kind_dict['total_bytes'] memcache.set(KINDS_AND_SIZES_VAR, kinds_and_sizes, namespace=MEMCACHE_NAMESPACE) def RetrieveCachedStats(): """Retrieve cached kind sizes from last datastore stats call. Returns: Dictionary mapping kind names to total bytes. """ kinds_and_sizes = memcache.get(KINDS_AND_SIZES_VAR, namespace=MEMCACHE_NAMESPACE) return kinds_and_sizes def _MakeUserStr(): """Make a user string to use to represent the user. 'noauth' by default.""" user = users.get_current_user() if not user: user_str = 'noauth' else: user_str = user.nickname() return user_str def GetPrettyBytes(bytes, significant_digits=0): """Get a pretty print view of the given number of bytes. This will give a string like 'X MBytes'. Args: bytes: the original number of bytes to pretty print. significant_digits: number of digits to display after the decimal point. Returns: A string that has the pretty print version of the given bytes. """ byte_prefixes = ['', 'K', 'M', 'G', 'T', 'P', 'E'] for i in range(0, 7): exp = i * 10 if bytes < 2**(exp + 10): if i == 0: formatted_bytes = str(bytes) else: formatted_bytes = '%.*f' % (significant_digits, (bytes * 1.0 / 2**exp)) if formatted_bytes != '1': plural = 's' else: plural = '' return '%s %sByte%s' % (formatted_bytes, byte_prefixes[i], plural) logging.error('Number too high to convert: %d', bytes) return 'Alot' def FormatThousands(value): """Format a numerical value, inserting commas as thousands separators. Args: value: An integer, float, or string representation thereof. If the argument is a float, it is converted to a string using '%.2f'. Returns: A string with groups of 3 digits before the decimal point (if any) separated by commas. NOTE: We don't deal with whitespace, and we don't insert commas into long strings of digits after the decimal point. """ if isinstance(value, float): value = '%.2f' % value else: value = str(value) if '.' in value: head, tail = value.split('.', 1) tail = '.' + tail elif 'e' in value: head, tail = value.split('e', 1) tail = 'e' + tail else: head = value tail = '' sign = '' if head.startswith('-'): sign = '-' head = head[1:] while len(head) > 3: tail = ',' + head[-3:] + tail head = head[:-3] return sign + head + tail def TruncDelta(delta): """Strips microseconds from a timedelta.""" return datetime.timedelta(days=delta.days, seconds=delta.seconds) def GetPrintableStrs(namespace, kinds): """Returns tuples describing affected kinds and namespace. Args: namespace: namespace being targeted. kinds: list of kinds being targeted. Returns: (namespace_str, kind_str) tuple used for display to user. """ namespace_str = '' if kinds: kind_str = 'all %s entities' % ', '.join(kinds) else: kind_str = '' return (namespace_str, kind_str) def ParseKindsAndSizes(kinds): """Parses kind|size list and returns template parameters. Args: kinds: list of kinds to process. Returns: sizes_known: whether or not all kind objects have known sizes. size_total: total size of objects with known sizes. len(kinds) - 2: for template rendering of greater than 3 kinds. """ sizes_known = True size_total = 0 kinds_and_sizes = RetrieveCachedStats() if kinds_and_sizes: for kind in kinds: if kind in kinds_and_sizes: size_total += kinds_and_sizes[kind] else: sizes_known = False else: sizes_known = False if size_total: size_total = GetPrettyBytes(size_total) return sizes_known, size_total, len(kinds) - 2 def _CreateDatastoreConfig(): """Create datastore config for use during datastore admin operations.""" return datastore_rpc.Configuration(force_writes=True) class MapreduceDoneHandler(webapp.RequestHandler): """Handler to delete data associated with successful MapReduce jobs.""" SUFFIX = 'mapreduce_done' def post(self): """Mapreduce done callback to delete job data if it was successful.""" if 'Mapreduce-Id' in self.request.headers: mapreduce_id = self.request.headers['Mapreduce-Id'] mapreduce_state = model.MapreduceState.get_by_job_id(mapreduce_id) keys = [] job_success = True shard_states = model.ShardState.find_by_mapreduce_state(mapreduce_state) for shard_state in shard_states: keys.append(shard_state.key()) if not shard_state.result_status == 'success': job_success = False db_config = _CreateDatastoreConfig() if job_success: operation = DatastoreAdminOperation.get( mapreduce_state.mapreduce_spec.params[ DatastoreAdminOperation.PARAM_DATASTORE_ADMIN_OPERATION]) def tx(): operation.active_jobs -= 1 operation.completed_jobs += 1 if not operation.active_jobs: operation.status = DatastoreAdminOperation.STATUS_COMPLETED db.delete(DatastoreAdminOperationJob.all().ancestor(operation), config=db_config) operation.put(config=db_config) db.run_in_transaction(tx) if config.CLEANUP_MAPREDUCE_STATE: keys.append(mapreduce_state.key()) keys.append(model.MapreduceControl.get_key_by_job_id(mapreduce_id)) db.delete(keys, config=db_config) logging.info('State for successful job %s was deleted.', mapreduce_id) else: logging.info('Job %s was not successful so no state was deleted.', ( mapreduce_id)) else: logging.error('Done callback called without Mapreduce Id.') class DatastoreAdminOperation(db.Model): """An entity to keep progress and status of datastore admin operation.""" STATUS_ACTIVE = "Active" STATUS_COMPLETED = "Completed" PARAM_DATASTORE_ADMIN_OPERATION = 'datastore_admin_operation' description = db.TextProperty() status = db.StringProperty() active_jobs = db.IntegerProperty(default=0) completed_jobs = db.IntegerProperty(default=0) @classmethod def kind(cls): return "_AE_DatastoreAdmin_Operation" class DatastoreAdminOperationJob(db.Model): """An entity to keep track of started jobs to ensure idempotency. This entity can be used during spawning additional jobs. It is always stored as a child entity of DatastoreAdminOperation. Entity key name is job unique id. """ pass def StartOperation(description): """Start datastore admin operation. Args: description: operation description to be displayed to user. Returns: an instance of DatastoreAdminOperation. """ operation = DatastoreAdminOperation( description=description, status=DatastoreAdminOperation.STATUS_ACTIVE, id=db.allocate_ids( db.Key.from_path(DatastoreAdminOperation.kind(), 1), 1)[0]) operation.put(config=_CreateDatastoreConfig()) return operation def StartMap(operation, job_name, handler_spec, reader_spec, mapper_params, mapreduce_params=None, start_transaction=True): """Start map as part of datastore admin operation. Will increase number of active jobs inside the operation and start new map. Args: operation: An instance of DatastoreAdminOperation for current operation. job_name: Map job name. handler_spec: Map handler specification. reader_spec: Input reader specification. mapper_params: Custom mapper parameters. mapreduce_params: Custom mapreduce parameters. start_transaction: Specify if a new transaction should be started. Returns: resulting map job id as string. """ if not mapreduce_params: mapreduce_params = dict() mapreduce_params[DatastoreAdminOperation.PARAM_DATASTORE_ADMIN_OPERATION] = ( str(operation.key())) mapreduce_params['done_callback'] = '%s/%s' % ( config.BASE_PATH, MapreduceDoneHandler.SUFFIX) mapreduce_params['force_writes'] = 'True' def tx(): operation.active_jobs += 1 operation.put(config=_CreateDatastoreConfig()) return control.start_map( job_name, handler_spec, reader_spec, mapper_params, mapreduce_parameters=mapreduce_params, base_path=config.MAPREDUCE_PATH, shard_count=32, transactional=True) if start_transaction: return db.run_in_transaction(tx) else: return tx() def RunMapForKinds(operation, kinds, job_name_template, handler_spec, reader_spec, mapper_params): """Run mapper job for all entities in specified kinds. Args: operation: instance of DatastoreAdminOperation to record all jobs. kinds: list of entity kinds as strings. job_name_template: template for naming individual mapper jobs. Can reference %(kind)s and %(namespace)s formatting variables. handler_spec: mapper handler specification. reader_spec: reader specification. mapper_params: custom parameters to pass to mapper. Returns: Ids of all started mapper jobs as list of strings. """ jobs = [] for kind in kinds: mapper_params['entity_kind'] = kind job_name = job_name_template % {'kind': kind, 'namespace': ''} jobs.append(StartMap( operation, job_name, handler_spec, reader_spec, mapper_params)) return jobs
28.246521
80
0.702914
9689bc6da35cffb0c0d072d6be4ba536ce3dd535
98,994
py
Python
pyuvdata/tests/test_uvbeam.py
ntk688/pyuvdata
96be086324ba8f35815dd590429c6415411c15ea
[ "BSD-2-Clause" ]
null
null
null
pyuvdata/tests/test_uvbeam.py
ntk688/pyuvdata
96be086324ba8f35815dd590429c6415411c15ea
[ "BSD-2-Clause" ]
null
null
null
pyuvdata/tests/test_uvbeam.py
ntk688/pyuvdata
96be086324ba8f35815dd590429c6415411c15ea
[ "BSD-2-Clause" ]
null
null
null
# -*- mode: python; coding: utf-8 -* # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Tests for uvbeam object. """ from __future__ import absolute_import, division, print_function import os import copy import numpy as np from astropy import units from astropy.coordinates import Angle import pytest from pyuvdata import UVBeam import pyuvdata.tests as uvtest import pyuvdata.utils as uvutils from pyuvdata.data import DATA_PATH try: from astropy_healpix import HEALPix healpix_installed = True except(ImportError): healpix_installed = False filenames = ['HERA_NicCST_150MHz.txt', 'HERA_NicCST_123MHz.txt'] cst_folder = 'NicCSTbeams' cst_files = [os.path.join(DATA_PATH, cst_folder, f) for f in filenames] @pytest.fixture(scope='function') def uvbeam_data(): """Setup and teardown for basic parameter, property and iterator tests.""" required_parameters = ['_beam_type', '_Nfreqs', '_Naxes_vec', '_Nspws', '_pixel_coordinate_system', '_freq_array', '_spw_array', '_data_normalization', '_data_array', '_bandpass_array', '_telescope_name', '_feed_name', '_feed_version', '_model_name', '_model_version', '_history', '_antenna_type'] required_properties = ['beam_type', 'Nfreqs', 'Naxes_vec', 'Nspws', 'pixel_coordinate_system', 'freq_array', 'spw_array', 'data_normalization', 'data_array', 'bandpass_array', 'telescope_name', 'feed_name', 'feed_version', 'model_name', 'model_version', 'history', 'antenna_type'] extra_parameters = ['_Naxes1', '_Naxes2', '_Npixels', '_Nfeeds', '_Npols', '_Ncomponents_vec', '_axis1_array', '_axis2_array', '_nside', '_ordering', '_pixel_array', '_feed_array', '_polarization_array', '_basis_vector_array', '_extra_keywords', '_Nelements', '_element_coordinate_system', '_element_location_array', '_delay_array', '_x_orientation', '_interpolation_function', '_freq_interp_kind', '_gain_array', '_coupling_matrix', '_reference_impedance', '_receiver_temperature_array', '_loss_array', '_mismatch_array', '_s_parameters'] extra_properties = ['Naxes1', 'Naxes2', 'Npixels', 'Nfeeds', 'Npols', 'Ncomponents_vec', 'axis1_array', 'axis2_array', 'nside', 'ordering', 'pixel_array', 'feed_array', 'polarization_array', 'basis_vector_array', 'extra_keywords', 'Nelements', 'element_coordinate_system', 'element_location_array', 'delay_array', 'x_orientation', 'interpolation_function', 'freq_interp_kind', 'gain_array', 'coupling_matrix', 'reference_impedance', 'receiver_temperature_array', 'loss_array', 'mismatch_array', 's_parameters'] other_properties = ['pyuvdata_version_str'] beam_obj = UVBeam() class DataHolder(): def __init__(self, beam_obj, required_parameters, required_properties, extra_parameters, extra_properties, other_properties): self.beam_obj = beam_obj self.required_parameters = required_parameters self.required_properties = required_properties self.extra_parameters = extra_parameters self.extra_properties = extra_properties self.other_properties = other_properties uvbeam_data = DataHolder(beam_obj, required_parameters, required_properties, extra_parameters, extra_properties, other_properties) # yields the data we need but will continue to the del call after tests yield uvbeam_data # some post-test object cleanup del(uvbeam_data) return def test_parameter_iter(uvbeam_data): """Test expected parameters.""" all = [] for prop in uvbeam_data.beam_obj: all.append(prop) for a in uvbeam_data.required_parameters + uvbeam_data.extra_parameters: assert a in all, 'expected attribute ' + a + ' not returned in object iterator' def test_required_parameter_iter(uvbeam_data): """Test expected required parameters.""" required = [] for prop in uvbeam_data.beam_obj.required(): required.append(prop) for a in uvbeam_data.required_parameters: assert a in required, 'expected attribute ' + a + ' not returned in required iterator' def test_extra_parameter_iter(uvbeam_data): """Test expected optional parameters.""" extra = [] for prop in uvbeam_data.beam_obj.extra(): extra.append(prop) for a in uvbeam_data.extra_parameters: assert a in extra, 'expected attribute ' + a + ' not returned in extra iterator' def test_unexpected_parameters(uvbeam_data): """Test for extra parameters.""" expected_parameters = uvbeam_data.required_parameters + uvbeam_data.extra_parameters attributes = [i for i in uvbeam_data.beam_obj.__dict__.keys() if i[0] == '_'] for a in attributes: assert a in expected_parameters, 'unexpected parameter ' + a + ' found in UVBeam' def test_unexpected_attributes(uvbeam_data): """Test for extra attributes.""" expected_attributes = uvbeam_data.required_properties + \ uvbeam_data.extra_properties + uvbeam_data.other_properties attributes = [i for i in uvbeam_data.beam_obj.__dict__.keys() if i[0] != '_'] for a in attributes: assert a in expected_attributes, 'unexpected attribute ' + a + ' found in UVBeam' def test_properties(uvbeam_data): """Test that properties can be get and set properly.""" prop_dict = dict(list(zip(uvbeam_data.required_properties + uvbeam_data.extra_properties, uvbeam_data.required_parameters + uvbeam_data.extra_parameters))) for k, v in prop_dict.items(): rand_num = np.random.rand() setattr(uvbeam_data.beam_obj, k, rand_num) this_param = getattr(uvbeam_data.beam_obj, v) try: assert rand_num == this_param.value except AssertionError: print('setting {prop_name} to a random number failed'.format(prop_name=k)) raise def test_errors(): beam_obj = UVBeam() pytest.raises(ValueError, beam_obj._convert_to_filetype, 'foo') def test_peak_normalize(): efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files, beam_type='efield', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') orig_bandpass_array = copy.deepcopy(efield_beam.bandpass_array) maxima = np.zeros(efield_beam.Nfreqs) for freq_i in range(efield_beam.Nfreqs): maxima[freq_i] = np.amax(abs(efield_beam.data_array[:, :, :, freq_i])) efield_beam.peak_normalize() assert np.amax(abs(efield_beam.data_array)) == 1 assert np.sum(abs(efield_beam.bandpass_array - orig_bandpass_array * maxima)) == 0 assert efield_beam.data_normalization == 'peak' power_beam = UVBeam() power_beam.read_cst_beam(cst_files, beam_type='power', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') orig_bandpass_array = copy.deepcopy(power_beam.bandpass_array) maxima = np.zeros(efield_beam.Nfreqs) for freq_i in range(efield_beam.Nfreqs): maxima[freq_i] = np.amax(power_beam.data_array[:, :, :, freq_i]) power_beam.peak_normalize() assert np.amax(abs(power_beam.data_array)) == 1 assert np.sum(abs(power_beam.bandpass_array - orig_bandpass_array * maxima)) == 0 assert power_beam.data_normalization == 'peak' power_beam.data_normalization = 'solid_angle' pytest.raises(NotImplementedError, power_beam.peak_normalize) def test_stokes_matrix(): beam = UVBeam() pytest.raises(ValueError, beam._stokes_matrix, -2) pytest.raises(ValueError, beam._stokes_matrix, 5) @uvtest.skipIf_no_healpix def test_efield_to_pstokes(): efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files, beam_type='efield', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') pstokes_beam = copy.deepcopy(efield_beam) pstokes_beam.interpolation_function = 'az_za_simple' pstokes_beam.to_healpix() pstokes_beam.efield_to_pstokes() pstokes_beam_2 = copy.deepcopy(efield_beam) pstokes_beam_2.interpolation_function = 'az_za_simple' pstokes_beam_2.to_healpix() # convert to pstokes after interpolating beam_return = pstokes_beam_2.efield_to_pstokes(inplace=False) pstokes_beam = copy.deepcopy(efield_beam) # interpolate after converting to pstokes pstokes_beam.interpolation_function = 'az_za_simple' pstokes_beam.efield_to_pstokes() pstokes_beam.to_healpix() pstokes_beam.peak_normalize() beam_return.peak_normalize() # NOTE: So far, the following doesn't hold unless the beams are peak_normalized again. # This seems to be the fault of interpolation assert np.allclose(pstokes_beam.data_array, beam_return.data_array, atol=1e-2) power_beam = UVBeam() power_beam.read_cst_beam(cst_files, beam_type='power', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') pytest.raises(ValueError, power_beam.efield_to_pstokes) def test_efield_to_power(): efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files, beam_type='efield', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') power_beam = UVBeam() power_beam.read_cst_beam(cst_files, beam_type='power', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') new_power_beam = efield_beam.efield_to_power(calc_cross_pols=False, inplace=False) # The values in the beam file only have 4 sig figs, so they don't match precisely diff = np.abs(new_power_beam.data_array - power_beam.data_array) assert np.max(diff) < 2 reldiff = diff / power_beam.data_array assert np.max(reldiff) < 0.002 # set data_array tolerances higher to test the rest of the object # tols are (relative, absolute) tols = [0.002, 0] power_beam._data_array.tols = tols # modify the history to match power_beam.history += ' Converted from efield to power using pyuvdata.' assert power_beam == new_power_beam # test with non-orthogonal basis vectors # first construct a beam with non-orthogonal basis vectors new_basis_vecs = np.zeros_like(efield_beam.basis_vector_array) new_basis_vecs[0, 0, :, :] = np.sqrt(0.5) new_basis_vecs[0, 1, :, :] = np.sqrt(0.5) new_basis_vecs[1, :, :, :] = efield_beam.basis_vector_array[1, :, :, :] new_data = np.zeros_like(efield_beam.data_array) new_data[0, :, :, :, :, :] = np.sqrt(2) * efield_beam.data_array[0, :, :, :, :, :] new_data[1, :, :, :, :, :] = (efield_beam.data_array[1, :, :, :, :, :] - efield_beam.data_array[0, :, :, :, :, :]) efield_beam2 = copy.deepcopy(efield_beam) efield_beam2.basis_vector_array = new_basis_vecs efield_beam2.data_array = new_data efield_beam2.check() # now convert to power. Should get the same result new_power_beam2 = copy.deepcopy(efield_beam2) new_power_beam2.efield_to_power(calc_cross_pols=False) assert new_power_beam == new_power_beam2 if healpix_installed: # check that this raises an error if trying to convert to HEALPix: efield_beam2.interpolation_function = 'az_za_simple' pytest.raises(NotImplementedError, efield_beam2.to_healpix, inplace=False) # now try a different rotation to non-orthogonal basis vectors new_basis_vecs = np.zeros_like(efield_beam.basis_vector_array) new_basis_vecs[0, :, :, :] = efield_beam.basis_vector_array[0, :, :, :] new_basis_vecs[1, 0, :, :] = np.sqrt(0.5) new_basis_vecs[1, 1, :, :] = np.sqrt(0.5) new_data = np.zeros_like(efield_beam.data_array) new_data[0, :, :, :, :, :] = (efield_beam.data_array[0, :, :, :, :, :] - efield_beam.data_array[1, :, :, :, :, :]) new_data[1, :, :, :, :, :] = np.sqrt(2) * efield_beam.data_array[1, :, :, :, :, :] efield_beam2 = copy.deepcopy(efield_beam) efield_beam2.basis_vector_array = new_basis_vecs efield_beam2.data_array = new_data efield_beam2.check() # now convert to power. Should get the same result new_power_beam2 = copy.deepcopy(efield_beam2) new_power_beam2.efield_to_power(calc_cross_pols=False) assert new_power_beam == new_power_beam2 # now construct a beam with orthogonal but rotated basis vectors new_basis_vecs = np.zeros_like(efield_beam.basis_vector_array) new_basis_vecs[0, 0, :, :] = np.sqrt(0.5) new_basis_vecs[0, 1, :, :] = np.sqrt(0.5) new_basis_vecs[1, 0, :, :] = -1 * np.sqrt(0.5) new_basis_vecs[1, 1, :, :] = np.sqrt(0.5) new_data = np.zeros_like(efield_beam.data_array) new_data[0, :, :, :, :, :] = np.sqrt(0.5) * (efield_beam.data_array[0, :, :, :, :, :] + efield_beam.data_array[1, :, :, :, :, :]) new_data[1, :, :, :, :, :] = np.sqrt(0.5) * (-1 * efield_beam.data_array[0, :, :, :, :, :] + efield_beam.data_array[1, :, :, :, :, :]) efield_beam2 = copy.deepcopy(efield_beam) efield_beam2.basis_vector_array = new_basis_vecs efield_beam2.data_array = new_data efield_beam2.check() # now convert to power. Should get the same result new_power_beam2 = copy.deepcopy(efield_beam2) new_power_beam2.efield_to_power(calc_cross_pols=False) assert new_power_beam == new_power_beam2 # test calculating cross pols new_power_beam = efield_beam.efield_to_power(calc_cross_pols=True, inplace=False) assert np.all(np.abs(new_power_beam.data_array[:, :, 0, :, :, np.where(new_power_beam.axis1_array == 0)[0]]) > np.abs(new_power_beam.data_array[:, :, 2, :, :, np.where(new_power_beam.axis1_array == 0)[0]])) assert np.all(np.abs(new_power_beam.data_array[:, :, 0, :, :, np.where(new_power_beam.axis1_array == np.pi / 2.)[0]]) > np.abs(new_power_beam.data_array[:, :, 2, :, :, np.where(new_power_beam.axis1_array == np.pi / 2.)[0]])) # test writing out & reading back in power files (with cross pols which are complex) write_file = os.path.join(DATA_PATH, 'test/outtest_beam.fits') new_power_beam.write_beamfits(write_file, clobber=True) new_power_beam2 = UVBeam() new_power_beam2.read_beamfits(write_file) assert new_power_beam == new_power_beam2 # test keeping basis vectors new_power_beam = efield_beam.efield_to_power(calc_cross_pols=False, keep_basis_vector=True, inplace=False) assert np.allclose(new_power_beam.data_array, np.abs(efield_beam.data_array)**2) # test raises error if beam is already a power beam pytest.raises(ValueError, power_beam.efield_to_power) # test raises error if input efield beam has Naxes_vec=3 efield_beam.Naxes_vec = 3 pytest.raises(ValueError, efield_beam.efield_to_power) def test_freq_interpolation(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files, beam_type='power', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') power_beam.interpolation_function = 'az_za_simple' # test frequency interpolation returns data arrays for small and large tolerances freq_orig_vals = np.array([123e6, 150e6]) interp_data, interp_basis_vector, interp_bandpass = \ power_beam.interp(freq_array=freq_orig_vals, freq_interp_tol=0.0, return_bandpass=True) assert isinstance(interp_data, np.ndarray) assert isinstance(interp_bandpass, np.ndarray) np.testing.assert_array_almost_equal(power_beam.bandpass_array, interp_bandpass) np.testing.assert_array_almost_equal(power_beam.data_array, interp_data) assert interp_basis_vector is None interp_data, interp_basis_vector, interp_bandpass = \ power_beam.interp(freq_array=freq_orig_vals, freq_interp_tol=1.0, return_bandpass=True) assert isinstance(interp_data, np.ndarray) assert isinstance(interp_bandpass, np.ndarray) np.testing.assert_array_almost_equal(power_beam.bandpass_array, interp_bandpass) np.testing.assert_array_almost_equal(power_beam.data_array, interp_data) assert interp_basis_vector is None # test frequency interpolation returns new UVBeam for small and large tolerances power_beam.saved_interp_functions = {} new_beam_obj = power_beam.interp(freq_array=freq_orig_vals, freq_interp_tol=0.0, new_object=True) assert isinstance(new_beam_obj, UVBeam) np.testing.assert_array_almost_equal(new_beam_obj.freq_array[0], freq_orig_vals) assert new_beam_obj.freq_interp_kind == 'linear' # test that saved functions are erased in new obj assert not hasattr(new_beam_obj, 'saved_interp_functions') assert power_beam.history != new_beam_obj.history new_beam_obj.history = power_beam.history assert power_beam == new_beam_obj new_beam_obj = power_beam.interp(freq_array=freq_orig_vals, freq_interp_tol=1.0, new_object=True) assert isinstance(new_beam_obj, UVBeam) np.testing.assert_array_almost_equal(new_beam_obj.freq_array[0], freq_orig_vals) # assert interp kind is 'nearest' when within tol assert new_beam_obj.freq_interp_kind == 'nearest' new_beam_obj.freq_interp_kind = 'linear' assert power_beam.history != new_beam_obj.history new_beam_obj.history = power_beam.history assert power_beam == new_beam_obj # test frequency interpolation returns valid new UVBeam for different # number of freqs from input power_beam.saved_interp_functions = {} new_beam_obj = power_beam.interp(freq_array=np.linspace(123e6, 150e6, num=5), freq_interp_tol=0.0, new_object=True) assert isinstance(new_beam_obj, UVBeam) np.testing.assert_array_almost_equal(new_beam_obj.freq_array[0], np.linspace(123e6, 150e6, num=5)) assert new_beam_obj.freq_interp_kind == 'linear' # test that saved functions are erased in new obj assert not hasattr(new_beam_obj, 'saved_interp_functions') assert power_beam.history != new_beam_obj.history new_beam_obj.history = power_beam.history # down select to orig freqs and test equality new_beam_obj.select(frequencies=freq_orig_vals) assert power_beam.history != new_beam_obj.history new_beam_obj.history = power_beam.history assert power_beam == new_beam_obj # using only one freq chan should trigger a ValueError if interp_bool is True # unless requesting the original frequency channel such that interp_bool is False. # Therefore, to test that interp_bool is False returns array slice as desired, # test that ValueError is not raised in this case. # Other ways of testing this (e.g. interp_data_array.flags['OWNDATA']) does not work _pb = power_beam.select(frequencies=power_beam.freq_array[0, :1], inplace=False) try: interp_data, interp_basis_vector = _pb.interp(freq_array=_pb.freq_array[0]) except ValueError: raise AssertionError("UVBeam.interp didn't return an array slice as expected") # test errors if one frequency power_beam_singlef = power_beam.select(freq_chans=[0], inplace=False) pytest.raises(ValueError, power_beam_singlef.interp, freq_array=np.array([150e6])) # assert freq_interp_kind ValueError power_beam.interpolation_function = 'az_za_simple' power_beam.freq_interp_kind = None pytest.raises(ValueError, power_beam.interp, az_array=power_beam.axis1_array, za_array=power_beam.axis2_array, freq_array=freq_orig_vals, polarizations=['xx']) def test_freq_interp_real_and_complex(): # test interpolation of real and complex data are the same power_beam = UVBeam() power_beam.read_cst_beam(cst_files, beam_type='power', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') power_beam.interpolation_function = 'az_za_simple' # make a new object with more frequencies freqs = np.linspace(123e6, 150e6, 4) power_beam.freq_interp_kind = 'linear' pbeam = power_beam.interp(freq_array=freqs, new_object=True) # modulate the data pbeam.data_array[:, :, :, 1] *= 2 pbeam.data_array[:, :, :, 2] *= 0.5 # interpolate cubic on real data freqs = np.linspace(123e6, 150e6, 10) pbeam.freq_interp_kind = 'cubic' pb_int = pbeam.interp(freq_array=freqs)[0] # interpolate cubic on complex data and compare to ensure they are the same pbeam.data_array = pbeam.data_array.astype(np.complex) pb_int2 = pbeam.interp(freq_array=freqs)[0] assert np.all(np.isclose(np.abs(pb_int - pb_int2), 0)) def test_power_spatial_interpolation(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files, beam_type='power', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x', 'y'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # check that interpolating to existing points gives the same answer za_orig_vals, az_orig_vals = np.meshgrid(power_beam.axis2_array, power_beam.axis1_array) az_orig_vals = az_orig_vals.ravel(order='C') za_orig_vals = za_orig_vals.ravel(order='C') freq_orig_vals = np.array([123e6, 150e6]) # test error if no interpolation function is set pytest.raises(ValueError, power_beam.interp, az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals) power_beam.interpolation_function = 'az_za_simple' interp_data_array, interp_basis_vector = power_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals) data_array_compare = power_beam.data_array interp_data_array = interp_data_array.reshape(data_array_compare.shape, order='F') assert np.allclose(data_array_compare, interp_data_array) # test that new object from interpolation is identical new_power_beam = power_beam.interp(az_array=power_beam.axis1_array, za_array=power_beam.axis2_array, az_za_grid=True, freq_array=freq_orig_vals, new_object=True) assert new_power_beam.freq_interp_kind == 'nearest' assert new_power_beam.history == (power_beam.history + ' Interpolated in ' 'frequency and to a new azimuth/zenith ' 'angle grid using pyuvdata with ' 'interpolation_function = az_za_simple ' 'and freq_interp_kind = nearest.') # make histories & freq_interp_kind equal new_power_beam.history = power_beam.history new_power_beam.freq_interp_kind = 'linear' assert new_power_beam == power_beam # test that interp to every other point returns an object that matches a select axis1_inds = np.arange(0, power_beam.Naxes1, 2) axis2_inds = np.arange(0, power_beam.Naxes2, 2) select_beam = power_beam.select(axis1_inds=axis1_inds, axis2_inds=axis2_inds, inplace=False) interp_beam = power_beam.interp(az_array=power_beam.axis1_array[axis1_inds], za_array=power_beam.axis2_array[axis2_inds], az_za_grid=True, new_object=True) assert select_beam.history != interp_beam.history interp_beam.history = select_beam.history assert select_beam == interp_beam # test error if new_object set without az_za_grid with pytest.raises(ValueError) as cm: power_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals, new_object=True) assert str(cm.value).startswith('A new object can only be returned') # test only a single polarization interp_data_array, interp_basis_vector = power_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals, polarizations=['xx']) data_array_compare = power_beam.data_array[:, :, :1] interp_data_array = interp_data_array.reshape(data_array_compare.shape, order='F') assert np.allclose(data_array_compare, interp_data_array) # test no errors using different points az_interp_vals = np.array(np.arange(0, 2 * np.pi, np.pi / 9.0).tolist() + np.arange(0, 2 * np.pi, np.pi / 9.0).tolist()) za_interp_vals = np.array((np.zeros((18)) + np.pi / 4).tolist() + (np.zeros((18)) + np.pi / 12).tolist()) freq_interp_vals = np.arange(125e6, 145e6, 5e6) # Test requesting separate polarizations on different calls while reusing splines. interp_data_array, interp_basis_vector = power_beam.interp(az_array=az_interp_vals[:2], za_array=za_interp_vals[:2], freq_array=freq_interp_vals, polarizations=['xx'], reuse_spline=True) interp_data_array, interp_basis_vector = power_beam.interp(az_array=az_interp_vals[:2], za_array=za_interp_vals[:2], freq_array=freq_interp_vals, polarizations=['yy'], reuse_spline=True) # test reusing the spline fit. orig_data_array, interp_basis_vector = power_beam.interp(az_array=az_interp_vals, za_array=za_interp_vals, freq_array=freq_interp_vals, reuse_spline=True) reused_data_array, interp_basis_vector = power_beam.interp(az_array=az_interp_vals, za_array=za_interp_vals, freq_array=freq_interp_vals, reuse_spline=True) assert np.all(reused_data_array == orig_data_array) del power_beam.saved_interp_functions # test errors if frequency interp values outside range pytest.raises(ValueError, power_beam.interp, az_array=az_interp_vals, za_array=za_interp_vals, freq_array=np.array([100])) # test errors if positions outside range power_beam.select(axis2_inds=np.where(power_beam.axis2_array <= np.pi / 2.)[0]) pytest.raises(ValueError, power_beam.interp, az_array=az_interp_vals, za_array=za_interp_vals + np.pi / 2) # test no errors only frequency interpolation interp_data_array, interp_basis_vector = power_beam.interp(freq_array=freq_interp_vals) # assert polarization value error pytest.raises(ValueError, power_beam.interp, az_array=az_interp_vals, za_array=za_interp_vals, polarizations=['pI']) def test_efield_spatial_interpolation(): efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files, beam_type='efield', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') za_orig_vals, az_orig_vals = np.meshgrid(efield_beam.axis2_array, efield_beam.axis1_array) az_orig_vals = az_orig_vals.ravel(order='C') za_orig_vals = za_orig_vals.ravel(order='C') freq_orig_vals = np.array([123e6, 150e6]) efield_beam.interpolation_function = 'az_za_simple' interp_data_array, interp_basis_vector = efield_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals) interp_data_array = interp_data_array.reshape(efield_beam.data_array.shape, order='F') interp_basis_vector = interp_basis_vector.reshape(efield_beam.basis_vector_array.shape, order='F') assert np.allclose(efield_beam.data_array, interp_data_array) assert np.allclose(efield_beam.basis_vector_array, interp_basis_vector) # test that new object from interpolation is identical new_efield_beam = efield_beam.interp(az_array=efield_beam.axis1_array, za_array=efield_beam.axis2_array, az_za_grid=True, freq_array=freq_orig_vals, new_object=True) assert new_efield_beam.freq_interp_kind == 'nearest' assert new_efield_beam.history == (efield_beam.history + ' Interpolated in ' 'frequency and to a new azimuth/zenith ' 'angle grid using pyuvdata with ' 'interpolation_function = az_za_simple ' 'and freq_interp_kind = nearest.') # make histories & freq_interp_kind equal new_efield_beam.history = efield_beam.history new_efield_beam.freq_interp_kind = 'linear' assert new_efield_beam == efield_beam # test that interp to every other point returns an object that matches a select axis1_inds = np.arange(0, efield_beam.Naxes1, 2) axis2_inds = np.arange(0, efield_beam.Naxes2, 2) select_beam = efield_beam.select(axis1_inds=axis1_inds, axis2_inds=axis2_inds, inplace=False) interp_beam = efield_beam.interp(az_array=efield_beam.axis1_array[axis1_inds], za_array=efield_beam.axis2_array[axis2_inds], az_za_grid=True, new_object=True) assert select_beam.history != interp_beam.history interp_beam.history = select_beam.history assert select_beam == interp_beam # test no errors using different points az_interp_vals = np.array(np.arange(0, 2 * np.pi, np.pi / 9.0).tolist() + np.arange(0, 2 * np.pi, np.pi / 9.0).tolist()) za_interp_vals = np.array((np.zeros((18)) + np.pi / 4).tolist() + (np.zeros((18)) + np.pi / 12).tolist()) freq_interp_vals = np.arange(125e6, 145e6, 10e6) interp_data_array, interp_basis_vector = efield_beam.interp(az_array=az_interp_vals, za_array=za_interp_vals, freq_array=freq_interp_vals) # test reusing the spline fit orig_data_array, interp_basis_vector = efield_beam.interp(az_array=az_interp_vals, za_array=za_interp_vals, freq_array=freq_interp_vals, reuse_spline=True) reused_data_array, interp_basis_vector = efield_beam.interp(az_array=az_interp_vals, za_array=za_interp_vals, freq_array=freq_interp_vals, reuse_spline=True) assert np.all(reused_data_array == orig_data_array) select_data_array_orig, interp_basis_vector = efield_beam.interp(az_array=az_interp_vals[0:1], za_array=za_interp_vals[0:1], freq_array=np.array([127e6])) select_data_array_reused, interp_basis_vector = efield_beam.interp(az_array=az_interp_vals[0:1], za_array=za_interp_vals[0:1], freq_array=np.array([127e6]), reuse_spline=True) assert np.allclose(select_data_array_orig, select_data_array_reused) del efield_beam.saved_interp_functions def test_interp_longitude_branch_cut(): beam = UVBeam() beam.read_cst_beam(cst_files, beam_type='power', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') beam.interpolation_function = 'az_za_simple' interp_data_array, interp_basis_vector = beam.interp( az_array=np.deg2rad(np.repeat(np.array([[-1], [359], [0], [360]]), 181, axis=1).flatten()), za_array=np.repeat(beam.axis2_array[np.newaxis, :], 4, axis=0).flatten()) interp_data_array = interp_data_array.reshape(beam.Naxes_vec, beam.Nspws, beam.Npols, beam.Nfreqs, 4, beam.Naxes2) assert(np.allclose(interp_data_array[:, :, :, :, 0, :], interp_data_array[:, :, :, :, 1, :], rtol=beam._data_array.tols[0], atol=beam._data_array.tols[1])) assert(np.allclose(interp_data_array[:, :, :, :, 2, :], interp_data_array[:, :, :, :, 3, :], rtol=beam._data_array.tols[0], atol=beam._data_array.tols[1])) # repeat with efield beam = UVBeam() beam.read_cst_beam(cst_files, beam_type='efield', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') beam.interpolation_function = 'az_za_simple' interp_data_array, interp_basis_vector = beam.interp( az_array=np.deg2rad(np.repeat(np.array([[-1], [359], [0], [360]]), 181, axis=1).flatten()), za_array=np.repeat(beam.axis2_array[np.newaxis, :], 4, axis=0).flatten()) interp_data_array = interp_data_array.reshape(beam.Naxes_vec, beam.Nspws, beam.Nfeeds, beam.Nfreqs, 4, beam.Naxes2) assert(np.allclose(interp_data_array[:, :, :, :, 0, :], interp_data_array[:, :, :, :, 1, :], rtol=beam._data_array.tols[0], atol=beam._data_array.tols[1])) assert(np.allclose(interp_data_array[:, :, :, :, 2, :], interp_data_array[:, :, :, :, 3, :], rtol=beam._data_array.tols[0], atol=beam._data_array.tols[1])) @uvtest.skipIf_no_healpix def test_healpix_interpolation(): efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files, beam_type='efield', frequency=[150e6, 123e6], telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') efield_beam.interpolation_function = 'az_za_simple' orig_efield_beam = copy.deepcopy(efield_beam) # test calling interp with healpix parameters directly gives same result min_res = np.min(np.array([np.diff(efield_beam.axis1_array)[0], np.diff(efield_beam.axis2_array)[0]])) nside_min_res = np.sqrt(3 / np.pi) * np.radians(60.) / min_res nside = int(2**np.ceil(np.log2(nside_min_res))) new_efield_beam = efield_beam.interp(healpix_nside=nside, new_object=True) efield_beam2 = efield_beam.to_healpix(inplace=False) efield_beam.to_healpix(nside=nside) assert efield_beam2 == efield_beam assert new_efield_beam == efield_beam # check that interpolating to existing points gives the same answer efield_beam.interpolation_function = 'healpix_simple' hp_obj = HEALPix(nside=efield_beam.nside) hpx_lon, hpx_lat = hp_obj.healpix_to_lonlat(np.arange(hp_obj.npix)) za_orig_vals = (Angle(np.pi / 2, units.radian) - hpx_lat).radian az_orig_vals = hpx_lon.radian az_orig_vals = az_orig_vals.ravel(order='C') za_orig_vals = za_orig_vals.ravel(order='C') freq_orig_vals = np.array([123e6, 150e6]) interp_data_array, interp_basis_vector = efield_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals) data_array_compare = efield_beam.data_array interp_data_array = interp_data_array.reshape(data_array_compare.shape, order='F') assert np.allclose(data_array_compare, interp_data_array) # test calling interp with healpix parameters directly gives same result new_efield_beam = efield_beam.interp(healpix_nside=efield_beam.nside, freq_array=freq_orig_vals, new_object=True) assert new_efield_beam.freq_interp_kind == 'nearest' assert new_efield_beam.history == (efield_beam.history + ' Interpolated in ' 'frequency and to a new healpix grid ' 'using pyuvdata with ' 'interpolation_function = healpix_simple ' 'and freq_interp_kind = nearest.') # make histories & freq_interp_kind equal new_efield_beam.history = efield_beam.history new_efield_beam.freq_interp_kind = 'linear' assert new_efield_beam == efield_beam del(new_efield_beam) # test that interp to every other point returns an object that matches a select pixel_inds = np.arange(0, efield_beam.Npixels, 2) select_beam = efield_beam.select(pixels=pixel_inds, inplace=False) interp_beam = efield_beam.interp(healpix_inds=efield_beam.pixel_array[pixel_inds], healpix_nside=efield_beam.nside, new_object=True) assert select_beam.history != interp_beam.history interp_beam.history = select_beam.history assert select_beam == interp_beam # test interp from healpix to regular az/za grid new_reg_beam = efield_beam.interp(az_array=orig_efield_beam.axis1_array, za_array=orig_efield_beam.axis2_array, az_za_grid=True, new_object=True) # this diff is pretty large. 2 rounds of interpolation is not a good thing. # but we can check that the rest of the object makes sense diff = new_reg_beam.data_array - orig_efield_beam.data_array diff_ratio = diff / orig_efield_beam.data_array assert np.all(np.abs(diff_ratio) < 3) # set data_array tolerances higher to test the rest of the object # tols are (relative, absolute) tols = [3, 0] new_reg_beam._data_array.tols = tols assert new_reg_beam.history != orig_efield_beam.history new_reg_beam.history = orig_efield_beam.history new_reg_beam.interpolation_function = 'az_za_simple' assert new_reg_beam == orig_efield_beam # test errors with specifying healpix_inds without healpix_nside hp_obj = HEALPix(nside=efield_beam.nside) with pytest.raises(ValueError) as cm: efield_beam.interp(healpix_inds=np.arange(hp_obj.npix), freq_array=freq_orig_vals) assert str(cm.value).startswith('healpix_nside must be set if healpix_inds is set') # test error setting both healpix_nside and az_array with pytest.raises(ValueError) as cm: efield_beam.interp(healpix_nside=efield_beam.nside, az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals) assert str(cm.value).startswith('healpix_nside and healpix_inds can not be') # basis_vector exception efield_beam.basis_vector_array[0, 1, :] = 10.0 pytest.raises(NotImplementedError, efield_beam.interp, az_array=az_orig_vals, za_array=za_orig_vals) # now convert to power beam power_beam = efield_beam.efield_to_power(inplace=False) del(efield_beam) interp_data_array, interp_basis_vector = power_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals) data_array_compare = power_beam.data_array interp_data_array = interp_data_array.reshape(data_array_compare.shape, order='F') assert np.allclose(data_array_compare, interp_data_array) # test that interp to every other point returns an object that matches a select pixel_inds = np.arange(0, power_beam.Npixels, 2) select_beam = power_beam.select(pixels=pixel_inds, inplace=False) interp_beam = power_beam.interp(healpix_inds=power_beam.pixel_array[pixel_inds], healpix_nside=power_beam.nside, new_object=True) assert select_beam.history != interp_beam.history interp_beam.history = select_beam.history assert select_beam == interp_beam # assert not feeding frequencies gives same answer interp_data_array2, interp_basis_vector2 = power_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals) assert np.allclose(interp_data_array, interp_data_array2) # assert not feeding az_array gives same answer interp_data_array2, interp_basis_vector2 = power_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals) assert np.allclose(interp_data_array, interp_data_array2) # test requesting polarization gives the same answer interp_data_array2, interp_basis_vector2 = power_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals, polarizations=['yy']) assert np.allclose(interp_data_array[:, :, 1:2], interp_data_array2[:, :, :1]) # change complex data_array to real data_array and test again assert power_beam.data_array.dtype == np.complex power_beam.data_array = np.abs(power_beam.data_array) interp_data_array, interp_basis_vector = power_beam.interp(az_array=az_orig_vals, za_array=za_orig_vals, freq_array=freq_orig_vals) data_array_compare = power_beam.data_array interp_data_array = interp_data_array.reshape(data_array_compare.shape, order='F') assert np.allclose(data_array_compare, interp_data_array) # test no inputs equals same answer interp_data_array2, interp_basis_vector2 = power_beam.interp() assert np.allclose(interp_data_array, interp_data_array2) # assert polarization value error pytest.raises(ValueError, power_beam.interp, az_array=az_orig_vals, za_array=za_orig_vals, polarizations=['pI']) # healpix coord exception power_beam.pixel_coordinate_system = 'foo' pytest.raises(ValueError, power_beam.interp, az_array=az_orig_vals, za_array=za_orig_vals) @uvtest.skipIf_no_healpix def test_to_healpix(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') power_beam.select(axis2_inds=np.where(power_beam.axis2_array <= np.pi / 2.)[0]) power_beam.interpolation_function = 'az_za_simple' power_beam_healpix = power_beam.to_healpix(inplace=False) # check that history is updated appropriately assert power_beam_healpix.history == ( power_beam.history + ' Interpolated from ' + power_beam.coordinate_system_dict['az_za']['description'] + ' to ' + power_beam.coordinate_system_dict['healpix']['description'] + ' using pyuvdata with interpolation_function = az_za_simple.') hp_obj = HEALPix(nside=power_beam_healpix.nside) assert power_beam_healpix.Npixels <= hp_obj.npix * 0.55 # Test error if not az_za power_beam.pixel_coordinate_system = 'sin_zenith' pytest.raises(ValueError, power_beam.to_healpix) # Now check Efield interpolation efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') efield_beam.interpolation_function = 'az_za_simple' interp_then_sq = efield_beam.to_healpix(inplace=False) interp_then_sq.efield_to_power(calc_cross_pols=False) # convert to power and then interpolate to compare. # Don't use power read from file because it has rounding errors that will dominate this comparison sq_then_interp = efield_beam.efield_to_power(calc_cross_pols=False, inplace=False) sq_then_interp.to_healpix() # square then interpolate is different from interpolate then square at a # higher level than normally allowed in the equality. # We can live with it for now, may need to improve it later diff = np.abs(interp_then_sq.data_array - sq_then_interp.data_array) assert np.max(diff) < 0.5 reldiff = diff / sq_then_interp.data_array assert np.max(reldiff) < 0.05 # set data_array tolerances higher to test the rest of the object # tols are (relative, absolute) tols = [0.05, 0] sq_then_interp._data_array.tols = tols # check history changes interp_history_add = (' Interpolated from ' + power_beam.coordinate_system_dict['az_za']['description'] + ' to ' + power_beam.coordinate_system_dict['healpix']['description'] + ' using pyuvdata with interpolation_function = az_za_simple.') sq_history_add = ' Converted from efield to power using pyuvdata.' assert sq_then_interp.history == efield_beam.history + sq_history_add + interp_history_add assert interp_then_sq.history == efield_beam.history + interp_history_add + sq_history_add # now change history on one so we can compare the rest of the object sq_then_interp.history = efield_beam.history + interp_history_add + sq_history_add assert sq_then_interp == interp_then_sq def test_select_axis(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # add optional parameters for testing purposes power_beam.extra_keywords = {'KEY1': 'test_keyword'} power_beam.reference_impedance = 340. power_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.loss_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, power_beam.Nspws, power_beam.Nfreqs)) old_history = power_beam.history # Test selecting on axis1 inds1_to_keep = np.arange(14, 63) power_beam2 = power_beam.select(axis1_inds=inds1_to_keep, inplace=False) assert len(inds1_to_keep) == power_beam2.Naxes1 for i in inds1_to_keep: assert power_beam.axis1_array[i] in power_beam2.axis1_array for i in np.unique(power_beam2.axis1_array): assert i in power_beam.axis1_array assert uvutils._check_histories(old_history + ' Downselected to ' 'specific parts of first image axis ' 'using pyuvdata.', power_beam2.history) write_file_beamfits = os.path.join(DATA_PATH, 'test/select_beam.fits') # test writing beamfits with only one element in axis1 inds_to_keep = [len(inds1_to_keep) + 1] power_beam2 = power_beam.select(axis1_inds=inds_to_keep, inplace=False) power_beam2.write_beamfits(write_file_beamfits, clobber=True) # check for errors associated with indices not included in data pytest.raises(ValueError, power_beam2.select, axis1_inds=[power_beam.Naxes1 - 1]) # check for warnings and errors associated with unevenly spaced image pixels power_beam2 = copy.deepcopy(power_beam) uvtest.checkWarnings(power_beam2.select, [], {'axis1_inds': [0, 5, 6]}, message='Selected values along first image axis are not evenly spaced') pytest.raises(ValueError, power_beam2.write_beamfits, write_file_beamfits) # Test selecting on axis2 inds2_to_keep = np.arange(5, 14) power_beam2 = power_beam.select(axis2_inds=inds2_to_keep, inplace=False) assert len(inds2_to_keep) == power_beam2.Naxes2 for i in inds2_to_keep: assert power_beam.axis2_array[i] in power_beam2.axis2_array for i in np.unique(power_beam2.axis2_array): assert i in power_beam.axis2_array assert uvutils._check_histories(old_history + ' Downselected to ' 'specific parts of second image axis ' 'using pyuvdata.', power_beam2.history) write_file_beamfits = os.path.join(DATA_PATH, 'test/select_beam.fits') # test writing beamfits with only one element in axis2 inds_to_keep = [len(inds2_to_keep) + 1] power_beam2 = power_beam.select(axis2_inds=inds_to_keep, inplace=False) power_beam2.write_beamfits(write_file_beamfits, clobber=True) # check for errors associated with indices not included in data pytest.raises(ValueError, power_beam2.select, axis2_inds=[power_beam.Naxes2 - 1]) # check for warnings and errors associated with unevenly spaced image pixels power_beam2 = copy.deepcopy(power_beam) uvtest.checkWarnings(power_beam2.select, [], {'axis2_inds': [0, 5, 6]}, message='Selected values along second image axis are not evenly spaced') pytest.raises(ValueError, power_beam2.write_beamfits, write_file_beamfits) def test_select_frequencies(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # generate more frequencies for testing by copying and adding several times while power_beam.Nfreqs < 8: new_beam = copy.deepcopy(power_beam) new_beam.freq_array = power_beam.freq_array + power_beam.Nfreqs * 1e6 power_beam += new_beam # add optional parameters for testing purposes power_beam.extra_keywords = {'KEY1': 'test_keyword'} power_beam.reference_impedance = 340. power_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.loss_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, power_beam.Nspws, power_beam.Nfreqs)) old_history = power_beam.history freqs_to_keep = power_beam.freq_array[0, np.arange(2, 7)] power_beam2 = power_beam.select(frequencies=freqs_to_keep, inplace=False) assert len(freqs_to_keep) == power_beam2.Nfreqs for f in freqs_to_keep: assert f in power_beam2.freq_array for f in np.unique(power_beam2.freq_array): assert f in freqs_to_keep assert uvutils._check_histories(old_history + ' Downselected to ' 'specific frequencies using pyuvdata.', power_beam2.history) write_file_beamfits = os.path.join(DATA_PATH, 'test/select_beam.fits') # test writing beamfits with only one frequency freqs_to_keep = power_beam.freq_array[0, 5] power_beam2 = power_beam.select(frequencies=freqs_to_keep, inplace=False) power_beam2.write_beamfits(write_file_beamfits, clobber=True) # check for errors associated with frequencies not included in data pytest.raises(ValueError, power_beam.select, frequencies=[np.max(power_beam.freq_array) + 10]) # check for warnings and errors associated with unevenly spaced frequencies power_beam2 = copy.deepcopy(power_beam) uvtest.checkWarnings(power_beam2.select, [], {'frequencies': power_beam2.freq_array[0, [0, 5, 6]]}, message='Selected frequencies are not evenly spaced') pytest.raises(ValueError, power_beam2.write_beamfits, write_file_beamfits) # Test selecting on freq_chans chans_to_keep = np.arange(2, 7) power_beam2 = power_beam.select(freq_chans=chans_to_keep, inplace=False) assert len(chans_to_keep) == power_beam2.Nfreqs for chan in chans_to_keep: assert power_beam.freq_array[0, chan] in power_beam2.freq_array for f in np.unique(power_beam2.freq_array): assert f in power_beam.freq_array[0, chans_to_keep] assert uvutils._check_histories(old_history + ' Downselected to ' 'specific frequencies using pyuvdata.', power_beam2.history) # Test selecting both channels and frequencies freqs_to_keep = power_beam.freq_array[0, np.arange(6, 8)] # Overlaps with chans all_chans_to_keep = np.arange(2, 8) power_beam2 = power_beam.select(frequencies=freqs_to_keep, freq_chans=chans_to_keep, inplace=False) assert len(all_chans_to_keep) == power_beam2.Nfreqs for chan in all_chans_to_keep: assert power_beam.freq_array[0, chan] in power_beam2.freq_array for f in np.unique(power_beam2.freq_array): assert f in power_beam.freq_array[0, all_chans_to_keep] def test_select_feeds(): efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # add optional parameters for testing purposes efield_beam.extra_keywords = {'KEY1': 'test_keyword'} efield_beam.reference_impedance = 340. efield_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.loss_array = np.random.normal(50.0, 5, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, efield_beam.Nspws, efield_beam.Nfreqs)) old_history = efield_beam.history feeds_to_keep = ['x'] efield_beam2 = efield_beam.select(feeds=feeds_to_keep, inplace=False) assert len(feeds_to_keep) == efield_beam2.Nfeeds for f in feeds_to_keep: assert f in efield_beam2.feed_array for f in np.unique(efield_beam2.feed_array): assert f in feeds_to_keep assert uvutils._check_histories(old_history + ' Downselected to ' 'specific feeds using pyuvdata.', efield_beam2.history) # check for errors associated with feeds not included in data pytest.raises(ValueError, efield_beam.select, feeds=['N']) # check for error with selecting polarizations on efield beams pytest.raises(ValueError, efield_beam.select, polarizations=[-5, -6]) # Test check basis vectors efield_beam.basis_vector_array[0, 1, :, :] = 1.0 pytest.raises(ValueError, efield_beam.check) efield_beam.basis_vector_array[0, 0, :, :] = np.sqrt(0.5) efield_beam.basis_vector_array[0, 1, :, :] = np.sqrt(0.5) assert efield_beam.check() efield_beam.basis_vector_array = None pytest.raises(ValueError, efield_beam.check) def test_select_polarizations(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol='xx', model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # generate more polarizations for testing by copying and adding several times while power_beam.Npols < 4: new_beam = copy.deepcopy(power_beam) new_beam.polarization_array = power_beam.polarization_array - power_beam.Npols power_beam += new_beam # add optional parameters for testing purposes power_beam.extra_keywords = {'KEY1': 'test_keyword'} power_beam.reference_impedance = 340. power_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.loss_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, power_beam.Nspws, power_beam.Nfreqs)) old_history = power_beam.history pols_to_keep = [-5, -6] power_beam2 = power_beam.select(polarizations=pols_to_keep, inplace=False) assert len(pols_to_keep) == power_beam2.Npols for p in pols_to_keep: assert p in power_beam2.polarization_array for p in np.unique(power_beam2.polarization_array): assert p in pols_to_keep assert uvutils._check_histories(old_history + ' Downselected to ' 'specific polarizations using pyuvdata.', power_beam2.history) # check for errors associated with polarizations not included in data pytest.raises(ValueError, power_beam.select, polarizations=[-3, -4]) # check for warnings and errors associated with unevenly spaced polarizations uvtest.checkWarnings(power_beam.select, [], {'polarizations': power_beam.polarization_array[[0, 1, 3]]}, message='Selected polarizations are not evenly spaced') write_file_beamfits = os.path.join(DATA_PATH, 'test/select_beam.fits') pytest.raises(ValueError, power_beam.write_beamfits, write_file_beamfits) # check for error with selecting on feeds on power beams pytest.raises(ValueError, power_beam.select, feeds=['x']) def test_select(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # generate more frequencies for testing by copying and adding new_beam = copy.deepcopy(power_beam) new_beam.freq_array = power_beam.freq_array + power_beam.Nfreqs * 1e6 power_beam += new_beam # add optional parameters for testing purposes power_beam.extra_keywords = {'KEY1': 'test_keyword'} power_beam.reference_impedance = 340. power_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.loss_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, power_beam.Nspws, power_beam.Nfreqs)) # now test selecting along all axes at once old_history = power_beam.history inds1_to_keep = np.arange(14, 63) inds2_to_keep = np.arange(5, 14) freqs_to_keep = [power_beam.freq_array[0, 0]] pols_to_keep = [-5] power_beam2 = power_beam.select(axis1_inds=inds1_to_keep, axis2_inds=inds2_to_keep, frequencies=freqs_to_keep, polarizations=pols_to_keep, inplace=False) assert len(inds1_to_keep) == power_beam2.Naxes1 for i in inds1_to_keep: assert power_beam.axis1_array[i] in power_beam2.axis1_array for i in np.unique(power_beam2.axis1_array): assert i in power_beam.axis1_array assert len(inds2_to_keep) == power_beam2.Naxes2 for i in inds2_to_keep: assert power_beam.axis2_array[i] in power_beam2.axis2_array for i in np.unique(power_beam2.axis2_array): assert i in power_beam.axis2_array assert len(freqs_to_keep) == power_beam2.Nfreqs for f in freqs_to_keep: assert f in power_beam2.freq_array for f in np.unique(power_beam2.freq_array): assert f in freqs_to_keep assert len(pols_to_keep) == power_beam2.Npols for p in pols_to_keep: assert p in power_beam2.polarization_array for p in np.unique(power_beam2.polarization_array): assert p in pols_to_keep assert uvutils._check_histories(old_history + ' Downselected to ' 'specific parts of first image axis, ' 'parts of second image axis, ' 'frequencies, polarizations using pyuvdata.', power_beam2.history) # repeat for efield beam efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # generate more frequencies for testing by copying and adding new_beam = copy.deepcopy(efield_beam) new_beam.freq_array = efield_beam.freq_array + efield_beam.Nfreqs * 1e6 efield_beam += new_beam # add optional parameters for testing purposes efield_beam.extra_keywords = {'KEY1': 'test_keyword'} efield_beam.reference_impedance = 340. efield_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.loss_array = np.random.normal(50.0, 5, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, efield_beam.Nspws, efield_beam.Nfreqs)) feeds_to_keep = ['x'] efield_beam2 = efield_beam.select(axis1_inds=inds1_to_keep, axis2_inds=inds2_to_keep, frequencies=freqs_to_keep, feeds=feeds_to_keep, inplace=False) assert len(inds1_to_keep) == efield_beam2.Naxes1 for i in inds1_to_keep: assert efield_beam.axis1_array[i] in efield_beam2.axis1_array for i in np.unique(efield_beam2.axis1_array): assert i in efield_beam.axis1_array assert len(inds2_to_keep) == efield_beam2.Naxes2 for i in inds2_to_keep: assert efield_beam.axis2_array[i] in efield_beam2.axis2_array for i in np.unique(efield_beam2.axis2_array): assert i in efield_beam.axis2_array assert len(freqs_to_keep) == efield_beam2.Nfreqs for f in freqs_to_keep: assert f in efield_beam2.freq_array for f in np.unique(efield_beam2.freq_array): assert f in freqs_to_keep assert len(feeds_to_keep) == efield_beam2.Nfeeds for f in feeds_to_keep: assert f in efield_beam2.feed_array for f in np.unique(efield_beam2.feed_array): assert f in feeds_to_keep assert uvutils._check_histories(old_history + ' Downselected to ' 'specific parts of first image axis, ' 'parts of second image axis, ' 'frequencies, feeds using pyuvdata.', efield_beam2.history) def test_add(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # generate more frequencies for testing by copying and adding new_beam = copy.deepcopy(power_beam) new_beam.freq_array = power_beam.freq_array + power_beam.Nfreqs * 1e6 power_beam += new_beam # add optional parameters for testing purposes power_beam.extra_keywords = {'KEY1': 'test_keyword'} power_beam.reference_impedance = 340. power_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.loss_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, power_beam.Nspws, power_beam.Nfreqs)) # Add along first image axis beam1 = power_beam.select(axis1_inds=np.arange(0, 180), inplace=False) beam2 = power_beam.select(axis1_inds=np.arange(180, 360), inplace=False) beam1 += beam2 # Check history is correct, before replacing and doing a full object check assert uvutils._check_histories(power_beam.history + ' Downselected to specific parts of ' 'first image axis using pyuvdata. ' 'Combined data along first image axis ' 'using pyuvdata.', beam1.history) beam1.history = power_beam.history assert beam1 == power_beam # Out of order - axis1 beam1 = power_beam.select(axis1_inds=np.arange(180, 360), inplace=False) beam2 = power_beam.select(axis1_inds=np.arange(0, 180), inplace=False) beam1 += beam2 beam1.history = power_beam.history assert beam1 == power_beam # Add along second image axis beam1 = power_beam.select(axis2_inds=np.arange(0, 90), inplace=False) beam2 = power_beam.select(axis2_inds=np.arange(90, 181), inplace=False) beam1 += beam2 # Check history is correct, before replacing and doing a full object check assert uvutils._check_histories(power_beam.history + ' Downselected to specific parts of ' 'second image axis using pyuvdata. ' 'Combined data along second image axis ' 'using pyuvdata.', beam1.history) beam1.history = power_beam.history assert beam1 == power_beam # Out of order - axis2 beam1 = power_beam.select(axis2_inds=np.arange(90, 181), inplace=False) beam2 = power_beam.select(axis2_inds=np.arange(0, 90), inplace=False) beam1 += beam2 beam1.history = power_beam.history assert beam1 == power_beam # Add frequencies beam1 = power_beam.select(freq_chans=0, inplace=False) beam2 = power_beam.select(freq_chans=1, inplace=False) beam1 += beam2 # Check history is correct, before replacing and doing a full object check assert uvutils._check_histories(power_beam.history + ' Downselected to specific frequencies ' 'using pyuvdata. Combined data along ' 'frequency axis using pyuvdata.', beam1.history) beam1.history = power_beam.history assert beam1 == power_beam # Out of order - freqs beam1 = power_beam.select(freq_chans=1, inplace=False) beam2 = power_beam.select(freq_chans=0, inplace=False) beam1 += beam2 beam1.history = power_beam.history assert beam1 == power_beam # Add polarizations beam1 = power_beam.select(polarizations=-5, inplace=False) beam2 = power_beam.select(polarizations=-6, inplace=False) beam1 += beam2 assert uvutils._check_histories(power_beam.history + ' Downselected to specific polarizations ' 'using pyuvdata. Combined data along ' 'polarization axis using pyuvdata.', beam1.history) beam1.history = power_beam.history assert beam1 == power_beam # Out of order - pols beam1 = power_beam.select(polarizations=-6, inplace=False) beam2 = power_beam.select(polarizations=-5, inplace=False) beam1 += beam2 beam1.history = power_beam.history assert beam1 == power_beam # Add feeds efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # generate more frequencies for testing by copying and adding new_beam = copy.deepcopy(efield_beam) new_beam.freq_array = efield_beam.freq_array + efield_beam.Nfreqs * 1e6 efield_beam += new_beam # add optional parameters for testing purposes efield_beam.extra_keywords = {'KEY1': 'test_keyword'} efield_beam.reference_impedance = 340. efield_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.loss_array = np.random.normal(50.0, 5, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(efield_beam.Nspws, efield_beam.Nfreqs)) efield_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, efield_beam.Nspws, efield_beam.Nfreqs)) beam1 = efield_beam.select(feeds=efield_beam.feed_array[0], inplace=False) beam2 = efield_beam.select(feeds=efield_beam.feed_array[1], inplace=False) beam1 += beam2 assert uvutils._check_histories(efield_beam.history + ' Downselected to specific feeds ' 'using pyuvdata. Combined data along ' 'feed axis using pyuvdata.', beam1.history) beam1.history = efield_beam.history assert beam1 == efield_beam # Out of order - feeds beam1 = efield_beam.select(feeds=efield_beam.feed_array[1], inplace=False) beam2 = efield_beam.select(feeds=efield_beam.feed_array[0], inplace=False) beam1 += beam2 beam1.history = efield_beam.history assert beam1, efield_beam # Add multiple axes beam_ref = copy.deepcopy(power_beam) beam1 = power_beam.select(axis1_inds=np.arange(0, power_beam.Naxes1 // 2), polarizations=power_beam.polarization_array[0], inplace=False) beam2 = power_beam.select(axis1_inds=np.arange(power_beam.Naxes1 // 2, power_beam.Naxes1), polarizations=power_beam.polarization_array[1], inplace=False) beam1 += beam2 assert uvutils._check_histories(power_beam.history + ' Downselected to specific parts of ' 'first image axis, polarizations using ' 'pyuvdata. Combined data along first ' 'image, polarization axis using pyuvdata.', beam1.history) # Zero out missing data in reference object beam_ref.data_array[:, :, 0, :, :, power_beam.Naxes1 // 2:] = 0.0 beam_ref.data_array[:, :, 1, :, :, :power_beam.Naxes1 // 2] = 0.0 beam1.history = power_beam.history assert beam1 == beam_ref # Another combo with efield beam_ref = copy.deepcopy(efield_beam) beam1 = efield_beam.select(axis1_inds=np.arange(0, efield_beam.Naxes1 // 2), axis2_inds=np.arange(0, efield_beam.Naxes2 // 2), inplace=False) beam2 = efield_beam.select(axis1_inds=np.arange(efield_beam.Naxes1 // 2, efield_beam.Naxes1), axis2_inds=np.arange(efield_beam.Naxes2 // 2, efield_beam.Naxes2), inplace=False) beam1 += beam2 assert uvutils._check_histories(efield_beam.history + ' Downselected to specific parts of ' 'first image axis, parts of second ' 'image axis using pyuvdata. Combined ' 'data along first image, second image ' 'axis using pyuvdata.', beam1.history) # Zero out missing data in reference object beam_ref.data_array[:, :, :, :, :efield_beam.Naxes2 // 2, efield_beam.Naxes1 // 2:] = 0.0 beam_ref.data_array[:, :, :, :, efield_beam.Naxes2 // 2:, :efield_beam.Naxes1 // 2] = 0.0 beam_ref.basis_vector_array[:, :, :efield_beam.Naxes2 // 2, efield_beam.Naxes1 // 2:] = 0.0 beam_ref.basis_vector_array[:, :, efield_beam.Naxes2 // 2:, :efield_beam.Naxes1 // 2] = 0.0 beam1.history = efield_beam.history assert beam1, beam_ref # Check warnings # generate more frequencies for testing by copying and adding several times while power_beam.Nfreqs < 8: new_beam = copy.deepcopy(power_beam) new_beam.freq_array = power_beam.freq_array + power_beam.Nfreqs * 1e6 power_beam += new_beam beam1 = power_beam.select(freq_chans=np.arange(0, 4), inplace=False) beam2 = power_beam.select(freq_chans=np.arange(5, 8), inplace=False) uvtest.checkWarnings(beam1.__add__, [beam2], message='Combined frequencies are not evenly spaced') # generate more polarizations for testing by copying and adding several times while power_beam.Npols < 4: new_beam = copy.deepcopy(power_beam) new_beam.polarization_array = power_beam.polarization_array - power_beam.Npols power_beam += new_beam power_beam.receiver_temperature_array = np.ones((1, 8)) beam1 = power_beam.select(polarizations=power_beam.polarization_array[0:2], inplace=False) beam2 = power_beam.select(polarizations=power_beam.polarization_array[3], inplace=False) uvtest.checkWarnings(beam1.__iadd__, [beam2], message='Combined polarizations are not evenly spaced') beam1 = power_beam.select(polarizations=power_beam.polarization_array[0:2], inplace=False) beam2 = power_beam.select(polarizations=power_beam.polarization_array[2:3], inplace=False) beam2.receiver_temperature_array = None assert beam1.receiver_temperature_array is not None uvtest.checkWarnings(beam1.__iadd__, [beam2], message=['Only one of the UVBeam objects being combined ' 'has optional parameter']) assert beam1.receiver_temperature_array is None # Combining histories beam1 = power_beam.select(polarizations=power_beam.polarization_array[0:2], inplace=False) beam2 = power_beam.select(polarizations=power_beam.polarization_array[2:4], inplace=False) beam2.history += ' testing the history. Read/written with pyuvdata' beam1 += beam2 assert uvutils._check_histories(power_beam.history + ' Downselected to specific polarizations ' 'using pyuvdata. Combined data along ' 'polarization axis using pyuvdata. ' 'testing the history.', beam1.history) beam1.history = power_beam.history assert beam1 == power_beam # ------------------------ # Test failure modes of add function # Wrong class beam1 = copy.deepcopy(power_beam) pytest.raises(ValueError, beam1.__iadd__, np.zeros(5)) params_to_change = {'beam_type': 'efield', 'data_normalization': 'solid_angle', 'telescope_name': 'foo', 'feed_name': 'foo', 'feed_version': 'v12', 'model_name': 'foo', 'model_version': 'v12', 'pixel_coordinate_system': 'sin_zenith', 'Naxes_vec': 3, 'nside': 16, 'ordering': 'nested'} beam1 = power_beam.select(freq_chans=0, inplace=False) for param, value in params_to_change.items(): beam2 = power_beam.select(freq_chans=1, inplace=False) setattr(beam2, param, value) pytest.raises(ValueError, beam1.__iadd__, beam2) # Overlapping data beam2 = copy.deepcopy(power_beam) pytest.raises(ValueError, beam1.__iadd__, beam2) @uvtest.skipIf_no_healpix def test_healpix(): # put all the testing on healpix in this one function to minimize slow calls # to uvbeam.to_healpix() power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # generate more frequencies for testing by copying and adding new_beam = copy.deepcopy(power_beam) new_beam.freq_array = power_beam.freq_array + power_beam.Nfreqs * 1e6 power_beam += new_beam # add optional parameters for testing purposes power_beam.extra_keywords = {'KEY1': 'test_keyword'} power_beam.reference_impedance = 340. power_beam.receiver_temperature_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.loss_array = np.random.normal(50.0, 5, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.mismatch_array = np.random.normal(0.0, 1.0, size=(power_beam.Nspws, power_beam.Nfreqs)) power_beam.s_parameters = np.random.normal(0.0, 0.3, size=(4, power_beam.Nspws, power_beam.Nfreqs)) power_beam.interpolation_function = 'az_za_simple' power_beam_healpix = power_beam.to_healpix(inplace=False) # test that Npixels make sense n_max_pix = power_beam.Naxes1 * power_beam.Naxes2 assert power_beam_healpix.Npixels <= n_max_pix # ----------------------- # test selecting on pixels old_history = power_beam_healpix.history pixels_to_keep = np.arange(31, 184) power_beam_healpix2 = power_beam_healpix.select(pixels=pixels_to_keep, inplace=False) assert len(pixels_to_keep) == power_beam_healpix2.Npixels for pi in pixels_to_keep: assert pi in power_beam_healpix2.pixel_array for pi in np.unique(power_beam_healpix2.pixel_array): assert pi in pixels_to_keep assert uvutils._check_histories(old_history + ' Downselected to ' 'specific healpix pixels using pyuvdata.', power_beam_healpix2.history) write_file_beamfits = os.path.join(DATA_PATH, 'test/select_beam.fits') # test writing beamfits with only one pixel pixels_to_keep = [43] power_beam_healpix2 = power_beam_healpix.select(pixels=pixels_to_keep, inplace=False) power_beam_healpix2.write_beamfits(write_file_beamfits, clobber=True) # check for errors associated with pixels not included in data pytest.raises(ValueError, power_beam_healpix.select, pixels=[12 * power_beam_healpix.nside**2 + 10]) # test writing beamfits with non-contiguous pixels pixels_to_keep = np.arange(2, 150, 4) power_beam_healpix2 = power_beam_healpix.select(pixels=pixels_to_keep, inplace=False) power_beam_healpix2.write_beamfits(write_file_beamfits, clobber=True) # check for errors selecting pixels on non-healpix beams pytest.raises(ValueError, power_beam.select, pixels=pixels_to_keep) # ----------------- # check for errors selecting axis1_inds on healpix beams inds1_to_keep = np.arange(14, 63) pytest.raises(ValueError, power_beam_healpix.select, axis1_inds=inds1_to_keep) # check for errors selecting axis2_inds on healpix beams inds2_to_keep = np.arange(5, 14) pytest.raises(ValueError, power_beam_healpix.select, axis2_inds=inds2_to_keep) # ------------------------ # test selecting along all axes at once for healpix beams freqs_to_keep = [power_beam_healpix.freq_array[0, 0]] pols_to_keep = [-5] power_beam_healpix2 = power_beam_healpix.select(pixels=pixels_to_keep, frequencies=freqs_to_keep, polarizations=pols_to_keep, inplace=False) assert len(pixels_to_keep) == power_beam_healpix2.Npixels for pi in pixels_to_keep: assert pi in power_beam_healpix2.pixel_array for pi in np.unique(power_beam_healpix2.pixel_array): assert pi in pixels_to_keep assert len(freqs_to_keep) == power_beam_healpix2.Nfreqs for f in freqs_to_keep: assert f in power_beam_healpix2.freq_array for f in np.unique(power_beam_healpix2.freq_array): assert f in freqs_to_keep assert len(pols_to_keep) == power_beam_healpix2.Npols for p in pols_to_keep: assert p in power_beam_healpix2.polarization_array for p in np.unique(power_beam_healpix2.polarization_array): assert p in pols_to_keep assert uvutils._check_histories(old_history + ' Downselected to ' 'specific healpix pixels, frequencies, ' 'polarizations using pyuvdata.', power_beam_healpix2.history) # repeat for efield beam efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', feed_pol=['x'], model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') # generate more frequencies for testing by copying and adding new_beam = copy.deepcopy(efield_beam) new_beam.freq_array = efield_beam.freq_array + efield_beam.Nfreqs * 1e6 efield_beam += new_beam efield_beam.interpolation_function = 'az_za_simple' efield_beam.to_healpix() old_history = efield_beam.history freqs_to_keep = np.array([efield_beam.freq_array[0, 0]]) feeds_to_keep = ['x'] efield_beam2 = efield_beam.select(pixels=pixels_to_keep, frequencies=freqs_to_keep, feeds=feeds_to_keep, inplace=False) assert len(pixels_to_keep) == efield_beam2.Npixels for pi in pixels_to_keep: assert pi in efield_beam2.pixel_array for pi in np.unique(efield_beam2.pixel_array): assert pi in pixels_to_keep assert freqs_to_keep.size == efield_beam2.Nfreqs for f in freqs_to_keep: assert f in efield_beam2.freq_array for f in np.unique(efield_beam2.freq_array): assert f in freqs_to_keep assert len(feeds_to_keep) == efield_beam2.Nfeeds for f in feeds_to_keep: assert f in efield_beam2.feed_array for f in np.unique(efield_beam2.feed_array): assert f in feeds_to_keep assert uvutils._check_histories(old_history + ' Downselected to ' 'specific healpix pixels, frequencies, ' 'feeds using pyuvdata.', efield_beam2.history) # ------------------- # Test adding a different combo with healpix beam_ref = copy.deepcopy(power_beam_healpix) beam1 = power_beam_healpix.select( pixels=power_beam_healpix.pixel_array[0:power_beam_healpix.Npixels // 2], freq_chans=0, inplace=False) beam2 = power_beam_healpix.select( pixels=power_beam_healpix.pixel_array[power_beam_healpix.Npixels // 2:], freq_chans=1, inplace=False) beam1 += beam2 assert uvutils._check_histories(power_beam_healpix.history + ' Downselected to specific healpix ' 'pixels, frequencies using pyuvdata. ' 'Combined data along healpix pixel, ' 'frequency axis using pyuvdata.', beam1.history) # Zero out missing data in reference object beam_ref.data_array[:, :, :, 0, power_beam_healpix.Npixels // 2:] = 0.0 beam_ref.data_array[:, :, :, 1, :power_beam_healpix.Npixels // 2] = 0.0 beam1.history = power_beam_healpix.history assert beam1 == beam_ref # Test adding another combo with efield beam_ref = copy.deepcopy(efield_beam) beam1 = efield_beam.select(freq_chans=0, feeds=efield_beam.feed_array[0], inplace=False) beam2 = efield_beam.select(freq_chans=1, feeds=efield_beam.feed_array[1], inplace=False) beam1 += beam2 assert uvutils._check_histories(efield_beam.history + ' Downselected to specific frequencies, ' 'feeds using pyuvdata. Combined data ' 'along frequency, feed axis using pyuvdata.', beam1.history) # Zero out missing data in reference object beam_ref.data_array[:, :, 1, 0, :] = 0.0 beam_ref.data_array[:, :, 0, 1, :] = 0.0 beam1.history = efield_beam.history assert beam1 == beam_ref # Add without inplace beam1 = efield_beam.select(pixels=efield_beam.pixel_array[0:efield_beam.Npixels // 2], inplace=False) beam2 = efield_beam.select(pixels=efield_beam.pixel_array[efield_beam.Npixels // 2:], inplace=False) beam1 = beam1 + beam2 assert uvutils._check_histories(efield_beam.history + ' Downselected to specific healpix pixels ' 'using pyuvdata. Combined data ' 'along healpix pixel axis using pyuvdata.', beam1.history) beam1.history = efield_beam.history assert beam1 == efield_beam # --------------- # Test error: adding overlapping data with healpix beam1 = copy.deepcopy(power_beam_healpix) beam2 = copy.deepcopy(power_beam_healpix) pytest.raises(ValueError, beam1.__iadd__, beam2) # --------------- # Test beam area methods # Check that non-peak normalizations error pytest.raises(ValueError, power_beam_healpix.get_beam_area) pytest.raises(ValueError, power_beam_healpix.get_beam_sq_area) healpix_norm = copy.deepcopy(power_beam_healpix) healpix_norm.data_normalization = 'solid_angle' pytest.raises(ValueError, healpix_norm.get_beam_area) pytest.raises(ValueError, healpix_norm.get_beam_sq_area) # change it back to 'physical' healpix_norm.data_normalization = 'physical' # change it to peak for rest of checks healpix_norm.peak_normalize() # Check sizes of output numfreqs = healpix_norm.freq_array.shape[-1] beam_int = healpix_norm.get_beam_area(pol='xx') beam_sq_int = healpix_norm.get_beam_sq_area(pol='xx') assert beam_int.shape[0] == numfreqs assert beam_sq_int.shape[0] == numfreqs # Check for the case of a uniform beam over the whole sky hp_obj = HEALPix(nside=healpix_norm.nside) dOmega = hp_obj.pixel_area.to('steradian').value npix = healpix_norm.Npixels healpix_norm.data_array = np.ones_like(healpix_norm.data_array) assert np.allclose(np.sum(healpix_norm.get_beam_area(pol='xx')), numfreqs * npix * dOmega) healpix_norm.data_array = 2. * np.ones_like(healpix_norm.data_array) assert np.allclose(np.sum(healpix_norm.get_beam_sq_area(pol='xx')), numfreqs * 4. * npix * dOmega) # check XX and YY beam areas work and match to within 5 sigfigs XX_area = healpix_norm.get_beam_area('XX') xx_area = healpix_norm.get_beam_area('xx') assert np.allclose(xx_area, XX_area) YY_area = healpix_norm.get_beam_area('YY') assert np.allclose(YY_area / XX_area, np.ones(numfreqs)) # nt.assert_almost_equal(YY_area / XX_area, 1.0, places=5) XX_area = healpix_norm.get_beam_sq_area("XX") YY_area = healpix_norm.get_beam_sq_area("YY") assert np.allclose(YY_area / XX_area, np.ones(numfreqs)) # nt.assert_almost_equal(YY_area / XX_area, 1.0, places=5) # Check that if pseudo-Stokes I (pI) is in the beam polarization_array, it just uses it healpix_norm.polarization_array = [1, 2] # nt.assert_almost_equal(np.sum(healpix_norm.get_beam_area()), 2. * numfreqs * npix * dOmega) # nt.assert_almost_equal(np.sum(healpix_norm.get_beam_sq_area()), 4. * numfreqs * npix * dOmega) # Check error if desired pol is allowed but isn't in the polarization_array pytest.raises(ValueError, healpix_norm.get_beam_area, pol='xx') pytest.raises(ValueError, healpix_norm.get_beam_sq_area, pol='xx') # Check polarization error healpix_norm.polarization_array = [9, 18, 27, -4] pytest.raises(ValueError, healpix_norm.get_beam_area, pol='xx') pytest.raises(ValueError, healpix_norm.get_beam_sq_area, pol='xx') healpix_norm_fullpol = efield_beam.efield_to_power(inplace=False) healpix_norm_fullpol.peak_normalize() XX_area = healpix_norm_fullpol.get_beam_sq_area("XX") YY_area = healpix_norm_fullpol.get_beam_sq_area("YY") XY_area = healpix_norm_fullpol.get_beam_sq_area("XY") YX_area = healpix_norm_fullpol.get_beam_sq_area("YX") # check if XY beam area is equal to beam YX beam area assert np.allclose(XY_area, YX_area) # check if XY/YX beam area is less than XX/YY beam area assert np.all(np.less(XY_area, XX_area)) assert np.all(np.less(XY_area, YY_area)) assert np.all(np.less(YX_area, XX_area)) assert np.all(np.less(YX_area, YY_area)) # Check if power is scalar healpix_vec_norm = efield_beam.efield_to_power(keep_basis_vector=True, calc_cross_pols=False, inplace=False) healpix_vec_norm.peak_normalize() pytest.raises(ValueError, healpix_vec_norm.get_beam_area) pytest.raises(ValueError, healpix_vec_norm.get_beam_sq_area) # Check only power beams accepted pytest.raises(ValueError, efield_beam.get_beam_area) pytest.raises(ValueError, efield_beam.get_beam_sq_area) # check pseudo-Stokes parameters efield_beam = UVBeam() efield_beam.read_cst_beam(cst_files[0], beam_type='efield', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') efield_beam.interpolation_function = 'az_za_simple' efield_beam.to_healpix() efield_beam.efield_to_pstokes() efield_beam.peak_normalize() pI_area = efield_beam.get_beam_sq_area("pI") pQ_area = efield_beam.get_beam_sq_area("pQ") pU_area = efield_beam.get_beam_sq_area("pU") pV_area = efield_beam.get_beam_sq_area("pV") assert np.all(np.less(pQ_area, pI_area)) assert np.all(np.less(pU_area, pI_area)) assert np.all(np.less(pV_area, pI_area)) # check backwards compatability with pstokes nomenclature and int polnum I_area = efield_beam.get_beam_area('I') pI_area = efield_beam.get_beam_area('pI') area1 = efield_beam.get_beam_area(1) assert np.allclose(I_area, pI_area) assert np.allclose(I_area, area1) # check efield beam type is accepted for pseudo-stokes and power for linear polarizations pytest.raises(ValueError, healpix_vec_norm.get_beam_sq_area, 'pI') pytest.raises(ValueError, efield_beam.get_beam_sq_area, 'xx') def test_get_beam_functions(): power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') pytest.raises(AssertionError, power_beam._get_beam, 'xx') # Check only healpix accepted (HEALPix checks are in test_healpix) # change data_normalization to peak for rest of checks power_beam.peak_normalize() pytest.raises(ValueError, power_beam.get_beam_area) pytest.raises(ValueError, power_beam.get_beam_sq_area) if healpix_installed: power_beam = UVBeam() power_beam.read_cst_beam(cst_files[0], beam_type='power', frequency=150e6, telescope_name='TEST', feed_name='bob', feed_version='0.1', model_name='E-field pattern - Rigging height 4.9m', model_version='1.0') power_beam.interpolation_function = 'az_za_simple' power_beam.to_healpix() power_beam.peak_normalize() power_beam._get_beam('xx') pytest.raises(ValueError, power_beam._get_beam, 4)
48.813609
116
0.634776
9ea09c29adba3bedefbdfbaa8ea2b295d98d220c
3,682
py
Python
restalchemy/validators.py
restalchemy/restalchemy
dcbe5312832f35ad4fa7262516c32579e0acd214
[ "0BSD" ]
1
2019-01-16T18:40:01.000Z
2019-01-16T18:40:01.000Z
restalchemy/validators.py
restalchemy/restalchemy
dcbe5312832f35ad4fa7262516c32579e0acd214
[ "0BSD" ]
null
null
null
restalchemy/validators.py
restalchemy/restalchemy
dcbe5312832f35ad4fa7262516c32579e0acd214
[ "0BSD" ]
null
null
null
from datetime import datetime from pyramid.config import Configurator from restalchemy.exceptions import AttributeWrong from sqlalchemy import DECIMAL, DateTime, Enum, Float, Integer, String, event from .model import RestalchemyBase def validate_int(column, value): if isinstance(value, str): try: value = int(value) except ValueError: raise AttributeWrong(column.key, f'"{value}" is not a valid number') if type(value) is not int: # isinstance doesn't work because bool is subclass of int raise AttributeWrong(column.key, '"{value}" has to be a number') return value def validate_float(column, value): if isinstance(value, str): try: value = float(value) except ValueError: raise AttributeWrong(column.key, f'"{value}" is not a valid float') if type(value) is not float: # isinstance doesn't work because bool is subclass of int raise AttributeWrong(column.key, f'"{value}" has to be a float') return value def validate_string(column, value): if not isinstance(value, str): raise AttributeWrong(column.key, f'"{value}" is not a string') return value def validate_enum(column, value): enums = column.type.enums if value not in enums: raise AttributeWrong(column.key, f'"{value}" is not one of: {", ".join(e for e in enums)}.') return value def validate_datetime(column, value): if isinstance(value, datetime): return value if not isinstance(value, str): raise AttributeWrong(column.key, "Datetime must be a string") if value == "0000-00-00T00:00:00": # mysql allows 0000-00-00 dates for invalid dates return value orig_value = value # Allow ' ' or 'T' as date-time separator and only allow UTC timezone ('Z' or '+0000') value = value.replace("T", " ").replace("Z", "+") value, _, tz = value.partition("+") if tz.strip("0:") != "": raise AttributeWrong(column.key, "Only UTC (+0000) datetimes supported") _, _, microseconds = value.partition(".") # We (or better, Python) only supports microseconds (6 digits) if len(microseconds) > 6: value = value[: -(len(microseconds) - 6)] try: return datetime.strptime(value, "%Y-%m-%d %H:%M:%S.%f") except ValueError: pass try: return datetime.strptime(value, "%Y-%m-%d %H:%M:%S") except ValueError: pass try: return datetime.strptime(value, "%Y-%m-%d") except ValueError: raise AttributeWrong(column.key, f'"{orig_value}" is not a valid datetime') validators = { DateTime: validate_datetime, DECIMAL: validate_float, Float: validate_float, Integer: validate_int, String: validate_string, Enum: validate_enum, } def validate(value, column): """Check if `value` is a valid sqlalchemy type for `column`.""" try: validator = validators.get(column.type.__class__) except Exception: return value if validator and value is not None: return validator(column, value) return value def includeme(config: Configurator): # This event is called whenever an attribute on a class is instrumented @event.listens_for(RestalchemyBase, "attribute_instrument") def configure_listener(class_, key, inst): if not hasattr(inst.property, "columns"): return # This event is called whenever a "set" # occurs on that instrumented attribute @event.listens_for(inst, "set", retval=True) def set_(instance, value, oldvalue, initiator): return validate(value, inst.property.columns[0])
30.941176
100
0.652091
115b60349ef93e835e9186c49a97c3d5585d1abe
2,788
py
Python
tests/test_metadata.py
adrien-berchet/sphinx-bluebrain-theme
8ecab402e8ba09da45dd423de9395173ddca7337
[ "MIT" ]
2
2020-08-08T18:47:51.000Z
2021-07-23T13:56:51.000Z
tests/test_metadata.py
adrien-berchet/sphinx-bluebrain-theme
8ecab402e8ba09da45dd423de9395173ddca7337
[ "MIT" ]
15
2020-04-09T13:24:12.000Z
2022-03-29T08:24:45.000Z
tests/test_metadata.py
adrien-berchet/sphinx-bluebrain-theme
8ecab402e8ba09da45dd423de9395173ddca7337
[ "MIT" ]
2
2021-04-22T08:15:13.000Z
2021-12-22T08:23:37.000Z
"""Tests for metadata generation utilities.""" from contextlib import contextmanager import json import os import shutil import sys import tempfile from nose import tools as nt # pylint: disable=import-error from sphinx_bluebrain_theme.utils import metadata @contextmanager def setup_tempdir(prefix): """Create a temporary directory which will be cleaned up.""" temp_dir = tempfile.mkdtemp(prefix=prefix) try: yield temp_dir finally: if os.path.isdir(temp_dir): shutil.rmtree(temp_dir) def test_temp_change_working_directory(): """Test changing the working directory temporarily.""" current_wd = os.getcwd() with metadata.change_cwd("/"): nt.eq_(os.getcwd(), "/") nt.eq_(os.getcwd(), current_wd) def test_write_metadata_files(): """Test that the metadata files are written and their content is correct.""" with setup_tempdir("docs-path") as docs_path: metadata_dict = {"name": "test-data"} metadata.write_metadata(metadata_dict, docs_path) md_file = os.path.join(docs_path, "metadata.md") json_file = os.path.join(docs_path, "metadata.json") nt.assert_true(os.path.isfile(md_file)) nt.assert_true(os.path.isfile(json_file)) with open(md_file, encoding="utf8") as file_: content = file_.read() expect = """--- name: test-data --- """ nt.eq_(content, expect) with open(json_file, encoding="utf8") as file_: content = file_.read() expect = """{"name": "test-data"}""" nt.eq_(content, expect) def test_add_to_path(): """Test using a context manager to temporarily add to the system path.""" path = "/path/to/nowhere" current_path = list(sys.path) nt.assert_not_equal(sys.path[0], path) with metadata.add_to_path(path): nt.eq_(sys.path[0], path) nt.assert_not_equal(sys.path[0], path) nt.eq_(current_path, sys.path) def test_get_metadata_from_json(): """Test getting metadata from a json file.""" output = { "name": "name", "version": "version", "description": "description", "homepage": "homepage", "repository": {"url": "repository"}, "bugs": {"url": "issuesurl"}, "license": "license", "author": "maintainers", } with tempfile.NamedTemporaryFile(mode="w", suffix=".json") as fd: fd.write(json.dumps(output)) fd.flush() # get the metadata md = metadata.get_metadata_from_json(fd.name) # check contributors is blank nt.eq_(md["contributors"], "") del md["contributors"] # check all values are the same as their keys for k, v in md.items(): nt.eq_(k, v)
27.067961
80
0.624821
178649b04ee976918cde7294b93c9476e15e6ba6
1,858
py
Python
core/migrations/0002_auto_20170524_1929.py
zarathon/gddmaker
58e185e6baa10bdcb863acdf3b946297adeb65c8
[ "MIT" ]
2
2017-09-25T18:12:55.000Z
2018-05-25T09:48:29.000Z
core/migrations/0002_auto_20170524_1929.py
zarathon/gddmaker
58e185e6baa10bdcb863acdf3b946297adeb65c8
[ "MIT" ]
null
null
null
core/migrations/0002_auto_20170524_1929.py
zarathon/gddmaker
58e185e6baa10bdcb863acdf3b946297adeb65c8
[ "MIT" ]
1
2019-09-25T23:25:27.000Z
2019-09-25T23:25:27.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-05-24 19:29 from __future__ import unicode_literals import ckeditor.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.AlterField( model_name='character', name='description', field=ckeditor.fields.RichTextField(), ), migrations.AlterField( model_name='character', name='name', field=models.CharField(max_length=255), ), migrations.AlterField( model_name='game', name='description', field=ckeditor.fields.RichTextField(), ), migrations.AlterField( model_name='level', name='description', field=ckeditor.fields.RichTextField(), ), migrations.AlterField( model_name='level', name='name', field=models.CharField(max_length=80), ), migrations.AlterField( model_name='level', name='script', field=ckeditor.fields.RichTextField(), ), migrations.AlterField( model_name='mechanic', name='description', field=ckeditor.fields.RichTextField(), ), migrations.AlterField( model_name='mechanic', name='name', field=models.CharField(max_length=255), ), migrations.AlterField( model_name='media', name='description', field=ckeditor.fields.RichTextField(), ), migrations.AlterField( model_name='media', name='name', field=models.CharField(max_length=255), ), ]
27.731343
51
0.542519
fe6cb8ccbe6293f6e11d2e3e9d068fb53f98e712
92
py
Python
web2py/parameters_8000.py
seadsystem/website
d7e8110c012d94c494895fde9951eef728266798
[ "MIT" ]
5
2016-03-20T07:07:17.000Z
2018-04-12T16:34:12.000Z
web2py/parameters_8000.py
grant523/website
1b5351e638a15a1c0c68e55f9162d1b8e62974bb
[ "MIT" ]
22
2015-11-04T23:11:41.000Z
2016-05-19T00:08:54.000Z
web2py/parameters_8000.py
grant523/website
1b5351e638a15a1c0c68e55f9162d1b8e62974bb
[ "MIT" ]
4
2015-10-29T01:46:44.000Z
2018-04-09T22:05:28.000Z
password="pbkdf2(1000,20,sha512)$b5e8c23b5f1c9ac6$cb4563c5e0260d493a465ee1d135ac554457f37a"
46
91
0.891304
1fcdf014094af7ce40dd66580466ddb36f4de759
3,722
py
Python
rl/core/oracles/oracles.py
gtrll/librl
39709c3e485e232865b3e08b7211cd9d871c666a
[ "MIT" ]
5
2020-07-14T23:01:53.000Z
2020-12-09T08:11:29.000Z
rl/core/oracles/oracles.py
chinganc/mamba
e8adf0cf91660aed2c025508137a14f9d062248c
[ "MIT" ]
1
2022-03-27T04:43:31.000Z
2022-03-27T04:43:31.000Z
rl/core/oracles/oracles.py
chinganc/mamba
e8adf0cf91660aed2c025508137a14f9d062248c
[ "MIT" ]
4
2020-08-05T14:13:26.000Z
2022-02-26T00:46:03.000Z
# Copyright (c) 2019 Georgia Tech Robot Learning Lab # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import numpy as np from rl.core.function_approximators.normalizers import NormalizerStd, Normalizer from rl.core.oracles import Oracle class LikelihoodRatioOracle(Oracle): """ An Oracle based on the loss function below: if use_log_loss is True E_{x} E_{y ~ q | x} [ w * log p(y|x) * f(x, y) ] otherwise, it uses E_{x} E_{y ~ q | x} [ p(y|x)/q(y|x) * f(x, y) ] where p is the variable distribution, q is a constant distribution, and f is a scalar function. When w = p/q, then the gradients of two loss functions are equivalent. The expectation is approximated by unbiased samples from q. To minimize the variance of sampled gradients, the implementation of 'grad' is based on a normalizer, which can shift, rescale, or clip f. """ def __init__(self, logp_fun, logp_grad, nor=None, biased=False, use_log_loss=False, normalized_is=False): """ logp_fun: variable -> logp logp_grad: variable, f -> E[ f \nabla logp] """ self._logp_fun = logp_fun self._logp_grad = logp_grad # sum self._biased = biased self._use_log_loss = use_log_loss self._normalized_is = normalized_is # normalized importance sampling if nor is None: if biased: # use the current samples self._nor = NormalizerStd((1,), unscale=True, clip_thre=None, momentum=0.0) else: # use a moving average self._nor = NormalizerStd((1,), unscale=True, clip_thre=None, momentum=None) else: assert isinstance(nor, Normalizer) self._nor = nor def fun(self, x): f = self._f w_or_logq = self._w_or_logq logp = self._logp_fun(x) if self._use_log_loss: # w_or_logq is w w = w_or_logq loss = np.sum(w *f *logp) else: # w_or_logq is logq w = np.exp(logp - w_or_logq) loss = np.sum(w*f) if self._normalized_is: # normalized importance sampling return loss / np.sum(w) else: # regular importance sampling return loss / f.shape[0] def grad(self, x): f = self._f w_or_logq = self._w_or_logq if self._use_log_loss: # w_or_logq is w w = w_or_logq else: # w_or_logq is logq logp = self._logp_fun(x) w = np.exp(logp - w_or_logq) wf = w*f print('w', w.min(), w.max(), w.mean()) print('wf', wf.min(), wf.max(), wf.mean()) grad = self._logp_grad(x, wf) # sum if self._normalized_is: # normalized importance sampling return grad / np.sum(w) else: # regular importance sampling return grad / f.shape[0] def update(self, f, w_or_logq, update_nor=True): """ Update the function with Monte-Carlo samples. f: sampled function values w_or_logq: importance weight or the log probability of the sampling distribution update_nor: whether to update the normalizer using the current sample """ if self._biased: self._nor.update(f) f_normalized = self._nor.normalize(f) # cv if self._use_log_loss: # w_or_logq is w assert np.all(w_or_logq >= 0) # these are treated as constants assert f_normalized.shape==w_or_logq.shape self._f = f_normalized self._w_or_logq = w_or_logq if not self._biased and update_nor: self._nor.update(f)
36.851485
92
0.60129
526c8dec06be0ef4de222fa539f2e1e1f27c9280
2,213
py
Python
external_data_clean.py
temilaj/computer-vision-network
c1fa83690172226d663d8e1be61f2282792db7c2
[ "MIT" ]
1
2020-11-12T12:30:13.000Z
2020-11-12T12:30:13.000Z
external_data_clean.py
temilaj/computer-vision-network
c1fa83690172226d663d8e1be61f2282792db7c2
[ "MIT" ]
null
null
null
external_data_clean.py
temilaj/computer-vision-network
c1fa83690172226d663d8e1be61f2282792db7c2
[ "MIT" ]
1
2020-11-12T12:28:59.000Z
2020-11-12T12:28:59.000Z
import os import pandas as pd def intersection(lst1, lst2): return list(set(lst1) & set(lst2)) def find_img_index(iname, emotion_list): return emotion_list.index(iname) PATH_to_DIR = os.getcwd() df = pd.read_csv(PATH_to_DIR + '/data/legend.csv') # del df['user.id'] # # emotions = dict.fromkeys(df['emotion']) # # print('* unique emotions (unprocessed) :') # for k in emotions.keys(): # print(f"\t* {k}") # # df['emotion'] = df['emotion'].apply(lambda x: str(x).lower()) # # emotions = dict.fromkeys(df['emotion']) # print('* unique emotions (processed) :') # for k in emotions.keys(): # print(f"\t* {k}") # # for idx, em in enumerate(df['emotion']): # if em in ['anger', 'disgust', 'fear', 'sadness', 'contempt']: # df.iloc[idx, 1] = 'negative' # elif em in ['surprise', 'happiness']: # df.iloc[idx, 1] = 'positive' # # emotions = dict.fromkeys(df['emotion']) # print('* unique emotions (after mapping) :') # for k in emotions.keys(): # print(f"\t* {k}") # # print(df.head(10)) # # df.to_csv(PATH_to_DIR + '/data/legend.csv') del df['Unnamed: 0'] print(df.head()) list_of_image_names = os.listdir(PATH_to_DIR + '/data/images/') emotions = df['emotion'] print(f"emotion data size: {len(emotions)}\nimage data size: {len(list_of_image_names)}") print(f"Length of intersection: {len(intersection(list_of_image_names, df['image']))}") # files_to_delete = [] # intersect = intersection(list_of_image_names, df['image']) # # for f in list_of_image_names: # if f not in intersect: # files_to_delete.append(f) # # print(f"First 10 files to delete: {files_to_delete[0:10]}") # # for iname in files_to_delete: # os.remove(PATH_to_DIR + '/data/images/' + iname) # # print('** deleted un-labeled files **') for img_name in list_of_image_names: idx = find_img_index(img_name, list(df['image'])) emotion_label = df.iloc[idx, 1] raw_name = img_name.split('.jpg')[0] new_name = raw_name + '_' + emotion_label + '.jpg' os.rename(PATH_to_DIR + '/data/images/' + img_name, PATH_to_DIR + '/data/images/' + new_name) print('** double check with first few name **') print(os.listdir(PATH_to_DIR + '/data/images/')[0:10])
26.035294
89
0.645278
d604fa35feebd58c5fdb31bfcdc77405693f7deb
3,869
py
Python
tests/testapp/tests/test_views.py
fossabot/django-renderpdf
13ea0d0eb6e14e31a5973c1ee52adcc769e52482
[ "ISC" ]
null
null
null
tests/testapp/tests/test_views.py
fossabot/django-renderpdf
13ea0d0eb6e14e31a5973c1ee52adcc769e52482
[ "ISC" ]
null
null
null
tests/testapp/tests/test_views.py
fossabot/django-renderpdf
13ea0d0eb6e14e31a5973c1ee52adcc769e52482
[ "ISC" ]
null
null
null
from unittest.mock import call, patch from django.test import RequestFactory, TestCase from testapp import views factory = RequestFactory() class PromptDownloadTestCase(TestCase): def test_prompt_download(self): request = factory.get('/some_view') response = views.PromptDownloadView.as_view()(request) self.assertEqual(response.status_code, 200) self.assertIn( b'Content-Type: application/pdf', response.serialize_headers().splitlines() ) self.assertIn( b'Content-Disposition: attachment; filename="myfile.pdf"', response.serialize_headers().splitlines(), ) # Assert that response looks like a PDF self.assertTrue(response.content.startswith(b'%PDF-1.')) def test_dont_prompt_download(self): request = factory.get('/some_view') response = views.NoPromptDownloadView.as_view()(request) self.assertEqual(response.status_code, 200) self.assertIn( b'Content-Type: application/pdf', response.serialize_headers().splitlines() ) self.assertNotIn(b'Content-Disposition:', response.serialize_headers()) # Assert that response looks like a PDF self.assertTrue(response.content.startswith(b'%PDF-1.')) class ForceHTMLTestCase(TestCase): def test_force_html_allowed(self): request = factory.get('/some_view?html=true') response = views.AllowForceHtmlView.as_view()(request) self.assertEqual(response.status_code, 200) self.assertEqual(b'Hi!\n', response.content) self.assertIn( b'Content-Type: text/html; charset=utf-8', response.serialize_headers().splitlines() ) def test_no_force_html_allowed(self): request = factory.get('/some_view') response = views.AllowForceHtmlView.as_view()(request) self.assertEqual(response.status_code, 200) self.assertIn( b'Content-Type: application/pdf', response.serialize_headers().splitlines() ) # Assert that response looks like a PDF self.assertTrue(response.content.startswith(b'%PDF-1.')) def test_force_html_disallowed(self): request = factory.get('/some_view?html=true') response = views.DisallowForceHtmlView.as_view()(request) self.assertEqual(response.status_code, 200) self.assertIn( b'Content-Type: application/pdf', response.serialize_headers().splitlines() ) # Assert that response looks like a PDF self.assertTrue(response.content.startswith(b'%PDF-1.')) def test_no_force_html_disallowed(self): request = factory.get('/some_view') response = views.DisallowForceHtmlView.as_view()(request) self.assertEqual(response.status_code, 200) self.assertIn( b'Content-Type: application/pdf', response.serialize_headers().splitlines() ) # Assert that response looks like a PDF self.assertTrue(response.content.startswith(b'%PDF-1.')) class CustomUrlFetcherTestCase(TestCase): pass # TODO class StaticFileResolutionTestCase(TestCase): def test_url_fetcher_used(self): request = factory.get('/some_view') with patch( 'django_renderpdf.helpers.staticfiles_url_fetcher', return_value={ 'string': 'html { margin: 0; }', 'mime_type': 'text/css', }, spec=True, ) as fetcher: response = views.TemplateWithStaticFileView.as_view()(request) self.assertEqual(response.status_code, 200) self.assertEqual(fetcher.call_count, 1) self.assertEqual( fetcher.call_args, call('/static/path/not/relevant.css'), )
33.938596
79
0.642802
dfb26c4e18c8120ddbf26648330c30f2b7a97eae
2,175
py
Python
asreview/entry_points/algorithms.py
BartJanBoverhof/asreview
33894ebebf7bda2c552b707c3725c0287ac00369
[ "Apache-2.0" ]
null
null
null
asreview/entry_points/algorithms.py
BartJanBoverhof/asreview
33894ebebf7bda2c552b707c3725c0287ac00369
[ "Apache-2.0" ]
null
null
null
asreview/entry_points/algorithms.py
BartJanBoverhof/asreview
33894ebebf7bda2c552b707c3725c0287ac00369
[ "Apache-2.0" ]
null
null
null
# Copyright 2019-2020 The ASReview Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from asreview.entry_points.base import BaseEntryPoint from asreview.models.balance import list_balance_strategies from asreview.models import list_classifiers from asreview.models.feature_extraction import list_feature_extraction from asreview.models.query import list_query_strategies def _format_algorithm(values, name, description): s = f" {name: <20}Available {description}:\n\n" result = [] for x in values: result.append(" " * 22 + f"{x}") s += "\n".join(result) s += "\n\n" return s class AlgorithmsEntryPoint(BaseEntryPoint): description = "Available active learning algorithms for ASReview." def execute(self, argv): s = "Available active learning algorithms for ASReview. \n\n" # classifiers s += _format_algorithm( values=list_classifiers(), name="classifiers", description="classification algorithms" ) # query_strategies s += _format_algorithm( values=list_query_strategies(), name="query_strategies", description="query strategies" ) # balance_strategies s += _format_algorithm( values=list_balance_strategies(), name="balance_strategies", description="balance strategies" ) # feature_extraction s += _format_algorithm( values=list_feature_extraction(), name="feature_extraction", description="feature extraction algorithms" ) print(s)
29.794521
74
0.673563
44d7bbdebddeee4f015b6e2360c1152711ada554
9,753
py
Python
venv/Lib/site-packages/olefile/README.html.py
roshanba/mangal
f7b428811dc07214009cc33f0beb665ead402038
[ "bzip2-1.0.6", "MIT" ]
null
null
null
venv/Lib/site-packages/olefile/README.html.py
roshanba/mangal
f7b428811dc07214009cc33f0beb665ead402038
[ "bzip2-1.0.6", "MIT" ]
null
null
null
venv/Lib/site-packages/olefile/README.html.py
roshanba/mangal
f7b428811dc07214009cc33f0beb665ead402038
[ "bzip2-1.0.6", "MIT" ]
null
null
null
XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXXXX XXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXX XXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX X XXXXXX XXXXXXX XX XXXXXX XXXX XXX XXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXX XXXXX XXXXXX XXXXXXXXXX XXXXXXXX XXXXXXXX XXXX XXXXXX XXXXXX XX XXXXXXXX XXXXXXXX XXXX XXXXXXXX XXXX XX XXXXXXXXX XXXXXX XXXXXXX XXXXXXXXXX XXXXXXXXXXXXXX XX XX XXXXXX XXXXX XXXXXX XXXXX XXXXXXXX XXX XXXXXXXX XXXXXX XXXXXXX XXXXXXXXX XXXXXXXXXXXX XXXXXXX XXXXXXXXXX XXXX XXXXXXXX XXXXXX XXXXXXXXX XXXXXXXXXX XXXXXX XXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXX X XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXX X XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXX XXXXXXXXX XXX XXXXXXX XXX XXXX XX XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXX XXXXXXXXX XXXXXXX XXXXXXX XXX XXXXXX XXX XXXXXXXXXXX XXXXX XXXXXXX XXX XXXXXXXXXX XXXXXXX XXX XXXXXXXXX XXXXXXXXX XXXXXXX XXX XXXX XXXXXXXXX XXXXXXXXXXX XXXXX XXXXXXXXX XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXX XXX XXXXXXXXXXXXX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXX XXXXXXX XXXXXXXXXX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXX XXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXX XX XXXXXXXXX XXXXXX XXX XXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXXXXX XXXXXXXX XX XXXXXXX XXXXXXXXXX XX XXXXXXXXXXXXXX XXXXX XX XXXXXX XXX XXXXXX XXXXX XXXXXXX XX XXXXXXXXX XXXXX XXX XX XXXXXXX XXXX XXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXX XXX XXXXXXXXX XXX XXXXXXX XXX XXXXX XXXXXX XX XXXX XXXXXXXX XXXXX XXXXXXXXX XXX XXXXXX XX XXXXX XXXXXXX XXX XXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXXXX XXXXXXXXXXXX XX XXXXXXXX XXXXX XXXXXXX XXXXX XXXXXXX XXX XXXXXXX XXXXXXX XXXXXXX XXX XXX XXXXXXXX XXXXXXXX XXX XXXXX XXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXX XXXXXXX XXX XXXXX XXXXX XXXX XX XXXXXXXX XXXXXX XX XXXX XXXXXXXXXXXXXX XXXXXXX XXXXXX XXX XXXX XXXXXX XXXXX XXXX XXXXXXX XXXX XXXXXX XXX XXXXXXXX XXXXX XXXXX XXX XXXXXX X XXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXX XXXXXXXXXX XXXX XXXXXX XXXX XXXXXX XX XXXXXX XXXXXX XXX XXX XXXX XX XXX XXXX XXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXX XXXXXXX XX XXXXX XXXXXXXXXXXXXX XXXXXXXXXXX XXXXXXXX XXXXXXX XX XXXXXXX XXXXXXXXX XXXXX XXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXXXXX XXXXXXXX XXXXXXXXXXX XXXXXXXXXX XXXXXXX XXX XXXXXXXXX XXXXXXXXX XXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXX XXXXXXXX XX XXXXXXX XXXXXXXX XXXXXXXXXXXXX XXXXXX XXX XXXXXXXXXXX XXXXXXX XXXXXXXX XXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXX XX XXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XXXXXXX XX XXXXXXXX XXXXX XXXXX XX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXX XXXXXXX XXX XXXXXXXXX XXXXXXXX XXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXX XXXXXX XX XXXX XX XXXXXXXXXXXXXX XXX XX XXXXXX XXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXX XXXX XXXXXX XX XXXXXXXXX XX XXXX XXXXXXXXXXXXX XXX XXX XXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXX XXXXXXX XXX XXXXXXXXXX XXXXX XXXX XX XXXXXXX XXXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXX XXXXXX XX XXXXXXXXXXXXXX XXXX XXXXXXXX XX XXX XXXXX XXXXXXXXX XXXXXXXXXXXXXX XXXXXX XXXXX XXXXXXX XXX XX XXXX XXXXXXXXX XXXXXXX XX XXX XX XXX XXXXXXX XXX XXXXXXXXX XXX XXXXXXXXX XXXXXXX XXXXXXXXX XX XXXXXX XXXX XXX XXXX XXXXXXXXXX XXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXX XXXX XXX XX XXXXXXXXXX XXXXXXXXX XXXX XX XXXXXXXX XX XXXXXX XXXXXXXX XXX XXX XXXXXX XXX XXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXX XXX XXXXX XXXXXXXXXXXXXXXXX XXXXX XXXXXX XXXXXXXX XXX XXXXXXXXXXX XXXXXXX XX XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXX XXXX XXX XXXXX XXX XXX XXXX XXXX XX XXXXXXXXX XXXXXX XXXXXXX XXXXXX XXXXXXXX XXXXXXX XXXXX XXXXX XXXXX XXXXX XXXXXXXXXX XXXXX XXXXX XXXXX XXXXXXX XXXXXX XXXXX XXXXXXXX XXX XXXXXXXX XXXXXX XXXXXXX XXXXXXXXX XXXXXXXXXXXX XXXXX XXXXXXXXXX XXX XXXXXX XXXXXXX XXXXXXXX XXX XXXXXX XXXXXXXX XXXXXXXX XXX XXX XXXXXXX XXX XXXXXXXX XXXXXXXXX XX XX XXX XXXXXXXXX XXXXXXXX XXXXXXX XX XXXXXXXXXX XXXXXXXXX XXX XXXX XXXXXXXX XXXXXXXX XXXXXXXXXX XXXXXXXX XX XXX XXXXXXXXX XXXXXXXXXXXXX XXXX XXXXXX XXXXXXX XX XXXXXXXXXXXXXXX XXXXX XXXXXXXXXX XXX XX XXXX XX XX XXXXXXXXXXX XXXXXXX XX XXXX XXXXXXXXXXXXXXX XXXXXXXXXX XX XXXXXX XXXXX XXX XXXXXXXXXXX XX XXX XXX XXXXXXX XXX XXXXX XX XXXXXXX XXX XXXXX XX XX XXXXXXX XXXX XXXXXXXXXXX XXX XXXXXXXX XXXXXXXX XXXX XX XXXXXXX XXXXXXXX XXX XXXXXXXXXXX XXXX XXXXXX XXXX XXXXX XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXX XXXXX XXXX XXXXXXX XXX XXXXXXX X XXXXXXXXXXXX XXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXX XXXX XXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXX XXXXXXXXX XXXXXXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXX XXXXXXX XXXXXXXX XXX XXXXXXXXXXXXXXXXXX XXXXXX XXXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXX XXXXXX XXXXX XXX XXXXXXXXXX XXXXX XXXXXXXX XXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXXXXXX XXXXXXXXXXXXX XX XXXXXXXXX XXX XXXXXXXXX XXXXXXXX XXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXX XXX XX XXXXXX XXX XXXXXX XXXXXX XXXX XX XXXXXXX XXXXXXXXXXXXX XXX XXXXXXXXX XXXXXXXX XXXX XXX XXXXXXXXX XXXXXXXXXX XXX XXXXXXXX XXXX XXXXXXXXXXXXXXXXXXX XX XXXXXX XXXX XXXX XXXXXX XXX XXXXX XXXXXXXXX XXXXXXX XXXX XXXX XX XXXXXXXXXX XXX XXX XXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XX XXXXXX XXXX XXXX XXXXXXXXX XXX XXXXX XXXXXXXXX XXXXXXX XXXX XXXX XX XXXXXXXXXX XXX XXX XXXXXXXXX XXXXXXXXXX XX XXX XXXXXXXXXXXXX XXXXXX XXXXX XXXXXXXXX XXXXXXXX XXXX XXX XXXXXXXXXXXXXXXXXX XXXXX XXXXXXX XXXXXXXX XX XXXXXXXX XX XXX XXXXXXXXX XXXXXXX XXX XXXXXXXXXXXX XXXXXXXX XXXXXXXX XXX XXX XXXXXXX XX XXXXXXX XXXXXXXXXXX XXXXXXXXXX XXX XXX XXXXXXX XXX XXX XXXXXXX XXXXXXXXXX XX XXXXXXXXXXXXXXX XXX XXXXXXX XXX X XXXXXXXXXX XXXXXXX XXX XXXXXXXXXXX XX XX XXXXX XXXXX XXX XXXXXXXXX XXXXXX XX XXXXXXXXXXXX XX XXXXXX XXX XXX XXXXXXX XXXXXXXXX XXXXXXXXXXX XXXXXXXX XXXXXXXXXX XX XXXXXXXXXXXXX XXXXXXX XXXXXXXXXXX XXX XXX XXXXXXX XXX XXXXXXXXXXX XX XXXXXXXXXX XXXXX XX XXXXXXXXX XXXX XX XXXX XXXXX XX XXXXXXXX XX XXXXXXXX XXXXXXXXXXXXX XXXXXXX XXXXXX XXX XX XXX XXXXXX XX XXXXXXXXXX XXXXXXX XX XXXXXXXXX XXXXXX XXXXXXXXXX XX XXXX XXXXXXXXXX XXXXXXXXXX XX XXXXXXXXXX XXXXXXX XX XXX XXX XXX XX XXX XXX XX XXXX XXXXXXXXX XXXX XX XXXXXXX XX XXX XXXXXXXXXXX XX XXXX XXXXXXXXXXX XXX XX XXXXXXXXXX XX XXXXX XX XXXXXX XXXX XXXX XXX XXXXXXXXX XXXXXX XX XXX XXXXXX XXXXXXX XXXXXXX XXXXX XXXXXXXXX XX XXXXXXX XXXXX XXXXX XXX XXXXXXXXX XXXXXXXXXXXX XXXXXX XXXXXX XXXXXXX XXXXXXX XXXXX XXXXXX XXXX XXXXXXXXXXXXX XXX XXXXXXXXX XX XXXXXX XXXX XXXXXXX XXXXXXXXXXXXX XXX XXXXXXXXX XX XXXXXXX XXXXXXXXXX XXXXX XXXXX XXXXXXXXXX XXXXXX XXXXXX XXXXXXX XXXX XXXXXXXX XXXXXX XXX XXXXXXXXXX XXXXXXXXXXXXXX XXX XXXXX XXXX XXX XXXX XXXXX XXXXXXXXXXX XXX XXXX XXXXXX XXXX XXX XXXXXXXXX XXXXX XXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XX XXXX XXXXX XXXXXXX XXX XXXXXXXXXX XXXX XXXXXXXX XXX XXX XXXXXXXXXX XXXXXXXXXXXXX XXX XXX XXXXXXX XXX XXXXXXX XXX XX XXXXXX XXXXXXXX XXXXXXXX XXXX XXX XXXXX XXXXXXXXX XXXXXX XXXXXXX XX XXX XXXXXXX XXX XXXX XXXX XXXX XXXXXXXXX XXXXXX XXX XXXX XXXXXXXXXX XXXXXX XXXXXX XX XXXXXXXXXX XXXXXXXXXXXXXX XXX XXXX XXX XXXX XX XXXXXX XXXX XX XX XXX XXXXXX XXX XX XXXX XX XXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XX XXXXXXXXXXXX XX XXX XXXXXXXX XXXXXXX XXXXXXXXX XXXXXXX XXXXX XXXXXXXXXXXXXXX XXXXXXXXX XXXX XX XXX XXX XXXXXX XXXXXXXXX XXX XXXXXXXXXX XXXX XXXXXX XX XXXX XXXXXXXXX XXXXXXXXX XXX XXXXXXX XXXXXXXXXX XX XXXXXXXXXXXXXXX XXX XXXXXXXX XX XX XXXXX XXXXX XXXXXX XXXX XX XX XXX XXXXXX XX XXXXXX XXX XXX XXXXXXXX XXXXXXXX XX XXXXXXXXXXXXX XXXXXXX XX XXX XXXXXXX XXXXXXXXXX XXXXXXXXX XXXX XXXX XX XXXX XXXX XX XXXXXXXX XXXXXXX XX XX XXXXXX XX XXXXXXXXX XXXXXXXXXX XX XXXXX XXXXXXXX XXXXXXX XXXXXXX XXX XX XX XX XXXXXXXXXX XXXX XXX XXX XX XXXXXXXXXXX XX XXXX XXXXXXXXXXXXX
145.567164
772
0.887829