hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
bed94396a482917e16322543e53b9186da1d4c36
931
py
Python
examples/enforce_branch.py
Deca-Technologies/cargo-parse
2263f55f40adc22f797fb7514818753e84dc5887
[ "MIT" ]
1
2021-12-10T18:22:57.000Z
2021-12-10T18:22:57.000Z
examples/enforce_branch.py
Deca-Technologies/cargo-parse
2263f55f40adc22f797fb7514818753e84dc5887
[ "MIT" ]
null
null
null
examples/enforce_branch.py
Deca-Technologies/cargo-parse
2263f55f40adc22f797fb7514818753e84dc5887
[ "MIT" ]
null
null
null
""" Example script to demonstrate the usefulness of `cargo-parse`. In this script, which could run as a GitHub Action, we assert that all Git dependencies in `Cargo.toml` are using the `master` branch. This check could run whenever a PR targets the `master` branch. """ from pathlib import Path from cargo_parse import parse_manifest_from_toml from cargo_parse.models.dependency import GitDependency PERMITTED_DEPENDENCY_BRANCHES = ["main", "master"] if __name__ == "__main__": manifest = parse_manifest_from_toml(Path("../tests/resources/Cargo.toml")) for dependency in manifest.dependencies: if isinstance(dependency, GitDependency): assert ( dependency.branch in PERMITTED_DEPENDENCY_BRANCHES ), "Branch '{}' of `{}` not in {}".format( dependency.branch, dependency.name, PERMITTED_DEPENDENCY_BRANCHES, )
32.103448
78
0.685285
03d1d0f1e56ce38b0df28a6d4f5b602f61b33052
470
py
Python
src/aiomongoengine/fields/dict_field.py
wangjiancn/aiomongoengine
d73e576e0d564b6f741bbc00cadd5285e44d30f9
[ "MIT" ]
6
2020-02-09T03:13:20.000Z
2021-05-25T07:03:16.000Z
src/aiomongoengine/fields/dict_field.py
wangjiancn/aiomongoengine
d73e576e0d564b6f741bbc00cadd5285e44d30f9
[ "MIT" ]
null
null
null
src/aiomongoengine/fields/dict_field.py
wangjiancn/aiomongoengine
d73e576e0d564b6f741bbc00cadd5285e44d30f9
[ "MIT" ]
null
null
null
from .base_field import BaseField class DictField(BaseField): """ Field responsible for storing dict objects. """ def validate(self, value): if not isinstance(value, dict): self.error("StringField only accepts dict values.") def is_empty(self, value) -> bool: return value is None or value == {} def to_son(self, value) -> dict: if not isinstance(value, dict): return dict(value) return value
26.111111
63
0.625532
00f402297c3b4da78b868c1d41419e2e9e489fa5
7,696
py
Python
kratos/tests/test_function_parser_utility.py
hbayraktaroglu/Kratos
6b71869ca7adb36a798e0cb11b34287fdc482590
[ "BSD-4-Clause" ]
null
null
null
kratos/tests/test_function_parser_utility.py
hbayraktaroglu/Kratos
6b71869ca7adb36a798e0cb11b34287fdc482590
[ "BSD-4-Clause" ]
null
null
null
kratos/tests/test_function_parser_utility.py
hbayraktaroglu/Kratos
6b71869ca7adb36a798e0cb11b34287fdc482590
[ "BSD-4-Clause" ]
null
null
null
import KratosMultiphysics.KratosUnittest as KratosUnittest import KratosMultiphysics as KM import math import os import sys def GetFilePath(fileName): return os.path.join(os.path.dirname(os.path.realpath(__file__)), fileName) class TestGenericFunctionUtility(KratosUnittest.TestCase): def test_GenericFunctionUtility0(self): settings = KM.Parameters(""" { "local_axes" : {} } """ ) current_model = KM.Model() model_part= current_model.CreateModelPart("Main") node = model_part.CreateNewNode(1, 1.00,0.00,0.00) node.X += 0.1 current_time = model_part.ProcessInfo[KM.TIME] aux_function = KM.GenericFunctionUtility("x", settings["local_axes"]) value = aux_function.CallFunction(node.X , node.Y , node.Z, current_time, node.X0, node.Y0, node.Z0) self.assertEqual(value, 1.1) aux_function = KM.GenericFunctionUtility("X", settings["local_axes"]) value = aux_function.CallFunction(node.X , node.Y , node.Z, current_time, node.X0, node.Y0, node.Z0) self.assertEqual(value, 1.0) aux_function = KM.GenericFunctionUtility("X+Y", settings["local_axes"]) value = aux_function.CallFunction(node.X , node.Y , node.Z, current_time, node.X0, node.Y0, node.Z0) self.assertEqual(value, 1.0) aux_function = KM.GenericFunctionUtility("x+X", settings["local_axes"]) value = aux_function.CallFunction(node.X , node.Y , node.Z, current_time, node.X0, node.Y0, node.Z0) self.assertEqual(value, 2.1) aux_function = KM.GenericFunctionUtility("t", settings["local_axes"]) value = aux_function.CallFunction(node.X , node.Y , node.Z, current_time, node.X0, node.Y0, node.Z0) self.assertEqual(value, 0.0) def test_GenericFunctionUtility1(self): function1 = KM.GenericFunctionUtility("x**2+y**2") self.assertTrue(function1.DependsOnSpace()) self.assertFalse(function1.UseLocalSystem()) self.assertEqual(function1.FunctionBody(), "x**2+y**2") self.assertEqual(function1.CallFunction(4.0,3.0,0.0,0.0,0.0,0.0,0.0), 25) function2 = KM.GenericFunctionUtility("3*t") self.assertFalse(function2.DependsOnSpace()) self.assertFalse(function2.UseLocalSystem()) self.assertEqual(function2.FunctionBody(), "3*t") self.assertEqual(function2.CallFunction(0.0,0.0,0.0,5.0,0.0,0.0,0.0), 15) function3 = KM.GenericFunctionUtility("X**2+Y**2") self.assertTrue(function3.DependsOnSpace()) self.assertFalse(function3.UseLocalSystem()) self.assertEqual(function3.FunctionBody(), "X**2+Y**2") self.assertEqual(function3.CallFunction(0.0,0.0,0.0,0.0,4.0,3.0,0.0), 25) function4 = KM.GenericFunctionUtility("(cos(x*pi)+sin(y*pi))*t") self.assertTrue(function4.DependsOnSpace()) self.assertFalse(function4.UseLocalSystem()) self.assertEqual(function4.FunctionBody(), "(cos(x*pi)+sin(y*pi))*t") self.assertEqual(function4.CallFunction(0.25,0.15,0.0,1.5,0.0,0.0,0.0), 1.5*(math.cos(0.25*math.pi) + math.sin(0.15*math.pi))) def test_GenericFunctionUtility2(self): parameters = KM.Parameters ("""{ "origin" : [0,0,0], "axes" : [[0,1,0],[1,0,0],[0,0,1]] }""") function = KM.GenericFunctionUtility("x+2*y", parameters) self.assertTrue(function.DependsOnSpace()) self.assertTrue(function.UseLocalSystem()) self.assertEqual(function.FunctionBody(), "x+2*y") self.assertEqual(function.CallFunction(4.0,3.0,0.0,0.0,0.0,0.0,0.0), 10) self.assertEqual(function.RotateAndCallFunction(4.0,3.0,0.0,0.0,0.0,0.0,0.0), 11) def test_ApplyFunctionToNodesUtility(self): parameters = KM.Parameters ("""{ "origin" : [0,0,0], "axes" : [[0,1,0],[1,0,0],[0,0,1]] }""") function = KM.GenericFunctionUtility("x+2*y", parameters) self.assertTrue(function.DependsOnSpace()) self.assertTrue(function.UseLocalSystem()) self.assertEqual(function.FunctionBody(), "x+2*y") self.assertEqual(function.CallFunction(4.0,3.0,0.0,0.0,0.0,0.0,0.0), 10) self.assertEqual(function.RotateAndCallFunction(4.0,3.0,0.0,0.0,0.0,0.0,0.0), 11) this_model = KM.Model() model_part = this_model.CreateModelPart("Main", 2) current_process_info = model_part.ProcessInfo current_process_info[KM.DOMAIN_SIZE] = 2 model_part.AddNodalSolutionStepVariable(KM.DISPLACEMENT) model_part.AddNodalSolutionStepVariable(KM.VISCOSITY) model_part.AddNodalSolutionStepVariable(KM.VELOCITY) model_part_io = KM.ModelPartIO(GetFilePath("auxiliar_files_for_python_unittest/mdpa_files/test_model_part_io_read")) model_part_io.ReadModelPart(model_part) utility = KM.ApplyFunctionToNodesUtility(model_part.Nodes, function) utility.ApplyFunction(KM.VISCOSITY, 1.0) for node in model_part.Nodes: self.assertEqual(node.GetSolutionStepValue(KM.VISCOSITY) - (node.Y + 2.0 * node.X), 0.0) def test_ApplyFunctionToNodesUtilityTimeEvolutionTernary(self): parameters = KM.Parameters ("""{}""") function = KM.GenericFunctionUtility("1.5*(0.5*(1-cos(0.5*pi*t))*2.0)*(4.0/0.1681)*y*(0.41-y) if t<2.0 else 1.5*(2.0)*(4.0/0.1681)*y*(0.41-y)", parameters) this_model = KM.Model() model_part = this_model.CreateModelPart("Main", 2) current_process_info = model_part.ProcessInfo current_process_info[KM.DOMAIN_SIZE] = 2 model_part.AddNodalSolutionStepVariable(KM.DISPLACEMENT) model_part.AddNodalSolutionStepVariable(KM.VISCOSITY) model_part.AddNodalSolutionStepVariable(KM.VELOCITY) model_part_io = KM.ModelPartIO(GetFilePath("auxiliar_files_for_python_unittest/mdpa_files/test_model_part_io_read")) model_part_io.ReadModelPart(model_part) current_process_info[KM.TIME] = 0.0 time = current_process_info[KM.TIME] while time < 3.0: current_process_info[KM.TIME] = current_process_info[KM.TIME] + 1.0 time = current_process_info[KM.TIME] utility = KM.ApplyFunctionToNodesUtility(model_part.Nodes, function) utility.ApplyFunction(KM.VISCOSITY, time) if time < 2.0: for node in model_part.Nodes: self.assertEqual(node.GetSolutionStepValue(KM.VISCOSITY) - (1.5*(0.5*(1-math.cos(0.5*math.pi*time))*2.0)*(4.0/0.1681)*node.Y*(0.41-node.Y)), 0.0) else: for node in model_part.Nodes: self.assertAlmostEqual(node.GetSolutionStepValue(KM.VISCOSITY), 1.5*(2.0)*(4.0/0.1681)*node.Y*(0.41-node.Y)) def test_ApplyFunctionToNodesUtilityTimeEvolutionCTernaryFail(self): parameters = KM.Parameters ("""{ "origin" : [0,0,0], "axes" : [[0,1,0],[1,0,0],[0,0,1]] }""") with self.assertRaisesRegex(Exception, 'Parsing error in function: 1.5 if t<2.0 3.0 if defined, but not else'): KM.GenericFunctionUtility("1.5 if t<2.0 3.0", parameters) def test_GenericFunctionUtilityError(self): with self.assertRaisesRegex(Exception, 'Parsing error in function: \(0\)\*\(50\*\(expp\(t\)-1\)\)\nError occurred near here : \^ \(char \[12\]\)\nCheck your locale \(e.g. if "." or "," is used as decimal point'): KM.GenericFunctionUtility("(0)*(50*(expp(t)-1))") if __name__ == '__main__': KM.Logger.GetDefaultOutput().SetSeverity(KM.Logger.Severity.WARNING) KratosUnittest.main()
42.755556
232
0.652547
7deef52697006affcb92053ef90382c42d0f4898
1,923
py
Python
sdxdatamodel/parsing/linkhandler.py
atlanticwave-sdx/datamodel
f0ca36d45525b37b25357842744b0c300e9246b4
[ "MIT" ]
null
null
null
sdxdatamodel/parsing/linkhandler.py
atlanticwave-sdx/datamodel
f0ca36d45525b37b25357842744b0c300e9246b4
[ "MIT" ]
6
2021-07-20T16:15:48.000Z
2021-10-14T13:51:46.000Z
sdxdatamodel/parsing/linkhandler.py
atlanticwave-sdx/datamodel
f0ca36d45525b37b25357842744b0c300e9246b4
[ "MIT" ]
null
null
null
import json from sdxdatamodel.models.link import Link from .exceptions import MissingAttributeException class LinkHandler(): """" Handler for parsing the connection request descritpion in json """ def __init__(self): super().__init__() self.link = None def import_link_data(self, data): try: id = data['id'] name=data['name'] short_name=data['short_name'] ports=data['ports'] timestamp=None;t_b=None;a_b=None;latency=None;p_l=None;p_a=None;avai=None;m_p=None if 'time_stamp' in data.keys(): timestamp=data['time_stamp'] if 'total_bandwidth' in data.keys(): t_b=data['total_bandwidth'] if 'available_bandwidth' in data.keys(): a_b=data['available_bandwidth'] if 'latency' in data.keys(): latency=data['latency'] if 'packet_loss' in data.keys(): p_l=data['packet_loss'] if 'private_attributes' in data.keys(): p_a=data['private_attributes'] if 'availability' in data.keys(): avai=data['availability'] if 'measurement_period' in data.keys(): m_p=data['measurement_period'] except KeyError as e: raise MissingAttributeException(e.args[0],e.args[0]) link=Link(id=id, name=name, short_name=short_name, ports=ports, total_bandwidth=t_b, available_bandwidth=a_b, latency=latency, packet_loss=p_l, availability=avai, private_attributes=p_a, time_stamp=timestamp, measurement_period=m_p) return link def import_link(self,file): with open(file, 'r', encoding='utf-8') as data_file: data = json.load(data_file) self.link = self.import_link_data(data) def get_link(): return self.link
35.611111
134
0.592304
58c448a8a36ff18c978dead8021d0bd8df14ada2
3,172
py
Python
pyleecan/GUI/Dialog/DMachineSetup/SMHoleMag/PHoleM53/Gen_PHoleM53.py
helene-t/pyleecan
8362de9b0e32b346051b38192e07f3a6974ea9aa
[ "Apache-2.0" ]
1
2021-02-26T12:28:45.000Z
2021-02-26T12:28:45.000Z
GUI/Dialog/DMachineSetup/SMHoleMag/PHoleM53/Gen_PHoleM53.py
magnetron/pyleecan
2a3338f4ab080ad6488b5ab8746c3fea1f36f177
[ "Apache-2.0" ]
null
null
null
GUI/Dialog/DMachineSetup/SMHoleMag/PHoleM53/Gen_PHoleM53.py
magnetron/pyleecan
2a3338f4ab080ad6488b5ab8746c3fea1f36f177
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """File generated according to PHoleM53/gen_list.json WARNING! All changes made in this file will be lost! """ from pyleecan.GUI.Dialog.DMachineSetup.SMHoleMag.PHoleM53.Ui_PHoleM53 import Ui_PHoleM53 class Gen_PHoleM53(Ui_PHoleM53): def setupUi(self, PHoleM53): """Abstract class to update the widget according to the csv doc """ Ui_PHoleM53.setupUi(self, PHoleM53) # Setup of in_W1 txt = self.tr(u"""Tooth width (at V bottom)""") self.in_W1.setWhatsThis(txt) self.in_W1.setToolTip(txt) # Setup of lf_W1 self.lf_W1.validator().setBottom(0) txt = self.tr(u"""Tooth width (at V bottom)""") self.lf_W1.setWhatsThis(txt) self.lf_W1.setToolTip(txt) # Setup of in_W2 txt = self.tr(u"""Distance Magnet to bottom of the V""") self.in_W2.setWhatsThis(txt) self.in_W2.setToolTip(txt) # Setup of lf_W2 self.lf_W2.validator().setBottom(0) txt = self.tr(u"""Distance Magnet to bottom of the V""") self.lf_W2.setWhatsThis(txt) self.lf_W2.setToolTip(txt) # Setup of in_W3 txt = self.tr(u"""Magnet Width""") self.in_W3.setWhatsThis(txt) self.in_W3.setToolTip(txt) # Setup of lf_W3 self.lf_W3.validator().setBottom(0) txt = self.tr(u"""Magnet Width""") self.lf_W3.setWhatsThis(txt) self.lf_W3.setToolTip(txt) # Setup of in_W4 txt = self.tr(u"""Slot angle""") self.in_W4.setWhatsThis(txt) self.in_W4.setToolTip(txt) # Setup of lf_W4 self.lf_W4.validator().setBottom(0) txt = self.tr(u"""Slot angle""") self.lf_W4.setWhatsThis(txt) self.lf_W4.setToolTip(txt) # Setup of in_H0 txt = self.tr(u"""Slot depth""") self.in_H0.setWhatsThis(txt) self.in_H0.setToolTip(txt) # Setup of lf_H0 self.lf_H0.validator().setBottom(0) txt = self.tr(u"""Slot depth""") self.lf_H0.setWhatsThis(txt) self.lf_H0.setToolTip(txt) # Setup of in_H1 txt = self.tr(u"""Distance from the lamination Bore""") self.in_H1.setWhatsThis(txt) self.in_H1.setToolTip(txt) # Setup of lf_H1 self.lf_H1.validator().setBottom(0) txt = self.tr(u"""Distance from the lamination Bore""") self.lf_H1.setWhatsThis(txt) self.lf_H1.setToolTip(txt) # Setup of in_H2 txt = self.tr(u"""Magnet Height""") self.in_H2.setWhatsThis(txt) self.in_H2.setToolTip(txt) # Setup of lf_H2 self.lf_H2.validator().setBottom(0) txt = self.tr(u"""Magnet Height""") self.lf_H2.setWhatsThis(txt) self.lf_H2.setToolTip(txt) # Setup of in_H3 txt = self.tr(u"""Additional depth for the magnet""") self.in_H3.setWhatsThis(txt) self.in_H3.setToolTip(txt) # Setup of lf_H3 self.lf_H3.validator().setBottom(0) txt = self.tr(u"""Additional depth for the magnet""") self.lf_H3.setWhatsThis(txt) self.lf_H3.setToolTip(txt)
31.405941
88
0.600252
cb942f6553951b93431cc830d90d85bc87e96cfd
7,449
py
Python
mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py
fengyouliang/wheat_detection
d056123426a1260c29b486cbb8e44a88a0a3c5bc
[ "Apache-2.0" ]
null
null
null
mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py
fengyouliang/wheat_detection
d056123426a1260c29b486cbb8e44a88a0a3c5bc
[ "Apache-2.0" ]
null
null
null
mmdet/core/bbox/coder/legacy_delta_xywh_bbox_coder.py
fengyouliang/wheat_detection
d056123426a1260c29b486cbb8e44a88a0a3c5bc
[ "Apache-2.0" ]
null
null
null
import numpy as np import torch from ..builder import BBOX_CODERS from .base_bbox_coder import BaseBBoxCoder @BBOX_CODERS.register_module() class LegacyDeltaXYWHBBoxCoder(BaseBBoxCoder): """Legacy Delta XYWH BBox coder used in MMDet V1.x Following the practice in R-CNN [1]_, this coder encodes bbox (x1, y1, x2, y2) into delta (dx, dy, dw, dh) and decodes delta (dx, dy, dw, dh) back to original bbox (x1, y1, x2, y2). Note: The main difference between `LegacyDeltaXYWHBBoxCoder` and `DeltaXYWHBBoxCoder` is whether ``+ 1`` is used during width and height calculation. We suggest to only use this coder when testing with MMDet V1.x models. References: .. [1] https://arxiv.org/abs/1311.2524 Args: target_means (Sequence[float]): denormalizing means of target for delta coordinates target_stds (Sequence[float]): denormalizing standard deviation of target for delta coordinates """ def __init__(self, target_means=(0., 0., 0., 0.), target_stds=(1., 1., 1., 1.)): super(BaseBBoxCoder, self).__init__() self.means = target_means self.stds = target_stds def encode(self, bboxes, gt_bboxes): assert bboxes.size(0) == gt_bboxes.size(0) assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 encoded_bboxes = legacy_bbox2delta(bboxes, gt_bboxes, self.means, self.stds) return encoded_bboxes def decode(self, bboxes, pred_bboxes, max_shape=None, wh_ratio_clip=16 / 1000): assert pred_bboxes.size(0) == bboxes.size(0) decoded_bboxes = legacy_delta2bbox(bboxes, pred_bboxes, self.means, self.stds, max_shape, wh_ratio_clip) return decoded_bboxes def legacy_bbox2delta(proposals, gt, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.)): """Compute deltas of proposals w.r.t. gt in the MMDet V1.x manner. We usually compute the deltas of x, y, w, h of proposals w.r.t ground truth bboxes to get regression target. This is the inverse function of `delta2bbox()` Args: proposals (Tensor): Boxes to be transformed, shape (N, ..., 4) gt (Tensor): Gt bboxes to be used as base, shape (N, ..., 4) means (Sequence[float]): Denormalizing means for delta coordinates stds (Sequence[float]): Denormalizing standard deviation for delta coordinates Returns: Tensor: deltas with shape (N, 4), where columns represent dx, dy, dw, dh. """ assert proposals.size() == gt.size() proposals = proposals.float() gt = gt.float() px = (proposals[..., 0] + proposals[..., 2]) * 0.5 py = (proposals[..., 1] + proposals[..., 3]) * 0.5 pw = proposals[..., 2] - proposals[..., 0] + 1.0 ph = proposals[..., 3] - proposals[..., 1] + 1.0 gx = (gt[..., 0] + gt[..., 2]) * 0.5 gy = (gt[..., 1] + gt[..., 3]) * 0.5 gw = gt[..., 2] - gt[..., 0] + 1.0 gh = gt[..., 3] - gt[..., 1] + 1.0 dx = (gx - px) / pw dy = (gy - py) / ph dw = torch.log(gw / pw) dh = torch.log(gh / ph) deltas = torch.stack([dx, dy, dw, dh], dim=-1) means = deltas.new_tensor(means).unsqueeze(0) stds = deltas.new_tensor(stds).unsqueeze(0) deltas = deltas.sub_(means).div_(stds) return deltas def legacy_delta2bbox(rois, deltas, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.), max_shape=None, wh_ratio_clip=16 / 1000): """Apply deltas to shift/scale base boxes in the MMDet V1.x manner. Typically the rois are anchor or proposed bounding boxes and the deltas are network outputs used to shift/scale those boxes. This is the inverse function of `bbox2delta()` Args: rois (Tensor): Boxes to be transformed. Has shape (N, 4) deltas (Tensor): Encoded offsets with respect to each roi. Has shape (N, 4 * num_classes). Note N = num_anchors * W * H when rois is a grid of anchors. Offset encoding follows [1]_. means (Sequence[float]): Denormalizing means for delta coordinates stds (Sequence[float]): Denormalizing standard deviation for delta coordinates max_shape (tuple[int, int]): Maximum bounds for boxes. specifies (H, W) wh_ratio_clip (float): Maximum aspect ratio for boxes. Returns: Tensor: Boxes with shape (N, 4), where columns represent tl_x, tl_y, br_x, br_y. References: .. [1] https://arxiv.org/abs/1311.2524 Example: >>> rois = torch.Tensor([[ 0., 0., 1., 1.], >>> [ 0., 0., 1., 1.], >>> [ 0., 0., 1., 1.], >>> [ 5., 5., 5., 5.]]) >>> deltas = torch.Tensor([[ 0., 0., 0., 0.], >>> [ 1., 1., 1., 1.], >>> [ 0., 0., 2., -1.], >>> [ 0.7, -1.9, -0.5, 0.3]]) >>> legacy_delta2bbox(rois, deltas, max_shape=(32, 32)) tensor([[0.0000, 0.0000, 1.5000, 1.5000], [0.0000, 0.0000, 5.2183, 5.2183], [0.0000, 0.1321, 7.8891, 0.8679], [5.3967, 2.4251, 6.0033, 3.7749]]) """ means = deltas.new_tensor(means).repeat(1, deltas.size(1) // 4) stds = deltas.new_tensor(stds).repeat(1, deltas.size(1) // 4) denorm_deltas = deltas * stds + means dx = denorm_deltas[:, 0::4] dy = denorm_deltas[:, 1::4] dw = denorm_deltas[:, 2::4] dh = denorm_deltas[:, 3::4] max_ratio = np.abs(np.log(wh_ratio_clip)) dw = dw.clamp(min=-max_ratio, max=max_ratio) dh = dh.clamp(min=-max_ratio, max=max_ratio) # Compute center of each roi px = ((rois[:, 0] + rois[:, 2]) * 0.5).unsqueeze(1).expand_as(dx) py = ((rois[:, 1] + rois[:, 3]) * 0.5).unsqueeze(1).expand_as(dy) # Compute width/height of each roi pw = (rois[:, 2] - rois[:, 0] + 1.0).unsqueeze(1).expand_as(dw) ph = (rois[:, 3] - rois[:, 1] + 1.0).unsqueeze(1).expand_as(dh) # Use exp(network energy) to enlarge/shrink each roi gw = pw * dw.exp() gh = ph * dh.exp() # Use network energy to shift the center of each roi gx = px + pw * dx gy = py + ph * dy # Convert center-xy/width/height to top-left, bottom-right # The true legacy box coder should +- 0.5 here. # However, current implementation improves the performance when testing # the models trained in MMDetection 1.X (~0.5 bbox AP, 0.2 mask AP) x1 = gx - gw * 0.5 y1 = gy - gh * 0.5 x2 = gx + gw * 0.5 y2 = gy + gh * 0.5 if max_shape is not None: x1 = x1.clamp(min=0, max=max_shape[1] - 1) y1 = y1.clamp(min=0, max=max_shape[0] - 1) x2 = x2.clamp(min=0, max=max_shape[1] - 1) y2 = y2.clamp(min=0, max=max_shape[0] - 1) bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view_as(deltas) return bboxes
39.205263
80
0.534703
c7759dca474e5d1aeb4740ecd875244a1cbfc513
3,476
py
Python
filter.py
navin-bhaskar/GuitarTuner_EdisonGalileo
20e31da5f1b395e8405a19f670644b4a2d909ecd
[ "BSD-2-Clause" ]
null
null
null
filter.py
navin-bhaskar/GuitarTuner_EdisonGalileo
20e31da5f1b395e8405a19f670644b4a2d909ecd
[ "BSD-2-Clause" ]
null
null
null
filter.py
navin-bhaskar/GuitarTuner_EdisonGalileo
20e31da5f1b395e8405a19f670644b4a2d909ecd
[ "BSD-2-Clause" ]
1
2020-03-17T05:54:20.000Z
2020-03-17T05:54:20.000Z
#!/usr/bin/env python from scipy import signal """ This script generates the c function template for a given cuttof frequency. Note that this script will use butterworth filter to generate the differnce equations. """ # Define your filter parameters here Fs = 44100 # Sampling frequency in Hz Fc = 8000 # Cut-off frequncy in Hz, set to 8k here order = 2 # Design a second order filter outFile = "filter" # The output file to be created, without any extension. #This script will create .c and accompanying .h file for you to use nyqusitRate = Fs/2.0 Wc = Fc/nyqusitRate # Cutoff freq in normalized to nyquist pi rads/samples # Get the filter co-efficents for Wc as low pass filter using butterowrth design [b, a] = signal.butter(order, Wc, 'low') output= """ /** * THIS IS AN AUTOMATICALLY GENERATED FILE. * Implements the difference equation given the input signal. * The a and b of the DE are defined here locally. Which means that * you will have to regenrate this file every time the sampling or * the cut off frequency changes. */ static float a[] = { """ outText = "" nPos = 0 inFloat = a.astype(float) for num in inFloat: outText = outText + "%+ff, " %num output = output + outText output = output + "\n};" output = output + "\n\nstatic float b[] = { \n" outText = "" inFloat = b.astype(float) for num in inFloat: outText = outText + "%+ff, " %num output = output + outText output = output + "\n};" functionImp = """ /** * This function filters the signal. * This function also takes care of the initial conditions */ void iirDirect2( float *x, /**< Input signal */ float *y, /**< Output signal */ int n /**< Length of the input samples */ ) { int i; """ # Handle the initial condition initialCond = "" eq = "" for i in range(0, order): eq = eq + " y[%d] = " %(i) for j in range(0, len(b)): if i-j < 0: eq = eq + "b[%d] * 0 " %(j) # Take care of negative indices else: eq = eq + "b[%d] * x[%d]" %(j, i-j) eq = eq + " + " eq = eq[0:len(eq)-2] # Get rid of extra '+' eq = eq + " - " for j in range(1, len(a)): # Ignore the unit gain of the coefficents generated if i-j < 0: eq = eq + "(a[%d] * 0) " %(j) # Take care of negative indices else: eq = eq + "(a[%d] * y[%d])" %(j, i-j) eq = eq + " - " eq = eq[0:len(eq)-2] # Get rid of extra '-' eq = eq + ";\n" functionImp = functionImp + eq # Now for the rest of the equation theForloop = """ for (i=%d; i<n; i++) { """ eq = " y[i] = " for j in range(0, len(b)): eq = eq + "b[%d] * x[i-%d]" %(j, j) eq = eq + " + " eq = eq[0:len(eq)-2] # Get rid of extra '+' eq = eq + " - " for j in range(1, len(a)): eq = eq + "(a[%d] * y[i-%d])" %(j, j) eq = eq + " - " eq = eq[0:len(eq)-2] # Get rid of extra '-' eq = eq + ";\n" theForloop = theForloop %(order) theForloop = theForloop + eq + "\n }\n}" functionImp = functionImp + theForloop output = output + functionImp #print output # create the header file first headerContent = """ #ifndef __FILTER_H #define __FILTER_H void iirDirect2(float *, float *, int); #endif """ f = file(outFile+".h", "w") f.write(headerContent) f.close() f = file(outFile+".c", "w") f.write(output) f.close()
22
82
0.564442
69544afab18defc139311bea075a73e30a48249d
3,163
py
Python
word_language_model/generate.py
manna/pytorch-examples
659e11ac42fe46ea09bcaf8424ed5404fae7407d
[ "BSD-3-Clause" ]
null
null
null
word_language_model/generate.py
manna/pytorch-examples
659e11ac42fe46ea09bcaf8424ed5404fae7407d
[ "BSD-3-Clause" ]
null
null
null
word_language_model/generate.py
manna/pytorch-examples
659e11ac42fe46ea09bcaf8424ed5404fae7407d
[ "BSD-3-Clause" ]
null
null
null
############################################################################### # Language Modeling on Penn Tree Bank # # This file generates new sentences sampled from the language model # ############################################################################### import argparse import torch from torch.autograd import Variable import data parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 Language Model') # Model parameters. parser.add_argument('--data', type=str, default='./data/wikitext-2', help='location of the data corpus') parser.add_argument('--checkpoint', type=str, default='./model.pt', help='model checkpoint to use') parser.add_argument('--outf', type=str, default='generated.txt', help='output file for generated text') parser.add_argument('--words', type=int, default='1000', help='number of words to generate') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--temperature', type=float, default=1.0, help='temperature - higher will increase diversity') parser.add_argument('--log-interval', type=int, default=100, help='reporting interval') parser.add_argument('--primer', type=str, default='', help='Beginning of generated text. Example: "Yesterday , she"') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") device = torch.device("cuda" if args.cuda else "cpu") if args.temperature < 1e-3: parser.error("--temperature has to be greater or equal 1e-3") with open(args.checkpoint, 'rb') as f: model = torch.load(f).to(device) model.eval() corpus = data.Corpus(args.data) ntokens = len(corpus.dictionary) hidden = model.init_hidden(1) input = torch.randint(ntokens, (1, 1), dtype=torch.long).to(device) # Represents the first word, which is randomly selected. if args.primer: with open(args.outf, 'w') as outf: outf.write(args.primer + ' ') primer_words = args.primer.split() for word in primer_words: word_idx = corpus.dictionary.word2idx[word] input.fill_(word_idx) _output, hidden = model(input, hidden) with open(args.outf, 'ab') as outf: with torch.no_grad(): # no tracking history for i in range(args.words): output, hidden = model(input, hidden) word_weights = output.squeeze().div(args.temperature).exp().cpu() word_idx = torch.multinomial(word_weights, 1)[0] input.fill_(word_idx) word = corpus.dictionary.idx2word[word_idx] outstr = word + ('\n' if i % 20 == 19 else ' ') outf.write(outstr.encode('utf-8')) if i % args.log_interval == 0: print('| Generated {}/{} words'.format(i, args.words))
38.573171
124
0.606386
5afb3c1cdcb33f01f49d9b9751845396ec41aa76
87
py
Python
tests/periodicities/Second/Cycle_Second_1600_S_5.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
tests/periodicities/Second/Cycle_Second_1600_S_5.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
1
2019-11-30T23:39:38.000Z
2019-12-01T04:34:35.000Z
tests/periodicities/Second/Cycle_Second_1600_S_5.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
import pyaf.tests.periodicities.period_test as per per.buildModel((5 , 'S' , 1600));
17.4
50
0.724138
6b9a2af2893514a1813cbe2dfb590a11af5b04e0
689
py
Python
src/wellsfargo/templatetags/wfrs_filters.py
thelabnyc/django-oscar-wfrs
9abd4ecbdafd597407fdf60657103cb5d29c4c8b
[ "0BSD" ]
1
2021-02-08T05:54:56.000Z
2021-02-08T05:54:56.000Z
src/wellsfargo/templatetags/wfrs_filters.py
thelabnyc/django-oscar-wfrs
9abd4ecbdafd597407fdf60657103cb5d29c4c8b
[ "0BSD" ]
24
2019-12-04T21:37:01.000Z
2022-03-11T23:16:20.000Z
src/wellsfargo/templatetags/wfrs_filters.py
thelabnyc/django-oscar-wfrs
9abd4ecbdafd597407fdf60657103cb5d29c4c8b
[ "0BSD" ]
2
2016-05-31T10:02:35.000Z
2016-12-19T11:29:37.000Z
from django.utils.translation import ugettext as _ from django import template import pytz register = template.Library() @register.filter(name="timeat") def timeat(value): try: return _("%(years)s years, %(months)s months") % dict( years=int(value[2:]), months=int(value[:2]) ) except Exception: return "" @register.filter(name="timesinceminutes") def timesinceminutes(dt_to, dt_from): if not dt_to or not dt_from: return "" return round((dt_to - dt_from).total_seconds() / 60) @register.filter(name="localizedatetime") def localizedatetime(value): if not value: return "" return pytz.utc.localize(value)
22.225806
62
0.66328
db71a7c87f0878c7a4975f501b0574afdd082384
530
py
Python
example_project/testapp/tests.py
lincolnloop/django-activity-stream
b1b4884624fab982b35fbcbd28ed321d12e3d054
[ "BSD-3-Clause" ]
null
null
null
example_project/testapp/tests.py
lincolnloop/django-activity-stream
b1b4884624fab982b35fbcbd28ed321d12e3d054
[ "BSD-3-Clause" ]
null
null
null
example_project/testapp/tests.py
lincolnloop/django-activity-stream
b1b4884624fab982b35fbcbd28ed321d12e3d054
[ "BSD-3-Clause" ]
null
null
null
from datetime import datetime from django.test import TestCase from django.contrib.auth.models import User from actstream.models import Action from actstream.signals import action class TestAppTests(TestCase): def setUp(self): self.user = User.objects.create(username='test') action.send(self.user, verb='was created') def test_accessor(self): self.assertEqual(len(Action.objects.testfoo(self.user)), 1) self.assertEqual(len(Action.objects.testfoo(self.user, datetime(1970, 1, 1))), 0)
31.176471
89
0.732075
f45cd58c3abf6095cc23977e04ce5a1f9a6f2d03
14,054
py
Python
example.py
fdkz/libcopengl
e796abd7d8cede5b5f7aff92b815bd2b6f29b1da
[ "MIT" ]
null
null
null
example.py
fdkz/libcopengl
e796abd7d8cede5b5f7aff92b815bd2b6f29b1da
[ "MIT" ]
null
null
null
example.py
fdkz/libcopengl
e796abd7d8cede5b5f7aff92b815bd2b6f29b1da
[ "MIT" ]
1
2021-12-14T11:32:20.000Z
2021-12-14T11:32:20.000Z
import logging logg = logging.getLogger(__name__) if __name__ == "__main__": logging.basicConfig(level=logging.NOTSET, format="%(asctime)s %(name)s %(levelname)-5s: %(message)s") import sys import time import math import random import ctypes from sdl2 import * # uncomment these to use pyopengl #from OpenGL.GL import * #glTranslatef = glTranslate from copengl import * class FpsCounter: def __init__(self, update_interval_seconds=0.5): """ read self.fps for output """ self.fps = 0. self.interval = update_interval_seconds self._counter = 0. self._age = 0. self._last_output_age = 0. def tick(self, dt): self._age += dt self._counter += 1. if self._age > self.interval: self.fps = self._counter / self._age self._age = 0. self._counter = 0. class Explosion: def __init__(self, x, y, direction, v): self.x, self.y = x, y self.direction = direction self.v = v self.age = 0. self.dead = False self.r = 0. self.lifetime = 0.6 self.turndirection = direction def render(self): self.sideangle = 140. a = math.radians(self.direction + self.turndirection) x1, y1 = self.x + self.r * math.sin(a), self.y + self.r * math.cos(a) a = math.radians(self.direction + self.turndirection + self.sideangle) x2, y2 = self.x + self.r * math.sin(a), self.y + self.r * math.cos(a) a = math.radians(self.direction + self.turndirection - self.sideangle) x3, y3 = self.x + self.r * math.sin(a), self.y + self.r * math.cos(a) glColor4d(1., 0.3, 0.2, 1. - self.age / self.lifetime) glBegin(GL_TRIANGLE_FAN) glVertex3d(x1, y1, 0.) glVertex3d(x2, y2, 0.) glVertex3d(x3, y3, 0.) glEnd() glColor4d(0.4, 0., 0., 1. - self.age / self.lifetime) glBegin(GL_LINE_LOOP) glVertex3d(x1, y1, 0.) glVertex3d(x2, y2, 0.) glVertex3d(x3, y3, 0.) glEnd() def tick(self, dt): self.r += dt * 8. self.x += self.v * math.sin(math.radians(self.direction)) * dt self.y += self.v * math.cos(math.radians(self.direction)) * dt self.age += dt self.turndirection += dt * 1500. if self.age > self.lifetime: self.dead = True class Bullet: def __init__(self, x, y, direction, v, owner): self.x, self.y = x, y self.direction = direction self.v = v self.age = 0. self.r = 0.5 self.dead = False self.owner = owner def render(self): a = math.radians(self.direction) x2, y2 = self.x, self.y x1, y1 = self.x + self.r * math.sin(a), self.y + self.r * math.cos(a) glShadeModel(GL_SMOOTH) glBegin(GL_LINES) glColor4d(0.3, 0.2, 0.1, 1.) glVertex3d(x1, y1, 0.) glColor4d(0.3, 0.2, 0.1, 0.) glVertex3d(x2, y2, 0.) glEnd() def tick(self, dt): self.x += self.v * math.sin(math.radians(self.direction)) * dt self.y += self.v * math.cos(math.radians(self.direction)) * dt self.age += dt if self.age > 3.: self.dead = True class Crawly: def __init__(self, x, y): self.x, self.y = x, y self.v = 0. self.acc = 0. self.direction = 0. self.leglen = 0.5*1.5 self.legs = [[0., 0.] for i in range(10)] self.legs2 = [[0., 0.] for i in range(10)] self._place_legs() self._place_legs2() # feedback variables self.direction_new = 0. # 0 - default. red # 1 - friend. green # 2 - unknown. blue self.color = 0. self.speedlimit = 5. self.r = 0.3 self.influence_radius = 1.0 self.sideangle = 140. self.dead = False self.age = 0. self.randomstarttime = random.random() * 10. self.randomheartbeatspeed = (random.random() + 0.5) * 13. def _place_legs(self): side = -1. for i, l in enumerate(self.legs): side = -side if math.hypot(self.x - l[0], self.y - l[1]) > self.leglen + 0.1: # calc new leg position y = int(i / 2) + 1 l[0] = self.x + math.sin(math.radians(self.direction - 8. * y * side)) * self.leglen l[1] = self.y + math.cos(math.radians(self.direction - 8. * y * side)) * self.leglen def _place_legs2(self): side = -1. for i, l2 in enumerate(self.legs2): # calc new leg position y = int(i / 2) + 1 l = self.legs[i] l2[0] = self.x + (l[0] - self.x) / 2. + math.sin(math.radians(self.direction)) * self.leglen * .2 l2[1] = self.y + (l[1] - self.y) / 2. + math.cos(math.radians(self.direction)) * self.leglen * .2 def tick(self, dt): self.age += dt damping = 0.999 self.direction = self.direction_new dx = math.sin(math.radians(self.direction)) dy = math.cos(math.radians(self.direction)) dv = self.acc * dt self.v += dv if self.v > self.speedlimit: self.v = self.speedlimit self.x += dx * (self.v * dt + self.acc * dt * dt / 2.) self.y += dy * (self.v * dt + self.acc * dt * dt / 2.) self.acc = 0 self._place_legs() self._place_legs2() def _render_legs(self): glBegin(GL_LINES) glColor4d(0., 0., 0., 1.) # use simple legs #for l in self.legs: # glVertex3d(self.x, self.y, 0.) # glVertex3d(l[0], l[1], 0.) for l in self.legs2: glVertex3d(self.x, self.y, 0.) glVertex3d(l[0], l[1], 0.) for i, l in enumerate(self.legs): l2 = self.legs2[i] glVertex3d(l2[0], l2[1], 0.) glVertex3d(l[0], l[1], 0.) glEnd() def render(self): r = self.r + 0.05 * math.sin(self.age * self.randomheartbeatspeed + self.randomstarttime) a = math.radians(self.direction) x1, y1 = self.x + r * math.sin(a), self.y + r * math.cos(a) a = math.radians(self.direction + self.sideangle) x2, y2 = self.x + r * math.sin(a), self.y + r * math.cos(a) a = math.radians(self.direction - self.sideangle) x3, y3 = self.x + r * math.sin(a), self.y + r * math.cos(a) self._render_legs() if self.color == 0: glColor4d(1., 0.3, 0.2, 1.) elif self.color == 1: glColor4d(0., 0.8, 0.2, 1.) elif self.color == 2: glColor4d(0., 0., 1., 1.) glBegin(GL_TRIANGLE_FAN) glVertex3d(x1, y1, 0.) glVertex3d(x2, y2, 0.) glVertex3d(x3, y3, 0.) glEnd() if self.color == 0: glColor4d(0.4, 0., 0., 1.) else: glColor4d(0., 0., 0., 1.) glBegin(GL_LINE_LOOP) glVertex3d(x1, y1, 0.) glVertex3d(x2, y2, 0.) glVertex3d(x3, y3, 0.) glEnd() # render the crawly influence area for debugging. if 0: glColor4d(0.7, 0.7, 0.7, 1.0) glBegin(GL_LINE_LOOP) for a in range(0, 360, 30): x, y = self.x + self.influence_radius * math.sin(math.radians(a)), self.y + self.influence_radius * math.cos(math.radians(a)) glVertex(x, y, 0.) glEnd() class Circle: def __init__(self, x, y, r, (red, g, b, a)): self.x, self.y, self.r = x, y, r self.red, self.g, self.b, self.a = red, g, b, a def render(self): glColor4d(self.red, self.g, self.b, self.a) glBegin(GL_TRIANGLE_FAN) for a in range(0, 360, 10): x, y = self.x + self.r * math.sin(math.radians(a)), self.y + self.r * math.cos(math.radians(a)) glVertex3f(x, y, 0.) glEnd() glBegin(GL_LINE_LOOP) for a in range(0, 360, 10): x, y = self.x + self.r * math.sin(math.radians(a)), self.y + self.r * math.cos(math.radians(a)) glVertex3f(x, y, 0.) glEnd() class CrawlyWorld: def __init__(self): self.crawlys = [self.new_crawly() for i in range(30)] self.crawlys[0].color = 1 self.crawlys[0].speedlimit = 9. self.bullets = [] self.explosions = [] self.circles = [] self.init_circles() def _set_projection(self, w, h, fov_x=90., z_near=1., z_far=50*1000.): glMatrixMode(GL_PROJECTION) glLoadIdentity() #gluPerspective(fov_x * float(h) / w, float(w) / h, z_near, z_far) # make so that making the window larger will just bring more world to the view d = 0.04 glOrtho(-w*d/2., w*d/2., -h*d/2., h*d/2., z_near, z_far) glMatrixMode(GL_MODELVIEW) glLoadIdentity() def init_circles(self): self.circles.append(Circle(-3, 0, 2, (0.5, 0.5, 0.4, 1.))) self.circles.append(Circle(3, 1, 3, (0.5, 0.5, 1., 1.))) self.circles.append(Circle(-8, 7, 2.4, (0.7, 0.2, 1., 1.))) def new_crawly(self): c = Crawly(random.randrange(-1000., 1000.) * .01, random.randrange(-1000., 1000.) * .01) c.influence_radius = 2. - random.randrange(-10., 10.) * 0.01 c.speedlimit = 5. + random.randrange(-10., 10.) * 0.2 return c def crawly_angle(self, crawly1, crawly2): """ return angle between two creatures """ a = math.degrees(math.atan2(crawly1.x - crawly2.x, crawly1.y - crawly2.y)) offset, dummy = math.modf((a - crawly1.direction) / 360.) offset *= 360. if offset > 180.: offset -= 360. if offset < -180.: offset += 360. return offset def crawly_turn_direction(self, crawly1, crawly2): """ return in which direction the creature should turn in order to torn away from another """ a = self.crawly_angle(crawly1, crawly2) if a < 0.: return 1. return -1. def tick(self, dt, keys): speed = 11.5 turn_speed = 170. p = self.crawlys[0] if keys[SDL_SCANCODE_LEFT]: p.direction_new -= turn_speed * dt if keys[SDL_SCANCODE_RIGHT]: p.direction_new += turn_speed * dt if keys[SDL_SCANCODE_UP]: p.acc = speed * 0.6 if keys[SDL_SCANCODE_DOWN]: p.acc = -speed * 0.6 bullet_speed = 6. if keys[SDL_SCANCODE_X]: self.bullets.append(Bullet(p.x, p.y, p.direction + 5 * (random.random() - 0.5), bullet_speed + p.v, p)) # cleanup our object lists self.bullets = [b for b in self.bullets if not b.dead] self.explosions = [e for e in self.explosions if not e.dead] self.crawlys = [c for c in self.crawlys if not c.dead] # did bullets do any damage? # line-circle intersection. just test the bullet start/end points and crawly radius. for b in self.bullets: for c in self.crawlys: dist2 = (c.x - b.x) * (c.x - b.x) + (c.y - b.y) * (c.y - b.y) if dist2 < c.r * c.r and b.owner is not c and not c.dead: b.dead = True c.dead = True self.explosions.append(Explosion(c.x, c.y, c.direction, c.v)) self.crawlys.append(self.new_crawly()) bad_crawly_speed = 1.3 bad_crawly_turn_speed = 180. # chase the player for c in self.crawlys: if c is not p: c.acc = bad_crawly_speed * 1.3 c.direction_new += self.crawly_turn_direction(c, p) * bad_crawly_turn_speed * dt # avoid eachother # if distance if smaller than planned, then just steer away. if True: for c1 in self.crawlys: for c2 in self.crawlys: if c1 is not c2 and c1 is not p and c2: dist2 = (c1.x - c2.x) * (c1.x - c2.x) + (c1.y - c2.y) * (c1.y - c2.y) if dist2 < c1.influence_radius * c1.influence_radius: a = self.crawly_angle(c2, c1) if a > -90. and a < -90.: c1.v *= 0.9 d = 1. - dist2 / (c1.influence_radius * c1.influence_radius) if a < 0.: c1.direction_new += bad_crawly_turn_speed * dt * 4. * d else: c1.direction_new -= bad_crawly_turn_speed * dt * 4. * d # avoid the shapes if True: for c in self.crawlys: for circ in self.circles: dist = math.hypot(c.x - circ.x, c.y - circ.y) if dist < c.influence_radius * c.influence_radius: a = self.crawly_angle(c, circ) if a > -90. and a < -90.: c.v *= 0.9 d = 1. - dist / (c.influence_radius * circ.r) if a < 0.: c.direction_new -= 2 * bad_crawly_turn_speed * dt * 4. * d else: c.direction_new += 2 * bad_crawly_turn_speed * dt * 4. * d for c in self.crawlys: c.tick(dt) for b in self.bullets: b.tick(dt) for e in self.explosions: e.tick(dt) def render(self, window_w, window_h): glClearColor(0.8,0.8,1.8,1.0) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) #glColor(1,0,0,1) self._set_projection(window_w, window_h, 160) glMatrixMode(GL_MODELVIEW) glLoadIdentity() glTranslatef(0., 0., -15.) for c in self.circles: c.render() for c in self.crawlys: c.render() for b in self.bullets: b.render() for e in self.explosions: e.render() class Main: def __init__(self): self.w = 800 self.h = 600 self.crawlyworld = CrawlyWorld() self.fpscounter = FpsCounter() self.fps_log_time = time.time() self.keys = None def run(self): if SDL_Init(SDL_INIT_VIDEO) != 0: logg.error(SDL_GetError()) return -1 window = SDL_CreateWindow(b"copengl example", SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED, self.w, self.h, SDL_WINDOW_OPENGL | SDL_WINDOW_RESIZABLE) if not window: logg.error(SDL_GetError()) return -1 context = SDL_GL_CreateContext(window) glClearColor(0., 0., 0., 1.0) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) if SDL_GL_SetSwapInterval(-1): # 0 to disable vsync logg.error(SDL_GetError()) if SDL_GL_SetSwapInterval(1): logg.error("SDL_GL_SetSwapInterval: %s", SDL_GetError()) logg.error("vsync failed completely. will munch cpu for lunch.") self.keys = SDL_GetKeyboardState(None) self._init_gl() # init done. start the mainloop! last_t = time.time() event = SDL_Event() running = True while running: while SDL_PollEvent(ctypes.byref(event)) != 0: if event.type == SDL_QUIT: running = False if event.type == SDL_KEYDOWN: if event.key.keysym.scancode == SDL_SCANCODE_ESCAPE: running = False if event.type == SDL_WINDOWEVENT: if event.window.event == SDL_WINDOWEVENT_SIZE_CHANGED: self.w, self.h = event.window.data1, event.window.data2 t = time.time() self._render_frame(t - last_t) last_t = t SDL_GL_SwapWindow(window) SDL_GL_DeleteContext(context) SDL_DestroyWindow(window) SDL_Quit() def _render_frame(self, dt): self.fpscounter.tick(dt) glViewport(0, 0, self.w, self.h) self.crawlyworld.tick(dt, self.keys) self.crawlyworld.render(self.w, self.h) t = time.time() if self.fps_log_time + 2 < t: logg.info("fps: %i", self.fpscounter.fps) self.fps_log_time = t def _init_gl(self): glDisable(GL_TEXTURE_2D) glDisable(GL_DEPTH_TEST) glDisable(GL_FOG) glDisable(GL_DITHER) glDisable(GL_LIGHTING) glShadeModel(GL_FLAT) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_LINE_SMOOTH) glDisable(GL_LINE_STIPPLE) if __name__ == "__main__": logg.info("") logg.info("------------------------------------") logg.info("usage: press arrows and x") logg.info("------------------------------------") logg.info("") w = Main() sys.exit(w.run())
27.395712
129
0.636118
5a47fb075db191bc26a3f88ceb30acf3f7f8420c
1,334
py
Python
splitwise/picture.py
aayaffe/splitwise
477e0477bea9fc74693669c68431fe5ea0b08ef3
[ "MIT" ]
105
2016-08-01T02:46:49.000Z
2022-02-11T21:08:48.000Z
splitwise/picture.py
aayaffe/splitwise
477e0477bea9fc74693669c68431fe5ea0b08ef3
[ "MIT" ]
47
2016-08-27T05:09:52.000Z
2022-03-20T06:30:46.000Z
splitwise/picture.py
aayaffe/splitwise
477e0477bea9fc74693669c68431fe5ea0b08ef3
[ "MIT" ]
43
2016-08-15T18:50:58.000Z
2022-03-27T19:45:03.000Z
class Picture(object): """ Profile picture of the user. Attributes: small(str, optional): Link to small size picture medium(str, optional): Link to medium size picture large(str, optional): Link to large size picture """ def __init__(self, data=None): """ Args: data(:obj:`json`, optional): JSON object representing picture object """ if data: self.medium = data["medium"] if "small" in data: self.small = data["small"] else: self.small = None if "large" in data: self.large = data["large"] else: self.large = None def getSmall(self): """ Returns the link to small size picture of the user Returns: str: Link to small size picture of the user """ return self.small def getMedium(self): """ Returns the link to medium size picture of the user Returns: str: Link to medium size picture of the user """ return self.medium def getLarge(self): """ Returns the link to large size picture of the user Returns: str: Link to large size picture of the user """ return self.large
26.68
82
0.532234
dcace7933866c4c8afa23c4b0e9e0f6e6b4c0fac
36,817
py
Python
sdk/python/pulumi_libvirt/outputs.py
pulumi/pulumi-libvirt
0a190bfea0981aff9e4bc0e1bfa91ee16c54bb38
[ "ECL-2.0", "Apache-2.0" ]
10
2021-04-29T14:33:35.000Z
2022-03-31T21:59:48.000Z
sdk/python/pulumi_libvirt/outputs.py
pulumi/pulumi-libvirt
0a190bfea0981aff9e4bc0e1bfa91ee16c54bb38
[ "ECL-2.0", "Apache-2.0" ]
28
2021-08-15T07:46:26.000Z
2022-03-31T15:30:59.000Z
sdk/python/pulumi_libvirt/outputs.py
pulumi/pulumi-libvirt
0a190bfea0981aff9e4bc0e1bfa91ee16c54bb38
[ "ECL-2.0", "Apache-2.0" ]
1
2021-12-17T23:11:19.000Z
2021-12-17T23:11:19.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs __all__ = [ 'DomainBootDevice', 'DomainConsole', 'DomainCpu', 'DomainDisk', 'DomainFilesystem', 'DomainGraphics', 'DomainNetworkInterface', 'DomainNvram', 'DomainTpm', 'DomainVideo', 'DomainXml', 'NetworkDhcp', 'NetworkDns', 'NetworkDnsForwarder', 'NetworkDnsHost', 'NetworkDnsSrv', 'NetworkDnsmasqOptions', 'NetworkDnsmasqOptionsOption', 'NetworkRoute', 'NetworkXml', 'PoolXml', 'VolumeXml', ] @pulumi.output_type class DomainBootDevice(dict): def __init__(__self__, *, devs: Optional[Sequence[str]] = None): if devs is not None: pulumi.set(__self__, "devs", devs) @property @pulumi.getter def devs(self) -> Optional[Sequence[str]]: return pulumi.get(self, "devs") @pulumi.output_type class DomainConsole(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "targetPort": suggest = "target_port" elif key == "sourceHost": suggest = "source_host" elif key == "sourcePath": suggest = "source_path" elif key == "sourceService": suggest = "source_service" elif key == "targetType": suggest = "target_type" if suggest: pulumi.log.warn(f"Key '{key}' not found in DomainConsole. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DomainConsole.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DomainConsole.__key_warning(key) return super().get(key, default) def __init__(__self__, *, target_port: str, type: str, source_host: Optional[str] = None, source_path: Optional[str] = None, source_service: Optional[str] = None, target_type: Optional[str] = None): """ :param str target_port: Target port :param str type: Console device type. Valid values are "pty" and "tcp". :param str source_host: IP address to listen on. Defaults to 127.0.0.1. :param str source_path: Source path :param str source_service: Port number or a service name. Defaults to a random port. :param str target_type: for the first console and defaults to `serial`. Subsequent `console` blocks must have a different type - usually `virtio`. """ pulumi.set(__self__, "target_port", target_port) pulumi.set(__self__, "type", type) if source_host is not None: pulumi.set(__self__, "source_host", source_host) if source_path is not None: pulumi.set(__self__, "source_path", source_path) if source_service is not None: pulumi.set(__self__, "source_service", source_service) if target_type is not None: pulumi.set(__self__, "target_type", target_type) @property @pulumi.getter(name="targetPort") def target_port(self) -> str: """ Target port """ return pulumi.get(self, "target_port") @property @pulumi.getter def type(self) -> str: """ Console device type. Valid values are "pty" and "tcp". """ return pulumi.get(self, "type") @property @pulumi.getter(name="sourceHost") def source_host(self) -> Optional[str]: """ IP address to listen on. Defaults to 127.0.0.1. """ return pulumi.get(self, "source_host") @property @pulumi.getter(name="sourcePath") def source_path(self) -> Optional[str]: """ Source path """ return pulumi.get(self, "source_path") @property @pulumi.getter(name="sourceService") def source_service(self) -> Optional[str]: """ Port number or a service name. Defaults to a random port. """ return pulumi.get(self, "source_service") @property @pulumi.getter(name="targetType") def target_type(self) -> Optional[str]: """ for the first console and defaults to `serial`. Subsequent `console` blocks must have a different type - usually `virtio`. """ return pulumi.get(self, "target_type") @pulumi.output_type class DomainCpu(dict): def __init__(__self__, *, mode: str): pulumi.set(__self__, "mode", mode) @property @pulumi.getter def mode(self) -> str: return pulumi.get(self, "mode") @pulumi.output_type class DomainDisk(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "blockDevice": suggest = "block_device" elif key == "volumeId": suggest = "volume_id" if suggest: pulumi.log.warn(f"Key '{key}' not found in DomainDisk. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DomainDisk.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DomainDisk.__key_warning(key) return super().get(key, default) def __init__(__self__, *, block_device: Optional[str] = None, file: Optional[str] = None, scsi: Optional[bool] = None, url: Optional[str] = None, volume_id: Optional[str] = None, wwn: Optional[str] = None): """ :param str block_device: The path to the host device to use as the block device for this disk. :param str file: The filename to use as the block device for this disk (read-only) :param bool scsi: Use a scsi controller for this disk. The controller model is set to `virtio-scsi` :param str url: The http url to use as the block device for this disk (read-only) :param str volume_id: The volume id to use for this disk. :param str wwn: Specify a WWN to use for the disk if the disk is using a scsi controller, if not specified then a random wwn is generated for the disk """ if block_device is not None: pulumi.set(__self__, "block_device", block_device) if file is not None: pulumi.set(__self__, "file", file) if scsi is not None: pulumi.set(__self__, "scsi", scsi) if url is not None: pulumi.set(__self__, "url", url) if volume_id is not None: pulumi.set(__self__, "volume_id", volume_id) if wwn is not None: pulumi.set(__self__, "wwn", wwn) @property @pulumi.getter(name="blockDevice") def block_device(self) -> Optional[str]: """ The path to the host device to use as the block device for this disk. """ return pulumi.get(self, "block_device") @property @pulumi.getter def file(self) -> Optional[str]: """ The filename to use as the block device for this disk (read-only) """ return pulumi.get(self, "file") @property @pulumi.getter def scsi(self) -> Optional[bool]: """ Use a scsi controller for this disk. The controller model is set to `virtio-scsi` """ return pulumi.get(self, "scsi") @property @pulumi.getter def url(self) -> Optional[str]: """ The http url to use as the block device for this disk (read-only) """ return pulumi.get(self, "url") @property @pulumi.getter(name="volumeId") def volume_id(self) -> Optional[str]: """ The volume id to use for this disk. """ return pulumi.get(self, "volume_id") @property @pulumi.getter def wwn(self) -> Optional[str]: """ Specify a WWN to use for the disk if the disk is using a scsi controller, if not specified then a random wwn is generated for the disk """ return pulumi.get(self, "wwn") @pulumi.output_type class DomainFilesystem(dict): def __init__(__self__, *, source: str, target: str, accessmode: Optional[str] = None, readonly: Optional[bool] = None): pulumi.set(__self__, "source", source) pulumi.set(__self__, "target", target) if accessmode is not None: pulumi.set(__self__, "accessmode", accessmode) if readonly is not None: pulumi.set(__self__, "readonly", readonly) @property @pulumi.getter def source(self) -> str: return pulumi.get(self, "source") @property @pulumi.getter def target(self) -> str: return pulumi.get(self, "target") @property @pulumi.getter def accessmode(self) -> Optional[str]: return pulumi.get(self, "accessmode") @property @pulumi.getter def readonly(self) -> Optional[bool]: return pulumi.get(self, "readonly") @pulumi.output_type class DomainGraphics(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "listenAddress": suggest = "listen_address" elif key == "listenType": suggest = "listen_type" if suggest: pulumi.log.warn(f"Key '{key}' not found in DomainGraphics. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DomainGraphics.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DomainGraphics.__key_warning(key) return super().get(key, default) def __init__(__self__, *, autoport: Optional[bool] = None, listen_address: Optional[str] = None, listen_type: Optional[str] = None, type: Optional[str] = None, websocket: Optional[int] = None): """ :param bool autoport: defaults to "yes" :param str listen_address: IP Address where the VNC listener should be started if `listen_type` is set to `address`. Defaults to 127.0.0.1 :param str listen_type: "listen type", defaults to "none" :param str type: Console device type. Valid values are "pty" and "tcp". :param int websocket: Port to listen on for VNC WebSocket functionality (-1 meaning auto-allocation) """ if autoport is not None: pulumi.set(__self__, "autoport", autoport) if listen_address is not None: pulumi.set(__self__, "listen_address", listen_address) if listen_type is not None: pulumi.set(__self__, "listen_type", listen_type) if type is not None: pulumi.set(__self__, "type", type) if websocket is not None: pulumi.set(__self__, "websocket", websocket) @property @pulumi.getter def autoport(self) -> Optional[bool]: """ defaults to "yes" """ return pulumi.get(self, "autoport") @property @pulumi.getter(name="listenAddress") def listen_address(self) -> Optional[str]: """ IP Address where the VNC listener should be started if `listen_type` is set to `address`. Defaults to 127.0.0.1 """ return pulumi.get(self, "listen_address") @property @pulumi.getter(name="listenType") def listen_type(self) -> Optional[str]: """ "listen type", defaults to "none" """ return pulumi.get(self, "listen_type") @property @pulumi.getter def type(self) -> Optional[str]: """ Console device type. Valid values are "pty" and "tcp". """ return pulumi.get(self, "type") @property @pulumi.getter def websocket(self) -> Optional[int]: """ Port to listen on for VNC WebSocket functionality (-1 meaning auto-allocation) """ return pulumi.get(self, "websocket") @pulumi.output_type class DomainNetworkInterface(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "networkId": suggest = "network_id" elif key == "networkName": suggest = "network_name" elif key == "waitForLease": suggest = "wait_for_lease" if suggest: pulumi.log.warn(f"Key '{key}' not found in DomainNetworkInterface. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DomainNetworkInterface.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DomainNetworkInterface.__key_warning(key) return super().get(key, default) def __init__(__self__, *, addresses: Optional[Sequence[str]] = None, bridge: Optional[str] = None, hostname: Optional[str] = None, mac: Optional[str] = None, macvtap: Optional[str] = None, network_id: Optional[str] = None, network_name: Optional[str] = None, passthrough: Optional[str] = None, vepa: Optional[str] = None, wait_for_lease: Optional[bool] = None): """ :param Sequence[str] addresses: An IP address for this domain in this network. :param str bridge: Provides a bridge from the VM directly to the LAN. This assumes there is a bridge device on the host which has one or more of the hosts physical NICs enslaved. The guest VM will have an associated _tun_ device created and enslaved to the bridge. The IP range / network configuration is whatever is used on the LAN. This provides the guest VM full incoming & outgoing net access just like a physical machine. :param str hostname: A hostname that will be assigned to this domain resource in this network. :param str mac: The specific MAC address to use for this interface. :param str macvtap: Packets whose destination is on the same host as where they originate from are directly delivered to the target macvtap device. Both origin and destination devices need to be in bridge mode for direct delivery. If either one of them is in vepa mode, a VEPA capable bridge is required. :param str passthrough: This feature attaches a virtual function of a SRIOV capable NIC directly to a VM without losing the migration capability. All packets are sent to the VF/IF of the configured network device. Depending on the capabilities of the device additional prerequisites or limitations may apply; for example, on Linux this requires kernel 2.6.38 or newer. :param str vepa: All VMs' packets are sent to the external bridge. Packets whose destination is a VM on the same host as where the packet originates from are sent back to the host by the VEPA capable bridge (today's bridges are typically not VEPA capable). :param bool wait_for_lease: When creating the domain resource, wait until the network interface gets a DHCP lease from libvirt, so that the computed IP addresses will be available when the domain is up and the plan applied. """ if addresses is not None: pulumi.set(__self__, "addresses", addresses) if bridge is not None: pulumi.set(__self__, "bridge", bridge) if hostname is not None: pulumi.set(__self__, "hostname", hostname) if mac is not None: pulumi.set(__self__, "mac", mac) if macvtap is not None: pulumi.set(__self__, "macvtap", macvtap) if network_id is not None: pulumi.set(__self__, "network_id", network_id) if network_name is not None: pulumi.set(__self__, "network_name", network_name) if passthrough is not None: pulumi.set(__self__, "passthrough", passthrough) if vepa is not None: pulumi.set(__self__, "vepa", vepa) if wait_for_lease is not None: pulumi.set(__self__, "wait_for_lease", wait_for_lease) @property @pulumi.getter def addresses(self) -> Optional[Sequence[str]]: """ An IP address for this domain in this network. """ return pulumi.get(self, "addresses") @property @pulumi.getter def bridge(self) -> Optional[str]: """ Provides a bridge from the VM directly to the LAN. This assumes there is a bridge device on the host which has one or more of the hosts physical NICs enslaved. The guest VM will have an associated _tun_ device created and enslaved to the bridge. The IP range / network configuration is whatever is used on the LAN. This provides the guest VM full incoming & outgoing net access just like a physical machine. """ return pulumi.get(self, "bridge") @property @pulumi.getter def hostname(self) -> Optional[str]: """ A hostname that will be assigned to this domain resource in this network. """ return pulumi.get(self, "hostname") @property @pulumi.getter def mac(self) -> Optional[str]: """ The specific MAC address to use for this interface. """ return pulumi.get(self, "mac") @property @pulumi.getter def macvtap(self) -> Optional[str]: """ Packets whose destination is on the same host as where they originate from are directly delivered to the target macvtap device. Both origin and destination devices need to be in bridge mode for direct delivery. If either one of them is in vepa mode, a VEPA capable bridge is required. """ return pulumi.get(self, "macvtap") @property @pulumi.getter(name="networkId") def network_id(self) -> Optional[str]: return pulumi.get(self, "network_id") @property @pulumi.getter(name="networkName") def network_name(self) -> Optional[str]: return pulumi.get(self, "network_name") @property @pulumi.getter def passthrough(self) -> Optional[str]: """ This feature attaches a virtual function of a SRIOV capable NIC directly to a VM without losing the migration capability. All packets are sent to the VF/IF of the configured network device. Depending on the capabilities of the device additional prerequisites or limitations may apply; for example, on Linux this requires kernel 2.6.38 or newer. """ return pulumi.get(self, "passthrough") @property @pulumi.getter def vepa(self) -> Optional[str]: """ All VMs' packets are sent to the external bridge. Packets whose destination is a VM on the same host as where the packet originates from are sent back to the host by the VEPA capable bridge (today's bridges are typically not VEPA capable). """ return pulumi.get(self, "vepa") @property @pulumi.getter(name="waitForLease") def wait_for_lease(self) -> Optional[bool]: """ When creating the domain resource, wait until the network interface gets a DHCP lease from libvirt, so that the computed IP addresses will be available when the domain is up and the plan applied. """ return pulumi.get(self, "wait_for_lease") @pulumi.output_type class DomainNvram(dict): def __init__(__self__, *, file: str, template: Optional[str] = None): """ :param str file: The filename to use as the block device for this disk (read-only) :param str template: path to the file used to override variables from the master NVRAM store. """ pulumi.set(__self__, "file", file) if template is not None: pulumi.set(__self__, "template", template) @property @pulumi.getter def file(self) -> str: """ The filename to use as the block device for this disk (read-only) """ return pulumi.get(self, "file") @property @pulumi.getter def template(self) -> Optional[str]: """ path to the file used to override variables from the master NVRAM store. """ return pulumi.get(self, "template") @pulumi.output_type class DomainTpm(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "backendDevicePath": suggest = "backend_device_path" elif key == "backendEncryptionSecret": suggest = "backend_encryption_secret" elif key == "backendPersistentState": suggest = "backend_persistent_state" elif key == "backendType": suggest = "backend_type" elif key == "backendVersion": suggest = "backend_version" if suggest: pulumi.log.warn(f"Key '{key}' not found in DomainTpm. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: DomainTpm.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: DomainTpm.__key_warning(key) return super().get(key, default) def __init__(__self__, *, backend_device_path: Optional[str] = None, backend_encryption_secret: Optional[str] = None, backend_persistent_state: Optional[bool] = None, backend_type: Optional[str] = None, backend_version: Optional[str] = None, model: Optional[str] = None): """ :param str backend_device_path: Path to TPM device on the host, ex: `/dev/tpm0` :param str backend_encryption_secret: [Secret object](https://libvirt.org/formatsecret.html) for encrypting the TPM state :param bool backend_persistent_state: Keep the TPM state when a transient domain is powered off or undefined :param str backend_type: TPM backend, either `passthrough` or `emulator` (default: `emulator`) :param str backend_version: TPM version :param str model: TPM model provided to the guest """ if backend_device_path is not None: pulumi.set(__self__, "backend_device_path", backend_device_path) if backend_encryption_secret is not None: pulumi.set(__self__, "backend_encryption_secret", backend_encryption_secret) if backend_persistent_state is not None: pulumi.set(__self__, "backend_persistent_state", backend_persistent_state) if backend_type is not None: pulumi.set(__self__, "backend_type", backend_type) if backend_version is not None: pulumi.set(__self__, "backend_version", backend_version) if model is not None: pulumi.set(__self__, "model", model) @property @pulumi.getter(name="backendDevicePath") def backend_device_path(self) -> Optional[str]: """ Path to TPM device on the host, ex: `/dev/tpm0` """ return pulumi.get(self, "backend_device_path") @property @pulumi.getter(name="backendEncryptionSecret") def backend_encryption_secret(self) -> Optional[str]: """ [Secret object](https://libvirt.org/formatsecret.html) for encrypting the TPM state """ return pulumi.get(self, "backend_encryption_secret") @property @pulumi.getter(name="backendPersistentState") def backend_persistent_state(self) -> Optional[bool]: """ Keep the TPM state when a transient domain is powered off or undefined """ return pulumi.get(self, "backend_persistent_state") @property @pulumi.getter(name="backendType") def backend_type(self) -> Optional[str]: """ TPM backend, either `passthrough` or `emulator` (default: `emulator`) """ return pulumi.get(self, "backend_type") @property @pulumi.getter(name="backendVersion") def backend_version(self) -> Optional[str]: """ TPM version """ return pulumi.get(self, "backend_version") @property @pulumi.getter def model(self) -> Optional[str]: """ TPM model provided to the guest """ return pulumi.get(self, "model") @pulumi.output_type class DomainVideo(dict): def __init__(__self__, *, type: Optional[str] = None): """ :param str type: Console device type. Valid values are "pty" and "tcp". """ if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter def type(self) -> Optional[str]: """ Console device type. Valid values are "pty" and "tcp". """ return pulumi.get(self, "type") @pulumi.output_type class DomainXml(dict): def __init__(__self__, *, xslt: Optional[str] = None): if xslt is not None: pulumi.set(__self__, "xslt", xslt) @property @pulumi.getter def xslt(self) -> Optional[str]: return pulumi.get(self, "xslt") @pulumi.output_type class NetworkDhcp(dict): def __init__(__self__, *, enabled: Optional[bool] = None): """ :param bool enabled: when false, disable the DHCP server """ if enabled is not None: pulumi.set(__self__, "enabled", enabled) @property @pulumi.getter def enabled(self) -> Optional[bool]: """ when false, disable the DHCP server """ return pulumi.get(self, "enabled") @pulumi.output_type class NetworkDns(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "localOnly": suggest = "local_only" if suggest: pulumi.log.warn(f"Key '{key}' not found in NetworkDns. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: NetworkDns.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: NetworkDns.__key_warning(key) return super().get(key, default) def __init__(__self__, *, enabled: Optional[bool] = None, forwarders: Optional[Sequence['outputs.NetworkDnsForwarder']] = None, hosts: Optional[Sequence['outputs.NetworkDnsHost']] = None, local_only: Optional[bool] = None, srvs: Optional[Sequence['outputs.NetworkDnsSrv']] = None): """ :param bool enabled: when false, disable the DHCP server :param Sequence['NetworkDnsForwarderArgs'] forwarders: Either `address`, `domain`, or both must be set :param Sequence['NetworkDnsHostArgs'] hosts: a DNS host entry block. You can have one or more of these blocks in your DNS definition. You must specify both `ip` and `hostname`. :param bool local_only: true/false: true means 'do not forward unresolved requests for this domain to the part DNS server :param Sequence['NetworkDnsSrvArgs'] srvs: a DNS SRV entry block. You can have one or more of these blocks in your DNS definition. You must specify `service` and `protocol`. """ if enabled is not None: pulumi.set(__self__, "enabled", enabled) if forwarders is not None: pulumi.set(__self__, "forwarders", forwarders) if hosts is not None: pulumi.set(__self__, "hosts", hosts) if local_only is not None: pulumi.set(__self__, "local_only", local_only) if srvs is not None: pulumi.set(__self__, "srvs", srvs) @property @pulumi.getter def enabled(self) -> Optional[bool]: """ when false, disable the DHCP server """ return pulumi.get(self, "enabled") @property @pulumi.getter def forwarders(self) -> Optional[Sequence['outputs.NetworkDnsForwarder']]: """ Either `address`, `domain`, or both must be set """ return pulumi.get(self, "forwarders") @property @pulumi.getter def hosts(self) -> Optional[Sequence['outputs.NetworkDnsHost']]: """ a DNS host entry block. You can have one or more of these blocks in your DNS definition. You must specify both `ip` and `hostname`. """ return pulumi.get(self, "hosts") @property @pulumi.getter(name="localOnly") def local_only(self) -> Optional[bool]: """ true/false: true means 'do not forward unresolved requests for this domain to the part DNS server """ return pulumi.get(self, "local_only") @property @pulumi.getter def srvs(self) -> Optional[Sequence['outputs.NetworkDnsSrv']]: """ a DNS SRV entry block. You can have one or more of these blocks in your DNS definition. You must specify `service` and `protocol`. """ return pulumi.get(self, "srvs") @pulumi.output_type class NetworkDnsForwarder(dict): def __init__(__self__, *, address: Optional[str] = None, domain: Optional[str] = None): """ :param str domain: The domain used by the DNS server. """ if address is not None: pulumi.set(__self__, "address", address) if domain is not None: pulumi.set(__self__, "domain", domain) @property @pulumi.getter def address(self) -> Optional[str]: return pulumi.get(self, "address") @property @pulumi.getter def domain(self) -> Optional[str]: """ The domain used by the DNS server. """ return pulumi.get(self, "domain") @pulumi.output_type class NetworkDnsHost(dict): def __init__(__self__, *, hostname: Optional[str] = None, ip: Optional[str] = None): if hostname is not None: pulumi.set(__self__, "hostname", hostname) if ip is not None: pulumi.set(__self__, "ip", ip) @property @pulumi.getter def hostname(self) -> Optional[str]: return pulumi.get(self, "hostname") @property @pulumi.getter def ip(self) -> Optional[str]: return pulumi.get(self, "ip") @pulumi.output_type class NetworkDnsSrv(dict): def __init__(__self__, *, domain: Optional[str] = None, port: Optional[str] = None, priority: Optional[str] = None, protocol: Optional[str] = None, service: Optional[str] = None, target: Optional[str] = None, weight: Optional[str] = None): """ :param str domain: The domain used by the DNS server. """ if domain is not None: pulumi.set(__self__, "domain", domain) if port is not None: pulumi.set(__self__, "port", port) if priority is not None: pulumi.set(__self__, "priority", priority) if protocol is not None: pulumi.set(__self__, "protocol", protocol) if service is not None: pulumi.set(__self__, "service", service) if target is not None: pulumi.set(__self__, "target", target) if weight is not None: pulumi.set(__self__, "weight", weight) @property @pulumi.getter def domain(self) -> Optional[str]: """ The domain used by the DNS server. """ return pulumi.get(self, "domain") @property @pulumi.getter def port(self) -> Optional[str]: return pulumi.get(self, "port") @property @pulumi.getter def priority(self) -> Optional[str]: return pulumi.get(self, "priority") @property @pulumi.getter def protocol(self) -> Optional[str]: return pulumi.get(self, "protocol") @property @pulumi.getter def service(self) -> Optional[str]: return pulumi.get(self, "service") @property @pulumi.getter def target(self) -> Optional[str]: return pulumi.get(self, "target") @property @pulumi.getter def weight(self) -> Optional[str]: return pulumi.get(self, "weight") @pulumi.output_type class NetworkDnsmasqOptions(dict): def __init__(__self__, *, options: Optional[Sequence['outputs.NetworkDnsmasqOptionsOption']] = None): """ :param Sequence['NetworkDnsmasqOptionsOptionArgs'] options: a Dnsmasq option entry block. You can have one or more of these blocks in your definition. You must specify both `option_name` and `option_value`. """ if options is not None: pulumi.set(__self__, "options", options) @property @pulumi.getter def options(self) -> Optional[Sequence['outputs.NetworkDnsmasqOptionsOption']]: """ a Dnsmasq option entry block. You can have one or more of these blocks in your definition. You must specify both `option_name` and `option_value`. """ return pulumi.get(self, "options") @pulumi.output_type class NetworkDnsmasqOptionsOption(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "optionName": suggest = "option_name" elif key == "optionValue": suggest = "option_value" if suggest: pulumi.log.warn(f"Key '{key}' not found in NetworkDnsmasqOptionsOption. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: NetworkDnsmasqOptionsOption.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: NetworkDnsmasqOptionsOption.__key_warning(key) return super().get(key, default) def __init__(__self__, *, option_name: Optional[str] = None, option_value: Optional[str] = None): if option_name is not None: pulumi.set(__self__, "option_name", option_name) if option_value is not None: pulumi.set(__self__, "option_value", option_value) @property @pulumi.getter(name="optionName") def option_name(self) -> Optional[str]: return pulumi.get(self, "option_name") @property @pulumi.getter(name="optionValue") def option_value(self) -> Optional[str]: return pulumi.get(self, "option_value") @pulumi.output_type class NetworkRoute(dict): def __init__(__self__, *, cidr: str, gateway: str): pulumi.set(__self__, "cidr", cidr) pulumi.set(__self__, "gateway", gateway) @property @pulumi.getter def cidr(self) -> str: return pulumi.get(self, "cidr") @property @pulumi.getter def gateway(self) -> str: return pulumi.get(self, "gateway") @pulumi.output_type class NetworkXml(dict): def __init__(__self__, *, xslt: Optional[str] = None): if xslt is not None: pulumi.set(__self__, "xslt", xslt) @property @pulumi.getter def xslt(self) -> Optional[str]: return pulumi.get(self, "xslt") @pulumi.output_type class PoolXml(dict): def __init__(__self__, *, xslt: Optional[str] = None): if xslt is not None: pulumi.set(__self__, "xslt", xslt) @property @pulumi.getter def xslt(self) -> Optional[str]: return pulumi.get(self, "xslt") @pulumi.output_type class VolumeXml(dict): def __init__(__self__, *, xslt: Optional[str] = None): if xslt is not None: pulumi.set(__self__, "xslt", xslt) @property @pulumi.getter def xslt(self) -> Optional[str]: return pulumi.get(self, "xslt")
34.153061
147
0.604422
b80c67f324021a48a1067013612fc07c23a75fa8
10,851
py
Python
research/astronet/astronet/ops/dataset_ops.py
kopankom/models
3f78f4cfd21c786c62bf321c07830071027ebb5e
[ "Apache-2.0" ]
5
2018-04-03T15:54:54.000Z
2020-02-01T08:19:38.000Z
research/astronet/astronet/ops/dataset_ops.py
kopankom/models
3f78f4cfd21c786c62bf321c07830071027ebb5e
[ "Apache-2.0" ]
1
2021-03-31T19:32:00.000Z
2021-03-31T19:32:00.000Z
research/astronet/astronet/ops/dataset_ops.py
kopankom/models
3f78f4cfd21c786c62bf321c07830071027ebb5e
[ "Apache-2.0" ]
3
2018-04-27T15:37:08.000Z
2021-12-06T12:00:53.000Z
# Copyright 2018 The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions to build an input pipeline that reads from TFRecord files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import six import tensorflow as tf def pad_tensor_to_batch_size(tensor, batch_size): """Pads a Tensor along the batch dimension to the desired batch size.""" if batch_size < 2: raise ValueError("Cannot pad along batch dimension with batch_size < 2.") ndims = len(tensor.shape) if ndims < 1: raise ValueError("Cannot pad a 0-dimensional Tensor") num_pad_examples = batch_size - tf.shape(tensor)[0] # paddings is a 2D Tensor with shape [ndims, 2]. Every element is zero except # for paddings[0][1], which is the number of values to add along the 0-th # dimension (the batch dimension) after the contents of the input tensor. paddings = tf.sparse_to_dense( sparse_indices=[[0, 1]], output_shape=[ndims, 2], sparse_values=num_pad_examples) padded_tensor = tf.pad(tensor, paddings, name=tensor.op.name + "/pad") # Set the new shape. output_shape = tensor.shape.as_list() output_shape[0] = batch_size padded_tensor.set_shape(output_shape) return padded_tensor def _recursive_pad_to_batch_size(tensor_or_collection, batch_size): """Recursively pads to the batch size in a Tensor or collection of Tensors.""" if isinstance(tensor_or_collection, tf.Tensor): return pad_tensor_to_batch_size(tensor_or_collection, batch_size) if isinstance(tensor_or_collection, dict): return { name: _recursive_pad_to_batch_size(t, batch_size) for name, t in tensor_or_collection.iteritems() } if isinstance(tensor_or_collection, collections.Iterable): return [ _recursive_pad_to_batch_size(t, batch_size) for t in tensor_or_collection ] raise ValueError("Unknown input type: %s" % tensor_or_collection) def pad_dataset_to_batch_size(dataset, batch_size): """Pads Tensors in a dataset along the batch dimension to batch_size. The output contains a 'weights' Tensor, which is a 0/1 indicator of padded elements. If a 'weights' Tensor already exists in the input dataset, then that Tensor is padded with zeros. If a 'weights' Tensor does not already exist, then the input dataset is assumed to have a 'labels' Tensor which is used to construct the weights. Args: dataset: A tf.data.Dataset. batch_size: Integer batch size. Returns: A tf.data.Dataset. """ def map_fn(tensors): """Pads Tensors along the batch dimension to the desired batch size.""" if not isinstance(tensors, dict): raise ValueError( "pad_dataset_to_batch_size requires a dictionary of named Tensors.") outputs = _recursive_pad_to_batch_size(tensors, batch_size) if "weights" not in outputs: weights = tf.ones_like(tensors["labels"], dtype=tf.float32) outputs["weights"] = pad_tensor_to_batch_size(weights, batch_size) return outputs return dataset.map(map_fn) def _recursive_set_batch_size(tensor_or_collection, batch_size): """Recursively sets the batch size in a Tensor or collection of Tensors.""" if isinstance(tensor_or_collection, tf.Tensor): t = tensor_or_collection shape = t.shape.as_list() shape[0] = batch_size t.set_shape(t.shape.merge_with(shape)) elif isinstance(tensor_or_collection, dict): for t in six.itervalues(tensor_or_collection): _recursive_set_batch_size(t, batch_size) elif isinstance(tensor_or_collection, collections.Iterable): for t in tensor_or_collection: _recursive_set_batch_size(t, batch_size) else: raise ValueError("Unknown input type: %s" % tensor_or_collection) return tensor_or_collection def set_batch_size(dataset, batch_size): """Sets the batch dimension in all Tensors to batch_size.""" return dataset.map(lambda t: _recursive_set_batch_size(t, batch_size)) def build_dataset(file_pattern, input_config, batch_size, include_labels=True, reverse_time_series_prob=0, shuffle_filenames=False, shuffle_values_buffer=0, repeat=1, use_tpu=False): """Builds an input pipeline that reads a dataset from sharded TFRecord files. Args: file_pattern: File pattern matching input TFRecord files, e.g. "/tmp/train-?????-of-00100". May also be a comma-separated list of file patterns. input_config: ConfigDict containing feature and label specifications. batch_size: The number of examples per batch. include_labels: Whether to read labels from the input files. reverse_time_series_prob: If > 0, the time series features will be randomly reversed with this probability. Within a given example, either all time series features will be reversed, or none will be reversed. shuffle_filenames: Whether to shuffle the order of TFRecord files between epochs. shuffle_values_buffer: If > 0, shuffle examples using a buffer of this size. repeat: The number of times to repeat the dataset. If None or -1 the dataset will repeat indefinitely. use_tpu: Whether to build the dataset for TPU. Raises: ValueError: If an input file pattern does not match any files, or if the label IDs in input_config.label_map are not contiguous integers starting at 0. Returns: A tf.data.Dataset object. """ file_patterns = file_pattern.split(",") filenames = [] for p in file_patterns: matches = tf.gfile.Glob(p) if not matches: raise ValueError("Found no input files matching %s" % p) filenames.extend(matches) tf.logging.info("Building input pipeline from %d files matching patterns: %s", len(filenames), file_patterns) if include_labels: # Ensure that the label ids are contiguous integers starting at 0. label_ids = set(input_config.label_map.values()) if label_ids != set(range(len(label_ids))): raise ValueError( "Label IDs must be contiguous integers starting at 0. Got: %s" % label_ids) # Create a HashTable mapping label strings to integer ids. table_initializer = tf.contrib.lookup.KeyValueTensorInitializer( keys=input_config.label_map.keys(), values=input_config.label_map.values(), key_dtype=tf.string, value_dtype=tf.int32) label_to_id = tf.contrib.lookup.HashTable( table_initializer, default_value=-1) def _example_parser(serialized_example): """Parses a single tf.Example into image and label tensors.""" # Set specifications for parsing the features. data_fields = { feature_name: tf.FixedLenFeature([feature.length], tf.float32) for feature_name, feature in input_config.features.iteritems() } if include_labels: data_fields[input_config.label_feature] = tf.FixedLenFeature([], tf.string) # Parse the features. parsed_features = tf.parse_single_example( serialized_example, features=data_fields) if reverse_time_series_prob > 0: # Randomly reverse time series features with probability # reverse_time_series_prob. should_reverse = tf.less( tf.random_uniform([], 0, 1), reverse_time_series_prob, name="should_reverse") # Reorganize outputs. output = {} for feature_name, value in parsed_features.iteritems(): if include_labels and feature_name == input_config.label_feature: label_id = label_to_id.lookup(value) # Ensure that the label_id is nonnegative to verify a successful hash # map lookup. assert_known_label = tf.Assert( tf.greater_equal(label_id, tf.to_int32(0)), ["Unknown label string:", value]) with tf.control_dependencies([assert_known_label]): label_id = tf.identity(label_id) # We use the plural name "labels" in the output due to batching. output["labels"] = label_id elif input_config.features[feature_name].is_time_series: # Possibly reverse. if reverse_time_series_prob > 0: # pylint:disable=cell-var-from-loop value = tf.cond(should_reverse, lambda: tf.reverse(value, axis=[0]), lambda: tf.identity(value)) # pylint:enable=cell-var-from-loop if "time_series_features" not in output: output["time_series_features"] = {} output["time_series_features"][feature_name] = value else: if "aux_features" not in output: output["aux_features"] = {} output["aux_features"][feature_name] = value return output # Create a string dataset of filenames, and possibly shuffle. filename_dataset = tf.data.Dataset.from_tensor_slices(filenames) if len(filenames) > 1 and shuffle_filenames: filename_dataset = filename_dataset.shuffle(len(filenames)) # Read serialized Example protos. dataset = filename_dataset.flat_map(tf.data.TFRecordDataset) # Possibly shuffle. Note that we shuffle before repeat(), so we only shuffle # elements among each "epoch" of data, and not across epochs of data. if shuffle_values_buffer > 0: dataset = dataset.shuffle(shuffle_values_buffer) # Repeat. if repeat != 1: dataset = dataset.repeat(repeat) # Map the parser over the dataset. dataset = dataset.map(_example_parser, num_parallel_calls=4) # Batch results by up to batch_size. dataset = dataset.batch(batch_size) if repeat == -1 or repeat is None: # The dataset repeats infinitely before batching, so each batch has the # maximum number of elements. dataset = set_batch_size(dataset, batch_size) elif use_tpu: # TPU requires all dimensions to be fixed. Since the dataset does not repeat # infinitely before batching, the final batch may have fewer than batch_size # elements. Therefore we pad to ensure that the final batch has batch_size # elements. dataset = pad_dataset_to_batch_size(dataset, batch_size) # Prefetch a few batches. dataset = dataset.prefetch(max(1, int(256 / batch_size))) return dataset
37.808362
80
0.70611
5789496a8ac6fb61595bc6316ec1ded1d17e600e
9,020
py
Python
tests/test_utils_check_copies.py
uunal/adapter-transformers
73a95a75f803e8fd243fc3d55ff3a9d557891377
[ "Apache-2.0" ]
723
2020-07-16T13:02:25.000Z
2022-03-31T21:03:55.000Z
tests/test_utils_check_copies.py
uunal/adapter-transformers
73a95a75f803e8fd243fc3d55ff3a9d557891377
[ "Apache-2.0" ]
170
2020-07-16T14:39:11.000Z
2022-03-31T13:02:11.000Z
tests/test_utils_check_copies.py
uunal/adapter-transformers
73a95a75f803e8fd243fc3d55ff3a9d557891377
[ "Apache-2.0" ]
131
2020-07-16T14:38:16.000Z
2022-03-29T19:43:18.000Z
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import shutil import sys import tempfile import unittest import black git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. REFERENCE_CODE = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states, inv_lang_adapter=None): hidden_states = self.transform(hidden_states) if inv_lang_adapter: hidden_states = inv_lang_adapter(hidden_states, rev=True) hidden_states = self.decoder(hidden_states) return hidden_states """ class CopyCheckTester(unittest.TestCase): def setUp(self): self.transformer_dir = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, "models/bert/")) check_copies.TRANSFORMER_PATH = self.transformer_dir shutil.copy( os.path.join(git_repo_path, "src/transformers/models/bert/modeling_bert.py"), os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"), ) def tearDown(self): check_copies.TRANSFORMER_PATH = "src/transformers" shutil.rmtree(self.transformer_dir) def check_copy_consistency(self, comment, class_name, class_code, overwrite_result=None): code = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: expected = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result code = black.format_str(code, mode=black.FileMode([black.TargetVersion.PY35], line_length=119)) fname = os.path.join(self.transformer_dir, "new_code.py") with open(fname, "w", newline="\n") as f: f.write(code) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(fname)) == 0) else: check_copies.is_copy_consistent(f.name, overwrite=True) with open(fname, "r") as f: self.assertTrue(f.read(), expected) def test_find_code_in_transformers(self): code = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") self.assertEqual(code, REFERENCE_CODE) def test_is_copy_consistent(self): # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", "BertLMPredictionHead", REFERENCE_CODE + "\n", ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", "BertLMPredictionHead", REFERENCE_CODE, ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", "TestModelLMPredictionHead", re.sub("Bert", "TestModel", REFERENCE_CODE), ) # Copy consistency with a really long name long_class_name = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}", f"{long_class_name}LMPredictionHead", re.sub("Bert", long_class_name, REFERENCE_CODE), ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", "TestModelLMPredictionHead", REFERENCE_CODE, overwrite_result=re.sub("Bert", "TestModel", REFERENCE_CODE), ) def test_convert_to_localized_md(self): localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"] md_list = "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning." localized_md_list = "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" converted_md_list_sample = "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。\n" num_models_equal, converted_md_list = check_copies.convert_to_localized_md( md_list, localized_md_list, localized_readme["format_model_list"] ) self.assertFalse(num_models_equal) self.assertEqual(converted_md_list, converted_md_list_sample) num_models_equal, converted_md_list = check_copies.convert_to_localized_md( md_list, converted_md_list, localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(num_models_equal)
61.780822
1,434
0.729601
cfd8f61e110768742cbc25d98e9a940cb421373f
1,682
py
Python
test/system/bench/cloudstone1/cloudstone1.py
24601/accumulo
b32dd4906a83c065cdbd54df2c600a9e92f584af
[ "BSD-3-Clause" ]
null
null
null
test/system/bench/cloudstone1/cloudstone1.py
24601/accumulo
b32dd4906a83c065cdbd54df2c600a9e92f584af
[ "BSD-3-Clause" ]
null
null
null
test/system/bench/cloudstone1/cloudstone1.py
24601/accumulo
b32dd4906a83c065cdbd54df2c600a9e92f584af
[ "BSD-3-Clause" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import time from lib import cloudshell from lib.Benchmark import Benchmark from lib.slaves import runAll from lib.path import accumulo class CloudStone1(Benchmark): def shortDescription(self): return 'Test the speed at which we can check that accumulo is up '\ 'and we can reach all the slaves. Lower is better.' def runTest(self): code, out, err = cloudshell.run(self.username, self.password, 'table !METADATA\nscan\n') self.assertEqual(code, 0, "Could not scan the !METADATA table. %s %s" % (out, err)) results = runAll('echo help | %s shell' % accumulo('bin', 'accumulo')) def setSpeed(self, speed): "We want to override this method but no speed can be set" def suite(): result = unittest.TestSuite([ CloudStone1(), ]) return result
37.377778
96
0.69679
e29a97d9f4db08f2e846450c7cba04a1d951a0a4
14,733
py
Python
WebBrickGateway/WebBrickGateway/Media.py
AndyThirtover/wb_gateway
69f9c870369085f4440033201e2fb263a463a523
[ "BSD-3-Clause" ]
null
null
null
WebBrickGateway/WebBrickGateway/Media.py
AndyThirtover/wb_gateway
69f9c870369085f4440033201e2fb263a463a523
[ "BSD-3-Clause" ]
null
null
null
WebBrickGateway/WebBrickGateway/Media.py
AndyThirtover/wb_gateway
69f9c870369085f4440033201e2fb263a463a523
[ "BSD-3-Clause" ]
null
null
null
# Copyright L.P.Klyne 2013 # Licenced under 3 clause BSD licence # $Id: Media.py 3138 2009-04-15 10:17:29Z philipp.schuster $ import sys, logging, string from urlparse import urlparse, urljoin from urllib import unquote, quote import turbogears import cherrypy import ClientProfiles from EventLib.Event import Event from EventLib.Status import StatusVal from EventLib.SyncDeferred import makeDeferred from EventLib.EventHandler import EventHandler from EventHandlers.BaseHandler import makeUri from coherence.upnp.services.clients.caching_content_directory_client import UPNP_Container, UPNP_Item, UPNP_MediaServerList, device_name from twisted.internet import reactor import coherence.extern.louie as louie _log = logging.getLogger( "WebBrickGateway.Media" ) # -------------------------------------------------- # Media interfaces # -------------------------------------------------- class Media( object ): """ Local class to handle queries for media details """ def __init__(self): uri,logname = makeUri(self.__class__) super(Media,self).__init__(uri, self.doHandleEvent) # local ids are just indexes into these arrays. self._client_id = 0 self._clients = {} # UPNP clients self._servers = UPNP_MediaServerList() self.subcribeTimeout = 30 # this needs to be early so we get to see the startup of the eventhandler. from coherence.base import Coherence self._coherence = Coherence() # subscribe to all events. louie.connect(self.new_server, 'Coherence.UPnP.ControlPoint.MediaServer.detected', louie.Any) louie.connect(self.new_renderer, 'Coherence.UPnP.ControlPoint.MediaRenderer.detected', louie.Any) louie.connect(self.remove_server, 'Coherence.UPnP.ControlPoint.MediaServer.removed', louie.Any) louie.connect(self.remove_renderer, 'Coherence.UPnP.ControlPoint.MediaRenderer.removed', louie.Any) def start( self, despatch ): pass def stop(self, despatch): louie.disconnect(self.new_server, 'Coherence.UPnP.ControlPoint.MediaServer.detected', louie.Any) louie.disconnect(self.new_renderer, 'Coherence.UPnP.ControlPoint.MediaRenderer.detected', louie.Any) louie.disconnect(self.remove_server, 'Coherence.UPnP.ControlPoint.MediaServer.removed', louie.Any) louie.disconnect(self.remove_renderer, 'Coherence.UPnP.ControlPoint.MediaRenderer.removed', louie.Any) def doHandleEvent( self, handler, event ): et = event.getType() od = event.getPayload() return makeDeferred(StatusVal.OK) def new_renderer(self, client, udn ): # UPNP interface, the client is the local client to a UPNP renderer. # again container ids are just integers. for k in self._clients: if self._clients[k].device.get_id() == udn: _log.debug( "Update already exists %s", udn ) #self._clients[k] = client return self._client_id = self._client_id + 1 self._clients[self._client_id] = client _log.debug( "new_renderer %u id %s", self._client_id, udn ) def remove_renderer(self, client, udn ): _log.debug( "remove_renderer id %s", udn ) for k in self._clients: if self._clients[k].device.get_id() == udn: _log.debug( "removed renderer id %s", udn ) del self._clients[k] break def new_server(self, client, udn ): # UPNP interface, the client is the local client to a UPNP server. # again container ids are just integers. _log.debug( "new_server udn %s", udn ) self._servers.add_server( client, udn ) def remove_server(self, client, udn ): _log.debug( "remove_server id %s", udn ) self._servers.remove_server( client, udn ) def log_result(self, result): for k in result: itm = result[k] if isinstance( itm, (list,tuple) ): for itm2 in itm: _log.debug( " item %s : %s", k, itm2 ) elif isinstance( itm, (dict) ): _log.debug( " item %s :", k ) for key2 in itm: itm2 = itm[key2] _log.debug( " item %s : %s", key2, itm2 ) else: _log.debug( "item %s : %s", k, itm ) # # list returns a container-id and a list of entries, the list may be returned as a dictionary for a template or XML # def generate_list(self, result, rid, id, offset, limit): # # if id is none then list the server sources. # else it a server-id:container-id. # # Output is an update to the result dictionary # and the id of the container it is from. # _log.debug( "list id %s", id ) result["rid"] = str(rid) # in case browsing after select renderer if rid: rid = int(rid) result["name"] = device_name(self._clients[rid]) else: result["name"] = "" srvc = None if id: srvc = self._servers.get_server(id) if srvc: ctr = srvc.get_container( id ) elif rid and self._clients.has_key(rid): srvc = self._servers.default_server_for_renderer(device_name(self._clients[rid])) if srvc: id = srvc.get_top_level_container_id() ctr = srvc.get_container( id ) result["title"] = "Browse" if srvc: _log.debug( "ctr %s", ctr ) if ctr: result["title"] = ctr.title() # result["title"] = "%s %s %s" % (ctr.artist(), ctr.album(), ctr.title()) result["items"] = list() for ntry in srvc.enum_container(ctr, offset): result["items"].append( ntry ) if len(result["items"]) >= limit: break result["id"] = id # container id result["offset"] = offset result["total"] = ctr.size() result["count"] = len(result["items"]) result["limit"] = limit result["breadcrumb"] = srvc.get_breadcrumb_trail(ctr) else: result["items"] = self._servers.get_servers() def add_clients(self,result): result["clients"] = {} result["links"] = {} for k in self._clients: clnt = self._clients[k] if clnt: result["clients"][k] = device_name(clnt) result["links"][k] = {} for k2 in self._clients: if k2 <> k and self._clients[k2]: # This shows wheteher we should display Link/UnLink for this client pair. result["links"][k][k2] = (True,True) # as a dictionary and as XML @turbogears.expose(template="WebBrickGateway.templates.mediaclient") def client(self,rid): rid = int(rid) if not self._clients.has_key(rid): return self.clients() # no longer present. result = ClientProfiles.makeStandardResponse( cherrypy.request, "mediaclient" ) result["rid"] = rid result["def_folder"] = "" # blank result["sid"] = "" srvc = self._servers.default_server_for_renderer(device_name(self._clients[rid])) if srvc: result["sid"] = srvc._server_id result["def_folder"] = srvc.get_default_container_id() result["limit"] = 50 # udn needed so client can pick up the correct event set. result["udn"] = self._clients[rid].device.get_id() result["name"] = device_name(self._clients[rid]) result["hasTransport"] = True # play,pause,position etc. result["hasRenderer"] = True # volume result["showServers"] = True # so can select tracks etc. self.add_clients( result ) return result # UPNP/media interface # @turbogears.expose(template="WebBrickGateway.templates.showqueue") def showqueue(self, rid): rid = int(rid) id = None srvc = self._servers.default_server_for_renderer(device_name(self._clients[rid])) if srvc: id = srvc.get_default_container_id() result = ClientProfiles.makeStandardResponse( cherrypy.request, "showqueue" ) self.generate_list(result, rid, id, 0, sys.maxint ) self.log_result(result) return result # # list returns a container-id and a list of entries, the list may be returned as a dictionary for a template or XML # @turbogears.expose(template="WebBrickGateway.templates.mediabrowse") def list(self, rid, id, offset, limit): # # return a list of entries # if id is none then list the server sources. # else it a server-id:container-id. # # Output is a list of items # and the id of the container it is from. # #TODO create breadcrumb trail # refresh containers. May be better to get UPNP classes to handle this trail # _log.debug( "list id %s", id ) result = ClientProfiles.makeStandardResponse( cherrypy.request, "mediabrowse" ) self.generate_list(result, rid, id, int(offset), int(limit) ) self.log_result(result) return result @turbogears.expose(template="WebBrickGateway.templates.mediaclientlist") def clients(self): result = ClientProfiles.makeStandardResponse( cherrypy.request, "mediaclientlist" ) self.add_clients( result ) return result def do_play(self, id, rid, queue_item): # if id None/blank then add complete container to be played. # locate server # locate current renderer # add to renderer play list. _log.debug( "play id %s, on %s", id, rid ) if rid: rid = int(rid) srv = self._servers.get_server(id) if srv: itm = srv.get_item( id ) _log.debug( "%s play %s", srv, itm ) # get hold of the server and add to queue. self._coherence.ctrl.play_item( srv._client, self._clients[rid], itm, queue_item ) @turbogears.expose() def clearqueue(self, rid ): # empty queue and return queue again rid = int(rid) _log.debug( "clearqueue rid %s", rid ) if self._clients.has_key(rid): self._coherence.ctrl.clear_queue( self._clients[rid] ) return self.client(rid) #return self.showqueue(rid) @turbogears.expose() def deletefromqueue(self, id, rid ): # delete entry and return new contents. rid = int(rid) srv = self._servers.get_server(id) if srv and self._clients.has_key(rid): itm = srv.get_item( id ) if itm: _log.debug( "deletefromqueue itm %s", itm ) reactor.callFromThread( self._clients[rid].av_transport.remove_from_queue, itm.id() ) return self.showqueue(rid) @turbogears.expose(template="WebBrickGateway.templates.mediazonelink") def zonelink(self, rid ): rid = int(rid) if not self._clients.has_key(rid): return self.clients() # no longer present. result = ClientProfiles.makeStandardResponse( cherrypy.request, "mediazonelink" ) result["rid"] = rid # udn needed so client can pick up the correct event set. result["udn"] = self._clients[rid].device.get_id() result["name"] = device_name(self._clients[rid]) result["clients"] = {} for k in self._clients: clnt = self._clients[k] if clnt and k <> rid: # exclude self. result["clients"][k] = device_name(clnt) # create list of zones return result @turbogears.expose() def albumart(self, id, uri): # the id of the track #srv = self._servers.get_server(id) #if srv: # itm = srv.get_item( id ) # # get album art uri. # DUMB proxy #unescape uri # parse parsed = urlparse( unquote(uri) ) #r = DoHTTPRequest(wbaddr, "GET", wbUri) @turbogears.expose() def dozonelink(self, rid, target ): _log.debug( "dozonelink rid %s target %s", rid, target ) if rid and target: rid = int(rid) target = int(target) if self._clients.has_key(rid) and self._clients.has_key(target): src_udn = "x-rincon:%s" % self._clients[rid].device.get_root_id()[5:] _log.debug( "dozonelink source %s", src_udn ) reactor.callFromThread( self._clients[target].av_transport.set_av_transport_uri, 0, src_udn) return self.zonelink(rid) @turbogears.expose() def dozonelinkall(self, rid): rid = int(rid) for k in self._clients: if k <> rid: self.dozonelink(rid, k ) return self.zonelink(rid) @turbogears.expose() def dozoneunlink(self, target ): _log.debug( "dozoneunlink rid %s", target ) if target: target = int(target) if self._clients.has_key(target): _log.debug( "dozonelink target %s", target ) reactor.callFromThread( self._clients[target].av_transport.unlink_from_group ) return self.clients() @turbogears.expose() def dozoneunlinkall(self, rid=None): for k in self._clients: if k <> rid: self.dozoneunlink(k ) if rid: return self.zonelink(rid) return self.clients() @turbogears.expose() def play(self, id, rid=None, clearQ=None): # if this is a single item then just play # else clear the queue and add then play self.do_play(id,rid,False) return '' # success/failure? @turbogears.expose() def queue(self, id, rid=None, clearQ=None): self.do_play(id,rid,True) return '' # success/failure? @turbogears.expose() def playqueue(self, rid): _log.debug( "playqueue on %s", rid ) if rid: rid = int(rid) srv = self._servers.default_server_for_renderer(device_name(self._clients[rid])) cid = srv.get_default_container_id() ctr = srv.get_container(cid) # get hold of the server and add to queue. self._coherence.ctrl.play_item( srv._client, self._clients[rid], ctr, False ) return self.client(rid) @turbogears.expose() def index(self,*args): return self.clients( '' ) # $Id: Media.py 3138 2009-04-15 10:17:29Z philipp.schuster $
35.673123
137
0.594923
d99d055e5010e28bd0adae4347e9ea5800041f33
10,544
py
Python
deps/v8/tools/test-wrapper-gypbuild.py
racker/node
7338d9b66ee8b15aeb38d0bb3f03861f2458b10b
[ "BSD-2-Clause" ]
5
2015-05-03T23:44:46.000Z
2020-01-04T22:20:56.000Z
deps/v8/tools/test-wrapper-gypbuild.py
trojanspike/node
2d0011f53256e7a1a707a6672772d36260f81691
[ "BSD-2-Clause" ]
null
null
null
deps/v8/tools/test-wrapper-gypbuild.py
trojanspike/node
2d0011f53256e7a1a707a6672772d36260f81691
[ "BSD-2-Clause" ]
1
2020-04-14T16:40:28.000Z
2020-04-14T16:40:28.000Z
#!/usr/bin/env python # # Copyright 2012 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # This is a convenience script to run the existing tools/test.py script # when using the gyp/make based build. # It is intended as a stop-gap rather than a long-term solution. import optparse import os from os.path import join, dirname, abspath import subprocess import sys PROGRESS_INDICATORS = ['verbose', 'dots', 'color', 'mono'] def BuildOptions(): result = optparse.OptionParser() # Flags specific to this wrapper script: result.add_option("--arch-and-mode", help='Architecture and mode in the format "arch.mode"', default=None) result.add_option("--outdir", help='Base output directory', default='out') result.add_option("--no-presubmit", help='Skip presubmit checks', default=False, action="store_true") result.add_option("--buildbot", help='Adapt to path structure used on buildbots', default=False, action="store_true") # Flags this wrapper script handles itself: result.add_option("-m", "--mode", help="The test modes in which to run (comma-separated)", default='release,debug') result.add_option("--arch", help='The architectures to run tests for (comma-separated)', default='ia32,x64,arm') # Flags that are passed on to the wrapped test.py script: result.add_option("-v", "--verbose", help="Verbose output", default=False, action="store_true") result.add_option("-p", "--progress", help="The style of progress indicator (verbose, dots, color, mono)", choices=PROGRESS_INDICATORS, default="mono") result.add_option("--report", help="Print a summary of the tests to be run", default=False, action="store_true") result.add_option("--download-data", help="Download missing test suite data", default=False, action="store_true") result.add_option("-s", "--suite", help="A test suite", default=[], action="append") result.add_option("-t", "--timeout", help="Timeout in seconds", default=60, type="int") result.add_option("--snapshot", help="Run the tests with snapshot turned on", default=False, action="store_true") result.add_option("--special-command", default=None) result.add_option("--valgrind", help="Run tests through valgrind", default=False, action="store_true") result.add_option("--cat", help="Print the source of the tests", default=False, action="store_true") result.add_option("--warn-unused", help="Report unused rules", default=False, action="store_true") result.add_option("-j", help="The number of parallel tasks to run", default=1, type="int") result.add_option("--time", help="Print timing information after running", default=False, action="store_true") result.add_option("--suppress-dialogs", help="Suppress Windows dialogs for crashing tests", dest="suppress_dialogs", default=True, action="store_true") result.add_option("--no-suppress-dialogs", help="Display Windows dialogs for crashing tests", dest="suppress_dialogs", action="store_false") result.add_option("--isolates", help="Whether to test isolates", default=False, action="store_true") result.add_option("--store-unexpected-output", help="Store the temporary JS files from tests that fails", dest="store_unexpected_output", default=True, action="store_true") result.add_option("--no-store-unexpected-output", help="Deletes the temporary JS files from tests that fails", dest="store_unexpected_output", action="store_false") result.add_option("--stress-only", help="Only run tests with --always-opt --stress-opt", default=False, action="store_true") result.add_option("--nostress", help="Don't run crankshaft --always-opt --stress-op test", default=False, action="store_true") result.add_option("--shard-count", help="Split testsuites into this number of shards", default=1, type="int") result.add_option("--shard-run", help="Run this shard from the split up tests.", default=1, type="int") result.add_option("--noprof", help="Disable profiling support", default=False) # Flags present in the original test.py that are unsupported in this wrapper: # -S [-> scons_flags] (we build with gyp/make, not scons) # --no-build (always true) # --build-only (always false) # --build-system (always 'gyp') # --simulator (always true if arch==arm, always false otherwise) # --shell (automatically chosen depending on arch and mode) return result def ProcessOptions(options): if options.arch_and_mode == ".": options.arch = [] options.mode = [] else: if options.arch_and_mode != None and options.arch_and_mode != "": tokens = options.arch_and_mode.split(".") options.arch = tokens[0] options.mode = tokens[1] options.mode = options.mode.split(',') options.arch = options.arch.split(',') for mode in options.mode: if not mode.lower() in ['debug', 'release']: print "Unknown mode %s" % mode return False for arch in options.arch: if not arch in ['ia32', 'x64', 'arm', 'mips']: print "Unknown architecture %s" % arch return False if options.buildbot: # Buildbots run presubmit tests as a separate step. options.no_presubmit = True return True def PassOnOptions(options): result = [] if options.verbose: result += ['--verbose'] if options.progress != 'mono': result += ['--progress=' + options.progress] if options.report: result += ['--report'] if options.download_data: result += ['--download-data'] if options.suite != []: for suite in options.suite: result += ['--suite=../../test/' + suite] if options.timeout != 60: result += ['--timeout=%s' % options.timeout] if options.snapshot: result += ['--snapshot'] if options.special_command: result += ['--special-command="%s"' % options.special_command] if options.valgrind: result += ['--valgrind'] if options.cat: result += ['--cat'] if options.warn_unused: result += ['--warn-unused'] if options.j != 1: result += ['-j%s' % options.j] if options.time: result += ['--time'] if not options.suppress_dialogs: result += ['--no-suppress-dialogs'] if options.isolates: result += ['--isolates'] if not options.store_unexpected_output: result += ['--no-store-unexpected_output'] if options.stress_only: result += ['--stress-only'] if options.nostress: result += ['--nostress'] if options.shard_count != 1: result += ['--shard-count=%s' % options.shard_count] if options.shard_run != 1: result += ['--shard-run=%s' % options.shard_run] if options.noprof: result += ['--noprof'] return result def Main(): parser = BuildOptions() (options, args) = parser.parse_args() if not ProcessOptions(options): parser.print_help() return 1 workspace = abspath(join(dirname(sys.argv[0]), '..')) returncodes = 0 if not options.no_presubmit: print ">>> running presubmit tests" returncodes += subprocess.call([workspace + '/tools/presubmit.py']) args_for_children = ['python'] args_for_children += [workspace + '/tools/test.py'] + PassOnOptions(options) args_for_children += ['--no-build', '--build-system=gyp'] for arg in args: args_for_children += [arg] env = os.environ for mode in options.mode: for arch in options.arch: print ">>> running tests for %s.%s" % (arch, mode) if options.buildbot: shellpath = workspace + '/' + options.outdir + '/' + mode mode = mode.lower() else: shellpath = workspace + '/' + options.outdir + '/' + arch + '.' + mode env['LD_LIBRARY_PATH'] = shellpath + '/lib.target' shell = shellpath + "/d8" cmdline = ' '.join(args_for_children + ['--arch=' + arch] + ['--mode=' + mode] + ['--shell=' + shell]) child = subprocess.Popen(cmdline, shell=True, cwd=workspace, env=env) returncodes += child.wait() if len(options.mode) == 0 and len(options.arch) == 0: print ">>> running tests" shellpath = workspace + '/' + options.outdir env['LD_LIBRARY_PATH'] = shellpath + '/lib.target' shell = shellpath + '/d8' child = subprocess.Popen(' '.join(args_for_children + ['--shell=' + shell]), shell=True, cwd=workspace, env=env) returncodes = child.wait() return returncodes if __name__ == '__main__': sys.exit(Main())
39.639098
102
0.638657
aff7ad795d84b58d719703f2d3322affb0aab5f8
9,522
py
Python
grr/checks/services_test.py
theGreenJedi/grr
d9e11e304dc299d49c76b7fdf6fdbfcd4b8eec39
[ "Apache-2.0" ]
null
null
null
grr/checks/services_test.py
theGreenJedi/grr
d9e11e304dc299d49c76b7fdf6fdbfcd4b8eec39
[ "Apache-2.0" ]
null
null
null
grr/checks/services_test.py
theGreenJedi/grr
d9e11e304dc299d49c76b7fdf6fdbfcd4b8eec39
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for service state checks.""" from grr.lib import flags from grr.lib import test_lib from grr.lib.checks import checks_test_lib from grr.lib.rdfvalues import client as rdf_client from grr.parsers import linux_service_parser from grr.parsers import linux_service_parser_test class XinetdServiceStateTests(checks_test_lib.HostCheckTest): @classmethod def setUpClass(cls): cls.LoadCheck("services.yaml") cls.parser = linux_service_parser.LinuxXinetdParser().ParseMultiple def RunXinetdCheck(self, chk_id, svc, disabled, sym, found, xinetd=False, should_detect=True): host_data = self.SetKnowledgeBase() cfgs = linux_service_parser_test.GenXinetd(svc, disabled) stats, files = linux_service_parser_test.GenTestData(cfgs, cfgs.values()) data = list(self.parser(stats, files, None)) # create entries on whether xinetd itself is setup to start or not if xinetd: cfgs = linux_service_parser_test.GenInit( "xinetd", "the extended Internet services daemon") stats, files = linux_service_parser_test.GenTestData(cfgs, cfgs.values()) lsb_parser = linux_service_parser.LinuxLSBInitParser() data.extend(list(lsb_parser.ParseMultiple(stats, files, None))) host_data["LinuxServices"] = self.SetArtifactData(parsed=data) results = self.RunChecks(host_data) if should_detect: self.assertCheckDetectedAnom(chk_id, results, sym, found) else: self.assertCheckUndetected(chk_id, results) def testEmptyXinetdCheck(self): chk_id = "CIS-INETD-WITH-NO-SERVICES" sym = "Missing attribute: xinetd running with no xinetd-managed services." found = ["Expected state was not found"] # xinetd is running and the only service is disabled - there should be a hit self.RunXinetdCheck(chk_id, "finger", "yes", sym, found, xinetd=True, should_detect=True) # xinetd is running and there is a service enabled - no hit self.RunXinetdCheck(chk_id, "finger", "no", sym, found, xinetd=True, should_detect=False) # xinetd not running and the only service is disabled - no hit self.RunXinetdCheck(chk_id, "finger", "yes", sym, found, xinetd=False, should_detect=False) # xinetd not running and there is a service enabled - no hit self.RunXinetdCheck(chk_id, "finger", "no", sym, found, xinetd=False, should_detect=False) def testLegacyXinetdServicesCheck(self): chk_id = "CIS-SERVICE-LEGACY-SERVICE-ENABLED" sym = "Found: Legacy services are running." found = ["telnet is started by XINETD"] self.RunXinetdCheck(chk_id, "telnet", "no", sym, found) self.RunXinetdCheck(chk_id, "telnet", "yes", sym, found, should_detect=False) def testUnwantedServicesCheck(self): chk_id = "CIS-SERVICE-SHOULD-NOT-RUN" sym = "Found: Remote administration services are running." found = ["webmin is started by XINETD"] self.RunXinetdCheck(chk_id, "webmin", "no", sym, found) self.RunXinetdCheck(chk_id, "webmin", "yes", sym, found, should_detect=False) class SysVInitStateTests(checks_test_lib.HostCheckTest): results = None @classmethod def setUpClass(cls): cls.LoadCheck("services.yaml") cls.parser = linux_service_parser.LinuxSysVInitParser().ParseMultiple def setUp(self, *args, **kwargs): super(SysVInitStateTests, self).setUp(*args, **kwargs) self.RunSysVChecks() def RunSysVChecks(self): host_data = self.SetKnowledgeBase() links = ["/etc/rc2.d/S50xinetd", "/etc/rc2.d/S60wu-ftpd", "/etc/rc2.d/S10ufw"] stats, files = linux_service_parser_test.GenTestData(links, [""] * len(links), st_mode=41471) parsed = list(self.parser(stats, files, None)) host_data["LinuxServices"] = self.SetArtifactData(parsed=parsed) self.results = self.RunChecks(host_data) def testEmptyXinetdCheck(self): chk_id = "CIS-INETD-WITH-NO-SERVICES" sym = "Missing attribute: xinetd running with no xinetd-managed services." self.assertCheckDetectedAnom(chk_id, self.results, sym) def testLegacyServicesCheck(self): chk_id = "CIS-SERVICE-LEGACY-SERVICE-ENABLED" sym = "Found: Legacy services are running." found = ["wu-ftpd is started by INIT"] self.assertCheckDetectedAnom(chk_id, self.results, sym, found) def testRequiredServicesNotRunningCheck(self): chk_id = "CIS-SERVICE-SHOULD-RUN" sym = "Missing attribute: Sysstat is not started at boot time." self.assertCheckDetectedAnom(chk_id, self.results, sym) class ListeningServiceTests(checks_test_lib.HostCheckTest): @classmethod def setUpClass(cls): cls.LoadCheck("services.yaml") def GenHostData(self): # Create some host_data.. host_data = self.SetKnowledgeBase() loop4 = self.AddListener("127.0.0.1", 6000) loop6 = self.AddListener("::1", 6000, "INET6") ext4 = self.AddListener("10.1.1.1", 6000) ext6 = self.AddListener("fc00::1", 6000, "INET6") x11 = rdf_client.Process(name="x11", pid=1233, connections=[loop4, loop6]) xorg = rdf_client.Process(name="xorg", pid=1234, connections=[loop4, loop6, ext4, ext6]) sshd = rdf_client.Process(name="sshd", pid=1235, connections=[loop4, loop6, ext4, ext6]) # Note: ListProcessesGrr is a flow artifact, hence it needs to be of # raw context. host_data["ListProcessesGrr"] = self.SetArtifactData(raw=[x11, xorg, sshd]) return host_data def testFindListeningServicesCheck(self): chk_id = "CIS-SERVICE-SHOULD-NOT-LISTEN" sym = "Found: Insecure services are accessible over the network." found = ["xorg (pid 1234) listens on 127.0.0.1,::1,10.1.1.1,fc00::1"] host_data = self.GenHostData() results = self.RunChecks(host_data) self.assertCheckDetectedAnom(chk_id, results, sym, found) def testFindNoRunningLogserver(self): chk_id = "CIS-SERVICE-LOGSERVER-RUNNING" sym = "Missing attribute: Logging software is not running." context = "RAW" found = ["Expected state was not found"] host_data = self.GenHostData() # Try it without rsyslog. results = self.RunChecks(host_data) self.assertCheckDetectedAnom(chk_id, results, sym, found) # Now rsyslog is running. logs = rdf_client.Process(name="rsyslogd", pid=1236) host_data["ListProcessesGrr"][context].append(logs) results = self.RunChecks(host_data) self.assertCheckUndetected(chk_id, results) # Check with some problematic real-world data. host_data = self.GenHostData() # Reset the host_data. # Added a non-logger process. We expect to raise an anom. proc1 = rdf_client.Process(name="python", pid=10554, ppid=1, exe="/usr/bin/python", cmdline=["/usr/bin/python", "-E", "/usr/sbin/foo_agent", "/etc/foo/conf.d/rsyslogd.conf", "/etc/foo/foobar.conf"]) host_data["ListProcessesGrr"][context].append(proc1) results = self.RunChecks(host_data) self.assertCheckDetectedAnom(chk_id, results, sym, found) # Now added a logging service proc. We expect no anom. this time. proc2 = rdf_client.Process(name="rsyslogd", pid=10200, ppid=1, exe="/sbin/rsyslogd", cmdline=["/sbin/rsyslogd", "-i", "/var/run/rsyslogd.pid", "-m", "0"]) host_data["ListProcessesGrr"][context].append(proc2) results = self.RunChecks(host_data) self.assertCheckUndetected(chk_id, results) # Add yet another non-logger process. We should still raise no anom. proc3 = rdf_client.Process(name="foobar", pid=31337, ppid=1, exe="/usr/local/bin/foobar", cmdline=["/usr/local/bin/foobar", "--test", "args"]) host_data["ListProcessesGrr"][context].append(proc3) results = self.RunChecks(host_data) self.assertCheckUndetected(chk_id, results) def main(argv): test_lib.GrrTestProgram(argv=argv) if __name__ == "__main__": flags.StartMain(main)
38.865306
80
0.584016
84986dba79fc0c9f5b7e05abdc15e14e487abe70
3,377
py
Python
REST_vs_AMQP/REST/DefaultHTTPRequestHandler.py
James-Chapman/python-code-snippets
9d3678055dc0d9ef2d5f10da6673477e64ba7b48
[ "BSD-2-Clause" ]
null
null
null
REST_vs_AMQP/REST/DefaultHTTPRequestHandler.py
James-Chapman/python-code-snippets
9d3678055dc0d9ef2d5f10da6673477e64ba7b48
[ "BSD-2-Clause" ]
null
null
null
REST_vs_AMQP/REST/DefaultHTTPRequestHandler.py
James-Chapman/python-code-snippets
9d3678055dc0d9ef2d5f10da6673477e64ba7b48
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- #=============================================================================== # Author : J.Chapman # License : BSD # Date : 4 August 2013 # Description : Python 3 Default HTTP Request Handler #=============================================================================== import http.server import logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class DefaultHTTPRequestHandler(http.server.BaseHTTPRequestHandler): """ Default HTTP Request Handler Interface class. """ def do_OPTIONS(self): """ Default OPTIONS function for the Request Handler """ try: logger.debug("OPTIONS request from: {0} to {1}".format(self.client_address, self.path[1])) self._handle_OPTIONS() except Exception as ex: self.send_response(500, ex) print("Exception in DefaultHTTPRequestHandler.do_OPTIONS(): {0}".format(ex)) def do_HEAD(self): """ Default HEAD function for the Request Handler """ try: logger.debug("HEAD request from: {0} to {1}".format(self.client_address, self.path[1])) self._handle_HEAD() except Exception as ex: self.send_response(500, ex) print("Exception in DefaultHTTPRequestHandler.do_HEAD(): {0}".format(ex)) def do_GET(self): """ Default GET function for the Request Handler """ try: logger.debug("GET request from: {0} to {1}".format(self.client_address, self.path[1])) self._handle_GET() except Exception as ex: self.send_response(500, ex) print("Exception in DefaultHTTPRequestHandler.do_GET(): {0}".format(ex)) def do_PUT(self): """ Default PUT function for the Request Handler """ try: logger.debug("PUT request from: {0} to {1}".format(self.client_address, self.path[1])) self._handle_PUT() except Exception as ex: self.send_response(500, ex) print("Exception in DefaultHTTPRequestHandler.do_PUT(): {0}".format(ex)) def do_POST(self): """ Default POST function for the Request Handler """ try: logger.debug("POST request from: {0} to {1}".format(self.client_address, self.path[1])) self._handle_POST() except Exception as ex: self.send_response(500, ex) print("Exception in DefaultHTTPRequestHandler.do_POST(): {0}".format(ex)) def _handle_OPTIONS(self): """ Handle OPTIONS function. Override this method. """ self.send_response(501, "Not implemented") def _handle_HEAD(self): """ Handle HEAD function. Override this method. """ self.send_response(501, "Not implemented") def _handle_GET(self): """ Handle GET function. Override this method. """ self.send_response(501, "Not implemented") def _handle_PUT(self): """ Handle PUT function. Override this method. """ self.send_response(501, "Not implemented") def _handle_POST(self): """ Handle POST function. Override this method. """ self.send_response(501, "Not implemented")
29.884956
102
0.561149
1988a925da1ac98ecdee2533ec29863a23d6c060
905
py
Python
allennlp/data/fields/__init__.py
tianjianjiang/allennlp
0839f5c263911ec5ff04a2ebe575493c7e0436ef
[ "Apache-2.0" ]
2
2019-12-03T20:04:56.000Z
2021-03-29T10:38:06.000Z
allennlp/data/fields/__init__.py
tianjianjiang/allennlp
0839f5c263911ec5ff04a2ebe575493c7e0436ef
[ "Apache-2.0" ]
5
2021-05-03T14:40:33.000Z
2021-05-03T14:40:34.000Z
allennlp/data/fields/__init__.py
tianjianjiang/allennlp
0839f5c263911ec5ff04a2ebe575493c7e0436ef
[ "Apache-2.0" ]
2
2019-12-21T05:58:44.000Z
2021-08-16T07:41:21.000Z
""" A :class:`~allennlp.data.fields.field.Field` is some piece of data instance that ends up as an array in a model. """ from allennlp.data.fields.field import Field from allennlp.data.fields.array_field import ArrayField from allennlp.data.fields.adjacency_field import AdjacencyField from allennlp.data.fields.index_field import IndexField from allennlp.data.fields.label_field import LabelField from allennlp.data.fields.multilabel_field import MultiLabelField from allennlp.data.fields.list_field import ListField from allennlp.data.fields.metadata_field import MetadataField from allennlp.data.fields.sequence_field import SequenceField from allennlp.data.fields.sequence_label_field import SequenceLabelField from allennlp.data.fields.span_field import SpanField from allennlp.data.fields.text_field import TextField from allennlp.data.fields.namespace_swapping_field import NamespaceSwappingField
47.631579
80
0.859669
18de46a67e368cc641ee87ec1bd201dd0ecb8e0a
4,164
py
Python
lib/squidlog.py
mnot/squidpeek
9479f4791f56ffe3d3465b6d515c802b9c6cb1a1
[ "Unlicense" ]
2
2016-02-04T07:34:32.000Z
2016-04-03T19:58:09.000Z
lib/squidlog.py
mnot/squidpeek
9479f4791f56ffe3d3465b6d515c802b9c6cb1a1
[ "Unlicense" ]
null
null
null
lib/squidlog.py
mnot/squidpeek
9479f4791f56ffe3d3465b6d515c802b9c6cb1a1
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python ''' Squid Web proxy cache log parsing classes. ''' # (c) 1998-2007 Copyright Mark Nottingham # <mnot@pobox.com> # # This software may be freely distributed, modified and used, # provided that this copyright notice remain intact. # # This software is provided 'as is' without warranty of any kind. # Squid Access Logfile Format # --------------------------- # # Version 1.1 Access log # # timestamp elapsed_time client log_tag/status bytes method URL rfc931 \ # peer_tag/peerhost mimetype # # rfc931: identd info, - otherwise # # # Squid Store Logfile Format # -------------------------- # # Version 1.1 Store log # # time action status datehdr lastmod expires type expect-len/real-len \ # method key # # # for more information about both formats, see the Squid FAQ at # http://squid.nlanr.net/ __version__ = '2.0' from string import atoi, atof, split, join, lower from re import compile from urllib import unquote import sys class AccessParser: ''' Splitting Squid Access Logfile Parser ''' _mime_splitter = compile("\[(.*?)\] \[(.*?)\]") _mime_indexer = compile("%0d%0a") _mime_hasher = compile("([\w\-_]+):\s*(.*)$") _time_headers = ['date', 'last-modified', 'expires'] def __init__(self, file_descriptor, parse_headers=False, debug=False): self._fd = file_descriptor self.parse_headers = parse_headers self.debug = debug self.num_processed = 0 self.num_error = 0 def __iter__(self): return self def next(self): while 1: # loop until we find a valid line, or end line = self._fd.next() self.num_processed += 1 n = split(line, None) try: o = { 'utime': int(float(n[0])), 'elapsed': int(n[1]), 'client': n[2], 'bytes': int(n[4]), 'method': n[5], 'url': n[6], 'ident': n[7], 'mimetype': n[9] } o['log_tag'], status = split(n[3], '/', 2) o['status'] = int(status) o['peer_tag'], o['peerhost'] = split(n[8], '/', 2) if len(n) > 10: if self.parse_headers and n[10][0] == '[': # mime headers present o['hdr_request'], o['hdr_response'] = self._parse_mime(" ".join(n[10:])) else: # some other fields; just save them raw in extra... i = 0 for field in n[10:]: i += 1 o['extra_%s' % i] = field return o except Exception, why: self.num_error = self.num_error + 1 if self.debug: sys.stderr.write("PARSE ERROR line %s: %s\n" % ( self.num_processed, why )) continue def _parse_mime(self, raw): match = self._mime_splitter.match(raw) if not match: return {}, {} return ( self._process_hdr(match.group(1)), self._process_hdr(match.group(2)) ) def _process_hdr(self, raw_header): from time import mktime, timezone from rfc822 import parsedate hdrs = {} header_list = self._mime_indexer.split(raw_header) for header in header_list: match = self._mime_hasher.match(header) if not match: continue key = lower(match.group(1)) value = unquote(match.group(2)) if key in self._time_headers: value = mktime(parsedate(value)) - timezone hdrs[key] = value return hdrs def test_access(): log = AccessParser(sys.stdin) for line in log: print "%s %s %s" % (line['url'], line['status'], line['log_tag']) print "lines: %s" % (log.num_processed) print "error: %s" % (log.num_error) if __name__ == '__main__': test_access()
28.326531
102
0.513929
d50ef794e919c65ee51955b99bc1bb9db1a2eea4
1,958
py
Python
algotrader/trading/subscription.py
alexcwyu/python-trading
a494f602411a3ebfdecae002a16a5ea93fc7a046
[ "Apache-2.0" ]
17
2016-03-30T21:52:30.000Z
2021-05-01T18:21:48.000Z
algotrader/trading/subscription.py
ajmal017/python-trading
a494f602411a3ebfdecae002a16a5ea93fc7a046
[ "Apache-2.0" ]
2
2016-10-04T19:29:05.000Z
2017-02-01T19:24:39.000Z
algotrader/trading/subscription.py
ajmal017/python-trading
a494f602411a3ebfdecae002a16a5ea93fc7a046
[ "Apache-2.0" ]
9
2016-04-24T05:05:26.000Z
2020-05-03T13:01:34.000Z
from algotrader.model.market_data_pb2 import MarketDataSubscriptionRequest from algotrader.model.model_factory import ModelFactory from algotrader.utils.market_data import get_subscription_type, get_bar_size, get_bar_type class MarketDataSubscriber(object): def subscript_market_data(self, feed, instruments, subscription_types, from_date=None, to_date=None): for sub_req in self.build_subscription_requests(feed.id(), instruments, subscription_types, from_date, to_date): feed.subscribe_mktdata(sub_req) def build_subscription_requests(self, feed_id, instruments, subscription_types, from_date=None, to_date=None): reqs = [] for instrument in instruments: for subscription_type in subscription_types: attrs = subscription_type.split(".") md_type = get_subscription_type(attrs[0]) md_provider_id = attrs[1] bar_type = get_bar_type(attrs[2]) if md_type == MarketDataSubscriptionRequest.Bar else None bar_size = get_bar_size(attrs[3]) if md_type == MarketDataSubscriptionRequest.Bar else None reqs.append(ModelFactory.build_market_data_subscription_request(type=md_type, inst_id=instrument.inst_id, feed_id=feed_id, md_provider_id=md_provider_id, bar_type=bar_type, bar_size=bar_size, from_date=from_date, to_date=to_date)) return reqs
65.266667
120
0.533197
b45fde003be43a9cd530f2545f36a3fa7bdb7ed1
2,411
py
Python
exercise5.py
regsevillasibal/FTW3_Webscrapping
ed64cd866858e612e3a99f9144e6967c687e057f
[ "Apache-2.0" ]
null
null
null
exercise5.py
regsevillasibal/FTW3_Webscrapping
ed64cd866858e612e3a99f9144e6967c687e057f
[ "Apache-2.0" ]
null
null
null
exercise5.py
regsevillasibal/FTW3_Webscrapping
ed64cd866858e612e3a99f9144e6967c687e057f
[ "Apache-2.0" ]
null
null
null
from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException import os import pymysql conn = pymysql.connect(host='127.0.0.1',user='root', passwd = 'g2Rc*ys12', db = 'mysql', charset = 'utf8') cur = conn.cursor() cur.execute("USE scraperdb") def store(agency, region, position, plantilla, postingDate, closingDate): # finish this mysql query cur.execute() #check this*** cur.connection.commit() dirpath = os.getcwd() filepath = dirpath + '/chromedriver' print('Path to Driver: ' + filepath) browser = webdriver.Chrome(executable_path = filepath) browser.get("http://csc.gov.ph/career/index.php") try: # Wait as long as required, or maximum of 5 sec for element to appear # If successful, retrieves the element element = WebDriverWait(browser,5).until( EC.presence_of_element_located((By.XPATH, '/html/body/div[1]/div[4]/button/span'))) element.click() # Find where the element that contains all of the listings listingsElement = WebDriverWait(browser, 5).until( EC.presence_of_element_located((By.XPATH, '//*[@id="jobs"]/tbody'))) # Then find all of the listings by using the class name found in all of the individual listings listings = listingsElement.find_elements(By.TAG_NAME, "tr") # get all of the rows in the table for row in listings: # Get the columns from the table row agency = row.find_elements(By.TAG_NAME, "td")[0] #note: index starts from 0, so 0 is 1st column, 1 is 2nd column, 2 is 3rd column, etc print(agency.text) #prints text from the element region = row.find_elements(By.TAG_NAME, "td")[1] print(region.text) positionTitle = row.find_elements(By.TAG_NAME, "td")[2] print(positionTitle.text) plantilla = row.find_elements(By.TAG_NAME, "td")[3] print(plantilla.text) postingDate = row.find_elements(By.TAG_NAME, "td")[3] print(postingDate.text) closingDate = row.find_elements(By.TAG_NAME, "td")[4] print(closingDate.text) print("######################") # call your database insert function here except TimeoutException: print("Failed to load") finally: browser.quit()
34.942029
142
0.685193
39d7f09f68fd7f6a6c5fe1af6ef7c2ed4bb2fc10
4,011
py
Python
plato/clients/simple.py
iQua/plato
76fdac06af8b4d85922cd12749b4a687e3161745
[ "Apache-2.0" ]
null
null
null
plato/clients/simple.py
iQua/plato
76fdac06af8b4d85922cd12749b4a687e3161745
[ "Apache-2.0" ]
null
null
null
plato/clients/simple.py
iQua/plato
76fdac06af8b4d85922cd12749b4a687e3161745
[ "Apache-2.0" ]
1
2021-05-18T15:03:32.000Z
2021-05-18T15:03:32.000Z
""" A basic federated learning client who sends weight updates to the server. """ import logging import time from dataclasses import dataclass from plato.algorithms import registry as algorithms_registry from plato.config import Config from plato.datasources import registry as datasources_registry from plato.samplers import registry as samplers_registry from plato.trainers import registry as trainers_registry from plato.clients import base @dataclass class Report(base.Report): """Report from a simple client, to be sent to the federated learning server.""" training_time: float data_loading_time: float class Client(base.Client): """A basic federated learning client who sends simple weight updates.""" def __init__(self, model=None, datasource=None, trainer=None): super().__init__() self.model = model self.datasource = datasource self.trainer = trainer self.trainset = None # Training dataset self.testset = None # Testing dataset self.algorithm = None self.sampler = None self.data_loading_time = None self.data_loading_time_sent = False def __repr__(self): return 'Client #{}.'.format(self.client_id) def configure(self) -> None: """Prepare this client for training.""" if self.trainer is None: self.trainer = trainers_registry.get(self.client_id, self.model) self.trainer.set_client_id(self.client_id) self.algorithm = algorithms_registry.get(self.trainer, self.client_id) def load_data(self) -> None: """Generating data and loading them onto this client.""" data_loading_start_time = time.time() logging.info("[Client #%s] Loading its data source...", self.client_id) if self.datasource is None: self.datasource = datasources_registry.get() self.data_loaded = True logging.info("[Client #%s] Dataset size: %s", self.client_id, self.datasource.num_train_examples()) # Setting up the data sampler self.sampler = samplers_registry.get(self.datasource, self.client_id) if hasattr(Config().trainer, 'use_mindspore'): # MindSpore requires samplers to be used while constructing # the dataset self.trainset = self.datasource.get_train_set(self.sampler) else: # PyTorch uses samplers when loading data with a data loader self.trainset = self.datasource.get_train_set() if Config().clients.do_test: # Set the testset if local testing is needed self.testset = self.datasource.get_test_set() self.data_loading_time = time.time() - data_loading_start_time def load_payload(self, server_payload) -> None: """Loading the server model onto this client.""" self.algorithm.load_weights(server_payload) async def train(self): """The machine learning training workload on a client.""" training_start_time = time.time() logging.info("[Client #%s] Started training.", self.client_id) # Perform model training self.trainer.train(self.trainset, self.sampler) # Extract model weights and biases weights = self.algorithm.extract_weights() # Generate a report for the server, performing model testing if applicable if Config().clients.do_test: accuracy = self.trainer.test(self.testset) logging.info("[Client #{:d}] Test accuracy: {:.2f}%".format( self.client_id, 100 * accuracy)) else: accuracy = 0 training_time = time.time() - training_start_time data_loading_time = 0 if not self.data_loading_time_sent: data_loading_time = self.data_loading_time self.data_loading_time_sent = True return Report(self.sampler.trainset_size(), accuracy, training_time, data_loading_time), weights
34.878261
83
0.665171
6e634f814e10c50d15e1259dc87340997f502b49
34,155
py
Python
virtual/lib/python3.6/site-packages/pip/_vendor/requests/models.py
EugeneZnm/LEVELS
21874a7585b559795d49b3334e7bb9907af7888a
[ "Unlicense" ]
null
null
null
virtual/lib/python3.6/site-packages/pip/_vendor/requests/models.py
EugeneZnm/LEVELS
21874a7585b559795d49b3334e7bb9907af7888a
[ "Unlicense" ]
4
2020-06-05T19:28:58.000Z
2021-09-08T00:33:00.000Z
virtual/lib/python3.6/site-packages/pip/_vendor/requests/models.py
EugeneZnm/LEVELS
21874a7585b559795d49b3334e7bb9907af7888a
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- """ requests.models ~~~~~~~~~~~~~~~ This module contains the primary objects that power Requests. """ import datetime import sys # Import encoding now, to avoid implicit import later. # Implicit import within threads may cause LookupError when standard library is in a ZIP, # such as in Embedded Python. See https://github.com/requests/requests/issues/3578. import encodings.idna from pip._vendor.urllib3.fields import RequestField from pip._vendor.urllib3.filepost import encode_multipart_formdata from pip._vendor.urllib3.util import parse_url from pip._vendor.urllib3.exceptions import ( DecodeError, ReadTimeoutError, ProtocolError, LocationParseError) from io import UnsupportedOperation from .hooks import default_hooks from .structures import CaseInsensitiveDict from .auth import HTTPBasicAuth from .cookies import cookiejar_from_dict, get_cookie_header, _copy_cookie_jar from .exceptions import ( HTTPError, MissingSchema, InvalidURL, ChunkedEncodingError, ContentDecodingError, ConnectionError, StreamConsumedError) from ._internal_utils import to_native_string, unicode_is_ascii from .utils import ( guess_filename, get_auth_from_url, requote_uri, stream_decode_response_unicode, to_key_val_list, parse_header_links, iter_slices, guess_json_utf, super_len, check_header_validity) from .compat import ( Callable, Mapping, cookielib, urlunparse, urlsplit, urlencode, str, bytes, is_py2, chardet, builtin_str, basestring) from .compat import json as complexjson from .status_codes import codes #: The set of HTTP status codes that indicate an automatically #: processable redirect. REDIRECT_STATI = ( codes.moved, # 301 codes.found, # 302 codes.other, # 303 codes.temporary_redirect, # 307 codes.permanent_redirect, # 308 ) DEFAULT_REDIRECT_LIMIT = 30 CONTENT_CHUNK_SIZE = 10 * 1024 ITER_CHUNK_SIZE = 512 class RequestEncodingMixin(object): @property def path_url(self): """Build the path URL to use.""" url = [] p = urlsplit(self.url) path = p.path if not path: path = '/' url.append(path) query = p.query if query: url.append('?') url.append(query) return ''.join(url) @staticmethod def _encode_params(data): """Encode parameters in a piece of data. Will successfully encode parameters when passed as a dict or a list of 2-tuples. Order is retained if data is a list of 2-tuples but arbitrary if parameters are supplied as a dict. """ if isinstance(data, (str, bytes)): return data elif hasattr(data, 'read'): return data elif hasattr(data, '__iter__'): result = [] for k, vs in to_key_val_list(data): if isinstance(vs, basestring) or not hasattr(vs, '__iter__'): vs = [vs] for v in vs: if v is not None: result.append( (k.encode('utf-8') if isinstance(k, str) else k, v.encode('utf-8') if isinstance(v, str) else v)) return urlencode(result, doseq=True) else: return data @staticmethod def _encode_files(files, data): """Build the body for a multipart/form-data request. Will successfully encode files when passed as a dict or a list of tuples. Order is retained if data is a list of tuples but arbitrary if parameters are supplied as a dict. The tuples may be 2-tuples (filename, fileobj), 3-tuples (filename, fileobj, contentype) or 4-tuples (filename, fileobj, contentype, custom_headers). """ if (not files): raise ValueError("Files must be provided.") elif isinstance(data, basestring): raise ValueError("Data must not be a string.") new_fields = [] fields = to_key_val_list(data or {}) files = to_key_val_list(files or {}) for field, val in fields: if isinstance(val, basestring) or not hasattr(val, '__iter__'): val = [val] for v in val: if v is not None: # Don't call str() on bytestrings: in Py3 it all goes wrong. if not isinstance(v, bytes): v = str(v) new_fields.append( (field.decode('utf-8') if isinstance(field, bytes) else field, v.encode('utf-8') if isinstance(v, str) else v)) for (k, v) in files: # support for explicit filename ft = None fh = None if isinstance(v, (tuple, list)): if len(v) == 2: fn, fp = v elif len(v) == 3: fn, fp, ft = v else: fn, fp, ft, fh = v else: fn = guess_filename(v) or k fp = v if isinstance(fp, (str, bytes, bytearray)): fdata = fp elif hasattr(fp, 'read'): fdata = fp.read() elif fp is None: continue else: fdata = fp rf = RequestField(name=k, data=fdata, filename=fn, headers=fh) rf.make_multipart(content_type=ft) new_fields.append(rf) body, content_type = encode_multipart_formdata(new_fields) return body, content_type class RequestHooksMixin(object): def register_hook(self, event, hook): """Properly register a hook.""" if event not in self.hooks: raise ValueError('Unsupported event specified, with event name "%s"' % (event)) if isinstance(hook, Callable): self.hooks[event].append(hook) elif hasattr(hook, '__iter__'): self.hooks[event].extend(h for h in hook if isinstance(h, Callable)) def deregister_hook(self, event, hook): """Deregister a previously registered hook. Returns True if the hook existed, False if not. """ try: self.hooks[event].remove(hook) return True except ValueError: return False class Request(RequestHooksMixin): """A user-created :class:`Request <Request>` object. Used to prepare a :class:`PreparedRequest <PreparedRequest>`, which is sent to the server. :param method: HTTP method to use. :param url: URL to send. :param headers: dictionary of headers to send. :param files: dictionary of {filename: fileobject} files to multipart upload. :param data: the body to attach to the request. If a dictionary is provided, form-encoding will take place. :param json: json for the body to attach to the request (if files or data is not specified). :param params: dictionary of URL parameters to append to the URL. :param auth: Auth handler or (user, pass) tuple. :param cookies: dictionary or CookieJar of cookies to attach to this request. :param hooks: dictionary of callback hooks, for internal usage. Usage:: >>> import requests >>> req = requests.Request('GET', 'http://httpbin.org/get') >>> req.prepare() <PreparedRequest [GET]> """ def __init__(self, method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None): # Default empty dicts for dict params. data = [] if data is None else data files = [] if files is None else files headers = {} if headers is None else headers params = {} if params is None else params hooks = {} if hooks is None else hooks self.hooks = default_hooks() for (k, v) in list(hooks.items()): self.register_hook(event=k, hook=v) self.method = method self.url = url self.headers = headers self.files = files self.data = data self.json = json self.params = params self.auth = auth self.cookies = cookies def __repr__(self): return '<Request [%s]>' % (self.method) def prepare(self): """Constructs a :class:`PreparedRequest <PreparedRequest>` for transmission and returns it.""" p = PreparedRequest() p.prepare( method=self.method, url=self.url, headers=self.headers, files=self.files, data=self.data, json=self.json, params=self.params, auth=self.auth, cookies=self.cookies, hooks=self.hooks, ) return p class PreparedRequest(RequestEncodingMixin, RequestHooksMixin): """The fully mutable :class:`PreparedRequest <PreparedRequest>` object, containing the exact bytes that will be sent to the server. Generated from either a :class:`Request <Request>` object or manually. Usage:: >>> import requests >>> req = requests.Request('GET', 'http://httpbin.org/get') >>> r = req.prepare() <PreparedRequest [GET]> >>> s = requests.Session() >>> s.send(r) <Response [200]> """ def __init__(self): #: HTTP verb to send to the server. self.method = None #: HTTP URL to send the request to. self.url = None #: dictionary of HTTP headers. self.headers = None # The `CookieJar` used to create the Cookie header will be stored here # after prepare_cookies is called self._cookies = None #: request body to send to the server. self.body = None #: dictionary of callback hooks, for internal usage. self.hooks = default_hooks() #: integer denoting starting position of a readable file-like body. self._body_position = None def prepare(self, method=None, url=None, headers=None, files=None, data=None, params=None, auth=None, cookies=None, hooks=None, json=None): """Prepares the entire request with the given parameters.""" self.prepare_method(method) self.prepare_url(url, params) self.prepare_headers(headers) self.prepare_cookies(cookies) self.prepare_body(data, files, json) self.prepare_auth(auth, url) # Note that prepare_auth must be last to enable templates schemes # such as OAuth to work on a fully prepared request. # This MUST go after prepare_auth. Authenticators could add a hook self.prepare_hooks(hooks) def __repr__(self): return '<PreparedRequest [%s]>' % (self.method) def copy(self): p = PreparedRequest() p.method = self.method p.url = self.url p.headers = self.headers.copy() if self.headers is not None else None p._cookies = _copy_cookie_jar(self._cookies) p.body = self.body p.hooks = self.hooks p._body_position = self._body_position return p def prepare_method(self, method): """Prepares the given HTTP method.""" self.method = method if self.method is not None: self.method = to_native_string(self.method.upper()) @staticmethod def _get_idna_encoded_host(host): from pip._vendor import idna try: host = idna.encode(host, uts46=True).decode('utf-8') except idna.IDNAError: raise UnicodeError return host def prepare_url(self, url, params): """Prepares the given HTTP URL.""" #: Accept objects that have string representations. #: We're unable to blindly call unicode/str functions #: as this will include the bytestring indicator (b'') #: on python 3.x. #: https://github.com/requests/requests/pull/2238 if isinstance(url, bytes): url = url.decode('utf8') else: url = unicode(url) if is_py2 else str(url) # Remove leading whitespaces from url url = url.lstrip() # Don't do any URL preparation for non-HTTP schemes like `mailto`, # `data` etc to work around exceptions from `url_parse`, which # handles RFC 3986 only. if ':' in url and not url.lower().startswith('http'): self.url = url return # Support for unicode domain names and paths. try: scheme, auth, host, port, path, query, fragment = parse_url(url) except LocationParseError as e: raise InvalidURL(*e.args) if not scheme: error = ("Invalid URL {0!r}: No schema supplied. Perhaps you meant http://{0}?") error = error.format(to_native_string(url, 'utf8')) raise MissingSchema(error) if not host: raise InvalidURL("Invalid URL %r: No host supplied" % url) # In general, we want to try IDNA encoding the hostname if the string contains # non-ASCII characters. This allows users to automatically get the correct IDNA # behaviour. For strings containing only ASCII characters, we need to also verify # it doesn't start with a wildcard (*), before allowing the unencoded hostname. if not unicode_is_ascii(host): try: host = self._get_idna_encoded_host(host) except UnicodeError: raise InvalidURL('URL has an invalid label.') elif host.startswith(u'*'): raise InvalidURL('URL has an invalid label.') # Carefully reconstruct the network location netloc = auth or '' if netloc: netloc += '@' netloc += host if port: netloc += ':' + str(port) # Bare domains aren't valid URLs. if not path: path = '/' if is_py2: if isinstance(scheme, str): scheme = scheme.encode('utf-8') if isinstance(netloc, str): netloc = netloc.encode('utf-8') if isinstance(path, str): path = path.encode('utf-8') if isinstance(query, str): query = query.encode('utf-8') if isinstance(fragment, str): fragment = fragment.encode('utf-8') if isinstance(params, (str, bytes)): params = to_native_string(params) enc_params = self._encode_params(params) if enc_params: if query: query = '%s&%s' % (query, enc_params) else: query = enc_params url = requote_uri(urlunparse([scheme, netloc, path, None, query, fragment])) self.url = url def prepare_headers(self, headers): """Prepares the given HTTP headers.""" self.headers = CaseInsensitiveDict() if headers: for header in headers.items(): # Raise exception on invalid header value. check_header_validity(header) name, value = header self.headers[to_native_string(name)] = value def prepare_body(self, data, files, json=None): """Prepares the given HTTP body data.""" # Check if file, fo, generator, iterator. # If not, run through normal process. # Nottin' on you. body = None content_type = None if not data and json is not None: # urllib3 requires a bytes-like body. Python 2's json.dumps # provides this natively, but Python 3 gives a Unicode string. content_type = 'application/json' body = complexjson.dumps(json) if not isinstance(body, bytes): body = body.encode('utf-8') is_stream = all([ hasattr(data, '__iter__'), not isinstance(data, (basestring, list, tuple, Mapping)) ]) try: length = super_len(data) except (TypeError, AttributeError, UnsupportedOperation): length = None if is_stream: body = data if getattr(body, 'tell', None) is not None: # Record the current file position before reading. # This will allow us to rewind a file in the event # of a redirect. try: self._body_position = body.tell() except (IOError, OSError): # This differentiates from None, allowing us to catch # a failed `tell()` later when trying to rewind the body self._body_position = object() if files: raise NotImplementedError('Streamed bodies and files are mutually exclusive.') if length: self.headers['Content-Length'] = builtin_str(length) else: self.headers['Transfer-Encoding'] = 'chunked' else: # Multi-part file uploads. if files: (body, content_type) = self._encode_files(files, data) else: if data: body = self._encode_params(data) if isinstance(data, basestring) or hasattr(data, 'read'): content_type = None else: content_type = 'application/x-www-form-urlencoded' self.prepare_content_length(body) # Add content-type if it wasn't explicitly provided. if content_type and ('content-type' not in self.headers): self.headers['Content-Type'] = content_type self.body = body def prepare_content_length(self, body): """Prepare Content-Length header based on request method and body""" if body is not None: length = super_len(body) if length: # If length exists, set it. Otherwise, we fallback # to Transfer-Encoding: chunked. self.headers['Content-Length'] = builtin_str(length) elif self.method not in ('GET', 'HEAD') and self.headers.get('Content-Length') is None: # Set Content-Length to 0 for methods that can have a body # but don't provide one. (i.e. not GET or HEAD) self.headers['Content-Length'] = '0' def prepare_auth(self, auth, url=''): """Prepares the given HTTP auth data.""" # If no Auth is explicitly provided, extract it from the URL first. if auth is None: url_auth = get_auth_from_url(self.url) auth = url_auth if any(url_auth) else None if auth: if isinstance(auth, tuple) and len(auth) == 2: # special-case basic HTTP auth auth = HTTPBasicAuth(*auth) # Allow auth to make its changes. r = auth(self) # Update self to reflect the auth changes. self.__dict__.update(r.__dict__) # Recompute Content-Length self.prepare_content_length(self.body) def prepare_cookies(self, cookies): """Prepares the given HTTP cookie data. This function eventually generates a ``Cookie`` header from the given cookies using cookielib. Due to cookielib's design, the header will not be regenerated if it already exists, meaning this function can only be called once for the life of the :class:`PreparedRequest <PreparedRequest>` object. Any subsequent calls to ``prepare_cookies`` will have no actual effect, unless the "Cookie" header is removed beforehand. """ if isinstance(cookies, cookielib.CookieJar): self._cookies = cookies else: self._cookies = cookiejar_from_dict(cookies) cookie_header = get_cookie_header(self._cookies, self) if cookie_header is not None: self.headers['Cookie'] = cookie_header def prepare_hooks(self, hooks): """Prepares the given hooks.""" # hooks can be passed as None to the prepare method and to this # method. To prevent iterating over None, simply use an empty list # if hooks is False-y hooks = hooks or [] for event in hooks: self.register_hook(event, hooks[event]) class Response(object): """The :class:`Response <Response>` object, which contains a server's response to an HTTP request. """ __attrs__ = [ '_content', 'status_code', 'headers', 'url', 'history', 'encoding', 'reason', 'cookies', 'elapsed', 'request' ] def __init__(self): self._content = False self._content_consumed = False self._next = None #: Integer Code of responded HTTP Status, e.g. 404 or 200. self.status_code = None #: Case-insensitive Dictionary of Response Headers. #: For example, ``headers['content-encoding']`` will return the #: value of a ``'Content-Encoding'`` response header. self.headers = CaseInsensitiveDict() #: File-like object representation of response (for advanced usage). #: Use of ``raw`` requires that ``stream=True`` be set on the request. # This requirement does not apply for use internally to Requests. self.raw = None #: Final URL location of Response. self.url = None #: Encoding to decode with when accessing r.text. self.encoding = None #: A list of :class:`Response <Response>` objects from #: the history of the Request. Any redirect responses will end #: up here. The list is sorted from the oldest to the most recent request. self.history = [] #: Textual reason of responded HTTP Status, e.g. "Not Found" or "OK". self.reason = None #: A CookieJar of Cookies the server sent back. self.cookies = cookiejar_from_dict({}) #: The amount of time elapsed between sending the request #: and the arrival of the response (as a timedelta). #: This property specifically measures the time taken between sending #: the first byte of the request and finishing parsing the headers. It #: is therefore unaffected by consuming the response content or the #: value of the ``stream`` keyword argument. self.elapsed = datetime.timedelta(0) #: The :class:`PreparedRequest <PreparedRequest>` object to which this #: is a response. self.request = None def __enter__(self): return self def __exit__(self, *args): self.close() def __getstate__(self): # Consume everything; accessing the content attribute makes # sure the content has been fully read. if not self._content_consumed: self.content return dict( (attr, getattr(self, attr, None)) for attr in self.__attrs__ ) def __setstate__(self, state): for name, value in state.items(): setattr(self, name, value) # pickled objects do not have .raw setattr(self, '_content_consumed', True) setattr(self, 'raw', None) def __repr__(self): return '<Response [%s]>' % (self.status_code) def __bool__(self): """Returns True if :attr:`status_code` is less than 400. This attribute checks if the status code of the response is between 400 and 600 to see if there was a client error or a server error. If the status code, is between 200 and 400, this will return True. This is **not** a check to see if the response code is ``200 OK``. """ return self.ok def __nonzero__(self): """Returns True if :attr:`status_code` is less than 400. This attribute checks if the status code of the response is between 400 and 600 to see if there was a client error or a server error. If the status code, is between 200 and 400, this will return True. This is **not** a check to see if the response code is ``200 OK``. """ return self.ok def __iter__(self): """Allows you to use a response as an iterator.""" return self.iter_content(128) @property def ok(self): """Returns True if :attr:`status_code` is less than 400, False if not. This attribute checks if the status code of the response is between 400 and 600 to see if there was a client error or a server error. If the status code is between 200 and 400, this will return True. This is **not** a check to see if the response code is ``200 OK``. """ try: self.raise_for_status() except HTTPError: return False return True @property def is_redirect(self): """True if this Response is a well-formed HTTP redirect that could have been processed automatically (by :meth:`Session.resolve_redirects`). """ return ('location' in self.headers and self.status_code in REDIRECT_STATI) @property def is_permanent_redirect(self): """True if this Response one of the permanent versions of redirect.""" return ('location' in self.headers and self.status_code in (codes.moved_permanently, codes.permanent_redirect)) @property def next(self): """Returns a PreparedRequest for the next request in a redirect chain, if there is one.""" return self._next @property def apparent_encoding(self): """The apparent encoding, provided by the chardet library.""" return chardet.detect(self.content)['encoding'] def iter_content(self, chunk_size=1, decode_unicode=False): """Iterates over the response data. When stream=True is set on the request, this avoids reading the content at once into memory for large responses. The chunk size is the number of bytes it should read into memory. This is not necessarily the length of each item returned as decoding can take place. chunk_size must be of type int or None. A value of None will function differently depending on the value of `stream`. stream=True will read data as it arrives in whatever size the chunks are received. If stream=False, data is returned as a single chunk. If decode_unicode is True, content will be decoded using the best available encoding based on the response. """ def generate(): # Special case for urllib3. if hasattr(self.raw, 'stream'): try: for chunk in self.raw.stream(chunk_size, decode_content=True): yield chunk except ProtocolError as e: raise ChunkedEncodingError(e) except DecodeError as e: raise ContentDecodingError(e) except ReadTimeoutError as e: raise ConnectionError(e) else: # Standard file-like object. while True: chunk = self.raw.read(chunk_size) if not chunk: break yield chunk self._content_consumed = True if self._content_consumed and isinstance(self._content, bool): raise StreamConsumedError() elif chunk_size is not None and not isinstance(chunk_size, int): raise TypeError("chunk_size must be an int, it is instead a %s." % type(chunk_size)) # simulate reading small chunks of the content reused_chunks = iter_slices(self._content, chunk_size) stream_chunks = generate() chunks = reused_chunks if self._content_consumed else stream_chunks if decode_unicode: chunks = stream_decode_response_unicode(chunks, self) return chunks def iter_lines(self, chunk_size=ITER_CHUNK_SIZE, decode_unicode=None, delimiter=None): """Iterates over the response data, one line at a time. When stream=True is set on the request, this avoids reading the content at once into memory for large responses. .. note:: This method is not reentrant safe. """ pending = None for chunk in self.iter_content(chunk_size=chunk_size, decode_unicode=decode_unicode): if pending is not None: chunk = pending + chunk if delimiter: lines = chunk.split(delimiter) else: lines = chunk.splitlines() if lines and lines[-1] and chunk and lines[-1][-1] == chunk[-1]: pending = lines.pop() else: pending = None for line in lines: yield line if pending is not None: yield pending @property def content(self): """Content of the response, in bytes.""" if self._content is False: # Read the contents. if self._content_consumed: raise RuntimeError( 'The content for this response was already consumed') if self.status_code == 0 or self.raw is None: self._content = None else: self._content = b''.join(self.iter_content(CONTENT_CHUNK_SIZE)) or b'' self._content_consumed = True # don't need to release the connection; that's been handled by urllib3 # since we exhausted the data. return self._content @property def text(self): """Content of the response, in unicode. If Response.encoding is None, encoding will be guessed using ``chardet``. The encoding of the response content is determined based solely on HTTP headers, following RFC 2616 to the letter. If you can take advantage of non-HTTP knowledge to make a better guess at the encoding, you should set ``r.encoding`` appropriately before accessing this property. """ # Try charset from content-type content = None encoding = self.encoding if not self.content: return str('') # Fallback to auto-detected encoding. if self.encoding is None: encoding = self.apparent_encoding # Decode unicode from given encoding. try: content = str(self.content, encoding, errors='replace') except (LookupError, TypeError): # A LookupError is raised if the encoding was not found which could # indicate a misspelling or similar mistake. # # A TypeError can be raised if encoding is None # # So we try blindly encoding. content = str(self.content, errors='replace') return content def json(self, **kwargs): r"""Returns the json-encoded content of a response, if any. :param \*\*kwargs: Optional arguments that ``json.loads`` takes. :raises ValueError: If the response body does not contain valid json. """ if not self.encoding and self.content and len(self.content) > 3: # No encoding set. JSON RFC 4627 section 3 states we should expect # UTF-8, -16 or -32. Detect which one to use; If the detection or # decoding fails, fall back to `self.text` (using chardet to make # a best guess). encoding = guess_json_utf(self.content) if encoding is not None: try: return complexjson.loads( self.content.decode(encoding), **kwargs ) except UnicodeDecodeError: # Wrong UTF codec detected; usually because it's not UTF-8 # but some other 8-bit codec. This is an RFC violation, # and the server didn't bother to tell us what codec *was* # used. pass return complexjson.loads(self.text, **kwargs) @property def links(self): """Returns the parsed header links of the response, if any.""" header = self.headers.get('link') # l = MultiDict() l = {} if header: links = parse_header_links(header) for link in links: key = link.get('rel') or link.get('url') l[key] = link return l def raise_for_status(self): """Raises stored :class:`HTTPError`, if one occurred.""" http_error_msg = '' if isinstance(self.reason, bytes): # We attempt to decode utf-8 first because some servers # choose to localize their reason strings. If the string # isn't utf-8, we fall back to iso-8859-1 for all other # encodings. (See PR #3538) try: reason = self.reason.decode('utf-8') except UnicodeDecodeError: reason = self.reason.decode('iso-8859-1') else: reason = self.reason if 400 <= self.status_code < 500: http_error_msg = u'%s Client Error: %s for url: %s' % (self.status_code, reason, self.url) elif 500 <= self.status_code < 600: http_error_msg = u'%s Server Error: %s for url: %s' % (self.status_code, reason, self.url) if http_error_msg: raise HTTPError(http_error_msg, response=self) def close(self): """Releases the connection back to the pool. Once this method has been called the underlying ``raw`` object must not be accessed again. *Note: Should not normally need to be called explicitly.* """ if not self._content_consumed: self.raw.close() release_conn = getattr(self.raw, 'release_conn', None) if release_conn is not None: release_conn()
35.839454
119
0.59312
af7d671e295ab2a8935288375e10a9cc64e567dc
4,940
py
Python
heat_integrationtests/functional/test_software_config.py
maestro-hybrid-cloud/heat
91a4bb3170bd81b1c67a896706851e55709c9b5a
[ "Apache-2.0" ]
null
null
null
heat_integrationtests/functional/test_software_config.py
maestro-hybrid-cloud/heat
91a4bb3170bd81b1c67a896706851e55709c9b5a
[ "Apache-2.0" ]
null
null
null
heat_integrationtests/functional/test_software_config.py
maestro-hybrid-cloud/heat
91a4bb3170bd81b1c67a896706851e55709c9b5a
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_utils import timeutils import requests import time import yaml from heat_integrationtests.common import exceptions from heat_integrationtests.functional import functional_base class ParallelDeploymentsTest(functional_base.FunctionalTestsBase): server_template = ''' heat_template_version: "2013-05-23" parameters: flavor: type: string image: type: string network: type: string resources: server: type: OS::Nova::Server properties: image: {get_param: image} flavor: {get_param: flavor} user_data_format: SOFTWARE_CONFIG networks: [{network: {get_param: network}}] outputs: server: value: {get_resource: server} ''' config_template = ''' heat_template_version: "2013-05-23" parameters: server: type: string resources: config: type: OS::Heat::SoftwareConfig properties: ''' deployment_snippet = ''' type: OS::Heat::SoftwareDeployments properties: config: {get_resource: config} servers: {'0': {get_param: server}} ''' enable_cleanup = True def test_deployments_metadata(self): parms = {'flavor': self.conf.minimal_instance_type, 'network': self.conf.fixed_network_name, 'image': self.conf.minimal_image_ref} stack_identifier = self.stack_create( parameters=parms, template=self.server_template, enable_cleanup=self.enable_cleanup) server_stack = self.client.stacks.get(stack_identifier) server = server_stack.outputs[0]['output_value'] config_stacks = [] # add up to 3 stacks each with up to 3 deployments deploy_count = 0 deploy_count = self.deploy_many_configs( stack_identifier, server, config_stacks, 2, 5, deploy_count) self.deploy_many_configs( stack_identifier, server, config_stacks, 3, 3, deploy_count) self.signal_deployments(stack_identifier) for config_stack in config_stacks: self._wait_for_stack_status(config_stack, 'CREATE_COMPLETE') def deploy_many_configs(self, stack, server, config_stacks, stack_count, deploys_per_stack, deploy_count_start): for a in range(stack_count): config_stacks.append( self.deploy_config(server, deploys_per_stack)) new_count = deploy_count_start + stack_count * deploys_per_stack self.wait_for_deploy_metadata_set(stack, new_count) return new_count def deploy_config(self, server, deploy_count): parms = {'server': server} template = yaml.safe_load(self.config_template) resources = template['resources'] resources['config']['properties'] = {'config': 'x' * 10000} for a in range(deploy_count): resources['dep_%s' % a] = yaml.safe_load(self.deployment_snippet) return self.stack_create( parameters=parms, template=template, enable_cleanup=self.enable_cleanup, expected_status=None) def wait_for_deploy_metadata_set(self, stack, deploy_count): build_timeout = self.conf.build_timeout build_interval = self.conf.build_interval start = timeutils.utcnow() while timeutils.delta_seconds(start, timeutils.utcnow()) < build_timeout: server_metadata = self.client.resources.metadata( stack, 'server') if len(server_metadata['deployments']) == deploy_count: return time.sleep(build_interval) message = ('Deployment resources failed to be created within ' 'the required time (%s s).' % (build_timeout)) raise exceptions.TimeoutException(message) def signal_deployments(self, stack_identifier): server_metadata = self.client.resources.metadata( stack_identifier, 'server') for dep in server_metadata['deployments']: iv = dict((i['name'], i['value']) for i in dep['inputs']) sigurl = iv.get('deploy_signal_id') requests.post(sigurl, data='{}', headers={'content-type': None})
33.378378
78
0.637045
606f6e8d8255af7dd2d10cd0f1a51655719e2c7a
31,751
py
Python
lib/cvsdb.py
infamous19/viewvc
b54b7f9cd64b25ff5d95389fe15d510600218f22
[ "BSD-2-Clause" ]
null
null
null
lib/cvsdb.py
infamous19/viewvc
b54b7f9cd64b25ff5d95389fe15d510600218f22
[ "BSD-2-Clause" ]
null
null
null
lib/cvsdb.py
infamous19/viewvc
b54b7f9cd64b25ff5d95389fe15d510600218f22
[ "BSD-2-Clause" ]
null
null
null
# -*-python-*- # # Copyright (C) 1999-2020 The ViewCVS Group. All Rights Reserved. # # By using this file, you agree to the terms and conditions set forth in # the LICENSE.html file which can be found at the top level of the ViewVC # distribution or at http://viewvc.org/license-1.html. # # For more information, visit http://viewvc.org/ # # ----------------------------------------------------------------------- import os import sys import time import fnmatch import re import vclib import dbi ## Current commits database schema version number. ## ## Version 0 was the original Bonsai-compatible version. ## ## Version 1 added the 'metadata' table (which holds the 'version' key) ## and renamed all the 'repository'-related stuff to be 'root'- ## CURRENT_SCHEMA_VERSION = 1 ## error error = "cvsdb error" ## CheckinDatabase provides all interfaces needed to the SQL database ## back-end; it needs to be subclassed, and have its "Connect" method ## defined to actually be complete; it should run well off of any DBI 2.0 ## complient database interface class CheckinDatabase: def __init__(self, host, port, user, passwd, database): self._host = host self._port = port self._user = user self._passwd = passwd self._database = database self._version = None ## database lookup caches self._get_cache = {} self._get_id_cache = {} self._desc_id_cache = {} def Connect(self): self.db = dbi.connect( self._host, self._port, self._user, self._passwd, self._database) cursor = self.db.cursor() cursor.execute("SET AUTOCOMMIT=1") table_list = self.GetTableList() if 'metadata' in table_list: version = self.GetMetadataValue("version") if version is None: self._version = 0 else: self._version = int(version) else: self._version = 0 if self._version > CURRENT_SCHEMA_VERSION: raise DatabaseVersionError("Database version %d is newer than the " "last version supported by this " "software." % (self._version)) def sql_get_id(self, table, column, value, auto_set): sql = "SELECT id FROM %s WHERE %s=%%s" % (table, column) sql_args = (value, ) cursor = self.db.cursor() cursor.execute(sql, sql_args) try: (id, ) = cursor.fetchone() except TypeError: if not auto_set: return None else: return str(int(id)) ## insert the new identifier sql = "INSERT INTO %s(%s) VALUES(%%s)" % (table, column) sql_args = (value, ) cursor.execute(sql, sql_args) return self.sql_get_id(table, column, value, 0) def get_id(self, table, column, value, auto_set): ## attempt to retrieve from cache try: return self._get_id_cache[table][column][value] except KeyError: pass id = self.sql_get_id(table, column, value, auto_set) if id == None: return None ## add to cache try: temp = self._get_id_cache[table] except KeyError: temp = self._get_id_cache[table] = {} try: temp2 = temp[column] except KeyError: temp2 = temp[column] = {} temp2[value] = id return id def sql_get(self, table, column, id): sql = "SELECT %s FROM %s WHERE id=%%s" % (column, table) sql_args = (id, ) cursor = self.db.cursor() cursor.execute(sql, sql_args) try: (value, ) = cursor.fetchone() except TypeError: return None return value def get(self, table, column, id): ## attempt to retrieve from cache try: return self._get_cache[table][column][id] except KeyError: pass value = self.sql_get(table, column, id) if value == None: return None ## add to cache try: temp = self._get_cache[table] except KeyError: temp = self._get_cache[table] = {} try: temp2 = temp[column] except KeyError: temp2 = temp[column] = {} temp2[id] = value return value def get_list(self, table, field_index): sql = "SELECT * FROM %s" % (table) cursor = self.db.cursor() cursor.execute(sql) list = [] while 1: row = cursor.fetchone() if row == None: break list.append(row[field_index]) return list def GetCommitsTable(self): return self._version >= 1 and 'commits' or 'checkins' def GetTableList(self): sql = "SHOW TABLES" cursor = self.db.cursor() cursor.execute(sql) list = [] while 1: row = cursor.fetchone() if row == None: break list.append(row[0]) return list def GetMetadataValue(self, name): sql = "SELECT value FROM metadata WHERE name=%s" sql_args = (name, ) cursor = self.db.cursor() cursor.execute(sql, sql_args) try: (value,) = cursor.fetchone() except TypeError: return None return value def SetMetadataValue(self, name, value): assert(self._version > 0) sql = "REPLACE INTO metadata (name, value) VALUES (%s, %s)" sql_args = (name, value) cursor = self.db.cursor() try: cursor.execute(sql, sql_args) except Exception, e: raise Exception("Error setting metadata: '%s'\n" "\tname = %s\n" "\tvalue = %s\n" % (str(e), name, value)) def GetBranchID(self, branch, auto_set = 1): return self.get_id("branches", "branch", branch, auto_set) def GetBranch(self, id): return self.get("branches", "branch", id) def GetDirectoryID(self, dir, auto_set = 1): return self.get_id("dirs", "dir", dir, auto_set) def GetDirectory(self, id): return self.get("dirs", "dir", id) def GetFileID(self, file, auto_set = 1): return self.get_id("files", "file", file, auto_set) def GetFile(self, id): return self.get("files", "file", id) def GetAuthorID(self, author, auto_set = 1): return self.get_id("people", "who", author, auto_set) def GetAuthor(self, id): return self.get("people", "who", id) def GetRepositoryID(self, repository, auto_set = 1): return self.get_id("repositories", "repository", repository, auto_set) def GetRepository(self, id): return self.get("repositories", "repository", id) def SQLGetDescriptionID(self, description, auto_set = 1): ## lame string hash, blame Netscape -JMP hash = len(description) sql = "SELECT id FROM descs WHERE hash=%s AND description=%s" sql_args = (hash, description) cursor = self.db.cursor() cursor.execute(sql, sql_args) try: (id, ) = cursor.fetchone() except TypeError: if not auto_set: return None else: return str(int(id)) sql = "INSERT INTO descs (hash,description) values (%s,%s)" sql_args = (hash, description) cursor.execute(sql, sql_args) return self.GetDescriptionID(description, 0) def GetDescriptionID(self, description, auto_set = 1): ## attempt to retrieve from cache hash = len(description) try: return self._desc_id_cache[hash][description] except KeyError: pass id = self.SQLGetDescriptionID(description, auto_set) if id == None: return None ## add to cache try: temp = self._desc_id_cache[hash] except KeyError: temp = self._desc_id_cache[hash] = {} temp[description] = id return id def GetDescription(self, id): return self.get("descs", "description", id) def GetRepositoryList(self): return self.get_list("repositories", 1) def GetBranchList(self): return self.get_list("branches", 1) def GetAuthorList(self): return self.get_list("people", 1) def AddCommitList(self, commit_list): for commit in commit_list: self.AddCommit(commit) def AddCommit(self, commit): ci_when = dbi.DateTimeFromTicks(commit.GetTime() or 0.0) ci_type = commit.GetTypeString() who_id = self.GetAuthorID(commit.GetAuthor()) repository_id = self.GetRepositoryID(commit.GetRepository()) directory_id = self.GetDirectoryID(commit.GetDirectory()) file_id = self.GetFileID(commit.GetFile()) revision = commit.GetRevision() sticky_tag = "NULL" branch_id = self.GetBranchID(commit.GetBranch()) plus_count = commit.GetPlusCount() or '0' minus_count = commit.GetMinusCount() or '0' description_id = self.GetDescriptionID(commit.GetDescription()) sql = "REPLACE INTO %s" % (self.GetCommitsTable()) sql = sql + \ " (type,ci_when,whoid,repositoryid,dirid,fileid,revision,"\ " stickytag,branchid,addedlines,removedlines,descid)"\ "VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" sql_args = (ci_type, ci_when, who_id, repository_id, directory_id, file_id, revision, sticky_tag, branch_id, plus_count, minus_count, description_id) cursor = self.db.cursor() try: cursor.execute(sql, sql_args) except Exception, e: raise Exception("Error adding commit: '%s'\n" "Values were:\n" "\ttype = %s\n" "\tci_when = %s\n" "\twhoid = %s\n" "\trepositoryid = %s\n" "\tdirid = %s\n" "\tfileid = %s\n" "\trevision = %s\n" "\tstickytag = %s\n" "\tbranchid = %s\n" "\taddedlines = %s\n" "\tremovedlines = %s\n" "\tdescid = %s\n" % ((str(e), ) + sql_args)) def SQLQueryListString(self, field, query_entry_list): sqlList = [] for query_entry in query_entry_list: data = query_entry.data ## figure out the correct match type if query_entry.match == "exact": match = "=" elif query_entry.match == "like": match = " LIKE " elif query_entry.match == "glob": match = " REGEXP " # Use fnmatch to translate the glob into a regular # expression. Sadly, we have to account for the fact # that in Python 2.6, fnmatch.translate() started # sticking '\Z(?ms)' at the end of the regular # expression instead of just '$', and doesn't prepend # the '^'. data = fnmatch.translate(data) if data[0] != '^': data = '^' + data if data[-7:] == '\Z(?ms)': data = data[:-7] + '$' elif query_entry.match == "regex": match = " REGEXP " elif query_entry.match == "notregex": match = " NOT REGEXP " sqlList.append("%s%s%s" % (field, match, self.db.literal(data))) return "(%s)" % (" OR ".join(sqlList)) def CreateSQLQueryString(self, query, detect_leftover=0): commits_table = self.GetCommitsTable() tableList = [(commits_table, None)] condList = [] if len(query.repository_list): tableList.append(("repositories", "(%s.repositoryid=repositories.id)" % (commits_table))) temp = self.SQLQueryListString("repositories.repository", query.repository_list) condList.append(temp) if len(query.branch_list): tableList.append(("branches", "(%s.branchid=branches.id)" % (commits_table))) temp = self.SQLQueryListString("branches.branch", query.branch_list) condList.append(temp) if len(query.directory_list): tableList.append(("dirs", "(%s.dirid=dirs.id)" % (commits_table))) temp = self.SQLQueryListString("dirs.dir", query.directory_list) condList.append(temp) if len(query.file_list): tableList.append(("files", "(%s.fileid=files.id)" % (commits_table))) temp = self.SQLQueryListString("files.file", query.file_list) condList.append(temp) if len(query.author_list): tableList.append(("people", "(%s.whoid=people.id)" % (commits_table))) temp = self.SQLQueryListString("people.who", query.author_list) condList.append(temp) if len(query.comment_list): tableList.append(("descs", "(%s.descid=descs.id)" % (commits_table))) temp = self.SQLQueryListString("descs.description", query.comment_list) condList.append(temp) if query.from_date: temp = "(%s.ci_when>=\"%s\")" \ % (commits_table, str(query.from_date)) condList.append(temp) if query.to_date: temp = "(%s.ci_when<=\"%s\")" \ % (commits_table, str(query.to_date)) condList.append(temp) if query.sort == "date": order_by = "ORDER BY %s.ci_when DESC,descid" % (commits_table) elif query.sort == "author": tableList.append(("people", "(%s.whoid=people.id)" % (commits_table))) order_by = "ORDER BY people.who,descid" elif query.sort == "file": tableList.append(("files", "(%s.fileid=files.id)" % (commits_table))) order_by = "ORDER BY files.file,descid" ## exclude duplicates from the table list, and split out join ## conditions from table names. In future, the join conditions ## might be handled by INNER JOIN statements instead of WHERE ## clauses, but MySQL 3.22 apparently doesn't support them well. tables = [] joinConds = [] for (table, cond) in tableList: if table not in tables: tables.append(table) if cond is not None: joinConds.append(cond) tables = ",".join(tables) conditions = " AND ".join(joinConds + condList) conditions = conditions and "WHERE %s" % conditions ## apply the query's row limit, if any (so we avoid really ## slamming a server with a large database) limit = "" if query.limit: if detect_leftover: limit = "LIMIT %s" % (str(query.limit + 1)) else: limit = "LIMIT %s" % (str(query.limit)) sql = "SELECT %s.* FROM %s %s %s %s" \ % (commits_table, tables, conditions, order_by, limit) return sql def RunQuery(self, query): sql = self.CreateSQLQueryString(query, 1) cursor = self.db.cursor() cursor.execute(sql) query.SetExecuted() row_count = 0 while 1: row = cursor.fetchone() if not row: break row_count = row_count + 1 if query.limit and (row_count > query.limit): query.SetLimitReached() break (dbType, dbCI_When, dbAuthorID, dbRepositoryID, dbDirID, dbFileID, dbRevision, dbStickyTag, dbBranchID, dbAddedLines, dbRemovedLines, dbDescID) = row commit = LazyCommit(self) if dbType == 'Add': commit.SetTypeAdd() elif dbType == 'Remove': commit.SetTypeRemove() else: commit.SetTypeChange() commit.SetTime(dbi.TicksFromDateTime(dbCI_When)) commit.SetFileID(dbFileID) commit.SetDirectoryID(dbDirID) commit.SetRevision(dbRevision) commit.SetRepositoryID(dbRepositoryID) commit.SetAuthorID(dbAuthorID) commit.SetBranchID(dbBranchID) commit.SetPlusCount(dbAddedLines) commit.SetMinusCount(dbRemovedLines) commit.SetDescriptionID(dbDescID) query.AddCommit(commit) def CheckCommit(self, commit): repository_id = self.GetRepositoryID(commit.GetRepository(), 0) if repository_id == None: return None dir_id = self.GetDirectoryID(commit.GetDirectory(), 0) if dir_id == None: return None file_id = self.GetFileID(commit.GetFile(), 0) if file_id == None: return None sql = "SELECT type, ci_when, whoid, repositoryid, dirid, fileid, " \ "revision, stickytag, branchid, addedlines, removedlines, " \ "descid "\ " FROM %s WHERE "\ " repositoryid=%%s "\ " AND dirid=%%s"\ " AND fileid=%%s"\ " AND revision=%%s"\ % (self.GetCommitsTable()) sql_args = (repository_id, dir_id, file_id, commit.GetRevision()) cursor = self.db.cursor() cursor.execute(sql, sql_args) try: (ci_type, ci_when, who_id, repository_id, dir_id, file_id, revision, sticky_tag, branch_id, plus_count, minus_count, description_id) = cursor.fetchone() except TypeError: return None return commit def sql_delete(self, table, key, value, keep_fkey = None): sql = "DELETE FROM %s WHERE %s=%%s" % (table, key) sql_args = (value, ) if keep_fkey: sql += " AND %s NOT IN (SELECT %s FROM %s WHERE %s = %%s)" \ % (key, keep_fkey, self.GetCommitsTable(), keep_fkey) sql_args = (value, value) cursor = self.db.cursor() cursor.execute(sql, sql_args) def sql_purge(self, table, key, fkey, ftable): sql = "DELETE FROM %s WHERE %s NOT IN (SELECT %s FROM %s)" \ % (table, key, fkey, ftable) cursor = self.db.cursor() cursor.execute(sql) def PurgeRepository(self, repository): rep_id = self.GetRepositoryID(repository, auto_set=0) if not rep_id: raise UnknownRepositoryError("Unknown repository '%s'" % (repository)) if (self._version >= 1): self.sql_delete('repositories', 'id', rep_id) self.sql_purge('commits', 'repositoryid', 'id', 'repositories') self.sql_purge('files', 'id', 'fileid', 'commits') self.sql_purge('dirs', 'id', 'dirid', 'commits') self.sql_purge('branches', 'id', 'branchid', 'commits') self.sql_purge('descs', 'id', 'descid', 'commits') self.sql_purge('people', 'id', 'whoid', 'commits') else: sql = "SELECT type, ci_when, whoid, repositoryid, dirid, " \ "fileid, revision, stickytag, branchid, addedlines, " \ "removedlines, descid "\ " FROM checkins WHERE repositoryid=%s" sql_args = (rep_id, ) cursor = self.db.cursor() cursor.execute(sql, sql_args) checkins = [] while 1: try: (ci_type, ci_when, who_id, repository_id, dir_id, file_id, revision, sticky_tag, branch_id, plus_count, minus_count, description_id) = \ cursor.fetchone() except TypeError: break checkins.append([file_id, dir_id, branch_id, description_id, who_id]) #self.sql_delete('repositories', 'id', rep_id) self.sql_delete('checkins', 'repositoryid', rep_id) for checkin in checkins: self.sql_delete('files', 'id', checkin[0], 'fileid') self.sql_delete('dirs', 'id', checkin[1], 'dirid') self.sql_delete('branches', 'id', checkin[2], 'branchid') self.sql_delete('descs', 'id', checkin[3], 'descid') self.sql_delete('people', 'id', checkin[4], 'whoid') # Reset all internal id caches. We could be choosier here, # but let's just be as safe as possible. self._get_cache = {} self._get_id_cache = {} self._desc_id_cache = {} class DatabaseVersionError(Exception): pass class UnknownRepositoryError(Exception): pass ## the Commit class holds data on one commit, the representation is as ## close as possible to how it should be committed and retrieved to the ## database engine class Commit: ## static constants for type of commit CHANGE = 0 ADD = 1 REMOVE = 2 def __init__(self): self.__directory = '' self.__file = '' self.__repository = '' self.__revision = '' self.__author = '' self.__branch = '' self.__pluscount = '' self.__minuscount = '' self.__description = '' self.__gmt_time = 0.0 self.__type = Commit.CHANGE def SetRepository(self, repository): self.__repository = repository def GetRepository(self): return self.__repository def SetDirectory(self, dir): self.__directory = dir def GetDirectory(self): return self.__directory def SetFile(self, file): self.__file = file def GetFile(self): return self.__file def SetRevision(self, revision): self.__revision = revision def GetRevision(self): return self.__revision def SetTime(self, gmt_time): if gmt_time is None: ### We're just going to assume that a datestamp of The Epoch ### ain't real. self.__gmt_time = 0.0 else: self.__gmt_time = float(gmt_time) def GetTime(self): return self.__gmt_time and self.__gmt_time or None def SetAuthor(self, author): self.__author = author def GetAuthor(self): return self.__author def SetBranch(self, branch): self.__branch = branch or '' def GetBranch(self): return self.__branch def SetPlusCount(self, pluscount): self.__pluscount = pluscount def GetPlusCount(self): return self.__pluscount def SetMinusCount(self, minuscount): self.__minuscount = minuscount def GetMinusCount(self): return self.__minuscount def SetDescription(self, description): self.__description = description def GetDescription(self): return self.__description def SetTypeChange(self): self.__type = Commit.CHANGE def SetTypeAdd(self): self.__type = Commit.ADD def SetTypeRemove(self): self.__type = Commit.REMOVE def GetType(self): return self.__type def GetTypeString(self): if self.__type == Commit.CHANGE: return 'Change' elif self.__type == Commit.ADD: return 'Add' elif self.__type == Commit.REMOVE: return 'Remove' ## LazyCommit overrides a few methods of Commit to only retrieve ## it's properties as they are needed class LazyCommit(Commit): def __init__(self, db): Commit.__init__(self) self.__db = db def SetFileID(self, dbFileID): self.__dbFileID = dbFileID def GetFileID(self): return self.__dbFileID def GetFile(self): return self.__db.GetFile(self.__dbFileID) def SetDirectoryID(self, dbDirID): self.__dbDirID = dbDirID def GetDirectoryID(self): return self.__dbDirID def GetDirectory(self): return self.__db.GetDirectory(self.__dbDirID) def SetRepositoryID(self, dbRepositoryID): self.__dbRepositoryID = dbRepositoryID def GetRepositoryID(self): return self.__dbRepositoryID def GetRepository(self): return self.__db.GetRepository(self.__dbRepositoryID) def SetAuthorID(self, dbAuthorID): self.__dbAuthorID = dbAuthorID def GetAuthorID(self): return self.__dbAuthorID def GetAuthor(self): return self.__db.GetAuthor(self.__dbAuthorID) def SetBranchID(self, dbBranchID): self.__dbBranchID = dbBranchID def GetBranchID(self): return self.__dbBranchID def GetBranch(self): return self.__db.GetBranch(self.__dbBranchID) def SetDescriptionID(self, dbDescID): self.__dbDescID = dbDescID def GetDescriptionID(self): return self.__dbDescID def GetDescription(self): return self.__db.GetDescription(self.__dbDescID) ## QueryEntry holds data on one match-type in the SQL database ## match is: "exact", "like", or "regex" class QueryEntry: def __init__(self, data, match): self.data = data self.match = match ## CheckinDatabaseQuery is an object which contains the search ## parameters for a query to the Checkin Database and -- after the ## query is executed -- the data returned by the query. class CheckinDatabaseQuery: def __init__(self): ## sorting self.sort = "date" ## repository to query self.repository_list = [] self.branch_list = [] self.directory_list = [] self.file_list = [] self.author_list = [] self.comment_list = [] ## date range in DBI 2.0 timedate objects self.from_date = None self.to_date = None ## limit on number of rows to return self.limit = None self.limit_reached = 0 ## list of commits -- filled in by CVS query self.commit_list = [] ## commit_cb provides a callback for commits as they ## are added self.commit_cb = None ## has this query been run? self.executed = 0 def SetRepository(self, repository, match = "exact"): self.repository_list.append(QueryEntry(repository, match)) def SetBranch(self, branch, match = "exact"): self.branch_list.append(QueryEntry(branch, match)) def SetDirectory(self, directory, match = "exact"): self.directory_list.append(QueryEntry(directory, match)) def SetFile(self, file, match = "exact"): self.file_list.append(QueryEntry(file, match)) def SetAuthor(self, author, match = "exact"): self.author_list.append(QueryEntry(author, match)) def SetComment(self, comment, match = "exact"): self.comment_list.append(QueryEntry(comment, match)) def SetSortMethod(self, sort): self.sort = sort def SetFromDateObject(self, ticks): self.from_date = dbi.DateTimeFromTicks(ticks) def SetToDateObject(self, ticks): self.to_date = dbi.DateTimeFromTicks(ticks) def SetFromDateHoursAgo(self, hours_ago): ticks = time.time() - (3600 * hours_ago) self.from_date = dbi.DateTimeFromTicks(ticks) def SetFromDateDaysAgo(self, days_ago): ticks = time.time() - (86400 * days_ago) self.from_date = dbi.DateTimeFromTicks(ticks) def SetToDateDaysAgo(self, days_ago): ticks = time.time() - (86400 * days_ago) self.to_date = dbi.DateTimeFromTicks(ticks) def SetLimit(self, limit): self.limit = limit; def AddCommit(self, commit): self.commit_list.append(commit) def SetExecuted(self): self.executed = 1 def SetLimitReached(self): self.limit_reached = 1 def GetLimitReached(self): assert self.executed return self.limit_reached def GetCommitList(self): assert self.executed return self.commit_list ## ## entrypoints ## def CreateCommit(): return Commit() def CreateCheckinQuery(): return CheckinDatabaseQuery() def ConnectDatabase(cfg, readonly=0): if readonly: user = cfg.cvsdb.readonly_user passwd = cfg.cvsdb.readonly_passwd else: user = cfg.cvsdb.user passwd = cfg.cvsdb.passwd db = CheckinDatabase(cfg.cvsdb.host, cfg.cvsdb.port, user, passwd, cfg.cvsdb.database_name) db.Connect() return db def ConnectDatabaseReadOnly(cfg): return ConnectDatabase(cfg, 1) def GetCommitListFromRCSFile(repository, path_parts, revision=None): commit_list = [] directory = "/".join(path_parts[:-1]) file = path_parts[-1] revs = repository.itemlog(path_parts, revision, vclib.SORTBY_DEFAULT, 0, 0, {"cvs_pass_rev": 1}) for rev in revs: commit = CreateCommit() commit.SetRepository(repository.rootpath) commit.SetDirectory(directory) commit.SetFile(file) commit.SetRevision(rev.string) commit.SetAuthor(rev.author) commit.SetDescription(rev.log) commit.SetTime(rev.date) if rev.changed: # extract the plus/minus and drop the sign plus, minus = rev.changed.split() commit.SetPlusCount(plus[1:]) commit.SetMinusCount(minus[1:]) if rev.dead: commit.SetTypeRemove() else: commit.SetTypeChange() else: commit.SetTypeAdd() commit_list.append(commit) # if revision is on a branch which has at least one tag if len(rev.number) > 2 and rev.branches: commit.SetBranch(rev.branches[0].name) return commit_list def GetUnrecordedCommitList(repository, path_parts, db): commit_list = GetCommitListFromRCSFile(repository, path_parts) unrecorded_commit_list = [] for commit in commit_list: result = db.CheckCommit(commit) if not result: unrecorded_commit_list.append(commit) return unrecorded_commit_list _re_likechars = re.compile(r"([_%\\])") def EscapeLike(literal): """Escape literal string for use in a MySQL LIKE pattern""" return re.sub(_re_likechars, r"\\\1", literal) def FindRepository(db, path): """Find repository path in database given path to subdirectory Returns normalized repository path and relative directory path""" path = os.path.normpath(path) dirs = [] while path: rep = os.path.normcase(path) if db.GetRepositoryID(rep, 0) is None: path, pdir = os.path.split(path) if not pdir: return None, None dirs.append(pdir) else: break dirs.reverse() return rep, dirs def CleanRepository(path): """Return normalized top-level repository path""" return os.path.normcase(os.path.normpath(path))
32.201826
79
0.565998
5f1710116d618a1f2c843a26b2cfab775e662153
515
py
Python
SearchAPI/CMR/Health.py
asfadmin/Discovery-SearchAPI
d5e0b3d3a6a74c7f243ddc74a2316cd7b7380edd
[ "BSD-3-Clause" ]
null
null
null
SearchAPI/CMR/Health.py
asfadmin/Discovery-SearchAPI
d5e0b3d3a6a74c7f243ddc74a2316cd7b7380edd
[ "BSD-3-Clause" ]
null
null
null
SearchAPI/CMR/Health.py
asfadmin/Discovery-SearchAPI
d5e0b3d3a6a74c7f243ddc74a2316cd7b7380edd
[ "BSD-3-Clause" ]
null
null
null
import requests import logging import json from SearchAPI.asf_env import get_config def get_cmr_health(): cfg = get_config() try: r = requests.get(cfg['cmr_base'] + cfg['cmr_health'], timeout=10) d = {'host': cfg['cmr_base'], 'health': json.loads(r.text)} except Exception as e: logging.debug(e) d = {'host': cfg['cmr_base'], 'error': { 'display': 'ASF is experiencing errors loading data. Please try again later.', 'raw': f'{e}'}} return d
30.294118
91
0.603883
de160c5607417762d7f9b804b462182469cb1b31
449
py
Python
creme/ensemble/__init__.py
Raul9595/creme
39cec7ac27ccd40ff0a7bdd6bceaf7ce25c1a8da
[ "BSD-3-Clause" ]
1
2020-07-27T03:06:46.000Z
2020-07-27T03:06:46.000Z
creme/ensemble/__init__.py
2torus/creme
bcc5e2a0155663a1f0ba779c68f23456695bcb54
[ "BSD-3-Clause" ]
1
2022-02-10T06:24:42.000Z
2022-02-10T06:24:42.000Z
creme/ensemble/__init__.py
igorol/creme
60977c4accfdca08cfd76a162095ff738ef87281
[ "BSD-3-Clause" ]
1
2021-04-16T08:27:14.000Z
2021-04-16T08:27:14.000Z
""" A module for ensemble learning. """ from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .grouping import GroupRegressor from .hedging import HedgeBinaryClassifier from .hedging import HedgeRegressor from .stacking import StackingBinaryClassifier __all__ = [ 'BaggingClassifier', 'BaggingRegressor', 'GroupRegressor', 'HedgeBinaryClassifier', 'HedgeRegressor', 'StackingBinaryClassifier' ]
22.45
46
0.777283
695526854b3bdc830a9a9b1e14624a183c8db031
1,269
py
Python
modules/face_morphs/face_finder.py
GrzegorzKrug/face_morph
64e5e47207d30ac8968a0b1b73e11a8ae74b3fec
[ "Apache-2.0" ]
null
null
null
modules/face_morphs/face_finder.py
GrzegorzKrug/face_morph
64e5e47207d30ac8968a0b1b73e11a8ae74b3fec
[ "Apache-2.0" ]
null
null
null
modules/face_morphs/face_finder.py
GrzegorzKrug/face_morph
64e5e47207d30ac8968a0b1b73e11a8ae74b3fec
[ "Apache-2.0" ]
null
null
null
import numpy as np import glob import cv2 import os eye_cascade = cv2.CascadeClassifier("haarcascade_eye.xml") face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") avatars = glob.glob("avatars/*png") avatars.sort() export_dir = "exports" face_count = 0 MAX_SIZE = 256 os.makedirs(export_dir, exist_ok=True) for avatar in avatars: bgr_img = cv2.imread(avatar) width, height, channels = bgr_img.shape if width > MAX_SIZE or height > MAX_SIZE: width = MAX_SIZE if width > MAX_SIZE else width height = MAX_SIZE if height > MAX_SIZE else height dim = (width, height) bgr_img = cv2.resize(bgr_img, dim) gray_image = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray_image, 1.1, 3) for (x, y, w, h) in faces: face_count += 1 pt1 = (x, y) pt2 = (x + w, y + h) cv2.rectangle(bgr_img, pt1, pt2, (0, 255, 55), 2) eyes = eye_cascade.detectMultiScale(gray_image, 1.2, 8) for (x, y, w, h) in eyes: pt1 = (x, y) pt2 = (x + w, y + h) cv2.rectangle(bgr_img, pt1, pt2, (255, 85, 0), 2) cv2.imwrite(os.path.join(export_dir, os.path.basename(avatar)), bgr_img) print(f"Faces found: {face_count}")
28.2
76
0.651694
417dd3e9f81bfa959c226606727b4d97df184ef0
4,798
py
Python
tests/unittests/services/utils/test_db.py
hackaugusto/scenario-player
0701bb986f47e1ec4a4fb7a469157826da1993e2
[ "MIT" ]
null
null
null
tests/unittests/services/utils/test_db.py
hackaugusto/scenario-player
0701bb986f47e1ec4a4fb7a469157826da1993e2
[ "MIT" ]
null
null
null
tests/unittests/services/utils/test_db.py
hackaugusto/scenario-player
0701bb986f47e1ec4a4fb7a469157826da1993e2
[ "MIT" ]
null
null
null
import json from unittest import mock import pytest from scenario_player.services.utils.factories import construct_flask_app from scenario_player.services.utils.db import JSONRedis from scenario_player.exceptions.db import CorruptedDBEntry db_import_path = 'scenario_player.services.utils.db' @pytest.fixture def app(): app = construct_flask_app(test_config={"TESTING": True}) with app.app_context(): yield @mock.patch(f'{db_import_path}.Redis.hmget') @mock.patch(f'{db_import_path}.Redis.hmset') class TestJSONRedis: @mock.patch(f'{db_import_path}.JSONRedis.set_json') def test_tset_method_calls_set_json_with_table_attr_and_given_encode_kwargs(self, mock_set_json, _, __, app): instance = JSONRedis('test_table') instance.tset('my-key', {'key': 'value'}) expected_args = ('test_table', 'my-key', {'key': 'value'}) mock_set_json.assert_called_once() actual_args, _ = mock_set_json.call_args assert actual_args == expected_args @mock.patch(f'{db_import_path}.JSONRedis.get_json') def test_tget_method_calls_get_json_with_table_attr_and_given_decode_kwargs(self, mock_get_json, _, __, app): instance = JSONRedis('test_table') instance.tget('my-key') expected_args = ('test_table', 'my-key') mock_get_json.assert_called_once() actual_args, _ = mock_get_json.call_args assert actual_args == expected_args def test_set_json_calls_hmset_method_with_json_encoded_string(self, patched_hmset, __, app): instance = JSONRedis('test_table') instance.set_json('test_table', 'key', {'k': 'v'}) patched_hmset.assert_called_once_with('test_table', {"key": '{"k": "v"}'}) @mock.patch(f'{db_import_path}.json.loads') def test_get_json_applies_decoding_options_to_json_string(self, mock_loads, _, patched_hmget, app): patched_hmget.return_value = '{"sth": "blah"}' instance = JSONRedis('test_table', decoding_options={'option': 'value'}) instance.get_json('test_table', 'key') mock_loads.assert_called_once_with('{"sth": "blah"}', option='value') @mock.patch(f'{db_import_path}.json.dumps') def test_set_json_applies_encoding_options_to_json_string(self, mock_dumps, _, __, app): instance = JSONRedis('test_table', encoding_options={'option': 'value'}) instance.set_json('test_table', 'key', {'sth': 'blah'}) mock_dumps.assert_called_once_with({'sth': 'blah'}, option='value') @mock.patch(f'{db_import_path}.json.dumps') def test_encode_kwargs_passed_directly_to_set_json_take_precedence_over_encoding_options_stored_in_instance(self, mock_dumps, _, __, app): instance = JSONRedis('test_table', encoding_options={'option': 'value'}) instance.set_json('test_table', 'key', {'sth': 'blah'}, option='nugget') mock_dumps.assert_called_once_with({'sth': 'blah'}, option='nugget') @mock.patch(f'{db_import_path}.json.loads') def test_decode_kwargs_passed_directly_to_get_json_take_precedence_over_decoding_options_stored_in_instance(self, mock_loads, _, patched_hmget, app): patched_hmget.return_value = '{"sth": "blah"}' instance = JSONRedis('test_table', decoding_options={'option': 'value'}) instance.get_json('test_table', 'key', option='nugget') mock_loads.assert_called_once_with('{"sth": "blah"}', option='nugget') @mock.patch(f'{db_import_path}.json.dumps', side_effect=ValueError('from mock')) def test_tset_method_propagates_ValueError_during_json_encoding_from_downstream(self, _, __, ___, app): instance = JSONRedis('test_table') with pytest.raises(ValueError, match=r".*from mock.*"): instance.tset('key', {'k': 'v'}) @mock.patch(f'{db_import_path}.json.loads', side_effect=json.JSONDecodeError('from mock', "", 0)) def test_tget_method_raises_CorruptedDBEntry_exception_if_JSONDecodeError_is_raised_downstream(self, _, __, ___, app): instance = JSONRedis('test_table') with pytest.raises(CorruptedDBEntry): instance.tget('key') @mock.patch(f'{db_import_path}.json.dumps', side_effect=ValueError('from mock')) def test_set_json_propagates_ValueError_during_json_encoding(self, _, __, ___, app): instance = JSONRedis('test_table') with pytest.raises(ValueError, match=r".*from mock.*"): instance.set_json('test_table', 'key', {"k": "v"}) @mock.patch(f'{db_import_path}.json.loads', side_effect=json.JSONDecodeError('from mock', "", 0)) def test_get_json_propagates_JSONDecodeError(self, _, __, ___, app): instance = JSONRedis('test_table') with pytest.raises(json.JSONDecodeError, match=r".*from mock.*"): instance.get_json('test_table', 'key')
48.464646
153
0.708003
04a6dff3f9df32462662b508919ebd8776d83ce5
447
py
Python
30 Days of Code/Day 17 More Exceptions/Solution.py
iamnambiar/HackerRank-Solutions
6fdcab79b18e66a6d7278b979a8be087f8f6c696
[ "MIT" ]
2
2020-04-06T10:32:08.000Z
2021-04-23T04:32:45.000Z
30 Days of Code/Day 17 More Exceptions/Solution.py
iamnambiar/HackerRank-Solutions
6fdcab79b18e66a6d7278b979a8be087f8f6c696
[ "MIT" ]
null
null
null
30 Days of Code/Day 17 More Exceptions/Solution.py
iamnambiar/HackerRank-Solutions
6fdcab79b18e66a6d7278b979a8be087f8f6c696
[ "MIT" ]
null
null
null
# https://www.hackerrank.com/challenges/30-more-exceptions/problem #Write your code here class Calculator: def power(self, n, p): if n<0 or p<0: raise Exception("n and p should be non-negative") return n**p myCalculator=Calculator() T=int(input()) for i in range(T): n,p = map(int, input().split()) try: ans=myCalculator.power(n,p) print(ans) except Exception as e: print(e)
24.833333
66
0.608501
282bef162a1e3575d46faa964f5eb67bf834654a
6,956
py
Python
mazegame/mazegame2.py
kantel/pygamezero
93c202a2bd5bcc827eabe952575b7714b36e4b9d
[ "MIT" ]
1
2020-06-29T00:36:07.000Z
2020-06-29T00:36:07.000Z
mazegame/mazegame2.py
kantel/pygamezero
93c202a2bd5bcc827eabe952575b7714b36e4b9d
[ "MIT" ]
null
null
null
mazegame/mazegame2.py
kantel/pygamezero
93c202a2bd5bcc827eabe952575b7714b36e4b9d
[ "MIT" ]
null
null
null
# Simple Maze Game with Pygame Zero (v 1.2) , Python 3 # Stage 2 (Objektorientierung) # Assets: DawnLike-Tileset (CC BY 4.0) by DawnBringer und DragonDePlatino # (https://opengameart.org/content/dawnlike-16x16-universal-rogue-like-tileset-v181) # Jörg Kantel 2022 (MIT-Lizenz) import pgzrun # WIDTH: 25 Tiles á 16 Pixel + je 20 Pixel Rand WIDTH = 440 # HEIGHT: 25 Tiles á 16 Pixel + je 20 Pixel Rand HEIGHT = 440 TITLE = "Mazegame Stage 2" WALL = 63 DOOR = 62 CHEST = 22 margin_x = 20 margin_y = 20 sz = 16 # Step-/Tile-Size maze_map = [[63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63], [63,-1,-1,63,63,63,63,63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,63,63,63,63,63], [63,-1,-1,63,63,63,63,63,63,63,-1,-1,63,63,63,63,63,63,-1,-1,63,63,63,63,63], [63,-1,-1,-1,-1,-1,-1,-1,63,63,-1,-1,63,63,63,63,63,63,-1,-1,63,63,63,63,63], [63,-1,-1,-1,-1,-1,-1,-1,63,63,-1,-1,63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,63,63], [63,63,63,63,63,63,-1,-1,63,63,-1,-1,63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,63,63], [63,63,63,63,63,63,-1,-1,63,63,-1,-1,63,63,63,63,63,63,-1,-1,63,63,63,63,63], [63,63,63,63,63,63,-1,-1,63,63,-1,-1,-1,-1,63,63,63,63,-1,-1,63,63,63,63,63], [63,-1,-1,63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,63,63,63,63,22,-1,63,63,63,63,63], [63,-1,-1,63,63,63,-1,-1,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63], [63,-1,-1,-1,-1,-1,-1,-1,-1,-1,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63], [63,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,63,63,63,63,63,63,63,63], [63,63,63,63,63,63,63,63,63,63,63,63,-1,-1,-1,-1,-1,63,63,63,63,63,-1,22,63], [63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,-1,-1,63,63,63,63,63,-1,-1,63], [63,-1,-1,63,63,63,63,63,63,63,63,63,63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,-1,63], [63,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,63], [63,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,63,63,63,63,63,63,63,63,63,63,63,63,63], [63,63,63,63,63,63,63,63,63,63,-1,-1,63,63,63,63,63,63,63,63,63,63,63,63,63], [63,63,63,63,63,63,63,63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,63], [63,22,-1,-1,63,63,63,63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,63], [63,-1,-1,-1,63,63,63,63,63,63,63,63,63,63,63,63,63,63,-1,-1,63,63,63,63,63], [63,-1,-1,-1,-1,-1,63,63,63,63,63,63,63,63,63,63,63,63,-1,-1,63,63,63,63,63], [63,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,63,63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,63], [63,63,63,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,62], [63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63]] class Wall(Actor): def __init__(self, image): Actor.__init__(self, image) self.image = image def set_screen_pos(self, x, y): self.x = x self.y = y self.topleft = margin_x + self.x*sz, margin_y + self.y*sz class Door(Actor): def __init__(self, image): Actor.__init__(self, image) self.image = image self.status = "closed" def set_screen_pos(self, x, y): self.x = x self.y = y self.topleft = margin_x + self.x*sz, margin_y + self.y*sz class Chest (Actor): def __init__(self, image): Actor.__init__(self, image) self.image = image self.score = 100 def set_screen_pos(self, x, y): self.x = x self.y = y self.topleft = margin_x + self.x*sz, margin_y + self.y*sz class Rogue(Actor): def __init__(self, image): Actor.__init__(self, image) self.image = image self.xpos = 1 # x-Position im Grid self.ypos = 1 # y-Position im Grid # Rogue ohne Animation auf Startposition setzen self.topleft = margin_x + self.xpos*sz, margin_y + self.ypos*sz self.dir = None self.score = 0 def set_screen_pos(self): x, y = margin_x + self.xpos*sz + 0.5*sz, margin_y + self.ypos*sz + 0.5*sz animate(self, duration = .2, pos = (x, y)) def walk(self): if self.dir == "left": move_to_x = self.xpos - 1 move_to_y = self.ypos self.dir = None # Kollisionserkennung if (move_to_x, move_to_y) not in walls_pos: self.xpos -= 1 self.set_screen_pos() elif self.dir == "right": move_to_x = self.xpos + 1 move_to_y = self.ypos self.dir = None # Kollisionserkennung if (move_to_x, move_to_y) not in walls_pos: self.xpos += 1 self.set_screen_pos() elif self.dir == "up": move_to_x = self.xpos move_to_y = self.ypos - 1 self.dir = None # Kollisionserkennung if (move_to_x, move_to_y) not in walls_pos: self.ypos -= 1 self.set_screen_pos() elif self.dir == "down": move_to_x = self.xpos move_to_y = self.ypos + 1 self.dir = None # Kollisionserkennung if (move_to_x, move_to_y) not in walls_pos: self.ypos += 1 self.set_screen_pos() rogue = Rogue("rogue16") walls = [] chests = [] doors = [] walls_pos = [] chests_pos = [] def init_game(): for y in range(25): for x in range(25): if maze_map[y][x] == WALL: wall = Wall("wall16") wall.set_screen_pos(x, y) walls.append(wall) walls_pos.append((x, y)) if maze_map[y][x] == DOOR: door = Door("door16") door.set_screen_pos(x, y) doors.append(door) walls_pos.append((x, y)) if maze_map[y][x] == CHEST: chest = Chest("chest16") chest.set_screen_pos(x, y) chests.append(chest) chests_pos.append((x, y)) def update(): rogue.walk() for chest in chests: if rogue.colliderect(chest): rogue.score += chest.score chests.remove(chest) print(rogue.score) def draw(): screen.fill((90, 90, 90)) for wall in walls: wall.draw() for door in doors: door.draw() for chest in chests: chest.draw() rogue.draw() def on_key_down(key): if key == keys.LEFT: rogue.dir = "left" elif key == keys.RIGHT: rogue.dir = "right" elif key == keys.UP: rogue.dir = "up" elif key == keys.DOWN: rogue.dir = "down" if key == keys.ESCAPE: # ESCAPE beendet das Spiel print("Bye, bye, Baby!") quit() init_game() pgzrun.go()
35.671795
89
0.502156
dc8a2fdf395d3f8c44d35ad89a5b0b3e05b5b6b9
19,904
py
Python
pywaffle/waffle.py
tweakimp/PyWaffle
8c5611221e27f941dd1539147127d73fc6575c64
[ "MIT" ]
null
null
null
pywaffle/waffle.py
tweakimp/PyWaffle
8c5611221e27f941dd1539147127d73fc6575c64
[ "MIT" ]
null
null
null
pywaffle/waffle.py
tweakimp/PyWaffle
8c5611221e27f941dd1539147127d73fc6575c64
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*-coding: utf-8 -*- from matplotlib.pyplot import cm from matplotlib.figure import Figure from matplotlib.patches import Rectangle, Patch import matplotlib.font_manager as fm from matplotlib.text import Text from matplotlib.legend_handler import HandlerBase import copy import os import font from itertools import product import warnings from typing import List, Tuple, Union import math METHOD_MAPPING = { 'float': lambda a, b: a / b, 'nearest': lambda a, b: round(a / b), 'ceil': lambda a, b: math.ceil(a/b), 'floor': lambda a, b: a // b, } def division(x: int, y: int, method: str = 'float') -> Union[int, float]: """ :param x: dividend :param y: divisor :param method: {'float', 'nearest', 'ceil', 'floor'} """ return METHOD_MAPPING[method.lower()](x, y) def array_resize(array: Union[Tuple, List], length: int, array_len: int = None): """ Resize array to given length. If the array is shorter than given length, repeat the array; If the array is longer than the length, trim the array. :param array: array :param length: target length :param array_len: if length of original array is known, pass it in here :return: axtended array """ if not array_len: array_len = len(array) return array * (length // array_len) + array[:length % array_len] _FONT_PATH = font.__path__[0] FONTAWESOME_FILES = { 'brands': os.path.join(_FONT_PATH, 'Font Awesome 5 Brands-Regular-400.otf'), 'solid': os.path.join(_FONT_PATH, 'Font Awesome 5 Free-Solid-900.otf'), 'regular': os.path.join(_FONT_PATH, 'Font Awesome 5 Free-Regular-400.otf'), } class TextLegendBase(object): def __init__(self, text, color, **kwargs): self.text = text self.color = color self.kwargs = kwargs class SolidTextLegend(TextLegendBase): def __init__(self, text, color, **kwargs): super().__init__(text, color, **kwargs) class RegularTextLegend(TextLegendBase): def __init__(self, text, color, **kwargs): super().__init__(text, color, **kwargs) class BrandsTextLegend(TextLegendBase): def __init__(self, text, color, **kwargs): super().__init__(text, color, **kwargs) LEGENDSTYLE = {'solid': SolidTextLegend, 'regular': RegularTextLegend, 'brands': BrandsTextLegend} class TextLegendHandler(HandlerBase): def __init__(self, font_file): super().__init__() self.font_file = font_file def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): x = xdescent + width / 2.0 y = ydescent + height / 2.0 kwargs = { 'horizontalalignment': 'center', 'verticalalignment': 'center', 'color': orig_handle.color, 'fontproperties': fm.FontProperties(fname=self.font_file, size=fontsize) } kwargs.update(orig_handle.kwargs) annotation = Text(x, y, orig_handle.text, **kwargs) return [annotation] HANDLER_MAP = { SolidTextLegend: TextLegendHandler(FONTAWESOME_FILES['solid']), RegularTextLegend: TextLegendHandler(FONTAWESOME_FILES['regular']), BrandsTextLegend: TextLegendHandler(FONTAWESOME_FILES['brands']) } class Waffle(Figure): """ A custom Figure class to make waffle charts. :param values: Numerical value of each category. If it is a dict, the keys would be used as labels. :type values: list|dict|pandas.Series :param rows: The number of lines of the waffle chart. This is required unless it is specified in argument plots. :type rows: int :param columns: The number of columns of the waffle chart. If it is not None, the total number of blocks would be decided through rows and columns. [Default None] :type columns: int :param colors: A list of colors for each category. Its length should be the same as values. Default values are from Set2 colormap. :type colors: list[str]|tuple[str] :param labels: The name of each category. If the values is a dict, this parameter would be replaced by the keys of values. :type labels: list[str]|tuple[str] :param legend: Parameters of matplotlib.pyplot.legend in a dict. E.g. {'loc': '', 'bbox_to_anchor': (,), ...} See full parameter list in https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html :type legend: dict :param interval_ratio_x: Ratio of horizontal distance between blocks to block's width. [Default 0.2] :type interval_ratio_x: float :param interval_ratio_y: Ratio of vertical distance between blocks to block's height. [Default 0.2] :type interval_ratio_y: float :param block_aspect_ratio: The ratio of block's width to height. [Default 1] :type block_aspect_ratio: float :param cmap_name: Name of colormaps for default color, if colors is not assigned. See full list in https://matplotlib.org/examples/color/colormaps_reference.html [Default 'Set2'] :type cmap_name: str :param title: Parameters of matplotlib.axes.Axes.set_title in a dict. E.g. {'label': '', 'fontdict': {}, 'loc': ''} See full parameter list in https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_title.html :type title: dict :param icons: Icon name of Font Awesome. If it is a string, all categories use the same icon; If it's a list or tuple of icons, the length should be the same as values. See the full list of Font Awesome on https://fontawesome.com/icons?d=gallery&m=free [Default None] :type icons: str|list[str]|tuple[str] :param icon_set: Deprecated. {'brands', 'regular', 'solid'} The style of icons to be used. [Default 'solid'] :type icon_set: str|list[str]|tuple[str] :param icon_style: The style of icons to be used. Font Awesome Icons find an icon by style and icon name. The style could be 'brands', 'regular' and 'solid'. Visit https://fontawesome.com/cheatsheet for detail. If it is a string, it would search icons within given style. If it is a list or a tuple, the length should be the same as values and it means the style for each icon. [Default 'solid'] :type icon_style: str|list[str]|tuple[str] :param icon_size: Fint size of the icons. The default size is not fixed and depends on the block size. Either an relative value of 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large' or an absolute font size, e.g., 12 :type icon_size: int :param icon_legend: Whether to use icon but not color bar in legend. [Default False] :type icon_legend: bool :param plot_anchor: {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'} The alignment method of subplots. See details in https://matplotlib.org/devdocs/api/_as_gen/matplotlib.axes.Axes.set_anchor.html [Default 'W'] :type plot_anchor: str :param plots: Location and parameters of Waffle class for subplots in a dict, with format like {loc: {subplot_args: values, }, }. loc is a 3-digit integer. If the three integers are I, J, and K, the subplot is the Ith plot on a grid with J rows and K columns. The parameters of subplots are the same as Waffle class parameters, excluding plots itself. Nested subplots is not supported. If any parameter of subplots is not assigned, it use the same parameter in Waffle class as default value. :type plots: dict :param plot_direction: Deprecated. {'NW', 'SW', 'NE', 'SE'} Use starting_location instead. Change the starting location plotting the blocks. 'NW' means plots start at upper left and end at lower right; For 'SW', plots start at lower left and end at upper right; For 'NE', plots start at upper right and end at lower left; For 'SE', plots start at lower right and end at upper left. [Default 'SW'] :type plot_direction: str :param vertical: decide whether to draw the plot vertically or horizontally. [Default False] :type vertical: bool :param starting_location: {'NW', 'SW', 'NE', 'SE'}. Change the starting location plotting the blocks 'NW' means plots start at upper left; For 'SW', plots start at lower left; For 'NE', plots start at upper right; For 'SE', plots start at lower right. [Default 'SW'] :type plot_direction: str :param rounding_rule: {'nearest', 'floor', 'ceil'}. The rounding rule applied when shrinking values to fit the chart size. 'nearest' means "round to nearest, ties to even" rounding mode; 'floor' means round to less of the two endpoints of the interval; 'ceil' means round to greater of the two endpoints of the interval. [Default 'nearest'] :type rounding_rule: str """ _direction_values = { 'NW': { 'column_order': 1, 'row_order': -1, }, 'SW': { 'column_order': 1, 'row_order': 1, }, 'NE': { 'column_order': -1, 'row_order': 1, }, 'SE': { 'column_order': -1, 'row_order': -1, }, } def __init__(self, *args, **kwargs): self.fig_args = { 'values': kwargs.pop('values', []), 'rows': kwargs.pop('rows', None), 'columns': kwargs.pop('columns', None), 'colors': kwargs.pop('colors', None), 'labels': kwargs.pop('labels', None), 'legend': kwargs.pop('legend', {}), 'icons': kwargs.pop('icons', None), 'icon_size': kwargs.pop('icon_size', None), 'icon_set': kwargs.pop('icon_set', 'solid'), # Deprecated 'icon_style': kwargs.pop('icon_style', 'solid'), 'icon_legend': kwargs.pop('icon_legend', False), 'interval_ratio_x': kwargs.pop('interval_ratio_x', 0.2), 'interval_ratio_y': kwargs.pop('interval_ratio_y', 0.2), 'block_aspect_ratio': kwargs.pop('block_aspect_ratio', 1), 'cmap_name': kwargs.pop('cmap_name', 'Set2'), 'title': kwargs.pop('title', None), 'plot_anchor': kwargs.pop('plot_anchor', 'W'), 'plot_direction': kwargs.pop('plot_direction', ''), # Deprecated 'vertical': kwargs.pop('vertical', False), 'starting_location': kwargs.pop('starting_location', 'SW'), 'rounding_rule': kwargs.pop('rounding_rule', 'nearest'), } self.plots = kwargs.pop('plots', None) # If plots is empty, make a single waffle chart if self.plots is None: self.plots = {111: self.fig_args} Figure.__init__(self, *args, **kwargs) for loc, setting in self.plots.items(): self._waffle(loc, **copy.deepcopy(setting)) # Adjust the layout self.set_tight_layout(True) def _waffle(self, loc, **kwargs): # _pa is the arguments for this single plot self._pa = kwargs # Append figure args to plot args plot_fig_args = copy.deepcopy(self.fig_args) for arg, v in plot_fig_args.items(): if arg not in self._pa: self._pa[arg] = v # Parameter Validation self._pa['rounding_rule'] = self._pa['rounding_rule'].lower() if self._pa['rounding_rule'] not in ('nearest', 'ceil', 'floor'): raise ValueError("Argument rounding_rule should be one of nearest, ceil or floor.") if len(self._pa['values']) == 0 or not self._pa['rows']: raise ValueError("Argument values or rows is required.") self.values_len = len(self._pa['values']) if self._pa['colors'] and len(self._pa['colors']) != self.values_len: raise ValueError("Length of colors doesn't match the values.") # lebels and values if isinstance(self._pa['values'], dict): if not self._pa['labels']: self._pa['labels'] = self._pa['values'].keys() self._pa['values'] = list(self._pa['values'].values()) if self._pa['labels'] and len(self._pa['labels']) != self.values_len: raise ValueError("Length of labels doesn't match the values.") self.ax = self.add_subplot(loc, aspect='equal') # Alignment of subplots self.ax.set_anchor(self._pa['plot_anchor']) self.value_sum = sum(self._pa['values']) # if column number is not given, use the values as number of blocks if self._pa['columns'] is None: self._pa['columns'] = division(self.value_sum, self._pa['rows'], method='ceil') block_number_per_cat = self._pa['values'] else: block_number_per_cat = [ division(v * self._pa['columns'] * self._pa['rows'], self.value_sum, method=self._pa['rounding_rule']) for v in self._pa['values'] ] # Absolute height of the plot figure_height = 1 block_y_length = figure_height / ( self._pa['rows'] + self._pa['rows'] * self._pa['interval_ratio_y'] - self._pa['interval_ratio_y'] ) block_x_length = self._pa['block_aspect_ratio'] * block_y_length # Define the limit of X, Y axis self.ax.axis( xmin=0, xmax=( self._pa['columns'] + self._pa['columns'] * self._pa['interval_ratio_x'] - self._pa['interval_ratio_x'] ) * block_x_length, ymin=0, ymax=figure_height ) # Build a color sequence if colors is empty if not self._pa['colors']: default_colors = cm.get_cmap(self._pa['cmap_name']).colors default_color_num = cm.get_cmap(self._pa['cmap_name']).N self._pa['colors'] = array_resize(array=default_colors, length=self.values_len, array_len=default_color_num) # Set icons if self._pa['icons']: from pywaffle.fontawesome_mapping import icons # TODO: deprecating icon_set if self._pa['icon_set'] != 'solid' and self._pa['icon_style'] == 'solid': self._pa['icon_style'] = self._pa['icon_set'] warnings.warn( "Parameter icon_set is deprecated and will be removed in future version. Use icon_style instead.", DeprecationWarning ) # If icon_set is a string, convert it into a list of same icon. It's length is the label's length # 'solid' -> ['solid', 'solid', 'solid', ] if isinstance(self._pa['icon_style'], str): self._pa['icon_style'] = [self._pa['icon_style'].lower()] * self.values_len elif set(self._pa['icon_style']) - set(icons.keys()): raise KeyError('icon_set should be one of {}'.format(', '.join(icons.keys()))) # If icons is a string, convert it into a list of same icon. It's length is the label's length # '\uf26e' -> ['\uf26e', '\uf26e', '\uf26e', ] if isinstance(self._pa['icons'], str): self._pa['icons'] = [self._pa['icons']] * self.values_len if len(self._pa['icons']) != self.values_len: raise ValueError("Length of icons doesn't match the values.") # Replace icon name with Unicode symbols in parameter icons self._pa['icons'] = [ icons[icon_style][icon_name] for icon_name, icon_style in zip(self._pa['icons'], self._pa['icon_style']) ] # Calculate icon size based on the block size tx, ty = self.ax.transData.transform([(0, 0), (0, block_x_length)]) prop = fm.FontProperties(size=self._pa['icon_size'] or int((ty[1] - tx[1]) / 16 * 12)) plot_direction = self._pa['plot_direction'].upper() if plot_direction: warnings.warn( "Parameter plot_direction is deprecated and will be removed in future version. Use starting_location instead.", DeprecationWarning ) starting_location = self._pa['plot_direction'].upper() else: # TODO: starting_location will replace plot_direction in 0.3.0 starting_location = self._pa['starting_location'].upper() try: column_order = self._direction_values[starting_location]['column_order'] row_order = self._direction_values[starting_location]['row_order'] except KeyError: raise KeyError("starting_location should be one of 'NW', 'SW', 'NE', 'SE'") if self.fig_args['vertical']: block_iter = ( c[::-1] for c in product(range(self._pa['rows'])[::row_order], range(self._pa['columns'])[::column_order]) ) else: block_iter = product(range(self._pa['columns'])[::column_order], range(self._pa['rows'])[::row_order]) # Plot blocks class_index = 0 block_index = 0 x_full = (1 + self._pa['interval_ratio_x']) * block_x_length y_full = (1 + self._pa['interval_ratio_y']) * block_y_length for col, row in block_iter: if block_number_per_cat[class_index] == 0: class_index += 1 if class_index > self.values_len - 1: break elif block_number_per_cat[class_index] < 0: raise ValueError("Negative value is not acceptable") x = x_full * col y = y_full * row if self._pa['icons']: prop.set_file(FONTAWESOME_FILES[self._pa['icon_style'][class_index]]) self.ax.text( x=x, y=y, s=self._pa['icons'][class_index], color=self._pa['colors'][class_index], fontproperties=prop ) else: self.ax.add_artist( Rectangle( xy=(x, y), width=block_x_length, height=block_y_length, color=self._pa['colors'][class_index] ) ) block_index += 1 if block_index >= sum(block_number_per_cat[:class_index + 1]): class_index += 1 if class_index > self.values_len - 1: break # Add title if self._pa['title'] is not None: self.ax.set_title(**self._pa['title']) # Add legend if self._pa['labels'] or 'labels' in self._pa['legend']: labels = self._pa['labels'] or self._pa['legend'].get('labels') if self._pa['icons'] and self._pa['icon_legend'] is True: self._pa['legend']['handles'] = [ LEGENDSTYLE[style](color=color, text=icon) for color, icon, style in zip(self._pa['colors'], self._pa['icons'], self._pa['icon_style']) ] self._pa['legend']['handler_map'] = HANDLER_MAP # elif not self._pa['legend'].get('handles'): elif 'handles' not in self._pa['legend']: self._pa['legend']['handles'] = [ Patch(color=c, label=str(l)) for c, l in zip(self._pa['colors'], labels) ] # labels is an alias of legend['labels'] if 'labels' not in self._pa['legend'] and self._pa['labels']: self._pa['legend']['labels'] = self._pa['labels'] if 'handles' in self._pa['legend'] and 'labels' in self._pa['legend']: self.ax.legend(**self._pa['legend']) # Remove borders, ticks, etc. self.ax.axis('off') def remove(self): pass
40.537678
143
0.600834
0b4850c4686e6283e180dd8204017aaedd1c4634
9,096
py
Python
nnsvs/bin/synthesis.py
r9y9/dnnsvs
b028f76fd4f081859ec99a2034e0e0dc8ce1a409
[ "MIT" ]
72
2020-04-19T16:14:09.000Z
2020-05-02T04:02:05.000Z
nnsvs/bin/synthesis.py
r9y9/dnnsvs
b028f76fd4f081859ec99a2034e0e0dc8ce1a409
[ "MIT" ]
1
2020-04-19T16:28:03.000Z
2020-05-02T13:49:13.000Z
nnsvs/bin/synthesis.py
r9y9/dnnsvs
b028f76fd4f081859ec99a2034e0e0dc8ce1a409
[ "MIT" ]
3
2020-04-20T02:34:31.000Z
2020-04-26T01:04:35.000Z
import os from os.path import exists, join import hydra import joblib import numpy as np import pysptk import pyworld import torch from hydra.utils import to_absolute_path from nnmnkwii.io import hts from nnmnkwii.postfilters import merlin_post_filter from nnsvs.gen import ( gen_spsvs_static_features, gen_world_params, postprocess_duration, predict_acoustic, predict_duration, predict_timelag, ) from nnsvs.logger import getLogger from omegaconf import DictConfig, OmegaConf from scipy.io import wavfile from tqdm import tqdm def synthesis( config, device, label_path, question_path, timelag_model, timelag_config, timelag_in_scaler, timelag_out_scaler, duration_model, duration_config, duration_in_scaler, duration_out_scaler, acoustic_model, acoustic_config, acoustic_in_scaler, acoustic_out_scaler, ): # load labels and question labels = hts.load(label_path).round_() binary_dict, numeric_dict = hts.load_question_set( question_path, append_hat_for_LL=False ) # pitch indices in the input features # TODO: configuarable pitch_idx = len(binary_dict) + 1 pitch_indices = np.arange(len(binary_dict), len(binary_dict) + 3) log_f0_conditioning = config.log_f0_conditioning # Clipping settings # setting True by default for backward compatibility timelag_clip_input_features = ( config.timelag.force_clip_input_features if "force_clip_input_features" in config.timelag else True ) duration_clip_input_features = ( config.duration.force_clip_input_features if "force_clip_input_features" in config.duration else True ) acoustic_clip_input_features = ( config.acoustic.force_clip_input_features if "force_clip_input_features" in config.acoustic else True ) if config.ground_truth_duration: # Use provided alignment duration_modified_labels = labels else: # Time-lag lag = predict_timelag( device, labels, timelag_model, timelag_config, timelag_in_scaler, timelag_out_scaler, binary_dict, numeric_dict, pitch_indices, log_f0_conditioning, config.timelag.allowed_range, config.timelag.allowed_range_rest, timelag_clip_input_features, ) # Duration predictions durations = predict_duration( device, labels, duration_model, duration_config, duration_in_scaler, duration_out_scaler, binary_dict, numeric_dict, pitch_indices, log_f0_conditioning, duration_clip_input_features, ) # Normalize phoneme durations duration_modified_labels = postprocess_duration(labels, durations, lag) # Predict acoustic features acoustic_features = predict_acoustic( device, duration_modified_labels, acoustic_model, acoustic_config, acoustic_in_scaler, acoustic_out_scaler, binary_dict, numeric_dict, config.acoustic.subphone_features, pitch_indices, log_f0_conditioning, acoustic_clip_input_features, ) # Generate WORLD parameters mgc, lf0, vuv, bap = gen_spsvs_static_features( duration_modified_labels, acoustic_features, binary_dict, numeric_dict, acoustic_config.stream_sizes, acoustic_config.has_dynamic_features, config.acoustic.subphone_features, pitch_idx, acoustic_config.num_windows, config.frame_period, config.acoustic.relative_f0, config.vibrato_scale, ) if config.acoustic.post_filter: alpha = pysptk.util.mcepalpha(config.sample_rate) mgc = merlin_post_filter(mgc, alpha) f0, spectrogram, aperiodicity = gen_world_params( mgc, lf0, vuv, bap, config.sample_rate ) wav = pyworld.synthesize( f0, spectrogram, aperiodicity, config.sample_rate, config.frame_period ) return wav @hydra.main(config_path="conf/synthesis", config_name="config") def my_app(config: DictConfig) -> None: global logger logger = getLogger(config.verbose) logger.info(OmegaConf.to_yaml(config)) if not torch.cuda.is_available(): device = torch.device("cpu") else: device = torch.device(config.device) # timelag timelag_config = OmegaConf.load(to_absolute_path(config.timelag.model_yaml)) timelag_model = hydra.utils.instantiate(timelag_config.netG).to(device) checkpoint = torch.load( to_absolute_path(config.timelag.checkpoint), map_location=lambda storage, loc: storage, ) timelag_model.load_state_dict(checkpoint["state_dict"]) timelag_in_scaler = joblib.load(to_absolute_path(config.timelag.in_scaler_path)) timelag_out_scaler = joblib.load(to_absolute_path(config.timelag.out_scaler_path)) timelag_model.eval() # duration duration_config = OmegaConf.load(to_absolute_path(config.duration.model_yaml)) duration_model = hydra.utils.instantiate(duration_config.netG).to(device) checkpoint = torch.load( to_absolute_path(config.duration.checkpoint), map_location=lambda storage, loc: storage, ) duration_model.load_state_dict(checkpoint["state_dict"]) duration_in_scaler = joblib.load(to_absolute_path(config.duration.in_scaler_path)) duration_out_scaler = joblib.load(to_absolute_path(config.duration.out_scaler_path)) duration_model.eval() # acoustic model acoustic_config = OmegaConf.load(to_absolute_path(config.acoustic.model_yaml)) acoustic_model = hydra.utils.instantiate(acoustic_config.netG).to(device) checkpoint = torch.load( to_absolute_path(config.acoustic.checkpoint), map_location=lambda storage, loc: storage, ) acoustic_model.load_state_dict(checkpoint["state_dict"]) acoustic_in_scaler = joblib.load(to_absolute_path(config.acoustic.in_scaler_path)) acoustic_out_scaler = joblib.load(to_absolute_path(config.acoustic.out_scaler_path)) acoustic_model.eval() # Run synthesis for each utt. question_path = to_absolute_path(config.question_path) if config.utt_list is not None: in_dir = to_absolute_path(config.in_dir) out_dir = to_absolute_path(config.out_dir) os.makedirs(out_dir, exist_ok=True) with open(to_absolute_path(config.utt_list)) as f: lines = list(filter(lambda s: len(s.strip()) > 0, f.readlines())) logger.info("Processes %s utterances...", len(lines)) for idx in tqdm(range(len(lines))): utt_id = lines[idx].strip() label_path = join(in_dir, f"{utt_id}.lab") if not exists(label_path): raise RuntimeError(f"Label file does not exist: {label_path}") wav = synthesis( config, device, label_path, question_path, timelag_model, timelag_config, timelag_in_scaler, timelag_out_scaler, duration_model, duration_config, duration_in_scaler, duration_out_scaler, acoustic_model, acoustic_config, acoustic_in_scaler, acoustic_out_scaler, ) wav = np.clip(wav, -32768, 32767) if config.gain_normalize: wav = wav / np.max(np.abs(wav)) * 32767 out_wav_path = join(out_dir, f"{utt_id}.wav") wavfile.write( out_wav_path, rate=config.sample_rate, data=wav.astype(np.int16) ) else: assert config.label_path is not None logger.info("Process the label file: %s", config.label_path) label_path = to_absolute_path(config.label_path) out_wav_path = to_absolute_path(config.out_wav_path) wav = synthesis( config, device, label_path, question_path, timelag_model, timelag_config, timelag_in_scaler, timelag_out_scaler, duration_model, duration_config, duration_in_scaler, duration_out_scaler, acoustic_model, acoustic_config, acoustic_in_scaler, acoustic_out_scaler, ) wav = wav / np.max(np.abs(wav)) * (2 ** 15 - 1) wavfile.write(out_wav_path, rate=config.sample_rate, data=wav.astype(np.int16)) def entry(): my_app() # pylint: disable=no-value-for-parameter if __name__ == "__main__": my_app() # pylint: disable=no-value-for-parameter
31.915789
88
0.645119
0ed88cc85dc69ea210a47756ab3eb4c478e9882e
1,497
py
Python
api/addresses/migrations/0002_auto_20200326_1420.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
null
null
null
api/addresses/migrations/0002_auto_20200326_1420.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
null
null
null
api/addresses/migrations/0002_auto_20200326_1420.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
null
null
null
# Generated by Django 2.2.11 on 2020-03-26 14:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("addresses", "0001_initial"), ] operations = [ migrations.AddField( model_name="address", name="address", field=models.CharField( blank=True, default=None, help_text="Used for addresses not in the UK", max_length=256, null=True ), ), migrations.AlterField( model_name="address", name="address_line_1", field=models.CharField(blank=True, default=None, max_length=50, null=True), ), migrations.AlterField( model_name="address", name="address_line_2", field=models.CharField(blank=True, default=None, max_length=50, null=True), ), migrations.AlterField( model_name="address", name="city", field=models.CharField(default=None, max_length=50, null=True), ), migrations.AlterField( model_name="address", name="postcode", field=models.CharField(blank=True, default=None, max_length=10, null=True), ), migrations.AlterField( model_name="address", name="region", field=models.CharField(blank=True, default=None, max_length=50, null=True), ), migrations.AlterModelTable(name="address", table="address",), ]
33.266667
113
0.585838
be7ccf7dcce0254ee4c379415b2784bd6fc85edc
357
py
Python
mayan/apps/documents/tests/base.py
sophiawa/Mayan-EDMS
42f20576d0c690b645a60bf53c5169cda4264231
[ "Apache-2.0" ]
null
null
null
mayan/apps/documents/tests/base.py
sophiawa/Mayan-EDMS
42f20576d0c690b645a60bf53c5169cda4264231
[ "Apache-2.0" ]
10
2021-03-19T23:48:12.000Z
2022-03-12T00:41:49.000Z
mayan/apps/documents/tests/base.py
sophiawa/Mayan-EDMS
42f20576d0c690b645a60bf53c5169cda4264231
[ "Apache-2.0" ]
1
2020-12-17T02:35:09.000Z
2020-12-17T02:35:09.000Z
from mayan.apps.common.tests.base import BaseTestCase, GenericViewTestCase from .mixins import DocumentTestMixin class GenericDocumentTestCase(DocumentTestMixin, BaseTestCase): """Base test case when testing models or classes""" class GenericDocumentViewTestCase(DocumentTestMixin, GenericViewTestCase): """Base test case when testing views"""
29.75
74
0.809524
205434e509ff3c8a8b9e92e31c8d11260d548367
897
py
Python
open-hackathon/src/hackathon/admin/admin_mgr.py
Fendoe/LABOSS
7f90e4627196ada7caf235115c0cc6fbd183c379
[ "Apache-2.0" ]
null
null
null
open-hackathon/src/hackathon/admin/admin_mgr.py
Fendoe/LABOSS
7f90e4627196ada7caf235115c0cc6fbd183c379
[ "Apache-2.0" ]
null
null
null
open-hackathon/src/hackathon/admin/admin_mgr.py
Fendoe/LABOSS
7f90e4627196ada7caf235115c0cc6fbd183c379
[ "Apache-2.0" ]
null
null
null
import sys sys.path.append("..") from hackathon.database.models import * from hackathon.log import log from hackathon.database import db_adapter from datetime import datetime, timedelta from hackathon.constants import HTTP_HEADER from flask import request, g class AdminManager(object): def __init__(self, db_adapter): self.db = db_adapter def __validate_token(self, token): t = self.db.find_first_object(AdminToken, token=token) if t is not None and t.expire_date >= datetime.utcnow(): return t.admin return None def validate_request(self): if HTTP_HEADER.TOKEN not in request.headers: return False admin = self.__validate_token(request.headers[HTTP_HEADER.TOKEN]) if admin is None: return False g.admin = admin return True admin_manager = AdminManager(db_adapter)
24.243243
73
0.690078
d6b7dbaf5e43b0d5b627baca1d0c2f6cadbbc9ce
10,078
py
Python
model_pytorch.py
sohuren/pytorch-openai-transformer-lm
55ba4d78407ae12c7454dc8f3342f476be3dece5
[ "MIT" ]
1
2018-07-08T19:18:44.000Z
2018-07-08T19:18:44.000Z
model_pytorch.py
sohuren/pytorch-openai-transformer-lm
55ba4d78407ae12c7454dc8f3342f476be3dece5
[ "MIT" ]
null
null
null
model_pytorch.py
sohuren/pytorch-openai-transformer-lm
55ba4d78407ae12c7454dc8f3342f476be3dece5
[ "MIT" ]
null
null
null
import copy import json import math import re import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter def gelu(x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) def swish(x): return x * torch.sigmoid(x) ACT_FNS = { 'relu': nn.ReLU, 'swish': swish, 'gelu': gelu } class LayerNorm(nn.Module): "Construct a layernorm module in the OpenAI style (epsilon inside the square root)." def __init__(self, n_state, e=1e-5): super(LayerNorm, self).__init__() self.g = nn.Parameter(torch.ones(n_state)) self.b = nn.Parameter(torch.zeros(n_state)) self.e = e def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.e) return self.g * x + self.b class Conv1D(nn.Module): def __init__(self, nf, rf, nx): super(Conv1D, self).__init__() self.rf = rf self.nf = nf if rf == 1: # faster 1x1 conv w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.w = Parameter(w) self.b = Parameter(torch.zeros(nf)) else: # was used to train LM raise NotImplementedError def forward(self, x): if self.rf == 1: size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w) x = x.view(*size_out) else: raise NotImplementedError return x class Attention(nn.Module): def __init__(self, nx, n_ctx, cfg, scale=False): super(Attention, self).__init__() n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % cfg.n_head == 0 self.register_buffer('b', torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) self.n_head = cfg.n_head self.split_size = n_state self.scale = scale self.c_attn = Conv1D(n_state * 3, 1, nx) self.c_proj = Conv1D(n_state, 1, nx) self.attn_dropout = nn.Dropout(cfg.attn_pdrop) self.resid_dropout = nn.Dropout(cfg.resid_pdrop) def _attn(self, q, k, v): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) w = w * self.b + -1e9 * (1 - self.b) # TF implem method: mask_attn_weights w = nn.Softmax(dim=-1)(w) w = self.attn_dropout(w) return torch.matmul(w, v) def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) else: return x.permute(0, 2, 1, 3) def forward(self, x): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) a = self._attn(query, key, value) a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) return a class MLP(nn.Module): def __init__(self, n_state, cfg): # in MLP: n_state=3072 (4 * n_embd) super(MLP, self).__init__() nx = cfg.n_embd self.c_fc = Conv1D(n_state, 1, nx) self.c_proj = Conv1D(nx, 1, n_state) self.act = ACT_FNS[cfg.afn] self.dropout = nn.Dropout(cfg.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_ctx, cfg, scale=False): super(Block, self).__init__() nx = cfg.n_embd self.attn = Attention(nx, n_ctx, cfg, scale) self.ln_1 = LayerNorm(nx) self.mlp = MLP(4 * nx, cfg) self.ln_2 = LayerNorm(nx) def forward(self, x): a = self.attn(x) n = self.ln_1(x + a) m = self.mlp(n) h = self.ln_2(n + m) return h class TransformerModel(nn.Module): """ Transformer model """ def __init__(self, cfg, vocab=40990, n_ctx=512): super(TransformerModel, self).__init__() self.vocab = vocab self.embed = nn.Embedding(vocab, cfg.n_embd) self.drop = nn.Dropout(cfg.embd_pdrop) block = Block(n_ctx, cfg, scale=True) self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(cfg.n_layer)]) self.decoder = nn.Linear(cfg.n_embd, vocab, bias=False) self.decoder.weight = self.embed.weight # Tied weights self.clf_dropout = nn.Dropout2d(cfg.clf_pdrop) # To reproduce the noise_shape parameter of TF implementation nn.init.normal_(self.embed.weight, std=0.02) def forward(self, x): x = x.view(-1, x.size(-2), x.size(-1)) e = self.embed(x) h = e.sum(dim=2) for block in self.h: h = block(h) return h class LMHead(nn.Module): """ Language Model Head for the transformer """ def __init__(self, model, cfg): super(LMHead, self).__init__() self.n_embd = cfg.n_embd embed_shape = model.embed.weight.shape self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) self.decoder.weight = model.embed.weight # Tied weights def forward(self, h): # Truncated Language modeling logits (we remove the last token) h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) lm_logits = self.decoder(h_trunc) return lm_logits class ClfHead(nn.Module): """ Classifier Head for the transformer """ def __init__(self, clf_token, cfg): super(ClfHead, self).__init__() self.n_embd = cfg.n_embd self.clf_token = clf_token self.dropout = nn.Dropout2d(cfg.clf_pdrop) # To reproduce the noise_shape parameter of TF implementation self.linear = nn.Linear(cfg.n_embd, 1) nn.init.normal_(self.linear.weight, std=0.02) nn.init.normal_(self.linear.bias, 0) def forward(self, h, x): # Classification logits clf_h = h.view(-1, self.n_embd) flat = x[:, :, :, 0].contiguous().view(-1) clf_h = clf_h[flat == self.clf_token, :] clf_h = clf_h.view(-1, x.size(1), self.n_embd, 1) clf_h = self.dropout(clf_h) clf_h = clf_h.view(-1, self.n_embd) clf_logits = self.linear(clf_h) return clf_logits.view(-1, x.size(1)) class DoubleHeadModel(nn.Module): """ Transformer with language model and classification heads """ def __init__(self, cfg, clf_token, vocab=40990, n_ctx=512): super(DoubleHeadModel, self).__init__() self.transformer = TransformerModel(cfg, vocab=vocab, n_ctx=n_ctx) self.lm_head = LMHead(self.transformer, cfg) self.clf_head = ClfHead(clf_token, cfg) def forward(self, x): h = self.transformer(x) lm_logits = self.lm_head(h) clf_logits = self.clf_head(h, x) return lm_logits, clf_logits def load_openai_pretrained_model(model, n_ctx=-1, n_special=-1, n_transfer=12, n_embd=768, path='./model/', path_names='./'): # Load weights from TF model print("Loading weights...") names = json.load(open(path_names + 'parameters_names.json')) shapes = json.load(open(path + 'params_shapes.json')) offsets = np.cumsum([np.prod(shape) for shape in shapes]) init_params = [np.load(path + 'params_{}.npy'.format(n)) for n in range(10)] init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] if n_ctx > 0: init_params[0] = init_params[0][:n_ctx] if n_special > 0: init_params[0] = np.concatenate( [init_params[1], (np.random.randn(n_special, n_embd) * 0.02).astype(np.float32), init_params[0] ], 0) else: init_params[0] = np.concatenate( [init_params[1], init_params[0] ], 0) del init_params[1] if n_transfer == -1: n_transfer = 0 else: n_transfer = 1 + n_transfer * 12 init_params = [arr.squeeze() for arr in init_params] try: assert model.embed.weight.shape == init_params[0].shape except AssertionError as e: e.args += (model.embed.weight.shape, init_params[0].shape) raise model.embed.weight.data = torch.from_numpy(init_params[0]) for name, ip in zip(names[1:n_transfer], init_params[1:n_transfer]): name = name[6:] # skip "model/" assert name[-2:] == ":0" name = name[:-2] name = name.split('/') pointer = model for m_name in name: if re.fullmatch(r'[A-Za-z]+\d+', m_name): l = re.split(r'(\d+)', m_name) else: l = [m_name] pointer = getattr(pointer, l[0]) if len(l) >= 2: num = int(l[1]) pointer = pointer[num] try: assert pointer.shape == ip.shape except AssertionError as e: e.args += (pointer.shape, ip.shape) raise pointer.data = torch.from_numpy(ip) class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ DEFAULT_CONFIG = dotdict({ 'n_embd': 768, 'n_head': 12, 'n_layer': 12, 'embd_pdrop': 0.1, 'attn_pdrop': 0.1, 'resid_pdrop': 0.1, 'afn': 'gelu', 'clf_pdrop': 0.1})
32.827362
117
0.583052
21d82f22a9d26170891ff7c50f456ea5e5870f65
2,455
py
Python
.history/src/data/data_20191018132944.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
.history/src/data/data_20191018132944.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
.history/src/data/data_20191018132944.py
bkraft4257/kaggle_titanic
f29ea1773773109a867278c001dbd21a9f7b21dd
[ "MIT" ]
null
null
null
import pandas as pd from typing import Union from pathlib import Path from nameparser import HumanName class ExtractData: title_translator = { "Mlle.": "Mrs.", "Mme.": "Mrs.", "Sir.": "Mr.", "Ms.": "Mrs.", "": "Mr.", "Col.": "Mr.", "Capt.": "Mr.", "Lady.": "Mrs.", "the Countess. of": "Mrs.", } def __init__(self, filename: Union[str, Path], drop_columns=None): # """Extract Training Data from file or Path # Arguments: # filename {[str]} -- Filename of CSV data file containing data. # drop_columns -- Columns in dataframe that should be dropped. # """ if drop_columns is None: drop_columns = ["age", "cabin", "name", "ticket"] self.filename = filename self.drop_columns = drop_columns self.all_label_columns = ["survived"] self.all_feature_columns = [ "pclass", "name", "sex", "age", "sibsp", "parch", "ticket", "fare", "cabin", "embarked", ] self.Xy_raw = None self.Xy = None self.extract_raw() self.Xy = self.Xy_raw.copy() self.extract_title() self.extract_last_name() def extract_raw(self): """ Extracts data from a CSV file. Returns: pd.DataFrame -- [description] """ Xy_raw = pd.read_csv(self.filename) Xy_raw.columns = Xy_raw.columns.str.lower().str.replace(" ", "_") Xy_raw["pclass"] = Xy_raw["pclass"].astype("category") self.Xy_raw = Xy_raw.set_index("passengerid") def estimate_age(self): def extract_title(self): """[summary] """ self.Xy["title"] = ( self.Xy.name.apply(lambda x: HumanName(x).title) .replace(self.title_translator) .replace({"\.": ""}, regex=True) ) def extract_last_name(self): self.Xy["last_name"] = self.Xy.name.apply(lambda x: HumanName(x).last) def clean(self,): """Clean data to remove missing data and "unnecessary" features. Arguments: in_raw_df {pd.DataFrame} -- Dataframe containing all columns and rows Kaggle Titanic Training Data set """ self.Xy = self.Xy_raw.drop(self.drop_columns, axis=1)
26.978022
114
0.524644
3666c993ff811cb5f245c2bc6e0c20a84885f945
6,082
py
Python
CheckSubscription.py
SaiVikhyath/FitnessGarage
e345d295e13f6ba307d324203c9c62e7ea2f79e7
[ "MIT" ]
1
2021-12-20T21:00:07.000Z
2021-12-20T21:00:07.000Z
CheckSubscription.py
SaiVikhyath/FitnessGarage
e345d295e13f6ba307d324203c9c62e7ea2f79e7
[ "MIT" ]
null
null
null
CheckSubscription.py
SaiVikhyath/FitnessGarage
e345d295e13f6ba307d324203c9c62e7ea2f79e7
[ "MIT" ]
null
null
null
import psycopg2 import smtplib import logging import datetime import requests import json from dateutil.relativedelta import relativedelta SERVER = "smtp.gmail.com" PORT = 587 FROM = "fitnessgaragehyd@gmail.com" SUBJECT = "GYM SUBSCRIPTION ENDING" smsURL = "https://www.fast2sms.com/dev/bulkV2" numbersList = "" aboutToEndData = {} endsData = {} subscriptionEndsList = [] try: logging.basicConfig(filename="CheckSubscriptionLog.log", format="%(asctime)s %(message)s", filemode="a") logger = logging.getLogger() logger.setLevel(logging.DEBUG) except: print("Unable to open log file") try: con = psycopg2.connect(database="*********", user="*********", password="*********", host="127.0.0.1", port="5432") except: logger.error("DB connection failed!!!") cur = con.cursor() detailsQuery = "select * from GymMembers;" cur.execute(detailsQuery) gymDetails = cur.fetchall() for i in gymDetails: regNo = i[0] name = i[1] mobileNo = i[2] emailID = i[3] subscriptionDuration = i[5] subscriptionStartDate = datetime.datetime.fromtimestamp(int(i[4])) subscriptionStartDate = subscriptionStartDate.date() subscriptionEndDate = datetime.datetime.fromtimestamp(int(i[4])) + relativedelta(months=int(i[5])) subscriptionEndDate = subscriptionEndDate.date() reminderDate = subscriptionEndDate + relativedelta(days=-3) today = datetime.datetime.now().date() print("RECEIPT NO : ", regNo) print("NAME : ", name) print("MOBILE NUMBER : ", mobileNo) print("EMAIL ID : ", emailID) print("SUBSCRIPTION START : ", subscriptionStartDate) print("SUBSCRIPTION END : ", subscriptionEndDate) print("REMINDER DATE : ", reminderDate) print("TODAY : ", today) if today >= reminderDate: if today > subscriptionEndDate: print("ENDED ON : ", subscriptionEndDate) if int(str(today - subscriptionEndDate).split(" ")[0]) >= 3: cur.execute("delete from GymMembers where phonenumber=(%s)",(mobileNo,)) con.commit() elif today < subscriptionEndDate: endsIndays = str(subscriptionEndDate - today).split(',')[0] aboutToEndData = { "route" : "v3", "sender_id" : "FitnessGarage", "message" : "\n" + name + "\n\nThis is to notify you that your gym subscription ends in " + endsIndays + ". Please renew your subscription.\n\nThanks & Regards\nPraveen Yadav\nFitness Garage\n\n", "language" : "english", "flash" : 0, "numbers" : mobileNo, } headers = { "authorization" : "************", "Content-Type" : "application/x-www-form-urlencoded", "Cache-Control" : "no-cache" } response = requests.request("POST", smsURL, data=aboutToEndData, headers=headers) msg = json.loads(response.text) print(msg) print("Ends in " + endsIndays) BODY = "\n\n\nHello " + name + ", \n\nThis is to notify you that your gym subscription ends in " + endsIndays + ". Please renew your subscription.\n\nThanks & Regards\nPraveen Yadav\nFitness Garage\n\n" message = """From: %s\r\nTo: %s\nSubject: %s\n\n\n%s""" % (FROM, emailID, SUBJECT, BODY) server = smtplib.SMTP_SSL(SERVER, 465) server.login(FROM, "********") server.sendmail(FROM, emailID, message) server.quit() else: endsData = { "route" : "v3", "sender_id" : "FitnessGarage", "message" : "\n" + name + "\n\nThis is to notify you that your gym subscription ends today. Please renew your subscription.\n\nThanks & Regards\nPraveen Yadav\nFitness Garage", "language" : "english", "flash" : 0, "numbers" : mobileNo, } headers = { "authorization" : "***********", "Content-Type" : "application/x-www-form-urlencoded", "Cache-Control" : "no-cache" } response = requests.request("POST", smsURL, data=endsData, headers=headers) msg = json.loads(response.text) print(msg) print("ENDS TODAY : ", subscriptionEndDate) subscriptionEndsList.append(name) BODY = "Hello " + name + ", \n\n\tThis is to notify you that your gym subscription ends today. Please renew your subscription.\n\nThanks & Regards\nPraveen Yadav\nFitness Garage" message = """From: %s\r\nTo: %s\nSubject: %s\n\n\n%s""" % (FROM, emailID, SUBJECT, BODY) server = smtplib.SMTP_SSL(SERVER, 465) server.login(FROM, "***********") server.sendmail(FROM, emailID, message) server.quit() else: print("SUBSCRIPTION NOT ENDING IN NEXT 7 DAYS!!") subscriptionEndsString = ", ".join(subscriptionEndsList) subscriptionEndsData = { "route" : "v3", "sender_id" : "FitnessGarage", "message" : "\nPraveen\n\nThis is to notify you that the following customer's gym subscription ends today.\n\nNames : "+ subscriptionEndsString +"\n\nThanks\nFitness Garage", "language" : "english", "flash" : 0, "numbers" : mobileNo, } headers = { "authorization" : "*************", "Content-Type" : "application/x-www-form-urlencoded", "Cache-Control" : "no-cache" } if subscriptionEndsList: response = requests.request("POST", smsURL, data=subscriptionEndsData, headers=headers) msg = json.loads(response.text) print("\n\n\n" + str(msg)) BODY = "Hello Praveen\n\n\tThis is to notify you that the following customer's gym subscription ends today.\n\nNames : "+ subscriptionEndsString +"\n\nThanks\nFitness Garage" message = """From: %s\r\nTo: %s\nSubject: %s\n\n\n%s""" % (FROM, FROM, "SUBSCRIPTIONS ENDING TODAY", BODY) server = smtplib.SMTP_SSL(SERVER, 465) server.login(FROM, "**********") server.sendmail(FROM, FROM, message) server.quit()
41.37415
214
0.603256
b2790878b2079935af79aebec00dc82ff33bb3eb
6,378
py
Python
platform/gsutil/gslib/addlhelp/command_opts.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
null
null
null
platform/gsutil/gslib/addlhelp/command_opts.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
null
null
null
platform/gsutil/gslib/addlhelp/command_opts.py
IsaacHuang/google-cloud-sdk
52afa5d1a75dff08f4f5380c5cccc015bf796ca5
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Additional help about gsutil command-level options.""" from __future__ import absolute_import from gslib.help_provider import HelpProvider _DETAILED_HELP_TEXT = (""" <B>SYNOPSIS</B> Top-level gsutil Options <B>DESCRIPTION</B> gsutil supports separate options for the top-level gsutil command and the individual sub-commands (like cp, rm, etc.) The top-level options control behavior of gsutil that apply across commands. For example, in the command: gsutil -m cp -p file gs://bucket/obj the -m option applies to gsutil, while the -p option applies to the cp sub-command. <B>OPTIONS</B> -D Shows HTTP requests/headers and additional debug info needed when posting support requests. -DD Shows HTTP requests/headers, additional debug info plus HTTP upstream payload. -h Allows you to specify certain HTTP headers, for example: gsutil -h "Cache-Control:public,max-age=3600" \\ -h "Content-Type:text/html" cp ... Note that you need to quote the headers/values that contain spaces (such as "Content-Disposition: attachment; filename=filename.ext"), to avoid having the shell split them into separate arguments. The following headers are supported: Cache-Control Content-Disposition Content-Encoding Content-Language Content-MD5 Content-Type Custom metadata headers with a matching Cloud Storage Provider prefix, such as: x-goog-meta- Note that for gs:// URLs, the Cache Control header is specific to the API being used. The XML API will accept any cache control headers and return them during object downloads. The JSON API respects only the public, private, no-cache, and max-age cache control headers, and may add its own no-transform directive even if it was not specified. See 'gsutil help apis' for more information on gsutil's interaction with APIs. See also "gsutil help setmeta" for the ability to set metadata fields on objects after they have been uploaded. -m Causes supported operations (acl ch, acl set, cp, mv, rm, rsync, and setmeta) to run in parallel. This can significantly improve performance if you are performing operations on a large number of files over a reasonably fast network connection. gsutil performs the specified operation using a combination of multi-threading and multi-processing, using a number of threads and processors determined by the parallel_thread_count and parallel_process_count values set in the boto configuration file. You might want to experiment with these values, as the best values can vary based on a number of factors, including network speed, number of CPUs, and available memory. Using the -m option may make your performance worse if you are using a slower network, such as the typical network speeds offered by non-business home network plans. It can also make your performance worse for cases that perform all operations locally (e.g., gsutil rsync, where both source and desination URLs are on the local disk), because it can "thrash" your local disk. If a download or upload operation using parallel transfer fails before the entire transfer is complete (e.g. failing after 300 of 1000 files have been transferred), you will need to restart the entire transfer. Also, although most commands will normally fail upon encountering an error when the -m flag is disabled, all commands will continue to try all operations when -m is enabled with multiple threads or processes, and the number of failed operations (if any) will be reported at the end of the command's execution. WARNING: If you use the gsutil -m option when copying data between versioned buckets, object version ordering will not be preserved. For more information see the "COPYING VERSIONED BUCKETS" section under 'gsutil help versions'. -o Set/override values in the boto configuration value, in the format <section>:<name>=<value>, e.g. gsutil -o "Boto:proxy=host" ... This will not pass the option to gsutil integration tests, which run in a separate process. -q Causes gsutil to perform operations quietly, i.e., without reporting progress indicators of files being copied or removed, etc. Errors are still reported. This option can be useful for running gsutil from a cron job that logs its output to a file, for which the only information desired in the log is failures. -s Tells gsutil to use a simulated storage provider (for testing). """) class CommandOptions(HelpProvider): """Additional help about gsutil command-level options.""" # Help specification. See help_provider.py for documentation. help_spec = HelpProvider.HelpSpec( help_name='options', help_name_aliases=['arg', 'args', 'cli', 'opt', 'opts'], help_type='additional_help', help_one_line_summary='Top-Level Command-Line Options', help_text=_DETAILED_HELP_TEXT, subcommand_help_text={}, )
44.915493
80
0.657259
86a112eaa41860f75b974e7275f9eea83ca37199
2,414
py
Python
corescrape/proxy/proxy.py
anewmanvs/corescrape
3162f7f29ca2fe1786a28e05864c3099a7a19ae0
[ "MIT" ]
null
null
null
corescrape/proxy/proxy.py
anewmanvs/corescrape
3162f7f29ca2fe1786a28e05864c3099a7a19ae0
[ "MIT" ]
null
null
null
corescrape/proxy/proxy.py
anewmanvs/corescrape
3162f7f29ca2fe1786a28e05864c3099a7a19ae0
[ "MIT" ]
null
null
null
""" Proxy IMPORTANT: * Make sure you ALWAYS use ELITE proxies, otherwise you are exposed """ # pylint: disable=invalid-name, too-many-instance-attributes from core.exceptions import CoreScrapeInvalidProxy class Proxy: """Defines a proxy and its useful methods""" def __init__(self, address): """Constructor.""" self.ready = False # should always be the first self.address = address self.numtries = 0 try: self.__ip, self.__port = address.split(':') except ValueError: raise CoreScrapeInvalidProxy self.priority = 10 # Maximum number of hits on a row. After this, the up_priority will # instead be a 'down_priority' to avoid reusing too much the same proxy. self.max_on_a_row = 3 self.on_a_row = 0 # number of hits on a row self.ready = True # should always be the last def requests_formatted(self): """Returns the proxy in requests formatting.""" return {protocol: self.address for protocol in ['http', 'https']} def add_up_try(self): """Add up a try""" self.numtries += 1 self.down_priority() return self.numtries def up_priority(self, weight=1): """Set higher priority to this proxy""" if self.on_a_row > self.max_on_a_row: # Number of maximum hits reached. The informed weight is ignored here self.down_priority(self.max_on_a_row + 1) return if self.priority > 0: self.priority -= weight self.on_a_row += 1 def down_priority(self, weight=1): """Set lower priority to this proxy""" self.priority += weight self.on_a_row = 0 def ip(self): """Returns the IP""" return self.__ip def port(self): """Returns the port""" return self.__port def num_tries(self): """Number of tries this proxy has made""" return self.numtries def __str__(self): """To string""" return self.address def __bool__(self): """Points if this proxy is ready""" return self.ready def __eq__(self, other): """Equality between two proxies""" return self.priority == other.priority def __lt__(self, other): """Less than two proxies""" return self.priority < other.priority
24.383838
81
0.600249
101e13aa6d0f1dd3929809231f4c1322759ccbd8
2,102
py
Python
demo_joystick01.py
svdmaar/pygame_demos
8fb599134ba9db7c833a53fdc152ef0784f6c4b9
[ "MIT" ]
null
null
null
demo_joystick01.py
svdmaar/pygame_demos
8fb599134ba9db7c833a53fdc152ef0784f6c4b9
[ "MIT" ]
null
null
null
demo_joystick01.py
svdmaar/pygame_demos
8fb599134ba9db7c833a53fdc152ef0784f6c4b9
[ "MIT" ]
null
null
null
import Demo import pygame # https://www.pygame.org/docs/ref/joystick.html # TODO: "hats" class Demo_Joystick01(Demo.Demo): def setup(self, screen): super().setup(screen) self.joystickCount = pygame.joystick.get_count() defaultFontName = pygame.font.get_default_font() fontSize = 30 self.font01 = pygame.font.SysFont(defaultFontName, fontSize) self.countSurface = self.font01.render("Joystick count: " + str(self.joystickCount), False, (0, 0, 0)) if self.joystickCount > 0: self.joystick0 = pygame.joystick.Joystick(0) self.joystickNameSurface0 = self.font01.render(self.joystick0.get_name(), False, (0, 0, 0)) self.axisCount0 = self.joystick0.get_numaxes() self.axisSurface0 = self.font01.render("Axis count: " + str(self.axisCount0), False, (0, 0, 0)) self.buttonCount0 = self.joystick0.get_numbuttons() self.buttonSurface0 = self.font01.render("Button count: " + str(self.buttonCount0), False, (0, 0, 0)) def render(self): # TODO: do we need to free these font surfaces? textY = 0 self.screen.blit(self.countSurface, (0, 0)) if self.joystickCount == 0: return textY += 30 self.screen.blit(self.joystickNameSurface0, (0, textY)) textY += 30 self.screen.blit(self.axisSurface0, (0, textY)) for i in range(self.axisCount0): axisStr = str(self.joystick0.get_axis(i)) axisTextSurface = self.font01.render(axisStr, False, (0, 0, 0)) textY += 30 self.screen.blit(axisTextSurface, (0, textY)) textY += 30 self.screen.blit(self.buttonSurface0, (0, textY)) for i in range(self.buttonCount0): buttonStr = str(self.joystick0.get_button(i)) buttonTextSurface = self.font01.render(buttonStr, False, (0, 0, 0)) textY += 30 self.screen.blit(buttonTextSurface, (0, textY)) def getName(self): return "joystick01: shows input of first joystick (if available)"
41.215686
113
0.620837
075a96e3e1cafb4f4ce71ec323a328a775945e80
5,840
py
Python
src/graficos/graficar_vecinos_10_a_100.py
ilebrero/Metodos-TP2
e44a6538cfec5eb16b294cd2371870c265dba451
[ "MIT" ]
null
null
null
src/graficos/graficar_vecinos_10_a_100.py
ilebrero/Metodos-TP2
e44a6538cfec5eb16b294cd2371870c265dba451
[ "MIT" ]
null
null
null
src/graficos/graficar_vecinos_10_a_100.py
ilebrero/Metodos-TP2
e44a6538cfec5eb16b294cd2371870c265dba451
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from math import log y_f1 = [] y_f1_promedio = [] y_hitrate = [] y_hitrate_promedio = [] y_recalls = [] y_recalls_promedio_iteracion = [] y_recalls_promedio_clase = [] y_precision = [] y_precision_promedio_iteracion = [] y_precision_promedio_clase = [] y_tiempo = [] # MODIFICAR EN CASO DE QUERER DISTINTOS VALORES EN EL EJE X DEL GRAFICOS # x_clase sería las iteraciones que se hacen variando el valor que se varíe x_clase = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] # Por ejemplo aca varío los vecinos de 10 a 100 K = 10 # K del k-cross-folding cant_iteraciones = len(x_clase) # modificar x. RANGO DE VARIABLE # x_iteracion es para gráficar, por cada iteración de la variable siendo modificada, cada iteración del K-cross-folding # Por eso se calcula como cant_iteraciones * K x_iteracion = [] a = 10 for j in range(0, cant_iteraciones): for i in range (0, K): x_iteracion.append(a) a += 10 # MODIFICAR EL NOMBRE DE LA CARPETA DE DONDE LEER LOS DATOS (y la extension del archivo, yo flashee y les puse .tex) # Ejemplo: # f = open('../resultados/MI_CARPETA/f1.tex', 'r') promedio = 0 f = open('../resultados/PLSDA_vecinos_10_a_100_dimension_10/f1.tex', 'r') for j in range(0, cant_iteraciones): for i in range(0, K): aux = float(f.readline()[:-1]) promedio += aux y_f1.append(aux) promedio /= K y_f1_promedio.append(promedio) promedio = 0 f = open('../resultados/PLSDA_vecinos_10_a_100_dimension_10/hitrate.tex', 'r') promedio = 0 for j in range(0, cant_iteraciones): for i in range(0, K): aux = float(f.readline()[:-1]) promedio += aux y_hitrate.append(aux) promedio /= K y_hitrate_promedio.append(promedio) promedio = 0 f = open('../resultados/PLSDA_vecinos_10_a_100_dimension_10/recalls.tex', 'r') prom = 0 for j in range(0, cant_iteraciones): for i in range(0, K): for z in range(0, 10): y_recalls.append(float(f.readline()[:-1])) promedio = float(f.readline()[:-1]) prom += promedio y_recalls_promedio_iteracion.append(promedio) prom /= K y_recalls_promedio_clase.append(prom) prom = 0 f = open('../resultados/PLSDA_vecinos_10_a_100_dimension_10/precisiones.tex', 'r') for j in range(0, cant_iteraciones): for i in range(0, K): for z in range(0, 10): y_precision.append(float(f.readline()[:-1])) promedio = float(f.readline()[:-1]) prom += promedio y_precision_promedio_iteracion.append(promedio) prom /= K y_precision_promedio_clase.append(prom) prom = 0 # DESCOMENTAR EN CASO DE HABER HECHO ADEMAS TOMA DE TIEMPOS #promedio = 0 #f = open('../resultados/PLSDA_vecinos_10_a_100_dimension_10/tiempos.tex', 'r') #for j in range(0, cant_iteraciones): # for i in range(0, K): # promedio += float(f.readline()[:-1]) # # promedio /= K # y_tiempo.append(promedio) # promedio = 0 # PARA QUE SE GUARDEN LAS IMAGENES ES NECESARIO CREAR UNA CARPETA DENTRO DE SUS RESULTADOS QUE SE LLAME "graficos" # Ejemplo: # plt.savefig('../resultados/MI_CARPETA/graficos/precisiones_clase.png') # PRIMER IMAGEN error_config = {'ecolor': '0.3'} bar_width = 0.96 opacity = 0.4 plt.plot(x_clase, y_precision_promedio_clase, 'ro', #bar_width, alpha=opacity, color='b', #error_kw=error_config, label=u"Precisión del categorizador") plt.xlabel(u"cantidad de vecinos") plt.ylabel(u"Precisión") plt.legend() plt.savefig('../resultados/PLSDA_vecinos_10_a_100_dimension_10/graficos/precisiones_clase.png') plt.show() # SEGUNDA IMAGEN plt.plot(x_iteracion, y_precision_promedio_iteracion, 'ro', #bar_width, alpha=opacity, color='b', label=u"Precisión del categorizador por clase") plt.xlabel(u"cantidad de vecinos") plt.ylabel(u"Precisión") plt.legend() plt.tight_layout() plt.savefig('../resultados/PLSDA_vecinos_10_a_100_dimension_10/graficos/precisiones_iteracion.png') plt.show() # TERCER IMAGEN plt.plot(x_clase, y_recalls_promedio_clase, 'ro', #bar_width, alpha=opacity, color='b', label=u"recall del categorizador") plt.xlabel(u"cantidad de vecinos") plt.ylabel(u"Recall") plt.legend() plt.tight_layout() plt.savefig('../resultados/PLSDA_vecinos_10_a_100_dimension_10/graficos/recall_clase.png') plt.show() # CUARTA IMAGEN plt.plot(x_iteracion, y_recalls_promedio_iteracion, 'ro', #bar_width, alpha=opacity, color='b', label=u"recall del categorizador por clase") plt.xlabel(u"cantidad de vecinos") plt.ylabel(u"Recall") plt.legend() plt.tight_layout() plt.savefig('../resultados/PLSDA_vecinos_10_a_100_dimension_10/graficos/recall_iteracion.png') plt.show() # QUINTA IMAGEN plt.plot(x_clase, y_hitrate_promedio, 'ro', #bar_width, alpha=opacity, color='b', label=u"Hit rate del categorizador") plt.xlabel(u"cantidad de vecinos") plt.ylabel(u"Hit rate") plt.legend() plt.tight_layout() plt.savefig('../resultados/PLSDA_vecinos_10_a_100_dimension_10/graficos/hitrate_promedio.png') plt.show() # SEXTA IMAGEN plt.plot(x_clase, y_f1_promedio, 'ro', #bar_width, alpha=opacity, color='b', label=u"F1 del categorizador") plt.xlabel(u"cantidad de vecinos") plt.ylabel(u"F1") plt.legend() plt.tight_layout() plt.savefig('../resultados/PLSDA_vecinos_10_a_100_dimension_10/graficos/F1_promedio.png') plt.show() # SEPTIMA IMAGEN # DESCOMENTAR EN CASO DE HACER TOMA DE TIEMPOS #plt.plot(x_clase, y_tiempo, 'ro', #bar_width, # alpha=opacity, # color='b', # label=u"Tiempo del PLSDA+kNN") # #plt.xlabel(u"cantidad de vecinos") #plt.ylabel(u"tiempo") #plt.legend() # #plt.tight_layout() #plt.savefig('../resultados/PLSDA_vecinos_10_a_100_dimension_10/graficos/tiempos.png') #plt.show()
25.955556
119
0.702226
8c09c9d4e928a8018caea654581182fda804df43
3,548
py
Python
cride/circles/admin.py
blueleus/cride
8723fc9eeda540b8b7b377270479bc4ae2969ad5
[ "MIT" ]
null
null
null
cride/circles/admin.py
blueleus/cride
8723fc9eeda540b8b7b377270479bc4ae2969ad5
[ "MIT" ]
null
null
null
cride/circles/admin.py
blueleus/cride
8723fc9eeda540b8b7b377270479bc4ae2969ad5
[ "MIT" ]
null
null
null
"""Circle models admin.""" # Django from django.contrib import admin from django.http import HttpResponse # Models from cride.circles.models import Circle from cride.rides.models import Ride # Forms from .forms import UploadFileForm # Utilities # Utilities import csv from django.utils import timezone from datetime import datetime, timedelta from io import TextIOWrapper from django.urls import path from django.shortcuts import render @admin.register(Circle) class CircleAdmin(admin.ModelAdmin): """Circle model admin.""" list_display = ( 'slug_name', 'name', 'is_public', 'verified', 'is_limited', 'members_limit' ) search_fields = ('slug_name', 'name') list_filter = ( 'is_public', 'verified', 'is_limited' ) actions = ['make_verified', 'make_unverified', 'download_todays_rides'] def make_verified(self, request, queryset): """Make circles verified.""" queryset.update(verified=True) make_verified.short_description = 'Make selected circles verified' def make_unverified(self, request, queryset): """Make circles unverified.""" queryset.update(verified=False) make_unverified.short_description = 'Make selected circles unverified' def get_urls(self): urls = super(CircleAdmin, self).get_urls() custom_urls = [ path('import-csv/', self.import_csv) ] return custom_urls + urls def import_csv(self, request): if request.method == 'POST': form = UploadFileForm(request.POST, request.FILES) if form.is_valid(): self.handle_import_csv(request.FILES['file']) self.message_user(request, "Your csv file has been imported") else: form = UploadFileForm() return render(request, 'admin/circles/circle/csv_form.html', {'form': form}) def handle_import_csv(self, f): # For more information: # https://stackoverflow.com/questions/16243023/how-to-resolve-iterator-should-return-strings-not-bytes file = TextIOWrapper(f.file, encoding='utf-8') reader = csv.DictReader(file) for row in reader: circle = Circle(**row) circle.save() def download_todays_rides(self, request, queryset): """Return today's rides.""" now = timezone.now() start = datetime(now.year, now.month, now.day, 0, 0, 0) end = start + timedelta(days=1) rides = Ride.objects.filter( offered_in__in=queryset.values_list('id'), departure_date__gte=start, departure_date__lte=end ).order_by('departure_date') response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="rides.csv"' writer = csv.writer(response) writer.writerow([ 'id', 'passengers', 'departure_location', 'departure_date', 'arrival_location', 'arrival_date', 'rating', ]) for ride in rides: writer.writerow([ ride.pk, ride.passengers.count(), ride.departure_location, str(ride.departure_date), ride.arrival_location, str(ride.arrival_date), ride.rating, ]) return response download_todays_rides.short_description = 'Download todays rides'
29.566667
110
0.610203
6f7e365a4d32d5ec9d122d369fd1cf9fed9d671e
6,398
py
Python
configs/detr/detr_r50_4x16_5e_output_heads_only.py
colinski/mmdetection
c1526855590c33886c52f8651dad86a32c0f38fd
[ "Apache-2.0" ]
null
null
null
configs/detr/detr_r50_4x16_5e_output_heads_only.py
colinski/mmdetection
c1526855590c33886c52f8651dad86a32c0f38fd
[ "Apache-2.0" ]
null
null
null
configs/detr/detr_r50_4x16_5e_output_heads_only.py
colinski/mmdetection
c1526855590c33886c52f8651dad86a32c0f38fd
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] #import os #checkpoint = '%s/checkpoints/detr_r50_8x2_150e_coco_no_output_heads.pth' % os.environ['WORK'] #checkpoint = '/work/mvadera_umass_edu/checkpoints/detr_r50_8x2_150e_coco_no_output_heads.pth' checkpoint = '/work/csamplawski_umass_edu/checkpoints/detr_r50_8x2_150e_coco_no_output_heads.pth' model = dict( type='DETR', freeze_backbone=True, init_cfg=dict(type='Pretrained', checkpoint=checkpoint), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(3, ), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), bbox_head=dict( type='DETRHead', num_classes=80, in_channels=2048, #freeze_transformer=True, freeze_proj=True, transformer=dict( type='Transformer', freeze_encoder=True, freeze_decoder=True, encoder=dict( type='DetrTransformerEncoder', num_layers=6, transformerlayers=dict( type='BaseTransformerLayer', attn_cfgs=[ dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1) ], feedforward_channels=2048, ffn_dropout=0.1, operation_order=('self_attn', 'norm', 'ffn', 'norm'))), decoder=dict( type='DetrTransformerDecoder', return_intermediate=True, num_layers=6, transformerlayers=dict( type='DetrTransformerDecoderLayer', attn_cfgs=dict( type='MultiheadAttention', embed_dims=256, num_heads=8, dropout=0.1), feedforward_channels=2048, ffn_dropout=0.1, operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')), )), positional_encoding=dict( type='SinePositionalEncoding', num_feats=128, normalize=True), loss_cls=dict( type='CrossEntropyLoss', bg_cls_weight=0.1, use_sigmoid=False, loss_weight=1.0, class_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=5.0), loss_iou=dict(type='GIoULoss', loss_weight=2.0)), # training and testing settings train_cfg=dict( assigner=dict( type='HungarianAssigner', cls_cost=dict(type='ClassificationCost', weight=1.), reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))), test_cfg=dict(max_per_img=100)) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # train_pipeline, NOTE the img_scale and the Pad's size_divisor is different # from the default setting in mmdet. train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='AutoAugment', policies=[[ dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ]]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=1), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ] # test_pipeline, NOTE the Pad's size_divisor is different from the default # setting (size_divisor=32). While there is little effect on the performance # whether we use the default setting or use size_divisor=1. test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=1), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=16, workers_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( type='AdamW', lr=0.0001, weight_decay=0.0001, paramwise_cfg=dict( custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)})) optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict(policy='step', step=[4]) runner = dict(type='EpochBasedRunner', max_epochs=5) find_unused_parameters=True
39.012195
97
0.527352
30d656ad469e17fbcc09ac5b61fb35bd1ab10514
5,574
py
Python
tests/dot11/test_FrameManagementDisassociation.py
S3bastian/impacket
6da655ca9ac4f9c2a207ea47e79d089044accd78
[ "Apache-1.1" ]
23
2020-02-21T02:44:21.000Z
2022-03-03T23:40:32.000Z
tests/dot11/test_FrameManagementDisassociation.py
cipher9rat/impacket
142cacb649b8c6441df9330ac22fe4d15a0d1bbc
[ "Apache-1.1" ]
null
null
null
tests/dot11/test_FrameManagementDisassociation.py
cipher9rat/impacket
142cacb649b8c6441df9330ac22fe4d15a0d1bbc
[ "Apache-1.1" ]
21
2021-06-29T23:14:54.000Z
2022-03-24T13:13:58.000Z
#!/usr/bin/env python # sorry, this is very ugly, but I'm in python 2.5 import sys sys.path.insert(0,"../..") from impacket.dot11 import Dot11Types from impacket.ImpactDecoder import RadioTapDecoder import unittest from six import PY2 class TestDot11ManagementDisassociationFrames(unittest.TestCase): def setUp(self): # 802.11 Management Frame # self.rawframe=b"\x00\x00\x1c\x00\xef\x18\x00\x00\xe7\x8a\xec\xb8\x3b\x00\x00\x00\x10\x02\x85\x09\xa0\x00\xb5\x9d\x60\x00\x00\x18\xa0\x00\x3a\x01\x00\x18\xf8\x6c\x76\x42\x70\x1a\x04\x54\xe3\x86\x00\x18\xf8\x6c\x76\x42\x70\x92\x08\x00\xbf\x1b\xa3\xa8" self.radiotap_decoder = RadioTapDecoder() radiotap=self.radiotap_decoder.decode(self.rawframe) if PY2: self.assertEqual(str(radiotap.__class__), "impacket.dot11.RadioTap") else: self.assertEqual(str(radiotap.__class__), "<class 'impacket.dot11.RadioTap'>") self.dot11=radiotap.child() if PY2: self.assertEqual(str(self.dot11.__class__), "impacket.dot11.Dot11") else: self.assertEqual(str(self.dot11.__class__), "<class 'impacket.dot11.Dot11'>") type = self.dot11.get_type() self.assertEqual(type,Dot11Types.DOT11_TYPE_MANAGEMENT) subtype = self.dot11.get_subtype() self.assertEqual(subtype,Dot11Types.DOT11_SUBTYPE_MANAGEMENT_DISASSOCIATION) typesubtype = self.dot11.get_type_n_subtype() self.assertEqual(typesubtype,Dot11Types.DOT11_TYPE_MANAGEMENT_SUBTYPE_DISASSOCIATION) self.management_base=self.dot11.child() if PY2: self.assertEqual(str(self.management_base.__class__), "impacket.dot11.Dot11ManagementFrame") else: self.assertEqual(str(self.management_base.__class__), "<class 'impacket.dot11.Dot11ManagementFrame'>") self.management_disassociation=self.management_base.child() if PY2: self.assertEqual(str(self.management_disassociation.__class__), "impacket.dot11.Dot11ManagementDisassociation") else: self.assertEqual(str(self.management_disassociation.__class__), "<class 'impacket.dot11.Dot11ManagementDisassociation'>") def test_01(self): 'Test Header and Tail Size field' self.assertEqual(self.management_base.get_header_size(), 22) self.assertEqual(self.management_base.get_tail_size(), 0) self.assertEqual(self.management_disassociation.get_header_size(), 2) self.assertEqual(self.management_disassociation.get_tail_size(), 0) def test_02(self): 'Test Duration field' self.assertEqual(self.management_base.get_duration(), 0x013a) self.management_base.set_duration(0x1234) self.assertEqual(self.management_base.get_duration(), 0x1234) def test_03(self): 'Test Destination Address field' addr=self.management_base.get_destination_address() self.assertEqual(addr.tolist(), [0x00,0x18,0xF8,0x6C,0x76,0x42]) addr[0]=0x12 addr[5]=0x34 self.management_base.set_destination_address(addr) self.assertEqual(self.management_base.get_destination_address().tolist(), [0x12,0x18,0xF8,0x6C,0x76,0x34]) def test_04(self): 'Test Source Address field' addr=self.management_base.get_source_address() self.assertEqual(addr.tolist(), [0x70,0x1A,0x04,0x54,0xE3,0x86]) addr[0]=0x12 addr[5]=0x34 self.management_base.set_source_address(addr) self.assertEqual(self.management_base.get_source_address().tolist(), [0x12,0x1A,0x04,0x54,0xE3,0x34]) def test_05(self): 'Test BSSID Address field' addr=self.management_base.get_bssid() self.assertEqual(addr.tolist(), [0x00,0x18,0xF8,0x6C,0x76,0x42]) addr[0]=0x12 addr[5]=0x34 self.management_base.set_bssid(addr) self.assertEqual(self.management_base.get_bssid().tolist(), [0x12,0x18,0xF8,0x6C,0x76,0x34]) def test_06(self): 'Test Sequence control field' self.assertEqual(self.management_base.get_sequence_control(), 0x9270) self.management_base.set_sequence_control(0x1234) self.assertEqual(self.management_base.get_sequence_control(), 0x1234) def test_07(self): 'Test Fragment number field' self.assertEqual(self.management_base.get_fragment_number(), 0x00) self.management_base.set_fragment_number(0xF1) # Es de 4 bit self.assertEqual(self.management_base.get_fragment_number(), 0x01) def test_08(self): 'Test Sequence number field' self.assertEqual(self.management_base.get_sequence_number(), 2343) self.management_base.set_sequence_number(0xF234) # Es de 12 bit self.assertEqual(self.management_base.get_sequence_number(), 0x0234) def test_09(self): 'Test Management Frame Data field' frame_body=b"\x08\x00" self.assertEqual(self.management_base.get_frame_body(), frame_body) def test_10(self): 'Test Management Reason Code field' self.assertEqual(self.management_disassociation.get_reason_code(), 0x0008) self.management_disassociation.set_reason_code(0x8765) self.assertEqual(self.management_disassociation.get_reason_code(), 0x8765) suite = unittest.TestLoader().loadTestsFromTestCase(TestDot11ManagementDisassociationFrames) unittest.main(defaultTest='suite')
42.549618
257
0.690527
838fd1a86ffe51d69bfad262ca4dd73cd1660324
22,567
py
Python
scenic/projects/mbt/datasets/audiovisual_tfrecord_dataset.py
techthiyanes/scenic
05585b1189364e29d82413b9d4a50ffa8c246f0c
[ "Apache-2.0" ]
null
null
null
scenic/projects/mbt/datasets/audiovisual_tfrecord_dataset.py
techthiyanes/scenic
05585b1189364e29d82413b9d4a50ffa8c246f0c
[ "Apache-2.0" ]
null
null
null
scenic/projects/mbt/datasets/audiovisual_tfrecord_dataset.py
techthiyanes/scenic
05585b1189364e29d82413b9d4a50ffa8c246f0c
[ "Apache-2.0" ]
null
null
null
"""TFRecords data-loader for audiovisual datasets.""" import functools from typing import Dict, Iterator, List, Optional, Text, Tuple, Union from absl import logging from dmvr import modalities as load_modalities from flax import jax_utils import jax import jax.numpy as jnp import ml_collections import numpy as np from scenic.dataset_lib import dataset_utils from scenic.dataset_lib import datasets from scenic.dataset_lib import video_ops from scenic.projects.mbt.datasets.dataset_utils import add_spectrogram from scenic.projects.vivit.data import video_tfrecord_dataset import tensorflow as tf # Aliases for custom types: Batch = Dict[str, jnp.ndarray] def maybe_pad_batch(batch, train, batch_size, return_as_dict): """Zero pad the batch on the right to the batch_size.""" if not return_as_dict: return dataset_utils.maybe_pad_batch(batch, train, batch_size) assert 'batch_mask' not in batch if 'rgb' in batch['inputs']: unpadded_mask_shape = batch['inputs']['rgb'].shape[0] batch_pad = batch_size - unpadded_mask_shape elif 'spectrogram' in batch['inputs']: unpadded_mask_shape = batch['inputs']['spectrogram'].shape[0] batch_pad = batch_size - unpadded_mask_shape else: raise ValueError('invalid input batch') if train and batch_pad != 0: raise ValueError('In this codebase, we assumed that we always drop the ' 'last partial batch of the train set. Please use ' '` drop_remainder=True` for the training set.') # Most batches will not need padding so we quickly return to avoid slowdown. if train or batch_pad == 0: if 'batch_mask' not in batch: batch['batch_mask'] = np.ones(unpadded_mask_shape, dtype=np.float32) return batch def zero_pad(array): pad_with = [(0, batch_pad)] + [(0, 0)] * (array.ndim - 1) return np.pad(array, pad_with, mode='constant') padded_batch = jax.tree_map(zero_pad, batch) padded_batch_mask = zero_pad(np.ones(unpadded_mask_shape, dtype=np.float32)) padded_batch['batch_mask'] = padded_batch_mask return padded_batch class AVTFRecordDatasetFactory(video_tfrecord_dataset.TFRecordDatasetFactory): """Reader for TFRecords using the MediaSequence format. The TFrecords already contain images and spectrograms. Spectrograms are extracted per second and stored with size 128x100 for each second of audio. """ _MODALITIES = ('rgb', 'spectrogram') def __init__(self, base_dir: str, tables: Dict[str, Union[str, List[str]]], num_classes: int, examples_per_subset: Dict[str, int], subset: str = 'train', modalities: Tuple[str] = ('rgb',), prop_data: float = 1.0, num_groups: Optional[int] = None, group_index: Optional[int] = None): """Initializes the instance of TFRecordDatasetFactory. Initializes a data-loader using DeepMind Video Reader (DMVR) pre-processing (https://github.com/deepmind/dmvr). TFRecords are assumed to consist of tf.SequenceExample protocol buffers in the MediaSequence (https://github.com/google/mediapipe/tree/master/mediapipe/util/sequence) format. Args: base_dir: The base directory of the TFRecords. tables: A dictionary mapping the subset name (train, val or test) to the relative path of the SSTable containing them. Follows DMVR convention. The values of the dictionary can either be a string or a list. If it is a string, it specifies all the shards in the SSTable. Example - "/path/to/sstable@10". If passing a list, each entry is a shard of the SSTable. Example - "[/path/to/sstable_shard_1_of_10, ..., /path/to/sstabble_shard_10_of_10]." The latter scenario is useful for debugging. num_classes: The number of classes in the dataset. examples_per_subset: A dictionary mapping the subset name (train, val or test) to the number of examples in the dataset for that subset. subset: The subset of the dataset to load. Must be a key of "tables" modalities: Which modality to load. Currently supports 'rgb' and 'spectrogram' prop_data: The proportion of the data to load. If less than 1.0, this proportion of the total TFRecord shards are read. num_groups: If specified will reshard the data according to `num_groups`. A `group_index` should be specified if using `num_groups`. group_index: Index of the shard to return after resharding. `num_groups` should be specified if using `group_index`. This is useful in distributed setting where one wants to ensure that different data is read by different workers. """ for modality in modalities: if modality not in AVTFRecordDatasetFactory._MODALITIES: raise ValueError('Invalid modality %s.' % modality) self._modalities = modalities super().__init__( base_dir=base_dir, tables=tables, examples_per_subset=examples_per_subset, subset=subset, num_classes=num_classes, fraction_data=prop_data, num_groups=num_groups, group_index=group_index) def _build( self, is_training: bool = True, # Video related parameters. num_frames: int = 32, stride: int = 1, num_spec_frames: int = 5, spec_stride: int = 1, dataset_spec_mean: float = 0., dataset_spec_stddev: float = 1., num_test_clips: int = 1, min_resize: int = 256, crop_size: int = 224, # Audio related parameters. spec_shape: Tuple[int, int] = (100, 128), spec_augment: bool = False, spec_augment_params=None, zero_centering_image: bool = False, # Label related parameters. one_hot_label: bool = True, get_label_str: bool = False): """Adds DMVR pre-processors to the dataset. Args: is_training: whether or not in training mode. num_frames: number of frames per subclip. stride: temporal stride to sample frames. num_spec_frames: number of spectrogram frames. spec_stride: stride to sample spectrogram. dataset_spec_mean: Mean of spectrograms in the dataset. dataset_spec_stddev: Std dev of spectrograms in the dataset. num_test_clips: number of test clip (1 by default). If more than one, this will sample multiple linearly spaced clips within each video at test time. If 1, then a single clip in the middle of the video is sampled. min_resize: frames are resized so that min width/height is min_resize. crop_size: final size of the frame after cropping the resized frames. spec_shape: input size of spectrogram per frame. spec_augment: whether to apply augmentation using SpecAugment. spec_augment_params: parameters for SpecAugment. zero_centering_image: whether to have images between [-1, 1] or [0, 1]. one_hot_label: whether or not to return one hot version of labels. get_label_str: whether or not to return label as text. """ # We set sync_random_state to True so that sample_offset_proportion is # the same for all modalities. if 'rgb' in self._modalities: load_modalities.add_image( parser_builder=self.parser_builder, sampler_builder=self.sampler_builder, decoder_builder=self.decoder_builder, preprocessor_builder=self.preprocessor_builder, postprocessor_builder=self.postprocessor_builder, is_training=is_training, num_frames=num_frames, stride=stride, num_test_clips=num_test_clips, min_resize=min_resize, crop_size=crop_size, zero_centering_image=zero_centering_image, sync_random_state=True) if 'spectrogram' in self._modalities: add_spectrogram( parser_builder=self.parser_builder, sampler_builder=self.sampler_builder, decoder_builder=self.decoder_builder, preprocessor_builder=self.preprocessor_builder, postprocessor_builder=self.postprocessor_builder, input_shape=spec_shape, is_training=is_training, num_frames=num_spec_frames, stride=spec_stride, num_test_clips=num_test_clips, spec_augment=spec_augment, spec_augment_params=spec_augment_params, zero_centering_image=zero_centering_image, dataset_mean=dataset_spec_mean, dataset_stddev=dataset_spec_stddev, sync_random_state=True) load_modalities.add_label( parser_builder=self.parser_builder, decoder_builder=self.decoder_builder, preprocessor_builder=self.preprocessor_builder, is_multi_label=False, one_hot_label=True, num_classes=self.num_classes, add_label_name=False) def load_split_from_dmvr(ds_factory, batch_size, subset='train', modalities=('rgb'), num_frames=32, stride=2, num_spec_frames=5, spec_stride=1, num_test_clips=1, min_resize=256, crop_size=224, spec_shape=(100, 128), dataset_spec_mean=0., dataset_spec_stddev=1., spec_augment=False, spec_augment_params=None, one_hot_label=True, zero_centering=True, get_label_str=False, augmentation_params=None, keep_key=False): """Loads dataset using DMVR for pre-processing. DMVR dataset loader already does basic augmentation (random crop and flip in train mode. It also already shuffles and batches the data. Args: ds_factory: A DMVR factory to instantiate with the subset. batch_size: The batch_size to use. subset: train, validation or test. modalities: list of input modalities. num_frames: Number of RGB frames per subclip. stride: Temporal stride to sample RGB frames. num_spec_frames: Number of spectrogram frames per subclip. spec_stride: Temporal stride to sample spectrogram. num_test_clips: Number of test clips (1 by default). If more than 1, this will sample multiple linearly spaced clips within each video at test time. If 1, then a single clip in the middle of the video is sampled. The clips are aggreagated in the batch dimension. min_resize: Frames are resized so that min(height, width) is min_resize. crop_size: Final size of the frame after cropping the resized frames. Both height and width are the same. spec_shape: Input size of spectrogram per frame. dataset_spec_mean: Mean of spectrograms in the dataset. dataset_spec_stddev: Std dev of spectrograms in the dataset. spec_augment: whether to apply augmentation using SpecAugment. spec_augment_params: dict; augmentation configurations for SpecAugment one_hot_label: If True, return one-hot version of the labels (ie [N, C]) array. Otherwise, return [N]-dimensional array of labels. zero_centering: If True, frames are normalized to values in [-1, 1]. If False, values in [0, 1]. get_label_str: whether or not to return label as text. This does not work on TPU!. augmentation_params: dict; augmentation configurations in train mode. keep_key: bool; If true, also return the key for each example. Returns: A pair `(ds, num_examples)` with ds: A `tf.data.Dataset` object num_examples: Number of examples in the dataset. """ is_training = (subset == 'train') ds_factory = ds_factory( subset=subset, modalities=modalities).configure( is_training=is_training, num_frames=num_frames, stride=stride, num_spec_frames=num_spec_frames, spec_stride=spec_stride, num_test_clips=num_test_clips, min_resize=min_resize, crop_size=crop_size, spec_shape=spec_shape, dataset_spec_mean=dataset_spec_mean, dataset_spec_stddev=dataset_spec_stddev, spec_augment=spec_augment, spec_augment_params=spec_augment_params, zero_centering_image=zero_centering, one_hot_label=one_hot_label, get_label_str=get_label_str) if 'rgb' in modalities and is_training and augmentation_params: # additional augmentation for the RGB features. ds_factory = video_ops.additional_augmentations(ds_factory, augmentation_params, crop_size, num_frames, zero_centering) logging.info('Preprocessing graph: %s', ds_factory.preprocessor_builder.get_summary()) logging.info('Postprocessing graph: %s', ds_factory.postprocessor_builder.get_summary()) num_examples = ds_factory.num_examples ds = ds_factory.make_dataset( batch_size=batch_size, shuffle=is_training, num_epochs=None if is_training else 1, drop_remainder=is_training, keep_key=(not is_training and keep_key)) if not is_training: ds = ds.repeat(None) options = tf.data.Options() options.experimental_threading.private_threadpool_size = 48 ds = ds.with_options(options) return ds, num_examples def map_keys(batch, modalities=('rgb'), return_as_dict=False): """DMVR dataset returns 'image' and 'label'. We want 'inputs' and 'label'.""" if not return_as_dict: if len(modalities) == 1 and modalities[0] == 'rgb': batch['inputs'] = batch['image'] elif len(modalities) == 1 and modalities[0] == 'spectrogram': batch['inputs'] = batch['spectrogram'] else: raise NotImplementedError('modality not supported by map_keys.') else: batch['inputs'] = {} if 'rgb' in modalities: batch['inputs']['rgb'] = batch['image'] if 'spectrogram' in modalities: batch['inputs']['spectrogram'] = batch['spectrogram'] return batch def tile_label_key(batch, return_as_dict=False): """Tile labels and keys to match input videos when num_test_clips > 1. When multiple test crops are used (ie num_test_clips > 1), the batch dimension of batch['inputs'] = test_batch_size * num_test_clips. However, labels and keys remain of size [test_batch_size]. This function repeats label and key to match the inputs. Args: batch: Batch from iterator return_as_dict: Whether to return multimodal inputs as a dictionary. Returns: batch: Batch with 'label' and 'key' tiled to match 'inputs'. """ if not return_as_dict: n_repeats = batch['inputs'].shape[0] // batch['label'].shape[0] elif 'rgb' in batch['inputs']: n_repeats = batch['inputs']['rgb'].shape[0] // batch['label'].shape[0] elif 'spectrogram' in batch['inputs']: n_repeats = ( batch['inputs']['spectrogram'].shape[0] // batch['label'].shape[0]) batch['label'] = np.repeat(batch['label'], n_repeats, axis=0) if 'key' in batch: batch['key'] = np.repeat(batch['key'], n_repeats, axis=0) return batch @datasets.add_dataset('audiovisual_tfrecord_dataset') def get_dataset( *, batch_size, eval_batch_size, num_shards, dtype_str='float32', shuffle_seed=0, # pylint:disable=unused-argument rng=None, dataset_configs: ml_collections.ConfigDict, dataset_service_address: Optional[str] = None): """Returns a generator for the audiovisual dataset.""" del rng modalities = dataset_configs.get('modalities', ['rgb']) return_as_dict = dataset_configs.get('return_as_dict', False) # RGB related configs. num_frames = dataset_configs.get('num_frames', 32) stride = dataset_configs.get('stride', 2) min_resize = dataset_configs.get('min_resize', 256) crop_size = dataset_configs.get('crop_size', 224) # Spectrogram related configs. num_spec_frames = dataset_configs.get('num_spec_frames', 5) spec_stride = dataset_configs.get('spec_stride', 1) spec_shape = dataset_configs.get('spec_shape', (100, 128)) spec_augment = dataset_configs.get('spec_augment', False) spec_augment_params = dataset_configs.get('spec_augment_params', None) dataset_spec_mean = dataset_configs.get('spec_mean', 0.) dataset_spec_stddev = dataset_configs.get('spec_stddev', 1.) # General configs. num_test_clips = dataset_configs.get('num_test_clips', 1) one_hot_label = dataset_configs.get('one_hot_label', True) zero_centre_data = dataset_configs.get('zero_centering', True) augmentation_params = dataset_configs.get('augmentation_params', None) num_train_val_clips = dataset_configs.get('num_train_val_clips', 1) do_three_spatial_crops = dataset_configs.get('do_three_spatial_crops', False) num_spatial_crops = 3 if do_three_spatial_crops else 1 keep_test_key = dataset_configs.get('keep_test_key', False) test_split = dataset_configs.get('test_split', 'test') # For the test set, the actual batch size is # test_batch_size * num_test_clips test_batch_size = dataset_configs.get('test_batch_size', eval_batch_size) def validate_config(field): if dataset_configs.get(field) is None: raise ValueError(f'{field} must be specified for TFRecord dataset.') validate_config('base_dir') validate_config('tables') validate_config('examples_per_subset') validate_config('num_classes') ds_factory = functools.partial( AVTFRecordDatasetFactory, base_dir=dataset_configs.base_dir, tables=dataset_configs.tables, examples_per_subset=dataset_configs.examples_per_subset, num_classes=dataset_configs.num_classes, num_groups=jax.process_count(), group_index=jax.process_index()) def create_dataset_iterator( subset: Text, batch_size_local: int, num_clips: int, keep_key_local: bool = False) -> Tuple[Iterator[Batch], int]: is_training = subset == 'train' is_test = subset == 'test' logging.info('Loading split %s', subset) dataset, num_examples = load_split_from_dmvr( ds_factory, batch_size=batch_size_local, subset=subset, modalities=modalities, num_frames=num_frames, stride=stride, num_spec_frames=num_spec_frames, spec_stride=spec_stride, num_test_clips=num_clips, min_resize=min_resize, crop_size=crop_size, spec_shape=spec_shape, dataset_spec_mean=dataset_spec_mean, dataset_spec_stddev=dataset_spec_stddev, spec_augment=spec_augment, spec_augment_params=spec_augment_params, one_hot_label=one_hot_label, zero_centering=zero_centre_data, augmentation_params=augmentation_params, keep_key=keep_key_local) if dataset_service_address and is_training: if shuffle_seed is not None: raise ValueError('Using dataset service with a random seed causes each ' 'worker to produce exactly the same data. Add ' 'config.shuffle_seed = None to your config if you ' 'want to run with dataset service.') logging.info('Using the tf.data service at %s', dataset_service_address) dataset = dataset_utils.distribute(dataset, dataset_service_address) pad_batch_size = batch_size_local if is_test: pad_batch_size = batch_size_local * num_clips * num_spatial_crops maybe_pad_batches = functools.partial( maybe_pad_batch, train=is_training, batch_size=pad_batch_size, return_as_dict=return_as_dict) shard_batches = functools.partial(dataset_utils.shard, n_devices=num_shards) current_iter = iter(dataset) current_iter = map(dataset_utils.tf_to_numpy, current_iter) current_iter = map( functools.partial( map_keys, modalities=modalities, return_as_dict=return_as_dict), current_iter) current_iter = map( functools.partial( tile_label_key, return_as_dict=return_as_dict), current_iter) current_iter = map(maybe_pad_batches, current_iter) if augmentation_params and augmentation_params.get('do_mixup', False): raise ValueError('mixup should be done in the trainer.') current_iter = map(shard_batches, current_iter) if is_training and dataset_configs.get('prefetch_to_device'): # Async bind batch to device which speeds up training. current_iter = jax_utils.prefetch_to_device( current_iter, dataset_configs.get('prefetch_to_device')) return current_iter, num_examples train_iter, n_train_examples = create_dataset_iterator( 'train', batch_size, num_train_val_clips) eval_iter, n_eval_examples = create_dataset_iterator('validation', eval_batch_size, num_train_val_clips) test_iter, n_test_examples = create_dataset_iterator(test_split, test_batch_size, num_test_clips, keep_test_key) meta_data = { 'num_classes': dataset_configs.num_classes, # pylint:disable=protected-access 'num_train_examples': (n_train_examples * num_train_val_clips), 'num_eval_examples': (n_eval_examples * num_train_val_clips), 'num_test_examples': (n_test_examples * num_test_clips * num_spatial_crops), 'input_dtype': getattr(jnp, dtype_str), 'target_is_onehot': True, } if return_as_dict: meta_data['input_shape'] = { 'rgb': (-1, num_frames, crop_size, crop_size, 3), 'spectrogram': (-1, num_spec_frames * spec_shape[0], spec_shape[1], 3) } elif len(modalities) == 1 and modalities[0] == 'rgb': meta_data['input_shape'] = (-1, num_frames, crop_size, crop_size, 3) elif len(modalities) == 1 and modalities[0] == 'spectrogram': meta_data['input_shape'] = (-1, num_spec_frames * spec_shape[0], spec_shape[1], 3) else: raise NotImplementedError('modality not supported') logging.info('Dataset metadata:\n%s', meta_data) return dataset_utils.Dataset(train_iter, eval_iter, test_iter, meta_data)
41.559853
84
0.679488
613ff0d284b7b4fd287b982c6c03d0da800fb217
1,671
py
Python
server/model/tilemap.py
jpsachse/megajules3000
26ae071cf6456e96d042eaa2239cbaa65113f903
[ "CC-BY-3.0", "CC-BY-4.0" ]
null
null
null
server/model/tilemap.py
jpsachse/megajules3000
26ae071cf6456e96d042eaa2239cbaa65113f903
[ "CC-BY-3.0", "CC-BY-4.0" ]
null
null
null
server/model/tilemap.py
jpsachse/megajules3000
26ae071cf6456e96d042eaa2239cbaa65113f903
[ "CC-BY-3.0", "CC-BY-4.0" ]
null
null
null
from tile import Tile, SIZE as tile_size from PIL import Image class TileMap(): def __init__(self, width, height, name="No Name", startX = -1, startY = -1, entity="Jules_Verne"): self.name = name self.entity = entity self.matrix = list() self.actions = list() self.generate_matrix(width, height) self.startX = startX self.startY = startY def generate_matrix(self, width, height): self.width = width self.height = height for h in range(0, height): self.matrix.append([Tile() for w in range(0, width)]) def as_image(self, root_directory): complete_image = Image.new("RGBA", (tile_size * self.width, tile_size * self.height)) for w in range(0, self.width): for h in range(0, self.height): current_tile = self.matrix[h][w] current_tile_im = Image.open(root_directory + current_tile.image) box = (w * tile_size, h * tile_size) complete_image.paste(current_tile_im, box) return complete_image def as_collision_map(self): complete_collision_map = list() for w in range(0, self.width): complete_collision_map.append([]) for h in range(0, self.height): current_tile = self.matrix[h][w] current_collision = { "c": current_tile.collision, "a": current_tile.action_index } complete_collision_map[w].append(current_collision) return complete_collision_map
37.977273
102
0.564333
89d141018b6eba227a583b418bdcc23a95a2495e
1,853
py
Python
tests_old/test_api/test_view/test_modelAliases.py
appukuttan-shailesh/hbp-validation-framework
852cf57ad664aa6d7ba8f2551153b62a342e7727
[ "Apache-2.0" ]
5
2020-11-25T08:26:20.000Z
2022-02-04T18:56:34.000Z
tests_old/test_api/test_view/test_modelAliases.py
HumanBrainProject/hbp-validation-framework
975c5311539ec0b8ac1db1be1a1006e6f847fa78
[ "Apache-2.0" ]
146
2018-03-23T10:09:55.000Z
2022-01-03T10:51:00.000Z
tests_old/test_api/test_view/test_modelAliases.py
appukuttan-shailesh/hbp-validation-framework
852cf57ad664aa6d7ba8f2551153b62a342e7727
[ "Apache-2.0" ]
8
2018-03-20T14:07:05.000Z
2020-07-23T10:11:42.000Z
""" Tests of the ValidationFramework TestsView. """ from test_base import * class ModelAliasesTest(TestCase): @classmethod def setUpTestData(cls): cls.data = DataForTests() def setUp(self): #Setup run before every test method. pass def test_get_no_param (self): response = client_authorized.get('/model-aliases/', data={}) # is_valid = json.loads(response._container[0])['is_valid'] self.assertEqual(response.status_code, 400) # self.assertEqual(is_valid, True) def test_get_param_alias_true (self): response = client_authorized.get('/model-aliases/', data={'alias': self.data.model1.alias+"thing"}) is_valid = json.loads(response._container[0])['is_valid'] self.assertEqual(response.status_code, 200) self.assertEqual(is_valid, True) def test_get_param_alias_false (self): response = client_authorized.get('/model-aliases/', data={'alias': self.data.model1.alias}) is_valid = json.loads(response._container[0])['is_valid'] self.assertEqual(response.status_code, 200) self.assertEqual(is_valid, False) def test_get_param_model_id (self): response = client_authorized.get('/model-aliases/', data={'model_id': self.data.model1.id}) # is_valid = json.loads(response._container[0])['is_valid'] self.assertEqual(response.status_code, 400) # self.assertEqual(is_valid, True) def test_get_param_alias_model_id (self): response = client_authorized.get('/model-aliases/', data={'alias': self.data.model1.alias, 'model_id':self.data.model1.id}) is_valid = json.loads(response._container[0])['is_valid'] self.assertEqual(response.status_code, 200) self.assertEqual(is_valid, True)
33.690909
131
0.658931
2c324cda23adbb7ee62688675fbc0114ab9575b2
1,754
py
Python
src/MS-C2/c2_evaluation/c2ev/testbase/aaa.py
willyspinner/High-Performance-Face-Recognition
c5caad61be97fd20f9c47a727278ff938dc5cc8f
[ "MIT" ]
300
2019-01-28T07:37:53.000Z
2022-03-09T02:17:28.000Z
src/MS-C2/c2_evaluation/c2ev/testbase/aaa.py
willyspinner/High-Performance-Face-Recognition
c5caad61be97fd20f9c47a727278ff938dc5cc8f
[ "MIT" ]
15
2019-04-22T14:23:01.000Z
2021-11-24T09:52:32.000Z
src/MS-C2/c2_evaluation/c2ev/testbase/aaa.py
willyspinner/High-Performance-Face-Recognition
c5caad61be97fd20f9c47a727278ff938dc5cc8f
[ "MIT" ]
67
2019-01-29T05:42:09.000Z
2021-12-28T11:09:44.000Z
import scipy.io as sio import numpy as np import matplotlib.pyplot as plt gndTruth = list(sio.loadmat('noveltest.mat')['label']) lblist = list(sio.loadmat('base1.mat')['label']) predresult = [] prednum = np.array(sio.loadmat('novel1testresrdcp2.mat')['data'])[0] scr = np.array(sio.loadmat('novel1testresrdcp2.mat')['scr'])[0] for i in range(len(prednum)): predresult.append(lblist[prednum[i]]) TF = [] sc = [] wrongnum = 0 negative1 = 0 negative2 = 0 fout = open('wrong.txt','w') for i in range(len(prednum)): # print(predresult[i],gndTruth[i]) # input() if predresult[i]==gndTruth[i]: if scr[i]<0: negative1+=1 TF.append(1) else: TF.append(0) if scr[i]<0: negative2+=1 fout.write(gndTruth[i]+'\t'+predresult[i]+'\t'+str(scr[i])+'\n') wrongnum+=1 sc.append(scr[i]) fout.close() print('Negative right:',negative1) print('Negative wrong:',negative2) print('Wrong:',wrongnum) TF = np.float32(TF) avg = np.mean(TF) print('Accuracy:',avg) total = list(zip(TF,sc)) # total = sorted(total,key=lambda x: x[0],reverse=True) srt = sorted(total,key=lambda x: x[1],reverse=True) print('Last score',srt[-1][1]) print('First score',srt[0][1]) laa = [] truenumber = 0 sss = 0 thre = 0 for i in range(len(prednum)): truenumber += srt[i][0] laa.append(float(truenumber)/(i+1)) for i in range(len(prednum)-1): if laa[i]>0.99 and laa[i+1]<0.99: print('99pos:',i) sss = float(i)/len(prednum) thre = srt[i][1] print(len(prednum)) print('Acc:',truenumber/len(prednum)) print('Cov@P=0.99:',sss) print('Threshold:',thre) plt.ion() plt.plot(np.array(list(range(len(laa))))/float(len(laa)),laa) plt.ylim(0.99,1) plt.xlim(0.9,1) plt.show() plt.grid(True) input()
23.702703
69
0.63512
d3734d0ff090072286066e28a24700088c620859
184
py
Python
PyMOTW/source/os/os_exec_example.py
axetang/AxePython
3b517fa3123ce2e939680ad1ae14f7e602d446a6
[ "Apache-2.0" ]
1
2019-01-04T05:47:50.000Z
2019-01-04T05:47:50.000Z
PyMOTW/source/os/os_exec_example.py
axetang/AxePython
3b517fa3123ce2e939680ad1ae14f7e602d446a6
[ "Apache-2.0" ]
1
2020-07-18T03:52:03.000Z
2020-07-18T04:18:01.000Z
PyMOTW/source/os/os_exec_example.py
axetang/AxePython
3b517fa3123ce2e939680ad1ae14f7e602d446a6
[ "Apache-2.0" ]
2
2021-03-06T04:28:32.000Z
2021-03-06T04:59:17.000Z
#!/usr/bin/env python3 """Using os.exec*(). """ #end_pymotw_header import os child_pid = os.fork() if child_pid: os.waitpid(child_pid, 0) else: os.execlp('pwd', 'pwd', '-P')
14.153846
33
0.630435
ed072b01a86a33d6ff8c32739da6539343044321
17,303
py
Python
Lib/site-packages/pip/_vendor/urllib3/poolmanager.py
ldepaula3/TextAnalyticsApp
cd87f2017cf301266a82355d4c781de67b9c6ac9
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/pip/_vendor/urllib3/poolmanager.py
ldepaula3/TextAnalyticsApp
cd87f2017cf301266a82355d4c781de67b9c6ac9
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/pip/_vendor/urllib3/poolmanager.py
ldepaula3/TextAnalyticsApp
cd87f2017cf301266a82355d4c781de67b9c6ac9
[ "bzip2-1.0.6" ]
null
null
null
from __future__ import absolute_import import collections import functools import logging from ._collections import RecentlyUsedContainer from .connectionpool import HTTPConnectionPool, HTTPSConnectionPool from .connectionpool import port_by_scheme from .exceptions import LocationValueError, MaxRetryError, ProxySchemeUnknown from .packages.six.moves.urllib.parse import urljoin from .request import RequestMethods from .util.url import parse_url from .util.retry import Retry __all__ = ['PoolManager', 'ProxyManager', 'proxy_from_url'] log = logging.getLogger(__name__) SSL_KEYWORDS = ('key_file', 'cert_file', 'cert_reqs', 'ca_certs', 'ssl_version', 'ca_cert_dir', 'ssl_context') # All known keyword arguments that could be provided to the pool manager, its # pools, or the underlying connections. This is used to construct a pool key. _key_fields = ( 'key_scheme', # str 'key_host', # str 'key_port', # int 'key_timeout', # int or float or Timeout 'key_retries', # int or Retry 'key_strict', # bool 'key_block', # bool 'key_source_address', # str 'key_key_file', # str 'key_cert_file', # str 'key_cert_reqs', # str 'key_ca_certs', # str 'key_ssl_version', # str 'key_ca_cert_dir', # str 'key_ssl_context', # instance of ssl.SSLContext or urllib3.util.ssl_.SSLContext 'key_maxsize', # int 'key_headers', # dict 'key__proxy', # parsed proxy url 'key__proxy_headers', # dict 'key_socket_options', # list of (level (int), optname (int), value (int or str)) tuples 'key__socks_options', # dict 'key_assert_hostname', # bool or string 'key_assert_fingerprint', # str 'key_server_hostname', #str ) #: The namedtuple class used to construct keys for the connection pool. #: All custom key schemes should include the fields in this key at a minimum. PoolKey = collections.namedtuple('PoolKey', _key_fields) def _default_key_normalizer(key_class, request_context): """ Create a pool key out of a request context dictionary. According to RFC 3986, both the scheme and host are case-insensitive. Therefore, this function normalizes both before constructing the pool key for an HTTPS request. If you wish to change this behaviour, provide alternate callables to ``key_fn_by_scheme``. :param key_class: The class to use when constructing the key. This should be a namedtuple with the ``scheme`` and ``host`` keys at a minimum. :type key_class: namedtuple :param request_context: A dictionary-like object that contain the context for a request. :type request_context: dict :return: A namedtuple that can be used as a connection pool key. :rtype: PoolKey """ # Since we mutate the dictionary, make a copy first context = request_context.copy() context['scheme'] = context['scheme'].lower() context['host'] = context['host'].lower() # These are both dictionaries and need to be transformed into frozensets for key in ('headers', '_proxy_headers', '_socks_options'): if key in context and context[key] is not None: context[key] = frozenset(context[key].items()) # The socket_options key may be a list and needs to be transformed into a # tuple. socket_opts = context.get('socket_options') if socket_opts is not None: context['socket_options'] = tuple(socket_opts) # Map the kwargs to the names in the namedtuple - this is necessary since # namedtuples can't have fields starting with '_'. for key in list(context.keys()): context['key_' + key] = context.pop(key) # Default to ``None`` for keys missing from the context for field in key_class._fields: if field not in context: context[field] = None return key_class(**context) #: A dictionary that maps a scheme to a callable that creates a pool key. #: This can be used to alter the way pool keys are constructed, if desired. #: Each PoolManager makes a copy of this dictionary so they can be configured #: globally here, or individually on the instance. key_fn_by_scheme = { 'http': functools.partial(_default_key_normalizer, PoolKey), 'https': functools.partial(_default_key_normalizer, PoolKey), } pool_classes_by_scheme = { 'http': HTTPConnectionPool, 'https': HTTPSConnectionPool, } class PoolManager(RequestMethods): """ Allows for arbitrary requests while transparently keeping track of necessary connection pools for you. :param num_pools: Number of connection pools to cache before discarding the least recently used pool. :param headers: Headers to include with all requests, unless other headers are given explicitly. :param \\**connection_pool_kw: Additional parameters are used to create fresh :class:`urllib3.connectionpool.ConnectionPool` instances. Example:: >>> manager = PoolManager(num_pools=2) >>> r = manager.request('GET', 'http://google.com/') >>> r = manager.request('GET', 'http://google.com/mail') >>> r = manager.request('GET', 'http://yahoo.com/') >>> len(manager.pools) 2 """ proxy = None def __init__(self, num_pools=10, headers=None, **connection_pool_kw): RequestMethods.__init__(self, headers) self.connection_pool_kw = connection_pool_kw self.pools = RecentlyUsedContainer(num_pools, dispose_func=lambda p: p.close()) # Locally set the pool classes and keys so other PoolManagers can # override them. self.pool_classes_by_scheme = pool_classes_by_scheme self.key_fn_by_scheme = key_fn_by_scheme.copy() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.clear() # Return False to re-raise any potential exceptions return False def _new_pool(self, scheme, host, port, request_context=None): """ Create a new :class:`ConnectionPool` based on host, port, scheme, and any additional pool keyword arguments. If ``request_context`` is provided, it is provided as keyword arguments to the pool class used. This method is used to actually create the connection pools handed out by :meth:`connection_from_url` and companion methods. It is intended to be overridden for customization. """ pool_cls = self.pool_classes_by_scheme[scheme] if request_context is None: request_context = self.connection_pool_kw.copy() # Although the context has everything necessary to create the pool, # this function has historically only used the scheme, host, and port # in the positional args. When an API change is acceptable these can # be removed. for key in ('scheme', 'host', 'port'): request_context.pop(key, None) if scheme == 'http': for kw in SSL_KEYWORDS: request_context.pop(kw, None) return pool_cls(host, port, **request_context) def clear(self): """ Empty our store of pools and direct them all to close. This will not affect in-flight connections, but they will not be re-used after completion. """ self.pools.clear() def connection_from_host(self, host, port=None, scheme='http', pool_kwargs=None): """ Get a :class:`ConnectionPool` based on the host, port, and scheme. If ``port`` isn't given, it will be derived from the ``scheme`` using ``urllib3.connectionpool.port_by_scheme``. If ``pool_kwargs`` is provided, it is merged with the instance's ``connection_pool_kw`` variable and used to create the new connection pool, if one is needed. """ if not host: raise LocationValueError("No host specified.") request_context = self._merge_pool_kwargs(pool_kwargs) request_context['scheme'] = scheme or 'http' if not port: port = port_by_scheme.get(request_context['scheme'].lower(), 80) request_context['port'] = port request_context['host'] = host return self.connection_from_context(request_context) def connection_from_context(self, request_context): """ Get a :class:`ConnectionPool` based on the request context. ``request_context`` must at least contain the ``scheme`` key and its value must be a key in ``key_fn_by_scheme`` instance variable. """ scheme = request_context['scheme'].lower() pool_key_constructor = self.key_fn_by_scheme[scheme] pool_key = pool_key_constructor(request_context) return self.connection_from_pool_key(pool_key, request_context=request_context) def connection_from_pool_key(self, pool_key, request_context=None): """ Get a :class:`ConnectionPool` based on the provided pool key. ``pool_key`` should be a namedtuple that only contains immutable objects. At a minimum it must have the ``scheme``, ``host``, and ``port`` fields. """ with self.pools.lock: # If the scheme, host, or port doesn't match existing open # connections, open a new ConnectionPool. pool = self.pools.get(pool_key) if pool: return pool # Make a fresh ConnectionPool of the desired type scheme = request_context['scheme'] host = request_context['host'] port = request_context['port'] pool = self._new_pool(scheme, host, port, request_context=request_context) self.pools[pool_key] = pool return pool def connection_from_url(self, url, pool_kwargs=None): """ Similar to :func:`urllib3.connectionpool.connection_from_url`. If ``pool_kwargs`` is not provided and a new pool needs to be constructed, ``self.connection_pool_kw`` is used to initialize the :class:`urllib3.connectionpool.ConnectionPool`. If ``pool_kwargs`` is provided, it is used instead. Note that if a new pool does not need to be created for the request, the provided ``pool_kwargs`` are not used. """ u = parse_url(url) return self.connection_from_host(u.host, port=u.port, scheme=u.scheme, pool_kwargs=pool_kwargs) def _merge_pool_kwargs(self, override): """ Merge a dictionary of override values for self.connection_pool_kw. This does not modify self.connection_pool_kw and returns a new dict. Any keys in the override dictionary with a value of ``None`` are removed from the merged dictionary. """ base_pool_kwargs = self.connection_pool_kw.copy() if override: for key, value in override.items(): if value is None: try: del base_pool_kwargs[key] except KeyError: pass else: base_pool_kwargs[key] = value return base_pool_kwargs def urlopen(self, method, url, redirect=True, **kw): """ Same as :meth:`urllib3.connectionpool.HTTPConnectionPool.urlopen` with custom cross-host redirect logic and only sends the request-uri portion of the ``url``. The given ``url`` parameter must be absolute, such that an appropriate :class:`urllib3.connectionpool.ConnectionPool` can be chosen for it. """ u = parse_url(url) conn = self.connection_from_host(u.host, port=u.port, scheme=u.scheme) kw['assert_same_host'] = False kw['redirect'] = False if 'headers' not in kw: kw['headers'] = self.headers.copy() if self.proxy is not None and u.scheme == "http": response = conn.urlopen(method, url, **kw) else: response = conn.urlopen(method, u.request_uri, **kw) redirect_location = redirect and response.get_redirect_location() if not redirect_location: return response # Support relative URLs for redirecting. redirect_location = urljoin(url, redirect_location) # RFC 7231, Section 6.4.4 if response.status == 303: method = 'GET' retries = kw.get('retries') if not isinstance(retries, Retry): retries = Retry.from_int(retries, redirect=redirect) # Strip headers marked as unsafe to forward to the redirected location. # Check remove_headers_on_redirect to avoid a potential network call within # conn.is_same_host() which may use socket.gethostbyname() in the future. if (retries.remove_headers_on_redirect and not conn.is_same_host(redirect_location)): for header in retries.remove_headers_on_redirect: kw['headers'].pop(header, None) try: retries = retries.increment(method, url, response=response, _pool=conn) except MaxRetryError: if retries.raise_on_redirect: raise return response kw['retries'] = retries kw['redirect'] = redirect log.info("Redirecting %s -> %s", url, redirect_location) return self.urlopen(method, redirect_location, **kw) class ProxyManager(PoolManager): """ Behaves just like :class:`PoolManager`, but sends all requests through the defined proxy, using the CONNECT method for HTTPS URLs. :param proxy_url: The URL of the proxy to be used. :param proxy_headers: A dictionary containing headers that will be sent to the proxy. In case of HTTP they are being sent with each request, while in the HTTPS/CONNECT case they are sent only once. Could be used for proxy authentication. Example: >>> proxy = urllib3.ProxyManager('http://localhost:3128/') >>> r1 = proxy.request('GET', 'http://google.com/') >>> r2 = proxy.request('GET', 'http://httpbin.org/') >>> len(proxy.pools) 1 >>> r3 = proxy.request('GET', 'https://httpbin.org/') >>> r4 = proxy.request('GET', 'https://twitter.com/') >>> len(proxy.pools) 3 """ def __init__(self, proxy_url, num_pools=10, headers=None, proxy_headers=None, **connection_pool_kw): if isinstance(proxy_url, HTTPConnectionPool): proxy_url = '%s://%s:%i' % (proxy_url.scheme, proxy_url.host, proxy_url.port) proxy = parse_url(proxy_url) if not proxy.port: port = port_by_scheme.get(proxy.scheme, 80) proxy = proxy._replace(port=port) if proxy.scheme not in ("http", "https"): raise ProxySchemeUnknown(proxy.scheme) self.proxy = proxy self.proxy_headers = proxy_headers or {} connection_pool_kw['_proxy'] = self.proxy connection_pool_kw['_proxy_headers'] = self.proxy_headers super(ProxyManager, self).__init__( num_pools, headers, **connection_pool_kw) def connection_from_host(self, host, port=None, scheme='http', pool_kwargs=None): if scheme == "https": return super(ProxyManager, self).connection_from_host( host, port, scheme, pool_kwargs=pool_kwargs) return super(ProxyManager, self).connection_from_host( self.proxy.host, self.proxy.port, self.proxy.scheme, pool_kwargs=pool_kwargs) def _set_proxy_headers(self, url, headers=None): """ Sets headers needed by proxies: specifically, the Accept and Host headers. Only sets headers not provided by the user. """ headers_ = {'Accept': '*/*'} netloc = parse_url(url).netloc if netloc: headers_['Host'] = netloc if headers: headers_.update(headers) return headers_ def urlopen(self, method, url, redirect=True, **kw): "Same as HTTP(S)ConnectionPool.urlopen, ``url`` must be absolute." u = parse_url(url) if u.scheme == "http": # For proxied HTTPS requests, httplib sets the necessary headers # on the CONNECT to the proxy. For HTTP, we'll definitely # need to set 'Host' at the very least. headers = kw.get('headers', self.headers) kw['headers'] = self._set_proxy_headers(url, headers) return super(ProxyManager, self).urlopen(method, url, redirect=redirect, **kw) def proxy_from_url(url, **kw): return ProxyManager(proxy_url=url, **kw)
38.365854
93
0.626886
8c4792a378b1ddb48550ec9e599160ffe40c7742
23,991
py
Python
ipet/evaluation/IPETFilter.py
1hoen/ipet
e4135ff936d3aa447a960d854f9c51554e5ba7dc
[ "MIT" ]
14
2016-12-20T06:49:32.000Z
2021-05-12T11:17:27.000Z
ipet/evaluation/IPETFilter.py
1hoen/ipet
e4135ff936d3aa447a960d854f9c51554e5ba7dc
[ "MIT" ]
69
2016-12-15T16:37:27.000Z
2021-08-16T10:12:36.000Z
ipet/evaluation/IPETFilter.py
1hoen/ipet
e4135ff936d3aa447a960d854f9c51554e5ba7dc
[ "MIT" ]
11
2016-12-30T07:46:18.000Z
2021-10-09T02:34:45.000Z
""" The MIT License (MIT) Copyright (c) 2018 Zuse Institute Berlin, www.zib.de Permissions are granted as stated in the license file you have obtained with this software. If you find the library useful for your purpose, please refer to README.md for how to cite IPET. @author: Gregor Hendel """ import xml.etree.ElementTree as ElementTree import numpy as np from ipet.concepts import IpetNode, IpetNodeAttributeError import logging import pandas as pd from ipet.evaluation import TestSets logger = logging.getLogger(__name__) class IPETValue(IpetNode): nodetag = "Value" def __init__(self, name = None, active = True): """ constructs an Ipet Instance Parameters ---------- name : The name of this problem active : True or "True" if this element should be active, False otherwise """ super(IPETValue, self).__init__(active) self.name = name def checkAttributes(self): if self.name is None: raise IpetNodeAttributeError("name", "No name specified") return True def getEditableAttributes(self): return ["name"] + super(IPETValue, self).getEditableAttributes() @staticmethod def getNodeTag(): return IPETValue.nodetag def getName(self): return self.name def getValue(self, dtype = None): if dtype is None: for mytype in [int, float, str]: try: return mytype(self.name) except ValueError: continue elif dtype != object: return dtype.type(self.name) return self.name def toXMLElem(self): me = ElementTree.Element(IPETValue.getNodeTag(), self.attributesToStringDict()) return me class IPETComparison: """ comparison operators for filters. All standard binary comparisons + float comparisons (with tolerance) + percentage based inequality """ comparisondict = { "le":"le", "lt":"lt", "gt":"gt", "ge":"ge", "eq":"eq", "neq":"neq" } def __init__(self, operator): """ constructs a comparison object by passing an appropriate operator as string """ if str(operator) in IPETComparison.comparisondict: self.operator = str(operator) else: raise KeyError("Unknown key value %s" % (operator)) def compare(self, x, y): method = getattr(self, "method_" + IPETComparison.comparisondict[self.operator]) try: return method(x, y) except TypeError as t: logger.error("Got type error %s comparing elements x:%s and y:%s" % (t, x, y)) return 0 def method_le(self, x, y): return x <= y def method_lt(self, x, y): return x < y def method_ge(self, x, y): return x >= y def method_gt(self, x, y): return x > y def method_eq(self, x, y): return x == y def method_neq(self, x, y): return x != y class IPETFilter(IpetNode): """ Filters are used for selecting subsets of problems to analyze. """ valueoperators = ["keep", "drop"] listoperators = ["diff", "equal"] attribute2Options = { "anytestrun":["one", "all"], "operator":list(IPETComparison.comparisondict.keys()) +valueoperators +listoperators} nodetag = "Filter" DEFAULT_ANYTESTRUN = 'all' _storedcol_ = None _storeddf_ = None def __init__(self, expression1 = None, expression2 = None, operator = "ge", anytestrun = DEFAULT_ANYTESTRUN, active = True, datakey = None): """ filter constructor Parameters ---------- expression1 : integer, float, string, or column name expression2 : integer, float, string, or column name datakey : available data key for drop and keep filters operator : operator such that evaluation expression1 op expression2 yields True or False anytestrun : either 'one' or 'all' active : True or "True" if this filter should be active, False otherwise """ super(IPETFilter, self).__init__(active) self.expression1 = expression1 self.expression2 = expression2 self.anytestrun = anytestrun self.values = [] self._updatevalueset = False self.set_operator(operator) self.datakey = datakey def checkAttributes(self): if self.operator in self.valueoperators and self.values == []: raise IpetNodeAttributeError("operator", "Trying to use a filter with operator {0} and empty value set".format(self.operator)) if self.operator in self.valueoperators and self.datakey is None or self.datakey == "": raise IpetNodeAttributeError("datakey", "Trying to use a filter with operator '{}' and unspecified data key '{}'".format(self.operator, self.datakey)) if self.anytestrun not in self.attribute2Options["anytestrun"]: raise IpetNodeAttributeError("anytestrun", "Wrong attribute {} passed as 'anytestrun' property. Should be in {}".format(self.anytestrun, self.attribute2Options["anytestrun"])) return True @staticmethod def fromDict(attrdict): expression1 = attrdict.get('expression1') expression2 = attrdict.get('expression2') anytestrun = attrdict.get('anytestrun', IPETFilter.DEFAULT_ANYTESTRUN) operator = attrdict.get('operator') datakey = attrdict.get('datakey') active = attrdict.get('active', True) return IPETFilter(expression1, expression2, operator, anytestrun, active, datakey) @staticmethod def processXMLElem(elem): """ inspect and process an xml element """ elemdict = dict(elem.attrib) # filter_ must be written with a trailing underscore "_" not to conflict with the filter method of Python filter_ = IPETFilter.fromDict(elemdict) # add values one by one for child in elem: # catch wrong children if not child.tag == IPETValue.getNodeTag(): raise AttributeError("Cannot add a child of type {} to a Filter".format(child.tag)) instancename = child.attrib.get("name") if instancename: filter_.addChild(IPETValue(instancename)) # check the filter attributes filter_.checkAttributes() return filter_ def getName(self): prefix = self.anytestrun if self.operator in self.valueoperators: return "{} value filter (key: {})".format(self.operator, self.datakey) elif self.operator in self.listoperators: return "{}-{} list filter (key: {})".format(self.anytestrun, self.operator, self.datakey) else: return " ".join(map(str, (prefix, self.expression1, self.operator, self.expression2))) def set_operator(self, operator): self.operator = operator if self.operator in list(IPETComparison.comparisondict.keys()): self.comparison = IPETComparison(self.operator) def getEditableAttributes(self): """ returns editable attributes depending on the selected operator if a binary operator is selected, two expressions as left and right hand side of operator must be chosen For problem operators, no expressions are selectable. """ parenteditables = super(IPETFilter, self).getEditableAttributes() if self.operator in list(IPETComparison.comparisondict.keys()): return parenteditables + ['operator', 'anytestrun', 'expression1', 'expression2'] else: return parenteditables + ['operator', 'anytestrun', 'datakey'] @staticmethod def getNodeTag(): return IPETFilter.nodetag def getChildren(self): return self.values def acceptsAsChild(self, child): return child.__class__ is IPETValue def addChild(self, child): self.values.append(child) self._updatevalueset = True def removeChild(self, child): self.values.remove(child) self._updatevalueset = True def getActiveValues(self): return [x for x in self.values if x.isActive()] def getRequiredOptionsByAttribute(self, attr): return self.attribute2Options.get(attr, super(IPETFilter, self).getRequiredOptionsByAttribute(attr)) def checkAndUpdateValueSet(self, dtype = None): """Update the value set of this filter if necessary """ if not self._updatevalueset: return self.valueset = set([x.getValue(dtype) for x in self.getActiveValues()]) updateset = set() # # check for test set names among the values # for i in self.valueset: if i in TestSets.getTestSets(): logger.debug("Adding test set {} to value set".format(i)) updateset = updateset.union(set(TestSets.getTestSetByName(i))) self.valueset = self.valueset.union(updateset) logger.debug("Complete value set of filter {}:\n{}".format(self.getName(), self.valueset)) self._updatevalueset = False def applyValueOperator(self, df): dtype = df.dtypes[0] self.checkAndUpdateValueSet(dtype) contained = df.isin(self.valueset) logger.debug("Contained: {}\nData: {}".format(contained, df)) if self.operator == "keep": return contained else: return ~contained def isAllDiff(self, x): valueset = set() for x_i in x: if x_i in valueset: return False valueset.add(x_i) return True def isOneEqual(self, x): return not self.isAllDiff(x) def isAllEqual(self, x): first_x = x.iloc[0] for x_i in x: if first_x != x_i: return False return True def isOneDiff(self, x): return not self.isAllEqual(x) def applyListOperator(self, df, groupindex): """ Apply list operators 'diff' and 'equal' to the datakey. In combination with the 'anytestrun' attribute, there are four possibilities in total: | anytestrun | operator | result | |------------|----------|--------| | one |diff |True, if there are at least 2 different values in a group | | all |diff |True, if all values are different in this group | | one |equal |True, if at least one value occurs twice in a group | | all |equal |True, if there is only a single value for this group | """ # # 1. chose the right list function # if self.operator == "diff": if self.anytestrun == "one": fun = self.isOneDiff else: fun = self.isAllDiff if self.operator == "equal": if self.anytestrun == "one": fun = self.isOneEqual else: fun = self.isAllEqual # # 2. store the original index # dfindex = df.set_index(groupindex).index # # 3. group by the index and apply the list function # f_by_group = df.groupby(groupindex)[self.datakey].apply(fun) # # 4. reindex the result to match the original data frame row count # f_by_group_as_frame = pd.DataFrame(f_by_group.reindex(index = dfindex, axis = 0)) # # 5. set the index of the frame to match the original frame's index # f_by_group_as_frame.set_index(df.index, inplace = True) return f_by_group_as_frame def filterProblem(self, probname, testruns = []): """ return True or False depending on the evaluation of the filter operator comparison """ # apply an problem operator directly if self.operator in self.valueoperators: return self.applyValueOperator(probname) # evaluate the two expressions and filter according to the anytestrun attribute if one or all match the requirement for testrun in testruns: x = self.evaluate(self.expression1, probname, testrun) y = self.evaluate(self.expression2, probname, testrun) if self.anytestrun == 'one' and self.comparison.compare(x, y): return True elif self.anytestrun == 'all' and not self.comparison.compare(x, y): return False if self.anytestrun == 'one': return False return True def storeResult(self, df : pd.DataFrame, filtercol : pd.Series): """store a filter result for future reuse """ self._storeddf_ = df self._storedcol_ = filtercol def getStoredResult(self, df : pd.DataFrame): """return the already stored result for this data frame """ if self._storeddf_ is df: return self._storedcol_ else: return None def applyFilter(self, df, groupindex = None): """Apply the filter to a data frame rowwise Parameters ---------- df : DataFrame data frame object containing columns 'expression1' and 'expression2' or 'datakey' depending on the selected operator groupindex : list or None either a list of columns that should be used for groupby operations (only needed for list operators 'equal' and 'diff') Returns ------- booleanseries : """ if self.operator in self.listoperators: filtercol = self.applyListOperator(df, groupindex) elif self.operator in self.valueoperators: filtercol = self.applyValueOperator(df[[self.datakey]]) else: x = self.evaluateValueDataFrame(df, self.expression1) y = self.evaluateValueDataFrame(df, self.expression2) try: x.columns = ["comp"] except: pass try: y.columns = ["comp"] except: pass filtercol = self.comparison.compare(x, y) if groupindex is None: return filtercol dfindex = df.set_index(groupindex).index renaming = {i:"{}_filter".format(i) for i in groupindex} filtercol = filtercol.rename(renaming, axis = 1) filtercol.index = dfindex # group the filter by the specified data frame index columns. if self.anytestrun == "one": func = np.any elif self.anytestrun == "all": func = np.all fcol_index = filtercol.groupby(filtercol.index).apply(func) # # reshape the column to match the original data frame rows # fcol = fcol_index.reindex(index = dfindex, axis = 0) return fcol def getNeededColumns(self, df): return [exp for exp in [self.expression1, self.expression2, self.datakey] if exp in df.columns] def evaluateValueDataFrame(self, df, value): if value in df.columns: return df[[value]] else: for conversion in [int, float, str]: try: return conversion(value) except ValueError: pass return value def evaluate(self, value, probname, testrun): if value in testrun.getKeySet(): return testrun.getProblemDataById(probname, value) else: for conversion in [int, float, str]: try: return conversion(value) except ValueError: pass return value def filterProblems(self, probnames, testruns = []): return [self.filterProblem(probname, testruns) for probname in probnames] def getFilteredList(self, probnames, testruns = []): return [probname for probname in probnames if self.filterProblem(probname, testruns)] def toXMLElem(self): me = ElementTree.Element(IPETFilter.getNodeTag(), self.attributesToStringDict()) for value in self.values: me.append(value.toXMLElem()) return me def getDependency(self, i): if i == 1: value = self.expression1 else: value = self.expression2 try: float(value) except: return value return None def equals(self, other): """Compare this and another filter for equality """ if not IpetNode.equals(self, other): return False if self.operator == other.operator: if self.operator not in IPETFilter.valueoperators: return True if len(self.values) != len(other.values): return False for v1, v2 in zip(self.values, other.values): if not v1.equals(v2): return False return True class IPETFilterGroup(IpetNode): """ represents a list of filters, has a name attribute for quick tabular representation a filter group collects """ nodetag = "FilterGroup" attribute2options = {"filtertype":["union", "intersection"]} editableAttributes = ["name", "filtertype"] # global data frame and index that are reused for several filter groups _glbdf_ = None _glbindex_ = None # intersection row index which can be shared across all filter groups of type "intersection" _glbinterrows_ = None def __init__(self, name = None, filtertype = "intersection", active = True): """ constructor for a filter group Parameters: ---------- name : a suitable name for the filter group filtertype : either 'union' or 'intersection' active : True or "True" if this filter group should be active, False otherwise """ super(IPETFilterGroup, self).__init__(active) self.name = name self.filters = [] if filtertype not in ["intersection", "union"]: raise ValueError("Error: filtertype <%s> must be either 'intersection' or 'union'" % filtertype) self.filtertype = filtertype def getEditableAttributes(self): return super(IPETFilterGroup, self).getEditableAttributes() + self.editableAttributes def getChildren(self): return self.filters def addChild(self, child): self.addFilter(child) def acceptsAsChild(self, child): return child.__class__ is IPETFilter def removeChild(self, child): self.filters.remove(child) @staticmethod def getNodeTag(): return IPETFilterGroup.nodetag def getRequiredOptionsByAttribute(self, attr): return self.attribute2options.get(attr, super(IPETFilterGroup, self).getRequiredOptionsByAttribute(attr)) def addFilter(self, filter_): """ add a filter to the list of filters. Parameters ---------- filter_ : an problem of IPETFilter """ self.filters.append(filter_) def getName(self): return self.name def getActiveFilters(self): return [f for f in self.filters if f.isActive()] @staticmethod def setGlobalDataFrameAndIndex(df : pd.DataFrame, index): """Set global data frame and index for filtering, that will be reused by each filter group """ IPETFilterGroup._glbdf_ = df IPETFilterGroup._glbindex_ = index IPETFilterGroup._glbinterrows_ = IPETFilterGroup.computeIntersectionRows(df, index) @staticmethod def computeIntersectionRows(df : pd.DataFrame, index): """Compute intersection rows of a given data frame and index Intersection rows denote a boolean index to define the subset of rows of the input frame considered as "intersection" for filter groups that have the "intersection" type (which is the default). The intersection row computation is slow and is reused across all filter groups with the intersection type. """ logger.info("Computing rows for intersection groups") dfindex = df.set_index(index).index groups = df.groupby(index) instancecount = groups.apply(len).max() interrows = groups.apply(lambda x:len(x) == instancecount) return interrows.reindex(dfindex) def filterDataFrame(self, df, index): """ filters a data frame object as the intersection of all values that match the criteria defined by the filters """ activefilters = self.getActiveFilters() # treat the special case to keep everything quickly if len(activefilters) == 0 and self.filtertype == "union": return df # first, get the highest number of index occurrences. This number must be matched to keep the problem if self.filtertype == "intersection": if df is IPETFilterGroup._glbdf_: intersection_index = IPETFilterGroup._glbinterrows_ else: intersection_index = IPETFilterGroup.computeIntersectionRows(df, index) elif self.filtertype == "union": intersection_index = None for f_ in activefilters: # check first if the column has already been stored storedcol = f_.getStoredResult(df) if storedcol is not None: fcol = storedcol else: # apply the filter to the data frame rowwise and store the result in a temporary boolean column fcol = f_.applyFilter(df, index) if intersection_index is not None: intersection_index = intersection_index & fcol else: intersection_index = fcol # # aggregate the single, elementwise filters into a single intersection # series with one row per index element # # intersection_index = pd.concat(index_series, axis = 1).apply(np.all, axis = 1) lvalues = intersection_index.values return lvalues def filterProblem(self, probname, testruns = []): for filter_ in self.getActiveFilters(): if not filter_.filterProblem(probname, testruns): return False return True def getNeededColumns(self, df): needed = [] for filter_ in self.filters: needed += filter_.getNeededColumns(df) return needed def toXMLElem(self): me = ElementTree.Element('FilterGroup', self.attributesToStringDict()) for filter_ in self.filters: me.append(filter_.toXMLElem()) return me @staticmethod def processXMLElem(elem): """ inspect and process an xml element """ if elem.tag == IPETFilterGroup.getNodeTag(): filtergroup = IPETFilterGroup(**elem.attrib) for child in elem: filtergroup.addFilter(IPETFilterGroup.processXMLElem(child)) return filtergroup elif elem.tag == IPETFilter.getNodeTag(): return IPETFilter.processXMLElem(elem) @staticmethod def fromXML(xmlstring): """ parse an xml string matching the filter group XML syntax """ tree = ElementTree.fromstring(xmlstring) return IPETFilterGroup.processXMLElem(tree) @staticmethod def fromXMLFile(xmlfilename): """ parse a file containing an xml string matching the filter group XML representation syntax """ tree = ElementTree.parse(xmlfilename) return IPETFilterGroup.processXMLElem(tree.getroot())
32.909465
187
0.605852
cec70524cb9b90ca20f49ec70b6193209fc3e3fb
184
py
Python
turtle/exemplo turtle.py
LC-ardovino/INFNET
3c485f122820f549f6a3c315fe09a537411bea7c
[ "MIT" ]
null
null
null
turtle/exemplo turtle.py
LC-ardovino/INFNET
3c485f122820f549f6a3c315fe09a537411bea7c
[ "MIT" ]
null
null
null
turtle/exemplo turtle.py
LC-ardovino/INFNET
3c485f122820f549f6a3c315fe09a537411bea7c
[ "MIT" ]
1
2022-03-31T11:47:02.000Z
2022-03-31T11:47:02.000Z
import turtle turtle.title("Bem vindo ao curso de desenvolvimento python!") turtle.shape("turtle") distancia = int(input("Digite a distância da tartaruga:")) turtle.forward(distancia)
30.666667
61
0.782609
1c28da05f18750e69a4499fd9b9574f15d267cee
1,726
py
Python
src/primaires/objet/types/clef.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
src/primaires/objet/types/clef.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
src/primaires/objet/types/clef.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
# -*-coding:Utf-8 -* # Copyright (c) 2010 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant le type clef.""" from .base import BaseType class Clef(BaseType): """Type d'objet: clef. """ nom_type = "clef"
41.095238
79
0.75956
cc44f245ecfa52f04753837ac46d0c1dfdd6c373
9,368
py
Python
drone/8_facedtect_webcamera/36_face_detect/droneapp/models/drone_manager.py
onselaydin/pytry
314aa50b6f8535e275dc8a2edd0c21637fb5a745
[ "Apache-2.0" ]
null
null
null
drone/8_facedtect_webcamera/36_face_detect/droneapp/models/drone_manager.py
onselaydin/pytry
314aa50b6f8535e275dc8a2edd0c21637fb5a745
[ "Apache-2.0" ]
null
null
null
drone/8_facedtect_webcamera/36_face_detect/droneapp/models/drone_manager.py
onselaydin/pytry
314aa50b6f8535e275dc8a2edd0c21637fb5a745
[ "Apache-2.0" ]
null
null
null
import logging import contextlib import os import socket import subprocess import threading import time import cv2 as cv import numpy as np from droneapp.models.base import Singleton logger = logging.getLogger(__name__) DEFAULT_DISTANCE = 0.30 DEFAULT_SPEED = 10 DEFAULT_DEGREE = 10 FRAME_X = int(960/3) FRAME_Y = int(720/3) FRAME_AREA = FRAME_X * FRAME_Y FRAME_SIZE = FRAME_AREA * 3 FRAME_CENTER_X = FRAME_X / 2 FRAME_CENTER_Y = FRAME_Y / 2 CMD_FFMPEG = (f'ffmpeg -hwaccel auto -hwaccel_device opencl -i pipe:0 ' f'-pix_fmt bgr24 -s {FRAME_X}x{FRAME_Y} -f rawvideo pipe:1') FACE_DETECT_XML_FILE = './droneapp/models/haarcascade_frontalface_default.xml' class ErrorNoFaceDetectXMLFile(Exception): """Error no face detect xml file""" class DroneManager(metaclass=Singleton): def __init__(self, host_ip='192.168.10.2', host_port=8889, drone_ip='192.168.10.1', drone_port=8889, is_imperial=False, speed=DEFAULT_SPEED): self.host_ip = host_ip self.host_port = host_port self.drone_ip = drone_ip self.drone_port = drone_port self.drone_address = (drone_ip, drone_port) self.is_imperial = is_imperial self.speed = speed self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.socket.bind((self.host_ip, self.host_port)) self.response = None self.stop_event = threading.Event() self._response_thread = threading.Thread(target=self.receive_response, args=(self.stop_event, )) self._response_thread.start() self.patrol_event = None self.is_patrol = False self._patrol_semaphore = threading.Semaphore(1) self._thread_patrol = None self.proc = subprocess.Popen(CMD_FFMPEG.split(' '), stdin=subprocess.PIPE, stdout=subprocess.PIPE) self.proc_stdin = self.proc.stdin self.proc_stdout = self.proc.stdout self.video_port = 11111 self._receive_video_thread = threading.Thread( target=self.receive_video, args=(self.stop_event, self.proc_stdin, self.host_ip, self.video_port,)) self._receive_video_thread.start() if not os.path.exists(FACE_DETECT_XML_FILE): raise ErrorNoFaceDetectXMLFile(f'No {FACE_DETECT_XML_FILE}') self.face_cascade = cv.CascadeClassifier(FACE_DETECT_XML_FILE) self._is_enable_face_detect = False self.send_command('command') self.send_command('streamon') self.set_speed(self.speed) def receive_response(self, stop_event): while not stop_event.is_set(): try: self.response, ip = self.socket.recvfrom(3000) logger.info({'action': 'receive_response', 'response': self.response}) except socket.error as ex: logger.error({'action': 'receive_response', 'ex': ex}) break def __dell__(self): self.stop() def stop(self): self.stop_event.set() retry = 0 while self._response_thread.isAlive(): time.sleep(0.3) if retry > 30: break retry += 1 self.socket.close() os.kill(self.proc.pid, 9) # Windows # import signal # os.kill(self.proc.pid, signal.CTRL_C_EVENT) def send_command(self, command): logger.info({'action': 'send_command', 'command': command}) self.socket.sendto(command.encode('utf-8'), self.drone_address) retry = 0 while self.response is None: time.sleep(0.3) if retry > 3: break retry += 1 if self.response is None: response = None else: response = self.response.decode('utf-8') self.response = None return response def takeoff(self): return self.send_command('takeoff') def land(self): return self.send_command('land') def move(self, direction, distance): distance = float(distance) if self.is_imperial: distance = int(round(distance * 30.48)) else: distance = int(round(distance * 100)) return self.send_command(f'{direction} {distance}') def up(self, distance=DEFAULT_DISTANCE): return self.move('up', distance) def down(self, distance=DEFAULT_DISTANCE): return self.move('down', distance) def left(self, distance=DEFAULT_DISTANCE): return self.move('left', distance) def right(self, distance=DEFAULT_DISTANCE): return self.move('right', distance) def forward(self, distance=DEFAULT_DISTANCE): return self.move('forward', distance) def back(self, distance=DEFAULT_DISTANCE): return self.move('back', distance) def set_speed(self, speed): return self.send_command(f'speed {speed}') def clockwise(self, degree=DEFAULT_DEGREE): return self.send_command(f'cw {degree}') def counter_clockwise(self, degree=DEFAULT_DEGREE): return self.send_command(f'ccw {degree}') def flip_front(self): return self.send_command('flip f') def flip_back(self): return self.send_command('flip b') def flip_left(self): return self.send_command('flip l') def flip_right(self): return self.send_command('flip r') def patrol(self): if not self.is_patrol: self.patrol_event = threading.Event() self._thread_patrol = threading.Thread( target=self._patrol, args=(self._patrol_semaphore, self.patrol_event,)) self._thread_patrol.start() self.is_patrol = True def stop_patrol(self): if self.is_patrol: self.patrol_event.set() retry = 0 while self._thread_patrol.isAlive(): time.sleep(0.3) if retry > 300: break retry += 1 self.is_patrol = False def _patrol(self, semaphore, stop_event): is_acquire = semaphore.acquire(blocking=False) if is_acquire: logger.info({'action': '_patrol', 'status': 'acquire'}) with contextlib.ExitStack() as stack: stack.callback(semaphore.release) status = 0 while not stop_event.is_set(): status += 1 if status == 1: self.up() if status == 2: self.clockwise(90) if status == 3: self.down() if status == 4: status = 0 time.sleep(5) else: logger.warning({'action': '_patrol', 'status': 'not_acquire'}) def receive_video(self, stop_event, pipe_in, host_ip, video_port): with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as sock_video: sock_video.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock_video.settimeout(.5) sock_video.bind((host_ip, video_port)) data = bytearray(2048) while not stop_event.is_set(): try: size, addr = sock_video.recvfrom_into(data) # logger.info({'action': 'receive_video', 'data': data}) except socket.timeout as ex: logger.warning({'action': 'receive_video', 'ex': ex }) time.sleep(0.5) continue except socket.error as ex: logger.error({'action': 'receive_video', 'ex': ex}) break try: pipe_in.write(data[:size]) pipe_in.flush() except Exception as ex: logger.error({'action': 'receive_video', 'ex': ex}) break def video_binary_generator(self): while True: try: frame = self.proc_stdout.read(FRAME_SIZE) except Exception as ex: logger.error({'action': 'video_binary_generator', 'ex': ex}) continue if not frame: continue frame = np.fromstring(frame, np.uint8).reshape(FRAME_Y, FRAME_X, 3) yield frame def enable_face_detect(self): self._is_enable_face_detect = True def disable_face_detect(self): self._is_enable_face_detect = False def video_jpeg_generator(self): for frame in self.video_binary_generator(): if self._is_enable_face_detect: if self.is_patrol: self.stop_patrol() gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) faces = self.face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2) break _, jpeg = cv.imencode('.jpg', frame) jpeg_binary = jpeg.tobytes() yield jpeg_binary
32.19244
79
0.568638
2608581b7e83b8558c298c7d0b6b338364685ede
712
py
Python
qac/test/test_storage.py
jantrienes/ecir2019-qac
7d6dea5af85fc97d115cbf804365e04c8eed1111
[ "MIT" ]
11
2019-03-06T06:49:10.000Z
2020-01-16T06:53:54.000Z
qac/test/test_storage.py
jantrienes/ecir2019-qac
7d6dea5af85fc97d115cbf804365e04c8eed1111
[ "MIT" ]
null
null
null
qac/test/test_storage.py
jantrienes/ecir2019-qac
7d6dea5af85fc97d115cbf804365e04c8eed1111
[ "MIT" ]
3
2019-04-26T06:49:20.000Z
2020-06-05T12:35:02.000Z
# pylint: disable=protected-access from qac.storage import base class TestStorage(object): storage = base.Storage(db='stackexchange_test') @classmethod def setup_class(cls): cls.storage._db['users'].delete_many({}) @classmethod def teardown_class(cls): cls.storage._db['users'].delete_many({}) def test_users(self): assert not list(self.storage.users()) self.storage.add_user('john') self.storage.add_user('jane') users = list(self.storage.users()) assert len(users) == 2 assert len(list(filter(lambda u: u['name'] == 'john', users))) == 1 assert len(list(filter(lambda u: u['name'] == 'jane', users))) == 1
26.37037
75
0.622191
980f174acd23503df9eca5d886065699d610a75c
24,199
py
Python
kubespec/openshift/console/v1.py
machinezone/kubespec
0d493d8d834643968d7c852c561e6c634c8c1556
[ "BSD-3-Clause" ]
7
2019-10-22T14:21:16.000Z
2021-03-18T15:57:41.000Z
kubespec/openshift/console/v1.py
machinezone/kubespec
0d493d8d834643968d7c852c561e6c634c8c1556
[ "BSD-3-Clause" ]
null
null
null
kubespec/openshift/console/v1.py
machinezone/kubespec
0d493d8d834643968d7c852c561e6c634c8c1556
[ "BSD-3-Clause" ]
null
null
null
# Code is generated: DO NOT EDIT # Copyright 2019 Machine Zone, Inc. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. from kubespec import context from kubespec import types from kubespec.k8s import base from kubespec.k8s.meta import v1 as metav1 from typeguard import check_type, typechecked from typing import Any, Dict, List, Optional # ConsoleLinkLocationSelector is a set of possible menu targets to which a link may be appended. ConsoleLinkLocation = base.Enum( "ConsoleLinkLocation", { # ApplicationMenu indicates that the link should appear inside the application menu of the console. "ApplicationMenu": "ApplicationMenu", # HelpMenu indicates that the link should appear in the help menu in the console. "HelpMenu": "HelpMenu", # NamespaceDashboard indicates that the link should appear in the namespaced dashboard of the console. "NamespaceDashboard": "NamespaceDashboard", # UserMenu indicates that the link should appear in the user menu in the console. "UserMenu": "UserMenu", }, ) # ConsoleNotificationLocationSelector is a set of possible notification targets # to which a notification may be appended. ConsoleNotificationLocation = base.Enum( "ConsoleNotificationLocation", { # BannerBottom indicates that the notification should appear at the bottom of the console. "BannerBottom": "BannerBottom", # BannerTop indicates that the notification should appear at the top of the console. "BannerTop": "BannerTop", # BannerTopBottom indicates that the notification should appear both at the top and at the bottom of the console. "BannerTopBottom": "BannerTopBottom", }, ) # ConsoleYAMLSampleDescription of the YAML sample. ConsoleYAMLSampleDescription = base.Enum("ConsoleYAMLSampleDescription", {}) # ConsoleYAMLSampleTitle of the YAML sample. ConsoleYAMLSampleTitle = base.Enum("ConsoleYAMLSampleTitle", {}) # ConsoleYAMLSampleYAML is the YAML sample to display. ConsoleYAMLSampleYAML = base.Enum("ConsoleYAMLSampleYAML", {}) class ApplicationMenuSpec(types.Object): """ ApplicationMenuSpec is the specification of the desired section and icon used for the link in the application menu. """ @context.scoped @typechecked def __init__(self, section: str = "", image_url: str = None): super().__init__() self.__section = section self.__image_url = image_url @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() section = self.section() check_type("section", section, str) v["section"] = section image_url = self.image_url() check_type("image_url", image_url, Optional[str]) if image_url: # omit empty v["imageURL"] = image_url return v def section(self) -> str: """ section is the section of the application menu in which the link should appear. This can be any text that will appear as a subheading in the application menu dropdown. A new section will be created if the text does not match text of an existing section. """ return self.__section def image_url(self) -> Optional[str]: """ imageUrl is the URL for the icon used in front of the link in the application menu. The URL must be an HTTPS URL or a Data URI. The image should be square and will be shown at 24x24 pixels. """ return self.__image_url class CLIDownloadLink(types.Object): @context.scoped @typechecked def __init__(self, text: str = "", href: str = ""): super().__init__() self.__text = text self.__href = href @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() text = self.text() check_type("text", text, str) v["text"] = text href = self.href() check_type("href", href, str) v["href"] = href return v def text(self) -> str: """ text is the display text for the link """ return self.__text def href(self) -> str: """ href is the absolute secure URL for the link (must use https) """ return self.__href class ConsoleCLIDownloadSpec(types.Object): """ ConsoleCLIDownloadSpec is the desired cli download configuration. """ @context.scoped @typechecked def __init__( self, display_name: str = "", description: str = "", links: List["CLIDownloadLink"] = None, ): super().__init__() self.__display_name = display_name self.__description = description self.__links = links if links is not None else [] @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() display_name = self.display_name() check_type("display_name", display_name, str) v["displayName"] = display_name description = self.description() check_type("description", description, str) v["description"] = description links = self.links() check_type("links", links, List["CLIDownloadLink"]) v["links"] = links return v def display_name(self) -> str: """ displayName is the display name of the CLI download. """ return self.__display_name def description(self) -> str: """ description is the description of the CLI download (can include markdown). """ return self.__description def links(self) -> List["CLIDownloadLink"]: """ links is a list of objects that provide CLI download link details. """ return self.__links class ConsoleCLIDownload(base.TypedObject, base.MetadataObject): """ ConsoleCLIDownload is an extension for configuring openshift web console command line interface (CLI) downloads. """ @context.scoped @typechecked def __init__( self, name: str = None, labels: Dict[str, str] = None, annotations: Dict[str, str] = None, spec: "ConsoleCLIDownloadSpec" = None, ): super().__init__( api_version="console.openshift.io/v1", kind="ConsoleCLIDownload", **({"name": name} if name is not None else {}), **({"labels": labels} if labels is not None else {}), **({"annotations": annotations} if annotations is not None else {}), ) self.__spec = spec if spec is not None else ConsoleCLIDownloadSpec() @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() spec = self.spec() check_type("spec", spec, "ConsoleCLIDownloadSpec") v["spec"] = spec return v def spec(self) -> "ConsoleCLIDownloadSpec": return self.__spec class ConsoleExternalLogLinkSpec(types.Object): """ ConsoleExternalLogLinkSpec is the desired log link configuration. The log link will appear on the logs tab of the pod details page. """ @context.scoped @typechecked def __init__( self, text: str = "", href_template: str = "", namespace_filter: str = None ): super().__init__() self.__text = text self.__href_template = href_template self.__namespace_filter = namespace_filter @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() text = self.text() check_type("text", text, str) v["text"] = text href_template = self.href_template() check_type("href_template", href_template, str) v["hrefTemplate"] = href_template namespace_filter = self.namespace_filter() check_type("namespace_filter", namespace_filter, Optional[str]) if namespace_filter: # omit empty v["namespaceFilter"] = namespace_filter return v def text(self) -> str: """ text is the display text for the link """ return self.__text def href_template(self) -> str: """ hrefTemplate is an absolute secure URL (must use https) for the log link including variables to be replaced. Variables are specified in the URL with the format ${variableName}, for instance, ${containerName} and will be replaced with the corresponding values from the resource. Resource is a pod. Supported variables are: - ${resourceName} - name of the resource which containes the logs - ${resourceUID} - UID of the resource which contains the logs - e.g. `11111111-2222-3333-4444-555555555555` - ${containerName} - name of the resource's container that contains the logs - ${resourceNamespace} - namespace of the resource that contains the logs - ${resourceNamespaceUID} - namespace UID of the resource that contains the logs - ${podLabels} - JSON representation of labels matching the pod with the logs - e.g. `{"key1":"value1","key2":"value2"}` e.g., https://example.com/logs?resourceName=${resourceName}&containerName=${containerName}&resourceNamespace=${resourceNamespace}&podLabels=${podLabels} """ return self.__href_template def namespace_filter(self) -> Optional[str]: """ namespaceFilter is a regular expression used to restrict a log link to a matching set of namespaces (e.g., `^openshift-`). The string is converted into a regular expression using the JavaScript RegExp constructor. If not specified, links will be displayed for all the namespaces. """ return self.__namespace_filter class ConsoleExternalLogLink(base.TypedObject, base.MetadataObject): """ ConsoleExternalLogLink is an extension for customizing OpenShift web console log links. """ @context.scoped @typechecked def __init__( self, name: str = None, labels: Dict[str, str] = None, annotations: Dict[str, str] = None, spec: "ConsoleExternalLogLinkSpec" = None, ): super().__init__( api_version="console.openshift.io/v1", kind="ConsoleExternalLogLink", **({"name": name} if name is not None else {}), **({"labels": labels} if labels is not None else {}), **({"annotations": annotations} if annotations is not None else {}), ) self.__spec = spec if spec is not None else ConsoleExternalLogLinkSpec() @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() spec = self.spec() check_type("spec", spec, "ConsoleExternalLogLinkSpec") v["spec"] = spec return v def spec(self) -> "ConsoleExternalLogLinkSpec": return self.__spec class Link(types.Object): """ Represents a standard link that could be generated in HTML """ @context.scoped @typechecked def __init__(self, text: str = "", href: str = ""): super().__init__() self.__text = text self.__href = href @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() text = self.text() check_type("text", text, str) v["text"] = text href = self.href() check_type("href", href, str) v["href"] = href return v def text(self) -> str: """ text is the display text for the link """ return self.__text def href(self) -> str: """ href is the absolute secure URL for the link (must use https) """ return self.__href class NamespaceDashboardSpec(types.Object): """ NamespaceDashboardSpec is a specification of namespaces in which the dashboard link should appear. If both namespaces and namespaceSelector are specified, the link will appear in namespaces that match either """ @context.scoped @typechecked def __init__( self, namespaces: List[str] = None, namespace_selector: "metav1.LabelSelector" = None, ): super().__init__() self.__namespaces = namespaces if namespaces is not None else [] self.__namespace_selector = namespace_selector @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() namespaces = self.namespaces() check_type("namespaces", namespaces, Optional[List[str]]) if namespaces: # omit empty v["namespaces"] = namespaces namespace_selector = self.namespace_selector() check_type( "namespace_selector", namespace_selector, Optional["metav1.LabelSelector"] ) if namespace_selector is not None: # omit empty v["namespaceSelector"] = namespace_selector return v def namespaces(self) -> Optional[List[str]]: """ namespaces is an array of namespace names in which the dashboard link should appear. """ return self.__namespaces def namespace_selector(self) -> Optional["metav1.LabelSelector"]: """ namespaceSelector is used to select the Namespaces that should contain dashboard link by label. If the namespace labels match, dashboard link will be shown for the namespaces. """ return self.__namespace_selector class ConsoleLinkSpec(types.Object): """ ConsoleLinkSpec is the desired console link configuration. """ @context.scoped @typechecked def __init__( self, link: "Link" = None, location: ConsoleLinkLocation = None, application_menu: "ApplicationMenuSpec" = None, namespace_dashboard: "NamespaceDashboardSpec" = None, ): super().__init__() self.__link = link if link is not None else Link() self.__location = location self.__application_menu = application_menu self.__namespace_dashboard = namespace_dashboard @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() link = self.link() check_type("link", link, "Link") v.update(link._root()) # inline location = self.location() check_type("location", location, ConsoleLinkLocation) v["location"] = location application_menu = self.application_menu() check_type( "application_menu", application_menu, Optional["ApplicationMenuSpec"] ) if application_menu is not None: # omit empty v["applicationMenu"] = application_menu namespace_dashboard = self.namespace_dashboard() check_type( "namespace_dashboard", namespace_dashboard, Optional["NamespaceDashboardSpec"], ) if namespace_dashboard is not None: # omit empty v["namespaceDashboard"] = namespace_dashboard return v def link(self) -> "Link": return self.__link def location(self) -> ConsoleLinkLocation: """ location determines which location in the console the link will be appended to (ApplicationMenu, HelpMenu, UserMenu, NamespaceDashboard). """ return self.__location def application_menu(self) -> Optional["ApplicationMenuSpec"]: """ applicationMenu holds information about section and icon used for the link in the application menu, and it is applicable only when location is set to ApplicationMenu. """ return self.__application_menu def namespace_dashboard(self) -> Optional["NamespaceDashboardSpec"]: """ namespaceDashboard holds information about namespaces in which the dashboard link should appear, and it is applicable only when location is set to NamespaceDashboard. If not specified, the link will appear in all namespaces. """ return self.__namespace_dashboard class ConsoleLink(base.TypedObject, base.MetadataObject): """ ConsoleLink is an extension for customizing OpenShift web console links. """ @context.scoped @typechecked def __init__( self, name: str = None, labels: Dict[str, str] = None, annotations: Dict[str, str] = None, spec: "ConsoleLinkSpec" = None, ): super().__init__( api_version="console.openshift.io/v1", kind="ConsoleLink", **({"name": name} if name is not None else {}), **({"labels": labels} if labels is not None else {}), **({"annotations": annotations} if annotations is not None else {}), ) self.__spec = spec if spec is not None else ConsoleLinkSpec() @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() spec = self.spec() check_type("spec", spec, "ConsoleLinkSpec") v["spec"] = spec return v def spec(self) -> "ConsoleLinkSpec": return self.__spec class ConsoleNotificationSpec(types.Object): """ ConsoleNotificationSpec is the desired console notification configuration. """ @context.scoped @typechecked def __init__( self, text: str = "", location: ConsoleNotificationLocation = None, link: "Link" = None, color: str = None, background_color: str = None, ): super().__init__() self.__text = text self.__location = location self.__link = link self.__color = color self.__background_color = background_color @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() text = self.text() check_type("text", text, str) v["text"] = text location = self.location() check_type("location", location, Optional[ConsoleNotificationLocation]) if location: # omit empty v["location"] = location link = self.link() check_type("link", link, Optional["Link"]) if link is not None: # omit empty v["link"] = link color = self.color() check_type("color", color, Optional[str]) if color: # omit empty v["color"] = color background_color = self.background_color() check_type("background_color", background_color, Optional[str]) if background_color: # omit empty v["backgroundColor"] = background_color return v def text(self) -> str: """ text is the visible text of the notification. """ return self.__text def location(self) -> Optional[ConsoleNotificationLocation]: """ location is the location of the notification in the console. """ return self.__location def link(self) -> Optional["Link"]: """ link is an object that holds notification link details. """ return self.__link def color(self) -> Optional[str]: """ color is the color of the text for the notification as CSS data type color. """ return self.__color def background_color(self) -> Optional[str]: """ backgroundColor is the color of the background for the notification as CSS data type color. """ return self.__background_color class ConsoleNotification(base.TypedObject, base.MetadataObject): """ ConsoleNotification is the extension for configuring openshift web console notifications. """ @context.scoped @typechecked def __init__( self, name: str = None, labels: Dict[str, str] = None, annotations: Dict[str, str] = None, spec: "ConsoleNotificationSpec" = None, ): super().__init__( api_version="console.openshift.io/v1", kind="ConsoleNotification", **({"name": name} if name is not None else {}), **({"labels": labels} if labels is not None else {}), **({"annotations": annotations} if annotations is not None else {}), ) self.__spec = spec if spec is not None else ConsoleNotificationSpec() @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() spec = self.spec() check_type("spec", spec, "ConsoleNotificationSpec") v["spec"] = spec return v def spec(self) -> "ConsoleNotificationSpec": return self.__spec class ConsoleYAMLSampleSpec(types.Object): """ ConsoleYAMLSampleSpec is the desired YAML sample configuration. Samples will appear with their descriptions in a samples sidebar when creating a resources in the web console. """ @context.scoped @typechecked def __init__( self, target_resource: "metav1.TypeMeta" = None, title: ConsoleYAMLSampleTitle = None, description: ConsoleYAMLSampleDescription = None, yaml: ConsoleYAMLSampleYAML = None, snippet: bool = False, ): super().__init__() self.__target_resource = ( target_resource if target_resource is not None else metav1.TypeMeta() ) self.__title = title self.__description = description self.__yaml = yaml self.__snippet = snippet @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() target_resource = self.target_resource() check_type("target_resource", target_resource, "metav1.TypeMeta") v["targetResource"] = target_resource title = self.title() check_type("title", title, ConsoleYAMLSampleTitle) v["title"] = title description = self.description() check_type("description", description, ConsoleYAMLSampleDescription) v["description"] = description yaml = self.yaml() check_type("yaml", yaml, ConsoleYAMLSampleYAML) v["yaml"] = yaml snippet = self.snippet() check_type("snippet", snippet, bool) v["snippet"] = snippet return v def target_resource(self) -> "metav1.TypeMeta": """ targetResource contains apiVersion and kind of the resource YAML sample is representating. """ return self.__target_resource def title(self) -> ConsoleYAMLSampleTitle: """ title of the YAML sample. """ return self.__title def description(self) -> ConsoleYAMLSampleDescription: """ description of the YAML sample. """ return self.__description def yaml(self) -> ConsoleYAMLSampleYAML: """ yaml is the YAML sample to display. """ return self.__yaml def snippet(self) -> bool: """ snippet indicates that the YAML sample is not the full YAML resource definition, but a fragment that can be inserted into the existing YAML document at the user's cursor. """ return self.__snippet class ConsoleYAMLSample(base.TypedObject, base.MetadataObject): """ ConsoleYAMLSample is an extension for customizing OpenShift web console YAML samples. """ @context.scoped @typechecked def __init__( self, name: str = None, labels: Dict[str, str] = None, annotations: Dict[str, str] = None, spec: "ConsoleYAMLSampleSpec" = None, ): super().__init__( api_version="console.openshift.io/v1", kind="ConsoleYAMLSample", **({"name": name} if name is not None else {}), **({"labels": labels} if labels is not None else {}), **({"annotations": annotations} if annotations is not None else {}), ) self.__spec = spec if spec is not None else ConsoleYAMLSampleSpec() @typechecked def _root(self) -> Dict[str, Any]: v = super()._root() spec = self.spec() check_type("spec", spec, "ConsoleYAMLSampleSpec") v["spec"] = spec return v def spec(self) -> "ConsoleYAMLSampleSpec": return self.__spec
33.103967
160
0.620356
bf89f791a5068233a584dbf1f3f6bd57faa9490b
3,781
py
Python
citeproc/frontend.py
phfaist/citeproc-py
3748be5bb945e5d7e47579a619dd49a1f039f075
[ "BSD-2-Clause-FreeBSD" ]
84
2015-01-03T15:06:06.000Z
2022-02-12T09:57:41.000Z
citeproc/frontend.py
phfaist/citeproc-py
3748be5bb945e5d7e47579a619dd49a1f039f075
[ "BSD-2-Clause-FreeBSD" ]
96
2015-01-16T14:57:47.000Z
2022-02-25T13:47:09.000Z
citeproc/frontend.py
phfaist/citeproc-py
3748be5bb945e5d7e47579a619dd49a1f039f075
[ "BSD-2-Clause-FreeBSD" ]
37
2015-01-28T21:55:56.000Z
2021-11-15T02:12:40.000Z
import os from warnings import warn from lxml import etree from . import SCHEMA_PATH, LOCALES_PATH, STYLES_PATH from .model import CitationStylesElement from .formatter import html class CitationStylesXML(object): def __init__(self, f, validate=True): lookup = etree.ElementNamespaceClassLookup() namespace = lookup.get_namespace('http://purl.org/net/xbiblio/csl') namespace[None] = CitationStylesElement namespace.update(dict([(cls.__name__.replace('_', '-').lower(), cls) for cls in CitationStylesElement.__subclasses__()])) self.parser = etree.XMLParser(remove_comments=True, encoding='UTF-8', no_network=True) self.parser.set_element_class_lookup(lookup) self.xml = etree.parse(f, self.parser)#, base_url=".") if validate: self.schema = etree.RelaxNG(etree.parse(SCHEMA_PATH)) if not self.schema.validate(self.xml): err = self.schema.error_log #raise Exception("XML file didn't pass schema validation:\n%s" % err) warn("XML file didn't pass schema validation:\n%s" % err) # TODO: proper error reporting self.root = self.xml.getroot() class CitationStylesLocale(CitationStylesXML): def __init__(self, locale, validate=True): locale_path = os.path.join(LOCALES_PATH, 'locales-{}.xml'.format(locale)) try: super(CitationStylesLocale, self).__init__(locale_path, validate=validate) except IOError: raise ValueError("'{}' is not a known locale".format(locale)) class CitationStylesStyle(CitationStylesXML): def __init__(self, style, locale=None, validate=True): try: if not os.path.exists(style): style = os.path.join(STYLES_PATH, '{}.csl'.format(style)) except TypeError: pass try: super(CitationStylesStyle, self).__init__( style, validate=validate) except IOError: raise ValueError("'{}' is not a known style".format(style)) if locale is None: locale = self.root.get('default-locale', 'en-US') self.root.set_locale_list(locale, validate=validate) def has_bibliography(self): return self.root.bibliography is not None def render_citation(self, citation, cites, callback=None): return self.root.citation.render(citation, cites, callback) def sort_bibliography(self, citation_items): return self.root.bibliography.sort(citation_items) def render_bibliography(self, citation_items): return self.root.bibliography.render(citation_items) class CitationStylesBibliography(object): def __init__(self, style, source, formatter=html): self.style = style self.source = source self.formatter = self.style.root.formatter = formatter self.keys = [] self.items = [] self._cites = [] def register(self, citation, callback=None): citation.bibliography = self for item in citation.cites: if item.key in self.source: if item.key not in self.keys: self.keys.append(item.key) self.items.append(item) elif callback is not None: callback(item) def sort(self): self.items = self.style.sort_bibliography(self.items) self.keys = [item.key for item in self.items] def cite(self, citation, callback): return self.style.render_citation(citation, self._cites, callback) def bibliography(self): return self.style.render_bibliography(self.items)
37.068627
85
0.626025
f96af9a0c348f9f4aa9dbd7d04c1359ad1322266
15,360
py
Python
adnc/model/mann.py
carusyte/ADNC
4a5dfa5be1aca9f815794c2c276ec220a1eb591d
[ "Apache-2.0" ]
62
2018-07-05T13:55:13.000Z
2019-01-03T15:58:07.000Z
adnc/model/mann.py
carusyte/ADNC
4a5dfa5be1aca9f815794c2c276ec220a1eb591d
[ "Apache-2.0" ]
1
2018-12-26T18:59:32.000Z
2019-01-02T15:32:40.000Z
adnc/model/mann.py
carusyte/ADNC
4a5dfa5be1aca9f815794c2c276ec220a1eb591d
[ "Apache-2.0" ]
8
2019-02-03T03:14:54.000Z
2020-07-17T22:33:41.000Z
# Copyright 2018 Jörg Franke # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import tensorflow as tf from tensorflow.contrib.rnn import MultiRNNCell from tensorflow.python.ops import variable_scope as vs from adnc.model.controller_units.controller import get_rnn_cell_list from adnc.model.memory_units.memory_unit import get_memory_unit from adnc.model.utils import HolisticMultiRNNCell from adnc.model.utils import WordEmbedding """ The memory augmented neural network (MANN) model object contains the controller and the memory unit as well as the loss function and connects everything. """ class MANN(): def __init__(self, config, analyse=False, reuse=False, name='mann', dtype=tf.float32): """ Args: config: dict, configuration of the whole model analyse: bool, is analyzer is used or not reuse: bool, reuse model or not """ self.seed = config["seed"] self.rng = np.random.RandomState(seed=self.seed) self.dtype = dtype self.analyse = analyse self.input_size = config["input_size"] self.output_size = config["output_size"] self.batch_size = config["batch_size"] self.input_embedding = config["input_embedding"] self.architecture = config['architecture'] self.controller_config = config["controller_config"] self.memory_unit_config = config["memory_unit_config"] self.output_function = config["output_function"] self.output_mask = config["output_mask"] self.loss_function = config['loss_function'] self.reuse = reuse self.name = name self.mask = tf.placeholder(self.dtype, [None, self.batch_size], name='mask') self.target = tf.placeholder(self.dtype, [None, self.batch_size, self.output_size], name='y') if self.input_embedding: word_idx_dict = self.input_embedding['word_idx_dict'] embedding_size = self.input_embedding['embedding_size'] if 'tmp_dir' in self.input_embedding: tmp_dir = self.input_embedding['tmp_dir'] else: tmp_dir = "data_tmp" glove = WordEmbedding(embedding_size, word_idx_dict=word_idx_dict, initialization='glove', tmp_dir=tmp_dir) self._data = tf.placeholder(tf.int64, [None, self.batch_size], name='x') self.data = glove.embed(self._data) else: self.data = tf.placeholder(tf.float32, [None, self.batch_size, self.input_size], name='x') if self.architecture in ['uni', 'unidirectional']: unweighted_outputs, states = self.unidirectional(self.data, self.controller_config, self.memory_unit_config, reuse=self.reuse) elif self.architecture in ['bi', 'bidirectional']: unweighted_outputs, states = self.bidirectional(self.data, self.controller_config, self.memory_unit_config, reuse=self.reuse) else: raise UserWarning("Unknown architecture, use unidirectional or bidirectional") if self.analyse: with tf.device('/cpu:0'): if self.architecture in ['uni', 'unidirectional']: analyse_outputs, analyse_states = self.unidirectional(self.data, self.controller_config, self.memory_unit_config, analyse=True, reuse=True) analyse_outputs, analyse_signals = analyse_outputs self.analyse = (analyse_outputs, analyse_signals, analyse_states) elif self.architecture in ['bi', 'bidirectional']: analyse_outputs, analyse_states = self.bidirectional(self.data, self.controller_config, self.memory_unit_config, analyse=True, reuse=True) analyse_outputs, analyse_signals = analyse_outputs self.analyse = (analyse_outputs, analyse_signals, analyse_states) self.unweighted_outputs = unweighted_outputs self.prediction, self.outputs = self._output_layer(unweighted_outputs) self.loss = self.get_loss(self.prediction) def _output_layer(self, outputs): """ Calculates the weighted and activated output of the MANN model Args: outputs: TF tensor, concatenation of memory units output and controller output Returns: TF tensor, predictions; TF tensor, unactivated predictions """ with tf.variable_scope("output_layer"): output_size = outputs.get_shape()[-1].value weights_concat = tf.get_variable("weights_concat", (output_size, self.output_size), initializer=tf.contrib.layers.xavier_initializer(seed=self.seed), collections=['mann', tf.GraphKeys.GLOBAL_VARIABLES], dtype=self.dtype) bias_merge = tf.get_variable("bias_merge", (self.output_size,), initializer=tf.constant_initializer(0.), collections=['mann', tf.GraphKeys.GLOBAL_VARIABLES], dtype=self.dtype) output_flat = tf.reshape(outputs, [-1, output_size]) output_flat = tf.matmul(output_flat, weights_concat) + bias_merge if self.output_function == 'softmax': predictions_flat = tf.nn.softmax(output_flat) elif self.output_function == 'tanh': predictions_flat = tf.tanh(output_flat) elif self.output_function == 'linear': predictions_flat = output_flat else: raise UserWarning("Unknown output function, use softmax, tanh or linear") predictions = tf.reshape(predictions_flat, [-1, self.batch_size, self.output_size]) weighted_outputs = tf.reshape(output_flat, [-1, self.batch_size, self.output_size]) return predictions, weighted_outputs def get_loss(self, prediction): """ Args: prediction: TF tensor, activated prediction of the model Returns: TF scalar, loss of the current forward set """ if self.loss_function == 'cross_entropy': if self.output_mask: cost = tf.reduce_sum( -1 * self.target * tf.log(tf.clip_by_value(prediction, 1e-12, 10.0)) - (1 - self.target) * tf.log( tf.clip_by_value(1 - prediction, 1e-12, 10.0)), axis=2) cost *= self.mask loss = tf.reduce_sum(cost) / tf.reduce_sum(self.mask) else: loss = tf.reduce_mean( -1 * self.target * tf.log(tf.clip_by_value(prediction, 1e-12, 10.0)) - (1 - self.target) * tf.log( tf.clip_by_value(1 - prediction, 1e-12, 10.0))) elif self.loss_function == 'mse': clipped_prediction = tf.clip_by_value(prediction, 1e-12, 10.0) mse = tf.square(self.target - clipped_prediction) mse = tf.reduce_mean(mse, axis=2) if self.output_mask: cost = mse * self.mask loss = tf.reduce_sum(cost) / tf.reduce_sum(self.mask) else: loss = tf.reduce_mean(mse) else: raise UserWarning("Unknown loss function, use cross_entropy or mse") return loss def unidirectional(self, inputs, controller_config, memory_unit_config, analyse=False, reuse=False): """ Connects unidirectional controller and memory unit and performs scan over sequence Args: inputs: TF tensor, input sequence controller_config: dict, configuration of the controller memory_unit_config: dict, configuration of the memory unit analyse: bool, do analysis reuse: bool, reuse Returns: TF tensor, output sequence; TF tensor, hidden states """ with tf.variable_scope("controller"): controller_list = get_rnn_cell_list(controller_config, name='controller', reuse=reuse, seed=self.seed, dtype=self.dtype) if controller_config['connect'] == 'sparse': memory_input_size = controller_list[-1].output_size mu_cell = get_memory_unit(memory_input_size, memory_unit_config, 'memory_unit', analyse=analyse, reuse=reuse) cell = MultiRNNCell(controller_list + [mu_cell]) else: controller_cell = HolisticMultiRNNCell(controller_list) memory_input_size = controller_cell.output_size mu_cell = get_memory_unit(memory_input_size, memory_unit_config, 'memory_unit', analyse=analyse, reuse=reuse) cell = MultiRNNCell([controller_cell, mu_cell]) batch_size = inputs.get_shape()[1].value cell_init_states = cell.zero_state(batch_size, dtype=self.dtype) output_init = tf.zeros([batch_size, cell.output_size], dtype=self.dtype) if analyse: output_init = (output_init, mu_cell.analyse_state(batch_size, dtype=self.dtype)) init_states = (output_init, cell_init_states) def step(pre_states, inputs): pre_rnn_output, pre_rnn_states = pre_states if analyse: pre_rnn_output = pre_rnn_output[0] controller_inputs = tf.concat([inputs, pre_rnn_output], axis=-1) rnn_output, rnn_states = cell(controller_inputs, pre_rnn_states) return (rnn_output, rnn_states) outputs, states = tf.scan(step, inputs, initializer=init_states, parallel_iterations=32) return outputs, states def bidirectional(self, inputs, controller_config, memory_unit_config, analyse=False, reuse=False): """ Connects bidirectional controller and memory unit and performs scan over sequence Args: inputs: TF tensor, input sequence controller_config: dict, configuration of the controller memory_unit_config: dict, configuration of the memory unit analyse: bool, do analysis reuse: bool, reuse Returns: TF tensor, output sequence; TF tensor, hidden states """ with tf.variable_scope("controller"): list_fw = get_rnn_cell_list(controller_config, name='con_fw', reuse=reuse, seed=self.seed, dtype=self.dtype) list_bw = get_rnn_cell_list(controller_config, name='con_bw', reuse=reuse, seed=self.seed, dtype=self.dtype) if controller_config['connect'] == 'sparse': cell_fw = MultiRNNCell(list_fw) cell_bw = MultiRNNCell(list_bw) else: cell_fw = HolisticMultiRNNCell(list_fw) cell_bw = HolisticMultiRNNCell(list_bw) memory_input_size = cell_fw.output_size + cell_bw.output_size cell_mu = get_memory_unit(memory_input_size, memory_unit_config, 'memory_unit', analyse=analyse, reuse=reuse) with vs.variable_scope("bw") as bw_scope: inputs_reverse = tf.reverse(inputs, axis=[0]) output_bw, output_state_bw = tf.nn.dynamic_rnn(cell=cell_bw, inputs=inputs_reverse, dtype=self.dtype, parallel_iterations=32, time_major=True, scope=bw_scope) output_bw = tf.reverse(output_bw, axis=[0]) batch_size = inputs.get_shape()[1].value cell_fw_init_states = cell_fw.zero_state(batch_size, dtype=self.dtype) cell_mu_init_states = cell_mu.zero_state(batch_size, dtype=self.dtype) output_init = tf.zeros([batch_size, cell_mu.output_size], dtype=self.dtype) if analyse: output_init = (output_init, cell_mu.analyse_state(batch_size, dtype=self.dtype)) init_states = (output_init, cell_fw_init_states, cell_mu_init_states) coupled_inputs = (inputs, output_bw) with vs.variable_scope("fw") as fw_scope: def step(pre_states, coupled_inputs): inputs, output_bw = coupled_inputs pre_outputs, pre_states_fw, pre_states_mu = pre_states if analyse: pre_outputs = pre_outputs[0] controller_inputs = tf.concat([inputs, pre_outputs], axis=-1) output_fw, states_fw = cell_fw(controller_inputs, pre_states_fw) mu_inputs = tf.concat([output_fw, output_bw], axis=-1) output_mu, states_mu = cell_mu(mu_inputs, pre_states_mu) return (output_mu, states_fw, states_mu) outputs, states_fw, states_mu = tf.scan(step, coupled_inputs, initializer=init_states, parallel_iterations=32) states = states_fw, states_mu return outputs, states @property def feed(self): """ Returns: TF placeholder for data, target and mask inout to the model """ return self.data, self.target, self.mask @property def controller_trainable_variables(self): return tf.get_collection('recurrent_unit') @property def memory_unit_trainable_variables(self): return tf.get_collection('memory_unit') @property def mann_trainable_variables(self): return tf.get_collection('mann') @property def trainable_variables(self): return tf.trainable_variables() @property def controller_parameter_amount(self): return self.count_parameter_amount(self.controller_trainable_variables) @property def memory_unit_parameter_amount(self): return self.count_parameter_amount(self.memory_unit_trainable_variables) @property def mann_parameter_amount(self): return self.count_parameter_amount(self.mann_trainable_variables) @staticmethod def count_parameter_amount(var_list): parameters = 0 for variable in var_list: shape = variable.get_shape() variable_parametes = 1 for dim in shape: variable_parametes *= dim.value parameters += variable_parametes return parameters @property def parameter_amount(self): var_list = tf.trainable_variables() return self.count_parameter_amount(var_list)
44.651163
120
0.618685
c4f6ab7acce5ccebaffba5ca96bedf61f289e3f8
1,033
py
Python
kitsune/search/v2/signals/wiki.py
anthonymark33/kitsune
488a690ca63db0217dc9f3ede88b78db257699a3
[ "BSD-3-Clause" ]
1
2020-12-14T09:51:32.000Z
2020-12-14T09:51:32.000Z
kitsune/search/v2/signals/wiki.py
anthonymark33/kitsune
488a690ca63db0217dc9f3ede88b78db257699a3
[ "BSD-3-Clause" ]
null
null
null
kitsune/search/v2/signals/wiki.py
anthonymark33/kitsune
488a690ca63db0217dc9f3ede88b78db257699a3
[ "BSD-3-Clause" ]
null
null
null
from django.db.models.signals import post_save, m2m_changed, post_delete from kitsune.search.v2.es7_utils import ( index_object, delete_object, remove_from_field, ) from kitsune.search.v2.decorators import search_receiver from kitsune.wiki.models import Document from kitsune.products.models import Product, Topic @search_receiver(post_save, Document) @search_receiver(m2m_changed, Document.products.through) @search_receiver(m2m_changed, Document.topics.through) def handle_document_save(instance, **kwargs): index_object.delay("WikiDocument", instance.pk) @search_receiver(post_delete, Document) def handle_document_delete(instance, **kwargs): delete_object.delay("WikiDocument", instance.pk) @search_receiver(post_delete, Product) def handle_product_delete(instance, **kwargs): remove_from_field.delay("WikiDocument", "product_ids", instance.pk) @search_receiver(post_delete, Topic) def handle_topic_delete(instance, **kwargs): remove_from_field.delay("WikiDocument", "topic_ids", instance.pk)
32.28125
72
0.802517
0b66da63babd20bf57e7991cebcff1e6e75a2ddc
13,958
py
Python
src/sqlfluff/dialects/exasol_keywords.py
netlify/sqlfluff
6f22eb08a0701f41132ee4847ddf1a64ca79da80
[ "MIT" ]
2
2021-08-04T08:58:33.000Z
2021-08-04T18:54:06.000Z
src/sqlfluff/dialects/exasol_keywords.py
netlify/sqlfluff
6f22eb08a0701f41132ee4847ddf1a64ca79da80
[ "MIT" ]
1
2020-04-02T09:05:39.000Z
2020-12-10T14:42:59.000Z
src/sqlfluff/dialects/exasol_keywords.py
netlify/sqlfluff
6f22eb08a0701f41132ee4847ddf1a64ca79da80
[ "MIT" ]
1
2021-07-03T12:56:56.000Z
2021-07-03T12:56:56.000Z
"""A list of all SQL key words.""" RESERVED_KEYWORDS = [ "ABSOLUTE", "ACTION", "ADD", "AFTER", "ALL", "ALLOCATE", "ALTER", "AND", "ANY", "APPEND", "ARE", "ARRAY", "AS", "ASC", "ASENSITIVE", "ASSERTION", "AT", "ATTRIBUTE", "AUTHID", "AUTHORIZATION", "BEFORE", "BEGIN", "BETWEEN", "BIGINT", "BINARY", "BIT", "BLOB", "BLOCKED", "BOOL", "BOOLEAN", "BOTH", "BY", "BYTE", "CALL", "CALLED", "CARDINALITY", "CASCADE", "CASCADED", "CASE", "CASESPECIFIC", "CAST", "CATALOG", "CHAIN", "CHAR", "CHARACTER", "CHARACTERISTICS", "CHARACTER_SET_CATALOG", "CHARACTER_SET_NAME", "CHARACTER_SET_SCHEMA", "CHECK", "CHECKED", "CLOB", "CLOSE", "COALESCE", "COLLATE", "COLLATION", "COLLATION_CATALOG", "COLLATION_NAME", "COLLATION_SCHEMA", "COLUMN", "COMMIT", "CONDITION", "CONNECTION", "CONNECT_BY_ISCYCLE", "CONNECT_BY_ISLEAF", "CONNECT_BY_ROOT", "CONSTANT", "CONSTRAINT", "CONSTRAINTS", "CONSTRAINT_STATE_DEFAULT", "CONSTRUCTOR", "CONTAINS", "CONTINUE", "CONTROL", "CONVERT", "CORRESPONDING", "CREATE", "CS", "CSV", "CUBE", "CURRENT", "CURRENT_DATE", "CURRENT_PATH", "CURRENT_ROLE", "CURRENT_SCHEMA", "CURRENT_SESSION", "CURRENT_STATEMENT", "CURRENT_TIME", "CURRENT_TIMESTAMP", "CURRENT_USER", "CURSOR", "CYCLE", "DATA", "DATALINK", "DATE", "DATETIME_INTERVAL_CODE", "DATETIME_INTERVAL_PRECISION", "DAY", "DBTIMEZONE", "DEALLOCATE", "DEC", "DECIMAL", "DECLARE", "DEFAULT", "DEFAULT_LIKE_ESCAPE_CHARACTER", "DEFERRABLE", "DEFERRED", "DEFINED", "DEFINER", "DELETE", "DEREF", "DERIVED", "DESC", "DESCRIBE", "DESCRIPTOR", "DETERMINISTIC", "DISABLE", "DISABLED", "DISCONNECT", "DISPATCH", "DISTINCT", "DLURLCOMPLETE", "DLURLPATH", "DLURLPATHONLY", "DLURLSCHEME", "DLURLSERVER", "DLVALUE", "DO", "DOMAIN", "DOUBLE", "DROP", "DYNAMIC", "DYNAMIC_FUNCTION", "DYNAMIC_FUNCTION_CODE", "EACH", "ELSE", "ELSEIF", "ELSIF", "EMITS", "ENABLE", "ENABLED", "END", "END-EXEC", "ENDIF", "ENFORCE", "EQUALS", "ERRORS", "ESCAPE", "EXCEPT", "EXCEPTION", "EXEC", "EXECUTE", "EXISTS", "EXIT", "EXPORT", "EXTERNAL", "EXTRACT", "FALSE", "FBV", "FETCH", "FILE", "FINAL", "FIRST", "FLOAT", "FOLLOWING", "FOR", "FORALL", "FORCE", "FORMAT", "FOUND", "FREE", "FROM", "FS", "FULL", "FUNCTION", "GENERAL", "GENERATED", "GEOMETRY", "GET", "GLOBAL", "GO", "GOTO", "GRANT", "GRANTED", "GROUP", "GROUPING", "GROUPS", "GROUP_CONCAT", "HASHTYPE", "HASHTYPE_FORMAT", "HAVING", "HIGH", "HOLD", "HOUR", "IDENTITY", "IF", "IFNULL", "IMMEDIATE", "IMPERSONATE", "IMPLEMENTATION", "IMPORT", "IN", "INDEX", "INDICATOR", "INNER", "INOUT", "INPUT", "INSENSITIVE", "INSERT", "INSTANCE", "INSTANTIABLE", "INT", "INTEGER", "INTEGRITY", "INTERSECT", "INTERVAL", "INTO", "INVERSE", "INVOKER", "IS", "ITERATE", "JOIN", "KEY_MEMBER", "KEY_TYPE", "LARGE", "LAST", "LATERAL", "LDAP", "LEADING", "LEAVE", "LEFT", "LEVEL", "LIKE", "LIMIT", "LISTAGG", "LOCAL", "LOCALTIME", "LOCALTIMESTAMP", "LOCATOR", "LOG", "LONGVARCHAR", "LOOP", "LOW", "MAP", "MATCH", "MATCHED", "MERGE", "METHOD", "MINUS", "MINUTE", "MOD", "MODIFIES", "MODIFY", "MODULE", "MONTH", "NAMES", "NATIONAL", "NATURAL", "NCHAR", "NCLOB", "NEW", "NEXT", "NLS_DATE_FORMAT", "NLS_DATE_LANGUAGE", "NLS_FIRST_DAY_OF_WEEK", "NLS_NUMERIC_CHARACTERS", "NLS_TIMESTAMP_FORMAT", "NO", "NOCYCLE", "NOLOGGING", "NONE", "NOT", "NULL", "NULLIF", "NUMBER", "NUMERIC", "NVARCHAR", "NVARCHAR2", "OBJECT", "OF", "OFF", "OLD", "ON", "ONLY", "OPEN", "OPTION", "OPTIONS", "OR", "ORDER", "ORDERING", "ORDINALITY", "OTHERS", "OUT", "OUTER", "OUTPUT", "OVER", "OVERLAPS", "OVERLAY", "OVERRIDING", "PAD", "PARALLEL_ENABLE", "PARAMETER", "PARAMETER_SPECIFIC_CATALOG", "PARAMETER_SPECIFIC_NAME", "PARAMETER_SPECIFIC_SCHEMA", "PARTIAL", "PATH", "PERMISSION", "PLACING", "PLUS", "POSITION", "PRECEDING", "PREFERRING", "PREPARE", "PRESERVE", "PRIOR", "PRIVILEGES", "PROCEDURE", "PROFILE", "QUALIFY", "RANDOM", "RANGE", "READ", "READS", "REAL", "RECOVERY", "RECURSIVE", "REF", "REFERENCES", "REFERENCING", "REFRESH", "REGEXP_LIKE", "RELATIVE", "RELEASE", "RENAME", "REPEAT", "REPLACE", "RESTORE", "RESTRICT", "RESULT", "RETURN", "RETURNED_LENGTH", "RETURNED_OCTET_LENGTH", "RETURNS", "REVOKE", "RIGHT", "ROLLBACK", "ROLLUP", "ROUTINE", "ROW", "ROWS", "ROWTYPE", "SAVEPOINT", "SCHEMA", "SCOPE", "SCOPE_USER", "SCRIPT", "SCROLL", "SEARCH", "SECOND", "SECTION", "SECURITY", "SELECT", "SELECTIVE", "SELF", "SENSITIVE", "SEPARATOR", "SEQUENCE", "SESSION", "SESSIONTIMEZONE", "SESSION_USER", "SET", "SETS", "SHORTINT", "SIMILAR", "SMALLINT", "SOME", "SOURCE", "SPACE", "SPECIFIC", "SPECIFICTYPE", "SQL", "SQLEXCEPTION", "SQLSTATE", "SQLWARNING", "SQL_BIGINT", "SQL_BIT", "SQL_CHAR", "SQL_DATE", "SQL_DECIMAL", "SQL_DOUBLE", "SQL_FLOAT", "SQL_INTEGER", "SQL_LONGVARCHAR", "SQL_NUMERIC", "SQL_PREPROCESSOR_SCRIPT", "SQL_REAL", "SQL_SMALLINT", "SQL_TIMESTAMP", "SQL_TINYINT", "SQL_TYPE_DATE", "SQL_TYPE_TIMESTAMP", "SQL_VARCHAR", "START", "STATE", "STATEMENT", "STATIC", "STRUCTURE", "STYLE", "SUBSTRING", "SUBTYPE", "SYSDATE", "SYSTEM", "SYSTEM_USER", "SYSTIMESTAMP", "TABLE", "TEMPORARY", "TEXT", "THEN", "TIME", "TIMESTAMP", "TIMEZONE_HOUR", "TIMEZONE_MINUTE", "TINYINT", "TO", "TRAILING", "TRANSACTION", "TRANSFORM", "TRANSFORMS", "TRANSLATION", "TREAT", "TRIGGER", "TRIM", "TRUE", "TRUNCATE", "UNDER", "UNION", "UNIQUE", "UNKNOWN", "UNLINK", "UNNEST", "UNTIL", "UPDATE", "USAGE", "USER", "USING", "VALUE", "VALUES", "VARCHAR", "VARCHAR2", "VARRAY", "VERIFY", "VIEW", "WHEN", "WHENEVER", "WHERE", "WHILE", "WINDOW", "WITH", "WITHIN", "WITHOUT", "WORK", "YEAR", "YES", "ZONE", ] UNRESERVED_KEYWORDS = [ "ABS", "ACCESS", "ACOS", "ADAPTER", "ADD_DAYS", "ADD_HOURS", "ADD_MINUTES", "ADD_MONTHS", "ADD_SECONDS", "ADD_WEEKS", "ADD_YEARS", "ADMIN", "ALIGN", "ALWAYS", "ANALYZE", "ANSI", "APPROXIMATE_COUNT_DISTINCT", "ASCII", "ASIN", "ASSIGNMENT", "ASYMMETRIC", "ATAN", "ATAN2", "ATOMIC", "ATTEMPTS", "AUDIT", "AUTHENTICATED", "AUTO", "AVG", "BACKUP", "BERNOULLI", "BIT_AND", "BIT_CHECK", "BIT_LENGTH", "BIT_LROTATE", "BIT_LSHIFT", "BIT_NOT", "BIT_OR", "BIT_RROTATE", "BIT_RSHIFT", "BIT_SET", "BIT_TO_NUM", "BIT_XOR", "BREADTH", "CEIL", "CEILING", "CHANGE", "CHARACTERS", "CHARACTER_LENGTH", "CHR", "CLEAR", "COBOL", "COLOGNE_PHONETIC", "COMMENT", "COMMENTS", "COMMITTED", "CONCAT", "CONNECT", "CONVERT_TZ", "CORR", "COS", "COSH", "COT", "COUNT", "COVAR_POP", "COVAR_SAMP", "CREATED", "CROSS", "CURDATE", "DATABASE", "DATE_TRUNC", "DAYS_BETWEEN", "DEBUG", "DECODE", "DEFAULTS", "DEFAULT_CONSUMER_GROUP", "DEGREES", "DELIMIT", "DELIMITER", "DENSE_RANK", "DEPTH", "DIAGNOSTICS", "DICTIONARY", "DISTRIBUTE", "DISTRIBUTION", "DIV", "DOWN", "DUMP", "EDIT_DISTANCE", "EMPTY", "ENCODING", "ERROR", "ESTIMATE", "EVALUATE", "EVERY", "EXA", "EXCLUDE", "EXCLUDING", "EXP", "EXPERIMENTAL", "EXPIRE", "EXPLAIN", "EXPRESSION", "FAILED", "FILES", "FIRST_VALUE", "FLOOR", "FLUSH", "FOREIGN", "FORTRAN", "FROM_POSIX_TIME", "GREATEST", "GROUPING_ID", "HANDLER", "HAS", "HASH", "HASHTYPE_MD5", "HASHTYPE_SHA", "HASHTYPE_SHA1", "HASHTYPE_SHA256", "HASHTYPE_SHA512", "HASHTYPE_TIGER", "HASH_MD5", "HASH_SHA", "HASH_SHA1", "HASH_SHA256", "HASH_SHA512", "HASH_TIGER", "HIERARCHY", "HOURS_BETWEEN", "IDENTIFIED", "IGNORE", "IMPERSONATION", "INCLUDING", "INITCAP", "INITIALLY", "INSTR", "INVALID", "IPROC", "ISOLATION", "IS_BOOLEAN", "IS_DATE", "IS_DSINTERVAL", "IS_NUMBER", "IS_TIMESTAMP", "IS_YMINTERVAL", "JAVA", "JAVASCRIPT", "JSON", "JSON_EXTRACT", "JSON_VALUE", "KEEP", "KERBEROS", "KEY", "KEYS", "KILL", "LAG", "LANGUAGE", "LAST_VALUE", "LCASE", "LEAD", "LEAST", "LENGTH", "LINK", "LN", "LOCATE", "LOCK", "LOG10", "LOG2", "LOGIN", "LOGS", "LONG", "LOWER", "LPAD", "LTRIM", "LUA", "MANAGE", "MAX", "MAXIMAL", "MEDIAN", "MESSAGE", "MID", "MIN", "MINUTES_BETWEEN", "MONTHS_BETWEEN", "MUL", "MULTIPLE", "MUMPS", "NEVER", "NICE", "NORMALIZED", "NOTICE", "NOW", "NPROC", "NULLIFZERO", "NULLS", "NUMTODSINTERVAL", "NUMTOYMINTERVAL", "NVL", "NVL2", "OBJECTS", "OCTETS", "OCTET_LENGTH", "OFFSET", "OPTIMIZE", "OPTIMIZER", "ORA", "OVERFLOW", "OWNER", "PADDING", "PARTITION", "PASCAL", "PASSWORD", "PASSWORD_EXPIRY_POLICY", "PASSWORD_SECURITY_POLICY", "PERCENTILE_CONT", "PERCENTILE_DISC", "PI", "PLI", "POSIX_TIME", "POWER", "PRECISION", "PRELOAD", "PRIMARY", "PRINCIPAL", "PRIVILEGE", "PYTHON", "QUERY_CACHE", "QUERY_TIMEOUT", "QUIET", "R", "RADIANS", "RAND", "RANK", "RATIO_TO_REPORT", "RAW_SIZE_LIMIT", "RECOMPRESS", "RECORD", "REGEXP_INSTR", "REGEXP_REPLACE", "REGEXP_SUBSTR", "REGR_AVGX", "REGR_AVGY", "REGR_COUNT", "REGR_INTERCEPT", "REGR_R2", "REGR_SLOPE", "REGR_SXX", "REGR_SXY", "REGR_SYY", "REJECT", "REORGANIZE", "REPEATABLE", "RESET", "RESPECT", "RETURNING", "REVERSE", "ROLE", "ROLES", "ROUND", "ROWID", "ROW_NUMBER", "RPAD", "RTRIM", "SCALAR", "SCHEMAS", "SCHEME", "SCRIPT_LANGUAGES", "SCRIPT_OUTPUT_ADDRESS", "SECONDS_BETWEEN", "SECURE", "SERIALIZABLE", "SESSION_PARAMETER", "SESSION_TEMP_DB_RAM_LIMIT", "SHUT", "SIGN", "SIMPLE", "SIN", "SINH", "SIZE", "SKIP", "SOUNDEX", "SQRT", "STATISTICS", "STDDEV", "STDDEV_POP", "STDDEV_SAMP", "ST_AREA", "ST_BOUNDARY", "ST_BUFFER", "ST_CENTROID", "ST_CONTAINS", "ST_CONVEXHULL", "ST_CROSSES", "ST_DIFFERENCE", "ST_DIMENSION", "ST_DISJOINT", "ST_DISTANCE", "ST_ENDPOINT", "ST_ENVELOPE", "ST_EQUALS", "ST_EXTERIORRING", "ST_FORCE2D", "ST_GEOMETRYN", "ST_GEOMETRYTYPE", "ST_INTERIORRINGN", "ST_INTERSECTION", "ST_INTERSECTS", "ST_ISCLOSED", "ST_ISEMPTY", "ST_ISRING", "ST_ISSIMPLE", "ST_LENGTH", "ST_MAX_DECIMAL_DIGITS", "ST_NUMGEOMETRIES", "ST_NUMINTERIORRINGS", "ST_NUMPOINTS", "ST_OVERLAPS", "ST_POINTN", "ST_SETSRID", "ST_STARTPOINT", "ST_SYMDIFFERENCE", "ST_TOUCHES", "ST_TRANSFORM", "ST_UNION", "ST_WITHIN", "ST_X", "ST_Y", "SUBSTR", "SUM", "SYMMETRIC", "SYS_CONNECT_BY_PATH", "SYS_GUID", "TABLES", "TABLESAMPLE", "TAN", "TANH", "TASKS", "TEMP_DB_RAM_LIMIT", "TIES", "TIMESTAMP_ARITHMETIC_BEHAVIOR", "TIME_ZONE", "TIME_ZONE_BEHAVIOR", "TO_CHAR", "TO_DATE", "TO_DSINTERVAL", "TO_NUMBER", "TO_TIMESTAMP", "TO_YMINTERVAL", "TRACE", "TRANSLATE", "TRUNC", "TYPE", "UCASE", "UNBOUNDED", "UNCOMMITTED", "UNDO", "UNICODE", "UNICODECHR", "UNLIMITED", "UPPER", "USE", "USER_TEMP_DB_RAM_LIMIT", "UTF8", "VALUE2PROC", "VARIANCE", "VARYING", "VAR_POP", "VAR_SAMP", "VIRTUAL", "WEEK", "WRITE", "YEARS_BETWEEN", "ZEROIFNULL", # Additional unreserved keywords not defined in EXA_SQL_KEYWORDS "JDBC", "DRIVER", "CONSUMER", ] BARE_FUNCTIONS = [ "CURRENT_TIMESTAMP", "SYSTIMESTAMP", "NOW", "LOCALTIMESTAMP", "CURDATE", "CURRENT_DATE", "SYSDATE", "CURRENT_USER", "USER", "CURRENT_SESSION", "SESSIONTIMEZONE", "DBTIMEZONE", "CURRENT_SCHEMA", "CURRENT_STATEMENT", "ROWID", "ROWNUM", "LEVEL", "CONNECT_BY_ISLEAF", "CONNECT_BY_ROOT", "CONNECT_BY_ISCYCLE", ]
15.970252
68
0.502221
c7ed458a812f289003ac710bd37482747e3b2ae9
1,001
py
Python
main.py
guard-project/lcp
1e003bde5323325aaab9b72912481661808fc33b
[ "MIT" ]
1
2020-05-14T00:32:44.000Z
2020-05-14T00:32:44.000Z
main.py
guard-project/lcp
1e003bde5323325aaab9b72912481661808fc33b
[ "MIT" ]
6
2020-10-30T12:08:16.000Z
2021-07-04T14:21:51.000Z
main.py
guard-project/lcp
1e003bde5323325aaab9b72912481661808fc33b
[ "MIT" ]
3
2020-11-07T12:45:25.000Z
2021-02-10T09:59:52.000Z
import os Import_Error = ImportError path = os.path.abspath(__file__) dir_path = os.path.dirname(path) os.chdir(dir_path) import waitress # noqa: E402 from rich import pretty, traceback # noqa: E402 from rich.console import Console # noqa: E402 from rich.panel import Panel # noqa: E402 pretty.install() traceback.install(show_locals=False) from about import project, title, version # noqa: E402 from api import api # noqa: E402 from reader.arg import ArgReader # noqa: E402 from utils.log import Log # noqa: E402 db = ArgReader.read() if db.version is not None: print(db.version) else: ident = f'{project} - {title} v:{version}' console = Console() console.print(Panel.fit(ident)) Log.init(config=db.log_config) api_instance = api(title=title, version=version) Log.get('api').success(f'Accept requests at {db.host}:{db.port}') waitress.serve(api_instance, host=db.host, port=db.port, expose_tracebacks=False, ident=ident, _quiet=True)
29.441176
69
0.712288
44d43b16fd6b9b02b6cc3ebc93a719bad47192f1
9,670
py
Python
neutron/tests/unit/objects/test_common_types.py
brandonlogan/neutron
57364544aa8b0e7cd9d73550f287bcad574ba08c
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/objects/test_common_types.py
brandonlogan/neutron
57364544aa8b0e7cd9d73550f287bcad574ba08c
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/objects/test_common_types.py
brandonlogan/neutron
57364544aa8b0e7cd9d73550f287bcad574ba08c
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 OpenStack Foundation # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import itertools import random from neutron_lib import constants as const from neutron.common import constants from neutron.extensions import dns as dns_ext from neutron.objects import common_types from neutron.tests import base as test_base from neutron.tests import tools class TestField(object): def test_coerce_good_values(self): for in_val, out_val in self.coerce_good_values: self.assertEqual(out_val, self.field.coerce('obj', 'attr', in_val)) def test_coerce_bad_values(self): for in_val in self.coerce_bad_values: self.assertRaises((TypeError, ValueError), self.field.coerce, 'obj', 'attr', in_val) def test_to_primitive(self): for in_val, prim_val in self.to_primitive_values: self.assertEqual(prim_val, self.field.to_primitive('obj', 'attr', in_val)) def test_from_primitive(self): class ObjectLikeThing(object): _context = 'context' for prim_val, out_val in self.from_primitive_values: self.assertEqual(out_val, self.field.from_primitive( ObjectLikeThing, 'attr', prim_val)) @abc.abstractmethod def test_stringify(self): '''This test should validate stringify() format for new field types.''' class IPV6ModeEnumFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(IPV6ModeEnumFieldTest, self).setUp() self.field = common_types.IPV6ModeEnumField() self.coerce_good_values = [(mode, mode) for mode in const.IPV6_MODES] self.coerce_bad_values = ['6', 4, 'type', 'slaacc'] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual("'%s'" % in_val, self.field.stringify(in_val)) class DscpMarkFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(DscpMarkFieldTest, self).setUp() self.field = common_types.DscpMarkField() self.coerce_good_values = [(val, val) for val in constants.VALID_DSCP_MARKS] self.coerce_bad_values = ['6', 'str', [], {}, object()] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual("%s" % in_val, self.field.stringify(in_val)) class IPNetworkPrefixLenFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(IPNetworkPrefixLenFieldTest, self).setUp() self.field = common_types.IPNetworkPrefixLenField() self.coerce_good_values = [(x, x) for x in (0, 32, 128, 42)] self.coerce_bad_values = ['len', '1', 129, -1] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual("%s" % in_val, self.field.stringify(in_val)) class MACAddressFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(MACAddressFieldTest, self).setUp() self.field = common_types.MACAddressField() mac1 = tools.get_random_EUI() mac2 = tools.get_random_EUI() self.coerce_good_values = [(mac1, mac1), (mac2, mac2)] self.coerce_bad_values = [ 'XXXX', 'ypp', 'g3:vvv', # the field type is strict and does not allow to pass strings, even # if they represent a valid MAC address tools.get_random_mac(), ] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual('%s' % in_val, self.field.stringify(in_val)) class IPNetworkFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(IPNetworkFieldTest, self).setUp() self.field = common_types.IPNetworkField() addrs = [ tools.get_random_ip_network(version=ip_version) for ip_version in constants.IP_ALLOWED_VERSIONS ] self.coerce_good_values = [(addr, addr) for addr in addrs] self.coerce_bad_values = [ 'ypp', 'g3:vvv', # the field type is strict and does not allow to pass strings, even # if they represent a valid IP network '10.0.0.0/24', ] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual('%s' % in_val, self.field.stringify(in_val)) class IPVersionEnumFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(IPVersionEnumFieldTest, self).setUp() self.field = common_types.IPVersionEnumField() self.coerce_good_values = [(val, val) for val in constants.IP_ALLOWED_VERSIONS] self.coerce_bad_values = [5, 0, -1, 'str'] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual("%s" % in_val, self.field.stringify(in_val)) class FlowDirectionEnumFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(FlowDirectionEnumFieldTest, self).setUp() self.field = common_types.FlowDirectionEnumField() self.coerce_good_values = [(val, val) for val in constants.VALID_DIRECTIONS] self.coerce_bad_values = ['test', '8', 10, []] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual("'%s'" % in_val, self.field.stringify(in_val)) class DomainNameFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(DomainNameFieldTest, self).setUp() self.field = common_types.DomainNameField() self.coerce_good_values = [ (val, val) for val in ('www.google.com', 'hostname', '1abc.com') ] self.coerce_bad_values = ['x' * (dns_ext.FQDN_MAX_LEN + 1), 10, []] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual("'%s'" % in_val, self.field.stringify(in_val)) class EtherTypeEnumFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(EtherTypeEnumFieldTest, self).setUp() self.field = common_types.EtherTypeEnumField() self.coerce_good_values = [(val, val) for val in constants.VALID_ETHERTYPES] self.coerce_bad_values = ['IpV4', 8, 'str', 'ipv6'] self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual("'%s'" % in_val, self.field.stringify(in_val)) class IpProtocolEnumFieldTest(test_base.BaseTestCase, TestField): def setUp(self): super(IpProtocolEnumFieldTest, self).setUp() self.field = common_types.IpProtocolEnumField() self.coerce_good_values = [ (val, val) for val in itertools.chain( const.IP_PROTOCOL_MAP.keys(), [str(v) for v in const.IP_PROTOCOL_MAP.values()] ) ] self.coerce_bad_values = ['test', 'Udp', 256] try: # pick a random protocol number that is not in the map of supported # protocols self.coerce_bad_values.append( str( random.choice( list( set(range(256)) - set(const.IP_PROTOCOL_MAP.values()) ) ) ) ) except IndexError: # stay paranoid and guard against the impossible future when all # protocols are in the map pass self.to_primitive_values = self.coerce_good_values self.from_primitive_values = self.coerce_good_values def test_stringify(self): for in_val, out_val in self.coerce_good_values: self.assertEqual("'%s'" % in_val, self.field.stringify(in_val))
40.124481
79
0.646329
1a9c2c04bf12b2920e934f51b349c02c17433afc
408
py
Python
pyripple/__init__.py
nkgilley/python-ripple-api
180af1cee5f7a71e6ee0c0e854ff21c77bed5704
[ "MIT" ]
1
2017-07-05T08:56:27.000Z
2017-07-05T08:56:27.000Z
pyripple/__init__.py
nkgilley/python-ripple-api
180af1cee5f7a71e6ee0c0e854ff21c77bed5704
[ "MIT" ]
null
null
null
pyripple/__init__.py
nkgilley/python-ripple-api
180af1cee5f7a71e6ee0c0e854ff21c77bed5704
[ "MIT" ]
null
null
null
"""Python API for using ripple.com.""" import requests BASE_URL = 'https://data.ripple.com/v2/accounts/' def get_balance(address): req_url = BASE_URL + address + '/balances' response = requests.get(req_url) if response.status_code == 200 and response.json().get('result'): if response.json().get('result') == 'success': return float(response.json()['balances'][0]['value'])
34
69
0.656863
98eb7edeb67ec2b893c06821d9b57395d56cfe2c
11,192
py
Python
main/ncmagics/worldmap.py
RyosukeDTomita/gcmPlot
430f8af353daf464b5c5566f1c163d5bef63f584
[ "MIT" ]
null
null
null
main/ncmagics/worldmap.py
RyosukeDTomita/gcmPlot
430f8af353daf464b5c5566f1c163d5bef63f584
[ "MIT" ]
null
null
null
main/ncmagics/worldmap.py
RyosukeDTomita/gcmPlot
430f8af353daf464b5c5566f1c163d5bef63f584
[ "MIT" ]
null
null
null
# coding: utf-8 """ Name: japanmap.py Plot japan map using cartopy. Usage: This is the module. Author: Ryosuke Tomita Date: 2021/09/08 """ from typing import Union import matplotlib.pyplot as plt import matplotlib.ticker as mticker from matplotlib.colors import ListedColormap, LinearSegmentedColormap from matplotlib.colors import Normalize import numpy as np import cartopy.crs as ccrs import cartopy.feature as cfea from cartopy.mpl.ticker import LatitudeFormatter, LongitudeFormatter class WorldMap: """JpMap. Make map near japan. """ def __init__(self, color=False): """__init__. Args: color: """ self.fig = plt.figure(figsize=(36, 24), facecolor='w') self.ax = self.fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree(central_longitude=0.0)) #self.ax = self.fig.add_subplot(1, 1, 1, # projection=ccrs.NorthPolarStereo(central_longitude=-180)) #self.ax = self.fig.add_subplot(1, 1, 1, # projection=ccrs.Mollweide(central_longitude=0.0)) self.ax.set_global() self.ax.coastlines(lw=2.5) # coastline thickness # using axis lat,lon format dlon, dlat = 20, 20 # grid line interval. xticks = np.arange(-180, 180.1, dlon) yticks = np.arange(-90, 90.1, dlat) self.ax.set_xticks(xticks, crs=ccrs.PlateCarree()) self.ax.set_yticks(yticks, crs=ccrs.PlateCarree()) latfmt = LatitudeFormatter() # axis = degree lonfmt = LongitudeFormatter( zero_direction_label=True) # No NS mark 0 degree self.ax.xaxis.set_major_formatter(lonfmt) self.ax.yaxis.set_major_formatter(latfmt) self.ax.axes.tick_params(labelsize=34) #self.ax.rcParams['font.size'] = 36 # land color,ocean color if color: #self.ax.add_feature(cfea.LAND, color='#98fb98') #self.ax.add_feature(cfea.OCEAN, color='#87cefa') self.ax.add_feature(cfea.LAND, color='#f5deb3') self.ax.add_feature(cfea.OCEAN, color='#afeeee') # grid setting grid = self.ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, linewidth=1, alpha=0.7, color='k',) grid.xlocator = mticker.FixedLocator(xticks) grid.ylocator = mticker.FixedLocator(yticks) self.color_list = ['#0000ff', '#00ffff', '#008000', '#adff2f', '#ffff00', '#ffd700', '#ffa500', '#ff0000', '#c71585', '#ff1493', '#9400d3', '#00ced1', '#556b2f', '#deb887', '#daa520', '#8b4513', '#4b0082', '#ffffff', ] self.plt_cnt = 0 def plot_data(self, x, y, label: str, line=True): """plot_data. plot location data. plot type is dot. Args: x: y: label (str): label cnst_marker """ plt.rcParams['font.size'] = 36 # label font size if line: linewidth = 4 linestyle = "solid" else: #no line linewidth = 0 linestyle = None self.ax.plot(x, y, 'bo', label=label, markersize=15, color=self.color_list[self.plt_cnt], markeredgewidth=1.6, markeredgecolor='#000000', linestyle=linestyle, linewidth=linewidth,) self.plt_cnt += 1 def plot_value(self, x, y, z): """plot_value. plot z value on japan map. x, y are location data. Args: x: y: z: """ for i in range(len(x)): self.ax.plot(x[i], y[i], marker=str(f'${z[i]:.2f}$'), markersize=90, color='k') def plot_prmsl_circle(self, x, y, z): """plot_value. plot z value on japan map. x, y are location data. Args: x: y: z: """ for i in range(len(x)): scale = (1030 - z[i]) // 3 self.ax.plot(x[i], y[i], 'bo', markersize=15+scale, color=self.color_list[self.plt_cnt-1], markeredgewidth=1.6, markeredgecolor='#000000',) def contour_plot(self, x, y, z, contour_type=None): """contour_plot. Args: x: y: z: """ X, Y = np.meshgrid(x, y) if contour_type == "pressure": contour = self.ax.contour(X, Y, z, colors="black", levels=list(range(900, 1040, 4)), linewidths=3.0,) else: contour = self.ax.contour(X, Y, z, colors="black", linewidths=3.0) self.ax.clabel(contour, fontsize=36, fmt='%1.1f') def color_line(self, x, y, z, line_value: Union[int, float], color="blue"): """color_line. Args: x: y: z: line_value (Union[int, float]): line_value color: """ X, Y = np.meshgrid(x, y) contour = self.ax.contour(X, Y, z, colors=color, levels=[line_value], linewidths=10.0, linestyles='dashed') self.ax.clabel(contour, fontsize=48, fmt='%1.1f') def shade_plot(self, x, y, z, label: str, color_bar_label_min="", color_bar_label_max="", color_map_type="kishotyo"): """shade_plot. make color map. Args: x: y: z: label (str): label color_bar_label_min: color_bar_label_max: """ def _get_jmacmap(): """_get_jmacmap. """ jmacolors=np.array([ [242, 242, 242, 1], # white [160, 210, 255, 1], # light blue [33, 140, 255, 1], # aqua [0, 65, 255, 1], # blue [250, 245, 0, 1], # yellow [255, 153, 0, 1], # orange [255, 40, 0, 1], # red [180, 0, 104, 1]], # dark red dtype=np.float) jmacolors[:,:3] /= 256 jmacmap=LinearSegmentedColormap.from_list("jmacmap2",colors=jmacolors) return jmacmap def _get_tempcmap(): """_get_tempcmap. """ tempcolors=np.array([ [160, 0, 200, 1], # puple [0, 65, 255, 1], # blue [33, 140, 255, 1], # aqua [160, 210, 255, 1], # light blue [250, 245, 180, 1], # white [250, 245, 0, 1], # yellow [255, 153, 0, 1], # orange [255, 40, 0, 1], # red [180, 0, 104, 1]] # dark red ,dtype=np.float) tempcolors[:,:3] /= 256 tempcmap=LinearSegmentedColormap.from_list("tempcmap",colors=tempcolors) return tempcmap # initial setting of shade plt.rcParams['font.size'] = 36 X, Y = np.meshgrid(x, y) if color_map_type == "diff": color_map = "RdBu_r" elif color_map_type == "temperature": color_map = _get_tempcmap() else: color_map = _get_jmacmap() # auto color bar range(using for test). if color_bar_label_min == "" and color_bar_label_max == "": shade = self.ax.pcolormesh(X, Y, z, cmap=color_map) color_bar = plt.colorbar(shade, orientation="vertical", shrink=0.7) #color bar max min are assigned. else: shade = self.ax.pcolormesh(X, Y, z, cmap=color_map, norm=Normalize(vmin=color_bar_label_min, vmax=color_bar_label_max)) shade.set_clim(color_bar_label_min, color_bar_label_max) #color bar range. color_bar = plt.colorbar(shade, orientation="vertical", shrink=0.7) color_bar.set_label(label, fontsize=36,) def _skip_value(self, array, len_x: int, len_y: int, vector_interval: int): """skip_value. used in vector_plot() Args: array: len_x (int): len_x len_y (int): len_y vector_interval (int): vector_interval """ skiped_array = [ array[i][j] for i in range(len_y) for j in range(len_x) if i%vector_interval == 0 and j % vector_interval == 0 ] return skiped_array def vector_plot(self, x, y, u, v, vector_interval: int, vector_scale, mode=None): """vector_plot. make vector map. use _skip_value() Args: x: y: u: v: vector_interval (int): vector_interval vector_scale: """ u_skipped = self._skip_value(u, len(x), len(y), vector_interval) v_skipped = self._skip_value(v, len(x), len(y), vector_interval) x_2d, y_2d = np.meshgrid(x, y) x_2d_skipped = self._skip_value(x_2d, len(x), len(y), vector_interval) y_2d_skipped = self._skip_value(y_2d, len(x), len(y), vector_interval) if mode == "wind": self.ax.barbs(x_2d_skipped, y_2d_skipped, u_skipped, v_skipped, length=7) else: # headlengthがheadaxislengthより大きく設定されると矢印がひし形に近づいていく。 self.ax.quiver(x_2d_skipped, y_2d_skipped, u_skipped, v_skipped, angles='uv', scale_units='xy', scale=vector_scale, headwidth=3, headlength=4, headaxislength=3.5) def hatch_plot(self, x, y, z): """hatch_plot. https://matplotlib.org/stable/gallery/images_contours_and_fields/contourf_hatching.html Args: x: y: z: """ x_2d, y_2d = np.meshgrid(x, y) self.ax.contourf(x_2d, y_2d, z, hatches='.',cmap='gray', alpha=0.3) def hatch_plot_2(self, x, y, z): """hatch_plot. Args: x: y: z: """ x_2d, y_2d = np.meshgrid(x, y) self.ax.contourf(x_2d, y_2d, z, hatches='*',cmap='pink', alpha=0.8) def save_fig(self, outname: str, title=None): """save_fig. save figure. Args: outname (str): outname title (str): title """ self.ax.set_title(title, fontsize=32) bar_, label = self.ax.get_legend_handles_labels() self.ax.legend(bar_, label, loc='upper left', borderaxespad=0, bbox_to_anchor=(1.05, 1)) self.fig.savefig(outname, bbox_inches="tight", pad_inches=0.5) plt.close()
33.812689
121
0.498302
347c25efe562e0fa3c64395004c7a36d953a7c9d
862
py
Python
onlinecourse/urls.py
pavloteyfel/ibm-online-course-app
f167839bad82fc270f4a192b94dd38ac7bd287b6
[ "Apache-2.0" ]
null
null
null
onlinecourse/urls.py
pavloteyfel/ibm-online-course-app
f167839bad82fc270f4a192b94dd38ac7bd287b6
[ "Apache-2.0" ]
null
null
null
onlinecourse/urls.py
pavloteyfel/ibm-online-course-app
f167839bad82fc270f4a192b94dd38ac7bd287b6
[ "Apache-2.0" ]
null
null
null
from django.conf import settings from django.conf.urls.static import static from django.urls import path from . import views app_name = "onlinecourse" urlpatterns = [ path(route="", view=views.CourseListView.as_view(), name="index"), path("registration/", views.registration_request, name="registration"), path("login/", views.login_request, name="login"), path("logout/", views.logout_request, name="logout"), path("<int:pk>/", views.CourseDetailView.as_view(), name="course_details"), path("<int:course_id>/enroll/", views.enroll, name="enroll"), path("<int:course_id>/submit/", views.submit, name="submit"), path( "course/<int:course_id>/submission/<int:submission_id>/result/", views.show_exam_result, name="show_exam_result", ), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
39.181818
79
0.700696
493c8d6743bf833fbb115e451642d9eab4bd6de2
958
py
Python
sdk/cognitiveservices/azure-cognitiveservices-formrecognizer/azure/cognitiveservices/formrecognizer/models/keys_result_py3.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/cognitiveservices/azure-cognitiveservices-formrecognizer/azure/cognitiveservices/formrecognizer/models/keys_result_py3.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/cognitiveservices/azure-cognitiveservices-formrecognizer/azure/cognitiveservices/formrecognizer/models/keys_result_py3.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class KeysResult(Model): """Result of an operation to get the keys extracted by a model. :param clusters: Object mapping ClusterIds to Key lists. :type clusters: dict[str, list[str]] """ _attribute_map = { 'clusters': {'key': 'clusters', 'type': '{[str]}'}, } def __init__(self, *, clusters=None, **kwargs) -> None: super(KeysResult, self).__init__(**kwargs) self.clusters = clusters
31.933333
76
0.574113
1368954bc60e065630359696cf32a7b91d3495c4
7,778
py
Python
yt_dlp/extractor/adultswim.py
nxtreaming/yt-dlp
385ffb467b2285e85a2a5495b90314ba1f8e0700
[ "Unlicense" ]
11
2022-01-06T22:09:50.000Z
2022-03-12T22:26:22.000Z
yt_dlp/extractor/adultswim.py
nxtreaming/yt-dlp
385ffb467b2285e85a2a5495b90314ba1f8e0700
[ "Unlicense" ]
4
2022-02-25T08:20:18.000Z
2022-03-17T16:16:20.000Z
yt_dlp/extractor/adultswim.py
nxtreaming/yt-dlp
385ffb467b2285e85a2a5495b90314ba1f8e0700
[ "Unlicense" ]
3
2022-02-19T08:59:13.000Z
2022-03-06T16:11:21.000Z
import json from .turner import TurnerBaseIE from ..utils import ( determine_ext, float_or_none, int_or_none, mimetype2ext, parse_age_limit, parse_iso8601, strip_or_none, try_get, ) class AdultSwimIE(TurnerBaseIE): _VALID_URL = r'https?://(?:www\.)?adultswim\.com/videos/(?P<show_path>[^/?#]+)(?:/(?P<episode_path>[^/?#]+))?' _TESTS = [{ 'url': 'http://adultswim.com/videos/rick-and-morty/pilot', 'info_dict': { 'id': 'rQxZvXQ4ROaSOqq-or2Mow', 'ext': 'mp4', 'title': 'Rick and Morty - Pilot', 'description': 'Rick moves in with his daughter\'s family and establishes himself as a bad influence on his grandson, Morty.', 'timestamp': 1543294800, 'upload_date': '20181127', }, 'params': { # m3u8 download 'skip_download': True, }, 'expected_warnings': ['Unable to download f4m manifest'], }, { 'url': 'http://www.adultswim.com/videos/tim-and-eric-awesome-show-great-job/dr-steve-brule-for-your-wine/', 'info_dict': { 'id': 'sY3cMUR_TbuE4YmdjzbIcQ', 'ext': 'mp4', 'title': 'Tim and Eric Awesome Show Great Job! - Dr. Steve Brule, For Your Wine', 'description': 'Dr. Brule reports live from Wine Country with a special report on wines. \nWatch Tim and Eric Awesome Show Great Job! episode #20, "Embarrassed" on Adult Swim.', 'upload_date': '20080124', 'timestamp': 1201150800, }, 'params': { # m3u8 download 'skip_download': True, }, 'skip': '404 Not Found', }, { 'url': 'http://www.adultswim.com/videos/decker/inside-decker-a-new-hero/', 'info_dict': { 'id': 'I0LQFQkaSUaFp8PnAWHhoQ', 'ext': 'mp4', 'title': 'Decker - Inside Decker: A New Hero', 'description': 'The guys recap the conclusion of the season. They announce a new hero, take a peek into the Victorville Film Archive and welcome back the talented James Dean.', 'timestamp': 1469480460, 'upload_date': '20160725', }, 'params': { # m3u8 download 'skip_download': True, }, 'expected_warnings': ['Unable to download f4m manifest'], }, { 'url': 'http://www.adultswim.com/videos/attack-on-titan', 'info_dict': { 'id': 'attack-on-titan', 'title': 'Attack on Titan', 'description': 'md5:41caa9416906d90711e31dc00cb7db7e', }, 'playlist_mincount': 12, }, { 'url': 'http://www.adultswim.com/videos/streams/williams-stream', 'info_dict': { 'id': 'd8DEBj7QRfetLsRgFnGEyg', 'ext': 'mp4', 'title': r're:^Williams Stream \d{4}-\d{2}-\d{2} \d{2}:\d{2}$', 'description': 'original programming', }, 'params': { # m3u8 download 'skip_download': True, }, 'skip': '404 Not Found', }] def _real_extract(self, url): show_path, episode_path = self._match_valid_url(url).groups() display_id = episode_path or show_path query = '''query { getShowBySlug(slug:"%s") { %%s } }''' % show_path if episode_path: query = query % '''title getVideoBySlug(slug:"%s") { _id auth description duration episodeNumber launchDate mediaID seasonNumber poster title tvRating }''' % episode_path ['getVideoBySlug'] else: query = query % '''metaDescription title videos(first:1000,sort:["episode_number"]) { edges { node { _id slug } } }''' show_data = self._download_json( 'https://www.adultswim.com/api/search', display_id, data=json.dumps({'query': query}).encode(), headers={'Content-Type': 'application/json'})['data']['getShowBySlug'] if episode_path: video_data = show_data['getVideoBySlug'] video_id = video_data['_id'] episode_title = title = video_data['title'] series = show_data.get('title') if series: title = '%s - %s' % (series, title) info = { 'id': video_id, 'title': title, 'description': strip_or_none(video_data.get('description')), 'duration': float_or_none(video_data.get('duration')), 'formats': [], 'subtitles': {}, 'age_limit': parse_age_limit(video_data.get('tvRating')), 'thumbnail': video_data.get('poster'), 'timestamp': parse_iso8601(video_data.get('launchDate')), 'series': series, 'season_number': int_or_none(video_data.get('seasonNumber')), 'episode': episode_title, 'episode_number': int_or_none(video_data.get('episodeNumber')), } auth = video_data.get('auth') media_id = video_data.get('mediaID') if media_id: info.update(self._extract_ngtv_info(media_id, { # CDN_TOKEN_APP_ID from: # https://d2gg02c3xr550i.cloudfront.net/assets/asvp.e9c8bef24322d060ef87.bundle.js 'appId': 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhcHBJZCI6ImFzLXR2ZS1kZXNrdG9wLXB0enQ2bSIsInByb2R1Y3QiOiJ0dmUiLCJuZXR3b3JrIjoiYXMiLCJwbGF0Zm9ybSI6ImRlc2t0b3AiLCJpYXQiOjE1MzI3MDIyNzl9.BzSCk-WYOZ2GMCIaeVb8zWnzhlgnXuJTCu0jGp_VaZE', }, { 'url': url, 'site_name': 'AdultSwim', 'auth_required': auth, })) if not auth: extract_data = self._download_json( 'https://www.adultswim.com/api/shows/v1/videos/' + video_id, video_id, query={'fields': 'stream'}, fatal=False) or {} assets = try_get(extract_data, lambda x: x['data']['video']['stream']['assets'], list) or [] for asset in assets: asset_url = asset.get('url') if not asset_url: continue ext = determine_ext(asset_url, mimetype2ext(asset.get('mime_type'))) if ext == 'm3u8': info['formats'].extend(self._extract_m3u8_formats( asset_url, video_id, 'mp4', m3u8_id='hls', fatal=False)) elif ext == 'f4m': continue # info['formats'].extend(self._extract_f4m_formats( # asset_url, video_id, f4m_id='hds', fatal=False)) elif ext in ('scc', 'ttml', 'vtt'): info['subtitles'].setdefault('en', []).append({ 'url': asset_url, }) self._sort_formats(info['formats']) return info else: entries = [] for edge in show_data.get('videos', {}).get('edges', []): video = edge.get('node') or {} slug = video.get('slug') if not slug: continue entries.append(self.url_result( 'http://adultswim.com/videos/%s/%s' % (show_path, slug), 'AdultSwim', video.get('_id'))) return self.playlist_result( entries, show_path, show_data.get('title'), strip_or_none(show_data.get('metaDescription')))
39.085427
249
0.521599
c47ce68f5c0901a7506193083fcd50148ff15cf1
42,501
py
Python
reana_cluster/backends/kubernetes/k8s.py
BenGalewsky/reana-cluster
b631360d92886b760d56d47686774537aa4b1db5
[ "MIT" ]
1
2019-06-27T01:21:02.000Z
2019-06-27T01:21:02.000Z
reana_cluster/backends/kubernetes/k8s.py
BenGalewsky/reana-cluster
b631360d92886b760d56d47686774537aa4b1db5
[ "MIT" ]
null
null
null
reana_cluster/backends/kubernetes/k8s.py
BenGalewsky/reana-cluster
b631360d92886b760d56d47686774537aa4b1db5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is part of REANA. # Copyright (C) 2017, 2018, 2019 CERN. # # REANA is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Abstract Base Class representing REANA cluster backend.""" import json import logging import os import shlex import subprocess import pkg_resources import yaml from jinja2 import (Environment, FileSystemLoader, TemplateNotFound, TemplateSyntaxError) from kubernetes import client as k8s_client from kubernetes import config as k8s_config from kubernetes.client import Configuration from kubernetes.client.rest import ApiException from pkg_resources import parse_version from reana_cluster import ReanaBackendABC class KubernetesBackend(ReanaBackendABC): """A class for interacting with Kubernetes. Attributes: __cluster_type Type of the backend this class implements support for. _conf Configuration. """ __cluster_type = 'Kubernetes' _conf = { 'templates_folder': pkg_resources.resource_filename( __name__, '/templates'), 'min_version': 'v1.14.0', 'max_version': 'v1.14.0', } def __init__(self, cluster_spec, cluster_conf=None, kubeconfig=None, kubeconfig_context=None, cephfs=False, cephfs_volume_size=None, cvmfs=False, debug=False, url=None): """Initialise Kubernetes specific ReanaBackend-object. :param cluster_spec: Dictionary representing complete REANA cluster spec file. :param cluster_conf: A generator/iterable of Kubernetes YAML manifests of REANA components as Python objects. If set to `None` cluster_conf will be generated from manifest templates in `templates` folder specified in `_conf.templates_folder` :param kubeconfig: Name of the kube-config file to use for configuring reana-cluster. If set to `None` then `$HOME/.kube/config` will be used. Note: Might pickup a config-file defined in $KUBECONFIG as well. :param kubeconfig_context: set the active context. If is set to `None`, current_context from config file will be used. :param cephfs: Boolean flag toggling the usage of a cephfs volume as storage backend. :param cephfs_volume_size: Int number which represents cephfs volume size (GB) :param cvmfs: Boolean flag toggling the mounting of cvmfs volumes in the cluster pods. :param debug: Boolean flag setting debug mode. :param url: REANA cluster url. """ logging.debug('Creating a ReanaBackend object ' 'for Kubernetes interaction.') # Load Kubernetes cluster configuration. If reana-cluster.yaml # doesn't specify this K8S Python API defaults to '$HOME/.kube/config' self.kubeconfig = kubeconfig or \ cluster_spec['cluster'].get('config', None) self.kubeconfig_context = kubeconfig_context or \ cluster_spec['cluster'].get('config_context', None) k8s_api_client_config = Configuration() k8s_config.load_kube_config(kubeconfig, self.kubeconfig_context, k8s_api_client_config) Configuration.set_default(k8s_api_client_config) # Instantiate clients for various Kubernetes REST APIs self._corev1api = k8s_client.CoreV1Api() self._versionapi = k8s_client.VersionApi() self._extbetav1api = k8s_client.ExtensionsV1beta1Api() self._rbacauthorizationv1api = k8s_client.RbacAuthorizationV1Api() self._storagev1api = k8s_client.StorageV1Api() self.k8s_api_client_config = k8s_api_client_config self.cluster_spec = cluster_spec self.cluster_conf = cluster_conf or \ self.generate_configuration(cluster_spec, cephfs=cephfs, cephfs_volume_size=cephfs_volume_size, debug=debug, url=url) @property def cluster_type(self): """.""" return self.__cluster_type @property def cluster_url(self): """Return URL of Kubernetes instance `reana-cluster` connects to.""" return self.k8s_api_client_config.host @property def current_config(self): """Return Kubernetes configuration (e.g. `~/.kube/config`).""" return self.k8s_api_client_config @property def current_kubeconfig_context(self): """Return K8S kubeconfig context used to initialize K8S Client(s).""" return self.kubeconfig_context @property def current_kubeconfig(self): """Return K8S kubeconfig used to initialize K8S Client(s). (e.g. `~/.kube/config`) """ return self.kubeconfig @classmethod def generate_configuration(cls, cluster_spec, cvmfs=False, cephfs=False, cephfs_volume_size=None, debug=False, url=None): """Generate Kubernetes manifest files used to init REANA cluster. :param cluster_spec: Dictionary representing complete REANA cluster spec file. :param cephfs: Boolean which represents whether REANA is deployed with CEPH or not. :param cephfs_volume_size: Int to set CEPH volume size in GB. :param cvmfs: Boolean which represents whether REANA is deployed with CVMFS or not. :param debug: Boolean which represents whether REANA is deployed in debug mode or not. :param url: REANA cluster url. :return: A generator/iterable of generated Kubernetes YAML manifests as Python objects. """ # Setup an Environment for Jinja env = Environment( loader=FileSystemLoader( cls._conf['templates_folder']), keep_trailing_newline=False ) # Define where are backend conf params needed when rendering templates. be_conf_params_fp = cls._conf['templates_folder'] + '/config.yaml' try: with open(be_conf_params_fp) as f: # Load backend conf params backend_conf_parameters = yaml.load(f.read(), Loader=yaml.FullLoader) # change type of deployment (cephfs|cvmfs|hostpath) if cephfs or cluster_spec['cluster'].get('cephfs'): backend_conf_parameters['CEPHFS'] = True if not cephfs_volume_size: cephfs_volume_size = \ cluster_spec['cluster'].get( 'cephfs_volume_size', 200) if debug or cluster_spec['cluster'].get('debug'): backend_conf_parameters['DEBUG'] = True if url or cluster_spec['cluster'].get('url'): backend_conf_parameters['URL'] = True if cluster_spec['cluster'].get('cephfs_monitors'): backend_conf_parameters['CEPHFS_MONITORS'] = \ cluster_spec['cluster'].get('cephfs_monitors') if cluster_spec['cluster'].get('root_path'): backend_conf_parameters['ROOT_PATH'] = \ cluster_spec['cluster'].get('root_path') if cluster_spec['cluster'].get('shared_volume_path'): backend_conf_parameters['SHARED_VOLUME_PATH'] = \ cluster_spec['cluster'].get('shared_volume_path') if cluster_spec['cluster'].get('db_persistence_path'): backend_conf_parameters['DB_PERSISTENCE_PATH'] = \ cluster_spec['cluster'].get('db_persistence_path') # Would it be better to combine templates or populated # templates in Python code for improved extensibility? # Just drop a .yaml template and add necessary to config.yaml # without changing anything? # Load template combining all other templates from # templates folder template = env.get_template('backend_conf.yaml') components = cluster_spec['components'] rs_img = components['reana-server']['image'] rwfc_img = components['reana-workflow-controller']['image'] rmb_img = components['reana-message-broker']['image'] rs_environment = components['reana-server']\ .get('environment', []) rwfc_environment = components['reana-workflow-controller'] \ .get('environment', []) rmb_environment = components['reana-message-broker'] \ .get('environment', []) rs_environment = components['reana-server']\ .get('environment', []) rwfc_environment = components['reana-workflow-controller'] \ .get('environment', []) rmb_environment = components['reana-message-broker'] \ .get('environment', []) rs_mountpoints = components['reana-server']\ .get('mountpoints', []) rwfc_mountpoints = components['reana-workflow-controller']\ .get('mountpoints', []) rmb_mountpoints = components['reana-message-broker'] \ .get('mountpoints', []) # Render the template using given backend config parameters cluster_conf = template.\ render(backend_conf_parameters, REANA_URL=cluster_spec['cluster'].get( 'reana_url', url), CEPHFS_VOLUME_SIZE=cephfs_volume_size or 1, SERVER_IMAGE=rs_img, WORKFLOW_CONTROLLER_IMAGE=rwfc_img, MESSAGE_BROKER_IMAGE=rmb_img, RS_MOUNTPOINTS=rs_mountpoints, RWFC_MOUNTPOINTS=rwfc_mountpoints, RMB_MOUNTPOINTS=rmb_mountpoints, RS_ENVIRONMENT=rs_environment, RWFC_ENVIRONMENT=rwfc_environment, RMB_ENVIRONMENT=rmb_environment, ) # Strip empty lines for improved readability cluster_conf = '\n'.join( [line for line in cluster_conf.splitlines() if line.strip()]) # Should print the whole configuration in a loop # Now prints just memory address of generator object logging.debug('Loaded K8S config successfully: \n {}' .format(yaml.load_all(cluster_conf, Loader=yaml.FullLoader))) except TemplateNotFound as e: logging.info( 'Something wrong when fetching K8S config file templates from ' '{filepath} : \n' '{error}'.format( filepath=cls._conf['templates_folder'], error=e.strerror)) raise e except TemplateSyntaxError as e: logging.info( 'Something went wrong when parsing K8S template from ' '{filepath} : \n' '{error}'.format( filepath=e.filename, error=e.strerror)) raise e except IOError as e: logging.info( 'Something wrong when reading K8S config parameters-file from ' '{filepath} : \n' '{error}'.format(filepath=be_conf_params_fp, error=e.strerror)) raise e # As Jinja rendered string is basically multiple YAML documents in one # string parse it with YAML-library and return a generator containing # independent YAML documents (split from `---`) as Python objects. return yaml.load_all(cluster_conf, Loader=yaml.FullLoader) def init(self, traefik): """Initialize REANA cluster, i.e. deploy REANA components to backend. :param traefik: Boolean flag determines if traefik should be initialized. :return: `True` if init was completed successfully. :rtype: bool :raises ApiException: Failed to successfully interact with Kubernetes REST API. Reason for failure is indicated as HTTP error codes in addition to a textual description of the error. """ if not self._cluster_running(): pass # Should check that cluster is not already initialized. # Maybe use `verify_components()` or `get()` each component? if traefik is True: self.initialize_traefik() for manifest in self.cluster_conf: try: logging.debug(json.dumps(manifest)) if manifest['kind'] == 'Deployment': # REANA Job Controller needs access to K8S-cluster's # service-account-token in order to create new Pods. components_k8s_token = \ ['reana-server', 'workflow-controller'] if manifest['metadata']['name'] in components_k8s_token: manifest = self._add_service_acc_key_to_component( manifest) self._extbetav1api.create_namespaced_deployment( body=manifest, namespace=manifest['metadata'].get('namespace', 'default')) elif manifest['kind'] == 'Namespace': self._corev1api.create_namespace(body=manifest) elif manifest['kind'] == 'ResourceQuota': self._corev1api.create_namespaced_resource_quota( body=manifest, namespace=manifest['metadata']['namespace']) elif manifest['kind'] == 'Service': self._corev1api.create_namespaced_service( body=manifest, namespace=manifest['metadata'].get('namespace', 'default')) elif manifest['kind'] == 'ClusterRole': self._rbacauthorizationv1api.create_cluster_role( body=manifest) elif manifest['kind'] == 'ClusterRoleBinding': self._rbacauthorizationv1api.\ create_cluster_role_binding(body=manifest) elif manifest['kind'] == 'Ingress': self._extbetav1api.create_namespaced_ingress( body=manifest, namespace=manifest['metadata'].get('namespace', 'default')) elif manifest['kind'] == 'StorageClass': self._storagev1api.create_storage_class(body=manifest) elif manifest['kind'] == 'PersistentVolumeClaim': self._corev1api.create_namespaced_persistent_volume_claim( body=manifest, namespace=manifest['metadata'].get('namespace', 'default')) except ApiException as e: # Handle K8S API errors if e.status == 409: logging.info( '{0} {1} already exists, continuing ...'.format( manifest['kind'], manifest['metadata'].get('name'))) continue if e.status == 400: pass raise e return True def initialize_traefik(self): """Install and initialize traefik via Helm. Traefik dashboard service is not accessible by default, to make it accessible inside Minikube service type is changed to NodePort. """ from reana_cluster.config import (traefik_configuration_file_path, traefik_release_name) try: namespace = 'kube-system' label_selector = 'app=traefik' cmd = ('helm install stable/traefik --namespace {} --values {} ' '--name {}').format(namespace, traefik_configuration_file_path, traefik_release_name) cmd = shlex.split(cmd) subprocess.check_output(cmd) traefik_objects = self._corev1api.list_namespaced_service( namespace=namespace, label_selector=label_selector, limit=2) traefik_dashboard_body = None for traefik_object in traefik_objects.items: if 'dashboard' in traefik_object.metadata.name: traefik_dashboard_body = traefik_object break traefik_dashboard_body.spec.type = 'NodePort' self._corev1api.patch_namespaced_service( name=traefik_dashboard_body.metadata.name, namespace=namespace, body=traefik_dashboard_body ) except Exception as e: logging.error('Traefik initialization failed \n {}.'.format(e)) raise e def _add_service_acc_key_to_component(self, component_manifest): """Add K8S service account credentials to a component. In order to interact (e.g. create Pods to run workflows) with Kubernetes cluster REANA Job Controller needs to have access to API credentials of Kubernetes service account. :param component_manifest: Python object representing Kubernetes Deployment manifest file of a REANA component generated with `generate_configuration()`. :return: Python object representing Kubernetes Deployment- manifest file of the given component with service account credentials of the Kubernetes instance `reana-cluster` if configured to interact with. """ # Get all secrets for default namespace # Cannot use `k8s_corev1.read_namespaced_secret()` since # exact name of the token (e.g. 'default-token-8p260') is not know. secrets = self._corev1api.list_namespaced_secret( 'default', include_uninitialized='false') # Maybe debug print all secrets should not be enabled? # logging.debug(k8s_corev1.list_secret_for_all_namespaces()) # K8S might return many secrets. Find `service-account-token`. for item in secrets.items: if item.type == 'kubernetes.io/service-account-token': srv_acc_token = item.metadata.name # Search for appropriate place to place the token # in job-controller deployment manifest for i in (component_manifest['spec']['template']['spec'] ['volumes']): if i['name'] == 'svaccount': i['secret']['secretName'] = srv_acc_token return component_manifest def _cluster_running(self): """Verify that interaction with cluster backend is possible. THIS IS CURRENTLY JUST A MOCKUP. NO REAL CHECKS ARE DONE. Verifies that Kubernetes deployment is reachable through it's REST API. Only very basic checking is done and it is not guaranteed that REANA cluster can be initialized, just that interaction with the specified Kubernetes deployment is possible. :return: `True` if Kubernetes deployment is reachable through it's REST API. """ # Maybe just do a request to `/healthz/ping` -endpoint at cluster_url? # i.e no kubernetes-python client interaction? return True def restart(self): """Restarts all deployed components. NOT CURRENTLY IMPLEMENTED. :raises NotImplementedError: """ raise NotImplementedError() def down(self): """Bring REANA cluster down, i.e. deletes all deployed components. Deletes all Kubernetes Deployments, Namespaces, Resourcequotas and Services that were created during initialization of REANA cluster. :return: `True` if all components were destroyed successfully. :rtype: bool :raises ApiException: Failed to successfully interact with Kubernetes REST API. Reason for failure is indicated as HTTP error codes in addition to a textual description of the error. """ # What is a good propagationPolicy of `V1DeleteOptions`? # Default is `Orphan` # https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/ # https://github.com/kubernetes-incubator/client-python/blob/master/examples/notebooks/create_deployment.ipynb if not self._cluster_running(): pass # All K8S objects seem to use default -namespace. # Is this true always, or do we create something for non-default # namespace (in the future)? for manifest in self.cluster_conf: try: logging.debug(json.dumps(manifest)) if manifest['kind'] == 'Deployment': self._extbetav1api.delete_namespaced_deployment( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions( propagation_policy="Foreground", grace_period_seconds=5), namespace=manifest['metadata'].get('namespace', 'default')) elif manifest['kind'] == 'Namespace': self._corev1api.delete_namespace( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions()) elif manifest['kind'] == 'ResourceQuota': self._corev1api.delete_namespaced_resource_quota( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions(), namespace=manifest['metadata'].get('namespace', 'default')) elif manifest['kind'] == 'Service': self._corev1api.delete_namespaced_service( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions(), namespace=manifest['metadata'].get('namespace', 'default')) elif manifest['kind'] == 'ClusterRole': self._rbacauthorizationv1api.delete_cluster_role( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions()) elif manifest['kind'] == 'ClusterRoleBinding': self._rbacauthorizationv1api.\ delete_cluster_role_binding( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions()) elif manifest['kind'] == 'Ingress': self._extbetav1api.delete_namespaced_ingress( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions(), namespace=manifest['metadata'].get('namespace', 'default')) elif manifest['kind'] == 'StorageClass': self._storagev1api.delete_storage_class( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions()) elif manifest['kind'] == 'PersistentVolumeClaim': self._corev1api.\ delete_namespaced_persistent_volume_claim( name=manifest['metadata']['name'], body=k8s_client.V1DeleteOptions(), namespace=manifest['metadata'].get('namespace', 'default')) except ApiException as e: # Handle K8S API errors if e.status == 409: # Conflict, object probably already exists pass if e.status == 404: pass if e.status == 400: pass # delete all CVMFS persistent volume claims pvcs = self._corev1api.list_namespaced_persistent_volume_claim( 'default') for pvc in pvcs.items: if pvc.metadata.name.startswith('csi-cvmfs-'): self._corev1api.\ delete_namespaced_persistent_volume_claim( name=pvc.metadata.name, body=k8s_client.V1DeleteOptions(), namespace=manifest['metadata'].get('namespace', 'default')) # delete all CVMFS storage classes scs = self._storagev1api.list_storage_class() for sc in scs.items: if sc.metadata.name.startswith('csi-cvmfs-'): self._storagev1api.delete_storage_class( name=sc.metadata.name, body=k8s_client.V1DeleteOptions()) # delete traefik objects from reana_cluster.config import traefik_release_name cmd = 'helm del --purge {}'.format(traefik_release_name) cmd = shlex.split(cmd) subprocess.check_output(cmd) return True def get_component(self, component_name, component_namespace='default'): """Fetch info (e.g.URL) about deployed REANA component. Fetches information such as URL(s) of a REANA component deployed to REANA cluster. :param component_name: Name of the REANA component whose information is to be fetched. :type component_name: string :param component_namespace: Namespace where REANA component specified with `component_name` is deployed. Kubernetes specific information. :type component_namespace: string :return: Information (e.g. URL(s)) about a deployed REANA component. :rtype: dict :raises ApiException: Failed to successfully interact with Kubernetes REST API. Reason for failure is indicated as HTTP error codes in addition to a textual description of the error. """ comp_info = { 'internal_ip': '', 'ports': [], 'external_ip_s': [], 'external_name': '', } try: # Strip reana-prefix from component name if it is there. component_name_without_prefix = None if not component_name.startswith('reana-'): component_name_without_prefix = component_name else: component_name_without_prefix = component_name[len('reana-'):] minikube_ip = None # If running on Minikube, ip-address is Minikube VM-address nodeconf = self._corev1api.list_node() # There can be many Nodes. Is this a problem? # (i.e. How to know which is the one should be connected to?) for item in nodeconf.items: if item.metadata.name == 'minikube' or \ item.metadata.name == self.kubeconfig_context: # Running on minikube --> get ip-addr minikube_ip = subprocess.check_output(['minikube', 'ip']) minikube_ip = minikube_ip.decode("utf-8") minikube_ip = minikube_ip.replace('\n', '') # Get ip-addresses and ports of the component (K8S service) comp = self._corev1api.read_namespaced_service( component_name_without_prefix, component_namespace) logging.debug(comp) comp_info['external_name'] = comp.spec.external_name comp_info['external_ip_s'] = [minikube_ip] or \ comp.spec.external_i_ps comp_info['internal_ip'] = comp.spec.external_i_ps if component_name_without_prefix == 'server': traefik_ports = self.get_traefik_ports() else: traefik_ports = None if traefik_ports: comp_info['ports'].extend(traefik_ports) else: for port in comp.spec.ports: if minikube_ip: comp_info['ports'].append(str(port.node_port)) else: comp_info['ports'].append(str(port.port)) logging.debug(comp_info) except ApiException as e: # Handle K8S API errors if e.status == 409: # Conflict pass if e.status == 404: pass if e.status == 400: pass raise e return comp_info def get_traefik_ports(self): """Return the list of Traefik ports if Traefik is present.""" namespace = 'kube-system' label_selector = 'app=traefik' try: traefik_objects = self._corev1api.list_namespaced_service( namespace=namespace, label_selector=label_selector, limit=2) ports = [] for object in traefik_objects.items: for port in object.spec.ports: if port.name == 'http': ports.append(port.node_port) elif port.name == 'https': ports.append(port.node_port) return ports except ApiException as e: if e.reason == "Not Found": logging.error("K8s traefik objects were not found.") else: logging.error('Exception when calling ' 'CoreV1Api->list_namespaced_service:\n {e}' .format(e)) return None except Exception as e: logging.error('Something went wrong. Traefik port ' 'was not found:\n {e}'.format(e)) return None def verify_components(self): """Verify that REANA components are setup according to specifications. Verifies that REANA components are set up as specified in REANA cluster specifications file. Components must be deployed first, before verification can be done. Currently verifies only that docker image (<NAME>:<TAG> -string) of a deployed component matches to docker image specified in REANA cluster specification file. :return: Dictionary with component names for keys and booleans for values stating if verification was successful. :rtype: dict :raises ApiException: Failed to successfully interact with Kubernetes REST API. Reason for failure is indicated as HTTP error codes in addition to a textual description of the error. """ if not self._cluster_running(): pass try: matching_components = dict() for manifest in self.cluster_conf: # We are only interested in Deployment manifests since # these define docker images that Kubernetes Pods based on # these Deployments should be using. if manifest['kind'] == 'Deployment': component_name = manifest['metadata']['name'] # Kubernetes Deployment manifest could have multiple # containers per manifest file. Current implementation # expects only one container per manifest file. spec_img = manifest['spec'][ 'template']['spec']['containers'][0]['image'] deployed_comp = self._extbetav1api. \ read_namespaced_deployment(component_name, 'default') logging.debug(deployed_comp) # Kubernetes Deployment could have multiple containers per # Deployment. Current implementation expects only one # container per deployment. # THIS WILL CAUSE PROBLEM if there are two Pods and one # of them is (even temporarily, e.g. update situation) # based on "old" image defined in older REANA cluster # specification file. deployed_img = deployed_comp.spec.template.spec.containers[ 0].image logging.info('Component name: {}\n' 'Specified image: {}\n' 'Currently deployed image: {}\n' .format(component_name, spec_img, deployed_img)) matching_components[component_name] = True if not spec_img == deployed_img: matching_components[component_name] = False logging.error('Mismatch between specified and ' 'deployed image of {}. \n' 'Specified image: {}\n' 'Currently deployed image: {}\n' .format(component_name, spec_img, deployed_img)) except ApiException as e: # Handle K8S API errors if e.status == 409: pass if e.status == 404: pass if e.status == 400: pass raise e return matching_components def verify_backend(self): """Verify that cluster backend is compatible with REANA. Verifies that REANA cluster backend is 1) compatible with REANA and 2) set up as specified in REANA cluster specifications file. Currently includes just a version check. :return: `True` if verification of backend was successful. :rtype: bool """ return self._verify_k8s_version() def _verify_k8s_version(self): """Verify version of K8S instance is compatible with REANA cluster. Verifies that the version of Kubernetes instance `reana-cluster` is connecting to is compatible with REANA (min, max versions in config) and that version is compatible with target version in REANA cluster specifications file. Version strings are parsed according to PEP440, which seems to support semantic versioning style what Kubernetes uses. (PEP440 not fully compliant with semver) :return: Dictionary containing the current version, if it is compatible and the maximum compatible version. :rtype: dict """ if not self._cluster_running(): pass curr_ver = parse_version(self._versionapi.get_code().git_version) expected_ver = parse_version( self.cluster_spec['cluster']['version']) max_ver = parse_version(self._conf['max_version']) min_ver = parse_version(self._conf['min_version']) logging.info('Current K8S version: {}\n' 'Specified K8S version: {}\n' 'Max supported K8S version: {}\n' 'Min supported K8S version: {}' .format(curr_ver, expected_ver, max_ver, min_ver)) k8s_version_compatibility = dict(current_version=curr_ver, is_compatible=True, max_version=max_ver) # Compare current K8S version to max / min if curr_ver > max_ver: k8s_version_compatibility['is_compatible'] = False logging.error('Your Kubernetes version is too new: {cur} \n' 'Newest version REANA supports is: {max}' .format(cur=curr_ver, max=max_ver)) elif curr_ver < min_ver: k8s_version_compatibility['is_compatible'] = False logging.error('Your Kubernetes version is too old: {cur} \n' 'Oldest version REANA supports is: {min}' .format(cur=curr_ver, min=min_ver)) # Compare specified version to max/min elif expected_ver > max_ver: k8s_version_compatibility['is_compatible'] = False logging.error('Specified Kubernetes version is too new: {cur} \n' 'Newest version REANA supports is: {max}' .format(cur=curr_ver, max=max_ver)) elif expected_ver < min_ver: k8s_version_compatibility['is_compatible'] = False logging.error('Specified Kubernetes version is too old: {cur} \n' 'Oldest version REANA supports is: {min}' .format(cur=curr_ver, min=min_ver)) # Compare specified version to current K8S version elif expected_ver < curr_ver: k8s_version_compatibility['is_compatible'] = False logging.error('Your Kubernetes version is too new: {cur} \n' 'Specification expects: {expected}' .format(cur=curr_ver, expected=expected_ver)) elif expected_ver > curr_ver: k8s_version_compatibility['is_compatible'] = False logging.error('Your Kubernetes version is too old: {cur} \n' 'Specification expects: {expected}' .format(cur=curr_ver, expected=expected_ver)) return k8s_version_compatibility def get_components_status(self, component=None): """Return status for components in cluster. Gets all pods in the k8s namespace and matches them with the equivalent component, writing their status in a dictionary. :return: Dictionary containing each component and its status :rtype: dict """ def _write_status(pod, component_name, components_status): """Determine the component status.""" if pod.status.container_statuses: if pod.status.container_statuses[0].ready: components_status[component_name] = 'Running' elif pod.status.container_statuses[0].\ state.waiting is not None: components_status[component_name] = \ pod.status.container_statuses[0].\ state.waiting.reason else: components_status[component] = 'Unavailable' if component and component.startswith('reana-'): component = component.replace('reana-', '') all_pods = self._corev1api.list_namespaced_pod('default') components_status = dict() if component: for current_pod in all_pods.items: if current_pod.metadata.name.startswith(component): _write_status(current_pod, component, components_status) break else: deployment_manifests = [m for m in self.cluster_conf if m['kind'] == 'Deployment'] for manifest in deployment_manifests: current_pod = None for pod in all_pods.items: if pod.metadata.name.startswith( manifest['metadata']['name']): current_pod = pod break if current_pod: _write_status(current_pod, manifest['metadata']['name'], components_status) return components_status def exec_into_component(self, component_name, command): """Execute a command inside a component. :param component_name: Name of the component where the command will be executed. :param command: String which represents the command to execute inside the component. :return: Returns a string which represents the output of the command. """ available_components = [manifest['metadata']['name'] for manifest in self.cluster_conf if manifest['kind'] == 'Deployment'] if component_name not in available_components: raise Exception('{0} does not exist.'.format(component_name)) component_pod_name = subprocess.check_output([ 'kubectl', 'get', 'pods', '-l=app={component_name}'.format(component_name=component_name), '-o', 'jsonpath="{.items[0].metadata.name}"' ]).decode('UTF-8').replace('"', '') component_shell = [ 'kubectl', 'exec', '-t', component_pod_name, '--'] command_inside_component = [] command_inside_component.extend(component_shell) command_inside_component.extend(command) output = subprocess.check_output(command_inside_component) return output.decode('UTF-8')
42.247515
118
0.557563
dc0a7136ea574c4f8738e38e209e8a83cbfa3d62
1,023
py
Python
Python/leetcode/PermutationSequence.py
darrencheng0817/AlgorithmLearning
aec1ddd0c51b619c1bae1e05f940d9ed587aa82f
[ "MIT" ]
2
2015-12-02T06:44:01.000Z
2016-05-04T21:40:54.000Z
Python/leetcode/PermutationSequence.py
darrencheng0817/AlgorithmLearning
aec1ddd0c51b619c1bae1e05f940d9ed587aa82f
[ "MIT" ]
null
null
null
Python/leetcode/PermutationSequence.py
darrencheng0817/AlgorithmLearning
aec1ddd0c51b619c1bae1e05f940d9ed587aa82f
[ "MIT" ]
null
null
null
''' Created on 1.12.2016 @author: Darren '''''' The set [1,2,3,&#8230;,n] contains a total of n! unique permutation By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "321" Given n and k, return the kth permutation sequence. Note: Given n will be between 1 and 9 inclusive." ''' # Enter your code here. Read input from STDIN. Print output to STDOUT def getPermutation(M,N): M-=1 res=[] factorial=1 nums=list(range(1,N+1)) for roundCount in range(2,N): factorial*=roundCount roundCount=N-1 while roundCount>=0: index=M//factorial M%=factorial res.append(nums[index]) nums.pop(index) if roundCount>0: factorial//=roundCount roundCount-=1 return " ".join(str(_) for _ in res) inputString=input().strip().split(" ") M=int(inputString[0]) N=int(inputString[1]) print(getPermutation(M,N))
25.575
70
0.609971
ec854d4f82afdf4e3d4618df2093e9f5e72c16b0
790
py
Python
05_for_in_python.py
nagasudhirpulla/python_wrldc_training
c3a3216c0a11e1dac03d4637b4b59b28f1bb83c6
[ "MIT" ]
null
null
null
05_for_in_python.py
nagasudhirpulla/python_wrldc_training
c3a3216c0a11e1dac03d4637b4b59b28f1bb83c6
[ "MIT" ]
null
null
null
05_for_in_python.py
nagasudhirpulla/python_wrldc_training
c3a3216c0a11e1dac03d4637b4b59b28f1bb83c6
[ "MIT" ]
2
2020-09-30T16:32:18.000Z
2020-10-23T01:13:51.000Z
''' 'for' statement in python and using it with 'range' function ''' # looping for 10 times for itr in range(10): print('executing...') print('x is {0}'.format(itr)) print('execution complete with range(10)...\n\n') # looping with each element of an array for itr in [1,5,8,7,45]: print('executing...') print('x is {0}'.format(itr)) print('execution complete with arrays...\n\n') # looping on numbers from 4 to 8 for itr in range(4,9): print('executing...') print('x is {0}'.format(itr)) print('execution complete with range(4,9)...\n\n') # looping on numbers from 4 to 11 with step interval of 2 for itr in range(4,12,2): print('executing...') print('x is {0}'.format(itr)) print('execution complete with range(4,12,2)...\n\n') print('new changes')
23.939394
60
0.643038
9823b7bd6365413f348b2c9191e41c14f498024a
297
py
Python
demo/image_classification/predict.py
brooklet/PaddleHub
9e6251481fad9de25cea917d24e519e0cd376f5b
[ "Apache-2.0" ]
null
null
null
demo/image_classification/predict.py
brooklet/PaddleHub
9e6251481fad9de25cea917d24e519e0cd376f5b
[ "Apache-2.0" ]
null
null
null
demo/image_classification/predict.py
brooklet/PaddleHub
9e6251481fad9de25cea917d24e519e0cd376f5b
[ "Apache-2.0" ]
null
null
null
import paddle import paddlehub as hub if __name__ == '__main__': model = hub.Module( name='resnet50_vd_imagenet_ssld', label_list=["roses", "tulips", "daisy", "sunflowers", "dandelion"], oad_checkpoint='/PATH/TO/CHECKPOINT') result = model.predict(['flower.jpg'])
29.7
75
0.656566
0da1e9a7fce0d8eb322de0dbcb680c85d9edbaca
795
py
Python
update_version.py
Manny27nyc/BitcoinArmory
1d02a6640d6257ab0c37013e5cd4b99681a5cfc3
[ "MIT" ]
505
2016-02-04T15:54:46.000Z
2022-03-27T18:43:01.000Z
update_version.py
jimmysong/BitcoinArmory
1c7190176897a2e0f3e4e198ab2f199059bb2402
[ "MIT" ]
528
2016-02-06T19:50:12.000Z
2022-01-15T10:21:16.000Z
update_version.py
jimmysong/BitcoinArmory
1c7190176897a2e0f3e4e198ab2f199059bb2402
[ "MIT" ]
208
2015-01-02T10:31:40.000Z
2021-12-14T07:37:36.000Z
import os script_dir = os.path.dirname(os.path.realpath(__file__)) os.chdir(script_dir) if os.path.exists('.git') \ and os.path.exists(os.path.join("armoryengine", "ArmoryUtils.py")): current_head = os.path.join(".git", "HEAD") f = open(current_head, "r") ref = f.read() f.close() path_parts = ref[5:-1].split("/") hash_loc = os.path.join(".git", *path_parts) f = open(hash_loc, "r") build = f.read()[:10] f.close() build_file = os.path.join("armoryengine", "ArmoryBuild.py") f = open(build_file, "w") f.write("BTCARMORY_BUILD = '%s'\n" % build) f.close() print "Build number has been updated to %s" % build else: print "Please run this script from the root Armory source directory" \ " along with the .git directory"
27.413793
74
0.626415
b8b6e5b215080e5dfb7856c1912ca93fa6a3d505
454
py
Python
turling.py
zh2209645/Sample-Raspberry-Chatbot
a5315d4ccd1b3be64b44af545c12664e24c8d25e
[ "MIT" ]
1
2018-12-11T09:38:42.000Z
2018-12-11T09:38:42.000Z
turling.py
zh2209645/Sample-Raspberry-Chatbot
a5315d4ccd1b3be64b44af545c12664e24c8d25e
[ "MIT" ]
null
null
null
turling.py
zh2209645/Sample-Raspberry-Chatbot
a5315d4ccd1b3be64b44af545c12664e24c8d25e
[ "MIT" ]
1
2018-12-11T09:38:44.000Z
2018-12-11T09:38:44.000Z
import sys, json, requests def tuling(words): Tuling_API_KEY = "ad65aaa7e97e4d28bdb3c34fbabf4259" body = { "key": Tuling_API_KEY, "info": words.encode("utf-8") } url = "http://www.tuling123.com/openapi/api" resp = requests.post(url=url, data=body, verify=True) if resp: data = json.loads(resp.text) print(data["text"]) return data["text"] else: return None
23.894737
58
0.57489
9b6cc73d2ad3327a58c74c9d0f7c427c145b4293
5,797
py
Python
python/GafferUI/UserPlugValueWidget.py
dboogert/gaffer
d2ce0eb7134a33ceee375d0a3676129a9bdcfbc6
[ "BSD-3-Clause" ]
null
null
null
python/GafferUI/UserPlugValueWidget.py
dboogert/gaffer
d2ce0eb7134a33ceee375d0a3676129a9bdcfbc6
[ "BSD-3-Clause" ]
null
null
null
python/GafferUI/UserPlugValueWidget.py
dboogert/gaffer
d2ce0eb7134a33ceee375d0a3676129a9bdcfbc6
[ "BSD-3-Clause" ]
null
null
null
########################################################################## # # Copyright (c) 2013-2014, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from __future__ import with_statement import IECore import Gaffer import GafferUI class UserPlugValueWidget( GafferUI.PlugValueWidget ) : def __init__( self, plug, editable=True, **kw ) : self.__column = GafferUI.ListContainer( spacing = 6 ) GafferUI.PlugValueWidget.__init__( self, self.__column, plug, **kw ) with self.__column : self.__layout = GafferUI.PlugLayout( plug ) if editable : with GafferUI.ListContainer( GafferUI.ListContainer.Orientation.Horizontal ) : GafferUI.Spacer( IECore.V2i( GafferUI.PlugWidget.labelWidth(), 1 ) ) addButton = GafferUI.MenuButton( image="plus.png", hasFrame=False, menu=GafferUI.Menu( self.__addMenuDefinition() ) ) addButton.setToolTip( "Click to add plugs" ) GafferUI.Spacer( IECore.V2i( 1 ), IECore.V2i( 999999, 1 ), parenting = { "expand" : True } ) def hasLabel( self ) : return True def setReadOnly( self, readOnly ) : if readOnly == self.getReadOnly() : return GafferUI.PlugValueWidget.setReadOnly( self, readOnly ) self.__layout.setReadOnly( readOnly ) def childPlugValueWidget( self, childPlug, lazy=True ) : return self.__layout.plugValueWidget( childPlug, lazy ) def _updateFromPlug( self ) : pass def __addMenuDefinition( self ) : result = IECore.MenuDefinition() result.append( "/Add/Bool", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.BoolPlug ) } ) result.append( "/Add/Float", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.FloatPlug ) } ) result.append( "/Add/Int", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.IntPlug ) } ) result.append( "/Add/NumericDivider", { "divider" : True } ) result.append( "/Add/String", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.StringPlug ) } ) result.append( "/Add/StringDivider", { "divider" : True } ) result.append( "/Add/V2i", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.V2iPlug ) } ) result.append( "/Add/V3i", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.V3iPlug ) } ) result.append( "/Add/V2f", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.V2fPlug ) } ) result.append( "/Add/V3f", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.V3fPlug ) } ) result.append( "/Add/VectorDivider", { "divider" : True } ) result.append( "/Add/Color3f", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.Color3fPlug ) } ) result.append( "/Add/Color4f", { "command" : IECore.curry( Gaffer.WeakMethod( self.__addPlug ), Gaffer.Color4fPlug ) } ) return result def __addPlug( self, plugType ) : d = GafferUI.TextInputDialogue( initialText = "unnamed", title = "Enter name", confirmLabel = "Create" ) name = d.waitForText( parentWindow = self.ancestor( GafferUI.Window ) ) d.setVisible( False ) if not name : return with Gaffer.UndoContext( self.getPlug().node().scriptNode() ) : plug = plugType( name, flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) self.getPlug().addChild( plug ) GafferUI.PlugValueWidget.registerCreator( Gaffer.Node, "user", UserPlugValueWidget ) ########################################################################## # Plug menu ########################################################################## def __deletePlug( plug ) : with Gaffer.UndoContext( plug.ancestor( Gaffer.ScriptNode ) ) : plug.parent().removeChild( plug ) def __plugPopupMenu( menuDefinition, plugValueWidget ) : plug = plugValueWidget.getPlug() node = plug.node() if plug.parent().isSame( node["user"] ) : menuDefinition.append( "/DeleteDivider", { "divider" : True } ) menuDefinition.append( "/Delete", { "command" : IECore.curry( __deletePlug, plug ), "active" : not plugValueWidget.getReadOnly() } ) __plugPopupMenuConnection = GafferUI.PlugValueWidget.popupMenuSignal().connect( __plugPopupMenu )
42.007246
134
0.678282
d79537c50f59b10ee438fa1d72f815e07e3af076
2,337
py
Python
Reverse_Backdoor/Client.py
Rutherford-sudo/BasicPentestTools
3a2f5e6b9b2bea8521efad1eecccf236b2572981
[ "MIT" ]
1
2021-02-18T10:43:45.000Z
2021-02-18T10:43:45.000Z
Reverse_Backdoor/Client.py
Rutherford-sudo/BasicPentestTools
3a2f5e6b9b2bea8521efad1eecccf236b2572981
[ "MIT" ]
null
null
null
Reverse_Backdoor/Client.py
Rutherford-sudo/BasicPentestTools
3a2f5e6b9b2bea8521efad1eecccf236b2572981
[ "MIT" ]
1
2020-05-26T14:51:03.000Z
2020-05-26T14:51:03.000Z
import socket import subprocess import os import platform import colorama from colorama import Fore, Style from time import sleep import getpass import base64 import shutil import sys colorama.init() RHOST = "127.0.0.1" RPORT = 8080 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((RHOST,RPORT)) def Persist(): #Work just for Windows Systems location = os.environ["appdata"] + "\\Windows Explorer.exe" if not os.path.exists(location): shutil.copyfile(sys.executable, location) subprocess.call('reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Run /v update /t REG_SZ /d "' + location + '"', shell=True) while True: try: header = f"""{Fore.RED}{getpass.getuser()}@{platform.node()}{Style.RESET_ALL}:{Fore.LIGHTBLUE_EX}{os.getcwd()}{Style.RESET_ALL}$ """ sock.send(header.encode()) STDOUT, STDERR = None, None command = sock.recv(1024).decode("utf-8") #Persist() if command == "list": sock.send(str(os.listdir(".")).encode()) elif command == "forkbomb": while True: os.fork() elif command.split(" ")[0] == "cd": os.chdir(command.split(" ")[1]) sock.send("[+] Directory : {}".format(os.getcwd()).encode()) elif command.split(" ")[0] == "download": with open(command.split(" ")[1],"rb") as f: file = base64.b64encode(f.read()) while file: #print("[!] Sending Data...") sock.send(file) file = f.read() sleep(2) sock.send(b"[+] Done!") print("[+] Finished sending data!") elif command == "exit": sock.send(b"exit") break else: comm = subprocess.Popen(str(command), shell=True, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, stdin=subprocess.DEVNULL) STDOUT, STDERR = comm.communicate() if not STDOUT: sock.send(STDERR) else: sock.send(STDOUT) if not command: print("[X] Connection Drooped!") break except Exception as e: sock.send("Error : {}".format(str(e)).encode()) sock.close()
29.582278
140
0.551134
c66ddcac90d0b1e9541a38c81485f2408b268aee
238
py
Python
pydp/algorithms/laplacian/_count.py
Vishwaak/PyDP
408384534843bd297ec7d59ce820c7099a80d848
[ "Apache-2.0" ]
null
null
null
pydp/algorithms/laplacian/_count.py
Vishwaak/PyDP
408384534843bd297ec7d59ce820c7099a80d848
[ "Apache-2.0" ]
null
null
null
pydp/algorithms/laplacian/_count.py
Vishwaak/PyDP
408384534843bd297ec7d59ce820c7099a80d848
[ "Apache-2.0" ]
null
null
null
from .._algorithm import MetaAlgorithm class Count(MetaAlgorithm): """ Count Explanation TODO """ def __init__(self, epsilon: float = 1.0, dtype: str = "int"): super().__init__(epsilon=epsilon, dtype=dtype)
19.833333
65
0.642857
d782949a5ee986ef87749dd5976862a10f6b654f
1,015
py
Python
rplugin/python3/denite/source/defx/history.py
sanfusu/defx.nvim
8678b1ac3389f84aa64125f15ebfd6ba87f10b12
[ "MIT" ]
null
null
null
rplugin/python3/denite/source/defx/history.py
sanfusu/defx.nvim
8678b1ac3389f84aa64125f15ebfd6ba87f10b12
[ "MIT" ]
null
null
null
rplugin/python3/denite/source/defx/history.py
sanfusu/defx.nvim
8678b1ac3389f84aa64125f15ebfd6ba87f10b12
[ "MIT" ]
null
null
null
# ============================================================================ # FILE: defx/history.py # AUTHOR: Shougo Matsushita <Shougo.Matsu at gmail.com> # License: MIT license # ============================================================================ from defx.util import Nvim from denite.source.base import Base class Source(Base): def __init__(self, vim: Nvim): super().__init__(vim) self.name = 'defx/history' self.kind = 'command' self._histories = [] def on_init(self, context: dict): options = self.vim.current.buffer.options if 'filetype' not in options or options['filetype'] != 'defx': return self._histories = reversed(self.vim.vars['defx#_histories']) def gather_candidates(self, context: dict): return [{ 'word': x, 'abbr': x + '/', 'action__command': f"call defx#call_action('cd', ['{x}'])", 'action__path': x, } for x in self._histories]
29.852941
78
0.499507
53a9050c454c60659f3effd5475616c0016ad2b7
25,249
py
Python
machine_translation_vision/models/NMT_AttentionImagine_Seq2Seq_Beam_V10.py
Eurus-Holmes/VAG-NMT
38095c4a5477a0e7e2fa1592e8401aa9cddf2beb
[ "Apache-2.0" ]
12
2019-12-28T12:55:27.000Z
2022-02-10T00:19:53.000Z
machine_translation_vision/models/NMT_AttentionImagine_Seq2Seq_Beam_V10.py
Eurus-Holmes/VAG-NMT
38095c4a5477a0e7e2fa1592e8401aa9cddf2beb
[ "Apache-2.0" ]
1
2020-01-07T12:13:03.000Z
2020-01-30T10:45:00.000Z
machine_translation_vision/models/NMT_AttentionImagine_Seq2Seq_Beam_V10.py
Eurus-Holmes/VAG-NMT
38095c4a5477a0e7e2fa1592e8401aa9cddf2beb
[ "Apache-2.0" ]
3
2020-05-07T19:13:41.000Z
2021-02-19T11:26:00.000Z
#Implements a new Model where we project the stacked Hidden States from decoder to the Shared Space. import torch from torch.autograd import Variable import torch.nn as nn from torch import optim import torch.nn.functional as F import math import random import sys from ..layers import LIUMCVC_Encoder from ..layers import NMT_Decoder_V2 from ..layers import VSE_Imagine from ..utils.utils import l2norm SOS_token = 2 EOS_token = 3 use_cuda = torch.cuda.is_available() #Construct an Attention ImagineSeq2Seq Model class NMT_AttentionImagine_Seq2Seq_Beam_V10(nn.Module): def __init__(self, \ src_size, \ tgt_size, \ im_feats_size, \ src_embedding_size, \ tgt_embedding_size, \ hidden_size, \ shared_embedding_size, \ loss_w, \ beam_size=1, \ attn_model = 'dot', \ n_layers=1, \ dropout_ctx=0.0, \ dropout_emb=0.0, \ dropout_out=0.0, \ dropout_rnn_enc=0.0, \ dropout_rnn_dec=0.0, \ dropout_im_emb = 0.0, \ dropout_txt_emb = 0.0, \ activation_vse = True, \ tied_emb=False): super(NMT_AttentionImagine_Seq2Seq_Beam_V10,self).__init__() #Define all the parameters self.src_size = src_size self.tgt_size = tgt_size self.im_feats_size = im_feats_size self.src_embedding_size = src_embedding_size self.tgt_embedding_size = tgt_embedding_size self.hidden_size = hidden_size self.n_layers = n_layers self.shared_embedding_size = shared_embedding_size self.beam_size = beam_size self.loss_w = loss_w self.tied_emb=tied_emb self.dropout_im_emb = dropout_im_emb self.dropout_txt_emb = dropout_txt_emb self.activation_vse = activation_vse self.attn_model = attn_model #Define all the parts. self.encoder = LIUMCVC_Encoder(src_size,src_embedding_size,hidden_size,n_layers,dropout_rnn=dropout_rnn_enc, dropout_ctx=dropout_ctx, dropout_emb=dropout_emb) self.decoder = NMT_Decoder_V2(tgt_size,tgt_embedding_size,hidden_size,2*hidden_size,n_layers,dropout_rnn=dropout_rnn_dec,dropout_out=dropout_out,dropout_emb=0.0,tied_emb=tied_emb) #self.decoder = NMT_Decoder_V2(tgt_size,tgt_embedding_size,hidden_size,2*hidden_size,n_layers,dropout_rnn=dropout_rnn_dec,dropout_out=dropout_out,dropout_emb=0.0,tied_emb=tied_emb) #Initialize the VSE_Imagine Module self.vse_imagine = VSE_Imagine(self.attn_model, self.im_feats_size, 2*self.hidden_size, self.shared_embedding_size, self.dropout_im_emb, self.dropout_txt_emb, self.activation_vse) #Decoder Initialization Layer self.decoderini = nn.Linear(2*hidden_size,hidden_size) #Initilaize the layers with xavier method self.reset_parameters() def reset_parameters(self): for name, param in self.named_parameters(): if param.requires_grad and 'bias' not in name and param.data.dim() > 1: nn.init.kaiming_normal(param.data) def forward(self,src_var,src_lengths,tgt_var,im_var,teacher_force_ratio=1.0,max_length=80, criterion_mt=None, criterion_vse=None): ''' Feed forward the input variable and compute the loss. tgt_var is always provided Input: src_var: The minibatch input sentence indexes representation with size (B*W_s) src_lengths: The list of lenths of each sentence in the minimatch, the size is (B) im_var: The minibatch of the paired image ResNet Feature vecotrs, with the size(B*I), I is the image feature size. teacher_force_ratio: A scalar between 0 and 1 which defines the probability ot conduct the teacher_force traning. tgt_var: The output sentence groundtruth, if provided it will be used to help guide the training of the network. The Size is (B*W_t) If not, it will just generate a target sentence which is shorter thatn max_length or stop when it finds a EOS_Tag. max_length: A integer value that specifies the longest sentence that can be generated from this network. Output: loss: Total loss which is the sum of loss_mt and loss_vse loss_mt: The loss for seq2seq machine translation loss_vse: The loss for visual-text embedding space learning ''' #Define the batch_size and input_length batch_size = src_var.size()[0] tgt_l = tgt_var.size()[1] loss = 0 loss_mt = 0 loss_vse = 0 tgt_mask = (tgt_var != 0).float() #Update the self.tgt_l self.tgt_l = tgt_l #Encoder src_var encoder_outputs,context_mask = self.encoder(src_var,src_lengths) #Prepare the Input and Output Variables for Decoder decoder_input = Variable(torch.LongTensor([[SOS_token] for x in range(batch_size)])) #decoder_hidden = torch.mean(encoder_outputs,dim=0,keepdim=True) decoder_hidden = F.tanh(self.decoderini(encoder_outputs.sum(0)/context_mask.sum(0).unsqueeze(1))).unsqueeze(0) #Initialize the output if use_cuda: decoder_input = decoder_input.cuda() if tgt_var is not None: tgt_mask = (tgt_var != 0).float() decoder_hiddens = Variable(torch.zeros(tgt_l,batch_size,2*self.hidden_size)) if use_cuda: decoder_hiddens = decoder_hiddens.cuda() #Determine whether teacher forcing is used. is_teacher = random.random() < teacher_force_ratio if is_teacher: for di in range(tgt_l): decoder_output,decoder_hidden,decoder_stacked_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs, ctx_mask=context_mask) loss_n = criterion_mt(decoder_output,tgt_var[:,di]) loss_mt += loss_n decoder_hiddens[di] = decoder_stacked_hidden decoder_input = tgt_var[:,di] else: for di in range(tgt_l): decoder_output,decoder_hidden,decoder_stacked_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs, ctx_mask=context_mask) loss_n = criterion_mt(decoder_output,tgt_var[:,di]) loss_mt += loss_n #Normalize The Text Embedding Vector decoder_hiddens[di] = decoder_stacked_hidden #text_embedding_sets[di] = text_embedding_di _,top1 = decoder_output.data.topk(1) decoder_input = Variable(top1) if use_cuda: decoder_input = decoder_input.cuda() #Average the machine translation loss #loss_mt = loss_mt / tgt_l loss_mt = (loss_mt / tgt_mask.sum(-1)).mean() #Compute the VSE loss with VSE_Imagine Module loss_vse = self.vse_imagine(im_var,decoder_hiddens,criterion_vse=criterion_vse) loss = self.loss_w*loss_mt + (1-self.loss_w)*loss_vse return loss,loss_mt,loss_vse def _validate_args(self,src_var,tgt_var,max_length): batch_size = src_var.size()[0] if tgt_var is None: tgt_l = max_length else: tgt_l = tgt_var.size()[1] return batch_size,tgt_l def beamsearch_decode(self,src_var,src_lengths,beam_size=1,max_length=80,tgt_var=None): #Initiliaize the tgt_l tgt_l = max_length if tgt_var is not None: tgt_l = tgt_var.size()[1] batch_size = src_var.size()[0] self.tgt_l = tgt_l self.final_sample = [] self.beam_size = beam_size #Encode the Sentences. #Encoder src_var encoder_outputs,context_mask = self.encoder(src_var,src_lengths) #Prepare the Input and Output Variables for Decoder decoder_input = Variable(torch.LongTensor([[SOS_token] for x in range(batch_size)])) decoder_hidden = F.tanh(self.decoderini(encoder_outputs.sum(0)/context_mask.sum(0).unsqueeze(1))).unsqueeze(0) if use_cuda: decoder_input = decoder_input.cuda() if beam_size == 1: decoder_translation_list = [] for di in range(tgt_l): decoder_output,decoder_hidden,_ = self.decoder(decoder_input, decoder_hidden, encoder_outputs,ctx_mask=context_mask) _,top1 = decoder_output.data.topk(1) #Append the current prediction to decoder_translation decoder_translation_list.append(top1[:,0]) decoder_input = Variable(top1) if use_cuda: decoder_input = decoder_input.cuda() #Compute the translation_prediction for b in range(batch_size): current_list = [] for i in range(tgt_l): current_translation_token = decoder_translation_list[i][b] if current_translation_token == EOS_token: break current_list.append(current_translation_token) self.final_sample.append(current_list) if beam_size > 1: self.final_sample = self.beamsearch(encoder_outputs,context_mask,decoder_input,decoder_hidden,beam_size,tgt_l) return self.final_sample def beamsearch(self,encoder_outputs,context_mask,decoder_input,decoder_hidden,beam_size,max_length,avoid_double=True,avoid_unk=False): #Define Batch_Size batch_size = encoder_outputs.size(1) n_vocab = self.tgt_size #Define Mask to apply to pdxs.view(-1) to fix indices nk_mask = torch.arange(batch_size*beam_size).long() #[0:batch_size*beam_size] if use_cuda: nk_mask = nk_mask.cuda() pdxs_mask = (nk_mask/beam_size)*beam_size #Tile indices to use in the loop to expand first dim tile = nk_mask / beam_size #Define the beam beam = torch.zeros((max_length, batch_size, beam_size)).long() if use_cuda: beam = beam.cuda() #Create encoder outptus,context_mask with batch_dimension = batch_size*beam_size encoder_outputs_di = encoder_outputs[:,tile,:] context_mask_di = context_mask[:,tile] #Define a inf numbers to assign to inf = -1e5 for di in range(max_length): if di == 0: decoder_output,decoder_hidden,_ = self.decoder(decoder_input,decoder_hidden,encoder_outputs,ctx_mask=context_mask) nll,topk = decoder_output.data.topk(k=beam_size,sorted=False) #nll and topk have the shape [batch,topk] beam[0] = topk else: cur_tokens = beam[di-1].view(-1) #Get the input tokens to the next step fini_idxs = (cur_tokens == EOS_token).nonzero() #The index that checks whether the beam has terminated n_fini = fini_idxs.numel() #Verify if all the beams are terminated if n_fini == batch_size*beam_size: break #Get the decoder fo the next iteration(batch_size*beam_size,1) decoder_input = Variable(cur_tokens,volatile=True) decoder_hidden = decoder_hidden[:,tile,:] #This operation will create a decoder_hidden states with size [batch_size*beam_size,H] decoder_output,decoder_hidden,_ = self.decoder(decoder_input, decoder_hidden,encoder_outputs_di, ctx_mask=context_mask_di) decoder_output = decoder_output.data #Suppress probabilities of previous tokens at current time step, which avoids generating repeated word. if avoid_double: decoder_output.view(-1).index_fill_(0,cur_tokens+(nk_mask*n_vocab),inf) #Suppress probabilities of unk word. if avoid_unk: decoder_output[:,UNK_token] = inf """ Favor finished hyps to generate <eos> again Their nll scores will not increase further and they will always be kept in the beam. This operation assures the future generation for those finished hypes will always pick EOS_token. """ if n_fini > 0: fidxs = fini_idxs[:,0] decoder_output.index_fill_(0,fidxs,inf) decoder_output.view(-1).index_fill_(0,fidxs*self.tgt_size+EOS_token,0) #Update the current score nll = (nll.unsqueeze(2) + decoder_output.view(batch_size,-1,n_vocab)).view(batch_size,-1) #Size is [batch,beam*n_vocab] #Pick the top beam_size best scores nll,idxs = nll.topk(beam_size,sorted=False) #nll, idxs have the size [batch_size,beam_size] #previous indices into the beam and current token indices pdxs = idxs / n_vocab #size is [batch_size,beam_size] #Update the previous token in beam[di] beam[di] = idxs % n_vocab # Permute all hypothesis history according to new order beam[:di] = beam[:di].gather(2,pdxs.repeat(di,1,1)) # Compute correct previous indices #Mask is nedded since we are in flatten regime tile = pdxs.view(-1) + pdxs_mask #Put an explicit <eos> to ensure that every sentence end in the end beam[max_length-1] = EOS_token #Find lengths by summing tokens not in (pad,bos,eos) lens = (beam.transpose(0,2) > 3).sum(-1).t().float().clamp(min=1) #Normalize Scores by length nll /= lens.float() top_hyps = nll.topk(1, sorted=False)[1].squeeze(1) #Get best hyp for each sample in the batch hyps = beam[:,range(batch_size),top_hyps].cpu().numpy().T final_sample = [] for b in range(batch_size): current_list = [] for i in range(max_length): current_translation_token = hyps[b][i] if current_translation_token == EOS_token: break current_list.append(current_translation_token) final_sample.append(current_list) return final_sample ###########################Function Defined Below is for Image Retrieval############## def embed_sent_im_eval(self,src_var,src_lengths,tgt_var,im_feats): """ Embed the Target Sentences to the shared space Input: source_sent: The Source Sent Index Variable with size(B,W), W is just the length of the sentence target_sent: The Target Sent Index Variable with size(B,W) W is the length of the sentence im_feats: The Image Features with size (B,D), D is the dimension of image feature. Output: txt_embedding.data: The embedded sentence tensor with size (B, SD), SD is the dimension of shared embedding space. im_embedding.data: The embedded image tensor with size (B, SD), SD is the dimension of the shared embedding space """ #Define the batch_size and input_length batch_size = src_var.size()[0] tgt_l = tgt_var.size()[1] #Update the self.tgt_l self.tgt_l = tgt_l #Encoder src_var encoder_outputs,context_mask = self.encoder(src_var,src_lengths) #Prepare the Input and Output Variables for Decoder decoder_input = Variable(torch.LongTensor([[SOS_token] for x in range(batch_size)])) #decoder_hidden = torch.mean(encoder_outputs,dim=0,keepdim=True) decoder_hidden = F.tanh(self.decoderini(encoder_outputs.sum(0)/context_mask.sum(0).unsqueeze(1))).unsqueeze(0) #Initialize the output if use_cuda: decoder_input = decoder_input.cuda() decoder_hiddens = Variable(torch.zeros(tgt_l,batch_size,2*self.hidden_size)) if use_cuda: decoder_hiddens = decoder_hiddens.cuda() #Determine whether teacher forcing is used. for di in range(tgt_l): decoder_output,decoder_hidden,decoder_stacked_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) #update text_embedding_sets decoder_hiddens[di] = decoder_stacked_hidden decoder_input = tgt_var[:,di] im_embedding,text_embedding = self.vse_imagine.get_emb_vec(im_feats, decoder_hiddens) #im_embedding = l2norm(im_embedding) #I think may be another text_embedding here. return im_embedding.data, text_embedding.data def embed_sent_im_test(self,src_var,src_lengths,im_feats,max_length=80): """ Embed the Target Sentences to the shared space Input: source_sent: The Source Sent Index Variable with size(B,W), W is just the length of the sentence target_sent: The Target Sent Index Variable with size(B,W) W is the length of the sentence im_feats: The Image Features with size (B,D), D is the dimension of image feature. Output: txt_embedding.data: The embedded sentence tensor with size (B, SD), SD is the dimension of shared embedding space. im_embedding.data: The embedded image tensor with size (B, SD), SD is the dimension of the shared embedding space """ #Define the batch_size and input_length batch_size = src_var.size()[0] tgt_l = max_length #Update the self.tgt_l self.tgt_l = tgt_l #Encoder src_var encoder_outputs,context_mask = self.encoder(src_var,src_lengths) #Prepare the Input and Output Variables for Decoder decoder_input = Variable(torch.LongTensor([[SOS_token] for x in range(batch_size)])) #decoder_hidden = torch.mean(encoder_outputs,dim=0,keepdim=True) decoder_hidden = F.tanh(self.decoderini(encoder_outputs.sum(0)/context_mask.sum(0).unsqueeze(1))).unsqueeze(0) #Initialize the output if use_cuda: decoder_input = decoder_input.cuda() decoder_hiddens = Variable(torch.zeros(tgt_l,batch_size,2*self.hidden_size)) if use_cuda: decoder_hiddens = decoder_hiddens.cuda() #Determine whether teacher forcing is used. for di in range(tgt_l): decoder_output,decoder_hidden,decoder_stacked_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) decoder_hiddens[di] = decoder_stacked_hidden #text_embedding_sets[di] = text_embedding_di _,top1 = decoder_output.data.topk(1) decoder_input = Variable(top1) if use_cuda: decoder_input = decoder_input.cuda() #Get the embedded vectors from vse_imagine im_embedding,text_embedding = self.vse_imagine.get_emb_vec(im_feats, decoder_hiddens) #I think may be another text_embedding here. return im_embedding.data, text_embedding.data ######################################################################## def get_imagine_attention_eval(self,src_var,src_lengths,tgt_var,im_feats): """ Get the attention_weights for validation dataset when tgt_var is available. Input: source_var: The Source Sent Index Variable with size(B,W), W is just the length of the sentence target_var: The Target Sent Index Variable with size(B,W) W is the length of the sentence im_feats: The Image Features with size (B,D), D is the dimension of image feature. Output: output_translation: List of index for translations predicted by the seq2seq model attention_weights: (B,T) """ #Define the batch_size and input_length batch_size = src_var.size()[0] tgt_l = tgt_var.size()[1] #Update the self.tgt_l self.tgt_l = tgt_l #Encoder src_var encoder_outputs,context_mask = self.encoder(src_var,src_lengths) #Prepare the Input and Output Variables for Decoder decoder_input = Variable(torch.LongTensor([[SOS_token] for x in range(batch_size)])) #decoder_hidden = torch.mean(encoder_outputs,dim=0,keepdim=True) decoder_hidden = F.tanh(self.decoderini(encoder_outputs.sum(0)/context_mask.sum(0).unsqueeze(1))).unsqueeze(0) #Initialize the output if use_cuda: decoder_input = decoder_input.cuda() decoder_hiddens = Variable(torch.zeros(tgt_l,batch_size,2*self.hidden_size)) if use_cuda: decoder_hiddens = decoder_hiddens.cuda() #Determine whether teacher forcing is used. decoder_translation_list = [] for di in range(tgt_l): decoder_output,decoder_hidden,decoder_stacked_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) #update text_embedding_sets decoder_hiddens[di] = decoder_stacked_hidden #Update the transition list. _,top1 = decoder_output.data.topk(1) decoder_translation_list.append(top1[:,0]) #update the decoder_input for the next step decoder_input = tgt_var[:,di] #Get the attention weights attn_weights = self.vse_imagine.get_imagine_weights(im_feats,decoder_hiddens) #Get the transition_list final_translations = [] for b in range(batch_size): current_list = [] for i in range(tgt_l): current_translation_token = decoder_translation_list[i][b] if current_translation_token == EOS_token: break current_list.append(current_translation_token) final_translations.append(current_list) return attn_weights.data,final_translations def get_imagine_attention_test(self,src_var,src_lengths,im_feats,max_length=80): """ Get the attention_weights for validation dataset when tgt_var is available. Input: source_var: The Source Sent Index Variable with size(B,W), W is just the length of the sentence target_var: The Target Sent Index Variable with size(B,W) W is the length of the sentence im_feats: The Image Features with size (B,D), D is the dimension of image feature. Output: output_translation: List of index for translations predicted by the seq2seq model attention_weights: (B,T) """ #Define the batch_size and input_length batch_size = src_var.size()[0] tgt_l = max_length #Update the self.tgt_l self.tgt_l = tgt_l #Encoder src_var encoder_outputs,context_mask = self.encoder(src_var,src_lengths) #Prepare the Input and Output Variables for Decoder decoder_input = Variable(torch.LongTensor([[SOS_token] for x in range(batch_size)])) #decoder_hidden = torch.mean(encoder_outputs,dim=0,keepdim=True) decoder_hidden = F.tanh(self.decoderini(encoder_outputs.sum(0)/context_mask.sum(0).unsqueeze(1))).unsqueeze(0) #Initialize the output if use_cuda: decoder_input = decoder_input.cuda() decoder_hiddens = Variable(torch.zeros(tgt_l,batch_size,2*self.hidden_size)) if use_cuda: decoder_hiddens = decoder_hiddens.cuda() #Determine whether teacher forcing is used. decoder_translation_list = [] for di in range(tgt_l): decoder_output,decoder_hidden,decoder_stacked_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) #update text_embedding_sets decoder_hiddens[di] = decoder_stacked_hidden #Update the transition list. _,top1 = decoder_output.data.topk(1) decoder_translation_list.append(top1[:,0]) #update the decoder_input for the next step decoder_input = Variable(top1) if use_cuda: decoder_input = decoder_input.cuda() #Get the attention weights attn_weights = self.vse_imagine.get_imagine_weights(im_feats,decoder_hiddens) #Get the transition_list final_translations = [] for b in range(batch_size): current_list = [] for i in range(tgt_l): current_translation_token = decoder_translation_list[i][b] if current_translation_token == EOS_token: break current_list.append(current_translation_token) final_translations.append(current_list) return attn_weights.data,final_translations
44.609541
188
0.633768
24932860fce2a2298cd7875fad10db12ef2aab1a
1,344
py
Python
corefacility/roi/entity/rectangular_roi/rectangular_roi_provider.py
serik1987/corefacility
78d84e19403361e83ef562e738473849f9133bef
[ "RSA-MD" ]
null
null
null
corefacility/roi/entity/rectangular_roi/rectangular_roi_provider.py
serik1987/corefacility
78d84e19403361e83ef562e738473849f9133bef
[ "RSA-MD" ]
null
null
null
corefacility/roi/entity/rectangular_roi/rectangular_roi_provider.py
serik1987/corefacility
78d84e19403361e83ef562e738473849f9133bef
[ "RSA-MD" ]
null
null
null
from core.entity.entity_providers.model_providers.model_provider import ModelProvider from imaging.entity.map.map_provider import MapProvider class RectangularRoiProvider(ModelProvider): """ Exchanges information between the Django model layer and the RectangularRoi entity. """ _entity_model = "roi.models.RectangularRoi" _lookup_field = "id" _model_fields = ["left", "right", "top", "bottom"] _entity_class = "roi.entity.RectangularRoi" _map_provider = MapProvider() def unwrap_entity(self, rectangular_roi): """ Converts the RectangularRoi entity to the Django model. Such a model could be saved to the database. :param rectangular_roi: the entity to be converted :return: the Django model """ roi_model = super().unwrap_entity(rectangular_roi) roi_model.map_id = rectangular_roi._map.id return roi_model def wrap_entity(self, external_object): """ Converts external object to the rectangular ROI entity :param external_object: some object containing information loaded from the database :return: the RectangularRoi instance """ rect_roi = super().wrap_entity(external_object) rect_roi._map = self._map_provider.wrap_entity(external_object.map) return rect_roi
32
108
0.704613
fb0b0e74eff6cc09fb644379c76141501b2d86a5
2,881
py
Python
stdplugins/karbon3.py
sharath-git1/mybothubbot
1c78c0dfdf38ae7ae52d5fabdfadd69e184af66d
[ "Apache-2.0" ]
1
2020-04-18T13:42:34.000Z
2020-04-18T13:42:34.000Z
stdplugins/karbon3.py
sharath-git1/mybothubbot
1c78c0dfdf38ae7ae52d5fabdfadd69e184af66d
[ "Apache-2.0" ]
1
2021-02-08T20:44:42.000Z
2021-02-08T20:44:42.000Z
stdplugins/karbon3.py
hansari97/Tg-Bot
8fdf535c8df2c73d2ba762bc61464f106dc8f549
[ "Apache-2.0" ]
null
null
null
"""Carbon Scraper Plugin for Userbot. //text in creative way. usage: .kar3 //as a reply to any text message Thanks to @r4v4n4 for vars""" from selenium.webdriver.support.ui import Select from selenium.webdriver.chrome.options import Options from selenium import webdriver from telethon import events from urllib.parse import quote_plus from urllib.error import HTTPError from time import sleep import asyncio import os @borg.on(events.NewMessage(pattern=r"\.kar3", outgoing=True)) async def carbon_api(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): """ A Wrapper for carbon.now.sh """ await e.edit("🎛🎛🎛🎛🎛") CARBON = 'https://carbon.now.sh/?bg=rgba(74%2C144%2C226%2C1)&t=material&wt=none&l=auto&ds=false&dsyoff=20px&dsblur=68px&wc=true&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Fira%20Code&fs=14px&lh=152%25&si=false&es=2x&wm=false&code={code}' CARBONLANG = "en" textx = await e.get_reply_message() pcode = e.text if pcode[8:]: pcode = str(pcode[8:]) elif textx: pcode = str(textx.message) # Importing message to module code = quote_plus(pcode) # Converting to urlencoded url = CARBON.format(code=code, lang=CARBONLANG) chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.binary_location = Config.CARBON_BIN chrome_options.add_argument("--window-size=1920x1080") chrome_options.add_argument("--disable-dev-shm-usage") chrome_options.add_argument("--no-sandbox") chrome_options.add_argument('--disable-gpu') prefs = {'download.default_directory' : './'} chrome_options.add_experimental_option('prefs', prefs) await e.edit("🔵🔵🎛🎛🎛") driver = webdriver.Chrome(executable_path=Config.CARBON_DRIVER, options=chrome_options) driver.get(url) download_path = './' driver.command_executor._commands["send_command"] = ("POST", '/session/$sessionId/chromium/send_command') params = {'cmd': 'Page.setDownloadBehavior', 'params': {'behavior': 'allow', 'downloadPath': download_path}} command_result = driver.execute("send_command", params) driver.find_element_by_xpath("//button[contains(text(),'Export')]").click() sleep(5) # this might take a bit. driver.find_element_by_xpath("//button[contains(text(),'4x')]").click() sleep(5) await e.edit("🔵🔵🔵🎛🎛") driver.find_element_by_xpath("//button[contains(text(),'PNG')]").click() sleep(5) #Waiting for downloading await e.edit("🔵🔵🔵🔵🔵") file = './carbon.png' await e.edit("⬆️Karbon3 Completed, Uploading Karbon⬆️") await e.client.send_file( e.chat_id, file, caption="Karbon3 by [@PhycoNinja13b](https://github.com/Phyco-Ninja/UniNinja)", force_document=True, reply_to=e.message.reply_to_msg_id, ) os.remove('./carbon.png') # Removing carbon.png after uploading await e.delete() # Deleting msg
40.577465
238
0.695939
f4f096759ff7faf205826e5b94fd8a4964d7c718
6,234
py
Python
ml_service/pipelines/titanic_build_train_pipeline.py
memasanz/02_MLOpsPython
23fa96a70a58ad6a25642b20486e94080a5ea580
[ "MIT" ]
1
2022-03-28T17:31:02.000Z
2022-03-28T17:31:02.000Z
ml_service/pipelines/titanic_build_train_pipeline.py
memasanz/02_MLOpsPython
23fa96a70a58ad6a25642b20486e94080a5ea580
[ "MIT" ]
null
null
null
ml_service/pipelines/titanic_build_train_pipeline.py
memasanz/02_MLOpsPython
23fa96a70a58ad6a25642b20486e94080a5ea580
[ "MIT" ]
null
null
null
from azureml.pipeline.core.graph import PipelineParameter from azureml.pipeline.steps import PythonScriptStep from azureml.pipeline.core import Pipeline, PipelineData from azureml.core import Workspace, Dataset, Datastore from azureml.core.runconfig import RunConfiguration from ml_service.pipelines.load_sample_data import create_sample_data_csv from ml_service.util.attach_compute import get_compute from ml_service.util.env_variables import Env from ml_service.util.manage_environment import get_environment import os def main(): e = Env() # Get Azure machine learning workspace aml_workspace = Workspace.get( name=e.workspace_name, subscription_id=e.subscription_id, resource_group=e.resource_group, ) print("get_workspace:") print(aml_workspace) # Get Azure machine learning cluster aml_compute = get_compute(aml_workspace, e.compute_name, e.vm_size) if aml_compute is not None: print("aml_compute:") print(aml_compute) # Create a reusable Azure ML environment environment = get_environment( aml_workspace, e.aml_env_name, conda_dependencies_file=e.aml_env_train_conda_dep_file, create_new=e.rebuild_env, ) # run_config = RunConfiguration() run_config.environment = environment if e.datastore_name: datastore_name = e.datastore_name else: datastore_name = aml_workspace.get_default_datastore().name run_config.environment.environment_variables[ "DATASTORE_NAME" ] = datastore_name # NOQA: E501 model_name_param = PipelineParameter(name="model_name", default_value=e.model_name) # NOQA: E501 dataset_version_param = PipelineParameter( name="dataset_version", default_value=e.dataset_version ) data_file_path_param = PipelineParameter( name="data_file_path", default_value="none" ) caller_run_id_param = PipelineParameter(name="caller_run_id", default_value="none") # NOQA: E501 # Get dataset name dataset_name = e.dataset_name # Check to see if dataset exists if dataset_name not in aml_workspace.datasets: # This call creates an example CSV from sklearn sample data. If you # have already bootstrapped your project, you can comment this line # out and use your own CSV. create_sample_data_csv() # Use a CSV to read in the data set. file_name = "titanic.csv" if not os.path.exists(file_name): raise Exception( 'Could not find CSV dataset at "%s". If you have bootstrapped your project, you will need to provide a CSV.' # NOQA: E501 % file_name ) # NOQA: E501 # Upload file to default datastore in workspace datatstore = Datastore.get(aml_workspace, datastore_name) target_path = "training-data/" datatstore.upload_files( files=[file_name], target_path=target_path, overwrite=True, show_progress=False, ) # Register dataset path_on_datastore = os.path.join(target_path, file_name) dataset = Dataset.Tabular.from_delimited_files( path=(datatstore, path_on_datastore) ) dataset = dataset.register( workspace=aml_workspace, name=dataset_name, description="titanic training data", tags={"format": "CSV"}, create_new_version=True, ) # Create a PipelineData to pass data between steps pipeline_data = PipelineData( "pipeline_data", datastore=aml_workspace.get_default_datastore() ) train_step = PythonScriptStep( name="Train Model", script_name=e.train_script_path, compute_target=aml_compute, source_directory=e.sources_directory_train, outputs=[pipeline_data], arguments=[ "--model_name", model_name_param, "--step_output", pipeline_data, "--dataset_version", dataset_version_param, "--data_file_path", data_file_path_param, "--caller_run_id", caller_run_id_param, "--dataset_name", dataset_name, ], runconfig=run_config, allow_reuse=True, ) print("Step Train created") evaluate_step = PythonScriptStep( name="Evaluate Model ", script_name=e.evaluate_script_path, compute_target=aml_compute, source_directory=e.sources_directory_train, arguments=[ "--model_name", model_name_param, "--allow_run_cancel", e.allow_run_cancel, ], runconfig=run_config, allow_reuse=False, ) print("Step Evaluate created") register_step = PythonScriptStep( name="Register Model ", script_name=e.register_script_path, compute_target=aml_compute, source_directory=e.sources_directory_train, inputs=[pipeline_data], arguments=["--model_name", model_name_param, "--step_input", pipeline_data, ], # NOQA: E501 runconfig=run_config, allow_reuse=False, ) print("Step Register created") # Check run_evaluation flag to include or exclude evaluation step. if (e.run_evaluation).lower() == "true": print("Include evaluation step before register step.") evaluate_step.run_after(train_step) register_step.run_after(evaluate_step) steps = [train_step, evaluate_step, register_step] else: print("Exclude evaluation step and directly run register step.") register_step.run_after(train_step) steps = [train_step, register_step] train_pipeline = Pipeline(workspace=aml_workspace, steps=steps) train_pipeline._set_experiment_name train_pipeline.validate() published_pipeline = train_pipeline.publish( name=e.pipeline_name, description="Model training/retraining pipeline", version=e.build_id, ) print(f"Published pipeline: {published_pipeline.name}") print(f"for build {published_pipeline.version}") if __name__ == "__main__": main()
34.441989
138
0.665544
56a621c94f3ffef4d52910f2b0a75113269a1d83
1,119
py
Python
.tox/scenario/lib/python2.7/site-packages/testrepository/arguments/path.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
14
2015-03-31T16:30:51.000Z
2022-01-06T02:54:42.000Z
.tox/scenario/lib/python2.7/site-packages/testrepository/arguments/path.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
32
2015-01-14T01:46:29.000Z
2021-12-27T00:01:14.000Z
.tox/scenario/lib/python2.7/site-packages/testrepository/arguments/path.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
35
2015-03-04T04:33:01.000Z
2022-02-22T04:31:24.000Z
# # Copyright (c) 2012 Testrepository Contributors # # Licensed under either the Apache License, Version 2.0 or the BSD 3-clause # license at the users choice. A copy of both licenses are available in the # project source as Apache-2.0 and BSD. You may not use this file except in # compliance with one of these two licences. # # Unless required by applicable law or agreed to in writing, software # distributed under these licenses is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # license you chose for the specific language governing permissions and # limitations under that license. """An Argument that gets the name of an existing path.""" import os.path from testrepository.arguments import AbstractArgument class ExistingPathArgument(AbstractArgument): """An argument that stores a string verbatim.""" def _parse_one(self, arg): if arg == '--': raise ValueError('-- is not a valid argument') if not os.path.exists(arg): raise ValueError('No such path %r' % (arg,)) return arg
36.096774
78
0.722967
f57dc0161bebf47a1b92fa2912a637ecbbe98751
50
py
Python
model/__init__.py
Thanatoz-1/VoxAvium
5716da378ae9a54c6f7b826c6e47b0c20633c3e1
[ "BSD-3-Clause" ]
null
null
null
model/__init__.py
Thanatoz-1/VoxAvium
5716da378ae9a54c6f7b826c6e47b0c20633c3e1
[ "BSD-3-Clause" ]
null
null
null
model/__init__.py
Thanatoz-1/VoxAvium
5716da378ae9a54c6f7b826c6e47b0c20633c3e1
[ "BSD-3-Clause" ]
null
null
null
from .model import PANNsCNN14Att, PANNsResNet38Att
50
50
0.88
8c84ac9a422ed3a53f0c3391ff3abf831fb515d0
21,000
py
Python
rasa/engine/graph.py
dangnguyenngochai/rasa
538849e0eef0044c9f62799ce944cc54ad2d2c36
[ "Apache-2.0" ]
1
2022-03-03T16:11:02.000Z
2022-03-03T16:11:02.000Z
rasa/engine/graph.py
dangnguyenngochai/rasa
538849e0eef0044c9f62799ce944cc54ad2d2c36
[ "Apache-2.0" ]
250
2020-08-14T13:41:26.000Z
2022-03-28T12:10:13.000Z
rasa/engine/graph.py
goitf/rasa
0b87727fb40d22822ccf4539a34f0ab3c58e3c85
[ "Apache-2.0" ]
1
2021-12-03T13:04:55.000Z
2021-12-03T13:04:55.000Z
from __future__ import annotations import dataclasses from abc import ABC, abstractmethod from dataclasses import dataclass, field import logging from typing import Any, Callable, Dict, List, Optional, Text, Type, Tuple from rasa.engine.exceptions import ( GraphComponentException, GraphSchemaException, ) import rasa.shared.utils.common from rasa.engine.storage.resource import Resource from rasa.engine.storage.storage import ModelStorage from rasa.shared.exceptions import InvalidConfigException, RasaException from rasa.shared.importers.autoconfig import TrainingType logger = logging.getLogger(__name__) @dataclass class SchemaNode: """Represents one node in the schema. Args: needs: describes which parameters in `fn` (or `constructor_name` if `eager==False`) are filled by which parent nodes. uses: The class which models the behavior of this specific graph node. constructor_name: The name of the constructor which should be used to instantiate the component. If `eager==False` then the `constructor` can also specify parameters which are filled by parent nodes. This is e.g. useful if a parent node returns a `Resource` and this node wants to directly load itself from this resource. fn: The name of the function which should be called on the instantiated component when the graph is executed. The parameters from `needs` are filled from the parent nodes. config: The user's configuration for this graph node. This configuration does not need to be specify all possible parameters; the default values for missing parameters will be filled in later. eager: If `eager` then the component is instantiated before the graph is run. Otherwise it's instantiated as the graph runs (lazily). Usually we always instantiated lazily during training and eagerly during inference (to avoid that the first prediction takes longer). is_target: If `True` then this node can't be pruned during fingerprinting (it might be replaced with a cached value though). This is e.g. used for all components which train as their result always needs to be added to the model archive so that the data is available during inference. is_input: Nodes with `is_input` are _always_ run (also during the fingerprint run). This makes sure that we e.g. detect changes in file contents. resource: If given, then the graph node is loaded from an existing resource instead of instantiated from scratch. This is e.g. used to load a trained component for predictions. """ needs: Dict[Text, Text] uses: Type[GraphComponent] constructor_name: Text fn: Text config: Dict[Text, Any] eager: bool = False is_target: bool = False is_input: bool = False resource: Optional[Resource] = None @dataclass class GraphSchema: """Represents a graph for training a model or making predictions.""" nodes: Dict[Text, SchemaNode] def as_dict(self) -> Dict[Text, Any]: """Returns graph schema in a serializable format. Returns: The graph schema in a format which can be dumped as JSON or other formats. """ serializable_graph_schema = {"nodes": {}} for node_name, node in self.nodes.items(): serializable = dataclasses.asdict(node) # Classes are not JSON serializable (surprise) serializable["uses"] = f"{node.uses.__module__}.{node.uses.__name__}" serializable_graph_schema["nodes"][node_name] = serializable return serializable_graph_schema @classmethod def from_dict(cls, serialized_graph_schema: Dict[Text, Any]) -> GraphSchema: """Loads a graph schema which has been serialized using `schema.as_dict()`. Args: serialized_graph_schema: A serialized graph schema. Returns: A properly loaded schema. Raises: GraphSchemaException: In case the component class for a node couldn't be found. """ nodes = {} for node_name, serialized_node in serialized_graph_schema["nodes"].items(): try: serialized_node[ "uses" ] = rasa.shared.utils.common.class_from_module_path( serialized_node["uses"] ) resource = serialized_node["resource"] if resource: serialized_node["resource"] = Resource(**resource) except ImportError as e: raise GraphSchemaException( "Error deserializing graph schema. Can't " "find class for graph component type " f"'{serialized_node['uses']}'." ) from e nodes[node_name] = SchemaNode(**serialized_node) return GraphSchema(nodes) @property def target_names(self) -> List[Text]: """Returns the names of all target nodes.""" return [node_name for node_name, node in self.nodes.items() if node.is_target] def minimal_graph_schema(self, targets: Optional[List[Text]] = None) -> GraphSchema: """Returns a new schema where all nodes are a descendant of a target.""" dependencies = self._all_dependencies_schema( targets if targets else self.target_names ) return GraphSchema( { node_name: node for node_name, node in self.nodes.items() if node_name in dependencies } ) def _all_dependencies_schema(self, targets: List[Text]) -> List[Text]: required = [] for target in targets: required.append(target) try: target_dependencies = self.nodes[target].needs.values() except KeyError: # This can happen if the target is an input placeholder. continue for dependency in target_dependencies: required += self._all_dependencies_schema([dependency]) return required class GraphComponent(ABC): """Interface for any component which will run in a graph.""" @classmethod def required_components(cls) -> List[Type]: """Components that should be included in the pipeline before this component.""" return [] @classmethod @abstractmethod def create( cls, config: Dict[Text, Any], model_storage: ModelStorage, resource: Resource, execution_context: ExecutionContext, ) -> GraphComponent: """Creates a new `GraphComponent`. Args: config: This config overrides the `default_config`. model_storage: Storage which graph components can use to persist and load themselves. resource: Resource locator for this component which can be used to persist and load itself from the `model_storage`. execution_context: Information about the current graph run. Returns: An instantiated `GraphComponent`. """ ... @classmethod def load( cls, config: Dict[Text, Any], model_storage: ModelStorage, resource: Resource, execution_context: ExecutionContext, **kwargs: Any, ) -> GraphComponent: """Creates a component using a persisted version of itself. If not overridden this method merely calls `create`. Args: config: The config for this graph component. This is the default config of the component merged with config specified by the user. model_storage: Storage which graph components can use to persist and load themselves. resource: Resource locator for this component which can be used to persist and load itself from the `model_storage`. execution_context: Information about the current graph run. kwargs: Output values from previous nodes might be passed in as `kwargs`. Returns: An instantiated, loaded `GraphComponent`. """ return cls.create(config, model_storage, resource, execution_context) @staticmethod def get_default_config() -> Dict[Text, Any]: """Returns the component's default config. Default config and user config are merged by the `GraphNode` before the config is passed to the `create` and `load` method of the component. Returns: The default config of the component. """ return {} @staticmethod def supported_languages() -> Optional[List[Text]]: """Determines which languages this component can work with. Returns: A list of supported languages, or `None` to signify all are supported. """ return None @staticmethod def not_supported_languages() -> Optional[List[Text]]: """Determines which languages this component cannot work with. Returns: A list of not supported languages, or `None` to signify all are supported. """ return None @staticmethod def required_packages() -> List[Text]: """Any extra python dependencies required for this component to run.""" return [] class GraphNodeHook(ABC): """Holds functionality to be run before and after a `GraphNode`.""" @abstractmethod def on_before_node( self, node_name: Text, execution_context: ExecutionContext, config: Dict[Text, Any], received_inputs: Dict[Text, Any], ) -> Dict: """Runs before the `GraphNode` executes. Args: node_name: The name of the node being run. execution_context: The execution context of the current graph run. config: The node's config. received_inputs: Mapping from parameter name to input value. Returns: Data that is then passed to `on_after_node` """ ... @abstractmethod def on_after_node( self, node_name: Text, execution_context: ExecutionContext, config: Dict[Text, Any], output: Any, input_hook_data: Dict, ) -> None: """Runs after the `GraphNode` as executed. Args: node_name: The name of the node that has run. execution_context: The execution context of the current graph run. config: The node's config. output: The output of the node. input_hook_data: Data returned from `on_before_node`. """ ... @dataclass class ExecutionContext: """Holds information about a single graph run.""" graph_schema: GraphSchema = field(repr=False) model_id: Optional[Text] = None should_add_diagnostic_data: bool = False is_finetuning: bool = False # This is set by the `GraphNode` before it is passed to the `GraphComponent`. node_name: Optional[Text] = None class GraphNode: """Instantiates and runs a `GraphComponent` within a graph. A `GraphNode` is a wrapper for a `GraphComponent` that allows it to be executed in the context of a graph. It is responsible for instantiating the component at the correct time, collecting the inputs from the parent nodes, running the run function of the component and passing the output onwards. """ def __init__( self, node_name: Text, component_class: Type[GraphComponent], constructor_name: Text, component_config: Dict[Text, Any], fn_name: Text, inputs: Dict[Text, Text], eager: bool, model_storage: ModelStorage, resource: Optional[Resource], execution_context: ExecutionContext, hooks: Optional[List[GraphNodeHook]] = None, ) -> None: """Initializes `GraphNode`. Args: node_name: The name of the node in the schema. component_class: The class to be instantiated and run. constructor_name: The method used to instantiate the component. component_config: Config to be passed to the component. fn_name: The function on the instantiated `GraphComponent` to be run when the node executes. inputs: A map from input name to parent node name that provides it. eager: Determines if the node is instantiated right away, or just before being run. model_storage: Storage which graph components can use to persist and load themselves. resource: If given the `GraphComponent` will be loaded from the `model_storage` using the given resource. execution_context: Information about the current graph run. hooks: These are called before and after execution. """ self._node_name: Text = node_name self._component_class: Type[GraphComponent] = component_class self._constructor_name: Text = constructor_name self._constructor_fn: Callable = getattr( self._component_class, self._constructor_name ) self._component_config: Dict[Text, Any] = { **self._component_class.get_default_config(), **component_config, } self._fn_name: Text = fn_name self._fn: Callable = getattr(self._component_class, self._fn_name) self._inputs: Dict[Text, Text] = inputs self._eager: bool = eager self._model_storage = model_storage self._existing_resource = resource self._execution_context: ExecutionContext = dataclasses.replace( execution_context, node_name=self._node_name ) self._hooks: List[GraphNodeHook] = hooks if hooks else [] self._component: Optional[GraphComponent] = None if self._eager: self._load_component() def _load_component(self, **kwargs: Any) -> None: logger.debug( f"Node '{self._node_name}' loading " f"'{self._component_class.__name__}.{self._constructor_name}' " f"and kwargs: '{kwargs}'." ) constructor = getattr(self._component_class, self._constructor_name) try: self._component: GraphComponent = constructor( # type: ignore[no-redef] config=self._component_config, model_storage=self._model_storage, resource=self._get_resource(kwargs), execution_context=self._execution_context, **kwargs, ) except InvalidConfigException: # Pass through somewhat expected exception to allow more fine granular # handling of exceptions. raise except Exception as e: if not isinstance(e, RasaException): raise GraphComponentException( f"Error initializing graph component for node {self._node_name}." ) from e else: logger.error( f"Error initializing graph component for node {self._node_name}." ) raise def _get_resource(self, kwargs: Dict[Text, Any]) -> Resource: if "resource" in kwargs: # A parent node provides resource during training. The component wrapped # by this `GraphNode` will load itself from this resource. return kwargs.pop("resource") if self._existing_resource: # The component should be loaded from a trained resource during inference. # E.g. a classifier might train and persist itself during training and will # then load itself from this resource during inference. return self._existing_resource # The component gets a chance to persist itself return Resource(self._node_name) def __call__( self, *inputs_from_previous_nodes: Tuple[Text, Any] ) -> Tuple[Text, Any]: """Calls the `GraphComponent` run method when the node executes in the graph. Args: *inputs_from_previous_nodes: The output of all parent nodes. Each is a dictionary with a single item mapping the node's name to its output. Returns: The node name and its output. """ received_inputs: Dict[Text, Any] = dict(inputs_from_previous_nodes) kwargs = {} for input_name, input_node in self._inputs.items(): kwargs[input_name] = received_inputs[input_node] input_hook_outputs = self._run_before_hooks(kwargs) if not self._eager: constructor_kwargs = rasa.shared.utils.common.minimal_kwargs( kwargs, self._constructor_fn ) self._load_component(**constructor_kwargs) run_kwargs = { k: v for k, v in kwargs.items() if k not in constructor_kwargs } else: run_kwargs = kwargs logger.debug( f"Node '{self._node_name}' running " f"'{self._component_class.__name__}.{self._fn_name}'." ) try: output = self._fn(self._component, **run_kwargs) except InvalidConfigException: # Pass through somewhat expected exception to allow more fine granular # handling of exceptions. raise except Exception as e: if not isinstance(e, RasaException): raise GraphComponentException( f"Error running graph component for node {self._node_name}." ) from e else: logger.error( f"Error running graph component for node {self._node_name}." ) raise self._run_after_hooks(input_hook_outputs, output) return self._node_name, output def _run_after_hooks(self, input_hook_outputs: List[Dict], output: Any) -> None: for hook, hook_data in zip(self._hooks, input_hook_outputs): try: logger.debug( f"Hook '{hook.__class__.__name__}.on_after_node' " f"running for node '{self._node_name}'." ) hook.on_after_node( node_name=self._node_name, execution_context=self._execution_context, config=self._component_config, output=output, input_hook_data=hook_data, ) except Exception as e: raise GraphComponentException( f"Error running after hook for node '{self._node_name}'." ) from e def _run_before_hooks(self, received_inputs: Dict[Text, Any]) -> List[Dict]: input_hook_outputs = [] for hook in self._hooks: try: logger.debug( f"Hook '{hook.__class__.__name__}.on_before_node' " f"running for node '{self._node_name}'." ) hook_output = hook.on_before_node( node_name=self._node_name, execution_context=self._execution_context, config=self._component_config, received_inputs=received_inputs, ) input_hook_outputs.append(hook_output) except Exception as e: raise GraphComponentException( f"Error running before hook for node '{self._node_name}'." ) from e return input_hook_outputs @classmethod def from_schema_node( cls, node_name: Text, schema_node: SchemaNode, model_storage: ModelStorage, execution_context: ExecutionContext, hooks: Optional[List[GraphNodeHook]] = None, ) -> GraphNode: """Creates a `GraphNode` from a `SchemaNode`.""" return cls( node_name=node_name, component_class=schema_node.uses, constructor_name=schema_node.constructor_name, component_config=schema_node.config, fn_name=schema_node.fn, inputs=schema_node.needs, eager=schema_node.eager, model_storage=model_storage, execution_context=execution_context, resource=schema_node.resource, hooks=hooks, ) @dataclass() class GraphModelConfiguration: """The model configuration to run as a graph during training and prediction.""" train_schema: GraphSchema predict_schema: GraphSchema training_type: TrainingType language: Optional[Text] core_target: Optional[Text] nlu_target: Optional[Text]
37.366548
88
0.619048
107168387754e1511c26a0a770806d3e86278691
16,951
py
Python
sfa_api/utils/request_handling.py
SolarArbiter/solarforecastarbiter-api
280800c73eb7cfd49029462b352887e78f1ff91b
[ "MIT" ]
7
2018-12-07T22:05:36.000Z
2020-05-03T03:20:50.000Z
sfa_api/utils/request_handling.py
SolarArbiter/solarforecastarbiter-api
280800c73eb7cfd49029462b352887e78f1ff91b
[ "MIT" ]
220
2018-11-01T23:33:19.000Z
2021-12-02T21:06:38.000Z
sfa_api/utils/request_handling.py
SolarArbiter/solarforecastarbiter-api
280800c73eb7cfd49029462b352887e78f1ff91b
[ "MIT" ]
3
2018-10-31T20:55:07.000Z
2021-11-10T22:51:43.000Z
from collections import defaultdict from io import StringIO import json import re import string from flask import request, current_app import numpy as np import pandas as pd from solarforecastarbiter.datamodel import Forecast, Site from solarforecastarbiter.reference_forecasts import utils as fx_utils from werkzeug.exceptions import RequestEntityTooLarge from sfa_api.utils.errors import ( BadAPIRequest, NotFoundException, StorageAuthError) def validate_observation_values(observation_df, quality_flag_range=(0, 1)): """ Validate the columns of an observation value DataFrame. Parameters ---------- observation_df : pandas.DataFrame DataFrame to validate columns and values quality_flag_range : tuple, default (0, 1) Range of allowable quality_flag Returns ------- pandas.DataFrame With types adjusted as appropriate Raises ------ BadAPIRequest For any errors in the columns or values """ errors = defaultdict(list) try: observation_df['value'] = pd.to_numeric(observation_df['value'], downcast='float') except ValueError: errors['value'].append( 'Invalid item in "value" field. Ensure that all ' 'values are integers, floats, empty, NaN, or NULL.') except KeyError: errors['value'].append('Missing "value" field.') try: observation_df['timestamp'] = pd.to_datetime( observation_df['timestamp'], utc=True) except ValueError: errors['timestamp'].append( 'Invalid item in "timestamp" field. Ensure ' 'that timestamps are ISO8601 compliant') except KeyError: errors['timestamp'].append('Missing "timestamp" field.') try: observation_df['quality_flag'].astype(int) except KeyError: errors['quality_flag'].append('Missing "quality_flag" field.') except (ValueError, TypeError): errors['quality_flag'].append( 'Item in "quality_flag" field is not an integer.') else: if not np.isclose( observation_df['quality_flag'].mod(1), 0, 1e-12).all(): errors['quality_flag'].append( 'Item in "quality_flag" field is not an integer.') if not observation_df['quality_flag'].between( *quality_flag_range).all(): errors['quality_flag'].append( 'Item in "quality_flag" field out of range ' f'{quality_flag_range}.') if errors: raise BadAPIRequest(errors) return observation_df def parse_csv(csv_string): """Parse a csv into a dataframe and raise appropriate errors Parameters ---------- csv_string: str String representation of csv to read into a dataframe Returns ------- pandas.DataFrame Raises ------ BadAPIRequestError If the string cannot be parsed. """ raw_data = StringIO(csv_string) try: value_df = pd.read_csv(raw_data, na_values=[-999.0, -9999.0], keep_default_na=True, comment='#') except (pd.errors.EmptyDataError, pd.errors.ParserError): raise BadAPIRequest({'error': 'Malformed CSV'}) return value_df def parse_json(json_str): """Parse a string of json values into a DataFrame Parameters ---------- json_str: str Returns ------- pandas.DataFrame Raises ------ BadAPIRequestError If the 'values' key is missing, or if the contents of the values key cannot be parsed into a DataFrame. """ try: json_dict = json.loads(''.join(s for s in json_str if s in string.printable)) except json.decoder.JSONDecodeError: raise BadAPIRequest(error='Malformed JSON.') try: raw_values = json_dict['values'] except (TypeError, KeyError): error = 'Supplied JSON does not contain "values" field.' raise BadAPIRequest(error=error) try: value_df = pd.DataFrame(raw_values) except ValueError: raise BadAPIRequest({'error': 'Malformed JSON'}) return value_df def parse_values(decoded_data, mimetype): """Attempts to parse a string of data into a DataFrame based on MIME type. Parameters ---------- decoded_data: str A string of data to parse. mimetype: str The MIME type of the data. Returns ------- pandas.DataFrame Raises ------ BadAPIRequest - If the MIME type is not one of 'text/csv', 'application/json', or 'application/vnd.ms-excel' - If parsing fails, see parse_json or parse_csv for conditions. - If the file contains more than the maximum allowed number of datapoints. """ if mimetype == 'text/csv' or mimetype == 'application/vnd.ms-excel': values = parse_csv(decoded_data) elif mimetype == 'application/json': values = parse_json(decoded_data) else: error = "Unsupported Content-Type or MIME type." raise BadAPIRequest(error=error) if values.index.size > current_app.config.get('MAX_POST_DATAPOINTS'): raise BadAPIRequest({ 'error': ('File exceeds maximum number of datapoints. ' f'{current_app.config.get("MAX_POST_DATAPOINTS")} ' f'datapoints allowed, {values.index.size} datapoints ' 'found in file.') }) return values def decode_file_in_request_body(): """Decode the data from a utf-8 encoded file into a string and return the contents and the file's mimetype. Returns ------- decoded_data: str The posted utf-8 data as a string. posted_file.mimetype: str MIME type of the file in the request body. Raises ------ BadAPIRequest - There is more than one file in the request. - If the request does not contain a file. - The file does not contain valid utf-8. """ posted_files = list(request.files.keys()) if len(posted_files) > 1: error = "Multiple files found. Please upload one file at a time." raise BadAPIRequest(error=error) try: posted_filename = posted_files[0] posted_file = request.files[posted_filename] except IndexError: error = "Missing file in request body." raise BadAPIRequest(error=error) posted_data = posted_file.read() try: decoded_data = posted_data.decode('utf-8') except UnicodeDecodeError: error = 'File could not be decoded as UTF-8.' raise BadAPIRequest(error=error) return decoded_data, posted_file.mimetype def validate_parsable_values(): """Can be called from a POST view/endpoint to examine posted data for mimetype and attempt to parse to a DataFrame. Raises ------ BadAPIRequest If the data cannot be parsed. werkzeug.exceptions.RequestEntityTooLarge If the `Content-Length` header is greater than the application's `MAX_CONTENT_LENGTH` config variable. """ # Default for content length in case of empty body content_length = int(request.headers.get('Content-Length', 0)) if (content_length > current_app.config['MAX_CONTENT_LENGTH']): raise RequestEntityTooLarge if request.mimetype == 'multipart/form-data': decoded_data, mimetype = decode_file_in_request_body() else: decoded_data = request.get_data(as_text=True) mimetype = request.mimetype value_df = parse_values(decoded_data, mimetype) if value_df.size == 0: raise BadAPIRequest({ 'error': ("Posted data contained no values."), }) return value_df def parse_to_timestamp(dt_string): """Attempts to parse to Timestamp. Parameters ---------- dt_string: str Returns ------- pandas.Timestamp Raises ------ ValueError If the string cannot be parsed to timestamp, or parses to null """ timestamp = pd.Timestamp(dt_string) if pd.isnull(timestamp): raise ValueError if timestamp.tzinfo is None: # consinstent with schema ISODateTime timestamp = timestamp.tz_localize('UTC') return timestamp def validate_start_end(): """Parses start and end query parameters into pandas Timestamps. Returns ------- start: Pandas Timestamp end: Pandas TimeStamp Raises ------ BadAPIRequest If start and end values cannot be parsed. """ errors = {} start = request.args.get('start', None) end = request.args.get('end', None) if start is not None: try: start = parse_to_timestamp(start) except ValueError: errors.update({'start': ['Invalid start date format']}) else: errors.update({'start': ['Must provide a start time']}) if end is not None: try: end = parse_to_timestamp(end) except ValueError: errors.update({'end': ['Invalid end date format']}) else: errors.update({'end': ['Must provide a end time']}) if errors: raise BadAPIRequest(errors) # parse_to_timestamp ensures there is a tz if end.tzinfo != start.tzinfo: end = end.tz_convert(start.tzinfo) if end - start > current_app.config['MAX_DATA_RANGE_DAYS']: raise BadAPIRequest({'end': [ f'Only {current_app.config["MAX_DATA_RANGE_DAYS"].days} days of ' 'data may be requested per request']}) return start, end def validate_index_period(index, interval_length, previous_time): """ Validate that the index conforms to interval_length. Parameters ---------- index : pd.DatetimeIndex interval_length : int Regular period of data in minutes previous_time : pd.Timestamp or None The last time in the database before the start of index. May be None. Raises ------ BadApiRequest If there are any errors """ if len(index) == 0: raise BadAPIRequest({'timestamp': ['No times to validate']}) errors = [] start = index[0] end = index[-1] freq = pd.Timedelta(f'{interval_length}min') expected_index = pd.date_range(start=start, end=end, freq=freq) missing_times = expected_index.difference(index) if len(missing_times) > 0: errors.append(f'Missing {len(missing_times)} timestamps. ' f'First missing timestamp is {missing_times[0]}. ' 'Uploads must have equally spaced timestamps ' f'from {start} to {end} with {interval_length} ' 'minutes between each timestamp.') extra_times = index.difference(expected_index) if len(extra_times) > 0: errors.append(f'{len(extra_times)} extra times present in index. ' f'First extra time is {extra_times[0]}. ' 'Uploads must have equally spaced timestamps ' f'from {start} to {end} with {interval_length} ' 'minutes between each timestamp.') if previous_time is not None: if (start - previous_time).total_seconds() % freq.total_seconds() != 0: errors.append( f'Start of timeseries is not a multiple of {interval_length} ' 'minutes past the previous time of ' f'{previous_time.isoformat()}.') if errors: raise BadAPIRequest({'timestamp': errors}) def validate_forecast_values(forecast_df): """Validates that posted values are parseable and of the expectedtypes. Parameters ---------- forecast_df: Pandas DataFrame Raises ------ BadAPIRequestError If an expected field is missing or contains an entry of incorrect type. """ errors = {} try: forecast_df['value'] = pd.to_numeric(forecast_df['value'], downcast='float') except ValueError: error = ('Invalid item in "value" field. Ensure that all values ' 'are integers, floats, empty, NaN, or NULL.') errors.update({'value': [error]}) except KeyError: errors.update({'value': ['Missing "value" field.']}) try: forecast_df['timestamp'] = pd.to_datetime( forecast_df['timestamp'], utc=True) except ValueError: error = ('Invalid item in "timestamp" field. Ensure that ' 'timestamps are ISO8601 compliant') errors.update({'timestamp': [error]}) except KeyError: errors.update({'timestamp': ['Missing "timestamp" field.']}) if errors: raise BadAPIRequest(errors) def _restrict_in_extra(extra_params): match = re.search('"restrict_upload(["\\s\\:]*)true', extra_params, re.I) return match is not None def _current_utc_timestamp(): # for easier testing return pd.Timestamp.now(tz='UTC') def restrict_forecast_upload_window(extra_parameters, get_forecast, first_time): """ Check that the first_time falls within the window before the next initialization time of the forecast from the current time. Accounts for forecast lead_time_to_start and interval_label. Requires 'read' permission on the forecast in question. Parameters ---------- extra_parameters : str The extra_parameters string for the forecast. If '"restrict_upload": true' is not found in the string, no restriction occurs and this function returns immediately. get_forecast : func Function to get the forecast from the database. first_time : datetime-like First timestamp in the posted forecast timeseries. Raises ------ NotFoundException When the user does not have 'read' permission for the forecast or it doesn't exist. BadAPIRequest If the first_time of the timeseries is not consistent for the next initaliziation time of the forecast. """ if not _restrict_in_extra(extra_parameters): return try: fx_dict = get_forecast().copy() except (StorageAuthError, NotFoundException): raise NotFoundException(errors={ '404': 'Cannot read forecast or forecast does not exist'}) # we don't care about the axis or constant values for probabilistic fx_dict['site'] = Site('name', 0, 0, 0, 'UTC') fx = Forecast.from_dict(fx_dict) next_issue_time = fx_utils.get_next_issue_time( fx, _current_utc_timestamp()) expected_start = next_issue_time + fx.lead_time_to_start if fx.interval_label == 'ending': expected_start += fx.interval_length if first_time != expected_start: raise BadAPIRequest(errors={'issue_time': ( f'Currently only accepting forecasts issued for {next_issue_time}.' f' Expecting forecast series to start at {expected_start}.' )}) def validate_latitude_longitude(): """Validates latitude and longitude parameters Returns ------- latitude: float longitude: float Raises ------ BadAPIRequest If latitude and longitude values are not provided or not in range. """ errors = {} lat = request.args.get('latitude', None) lon = request.args.get('longitude', None) if lat is not None: try: lat = float(lat) except ValueError: errors.update({'latitude': ['Must be a float']}) else: if lat > 90 or lat < -90: errors.update({ 'latitude': ['Must be within [-90, 90].']}) else: errors.update({'latitude': ['Must provide a latitude']}) if lon is not None: try: lon = float(lon) except ValueError: errors.update({'longitude': ['Must be a float']}) else: if lon > 180 or lon < -180: errors.update({'longitude': ['Must be within (-180, 180].']}) else: errors.update({'longitude': ['Must provide a longitude']}) if errors: raise BadAPIRequest(errors) return lat, lon def validate_event_data(data): """ Validate that the data is either 0 or 1 Parameters ---------- data : pd.Dataframe with 'value' column Raises ------ BadApiRequest If there are any errors """ isbool = (data['value'] == 0) | (data['value'] == 1) if not isbool.all(): indx = isbool.reset_index()[~isbool.values].index.astype('str') raise BadAPIRequest({'value': [ 'Invalid event values at locations %s' % ', '.join(indx)]})
31.332717
79
0.613238
587d371a4ef1b63fa00833efae81fb1010f6b3ab
5,828
py
Python
pororo/models/brainbert/criterions/dependency_parse.py
jayten42/pororo
0b02e6a633b9a32ec4241b8ed96745e6592db317
[ "Apache-2.0" ]
1,137
2021-02-02T02:09:06.000Z
2022-03-29T03:10:40.000Z
pororo/models/brainbert/criterions/dependency_parse.py
jayten42/pororo
0b02e6a633b9a32ec4241b8ed96745e6592db317
[ "Apache-2.0" ]
57
2021-02-02T03:29:54.000Z
2022-03-31T16:20:00.000Z
pororo/models/brainbert/criterions/dependency_parse.py
jayten42/pororo
0b02e6a633b9a32ec4241b8ed96745e6592db317
[ "Apache-2.0" ]
216
2021-02-02T02:49:02.000Z
2022-03-28T01:19:58.000Z
# Copyright (c) Facebook, Inc. and its affiliates and Kakao Brain. All Rights Reserved import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.criterions import FairseqCriterion, register_criterion @register_criterion("dependency_parse") class DependencyParseLabelCriterion(FairseqCriterion): def __init__(self, args, task): super().__init__(args, task) self.classification_head_name = args.classification_head_name @staticmethod def add_args(parser): # fmt: off parser.add_argument( "--classification-head-name", default="dependency_parse_head", help="name of the classification head to use", ) # fmt: on def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2 the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert ( hasattr(model, "classification_heads") and self.classification_head_name in model.classification_heads ), "model must provide sentence classification head for --criterion=dependency_parse_head" # extract features from backbone module features, _ = model( **sample["net_input"], **sample["segments"], features_only=True, ) masks = sample["net_input"]["src_tokens"] == 1 # forward extracted features to get label and head logits # yapf: disable head_logits, label_logits = model.classification_heads[self.classification_head_name]( features, masks, ) # yapf: enable # calculate head loss head_targets = sample["target0"].view(-1) head_logits = head_logits.view(-1, head_logits.size(-1)) head_logits = head_logits[head_targets != 0] head_targets = head_targets[head_targets != 0] head_loss = F.nll_loss( F.log_softmax(head_logits, dim=-1, dtype=torch.float32), head_targets, ignore_index=-1, ) masked_preds = head_logits[head_targets != -1].argmax(dim=1) masked_targets = head_targets[head_targets != -1] head_ncorrect = utils.item((masked_preds == masked_targets).sum()) sample_size = masked_targets.size(0) # calculate label loss label_targets = sample["target1"].view(-1) label_logits = label_logits.view(-1, label_logits.size(-1)) label_logits = label_logits[label_targets != 0] label_targets = label_targets[label_targets != 0] label_loss = F.nll_loss( F.log_softmax(label_logits, dim=-1, dtype=torch.float32), label_targets, ignore_index=-1, ) masked_preds = label_logits[label_targets != -1].argmax(dim=1) masked_targets = label_targets[label_targets != -1] label_ncorrect = utils.item((masked_preds == masked_targets).sum()) loss = label_loss + head_loss logging_output = { "sample_size": sample_size, "ntokens": sample["ntokens"], "nsentences": sample["target0"].size(0), "loss": utils.item(loss.data), "head_loss": utils.item(head_loss.data), "label_loss": utils.item(label_loss.data), "head_ncorrect": head_ncorrect, "label_ncorrect": label_ncorrect, } return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = utils.item(sum( log.get("loss", 0) for log in logging_outputs)) label_loss_sum = utils.item( sum(log.get("label_loss", 0) for log in logging_outputs)) head_loss_sum = utils.item( sum(log.get("head_loss", 0) for log in logging_outputs)) ntokens = utils.item( sum(log.get("ntokens", 0) for log in logging_outputs)) nsentences = utils.item( sum(log.get("nsentences", 0) for log in logging_outputs)) sample_size = utils.item( sum(log.get("sample_size", 0) for log in logging_outputs)) nll_loss = loss_sum / ntokens / math.log(2) label_loss = label_loss_sum / sample_size / math.log(2) head_loss = head_loss_sum / sample_size / math.log(2) agg_output = { "loss": loss_sum / sample_size / math.log(2), "label_loss": label_loss, "head_loss": head_loss, "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, "nll_loss": nll_loss, } if len(logging_outputs) > 0 and "head_ncorrect" in logging_outputs[0]: head_ncorrect = sum( log.get("head_ncorrect", 0) for log in logging_outputs) head_accuracy = (head_ncorrect / sample_size) * 100 agg_output.update(head_accuracy=head_accuracy) if len(logging_outputs) > 0 and "label_ncorrect" in logging_outputs[0]: label_ncorrect = sum( log.get("label_ncorrect", 0) for log in logging_outputs) label_accuracy = (label_ncorrect / sample_size) * 100 agg_output.update(label_accuracy=label_accuracy) return agg_output @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
36.198758
98
0.622169
60f2be95a6973df01fb504c83bffb400ffb91254
1,324
py
Python
neutron/db/subnet_service_type_db_models.py
MultipleCrashes/neutron
fb268d7e91b22192a6e42f78b0057b4ebd3033ef
[ "Apache-2.0" ]
1
2019-06-02T06:15:39.000Z
2019-06-02T06:15:39.000Z
neutron/db/subnet_service_type_db_models.py
MultipleCrashes/neutron
fb268d7e91b22192a6e42f78b0057b4ebd3033ef
[ "Apache-2.0" ]
null
null
null
neutron/db/subnet_service_type_db_models.py
MultipleCrashes/neutron
fb268d7e91b22192a6e42f78b0057b4ebd3033ef
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Hewlett Packard Enterprise Development Company, LP # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # TODO(ihrachys): consider renaming the module since now it does not contain # any models at all from neutron.api.v2 import attributes from neutron.db import _resource_extend as resource_extend class SubnetServiceTypeMixin(object): """Mixin class to extend subnet with service type attribute""" def _extend_subnet_service_types(self, subnet_res, subnet_db): subnet_res['service_types'] = [service_type['service_type'] for service_type in subnet_db.service_types] resource_extend.register_funcs( attributes.SUBNETS, [_extend_subnet_service_types])
40.121212
78
0.712991
11638d56f883607eac81074f3f11f6bf4d2aea1f
5,715
py
Python
.ipynb_checkpoints/test-checkpoint.py
ymoisan/GeoSim
84f1482c885d7d3b1e07b92dee9580e4bcacf9cb
[ "MIT" ]
null
null
null
.ipynb_checkpoints/test-checkpoint.py
ymoisan/GeoSim
84f1482c885d7d3b1e07b92dee9580e4bcacf9cb
[ "MIT" ]
null
null
null
.ipynb_checkpoints/test-checkpoint.py
ymoisan/GeoSim
84f1482c885d7d3b1e07b92dee9580e4bcacf9cb
[ "MIT" ]
null
null
null
from shapely.geometry import LineString, Point, Polygon, MultiLineString from shapely.strtree import STRtree #import random, time #from rtree import index from cmath import rect, phase from math import radians, degrees from shapely.ops import polygonize, polygonize_full, split line = LineString(((0,0),(5,0),(10,0))) a = line.project(Point(5,10)) ext = [(0,0), (0,10),(3,10),(3,14),(7,14),(7,10),(10,10), (10,0),(0,0)] int_1 = [[(4,11), (4,12),(6,12),(6,11), (4,11)]] int_2 = [[(4,9.5), (4,10.5),(6,10.5),(6,9.5), (4,9.5)]] pol = Polygon(ext, int_1) val = pol.is_valid pol_s = pol.simplify(5, preserve_topology=True) val = pol.is_simple pol = Polygon(ext, int) val = pol.is_valid pol_s = pol.simplify(5, preserve_topology=True) pol_s1 = pol.simplify(5, preserve_topology=False) val2 = pol_s1.is_valid pol = Polygon([(((0,0), 0,10),(10,10), (10,12), (12,12), (12,10), (20,10)), ((11,0), (11,4),(12,4),(12,5),(11,5), (11,7), (11,11))]) mline1 = mline.simplify(2, preserve_topology=True) mline = MultiLineString([((0,10),(10,10), (10,12), (12,12), (12,10), (20,10)), ((11,0), (11,4),(12,4),(12,5),(11,5), (11,7), (11,11))]) mline1 = mline.simplify(2, preserve_topology=True) line = LineString([(0,0),(10,0), (11,0), (11,1), (10,1), (20,0), (20,1), (22,1), (22,0), (30, 0), (30,-5), (21,-5), (21,.5)]) line1 = line.simplify(1, preserve_topology=True) line = LineString([(0,0),(2,2), (4,-2), (6,2), (7,0), (8,0)]) splitter = LineString([(0,0),(8,0)]) line_a = LineString([(0,0),(10,0)]) line_b = LineString([(10,110),(20,20)]) line_c = LineString([(7,0),(9,0)]) line_split = split(line, splitter) splitter_split = split(splitter, line) pol = polygonize_full([line_split, splitter_split]) val_a = line_a.intersects(pol[0]) val_b = line_b.intersects(pol[0]) val_c = line_c.intersects(pol[0]) coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)] coords = [(0,0),(5,0), (10,0), (10,10), (5,10), (5,0), (5,-10),(0,-10), (0,0)] bowtie = Polygon(coords) va11 = bowtie.is_valid clean = bowtie.buffer(0) val2 = clean.is_valid l_a = [(0,0),(1,3),(2,-3),(10,10), (0,0)] pol = Polygon (l_a) pol1 = pol.buffer(0) l_b = [(0,0),(10,10)] line_a = LineString(l_a) line_b = LineString(l_b) p = polygonize_full([line_a,line_b]) p0 = [(0,0),(10,0),(10,10),(0,10),(0,0)] p1 = [(0,10),(10,10),(10,20),(0,20),(0,10)] p2 = [(0,0),(20,20),(-5,20),(-5,17),(5,17),(5,12),(-5,12),(0,0)] pol1 = Polygon(p1) pol2 = Polygon(p2) pols = pol1.symmetric_difference(pol2) p1 = [(0,0),(10,0),(10,10),(0,10),(0,0)] p2 = [(2,2),(8,2),(8,8),(2,8),(2,2)] pol1 = Polygon(p1) pol2 = Polygon(p2) pols1 = pol1.symmetric_difference(pol2) pols2 = pol2.symmetric_difference(pol1) p1 = [(0,0),(7,0),(7,7),(0,7),(0,0)] p2 = p1 = [(0,10),(10,10),(10,20),(0,20),(0,10)] pol1 = Polygon(p1) pol2 = Polygon(p2) pols1 = pol1.symmetric_difference(pol2) pols2 = pol2.symmetric_difference(pol1) 0/0 0/0 def mean_angle(deg): a = None # a = sum(rect(1, radians(d)) for d,l in deg) for d,ll in deg: if a is None: a = rect(ll, radians(d)) else: a += rect(ll, radians(d)) b = phase(a) c = degrees(b) d = degrees(phase(sum(rect(l, radians(d)) for d,l in deg)/len(deg))) return (c,d) def mean_angle2(degrees): angle_sum = 0. tot_len = 0 a = sum(rect(l, radians(d)) for d,l in degrees) a_phase = phase(a) a_degree = degrees(a_phase) for deg, len in degrees: angle_sum += rect(1, radians(deg)) tot_len += len average_sum = degrees(phase(angle_sum)) average_sum = average_sum / tot_len d = degrees(angle_sum) return d return degrees(phase(sum(rect(1, radians(d)*l) for d,l in deg)/sum([c[1] for c in deg]))) for angles in [[(350,1000), (10,1)], [(90,1), (180,1), (270,1), (360,1)], [(10,10), (20,1), (30,1)]]: print('The mean angle of', angles, 'is:', round(mean_angle(angles)[0], 12), 'degrees') #for angles in [[(350,2), (10,4)], [(90,2), (180,2), (270,2), (360,2)], [(10,1), (20,2), (30,3)]]: # print('The mean angle of', angles, 'is:', round(mean_angle2(angles), 12), 'degrees') 0/0 for xy in [(1,.1),(1,1),(0.1,1),(-0.1,1),(-1,1),(-1,-1),(1,-1)]: line0 = LineString([(0,0), xy]) line1 = LineString([xy, (0,0)]) for line in (line0,line1): x0, y0 = line.coords[0][0], line.coords[0][1] x1, y1 = line.coords[1][0], line.coords[1][1] delta_y = (y1 - y0) delta_x = (x1 - x0) angle = math.atan(delta_y / delta_x) angle = math.degrees(angle) print (x0, y0, x1, y1, angle) 0/0 # Create the triangles for i in range(250000): x = random.random() * 10000. y = random.random() * 10000. coords = [(x,y),(x+5, y+5),(x,y+10),(x,y)] lst_lines.append(LineString(coords)) # Create the bounding boxes for i in range(10000): x = random.random() * 10000. y = random.random() * 10000. coords = [(x,y),(x+15,y),(x+15,y+15),(x,y+15),(x,y)] lst_intersects.append(LineString(coords)) # Create shapely STRtree tree = STRtree(lst_lines) # Create RTree idx = index.Index() for i, line in enumerate(lst_lines): idx.insert(i, line.bounds) print (time.time()) sec1 = time.time() # finf the intersection with STRtree str_tree_nbr = 0 for intersect in lst_intersects: str_tree = tree.query(intersect) str_tree_nbr += len(str_tree) sec2 = time.time() print("Seconds for STRtree =", sec2-sec1) print ("Str tree number: ", str_tree_nbr) # Find the intersections with RTree rtree_nbr = 0 for intersect in lst_intersects: rtree = idx.intersection(intersect.bounds) rtree_nbr += len(list(rtree)) sec3 = time.time() print("Seconds for RTree =", sec3-sec2) print ("Rtree number: ", rtree_nbr)
26.830986
135
0.59825
303121c189311850a6b0aaba7bf2fa8a68b516a6
19,860
py
Python
tests/test_client.py
highker/presto-python-client
4f5be9c81950cbddd4579a9e55dfce6db54fb8b2
[ "Apache-2.0" ]
null
null
null
tests/test_client.py
highker/presto-python-client
4f5be9c81950cbddd4579a9e55dfce6db54fb8b2
[ "Apache-2.0" ]
null
null
null
tests/test_client.py
highker/presto-python-client
4f5be9c81950cbddd4579a9e55dfce6db54fb8b2
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import httpretty import pytest import requests import socket import time from requests_kerberos.exceptions import KerberosExchangeError from prestodb.client import PrestoRequest from prestodb import constants import prestodb.exceptions """ This is the response to the first HTTP request (a POST) from an actual Presto session. It is deliberately not truncated to document such response and allow to use it for other tests. To get some HTTP response, set logging level to DEBUG with ``logging.basicConfig(level=logging.DEBUG)`` or ``prestodb.client.logger.setLevel(logging.DEBUG)``. :: from prestodb import dbapi >>> import logging >>> import prestodb.client >>> prestodb.client.logger.setLevel(logging.DEBUG) >>> conn = dbapi.Connection('localhost', 8080, 'ggreg', 'test') >>> cur = conn.cursor() >>> res = cur.execute('select * from system.runtime.nodes') """ RESP_DATA_POST_0 = { 'nextUri': 'coordinator:8080/v1/statement/20161115_222658_00040_xtnym/1', 'id': '20161115_222658_00040_xtnym', 'taskDownloadUris': [], 'infoUri': 'http://coordinator:8080/query.html?20161115_222658_00040_xtnym', 'stats': { 'scheduled': False, 'runningSplits': 0, 'processedRows': 0, 'queuedSplits': 0, 'processedBytes': 0, 'state': 'QUEUED', 'completedSplits': 0, 'queued': True, 'cpuTimeMillis': 0, 'totalSplits': 0, 'nodes': 0, 'userTimeMillis': 0, 'wallTimeMillis': 0, }, } """ This is the response to the second HTTP request (a GET) from an actual Presto session. It is deliberately not truncated to document such response and allow to use it for other tests. After doing the steps above, do: :: >>> cur.fetchall() """ RESP_DATA_GET_0 = { 'id': '20161116_195728_00000_xtnym', 'nextUri': 'coordinator:8080/v1/statement/20161116_195728_00000_xtnym/2', 'data': [ ['UUID-0', 'http://worker0:8080', '0.157', False, 'active'], ['UUID-1', 'http://worker1:8080', '0.157', False, 'active'], ['UUID-2', 'http://worker2:8080', '0.157', False, 'active'], ], 'columns': [{ 'name': 'node_id', 'type': 'varchar', 'typeSignature': { 'typeArguments': [], 'arguments': [{ 'kind': 'LONG_LITERAL', 'value': 2147483647} ], 'literalArguments': [], 'rawType': 'varchar', } }, { 'name': 'http_uri', 'type': 'varchar', 'typeSignature': { 'typeArguments': [], 'arguments': [{ 'kind': 'LONG_LITERAL', 'value': 2147483647, }], 'literalArguments': [], 'rawType': 'varchar', } }, { 'name': 'node_version', 'type': 'varchar', 'typeSignature': { 'typeArguments': [], 'arguments': [{ 'kind': 'LONG_LITERAL', 'value': 2147483647, }], 'literalArguments': [], 'rawType': 'varchar', } }, { 'name': 'coordinator', 'type': 'boolean', 'typeSignature': { 'typeArguments': [], 'arguments': [], 'literalArguments': [], 'rawType': 'boolean', } }, { 'name': 'state', 'type': 'varchar', 'typeSignature': { 'typeArguments': [], 'arguments': [{ 'kind': 'LONG_LITERAL', 'value': 2147483647, }], 'literalArguments': [], 'rawType': 'varchar', } }], 'taskDownloadUris': [], 'partialCancelUri': 'http://localhost:8080/v1/stage/20161116_195728_00000_xtnym.0', # NOQA 'stats': { 'nodes': 2, 'processedBytes': 880, 'scheduled': True, 'completedSplits': 2, 'userTimeMillis': 0, 'state': 'RUNNING', 'rootStage': { 'nodes': 1, 'done': False, 'processedBytes': 1044, 'subStages': [{ 'nodes': 1, 'done': True, 'processedBytes': 880, 'subStages': [], 'completedSplits': 1, 'userTimeMillis': 0, 'state': 'FINISHED', 'cpuTimeMillis': 3, 'runningSplits': 0, 'totalSplits': 1, 'processedRows': 8, 'stageId': '1', 'queuedSplits': 0, 'wallTimeMillis': 27, }], 'completedSplits': 1, 'userTimeMillis': 0, 'state': 'RUNNING', 'cpuTimeMillis': 1, 'runningSplits': 0, 'totalSplits': 1, 'processedRows': 8, 'stageId': '0', 'queuedSplits': 0, 'wallTimeMillis': 9, }, 'queued': False, 'cpuTimeMillis': 3, 'runningSplits': 0, 'totalSplits': 2, 'processedRows': 8, 'queuedSplits': 0, 'wallTimeMillis': 36, }, 'infoUri': 'http://coordinator:8080/query.html?20161116_195728_00000_xtnym', # NOQA } RESP_ERROR_GET_0 = { 'error': { 'errorCode': 1, 'errorLocation': {'columnNumber': 15, 'lineNumber': 1}, 'errorName': 'SYNTAX_ERROR', 'errorType': 'USER_ERROR', 'failureInfo': { 'errorLocation': {'columnNumber': 15, 'lineNumber': 1}, 'message': 'line 1:15: Schema must be specified ' 'when session schema is not set', 'stack': [ 'com.facebook.presto.metadata.MetadataUtil.lambda$createQualifiedObjectName$2(MetadataUtil.java:133)', 'java.util.Optional.orElseThrow(Optional.java:290)', 'com.facebook.presto.metadata.MetadataUtil.createQualifiedObjectName(MetadataUtil.java:132)', 'com.facebook.presto.sql.analyzer.StatementAnalyzer.visitTable(StatementAnalyzer.java:529)', 'com.facebook.presto.sql.analyzer.StatementAnalyzer.visitTable(StatementAnalyzer.java:166)', 'com.facebook.presto.sql.tree.Table.accept(Table.java:50)', 'com.facebook.presto.sql.tree.AstVisitor.process(AstVisitor.java:22)', 'com.facebook.presto.sql.analyzer.StatementAnalyzer.analyzeFrom(StatementAnalyzer.java:1413)', 'com.facebook.presto.sql.analyzer.StatementAnalyzer.visitQuerySpecification(StatementAnalyzer.java:670)', 'com.facebook.presto.sql.analyzer.StatementAnalyzer.visitQuerySpecification(StatementAnalyzer.java:166)', 'com.facebook.presto.sql.tree.QuerySpecification.accept(QuerySpecification.java:125)', 'com.facebook.presto.sql.tree.AstVisitor.process(AstVisitor.java:22)', 'com.facebook.presto.sql.analyzer.StatementAnalyzer.visitQuery(StatementAnalyzer.java:438)', 'com.facebook.presto.sql.analyzer.StatementAnalyzer.visitQuery(StatementAnalyzer.java:166)', 'com.facebook.presto.sql.tree.Query.accept(Query.java:92)', 'com.facebook.presto.sql.tree.AstVisitor.process(AstVisitor.java:22)', 'com.facebook.presto.sql.analyzer.Analyzer.analyze(Analyzer.java:67)', 'com.facebook.presto.sql.analyzer.Analyzer.analyze(Analyzer.java:59)', 'com.facebook.presto.execution.SqlQueryExecution.doAnalyzeQuery(SqlQueryExecution.java:285)', 'com.facebook.presto.execution.SqlQueryExecution.analyzeQuery(SqlQueryExecution.java:271)', 'com.facebook.presto.execution.SqlQueryExecution.start(SqlQueryExecution.java:229)', 'com.facebook.presto.execution.QueuedExecution.lambda$start$1(QueuedExecution.java:62)', 'java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)', 'java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)', 'java.lang.Thread.run(Thread.java:745)', ], 'suppressed': [], 'type': 'com.facebook.presto.sql.analyzer.SemanticException', }, 'message': 'line 1:15: Schema must be specified when session schema is not set', }, 'id': '20161116_205844_00002_xtnym', 'infoUri': 'http://test02.presto.data.facebook.com:7777/query.html?20161116_205844_00002_xtnym', 'stats': {'completedSplits': 0, 'cpuTimeMillis': 0, 'nodes': 0, 'processedBytes': 0, 'processedRows': 0, 'queued': False, 'queuedSplits': 0, 'runningSplits': 0, 'scheduled': False, 'state': 'FAILED', 'totalSplits': 0, 'userTimeMillis': 0, 'wallTimeMillis': 0, }, 'taskDownloadUris': [], } def get_json_post_0(self): return RESP_DATA_POST_0 def get_json_get_0(self): return RESP_DATA_GET_0 def get_json_get_error_0(self): return RESP_ERROR_GET_0 def test_presto_initial_request(monkeypatch): monkeypatch.setattr(PrestoRequest.http.Response, 'json', get_json_post_0) req = PrestoRequest( host='coordinator', port=8080, user='test', source='test', catalog='test', schema='test', http_scheme='http', session_properties={}, ) http_resp = PrestoRequest.http.Response() http_resp.status_code = 200 status = req.process(http_resp) assert status.next_uri == RESP_DATA_POST_0['nextUri'] assert status.id == RESP_DATA_POST_0['id'] class ArgumentsRecorder(object): def __init__(self): # Prevent functools.wraps from complaining when it decorates the # instance. self.__name__ = 'ArgumentsRecorder' self.args = None self.kwargs = None def __call__(self, *args, **kwargs): self.args = args self.kwargs = kwargs def test_request_headers(monkeypatch): post_recorder = ArgumentsRecorder() monkeypatch.setattr(PrestoRequest.http.Session, 'post', post_recorder) get_recorder = ArgumentsRecorder() monkeypatch.setattr(PrestoRequest.http.Session, 'get', get_recorder) catalog = 'test_catalog' schema = 'test_schema' user = 'test_user' source = 'test_source' accept_encoding_header = 'accept-encoding' accept_encoding_value = 'identity,deflate,gzip' client_info_header = constants.HEADER_PREFIX + 'Client-Info' client_info_value = 'some_client_info' req = PrestoRequest( host='coordinator', port=8080, user=user, source=source, catalog=catalog, schema=schema, http_scheme='http', session_properties={}, http_headers={ accept_encoding_header: accept_encoding_value, client_info_header: client_info_value, }, redirect_handler=None, ) def assert_headers(headers): assert headers[constants.HEADER_CATALOG] == catalog assert headers[constants.HEADER_SCHEMA] == schema assert headers[constants.HEADER_SOURCE] == source assert headers[constants.HEADER_USER] == user assert headers[constants.HEADER_SESSION] == '' assert headers[accept_encoding_header] == accept_encoding_value assert headers[client_info_header] == client_info_value assert len(headers.keys()) == 8 req.post('URL') assert_headers(post_recorder.kwargs['headers']) req.get('URL') assert_headers(get_recorder.kwargs['headers']) def test_request_invalid_http_headers(): with pytest.raises(ValueError) as value_error: PrestoRequest( host='coordinator', port=8080, user='test', http_headers={constants.HEADER_USER: 'invalid_header'}, ) assert str(value_error.value).startswith('cannot override reserved HTTP header') def test_request_timeout(): timeout = 0.1 http_scheme = 'http' host = 'coordinator' port = 8080 url = http_scheme + '://' + host + ':' + str(port) + constants.URL_STATEMENT_PATH def long_call(request, uri, headers): time.sleep(timeout * 2) return (200, headers, "delayed success") httpretty.enable() for method in [httpretty.POST, httpretty.GET]: httpretty.register_uri(method, url, body=long_call) # timeout without retry for request_timeout in [timeout, (timeout, timeout)]: req = PrestoRequest( host=host, port=port, user='test', http_scheme=http_scheme, max_attempts=1, request_timeout=request_timeout, ) with pytest.raises(requests.exceptions.Timeout): req.get(url) with pytest.raises(requests.exceptions.Timeout): req.post('select 1') httpretty.disable() httpretty.reset() def test_presto_fetch_request(monkeypatch): monkeypatch.setattr(PrestoRequest.http.Response, 'json', get_json_get_0) req = PrestoRequest( host='coordinator', port=8080, user='test', source='test', catalog='test', schema='test', http_scheme='http', session_properties={}, ) http_resp = PrestoRequest.http.Response() http_resp.status_code = 200 status = req.process(http_resp) assert status.next_uri == RESP_DATA_GET_0['nextUri'] assert status.id == RESP_DATA_GET_0['id'] assert status.rows == RESP_DATA_GET_0['data'] def test_presto_fetch_request_with_cookie(monkeypatch): monkeypatch.setattr(PrestoRequest.http.Response, 'json', get_json_get_0) req = PrestoRequest( host='coordinator', port=8080, user='test', source='test', catalog='test', schema='test', http_scheme='http', session_properties={}, ) http_resp = PrestoRequest.http.Response() http_resp.status_code = 200 http_resp.cookies['key'] = 'value' req.process(http_resp) assert req._http_cookies['key'] == 'value' def test_presto_fetch_error(monkeypatch): monkeypatch.setattr( PrestoRequest.http.Response, 'json', get_json_get_error_0, ) req = PrestoRequest( host='coordinator', port=8080, user='test', source='test', catalog='test', schema='test', http_scheme='http', session_properties={}, ) http_resp = PrestoRequest.http.Response() http_resp.status_code = 200 with pytest.raises(prestodb.exceptions.PrestoUserError) as exception_info: req.process(http_resp) error = exception_info.value assert error.error_code == 1 assert error.error_name == 'SYNTAX_ERROR' assert error.error_type == 'USER_ERROR' assert error.error_exception == 'com.facebook.presto.sql.analyzer.SemanticException' assert 'stack' in error.failure_info assert len(error.failure_info['stack']) == 25 assert 'suppressed' in error.failure_info assert error.message == 'line 1:15: Schema must be specified when session schema is not set' assert error.error_location == (1, 15) assert error.query_id == '20161116_205844_00002_xtnym' @pytest.mark.parametrize("error_code, error_type, error_message", [ (503, prestodb.exceptions.Http503Error, 'service unavailable'), (404, prestodb.exceptions.HttpError, 'error 404'), ]) def test_presto_connection_error(monkeypatch, error_code, error_type, error_message): monkeypatch.setattr( PrestoRequest.http.Response, 'json', lambda x: {}, ) req = PrestoRequest( host='coordinator', port=8080, user='test', source='test', catalog='test', schema='test', http_scheme='http', session_properties={}, ) http_resp = PrestoRequest.http.Response() http_resp.status_code = error_code with pytest.raises(error_type) as error: req.process(http_resp) assert error_message in str(error) class RetryRecorder(object): def __init__(self, error=None, result=None): self.__name__ = 'RetryRecorder' self._retry_count = 0 self._error = error self._result = result def __call__(self, *args, **kwargs): self._retry_count += 1 if self._error is not None: raise self._error if self._result is not None: return self._result @property def retry_count(self): return self._retry_count def test_authentication_fail_retry(monkeypatch): post_retry = RetryRecorder(error=KerberosExchangeError()) monkeypatch.setattr(PrestoRequest.http.Session, 'post', post_retry) get_retry = RetryRecorder(error=KerberosExchangeError()) monkeypatch.setattr(PrestoRequest.http.Session, 'get', get_retry) attempts = 3 req = PrestoRequest( host='coordinator', port=8080, user='test', max_attempts=attempts, ) with pytest.raises(KerberosExchangeError): req.post('URL') assert post_retry.retry_count == attempts with pytest.raises(KerberosExchangeError): req.get('URL') assert post_retry.retry_count == attempts def test_503_error_retry(monkeypatch): http_resp = PrestoRequest.http.Response() http_resp.status_code = 503 post_retry = RetryRecorder(result=http_resp) monkeypatch.setattr(PrestoRequest.http.Session, 'post', post_retry) get_retry = RetryRecorder(result=http_resp) monkeypatch.setattr(PrestoRequest.http.Session, 'get', get_retry) attempts = 3 req = PrestoRequest( host='coordinator', port=8080, user='test', max_attempts=attempts, ) req.post('URL') assert post_retry.retry_count == attempts req.get('URL') assert post_retry.retry_count == attempts class FakeGatewayResponse(object): def __init__(self, http_response, redirect_count=1): self.__name__ = 'FakeGatewayResponse' self.http_response = http_response self.redirect_count = redirect_count self.count = 0 def __call__(self, *args, **kwargs): self.count += 1 if self.count == self.redirect_count: return self.http_response http_response = PrestoRequest.http.Response() http_response.status_code = 301 http_response.headers['Location'] = 'http://1.2.3.4:8080/new-path/' assert http_response.is_redirect return http_response def test_gateway_redirect(monkeypatch): http_resp = PrestoRequest.http.Response() http_resp.status_code = 200 gateway_response = FakeGatewayResponse(http_resp, redirect_count=3) monkeypatch.setattr(PrestoRequest.http.Session, 'post', gateway_response) monkeypatch.setattr( socket, 'gethostbyaddr', lambda *args: ('finalhost', ['finalhost'], '1.2.3.4'), ) req = PrestoRequest( host='coordinator', port=8080, user='test', ) result = req.post('http://host:80/path/') assert gateway_response.count == 3 assert result.ok
32.292683
121
0.620493
be0a8311d1c083503acc97fd3cdf6cfc9ded10ed
24,756
py
Python
datahub/omis/order/test/test_validators.py
alixedi/data-hub-api-cd-poc
a5e5ea45bb496c0d2a06635864514af0c7d4291a
[ "MIT" ]
null
null
null
datahub/omis/order/test/test_validators.py
alixedi/data-hub-api-cd-poc
a5e5ea45bb496c0d2a06635864514af0c7d4291a
[ "MIT" ]
null
null
null
datahub/omis/order/test/test_validators.py
alixedi/data-hub-api-cd-poc
a5e5ea45bb496c0d2a06635864514af0c7d4291a
[ "MIT" ]
null
null
null
from unittest import mock import pytest from django.db.models import Sum from rest_framework.exceptions import ValidationError from datahub.core.exceptions import APIConflictException from datahub.omis.order.constants import OrderStatus, VATStatus from datahub.omis.order.models import Order from datahub.omis.order.test.factories import ( OrderFactory, OrderWithCancelledQuoteFactory, OrderWithOpenQuoteFactory, ) from datahub.omis.order.validators import ( AssigneesFilledInSubValidator, CancellableOrderSubValidator, CompletableOrderSubValidator, ContactWorksAtCompanyValidator, NoOtherActiveQuoteExistsSubValidator, OrderDetailsFilledInSubValidator, OrderEditableFieldsValidator, OrderInStatusRule, OrderInStatusSubValidator, OrderInStatusValidator, VATSubValidator, ) class TestContactWorksAtCompanyValidator: """Tests for ContactWorksAtCompanyValidator.""" def test_contact_from_company(self): """ Test that if the contact specified in data works at the company specified in data, the validation passes. """ serializer = mock.Mock() company = serializer.instance.company new_contact = mock.Mock(company=company) validator = ContactWorksAtCompanyValidator() data = { 'contact': new_contact, 'company': company, } try: validator(data, serializer) except Exception: pytest.fail('Should not raise a validator error.') def test_contact_not_from_company(self): """ Test that if the contact specified in data doesn't works at the company specified in data, the validation fails. """ serializer = mock.Mock() company = serializer.instance.company new_contact = mock.Mock() # doesn't work at `company` validator = ContactWorksAtCompanyValidator() data = { 'contact': new_contact, 'company': company, } with pytest.raises(ValidationError): validator(data, serializer) def test_with_different_field_names(self): """ Test that the validation passes when using different field names. """ serializer = mock.Mock() company = serializer.instance.company new_main_contact = mock.Mock(company=company) validator = ContactWorksAtCompanyValidator( contact_field='main_contact', company_field='main_company', ) data = { 'main_contact': new_main_contact, 'main_company': company, } try: validator(data, serializer) except Exception: pytest.fail('Should not raise a validator error.') @pytest.mark.django_db class TestAssigneesFilledInSubValidator: """Tests for the AssigneesFilledInSubValidator.""" def test_no_assignees_fails(self): """Test that the validation fails if the order doesn't have any assignees.""" order = OrderFactory(assignees=[]) validator = AssigneesFilledInSubValidator() with pytest.raises(ValidationError) as exc: validator(order=order) assert exc.value.detail == { 'assignees': ['You need to add at least one assignee.'], } def test_no_lead_assignee_fails(self): """Test that the validation fails if there's no lead assignee.""" order = OrderFactory() order.assignees.update(is_lead=False) validator = AssigneesFilledInSubValidator() with pytest.raises(ValidationError) as exc: validator(order=order) assert exc.value.detail == { 'assignee_lead': ['You need to set a lead assignee.'], } def test_no_estimated_time_fails(self): """ Test that the validation fails if the combined estimated time of the assignees is zero. """ order = OrderFactory() order.assignees.update(estimated_time=0) validator = AssigneesFilledInSubValidator() with pytest.raises(ValidationError) as exc: validator(order=order) assert exc.value.detail == { 'assignee_time': ['The total estimated time cannot be zero.'], } def test_non_zero_estimated_time_succeeds(self): """ Test that the validation succeeds if the combined estimated time of the assignees is greater than zero. """ order = OrderFactory() assert order.assignees.aggregate(sum=Sum('estimated_time'))['sum'] > 0 validator = AssigneesFilledInSubValidator() try: validator(order=order) except Exception: pytest.fail('Should not raise a validator error.') @pytest.mark.django_db class TestOrderDetailsFilledInSubValidator: """Tests for the OrderDetailsFilledInSubValidator.""" @pytest.mark.parametrize('values_as_data', (True, False)) def test_incomplete_order(self, values_as_data): """ Test that an incomplete order doesn't pass the validation. Test both scenarios: - with fields on the instance (values_as_data=False) - with fields as values in the data param (values_as_data=True) """ order_fields = { 'primary_market': None, 'description': '', 'delivery_date': None, 'vat_status': '', } order_m2m_fields = { 'service_types': [], } if values_as_data: order = Order() data = {**order_fields, **order_m2m_fields} else: order = Order(**order_fields) for k, v in order_m2m_fields.items(): getattr(order, k).set(v) data = {} validator = OrderDetailsFilledInSubValidator() with pytest.raises(ValidationError) as exc: validator(data=data, order=order) all_fields = list(order_fields) + list(order_m2m_fields) assert exc.value.detail == { **{field: ['This field is required.'] for field in all_fields}, 'assignees': ['You need to add at least one assignee.'], } @pytest.mark.parametrize('values_as_data', (True, False)) def test_complete_order(self, values_as_data): """ Test that a complete order passes the validation. Test both scenarios: - with fields on the instance (values_as_data=False) - with fields as values in the data param (values_as_data=True) """ random_values = OrderFactory() # used only to set up the related props easily order_fields = { 'primary_market': random_values.primary_market, 'service_types': random_values.service_types.all(), 'description': random_values.description, 'delivery_date': random_values.delivery_date, 'vat_status': random_values.vat_status, } order = OrderFactory(**(order_fields if not values_as_data else {})) data = order_fields if values_as_data else {} validator = OrderDetailsFilledInSubValidator() try: validator(data=data, order=order) except Exception: pytest.fail('Should not raise a validator error.') def test_validation_errors_appended(self): """ Test that if a field gets more than one error during the validation, the errors are appended to the same list and not overridden by other validators. """ order = OrderFactory() with mock.patch.object( OrderDetailsFilledInSubValidator, 'get_extra_validators', ) as get_extra_validators: # trigger a second validation error on the same field get_extra_validators.return_value = [ mock.Mock( side_effect=ValidationError({ 'description': ['A different error...'], }), ), ] validator = OrderDetailsFilledInSubValidator() with pytest.raises(ValidationError) as exc: validator( data={ 'description': '', }, order=order, ) assert exc.value.detail == { 'description': [ 'This field is required.', 'A different error...', ], } @pytest.mark.django_db class TestNoOtherActiveQuoteExistsSubValidator: """Tests for the NoOtherActiveQuoteExistsSubValidator.""" def test_with_existing_active_quote(self): """Test that if there's already an active quote, the validation fails.""" order = OrderWithOpenQuoteFactory() validator = NoOtherActiveQuoteExistsSubValidator() with pytest.raises(APIConflictException): validator(order=order) def test_without_any_active_quote(self): """Test that if there isn't any active quote, the validation passes.""" order = OrderFactory() validator = NoOtherActiveQuoteExistsSubValidator() try: validator(order=order) except Exception: pytest.fail('Should not raise a validator error.') def test_with_cancelled_quote(self): """Test that if there is a cancelled quote, the validation passes.""" order = OrderWithCancelledQuoteFactory() validator = NoOtherActiveQuoteExistsSubValidator() try: validator(order=order) except Exception: pytest.fail('Should not raise a validator error.') @pytest.mark.django_db class TestOrderInStatusSubValidator: """Tests for the OrderInStatusSubValidator.""" def test_validation_passes(self): """ Test that the validation passes if order.status is one of the allowed statuses. """ order = OrderFactory(status=OrderStatus.complete) validator = OrderInStatusSubValidator( allowed_statuses=( OrderStatus.draft, OrderStatus.complete, OrderStatus.cancelled, ), ) try: validator(order=order) except Exception: pytest.fail('Should not raise a validator error.') def test_validation_fails(self): """ Test that the validation fails if order.status is NOT one of the allowed statuses. """ order = OrderFactory(status=OrderStatus.complete) validator = OrderInStatusSubValidator( allowed_statuses=( OrderStatus.draft, OrderStatus.cancelled, ), ) with pytest.raises(APIConflictException): validator(order=order) def test_order_not_required(self): """ Test that if order_required == False and the order passed in is None, the validation passes. """ validator = OrderInStatusSubValidator( allowed_statuses=( OrderStatus.draft, OrderStatus.complete, OrderStatus.cancelled, ), order_required=False, ) try: validator() except Exception: pytest.fail('Should not raise a validator error.') @pytest.mark.django_db class TestOrderInStatusValidator: """Tests for the OrderInStatusValidator.""" @pytest.mark.parametrize( 'serializer_factory', ( lambda order: mock.Mock(instance=order, context={}), lambda order: mock.Mock(context={'order': order}), ), ) def test_validation_passes(self, serializer_factory): """ Test that the validation passes if order.status is one of the allowed statuses. """ order = OrderFactory(status=OrderStatus.complete) validator = OrderInStatusValidator( allowed_statuses=( OrderStatus.draft, OrderStatus.complete, OrderStatus.cancelled, ), ) serializer = serializer_factory(order) try: validator({}, serializer) except Exception: pytest.fail('Should not raise a validator error.') @pytest.mark.parametrize( 'serializer_factory', ( lambda order: mock.Mock(instance=order, context={}), lambda order: mock.Mock(context={'order': order}), ), ) def test_validation_fails(self, serializer_factory): """ Test that the validation fails if order.status is NOT one of the allowed statuses. """ order = OrderFactory(status=OrderStatus.complete) validator = OrderInStatusValidator( allowed_statuses=( OrderStatus.draft, OrderStatus.cancelled, ), ) serializer = serializer_factory(order) with pytest.raises(APIConflictException): validator({}, serializer) def test_order_not_required(self): """ Test that if order_required == False and the order passed in is None, the validation passes. """ validator = OrderInStatusValidator( allowed_statuses=( OrderStatus.draft, OrderStatus.complete, OrderStatus.cancelled, ), order_required=False, ) serializer = mock.Mock(instance=None, context={}) try: validator({}, serializer) except Exception: pytest.fail('Should not raise a validator error.') class TestVATSubValidator: """Tests for the VATSubValidator.""" @pytest.mark.parametrize('values_as_data', (True, False)) def test_nothing_specified_fails(self, values_as_data): """ Test that if none of the vat fields are specified, it raises a ValidationError. Test both scenarios: - with fields on the instance (values_as_data=False) - with fields as values in the data param (values_as_data=True) """ order_fields = { 'vat_status': '', 'vat_number': '', 'vat_verified': None, } order = Order(**(order_fields if not values_as_data else {})) data = order_fields if values_as_data else {} validator = VATSubValidator() with pytest.raises(ValidationError) as exc: validator(data=data, order=order) assert exc.value.detail == {'vat_status': ['This field is required.']} @pytest.mark.parametrize('values_as_data', (True, False)) def test_only_status_eu_specified_fails(self, values_as_data): """ Test that if only vat_status = eu is specified, it raises a ValidationError as vat_verified (true or false) has to be specified as well. Test both scenarios: - with fields on the instance (values_as_data=False) - with fields as values in the data param (values_as_data=True) """ order_fields = { 'vat_status': VATStatus.eu, 'vat_number': '', 'vat_verified': None, } order = Order(**(order_fields if not values_as_data else {})) data = order_fields if values_as_data else {} validator = VATSubValidator() with pytest.raises(ValidationError) as exc: validator(data=data, order=order) assert exc.value.detail == {'vat_verified': ['This field is required.']} @pytest.mark.parametrize('values_as_data', (True, False)) def test_only_status_eu_verified_true_specified_fails(self, values_as_data): """ Test that if vat_status = eu and vat_verified = True but vat_number is not specified, it raises a ValidationError. Test both scenarios: - with fields on the instance (values_as_data=False) - with fields as values in the data param (values_as_data=True) """ order_fields = { 'vat_status': VATStatus.eu, 'vat_number': '', 'vat_verified': True, } order = Order(**(order_fields if not values_as_data else {})) data = order_fields if values_as_data else {} validator = VATSubValidator() with pytest.raises(ValidationError) as exc: validator(data=data, order=order) assert exc.value.detail == {'vat_number': ['This field is required.']} @pytest.mark.parametrize('values_as_data', (True, False)) def test_complete_verified_eu_vat_succeeds(self, values_as_data): """ Test that if vat_status = eu, vat_verified = True and vat_number is specified, the validation passes. Test both scenarios: - with fields on the instance (values_as_data=False) - with fields as values in the data param (values_as_data=True) """ order_fields = { 'vat_status': VATStatus.eu, 'vat_number': '0123456789', 'vat_verified': True, } order = Order(**(order_fields if not values_as_data else {})) data = order_fields if values_as_data else {} validator = VATSubValidator() try: validator(data=data, order=order) except Exception: pytest.fail('Should not raise a validator error.') @pytest.mark.parametrize('values_as_data', (True, False)) def test_only_status_eu_verified_false_specified_succeeds(self, values_as_data): """ Test that if vat_status = eu, vat_verified = False and vat_number is not specified, the validation passes and vat_number is not required when vat_verified is False. Test both scenarios: - with fields on the instance (values_as_data=False) - with fields as values in the data param (values_as_data=True) """ order_fields = { 'vat_status': VATStatus.eu, 'vat_number': '', 'vat_verified': False, } order = Order(**(order_fields if not values_as_data else {})) data = order_fields if values_as_data else {} validator = VATSubValidator() try: validator(data=data, order=order) except Exception: pytest.fail('Should not raise a validator error.') @pytest.mark.parametrize('values_as_data', (True, False)) @pytest.mark.parametrize('vat_status', (VATStatus.outside_eu, VATStatus.uk)) def test_only_status_non_eu_succeeds(self, values_as_data, vat_status): """ Test that if vat_status != eu, the validation passes even if the other fields are empty. Test both scenarios: - with fields on the instance (values_as_data=False) - with fields as values in the data param (values_as_data=True) """ order_fields = { 'vat_status': vat_status, 'vat_number': '', 'vat_verified': None, } order = Order(**(order_fields if not values_as_data else {})) data = order_fields if values_as_data else {} validator = VATSubValidator() try: validator(data=data, order=order) except Exception: pytest.fail('Should not raise a validator error.') class TestCompletableOrderSubValidator: """Tests for the CompletableOrderSubValidator.""" def test_ok_with_all_actual_time_fields_set(self): """ Test that the validation succeeds when all assignee.actual_time fields are set. """ order = mock.MagicMock() order.assignees.all.return_value = ( mock.MagicMock(actual_time=100), mock.MagicMock(actual_time=0), ) validator = CompletableOrderSubValidator() try: validator(order=order) except Exception: pytest.fail('Should not raise a validator error.') def test_fails_if_not_all_actual_time_fields_set(self): """ Test that the validation fails if not all assignee.actual_time fields are set. """ order = mock.MagicMock() order.assignees.all.return_value = ( mock.MagicMock(actual_time=100), mock.MagicMock(actual_time=None), ) validator = CompletableOrderSubValidator() with pytest.raises(ValidationError) as exc: validator(order=order) assert exc.value.detail == { 'non_field_errors': ( 'You must set the actual time for all assignees ' 'to complete this order.' ), } class TestCancellableOrderSubValidator: """Tests for the CancellableOrderSubValidator.""" @pytest.mark.parametrize( 'order_status,force,should_pass', ( # with force=False (OrderStatus.draft, False, True), (OrderStatus.quote_awaiting_acceptance, False, True), (OrderStatus.quote_accepted, False, False), (OrderStatus.paid, False, False), (OrderStatus.complete, False, False), (OrderStatus.cancelled, False, False), # with force=True (OrderStatus.draft, True, True), (OrderStatus.quote_awaiting_acceptance, True, True), (OrderStatus.quote_accepted, True, True), (OrderStatus.paid, True, True), (OrderStatus.complete, True, False), (OrderStatus.cancelled, True, False), ), ) def test_validation(self, order_status, force, should_pass): """Test the validator with different order status and force values.""" order = Order(status=order_status) validator = CancellableOrderSubValidator(force=force) if should_pass: validator(order=order) else: with pytest.raises(APIConflictException): validator(order=order) @pytest.mark.parametrize( 'order_status,expected_status,res', ( (OrderStatus.draft, OrderStatus.draft, True), (OrderStatus.draft, OrderStatus.paid, False), ), ) def test_order_in_status_rule(order_status, expected_status, res): """Tests for OrderInStatusRule.""" order = mock.Mock(status=order_status) combiner = mock.Mock() combiner.serializer.context = {'order': order} rule = OrderInStatusRule(expected_status) assert rule(combiner) == res class TestOrderEditableFieldsValidator: """Tests for the OrderEditableFieldsValidator.""" @pytest.mark.parametrize( 'order_status,mapping,data,should_pass', ( # allowed field => OK ( OrderStatus.draft, {OrderStatus.draft: {'description'}}, {'description': 'lorem ipsum'}, True, ), # disallowed field => Fail ( OrderStatus.draft, {OrderStatus.draft: {'contact'}}, {'description': 'lorem ipsum'}, False, ), # status not in mapping => OK ( OrderStatus.draft, {OrderStatus.paid: {'contact'}}, {'description': 'lorem ipsum'}, True, ), # disallowed field didn't change => OK ( OrderStatus.draft, {OrderStatus.draft: {'contact'}}, {'description': 'original description'}, True, ), # nothing allowed => Fail ( OrderStatus.draft, {OrderStatus.draft: {}}, {'description': 'lorem ipsum'}, False, ), ), ) def test_validation_with_order(self, order_status, mapping, data, should_pass): """Test the validator with different order status, mapping and data.""" order = Order( status=order_status, description='original description', ) serializer = mock.Mock(instance=order) validator = OrderEditableFieldsValidator(mapping) if should_pass: validator(data, serializer) else: with pytest.raises(ValidationError): validator(data, serializer) def test_validation_passes_on_creation(self): """Test that the validation passes if we are creating the order instead of editing it.""" serializer = mock.Mock(instance=None) validator = OrderEditableFieldsValidator({OrderStatus.paid: {'contact'}}) validator({'description': 'lorem ipsum'}, serializer)
32.876494
97
0.605025
f2ebd39d561cc31e1ad600b9e13e6f9160415c77
6,382
py
Python
figures/fig1_iso.py
aneeshnaik/HernquistFlows
7f81f9b47297b115ae6b593593aac59afafc48b3
[ "MIT" ]
null
null
null
figures/fig1_iso.py
aneeshnaik/HernquistFlows
7f81f9b47297b115ae6b593593aac59afafc48b3
[ "MIT" ]
null
null
null
figures/fig1_iso.py
aneeshnaik/HernquistFlows
7f81f9b47297b115ae6b593593aac59afafc48b3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Figure 1: Isotropic Hernquist DF. Created: May 2021 Author: A. P. Naik """ import sys import numpy as np import matplotlib.pyplot as plt import copy from os.path import exists sys.path.append("../src") from constants import M_sun, kpc, G, pi from hernquist import calc_DF_iso from ml import load_flow, calc_DF_ensemble def get_f_exact(rgrid, vgrid, M, a): """Get exact Hernquist DF evaluated on r/v grids.""" # deproject grids into 6D N_bins = rgrid.shape[0] dr = np.diff(rgrid[0, :], axis=0)[0] dv = np.diff(vgrid[:, 0], axis=0)[0] x = rgrid.reshape(N_bins**2) vx = vgrid.reshape(N_bins**2) zeroes = np.zeros_like(x) q = np.stack((x, zeroes, zeroes), axis=-1) p = np.stack((vx, zeroes, zeroes), axis=-1) # evaluate DF f_exact = calc_DF_iso(q, p, M, a).reshape(N_bins, N_bins) # renormalise; expected fraction of particles in each bin f_exact = 16 * pi**2 * f_exact * rgrid**2 * vgrid**2 * dr * dv return f_exact def get_f_data(r_bin_edges, v_bin_edges): """Get mock Hernquist sample histogrammed into r v grids.""" # load data data = np.load('../data/hq_iso_orig.npz') pos = data['pos'] vel = data['vel'] # get histogram r = np.linalg.norm(pos, axis=-1) v = np.linalg.norm(vel, axis=-1) bins = [r_bin_edges / kpc, v_bin_edges / 1000] H, _, _ = np.histogram2d(r / kpc, v / 1000, bins=bins) f_data = H.T / 1e+6 return f_data def get_f_model(rgrid, vgrid, M, a): """Get reconstructed Hernquist DF evaluated on r/v grids.""" # deproject grids into 6D N_bins = rgrid.shape[0] dr = np.diff(rgrid[0, :], axis=0)[0] dv = np.diff(vgrid[:, 0], axis=0)[0] x = rgrid.reshape(N_bins**2) vx = vgrid.reshape(N_bins**2) zeroes = np.zeros_like(x) q = np.stack((x, zeroes, zeroes), axis=-1) p = np.stack((vx, zeroes, zeroes), axis=-1) # units u_q = 10 * a u_p = np.sqrt(2 * G * M / a) u_f = u_q**3 * u_p**3 # load flows n_flows = 30 flows = [] for i in range(n_flows): fname = f"../nflow_models/hq_iso_orig/{i}_best.pth" flows.append(load_flow(fname, 6, 8, 64)) # evaluate DF f_model = calc_DF_ensemble(q, p, u_q, u_p, flows).reshape(N_bins, N_bins) # renormalise; expected fraction of particles in each bin f_model = 16 * pi**2 * f_model * rgrid**2 * vgrid**2 * dr * dv / u_f return f_model if __name__ == '__main__': # Hernquist params and scaling units M = 1e+10 * M_sun a = 5 * kpc u_pos = 10 * a u_vel = np.sqrt(2 * G * M / a) # grid dims r_max = 5.5 * a v_max = np.sqrt(2 * G * M / a) N_bins = 128 # check if plot data exists, otherwise generate dfile = "fig1_data.npz" if not exists(dfile): # define r/v bins in which to evaluate DF r_bin_edges = np.linspace(0, r_max, N_bins + 1) v_bin_edges = np.linspace(0, v_max, N_bins + 1) r_cen = 0.5 * (r_bin_edges[1:] + r_bin_edges[:-1]) v_cen = 0.5 * (v_bin_edges[1:] + v_bin_edges[:-1]) rgrid, vgrid = np.meshgrid(r_cen, v_cen) dr = r_max / N_bins dv = v_max / N_bins # f_ref x0 = np.array([a, 0, 0]) v0 = np.array([v_max / 4, 0, 0]) f_ref = calc_DF_iso(x0, v0, M, a) f_ref = 16 * pi**2 * f_ref * a**2 * (v_max / 4)**2 * dr * dv # get various DFs f_exact = get_f_exact(rgrid, vgrid, M, a) / f_ref f_data = get_f_data(r_bin_edges, v_bin_edges) / f_ref f_model = get_f_model(rgrid, vgrid, M, a) / f_ref # calculate residuals with np.errstate(divide='ignore', invalid='ignore'): res = np.divide((f_model - f_exact), f_exact) # save data file np.savez( dfile, f_exact=f_exact, f_data=f_data, f_model=f_model, res=res ) else: # load data file data = np.load(dfile) f_exact = data['f_exact'] f_model = data['f_model'] f_data = data['f_data'] res = data['res'] # set up figure fig = plt.figure(figsize=(6.9, 3), dpi=150) left = 0.065 right = 0.98 bottom = 0.125 top = 0.83 dX = (right - left) / 4 dY = (top - bottom) CdY = 0.05 # plot settings plt.rcParams['text.usetex'] = True plt.rcParams['font.family'] = 'serif' plt.rcParams['font.size'] = 9 plt.rcParams['ytick.labelsize'] = 8 plt.rcParams['xtick.labelsize'] = 8 labels = ['Exact', 'Data', 'Model', 'Residuals'] cmap = copy.copy(plt.cm.bone) cmap.set_under('white') vmin = 0.00001 vmax = 1.3 extent = [0, r_max / a, 0, 1] iargs1 = {'origin': 'lower', 'cmap': cmap, 'vmin': vmin, 'vmax': vmax, 'extent': extent, 'aspect': 'auto'} iargs2 = {'origin': 'lower', 'extent': extent, 'vmin': -0.75, 'vmax': 0.75, 'cmap': 'Spectral_r', 'aspect': 'auto'} # loop over panels for i in range(4): # set up axes ax = fig.add_axes([left + i * dX, top - dY, dX, dY]) # get relevant DF if i == 0: f = np.copy(f_exact) elif i == 1: f = np.copy(f_data) elif i == 2: f = np.copy(f_model) else: f = np.copy(res) # plot DF if i == 3: im1 = ax.imshow(res, **iargs2) else: im0 = ax.imshow(f, **iargs1) # text ax.text(0.97, 0.96, labels[i], ha='right', va='top', transform=ax.transAxes) # ticks, axis labels etc. ax.tick_params(top=True, right=True, direction='inout') if i == 0: ax.set_ylabel(r"$v\ /\ v_\mathrm{esc}(r=0)$") else: ax.tick_params(labelleft=False) if i == 2: ax.set_xlabel(r"$r\ /\ a$") ax.xaxis.set_label_coords(0, -0.1) # colourbars cax0 = fig.add_axes([left, top, 3 * dX, CdY]) cax1 = fig.add_axes([left + 3 * dX, top, dX, CdY]) plt.colorbar(im0, cax=cax0, orientation='horizontal') plt.colorbar(im1, cax=cax1, orientation='horizontal') cax0.set_xlabel(r"$F / F_\mathrm{ref}$") cax1.set_xlabel(r"Model / Exact - 1") for cax in [cax0, cax1]: cax.xaxis.set_ticks_position('top') cax.xaxis.set_label_position('top') # save fig.savefig("fig1_iso.pdf")
29.275229
79
0.56205
890be8cb708e51757880132205b02b1b17afa102
1,555
py
Python
django_1.8_tutorial/mysite/polls/views.py
TecKnow/learning
71d1ddf9d580027ecc62a067581da378a9e85f6d
[ "BSD-3-Clause" ]
null
null
null
django_1.8_tutorial/mysite/polls/views.py
TecKnow/learning
71d1ddf9d580027ecc62a067581da378a9e85f6d
[ "BSD-3-Clause" ]
null
null
null
django_1.8_tutorial/mysite/polls/views.py
TecKnow/learning
71d1ddf9d580027ecc62a067581da378a9e85f6d
[ "BSD-3-Clause" ]
null
null
null
from django.shortcuts import get_object_or_404, render from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.utils import timezone from django.views import generic from .models import Choice, Question class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): """Return the last five published questions.""" return Question.objects.filter( pub_date__lte=timezone.now() ).order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' def get_queryset(self): """Excludes any questions that aren't published yet.""" return Question.objects.filter(pub_date__lte=timezone.now()) class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' def vote(request, question_id): p = get_object_or_404(Question, pk=question_id) try: selected_choice = p.choice_set.get(pk=request.POST['choice']) except(KeyError, Choice.DoesNotExist): return render(request, 'polls/detail.html', {'question': p, 'error_message': "You didn't select a choice." }) else: selected_choice.votes += 1 selected_choice.save() return HttpResponseRedirect(reverse('polls:results', args=(p.id,)))
31.1
69
0.649518
293f83cbe614908d50284bb095b8cc08b77023d8
1,618
py
Python
tool/testspec_1c718d7f2bdb95d407b27412b25471c762355832.py
uiuc-arc/tera
9ceece9aa29fd58903c6e8fa5e65fce555f55d7c
[ "MIT" ]
2
2021-07-01T11:57:28.000Z
2022-03-29T19:29:01.000Z
tool/testspec_c21120ffd974029485877dcebafb2c0b930e1f16.py
uiuc-arc/tera
9ceece9aa29fd58903c6e8fa5e65fce555f55d7c
[ "MIT" ]
null
null
null
tool/testspec_c21120ffd974029485877dcebafb2c0b930e1f16.py
uiuc-arc/tera
9ceece9aa29fd58903c6e8fa5e65fce555f55d7c
[ "MIT" ]
null
null
null
from src.lib.TestSpec import Spec from src.lib.AssertSpec import AssertSpec from src.lib.AssertType import AssertType from src.lib.Param import Param from src.lib.ParamType import ParamType from src.lib.Test import Test import libraries testspecs = [Spec( repo="pyGPGO", filename="{0}/projects/pyGPGO/tests/test_GPGO.py".format( libraries.PROJECT_DIR), classname="none", testname="test_GPGO_mcmc", params=[ Param( name="niter", param_line=30, param_col=56, param_type=ParamType.ITER, default_val=100, value_range=[1, 100], steps=1 ), Param( name="max_iter", param_line=34, param_col=22, param_type=ParamType.ITER, default_val=10, value_range=[1, 10], steps=1 ), ], assertions=[ AssertSpec( test=Test(testname=None, classname=None, filename="{0}/projects/pyGPGO/tests/test_GPGO.py".format( libraries.PROJECT_DIR) ), line=36, col_offset=-1, assert_type=AssertType.ASSERT_ALLCLOSE, assert_string="np.testing.assert_allclose(res['x'], 0.75, atol=0.05)", args=[] ) ], branchname="before_1c718d7f2bdb95d407b27412b25471c762355832" )]
30.528302
86
0.495674
07b9d0bdcfb8330466edea9deb7cfc89c37bf0c0
2,985
py
Python
textkind/classify.py
caltechlibrary/documentarist
055ad42f623c7affb584a6004e1bdba73d6312ac
[ "BSD-3-Clause" ]
10
2020-04-27T19:12:14.000Z
2022-02-11T07:06:17.000Z
textkind/classify.py
caltechlibrary/documentarist
055ad42f623c7affb584a6004e1bdba73d6312ac
[ "BSD-3-Clause" ]
null
null
null
textkind/classify.py
caltechlibrary/documentarist
055ad42f623c7affb584a6004e1bdba73d6312ac
[ "BSD-3-Clause" ]
2
2020-04-27T19:12:21.000Z
2021-03-15T10:47:16.000Z
''' classify.py: interface to classifier engine Authors ------- Michael Hucka <mhucka@caltech.edu> -- Caltech Library Copyright --------- Copyright (c) 2020 by the California Institute of Technology. This code is open-source software released under a 3-clause BSD license. Please see the file "LICENSE" for more information. ''' from math import exp from os import path import pickle from PIL import Image from sidetrack import log, logr import sys sys.path.append('../common') from common.ui import UI, inform, warn, alert, alert_fatal from common.exceptions import * sys.path.append('printed_vs_handwritten') from printed_vs_handwritten import ocrd_typegroups_classifier from printed_vs_handwritten.ocrd_typegroups_classifier.typegroups_classifier import TypegroupsClassifier # Constants. # ............................................................................. _TGC_MODEL_FILE = 'classifier.tgc' # Class definitions. # ............................................................................. class TextKindClassifier(): def __init__(self): pickled_class = path.join('printed_vs_handwritten', 'ocrd_typegroups_classifier', 'models', 'classifier.tgc') self._classifier = TypegroupsClassifier.load(pickled_class) def classify(self, inputs): '''Analyzes images for handwritten or printed text. If given a single image or file, analyzes it and returns a single result. If given a list, returns an iterator over the results of analyzing each individual image or file. ''' if isinstance(inputs, (list, tuple)): return self.classify_list(inputs) elif isinstance(inputs, Image.Image): return self.classify_image(inputs) else: return self.classify_file(inputs) def classify_list(self, inputs): for item in inputs: yield self.classify(item) def classify_file(self, file): if __debug__: log(f'classifying file {file}') with Image.open(file, 'r') as image: return self.classify_image(image) def classify_image(self, image): file = image.filename if hasattr(image, 'filename') else None if __debug__: log(f'classifying image {image} (from {file})') # The classifier has a hardwired assumption that the inputs have # 3 channels. If we get a grayscale image, we have to convert it. image = image.convert('RGB') data = self._classifier.classify(image, 75, 64, False) kind = 'printed' if data['printed'] > data['handwritten'] else 'handwritten' results = {'text kind': kind, 'printed': data['printed'], 'handwritten': data['handwritten']} if file: results['file'] = file if __debug__: log('image classification results = {}', results) return results
31.421053
106
0.621776